Course Objectives

This course enables the students to learn

• group homomorphism, isomorphism, automorphism and its related properties.

Course Outcomes

On successful completion of the course, students will be able to:

- 1. Expertise on fundamental theorems of isomorphism.
- 2. Know about automorphism and its developments.
- 3. Understand the concept of internal and external direct product.
- 4. Acquire the knowledge on basic concepts of group actions and their applications.
- 5. Apply Sylow's theorems to determine the structure of certain groups of small order.

UNIT I

Groups

Definition and Examples of Groups - Elementary Properties of Groups.

UNIT II

Finite Groups and Subgroups

Terminology and Notation - Subgroup Tests -Examples of Subgroups

UNIT III

Cyclic Groups

Properties of Cyclic Groups - Classification of Subgroups of Cyclic Groups

UNIT IV

Permutation Groups

Definition and Notation - Cycle Notation - Properties of Permutations

UNIT V

Isomorphisms

Definition and Examples- Cayley's theorem - Properties of isomorphisms - Automorphisms

SUGGESTED READINGS

- 1. Joseph A. Gallian., (2001). Contemporary Abstract Algebra, Fourth Edition., Narosa Publishing House, New Delhi.
- 2. Fraleigh.J.B., (2004). A First Course in Abstract Algebra , Seventh edition , Pearson Education Ltd, Singapore.

3. David S. Dummit and Richard M. Foote, (2004)., Abstract Algebra,. Third Edition., John Wiley and Sons (Asia) Pvt. Ltd., Singapore.

- Herstein.I.N.,(2010). Topics in Algebra, Second Edition, Willey and sons Pvt Ltd, Singapore.
 Artin.M., (2008).Algebra, Prentice Hall of India, New Delhi.

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021.

LECTURE PLAN

DEPARTMENT OF MATHEMATICS

FACULTY NAME: Dr. K.KALIDASSSUBJECT NAME:GROUP THEORY I SUB.CODE:18MMU302SEMESTER: III CLASS: IIB. Sc. MATHEMATICS

S.No	Lecture Duration Hour	Topics To Be Covered	Support Materials		
		UNIT-I			
1	1	Introduction	S1: Ch 1, 29		
2	1	Definition of group	S1: Ch 2, 40		
3	1	xamples of groups S1: Ch 2, 41			
4	1	Tutorial			
5	1	Examples of groups - Contd	S1: Ch 2, 42		
6	1	Examples of groups - Contd	S1: Ch 2, 42		
7	1	Examples of groups - Contd	S1: Ch 2, 42		
8	1	Tutorial			
9	1	Examples of groups -Contd	S1: Ch 2, 43		
10	1	Problems on groups	S1: Ch 2, 44		
11	1	Problems on groups - Contd	S1: Ch 2, 45		
12	1	Sutorial			
13	1	Elementary properties of groups.	S1: Ch 2, 46		
14	1	Elementary properties of groups-Contd	S1: Ch 2, 47		
15	1	Elementary properties of groups - Contd	S1: Ch 2, 48-50		
16	1	Tutorial			
17	1	Elementary properties of groups - Contd	S1: Ch 2, 48-50		
18	1	Recapitulation and discussion of possible questions			
Total n	umber of h	ours planed for unit I 18 hours	·		
		UNIT-II			
1	1	Finite subgroups	S2: Ch 1, 49		
2	1	SubgroupsTerminology and Notation	S1: Ch 3, 58		
3	1	Tutorial			
4	1	One step subgroup test	S1: Ch 3, 59		
5	1	Two step subgroup test	S1: Ch 3, 59		
6	1	Problems on subgroup tests	S1: Ch 3, 60		

sson Plan	2018-2021Batch

7	1	Tutorial			
8	1	Problems on subgroup tests - Contd	S1: Ch 3, 61		
9	1	Problems on subgroup tests- Contd	S1: Ch 3, 62		
10	1	Finite subgroup test	S4, Ch 2, 33		
11	1	Tutorial			
12	1	Examples of Subgroups	S1: Ch 3, 63		
13	1	Examples of Subgroups - Contd	S1: Ch 3, 64		
14	1	Examples of Subgroups - Contd	S1: Ch 3, 64		
15	1	Tutorial			
16	1	Theorems on center of a group	S1: Ch 3, 65		
17	1	Examples on center of a groups	S1: Ch 3, 67		
18	1	Problems on center of a group	S1: Ch 3, 68-69		
<u>19</u>	1	Tutorial			
20	 	Recapitulation and discussion of possible questions			
1 otal n	lumber of n	ours planed for unit II 20 hours UNIT-III			
1	1		S1 Ch 4 72		
$\frac{1}{2}$	1	Introduction to cyclic groups	S1, Ch 4,72 S1, Ch 4,73		
3	<u>1</u>	Theorems on cyclic groups Tutorial	51, Cll 4, / 5		
4	1	Theorems on f cyclic groups - Contd	S1, Ch 4,73		
5	1	Properties of cyclic groups	S3, Ch 2,54		
6	1	Properties of cyclic groups - Contd	S1, Ch 4,75		
7	1	Tutorial S1, Ch 4,75			
8	1	Properties of cyclic groups - Contd	S1, Ch 4,76		
9	1	Theorems on classification of cyclic subgroups	S1, Ch 4,77		
10	1	Theorems on classification of cyclic subgroups- Contd	S1, Ch 4,78		
11	1	Tutorial			
12	1	Theorems on classification of cyclic subgroups- Contd	S1, Ch 4,79		
13	1	Problems on cyclic subgroups	S1, Ch 4,80		
14	1	Problems on cyclic subgroups- Contd	S1, Ch 4,80-81		
15	1	Tutorial			
16	1	Problems on cyclic subgroups - Contd	S1, Ch 4,81		
17	1	Problems on cyclic subgroups - Contd	S1, Ch 4,81		
18	1	Tutorial			
19	1	Recapitulation and discussion of possible questions			
Total n	umber of h	ours planed for unit III 19 hours			
		UNIT-IV			
1	1	Permutation groups Definition and notation	S1, Ch5, 95		
2	1	Examples on permutation groups	S1, Ch5, 96		
3	1	Tutorial			
4	1	Examples on permutation groups - Contd	S1, Ch5, 97		
5	1	Examples on permutation groups - Contd	S1, Ch5, 98-99		

Lesson Plan²⁰¹

2018-2021Batch

6	1	Theorems on cycle notation	S1, Ch5, 100-101
7	1	Tutorial	51, 015, 100 101
8	1	Theorems on cycle notation - Contd	S1, Ch5, 102-103
9	1	Theorems on properties of permutation groups	S1, Ch5, 104-106
10	1	Theorems on properties of permutation groups - Contd	S1, Ch5, 107
11	- 1	Tutorial	51, 010, 107
12	1	Theorems on properties of permutation groups - Contd	S1, Ch5, 108-110
13 14	1	Theorems on properties of permutation groups - Contd	S1, Ch5, 111
14	1	Theorems on properties of permutation groups - Contd	S1, Ch5, 113
15	1	Tutorial	51, Cli5, 115
17	1	Recapitulation and discussion of possible questions	
	umber of h	nours planed for unit IV 17 hours	
Total		UNIT-V	
1	1	Isomorphism - Defnition	S1, Ch 6, 122
2	1	Examples on isomorphism	S5, Ch 2, 54
3	1	Tutorial	
4	1	Examples on isomorphism - Contd	S1, Ch 6, 123-124
5	1	Examples on isomorphism - Contd	S1, Ch 6, 125-126
6	1	Examples on isomorphism - Contd S1, Ch 6, 127	
7	1	Tutorial	
8	1	Examples on isomorphism -Contd	S1, Ch 6, 128
9	1	Cayley's theorem	S1, Ch 6, 129-130
10	1	Problems on Cayley's theorem	S1, Ch 6, 131
11	1	Tutorial	
12	1	Theorems on Properties of isomorphisms	S1, Ch 6, 132
13	1	Theorems on Properties of isomorphisms - Contd	S1, Ch 6, 133
14	1	Theorems on Automorphisms	S1, Ch 6, 133
15	1	Tutorial	
16	1	Theorems on Automorphisms - Contd	S1, Ch 6, 133
17	1	Theorems on Automorphisms - Contd	S1, Ch 6, 133
<u>18</u>	1	Tutorial Reconstruction and discussion of possible questions	
19 20	1	Recapitulation and discussion of possible questions	
20	1	Discusion of ESE qns Discusion of ESE qns	
21	1	Discusion of ESE qns	
	1	Total number of hours planed for unit V 22 Hours	
		- star number of nours planea for ante v 22 mours	

Unit	Hours(L+T)
Ι	18(14+4)
Π	20(15+5)
III	18(13+5)
IV	17(12+5)

V	22(18+5)
Total	96(72+24)

SUGGESTED READINGS

- Joseph A. Gallian., (2001). Contemporary Abstract Algebra, Fourth Edition., Narosa Publishing House, New Delhi.
- Fraleigh.J.B., (2004). A First Course in Abstract Algebra, Seventh edition, Pearson Education Ltd, Singapore.
- David S. Dummit and Richard M. Foote, (2004)., Abstract Algebra, Third Edition., JohnWiley and Sons (Asia) Pvt. Ltd., Singapore.
- Herstein.I.N., (2010). Topics in Algebra ,Second Edition, Willey and sons Pvt Ltd, Singapore.
- 5. Artin.M., (2008).Algebra, Prentice Hall of India, New Delhi.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE CODE: 17MMU303

<u>UNIT: I</u>

COURSE NAME: Group theory I BATCH-2017-2020

UNIT-I

SYLLABUS

Symmetries of a square, Dihedral groups, definition and examples of groups including permutation groups and quaternion groups (illustration through matrices), elementary properties of groups

KARPAGAM	ACADEMY OF H	HIGHER EDUCATION
CLASS: II BSC MATHEMATICS		COURSE NAME: Group theory I
COURSE CODE: 17MMU303	UNIT: I	BATCH-2017-2020

Introduction to set theory

The algebra of sets defines the properties and laws of <u>sets</u>, the set-theoretic operations of <u>union</u>, <u>intersection</u>, and <u>complementation</u> and the <u>relations</u> of set <u>equality</u> and set <u>inclusion</u>. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.

Preliminary notations:

Set theory:

- 1. A set is any well defined class or collection of objects.
- A set 'A' is said to be a subset of s. if every element in A is an element of s. if aεA=aεs.
- 3. A set is said to be a finite if it consists of a specific number of different elements, otherwise it is called as an infinite set.
- 4. Two sets A and B are said to be equal if and only if every element of A is an element of B, and also every element of B is an element of A.

If the two sets A and B are equal then we write it as A=B.

If the two sets A and B are not equal then we write it as $A \neq B$.

- 5. A set which contains no element is called as null set or an empty set.
- 6. A set consisting of a single element is called singleton set.
- Given a set S we use the notations as,
 A={aɛs/p(a)} means that A is the set of all the elements in s for which the property p holds
- 8. The union of the two sets A and B is denoted as AUB the set is $\{x/x \in A \text{ or } x \in B\}$.
- 9. The intersection of the two sets A and B is denoted as $A \cap B$ is the set $\{x/x \in A \text{ and } x \in B\}$.

KARPAGAM CLASS: II BSC MATHEMATICS COURSE CODE: 17MMU303	UNIT: I	COURSE NAME: Group theory I BATCH-2017-2020
10. The two sets A and B have	e no elements is th	nen we say that A and B are disjoint or
mutually exclusive.		
Prepositions:		
1. For any 3 sets A,B,C we ha	ave	
$A \cap (BUC) = (A \cap B)U(A \cap C)$	2)	
First we try to prove that		
$(A \cap B)U(A \cap C)\varsigma A \cap (BUC)$	C)	
Now B ς BUC		
A∩B ς A∩(BUC) →	• 1	
c ς BUC		
A∩C ς A∩(BUC) →	2	
1 and 2 $(A \cap B)U(A \cap C) \varsigma A$	A∩(BUC)	→ 3
Next we try to prove	Y 7	
A∩(BUC) ς(A∩B)U(A∩C))	
xεA A∩(BUC) →	4	
Let xEA and (xEB or xEC)		
$x \in A$ and $x \in B$ or $x \in A$ and $x \in B$	еC	
$x \in A \cap B$ or $x \in A \cap C$		
$x\epsilon(A\cap B)U(A\cap C)$	• 5	
from 4 and 5 A \cap (BUC) ς (A		→ 6

Prepared by Dr. K. Kalidass, Assistant Professor, Department of Mathematics, KAHE

Page 3/21

Definitions:

1. Given a set T we say that T serves as an index set for the family $f.f=\{A_{\alpha}\}$ of sets if for every $\alpha\epsilon T$, there is a set of A_{α} is the family of F.The index set T can be any finite set or infinite.

