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(Deemed to be University)
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Instruction Hours /week: L: 4 T:0P: 0 Marks: Internal: 40 External: 60 Total: 100

End Semester Exam: 3 Hours

Course Objectives

This course enables the students to learn
e The concepts of essentials of concavity, inflection points and its geometrical applications.
e The Higher order derivatives and its applications in business, economics and life sciences.

Course Outcomes (COs)
On successful completion of this course, the students will be able to
1. Understand the concepts of Linear, quadratic, power, polynomial, algebraic, rational,
trigonometric, exponential, hyperbolic and logarithmic functions.
2. Explore the concept of reduction formula and calculate limits in indeterminate forms by a repeated
use of L’Hospital rule.
3. Use single and multiple integration to calculate the arc length, area and volume.
4. Understand the techniques of sketching conics and properties of conics.
5. Acquire the knowledge on application of vector functions.

UNIT -1

DIFFENTIAL CALCULUS

Hyperbolic functions, higher order derivatives, Leibniz rule and its applications to problems of type
e®*bsinx, e**Pcosx, (ax+b)"sinx, and (ax+b)"cosx.

UNIT 11

INTEGRAL CALCULUS

Reduction formulae, derivations and illustrations of reduction formulae of the type [ sin nx dx,

[ cosnx dx, | tan nx dx, | sec nx dx, | log x" dx, [sin” x sin™x dx. Curve tracing in Cartesian coordinates,
tracing in polar coordinates of standard curves, L’Hospital’s rule, applications in business, economics and
life sciences.

UNIT Il

APPLICATIONS OF INTEGRATION

Volumes by slicing, disks and washers methods, volumes by cylindrical shells, parametric equations,
parameterizing a curve, arc length, arc length of parametric curves, area of surface of revolution.
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UNIT IV

CURVE SKETCHING

Concavity and Inflection points, asymptotes. Techniques of sketching conics, reflection properties of
conics, rotation of axes and second degree equations, classification into conics using the discriminant,
polar equations of conics.

UNIT V

VECTOR FUCTIONS

Introduction to vector functions, operations with vector-valued functions, limits and continuity of vector
functions, differentiation and integration of vector functions, tangent and normal components of
acceleration, modeling ballistics and planetary motion, Kepler’s second law.

SUGGESTED READINGS

1. Thomas G.B., and Finney R.L., (2008).Calculus, Ninth Edition, Pearson Education,
Delhi.

2. Anton H., Bivens I., and Davis S.,(2017). Calculus, Tenth Edition, John Wiley and Sons
(Asia) P. Ltd., Singapore.

3. Strauss M.J., Bradley G.L.,and Smith K. J., (2007). Calculus, Third Edition, Dorling
Kindersley (India) Pvt. Ltd. (Pearson Education), Delhi.

4. Courant R., and John F., (2000). Introduction to Calculus and Analysis (Volumes | & I1),
Springer- Verlag, New York.
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N KARPAGAM ACADEMY OF HIGHER EDUCATION
KA RPAGA M (Deemed to be University Established Under Section 3 of UGC Act1956)
ACADEMY OF HIGHER EDUCATION COImbatore _ 641 021

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 )

DEPARTMENT OF MATHEMATICS

Semester — |
19MMU101 CALCULUS 4H-4C
Instruction Hours / week: L: 4 T: 0P: 0 Marks: Internal; 40 External; 60 Total: 100

End Semester Exam: 3 Hours
Name of the Faculty : M.Sangeetha

Lecture
S.No. | Duration Topics to be covered Support Materials
(Hr)
UNIT -1
1. 1 Introduction to Hyperbolic function S3:Ch 7;Pg:350-353
2. 1 Inverse hyperbolic function S3:Ch 7;Pg:353-356
3. 1 Higher order derivatives S4:Ch 4;Pg:156-159
4. 1 Leibiniz rule and its applications S4:Ch 4;Pg:169-177
S e e $4:Ch 4;Pg:178-179
6|1 O e e, e oS $4:Ch 4;Pg:179-180
7. 1 Finding Inflection point S3:Ch 4;Pg:124-129
8. 1 Curve Sketching with Asymptotes S4:Ch 12;Pg:389-409
9. 1 Recapitulation and discussion of possible
question
Total : 9hrs
UNIT - 11
1. 1 Reduction formula — derivation and illustration S2:Ch 7;Pg:497-498
2. 1 Problems based on reduction formula S2:Ch 7;Pg:500-503
3. 1 Continuation of problems on reduction formula S2:Ch 7;Pg:503-506
4. 1 Curve tracing in Cartesian Coordinates S2:Ch 11;Pg:767-770
5. 1 Tracing in polar coordinate for standard curves S4:Ch 1;Pg:101-103
6. 1 Theorm on L’Hospital’s Rule S3:Ch 4;Pg:148-150
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7. 1 Problems based on L’Hospital’s Rule S3:Ch 4;Pg:151-155
8. 1 Q:?grll::ce?on in business, economics and life $3:Ch 6:Pg:287-294
9. 1 Recapitulation and discussion of possible
question
Total : 9hrs
UNIT — 1
1. 1 Volume by slicing S2:Ch 6;Pg:421-424
2. 1 Volume by Disks methods S1:Ch 5;Pg:397-399
3. 1 Volume by washers methods S1:Ch 5;Pg:400-403
4. 1 Volumes by cylindrical shells S2:Ch 6;Pg:432-436
5. 1 Area of a surface of revolution S2:Ch 6;Pg:444-447
6. 1 Parametric Equations S2:Ch 10;Pg:692-695
7. 1 Tangent Lines to Parametric Curves S2:Ch 10;Pg:695-697
8. 1 Arc Length of Parametric Curves S2:Ch 10;Pg:697-700
9. 1 Recapitulation and discussion of possible
question
Total : 9 hrs
UNIT - IV
1. 1 Introduction to conic section S2:Ch 10;Pg:730-732
2. 1 Techniques of sketching conics S1:Ch 9;Pg:727-730
3. 1 Equations of conics in standard position S2:Ch 10;Pg:732-740
4. 1 Translated conics S2:Ch 10;Pg:740-742
5. 1 Reflection properties of the conic sections S2:Ch 10;Pg:742-744
6. 1 Rotation of axes with examples S2:Ch 10;Pg:748-752
7. 1 Classification of conics using discriminant S1:Ch 9;Pg:748-750
8. 1 Polar equation in conics S2:Ch 10;Pg:755-759
9. 1 Recapitulation and discussion of possible
question
Total : 9hrs
UNIT -V
1. 1 The Triple product S1:Ch 10;Pg:824-835
2. 1 Introduction to Vector functions S3:Ch 10;Pg:494-496
3. 1 Operation with Vector-valued functions S3:Ch 10;Pg:496-497
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4. 1 Limits and continuity of vector functions S3:Ch 10;Pg:498-500
5. 1 Differentiation and integration of vector functions | S3:Ch 10;Pg:502-511
6. 1 Tangent and normal components of acceleration S3:Ch 10;Pg:522-525
7. 1 Modeling ballistics and planetary motion S3:Ch 10;Pg:512-516
8. 1 Kepler’s second law S3:Ch 10;Pg:516-519
9. 1 Recapitulation and discussion of possible
question

10. 1 Discussion of pervious ESE question papers

11. 1 Discussion of pervious ESE question papers

12. 1 Discussion of pervious ESE question papers

Total : 12 hrs

SUGGESTED READINGS

Reference Book o _ _

1.Thomas G.B., and Finney R.L ., (2008). Calculus , Ninth Edition, Pearson Education, Delhi.

2.Anton H., Bivens | ., and Davis S., (2017). Calculus , Tenth Edition , John Wiley and sons
(Asia) Pvt Ltd, Singapore. ) ) N _

3. Strauss M.J.,Bradley G.L and Smith K.J.,(2007). Calculus, Third edition, Dorling
Kindersley(India) Pvt Ltd. (Pearson Edition ), Delhi.

4.Courant R and John F (2000). Introduction to Calculus and Analysis (Volume | & 11),

Springer verlag, NewYork.
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc Mathematics COURSE NAME:CALCULUS
COURSE CODE: 19MMU101 UNIT: 1 BATCH-2019-2022
UNIT -1

DIFFENTIAL CALCULUS
Hyperbolic functions, higher order derivatives, Leibniz rule and its applications to problems of type
e®*bsinx, e¥*Pcosx, (ax+b)"sinx, and (ax+b)"cosx.
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COURSE CODE: 19MMU101 UNIT: 1 BATCH-2019-2022

Hyperbolic functions

1. Introduction

The three hyperolic functions f{x) = sinhx, f{x) = coshx and f{x) = tanhx. We shall look at
the graphs of these functions, investigate some of their properties.

2. Defining f(x) = coshz

I'he hyperbolic functions cosh r and sinhz are defined using the exponential function e*. We

shall start with cosh x. This is defined by the formula

et 4 Sl
cosh = ——m

We can use our knowledge of the graphs of ¢® and e ™ to sketch the graph of cosh z. First, let

us calculate the value of cosh0. When z = 0, ¢* land e 1. So

shil = ————— = ———
cosh - 5 1

Next, let us see what happens as z gets large. We shall rewrite coshr as

(L
COSH T = == 4 e
9

I'To see how this behaves as r gets large, recall the graphs of the two exponential functions.

-r

L

|
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As z gets larger, e® increases quickly, but e * decreases quickly. So the second part of the sum
o~ /2

/2 4 ¢ % /2 gets very small as x gets large, Therefore, as r gets larger, cosh x gets closer and

closer to ¢* /2. We write this as
er
coshr ~ ] for |zll';:|' . 4

But the graph of cosh x will always stay above the graph of ¢* /2. This is because, even though
e */2 (the second part of the sum) gets very small, it is always greater than zero. As z gets

larger and larger the difference between the two graphs gets smaller and smaller,
3. Defining f(z) = sinhx

We shall now look at the hyperbolic function sinh z. In speech, this function is pronounced as
‘shine’, or sometimes as ‘sinch’. The function is defined by the formula

'\l o

sillh.l‘ = 5

4. Defining f(z) = tanhz

We shall now look at the hyperbolic function tanh z. In speech, this function is pronounced as
‘tansh’, or sometimes as ‘than’. The function is defined by the formula

sinh r
tanhr =

coshr

We can work out tanh x out in terms of exponential functions. We know how sinh x and cosh
are defined, so we can write tanh r as

ef —o % ‘-" o T of o F

tanhr = = = 3 g

5. Identities for hyperbolic functions

Hyperbolic functions have identities which are similar to, but not the same as, the identities
for trigonometric functions. In this section we shall prove two of these identities, and list some
others.

The first identity is
a < 12
cosh>r —sinh“zr = 1.

To prove this, we start by substituting the definitions for sinh z and cosha:

D) )
. AT ef+e*\" eF—e *\"
cosh®r — sinh™ r = T — e '

If we expand the two squares in the numerators, we obtain

) ) ¢ a
(e*+e”*) = e +2c")e™*)+e™
» g )
— X 40472
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and
(e q ) l'.. 20" )e ) ( o
o2x 2 4 r
where in each case we use the fact that (e®)(e ™) e *) e’ | l'\iu'_: 'hl"\l'l‘\'ll.ll]\ill“\ mn

our formula, we obtain

ar 0 ar 2r 0
) ) ¢ t Lol & y t
cosh” r — sinh” z =

Now we can move the factor of T out to the front, so that

cosh® r — sinh® z ll((""" 24+ ) - (e -2+¢™%)).

If, finally, we remove the inner brackets and simplify, we obtain

9 2 9 9 ; e, a9 ’ ) Y
cosh™z —sinh"z = (e +2+eF —eT+2—e )

Here is another identity involving hyperbolic functions:

sinh 2z = 2sinhxcosh r .

On the left-hand side we have sinh 2r so, from the definition.

.)_r .)_I_
. ; (\— -— .h o
sinh 2z =
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We want to manipulate the right-hand side to achieve this. So we shall start by substituting
the definitions of sinh z and cosh z into the right-hand side:

T T r T
X e —e e +e
2sinhz coshx = 2 ( 5 ) ( 5 ) :

We can cancel the 2 at the start with one of the 2’s in the denominator, and then we can take

the remaining factor of 3 out to the front. We get
2sinhzcoshz = 2(e® — e *)(e* + e %).
Now we can multiply the two brackets together. This gives us
O cr . I R, b 2r
2sinhzcoshz =z(eF+1—-1—e").
Cancelling the ones finally gives us
2sinhz coshz = 1(e** — e7%*) = sinh 2z,
which i1s what we wanted to achieve.

There are several more 1dentities involving hyperbolic functions:

cosh2r = (coshz)?+ (sinhz)?

sinh(r +y) = sinhzcoshy + sinhycosh z
cosh(r +y) = coshzcoshy + sinhzsinhy

9 T 1 + coshz

cosh"™—m = ———

2 2
. 122 coshz — 1
sinh 3 = T3 —
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Remark : The word ‘hyperbolic’ stems from the fact that x = a cosh t, v = b sinh t are the

general co-ordinates of any point on the hyperbola x_1_1_, = 1, masmuch as
e

b‘.
(a cosh 1)’ @ coshr)’ [e’ +e’T - e'—e"J:

2 2

a” B

=1L
Just as we have standard trigonometric identities cos® x + sin* x = 1 etc., there are identities involving
hyperbolic functions sinh x. cosh x etc. For instance,

coslry — smhiy = 1
sech’y = 1 — tanh’x
cosech’x = coth’x — 1
All the above identities can be verified easily by substifuting the values of the functions in terms
of the exponential function. Sumilarly, you may verify the following relations :

sinh i + y) = smh x cosh y + cosh x sinh y
sinh (c — y) = smh x cosh y — cosh x smh y

cosh ¢+ ¥) = cosh x cosh y +smh x sinh y
cosh (c — ¥) = cosh x cosh y +smh x sinh y
tanh & + y) = tanh x + tanh y

1+ tanh x + tanh ¥
tanh & — y) = tanh x + tanh y

1— tanh x + tanh y
Graphs of these hyperbolic funcfions are given in next page (Figure 14) :

Smce the six hyperbolic functions are defined m terms of &, and %{e’}: ¢" therefore it is very

easy to write down the denvatives of sinh x, fanh x, coth x, sech x, cosech x etc.

We have,

%(smh Xx)

I
Gy
—

",
| !

QK
N——

y — sinh x v = cosh x v = tanh x

-2 -1 1 2
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y = coth x y = ¢osech x

K N |
""" ' /\ +\

\ e oy
\ . -2 -1 i 2 N
Figure 14
;g d ; d e‘+e"]
Similarty, o (coshx) = i 5
=2 ; . —sinhx
d = x
Also, —(tanhx) = i( €—e —
dx de\ e +e

(e 1o ) +e)- (¢ - (e =)

(e"+e '):

(¢ +e?)-(¢ —e*)

(e' +e’):

x —x TP
g
1- x -x
€ +e

1 — tanh? x = sech® x

The derivative of coth x, sech x, and cosech x can be similarly obtained.

The results are summarised m fhe followmg table.

S J ()

Smh x cosh x

cosh x sinh x

tanh x sech? x

coth x —cosech® x

sech x —sech x fanh x
cosech x —cosech x tanh x
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6. Inverse Hyperbolic Functions and Their Derivatives

(i) The inverse hyperbolic sine
The mverse of smh x exists for all values of x.
An expression for smh™ x in terms of logarithms can be obtained as follows:
We have,

& ¢ y = sinh™ x

y=sinh? x & x=sinh y=

& x=¢e" - g7

SeV-2X%e&-1=0

[the value y_./1+® is discarded since this would give a

negative value for e']

& e = x+dl+x
Sy= log(.r+\,/1+.t: ) e 15
Thus, sirh' x = log(x+\/l+.\'3) X € ]— oo, oo

Now, if we want to the derivative of sinh™ x, we must write the derivative of log(.\'+\/1+.\': J

log(x+\/1+x: )

Let y =
) Yy
Then, i‘- = 1 =. 1+l. ""\
dx 1+ 23 2 Jx¥+1
= 1
x*+1
Hence, i(sinh".r) = 1
dx x“+1
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(ii) The Inverse Hyperbolic co.sine

The inverse of cosh x exists in [1, ==[. To obtain an expression for coslr! x, we proceed as follows:

y =cosh! ¥ & x=cosh y=

et - e+ 1=0

—J¥

e +e-°
]
7 y= cosh X

o e = x+x’—1 /

[MNotice that the value X— V¥’ =1 would render & < 1 and

so y < 0, which is not possible.]
Thus,

cosh™ x = log[x+ x? —l]ﬂ.rzl_

Now to obtain the derivative of cosh™ x, we have to write Figure 16

the derivative of log[:a‘+ Jx? —1];_1' >1

We have,

%{mah ! 1]
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[Notice that although cosh™ x 1s defined for x = 1, its denvative does not exist for x = 1.]

Hence, i(COSh?ll’) = 1 s 1

d V-1

(iii) The Inverse Hyperbolic Tangent

The mverse hyperbolic tangent tanh™ x exist for all x € [-1, 1]. To obtain an expression for tanh
! x in terms of logarithms, we proceed as follows :

y = tanh™! x & x =tanh y

= |
~ g = tanh ' x
T & +e” ; :
| |
1+x _ 2¢ I |
1-x 2 I |
| |
% 1+x (PO SR
= ey = —— ! '
1-x l [
I i
1 1+Xx
= y = —log——_ [x|<1
L e || I |
I I
1 1+x | I
Thus, tanh™ x = ;log—_.l.\'|<1
2 "1-x Figure 17
To write down the derivative of tanh~' x, we must obtain the derivative of —102“—1| |<1.
1 1+x
Let tanh™! x= ;log - ‘ <1.
dy d|1 1
Then — = —|—=log(l+ x)——log(l- x) __|_1'|«=:1
dx dx| 2 2 -

1 -
21+ 2(1-x)

1
1-x%'

.1'|<:1
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d 1 1
Hence, (tanh " x) = 7P <1
& =M

(iv) The inverse hyperbolic cotangent

The mverse hyperbolic cotangent coth™ x exst for all x such that |x|>1.

