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Course Objectives 
This course enables the students to learn   

 group homomorphism, isomorphism, automorphism and its related properties. 
 
Course Outcomes 
On successful completion of the course, students will be able to: 

1. Expertise on fundamental theorems of isomorphism. 
2. Know about automorphism and its developments. 
3. Understand the concept of internal and external direct product. 
4. Acquire the knowledge on basic concepts of group actions and their applications. 
5. Apply Sylow’s theorems to determine the structure of certain groups of small order. 

 

UNIT I 

Groups 

Definition and Examples of Groups - Elementary Properties of Groups. 

UNIT II 

Finite Groups and Subgroups 

Terminology and Notation - Subgroup Tests -Examples of Subgroups 

UNIT III 

Cyclic Groups 

Properties of Cyclic Groups - Classification of Subgroups of Cyclic Groups 

UNIT IV 

Permutation Groups 

Definition and Notation - Cycle Notation - Properties of Permutations  

UNIT V 

Isomorphisms 

Definition and Examples- Cayley’s theorem - Properties of  isomorphisms – Automorphisms 

SUGGESTED READINGS 
1. Joseph A. Gallian., (2001). Contemporary Abstract Algebra, Fourth Edition.,Narosa 
    Publishing House,  New Delhi. 
2.  Fraleigh.J.B., (2004). A First Course in Abstract Algebra , Seventh  edition , Pearson 
    Education Ltd, Singapore. 



3. David S. Dummit and Richard M. Foote, (2004).,Abstract Algebra,. Third Edition., John 
Wiley and Sons (Asia) Pvt. Ltd., Singapore. 
4. Herstein.I.N.,(2010). Topics in Algebra ,Second Edition, Willey and sons Pvt Ltd, Singapore. 
5.  Artin.M., (2008).Algebra, Prentice - Hall of India, New Delhi. 
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S.No 
Lecture 

Duration 
Hour 

1 1 Introduction  
2 1 Definition of group

3 1 Examples of groups

4 1 Tutorial 

5 1 Examples of groups 

6 1 Examples of groups 

7 1 Examples of groups 

8 1 Tutorial 

9 1 Examples of groups  

10 1 Problems on groups

11 1 Problems on groups

12 1 Tutorial 

13 1 Elementary properties of groups.

14 1 Elementary properties of groups

15 1 Elementary properties of groups 

16 1 Tutorial 

17 1 Elementary properties of groups 

18 1 Recapitulation and discussion of possible questions

Total number of hours planed for unit I  18  hours

1 1 Finite subgroups 

2 1 SubgroupsTerminology and Notation 

3 1 Tutorial 

4 1 One step subgroup test

5 1 Two step subgroup test

6 1 Problems on subgroup tests

Lesson Plan 2018

Prepared by  Dr K. Kalidass, Department of Mathematics, KAHE                          Page 

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)

 Coimbatore – 641 021. 

 LECTURE PLAN 

DEPARTMENT OF MATHEMATICS 

Dr. K.KALIDASSSUBJECT NAME:GROUP THEORY
U302SEMESTER: III 

MATHEMATICS 

Topics To Be Covered Support Material

UNIT-I 
S1

Definition of group S1

Examples of groups S1
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7 1 Tutorial  

8 1 Problems on subgroup tests - Contd S1: Ch 3, 61 

9 1 Problems on subgroup tests- Contd S1: Ch 3, 62 

10 1 Finite subgroup test S4, Ch 2, 33 

11 1 Tutorial  
12 1 Examples of Subgroups S1: Ch 3, 63 
13 1 Examples of Subgroups -  Contd S1: Ch 3, 64 
14 1 Examples of Subgroups -  Contd S1: Ch 3, 64 

15 1 Tutorial  

16 1 Theorems on  center of a group S1: Ch 3, 65 

17 1 Examples on  center of a groups S1: Ch 3, 67 

18 1 Problems on   center of a group S1: Ch 3, 68-69 

19  Tutorial  
20 1 Recapitulation and discussion of possible questions  

Total number of hours planed for unit II 20 hours 
UNIT-III 

1 1 Introduction to cyclic groups S1, Ch 4,72 
2 1 Theorems on  cyclic groups S1, Ch 4,73 
3 1 Tutorial  
4 1 Theorems on  f cyclic groups -  Contd S1, Ch 4,73 
5 1 Properties of cyclic groups S3, Ch 2,54 
6 1 Properties of cyclic groups -  Contd S1, Ch 4,75 
7 1 Tutorial  
8 1 Properties of cyclic groups -  Contd S1, Ch 4,76 
9 1 Theorems on classification of cyclic subgroups S1, Ch 4,77 
10 1 Theorems on classification of cyclic subgroups-  Contd S1, Ch 4,78 
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12 1 Theorems on classification of cyclic subgroups-  Contd S1, Ch 4,79 

13 1 Problems on  cyclic subgroups S1, Ch 4,80 

14 1 Problems on  cyclic subgroups-  Contd S1, Ch 4,80-81 

15 1 Tutorial  
16 1 Problems on  cyclic subgroups -  Contd S1, Ch 4,81 
17 1 Problems on  cyclic subgroups -  Contd S1, Ch 4,81 
18 1 Tutorial  
19 1 Recapitulation and discussion of possible questions  

Total number of hours planed for unit III  19 hours 
UNIT-IV 

1 1 Permutation groups Definition and notation S1, Ch5, 95 

2 1 Examples on permutation groups S1, Ch5, 96 

3 1 Tutorial  

4 1 Examples on permutation groups - Contd S1, Ch5, 97 

5 1 Examples on permutation groups - Contd S1, Ch5, 98-99 
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Unit Hours(L+T) 

I 18(14+4) 
II 20(15+5) 
III 18(13+5) 
IV 17(12+5) 

6 1 Theorems on cycle notation S1, Ch5, 100-101 
7 1 Tutorial  
8 1 Theorems on cycle notation - Contd S1, Ch5, 102-103 
9 1 Theorems on properties of permutation groups S1, Ch5, 104-106 

10 1 Theorems on properties of permutation groups - Contd S1, Ch5, 107 

11 1 Tutorial  

12 1 Theorems on properties of permutation groups - Contd S1, Ch5, 108-110 

13 1 Theorems on properties of permutation groups - Contd S1, Ch5, 111 
14 1 Tutorial  
15 1 Theorems on properties of permutation groups - Contd S1, Ch5, 113 
16 1 Tutorial  
17 1 Recapitulation and discussion of possible questions  

Total number of hours planed for unit IV 17 hours 
UNIT-V 

1 1 Isomorphism -  Defnition S1, Ch 6, 122 
2 1 Examples on isomorphism S5, Ch 2, 54 

3 1 Tutorial  

4 1 Examples on isomorphism - Contd S1, Ch 6, 123-124 

5 1 Examples on isomorphism - Contd S1, Ch 6, 125-126 

6 1 Examples on isomorphism - Contd S1, Ch 6, 127 

7 1 Tutorial  

8 1 Examples on isomorphism -Contd S1, Ch 6, 128 

9 1 Cayley’s theorem S1, Ch 6, 129-130 
10 1 Problems on Cayley’s theorem S1, Ch 6, 131 
11 1 Tutorial  
12 1 Theorems on  Properties of  isomorphisms S1, Ch 6, 132 
13 1 Theorems on  Properties of  isomorphisms - Contd S1, Ch 6, 133 
14 1 Theorems on Automorphisms S1, Ch 6, 133 
15 1 Tutorial  
16 1 Theorems on Automorphisms - Contd S1, Ch 6, 133 
17 1 Theorems on Automorphisms - Contd S1, Ch 6, 133 
18 1 Tutorial  
19 1 Recapitulation and discussion of possible questions  
20 1 Discusion of ESE qns  
21 1 Discusion of ESE qns  
22 1 Discusion of ESE qns  

Total number of hours planed for unit V 22 Hours         



Lesson Plan 2018-2021Batch 

 

 
Prepared by  Dr K. Kalidass, Department of Mathematics, KAHE                          Page 4 / 4 
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Total 96(72+24) 
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     Education Ltd, Singapore. 

3. David S. Dummit and Richard M. Foote, (2004).,Abstract Algebra,. Third Edition., 

    JohnWiley and Sons (Asia) Pvt. Ltd., Singapore. 

4. Herstein.I.N.,(2010). Topics in Algebra ,Second Edition, Willey and sons Pvt Ltd,  

    Singapore. 

5. Artin.M., (2008).Algebra, Prentice - Hall of India, New Delhi. 

 
 



KARPAGAM ACADEMY OF HIGHER EDUCATION 
      CLASS: II BSC MATHEMATICS                                             COURSE NAME: Group theory I 

 COURSE CODE: 17MMU303                  UNIT: I                           BATCH-2017-2020 
 

Prepared by Dr. K. Kalidass, Assistant Professor, Department of Mathematics,  KAHE Page 1/21 

 

UNIT-I 

SYLLABUS 

SYLLABUS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symmetries of a square, Dihedral groups, definition and examples of groups including permutation 

groups and quaternion groups (illustration through matrices), elementary properties of groups 
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Introduction to set theory 

 The algebra of sets defines the properties and laws of sets, the set-theoretic operations of 

union, intersection, and complementation and the relations of set equality and set inclusion. It 

also provides systematic procedures for evaluating expressions, and performing calculations, 

involving these operations and relations. 

Preliminary notations: 

 Set theory: 

1. A set is any well defined class or collection of objects. 

2. A set ‘A’ is said to be a subset of s. if every element in A is an element of s. if 

aεA=aεs. 

3. A set is said to be a finite if it consists of a specific number of different elements, 

otherwise it is called as an infinite set. 

4. Two sets A and B are said to be equal if and only if every element of A is an 

element of B, and also every element of B is an element of A. 

If the two sets A and B are equal then we write it as A=B. 

If the two sets A and B are not equal then we write it as A≠B. 

5. A set which contains no element is called as null set or an empty set. 

6. A set consisting of a single element is called singleton set. 

7. Given a set S we use the notations as, 

A=  means that A is the set of all the elements in s for which the 

property p holds 

8. The union of the two sets A and B is denoted as AUB the set is {x/x }. 

9. The intersection of the two sets A and B is denoted as A∩B is the set 

{x/x }. 

http://en.wikipedia.org/wiki/Set_%28mathematics%29
http://en.wikipedia.org/wiki/Union_%28set_theory%29
http://en.wikipedia.org/wiki/Intersection_%28set_theory%29
http://en.wikipedia.org/wiki/Complement_%28set_theory%29
http://en.wikipedia.org/wiki/Binary_relation
http://en.wikipedia.org/wiki/Equality_%28mathematics%29
http://en.wikipedia.org/wiki/Subset
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10. The two sets A and B have no elements is then we say that A and B are disjoint or 

mutually exclusive. 

Prepositions: 

1. For any 3 sets A,B,C we have  

A∩(BUC)=( A∩B)U(A∩C) 

First we try to prove that  

( A∩B)U(A∩C)ς A∩(BUC) 

Now B ς BUC 

A∩B ς A∩(BUC)                 1 

c ς BUC 

A∩C ς A∩(BUC) 2 

1 and 2 (A∩B)U(A∩C) ς A∩(BUC) 3 

Next we try to prove  

A∩(BUC) ς(A∩B)U(A∩C) 

xεA A∩(BUC) 4 

Let xεA and (xεB or xεC) 

xεA and xεB or xεA and xεC 

xε A∩B or xε A∩C 

xε(A∩B)U(A∩C) 5 

from 4 and 5 A∩(BUC) ς(A∩B)U(A∩C) 6 
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Definitions: 

1. Given a set T we say that T serves as an index set for the family f.f={Aα} of sets if for 

every αεT, there is a set of Aα is the family of F.The index set T can be any finite set or 

infinite. 

2. By the union of sets Aα where α is in T, we mean the set  

   {x/xε Aα for atleast one α in T} we denote it by U Aα αεT. 

 

3. By the intersection of he sets Aα where α is in T we mean that the set                                           

    { x/xε Aα for every α εT } we denote it by ∩ αεT Aα. 

 

4. The sets Aα are mutually disjoint if α≠β Aα∩Aβ is the null set. 

 

5. Given the two sets A and B then the difdferenc set A-B is the set {xεA/xεB} then  

     B is a subset of A in this case we call A-B is the complement of B in A. 

 

6. Let A and B be any two given sets then their Cartesian product A*B is defined as  

    the set of all ordered pairs(a,b) where aεA and bεB. 

 

Note: 

i) (a1,b1)=(a2,b2) iff a1=a2 and b1=b2 given any index set T we can define the Cartesian 

product of the sets Aα as α varies over T. 

ii) If the set A is a finite set having elements then the set A*A is also a finite set but  

    has n
2
 elements. 

 

iii) The set of all elements (a,a) is A*A is called the diaponal of A*A. 

 

 

Definition: 
The binary relation ~ on A is said to be a equivalence relation if for all a,b,c is A. 

i) a~a reflexing 
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ii) a~b=b~a symmetry 

iii) a~b and b~c=a~c transistivity 

 

Example:  

                 Let s be the set of all integers given a,bεs defines a~b if a-b is even integer. 

Solution: 

     i) since 0=a-a is even a~a 

     ii) if a~b then a-b is even –(b-a) is also even=b~a. 

     iii)if a~b then a-b is even and b~c then (b-c) is even. 

a-c=(a-b)+(b-c) is also even=a~c. 

The given relation is equivalence relation. 

Definition: 

If A is a set and if ~ is an equivalence relation on A then the equivalence class of aεA is 

the set {xεA/a~x} we write it as cl(a). 

Fundamental theorem on equivalence relation: 

Theorem 1.1.1  

The distinct equivalence classes of an equivalence relation A provide us with a 

decomposition of A as a union of mutually disjoint subsets. Conversely given a 

decomposition of A as union of mutually disjoint, non empty subsets we can define an 

equivalence relation on A for which these subsets are the distinct equivalence classes. 

Proof:  

            Let the equivalence relation on A be denoted by ‘~’ since for any aεA, a~a. 

A must be in cl(a). 

Hence the union of the cl(a) is all of A we now try to prove that given two equivalence 

classes they are either equal or disjoint. 

Now we suppose that cl(a) and cl(b) are not disjoint then f an element. 
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      xεcl(a)∩cl(b) 

Since xεcl(a) a~x 

Since xεcl(b) b~x 

But by the symmetry of relation we have x~b. 

a~x and x~b=a~b 1 

Now we suppose that yεcl(b) 

b~y 2 

1 and 2 a~y=yεcl(a). 

Every element in cl(b) is in cl(a) cl(b)ςcl(a) 3 

In a similar way we can prove that 

Cl(a)ςcl(b) 4 

3 and 4 cl(a)=cl(b) 

Thus we have shown that the distinct cl(a) are either they are equal or disjoint. 

Let us suppose that A=uAα where Aα mutually disjoint non empty set[α is in the some 

index set]. Given an element a is A is exactly in one Aα. 

We define for a,bεA,a~b if a and b are in the same Aα. 

We now prove that this is an equivalence relations on a and that the distinct equivalence 

classes on the Aα.
|
. 

Now a and a are in the same Aα. a~a. 

Now assume that a~b, then by definition a and b are in the same Aα. 

b~a hence if a~b=b~a then it follows that a and b are in the same Aα. 

B and c are in the same Aβ. 

Now suppose that Aα≠ Aβ since bε Aβ.= Aα∩Aβ≠0 
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Which is a contradiction. Since Aα and Aβ. Are distinct  Aα=Aβ. Hence a and c are in the 

same Aα. 

a~c thus a~b and b~c=a~c. thus the relation defined above satisfies reflexity symmetry 

and transitivity. Hence the above relation is an equivalence relation. 

Lat aεA let Aα be the unique no of the partition such that aε Aα then by definition of ~ we 

get cl(a)= Aα. 

Thus distinct equivalence classes are Aα. 

State And Prove Demorgan’s Theorem: 

Statement: 

For a subset c of s let c
|
 denotes the complement of c in s. for any two subsets A,B of s 

we have, 

i) (A∩B)
|'
=A

|
 U B

|   
  ii) (AUB)

|
= A

|
 ∩ B

|
 

Proof: 

 i)let xε(A∩B)
|
                1 

xε(A∩B ) 

xεA and  xεB 

xεA
|
 and  xεB

|
 

xεA
| 
U B

|
              2 

from 1 and 2 we get (A∩B
|
)ς A

|
 U B

|
              3 

now let xεA
| 
U B

|
              4 

xεA
|
 or xεB

|
 

xεA or  xεB 

xε(A∩B ) 

xε(A∩B )
| 

5 
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from 4 and 5we get (A
|
 U B

|
)ς(A∩B)

|
              6 

from 3 and 6 we get (A∩B)
|
= (A

|
 U B

|
) 

ii)(AUB)
|
=A

|
∩B

|
 

let xε(AUB)
|
             1 

xε(AUB ) 

xεA and  xεB 

xεA
|
 and  xεB

|
 

xεA
|
∩ B

|
              2 

from 1 and 2 we get (AUB)
|
ς A

|
∩B

| 
3 

now let xεA
|
∩ B

|
  4 

xεA
|
 and  xεB

|
 

xεA and  xεB 

xεAUB 

xε(AUB)
| 

5 

from 4 and 5 we get A
|
∩B

|
ς(AUB)

| 
6 

from 3 and 6 we get (AUB)
|
= A

|
∩B

|
. 

Problem: 

1. If A is a finite set having n elements then prove that A has exactly 2
n
 distinct subsets. 

Solution: 

Given that A is a finite set with n elements 

Thus A contains obviously the empty set also that it contains the following subsets. 

    nc1=number of 1 element subsets. 

    nc2=number of 2 element subsets. 

    ncn=number of n element subsets. 

The total number of subsets=nc0+nc1+nc2+…….+ncn 
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                     =1+nc1+nc2+……….+1 

From binomial theorem we know that 

(1+x)
n
=1+nx+ x

2
+………..+x

n
 

When x=1 we have, 

2
n
=1+n+ +………….+1 

From these both we have the total no of subsets=2
n
. 

 Introduction to Mappings 

           In mathematics, the term mapping, usually shortened to map, refers to either 

A function, often with some sort of special structure, or  

A morphism in category theory, which generalizes the idea of a function. 

Mappings:  

A mapping from a set S is a rule that associates with each element s in s a unique element 

t in T. 

Note:  

In the above case way that t is the unique of s under the mapping. 

Definition:  

If S and T are non empty sets then a mapping from s to T is a subset of M of s*t such that 

for every sεS there is a unique tεT such that the ordered pairs(s, t) is in M. 

Note:  

Let σ be a mapping from S to T we denote this by σ : ST or T=Sσ. 

 

 

Examples:   

1. Let S be any set. Define i:S         S by s=si for any sets sεs. This mapping I is called the 

identity mapping. 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Function_%28mathematics%29
http://en.wikipedia.org/wiki/Morphism
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2. Let S and T be any two sets and let t0 be an element of T. define ψ:S         T by an 

ψ(s)=t0 for every sεs then ψ is a mapping. 

3. Let S and T be any two sets. Define τ by (a, b)τ = a for any (a, b)εS*T. this τ is called 

as the projection of S*T on  S. in a similarity we can define the projection of S * T on T. 

Note: .  

Let S be any set we construct a new set s
*
, the set whose elements are the subsets of S 

then we call S
*
 the set of subsets of S. 

Example:  

1. If S={x1, x2} 

   Then s
*
= {{}, {x1}, {x2}, S} 

2.Given a mapping τ:  T, we define for tεT, the inverse of t w.r.to τ to be the  

    set {sεS/t=ST}. 

Definition: 

1.The mapping τ of S into T is said to be onto T if given tεT, F an element sεS  

    such that t=st. 

2. The mapping τ of s into T is said to be a one to one mapping. If whenever s1≠s2  

    then s1τ ≠ s2τ. 

3. The two mappings σ and τ of s into T are said to be equal is sσ=sτ for every sεs. 

4. If σ:S        T  and τ:T          U then the composition (or product) of τ andσ is the 

mapping σ0τ: S          U. 

5. Defined by s(σ0τ) =(sσ)τ fro every s ε S 

=tτ for every tεT 

=u for every uεU. 

Example:  

Let S = {x1, x2, x3} and T=S. 

Let σ : S         S be defined by x1σ = x2, x2σ = x3, x3σ = x and τ : S         S be defined by 

x1τ = x1, x2τ = x3, x3τ = x2 

thus x1(σ0τ)=(x1σ)τ 

= x2τ = =x3 

X2(σ0τ)=(x2σ)τ 
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= x3τ = =x2 

X3(σ0τ)=(x3σ)τ 

= x1τ = =x1 

x1(τ0σ)=(x1τ)σ 

= x2σ = =x2 

X2(τ0σ)=(x2τ)σ 

= x3σ = =x1 

X3(τ0σ)=(x3τ)σ 

= x2σ = =x3 

So from above resets we conclude that is general σ0τ ≠ τ0σ. 

Lemma 1.2.1: Associative law: 

If σ: S          t, τ : T          U  and u: U         V then 

(σ0τ)0μ =σ0(τ0μ) 

Proof: 

We know that σ0τ makes sense and takes S into U. 

Thus (σ0τ) 0μ also makes sense and takes S into V. 

Now let us prove for any sεS, 

S[(σ0τ)0μ]=s[σ0(τ0μ)] 

l.h.s =s[(σ0τ)0μ] 

=s(σ0τ)μ 

=((sσ)τ)μ 

=sσ(τ0μ) 

= s[σ0(τ0μ)]=r.h.s.= associative property. 

 

Lemma 1.2.2: 

Let σ:S         T and τ:T          U then  
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i) σ0τ is onto if each of σ and τ is onto. 

ii) σ0τ is one to one if each of σ and τ is one to one. 