- 2. By the union of sets A_{α} where α is in T, we mean the set $\{x/x \in A_{\alpha} \text{ for at least one } \alpha \text{ in } T\}$ we denote it by U $A_{\alpha} \alpha \epsilon T$.
- 3. By the intersection of he sets A_{α} where α is in T we mean that the set { $x/x \in A_{\alpha}$ for every $\alpha \in T$ } we denote it by $\cap \alpha \in T A_{\alpha}$.
- 4. The sets A_{α} are mutually disjoint if $\alpha \neq \beta A_{\alpha} \cap A_{\beta}$ is the null set.
- 5. Given the two sets A and B then the difdferenc set A-B is the set {xɛA/xɛB} then B is a subset of A in this case we call A-B is the complement of B in A.
- 6. Let A and B be any two given sets then their Cartesian product A*B is defined as the set of all ordered pairs(a,b) where aεA and bεB.

Note:

- i) $(a_1,b_1)=(a_2,b_2)$ iff $a_1=a_2$ and $b_1=b_2$ given any index set T we can define the Cartesian product of the sets A_{α} as α varies over T.
- ii) If the set A is a finite set having elements then the set A^*A is also a finite set but has n^2 elements.
- iii) The set of all elements (a,a) is A*A is called the diaponal of A*A.

Definition:

The binary relation ~ on A is said to be a equivalence relation if for all a,b,c is A. i) a~a reflexing

Prepared by Dr. K. Kalidass, Assistant Professor, Department of Mathematics, KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: II BSC MATHEMATICSCOURSE NAME: Group theory ICOURSE CODE: 17MMU303UNIT: IBATCH-2017-2020

ii) a~b=b~a symmetry

iii) a~b and b~c=a~c transistivity

Example:

Let s be the set of all integers given a,bɛs defines a~b if a-b is even integer.

Solution:

i) since 0=a-a is even a~a

ii) if a~b then a-b is even –(b-a) is also even=b~a.

iii)if a~b then a-b is even and b~c then (b-c) is even.

a-c=(a-b)+(b-c) is also even= $a \sim c$.

The given relation is equivalence relation.

Definition:

If A is a set and if ~ is an equivalence relation on A then the equivalence class of $a\epsilon A$ is the set { $x\epsilon A/a\sim x$ } we write it as cl(a).

Fundamental theorem on equivalence relation:

<u>Theorem 1.1.1</u>

The distinct equivalence classes of an equivalence relation A provide us with a decomposition of A as a union of mutually disjoint subsets. Conversely given a decomposition of A as union of mutually disjoint, non empty subsets we can define an equivalence relation on A for which these subsets are the distinct equivalence classes.

Proof:

Let the equivalence relation on A be denoted by '~' since for any $a \in A$, $a \sim a$.

A must be in cl(a).

Hence the union of the cl(a) is all of A we now try to prove that given two equivalence classes they are either equal or disjoint.

Now we suppose that cl(a) and cl(b) are not disjoint then f an element.

Prepared by Dr. K. Kalidass, Assistant Professor, Department of Mathematics, KAHE

CLASS: II BSC MATHEMATICS		IGHER EDUCATION COURSE NAME: Group theory I
COURSE CODE: 17MMU303	UNIT: I	BATCH-2017-2020
$x \varepsilon cl(a) \cap cl(b)$		
Since xɛcl(a) a~x		
Since xɛcl(b) b~x		
But by the symmetry of relation w	ve have x~b.	
$a \sim x \text{ and } x \sim b = a \sim b \longrightarrow 1$		
Now we suppose that yccl(b)		
b~y → 2		
1 and 2 $a \sim y = y \in cl(a)$.		
Every element in cl(b) is in cl(a) of	$cl(b)\varsigma cl(a) \longrightarrow$	- 3
In a similar way we can prove that	ıt	
$Cl(a)\varsigma cl(b) \longrightarrow 4$		
3 and 4 $cl(a)=cl(b)$		
Thus we have shown that the disti	inct cl(a) are eithe	r they are equal or disjoint.
Let us suppose that $A=uA_{\alpha}$ when	$re A_{\alpha}$ mutually di	sjoint non empty set[α is in the some
index set]. Given an element a is a	A is exactly in on	$e A_{\alpha}$.
We define for a,bɛA,a~b if a and l	h are in the same	A
	o are in the suille	ι τ α.
We now prove that this is an equ	ivalence relations	on a and that the distinct equivalence
classes on the A_{α} .		

Now a and a are in the same A_{α} . a~a.

Now assume that $a \sim b$, then by definition a and b are in the same A_{α} .

b~a hence if a~b=b~a then it follows that a and b are in the same A_{α} .

B and c are in the same A_{β} .

Now suppose that $A_{\alpha} \neq A_{\beta}$ since be $A_{\beta} = A_{\alpha} \cap A_{\beta} \neq 0$

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: II BSC MATHEMATICSCOURSE NAME: Group theory ICOURSE CODE: 17MMU303UNIT: IBATCH-2017-2020

Which is a contradiction. Since A_{α} and A_{β} . Are distinct $A_{\alpha}=A_{\beta}$. Hence a and c are in the same A_{α} .

 $a\sim c$ thus $a\sim b$ and $b\sim c=a\sim c$. thus the relation defined above satisfies reflexity symmetry and transitivity. Hence the above relation is an equivalence relation.

Lat as A let A_{α} be the unique no of the partition such that as A_{α} then by definition of ~ we get $cl(a)=A_{\alpha}$.

Thus distinct equivalence classes are A_{α} .

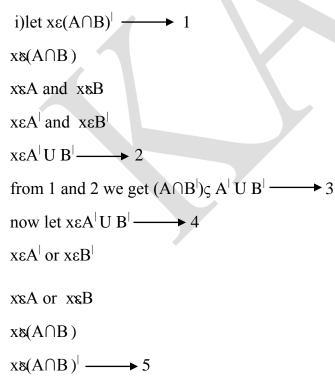
State And Prove Demorgan's Theorem:

Statement:

For a subset c of s let c^{\mid} denotes the complement of c in s. for any two subsets A,B of s we have,

i) $(A \cap B)^{l} = A^{l} \cup B^{l}$ ii) $(A \cup B)^{l} = A^{l} \cap B^{l}$

Proof:



CLASS: II BSC MATHEMATICS COURSE CODE: 17MMU303	UNIT: I	COURSE NAME: Group theory I BATCH-2017-2020
from 4 and 5we get $(A^{ } U B^{ })\varsigma(A \cap B)$	B) → 6	
from 3 and 6 we get $(A \cap B)^{\mid} = (A^{\mid} U)^{\mid}$	(B)	
ii)(AUB) $=A^{ }\cap B^{ }$		
$ \text{tet x}(\text{AUB}) \longrightarrow 1$		
xs(AUB)		
x&A and x&B		
$x \epsilon A^{\dagger}$ and $x \epsilon B^{\dagger}$		
$x \in A^{ } \cap B^{ } \longrightarrow 2$		
from 1 and 2 we get $(AUB)^{l}\varsigma A^{l}\cap B$	→ 3	
now let $x \in A^{ } \cap B^{ } \longrightarrow 4$		
$x \epsilon A^{\dagger}$ and $x \epsilon B^{\dagger}$		
xsA and xsB		
x&AUB		
$x\epsilon(AUB)^{ } \longrightarrow 5$		
from 4 and 5 we get $A^{ } \cap B^{ }\varsigma(AUB)^{ }$	→ 6	
from 3 and 6 we get $(AUB)^{\mid} = A^{\mid} \cap E$	3 ¹ .	

Problem:

1. If A is a finite set having n elements then prove that A has exactly 2^n distinct subsets.

Solution:

Given that A is a finite set with n elements

Thus A contains obviously the empty set also that it contains the following subsets.

 nc_1 =number of 1 element subsets.

nc₂=number of 2 element subsets.

nc_n=number of n element subsets.

The total number of subsets $= nc_0 + nc_1 + nc_2 + \dots + nc_n$

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: II BSC MATHEMATICSCOURSE NAME: Group theory ICOURSE CODE: 17MMU303UNIT: IBATCH-2017-2020

 $=1+nc_1+nc_2+....+1$

From binomial theorem we know that

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + x^n$$

When x=1 we have,

 $2^{n}=1+n+\frac{n(n-1)}{2!}+....+1$

From these both we have the total no of subsets= 2^n .

Introduction to Mappings

In mathematics, the term mapping, usually shortened to map, refers to either

A function, often with some sort of special structure, or

A morphism in category theory, which generalizes the idea of a function.

Mappings:

A mapping from a set S is a rule that associates with each element s in s a unique element t in T.

Note:

In the above case way that t is the unique of s under the mapping.

Definition:

If S and T are non empty sets then a mapping from s to T is a subset of M of s^*t such that for every seS there is a unique teT such that the ordered pairs(s, t) is in M.

Note:

Let σ be a mapping from S to T we denote this by σ : ST or T=S σ .

Examples:

1. Let S be any set. Define i:S \implies S by s=si for any sets ses. This mapping I is called the identity mapping.

Prepared by Dr. K. Kalidass, Assistant Professor, Department of Mathematics, KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: II BSC MATHEMATICSCOURSE NAME: Group theory ICOURSE CODE: 17MMU303UNIT: IBATCH-2017-2020

2. Let S and T be any two sets and let t_0 be an element of T. define ψ :S \longrightarrow T by an $\psi(s)=t_0$ for every sets then ψ is a mapping.

3. Let S and T be any two sets. Define τ by $(a, b)\tau = a$ for any $(a, b)\varepsilon S^*T$. this τ is called as the projection of S*T on S. in a similarity we can define the projection of S * T on T.

Note: .

Let S be any set we construct a new set s^* , the set whose elements are the subsets of S then we call S^* the set of subsets of S.

Example:

1. If $S = \{x_1, x_2\}$

Then $s^* = \{\{\}, \{x_1\}, \{x_2\}, S\}$

2. Given a mapping τ : T, we define for t ϵ T, the inverse of t w.r.to τ to be the

set {s ϵ S/t=ST}.

Definition:

- 1. The mapping τ of S into T is said to be onto T if given t ϵ T, F an element s ϵ S such that t=st.
- 2. The mapping τ of s into T is said to be a one to one mapping. If whenever $s_1 \neq s_2$ then $s_1 \tau \neq s_2 \tau$.
- 3. The two mappings σ and τ of s into T are said to be equal is $s\sigma=s\tau$ for every ses.

4. If $\sigma:S \longrightarrow T$ and $\tau:T \longrightarrow U$ then the composition (or product) of τ and σ is the mapping $\sigma_0 \tau: S \longrightarrow U$.

5. Defined by $s(\sigma_0 \tau) = (s\sigma)\tau$ fro every $s \in S$

= $t\tau$ for every $t\epsilon T$

=u for every uεU.

Example:

Let $S = \{x_1, x_2, x_3\}$ and T=S.