Now, y = coth™ x
e +e’
= x =coth y= — -
€ —€ "
v+1 1e.1' y = C(Jﬂ‘._! x * !
= i = - I |
x-1 2e”’ 1 I
I I
x+1 * i I
= s e i .
’ i i
1, x+1 o
= y = —log I !
2 x—1 1l 1
i |
1 x+1
Thus, coth™ x=—log——. |x| >1. .
3 S y_1 Figure 18

x+1

Therefore, to write down the derivative of coth™ x, we must obtain the derivative of ;lﬁgl—l-. I1| >1

We have,
d L dil [ _r+1J
E(coth _1} = dx‘[z log—x_'1

= %B{loguﬂ)—iog(x-u}]

Hence,

—1 Jx > 1

A (eothy) —
rh(-‘:-:ﬂh .1} = 7
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(v) The Inverse Hyperbolic secant
The inverse hyperbolic secant sech™ x exists for all x in [0, 1].

We have, v=sech™' x
y =sech” x © x = sech y
2
e X = y -
e - -+e-"
- [H_ Jl}(,l
F:
Figure 19
Thus,
i |
Sech! x = Iogl:&‘l\(k x<1
X
, , : 1441- 23
To write down the denvative sech* x we must differentiate 1ogl_‘}, 0<x<1.
X

We have,

5|

4
i
= %(log (1+\/1—A\':))—%(log.\’)

1
l+\/1—.\':-
-X 1

\/l—.\':(l+\/l—_\'2)_;

(=2x)(1-x?) 2
X

|
| -

_\':+ﬂ(l+ 1—.\'3)
=1t .\'\/1—.\‘:(1+J1—.\'3)
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¥ +l-x #1-x"
- (1+ J1-x2 )

1447
_ 1= (1 +1-x )_

-1
N .\'*Jl— ¥

[Notice that although sechr! x is defined for x =1, its derivative does not exist for x = 1]

,0<x <1

dy .50 —
Hence, —(sechx)= L 0<x <1
dx xyf1—x*
(vi) The Inverse Hyperbolic Cosecant
The mverse hyperbolic cosecant cosech—1 x exasts for all x @ x # 0.

We have, y = cosech! x
¥y = cosech? x < x = cosech y
; I\
= X= . -
e —¢’
- ) I f1+x*
y=log| —+
X X Figure 20

1+ x?

E

1
To write the derivative of cosectr! x we have to differentiate 10?[; + } . It 1s easily varified

that

d 1
—(cosech™x) = -
~(cosech™x)
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The expression for the inverse hyperbolic functions in tenms of logarithms and their dervatives are
summansed m the followmng two tables :

Sinh ™ x =1 g[x+ M+ ] W ox
':‘0511_1 X - lgg[x-+,ﬂ1 _1_1i| x> 1
tanh x = logl+ x| <1
1-x
1
coth™lx = glog—. x> 1
sechlx = 1{,31"'“'1'-‘5‘_0{_\,(:1
.
1 Niex?|
cosech? x = log|=+———[.x=0
X ||
fx) f@
Smh! x 1
T+l
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o 1 ;
cosh™ x — X > 1
X +1
1
tanh~!x 5 |\| <1
1-x
-1
coth™!x s M >1
x" =1
! —_l D x<]
Sech™x ~% ’
x\}l -x
B! =1 x#0
cosech™x —p—
|\|\] 1+ x

Higher-Order Derivatives

Let f be a function that is differentiable at some points belonging to dom (f). Then f* is a function.
o If, in addition, f” is differentiable at some points belonging to dom (f”), then the derivative of f” exists

and is denoted by f”: it is the function given by f”(x) = )ling) w and is called the second
T (]

derivative of f.

o If, in addition, f” is differentiable at some points belonging to dom (f*’), then the derivative of [ is
denoted by ', called the third derivative of f.

o In general, the n-th derivative of f (where n is a positive integer), denoted by £, is defined to be the
derivative of the (n— 1)-th derivative of f (where the O-th derivative of f means f). For n = 1, the first
derivative of f is simply the derivative f* of f. Forn > 1. f™ is called a higher-order derivative of f.

Notation Similar to first order derivative, we have different notations for second order derivative of f.

" ' dz\ 2, 2 rr d2 .
¥ I o2 D f, D%, f"(x) and mj(.\').

Readers may compare these with that on page 109. Similarly, we also have different notations for other higher-
order derivatives.

Example Let f(x) = 5x° — 2x? + 6x + 1. Find the derivative and all the higher-order derivatives of f.

Explanation The question is to find for each positive integer n, the domain of the n-th derivative of f and a
formula for f"(x). To find #’(x), we can apply differentiation term by term. To find f”(x), by definition, we
have f"(x) = dij”(.r) which can be simplified using the result for f’(x) and rules for differentiation.

X
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. (v d 3 2 8
Solution  f'(x) = —(Ox-2x"+6x+1)
dx
= 1522 -4x+6 Derivative of Polynomial
f7(x) = - (15x2 - 4x + 6)
x) = (5 ;
= 30x-4 Derivative of Polynomial
d
e a0
£7(x) 3, 30x —4)
= 30 Derivative of Polynomial
M) = 0 Derivative of Constant

From this we see that for n > 4, f"(x) = 0. Moreover, for every positive integer n, the domain of /' is R.

Example Let f(x) =

Explanation

3
X

! Find £(3) and f” (-4).

X

e Tofind f’(3), we find f’(x) first and then substitute x = 3. Although f(x) is written as a quotient of

functions, it is better to find f’(x) by expanding (x* — 1)x~'.

e Tofind f”(—4), we find f”(x) first and then substitute x = —4. To find f”(x), we differentiate the re

obtained for f’(x).

Solution  f'(x)

@ =

f(x)

(-4 =

2x - (—=1)x72 Term by Term Differentiation & Power Rule

0
2x+x°

) By result for f’(x)

2+ (=2)x3 Term by Term Differentiation & Power Rule
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Meaning of Second Derivative
e The graph of y = f(x) is a curve. Note that f'(x) = % is the slope function; it is the rate of change

of slope and is related to a concept called convexity (bending) of a curve. More details can be found in

Chapter 5.

e Ifx = ristimeand if y = s(s) is the displacement function of a moving object, then (1) = % 1S
the velocity function. The derivative of velocity is s”(¢) or ?TS it is the rate of change of the velocity
(function), that is, the acceleration (function).

Lo g™
Example 1. Given y = —,Fmd .
X a&"
. l l
Solution : Here y = ; =X
L = (-1)x~2
lt\.
da*v . (=121
—5 = (F1)2)xP=——
a7 = 2=
d’y (=i 4 _ 1’3
= = (-1])(=2)SB)x" =
ax’ X
Hence by induction,
d"y
T = CDEDEB) D
(-D"n!

We shall now obtain expression for the n™® denvative of some standard functions
1.The n™ derivative f &** is a®¢**

If y = P
—
- S
(t\‘
d”

and — = g.ae”™=a‘e™
(i‘..

By induction ZT =a"e™, where n 1s a positive mteger.
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2. The n™ derivative of a®=*

Let y=a%a>=0
dy - d, .
o = ma™loga [E(a )= a”laga}
dy g
P m-a™ (log a)
d’y
T = mra™(log a)
a&: ( g }
4V _ = (log )" here a> 0
—— = ma™(oga where a > (.
dJ(” g
Cor.:Ify=e"™thena=e = loga=loge =1
dﬂl
F{e"“} = e
3. The n™derivative of (ax + b)™
Let y = (ax +b)"
Then y, = ma(ax + by
y, = m(m-1) a*(ax + by
v, = m(m—1)(m - 2)a’(ax + by
y, = mm=1)(m=2)._..__. {Hr—n—l}a”(m‘+ ()
= mlm=1)(m—=2)c......... (m—n+ Da"(ax + b)y==

mim—10m—2).........(m—n+1)(m—
- (m—=n)!

DL 7 ax +by" "
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Cor. I. In case m 15 a postive integer

m! n -+ fyym-n
) _[m—n}!a (@x +9)

The m™ dervative of (ax + b)™ can be obtained by putting n = m, we get

m!
2% am (ax + by
0!

= m! g™ (- 01=1)

m™® derivative of (ax + b)* 1s constant viz.m! a™ and hence the (n + 1)* derivative of (ax + b)™ is zero.

Cor. 2. For m=-1, we get
1
-" o
ax+b
Y, = 1) D)) (—n)a™(ax + b)*'-»
(-1)" nla"
= (ax+b)"™
Cor. 3. Let y =log (ax + b), then
. a
T a+b
y, = (n—1)" denvative of y, or

ax+b

a.(—ljn l(‘n—l)!a" . B (1) 1(n— 1)la"

(ax+b) (ax+b)

i—:[log(m'+b)|

Prepared by:M.Sangeetha, Asst Prof, Department of Mathematics KAHE. Page 19/27




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: 1 B.Sc Mathematics COURSE NAME:CALCULUS
COURSE CODE: 19MMU101 UNIT: 1 BATCH-2019-2022

4.The n™ derivative of sin (ax + b) and cos (ax + b).
Let y =cos (ax + b)

&

—a sin (ax+ b)

n
ax+b+—] |:'.'CDS[£+H]=—SmB]
2 2

= qacos

ay 1 . _th
af\_': = —a sm|ax+ +§

| 3

. b A
a cos|ax+b +?+ J
N 2rn

= g cos ax+b+T

dy 5 2
el —a sm| ax +b+T

N in
a’ cos a_1'+b+T etc.

d"v nm

In general dx" = cos(' ax+b+ T)

Smularly we can show that:

%[sm(a\' +b)] = a"cos[ ax+b+ g]
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6. The n't derivative of ¢**sin bx and ¢** cos bx.

Let y = &% sin by

ay
¥, = —-=ae*smbx + e* b cos bx

{i.‘_
= e*a sin bx + b cos bx)
Put a=rcosB b=rsmb
, ) . b
= a*+b" =, tanP=— orB=tan’—

a a
= ¢*[r s bx.cos + rsm 0. cos bx]
= ye™sm (bx+ 8)
Thus we notice that y, can be obtained from y by multiplying it by the constant » and mcreasing bx by
the constant angle 6

2

dy

Similarty yy = gr = 7 e™ s (bx + 20)
In general
d'y .
— = prg=gn (bx + nf
i e=smn (bx + n@)
) ) . b
= (ﬂ" + b‘)x ™ stn[b.\'+man']—]
a
2 1 ] b 1 2 1 b
cro=at +hhandtan® =—ie. v :Ja +b" andd =tan " —
a a
Smilarly if y = e** cos bx
d'y
then d\"” = 1" ¢= cos(bx + nBb)
. s b — b
Where 7" =a +b tanb= —ie.r=+va +b andB=tan —
a a
d'y .
: = &(a+b) ‘ccs-[bx+utm1 ’E]
dax a

7. The n® derivative of (x + a)™™ where x # —a.

Let y=x+a)y",x#-a
ﬁh\
o A —H‘?.(I"‘ H}—:.—:—!
dx
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a2 = EmEm=-1)(x +a)y™?
d’y
& = EmEm-D)Em2)(x+ a)y™
By induction,
d'y
o = (=m)(=m=1)(=m=2)........... (=m—-n+1) (x + a)™*®
= (=1)"m@m+1Dm+2).......... (m+n-=1)(x+a)™™"
(-2 (m=1)m(m+1)........ (m+n—-1)(x+a) ™"
. b A (m-1)
(=1)(m+n—1)! s (-1)" (M +n-1)! 1
= .+ a) o m4+n
(m—1)! (m=1)! (x+a)
Where x # —a
n : YV Tin -n-1
Cor.:If m=1, we have d,,( : ) - (1) nl{x+q)
ax’ \x+a. 0!
(—1)" n!
~ (x+a)™

Similarly we can show that

(<1)" (m+n-1)!
(m—1)

1

(1__(’)03-'!

(v-er°)

8. Application of De Moivre’s Therorem and Partial fraction in finding the n® derivative

In order to determune the nth derivative of rational functional, we resolve it into partial fractions and then
use the standard results. Sometimes we can use tngonometric transformations or methods like the application
of De Moivres theorem in finding the 1 derivatives. The following examples will illustrate the procedure.

3 S 1
Example 4. Find the nth denvative of y = ——————
(x=1) (x-2)
1 ;
Solution : We resolve y =———=——— mto partial fractions
(x=1(x-2)
1 A B ¢ D
= - =+ -+
(x-1)'(x-2) x-1 (x-1° (x-1° x-2
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1=A-1Pa-2)+Bx-1)x-2)+C{x-2)+D{x-1)}

Puttmg x=1 wegetl=-C=C=-1
Putting x=2.wegetl=Die,D=1
Equating the coefficients of x°, x* on both sides we have
0=A+D=A=-D=-1 (D=1
0=4A+B-3D=DB=4A +3D
B 4A +3D=—4+3=-1
Hence 31 -1 1 _— ! o+ 1
(x—1y (x—2) x=1 (x-1y (x-1) x-2
We have the standard resutls
a'f 1] ()«
- —., Wherex#a
d’ | x—a | (x-2)
a" 1 ] 1) (m+n—1)!
- — il ) wherex £ a
a’ | (x—a)

Hence we get

Example 5. If ¥V

. 1
Solution : We have y= —
X 4a

ay
fi_l_F.

(m=1)(m-1)""

f—l}”n]

(-1

(=) (n+1)

1(x—1)""

[ 1], a" | -1 a | -1
dx" l:_\'—l}rdf l:{.\'—l}:] +Fl{x— 1)

n+1

(~A=-1D=1)

i)
dx" | x=2

1 d"v
X +a dx

1
(x+ai)(x—ai)

1 1 1

2ai\ x—ai x+a

1_[ (=)"'n1  (=1)"n ]

2ai| (x—ai)™  (x+ai)"”

(m+2)(n +1]]

G- G 260

where ;- /[7
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(—1) n'[ 1 ]
(x- ai)™ (H-m)

Nowputx=rcos® a=rsm0 so that
x—ai =r(cos® —ism0)
x+ai = r(cos®+ismé)
Now by De Morvre’s theorem we obtamn.

1 1 1
(.\'—m)""-[r(cose +ism9)]ﬁ1 - r*!(cosd+isin8)"

Y (cos® - i smB)**P
rebicos(n+1)0+ism(n+1)08]

1

Smmlarty = b (cos (n +1)ismn+1)8)

(x +ai)™
Substituting the values we get

dy _ D'n
v ke Tr‘ [cos(n+l)9+ism(n+l)9]

,_-a»-l,» [CO&("*‘ 1)9 _isux(n+l)9]

= we) K l) (’zsm(n+1)6)

r

-1)" n
= ('f)hsm(nﬂ)e
roa

1 smbo
Also a=rsmh=—- = —
r a
1 sim""'e
’wl = aw-l

dy  (-D)'n'sin(n+1)0sin™'0
(i\,n an.:

4fa
where 0 1s given by tanf = £ or=tan ( - )
X X

Prepared by:M.Sangeetha, Asst Prof, Department of Mathematics KAHE. Page 24/27




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: 1 B.Sc Mathematics COURSE NAME:CALCULUS
COURSE CODE: 19MMU101 UNIT: 1 BATCH-2019-2022

Leibnitz Theorem : If y =wv where u and v are functions of x possessing derivatives of the n™ order,
then D"y=D"(uv)= (D"N}v—i— nC, D" *uDv +"C, D" uDv+ ...+ "C,. D" uDv........ +uD".

We notice that the coefficients on the R.H.S. are the same as in the expression of (g + b)" by Binomuial
Theorem, where # is a posifive integer.

Proof : We shall prove the theorem by mathematical induction.
Step L By direct differentiation it 1s easy to see that the theorem is true forn =1, n=2

D(wv) = (Du)v+u(Dv)
D:{zuf] = (Dzif)1'+Di.‘D'l'+ DuDv+ uD™v

= {Dzi’f)'l'-‘r *GDuDv+ Cai Dv

Step II. Let us assume that the Theorem 1s true for a particular value of n say n =m

+"C, D" "D v+ "C D u D v+ +uD™y.
Differentiating both sides w.rt. x we have

D'"H[m-] = [(D“"lu)v+D”}: D’v]+ "'Cl{D”‘u_D*»-‘-:-D""‘H_Dz]-']
+"C, [D’"'lu_D}v + D”"zu_.Dsr] __________
Froorenn +"C, | D™ uD" u+ D™ " uD'v |

+’”C‘,[D" u.Dv+ D 'uD"‘u]Jr ...... +uD™ 1y,

(D™ u)v+(14 "¢ ) D" uDv+("C, +"Cy | D" u D v+ ...

+ ( "Cpy+ "G, )D'""'lu_Drv o +uD™ M.
From the theory of permutations and combinations we know that "C_ + "C, = ""C,
Also™C =1+ "C,="C,+ "C;= "', and "C, =™,
D“'l{rnf] = {D"'+1:i]1'+ ™o, D" Dv+ ™ C,D" uD'v+

+™C DT DV +uD™MW,

Thus if the theorem is true for any value m of n, then it 15 also true for the next higher value (m + 1) of
n.

In step I we have seen that the theorem 1s true for n = 1, n = 2, then it must be true forn =2 +1=3 and
so 7 =3 +1=4 and so on. Thus by the principle of mathematical mnduction 1t follows that the Theorem 1s true
for all positive mtegral values of n.
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Example 8. Find the n™ denvative of x’e™

Solution : We write y = x’e*™ where u = e* v=x?
We have D'y = D”{e“}: a'e”™

Dv = 3x’ . D'v=6x.Dv=6,D%=0,Dv=0
Using Leibnitz Rule, we get

d"y
"

[:D"u}r +"C, D" ubv + "C,D" uD*v+ ... +uD'v

Ya'e™ + "Cd 'e™.3x + "C,a" e™ 6x + "Cid' Ce™ 6

1.2 m 7.»—3(2:

Y'a"e™ +3na"'x’e™ +3n(n-1)a""xe™ +n(n-1)(n-2)a""e
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POSSIBLE QUESTIONS
TWO MARKS

1. Find the derivative of f(x)=5x3-2x*+6x+1.

2. Find % when y=e*cosh4x.

3. Find the third derivative of x3-3x*+4x-1.

4. Find z—z when y=e*cosh4x

5. State Leibniz theorem.

SIX MARKS

1.Prove that sinh(x + y) = sinhxcoshy + coshxsinhy
2.Prove that cosh(x + y) = coshxcoshy + sinhxsinhy
3.Find the n'" derivative of y=e®*cos(bx+c)

4.Find the n™ derivative of e?*sin3xsin4x

§ 9%y .0y
—qpX X A —
5.1f xy=ae*+be™ prove that X o2 +26x xy = 0.