Proof: 

Since τ: T          U is onto for a given uεU , F a tεT such that 

tτ=u            1 

since σ:S T is onto 

for given tεT F a sεS such that 

sσ=t           2 

now s (σ0τ)=(sσ)τ 

=tτ by 2 

=u by 1 

Thus for every uεU F a sεS such that s (σ0τ)=u 

Then by definition σ0τ is onto 

Let s1, s2 ε s and s1 ≠ s2 

Since σ is one to one s1σ≠s2σ 

s1σ&s2σ are distinct elements in T. 

since τ is one to one s1τ≠s2τ 

= s1(σ0τ)=(s1σ)τ≠( s2σ)τ=s2(σ0τ) 

= s1(σ0τ)≠ s2(σ0τ) 

=(σ0τ) is one to one by definition. 

Note:  

The converse of above lemma is false. 

i) If(σ0τ) is onto then σ and τ is need not be onto. 

ii) σ0τ is one to one if each of σ and τ is need not be one to one. 

 

 

Definition: 
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 Let σ:S T if σ is both one to one and on to then we say the mapping σ is one to one 

correspondence between S and T. 

Lemma 1.2.3: 

Statement:  

The mapping σ: S         T is one to one correspondence between S and T iff there exists a 

mapping μ:T          S such that σ0μ and μ0σ are the identity mappings on S and T 

respectively. 

Proof: 

First let us assume that the mapping σ: S         T is a one to one correspondence between 

S and T. 

Since σ is onto, for given tεT, F an element sεS such that sσ=t             1 

Since σ is one to one this s in must be unique now we define the mapping  

σ 
-1

:T          S by s= t σ 
-1

 iff t=sσ the mapping σ 
-1

 is the inverse of σ. 

 Let σ0 σ 
-1

: s          S 

Now for any sεS, s (σ0 σ 
-1

) = (sσ) σ 
-1 

=t σ 
-1 

by 1 

= s 

=si 

σ0 σ 
-1

 is the identity mapping on s. 

if we take μ= σ 
-1

 then 

σ0μ is the identity mapping on s. 

Now σ 
-1

0σ: T         T then for any tεT. 

t(σ 
-1

0σ)=( tσ 
-1

)σ 

=sσ 

=t 

=ti 

σ 
-1

0σ is the identity mapping on T. 

Conversely if σ: S         T is such that F a mapping on μ: T          S with the property that 

σ0μ and μ0σ are the identity mapping on S and T respectively. Then we have to show that 

σ is a one to one correspondence between S and T. we have to show σ is both one to one 

and onto. 

Let tεT then t=ti 
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                     =t (μ0σ)=(tμ)σ 

Now tμ is an element of S. so t is the image under σ of the element tμ in s. for a given tεT 

F a tμεS such that (tμ) σ=t by definition σ is onto. 

Let s1, s2 ε S assume that s1σ=s2σ 

Now consider s1=s1(σ0μ) 

= (s1σ) μ 

= (s2σ) μ 

=s2 (σ0μ) 

=s2 (σ0μ is the identity on s) 

Whenever s1σ=s2σ=s1=s2 

Then by definition σ is one to one. 

Definition: 

A binary operation 0 on a non empty set A is a mapping which associates each pair (a, b) 

of elements of A an uniquely defined element CεA thus 0 is a mapping of product of the 

set A*A to A symbolically a map 0: A*A         A is called a binary operation on the set A. 

Example:  
Addition and multiplication on binary operation on N. 

If S is non empty set then A(s) is the set of all one to one mappings of s onto itself. 

Theorem: 1.2.1:  
If σ, τ, μ are elements of A(S) then i) σ0τ is in A(S) 

ii) (σ0τ) 0μ=σ0 (τ0μ) 

iii) F an element I the identity map in A(S) such that σ0i=i0σ 

iv)F an element σ
 -1

εA(S) such that σ0σ
 -1

=σ
 -1

0σ = i 

Proof: 

1.Lemma 1.2.2 

2.Lemma 1.2.1 

3.Clearly the identity map ‘i’ is both one to and on to iεA(S) let sεS 

Now consider s(σ0i)=(sσ)i 

=sσ  ¥ sεS=σ0i=σ 
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Lemma 1.2.3(write the first part only). 

Lemma: 1.2.4:  

If s has more than two elements we can find two elements σ*τ in A(S) such that 

σ0τ≠τ0σ. 

Proof:  

     Let us assume that S has more than two elements let x1, x2, and x3 be three distinct 

elements in s.  

Now we define σ: S         S 

By x1σ=x2 

X2σ=x3 

X3σ=x1 

Sσ=s for only sεS different from x1, x2, x3 

Define τ: S         S 

By x2τ=x3 

x3τ=x2 

and sτ=s for any sεS different from x2, and x3 clearly both σ and τ are one to one and 

on to and hence in A(S) 

now x1(σ0τ)=(x1σ)τ 

=x2τ 

=x3     1 

And x1(τ0σ)=(x1τ)σ 

=x1σ 

=x2     2 

Comparing 1 and 2 we observe that σ0τ≠τ0σ. 

 

 

Problem1: 

If the set S has n elements then prove that A(S) has n! Elements. 
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Solution: 

When S={x1, x2, x3...xn} 

Any one to one mapping on S onto itself is given by specifying the image of each 

elements. 

The image of x1 can be chosen is different ways. Since the image of x2 is different 

from image of x1 it can be chosen in n – 1 different ways and so on. Hence the total 

no of one to one mapping of s onto itself is n(n-1)(n-2)……3.2.1=n!. 

Problem2:  

If f: A         B is a map and E1, E2 are any two subsets of A then show that 

i) f(E1UE2)=f(E1)Uf(E2) 

ii) f(E1∩E2)ς f(E1)∩f(E2) 

Solution: 

i) Let bεf(E1UE2) 

b=f(a) for some aε E1UE2 1 

b=f(a) for some aεE1 or aεE2 

b=f(a) and f(a)εf(E1)or f(a)εf(E2) 

b=f(a) and f(a)ε f(E1)U f(E2)             2 

from 1 and 2 we get f(E1UE2)ς f(E1)Uf(E2) 3 

now let b
|
εf(E1)Uf(E2)  4 

b
|
εf(E1) or b

|
εf(E2) 

b
|
=f(a

|
) for some a

|
εE1 or E2 

b
|
=f(a

|
) for some a

|
ε(E1UE2) 

b
|
=f(a

|
) for some f(a

|
)εf(E1UE2) 5 

from 4 and 5 we get f(E1)Uf(E2)ς f(E1UE2) 6 

from 3 and 6 we get f(E1UE2)= f(E1)Uf(E2) 

 

ii) Let bε f(E1∩E2)              7 

bεf(a) for some aεE1∩E2 
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b=f(a) for some aε E1 and aε E2 

b=f(a) and f(a)εf(E1) and f(a)εf(E2) 

b=f(a) and f(a)εf(E1)∩f(E2)  8 

from 7 and 8 we get f(E1∩E2)ς f(E1)∩f(E2)  

Introduction to Group Theory 

           In mathematics, a group is a set of elements together with an operation that combines any 

two of its elements to form a third element satisfying four conditions called the group axioms, 

namely closure, associativity, identity and invertibility. One of the most familiar examples of a 

group is the set of integers together with the addition operation; the addition of any two integers 

forms another integer. The abstract formalization of the group axioms, detached as it is from the 

concrete nature of any particular group and its operation, allows entities with highly diverse 

mathematical origins in abstract algebra and beyond to be handled in a flexible way, while 

retaining their essential structural aspects. The ubiquity of groups in numerous areas within and 

outside mathematics makes them a central organizing principle of contemporary mathematics.  

Group theory: 

Definition of a group: 

A non empty set G is called a group if in G there is defined a binary operation 

called a product and denoted by ‘.’ Such that 

i) For a, bεG     a.bεG
 -1

(closure property) 

ii) a,b,cεG   a.(b.c)=(a.b).c(associative property) 

iii) F an element eεG such that a.e=e.a ¥ aεG e is called the identity of  

the element in G. 

iv) For every aεG F an element a
 -1

εG such that a.a
 -1

=a
 -1

.a=e eixtence of 

inverse.  

The algebra structure of the group is given by (G,.). 

Definition: 

i) A group G is said to be an abelian group or commutative if for every a,bεG 

a.b=b.a 

ii) A group which is not abelian is called a non abelian group. 

iii) The order of a group G, denoted by o(G) is the no of elements in G. 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Set_%28mathematics%29
http://en.wikipedia.org/wiki/Element_%28mathematics%29
http://en.wikipedia.org/wiki/Binary_operation
http://en.wikipedia.org/wiki/Axiom
http://en.wikipedia.org/wiki/Closure_%28mathematics%29
http://en.wikipedia.org/wiki/Associativity
http://en.wikipedia.org/wiki/Identity_element
http://en.wikipedia.org/wiki/Latin_square_property
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Addition
http://en.wikipedia.org/wiki/Abstract_algebra
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iv) If G contains finite no of elements we say that G is a finite group otherwise it is 

called as an infinite group. 

v) We know that if a set S contains ‘n’ elements then A(S) contains n! elements amd 

A(S) is a group. This group is called as the symmetric group of degree n 

denoted by sn. 

Some examples of groups. 

Let G consists of the integers 0, ±1, ±2,…… where we means by a.b foe a,bεG the 

usually sum of integers that is a.b=a+b. 

Solution: 

Closure property: 

Let a, b εG then a+bεG, since the sum of two integers is also an integer in G. 

Associative property: 

Let a,b,cεG then (a+b)+c=a+(b+c) since the associative property is true in the case of 

integers. 

Existence of identity elements: 

OεG, now a+o=a  ¥aεG  o is the additive identity element in G. 

Existence of inverse element: 

For any aεG we can find an element –a in G such that a+(-a)=0 

-a acts as the inverse for a in G    (G, +) is a group. 

Examples: 

1. The set of all 2*2 matrices            a,b,c,dεR is a group under matrix addition. 

2. Q,R,C groups are all under usual addition. 

3. Let G consists of real nos (1, -1) under the binary operation multiplication then G 

is an abelian group of order 2. 

4. Since sum of two integers is commutative for any a,bεG     a+b=b+a   G is an 

abelian group. Also G contains infinite number of elements. G is an infinite 

abelian group to the binary operation addition. 
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Some preliminary lemmas: 

Lemma 2.3.1: 

If G is a group then 

1. The identity element of G is unique. 

2. Every aεG has an unique inverse in G. 

3. Left and right cancellation laws hold 

a.b=a.c          b=c 

b.a=c.a           b=c 

4. for every aεG (a
 -1

)
 -1

=a 

5. for all aεG(a.b)
 -1

=b
 -1

.a
 -1

 

Proof: 

If possible let there be two I denoted elements e, f in G. 

Let aεG since e is the identity. Consider f as an ordinary elements in G. then by the 

definition, 

a.e=e.a=a 

f.e=e.f=f 

since f is the identity consider e as an ordinary element in G. then by definition 

a.f=f.a=a 

e.f=f.e=e 

we know that e.f=f   and e.f=e     f=e   hence the identity element is unique. 

2.  let aεG 

If possible let there be two inverses a
|
 and a

||
 for a in G. then by definition we know that 

a.a
|
=a

|
.a=e 

a.a
||
=a

||
.a=e 

Since e is the identity element we can wriye 

a
| 
= a

|
.e 

= a
|
.(a.a

|
) 

= (a
|
.a).a

||
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= e.a
|| 

= a
||
 

a
| 
= a

||
 hence every element in G has a unique inverse. 

3..  let a,b,cεG let us suppose that    a.b=a.c 

Since aεG     a
 -1

εG 

Now premultiplying by a
 -1

 we get 

a
 -1

.(a.b)= a
 -1

.(a.c) 

(a
 -1

.a).b=( a
 -1

.a).c 

e.b=e.c 

b=c 

left cancellation law is true. 

Since aεG    a
 -1

εG    now post multiplying  by a
 -1

 we get 

(b.a). a
 -1

=(c.a). a
 -1

 

b.( a
 -1

.a)=c.( a
 -1

.a) 

b.e=c.e 

right cancellation law is true. 

4. let aεG let a
 -1

 be the inverse of a in G then (a
 -1

)
 -1

 will be the inverse of a
 -1

 in G. 

Since G is a group we have 

a. a
 -1

= a
 -1

.a=e    and    a
 -1

(a
 -1

)
 -1

=( a
 -1

)
 -1

. a
 -1

=e 

we have   a
 -1

.a= a
 -1

.( a
 -1

)
 -1

 

using left cancellation law we have a=( a
 -1

)
 -1

. 

5.. let a,bεG let a
 -1, 

b
 -1

 be the inverse of a and b in G. 

Then a.b  and b
 -1

. a
 -1

 exists in G by closure property 

Now we consider 

(a.b).(b
 -1

. a
 -1

)=a.(b.b
 -1

). a
 -1 

=a.e. a
 -1 
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=a. a
 -1

 

=e 

(a.b)
 -1

=b
 -1

. a
 -1

 

Lemma 2.3.2: 

Given a,b in the group G then the equations a.x=b and y.a=b have unique solutions for x 

and y in G. 

Proof: 

Given that a,bεG 

Since a,bεG, a
 -1

εG 

. x=a 
-1

.bεG 

Now consider 

a.x=a.(a 
-1

.b) 

=(a. a
-1

).b 

=e.b 

=b 

X satisfies the given equation and hence x=a
 -1

.b is a solution. 

To establish the uniqueness of the solution, let there be two solution x1 and x2 for the 

equation  a.x=b 

We have a.x1=a.x2 

x1=x2 

henc x=a 
-1

.b is a unique solution for a.x=b. in a similar way we can prove that y=b.a 
-1

 is 

a unique solution for y.a=b. 
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Problem: 
Show that the set G ={ a+b2: a,bQ} is a group with respect to addition. 

Solution: 

Closure Property: 

Let x,y be any two elements of G. Then x= a+b2, y = c+d2, where a,b,c,d Q 

Now x+y=(a+c)+(b+d) 2Q,  

Thus x+y G for every x,y G. 

Therefore G is closed with respect to addition. 

Associativity: 

The elements of G are all real numbers and the addition of real numbesr is associative. 

Existence of identity: 

We have 0+02 G since 0Q. 

If a+b2 is any element of G, then (0+02 )+(a+b2) = a+b2 

0+02 is the identity. 

Existence of inverse: 

We have  a+b   since a, b  Q   - a, -b  Q. 

 Now [(-a)+(-b)  the left identity. 

There for (-a) +(-b)  is the left inverse of a+b . 

Hence G is a group with respect to addition.  
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POSSIBLE QUESTIONS: 

Part-B( 5X8 = 40 Marks) 

Answer all the questions: 

1. i) Prove that  A(BC) = (AB)  (AC) 

     ii) If a finite set S has n elements, then prove that the power set S has 2
n
 elements. 

2. Write about the types of binary operations. 

 

3. If G is a group ,then prove that 

   i)the identity element of G is unique 

  ii)every aG has a unique inverse in G 

  iii)for every aG, (a
-1

)
-1 

= a 

 iv)for all a,bG, (a.b)
-1

 = b
-1

.a
-1

 

 

4.  If a,b are any two elements of a group G, then prove that the equations ax = b and ya = b   

     have unique solutions in G. 

 

5. Show that the set G ={ a+b2: a,bQ} is a group with respect to addition. 

6.  i) Prove that the inverse of the product of two elements of a group G is the product of the   

        inverse taken in the reverse order. 

     ii)Show that if every element of the group G is its own inverse , then G is abelian. 

 

7. Let G be a group. Then prove that i) identity element of  G is unique 

         ii) for any aG, the inverse of a is unique. 

 

8. Prove that if G is an abelian group, then for all a,bG and all integers n, (a.b)
n
=a

n
.b

n
. 

 

9. If G is a group, in which (a.b)
i 
= a

i
b

i 
for three consecutive integers i for all a,bG. Show 

 that G is abelian. 

10. If a.b.c are any elements of G, then prove that ab =ac  b = c  and ba = ca  b = c  . 
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UNIT-II 

SYLLABUS 

SYLLABUS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Subgroups and examples of subgroups, centralizer, normalizer, center of a group, product of two 

subgroups 
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Introduction to Subgroups 
In algebra, given a group G under a binary operation ∗, a subset H of G is called a subgroup of G 

if H also forms a group under the operation ∗. More precisely, H is a subgroup of G if the 

restriction of ∗ to H × H is a group operation on H. This is usually represented notationally by H 

≤ G, read as "H is a subgroup of G".A proper subgroup of a group G is a subgroup H which is a 

proper subset of G (i.e. H ≠ G). The trivial subgroup of any group is the subgroup {e} consisting 

of just the identity element. If H is a subgroup of G, then G is sometimes called an overgroup of 

H.The same definitions apply more generally when G is an arbitrary semigroup, but this article 

will only deal with subgroups of groups. The group G is sometimes denoted by the ordered pair 

(G, ∗), usually to emphasize the operation ∗ when G carries multiple algebraic or other 

structures.This article will write ab for a ∗ b, as is usual. 
 

Sub groups: 
A non empty subset H of a group G is said to be a subgroup of G if under the product is 

G,H itself forms a group. 

Note: 

If H is a subgroup of G and K is a subgroup of H, K is a subgroup of G. 

Lemma 2.1: 

A non empty subset H of a group G is a subgroup of G itself: 

i) a, bεH=abεH 

ii) aεH=a
 -1

εH 

Proof: 

    First we assume that H is a subgroup of G then by definition H is a group under the 

same binary operation as in G. 

a, bεH=abεH and  

aεH=a
 -1

εH  ,  ¥ a, b εH 

conversely let us assume that, 

a, bεH=abεH and  

aεH=a
 -1

εH  ,  ¥ a, b εH 

now we prove that H is a subgroup of G. from the first result we observe that 

closure property is valid. 

Since H is a non empty subset of G since the associative law is true in G, itmust be 

true to H also. 

http://en.wikipedia.org/wiki/Group_%28mathematics%29
http://en.wikipedia.org/wiki/Binary_operation
http://en.wikipedia.org/wiki/Subset
http://en.wikipedia.org/wiki/Function_%28mathematics%29#Restrictions_and_extensions
http://en.wikipedia.org/wiki/Subset
http://en.wikipedia.org/wiki/Semigroup
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Associativity is true also. 

From the second result we observe that inverse exists for every element of H. 

Existence of inverse is true. 

Once again the second result is a, a
 -1

εH 

aa
 -1

ςeεH 

Existence of identity is true. 

Hence H is a subgroup of G. 

Note:  

It is enough if we prove that if a, bεH then ab
 -1

εH where H is a subgroup of G. 

Lemma 2.2: 

          If H is a non empty finite subset of a group G and H is closed under 

multiplication then H is a subgroup of G. 

Proof: 

 By hypothesis a,bεH=abεH 

Let us now prove that aεH=a
 -1

εH 

It is given that H is closed under multiplication 

Let aεH then a
2
=a.aεH 

             Let    a
3
=a

2
.aεH……………………. 

H contains infinite no of elements a, a
2
, a

3
………… but H is given to be a finite 

subset of the group G. thus there must be repetitions, in this  collection of 

elements. 

For some integers r, s with r>s>0 a
r
=a

s
 

Let a
 r – s

 = a
0 

=e 

But a
 r – s

εH since r-s>0 by definition of H 

Let eεH 
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Now consider a
 r – s

=e 

(a
 r – s

)a
 -1

a=e 

a
 r – s-1

=a
 -1

 but a
 r – s-1

εH 

but a
 -1

εH where aεH. 

We have a,bεH=abεH and aεH=a
 -1

εH where H is subgroup of G. 

Examples: 

1. Let G be the group of integers under addition H the subset consisting of all the 

multiplies of 5. Then H is a subgroup of G. 

2. Let G be the group of all real nos under addition and H be the set of all integers 

then H is a subgroup of G. 

3. Let G be the group of all non zero complex numbers a+ib(a, b real not both 

zero) under multiplication and let H={a+ibεG/a
2
+b

2
=1} then H is a subgroup of G. 

4. Let G be any group aεG let (a)= {a
i
/i=0,+-1,……} then a is a subgroup of G. it 

is called as cyclic subgroup generated by a. 

5. Let G be the group of all 2*2 matrices    with the condition ad-bc≠0 under 

multiplication. Let H= { } H is called subgroup of G. 

Definition: 

Let G be a group H a subgroup of G also let a,bεG then we say that a is concurrent to 

bmodH, written as a ≡ b mod H if ab 
1
εH 

Lemma 2. 3: 

The relation a ≡ b mod H is an equivalence relation. 

 

Proof: 

Let a, b, c ε H 
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It is given that H is a subgroup of G eεH     aa 
1
=eεH 

Then by definition a ≡ a mod H 

Reflexitivity is true. 

Now we assume that a ≡ b mod H 

Then by definition ab 
-1

εH 

(ab 
-1

)
 -1

εH 

(b 
-1

)
 -1

a 
-1

εH      ba 
-1

εH 

          Let b ≡ a mod H symmetry is true. 

Now we assume that a ≡ b mod H and b ≡ c mod H. then by definition 

 ab 
-1

εH and bc
 -1

εH 

Since H is a subgroup closure property is true ab 
-1

bc 
-1

  ac 
-1

εH 

Then by definition a ≡ c mod H. 

Transition is true. Then the relation is an equivalence relation. 

Definition:  

           if H is a subgroup of G and aεG, then Ha={ha/hεH} is called a right coset of H in 

G. ah={ah/hεH} is called left coset of H in G. 

Lemma 2.4: 

For all aεG Ha={xεG/a ≡ x mod H}. 

Proof: 

Let [a]= {xεG/a ≡ x mod H}. 

Then it is enough if we prove that Ha=[a] 

First we try to prove that Haς[a] 

Let xεHa then x=Ha for some hεH 

Post multiplying by a
 -1

 we get, 
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   (xa
-1

=h) 

(xa
-1

εh) 

(xa
 -1

) 
-1

εH 

(a 
-1

)
 -1

x
 -1

εH 

    ax
 -1

εH 

a ≡ x mod H   x ≡ a mod H 

x ε [a] 

hence Haς[a] 

to prove that [a]ςHa 

let xε[a] then by definition a ≡ x mod H    

ax
 -1

εH 

(ax
 -1

) 
-1

εH 

xa 
-1

εH 

So xa 
-1

=n for nεH 

Post multiplying by ‘a’ we get  

   xa 
-1

a=ha 

xe=ha 

x=ha 

but haεHa 

xεHa 

[a]ςHa 

From Ha=[a]  hence the proof. 
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Result: 

Prove that any two right coset of H in G are either identical or have no element is 

common. 

