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End Semester Exam: 3 Hours

Course Objectives
This course enables the students to learn
e The functions, relations, systems of linear equations and roots of equations.
e How to identify, evaluate and simplify algebraic expressions using the correct operations.
e The basic concepts of linear algebra.
Course Outcomes (COs)
On successful completion of this course, the students will be able to
1. Know about the basic concepts of set theory.

2. Describe the categories of functions.
3. Understand the algorithms on operation.
4. Use matrix operations to solve system of linear equations.
5. Learn how to find roots of equations.
UNIT I

BASICS OF SETS &FUNCTIONS

Sets —Finite and infinite sets-Equality sets-Subsets-Comparability -Proper subsets-Axiomatic
development of set theory-Set operations. Equivalence relations- Functions- Composition of
functions- Invertible functions- One to one Correspondence and cardinality of a set.

UNIT II

DIVISIBILITY AND CONGRUENCE RELATIONS

Division algorithm- Divisibility and Euclidean algorithm- Congruence relation between integers-
Principles of Mathematical Induction- Statement of Fundamental Theorem of Arithmetic.

UNIT I

SYSTEM OF LINEAR EQUATIONS

Systems of linear equations - Row reduction and echelon forms - Vector equations - The matrix
equation Ax=b - Solution sets of linear systems - Applications of linear systems — Linear
independence.

UNIT IV

THEORY OF EQUATIONS

Roots of an equation- Relations connecting the roots and coefficients- Transformations of
equations - Character and position of roots-Descarte’s rule of signs-Symmetric function of roots-
Reciprocal equations.
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UNIT V

THEORY OF EQUATIONS (CONTINUITY)

Multiple roots-Rolle’s theorem - Position of real roots of f(x) =0 — Newton’s method of
approximation to a root — Horner’s method.

SUGGESTED READINGS

1.

2.

Edgar G. Goodaire and Michael M. Parmenter.,(2015).Discrete Mathematics with Graph
Theory, 3" Edition, Pearson Education (Singapore) P. Ltd., Indian Reprint.

David C. Lay., (2008). Linear Algebra and its Applications, Third Edition, Pearson
Education Asia, Indian Reprint.

Kenneth Hoffman., Ray Kunze., (2015).Linear Algebra, Second edition, Prentice Hall of
India Pvt Ltd, New Delhi.

T.K.Manicavasagom  Pillai, T.Natarajan, K.S.Ganapathy., (2006), Algebra,
S.Viswanatham (Printer & publishers) Private Ltd.
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Lesson Plan

2018-2021
Batch

\gg./ KARPAGAM ACADEMY OF HIGHER EDUCATION

KARPAGAM

ACADEMY OF HIGHER EDUC

(Deemed to be Univers:

ATION

Coimbatore — 641 021.
LECTURE PLAN

DEPARTMENT OF MATHEMATICS

Staff name: V. Kuppusamy

Subject Name: Algebra

Semester: 1

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Sub.Code:19MMU102

Class: I B.Sc Mathematics

Lecture .
S.No | Duration Topics to be Covered Support Material /
. Page Nos
Period
Unit—1

1. 1 Basics of sets, finite and infinite sets S1:Ch:2 Pg.No:37-40
) 1 Examples of equality sets , subsets, comparability, | S1:Ch:2 Pg.No:40-43

) proper subsets
3. 1 Examples and theorems on set operations S1:Ch:2 Pg.No:43-47
4 1 Continuation of examples and theorems on set S1:Ch:2 Pg.No:47-51

' operations
5. 1 Tutorial — 1
6. 1 Theorems and examples on equivalence relation S1:Ch:2 Pg.No:56-60
7 1 Continuation of theorems and examples on S1:Ch:2 Pg.No:60-63

) Equivalence relation
8. 1 Functions — Domain, range, one to one, onto S1:Ch:3 Pg.No:71-73
0. 1 Continuation of functions S1:Ch:3 Pg.No:73-77
10. 1 Tutorial — 2
11. 1 Theorems on functions S1:Ch:3 Pg.No:77-79
12. 1 Theorems on composition functions S1:Ch:3 Pg.No:79-84
13. 1 Theorems on invertible functions S1:Ch:3 Pg.No:84-87
14. 1 One-one correspondence & the cardinality of set S1:Ch:3 Pg.No:87-95
15. 1 Tutorial-3
16. 1 Recapitulation and discussion of possible questions

Total No. of Lecture hours planned — 16 hours
Unit — 11

1. 1 Division algorithm S1: Ch: 4; Pg. No :97-100
2. 1 Examples on division algorithm S1: Ch: 4; Pg. No :100-104
3. 1 Theorems and examples on divisibility S1: Ch: 4; Pg. No:104-107
4 1 Continuation of theorems and examples on S1: Ch: 4; Pg. No:107-110

' divisibility
5. 1 Tutorial-1
6. 1 Euclidean algorithm S1: Ch: 4; Pg. No:110-114
7. 1 Theorems and examples on prime numbers S1: Ch: 4; Pg. No:114-120
8. 1 Continuation of theorems and examples on prime S1: Ch: 4; Pg. No:120-126
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Lesson Plan

2018-2021
Batch

numbers
0. 1 Congruence relation between integers S1: Ch: 4; Pg. No:126-131
10. 1 Tutorial-2
11. 1 Examples on congruence relation S1: Ch: 4; Pg. No:131-136
12. 1 Application on congruence relation S1: Ch: 4; Pg. No:136-147
13. 1 Principle of mathematical induction S1: Ch: 4; Pg. No:147-149
14. 1 Fundamental theorem of arithmetic S1: Ch: 5; Pg. No :152-154
15. 1 Tutorial-3
16. 1 Recapitulation and discussion of possible questions

Total No. of Lecture hours planned — 16 hours

Unit — 111

1. 1 Examples on systems of linear equations S2:Ch:1 Pg.No:2-7
) 1 Continuation of examples on systems of linear S2:Ch:1 Pg.No:7-12

' equations
3. 1 Examples on row reduction and echelon form S3:Ch:1 Pg.No:11-13
4 1 Continuation of examples on row reduction and S3:Ch:1 Pg.No:13-16

] echelon form
5. 1 Examples on vector equations S2:Ch:1 Pg.No:24-29
6. 1 Continuation of examples on vector equations S2:Ch:1 Pg.No:29-34
7. 1 Tutorial-1
8. 1 Examples on Matrix equation Ax=b S2:Ch:1 Pg.No:34-39
0. 1 Continuation of Examples on Matrix equation Ax=b | S2:Ch:1 Pg.N0:39-43
10. 1 Examples on solution sets of linear system S2:Ch:1 Pg.No:43-46
1 1 Continuation of Examples on solution sets of linear | S2:Ch:1 Pg.No:46-49

' system

12. 1 Applications of Linear system S2:Ch:1 Pg.No:49-55
13. 1 Tutorial-2
14. 1 Examples on linear independence S2:Ch:1 Pg.No:55-59
15. 1 Continuation of Examples on linear independence S2:Ch:1 Pg.No:59-62
16. 1 Recapitulation and discussion of possible questions

Total No. of Lectu

re hours planned — 16 hours

Unit — 1V

1. 1 Roots of an equation S4:Ch:6 Pg.No0:282-292
2. 1 Relations between the roots and coefficients S4:Ch:6 Pg.No0:292-303
3 1 Continuation of relations between the roots and S4:Ch:6 Pg.No0:292-303

] coefficients
4. 1 Symmetric function of roots S4:Ch:6 Pg.No:303-306
S. 1 Continuation of symmetric function of roots S4:Ch:6 Pg.No:303-306
6. 1 Transformations of equations S4:Ch:6 Pg.No:318-321
7. 1 Continuation of transformations of equations S4:Ch:6 Pg.No:318-321
8. 1 Tutorial-1
0. 1 Character and position of roots
10. 1 Continuation of character and position of roots
11. 1 Reciprocal equations S4:Ch:6 Pg.No:321-327
12. 1 Continuation of reciprocal equations S4:Ch:6 Pg.No:321-327
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Lesson Plan

2018-2021

Batch
13. 1 Descarte’s rule of signs S4:Ch:6 Pg.No:351-354
14. 1 Continuation of descarte’s rule of signs S4:Ch:6 Pg.No:351-354
15. 1 Tutorial-2
16. 1 Recapitulation and discussion of possible questions
Total No. of Lecture hours planned — 16 hours
Unit—V
1. 1 Multiple roots-Rolle’s theorem S4:Ch:6 Pg.No0:355-363
2. 1 Continuation of Multiple roots-Rolle’s theorem S4:Ch:6 Pg.N0:355-363
3. 1 Continuation of Multiple roots-Rolle’s theorem S4:Ch:6 Pg.No0:355-363
4. 1 Position of real roots of f(x) =0 S4:Ch:6 Pg.No:363-367
5. 1 Continuation of Position of real roots of f(x) =0 S4:Ch:6 Pg.No0:363-367
6. 1 Continuation of Position of real roots of f(x) =0 S4:Ch:6 Pg.No0:363-367
7. 1 Tutorial-1
8. 1 Newton’s method of approximation to a root S4:Ch:6 Pg.No:370-376
9 1 Continuation of Newton’s method of approximation | S4:Ch:6 Pg.No:370-376
' to a root
10, 1 Continuation of Newton’s method of approximation | S4:Ch:6 Pg.No:370-376
to a root
1. 1 Continuation of Newton’s method of approximation | S4:Ch:6 Pg.No:370-376
to a root
12. 1 Horner’s method S4:Ch:6 Pg.No:376-381
13. 1 Continuation of Horner’s method S4:Ch:6 Pg.No:376-381
14. 1 Continuation of Horner’s method S4:Ch:6 Pg.No:376-381
15. 1 Continuation of Horner’s method S4:Ch:6 Pg.No:376-381
16. 1 Tutorial-2
17. 1 Recapitulation and discussion of possible questions
18. 1 Discussion of previous year ESE Question papers
19. 1 Discussion of previous year ESE Question papers
20. 1 Discussion of previous year ESE Question papers
Total No. of Lecture hours planned — 20 hours
Total Planned Hours 84
SUGGESTED READINGS
1. Edgar G. Goodaire and Michael M. Parmenter.,(2015).Discrete Mathematics with
Graph Theory, 3" Edition, Pearson Education (Singapore) P. Ltd., Indian Reprint.
2. David C. Lay., (2008). Linear Algebra and its Applications, Third Edition, Pearson
Education Asia, Indian Reprint.
3. Kenneth Hoffman., Ray Kunze., (2015).Linear Algebra, Second edition, Prentice Hall
of India Pvt Ltd, New Delhi.
4. T.K.Manicavasagom Pillai, T.Natarajan, K.S.Ganapathy., (2006), Algebra,

S.Viswanatham (Printer & publishers) Private Ltd.
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: TB.Sc MATHEMATICS COURSENAME: ALGEBRA
COURSE CODE: 19MMU102 UNIT: I BATCH-2019-2022
UNIT-I

Sets —Finite and infinite sets-Equality sets-Subsets-Comparability -Proper subsets-Axiomatic
development of set theory-Set operations. Equivalence relations- Functions- Composition of
functions- Invertible functions- One to one Correspondence and cardinality of a set.
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CLASS: I B.Sc MATHEMATICS COURSENAME: ALGEBRA
COURSE CODE: 19MMU102 UNIT: 1 BATCH-2019-2022

Definition 1: A set is a collection of objects together with some rule to determine whether

a given object belongs to this collection. Any object of this collection is called an
element of the set.

1. Each element of the set is listed within a set of brackets: { }.
2. Within the brackets, the first few elements are listed, with dots
following
to show that the set continues with the selection of the elements
following the same rule as the first few.
3. Within the brackets, the set is described by writing out the exact rule
by
which elements are chosen. The name given each element is
separated
from the selection rule with a vertical line.

Examples:

(a) Denote by A the set of natural numbers with are greater than 25. The set could
be

written in the following ways:
{26,27,28....}  (using the second notation listed above)
{x | x is a natural number and x> 25} (using the third notation above)

The above description is read as “the set of all x such that x is a natural
number and x> 25”.

Note that 32 is an element of A. We write 32 €4, where “€” denotes “is
an element of.” Also, 6 €4, where “@” denotes “is not an element of.”

(b) Let B be the set of numbers {3,5,15,19,31,32}. Again the elements of the set
are

natural numbers. However, the rule is given by actually listing each element
of

the set (as in the first notation above). We see that 15 €B, but 23 €5.

(c) Let C be the set of all natural numbers which are less than 1. In this set, we
observe
that there are no elements. Hence, C is said to be an empty set. A set with no
elements is denoted by @.
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Definition: A set A4 is said to be a subset of a set B if every element of 4 is an element of

B.
Notation: To indicate that set 4 is a subset of set B, we use the expression A € B,
where “C” denotes “is a subset of’. A & B means that 4 is not a subset of B.
Examples:

(a) Let B be the set of natural numbers. Let 4 be the set of even natural numbers.
Clearly, A is a subset of B. However, B is not a subset of 4, for 3 € B, but 3 € A.

(b) An empty set @ is a subset of any set B. If this were not so, there would be

some element x€@ such that x¢ B. However, this would contradict with the
definition of an empty set as a set with no elements.

Theorem: Properties Of Sets

Let 4, B, and C be sets.
1. Forany set 4, AcA (Reflexive Property)
2. If AcB and BcC, then AcC (Transitive Property)

Definition: Two sets, 4 and B, are said to be equal if and only if 4 is a subset of B andB
is a subset of 4. To indicate that two sets, A and B, are equal, we use the symbol A =
B.
This means that sets 4 and B contain exactly the same elements. A # B means that 4
and B are not equal sets.

Example:
Let 4 be the set of even natural numbers and B be the set of natural numbers
which
are multiples of 2. Clearly, 4CB and B cA. Therefore, since 4 and B contain
exactly the same elements, 4 = B.
Remarks:
(a) Two equal sets always contain the same elements. However, the rules for the
sets

may be written differently, as in the above example.
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CLASS: I B.Sc MATHEMATICS COURSENAME: ALGEBRA
COURSE CODE: 19MMU102 UNIT: 1 BATCH-2019-2022

(b) Since any two empty sets are equal, we will refer to any empty set as the
empty
set.

(c) A is said to be a proper subset of B is and only if:
(1) AcB
(i1) 4 # B, and
(iii) 4 # @.

Theorem: Properties of Set Equality

(a) For any set 4, A = A. (Reflexive Property)
(b) If 4 = B, then B = A. (Symmetric Property)
(c) If 4 =B and B = C, then 4 = C. (Transitive Property)

Definition: Let 4 and B be subsets of a set X. The intersection of A and B is the set of all
elements in X common to bothA4 and B.

Notation: “4ANB” denotes “A intersection B” or the intersection of sets 4 and B.
Thus, ANB = {x €X|x€EA and x €B}, or ANB = {x | xEAAXEB}.

Examples:

a. Given that the box below represents X, the shaded area represents AN B:

b.Let A = {2,4,5) and B = {1,4,6,8} Then, ANB = {4}.

Note: A set that has only one element, such as {4}, is sometimes called a
singleton set.
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CLASS: I B.Sc MATHEMATICS COURSENAME: ALGEBRA
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c. Let4A=1{2,4,5} and B= {1,3}. Then ANB = ©.
Remarks:
a. If, as in the above example 1.11c, 4 and B are two sets such that 4N B is the
empty
set, we say that 4 and B are disjoint.
b. Given sets 4 and B. x€4ANB if and only if x€4 and x€B.
Definition: Let A and B be subsets of a set X. The union of A and B is the set of all

elements belonging to AorB.

Notation: “4AUB” denotes “A4 union B” or the union of sets 4 and B.
Thus, AUB = {x €X|x€A or x EB}. Or AUB = {x | x EAVv X EB}.

Examples:

a. Given that the box below represents X, the shaded area represents 4UB:

| >
oo}

b. Let A= {2,4,5} and B = {1,4,6,8}.
Then, AU B = {1,2,4,5,6,8}

Remark:
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Given sets 4 and B. x€4AUB if and only if x€EA or xEB.

Definition: Let 4 and B be subsets of a set X. The set B — 4, called the difference
of B and 4, is the set of all elements in B which are not in A4.

Thus, B—A4 = {x€X | x€B and x&A4}.

Examples:

a. Let B=1{2,3,6,10,13,15} and 4 = {2,10,15,21,22}.
Then B — A = {3,6,13}.

b. Let X be the set of natural numbers and 4 be the set of odd natural numbers.
Then,
X — A = the set of even natural numbers; or X — 4 = {x | x is a natural number
and x is even}.
c. Given that the box below represents X, the shaded area represents B — 4.

Definition: If 4CX, then X — 4 is sometimes called the complement of A with respect
to X.

Notation: The following symbols are used to denote the complement of 4 with
respect to X:

CA, CA,~A, A and 4 "

Thus, (A= {xEX|x¢A}.

Theorem: Let 4 and B be subsets of a set X.
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Then, A — B= AN (B.

SUB- SET

Let set A be a set containing all students of your school and B be a set containing all students of
class XII of the school. In this example each element of set B is also an element of set A. Such a
set B is said to be subset of the set A. It is written as BT A

Consider D={1,2,3,4,........ }

E ={..-3-2,-1,0,1,2,3, ... }

Clearly each element of set D is an element of set E also \D [ E

If A and B are any two sets such that each element of the set A is an element of the set B also,
then A is said to be a subset of B.

Remarks
(1) Each set is a subset of itselfi.e. AT A .

(11) Null set has no element so the condition of becoming a subset is automatically satisfied.
Therefore null set is a subset of every set.

(i) IfATBandB{A then A=B.

(iv) Ifalsp and A ' B then A is said to be a proper subset of B and B is said to be a super set
of A.i.e. sigor BE A .

Example If A= {x:xis aprime number less than 5} and

B = {y: yis an even prime number} then is B a proper subset of A ?

Solution : It is given that

A={2,3}, B={2}.

ClearlyBI Aand B' A

We write gia

and say that B is a proper subset of A.
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CLASS: I B.Sc MATHEMATICS COURSENAME: ALGEBRA

Example IfA=1{1,2,3,4},B=1{2,3,4,5}.
isAIBorBiA?

Solution : Herel{A b u t1IBPAI/B.

Also SIBbut5TAPBI/A.

Hence neither A is a subset of B nor B is a subset of A.
POWER SET

Let A={a b}

Subset of A are ¢, {a}, {b} and {a, b}.

If we consider these subsets as elements of a new set B (say) then

B ={¢,{a},{b}.{a,b}}

B is said to be the power set of A.

Notation : Power set of a set A is denoted by P(A).

Power set of a set A is the set of all subsets of the given set.
Example Write the power set of each of the following sets :
(i) A={x:xiRandx*+7=0}.

(i) B={y:yiNandl £y£3}.

Solution :

(1) Clearly A = f (Null set)

\ f'is the only subset of given set \ P (A)={f }

(11) The set B can be written as {1, 2, 3}

\P(B)=1{ f, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 35, {1, 2,3} }.
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UNIVERSAL SET

Consider the following sets.

A = {x : x is a student of your school}

B = {y : y is a male student of your school}

C = {z: zis a female student of your school}

D = {a: ais a student of class XII in your school}
Clearly the set B, C, D are all subsets of A.
CARTESIAN PRODUCT OF TWO SETS
Consider two sets A and B where

A={1, 2}, B= {3, 4, 5}.

Set of all ordered pairs of elements of A and B

is  {(1,3), (1,4), (1,5),(2,3), (2,4), (2,9)}

This set is denoted by A X B and is called the cartesian product of sets A and B.
re.  AxB={(1,3),(1,4),1,5),2, 3),(2,4),(2,5)}
Cartesian product of B sets and A is denoted by BxA.
In the present example, it is given by

BxA ={(3, 1),(3, 2),(4, 1),(4, 2),(5, 1),(5, 2)}

Clearly AxB ' BxA.

In the set builder form :
AxB={(ab):alAandbIB}

BxA = {(ba):biBandalA}
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Note : IfA= for B=for A, B=1f

then A " B=B 'A=f.

Example

(1) Let A={a,b,c}, B={d,e}, C={a,d}.

Find (1) AxB(ii) BXxA (iii) AX(BE C) ivy(ACC)'B
v)(ACB)'C (vi)A"(B-0C).
Solution : (i) AxB ={(a, d),(a, ), (b, d), (b, e), (c, d), (c, €)}.

(i1) BxA = {(d, a),(d, b), (d, ¢), (e, a) (e, b),(e, ¢)}.

(iii) A={a,b,c},BEC={ade}.
x(B EC ) ={(a, a),(a, d),(a, e),(b, a),(b, d),(b, ), (c, a),(c, d),(c, e).

(iv) ACC={a}, B={d,e}.

\(A CC)<B={(a, d), (a, ¢);
(V) ACB=f,c={a,d},\ACB'c=f

(vi) A={ab,c},B-C={e}.\A " (B-C)={(ae),(b,e),(ce)}

Relations and Functions
RELATIONS

Consider the following example :

A={Mohan, Sohan, David, Karim}

B={Rita, Marry, Fatima}

Suppose Rita has two brothers Mohan and Sohan, Marry has one brother David, and Fatima has
one brother Karim. If we define a relation R " is a brother of" between the elements of A and B
then clearly.

Mohan R Rita, Sohan R Rita, David R Marry, Karim R Fatima.

After omiting R between two names these can be written in the form of ordered pairs as :

(Mohan, Rita), (Sohan, Rita), (David, Marry), (Karima, Fatima).
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The above information can also be written in the form of a set R of ordered pairs as
R= {(Mohan, Rita), (Sohan, Rita), (David, Marry), Karim, Fatima}

Clearly R1 A "B, i.e.R = {(a,b):al A,b I B and aRb}

If A and B are two sets then a relation R from A toB is a sub set of AxB.

If (1) R=1, R is called a void relation.

(11) R=AXB, R is called a universal relation.

(ii1))  If R is a relation defined from A to A, it is called a relation defined on A.

(iv) R={(aa)"alA},iscalled the identity relation.

Domain and Range of a Relation

If R is a relation between two sets then the set of its first elements (components) of all the
ordered pairs of R is called Domain and set of 2nd elements of all the ordered pairs of R is called
range, of the given relation.

Consider previous example given above.

Domain = {Mohan, Sohan, David, Karim}

Range = {Rita, Marry, Fatima}

Example1 Giventhat A={2,4,5,6,7},B={2,3}.

R is a relation from A to B defined by
R={(a,b):alA, biBandais divisible by b}

find (i) R in the roster form

(i1) Domain of R

(ii1) Range of R

(iv) Repersent R diagramatically.
Solution : (i) R={(2,2), (4, 2), (6, 2), (6, 3)}

(i) Domain of R = {2, 4, 6}
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(ii1) Range of R = {2, 3}

(iv)
A E
2 *
. ;L "“
Fi

Example 2 If R is a relation 'is greater than' from A to B, where A= {1, 2, 3,4, 5} and B =
{1,2,6}.
Find (i) R in the roster form. (i1) Domain of R (iii) Range of R.

Solution :
i)  R={G,1,(,2),*1),42),5,1),5,2)}
(i)  Domain of R = {3, 4, 5}

(iii) Range of R = {1, 2}

2.1 Overview

This chapter deals with linking pair of elements from two sets and then introduce relations between the
two elements in the pair. Practically in every day of our lives, we pair the members of two sets of
numbers. For example, each hour of the day is paired with the local temperature reading by T.V. Station's
weatherman, a teacher often pairs each set of score with the number of students receiving that score to see
more clearly how well the class has understood the lesson. Finally, we shall learn about special relations
called functions.

2.1.1 Cartesian products of sets

Definition : Given two non-empty sets A and B, the set of all ordered pairs (x,y),where xe A and ye B is called
Cartesian product of A and B; symbolically, we write

A x B ={(x, y) | x€ A and ye B}
IfA={1,2,3} and B= {4, 5}, then

AxB={(1,4),(2,4),3,4),(1,5),(25),3,5)}
AndB x A= {(4,1),(4,2), (4 3),(5, 1), (5,2), (5,3)}
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(1) Two ordered pairs are equal, if and only if the corresponding first elements are equal and the
second elements are also equal, i.e. (x, y) = (1, v) if and only if x = u, y = v.

(i) Ifn(A)=pandn (B)=¢g,thenn (AxB)=p xgq.
(1) AxAxA={(ab,c):ab,ceA}. Here (a,b,c) is called an ordered triplet.
2.1.2 RelationsA Relation R from a non-empty set A to a non empty set B is asubset of the Cartesian

product set A x B. The subset is derived by describing a relationship between the first element and the
second element of the ordered pairs in A x B.

The set of all first elements in a relation R, is called the domain of the relation R, and the set of all
second elements called images, is called the range of R.

1
For example, the set R = {(1, 2), (-2, 3), ( 2, 3)} is a relation; the domain of

1

R={1,-2,72 } and the range of R = {2, 3}.

(i) A relation may be represented either by the Roster form or by the set builder form, or by an arrow
diagram which is a visual representation of a relation.

(i) Ifn (A)=p, n (B) = g; then the n (A X B) = pg and the total number of possible relations from the
set A to set B = 2.

2.1.3 FunctionsA relationffrom a set A to a set B is said to be function if everyelement of set A has one
and only one image in set B.

In other words, a function f'is a relation such that no two pairs in the relation has the same first
element.

The notation f: X - Y means that fis a function from X to Y. X is called the domain of fand Y is
called the co-domain of /. Given an element xe X, there is a unique element

yinY that is related to x. The unique element y to which frelates x is denoted by f'(x) and is called f of x,
or the value offatx, or the image of x under f.

The set of all values of f (x) taken together is called the range off or image of X under f.
Symbolically.

range of f= { ye Y | y =f(x), for some x in X}
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Definition : A function which has either R or one of its subsets as its range, is calleda real valued
function. Further, if its domain is also either R or a subset of R, it is called a real function.

2.1.4 Some specific types of functions

@)

(i)

(iii)

(iv)

™)

Identity function:

The function /: R»R defined by y = f(x) = x for each xeR is called the

identity function. Domain of f=R
Range of f=R

Constant function: The functionf: R - R defined byy=f(x) = C,xe R,where C is a constant €R, is a
constant function.

Domain of f=R
Range of f= {C}

Polynomial function: A real valued functionf: R — R defined byy=£fx) =ag

+a)x + ..+ a,x", where n eN, and ay, a;, a,...a,<R, for each x €R, is calledPolynomial functions.

X
Rational function: These are the real functions of the type , whereg ( x)

f(x) and g (x) are polynomial functions of x defined in a domain, where g(x) 0. For
x 1

example f: R— {— 2} —R defined by f(x) = ,xeR—{-2}isa

x 2

rational function.
The Modulus function: The real functionf; R — R defined byf{x) =x=

x,x0x,x0

x €Ris called the modulus function.
Domain of f=R

Range of f= R'U {0}
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(vi) Signum function: The real function

f:R—Rdefined by

| x| I, if x0

—.,x 0
fx) X 0, if x0
0,x 0 1, if x O

is called the signum function. Domain of /= R, Range of /= {1, 0, -1}

(vii) Greatest integer function: The real functionf; R — R defined byf'(x) = [x], x eRassumes the value
of the greatest integer less than or equal to x, iscalled the greatest integer function.

Thusf (x) = [x] = — 1 for — 1S x < 0 £(x) = [x] = 0 for 0 x < 1

[x]=1for1<x<2

[x] =2 for 2 <x< 3 and so on

2.1.5 Algebra of real functions

(i) Addition of two real functions

Letf: X »R and g : X —R be any two real functions, where X €R.
Then we define (f+g) : X >R by (f+¢) (x) =/ (x) + g (x), for all xe X.

(i1) Subtraction of a real function from another

Let f: X >R and g : X —R be any two real functions, where X SR.

Then, we define (f— g) : X >R by (f—g) (x) =f(x) — g (x), for all xe X.

(ii1) Multiplication by a Scalar

Let /: X =R be a real function and a be any scalar belonging to R. Then the product afis function
from X to R defined by (af) (x) = af (x), xe X.
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(iv)  Multiplication of two real functions

Let f: X — R and g : x — R be any two real functions, where X CR. Then

product of these two functions i.e. fg : X — R is defined by ( fg ) (x) =1 (x) g (x) x€ X.
(v)  Quotient of two real function

Let fand g be two real functions defined from X — R. The quotient of by g

f

denoted by  is a function defined from X — R as
7™, provided g (x) # 0, x€ X.

gg(x)

M Note Domain of sum functionf+g, difference functionf~gand productfunction fg.
= {x :x€ED ; N Dy}

where Df = Domain of function f

Dg = Domain of function g

F={x:x€D; N Dy and g (x) # 0}

2.2 Solved Examples

Short Answer Type

Example 1 Let A= {1, 2, 3,4} and B= {5, 7, 9}. Determine
i) AxB (1) BxA

(i) ISAxB=BxA? (iv) Isn(AxB)=n(BxA)?