6.1f x=acos*8 - y=asin’ find 22

If x=acos®@ ' y=asin’¢ find ——= .

7.Show that prove that sech?x = 1 — tanh®x
8.cosh? x — sinh?x = 1.

9.Find the n'" derivative of xz+_1

X
. d%y dy 2
10.If y = sin(sinx) prove that - 1 tanx —+ycos®x = 0.
11.Find the n*" derivative of cosx cos2x cos 3x.

12.Evaluate i) [ x* cosh(x®)dx ii) [ 4572 cosh2xdx

13.Find the n™" derivative of y=e®.sin(bx+c).
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UNIT-1I

INTEGRAL CALCULUS

Reduction formulae, derivations and illustrations of reduction formulae of the type [ sin nx dx,

[ cosnx dx, | tan nx dx, | sec nx dx, | log x" dx, [sin" x sin™ dx. Curve tracing in Cartesian
coordinates, tracing in polar coordinates of standard curves, L’Hospital’s rule, applications in
business, economics and life sciences.
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Reduction formula for [ sin"zdr

/sm zdr = /sinx sin" 'z dzx

= —cosrsin" !z- /{—("03 r).(n—=1)sn"" 2r coszdr

(integrating by parts)
2 > 9~3 ¢ n—-2 2
= =COSI sIn x4+ (n=1) /sm r cos“rdr
= —coszsin" 'z+ (n-1) /sin" 2z (1 —sin’z) dx

. 2 T
(since cos’z=1-sin"z)

= —cosrsin®"'z+4+ (n-1) /sin"grd.r - (n-=1) / sin"rdz. (1)

There 1s now a term in | sin"zdr on the right-hand side as well as on the

left-hand side. Bringing these terms together on the left-hand side, (1) becomes

n /sin",rd.r = —cosrsin®™ 1 T+ (77—1 / n- 'J‘d.r
: 1 L (n —1)
: /sm"rdr = —— coszsin" !z n"3zdx. (2)
n

The use of the reduction formula (2) to integrate a power of sinz is demon-
strated in worked example no. 2.

Prepared by:M.Sangeetha, Asst Prof, Department of Mathematics KAHE. Page 2/24




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc Mathematics COURSE NAME:CALCULUS
COURSE CODE: 19MMU101 UNIT: II BATCH-2019-2022

Reduction formula for [ cos"zdz

/cos".rd.r = /cosr cos" 'z dx

= sinz cos" 'z - /(Sinr) (n - 1) cos® %z (- sinz) dx
(Integrating by parts)
= sinz cos" 'z 4 (n-1) / cos™ %z (1 — cos’z) dx
: . 2 2
(since sin‘z=1-cos"z)

= sinz cos" 'z 4 (n—1) / cos" *zdr - (n-1) / cos"r drx

Sl /co&".rd.r = sinz cos" 'z + (n—l)/cos"""rd.r

'. /cos"rd.r = lsin.r cos™ 'z 4 ) /cos"'%d.t. (3)

n n

Il REDUCTION FORMULAS
Integration by parts can be used to derive reduction formulas for integrals. These are
formulas that express an integral involving a power of a function in terms of an integral that
involves a lower power of that function. For example, if # is a positive integer and n = 2,
then integration by parts can be used to obtain the reduction formulas

1 n—1 -
/sin" xdx = ——sin" ' xcosx + fsm"‘z).' dx )
n n

| S n—1
fcos" xdx = ;cos"_ ' xsinx 4+ " '/’cos"_2 xdx (10)
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To illustrate how such formulas can be obtained. let us derive (10). We begin by writing
cos” x as cos” ! x - cosx and letting

w =cos" ' x dv = cosxdx
| - *
u=(n—1)cos x(—sin X v=sinx
d (n—-1) < x(—sinx)dx nx
x| ~
= —(n—1Dcos" “xsinxdx

so that

fcos" xdx = fcos"'l.rcosx dx = fudv = uv —/v du

=cos" 'xsinx+((n—1) f sin® x cos™ % x dx
=cos" 'xsinx+(n—1) f( | — cos® x)cos" 2 xdx

=cos" 'xsinx + (n — l)fcos"": xdx — (n — l)fcos" xdx
Moving the last term on the right to the left side yields
n f cos" xdx =cos" ' xsinx + (n — l)/cos"": xdx

from which (10) follows. The derivation of reduction formula (9) is similar (Exercise 63).

Reduction formulas (9) and (10) reduce the exponent of sine (or cosine) by 2. Thus,
if the formulas are applied repeatedly, the exponent can eventually be reduced to 0 if n1 1s
even or | if i is odd, at which point the integration can be completed. We will discuss this
method in more detail in the next section, but for now, here is an example that illustrates
how reduction formulas work.

» Example 8 Evaluate fcos* xdx.
Solution. From (10) withn = 4
o I 3 = : 3 2
/CO& xdx == 3 COs” X sInXx <+ > § [ cos " xdx Now apply (10) with m = 2.
I ¥ i 3 | —— . 1
= ycos xsinx + 3 (jcos.x sinx + 5 fdx)

- }cos1 xsinx + gcosxsinxy + 3x + C <
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Polar Coordinates

Up until now we have been dealing with the coordinates z and y, which are
known as Cartesian coordinates or rectangular coordinates. We can
equally describe a plane using any pair of coordinates so that each position
on the plane is uniquely described by the pair. In particular a useful set of

coordinates are polar coordinates.,

Defining Polar Coordinates

To define polar coordinates, we begin by fixing a point O, called the origin
or pole. We then define a half-line (or ray) which begins at 0 and continues
to infinity in a given direction, called the polar axis. This is shown in

P(r.0)

8
Origin(O) Polar axis

Figure 5: Polar coordinates

Figure 5. The distance from the origin to the point P is called the radial
coordinate, r, and the angle that the line |OP| makes with the polar axis
is called the angular coordinate, #, more commonly known as the polar

angle. It is important to notice that the polar angle returns to its original
position when the angle 1s 2. Therefore, any angle greater than or equal
to 27 is equivalent to an angle in the range (0 < # < 27). In fact, more
generally, the angles # — 27 n, § and 0 + 27 n are equivalent if n 1s an integer.

Relationship to Cartesian Coordinates

It is quite easy to make a link between polar coordinates and Cartesian
coordinates. The trick is to make the polar axis coincide with the z-axis.
Then, we can see from Figure 6 that the following relationship holds
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b
P(r.8)
r y=r 3in &
a
(@] X=r CcOos & >

Figure 6: Polar coordinates in terms of Cartesian coordinates

r =7rcosd, ¥y = rsinf, (10]

which can also be written in the form

72 = 22 4+ 42, tan@ = £ (11;

as

Example: Change the Cartesian coordinates (4, 4+/3) into polar coordi-
nates.

Solution:
2 =42 4 (4/3)2 — 64 = + = 8,

and

Iﬂ]lﬁz#ﬁg:\.@:}ﬂ:

w| =

The polar coordinates are therefore (r, ) = (8, 7/3).
Example: Change the polar coordinates (3,37/4) into Cartesian coordi-
nates.
Solution:
) 3 3
r=3cos— = ——,
_ 7
and
o . 3T 3
y = 3sin = —,
' V2
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The Cartesian coordinates are therefore (z,y) = (=3/v2, 3/V2).

If you are asked to graph an equation in polar coordinates, the easiest thing

me
m/d
||l III' !
I |
| 07 3
Z
1
32
i r=0 !

Figure 7: Unit circle and the half-line § = T.

i

to do 1s to simply plot some points and see what happens. Later on, you may
begin to recognise some of the graphs and be able to plot them from memory.
For now, let’s look at some simple examples. If we fix r, say to r = 1, we get
a circle, see Figure 7. Note also that once we hit # = 27, the graph repeats,
and so we do not need to continue. Also in the same figure we see the plot
of # = w/4. We can either imagine that we can take negative values of r,

or as we would normally expect we could impose r > 0 and plot a half-line,
as 18 done here. Finally, let’s look at an example where both coordinates
vary, say 7 = sinfl. Then we get the plot in Figure 8, where we see that
the plot repeats values after # = 7, because the Cartesian coordinates are
x = sint cosfl, y = sinf@sinf = sin’ # > 0.

2

37/ 4 / /4

=0 or' &=

Figure 8: Plot of » — sin #.
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—— - - . 0y . '
EXAMPLE: Express the equation z© = 4y in polar coordinates.
Solution: We use the formulas z = rcosf and y = rsin#f.

)

r~ =4y
(rcos 4‘))_3 = 4rsind

|; -} .
r“cos” 0 = drsmé

sin # _
r =d——s— =4secftand
cos®
Polar toa Cartesian Conversion Formulas
x=rcosd y=rsmnd

Converting from Cartesian is almost as easy. Let’s first notice the following.
2 . 2
xtyyt= (reos@) +(rsind)
=ricos’ B+ sin’ B

=7’ (cosz 8 + sin’ 9) =7

This 1s a very useful formula that we should remember, however we are after an equation for r so
let’s take the square root of both sides. This gives,

a2 2
r=qxt+

MNote that technically we should have a plus or manus in front of the root since we know that » can
be either positive or negative. We will run with the convention of positive 7 here.

Getting an equation for #1is almost as sunple. We’ll start with,
¥ _rsinéd

= = tan &
X reosd

Taking the inverse tangent of both sides gives,

&= tan " [lJ
x

We will need to be careful with this because inverse tangents only return values in the range

—4& <= @ <4 _ Recall that there is a second possible angle and that the second angle is given by
8+ .
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Cartesian to Polar Conversion Formulas

2 2, 2 2
r=x+y r=4x"+y

Example 1 Convert each of the following points mio the given coordinate system.
(a) [—4. %r) into Cartesian coordinates. [Solution]
(b) (-1,-1) mnto polar coordinates. [Solution

Solution

2
(a) Convert [—4 —J into Cartesian coordinates.

Thuis conversion 1s easy enough. All we need to do 1s plug the points mnfo the formulas.

_JJ
x= —4cos( id ]= —4[—l] =2
3 2

y= ﬂ'hm{%”J = 4[£]=—3J§

-

-

So, in Cartesian coordinates this point 1s (2. —lxjg ) .

(b) Convert (-1.-1) into polar coordinates.

r=y(-1)"+(-1)" =42

6 =tan” [—] =tan" (1) ==
4

Let’s first get r.

Now, let’s get &

Tlus 15 not the correct angle however. This value of &1s in the first quadrant and the pomnt we’ve

been given 1s in the thard quadrant. As noted above we can get the comrect angle by adding 7 onto
this. Therefore, the actual angle 1s,

So, in polar coordinates the point is (\E ST"] . Note as well that we could have used the first 8

that we got by using a negative r. In this case the point could also be written in polar coordinates

as [—-\E%)
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Example 2 Convert each of the following into an equation in the given coordinate system.
(a) Convert 2x— ﬁx} =l+axy mto polar coordinates. [Sclution]
(b) Convert r = —8¢0s & into Cartesian coordinates. [Solution]

Solution

(a) Convert 2x — Sx’ =1+ xy into polar coordinates.

In this case there really ism’t much to do other than plugging in the formulas for x and y (i.e. the
Cartesian coordinates) in terms of » and & (i.e. the polar coordinates).

2(rcos8)—5(rcos 9)3 =1+(rcosd)(rsind)

2rcos@—5rcos @=1+r" cos@sin@
[Return to Problems]

(b) Convert r =—8cos & into Cartesian coordinates.

This one is a little trickier, but not by much. First notice that we could substitute straight for the
r. However, there is no straight substitution for the cosine that will give us only Cartesian
coordinates. If we had an r on the nght along with the cosine then we could do a direct
substitution. So, if an 7 on the nght side would be convenient let’s put one there, just don’t forget
to put one on the left side as well.

¥
r-=—8rcosé

We can now make some substitutions that will convert this into Cartesian coordinates.

-

s
X +y =-8x

Lines
Some lines have fairly simple equations in polar coordinates.

1. 8=20.
We can see that this 1s a line by converfing to Cartesian coordinates as follows
6=
aly
tan 1('—] =f
x
Y= tan 8
X

y=(tan gB)x
Thus 1s a line that goes through the ongin and makes an angle of f§with the positive x-
axis. Or, i other words 1t 15 a line through the origin with slope of tan G .

2. reosf=a
This is easy enough to convert to Cartesian coordinates to x = a . So, this 15 a vertical
line.

3. rsin@=5b
Likewise, this converts to ¥ = b and so is a horizontal line.
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Example 3 Graph & = ik reosf@=4 and rsin@ = -3 on the same axis system.
Solution
There really 1sn’t too much to thus one other than domng the graph so here it 1s.
3 ¥ -
o="2 5L rcosg@=4
4 - S - 4+
N | 3b
- if
I 1 L L L 1 I | | I
-5 -4 -3 =2 -1 { ~U 2 3 - 5 ¥
reing= -3 ; ~ _
-4} N
-5k ~
Circles
Let’s take a look at the equations of circles in polar coordinates.
1. r=a.

Thus equation 1s saying that no matter what angle we’ve got the distance from the origin
must be a. If you think about 1t that 1s exactly the defimtion of a circle of radius a
centered at the orgin.

So, thus 15 a circle of radius @ centered at the origin. Tlus 15 also one of the reasons why
we might want to work 1n polar coordinates. The equation of a circle centered at the
orgin has a very nice equation, unlike the corresponding equation i Cartesian
coordinates.

2. r=2acosf.

We looked at a specific example of one of these when we were converting equations to
Cartesian coordinates.

Thus 15 a circle of radius ‘a and center (a. 0). Note that a might be negative (as it was

mn our example above) and so the absolute value bars are required on the radius. They
should not be used however on the center.

3. r=2bsmé.
This 15 stmilar to the previous one. It is a circle of radius |b| and center (0.5).

4. r=2acos@+2bsmé.
Thus 1s a combination of the previous two and by completing the square twice it can be

shown that this is a circle of radius ya” +b° and center [a. b)_ In other words, this 1s
the general equation of a circle that 1sn’t centered at the ongm.
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Example 4 Graph r=7, r=4cos6, and r =—7smn 6 on the same axis system.

Solution

The first one 15 a circle of radius 7 centered at the ongin. The second 1s a circle of radms 2

centered at (2.0). The third 15 a cirele of radius : centered at [

three equations.

—

r=4cosé

s
-

-
]

J . Here 15 the graph of the

\

\
\
\

| S D
-8 7.‘ & b ol L\ \:/
ol

|
6

|
B
| 8

|

J

J
‘/‘
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» Example 1 Find the rectangular coordinates of the point P whose polar coordinates
are (r, 0) = (6, 2/3) (Figure 10.2.6).

Solution. Substituting the polar coordinates r = 6 and § = 27/3 in (1) yields

2n |
3 = 6cosT =§ (—;) ==3

N .

)'=6S|nT=6 3

-

2 (‘/—3)=3\/§

Thus, the rectangular coordinates of P are (x, ¥) = (=3, 3v/3). <

» Example 2 Find polar coordinates of the point P whose rectangular coordinates are
(=2, —2/3) (Figure 10.2.7).

Solution. We will find the polar coordinates (r, @) of P that satisfy the conditions r > 0
and 0 < # < 2. From the first equation in (2),
P = +)‘2 ==’ +(-2V3)=44+12=16

so r = 4. From the second equation in (2),

From this and the fact that (=2, —2+/3 ) lies in the third quadrant, it follows that the angle
satisfying the requirement 0 < 6 < 27 is @ = 4xn/3. Thus, (r,0) = (4, 4x/3) are polar
coordinates of P. All other polar coordinates of P are expressible in the form

arn T
4 7 S
(4. 3 +.IUI) or ( 4, 3 +-1m)

where n is an integer. «
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» Example 3 Sketch the graphs of
b
(a) r=1 (b) # ==
a) r 2
in polar coordinates.

Solution (a). For all values of 6, the point (1, #) is | unit away from the pole. Since #
is arbitrary, the graph is the circle of radius 1 centered at the pole (Figure 10.2.8a).

Solution (b). For all values of r, the point (r, 7/4) lies on a line that makes an angle of
n/4 with the polar axis (Figure 10.2.8b). Positive values of r correspond to points on the
line in the first quadrant and negative values of r to points on the line in the third quadrant.
Thus, in absence of any restriction on r, the graph is the entire line. Observe, however, that
had we imposed the restriction r > 0, the graph would have been just the ray in the first

quadrant. «
x/2 n2
/“\ ’Lv'.‘
\--/H 0 0
r=1 0=r/4
» Figure 10.2.8 (a) (b)

Equations r = f(#) thatexpress r as a function of # are especially important. One way
to graph such an equation 1s to choose some typical values of 4, calculate the corresponding
values of r, and then plot the resulting pairs (r, #) in a polar coordinate system. The next
two examples illustrate this process.

» Example 3 Sketch the graphs of
b4
Lt = l b A=
(a) r (b) 3

in polar coordinates.