Proof: 

We know that Ha=[a] is an equivalence class of a in G. then by a theorem 1.1.1 these 

equivalence classes yields a decomposition of g into disjoint subsets. Thus any two right 

coset H in G are either identical or have no element in common. 

Let us consider two right coset Ha and Hb of H in G where a, b εG. 

Assume that Ha and Hb have an element C in common. 

     Cε Ha ∩ Hb  

   Cε Ha and Cε Ha and Hb 

C=h1a and c=h2b for some h1, h2εH      h1a=h2b 

Pre multiplying both sides by h1
 -1

 we get  

          h1
-1

h1a= h1
-1

h1b 

a=h3b where h3=h1
-1

h2 

Ha=Hh3b 

=Hb 

Ha=Hb 

Any two right coset of H in G are either identical or have no element is common. 

Lemma 2.4.5: 

There is a one to one correspondence between any two right cosets of H in G. 

Proof: 

Let G be a group and H a subgroup of G. let a, b εG 

Let Ha and Hb be two right cosets of H in G 

Define Ф: Ha                    Hb 



KARPAGAM ACADEMY OF HIGHER EDUCATION 
      CLASS: II BSC MATHEMATICS                                            COURSE NAME: Group theory I 

 COURSE CODE: 17MMU303                  UNIT: II                           BATCH-2017-2020 
 

 

Prepared by Dr. K. Kalidass, Assistant Professor, Department of Mathematics, KAHE Page 8/25 

By Ф(ha)=hb  ¥ hεH 1 

Let us prove that the mapping Ф is one to one and onto let h1, h2εH 

Then h1a and h2aεHa 

Now Ф(h1a)=Ф(h2a) 

  Let h1b=h2b 

Let h1=h2 

Post multiplying we get h1a=h2a 

Ф is one to one by its definition 

Let hbεHb then hεH 

. haεHa 

But we have the mapping Ф(ha)=hb 

For every element hbεHb F an element haεHa such that Ф(ha)=hb 

Thus Ф is a one to one correspondence. 

Theorem 2.1: 

Lagrange’s theorem: 

Statement: 

If G is a finite group and H is a subgroup of G, then o(H) is a division of o(G). 

Proof: 

Since Ha=[a] any two right coset being 

i) Equivalence classes are either disjoint or identical. 

ii) Also the union of the distinct right coset in G. 

iii) Let there be K distinct right coset. Since there is an one to one correspondence 

between any two right cosets, all the right cosets have the same no of elements. 

But H=He is a right coset and has o(H) elements. So the K distinct right cosets 

each having o(H) elements fill out g. 
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So K.o(H)=o(G) 

o(H) is a divisor of o(G) 

Hence the theorem. 

 

Note:    

      let G be aa finite group. 

H be a subgroup of G we know that o(H) is a divisor of o(G). 

o(H)/o(G) 

o(G)=K.o(H) where K is the no of distinct right cosets of H in G. 

K=o(G)/o(H) 

Problem: 

Given an example of an infinite subgroup of an infinite group whose index infinite. 

Solution: 

Let G=z 

Let H=2z 

i
H

G=number of  distinct right cosets of H in G=2. 

 

Definition: 

Let G be a group and aεG. The order or period of a is the least positive integer m such 

that a
m
=e. it is denoted by o(a) 

o(a)=m 

.a
o(a)

=e 

If no such integer exists then a is of infinite order. 

Example:  

G={1,-1,I,-i} here 1 is the multiplicative identity. 

e=1           (-1)
2
=1      i

4
=1      i

8
=1      i

12
=1     (-i)

4
=1     (-i)

8
=1    (-i)

12
=1 
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0(-1)=2    0(i)=4    0(-i)=4 

 

 

Corollary’s for lagrange’s theorem: 

Corollary 1:   

if G is a finite group and aεG then o(a)/o(G). 

Proof:  

 Let us produce the subgroup of G whose order is 0(a). consider the cyclic subgroup 

generated by a. 

(a)={e,a,a
2
,……..} 

Now a
o(a)

=e(by def) 

The subgroup has atmost 0(a) number of elements. 

If it has less than 0(a) number of elements then a
i
=a

j
 for some integers I and j where 

o≤i≤j≤o(a)       j-i>0        a
j-i

=e   but  o<j-i<o(a). 

We have an integer j-i<0(a) for which a
j-i

=e  contradicting the definition of o(a). 

The cyclic group a has exactly o(a) number of elements then by lagrange’s theorem 

o(a)/o(G) 

Corollary 2:  

If G is a finite group and aεG then a
o(G)

=e 

By corollary 1 we have o(a)/o(G) 

o(G)/o(a)=k where K is some positive integer 

o(G)=k.o(a) 

Now a
o(g)

=a
k.o(a)

 

(a
o(a)

)
k
=e

k
=e 

Hence a
o(G)

=e 
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Definition:  

If a and b are relatively prime, we can find integers m and n such that ma+nb=1. 

 

 

Corollary 3: 

 Euler’s theorem: 

If n is a positive integer and ‘a’ is a integer which is relatively prime to n then a
Ф(n)

≡1 

mod n where Ф(n) is the number of positive integer less than n and relatively prime to n. 

Proof: 

Let G={[x]/x is an integer less than n and relatively prime to n}. 

We know that G is a group w.r.to multiplication of reside classes as the composition also 

now o(G)=Ф(n) 

If ‘a’ is a positive integer relatively prime to n then [a]εG 

. [a]
o(G)

=identity=[1] 

i.e., [a][a]…….[a]=1 

i.e.,a
Ф(n)

=1 

i.e.,a
Ф(n)

=1 mod n 

hence the corollary. 

Corollary 4:  

Fermat’s theorem: 

Statement:  

If p is a prime number and a is any integer then ap=a mod p. 

Proof: 

        let G be the set of non zero residue classes of integers module p. if p is a prime 

number then w.r.to multiplication of residue classes. A is a group of order p-1. The 

identity elements of this group is [1]. 
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Now suppose a is an integer 

Case 1: 

 p is an divisor of a. 

p/a 

p/a
b
 

p/a
p
-a 

a
p
=a mod p 

case ii) p is not a divisor of a. 

in this case [a]≠o   [a]εG 

now a
o(G)

=[1] by corollary 2 

a
p-1

=[1] 

p/a
p-1

-1 

p/a
p
-a 

a
p
≡a mod p   hence the corollary. 

Definition: 

In a group G and e are said to be trivial subgroup of G and the remaining subgroups are 

called non trivial subgroup of G. 

Corollary 5: 

If G is a finite group whose order is a prime number then G is a cyclic group or prove that 

finite group of prime order is cyclic. 

Proof: 

Let G be a finite group. 

Let o(G)=p where p is a prime number 

G has no non trivial subgroupsH 

If H is a non trivial subgroup of G then by lagranges theorem o(H)/o(G)=p 
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Since p is prime its divisors are 1 and p. 

o(H)=1   or o(H)=p 

If o(H)=1 then since ?H is subgroup of G we must have h=G 

G has no non trivial subgroup H let us assume that a≠eεG and H=(a), then H is a cyclic 

subgroup generated by (a) but H≠{e} since a≠e. 

H=G(G has no non trivial subgroup) 

G is a cyclic group generated by (a). 

A counting principle: 

Let H and K be any two sungroups of a group G. define HK={xεG/x=hk,hεH,kεK} HK is 

a non empty subset of G. but HK need not be a subgroup of G. 

Example: 

Let G=s3={e, Ф, ψ, ψ
2
, Фψ, ψФ} 

O(s3)=6  let H={e, Ф} and K={e, Фψ} H and K are subgroups of G. sine they are closed 

and inverse of Ф and Фψ are themselves respectively. 

Now HK={e,ФФψ,Ф
2
ψ}   (Ф

2
=e) 

HK consists of 4 elements and 4*6 by lagranges theorem HK is not a subgroup. 

Lemma 2.5: 

HK is a subgroup of G iff HK=KH. 

Proof: 

First let us suppose that HK=KH now we try to prove that HK is a subgroup of G since 

eεHK, HK is a non empty subset of G. since HK=KH we have h1k1=k2h2 

H1,h2εH  k1, k2εK 

Here it need not be h1=h2 and k1=k2 

Let x1yεHK 

Then x=h1k1        y=h2k2    h1h2εH      k1k2εK 

Now consider xy=( h1k1)( h2k2) 

=h1(k1h2)k2=h1(h3k3)k2=(h1h3)(k3k2)εHK 
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HK ic closed. 

Let xεHK 

Then x=hk for some hεH      kεK 

Now x
 -1

=(hk) 
-1 

=k
 -1

h 
-1

εKH=HK 

X
 -1

εHK  whenever xεHK 

Then by a lemma HK is a subgroup of G.  

Conversely let us assume that HK is a subgroup of G. then we prove that HK=Kh 

Let hεH1 kεK then  khεKH 

Let hεH1    kεK   then khεKH 

Since H and k are subgroup of G. 

hεH=h
 -1

εH 

kεK=k
 -1

εK 

h
 -1

k
 -1

εHK 

(h
 -1

k
 -1

)
 -1

εHK 

(k
 -1

)
 -1

(h
 -1

)
 -1

εHK 

khεHK 

KHεHK 

Now let xεHK 

Then x
 -1

εHK 

x
-1

=hk where hεH , kεK 

(x
 -1

)
 -1

=(hk)
 
-1 

x=k
 -1

h
 -1

εKH=HKςKH 

HK=KH 
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Hence HK is a subgroup of iff HK=KH 

Corollary: 

If H and K are subgroups of an abelian group G then Hk is a subgroup of G. 

Proof:  

Hk is a non empty subset of g since G is aabelian and H, K are subgroups of G we have 

hk=kh  ¥  kεK,  hεH 

HK=Kh 

Then by the above lemma HK is a sub group of G. 

Theorem 2.2: 

If H and K are are finite subgroups of G of orders o(H) and o(K) respectively then 

o(HK)=  

Proof: 

Case i) let H∩K={E}   o(H∩K)=1 

In this acse it is enough to prove that o(HK)=o(H).o(K) 

The elements of HK are h1k1, h2k2,h3k3………… 

Where h1, h2 ,h3……….εH and k1, k2, k3,……….εk 

This list contains o(H).o(K) no of elements. 

Claim: 

Each product in this list is distinct h1k1≠h2k2 whenever h1≠h2 if possible let us assume 

that h1k1=h2k2   whenever h1≠h2. 

Per multiplying by h2
 -1

 and post multiplying by k1
 -1

 on both sides we get 

h2
 -1

h1k1k1
 -1

= h2
 -1

h2k2k1
 -1

 

h2
 -1

h1= k2k1
 -1

 

but h2
 -1

h1εH and k2k1
 -1

εK 

h2
 -1

h1εH∩K={e}= h2
 -1

h1=e    h2=h1 
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a contradiction to our assumption H is a subgroup. Thus our assumption is wrong. Hence 

each product in this list is distinct all the elements in this list of HK are distinct having 

o(H).o(K) number of elements. Thus in this case H∩K={e} 

we have o(HK)=  

case ii) H∩K≠{e} 

we shall know show that the list of elements of HK contains repetitions elements, 

repeating exactly o(H∩K) times. 

Let h1εH∩K 

Then hk=(hh1)(h1
 -1

) 1 

Where hh1εH  and h1
 -1

kεK thus hk is duplicated in the product atleast o(H∩K) times 

however if hk=h
 -1

k 
-1

 

Then h
 -1

hk(k
1
)

 -1
=h

 -1
h

1
k

1
(k

1
)

 -1
 

K(k
1
)

 -1
=h

 -1
h

1
=u (say) 

uεH∩K 

h
1
=hu    k

1
=u

 -1
k 

thus all duplications are taken into consideration in equation 1. 

Hk appears in the list of HK exactly o(H∩K) times. 

Thus the number of distinct elements in HK is the total no of elements in the list HK. 

O(H).o(K) divided by the no of times a given element appears namely o(H∩K) 

o(HK)= . 

Definition:  

Cyclic group: 

A group G is called a cyclic group if for some aεG, every element xεG is of the form a
m

 

where m is the some integer. The element a is called a generator of G. 

Normal subgroups and Quotient groups. 
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Definition: 

Let G be a group. A sub group N of G is said to be a normal subgroup of G, if for every 

gεG and nεN, gng
 -1

εN. 

Equivalently if gNg
 -1

={gng
 -1

/nεN} then N is a normal subgroup of G. then gNg
 -1

ς ¥ 

gεG. 

Lemma 2.6: 

 N is a normal subgroup of G iff gNg
 -1

=N  ¥ gεG. 

Proof:  

If gNg
 -1

=N  for every gεG, certainly gNg
 -1

ςN so by definition N is normal in G. 

Now let us assume that N is normal in G. then by definition if gεG, gNg
 -1

ςN 

Now gNg
 -1

= gN(g
 -
1)

 -
1ςN ¥ g

 -1
εG 

Now since gNg
 -1

ςN, N=g(g
 -1

Ng)g
 -1

ς gNg
 -1

ςN 

Now we get, gNg
 -1

=N ¥ gεG hence the lemma. 

Lemma 2.7: 

The subgroup N of G is a normal subgroup of G iff every left coset of N is G is a right 

coset of N in G. 

Proof: 

Let us assume that N is a normal subgroup of G then by a lemma 2.6 gNg
 -1

=N ¥ gεG. 

Post multiplying both sides by g we get gNg
 -1

g=Ng 

i.e., gN=Ng 

every left coset of N in G is a right coset of N in G. conversely let N be a subgroup of G. 

every left coset of N in G is also a right coset of N in G. let g be any element of G. then 

gN=Ng for some gεG. 

Since eεN, ge=gεgN=Ng 

gεNg 

also g=egεNg  i.e.,gεNg 
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gN=Ng 

post multiplying both sides by g
 -1

 we get  

gNg
 -1

=Ngg
 -1 

gNg
 -1

=N 

then by a lemma 2.6 N is a normal subgroup of G. 

Note: 

If H is a subgroup of G then HH=H or H
2
=H. 

Proof: 

Now HH={h1h2/h1h2εH}ςH 

HHςH 

HHHeH 

HHH 

HH=H or H
2
=H 

Lemma 2.6.3: 

A subgroup N of G is a normal subgroup of G iff the product of the two right cosets of N 

in G is a right coset of N in G. 

Proof: 

First we assume that N is a normal subgroup of G. let a, bεG and consider the two right 

cosets Na and Nb. 

Now NaNb=N(aN)b 

=(NN)ab 

=Nab 

=Nc where c=abεG 

Hence the product of any two right cosets of N in G is again a right cosets of N in G. 
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Conversely let us assume that the product of any two right cosets of N in G is again a 

right coset of N in G. 

We have to prove that N is a normal in G. by hypothesis NaNb=Nc for some cεG 

First we try to prove that NaNb=Nab 

To prove that Nc=Nab 

Now ab=eaeb=NaNb=Nc 

abεNc 

now ab=eabεNab 

abεNab 

but we know that any two right cosets are either distinct or identical. 

Now we get Nab=Nc 

Hence we have let a=g, b=g
 -1

 

Then we have NgNg
 -1

=Ngg
 -1

 

NgNg
 -1

=N  ¥  gεG 

Now gNg
 -1

ε gNg
 -1

¥nεN 

gNg
 -1

=e gNg
 -1

εNgNg
 -1

=N 

gNg
 -1

εN  ¥ gεG  and nεN 

then by definition N is a normal subgroup of G. 

Hence the lemma.  

SYLOWS THEOREM: 

Statement: 

Suppose G is a group of finite order and p is a prime number. If p
m

/o(G) and p
m+1

 is not a 

divisor of o(G), then G has a subgroup of order p
m

. 

Proof: 

We shall prove that the theorem by induction on o(G). 



KARPAGAM ACADEMY OF HIGHER EDUCATION 
      CLASS: II BSC MATHEMATICS                                            COURSE NAME: Group theory I 

 COURSE CODE: 17MMU303                  UNIT: II                           BATCH-2017-2020 
 

 

Prepared by Dr. K. Kalidass, Assistant Professor, Department of Mathematics, KAHE Page 20/25 

The theorem is true if o(G)=1  

if o(G)=1 then p
o
/o(G) and p

|
*o(G) and G has a subgroup G itself of order p*{e} 

let us assume the theorem is true for groups of order less than that of G. 

let o(G)=p
m

.n where p is not a divisor of n. if m=0, then the theorem is p={e} obviously 

true. 

If m=1 the theorem is true by cauchys theorem. 

So let m>1 then G is a group of composite order and so G must posses a subgroup H such 

that H≠G 

If p is not a divisor of o(G)/o(H), then p
m
/o(H) because o(G)=p

m
.n=o(H).o(G)/o(H) also 

p
mh

 cannot be a divisor of o(H) because p
mh

 will be a divisor of o(G) of while o(H) is 

divisor. 

Further o(H)<o(G) by our induction hypothesis, the theorem is true for H. 

H is a subgroup of order p
m

 and this will also be a subgroup of G. so let us assume that 

for every subgroup H of G where H≠G, 

P is a divisor of o(G)/o(H) 

Consider the class equation, 

O(G)=o(z)+∑aεz o(G)/o(N(a)) 

Since aεz    N(a)≠G, 

According to our assumption p is a divisor of ∑aεz o(G)/o(N(a))also p/o(G) 

We conclude that p is a divisor of o(z). 

Then by cauchys theorem z has an element b of order p. 

Hence z is the center of G. also N={b} is a cyclic subgroup of z of order p. 

Since bεz N is a normal subgroup of G of order p. 

Now consider the quotient group G
|
=G/N 

Then o(G
|
)=o(G

|
)/o(N)=p

m
n/p=p

m-1
 

O(G
|
)<o(G) 
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By our induction hypothesis G
|
 has a subgroup s

|
 of order p

m-1
 

We know that  

Ф: G                G/N defined as Ф(x)=Nx¥xεG is a homomorphism of G onto G/N with 

kernel N. 

Let S={xεG/Ф(x)εS
1
} 

Then S is a subgroup of G and S
1
≈S/N 

O(S
1
)=o(S

*
)/o(N) 

O(s)=o(s
1
).o(N)=p

m-1
.p=p

m
 

S is a subgroup of order p
m

 

Hence the theorem. 

 

 

 

CAUCHY'S THEOREM: 

Statement: 

Suppose G is finite abelian group and p/o(G) i.e., p is a divisor of o(G) where p is a prime 

number. Then there is an element a≠eεG. Such that a
p
=e. 

Proof: 

Let us prove that this theorem by the method of this induction on the order of G. 

Assume that the theorem is true for abelian groups of order is less that G. 

The theorem is vacuously true for groups of order one. 

If G has no proper subgroups then G must be of prime order because every group of 

composite order possesses proper subgroups. 

But p is prime and p/o(G)=o(G) must be p. also we know that every group of prime order 

is cyclic each element a≠eof G will be a generatorof G. 

G has p-1 element as a≠e such that a
p
=a

o(G)
=e. 
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If G has a proper subgroup H H≠{e} and H≠G and if p/o(H) then by our induction 

hypothesis the theorem is true for H and also H is abelian group with o(H)<o(G). 

F an element bεH and b≠e show that b
p
=e. 

Let us assume that p is not a divisor of o(H). since G is a abelian . H is a normal subgroup 

of G and so G/H is a quotient group. 

Since G is a abelian G/H is also abelian. 

Since o(G/H)<o(G) since o(H)>1 since p/o(G) and p is not a divisor of o(H). 

P is a divisor of o(G)/o(H). hence by our induction hypothesis the theorem is true for the 

group G/H. 

Since H is the identity element of  G/H F an element C in G such that Hc≠H is G/H. 

So that (Hc)
p
=H 

With quotient group G/H, o(Hc)=p 

(Hc)
p
=H 

Hc
p
=H=C

p
εH 

By corollary of lagranges theorem we have (C
p
)

o(H)
=e 

(C
o(H)

)
p
=e 

d
p
=e 

let us prove that this d≠e. 

if we assume that d=e, then consider that  

(Hc)
o(H)

=Hc
o(H)

 

=Hd 

=He 

=H 

(Hc)
o(H)

=H is the identity of G/H. 

But o(Hc)=p as Hc=G/H 
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p/o(H) which is a contradiction our assumption d=e is wrong 

d≠e 

=dp=e 

d≠e show that d
p
=e 

hence the induction theorem is proved. 

CAUCHY THEOREM : 

Statement: 

If p is a prime number and p/o(G) then G has an element of order p. 

Proof: 

It is given that let G be a group and let aεG is the order of a is the least +ve integer m 

show that a
m

=e 

1. P is a prime number. 

2. p/o(G). 

we shall prove this theorem by the method of induction on o(G). 

Hence we may assume this theorem is true for all subgroups of G such that 

o(T)<o(G)             1 

if possible let W≠G be a subgroup of G. hence from equ1 p/o(W). then F an element 

b1≠eεW show that b1p=e. hence the theorem. 

In this case let us assume that let p is not a divisor of any proper subgroup of G. 

Let aεz(A)             3 

N(a)≠G 4 

And also let us assume that p is not a divisor of o(N(a)). 

p o(N(a)) 5 

we write the class equation as  

o(G)=o(z(G))+∑aεz(G)  o(G)/o(N(a))             6 
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we have p/o(G)              7 from the hypothesis of the theorem we have 

p o(N(a)) 8 from the equ5 

 

p     ∑aεz(a) o(G)/o(N(a)) 9 

then equ6 can be written as 

p     (o(G)-∑aεz(a) o(G)/o(N(a)))=o(z(G)) 10 

from 7 and 9 we have p    o(G)- ∑aεz(a) o(G)/o(N(a)) 11 

p/o(z(G)) 12 

but in this case we have p is not a divisor of any proper subgroup 

from 11 and 12 the only possibility is z(G)=G 

G is abelian. 

