
SYLLABUS 2017-2019 BATCH

Master of Commerce with Computer Application, Karpagam Academy of Higher Education, Coimbatore - 2017
1/ 2

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari Post, Coimbatore - 641021

 (For the candidates admitted from 2017 onwards)

DEPARTMENT OF COMMERCE (CA)

17CCP204 VISUAL BASIC.NET

Course Objective:

This course focuses on Module Coding, Controls, Strings and Databases

 Learning Outcome:

 To enable the students to know the concepts of .net technologies.
 To create an about Intermediate language compiler.
 To create an about the application of web based software

Unit-I

Getting Started With VB.NET: The Integrated Development Environment-IDE

Components- Environment Options. Visual Basic: The Language -Variables-Constants-

Arrays – Variables as Objects-Flow Control Statements.

Unit-II

Writing and Using Procedures: Module Coding – Arguments. Working with Forms:

Appearance of Forms- Loading and Showing Forms -Designing Menus. Multiple Document

Interface

Unit- III

Basic Windows Controls: Textbox Control- ListBox, CheckedListBox-Scrollbar and

TrackBar Controls. More Windows Control: The common Dialog Controls-The Rich

TextBox Control.The TreeView and ListView Controls: Examining the Advanced Controls-

The TreeView Control-The ListView Control-Content Page Holder

Semester VI
L T P C
4 - - 4

SYLLABUS 2017-2019 BATCH

Master of Commerce with Computer Application, Karpagam Academy of Higher Education, Coimbatore - 2017
2/ 2

Unit-IV
Handling Strings, characters and Dates: Handling Strings and Characters – Handling

Dates. Working with Folders and Files: Accessing Folders and Files – Accessing Files.

Drawing and Painting with Visual Basic: Displaying Images – Drawing with GDI – Co-

ordinate Transformation – Bitmaps.

Unit-V

Databases: Architecture and Basic Concepts: What is database? - Server Explorer –

Structured Query Language – The Query Builder – Building database Application with

ADO.Net: The Architecture of ADO.Net-Creating the dataset – Data Binding – Programming

the Data Adapter Objects – The Command and Data Reader Object. Programming the

ADO.Net objects: The Structure of the dataset – The DataForm Wizard – Transactions –

Performing Update Operations.

Text Book

Evangelos Petroutsos (2012). “Mastering Vb. Net”. 5nd Edition USA, SYBEX Inc.

Reference Books

1. Steven Holzner (2010). “Vb.Net Programming Black Book”. USA, Dream Tech

publications.

2. Bill Evjen, Scott Hanselman, Farhan Mohammed, Srinivasa Siva Kumar and Devin Rader

(2012). “Asp.Net 2.0”. USA, Wiley Publication.

3. Burrowss W.E and D. Langford (2010). “Learning Programming using Visual Basic .Net”.

New Delhi, McGraw Hill Edition.

4. Jeffrey R. Shapiro (2013). “The Complete Reference Visual Basic.Ne”t. New Delhi, Tata -

McGraw-Hill Edition.

5. Richard Bowman (2012). “Visual Basic.Net”. Canada, Hungry Minds Inc. Publication

LECTURE PLAN 2017-2019
BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 1/5

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed to be University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021.

LECTURE PLAN
DEPARTMENT OF COMPUTER SCIENCE

STAFF NAME: Dr.S.Hemalatha
SUBJECT NAME: Visual Basic.Net SUB.CODE:17CCP204
SEMESTER: II CLASS: I M.Com (CA)

S.No Lecture

Duration
Period

Topics to be Covered Support
Material/Page Nos

 UNIT-I

1 1 Introduction, Getting Started with
VB.Net

T1:1-12,

2 1 Integrated Development Environment-
Start Page, Project Types

T1:4-12

3 1 IDE Component- IDE Menu, ToolBox
Window,Solution Explorer

T1:19-24,W1

4 1 Properties Window, Output Window,
Command Window, Task List
Window, Environment Options

T1:24-30

5 1 Visual basic : The language Variables,
Declaring Variables, Types of Variables

T1:80-105
W2

6 1 Converting Variable Types, User-
Defined Data Types, Examining Variable
Types, Why Declare Variables?,

T1:107-110

7 1 A Variable’s Scope, The Lifetime of a
Variable, Constants

T1:110-119

8 1 Arrays- Declaring, initializing arrays,
Array limits,

T1:122-124

9 1 Multidimensional arrays, dynamic arrays,
arrays of arrays

T1:128-130,W2

10 1 Variables as Objects- What is an
object?, Formatting numbers, date

T1:130-135,W2

11 Flow Control Statements- Test
structures, loops

T1:136-140
W3

12 1 Nested control, exit statements.
Recapitulation and Discussion of
Important Questions

T1:140-148
W3

Total No Of Periods Planned For Unit 1 :12

LECTURE PLAN 2017-2019
BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 2/5

 UNIT-II

1. 1 Writing and Using Procedures Module
Coding, subroutines, functions. Calling
functions and subroutines

 T1-151-160

2. 1 Arguments- Argument-Passing
mechanisms

T1-161-164

3. 1 Event Handler Arguments, Passing an
Unknown number of arguments, Named
Arguments

T1-165-170,R1

4. 1 More types of function return values, T1-170-171,W4

5. 1 Overloading functions T1-171-176

6. 1 Working with Forms, Appearance of
Forms, Properties

T1-186-187,

7. 1 Placing controls, setting the tab order T1-187-193

8. 1 VB.NET at work Anchoring And
Docking, Form event's

T1-193-203,R1

9. 1 Loading and Showing Forms: startup,
controlling forms

T1-207-219,

10. 1 Designing Menus- menu editor, menu
item object properties, manipulating
menus at runtime, iterating a menu's
items

T1-219-231, W6

11. 1 MDI applications-basics, building an
MDI, built-in capabilities

T1-837-840,R1

12 1 Accessing child forms, ending an MDI
applications, A scrollable picture box
Recapitulation and Discussion of
Important Questions

T1-840-865, W5

Total No Of Periods Planned For Unit II :12

 UNIT-III

1. 1 Basic Windows Controls, Textbox
Control, Basic properties, Text-
manipulation properties,

T1-241-248
W7

2. 1 Text-selection properties and methods,
undoing edits

T1-248-251,

3. 1 VB.NET at work, capturing keystrokes T1-251-263

4. 1 List Box, CheckedListBox, properties, T1-263-266,

LECTURE PLAN 2017-2019
BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 3/5

items collection, Scrollbar and Track Bar
Controls

T1-279-287,R1

5. 1 The common Dialog Controls-using
dialog controls- color dialog , font
dialog, Open and save as dialog boxes,
print dialog box

T1-292-294,
T1-297-304 W8

6. 1 The Rich Textbox Control- RTF
language, properties, Methods, advanced
editing features.

T1-305-310

7. 1 VB.NET at work, searching, More
Windows Control,

T1-266-273,
T1-289-291 W7

8. 1 Cutting and pasting, searching in a rich
textbox control, formatting URLs,
VB.NET at work

T1-315-326,W3

9. 1 The Tree View and List View
Controls, Examining the advanced
controls

T1-741-747,R1

10. 1 The TreeView Control- adding new
items at design time and runtime,
assigning images to nodes, scanning the
tree view control

T1-754-768, W9

11. 1 The List View Control- columns
collection, listitem object, items
collection, subitems collection

T1-768-782

12. 1 Recapitulation and Discussion of
Important Questions

Total No Of Periods Planned For Unit III :12

UNIT-IV

1. 1 Handling Strings and Characters T1- 530-534

2. 1 String Builder T1-534-544 W10

3. 1 Handling Dates- Date Time, Time Span T1- 552-567,R1

4. 1
Working with folders and files-
Accessing Folders and Files, Directory
class, File Class

T1- 570-578

5. 1
Directory Info Class, File Info Class,
Path Class

T1-584-587

6. 1
Accessing Files- File Stream, Stream
Writer, Stream Reader Object

T1- 594-607

7. 1
Sending Data to a file, Binary Writer,
Binary Reader Object

T1-600-607

LECTURE PLAN 2017-2019
BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 4/5

8. 1
Drawing and painting with vb-
Displaying Images, image object,
exchanging images through the clipboard

T1- 620-630,W11

9. 1
Drawing with GDI+- Basic Drawing
Object

T1- 632-633 W12

10. 1
Drawing Shapes, Drawing Methods
Gradients, Clipping

T1-642-647
T1-661-665

11. 1
Coordinate Transformations-
Specifying Transformations

T1 – 668-675

12. 1

Bitmaps- Specifying Colors, Defining
Colors, Processing Bitmaps
Recapitulation and Discussion of
Important Questions

T1- 681-697 W13

Total No Of Periods Planned For Unit IV:12

 UNIT-V

1. 1 Databases: architecture and basic
concepts, What is Database?-
Relational Databases, Exploring the
Northwind Databases, Understanding
Relations

 T1 -870-878,R1

2. 1 The server Explorer- Working with
Tables, Relationships, Indices and
Constraints

T1 – 878-889

3. 1 Structured Query Language-
Executing SQL Statements, Selection
Queries, Calculated Fields, SQL Joins,
Action Queries

T -889-906,W14

4. 1 The Query Builder- Limiting the
Selection, Parameterized Queries,
Calculated Columns, Specifying Left,
Right and Inner Joins

T1 – 906-913 W15

5. 1 The Architecture of ADO.Net,
Creating a Dataset
Data Binding- Binding Complex
Controls

T1-913-914
T1– 928-941

6. 1 Programming the Data Adapter
Object, The Command and Data
Reader Objects

T1 -942-950

7. 1 Programming the ado.net objects
The Structure of a Dataset, The Data
Form Wizard, Transactions

T1 – 964-982,R1

8. 1 Performing Update Operations:
A Data Row’s Versions, A Data Row’s

T1 – 983-991

LECTURE PLAN 2017-2019
BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 5/5

States, Updating Tables Manually

9. 1 Recapitulation and Discussion of
important Questions

10. 1 Discussion of Previous ESE Question
Papers.

11. 1 Discussion of Previous ESE Question
Papers.

12. 1 Discussion of Previous ESE Question
Papers.

Total No of Periods planned for Unit V: 12

Total Planned Hours:-60

Text Book

Evangelos Petroutsos (2012). “Mastering Vb. Net”. 5nd Edition USA, SYBEX Inc.

Reference Books

1. Steven Holzner (2010). “Vb.Net Programming Black Book”. USA, Dream Tech

publications.

2. Bill Evjen, Scott Hanselman, Farhan Mohammed, Srinivasa Siva Kumar and Devin

Rader (2012). “Asp.Net 2.0”. USA, Wiley Publication.

3. Burrowss W.E and D. Langford (2010). “Learning Programming using Visual Basic

.Net”. New Delhi, McGraw Hill Edition.

4. Jeffrey R. Shapiro (2013). “The Complete Reference Visual Basic.Ne”t. New Delhi,

Tata -McGraw-Hill Edition.

5. Richard Bowman (2012). “Visual Basic.Net”. Canada, Hungry Minds Inc. Publication

Websites
1. W1: http://visualbasic.w3computing.com/vb2008/1/vb-2008-ide-components.php
2. W2: http://www.tutorialspoint.com/vb.net/vb.net_variables.htm
3. W3: http://visualbasic.w3computing.com/vb2008/3/vb-control-flow-statements-

decision-statements.php
4. W4: http://www.dotnetperls.com/multiple-return-values-vbnet
5. W5: https://msdn.microsoft.com/en-us/library/7aw8zc76(v=vs.110).aspx
6. W6: http://visualbasic.w3computing.com/vb2008/5/vb-menus-menu-editor.php
7. W7: http://www.vb6.us/tutorials/button-label-textbox-common-controls
8. W8: http://visualbasic.w3computing.com/vb2008/4/vb-common-dialog-

controls.php

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 1/55

UNIT – I

SYLLABUS

Getting Started With VB.NET: The Integrated Development Environment-IDE Components-

Environment Options. Visual Basic: The Language -Variables-Constants-Arrays – Variables as

Objects-Flow Control Statements.

GETTING STARTED WITH VB.NET

Integrated Development Environment

The Start Page

When we run the Visual Basic Setup program, it allows us to place the program items

in an existing program group or create a new program group and new program items for Visual

Basic in Windows.

To start Visual Basic from Windows

1. Click Start on the Task bar.

2. Select Programs, Visual Studio and then Microsoft Visual Basic 6.0.–or–

Click Start on the Task bar.

Select Programs.

Use the Windows Explorer to find the Visual Basic executable file.

3. Double-click the Visual Basic icon.

We can also create a shortcut to Visual Basic, and double-click the shortcut.

When we first start Visual Basic, we see the interface of the integrated development

environment, as shown in Figure 2.1.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 2/55

 Figure: The Visual Basic Integrated Development Environment

Using the Windows Form Designer

 Figure: The Windows Forms Toolbox of the Visual Studio IDE

 The above picture shows how is the default Form look like. At the top of the form there

is a title bar which displays the forms title. Form1 is the default name; you can change the

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 3/55

name to your convenience. The title bar also includes the control box, which holds the

minimize, maximize, and close buttons.

Control Properties

The control’s properties will be displayed in the Properties window (Figure). This

window, at the far left edge of the IDE, displays the properties of the selected control on the

form. If the Properties window is not visible, select View ->Properties Window, or press F4. If

no control is selected, the properties of the selected item in the Solution Explorer will be

displayed. Place another TextBox control on the form. The new control will be placed almost

on top of the previous one. Reposition the two controls on the form with the mouse. Then

right-click one of them and, from the context menu, select Properties.

 Figure - The properties of a TextBox control

In the Properties window, also known as the Property Browser, we see the properties

that determine the appearance of the control, and in some cases, its function. Locate the

TextBox control’s Text property and set it to “My TextBox Control” by entering the string

(without the quotes) into the box next to property name. Select the current setting, which is

TextBox1, and type a new string. The control’s Text property is the string that appears in the

control.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 4/55

 Then locate its BackColor property and select it with the mouse. A button with an

arrow will appear next to the current setting of the property. Click this button and we will see a

dialog box with three tabs (Custom, Web, and System), as shown in Figure. On this dialog box,

we can select the color, from any of the three tabs, that will fill the control’s background. Set

the control’s background color to yellow and notice that the control’s appearance will change

on the form.

 Figure - Setting a color property in the Properties dialog box

Figure - The appearance of a TextBox control displaying multiple text lines

Project Types

All the project types supported by Visual Studio are displayed on the New Project

dialog box, and they’re the following:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 5/55

 Class library A class library is a basic code-building component, which has no visible

interface and adds specific functionality to your project. Simply put, a class is a

collection of functions that will be used in other projects beyond the current one.

 Windows control library A Windows control (or simply control), such as a TextBox

or Button, is a basic element of the user interface. If the controls that come with Visual

Basic (the ones that appear in the Toolbox by default) don’t provide the functionality

you need, you can build your own custom controls.

 Console application A Console application is an application with a very limited user

interface.

 This type of application displays its output on a Command Prompt window and

receives input from the same window.

 Windows service A Windows service is a new name for the old NT services, and

they’re long running applications that don’t have a visible interface. These services can

be started automatically when the computer is turned on, paused, and restarted. An

application that monitors and reacts to changes in the file system is a prime candidate

for implementing as a Windows service.

 ASP.NET Web application Web applications are among the most exciting new

features of

 Visual Studio. A Web application is an app that resides on a Web server and services

requests made through a browser. An online bookstore, for example, is a Web

application. The application that runs on the Web server must accept requests made by

a client (a remote computer with a browser) and return its responses to the requests in

the form of HTML pages.

 ASP.NET Web service A Web service is not the equivalent of a Windows service. A

Web service is a program that resides on a Web server and services requests, just like a

Web application, but it doesn’t return an HTML page. Instead, it returns the result of a

calculation or a database lookup. Requests to Web services are usually made by another

server, which is responsible for processing the data

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 6/55

 Web control library Just as you can build custom Windows controls to use with your

Windows forms, you can create custom Web controls to use with your Web pages.

The IDE Components

The IDE of Visual Studio.NET contains numerous components, and it will take you a

while to explore them. It’s practically impossible to explain what each tool, each window, and

each menu does.

The IDE Menu - The IDE main menu provides the following commands, which lead to

submenus. Notice that most menus can also be displayed as toolbars. Also, not all options are

available at all times. The options that cannot possibly apply to the current state of the IDE are

either invisible or disabled. The Edit menu is a typical example.

File Menu - The File menu contains commands for opening and saving projects, or project

items, as well as the commands for adding new or existing items to the current project.

Edit Menu -The Edit menu contains the usual editing commands. Among the commands of the

Edit menu are the advanced command and the IntelliSense command.

Advanced Submenu - The more interesting options of the Edit -> advanced submenu are the

following. Notice that the advanced submenu is invisible while you design a form visually and

appears when you switch to the code editor.

View White Space - Space characters (necessary to indent lines of code and make it easy to

read) are replaced by periods.

Word Wrap - When a code line’s length exceeds the length of the code window, it’s

automatically wrapped.

Comment Selection/Uncomment Selection - Comments are lines you insert between your

code’s statements to document your application. Sometimes, we want to disable a few lines

from our code, but not delete them (because we want to be able to restore them).

IntelliSense Submenu - The Edit -> IntelliSense menu item leads to a submenu with four

options, which are described next. IntelliSense is a feature of the editor (and of other Microsoft

applications) that displays as much information as possible, whenever possible.

List Members - When this option is on, the editor lists all the members (properties, methods,

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 7/55

events, and argument list) in a drop-down list.

TextBox1.

A list with the members of the TextBox control will appear Select the Text property and then

type the equal sign, followed by a string in quotes like the following:

TextBox1.Text = “Your User Name”

If you select a property that can accept a limited number of settings, you will see the

names of the appropriate constants in a drop-down list. If you enter the following statement:

TextBox1.TextAlign =

you will see the constants you can assign to the property (as shown in Figure), they are

the values HorizontalAlignment.Center, HorizontalAlignment.Right, and

HorizontalAlignment.Left).

Parameter Info - While editing code, you can move the pointer over a variable, method, or

property and see its declaration in a yellow toolti

Figure - Viewing the members of a control in an IntelliSense dropdown list

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 8/55

Quick Info - This is another IntelliSense feature that displays information about commands

and functions. When you type the opening parenthesis following the name of a function, for

example, the function’s arguments will be displayed in a tooltip box (a yellow horizontal box).

View Menu - This menu contains commands to display any toolbar or window of the IDE.

You have already seen the Toolbars menu (earlier, under “Starting a New Project”). The Other

Windows command leads to submenu with the names of some standard windows, including the

Output and Command windows.

The Output window is the console of the application. The compiler’s messages, for

example, are displayed in the Output window. The Command window allows you to enter and

execute statements. When you debug an application, you can stop it and enter VB statements in

the Command window.

Project Menu - This menu contains commands for adding items to the current project (an item

can be a form, a file, a component, even another project). The last option in this menu is the Set

As StartUp Project command, which lets you specify which of the projects in a multiproject

solution is the startup project (the one that will run when you press F5).

Build Menu - The Build menu contains commands for building (compiling) your project. The

two basic commands in this menu are the Build and Rebuild All commands. The Build

command compiles (builds the executable) of the entire solution, but it doesn’t compile any

components of the project that haven’t changed since the last build. The Rebuild All command

does the same, but it clears any existing files and builds the solution from scratch.

Debug Menu – This menu contains commands to start or end an application, as well as the

basic debugging tools

Data Menu - This menu contains commands you will use with projects that access data.

Format Menu - The Format menu, which is visible only while you design a Windows or Web

form, contains commands for aligning the controls on the form.

Tools Menu - This menu contains a list of tools, and most of them apply to C++. The Macros

command of the Tools menu leads to a submenu with commands for creating macros. Just as

you can create macros in an Office application to simplify many tasks, you can create macros

to automate many of the repetitive tasks you perform in the IDE. I’m not going to discuss

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 9/55

macros in this book, but once you familiarize yourself with the environment, you should look

up the topic of writing macros in the documentation.

Window Menu -This is the typical Window menu of any Windows application. In addition to

the list of open windows, it also contains the Hide command, which hides all Toolboxes and

devotes the entire window of the IDE to the code editor or the Form Designer. The Toolboxes

don’t disappear completely. They’re all retracted, and you can see their tabs on the left and

right edges of the IDE window. To expand a Toolbox, just hover the mouse pointer over the

corresponding tab.

Help Menu -This menu contains the various help options. The Dynamic Help command opens

the Dynamic

Help window, which is populated with topics that apply to the current operation. The Index

command opens the Index window, where you can enter a topic and get help on the specific

topic.

The Toolbox Window - Here you will find all the controls you can use to build your

application’s interface. The Toolbox window is usually retracted, and you must move the

pointer over it to view the Toolbox. This window contains these tabs:

 Crystal Reports

 Data

 XML Schema

 Dialog Editor

 Web Forms

 Components

 Windows Forms

 HTML

 Clipboard Ring

 General

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 10/55

Solution Explorer Window

The Solution Explorer window gives an overview of the solution we are working with

and lists all the files in the project. An image of the Solution Explorer window is shown on the

right.

Properties Window

The properties window allows us to set properties for various objects at design time.

For example, if you want to change the font, font size, backcolor, name, text that appears on a

button, textbox etc, you can do that in this window. Below is the image of properties window.

You can view the properties window by selecting View->Properties Window from the main

menu or by pressing F4 on the keyboard.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 11/55

Output Window

The output window as you can see in the image below displays the results of building

and running applications. When a project is compiled the result of compilation, Build

succeeded or failed are displayed in the output window

Command Window

The command window in the image below is a useful window. Using this window we

can add new item to the project, add new project and so on. You can view the command

window by selecting View->Other Windows -> Command Window from the main menu. The

command window in the image displays all possible commands with File.

Task List Window

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 12/55

 The task list window displays all the tasks that VB .NET assumes we still have to

finish. You can view the task list window by selecting View->Show tasks->All or View->Other

Windows->Task List from the main menu. The image below shows that. As you can see from

the image, the task list displayed "TextBox1 not declared", "RichTextBox1 not declared". The

reason for that message is, there were no controls on the form and attempts where made to write

code for a textbox and a rich textbox. Task list also displays syntax errors and other errors you

normally encounter during coding.

Environment Options

Open the Tools menu and select Options (the last item in the menu). The Options

dialog box will appear where you can set all the options regarding the environment. Figure

shows the options for the font of the various items of the IDE. Here you can set the font for

various categories of items, like the Text Editor, the dialogs and toolboxes, and so on. Select an

item in the Show Settings For list and then set the font for this item in the box below.

 Figure - The Fonts and Colors options

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 13/55

Figure shows the Projects and Solutions options. The top box is the default location for

new projects. The three radio buttons in the lower half of the dialog box determine when the

changes to the project are saved. By default, changes are saved when you run a project. If you

activate the last option, then you must save your project from time to time with the File -> Save

All command.

 Figure -The Projects and Solutions options

VISUAL BASIC: THE LANGUAGE

Variables

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 14/55

 A variable is nothing but a name given to a storage area that our programs can

manipulate. Each variable in VB.Net has a specific type, which determines the size and layout

of the variable's memory; the range of values that can be stored within that memory; and the

set of operations that can be applied to the variable.

Declaring Variables

 To declare a variable, use the Dim statement followed by the variable's name, the As

keyword, and its type, as follows:

Dim meters As Integer

Dim greetings As String

 The first variable, meters, will store integers, such as 3 or 1,002; the second variable,

greetings, will store text. You can declare multiple variables of the same or different type in the

same line, as follows:

Dim Qty As Integer, Amount As Decimal, CardNum As String

 If you want to declare multiple variables of the same type, you need not repeat the type.

Just separate all the variables of the same type with commas and set the type of the last

variable:

Dim Length, Width, Height As Integer, Volume, Area As Double

 This statement declares three Integer variables and two Double variables. Double

variables hold fractional values (or floating-point values, as they're usually called) that are

similar to the Single data type, except that they can represent non-integer values with greater

accuracy.

Variable-Naming Conventions

 When declaring variables, you should be aware of a few naming conventions. A

variable's name

 Must begin with a letter, followed by more letters or digits.

 Can't contain embedded periods or other special punctuation symbols. The only special

character that can appear in a variable's name is the underscore character.

 Mustn't exceed 255 characters.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 15/55

 Must be unique within its scope. This means that you can't have two identically named

variables in the same subroutine, but you can have a variable named counter in many

different subroutines.

Variable names in VB 2008 are case-insensitive: myAge, myage, and MYAGE all refer to the

same variable in your code. Actually, as you enter variable names, the editor converts their

casing so that they match their declaration.

Variable Initialization

 The general form of initialization is:

variable_name = value;

for example,

Dim pi As Double

pi = 3.14159

You can initialize a variable at the time of declaration as follows:

Dim StudentID As Integer = 100

Dim StudentName As String = "Bill Smith"

Example

Try the following example which makes use of various types of variables:

Module variablesNdataypes

 Sub Main()

 Dim a As Short

 Dim b As Integer

 Dim c As Double

 a = 10

 b = 20

 c = a + b

 Console.WriteLine("a = {0}, b = {1}, c = {2}", a, b, c)

 Console.ReadLine()

 End Sub

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 16/55

End Module

When the above code is compiled and executed, it produces the following result:

a = 10, b = 20, c = 30

Types of Variables

Visual Basic recognizes the following five categories of variables:

 Numeric

 String

 Boolean

 Date

 Object

Numeric variables

 You'd expect that programming languages would use the same data type for numbers.

After all, a number is a number. But this couldn't be further from the truth. All programming

languages provide a variety of numeric data types, including the following:

 Integers (there are several integer data types)

 Decimals

 Single, or floating-point numbers with limited precision

 Double, or floating-point numbers with extreme precision

Integer variable

 There are three types of variables for storing integers, and they differ only in the range

of numbers each can represent. As you understand, the more bytes a type takes, the larger

values it can hold. The type of Integer variable you'll use depends on the task at hand. You

should choose the type that can represent the largest values you anticipate will come up in your

calculations. You can go for the Long type, to be safe, but Long variables are four times as

large as Short variables, and it takes the computer longer to process them.

Single and Double Precision numbers

 The names Single and Double come from single-precision and double-precision

numbers. Double-precision numbers are stored internally with greater accuracy than single-

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 17/55

precision numbers. In scientific calculations, you need all the precision you can get; in those

cases, you should use the Double data type.

The result of the operation 1 / 3 is 0.333333. . . (an infinite number of digits 3). You could fill

256MB of RAM with 3 digits, and the result would still be truncated. Here's a simple example

that demonstrates the effects of truncation:

In a button's Click event handler, declare two variables as follows:

Dim a As Single, b As Double

Then enter the following statements:

a=1/3

Debug.WriteLine(a)

Run the application, and you should get the following result in the Output window:

.3333333

There are seven digits to the right of the decimal point. Break the application by pressing

Ctrl+Break and append the following lines to the end of the previous code segment:

a=a*100000

Debug.WriteLine(a)

This time, the following value will be printed in the Output window:

33333.34

The result is not as accurate as you might have expected initially — it isn't even rounded

properly. If you divide a by 100,000, the result will be

0.3333334

The Decimal Data Type

 Variables of the Decimal type are stored internally as integers in 16 bytes and are

scaled by a power of 10. The scaling power determines the number of decimal digits to the

right of the floating point, and it's an integer value from 0 to 28. When the scaling power is 0,

the value is multiplied by 100, or 1, and it's represented without decimal digits. When the

scaling power is 28, the value is divided by 1028 (which is 1 followed by 28 zeros — an

enormous value), and it's represented with 28 decimal digits.

328.558 * 12.4051

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 18/55

First, you must turn them into integers. You must remember that the first number has three

decimal digits, and the second number has four decimal digits. The result of the multiplication

will have seven decimal digits. So you can multiply the following integer values:

328558 * 124051

and then treat the last seven digits of the result as decimals. Use the Windows Calculator (in

the Scientific view) to calculate the previous product. The result is 40,757,948,458. The actual

value after taking into consideration the decimal digits is 4,075.7948458. This is how the

compiler manipulates the Decimal data type. Insert the following lines in a button's Click event

handler and execute the program:

Dim a As Decimal=328.558D

Dim b As Decimal=12.4051D

Dim c As Decimal

c=a*b

Debug.WriteLine(c.ToString)

The D character at the end of the two numeric values specifies that the numbers should

be converted into Decimal values. By default, every value with a fractional part is treated as a

Double value. Assigning a Double value to a Decimal variable will produce an error if the

strict option is on, so we must specify explicitly that the two values should be converted to the

Decimal type. The D character at the end of the value is called a type character. Table 2.2 lists

all of them.

Infinity and other Oddities

 VB.NET can represent two very special values, which may not be numeric values

themselves but are produced by numeric calculations:NaN (not a number) and Infinity. If your

calculations produce NaN or Infinity, you should confirm the data and repeat the calculations,

or give up. For all practical purposes, neither NaN nor Infinity can be used in everyday

business calculations.

Not a Number (NaN)

Dim dbl Var As Double=999

Then divide this value by zero:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 19/55

Dim infVa ras Double

infVar = dblVar / 0

and display the variable's value:

MsgBox(infVar)

result=largeVar/smallVar

MsgBox(result)

The result will be Infinity. If you reverse the operands (that is, you divide the very small by the

very large variable), the result will be zero. It's not exactly zero, but the Double data type can't

accurately represent numeric values that are very, very close to zero.

To divide zero by zero, set up two variables as follows:

Dim var1, var2 As Double

Dim result As Double

var1=0

var2=0

result=var1/var2

MsgBox(result)

If you execute these statements, the result will be NaN. Any calculations that involve the result

variable will yield NaN as a result. The following statements will produce a NaN value:

result=result+result

result=10/result

result=result+1E299

MsgBox(result)

If you make var2 a very small number, such as 1E-299, the result will be zero. If you make

var1 a very small number, the result will be Infinity.

For most practical purposes, Infinity is handled just like NaN. They're both numbers that

shouldn't occur in business applications (unless you're projecting the national deficit in the next

50 years), and when they do, it means that you must double-check your code or your data.

The Byte Data Type

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 20/55

 None of the previous numeric types is stored in a single byte. In some situations,

however, data are stored as bytes, and you must be able to access individual bytes. The Byte

data type holds an integer in the range of 0 to 255. Bytes are frequently used to access binary

files, image and sound files, and so on. Note that you no longer use bytes to access individual

characters. Unicode characters are stored in two bytes.

To declare a variable as a Byte, use the following statement:

Dim n As Byte

The variable n can be used in numeric calculations too, but you must be careful not to assign

the result to another Byte variable if its value might exceed the range of the Byte type. If the

variables A and B are initialized as follows:

Dim A As Byte, B As Byte

A=233

B = 50

the following statement will produce an overflow exception:

Debug.WriteLine(A + B)

The same will happen if you attempt to assign this value to a Byte variable with the following

statement:

B = A + B

The result (283) can't be stored in a single byte. Visual Basic generates the correct answer, but

it can't store it into a Byte variable.

Boolean variable

 The Boolean data type stores True/False values. Boolean variables are, in essence,

integers that take the value −1 (for True) and 0 (for False). Actually, any nonzero value is

considered True. Boolean variables are declared as

Dim failure As Boolean

and they are initialized to False. Boolean variables are used in testing conditions, such as the

following:

Dim failure As Boolean=False

' other statements ...

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 21/55

If failure Then MsgBox(”Couldn't complete the operation”)

They are also combined with the logical operators And, Or, Not, and Xor. The Not operator

toggles the value of a Boolean variable. The following statement is a toggle:

running = Not running

If the variable running is True, it's reset to False, and vice versa. This statement is a shorter

way of coding the following:

Dim running As Boolean

If running=True Then

running=False

Else

running=True

End If

String variable

 The String data type stores only text, and string variables are declared as follows:

Dim anyText As String

Dim a String As String

aString = "Now is the time for all good men to come " &

" to the aid of their country"

aString=""

aString = "There are approximately 25,000 words in this chapter"

aString = "25,000"

The second assignment creates an empty string, and the last one creates a string that just

happens to contain numeric digits, which are also characters. The difference between these two

variables is that they hold different values:

Dim a Number As Integer=25000

Dim aString As String = "25,000"

The aString variable holds the characters 2, 5, comma, 0, 0, and 0; and aNumber holds a single

numeric value. However, you can use the variable aString in numeric calculations, and the

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 22/55

variable aNumber in string operations. VB will perform the necessary conversions as long as

the strict option is off.

Character Variable

 Character variables store a single Unicode character in two bytes. In effect, characters

are Unsigned Short integers (UInt16); you can use the CChar() function to convert integers to

characters and use the CInt() function to convert characters to their equivalent integer values.

To declare a Character variable, use the Char keyword:

Dim char1, char2 As Char

You can initialize a Character variable by assigning either a character or a string to it. In the

latter case, only the first character of the string is assigned to the variable. The following

statements will print the characters a and A to the Output window:

Dim char1 As Char = "a", char2 As Char = "ABC"

Debug.WriteLine(char1)

Debug.WriteLine(char2)

These statements will work only if the Strict option is off. If it's on, the values assigned to the

char1 and char2 variables will be marked in error. To fix the error that prevents the compilation

of the code, change the Dim statement as follows:

Dim char1 As Char = "a"c, char2 As Char = "A"c

When the Strict option is on, you can't assign a string to a Char variable and expect that only

the first character of the string will be used.

The Integer values that correspond to the English characters are the ANSI (American National

Standards Institute) codes of the equivalent characters. The following statement will print the

value 65:

Debug.WriteLine(Convert.ToInt32("a"))

If you convert the Greek character alpha (α) to an integer, its value is 945. The Unicode value

of the famous character π is 960.

Date variable

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 23/55

 Date and time values are stored internally in a special format, but you don't need to

know the exact format. They are double-precision numbers: the integer part represents the date,

and the fractional part represents the time. A variable declared as Date with a statement like the

following can store both date and time values:

Dim expiration As Date

The following are all valid assignments:

expiration=#01/01/2008#

expiration=#8/27/20086:29:11PM#

expiration="July2,2008"

expiration = Today()

By the way, the Today() function returns the current date and time, while the Now() function

returns the current date. You can also retrieve the current date by calling the Today property of

the Date data type: Date.Today.

Dimd1,d2 As Date

d1=Now

d2 = #1/1/2004#Debug.WriteLine(d1 - d2)

The value of the TimeSpan object represents an interval of 638 days, 8 hours, 49 minutes, and

51.497 seconds.

Data Type Identifier

 Finally, you can omit the As clause of the Dim statement, yet create typed variables,

with the variable declaration characters, or data type identifiers. These characters are special

symbols that you append to the variable name to denote the variable's type. To create a string

variable, you can use this statement:

Dim myText$

The dollar sign signifies a string variable. Notice that the name of the variable includes the

dollar sign — it's myText$, not myText. To create a variable of a particular type, use one of the

data declaration characters shown in the following table. (Not all data types have their own

identifiers.)

Table 2.3 - Data Type Definition Characters

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 24/55

Symbol Data Type Example

$ String A$, messageText$

% Integer (Int32) counter%, var%

& Long (Int64) population&, colorValue&

! Single distance!

Double ExactDistance

@ Decimal Balance@

 Using type identifiers doesn't help to produce the cleanest and easiest-to-read code.

The Strict and Explicit options

 The Visual Basic compiler provides three options that determine how it handles

variables:

 The Explicit option indicates whether you will declare all variables.

 The Strict option indicates whether all variables will be of a specific type.

 The Infer option indicates whether the compiler should determine the type of a variable

from its value.

To change the default behavior, you must insert the following statement at the beginning of the

file:

Option Explicit Off

The Option Explicit statement must appear at the very beginning of the file. This setting

affects the code in the current module, not in all files of your project or solution. You can turn

on the Strict (as well as the Explicit) option for an entire solution. Open the solution's

properties dialog box (right-click the solution's name in Solution Explorer and select

Properties), select the Compile tab, and set the Strict and Explicit options accordingly, as

shown in Figure

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 25/55

 Figure - Setting the variable-related options in the Visual Studio Options dialog box

The Strict option requires that variables are declared with a specific type. In other

words, the Strict option disallows the use of generic variables that can store any data type.

The default value of the Explicit statement is On. This is also the recommended value,

and you should not make a habit of changing this setting. In the section "Reasons for Decalring

Variables" later in this chapter, you will see an example of the pitfalls you'll avoid by declaring

your variables. By setting the Explicit option to Off, you're telling VB that you intend to use

variables without declaring them. As a consequence, VB can't make any assumption about the

variable's type, so it uses a generic type of variable that can hold any type of information.

These variables are called Object variables, and they're equivalent to the old variants.

While the option Explicit is set to Off, every time Visual Basic runs into an undeclared

variable name, it creates a new variable on the spot and uses it. The new variable's type is

Object, the generic data type that can accommodate all other data types. Using a new variable

in your code is equivalent to declaring it without type. Visual Basic adjusts its type according

to the value you assign to it. Create two variables, var1 and var2, by referencing them in your

code with statements like the following ones:

Option Strict On

If you attempt to execute any of the last two code segments while the Strict option is

on, the compiler will underline a segment of the statement to indicate an error. If you rest the

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 26/55

pointer over the underlined segment of the code, the following error message will appear in a

tip box:

Option strict disallows implicit conversions from String to Double

(or whatever type of conversion is implied by the statement).

When the Strict option is set to On, the compiler doesn't disallow all implicit

conversions between data types. For example, it will allow you to assign the value of an integer

to a Long, but not the opposite. The Long value might exceed the range of values that can be

represented by an Integer variable.

Object Variables

 Variants — variables without a fixed data type— were the bread and butter of VB

programmers up to version 6. Variants are the opposite of strictly typed variables: They can

store all types of values, from a single character to an object. If you're starting with VB 2008,

you should use strictly typed variables. However, variants are a major part of the history of

VB, and most applications out there (the ones you may be called to maintain) use them. I will

discuss variants briefly in this section and show you what was so good (and bad) about them.

Variants, or object variables, were the most flexible data types because they could

accommodate all other types. A variable declared as Object (or a variable that hasn't been

declared at all) is handled by Visual Basic according to the variable's current contents. If you

assign an integer value to an object variable, Visual Basic treats it as an integer. If you assign a

string to an object variable, Visual Basic treats it as a string. Variants can also hold different

data types in the course of the same program. Visual Basic performs the necessary conversions

for you.

To declare a variant, you can turn off the Strict option and use the Dim statement

without specifying a type, as follows:

Dim myVar

If you don't want to turn off the Strict option (which isn't recommended, anyway), you

can declare the variable with the Object data type:

Dim myVar As Object

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 27/55

Every time your code references a new variable, Visual Basic will create an object variable.

For example, if the variable validKey hasn't been declared, when Visual Basic runs into the

following line, it will create a new object variable and assign the value 002-6abbgd to it:

validKey = "002-6abbgd"

You can use object variables in both numeric and string calculations. Suppose that the variable

modemSpeed has been declared as Object with one of the following statements:

Dim modemSpeed ' with Option Strict = Off

Dim modemSpeed As Object ' with Option Strict = On

and later in your code you assign the following value to it:

modemSpeed = "28.8"

The modemSpeed variable is a string variable that you can use in statements such as the

following:

MsgBox "We suggest a " & modemSpeed & " modem."

This statement displays the following message:

"We suggest a 28.8 modem."

Converting Variable Types

 In many situations, you will need to convert variables from one type into another. Table

2.4 shows the methods of the Convert class that perform data-type conversions.

In addition to the methods of the Convert class, you can still use the data-conversion

functions of VB (CInt() to convert a numeric value to an Integer, CDbl() to convert a numeric

value to a Double, CSng() to convert a numeric value to a Single, and so on), which you can

look up in the documentation. If you're writing new applications in VB 2008, use the new

Convert class to convert between data types.

To convert the variable initialized as the following

Dim A As Integer

to a Double, use the ToDouble method of the Convert class:

Dim B As Double

B = Convert.ToDouble(A)

Suppose that you have declared two integers, as follows:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 28/55

Dim A As Integer, B As Integer

A=23

B = 7

The result of the operation A / B will be a Double value. The following statement

Debug.Write(A / B)

displays the value 3.28571428571429. The result is a Double value, which provides the

greatest possible accuracy. If you attempt to assign the result to a variable that hasn't been

declared as Double, and the Strict option is on, then VB 2008 will generate an error message.

No other data type can accept this value without loss of accuracy. To store the result to a Single

variable, you must convert it explicitly with a statement like the following:

Convert.ToSingle(A / B)

You can also use the DirectCast() function to convert a variable or expression from one

type to another. The DirectCast() function is identical to the CType() function. Let's say the

variable A has been declared as String and holds the value 34.56. The following statement

converts the value of the A variable to a Decimal value and uses it in a calculation:

Dim A As String="34.56"

Dim B As Double

B = DirectCast(A, Double) / 1.14

The conversion is necessary only if the strict option is on, but it's a good practice to perform

your conversions explicitly. The following section explains what might happen if your code

relies on implicit conversions.

 Table - The Data-Type Conversion Methods of the Convert Class

Method Converts Its Argument To

ToBoolean Boolean

ToByte Byte

ToChar Unicode character

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 29/55

ToDateTime Date

ToDecimal Decimal

ToDouble Double

ToInt16 Short Integer (2-byte integer, Int16)

ToInt32 Integer (4-byte integer, Int32)

ToInt64 Long (8-byte integer, Int64)

ToSByte Signed Byte

CShort Short (2-byte integer, Int16)

ToSingle Single

ToString String

ToUInt16 Unsigned Integer (2-byte integer, Int16)

ToUInt32 Unsigned Integer (4-byte integer, Int32)

ToUInt64 Unsigned Long (8-byte integer, Int64)

User Defined Data Types

You can create custom data types that are made up of multiple values using structures.

A VB structure allows you to combine multiple values of the basic data types and handle them

as a whole.

For example, each check in a check tutorial-balancing application is stored in a separate

structure (or record), as shown in Figure 2.3. When you recall a given check, you need all the

information stored in the structure.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 30/55

 Figure - Pictorial representation of a structure

To define a structure in VB 2008, use the Structure statement, which has the following syntax:

Structure structureName

Dim variable1 As varType

Dim variable2 As varType

...

Dim variable As varType

End Structure

Where, varType can be any of the data types supported by the CLR. The Dim statement

can be replaced by the Private or Public access modifiers. For structures, Dim is equivalent to

Public.

After this declaration, you have in essence created a new data type that you can use in

your application. structureName can be used anywhere you'd use any of the base types

(Integers, Doubles, and so on). You can declare variables of this type and manipulate them as

you manipulate all other variables (with a little extra typing). The declaration for the

CheckRecord structure shown in Figure 2.3 is as follows:

Structure CheckRecord

Dim CheckNumber As Integer

Dim CheckDate As Date

Dim CheckAmount As Single

Dim CheckPaidTo As String

End Structure

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 31/55

This declaration must appear outside any procedure; you can't declare a Structure in a

subroutine or function. Once declared, The CheckRecord structure becomes a new data type

for your application.

To declare variables of this new type, use a statement such as this one:

Dim check1 As CheckRecord, check2 As CheckRecord

To assign a value to one of these variables, you must separately assign a value to each

one of its components (they are called fields), which can be accessed by combining the name

of the variable and the name of a field, separated by a period, as follows:

check1.CheckNumber = 275

Actually, as soon as you type the period following the variable's name, a list of all members to

the CheckRecord structure will appear. Notice that the structure supports a few members on its

own.

Figure - Variables of custom types expose their members as properties

You didn't write any code for the Equals, GetType, and ToString members, but they're

standard members of any Structure object, and you can use them in your code. Both the

GetType and ToString methods will return a string like ProjectName.FormName +

CheckRecord. You can provide your own implementation of the ToString method, which will

return a more meaningful string:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 32/55

Public Overrides Function ToString() As String

Return "CHECK # " & CheckNumber & " FOR " &

CheckAmount.ToString("C")

End Function

As you understand, structures are a lot like objects that expose their fields as properties

and then expose a few members of their own. The following statements initialize a

CheckRecord variable:

check2.CheckNumber=275

check2.CheckDate=#09/12/2008#

check2.CheckAmount=104.25

check2.CheckPaidTo = "Gas Co."

You can also create arrays of structures with a declaration such as the following (arrays

are discussed later in this chapter):

Dim Checks(100) As CheckRecord

Each element in this array is a CheckRecord structure and it holds all the fields of a given

check. To access the fields of the third element of the array, use the following notation:

Checks(2).CheckNumber=275

Checks(2).CheckDate=#09/12/2008#

Checks(2).CheckAmount=104.25

Checks(2).CheckPaidTo = "Gas Co."

Examining the Variable Types

 IsNumeric()

Returns True if its argument is a number (Short, Integer, Long, Single, Double,

Decimal). Use this function to determine whether a variable holds a numeric value before

passing it to a procedure that expects a numeric value or before processing it as a number. The

following statements keep prompting the user with an InputBox for a numeric value. The user

must enter a numeric value or click the Cancel button to exit. As long as the user enters non-

numeric values, the Input box keeps popping up and prompting for a numeric value:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 33/55

Dim str Age As String= ""

Dim Age As Integer

While NotIsNumeric(strAge)

strAge=InputBox("Please enter your age")

EndWhile

Age = Convert.ToInt16(strAge)

The variable strAge is initialized to a non-numeric value so that the While. . .End While loop

will be executed at least once

 IsDate()

 Returns True if its argument is a valid date (or time). The following expressions

return True because they all represent valid dates:

IsDate(#10/12/2010#)

IsDate("10/12/2010")

IsDate("October 12, 2010")

 If the date expression includes the day name, as in the following expression, the

IsDate() function will return False:

IsDate("Sat. October 12, 2010") ' FALSE

 IsArray()

 Returns True if its argument is an array.

A Variable’s Scope

 In addition to its type, a variable also has a scope. The scope (or visibility) of a variable

is the section of the application that can see and manipulate the variable. If a variable is

declared within a procedure, only the code in the specific procedure has access to that variable;

this variable doesn't exist for the rest of the application. When the variable's scope is limited to

a procedure, it's called local.

Suppose that you're coding the Click event of a button to calculate the sum of all even numbers

in the range 0 to 100. One possible implementation is shown in Listing 2.4.

Listing: Summing Even Numbers

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 34/55

Private Sub Button1_Click(ByValsenderAsObject,_ByVale As System.EventArguments)

Handles Button1.Click

Dim I As Integer

Dim Sum As Integer

For i=0 to100 Step2

Sum=Sum+i

Next

MsgBox "The sum is " & Sum.ToString

End Sub

Listing: Variable Scoped in ItsOwn Block

Private SubButton1_Click(ByValsenderAsObject,_ByVale As System.EventArguments)

Handles Button1.Click

Dim i, Sum As Integer

For i=0 to100 Step2

Dim sqrValue As Integer

sqrValue=i*i

Sum=Sum+sqrValue

Next

MsgBox "The sum of the squares is " & Sum

End Sub

Constants

Some variables don't change value during the execution of a program. These variables

are constants that appear many times in your code. For instance, if your program does math

calculations, the value of pi (3.14159. . .) might appear many times. Instead of typing the value

3.14159 over and over again, you can define a constant, name it pi, and use the name of the

constant in your code. The statement

circumference = 2 * pi * radius

is much easier to understand than the equivalent

circumference = 2 * 3.14159 * radius

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 35/55

You could declare pi as a variable, but constants are preferred for two reasons:

Constants don't change value. This is a safety feature. After a constant has been declared,

you can't change its value in subsequent statements, so you can be sure that the value specified

in the constant's declaration will take effect in the entire program.

Constants are processed faster than variables. When the program is running, the values of

constants don't have to be looked up. The compiler substitutes constant names with their

values, and the program executes faster.

' The following statements declare constants.

Const maxval As Long = 4999

Public Const message As String = "HELLO"

Private Const piValue As Double = 3.1415

Example

The following example demonstrates declaration and use of a constant value:

Module constantsNenum

 Sub Main()

 Const PI = 3.14149

 Dim radius, area As Single

 radius = 7

 area = PI * radius * radius

 Console.WriteLine("Area = " & Str(area))

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Area = 153.933

Print and Display Constants in VB.Net

VB.Net provides the following print and display constants:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 36/55

Constant Description

vbCrLf Carriage return/linefeed character combination.

vbCr Carriage returns character.

vbLf Linefeed character.

vbNewLine Newline character.

vbNullChar Null character.

vbNullString
Not the same as a zero-length string (""); used for calling external

procedures.

vbObjectError

Error number. User-defined error numbers should be greater than this

value. For example:

Err.Raise(Number) = vbObjectError + 1000

vbTab Tab character.

vbBack Backspace character.

Arrays

An array stores a fixed-size sequential collection of elements of the same type. An array

is used to store a collection of data, but it is often more useful to think of an array as a

collection of variables of the same type.