Solution (a). For all values of 8, the point (1, #) is 1 unit away from the pole. Since #
is arbitrary, the graph is the circle of radius 1 centered at the pole (Figure 10.2.8a).
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Selution (b).  For all values of r, the point (r, 7/4) lies on a line that makes an angle of
/4 with the polar axis (Figure 10.2.8b). Positive values of r correspond to points on the
line in the first quadrant and negative values of r to points on the line in the third quadrant.
Thus, in absence of any restriction on r, the graph is the entire line. Observe, however, that

had we imposed the restriction r = 0, the graph would have been just the ray in the first

quadrant. «
x/2 =2
/’\ -
&—/1 0 0
r=1 f=mi4
» Figure 10.2.5 (a) ()

Equations r = f(8) that express r as a function of @ are especially important. One way
to graph such an equation is to choose some typical values of &, calculate the corresponding
values of r, and then plot the resulting pairs (r, @) in a polar coordinate system. The next
two examples illustrate this process.

» Example 4 Sketch the graphof r = @ (8 = 0) in polar coordinates by plotting points.

Solution. Observe that as 8 increases, so does r; thus, the graph is a curve that spirals out
from the pole as # increases. A reasonably accurate sketch of the spiral can be obtained by
plotting the points that correspond to values of @ that are inte ger multiples of 7/2, keeping
in mind that the value of r is always equal to the value of 8 (Figure 10.2.9). «

o
Oxi2

r=0(020)

A Figure 10.2.9
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» Example 6 Skeich the graph of r = cos2# in polar coordinates.

r=cos 28

LHOPITAL'S RULE

M INDETERMINATE FORMS OF TYPE 0/0

Recall that a limit of the form ;
lim L&) (1)

== ‘{g[_l_' )

in which f(x)—=0 and g(x)— 0 as x — a is called an indeterminate form of type 0/0.
Some examples encountered earlier in the text are
x -1 sin X 1 —cosx

=2, lim =1, lm—=»0
=1 X - 1 x—0 x x—0 X

Prepared by:M.Sangeetha, Asst Prof, Department of Mathematics KAHE. Page 16/24




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc Mathematics COURSE NAME:CALCULUS
COURSE CODE: 19MMU101 UNIT: II BATCH-2019-2022

The first limit was obtained algebraically by factoring the numerator and canceling the
common factor of x — |, and the second two limits were obtained using geometric methods.
However, there are many indeterminate forms for which neither algebraic nor geometric
methods will produce the limit, so we need to develop a more general method.

To motivate such a method, suppose that (1) is an indeterminate form of type 0/0 in
which f" and g" are continuous at x =a and g'(a) # 0. Since f and g can be closely
approximated by their local linear approximations near a, it is reasonable to expect that

. f(x) . fla) + f'(a)(x —a)
lim = lim

(2)
x+a g(x) x1—ag(a)+g'(a)(x—a)

Since we are assuming that /" and g are continuous at x = a, we have
lim f'(x) = f'(a) and lim ¢'(x) = g'(a)

and since the differentiability of f and g at x = @ implies the continuity of f and g at
x = a, we have

fa)=Ilim f(x)=0 and g(a)= lim g(x)=0

X—+a X —=a
Thus, we can rewrite (2) as
. flla)(x —a) _ lim f'(a)

lim o lim = lim S (x)

L = 3)
rea g(X) s g(@)x —a) x—agla) x-ag(x)

This result, called L'Hépital’s rule, converts the given indeterminate form into a limit
involving derivatives that is often easier to evaluate.

Although we motivated (3) by assuming that f and g have continuous derivatives at
x = a and that g’(a) # 0, the result 1s true under less stringent conditions and is also valid
for one-sided limits and limits at 4+ and —w. The proof of the following precise statement
of L'Hopital's rule is omitted.

3.6.1 THEOREM (L’Hépital’s Rule for Form 0/0) Suppose that f and g are differentiable
functions on an open interval containing x = a, except possibly at x = a, and that

lm f(x)=0 and lm g(x)=0

X—a X—>a

If im [ f'(x)/g"(x)] exists, or if this limit is 4w or —w, then
X—ra

I f(x) v 16X)
im — = lim
x—a g(x) x-+a g’(x)

Moreover, this statement is also true in the case of a limitasx - a , x—a" , x — —m,
or as x — 4.
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In the examples that follow we will apply L"Hopital’s rule using the following three-step
process:

Applying L’Hopital'’s Rule
Step 1. Check that the limit of f(x)/g(x) is an indeterminate form of type 0/0.
Step 2. Differentiate [ and g separately.

Step 3. Find the limit of f'(x)/g(x). If this limit is finite, 40, or —c», then it is equal
to the limit of f(x)/g(x).

» Example 1 Find the limit 2
o X

lim

x—=2 x =2

using LL'"Hopital’s rule, and check the result by factoring.

Solution. The numerator and denominator have a limit of 0. so the limit is an indetermi-
nate form of type 0/0. Applying I"Hopital’s rule yields

d
R =B -4 g
= lim &£ =lim — =4
x—=2 X — x—2 d x—»2
—x —=2]
dx

This agrees with the computation

x2—4 o =Y D)
s

1
x—>2 x — x—2 S

= lim(x+2)=4 <

B INDETERMINATE FORMS OF TYPE = /=
When we want to indicate that the limit (or a one-sided limit) of a function 1s 4% or —
without being specific about the sign, we will say that the limit is «. For example,

lim f(x)=« means lm f(x)=4= or Ilim f(x)=-=
X=-sar r=—>gt Jlogsgpe

lim f(x)=% means lim f(x)=4» or lim f(x)=—x
- =+ X4+

lim f(x) =% means lim f(x)=4% and lim f(x)=4®
X4 X—=a* X—a

The limit of a ratio, f(x)/g(x), in which the numerator has limit = and the denominator
has limit = is called an indeterminate form of type =/=. The following version of
L' Hépital’s rule, which we state without proof, can often be used to evaluate limits of this
type.
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3.6.2  THEOREM (L’Hépital’s Rule for Form /=) Supposetha [ and g are differentiable
functions on an open interval containing x = a, except possibly at x = a, and that

lim f(x) == and lm g(x)=w
x—>a X —+d

If im| f'(x)/g"(x))] exists, or if this limit is +% or —w, then

J&), FX)
im — = lim
38 2(x) x>agix)

Moreover, this statement is also true in the case of alimitasx - a~ ,x—a" , x — —om,
or as X — =+,

» Example 3 Incach part confirm that the limit is an indeterminate form of type =/
and apply L' Hopital’s rule.

Inx

. . R 2
(a) lm — (b) lim
x—=+w gt x—+0 CSCX

Solution (a). The numerator and denominator both have a limit of 4+, so we have an
indeterminate form of type oo/c. Applying L'Hopital's rule yields

; X : 1
Im — = lim — =0
x—+w ¢* x—+w e*

Solution (b). The numerator has a limit of — and the denominator has a limit of 4o,
so we have an indeterminate form of type «/w. Applying L'Hopital’s rule yields
Inx 1/x

= lim —— 4)
x>0+ cscx x—0+ —cscxcotx

This last limit is again an indeterminate form of type «/«. Moreover, any additional
applications of L' Hopital's rule will yield powers of 1/x in the numerator and expressions
involving csc x and cot x in the denominator; thus, repeated application of L'Hopital’s rule
simply produces new indeterminate forms. We must try something else. The last limit in
(4) can be rewritten as

! sinx . sinx :
lim | — tanx | = — lim - lim tanx = —(1)(0) =0
x X -0+ X x -0
Thus,
Inx
im =0 «
x—s0* CSCX
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B ANALYZING THE GROWTH OF EXPONENTIAL FUNCTIONS USING LHOPITAL'S RULE
If n 1s any positive integer, then x" — 42 as x — 42, Such integer powers of x are some-
times used as “measuring sticks™ to describe how rapidly other functions grow. Forexample,
we know that &* — 4+ as x — 4o and that the growth of e* is very rapid (Table 0.5.5);
however, the growth of x” is also rapid when 2 is a high power, so it is reasonable to ask
whether high powers of x grow more or less rapidly than ¢*. One way to investigate this is
to examine the behavior of the ratio x"/¢* as x — +=. For example, Figure 3.6.1a shows
the graph of y = x3/¢*. This graph suggests that x/e* — 0 as x — 4+, and this implies
that the growth of the function ¢* is sufficiently rapid that its values eventually overtake
those of x* and force the ratio toward zero. Stated informally, “¢* eventually grows more
rapidly than x*.” The same conclusion could have been reached by putting ¢* on top and
examining the behavior of * /x> as x — 4+ (Figure 3.6.1b). In this case the values of e*
eventually overtake those of x* and force the ratio toward 4. More generally, we can use
L'Hopital’s rule to show that ¢* evenrually grows more rapidly than any positive integer
power of x, that 1s,

im 2 =0 and lim & = 4x (5-6)

X =+ o X= 4 X"
Both limits are indeterminate forms of type ==/ that can be evaluated using L'Hépital's
rule. For example, to establish (5), we will need to apply L"Hopital’s rule n times. For this
purpose, observe that successive differentiations of x” reduce the exponent by | each time,
thus producing a constant for the nth derivative. For example, the successive derivatives

\ V
AY 10 -
> SH .lj-
& 6}
15+
4H
i 2 k
5 B 1 1 1 ';
. s 10 15 20
1 1 1 >
5 10 15 20 (b)
(a) A Figure 3.6.1
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of x? are 3x2, 6x, and 6. In general, the nth derivative of x" isn(n — 1)(n —2)---1 =n!
(verify).” Thus, applying L’Hépital’s rule n times to (5) yields

Limit (6) can be established similarly.

B INDETERMINATE FORMS OF TYPE 0 - =
Thus far we have discussed indeterminate forms of type 0/0 and «/c. However, these are
not the only possibilities; in general, the limit of an expression that has one of the forms
Jix)
g(x)’
is called an indeterminate form if the limits of f(x) and g(x) individually exert conflicting
influences on the limit of the entire expression. For example, the limit

f(x)-g(x), f(x)*™,  f(x)—g(x), f(x)+g(x)

lim xInx
is an indeterminate form of type 0 + = because the limit of the first factor 1s 0, the limit of
the second factor is —e, and these two limits exert conflicting influences on the product.

On the other hand, the limit lingkl Jx( = x)

is not an indeterminate form because the first factor has a limit of 4, the second factor has
a limit of —, and the se influences work together to produce a limit of —e for the product.

Indeterminate forms of type 0 - o can sometimes be evaluated by rewriting the product
as a ratio, and then applying L'Hopital’s rule for indeterminate forms of type 0/0 or oo /.

» Example 4 Evaluate

(a) ‘Iins)_ xlnx (b) Iimu(l — tan x) sec 2x
Solution (a). The factor x has a limit of 0 and the factor In x has a limit of —co, so the
stated problem is an indeterminate form of type 0 - . There are two possible approaches:
we can rewrite the limit as

i Inx I X
im — or L
=0t 1/x x=0 1/Inx

Prepared by:M.Sangeetha, Asst Prof, Department of Mathematics KAHE. Page 21/24




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc Mathematics COURSE NAME:CALCULUS
COURSE CODE: 19MMU101 UNIT: II BATCH-2019-2022

the first being an indeterminate form of type =/« and the second an indeterminate form of
type 0/0. However, the first form is the preferred initial choice because the derivative of

1/x is less complicated than the derivative of 1/ In x. That choice yields

. . Inx ; 1/x ’
Im xlhx=lim — = lm —— = lim (=x)=0
x—=0* x—=0 l/.r x— 04 —l/.\" x -
Solution (b). The stated problem is an indeterminate form of type 0 - o. We will convert
it to an indeterminate form of type 0/0:

. . | —tanx z | —tanx
lim (] —tanx)sec2x = lim ——m = lim ———
2> x/4 r—x/4 1/sec2x x—=/4 cos2x
2
i —sec™ x -2 >
= lm ———=—=
s—-x/4 —285in2x =2

B INDETERMINATE FORMS OF TYPE = - =
A limit problem that leads to one of the expressions

(+%2) = (+x), (=x) = (=x),
(+2) +(—=), (—=)+ (+x)

is called an indeterminate form of type = = x. Such limits are indeterminate because
the two terms exert conflicting influences on the expression: one pushes it in the positive
direction and the other pushes it in the negative direction. However, limit problems that
lead to one of the expressions

(+2) + (+2),  (420) = (=x),
(—) +(—2¢), (—o)—(4+x)

are not indeterminate, since the two terms work together (those on the top produce a limit
of 420 and those on the bottom produce a limit of —ox).

Indeterminate forms of type ® — « can sometimes be evaluated by combining the terms
and manipulating the result to produce an indeterminate form of type 0/0 or o/,

R T 1 1
» Example 5 Evaluate lim (—— )

x—0t \Xx sinx

Selution. Both terms have a limit of 422, so the stated problem is an indeterminate form
of type w0 — . Combining the two terms yields

. | | . sinx —x
Im | ——— = lm ———
x—0+ \ X sinx x—0+ XSINX

which is an indeterminate form of type 0/0. Applying L' Hopital's rule twice yields

., Sinx—x i cosx — |
lim —— = lim —mM8M—
x—0* ISINX r=+0f SINX 4= XCOS X
. —sinx 0
= lim - =—=0 4«
x—0v COSX 4 COSX —XSInX 2
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B INDETERMINATE FORMS OF TYPE 0°, =*, 1~

Limits of the form lim f(x)*

can give rise to indeterminate forms of the types 0°, =% and 1*. (The interpretations of
these symbols should be clear.) For example, the limit

lim (1 +x)"*
x—»

whose value we know to be ¢ [see Formula (1) of Section 3.2] is an indeterminate form of
type 1*. It is indeterminate because the expressions 1 4 x and 1/x exert two conflicting
influences: the first approaches |, which drives the expression toward 1, and the second
approaches 4+, which drives the expression toward +-co.

Indeterminate forms of types 0°, =", and 1* can sometimes be evaluated by first intro-
ducing a dependent variable y = fx)

and then computing the limit of In y. Since
Iny = In[f(x)**] = g(x) - In[ f(x)]

the limit of In y will be an indeterminate form of type 0 - o« (verify), which can be evaluated
by methods we have already studied. Once the limit of In y 1s known, it is a straightforward
matter to determine the limit of y = f(x)*"*', as we will illustrate in the next example.

» Example 6 Find lim (1 + sinx)/x.

Solution.  As discussed above, we begin by introducing a dependent variable
y=(1+sinx)'*

and taking the natural loganthm of both sides:

x ) In(1 + sinx
ln.\'=ln«l+sin.r)'”=;lnu+smx)=m

x
Thus, ) . In(1 +sinx)
lim Iny = lim —— 8 ——
x—+0 x—0 X

which is an indeterminate form of type 0/0, so by L'Hopital’s rule
In(1 + sin x) . (cosx)/(1 +sinx)
———————-—-‘_ — “!1_[.]10 I ——

Since we have shown that Iny— | as x — 0, the continuity of the exponential function
implies that ¢ — ¢! as x — 0, and this implies that y — ¢ as x — 0. Thus,

limIny = lim
x—=0 - x—=0

- = /
llmo(l + sm.r)"‘ =¢ 4
2=
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POSSIBLE QUESTIONS

TWO MARKS

5

1.Convert the polar equation to Cartesian equation for r = ————
sin@—-2cos@

s
2.Find the value of [2cos™ xdx.

3. State a L'Hospital’s Rule.

x7-128
3

4.Evaluate lim
x—2

5.Evaluate [ e™*x5dx.

SIXMARKS

1.Show that lim (1 + %)x =e

X—00

2.Find the Reduction form of [ cos™xsin"xdx
3.Find i) lim xs"*

x-0%
4.Evaluate [ x*(logx)3dx.

5.Find a polar equation for the circle x? + (y — 3)2 =9

6.Find the Cartesian equation for 72 = 4r cos@ and rcos = —4

7.Derive the reduction formula for f2 sin™ x dx.

8.Derive the reduction formula for [* e~*x™ dx and also find the value of [ e~*x® dx

9.Derive the reduction formula for [z x™ sinx dx

10.Evaluate lim ===
x-0 X
2x%-3x+1

11.Evaluate lim =
x— 400 3X“+5x—=2

11.Derive the reduction formula for [z cos™xdx

1
12.Evaluate lim xx

X—+ow
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UNIT-1I

APPLICATIONS OF INTEGRATION
Volumes by slicing, disks and washers methods, volumes by cylindrical shells, parametric equations,
parameterizing a curve, arc length, arc length of parametric curves, area of surface of revolution.
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VOLUMES BY SLICING; DISKS AND WASHERS

M VOLUMES BY SLICING

Recall that the underlying principle for finding the area of a plane region is to divide the
region into thin strips, approximate the area of each strip by the area of a rectangle, add the
approximations to form a Riemann sum, and take the limit of the Riemann sums to produce
an integral for the area. Under appropriate conditions, the same strategy can be used to
find the volume of a solid. The idea is to divide the solid into thin slabs, approximate the
volume of ecach slab, add the approximations to form a Riemann sum, and take the limit of
the Riemann sums to produce an integral for the volume (Figure 6.2.1).

I—VY = _é% e =
< = — y g y /= § .
\_’M’ . == F— L/') _—— ——)

'y / ‘y —— —
o — : S— e\
\‘_. — A o /;'/‘
e [ “\/ ~— ==

Sphere cut into Right pyramid cut Right circular cone cut Right circular cone cut
horizontal slabs into honzontal slabs into horizontal slabs into vertical slabs
A Figure 6.2.1

One of the simplest examples of a solid with congruent cross sections is a right circular
cylinder of radius r, since all cross sections taken perpendicular to the central axis are
circular regions of radius r. The volume V of a right circular cylinder of radius r and height
h can be expressed in terms of the height and the area of a cross section as

V = mr’h = [area of a cross section] x [height] ()
This is a special case of a more general volume formula that applies to solids called right

cylinders. A right cylinder is a solid that is generated when a plane region is translated
along a line or axis that is perpendicular to the region (Figure 6.2.3).
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Some Right Cylinders

Translated square Translated disk Translated annulus Transiated triangle

A Figure 623

If a right cylinder is generated by translating a region of area A through a distance A,
then /4 is called the height (or sometimes the width) of the cylinder, and the volume V of
the cylinder is defined to be

V = A - h = |area of a cross section] x [height] (2)
(Figure 6.2.4). Note that thisis consistent with Formula (1) for the volume of a right circular

cylinder.
We now have all of the tools required to solve the following problem.