Let σ : S S be defined by $x_1\sigma = x_2$, $x_2\sigma = x_3$, $x_3\sigma = x$ and τ : S S be defined by

$$x_1 \tau = x_1, x_2 \tau = x_3, x_3 \tau = x_2$$

thus $x_1(\sigma_0 \tau) = (x_1 \sigma) \tau$

 $= \mathbf{x}_2 \boldsymbol{\tau} = = \mathbf{x}_3$

 $X_2(\sigma_0 \tau) = (x_2 \sigma) \tau$

CLASS: II BSC MATHEMATICS		COURSE NAME: Group theory I
COURSE CODE: 17MMU303	UNIT: I	BATCH-2017-2020
$= x_3 \tau = = x_2$		
$X_3(\sigma_0\tau)=(x_3\sigma)\tau$		
$= x_1 \tau = = x_1$		
$x_1(\tau_0\sigma)=(x_1\tau)\sigma$		
$= x_2 \sigma = = x_2$		
$X_2(\tau_0\sigma)=(x_2\tau)\sigma$		
$= x_3 \sigma = = x_1$		
$X_3(\tau_0\sigma)=(x_3\tau)\sigma$		
$= x_2 \sigma = = x_3$		
So from above resets we conclude	e that is general σ_0	$\sigma \tau \neq \tau_0 \sigma.$
Lemma 1.2.1: Associative law	<u>/:</u>	
If $\sigma: S \Longrightarrow t, \tau: T \Longrightarrow U$ and u	: U =>>V then	
$(\sigma_0 \tau)_0 \mu = \sigma_0(\tau_0 \mu)$		
Proof:		
We know that $\sigma_0 \tau$ makes sense an	d takes S into U.	
Thus $(\sigma_0 \tau)_0 \mu$ also makes sense an	d takes S into V.	
Now let us prove for any sɛS,		
$S[(\sigma_0\tau)_0\mu]=s[\sigma_0(\tau_0\mu)]$		
$1.h.s = s[(\sigma_0 \tau)_0 \mu]$		
$=s(\sigma_0\tau)\mu$		
$=((s\sigma)\tau)\mu$ $=s\sigma(\tau_0\mu)$		
= s[$\sigma_0(\tau_0\mu)$]=r.h.s.= associative pr	operty.	

Let $\sigma:S \longrightarrow T$ and $\tau:T \longrightarrow U$ then

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: II BSC MATHEMATICS COURSE NAME: Group theory I COURSE CODE: 17MMU303 UNIT: I BATCH-2017-2020 i) $\sigma_0 \tau$ is onto if each of σ and τ is onto. ii) $\sigma_0 \tau$ is one to one if each of σ and τ is one to one. Proof: Since τ : T \Longrightarrow U is onto for a given u ϵ U, F a t ϵ T such that $t\tau=u \longrightarrow 1$

since $\sigma:S \implies T$ is onto

for given teT F a seS such that

 $s\sigma = t \longrightarrow 2$

now s $(\sigma_0 \tau) = (s\sigma)\tau$

=t τ by 2

=u by 1

Thus for every use U F a set S such that s ($\sigma_0 \tau$)=u

Then by definition $\sigma_0 \tau$ is onto

Let s_1 , $s_2 \in s$ and $s_1 \neq s_2$

Since σ is one to one $s_1\sigma \neq s_2\sigma$

 $s_1 \sigma \& s_2 \sigma$ are distinct elements in T.

since τ is one to one $s_1 \tau \neq s_2 \tau$

$$= s_1(\sigma_0 \tau) = (s_1 \sigma) \tau \neq (s_2 \sigma) \tau = s_2(\sigma_0 \tau)$$

 $= s_1(\sigma_0 \tau) \neq s_2(\sigma_0 \tau)$

 $=(\sigma_0 \tau)$ is one to one by definition.

Note:

The converse of above lemma is false.

i) If $(\sigma_0 \tau)$ is onto then σ and τ is need not be onto.

 $\sigma_0 \tau$ is one to one if each of σ and τ is need not be one to one. ii)

Definition:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE CODE: 17MMU303 COURSE NAME: Group theory I BATCH-2017-2020

Let σ :S T if σ is both one to one and on to then we say the mapping σ is one to one correspondence between S and T.

UNIT: I

Lemma 1.2.3:

Statement:

The mapping σ : S \longrightarrow T is one to one correspondence between S and T iff there exists a mapping μ :T \longrightarrow S such that $\sigma_0\mu$ and $\mu_0\sigma$ are the identity mappings on S and T respectively.

Proof:

First let us assume that the mapping σ : S T is a one to one correspondence between S and T.

Since σ is onto, for given t ϵ T, F an element s ϵ S such that s σ =t \longrightarrow 1 Since σ is one to one this s in must be unique now we define the mapping σ^{-1} :T \Longrightarrow S by s= t σ^{-1} iff t=s σ the mapping σ^{-1} is the inverse of σ . Let $\sigma_0 \sigma^{-1}$: s \Longrightarrow S

```
Now for any seS, s (\sigma_0 \sigma^{-1}) = (s\sigma) \sigma^{-1}
```

```
= t \sigma^{-1} by 1= s
```

```
=si
```

```
\sigma_0 \sigma^{-1} is the identity mapping on s.
```

```
if we take \mu = \sigma^{-1} then
```

```
\sigma_0\mu is the identity mapping on s.
Now \sigma^{-1}\sigma: T > T then for any teT.
```

```
Now \sigma_0 \sigma: 1 => 1 then to
t(\sigma_0^{-1} \sigma)=(t\sigma^{-1})\sigma
```

```
ແο
=sσ
```

-so=t

=ι =ti

 $\sigma^{-1}_{0}\sigma$ is the identity mapping on T.

Conversely if $\sigma: S \implies T$ is such that F a mapping on $\mu: T \implies S$ with the property that $\sigma_0\mu$ and $\mu_0\sigma$ are the identity mapping on S and T respectively. Then we have to show that σ is a one to one correspondence between S and T. we have to show σ is both one to one and onto.

Let tET then t=ti

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: II BSC MATHEMATICS COURSE NAME: Group theory I COURSE CODE: 17MMU303 UNIT: I BATCH-2017-2020

=t $(\mu_0 \sigma)$ =(t μ) σ

Now tµ is an element of S. so t is the image under σ of the element tµ in s. for a given tɛT F a tµɛS such that (tµ) σ =t by definition σ is onto.

Let s_1 , $s_2 \in S$ assume that $s_1 \sigma = s_2 \sigma$

Now consider $s_1 = s_1(\sigma_0 \mu)$

 $= (s_1 \sigma) \mu$

 $= (s_2 \sigma) \mu$

 $=s_2(\sigma_0\mu)$

=s₂ ($\sigma_0\mu$ is the identity on s)

Whenever $s_1 \sigma = s_2 \sigma = s_1 = s_2$

Then by definition σ is one to one.

Definition:

A binary operation 0 on a non empty set A is a mapping which associates each pair (a, b) of elements of A an uniquely defined element CEA thus 0 is a mapping of product of the set A*A to A symbolically a map 0: $A*A \implies$ A is called a binary operation on the set A.

Example:

Addition and multiplication on binary operation on N. If S is non empty set then A(s) is the set of all one to one mappings of s onto itself. <u>Theorem: 1.2.1:</u> If σ , τ , μ are elements of A(S) then i) $\sigma_0 \tau$ is in A(S) ii) ($\sigma_0 \tau$) $0\mu = \sigma_0 (\tau_0 \mu)$ iii) F an element I the identity map in A(S) such that $\sigma_0 i = i_0 \sigma$ iv)F an element $\sigma^{-1} \epsilon A(S)$ such that $\sigma_0 \sigma^{-1} = \sigma^{-1} 0 \sigma = i$ <u>Proof:</u> 1.Lemma 1.2.2 2.Lemma 1.2.1

3.Clearly the identity map 'i' is both one to and on to $i\epsilon A(S)$ let $s\epsilon S$

Now consider $s(\sigma_0 i) = (s\sigma)i$

=s σ ¥ s ϵ S $=\sigma_0$ i $=\sigma$

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: II BSC MATHEMATICS COURSE NAME: Group theory I COURSE CODE: 17MMU303 UNIT: I BATCH-2017-2020

Lemma 1.2.3(write the first part only).

Lemma: 1.2.4:

If s has more than two elements we can find two elements $\sigma^*\tau$ in A(S) such that $\sigma_0\tau\neq\tau_0\sigma$.

Proof:

Let us assume that S has more than two elements let x_1, x_2 , and x3 be three distinct

elements in s.

Now we define $\sigma: S \longrightarrow S$

By $x_1 \sigma = x_2$

 $X_2 \sigma = x_3$

 $X_3 \sigma = x_1$

S σ =s for only s ϵ S different from x₁, x₂, x₃

Define τ : S \Longrightarrow S

By $x_2 \tau = x_3$

 $x_3 \tau = x_2$

and $s\tau$ =s for any s ϵ S different from x_2 , and x3 clearly both σ and τ are one to one and on to and hence in A(S)

now
$$x_1(\sigma_0 \tau) = (x_1 \sigma) \tau$$

 $=x_2\tau$

```
=x_3 \longrightarrow 1
```

```
And x_1(\tau_0\sigma) = (x_1\tau)\sigma
```

 $=x_1\sigma$

 $=\mathbf{x}_2 \longrightarrow 2$

Comparing 1 and 2 we observe that $\sigma_0 \tau \neq \tau_0 \sigma$.

Problem1:

If the set S has n elements then prove that A(S) has n! Elements.

Solution:

When $S = \{x_1, x_2, x_3...x_n\}$

Any one to one mapping on S onto itself is given by specifying the image of each elements.

The image of x_1 can be chosen is different ways. Since the image of x_2 is different from image of x_1 it can be chosen in n - 1 different ways and so on. Hence the total no of one to one mapping of s onto itself is n(n-1)(n-2).....3.2.1=n!.

Problem2:

If f: $A \implies B$ is a map and E_1 , E_2 are any two subsets of A then show that

- i) $f(E_1UE_2)=f(E_1)Uf(E_2)$
- ii) $f(E_1 \cap E_2) \varsigma f(E_1) \cap f(E_2)$

Solution:

i) Let $b\epsilon f(E_1 U E_2)$

```
b=f(a) for some as E_1UE_2 \longrightarrow 1
```

b=f(a) for some $a \in E_1$ or $a \in E_2$

```
b=f(a) and f(a)\varepsilon f(E_1) or f(a)\varepsilon f(E_2)
```

```
b=f(a) and f(a) \in f(E_1) \cup f(E_2) \longrightarrow 2
```

```
from 1 and 2 we get f(E_1UE_2)\zeta f(E_1)Uf(E_2) \rightarrow 3
```

```
now let b \epsilon f(E_1) U f(E_2) \longrightarrow 4
```

 $b^{l} \epsilon f(E_1)$ or $b^{l} \epsilon f(E_2)$

b = f(a) for some $a \in E_1$ or E_2

```
b = f(a) for some a \varepsilon (E_1 U E_2)
```

```
b = f(a) for some f(a) \varepsilon f(E_1 U E_2) \longrightarrow 5
```

from 4 and 5 we get $f(E_1)Uf(E_2)\zeta f(E_1UE_2) \longrightarrow 6$

```
from 3 and 6 we get f(E_1UE_2)=f(E_1)Uf(E_2)
```

ii) Let be $f(E_1 \cap E_2) \longrightarrow 7$

bef(a) for some $a \in E_1 \cap E_2$

KARPAGAM ACADEMY OF HIGHER EDUCATION			
CLASS: II BSC MATHEMATICS		COURSE NAME: Group theory I	
COURSE CODE: 17MMU303	UNIT: I	BATCH-2017-2020	

b=f(a) for some as E_1 and as E_2 b=f(a) and f(a) $\varepsilon f(E_1)$ and f(a) $\varepsilon f(E_2)$ b=f(a) and f(a) $\varepsilon f(E_1) \cap f(E_2) \longrightarrow 8$ from 7 and 8 we get $f(E_1 \cap E_2) \zeta f(E_1) \cap f(E_2)$

Introduction to Group Theory

In mathematics, a **group** is a set of elements together with an operation that combines any two of its elements to form a third element satisfying four conditions called the group axioms, namely closure, associativity, identity and invertibility. One of the most familiar examples of a group is the set of integers together with the addition operation; the addition of any two integers forms another integer. The abstract formalization of the group axioms, detached as it is from the concrete nature of any particular group and its operation, allows entities with highly diverse mathematical origins in abstract algebra and beyond to be handled in a flexible way, while retaining their essential structural aspects. The ubiquity of groups in numerous areas within and outside mathematics makes them a central organizing principle of contemporary mathematics.

Group theory:

Definition of a group:

A non empty set G is called a group if in G there is defined a binary operation called a product and denoted by '.' Such that

- i) For a, beG a.beG⁻¹(closure property)
- ii) a,b,ccG a.(b.c)=(a.b).c(associative property)
- iii) F an element $e \in G$ such that $a.e=e.a \notin a \in G$ e is called the identity of the element in G.
- iv) For every as G F an element a ⁻¹sG such that a.a ⁻¹=a ⁻¹.a=e eixtence of inverse.