All arrays consist of contiguous memory locations. The lowest address corresponds to the first

element and the highest address to the last element.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 37/55

Creating Arrays in VB.Net

To declare an array in VB.Net, you use the Dim statement. For example,

Dim intData(30) ' an array of 31 elements

Dim strData(20) As String ' an array of 21 strings

Dim twoDarray(10, 20) As Integer 'a two dimensional array of integers

Dim ranges(10, 100) 'a two dimensional array

You can also initialize the array elements while declaring the array. For example,

Dim intData() As Integer = {12, 16, 20, 24, 28, 32}

Dim names() As String = {"Karthik", "Sandhya","Shivangi", "Ashwitha", "Somnath"}

Dim miscData() As Object = {"Hello World", 12d, 16ui, "A"c}

Initializing Arrays

 Just as you can initialize variables in the same line in which you declare them, you can

initialize arrays, too, with the following constructor (an array initializer, as it's called):

Dim arrayname() As type = {entry0, entry1, ... entryN}

Here's an example that initializes an array of strings:

Dim Names() As String = {"Joe Doe", "Peter Smack"}

This statement is equivalent to the following statements, which declare an array with two

elements and then set their values:

Dim Names(1) As String

Names(0)="JoeDoe"

Names(1) = "Peter Smack"

Array Limits

 The first element of an array has index 0. The number that appears in parentheses in the

Dim statement is one fewer than the array's total capacity and is the array's upper limit (or

upper bound). The index of the last element of an array (its upper bound) is given by the

method GetUpperBound, which accepts as an argument the dimension of the array and returns

the upper bound for this dimension.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 38/55

The arrays we examined so far are one-dimensional and the argument to be passed to

the GetUpperBound method is the value 0. The total number of elements in the array is given

by the method GetLength, which also accepts a dimension as an argument. The upper bound of

the following array is 19, and the capacity of the array is 20 elements:

Dim Names(19) As Integer

The first element is Names(0), and the last is Names(19). If you execute the following

statements, the highlighted values will appear in the Output window:

Debug.WriteLine(Names.GetLowerBound(0))

0

Debug.WriteLine(Names.GetUpperBound(0))

19

To assign a value to the first and last element of the Names array, use the following statements:

Names(0)="Firstentry"

Names(19) = "Last entry"

If you want to iterate through the array's elements, use a loop like the following one:

Dim I As Integer, myArray(19) As Integer

For i=0TomyArray.GetUpperBound(0)

myArray(i)=i*1000

Next

The actual number of elements in an array is given by the expression

myArray.GetUpperBound(0) + 1. You can also use the array's Length property to retrieve the

count of elements. The following statement will print the number of elements in the array

myArray in the Output window:

Debug.WriteLine(myArray.Length)

Dynamic Arrays

Dynamic arrays are arrays that can be dimensioned and re-dimensioned as par the need

of the program. You can declare a dynamic array using the ReDim statement.

Syntax for ReDim statement:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 39/55

ReDim [Preserve] arrayname(subscripts)

Where,

The Preserve keyword helps to preserve the data in an existing array, when you resize it.

arrayname is the name of the array to re-dimension.

subscripts specifies the new dimension.

Module arrayApl

 Sub Main()

 Dim marks() As Integer

 ReDim marks(2)

 marks(0) = 85

 marks(1) = 75

 marks(2) = 90

 ReDim Preserve marks(10)

 marks(3) = 80

 marks(4) = 76

 marks(5) = 92

 marks(6) = 99

 marks(7) = 79

 marks(8) = 75

 For i = 0 To 10

 Console.WriteLine(i & vbTab & marks(i))

 Next i

 Console.ReadKey()

 End Sub

End Module

Multi-Dimensional Arrays

VB.Net allows multidimensional arrays. Multidimensional arrays are also called

rectangular arrays.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 40/55

You can declare a 2-dimensional array of strings as:

Dim twoDStringArray(10, 20) As String

or, a 3-dimensional array of Integer variables:

Dim threeDIntArray(10, 10, 10) As Integer

The following program demonstrates creating and using a 2-dimensional array:

Module arrayApl

 Sub Main()

 ' an array with 5 rows and 2 columns

 Dim a(,) As Integer = {{0, 0}, {1, 2}, {2, 4}, {3, 6}, {4, 8}}

 Dim i, j As Integer

 ' output each array element's value '

 For i = 0 To 4

 For j = 0 To 1

 Console.WriteLine("a[{0},{1}] = {2}", i, j, a(i, j))

 Next j

 Next i

 Console.ReadKey()

 End Sub

End Module

Reinitializing Arrays

We can change the size of an array after creating them. The ReDim statement assigns a

completely new array object to the specified array variable. You use ReDim statement to

change the number of elements in an array. The following lines of code demonstrate that. This

code reinitializes the Test array declared above.

Dim Test(10) As Integer

ReDim Test(25) As Integer

'Reinitializing the array

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 41/55

When using the Redim statement all the data contained in the array is lost. If you want to

preserve existing data when reinitializing an array then you should use the Preserve keyword

which looks like this:

Dim Test() as Integer={1,3,5}

'declares an array an initializes it with three members

ReDim Preserve Test(25)

'resizes the array and retains the the data in elements 0 to 2

Control Flow statements

Decision making structures require that the programmer specify one or more conditions

to be evaluated or tested by the program, along with a statement or statements to be executed if

the condition is determined to be true, and optionally, other statements to be executed if the

condition is determined to be false

Decision Statements

Applications need a mechanism to test conditions and take a different course of action

depending on the outcome of the test. Visual Basic provides three such decision, or

conditional, statements:

 If. . .Then

 If. . .Then. . .Else

 Select Case

Loop Statements

Loop statements allow you to execute one or more lines of code repetitively. Many tasks

consist of operations that must be repeated over and over again, and loop statements are an

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 42/55

important part of any programming language. Visual Basic supports the following loop

statements:

 For. . .Next

 Do. . .Loop

 While. . .End While

Decision Statements

1) If Then Statement

 If Then statement is a control structure which executes a set of code only when the given

condition is true.

Syntax:

If [Condition] Then

 [Statements]

In the above syntax when the Condition is true then the Statements after Then are executed.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 43/55

Flow Diagram:

Example:

Private Sub Button1_Click_1(ByVal sender As System.Object, ByVal e As system.EventArgs)

Handles Button1.Click

 If Val(TextBox1.Text) > 25 Then

 TextBox2.Text = "Eligible"

 End If

Description:

In the above If Then example the button click event is used to check if the age got

using TextBox1 is greater than 25, if true a message is displayed in TextBox2

2) If Then Else Statement

 If Then Else statement is a control structure which executes different set of code

statements when the given condition is true or false.

Syntax:

If [Condition] Then

 [Statements]

Else

 [Statements]

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 44/55

In the above syntax when the Condition is true, the Statements after Then are

executed.If the condition is false then the statements after the Else part is executed.

Flow Diagram:

Example:

 Private Sub Button1_Click (ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles Button1.Click

 If Val(TextBox1.Text) >= 40 Then

 MsgBox("GRADUATED")

 Else

 MsgBox("NOT GRADUATED")

 End If

 End Sub

Description:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 45/55

In the above If Then Else example the marks are entered in TextBox1.When a button is

clicked a message GRADUATED is displayed if the condition (>40) is true and NOT

GRADUATED if it is false.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 46/55

3) Nested If Then Else Statement

 Nested If..Then..Else statement is used to check multiple conditions using if then else

statements nested inside one another.

Syntax:

If [Condition] Then

 If [Condition] Then

 [Statements]

 Else

 [Statements]

Else

 [Statements]

In the above syntax when the Condition of the first if then else is true, the second if

then else is executed to check another two conditions. If false the statements under the Else

part of the first statement is executed.

Flow Diagram

Example:

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles Button1.Click

 If Val(TextBox1.Text) >= 40 Then

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 47/55

 If Val(TextBox1.Text) >= 60 Then

 MsgBox("You have FIRST Class")

 Else

 MsgBox("You have SECOND Class")

 End If

 Else

 MsgBox("Check your Average marks entered")

 End If

 End Sub

Description:

In the above nested if then else statement example first the average mark is checked if it

is more than 40, if true the second if then else control is used check for first or second class. If

the first condition is false the statements under the else part is executed.

4) Select Case Statement

 Select case statement is used when the expected results for a condition can be known

previously so that different set of operations can be done based on each condition.

Syntax:

 Select Case Expression

 Case Expression1

 Statement1

 Case Expression2

 Statement2

 Case Expressionn

 Statementn

 ...

 Case Else

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 48/55

 Statement

 End Select

In the above syntax, the value of the Expression is checked with Expression1..n to

check if the condition is true. If none of the conditions are matched the statements under

the Case Else is executed.

Flow Diagram:

KARPAGAM ACADEMY OF HIGHER
EDUCATION

CLASS: II M.COM CA COURSE NAME:
JAVA
COURSE CODE: 16CCP304 UNIT: I (An Overview of Java) BATCH-2016-
2018

Example:

 Private Sub Button1_Click(ByVal sender As System.Object,ByVal e As System.EventArgs)

Handles Button1.Click

 Dim c As String

 c = TextBox1.Text

 Select c

 Case "Red"

 MsgBox("Color code of Red is::#FF0000")

 Case "Green"

 MsgBox("Color code of Green is::#808000")

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 49/55

 Case "Blue"

 MsgBox("Color code of Blue is:: #0000FF")

 Case Else

 MsgBox("Enter correct choice")

 End Select

 End Sub

Description:

In the above example based on the color input in TextBox1, the color code for RGB

colors are displayed, if the color is different then the statement under Case Else is executed.

Thus we can easily execute the select case statement.

Loop Statements

1) Do While Loop Statement

 Do While Loop Statement is used to execute a set of statements only if the condition is

satisfied. But the loop gets executed once for a false condition once before exiting the loop.

This is also known as Entry Controlled loop.

Syntax:

 Do While [Condition]

 [Statements]

 Loop

In the above syntax the Statements are executed till the Condition remains true.

Example:

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles MyBase.Load

 Dim a As Integer

 a = 1

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 50/55

 Do While a < 100

 a = a * 2

 MsgBox("Product is::" & a)

 Loop

 End Sub

Description:

In the above Do While Loop example the loop is continued after the value 64 to display

128 which is false according to the given condition and then the loop exits.

2) Do Loop While Statement

 Do Loop While Statement executes a set of statements and checks the condition, this is

repeated until the condition is true. .It is also known as an Exit Control loop

Syntax:

 Do

 [Statements]

 Loop While [Condition]

In the above syntax the Statements are executed first then the Condition is checked to find if

it is true.

Example:

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles MyBase.Load

 Dim cnt As Integer

 Do

 cnt = 10

 MsgBox("Value of cnt is::" & cnt)

 Loop While cnt <= 9

 End Sub

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 51/55

Description:

In the above Do Loop While example, a message is displayed with a value 10 only after

which the condition is checked, since it is not satisfied the loop exits.

3) For Next Loop Statement

 For Next Loop Statement executes a set of statements repeatedly in a loop for the given

initial, final value range with the specified step by step increment or decrement value.

Syntax:

 For counter = start To end [Step]

 [Statement]

 Next [counter]

In the above syntax the Counter is range of values specified using

the Start ,End parameters. The Step specifies step increment or decrement value of the

counter for which the statements are executed.

Example:

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles MyBase.Load

 Dim i As Integer

 Dim j As Integer

 j = 0

 For i = 1 To 10 Step 1

 j = j + 1

 MsgBox("Value of j is::" & j)

 Next i

 End Sub

Description:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 52/55

In the above For Next Loop example the counter value of i is set to be in the range of 1

to 10 and is incremented by 1. The value of j is increased by 1 for 10 times as the loop is

repeated.

Nested Control Structures

You can place, or nest, control structures inside other control structures (such as an If. .

.Then block within a For. . .Next loop). Control structures in Visual Basic can be nested in as

many levels as you want. The editor automatically indents the bodies of nested decision and

loop structures to make the program easier to read.

When you nest control structures, you must make sure that they open and close within

the same structure. In other words, you can't start a For. . .Next loop in an If statement and

close the loop after the corresponding End If. The following code segment demonstrates how

to nest several flow-control statements. (The curly brackets denote that regular statements

should appear in their place and will not compile, of course.)

For a=1 To 100

{statements}

If a=99 Then

{statements}

EndIf

While b<a

{statements}

If total<=0 Then

{statements}

EndIf

EndWhile

For c=1 to a

{statements}

Next c

Next a

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 53/55

Listing: Simple Nested If Statements

Dim Income As Decimal

Income=Convert.ToDecimal(InputBox("Enteryourincome"))

If Income >0 Then

If Income>12000 Then

MsgBox"You will pay taxes this year"

Else

MsgBox"You won't pay any taxes this year"

End If

Else

MsgBox"Bummer"

End If

The Exit Statement

The Exit statement allows you to exit prematurely from a block of statements in a

control structure, from a loop, or even from a procedure. Suppose that you have a For. . .Next

loop that calculates the square root of a series of numbers. Because the square root of negative

numbers can't be calculated (the Math.Sqrt method will generate a runtime error

For i=0 ToUBound(nArray)

If nArray(i)<0 Then

MsgBox("Can'tcompletecalculations"&vbCrLf&_

"Item"& i.ToString & "isnegative!"

Exit For

EndIf

nArray(i)=Math.Sqrt(nArray(i))

Next

If a negative element is found in this loop, the program exits the loop and continues

with the statement following the Next statement.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 54/55

There are similar Exit statements for the Do loop (Exit Do), the While loop (Exit

While), the Select statement (Exit Select), and for functions and subroutines (Exit Function and

Exit Sub). If the previous loop was part of a function, you might want to display an error and

exit not only the loop, but also the function itself by using the Exit Function statement.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 55/55

POSSIBLE QUESTIONS

PART A (1 Mark)

(Online Examinations)

PART B (6 Marks)

1. Explain about variables with example.

2. Discuss in detail about flow control structures with example

3. Explain about various data types with example.

4. Write a vb.net program to calculate the Simple interest and Compound Interest.

5. Briefly explain about the IDE environment.

6. Explain about with example.

i) While loop ii) Do while loop iii) if….else stmt iv) else if stmt

7. Discuss in detail about Integrated Development Components.

8. Write a vb.net program to calculate the factorial of n numbers.

9. Briefly explain about arrays and conditional statements with examples

10. Briefly explain about nested if statement with example

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 1/13

 PART A (1 Mark) – Unit 1

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

1
.Net is a technology
developed by _________
company

Microsoft
Sun

Microsystems
IBM Apple computers Microsoft

2
__________is also known as
the "execution engine" of
.NET.

CLR CTS MSIL WPF CLR

3
Code that targets the
Common Language Runtime
is known as _________

Distributed
Code

Managed Code Legacy code Native Code Managed Code

4

The _____ defines the
minimum standards that
.NET language compilers
must conform source code
compiled by a .NET compiler

CLS CTS CLR MSIL CLS

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 2/13

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

5
VB.Net is a
_____________programming
paradigm.

Procedural Structured Object Oriented Monolithic
Object

Oriented

6
Data members of a class are
by default ________

public private static volatile private

7
Member functions of a class
are by default ________

public private static volatile public

8
IDE stands for

Internet Design
Environment

Integrated
Development
Environment

Internet
Distributed

Environment

Interface Design
Environment

Integrated
Development
Environment

9
The final compiled version of
a Project is ____

Form Software Components Files Components

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 3/13

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

10
______ is a collection of files
that can be compiled to create
a distributed component

Form Software Components Project Project

11

______ is a collection of
projects and files that
composed an application or
component

Solution Software Forms Project Solution

12
_______menu contains
commands for opening and
saving projects

File Edit View Project File

13
Every object has a distinct set
of attributes known as

members datas properties methods properties

14
The property that must be set
first for any new object is the

Name Colour Size Binding Name

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 4/13

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

15
Objects that can be placed on
a form are called ________

Pictures Tools Buttons Controls Controls

16
Controls that do not have
physical appearance are
called ________

invisible-at-
runtime-
controls

visible-at-
runtime-controls

virtual controls physical controls
invisible-at-

runtime-
controls

17
The Design window
appears__________ by
default.

Auto-Hidden Docked Floating Closed Docked

18

________ windows appears
attached to the side, top or
bottom of the work area or to
some other window

Auto-Hidden Docked Floating Closed Docked

19

_______ can be distributed to
other people/computer and do
not require Visual Basic to
run

Files Forms Projects Components Components

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 5/13

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

20

___________ is a
programming structure that
encapsulates data and
functionality as a single unit.

Class Object Collection methods Object

21

_________window gives an
overview of the solution we
are working with and lists all
the files in the project.

Solution
Explorer

Properties
window

Explorer methods
Solution
Explorer

22
______window allows us to
set properties for various
objects at design time

Explorer
Solution
Explorer

Properties
window

tootlbox
Properties
window

23

_________window as you
can see in the image below
displays the results of
building and running
applications

Command
window

output window Task window both a&b output window

24

When we type the period(dot)
after the object name a small
dropdown list containing all
the properties and methods
related to that object appears.
This feature is called _

IntelliSense OnlineHelp QuickMenu DropHelp IntelliSense

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 6/13

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

25
A property that returns an
object is called

Collection subroutine Object Oriented Object Property
Object

Property

26
____window displays all the
tasks that VB .NET

Task window output window
command
window

Object Property Task window

27

_______is nothing but a
name given to a storage area
that our programs can
manipulate.

Variable
variable

declaration
variable

initialization
initialization Variable

28

To declare a variable, use the
_____statement followed by
the variable's name, the As
keyword, and its type,

Dim integer String Dim as Dim

29
The data type of the variable
is defined by using the --------
- clause

in where as is as

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 7/13

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

30
A composite data type is of --
--------- types

3 4 5 2 2

31
Size of integer data type is ---
----- bits

8 16 24 32 32

32
Which of the given data types
used to represent integer
numbers

int character byte precision int

33
 ------- is the operator used
for string concatenation

Cat Str ^ & &

34

The order in which the
operators in an expression are
evaluated is known as --------

operator
precedence

operator
overloading

associatively of
operators

operator
evaluation

operator
precedence

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 8/13

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

35
And , Or , Not, Xor are called
________ operators

Boolean Relational comparision String Boolean

36

In Select Case _______ Case
is used to define codes that
executes, if the expression
does not evaluate to any of
the Case statement

Default Otherwise Else False Else

37
This data type can be used for
currency values

Currency Dollar Object Decimal Decimal

38
_________ function is used
to retrieve only the month
part of the date

DateDiff() DatePart() DateInterval() Date.Month() DatePart()

39
Which function returns the
system's current date and
time

DateTime.Now DateTime.Today DateTime.System DateTime.Current DateTime.Now

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 9/13

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

40
What statement is used to
close a loop started with For
statement?

Close End For Loop Next Next

41

What statement is used to
terminate a Do..Loop without
evaluating the test
expression?

End Do Loop Exit Exit Do Exit Do

42
 --------- method is create a
new String object with the
same content

CopyTo() Copy() Format() Compare() Copy()

43

The ----- function returns an
array of String containing the
substrings delimited by the
given System.Char array.

Length() Length() Split() Format() Split()

44
The ----------- function
remeove an item from a
specified position

Add Insert() RemoveAt Remove Remove

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 10/13

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

45
The String data type comes
from the ------- class

System.String System System.Forms System.Array System.String

46 The String is ----------- locatable mutable immutable notable immutable

47

The --------- function in
String Class will insert a
String in a specified index in
the String instance.

Length() Insert() Length() Format() Insert()

48

Which of the following when
turned on do not allow to use
any variable without proper
declaration?

Option Restrict Option Explicit Option Implicit Option All Option Explicit

49
Which of the following
methods can be used to add
items to an ArrayList class?

Insert method
collection
method

top method Add method Add method

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 11/13

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

50
Parameters to methods in
VB.NET are declared by
default as ---------

 ByVal ByRef Val Ref ByVal

51
Which of the following does
not denote a arithmetic
operator allowed in VB.Net?

Mod / * ~ ~

52
Which of the following
denote the method used for
compatible type conversions?

TypeCov() Type() CTyp() CType() CType()

53
Which of the following does
not denote a data type in
VB.Net?

Boolean Float Decimal Byte Float

54
The format used for Date is --

{0:D} {0:T} {0:DD} {0:Dy} {0:D}

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 12/13

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

55
The format used for Time is -

{0:D} {0:T} {0:TT} {0:TTY} {0:T}

56
___________ is an
alternative to
If…Then….Else.

select…case case…select select case select…case

57

 Do Loop While Statement
executes a set of statements
and checks the condition, this
is repeated until the condition
is true. .It is also known as

Exit control Entry control control entry exit control Exit control

58
_____ is the value range of
integer

-32767 to
32768

-32768 to 32767 32767 to -32768 32768 to -32767
-32768 to

32767

59
_____ are used for storing
values temporarily.

character constant variable module variable

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 13/13

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

60
_________ is the value range
of byte

0 to 255 1 to 255 0 to 266 1 to 266 0 to 255

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 1/60

UNIT II

SYLLABUS

Writing and Using Procedures: Module Coding – Arguments. Working with Forms: Appearance

of Forms- Loading and Showing Forms -Designing Menus. Multiple Document Interface

WRITING AND USING PROCEDURE

 Procedures are also used for implementing repeated tasks, such as frequently used

calculations. The two types of procedures supported by Visual Basic-subroutines and functions

MODULAR CODING

 The idea of breaking a large application into smaller, more manageable sections is not new

to computing. Few tasks, programming or otherwise, can be managed as a whole. The event

handlers are just one example of breaking a large application into smaller tasks. Some event

handlers may require a lot of code.

Subroutines

 A subroutine is a block of statements that carries out a well-defined task. The block of

statements is placed within a set of Sub. . .End Sub statements and can be invoked by name.

 The following subroutine displays the current date in a message box and can be called by

its name, ShowDate():

Sub ShowDate()

MsgBox(Now().ToShortDateString)

End Sub

 Most procedures also accept and act upon arguments. The ShowDate() subroutine displays

the current date in a message box. If you want to display any other date, you have to implement it

differently and add an argument to the subroutine:

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 2/60

Sub ShowDate(ByVal birthDate As Date)

MsgBox(birthDate.ToShortDateString)

End Sub

 birthDate is a variable that holds the date to be displayed; its type is Date. The ByVal

keyword means that the subroutine sees a copy of the variable, not the variable itself. What this

means practically is that the subroutine can't change the value of the variable passed by the calling

application. To display the current date in a message box, you must call the ShowDate()

subroutine as follows from within your program:

 ShowDate() -To display any other date with the second implementation of the subroutine,

use a statement like the following:

Dim myBirthDate = #2/9/1960#

ShowDate(myBirthDate)

 Or, you can pass the value to be displayed directly without the use of an intermediate

variable: ShowDate(#2/9/1960#)

Functions

 A function is similar to a subroutine, but a function returns a result. Because they return

values, functions — like variables — have types. The value you pass back to the calling program

from a function is called the return value, and its type must match the type of the function.

Functions accept arguments, just like subroutines. The statements that make up a function are

placed in a set of Function. . .End Function statement

A procedure is a group of statements that together perform a task, when called. After the

procedure is executed, the control returns to the statement calling the procedure. VB.Net has two

types of procedures:

 Functions

 Sub procedures or Subs

Functions return a value, where Subs do not return a value.

Defining a Function

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 3/60

 The Function statement is used to declare the name, parameter and the body of a function.

The syntax for the Function statement is:

[Modifiers] Function FunctionName [(ParameterList)] As ReturnType

 [Statements]

End Function

Where,

 Modifiers: specifiy the access level of the function; possible values are: Public, Private,

Protected, Friend, Protected Friend and information regarding overloading, overriding,

sharing, and shadowing.

 FunctionName: indicates the name of the function

 ParameterList: specifies the list of the parameters

 ReturnType: specifies the data type of the variable the function returns

Example

 Following code snippet shows a function FindMax that takes two integer values and

returns the larger of the two.

Function FindMax(ByVal num1 As Integer, ByVal num2 As Integer) As Integer

 ' local variable declaration */

 Dim result As Integer

 If (num1 > num2) Then

 result = num1

 Else

 result = num2

 End If

 FindMax = result

End Function

Function Returning a Value

 In VB.Net a function can return a value to the calling code in two ways:

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 4/60

 By using the return statement

 By assigning the value to the function name

The following example demonstrates using the FindMax function:

Module myfunctions

 Function FindMax(ByVal num1 As Integer, ByVal num2 As Integer) As Integer

 ' local variable declaration */

 Dim result As Integer

 If (num1 > num2) Then

 result = num1

 Else

 result = num2

 End If

 FindMax = result

 End Function

 Sub Main()

 Dim a As Integer = 100

 Dim b As Integer = 200

 Dim res As Integer

 res = FindMax(a, b)

 Console.WriteLine("Max value is : {0}", res)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces following result:

Max value is : 200

More Types of Function Return Values

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 5/60

1) Functions returning Structures

 Suppose you need a function that returns a customer's savings and checking account

balances. So far, you've learned that you can return two or more values from a function by

supplying arguments with the ByRef keyword. A more elegant method is to create a custom data

type (a structure) and write a function that returns a variable of this type.

 Here's a simple example of a function that returns a custom data type. This example

outlines the steps you must repeat every time you want to create functions that return custom data

types:

1. Create a new project and insert the declarations of a custom data type in the declarations

section of the form:

Structure CustBalance

Dim SavingsBalance As Decimal

Dim CheckingBalance As Decimal

End Structure

2. Implement the function that returns a value of the custom type. In the function's body, you must

declare a variable of the type returned by the function and assign the proper values to its fields.

The following function assigns random values to the fields CheckingBalance and SavingsBalance.

Then assign the variable to the function's name, as shown next:

Function GetCustBalance(ID As Long) As CustBalance

Dim tBalance As CustBalance

tBalance.CheckingBalance = CDec(1000 + 4000 * rnd())

tBalance.SavingsBalance = CDec(1000 + 15000 * rnd())

Return(tBalance)

End Function

3. Place a button on the form from which you want to call the function. Declare a variable of the

same type and assign to it the function's return value. The example that follows prints the savings

and checking balances in the Output window:

Private Sub Button1 Click(...) Handles Button1.Click

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 6/60

Dim balance As CustBalance

balance = GetCustBalance(1)

Debug.WriteLine(balance.CheckingBalance)

Debug.WriteLine(balance.SavingsBalance)

End Sub

 The code shown in this section belongs to the Structures sample project. Create this

project from scratch, perhaps by using your own custom data type, to explore its structure and

experiment with functions that return custom data types.

2) Function Returning Arrays

 In addition to returning custom data types, VB 2008 functions can also return arrays. This

is an interesting possibility that allows you to write functions that return not only multiple values,

but also an unknown number of values.

In this section, we'll write the Statistics() function, similar to the CalculateStatistics() function you

saw a little earlier in this chapter. The Statistics() function returns the statistics in an array.

Moreover, it returns not only the average and the standard deviation, but the minimum and

maximum values in the data set as well. One way to declare a function that calculates all the

statistics is as follows:

Function Statistics(ByRef DataArray() As Double) As Double()

 This function accepts an array with the data values and returns an array of Doubles. To

implement a function that returns an array, you must do the following:

1. Specify a type for the function's return value and add a pair of parentheses after the type's

name. Don't specify the dimensions of the array to be returned here; the array will be

declared formally in the function.

2. In the function's code, declare an array of the same type and specify its dimensions. If the

function should return four values, use a declaration like this one:

Dim Results(3) As Double

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 7/60

The Results array, which will be used to store the results, must be of the same type as the

function— its name can be anything.

3. To return the Results array, simply use it as an argument to the Return statement:

Return(Results)

4. In the calling procedure, you must declare an array of the same type without dimensions:

Dim Statistics() As Double

5. Finally, you must call the function and assign its return value to this array:

Stats() = Statistics(DataSet())

Here, DataSet is an array with the values whose basic statistics will be calculated by the

Statistics() function. Your code can then retrieve each element of the array with an index value as

usual.

ARGUMENTS

 Subroutines and functions aren't entirely isolated from the rest of the application. Most

procedures accept arguments from the calling program. Recall that an argument is a value you

pass to the procedure and on which the procedure usually acts. This is how subroutines and

functions communicate with the rest of the application.

Subroutines and functions may accept any number of arguments, and you must supply a value for

each argument of the procedure when you call it. Some of the arguments may be optional, which

means you can omit them; you will see shortly how to handle optional arguments.

 The custom function Min(), for instance, accepts two numbers and returns the smaller one:

Function Min(ByVal a As Single, ByVal b As Single) As Single

Min = IIf(a < b, a, b)

End Function

 IIf() is a built-in function that evaluates the first argument, which is a logical expression. If

the expression is True, the IIf() function returns the second argument. If the expression is False,

the function returns the third argument.

To call the Min() custom function, use a few statements like the following:

Dim val1 As Single = 33.001

Dim val2 As Single = 33.0011

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 8/60

Dim smallerVal as Single

smallerVal = Min(val1, val2)

Debug.Write("The smaller value is " & smallerVal)

If you execute these statements (place them in a button's Click event handler), you will see the

following in the Immediate window:

The smaller value is 33.001

 If you attempt to call the same function with two Double values, with a statement like the

following, you will see the value 3.33 in the Immediate window:

Debug.WriteLine(Min(3.33000000111, 3.33000000222))

 The compiler converted the two values from Double to Single data type and returned one

of them.

 Interesting things will happen if you attempt to use the Min() function with the Strict

option turned on. Insert the statement Option Strict On at the very beginning of the file, or set

Option Strict to On in the Compile tab of the project's Properties pages. The editor will underline

the statement that implements the Min() function: the IIf() function. The IIf() function accepts two

Object variables as arguments, and returns one of them as its result. The Strict option prevents the

compiler from converting an Object to a numeric variable. To use the IIf() function with the Strict

option, you must change its implementation as follows:

Function Min(ByVal a As Object, ByVal b As Object) As Object

Min = IIf(Val(a) < Val(b), a, b)

End Function

Argument Passing Mechanisms

 One of the most important topics in implementing your own procedures is the mechanism

used to pass arguments. The examples so far have used the default mechanism: passing arguments

by value. The other mechanism is passing them by reference. Although most programmers use the

default mechanism, it's important to know the difference between the two mechanisms and when

to use each.

 Passing arguments By Value

 Passing arguments by Reference

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 9/60

 Returning Multiple Values

 Passing Objects as Arguments

Passing arguments by value

 This is the default mechanism for passing parameters to a method. In this mechanism,

when a method is called, a new storage location is created for each value parameter. The values of

the actual parameters are copied into them. So, the changes made to the parameter inside the

method have no effect on the argument.

 VB.Net, you declare the reference parameters using the ByVal keyword. The following

example demonstrates the concept:

Module paramByval

 Sub swap(ByVal x As Integer, ByVal y As Integer)

 Dim temp As Integer

 temp = x ' save the value of x

 x = y ' put y into x

 y = temp 'put temp into y

 End Sub

 Sub Main()

 ' local variable definition

 Dim a As Integer = 100

 Dim b As Integer = 200

 Console.WriteLine("Before swap, value of a : {0}", a)

 Console.WriteLine("Before swap, value of b : {0}", b)

 ' calling a function to swap the values '

 swap(a, b)

 Console.WriteLine("After swap, value of a : {0}", a)

 Console.WriteLine("After swap, value of b : {0}", b)

 Console.ReadLine()

 End Sub

End Module

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 10/60

When the above code is compiled and executed, it produces following result:

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :100

After swap, value of b :200

 It shows that there is no change in the values though they had been changed inside the

function.

Passing Parameters by Reference

 A reference parameter is a reference to a memory location of a variable. When you pass

parameters by reference, unlike value parameters, a new storage location is not created for these

parameters. The reference parameters represent the same memory location as the actual

parameters that are supplied to the method.

In VB.Net, you declare the reference parameters using the ByRef keyword. The following

example demonstrates this:

Module paramByref

 Sub swap(ByRef x As Integer, ByRef y As Integer)

 Dim temp As Integer

 temp = x ' save the value of x

 x = y ' put y into x

 y = temp 'put temp into y

 End Sub

 Sub Main()

 ' local variable definition

 Dim a As Integer = 100

 Dim b As Integer = 200

 Console.WriteLine("Before swap, value of a : {0}", a)

 Console.WriteLine("Before swap, value of b : {0}", b)

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 11/60

 ' calling a function to swap the values '

 swap(a, b)

 Console.WriteLine("After swap, value of a : {0}", a)

 Console.WriteLine("After swap, value of b : {0}", b)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces following result:

Before swap, value of a : 100

Before swap, value of b : 200

After swap, value of a : 200

After swap, value of b : 100

Returning Multiple Values

 If you want to write a function that returns more than a single result, you will most likely

pass additional arguments by reference and set their values from within the function's code. The

CalculateStatistics() function, calculates the basic statistics of a data set. The values of the data

set are stored in an array, which is passed to the function by reference. The CalculateStatistics()

function must return two values: the average and standard deviation of the data set. Here's the

declaration of the CalculateStatistics() function:

Function CalculateStatistics(ByRef Data() As Double, ByRef Avg As Double, ByRef StDev As

Double) As Integer

 The function returns an integer, which is the number of values in the data set. The two

important values calculated by the function are returned in the Avg and StDev arguments:

Function CalculateStatistics(ByRef Data() As Double, ByRef Avg As Double, ByRef StDev As

Double) As Integer

Dim i As Integer, sum As Double, sumSqr As Double, points As Integer

points = Data.Length

For i = 0 To points - 1

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 12/60

sum = sum + Data(i)

sumSqr = sumSqr + Data(i) ˆ 2

Next

Avg = sum / points

StDev = System.Math.Sqrt(sumSqr / points - Avg ˆ 2)

Return(points)

End Function

To call the CalculateStatistics() function from within your code, set up an array of Doubles and

declare two variables that will hold the average and standard deviation of the data set:

Dim Values(99) As Double

' Statements to populate the data set

Dim average, deviation As Double

Dim points As Integer

points = Stats(Values, average, deviation)

Debug.WriteLine points & " values processed."

Debug.WriteLine "The average is " & average & " and"

Debug.WriteLine "the standard deviation is " & deviation

 Using ByRef arguments is the simplest method for a function to return multiple values.

However, the definition of your functions might become cluttered, especially if youwant to

returnmore than a few values. Another problem with this technique is that it's not clear whether an

argument must be set before calling the function. As you will see shortly, it is possible for a

function to return an array or a custom structure with fields for any number of values.

Passing Objects as Arguments

 When you pass objects as arguments, they're passed by reference, even if you have

specified the ByVal keyword. The procedure can access and modify the members of the object

passed as an argument, and the new value will be visible in the procedure that made the call.

 The following code segment demonstrates this. The object is an ArrayList, which is an

enhanced form of an array. The ArrayList is discussed in detail later in the tutorial, but to follow

this example all you need to know is that the Add method adds new items to the ArrayList, and

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 13/60

you can access individual items with an index value, similar to an array's elements. In the Click

event handler of a Button control, create a new instance of the ArrayList object and call the

PopulateList() subroutine to populate the list. Even if the ArrayList object is passed to the

subroutine by value, the subroutine has access to its items:

Private Sub Button1 Click(ByVal sender As System.Object, ByVal e As system.EventArgs)

Handles Button1.Click

Dim aList As New ArrayList()

PopulateList(aList)

Debug.WriteLine(aList(0).ToString)

Debug.WriteLine(aList(1).ToString)

Debug.WriteLine(aList(2).ToString)

End Sub

Sub PopulateList(ByVal list As ArrayList)

list.Add("1")

list.Add("2")

list.Add("3")

End Sub

 The same is true for arrays and all other collections. Even if you specify the ByVal

keyword, they're passed by reference.

Passing unknown number of Arguments

 VB 2008 supports the ParamArray keyword, which allows you to pass a variable number

of arguments to a procedure.

Let's look at an example. Suppose that you want to populate a ListBox control with elements. To

add an item to the ListBox control, you call the Add method of its Items collection as follows:

ListBox1.Items.Add("new item")

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 14/60

 This statement adds the string new item to the ListBox1 control. If you frequently add

multiple items to a ListBox control from within your code, you can write a subroutine that

performs this task. The following subroutine adds a variable number of arguments to the ListBox1

control:

Sub AddNamesToList(ByVal ParamArray NamesArray() As Object)

Dim x As Object

For Each x In NamesArray

ListBox1.Items.Add(x)

Next x

End Sub

 This subroutine's argument is an array prefixed with the keyword ParamArray, which

holds all the parameters passed to the subroutine. If the parameter array holds items of the same

type, you can declare the array to be of the specific type (string, integer, and so on). To add items

to the list, call the AddNamesToList() subroutine as follows:

AddNamesToList("Robert", "Manny", "Renee", "Charles", "Madonna")

 If you want to know the number of arguments actually passed to the procedure, use the

Length property of the parameter array. The number of arguments passed to the

AddNamesToList() subroutine is given by the following expression:

NamesArray.Length

The following loop goes through all the elements of the NamesArray and adds them to the list:

Dim i As Integer

For i = 0 to NamesArray.GetUpperBound(0)

ListBox1.Items.Add(NamesArray(i))

Next i

 VB arrays are zero-based (the index of the first item is 0), and the GetUpperBound

method returns the index of the last item in the array.

 A procedure that accepts multiple arguments relies on the order of the arguments. To omit

some of the arguments, you must use the corresponding comma. Let's say you want to call such a

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 15/60

procedure and specify the first, third, and fourth arguments. The procedure must be called as

follows:

ProcName(arg1, , arg3, arg4)

 The arguments to similar procedures are usually of equal stature, and their order doesn't

make any difference. A function that calculates the mean or other basic statistics of a set of

numbers, or a subroutine that populates a ListBox or ComboBox control, are prime candidates for

implementing this technique. If the procedure accepts a variable number of arguments that aren't

equal in stature, you should consider the technique described in the following section. If the

function accepts a parameter array, this must the last argument in the list, and none of the other

parameters can be optional.

Param Arrays

 At times, while declaring a function or sub procedure you are not sure of the number of

arguments passed as a parameter. VB.Net param arrays (or parameter arrays) come into help at

these times.

The following example demonstrates this:

Module myparamfunc

 Function AddElements(ParamArray arr As Integer()) As Integer

 Dim sum As Integer = 0

 Dim i As Integer = 0

 For Each i In arr

 sum += i

 Next i

 Return sum

 End Function

 Sub Main()

 Dim sum As Integer

 sum = AddElements(512, 720, 250, 567, 889)

 Console.WriteLine("The sum is: {0}", sum)

 Console.ReadLine()

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 16/60

 End Sub

End Module

When the above code is compiled and executed, it produces following result:

The sum is: 2938

Named Arguments

 The main limitation of the argument-passing mechanism, though, is the order of the

arguments. By default, Visual Basic matches the values passed to a procedure to the declared

arguments by their order.

This limitation is lifted by Visual Basic's capability to specify named arguments. With named

arguments, you can supply arguments in any order because they are recognized by name and not

by their order in the list of the procedure's arguments. Suppose you've written a function that

expects three arguments: a name, an address, and an email address:

Function Contact(Name As String, Address As String, EMail As String)

When calling this function, you must supply three strings that correspond to the arguments Name,

Address, and EMail, in that order. However, there's a safer way to call this function: Supply the

arguments in any order by their names. Instead of calling the Contact() function as follows:

Contact("Peter Evans", "2020 Palm Ave., Santa Barbara, CA 90000", _

"PeterEvans@example.com")

you can call it this way:

Contact(Address:="2020 Palm Ave., Santa Barbara, CA 90000", _

EMail:="PeterEvans@example.com", Name:="Peter Evans")

The := operator assigns values to the named arguments. Because the arguments are passed by

name, you can supply them in any order.

To test this technique, enter the following function declaration in a form's code:

Function Contact(ByVal Name As String, ByVal Address As String, _ByVal EMail As String) As

String

Debug.WriteLine(Name)

Debug.WriteLine(Address)

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 17/60

Debug.WriteLine(EMail)

Return ("OK")

End Function

Then call the Contact() function from within a button's Click event with the following statement:

Debug.WriteLine(Contact(Address:="2020 Palm Ave., Santa Barbara, CA 90000", _

Name:="Peter Evans", EMail:="PeterEvans@example.com"))

You'll see the following in the Immediate window:

Peter Evans

2020 Palm Ave., Santa Barbara, CA 90000

PeterEvans@example.com

OK

 The function knows which value corresponds to which argument and can process them the

same way that it processes positional arguments. Notice that the function's definition is the same,

whether you call it with positional or named arguments. The difference is in how you call the

function and not how you declare it.

 Named arguments make code safer and easier to read, but because they require a lot of

typing, most programmers don't use them. Besides, when IntelliSense is on, you can see the

definition of the function as you enter the arguments, and this minimizes the chances of swapping

two values by mistake.

Named Visual Basic Arguments

 Some obvious ways to write readable code include the use of program comments in your

code -- no matter what the language you are using to develop your program, all major languages

provide for comments. Something else that can make your Visual Basic more readable is the use

of Named Arguments.

 This is illustrated by executing the Visual Basic MsgBox Function to display a Windows

Message Box. The Visual Basic MsgBox function has one required argument (Prompt), and four

optional arguments (Buttons, Title, HelpFile and Context).

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 18/60

MsgBox "I love Visual Basic"

 By default, this code will display a Message Box with a single command button captioned

OK, with the text "I love Visual Basic", and the Visual Basic Project name displayed in the Title

Bar of the Message Box.

 Suppose I'm not happy with the default Title in the Message Box, and I decide I want to

customize it. Doing this is easy-all I need to do is supply the Title argument to the MsgBox

function. However, since Title is the third argument, I either need to supply the second argument -

- Buttons, which is by default presumed to be the value vbOKOnly -- or provide a 'comma

placeholder', like this.

MsgBox "I love Visual Basic",, "SearchVB.Com"

 Notice the two commas back-to-back, with no value in-between. This is the 'comma

placeholder' and is how we tell VB that although we have a value for the third argument, we have

no explicit value for the second argument.

 When we execute this code, we'll see a Message Box that reads "I love Visual Basic", and

that has "SearchVB.Com" for its Title Bar.

 Named Arguments can make passing optional arguments easier-and make your code

infinitely easier to read and modify. For instance, the code we wrote above can be re-written the

following way using Named Arguments.

MsgBox Prompt:="I love Visual Basic", Title:="SearchVB.Com"

 With Named Arguments, we specify the name of the argument, followed by a colon and

equals sign (:=), then the value for the argument. By using Named Arguments, we don't need to

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 19/60

provide a 'comma placeholder' for the second argument Buttons. Since we are naming the

argument, VB knows that 'SearchVB.Com' is the value for the Optional Argument 'Title'. And

since we name the arguments, being able to read and understand the code in the future is much

easier.

Overloading Functions

 Function overloading, means that you can have multiple implementations of the same

function, each with a different set of arguments and possibly a different return value. Yet all

overloaded functions share the same name.

 The Next method of the System.Random class returns an integer value from –

2,147,483,648 to 2,147,483,647. (This is the range of values that can be represented by the

Integer data type.) We should also be able to generate random numbers in a limited range of

integer values. To emulate the throw of a die, we want a random value in the range from 1 to 6,

whereas for a roulette game we want an integer random value in the range from 0 to 36. You can

specify an upper limit for the random number with an optional integer argument. The following

statement will return a random integer in the range from 0 to 99:

randomInt = rnd.Next(100)

 You can also specify both the lower and upper limits of the random number's range. The

following statement will return a random integer in the range from 1,000 to 1,999:

randomInt = rnd.Next(1000, 2000)

 The same method behaves differently based on the arguments we supply. The behavior of

the method depends either on the type of the arguments, the number of the arguments, or both. As

you will see, there's no single function that alters its behavior based on its arguments. There are as

many different implementations of the same function as there are argument combinations. All the

functions share the same name, so they appear to the user as a single multifaceted function. These

functions are overloaded, and you'll see how they're implemented in the following section.

 Let's return to the Min() function we implemented earlier in this chapter. The initial

implementation of the Min() function is shown next:

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 20/60

Function Min(ByVal a As Double, ByVal b As Double) As Double

Min = IIf(a < b, a, b)

End Function

 To write a Min() function that can handle both numeric and string values, you must, in

essence, write two Min() functions. All Min() functions must be prefixed with the Overloads

keyword. The following statements show two different implementations of the same function:

Overloads Function Min(ByVal a As Double, ByVal b As Double) As Double

Min = Convert.ToDouble(IIf(a < b, a, b))

End Function

Overloads Function Min(ByVal a As String, ByVal b As String) As String

Min = Convert.ToString(IIf(a < b, a, b))

End Function

 We need a third overloaded form of the same function to compare dates. If you call the

Min() function, passing as an argument two dates, as in the following statement, the Min()

function will compare them as strings and return (incorrectly) the first date.

Debug.WriteLine(Min(#1/1/2009#, #3/4/2008#))

 This statement is not even valid when the Strict option is on, so you clearly need another

overloaded form of the function that accepts two dates as arguments, as shown here:

Overloads Function Min(ByVal a As Date, ByVal b As Date) As Date

Min = IIf(a < b, a, b)

End Function

 If you now call the Min() function with the dates #1/1/2009# and #3/4/2008#, the function

will return the second date, which is chronologically smaller than the first.

Event-Handler Arguments

 Events are basically a user action like key press, clicks, mouse movements etc., or some

occurrence like system generated notifications. Applications need to respond to events when they

occur.

 Clicking on a button, or entering some text in a text box, or clicking on a menu item all are

examples of events. An event is an action that calls a function or may cause another event.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 21/60

Event handlers are functions that tell how to respond to an event.

VB.Net is an event-driven language. There are mainly two types of events:

 Mouse events

 Keyboard events

Handling Mouse Events

 Mouse events occur with mouse movements in forms and controls. Following are the

various mouse events related with a Control class:

 MouseDown - it occurs when a mouse button is pressed

 MouseEnter - it occurs when the mouse pointer enters the control

 MouseHover - it occurs when the mouse pointer hovers over the control

 MouseLeave - it occurs when the mouse pointer leaves the control

 MouseMove - it occurs when the mouse pointer moves over the control

 MouseUp - it occurs when the mouse pointer is over the control and the mouse

button is released

 MouseWheel - it occurs when the mouse wheel moves and the control has focus

The event handlers of the mouse events get an argument of type MouseEventArgs.

The MouseEventArgs object is used for handling mouse events. It has the following properties:

 Buttons - indicates the mouse button pressed

 Clicks - indicates the number of clicks

 Delta - indicates the number of detents the mouse wheel rotated

 X - indicates the x-coordinate of mouse click

 Y - indicates the y-coordinate of mouse click

Handling Keyboard Events

Following are the various keyboard events related with a Control class:

 KeyDown - occurs when a key is pressed down and the control has focus

 KeyPress - occurs when a key is pressed and the control has focus

 KeyUp - occurs when a key is released while the control has focus

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 22/60

The event handlers of the KeyDown and KeyUp events get an argument of type KeyEventArgs.

This object has the following properties:

 Alt - it indicates whether the ALT key is pressed/p>

 Control - it indicates whether the CTRL key is pressed

 Handled - it indicates whether the event is handled

 KeyCode - stores the keyboard code for the event

 KeyData - stores the keyboard data for the event

 KeyValue - stores the keyboard value for the event

 Modifiers - it indicates which modifier keys (Ctrl, Shift, and/or Alt) are pressed

 Shift - it indicates if the Shift key is pressed

 The event handlers of the KeyDown and KeyUp events get an argument of

type KeyEventArgs. This object has the following properties:

 Handled - indicates if the KeyPress event is handled

 KeyChar - stores the character corresponding to the key pressed

WORKING WITH FORMS

 In Visual Basic, the form is the container for all the controls that make up the user

interface. When a Visual Basic application is executing, each window it displays on the desktop is

a form. In previous chapters, we concentrated on placing the elements of the user interface on

forms, setting their properties, and adding code behind selected events. Now, we’ll look at forms

themselves and at a few related topics, such as menus (forms are the only objects that can have

menus attached), how to design forms that can be automatically resized, and how to access the

controls of one form from within another form’s code. The form is the top-level object in a Visual

Basic application, and every application starts with the form.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 23/60

 The forms that constitute the visible interface of your application are called Windows

forms; this term includes both the regular forms and dialog boxes, which are simple forms you

use for very specific actions, such as to prompt the user for a specific piece of data or to display

critical information. A dialog box is a form with a small number of controls, no menus, and

usually an OK and a Cancel button to close it. These are also called Modal Forms and the regular

forms are non-Modal.

APPEARANCE OF FORMS

 Applications are made up of one or more forms (usually more than one), and the forms are

what users see. You should craft your forms carefully, make them functional, and keep them

simple and intuitive. You already know how to place controls on the form, but there’s more to

designing forms than populating them with controls. The main characteristic of a form is the title

bar on which the form’s caption is displayed.

 Clicking the icon on the left end of the title bar opens the Control menu, which contains

the commands shown in Table 2.1 On the right end of the title bar are three buttons: Minimize,

Maximize, and Close. Clicking these buttons performs the associated function. When a form is

maximized, the Maximize button is replaced by the Restore button. When clicked, this button

resets the form to the size and position before it was maximized. The Restore button is then

replaced by the Maximize button

Commands of the Control Menu of the Form

Command Effect

Restore Restores a maximized form to the size it was before it was maximized;

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 24/60

 available only if the form has been maximized.

Move Lets the user move the form around with the arrow keys.

Size Lets the user resize the form with the arrow keys.

Minimize Minimizes the form.

Maximize Maximizes the form.