Volume = A- h

A Figure 6.2.4

Cross section

a X b
Cross section area = A(x)

A Figure 6.2.5
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If a right cylinder is generated by translating a region of area A through a distance h,
then £ is called the height (or sometimes the width) of the cylinder, and the volume V of
the cylinder is defined to be

V = A . h = |area of a cross section] x [height] (2)

(Figure 6.2.4). Note that this is consistent with Formula (1) for the volume of a right circular

cylinder.
We now have all of the tools required to solve the following problem.

6.2.1 prosrLEM Let S be a solid that extends along the x-axis and is bounded on the
left and right, respectively, by the planes that are perpendicular to the x-axis atx = a and
x = b (Figure 6.2.5). Find the volume V of the solid, assuming that its cross-sectional
area A(x) is known at each x in the interval |a, b].

To solve this problem we begin by dividing the interval |a, £] into n subintervals, thereby
dividing the solid into n slabs as shown in the left part of Figure 6.2.6. If we assume that
the width of the kth subinterval is Ax,, then the volume of the kth slab can be approximated
by the volume A(x7)Ax; of aright cylinder of width (height) Ax; and cross-sectional area
A(x}), where x;" is a point in the kth subinterval (see the right part of Figure 6.2.6).

Adding these approximations yields the following Riemann sum that approximates the
volume V:

n
vV~ Z A(x])Ax;
k=1

Taking the limit as n increases and the widths of all the subintervals approach zero yields
the definite integral

In summary, we have the following result.
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6.2.2 VOLUME FORMULA Let § be a solid bounded by two parallel planes perpen-
dicular to the x-axis at x = g and x = b. If, foreach x in |a, b], the cross-sectional area
of § perpendicular to the x-axis is A(x), then the volume of the solid is

b
4 =/ A(x)dx (3)

provided A(x) is integrable.

6.2.3 voLuME FORMULA Let § be a solid bounded by two parallel planes perpen-
dicular to the y-axis at y = cand y = d. If, foreach y in [c, 4], the cross-sectional area
of § perpendicular to the y-axis is A(y), then the volume of the solid is

d
V= f A(y)dy @)

provided A(y) is integrable.

» Example 1 Denve the formula for the volume of a right pyramid whose altitude is &
and whose base 1s a square with sides of length a.

Solution. As illustrated in Figure 6.2.7a, we introduce a rectangular coordinate system
in which the y-axis passes through the apex and is perpendicular to the base, and the x-axis
passes through the base and is parallel to a side of the base.

At any v in the interval [0, 2] on the y-axis, the cross section perpendicular to the y-
axis is a square. If s denotes the length of a side of this square, then by similar triangles
(Figure 6.2.7b)

-

S h-y
h

I:

a
or s=—(h—y)
h

]
N

Thus, the area A(y) of the cross section at y is

N

. ) ol 2
A)=s"=—=h-y)
h*

Prepared by:M.Sangeetha, Asst Prof, Department of Mathematics KAHE. Page 5/20




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc Mathematics COURSE NAME:CALCULUS
COURSE CODE: 19MMU101 UNIT: III BATCH-2019-2022
B, _
h-y \
y-axis \
B(0. h)I 1c N h
2 \
y
.‘Eli"‘ 0 %a C- 3
X-axis 1)
0 C(l a. 0) A Figure 6.2.7
(a)

and by (4) the volume is

k ko2 . a [ -
V= / A(y)dy =/ —h=-y)dy= -:f (h —y)"dy
0 0 h< h- 0

_a b 31" _a30 5] 12
i e il e

That is. the volume is -'; of the area of the base times the altitude. =«

I SOLIDS OF REVOLUTION
A solid of revolution is a solid that is generated by revolving a plane region about a line that
lies in the same plane as the region; the line is called the axis of revolution. Many familiar
solids are of this type (Figure 6.2.8).

Some Familiar Solids of Revolution

- ™S - T S
/ N\ = |
/ \ -~

/ o
no_ N N I
Axis of revolution Vv l\} \,‘ U
A— |
-
Hollowed right
Right circular cylinder Solid sphere Solid cone circular cylinder
6.2.8 (@ @) © (@)
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B VOLUMES BY DISKS PERPENDICULAR TO THE x-AXIS
We will be interested in the following general problem.

6.2.4 proBLEM Let f be continuous and nonnegative on [a, b], and let R be the
region that is bounded above by y = f(x), below by the x-axis, and on the sides by the
lines x = @ and x = b (Figure 6.2.9a). Find the volume of the solid of revolution that
is generated by revolving the region R about the x-axis.

‘l‘ » -
R
‘f\ x x
v \
» Figure 6.2.9 (&) (€]

We can solve this problem by slicing. For this purpose, observe that the cross section
of the solid taken perpendicular to the x-axis at the point x is a circular disk of radius f(x)
(Figure 6.2.95). The area of this region is

A(x) = 7l f) P

Thus, from (3) the volume of the solid is

b
V=f Al fo P dx (5)
a

Because the cross sections are disk shaped. the application of this formula is called the
method of disks.

» Example 2 Find the volume of the solid that is obtained when the region under the
curve ¥y = /x over the interval [1, 4] is revolved about the x-axis (Figure 6.2.10).

Solution. From (5), the volume is

. 2 & . PECaN x I5x
Vaa k al f(x)]*dx = | Axdx = —— l=8n—3= 5 <
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» Example 3 Derive the formula for the volume of a sphere of radius r.

Solution. Asindicatedin Figure 6.2.11, asphere of radius r can be generated by revolving
the upper semicircular disk enclosed between the x-axis and

2 > 2
X4y =r

about the x-axis. Since the upper half of this circle is the graphof y = f(x) = Vr= — x-,
it follows from (5) that the volume of the sphere is

o 4 : = ol 4
V= [ al f(x)] dx = / n(r*—xdx=n [rl.t - T] = ?m" 4
a = ke o

VOLUMES BY WASHERS PERPENDICULAR TO THE x-AXIS

6.2.5 proBrLeEm  Let f and g be continuous and nonnegative on [a, b], and suppose
that f(x) = g(x) for all x in the interval [a, b]. Let R be the region that is bounded
above by y = f(x), below by y = g(x), and on the sides by the linesx =aandx = b
(Figure 6.2.12a). Find the volume of the solid of revolution that is generated by revolving
the region R about the x-axis (Figure 6.2.12b).

We can solve this problem by slicing. For this purpose, observe that the cross section of
the solid taken perpendicular to the x-axis at the point x is the annular or “washer-shaped™

region with inner radius g(x) and outer radius f(x) (Figure 6.2.12b); its area is
A@) = 7l fOF = 7lg@)? = 7 f()F = [gx))
Thus, from (3) the volume of the solid is

b
=f It(lf(.‘&‘)lz—lg(.t)lz)d.t (6)

Because the cross sections are washer shaped, the application of this formula is called the
method of washers.
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» Example 4 Find the volume of the solid generated when the region between the grap
of the equations f(x) = % + x? and g(x) = x over the interval [0, 2] is revolved about t
x-axis.

Solution. First sketch the region (Figure 6.2.134): then imagine revolving it about t
x-axis (Figure 6.2.135). From (6) the volume is

o 2
V= f :r([f(x)]2 — Ig(.t)l:)d.r — ﬁ n([{; -<l-:r‘"]2 — .1'2) dx

—/‘27 1 4 x*) a ""+’r5 C = -
— — i re =T — —_— = —
o \4 * a5 |, 10

F AV

3

= r _V:%i-.!’:

3

2 b=

1= >
1 l{\; 3 . X
1 2\ 2

Unoqual scales on axes

Region defined The resulting
by fand g } solid of revolution :
» Figure 6.2.13 (a) (H)

I VOLUMES BY DISKS AND WASHERS PERPENDICULAR TO THE y-AXIS
The methods of disks and washers have analogs for regions that are revolved about the y-
axis (Figures 6.2.14 and 6.2.15). Using the method of slicing and Formula (4), you should
be able to deduce the following formulas for the volumes of the solids in the figures.

d d
v =f mlu(y)) dy v =/ x((w(y)* — [v()’) dy (7-8)
’ Disks } Washers
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» Example 5 Find the volume of the solid generated when the region enclosed by
y = J/x, y =2, and x = 0 is revolved about the y-axis.

Solution. First sketch the region and the solid (Figure 6.2.16). The cross sections taken
perpendicular to the y-axis are disks, so we will apply (7). But first we must rewrite y = /x
as x = y2, Thus, from (7) with u(y) = y2, the volume is

d 2 592
9 = o Ty 3
V= mlu(y)|"dy = Ay dy=—| =
[ 0 5 40

g)

AV AV

Y=

VOLUMES BY CYLINDRICAL SHELLS

B CYLINDRICAL SHELLS

In this section we will be interested in the following problem.

6.3.1 prosLEM Let f be continuous and nonnegative on [a, b] (0 < a < b), and let
R be the region that is bounded above by vy = f(x), below by the x-axis, and on the
sides by the lines x = a and x = b. Find the volume V of the solid of revolution § that
is generated by revolving the region R about the y-axis (Figure 6.3.1).
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ALY y
y=1(x) l -

Y=

A cylindrical shell is a solid enclosed by two concentric right circular cylinders (Fig-
e 6.3.2). The volume V of a cylindrical shell with inner radius ry, outer radius ry. and
wight /i can be written as

V = |area of cross section] - [height]
= (nrzl — m'lz)h
=mrn+n)rn—-r)h

=2x-[3(ri+r)]-h-(rn—n)

3ut %(n + r2) is the average radius of the shell and 2 — ry 1s its thickness, so

V = 2 - |average radius] - [height] - [thickness] (1)

6.3.2 VOLUME BY CYLINDRICAL SHELLS ABOUT THE y-AXIS Let f be continuous
and nonnegative on [a, ] (0 < a < b), and let R be the region that is bounded above by
y = f(x), below by the x-axis, and on the sides by the lines x = a and x = b. Then the
volume V of the solid of revolution that is generated by revolving the region R about
the y-axis is given by

b
v —_—/ 2axf(x)dx 2)
a

» Example 1 Use cylindrical shells to find the volume of the solid generated when
the region enclosed between y = \/x, x = |, x = 4, and the x-axis is revolved about the
V-axis.

Solution. First sketch the region (Figure 6.3.6a); then imagine revolving it about the
y-axis (Figure 6.3.6b). Since f(x) = /x.a = 1, and b = 4, Formula (2) yields

4 4 o 2 oy 4 d4; 124;
V= / 2xJ/xdx = 2”/ APy =27 25| =SR2 -1]= = <
l ! > i@ :

» Example 2 Use cylindrical shells to find the volume of the solid generated when the
region R in the first quadrant enclosed between y = x and y = x? is revolved about the
y-axis (Figure 6.3.8q).
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Solution. As illustrated in part (b) of Figure 6.3.8, at each x in [0, 1] the cross section of
R parallel to the y-axis generates a cylindrical surface of height x — x? and radius x. Since
the area of this surface is )

2nx(x — x°)

the volume of the solid is

1 I
V = f 2rx(x —x*)dx = Exf (x* —x¥)dx
0 0

x x"] 1 1 T
EY A R L P
‘T[_x JL T’[_z 4] 6 "

» Example 3 Use cylindrical shells to find the volume of the solid generated when the
region R under v = 17 over the interval [0, 2] is revolved about the line vy = —1.

Solution. First draw the axis of revolution; then imagine revolving the region about the
axis (Figure 6.3.9a). As illustrated in Figure 6.3.9b, ateach v in the interval 0 < y < 4, the
cross section of R parallel to the x-axis generates a cylindrical surface of height 2 — /¥

and radius v 4 1. Since the area of this surface is
m(y + (2 - V)

it follows that the volume of the solid is
4 4 - -
f n(y+ 12 = Jfy)dy= E:rf 2y -y 42 -y dy
0o ]

» 2 g7 2 3/2
= DJT _1._ — __\...'_ + 2_‘ . _J.-._

Y 17
= -

5 ER M T

Prepared by:M.Sangeetha, Asst Prof, Department of Mathematics KAHE. Page 12/20




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc Mathematics COURSE NAME:CALCULUS
COURSE CODE: 19MMU101 UNIT: II1 BATCH-2019-2022

AREA OF A SURFACE OF REVOLUTION

B SURFACE AREA
A surface of revolution is a surface that is generated by revolving a plane curve about an
axis that lies in the same plane as the curve. For example, the surface of a sphere can be
generated by revolving a semicircle about its diameter, and the lateral surface of a right
circular cylinder can be generated by revolving a line segment about an axis that is parallel

to it (Figure 6.5.1).

Some Surfaces of Revolution

6.5.1 SURFACE AREA PROBLEM  Suppose that f is a smooth, nonnegative function
on [a, b] and that a surface of revolution is generated by revolving the portion of the
curve y = f(x) between x = a and x = b about the x-axis (Figure 6.5.2). Define what
is meant by the area § of the surface, and find a formula for computing it.

6.52 perFmnmion  If £ is a smooth, nonnegative function on [a, b], then the surface
area S of the surface of revolution that is generated by revolving the portion of the curve
y = f(x) between x = a and x = b about the x-axis is defined as

b
§= f rf(x)y/ 1+ [ f(x)Pdx
d

. b dy’
§= f 2 f(x) l+[f'<x>lzd-‘=f - l+(T) i
a = 1

Moreover, if g is nonnegative and x = g(v) isa smooth curve onthe interval [¢, d], then the
area of the surface that is generated by revolving the portion of a curve x = g(y) between
y = cand y = 4 about the y-axis can be expressed as

d d 2
S=/ 2ag(y)V1 +Ig’(.v)I2d_v=f 2nx‘/l +(z—':) dy (5)
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» Example 1 Find the area of the surface that is generated by revolving the portion of

the curve v = x” between x = 0 and x = | about the x-axis.

Solution. First sketch the curve; then imagine revolving it about the x-axis (Figure 6.5.6).
Since v = x7, we have dy/dx = 3x2, and hence from (4) the surface area § is

| |' oy 2
§= f 2y, |1+ (:) dx
0 y dx

1
=f 2y 1 4+ (3x2)ldx
0
|

— fo (1M 2 dx
]

10

— 1/2 w=1+M!
= — w'-du
36 1 du = 3607 dx
910
)
N £ 1M n 1/
= — . —u'" = — (107 =1)= 356 «
36 3 |, 27
¥ !
| ]
I /’EE 4)
/
/
Ya.1
L L } 1 Il ,:
1 2
A Figure .57

A Figure 65.6

» Example 2 Find the arca of the surface that is generated by revolving the portion of
the curve vy = x~ between x = | and x = 2 about the y-axis.

Solution. First sketch the curve; then imagine revolving it about the y-axis (Figure 6.5.7).
Because the curve is revolved about the y-axis we will apply Formula (5). Toward this end,
we rewrite y = x~ as x = /¥ and observe that the y-values corresponding to x = | and

Prepared by:M.Sangeetha, Asst Prof, Department of Mathematics KAHE. Page 14/20




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc Mathematics COURSE NAME:CALCULUS
COURSE CODE: 19MMU101 UNIT: II1 BATCH-2019-2022

x=2arey=1and y =4. Since x = /¥, we have dx/dy = 1/(2,/¥), and hence from
(5) the surface area § is

4 | dx .
S:/ 2ax,/1 4+ —) dy
I v d_\' ‘ v

[ el

4
=:r/ vay + ldy
l

S

17
n ' T
NS 1/2 u=4y+1
- '/: u'=du e mdy

2 3 ¥ N m3 3
. g2 = ; iz _ 5 /2 ~ 30.85
T4 ] 6(17 57%)~ 3085 «

PARAMETRIC EQUATIONS; TANGENT LINES AND ARC LENGTH
FOR PARAMETRIC CURVES

PARAMETRIC EQUATIONS

Suppose that a particle moves along a curve C in the xy-plane in such a way that its x- and
y-coordinates, as functions of time, are

x= f(r), y=g()

We call these the parametric equations of motion for the particle and refer to C as the
trajectory of the particle or the graph of the equations (Figure 10.1.1). The variable 7 is
called the parameter for the equations,

» Example 1 Sketch the trajectory over the time interval 0 <t < 10 of the particle
whose parametric equations of motion are

x=t—3sint, y=4—3cost (1
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Solution. One way to sketch the trajectory is to choose a representative succession of
times, plot the (x, ) coordinates of points on the trajectory at those times, and connect the
points with a smooth curve. The trajectory in Figure 10.1.2 was obtained in this way from
the data in Table 10.1.1 in which the approximate coordinates of the particle are given at
time increments of | unit. Observe that there is no r-axis in the picture; the values of 7
appear only as labels on the plotted points, and even these are usually omitted unless it is
important to emphasize the locations of the particle at specific times. «

» Example 2 Find the graph of the parametric equations

x=cost, y=sint (0<t<2n) (2)

Solution. One way to find the graph is to eliminate the parameter ¢ by noting that
4y =sin’r+cos’t =1

Thus, the graph is contained in the unit circle M+yi=1 Geometrically, the parameter
t can be interpreted as the angle swept out by the radial line from the origin to the point
(x, y) = (cost, sint) on the unit circle (Figure 10.1.3). As 1 increases from 0 to 27, the
point traces the circle counterclockwise, starting at (1,0) when ¢ = 0 and completing one
full revolution when 1 = 2. One can obtain different portions of the circle by varying the
interval over which the parameter varies. For example,

x =cosi, y=sinf 0<r<m (3)

represents just the upper semicircle in Figure 10.1.3. «

» Example 3 Graph the parametric curve
x=u-3, y=6t-17

by eliminating the parameter, and indicate the orientation on the graph.
Solution. To eliminate the parameter we will solve the first equation for ¢ as a function
of x, and then substitute this expression for 1 into the second equation:

t=(3)x+3

y=6(;) (x+3)-7

y=3x+2

Thus, the graph is a line of slope 3 and y-intercept 2. To find the orientation we must look
to the original equations; the direction of increasing r can be deduced by observing that
x increases as ! increases or by observing that vy increases as 1 increases. Either piece of
information tells us that the line is traced left to right as shown in Figure 10.1.5. «
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I TANGENT LINES TO PARAMETRIC CURVES
We will be concemed with curves that are given by parametric equations

x=ju), y=gl)
in which f(r) and g(r) have continuous first derivatives with respect to 7. It can be proved

that if dx/dt # 0, then v is a differentiable function of x, in which case the chain rule
implies that
dv dy/dt
ol B e @)
dx  dx/dr
This formula makes it possible to find d v/dx directly from the parametric equations without
eliminating the parameter.