The remaining problem of this theorem will be true by use of cauchys theorem for 

abelian groups. 

Cauchys theorem for abelian group is suppose G is a finite abelian group and p is divide 

o(G) where p is prime then F an element a≠e show that a
p
=e. 

SYLOWS THEOREM FOR ABELIAN GROUP: 

STATEMENT: 

If G is an abelian group of order o(p) and if p is a prime number show that pα/o(G) then 

G has a subgroup of order pα. 

Proof: 

If α=0 then the subgroup satisfies the conclusion of the result so let us suppose that α≠0 

then p/o(G). 

Then by cauchys theorem for abelian group there is an element a≠eεG, a
p
=e 

Let S={xεG/xp
n
=e for some integer n} we have ep

n
;e<s. 

GεS and a≠e     s=e    s is non empty 
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We claim that S is a subset of G. if possible let w≠G be a subgroup of G hence p/o(W) 

then F an element b1≠eεW show that b1
p
=e hence the theorem in this case is let us assume 

that p is not a divisor of the order of any proper subgroup of G. 

Let aεz(G) 3 

N(a)≠G 4 

P           N(A) 5 

We write the class equation as, 

O(G)=o(z(G))+∑aεz(G)o(G)/o(N(G))              6 

We have p/o(G) from the hypothesis of the theorem 

P        o(N(a)) from equ 5  

p/ aεz(G)o(G)/o(N(G))             9 

then 6 can be written as  

o(G)- aεz(G)o(G)/o(N(G))             =0(Z(a))             10 

from 7 and 9 we have 

p/o(G)-∑aεz(G)  o(G)/o(N(a))=p/o(z(G)) 11 

 if H is a non empty finite subset of a group G and H is closed under multiplication then 

H is a subgroup of G, it is enough if we verify that H is closed. 

Let x,y εS. 

x
pn

=e   yp
m

=e for some integers. 

Now (xy)
p n+m

=x
p m+n

 

=xp
n
.p

m 
 yp

n
p

m
 

=(xp
n
)p

m
.(yp

m
)p

n 

=e.e=e 

(xy)
pn+m

=e for some integer n+m 

xyεs s is closed. 
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S is a subgroup of G. we next claim that o(s)=p
β
 

With β as an integer o<β<α. 

FOR IF f A PRIME NUMNER Q SHOW THAT Q/0(S),q≠p then by cauchys theorem 

for abelian group there is an element cεs, e≠e, show that c
q
=e since cεs, c

pn
=e for some 

integer n. 

Now p
n
 and q are respectively prime. 

We can find integers λ, μ show that λq+μp
n
=1 

C=c
|
=c λq+μp

n
=c

λq
.c μp

n
 

=(c
q
).(c

pn
)

μ
 

=e
λ
.e

μ
=e 

C=e this is a contradiction to the fact that c≠e. there is no prime number q/o(s) and q≠0 

o(s)=p
β
 for some β show that 0<β<α. by cauchys theorem o(S)/o(G). β≤α. Let us assume 

that β<α. Let us consider the abelian group G/s 

G is abelian G/S is also abelian. 

Now o(G/s)=o(G)/o(S) s is a normal subgroup of an abelian group is normal. And 

β<α=p/o(G/S). there is an element sx(xεG) is G/S, sx≠S such that (Sx)
pn

=S from some 

integer n>0.       But S=(Sx)
pn

=sxp
n
=x

pn
εs.          e=(x

pn
)

o(s)
=( x

pn
)

pβ
=x

pn+β
  xεs 

sx=s which is a contradiction to the fact that sx≠s β<α is impossible. the only possibility is 

β=α. O(s)=p
α
. 

S is the required subgroup of order p
α
.  

Hence the theorem. 

POSSIBLE QUESTIONS: 

Part-B( 5X8 = 40 Marks) 

Answer all the questions: 

1.  Let H be a subgroup of G. Then prove that 

    i) the identity element of H is the same as that of G 

   ii) for each aH the inverse of a in H is the same as the inverse of a in G. 
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2. State and prove Lagrange’s theorem. 

3.  A non-empty subset H of a group G is a subgroup of G iff 

     i) aH, bH abH 

     ii) aH  a
-1
H where a

-1
 is the inverse of a in G. 

 

4. State and prove Fermat theorem.  

5. If H and K are finite subgroups of G of orders O(H) and O(K), then prove that                

 O(HK)= . 

6.  Prove that A subgroup H of a group G is a normal subgroup of G if and only if  

     the product of  two right coset of H in G is a right coset of H in G. 

 

7. State and prove Euler’s theorem. 

 

8. i) Prove that N is a normal subgroup of G if and only if gNg
-1

 =N for all gG. 

   ii) Prove that a subgroup of  cyclic group is cyclic. 

 

9. Prove that the subgroup N of G is a normal subgroup of G iff every left coset of  

     N in G is a right coset of N in G. 

 

10. Let G be a group , N be a normal subgroup of G and G/N denote the collection of all right       

     cosets of N in G. Then prove that G/N is a group under the operation defined by    

     (Na)(Nb)=Nab, for all Na,Nb G/N. 
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UNIT-III 

SYLLABUS 

SYLLABUS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Properties of cyclic groups, classification of subgroups of cyclic groups. Cycle notation for 

permutations, properties of permutations, even and odd permutations, alternating group, 

properties of cosets, Lagrange’s theorem and consequences including Fermat’s Little theorem 
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Introduction to Homomorphism 

A homomorphism is a map that preserves selected structure between two algebraic structures, 

with the structure to be preserved being given by the naming of the homomorphism. 

 A semigroup homomorphism is a map that preserves an associative binary operation. 

 A monoid homomorphism is a semigroup homomorphism that maps the identity element 

to the identity of the codomain. 

 A group homomorphism is a homomorphism that preserves the group structure. It may 

equivalently be defined as a semigroup homomorphism between groups. 

 A ring homomorphism is a homomorphism that preserves the ring structure. Whether the 

multiplicative identity is to be preserved depends upon the definition of ring in use. 

 A linear map is a homomorphism that preserves the vector space structure, namely the 

abelian group structure and scalar multiplication. The scalar type must further be 

specified to specify the homomorphism, e.g. every R-linear map is a Z-linear map, but 

not vice versa. 

 An algebra homomorphism is a homomorphism that preserves the algebra structure. 

 A functor is a homomorphism between two categories. 

Homomorphism’s : 

Definition: 

A homomorphism is a mapping from one algebraic system to a like algebraic system 

which pressures structure. 

 A mapping Ф from a group G into a group G is said to be a 

homomorphism for all a,bεG  Ф(ab)=Ф(a).Ф(b). 

 

 

Example: 

Let Ф:G                G   also let  G  =G and Ф(x)=e≦xεG 

Then Ф is a homomorphism. 

Proof: 

http://en.wikipedia.org/wiki/Algebraic_structure
http://en.wikipedia.org/wiki/Semigroup_homomorphism
http://en.wikipedia.org/wiki/Associative
http://en.wikipedia.org/wiki/Binary_operation
http://en.wikipedia.org/wiki/Monoid_homomorphism
http://en.wikipedia.org/wiki/Group_homomorphism
http://en.wikipedia.org/wiki/Ring_homomorphism
http://en.wikipedia.org/wiki/Linear_map
http://en.wikipedia.org/wiki/Algebra_homomorphism
http://en.wikipedia.org/wiki/Algebra_over_a_field
http://en.wikipedia.org/wiki/Functor
http://en.wikipedia.org/wiki/Category_%28mathematics%29
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Let x,yεG is defined by let  G  =G and Ф(x)=e≦xεG 

Ф(x)=e   Ф(y)=e 

Since x,yεG we have xyεG 

Ф(xy)=e 

Moreover Ф(x). Ф(y)=e.e 

=e 

Now we have  Ф(xy)= Ф(x). Ф(y) 

Ф is homomorphism. 

Lemma 3.1: 

Suppose G is a group, N a normal subgroup of G define the mapping Ф from G to G/N 

by Ф(x)=Nx for all xεG. Then Ф is a homomorphism of G onto G/N. 

Proof: 

Let x,yεG 

Then Ф(x)=Nx and Ф(y)=Ny where ≦ x,yεG 

Since x,yεG,xyεG 

Ф(xy)=Nxy 

=Nx.Ny 

=Ф(x).Ф(y) 

Then by definition Ф is a homomorphism of G into G/N let yεG/N then Y=Nx where xεG 

and Ф(x)=Nx=Y 

Foe every YεG/N , F an element of x in G such that Ф(x)=Y. 

Then by definition Ф is onto. 

Hence Ф is a homomorphism of G onto G/N. 

 

Note:  

Ф is called the canonical homomorphism of G, onto G/N. 

 

Definition: 
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Let Ф be a homomorphism of G into G then the kernel of Ф is denoted by KФ is defined 

as kФ={xεG/Ф(x)=e  } where e is the identity element of G. 

 

Lemma 3.2: 

If Ф is a homomorphism of G onto G then 

i) Ф(e)=e, the unit element of G 

ii) Ф(x
 -1

)=[Ф(x)]
 -1

 ≦ xεG 

Proof: 

i) Let xεG then Ф(x)εG 

Consider Ф(x)  e  =Ф(x) 

=Ф(xe) 

=Ф(x).Ф(e) 

=Ф(e) 

ii) Now e   =Ф(e) 

=Ф(xx
 -1

) ≦xεG 

=Ф(x).Ф(x 
-1

) 

=[Ф(x)] 
-1

=Ф(x 
-1

) 

Hence the lemma 

Note: 

The above lemma shows that e is the kernel of any homomorphism. 

The kernel k is always a non empty subset of G. 

 Lemma 3.3:  

If Ф is a homomorphism of G into G with kernel k1 then k is a normal subgroup of G. 

(or) the kernel of a homomorphism is a normal subgroup. 

Proof: 

By the previous lemma we have eεk 

K is a non empty subset of G. 

Let x1yεk then by definition Ф(x)=e    and Ф(y)=e     

Now consider Ф(xy)=Ф(x).Ф(y) 

=e   . e 
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=e 

xyεk whenever x,yФk 

Let xεk then by definition Ф(x)=e 

Now consider Ф(x
 -1

)=[Ф(x)]
 -1

 

=(e)
 -1

 

=e 

X
 -1

εk whenever xεk 

K is a subgroup of G 

Let aεG and xεk then by definition Ф(x)=e 

Now consider Ф(axa
 -1

)=Ф(a)Ф(x)Ф(a 
-1

) 

=Ф(a)eФ(a 
-1

) 

=Ф(a)Ф(a 
-1

) 

=Ф(aa 
-1

) 

=Ф(e) 

=e 

axa
 -1

εk ≦xεk and aεG 

K is normal subgroup of G. 

Lemma 3.4: 

If Ф is a homomorphism of G onto G with lernel k then the set of all inverse images of 

gεG under Ф in G is given by kx, where x is any particular inverse image of g. 

If   g   ε  G then we say that an element xεG is an inverse image of g under Ф1 

If Ф(x)=g 

If  g=e then the set of all inverse images of g is k. 

Let g≠e   if kεK and y=kx≠kx then Ф(k)=e 

Now consider 

Ф(y)=Ф(kx)=Ф(k).Ф(x) 

=eФ(x) 

=Ф(x) 
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=g   by definition 

Y=kx is also an inverse image of g thus all the elements is kx are mapped into g 

whenever Ф(x)=g 

Even if any othr element z in G is the inverse image of g  and   G. we can shw that zεkx 

Now Ф(z)=g but Ф(x)=g 

Ф(z)=Ф(x) 

Ф(z)[Ф(x)]
 -1

=e 

Ф(z)Ф(x 
-1

)=e 

Ф(zx 
-1

)=e 

zx 
-1

εk  zεkx 

Kx contains exactly all the inverse images of g whenever x is a single such inverse image 

Hence the lemma. 

Note: 

If k={e} then by lemma 2.7.4 gεG has exactly one inverse image. Ф is a one to one 

mapping. 

Definition: 

Isomorphism: 

A homomorphism Ф from a group G into a group G is said to be an isomorphism if Ф is 

one to one. 

Definition: 

Two groups G, G
*
 are said to be isomorphic if there is an homomorphism of G onto G

*
. 

in this case we write G≈G
*
 

We have the following three facts 

i) G≈G
*
 

ii) G≈G
*
= G

*
≈G 

iii) G≈G
*=

G
*
≈G

**
=G≈G

**
 

Hence the relation of isomorphic is the set of all groups is an equivalent 

relation. 
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Corollary: 

A homomorphism Ф of G into G with the kernel k is an isomorphism of G into G iff 

k={e}. 

Proof: 

Let us first assume that Ф is an isomorphic of G into G 

Then by definition Ф is one to one 

Let aεk  Ф(a)=e  where e is the identity element of G. 

=Ф(e) 

Ф(a)=Ф(e) 

A=e   Ф is one to one. 

K={e} 

inversly assume that k={e} now it is enough to show that Ф is one to one let x,yεG then 

Ф(x), Ф(y)εG  

now Ф(x)=Ф(y) 

post multiplying on both sides we get [Ф(y)]
 -1

 then we have 

Ф(x)[Ф(y)]
 -1

=Ф(y)[Ф(y)]
 -1

 

Ф(x).Ф(y 
-1

)=e 

Ф(xy 
-1

)=e 

xy 
-1

εk=e 

xy 
-1

=e 

x=y 

there Ф is one to one and hence Ф is isomorphic. 

 

 

Theorem 3.1: 

Fundamental theorem on homomorphism of groups. 

Let Ф be a homomorphism of G onto G with kernel k then G/k≈G 

(or) 
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Every homomorphic image of G is isomorphic to some quotient group of G. 

Proof: 

Let us define ψ:G/k        G by 

Ψ(ka)=Ф(a) 1 where ka is any element of G/k and aεG. 

Let us first prove that the mapping to show that ka=kb      ψ(ka)=ψ(kb)≦ka,kbεG/k 

A, bεG 

Now we assume that ka=kb 

Now a¥ka=kb 

Aεkb 

a=kb where kεk 2 

now ψ(ka)=Ф(a) by equ 1 

=Ф(kb) by equ 2 

=Ф(k)Ф(b) 

=Ф(b) 

=≦ψ(kb) by equ 1 

Ψ(ka)=ψ(kb) whenever ka=kb 

Ψ is called well defined. 

Let ka, kb εG/k where a, bεG 

Now ψ(ka, kb)=ψ(kab) 

=Ф(ab) 

=Ф(a)Ф(b) 

=ψ(ka).ψ(kb) 

Ψ is homomorphism 

Given that Ф is onto for every gεG  F a gεG such that Ф(g)=g 

Ψ(kg)=g 

For every g   ε  G kgεG/k such that ψ(kg)=g 

Then by definition ψ is onto 
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Let us show that ψ is one to one by showing that the kernel of ψ namely kψ consists of 

only one element k which is the identity element of G/k. 

By definition kψ={kaεG/k/ψ(ka)=e} 

={kaεG/k/Ф(a)=e  } 

={k} 

Then by previous corollary ψ is one to one then by definition G/k≈G. 

Note: 

From theorem 2.7.1 we note that the groups G/k form homomporphic images of the given 

group G where k is normal in G. but by lemma 2.7.1 for any normal subgroup N of G, 

G/N is a homomorphic images of G. thus there is a one to one correspondence between 

homomorphc images of G and normal subgroup of G. to get all homomorphic images of 

G we can find all normal subgroups of G and construct all groups G/N. the set of all such 

constructed groups gves all homomorphic images of G. 

Definition: 

A group is said to be simple if it has no non trivial normal subgroups. If it has non trivial 

homomorphic images. 

Lemma 3.5: 

Let Ф be a homomorphism of G onto G with kernel k. For H a subgroup of G. let H be 

defined by H={xεG/Ф(x)εH} then H is a subgroup of G and H>k. if H is normal in G 

then H is normal in G. moreover this association sets up a one to one mapping from the 

set of all subgroup of G which contains k. 

Proof: 

Let us first show that kςH and H is a subgroup of G. 

Let kεk. 

Then by definition Ф(k)=e 

Now e  ε  H 

Ф(k)εH 

.kεH 
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.kςH 

Now Ф(e)=e  ε  H 

eεH 

H is a non empty subset of G. let x, y εH 

Ф(x)εH, Ф(y)εH 

Now consider Ф(xy) 

Ф(xy)=Ф(x).Ф(y)εH 

xyεH 

let xεH  Ф(x)εH 

[Ф(x)]
 -1

εH 

Ф(x 
-1

)εH 

X 
-1

εH 

X
 -1

εH then by lemma H is a subgroup of G containing kernel k. 

ii).. given that H is normal in G 

we have to prove that H is normal in g. 

let aεG and xεH 

then by definition of H Ф(x)εH 

Ф(a)εG 

Now consider Ф(axa
 -1

)=Ф(a).Ф(x).Ф(a 
-1

) 

=Ф(a)Ф(a)[Ф(a)]
 -1

εH 

Axa
 -1

εH this is true ≦aεg and xεH 

H is normal in G. 

 

 

 

Lemma 3.6: 

Let G be a group for gεG defined as Tg:G         G by xTg=g
 -1

xg ≦xεG prove that 

Tg is an automorphism of G to itself. 



KARPAGAM ACADEMY OF HIGHER EDUCATION 
     CLASS: II BSC MATHEMATICS                                 COURSE NAME: Group theory I 

COURSE CODE: 17MMU303                  UNIT: III                      BATCH-2017-2020 
 

Prepared by Dr. K. Kalidass, Assistant Professor, Department of Mathematics, KAHE Page 11/25 

Proof: 

Let x, y εG then xyεG 

Now (xy)Tg=g -1(xy)g 

=g
 -1

xgg
 -1

yg 

=(g
 -1

xg)(g
 -1

yg) 

=xTg.yTg 

Tg is homomorphism. 

For every yεG x=gyg
 -1

εG such that xTg=g
 -1

xg 

=g
 -1

gyg
 -1

g 

=y 

Tg is onto. 

We shall now prove that Tg is one to one 

Now xTg=yTg 

g
-1

xg=g
 -1

yg 

x=y 

Tg is one to one 

Thus Tg is an isomorphism of G onto itslf and hence Tg is an sutomorphism of G to 

itself. 

Theorem 3.2: 

Let Ф be a homomorphism of G ang G  with kernel k and let N be a normal subgroup of 

G,N={xεG/Ф(x)εN}. Then G/N≈G/ N  equivalently G/N≈G/k/N/k 

Proof: 

Define a mapping ψ:G G  /  N by  

Ψ(g)=NФ(g) ≦gεG 

Since Ф is onto for every g ε G F a gεG such that Ф(g)=g 

NФ(g)=N   g 

ψФ(g)=N  g=  NФ(g) 

for every element NФ(g)such that ψ(g)=NФ(g). 
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by definition ψ is onto. 

Claim: 

Ψ is a homomorphism. 

Let x, y εG 

Then ψ(xy)=NФ(xy) 

=NФ(x).Ф(y) 

Ψ(x).ψ(y) 

Ψ is a homomorphism. 

Claim: 

the kernel of ψ is N. 

assume that T is the kernel of ψ then we prove that N=T 

tεT 

ψ(t)=N 

NФ(t)=N 

Ф(t)εN 

tεN 

TςN 

Let xεN   Ф(x)εN   NФ(x)=N     ψ(x)=N  xεT    NςT 

N=T 

The kernel of ψ is N. 

Thus ψ is a homomorphism of G onto N is kernel N. 

Then by a theorem 3.1 G/N≈G/N 

We shall now show that  

G≈G/K and N≈N/k 

By theorem 3.1 we have 

G/K≈G 

Since isomorphism is an equivalent relation we can write G≈G/k 

From the definition of N and N  Ф is restricted to N as the range N 
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N/k≈N 

N≈N/k 

G/N≈G/k/N/k 

SYLOWS THEOREM: 

Statement: 

Suppose G is a group of finite order and p is a prime number. If p
m

/o(G) and p
m+1

 is not a 

divisor of o(G), then G has a subgroup of order p
m

. 

Proof: 

We shall prove that the theorem by induction on o(G). 

The theorem is true if o(G)=1  

if o(G)=1 then p
o
/o(G) and p

|
*o(G) and G has a subgroup G itself of order p*{e} 

let us assume the theorem is true for groups of order less than that of G. 

let o(G)=p
m

.n where p is not a divisor of n. if m=0, then the theorem is p={e} obviously 

true. 

If m=1 the theorem is true by cauchys theorem. 

So let m>1 then G is a group of composite order and so G must posses a subgroup H such 

that H≠G 

If p is not a divisor of o(G)/o(H), then p
m
/o(H) because o(G)=p

m
.n=o(H).o(G)/o(H) also 

p
mh

 cannot be a divisor of o(H) because p
mh

 will be a divisor of o(G) of while o(H) is 

divisor. 

Further o(H)<o(G) by our induction hypothesis, the theorem is true for H. 

H is a subgroup of order p
m

 and this will also be a subgroup of G. so let us assume that 

for every subgroup H of G where H≠G, 

P is a divisor of o(G)/o(H) 

Consider the class equation, 

O(G)=o(z)+∑aεz o(G)/o(N(a)) 

Since aεz    N(a)≠G, 
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According to our assumption p is a divisor of ∑aεz o(G)/o(N(a))also p/o(G) 

We conclude that p is a divisor of o(z). 

Then by cauchys theorem z has an element b of order p. 

Hence z is the center of G. also N={b} is a cyclic subgroup of z of order p. 

Since bεz N is a normal subgroup of G of order p. 

Now consider the quotient group G
|
=G/N 

Then o(G
|
)=o(G

|
)/o(N)=p

m
n/p=p

m-1
 

O(G
|
)<o(G) 

By our induction hypothesis G
|
 has a subgroup s

|
 of order p

m-1
 

We know that  

Ф: G                G/N defined as Ф(x)=Nx≦xεG is a homomorphism of G onto G/N with 

kernel N. 