®  AxB={(1,5),(1,7),(1,9),(2,5),(2,7),(2,9),3,5,3,7),(3,9), 4,5), (4,7), (4, 9)}
(i) BxA={(5,1),(,2),(,3),5,4),(7,1),(7,2),(7,3),(7,4),9,1),(9,2),(9,3), (9, 4)}
(iii)) No, A xB#B x A. Since A x B and B x A do not have exactly the same ordered pairs.

(iv) n(AxB)=n(A)xn(B)=4x3=12
n(BxA)=n(B)xn(A)=4x3=12
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Hence n(AxB)=n(BxA)

Example 2 Findxandyif:

(1) (@x+3,)=0Bx+5,-2) (i) (x—y,x+y)=(6,10)

Solution

(i) Since (4x+3,y)=Bx+5,-2),s0

4x+3=3x+5
or x=2
and y=-2
(i) x—-y=6
x+y=10
S2x=16
or x=38
8§—y=6
Sy=2

Example 3IfA={2,4,6,9} and B= {4, 6, 18, 27, 54} ,acA,b<eB, find the set ofordered pairs such that
'a' is factor of 'b' and a<b.

Solution Since A= {2,4, 6,9}

B = {4,6,18,27, 54},
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we have to find a set of ordered pairs (a, b) such that a is factor of b and a<b.

Since 2 is a factor of 4 and 2 < 4.

So (2, 4) is one such ordered pair.

Similarly, (2, 6), (2, 18), (2, 54) are other such ordered pairs. Thus the required set of ordered pairs is

{(2,4), (2,6), (2, 18), (2, 54), (6, 18), (6, 54,), (9, 18), (9, 27), (9, 54)}.
FUNCTION

A Function assigns to each element of a set, exactly one element of a related set.
Functions find their application in various fields like representation of the computational
complexity of algorithms, counting objects, study of sequences and strings, to name a

few. The third and final chapter of this part highlights the important aspects of functions.
Function - Definition

A function or mapping (Defined as f:X—Yf:X—Y) is a relationship from elements
of one set X to elements of another set Y (X and Y are non-empty sets). X is called

Domain and Y is called Codomain of function ‘f’.

Function ‘f* is a relation on X and Y such that for each xeXx€X, there exists a
unique YEYYEY such that (x,y)ER(x,y)ER. ‘X’ is called pre-image and ‘y’ is called image

of function f.
A function can be one to one or many to one but not one to many.
Injective / One-to-one function

A function f:A—Bf:A—B is injective or one-to-one function if for every bEBbEB,

there exists at most one a€Aa€A such that f(s)=tf(s)=t.

This means a function f is injective if al#a2al+#a2 implies f(al)#f(a2)f(al)#f(a2).
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o fIN->Nf(x)=5xf:N—N,f(x)=5x is injective.

o NN f(x)=x2f:N—N,f(x)=x2 is injective.

o f:R—-R. f(x)=x2f:R—R f(x)=x2 is not injective as (—x)2=x2(—x)2=x2
Surjective / Onto function

A function f:A—Bf:A—B is surjective (onto) if the image of f equals its range.
Equivalently, for every bEBb€EB, there exists some aEAa€A such that f(a)=bf(a)=b. This
means that for any y in B, there exists some x in A such that y=f(x)y=f(x).

Example
o fIN-Nf(x)=x+2f:N—N,f(x)=x+2 is surjective.

o f:R—-R f(x)=x2f:R—R,f(x)=x2 is not surjective since we cannot find a real

number whose square is negative.
Bijective / One-to-one Correspondent

A function f:A—Bf:A—B is bijective or one-to-one correspondent if and only

if fis both injective and surjective.
Problem

Prove that a function f:R—Rf:R—R defined by f(x)=2x-3f(x)=2x-3 is a bijective

function.
Explanation — We have to prove this function is both injective and surjective.

If f(x1)=f(x2)f(x1)=f(x2), then 2x1-3=2x2-32x1-3=2x2-3 and it implies
that x1=x2x1=x2.

Hence, f'is injective.
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Here, 2x—-3=y2x—-3=y

So, x=(y+5)/3x=(y+5)/3 which belongs to R and f(x)=yf(x)=y.
Hence, f'is surjective.

Since f is both surjective and injective, we can say f is bijective.

Inverse of a Function

The inverse of a one-to-one corresponding function f:A—Bf:A—B, is the

function g:B—Ag:B—A, holding the following property —
fx)=yeg(y)=xf(x)=y=gy)=x
The function fis called invertible, if its inverse function g exists.

Example

e A Function f:Z—Z f(x)=x+5f:Z—Z,f(x)=x+5, is invertible since it has the inverse

function g:Z—Z,g(x)=x—5g:Z—Z,g(x)=x—5.

e A Function f:Z—Z f(x)=x2f:Z—Z,f(x)=x2 is not invertiable since this is not one-

to-one as (—x)2=x2(—x)2=x2.
Composition of Functions

Two functions f:A—Bf:A—B and g:B—Cg:B—C can be composed to give a
composition gofgof. This is a function from A to C defined

by (goh)(x)=g(f(x))(gofH)(x)=g(f(x))

Example

Let f(x)=x+2f(x)=x+2 and g(x)=2x+1g(x)=2x+1,
find (fog)(x)(fog)(x) and (gof)(x)(gof)(x).

Solution
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(fog)(X)=f(g(x))=f(2x+1)=2x+1+2=2x+3 (fog)(X)=f(g(x))=f(2x+ 1 )=2x-+1+2=2x+3

(goD)(x)=g(f(x))=g(x+2)=2(x+2)+1=2x+5(goN)(x)=g(f(x))=g(x+2)=2(x+2)+1=2x+

Hence, (fog)(x)#(gof)(x)(fog)(x)#(gof)(x)

Some Facts about Composition

o Iffand g are one-to-one then the function (gof)(gof) is also one-to-one.

o Iffand g are onto then the function (gof)(gof) is also onto.

o Composition always holds associative property but does not hold commutative

property.

The rules of mathematical logic specify methods of reasoning mathematical statements.
Greek philosopher, Aristotle, was the pioneer of logical reasoning. Logical reasoning

provides the theoretical base for many areas of mathematics and consequently computer
science. It has many practical applications in computer science like design of computing

machines, artificial intelligence, definition of data structures for programming languages

etc.
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Some Discrete Examples
Suppose A =11,2, 3.4}, B = [x, v, z] and
=1, x), (2. ¥), (3, 2), (& ¥)].

Then [ 18 a function A — # with domain A and target 8. Since mg f =
lx. v, 2l = B, F s onlo. Since f(2) = f(4) (= y) bt 2 £ 4, f is not one-
to-ome, [In fact, there can cxist no one-to-one function A — A, Why not? See
Exercise 25(a).] ry

Suppose A = {1, 2.3}, 8= [x, v.z, w} and
F={l w), (2 ¥} (3 x}]

Then f: A — B is a function with domain A and range {w, ¥, x}. Since mg [ #
f#, f is not onto, [No function 4 — A can be onto, Why not? See Exercise 25(h).]
This function is one-to-one because f{1), f(2), and f(3) are all different: If
flay) = flaz), then a) = aa. &

suppose A = {1, 2.3} B =[x, v.z).
F=HLo(Zy), 3y and g={1 20 (2. 9 (3 x)}

Then f and g are functions from A to . The domain of f is A and domg = A
too, The range of f is {z. v}, which is a proper subset of 8, so f is not onto
On the other hand. g is onto because mg g = (1. v, x} = #. This function is also
ome-to-one because gi1), g(2), and gi3} are all different: If glw ) = glaz). then
ay = az. Motice that f is not one-to-one; f(2) = F{3) (= v), vet 2 #£ 3. &

Let f: 2 — & be defined by fixy = 2x — 3 Then dom f = Z. To find mg f.
note that

bemgf«b=2a—-3 for some integer
xbh=2a -2+ 1 for some integer a

and this occurs if and only if & is odd. Thus, the range of [ is the set of odd
integers. Since mg f 2 2, f is not onto. It s one-to-one, however: If f{x) =
Slxa), then 2y — 3 = 2x; — 3 and &) = xa. ry

Let 7: W — M be defined by fix) = Zx — 3, This might look like a perfectly
good function, as in the last example, but actually there is a difficuloe, If we try to
calculate f(1), we obtain f{11 =2{1)—3 = —1 and — 1 ¢ M. Hence. no function
has been defined, Y
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PROBLEM 7. Define f:2 - Zby flx) = 1% = 5x + 5. Determine whether or
not f is one-to-one and/or onto.

Solution.  To determine whether or not [ is one-to-one, we consider the pos-
sihility that flxi} = flxa). In this case, J.'|E -in+h5= rf — 5x 45, so
A’E - .r% = 5x) = Sxp and (x| = xzMx; 4 x7) = Six; — x3). This equation indeed
has solutions with x| # x2: Any x, x; satisfving x; +x; = 5 will do, for instance,
vy =2, 12 =13 Since f(2) = fi3) = —1, we conclude that f 15 not one-to-one,

Is f onto? Recalling that the graph of fix) = v —5r+5 r e R is a
parabola with vertex I:; 3}!, clearly any integer less than =1 15 not in the range
of . Alternatvely, 1t 15 easy w see that 0 s not in the range of [ because
= Sc 45 =0 has no mieger solutions (by the quadratic formula). Either

argument shows that f is not onto, |

PROBLEM 8. Define f:Z — Z by fix) = 32" —x. Determine whether or not
s ome-to-one andéor onto.

Solution.  Suppose flxg b= fix:) for xp 0e € £ Then ."l:f -1 = ."!-.1'; — X3, 80
]I.’.vri1 .'rg] = 1} — x> and

If xy # x7, we must have 1.',E + xp02 + w% = -'; which is impossible since x; and
ra are integers. Thus, xyp = x2 and [ 15 one-to-one.

Is f onto? If yes, then the equation b = f(r) = 3¢’ — x has a solution
in £ for every imeger b This seems unlikely and, after a moment’s thought, o
pCcurs 0 us that the integer & = 1, for example, cannot be written this way:
| = 3x% — x for some integer x implies x(3c® — 1) = 1. But the only pairs of

integers whose product is 1 are the pairs 1, [ and —1, —1. So here, we would
require x = 3x° — 1 = | or r = 3x — 1 = —1, neither of which is possible,
The integer & = | 15 a counterexample to the assertion that 15 onto, so f is
AoL onitg. |
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EXANMPLE

Let g: R — R be defined by gir) = ¥ The doman of & 15 R; the range of g is
the set of nonnegative réal numbers. Since this 15 a proper subset of R, g is not
onto. Neither s g one-to-one since g{3) = gi—3), but 3 # -3, Y

Drefing & : [0, o) — R by Adx) = x%, This funcrion is identical o the funcion g
of the preceding example except for its domain. By restrcting the domain of g o
the nonnegative reals we have produced a function # which is one-to-one since
iz ) — hix:) implics ""IE —= .1-5-' ard hence ©) = Exz. Since &) = 0 and x; = 0
we must have x; = xa2. A

The Identity Function

For any set A, the idemity fimction en A 15 the function 140 A — A defined by
tgla) =a forall @ € A, In terms of ordersd pairs,

14 =llg.a) | a € A},

When there 15 no possibility of confusion about A, we will often write ¢, rather
than 1 4. (The Greck symbol ¢ 15 pronounced “veta”, so that “i4" 1s read “yota
sub A"

The graph of the idenuty function on R is the familiar line with equation
v = x. The identity function on a set A 15 indeed a function A — A since, for
any @ € A, there s precisely one pair of the form (a, v) € i, namely, the pair
{d, ).
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Relations and Functions
RELATIONS

Consider the following example :

A={Mohan, Sohan, David, Karim}

B={Rita, Marry, Fatima}

Suppose Rita has two brothers Mohan and Sohan, Marry has one brother David, and Fatima has
one brother Karim. If we define a relation R " is a brother of" between the elements of A and B
then clearly.

Mohan R Rita, Sohan R Rita, David R Marry, Karim R Fatima.

After omiting R between two names these can be written in the form of ordered pairs as :
(Mohan, Rita), (Sohan, Rita), (David, Marry), (Karima, Fatima).

The above information can also be written in the form of a set R of ordered pairs as

R= {(Mohan, Rita), (Sohan, Rita), (David, Marry), Karim, Fatima}

Clearly RI A "B, i.eR = {(a,b):al A,b 1B and aRb}

If A and B are two sets then a relation R from A toB is a sub set of AxB.

If (1) R=1, R is called a void relation.

(V) R=AXB, R is called a universal relation.

(vi)  IfRis arelation defined from A to A, it is called a relation defined on A.

(vii) R={(aa)"alA},is called the identity relation.

Domain and Range of a Relation

If R is a relation between two sets then the set of its first elements (components) of all the
ordered pairs of R is called Domain and set of 2nd elements of all the ordered pairs of R is called
range, of the given relation.

Consider previous example given above.

Domain = {Mohan, Sohan, David, Karim}

Prepared by V.Kuppusamy, Asst Prof, Department of Mathematics KAHE Page 25/48




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc MATHEMATICS COURSENAME: ALGEBRA
COURSE CODE: 19MMU102 UNIT: 1 BATCH-2019-2022

Range = {Rita, Marry, Fatima}

Example 1 Giventhat A= {2,4,5,6,7}, B= {2, 3}.

R is a relation from A to B defined by
R={(a,b):alA, bIB andais divisible by b}

find (i) R in the roster form

(i1)) Domain of R

(ii1) Range of R

(iv) Repersent R diagramatically.
Solution : 1) R={(2,2),(4,2),(6,2),(6,3)}
(i1)) Domain of R = {2, 4, 6}
(ii1) Range of R = {2, 3}

(iv)

Example 2 If R is a relation 'is greater than' from A to B, where A= {1, 2, 3,4, 5} and B =
é}Iﬁf%})R in the roster form. (ii) Domain of R (iii) Range of R.

Solution :

(iv) R={G,1),(,2),& 1), *2),(5,1),G,2);

(v) Domain of R = {3, 4, 5}

(vi) Rangeof R={1,2}

2.1 Overview

This chapter deals with linking pair of elements from two sets and then introduce relations between the
two elements in the pair. Practically in every day of our lives, we pair the members of two sets of
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numbers. For example, each hour of the day is paired with the local temperature reading by T.V. Station's
weatherman, a teacher often pairs each set of score with the number of students receiving that score to see
more clearly how well the class has understood the lesson. Finally, we shall learn about special relations
called functions.

2.1.1 Cartesian products of sets

Definition : Given two non-empty sets A and B, the set of all ordered pairs (x,y),where xe A and ye B is called
Cartesian product of A and B; symbolically, we write

A x B ={(x, y) | x€ A and ye B}
IfA={1,2,3} and B= {4, 5}, then

AxB={(1,4),(24),3,4),1,5),2,5),3,5)}
AndB x A= {(4,1),(4,2),(4,3),(5, 1), (52), (5,3)}

(iii) Two ordered pairs are equal, if and only if the corresponding first elements are equal and the
second elements are also equal, i.e. (x, y) = (u, v) if and only if x =u, y = v.

@iv) If n(A)=pandn (B)=g¢g, thenn (A x B)=p x q.

(1) AxAxA={(ab,):ab,ceA}. Here (a,b,c) is called an ordered triplet.

2.1.2 RelationsA Relation R from a non-empty set A to a non empty set B is asubset of the Cartesian
product set A x B. The subset is derived by describing a relationship between the first element and the
second element of the ordered pairs in A x B.

The set of all first elements in a relation R, is called the domain of the relation R, and the set of all
second elements called images, is called the range of R.

|
For example, the set R = {(1, 2), (-2, 3), ( 2, 3)} is a relation; the domain of

1

R={1,-2,72 } and the range of R = {2, 3}.

(ii1) A relation may be represented either by the Roster form or by the set builder form, or by an arrow
diagram which is a visual representation of a relation.

(iv) If n (A) = p, n (B) = g; then the n (A x B) = pg and the total number of possible relations from the
set A to set B =2,.
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2.1.3 FunctionsA relationffrom a set A to a set B is said to be function if everyelement of set A has one
and only one image in set B.

In other words, a function f'is a relation such that no two pairs in the relation has the same first
element.

The notation f/: X - Y means that fis a function from X to Y. X is called the domain of fand Y is
called the co-domain of /. Given an element xe X, there is a unique element

z in Y that is related to x. The unique element y to which f'relates x is denoted by f'(x) and is called f of x,
or the value offatx, or the image of x under f.

The set of all values of f (x) taken together is called the range off or image of X under f.
Symbolically.

range of f= { ye Y | y =f (x), for some x in X}

Definition : A function which has either R or one of its subsets as its range, is calleda real valued
function. Further, if its domain is also either R or a subset of R, it is called a real function.

2.1.4 Some specific types of functions

(i1) Identity function:

The function f': R—>R defined by y = f(x) = x for each xR is called the

identity function. Domain of f=R

Range of f=R

(iii) Constant function: The functionf: R - R defined byy=f(x) = C,xe R,where C is a constant €R, is a
constant function.

Domain of f=R

Range of /= {C}

(v) Polynomial function: A real valued functionf; R — R defined byy=f(x) =ag
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+a;x + ..+ a,x", where n eN, and ay, a,, a,...a,€R, for each x €R, is calledPolynomial functions.

X
(vi) Rational function: These are the real functions of the type , whereg ( x)

g (x) and g (x) are polynomial functions of x defined in a domain, where g(x) 0. For
x 1

example f: R— {— 2} —R defined by f(x) = ,x€R—{-2}isa

x 2
rational function.
(v) The Modulus function: The real functionf; R — R defined byf{x) =x=

x,x0x,x0

x €Ris called the modulus function.
Domain of f=R
Range of f= R'U {0}
(vii) Signum function: The real function

f:R—Rdefined by

| x| 1, if x0

—>,x 0
fx) X 0,if x0
0,x 0 1, if x O

is called the signum function. Domain of /= R, Range of f= {1, 0, -1}

(viii) Greatest integer function: The real functionf: R — R defined byf'(x) = [x], x eRassumes the value
of the greatest integer less than or equal to x, iscalled the greatest integer function.

Thusf(x)=[x]=—1for— 1Sx<0f(x)=[x]=0for0sx <1
[x]=1for1<x<2

[x] =2 for 2 <x< 3 and so on
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2.1.5 Algebra of real functions

(iv) Addition of two real functions

Letf: X »R and g : X —R be any two real functions, where X €R.
Then we define (f+g) : X =R by (f+g) (x) =f(x) + g (x), for all xe X.

(v) Subtraction of a real function from another

Let f: X >R and g : X —R be any two real functions, where X SR.
Then, we define (f—g) : X =R by (f—g) (x) =/ (x) —g (x), for all xe X.

(vi) Multiplication by a Scalar

Let /: X —»R be a real function and a be any scalar belonging to R. Then the product afis function
from X to R defined by (af) (x) = af (x), xe X.

(v)  Multiplication of two real functions

Let f: X — R and g : x — R be any two real functions, where X CR. Then

product of these two functions i.e. fg : X — R is defined by ( fg ) (x) =1 (x) g (x) x€ X.
(vi)  Quotient of two real function

Let fand g be two real functions defined from X — R. The quotient of by g

f

denoted by  is a function defined from X — R as
J™ , provided g (x) # 0, x€ X.

gg(x)

M Note Domain of sum functionf+g, difference functionf~gand productfunction fg.
= {x :x€ED ; N Dy}

where Df = Domain of function f
Dg = Domain of function g

F={x:x€D; N Dy and g (x) #0}
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2.2 Solved Examples

Short Answer Type

Example 1 Let A = {1, 2, 3,4} and B = {5, 7, 9}. Determine
i) AxB (i) BxA

(i) [SAxB=BxA? (iv) Isn(AxB)=n(BxA)?

WM AxB={(1,5),(1,7),(1,9),(2,5),(2,7),(2,9,3,5),3,7).(3,9), (4,5), (4,7), (4. 9)}
(viy BxA={(5,1),(5,2),(5,3),5,4),((,1),(7,2),(7,3),(7,4),(9,1),(9,2),(9,3),(9,4)}
(vil) No, A xB#B x A. Since A x B and B x A do not have exactly the same ordered pairs.

(viii) n(AxB)=n(A)xn(B)=4x3=12
n(BxA)=nB)xn(A)=4x3=12

Hence n(AxB)=n(BxA)
Example 2 Findxandyif:
(1) (@x+3,))=0Bx+5,-2) (i) (x—y,x+y)=(6,10)
Solution

(i) Since (4x+3,y)=Bx+5,—2),s0

4x+3=3x+5

or x=2

and y=-2
(i) x—-y=6
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x+y=10
J2x=16
or x=28
8—y=6
Sy=2

Example 3IfA=1{2,4,6,9} and B= {4, 6, 18, 27, 54} ,acA,beB, find the set ofordered pairs such that
'a' is factor of 'b' and a<b.

Solution Since A =1{2,4,6,9}
B={4,6, 18, 27, 54},
we have to find « set of ordered pairs (a, b) such that a is factor of b and a<b.
Since 2 is a factor of 4 and 2 < 4.
So (2, 4) is one such ordered pair.

Similarly, (2, 6), (2, 18), (2, 54) are other such ordered pairs. Thus the required set of ordered pairs is

{(2,4), (2,6), (2, 18), (2, 54), (6, 18), (6, 54,), (9, 18), (9, 27), (9, 54)}.
FUNCTION

A Function assigns to each element of a set, exactly one element of a related set.
Functions find their application in various fields like representation of the computational
complexity of algorithms, counting objects, study of sequences and strings, to name a

few. The third and final chapter of this part highlights the important aspects of functions.

Function - Definition
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A function or mapping (Defined as f:X—Yf:X—Y) is a relationship from elements
of one set X to elements of another set Y (X and Y are non-empty sets). X is called

Domain and Y is called Codomain of function ‘f°.

Function ‘f* is a relation on X and Y such that for each x€Xx€X, there exists a
unique YEYY€EY such that (x,y)ER(x,y)ER. ‘X’ is called pre-image and ‘y’ is called image

of function f.
A function can be one to one or many to one but not one to many.
Injective / One-to-one function

A function f:A—Bf:A—B is injective or one-to-one function if for every bEBbEB,

there exists at most one a€Aa€A such that f(s)=tf(s)=t.
This means a function f is injective if al#a2al+#a2 implies f(al)#f(a2)f(al)#f(a2).
Example
o NN f(x)=5xf:N—N,f(x)=5x is injective.
o NN f(x)=x2f:N—N,f(x)=x2 is injective.
e f:R—-R f(x)=x2f:R—R, f(x)=x2 is not injective as (—x)2=x2(—x)2=x2
Surjective / Onto function

A function f:A—Bf:A—B is surjective (onto) if the image of f equals its range.
Equivalently, for every bEBbEB, there exists some a€Aa€A such that f(a)=bf(a)=b. This
means that for any y in B, there exists some x in A such that y=f(x)y=f(x).

Example
o fIN-Nf(x)=x+2f:N—-N,f(x)=x+2 is surjective.

o f:R—-R, f(x)=x2f:R—R,f(x)=x2 is not surjective since we cannot find a real

number whose square is negative.
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Bijective / One-to-one Correspondent

A function f:A—Bf:A—B is bijective or one-to-one correspondent if and only

if fis both injective and surjective.
Problem

Prove that a function f:R—Rf:R—R defined by f(x)=2x-3f(x)=2x-3 is a bijective

function.
Explanation — We have to prove this function is both injective and surjective.

If f(x 1)=t(x2)f(x1)=f(x2), then 2x1-3=2x2-32x1-3=2x2-3 and it implies
that x1=x2x1=x2.

Hence, f is injective.

Here, 2x-3=y2x-3=y

So, x=(y+5)/3x=(y+5)/3 which belongs to R and f(x)=yf(x)=y.
Hence, f'is surjective.

Since f is both surjective and injective, we can say f is bijective.
Inverse of a Function

The inverse of a one-to-one corresponding function f:A—Bf:A—B, is the

function g:B—Ag:B—A, holding the following property —
fx)=yeg(y)=xf(x)=y=gy)=x
The function fis called invertible, if its inverse function g exists.
Example

e A Function f:Z—Z f(x)=x+5f:Z—Z,f(x)=x+5, is invertible since it has the inverse

function g:Z—Z,g(x)=x—5g:Z—7Z,g(x)=x-5.
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e A Function f:Z—Z f(x)=x2f:Z—Z,f(x)=x2 is not invertiable since this is not one-

to-one as (—x)2=x2(—x)2=x2.
Composition of Functions

Two functions f:A—Bf:A—B and g:B—Cg:B—C can be composed to give a

composition gofgof. This is a function from A to C defined

by (goh)(x)=g(f(x))(gofH)(x)=g(f(x))

Example

Let f(x)=x+2f(x)=x+2 and g(x)=2x+1g(x)=2x+1,
find (fog)(x)(fog)(x) and (gof)(x)(gof)(x).

Solution
(fog)(x)=f(g(x))=f(2x+1)=2x+1+2=2x+3(fog)(x)=f(g(x))=f(2x+1)=2x+1+2=2x+3

(goh)(x)=g(f(x))=g(x+2)=2(x+2)+1=2x+5(gof)(x)=g(f(x))=g(x+2)=2(x+2)+1=2x+

Hence, (fog)(x)#(gof)(x)(fog)(x)A(gof)(x)

Some Facts about Composition
e If fand g are one-to-one then the function (gof)(gof) is also one-to-one.
o Iffand g are onto then the function (gof)(gof) is also onto.

o Composition always holds associative property but does not hold commutative

property.

The rules of mathematical logic specify methods of reasoning mathematical statements.
Greek philosopher, Aristotle, was the pioneer of logical reasoning. Logical reasoning
provides the theoretical base for many areas of mathematics and consequently computer

science. It has many practical applications in computer science like design of computing
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machines, artificial intelligence, definition of data structures for programming languages

etc.

Some Discrete Examples
EXAMPLE 2 Suppose A = (1,2,3. 4}, B = |x, y.2] and

F=ULx) 2, ) 32) @ 9k

Then f 15 a function A — B with domain A and target B, Since mg f =
fx,v.zl = B. f is onto. Since f(2) = fid) (= y)bm 2 # 4, f is not one-
to-one. [In fact, there can exist no one-to-one function 4 — B, Why not? Sec
Exercise 25(a).] &

EXAMPLE 3 Supposc A ={1,2. 3}, 8 = |x, y.z.w} and
T= (1, wh, (2. ) (3.x)).

Then f: A — B iz a function with domain A and range {w, v, r]. Since rng f #
B, f is not ento. [No function A — B can be onte. Why not? See Exercise 25(b).]
This function is one-to-one because (1), F(2), and (3} are all different: 1f
flay) = flaz), then a) = aa. s

EXAMPLE 4 Suppose A= 1{1.2.3}, B = [x, v.z].
F=1125 (2 30} and g=1{(1,2), (2 y){3 2]

Then f and g are functions from A o #. The domain of [ is A and domg = A
too. The range of [ is {z. v]. which is a proper subset of 8. s0 f is not onto
On the other hand, g is onto because mg g = [z, v, ¥} = H, This function is also
one-to-one becanse gil), g(2), and g(3) are all different: If ge) = glaz). then
iy = ap. Notice that f is not one-to-one: Fi2) = f(3) (= v). ye1 2 £ 3. s

EXAMPLE S et f:7 — 7 be defined by f{x) = 2¢ — 3. Then dom f = Z. To find mg f.
mote that

bemgfob=2a-3 for some integer o
irh=MNa—2)+ 1 for some integer a

and this occurs if and only if & is odd. Thus, the range of [ is the set of odd
mtegers. Since mg f £ £, F i not onto. 1 is one-lo-one, however: If f{x ) =
Flxa), then 23 — 3 =2x; — 3 and x| = k. 'y

EXAMPLE & Let F: N — M be defined by fix) = 2x — 3, This might look like a perfectly
good function, as in the last example, but actueally there s a difficulty, If we toy to
calculate Filp, we obtain F{1)=2({1) =3 = —1 and —1 & N. Hence. no function
has bzen defined. &
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PROBLEM 7. Define f:Z— Zby f(x)= ¥ = 5x + 5. Determine whether or
not [ is one-to-one and/or onto.

Solution. To determine whether or not [ is one-to-one, we consider the pos-
sibility that f(x;} = f(x2). In this case, 37 — 501 + 5 = x5 — 5x2 4+ 5, s0
.1'|2 - .r% = Sx) = 5xy and (x) = x2Mx; 4+ xp) = S(x; — x2). This equation indced
has sofutions with x; & 2 Any Xy, x> satisfving x; +.x2 = 5 will do. for instance,
vy =2, 1=3 Since f(2) = f(3)=—1, we conclude that £ is not one-to-one,

Is f onto? Recalling that the graph of fix) = ' —Sr+5 v e R isa
parabola with vertex I’E j,‘l clearly any integer less than =1 15 not in the range
of f. Alternatively, it is casy to see that 0 is not in the range of [ because
1t = 5¢ 45 = 0 has no integer solutions (by the quadeatic formula). Either

arFument shows that f 15 not onto, i

PROBLEM B. Define f: 2 — Z by fix) = 3x' — x. Determine whether or not
1 i one-to-ong andfor onto.