» Example 4 Find the slope of the tangent line to the unit circle
x =cosf, y=sinf 0<t<2nm

at the point where 1 = 7/6 (Figure 10.1.9).

Solution. From (4), the slope at a general point on the circle is

dy dyfdt  cost

— = ] - = —Ccotr
dx dx/dt —sint
Thus, the slope at t = /6 1s
d "
&y = — cot g V3 «
d.T r=x/6 6

ARC LENCTH OF PARAMETRIC CURVES

10.1.1 ARC LENGTH FORMULA FOR PARAMETRIC CURVES [If no segment of the
curve represented by the parametric equations

x=x(1), y=y(1) (@ast<bh)

is traced more than once as ¢ increases froma to b, and if dx /dr and d v/t are continuous
functions for a < 1 < b, then the arc length L of the curve is given by

bolrdxe\t  fdy\’
.L_j; \/(I) +(E) dit 9)
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» Example8 Use(9)tofind the circumference of acircle of radius @ from the parametric
equations

X =acosf, y=asinf 0 <t <2
Solution.

. Ix '.' -:f.l‘): N ( t'f_'i'): e 1x { - - +{ - ]: f

T, \.‘ ar ] T \ar ar = i v (—asint) acost)" dt
¥ | 2x

- [ adt = af] =2mta 4
0 0
Arc Length

Symbolically L = [.ds

(0..a..b..x-, 0..y-, curve C over |a, b], triangle dx, dy, ds)

L = [ Jdx? +dy?

Suppose C is described by parametric equations

x=f(t), y=g(t)

= 4 =
dx = ardt‘ dy—md:

then

=0 )+ (@)
wherea = f(a) and b = f(B).
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Example Find the length of the curve

t
x=e"'—t, y=4e:, 0<t<1

(% z+(%)2=.¢.=“+2e'-‘+1=(.c.-*f+1)2

L= )+ ()

= [, (e + 1)dt
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POSSIBLE QUESTIONS
TWO MARKS

1. Define length of a parameterized curve .
2. Define Arc length.

3. Find arc length for the circumference of a circle of radius a form the parametric equations
x =acost ,y =asint (0t <2m)

4. Write down the surface area formula for the Revolution about the X-axis.
5.Define Arc length.
SIX MARKS

1.Use Cylindrical shells to find the volume of the solid generate when the region

enclosed between y = vx ,x = 1,x = 4, and the x — axis is revolved about the y - axis.

2.Find the Volume of the solid by revolving the region bounded by the line and the curve
about the x —axis where y=4-x> ,y=2-x.

3.Find the area of the surface generated by revolving thecurve y = 2Vx ,1 < x < 2
about the x-axis .

4.The region bounded by the curve y=x?+1 and the line y=-x+3 is revolved about x-axis to generate a
solid.Find the Volume of a solid.

5.Find the Volume of the solid generated by revolving the region bounded by y = v/x
and the linesy =1, x=4 about the liney = 1.

about the x-axis.

N |-

6.Find the area of the surface generated by revolving thecurve y = x3 ,0 < x <

7.The region bounded by the curve y = x? and the line y = 2x in the first quadrantis resolved about
the y-axis to generate a soild.Find the Volume of the solid.

8.Find the length of the asteroid x = cos3t ,y =sin3t,0 < t < 2.

9.Find the Volume of the solid generated by revolving the region between the parabola
x =y%+ 1 andthe line x = 3 about the line x = 3.

10.Find the length of asteroid x = cos3t,y = sin3t,0 <t < 2m.
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UNIT-1IV

CURVE SKETCHING
Concavity and Inflection points, asymptotes. Techniques of sketching conics, reflection properties of
conics, rotation of axes and second degree equations, classification into conics using the discriminant,

polar equations of conics.
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B CONCAVITY

Although the sign of the denvative of f reveals where the graph of f is increasing or
decreasing, it does not reveal the direction of curvarure. Forexample, the graph is increasing
on both sides of the point in Figure 4.1.7, but on the left side it has an upward curvature
(“holds water™) and on the right side it has a downward curvature (“spills water™). On
intervals where the graph of f has upward curvature we say that f is concave up, and on
intervals where the graph has downward curvature we say that [ is concave down.

Figure 4.1.8 suggests two ways to characterize the concavity of a differentiable function
f on an open interval:

* [ 1sconcave up on an open interval if its tangent lines have increasing slopes on that
interval and is concave down if they have decreasing slopes.
& Flgme 417 * [ is concave up on an open interval if its graph lies above its tangent lines on that
interval and is concave down if it lies below its tangent lines.

Concave Our formal definition for “concave up” and “concave down™ corresponds to the first of
A these characterizations.

4.1.3 periNimion  If f s differentiable on an open interval, then f is said to be
Increasing slopes concave up on the open interval if £ is increasing on that interval, and £ is said to be
concave down on the open interval if f* is decreasing on that interval.

Since the slopes of the tangent lines to the graph of a differentiable function f are the
values of its derivative /7, it follows from Theorem 4.1.2 (applied to f” rather than f) that
S will be increasing on intervals where f” is positive and that f will be decreasing on
intervals where f™ is negative. Thus, we have the following theorem

Decreasing slopes

4.14 mneorem  Ler [ be twice differentiable on an open interval

(@) If f7(x) > O for every value of x in the open interval, then [ is concave up on that
interval.

(b) If ["(x) < O for every value of x in the open interval, then [ is concave down on
that interval.

» Example 4 Figure 4.1.4 suggests that the function f(x) = x? — 4x + 3 is concave
up on the interval (=, 420). This is consistent with Theorem 4.1.4, since f'(x) = 2x -4

and f"(x) =2, 50 .
J f7(x) > 0 onthe interval (—x, 4+x)

Also, Figure 4.1.5 suggests that f(x) = x> is concave down on the interval (-, 0) and
concave up on the interval (0, +). This agrees with Theorem 4.1.4, since f'(x) = 3x’
and f”(x) = 6x, so

f"(x) <0 ifx<0 and f"(x)>0 ifx>0 «
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Inflection point

» Figure 4.1.9

(=
T

I—
3

SN
-1 1
[aF \(l.—lj |

IRV,

fin=r-3xls1

b Figure 4.1.10
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Il INFLECTION POINTS
We see from Example 4 and Figure 4.1.5 that the graph of f(x) = x* changes from concave
down to concave up at ¥ = (. Points where a curve changes from concave up to concave
down or vice versa are of special interest, so there is some terminology associated with
them.

4.1.5 perFiNiTion  If f s continuous on an open interval containing a value xg. and
if f changes the direction of its concavity at the point (xo, f(x0)), then we say that f
has an inflection point af xy. and we call the point (xg, f(xg)) on the graph of f an
inflection point of f (Figure 4.1.9).

» Example 5 Figure 4.1.10 shows the graph of the function f{x) = =3l 41 Use
the first and second derivatives of f to determine the intervals on which f is increasing,
decreasing, concave up, and concave down. Locate all inflection points and confirm that
your conclusions are consistent with the graph.

Solution. Calculating the first two derivatives of f we obtain
Fixy=3x—6x=3x(x=2)
ffixy=6x —6==6(x —1)

The sign analysis of these derivatives is shown in the following tables:

INTERVAL  (3x)(x=2) (%) CONCLUSION
x<0 (=)= + f1s increasing on (—=o, 0]
O<x<2 (+)=) - fis decreasing on [0, 2]
x>2 (+)+) + f1s increasing on [2, +<)
INTERVAL  Glx=1) £(x) CONCLUSION
x<1 (=) —  f15 concave down on (—ee, 1)
x>1 ) +  fisconcave up on (1, +22)

The second table shows that there is an inflection point at x = 1, since f changes from
concave down to concave up at that point. The inflection point is (1, f(1}) = (1, —1). All
of these conclusions are consistent with the graph of f. «

One can correctly guess from Figure 4.1.10 that the function f{x) = x* — 3x” + | has
an inflection point at x = 1 without actually computing derivatives. However, sometimes
changes in concavity are so subtle that calculus is essential to confirm their existence and
identify their location. Here is an example.
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» Figure 4.1.11
¥y
6k
sk
s
3k
2L
1
7 S R [N E—
.3 x 2=
2 T

Ay =x+2smx

» Figure 4.1.12

» Example 6 Figure 4.1.11 suggests that the function f(x) = xe* has an inflection
point but its exact location is not evident from the graph in this figure. Use the first and
second derivatives of f to determine the intervals on which f is increasing, decreasing,
concave up, and concave down. Locate all inflection points.

Solution. Calculating the first two derivatives of f we obtain (verify)
ffx)y=(0-x)e™"
fr(x) = (x —2)e*

Keeping in mind that ¢ is positive for all x, the sign analysis of these derivatives is easily
determined:

INTERVAL (1-x)(¢™) [(») CONCLUSION

x<l  H® o+
x>1 =)+ -

fis increasing on (=eo, 1]
£ is decreasing on [1. +<o)

INTERVAL (x=2)(e™®) f"(x) CONCLUSION

x<?2 =) -
x>2 ) +

f1is concave down on (—ee. 2)
fis concave up on (2, +eo)

The second table shows that there is an inflection point at x = 2, since f changes from
concave down to concave up at that point. All of these conclusions are consistent with the
graphof . «

» Example 7 Figure 4.1.12 shows the graph of the function f(x) = x + 2sinx over
the interval [0, 27]. Use the first and second derivatives of f to determine where f is
increasing, decreasing, concave up, and concave down. Locate all inflection points and
confirm that your conclusions are consistent with the graph.

Solution. Calculating the first two derivatives of f we obtain
f(x)=1+2cosx
S"(x) = —=2sinx

Since f’ is a continuous function, it changes sign on the interval (0, 27) only at points
where f'(x) = 0 (why?). These values are solutions of the equation

1 4+2cosx =0 orequivalently

19—

COsSY = —

There are two solutions of this equation in the interval (0, 2x). namely, x = 2x/3 and
x = 47/3 (verify). Similarly, " is a continuous function, so its sign changes in the interval
(0, 2r) will occur only at values of x for which f”(x) = 0. These values are solutions of
the equation

~2sinx =0
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There is one solution of this equation in the interval (0, 277), namely. x = 7. With the help
of these “sign transition points” we obtain the sign analysis shown in the following tables:

INTERVAL f'(x)=1+2cosx CONCLUSION
0<x<2r/3 - f1s increasing on [0, 2x/3]
2n/3 < x<4r/3 - f1s decreasing on [27/3, 4r/3]

dn/3<x<2r - f1s increasing on [4x/3. 2]
INTERVAL f(x) = =2 sinx CONCLUSION
O<x<m - f1s concave down on (0. )
m<x<2x - f1s concave up on (x. 21)

The second table shows that there is an inflection point at x = 7, since f changes from

concave down to concave up at that point. All of these conclusions are consistent with the
graph of f. «

In the preceding examples the inflection points of [ occurred wherever f”(x) = 0.
However. this is not always the case. Here is a specific example.

» Example 8 Find the inflection points, if any, of f(x) = x*.

Solution. Calculating the first two derivatives of f we obtain
[ (x) = 4}
f"(x) = 12x2

Since f”(x) is positive for x < 0 and forx > 0, the function f is concave up on the interval
(=, 0) and on the interval (0, 4oc). Thus, there is no change in concavity and hence no
inflection point at x = 0, even though f”(0) = 0 (Figure 4.1.13). «

We will see later that if a function f has an inflection point at x = xp and f”(xp) exists,
then f"(xg) = 0. Also, we will see in Section 4.3 that an inflection point may also occur
where f”(x) is not defined.
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\
1 | \ _/ 1 | K
A=t
» Figure 4.1.13
Asymptotes

Befare continuing with asymptotes, it is recommended that you review the vertical asymptote
and infinite limits section of the limits tutorial at the link below.

Vertical Asymptotes and Infinite Limits

In order to properly sketch a curve, we need to determine how the curve behaves

as x approaches positive and negative infinity. We must find the limit of the function as x
approaches infinity.

For a function f defined on (a, =),

lim f(x) = [

means that the values of f(x) approach the value L when x is taken to be sufficiently large.
For a function f defined on (-=, a),

In order to find the horizontal asymptotes of a function, we use the following theorem. If nis a
positive number, then

.1
lm — = 0
=@y

If nis a positive, rational number such that xn is defined for all x, then

lian L,. =1
T=k=@ Y
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Functions do not always approach a value as x approaches positive or negative infinity. Often
there is no horizontal asymptote and the functions have infinite limits at infinity. For example,
the function f(x) = x2 approaches infinity when x is taken to be sufficiently large, positively or

negatively.
|
/ \'h r=iix)
Slant Asymptotes f I\ f
Some curves may have an asymptote that is neither vertical f —
nor horizontal. These curves approach a line as x approaches f | T —

positive or negative infinity. This line is called the slant | |
asymptote of the function. The graph to the right illustrates / :
the concept of slant asymptotes. f

im|f(x) = (mx+ )] =0 or lim [f(x) = (mx+B)] =0 .-""’

then the function f(x) has a slant asymptote of y = mx + b.

Rational functions will have a slant asymptote when the degree of the numerator is one more
than the degree of the denominator. To find the equation of the slant asymptote, we divide the
numberator by the denominator using long division. The guotient will be the equation of the
slant asymptote. The remainder is the quantity f(x) - (mx + b). We must show that the
remainder approaches 0, as x approaches positive or negative infinity. The example below will
give you a better idea of how to find the slant asymptote of a function.

2

2
+ 3
Example 1: Sketch a curve for f(x) =
Step 1: Find the y-intercepts, when x=0

2

}i:
2

Therefare (0, 3 ) is the y-intercept

vy # 0

Step 2: We cannot find the x-intercepts, since

Step 3: Check if the curve is symmetric, i.e. is the function odd or even.
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2
2
x + 3

f(-x) =
f(x) = f(-x)
So this is an even function, and is symmetric about y-axis.

Step 4: Check for any discontinuities, and find the asymptotes, if any, or the limits

2
. -‘{2
2 lim  ————
lim — X—oe 1+
X—oo X + 3 A _'.{2
0
= 1+0 = 0+
2
, HE
2 lim ——
l1m — X—=-o0 1+
Xm0 X+ 3 N _5{2
= ()-
Step 5: Find stationary points (put v' = f'(x) = 0)
2 -4x
dy T, |2 2x ., .2
ax [x *+ 3 | (x + 3 |
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-4x

dy [ 2

E [x + 3 |
=0 So =0

= x=0
2

0, =

3

is a stationary point.

Step 6: Find the point of inflection
2

(-a)(x® +3) + ax(2)[x® + 3|2«
dy -, a
2 (x~ + 3|

afx* +3)[-[x7 +3) + 16x”

_. 4
|I_1'_2 + 3 .|
a{15x% - 3

3

[ 2 \
x + 3|

d’y

For point of inflection, =0.
Therefore 15x* =3 =0

1 11—_
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o " 2
41 15(0| -3

2 o2 4)-3
dy 0| +3 I-. .||

7 ] | 3 _—

9

When x =0, X = = 3 = <
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2
0, =
3
Hence is @ maximum point.
1
, . : V5
Test for point of inflection at x = = (0.447
1
X 0.4 e 0.5
VS =0.447
f'(x) -0.07<0 0 0.087 >0

When x = 0.447, y = 0.625
So (0.447, 0.625) is a point of inflection.

1
o |5
Test for point of inflection at x = =-0.447
1

X -0.5 - 0.4

Vo =-0.447
f'(x) 0.087>0 0 -0.07<0
When x = -0.447, y = 0.625
So (-0.447, 0.625) is a point of inflection.

y
y Intercept

Point of Inflection (-0.447,0.625) Local Maximum

(0, 0.66666667 )

t—/\—’x

Point of Inflection (0.447,0.625)

\/
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CONIC SECTIONS
W CONIC SECTIONS

Circles, ellipses, parabolas, and hyperbolas are called conic sections or conics because
they can be obtained as intersections of a plane with a double-napped circular cone (Fig-
ure 10.4.1). If the plane passes through the vertex of the double-napped cone, then the
intersection is a point, a pair of intersecting lines, or a single line. These are called degen-

erate conic sections.

Circle

A point

A Figure 10.4.1
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10.4.1 peFmNiTiON A parabela is the setof all points in the plane that are equidistant

from a fixed line and a fixed point not on the line.

10.4.2 permvimion  An ellipse is the set of all points in the plane, the sum of whose
distances from two fixed points is a given positive constant that is greater than the
distance between the fixed points.

10,43 peFmvaTioN A hyperbola is the set of all points in the plane, the difference
of whose distances from two fixed distinct points is a given positive constant that is less
than the distance between the fixed points.

Il EQUATIONS OF PARABOLAS IN STANDARD POSITION

PARABDLAS IN STANDARD POSITION

al al¥ ¥ il
\ y= F
X
/ | | } |
(p.0) (~p. 0) P ; ©,-p)
x=-p x=p v==p
P =dpx ¥ =—4px X =dpy 2 =—-4py
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Il A TECHNIQUE FOR SKETCHING PARABOLAS
Parabolas can be sketched from their standard equations using four basic steps:

Sketching a Parabola from lts Standard Equation

Step 1. Determine whether the axis of symmetry is along the x-axis or the y-axis. Re-
ferring to Figure 10.4.6, the axis of symmetry is along the x-axis if the equation
has a y*-term, and it is along the y-axis if it has an x2-term.