Close Closes the current form

Properties of the Form Object

 You're familiar with the appearance of forms, even if you haven't programmed in the

Windows environment in the past; you have seen nearly all types of windows in the applications

you're using every day. The floating toolbars used by many graphics applications, for example,

are actually forms with a narrow title bar. The dialog boxes that display critical information or

prompt you to select the file to be opened are also forms. You can duplicate the look of any

window or dialog box through the following properties of the Form object.

AcceptButton, CancelButton

 These two properties let you specify the default Accept and Cancel buttons. The Accept

button is the one that's automatically activated when you press Enter, no matter which control has

the focus at the time, and is usually the button with the OK caption. Likewise, the Cancel button

is the one that's automatically activated when you hit the Esc key and is usually the button with

the Cancel caption. To specify the Accept and Cancel buttons on a form, locate the AcceptButton

and CancelButton properties of the form and select the corresponding controls from a drop-down

list, which contains the names of all the buttons on the form. For more information on these two

properties, see the section "Forms versus Dialog Boxes in VB.NET," later in this chapter.

AutoScaleMode

 This property determines how the control is scaled, and its value is a member of the

AutoScale-Mode enumeration: None (automatic scaling is disabled), Font (the controls on the

form are scaled relative to the size of their font), Dpi, which stands for dots per inch (the controls

on the form are scaled relative to the display resolution), and Inherit (the controls are scaled

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 25/60

according to the AutoScaleMode property of their parent class). The default value is Font; if you

change the form's font size, the controls on it are scaled to the new font size.

AutoScroll

 The AutoScroll property is a True/False value that indicates whether scroll bars will be

automatically attached to the form if the form is resized to a point that not all its controls are

visible. Use this property to design large forms without having to worry about the resolution of

the monitor on which they'll be displayed. The AutoScroll property is used in conjunction with

two other properties, AutoScrollMargin and AutoScrollMinSize. Note that the AutoScroll

property applies to a few controls as well, including the Panel and SplitContainer controls. For

example, you can create a form with a fixed and a scrolling pane by placing two Panel controls on

it and setting the AutoScroll property of one of them (the Panel you want to scroll) to True.

AutoScrollPosition

 This property is available from within your code only (you can't set this property at design

time), and it indicates the number of pixels that the form was scrolled up or down. Its initial value

is zero, and it assumes a value when the user scrolls the form (provided that the form's AutoScroll

property is True). Use this property to find out the visible controls from within your code, or

scroll the form programmatically to bring a specific control into view.

AutoScrollMargin

 This is a margin, expressed in pixels, that's added around all the controls on the form. If

the form is smaller than the rectangle that encloses all the controls adjusted by the margin, the

appropriate scroll bar(s) will be displayed automatically.

AutoScrollMinSize

 This property lets you specify the minimum size of the form before the scroll bars are

attached. If your form contains graphics that you want to be visible at all times, set the Width and

Height members of the AutoScrollMinSize property to the dimensions of the graphics. (Of course,

the graphics won't be visible at all times, but the scroll bars indicate that there's more to the form

than can fit in the current window.) Notice that this isn't the form's minimum size; users can make

the form even smaller. To specify a minimum size for the form, use the MinimumSize property,

described later in this section.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 26/60

FormBorderStyle

 The FormBorderStyle property determines the style of the form's border; its value is one

of the FormBorderStyle enumeration's members, which are shown in Table 2.3. You can make the

form's title bar disappear altogether by setting the form's FormBorderStyle property to

FixedToolWindow, the ControlBox property to False, and the Text property (the form's caption)

to an empty string

Tabel 2.3 - The FormBorderStyle Enumeration

Value Effect

None A borderless window that can't be resized. This setting is rarely used.

Sizable (default) A resizable window that's used for displaying regular forms.

Fixed3D
A window with a fixed visible border, ‘‘raised'' relative to the main area. Unlike the None

setting, this setting allows users to minimize and close the window.

FixedDialog A fixed window used to implement dialog boxes.

FixedSingle A fixed window with a single-line border.

FixedToolWindow
A fixed window with a Close button only. It looks like a toolbar displayed by drawing and

imaging applications.

SizableToolWindow
Same as the FixedToolWindow, but is resizable. In addition, its caption font is smaller than

the usual.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 27/60

 ControlBox

 This property is also True by default. Set it to False to hide the control box icon and

disable the Control menu. Although the Control menu is rarely used, Windows applications don't

disable it. When the ControlBox property is False, the three buttons on the title bar are also

disabled. If you set the Text property to an empty string, the title bar disappears altogether.

MinimizeBox, MaximizeBox

 These two properties, which specify whether the Minimize and Maximize buttons will

appear on the form's title bar, are True by default. Set them to False to hide the corresponding

buttons on the form's title bar.

MinimumSize, MaximumSize

 These two properties read or set the minimum and maximum size of a form. When users

resize the form at runtime, the form won't become any smaller than the dimensions specified by

the MinimumSize property and no larger than the dimensions specified by the MaximumSize

property. The MinimumSize property is a Size object, and you can set it with a statement like the

following:

Me.MinimumSize = New Size(400, 300)

Or you can set the width and height separately:

Me.MinimumSize.Width = 400

Me.MinimumSize.Height = 300

 The MinimumSize.Height property includes the height of the form's title bar; you should

take that into consideration. If the minimum usable size of the form is 400 × 300, use the

following statement to set the MinimumSize property:

Me.MinimumSize = New Size(400, 300 + SystemInformation.CaptionHeight)

 The default value of both properties is (0, 0), which means that no minimum or maximum

size is imposed on the form, and the user can resize it as desired.

KeyPreview

 This property enables the form to capture all keystrokes before they're passed to the

control that has the focus. Normally, when you press a key, the KeyPress event of the control with

the focus is triggered (as well as the KeyUp and KeyDown events), and you can handle the

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 28/60

keystroke from within the control's appropriate handler. In most cases, you let the control handle

the keystroke and don't write any form code for that.

SizeGripStyle

 This property gets or sets the style of the sizing handle to display in the bottom-right

corner of the form. You can set it to a member of the SizeGripStyle enumeration: Auto (the size

grip is displayed as needed), Show (the size grip is displayed at all times), or Hide (the size grip is

not displayed, but users can still resize the form with the mouse).

StartPosition, Location

 The StartPosition property, which determines the initial position of the form when it's first

displayed, can be set to one of the members of the FormStartPosition enumeration: Center-Parent

(the form is centered in the area of its parent form), CenterScreen (the form is centered on the

monitor), Manual (the position of the form is determined by the Location property),

WindowsDefaultLocation (the form is positioned at the Windows default location), and

WindowsDefaultBound (the form's location and bounds are determined by Windows defaults).

The Location property allows you to set the form's initial position at design time or to change the

form's location at runtime.

TopMost

 This property is a True/False value that lets you specify whether the form will remain on

top of all other forms in your application. Its default property is False, and you should change it

only on rare occasions. Some dialog boxes, such as the Find & Replace dialog box of any text-

processing application, are always visible, even when they don't have the focus.

Size

 Use the Size property to set the form's size at design time or at runtime. Normally, the

form's width and height are controlled by the user at runtime. This property is usually set from

within the form's Resize event handler to maintain a reasonable aspect ratio when the user resizes

the form. The Form object also exposes the Width and Height properties for controlling its size.

Placing Controls on Forms

 The first step in designing your application's interface is, of course, the analysis and

careful planning of the basic operations you want to provide through your interface. The second

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 29/60

step is to design the forms. Designing a form means placing Windows controls on it, setting the

controls' properties, and then writing code to handle the events of interest.

To place controls on your form, you select them in the Toolbox and then draw, on the form, the

rectangle in which the control will be enclosed. Or you can double-click the control's icon to place

an instance of the control on the form. All controls have a default size, and you can resize the

control on the form by using the mouse.

Setting the TabIndex Property

 Another important issue in form design is the tab order of the controls on the form. As you

know, pressing the Tab key at runtime takes you to the next control on the form. The order of the

controls is the order in which they were placed on the form, but this is never what we want. When

you design the application, you can specify in which order the controls receive the focus (the tab

order, as it is known) with the help of the TabIndex property. Each control has its own TabIndex

setting, which is an integer value. When the Tab key is pressed, the focus is moved to the control

whose tab order immediately follows the tab order of the current control. The values of the

TabIndex properties of the various controls on the form need not be consecutive.

To specify the tab order of the various controls, you can set their TabIndex property in the

Properties window or you can choose the Tab Order command from the View menu. The tab

order of each control will be displayed on the corresponding control, as shown in Figure 5.3.

Setting the Tab order by using the TabIndex property of the form

 To set the tab order of the controls, click each control in the order in which you want them

to receive the focus. You must click all of them in the desired order, starting with the first control

in the tab order. Each control's index in the tab order appears in the upper-left corner of the

control. When you're finished, choose the Tab Order command from the View menu again to hide

these numbers. As you place controls on the form, don't forget to lock them, so that you won't

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 30/60

move them around by mistake as you work with other controls. You can lock the controls in their

places either by setting each control's Locked property to True or by locking all the controls on

the form at once via the Format > Lock Controls command.

Anchoring and Docking Controls

Anchoring Controls

 The Anchor property lets you attach one or more edges of the control to corresponding

edges of the form. The anchored edges of the control maintain the same distance from the

corresponding edges of the form.

 Place a TextBox control on a new form, set its MultiLine property to True, and then open

the control's Anchor property in the Properties window. You will see a rectangle within a larger

rectangle and four pegs that connect the small control to the sides of the larger box (see Figure

5.5). The large box is the form, and the small one is the control. The four pegs are the anchors,

which can be either white or gray. The gray anchors denote a fixed distance between the control

and the form. By default, the control is placed at a fixed distance from the top-left corner of the

form. When the form is resized, the control retains its size and its distance from the top-left corner

of the form.

 The settings of the Anchor property

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 31/60

 We want our TextBox control to fill the width of the form, be aligned to the top of the

form, and leave some space for a few buttons at the bottom. We also want our form to maintain

this arrangement, regardless of its size. Make the TextBox control as wide as the form (allowing,

perhaps, a margin of a few pixels on either side). Then place a couple of buttons at the bottom of

the form and make the TextBox control tall enough that it stops above the buttons. This is the

form of the Anchor property example project.

Now open the TextBox control's Anchor property and make all four anchors gray by clicking

them. This action tells the Form Designer to resize the control accordingly at runtime, so that the

distances between the sides of the control and the corresponding sides of the form are the same as

those you set at design time. Select each button on the form and set their Anchor properties in the

Properties window: Anchor the left button to the left and bottom of the form, and the right button

to the right and bottom of the form.

 Resize the form at design time without running the project, and you'll see that all the

controls are resized and rearranged on the form at all times. Figure 5.6 shows the Anchor project's

main form in two different sizes.

Use the Anchor property of the various controls to design forms that can be resized gracefully

at runtime.

 Yet, there's a small problem: If you make the form very narrow, there will be no room for

both buttons across the form's width. The simplest way to fix this problem is to impose a

minimum size for the form. To do so, you must first decide the form's minimum width and height

and then set the MinimumSize property to these values. You can also use the AutoScroll

properties, but it's not recommended that you add scroll bars to a small form like ours.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 32/60

Docking Controls

 In addition to the Anchor property, most controls provide the Dock property, which

determines how a control will dock on the form. The default value of this property is None.

Create a new form, place a multiline TextBox control on it, and then open the control's Dock

property. The various rectangular shapes are the settings of the property. If you click the middle

rectangle, the control will be docked over the entire form: It will expand and shrink both

horizontally and vertically to cover the entire form. This setting is appropriate for simple forms

that contain a single control, usually a TextBox, and sometimes a menu. Try it out.

Let's create a more complicated form with two controls (see the Docking sample project). The

form shown in Figure 5.7 contains a TreeView control on the left and a ListView control on the

right. The two controls display folder and file data on an interface that's very similar to that of

Windows Explorer. The TreeView control displays the directory structure, and the ListView

control displays the selected folder's files.

Setting the Dock property of the controls to Fill so the form at runtime will be filled with

controls even when it is re-sized

 Place a TreeView control on the left side of the form and a ListView control on the right

side of the form. Then dock the TreeView to the left and the ListView to the right. If you run the

application now, as you resize the form, the two controls remain docked to the two sides of the

form — but their sizes don't change. If you make the form wider, there will be a gap between the

two controls. If you make the form narrower, one of the controls will overlap the other.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 33/60

End the application, return to the Form Designer, select the ListView control, and set its Dock

property to Fill. This time, the ListView will change size to take up all the space to the right of the

TreeView. The ListView control will attempt to fill the form, but it won't take up the space of

another control that has been docked already.

Form Events

 The Form object triggers several events. The most important are Activated, Deactivate,

Form-Closing, Resize, and Paint.

The Activated and Deactivate Events

 When more than one form is displayed, the user can switch from one to the other by using

the mouse or by pressing Alt+Tab. Each time a form is activated, the Activated event takes place.

Likewise, when a form is activated, the previously active form receives the Deactivate event.

Insert in these two event handlers the code you want to execute when a form is activated (set

certain control properties, for example) and when a form loses the focus or is deactivated. These

two events are the form's equivalents of the Enter and Leave events of the various controls. Notice

an inconsistency in the names of the two events: the Activated event takes place after the form has

been activated, whereas the Deactivate event takes place right before the form is deactivated.

The FormClosing and FormClosed Events

 The FormClosing event is fired when the user closes the form by clicking its Close button.

If the application must terminate because Windows is shutting down, the same event will be fired

as well. Users don't always quit applications in an orderly manner, and a professional application

should behave gracefully under all circumstances. The same code you execute in the application's

Exit command must also be executed from within the closing event.

Listing: Cancelling the Closing of a Form

Public Sub Form1 FormClosing(...) Handles Me.FormClosing

Dim reply As MsgBoxResult

reply = MsgBox("Document has been edited. " &

"OK to terminate application, Cancel to " &

"return to your document.", MsgBoxStyle.OKCancel)

If reply = MsgBoxResult.Cancel Then

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 34/60

e.Cancel = True

End If

End Sub

 The e argument of the FormClosing event provides the CloseReason property, which

reports how the form is closing. Its value is one of the following members of the CloseReason

enumeration: FormOwnerClosing, MdiFormClosing, None, TaskManagerClosing,

WindowsShutDown. The names of the members are self-descriptive, and you can query the

CloseReason property to determine how the window is closing.

 The FormClosed event fires after the form has been closed. You can find out the action

that caused the form to be closed through the e.CloseReason property, but it's too late to cancel

the closing of the form.

The Resize, ResizeBegin, and ResizeEnd Events

 The Resize event is fired every time the user resizes the form by using the mouse. With

previous versions of VB, programmers had to insert quite a bit of code in the Resize event's

handler to resize the controls and possibly rearrange them on the form.With the Anchor and Dock

properties, much of this overhead can be passed to the form itself. If you want the two sides of the

form to maintain a fixed ratio, however, you have to resize one of the dimensions from within the

Resize event handler

Private Form1 Resize(...) Handles Me.Resize

Me.Width = (0.75 * Me.Height)

End Sub

 The Resize event is fired continuously while the form is being resized. If youwant to keep

track of the initial form's size and perform all the calculations after the user has finished resizing

the form, you can use the ResizeBegin and ResizeEnd events, which are fired at the beginning

and after the end of a resize operation, respectively. Store the form's width and height to two

global variables in the ResizeBegin event and use these two variables in the ResizeEnd event

handler.

The Scroll Event

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 35/60

 The Scroll event is fired by forms that have their AutoScroll property set to True when the

user scrolls the form. The second argument of the Scroll event handler exposes the OldValue and

NewValue properties, which are the displacements of the form before and after the scroll

operation. This event can be used to keep a specific control in view when the form's contents are

scrolled.

 The AutoScroll property is handy for large forms, but it has a serious drawback: It scrolls

the entire form. In most cases, we want to keep certain controls in view at all times. Instead of a

scrollable form, you can create forms with scrollable sections by exploiting the AutoScroll

properties of the Panel and/or the SplitContainer controls. You can also reposition certain controls

from within the form's Scroll event handler. Let's say you have placed a few controls on a Panel

container and you want to keep this Panel at the top of a scrolling form. The following statements

in the form's Scroll event handler reposition the Panel at the top of the form every time the user

scrolls the form:

Private Sub Form1 Scroll(...) Handles Me.Scroll

Panel1.Top = Panel1.Top + (e.NewValue - e.OldValue)

End Sub

The Paint Event

 This event takes place every time the form must be refreshed, and we use its handler to

execute code for any custom drawing on the form. When you switch to another form that partially

or totally overlaps the current one and then switch back to the first form, the Paint event will be

fired to notify your application that it must redraw the form. The form will refresh its controls

automatically, but any custom drawing on the form won't be refreshed automatically.

LOADING AND SHOWING FORMS

 One of the operations you’ll have to perform with multi-form applications is to load and

manipulate forms from within other forms’ code. For example, you may wish to display a second

form to prompt the user for data specific to an application. You must explicitly load the second

form, read the information entered by the user, and then close the form. Or, you may wish to

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 36/60

maintain two forms open at once and let the user switch between them.. To show Form2 when an

action takes place on Form1, first declare a variable that references Form2:

Dim frm As New Form2

This declaration must appear in Form1 and must be placed outside any procedure. (If you place it

in a procedure’s code, then every time the procedure is executed, a new reference to Form2 will

be created. This means that the user can display the same form multiple times.

Then, to invoke Form2 from within Form1, execute the following statement:

 frm.Show

 This statement will bring up Form2 and usually appears in a button’s or menu item’s Click

event handler. At this point, the two forms don’t communicate with one another. However,

they’re both on the desktop and you can switch between them. There’s no mechanism to move

information from Form2 back to Form1, and neither form can access the other’s controls or

variables. The Show method opens Form2 in a modaless manner. The two forms are equal in

stature on the desktop, and the user can switch between them. You can also display the second

form in a modal manner, which means that users won’t be able to return to the form from which

they invoked it.

 While a modal form is open, it remains on top of the desktop and you can’t move the

focus to the any other form of the same application (but you can switch to another application).

To open a modal form, use the statement

 frm.ShowDialog

 The modal form is, in effect, a dialog box, like the Open File dialog box. You must first

select a file on this form and click the Open button, or click the Cancel button, to close the dialog

box and return to the form from which the dialog box was invoked.

The Startup Form

 A typical application has more than a single form. When an application starts, the main

form is loaded. You can control which form is initially loaded by setting the startup object in the

Project Properties window. To open this, right-click the project’s name in the Solution Explorer

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 37/60

and select Properties. In the project’s Property Pages, select the Startup Object from the drop-

down list.

 You can also start an application with a subroutine without loading a form. This

subroutine must be called Main() and must be placed in a Module. Right-click the project’s name

in the Solution Explorer window and select the Add Item command. When the dialog box appears,

select a Module. Name it StartUp (or anything you like; you can keep the default name Module1)

and then insert the Main() subroutine in the module. The Main() subroutine usually contains

initialization code and ends with a statement that displays one of the project’s forms; to display

the AuxiliaryForm object from within the Main() subroutine, use the following statements:

Module StartUpModule

Sub Main()

System.Windows.Forms.Application.Run(New _ AuxiliaryForm())

End Sub

End Module

 Then, you must open the Project Properties dialog box and specify that the project’s

startup object is the subroutine Main(). When you run the application, the form you specified in

the Run method will be loaded.

Controlling One Form from within Another

 Loading and displaying a form from within another form’s code is fairly trivial. In some

situations, this is all the interaction you need between forms. Each form is designed to operate

independently of the others, but they can communicate via public variables (see, “Private &

Public Variables”). In most situations, however, you need to control one form from within

another’s code. Controlling the form means accessing its controls and setting or reading values

from within another form’s code.

Example:

 TextPad is a text editor that consists of the main form and an auxiliary form for the Find

& Replace operation. All other operations on the text are performed with the commands of the

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 38/60

menu you see on the main form. When the user wants to search for and/or replace a string, the

program displays another form on which they specify the text to find, the type of search, and so

on. When the user clicks one of the Find & Replace form’s buttons, the corresponding code must

access the text on the main form of the application and search for a word or replace a string with

another. The Find & Replace dialog box not only interacts with the TextBox control on the main

form, it also remains visible at all times while it’s open, even if it doesn’t have the focus, because

its TopMost property was set to True. In the Properties window, you can specify which form is to

be displayed when the application starts.

Forms Vs Dialog Boxes

 A dialog box is simply a modal form. When we display forms as dialog boxes, we change

the border of the forms to the setting FixedDialog and invoke them with the ShowDialog method.

Modeless forms are more difficult to program, because the user may switch among them at any

time. Not only that, but the two forms that are open at once must interact with one another. When

the user acts on one of the forms, this may necessitate some changes in the other, and you’ll see

shortly how this is done.

DESIGNING MENUS

 The MenuStrip class is the foundation of menus functionality in Windows Forms. If you

have worked with menus in .NET 1.0 and 2.0, you must be familiar with the MainMenu control.

In .NET 3.5 and 4.0, the MainMenu control is replaced with the MenuStrip control.

Menu Editor

 Menus can be attached only to forms, and they're implemented through the MenuStrip

control. The items that make up the menu are ToolStripMenuItem objects. As you will see, the

MenuStrip control and ToolStripMenuItem objects give you absolute control over the structure

and appearance of the menus of your application. The MenuStrip control is a variation of the Strip

control, which is the base of menus, toolbars, and status bars.

 We can create a MenuStrip control using a Forms designer at design-time or using the

MenuStrip class in code at run-time or dynamically. To create a MenuStrip control at design-time,

you simply drag and drop a MenuStrip control from Toolbox to a Form in Visual Studio. After

you drag and drop a MenuStrip on a Form, the MenuStrip1 is added to the Form and looks like

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 39/60

Figure below. Once a MenuStrip is on the Form, you can add menu items and set its properties

and events.

 Creating a MenuStrip control at run-time is merely a work of creating an instance of

MenuStrip class, set its properties and adds MenuStrip class to the Form controls.

First step to create a dynamic MenuStrip is to create an instance of MenuStrip class. The

following code snippet creates a MenuStrip control object.

VB.NET Code:

Dim MainMenu As New MenuStrip()

In the next step, you may set properties of a MenuStrip control. The following code snippet sets

background color, foreground color, Text, Name, and Font properties of a MenuStrip.

MainMenu.BackColor = Color.OrangeRed

MainMenu.ForeColor = Color.Black

MainMenu.Text = "File Menu"

MainMenu.Font = New Font("Georgia", 16)

Once the MenuStrip control is ready with its properties, the next step is to add the MenuStrip to a

Form. To do so, first we set MainMenuStrip property and then use Form.Controls.Add method

that adds MenuStrip control to the Form controls and displays on the Form based on the location

and size of the control. The following code snippet adds a MenuStrip control to the current Form.

Me.MainMenuStrip = MainMenu

Controls.Add(MainMenu)

Setting MenuStrip Properties

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 40/60

 After you place a MenuStrip control on a Form, the next step is to set properties.

The easiest way to set properties is from the Properties Window. You can open Properties

window by pressing F4 or right click on a control and select Properties menu item.

The Properties window looks like Figure below.

Name

 Name property represents a unique name of a MenuStrip control. It is used to access the

control in the code. The following code snippet sets and gets the name and text of a MenuStrip

control.

MainMenu.Name = "MailMenu"

Positioning a MenuStrip

 The Dock property is used to set the position of a MenuStrip. It is of type DockStyle that

can have values Top, Bottom, Left, Right, and Fill. The following code snippet sets Location,

Width, and Height properties of a MenuStrip control.

MainMenu.Dock = DockStyle.Left

Font

 Font property represents the font of text of a MenuStrip control. If you click on the Font

property in Properties window, you will see Font name, size and other font options. The following

code snippet sets Font property at run-time.

MainMenu.Font = new Font("Georgia", 16)

Background and Foreground

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 41/60

 BackColor and ForeColor properties are used to set background and foreground color of a

MenuStrip respectively. If you click on these properties in Properties window, the Color Dialog

pops up.

Alternatively, you can set background and foreground colors at run-time. The following code

snippet sets

BackColor and ForeColor properties.

MainMenu.BackColor = System.Drawing.Color.OrangeRed

MainMenu.ForeColor = System.Drawing.Color.Black

Then the MenuStrip looks like Figure below.

MenuStrip Items A Menu control is nothing without menu items. The Items property is used to

add and work with items in a MenuStrip. We can add items to a MenuStrip at design-time from

Properties Window by clicking on Items Collection as you can see in Figure below.

 When you click on the Collections, the String Collection Editor window will pop up where you

can type strings. Each line added to this collection will become a MenuStrip item. (See the Figure

below.)

A ToolStripMenuItem represents a menu items. The following code snippet creates a menu item

and sets its properties.

 Dim FileMenu As New ToolStripMenuItem("File")

 FileMenu.BackColor = Color.OrangeRed

 FileMenu.ForeColor = Color.Black

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 42/60

 FileMenu.Text = "File Menu"

 FileMenu.Font = New Font("Georgia", 16)

 FileMenu.TextAlign = ContentAlignment.BottomRight

 FileMenu.TextDirection = ToolStripTextDirection.Vertical90

 FileMenu.ToolTipText = "Click Me"

 Figure showing Menu Item Collection

Once a menu item is created, we can add it to the main menu by using MenuStrip.Items.Add

method. The following code snippet adds FileMenu item to the MainMenu.

MainMenu.Items.Add(FileMenu)

Adding Menu Item Click Event Handler

 The main purpose of a menu item is to add a click event handler and write code that we

need to execute on the menu item click event handler. For example, on File >> New menu item

click event handler, we may want to create a new file. To add an event handler, you go to Events

window and double click on Click and other as you can see in Figure below.

 We can also define and implement an event handler dynamically. The following code

snippet defines and implements these events and their respective event handlers.

Dim NewMenuItem As New ToolStripMenuItem("New", Nothing, New

EventHandler(AddressOf NewMenuItemClick))

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 43/60

Private Sub NewMenuItemClick(ByVal sender As Object, ByVal e As EventArgs)

MessageBox.Show("New menu item clicked!")

End Sub

Manipulating Menu’s at Runtime

 Dynamic menus change at runtime to display more or fewer commands, depending on the

current status of the program. This section explores two techniques for implementing dynamic

menus:

 Creating short and long versions of the same menu

 Adding and removing menu commands at runtime

Creating Short and Long Menus

 A common technique in menu design is to create long and short versions of a menu. If a

menu contains many commands, and most of the time only a few of them are needed, you can

create one menu with all the commands and another with the most common ones. The first menu

is the long one, and the second is the short one. The last command in the long menu should be

Short Menu, and when selected, it should display the short version. The last command in the short

menu should be Long Menu, and it should display the long version.

Figure shows a long and a short version of the same menu for the example the LongMenu

Example. The short version omits infrequently used commands and is easier to handle.

The two versions of the Format menu of the LongMenu application

 To implement the LongMenu command, start a new project and create a menu with the

options shown in Figure. Listing is the code that shows/hides the long menu in the MenuSize

command's Click event.

Listing :TheMenuSizeMenu Item's Click Event

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 44/60

Private Sub mnuMenuSize_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles mnuSize.Click

If mnuSize.Text = "Short Menu" Then

mnuSize.Text = "Long Menu"

mnuUnderline.Visible = False

mnuStrike.Visible = False

mnuSmallCaps.Visible = False

mnuAllCaps.Visible = False

Else

mnuSize.Text = "Short Menu"

mnuUnderline.Visible = True

mnuStrike.Visible = True

mnuSmallCaps.Visible = True

mnuAllCaps.Visible = True

End If

End Sub

 The subroutine in Listing 5.11 doesn't do much. It simply toggles the Visible property of

certain menu commands and changes the command's caption to Short Menu or Long Menu,

depending on the menu's current status.

Adding and Removing Commands at Runtime

 The RunTimeMenu project (Figure 5.18) demonstrates how to add items to and remove

items from a menu at runtime. The main menu of the application's form contains the Run Time

Menu submenu, which is initially empty.

 Adding and removing menu items at runtime

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 45/60

 The two buttons on the form add commands to and remove commands from the Run Time

Menu. Each new command is appended at the end of the menu, and the commands are removed

from the bottom of the menu first (the most recently added commands are removed first). To

change this order and display the most recent command at the beginning of the menu, use the

Insert method instead of the Add method to insert the new item. Listing shows the code behind

the two buttons that add and remove menu items.

Listing :Adding and RemovingMenu Items at Runtime

Private Sub bttnAddItem_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles bttnAddItem.Click

Dim Item As New ToolStripMenuItem

Item.Text = "Run Time Option" &

RunTimeMenuToolStripMenuItem.DropDownItems.Count.ToString

RunTimeMenuToolStripMenuItem.DropDownItems.Add(Item)

AddHandler Item.Click, New System.EventHandler(AddressOf OptionClick)

End Sub

Private Sub bttnRemoveItem_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles bttnRemoveItem.Click

If RunTimeMenuToolStripMenuItem.DropDownItems.Count > 0 Then

Dim mItem As ToolStripItem

Dim items As Integer = RunTimeMenuToolStripMenuItem.DropDownItems.Count

mItem = RunTimeMenuToolStripMenuItem.DropDownItems(items - 1)

RunTimeMenuToolStripMenuItem.DropDownItems.Remove(mItem)

' To remove a menu item other than the last one, use the following statement:

'

' RunTimeMenuToolStripMenuItem.DropDownItems.RemoveAt(position)

'

' WHERE position IS THE INDEX OF THE ITEM TO BE REMOVED IN THE DROP DOWN

MENU

End If

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 46/60

End Sub

 The Remove button's code uses the Remove method to remove the last item in the menu

by its index, after making sure the menu contains at least one item. The Add button adds a new

item, sets its caption to Run Time Option n, where n is the item's order in the menu. In addition, it

assigns an event handler to the new item's Click event. This event handler is the same for all the

items added at runtime; it's the OptionClick() subroutine.

All the runtime options invoke the same event handler — it would be quite cumbersome to come

up with a separate event handler for different items. In the single event handler, you can examine

the name of the ToolStripMenuItem object that invoked the event handler and act accordingly.

The OptionClick() subroutine used in Listing displays the name of the menu item that invoked it.

It doesn't do anything, but it shows you how to figure out which item of the Run Time Menu was

clicked.

Listing: Programming DynamicMenu Items

Private Sub OptionClick(ByVal sender As Object, ByVal e As EventArgs)

Dim itemClicked As New ToolStripMenuItem

itemClicked = CType(sender, ToolStripMenuItem)

MsgBox("You have selected the item" & itemClicked.Text)

End Sub

Creating Context Menus

 To create a context menu, place a ContextMenuStrip control on your form. The new

context menu will appear on the form just like a regular menu, but it won't be displayed there at

runtime. You can create as many context menus as you need by placing multiple instances of the

ContextMenuStrip control on your form and adding the appropriate commands to each one. To

associate a context menu with a control on your form, set the control's ContextMenuStrip property

to the name of the corresponding context menu.

 Designing a context menu is identical to designing a regular menu. The only difference is

that the first command in the menu is always ContextMenuStrip and it's not displayed along with

the menu. Figure shows a context menu at design time and how the same menu is displayed at

runtime.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 47/60

A context menu at design time (left) and at runtime (right)

 You can create as many context menus as you want on a form. Each control has a

ContextMenu property, which you can set to any of the existing ContextMenuStrip controls.

Select the control (In Figure it is the TextBox control) for which you want to specify a context

menu and locate the ContextMenu property in the Properties window. Expand the drop-down list

and select the name of the desired context menu.

Created ContextMenuStrip controls at the bottom of the Designer

 To edit one of the context menus on a form, select the appropriate ContextMenuStrip

control at the bottom of the Designer as shown in Figure .The corresponding context menu will

appear on the form's menu bar, as if it were a regular form menu. This is temporary, however, and

the only menu that appears on the form's menu bar at runtime is the one that corresponds to the

MenuStrip control (and there can be only one of them on each form).

 Iterating a Menu’s Items

 The last menu-related topic in this chapter demonstrates how to iterate through all the

items of a menu structure, including their submenus, at any depth. The main menu of an

application can be accessed by the expression Me.MenuStrip1 (assuming that you’re using the

default names). This is a reference to the top-level commands of the menu, which appear in the

form’s menu bar. Each command, in turn, is represented by a ToolStripMenuItem object. All the

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 48/60

items under a menu command form a ToolStripMenuItems collection, which you can scan to

retrieve the individual commands.

 The first command in a menu is accessed with the expression Me.MenuStrip1.Items(0);

this is the File command in a typical application. The expression Me.MenuStrip1.Items(1) is the

second command on the same level as the File command (typically, the Edit menu).

To access the items under the first menu, use the DropDownItems collection of the top command.

The first command in the File menu can be accessed by this expression:

Me.MenuStrip1.Items(0).DropDownItems(0)

 The same items can be accessed by name as well, and this is how you should manipulate

the menu items from within your code. In unusual situations, or if you’re using dynamic menus to

which you add and subtract commands at runtime, you’ll have to access the menu items through

the DropDownItems collection.

MULTIPLE DOCUMENT INTERFACE

MDI Overview

 This session introduces the concept of Multiple Document Interface (MDI) and to create

menus within an MDI application. You will learn to create an MDI application in Microsoft

Visual Studio .NET and learn why you might want to use this type of interface. You will learn

about child forms that are contained within the MDI application, and learn to create shortcut, or

context-sensitive, menus.

 MDI is a popular interface because it allows you to have multiple documents (or forms)

open in one application. Examples of MDI applications include Microsoft Word, Microsoft Excel,

Microsoft PowerPoint®, and even the Visual Studio integrated development environment itself.

Each application consists of one (or more) parent windows, each containing an MDI client area—

the area where the child forms (or documents) will be displayed. Code you write displays as many

instances of each of the child forms that you want displayed, and each child form can only be

displayed within the confines of the parent window—this means you can't drag the child forms

outside the MDI container. Figure shows a basic MDI application in use.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 49/60

Using MDI – multiple windows contained within the parent area

Single Document Interface

 MDI is only one of several possible paradigms for creating a user interface. You can also

create applications that display just a single form. They're easier to create, in fact. Those

applications are called Single Document Interface (SDI) applications. Microsoft Windows®

Notepad is an SDI application, and you can only open a single document at a time. (If you want

multiple documents open, you simply run Notepad multiple times.) You are under no obligation

to create your applications using the MDI paradigm. Even if you have multiple forms in your

project, you can simply have each one as a stand-alone form, not contained by any parent form.

Uses of MDI

 MDI are used most often in applications where the user might like to have multiple forms

or documents open concurrently. Word processing applications (like Microsoft Word),

spreadsheet applications (like Microsoft Excel), and project manager applications (like Microsoft

Project) are all good candidates for MDI applications. MDI is also handy when you have a large

application, and you want to provide a simple mechanism for closing all the child forms when the

user exits the application

Creating an MDI Parent Form

 To create an MDI parent form, you can simply take one of your existing forms and set its

IsMDIContainer property to True. This form will now be able to contain other forms as child

forms. You may have one or many container forms within your application.

Tip Note the difference here between Visual Studio .NET and Microsoft Visual Basic® 6.0

behavior. In Visual Basic 6.0, you could only have a single MDI parent form per application, and

you had to use the Project menu to add that one special form. In Visual Studio .NET, you can

turn any form into an MDI parent form by simply modifying a property, and you can have as

many MDI parent forms as you require within the same project.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 50/60

You may have as many different child forms (the forms that remain contained within the parent

form) as you want in your project. A child form is nothing more than a regular form for which

you dynamically set the MdiParent property to refer to the MDI container form.

Run-time Features of MDI Child Forms

 At run time, the MDI parent form and the MDI child forms take on special features:

 All child forms are displayed within the MDI parent's client area. The client area is the

area below the MDI parent's title bar, any menus, and any tool bars.

 Child forms can be moved and sized only within the MDI parent's client area.

 Child forms can be minimized and their icon will be displayed within the parent's client

area.

 Child forms can be maximized within the parent's client area and the caption of the child

form is appended to the caption of the MDI form.

 Windows automatically gives child forms that have their FormBorderStyle property set

to a sizable border a default size. This size is based on the size of the MDI parent's client

area. You can override this by setting the FormBorderStyle property of the child form to

any of the fixed type of borders.

 Child forms cannot be displayed modally.

Create an MDI Project

 In this section, you will walk through the steps of creating a simple MDI application using

Visual Studio .NET. To do this, you will create a new form that will be the MDI parent form. You

will add some menus to this new form, and then you will load the product form from a menu as a

child form.

Create the MDI Parent Form

To create the MDI parent form

1. Open Visual Studio .NET

2. Create a new Windows application project.

3. Set the name of the project to MDI.sln.

4. Rename the form that is created automatically to frmMain.vb.

5. With the frmMain selected, set the form's IsMdiContainer property to True.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 51/60

6. Set the WindowState property to Maximized.

Now we have created an MDI parent form.

Creating Menus in MDI Main Form

 Your main form will require menus so that you can perform actions such as opening child

forms, copying and pasting data, and arranging windows. Visual Studio .NET includes a new

menu designer that makes creating & modifying menus easy.

To add menus to your MDI parent form

1. Double-click the MenuStrip tool in the Toolbox window to add a new object named

MenuStrip1 to the form tray.

2. At the top of the MDI parent form, click the box with Type Here in it and type &File.

3. Press Enter to move to the next menu item and type &Products.

4. Press Enter to move to the next menu item and type a hyphen (-).

5. Press Enter and type E&xit.

You have now created the first drop-down menu on your main form. You should have something

that looks like Figure.

The menu designer allows you to type your menu structure in a WYSIWYG fashion

To the right of the File menu and at the same level, you'll see another small box with the text,

Type Here. Click it and type the following menu items by pressing Enter after each one.

 &Edit

 Cu&t

 &Copy

 &Paste

Once more to the right of the Edit menu and at the same level, add the following menu items in

the same manner.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 52/60

 &Window

 &Cascade

 Tile &Horizontal

 Tile &Vertical

 &Arrange Icons

Creating Names for Each Menu

 After creating all the menu items, you'll need to set the Name property for each. (Because

you'll refer to the name of each menu item from any code you write concerning that menu item,

it's important to choose a name you can understand from within your code.) Instead of clicking

each menu item one at a time and then moving over to the Properties window to set the Name

property, Visual Studio provides a shortcut: Right-click an item in the menu, then select Edit

Names from the context menu..

Use the following names for your menu items:

 mnuFile

 mnuFProducts

 mnuFExit

 mnuEdit

 mnuECut

 mnuECopy

 mnuEPaste

 mnuWindow

 mnuWCasade

 mnuWHorizontal

 mnuWVertical

 mnuWArrange

Test out your application: Press F5 and you should see your main MDI window appear with your

menu system in place.

Display a Child Form

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 53/60

 To add the code that displays the child form, frmProducts, make sure the main form is

open in Design view, and on the File menu, double-click Products. Visual Studio .NET will

create the stub of the menu item's Click event handler for you. Modify the procedure so that it

looks like the following:

Private Sub mnuFProducts_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles_ mnuFProducts.Click

 Dim frm As New frmProducts()

 frm.MdiParent = Me

 frm.Show()

End Sub

 This code declares a variable, frm, which refers to a new instance of the frmProducts form

in the sample project. Then, you set the MdiParent property of the new form, indicating that its

parent should be the current form (using the Me keyword). Finally, the code calls the Show

method of the child form, making it appear on the screen.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 54/60

Child Menus in MDI Applications

 In Visual Studio .NET, however, you can control how the menus interact, using the

MergeOrder and MergeType properties of the individual menu items.

The MergeOrder property controls the relative position of the menu item when its menu

structure gets merged with the parent form's menus. The default value for this property is 0,

indicating that this menu item will be added at the end of the existing menu items. The

MergeType property controls how the menu item behaves when it has the same merge order as

another menu item being merged. Table shows a list of the possible values you can assign to the

MergeType property.

The MergeType property allows you to specify what happens when menu items merge

Value Description

Add The MenuItem is added to

the collection of existing

MenuItem objects in a

MergeItems All submenu items of this

MenuItem are merged with

those of existing MenuItem

Remove The MenuItem is not

included in a merged

Replace The MenuItem replaces an

existing MenuItem at the

same position in a merged

 By default, a menu item's MergeOrder property is set to 0. The MergeType property is

set to Add by default. This means that if you create a child form with a menu on it, the menu will

be added at the end of the main menu. Consider Figure 3, which shows a child form called from

the parent form's main menu. This form has a Maintenance menu on it (and the parent form does

not). All of the items on the parent's main menu have their MergeOrder properties set to 0 and

this menu's MergeOrder property is set to 0, so this menu will be added at the end of the main

menu on the MDI parent form.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 55/60

A child form that has menus will by default be added to the end of the main menu

To create the form in Figure 3

1. On the Project menu, click Add Windows Form.

2. Set the new form's name to frmChildWithMenus.vb.

3. Add a MenuStrip control to this form.

4. Set the Name property for the MenuStrip control to mnuMainMaint.

5. Add the following menus as shown in Table 2.

 Windows Form menus

Menu Name

&Maintenance mnuMaint

&Suppliers mnuMSuppliers

&Categories mnuMCategories

 If you were to call this form exactly like you did the Products form in the previous section

you will see that your main form looks like Figure 4. You can see that by default, the menu is

added to the end of this form.

Menus are added to the end of the main menu by default

Call this form by adding a new menu item under the File menu:

1. Open frmMain.vb in Design view.

2. Click on the separator after the Products menu item and press the Insert key to add a new

menu item.

3. Type Child form with Menus as the text of this new menu item.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 56/60

4. Set the Name property of this new menu item to mnuFChild.

5. Double click this new menu item and modify its Click event handler so that it looks like

this:

Private Sub mnuFChildMenus_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles mnuFChildMenus.Click

 Dim frm As New frmChildWithMenus()

 frm.MdiParent = Me

 frm.Show()

End Sub

 Note: If you wish to merge the Maintenance menu in between the Edit and Window

menus, you could set the MergeOrder property on the Edit menu item to 1, and the

MergeOrder property on the Window menu to a 2. Then on the Maintenance menu item on

frmChildWithMenus, set the MergeOrder property to 1 and leave the MergeType with its

default value, Add. Taking these steps will add the Maintenance menu after the menu on the

main form with the same MergeOrder number as it has (that is, after the Edit menu, but before

the Window menu).

Working with MDI Child Forms

 If you have multiple child forms open, you may want to have them arrange themselves,

much as you can do in Word or Excel, choosing options under the Window menu. Table lists the

available options when arranging child windows.

Choose one of these values when arranging child windows

Menu Item Enumerated Value

Tile Horizontal MdlLayout.TileHorizontal

Tile Vertical MdiLayout.TileVertical

Cascade MdiLayout.Cascade

Arrange Icons MdiLayout.ArrangeIcons

Add some menus to your main form for each of these options:

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 57/60

1. Open frmMain.vb in Design view.

2. On the Window menu, double-click Cascade.

3. For the Cascade menu item, modify the Click event handler so that it looks like the

following:

Private Sub mnuWCascade_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles mnuWCascade.Click

 Me.LayoutMdi(MdiLayout.Cascade)

End Sub

On the Window menu, double-click each menu item and add the appropriate code.

Tracking Child Windows

 Visual Basic .NET will keep track of all child forms that you create, and it's easy to create

a window list menu to manage the child windows. If you wish to see a list of all of the child forms

and be able to give a specific child form focus, follow these steps:

1. Load frmMain in Design view.

2. Select frmMain's Window menu.

3. In the Properties window, set the MdiList to True.

4. Run the project, open a couple of Products forms, and then click the Window drop-down

menu. You should see each instance of the Product form that you opened displayed in the

window list.

Ending an MDI Application

 In most cases, ending an application with the End statement isn’t necessarily the most

user-friendly approach. Before you end an application, you must always offer your users a chance

to save their work. Ideally, you should maintain a True/False variable whose value is set every

time the user edits the open document terminating an MDI application with the End statement is

unacceptable. First, you need a mechanism to detect whether a document needs to be saved or not.

In a text-processing application, you can examine the Modified property of the TextBox control.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 58/60

 Insert the proper code in the Close command’s event handler to detect whether the

document being closed contains unsaved data and prompt the user accordingly. When the user

clicks the child form’s Close button, the child form’s Closing event is fired, this time by the child

form. Finally, when the MDI form is closed, each of the child forms receives the Closing event. In

addition, the MDI form’s Closing event is also fired. Normally, there’s no reason to program this

event. As long as you handle the Closing event of the child form, no data will be lost. In the

Closing event, you can cancel the operation of closing a document, or the MDI form itself, by

settings the e.Cancel property to True.

 To close the active child form, execute the following statements (they must appear in the

Close command’s Click event handler):

Private Sub FileExit_Click(ByVal sender As System.Object, _ByVal e As System.EventArgs)

Handles FileExit.Click

Me.Close()

End Sub

The Close method invokes the Closing event of the child form.

A Scrollable PictureBox

 The scrollable PictureBox isn’t a new control; it’s not even a PictureBox with its own

scroll bars. It’s a child form filled with a PictureBox control. The size of the PictureBox is

determined by the user at runtime, but if it gets smaller than the size of the image, the scroll bars

will be attached automatically. This is a feature of the Form object, and child forms support it,

because they inherit the Windows.Forms.Form class. Figure shows a child form with an image

and the appropriate scroll bars attached to it. From a user’s point of view, it looks just like a

PictureBox with scroll bars.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 59/60

Using an MDI form to simulate a scrolling PictureBox control

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 60/60

POSSIBLE QUESTIONS

PART A (1 Mark)

(Online Examinations)

PART B (6 Marks)

1) Explain in detail about Argument Passing Mechanisms.

2) Write about Forms Vs DialogBoxes.

3) Write a brief notes about overloading functions. Give Example.

4) Compare and contrast the subroutines and functions. Give Example for each.

5) How will you Manipulating Menu’s at Runtime. Explain in detail

6) Write a program to implement calculator

7) Explain in detail about Argument Passing Mechanism with example.

8) Illustrate the usage of message box.

9) Explain on Loading and showing forms

10) Describe the properties and methods of Text box.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 1/13

PART A (1 Mark) – Unit I1

S.no Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

1

The ___________
statement first execute
the statement and then
test the condition after
each execution

do….while while….do select….case while do….while

2

structure executes the
statements until the
condition is satisfied

do…loop do..loop until do while…loop do until do..loop until

3
do…loop until is ------
--- loop

finite infinite long small infinite

4
__________ function
retrieves only date

 for…next next…for exit for exit do for…next

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 2/13

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

5
A __________ loop
can be terminated by
an exit for statement

 for…next next…for exit for for exit for…next

6
do….while loop is
terminated using
__________ statement

 exit for for exit exit do do exit exit do

7

A sequence of
variables by the same
name can be referred
using ___________

 arrays modules sub-routines functions arrays

8
_______operator in
VB is used for string
concatenation

& * + | &

9
Code in VB is stored
in the form of

modules subroutines variables standards modules

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 3/13

S.no..

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

10
Procedures that returns
a value are called ------

subroutines sub units parameters functions functions

11

A calling procedure
passes data to the
parameters by way of -

objects arguments strings numbers arguments

12
Which of the
following can be
called by value?

Class Module Assembly Function Function

13

Functions are
especially useful for
taking one or more
pieces of data called

modules arguments procedures programs arguments

14

In the function 'Public
Function name(ByVal
str as String) As
Integer' the return type
is -------------

Void String Integer Any Integer

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 4/13

S.no. Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

15

A calling procedure
passes data to the
parameters by way of -

objects arguments strings numbers arguments

16

To create a procedure
as an entry point in
code, you must name
the procedure ---------

Main Sub Entry Start Main

17
Which of the
following can be
called by value?

Class Module Assembly Function Function

18

The ----- event
happens when the
mouse pointer hovers
over the form/control

MouseWheel MouseUp MouseDown MouseHover MouseHover

19
the ____occurs when a
mouse button is
pressed

MouseDown MouseUp MouseWheel mouse double click MouseDown

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 5/13

S.no. Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

20

 ------ specifies
number of times the
mouse button is
pressed and released

Button Click Delta X Click

21

If the number of items
exceed the value that
can be displayed,
______ bars will
automatically appear
on the control

icon option button command button scroll bars scroll bars

22

__________ provides
easy navigation
through a list of items
or a large amount of
information

 scroll bar command button tool bar tool box scroll bar

23

_____is the container
for all the controls that
make up the user
interface.

Form form window tool window toolbar Form

24

The forms that
constitute the visible
interface of your
application are
called______

forms Windows forms Form window toolbar Windows forms

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 6/13

S.no. Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

25

_______ToolWindow,
but is resizable. In
addition, its caption
font is smaller than the
usual.

Sizable non sizable both a & b resizable Sizable

26

The _____ is an one
example of breaking a
large application into
smaller tasks.

Event Handler Coding both a & b module Event Handler

27
______specify the
access level of the
function

Function name Modifiers Parameters Return type Modifiers

28
In event-driven
programming an event
is generated by:

a user’s action. the program itself. None Both a & b Both a & b

29

Which helps the user
are not sure of the
number of arguments
passed as a parameter
while declaring a
function or sub
procedure

Named Arrays Param Arrays Unknown arrays Arrays Param Arrays

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 7/13

S.no. Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

30

In ________
arguments, the user
can supply arguments
in any order to the
functions.