Sofution. Suppose f{x)) = fix2) for x;, 2 € £ Then lrf =1 = -I'Ii; — X7, 50
Jf.ri:l Xy} =1; — .t and

3x) — .li'z]f.'r]1 + X132 + !-'E} =% -5

If x| # xa. we must have 1} + x1.02 + ¥3 = 3. which is impossible since x; and
ra are mtegers. Thus, xp = xy and 15 ong-to-one.

Is f onto? If yes, then the equation b = f(r) = 3x' — x has a solution
in £ for every integer b, This seems unlikely and, after 2 moment’s thought, o
peours 10 us that the mmeger & = |, for example, cannot be written this way:
| = 3x* — x for some integer x implies x(3c% = 1} = 1. But the only pairs of

integers whose product is [ are the pairs 1, 1 and =1, —1. S0 here, we would
require x = 3r* — 1 = | or r = 3¢* — | = —1, neither of which is possible.
The integer # = | is a counterexample to the assertion that [ 15 onto, so f is
not onlg, i

I LE DTN
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EXAMPLE

Let g: R — R be defined by gix) = x°, The domain of g is R; the range of g is
the set of nonnegative real numbers. Since this is a proper subset of R, g 15 not
onte. Neither is g one-to-one since g{3) = g(—3), but 3 & —13 Y

Defing fi: [0, 00) — R by A{x) = x*, This function is identical to the function g
of the preceding example except for its domain. By restmeting the domain of g o
the nonnegative reals we have prodoced a function # which is one-to-one since
fix) ) = hixa) implies .1'|2 = .'r:'i" and hence r; = %xs. Since ry > 0 and x> > 0,
we must have Xy = xs. A

The Identity Function

For any set A, the idemity fimcrion en A 15 the function 140 A — A defined by
tala) =a forall a € A, In terms of ordered pairs,

tq=|la.a)|ae Al

When there 15 no posstbility of confusion about A, we will often write ¢, rather
than i 4. (The Greek symbol ¢ s pronounced “vota”, so that "4 15 read “yota
sub A

The graph of the idenuty function on R is the familiar line with equation
¥ = x. The identity function on a set A is indeed a function 4 — A since, for
any @ € A, there is precisely one pair of the form {a, y) € ¢, namely, the pair
{d, i),

INVERSES AND COMPOSITION
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The Inverse of a Function

Suppose that f 1 a one-to-one onto Tunction from A o B, Given any b € B,
there exists @ © A such that fig) = b (beciuse § 15 onto) and only one such
g (because f 15 one-to-one). Thus, for each & € B, there 15 precisely one pair
of the form (o, k) € f. It follows that the set [(b,a) | (a.b) € F], obtained by
reversing the ordered pairs of [, is a function from B to A (since each element
of B occurs precisely once as the first coordinate of an ordered pair).

EXAMPLE 13 1f A ={1,2.3.4}and B = {x, v, z. ¢], then
= {01 x) (2, ) (3 2. (4 1))

is 4 one-to-one onto function from A to B and, reversing its pairs. we obtain a
function B — Az {{x, 1), (v, 2}, (2. 3). {5, 43}, F Y

DEFINITION A function f: A — B has an inverse if and only if the set obtained by reversing
the ordered pairs of f is a function B

e AL IT o A == B has an inverse, the
function

[ ri=waiabes |

is called the inverse af f,
We pronounce ,iF_I- *F mverse,” terminology which should not be confused
. Pty el i 4 . : B . = 4
with - " is simply the name of a certain function, the inverse of .-

If f-: A — B has an inverse f~': B — A, then { alse has an inverse
because reversing the pairs of £ gives a function, namely F:thus (') = .

EXAMPLE 14 If A={1.2.3, 4} and B = |x. v, z, r], and

F={1x) (2, v} (3,20 (4, 1)}
thin
Fh =, 1) {20 (2. 3), (1. 4))

and (F~17 = [(L.x). (2, v), (3.2, (4.0 = F. F Y

PROPOSITION
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A function f: A — B has an inverse B — A if and only if [ s one-to-one and

Oniao,

For any function g, remember that {x, v} € g if and only if g(x) = y; in

particular, (b, a} € ' if and only if @ = f~"(h), Thus,

(= II"'I[F;-]-r—w»lfﬂ'],.:a,'l = _.I"'I w (¢, hye [ fla)="h
The eguivalence of the first and last equations here 15 very important:

(2] a= £ b if and ﬁnl}r if fla)=b.

For example, if for some function £, m = £'(=7), then we can conclude
that fim)=—7.11 fidi=2 thend = | 1{2),

The solution to the equation 2r =551 = ; =271 5, Generally, to solve
the equalion ax = b, we ask if @ 2 0, and (f this is the case, we multiply each
side of the equation by a~', obtaining v = a~'h = E Since all real numbers
except 0 have & multiphicative inverse, checking that a # 0 is just checking thal
d has an inverse.,

Look again at statement (2). We solve the equation fix) = v for x in the
same way we solve ax = b for x. We first ask if £ has an inverse, and if it does,
apply £~ to cach side of the equation, obtaining x = £~ (y),

The “application” of [ 1o each side of the equation v = f(x) is very much
like multiplying each side by £~1, “Multiplying by £~"" may sound foolish, but
there is a context (called group theary) in which it makes peod sense. Our intent
here is just to provide a good way to remember the fundamental relationship
expressed in (2),

EXAMPFLE -
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If f;R— Risdelined by fix)=2x =3, then f 15 one-to-ong and onto, S0 un
inverse function exists, According 1o (2, if v = £~ (x), then x = f(y) = 2y=3,
Thus, v = %{x +3= A

letA={xeR|x<0.B={xeR|x =0 and define f: A = B by
f(x) = x*, This is just the squaring function with domain restricted so that it
15 one-lo-one i well a5 onto. Since {18 one<to-one and onto, it has an inverse,
To obtain f~'(x), let v = f~'(x), deduce [by the relationship expressed in (2)]
thal f(y)=x andso y~ =1, Sulung for v, we p:l: y=d4x. Since x = iyl

ved sovel Ths v=—J1 () = A
| | 4
PROBLEM 18. Lot 4 ={r|x# ) and define /= A = R by .”*"jﬂr T

Is f one-to-one” Find mg [, Explain why f. A = mg f has an mverse. Find
dom [, mg | ~|und  formula for | )

by
Solution, Suppose flay) = flag). Thet ==— = =—— 50 80y -4 =
ppose flay) = f1 T L

Bajary = da, hence uy = . Thus f 15 onesfo-one,
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yermgf+« vy= fly) forsomex A
dx

2x —1
= there 1s an x € A such that 2xy — y = 4x

«+ there is an x € A such that y =

+» there is an x € A such that x{2y — 4} = y

If v = 2, the equation x{2y —4} = v becomes 0 = 2 and no x exists. On the other
hand, If v 7 2, then 2y —4 £ 0 and so, dividing by 2y —4, we obtamn x = ?‘} 3
2y —

(It is easy to see that such x 15 never %: that is, ¥ € A.) Thus v & g [ if and
only if vy # 2. Somgf=8=|veR|y##2}

Since f: A — B is one-to-one and onie. it has an inverse ' B — A,
Also, dom f~' =mg f = B and mg /- = dom f = A. To find f—'(x), set
y = f~!{x) Then

x=fiy) =
AL 2y =1

i : i : J=2 A =

and, solving for v, we get y = S = F . ]

Composition of Functions

DEFINITION If fi 4= Band g: B — C are functions, then the composition of ¢ and | is
the function g o {1 A — C defined by (g o fa) = gl fla)) forall a € A,

EXAMPLE1? fA={[g b cl.B={x.v)l,andC = [u,v. o} andif f: A — Bandg: B = C
are the functions

f=[la. x) (b ¥ (e, x)), g={{x u) (v, m}

then
(o fulay=pgifla)) = glx) =u.
(ga f1ib) = g{flby = gly) = w.
o fFyick=gifcNn =glx)=u
and 50 gro o= (o, @) (B w). (e ud]. Y
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EXAMPLE 20 If f and g are the functions R — R defined by
fixi=2xr—3, plx)==x"+1,
then both go f and Jf o g are dehined and we have
(go fHx)=pg(f(x)) =g(2x —3) =(2x — 3+ 1

and
(foglx)= flgbe)y= fixl+1=2x24+1)=3 A

EXAMPLE 21 In the definition of go £, 1l i5 required that mg f € B =domyg. Il f: R — R
and g: RY {1} — R are the functions defined by

fl)=2x=3 and g(x) = ——

r—1
then g = f is not defined because mg f = R € dom g, On the other hand, f o g
i1s defined and

tff-gflfx}=2(—il} g A

X

Composiion of Tunctions is an asstciative operation,
Proof We must prove that { fog)oh = folgoh) whenever each of the two functions—
(foglahand [ o(goh)—is defined. Thus, we assume that for cortain sets A,
B, C.and D, h is a function A - B, g is a function 8 — C, and [ i 2 function
C = D, A direct proof is suggested
Since the domain of (f o gho b is the domain of f o (goh) (namely, the sel
A}, we have only to prove that ({ foghehi{a) = (foigohiia) for any o € A.
For this, we have

((fogtehie)=(f cgilhlan = flglihla)n
and
(folgoh)ia)= fllgahialh= flgihia)))

as desired, i
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If f: A— B hasan inverse f~': B — A, then, recalling (2.
f~ib) = if and only if b = fia).
So for any a € A,
a=fT b= TN fla) = f" o fla).

ords, s sition f~"' o f = 14, the identity function on A. Simi-
In other words, the composition £~ o f = 14, the identity function on A. Sim
farly, for any element & & £,

b= fla) = _,I"l_,r"_I ()= fo _Ir"i (&),

Thus, the composition fo £~ = 15 is the ientity function on &, We summanze,

PROPOSITION Functions f: 4 — B and g: & — A are inverses if and only if g o f =04 and

S oog =g that is, if and only if
Mfay=gand fieib)l=5b lorallac A amd all H € H.

PROBLEM 23. Show that the functions f: R — {1, 00) and 2: (1. 00) — R
defined by

fix) =3 4 pix) = 1 logs{x — 1)

HIE T IEVEErSes.,

Solufion. For any ¢ € R,

(g o e =gl fix)=gid + 1)
= Lilog (3% + 1) = 1])
= 'Ellug_n Py = Ak =X
and for any x € (1. 20},
(foghx)= flg(x)) = fi}log(x — 1))
18 -gé:éh‘u’!_-.ll | 51 +1

—3male=l L e =N l1=x

OnE-TO-ONE CORRESPONDENCE AND THE CARDINALITY OF A SET
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DEFINITIONS A finire set 15 a set which s either empty or in one-to-one correspondence with
the set (1, 2, 3, ..., n} of the first 7 natural numbers, for some 7 = N, A set which
is not finite i5 called infinite.

Sets A and & have the same cardinality and we write |A| = |B|, if and only if
there is a one-to-one correspondence between them; that is, if and only if there
eXisls a one-to-one onte function from A to & (or from B o Al

EXAMPLES 25 e @ x, b+ yisa one-lo-one correspondence between [a, B} and {x, v);
hence, |{a. b} = |, v}| (= 2L
o The function f: N — NU{0] defined by f(n) = n — | 18 a one-to-one
correspondence between W and N U0 so [Ny = [N LD
« The function f: & — 27 defined by fin) = 2n is 4 one-to-0one commaspon
dence between the set £ of integers and the set 27 of even integers; thus, £
and 2 have the same cardinality, A

PROBLEM 26, Show that the set R of positive real numbers has the same
cardinality as the open interval (0, 1) ={xr R |0 = x = |}].

Solution. Let (0, 1) —= R7 be defined by

2 |
fix)=——1.
We claim that [ establishes a one-to-one comrespondence between (0, 1} and R™,
To show that f 1s onto, we have to show that any v € R™ is f{x) for some
x {0 1) But

I i
¥y==——11mplies x =
x 14 ¥

which 1s in (0, 1) since v = (. Therefore,
1
re Rt implies y = f| —
¥ implies v ’F{I+rjl

so 0 is andeed ontoe, Also, f s one-to-one because

[ I
flxy= flxz) =+ — — | = —1
L 3
1 oz il
L _-[3
— X = X3
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DEFIMNITIONS A set A is cowntably infinite if and only if |A| = |N] and counrable if and only if

it is either finite or countably infimite. A set which is not countable 15 wrcouniable,

PROBLEM 27. Show that [Z] = Ry.

Solution.  The set of integers 15 infinte. To show they are countably infinite, we
list them: 0. 1, =1, 2, =2, 3, =3, . ... This list is just f{1), f(2), f(3),... where
f:N— Zis defined by

, =1 if 1 1s even
fin) = T i
3in— Ly of mois odd,
which is certainly hoth one-lo-one and onto. [ |

PROBLEM 28. Show that [N x N| = |N|.

Solution.  The elements of N« N can be listed by the scheme illustrated in
Fig 3.4. The armows indicate the order in which the elements of N x N should

be histed—i1, 1), (2, 1) (0, 20,01, 30, (2. 2), ... . Wherever the amows terminate,
there is no difficulty in continuing, so each ordered pair acquires a definie

pasition, |

WELL ORDERING PRINCIPLE

(Well-Ordering Principle).

Every non-empty subset of natural numbers contains its least element.

Proof:

To prove the weak form of the principle of mathematical induction. The proof is based on
contradiction. That is, suppose that we need to prove that “whenever the statement P
holds true, the statement Q holds true as well”. A proof by contradiction starts with the
assumption that “the statement P holds true and the statement Q does not hold true” and
tries to arrive at a contradiction to the validity of the statement P being true
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Possible Questions

2 Mark questions
1.Define finite and infinite sets
2.Define Complement of a set
3. Prove that if A and B are finite sets, then n(AUB) =n(A) + n(B) — n(An B)
4.Define Equivalence relations.
5.Define functions with examples
6.Define composition functions with examples.
5.Define Invertible functions
6.Define one-to-one correspondence with example
7.define cardinality of a set.
8. state the two properities of composition functions
9.Write the various types of Functions.
10.Define domain & co domain of the function.
11.Define range of the function.
12.Define equality of two functions.
13.Define denumerable sets.
14.Define countable set
15.Define Identity Mapping.
16.Define constant mapping

6 Mark questions
1. State and Prove De Moivre’s theorem.
2. Let A,B and C be sets then prove that i) AU (BU C)=(Au B)n (Au C)ii) Au B=A iff
A = B without using venn diagram.

3. State and prove De Morgan’s Law
4. If pand ¢ are equivalence relations defined on a set S, Prove that p n ¢ is an equivalence

relation.
5. Show that the following functions are 1-1
i) f: R — R given by f(x)=5x>- 1
ii) f: Z — Egiven by f(n)=3x" - x
6. If the function f: R— R is given by f(x)= cos x and g: R — R is given by g(x)=x 2 find
(gof)(x)and (f o g)(x) and show that they are not equal.

7. Explain about types of relation with examples.

8. Let A={1,2,3} and f,g,h and s be functions from A to A given by
f={(1,2),(23),3,D) }; g={(1,2),(2,1),(3.3) };
h = { (171)7 (272)’ (351) } and S = { (1’1)5 (272)> (373) } Flnd fO g: g o fa fO h o ga gO S,
Sos, fos.
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9.Let S={1,2,3,4,5} and T={1,2,3,8,9} and define the functions f: S— T and g: S — S by
={(1,8), (3,9),(4,3),(2,1),(5,2)} and g={(1,2),(3,1),(2,2),(4,3),(5,2)} ,then find the values of the
following feag, geof., feof, g°g.
10. Let f, g and h: R— R be defined by f(x)=x+2 ,g(x)Zﬁ and h(x)=3
Compute Yk oge f(x) ii)gehe f(x) iil) geof e f(x)
11.If f: X—Y and A, B are two subsets of Y, then prove that
Df 1 (AUB) = fHAVf(B)
i) f7H(ANnB)= A NnfT(B)
12.For integers a,b define aRb if and only if a — b is divisible by m. Show that R defines an

equivalence relation on Z.
13.Let A be the set A={xeR \ x>0} and define f,g, h :A— R by f(x)=$ ,g(x)=§ ,h(x)=x+1 find

gef.feghegof and fogoh .
14. Write about the types of function with example
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Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions

Question Opt1l Opt 2 Opt 3 Opt4 Answer
If A={1,2,3,4,...} then the set A is finite composite infinite equality infinite
If a finite set S has 'n' elements then the power set of
S has elements n 2" n-1 n+1 2"
If A={1,2,3,4,5}and B = {3,7,9} then A\B = {1,2,4,5) {1,2,3,45,7,9} [{7,9} {3} {1,2,4,5)
If A={a,b,c,d} and B ={f,b,d,g} then ANB = {a,b,c} {a,b,c,d,f} {b,d} {f,0,d} {b,d}
(AUB) = ..., A'UB' AUB A'NB' ANB A'NB'
AAB=...................... (A/B)U(B/A) (A/B)N(B/A) (A/B)U(A/B)  [(B/A)N(B/A) (A/B)U(B/A)

n(A)+n(B)-n(A n(A)+n(B)-n(A

n(A union B)= n(A)+n(B) intersection B) |n(A)-n(B) n(A)-n(B)+n(AB) [intersection B)
If f:A—B hence fiscalleda ................. function form formula fuzzy function
Pictorial representation of sets is
called............ooiiinit. function mapping venn diagram relation venn diagram
If the function f is otherwise called as
........................ limit mapping lopping inverse mapping
The value of n (@)= ..., 1 n n+l 0 0
A set consisting of single element is called
......................... null set universal set singleton set disjoint set singleton set
Power set is denoted by......................... P(S) S(A) n(A) [0) P(S)
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A binary relation R in a set A is said to

be..oiiiii if aRb implies bRava,be A |anti-symmetric |transitive symmetric reflexive symmetric
If fA—B in this set Aiscalledthe ................ of

the function f. domain co domain set element domain

If fA—B in this set Biscalledthe................. of

the function f. domain co domain set element co domain
The value of the function f for a and is denoted by

................................. a(f) f(a) a f f(a)

called the ................... ofa B-image a-image A-image f-image f-image
The element a may be referred to as the

....................... of f(a) f-image pre-image domain codomain pre-image
The .............. of a function as the image of its

domain domain range co domain image range

The range of a function as the................ of its

domain range domain image preimage image
The range of a function as the image of its

................. co domain image domain range domain
Let f be a mapping of A to B,Each element of A has

I and each element in B need not be

appear as the image of an element in A. unique preimage [unique image  |unigue zero unique range unique image
Let f be a mapping of A to B,Each element of ......

has a unique image and each element in B need not

be appear as the image of an element in A. A B f f(A) A

Let f be a mapping of A to B,Each element of A has

a unique image and each element in.......... need

not be appear as the image of an element in A. A B f f(A) B

Let f be a mapping of A to B,Each element of A has

a unique image and each element in B need not be

appear as the ............. of an element in A. domain range co domain image image
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One-to-one mapping is also sometimes known

AS. .t injection bijection surjection imjection injection
A mapping f:A—Bissaidtobe .............. if

different elements in A have different f-images in B |zero one-one onto into one-one
A mapping f:A—B is said to be 1-1 if

................... elements in A have different f-

images in B same different not equal one different
A mapping f:A—B is said to be 1-1 if different

clements in A have different ................ inB pre images f-images B-images A-images f-images
In one-one mappings an element in B has

only.................. preimage in A Zero one two three one
In............... mappings an element in B has only

one preimage in A one-one onto into one-oneonto one-one
One-one onto  mapping is also sometimes known

AS. . i injection bijection surjection imjection bijection
A mapping f:A—Bissaidtobe.............. if

different elements in A have same f-imagesin B  |one-one onto into many one many one
In many-one mappings some elements in B has

more than.................. preimage in A Zero one two three one

In many-one mappings some elements in B has

.............. one preimage in A equal more than less than only more than
Two sets A and B are said to have the same number

of elements iff a one-one mapping of A onto B merely cardinally

exists, such sets are saidtobe .................... equivalent equivalent equivalent notequivalent cardinally equivalent
Two sets A and B are said to have the same number

of elements iffa ............ mapping of A onto B

exists, such sets are said to be cardinally equivalent |one-one many one onto into one-one
Two sets A and B are said to have the same number

of elements iff a one-one mapping of A .......... B

exists, such sets are said to be cardinally equivalent |one-one many one onto into onto
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Two sets A and B are said to have the ........ number

of elements iff a one-one mapping of A onto B

exists, such sets are said to be cardinally equivalent [same different zero finite same
Cardinally eqivalent can be written as................ A+B A-B A~B A/B A~B
Cardinally eqivalent sets are to have the ............

cardinal number. Zero one same finite same
Cardinally egivalent sets are to have the same

................ number. rational complex real cardinal cardinal
If f:A—B is one-one onto, then f:B—A .the

mapping f'iscalledthe................ mapping of

the mapping of f. integral inverse invert reverse inverse
Only one-one and onto mapping

POSSES...uvvinrnnn.n. mappings. integral inverse invert reverse inverse
Only ............... mapping posses inverse one-one and

mappings. one-one and into [one-one many one one-one and onto  [one-one and onto
If f:A—B is one-one onto, then f:B—A is also one-one and

..................... one-one and into |one-one many one one-one and onto  [one-one and onto
If f:A—B is one-one onto, then the inverse

mapping of fis .................. Zero unique different same unique

If £X—Y and g:Y—Zthen the

.................... of the function f and g demoted by

(goh):X—Z. inverse composite different one-one composite
If :X—>Y and g:Y—Zthen the composite of the

function f and g demoted by ................ (fog): X—Z. (fog): X—Y. (gof):y—Z. (gof): X—Z. (gof): X—Z.
In general gof................ fg equal notequal less than more than notequal
If xRx ,forevery xeA since every triangle is

congruent to it self. Thus Ris ............... reflexive symmetic transitive anti-symmetric reflexive
If xRy and yRz— x Rz,since if triangle x is

congruent to y and triangley is congrugent to z

then,trainglex is congruent to z.Then R is

............... reflexive symmetic transitive anti-symmetric transitive

Prepared by: V.Kuppusamy, Department of Mathematics,KAHE




Algebra / 2019-2022 Batch

If xRy —y R z since if triangle x is congruent to y
and triangle y is congrugent to x.Then R is

............... reflexive symmetic transitive anti-symmetric symmetic
Risan.................... relation one-one onto equivalence equal equivalence
If a=16 and b=>5 then find g and r in division

algorithmis......................... g=3,r=1 g=1,r=3 q=4,r=2 g=1,r=1 g=3,r=1
Ingeneral g o f............... fog not equal equal less than more than not equal
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Division algorithm- Divisibility and Euclidean algorithm- Congruence relation between
integers- Principles of Mathematical Induction- Statement of Fundamental Theorem of
Arithmetic.
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THE INTEGERS

DIVISIBILITY THEORY IN THE INTEGERS

Well- Ordering Principle

Every non empty set S of nonnegative integers contains a least element. That is,
there exists some integer @ in S such that a<b for all » in S.
THE DIVISION ALGORITHM

Division Algorithm, the result is familiar to most of us roughly, it asserts that an
integer a can be “divided” by a positive integer b in such a way that the remainder
is smaller than b. The exact statement of this fact is Theorem 1.:

Theorem 1. Given integersaandb,withb > 0,there exist unique integersq and r
satisfying

a=gb+r 0<r<b

The integers q and r are called, respectively, the quotient and remainder in the
division of a by b.

Proof. Let a and b be integers with b >0 and consider the set
S={a — xb : xisaninteger; a — xb > 0.

Claim: The set S is nonempty

It sullces to find a value x which making a—xb nonnegative. Since b> 1, we have
|a|b> |a| and so, a— (—|a|)b = a + |a|b>a + |a| > 0. For the choice x = —|a|, then a —
xb lies in S. Therefore S is nonempty, hence the claim.Therefore by Well-Ordering
Principle, S contains a small integer, say ». By

the definition of S there exists an integer g satisfying

r=a—qb 0<r
Claim: r<b
Suppose r>b. Then we have
a—(g+1b=(@—gb)—b=r—>b>0.

This implies that, a— (¢ + 1)b&S. But a— (¢ + 1)b =r—b <r, since b > 0, leading to

a contradiction of the choice of » as the smallest member of S. Hence, » < b, hence
the claim.
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Next we have to show that the uniqueness of ¢ and r. Suppose that a as two
representations of the desired form, say,

a=qb+r=q,b+r’,
where 0 <r < b and 0 Sr’< b. Then (r’—r) = b(q—q’). Taking modulus on both sides,

o = Pl =1bg — 9)| = bll(g — ¢)| =bl(g — )|

’

But we have —b <—r<0 and 0 <r < b, upon adding these 1nequaht1es we obtain b
< r—r <b. This implies b|(g— q)|< b, which yields 0 <|q q| <I. Because |q q |
is a nonnegative integer, the only possibility isthat |g— q| =0, hence, g = ¢g. This
implies |r'—r| =0, thatis, = ». Hence the proof. [

Corollary 1. Ifaandbare integers, withb =/ 0,then there exists integersqand v such
that

a=gb+r 0 <r <|b|.

Proof. It is enough to consider the case in which b is negative. Then |b| >0, and
Theorem 1. produces unique integers ¢ and r for which

a=qlbl+r 0<r<|bl.

’

Noting that |h| = —b, we may take g = —¢ to arrive at a = gb + r, with 0 < <|b|.
Application of the Division Algorithm
1. Square of any integer is either of the form 4k or 4k + 1. That is, the square of
integer leaves the remainder 0 or 1 upon division by 4.

Solution: Let a be any integer. If a is even, we can let a = 2n, n is aninteger,
then a2 = (2n)2 = 4n2 =4k. If a is odd, we can let a = 2n+1, n is an integer,
then a® = 2n+1)° = dn> +4n+1 = 4(n” +n)+1 = 4kc+1,

2. The square of any odd integer is of the form 8k + 1.
Solution: Let a be an integer and let b = 4, then by division algorithm
a is representable as one of the four forms: 4¢, 49 + 1, 4g + 2, 4¢ + 3. Inthis
representation, only those integers of the forms 4¢ + 1 and 4¢g + 3 are odd. If

a=4q + 1, then

a’= (4g + 1)2= 16q2+ 8g+1= 8(2q2+ g)+1=8k+1.
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If a =4q + 3, then
2 2 2 2 2
a = (4¢g+3)" = 16g +24q+9 = 16q +24¢+8+1 = 8(2¢ +3¢g+1)+1 = 8k+1.

. +2) . .
3. For all integer a> l,a(a2 2) 1s an integer.

3

Solution: Let a > 1 be an integer. According to division algorithm, a is of the
form 3¢q, 3¢ + 1 or 3¢ + 2. If a = 3¢, then

3g((3g),+ 2)
= 9¢*+2q

which is clearly an integer. Similarly we can prove other two cases also.

THE GREATEST COMMON DIVISOR

Definition 1. An integerbis said to be divisible by an integera =/ 0,insymbols a|b, if
there exists some integer c such that b = ac. We write a - b to indicate that b is not
divisible by a.

Thus, for example, —22 is divisible by 11, because —22 = 11(—2). How-ever, 22
is not divisible by 3; for there is no integer ¢ that makes the statement 22 = 3¢ true.

There is other language for expressing the divisibility relation a|b. We could say
that a is a divisor of b, that a is a factor of b, or that 4 is a multiple of a. Notice that
in Definition 1 there is a restriction on the divisor a: Whenever the notation a|b is
employed, it is understood that a is dilJerent from zero.

If a is a divisor of b, then b is also divisible by —a (indeed, b = ac implies that b =
(—a)(—c)), so that the divisors of an integer always occur in pairs.

To find all the divisors of a given integer, it is sullcient to obtain the positive
divisors and then adjoin to them the corresponding negative integers. For this
reason, we shall usually limit ourselves to a consideration of positive divisors. It
will be helpful to list some immediate consequences of Definition 1.

Theorem 2. For integersa, b, c,the following hold:
1. al0, 1|a, ala.
2. a|l if and only if a = £1.

3. If a|lb and c|d, then ac|bd.

Prepared by V.Kuppusamy, Asst Prof, Department of Mathematics KAHE Page 4/23




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc.MATHEMATICS
COURSE CODE: 18MMU102 UNIT: 11 BATCH-2018-2021

Prepared by V.Kuppusamy, Asst Prof, Department of Mathematics KAHE

COURSENAME: ALGEBRA

4. If a|b and b|c, then alc.
5. al|b and b|a if and only if a = £b.
6. If alb and b =0, then |a| < |b|.

7. If a|b and a|c, then a|(bx + cy) for arbitrary integers x and y.
Proof. 1. Since 0 = a.0, a|0. Since a = 1.a, 1]a. Since a = a.1, ala.

2. We have q|l if and only if 1 = a.c for some c, this is if and only if a = £1.
3. Clear from definition.
4. Clear from definition.
5. Clear from definition.

6. If a|b, then there exists an integer ¢ such that b = ac; also, b =/0 implies that ¢
=/0. Upon taking absolute values, we get |b| = |ac| = |al|c|. Because ¢ =0, it
follows that |c| > 1, whence |b| = |a||¢c| = |a].