Step 2. Determine which way the parabola opens. If the axis of symmetry is along the
x-axis, then the parabola opens to the right if the coefficient of x is positive, and
it opens to the left if the coefficient is negative. If the axis of symmetry is along
the y-axis, then the parabola opens up if the coefficient of y is positive, and it
opens down if the coefficient is negative.

Step 3. Determine the value of p and draw a box extending p units from the origin along
the axis of symmetry in the direction in which the parabola opens and extending
2p units on each side of the axis of symmetry.

Step 4. Using the box as a guide, sketch the parabola so that its vertex is at the origin
and it passes through the comers of the box (Figure 10.4.8).

» Example 1 Sketch the graphs of the parabolas
(a) x* = 12y b) ¥y +8x =0

and show the focus and directrix of each.
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A Figure 1049 A Figure 10.4.10

Solution (a). This equation involves x2, so the axis of symmetry is along the y-axis, and
the coefficient of y is positive, so the parabola opens upward. From the coefficient of y,
we obtain4p = 12 or p = 3. Drawing a box extending p = 3 units up from the origin and
2p = 6 units to the left and 2p = 6 units to the right of the y-axis, then using corners of
the box as a guide, yields the graph in Figure 10.4.9.

The focus is p = 3 units from the vertex along the axis of symmetry in the direction in
which the parabola opens, so its coordinates are (0, 3). The directrix is perpendicular to the
axis of symmetry at a distance of p = 3 units from the vertex on the opposite side from the
focus, so its equation is y = —3,

Solution (b). We first rewrite the equation in the standard form
>
y-=—8x

This equation involves y*, so the axis of symmetry is along the x-axis, and the coefficient
of x is negative, so the parabola opens to the left. From the coefficient of x we obtain
dp =8, s0 p = 2. Drawing a box extending p = 2 units left from the origin and 2p = 4
units above and 2p = 4 units below the x-axis, then using comers of the box as a guide,
vields the graph in Figure 104.10. «
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» Example 2 Find an equation of the parabola that is symmetric about the y-axis, has
its vertex at the ongin, and passes through the point (5, 2).

Solusion. Since the parabolais symmetric about the y-axis and has its vertex at the origin,
the equation is of the form

xI=dpy or x'=—dpy

where the sign depends on whether the parabola opens up or down. But the parabola must
open up since it passes through the point (5, 2), which lies in the first quadrant. Thus, the
equation is of the form

X =4py (5)
Since the parabola passes through (3, 2), we must have 5 = dp . 2ordp = ? Therefore,
(5) becomes 2B o

M EQUATIONS OF ELLIPSES IN STANDARD POSITION

ELLIPSES IN STANDARD POSITION

@ c)

E

(0, -0
—a
o "
—_——=] —_— =]
r P2
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B A TECHNIQUE FOR SKETCHING ELLIPSES
Ellipses can be sketched from their standard equations using three basic steps:

Sketching an Ellipse from lis Standard Equation

Step 1. Determine whether the major axis is on the x-axis or the y-axis. This can be
ascertained from the sizes of the denominators in the equation. Referring to
Figure 10.4.14, and keeping in mind that @* > b (since @ > b). the major axis
is along the x-axis if x* has the larger denominator, and it is along the y-axis
if y2 has the larger denominator. If the denominators are equal, the ellipse is a
circle.

Step 2. Determine the values of a and b and draw a box extending a units on each side
of the center along the major axis and & units on each side of the center along
the minor axis.

Step 3. Using the box as a guide, sketch the ellipse so that its center is at the origin
and it touches the sides of the box where the sides intersect the coordinate axes
(Figure 10.4.16).

» Example 3 Sketch the graphs of the ellipses

o

2
e % vV \
@Fg+E=! ® X242y =4

showing the foci of each.

Solution (@), Since y* has the larger denominator, the major axis i1s along the y-axis.
o 2 1 2 b ]
Moreover, since a~ = b~, we must have @ = |6 and b~ = 9, so

a=4 and b=3
Drawing a box extending 4 units on each side of the origin along the y-axis and 3 units on
each side of the ongin along the x-axis as a guide yields the graph in Figure 10.4.17.
The foci lie ¢ units on each side of the center along the major axis, where ¢ 1s given by
(7). From the values of @ and b* above, we obtain
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c=vVa - =J/16-9=VT=26
Thus, the coordinates of the foci are (0, /7)) and (0, —+/7), since they lie on the y-axis.

Solution (b). We first rewrite the equation in the standard form

Since x* has the larger denominator, the major axis lies along the x-axis, and we have
a* = 4 and b* = 2. Drawing a box extending a = 2 units on each side of the origin along
the x-axis and extending # = /2 & | .4 units on each side of the origin along the y-axis as
a guide yields the graph in Figure 10.4.18.

From (7), we obtain M
c=Vval-b=V2~14

Thus, the coordinates of the foci are (+v/2, 0) and (—v/2, 0), since they lie on the x-axis. <
'S

4 VD) )

-‘g-+h—=1 —+'—=l

16 4 2
A Figure 10.4.17 A Figure 10.4.18
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» Example 4 Find anequation for the ellipse with foci (0, £2) and major axis withend-
points (0, =4).

Solution. From Figure 10.4.14, the equation has the form
= +L =1
b-  a+

and from the given information, @ = 4 and ¢ = 2. It follows from (6) that

b'=a"=-c"=16-4=12
so the equation of the ellipse is

(]
ra

-

-2 =] «
-?'E—

ra

Il EQUATIONS OF HYPERBOLAS IN STANDARD POSITION

HYPERBOLAS IN STANDARD POSITION

AV AV
\ D F ‘___ _J .
_ “{.r}l _.'-i_b
b T
.E
—b b -
—h [« —a |
; )i \ y=-—2,
r 0, e\ b
- T 1 2
__-§‘1=1 i‘1_:.‘ =1
2 b= 3 b
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M A TECHNIQUE FOR SKETCHING HYPERBOLAS
Hyperbolas can be sketched from their standard equations using four basic steps:

Sketching a Hyperbola from lts Standard Equation

Step 1. Determine whether the focal axis is on the x-axis or the y-axis. This can be
ascertained from the location of the minus sign in the equation. Referring to
Figure 10.4.22, the focal axis is along the x-axis when the minus sign precedes
the y*-term, and it is along the y-axis when the minus sign precedes the x>-term.

Step 2. Determine the values of @ and b and draw a box extending a units on either
side of the center along the focal axis and b units on either side of the center
along the conjugate axis. (The squares of @ and b can be read directly from the

equation.)

Step 3. Draw the asymptotes along the diagonals of the box.

Step 4. Using the box and the asymptotes as a guide, sketch the graph of the hyperbola

(Figure 104.24).

» Example 5 Sketch the graphs of the hyperbolas

) -
X oyt - 9
@ ——=—=1 b)) y* —x¢=1
9 .

4
showing their vertices, foci, and asymptotes.

Solution (a). The minus sign precedes the y*>-term, so the focal axis is along the x-axis.

From the denominators in the equation we obtain

a*=4 and =9
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Since a and b are positive, we must have @ = 2 and b = 3. Recalling that the vertices lie a
units on each side of the center on the focal axis, it follows that their coordinates in this case
are (2, 0) and (=2, 0). Drawing a box extending @ = 2 units along the x-axis on each side
of the origin and » = 3 units on each side of the origin along the y-axis, then drawing the
asymptotes along the diagonals of the box as a guide, yields the graph in Figure 10.4.25.
To obtain equations for the asymptotes, we replace 1 by 0 in the given equation; this
yiclds IZ \’2 3
— ===0 or _\'::i:f;x

4 9

The foci lie ¢ units on each side of the center along the focal axis, where ¢ is given by (11).
From the values of a” and b* above we obtain

c=val+b2=VEF9=V/13~36
Since the foci lie on the x-axis in this case, their coordinates are (13, 0) and (—=+/13, 0).
Solution (b). The minus sign precedes the x?-term, so the focal axis is along the y-axis.
From the denominators in the equation we obtaina® = 1 and b* = 1, from which it follows
that
a=1 and b=1

Thaus, the vertices are at (0, —1) and (0, ). Drawing a box extending @ = | unit on either
side of the origin along the yv-axis and b = | unit on either side of the origin along the x-axis,
then drawing the asymptotes, yields the graph in Figure 10.4.26. Since the box is actually

a square, the asymptotes are perpendicular and have equations y = =£x. This can also be
seen by replacing | by 01in the given equation, which yields y? —x2 =0o0ry = £x. Also,
c=val+b=T+1=V2

so the foci, which lic on the y-axis, are (0, —v/2) and (0, vV2). «
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» Example 6 Find the equation of the hyperbola with vertices (0, +8) and asymptotes
y=+3;
- 3

Solution. Since the vertices are on the y-axis, the equation of the hyperbola has the form
(y2/a?) — (x2/b?) = | and the asymptotes arc

y= i‘ix
b
From the locations of the vertices we have @ = 8, so the given equations of the asymptotes
yield a 8 4
y=t—x=t-x=1-x
b b 3

from which it follows that b = 6. Thus, the hyperbola has the equation

¥ a2

6% ' ¢

» Example 7 Find an equation for the parabola that has its vertex at (1, 2) and its focus
at (4, 2).

Solution. Since the focus and vertex are on a horizontal line, and since the focus is to
the right of the vertex, the parabola opens to the right and its equation has the form

(v — k) =4p(x — h)
Since the vertex and focus are 3 units apart, we have p = 3, and since the vertex is at
(h,k) = (1, 2), we obtain v =2 = 12(x — 1) <
» Example 8 Describe the graph of the equation

y? —8x —6y —23=0

Solution. The equation involves quadratic terms in y but none in x, so we first take all

of the y-terms to one side: ¥ =6y =8 +23

Next, we complete the square on the y-terms by adding 9 to both sides:
(y —3)% = 8x + 32

Finally, we factor out the coefficient of the x-term to obtain

(v =3)) = 8(x +4)
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This equation 1s of form (12) with h = —4,k =3, and p = 2, so the graph is a parabola
with vertex (—4, 3) opening to the right. Since p = 2, the focus is 2 units to the right of the

vertex, which places it at the point (—2, 3); and the directrix is 2 units to the left of the vertex,
which means that its equation is x = —6. The parabola is shown in Figure 10.4.27. «

¥ ~Re=Gy=23 =0

\ Figore 10.4.27

» Example 9 Describe the graph of the equation
16x° +9y* —64x -S4y +1=0

Solution. This equation involves quadratic terms in both x and v, so we will group the
x-terms and the y-terms on one side and put the constant on the other:

(1617 — 6dx) + (9" — 54y) = —1
Next, factor out the coefficients of x? and y? and complete the squares:
16(x* —4x +4) +9(y* =6y +9) = —1 + 64 + 81

i 16(x —2)% +9(y —3)* = 144

Finally, divide through by 144 to introduce a 1 on the right side:
-2 0-3°_

9 6

This is an equation of form (17), with h = 2, k = 3, a*> = 16, and b* = 9. Thus, the graph
of the equation is an ellipse with center (2, 3) and major axis parallel to the y-axis. Since
a = 4, the major axis extends 4 units above and 4 units below the center, so its endpoints

are (2,7) and (2, —1) (Figure 10.4.28). Since b = 3, the minor axis extends 3 units to the
left and 3 units to the right of the center, so its endpoints are (—1, 3) and (5, 3). Since

c=val - =J16=9 =7

the foci lie /7 units above and below the center, placing them at the points (2,3 + /7)
and (2,3 -4/7). «
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B REFLECTION PROPERTIES OF THE CONIC SECTIONS
Parabolas, ellipses, and hyperbolas have certain reflection properties that make them ex-
tremely valuable in various applications. In the exercises we will ask you to prove the
following results,

10.4.4 THEOREM (Reflection Property of Parabolas) The tangent line at a point P on a
parabola makes equal angles with the line through P parallel to the axis of symmetry
and the line through P and the focus (Figure 104.30a).

10.4.5 THEOREM (Reflection Property of Ellipses) A line tangent 1o an ellipse at a point
P makes equal angles with the lines joining P to the foci (Figure 10.4.30b).

10.4.6 THEOREM (Reflection Property of Hyperbolas) A line tangeni to a hyperbola at a
point P makes equal angles with the lines joining P 1o the foci (Figure 10.4.30c).

| Axis of Tangent line at £
| symmetry

: "
‘k - ]‘FOCUS h \u_ G
(44 -
PR - P
~ Tangent //
Imegat P 7 Tangent line at P

(@) (&) ©

'
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ROTATION OF AXES; SECOND-DEGREE EQUATIONS

I ROTATION OF AXES
To study conics that are tilted relative to the coordinate axes it is frequently helpful to
rotate the coordinate axes, so that the rotated coordinate axes are parallel to the axes of the
conic. Before we can discuss the details, we need to develop some ideas about rotation of
coordinate axes.

In Figure 10.5.2a the axes of an xy-coordinate system have been rotated about the origin
through an angle # to produce a new x’y’-coordinate system. As shown in the figure, each
point P in the plane has coordinates (x*, ') as well as coordinates (x, v). To see how the
two are related, let » be the distance from the common origin to the point 2, and let « be
the angle shown in Figure 10.5.2b. It follows that

x=rcos(@+a), y=rsin(f+a) (3)

and x'=rcosa, VY =rsina 4)

Using familiar trigonometric identities. the relationships in (3) can be written as
x =rcosécosa —rsiné sina
y = rsinf cose 4 r cos# sina

and on substituting (4) in these equations we obtain the following relationships called the
rotation equations:

x =x"cos# — y'sin®
y=2x"sin@ + y cosé

» Figure 10.5.2 (a) (6)
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» Example 1 Suppose that the axes of an xy-coordinate system are rotated through an
angle of # = 45” to obtain an x"y’-coordinate system. Find the equation of the curve

¥ —xy 4y —-6=0

in x'y'-coordinates.

Selution. Substituting sin® = sin45° = 1//2 and cos® = cos45° = 1//2 in (5)
yields the rotation equations

=X Y =X Y
2 V2 22

Substituting these into the given equation yields

F '] r

X

G- (- 2) G ) e ) -oms

or
rl '] 7 12 7 7 '] 7
A=y Y =y a2 6
5 =
ar i3 iy
o+l =
12 4

which is the equation of an ellipse (Figure 10.5.3). «

If the rotation equations (5) are solved for x” and ¥’ in terms of x and y, one obtains

(Exercise 16):
x'=xcosf 4 ysin@d

(6)

I

y = —xsinf® + ycosf

» Example 2 Find the new coordinates of the point (2, 4) if the coordinate axes are
rotated through an angle of 8 = 30°.

Solution. Using the rotation equations in (6) withx =2, v =4, cosf = cos 30° = /3/2,
and sin @ = sin30° = 1/2, we obtain

' =23/2) +4(1/2) = V342
y ==2(1/2) +4(v3/2) = -1+ 23
Thus. the new coordinates are (V3 + 2, =1 +2J3). «
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B ELIMINATING THE CROSS-PRODUCT TERM

10.5.1 THEOREM Ifthe equation
Ax’ 4+ Bxy+Cy' +Dx+ Ey+F =0 (7)
is such thar B # 0, and if an x'y’'-coordinate system is obtained by rotating the xy-axes
through an angle 6 satisfying A-C
cot28 = T (8)

then, in x'y'-coordinates, Equation (7 ) will have the form

Ax24Cy 4+ DX+ EYy +F =0

CONIC SECTIONS IN POLAR COORDINATES

»

» Example 1 Sketch the graph of r = l—-é in polar coordinates.
— cos

Solution. The equation is an exact match to (4) withd = 2 and ¢ = 1. Thus, the graph is
a parabola with the focus at the pole and the directrix 2 units to the left of the pole. This tells
us that the parabola opens to the right along the polar axis and p = 1. Thus, the parabola
looks roughly like that sketched in Figure 1064. «

6

» Example 2 Find the constants a. &. and c for the ellipse r = ——.
2 +cos®

Solution. Thisequation does not match any of the forms in Theorem 10.6.2 because they
all require a constant term of | in the denominator. However, we can put the equation into
one of these forms by dividing the numerator and denominator by 2 to obtain

3

e T
| + 5 cosé@
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This 1s an exact match to (3) withd =6 and ¢ = % so the graph i1s an ellipse with the
directrix 6 units to the right of the pole. The distance rg from the focus to the closest vertex
can be obtained by setting # = 0 in this equation, and the distance 7, to the farthest vertex
can be obtained by setting # = . This yields

3 3 3

. 3
2, n=—r——=71=6

[} = e — -—
| + +cos0 | + 4cosm

' _4'_..'

Thus, from Formulas (8), (10), and (9), respectively, we obtain

a= {;(rl +rn)=4, b= /nr = 2V3. = %(rl —rp) =2

The ellipse looks roughly like that sketched in Figure 10.6.6. «
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POSSIBLE QUESTIONS
TWO MARKS
1. Define discriminate test.

2. Define an ellipse.

3. Define eccentricity of the ellipse.

4. Find the eccentricity of the hyperbola 9x% — 16y? = 144.

5. Find an equation for the hyperbola with eccentricity 3/2 and directrix x = 2.
SIX MARKS

1.Describe the graph of the equation 16x? + 9y2 — 64x — 54y +1 = 0.

2.ldentify and sketch the curve xy=1.

3.Determine the open interval on which the graph of f(x)= ® s concave up or concave down

x2+3

2

. L x2 y? Y
4.Find the graph of the hyperbola (i) % 1 (ii) VT 1

5.Sketch the graph of the parabolas i) x> = 12y i) y? + 8x = 0 and show that focus
and directrix of each.

x3
3x2+1

6.Determine the point of inflection and discuss the concavity of the curve f(x)=

7.Find the equation of the curve x? — xy +y? —6 = 0inx’y’ - coordinates. if the
coordinate axes are rotated through an angle of 8 = 45°

8.Determine the graph of the equation 16x?+9y2-64x-54y+1=0.
2 2
9.Sketch the graph of the ellipse i) % + 31,—6 =1 ii)x%? + 2y? = 4. and showing the
foci of each.