Named
arguments

Param arguments List arguments Value arguments
Named

arguments

31

Multiple
implementations of the
same function is called

poly overloading
overloading

function
Override
function

Project
overloading

function

32

The user action like
key press, clicks,
mouse movements are
called __

Handlers Triggers Events Methods Events

33
when a mouse button
is pressed ______
event will fired

Mouse Enter Mouse Up Mouse down MouseHover Mouse down

34

_____ event is fired
when a key is released
while the control has
focus

Key Up Key press Key Down Key Enter Key Up

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 8/13

S.no. Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

35

___ allows the user to
open the menu by
pressing the Alt key
and a letter

Access key shortcut key accept key keys Access key

36

______ is a value you
pass to the procedure
and on which the
procedure usually acts

constant function subroutine arguments arguments

37

_____________ is a
segment of the code
that is executed each
time an external
condition triggers the
event

Event Handler function Coding built-in function Event Handler

38

A ___________ is a
block of statements
that carries out a well-
defined task, those
statements are placed
between Sub …. End
Sub.

Modular subroutines Function Events subroutines

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 9/13

S.no. Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

39

Which property of the
key events returns the
keyboard value for the
key that was pressed

Key Data Key Value Key Code key Key Value

40

The ________ concept
helps the user can
supply arguments in
any order

named
arguments

arguments value order arguments order value
named

arguments

41

means the user can
have multiple
implementation of the
same function, each
with a different set of
arguments and a
different return type

Overloading overriding multiple function procedures Overloading

42
WindowState property
is _________ by
default

Normal Maximized Minimuzed functions Normal

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 10/13

S.no. Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

43
Procedures that returns
a value are called

subroutines sub units parameters functions functions

44

Which property has to
be set to minimize
maximize ot restore a
form in code?

Windows
Applications

WindowState FormBorderStyle WindowSize WindowState

45

Which property is
used to specify the tab
order of the various
controls

tab order Accept return Control Box Auto tab tab order

46
The tab order
command will appear
in which menu

File Format View Edit View

47

Which property is
used to not move the
controls around the
forms.

Control Top Locked autotab Locked

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 11/13

S.no. Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

48

____________ refers
to the position a
control has relative to
the edge of the form

Anchor Dock Key stokes Key preview Anchor

49

_________ refers to
how much space the
control to take up on
the form

Anchor Dock Key stokes Key preview Dock

50

The _______ event
takes place every time
the form must be
refreshed

Resize Paint Close refersh Paint

51
The default value of
FormBorderStyle
property is

FixedSingle FixedToolWindow Sizable SizableToolWindow Sizable

52

The _______ property
determines the initial
position of the form
when its first
displayed

initial position Start position sizedripstyle Fiexed3D Start position

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 12/13

S.no. Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

53

the _____ value
position the form at
the default location
and size determined
by windows

WindowsDefault
Location

WindowsDefault
Bounds

Fixed Dialog Fixed 3D
WindowsDefault

Bounds

54

To attach the scroll bar
automatically to the
form, which property
to set true.

Auto Scale Auto scroll Auto scroll bar Auto accept Auto scroll

55

Without the _______
the form cannot be
repositioned by the
user

Minimize /
Maximize

button
Border Title bar Control Menu Title bar

56

_____ method does
not simply hides the
form, but destroy it
completely

Close() Hide() Distroy() Remove() Close()

57

The simplest method
for two forms to
communicate with
each other is via ____
variables

Private Common public form public

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 13/13

S.no. Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

58
How many parent
form will be in MDI

2 0 1 many 1

59

The ___________
property is one that
automatically
activated when you
press Enter

Accept button Cancel button Control box Border style Accept button

60

When the user pass an
argument _____, the
procedure sees only a
copy of the argument

By val By ref By values By references By val

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 1/66

UNIT – III

SYLLABUS

Basic Windows Controls: Textbox Control- ListBox, CheckedListBox-Scrollbar and TrackBar

Controls. More Windows Control: The common Dialog Controls-The Rich TextBox

Control.The TreeView and ListView Controls: Examining the Advanced Controls-The

TreeView Control-The ListView Control-Content Page Holder

BASIC WINDOWS CONTROLS

The TextBox Control

The TextBox control is the primary mechanism for displaying and entering text. It is a

small text editor that provides all the basic text-editing facilities: inserting and selecting text,

scrolling if the text doesn’t fit in the control’s area, and even exchanging text with other

applications through the Clipboard.

 Figure - TextBox Examples

Basic Properties of the TextBox Control

Let’s start with the properties that specify the appearance and, to some degree, the

functionality of the TextBox control; these properties are usually set at design time through the

Propertieswindow.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 2/66

TextAlign

This property sets (or returns) the alignment of the text on the control, and its value is a

member of the HorizontalAlignment enumeration: Left, Right, or Center.

MultiLine

This property determines whether the TextBox control will hold a single line or multiple

lines of text. Every time you place a TextBox control on your form, it’s sized for a single line of

text and you can change its width only. To change this behavior, set the MultiLine property to

True. When creating multiline TextBoxes, you will most likely have to set one or more of the

MaxLength, ScrollBars, and WordWrap properties in the Properties window.

MaxLength

This property determines the number of characters that the TextBox control will accept.

Its default value is 32,767, which was the maximum number of characters the VB 6 version of

the control could hold. Set this property to zero, so that the text can have any length, up to the

control’s capacity limit — 2,147,483,647 characters, to be exact.

ScrollBars

This property lets you specify the scroll bars you want to attach to the TextBox if the

text exceeds the control’s dimensions. Single-line text boxes can’t have a scroll bar attached,

even if the text exceeds the width of the control. Multiline text boxes can have a horizontal or a

vertical scroll bar, or both.

WordWrap

This property determines whether the text is wrapped automatically when it reaches the

right edge of the control. The default value of this property is True. If the control has a

horizontal scroll bar, however, you can enter very long lines of text.

AcceptsReturn, AcceptsTab

These two properties specify how the TextBox control reacts to the Return (Enter) and

Tab keys. The Enter key activates the default button on the form, if there is one. The default

button is usually an OK button that can be activated with the Enter key, even if it doesn’t have

the focus.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 3/66

The default value of the AcceptsReturn property is True, so pressing Enter creates a new

line on the control. If you set it to False, users can still create new lines in the TextBox control,

but they’ll have to press Ctrl+Enter.

Likewise, the AcceptsTab property determines how the control reacts to the Tab

key.Normally, the Tab key takes you to the next control in the Tab order, and we generally

avoid changing the default setting of the AcceptsTab property.

CharacterCasing

This property tells the control to change the casing of the characters as they’re entered

by the user. Its default value is Normal, and characters are displayed as typed. You can set it to

Upper or Lower to convert the characters to upper- or lowercase automatically.

PasswordChar

This property turns the characters typed into any character you specify. If you don’t

want to display the actual characters typed by the user (when entering a password, for instance),

use this property to define the character to appear in place of each character the user types.

The default value of this property is an empty string, which tells the control to display

the characters as entered. If you set this value to an asterisk (*), for example, the user sees an

asterisk in the place of every character typed. This property doesn’t affect the control’s Text

property, which contains the actual characters. If the PasswordChar property of the TextBox

control is set to any character, the user can’t copy or cut the text on the control.

ReadOnly, Locked

If you want to display text on a TextBox control but prevent users from editing it (such

as for an agreement or a contract they must read, software installation instructions, and so on),

you can set the ReadOnly property to True.When ReadOnly is set to True, you can put text on

the control from within your code, and users can view it, yet they can’t edit it.

Text-Manipulation Properties

Most of the properties for manipulating text in a TextBox control are available at

runtime only. This section presents a breakdown of each property.

Text

The most important property of the TextBox control is the Text property, which holds

the control's text. You can set this property at design time to display some text on the control

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 4/66

initially. Notice that there are two methods of setting the Text property at design time. For

single-line TextBox controls, set the Text property to a short string, as usual. For multiline

TextBox controls, open the Lines property and enter the text in the String Collection Editor

window, which will appear.

Dim strLen As Integer = TextBox1.Text.Length

The IndexOf method of the String class will locate a specific string in the control's text. The

following statement returns the location of the first occurrence of the string Visual in the text:

Dim location As Integer

location = TextBox1.Text.IndexOf("Visual")

For more information on locating strings in a TextBox control, see the section "VB 2008

The TextPad Project" later in this chapter, where we'll build a text editor with search-and-

replace capabilities. For a detailed discussion of the String class, see Chapter, "Handling Strings,

Characters, and Dates."

To store the control's contents in a file, use a statement such as the following:

StrWriter.Write(TextBox1.Text)

Similarly, you can read the contents of a text file into a TextBox control by using a statement

such as the following:

TextBox1.Text = StrReader.ReadToEnd

 Listing 6.1: Locating All Instances of a String in a TextBox

Dim startIndex = -1

startIndex = TextBox1.Text.IndexOf("Basic", startIndex + 1)

While startIndex > 0

Console.WriteLine "String found at " & startIndex

startIndex = TextBox1.Text.IndexOf("Basic", startIndex + 1)

End While

The following statement appends a string to the existing text on the control:

TextBox1.Text = TextBox1.Text & newString

To append a string to a TextBox control, use the following statement:

TextBox1.AppendText(newString)

TextBox1.AppendText(newString & vbCrLf)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 5/66

Lines

In addition to the Text property, you can access the text on the control by using the

Lines property. The Lines property is a string array, and each element holds a paragraph of text.

The first paragraph is stored in the element Lines(0), the second paragraph in the element

Lines(1), and so on. You can iterate through the text lines with a loop such as the following:

Dim iLine As Integer

For iLine = 0 To TextBox1.Lines.GetUpperBound(0) - 1

{ process string TextBox1.Lines(iLine) }

Next

READONLY, LOCKED

If you want to display text on a TextBox control but prevent users from editing it (an

agreement or a contract they must read, software installation instructions, and so on), you can

set the ReadOnly property to True. When ReadOnly is set to True, you can put text on the

control from within your code, and users can view it, yet they can’t edit it

PASSWORDCHAR

Available at design time, this property turns the characters typed into any character you

specify. If you don’t want to display the actual characters typed by the user (when entering a

password, for instance), use this property to define the character to appear in place of each

character the user types.

The default value of this property is an empty string, which tells the control to display

the characters as entered. If you set this value to an asterisk (*), for example, the user sees an

asterisk in the place of every character typed.

Text-Selection Properties

The TextBox control provides three properties for manipulating the text selected by the

user: SelectedText, SelectionStart, and SelectionLength. Users can select a range of text with a

click-and-drag operation, and the selected text will appear in reverse color. You can access the

selected text from within your code through the SelectedText property, and its location in the

control's text through the SelectionStart and SelectionLength properties.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 6/66

SelectedText

This property returns the selected text, enabling you to manipulate the current selection

from within your code. For example, you can replace the selection by assigning a new value to

the SelectedText property. To convert the selected text to uppercase, use the ToUpper method

of the String class:

TextBox1.SelectedText = TextBox1.SelectedText.ToUpper

SelectionStart, SelectionLength

Use these two properties to read the text selected by the user on the control, or to select

text from within your code. The SelectionStart property returns or sets the position of the first

character of the selected text, somewhat like placing the cursor at a specific location in the text

and selecting text by dragging the mouse. The SelectionLength property returns or sets the

length of the selected text.

Dim seekString As String = "Visual"

Dim strLocation As Long

strLocation = TextBox1.Text.IndexOf(seekString)

If strLocation > 0 Then

TextBox1.SelectionStart = strLocation

TextBox1.SelectionLength = seekString.Length

End If

TextBox1.ScrollToCaret()

HideSelection

The selected text in the TextBox does not remain highlighted when the user moves to

another control or form; to change this default behavior, set the HideSelection property to False.

Use this property to keep the selected text highlighted, even if another form or a dialog box,

such as a Find & Replace dialog box, has the focus. Its default value is True, which means that

the text doesn't remain highlighted when the TextBox loses the focus.

Locating the Cursor Position in the Control

The SelectionStart and SelectionLength properties always have a value even if no text is

selected on the control. In this case, SelectionLength is 0, and SelectionStart is the current

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 7/66

position of the pointer in the text. If you want to insert some text at the pointer's location, simply

assign it to the SelectedText property, even if no text is selected on the control.

Text-Selection Methods

 addition to properties, the TextBox control exposes two methods for selecting text. You

can select some text by using the Select method, whose syntax is shown next:

TextBox1.Select(start, length)

The Select method is equivalent to setting the SelectionStart and SelectionLength properties. To

select the characters 100 through 105 on the control, call the Select method, passing the values

99 and 6 as arguments:

TextBox1.Select(99, 6)

TextBox1.Select(3, 4)

If you insert a line break every third character and the text becomes the following, the same

statement will select the characters DE only:

ABC

DEF

GHI

In reality, it has also selected the two characters that separate the first two lines, but special

characters aren’t displayed and can’t be highlighted. The length of the selection, however, is 4.

A variation of the Select method is the SelectAll method, which selects all the text on the

control.

Undoing Edits - CanUndo property

An interesting feature of the TextBox control is that it can automatically undo the most

recent edit operation. To undo an operation from within your code, you must first examine the

value of the CanUndo property. If it’s True, the control can undo the operation; then you can

call the Undo method to undo the most recent edit.

The ListBox, CheckedBox, and ComboBox Controls

The ListBox, CheckedListBox, and ComboBox controls present lists of choices, from

which the user can select one or more. The ListBox control occupies a user-specified amount of

space on the form and is populated with a list of items. If the list of items is longer than can fit

on the control, a vertical scroll bar appears automatically.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 8/66

The CheckedListBox control is a variation of the ListBox control. It’s identical to the

ListBox control, but a check box appears in front of each item. The user can select any number

of items by selecting the check boxes in front of them. As you know, you can also select

multiple items from a ListBox control by pressing the Shift and Ctrl keys.

The ComboBox control also contains multiple items but typically occupies less space on

the screen. The ComboBox control is an expandable ListBox control: The user can expand it to

make a selection, and collapse it after the selection is made. The real advantage of the

ComboBox control, however, is that the user can enter new information in the ComboBox,

rather than being forced to select from the items listed.

Basic Properties The ListBox, CheckedListBox, and ComboBox Controls

In this section, you’ll find the properties that determine the functionality of the three

controls. These properties are usually set at design time, but you can change their setting from

within your application’s code.

IntegralHeight

This property is a Boolean value (True/False) that indicates whether the control’s height

will be adjusted to avoid the partial display of the last item. When set to True, the control’s

actual height changes in multiples of the height of a single line, so only an integer number of

rows are displayed at all times.

Items

The Items property is a collection that holds the control’s items. At design time, you can

populate this list through the String Collection Editor window. At runtime, you can access and

manipulate the items through the methods and properties of the Items collection, which are

described shortly.

MultiColumn

A ListBox control can display its items in multiple columns if you set its MultiColumn

property to True. The problem with multicolumn ListBoxes is that you can’t specify the column

in which each item will appear. ListBoxes with many items and their MultiColumn property set

to True expand horizontally, not vertically. A horizontal scroll bar will be attached to a

multicolumn ListBox, so that users can bring any column into view. This property does not

apply to the ComboBox control.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 9/66

SelectionMode

This property, which applies to the ListBox and CheckedListBox controls only,

determines how the user can select the list’s items. The possible values of this property—

members of the SelectionMode enumeration— are shown in Table 4.3.

 Table - The SelectionMode Enumeration

Value Description

None No selection at all is allowed.

One (Default) Only a single item can be selected.

MultiSimple Simple multiple selection: A mouse click (or pressing the spacebar)

selects or deselects an item in the list. You must click all the items you

want to select.

MultiExtended Extended multiple selection: Press Shift and click the mouse (or press one

of the arrow keys) to expand the selection. This process highlights all the

items between the previously selected item and the current selection. Press

Ctrl and click the mouse to select or deselect single items in the list.

Sorted

When this property is True, the items remain sorted at all times. The default is False,

because it takes longer to insert new items in their proper location. This property’s value can be

set at design time as well as runtime.

Text

The Text property returns the selected text on the control. Although you can set the Text

property for the ComboBox control at design time, this property is available only at runtime for

the other two controls. Notice that the items need not be strings.

The Items Collection

To manipulate a ListBox control from within your application, you should be able to do the

following:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 10/66

 Add items to the list

 Remove items from the list

 Access individual items in the list

If you add a Color object and a Rectangle object to the Items collection with the following

statements:

ListBox1.Items.Add(New Font("Verdana", 12, FontStyle.Bold)

ListBox1.Items.Add(New Rectangle(0, 0, 100, 100))

then the following strings appear on the first two lines of the control:

[Font: Name=Verdana, Size=12, Units=3, GdiCharSet=1, gdiVerticalFont=False]

{X=0, Y=0, Width=100, Height=100}

However, you can access the members of the two objects because the ListBox stores objects,

not their descriptions.

Debug.WriteLine(ListBox1.Items.Item(1).Width)

100

If ListBox1.Items.Item(0).GetType Is GetType(Rectangle) Then

Debug.WriteLine(CType(ListBox1.Items.Item(0), Rectangle).Width)

End If

The Add Method

To add items to the list, use the Items.Add or Items.Insert method. The syntax of the

Add method is as follows:

ListBox1.Items.Add(item)

The following loop adds the elements of the array words to a ListBox control, one at a time:

Dim words(100) As String

{ statements to populate array }

Dim i As Integer

For i = 0 To 99

ListBox1.Items.Add(words(i))

Next

Similarly, you can iterate through all the items on the control by using a loop such as the

following:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 11/66

Dim i As Integer

For i = 0 To ListBox1.Items.Count - 1

{ statements to process item ListBox1.Items(i) }

Next

You can also use the For Each . . . Next statement to iterate through the Items collection, as

shown here:

Dim itm As Object

For Each itm In ListBox1.Items

{ process the current item, represented by the itm variable }

Next

The Insert Method

To insert an item at a specific location, use the Insert method, whose syntax is as

follows:

ListBox1.Items.Insert(index, item)

The Clear Method

The Clear method removes all the items from the control. Its syntax is quite simple:

List1.Items.Clear

The Count Property

This is the number of items in the list. If you want to access all the items with a For . . .

Next loop, the loop's counter must go from 0 to ListBox.Items.Count - 1, as shown in the

example of the Add method.

The CopyTo Method

The CopyTo method of the Items collection retrieves all the items from a ListBox

control and stores them in the array passed to the method as an argument. The syntax of the

CopyTo method is

ListBox.CopyTo(destination, index)

The Remove and RemoveAt Method

To remove an item from the list, you must first find its position (index) in the list, and all

the Remove method passing the position as argument:

ListBox1.Items.Remove(index)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 12/66

The index parameter is the order of the item to be removed, and this time it’s not optional. The

following statement removes the item at the top of the list:

 ListBox1.Remove(0)

If the control contains strings, pass the string to be removed. If the same string appears

multiple times on the control, only the first instance will be removed. If the control contains

object, pass a variable that references the item you want to remove.

You can also remove an item by specifying its position (reference) in the list via the RemoveAt

method, which accepts as argument the position of the item to be removed:

ListBox1.Items.RemoveAt(index)

The index parameter is the order of the item to be removed, and the first item's order is 0.

The Contains Method

The Contains method of the Items collection — not to be confused with the control's

Contains method — accepts an object as an argument and returns a True/False value that

indicates whether the collection contains this object. Use the Contains method to avoid the

insertion of identical objects into the ListBox control. The following statements add a string to

the Items collection, only if the string isn't already part of the collection:

Dim itm As String = "Remote Computing"

If Not ListBox1.Items.Contains(itm) Then

ListBox1.Items.Add(itm)

End If

Searching:

 Two of the most useful methods of the ListBox control are the

FindString and FindStringExact methods, which allow you to quickly locate any item in the list.

The FindString method locates a string that partially matches the one you’re searching for;

FindStringExact finds an exact match. If you’re searching for Man, and the control contains a

name such as Mansfield, FindStringmatches the item, but FindStringExact does not.

Both the FindString and FindStringExact methods perform case-insensitive searches. If you’re

searching for visual, and the list contains the item Visual, both methods will locate it. Their

syntax is the same:

 itemIndex = ListBox1.FindString(searchStr As String)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 13/66

where searchStr is the string you’re searching for. An alternative form of both methods allows

you to specify the order of the item at which the search will begin:

 itemIndex = ListBox1.FindString(searchStr As String, startIndex As Integer)

The startIndex argument allows you to specify the beginning of the search, but you can’t specify

where the search will end.

The ListBoxSearch Application

The application you’ll build in this section (seen in Figure 4.5) populates a list with a large

number of items and then locates any string you specify. Click the button Populate List to

populate the ListBox control with 10,000 random strings. This process will take a few seconds

and will populate the control with different random strings every time. Then, you can enter a

string in the TextBox control at the bottom of the form.

 Figure - ListBox Control Search example

Listing: Searching the List

Private Sub TextBox1 TextChanged(...) Handles TextBox1.TextChanged

Dim srchWord As String = TextBox1.Text.Trim

If srchWord.Length = 0 Then Exit Sub

Dim wordIndex As Integer

wordIndex = ListBox1.FindStringExact(srchWord)

If wordIndex >= 0 Then

ListBox1.TopIndex = wordIndex

ListBox1.SelectedIndex = wordIndex

Else

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 14/66

wordIndex = ListBox1.FindString(srchWord)

If wordIndex >= 0 Then

ListBox1.TopIndex = wordIndex

ListBox1.SelectedIndex = wordIndex

Else

Debug.WriteLine("Item " & srchWord &

" is not in the list")

End If

End If

End Sub

The ComboBox Control

 The ComboBox control is similar to the ListBox control in the sense that it contains

multiple items and the user may select one, but it typically occupies less space onscreen. The

ComboBox is practically an expandable ListBox control, which can grow when the user wants

to make a selection and retract after the selection is made. Normally, the ComboBox control

displays one line with the selected item, as this control doesn’t allow multiple item selection.

The essential difference, however, between ComboBox and ListBox controls is that the

ComboBox allows the user to specify items that don’t exist in the list.

Table - Styles of the ComboBox Control

Value Effect

DropDown

(Default) The control is made up of a drop-down list, which is

visible at all times, and a text box. The user can select an item from

the list or type a new one in the text box.

DropDownList

This style is a drop-down list from which the user can select one of

its items but can’t enter a new one. The control displays a single

item, and the list is expanded as needed.

Simple The control includes a text box and a list that doesn’t drop down.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 15/66

The user can select from the list or type in the text box.

 The DropDown and Simple ComboBox controls allow the user to select an item from

the list or enter a new one in the edit box of the control. Moreover, they’re collapsed by default

and they display a single item, unless the user expands the list of items to make a selection. The

DropDownList ComboBox is similar to a ListBox control in the sense that it restricts the user to

selecting an item (the user cannot enter a new one).

 Figure VB.NET ComboBox control's Simple style, DropDown style and

DropDownList style.

Adding Items to the ComboBox Control

 Although the ComboBox control allows users to enter text in the control’s edit box, it

doesn’t provide a simple mechanism for adding new items at runtime. Let’s say you provide a

ComboBox with city names. Users can type the first few characters and quickly locate the

desired item.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 16/66

Figure - Adding items to ComboBox control at runtime - VB.NET

VB.NET ComboBox Control Example

 The ellipsis button next to the City ComboBox control prompts the user for the new item

via the InputBox() function. Then it searches the Items collection of the control via the

FindString method, and if the new item isn’t found, it’s added to the control. Then the code

selects the new item in the list. To do so, it sets the control’s SelectedIndex property to the value

returned by the Items.Add method, or the value returned by the FindString method, depending

on whether the item was located or added to the list. Listing 4.14 shows the code behind the

ellipsis button.

Listing : Adding a New Item to the ComboBox Control at Runtime

 Private Sub Button1 Click(...) Button1.Click

 Dim itm As String

 itm = InputBox("Enter new item", "New Item")

 If itm.Trim <> "" Then AddElement(itm)

 End Sub

The AddElement() subroutine, which accepts a string as an argument and adds it to the control,

is shown in Listing 4.15. If the item doesn’t exist in the control, it’s added to the Items

collection. If the item is a member of the Items collection, it’s selected. As you will see, the

same subroutine will be used by the second method for adding items to the control at runtime.

Listing: The AddElement() Subroutine

 Sub AddElement(ByVal newItem As String)

 Dim idx As Integer

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 17/66

 If ComboBox1.FindString(newItem) > 0 Then

 idx = ComboBox1.FindString(newItem)

 Else

 idx = ComboBox1.Items.Add(newItem)

 End If

 ComboBox1.SelectedIndex = idx

 End Sub

You can also add new items at runtime by adding the same code in the control’s LostFocus

event handler:

 Private Sub ComboBox1 LostFocus(...) Handles ComboBox1.LostFocus

 Dim newItem As String = ComboBox1.Text

 AddElement(newItem)

 End Sub

The ScrollBar and TrackBar Controls

 The ScrollBar and TrackBar controls let the user specify a magnitude by scrolling a

selector between its minimum and maximum values. In some situations, the user doesn’t know

in advance the exact value of the quantity to specify (in which case, a text box would suffice),

so your application must provide a more-flexible mechanism for specifying a value, along with

some type of visual feedback.

The vertical scroll bar that lets a user move up and down a long document is a typical

example of the use of the ScrollBar control. The scroll bar and visual feedback are the prime

mechanisms for repositioning the view in a long document or in a large picture thatwon’t fit

entirely in its window.

The TrackBar control is similar to the ScrollBar control, but it doesn’t cover a

continuous range of values. The TrackBar control has a fixed number of tick marks, which the

developer can label. Users can place the slider’s indicator to he desired value.Whereas the

ScrollBar control relies on some visual feedback outside the control to help the user position the

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 18/66

indicator to the desired value, the TrackBar control forces the user to select from a range of

valid values.

The ScrollBar Control

 There’s no ScrollBar control per se in the Toolbox; instead, there are two versions of it:

the HScroll-Bar and VScrollBar controls. They differ only in their orientation, but because they

share the same members, I will refer to both controls collectively as ScrollBar controls. Actually,

both controls inherit from the ScrollBar control, which is an abstract control: It can be used to

implement vertical and horizontal scroll bars, but it can’t be used directly on a form. Moreover,

the HScrollBar and VScrollBar controls are not displayed in the Common Controls tab of the

Toolbox. You have to open the All Windows Forms tab to locate these two controls.

Minimum - The control’s minimum value. The default value is 0, but because this is an Integer

value, you can set it to negative values as well.

Maximum - The control’s maximum value. The default value is 100, but you can set it to any

value that you can represent with the Integer data type.

Value - The control’s current value, specified by the indicator’s position.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 19/66

The ScrollBar Control Colors Exercise

 Figure 4.8 shows the main form of the Colors sample project, which lets the user specify

a color by manipulating the value of its basic colors (red, green, and blue) through scroll bars.

Each basic color is controlled by a scroll bar and has a minimum value of 0 and a maximum

value of 255. If you aren’t familiar with color definition in the Windows environment, see the

section "Specifying Colors" in Chapter, "Manipulating Images and Bitmaps."

 Figure - When the ScrollBar is moved the corresponding color is displayed

The ScrollBar Control’s Events

 The user can change the ScrollBar control’s value in three ways: by clicking the two

arrows at its ends, by clicking the area between the indicator and the arrows, and by dragging

the indicator with the mouse. You can monitor the changes of the ScrollBar’s value from within

your code by using two events: ValueChanged and Scroll. Both events are fired every time the

indicator’s position is changed. If you change the control’s value from within your code, only

the ValueChanged event will be fired.

The Scroll event can be fired in response to many different actions, such as the scrolling of the

indicator with the mouse, a click on one of the two buttons at the ends of the scroll bars, and so

on. If you want to know the action that caused this event, you can examine the Type property of

the second argument of the event handler. The settings of the e.Type property are members of

the ScrollEventType enumeration (LargeDecrement, SmallIncrement, Track, and so on).

Handling the Events in the Colors Application

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 20/66

 The Colors application demonstrates how to program the two events of the ScrollBar

control. The two PictureBox controls display the color designed with the three scroll bars. The

left PictureBox is colored from within the Scroll event, whereas the other one is colored from

within the ValueChanged event. Both events are fired as the user scrolls the scrollbar’s indicator,

but in the Scroll event handler of the three scroll bars, the code examines the value of the e.Type

property and reacts to it only if the event was fired because the scrolling of the indicator has

ended. For all other actions, the event handler doesn’t update the color of the left PictureBox.

Listing: Programming the ScrollBar Control’s Scroll Event

Private Sub redBar Scroll(...) Handles redBar.Scroll

If e.Type = ScrollEventType.EndScroll Then

ColorBox1()

lblRed.Text = "RED " & redBar.Value.ToString("###")

End If

End Sub

Private Sub redBar ValueChanged(...) Handles redBar.ValueChanged

ColorBox2()

End Sub

The ColorBox1() and ColorBox2() subroutines update the color of the two PictureBox

controls by setting their background colors. You can open the Colors project in Visual Studio

and examine the code of these two routines.

The TrackBar Control

 The TrackBar control is similar to the ScrollBar control, but it lacks the granularity of

ScrollBar. Suppose that you want the user of an application to supply a value in a specific range,

such as the speed of a moving object. Moreover, you don’t want to allow extreme precision; you

need only a few settings, as shown in the examples in this page. The user can set the control’s

value by sliding the indicator or by clicking on either side of the indicator.

Granularity is how specific youwant to be inmeasuring. Inmeasuring distances between

towns, a granularity of amile is quite adequate. In measuring (or specifying) the dimensions of a

building, the granularity could be on the order of a foot or an inch. The TrackBar control lets

you set the type of granularity that’s necessary for your application.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 21/66

Similar to the ScrollBar control, SmallChange and LargeChange properties are available.

SmallChange is the smallest increment by which the Slider value can change. The user can

change the slider by the SmallChange value only by sliding the indicator. (Unlike the ScrollBar

control, there are no arrows at the two ends of the Slider control.) To change the Slider’s value

by LargeChange, the user can click on either side of the indicator.

The TrackBar Control Inches Exercise

 The Figure demonstrates a typical use of the TrackBar control. The form in the figure is

an element of a program’s user interface that lets the user specify a distance between 0 and 10

inches in increments of 0.2 inches. As the user slides the indicator, the current value is

displayed on a Label control below the TrackBar. If you open the Inches application, you’ll

notice that there are more stops than there are tick marks on the control. This is made possible

with the TickFrequency property, which determines the frequency of the visible tick marks.

 Figure - A typical use of TrackBar control in VB.NET - The Inches Application

The properties of the TrackBar control in the Inches application are as follows:

 Minimum = 0

 Maximum = 50

 SmallChange = 1

 LargeChange = 5

 TickFrequency = 5

The TrackBar needs to cover a range of 10 inches in increments of 0.2 inches. If you set

the SmallChange property to 1, you have to set LargeChange to 5. Moreover, the

TickFrequency is set to 5, so there will be a total of five divisions in every inch. The numbers

below the tick marks were placed there with properly aligned Label controls.

Private Sub TrackBar1 ValueChanged(...)Handles TrackBar1.ValueChanged

lblInches.Text = "Length in inches = " &

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 22/66

Format(TrackBar1.Value / 5, "#.00")

End Sub

The Label controls below the tick marks can also be used to set the value of the control.

Every time you click one of the labels, the following statement sets the TrackBar control’s value.

Notice that all the Label controls’ Click events are handled by a common handler:

 Private Sub Label Click(...) Handles Label1.Click, Label9.Click

 TrackBar1.Value = sender.text * 5

 End Sub

Common Dialog Controls

The common dialog controls are invisible at runtime, and they're not placed on your forms,

because they're implemented as modal dialog boxes and they're displayed as needed. You

simply add them to the project by double-clicking their icons in the Toolbox; a new icon

appears in the components tray of the form, just below the Form Designer. The common dialog

controls in the Toolbox are the following:

 OpenFileDialog - Lets users select a file to open. It also allows the selection of multiple

files for applications that must process many files at once.

 SaveFileDialog - Lets users select or specify the path of a file in which the current

document will be saved.

 ColorDialog - Lets users select a color from a list of predefined colors or specify

custom colors. FontDialog Lets users select a typeface and style to be applied to the

current text selection. The Font dialog box has an Apply button, which you can

intercept from within your code and use to apply the currently selected font to the text

without closing the dialog box.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 23/66

 Figure - Common Font and Open dialog controls

There are three more common dialog controls: the PrintDialog, PrintPreviewDialog, and

PageSetupDialog controls. These controls are discussed in detail in Chapter, "Printing with

Visual Basic 2008," in the context of VB's printing capabilities.

Using the Common Dialog Controls

To display any of the common dialog boxes from within your application, you must first

add an instance of the appropriate control to your project. Then you must set some basic

properties of the control through the Properties window. Most applications set the control's

properties from within the code because common dialogs interact closely with the application.

When you call the Color common dialog, for example, you should preselect a color from within

your application and make it the default selection on the control. When prompting the user for

the color of the text, the default selection should be the current setting of the control's ForeColor

property. Likewise, the Save dialog box must suggest a filename when it first pops up (or the

file's extension, at least).

Here is the sequence of statements used to invoke the Open common dialog and retrieve the

selected filename:

If OpenFileDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then

fileName = OpenFileDialog1.FileName

' Statements to open the selected file

End If

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 24/66

The ShowDialog method returns a value indicating how the dialog box was closed. You

should read this value from within your code and ignore the settings of the dialog box if the

operation was cancelled.

The variable fileName in the preceding code segment is the full pathname of the file

selected by the user. You can also set the FileName property to a filename, which will be

displayed when the Open dialog box is first opened:

OpenFileDialog1.FileName = "C:\WorkFiles\Documents\Document1.doc"

If OpenFileDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then

fileName = OpenFileDialog1.FileName

' Statements to open the selected file

End If

Similarly, you can invoke the Color dialog box and read the value of the selected color by using

the following statements:

ColorDialog1.Color = TextBox1.BackColor

If ColorDialog1.ShowDialog = DialogResult.OK Then

TextBox1.BackColor = ColorDialog1.Color

End If

The ShowDialog method is common to all controls. The Title property is also common to all

controls and it's the string displayed in the title bar of the dialog box. The default title is the

name of the dialog box (for example, Open, Color, and so on), but you can adjust it from within

your code with a statement such as the following:

ColorDialog1.Title = "Select Drawing Color"

Color Dialog Box Control

The Color dialog box, shown in Figure 4.11, is one of the simplest dialog boxes. Its

Color property returns the color selected by the user or sets the initially selected color when the

user opens the dialog box.

The following statements set the initial color of the ColorDialog control, display the

dialog box, and then use the color selected in the control to fill the form. First, place a

ColorDialog control in the form and then insert the following statements in a button’s Click

event handler:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 25/66

Private Sub Button1 Click(...) Handles Button1.Click

ColorDialog1.Color = Me.BackColor

If ColorDialog1.ShowDialog =

Windows.Forms.DialogResult.OK Then

Me.BackColor = ColorDialog1.Color

End If

End Sub

The following sections discuss the basic properties of the ColorDialog control.

 Figure - The Color Dialog Box

AllowFullOpen

Set this property to True if you want users to be able to open the dialog box and define

their own custom colors, like the one shown in Figure 8.2. The AllowFullOpen property doesn’t

open the custom section of the dialog box; it simply enables the Define Custom Colors button in

the dialog box. Otherwise, this button is disabled.

AnyColor

This property is a Boolean value that determines whether the dialog box displays all

available colors in the set of basic colors.

Color

This is the color specified on the control. You can set it to a color value before showing

the dialog box to suggest a reasonable selection. On return, read the value of the same property

to find out which color was picked by the user in the control:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 26/66

ColorDialog1.Color = Me.BackColor

If ColorDialog1.ShowDialog = DialogResult.OK Then

Me.BackColor = ColorDialog1.Color

End If

CustomColors

This property indicates the set of custom colors that will be shown in the dialog box.

The Color dialog box has a section called Custom Colors, in which you can display 16

additional custom colors. The CustomColors property is an array of integers that represent

colors. To display three custom colors in the lower section of the Color dialog box, use a

statement such as the following:

Dim colors() As Integer = {222663, 35453, 7888}

ColorDialog1.CustomColors = colors

You’d expect that the CustomColors property would be an array of Color values, but it’s not.

You can’t create the array CustomColors with a statement such as this one:

Dim colors() As Color = {Color.Azure, Color.Navy, Color.Teal}

Because it’s awkward to work with numeric values, you should convert color values to integer

values by using a statement such as the following:

Color.Navy.ToArgb

The preceding statement returns an integer value that represents the color navy. This value,

however, is negative because the first byte in the color value represents the transparency of the

color. To get the value of the color, you must take the absolute value of the integer value

returned by the previous expression. To create an array of integers that represent color values,

use a statement such as the following:

Dim colors() As Integer = {Math.Abs(Color.Gray.ToArgb),

Math.Abs(Color.Navy.ToArgb), Math.Abs(Color.Teal.ToArgb)}

Now you can assign the colors array to the CustomColors property of the control, and the colors

will appear in the Custom Colors section of the Color dialog box.

SolidColorOnly

This indicates whether the dialog box will restrict users to selecting solid colors only.

This setting should be used with systems that can display only 256 colors. Although today few

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 27/66

systems can’t display more than 256 colors, some interfaces are limited to this number. When

you run an application through Remote Desktop, for example, only the solid colors are

displayed correctly on the remote screen, regardless of the remote computer’s graphics card

(and that’s for efficiency reasons).

Font Dialog Box Control

The Font dialog box, shown in Figure 4.12, lets the user review and select a font and

then set its size and style. Optionally, users can also select the font’s color and even apply the

current settings to the selected text on a control of the form without closing the dialog box, by

clicking the Apply button.

FontDialog1.Font = TextBox1.Font

If FontDialog1.ShowDialog = DialogResult.OK Then

TextBox1.Font = FontDialog1.Font

End If

Use the following properties to customize the Font dialog box before displaying it.

 Figure - The Font Dialog Control

AllowScriptChange

This property is a Boolean value that indicates whether the Script combo box will be

displayed in the Font dialog box. This combo box allows the user to change the current

character set and select a non-Western language (such as Greek, Hebrew, Cyrillic, and so on).

AllowVerticalFonts

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 28/66

This property is a Boolean value that indicates whether the dialog box allows the display

and selection of both vertical and horizontal fonts. Its default value is False, which displays only

horizontal fonts.

Color, ShowColor

The Color property sets or returns the selected font color. To enable users to select a

color for the font, you must also set the ShowColor property to True.

FixedPitchOnly

This property is a Boolean value that indicates whether the dialog box allows only the

selection of fixed-pitch fonts. Its default value is False, which means that all fonts (fixed- and

variable-pitch fonts) are displayed in the Font dialog box. Fixed-pitch fonts, or monospaced

fonts, consist of characters of equal widths that are sometimes used to display columns of

numeric values so that the digits are aligned vertically.

Font

This property is a Font object. You can set it to the preselected font before displaying

the dialog box and assign it to a Font property upon return. You’ve already seen how to

preselect a font and how to apply the selected font to a control from within your application.

You can also create a new Font object and assign it to the control’s Font property. Upon return,

the TextBox control’s Font property is set to the selected font:

Dim newFont As Font("Verdana", 12, FontStyle.Underline)

FontDialog1.Font = newFont

If FontDialog1.ShowDialog() = DialogResult.OK Then

TextBox1.ForeColor = FontDialog1.Color

End If

FontMustExist

This property is a Boolean value that indicates whether the dialog box forces the

selection of an existing font. If the user enters a font name that doesn’t correspond to a name in

the list of available fonts, a warning is displayed. Its default value is True, and there’s no reason

to change it.

MaxSize, MinSize

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 29/66

These two properties are integers that determine the minimum and maximum point size

the user can specify in the Font dialog box. Use these two properties to prevent the selection of

extremely large or extremely small font sizes, because these fonts might throw off a well-

balanced interface (text will overflow in labels, for example).

ShowApply

This property is a Boolean value that indicates whether the dialog box provides an

Apply button. Its default value is False, so the Apply button isn’t normally displayed. If you set

this property to True, you must also program the control’s Apply event — the changes aren’t

applied automatically to any of the controls in the current form.

The following statements display the Font dialog box with the Apply button:

Private Sub Button2 Click(...) Handles Button2.Click

FontDialog1.Font = TextBox1.Font

FontDialog1.ShowApply = True

If FontDialog1.ShowDialog = DialogResult.OK Then

TextBox1.Font = FontDialog1.Font

End If

End Sub

The FontDialog control raises the Apply event every time the user clicks the Apply

button. In this event’s handler, you must read the currently selected font and use it in the form,

so that users can preview the effect of their selection:

Private Sub FontDialog1 Apply(...) Handles FontDialog1.Apply

TextBox1.Font = FontDialog1.Font

End Sub

ShowEffects

This property is a Boolean value that indicates whether the dialog box allows the

selection of special text effects, such as strikethrough and underline. The effects are returned to

the application as attributes of the selected Font object, and you don’t have to do anything

special in your application.

Open Dialog Box and Save Dialog Box Controls

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 30/66

Open and Save As, the two most widely used common dialog boxes (see Figure 4.13),

are implemented by the OpenFileDialog and SaveFileDialog controls. Nearly every application

prompts users for filenames, and the .NET Framework provides two controls for this purpose.

The two dialog boxes are nearly identical, and most of their properties are common, so we'll

start with the properties that are common to both controls.

When either of the two controls is displayed, it rarely displays all the files in any given

folder. Usually the files displayed are limited to the ones that the application recognizes so that

users can easily spot the file they want. The Filter property limits the types of files that will

appear in the Open or Save As dialog box.

 Figure - The OpenDialog and SaveDialog controls

The extension of the default file type for the application is described by the DefaultExtension

property, and the list of the file types displayed in the Save As Type box is determined by the

Filter property.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 31/66

To prompt the user for a file to be opened, use the following statements. The Open dialog box

displays the files with the extension .bin only.

OpenFileDialog1.DefaultExt = ".bin"

OpenFileDialog1.AddExtension = True

OpenFileDialog1.Filter = "Binary Files|*.bin"

If OpenFileDialog1.ShowDialog() =

Windows.Forms.DialogResult.OK Then

Debug.WriteLine(OpenFileDialog1.FileName)

End If

The following sections describe the properties of the OpenFileDialog and SaveFileDialog

controls.

AddExtension

This property is a Boolean value that determines whether the dialog box automatically

adds an extension to a filename if the user omits it. The extension added automatically is the

one specified by the DefaultExtension property, which you must set before calling the

ShowDialog method. This is the default extension of the files recognized by your application.

CheckFileExists

This property is a Boolean value that indicates whether the dialog box displays a

warning if the user enters the name of a file that does not exist in the Open dialog box, or if the

user enters the name of a file that exists in the Save dialog box.

CheckPathExists

This property is a Boolean value that indicates whether the dialog box displays a

warning if the user specifies a path that does not exist, as part of the user-supplied filename.

DefaultExt

This property sets the default extension for the filenames specified on the control. Use

this property to specify a default filename extension, such as .txt or .doc, so that when a file

with no extension is specified by the user, the default extension is automatically appended to the

filename. You must also set the AddExtension property to True. The default extension property

starts with the period, and it's a string — for example, .bin.

DereferenceLinks

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 32/66

This property indicates whether the dialog box returns the location of the file referenced

by the shortcut or the location of the shortcut itself. If you attempt to select a shortcut on your

desktop when the DereferenceLinks property is set to False, the dialog box will return to your

application a value such as C:\WINDOWS\SYSTEM32\lnkstub.exe, which is the name of the

shortcut, not the name of the file represented by the shortcut. If you set the DereferenceLinks

property to True, the dialog box will return the actual filename represented by the shortcut,

which you can use in your code.

FileName

Use this property to retrieve the full path of the file selected by the user in the control. If

you set this property to a filename before opening the dialog box, this value will be the

proposed filename. The user can click OK to select this file or select another one in the control.

The two controls provide another related property, the FileNames property, which returns an

array of filenames. To find out how to allow the user to select multiple files, see the discussion

of the MultipleFiles and FileNames properties in ‘‘VB 2008 at Work: Multiple File Selection''

at the end of this section.

Filter

This property is used to specify the type(s) of files displayed in the dialog box. To

display text files only, set the Filter property to Text files|*.txt. The pipe symbol separates the

description of the files (what the user sees) from the actual extension (how the operating system

distinguishes the various file types).

If you want to display multiple extensions, such as .BMP, .GIF, and .JPG, use a

semicolon to separate extensions with the Filter property. Set the Filter property to the string

Images|*.BMP; *.GIF;*.JPG to display all the files of these three types when the user selects

Images in the Save As Type combo box, under the box with the filename.

Don't include spaces before or after the pipe symbol because these spaces will be displayed on

the dialog box. In the Open dialog box of an image-processing application, you'll probably

provide options for each image file type, as well as an option for all images:

OpenFileDialog1.Filter =

"Bitmaps|*.BMP|GIF Images|*.GIF|" &

"JPEG Images|*.JPG|All Images|*.BMP;*.GIF;*.JPG"

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 33/66

FilterIndex

When you specify more than one file type when using the Filter property of the Open

dialog box, the first file type becomes the default. If you want to use a file type other than the

first one, use the FilterIndex property to determine which file type will be displayed as the

default when the Open dialog box is opened. The index of the first type is 1, and there's no

reason to ever set this property to 1. If you use the Filter property value of the example in the

preceding section and set the FilterIndex property to 2, the Open dialog box will display GIF

files by default.

InitialDirectory

This property sets the initial folder whose files are displayed the first time that the Open

and Save dialog boxes are opened. Use this property to display the files of the application's

folder or to specify a folder in which the application stores its files by default. If you don't

specify an initial folder, the dialog box will default to the last folder where the most recent file

was opened or saved. It's also customary to set the initial folder to the application's path by

using the following statement:

OpenFileDialog1.InitialDirectory = Application.ExecutablePath

The expression Application.ExecutablePath returns the path in which the application's

executable file resides.

RestoreDirectory

Every time the Open and Save As dialog boxes are displayed, the current folder is the

one that was selected by the user the last time the control was displayed. The RestoreDirectory

property is a Boolean value that indicates whether the dialog box restores the current directory

before closing. Its default value is False, which means that the initial directory is not restored

automatically. The InitialDirectory property overrides the RestoreDirectory property.

The following four properties are properties of the OpenFileDialog control only: FileNames,

MultiSelect, ReadOnlyChecked, and ShowReadOnly.

FileNames

If the Open dialog box allows the selection of multiple files (see the later section "VB

2008 at Work: Multiple File Selection"), the FileNames property contains the pathnames of all

selected files. FileNames is a collection, and you can iterate through the filenames with an

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 34/66

enumerator. This property should be used only with the OpenFileDialog control, even though

the SaveFileDialog control exposes a FileNames property.

MultiSelect

This property is a Boolean value that indicates whether the user can select multiple files

in the dialog box. Its default value is False, and users can select a single file. When the

MultiSelect property is True, the user can select multiple files, but they must all come from the

same folder (you can't allow the selection of multiple files from different folders). This property

is unique to the OpenFileDialog control.

ReadOnlyChecked, ShowReadOnly

The ReadOnlyChecked property is a Boolean value that indicates whether the Read-

Only check box is selected when the dialog box first pops up (the user can clear this box to open

a file in read/write mode). You can set this property to True only if the ShowReadOnly property

is also set to True. The ShowReadOnly property is also a Boolean value that indicates whether

the Read-Only check box is available..

The OpenFile and SaveFile Methods

The OpenFileDialog control exposes the OpenFile method, which allows you to quickly

open the selected file. Likewise, the SaveFileDialog control exposes the SaveFile method,

which allows you to quickly save a document to the selected file.

OpenDialog and SaveDialog controls example: Multiple File Selection

The Open dialog box allows the selection of multiple files. This feature can come in

handy when you want to process files en masse. You can let the user select many files, usually

of the same type, and then process them one at a time. Or, you might want to prompt the user to

select multiple files to be moved or copied.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 35/66

 Figure - Selecting multiple files in an open dialog box - Visual Basic

The code behind the Open Files button is shown in Listing 4.17. In this example, I used the

array's enumerator to iterate through the elements of the FileNames array. You can use any of

the methods discussed in the section "Arrays in Visual basic 2008" to iterate through the array.

Listing: Processing Multiple Selected Files

Private Sub bttnFile Click(...) Handles bttnFile.Click

OpenFileDialog1.Multiselect = True

OpenFileDialog1.ShowDialog()

Dim filesEnum As IEnumerator

ListBox1.Items.Clear()

filesEnum = OpenFileDialog1.FileNames.GetEnumerator()

While filesEnum.MoveNext

ListBox1.Items.Add(filesEnum.Current)

End While

End Sub

Print Dialog Box Control

A PrintDialog control is used to open the Windows Print Dialog and let user select the

printer, set printer and paper properties and print a file. A typical Open File Dialog looks like

Figure 1 where you select a printer from available printers, set printer properties, set print range,

number of pages and copies and so on. Clicking on OK button sends the document to the printer.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 36/66

Figure – Print Dialog Control

Creating a PrintDialog

We can create a PrintDialog at design-time as well as at run-time.

Design-time

To create a PrintDialog control at design-time, you simply drag and drop a PrintDialog

control from Toolbox to a Form in Visual Studio. After you drag and drop a PrintDialog on a

Form, the PrintDialog looks like Figure 2.