7. The relations a|b and a|c ensure that b = ar and ¢ = as for suitable integers r
and s. But then whatever the choice of x and y, bx + ¢y = arx + asy = a(rx +
sy). Because rx + sy is an integer, this says that a|(bx + cy), as desired. [

Definition 2. Letaandbbe given integers, with at least one of them dillerentfrom
zero. The greatest common divisor of a and b, denoted by gcd(a, b), is the positive
integer d satisfying the following:

(1) d|a and d|b.

(11) Ifcla and c|b, then c <d.

Example: The positive divisors of —12 are 1, 2, 3, 4, 6, 12, whereas those of 30
are 1, 2, 3, 5, 6, 10, 15, 30; hence, the positive common divisors of —12 and 30 are
1, 2, 3, 6. Because 6 is the largest of these integers, it follows that gcd(—12, 30) = 6.
In the same way, we can show that gcd(—5, 5) =5, gcd(8, 17) =1, gcd(—8, —36) =
4.

Theorem 3. Given integersaandb, not both of which are zero, there existintegers x
and y such that

gcd(a, b) = ax + by.

Proof. Consider the set S of all positive linear combinations of @ and b :
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S=/{au+bv:au+bv>0;u, vintegers).

Since, if a =0 then |a| = au+b.0 &S, whereu =1, ifa > 0;u=—1, ifa <0,S is

nonempty. Therefore by the Well-Ordering Principle, S must containa smallest
element, say d. Thus, from the very definition of S, there exist integers x and y for
which d = ax + by. Claim: d = gcd(a, b)

By using the Division Algorithm, we can obtain integers ¢ and » such that a = gd +
r, where 0 <r < d. Then r can be written in the form:

r = a—qd

a — q(ax + by)

= a(l = gx) + b(=qy).

If » were positive, then this representation would imply that » is a member of S,
contradicting the fact that d is the least integer in S (recall that » < d). Therefore, r =
0, and so a = gd, or equivalently d|a. By similar reasoning, d|b, this implies d is a
common divisor of a and b.

Now if ¢ is an arbitrary positive common divisor of the integers a and b, then part
(7) of Theorem 2 allows us to conclude that c|(ax + by); that is, c|d. By part (6) of
the same theorem, ¢ = |c| < |d| = d, so that d 1s greater than every positive common
divisor of @ and b. Hence d = gcd(a, b). Hence the claim. Therefore gcd(a, b) = ax +
by. I

Corollary 2. Ifaandbare given integers, not both zero, then the set
T'=ax+by:x, yare integers

is precisely the set of all multiples of d = gcd(a, b).
Proof. Because d|a and d|b, we know that d|(ax + by) for all integers x, y. Thus,

every member of 7 is a multiple of d. Conversely, d may be written as d = axo+
byofor suitable integers xpand yg, so that any multiple nd of d isof the form

nd = n(axo+ byo) = a(nxo) + b(nyo).

Hence, nd is a linear combination of a and b, and, by definition, lies in 7. ]

De nition 3. Two integersaandb,not both of which are zero, are said tobe relatively
prime whenever gcd(a, b) = 1.
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Theorem 4. Letaandbbe integers, not both zero. Thenaandbarerelatively prime if
and only if there exist integers x and y such that 1 = ax + by.

Proof. 1If a and b are relatively prime so that gcd(a, b) = 1, then Theorem
3guarantees the existence of integers x and y satisfying 1 = ax+by. Conversely,
suppose that 1 = ax + by for some choice of x and y, and that d = gcd(a, b). Because
d|a and d|b, Theorem 2 yields d|(ax+by), or d|1. This implies d = =1. But d is a
positive integer, d = 1. That is a and b are relatively prime. [

Corollary 3. Ifgcd(a, b) = d,thengcd(a/d, b/d) = 1.

Proof. Since d|a and d|b, a/d and b/d are integers. We have, if ged(a, b) = d,then
there exists x and y such that d = ax + by. Upon dividing each side of this equation
by d, we obtain the expression

1 = (a/d)x + (b/d)y.

Because a/d and b/d are integers, a/d and b/d are relatively prime. Therefore
ged(a/d, b/d)=1. ]

Corollary 4. Ifa|candb|c,withgcd(a, b) = 1,thenab|c.

Proof. Since a|c and b|c, we can find integers » and s such that ¢ = ar = bs.
Given that ged(a, b) = 1, so there exists integers x and y such that 1 = ax+by.

Multiplying the last equation by ¢, we get,
c=cl =c(ax + by) = acx + bcy.

If the appropriate substitutions are now made on the right-hand side, then
c = a(bs)x + b(ar)y = ab(sx + ry).

This implies, ablc.
Theorem 5. (Euclid’s lemma.) Ifa|bc, withgcd(a, b) = 1,thenalc.

Proof- Since gcd(a, b) = 1, we have 1 = ax + by for some integers x and y.
Multiplication of this equation by ¢ produces

c=1lc=(ax+ by)c =acx + bcy.

Since a|bc and alac, we have a|acx + bcy. This implies a|c. [

Note: If @ and b are not relatively prime, then the conclusion of Euclid’s
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lemma may fail to hold. For example: 6/9.4 but 6 - 9 and 6 - 4.

Theorem 6. Leta, bbe integers, not both zero. For a positive integerd,d = gcd(a, b)
if and only if

(1) d|a and d|b.
(1) Whenever c|a and c|b, then c|d.

Proof. Suppose that d = gcd(a, b). Certainly, d|a and d|b, so that (i) holds.By
Theorem 3, d is expressible as d = ax + by for some integers x, y. Thus, if c|a and
c|b, then c|(ax + by), or rather c|d. This implies, condition (ii) holds.Conversely, let
d be any positive integer satisfying the stated conditions (i) and (ii). Given any
common divisor ¢ of a and b, we have c|d from hypothesis (ii). This implies that
d>c, and consequently d is the greatest common divisor of @ and b. [

THE EUCLIDEAN ALGORITHM

Lemma 1. Ifa = gb + r,thengcd(a, b) = ged(b, r).

Proof. If d = gcd(a, b), then the relations d|a and d|b together imply that d|(a — ¢b),
or d|r. Thus, d is a common divisor of both b and . On the otherhand, if ¢ is an
arbitrary common divisor of b and r, then c|(¢gb + r), whence c|a. This makes ¢ a
common divisor of a and b, so that ¢ < d. It now followsfrom the definition of
ged(b, r) that d = ged(b, r). [

The Euclidean algorithm

The Euclidean Algorithm may be described as follows: Let a and b be two integers
whose greatest common divisor is desired. Because gcd(|a|,|b|) = gcd(a, b),, with
out loss of generality we may assume a > b >0. The firststep is to apply the
Division Algorithm to @ and b to get

a=q1b+r; 0<r<b.
If it happens that 1 = 0, then b|a and gcd(a, b) = b. When r; /0, divide b by r1 to
produce integers g, and r satisfying

b=qgri+ry 0<p<ry.
If rp = 0, then we stop; otherwise, proceed as before to obtain

ri=q3rptry 0<r3<nr.
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This division process continues until some zero remainder appears, say, at the (n +
th N .
/)" stage where r,—1 is divided by 7, (a zero remainder occurs sooner or later

because the decreasing sequence b > r;> rp>- - - > 0 cannot contain more than b
integers). The result is the following system of equations:

a=q1b+ry  0m<b

b=gqr1tr, 0<m<r
r=q3rptry 0<r3<nr

r :q r +r
n—2 n n—1 n 0 S}’n< rn—1
r =q r+0.

n—1 ntl n

By Lemma 1,

gcd(a, b) = gcd(b, r1) == ged(rp—1, rp) = ged(ry, 0) =1y,
Note:Start with the next-to-last equation arising from the Euclidean Algo-rithm, we
can determine x and y such that ged(a, b) = ax + by.

Example: Let us see how the Euclidean Algorithm works in a concrete case by
calculating, say, gcd(12378, 3054). The appropriate applications of the Division
Algorithm produce the equations

12378 =4.3054 + 162
3054 =18.162 + 138

162=1.138 +24

138=5.24+18
24=1.18+6
18=3.6+0

This tells us that the last nonzero remainder appearing in these equations, namely,
the integer 6, is the greatest common divisor of 12378 and 3054:

6 = gcd(12378, 3054).
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To represent 6 as a linear combination of the integers 12378 and 3054, we start with
the next-to-last of the displayed equations and successively eliminate the
remainders 18, 24, 138, and 162:

6 =24-18
= 24— (138 - 5.24)
= 624138
= 6(162 - 138) — 138
= 6162 —17.138
= 6162 — 7(3054 — 18.162)
= 132.162 — 7.3054
= 132(12378 — 4.3054) — 7.3054
—  132.12378 + (—535)3054

Thus, we have
6 = gcd(12378, 3054) = 12378x + 3054y,

where x = 132 and y = —535. Note that this is not the only way to express the
integer 6 as a linear combination of 12378 and 3054; among other possibilities, we
could add and subtract 3054.12378 to get
6 =(132+3054)12378 + (—535 — 12378)3054 =
3186.12378 + (—12913)3054.
Theorem 7. Ifk > 0,thengcd(ka, kb) = k ged(a, D).

Proof. If each of the equations appearing in the Euclidean Algorithm for a and b,
multiplied by k, we obtain

ak=q1(bk) +rik 0 <rik<bk
bk=qy(rik) +mk 0<mk<rk

rn—2k = qn(rn—1k) + rpk - 0 <rpk <rp—1k

But this is clearly the Euclidean Algorithm applied to the integers ak and bk, so that
their greatest common divisor is the last nonzero remainder r,k;that is,

gcd(ka, kb) = ry,k =k gcd(a, b),
Hence the theorem. ]

Corollary 5. For any integerk =0, gcd(ka, kb) = |k|gcd(a, b).
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Proof- We already have, if k >0, then gcd(ka, kb) = k gcd(a, b). Thereforeit sullces
to consider the case in which k£ < 0. Then —k = |k|> 0 and, by Theorem 7,
ged(ak, bk) = ged(—ak, —bk)
ged(alkl, blk|)
|k| gcd(a, b).
Hence the result. 1

De nition 4. The least common multiple of two nonzero integersaandb,denoted by
lem(a, b), is the positive integer m satisfying the following:

(1) a|m and b|m.
(11) Ifa|c and b|c, with ¢ >0, then m <c.

As an example, the positive common multiples of the integers -12 and 30 are

60, 120, 180, ... hence, lecm(—12, 30) = 60.
Theorem 8. For positive integersaandb

gcd(a, b) lem(a, b) = ab.

Proof. Let d = gcd(a, b) and let m = ab/d, then m >0.
Claim: m = lcm(a, b)

Since d is the common divisor of @ and b we have a = dr, b = ds for in-tegers » and
s. Then m = as = rb. This implies, m a (positive) common multiple of a and b.

Now let ¢ be any positive integer that is a common multiple of @ and b, then ¢ = au
= bv for some integers u and v. As we know, there exist integers x and y satisfying d
=ax+ by. In consequence,

< =ed =claxtby) =@+ C)y=vx+uy.
m  ab ab b a

This equation states that m|c, this implies, m<c. By the definition of least common
multiple, we have m = Icm(a, b). Hence the claim. Therefore gcd(a, b) lcm(a, b) =
ab. [

Corollary 6. For any choice of positive integersaandb,lcm(a, b) = abifand only if
gcd(a, b)=1.

Definition 5. Ifa, b, c,are three integers, not all zero,gcd(a, b, c) is definedto be the
positive integer d having the following properties:

(1) dis adivisor of each of a, b, c.

(i1) If'e divides the integers a, b, c, then e <d.

For example gcd(39, 42, 54) = 3 and gcd(49, 210, 350)=17.
Example: Consider the linear Diophantine equation
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172x + 20y = 1000

Applying the Euclidean’s Algorithm to the evaluation of gcd(172, 20), we find that
172 = 820+ 12

20 = 1.12+8
12 =18+4
8 = 24,

whence gcd(172, 20) = 4. Because 4|1000, a solution to this equation exists. To
obtain the integer 4 as a linear combination of 172 and 20, we work
backward through the previous calculations, as follows:

4 =12-38
= 12-(20 - 12)
= 212-20

= 2(172 - 8.20) — 20
= 2172+ (~17)20

Upon multiplying this relation by 250, we arrive at

1000 = 250.4
= 250(2.172 + (~17)20)
— 500.172 + (—4250)20,

so that x = 500 and y = —4250 provide one solution to the Diophantine equation in
question. All other solutions are expressed by

x =500 + (20/4)¢ = 500 + 5¢

y = —4250 — (172/4)t = —4250 — 43¢,

for some integer t.

If we want to find positive solution,if any happen to exist. For this, # must be chosen
to satisfy simultaneously the inequalities

5t+500>0  —43¢t—4250>0

or
36
—9843 > ¢> —100.

Because ¢ must be an integer, we are forced to conclude that # = —99. Thus, our
Diophantine equation has a unique positive solution x = 5, y = 7 corresponding to the
value 1 = —99.

THE FUNDAMENTAL THEOREM OF ARITHMETIC
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Definition 6.4n integerp > 1 is called a prime number, or simply a prime,if its only
positive divisors are 1 and p. An integer greater than 1 that is not a prime is termed
composite.

Among the first ten positive integers, 2, 3, 5, 7 are primes and 4, 6, 8, 9, 10 are composite
numbers. Note that the integer 2 is the only even prime, and according to our definition the
integer 1 plays a special role, being neither prime nor composite.

Theorem 1. If p is a prime and p|ab, then pla or p|b.

Proof. If p|a, then we need go no further, so let us assume that p - a. Becausethe only
positive divisors of p are 1 and p itself, this implies that gcd(p, a) = 1. Hence, by Euclid’s
lemma, we get p|b. [J

Corollary 8. If p is a prime and playay - - - ay, then pla for some k, where 1 <k<n.

Proof. We proceed by induction on n, the number of factors. When n = 1,the stated
conclusion obviously holds; whereas when n = 2, the result is the content of Theorem 10.
Suppose, as the induction hypothesis, that n > 2 and that whenever p divides a product of

less than n factors, it divides at least one of the factors. Now let plajay- - -a;. From
Theorem 10, either p|a,or plajas - - - a,—11f pla,, then we are through. As regards the
casewhere plajay- - ‘a,—1, the induction hypothesis ensures that p|ay for some choice of &,
with 1 <k<n— 1. In any event, p divides one of the integers ay, ap, - -+, a.

Theorem 2. (Fundamental Theorem of Arithmetic.) Every positive integern >1 can
be expressed as a product of primes, this representation is unique, apart from the
order in which the factors occur.

Proof. Either n is a prime, there is nothing to prove. If n is composite,then there
exists an integer d satisfying d|n and 1 < d < n. Among all such integers d, choose

p1 to be the smallest (this is possible by the Well-Ordering Principle). Then P; must
be a prime number. Otherwise it too would have

a divisor ¢ with 1 < g < pjp; but then ¢|p; and pi|n imply that g|n, which
contradicts the choice of p1 as the smallest positive divisor, not equal to 1, of n. We
therefore may write n = pyn, where p; is prime and 1 < n;< n.If nthappens to be a

prime, then we have our representation. In the contrarycase, the argument is
repeated to produce a second prime number p; such that n; = pony; that is,

n=pi1Pny 1 <nmpy<my.

If ny is a prime,then it is not necessary to go further. Otherwise, write ny= p3n3,
with p3a prime:

n=p1Pyp3n3 1 <n3<ny.
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The decreasing sequence n > n1> np>- - > 1 cannot continue indefinitely, so that

after a finite number of steps n;—1 1s a prime, call it, px. This leads to the prime
factorization

n=p\p2-- Pk

To establish the second part of the proof-the uniqueness of the prime factor-ization,
let us suppose that the integer n can be represented as a product of primes in two
ways, say,

n=pip2 P qiq2tqs TS,
where the p; and g; are all primes, written in increasing magnitude so that
PISP2S " Spr  q1=q2="""=(s

Because p1|q192- - ‘g5 , Corollary 9 tells us that p; = g for some £; but then p; > g;.

Similar reasoning gives g1 > p1, whence p;= ¢g1. We may cancelthis common factor
and obtain

pap3 - Pr4q293 " s
Now repeat the process to get p» = ¢» and, in turn,

p3p4 - Pr=4394 - gs.

Continue in this fashion. If the inequality » < s were to hold, we would eventually
arrive at

1'=grt19r+27 G5
which is absurd, because each g;> 1. Hence, r = s and

pP1=41,p2=492, """, Pr=4r
making the two factorizations of n identical. The proof is now complete.

THE THEORY OFCONGRUENCES

Definition 1. Letnbe a fixed positive integer. Two integersaandbaresaid to be
congruent modulo n, symbolized by

a = b(modn)

if n divides the dil lerence a — b, that is, provided that a — b = kn for some integer
k.

Theorem 1. For arbitrary integers a and b, a = b(modn) if and only if a and b leave
the same nonnegative remainder when divided by n.
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Proof. Suppose a = b(modn), so that a = b + kn for some integer k. Upondivision by
n, b leaves a certain remainder 7; that is, b = gn + r, where 0 <r < n. Therefore,
a=b+kn=(gn+r)tkn=(q+kn+r

which indicates that a has the same remainder as b.
On the other hand, suppose we can write @ = gin + r and b = gon + r, with the same

remainder 7 (0 <r < n). Then
a—b=(qn+tr)=(qan+r)=(q1 — q2)n,
whence n|a—b. That is, a=b(modn). [

Theorem 2. Letn > 1 be fixed anda, b, c, dbe arbitrary integers. Thenthe following
properties hold:

. a = a(modn).
. If a = b(modn), then b = a(modn).

1

2

3. If a = b(modn) and b = c(modn), then a = c(modn).

4. If a = b(modn) and ¢ = d(modn), then a + ¢ = b + d(modn) and ac =
bd(modn).

5. If a = b(modn), then a + ¢ = b + c(modn) and ac = bc(modn).

6. If a = b(modn), then ak = bk(modn) for any positive integer k.

Problem 1: Show that 41 |220— L.
Solution: We have

2°= —9(mod 41).
Therefore
2= (—9) (mod 41),
This implies that
20 4
2%%= (—9y}(mod 41).

But we have (—9)4 =81.81 and 81 = —1(mod 41). Therefore
22%= (“1)(=1)(mod 41).

This implies 41)22°— 1.
Problem 2: Find the remainder obtained upon dividing the sum 1! + 2! +

31+4!1+---+99! + 100!
by 12.
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Solution: We have 4! = 24 = 0(mod 12); thus, for k> 4,
kl=4156---k=0.5.6 - k=0(mod 12).

Therefore

M+214+31+4!+---+100! =11 +2!+3!1+0+ - -+ 0 =9(mod 12).
The remainder 9.

Theorem 3. Ifca=cb(mod n),thena=b(mod n/d),whered = gcd(c, n)
Proof. By hypothesis, we can write

c(a — b)=ca — cb = kn, (3.1)

for some integer k&. Knowing that gcd(c, n) = d, there exist relatively prime integers
r and s satisfying ¢ = dr, n = ds. When these values are substituted in Eq. 3.1 and
the common factor d canceled, the net result is

ra — b) =ks.

Hence, s|r(a—b) and gcd(r, s) = 1. Euclid’s lemma yields s|(a—b), which implies
a=b(mod s); in other words, a=b(mod n/d). ]
Corollary 12. Ifca=cb(mod n) andgcd(c, n) = 1,thena=b(mod n).

Corollary 13. Ifca=cb(mod p) andp - c,wherepis a prime number, thena = b(mod p).

Proof. The conditions p - ¢ and p a prime imply that gcd(c, p) = 1. Then byCorollary 12,
a=b(mod p).

PRINCIPLE OF MATHEMATICAL INDUCTION

The principle of mathematical induction
Let P(n) be a given statement involving the natural number 7 such that
3. The statement is true for n =1, i.e., P(1) is true (or true for any fixed natural number) and
4. If the statement is true for n = k (where £ is a particular but arbitrary natural number), then
the statement is also true for n = k + 1, i.e, truth of P(k) implies the truth of P(k + 1). Then
P(n) is true for all natural numbers 7.

Solved Examples
Short Answer Type

Prove statements in Examples 1 to 5, by using the Principle of Mathematical Induction for all
neN, that :

Example 1 1 +3+5+ ... +(2n—1)=n2
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Solution Let the given statement P(n) be defined as P(rn) : 1 +3 + 5 +...+ (2n— 1) =n?, for n
eN. Note that P(1) is true, since
P(l):1=1°

Assume that P(k) is true for some k€N, i.e., P(k) : 1 +3+5+

et Rk-1)=k2

Now, to prove that P(k + 1) is true, we have
1+3+5+..+QRk—-1)+Q2k+1)
=I*+Q2k+1) (Why?)
=k2+2k+1=(k+1)2

Thus, P(k + 1) is true, whenever P(k) is true.

Hence, by the Principle of Mathematical Induction, P(n) is true for all neN.

Example 2 2%"— 1 is divisible by 3.

Solution Let the statement P(#) given as

P(n) : 22n — 1 is divisible by 3, for every natural number 7.

We observe that P(1) is true, since

22— 1=4-1=3.11is divisible by 3.

Assume that P(n) is true for some natural number £, i.e., P(k): 2% 1is
divisible by 3, i.e., 2% _1= 3g, where geN Now, to prove that P(k + 1) is
true, we have

Plk+1):22(k+1)—-1=22k+2-1=22k.22 -1

=2 4-1=32% +2%-1

=3.2%+34

=3 (2% + q) = 3m, where meN

Thus P(k + 1) is true, whenever P(k) is true.

Hence, by the Principle of Mathematical Induction P(») is true for all natural numbers #.
Example 3 2n+ 1 < 2", for all natual numbersne3.

Solution Let P(n) be the given statement, i.e., P(n) : (2n+ 1) <2"for all naturalnumbers, ne 3. We
observe that P(3) is true, since

23+1=7<8=23
Assume that P(n) is true for some natural number £, i.e., 2k + 1 < 2k
To prove P(k + 1) is true, we have to show that 2(k+ 1)+ 1 < 2K Now, we have 2+ 1)+ 1
=2k+3
822k +1+2<2k+2<2k.2=2k+1.
Thus P(k + 1) is true, whenever P(k) is true.

Hence, by the Principle of Mathematical Induction P(») is true for all natural numbers, ne 3.

Long Answer Type
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Example 4 Define the sequencea;,a,,as... as follows :
ar=2, a,= 5 a,_1, for all natural numbers » €2.
(ii1) Write the first four terms of the sequence.
(iv) Use the Principle of Mathematical Induction to show that the terms of the sequence satisfy
the formula a,, = 2.5"" for all natural numbers.
Solution
r Wehavea; =2
ar= 5612_1: 5611: 52=10 as= 5a3_1= 5a2= 5.10=50
as= 5614_1: 5613: 5.50 =250
r Let P(n) be the statement, i.e.,
P(n) : a, = 2.5 n—1 for all natural numbers. We observe that P(1) is true
Assume that P(n) is true for some natural number £, i.e., P(k) : ax = 2.5 . Now to prove
that P (k + 1) is true, we have
Pk+1): a1 =5a=5.25"
=2.5F =2 5% D
Thus P(k + 1) is true whenever P (k) is true.
Hence, by the Principle of Mathematical Induction, P(#) is true for all natural numbers.

Example 5 The distributive law from algebra says that for all real numbersc,a;anda,, we have ¢
(a1+ ap) = ca+ cas.

Use this law and mathematical induction to prove that, for all natural numbers, n= 2, if ¢, a;, a> ,
...,y are any real numbers, then

c(a+ayt ... +a,) =cart+ cay+ ... + ca,

Solution Let P(n) be the given statement, i.e.,

P(n):c(a1+a;+...+a,) =ca + ca; + ... ca, for all natural numbers n= 2, for c, ay, az, ... a,€R.
We observe that P(2) is true since

(by distributive
c(a+ ap) = car+ ca law)
Assume that P(n) is true for some natural number &, where &> 2, i.c.,
+ca,+..+
P(k):c(a; tax+ ...t ay) = caicay
Now to prove P(k + 1) is true, we have
Plk+1):c(ay +tar+..+ar+ap)
=c((a1tax+t..+ap)+ae)
(by distributive
=c(ay tay+..+ay)+ca law)

=ca; tcap+t..+tca,tca

Thus P(k + 1) is true, whenever P (k) is

true.

Hence, by the principle of Mathematical Induction, P(») is true for all natural numbers n= 2.
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Example 7 Prove by the Principle of Mathematical Induction that
Ix11+2x21+3x31+ . .+nxnl=(n+1)! -1 for all natural numbers 7.
Solution Let P(n) be the given statement, that is,

P(r): 1 x11+2x21+3x314+ . +nxn!l=(m+1)! -1 for all natural numbers n. Note that P
(1) is true, since
P(:I1x1!=1=2-1=21—-1.

Assume that P(#n) is true for some natural number £, i.e.,
Plh) : 1 x 11 +2x21+3 %31+ . +kxkl=(k+1) -1
To prove P (k + 1) is true, we have
Ph+1):1x11+2x21+3x31+  +kxkl+(k+1)x(k+1)!

1) G+ =-1+C(k+1D)!x(k+1)

(i) k+1+1D*k+1)!-1

) k+2)(k+ 1) —-1=((k+2)! -1
Thus P (k + 1) is true, whenever P (k) is true. Therefore, by the Principle of Mathematical
Induction, P (n) is true for all natural number #.
Example 8
Prove, by Mathematical Induction, that
2 2 2 2 n(2n+1)(7n+1)
(n+1  +(+2) +(n+3) +..+(2n) = S

1s true for all natural numbers n.

Discussion
Some readers may find it difficult to write the L.H.S. in P(k + 1). Some cannot
factorize the L.H.S. and are forced to expand everything.

For P(1),

LHS. =2=4,  RHS. = X3x8_

4. P(1) is true.

Assume that P(k) is true for some natural number k, that is

(k1 s 2 + 3 o ok = K2 k)
(D
For P(k+ 1),
(k+2) +(k+3) +...+ (k) + 2k +1) + (2k + 2)° (There is a missing

term in front
and  two more terms at the back.)

=(k+2) +(k+3) +...+(2k)’ + 2k +1)* + 4(k + 1)’
(k+1P +(k+2) +(k+3) +...+ (2k)" + 2k +1)° +3(k +1)°
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+(2k+1) +3(k+1)° by (1)

_ k(K +1)7k +1) (
6

2k +1)
6
two terms)

(21‘” [7k> + 13k + 6]+ 3(k + 1)

—

[k(7k +1)+ 6(2k +1)]+3(k +1)’ (Combine the first

_ (2k+1)

5 (7k + 6)(k +1)+ 3(k + 1)’

k

Py

+

1

N—"

[(2k +1)7k +6)+18(k +1)]

+ o

—
~

137k +24]

k+1)2(k +1)+1][7(k + 1)+ 1]
6

—~
N

k+1

~—"

(2k +3)7k +8) = (

P(k+1) is true.
By the Principle of Mathematical Induction, P(n) is true for all natural numbers, n .

Example 9
Prove, by Mathematical Induction, that

1~n+2(n—1)+3(n—2)+...+(n—2)-2+n-1=%n(n+1)(n+2)

1s true for all natural numbers n

Discussion
The "up and down" of the L.H.S. makes it difficult to find the middle term, but you can
avoid this.

Solution

Let P(n) be the proposition:1-n +2(n —1)+ 3(n—2)+...+(n—2)-2+n-1:én(n+1)(n+2)
For P(1),

LHS.=1, RHS.= éx1x2x3=1 : s P(1) is true.

Assume that P(k) is true for some natural number k, that is

1-k+2(k—1)+3(k—2)+...+(k—2)-2+k-1:ék(k+1)(k+2)

e (1)
For P(k+ 1),
1-(k+1)+ 2k +3(k = 1) +...+ (k —=1)-3+k -2+ (k +1)-1
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=1-(k+1)+2[(k =1)+1]+3[(k = 2)+ 1]+...+ (k =1)- 2 +1]+k - [1+ 1]+ (k +1)-1
=1-k+2(k-1)+3(k-2)+..+(k-2)-2+k-1
+1 42 +3 ot (k=1) +k +(k+1)

arithmetic)

=%k(k+1)(k+2)+%(k+l)(k+2) by (1)

(The bottom series is

=l i 2 3]= < (e Dfte 1) 1)k 1) 2]

P(k + 1) is true.
By the Principle of Mathematical Induction, P(n) is true for all natural numbers, n .

Example 10
Prove, by Mathematical Induction, that n(n + 1)(n + 2)(n + 3) is divisible by 24, for all natural
numbers n.

Discussion
Mathematical Induction cannot be applied directly. Here we break the proposition into
three parts. Also note that 24 = 4x3x2x1 =4!

Solution

Let P(n) be the proposition:

1. n(n + 1) is divisible by 2! =2.

2. n(n+ 1)(n + 2) is divisible by 3! =6.

3. n(n + 1)(n + 2)(n + 3) is divisible by 4! =24.

For P(1),

1. 1x2 =2 is divisible by 2.

2. 1x2x3 = 6 is divisible by 3.