10.Find a Cartesian equation for the hyperbola centered at the origin that has a focus at

(3,0)and the line x =1 as the corresponding directrix.
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UNIT-V

VECTOR FUCTIONS

Introduction to vector functions, operations with vector-valued functions, limits and continuity of vector
functions, differentiation and integration of vector functions, tangent and normal components of
acceleration, modeling ballistics and planetary motion, Kepler’s second law.
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VECTOR-VALUED FUNCTIONS

The twisted cubic defined by the equations in (3) is the set of points of the form (f, 1, )
for real values of 7. If we view each of these points as a terminal point for a vector r whose
initial point is at the origin,

r={, vz =010 =ti+rj+rk

then we obtain r as a function of the parameter ¢, that is, r = r(f). Since this function
produces a vector, we say that r = r(t) defines r as a vector-valued function of a real
variable, or more simply, a vector-valued function. The vectors that we will consider in
this text are either in 2-space or 3-space, so we will say that a vector-valued function is in
2-space or in 3-space according to the kind of vectors that it produces.

If r(1) is avector-valued function in 3-space, then for each allowable value of ¢ the vector
r = r(f) can be represented in terms of components as

r=r(t) = (x(1), (1), z(t)) = x(0)i + y(t)) + z(H)K 4)

The functions x(r), y(1), and z(r) are called the component functions or the components
of r(r).

» Example 3 The component functions of
r(r) = (r. 15, 0°) =i +%j+ 'k

)=t y)=1 )=~ <

» Example 4 Find the natural domain of
rit)=(njt =1|,&,vVt) =(njt - 1Di+€j+ VIk

Solution. The natural domains of the component functions
x()=hje-1], y)=¢€, z(t)=V?

are (—oo, DU (1, 42), (=2, +m), [0, 4w)

respectively. The intersection of these sets is
[0, HU (], +=)
(verify), so the natural domain of r(r) consists of all values of 7 such that

0<t<1 or 1>1 <
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I LIMITS AND CONTINUITY
Ouwr first goal in this section is to develop a notion of what it means for a vector-valued
function r(7) in 2-space or 3-space to approach a limiting vector L as t approaches a number
a. That is, we want to define :
lim r(t) =L (D
I—a
One way to motivate a reasonable definition of (1) is to position r(r) and L with their initial
points at the origin and interpret this limit to mean that the terminal point of r(¢) approaches
the terminal point of L as r approaches a or, equivalently, that the vector r(r) approaches
the vector L in both length and direction at ¢ approaches @ (Figure 12.2.1). Algebraically,
this 1s equivalent to stating that

'Iim fle(r)=L|=0 (2)
-

12.2.1 operiniTion  Let r(f) be a vector-valued function that is defined for all ¢ in
some open interval containing the number a, except that r(r) need not be defined at a.

We will write .

,llm r(t) =L
—a

if and only 1f lim |fe(r) = L|j =0
I—»a

» Example 1 letr(t) =1%i 4+ ¢€'j— (2cosmt)k. Then

oo cone e N o, Tl g o
'[lillnvl(f) (1111111)!+(l|1{1‘:)c)j (Illwuuosnt)k 1—2k

Altemnatively, using the angle bracket notation for vectors,

. . 2 . 2 . .
limr(r) = lim (-, &', —2cosmt) = (llm t=, lim €', lim(—2 cos ar )) = (0,1, -2) =
=0 =0

=0 ! =0
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B DERIVATIVES

The derivative of a vector-valued function is defined by a limit similar to that for the
derivative of a real-valued function.

12.2.3 perFmzNiTion  If r(r) i1s a vector-valued function, we define the derivative of r
with respect to t to be the vector-valued function r” given by

’ . r(t+h)—rx(

The domain of ' consists of all values of ¢ in the domain of r(¢) for which the limit
exists.

» Example 2 Letr(r) =t%i +€'j — (2cosnt)k. Then
TRTIR T
4 =—(N+—(e')j— —(2
r'(t) d,{t )l+m(¢ )J dr(-cosm)l\

=2i4+j+ Qrsinar)k «

12.24 GEOMETRIC INTERPRETATION OF THE DERIVATIVE Suppose that C is the
graph of a vector-valued function r(r) in 2-space or 3-space and that r’(1) exists and 1s
nonzero for a given value of ¢. If the vector r'(t) 1s positioned with its initial point at
the terminal point of the radius vector r(t), then r’(¢) is tangent to C and points in the
direction of increasing parameter.

B DERIVATIVE RULES
d
( —[c] =10
a) dt[(l
d d
(b) —lkr(t)] = k—I|r(t
d:l r(t)] drlr( )|
(c) dl )+ tl—d[-r|+d| 3]
2 > ri(t) +nit)) = ar ri(f) 3 ra(t)
d d d
d Py i e S ewinin - . sl IV
(d) mlrm) ra(1)] mlrlu)l mlr-ml

(e) dl nr(n] = u)dlr(r>l+dl (1)]r(s
dt /( =/ dt di / )
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I TANGENT LINES TO GRAPHS OF VECTOR-VALUED FUNCTIONS
Motivated by the discussion of the geometric interpretation of the derivative of a vector-
valued function, we make the following definition.

12.2.7 pEeEFINITION  Let P be a point on the graph of a vector-valued function r(7),
and let r(ry) be the radius vector from the origin to P (Figure 12.2.4). If r’(1) exists
and r'(1p) # 0, then we call r'(ty) a tangent vector to the graph of r(r) at r(rp), and we
call the line through P that is parallel to the tangent vector the tangent line to the graph

of r(1) at rfp).

» Example 3 Find parametric equations of the tangent line to the circular helix
X =cosf, y=sint, 2=t

where 1 = 1, and use that result to find parametric equations for the tangent line at the point
where 1 = 7.

Solution. The vector equation of the helix is
r(r) =costi+sintj+ 1k

so we have
ro = r(to) = cos#pi + sinfoj + fok

vo =r'(lp) = (—sinfp)i +costpj+ k
It follows from (5) that the vector equation of the tangent line atr = 1g is
r=cosfigi +sinfpj+ 1ok + 1[(—sin1y)i + costyj + k]
= (costg — Isinfp)i + (sintg +tcosin)j+ (fo + 1)K
Thus, the parametric equations of the tangent line at f = # are
X =coslg—tsinfy, y=sintfg+1costy, z=1+1
In particular, the tangent line at r = m has parametric equations
x==1, y=—1, z=n+t

The graph of the helix and this tangent line are shown in Figure 12.25. «
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> Example 4 Let ri{t) = (tan™"' 1)i + (sin1)j + 1’k

and
()=t —0i+ @t -2)j+dnk

The graphs of ri (1) and r2(7) intersect at the origin. Find the degree measure of the acute
angle between the tangent lines to the graphs of ry(r) and r;(1) at the ongin.

Solution. The graph of ry(r) passes through the origin at r = 0, where its tangent vector

1s | |
ri0) = <m.cosl. 2l>§,=o =(1,1,0)

The graph of r2(t) passes through the origin at t = | (verify), where its tangent vector 1s

r3(1)=<2r—l.2.1> = (1,2,1)

! =1

By Theorem 11.3.3, the angle 6 between these two tangent vectors satisfies
(1,1,0)- {1,2,1) 14240 3 V3

THLLONNL2Z DI V246 2 2

It follows that & = /6 radians, or 30°. «

cos

B DEFINITE INTEGRALS OF VECTOR-VALUED FUNCTIONS
If r(t) 1s a vector-valued function that is continuous on the interval @ <t < b, then we
define the definite integral of r(r) over this interval as a limit of Riemann sums, just as

in Definition 5.5.1, except here the integrand is a vector-valued function. Specifically, we
define

b n
f r(t)dt = lim Zr(r“mu (10)
a

max A — 0
> k=1

» Example 6 Letr(r) = t%i+ ¢'j — (2cosnr)K. Then

! 1 1 !
/ r(l)dt:(f I:dl)i-i-([ e’dl)j—(] 2cosmd:)k
0 Jo 0 0 ;

7 ; - 4 .
—] i+e‘] j——sm:ﬂ] K=
3o 0 T 0

i+(e—-1)j «

'NI —_—
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I RULES OF INTEGRATION
As with differentiation, many of the rules for integrating real-valued functions have analogs
for vector-valued functions.

b b
(a) /kru)dr:k/ r(r)dt

b b b
(b) / lrl(l)+r3(1)|dt=/ r;(r)dr+[ r2(1) dt
a a a

b o b
(c) /lrﬂt)—r:(l)ldt:f r|(t)dl-[ r2(t) dt

» Example 7

/(21i+3r3j)d1 = ([2:d:)i+ ([fﬁ:dz)j

=2+ Ci+ (3 + C1)j
=PI+ +(CIi+Ci) = FPi+)+C

where C = Cyi 4 C7) 1s an arbitrary vector constant of integration. «

» Example 8 Evaluate the definite integral f-(2li + 3e%j)dt.
0

Solution. Integrating the components yields

fe:amf,‘m:ﬁ] i+r‘] j=4i+8j
0 0 0

» Example 9 Find r(r) given that r’(r) = (3, 2r) and r(1) = (2, 5).
Solution. Integrating r’(1) to obtain r(¢) vields

r(t) = fr'(t)d! = f(_l, 2t)dr = (31.12) 4+C

where C is a vector constant of integration. To find the value of C we substitute t = 1 and
use the given value of r(1) to obtain

r(D=03.1)+C=(2.5)
so that C = (—1,4). Thaus,
() =032 +{(=1.4) =3t - 1,12 +4) «
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B NORMAL AND TANGENTIAL COMPONENTS OF ACCELERATION

126.2 TueorRem Ifaparticle moves along a smooth curve C in 2-space or 3-space,
then at each point on the curve velocity and acceleration vectors can be written as

y) 2
v=2 a=dfT+x(§)N (10-11)
dt dr* dt

where s is an arc length parameter for the curve, and T, N, and x denote the unit tan-
gent vector, unit normal vector, and curvature at the point (Figure 12.6.4).

» Example 4 Suppose that a particle moves through 3-space so that its position vector
attime f 1s . R
) =fi+rj+rk

(a) Find the scalar tangential and normal components of acceleration at time 1.

(b) Find the scalar tangential and normal components of acceleration at time ¢ = 1.

(c) Find the vector tangential and normal components of acceleration at time ¢ = 1.

(d) Find the curvature of the path at the point where the particle is located at time £ = 1.

Solution (a). We have
V(i) =r'(f) =i+ 20§+ 3%k
a(n)=v(t)=2j+6:k
Iv@)ll = VT+4T 497

v(r) - a(t) = 41 + 18°

i j k
vy xat)= |1 2 32| =66%—6tj+2k
0 2 6
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Thus, from (15) and (16)

v+a 4 + 187
adr = = ——
IV V14462 4 944
Iv x a]l 3664 + 362 +4 /94 012 & |
ay = == ISt . 20 3
vl V14412 401t Vot +4r2 +1

Solution (b). Attime t = 1, the components ar and ay in part (a) are

2 . , 19 as
iy =—~ 588 and ay =2 ,/— & 23]
T YTV
Solution (¢). Since T and v have the same direction, T can be obtained by normalizing
v, that is, i v(1)
vl
At time t = | we have
v(l) i+2j+3K
T() = — = = (i+2j+3k)
Iyl li+2i+3kl V14
From this and part (b) we obtain the vector tangential component of acceleration:
MTM) = =11y =i+ 25430 =1+ 254+ Bx
1r = —_— =—(i+2j+3k) = =i+ —j+ =Kk
ary 713 ( 7 ( J : 7 7 J 7

To find the normal vector component of acceleration, we rewrite a = a; T + ayN as
ayN=a—-a,T
Thus, at time 1 = | the normal vector component of acceleration is

an(DN(D) = a(l) —ar(1)T(1)

: 11, 2, 33
=(2J+6k)—(—l+—1+ k)

7 7 7
.. 8. 5.
——71—714-7'\
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Selution (d). We will apply Formula (17) with t = 1. From part (a)
Iv() = V14 and v(1) x a(l) = 6i — 6j + 2k
Thus, at time 1 = |

_Ivxal _ V76 1 [38

~0.17 «

MF - ey 1aV7T

In the case where ||al] and ar are known, there is a useful alternative to Formula (16) for
ay that does not require the calculation of a cross product. It follows algebraically from
Formula (14) (see Exercise 51) or geometrically from Figure 12.6.6 and the Theorem of

Pythagoras that
ay = \/llal? — a7 (18)

KEPLER’'S LAWS OF PLANETARY MOTION

* First law (Law of Orbits). Each planct moves in an elliptical orbit with the Sun
at a focus.

* Second law (Law of Areas). Equal areas are swept out in equal times by the line
from the Sun to a planet.

¢ Third law (Law of Perieds). The square of a planet’s period (the time it takes the
planet to complete one orbit about the Sun) is proportional to the cube of the
semimajor axis of its orbit,

M KEPLER'S FIRST AND SECOND LAWS
It follows from our general discussion of central force fields that the planets have elliptical
orbits with the Sun at the focus, which is Kepler's first law. To derive Kepler's second law,
we begin by equating (10) and (13) to obtain
,df

r‘— =rov (24)
= 0o
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To prove that the radial line from the center of the Sun to the center of a planct sweeps
out equal areas in equal times, let r = f(#) denote the polar equation of the planet, and let
A denote the arca swept out by the radial line as it varies from any fixed angle & to an angle
#. It follows from the area formula in 10.3 .4 that A can be expressed as

a -I . N

2= [ Sir@rds
e*] -

where the dummy variable ¢ is introduced for the integration to reserve @ for the upper

limit. It now follows from Part 2 of the Fundamental Theorem of Calculus and the chain

rule that dA  dAde | o) 1 ,d8
_— s —— = — _—= = —
dt df dt 2 dt 2 dt
Thus, 1t follows from (24) that dA 1
— = =1y (25)
dt 2

which shows that A changes at a constant rate. This implies that equal areas are swept out
in equal times.

M KEPLER'S THIRD LAW
To derive Kepler’s third law, we let @ and b be the semimajor and semiminor axes of the
elliptical orbit, and we recall that the area of this ellipse is mab. It follows by integrating
(25) that in ¢ units of time the radial line will sweep out an area of A = érnml. Thus, if T
denotes the time required for the planet to make one revolution around the Sun (the period),
then the radial line will sweep out the area of the entire ellipse during that time and hence

|
mab = ;mllnT

from which we obtain , dxlald?

: (26)

rc,2 Vg
However, it follows from Formula (1) of Section 10.6 and the relationship ¢ = a? — b*

for an ellipse that EE
c v a- — b=
= —

a a
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Thus, b2 = a*(1 — ¢2) and hence (26) can be written as

1 anta*(1 — &%)

— (27)
oY
But comparing Equation (20) to Equation (17) of Section 10.6 shows that
k=a(l—é)
Finally, substituting this expression and (21) in (27) yields
, 4n'a} dr’a’ rfvi  4n?
72 = = - a’ (28)

révg rjvg GM M
Thus, we have proved that T is proportional to @*, which is Kepler’s third law. When
convenient, Formula (28) can also be expressed as

S
e g2 (29)

» Example 1 A geosynchronous orbit for a satellite is a circular orbit about the equator
of the Earth in which the satellite stays fixed over a point on the equator. Use the fact that
the Earth makes one revolution about its axis every 24 hours to find the altitude in miles

of a communications satellite in geosynchronous orbit. Assume the Earth to be a sphere of
radius 4000 mi.

Solution. To remain fixed over a point on the equator, the satellite must have a period of
T = 24 h. It follows from (28) or (29) and the Earth value of GM = 1.24 x 10'? mi’/h?
from Table 12.7.1 that

JGMT? 3 (1.24 x 1012)(24)2
a= f—,‘ = ./ -
\ 4n- V 4x-
and hence the altitude & of the satellite 1s
h /26,250 — 4000 = 22.250 mi «

~ 26,250 mi
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POSSIBLE QUESTIONS
TWO MARKS
1. Write down the polar formulas for velocity and acceleration.

2. Write down the polar formulas for velocity and acceleration.

3. Find %mzl F(t),where F(t) = (t? — 3)i + e'j + (sinmt)k.

4. For what values of tis G(t) = |t|i + (cost)j + (t — 5)k differentiable.
5. Write down the tangential and normal components of acceleration.
SIX MARKS

1.Find the second and third derivative of the vector function

i) F(t) = eti+ (sint)j + (t3 + 5t)k.
i) F(t) = e?i+ (1 —t2)j+ (cos2t)k.

2.A boy standing at the edge of a cliff throws a ball upwards at a 30° angle with an initial
speed of 64 ft/s. suppose that when the ball leaves the boy’s hand, it is 48 ft above the
ground as the base of the cliff.

i) what are the time of flight of the ball and its range?
ii) what are the velocity of the ball and its speed at impact?

3.Let F(t) = i+ tj + t?k anf G(t) = ti + et + 3k.
Verify that (FXG)'(t) = (F'XG)(t) + (FXG")(t)
4.If the velocity of a particle moving in space is V(t) = e'i + t?j + (cos2t)k. Find the

particle’s position as a function of t if the position at time t=0is R(0) = 2i +j — k.

5.Find the Volume of the Parallelepiped determined by the vectors u = i — 2j + 3k,
v=—4i+7j—11k ,w=5i+9j — k
6.If the position vector of a moving body is R(t) = 2ti —t%j fort = 0.Express R

and the velocity vector V(t) in terms of u, and ug.
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7.Show that %irr}[F(t)XG(t)] = (%mll F(t)) X(%in} G (t)) for the vector

functions F(t) = ti + (1 —t)j + t?k and G(t) = eti— 3+ e')k

8.Find the tangential and normal components of the acceleration of an object the moves

with position vector R(t) = (t3,t2,t).

9.Let F(t) = t2i + tj — (sint)k and G(t) = ti +~j + 5k. find
i) (F+G)(t) i) (F X G)(t) iii) (F.G)(t)

10.State and prove Kepler’s second law of motion.
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