Let S={xεG/Ф(x)εS
1
} 

Then S is a subgroup of G and S
1
≈S/N 

O(S
1
)=o(S

*
)/o(N) 

O(s)=o(s
1
).o(N)=p

m-1
.p=p

m
 

S is a subgroup of order p
m

 

Hence the theorem. 

 

 

 

CAUCHY'S THEOREM: 

Statement: 

Suppose G is finite abelian group and p/o(G) i.e., p is a divisor of o(G) where p is a prime 

number. Then there is an element a≠eεG. Such that a
p
=e. 

Proof: 
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Let us prove that this theorem by the method of this induction on the order of G. 

Assume that the theorem is true for abelian groups of order is less that G. 

The theorem is vacuously true for groups of order one. 

If G has no proper subgroups then G must be of prime order because every group of 

composite order possesses proper subgroups. 

But p is prime and p/o(G)=o(G) must be p. also we know that every group of prime order 

is cyclic each element a≠eof G will be a generatorof G. 

G has p-1 element as a≠e such that a
p
=a

o(G)
=e. 

If G has a proper subgroup H H≠{e} and H≠G and if p/o(H) then by our induction 

hypothesis the theorem is true for H and also H is abelian group with o(H)<o(G). 

F an element bεH and b≠e show that b
p
=e. 

Let us assume that p is not a divisor of o(H). since G is a abelian . H is a normal subgroup 

of G and so G/H is a quotient group. 

Since G is a abelian G/H is also abelian. 

Since o(G/H)<o(G) since o(H)>1 since p/o(G) and p is not a divisor of o(H). 

P is a divisor of o(G)/o(H). hence by our induction hypothesis the theorem is true for the 

group G/H. 

Since H is the identity element of  G/H F an element C in G such that Hc≠H is G/H. 

So that (Hc)
p
=H 

With quotient group G/H, o(Hc)=p 

(Hc)
p
=H 

Hc
p
=H=C

p
εH 

By corollary of lagranges theorem we have (C
p
)

o(H)
=e 

(C
o(H)

)
p
=e 

d
p
=e 

let us prove that this d≠e. 

if we assume that d=e, then consider that  
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(Hc)
o(H)

=Hc
o(H)

 

=Hd 

=He 

=H 

(Hc)
o(H)

=H is the identity of G/H. 

But o(Hc)=p as Hc=G/H 

p/o(H) which is a contradiction our assumption d=e is wrong 

d≠e 

=dp=e 

d≠e show that d
p
=e 

hence the induction theorem is proved. 

CAUCHY THEOREM : 

Statement: 

If p is a prime number and p/o(G) then G has an element of order p. 

Proof: 

It is given that let G be a group and let aεG is the order of a is the least +ve integer m 

show that a
m

=e 

1. P is a prime number. 

2. p/o(G). 

we shall prove this theorem by the method of induction on o(G). 

Hence we may assume this theorem is true for all subgroups of G such that 

o(T)<o(G)             1 

if possible let W≠G be a subgroup of G. hence from equ1 p/o(W). then F an element 

b1≠eεW show that b1p=e. hence the theorem. 

In this case let us assume that let p is not a divisor of any proper subgroup of G. 

Let aεz(A)             3 
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N(a)≠G 4 

And also let us assume that p is not a divisor of o(N(a)). 

p o(N(a)) 5 

we write the class equation as  

o(G)=o(z(G))+∑aεz(G)  o(G)/o(N(a))             6 

we have p/o(G)              7 from the hypothesis of the theorem we have 

p o(N(a)) 8 from the equ5 

 

p     ∑aεz(a) o(G)/o(N(a)) 9 

then equ6 can be written as 

p     (o(G)-∑aεz(a) o(G)/o(N(a)))=o(z(G)) 10 

from 7 and 9 we have p    o(G)- ∑aεz(a) o(G)/o(N(a)) 11 

p/o(z(G)) 12 

but in this case we have p is not a divisor of any proper subgroup 

from 11 and 12 the only possibility is z(G)=G 

G is abelian. 

The remaining problem of this theorem will be true by use of cauchys theorem for 

abelian groups. 

Cauchys theorem for abelian group is suppose G is a finite abelian group and p is divide 

o(G) where p is prime then F an element a≠e show that a
p
=e. 

SYLOWS THEOREM FOR ABELIAN GROUP: 

STATEMENT: 

If G is an abelian group of order o(p) and if p is a prime number show that pα/o(G) then 

G has a subgroup of order pα. 

Proof: 

If α=0 then the subgroup satisfies the conclusion of the result so let us suppose that α≠0 

then p/o(G). 
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Then by cauchys theorem for abelian group there is an element a≠eεG, a
p
=e 

Let S={xεG/xp
n
=e for some integer n} we have ep

n
;e<s. 

GεS and a≠e     s=e    s is non empty 

We claim that S is a subset of G. if possible let w≠G be a subgroup of G hence p/o(W) 

then F an element b1≠eεW show that b1
p
=e hence the theorem in this case is let us assume 

that p is not a divisor of the order of any proper subgroup of G. 

Let aεz(G) 3 

N(a)≠G 4 

P           N(A) 5 

We write the class equation as, 

O(G)=o(z(G))+∑aεz(G)o(G)/o(N(G))              6 

We have p/o(G) from the hypothesis of the theorem 

P        o(N(a)) from equ 5  

p/ aεz(G)o(G)/o(N(G))             9 

then 6 can be written as  

o(G)- aεz(G)o(G)/o(N(G))             =0(Z(a))             10 

from 7 and 9 we have 

p/o(G)-∑aεz(G)  o(G)/o(N(a))=p/o(z(G)) 11 

 if H is a non empty finite subset of a group G and H is closed under multiplication then 

H is a subgroup of G, it is enough if we verify that H is closed. 

Let x,y εS. 

x
pn

=e   yp
m

=e for some integers. 

Now (xy)
p n+m

=x
p m+n

 

=xp
n
.p

m 
 yp

n
p

m
 

=(xp
n
)p

m
.(yp

m
)p

n 

=e.e=e 
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(xy)
pn+m

=e for some integer n+m 

xyεs s is closed. 

S is a subgroup of G. we next claim that o(s)=p
β
 

With β as an integer o<β<α. 

FOR IF f A PRIME NUMNER Q SHOW THAT Q/0(S),q≠p then by cauchys theorem 

for abelian group there is an element cεs, e≠e, show that c
q
=e since cεs, c

pn
=e for some 

integer n. 

Now p
n
 and q are respectively prime. 

We can find integers λ, μ show that λq+μp
n
=1 

C=c
|
=c λq+μp

n
=c

λq
.c μp

n
 

=(c
q
).(c

pn
)

μ
 

=e
λ
.e

μ
=e 

C=e this is a contradiction to the fact that c≠e. there is no prime number q/o(s) and q≠0 

o(s)=p
β
 for some β show that 0<β<α. by cauchys theorem o(S)/o(G). β≤α. Let us assume 

that β<α. Let us consider the abelian group G/s 

G is abelian G/S is also abelian. 

Now o(G/s)=o(G)/o(S) s is a normal subgroup of an abelian group is normal. And 

β<α=p/o(G/S). there is an element sx(xεG) is G/S, sx≠S such that (Sx)
pn

=S from some 

integer n>0.       But S=(Sx)
pn

=sxp
n
=x

pn
εs.          e=(x

pn
)

o(s)
=( x

pn
)

pβ
=x

pn+β
  xεs 

sx=s which is a contradiction to the fact that sx≠s β<α is impossible. the only possibility is 

β=α. O(s)=p
α
. 

S is the required subgroup of order p
α
.  

Hence the theorem. 

 

Automorphisms: 

Definition: 

An automorphism of a group is an isomorphism of an onto itself. 

Lemma 3.7: 

prove that A(G) is a group or if G is a group then A(G) the set of automorphisms of G is 

also a group. 
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Proof: 

We know that A(G) is a collection of all one to one mappings of an onto itself and A(G) 

is also a group under the composition of mappings as binary operation. 

We shall now show that A(G) is a subgroup of A(G). 

Define i:G            G by xi=x≦xεG 

Obviously I is the automorphism of G onto itself 

iεA(G) 

A(G) is a non empty subset of A(G) let T1,T2εA(G) 

We know that T1,T2 is one to one and onto whenever both T1,T2 are one to one and onto 

To show that T1,T2 is a homomorphism of G to itself  

Let x, yεG 

Then (xy) T1,T2=((xy)T1)T2 

=((xT1)(yT1))T2 

(xT1)T2(YT1)T2  ≦x,yεG by definition T1,T2 is a homorphism of G to itself. 

T1,T2εA(G) whenever T1,T2εA(G) next we prove that T
 -1

εA(G) whenever TεA(G) to 

show that T
 -1

 is a homomorphism of G to itself 

Now consider (xT
 -1

yT
 -1

)T=(xT 
-1

)T(yT
 -1

T) 

=x(T
 -1

T)y(T
-1

T) 

=xiyi 

=xy 

Post multiplying on both sides by T
-1

 we get 

(xT
 -1

yT
-1

)TT
 -1

=(xy)T
 -1 

(xy)T
 -1

=xT
 -1

yT
 -1

 

T
 -1

 is a homomorphism of G to itself 

T
 -1

εA(G) whenever TεA(g) is a subgroup of A(G) 

Hence A(G) is a group under the composition of mappings as binary operations. 

Note: 

A(G) is called the group of automorphism of G. 
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Definition: 

Let G be the group for gεG 

Define Tg:G            G 

By xTg=gxg
 -1

 ≦xεG then this mapping Tg is an automorphism of G. this automorphism 

of G is called an linear automorphism. 

Remark: 

An automorphism which is not inner is called as outer automorphism. 

Lemma 3.8: 

 Let G be a group for gεG defined as Tg:  G           G by xTg=g
 -1

xg ≦xεG 

Prove that Tg is an automorphism of G to itself. 

Proof: 

 Let x, yεG then xyεG 

Now (xy)Tg=g
 -1

(xy)g 

=g
 -1

xgg
-1

yg 

=(g
 -1

xg)(g
-1

yg) 

xTg.yTg 

Tg is a homomorphism. 

For every yεG x=gyg
-1

εG such that  

xTg=g
 -1

xg 

=g
-1

gyg
-1

g 

=y 

Tg is onto 

We shall now prove that Tg is onto. 

Now xTg=yTg 

G
 -1

xg=g
-1

yg 

X=y 

Tg is one to one. 
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Thus Tg is an isomorphism of G onto itself and hence Tg is an automorphism of G to 

itself. 

Group of inner automorphism of G: 

Define Ф(G)={TgεA(G)/gεG} 

We shall prove that Ф(G) is a subgroup of A(G). 

Now eεG 

.xTe=e
 -1

xe=e
 -1

x=ex 

=x 

=xi≦ xεG 

Te=iεФ(a) 

Ф(G) is a non empty subset of A(G) 

Let xεG 

Let Tg,ThεФ(a) where g,hεG 

Now consider, 

xTg=(gh)
 -1

x(gh) 

=h
 -1

g
 -1

xgh 

=h
 -1

(g
 -1

xg)h 

=(g
 -1

xg)Th 

=(xTg)Th 

=xTgTh ≦ xεG 

Tgh=TgTh whenever Tg,Th εФ(G) 

Let TgεФ(G) 

We have to show that Tg
 -1

εФ(G) 

To ,prove that TgTg
 -1

=c 

We have Tgh=TgTh 

.xTgTh=xTgh 

xTgTg
 -1

=xTgg
 -1

 

=xTe 
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=e
 -1

xe 

=x 

=xi 

TgTg
 -1

=iεФ(G) 

(Tg)
 -1

=Tg
 -1

εФ(G) since g
 -1

εG. 

Tg
 -1

=Tg
-1

εФ(G) since g
 -1

εG 

Tg
 -1

εФ(G) whenever TgεФ(G) 

Then by lemma Ф(G) is a subgroup of A(G). 

Ф(G) is a group. 

This group is called the group of inner automorphism of G. 

Note: 

Ф(G)ςA(G)ς 

Lemma 3.9: 

If g≈G/zwhere I(G) is the group of inner automorphism of G and z is the center of G. 

Proof: 

Define a map ψ: G           A(G) 

By ψ(g)=Tg ≦ gεG 

Let g, hεG then ghεG 

Now ψ(gh)=Tgh 

=TgTh 

=ψ(g)ψ(h) 

Ψ is a homomorphism of G into A(G) whose image is I(G). 

We shall now prove that the kernel of ψ is z. 

Suppose that k is the kernel of ψ then we prove that k=z 

Let kεk, then 

Ψ(k)=identity element of A(G) 

Tk=i 

xTk=xi 
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k
 -1

xk=x 

xk=kx 

kεz 

kςZ 

zεZ then by the definition of center of z we have zx=xz ≦ xεG 

x=z 
-1

xz 

xi=xTz 

i=Tz 

i=ψ(Z) 

zεk 

z=k 

ψ is a homomorphism of G into A(G) whose image is I(g) and kernel k=z then by 

theorem 2.7.1 

G/z≈the range of ψ is A(G) 

G/Z≈I(G) 

I(G)≈G/Z 

 

Lemma 3.10: 

Let G be a group and Ф an automorphism of G. if aεG is of order o(a)>0, then 

O(Ф(a))=o(a). 

Proof: 

Let us suppose that o(a)=n 

Then a
n
=e      1 

Now consider (Ф(a))
n
=Ф(a).Ф(a)……..Ф(a) 

=Ф(a, a, a, ……..a) 

=Ф(a
n
) 

=Ф(e)=e by lemma 2.7.2 

If possible let (Ф(a))
m
=e for o<m<n 
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Then (Ф(a))
m
=e=Ф(e) 

Ф(a
m
)=Ф(e)=a

m
=e 

This is a contradiction since o(a)=n 

Our assumption that (Ф(a))
m
=e is false 

Ф(a
n
)=e for the least =ve integer n 

[Ф(a)]
n
=e 

Ф(a) has order n 

O(Ф(a))=n=0(a). hence the lemma. 

Cayley’s theorem: 

Every group is isomorphic to a subgroup of A(S) for some appropriate S. 

Proof: 

Let G be a group put s=G, then for gεG. 

Define the mapping τg:G  G 

By xτG=xg  ≦ xεG 

Let x, yεG 

Then xτg=xg 

yτg=yg 

If xτg= yτg 

Then xg=yg         x=y     τg is one to one. 

If yεG then y=yg
 -1

g 

=(yg
 -1

)g 

=(yg 
-1

)τg 

Now yg 
-1

εG     yg 
-1

 is the pre image of y in G under τg. Τg is onto. 

Τg ε A(G) ≦ gεG 

Now define the mapping ψ:G      A(G) by ψ(g)=τg ≦gεG 

Let us know prove that ψ is hpomomorphism. 

Let a, bεG then for any xεG we have xτab=xab  ≦ xεG 

Now consider xτaτb=(xτa)τb 
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=(xa)τb 

=xab  ≦ xεG 

xτaτb=xτab 

τaτb=τab 

now consider ψ(ab)= τab 

= τaτb 

=ψ(a).ψ(b) 

Ψ is a homomorphism of G into A(G) suppose that k is the kernel of ψ. Let kεK then 

ψ(k)=I by definition of kernel. 

τk=i 

xτk=xi 

xk=xe 

k=e 

Ψ is one to one. 

Ψ is isomorphism of G into A(G). 

Also ψ is onto upto the range of ψ. We know that the range of a homomorphism is a 

subgroup of A(G). 

Hence every group is isomorphic to a subgroup of A(S) for some appropriate S. 

Theorem 3.3: 

 If G is a group H a subgroup of G and S is the set of all right cosets of H in G, then there 

is a homomorphism. Ө of G into A(S) and the kernel of Ө is the largest normal subgroup 

of G which is contained in H. 

Proof: 

Given that s={Hg/gεG} we oberve that s need not be a group and still be a group only if 

H is a normal subgroup of G. 

On s defines a mapping tg:s         S 

By (Hx)tg=Hxg, gεG, xεG 

Let x, yεG then 
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(Hx)tg=(Hy)tg 

Hxg=Hyg= Hx=Hy=x=y    tg is one to one. 

If HxεS for gεG then Hx=Hxg
 -1

g 

=( Hxg
 -1

)g 

=( Hxg
 -1

)tg 

Hxg
 -1

 is the preimage of Hx for any HxεS under tg 

=tg is onto thus tgεA(S) for gεG 

Then define a mapping Ө:G       A(S) 

By Ө(g)=tg ≦gεG 

Let g, hεG then Hx tgth=(Hxtg)th 

=(Hxg)th 

=Hxgh 

=Hxtgh 

Tgh=tg th 

Now consider Ө(gh)=tgh 

=tgth 

=Ө(g).Ө(H) 

Then by definition Ө is a homomorphism of G into A(S). 

Let k be the kernel of Ө then 

K={xεG/Ө(x)=i} 

={xεG/tc=i} 

={xεG/Hgtx=Hg ≦gεG} 

={ xεG/Hgx=Hg ≦gεG } 

K is the kernel of Ө iff xεk 

Hgx=Hg  ≦gεG 

We shall know prove that k is the largest normal subgroup of G contained in H. since k is 

the kernel of Ө by lemma 2.7.3 k is the normal subgroup of G. since is true for all gεG 

We choose g=e 
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Hex=He    Hx=H      xεH 

kςH 

k is a normal subgroup of G contained in H. now we prove that k is the largest normal 

subgroup of G contained in H. if N is a normal subgroup of G such that NςH then we 

prove that Nςk let nεN then gng
 -1

εN ≦gεG and nεN 

. gng
 -1

εH ≦gεG and nεN 

Hgng
 -1

=H 

Hgn=Hg 

Nςk 

K is the largest normal subgroup of G contained in H. hence the proof. 

Remarks: 

The above theorem can be applied to decide whether the group is simple as follows. 

Suppose the homomorphism Ө is not an isomorphism then k≠{e} k is a non trivial 

subgroup contained in H. G is simple. 

Lemma 3.11: 

 If G is a finite group and H≠G is a subgroup of G such that o(G)*i(H) then H must 

contain a non trivial normal subgroup of G. in particular G cannot be simple. 

Since o(A)*i(H)! there are 2 possibilities    

o(G)> i(H)! 

o(G)< i(H)! 

suppose that o(G)> i(H)!  by theorem ,       Ө:G  A(S) is a homomorphism where s 

is the collection of all right cosets of H in G. 

.. o(A(s))=i(H) 

=o(G)/o(H) 

O(A(S))=i(H)! 

We also know that the kernel k is the largest normal subgroup of G contained in H. in this 

case Ө cannot be an isomorphism as seen below. If Ө were an isomorphism between G 

and A(S) then Ө(G) would have o(G) elements and yet would be a subgroup of A(S) 
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. o(A(S))≥o(G) 

. i(H)!≥o(G) which is contradiction. Ө is not an isomorphism but a homomorphism then 

by the corollary under lemma 2.7.4 k≠e hence this homomorphism ensures the existence 

of a non trivial normal subgroup K in H and hence is in G. G is not simple. 

Let us know that o(G)<i(H)! 

Given that o(G)*i(H)=o(A(S)) 

By lagranges theorem A(S) can have no subgroup of order o(G). there is no subgroup 

isomorphism to G. however A(S) contains Ө(G). 

Ө(G) cannot be isomorphism in G. Ө cannot be an isomorphism. H must contain a non 

trivial normal subgroup of G. in this case also G is not simple.  

Hence the lemma 

Permutation groups: 

 We know that every group can be represented isomorphically as a subgroup of A(S) for 

some set S and in particular a finite group G can be represented as a sungroup of Sn, for 

some n where Sn is the symmetric group of degree n. 

Suppose that S is a finite set having four elements x1, x2, x3, x4 if ФεA(S)=S4 then Ф is a 

one to one mapping of s onto itself. 

For example if Ф:x1              x2 

                             x2                x4 

                             x3                x1 

 

                  x4                x3 this mapping can be represented as        we 

can represent this permutation as          

if Ф is a permutation is represented by          and ψ is a permutation can be 

represented by       then the permutation Фψ is given by  
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Фψ=                      =    

 

Let S be a set and ӨεA(S) 

Given two elements a,bεs we define a≡Ө
b
 iff b=aӨ

i
 for some integer I, where I can be 

positive, negative, zero. We claim this defines an equivalence relation since a≡Ө
Ө
≦aεs 

then we have a≡Ө
a
 relaxitivity is true. Now assume that a≡Ө

b
 then by definition b=aӨ

i
 

where I is some integer from this we have a=bӨ
 –I

 where –I is a negative integer. 

b≡Ө
a
 symmetry is true. Now we assume that a≡Ө

b
 and b≡Ө

c
 then by definition b=aӨ

i 

c=aӨ
j
 where I and j are some integers now c=bӨ

j
 

=aӨ
i
Ө

j
 

=aӨ
i+j

 

a≡Ө
c
 transitivity is true. The relation defined above is an equivalance relation on s. hence 

by theorem 1.1.1 this equivalance relation ≡ indices a decomposition of s into disjoint 

subsets, namely the equivalance classes. The equivalance classes of an element sεS is 

called the orbit of s under Ө. 

Orbit of s={sӨ
i
/i=0, ±1, ±2,……..} 

When s is finite, Ө is called as permutation and corresponding orbits are called ccles. In 

this case F a smallest +ve integer and depending on s such that sӨ
i
=s 

By a cycle of Ө we mean an ordered set {s,sӨ,sӨ
2
,…….sӨ

l-1
}, l is called the length of 

the cycle. 

Definition: 

A cycle with 2 elements is called as 2-cycles. 

Definition: 

A transposition is defined to be a permutation with effects only two elements. 

Example: 

In the cycle (1 3 4) we associate the permutation (1 3 4)=        

The permutation under the cycle has the same effect on the elements of the cycle but the 

permutation leaves other elements fixed. 