3. 1x2x3x4 = 24 is divisible by 24. P(1) is true.

Assume that P(k) is true for some natural number k, that is
1. k(k + 1) is divisible by 2, thatis, k(k+ 1) =2a

(1)
2. k(k + 1)(k + 2) is divisible by 6, that is, k(k + 1)(k + 2) = 6b

2)
3. k(k + 1)(k + 2)(k + 3) is divisible by 24,

that is, k(k + 1)(k +2)(k + 3) =24c
3)

where a, b, ¢ are natural numbers.

For P(k+1),
1. k+Dk+2)=k(k+1)+2(k+1)=2a+2(k+1),by (1)
=2[latk+1]
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, which is divisible by 2.
2. (k+ D(k+2)(k+3)=k(k + D)k +2) + 3k + 1)k +2)

—6b+3x2[a+k+1],by(2), (4)

—6[b+a+k+1]

(5)
, which is divisible by 6.

3. k+Dk+2)k+3)k+4)=kk+1)(k+2)(k+3)+4k+ 1)k+2)k+3)

=24c+4x6[b+a+k+1] ,by(3),(5)

=24[c+tb+ta+k+1]

, which is divisible by 24 .
o P(k + 1) is true.
By the Principle of Mathematical Induction, P(n) is true for all natural numbers, n .
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Possible Questions

2 Mark questions
. Define the divisibility over a field.
. Define the greatest common divisor of two polynomials over a field.
. State the Division Algorithm.
. Define relatively prime polynomials.
. Define quotient and remainder.
. State the Euclidean algorithm.
. Define reducible.
. Define irreducible.

O 00 I N L A W N =

. State the principles of mathematical induction.

10. State the Fundamental theorem of Arithmetic.

11. Write the any two basic properties of the Greatest Common divisor.
12. Write the any two basic properties of the Prime factors.

13. Define residue.

14. Write any two properties of congruence relation.

6 Mark Questions
1. Prove that 17+2°+3%+.... +n*= n(n+1)(2n+1)/6 by Principle of Mathematical induction.
2. Find a+b (mod n), ab (mod n) and (a + b)?(mod n) if a=4003, b=-127, n=85.
3. Prove that the sum of the first n odd integers is n?.
4. State and prove the Principles of Mathematical Induction.

5. Find the quotient q and the remainder r as defined in the Division algorithm
1) a=500,b=17  ii)a=-500,b=17 iii)a=-500 ,b=-17
6. Define greatest common divisor& Find the greatest common divisor of a and b and
express it in the form ma+nb for suitable integers m and n .
1) a=26 ,b=118.
7. State and prove the Division Algorithm.
8. Solve the following congruence i ) 3x= 1 (mod 5) ii)i)3x= 1 (imod 6)
9. State and prove the fundamental theorem of Arithmetic .
10. Prove that ,if a= x(modn)andb = y(modn), then
i) atb= x + y(modn) and ii) ab= xy(modn) .
11. State and prove Euclidean Algorthim.
12. State and prove Euclidean theorem.
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Possible Questions
Question Opt1l Opt 2 Opt 3 Opt4 Answer

Two number are said to be relatively prime if their greatest
.................... divisor is 1. Zero common least common  [infinite greatest common
Let m be any fixed positive integer. Then an integer
a is said to be congruent to another integer b
modulomif................... m|(a-b) m|(a+b) m|(ab) mja m|(a-b)
If x>0 for any integer then
ged(ax,bX)=.....ccooiiiiiinn, gcd (a,b) x gcd (a,b) (x+1)gcd (a,b)  [(x-1) gcd (a,b) x gcd (a,b)

Let f(x),g(x)#0 be any two polynomials of the
polynmial domain F[x],over the field F. Then there
exist uniquely two polynomials q(x) & r(x) in F[x] [f(x)=
suchthat .................... q(x)g(x)+r(x)

f(X)= a()+r(x) |f(x)=9(x)g(x)

f(X)=g9(x)+r(x)

f(X)= 9(x)g(x)+r(x)

Let f(x),g(x)#0 be any two polynomials of the
polynmial domain F[x],over the field F. Then there
exist uniquely two polynomials q(x) & r(x) in F[x]
such that f(x)=q(x)g(x)+r(x) where r(x)....

equal to zero not equal to zero(less than zero

more than zero

equal to zero

Division algorithm for polynomials over a field deg
r(X) cooiinenn deg g(x) < > =

+

Prepared by: V.Kuppusamy, Department of Mathematics,KAHE




Algebra / 2019-2022 Batch

In the division algorithm, the polynomial q(x) is

called the .......... on dividing f(x) by g(x) quotient remainder divisior diviend quotient
In the division algorithm, the polynomial q(x) is

called the quotient on dividing f(x) by g(x) and the

polynomail r(x)is called the ........................ quotient remainder divisior diviend remainder
A polynomial domain F[x] over a field F is a commutatice

principal................... ring ideal ring associative ring |division ring ideal ring
A polynomial ................. F[x] over a field F is a

principal idea Iring domain range co domain quotient domain

A polynomial domain F[x] overa.............. Fisa

principal ideal ring ring domain range field field

In a Euclidean algorithm ,Let F be a field and f(x)

and g(x) be any two polynomials in F[x], not both

of whichare ............................ Zero one two three Zero

In a Euclidean algorithm ,Let F be a field and f(x)

and g(x) be any two polynomials in F[x], not both

of which are zero.Then f(x and g(x) have a greatest least common greatest common
........................... d(x) common divisor |common divisor |divisor equal divisor divisor

Let F be a field and f(x) and g(x) be any two
polynomials in F[x], not both of which are
zero.Then f(x and g(x) have a greatest common

d(x)=m(x)f(x)+n

d(x)=m(x)f(x)-

d(x)=F(x)+n(x)g(

d(x)=m(x)f(x)+n(x)g(

divisor d(x),it can be expressed in the form........ (x)a(x) n(x)g(x) X) d(x)=m(x)f(x)+n(x) |x)

In a Euclidean algorithm,the expression

d(x)=m(x)f(x)+n(x)g(x) for .................... m(x)

and n(x) in F[x]. ring field polynomials domain polynomials
The greatest common divisor should be a

................... polynomial Zero monic double triple monic

If a(x)#0 and f(x) are elements of F[x] then a(x) is a

.................. of f(x) quotient remainder divisor dividend divisor

If a(x)#0 and f(x) are elements of F[x] then a(x) is a
divisor of f(x)iff there is a polynomial b(x) be in
f[x] then

f(x)=a(x)+b(x)

f(x)=a(x)-b(x)

f(x)=a(x)b(x)

f(x)=a(x)/b(x)

f(x)=a(x)b(x)

The divisor of f(x) symbolically write

a(x)/f(x)

f(x)/a(x)

b(X)/F(X)

a(x)/b(x)

a(x)/f(x)
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A is an element of F[x] which has a

multiplicative inverse. Zero unit two three unit

A unit is an element of F[x] which has

................... inverse. finite infinite multiplicative  |zero multiplicative
A unit is an element of F[x] which has a

multiplicative ................... ring field range inverse inverse
All the polynomials of ................ degree

belonging to F[x] are units of F[x]. 1st 2nd zero nth zero

All the polynomials of zero degree belonging to

F[x]are.................. of F[x]. units field ring range units
The....ooovviiiiiin. elements of F are the only units

of F[x]. Zero non zero finite infinite non zero
The non zero elements of F are the ................. of

F[x]. only units not only units  |double units Zero units only units
If f(x) and g(x) are polynomials in F[x], then we call

f(x) and g(x) associates if .................... for some

O#c c F. f(x)=9(x) f(x)=c/g(x) f(x)=c+g(x) f(x)=cg(x) f(x)=cg(x)
Iff(x)and g(x)are .................... in F[x], then we

call f(x) and g(x) associates if f(x) =c g(x) for some

O#c e F. field ring polynomials domain polynomials
If f(x) and g(x) are polynomials in F[x], then we call

f(x) and g(x) associates if f(x) =c g(x) for some

................... O=ceF O>ceF O<ceF O#c eF O#c ¢ F
Two non zero polynomials f(x) and g(x) in F[x] are

associates iff ........................ And fx)+g(X) & f)g(x) & fx)/g(x) & g(x)-[f(x)/g(xX) &
............................ g(x)/f(x) g(x)f(x) f(x) g(x)/f(x) f(x)/g(x) & g(x)/f(x)
Two non zero polynomials f(x) and g(x) in F[x] are

................ iff f(x)/g(x) and g(x)/f(x) commutates associates divisible distributive associates
The divisorsof f(x) are called

IS divisors. proper improper finite infinite improper
All other divisors of f(x), if there are any , are called

S, divisors. proper improper finite infinite proper
ffx)bea.......oeevnnne of positive degree, then

f(x) is said to be irreducible over F. function domain polynomial range polynomial
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If f(x) be a polynomial of .............. degree, then

f(x) is said to be irreducible over F. Zero positive negative infinite positive

If f(x) be a polynomial of positive degree, then f(x)

issaidtobe ................... over F. irreducible reducible singular non singular irreducible
An irreducible polynomial is otherwise called

AS.itiiriiiinnn, point prime power degree prime
Ithas.............. proper divisors in F[x]; f(x) is

irreducible over F. no One two infinite no

It has no proper divisors in F[x]; f(x) is

...................... over F irreducible reducible singular non singular irreducible
Ithasa.................. divisors in F[x]; f(x) is

reducible over F. finite infinite proper improper proper

It has a proper divisors in F[x]; f(x)

1S, 0 over F. irreducible reducible singular non singular reducible
......................... depends on the field. irreducibility reducibility singularity non singularity irreducibility
Irreducibility depends on the ................... field domain range ring field

Two polynomials are said to be relatively prime if

their greatest common divisor is ................ 0 1 2 3 1
................... polynomials are said to be

relatively prime if their greatest common divisor is

1. zero one two three two

Two polynomials are saidtobe ...................... if

their greatest common divisor is 1. field prime relatively prime |uniquely prime relatively prime
Two polynomials are said to be relatively prime if greatest

their ................... divisor is 1. Zero common leatest common |infinite greatest common
Let m be any fixed positive integer.Then an integer

a is said to be congruent to another integer b

modulomif................. m/(ab) m/(a-b) m/(a+b) m/a m/(a-b)
Let m be any fixed .............. integer.Then an

integer a is said to be congruent to another integer b

modulo m if m/(a-b). positive negative zero infinite positive
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Let m be any fixed positive integer.Then an integer

aissaidtobe............. to another integer b

modulo m if m/(a-b). division range congruent domain congruent
Let m be any fixed positive integer.Then an integer

a is said to be congruent to another integer b

................ m if m/(a-b). multiplication  [addition division modulo modulo

Prepared by: V.Kuppusamy, Department of Mathematics,KAHE



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc.MATHEMATICS COURSENAME: ALGEBRA
COURSE CODE: 18MMU102 UNIT: 111 BATCH-2018-2021
UNIT-III

Systems of linear equations, row reduction and echelon forms, vector equations, the matrix
equation Ax=Db, solution sets of linear systems, applications of linear systems, linear
independence.
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A linear equation in variables x1, x2,- - -, X5 is an equation of the form
ayxitayxpt -+ apxy=b,

where a1, ap,- - ‘a, and b are constant real or complex numbers. The constant a;is

called the coelIcient of x;and b is called the constant term of theequation.

A system of linear equations (or linear system) is a finite collection of linear
equations in same variables. For instance, a linear system of m equations in

n variables x1, xo,- - -, x;,;, can be written as

ayixit+appxot +ay,= by
az1x1+ apxyt +ay,=b
' 9.1)

am1 X1+ ampxot -+ amp= by

A solution of a linear system is a n-tuple (sy, s2, - -, s5,) of numbers that makes each
equation a true statement when the values s, s2,- - -, s, are sub-stituted for x1, xo,- -

,, Xp, respectively. The set of all solutions of a linear system is called the solution
set of the system.

Any system of linear equations has one of the following exclusive conclusions.
(a) No solution.

(b) Unique solution.

(¢) Infinitely many solutions.

A linear system is said to be consistent if it has at least one solution and is

said to be inconsistent if it has no solution.

The system of equations (9.1) is said to be homogeneous if all b; are zero;
otherwise, it is said to be non-homogeneous.

The system of equations (9.1) can be expressed as the single matrix equation

AX=B, (9.2)

vector (column matrix) X that satisfies the matrix equation (9.2) is also the solution
of the system.

Definition 21. The matrix [AB] which is obtained by placing the constantcolumn
matrix B to the right of the matrix A is called the augmented matrix. Thus the
augmented matrix of the system AX =B is

a da crd D
[AB]= 2 22 - 2n 2
a a a b

11 12 In 1

a a ceea b

ml m2 mn m
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Theorem 35. The systemAX = Bis consistent if and only ifAand [AB] have the same
rank.

System of non-homogeneous Equations
If we are given with a system of m equations in n unknowns, proceed as follows:

1. Write down the corresponding matrix equation AX = B.

2. By elementary row transformations obtain row echelon matrix of the
augmented matrix [4B].

3. Examine whether the rank of 4 and the rank of [4B] are the same or not.

Case 1 If rank of 4 =/rank of [4AB], then the system is inconsistent and has no solution.
otherwise, it is said to be non-homogeneous.

The system of equations (9.1) can be expressed as the single matrix equation

AX=B, (9.2)
Any vector (column matrix) X that satisfies the matrix equation (9.2) is also the
solution of the system.

Definition 21. The matrix [AB] which is obtained by placing the constantcolumn

matrix B to the right of the matrix A is called the augmented matrix. Thus the

augmented matrix of the system AX =B is
a a

S P
[AB] = 2 2 o 2n 2
a a a b
112 In 1
S AN a B
ml  m2 mn m
Theorem 35. The systemAX = Bis consistent if and only ifAand [AB] have the same

rank.

System of non-homogeneous Equations
If we are given with a system of m equations in n unknowns, proceed as follows:

1. Write down the corresponding matrix equation AX = B.

2. By elementary row transformations obtain row echelon matrix of the
augmented matrix [4B].

3. Examine whether the rank of 4 and the rank of [4B] are the same or not.
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Case 1 If rank of 4 =/rank of [4AB], then the system is inconsistent and has no
solution.
Case 2 If rank of 4 = rank of [4AB], then the system is consistent.

Case 2a If rank of 4 = rank of [4B] = n = number of unknowns, then the
system has unique solution.

Case 2b If rank of A = rank of [AB] < n = number of unknowns, then the
system has infinitely many solutions. We assign arbi-trary values to
(n—r) unknowns and determine the remaining » unknowns uniquely.

Solution of System of Linear Equations
Any given system of linear equations may be written in term of matrix, such that

AX=B (1)
where
a, b, ¢ X d,
A=la, b, c¢,|,X=|y|and B=|d,
a; by c; z d,

A is known as co-efficient matrix.
If we multiply both sides of (i) by the reciprocal matrix A™', then we get A" AX =A"'B

(A'AX=A"B = IX=A"B = X=A"'B
X A, A, Al [4,
= y =% B, B, B, |x|d,| where A0
z |C, C, Cy] |ds
[Ad, +A,d, +Ad,
= % B,d, + B,d, + B,d, ...(ii)
1 C,d; +C,d, +Cydy

Hence from (ii) equating the values of x, y and z we get the desired result.

This method is true only when (i) A# 0 (i) number of equations and number of unknowns (e.g. x,
y, z etc.) are the same.

Example 1. Solve the equations with the help of determinants :
x+ty+z=3, x+2y+3z7=4, x+4y+9z=06.

111
Sol.  The co-efficient determinantis A= 2 3| =2=%=0

1 49

x=l><4=2
2

o | —
N b~ W
N S
O W =
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1 3 1 .
y=ll 4 3| = y==2)=1 =>y=1
2 2
16 9
1 1 +3 |
z=%1 2 +4|= z=5[—4+6+(4—6)]=0:> z=0
_1 4 +6

Solutionisx=2,y=1,z=0.

Row reduced Echelon Form:

In addition to the above three conditions, if a matrix satisfies the following conditions:

Each column which contains a leading entry of a row has all other entries zeros, then the matrix is said to
be in row reduced echelon matrix.

Row Rank and Column Rank of a Matrix

Row rank of a matrix, say A is the number of non zero rows in the row echelon matrix A and is denoted

by pg (A).

Column Rank of a matrix, say A is the number of non zero columns in the column echelon matrix A and
is denoted by p.(A).

Note: (i) Every matrix is row equivalent to row echelon matrix.

(i1) Every matrix is column equivalent to a column echelon matrix.
(ii1) If a matrix A is in row echelon form, then its transpose is in column echelon form.

01 3 -1 3 1

01 3 0 2

Example. 1: Reduce the matrix A= to the row reduced echelon form and
026 1 3 9
0 4 12 -2 10 7

hence find its rank.
Solution: Applying R, > R,-R,,R;, - R,-2R,;and R, = R,-4R, on the matrix A,

01 3 -1 3 1

0001 -1 2
A=

0003 37

000 2 23

Applying R, > R,#R,,R; > R,-3R,,and R, - R,-2R,
01 3 -1 3 1
0001 -12
000 0 0 1
100 00 0 -1
Applying R, - R,-3R;,R, - R,-2R;,and R, > R,+R;
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01 3 -1 3 1

0001 -1 2
A:

0000 0 1

0000 O O

This is the required row reduced echelon form of the matrix A. Since, the number of non zero rows is 3,
thus row rank of A is 3.

System of Linear Equations and Matrices
Linear Equation
y=mx A
is an equation, in which variable y is expressed in terms of x and the constant m , is
called Linear Equation. In Linear Equation exponents of the variable is always ‘ one’.

Equation 1 is also called equation of line.
Linear Equation in n variables:

ax, +a,x, +ax;+...+ax, =b 2

where x;,x,,x;,...,x, are variables and

a,,a,,q,,...,a,and b are constants.

Linear System:

A Linear System of m linear equations and n unknowns is:

a, X, + a,Xx, + ax;, +...+a,x, =b
Ay X, + Xy + Ay X + ...t a,,x, =D,

Ay X, + A3y X, + a3, X+t ay,x, = b,

where x,,x,,Xx,,...,x, are variables or unknowns and a’s and b’s
are constants.
Solution:

Solution of the linear system (3) is a sequence of n numbers
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S1,8,5,83,...,5, , which satisfies system (3) when we substitute

'*n 5

X, = 8,X, =8,5,X; = 85,..,X, =, .

Example.l. Solve the system of equations

x -3y =-3 -1
2x + y =8 -2
Solution:
2E; +Ex=
—-2x + 6y =6
2x +y =38

+7y = 14 =y=2
From equation 1

x=-3+3y
x=-3+6 =3

Solutionis x=3 and y=2
Check Substitute the solution in Equations 1 and 2

Equationl = 3-3(2)=3-6=-3
Equation2 = 2(3)+2 =6+2=8 .

Example.2. Solve the system of equations

x -3y ==17 —>1
2x-6y = 7 -2
Solution:
2E, - Ex2=
2x - 6y =-T7
-2x +6y =-14
0 +0 =-21

This makes no sense as 0 # -21, hence there is no solution.

NOTE: Inconsistent , the system of equations is inconsistent, if the system has no solution.
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Consistent, the system of equations is consistent if the system has at least
one solution.

Example:/nconsistent and consistent system of equations

For the system of linear equations which is represented by straight lines:

ax - by =¢ -1
a,x - b,y =c, -1,

There are three possibilities:
No solution one solution infinite many solutions
[inconsistent] [consistent] [consistent]

Note:1. A system will have unique solution (only one solution)when number of unknowns is equal
to number of equations

Note:2. A system is over determined , if there are more equations then unknowns and it will be
mostly inconsistent.

Note:3. A system is under determined if there are less equations then unknowns and it may turn
inconsistent.

Augmented Matrix

System of linear equations:

ay X, + X, + a3, = b,
Ay X, + X, + ayx;, = b,

Ay X, + A3y X, + Ay3%y, = by

can be written in the form of matrices product

a4 di |l X b,
Ay @y ay || X, |=|b,
a3 Ay dys || X b,

or we may write it in the form AX=b,
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a, 4, 4 X b,

where A= |a, a, a,|,X=|x, ,b=|b,

;. 4z dsy X3 b,

Augmented matrix is [4:b]=|a,, a,, a, b,

a4y a4y b
Example: 4.Write the matrix and augmented form of the system of linear equations
3x—-y+6z=6
xt+ty+ z=2

2x+y+4z=3

Solution:Matrix form of the system is

3 -1 6} «x 6
1 Ll|y]|=
2 1 4}z 3
3 -1 6
Augmented formis[4:6]=[1 1 1
2 1 4

Elementary Row operations:

Elementary row operations are steps for solving the linear system of equations:

L. Interchange two rows
II. Multiply a row with non zero real number
II1. Add a multiple of one row to another row

SYSTEM WITH NO SOLUTION

Example: 6 . Solve the system of linear equations
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x— 2y+ z—4u=1
x+ 3y+ Tz+ 2u=2
x—=12y—-11z—-16u =5

Solution:
Augmented matrix is:

1 -2 1 -4 1
I 3 7 2 2
I =12 -11 =16 5

Reducing it to row echelon form (using Gaussian - elimination method)

1 -2 1 -4 1

~|0 5 6 6 1 R R;, Ry-R,
0 —10 -12 -12 4

(1 -2 1 -4 1
[0 5 6 6 1 Rs+2R;

0 0 0 0 -3

Last equation is

Ox+0y+0z+0u=-3
but 0=-3

hence there is no solution for the given system of linear equations.
Conditions on Solutions

Example:7. For which values of ‘a’ will be following system
=4

=2

dx+y+(a’ =14)z=a+2

x+2y-3z
3x-y+5z

(1) infinitely many solutions?

(11) No solution?

(ii1))  Exactly one solution?
Solution:
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Augmented matrix is

1 2 -3 4
3 -1 5 2
4 1 a*-14 a+2

Reducing it to reduced row echelon form
1 2 -3 4
-10 R;-3R;, R3-4R,

Q
(e
|
~
|
[—,
.[;

Q
e
—

|

N

=

|
< |—=
&
Z

1
&

writing in the equation form,

x+2y-3z =4 -1
y-2z =l —2
(> -16)z=a-4 —>3

or equation 3 can be written as

(a+4)(a—4)z=a-4

CASEI.
a=4 = 0z=0
x+2y-3z =4

10
7

y—2z =

as number of equations are less than number of unknowns, hence the system has infinite
many solutions,

t
10
7+2f

let z
y
x=4+3t-4-2=-1+3

where ‘t’ is any real number.
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CASE 11

a=-4 = 0z=-8,but 0#-8, hence, there is no solution.
CASE 111

az4,a#-4, let a=1
Equatins.3. = (1-4)(1+4)z=1-4
-15z2=-3

-1
=73

—10, 2 _ 64
y_7+5_35

= 3_9() = 4
x_4+5 2(35 35

the system will have unique solution when a #4 and a = -4
and for a=1 the solution is

—47 ,,_64 =1
x=%3%,y=%5 and z=-.

NOTE: (i) a=-4, no solution,
(1)) a=4, infinite many solutions and
(iii)a #4, a #-4, exactly one solution .
Example:8. What conditions must a, b, and c satisfy in order for the system of equations

xX+y+2z=a
X +z=b
2x+y+3z=c

to be consistent.

Solution: The augmented matrix is
1 1 2 a
1 0 1 & reducing ittoreduced row echelon form
21 3 ¢
1 1 2 a

~0 -1 -1 b—a Rz-R], R3-2R1
0 -1 -1 c¢-2a
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I 1 2 a
~0 -1 -1 b—a R3-R1
0 0 0 c—a-b
The system will be consistent if only if ¢c—a-b =10
orc=a+b
Thus the required condition for system to be consistent is
c=a-+h.

Solution of a system 4AX=b

Let AX = b be a given m* n system. The m* ( n + 1 ) matrix [4|b] is called the augmented matrixfor

the system AX = b. Let [412] be the row echelon from [A|b]. The following conclusion is now
obvious from the earlier discussions.

Tt
oy

| 2] be the row echelon
A\ ]

Let AX = b be a m*n system of linear equation and let [

form [A|b], and let r be the number of nonzero rows of [ . Note that 1 £ min {m, n}. Then

the following hold:For the system AX =Db

(1) The system is inconsistent, i.e., there is no solution if among the nonzero rows

of 1418 there is a row with zero everywhere except at the last place. That is (n+1)th column is
not a pivot column for [4]2]
[4]2]

(i1) The system is solvable if has r nonzero rows with r = n. There is a unique solution

ifr=ni.e., [A]#] has exactly n- nonzero rows, the number of variables. And, there are infinitely
many solutions if [412] Kas r-nonzero rows, with r <n. In fact, one can compute these solutions

th
as follows: for 1 £ i £ r,let ¥ column be the pivot column. Then, assign arbitrary values to

. . . K. . .
each of the variable ™ ] #i and compute the values of the variable #, 1 £ i £ rin terms of
these (‘as in example 2.2.2 ). Thus, the general solution will have n - r variables taking arbitrary
values.

Examples:
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(i)  Consider the system AX = b where

11 2 -5 3
2 5 -1 -9 -3
A= b=
21 -1 3 -11
13 2 7 -5 |

It is early to verify that the augmented matrix
11 2 5| 3]

5 -1 -5 -3
1 -1 3 |-11
32 |5

[4]&]=

2

2

1

is equivalent to
1

0

0
0

2 |-5]
-3 | 2
-2 | 3

0|0

, the system AX = b is consistent and has infinite number of

L R =
= O = D

[\

Then by theorem 2.4.

solutions. In fact, if

Here, we can give arbitrary value to the variable * _and other variable can be computed by :
X +2x,=-5
e -3x, = Z

%~ 2x, =

=5-2=x,

|
Lrd

x, =2+3x
ie., H =2 ,

where ™ can be assigned any arbitrary value.
(i1)) Consider the system AX = b, where

o1 -4 B
A=l2 -5 2 h=]1
S -5 7 1

The augmented matrix in this system is
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o 1 -4 |8
2 -3 2|1
5 -8 7|1
It is easy to see that this is equivalent to
o 1 -4 |1
2 -3 2|8
5 -8 7 |5f2

Since, the last row is identically zero for the position of 4 and non-zero for the portion of B,
the system

is inconsistent.
(ii1)) Consider the system AX = b, where

1 2 3 9
A=z -1 1 h=18
5 0 -1 3

The augmented matrix [A|b] of the system can be shown to be equivalent to

1 0 0] 2
[A|8]=]0 1 0] -1
00 1| 3

b

When 4 is the reduced row echelon form of A. Then, AX = b has unique solution, namely

/]

LINEAR DEPENDENCE AND INDEPENDENCE OF ROW & COLUMN MATRICES.
Any quantity having n components is called a vector of order n. If @,,a,,.....a, are elements of fields
(F, +, .), then these numbers written in a particular order form a vector.
Thus an n-dimensional vector X over a field (F,+, .) is written as X=(q,,a,,.....a, )
where a, € F.

Row matrix of type 1xn is n—dimensional vector written as X=[a,,a,.,.....a, |
Column matrix of type nx11is also n dimensional vector written as
a,

X= a.z orfa, a, . a]

a'I'l

As the vectors are considered as either row matrix or column matrix, the operation of addition of vectors
will have the same properties as the addition of matrices.
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Linear Dependence:

The set of vectors {V,,V,,.....v, }are said to be linearly dependent if there exist scalars a,,a,,.....a, not
all zero such that a,v,+a,v,*...ta v =

Linear Independence:

The set of vectors {V,,v,,.....v, }are said to be linearly independent if there exist scalars a,,a,,.....a
such that a,v,+a,v,+....+a v, =0gives a,=a,=....=a, =

Examplel: Show that the vectors u=(1,3,2), v=(1,-7,-8) and w=(2,1,-1) are linearly independent.

Proof: The vectors are said to be linearly dependent if
au+ bv +¢cw=0 where a, b, ¢ are not all zero.

means a(1,3,2)+b(1,-7,-8)+c(2,1,-1)=(0,0,0) (D)

(atb+2c, 3a-7b+c, 2a-8b-c)= (0, 0, 0)

which gives a+b+2c=0 2)
3a-7b+c=0 3)
2a-8b-c=0 4)

Adding (3) and (4), we have
5a-15b=0 = a=3b

From (3) 3(3b)-7btc=0 = 9b-7b+c =  c=-2b

Putting a=3b and c=-2b in (2), we get

3b+b-4b=0, which is true. Giving different real value to b we get infinite non zero real values of a and c.
So a, b, ¢ are not all zero.

Hence given vectors u, v and w are linearly independent.

Theorem 1: If two vectors are linearly dependent then one of them is scalar multiple of other.

Proof: Let u, v be the two linearly dependent set of vectors. Then there exists scalars a, b(not both zero )
such that

a.ut+tb.v=0 (1)
Case 1. When a#0
From (1), au=-bv=>u=-—v
a

Hence u is scalar multiple of v.
Case II. When b#0

a
From (1), bv=-au = VZ-Eu

Hence v is scalar multiple of u. Thus in both cases one of them are scalar multiple of other.
Theorem 2: Every superset of a linearly dependent set is linearly dependent.