Figure – design time

Run-time

Creating a PrintDialog control at run-time is simple. First step is to create an instance of

PrintDialog class and then call the ShowDialog method. The following code snippet creates a

PrintDialog control.

Dim PrintDialog1 As New PrintDialog()

PrintDialog1.ShowDialog()

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 37/66

Printing Documents

PrintDocument object represents a document to be printed. Once a PrintDocument is

created, we can set the Document property of PrintDialog as this document. After that we can

also set other properties. The following code snippet creates a PrintDialog and sends some text

to a printer.

Imports System.Drawing.Printing

Public Class Form1

 Private Sub PrintButton_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles PrintButton.Click

 Dim printDlg As New PrintDialog()

 Dim printDoc As New PrintDocument()

 printDoc.DocumentName = "Print Document"

 printDlg.Document = printDoc

 printDlg.AllowSelection = True

 printDlg.AllowSomePages = True

 If (printDlg.ShowDialog() = DialogResult.OK) Then

 printDoc.Print()

 End If

 End Sub

End Class

The RichTextBox Control

The RichTextBox control is the core of a full-blown word processor. It provides all the

functionality of a TextBox control; it can handle multiple typefaces, sizes, and attributes, and

offers precise control over the margins of the text (see Figure 4.16). You can even place images

in your text on a RichTextBox control (although you won’t have the kind of control over the

embedded images that you have with Microsoft Word).

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 38/66

The fundamental property of the RichTextBox control is its Rtf property. Similar to the

Text property of the TextBox control, this property is the text displayed on the control. Unlike

the Text property, however, which returns (or sets) the text of the control but doesn’t contain

formatting information, the Rtf property returns the text along with any formatting information.

 Figure - A word processor based on the functionality of the RichTextBox control

The RTF Language

A basic knowledge of the RTF format, its commands, and how it works will certainly

help you understand the RichTextBox control’s inner workings. RTF is a language that uses

simple commands to specify the formatting of a document. These commands, or tags, are ASCII

strings, such as \par (the tag that marks the beginning of a new paragraph) and \b (the tag that

turns on the bold style). And this is where the value of the RTF format lies. RTF documents

don’t contain special characters and can be easily exchanged among different operating systems

and computers, as long as there is an RTF-capable application to read the document. Let’s look

at an RTF document in action.

Open the WordPad application (choose Start > Programs > Accessories > WordPad) and enter

a few lines of text (see Figure 4.17). Select a few words or sentences, and format them in

different ways with any of WordPad’s formatting commands. Then save the document in RTF

format: Choose File > Save As, select Rich Text Format, and then save the file as Document.rtf.

If you open this file with a text editor such as Notepad, you’ll see the actual RTF code that

produced the document. A section of the RTF file for the document shown in Figure 4.17 is

shown in Listing 4.20.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 39/66

Figure - The formatting applied to the text by using WordPad’s commands is stored along with

the text in RTF format.

The RichTextBox’s Properties

The RichTextBox control provides properties for manipulating the selected text on the

control. The names of these properties start with the Selection or Selected prefix, and the most

commonly used ones are shown in Table 4.5. Some of these properties are discussed in further

detail in following sections.

SelectedText

The SelectedText property represents the selected text, whether it was selected by the

user via the mouse or from within your code. To assign the selected text to a variable, use the

following statement:

selText=RichTextbox1.SelectedText

You can also modify the selected text by assigning a new value to the SelectedText property.

The following statement converts the selected text to uppercase:

RichTextbox1.SelectedText =

RichTextbox1.SelectedText.ToUpper

You can assign any string to the SelectedText property. If no text is selected at the time, the

statement will insert the string at the location of the pointer.

 Table - RichTextBox Properties for Manipulating Selected Text

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 40/66

Property What It Manipulates

SelectedText The selected text

SelectedRtf The RTF code of the selected text

SelectionStart The position of the selected text’s first character

SelectionLength The length of the selected text

SelectionFont The font of the selected text

SelectionColor The color of the selected text

SelectionBackColor The background color of the selected text

SelectionAlignment The alignment of the selected text

SelectionIndent,

SelectionRightIndent,

SelectionHangingIndent

The indentation of the selected text

RightMargin The distance of the text’s right margin from the left edge of the

control

SelectionTabs An array of integers that sets the tab stop positions in the control

SelectionBullet Whether the selected text is bulleted

BulletIndent The amount of bullet indent for the selected text

SelectionStart, SelectionLength

SelectionLength, report (or set) the position of the first selected character in the text and the

length of the selection, respectively, regardless of the formatting of the selected text. One

obvious use of these properties is to select (and highlight) some text on the control:

RichTextBox1.SelectionStart = 0

RichTextBox1.SelectionLength = 100

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 41/66

You can also use the Select method, which accepts as arguments the starting location and the

length of the text to be selected.

SelectionAlignment

Use this property to read or change the alignment of one or more paragraphs. This

property’s value is one of the members of the HorizontalAlignment enumeration: Left, Right,

and Center. Users don’t have to select an entire paragraph to align it; just placing the pointer

anywhere in the paragraph will do the trick, because you can’t align part of the paragraph.

SelectionIndent, SelectionRightIndent, SelectionHangingIndent

These properties allow you to change the margins of individual paragraphs. The

Selection Indent property sets (or returns) the amount of the text’s indentation from the left edge

of the control. The SelectionRightIndent property sets (or returns) the amount of the text’s

indentation from the right edge of the control. The SelectionHangingIndent property indicates

the indentation of each paragraph’s first line with respect to the following lines of the same

paragraph. All three properties are expressed in pixels.

The SelectionHangingIndent property includes the current setting of the SelectionIndent

property. If all the lines of a paragraph are aligned to the left, the SelectionIndent property can

have any value (this is the distance of all lines from the left edge of the control), but the

SelectionHangingIndent property must be zero. If the first line of the paragraph is shorter than

the following lines, the SelectionHangingIndent has a negative value. Figure 4.18 shows several

differently formatted paragraphs. The settings of the SelectionIndent and

SelectionHangingIndent properties are determined by the two sliders at the top of the form.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 42/66

Figure - Various combinations of the SelectionIndent and SelectionHangingIndent properties

produce all possible paragraph styles.

SelectionBullet, BulletIndent

You use these properties to create a list of bulleted items. If you set the SelectionBullet

property to True, the selected paragraphs are formatted with a bullet style, similar to the

tag in HTML. To create a list of bulleted items, select them from within your code and assign

the value True to the SelectionBullet property. To change a list of bulleted items back to

normal text, make the same property False.

The paragraphs formatted as bullets are also indented from the left by a small amount. To set

the amount of the indentation, use the BulletIndent property, which is also expressed in pixels.

SelectionTabs

Use this property to set the tab stops in the RichTextBox control. The Selection tab

should be set to an array of integer values, which are the absolute tab positions in pixels. Use

this property to set up a RichTextBox control for displaying tab-delimited data.

Methods of the RichTextBox control

The first two methods of the RichTextBox control you need to know are SaveFile and

LoadFile. The SaveFile method saves the contents of the control to a disk file, and the

LoadFile method loads the control from a disk file.

SaveFile

The syntax of the SaveFile method is as follows:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 43/66

RichTextBox1.SaveFile(path, filetype)

where path is the path of the file in which the current document will be saved. By default, the

SaveFile method saves the document in RTF format and uses the .RTF extension. You can

specify a different format by using the second optional argument, which can take on the value

of one of the members of the RichTextBoxStreamType enumeration, described in Table 4.6.

 Table - The RichTextBoxStreamType Enumeration

Format Effect

PlainText Stores the text on the control without any formatting

RichNoOLEObjs
Stores the text without any formatting and ignores any

embedded OLE objects

RichText
Stores the text in RTF format (text with embedded RTF

commands)

TextTextOLEObjs Stores the text along with the embedded OLE objects

UnicodePlainText Stores the text in Unicode format

 LoadFile

Similarly, the LoadFile method loads a text or RTF file to the control. Its syntax is

identical to the syntax of the SaveFile method:

RichTextBox1.LoadFile(path, filetype)

The filetype argument is optional and can have one of the values of the

RichTextBoxStreamType enumeration. Saving and loading files to and from disk files is as

simple as presenting a Save or Open common dialog to the user and then calling one of the

SaveFile or LoadFile methods with the filename returned by the common dialog box.

Select, SelectAll

The Select method selects a section of the text on the control, similar to setting the

SelectionStart and SelectionLength properties. The Select method accepts two arguments: the

location of the first character to be selected and the length of the selection:

RichTextBox1.Select(start, length)

The SelectAll method accepts no arguments and it selects all the text on the control.

Editing Features in RichTextBox

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 44/66

The RichTextBox control provides all the text-editing features you’d expect to find in a

text-editing application, similar to the TextBox control. Among its more-advanced features, the

RichTextBox control provides the AutoWordSelection property, which controls how the

control selects text. If it’s True, the control selects a word at a time.

In addition to formatted text, the RichTextBox control can handle object linking and

embedding (OLE) objects. You can insert images in the text by pasting them with the Paste

method. The Paste method doesn’t require any arguments; it simply inserts the contents of the

Clipboard at the current location in the document.

CanUndo, CanRedo

These two properties are Boolean values you can read to find out whether there’s an

operation that can be undone or redone. If they’re False, you must disable the corresponding

menu command from within your code. The following statements disable the Undo command if

there’s no action to be undone at the time (EditUndo is the name of the Undo command on the

Edit menu):

If RichTextBox1.CanUndo Then

EditUndo.Enabled = True

Else

EditUndo.Enabled = False

End If

UndoActionName, RedoActionName

These two properties return the name of the action that can be undone or redone. The

most common value of both properties is Typing, which indicates that the Undo command will

delete a number of characters. Another common value is Delete, whereas some operations are

named Unknown. If you change the indentation of a paragraph on the control, this action’s

name is Unknown. Even when an action’s name is Unknown, the action can be undone with the

Undo method.

The following statement sets the caption of the Undo command to a string that indicates the

action to be undone (Editor is the name of a RichTextBox control):

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 45/66

If Editor.CanUndo Then

EditUndo.Text = ”Undo ” & Editor.UndoActionName

End If

Undo, Redo

These two methods undo or redo an action. The Undo method cancels the effects of the

last action of the user on the control. The Redo method redoes the most recent undo action. The

Redo method does not repeat the last action; it applies to undo operations only.

Cutting and Pasting

To cut, copy, and paste text in the RichTextBox control, you can use the same

techniques you use with the regular TextBox control. For example, you can replace the current

selection by assigning a string to the SelectedText property. The RichTextBox, however,

provides a few useful methods for performing these operations. The Copy, Cut, and Paste

methods perform the corresponding operations. The Cut and Copy methods are straightforward

and require no arguments. The Paste method accepts a single argument, which is the format of

the data to be pasted. Because the data will come from the Clipboard, you can extract the format

of the data in the Clipboard at the time and then call the CanPaste method to find out whether

the control can handle this type of data. If so, you can then paste them in the control by using

the Paste method.

This technique requires a bit of code because the Clipboard class doesn’t return the

format of the data in the Clipboard. You must call the following method of the Clipboard class

to find out whether the data is of a specific type and then paste it on the control:

If Clipboard.GetDataObject.GetDataPresent(DataFormats.Text) Then

RichTextBox.Paste(DataFormats.Text)

End If

This is a very simple case because we know that the RichTextBox control can accept text. For a

robust application, you must call the GetDataPresent method for each type of data your

application should be able to handle. (You may not want to allow users to paste all types of data

that the control can handle.) By the way, you can simplify the code with the help of the

ContainsText/ContainsImage and GetText/GetImage methods of the

My.Application.Clipboard object.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 46/66

Searching in a RichTextBox Control

To locate a string in the text of the RichTextBox control, use the Find method. The Find

method is quite flexible, as it allows you to specify the type of the search, whether it will locate

entire words, and so on. The simplest form of this method accepts the search string as an

argument and returns the location of the first instance of the word in the text. If the search

argument isn’t found, the method returns the value −1.

RichTextBox1.Find(string)

Another equally simple syntax of the Find method allows you to specify how the control will

search for the string:

RichTextBox1.Find(string, searchMode)

The searchMode argument is a member of the RichTextBoxFinds enumeration, which is shown

in Table 4.7.

 Table - The RichTextBoxFinds Enumeration

Value Effect

MatchCase Performs a case-sensitive search.

NoHighlight The text found will not be highlighted.

None
Locates instances of the specified string even if they’re not

whole words.

Reverse The search starts at the end of the document.

WholeWord
Locates only instances of the specified string that are whole

words.

 Two more forms of the Find method allow you specify the range of the text in which the search

will take place:

RichTextBox1.Find(string, start, searchMode)

RichTextBox1.Find(string, start, end, searchMode)

The arguments start and end are the starting and ending locations of the search (use them to

search for a string within a specified range only). If you omit the end argument, the search will

start at the location specified by the start argument and will extend to the end of the text.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 47/66

Tree View and List View Controls

The TreeView control implements a data structure known as a tree. A tree is the most

appropriate structure for storing hierarchical information. The organizational chart of a

company, for example, is a tree structure. Every person reports to another person above him or

her, all the way to the president or CEO. Figure 4.21 depicts a possible organization of

continents, countries, and cities as a tree. Every city belongs to a country, and every country to a

continent. In the same way, every computer file belongs to a folder that may belong to an even

bigger folder, and so on up to the drive level. You can’t draw large tree structures on paper, but

it’s possible to create a similar structure in the computer’s memory without size limitations.

 Figure - The World View as Tree

Note: The items displayed on a TreeView control are just strings. Moreover, the TreeView

control doesn’t require that the items be unique. You can have identically named nodes in the

same branch — as unlikely as this might be for a real application. There’s no property that

makes a node unique in the tree structure or even in its own branch.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 48/66

 Figure - The tree implemented with a TreeView control

The tree structure is ideal for data with parent-child relations (relations that can be described as

belongs to or owns). The continents-countries-cities data is a typical example. The folder

structure on a hard disk is another typical example. Any given folder is the child of another

folder or the root folder.

The ListView control implements a simpler structure, known as a list. A list’s items

aren’t structured in a hierarchy; they are all on the same level and can be traversed serially, one

after the other. You can also think of the list as a multidimensional array, but the list offersmore

features. A list item can have subitems and can be sorted according to any column. For example,

you can set up a list of customer names (the list’s items) and assign a number of subitems to

each customer: a contact, an address, a phone number, and so on. Or you can set up a list of files

with their attributes as subitems. Figure 4.23 shows a Windows folder mapped on a ListView

control. Each file is an item, and its attributes are the subitems. As you already know, you can

sort this list by filename, size, file type, and so on. All you have to do is click the header of the

corresponding column.

 Figure - A folder’s files displayed in a ListView control (Details view)

The ListView control is a glorified ListBox control. If all you need is a control to store sorted

objects, use a ListBox control. If you want more features, such as storing multiple items per row,

sorting them in different ways, or locating them based on any subitem’s value, you must

consider the ListView control. You can also look at the ListView control as a view-only grid.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 49/66

The TreeView and ListView controls are commonly used along with the ImageList control. The

ImageList control is a simple control for storing images so they can be retrieved quickly and

used at runtime. You populate the ImageList control with the images you want to use on your

interface, usually at design time, and then you recall them by an index value at runtime. Before

we get into the details of the TreeView and ListView controls, a quick overview of the

ImageList control is in order.

The ImageList Control

The ImageList is a simple control that stores images used by other controls at runtime.

For example, a TreeView control can use icons to identify its nodes. The simplest and quickest

method of preparing these images is to create an ImageList control and add to it all the icons

you need for decorating the TreeView control’s nodes. The ImageList control maintains a series

of bitmaps in memory that the TreeView control can access quickly at runtime. Keep in mind

that the ImageList control can’t be used on its own and remains invisible at runtime.

 Figure - The Images Collection Editor of ImageList Control

The other method of adding images to an ImageList control is to call the Add method of the

Images collection, which contains all the images stored in the control. To add an image at

runtime, you must first create an Image object with the image (or icon) you want to add to the

control and then call the Add method as follows:

ImageList1.Images.Add(image)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 50/66

where image is an Image object with the desired image. You will usually call this method as

follows:

ImageList1.Images.Add(Image.FromFile(path))

where - path is the full path of the file with the image.

The Images collection of the ImageList control is a collection of Image objects, not the

files in which the pictures are stored. This means that the image files need not reside on the

computer on which the application will be executed, as long as they have been added to the

collection at design time.

TreeView Control

Let’s start our discussion of TreeView control with a few simple properties that you can

set at design time. To experiment with the properties discussed in this section, open the

TreeView Example project. The project’s main form is shown in Figure. After setting some

properties (they are discussed next), run the project and click the Populate button to populate the

control. After that, you can click the other buttons to see the effect of the various property

settings on the control.

Figure - The TreeView Example project demonstrates the basic properties and methods of the

TreeView control.

Here are the basic properties that determine the appearance of the control:

 ShowCheckBoxes - If this property is True, a check box appears in front of each node.

If the control displays check boxes, you can select multiple nodes; otherwise, you’re

limited to a single selection.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 51/66

 FullRowSelect - This True/False value determines whether a node will be selected even

if the user clicks outside the node’s caption.

 HideSelection - This property determines whether the selected node will remain

highlighted when the focus is moved to another control. By default, the selected node

doesn’t remain highlighted when the control loses the focus.

 HotTracking - This property is another True/False value that determines whether nodes

are highlighted as the pointer hovers over them.When it’s True, the TreeView control

behaves like a web document with the nodes acting as hyperlinks — they turn blue

while the pointer hovers over them. Use the NodeMouseHover event to detect when the

pointer hovers over a node.

 Indent - This property specifies the indentation level in pixels. The same indentation

applies to all levels of the tree—each level is indented by the same number of pixels

with respect to its parent level.

 PathSeparator - A node’s full name is made up of the names of its parent nodes,

separated by a backslash. To use a different separator, set this property to the desired

symbol.

 ShowLines - The ShowLines property is a True/False value that determines whether the

control’s nodes will be connected to its parent items with lines. These lines help users

visualize the hierarchy of nodes, and it’s customary to display them.

 ShowPlusMinus - The ShowPlusMinus property is a True/False value that determines

whether the plus/minus button is shown next to the nodes that have children. The plus

button is displayed when the node is collapsed, and it causes the node to expand when

clicked. Likewise, the minus sign is displayed when the node is expanded, and it causes

the node to collapse when clicked. Users can also expand the current node by pressing

the left-arrow button and collapse it with the right-arrow button.

 ShowRootLines - This is another True/False property that determines whether there will

be lines between each node and root of the tree view. Experiment with the ShowLines

and ShowRootLines properties to find out how they affect the appearance of the

control.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 52/66

 Sorted - This property determines whether the items in the control will be automatically

sorted. The control sorts each level of nodes separately. In our Globe example, it will

sort the continents, then the countries within each continent, and then the cities within

each country.

Adding New Items at Design Time

Let’s look now at the process of populating the TreeView control. Adding an initial

collection of nodes to a TreeView control at design time is trivial. Locate the Nodes property in

the Properties window, and you’ll see that its value is Collection. To add items, click the ellipsis

button, and the TreeNode Editor dialog box will appear, as shown in Figure 4.26. To add a root

item, just click the Add Root button. The new item will be named Node0 by default. You can

change its caption by selecting the item in the list and setting its Text property accordingly. You

can also change the node’s Name property, as well as the node’s appearance by using the

NodeFont, FontColor, and ForeColor properties.

To specify an image for the node, set the control’s ImageList property to the name of an

ImageList control that contains the appropriate images, and then set either the node’s ImageKey

property to the name of the image, or the node’s ImageIndex property to the index of the desired

image in the ImageList control. If you want to display a different image when the control is

selected, set the SelectedImageKey or the SelectedImageIndex property accordingly.

 Figure - The TreeNode Editor dialog box

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 53/66

Click the Add Root button first. A new node is added automatically to the list of nodes, and it is

named Node0. Select it with the mouse, and its properties appear in the right pane of the

TreeNode Editor window. Here you can change the node’s Text property to Countries. You can

specify the appearance of each node by setting its font and fore/background colors.

Adding New Items at Runtime

Adding items to the control at runtime is a bit more involved. All the nodes belong to the

control's Nodes collection, which is made up of TreeNode objects. To access the Nodes

collection, use the following expression, where TreeView1 is the control's name and Nodes is a

collection of TreeNode objects:

TreeView1.Nodes

This expression returns a collection of TreeNode objects and exposes the proper

members for accessing and manipulating the individual nodes. The control's Nodes property is

the collection of all root nodes.

To access the first node, use the expression TreeView.Nodes(0) (this is the Globe node in our

example). The Text property returns the node's value, which is a string.

TreeView1.Nodes(0).Text is the caption of the root node on the control. The caption of the

second node on the same level is TreeView1.Nodes(1).Text, and so on.

The following statements print the strings shown highlighted below them (these strings

are not part of the statements; they're the output that the statements produce):

Debug.WriteLine(TreeView1.Nodes(0).Text)

Countries

Debug.WriteLine(TreeView1.Nodes(0).Nodes(0).Text)

UnitedStates

Debug.WriteLine(TreeView1.Nodes(0).Nodes(0).Nodes(1).Text)

New York

Let's take a closer look at these expressions. TreeView1.Nodes(0) is the first root node,

the Countries node. Under this node, there is a collection of nodes, the

TreeView1.Nodes(0).Nodes collection. Each node in this collection is a country name. The first

node in this collection is United States, and you can access it with the expression

TreeView1.Nodes(0).Nodes(0). If you want to change the appearance of the node United States,

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 54/66

type a period after the preceding expression to access its properties (the NodeFont property to

set its font, the ForeColor property to set it color, the ImageIndex property, and so on). Likewise,

this node has its own Nodes collection, which contains the states under the specific country.

Adding New Nodes

The Add method adds a new node to the Nodes collection. The Addmethod accepts as

an argument a string or a TreeNode object. The simplest form of the Add method is

newNode = Nodes.Add(nodeCaption)

where nodeCaption is a string that will be displayed on the control. Another form of the Add

method allows you to add a TreeNode object directly (nodeObj is a properly initialized

TreeNode variable):

newNode = Nodes.Add(nodeObj)

To use this form of the method, you must first declare and initialize a TreeNode object:

Dim nodeObj As New TreeNode

nodeObj.Text = "Tree Node"

nodeObj.ForeColor = Color.BlueViolet

TreeView1.Nodes.Add(nodeObj)

The last overloaded form of the Add method allows you to specify the index in the

current Nodes collection, where the node will be added:

newNode = Nodes.Add(index, nodeObj)

The nodeObj TreeNode object must be initialized as usual. To add a child node to the

root node, use a statement such as the following:

TreeView1.Nodes(0).Nodes.Add("United States")

To add a state under United States, use a statement such as the following:

TreeView1.Nodes(0).Nodes(1).Nodes.Add("New York")

The expressions can get quite lengthy. The proper way to add child items to a node is to

create a TreeNode variable that represents the parent node, under which the child nodes will be

added. Let's say that the CountryNode variable in the following example represents the node

United States:

Dim CountryNode As TreeNode

CountryNode = TreeView1.Nodes(0).Nodes(2)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 55/66

Then you can add child nodes to the ContinentNode node:

CountryNode.Nodes.Add("New York")

CountryNode.Nodes.Add("California")

To add yet another level of nodes, the city nodes, create a new variable that represents a

specific state. The Add method actually returns a TreeNode object that represents the newly

added node, so you can add a state and a few cities by using statements such as the following:

Dim StateNode As TreeNode

StateNode = CountryNode.Nodes.Add("New York")

StateNode.Nodes.Add("Alberny")

StateNode.Nodes.Add("Amsterdam")

StateNode.Nodes.Add("Auburn")

Then you can continue adding states under another country as follows:

StateNode = CountryNode.Nodes.Add("United Kingdom")

StateNode.Nodes.Add("London")

StateNode.Nodes.Add("Manchester")

The Nodes Collection Members

The Nodes collection exposes the usual members of a collection. The Count property

returns the number of nodes in the Nodes collection. Again, this is not the total number of nodes

in the control, just the number of nodes in the current Nodes collection. The expression

TreeView1.Nodes.Count

returns the number of all nodes in the first level of the control. In the case of the Countries

example, it returns the value 1. The expression

TreeView1.Nodes(0).Nodes.Count

returns the number of countries in the Countries example. Again, you can simplify this

expression by using an intermediate TreeNode object:

Dim Countries As TreeNode

Countries = TreeView1.Nodes(0)

Debug.WriteLine("There are "& Countries.Nodes.Count.ToString & _

" countries on the control")

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 56/66

The Clear method removes all the child nodes from the current node. If you apply this

method to the control's root node, it will clear the control. To remove all the cities under the

California node, use a statement such as the following:

TreeView1.Nodes(0).Nodes(2).Nodes(1).Nodes.Clear

This example assumes that the third node under Countries corresponds to United States,

and the second node under United Sates corresponds to California.

The Item property retrieves a node specified by an index value. The expression

Nodes.Item(1) is equivalent to the expression Nodes(1). Finally, the Remove method removes

a node from the Nodes collection. Its syntax is

Nodes.Remove(index)

Where - index is the order of the node in the current Nodes collection. To remove the selected

node, call the Remove method on the SelectedNode property without arguments:

TreeView1.SelectedNode.Remove

Or you can apply the Remove method to a TreeNode object that represents the node you want to

remove:

Dim Node As TreeNode

Node = TreeView1.Nodes(0).Nodes(5)

Node.Remove

Basic Nodes Properties

There are a few properties you will find extremely handy as you program the TreeView

control. The IsVisible property is a True/False value indicating whether the node to which it's

applied is visible. To bring an invisible node into view, call its EnsureVisible method:

If Not TreeView1.SelectedNode.IsVisible Then

TreeView1.EnsureVisible

End If

How can the selected node be invisible? It can, if you select it from within your code in

a search operation. The IsSelected property returns True if the specified node is selected, while

the IsExpanded property returns True if the specified node is expanded. You can toggle a

node's state by calling its Toggle method. You can also expand or collapse a node by calling its

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 57/66

Expand or Collapse method, respectively. Finally, you can collapse or expand all nodes by

calling the CollapseAll or ExpandAll method of the TreeView control.

Scanning the Tree View control

The TreeViewScan Example, whose main form is shown in Figure 4.28, demonstrates

the process of scanning the nodes of a TreeView control. The form contains a TreeView control

on the left, which is populated with the same data as the Globe project, and a ListBox control on

the right, in which the tree’s nodes are listed. Child nodes in the ListBox control are indented

according to the level to which they belong.

 Figure - TreeView Scan Example

Recursive Scanning of the Nodes Collection

To scan the nodes of the TreeView1 control, start at the top node of the control by using

the following statement:

ScanNode(GlobeTree.Nodes(0))

This is the code behind the Scan Tree button, and it doesn’t get any simpler. It calls the

ScanNode() subroutine to scan the child nodes of a specific node, which is passed to the

subroutine as an argument. GlobeTree.Nodes(0) is the root node. By passing the root node to

the ScanNode() subroutine, we’re in effect asking it to scan the entire tree.

This example assumes that the TreeView control contains a single root node and that all other

nodes are under the root node. If your control contains multiple root nodes, then you must set up

a small loop and call the ScanNode() subroutine once for each root node:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 58/66

For Each node In GlobeTree.Nodes

ScanNode(node)

Next

Let’s look now at the ScanNode() subroutine shown in Listing

Listing: Scanning a Tree Recursively

Sub ScanNode(ByVal node As TreeNode)

Dim thisNode As TreeNode

Static indentationLevel As Integer

Application.DoEvents()

ListBox1.Items.Add(Space(indentationLevel) & node.Text)

If node.Nodes.Count > 0 Then

indentationLevel += 5

For Each thisNode In node.Nodes

ScanNode(thisNode)

Next

indentationLevel -= 5

End If

End Sub

The ListView Control

The ListView control is similar to the ListBox control except that it can display its items

in many forms, along with any number of subitems for each item. To use the ListView control

in your project, place an instance of the control on a form and then set its basic properties,

which are described in the following list.

View and Arrange - Two properties determine how the various items will be displayed on the

control: the View property, which determines the general appearance of the items, and the

Arrange property, which determines the alignment of the items on the control's surface. The

View property can have one of the values shown in Table

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 59/66

Table: Settings of the View Property of VB.NET ListView Control

Setting Description

LargeIcon

(Default)
Each item is represented by an icon and a caption below the icon.

SmallIcon
Each item is represented by a small icon and a caption that appears

to the right of the icon.

List Each item is represented by a caption.

Details
Each item is displayed in a column with its subitems in adjacent

columns.

Tile

Each item is displayed with an icon and its subitems to the right of

the icon. This view is available only on Windows XP and Windows

Server 2003.

 The Arrange property can have one of the settings shown in Table 4.9.

Table: Settings of the Arrange Property of VB.NET ListView Control

Setting Description

Default
When an item is moved on the control, the item remains where it is

dropped.

Left Items are aligned to the left side of the control.

SnapToGrid
Items are aligned to an invisible grid on the control. When the user

moves an item, the item moves to the closest grid point on the control.

Top Items are aligned to the top of the control.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 60/66

HeaderStyle - This property determines the style of the headers in Details view. It has no

meaning when the View property is set to anything else, because only the Details view has

columns. The possible settings of the HeaderStyle property are shown in Table

Table: Settings of the HeaderStyle Property of VB.NET ListView Control

Setting Description

Clickable Visible column header that responds to clicking

Nonclickable (Default) Visible column header that does not respond to clicking

None No visible column header

AllowColumnReorder - This property is a True/False value that determines whether the user

can reorder the columns at runtime, and it's meaningful only in Details view. If this property is

set to True, the user can move a column to a new location by dragging its header with the mouse

and dropping it in the place of another column.

Activation - This property, which specifies how items are activated with the mouse, can have

one of the values shown in Table

 Table: Settings of the Activation Property of VB.NET ListView Control

Setting Description

OneClick
Items are activated with a single click. When the cursor is over an

item, it changes shape, and the color of the item's text changes.

Standard (Default)
Items are activated with a double-click. No change in the selected

item's text color takes place.

TwoClick
Items are activated with a double-click, and their text changes

color as well.

 FullRowSelect - This property is a True/False value, indicating whether the user can

select an entire row or just the item's text, and it's meaningful only in Details view.

When this property is False, only the first item in the selected row is highlighted.

 GridLines - Another True/False property. If True, grid lines between items and

subitems are drawn. This property is meaningful only in Details view.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 61/66

 Group - The items of the ListView control can be grouped into categories. To use this

feature, you must first define the groups by using the control's Group property, which is

a collection of strings. You can add as many members to this collection as you want.

 LabelEdit - The LabelEdit property lets you specify whether the user will be allowed to

edit the text of the items. The default value of this property is False. Notice that the

LabelEdit property applies to the item's Text property only; you can't edit the subitems

(unfortunately, you can't use the ListView control as an editable grid).

 MultiSelect - A True/False value, indicating whether the user can select multiple items

from the control. To select multiple items, click them with the mouse while holding

down the Shift or Ctrl key. If the control's ShowCheckboxes property is set to True,

users can select multiple items by marking the check box in front of the corresponding

item(s).

 Scrollable - A True/False value that determines whether the scroll bars are visible. Even

if the scroll bars are invisible, users can still bring any item into view. All they have to

do is select an item and then press the arrow keys as many times as needed to scroll the

desired item into view.

 Sorting - This property determines how the items will be sorted, and its setting can be

None, Ascending, or Descending. To sort the items of the control, call the Sort method,

which sorts the items according to their caption. It's also possible to sort the items

according to any of their subitems, as explained in the section "Sorting the ListView

Control" later in this chapter.

The Columns Collection of ListView Control in VB.NET 2008

To display items in Details view, you must first set up the appropriate columns. The first

column corresponds to the item's caption, and the following columns correspond to its subitems.

If you don't set up at least one column, no items will be displayed in Details view. Conversely,

the Columns collection is meaningful only when the ListView control is used in Details view.

The items of the Columns collection are of the ColumnHeader type. The simplest way to set up

the appropriate columns is to do so at design time by using a visual tool. Locate and select the

Columns property in the Properties window, and click the ellipsis button next to the property.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 62/66

The ColumnHeader Collection Editor dialog box will appear, as shown in Figure 4.29, in which

you can add and edit the appropriate columns.

 Figure - ListView Control's Column Header Collection Editor Dialog Box

Adding columns to a ListView control and setting their properties through the dialog box shown

in Figure is quite simple. Don't forget to size the columns according to the data you anticipate

storing in them and to set their headers.

It is also possible to manipulate the Columns collection fromwithin your code as follows. Create

a ColumnHeader object for each column in your code, set its properties, and then add it to the

control's Columns collection:

Dim ListViewCol As New ColumnHeader

ListViewCol.Text = "New Column"

ListViewCol.TextAlign = HorizontalAlignment.Center

ListViewCol.Width = 125

ListView1.Columns.Add(ListViewCol)

Adding and Removing Columns at Runtime

To add a new column to the control, use the Add method of the Columns collection. The

syntax of the Add method is as follows:

ListView1.Columns.Add(header, width, textAlign)

The header argument is the column's header (the string that appears on top of the items). The

width argument is the column's width in pixels, and the last argument determines how the text

will be aligned. The textAlign argument can be Center, Left, or Right.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 63/66

The Add method returns a ColumnHeader object, which you can use later in your code to

manipulate the corresponding column. The ColumnHeader object exposes a Name property,

which can't be set with the Add method:

Header1 = TreeView1.Add("Column 1", 60, ColAlignment.Left)

Header1.Name = "Column1"

After the execution of these statements, the first column can be accessed not only by index, but

also by name.

To remove a column, call the Remove method:

ListView1.Columns(3).Remove

The indices of the following columns are automatically decreased by one. The Clear method

removes all columns from the Columns collection. Like all collections, the Columns collection

exposes the Count property, which returns the number of columns in the control.

The Items and SubItems collection

As with the TreeView control, the ListView control can be populated either at design

time or at runtime. To add items at design time, click the ellipsis button next to the ListItems

property in the Properties window. When the ListViewItem Collection Editor dialog box pops

up, you can enter the items, including their subitems, as shown in Figure

 Figure - ListViewItem Collection Editor Dialog Box

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 64/66

Unlike the TreeView control, the ListView control allows you to specify a different

appearance for each item and each subitem. To set the appearance of the items, use the Font,

BackColor, and ForeColor properties of the ListViewItem object.

 These members are as follows:

BackColor/ForeColor properties - These properties set or return the background/foreground

colors of the current item or subitem.

Checked property - This property controls the status of an item. If it's True, the item has been

selected. You can also select an item from within your code by setting its Checked property to

True. The check boxes in front of each item won't be visible unless you set the control's

ShowCheckBoxes property to True.

Font property - This property sets the font of the current item. Subitems can be displayed in a

different font if you specify one by using the Font property of the corresponding subitem (see

the section titled ‘‘The SubItems Collection,'' later in this chapter). By default, subitems inherit

the style of the basic item. To use a different style for the subitems, set the item's

UseItemStyleForSubItems property to False.

Text property - This property indicates the caption of the current item or subitem.

SubItems collection - This property holds the subitems of a ListViewItem. To retrieve a

specific subitem, use a statement such as the following:

sitem = ListView1.Items(idx1).SubItems(idx2)

where idx1 is the index of the item, and idx2 is the index of the desired subitem.*

To add a new subitem to the SubItems collection, use the Add method, passing the text of the

subitem as an argument:

LItem.SubItems.Add("subitem's caption")

The argument of the Add method can also be a ListViewItem object. Create a ListViewItem,

populate it, and then add it to the Items collection as shown here:

Dim LI As New ListViewItem

LI.Text = "A New Item"

Li.SubItems.Add("Its first subitem")

Li.SubItems.Add("Its second subitem")

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 65/66

‘ statements to add more subitems

ListView1.Items.Add(LI)

LItem.SubItems.Insert(idx, subitem)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 66/66

POSSIBLE QUESTIONS

PART A (1 Mark)

(Online Examinations)

PART B (6 Marks)

1. Discuss in detail about TrackBar, ListBox and TextBox with example

2. Explain about Rich TextBox controls.

3. Describe in detail about ListBox, CheckedListBox and ComboBox Controls.

4. Explain about ListView controls

5. Elucidate about Color, Font, Print Dialog Box controls in VB.NET.

6. Explain SrollBar and CheckedListBox controls with example.

7. Give Explanation about TreeView controls with neat diagram.

8. Elaborate RichTextBox Control properties, methods with an example.

9. Elucidate in detail about ListView Controls

10. Differentiate between list box and combo box.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 1/14

PART A (1 Mark) – Unit 1II

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

1
Which is the base
class for all built-in
controls?

User Control Custom Control Control ActiveX Control Control

2

Which class is used
to run the EXE
application file in
VB.NET

Process Application Exe Execute Process

3
Which controls do
not have events?

TextBox Label ToolTip ImageList ImageList

4

What is the property
used to enlarge the
image in picture
box?

Size SizeMode Mode Stretch SizeMode

5
What is the default
event for Picture
Box?

Click Disposed Layout Resize Click

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 2/14

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

6

A ------- is a
component used to
accept input from the
user or display the
information on the
form

text container control counter control

7
The textbox can
accept a maximum
of ------ characters

1024.00 2048.00 156.00 1028.00 2048.00

8

The -------- property
allows you to display
multiple lines of text
in a textbox control

Text Multiline PasswordChar Autosize Multiline

9

The -------- property
allows automatic
resizing of the label
control according to
the length of its
caption

Text Multiline PasswordChar Autosize Autosize

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 3/14

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

10
The ----------- is used
to display the text as
a link

label textbox linklabel listview linklabel

11

The -----------
property is used to
get or set the color
used to display the
active link

LinkColor DisabledLinkColor ActiveLinlColor LinkVisited ActiveLinlColor

12

The -----------
property is used to
get or set a value
indicating whether a
link should be
displayed as though
it was visited

LinkColor DisabledLinkColor LinkVisited ActiveLinlColor LinkVisited

13

The ------- property
is used to get or set
the mode behavior of
the listbox control

Sorted SelectionMode SelectedIndex SelectedItem SelectionMode

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 4/14

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

14

The ------- property
is used to set or
retrieve the currently
selected item in the
combobox control

Sorted SelectionMode SelectedIndex SelectedItem SelectedItem

15
The --------- control
is used to set Yes/No
options

CheckBox RadioButton GroupBox Button CheckBox

16

The --------- control
is used to group
related controls
together

RadioButton StatusBar GroupBox CheckBox GroupBox

17

The -------- property
is used to specify
whether or not the
statusbar should
display panels

Text Checked SelectedIndex ShowPanels ShowPanels

18

The -------- property
is used to specify the
location of a control
in terms of X and Y
coordinates

Name Visible Location Enabled Location

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 5/14

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

19

In VB.Net the --------
class is the base class
for displaying
common dialog
boxes.

Inherits String CommonDialog MyBase CommonDialog

20

The classes that are
inherited from the
CommonDialog
class are categorized
as --------

4.00 6.00 5.00 3.00 5.00

21
Button class is based
on ------- class

Stirng TextBoxBase ButtonBase Windows ButtonBase

22
The ------ property
doesn't allow the
user to enter

Enabled Multiline ReadOnly TextAllign ReadOnly

23
The default event of
the CheckBox is -----

Click CheckedChange Changed DoubleClick CheckedChange

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 6/14

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

24
RadioButton control
is based on the -------
- class

Stirng TextBoxBase ButtonBase Windows ButtonBase

25
The ListBox control
is based on the -------
- class

Stirng TextBoxBase ButtonBase ListControl ListControl

26

To display the list as
multiple columns in
list box ---------
property is used

SelectionMode SelectedIndex SelectedItem MultiColumn MultiColumn

27
The default
event of ListBox is
the ---------

Click CheckedChange DoubleClick SelectedIndexChanged SelectedIndexChanged

28

The ---------------
property in the
Appearance section
of the properties
window

TextAllign ReadOnly Enabled DropDownStyle DropDownStyle

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 7/14

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

29

The -----------
Gets/Sets whether
the tree node is
checked

ReadOnly Checked IsEditing IsSelected Checked

30
The --------- Gets the
collection of nodes
in the current node

Checked IsEditing IsSelected Nodes Nodes

31
Default event of the
Tree View control is
the --------------

Click Selected AfterSelect Load AfterSelect

32

 ---------- is a
combination of a
ListBox and a
CheckBox

DropDownBox CheckedListBox LinkBox TreeView CheckedListBox

33

 -------- cannot
display captions
where as
GroupBoxes can

Panels PictureBox Splitter ToolTip Panels

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 8/14

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

34

To
assign ToolTip's with
controls ------- is
used

SetTip SetToolTip GetTip SetTool SetToolTip

35
Notable property in
ErrorProvider is -----

AutoScroll SetTip Allign BlinkRate BlinkRate

36
The default event of
the MenuItem is -----

CheckedChange AfterSelect Click Active Click

37

The ------- property
is used to display a
menu item as a radio
button

RadioCheck Checked Shortcut DefaultItem RadioCheck

38

The menus that
appear on the menu
bar are created using
the -------- object

MenuItem MainMenu Context MenuDesigner MainMenu

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 9/14

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

39

The --------- property
allows to set the
initial
directory which
should open while
using the
OpenFileDialog.

InitialDirectory FilterIndex RestoreIndex ShowHelp InitialDirectory

40

The ------ property
checks whether the
specified path exists
before returning
from the dialog.

InitialDirectory CheckPathExists RestoreIndex FilterIndex CheckPathExists

41
WindowState
property is ------------
-- by default

Normal Maximized Minimized Flat Normal

42
This property is used
to change/display the
titile of the form

Name Text Title Form Text

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 10/14

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

43

The default
BackColor of the
Form is the system
color named

gray white pale control control

44
Toolbar items are
part of ------------
collection

items Buttons properties Opions Buttons

45

The control with the
tab index ------- first
gets focus when the
form is shown

0.00 1.00 Maximum value Minimum value 0.00

46
What is the return
type of InputBox()
function

Integer Object String Double String

47

In Message Box
which is the required
parameter, that must
be supplied a value?

prompt button title name prompt

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 11/14

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

48

If the number of
items exceed the
value that can be
displayed, ______
bars will
automatically appear
on the control

Icon option button
command

button
scroll bars scroll bars

49
The _______ method
is used to add items
to a list at run time.

item index remove item add item add item

50

The __________
property sets the
index number of the
currently selected
item

 index number list index list count add item list index

51

The sorted property
is set to ____ to
enable a list to
appear in
alphanumeric order

0.00 1.00 TRUE FALSE TRUE

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 12/14

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

52
__________ box
saves the space on a
form

list box tool box combo box TreeView combo box

53

__________ used in
groups to display
multiple choices
from which the user
can select one or
more.

option button check box combo box label box check box

54

In _____ control the
user can set the
control’s value by
sliding the indicator
or by clicking on
either side of the
indicator.

Scroll Bar Track Bar status bar image bar Track Bar

55

The ___________
method is used to
remove an item from
the list

item index remove item add item remove item

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 13/14

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

56

 When a common
dialog control is
added, a new icon
appears in the ____
of the form

component tray component list status bar component bar component tray

57

The ________
property is used to
wrap the text in
Textbox control
when text reaches
the right edge

Wrap Word Word Wrap Accept returns Accept Tab Word Wrap

58
Each item in a Tree
View is called

branch subtree leaf node node

59

In _______ Dialog
control the user
review and select a
font and then set its
size and style

Color Dialog Font Dialog Open Dialog Format Dialog Font Dialog

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 14/14

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

60

Which property is
used to specify the
type(s) of files
displayed in the
dialog box

DereferenceLinks Filter File Name Object Property Filter

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 1/67

UNIT – IV

SYLLABUS

Handling Strings, characters and Dates: Handling Strings and Characters – Handling Dates.

Working with Folders and Files: Accessing Folders and Files – Accessing Files. Drawing and

Painting with Visual Basic: Displaying Images – Drawing with GDI – Co-ordinate

Transformation – Bitmaps.

Handling Strings, Characters and Dates

The .NET Framework provides two basic classes for manipulating text: the String and

String-Builder classes.

The distinction between the two classes is that the String class is better suited for static

strings, whereas the StringBuilder class is better suited for dynamic strings. Use the String

class for strings that don’t change frequently in the course of an application, and use the

StringBuilder class for strings that grow and shrink dynamically. The two classes expose

similar methods, but the String class’s methods return new strings; if you need to manipulate

large strings extensively, using the String class might fill the memory quite quickly.

Handling String and Characters

The Char Class

The Char data type stores characters as individual, double-byte (16-bit), Unicode

values; and it exposes methods for classifying the character stored in a Char variable. You can

use methods such as IsDigit and IsPunctuation on a Char variable to determine its type, and

other similar methods that can simplify your string validation code.

To use a character variable in your application, you must declare it with a statement such as the

following one:

Dim ch As Char

ch = Convert.ToChar("A")

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 2/67

Properties

The Char class provides two trivial properties: MaxValue and MinValue. They return the

largest and smallest character values you can represent with the Char data type.

Methods

The Char data type exposes several useful methods for handling characters. All the

methods described here have the same syntax: They accept either a single argument, which is

the character they act upon, or a string and the index of a character in the string on which they

act.

GetNumericValue

This method returns a positive numeric value if called with an argument that is a digit,

and the value −1 otherwise. If you call the GetNumericValue with the argument 5, it will return

the numeric value 5. If you call it with the symbol @, it will return the value −1.

GetUnicodeCategory

This method returns a numeric value that is a member of the UnicodeCategory

enumeration and identifies the Unicode group to which the character belongs. The Unicode

groups characters into categories such as math symbols, currency symbols, and quotation

marks. Look up the UnicodeCategory enumeration in the documentation for more information.

IsLetter, IsDigit, IsLetterOrDigit

These methods return a True/False value indicating whether their argument, which is a

character, is a letter, decimal digit, or letter/digit, respectively. You can write an event handler

by using the IsDigit method to accept numeric keystrokes and to reject letters and punctuation

symbols.

IsLower, IsUpper

These methods return a True/False value indicating whether the specified character is

lowercase or uppercase, respectively.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 3/67

IsNumber

This method returns a True/False value indicating whether the specified character is a

number. The IsNumber method takes into consideration hexadecimal digits (the characters

0123456789-ABCDEF) in the same way as the IsDigit method does for decimal numbers.

IsPunctuation, IsSymbol, IsControl

These methods return a True/False value indicating whether the specified character is a

punctuation mark, symbol, or control character, respectively. The Backspace and Esc keys, for

example, are ISO (International Organization for Standardization) control characters.

IsSeparator

This method returns a True/False value indicating whether the character is categorized

as a separator (space, new-line character, and so on).

IsWhiteSpace

This method returns a True/False value indicating whether the specified character is

white space. Any sequence of spaces, tabs, line feeds, and form feeds is considered white

space. Use this method along with the IsPunctuation method to remove all characters in a

string that are not words.

ToLower, ToUpper

These methods convert their argument to a lowercase or uppercase character,

respectively, and return it as another character.

ToString

This method converts a character to a string. It returns a single-character string, which

you can use with other string-manipulation methods or functions.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 4/67

The String Class

The String class implements the String data type, which is one of the richest data types

in terms of the members it exposes. We have used strings extensively in earlier chapters, but

this is a formal discussion of the String data type and all of the functionality it exposes.

To create a new instance of the String class, you simply declare a variable of the String type.

You can also initialize it by assigning to the corresponding variable a text value:

Dim title As String = "Visual Basic 2008 Tutorial"

The Replace method, like all other methods of the String class, doesn’t operate directly

on the string to which it’s applied. Instead, it creates a new string and returns it as a new string.

You can also use Visual Basic’s string-manipulation functions to work with strings. For

example, you can replace the string VB with Visual Basic by using the following statement:

newTitle = Replace(title, "VB", "Visual Basic")

Like the methods of the String class, the string-manipulation functions don’t act on the original

string; they return a new string.

Properties

The String class exposes only two properties, the Length and Chars properties, which

return a string’s length and its characters, respectively. Both properties are read-only.

Length

The Length property returns the number of characters in the string and is read-only. To

find out the number of characters in a string variable, use the following statement:

chars = myString.Length

Chars

The Chars property is an array of characters that holds all the characters in the string.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 5/67

Methods

All the functionality of the String class is available through methods, which are

described next. They are all shared methods: They act on a string and return a new string with

the modified value.

Compare

This method compares two strings and returns a negative value if the first string is less

than the second, a positive value if the second string is less than the first, and zero if the two

strings are equal. Of course, the simplest method of comparing two strings is to use the

comparison operators, as shown here:

If name1 < name 2 Then

' name1 is alphabetically smaller than name 2

Else If name 1 > name 2 Then

' name2 is alphabetically smaller than name 1

Else

' name1 is the same as name2

End If

CompareOrdinal

The CompareOrdinal method compares two strings similar to the Compare method, but

it doesn’t take into consideration the current locale. This method returns zero if the two strings

are the same, and a positive or negative value if they’re different. These values, however, are

not 1 and −1; they represent the numeric difference between the Unicode values of the first two

characters that are different in the two strings.