The algebra structure of the group is given by (G,.).

Definition:

- i) A group G is said to be an abelian group or commutative if for every a,bɛG
 a.b=b.a
- ii) A group which is not abelian is called a non abelian group.
- iii) The order of a group G, denoted by o(G) is the no of elements in G.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICSCOURSE NAME: Group theory ICOURSE CODE: 17MMU303UNIT: IBATCH-2017-2020

- iv) If G contains finite no of elements we say that G is a finite group otherwise it is called as an infinite group.
- v) We know that if a set S contains 'n' elements then A(S) contains n! elements amd
 A(S) is a group. This group is called as the symmetric group of degree n denoted by s_n.

Some examples of groups.

Let G consists of the integers $0, \pm 1, \pm 2, \ldots$ where we means by a.b foe a,b ϵ G the usually sum of integers that is a.b=a+b.

Solution:

Closure property:

Let a, b ε G then a+b ε G, since the sum of two integers is also an integer in G.

Associative property:

Let a,b,ccG then (a+b)+c=a+(b+c) since the associative property is true in the case of integers.

Existence of identity elements:

OEG, now $a+o=a \quad \forall a \in G$ o is the additive identity element in G.

Existence of inverse element:

For any as G we can find an element -a in G such that a+(-a)=0

-a acts as the inverse for a in G(G, +) is a group.

Examples:

- 1. The set of all 2*2 matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ a,b,c,d ϵ R is a group under matrix addition.
- 2. Q,R,C groups are all under usual addition.
- 3. Let G consists of real nos (1, -1) under the binary operation multiplication then G is an abelian group of order 2.
- Since sum of two integers is commutative for any a,bεG a+b=b+a G is an abelian group. Also G contains infinite number of elements. G is an infinite abelian group to the binary operation addition.

CLASS: II BSC MATHEMATICS COURSE CODE: 17MMU303	UNIT: I	COURSE NAME: Group theory I BATCH-2017-2020
	01111.1	DATCH-2017-2020
Some preliminary lemmas:		
<u>Lemma 2.3.1:</u>		
If G is a group then		
1. The identity element of G	is unique.	
2. Every acG has an unique in	nverse in G.	
3. Left and right cancellation	laws hold	
a.b=a.c b=c		
b.a=c.a b=c		
4. for every $a \in G(a^{-1})^{-1} = a$		
5. for all $a \in G(a.b)^{-1} = b^{-1}.a^{-1}$		
Proof:		
If possible let there be two I deno	ted elements e, f i	n G.
Let acG since e is the identity.	Consider f as an	ordinary elements in G. then by the
definition,		
a.e=e.a=a		
f.e=e.f=f		
since f is the identity consider e a	s an ordinary elen	nent in G. then by definition
a.f=f.a=a		
e.f=f.e=e		
we know that e.f=f and e.f=e	f=e hence the ide	entity element is unique.
2. let aɛG		
If possible let there be two inverse $a.a^{ }=a^{ }.a=e$	es $a^{ }$ and $a^{ }$ for a in	G. then by definition we know that
$a.a^{\parallel}=a^{\parallel}.a=e$		
Since e is the identity element we	can wriye	
$a^{l} = a^{l}.e$		
$=a^{ }.(a.a^{ })$		

CLASS: II BSC MATHEMATICS	TINITT. T	COURSE NAME: Group theory I
COURSE CODE: 17MMU303	UNIT: I	BATCH-2017-2020
$= e.a^{\parallel}$		
$=a^{\parallel}$		
$a^{ } = a^{ }$ hence every element in G has	as a unique invers	se.
3 let a,b,cɛG let us suppose that	a.b=a.c	
Since $a \in G$ $a^{-1} \in G$		
Now premultiplying by a ⁻¹ we get	t	
$a^{-1}.(a.b) = a^{-1}.(a.c)$		
(a ⁻¹ .a).b=(a ⁻¹ .a).c		
e.b=e.c		
b=c		
left cancellation law is true.		
Since $a \in G$ $a^{-1} \in G$ now post multiplication of $a \in G$ and	ltiplying by a ⁻¹ v	ve get
(b.a). $a^{-1} = (c.a). a^{-1}$		
b.($a^{-1}.a$)=c.($a^{-1}.a$)		
b.e=c.e		
right cancellation law is true.	Y 7	
4. let $a \in G$ let a^{-1} be the inverse of	a in G then $(a^{-1})^{-1}$	¹ will be the inverse of a ⁻¹ in G.
Since G is a group we have		
a. $a^{-1} = a^{-1} \cdot a = e$ and $a^{-1} (a^{-1})^{-1} = e$	$(a^{-1})^{-1}.a^{-1}=e$	
we have $a^{-1}.a = a^{-1}.(a^{-1})^{-1}$		
using left cancellation law we hav	$e a = (a^{-1})^{-1}$.	
5 let $a,b\in G$ let a^{-1}, b^{-1} be the inve	rse of a and b in	Ĵ.
Then a.b and b^{-1} . a^{-1} exists in G b	by closure propert	.y
Now we consider		
$(a.b).(b^{-1}.a^{-1})=a.(b.b^{-1}).a^{-1}$		

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: II BSC MATHEMATICSCOURSE NAME: Group theory ICOURSE CODE: 17MMU303UNIT: IBATCH-2017-2020

 $=a. a^{-1}$

=e

 $(a.b)^{-1}=b^{-1}.a^{-1}$

Lemma 2.3.2:

Given a,b in the group G then the equations a.x=b and y.a=b have unique solutions for x and y in G.

Proof:

Given that a,bɛG

Since $a,b\epsilon G, a^{-1}\epsilon G$

. x=a⁻¹.bɛG

Now consider

a.x=a.(a ⁻¹.b)

 $=(a. a^{-1}).b$

=e.b

=b

X satisfies the given equation and hence $x=a^{-1}$.b is a solution.

To establish the uniqueness of the solution, let there be two solution x_1 and x_2 for the equation a.x=b

We have $a.x_1=a.x_2$

 $x_1 = x_2$

henc $x=a^{-1}$.b is a unique solution for a.x=b. in a similar way we can prove that $y=b.a^{-1}$ is a unique solution for y.a=b.

KARPAGAM ACADEMY OF HIGHER EDUCATION			
CLASS: II BSC MATHEMATICS	COURSE NAME: Group theory I		

COURSE CODE: 17MMU303

UNIT: I

BATCH-2017-2020

Problem:

Show that the set G ={ $a+b\sqrt{2}$: $a,b\in Q$ } is a group with respect to addition.

Solution:

Closure Property:

Let x,y be any two elements of G. Then $x = a+b\sqrt{2}$, $y = c+d\sqrt{2}$, where $a,b,c,d \in Q$

Now $x+y=(a+c)+(b+d) \sqrt{2} \in Q$,

Thus $x+y \in G$ for every $x,y \in G$.

Therefore G is closed with respect to addition.

Associativity:

The elements of G are all real numbers and the addition of real numbers is associative.

Existence of identity:

We have $0+0\sqrt{2} \in G$ since $0 \in Q$.

If $a+b\sqrt{2}$ is any element of G, then $(0+0\sqrt{2})+(a+b\sqrt{2}) = a+b\sqrt{2}$

 $0+0\sqrt{2}$ is the identity.

Existence of inverse:

We have $a+b\sqrt{2} \in G \Rightarrow (-a) + (-b)\sqrt{2} \in G$ since $a, b \in Q \Rightarrow -a, -b \in Q$.

Now $[(-a)+(-b)\sqrt{2}] + [a + b\sqrt{2}] = [(-a) + a] + [-b) + b]\sqrt{2} = 0 + 0\sqrt{2} =$ the left identity.

There for (-a) +(-b) $\sqrt{2}$ is the left inverse of a+b $\sqrt{2}$.

Hence G is a group with respect to addition.

KARPAGAM ACADEMY OF HIGHER EDUCATION			
CLASS: II BSC MATHEMATICS		COURSE NAME: Group theory I	
COURSE CODE: 17MMU303	UNIT: I	BATCH-2017-2020	

POSSIBLE QUESTIONS:

Part-B(5X8 = 40 Marks)

Answer all the questions:

- 1. i) Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - ii) If a finite set S has n elements, then prove that the power set S has 2ⁿ elements.
- 2. Write about the types of binary operations.
- 3. If G is a group ,then prove that i)the identity element of G is unique ii)every $a \in G$ has a unique inverse in G iii)for every $a \in G$, $(a^{-1})^{-1} = a$ iv)for all $a,b \in G$, $(a.b)^{-1} = b^{-1}.a^{-1}$
- 4. If a,b are any two elements of a group G, then prove that the equations ax = b and ya = b have unique solutions in G.
- 5. Show that the set G = { $a+b\sqrt{2}$: $a,b\in Q$ } is a group with respect to addition.
- 6. i) Prove that the inverse of the product of two elements of a group G is the product of the inverse taken in the reverse order.ii)Show that if every element of the group G is its own inverse, then G is abelian.
- 7. Let G be a group. Then prove that i) identity element of G is unique ii) for any a∈G, the inverse of a is unique.
- 8. Prove that if G is an abelian group, then for all $a,b \in G$ and all integers n, $(a.b)^n = a^n \cdot b^n$.
- 9. If G is a group, in which $(a.b)^i = a^i b^i$ for three consecutive integers i for all $a, b \in G$. Show that G is abelian.
- 10. If a.b.c are any elements of G, then prove that $ab = ac \Rightarrow b = c$ and $ba = ca \Rightarrow b = c$.

KARPAGAM ACADEMY OF HIGHER EDUCATION **CLASS: II BSC MATHEMATICS COURSE NAME:** Group theory I COURSE CODE: 17MMU303 UNIT: II BATCH-2017-2020 UNIT-II **SYLLABUS** Subgroups and examples of subgroups, centralizer, normalizer, center of a group, product of two subgroups

KARPAGAM ACADEMY OF HIGHER EDUCATION			
CLASS: II BSC MATHEMATICS		COURSE NAME: Group theory I	
COURSE CODE: 17MMU303	UNIT: II	BATCH-2017-2020	

Introduction to Subgroups

In algebra, given a group G under a binary operation *, a subset H of G is called a subgroup of G if H also forms a group under the operation *. More precisely, H is a subgroup of G if the restriction of * to $H \times H$ is a group operation on H. This is usually represented notationally by $H \leq G$, read as "H is a subgroup of G". A proper subgroup of a group G is a subgroup H which is a proper subset of G (i.e. $H \neq G$). The trivial subgroup of any group is the subgroup {e} consisting of just the identity element. If H is a subgroup of G, then G is sometimes called an overgroup of H.The same definitions apply more generally when G is an arbitrary semigroup, but this article will only deal with subgroups of groups. The group G is sometimes denoted by the ordered pair (G, *), usually to emphasize the operation * when G carries multiple algebraic or other structures. This article will write ab for a * b, as is usual.

Sub groups:

A non empty subset H of a group G is said to be a subgroup of G if under the product is G,H itself forms a group.

Note:

If H is a subgroup of G and K is a subgroup of H, K is a subgroup of G.

Lemma 2.1:

A non empty subset H of a group G is a subgroup of G itself:

```
i) a, bɛH=abɛH
ii) aɛH=a<sup>-1</sup>ɛH
```

Proof:

First we assume that H is a subgroup of G then by definition H is a group under the same binary operation as in G.

a, bEH=abEH and

 $a \in H = a^{-1} \in H$, $a, b \in H$

conversely let us assume that,

```
a, bEH=abEH and
```

 $a \in H = a^{-1} \in H$, $\forall a, b \in H$

now we prove that H is a subgroup of G. from the first result we observe that closure property is valid.

Since H is a non empty subset of G since the associative law is true in G, itmust be true to H also.

Prepared by Dr. K. Kalidass, Assistant Professor, Department of Mathematics, KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE CODE: 17MMU303

UNIT: II

COURSE NAME: Group theory I BATCH-2017-2020

Associativity is true also.

From the second result we observe that inverse exists for every element of H.

Existence of inverse is true.

Once again the second result is a, $a^{-1}\epsilon H$

aa $^{-1}$ çeɛH

Existence of identity is true.

Hence H is a subgroup of G.

Note:

It is enough if we prove that if a, bEH then ab $^{-1}$ EH where H is a subgroup of G.