Proof: Let S, ={X,,X,......X,} be set of n vectors which are linearly dependent.
Let S, ={X,.X.....X, X, ..., X, } Where r>n be any super set of S .

As {X,X,......X } is linearly dependent set

.. There are scalars a,,a,,a,,....... ,a, not all zero such that
a,X,ta,X,+.....Ha X =0

= aX,fa,X,*....ta X +0.X

n+l

+0.X

n+2

+...+0.X =0
As a;,a,,a,,....... ,a, are not all zero
~oSet S, ={X,X, ..., X, X ..., X, } is linearly dependent set.
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Hence every set of linearly dependent set is linearly dependent.
Theorem 3: Every subset of linearly independent set is linearly independent.

Proof: Let S, = {X,,X......X, } be set of n vectors which are linearly independent.

Let S, ={X,,X,.......,X,} where r <n be any subset of S_.

As {X,X,......X } is linearly independent set thus

a,X,+a,X,+....4+a X =0 gives

a,=a,=a,,....=a, =0

a,X,ta,X,+....+a X =O0where a,=a,=a,,....=a, =0

~Set S, ={X,,X,.......X,} is linearly independent set.

Hence every subset of linearly independent set is linearly independent.

Theorem 4: If vectors X,,X......X, are linearly dependent, then at least one of them may be written as
linear combination of the rest.

Proof: Since the vectors X,,X,...... X, are linearly dependent, therefore there exist scalars
a,,a,,a5,.u. ,a, not all zero, such that

a, X, ta,X,*r...ta X =0or aX +a,X,+..raX +ta X, ..Ta, X =0

i+l

Suppose a, # 0

-a, X, =a X +a,X,+...a, X, Ta, X, ..ta X,
a a a. a. a

or X=—"LX+=2X, +. +X +HX +-2X
-a. -a. -a. -a. -a.

1 1 1 1 1

Hence vector X, is a linear combination of the rest.
Theorem 5: If the set {X,,X,......X, } is linearly independent and the set {X,,X,......X,,Y}is lincarly

dependent, then Y is linear combination of the vectors X, X,......X .

Proof: Consider the relation

a,X,ta,X,+....4+a X +aY¥ =0 (1)
As set {X,,X,.....X,Y} is linearly dependent
Soa,,8,,a,,.. ,a,,a are not all zero
We claim that a # 0 . If a=0, then (1) becomes

a,X,ta,X,*.....Ta X =0

As set {X,,X,......X, } is linearly independent

a,=a,=a,,...=a, =
Then from (1), the set {X,,X,.....X_,Y}is linearly independent which a contradiction to the given

condition is. Thus a = 0 is not possible. Hence a # 0
From (1), we have -aY=a X, +a,X,+....... +a, X,

a a a :
or Y=—"X+—=2X,+...... — X, which proves the result.
-a -a -a
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Theorem 6: The kn-vectors A, A,,.....,A, are linearly dependent iff the rank of the matrix

where Xx,,X,,...... , X, are scalars
ay ap i
a a a
21 2 2k
= X, +X, Fo X, =0
anl an2 ank

=a, X, +a,x, +....+a,x, =0
Ay X, FApXy +etayx, =0
a x +a,x,+...+a,x, =0
Which can be written in matrix form as

a, a, .. a,|lx 0
ay, a, .. a, ||x 0
la, a, .. ag|lx| (0]
= AX=0
Let the vectors A, A,,......, A, be linearly dependent.
So, from the relation (i), scalars x,,x,,...... , X, are not all zero and thus the homogeneous system of

equations given by (ii) has non-trivial solution. Hence p(A)<k .Converse of this theorem is also true.
Theorem 7: A square matrix A is singular iff its columns (rows) are linearly dependent.

Proof: Let n be the order of the square matrix A and A, A,,......,A_be its columns.

SOA=[A LA, LA

Proceed in same way as above theorem to prove p(A)<n

Since p(A)<n, thus |A| =0and hence A is singular matrix.

Conversely, the column vectors of A are linearly dependent.

Theorem 8: The kn-vectors A, A,,.....,A, are linearly independent if the rank of the matrix
A=[A,A,,...., A, ]is equal to k.

Proof: Proceed in the same way as above theorem to obtain AX=0 . Now suppose .

Then |A| # 0 and homogeneous system of equations given by (ii) has trivial solution only.
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Thus, the vectors A, A,,....., A, are linearly independent.
Theorem 9: The number of linearly independent solution of the equation AX=0 is (n-r) where r is the
rank of matrix A.

Proof: Given that rank of A is r which means A has r linearly independent columns. Let first r columns
are linearly independent.

Now, A=[C,,(,,....C,,.....,C. ], where C,,C,,.....,C, are column vectors of A.

X
X, .
~[CLG, LG T =020 +Cx, + 4+ Cx, =0 (1)
xn
As the set [C,,C,,.....,C. ]is linearly independent, thus each vector C_,C_,,.....,C, can be written as
linear combination of C,,C,,.....,C..
Now, C., =a,,C, +a,,C, +....+a, C,
C,=a,C +a,C +....+a,C
C,=a,C +a,C, +....+a, C_, where k=n-r ..(11)
From (i) and (ii), we get
a4 ay Ay
a; ay %)
alr aZr akr
X, =|-1,X,=| 0],....X _=| O
0 -1 0
0 0 0
| 0] . 0] | 1]
Thus, AX=0 has (n-r) solutions.
Check Your Progress
1 1
1. Find the vector p if the given vectors are linearly dependent | -1 |,| p {,| O |-
3 3
Ans. p=2.

LINEAR SYSTEM OF EQUATIONS
System of Non Homogeneous Linear Equation
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If

apx tapxn .. tan,=b
ax +apx, + ...t anx, =b,

..................................... (D

be given system of m linear equations then (1) may be written as

Ay A e Ay X b,
Ay Ay .. Ay || X, b,
_aml am2 a'mn_ _Xn_ _bm_
a;p ap a,, :b;
a1 dap ay, b,
= AX=B and C=JA:B]=
aml amZ amn :bm

then [A : B] or C is called augmented matrix. Sometime we also write A : B for [A : B]
Consistent Equations.
(1) If rank of A = rank of [A : B] and there is

unique solution when rank of A =rank of [A: B]=n
(1) rank of A =rank of [A : B]=r<n.
Inconsistent Equations.

If rank of A # rank of [A : B] i.e. have no solution.

Example 1.Discuss the consistency of the following system of equation
2x+3y+4z=11, x+5y+77=15, 3x+ 11y + 137 =25, if consistent, solve.

2 3 4:11
Sol.  The augmented matrix [A:B]=|1 5 7:15
3 11 13:25
1 5 7:15
Ry, operationisdoneso~ |2 3 4:11
13 11 13:25
Next operating R,— R,— 2R; and R;— R3;— 3R, we get
1 5 7:15
~10 =7 -10:-19
|0 -4 -8:-20

1 1
Again, operating R2—>—7 R, and R3—>—Z Rs, we get

1 5 7:15
. 10 19
77

0 1 2:5
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Next operating R;— R;—R,, we get
1 5 7:15
oy 1009
7 7
0 0 4 : 16
L 77 ]
x+5y+7z=15

10 19

= +—z=— ...(M
yt—z== M)

4 16

—7 =—

7 7

From which we get rank of A = 3 as well as rank of A : B =3. Hence the system of equations is
. . .4 16
consistent and has unique solution 72 = = =z=4
10 19 10 19 21
And +—=z=— = + —x4=— > y=——=-3
Y 7 7 Y 7 7 X 7

And from (M), we have x + Sy + 7z=15 =x =2
i.e. we have the solution x =2, y=-3 and z = 4, which is the required result.

Example 2. Test the following equations for consistency and hence solve these equations 2x —
y+7z=35, 3x+y—-3z=13 and 2x + 199477 =32.

Sol.  The above equations may be written as AX = B.
2 -3 7 ][x 5

3 1 =3 1|x,|=[13
12 19 —47]|x; 32
Operating R,— 2R,— 3R, and R;— R;— R, we get
2 -3 7 [x | [5
0 11 =27]||x,|=|11

10 +22 —54][x; 27
Next, we operate R;— R;— 2R,
2 =3 7 ]lx 5
0 11 =27||x,|=|11
10 +22 -54[x;]| [27]
This indicate the rank of A =2 which is less than 3 (the number of variables) i.e.
p(A)=2<3

So, the given equations are not consistent and so infinite number of solutions can be obtained.

Example 3. Show that if A=-5, the system of equation 3x —y + 47 = 3, x + 2y —
3z = -2 and 6x + 5y + Az = -3 have a unique solution. If 1 = —5, show that the equations are
consistent. Determine the solution, in each case.

Sol.  The given equations are

3x—y+4z=3,
x+2y—-3z=-2 ...(1)

and 6x+5y+Az=-3
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3 -1 4 X 3
IfA=|1 2 -3|, X=|y| and B=|-2| such that AX =B from (1)
6 5 A z -3
3 -1 4:3
Then augmented matrix A: B=|1 2 -3:-2
6 5 A3
Operating Ry,(i.e. interchanging R; and R;)
1 2 -3:=2
A:B=|3 -1 4:3
16 5 A:-3
Now operating R,— 3R, [i.e. Ry, 1(—3)] and R3, 1(—6) i.e. R3— 6R;, we get
1 2 3:=-2

A:B~|0 -7 13:9
10 =7 A+18:9
Next, R;— R;[(i.e. R;, 2(—1)], we get

1 2 =3:=2
~10 =7 13:9 ...(2)
0 0 A+5:0

If L = -5, then rank of A becomes p(A) = 2 which is less than 3, (the number of unknowns) and
hence the equations will be consistent and will have infinite number of solutions

. 2
Next, operating, R; + 7R, we get

1 0 5:;
~10 =7 13:9 | from this matrix, if A#—5
0 0 XA+5:0

then rank is 3 and the equation will be consistent and we get

x+§z=§ ; =7y +13z=9and (A+5)z=0 i.e.z=0

4 4
= -Ty=9= y=—2 and x+0=— ie.x=—.
7 7 7

4

i.e. unique solutionisx= —, y= —= z = 0, which is required result.

If A = -5, then from (2), we have x + 2y —3z=-2,-7y + 13z=9 ...(3)
If we take z = k than from (3),
-2
13k -9 j 4 -5k
y=——— and z= -

7 3 7
Example 4. Examine whether the following equations are consistent and solve them if they are
consistent 2x + 6y +11=10, 6x+20y —6z+3 =0 and

13k -9

3k+2(
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6y —18z+1=0.

Sol.  The above equations may be written in the form
2 6 0 ||x| |—-11

AX =B whichis |6 20 -6]y|=|-3 )
0 6 —18||z| |-1

Now the augmented matrix may be written as

2 6 0 : -11
A:B=|6 20 -6 : -3 ...(2)
0 6 -18 : -1
Operating R,— R,— 3Ry, we get
2 6 0 : -11
A:B~|0 2 -6 : 30
10 6 —-18 : -1
Now, operating R;— Ri— 3R,, we get
2 6 0 : -11
~10 2 =6 : 30
00 0 : =91

Hence rank of A = p(A) =2 and p(A : B) =3. So, p(A) =2 < 3 (number of variables). This indicated
that given equation are in consistent and so it has no unique solution.

Example 5. Solve the following system of equations by matrix methodx +y +z=8, x —y +2z
=6 and 3x + 5y — 7z = 14.

Sol.  The above equations written in the form AX = B.

1 1 1 X 8
where A=|1 -1 2 |, X=|y|and B=|6
3 5 -7 z 14

So, we may write augmented matrix as
1 1 1 : 8
A:B=|1 -1 2 : 6 ..(D
35 -7 :14
Operating R,— R,— R; and R;— R3— 3R, we have
1 1 1 : 8
A:B~ |0 -2 1 : =2 ...(2)
0 2 10 : 10

Again R;— R; + R,, we have

~10 =2 1 -2
o0 -9 -12
this implies that
x+ty+z=8
2y+z=-2 ...(3)
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and -9z=-12

4 and2y=z+2=§+2=¥ y

(SRR

= zZ=

Using 1% equation of (3), we getx +y+z=38
4
= x+§+—=8 = x=8-3=5
3 3
From (2) we see that p(A) = 3 = number of variables so, the system of equations are consistent

. 5 4
and solutions are x =5,y = 3’ z =§.

Example 6. Determine for what values of A and u the following equations have (i) no solution ii) a
unique solution (iii) infinite number of solution : x+y+z=6, x+2y+37=10 andx+2y+ 7=
Sol.  The above equations may be written in the form AX = B.
I 1 1]|x 6
ie. 1 2 3]|y|=]|10
1 2 Az i

1
The augmented matrix [A : B] = | 1 10

1 u
Operating R,— R,— R; and R;— R3— R, we get
11 1 : 6
~101 2 = 4
10 1 A-1 : pn-6
Again operating R;— R,, we get
11 | B 6
~10 1 2 4
10 0 A-3 : p-10
= wegetx+ty+z=6, y+2z=4and (A—3)z=p— 10.
1) If R(A) # R[A : B] i.e. if A— 3 =0 and p— 10 # 0, then rank of A # rank of [A : B]. Since p(A) =

2 and p(A : B) = 3. The equation have no solution.

(i1) The equations have unique solution if rank of A =rank of [A : B] =3, 1e.if A-3#0and p— 3 #
0.

(i) Ifp(A)=p(A:B)=21i.e. when A—3=0and p— 10 =01i.e. when A = 3 and pw=10. Then
these are infinite number of solution.

System of Homogeneous Linear Equations
If

NN
> w o=

apx; Hapx . tax, =
QX T apx; + ...t ax, =

..................................... )

Am1X] + AmpX2 ..t AmnXn =
be given system of m linear equations then (1) may be written as AX=0
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_an a; a, ] _x1 1 [0]
a21 a22 a2n x2
_aml am2 amn_ _xn_ _O |

Here A is called the coefficient matrix and the given system of equations AX=0O is called linear
homogeneous system of equations.

Working rule for determining solution of m homogeneous equations in n variables.

Firstly we find the rank of coefficient matrix A. Then

1. There is only a trivial solution whichis X,=X,=....=x, =01f p(A)=n.
2. A can be reduced to a matrix which has (n-r) zero rows and r non zero rows and if p(A) <nso
the system is consistent and has infinite number of solutions.
Thus, the given system of equations has a non- trivial solution iff |A| =0
Example 1: Solve the following system of equations
X-y+tz=0
x+2y-z=0
2x+y+3z=0
Solution. Writing the given equations in the matrix form, we have
I -1 1] x 0
I 2 -1||y|=|0
2 1 3¢z 0
1
1

-1 1
or AX=0, where A = 2 -1
2 1 3
Operating R, — R,+(-R;) and R; - R;+(-2)R,
1 -1 1
A0 3 -2
0 3 1
1 -1 1
Operating R, > R,+(-R,), AL|0 3 -2
0 0 3

Operating R, - R, x(éj and R; - R, x (%J

I -1 1
AU|0 3 -273
0 0 1
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.. p(A)=3 = number of variables and hence the given system of equations has only trivial solution, x =y
=z=0.

Example: Solve the following system of equations:

X-y+2z-3w=0

3x+2y-4z+w=0

4x -2y + 9w =0

Solution: Writing the given equations in the matrix form, we have

1 -1 2 3 0
32 4 17"
4 20 of 7| [
w 0
1 -1 2 3
or AX=0,where A=|3 2 4 1
4 2 0 9
Operating R, > R,-3R, and R, > R;-4R,
1 -1 2 -3
A0 5 -10 10
2 -8 21
Operating R, - R, (%J ,
1 -1 2 3
A0 1 -2 2
10 2 -8 21]
Operating R; = R;-2R,,
1 -1 2 3]
A0 1 -2 2
10 0 -4 17]

.. p(A)=3, Here n = 4 (the number of unknowns)

Now po(A)<4. Thus the system of equations has infinite solutions. The solutions will contain 4 — 3=1

arbitrary constant.
Equation corresponding to the matrix are

Xx-y+2z-3w=0 (1)

y-2z+2w=0 (2)

-4z+17w=0 3)
From (3), ZZ%W
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From (2), y-%w+2w=0 =y =%w

From (1), x-%w+1?7w—3w:0 = Xx=w

13 17
Putting w = k, we getx =k, y Z?k, z :?k , which is the general solution, where k is an arbitrary
parameter.
Check Your Progress
1. Solve the following system of liear equation
x—-y+z=0
x+2y—-z=0
2x+y+3z=0

Ans.x=y=z=0.

2. Find the values of a and b for which the following system of linear equations
2x+by—z=3

Sx+T7y+z=T7.

ax+y+3z=a
Ans.a=1and b=3.

APPLICATION OF LINEAR SYSTEM

Three by three systems of linear equations are also used to solve real-life problems. The given
problem is expressed as a system of linear equations and then solved to determine the value of
the variables. Sometimes, the system will consist of three equations but not every equation will
have three variables. Example three is one such problem.

Example 1: Solve the following problem using your knowledge of systems of linear
equations.

Jesse, Maria and Charles went to the local craft store to purchase supplies for making
decorations for the upcoming dance at the high school. Jesse purchased three sheets of craft
paper, four boxes of markers and five glue sticks. His bill, before taxes was $24.40. Maria
spent $30.40 when she bought six sheets of craft paper, five boxes of markers and two glue
sticks. Charles, purchases totaled $13.40 when he bought three sheets of craft paper, two
boxes of markers and one glue stick. Determine the unit cost of each item.

Let p represent the number of sheets of craft paper.
Let m represent the number of boxes of markers.
Let g represent the number of glue sticks.
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Express the problem as a system of linear equations:

3p+4m+5g =$24.40
6p+5m+2g=5$30.40

3p+2m+g=9$13.40
Solve the system of linear equations to determine the unit cost of each item.

3p+4m+5g =24.40
3p+2m+g=13.40
-12p—-6m =-42.60

3p+4m+5g =24.40 3p+4m+5g =24.40
= =
-5@p+2m+g=13.40) —15p—-10m—-5g =-67.00

6p+5Sm+2g=30.40
3p+2m+g=13.40

m =3.60
-12p—6m =-42.60

—12p - 6(3.60) = —42.60
3(1.75) + 2(3.60) + g = 13.40

—12p—21.60 = —42.60
5.25+7.20+ g =13.40
~12p—21.60+21.60 = —42.60 + 21.60
12.45+ g =13.40

6p+5m+2g =30.40
=
-2@p+2m+ g =13.40)

6p+5m+2g=30.40
—6p—4m—-2g =-26.80

3p+2m+g =13.40

_12p=-21
12.45-12.45+ g = 13.40—12.45

12 -2l o

2P &=

p=1.75

The unit cost of each item is: 1 sheet of craft paper = $1.75

1 box of markers = $3.60

1 glue stick = $0.95
Example 2: Solve the following problem using your knowledge of systems of linear
equations.

Rafael, an exchange student from Brazil, made phone calls within Canada, to the United
States, and to Brazil. The rates per minute for these calls vary for the different countries.
Use the information in the following table to determine the rates.

Month Time within Time to the Time to Brazil Charges
Canada (min) U.S. (min) (min) (&)
September 90 120 180 $252.00
October 70 100 120 $184.00
November 50 110 150 $206.00
Let ¢ represent the rate for calls within Canada.
Let u represent the rate for calls to the United States.
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Let b represent the rate for calls to Brazil.
Express the problem as a system of linear equations:

90c +120u +180b = $252.00
70c +100u +120b6 = $184.00
50c+110u + 15006 = $206.00

90c +120u +180b6 = 252.00 - 2(90c +120u +180b = 252.00)
70c +100u +1206=184.00  —3(70c +100u + 1205 =184.00)

180c + 240u + 3600 = 504.00

=
—210¢c —300u —360b = —-552.00
—30c —60u = —48.00

70c +100u +120b =184.00 - 5(70c +100u + 1205 = 184.00)
50c+110u +150b =206.00  4(50c +110u +150b = 206.00)

T 350c —500u — 600 = —-920.00
200c + 440u + 6005 = 824.00
—150c — 60u = -96.00

—30c — 60u = —48.00 - 1(=30c — 60u = —48.00) N 30c + 60u = 48.00
—150c —60u =-96.00 —150c —60u =-96.00 —150c — 60u = -96.00

—120c = —48.00
—120 | _ -48.00
-120 -120
c=.40

70¢ +100u + 1205 = 184.00
—30c¢ —60u = —48.00 70(.40) +100(.60) + 1205 = 184.00
—30(.40) — 60u = —48.00 28.00+ 60.00 + 1205 = 184.00
—12.00 — 60u = —48.00 88.00 + 1205 = 184.00
—12.00+12.00 - 60u = -48.00 +12.00  88.00 —88.00 + 1205 = 184.00 — 88.00
—60u =-36.00 1205 = 96.00
—60 _ —36.00 120, _96.00
- 60 - 60 120 120
u =.60 b=.80
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The cost of minutes within Canada is $0.40/min. The cost of minutes to the United States
is $0.60/min. The cost of minutes to Brazil is $0.80/min.

Prepared by V.Kuppusamy, Asst Prof, Department of Mathematics KAHE Page 30/31




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc.MATHEMATICS COURSENAME: ALGEBRA
COURSE CODE: 18MMU102 UNIT: 111 BATCH-2018-2021

Possible Questions

2 Mark Questions
. Define the systems of Linear equations
. Define the row reduction echelon matrix with example.
. Define the row equivalent matrix.
. What do you mean by Linear Independence?
. When we say that the system is homogeneous.
. In which case the linear equations are equivalent.
. What do you mean by Linear dependence?

0 3 N kW~

. When we say that the system is Non-homogeneous.

6 Mark Questions

1 5 -3
1.Determine if b is a linear combination of a;and a, where a1=[—2], a= [—13] amib=[ g ]
3 =3 1
2.Determine the system is consistent
X1—6X2:5
X2-4X3+X4:O
X TH6X,+txX31+5%4=3
-X2+5X3+4X4:0

1 5 2-6
3.Determine if the system is consistent | 4 —7F 2
0 0 50
4.Let A=[§ ﬂ ,u=[_41] and v=| 53] Verify i) Awhv)=AutAv i)A(Su)= SA(u).
3 -4 20
5.Find the general solutions of the system whose augmented matrix is [—9 12 —5{]]
—6 & —40
3 5 & 7
6.Describe the solution of AX = B where A = | -3 -2 1 ] and b = [— 1]
6 1 - —4

3 -1 2

7.1If A=(2 1 ‘1) find all solutions of AX=0 by row reducing A.
1 -3 0

8.In V3(R) the vectors (1,2,1) ,(2,1,0) and (1,-1,2) are linearly independent or not

9.Find a row reduced echelon matrix which is row equivalent to

1 —i
A=|2 2 What are the solutions of AX=07?
i 1+
g
10.Let vi=|2|, v.=| 5| and vs=|1],
3 6. 0

i) Determine if the set {vy, v,,v3} is linearly independent.
ii) If possible, find a linear dependence relation among vy, v,, and v
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Possible Questions
Question Opt1l Opt 2 Opt 3 Opt4 Answer

Any n-tuple of elements of F which satisfies each of
the equations in linear equation is called a
............................... of the system. value root solution function solution
Any............ -tuple of elements of F which satisfies
each of the equations in linear equation is called a
solution of the system. 1 2 3 n n
Any n-tuple of elements of F which satisfies each of
the ............. in linear equation is called a solution
of the system. functions equations roots solutions equations
Ifyl=y2=........... =ym=0 then the system is non
...................................... homogeneous  [homogeneous |linear nonlinear homogeneous
fyl=y2=........... SYM=.......ceenne then the system
is homogeneous. 0 1 2 3 0
The most fundamental technique for finding the
solution of a system of linear equations is the integration by
technique of ...................onl . substitution elimination parts differention elimination
The most fundamental technique for finding the
solution of a system of.................... equations is
the technique of elimination. integral differential linear nonlinear linear
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The most fundamental technique for finding the
................ of a system of linear equations is the

technique of elimination. function root solution value solution
............. systems of linear equations are

equivalent if each equation in each system is a

linear combination of the equations in the other

system. one Two three four Two

Two systems of linear equations are ......... if each

equation in each system is a linear combination of

the equations in the other system. zero equivalent different division equivalent
Two systems of linear equations are equivalent if

each equation in each systemisa ...................

combination of the equations in the other system. |[linear non linear homogeneous  [non homogeneous |linear
Two systems of linear equations are equivalent if

each equation in each system is a linear

combination of the equations in the

............. system first same other finite same
...................... systems of linear equations have

exactly the same solutions. linear nonlinear Equivalent homogeneous Equivalent
Equivalent systems of ..................... equations

have exactly the same solutions. linear non linear homogeneous  [non homogeneous |linear
Equivalent systems of linear equations have exactly

the................. solutions. zero same different finite same

An ... matrix R is called a row reduced

echelon matrix if R is row reduced. mxm nxn mxn nxm mxn

An mxn matrix Riscalleda ....................... row reduced column reduced

matrix if R is row reduced. echelon echelon echelon null row reduced echelon
An mxn matrix R is called a row reduced echelon

matrix if Ris ............... unit null column reduced ([row reduced row reduced
In the row reduced echelon form every ..............

R which has all its entries 0 occurs below every row

has a non zero entry. row column unit singular row
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In the row reduced echelon form every row R which
has all its entries ............. occurs below every row
has a non zero entry. 0 1 2 3 0
In the row reduced echelon form every row R which
has all its entries 0 occurs below every row has a

.................. entry. zero non zero unit diagonal non zero

Inthe .................... form every row R which has

all its entries 0 occurs below every row has anon  |row reduced column reduced

zero entry. echelon echelon echelon null row reduced echelon
An........... matrix R is called row reduced if the

first non zero entry in each non zero row of R is

equal to 1 mxm nxn mxn nxm mxn

An mxn matrix Riscalled .................... if the

first non zero entry in each non zero row of R is row reduced column reduced

equal to 1 echelon echelon rowreduced column reduced rowreduced

An mxn matrix R is called row reduced if the first
............. entry in each non zero row of R is equal
to 1 Zero non zero diagonal unit non zero
An mxn matrix R is called row reduced if the first
non zero entry in each non zero row of R is equal to

In row reduced, each .................. of R which
contains the leading non zero entry of some row has
all its other entries 0. row column diagonal first column
In row reduced, each column of R which contains
the................. non zero entry of some row has all
its other entries 0. first second third leading leading
In row reduced, each column of R which contains
the leading ................. entry of some row has all
its other entries 0. zero non zero diagonal unit non zero
In row reduced, each column of R which contains
the leading non zero entry of some ................ has
all its other entries 0. row column diagonal first row
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In row reduced, each column of R which contains
the leading non zero entry of some row has all its

other entries.................... 0 1 2 3 0

Every ...l matrix A is row equivalent

to a row reduced echelon matrix. mxm nxn mxn nxm mxn
Every mxn matrix Ais .......cooevvvinnnnn. equivalent

to a row reduced echelon matrix. row column diagonal leading row

Every mxn matrix A is row equivalent to a row reduced column reduced

....................... matrix. echelon echelon echelon null row reduced echelon
IfAisanmxnmatrixand ................. ,then the

homogeneous system of linear equations AX=0 has

a non- trivial solution. m<n m>n m=n m-n m<n

If A is an mxn matrix and m<n,then

the..........ooeennnnn. system of linear equations non

AX=0 has a non- trivial solution. homogeneous [homogeneous [linear nonlinear homogeneous
If A is an mxn matrix and m<n,then the

homogeneous system of linear equations

AX=............. has a non- trivial solution. 0 1 2 3 0

If A is an mxn matrix and m<n,then the

homogeneous system of linear equations AX=0 has

T solution. trivial non- trivial zero non- zero non- trivial
IfAisan............... matrix,then A is row

equivalent to the nxn identity matrix iff the system

of equations AX=0 has only the trivial solution. mxm nxn mxn nxm nxn

If A is an nxn matrix,then A is .............to the nxn

identity matrix iff the system of equations AX=0 column

has only the trivial solution. row equivalent |equivalent diagonal leading row equivalent
If A is an nxn matrix,then A is row equivalent to the

10041 U matrix iff the system of

equations AX=0 has only the trivial solution. zero identity row column identity

If A is an nxn matrix,then A is row equivalent to the

nxn identity matrix iff the system of equations

................. has only the trivial solution. AX=l AX=0 AX=R AX=B AX=0
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If A 'is an nxn matrix,then A is row equivalent to the
nxn identity matrix iff the system of equations
AX=0hasonlythe................... solution. trivial

non- trivial

Zero

non- Zero

trivial
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Character and position of roots-Descarte’s rule of signs-Symmetric function of roots-Reciprocal
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23. Relations between the Roots and Coeflicients.—
Taking for simplicity the coefficient of the highest power of «
as unity, and representing, as in Art. 16, the » roots of an equa~
tion by a1, as, @, . . . . @z, we have the following 1dentity :—
o R a3 ol i /7 ol SN o PR S o /W

=(@—a)(@-a)(z-a)....[E—a.), (1)
When the factors of the second member of this identity are
multiplied together, the product will consist, as is proved in
elementary works on Algebra, of a highest term a3 plus a
term 2" multiplied by the factor

= Lﬂl Tyt ... T ﬂﬂj,
7. e. the sum of the roots with their signs changed ; plug a term
#"* multiplied by the factor
ﬂ] ﬂﬂ -+ 'ﬂlﬂs-[_ ﬂ3H3 b +ﬂﬂ,_1 ﬂg;’

i. . the sum of the products of the roots taken in pairs; plus o
term »** multiplied by the factor

e (H;I’lg Uy =+ Oy S PR o ﬂ?;},

i. e. the sum of the products of the roots with their signs
changed taken three by three; and so on. It is plain that the
sign of each eoefficient will be negative or positive according as
the number of roots in each product is odd or even. The last

term is
S - . Uy Uy

Ll
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the sign being — if # is odd, and +1f 5 18 even. Hquating the
coofficients of # on each gide of the identity (1), we have the
following serieg of equations:—

pi=—lay+a;+as+...+ay), =
|
sz — (ﬂ'} as +ayay - agag .- LT A ﬂg;,), i
! |
Ii..-l';_llh'-"" (ﬂ'lﬂ:_lﬂa"l' ﬂi":{ﬂl‘l‘. i "'+“'.'I- .¢ﬁ‘ﬂ lﬂﬂ}j > {2_.]
."I?” o {_ I}HHT Colls me v o Bgpa) Clyy }

which furnish us wath the following

Theorem,—TIn cvery alyebraic equation, the cocfficient of
whose highest derm is unity, the coefficient p, of the second terwm with
its stgn changed ©s equal to the swm of the roois,

The eoefficient 1. of the third term is equal to the st of the
products of the yoots taken two Ly twe.