Concat

This method concatenates two or more strings (places them one after the other) and

forms a new string. The simpler form of the Concat method has the following syntax and it is

equivalent to the & operator:

newString = String.Concat(string1, string2)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 6/67

This statement is equivalent to the following:

newString = string1 & string2

Copy

The Copy method copies the value of one string variable to another. Notice that the

value to be copied must be passed to the method as an argument. The Copy method doesn’t

apply to the current instance of the String class. Most programmers will use the assignment

operator and will never bother with the Copy method.

EndsWith, StartsWith

These two methods return True if their argument ends or starts with a user-supplied

substring. The syntax of these methods is as follows:

found = str.EndsWith(string)

found = str.StartsWith(string)

These two methods are equivalent to the Left() and Right() functions, which extract a given

number of characters from the left or right end of the string, respectively.

IndexOf, LastIndexOf

These two methods locate a substring in a larger string. The IndexOf method starts

searching from the beginning of the string, and the LastIndexOf method starts searching from

the end of the string. Both methods return an integer, which is the order of the substring’s first

character in the larger string (the order of the first character is zero).

To locate a string within a larger one, use the following forms of the IndexOf method:

pos = str.IndexOf(searchString)

pos = str.IndexOf(SearchString, startIndex)

pos = str.IndexOf(SearchString, startIndex, endIndex)

The startIndex and the endIndex arguments delimit the section of the string where the

search will take place, and pos is an integer variable.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 7/67

The last three overloaded forms of the IndexOf method search for an array of characters in the

string:

str.IndexOf(Char())

str.IndexOf(Char(), startIndex)

str.IndexOf(Char(), startIndex, endIndex)

IndexOfAny

This is an interesting method that accepts as an argument an array of arguments and

returns the first occurrence of any of the array’s characters in the string. The syntax of the

IndexOfAny method is

Dim pos As Integer = str.IndexOfAny(chars)

where chars is an array of characters.

This method attempts to locate the first instance of any member of the chars array in the

string. If the character is found, its index is returned. If not, the process is repeated with the

second character, and so on until an instance is found or the array has been exhausted.

Insert

The Insert method inserts one or more characters at a specified location in a string and

returns the new string. The syntax of the Insert method is as follows:

newString = str.Insert(startIndex, subString)

startIndex is the position in the str variable, where the string specified by the second argument

will be inserted.

Join

This method joins two or more strings and returns a single string with a separator

between the original strings. Its syntax is the following, where separator is the string that will

be used as the separator, and strings is an array with the strings to be joined:

newString = String.Join(separator, strings)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 8/67

Split

Just as you can join strings, you can split a long string into smaller ones by using the

Split method, whose syntax is the following, where delimiters is an array of characters and str

is the string to be split:

strings() = String.Split(delimiters, str)

The string is split into sections that are separated by any one of the delimiters specified with

the first argument. These strings are returned as an array of strings.

Splitting Strings with Multiple Separators

The delimiters array allows you to specify multiple delimiters, which makes it a great

tool for isolating words in a text. You can specify all the characters that separate words in text

(spaces, tabs, periods, exclamation marks, and so on) as delimiters and pass them along with

the text to be parsed to the Split method.

The statements in Listing isolate the parts of a path, which are delimited by a backslash

character.

Listing: Extracting a Path’s Components

Dim path As String = "c:\My Documents\Business\Expenses"

Dim delimiters() As Char = {"\"c}

Dim parts() As String

parts = path.Split(delimiters)

Dim iPart As IEnumerator

iPart = parts.GetEnumerator

While iPart.MoveNext

Debug.WriteLine(iPart.Current.tostring)

End While

Remove

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 9/67

The Remove method removes a given number of characters from a string, starting at a

specific location, and returns the result as a new string. Its syntax is the following, where

startIndex is the index of the first character to be removed in the str string variable and count is

the number of characters to be removed:

newSrting = str.Remove(startIndex, count)

Replace

This method replaces all instances of a specified character (or substring) in a string with

a new one. It creates a new instance of the string, replaces the characters as specified by its

arguments, and returns this string. The syntax of this method is

newString = str.Replace(oldChar, newChar)

where oldChar is the character in the str variable to be replaced, and newChar is the character

to replace the occurrences of oldChar.

You can change the last statement to replace tabs with a specific number of spaces — usually

three, four, or five spaces.

Dim txt, newTxt As String

Dim vbTab As String = vbCrLf

txt = "some text with two tabs"

newTxt = txt.Replace(vbTab, " ")

PadLeft, PadRight

These two methods align the string left or right in a specified field and return a fixed-

length string with spaces to the right (for right-padded strings) or to the left (for left-padded

strings). After the execution of these statements

Dim LPString, RPString As String

RPString = "[" & "Learning VB".PadRight(20) & "]"

LPString = "[" & "Learning VB".PadLeft(20) & "]"

the values of the LPString and RPString variables are as follows:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 10/67

[Mastering VB]

[Mastering VB]

There are eight spaces to the left of the left-padded string and eight spaces to the right of the

right-padded string.

The StringBulider Class

The StringBuilder class stores dynamic strings and exposes methods to manipulate

them much faster than the String class. As you will see, the StringBuilder class is extremely

fast, but it uses considerably more memory than the string it holds. To use the StringBuilder

class in an application, you must import the System.Text namespace (unless you want to fully

qualify each instance of the StringBuilder class in your code). Assuming that you have

imported the System.Text class in your code module, you can create a new instance of the class

via the following statement:

Dim txt As New StringBuilder

To create a new instance of the StringBuilder class, you can call its constructor without any

arguments, or pass the initial string as an argument:

Dim txt As New StringBuilder("some string")

Properties

You have already seen the two basic properties of the StringBuilder class: the Capacity

and MaxCapacity properties. In addition, the StringBuilder class provides the Length and

Chars properties, which are the same as the corresponding properties of the String class. The

Length property returns the number of characters in the current instance of the StringBuilder

class, and the Chars property is an array of characters. Unlike the Chars property of the String

class, this one is read/write.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 11/67

Methods

Many of the methods of the StringBuilder class are equivalent to the methods of the

String class, but they act directly on the string to which they’re applied, and they don’t return a

new string.

Append

The Append method appends a base type to the current instance of the StringBuilder

class, and its syntax is the following, where the value argument can be a single character, a

string, a date, or any numeric value:

SB.Append(value)

When you append numeric values to a StringBuilder, they’re converted to strings; the

value appended is the string returned by the type’s ToString method. You can also append an

object to the StringBuilder — the actual string that will be appended is the value of the object’s

ToString property.

AppendFormat

The AppendFormat method is similar to the Append method. Before appending the

string, however, AppendFormat formats it. The string to be appended contains format

specifications and the appropriate values. The syntax of the AppendFormat method is as

follows:

SB.AppendFormat(string, values)

The first argument is a string with embedded format specifications, and values is an array with

values (objects, in general

Insert

This method inserts a string into the current instance of the StringBuilder class, and its

syntax is as follows:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 12/67

SB.Insert(index, value)

The index argument is the location where the new string will be inserted in the current instance

of the StringBuilder, and value is the string to be inserted.

Remove

This method removes a number of characters from the current StringBuilder, starting at

a specified location; its syntax is the following, where startIndex is the position of the first

character to be removed from the string, and count is the number of characters to be removed:

SB.Remove(startIndex, count)

Replace

This method replaces all instances of a string in the current StringBuilder object with

another string. The syntax of the Replace method is the following, where the two arguments

can be either strings or characters:

SB.Replace(oldValue, newValue)

Unlike the String class, the replacement takes place in the current instance of the StringBuilder

class and the method doesn’t return another string.

ToString

Use this method to convert the StringBuilder instance to a string and assign it to a

String variable. The ToString method returns the string represented by the StringBuilder

variable to which it’s applied.

Handling Dates

The Date Time Class

The DateTime class is used for storing date and time values, and it’s one of the

Framework’s base data types. Date and time values are stored internally as Double numbers.

The integer part of the value corresponds to the date, and the fractional part corresponds to the

time. To convert a DateTime variable to a Double value, use the method ToOADateTime,

which returns a value that is an OLE (Object Linking and Embedding) Automation-compatible

date. The value 0 corresponds to midnight of December 30, 1899.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 13/67

To initialize a DateTime variable, supply a date value enclosed in a pair of pound

symbols. If the value contains time information, separate it from the date part by using a space:

Dim date1 As Date = #4/15/2007#

Dim date2 As Date = #4/15/2007 2:01:59#

Properties

The DateTime class exposes the following properties, which are straightforward.

Date, TimeOfDay

The Date property returns the date from a date/time value and sets the time to midnight.

The TimeOfDay property returns the time part of the date. The following statements

Dim date1 As DateTime

date1 = Now()

Debug.WriteLine(date1)

Debug.WriteLine(date1.Date)

Debug.WriteLine(date1.TimeOfDay)

will print something like the following values in the Output window:

8/5/2007 9:41:55 AM

8/5/2007 12:00:00 AM

09:41:55.5296000

DayOfWeek, DayOfYear

Hour, Minute, Second, Millisecond

These properties return the corresponding time part of the date value passed as an

argument. If the current time is 9:47:24 p.m., the three properties of the DateTime class will

return the integer values 9, 47, and 24 when applied to the current date and time:

Debug.WriteLine("The current time is " & Date.Now.ToString)

Debug.WriteLine("The hour is " & Date.Now.Hour)

Debug.WriteLine("The minute is " & Date.Now.Minute)

Debug.WriteLine("The second is " & Date.Now.Second)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 14/67

Day, Month, Year

These three properties return the day of the month, the month, and the year of a

DateTime value, respectively. The Day and Month properties are numeric values, but you can

convert them to the appropriate string (the name of the day or month) with the

WeekDayName() and MonthName() functions.

Ticks

This property returns the number of ticks from a date/time value. Each tick is 100

nanoseconds (or 0.0001 milliseconds). To convert ticks to milliseconds, multiply them by

10,000 (or use the TimeSpan object’s TicksPerMillisecond property.

Methods

The DateTime class exposes several methods for manipulating dates. The most

practical methods add and subtract time intervals to and from an instance of the DateTime

class.

Compare

Compare is a shared method that compares two date/time values and returns an integer

value indicating the relative order of the two values. The syntax of the Compare method is the

following, where date1 and date2 are the two values to be compared:

order = System.DateTime.Compare(date1, date2)

DaysInMonth

This shared method returns the number of days in a specific month. Because February

contains a variable number of days depending on the year, the DaysInMonth method accepts as

arguments both the month and the year:

monDays = DateTime.DaysInMonth(year, month)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 15/67

FromOADate

This shared method creates a date/time value from an OLE Automation-compatible

date.

newDate = DateTime.FromOADate(dtvalue)

The argument dtvalue must be a Double value in the range from −657,434 (first day of year

100) to 2,958,465 (last day of year 9999).

IsLeapYear

This shared method returns a True/False value that indicates whether the specified year

is a leap year:

Dim leapYear As Boolean = DateTime.IsLeapYear(year)

Add

This method adds a TimeSpan object to the current instance of the DateTime class.

Dim TS As New TimeSpan()

Dim thisMoment As Date = Now()

TS = New TimeSpan(3, 6, 2, 50)

Debug.WriteLine(thisMoment)

Debug.WriteLine(thisMoment.Add(TS))

The values printed in the Output window when I tested this code segment were as follows:

9/1/2007 10:10:49 AM

9/4/2007 4:13:39 PM

Subtract

This method is the counterpart of the Add method; it subtracts a TimeSpan object from

the current instance of the DateTime class and returns another Date value.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 16/67

Adding Intervals to Dates

Various methods add specific intervals to a date/time value. Each method accepts the

number of intervals to add (days, hours, milliseconds, and so on) to the current instance of the

DateTime class. These methods are the following: AddYears, AddMonths, AddDays,

AddHours, AddMinutes, AddSeconds, AddMilliseconds, and AddTicks.

To add 3 years and 12 hours to the current date, use the following statements:

Dim aDate As Date

aDate = Now()

aDate = aDate.AddYears(3)

aDate = aDate.AddHours(12)

If the argument is a negative value, the corresponding intervals are subtracted from the current

instance of the class.

ToString

This method converts a date/time value to a string, using a specific format. The

DateTime class recognizes numerous format patterns, which are listed in the following two

tables. Table lists the standard format patterns, and Table lists the characters that can format

individual parts of the date/time value. You can combine the custom format characters to

format dates and times in any way you wish.

The syntax of the ToString method is the following, where formatSpec is a format

specification:

aDate.ToString(formatSpec)

The D named date format, for example, formats a date value as a long date; the following

statement will return the highlighted string shown below the statement:

Debug.Writeline(#9/17/2010#.ToString("D"))

Friday, September 17, 2010

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 17/67

Table - lists the named formats for the standard date and time patterns. The format characters

are case-sensitive — for example, g and G represent slightly different patterns.

Named

Format
Output Format Name

d MM/dd/yyyy ShortDatePattern

D dddd, MMMM dd, yyyy LongDatePattern

F
dddd, MMMM dd, yyyy

HH:mm:ss.mmm

FullDateTimePattern (long date and

long time)

f
dddd, MMMM dd, yyyy

HH:mm.ss

FullDateTimePattern (long date and

short time)

g MM/dd/yyyy HH:mm general (short date and short time)

G MM/dd/yyyy HH:mm:ss General (short date and long time)

M m MMMM dd MonthDayPattern (month and day)

r, R
ddd, dd MMM yyyy HH:mm:ss

GMT
RFC1123Pattern

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 18/67

 Table: Date Format Specifier

Format

Character
Description

d The date of the month

dd The day of the month with a leading zero for single-digit days

ddd
The abbreviated name of the day of the week (a member of the

AbbreviatedDayNames enumeration)

dddd
The full name of the day of the week (a member of the

DayNamesFormat enumeration)

M The number of the month

MM
The number of the month with a leading zero for single-digit

months

MMM
The abbreviated name of the month (a member of the

AbbreviatedMonthNames enumeration)

MMMM The full name of the month

The following examples format the current date by using all the format patterns listed in Table.

An example of the output produced by each statement is shown under each statement, indented

and highlighted.

Debug.WriteLine(now().ToString("d"))

6/1/2008

Debug.WriteLine(now().ToString("D"))

Sunday, June 01, 2008

Debug.WriteLine(now().ToString("f"))

Sunday, June 01, 2008 10:29 AM

Debug.WriteLine(now().ToString("F"))

Sunday, June 01, 2008 10:29:35 AM

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 19/67

Debug.WriteLine(now().ToString("g"))

6/1/2008 10:29 AM

Debug.WriteLine(now().ToString("G"))

6/1/2008 10:29:35 AM

To display the full month name and the day in the month, for instance, use the following

statement:

Debug.WriteLine(now().ToString("MMMM d")).

Date Conversion Methods

The DateTime class supports methods for converting a date/time value to many of the

other base types, which are presented here briefly.

ToFileTime, FromFileTime

The ToFileTime method converts the value of the current Date instance to the format of

the local system file time. There’s also an equivalent FromFileTime method, which converts a

file time value to a Date value.

ToLongDateString, ToShortDateString

These two methods convert the date part of the current DateTime instance to a string

with the long (or short) date format. The following statement will return a value like the one

highlighted, which is the long date format:

Debug.WriteLine(Now().ToLongDateString)

Tuesday, July 15, 2008

ToLongTimeString, ToShortTimeString

These two methods convert the time part of the current instance of the Date class to a

string with the long (or short) time format. The following statement will return a value like the

one highlighted:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 20/67

Debug.WriteLine(Now().ToLongTimeString)

6:40:53 PM

ToOADate

This method converts the DateTime instance into an OLE Automation-compatible date

(a long value).

ToUniversalTime, ToLocalTime

ToUniversalTime converts the current instance of the DateTime class into universal

coordinated time (UCT). The method ToLocalTime converts a UCT time value to local time.

Dates as Numeric Values

The Date type encapsulates complicated operations, and it’s worth taking a look at the

inner workings of the classes that handle dates and times. Let’s declare two variables to

experiment a little with dates: a Date variable, which is initialized to the current date, and a

Double variable.

Dim Date1 As Date = Now()

Dim dbl As Double

Insert a couple of statements to convert the date to a Double value and print it:

dbl = Date1.ToOADate

Debug.WriteLine(dbl)

The TimeSpan Class

The last class discussed in this chapter is the TimeSpan class, which represents a time

interval and can be expressed in many different units — from ticks and milliseconds to days.

The TimeSpan is usually the difference between two date/time values, but you can also create a

TimeSpan for a specific interval and use it in your calculations.

To use the TimeSpan variable in your code, just declare it with a statement such as the

following:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 21/67

Dim TS As New TimeSpan

You can initialize an instance of the TimeSpan object by creating two date/time values and

getting their difference, as in the following statements:

Dim TS As New TimeSpan

Dim date1 As Date = #4/11/1985#

Dim date2 As Date = Now()

TS = date2.Subtract(date1)

Debug.WriteLine(TS)

Depending on the day on which you execute these statements, they will print something

like the following in the Output window:

8086.15:37:01.6336000

Properties

The TimeSpan type exposes the properties described in the following sections. Most of

these properties are shared.

Field Properties

TimeSpan exposes the simple properties shown in Table 13.3, which are known as fields and

are all shared.

Table: The Fields of the TimeSpan Object

Property Returns

Empty An Empty TimeSpan object

MaxValue
The largest interval you can represent with a TimeSpan

object

MinValue
The smallest interval you can represent with a TimeSpan

object

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 22/67

TicksPerDay The number of ticks in a day

TicksPerHour The number of ticks in an hour

TicksPerMillisecond The number of ticks in a millisecond

TicksPerMinute The number of ticks in one minute

TicksPerSecond The number of ticks in one second

Zero A TimeSpan object of zero duration

 Interval Properties

In addition to the fields, the TimeSpan class exposes two more groups of properties that

return the various intervals in a TimeSpan value (shown in Tables 13.4 and 13.5). The

members of the first group of properties return the number of specific intervals (days, hours,

and so on) in a TimeSpan value. The second group of properties returns the entire TimeSpan’s

duration in one of the intervals recognized by the TimeSpan method.

Table 9.4: The Intervals of a TimeSpan Value

Property Returns

Days The number of whole days in the current TimeSpan.

Hours The number of whole hours in the current TimeSpan.

Milliseconds
The number of whole milliseconds in the current TimeSpan.

The largest value of this property is 999.

Minutes
The number of whole minutes in the current TimeSpan. The

largest value of this property is 59.

Seconds
The number of whole seconds in the current TimeSpan. The

largest value of this property is 59.

Ticks The number of whole ticks in the current TimeSpan.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 23/67

Table : The Total Intervals of a TimeSpan Value

Property Returns

TotalDays The number of days in the current TimeSpan

TotalHours The number of hours in the current TimeSpan

TotalMillisecond

s
The number of whole milliseconds in the current TimeSpan

TotalMinutes The number of whole minutes in the current TimeSpan

Duration

This property returns the duration of the current instance of the TimeSpan class. The

duration is expressed as the number of days followed by the number of hours, minutes,

seconds, and milliseconds. The following statements create a TimeSpan object of a few

seconds (or minutes, if you don’t mind waiting) and print its duration in the Output window.

Dim T1, T2 As DateTime

T1 = Now

MsgBox("Click OK to continue")

T2 = Now

Dim TS As TimeSpan

TS = T2.Subtract(T1)

Debug.WriteLine("Total duration = " & TS.Duration.ToString)

Debug.WriteLine("Minutes = " & TS.Minutes.ToString)

Debug.WriteLine("Seconds = " & TS.Seconds.ToString)

Debug.WriteLine("Ticks = " & TS.Ticks.ToString)

Debug.WriteLine("Milliseconds = " & TS.TotalMilliseconds.ToString)

Debug.WriteLine("Total seconds = " & TS.TotalSeconds.ToString)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 24/67

If you place these statements in a button’s Click event handler and execute them, you’ll see a

series of values like the following in the Immediate window:

Total duration = 00:01:34.2154752

Minutes = 1

Seconds = 34

Ticks = 942154752

Milliseconds = 94215,4752

Total seconds = 94,2154752

Methods

There are various methods for creating and manipulating instances of the TimeSpan class, and

they’re described in the following sections.

Interval Methods

The methods in Table 13.6 create a new TimeSpan object of a specific duration. The

TimeSpan’s duration is specified as a number of intervals, accurate to the nearest millisecond.

All methods accept a single argument, which is a Double value that represents the number of

the corresponding intervals (days, hours, and so on).

Parse(string)

This method creates a new TimeSpan object from a string with the TimeSpan format

(days;followed by a period; followed by the hours, minutes, and seconds separated by colons).

The following statements create a new TimeSpan variable with a duration of 3 days, 12 hours,

20 minutes, 30 seconds, and 500 milliseconds:

Dim SP As New TimeSpan()

SP = TimeSpan.Parse("3.12:20:30.500")

Debug.WriteLine(SP)

3.12:20:30.5000000

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 25/67

Accessing Files and Folders

The Directory Class

The System.IO.Directory class exposes all the members you need to manipulate

folders. Because the Directory class belongs to the System.IO namespace, you must import the

IO namespace into any project that might require the Directory object's members with the

following statement:

Imports System.IO

Methods

The Directory object exposesmethods for accessing folders and their contents, which are

described in the following sections.

 CreateDirectory

 Delete

 Exists

 Move

 GetCurrentDirectory, SetCurrentDirectory

 GetDirectoryRoot

 GetDirectories

 GetFiles

 GetFileSystemEntries

 GetCreationTime, SetCreationTime

 GetLastAccessTime, SetLastAccessTime

 GetLastWriteTime, SetLastWriteTime

 GetLogicalDrives

 GetParent

CreateDirectory

This method creates a new folder, whose path is passed to the method as a string argument:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 26/67

Directory.CreateDirectory(path)

The CreateDirectory method returns a DirectoryInfo object, which contains information

about the newly created folder. The DirectoryInfo object is discussed later in this chapter,

along with the FileInfo object. Notice that the CreateDirectory method can create multiple

nested folders in a single call. The following statement will create the folder folder1 (if it

doesn't exist), folder2 (if it doesn't exist) under folder1, and finally folder3 under folder2 in the

C: drive:

Directory.CreateDirectory("C:\folder1\folder2\folder3")

Delete

This method deletes a folder and all the files in it. If the folder contains subfolders, the

Delete method will optionally remove the entire directory tree under the node you're removing.

The simplest form of the Delete method accepts as an argument the path of the folder to be

deleted:

Directory.Delete(path)

To delete a folder recursively (that is, also delete any subfolders under it), use the

following form of the Delete method, which accepts a second argument:

Directory.Delete(path, recursive)

Exists

This method accepts a path as an argument and returns a True/False value indicating

whether the specified folder exists:

Directory.Exists(path)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 27/67

Move

This method moves an entire folder to another location in the file system; its syntax is

the following, where source is the name of the folder to be moved and destination is the name

of the destination folder:

Directory.Move(source, destination)

GetCurrentDirectory, SetCurrentDirectory

Use these methods to retrieve and set the path of the current directory. By default, the

GetCurrentDirectory method returns the folder in which the application is running.

SetCurrentDirectory accepts a string argument, which is a path, and sets the current directory

to the specified path. You can change the current folder by specifying an absolute or a relative

path, such as the following:

Directory.SetCurrentDirectory("..\Resources")

GetDirectoryRoot

This method returns the root part of the path passed as argument, and its syntax is the

following:

root = Directory.GetDirectoryRoot(path)

GetDirectories

This method retrieves all the subfolders of a specific folder and returns their names as

an array of strings:

Dim Dirs() As String

Dirs = Directory.GetDirectories(path)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 28/67

GetFiles

This method returns the names of the files in the specified folder as an array of strings.

The syntax of the GetFiles method is the following, where path is the path of the folder whose

files you want to retrieve and files is an array of strings that's filled with the names of the files:

Dim files() As String = Directory.GetFiles(path)

GetCreationTime, SetCreationTime

These methods read or set the date that a specific folder was created. The

GetCreationTime method accepts a path as an argument and returns a Date value:

Dim CreatedOn As Date

CreatedOn = Directory.GetCreationTime(path)

SetCreationTime accepts a path and a date value as arguments and sets the specified folder's

creation time to the value specified by the second argument:

Directory.SetCreationTime(path, datetime)

GetLastAccessTime, SetLastAccessTime

These two methods are equivalent to the GetCreationTime and SetCreationTime

methods, except they return and set the most recent date and time that the file was accessed.

GetLastWriteTime, SetLastWriteTime

These two methods are equivalent to the GetCreationTime and SetCreationTime methods, but

they return and set the most recent date and time the file was written to.

GetLogicalDrives

This method returns an array of strings, which are the names of the logical drives on the

computer. The statements in Listing 11.5 print the names of all logical drives.

Listing: Retrieving the Names of All Drives on the Computer

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 29/67

Dim drives() As String

drives = Directory.GetLogicalDrives

Dim drive As String

For Each drive In drives

Debug.WriteLine(drive)

Next

When executed, these statements will produce a list such as the following:

C:\

D:\

E:\

F:\

Notice that the GetLogicalDrives method doesn't return any floppy drives, unless there's a disk

inserted into the drive.

GetParent

This method returns a DirectoryInfo object that represents the properties of a folder's

parent folder. The syntax of the GetParent method is as follows:

Dim parent As DirectoryInfo = Directory.GetParent(path)

The name of the parent folder, for example, is parent.Name, and its full name is

parent.FullName.

The File Class

The System.IO.File class exposes methods for manipulating files (copying them,

moving them around, opening them, and closing them), similar to the methods of the Directory

class. The names of the methods are self-descriptive, and most of them accept as an argument

the path of the file on which they act. Use these methods to implement the common operations

that users normally perform through the Windows interface, from within your application.

Methods

Many of the following methods allow you to open existing or create new files. We'll use some

of these methods later in the chapter to write data to, and read from, text and binary files.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 30/67

AppendText

This method appends some text to a file, whose path is passed to the method as an

argument, along with the text to be written:

File.AppendText(path, text)

Copy

This method copies an existing file to a new location; its syntax is the following, where

source is the path of the file to be copied and destination is the path where the file will be

copied to:

File.Copy(source, destination)

 The destination file exists, the Copy method will fail. An exception will be thrown also

if either the source or the destination folder does not exist.

Create

This method creates a new file and returns a FileStream object, which you can use to

write to or read from the file. (The FileStream object is discussed in detail later in this chapter,

along with the methods for writing to or reading from the file.) The simplest form of the Create

method accepts a single argument, which is the path of the file you want to create:

Dim FStream As FileStream = File.Create(path)

 CreateText

This method is similar to the Create method, but it creates a text file and returns a

StreamWriter object for writing to the file. The StreamWriter object is similar to the

FileStream object but is used for text files only, whereas the FileStream object can be used

with both text and binary files.

Dim SW As StreamWriter = File.CreateText(path)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 31/67

Delete

This method removes the specified file from the file system. The syntax of the Delete

method is the following, where path is the path of the file you want to delete:

File.Delete(path)

Exists

This method accepts as an argument the path of a file and returns a True/False value

that indicates whether a file exists. The following statements delete a file, after making sure

that the file exists:

If File.Exists(path) Then

File.Delete(path)

Else

MsgBox("The file " & path & " doesn't exist")

End If

GetAttributes

The GetAttributes method accepts a file path as an argument and returns the attributes

of the specified file as a FileAttributes object. A file can have more than a single attribute (for

instance, it can be hidden and compressed).

GetCreationTime, SetCreationTime

The GetCreationTime method returns a date value, which is the date and time the file

was created. This value is set by the operating system, but you can change it with the

SetCreationTime method. SetCreationTime accepts as an argument the file's path and the new

creation time:

File.SetCreationTime(path, datetime)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 32/67

GetLastAccessTime, SetLastAccessTime

The GetLastAccessTime method returns a date value, which is the date and time the

specified file was accessed for the last time. Use the SetLastAccessTime method to set this

value.

GetLastWriteTime, SetLastWriteTime

The GetLastWriteTime method returns a date value, which is the date and time that the

specified file was written to for the last time. To change this attribute, use the

SetLastWriteTime method.

Move

This method moves the specified file to a new location. You can also use the Move

method to rename a file by simply moving it to another name in the same folder. Moving a file

is equivalent to copying it to another location and then deleting the original file. The Move

method works across volumes:

File.Move(sourceFileName, destFileName)

Open

This method opens an existing file for read-write operations. The simplest form of the

method is the following, which opens the file specified by the path argument and returns a

FileStream object to this file:

FStream = File.Open(path)

You can use the FStream object's methods to write to or read from the file. The

following form of the method allows you to specify the mode in which you want to open the

file, where the fileMode argument can have one of the values shown in Table 11.3.

FStream = File.Open(path, fileMode)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 33/67

Table: FileMode Enumeration

Value Effect

Append
Opens the file in write mode, and all the data you write to the

file are appended to its existing contents.

Create
Requests the creation of a new file. If a file by the same name

exists, this will be overwritten.

CreateNew

Requests the creation of a new file. If a file by the same name

exists, an exception will be thrown. This mode will create and

open a file only if it doesn't already exist and it's the safest

mode.

Open Requests that an existing file be opened.

OpenOrCreate
Opens the file in read-write mode if the file exists, or creates a

new file and opens it in read-write mode if the file doesn't exist.

Truncate
Opens an existing file and resets its size to zero bytes. As you

can guess, this file must be opened in write mode.

OpenRead

This method opens an existing file in read mode and returns a FileStream object

associated with this file. You can use this stream to read from the file. The syntax of the

OpenRead method is the following:

Dim FStream As FileStream = File.OpenRead(path)

The OpenRead method is equivalent to opening an existing file with read-only access via the

Open method.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 34/67

OpenText

This method opens an existing text file for reading and returns a StreamReader object

associated with this file. Its syntax is the following:

Dim SR As StreamReader = File.OpenText(path)

OpenWrite

This method opens an existing file in write mode and returns a FileStrem object

associated with this file. The syntax of the OpenRead method is as follows, where path is the

path of the file:

Dim FStream As FileStream = File.OpenWrite(path)

The DirectoryInfo Class

To create a new instance of the DirectoryInfo class that references a specific folder,

supply the folder's path in the class's constructor:

Dim DI As New DirectoryInfo(path)

CreateSubdirectory

This method creates a subfolder under the folder specified by the current instance of the class,

and its syntax is as follows:

DI.CreateSubdirectory(path)

GetFileSystemInfos

This method returns an array of FileSystemInfo objects, one for each item in the folder

referenced by the current instance of the class. The items can be either folders or files. To

retrieve information about all the entries in a folder, create an instance of the DirectoryInfo

class and then call its GetFileSystemInfos method:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 35/67

Dim DI As New DirectoryInfo(path)

Dim itemsInfo() As FileSystemInfo

itemsInfo = DI.GetFileSystemInfos()

The FileInfo Class

The FileInfo class exposes many properties and methods, which are equivalent to the

members of the File class, so I'm not going to repeat all of them here. The Copy/Delete/Move

methods allow you to manipulate the file represented by the current instance of the FileInfo

class, similar to the methods by the same name of the File class.

Length Property

This property returns the size of the file represented by the FileInfo object in bytes. The

File class doesn't provide an equivalent property or method.

CreationTime, LastAccessTime, LastWriteTime Properties

These properties return a date value, which is the date the file was created, accessed for

the last time, or written to for the last time, respectively. They are equivalent to the methods of

the File object by the same name and the Get prefix.

Name, FullName, Extension Properties

These properties return the filename, full path, and extension, respectively, of the file

represented by the current instance of the FileInfo class. They have no equivalents in the File

class because the File class's methods require that you specify the path of the file, so its path

and extension are known.

CopyTo, MoveTo Methods

These two methods copy or move, respectively, the file represented by the current

instance of the FileInfo class. Both methods accept a single argument, which is the destination

of the operation (the path to which the file will be copied or moved). If the destination file

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 36/67

exists already, you can overwrite it by specifying a second optional argument, which has a

True/False value:

FileInfo.CopyTo(path, force)

Directory Method

This method returns a DirectoryInfo value that contains information about the file's

parent directory.

DirectoryName Method

This method returns a string with the name of the file's parent directory. The following

statements return the two (identical) strings shown highlighted in this code segment:

Dim FI As FileInfo

FI = New FileInfo("c:\folder1\folder2\folder3\test.txt")

Debug.WriteLine(FI.Directory().FullName)

c:\folder1\folder2\folder3

Debug.WriteLine(FI.DirectoryName()) c:\folder1\folder2\folder3

The Path Class

The Path class contains an interesting collection of methods, which you can think of as

utilities. The Path class's methods perform simple tasks such as retrieving a file's name and

extension, returning the full path description of a relative path, and so on. The Path class's

members are shared, and you must specify the path on which they will act as an argument.

Properties

The Path class exposes the following properties. Notice that none of these properties

applies to a specific path; they're general properties that return settings of the operating system.

The FileSystem component doesn't provide equivalent properties to the ones discussed in this

section.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 37/67

DirectorySeparatorChar

This property returns the directory separator character, which is the backslash character

(\).

InvalidPathChars

This property returns the list of invalid characters in a path as an array of the following

characters:

/ \ " < > —

You can use these characters to validate user input or pathnames read from a file. If you

have a choice, let the user select the files through the Open dialog box, so that their pathnames

will always be valid.

PathSeparator, VolumeSeparatorChar

These properties return the separator characters that appear between multiple paths (:)

and volumes (;), respectively.

Methods

The most useful methods exposed by the Path class are utilities for manipulating

filenames and pathnames, described in the following sections. Notice that the methods of the

Path class are shared: You must specify the path on which they will act as an argument.

ChangeExtension

This method changes the extension of a file. Its syntax is as follows:

newExtension = Path.ChangeExtension(path, extension)

Combine

This method combines two path specifications into one. Its syntax is as follows:

newPath = Path.Combine(path1, path2)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 38/67

Use this method to combine a folder path with a file path. The following expression will return

the highlighted string:

Path.Combine("c:\textFiles", "test.txt")

c:\textFiles\test.txt

GetDirectoryName

This method returns the directory name of a path. The following statement:

Path.GetDirectoryName("C:\folder1\folder2\folder3\Test.txt")

will return this string:

C:\folder1\folder2\folder3

GetFileName, GetFileNameWithoutExtension

These two methods return the filename in a path, with and without its extension,

respectively.

GetFullPath

This method returns the full path of the specified path; you can use it to convert relative

pathnames to fully qualified pathnames. The following statement returned the highlighted

string on my computer (it will be quite different on your computer, depending on the current

directory):

Console.WriteLine(Path.GetFullPath("..\..\Test.txt"))

C:\WorkFiles\Learn VB\Chapters\Chapter 11\Projects\Test.txt

GetTempFile, GetTempPath

The GetTempFile method returns a unique filename, which you can use as a temporary

storage area from within your application. The name of the temporary file can be anything,

because no user will ever access it. In addition, the GetTempFile method creates a zero-length

file on the disk, which you can open with the Open method. A typical temporary filename is

the following:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 39/67

C:\DOCUME˜1\TOOLKI˜1\LOCALS˜1\Temp\tmp105.tmp

It was returned by the following statement on my system:

Debug.WriteLine(Path.GetTempFile)

HasExtension

This method returns a True/False value, indicating whether a path includes a file

extension.

Accessing Files

There are two types of files: text files and binary files. To access a file, you must first

set up a Stream object. Stream objects are created by the various methods that open or create

files, as you have seen in the previous sections, and they return information about the file

they're connected to.

Using Streams

Another benefit of using streams is that you can combine them. The typical example is

that of encrypting and decrypting data. Data is encrypted through a special type of Stream, the

CryptoStream.

The FileStream Class

The Stream class is an abstract one, and you can't use it directly in your code. To

prepare your application to write to a file, you must set up a FileStream object, which is the

channel between your application and the file. The methods for writing and reading data are

provided by the StreamReader/StreamWriter or BinaryReader/BinaryWriter classes, which are

created on top of the FileStream object.

Properties

You can use the following properties of the FileStream object to retrieve information

about the underlying file.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 40/67

Length

This read-only property returns the length of the file associated with the FileStream

current object in bytes.

Position

This property gets or sets the current position within the stream. You can compare the

Position property to the Length property to find out whether you have reached the end of an

existing file. When these two properties are equal, there are no more data to read.

Methods

The FileStream object exposes a fewmethods, which are discussed here. Themethods

for accessing a file's contents are discussed in the following section.

Lock

This method allows you to lock the file you're accessing, or part of it. The syntax of the

Lock method is the following, where position is the starting position and length is the length of

the range to be locked:

Lock(position, length)

To lock the entire file, use this statement:

FileStream.Lock(1, FileStream.Length)

Seek

This method sets the current position in the file represented by the FileStream object:

FileStream.Seek(offset, origin)

The new position is offset bytes from the origin. In place of the origin argument, use one of he

SeekOrigin enumeration members, listed in Table.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 41/67

 Table : SeekOrigin Enumeration

Value Effect

Begin The offset is relative to the beginning of the file.

Current The offset is relative to the current position in the file.

End The offset is relative to the end of the file.

SetLength

This method sets the length of the file represented by the FileStream object. Use this method

after you have written to an existing file to truncate its length. The syntax of the SetLength

method is this:

FileStream.SetLength(newLength)

The StreamWriter Class

The StreamWriter class is the channel through which you send data to a text file. To

create a new StreamWriter object, declare a variable of the StreamWriter type. The first

overloaded form of the constructor accepts a file's path as an argument and creates a new

StreamWriter object for the file:

Dim SW As New StreamWriter(path)

NewLine Property

The StreamWriter object provides a handy property, the NewLine property, which

allows you to change the string used to terminate each line in the file. This terminator is written

to the text file by the WriteLine method, following the text. The default line-terminator string

is a carriage return followed by a line feed (\r\n). The StreamReader object doesn't provide a

similar property. It reads lines terminated by the carriage return (\r), line feed (\n), or carriage

return/line feed (\r\n) characters only.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 42/67

Methods

To send information to the underlying file, use the following methods of the

StreamWriter object.

AutoFlush

This property is a True/False value that determines whether the methods that write to

the file (the Write and WriteString methods) will also flush their buffer. If you set this property

to False, the buffer will be flushed when the operating system gets a chance, when the Flush

method is called, or when you close the FileStream object. When AutoFlush is True, the buffer

is flushed with every write operation.

Close

This method closes the StreamWriter object and releases the resources associated with

it to the system. Always call the Close method after you finish using the StreamWriter object.

If you have created the StreamWriter object on top of a FileStream object, you must also close

the underlying stream too.

Flush

This method writes any data in the buffer to the underlying file.

WriteLine(data)

This method is identical to the Write method, but it appends a line break after saving

the data to the file. You will find examples on using the StreamWriter class after we discuss

the methods of the StreamReader class.

The StreamReader Class

The StreamReader class provides the necessary methods for reading from a text file and

exposes methods that match those of the StreamWriter class (the Write and WriteLine

methods). The StreamReader class's constructor is overloaded. You can specify the FileStream

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 43/67

object it will use to read data from the file, the encoding scheme, and the buffer size. The

simplest form of the constructor is the following:

Dim SR As New StreamReader(FS)

Methods

The StreamReader class provides the following methods for writing data to the

underlying file.

Close

The Close method closes the current instance of the StreamReader class and releases

any system resources associated with this object.

Peek

The Peek method returns the next character as an integer value, without actually

removing it from the input stream. The Peek method doesn't change the current position in the

stream. If there are no more characters left in the stream, the value −1 is returned. The Peek

method will also return −1 if the current stream doesn't allow peeking.

Read

This method reads a number of characters from the StreamReader class to which it's

applied and returns the number of characters read. The syntax of the Read method is as

follows, where count is the number of characters to be read, starting at the startIndex location

in the file:

charsRead = SR.Read(chars, startIndex, count)

ReadBlock

This method reads a number of characters from a text file and stores them in an array of

characters. It accepts the same arguments as the Read method and returns the number of

characters read.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 44/67

Dim chars(count - 1) As Char

charsRead = SR.Read(chars, startIndex, count)

ReadLine

This method reads the next line from the text file associated with the StreamReader

class and returns a string. If you're at the end of the file, the method returns the Null value. The

syntax of the ReadLine method is the following:

Dim txtLine As String

txtLine = SR.ReadLine()

ReadToEnd

The last method for reading characters from a text file reads all the characters from the

current position to the end of the file. We usually call this method once to read the entire file

with a single statement and store its contents to a string variable. The syntax of the ReadToEnd

method is as follows:

allText = SR.ReadToEnd()

The BinaryWriter Class

To prepare your application to write to a binary file, you must set up a BinaryWriter

object, with the statement shown here, where FS is a properly initialized FileStream object:

Dim BW As New BinaryWriter(FS)

To specify the encoding of the text in the binary file, use the following form of the

method:

Dim BW As New BinaryWriter(FS, encoding)

Dim BW As New BinaryWriter(path, encoding)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 45/67

Methods

The BinaryWriter class exposes the following methods for manipulating binary files.

Close

This method flushes and closes the current BinaryWriter and releases any system

resources associated with it.

Flush

This method clears all buffers for the current writer and writes all buffered data to the

underlying file.

Seek

This method sets the position within the current stream. Its syntax is the following,

where origin is a member of the SeekOrigin enumeration and offset is the distance from the

origin:

Seek(offset, origin)

Write

The Write method writes a value to the current stream. This method is heavily

overloaded, but it accepts a single argument, which is the value to be written to the file. The

data type of its argument determines how it will be written. The Write method can save all the

base types to the file in their native format, unlike the Write method of the TextWriter class,

which stores them as strings.

WriteString

Whereas all other data types can be written to a binary file with the Write method,

strings must be written with the WriteString method. This method writes a length-prefixed

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 46/67

string to the file and advances the current position by the appropriate number of bytes. The

string is encoded by the current encoding scheme, and the default value is UTF8Encoding.

The BinaryReader Class

The BinaryReader class provides the methods you need to read data from a binary file.

As you have seen, binary files might also hold text, and the BinaryReader class provides the

ReadString method to read strings written to the file by the WriteString method.

To use the methods of the BinaryReader class in your code, you must first create an

instance of the class. The BinaryReader object must be associated with a FileStream object,

and the simplest form of its constructor is the following, where streamObj is the FileStream

object:

Dim BR As New BinaryReader(streamObj)

.

Methods

The BinaryReader class exposes the following methods for accessing the contents of a

binary file.

Close

This method is the same as the Close method of the StreamReader class. It closes the

current reader and releases the underlying stream.

PeekChar

This method returns the next available character from the streamwithout repositioning

the current pointer. The character read is returned as an integer, or −1 if there are no more

characters to be read from the stream.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 47/67

Drawing and Painting with Visual Basic

In general, graphics fall into two major categories: vector and bitmap. Vector graphics

are images generated by graphics methods such as DrawLine and DrawEllipse. The drawing

you create is based on mathematical descriptions of the various shapes. Bitmap graphics are

images made up of pixels arranged in rows and columns. Each pixel is represented by a Long

numeric value, which is the pixel's color.

Display and size images. - The most appropriate control for displaying images is the

PictureBox control. You can assign an image to the control through its Image property, either

at design time or at runtime. To display a user-supplied image at runtime, call the DrawImage

method of the control's Graphics object.

Generate graphics by using the drawing methods. - Every object you draw on, such as

forms and PictureBox controls, exposes the CreateGraphics method, which returns a Graphics

object. The Paint event's e argument also exposes the Graphics object of the control or form.

To draw something on a control, retrieve its Graphics object and then call the Graphics object's

drawing methods.

Display text in various ways, including gradient fills. - The Graphics object provides the

DrawString method, which prints a user-supplied string on a control. You can also specify the

coordinates of the string's upper-left corner and its font. To position the string, you need to

know its dimensions..

Drawing with GDI+

The most recent version on GDI is called GDI+.One of the basic characteristics of GDI

is that it's stateless. This means that each graphics operation is totally independent of the

previous one and can't affect the following one. To draw a line, you must specify a Pen object

and the two endpoints of the line.

The GDI+ classes reside in the following namespaces, and you must import one or

more of them in your projects: System.Drawing, System.Drawing2D,

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 48/67

System.Drawing.Imaging, and System.Drawing.Text. This chapter explores all three aspects of

GDI+ — namely vector drawing, imaging, and typography.

Here are the statements to draw a line on the form:

Dim redPen As Pen = New Pen(Color.Red, 2)

Dim point1 As Point = New Point(10,10)

Dim point2 As Point = New Point(120,180)

Me.CreateGraphics.DrawLine(redPen, point1, point2)

The Basic Drawing Objects

This is a good point to introduce some of the objects we'll be using all the time when

drawing. No matter what you draw or which drawing instrument you use, one or more of the

objects discussed in this section will be required.

The Graphics Object

The Graphics object is the drawing surface — your canvas. All the controls you can

draw on expose a Graphics property, which is an object, and you can retrieve it with the

CreateGraphics method. Start by declaring a variable of the Graphics type and initialize it to

the Graphics object returned by the control's CreateGraphics method:

Dim G As Graphics

G = PictureBox1.CreateGraphics

DpiX, DpiY - These two properties return the horizontal and vertical resolutions of the

drawing surface, respectively. Resolution is expressed in pixels per inch (or dots per inch, if

the drawing surface is your printer). On an average monitor, these two properties return a

resolution of 96 dots per inch (dpi).

PageUnit - This property determines the units in which you want to express the coordinates on

the Graphics object; its value can be a member of the GraphicsUnit enumeration

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 49/67

TextRenderingHint - This property specifies how the Graphics object will render text; its

value is one of the members of the TextRenderingHint enumeration: AntiAlias, AntiAliasGrid-

Fit, ClearTypeGridFit, SingleBitPerPixel, SingleBitPerPixelGridFit, and SystemDefault.

SmoothingMode - This property is similar to the TextRenderingHint, but it applies to shapes

drawn with the Graphics object's drawing methods. Its value is one of the members of the

SmoothingMode enumeration: AntiAlias, Default, HighQuality, HighSpeed, Invalid, and

None.

The Point Class

The Point class represents a point on the drawing surface and is expressed as a pair of

(x, y) coordinates. The x-coordinate is its horizontal distance from the origin, and the y-

coordinate is its vertical distance from the origin. The origin is the point with coordinates (0,

0), and this is the top-left corner of the drawing surface.

The Rectangle Class

Another class that is often used in drawing is the Rectangle class. The Rectangle object

is used to specify areas on the drawing surface. Its constructor accepts as arguments the

coordinates of the rectangle's top-left corner and its dimensions:

Dim box As Rectangle

box = New Rectangle(X, Y, width, height)

The following statement creates a rectangle whose top-left corner is 1 pixel to the right

and 1 pixel down from the origin, and its dimensions are 100 by 20 pixels:

box = New Rectangle(1, 1, 100, 20)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 50/67

The Size Class

The Size class represents the dimensions of a rectangle; it's similar to a Rectangle

object, but it doesn't have an origin, just dimensions. To create a new Size object, use the

following constructor:

Dim S1 As New Size(100, 400)

The Color Class

The Color class represents colors, and there are many ways to specify a color. We'll

discuss the Color class in more detail in Chapter 19, "Manipulating Images and Bitmaps." In

the meantime, you can specify colors by name. Declare a variable of the Color type and

initialize it to one of the named colors exposed as properties of the Color class:

Dim myColor As Color

myColor = Color.Azure

The Font Class

The Font class represents fonts, which are used when rendering strings via the

DrawString method. To specify a font, you must create a new Font object; set its family name,

size, and style; and then pass it as argument to the DrawString method. To create a new Font

object, use a statement like the following:

Dim drawFont As New Font(”Verdana”, 12, FontStyle.Bold)

The Pen object exposes these properties:

Alignment - Determines the alignment of the Pen, and its value is one of the members of the

PenAlignment enumeration: Center or Inset. When set to Center, the width of the pen is

centered on the outline (half the width is inside the shape, and half is outside). When set to

Inset, the entire width of the pen is inside the shape. The default value of this property

isPenAlignment.Center.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 51/67

LineJoin - Determines how two consecutive line segments will be joined. Its value is one of

the members of the LineJoin enumeration: Bevel, Miter, MiterClipped, and Round. StartCap,

EndCap Determines the caps at the two ends of a line segment, respectively. Their value is one

of the members of the LineCap enumeration: Round, Square, Flat, Diamond, and so on.

DashCap - Determines the caps to be used at the beginning and end of a dashed line. Its value

is one of the members of the DashCap enumeration: Flat, Round, and Triangle.

DashStyle - Determines the style of the dashed lines drawn with the specific Pen. Its value is

one of the members of the DashStyle enumeration (Solid, Dash, DashDot, DashDotDot, Dot,

and Custom).

PenType - Determines the style of the Pen; its value is one of the members of the PenType

enumeration: HatchFilled, LinearGradient, PathGradient, SolidColor, and TextureFill.

The Brush Class

The Brush class represents the instrument for filling shapes; you can create brushes that

fill with a solid color, a pattern, or a bitmap. In reality, there's no Brush object. The Brush class

is actually an abstract class that is inherited by all the classes that implement a brush, but you

can't declare a variable of the Brush type in your code. The brush objects are shown in Table.

Table - Brush Styles

Brush Fill Effect

SolidBrush Fills shapes with a solid color

HatchBrush Fills shapes with a hatched pattern

LinearGradientBrush Fills shapes with a linear gradient

PathGradientBrush
Fills shapes with a gradient that has one starting color and many

ending colors

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 52/67

Solid Brushes

To fill a shape with a solid color, you must create a SolidBrush object with the following

constructor, where brushColor is a color value, specified with the help of the Color object: Dim

sBrush As SolidBrush

sBrush = New SolidBrush(brushColor)

Every filled object you draw with the sBrush object will be filled with the color of the brush.