The permutation corresponding to a cycle (2 5) is a permutation (2 5)=    

Lemma 3.12: 
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Every permutation is the product of its cycles or every permutation can be uniquely 

expressed as a product of disjoint cycles. 

Proof: 

Let S be a finite set. Let Ө be the permutation. Let ψ be the product of the disjoint cycles 

of Ө. The cycles of Ө are of the form (s,sӨ,sӨ
2
,…….sӨ

l-1
). 

By the multiplication of cycles and since the cycles of Ө are disjoint. The image of s
|
εs 

under Ө namely s
|
Ө is the same as the image of s

|
 under ψ. 

Ө and ψ have the same effect on every element of s. hence Ө=ψ. 

Every permutation is the product of its cycles. 

Lemma 3.13: 

Every permutation is a product of 2cycles(transposition). 

Proof: 

Consider ‘m’ cycle (1, 2, 3…..m) 

A single permutation show that 

(1, 2, 3….m)=(1,2)(1,3)…(1,m) 

More generally the m-cycles 

(a1,a2…..am)=(a1,a2)(a1a3)….(a1am) 

This decomposition is not unique. 

By this we mean an m-cycle can be written as a product of two cycles is more than one 

way 

For example, 

(1 2 3)=(1 2)(13) 

       =(3 1)(3 2) 

Now since every permutation is a product of disjoint cycles and every cycle is a product 

of two cycles, we have every permutation is a product of 2 cycles. 

Remarks: 

(1 2 3 4)=      

(1, 2)(1, 3)(1, 4)=                      

=      

 

1. Now (1 2 3 ) =    
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(1, 2)(1, 3)=           

                              =     

 

(3 1)(3 2)  =             

 

=      

(1 2 3)=(1 2)(1 3) 

              (3 1)(3 2) 

Definitions: 

1. A permutation ӨεSn is called an even permutation if it can be represented as a 

product of even no of transpositions. 

2. A permutation is called an odd permutation if it is not an even permutation 
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POSSIBLE QUESTIONS: 

Part-B( 5X8 = 40 Marks) 

Answer all the questions: 

1. If f is a homomorphism of a group G into G', then prove that  

    i) f(e) = e', where e is the identity of G and e' is the identity of G' 

    ii) f(a
-1

) = [f(a)]
-1

, aG 

  

2. State and prove fundamental theorem on homomorphism of groups . 

 

3. State and prove Cayley’s theorem. 

 

4. State and prove Cauchy’s theorem for abelian groups. 

 

5. State and prove Sylow’s theorem for abelian groups. 

 

6. Suppose G is a group and N is a normal subgroup of G. Let f be a mapping from G to G/N 

defined by f(x)= Nx,  xG. Then f is a homomorphism of G onto G/N and kernel f =N. 

 

7. Show that aa
-1

 is an automorphism of a group G iff G is abelian. 

 

8. If  is a homomorphism of G into   with kernel K, then prove that K is a normal subgroup  

    of G. 

 

9. The set I(G) of all inner automorphisms of a group G is a normal subgroup of the group of its    

   automorphisms isomorphic to the quotient group G/Z of G where Z is the centre of G.    

 

 

10. Define a permutation. If A=  and B =  then find AB and BA. 
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UNIT-IV 

SYLLABUS 

SYLLABUS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

External direct product of a finite number of groups, normal subgroups, factor groups, Cauchy’s 

theorem for finite abelian groups 
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INTRODUCTION TO RING THEORY 

 In  algebra, ring theory is the study of rings—algebraic structures in which addition and 

multiplication are defined and have similar properties to those operations defined for the 

integers. Ring theory studies the structure of rings, their representations, or, in different 

language, modules, special classes of rings (group rings, division rings, universal enveloping 

algebras), as well as an array of properties that proved to be of interest both within the theory 

itself and for its applications, such as homological properties and polynomial identities . 

Definition  

 A non empty set R is said to be an associative ring if in R these are defined two 

operations denoted by ‘+’ and ‘.’ Called addition and multiplication respectively such that for all 

a,b,c ϵR 

i. a +b ϵ R 

ii. a +b=b+a 

iii. a+(b+c)=(a+b)+c 

iv. There is an element 0 in R such that a+0=0+a=a v a ϵ R 

v. There exist an element –a in R such that a+(-a)=0=(-a)+a 

vi. a.b ϵ R 

vii. (a.b).c=a.(b.c) 

viii. (i) Left Distributive law: 

a.(b+c)=a.b+a.c 

             (ii) Right distributive law: 

                     (b=c).a=b.a=c.a  

Definition  

              A nonempty set R is called a ring, if it has two binary operations called addition 

denoted by a + b and multiplication denoted by ab for a, b ∈  R satisfying the following axioms: 

Multiplication is associative, i.e. a(bc) = (ab)c for all a, b, c ∈  R.  

 

Distributive laws hold: a(b + c) = ab + ac and (b + c)a = ba + ca for all a, b, c ∈  R.  

Definition  

.              Let R be a ring. 

    (1)   If multiplication in R is commutative, it is called a commutative ring.  

    (2) If there is an identity for multiplication, then R is said to have identity. 

http://en.wikipedia.org/wiki/Abstract_algebra
http://en.wikipedia.org/wiki/Ring_%28mathematics%29
http://en.wikipedia.org/wiki/Algebraic_structure
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Representation_of_an_algebra
http://en.wikipedia.org/wiki/Module_%28ring_theory%29
http://en.wikipedia.org/wiki/Group_ring
http://en.wikipedia.org/wiki/Division_ring
http://en.wikipedia.org/wiki/Universal_enveloping_algebra
http://en.wikipedia.org/wiki/Universal_enveloping_algebra
http://en.wikipedia.org/wiki/Homological_algebra
http://en.wikipedia.org/wiki/PI_ring
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    (3) A nonzero element a ∈  R is said to have a left (resp. right) inverse b if ba = 1  

       (resp. ab = 1) We say that a is invertible or a unit in R if it has a left and a right inverse.                                               

(4)A commutative division ring is called a field.  

(5)An element a of a commutative ring R is called a zerodivisor if there is a nonzero b ∈  R 

such that ab = 0. An element a ∈  R that is not a zerodivisor is called a nonzerodivisor. If all 

nonzero elements of a commutative ring are nonzerodivisors, then R is called an integral 

domain.  

(6) A nonempty subset S of a ring R is called a subring of R if S is a ring with respect to 

addition and multiplication in R.  

Example of rings 

                   The set of integers Z, the set of rational numbers Q, the set of real numbers R and the 

set of complex numbers C are commutative rings with identity. 

NOTE 

i. In this case we also say that (R,+,.) is a ring 

ii. 0 is called the zero element of the ring and it is the additive identity element 

iii. If there is an element 1 in R such that a.1=1.a=a v a ϵ R then R is called a ring with unit 

element. 

iv. If for all a,b ϵ R a.b=b.a then R is called a commutative ring 

Some Special Classes Of Rings 

Definition 

 If R is a commutative ring then a≠0 ϵ R is said to be a zero-devisor if there exist a,b ϵ 

R,b≠ 0 such that ab=0 

[Eg : define (a1,b1,c1) (a2,b2,c2)=(a1a2,b1b2,c1c2) 

(1,2,0) (0,0,7)=(0,0,0)] 

Examples 

1.Some M is a ring of 2*2 matrices with their elements as integers, the addition and 

multiplication of matrices being the two ring composition then M is a ring with zero-devisors 
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2.The ring of integer is a ring without zero-devisors 

Definition 

 A commutative ring is an integral domain if it has no zero devisors 

Example : The ring of integers 

Definition 

 A ring is said to be a division ring if its non-zero element form a group under 

multiplication 

Remark 

 Sometimes a division ring is called a skew field. 

Definition 

 A field is a commutative division ring 

Lemma 4.1  

If R is ring, then for all a,b ϵ R 

1. a.0  = 0.a = 0 

2. a(-b)=(-a)b=-(ab) 

3. (-a)(-b)=ab 

If in addition,R has a unit element 1 then 

4. (-1) a =-a 

5. (-1)(-1)=1 

 1) Let a ϵ R then consider 

 a.0 = a.(0+0) 

      =a.0+a.0 (L.D.L) 

(i.e) a.0=0 = A. + A.0 

=> 0 = a.0 (by L.C.L) 

Since R is a group under addition we have 

 a.0 = 0 

Similarly we can prove 0.a = 0 

Thus we have a.0 = 0.a = 0 
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2)  We shall first show that a(-b) = -(ab) 

(i.e) To P.T a(-b) + ab = 0 

Now consider, a(-b) + ab = a(-b + b) 

        =a(0) 

       = 0 by 1 

(i.e) a(-b) + ab = 0 

(i.e) a(-b) = -ab 

Similarly we can P.T (-a)b = -ab 

 a (-b) = (-a)b = -ab 

3)Now consider (-a)(-b) 

(-a) (-b) = -(a(-b)) by 2 

  = -(-ab) 

  =ab 

4)Given that R has a unit element 1 

By definition 1.a = a.1 = a v a ϵ R 

Now consider (-10a = a = (-a) a + 1.a 

      = (-1 + 1) a 

        = 0.a = 0 

 (-1) a = -a 

5)In a proof of fourth result we have, 

 (-1) a = -a v  a ϵ R 

If we take a = -1 then we have (-1)(-1) = -(-1) 

    (-1)  (-1) = 1 

The Pigeon Hole Principle 

 Definition 

  If n objects are distributed over m places and if n > m then some places receives at least 

two objects. 
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 Equivalently, if n objects are distributed over n places in such a way that no place receive 

more than one object, then each place receives exactly one object. 

Lemma: 4.2  

A finite integral domain is a field. 

Proof  

 An integral domain is a commutative ring such that ab=0 if atleast one of a or b is 0. 

A field is a commutative ring with unit element in which every non zero element has a 

multiplicative inverse in the ring. 

 Let D be the finite integral domain with n elements 

 In order to show that D is a field we have to P.T 

I. There  exist an element 1 ϵ D such that 

a.1 = 1.a = a v a v D 

II. For every element a ≠ 0 ϵ D 7 a b ϵ D show that ab=1 

Let x1,x2…xn be the n elements of D 

Let a ≠ 0 ϵ D 

Consider the elements, 

x1a,x2a,…xna they are in D 

we claim that they are all distinct 

if possible let us assume that 

xia = xja for i ≠ j 

then xia – xja = 0 

(xi – xj)a = 0 (R.D.L) 

Since D is an integral domain and a ≠ 0 (by assumption ) 

We have xi – xj =0 => xi – xj 
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This is contradiction since i ≠ j 

Our assumption that xia = xja is false 

xia ≠ xja for i≠j 

x1a,x2a…xna are distinct and these n-distinct elements lie in D. 

therefore by the pigeon hole principle these elements are the elements of D 

if Y ϵ D then y=xia for some xi 

in particular since a ϵ D we must have 

a=x a for some xi0 ϵ D 

since D is commutative we have 

a = xi0 a=axi0 

we shall P.T xi0 is a unit element for every element of D 

now yxi0 = (xi a)xi0 

   =xi(axi0) 

   =xi.a 

   =y 

Xi0 is the unit element of D and we write it as 1 

 xi0=1 

Now 1 ϵ D .. a.1 = a v a ϵ D 

1 must be of the form xia for some xi ϵ D 

1 = xia 
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7  a,b ϵ b such that 1 = ba 

Ab = ba = 1 => Innverse exist 

Thus we proved two conditions 

Hence every finite integral domain is a field 

Corollary: 

 If p is a prime no then jp, the ring of integers mod p is a field. 

Proof: 

 Jp has a finite no  of elements , , , ,  where , is the class of integers which 

give remainder i on division by p. 

 Then by the above lemma it is enough to prove that jp is an integral domain but we know 

that jp is a commutative ring. Let a,b ϵ jp and ab = 0 then p must divide a or b 

Either a = 0 mod p or b = 0 mod p 

(i.e) a = 0 or b = 0 

Jp has no zero divisor 

By definition jp is a finite integral domain  

Hence by the above lemma, jp is a field 

NOTE 

Let f be an finite field having m elements like jp, by corollary (ii) of lagranges theorem we have 

a
0(f)  

=e 

Under addition we have 

a + a +…= 0 

m terms 

(i.e) ma = 0 
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Definition 

  An integral domain D is said to be of characteristic ‘0’ in the relation ma = 0 where    a ≠ 

0 is in D and where m is an integer can hold only if m = 0 

Example 

i. The ring of integers 

ii. The ring of even integers 

iii. The ring of rationals 

Definition 

 An integral domain D is said to be of finite characteristic if 7 a +ve integer ‘m’ such that 

ma = 0 for all a ϵ D 

NOTE 

1. If D is of finite characteristic then we define the characteristic of D to be the 

smallest the integer p, S.T pa = 0 v a ϵ D 

2. If D is of finite characteristic then its characteristics is a prime number 

3. An integral domain which has an finite characteristics 

Definition 

 An element ‘a’ of a ring R is said to be Idompotent if a
2
 = a 

 A ring R is called a Boolean ring if all elements are idempotent 

Homomorphisms 

Definition 

 A mapping from ring R into the ring R is said to be a homomorphism if 

i. Ф( a + b ) = Ф(a) + Ф(b) 

ii. Ф(ab) = Ф(a) . Ф (b)   v a,b ϵ R 

Lemma 4.3 

If Ф is a homo morphism of R into R then  

i. Ф (0) = 0 

ii. Ф (-a) = - Ф(a) for every a ϵ R 

Proof 
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i. Let a ϵ R then Ф(a) ϵ R now Ф(a) + 0 = Ф(a) 

(i.e) Ф(a) + 0 = Ф(a + 0) 

(i.e) Ф(a) + 0 = Ф(a) + Ф(0) 

=> Ф(0) = 0 by L.C.L 

ii. From (i) we have Ф(0) = 0 

(i.e) 0 = Ф(o) 

= Ф(a + -a) 

= Ф(a) + Ф(-a) 

 Ф(-a) = - Ф(a) 

Hence the proof 

NOTE 

 If both R and R’ have the respective unit element as 1 and 1’ for their multiplication, it 

need not follow that Ф(1)=1’ 

 However if R’ is a integral domain (or) R’ is arbitrary but Ф is onto then Ф(1) = 1’ 

Definition 

 If Ф is a homomorphism of R onto R’ then the kernel of Ф, denoted by I(Ф) is the set of 

all elements a ϵ R such that Ф9a)=0 where 0 is the zero element of R’. 

(i.e) I(Ф) ={ a ϵ R / Ф(a)=0,the zero element of R’} 

 

Lemma : 4.4 

 If Ф is a homomorphism of R into R’ with kernel I(Ф),then 
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1. I(Ф) is a subgroup of R under addition 

2. If a ϵ I(Ф) and r ϵ R then both ar and ra are in I(Ф) 

Proof 

1. We know that Ф(0) = 0 by lemma3.3.3 

0 ϵ I(Ф) 

I(Ф) is a non-empty subset of R 

Let a,b ϵ I(Ф) 

Ф(a) = 0 and Ф(b) = 0 

Since Ф is a homomorphism we have, 

Ф(a+b) = Ф(a) + v9b) 

= 0 + 0 

=0 

 a+b ϵ I(Ф) 

let a ϵ I(Ф) 

Ф(a) = 0 

But we know Ф(-a) = - Ф(a) 

=0 

       -a ϵ I(Ф) whenever a ϵ I(Ф) then by a lemma I(Ф) is a subgroup of R under addition. 

Since a ϵ I(Ф) by definition Ф(a)=0 

Now consider Ф(ar) 

Ф(ar)= Ф(a). Ф( r ) 

 =0 
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 ar ϵ I (Ф) 

similarly Ф(ra) = Ф ( r). Ф(a) 

 = Ф( r).0 

=0 

 ra ϵ I(Ф) 

Hence if a ϵ I(Ф) and r ϵ R, then both ar and ra are in I(Ф)   

Definition 

1. A homomorphism of R into r’ is said to be an isomorphism if it is a one to one 

mapping. 

2. Two rings are said to be isomorphic if ther is an isomorphism of one onto the 

other 

Lemma:4.5 

 The homomorphism Ф of R in R’ is an isomorphism iff I(v) = {0} 

Proof 

Let us assume that Ф is an isomorphism of R into R’. then by definition Ф is one to one. 

Let a ϵ I(Ф) 

Ф(a) = 0 where 0 is the identity element of R’ 

Ф(a) = Ф(0)    [Ф(0)=0] 

 a = 0 [ф is one to one] 

Conversely, 

Assume that I(Ф)={0} 

It is enough to prove that Ф is one to one. 

Let x,y ϵ R 

Then Ф(x), Ф(y) ϵ R’ 

Now Ф(x) – Ф(y) = Ф(x) + Ф(-y) 
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       = Ф(x – y) 

If Ф(x) = Ф(y) then 

Ф(x) – Ф(y)=0 

Thus Ф( x – y ) = 0 

 x – y ϵ I(Ф) = {0} 

 x – y = 0 

 x = y 

 Ф is one to one 

Hence the homomorphism Ф of R into R’ is an isomorphism iff I{ Ф}= 0 . 

Theorem: 

The intersection of any two left ideals of a ring is again a left ideal of  the ring. 

       Proof: 

       Let be two left ideals of a ring R. Then  are subgroups of R under 

addition. 

Therefore  is also a subgroups of R under addition. 

Now to show that a left ideal of R, we are only to show that rR, s    

We have s  s  

But  are left idals of R. 

Therefore rR, s and rR, s rs  

Now  and rs rs  

Therfore  is also a left ideal of R. 

 

Theorem: 

Fundamental theorem on homomorphism of rings. 

Every homomorphic image of a ring R is isomorphic to some residue class ring thereof. 

Proof:  

Let R’ be the homomorphic image of a ring R and f be the corresponding homomorphism.  

Then f is a homomorphism of R onto R’. Let S be the kernel of this homomorphism. 

Then S is an idealof R. Therefore R/S is a ring of residue classes of R relative to S. 
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We shall prove that R/S R’. 

 If aR, then S+aR/S and f(a) R’. 

Consider the mapping :R/SR’ such that (S+a) = f(a)  

To prove:  is well defined 

If a.b R and S+a = S+b then (S+a) = (S+b) 

We have S+a = S+b 

 a-bS 

f(a-b) =0’ 

f[a+(-b)] = 0’ 

f(a) + f(-b) = 0’ 

f(a) =f(b) 

(S+a)= (S+b) 

  is well defined. 

To Prove :  is 1-1 

We have (S+a) = (S+b) 

f(a) =f(b) 

f(a) -f(b) = 0’ 

f(a) + f(-b) = 0’ 

f(a-b) = 0’ 

 a-bS 

 S+a = S+b 

Therefore  is 1-1. 

To Prove :  is onto 

Let y be any element of R’. Then y=f(a) for some aR because f is onto R’. 

Now S+aR/S and we have (S+a) = f(a) = y. 
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Therefore  is onto R’. 

Finally we have [(S+a) + (S+b)]= [(S+(a+b)] = f(a+b) 

              = f(a)+f(b) = (S+a) +(S+b) 

 

[(S+a) (S+b)]= [(S+(ab)] = f(ab) = f(a)f(b) = [(S+a)][ (S+b)] 

Therefore  is an isomorphism of R/s onto R’. 
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POSSIBLE QUESTIONS: 

Part-B( 5X8 = 40 Marks) 

Answer all the questions: 

1. If R is a ring, then foe all a,b R, 

 (i) a0 = 0a = 0. 

 (ii) a(-b) = (-a)b = -(ab) 

 (iii) (-a)(-b) = ab. 

 (iv) a(b-c) = ab - ac 

 

2. i) Define Integral domain with example. 

    ii) Prove that every finite integral domain is a field. 

3. Prove that every field is an integral domain. 

4. i) Define field with example. 

     ii) Prove that a skew field has no divisors of zero. 

5. Show that the set of numbers of the form a+b2, with a and b as rational numbers 

     is a field. 

 

6. Prove that a ring R has zero divisors iff cancellation law is valid in R. 

 

7. Prove that a finite commutative ring R without zero divisors is a field. 

8. Let R  and R' be a rings and f:RR' be an isomorphism. Then prove that 

    i) R is commutative  R'  is commutative 

    ii) R is ring with identity  R' is ring with identity 

    iii) R is an integral domain R' is an integral domain 

     iv) R is a field R' is a field 

   

9. Prove that the homomorphism  of a ring into a ring R' is an isomorphism of R into R'  

     iff  I() =(0), where I() denotes the kernel of  . 

 

10. State and Prove fundamental theorem on homomorphism of rings. 
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UNIT-V 

SYLLABUS 

SYLLABUS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abelian groups, finitely generated abelian group, divisible and reduced groups, Torsion group, 
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INTRODUCTION TO IDEALS AND QUOTIENT  RINGS  

In ring theory, an ideal is a special subset of a ring. Ideals generalize certain subsets of the 

integers, such as the even numbers or the multiples of 3. Addition and subtraction of even 

numbers preserves evenness, and multiplying an even number by any other integer results in 

another even number; these closure and absorption properties are the defining properties of an 

ideal.Among the integers, the ideals correspond one-for-one with the non-negative integers: in 

this ring, every ideal is a principal ideal consisting of the multiples of a single non-negative 

number. However, in other rings, the ideals may be distinct from the ring elements, and certain 

properties of integers, when generalized to rings, attach more naturally to the ideals than to the 

elements of the ring. For instance, the prime ideals of a ring are analogous to prime numbers, and 

the Chinese remainder theorem can be generalized to ideals. There is a version of unique prime 

factorization for the ideals of a Dedekind domain (a type of ring important in number theory). An 

ideal can be used to construct a quotient ring similarly to the way that modular arithmetic can be 

defined from integer arithmetic, and also similarly to the way that, in group theory, a normal 

subgroup can be used to construct a quotient group. 