The coefficient ps of the fourth ferm rwith ifs sign changed is
equal lo the sum of the products of the voots taken three by three ;
and so on, thesigns of the cocfficiends bey taken allernately neqative
and positive, wnd the number of roots multiplied fogether in cach Lerm
of the corresponding funetion of the vools increasing by unity, il
finally that fenction is veached which consists of the product of the
i woots.

Cor. 1.—Every root of an equation is a divisor of the last
term.

Cor, 2.—T1 the roots of an equation he all positive, the coef-
ficients will he alternately positive und negative; and .if the
roots be all negative, the coefficients will be all positive. "This
is obvious from the equations (2) [cf. Arts. 19 and 207].
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L. Bolve the equation
a3~ §a% - 1624 80 =0,

the sum of two of its roots being equal to nothing.
Let the roots be o, B, 7. We have, then,

at+Bby= 9

a3+ ay + By =-- 16,

affy = =80,
Taking 8-+ =0, we have, from the first of these, a=5, and from cither
second or thivd we obtain By =—16. "We find for 8 and - the values 4 and —4.

{he three voots ave 5, 4, — 4.
Z. Solve the equation
Zh—det 4 =0,
two of its roots heing equal.
Lot the voots be &, a, 8. We have
B+ B=3,
a + 208 =0,
from which we find =23, and g=~-1. The wots arc 2, 2, — i,
3. The equation ;
gt 4t =2t~ 12240 =0

has two pairs of equal voota; find them.
Let the woots be o, e, 8, B we have
da+28=—14,
o+ @+ 48 = — 2,
from which we obtain for a and G the values 1 and = 3,

4. Solvo the equation
o= 9x% -+ 1da -+ 2d =0,

{wn of whose roots aro in the miio of § to 2.
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20, BPepression of ap Eguaiion when a relation
exists bBetween two of its Rowedis,—The examples given
under the preceding Article illustrate the use of the equations
connecting the roots and coeflicients in determining the roots in
particular cases when known relations exist among them. The
objoct of the present Article is to show that, in general, &'«
velation of the forin 3 = p(a) erist belween two of the voots of we
equation f(x) = 0, the equation may be depressed tiwo dimensions.

Let ¢ () be substituted for # in the identily

J(x) saa” + @™ + . ..+ i,
then f(p(x)) =ao(@p(@) ) +a(p() )"+ . 000+ @us @) + a1y

‘We represent, for convenience, the second member of this
identity by F(x). Substitute a for #, then

(a)=7(p(a) ) =F(B) =0;
hence a satisfies the equation #'(z) =0, and it also satisfies the
oquation f(#) = 0; hence the polynomials f(#) and #(2) havea
common measure # —a ; thus a can be determined, and from it

¢(a) or B, and the given equation can be depressed fwo dimen-
slons.
Exanroes.
1. The equation
A —farl—dp 400 =0
has two roota whose ditference = 8 find them.
Iere 8 —a=3, B=3 { a; substitute & + 3 for # in the given polynonnal f'(#)
it hecomes &% + 432 — 72— 10; tha common meazure of thiz and f(2) 8 2 -2 from
which =2, g=#: the third root is — 2.

2. The equation
pt—Gad 11— 18+ 6=0

has two voots conneeted by the velation 28 + 3a=T7: find all the roots.

dns 1, 2 14/ —2,

Prepared by V.Kuppusamy, Asst Prof, Department of Mathematics, KAHE Page 5/30




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: IB.Sc MATHEMATICS COURSE NAME:Algebra
RSE DE:1 102 UNIT: IV BATCH-2019-2022

Exavrres.

1. The equations
2234 ba*— b6z— 9=10,

gat4Tat—1lae—16=0,

have two common roots, find them. Ans. —1, —3.

2. The equations
B4 pet Lgr 4+ r =0,

ad+ ot g’z 40" =0,

have two common roots; find the quadratic which furnishes them, and also the 3rd
root of each.
ey e L splgeegl)  s@bgeagl)

R =0, = i e

Ans. a*+ & 4+ ; '
PP pP—p P — P

26. The Cube Roots of Wnity.—Lguations of the

forms
a"—-1=0, #+1=0

are called binomial. - The roots of the former are called the »
nt roots of unity., A. general discussion of these forms will be
given in a subsequent Chapter. We confine ourselves at pre-
sent to the simple case of the binomial cubie, for which certain
useful properties of the roots can be easily established. It has
been already shown (see Ex. 5, Art. 16), that the roots of the
cubie

.'.}3-—1 =0'

[ P T
are 1, _"2-.-'—5\/_&? —2'—:2-'\/—-&,
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If w be a root of the cubie, w*must also be a root; for, since
w® =1, we get, by squaring, «"= 1, which 1s («*)*=1, thus show-
ing that o® satisfies the cubic 2*~1=0. We have then the
identity

?-1=@-1)(2-w)(z-o?).
Changing « into — =, we get the following identity also :—
+1l=(e+1)(z+w)(z+e?),
which furnishes the roots of
a®+ 1 = 0.

Whenever in any product of quantities involving the imagi-
nary cube roots of unity any power higher than the second
presents itself, it can be replaced by w, or o? or by unity ; for
example,

wi=wl.w=w, o'=c’’=¢’ *=0le’=1l, &

The first or second of equations (2), Art. 23, gives the fol-

lowing property of the imaginary cube roots :—
l +w+w’=0,
By the aid of this equation any expression involving real

quantities and the imaginary cube roots can be written in either
of the forms P + w®, P + «*Q.
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Examnprres,
1. Bhow that the producet

{w it A4 w? ?3} 1:502 Wt + w -3&)
13 ratirmal. Ans. m*—mn - n.

2. Prove the following identities :—
w® - ud = (o + n) (em +o?n)(w?m -+ on),
m* — nP= (i — ) (wn — @ 1) (@ m — wi).
3. Show that the product
(@t wBta?y)la—w'f +er)
i3 rationel, Ans, aﬂ - B+ y*— By — ya—aB.
1. Prove the wdentity

(@+8+yH e+ +a’y(o+wh—-wy)=a+p 47— 3aBy.

5. Prove the identity
(a+ 4B a9 + (a0t B+ 0y = (2a—B—9) (28— y—w)(2y =)
[Apply Ex. 2.]
6. Prove the identity
(¢t @B+ wy)®— (et @®B+wy) =~ 3¢/ =8 (B-7)(y— a) (e~ B).
[Apply Ex. 2, and substitute for @ — «? its value wi il 3.]
7. Prove the identity
@34 B0+ 8 3o By = (a®+ B+ P —3aBy)?
where
o =at+ 28y, B =B+2ya, % =9°42aB.
8. Find the equation whose roots are
m+n, wmte*n w*mt on.
Ans. & — 3nenz —(md+#2)=0.
9. Find the cquation whose roots are
E+m+n, I+ wm+ e n, +eint wi.

Ans. 23~ 372% + (0% —mn)x — (I} 4 m?+ 0 — Bhin) =
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11 Form an equation with rational coefficients which shall have

f}f/ﬁ + 92«?/(_3

for a root, where 0:®* =1, and 8;% = 1.

Cubing the equation
33:913/.-?-}52'?/@,

and substituting & for its value on the right-hand side, we get

a3 —r—- Qm 39135»\3/}7!9. ..
Cubing again, we have :
(4 — P — Q=27 PQa®.

Since 0; and @2 may each have any one of the values 1, w, w? the nine roofs of
this equation are

;‘?/}34- »?/EZ r:u:f/P--i-wg/Q,- wz{‘/ji_!_wﬁ,f/@:
ov/Pratn/Q @/ P+ Q. e/ P+ G
@/ Pral/q, V' P+a2/Q, VP+e/ G
We see also that, sinee 61 and 6; have disappeared from the final equation, it is
indifferent which of these nine roots is assumed equal to # in the first instance. The

resulting equation is that which would have been obtained by multiplying together

. 3 = 8= . .
the nine factors of the form « r/\/ P — \/ @ obtained from the nine roots above
written.-
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ExamrLes.

1. Tind the value of 30?8 of the roots of the enbic
@3+ pa* + qu +r = 0.
Multiplying together the equations
a+B+y=—p,.
By+yataB= ¢,

we obtain
3a?8+ 3aBy =~ pg;

hence Za’B =3r - g
2. Find for the same cubic the value of
a? 4+ B 440, Ans. Za?=p* —2.
3. Find for the same cubic the value of
o? + B+ 7>,
Multiplying the values of Za and Sa? we obtain

o+ 0%+ P+ SatB=—p0 + 20 ;
hence, by Ex. 1,
Sad=—p*+3pg - 3.

4, Find for the same cubic the valﬁe of

B2 + e + o B2
We easily obtain

B+ v e+ a? B+ 2aBy (at B+7) =747,
from which .
Sa’Bi=g* - 2pr.

5. Find for the same cubic the value of

B+7) (v +a)(atB).

This is equal to
2aBy +3a*B. Ans. r— pg.

A T3 Al ccnTian Al dln v bt o Pain ad A
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6. Find the value of the symmetric funetion
o? Pyt at L8+ 48 | Blayt Blad | BiyS
+9aB + 9 ad Y Bo+ 8% aB + 3 ay + 0° By
of the roots of the biquadratic

#t + pai4 gat +re+ s =0,
Multiplying together
etB+y+d==-p,
afy -+ a38 + ayd 4 Byd = — 7,

Za’By +4afyd = pr;

wo obtain

hence
Ec@ﬂ-y = iy - 48

12. Find the sum of the reciprocals of the roots of the equation in the preceding
example.
From the sccond last, and last of the equations of Art. 23, we have

@203, ... Gy A105... .8t ... Faiae ... Gl = (= D)2, o,
GLEs0g . ... Oy = '[-— l}“ Pa;
dividing the former by the latter, we have
1 1 1 1 "jﬂu-f
Pl e S I IS O e Lot
ay oz ay &y M
or
1 ¢
E — - _-?Ji"l
ol a

In a similar manner the sum of the products in pairs, in threes, &ec. of the
reciprocals of the roots can be found by dividing the 8rd last, or 4th last, &e. coeti-
ficient by the last.
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13. Find for the cubic equation
o+ By a® + Begw + ay =0
the values, in terms of the cocfficients, of the following three funetions of the roo

a, B, Y £ 5 A
B—7)+(y—a)*+ (a - B)",

a(B—)*+ 8 {y—a)ty (a—B)?
o (B=)*+ B (7= 0)? + 92 (e~ B)".
Tt will be often found convenient to write, as in the present example, an equa

tion with dinomial coeflicients, that iz, numerical coefficients corresponding to thosei
the expansion by the binomial theorem, in addition to the literal coefficients ag, «

&e.
We easily obtain .
w*{(B—7)?+ (y—a)’ + (a—B)*} = 18 (w1 —apas),
@*{a(B—7)?+B(y—a)* +y(a—B)*}=9(a0as — w1az),
a0t {? (B — )"+ B2 (y — ) 497 (a — £)2) =18 (4" — aa ).
14. Find in terms of the cocflicients of the cubic in the preceding cxample th

quadratic
(0= @)? (B + (e = B2 (y— a2+ (& =) (a—B)2 =0,
where a, B8, v arc the roots of the cubic.
Ans. (apaz — ar®) & + (o @z — ara2) v + (Gras — az?) =0,
15. Find for the cnbic of Example 13 the value of
(2B —7) (28— — a) 2y —a—B).
Since 2a~ﬁ—'}f-—-3a—(a+£+?]=3a+%,

the required value is easily obtained by substituting — = for @ in the identity
7o T

wo® + Baya® 4+ 3apx + 03 =ag (v —a) (v — B) (x — ).

Ans. ap*(2a—B =7) (28— =) (2y —a = B) = — 27 (¢* s — Bapy a1 az + 2a,9).
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28. Remark.—W e close this chapter with cextain observations
which will be found useful in verifying the results of the calcula-
tion of symmetric functions. The first 1s, that fhe degree of any
symmetric function in the voots is always equal to the sum of the
suffizes tn each term of its value in terms of the coefficients. The
student will observe that this is true inthe case of the results of
Examples 18, 15, 16, 17, 18, 19, 21, 22 ; and that it must be
50 in general appears from the equations (2) of Art. 23, for the
suffix of each coefficient in those equalions 1s equal to the degree
in the roots of the corresponding function of the roots; hence
in any produet of any powers of the coeflicients the sum of the
suflixes must be equal to the degree of the corresponding func-
tion of the roots.

[ t] - - .. - .
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1. Find the value of the symmetric function

S A e TR .
By e a8
ot the reots of the cubic equation
&+ pit + g+ =0,

Ana. o7 3.

2. Find for the same cubic the value of

(B y—afP+ (y-+a AP+ (a+ B
Aas. 24r — pd.

3. Find the value of Za’8® of the 1oots of the same equation.

Here ZaBZa*B8° =Za’ 8%+ aby3o* 3; hence &c.
Ans. g3 —3pgr -+ 3.

4, Fmd for the same cubic the symmetric funection
(89~ + (0~ a3 (6~ B
%af 18 easily obtained by squaring Se? (sce Ex, 3, Art. 27).
Ans. 2pt—1293¢4- 1205y 4+ 1802 g* — 18 pgr — Gy
5. Find for the same cubic the value of

E‘z_ll_.y‘:h}-?‘z_l_al m'3+,ﬁz
B+ Y+ a a+ 8
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6. Find for the gams cubie the value of

&*+ ,EIT+ Ptya 7+t
A+ v+ a al B

P—8pPq = opr+ g’

18 ?"—Pt_‘i"

Aus.

7. Find for the same enlbie the velue of
= @t ——
2By—a®  27a-B  2eB-7"
Bty—u g+a—B8 atf—7
pt—2pPg+ldpr -84
dpg—p*=8r

Ans.

(R |
w—3\ - .
) for the same cubic.

8, I"ind the symmetric function 3 6
x+8

— gt —dpPr -+ 8 ga ~ Ly — 0"

ns. —
(r—pq)?

Mheorem.—If {wo real quanlibecs a and O be substituted for

the unknown quantity « in any polynomial f(z), and if they furnish

resulls having diffevent signs, one plus and the other winus ; then the
equation f () = O wnsé fiwe af least one veal root intermediote

#n alue between a and b,

This theorem i3 an immediate congequence of the property
of the continuity of the function f(#) established in Avt. 7; for
since /() changes confinuously from f(«) to f(J), 1. e. passes
through all the intermechate values, while # changes from «
to & ; and since one of these quantities, f(¢) or £ (), is positive,
and the other negative, it follows that for some value of @ inter-
mediate between « and /4, /(z) must attain the value zero which

is intermediate between («) and /(2).
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Covoliary.— [ there ewist no real quantity whieh, substituicd
Sor @, makes f(x) =0, then f (&) must be positive for every real value
af . '

13, Theorem.—bLzery equation of an odad degree has ar teast
e veal root of a sign opposite to that of vts last Lerm.

This is an immediate consequence of the theorem in the last
Article. Substitute in suceession — o, 0, oo for z in the poly-
10mial f(z). The results are, » being odd (see Axt. 4),

@=-w, f(r)1s negative;
2 =0, sign of /() 1s the same as that of ay;
x=-+w, f(x) is positive.

[f @, is positive, the equation must have a real root between —
ind 0, 7. e. a real negative root; and if a, is negative, the equa-
ion must have a real root between 0 and o, 7. a real positive
oot. The theorem is thus proved.
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14, Mheovem.—.lutery equation of an even degree, wiose last
term 18 negative, has at least two read voois, one positive and the
olher negatme,

The results of substituting — oo, 0, o are in this case

=L, +y
ﬂ! i
+ U0, e

henee there is a real roof between - ow and 0, and another be-
tween 0 and +oo ; i.e., there exist at least one real negative, and
ono real positive root,
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In this simple instance we observe that, in the absence of
any real values, there are two imaginary expressions which
reduce the polynomial to zero. The general proposition of
which this is a very particular illustration is, that every rational

itegre  equation
o™ ™ e L L b e, =0

must fave a oot of the form

a+ Bv-1,

a wrd |3 being real finite quantities, This proposition includes
both real and imaginary roots, the former corresponding to the

value 3 = 0.

16, Wheorem.— Fvery equalion of w dimensions hos n voots,
and no more.

‘We first observe that if any quantity % is a root of the equa-
tion /() = 0, then /' (») is divisible by 2 -/ without a remainder.
This is evident from Axt. 9; for if £(%) =0, i.c. if A 1s a root
of /() =0, R must be =0.

The converse of this 1s also obviously true.

Let, now, the given equation be

)=+ ™+ o + oL+ Ppa@+pa=0.
This equation must have a root, real or imaginary (see Art. 15),
which we shall denote by the symbol ;. Tt the quotient, when
F(#) is divided by # — a;, be ¢, («); we have then the identical
equation

S ) = (e @) gufz).
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Aguin, the equation ¢, (z) =0, which 18 of # - 1 dimensions, must
have a root, which we represent by a.. Let the quotiont ob-

tained by dividing ¢, (¢) by « — a. be ¢.(2). Hence

and . Fe) = (v -a) (- a) ¢z (),

where ¢. () is of » —2 dimensions.

Proceeding in this manner, we prove that /(») consists of the
product of n factors, each containing » in the first degree, and a
numerical factor ¢, (#)., CUomparing the coefficients of 2", it is
plain that ¢, (#)=1. Thus we prove the identieal equation

F}IL(J‘) =i [.-".f- - ﬂ.lj: [_'n*-' - ﬂ'z::l ':r'.;{: - ﬂ;{} ----- (p.t}’ = iy lj' !:'.H e ﬂﬂ_j!a

It is evident that the substitution of any one of the quanti-
tie8 ay, @y, - . . 4y, Tor = in the right-hand member of this equation
will reduce that member to zero, and will therefore reduce f ()
to zero; that is to say, the equation f(z) =0 has for roots the «
quantities ay, ag ay. . . a0y ap. And 1t can have no other roots ;
for if any quantity other than one of the quantities ai, as, . . . a,
be substituted in the right-hand member of the above equation,
the factors will be all different from zero, and therefore the pro-

duct cannot vanish,
Corollary.— Two polynonials of the 0™ degrec eannot be equal’

to one another for more than n values of the vaviable without being
completely identical.,
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1. Find the 1}11!.1:11.&)11 whose Toots are
-3, =1, 4, 5.
. Aue. =543 — 1342+ 5324 60=0.
2. The equation
pf_ Bt 8t 1724+ 10=0
has a root §; find the equation containing the remaining roots,

[N. B.—TUse the method of division of Art. 8.]
Ans. #¥ =22 +32-2=10.
3. Bolve the equation
- 1623+ 867 — 1762+ 105 =0,

two roots being 1 and 7.
Ais. The other two roots are 3, 5.

4. Torm the equation whose roots are

3 1
~ g d3y ~T-_
Ans, a3 —234%—-604-9=4.
5. Bolve the eubie equation
@ =1=0,

Here it 1s evident that # =1 salisfies the equation. Divide by # —1, and solve the
resulting quadratic. The two roots are found to be

i 4 ’ g A e
~g gV =h gy -3

I can be easily shown that if either of these imaginary roots is squared, the other
reswlts. It is usual to represemt these roots by @ amd 2. They are called the two
atnagenery cibe rouls of unily.  We have the identical equation

' —1=(z—-1) (@@ - o) (o).
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18, Emaginary HRoots enter Eguations in Pairs, —
The proposition we have to prove may be stated as follows :—
It an equation f(x) =0, whose coefficients ave all veal quantitivs,
have for ¢ root the tmaginary expression a + (3 /- 1, it must also
have for a root the conjugate imaginary expression a = 34/ = 1.

The produet

(@-a=B/~-Di@-a+f/-1)=(w-a+f"

Let the polynomial f{#) be divided by the second member of
this identity, and if possible let there be a remainder Kz - £,
‘We have then the identical equation

fle)={(z—a)*+3*) @ + Be+ I,

where @ is the quotient, of # ~ 2 dimensions in «. Substitute in
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this identity e + [34/—1 for #. This, by hypothesis, causes £{z)
to vanish. 1t also causes (v —a)® + [3° to vanish. Tlence

Rla+B+/-D+ R =0.
From this we obtain the two equations
Ra+ R’ =0, Rﬁg 0,

sinee the real and imaginary parts cannot destroy one another ;

henee
RB=0, R'=0,

Thus the remainder Rz + R’ vanishes; aund, therefore, f(2) is
divisible without remainder by the product of the two factors

.-13-—:1—,(‘3,\/::[, :F-ﬂ%ﬁa._/fj.

The equation has, consequently, the root a- 84/~ 1 as well
as the root « + 34/~ L.

Thus the total number of imaginary roots in an equation
with real coeflicients will always be even ; and every polynomial
may be regarded as composed of real factors, each pair of ima«
ginary roots producing a real quadratio factor, and each real
root producing a real simple factor. The actual resolution of
the polynomial into these factors constitutes the complete solu-
tion of the equation.
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19, Bescartes' Rule of Signs— Positive Roots.—This
rule, which enables us, by the mere inspection of a given equa-
tion, to assign a superior limit to the number of its positive
roots, may be enunciated as follows :—No equation can have more
positive roots than it has changes of sign from + to —, and from — to
+, i the terms of its first member.

We shall content ourselves for the present with the proof
ich is usually given, and which is more a verification than a
neral demonstration of this celebrated theorem of Descartes.

1 will be subsequently shown that this rule of Descartes, and
other similar rules which were discovered by early investi-
gators relative to the number of the positive, negative, and
imaginary roots of equations, are immediate deductions from
the more general theorems of Budan and Fourier.

Lot the signs of & polynomial taken at random succeed each
other in the following order :—

tH gt — -+
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20. Bescartes’ Rule of Siguns—Negative Roots.—In
order to give the most advantageous statement to Descartes” rule
in the case of negative roots, we first prove that if -« be substi-
tuted for  in the equation f'(#) = 0, the resulting equation will
have the same roots as the original except that their signs will
be changed. This follows from the identieal equation of Axt. 16

F@)=a) (07 a) (@-a) .. (2-a)
from which we derive

fl-e)=(1"(z+a) (r+a) @+a))... (z+a).
From this it is evident that the roots of /(- #) = 0 are

— flyy — fzy T Uzp e - 20 T Ay

Hence the negative roots of /() are positive roots of # (—#), and
woe may enunciate Descartes” rule for negative roots as fol-
lows :—No equation can have a giealer nwmber of negative roots
than there are changes of sign in the terins of the polynomial f(-x).
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22, Theorem.— \ve shall cloge this chapter with the fol-
lowing theorem, which defines fully the conclusions which can
bo drawn as to the roots of an equation from the signs furnished
by its first member when two given numbers are substituted
for @ :—If two numbers « and b, substituted for v in the polynomial
T (@), give results with contrary signs, an odd wumber of real roots
of the equation f'(z) =0 lies belween them ; and if they give results
with the same sign, either no real voot or an even nwinber of real
roots dies between hem. |

We proceed to prove the first part of this proposition : the
second is proved in an exaetly similar manner.

Let the following m roots ay, ay . . . . an, and no others, of
the equation f(x) =0 lie between the quantities ¢ and 5, of
which, as usual, we take ¢ to be the lesser.

Let ¢(«) be the quotient when 7(z) is divided by the product
of the m factors (#-a) (v —a2) . ... (= au). We have, then,
the identical equation

fle)=(z—a)(r—as) . ... (z—ay) ¢(r).

Putting in this successively @ = @, # = b, we ghtain
fla)=(t-a)(a=a) .. .. (a—an) o)
F)=-a)b-ay) ....(0—an) ¢(d).

Now ¢(«) and ¢(0) have the same sign; for if they had dif-
ferent signs there would be, by Art. 12, one root at least of the
equation ¢ (#) = 0 between them. DBy hypothesis, /() and /(5)
have diffevent signs ; hence the signs of the pducts

(a—a)(a—as) - ... (6= am),

(b - fh:l I:F) - ﬁ-i} cv s (b= n,,,};
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are different; but the sign of the second is positive, since all
its factors arve positive ; hence the sign of the first is negative ;
but all the factors of the first are negative; thexyefore their

number must be odd; which proves the proposition.

ExamprEs.

1. If the signs of the terme of an equatiom be all positive, it cannot have a
pogitive root.

2. If the signs of the terms of any complete equation be alternately positive
ind negative, it cannot have a negative root.

3. If an equation consist of a number of terms conneceted by + signs followed by
% number of terms connected by — signs, it has one positive root and no more.

[Apply Art. 12, substituting 0 and «; and Art. 19.]

4, If an equation involve only even powers of 2, and if all the cocfficients have
positive signs, 1t cannot have a real root.

[Apply Arts. 19 and 20.]

5. If an equation involve only odd powers of =, and if the coefficients have all
positive signs, it has-the root zere and no other real root.

6. If an equatio be complete, the number of continuations of sign in f(#) is the
same a8 the number of variations of sign in f(— #).

7. When an equation is complete ; if all its roots ave real, the number of positive
roots is equal to the number of variations, and the number of negative roots is
squal to the mumber of continuations of sign.

8. An equation having an even number of variations of sign must have its last
sign positive, and one having an odd number of variations must have its lagt sign
pegative.

[N. B—The sign + is always given to the highest power of .]

9. Hence prove that if an equation has an even number of variations it must
have an equal or less even number of positive roots; and if it has an odd number of
variations it must have an equal or less odd mumber of positive 100ts; in other
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20. Form an equation with rational coeflicients which shall have for roots all the

values of the expression
v/ 2+ 0/ g+ 8347,
where g2=1, O2=1, 6=1L.

There arve eight different values of this expression, viz.,
TR O R Y B
Vi-va-r = i+

AP IATIT
Y - A - IO - Y
2=07"p+0:0/ ¢+ 051/ 1.