Hatched Brushes

To fill a shape with a hatch pattern, you must create a HatchBrush object with the following

constructor:

Dim hBrush As HatchBrush

HBrush = New HatchBrush(hatchStyle, hatchColor, backColor)

The HatchStyle enumeration has 54 members, so Table 14.3 shows only a few common

patterns.

Table - The HatchStyle Enumeration

Value Effect

BackwardDiagonal Diagonal lines from top-right to bottom-left

Cross Vertical and horizontal crossing lines

DiagonalCross Diagonally crossing lines

ForwardDiagonal Diagonal lines from top-left to bottom-right

Horizontal Horizontal lines

Vertical Vertical lines

Gradient Brushes

A gradient brush fills a shape with a specified gradient. The LinearGradientBrush fills a

shape with a linear gradient, and the PathGradientBrush fills a shape with a gradient that has

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 53/67

one starting color and one or more ending colors. Gradient brushes are discussed in detail in

the section titled "Gradients," later in this chapter.

Textured Brushes

In addition to solid and hatched shapes, you can fill a shape with a texture by using a

TextureBrush object. The texture is a bitmap that is tiled as needed to fill the shape. Textured

brushes are used to create rather fancy graphics, and we won't explore them in this tutorial.

The Path Class

The Path class represents shapes made up of various drawing entities, such as lines,

rectangles, and curves. You can combine as many of these drawing entities as you'd like and

build a new entity, which is called a path. Paths are usually closed and filled with a color, a

gradient, or a bitmap. You can create a path in several ways. The simplest method is to create a

new Path object and then use one of the following methods to append the appropriate shape to

the path:

 AddArc

 AddEllipse

 AddPolygon

 AddBezier

 AddLine

 AddRectangle

 AddCurve

 AddPie

 AddString

The following method draws an ellipse:

Me.CreateGraphics.DrawEllipse(mypen, 10, 30, 40, 50)

To add the same ellipse to a Path object, use the following statement:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 54/67

Dim myPath As New Path

myPath.AddEllipse(10, 30, 40, 50)

To display the path, call the DrawPath method, passing a Pen and Path object as arguments:

Me.CreateGraphics.DrawPath(myPen, myPath)

Drawing Shapes

Before getting into the details of the drawing methods, however, let's write a simple

application that draws a couple of simple shapes on a form. First, we must create a Graphics

object with the following statements:

Dim G As Graphics

G = Me.CreateGraphics

Everything you'll draw on the surface represented by the G object will appear on the

form. Then, we must create a Pen object to draw with. The following statement creates a Pen

object that's 1 pixel wide and draws in blue:

Dim P As New Pen(Color.Blue)

Persistent Drawing

If you switch to the Visual Studio IDE or any other window, and then return to the form

of the SimpleShapes application, you'll see that the drawing has disappeared! The same will

happen if you minimize the window and then restore it to its normal size. Everything you draw

on the Graphics object is temporary. It doesn't become part of the Graphics object and is

visible only while the control, or the form, need not be redrawn. As soon as the form is

redrawn, the shapes disappear.

Drawing Methods

The Framework provides several drawing methods, one for each basic shape. All

drawing methods have a few things in common. The first argument is always a Pen object,

which will be used to render the shape on the Graphics object.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 55/67

Table shows the names of the drawing methods. The first column contains the methods for

drawing stroked shapes, and the second column contains the corresponding methods for

drawing filled shapes (if there's a matching method).

 Table - The Drawing Methods

Drawing Method Description

DrawArc Draws an arc

DrawBezier

Draws very smooth curves with

fixed endpoints, whose exact shape

is determined by two control points

DrawBeziers
Draws multiple Bezier curves in a

single call

DrawClosedCurve Draws a closed curve

DrawCurve
Draws curves that pass through

certain points

DrawLine

The DrawLine method draws a straight-line segment between two points with a pen

supplied as an argument. The simplest forms of the DrawLine method are the following, where

point1 and point2 are either Point or PointF objects, depending on the coordinate system in

use:

Graphics.DrawLine(pen, X1, Y1, X2, Y2)

Graphics.DrawLine(pen, point1, point2)

DrawRectangle

The DrawRectangle method draws a stroked rectangle and has two forms:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 56/67

Graphics.DrawRectangle(pen, rectangle)

Graphics.DrawRectangle(pen, X1, Y1, width, height)

DrawEllipse

An ellipse is an oval or circular shape, determined by the rectangle that encloses it. To

draw an ellipse, call the DrawEllipse method, which has two basic forms:

Graphics.DrawEllipse(pen, rectangle)

Graphics.DrawEllipse(pen, X1, Y1, width, height)

The arguments are the same as with the DrawRectangle method because an ellipse is

basically a circle deformed to fit in a rectangle. The two ellipses and their enclosing rectangles

shown in Figure 14.7 were generated with the statements of Listing 14.5.

 Figure - Two ellipses with their enclosing rectangles

Listing: Drawing Ellipses and Their Enclosing Rectangles

Private Sub bttnEllipses_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles bttnEllipses.Click

Dim G As Graphics

G = PictureBox1.CreateGraphics

G.Clear(PictureBox1.BackColor)

G.SmoothingMode = Drawing.Drawing2D.SmoothingMode.AntiAlias

G.FillRectangle(Brushes.Silver, ClientRectangle)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 57/67

Dim R1, R2 As Rectangle

R1 = New Rectangle(10, 10, 160, 320)

R2 = New Rectangle(200, 85, 320, 160)

G.DrawEllipse(New Pen(Color.Black, 3), R1)

G.DrawRectangle(Pens.Black, R1)

G.DrawEllipse(New Pen(Color.Black, 3), R2)

G.DrawRectangle(Pens.Red, R2)

End Sub

DrawPie

A pie is a shape similar to a slice of pie (an arc along with the two line segments that

connect its endpoints to the center of the circle or the ellipse, to which the arc belongs). The

DrawPie method has two forms:

Graphics.DrawPie(pen, rectangle, start, sweep)

Graphics.DrawPie(pen, X, Y, width, height, start, sweep)

The statements of Listing create a pie chart by drawing individual pie slices. Each pie

starts where the previous one ends, and the sweeping angles of all pies add up to 360 degrees,

which corresponds to a full rotation (a full circle). Unlike the other samples of this section, I've

used the FillPie method, because we hardly ever draw the outlines of the pies; we fill each one

with a different color instead. Figure shows the output produced by Listing 14.6.

Figure - A simple pie chart generated with the FillPie method

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 58/67

Listing: Drawing a Simple Pie Chart with the FillPie Methods

Private Sub Button2_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button2.Click

Dim g As System.Drawing.Graphics

g = Me.CreateGraphics

Dim brush As System.Drawing.SolidBrush

Dim rect As Rectangle

brush = New System.Drawing.SolidBrush(Color.Green)

Dim Angles() As Single = {0, 43, 79, 124, 169, 252, 331, 360}

Dim colors() As Color = {Color.Red, Color.Cornsilk, _

Color.Firebrick, Color.OliveDrab, _

Color.LawnGreen, Color.SandyBrown, Color.MidnightBlue}

g.Clear(Color.Ivory)

rect = New Rectangle(100, 10, 300, 300)

Dim angle As Integer

For angle = 1 To Angles.GetUpperBound(0)

brush.Color = colors(angle - 1)

g.FillPie(brush, rect, Angles(angle - 1), Angles(angle) - Angles(angle - 1))

Next

g.DrawEllipse(Pens.Black, rect)

End Sub

DrawPolygon

The DrawPolygon method draws an arbitrary polygon. It accepts two arguments: the

Pen that it will use to render the polygon and an array of points that define the polygon. The

syntax of the DrawPolygon method is the following:

Graphics.DrawPolygon(pen, points())

where points is an array of points, which can be declared with a statement like the following:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 59/67

Dim points() As Point = {New Point(x1, y1), New Point(x2, y2), ...}

DrawCurve

Curves are smooth lines drawn as cardinal splines. The simplest form of the

DrawCurve method has the following syntax, where points is an array of points:

Graphics.DrawCurve(pen, points, tension)

DrawBezier

The DrawBezier method draws Bezier curves, which are smoother than cardinal

splines. A Bezier curve is defined by two endpoints and two control points. The DrawBezier

method accepts a pen and four points as arguments:

Graphics.DrawBexier(pen, X1, Y1, X2, Y2, X3, Y3, X4, Y4)

Graphics.DrawBezier(pen, point1, point2, point3, point4)

DrawPath

This method accepts a Pen object and a Path object as arguments and renders the

specified path on the screen:

Graphics.DrawPath(pen, path)

DrawString, MeasureString

The DrawString method renders a string in a single line or multiple lines. As a

reminder, the TextRenderingHint property of the Graphics object allows you to specify the

quality of the rendered text. The simplest f orm of the DrawString method is the following:

Graphics.DrawString(string, font, brush, X, Y)

The simplest form of the MeasureString method is the following, where string is the string to

be rendered and font is the font in which the string will be rendered:

Dim textSize As SizeF

textSize = Me.Graphics.MeasureString(string, font)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 60/67

The StringFormat Object

Some of the overloaded forms of the DrawString method accept an argument of the

StringFormat type. This argument determines characteristics of the text and exposes a few

properties of its own, which include the following:

 Alignment - Determines the alignment of the text; its value is a member of the

StringAlignment enumeration: Center (text is aligned in the center of the layout

rectangle), Far (text is aligned far from the origin of the layout rectangle), and Near

(text is aligned near the origin of the layout rectangle).

 Trimming - Determines how text will be trimmed if it doesn't fit in the layout

rectangle. Its value is one of the members of the StringTrimming enumeration:

Character (text is trimmed to the nearest character), EllipsisCharacter (text is trimmed

to the nearest character and an ellipsis is inserted at the end to indicate that some of the

text is missing), EllipsisPath (text at the middle of the string is removed and replaced

by an ellipsis), EllipsisWord (text is trimmed to the nearest word and an ellipsis is

inserted at the end), None (no trimming), and Word (text is trimmed to the nearest

word).

 FormatFlags - Specifies layout information for the string. Its value can be one of the

members of the StringFormatFlags enumeration. The two members of this enumeration

that you might need often are DirectionRightToLeft (prints to the left of the specified

point) and DirectionVertical.

DrawImage

The DrawImage method, which renders an image on the Graphics object, is a heavily

overloaded and quite flexiblemethod. The following form of themethod draws the image at the

specified location. Both the image and the location of its top-left corner are passed to the

method as arguments (as Image and Point arguments, respectively):

Graphics.DrawImage(img, point)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 61/67

Gradients

In this section, you'll look at the tools for creating gradients. The techniques for

gradients can get quite complicated, but I will limit the discussion to the types of gradients

you'll need for business or simple graphics applications.

Linear Gradients

 To draw a linear gradient, you must create an instance of the LinearGradientBrush

class with a statement like the following:

Dim lgBrush As LinearGradientBrush

lgBrush = New LinearGradientBrush(rect, startColor, endColor, gradientMode)

Path Gradients

This is the ultimate gradient tool. Using a PathGradientBrush, you can create a gradient

that starts at a single point and fades into multiple different colors in different directions. You

can fill a rectangle starting from a point in the interior of the rectangle, which is colored, say,

black.

Each corner of the rectangle might have a different ending color. The PathGradientBrush will

change color in the interior of the shape and will generate a gradient that's smooth in all

directions. Figure shows a rectangle filled with a path gradient, although the gray shades on the

printed page won't show the full impact of the gradient. Open the Gradients project you

downloaded earlier to see the same figure in color (use the Path Gradient button).

Figure - A path gradient starting at the middle of the rectangle

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 62/67

Clipping

The SetClip method has the following forms:

Graphics.SetClip(Graphics)

Graphics.SetClip(Rectangle)

Graphics.SetClip(GraphicsPath)

Graphics.SetClip(Region)

Applying Transformations

In computer graphics, there are three types of transformations: scaling, translation, and

rotation:

The scaling transformation changes the dimensions of a shape but not its basic form. If

you scale an ellipse by 0.5, you'll get another ellipse that's half as wide and half as tall as the

original one. The translation transformation moves a shape by a specified distance. If you

translate a rectangle by 30 pixels along the x-axis and 90 pixels along the y-axis, the new

origin will be 30 pixels to the right and 90 pixels down from the original rectangle's top-left

corner.

The rotation transformation rotates a shape by a specified angle, expressed in degrees;

360 degrees correspond to a full rotation, and the shape appears the same. A rotation by 180

degrees is equivalent to flipping the shape vertically and horizontally.

Transformations are stored in a 5 × 5 matrix, but you need not set it up yourself. The Graphics

object provides the ScaleTransform, TranslateTransform, and RotateTransform methods, and

you can specify the transformation to be applied to the shape by calling one or more of these

methods and passing the appropriate argument(s).

The ScaleTransform method accepts as arguments scaling factors for the horizontal and

vertical directions:

Graphics.ScaleTransformation(Sx, Sy)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 63/67

The TranslateTransform method accepts two arguments, which are the displacements along the

horizontal and vertical directions:

Graphics.TranslateTransform(Tx, Ty)

The Tx and Ty arguments are expressed in the coordinates of the current coordinate system.

The shape is moved to the right by Tx units and down by Ty units. If one of the arguments is

negative, the shape is moved in the opposite direction (to the left or up).

The RotateTransform method accepts a single argument, which is the angle of rotation

expressed in degrees:

Graphics.RotateTransform(rotation)

The rotation takes place about the origin. As you will see, the final position and

orientation of a shape is different if two identical rotation and translation transformations are

applied in a different order.

Every time you call one of these methods, the elements of the transformation matrix are

set accordingly. All transformations are stored in this matrix, and they have a cumulative

effect. If you specify two translation transformations, for example, the shape will be translated

by the sum of the corresponding arguments in either direction. These two transformations:

Graphics.TranslateTransform(10, 40)

Graphics.TranslateTransform(20, 20)

are equivalent to the following one:

Graphics.TranslateTransform(30, 60)

To start a new transformation after drawing some shapes on the Graphics object, call the Reset-

Transform method, which clears the transformation matrix.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 64/67

The effect of multiple transformations might be cumulative, but the order in which

transformations are performed makes a big difference.

Bitmaps

Specifying Colors

The model of designing colors based on the intensities of their RGB components is

called the RGB model, and it's a fundamental concept in computer graphics. If you aren't

familiar with this model, this section is well worth reading. Nearly every color you can imagine

can be constructed by mixing the appropriate percentages of the three basic colors.

Defining Colors

To manipulate colors, use the Color class of the Framework. This is a shared class, and

you need not create new Color objects; just call the appropriate property or method of the

Color class. The Color class exposes 128 predefined colors as properties, which you can access

by name, and additional members for specifying custom colors. For example, you can define

colors by using the FromARGB method of the Color class. This method accepts three

arguments, which are the components of the primary colors in the desired color:

Color.FromARGB(Red, Green, Blue)

The method returns a Color value, which you can assign to a variable of the same type,

or use it directly as the value of a Color property. To change the form's background color to

yellow, you can assign the value returned by the FromARGB method to the BackColor

property of a form or control:

Form1.BackColor = FromARGB(255, 128, 128)

Alpha Blending

Besides the red, green, and blue components, a Color value might also contain a

transparency component. This value determines whether the color is opaque (255) or

transparent (0). In the case of transparent colors, you can specify the degree of transparency.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 65/67

This component is the alpha component. The following statement creates a new color value,

which is yellow and 25 percent transparent:

Dim trYellow As Color

trYellow = Color.FromARGB(192, Color.Yellow)

The preceding statements print the logo at two locations on the image of the

PictureBox1 control with different colors, as shown in Figure

Figure - Watermarking an image with a semitransparent string

Figure - Creating a 3D effect by superimposing transparency on an opaque and a

semitransparent string

The code behind the Draw Semi-Transparent Text button is quite simple, really. First it draws

the string with the solid blue brush:

brush = New SolidBrush(Color.FromARGB(255, 0, 0, 255))

Processing Bitmaps

A bitmap is a two-dimensional array of color values. These values are stored in disk

files, and when an image is displayed on a PictureBox or Form control, each of its color values

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 66/67

is mapped to a pixel on the PictureBox or form. This is true when the image isn't resized, of

course.

Refreshing the Image

When you draw on a bitmap, which is associated with the Image property of a

PictureBox control, the image on the control isn't refreshed every time the bitmap is modified.

Instead, the image is modified when the Paint event has a chance to be serviced. The

processing is implemented with two nested loops that iterate through the bitmap's rows and

columns, as in the following code:

For pxlCol As Integer = 0 To PictureBox1.Image.Height - 1

For pxlRow As Integer = 0 To PictureBox1.Image.Width - 1

' statements to process current pixel:

' (pxlRow, pxlCol)

Next

Next

The image on the control won't be refreshed until the outer loop has finished. As a result, users

can't see the progress of the operation; they will see the new image after all its pixels have been

processed.

To force the PictureBox control to refresh its image, you must call the Refresh method.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 67/67

POSSIBLE QUESTIONS

PART A (1 Mark)

(Online Examinations)

PART B (6 Marks)

1. Describe The Date Class with example.

2. Describe Co-ordinate transformations.

3. Write a program to animate a picture using animation control.

4. Explain in detail about handling strings in VB.NET with examples.

5. Discuss about displaying images in Vb.NET

6. Explain in detail about The Char Class in VB.NET

7. Explain about drawing with GDI+.

8. Describe The Date Class with example.

9. Elaborate Directory Class and File Class with example.

10. Explain in detail about Bitmaps.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 1/12

PART A (1 Mark) – Unit 1V

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

1
The ____ data type stores characters
as individual

char character both a & b Object Property char

2
The _____ method to accept
numeric keystrokes and to reject
letters and punctuation symbols.

IsDigit IsLetter IsLetter/IsDigit Object Property IsDigit

3
The ____method takes into
consideration hexadecimal digits

IsLetter IsLetter/IsNumber IsNumber Object Property IsNumber

4
_____methods convert their
argument to the lowercase character

ToUpper ToLower IsUpper IsLower ToLower

5
_____methods convert their
argument to the uppercase character

ToUpper ToLower IsUpper IsLower ToUpper

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 2/12

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

6
The String class implements the
_____ data type

char String charstring property String

7
The____method concatenates the
two or more strings

strcat cat concat property concat

8
The ____method copies the value of
one string variable to another

string Copy strcat property Copy

9
The______method inserts one or
more characters at a specified
location in a string

add Insert both a&b delete Insert

10
The ____method joins two or more
strings

concat merge join both a&b join

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 3/12

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

11
split a long string into smaller ones
by using the____ method

strsplit() Split strspliting property Split

12
The ____ method removes a given
number of characters from a string

Remove delete both a &b add item Remove

13
The____Method replaces all
instances of a specified character

remove Replace ReplaceAll resize Replace

14
There are eight spaces to the left of
the _____string

left right-padded left-padded resize left-padded

15
The tick proerty in DateTime Class,
Each tick represents _______
nanoseconds

10.00 100.00 1000.00 property 100.00

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 4/12

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

16
The _____ method is used to find
the given character is lower case

. Islower() IslowerCase() Tolower() Isletter() Tolower()

17
. _____ class is used to store the
string and also to manipulate the
string

The string class the char class stringbuilder class both a&b the string class

18
The _____ method appends a base
type to the current instance of the
StringBuilder class,

Append Format Append both a&b functions Append

19
_____________method returns the
number of days in a specific month

DaysInMonth month daymonth functions DaysInMonth

20
The day of the month with a leading
zero for single-digit days_______

d dd ddd dddd dd

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 5/12

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

21 _______The full name of the month mm mmm mmmm m mmmm

22
________time converts the current
instance of the DateTime class into
universal coordinated time (UCT).

ToUniversalTime ToLocalTime UniversalTime LocalTime ToUniversalTime

23
_________ method converts a UCT
time value to local time.

ToUniversalTime LocalTime ToLocalTime UniversalTime ToLocalTime

24 ______ method creates a new folder CreateDirectory
Directory.CreateDire

ctory(path)
directory(path) createpath CreateDirectory

25
_____ method deletes a folder and
all the files in it.

delete remove both a&b update delete

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 6/12

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

26

The____ method accepts a path as
an argument and returns a
True/False value indicating whether
the specified folder exists

exit exists exitsub entry exists

27
The_____ method moves an entire
folder to another location in the file
system

move moveall both a&b tranfer move

28
_____accepts a string argument,
which is a path, and sets the current
directory to the specified path.

GetCurrentDirect
ory

SetCurrentDirectory GetDirectories current Director
SetCurrentDirecto

ry

29
______ method accepts a path as an
argument and returns a Date value

GetCreationTime SetCreationTime creationTime time GetCreationTime

30
____ time accepts a path and a date
value as arguments and sets the
specified folder's

GetCreationTime SetCreationTime creationTime time SetCreationTime

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 7/12

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

31
The _____File class exposes
methods for manipulating files

System.IO. import system.io. imports system.io. imports System.IO.

32
The___ method creates a new file
and returns a FileStream object

create add insert new create

33
The___ character returns the
directory separator character

/ \ " <> \

34
The___ method changes the
extension of a file

ChangeExtension ChangingExtension Extension change ChangeExtension

35
The___method sets the current
position in the file represented by
the FileStream object

seekorigin seek seekoffset Object Property seek

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 8/12

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

36
The___ property gets or sets the
current position within the stream.

Position PositionOn OnPosition name property Position

37
The ____ class is the channel
through which you send data to a
text file.

StreamWriter FileStreamWriter FileWriter file StreamWriter

38
The___ method writes any data in
the buffer to the underlying file.

AutoFlush Flush Auto Flush Auto Flush

39
The____ method doesn't change the
current position in the stream.

seek SeekOrigin Peek PeekOrigin Peek

40
The ____ class provides the methods
you need to read data from a binary
file.

BinaryReader BinaryWriter StreamReader StreamWriter BinaryReader

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 9/12

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

41

The_____ method returns the next
available character from the stream
without repositioning the current
pointer

Peek PeekChar Seek SeekChar PeekChar

42
______ is represented by a Long
numeric value, which is the pixel's
color.

pixelcolor pixel color megapixel pixel

43
The most recent version on GDI is
called____

GDI+. GDI GDI- GDI* GDI+.

44
The _____ properties return the
horizontal and vertical resolutions of
the drawing surface

DpiX, DpiY x,y xDipY DpiXy DpiX, DpiY

45
The____ coordinate is its horizontal
distance from the origin

y x (0,0) (x.y) x

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 10/12

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

46
The____ coordinate is its vertical
distance from the origin

y x (0,0) (x.y) y

47
the ____ coordinate to top-left
corner of the drawing surface.

y x (0,0) (x.y) (0,0)

48
The _____class represents the
dimensions of a rectangle

NewSize Size Sizeobject sizeproperty Size

49
____Determines how two
consecutive line segments will be
joined

merge join LineJoin mergejoin LineJoin

50
________Determines the caps to be
used at the beginning and end of a
dashed line

Dashcap startcap endcap Linecap DashCap

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 11/12

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

51
______Determines the style of the
dashed lines drawn with the specific
Pen

DashCap DashStyle DashDot DashDotDot DashStyle

52
The ____ class represents the
instrument for filling shapes

Brush SolidBrush HatchBrush
PathGradientBrus

h
Brush

53
_____ brush Fills shapes with a
gradient that has one starting color
and many ending colors

Brush PathGradientBrush HatchBrush SolidBrush
PathGradientBrus

h

54
____text is trimmed to the nearest
word and an ellipsis is inserted at the
end

EllipsisPath EllipsisWord EllipsisCharacter Ellipsis EllipsisPath

55
____text is aligned far from the
origin of the layout rectangle

Center Far Near close Far

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:IV(Strings, Characters & Dates) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 12/12

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

56
___________ control executes timer
events at specifies intervals of time

time watch timer seconds timer

57
 What increments of time is applied
interval property of the timer
control____

Seconds Nanoseconds milliseconds minutes

58
The _____ transformation changes
the dimensions of a shape but not its
basic form

Rotation Translation scaling Scaling - Rotaion scaling

59 RGB components is called ______ ARGB RGB custom colors GB RGB

60
A rotation by ____ degrees is
equivalent to flipping the shape
vertically and horizontally.

360.00 90.00 180.00 0.00 180.00

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 1/37

UNIT-V

SYLLABUS

Databases: Architecture and Basic Concepts: What is database? - Server Explorer –

Structured Query Language – The Query Builder – Building database Application with

ADO.Net: The Architecture of ADO.Net-Creating the dataset – Data Binding –

Programming the Data Adapter Objects – The Command and Data Reader Object.

Programming the ADO.Net objects: The Structure of the dataset – The DataForm Wizard

– Transactions – Performing Update Operations.

DATABASES: ARCHITECTURE AND BASIC CONCEPTS

What Is a Database?

A database is an object for storing complex, structured information. The same is

true for a file, or even for the file system on your hard disk. What makes a database

unique is the fact that databases are designed to make data easily retrievable. The purpose

of a database is not so much the storage of information as its quick retrieval. In other

words, you must structure your database so that it can be queried quickly and efficiently.

Databases are maintained by special programs, such as Access and SQL Server.

These programs are called database management systems (DBMS), and they’re among

the most complicated applications. A fundamental characteristic of a DBMS is that it

isolates much of the complexity of the database from the developer. Regardless of how

each DBMS stores data on disk, you see your data organized in tables with relationships

between tables. To access the data stored in the database and to update the database, you

use a special language, Structured Query Language (SQL).

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 2/37

The Visual Database Tools

To simplify the development of database applications, Visual Studio.NET comes

with some visual tools, the most important of which are discussed in the following

sections.

The Server Explorer This is the first and most prominent tool. The Server Explorer is

the Toolbox for database applications, in the sense that it contains all the basic tools for

connecting to databases and manipulating their objects.

The Query Builder This is a tool for creating SQL queries (statements that retrieve the

data we want from a database, or update the data in the database)..

The Database Designer and Tables Designer These tools allow you to work with an

entire database or its tables.

The Server Explorer

Your starting point for developing database applications with VB.NET is the

Server Explorer. This toolbox is your gateway to the databases on your system or

network, and you can use it to locate and retrieve the tables you’re interested in. Place the

pointer over the Server Explorer tab to expand the corresponding toolbox, which looks

something like the one shown in Figure 20.5. The two main objects in the Server

Explorer are Data Connections and the Servers object.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 3/37

Right-click the Data Connections icon and, from the context menu, select the Add

Connection command. You may also see one or more connections to your databases, if

you have already created some. Every new connection you add remains under the Data

Connections branch until you decide to remove it, and you can use it in any number of

projects.

Database Diagrams This is where you can examine the various diagrams of the

database. A database diagram is a visual representation of a set of related tables, with the

relations between the tables. Relations are indicated with line segments between two

related tables, and you can quickly learn a lot about the structure of a database by looking

at a database diagram.

Tables This is where you can select a table and edit it, or add a new table to the database.

Finally, you can view the table’s rows and edit them, add new rows, or delete existing

rows.

Views This is where you specify the various views you want to use in your applications.

Stored Procedures Stored procedures are (usually small) programs that are stored in the

database and perform very specific, and often repeated, tasks. By coding many of the

operations you want to perform against the database as stored procedures, you won’t have

to access the database directly.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 4/37

Functions The functions of SQL Server are just like the VB functions. They perform

specific tasks on the database (retrieve or update data) taking into consideration the

arguments passed to the functions when they were called.

Structured Query Language

SQL (Structured Query Language) is a universal language for manipulating

tables, and every database management system (DBMS) supports it, so you should invest

the time and effort to learn it. You can generate SQL statements with point-and-click

operations (the Query Builder is a visual tool for generating SQL statements), but this is

no substitute for understanding SQL and writing your own statements. SQL is a

nonprocedural language. This means that SQL doesn’t provide traditional programming

structures like IF statements or loops.

To retrieve all the company names from the Customers table of the Northwind database,

you issue a statement like this one:

SELECT CompanyName

FROM Customers

To select customers from a specific country, you issue the following statement:

SELECT CompanyName

FROM Customers

WHERE Country = ‘Germany’

SQL statements are categorized into two major categories, which are actually

considered separate languages: the statements for manipulating the data, which form the

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 5/37

Data Manipulation Language (DML); and the statements for defining database objects,

such as tables or their indexes, which form the Data Definition Language (DDL).

Executing SQL Statements

The Query Analyzer executes SQL statements you design. The Query Builder lets

you build the statements with visual tools.

Using the Query Analyzer

One of the applications installed with SQL Server is the Query Analyzer. To start

it, select Start ➢ Programs ➢ SQL Server ➢ Query Analyzer. Initially, its window will be

empty. First, select the desired database’s name in the Database drop-down list and then

enter the SQL statement you want to execute in the upper pane. The SQL statement will

be executed against the selected database when you press Ctrl+E, or click the Run button

(the button with the green arrow on the toolbar).

Alternatively, you can prefix the SQL statement with the USE statement, which

specifies the database against which the statement will be executed. To retrieve all the

Northwind customers located in Germany, enter this statement:

USE Northwind

SELECT CompanyName FROM Customers

WHERE Country = ‘Germany’

Selection Queries

The simplest form of the SELECT statement is

SELECT fields

FROM tables

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 6/37

where fields and tables are comma-separated lists of the fields you want to retrieve from

the database and the tables they belong to.

 To select the contact information from all the companies in the Customers table, use this

statement:

USE Northwind

SELECT CompanyName, ContactName, ContactTitle

FROM Customers

To retrieve all the fields, use the asterisk (*) or the ALL keyword. The statement

SELECT * FROM Customers

will select all the fields from the Customers table.

WHERE Clause

The most common form of the SELECT statement is the following:

SELECT fields

FROM tables

WHERE condition

The condition argument can be a relational expression, like the ones you use in VB. To

select all the customers from Germany, use the following condition:

WHERE Country = ‘Germany’

To select customers from multiple countries, use the OR operator to combine multiple

conditions:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 7/37

WHERE Country = ‘Germany’ OR

Country = ‘Austria’

You can also combine multiple conditions with the AND operator.

The statement

USE Northwind

SELECT ProductName, CategoryName

FROM Products, Categories

WHERE Products.CategoryID = Categories.CategoryID

will retrieve the names of all products, along with their category names.

AS Keyword

By default, each column of a query is labeled after the actual field name in the

output. If a table contains two fields named CustLName and CustFName, you can display

them with different labels using the AS keyword. The SELECT statement

SELECT CustLName, CustFName

will produce two columns labeled CustLName and CustFName. The query’s output will

look much better if you change the labels of these two columns with a statement like the

following one:

SELECT CustLName AS [Last Name],

CustFName AS [First Name]

TOP Keyword

The TOP keyword is used only when the rows are ordered according to some

meaningful criteria. Limiting a query’s output to the alphabetically top N rows isn’t very

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 8/37

practical. When the rowsare sorted according to items sold, revenue generated, and so on,

it makes sense to limit the query’s output to N rows.

DISTINCT Keyword

The DISTINCT keyword eliminates any duplicates from the cursor retrieved by the

SELECT statement. To eliminate them, use the DISTINCT keyword, as shown in the

following statement:

USE NORTHWIND

SELECT DISTINCT Country

FROM Customers

LIKE Operator

The LIKE operator uses pattern-matching characters, like the ones you use to

select multiple files in DOS. The LIKE operator recognizes several pattern-matching

characters (or wildcard characters) to match one or more characters, numeric digits,

ranges of letters, and so on; these are listed in

Null Values

A very common operation in manipulating and maintaining databases is to locate

Null values in fields. The expressions IS NULL and IS NOT NULL find field values that

are (or are not) Null. A zero-length string is not the same as a Null field. To locate the

rows which have a Null value in their CompanyName column, use the following

WHERE clause:

WHERE CompanyName IS NULL

ORDER Keyword

The rows of a query are not in any particular order. To request that the rows be

returned in a specific order, use the ORDER BY clause, whose syntax is

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 9/37

ORDER BY col1, col2, . . .

You can specify any number of columns in the ORDER list.

The statement

USE NORTHWIND

SELECT CompanyName, ContactName

FROM Customers

ORDER BY Country, City

will display the customers ordered by country and by city within each country.

SQL Joins

Joins specify how you connect multiple tables in a query, and there are four types

of joins:

_ Left outer, or left join

_ Right outer, or right join

_ Full outer, or full join

_ Inner join

Left Joins

This join displays all the records in the left table and only those records of the

table on the right that match certain user-supplied criteria.

This join has the following syntax:

FROM (primary table) LEFT JOIN (secondary table) ON (primary table).(field)

(comparison) (secondary table).(field)

Right Joins

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 10/37

This join is similar to the left outer join, except that all rows in the table on the

right are displayed and only the matching rows from the left table are displayed. This join

has the following syntax:

FROM (secondary table) RIGHT JOIN (primary table) ON (secondary table).(field)

(comparison) (primary table).(field)

Full Joins

The full join returns all the rows of the two tables, regardless of whether there are

matching rows or not. In effect, it’s a combination of left and right joins. To retrieve all

the titles and all publishers, and match publishers to their titles, use the following join:

USE PUBS

SELECT title, pub_name

FROM titles FULL JOIN publishers

ON titles.pub_id = publishers.pub_id

Inner Joins

This join returns the matching rows of both tables, similar to the WHERE clause,

and has the following syntax:

FROM (primary table) INNER JOIN (secondary table) ON (primary table).(field)

(comparison) (secondary table).(field)

Limiting Groups with HAVING

The HAVING clause limits the groups that will appear in the cursor. In a way, it

is similar to the WHERE clause, but the HAVING clause allows you to use aggregate

functions. The following statement will return the IDs of the products whose sales exceed

1,000 units:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 11/37

USE NORTHWIND

SELECT ProductID, SUM(Quantity)

FROM [Order Details]

GROUP BY ProductID

HAVING SUM(Quantity) > 1000

IN and NOT IN Keywords

The IN and NOT IN keywords are used in a WHERE clause to specify a list of

values that a column must match (or not match). They are more of a shorthand notation

for multiple OR operators. The following is statement that retrieves the names of the

customers in all German-speaking countries:

USE NORTHWIND

SELECT CompanyName

FROM Customers

WHERE Country IN (‘Germany’, ‘Austria’, ‘Switzerland’)

The BETWEEN Keyword

The BETWEEN keyword lets you specify a range of values and limit the

selection to the rows that have a specific column in this range. The BETWEEN keyword

is a shorthand notation for an expression like

column >= minValue AND column <= maxValue

Editing Existing Rows

The UPDATE statement edits a row’s fields, and its syntax is

UPDATE table_name SET field1 = value1, field2 = value2, …

WHERE criteria

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 12/37

The criteria expression is no different than the criteria you specify in the WHERE

clause of selection query. To change the country from “UK” to “United Kingdom” in the

Customers table, use the following statement:

UPDATE Customers SET Country=’United Kingdom’

WHERE Country = ‘UK’

The Query Builder

The Query Builder is a visual tool for building SQL statements. It’s a highly

useful tool that generates SQL statements for you—you just specify the data you want to

retrieve with point-and-click operations, instead of typing complicated expressions.

The Query Builder is a visual tool for building SQL statements. It’s a highly

useful tool that generates SQL statements for you—you just specify the data you want to

retrieve with point-and-clickoperations, instead of typing complicated expressions. A

basic understanding of SQL is obviously required, and this is why I’ve described the

basic keywords of SQL in the last section, but it is possible to build SQL queries with the

Query Builder without knowing anything about SQL. It’s a great tool for beginners, but

you can’t get far by ignoring SQL.

The Query Builder is also a great tool for learning SQL, as you specify the query

with point-and-click operations but the Query Builder builds the appropriate SQL

statements. You can also edit the SQL statement manually and execute it.

The Query Builder Interface

The Query Builder contains four panes: Diagram, Grid, SQL, and Results.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 13/37

Diagram Pane

This is where you select the tables you want to use in your queries—the tables in

which the required data reside. To select a table, right-click anywhere on the Diagram

pane and you will see the Add Table dialog box. Select as many tables as you need and

then close the Add Table dialog box.

Grid Pane

The Grid pane contains the selected fields. Some fields may not be part of the

output—you may use them only for selection purposes—but their names will appear on

this pane. To exclude them from the output, clear the box in the Output column. The

Alias column contains a name for the field. By default, the column’s name is the alias.

This is the heading of each column in the output, and you can change the default name to

any string that suits you.

SQL Pane

As you build the statement with point-and-click operations, the Query Builder

generates the SQL statement that must be executed against the database to retrieve the

specified data. The statement that retrieves product names along with their categories is

shown next:

SELECT dbo.Products.ProductName, dbo.Categories.CategoryName

FROM dbo.Categories INNER JOIN dbo.Products

ON dbo.Categories.CategoryID = dbo.Products.CategoryID

Results Pane

To execute a query, right-click somewhere on the SQL pane and select Run from

the context menu. The Query Builder will execute the statement it generated and will

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 14/37

display the results in the Results pane at the bottom of the window. The heading of each

column is the column’s name, unless you’ve specified an alias for the column

SQL at Work: Counting Rows

Let’s say you want to find out the number of orders in which each product

appears. Go back to the Server Explorer and open the previous view (or the Query

Analyzer). Add the Orders table, which will be automatically related to the Order Details

table with the OrderID field. Click the OrderID field in the Orders table. A new line will

be added to the Grid pane, and its Group By column will be set automatically to Group

By. Set it to Count Distinct and its alias to “# Of Orders.” We’re going to sum the orders

in which each product appears. The Count Distinct aggregate function is similar to the

Count function, but it will not include the same order twice (if the same product appears

in two rows of the same order). Run the query. This time you’ll get one line per product.

The Alice Mutton item has been ordered 37 times, and the total items sold are 978.

Alice Mutton 978 37

Aniseed Syrup 328 12

Boston Crab Meat 1103 41

Camembert Pierrot 1577 51

The SELECT statement generated by the SQL Builder is the following. Notice that the

Orders table isn’t involved in the query. All the information we need resides in the Order

Details table.

The Products table is included so that we can display product names instead of product

IDs.

SELECT TOP 100 PERCENT dbo.Products.ProductName,

SUM(dbo.[Order Details].Quantity) AS [Total Items],

SUM(dbo.[Order Details].OrderID) AS [# Of Orders]

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 15/37

FROM dbo.Products

INNER JOIN dbo.[Order Details] ON

dbo.Products.ProductID = dbo.[Order Details].ProductID

GROUP BY dbo.Products.ProductName

ORDER BY dbo.Products.ProductName

The phrase TOP 100 PERCENT tells SQL Server to return all qualifying rows

and is optional. The Query Builder inserted it so that you can change the value and limit

the number of selected rows. Change the default aliases of the two calculated columns

and execute the query again by clicking the button with the exclamation mark.

Parameterized Queries

How about running the same query with different dates? Let’s modify our query

once again, and make the two dates parameters of the queries. Each time you’ll be

executing the new query, you’ll be prompted to specify the starting and ending dates.

Replace the two dates in the Criteria column of the Grid pane with a question mark. The

revised expression should now read:

Between ? And ?

Calculated Columns

Let’s add yet another step of complexity to our query. We’ll modify our query so

that it calculates the total revenues generated by each product. Move down in the Field

column of the Grid pane, and in the first free cell, enter the following expression:

Quantity * UnitPrice * (1 – Discount)

The wizard will replace the field names with fully qualified names:

(dbo.[Order Details].Quantity * dbo.Products.UnitPrice) * (1 - dbo.[Order

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 16/37

Details].Discount)

This expression calculates the subtotal for each line in the Order Details table. We

multiply the price with the quantity, taking into consideration the discount. Shortly, we’re

going to sum the subtotals for each product. Because this is a calculated column, its Alias

becomes Expr1. Change this value to Revenue. In the Group By column, select Sum.

Make sure the Output column is checked and then run the query. Same results as before,

only this time with an extra column, which is the revenue generated by the corresponding

product:

Alice Mutton 978 37 38142

Aniseed Syrup 328 12 3280

Boston Crab Meat 1103 41 20295.2

The SQL statement generated by the SQL Builder is:

SELECT dbo.Products.ProductName,

SUM(dbo.[Order Details].Quantity) AS [Total Items],

COUNT(DISTINCT dbo.Orders.OrderID) AS [Times Ordered],

SUM(dbo.[Order Details].Quantity * dbo.Products.UnitPrice) AS Revenue

FROM dbo.Products

INNER JOIN dbo.[Order Details] ON

dbo.Products.ProductID = dbo.[Order Details].ProductID

INNER JOIN dbo.Orders ON

dbo.[Order Details].OrderID = dbo.Orders.OrderID

WHERE (dbo.Orders.OrderDate > @FromDate) AND

(dbo.Orders.OrderDate < @ToDate)

GROUP BY dbo.Products.ProductName

ORDER BY dbo.Products.ProductName

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 17/37

BUILDING DATABASE APPLICATION WITH ADO.NET

The Architecture of ADO.Net - ADO .NET

Most applications need data access at one point of time making it a crucial

component when working with applications. Data access is making the application

interact with a database, where all the data is stored. Different applications have different

requirements for database access. VB .NET uses ADO .NET (Active X Data Object) as

it's data access and manipulation protocol which also enables us to work with data on the

Internet. Let's take a look why ADO .NET came into picture replacing ADO.

Evolution of ADO.NET

The first data access model, DAO (data access model) was created for local

databases with the built-in Jet engine which had performance and functionality issues.

Next came RDO (Remote Data Object) and ADO (Active Data Object) which were

designed for Client Server architectures but soon ADO took over RDO. ADO was a good

architecture but as the language changes so is the technology. With ADO, all the data is

contained in a recordset object which had problems when implemented on the

network and penetrating firewalls.

ADO was a connected data access, which means that when a connection to the

database is established the connection remains open until the application is closed.

Leaving the connection open for the lifetime of the application raises concerns about

database security and network traffic. Also, as databases are becoming increasingly

important and as they are serving more people, a connected data access model makes us

think about its productivity.

Example : an application with connected data access may do well when connected

to two clients, the same may do poorly when connected to 10 and might be unusable

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 18/37

when connected to 100 or more. Also, open database connections use system resources to

a maximum extent making the system performance less effective.

Why ADO.NET?

To cope up with some of the problems mentioned above, ADO .NET came into

existence. ADO .NET addresses the above mentioned problems by maintaining a

disconnected database access model which means, when an application interacts with the

database, the connection is opened to serve the request of the application and is closed as

soon as the request is completed.

Likewise, if a database is Updated, the connection is opened long enough to

complete the Update operation and is closed. By keeping connections open for only a

minimum period of time, ADO .NET conserves system resources and provides maximum

security for databases and also has less impact on system performance. Also, ADO .NET

when interacting with the database uses XML and converts all the data into XML

format for database related operations making them more efficient.

The ADO.NET Data Architecture

DataSet

The dataset is a disconnected, in-memory representation of data. It can be

considered as a local copy of the relevant portions of the database. The DataSet is

persisted in memory and the data in it can be manipulated and updated independent of the

database. When the use of this DataSet is finished, changes can be made back to the

central database for updating. The data in DataSet can be loaded from any valid data

source like Microsoft SQL server database, an Oracle database or from a Microsoft

Access database.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 19/37

Data Provider

The Data Provider is responsible for providing and maintaining the connection to the

database. A DataProvider is a set of related components that work together to provide

data in an efficient and performance driven manner. The .NET Framework currently

comes with two DataProviders: the SQL Data Provider which is designed only to work

with Microsoft's SQL Server 7.0 or later and the OleDb DataProvider which allows us to

connect to other types of databases like Access and Oracle. Each DataProvider consists of

the following component classes:

1. The Connection object which provides a connection to the database

2. The Command object which is used to execute a command

3. The DataReader object which provides a forward-only, read only, connected

recordset

4. The DataAdapter object which populates a disconnected DataSet with data and

performs update

Data access with ADO.NET can be summarized as follows:

1. A connection object establishes the connection for the application with the

database.

2. The command object provides direct execution of the command to the database. If

the command returns more than a single value, the command object returns a

DataReader to provide the data. Alternatively, the DataAdapter can be used to fill

the Dataset object. The database can be updated using the command object or the

DataAdapter.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 20/37

Component classes that make up the Data Providers

The Connection Object

The Connection object creates the connection to the database. Microsoft Visual

Studio .NET provides two types of Connection classes: the SqlConnection object, which

is designed specifically to connect to Microsoft SQL Server 7.0 or later, and the

OleDbConnection object, which can provide connections to a wide range of database

types like Microsoft Access and Oracle. The Connection object contains all of the

information required to open a connection to the database.

The Command Object

The Command object is represented by two corresponding classes: SqlCommand

and OleDbCommand. Command objects are used to execute commands to a database

across a data connection. The Command objects can be used to execute stored procedures

on the database, SQL commands, or return complete tables directly. Command objects

provide three methods that are used to execute commands on the database:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 21/37

1. ExecuteNonQuery: Executes commands that have no return values such as

INSERT, UPDATE or DELETE

2. ExecuteScalar: Returns a single value from a database query

3. ExecuteReader: Returns a result set by way of a DataReader object

The DataReader Object

 DataReader object provides a forward-only, read-only, connected stream

recordset from a database. Unlike other components of the Data Provider, DataReader

objects cannot be directly instantiated. Rather, the DataReader is returned as the result

of the Command object's ExecuteReader method.

The SqlCommand.ExecuteReader method returns a SqlDataReader object, and the

OleDbCommand.ExecuteReader method returns an OleDbDataReader object. The

DataReader can provide rows of data directly to application logic when you do not need

to keep the data cached in memory. Because only one row is in memory at a time, the

DataReader provides the lowest overhead in terms of system performance but requires

the exclusive use of an open Connection object for the lifetime of the DataReader.

The DataAdapter Object

The DataAdapter is the class at the core of ADO .NET's disconnected data access. It

is essentially the middleman facilitating all communication between the database and a

DataSet. The DataAdapter is used either to fill a DataTable or DataSet with data from the

database with it's Fill method. After the memory-resident data has been manipulated, the

DataAdapter can commit the changes to the database by calling the Update method. The

DataAdapter provides four properties that represent database commands:

1. SelectCommand

2. InsertCommand

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 22/37

3. DeleteCommand

4. UpdateCommand

When the Update method is called, changes in the DataSet are copied back to the

database and the appropriate InsertCommand, DeleteCommand, or UpdateCommand is

executed.

Creating a DataSet

Visual Basic allows us to work with databases in two ways, visually and code. In

Visual Basic, Server Explorer allows us to work with connections across different data

sources visually. Lets see how we can do that with Server Explorer. Server Explorer can

be viewed by selecting View->Server Explorer from the main menu or by pressing

Ctrl+Alt+S on the keyboard. The window that is displayed is the Server Explorer which

lets us create and examine data connections. The Image below displays the Server

Explorer.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 23/37

Let’s start working with the Server Explorer. We will work with SQL Server, the

default provider for .NET. We'll be displaying data from Customers table in sample

North wind database in SQL Server. First, we need to establish a connection to this

database. To do that, right-click on the Data Connections icon in Server Explorer and

select Add Connection item. Doing that opens the Data Link Properties dialog which

allows you to enter the name of the server you want to work along with login name and

password. The Data Link properties window can be viewed in the Image below.

Since we are working with a database already on the server, select the option

"select the database on the server". Selecting that lists the available databases on the

server, select Northwind database from the list. Once you finish selecting the database,

click on the Test Connection tab to test the connection. If the connection is

successful, the message "Test Connection Succeeded" is displayed.

When connection to the database is set, click OK and close the Data Link

Properties. Closing the data link properties adds a new Northwind database connection to

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 24/37

the Server Explorer and this connection which we created just now is part of the whole

Visual Basic environment which can be accessed even when working with other

applications. When you expand the connection node ("+" sign), it displays the Tables,

Views and Stored Procedures in that Northwind sample database. Expanding the Tables

node will display all the tables available in the database. In this example we will work

with Customers table to display its data.

Now drag Customers table onto the form from the Server Explorer. Doing that

creates SQLConnection1 and SQLDataAdapter1 objects which are the data connection

and data adapter objects used to work with data. They are displayed on the component

tray. Now we need to generate the dataset that holds data from the data adapter. To do

that select Data->Generate DataSet from the main menu or right-click SQLDataAdapter1

object and select generate DataSet menu. Doing that displays the generate Dataset dialog

box like the image below.

Once the dialogbox is displayed, select the radio button with New option to create

a new dataset. Make sure Customers table is checked and click OK. Clicking OK adds a

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 25/37

dataset, DataSet11 to the component tray and that's the dataset with which we will work.

Now, drag a DataGrid from toolbox. We will display Customers table in this data grid.

Set the data grid's DataSource property to DataSet11 and it's DataMember property to

Customers. Next, we need to fill the dataset with data from the data adapter. The

following code does that:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs)_

Handles MyBase.Load

DataSet11.Clear()

SqlDataAdapter1.Fill(DataSet11)

'filling the dataset with the data adapter’s fill method

End Sub

Once the application is executed, Customers table is displayed in the data grid.

That's one of the simplest ways of displaying data using the Server Explorer window.