IDEALS AND QUOTIENT RINGS 

Definition 

 If R is any ring then a subset L of R is called a left Ideal of R, if 

i. L is a subgroup of R under addition 

ii. r ϵ R, a ϵ L =>  ra ϵ L 

In a similar way we can define a right ideal 

 

Definition 

 A non empty subset u of R is said to be a (two sided) ideal of R if 

i. u is a subgroup of R under addition 

http://en.wikipedia.org/wiki/Ring_theory
http://en.wikipedia.org/wiki/Subset
http://en.wikipedia.org/wiki/Ring_%28mathematics%29
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Even_numbers
http://en.wikipedia.org/wiki/Closure_%28mathematics%29
http://en.wikipedia.org/wiki/Non-negative_integer
http://en.wikipedia.org/wiki/Principal_ideal
http://en.wikipedia.org/wiki/Prime_ideal
http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Chinese_remainder_theorem
http://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic
http://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic
http://en.wikipedia.org/wiki/Dedekind_domain
http://en.wikipedia.org/wiki/Number_theory
http://en.wikipedia.org/wiki/Quotient_ring
http://en.wikipedia.org/wiki/Modular_arithmetic
http://en.wikipedia.org/wiki/Group_theory
http://en.wikipedia.org/wiki/Normal_subgroup
http://en.wikipedia.org/wiki/Normal_subgroup
http://en.wikipedia.org/wiki/Quotient_group
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ii. For every u ϵU and r ϵ R, both ur and ru ϵ U 

NOTE 

i. An ideal is thus simultaneously a left ideal and right ideal of R 

ii. Since the ring R is an abelian group w.r.to addition it follows that any ideal U is normal 

subgroup of r (since any subgroup of an abelian group is normal) 

iii. If u is an ideal of the ring R then  is a ring and is homomorphic of R 

Lemma:5.1 

 If U is an ideal of R, U is a normal subgroup of R (by note (i) ) 

w.r.to addition   is the set of all distinct cosets of U in R, mearly we say that coset and we donot 

say left coset or right coset. Since R is an abelian group w.r.to addition, 

a + U = U + a 

 consists of all cosets a+u,a ϵ R 

From a theorem 2.6.1 we know that   is a group under addition (prove here), where the 

composition law is ( a + u) + ( b+ u ) = (a + b) + U v a,b ϵ R 

 is also abelian since R is abelian w.r.t.addition. let us define the multiplication in  as follows 

(a + u) + ( b + u) = ab + u v a,b ϵ R 

Now we prove, the above said multiplication is well defined 

If a + u = a’ + u 

And b +u = b’ + u 

Then by our definition of multiplication ,we have to prove that 

( a + u ) (b + u ) =(a’ + u) (b’ + u) 



KARPAGAM ACADEMY OF HIGHER EDUCATION 
      CLASS: II BSC MATHEMATICS                    COURSE NAME: Group theory I 

COURSE CODE: 17MMU303                  UNIT: V                   BATCH-2017-2020 
 

Prepared by Dr.M.M.Shanmugapriya, Asst Prof, Department of Mathematics, KAHE Page 4/25 

(i.e) to prove that (ab + u ) = (a’b’ + u) 

Since a + u =a’ + 0 

We have 

A= a’ + u1 where u1 ϵ u 

Similarly since b + u =b’ + u 

We have b= b’+u2 where u2 ϵ u 

ab= (a’ + u1) (b’ + u2) 

=a’b’ + a’u2 +b’u1 + u1u2 

Since u is an ideal of R we have 

a’u2 + b’u1 and u1u2 ϵ u 

a’u2 + b’u1 + u1u2 ϵ U 

ab=a’b’ + u3 where u3=a’u2 + b’u1 + u1u2 ϵ u 

ab + u =a’b’ + u3 = u 

=a’b’ + u 

 ab+u =a’b’ = u 

The multiplication defined above is well defined now (a + u ) (b + u ) =ab+u ϵ   

As a,b ϵ R by closure property ab ϵ u 

 is closed with respect is multiplication  

Since R is associative w.r.to multiplication, 
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Let x,y,z ϵ   

Then x = a + u 

y=b + u 

z=c + u where a,b,c ϵ R  

now we P.T x(y + z) =xy + xz 

L.H.S  = x(y + z ) 

 =(a + u) (b + u + c + u) 

=(a + u) [(b + c) + u] 

=(a(b + c) + u) 

=ab + ac + u 

=(ab + u) + (ac + u) 

=(a + u) (b + u) + (a + u)  9c + u) 

=xy + yz 

=R.H.S 

Similarly we prove that (y + z) x =yx + zy 

If R is commutative then   is also commutative as seen below, 

Consider (a + u) (b + u) = ab + u 

=ba + u ( R is commutative ab=ba) 

=(b + u) (a + u) 

 is also commutative, if R is commutative  
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If R has an unit element 1, then   has unit element 1 + u 

Define a mapping ф:R ->   

By ф(a) = a = u for a ϵ R 

Let a,b ϵ R 

Then ф (a + b ) = (a + b) + U 

 =(a + u) + (b + u) 

 = ф (a) + ф((b) 

And ф (ab) = ab + u 

 =(a + u) (b + u) 

 Ф (a). ф (b) 

 by def ф is a homomorphism 

let y ϵ  then y= a + u for a ϵ R and ф (a) = a + u = Y 

a is the pre image of Y in  

ф is onto 

If u ϵ U then ф(u) = u + U = u whih is the identity element of  

The kernel of ф is exactly U 

Hence the lemma 

Remark : 

The ring  is known as quotient Ring 

 

Theorem 5.1 

 let R, R’ be ring and ф a homomorphism of R onto R’ with kernel U. then R’ is isomorphic 

To  
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Moreover there is a one to one correspondence between the set of ideals of R’ and the set of 

ideals of R which contain U. this correspondence can be achieved by associating with an idel W’ 

in R’, the ideal W in R defined by 

W = { x ϵ R / ф (x) ϵ W so defined  -> R’ by 

Ψ  ( u + a) = ф (a) -------- 1 

Where u + a is an arbitrary element of  and a ϵ R 

Let  us prove that the mapping is well defined (i.e) to show that U + a = U + b 

 ψ(u + a) = ψ( u  + b) v u + a, U +b ϵ  where a,b ϵ R 

let us prove that the mapping is well defined 

(i.e) to show that U + a = U + b 

=> ψ (u + a) = ψ( U + b) v u +a, U +b ϵ  where a,b ϵ R 

Now assume that u + a = u + b 

Since a =0 = a ϵ u + a ……(o ϵ u) 

a ϵ u + a = u +b by an assumption 

a = u + b for some u ϵ U 

now ψ (u + a) =ф(a) 

 = ф( u + b) 

 =Ф(u) + ф(b) 

 = 0’ + ф(b) 

=ψ (u + b) by 1 

ψ  is well defined 

ψ[ (u + a) = (u + b)]  =  ψ (u + (a+b)) 

    = ф( a + b) 

    =Ф(a) + ф(b) 

    =ψ (u + a) + ψ (u + b) 

ψ[ (u + a) = (u + b)]  =  ψ (u + ab) 
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    = ф( ab) 

    =Ф(a) . ф(b) 

    =ψ (u + a)  ψ (u + b) 

Ψ is a homomorphism 

Given that ф is onto’. 

For every r’ ϵ R’ 7 ar ϵ R such that ф( r ) = r’ 

Ψ( u + r) = r’ 

U + r is thepre image of r’ under ψ 

Ψ is onto 

Let us now show that ψ is one to one 

Now we prove the result by proving that the kernel of ψ  namely Uψ  consist of only one element 

U which is the identity element of  

By definition of kernel we have, 

Uψ= { U +a ϵ   / ψ(u + a)
=0’

the zero element of R’} 

={ u + a ϵ  / ф(a )
=0’

} by 1 

={u} since ф(a) =0’ 

 a ϵ u 

 u + a =U  

ψ  is one to one 

ψ :  -> R’ is an onto isomorphism 

 ~ R’ 

(i.e) R’ ~ isomorphism is an equivalence relation) 

(ii) Given that W = { x ϵ R / ф(x) W’} and W’ is an ideal of R’ 

To prove  
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U C W and W is an ideal of R 

Let x ϵ U 

Ф(x) = 0’ ϵ W’ 

 x ϵ W 

x ϵ U => x ϵ W 

U C W 

Now ф(0) = 0’ ϵ W’ (W’ is an ideal of R’) 

Ф(0) ϵ W’ 

0 ϵ W… W is an non empty subset of  R 

Let x,y ϵ W, 

Ф(x) ϵ W’, Ф(y) ϵ W’ 

Ф(x + y) = Ф(x) + Ф(y) ϵ W’ (W’ is closed under addition) 

 x + y ϵ W whenever x,y ϵ W 

let x ϵ W 

Ф(x) ϵ w’ 

Now Ф(-x) = - Ф(x) ϵ W’ 

Ф(-x) ϵ W’ 

 -x ϵ W’ whenever x ϵ W 

Then by a lemma W is a subgroup of R under addition 

Next we prove that W is an ideal of R let r ϵ R and x ϵ W 

Ф(r) ϵ R’ and Ф(x) ϵ W’ …. x ϵ R 

Xr and rx ϵ R (R is closed under multiplication) 

Ф(xr) = Ф(x). Ф(r) ϵ W’ (W’ is an ideal of R’) 

xr ϵ W 

similarly we can prove that 

rx ϵ W v r ϵ W , x ϵ W 
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W is an ideal of R containing U 

(i.e) inverse image of an ideal W’ of R’ is also an ideal W of R containing U 

Conversely assume that w is an ideal of R and we prove that w’ is an ideal of R’ 

Define W’={ x’ ϵ R’/ x’=ф(y), y ϵW} 

Now 0 ϵ W ф(0) =0’ ϵ w’ 

W’ is a non empty subset of R’ 

Let x1’,x2’ ϵ w’ 

 x1’= ф(y1) 

x2’= ф(y2) 

y1, y2ϵ W 

x1’ + x2’= ф(y1)+ ф(y2) 

= ф(y1+y2) 

ϵ w’ since y1+y2 ϵ w 

thus x1’ + x2’ ϵ w’ 

then x’= ф(y), y ϵ w 

- y ϵ w 

-x’= - ф(y) 

= ф(-y)  ϵ w’ …..(- y ϵ w) 

-x’ ϵ w’ whenever x’ ϵ w’ 

Then by lemma w’ is a subgroup of R’ under addition 
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Let x’ ϵ w, r’ ϵ R’ 

Let  r ϵ R, ф(r)=r’ 

X’= ф(y), y ϵ w 

ф(yr)= ф(y). ф(x) 

=x’r’ 

yr ϵ w as w is an ideal of R 

ф(yr) ϵ w’ 

x’r’ ϵ w’ 

Similarly we can prove that r’x’ ϵ w’ 

w’ is an ideal of R’ 

next we prove that the ideal w of R is unique 

let T be another ideal of R 

T= { y ϵ R/ ф(y) ϵ w’} 

We have to prove that W= T 

Let y ϵ w 

ф(y) ϵ w’   (by def of W) 

y ϵ T (by def of T) 

W C T 

Let t ϵ T 

ф(t) ϵ w’ 



KARPAGAM ACADEMY OF HIGHER EDUCATION 
      CLASS: II BSC MATHEMATICS                    COURSE NAME: Group theory I 

COURSE CODE: 17MMU303                  UNIT: V                   BATCH-2017-2020 
 

Prepared by Dr.M.M.Shanmugapriya, Asst Prof, Department of Mathematics, KAHE Page 12/25 

t ϵ w 

T C W 

 W = T 

Thus W is unique 

Thus there is a one to one correspondence between the ideals of R’ and the ideals of R containing 

U 

(iii ) Now we define a mapping F : R ->  

By F(a) =W’ +ф(a), a ϵ R 

Since ф is onto,for every a’ ϵ R’ 7 an element a ϵ R s.t ф(a) = a’ 

Now W’ + ф(a) = W’ + a’ 

   = F9a) 

A is the pre image of w’ + ф(a) 

F is onto 

Let x,y ϵ R 

F(x + y) = W’ + ф(x + y) 

=W’ + ф(x)+ ф(y) 

==W’ + ф(x)W’+ ф(y) 

=F(x) + F (y) v x,y ϵ R 

We shall  show that the kernel of F namely KF  is W 

Assume that L is the kernel of F and we prove that W = L 

Now by def L = { x ϵ R / F(x) = w’} 
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Let x ϵ L … F(x) = w’ 

w’+ ф(x)=w’ 

ф(x) ϵ w’ 

x ϵ w 

L C W 

Let x ϵ W … ф(x) ϵ w’ 

w’+ ф(x)=w’ 

F(x) = w’ 

x ϵ L 

W C L 

Hence w = L 

The kernel of F is W and is unique 

F is a homo of R onto   with kernel W 

Then by a theorem (2.7.1)  is isomorphic to   

 ~   

 

Lemma 5.2 

 Let R be a commutative ring with unit element whose only ideas are {0} and R itself 

,then R is a field 

Proof   
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In order to prove this result, it is enough if we prove that v a ≠ 0 ϵ R 7 a b ≠ 0 ϵ R  s.t  

ab = 1 

Let a ≠ 0 ϵ R 

Consider the set Ra = { xa / x ϵ R} 

We claim that Ra is an ideal of R 

Since 0 = 0.a ϵ Ra 

Ra is a non empty subset of R 

Let u,v ϵ Ra 

Then u = x` a and v = x2a for some x1,x2 ϵ R) 

Now u – v = x1a –x2a 

 = (x1-x2)a 

ϵ  …[x1-x2 ϵ Ra] 

Ra is a subgroup of R under addition 

Let r ϵ R let u = xa 

Then consider ru = r(xa) = (rx) a ϵ Ra (rx ϵ R) 

Similarly we can prove that ur ϵ Ra 

By deff Ra is an ideal of R 

From the given hypothesis it follows that Ra = { 0} or Ra = R 

(i.e) every multiply of R is a multiple of a by some element of R 

There exist an element b ≠ 0 s.T ab=1 
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R is a field 

Definition 

 An ideal M ≠ R in a ring R is said to be a maximal ideal of R, if  whenever u is an ideal 

of R such that M C U C R then either R = U or M = U 

 In otherwords, an ideal of R is a maximal ideal, if it is impossible to sqneeze an ideal 

between it and full ring. 

NOTE 

i. An ring need not have a maximal ideal 

ii. Ring in the unit element has maximal ideals 

Examples 

1) Let R be the ring of integers and U be an ideal of R. since U is a subgroup of R under 

addition from group theory (eg subgroup of even integers0) we know that U consists of 

all multiples of a fixed integer say n0 (i.e) u = (n0) if P is a prime no we claim that p = (p) 

is a maximal ideal of R 

Proof  

If U is an ideal of R and U ) R then U = (n0) for some integer n0 

Since p ϵ P C U , p=m n0 for some integer m 

since p is a prime no, 

p = m n0  => n0 =1 or n0 = p 

if n0 =1 then u = (p) = p 

U = P 

If n0 = 1 then 1ϵ U 

Let r ϵ R, then r = 1.r ϵ U for all r ϵ R 
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[ U is an ideal of R] 

R C U  

Since u is an ideal other than R (or) P itself between them 

P is a maximal ideal of R 

2) Let R be the ring of all real valued continous functions on the closed unit interval 

Let M = { f(x) ϵ R / f ( u2)=0} M is certainly an ideal of R. then M is a maximal ideal of R 

Proof 

If there is an ideal U of R such that m c u and m ≠ u, then there is a function g(x) ϵ u and g(x) ϵ 

m  

Since g(x) ϵ m ,g(  ) = α ≠ 0 

Let h(x) = g(x) – α 

Now h(  )= g(  ) – α 

       = α – α 

 = 0 

 h(x) ϵ m c u (i.e) h(x) ϵ u 

α = g(x) – h(x) ϵ u ….[u is an ideal of r so a subgroup of r] 

now 1 = α α
-1

ϵ u 

since α
-1

 =  

=  ϵ R …………… α
-1

 is continuous and u is an ideal of R 

Thus for any t(x) ϵ R we have 
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t(x) = 1.t(x) ϵ u …[u is an ideal of R] 

R C U  

But U C R [u is an ideal of R] 

U=R 

Thus m is a maximal ideal of R 

Theorem 5.2 

 If R is a commutative ring with unit element and m is an ideal of R then m is a maximal 

ideal of R iff    is a field 

Proof 

Given that m is an ideal of R 

Assume that  is a field 

We shall P.T m is a maximal field of R 

Since  is a field , its only ideals are {0} and  

Then by theorem 93.4.1) there I a one to one correspondence between the set of ideals of  

and the set of ideals of R which contain  m. the ideal M of R corresponds to the ideal {0} of  

whereas the ideal R of R corresponds to the ideal  of  in this one to one 

correspondence. Thus there is no ideal between m and R other than these two 

Hence m is a maximal ideal of R 

 Conversely assume that m is a maximal ideal of R 

Then by the correspondence mentioned above  has only {0} and itself an ideals. Further 
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since R is a commutative ring with unit element hen by lemma 3.5.1 ,  is a field. 

 Definition . 

                 If all ideals of a ring R are finitely generated then R is called a Noetherian ring. 

Theroem 5.3  

         A commutative ring with identity is Noetherian if and only if given any ascending chain of 

ideals I1 ⊆ I2 ⊆ ··· ⊆ In ⊆ ··· , there exists an m such that Im = Im+i for all i ≥ 0. 

Proof.  

         Let R be Noetherian.  Since {In}
∞

n=1  is an ascending chain, I = 

 

∪∞
n=1In is an ideal of R. Hence we can find a1, a2, . . . , ag ∈  I such that I = (a1, a2, . . . , ag). It is 

easy to see that there is an m such that ai ∈  Im for all i = 1, 2, . . . , g. Hence I ⊆ Im which implies 

that Im = Im+i for all i ≥ 0. 

 

Conversely let every ascending chain of ideals be stationary. Let I be an ideal of R which is not 

finitely generated. Then I is nonzero and I < R. 

 

Inductively, we can find a1, a2, . . . ∈  I such that In = (a1, a2, . . . , an) and the chain In, n = 1, 2, . . 

. is not stationary. This is a contradiction. 

 Hence I is finitely generated. 

 

THE FIELD OF QUOTIENTS OF AN INTEGRAL DOMAIN 

Definition 

 A ring R can be imbedded in a ring R’ if there is an isomorphism of R into R’. 

 If R and R’ have unit elements 1 and 1’ we insist in addition that this isomorphism takes 

1 and 1’ 

 R’ is called an over ring or extension of R . if R can be imbedded in r’  

Definition  
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           Let R be an integral domain. A nonzero element a ∈ R is called irreducible if it is not a 

unit and whenever a = bc then either b or c is a unit. We say a is a prime if (a) is a prime ideal. 

Theorem 5.4 

Every integral domain can be imbedded in a field 

Proof   

let d be an integral domain 

Let mo be the set of all ordered pairs(a,b) where a,b ϵ D and b ≠ 0 [consider (a,b) as  ] 

In mo  we define  a relation ‘~’ as follows 

(a,b) ~ (c,d) iff ad = bc -------------------------1 

We claim that this is an equivalence reletion on mo  

Let (a,b) , (c,d) , (e,f) ϵ mo 

Since ab= ba 

We can write (a,b) ~ (a,b) 

(i.e)  reflexivity is satisfied 

Now let us assume that (a,b) ~ (c,d) 

Then by the definition ad=bc 

Cb=da (the ring is commutative0 

 (c,d) ~ (a,b) 

Summary is true 

Let (a,b) ~ (c,d) and (c,d) ~ (e,f) 
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(ie) ad= bc and cf = de 

a=    and f=  

now consider af =  .  

(i.e) af = be 

(i.e) (a,b) ~ (e,f) 

(i.e) transitivity is true 

Hence the relation ‘~’ defined above is an equivalence relation on m0 

Let [a,b] be the equivalence class of (a,b) in M0 

Let F be the set of all such equivalence classes [a,b] where a,b ϵ D and b ≠ 0 

We shall prove that F is a field w.r.to two operations addition and multiplication defined below 

[a,b] + [c ,d] = [ ad + bc + bd] 

[a,b] . [c,d] = [ac,bd] 

Since D is an integral domain and both d ≠ 0 and b ≠ 0 

We have bd ≠ 0  

[ad + bc,bd ] ϵ F and 

[ac ,bd] ϵ F 

We now P.T the addition defined above is well defined 

(I.e) if [a,b] = [a’, b’] 

 [c,d] = [c’,d’] 

Then we have to prove that  
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[a,b] +[c,d] = [a’,b’] +[c’,d’] 

To p.T 

[ad + bc, bd] =(a’d’ + b’c’, b’d’] 

(i.e) to P.T 

(ad +bc)b’d’ = (a’d’ + b’c’+ bd 

Since [a,b] =[a’b’] 

We have  =   => ab’ = a’b 

Similarly [c,d] = [c’,d’]  =   => cd’ = c’d 

Now consider  

(ad + bc)b’d’ = ad b’d + bcb’d’ 

  =ab’dd’ + bb’cd’ 

  =ba’dd’ + bbb’dc’ 

  =bd(a’d’ = b’c’) 

Addition defined above well defined 

[0,b] acts as a zero element for this addition and [-a,b] is the additive inverse of [a,b]. then we 

can verify that F is an abelian group under the addition defined above.we can also verify that the 

non-zero elements of F namely the elements [a,b] , a ≠ 0 form an abelian group under 

multiplication 

Here [d,d] acts as the unit element and [c,d] 
-1

 =[d,e] { c ≠ 0, [d,c] is in F} 

The distributive laws also hold in F 

F is a field 
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We have to s.t D can be imbedded in F for x ≠ 0, y ≠ 0 in D, we note that 

[ax,x] =[ay,y] 

Let us denote [ax,x] by [a,1] 

Define ф : D -> F by ф(a) = [a,1] v a ϵ D 

Let a,b ϵ D 

Then ф(a + b)= [ a + b,1] 

  =[a,1] + [b,1] 

  =ф(a) + ф(b) 

Ф is homomorphism of D into F 

Let y ϵ F then Y=[a,1] ϵ F,a ϵD and ф(a)=[a,1]=y 

A is the pre image of Y under ф 

Then by def ф is onto. 