Lemma 2.2:

If H is a non empty finite subset of a group G and H is closed under multiplication then H is a subgroup of G.

Proof:

By hypothesis a,bEH=abEH

Let us now prove that $a \in H = a^{-1} \in H$

It is given that H is closed under multiplication

Let a ϵ H then a²=a.a ϵ H

Let $a^3 = a^2 . a \in H$

H contains infinite no of elements a, a^2 , a^3 but H is given to be a finite subset of the group G. thus there must be repetitions, in this collection of elements.

For some integers r, s with r>s>0 $a^r=a^s$

Let $a^{r-s} = a^0 = e$

But $a^{r-s} \in H$ since r-s>0 by definition of H

Let eEH

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: II BSC MATHEMATICSCOURSE NAME: Group theory ICOURSE CODE: 17MMU303UNIT: IIBATCH-2017-2020

Now consider $a^{r-s}=e$ $(a^{r-s})a^{-1}a=e$ $a^{r-s-1}=a^{-1}$ but $a^{r-s-1}\varepsilon H$

but $a^{-1}\varepsilon H$ where $a\varepsilon H$.

We have $a,b\epsilon H=ab\epsilon H$ and $a\epsilon H=a^{-1}\epsilon H$ where H is subgroup of G.

Examples:

1. Let G be the group of integers under addition H the subset consisting of all the multiplies of 5. Then H is a subgroup of G.

2. Let G be the group of all real nos under addition and H be the set of all integers then H is a subgroup of G.

3. Let G be the group of all non zero complex numbers a+ib(a, b real not both zero) under multiplication and let H={a+ibɛG/a²+b²=1} then H is a subgroup of G.
4. Let G be any group aɛG let (a)= {aⁱ/i=0,+-1,....} then a is a subgroup of G. it is called as cyclic subgroup generated by a.

5. Let G be the group of all 2*2 matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with the condition ad-bc $\neq 0$ under multiplication. Let H= { $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \varepsilon G/ad \neq 0$ } H is called subgroup of G.

Definition:

Let G be a group H a subgroup of G also let $a,b\epsilon G$ then we say that a is concurrent to bmodH, written as $a \equiv b \mod H$ if $ab \ ^{1}\epsilon H$

Lemma 2. 3:

The relation $a \equiv b \mod H$ is an equivalence relation.

Proof:

Let a, b, c ε H

LASS: II BSC MATHEMATICS		COURSE NAME: Group theory I
COURSE CODE: 17MMU303	UNIT: II	BATCH-2017-2020
It is given that H is a subgroup of	$f G e \varepsilon H$ as $^{1} = e \varepsilon H$	
Then by definition $a \equiv a \mod H$		
Reflexitivity is true.		
Now we assume that $a \equiv b \mod H$	I	
Then by definition $ab^{-1}\epsilon H$		
$(ab^{-1})^{-1} \epsilon H$		
$(b^{-1})^{-1}a^{-1}\varepsilon H$ $ba^{-1}\varepsilon H$		
Let $b \equiv a \mod H$ symmetry	is true.	
Now we assume that $a \equiv b \mod H$	H and $b \equiv c \mod H$.	then by definition
ab $^{-1}$ ϵ H and bc $^{-1}$ ϵ H		
Since H is a subgroup closure pro	operty is true ab ⁻¹ bo	e^{-1} ac $^{-1}\epsilon H$
Then by definition $a \equiv c \mod H$.		

Transition is true. Then the relation is an equivalence relation.

Definition:

if H is a subgroup of G and acG, then $H_a = \{h_a/h \in H\}$ is called a right coset of H in G. ah= $\{ah/h \in H\}$ is called left coset of H in G.

Lemma 2.4:

For all as $G H_a = \{x \in G/a \equiv x \mod H\}$.

Proof:

Let $[a] = {x \in G/a \equiv x \mod H}.$

Then it is enough if we prove that $H_a=[a]$

First we try to prove that $H_a \varsigma[a]$

Let $x \in H_a$ then x = Ha for some $h \in H$

```
Post multiplying by a<sup>-1</sup> we get,
```

LASS: II BSC MATHEMATICS		COURSE NAME: Group theory I
COURSE CODE: 17MMU303	UNIT: II	BATCH-2017-2020
$(xa^{-1}=h)$		
$(xa^{-1}\epsilon h)$		
$(xa^{-1})^{-1}\varepsilon H$		
$(a^{-1})^{-1}x^{-1}\varepsilon H$		
ax ⁻¹εH		
$a \equiv x \mod H$ $x \equiv a \mod H$		
x ε [a]		
hence $H_a \varsigma[a]$		
to prove that $[a]\zeta H_a$		
let $x\varepsilon[a]$ then by definition $a \equiv x$ n	nod H	
ax ⁻¹ ɛH		
$(ax^{-1})^{-1} \varepsilon H$		
xa ⁻¹ɛH		
So xa ⁻¹ =n for nɛH		
Post multiplying by 'a' we get		
$xa^{-1}a=h_a$		
xe=h _a		
x=h _a		
but haɛHa		
хєH _a		
[a]çH _a		
From $H_a = [a]$ hence the proof.		

KARPAGAM ACADEMY OF HIGHER EDUCATION			
CLASS: II BSC MATHEMATICS		COURSE NAME: Group theory I	
COURSE CODE: 17MMU303	UNIT: II	BATCH-2017-2020	

Result:

Prove that any two right coset of H in G are either identical or have no element is common.

Proof:

We know that $H_a=[a]$ is an equivalence class of a in G. then by a theorem 1.1.1 these equivalence classes yields a decomposition of g into disjoint subsets. Thus any two right coset H in G are either identical or have no element in common.

Let us consider two right coset H_a and H_b of H in G where a, b ε G.

Assume that H_a and H_b have an element C in common.

 $C\epsilon\,H_a\cap H_b$

 $C\epsilon\,H_a$ and $C\epsilon\,H_a$ and H_b

```
C=h<sub>1</sub>a and c=h<sub>2</sub>b for some h<sub>1</sub>, h<sub>2</sub>\epsilonH h<sub>1</sub>a=h<sub>2</sub>b
```

Pre multiplying both sides by h_1^{-1} we get

 $h_1^{-1}h_1a = h_1^{-1}h_1b$

 $a=h_3b$ where $h_3=h_1^{-1}h_2$

 $H_a = Hh_3b$

```
=H_b
```

 $H_a = H_b$

Any two right coset of H in G are either identical or have no element is common.

Lemma 2.4.5:

There is a one to one correspondence between any two right cosets of H in G.

Proof:

Let G be a group and H a subgroup of G. let a, b ϵ G

Let H_a and H_b be two right cosets of H in G

Define $\Phi: H_a \longrightarrow H_b$

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: II BSC MATHEMATICS COURSE NAME: Group theory I COURSE CODE: 17MMU303 UNIT: II BATCH-2017-2020 By $\Phi(h_a) = h_b \notin h \in H$ \longrightarrow 1 Let us prove that the mapping Φ is one to one and onto let h_1 , $h_2 \in H$ Then h₁a and h₂aeH_a Now $\Phi(h_1a) = \Phi(h_2a)$ Let $h_1b=h_2b$ Let $h_1 = h_2$ Post multiplying we get h₁a=h₂a Φ is one to one by its definition Let $h_b \in H_b$ then $h \in H$. h_aeH_a But we have the mapping $\Phi(h_a)=h_b$

For every element $h_b \epsilon H_b F$ an element $h_a \epsilon H_a$ such that $\Phi(h_a)=h_b$

Thus Φ is a one to one correspondence.

Theorem 2.1:

Lagrange's theorem:

Statement:

If G is a finite group and H is a subgroup of G, then o(H) is a division of o(G).

Proof:

Since H_a=[a] any two right coset being

i) Equivalence classes are either disjoint or identical.

ii) Also the union of the distinct right coset in G.

iii) Let there be K distinct right coset. Since there is an one to one correspondence between any two right cosets, all the right cosets have the same no of elements.But H=He is a right coset and has o(H) elements. So the K distinct right cosets each having o(H) elements fill out g.

So K.o(H)=o(G) o(H) is a divisor of o(G) Hence the theorem.

Note:

let G be aa finite group.

H be a subgroup of G we know that o(H) is a divisor of o(G).

o(H)/o(G)

o(G)=K.o(H) where K is the no of distinct right cosets of H in G.

K=o(G)/o(H)

Problem:

Given an example of an infinite subgroup of an infinite group whose index infinite.

Solution:

Let G=z

Let H=2z

 i_{G}^{H} =number of distinct right cosets of H in G=2.

Definition:

Let G be a group and a ϵ G. The order or period of a is the least positive integer m such that a^m =e. it is denoted by o(a)

o(a)=m

.a^{o(a)}=e

If no such integer exists then a is of infinite order.

Example:

 $G = \{1, -1, I, -i\}$ here 1 is the multiplicative identity.

e=1 $(-1)^2=1$ $i^4=1$ $i^8=1$ $i^{12}=1$ $(-i)^4=1$ $(-i)^8=1$ $(-i)^{12}=1$

KARPAGAM	ACADEMY OF H	GHER EDUCATION
CLASS: II BSC MATHEMATICS		COURSE NAME: Group theory I
COURSE CODE: 17MMU303	UNIT: II	BATCH-2017-2020

0(-1)=2 0(i)=4 0(-i)=4

Corollary's for lagrange's theorem:

Corollary 1:

if G is a finite group and acG then o(a)/o(G).

Proof:

Let us produce the subgroup of G whose order is 0(a). consider the cyclic subgroup generated by a.

```
(a)=\{e,a,a^2,\ldots\}
```

Now $a^{o(a)} = e(by def)$

The subgroup has atmost 0(a) number of elements.

If it has less than O(a) number of elements then $a^i = a^j$ for some integers I and j where $o \le i \le j \le o(a)$ j - i > 0 $a^{j - i} = e$ but o < j - i < o(a).

We have an integer j-i<0(a) for which $a^{j-i}=e$ contradicting the definition of o(a).

The cyclic group a has exactly o(a) number of elements then by lagrange's theorem o(a)/o(G)

Corollary 2:

If G is a finite group and acG then $a^{o(G)} = e$

By corollary 1 we have o(a)/o(G)

o(G)/o(a)=k where K is some positive integer

o(G)=k.o(a)

Now a^{o(g)}=a^{k.o(a)}

 $(a^{o(a)})^k = e^k = e$

Hence a^{o(G)}=e

KARPAGAM /	ACADEMY OF	HIGHER EDUCATION
CLASS: II BSC MATHEMATICS		COURSE NAME: Group theory I
COURSE CODE: 17MMU303	UNIT: II	BATCH-2017-2020

Definition:

If a and b are relatively prime, we can find integers m and n such that ma+nb=1.

Corollary 3:

Euler's theorem:

If n is a positive integer and 'a' is a integer which is relatively prime to n then $a^{\Phi(n)} \equiv 1 \mod n$ where $\Phi(n)$ is the number of positive integer less than n and relatively prime to n.

Proof:

Let $G = \{ [x]/x \text{ is an integer less than n and relatively prime to n} \}$.

We know that G is a group w.r.to multiplication of reside classes as the composition also now $o(G)=\Phi(n)$

If 'a' is a positive integer relatively prime to n then [a]EG

i.e., [a][a].....[a]=1

i.e., $a^{\Phi(n)} = 1$

i.e., $a^{\Phi(n)} = 1 \mod n$

hence the corollary.

Corollary 4:

Fermat's theorem:

Statement:

If p is a prime number and a is any integer then ap=a mod p.

Proof:

let G be the set of non zero residue classes of integers module p. if p is a prime number then w.r.to multiplication of residue classes. A is a group of order p-1. The identity elements of this group is [1].

CLASS: II BSC MATHEMATICS		COURSE NAME: Group theory I
COURSE CODE: 17MMU303	UNIT: II	BATCH-2017-2020
Now suppose a is an integer		
<u>Case 1:</u>		
p is an divisor of a.		
p/a		
p/a ^b		
p/a ^p -a		
$a^p = a \mod p$		
case ii) p is not a divisor of a.		
-		
in this case $[a] \neq o$ $[a] \in G$		
now $a^{o(G)} = [1]$ by corollary 2		
$a^{p-1} = [1]$		
p/a ^{p-1} -1		
p/a ^p -a		

```
a^{p} \equiv a \mod p hence the corollary.
```

Definition:

In a group G and e are said to be trivial subgroup of G and the remaining subgroups are called non trivial subgroup of G.