Assume

Squaring this, we have
F=ptgr42(020; ﬂ/(j’? a6, a/'?;-l- 61 02 '\/pf;).
Transposing, and squaring again,

(32 —p—g—2)2=4(gr-+7p+pg) + 86:10:05 ./ pgr (01 / D + 024/ g+ 03 ,/7). (i)

Transposing, substituting o for 61 1/7+0:4/¢ + 851/7, and squaring, we obtain
the final equation free from radicals :

{at =222 (p+q+7) + P2+ ¢ 0% = Qg —2rp — 2pg}? = b4 pgra®,

This is an equation of the eighth degree, whose roots are the values above writ-
ten. Since 8, 82, 8: have disappeared, it is indifferent which of the eight roots
+ ‘V/ ;-q:-\/ g+ 1/ # is assumed equal to  in the first instance. The final equation
is that which would have been obtained if each of the 8 roots had been subtracted
from #, and the econtinuned product formed, as in Ex. 6, Art. 16,
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Unit IV

Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)

Possible Questions
Question Opt1l Opt 2 Opt 3 Opt4 Answer

If f(a) and f(b) are of different signs then

root of thequation f(x)=0 must lie between a and b. |at most one at least one 0 exactly one at least one
If f(x)=0 is an equation of odd degree, it has at least
one root whose sign is opposite to that of
the last term. complex rational positive real real
Every equation f(x)=0 of the n~thdgree has
and no more. n roots (n-1) roots (n+1) roots Zero zZero

If a function involving all the roots of an equation is
unaltered value if any two of the roots are

interchanged it is called a function of the
roots
constant skew-symmetric [symmetric non-symmetric constant
Between two consecutive real roots a and b of the
equation f(x)=0 where f(x) is a polynomial, there
lies at least one real root of the equation
f'(x)=0 f'(x)>0 f'(x)<0 f' (x)#0 f'(x)=0
Let f(x)=x"2 - 7x-6.Then f(-1)= -1 0 1 2 2
Root of x4 +2x"2 +1=0is i 0 1 -1 I
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x-a is a factor of x*n-a™n if n is 2 4 odd even odd
Iff'(a)is then f(Xx) decreases positive negative <0 stable negative
Graph of 2x"2+x-6 meets the x axis at
points 0 3 2 4 2
If f(x) 0 has no real root then f(x) is
positive for every values of x < > < > >
If f(a) and f(b) have opposite signs then f(x)=0 has
at least real root 0 1 2 3 2
What is the one root of the polynomial x*3-1=0

1 0 2 3 1
If f(x)=0 is an equation of odd degree, it has at least
one root whose sign is opposite to that of
the last term. complex rational positive real real
Every equation f(x)=0 of the n*thdgree has

and no more.

n roots (n-1) roots (n+1) roots Zero zZero
What is the one root of the polynomial x"5-1=0

1 0 2 3 1
In the division algorithm, the polynomial q(x) is
called the .......... on dividing f(x) by g(x) quotient remainder divisior diviend quotient
In the division algorithm, the polynomial q(x) is
called the quotient on dividing f(x) by g(x) and the
polynomail r(x)is called the ........................ quotient remainder divisior diviend remainder
Let f(x) = x"2 - 7x - 6 then f(-1) = 0 1 2 3 2
Let f(x) = x"2 - 7x - 6 then f(0) = -6 -7 -8 0 -6
Let f(x) =x"2 - 7x + 6 then f(1) = 0 1 2 3 0
Let f(x) = x"2 + 7x + 6 then f(1) = 11 12 13 14 14
Root of x*M +2x"2+1=01s i -1 1 0 i
Number of positive roots of x4 +2x"2+1=01is

0 1 2 3 0
Number of negative roots of x4 +2x"2+1=01s

0 1 2 3 0
Number of imaginary roots of x4 +2x"2+1=0
is 1 2 3 4 4
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Number of terms involving in a complete equation

of degree n is n n+1 n+2 n+2 n+1
Number of terms involving in a complete equation

of degree 100 is 100 101 102 103 101

First derived function of 4™ degree polynomial is a ----

polynomial quadratic biquadratic cubic quintic cubic

First derived function of biquadratic polynomial is

a ---- polynomial quadratic biquadratic cubic quintic cubic

First derived function of 5™ degree polynomial is a ----

polynomial quadratic biquadratic cubic quintic biquadratic
First derived function of quintic polynomial is a ---;

polynomial quadratic biquadratic cubic quintic biquadratic
First derived function of 3™ degree polynomial is a ----

polynomial quadratic biquadratic cubic quintic quadratic
First derived function of cubic polynomial is a ----

polynomial quadratic biquadratic cubic quintic quadratic
If first derived function of f(x) is positive at a then both increasing |neither increasing

f(x) is ------ decreasing increasing and decreasing [nor decreasing increasing
If first derived function of f(x) is negative at a then both increasing |neither increasing

f(x) is ------ decreasing increasing and decreasing [nor decreasing decreasing
second derived function of 4™ degree polynomial is a --

-- polynomial quadratic biquadratic cubic quintic quadratic
second derived function of biquadratic polynomial

is a ---- polynomial quadratic biquadratic cubic quintic quadratic
second derived function of 5™ degree polynomial is a --

-- polynomial quadratic biquadratic cubic quintic cubic
second derived function of quintic polynomial is a

---- polynomial quadratic biquadratic cubic quintic cubic
second derived function of 6™ degree polynomial is a --

-- polynomial quadratic biquadratic cubic quintic biquadratic
second derived function of cubic polynomial is a --

-- polynomial quadratic biquadratic cubic quintic biquadratic
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Multiple roots-Rolle’s theorem - Position of real roots of f(x) =0 — Newton’s method of approximation to
a root — Horner’s method.
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(1). First method of solution : by resolving into factors. Let
it be required to resolve the quadratic #* + Pz + @ into its simple

factors. For this purpose we put it under the form

& + Pz + Q+0-—9,

and determine 0 so that

2+ P+ Q+0

may be a perfect square, i.e. we make

0+Q=%“1n’ ity

whence, putting for 8 its value, we have

2 2 \2
’”2+P‘-7’+Qf-(:v+—g—\ —(0.17 1E %P_4Q[
/

2 /

Thus we have reduced the quadratic to the form »*— +*; and
its simple factors are « + », and » -
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Subsequently we shall reduce the cubic to the form
(2 +m)® — (l'e+wd)", or ud -2,
and obtain its solution from the simple equations
v—0v=0, #v-wr=0, u-we=0.
It will be shown also that the biquadratic may be reduced to
either of the forms
(l&* + s+ n)* = (I'a® + m'z -+ 1)
(@° + pa + @) (@ +pe+¢),
by solving a eubie equation ; and, consequently, the solution of
the biquadratic completed by solving two quadratics, viz., in the
first case, fo*+ sz + n =+ (I'a® + m'z + ") ; and in the second case,
P?+pr+q=0,and &+ p'w+q¢ = 0.

<
?
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(2). Second method of solution : by ussuming for a root ¢ general
Jorm mvolving radicals.
Assuming z = p + /¢ to be aroot of the equation 2% +Px+Q=0,
and rationalizing the equation & = p + /¢, we have
& - 2pz+pt—q=0.
Now, if this equation be identical with #* + Pz + Q =0, we have
=P, p-q=§

giving p=ptaSqg=—" T ;

which is the solution of the quadratic equation.
In the case of the cubic equa‘cion we shall find that

o=vpr

\/ P
is the proper form to represent a root ; this formula giving
precisely three values for #, in consequence of the manner in

which the cube root enters into it.
In the case of the biquadra‘cic equation we shall find that

//”\/’Z Z)——\?*q: \/(1\/} fv//‘v/p-L\/p\/g

are forms which represent a root; these formulas each giving

tour, and only tour, values 0t # When the square roots recelve
their double signs.

4k s - - - - - v
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(3). Third method of solution : by symmetiic functions of the
roots.
Consider the quadratic equation «* + Pz + Q =0, of which the

roots are a, [3.
Then a+ 3=~ P,

efd = Q.

If we attempt to determine « and (3 by these equations, we
fall back on the original equation (see Axt. 24); but if we
could obtain a second equation between the roots and coeflicients,
of the form la + mf3 = f(P, Q), we could easily find a and 3 by
means of this equation and the equation a + 3 = - P.

Now in the case of the quadratic there is no difficulty in
finding the required equation; for, obviously,

(a—PB)*=P*-4Q; and, therefore, a — (3 = o/ P*—4Q.
In the case of the cubic equation 2* + P#* + Qe + R = 0, we
require fwo simple equations of the form
la +mf2 +ny =7 (P, @ R),
in addition to the equation o + 3 + y = — 7, to determine the
roots a, [3, y. It will subsequontly be proved that the functions
(a+wfB+w’y)’, (et +oy)

may be expressed in terms of the coefficients by solving a quad-
ratic equation; and when their values are known the roots of

the cubic may be easily found.
In the case of the biquadratic equation

2+ PP+ Qe+ Re+ 8S=0
we require three simple equations of the form
! lat+m3+ny+ré = f(P, Q, R, 8),
in addition to the equation
atf3+y+oé=-0PL,
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56, Whe Algebraic Seolution of the Cubic Equa-
tion.—Let the general cubic equation

ar’ +3bx*+3ecx+d=0

be put under the form
3°+3Hz+ G=0,

where z=ar+b, H=ac-0*, G=a'd-3abe+28 (see Art. 37).
To solve this equation, agsume*
| 2= /P VT
hence, cubing, S
=p+q+8Vp Vi (Vp+vy),

therefore
—3Vpg.s-(p+ q) = 0.

Now, comparing coeflicients, we have
a3 S .
Vo g=—H, ptg=-G;

from which equations we obtain

p=3(- G+/( +4H*), ¢g=+(-G- «/Gs'iﬂl,
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58. Expression of the Cubic as the Bifference of two
Cubes.—Let the given cubic
ar® + 3l + Sex + d = ¢ (@)
be put under the form

2+ 3z + G,
where z = ar + b.
Now assume
"313HQI~G“-—]:—~ (e(+v)’-v(s+pu)?l, (1)
e

where p and » are quantities to be determined ; the seecond side
of this identity becomes, when reduced,
2 = Buvz - pv (u+v).
Comparing coeflicients,
uwv=—H, v (u+v)=—G@a;
therefore -
& ar/ &
’l')'l)-‘-‘“ﬁ., ﬂ—l)=—j2.—;

where «'A = G* + 4H?, as in Arxt. 41

G
also (5+m) (3+v) = +—— : — 1. (2)
Whence, putting for 2 its value, ax + b, we have from (1)
G+ add\ [ b G —aA¥ o G~ aA’*\) - b+(UaA% )
W="om |\t g ) ( Al ,( Y14

which is the required expression of ¢ () as the difference of two
cubes.
The function (2), when transformed and reduced, becomes

II

which contains the two factors ax + b+ u, aw+ b +v.
The expression of the roots of this quadratic in terms of the
roots of the given cubic may be seen on referring to Ex. 23, p. 57.

{ (ac-b%)&* + (ad ~ be) 2 + (bd - &)},
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60. lomographic Relation beiween fiwo Rools of a
Cubie,—DBefore proceeding to the discussion of the biquadratic
we prove the following important proposition relative to the
cubio :—

T'he roots of the cubic are conmected in pairs by a homographie
relation in terms of the coefficients.

Referring to Example 13, Art. 27, we have the relations
(I“g{ (B et 'Y)z + (’Y = a)2+ (a o {3)2; = 18 (({12 "'(((]az),
at{a(B—v)+ By -af +yla=PB)) = 9awa;- a2,
ala (B + By - @)+ vla BF) = 18(a - ).

We adopt the notation

Uolls — 0" = H, aas—a,a,=2H,, a,a,— a*= H,.

Now, multiplying the above equations by af3, - (a + f3), 1,

respectively, and adding, since

o —ala+3)+aB3=0, [-Bla+P)+a3=0,

we have
a'(B—v)(y —a)(a - B)' =18{ Haf3 + Hi{a+ [3) + Hal;
a'(B=y)l(y—a)f (a—B)=-274 =108 (HH,-H?)
(see Art. 41); whence

bhut

—
tJ_é a 2B>;Haﬁi—][3(a+{ )+ H,,

and, therefore, _—
1 | & 1] A »
Haf3 +(1L+§ -g)a + (\Hl-gj—-3~)i3+ﬂz =,

which is the required homographie relation (see Art. 39).
12
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ExaMpLes.
1. Resolve into simple factors the expression
(B—7P@—a)+(y—a)?(@—B+ (a—B)* (v — 7).

Let U=(B-7)-a), V=(y—a)z-B8), W=(a—B)@—17).
Ans. 3 (U+ oV +o*W)(U+ *V+W).

2. Prove that the several equations of the system
B—7P(z—0a) = (y—a)ple-8)° = (a—B)*(x—17)°

have two factors common.
Making use of the notation in the last Example, we have

U= V3= W3;

whence
_ B=P=(U-P)(T*+TUV+V)=5(U-F)(U2+V*:+ W2,
since
U+ V+W=0;
therefore

(B=7? -0+ (y—a)?(@—B)* + (a—B)* (& —7)°

is the common quadratic factor required.
3. Resolve into simple factors the expression

B=7%(e=a)’ + (y —a)®(2— B)* + (a— B)*(x — 7).
Ans. 3 (B—v)(y - a)(a— B)(2—a)(z— B)(z - 7).
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4. Resolve

(z—a)(z - B)x—17)
into the difference of two cubes.

Assume
(z—-a)(@~B)(x—7) = U:®- V?;
whence
U7 — "i=A(z—a),

wlh -’V = p(v-8),

wl—-—wlV1=yv(@~7%):

adding these we have
Atpu+r=0, Aa+uB+py=0;
and, therefore,
A=pB-7) mn=ply—a) v=pla-48);

but Aur = 1; whence

1

F B=aly=ale~Bl:

Substituting these values of A, u, »; and using the notation of Ex. 1,
Ui—=Vi=pU, wlU;—&?V1=pV, o*Ui—wV1=pW;
whence
3h=p(U+ *V+w W),
—3T1=p(U+ e V+o*W);

and U and V7 are completely determined.
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ExayprEs,
1. The functions I and M are functions of the differences of the roots.
For, L=a+wB+ey=a—h+w(B—Fk)+ e (y—h)

for all values of %, since 1 + @ + «*=0; and giving to 2 the values a, B, 7, In suc-
cession, we obtain three forms for Z in terms of the differences 8 —+, v -4, a — 8.
Similarly for M.

2. To express the product of the squares of the differences of the roots in terms
of the coefficients.

We have

LA M=2a—B—v, Lto*'M=2-vy-ajw, L+aM=2y—a—B)e*;

and, again,
L-M=(B-y)(w—0?), «L—wlM=(y—ca)lw—w?), wl-u*M=(a-p)w—a?);

from which we obtain, as in Art. 26,
I3+ MP=(2a—B %) (2B~ ~0)(2y—a—B),
IP-M3=—384+/=3(8—%)(y—a)(a=B);

(L3~ B3 = (I3 + M3 — 413 M7,

and since

we have, substituting the previous results,

@B~ (y—a)(a~B) == 27 (G* +4H7).
(See Art. 41.) '

3. Prove the following identities :—
B4+ M3 =3{(2a—B-7)*+(2B—7~-0a)* + (27— a—B)3},
I -M3=+/=3 {(B=7)+ (y— o)+ (a=B)}.
These are easily obtained by cubing and adding the values of
L+M, &e. ; L—M, &c.

in the preceding example.

Prepared by V.Kuppusamy, Asst Prof, Department of Mathematics, KAHE Page 13/19




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc MATHEMATICS COURSE NAME: Algebra
RSE CODE: 1 102 UNIT: V BATCH-2019-2022

hence they are the roots of the equation
(¢ — L) (¢ — L) (9 — w3L) (p — M) (¢ — wM) (p — w2 ) = 0,
or ¢S — (L3 + M3) 93 + L2 M° = 0,
Substituting for Z and M from the equations

OH
IM=—", I3+ M3=—27 %
a~ @

we have this equation expressed in terms of the coefficients as follows : —

G 2
¢6+33;§¢3_36 _a_6_=0.

5. To obtain expressions for L?, M3, &e., in terms of a, 8, 7.
The following forms for Z? and 3?2 are obtained by subtracting

2

(@®+B2+y)(1+w+w?)=0 from (a+wB+w?y)? and (a+ w?B+ wy)?:
~L* = (B-7)+*(y—a)+ w(a—B)%
—H = (B=9)'+ o (y—a)* + o (aB)%.
In a similar manner, we find from these formulas
=Lt =(8—7)?(2a-B—7)’+w (y—0)* 2B~y —a)*+0® (a—B)? (27 —a—B)?
— M= (8- 2a—B-7)+a(y—a 2B~y —a) + @ (a— B)? 27 —a=B)*.
Also, without difficulty, we have the following forms for ZM, and L? M?:—
LM = (B—=7)2+ (v - @)+ (a - B)2,
LM =(a=B)* (a—7)*+ (B—7)* (B—a)® + (y — a}* (y — B)%.
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8. Form the equation whose roots are the several values of p, where

Since
a—(L+p)B+py=0,
substituting for a, B, ¥, their valuesin terms of p, ¢; and putling

A=1l—(1+p)lw+pa®, u=1—(14+p)w®+po,

8 y— W
AP+ A/ q=0.
Cubing, and substituting for p, ¢ their values,
G (A3 + p3) +(¢\/Z(}\3— ©?) =0,

we have

Squaring,
: 2
ARAA D = HO(N3 4 p?),

and by previous results

AM=3(l+p+p%), AN+ud==27p(1+p)};

substituting these values, we have the required equation

@Al +p+p?)° — 2TH3 (p+p?)° = 0.
9. Find the relation between the coefficients of the cubics
ar® 4 3ba® +3ex +d =0,
@234 Va2 + 3¢+ d'=0,
when the roots are connected by the equation
a(8' =)+ B(Y — o) +7(d' - B) = 0.
Multiplying by o — «?, this equation becomes
LM = L' M.
Jubing and introducing the coefficients, we find

G2H'3 = G HS,
the required relation.
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10. Determine the condition in terms of the roots and coefficients that the
¢ubics of Ex. 9 should become identical by the linear transformation

&' = px -+ q.
In this case
a=pat+gqg, B'=pB+q ¥ =py+q.
Eliminating » and ¢, we have
By — By +ya' —ya+taf —a'B=0,
which is the function of the roots considered in the last example. This relation,
moreover, is unchanged if for a, B, v; o', B, 9/, we substitute
lo. +m, B +wmy Uy + m,
UVd +m'y VB +m'y 'y + i,
whence we may consider the cubics in the last example under the simple forms
B4+3Hz+ G =0, 2%4+3H'Y +G =0,

obtained by the linear transformations z=waz + 5, 2’ =4’2’+ ’; for if the condition

holds for the roots of the former equations, it must hold for the roots of the latter.
Now putting 2’ = ks, these equations become identical if

H'=FH =g,
whence, eliminating %,

G2H? = G H?

is the required condition, the same as that obtained in Ex. 9. Tt may be obscrved
that the reducing quadraties of the cubics necessarily become identical by the same
transformation, viz.,

"Hr ’ ¥ , _ﬂ o
?(m % +EJ)~—--{};_I:¢:L—1—EJ).
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61. First Solntion by Radicals of the Biquadratic.
Euler’s Assumption :—et the biquadratic equation

axt +4ba2® +6ex* +4dze+e =0
be put under the form
s+ 6HS+ 4Gz +a*l - 3" = 0,
where 2 = ax + D,
H=ac—-b, I=ae-4bd+ 3¢, G =a’d- 3abe+ 2%

(See Axt. 38.)
To solve this equation (a biquadratic wanting the second
term) Euler assumes as the general expression for a root

2= /P ++q+ /T
Squaring, L o o
Pep—q-r=20/41+/73/ D+

Squaring again, and redueing, we obtain the equation
= 2 p+q )22 =84/ P /G /1 3+ (p+g+7) = 4(qr+rp+pg)=0.

Comparing this equation with the former equation in s, we
have

I~ .~ ~ @
p+g+r=—3H, q1'+??ﬂ+pq=3ﬂz~%, «/ﬁ-x/f}f-«/ﬁ"=“§;

and consequently p, ¢, » are the roots of the equation

3, 4 2 : ) a'l G* — ).
P+ 3HE +<dﬂ H-Z)zﬁ -——{—0,
or, since
~-G=4H:-aHI +a*J (see Art, 38),
where

J = ace + 2bed — ad® — eb* — 3,
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we may write this equation under the form
4+ H)}-a’l(t+ H)+ a*J = 0;
and finally, putting ¢+ H=a, we obtain the equation
46°0° — Ia + J = 0,
which we call tke reducing cubic of the bigquadratic equation.
Also, since t=10*—ac+a*0; if 0, 0., 6; Dbe the roots of the
reducing cubic, we have

p=b-ac+al, q=b-ac+a0, r=0"-ac+a*b;;

and, therefore,

z=/b*—ac+a201+/bz—(tc—.La”(f,+\/bg—ac+a293.

The radicals in this formula have not complete generality ;
for if they had, eight values of = in place of four would be given
by the formula. This limitation is imposed by the relation

Vo1

which (lost sight of in squaring to obtain the value of pgr)
requires such signs to be attached to each of the quantities
VP, v/, /7, that their product may maintain the sign deter-
mined by the above equation ; thus,

VP I T =D () = (= /D)7 (- 1)
= (/D) (-9 +/r
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are all the possible combinations of +/p, /¢, 4/ fulfilling

this condition, provided /p, +/¢, /7 retain the same signs
throughout, whatever those signs may be. But we may avoid
all ambiguity as regards sign, and express in a single algebraic
formula the four values of =, by eliminating one of the quantities

s 4/ ¢ +/7 from the formula
BT

by means of the relation given above, and leaving the other two
quantities unrestricted in sign. We have then

!

e RA g T

a formula free from all ambiguity, since it gives four, and only
four, values of z when ,/p and 4/¢ receive their double signs:
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the sign given to each of these in the first two terms determining
that which must be attached to it in the denominator of the
third term. And finally, restoring p, ¢, and g their values
given before, we have

ar+b =1/ —ac+ a0, + /b - ac+ a0,
G

9/ (F-acta0) . —ac + @b,
as the complete algebraic solution of the biquadratic equation ;
0. and 0, being roots of the equation

da*0? — Ial + J = 0.

To assist the student in justifying Euler’s apparently arbi-
trary assumption as to the form of solution of the biquadratic,
we remark, that since the second term of the equation in &
18 absent, the sum of the four roots is zero, or 2, + 2, + 23+ 2,=0;
and consequently the functions (3, + %)% &e., of which there are
in general sizz (the combinations of four quantities two and two),
are in this case reduced to #Aree only ; so that we may assume

(22 + 35)% = (21 + 3)% = 4p,
(%5 + 21)° = (2 + 24)° = 4q,
(31 + 22)% = (85 + 84)® = 4r;

from which we have z,, 2, 2, 2, included in the formula

VP + g+ /7
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Exampres.
1. Show that the two biquadratic equations
Aozt + 6.422% + 4 dgx + Ay =0

have the same reducing cubic.
2. Find the reducing cubic of the two biquadratic equations

at- 6l 4 8 \/(15 b 13— 3lmn) . &+ 3(dimn—1%) =0,

Ans, 03 3mn@ - (n®-- %) =0,

3. Prove that the eight roots of the equation
{2t —602% 4 3 (4mn— %) }* = 64 (1% + m3 + n® — Bluin) 2*

are given by the formula

\/J+m+9a 4 \/i-}- win + w'n + \/l-i-w?m—i-wn.
(Compare Ex. 20, p. 84.)
4. If the expression

be a root of the equation
ot 4 6HZ® + 4Gz + a1 — 3H* =0,

determine X, I, J in terms of /, m, n. .
Ans. H=—1, I=12mn, J=-—4(md+n3).
3. Prove that J vanishes for the biquadratic
m (@ — n)* — n(e - m)t

6. Write down the formulas expressing the root of a biquadratic in the particular
cases when I =0, and J = 0.

7. What is the quantity under the final square root in the formula expressing a
root ¥
Ans. 27J2% — 13,
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8. Prove that the cocfficients of the equation of the squares of the differences of
the roots of the biguadratic equation

aeet + 4oy 23+ Gaed® + dase +ay =0

may be expressed in terms ay, H, I, and J,
Removing the second term from the equation, we obtain
6H . 4G  ap?l —3H?
Y+t + sy + =0;
0

-ﬂu?'

et
and changing the signs of the roots, we have

6/ , 4G a3 H? 0

———

4

These transformations leave the functions (e — B)%, &c., unalfered ; but &
beecomes — &, the other coefficients of the latter equation remaining unchanged ;
therefore (@ can enter the cocflicients of the equation of the squares of the differences
in even powers only. And since

— P =4 H3—ay®> HI + as®J,
G2 may be eliminated, introducing @y, H, I, J. In a similar manner we may

prove that every even function of the differences of the roots a, 8, ¥, & may be ex.

pressed in terms of @, H, 7, J, the function ¢ of odd degree not entering.
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Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions
Question Opt1l Opt 2 Opt 3 Opt4 Answer
In strum’s function substitute -oo and o in the series
and difference between the number of changes of

sign will give the real roots negative roots  [positive roots zero roots real roots
If f(x)=0 has no real root then f(x) is positive for

values of x every some no finite every
l+ot+ton2= 0 1 2 3 0
The number of positive roots of the function
f(X)=x"2-1is 0 1 2 -1 2
X"100+x798+---+x"2+1=0 has no root |real positive negative complex real

In strum’s function substitute -oo and 0 in the series
and difference between the number of changes of

sign will give the constant negative roots |positive roots zero roots negative roots
What is the root of the polynomial x*4-1=0 +ixl 0|£2+2i 3i +itl
The number of roots of the function f(x)=x"5-X is

4 1 5 3 5
2x"2+2x+2=0 has no root Positive negative real complex real
Root of x"3-1=0 is "2 1 0 2|1
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I+otn™2= 0 1 2 -1|0
x"100+100x=0 has at least positive
and negative real root 1,2 1,3 1,1 2,1 1,1
x-a is a factor of x*n-a™n if n is 2 4lodd even odd
Roots of x*2+x+1=0 are positive,
negative and complex 2,0,0 0,2,0 1,1,0 1,0,1 1,1,0

Another name of polynomial is quadratic cubic quantic quintic quintic
XN5+x"2+x+1 is a polynomial quadratic cubic quantic quintic quantic
The number of roots of the function f(x)=x"3-x is

4 1 5 3[3
If a function involving all the roots of an equation is
unaltered value if any two of the roots are
interchanged it is called a function of the
roots. constant skew-symmetric |Symmetric non-symmetric constant

Between two consecutive real roots a and b of the
equation f(x)=0 where f(x) is a polynomial, there

lies at least one real root of the equation .| (x)=0 f'(x)>0 ' (x)<0 ' (x)#£0 ' (x)=0
In strum’s function substitute 0 and oo in the series
and difference between the number of changes of

sign will give the constant negative roots  [positive roots zero roots positive roots
What is the root of the polynomial x*2-1=0 t1 0[x2 3|1

The number of roots of the function f(x)=x"5-x is

If the number of points in which the curve of f(x)
cuts is less than the degree of the polynomial then
f(x)=0 has ------- roots real positive real negative real imaginary imaginary
If the number of points in which the curve of f(x)
cuts is equal to the degree of the polynomial then
f(x)=0 has no ------- roots real positive real negative real imaginary imaginary
If the number of points in which the curve of f(x)
cuts is less than the degree of the polynomial then
f(x)=0 has ------ number of imaginary roots odd even 3 5|even
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If the number of points in which the curve of f(x)
cuts is equal to the degree of the polynomial then

f(x)=0 has ------- number of imaginary roots 0 1 2 3 0

If f(a) and f(b) are having opposite signs then f(x)=0

has ------ one real root between a and b at least at most exactly no at least
If f(a) and f(b) are having opposite signs then f(x)=0

has at least ----- real root between a and b 1 2 3 4 1

If f(a) and f(b) are having ------- signs then f(x)=0 both opposite neither opposite nor

has at least one real root between a and b opposite same and same same opposite
If f(a) and f(b) are having opposite signs then f(x)

must attain the value ----- between a and b 0 1 2 3 0

If f(a) and f(b) are having -------- signs then f(x) both opposite neither opposite nor

must attain the value 0 between aand b opposite same and same same opposite
If f(x)=0hasno ------ root then f (x) must be both real and neither real nor

positive real imaginary imaginary imaginary real
Every equation of an ----- degree has at least one both odd and

real root of a sign opposite to that of its last term odd even even neither odd nor even|odd
Every equation of an odd degree has ----- one real

root of a sign opposite to that of its last term at least at most exactly more than at least
Every equation of an odd degree has at least -----

real root of a sign opposite to that of its last term 1 2 3 4 1

Every equation of an odd degree has at least one both opposite neither opposite nor

real root of a sign ------- to that of its last term opposite same and same same opposite
Every equation of an odd degree has at least one

real root of a sign opposite to that of its ---- term first second third last last
------ equation of an odd degree has at least one real

root of a sign opposite to that of its last term Every No Few Finite Every
Every equation of an ------- degree whose last term both odd and

IS negative has at least two real roots odd even even neither odd nor even|even
Every equation of an even degree whose ------ term

IS negative has at least two real roots first second third last last
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Every equation of an even degree whose last term is both positive and [neither positive nor

------- has at least two real roots negative positive negative negative negative
Every equation of an even degree whose last term is

negative has -------- two real roots at least at most exactly more than at least
Every equation of an even degree whose last term is

negative has at least ---- real roots 2 3 4 5 2
------- equation of an even degree whose last term is

negative has at least two real roots Every No Few Finite Every
Every equation of an ------- degree whose last term

is negative has at least one positive and one both odd and

negative root odd even even neither odd nor even|even
Every equation of an even degree whose ------ term

IS negative has at least one positive and one

negative root first second third last last
Every equation of an even degree whose last term is

------- has at least one positive and one negative both positive and |neither positive nor

root negative positive negative negative negative
Every equation of an even degree whose last term is

negative has -------- one positive and one negative

root at least at most exactly more than at least
Every equation of an even degree whose last term is

negative has at least ---- positive and one negative

root 1 2 3 4 1
------- equation of an even degree whose last term is

negative has at least one positive and one negative

root Every No Few Finite Every
Every equation of an even degree whose last term is

negative has at least —one positive and ----

negative root 1 2 3 4 1
Every equation of n degree has ----- roots and no

more n n+1 n+2 n+3 n
Every equation of ------- degree has n roots and no

more n n+1 n+2 n+3 n
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equation of n degree has n roots and no more

Every

No

Few

Finite

Every
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