Data Binding

What you’ve done so far was to bind the DataGrid control to the rows of a

DataSet. This process is called data binding, and it’s not an exclusive feature of the

DataGrid control. In fact, all controls can be bound to a DataSet and display a specific

field of the current row from the DataSet. You can create a form with TextBox controls

on it and bind each control’s Text property to a different DataSet field.

As you move through the rows of the DataSet, the values on the controls will

change to reflect the values of the corresponding fields in the current row. If you edit the

TextBox controls, the new values will overwrite the ones in the DataSet. No changes,

however, will be immediately sent to the data source, because the DataSet resides on the

client computer and is disconnected from its source.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 26/37

To update the underlying table(s), you must call the DataAdapter object’s Update

method. Figure 21.11 shows a simple interface built with data-bound TextBox controls.

Each control is bound to a different field in the Customers table, and the control values

change as you navigate through the rows of the table with the help of the buttons at the

bottom of the form. Again, the Customers table resides in a DataSet object on the client.

The form shown in the figure is the main form of the ViewEditCustomers project, which

you will find on the CD.

 Viewing and editing the Customers table through data-bound TextBox controls

The complex data-bound controls have a DataSource and a DataMember

property. DataSource determines where the data will come from and is usually set to the

name of DataSet object. If the DataSet contains multiple tables, then you must also

specify which of the tables you want to display on the control. You do so by setting the

control’s DataMember property to the name of the appropriate table.

As you saw in the preceding section, the DataGrid control can display multiple

related tables. If that’s what you want, then don’t set the DataMember property. A

DataSet may contain (and usually does) multiple unrelated tables, in which case you must

set the DataMember property to one of the tables in the DataSet.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 27/37

Programming the DataAdapter Object

Each DataAdapter has four command objects, which provide the information

needed to interact with the database: DeleteCommand, InsertCommand,

UpdateCommand, and SelectCommand. If an application isn’t going to alter the database,

then you need only specify SelectCommand, which retrieves data with a SELECT

statement. Each of these objects has a CommandText property, which is the name of the

stored procedure or SQL statement that acts against the database; a Connection object,

which determines the database the command object acts upon; and a collection of

Parameter objects (the Parameters collection), which are the parameters expected by the

SQL statement or stored procedure. These four Command objects are adequate to interact

with the tables in the database.

The Command and DataReader Objects

As with the other major ADO.NET objects, there are two flavors of the

DataReader object: the SqlDataReader and the OleDbDataReader objects. Use the

SqlDataReader object for SQL Server databases and the OleDbDataReader for OLEDB-

compliant databases. To create a DataReader object, you must execute a query against a

database through a Command object. You’ve already set up Command objects, even

though you didn’t do so explicitly. This time we’ll create a Command object and set its

Connection and CommandText properties from within our code. Once the Command

object has been set up, you can execute it by calling one of the following methods:

 ExecuteReader Executes the command and returns a DataReader object, which

you can use to read the results, one row at a time.

 ExecuteXMLReader Executes the command and returns a XMLDataReader

object, which you can use to read the results, one row at a time.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 28/37

 ExecuteScalar Executes the command, returns the first column of the first row in

the result, and ignores all other rows.

 ExecuteNonQuery Executes a SQL command against the database and returns

the number of rows affected. Use this method to execute a command that updates

the database.

The first two methods return a DataReader object, the ExecuteNonQuery method returns

an integer (the number of rows affected), and the ExecuteScalar method returns an object

(the first column of the first row in the result set). The DataReader is an abstract class and

can’t be used in an application. Instead, use the SqlDataReader or the OleDbDataReader

object, depending on the

database you’re connected to.

Programming the ADO.Net objects

The Structure of a DataSet

The main object of any ADO.NET application is the DataSet object, which is s a

miniature database that lives on the client. The main purpose of the Connection and

DataAdapter objects is to populate the DataSet object, as well as move information from

the DataSet to the database and update the underlying table(s). The basic concept behind

ADO.NET is to move the required data to the client, process them there, and then,

optionally, update the database with the changes made by the client application to the

local data. The data on the client is a copy of the data on the server the moment the

DataSet was generated, and the DataSet is totally disconnected from the underlying

tables in the database.

The structure of the DataSet object is quite simple. VB6 programmers will have to

get used to living with client-side data, but those of you new to VB.NET will find the

DataSet a convenient method of working with subsets of tables. It’s made up of tables,

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 29/37

which may or may not correspond to tables of the database. You can bring in an entire

table, like the Categories table. Or you can select a few columns and/or a few rows from

a table in the database and store them to a table in the Data- Set.

Finally, you can create a table by combining rows from multiple tables. For

example, you can execute a query that retrieves all product names from the Products table

along with the name of the category they belong to from the Categories tables and stores

the returned rows to a new table in the DataSet. It is also possible to add and drop tables

from a DataSet at any time during the course of the application.

Finally, you can create new tables from within your code. To do so, we create a

DataTable object to represent the new table and then a series of DataRow objects to

represent the table’s rows. Each row must have a data type, an optional default value, a

length, and so on. You can create the same table structures from within your code as you

would do with the visual tools of Enterprise Manager. After specifying the structure of

the tables, you can add relations between them. The DataSet’s structure and its data are

described with XML keywords.

Navigating the Tables of a DataSet

 The DataSet object exposes members for accessing its contents. The tables in a

DataSet are exposed through the Tables collection, which is made up of DataTable

objects. If the tables are related, the relations are exposed by the Relations collection,

which is made up of DataRelation objects. The following two loops print the names of

the tables and relations in a DataSet:

Dim tbl As System.Data.DataTable

For Each tbl In AllOrders1.Tables

Console.WriteLine(tbl.TableName)

Next

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 30/37

Dim rel As System.Data.DataRelation

For Each rel In AllOrders1.Relations

Console.WriteLine(rel.RelationName)

Next

The DataTable object’s most important property is the Rows property, which is a

collection of DataRow objects. The DataRow object, in turn, exposes the Item property,

which is the value of a specific column (field) in a row. If the DSCustomers DataSet

contains the Customers table, the following statement returns the CustomerID field of the

third row in the Customers table:

DSCustomers.Tables(“Customers”).Rows(2).Item(“CustomerID”)

There’s a simpler expression for retrieving the same value, which is the following:

DSCustomers.Customers(2).CustomerID

The DataForm Wizard

One of the tools that come with Visual Studio is the DataForm wizard, which

creates data-entry forms for you. Let’s look at this tool in action, then we’ll discuss its

limitations. You will also find interesting coding examples in the output generated by the

wizard. The example of this section is the EditProducts project, whose main form is

shown in Figure 22.2.

This form allows you to edit the rows of the Products table of the Northwind

database, enter new rows, and delete existing rows. The interface and the code behind the

controls were generated by the DataForm wizard. What you see in Figure 22.2 is the form

of the EditProducts project as it was generated by the wizard. The main form of the

EditProducts project on the CD is quite different, because we’ll edit this form extensively

in this section to make its interface more user-friendly.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 31/37

 Editing the Products table on a form generated by the DataForm wizard

Start a new project, name it EditProducts, and delete the Form1 component. Then

right-click the project’s name and select Add ➢ Add New Item. In the dialog box that

appears, select DataForm Wizard. A wizard starts that will take you through the steps of

setting up a new DataForm.

The first screen displays a welcome message; click Next to skip it. On the next

screen, you’re prompted to specify the DataSet on which the DataForm will be based.

Since the project doesn’t contain a DataSet, specify the name of a new DataSet, which

the wizard will create for you. Enter the name DSProducts and click Next to view the

next screen of the wizard.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 32/37

On the next screen of the wizard, you’re prompted to choose the tables and

columns that will be stored in the DataForm. the category and supplier of each product,

rather than displaying all categories and all suppliers). By default, the wizard selects all

the fields of the Products table. If you wanted to create a master/detail form, you’d have

to specify the Detail table as well. For now click Next to see the next screen of the

wizard.

On the last screen, you must select the display style. You can display all rows on a

DataGrid control or create a new form with separate controls for each row. Check the

radio button Single Record In Individual Controls, and the check boxes at the bottom of

the window will be enabled. These check boxes allow you to specify whether the

DataForm will contain an Add button (to add new rows to the Products table), a Delete

button (to delete the current row), a Cancel button (to cancel any changes in the DataSet

and reload all rows from the underlying table) and the Navigation controls (to move from

row to row). Leave all the check boxes checked, as they are by default.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 33/37

Transactions

A transaction is a series of actions that must either succeed, or fail, as a whole.

Should one of the actions fail, then the entire transaction fails and all the changes made to

the database so far must be undone (“rolled back” in proper database terminology). If all

actions succeed, then they can be finalized (“committed” in proper database terminology)

and become part of the database. A transaction takes place while you transfer money

from one account to another. The two actions are the withdrawal of an amount from one

account and the deposit of the same amount to another account.

The following pseudo-code is the skeleton of a transaction:

Begin Transaction

Try

{ statements to complete transaction }

Commit Transaction

Catch Exception

Rollback Transaction

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 34/37

End Try

Performing Update Operations

Updating the underlying tables is also straightforward, as long as all rows and all

fields have been validated. As you have seen, there are two major approaches when

working with ADO.NET: use the DataSet’s update method, or use the Command object

to execute SQL statements and stored procedures directly against the database. You can

safely use DataSets to send data to other users. You can also safely receive DataSets from

other users, probably from different databases.

The problem of two or more users attempting to update the same data is as old as

computers (almost) and is known as concurrency. There are two ways to deal with

concurrency, optimistic concurrency and pessimistic concurrency.

ADO.NET is based on optimistic concurrency. Optimistic concurrency means that

no other users will attempt to access the same data while you’re editing them. As you

recall, the stored procedures generated by the DataAdapter wizard for updating the

database won’t update a row if even one of its fields has changed since we last read it.

A DataRow’s Versions

To specify which version of a field’s value you want to read, specify the second

parameter of the DataRow.Item property. The following statement retrieves the Original

value of the first column of the first row in the Products table of the DSProducts1

DataSet:

DSProducts1.Products.Rows(0).Item(“ProductName”, DataRowVersion.Original)

A DataRow’s States

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 35/37

In addition to versions, rows have states, too; a row can be in one of the following

states:

 Added The row has been added to the DataTable, but it hasn’t been accepted yet

(rows are accepted after they’re written to the database as well).

 Deleted The row has been deleted. However, it remains in the DataSet marked as

Deleted, so that the Update method can delete the matching row of the underlying

table.

 Detached The row has been created but it has not been added to a DataTable yet.

A row is in this state while you set its fields and before you actually add it to a

table.

 Modified The row has been modified, but it hasn’t been accepted yet.

 Unchanged The row hasn’t been changed yet.

Updating Tables Manually

To update the underlying table(s) from within a DataSet, you must call the

DataAdapter object’s Update method. The Update method sends all the changes to the

database, and through the appropriate stored procedures, the tables are updated. The

DataAdapter object exposes the Continue- UpdateOnError property, which determines

how the DataAdapter will react when an error is encountered.

 If the ContinueUpdateOnError property is False, which (mysteriously) is the default

value, the DataAdapter will terminate the update process. If the first 10 edited rows in the

DataSet contain no errors, they will be committed to the database. If the 11th row

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 36/37

contains an error, the DataAdapter won’t even attempt to update the remaining rows. The

ContinueUpdateOnError property should be set to True, so that the DataAdapter will

update all the rows that don’t contain errors.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 37/37

POSSIBLE QUESTIONS

PART A (1 Mark)

(Online Examinations)

PART B (6 Marks)

1. Write about the Structure of a DataSet.

2. Elaborate in detail about DataReader and DataAdapter Object.

3. Write about the Data Binding

4. Write a VB.NET Program to maintain details of students. Use Crystal Report to

generate report.

5. Explain in detail about SQL.

6. Discuss in detail about ADO.NET architecture.

7. How will you perform Update Operations in DataSets? Explain in detail with

example.

8. Discuss about database in detail.

9. Elaborate Server Explorer.

10. Explain the Structure of a DataSet.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 1/12

 PART A (1 Mark) – Unit V

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

1
ADO Refers to

ActiveX Data object
Active Data

Object

Application
Development

object

Associative
Data Object

ActiveX Data
object

2
Which of this is not a
server component

Counter Component
Permission

Checker
Component

Distributed
component

Content
Linking

Distributed
component

3
The Provider to access
MS Access database is

OLEDB Data Provide
SQL Data
Provider

ADO Data
Provider

DOA Data
Provider

OLEDB Data
Provide

4
Which object is used to
perform retrieve
Operation

Connection Object
Command

Object
Data object Request Object

Command
Object

5
________ provides a
language for describing
Web Services

UDDI WSDL DDT XML WSDL

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 2/12

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

6
Drive,Folder,File Objects
all belong to __________

TextStream Object
FileSystem

Object
Dictionary

Object
NetworkSystem

Object
FileSystem
Object

7
Which of these properties
belong to TextStream
Object

Drive Line Path Size Line

8
CTS Refers to

Common type system
Common type

service
Central type

system
Central type

servive
Common type
system

9
Whenever an application
is created, a ______ is
added.

Form Class Property Object form

10
SQL Data Provider is
used For

MS Access SQL Server Oracle MYBase SQL Server

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 3/12

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

11

Which of the following
operations can you NOT
perform on an ADO.NET
DataSet?

Development

A DataSet can
be
synchronised
with a
RecordSet

A DataSet can
be converted to
XML

You can infer
the schema
from a DataSet

A DataSet can
be
synchronised
with a
RecordSet

12
Which of this not a OLE
DB Provider

ODBC drivers

DTP
Packages

OLAP
services

Dataset MSDataShape
DTP Packages
OLAP services

13

__________ Object is
specifically designed to
run commands against a
data store

Connection Command Dataset Object
DataReader

Object
Command

14
__________ Object
allows to connect to the
data stores

Connection Command Dataset Object
DataReader

Object
Connection

15

___________ ADO
Object is to handle data
not formatted in
structured rows and
columns

Connection Command Dataset Object Record Record

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 4/12

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

16
Which of these is a
Access Data Type

Text String Char Long Text

17
RDO stands for

Remote data object
remote

development
object

Remote data
oriented

Real Data
Object

Remote data
object

18
Data set is a

architecture

connected disconnected
self

constructed
locally

connected
disconnected

19

____________is
responsible for providing
and maintaining
connection to database

Data reader Data adapter data set Data provider Data provider

20
DAO stands for

Data access object
Data adapter

object
Data available

object
Data provider

oriented
Data access
object

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 5/12

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

21
Local copy of database is
called as _____________

Data base copy Dataset Data provider Data tables Dataset

22
ADO NET comes with

providers

2.00 3.00 4.00 6.00 2.00

23
OLEDB Data Provider is
used For

MS Access SQL Server Oracle
SQL Server and

Oracle
a

24
_________ was a
connected data access

RDO ADO.NET ASP.NET DAO ADO

25
In ADO.NET, The data
are converted in to
__________ Format

XML XAML HTML CSS XML

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 6/12

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

26
______is a disconnected,
in-memory representation
of data.

Dataset Data Reader Data Adapter Data Provider Dataset

27

The __________object
which provides a
forward-only, read only,
connected recordset

Dataset Data Reader Data Adapter Data Provider Data Reader

28

The ______ object which
populates a disconnected
DataSet with data and
performs update

Dataset Data Reader Data Adapter Data Provider Data Adapter

29

A ______object
establishes the connection
for the application with
the database.

Connection Command Dataset Object Record Connection

30
_________is the
Extension for Access
Database

.MDB .RTF .XML .GCC .MDB

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 7/12

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

31
__________Returns a
single value from a
database query

ExecuteNonQuery ExecuteScalar ExecuteReader
Non

ExecuteReader
ExecuteScalar

32
_________Returns a
result set by way of a
DataReader object

ExecuteNonQuery ExecuteScalar ExecuteReader
Non

ExecuteReader
ExecuteReader

33

__________ is essentially
the middleman
facilitating all
communication between
the database and a
DataSet.

Dataset Data Reader Data Adapter Data Provider Data Adapter

34
Which Command is used
to insert the New Record
to the Database Table

Insert Add Update New Insert

35
_________ is a collection
of Record

Database Table File Document Table

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 8/12

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

36
Which of the Component
is not a Component of
ADO.NET

DataReader DataProvider DataAdapter DataChanger DataChanger

37
Which of the Following
does not support Client
Server Technology

DAO ADO RDO ADO.NET DAO

38
Which object is used to
perform Update
Operation

Connection Object
Command

Object
Data Adapter Request Object Data Adapter

39
In Access, the Image data
type are stored using
_______ data type

Text BLOB Memo Number BLOB

40
In SQL, the Image data
type are stored in
________ format

Text Unicode Binary Special Binary

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 9/12

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

41
Which of these is not a
Access Data Type

Text String memo date String

42
Which of this is not a
server component

Counter Component
Permission

Checker
Component

Distributed
component

Content
Linking

Distributed
component

43
The Provider to access
MS Access database is

OLEDB Data Provide
SQL Data
Provider

ADO Data
Provider

DOA Data
Provider

OLEDB Data
Provide

44
Which object is used to
perform retrieve
Operation

Connection Object
Command

Object
Data object Request Object

Command
Object

45
SQL Data Provider is
used For

MS Access SQL Server Oracle
database

connectivity
SQL Server

46
The main object of any
ADO.NET application is
the

Connection Object
Command

Object
Dataset Object Request Object Dataset Object

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 10/12

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

47

___________ ADO
Object is to handle data
not formatted in
structured rows and
colums

Connection Command Dataset Object Record Record

48
Drive,Folder,File Objects
allbelong to __________

TextStream Object
FileSystem

Object
Dictionary

Object
NetworkSystem

Object

FileSystem
Object

49
Which of these properties
belong to TextStream
Object

Drive Line Path Size Line

50
Which of this not a OLE
DB Provider

ODBC drivers

DTP
Packages

OLAP
services

 MSDataShape
DTP Packages
OLAP services

51 GUIDs stands for
Globally Unqiue

Identifiers

Global
Unique

Identifiers

Garphics User
Identifiers

Garphics
Unique

Idenetifiers

Globally
Unqiue
Identifiers

52

To bind the data grid
control to the rows of a
Dataset is called
as________

Databinding dataset object
Dictionary

Object
Command

Object
Databinding

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 11/12

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

53
SQL statements are
categorized into
__________ statements

two three four one

two

54
The Query builder lets us
to build the statements
with ________

sql statements object commands visual tools visual tools

55
The simplest form of the
SELECT Statement is

SELECT fields FROM
tables

SELECT
tables FROM

Fields

SELECT
tables

SELECT fields SELECT fields
FROM tables

56
The retrieve all the fields
the symbol we use

* $ # @ *

57

The ________ keyword
eliminates any duplicates
from the cursor retrieved
by the SELECT statement

INSERT DISTINCT UPDATE SELECT DISTINCT

58
_________ is the gateway
to the databases on our
system or network

Form Design
The code
window

The Server
Explorer

The toolbox
The Server
Explorer

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT:V(Database – ADO.Net) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 12/12

S.no.

Question Choice 1 Choice - 2 Choice - 3 Choice - 4 Answer

59
The two main objects in
the server explorer are

Data Connection, Servers
object

Tools ,
Properties

database
provider,
dataset

Text stream
object , File

stream object

Data
Connection,
Servers object

60

A __________ is an
object for storing
complex, structured
information

MDI database Dataset Object The toolbox database

CIA – 1 QUESTION PAPER 2017-2019

BATCH

Page 1

Reg No…………….

 [17CCP204]
Karpagam Academy of Higher Education

 (Deemed university Established Under Section 3 of UGC Act 1956)
Coimbatore – 641021

(For the candidates admitted from 2017 onwards)
I M.Com (CA)

First Internal Test, January - 2018
Visual Basic.Net

Time: 2 hours Maximum: 50 marks

Date & sess: 31.1.2018 & FN

PART –A (20*1=20 Marks)
Multiple choice Questions

1 .VB.Net is a _____________programming paradigm.

a) Procedural b) Structured c) Object Oriented d) Monolithic

2. Data members of a class are by default ________

a) public b) private c) static d)volatile

3. Member functions of a class are by default ________

a) public b) private c) static d) volatile

4 .IDE stands for _____________

a) Internet Design Environment b) Integrated Development Environment

c) Internet Distributed Environment d) Interface Design Environment

5. The user action like key press, clicks, mouse movements are called _______

 a) Handlers b) Triggers c) Events d) Methods

6. The ___________ statement first executes the statement and then tests the condition after each

execution

 a) do….while b) while….do c) select….case d) while

7. ___________ structure executes the statements until the condition is satisfied

 a) do…loop b) do..loop until c) do while…loop d) do until

8. do…loop until is --------- loop

 a) finite b) infinite c) long d) small

CIA – 1 QUESTION PAPER 2017-2019

BATCH

Page 2

9. __________ function retrieves only date

 a) for…next b) next…for c) exit for d) exit do

10. The ____ data type stores characters as individual

 a) char b) character c) properties window d) Object Property

11. How Many Parent Form will be In MDI.

 a) 2 b) 0 c) 1 d) Many

12. To attach the scroll bar automatically to the form, which property to set true.

 a) Auto Scale b) Auto scroll c) Auto scroll bar d) Auto accept

13. Which of the following windows is useful for viewing the objects and codes?

 a) Form window b) Menu Editor window

 c) Form layout window d) Project explorer window

14. A sequence of variables by the same name can be referred using ___________

 a) arrays b) modules c) sub-routines d) functions

15 The ________ concept helps the user can supply arguments in any order

 a) named arguments b)arguments value c)order arguments d)order value

16. Procedures that returns a value are called ----------------

 a) subroutines b) sub units c) parameters d) functions

17 To declare a variable, use the _____statement followed by the variable's name, the as

keyword, and its type,

 a) dim b) integer c) string d) dim as

18. The data type of the variable is defined by using the --------- clause

 a) in b) where c) as d) is

19. Which of the given data types used to represent integer numbers

 a) int b) character c) byte d) precision

20 Multiple implementations of the same function is called ____

 a) poly overloading b)overloading function c)Override function d)Project

CIA – 1 QUESTION PAPER 2017-2019

BATCH

Page 3

PART –B (3*2=6 Marks)
Answer All the Questions

21. Define Solution Explorer Window.

22. Define Overloading Functions with example.

23. Give Explanation: Text Box Control with its Properties.

PART –C (3*8=24 Marks)
Answer All the Questions

24. a. Discuss in detail about IDE components in VB.NET with neat sketch..
 (Or)
 b. Explain in detail about Flow-Control Statements with example.

25. a. Explain button control with example program
 (Or)

b. Elucidate in detail about Argument Passing Mechanisms

26. a. Enumerate Appearance of forms with example form window.
 (Or)

 b. With a vb.net program to check whether given string palindrome or not.

CIA-1 ANSWER KEY 2017-2019 BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 1/27

Karpagam Academy of Higher Education
 (Deemed university Established Under Section 3 of UGC Act 1956)

Coimbatore – 641021
(For the candidates admitted from 2017 onwards)

 I M.Com (CA)
First Internal Test, January - 2018
Visual Basic.Net – ANSWER KEY

Time: 2 hours Maximum: 50 marks
Date & sess: 31 .1.2018 & FN

PART –A (20*1=20 Marks)
Multiple choice Questions

1 .VB.Net is a _____________programming paradigm.

a) Procedural b) Structured c) Object Oriented d) Monolithic

2. Data members of a class are by default ________

a) public b) private c) static d)volatile

3. Member functions of a class are by default ________

a) public b) private c) static d) volatile

4 .IDE stands for _____________

a) Internet Design Environment b) Integrated Development Environment

c) Internet Distributed Environment d) Interface Design Environment

5. The user action like key press, clicks, mouse movements are called _______

 a) Handlers b) Triggers c) Events d) Methods

6. The ___________ statement first executes the statement and then tests the condition after each

execution

 a) do….while b) while….do c) select….case d) while

7. ___________ structure executes the statements until the condition is satisfied

 a) do…loop b) do..loop until c) do while…loop d) do until

8. do…loop until is --------- loop

 a) finite b) infinite c) long d) small

9. __________ function retrieves only date

 a) for…next b) next…for c) exit for d) exit do

CIA-1 ANSWER KEY 2017-2019 BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 2/27

10. The ____ data type stores characters as individual

 a) char b) character c) properties window d) Object Property

11. How Many Parent Form will be In MDI.

 a) 2 b) 0 c) 1 d) Many

12. To attach the scroll bar automatically to the form, which property to set true.

 a) Auto Scale b) Auto scroll c) Auto scroll bar d) Auto accept

13. Which of the following windows is useful for viewing the objects and codes?

 a) Form window b) Menu Editor window

 c) Form layout window d) Project explorer window

14. A sequence of variables by the same name can be referred using ___________

 a) arrays b) modules c) sub-routines d) functions

15 The ________ concept helps the user can supply arguments in any order

 a) named arguments b)arguments value c)order arguments d)order value

16. Procedures that returns a value are called ----------------

 a) subroutines b) sub units c) parameters d) functions

17 To declare a variable, use the _____statement followed by the variable's name, the as keyword, and its

type,

 a) dim b) integer c) string d) dim as

18. The data type of the variable is defined by using the --------- clause

 a) in b) where c) as d) is

19. Which of the given data types used to represent integer numbers

 a) int b) character c) byte d) precision

20 Multiple implementations of the same function is called ____

 a) poly overloading b)overloading function c)Override function d)Project

CIA-1 ANSWER KEY 2017-2019 BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 3/27

PART –B (3*2=6 Marks)
Answer All the Questions

21. Define Solution Explorer Window.

 Solution Explorer Window

The Solution Explorer window gives an overview of the solution which we are working with

current window and lists all the files in the project. An image of the Solution Explorer window is shown

on the right side of the IDE.

22. Define Overloading Functions with example.

 Function overloading, means that we can have multiple implementations of the same function,

each with a different set of arguments and possibly a different return value. Yet all overloaded functions

share the same name.

Eg:

Overloads Function Min(ByVal a As Double, ByVal b As Double) As Double

Min = Convert.ToDouble(If(a < b, a, b))

End Function

Overloads Function Min(ByVal a As String, ByVal b As String) As String

Min = Convert.ToString(If(a < b, a, b))

End Function

CIA-1 ANSWER KEY 2017-2019 BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 4/27

23. Give Explanation: Text Box Control with its Properties.

 The TextBox control is the primary mechanism for displaying and entering text. It is a

small text editor that provides all the basic text-editing facilities: inserting and selecting text, scrolling if

the text doesn’t fit in the control’s area, and even exchanging text with other applications through the

Clipboard.

TextAlign

This property sets (or returns) the alignment of the text on the control, and its value is a member

of the Horizontal Alignment. Left, Right, or Center.

WordWrap

This property determines whether the text is wrapped automatically when it reaches the right edge

of the control. The default value of this property is True. If the control has a horizontal scroll bar,

however, you can enter very long lines of text.

CIA-1 ANSWER KEY 2017-2019 BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 5/27

PART –C (3*8=24 Marks)
Answer All the Questions

24. a. Discuss in detail about IDE components in VB.NET with neat sketch..

 Figure: The Visual Basic Integrated Development Environment

The IDE Components

The IDE of Visual Studio.NET contains numerous components, and it will take you a while to

explore them. It’s practically impossible to explain what each tool, each window, and each menu does.

The IDE Menu - The IDE main menu provides the following commands, which lead to submenus.

Notice that most menus can also be displayed as toolbars. Also, not all options are available at all times.

The options that cannot possibly apply to the current state of the IDE are either invisible or disabled. The

Edit menu is a typical example.

File Menu - The File menu contains commands for opening and saving projects, or project items, as well

as the commands for adding new or existing items to the current project.

Edit Menu -The Edit menu contains the usual editing commands. Among the commands of the Edit

menu are the advanced command and the IntelliSense command.

IntelliSense Submenu - The Edit -> IntelliSense menu item leads to a submenu with four options, which

are described next. IntelliSense is a feature of the editor (and of other Microsoft applications) that

displays as much information as possible, whenever possible.

CIA-1 ANSWER KEY 2017-2019 BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 6/27

Parameter Info - While editing code, you can move the pointer over a variable, method, or property and

see its declaration in a yellow tooltip

Quick Info - This is another IntelliSense feature that displays information about commands and

functions. When you type the opening parenthesis following the name of a function, for example, the

function’s arguments will be displayed in a tooltip box (a yellow horizontal box).

View Menu - This menu contains commands to display any toolbar or window of the IDE. You have

already seen the Toolbars menu (earlier, under “Starting a New Project”). The Other Windows command

leads to submenu with the names of some standard windows, including the Output and Command

windows.

The Output window is the console of the application. The compiler’s messages, for example, are

displayed in the Output window. The Command window allows you to enter and execute statements.

When you debug an application, you can stop it and enter VB statements in the Command window.

Project Menu - This menu contains commands for adding items to the current project (an item can be a

form, a file, a component, even another project). The last option in this menu is the Set As StartUp

Project command, which lets you specify which of the projects in a multi project solution is the startup

project (the one that will run when you press F5).

Build Menu - The Build menu contains commands for building (compiling) your project. The two basic

commands in this menu are the Build and Rebuild All commands. The Build command compiles (builds

the executable) of the entire solution, but it doesn’t compile any components of the project that haven’t

changed since the last build. The Rebuild All command does the same, but it clears any existing files and

builds the solution from scratch.

Debug Menu – This menu contains commands to start or end an application, as well as the basic

debugging tools

Data Menu - This menu contains commands you will use with projects that access data.

Format Menu - The Format menu, which is visible only while you design a Windows or Web form,

contains commands for aligning the controls on the form.

Tools Menu - This menu contains a list of tools, and most of them apply to C++. The Macros command

of the Tools menu leads to a submenu with commands for creating macros. Just as you can create macros

CIA-1 ANSWER KEY 2017-2019 BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 7/27

in an Office application to simplify many tasks, you can create macros to automate many of the repetitive

tasks you perform in the IDE..

Window Menu -This is the typical Window menu of any Windows application. In addition to the list of

open windows, it also contains the Hide command, which hides all Toolboxes and devotes the entire

window of the IDE to the code editor or the Form Designer. The Toolboxes don’t disappear completely.

They’re all retracted, and you can see their tabs on the left and right edges of the IDE window. To expand

a Toolbox, just hover the mouse pointer over the corresponding tab.

Help Menu -This menu contains the various help options. The Dynamic Help command opens the

Dynamic Help window, which is populated with topics that apply to the current operation. The Index

command opens the Index window, where you can enter a topic and get help on the specific topic.

24. b. Explain in detail about Flow-Control Statements with example.

 Control Flow statements

Decision making structures require that the programmer specify one or more conditions to be

evaluated or tested by the program, along with a statement or statements to be executed if the condition is

determined to be true, and optionally, other statements to be executed if the condition is determined to be

false

Decision Statements

Applications need a mechanism to test conditions and take a different course of action depending on

the outcome of the test. Visual Basic provides three such decision, or conditional, statements:

CIA-1 ANSWER KEY 2017-2019 BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 8/27

 If. . .Then

 If. . .Then. . .Else

 Select Case

Loop Statements

Loop statements allow you to execute one or more lines of code repetitively. Many tasks consist of

operations that must be repeated over and over again, and loop statements are an important part of any

programming language. Visual Basic supports the following loop statements:

 For. . .Next

 Do. . .Loop

 While. . .End While

1) If Then Statement

 If Then statement is a control structure which executes a set of code only when the given condition is

true.

Syntax:

If [Condition] Then

 [Statements]

 In the above syntax when the Condition is true then the Statements after Then are executed.

Example:

Private Sub Button1_Click_1(ByVal sender As System.Object, ByVal e As system.EventArgs) Handles

Button1.Click

 If Val(TextBox1.Text) > 25 Then

 TextBox2.Text = "Eligible"

 End If

Description:

In the above If Then example the button click event is used to check if the age got

using TextBox1 is greater than 25, if true a message is displayed in TextBox2

CIA-1 ANSWER KEY 2017-2019 BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 9/27

2) If Then Else Statement

 If Then Else statement is a control structure which executes different set of code statements

when the given condition is true or false.

Syntax:

If [Condition] Then

 [Statements]

Else

 [Statements]

In the above syntax when the Condition is true, the Statements after Then are executed.If the

condition is false then the statements after the Else part is executed.

Example:

 Private Sub Button1_Click (ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

Button1.Click

 If Val(TextBox1.Text) >= 40 Then

 MsgBox("GRADUATED")

 Else

 MsgBox("NOT GRADUATED")

 End If

 End Sub

Description:

In the above If Then Else example the marks are entered in TextBox1.When a button is clicked a

message GRADUATED is displayed if the condition (>40) is true and NOT GRADUATED if it is

false.

3) Nested If Then Else Statement

 Nested If..Then..Else statement is used to check multiple conditions using if then else statements

nested inside one another.

Syntax:

If [Condition] Then

CIA-1 ANSWER KEY 2017-2019 BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 10/27

 If [Condition] Then

 [Statements]

 Else

 [Statements]

Else

 [Statements]

In the above syntax when the Condition of the first if then else is true, the second if then else is

executed to check another two conditions. If false the statements under the Else part of the first statement

is executed.

Example:

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

Button1.Click

 If Val(TextBox1.Text) >= 40 Then

 If Val(TextBox1.Text) >= 60 Then

 MsgBox("You have FIRST Class")

 Else

 MsgBox("You have SECOND Class")

 End If

 Else

 MsgBox("Check your Average marks entered")

 End If

 End Sub

Description:

In the above nested if then else statement example first the average mark is checked if it is more

than 40, if true the second if then else control is used check for first or second class. If the first condition

is false the statements under the else part is executed.

CIA-1 ANSWER KEY 2017-2019 BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 11/27

4) Select Case Statement

 Select case statement is used when the expected results for a condition can be known previously

so that different set of operations can be done based on each condition.

Syntax:

 Select Case Expression

 Case Expression1

 Statement1

 Case Expression2

 Statement2

 Case Expressionn

 Statementn

 ...

 Case Else

 Statement

 End Select

In the above syntax, the value of the Expression is checked with Expression1..n to check if the

condition is true. If none of the conditions are matched the statements under the Case Else is executed.

Description:

In the above example based on the color input in TextBox1, the color code for RGB colors are

displayed, if the color is different then the statement under Case Else is executed. Thus we can easily

execute the select case statement.

Loop Statements

1) Do While Loop Statement

 Do While Loop Statement is used to execute a set of statements only if the condition is satisfied. But

the loop gets executed once for a false condition once before exiting the loop. This is also known

as Entry Controlled loop.

Syntax:

CIA-1 ANSWER KEY 2017-2019 BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 12/27

 Do While [Condition]

 [Statements]

 Loop

In the above syntax the Statements are executed till the Condition remains true.

Example:

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles MyBase.Load

 Dim a As Integer

 a = 1

 Do While a < 100

 a = a * 2

 MsgBox("Product is::" & a)

 Loop

 End Sub

Description:

In the above Do While Loop example the loop is continued after the value 64 to display 128

which is false according to the given condition and then the loop exits.

2) Do Loop While Statement

 Do Loop While Statement executes a set of statements and checks the condition, this is repeated until

the condition is true. .It is also known as an Exit Control loop

Syntax:

 Do

 [Statements]

 Loop While [Condition]

In the above syntax the Statements are executed first then the Condition is checked to find if it is true.

Example:

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles MyBase.Load

CIA-1 ANSWER KEY 2017-2019 BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 13/27

 Dim cnt As Integer

 Do

 cnt = 10

 MsgBox("Value of cnt is::" & cnt)

 Loop While cnt <= 9

 End Sub

Description:

In the above Do Loop While example, a message is displayed with a value 10 only after which the

condition is checked, since it is not satisfied the loop exits.

3) For Next Loop Statement

 For Next Loop Statement executes a set of statements repeatedly in a loop for the given initial, final

value range with the specified step by step increment or decrement value.

Syntax:

 For counter = start To end [Step]

 [Statement]

 Next [counter]

In the above syntax the Counter is range of values specified using the Start ,End parameters.

The Step specifies step increment or decrement value of the counter for which the statements are

executed.

Example:

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

MyBase.Load

 Dim i As Integer

 Dim j As Integer

 j = 0

 For i = 1 To 10 Step 1

 j = j + 1

 MsgBox("Value of j is::" & j)

CIA-1 ANSWER KEY 2017-2019 BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 14/27

 Next i

 End Sub

Description:

In the above For Next Loop example the counter value of i is set to be in the range of 1 to 10 and

is incremented by 1. The value of j is increased by 1 for 10 times as the loop is repeated.

Nested Control Structures

You can place, or nest, control structures inside other control structures (such as an If. . .Then

block within a For. . .Next loop).

Example:

Dim Income As Decimal

Income=Convert.ToDecimal(InputBox("Enteryourincome"))

If Income >0 Then

If Income>12000 Then

MsgBox"You will pay taxes this year"

Else

MsgBox"You won't pay any taxes this year"

End If

Else

MsgBox"Bummer"

End If

25. a. Explain button control with example program

 The Button control represents a standard Windows button. It is generally used to generate a Click

event by providing a handler for the Click event.

 Create a label by dragging a Button control from the Toolbox ad dropping it on the form.

CIA-1 ANSWER KEY 2017-2019 BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 15/27

Properties of the Button Control

The following are some of the commonly used properties of the Button control:

S.No Property Description

1 AutoSizeMode Gets or sets the mode by which the Button

automatically resizes itself.

2 BackColor Gets or sets the background color of the control.

3 BackgroundImage Gets or sets the background image displayed in

the control.

CIA-1 ANSWER KEY 2017-2019 BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 16/27

Methods of the Button Control

The following are some of the commonly used methods of the Button control:

S.No Method Name & Description

1 GetPreferredSize

Retrieves the size of a rectangular area into which a control can be fitted.

2 NotifyDefault

Notifies the Button whether it is the default button so that it can adjust its

appearance accordingly.

Events of the Button Control

 The following are some of the commonly used events of the Button control:

S.No Event Description

1 Click Occurs when the control is clicked.

2 DoubleClick Occurs when the user double-clicks the Button

control.

 Example :

 Public Class Form1

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)

 Button1.Text = "Click Here"

 End Sub

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

CIA-1 ANSWER KEY 2017-2019 BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 17/27

 Button1.Click

 MsgBox("http://vb.net-informations.com")

 End Sub

 End Class

25.b. Elucidate in detail about Argument Passing Mechanisms

 Argument Passing Mechanisms

 One of the most important topics in implementing your own procedures is the mechanism used

to pass arguments. The examples so far have used the default mechanism: passing arguments by value.

The other mechanism is passing them by reference. Although most programmers use the default

mechanism, it's important to know the difference between the two mechanisms and when to use each.

 Passing arguments By Value

 Passing arguments by Reference

 Returning Multiple Values

 Passing Objects as Arguments

Passing arguments by value

 This is the default mechanism for passing parameters to a method. In this mechanism, when a

method is called, a new storage location is created for each value parameter. The values of the actual

parameters are copied into them. So, the changes made to the parameter inside the method have no effect

on the argument.

 VB.Net, you declare the reference parameters using the ByVal keyword. The following example

demonstrates the concept:

Module paramByval

 Sub swap(ByVal x As Integer, ByVal y As Integer)

 Dim temp As Integer

 temp = x ' save the value of x

 x = y ' put y into x

CIA-1 ANSWER KEY 2017-2019 BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 18/27

 y = temp 'put temp into y

 End Sub

 Sub Main()

 ' local variable definition

 Dim a As Integer = 100

 Dim b As Integer = 200

 Console.WriteLine("Before swap, value of a : {0}", a)

 Console.WriteLine("Before swap, value of b : {0}", b)

 ' calling a function to swap the values '

 swap(a, b)

 Console.WriteLine("After swap, value of a : {0}", a)

 Console.WriteLine("After swap, value of b : {0}", b)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces following result:

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :100

After swap, value of b :200

 It shows that there is no change in the values though they had been changed inside the function.

Passing Parameters by Reference

 A reference parameter is a reference to a memory location of a variable. When you pass

parameters by reference, unlike value parameters, a new storage location is not created for these

CIA-1 ANSWER KEY 2017-2019 BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 19/27

parameters. The reference parameters represent the same memory location as the actual parameters that

are supplied to the method.

In VB.Net, you declare the reference parameters using the ByRef keyword. The following example

demonstrates this:

Module paramByref

 Sub swap(ByRef x As Integer, ByRef y As Integer)

 Dim temp As Integer

 temp = x ' save the value of x

 x = y ' put y into x

 y = temp 'put temp into y

 End Sub

 Sub Main()

 ' local variable definition

 Dim a As Integer = 100

 Dim b As Integer = 200

 Console.WriteLine("Before swap, value of a : {0}", a)

 Console.WriteLine("Before swap, value of b : {0}", b)

 ' calling a function to swap the values '

 swap(a, b)

 Console.WriteLine("After swap, value of a : {0}", a)

 Console.WriteLine("After swap, value of b : {0}", b)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces following result:

Before swap, value of a : 100

Before swap, value of b : 200

CIA-1 ANSWER KEY 2017-2019 BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 20/27

After swap, value of a : 200

After swap, value of b : 100

Returning Multiple Values

 If you want to write a function that returns more than a single result, you will most likely pass

additional arguments by reference and set their values from within the function's code. The

CalculateStatistics() function, calculates the basic statistics of a data set. The values of the data set are

stored in an array, which is passed to the function by reference. The CalculateStatistics() function must

return two values: the average and standard deviation of the data set. Here's the declaration of the

CalculateStatistics() function:

Function CalculateStatistics(ByRef Data() As Double, ByRef Avg As Double, ByRef StDev As Double)

As Integer

 The function returns an integer, which is the number of values in the data set. The two important

values calculated by the function are returned in the Avg and StDev arguments:

Function CalculateStatistics(ByRef Data() As Double, ByRef Avg As Double, ByRef StDev As Double)

As Integer

Dim i As Integer, sum As Double, sumSqr As Double, points As Integer

points = Data.Length

For i = 0 To points - 1

sum = sum + Data(i)

sumSqr = sumSqr + Data(i) ˆ 2

Next

Avg = sum / points

StDev = System.Math.Sqrt(sumSqr / points - Avg ˆ 2)

Return(points)

End Function

To call the CalculateStatistics() function from within your code, set up an array of Doubles and declare

two variables that will hold the average and standard deviation of the data set:

CIA-1 ANSWER KEY 2017-2019 BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 21/27

Dim Values(99) As Double

' Statements to populate the data set

Dim average, deviation As Double

Dim points As Integer

points = Stats(Values, average, deviation)

Debug.WriteLine points & " values processed."

Debug.WriteLine "The average is " & average & " and"

Debug.WriteLine "the standard deviation is " & deviation

 Using ByRef arguments is the simplest method for a function to return multiple values.. Another

problem with this technique is that it's not clear whether an argument must be set before calling the

function. As you will see shortly, it is possible for a function to return an array or a custom structure with

fields for any number of values.

Passing Objects as Arguments

 When you pass objects as arguments, they're passed by reference, even if you have specified the

ByVal keyword. The procedure can access and modify the members of the object passed as an argument,

and the new value will be visible in the procedure that made the call.

 The following code segment demonstrates this. The object is an ArrayList, which is an enhanced

form of an array. Example: the Add method adds new items to the ArrayList, and you can access

individual items with an index value, similar to an array's elements. In the Click event handler of a

Button control, create a new instance of the ArrayList object and call the PopulateList() subroutine to

populate the list. Even if the ArrayList object is passed to the subroutine by value, the subroutine has

access to its items:

Private Sub Button1 Click(ByVal sender As System.Object, ByVal e As system.EventArgs) Handles

Button1.Click

Dim aList As New ArrayList()

PopulateList(aList)

Debug.WriteLine(aList(0).ToString)

CIA-1 ANSWER KEY 2017-2019 BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 22/27

Debug.WriteLine(aList(1).ToString)

Debug.WriteLine(aList(2).ToString)

End Sub

Sub PopulateList(ByVal list As ArrayList)

list.Add("1")

list.Add("2")

list.Add("3")

End Sub

 The same is true for arrays and all other collections. Even if you specify the ByVal keyword,

they're passed by reference.

26. a. Enumerate Appearance of forms with example form window.

 APPEARANCE OF FORMS

 Applications are made up of one or more forms (usually more than one), and the forms are what

users see. You should craft your forms carefully, make them functional, and keep them simple and

intuitive. You already know how to place controls on the form, but there’s more to designing forms than

populating them with controls. The main characteristic of a form is the title bar on which the form’s

caption is displayed.

CIA-1 ANSWER KEY 2017-2019 BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 23/27

Clicking the icon on the left end of the title bar opens the Control menu, which contains the commands

shown in Table . On the right end of the title bar are three buttons: Minimize, Maximize, and Close.

Clicking these buttons performs the associated function. When a form is maximized, the Maximize

button is replaced by the Restore button. When clicked, this button resets the form to the size and

position before it was maximized. The Restore button is then replaced by the Maximize button

Commands of the Control Menu of the Form

Command Effect

Restore
Restores a maximized form to the size it was before it was maximized;

 available only if the form has been maximized.

Move Lets the user move the form around with the arrow keys.

Size Lets the user resize the form with the arrow keys.

Minimize Minimizes the form.

Maximize Maximizes the form.

Close Closes the current form

Properties of the Form Object

AcceptButton, CancelButton

 These two properties let you specify the default Accept and Cancel buttons. The Accept button is

the one that's automatically activated when you press Enter, no matter which control has the focus at the

time, and is usually the button with the OK caption. Likewise, the Cancel button is the one that's

automatically activated when you hit the Esc key and is usually the button with the Cancel caption. To

specify the Accept and Cancel buttons on a form, locate the AcceptButton and CancelButton properties

of the form and select the corresponding controls from a drop-down list, which contains the names of all

the buttons on the form.

AutoScaleMode

 This property determines how the control is scaled, and its value is a member of the AutoScale-

Mode enumeration: None (automatic scaling is disabled), Font (the controls on the form are scaled

CIA-1 ANSWER KEY 2017-2019 BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 24/27

relative to the size of their font), Dpi, which stands for dots per inch (the controls on the form are scaled

relative to the display resolution), and Inherit (the controls are scaled according to the AutoScaleMode

property of their parent class). The default value is Font; if you change the form's font size, the controls

on it are scaled to the new font size.

AutoScroll

 The AutoScroll property is a True/False value that indicates whether scroll bars will be

automatically attached to the form if the form is resized to a point that not all its controls are visible.

AutoScrollPosition

 This property is available from within your code only (you can't set this property at design time),

and it indicates the number of pixels that the form was scrolled up or down. Its initial value is zero, and it

assumes a value when the user scrolls the form (provided that the form's AutoScroll property is True).

Use this property to find out the visible controls from within your code, or scroll the form

programmatically to bring a specific control into view.

AutoScrollMargin

 This is a margin, expressed in pixels, that's added around all the controls on the form. If the form

is smaller than the rectangle that encloses all the controls adjusted by the margin, the appropriate scroll

bar(s) will be displayed automatically.

AutoScrollMinSize

 This property lets you specify the minimum size of the form before the scroll bars are attached. If

your form contains graphics that you want to be visible at all times, set the Width and Height members of

the AutoScrollMinSize property to the dimensions of the graphics.

FormBorderStyle

 The FormBorderStyle property determines the style of the form's border; its value is one of the

FormBorderStyle enumeration's members, which are shown in Table. You can make the form's title bar

disappear altogether by setting the form's FormBorderStyle property to FixedToolWindow, the

ControlBox property to False, and the Text property (the form's caption) to an empty string

CIA-1 ANSWER KEY 2017-2019 BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 25/27

Tabel - The FormBorderStyle Enumeration

Value Effect

None A borderless window that can't be resized. This setting is rarely used.

Sizable (default) A resizable window that's used for displaying regular forms.

Fixed3D
A window with a fixed visible border, ‘‘raised'' relative to the main area. Unlike the None

setting, this setting allows users to minimize and close the window.

FixedDialog A fixed window used to implement dialog boxes.

FixedSingle A fixed window with a single-line border.

FixedToolWindow
A fixed window with a Close button only. It looks like a toolbar displayed by drawing

and imaging applications.

SizableToolWindow
Same as the FixedToolWindow, but is resizable. In addition, its caption font is smaller

than the usual.

26. b. With a vb.net program to check whether given string palindrome or not.

 INPUT FORM

CIA-1 ANSWER KEY 2017-2019 BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 26/27

Coding

Public Class Form1

 Dim a As String

 Dim s As String

 Dim b As String

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles Button1.Click

 a = TextBox1.Text

 s = a.ToLower

 b = StrReverse(s)

 If s = b Then

 MsgBox("IT IS PALINDROME")

 Else

 MsgBox("IT IS NOT PALINDROME")

 End If

 End Sub

End Class

CIA-1 ANSWER KEY 2017-2019 BATCH

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 27/27

OUTPUT

Result: The above program is verified

	1.pdf (p.1-2)
	2.pdf (p.3-7)
	3.pdf (p.8-62)
	4.pdf (p.63-75)
	5.pdf (p.76-135)
	6.pdf (p.136-148)
	7.pdf (p.149-214)
	8.pdf (p.215-228)
	9.pdf (p.229-295)
	10.pdf (p.296-307)
	11.pdf (p.308-344)
	12.pdf (p.345-356)
	13.pdf (p.357-359)
	14.pdf (p.360-386)