Corollary 5:

If G is a finite group whose order is a prime number then G is a cyclic group or prove that finite group of prime order is cyclic.

Proof:

Let G be a finite group.

Let o(G)=p where p is a prime number

G has no non trivial subgroupsH

If H is a non trivial subgroup of G then by lagranges theorem o(H)/o(G)=p

Since p is prime its divisors are 1 and p.

o(H)=1 or o(H)=p

If o(H)=1 then since ?H is subgroup of G we must have h=G

G has no non trivial subgroup H let us assume that $a\neq e\in G$ and H=(a), then H is a cyclic subgroup generated by (a) but $H\neq \{e\}$ since $a\neq e$.

H=G(G has no non trivial subgroup)

G is a cyclic group generated by (a).

A counting principle:

Let H and K be any two sungroups of a group G. define $HK = \{x \in G/x = hk, h \in H, k \in K\}$ HK is a non empty subset of G. but HK need not be a subgroup of G.

Example:

Let $G=s_3=\{e, \Phi, \psi, \psi^2, \Phi\psi, \psi\Phi\}$

 $O(s_3)=6$ let $H=\{e, \Phi\}$ and $K=\{e, \Phi\psi\}$ H and K are subgroups of G, sine they are closed and inverse of Φ and $\Phi\psi$ are themselves respectively.

Now HK= $\{e, \Phi\Phi\psi, \Phi^2\psi\}$ ($\Phi^2=e$)

HK consists of 4 elements and 4*6 by lagranges theorem HK is not a subgroup.

Lemma 2.5:

HK is a subgroup of G iff HK=KH.

Proof:

First let us suppose that HK=KH now we try to prove that HK is a subgroup of G since $e\in HK$, HK is a non empty subset of G. since HK=KH we have $h_1k_1=k_2h_2$

 $H_1,h_2 \in H \quad k_1, k_2 \in K$

Here it need not be $h_1=h_2$ and $k_1=k_2$

Let x₁yeHK

Then $x=h_1k_1$ $y=h_2k_2$ $h_1h_2\varepsilon H$ $k_1k_2\varepsilon K$

Now consider $xy=(h_1k_1)(h_2k_2)$

 $=h_1(k_1h_2)k_2=h_1(h_3k_3)k_2=(h_1h_3)(k_3k_2)\varepsilon HK$

CLASS: II BSC MATHEMATICS		COURSE NAME: Group theory I
COURSE CODE: 17MMU303	UNIT: II	BATCH-2017-2020
HK ic closed.		
Let xEHK		
Then x=hk for some hEH kEK		
Now $x^{-1} = (hk)^{-1}$		
=k ⁻¹ h ⁻¹ ɛKH=HK		
X^{-1} ϵ HK whenever $x \epsilon$ HK		
Then by a lemma HK is a subgrou	p of G.	
Conversely let us assume that HK	is a subgroup of (G. then we prove that HK=Kh
Let $h \in H_1$ k $\in K$ then kh $\in KH$		
Let $h\epsilon H_1$ k ϵK then kh $\epsilon K H$		
Since H and k are subgroup of G.		
hɛH=h ⁻¹ ɛH		
kεK=k ⁻¹ εK		
h ⁻¹ k ⁻¹ eHK		
$(h^{-1}k^{-1})^{-1}\epsilon HK$		
$(k^{-1})^{-1}(h^{-1})^{-1}\varepsilon HK$		
kheHK		
КНєНК		
Now let xEHK		
Then x ⁻¹ eHK		
x ⁻¹ =hk where hεH , kεK		
$(x^{-1})^{-1} = (hk) - 1$		
x=k ⁻¹ h ⁻¹ ɛKH=HKҫKH		
HK=KH		

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE CODE: 17MMU303

UNIT: II

COURSE NAME: Group theory I BATCH-2017-2020

Hence HK is a subgroup of iff HK=KH

Corollary:

If H and K are subgroups of an abelian group G then Hk is a subgroup of G.

Proof:

Hk is a non empty subset of g since G is aabelian and H, K are subgroups of G we have hk=kh $\mbox{\tt k}$ k $\mbox{\tt k}$ K, h $\mbox{\tt h}$

HK=Kh

Then by the above lemma HK is a sub group of G.

Theorem 2.2:

If H and K are are finite subgroups of G of orders o(H) and o(K) respectively then $o(HK) = \frac{o(H) \cdot o(K)}{o(H \cap K)}$

Proof:

<u>Case i)</u> let $H \cap K = \{E\}$ o($H \cap K$)=1

In this acse it is enough to prove that o(HK)=o(H).o(K)

The elements of HK are h_1k_1 , h_2k_2 , h_3k_3

Where $h_1, h_2, h_3, \dots, \epsilon H$ and $k_1, k_2, k_3, \dots, \epsilon k$

This list contains o(H).o(K) no of elements.

Claim:

Each product in this list is distinct $h_1k_1 \neq h_2k_2$ whenever $h_1 \neq h_2$ if possible let us assume that $h_1k_1=h_2k_2$ whenever $h_1\neq h_2$.

Per multiplying by h_2^{-1} and post multiplying by k_1^{-1} on both sides we get

$$h_{2}^{-1}h_{1}k_{1}k_{1}^{-1} = h_{2}^{-1}h_{2}k_{2}k_{1}^{-1}$$

$$h_{2}^{-1}h_{1} = k_{2}k_{1}^{-1}$$
but $h_{2}^{-1}h_{1}\varepsilon H$ and $k_{2}k_{1}^{-1}\varepsilon K$

$$h_{2}^{-1}h_{1}\varepsilon H \cap K = \{e\} = h_{2}^{-1}h_{1} = e \quad h_{2} = h_{1}$$

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: II BSC MATHEMATICS COURSE NAME: Group theory I

COURSE CODE: 17MMU303

COURSE NAME: Group theory I BATCH-2017-2020

a contradiction to our assumption H is a subgroup. Thus our assumption is wrong. Hence each product in this list is distinct all the elements in this list of HK are distinct having o(H).o(K) number of elements. Thus in this case $H \cap K = \{e\}$

UNIT: II

we have $o(HK) = \frac{o(H).o(K)}{o(H \cap K)}$

<u>case ii)</u> H∩K≠{e}

we shall know show that the list of elements of HK contains repetitions elements, repeating exactly $o(H \cap K)$ times.

Let $h_1 \in H \cap K$

Then $hk=(hh_1)(h_1^{-1}) \longrightarrow 1$

Where $hh_1\epsilon H$ and $h_1^{-1}k\epsilon K$ thus hk is duplicated in the product at least $o(H\cap K)$ times however if $hk=h^{-1}k^{-1}$

Then $h^{-1}hk(k^1)^{-1} = h^{-1}h^1k^1(k^1)^{-1}$

 $K(k^{1})^{-1} = h^{-1}h^{1} = u$ (say)

uεH∩K

 $h^1 = hu \quad k^1 = u^{-1}k$

thus all duplications are taken into consideration in equation 1.

Hk appears in the list of HK exactly $o(H \cap K)$ times.

Thus the number of distinct elements in HK is the total no of elements in the list HK.

O(H).o(K) divided by the no of times a given element appears namely $o(H \cap K)$

 $o(HK) = \frac{o(H).o(K)}{o(H \cap K)}.$

Definition:

Cyclic group:

A group G is called a cyclic group if for some $a\epsilon G$, every element $x\epsilon G$ is of the form a^m where m is the some integer. The element a is called a generator of G.

Normal subgroups and Quotient groups.

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: II BSC MATHEMATICS COURSE NAME: Group theory I

COURSE CODE: 17MMU303

UNIT: II

BATCH-2017-2020

Definition:

Let G be a group. A sub group N of G is said to be a normal subgroup of G, if for every geG and neN, gng⁻¹eN.

Equivalently if gNg $^{-1}$ ={gng $^{-1}/n\epsilon N$ } then N is a normal subgroup of G. then gNg $^{-1}\varsigma$ ¥ g ϵ G.

Lemma 2.6:

N is a normal subgroup of G iff $gNg^{-1}=N \notin g\varepsilon G$.

Proof:

If $gNg^{-1}=N$ for every geG, certainly $gNg^{-1}\varsigma N$ so by definition N is normal in G.

Now let us assume that N is normal in G. then by definition if $g\epsilon G$, $gNg^{-1}\varsigma N$

Now $gNg^{-1} = gN(g^{-1})^{-1}\zeta N \neq g^{-1}\varepsilon G^{<}$

Now since $gNg^{-1}\zeta N$, $N=g(g^{-1}Ng)g^{-1}\zeta gNg^{-1}\zeta N$

Now we get, $gNg^{-1}=N \notin g\varepsilon G$ hence the lemma.

Lemma 2.7:

The subgroup N of G is a normal subgroup of G iff every left coset of N is G is a right coset of N in G.

Proof:

Let us assume that N is a normal subgroup of G then by a lemma 2.6 gNg⁻¹=N \pm g ϵ G.

Post multiplying both sides by g we get gNg⁻¹g=Ng

i.e., gN=Ng

every left coset of N in G is a right coset of N in G. conversely let N be a subgroup of G. every left coset of N in G is also a right coset of N in G. let g be any element of G. then gN=Ng for some g ϵ G.

```
Since eeN, ge=gegN=Ng
```

geNg

also g=egeNg i.e.,geNg

gN=Ng

post multiplying both sides by g⁻¹ we get

gNg⁻¹=Ngg⁻¹

gNg⁻¹=N

then by a lemma 2.6 N is a normal subgroup of G.

Note:

If H is a subgroup of G then HH=H or H^2 =H.

Proof:

Now $HH = \{h_1h_2/h_1h_2 \in H\} \varsigma H$

HHςH

HH∈He∈H

HH∈H

HH=H or H²=H

Lemma 2.6.3:

A subgroup N of G is a normal subgroup of G iff the product of the two right cosets of N in G is a right coset of N in G.

Proof:

First we assume that N is a normal subgroup of G. let a, $b\epsilon G$ and consider the two right cosets Na and Nb.

Now NaNb=N(aN)b

=(NN)ab

=Nab

```
=Nc where c=abeG
```

Hence the product of any two right cosets of N in G is again a right cosets of N in G.

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: II BSC MATHEMATICS COURSE NAME: Group theory I

COURSE CODE: 17MMU303

BATCH-2017-2020

Conversely let us assume that the product of any two right cosets of N in G is again a right coset of N in G.

We have to prove that N is a normal in G. by hypothesis NaNb=Nc for some ccG

UNIT: II

First we try to prove that NaNb=Nab

To prove that Nc=Nab

Now ab=eaeb=NaNb=Nc

abeNc

now ab=eabENab

abeNab

but we know that any two right cosets are either distinct or identical.

Now we get Nab=Nc

Hence we have let a=g, $b=g^{-1}$

Then we have NgNg⁻¹=Ngg⁻¹

```
NgNg<sup>-1</sup>=N \neq geG
```

```
Now gNg<sup>-1</sup> \epsilon gNg<sup>-1</sup> \pm n\epsilonN
```

 $gNg^{-1}\epsilon N \neq g\epsilon G$ and $n\epsilon N$

then by definition N is a normal subgroup of G.

Hence the lemma.

SYLOWS THEOREM:

Statement:

Suppose G is a group of finite order and p is a prime number. If $p^{m}/o(G)$ and p^{m+1} is not a divisor of o(G), then G has a subgroup of order p^m .

Proof:

We shall prove that the theorem by induction on o(G).

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: II BSC MATHEMATICS COURSE NAME: Group theory I

COURSE CODE: 17MMU303

BATCH-2017-2020

The theorem is true if o(G)=1

if o(G)=1 then $p^{o}/o(G)$ and $p^{|*}o(G)$ and G has a subgroup G itself of order $p^{*}\{e\}$

let us assume the theorem is true for groups of order less than that of G.

let $o(G)=p^{m}$.n where p is not a divisor of n. if m=0, then the theorem is p={e} obviously true.

If m=1 the theorem is true by cauchys theorem.