Now ф(a) = ф(b) 

 [a,1] =[b,1] 

 a= b 

ф is onto 

ф is an homomorphism of  D into F 

F is the homomorphic image of D under ф 

If 1 is the unit element of D then ф(1) ϵ F 

Let a’ be any element of F then 

ф(a) = a’ for some a ϵ D 
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now consider ф(1).a’ = ф(1). ф(a) 

= ф(1.a) 

=ф(a) 

=a’ 

Also a’. ф(1)= ф(a). ф(1) 

 = ф(a.1) 

= ф(a) 

=a’ 

ф(1) is the unit element of F 

thus every integral domain can be imbedded in a field 

Definition 

Let R be a commutative ring. An ideal P of R is said to be a prime ideal of R. If ab ϵ P , ab ϵ R 

=> a ϵ P or b ϵ P 

Theorem 5.5 

 Let R be a commutative ring and S an ideal of R then the ring of residue classes  is an integral 

domain iff S is a prime ideal 

Proof 

Let R be a commutative ring and S an ideal of R. 

Then   = { S +a / a ϵ R} 

Let S + a, s + b be any two elements of    
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Then ab ϵ R 

 is also a commutative ring 

Now let S be a prime ideal of R 

Then we have to prove that  is an integral domain 

The zero element of  is the residue class S itself 

Let S + a, S + b ϵ  

Then (s + a) (s + b) = s 

 s + ab = s 

 ab ϵ s 

 either a or b is in s …(s is a prime ideal) 

 either s = a =s or s + b = s  

 either s +a or s + b is the zero element of  

 is without zero divisor 

Since  is a commutative ring without zero divisor,  is a integral domain 

 Conversely , let  be an integral domain then we have to P.T S is an prime ideal of R 

Let a,b be any two element in r s.t  ab ϵ s 

We have  ab ϵ s  

 s + ab = s 

 (s +a) (s + b) = s 

 is an integral domain it is without zerp divisor 
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Either s + a =s or s + b=s 

Either a ϵ s or b ϵ s 

Then by def s is a prime ideal of R 

IMPORTANT RESULTS.  

 Let R be an integral domain and a, b ∈  R. Then 

 

(1) a is a unit in R if and only if (a) = R.  

 

(2) a and b are associates if and only if (a) = (b)  

 

(3) a | b if and only if (b) ⊂ (a)  

 

(4) a is a proper divisor of b if and only if (b) < (a) < R.  

 

(5) a is irreducible if and only if (a) is maximal among proper principal ideals.  

 

Definition 

          An integral domain R is called a factorization domain, abbreviated as FD, if every non-

zero element of R can be expressed as a product of irreducible elements. 

Definition 

. A ring R is said to satisfy ascending chain condition 

(acc) on principal ideals if for any chain (a1) ⊂ (a2) ⊂ . . . of principal ideals of R, there exists an 

n such that (an) = (an+i) for all i = 1, 2, 3, . . . . 
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POSSIBLE QUESTIONS: 

Part-B( 5X8 = 40 Marks) 

Answer all the questions: 

1. i) Define an ideal. Prove that the intersection of any two left ideals of a ring is again a  

        left ideal of  the ring. 

2.  Prove that every integral domain can be imbedded into a field. 

3.  i) If U is an ideal of a ring R with unity and 1U, prove that U=R. 

ii) If F is a field then  prove that its only ideals are (0) and F itself 

4. If R is a commutative ring with unit element and M is an ideal of R, then prove   

   that M is a maximal ideal of R iff R│M is a field. 

 

5. Prove that a commutative ring without zero divisor can be imbedded in a field 

 

6. Let R be a commutative ring and S an ideal of R. Then prove that the ring of residue  

    classes R/S is an integral domain iff S is a prime ideal. 

 

7. State and prove unique factorization theorem. 

8. Prove that the ring of  Gaussian integers is a Euclidean ring. 

9. i) Prove that a Euclidian ring possesses a unit element 

    ii) Prove that  every field is a Euclidean ring. 

10.Prove that every euclidean ring is a principal ideal ring. 
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1. On Z+, define a ∗ b = a
b then (Z+, ∗) is not a group

since
a. ∗ is not closed
b. identity element does not exist
c. inverse does not exist d. all the above

2. The set {1,−1, i,−i} is a group under multiplication.
What is the probability to select an element to has
own inverse?
a. 1 b. 1

2
c. 1

4 d. 1
3

3. Number of idempotent elements in a group is
a. 0 b. 1
c. |G| d. n

4. |U(101)| =
a. 101 b. 100
c. neither a nor b d. 99

5. Z4 =
a. < 0 > b. < 1 >
c. < 2 > d. both b and c

6. If V = {e, a, b, c} is the Klein 4 group, V ,
a. < a > b. < b >
c. < c > d. all the above

7. In U(15), |2| =
a. 1 b. 2
c. 3 d. 4

8. Suppose g ∈ G has finite order in G. Then
|g| − − − | < g > |
a. , b. <
c. > d. =

9. Let G be a group, and let f : G → G be the map
f (x) = x−1 for all x ∈ G. Then f is — function
a. not an one to one b. not an onto
c. a bijective d. an one to one but not onto

10. In (Z,+), number of elements with finite order is

a. 0 b. 1
c.2 d.3

11. | < 30 > |=— in Z80
a. 1 b. 7
c. 8 d. 30

12. If a ∈ Z8000000 with |a| = 8, a = − − −
a. 3000000 b. 5000000
c. neither a nor b d. both a and b

13. Z = − − −
a. < 1 > b. < 2 >
c. < 0 > d. all the above

14. Suppose G is a group with n > 1 elements. Then
number of elements of G to be non generator is
a. exactly one b. atmost one
c. atleast one d. 0

1



15. The set of integersZwith the binary operation ”∗”
defined as a ∗ b = a + b + 1 for a, b ∈ Z, is a group.
The identity element of this group is
a. a b. b
c. 1 d. -1

16. In the group (G, .), the value of (a−1b)−1 is
a. ab−1 b. ba−1

c. b−1a d. all the above

17. In the group G = {2, 4, 6, 8} under multiplication
modulo 10, the identity element is
a. 2 b. 4
c. 6 d. 8

18. Generator of a group {1,−1, i,−i} under multipli-
cation is
a. 1 b. -i
c. both a and b d. neither a nor b

19. Consider the group (Z100000,⊕100000). Number of
elements with order 1 is
a. 1000 b. 100
c. 10 d. 1

20. Consider the group (Z5 − {0},�5). Number of ele-
ments with order 4 is
a. 1 b. 2
c. 3 d. 4

Part B (3 × 2 = 6 marks)

21. Determine all the subgroups of Z20.

22. Prove that number of idempotent element in a
group is only one.

23. Find the orders of all elements of Z10

Part C (3 × 8 = 24 marks)

24. a) Prove that the set of all 2 × 2 matrices with
entries fromR and determinant±1 is a group
under matrix multiplication

(OR)
b) The integers 5 and 15 are among a collection

of 12 integers that form a group under mul-
tiplication modulo 56. List all 12.

25. a) Prove that the set of all 3 × 3 matrices with
real entries of the form 1 a b

0 1 c
0 0 1


is a group under multiplication defined by 1 a b

0 1 c
0 0 1

  1 a′ b′
0 1 c′
0 0 1

 =  1 a′ + a b′ + ac′ + b
0 1 c′ + c
0 0 1


(OR)

b) Construct the Cayley table for U(25). Find
two elements a, b ∈ U(25) such that

< a >=< b >= U(25)

26. a) In any group G, prove that each element has
a unique inverse. Also prove that (g−1)−1 = g,
for all g ∈ G

(OR)
b) State and prove one-step subgroup test.

2
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Answer ALL questions
PART - A (20 × 1 = 20 marks)

1. If G is a cyclic group of order 24 and a2002 = an

where a ∈ G and 0 < n < 24 Then the value of n is
——
a. 4 b. 6
c. 8 d. 10

2. {−3n : n ∈ Z} is an abelian group under a. subtrac-
tion b. division c. multiplication d.
addition

3. The set G = {· · · , 3−2, 3−1, 1, 31, 32, · · · } under multi-
plication is a —–
a. group b. cyclic
c. abelian d. all the above

4. One of the element of Quaternion group is ——

a.
[

1 0
0 1

]
b.
[

i 0
0 −i

]
c.
[

0 i
i 0

]
d. all the above

5. The set of all positive rational numbers forms an
abelian group under the binary operation defined
by a ? b = ab

2 . Identity of this group is ——
a. 1 b. 2
c. 0 d. neither a nor b

6. Minimum nymber of elements in a gruop is ——
a. 1 b. 2
c. 0 d. both a and b

7. If H be any subgroup of a group G and h ∈ H, then
——
a. Hh , H = hH b. Hh = H , hH
c. Hh , H , hH d. Hh = H = hH

8. The number of generators of the cyclic group G of
order 8 is ——
a. 2 b. 4
c. 6 d. 8

9. Every cyclic group is ——
a. permutation group b. non abelian group
c. abelian group d. all the above

10. A non commutative group has atleast —— ele-
memts

a. 0 b. 1
c. 6 d. 7

11. Let G be the additive group of integers and let
H = {· · · ,−6,−3, 0, 3, 6, · · · }. Then number of dis-
tinct right cosets is ——
a. 0 b. 1
c. 2 d. 3

1



12. Let G be a group and let H be a subgroup of G. Let
h ∈ H. Then number distinct left cosets of H in G
generated by h is ——-
a. 0 b. 1
c. 2 d. 3

13. Any two left cosets of a subgroup are ——-
a. identical
b. disjoint
c. neither a nor b d. both a and b

14. Consider (Z12,⊕). Then H = {0, 4, 8} is a subgroup
of G. Now 5 +H =——
a. {0, 4, 8} b. {1, 5, 9}
c. {2, 6, 10} d. both a and b

15. Let G be a group and let H be a subgroup of G.
Then for a ∈ G, {ha|h ∈ H} =——
a. Ha b. aH
c. neither a nor b d. both a and b

16. Kelin 4 group is ——
a. cyclic b. non cyclic
c. abelian d. both b and c

17. Example for kelin 4 group is ——- with �8
a. {0, 1, 2, 3} b. {1, 2, 3, 4}
c. {1, 3, 5, 7} d. {1, 3, 5, 8}

18. Number of subgroups of Q8 is ——
a. 1 b. 5
c. 4 d. 6

19. Z(Q8) =——
a. {1,−1} b. {i,−i}
c. both a and b d. neither a nor b

20. Let G = {I2,R,R2,R3,H,D,V,T} with usual matrix
mulipilication. Then Z(G) =——
a. {I2,R b. {R}
c. {R2

} d. {I2,R2
}

Part B-(3 × 2 = 6 marks)

21. List all generators of Z30

22. Give an example of a noncyclic group, all of whose
proper subgroups are cyclic

23. Let a and b belong to a group. If |a| and |b| are
relatively prime, show that < a > ∩ < b >= {e}.

Part C-(3 × 8 = 24 marks)

24. a) List the cyclic subgroups of U(30)

(OR)

b) Prove that H =
{[

1 n
0 1

]
: n ∈ Z

}
is a cyclic

subgroup of GL(2,R)

25. a) Show that number of elements x of group G
such that x3 = e is odd

(OR)

b) Prove that subgroup of a cyclic group is cyclic

26. a) Prove that for any group element a, |a| =< a >

(OR)

b) State and prove fundamental theorem of
cyclic groups

2
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1. If G is a cyclic group of order 24 and a2002 = an where
a ∈ G and 0 < n < 24 Then the value of n is ——
a. 4 b. 6
c. 8 d. 10

Answer All elements of G =< x > is of the form xk

where k ∈ {0, 1, . . . , 23}. Then for a ∈ G, a = xk for some
k ∈ {0, 1, . . . , 23}.

a2002 = a1992a10

= (xk)1992a10

= x1992ka10

= (x24)83ka10

= e83ka10

= a10

2. {−3n : n ∈ Z} is an abelian group under
a. subtraction b. division c. multiplication d. addition

Answer: d. addition

3. The set G = {· · · , 3−2, 3−1, 1, 31, 32, · · · } under multiplica-
tion is a —–
a. group b. cyclic
c. abelian d. all the above

Answer: G is an cyclic group. Also, every cylic group is
abelain. Therefore, d is correct choice.

4. One of the element of Quaternion group is ——

a.
[

1 0
0 1

]
b.

[
i 0
0 −i

]
c.

[
0 i
i 0

]
d. all the above

Answer: d. all the above
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5. The set of all positive rational numbers forms an abelian
group under the binary operation defined by a ? b = ab

2 .
Identity of this group is ——
a. 1 b. 2
c. 0 d. neither a nor b

Answer:

6. Minimum number of elements in a gruop is ——
a. 1 b. 2
c. 0 d. both a and b

Answer: a. 1

7. If H be any subgroup of a group G and h ∈ H, then ——
a. Hh , H = hH b. Hh = H , hH
c. Hh , H , hH d. Hh = H = hH

Answer: d. Hh = H = hH

8. The number of generators of the cyclic group G of order
8 is ——
a. 2 b. 4
c. 6 d. 8

Answer: Let G be a cyclic group generated by < a >
of order n then G =< ak > iff gcd(k,n) = 1. Let a ∈ G be
a generator of G. Then generators of G are a, a3, a5, a7.
Therefore correct choice is b.4

9. Every cyclic group is ——
a. permutation group b. non abelian group
c. abelian group d. all the above

Answer: c. abelian

10. A non commutative group has atleast —— elememts

a. 0 b. 1
c. 6 d. 7

Answer: c. 6
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11. Let G be the additive group of integers and let H =
{· · · ,−6,−3, 0, 3, 6, · · · }. Then number of distinct right
cosets is ——
a. 0 b. 1
c. 2 d. 3

Answer:

0H = 0 + H
= {· · · ,−6,−3, 0, 3, 6, · · · }

1H = 1 + H
= {· · · ,−5,−2, 1, 4, 7, · · · }

2H = 2 + H
= {· · · ,−4,−1, 2, 5, 8, · · · }

Hence [Z : H] = 3

12. Let G be a group and let H be a subgroup of G. Let h ∈ H.
Then number distinct left cosets of H in G generated by
h is ——-
a. 0 b. 1
c. 2 d. 3

Answer Given h ∈ H. Then

hH = {ha : a ∈ H}
= H

Hence [G : H] = 1

13. Any two left cosets of a subgroup are ——-
a. identical
b. disjoint
c. either a or b d. both a and b

Answer Let G be the additive group of integers and let
H = {· · · ,−6,−3, 0, 3, 6, · · · }. Consider 0H and 1H. They
are not disjoint. Consider 0H and 3H. They are identi-
cal. Hence any two left cosets of a subgroup are either
identical or disjoint.
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14. Consider (Z12,⊕). Then H = {0, 4, 8} is a subgroup of G.
Now 5 + H = ——
a. {0, 4, 8} b. {1, 5, 9}
c. {2, 6, 10} d. both a and b

15. Let G be a group and let H be a subgroup of G. Then for
a ∈ G, {ha|h ∈ H} = ——
a. Ha b. aH
c. neither a nor b d. both a and b

Answer a. Ha

16. Kelin 4 group is ——
a. cyclic b. non cyclic
c. abelian d. both b and c

Answer d. both b and c

17. Example for kelin 4 group is ——- with �8
a. {0, 1, 2, 3} b. {1, 2, 3, 4}
c. {1, 3, 5, 7} d. {1, 3, 5, 8}

Answer

18. Number of subgroups of Q8 is ——
a. 1 b. 5
c. 4 d. 6

Answer

19. Z(Q8) = ——
a. {1,−1} b. {i,−i}
c. both a and b d. neither a nor b

Answer

20. Let G = {I2,R,R2,R3,H,D,V,T}with usual matrix mulip-
ilication. Then Z(G) = ——
a. {I2,R b. {R}
c. {R2

} d. {I2,R2
}

Part B
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21. List all generators of Z30

Answer: Let G be a cyclic group generated by < a > of
order n then G =< ak > iff gcd(k,n) = 1. Since 1 is a gen-
erator of Z30 of order 30, Z30 =< ak > iff gcd(k, 30) = 1.
Possible values for k = 1, 7, 11, 13, 17, 19, 23, 29. Hence
generators of Z30 are 1, 7, 11, 13, 17, 19, 23, 29

22. Give an example of a noncyclic group, all of whose
proper subgroups are cyclic

Answer Consider the Klein-4 group, V = {e, a, b, c}. Sub-
groups of V are

{e} = < e >
{e, a} = < a >
{e, b} = < b >
{e, c} = < c >

and V ,< x > for all x ∈ V

23. Let a and b belong to a group. If |a| and |b| are relatively
prime, show that < a > ∩ < b >= {e}.
Answer Let |a| = n and |b| = m. Since < a > and < b > are
subgroups, e ∈< a > ∩ < b >. Suppose g ∈< a > ∩ < b >.
Then g ∈< a > and g = ak1 for some k1 ∈ Z. Similarly, we
have g = bk2 for some k2 ∈ Z. Let |g| = r. Then

gr = e
(ak1)r = e

ark1 = e

This implies r divides n. Similarly, we have r divides m.
That is, r common divisor of n and m. Since (n,m) = 1,
r = 1. Hence |g| = 1. That is, g = e.

Part C
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24. a) List the cyclic subgroups of U(30)

Answer All cyclic subgroups of U(30) are of the
form < a > for a ∈ U(30). We know that U(30) =
{1, 7, 11, 13, 17, 19, 23, 29}. Therefore

< 1 > = {1}
< 7 > = {1, 7, 13, 19}
< 11 > = {1, 11}
< 13 > = {1, 7, 13, 19}
< 17 > = {1, 17, 19, 23}
< 19 > = {1, 19}
< 23 > = {1, 17, 19, 23}
< 29 > = {1, 29}

Therefore we have following distinct cyclic subgroups:
< 1 >,< 7 >,< 17 >,< 11 >,< 29 >,< 19 > .

(OR)

b) Prove that H =
{[

1 n
0 1

]
: n ∈ Z

}
is a cyclic subgroup

of GL(2,R)

25. a) Show that number of elements x of group G such that
x3 = e is odd

Answer Let T be the set of all elements x in G such
that x3 = e. Since e3 = e, e ∈ T. Then T is a nonemepty
set. Let

S = T − {e}
Suppose x ∈ S. Then

x3 = e
(x3)−1 = e−1

= e

Therefore, if x ∈ S, then its inverse x−1
∈ S.
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Let x ∈ S. Then

x3 = e
⇒ xx2 = e
⇒ x−1 = x2

⇒ x2
∈ S

Suppose

x = x2

⇒ xx = x2x
⇒ x2 = x3

⇒ x2 = e
⇒⇐ x2

∈ S = T − {e}

Hence, if x ∈ S, then x , x−1.
Therefore, S =

{
x, x−1, y, y−1, . . .

}
. That is, every ele-

ment of S can be paired with another element of S,
so S has an even number of elements. Hence T has
odd number of elements.

(OR)

b) Prove that subgroup of a cyclic group is cyclic

26. a) Prove that for any group element a, |a| =< a >

First we have to prove the following theorem

Theorem 1 Let G be a group, and let a belong to G. If
a has finite order, say, n, then < a >= {e, a, a2, . . . , an−1

}

and ai = a j if and only if n divides i − j.
Proof Suppose a has finite order. Let |a| = n. First we
have to prove that < a >= {e, a, a2, . . . , an−1

}.
Clearly e, a, a2, . . . , an−1 are the elements of < a >.
Therefore

{e, a, a2, . . . , an−1
} ⊂< a >

Suppose that ak is an arbitrary member of< a >. Sup-
pose k = 0. Then there is nothing to prove. Let us as-
sume that k > 0. Then either k < n or k = n or k > n.
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Suppose k < n. Then ak
∈ {e, a, a2, . . . , an−1

}. Suppose
k = n. Then

ak = an = e ∈ {e, a, a2, . . . , an−1
}

Suppose k > n. By the division algorithm, there exist
integers q and r such that

k = qn + r with 0 ≤ r < n

Then

ak = aqn+r

= aqnar

= (an)qar

= ear

= ar

Since 0 ≤ r < n, ar
∈ {e, a, a2, . . . , an−1

} and hence
ak
∈ {e, a, a2, . . . , an−1

}.
Let us assume that k < 0.
By the division algorithm, there exist integers q < 0
and r such that

k = qn + r with 0 ≤ r < n

Then

ak = aqn+r

= aqnar

= (an)qar

= ear

= ar

Since 0 ≤ r < n, ar
∈ {e, a, a2, . . . , an−1

} and hence
ak
∈ {e, a, a2, . . . , an−1

}.
Therefore ak

∈ {e, a, a2, . . . , an−1
} for all integers k.

Hence < a >⊂ {e, a, a2, . . . , an−1
}.

Therefore < a >= {e, a, a2, . . . , an−1
}
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Next we assume that ai = a j. Then

ai(a j)−1 = a j(a j)−1

aia− j = e
ai− j = e

Again by division algorithm there are integers q and
r such that

i − j = qn + r with 0 ≤ r < n

. Now

e = ai− j

= aqn+r

= ar

Since n is the least positive integer such that an = e,
we must have r = 0. That is, i − j = nq.
Therefore n|i − j.
Conversely, suppose n|i − j. Then

ai− j = anq

= e
ai(a− j) = e
(a− j)−1 = ai

a j = ai

Let |a| = n. By previous theorem,

< a >= {e, a, a2, . . . , an−1
}.

Hence |a| = | < a > |.

(OR)

b) State and prove fundamental theorem of cyclic groups

Statement Every subgroup of a cyclic group is cyclic.
Moreover, if |a| = n, then the order of any subgroup
of a is a divisor of n; and, for each positive divisor k
of n, the group a has exactly one subgroup of order
k namely, < a

n
k >.
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