So let m>1 then G is a group of composite order and so G must posses a subgroup H such that $H \neq G$

If p is not a divisor of o(G)/o(H), then $p^m/o(H)$ because $o(G)=p^m.n=o(H).o(G)/o(H)$ also p^{mh} cannot be a divisor of o(H) because p^{mh} will be a divisor of o(G) of while o(H) is divisor.

Further o(H) < o(G) by our induction hypothesis, the theorem is true for H.

H is a subgroup of order p^m and this will also be a subgroup of G. so let us assume that for every subgroup H of G where $H \neq G$,

P is a divisor of o(G)/o(H)

Consider the class equation,

 $O(G)=o(z)+\sum asz o(G)/o(N(a))$

Since $a \ge N(a) \neq G$,

According to our assumption p is a divisor of $\sum a \ge o(G)/o(N(a))$ also p/o(G)

We conclude that p is a divisor of o(z).

Then by cauchys theorem z has an element b of order p.

Hence z is the center of G. also $N=\{b\}$ is a cyclic subgroup of z of order p.

Since bɛz N is a normal subgroup of G of order p.

Now consider the quotient group $G^{\mid}=G/N$

Then $o(G^{\mid})=o(G^{\mid})/o(N)=p^{m}n/p=p^{m-1}$

 $O(G^{\mid}) < o(G)$

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: II BSC MATHEMATICS COURSE NAME: Group theory I COURSE CODE: 17MMU303 UNIT: II BATCH-2017-2020

By our induction hypothesis $G^{|}$ has a subgroup $s^{|}$ of order p^{m-1}

We know that

Let $S = \{x \in G / \Phi(x) \in S^1\}$

Then S is a subgroup of G and $S^1 \approx S/N$

 $O(S^1)=o(S^*)/o(N)$

 $O(s)=o(s^{1}).o(N)=p^{m-1}.p=p^{m}$

S is a subgroup of order p^m

Hence the theorem.

CAUCHY'S THEOREM:

Statement:

Suppose G is finite abelian group and p/o(G) i.e., p is a divisor of o(G) where p is a prime number. Then there is an element $a\neq e\in G$. Such that $a^p = e$.

Proof:

Let us prove that this theorem by the method of this induction on the order of G.

Assume that the theorem is true for abelian groups of order is less that G.

The theorem is vacuously true for groups of order one.

If G has no proper subgroups then G must be of prime order because every group of composite order possesses proper subgroups.

But p is prime and p/o(G)=o(G) must be p. also we know that every group of prime order is cyclic each element a \neq eof G will be a generator of G.

G has p-1 element as $a \neq e$ such that $a^p = a^{o(G)} = e$.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE CODE: 17MMU303 UNIT: II

COURSE NAME: Group theory I BATCH-2017-2020

If G has a proper subgroup H $H \neq \{e\}$ and $H \neq G$ and if p/o(H) then by our induction hypothesis the theorem is true for H and also H is abelian group with o(H) < o(G).

F an element bEH and b \neq e show that b^p=e.

Let us assume that p is not a divisor of o(H). since G is a abelian . H is a normal subgroup of G and so G/H is a quotient group.

Since G is a abelian G/H is also abelian.

Since o(G/H) < o(G) since o(H) > 1 since p/o(G) and p is not a divisor of o(H).

P is a divisor of o(G)/o(H). hence by our induction hypothesis the theorem is true for the group G/H.

Since H is the identity element of G/H F an element C in G such that $H_c \neq H$ is G/H.

So that $(H_c)^p = H$

```
With quotient group G/H, o(H_c)=p
```

 $(H_c)^p = H$

 $H_c^p = H = C^p \epsilon H$

By corollary of lagranges theorem we have $(C^p)^{o(H)} = e$

 $(C^{o(H)})^p = e$

 $d^p = e$

let us prove that this $d\neq e$.

if we assume that d=e, then consider that

 $(H_c)^{o(H)} = H_c^{o(H)}$

 $=H_d$

 $=H_e$

=H

 $(H_c)^{o(H)}$ =H is the identity of G/H.

But o(H_c)=p as H_c=G/H

p/o(H) which is a contradiction our assumption d=e is wrong

d≠e

=dp=e

 $d\neq e$ show that $d^p=e$

hence the induction theorem is proved.

CAUCHY THEOREM :

Statement:

If p is a prime number and p/o(G) then G has an element of order p.

Proof:

It is given that let G be a group and let $a\epsilon G$ is the order of a is the least +ve integer m show that $a^m = e$

- 1. P is a prime number.
- 2. p/o(G).

we shall prove this theorem by the method of induction on o(G).

Hence we may assume this theorem is true for all subgroups of G such that

 $o(T) < o(G) \longrightarrow 1$

if possible let $W \neq G$ be a subgroup of G. hence from equ1 p/o(W). then F an element $b_1 \neq e \in W$ show that $b_1 p = e$. hence the theorem.

In this case let us assume that let p is not a divisor of any proper subgroup of G.

Let $a \in z(A) \longrightarrow 3$

 $N(a) \neq G \longrightarrow 4$

And also let us assume that p is not a divisor of o(N(a)).

$$p \bigvee_{o}(N(a)) \longrightarrow 5$$

we write the class equation as

 $o(G)=o(z(G))+\sum a \& z(G) o(G)/o(N(a)) \longrightarrow 6$

we have $p/o(G) \longrightarrow 7$ from the hypothesis of the theorem we have

p $\bigwedge_{o}(N(a)) \longrightarrow 8$ from the equ5

$$p / \sum a \epsilon z(a) o(G) / o(N(a)) \longrightarrow 9$$

then equ6 can be written as

$$p / (o(G)-\sum a \xi z(a) o(G)/o(N(a))) = o(z(G)) \longrightarrow 10$$

from 7 and 9 we have $p / o(G)-\sum a \varepsilon z(a) o(G)/o(N(a)) \longrightarrow 11$
 $p / o(z(G)) \longrightarrow 12$

but in this case we have p is not a divisor of any proper subgroup

from 11 and 12 the only possibility is z(G)=G

G is abelian.

The remaining problem of this theorem will be true by use of cauchys theorem for abelian groups.

Cauchys theorem for abelian group is suppose G is a finite abelian group and p is divide o(G) where p is prime then F an element $a\neq e$ show that $a^p = e$.

SYLOWS THEOREM FOR ABELIAN GROUP:

STATEMENT:

If G is an abelian group of order o(p) and if p is a prime number show that $p\alpha/o(G)$ then G has a subgroup of order $p\alpha$.

Proof:

If $\alpha=0$ then the subgroup satisfies the conclusion of the result so let us suppose that $\alpha\neq 0$ then p/o(G).

Then by cauchys theorem for abelian group there is an element $a\neq e\epsilon G$, $a^p=e$

Let $S = \{x \in G/x p^n = e \text{ for some integer } n\}$ we have $ep^n; e < s$.

GeS and $a\neq e$ s=e s is non empty

We claim that S is a subset of G. if possible let $w\neq G$ be a subgroup of G hence p/o(W) then F an element $b_1\neq eeW$ show that $b_1^p=e$ hence the theorem in this case is let us assume that p is not a divisor of the order of any proper subgroup of G.

Let $a(G) \longrightarrow 3$

 $N(a) \neq G \longrightarrow 4$

 $P \times N(A) \longrightarrow 5$

We write the class equation as,

 $O(G)=o(z(G))+\sum a \& z(G)o(G)/o(N(G)) \longrightarrow 6$

We have p/o(G) from the hypothesis of the theorem

 $P \bigvee o(N(a))$ from equ 5

$$p/asz(G)o(G)/o(N(G)) \longrightarrow 9$$

then 6 can be written as

 $o(G)-a\epsilon z(G)o(G)/o(N(G)) = 0(Z(a)) \longrightarrow 10$

from 7 and 9 we have

 $p/o(G)-\sum ae\lambda(G) o(G)/o(N(a))=p/o(z(G)) \longrightarrow 11$

if H is a non empty finite subset of a group G and H is closed under multiplication then H is a subgroup of G, it is enough if we verify that H is closed.

Let x,y ɛS.

 $x^{pn}=e$ $yp^{m}=e$ for some integers.

Now $(xy)^{p n+m} = x^{p m+n}$

 $=xp^{n}.p^{m}yp^{n}p^{m}$

 $=(xp^n)p^m.(yp^m)p^n$

=e.e=e

 $(xy)^{pn+m} = e$ for some integer n+m

xyes s is closed.

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: II BSC MATHEMATICS COURSE NAME: Group theory I COURSE CODE: 17MMU303 UNIT: II BATCH-2017-2020

S is a subgroup of G. we next claim that $o(s)=p^{\beta}$

With β as an integer o< $\beta < \alpha$.

FOR IF f A PRIME NUMNER Q SHOW THAT Q/0(S), $q\neq p$ then by cauchys theorem for abelian group there is an element ccs, $e\neq e$, show that $c^q=e$ since ccs, $c^{pn}=e$ for some integer n.

Now pⁿ and q are respectively prime.

We can find integers λ , μ show that $\lambda q + \mu p^n = 1$

 $C=c=c\lambda q+\mu p^{n}=c\lambda q.c \mu p^{n}$

 $=(c^{q}).(c^{pn})^{\mu}$

 $=e^{\lambda}.e^{\mu}=e$

C=e this is a contradiction to the fact that $c\neq e$. there is no prime number q/o(s) and $q\neq 0$ $o(s)=p^{\beta}$ for some β show that $0 < \beta < \alpha$. by cauchys theorem o(S)/o(G). $\beta \le \alpha$. Let us assume that $\beta < \alpha$. Let us consider the abelian group G/s

G is abelian G/S is also abelian.

Now o(G/s)=o(G)/o(S) s is a normal subgroup of an abelian group is normal. And $\beta < \alpha = p/o(G/S)$. there is an element $s_x(x \in G)$ is G/S, $s_x \neq S$ such that $(S_x)^{pn} = S$ from some integer n > 0. But $S = (S_x)^{pn} = s_x p^n = x^{pn} \in S$. $e = (x^{pn})^{o(s)} = (x^{pn})^{p\beta} = x^{pn+\beta} x \in S$

 $s_x = s$ which is a contradiction to the fact that $s_x \neq s \beta < \alpha$ is impossible. the only possibility is

 $\beta = \alpha$. O(s)= p^{α} .

S is the required subgroup of order p^{α} .

Hence the theorem.

POSSIBLE QUESTIONS:

Part-B(5X8 = 40 Marks)

Answer all the questions:

- 1. Let H be a subgroup of G. Then prove that
 - i) the identity element of H is the same as that of G
 - ii) for each $a \in H$ the inverse of a in H is the same as the inverse of a in G.

- 2. State and prove Lagrange's theorem.
- 3. A non-empty subset H of a group G is a subgroup of G iff
 i) a∈H, b∈H⇒ ab∈H
 ii) a∈H ⇒ a⁻¹∈H where a⁻¹ is the inverse of a in G.
- 4. State and prove Fermat theorem.
- 5. If H and K are finite subgroups of G of orders O(H) and O(K), then prove that $O(HK) = \frac{O(H)O(K)}{O(H \cap K)}$.
- 6. Prove that A subgroup H of a group G is a normal subgroup of G if and only if the product of two right coset of H in G is a right coset of H in G.
- 7. State and prove Euler's theorem.
- 8. i) Prove that N is a normal subgroup of G if and only if gNg⁻¹ =N for all g∈G.
 ii) Prove that a subgroup of cyclic group is cyclic.
- 9. Prove that the subgroup N of G is a normal subgroup of G iff every left coset of N in G is a right coset of N in G.
- 10. Let G be a group, N be a normal subgroup of G and G/N denote the collection of all right cosets of N in G. Then prove that G/N is a group under the operation defined by (Na)(Nb)=Nab, for all Na,Nb ∈G/N.

ASS: II BSC MATHEMATICS OURSE CODE: 17MMU303		GHER EDUCATION COURSE NAME: Group theory I BATCH-2017-2020
Jenol Cope. manuesto	<u>UNIT-II</u>	
	SYLLABU	
erties of cyclic groups, classification on nutations, properties of permutations, e		
		initiations, atternating group,

KARPAGAM ACADEMY OF HIGHER EDUCATION

UNIT: III

CLASS: II BSC MATHEMATICS COURSE CODE: 17MMU303

COURSE NAME: Group theory I BATCH-2017-2020

Introduction to Homomorphism

A homomorphism is a map that preserves selected structure between two algebraic structures, with the structure to be preserved being given by the naming of the homomorphism.

- > A semigroup homomorphism is a map that preserves an associative binary operation.
- A monoid homomorphism is a semigroup homomorphism that maps the identity element to the identity of the codomain.
- A group homomorphism is a homomorphism that preserves the group structure. It may equivalently be defined as a semigroup homomorphism between groups.
- A ring homomorphism is a homomorphism that preserves the ring structure. Whether the multiplicative identity is to be preserved depends upon the definition of *ring* in use.
- A linear map is a homomorphism that preserves the vector space structure, namely the abelian group structure and scalar multiplication. The scalar type must further be specified to specify the homomorphism, e.g. every R-linear map is a Z-linear map, but not vice versa.
- > An algebra homomorphism is a homomorphism that preserves the algebra structure.
- > A functor is a homomorphism between two categories.

<u>Homomorphism's :</u>

Definition:

A homomorphism is a mapping from one algebraic system to a like algebraic system which pressures structure.

A mapping Φ from a group G into a group \overline{G} is said to be a homomorphism for all a,beG $\Phi(ab)=\Phi(a).\Phi(b)$.

Example:

Let $\Phi:\overline{G} \longrightarrow \overline{G}$ also let G = G and $\Phi(x) = e x \varepsilon G$

Then Φ is a homomorphism.

Proof:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE CODE: 17MMU303

UNIT: III

COURSE NAME: Group theory I BATCH-2017-2020

Let x,yEG is defined by let $G =\overline{G}$ and $\Phi(x)=e \\arrow x \\begin{subarray}{l} \hline \Phi(x)=e \\ \Phi(xy)=e \\ Moreover \\ \Phi(x). \\ \Phi(y)=e.e \\ =e \\ Now we have \\ \Phi(xy)= \\ \Phi(x). \\ \Phi(y) \\begin{subarray}{l} \hline \Phi(x) \\begin{subarray}{l} \hline \Phi(x)=e \\ \Phi(x)=e$

 Φ is homomorphism.

Lemma 3.1:

Suppose G is a group, N a normal subgroup of G define the mapping Φ from G to G/N

by $\Phi(x)=N_x$ for all x ϵG . Then Φ is a homomorphism of G onto G/N.

Proof:

Let x,yEG

```
Then \Phi(x)=N_x and \Phi(y)=N_y where \{x,y\in G\}
```

Since x,yEG,xyEG

```
\Phi(xy)=N_{xy}
```

 $=N_x.N_y$

 $=\Phi(\mathbf{x}).\Phi(\mathbf{y})$

```
Then by definition \Phi is a homomorphism of G into G/N let y \in G/N then Y=N_x where x \in G and \Phi(x)=N_x=Y
```

Foe every Y ε G/N , F an element of x in G such that $\Phi(x)=Y$.

Then by definition Φ is onto.

Hence Φ is a homomorphism of G onto G/N.

Note:

 Φ is called the canonical homomorphism of G, onto G/N.

Definition:

Let Φ be a homomorphism of G into \overline{G} then the kernel of Φ is denoted by $K\Phi$ is defined as $k\Phi = \{x \in G/\Phi(x) = \overline{e}\}$ where e is the identity element of \overline{G} .

Lemma 3.2:

If Φ is a homomorphism of G onto \overline{G} then i) $\Phi(\overline{e})=e$, the unit element of \overline{G} ii) $\Phi(x^{-1})=[\Phi(x)]^{-1} \notin x \in G$ **Proof:** i) Let $x \in G$ then $\Phi(x) \in \overline{G}$ Consider $\Phi(x) = \Phi(x)$ $=\Phi(xe)$ $=\Phi(xe)$ $=\Phi(e)$ ii) Now $e = \Phi(\overline{e})$

$$=\Phi(xx^{-1})$$
 $\pm x \in G$

$$=\Phi(\mathbf{x}).\Phi(\mathbf{x}^{-1})$$

$$= [\Phi(x)]^{-1} = \Phi(x^{-1})$$

Hence the lemma

Note:

The above lemma shows that e is the kernel of any homomorphism.

The kernel k is always a non empty subset of G.

Lemma 3.3:

If Φ is a homomorphism of G into G with kernel k₁ then k is a normal subgroup of G. (or) the kernel of a homomorphism is a normal subgroup.

Proof:

By the previous lemma we have eɛk

K is a non empty subset of G.

Let $x_1y \in k$ then by definition $\Phi(x) = \overline{e}$ and $\Phi(y) = \overline{e}$

Now consider $\Phi(xy)=\Phi(x).\Phi(y)$

$=\overline{e}$. \overline{e}

ASS: II BSC MATHEMATICS		COURSE NAME: Group theory I
OURSE CODE: 17MMU303	UNIT: III	BATCH-2017-2020
2		
νεk whenever x,yΦk		
et xɛk then by definition $\Phi(x) = \overline{e}$		
ow consider $\Phi(x^{-1}) = [\Phi(x)]^{-1}$		
$\overline{(e)}^{-1}$		
2		
⁻¹ ɛk whenever xɛk		
is a subgroup of G		
et aeG and xek then by definition	$\Phi(\mathbf{x}) = \overline{\mathbf{e}}$	
ow consider $\Phi(axa^{-1})=\Phi(a)\Phi(x)\Phi(x)\Phi(x)\Phi(x)\Phi(x)\Phi(x)\Phi(x)\Phi(x)\Phi(x)\Phi(x$	$D(a^{-1})$	
$\Phi(a)\overline{e}\Phi(a^{-1})$		
$\Phi(a)\Phi(a^{-1})$		
$\Phi(aa^{-1})$		
Ф(e)		
ē		
xa⁻¹ɛk ¥xɛk and aɛG		
is normal subgroup of G.		
emma 3.4:		

If Φ is a homomorphism of G onto G with lernel k then the set of all inverse images of \overline{geG} under Φ in G is given by k_x , where x is any particular inverse image of \overline{g} . If $\overline{g} \in \overline{G}$ then we say that an element xeG is an inverse image of \overline{g} under Φ_1 If $\Phi(x)=\overline{g}$ If $\overline{g}=\overline{e}$ then the set of all inverse images of \overline{g} is k. Let $\overline{g\neq\overline{e}}$ if keK and $y=kx\neq kx$ then $\Phi(k)=\overline{e}$ Now consider $\Phi(y)=\Phi(kx)=\Phi(k).\Phi(x)$ $=\overline{e}\Phi(x)$

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: II BSC MATHEMATICS COURSE NAME: Group theory I

COURSE CODE: 17MMU303UNIT: IIIBATCH-2017-2020

$=\overline{g}$ by definition

Y=kx is also an inverse image of g thus all the elements is kx are mapped into g whenever $\Phi(x)=g$

Even if any othr element z in G is the inverse image of \overline{g} and \overline{G} . we can shw that zɛkx

Now $\Phi(z) = \overline{g}$ but $\Phi(x) = \overline{g}$

 $\Phi(z)=\Phi(x)$

```
\Phi(z)[\Phi(x)]^{-1}=\overline{e}
```

```
\Phi(z)\Phi(x^{-1})=\overline{e}
```

```
\Phi(zx^{-1})=\overline{e}
```

```
zx <sup>-1</sup>ɛk zɛkx
```

Kx contains exactly all the inverse images of \overline{g} whenever x is a single such inverse image Hence the lemma.

Note:

If $k=\{e\}$ then by lemma 2.7.4 geG has exactly one inverse image. Φ is a one to one mapping.

Definition:

Isomorphism:

A homomorphism Φ from a group G into a group G is said to be an isomorphism if Φ is one to one.

Definition:

Two groups G, G^* are said to be isomorphic if there is an homomorphism of G onto G^* . in this case we write $G \approx G^*$

We have the following three facts

i) $G \approx G^*$ ii) $G \approx G^* = G^* \approx G$ iii) $G \approx G^{*=} G^* \approx G^{**} = G \approx G^{**}$

Hence the relation of isomorphic is the set of all groups is an equivalent relation.

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: II BSC MATHEMATICS COURSE NAME: Group theory I

UNIT: III

COURSE CODE: 17MMU303

BATCH-2017-2020

Corollary:

A homomorphism Φ of G into G with the kernel k is an isomorphism of G into G iff

 $k = \{e\}.$

Proof:

Let us first assume that Φ is an isomorphic of G into ${\bf G}$

Then by definition Φ is one to one

Let ack $\Phi(a)=e$ where e is the identity element of G.

=Φ(e)

 $\Phi(a)=\Phi(e)$

A=e Φ is one to one.

 $K = \{e\}$

inversly assume that $k=\{e\}$ now it is enough to show that Φ is one to one let x,yEG then

 $\Phi(\mathbf{x}), \Phi(\mathbf{y}) \in \mathbf{G}$

now $\Phi(x)=\Phi(y)$

post multiplying on both sides we get $[\Phi(y)]^{-1}$ then we have

```
\Phi(x)[\Phi(y)]^{-1}=\Phi(y)[\Phi(y)]^{-1}

\Phi(x).\Phi(y^{-1})=\overline{e}

\Phi(xy^{-1})=\overline{e}

xy^{-1}ek=e

xy^{-1}=e

x=y
```

there Φ is one to one and hence Φ is isomorphic.

<u>Theorem 3.1:</u> Fundamental theorem on homomorphism of groups. Let Φ be a homomorphism of G onto \overline{G} with kernel k then G/k

Let Φ be a homomorphism of G onto \overline{G} with kernel k then $G/k \approx \overline{G}$

(or)

ASS: II BSC MATHEMATICS		COURSE NAME: Group theory I
COURSE CODE: 17MMU303	UNIT: III	BATCH-2017-2020
Every homomorphic image of G i	is isomorphic to s	ome quotient group of G.
<u>Proof:</u>		
Let us define ψ :G/k \longrightarrow \overline{G} by		
$P(ka) = \Phi(a) \longrightarrow 1$ where	e ka is any eleme	nt of G/k and aɛG.
Let us first prove that the mapping	g to show that ka	=kb $\psi(ka)=\psi(kb)$ ¥ka,kbɛG/k
A, bɛG		
Now we assume that ka=kb		
Now a¥ka=kb		
Aekb		
$=$ kb where kɛk \longrightarrow 2		
now $\psi(ka)=\Phi(a)$ by equ 1		
$=\Phi(kb)$ by equ 2		
$=\Phi(\mathbf{k})\Phi(\mathbf{b})$		
=Φ(b)		
=¥ψ(kb) by equ 1		
Ψ(ka)=ψ(kb) whenever ka=kb		
If is called well defined.		
Let ka, kb ɛG/k where a, bɛG		
Now ψ(ka, kb)=ψ(kab)		
=Φ(ab)		
$=\Phi(a)\Phi(b)$		
=ψ(ka).ψ(kb)		
I is homomorphism		
Given that Φ is onto for every $\overline{g\varepsilon}$	\overline{G} F a geG such t	hat $\Phi(g) = \overline{g}$
$\Psi(kg) = \overline{g}$		
For every $\overline{g} \in \overline{G}$ kg $ \varepsilon G/k$ such that	at $\psi(kg) = \overline{g}$	
Then by definition ψ is onto		

Let us show that ψ is one to one by showing that the kernel of ψ namely k ψ consists of only one element k which is the identity element of G/k.

By definition $k\psi = \{ka\varepsilon G/k/\psi(ka) = \overline{e}\}$

={kaeG/k/ $\Phi(a)=\overline{e}$ }

={k}

Then by previous corollary ψ is one to one then by definition $G/k \approx \overline{G}$.

Note:

From theorem 2.7.1 we note that the groups G/k form homomporphic images of the given group G where k is normal in G. but by lemma 2.7.1 for any normal subgroup N of G, G/N is a homomorphic images of G. thus there is a one to one correspondence between homomorphc images of G and normal subgroup of G. to get all homomorphic images of G we can find all normal subgroups of G and construct all groups G/N. the set of all such constructed groups gves all homomorphic images of G.

Definition:

A group is said to be simple if it has no non trivial normal subgroups. If it has non trivial homomorphic images.

Lemma 3.5:

Let Φ be a homomorphism of G onto G with kernel k. For H a subgroup of G. let H be defined by H={x ϵ G/ Φ (x) ϵ H} then H is a subgroup of G and H>k. if H is normal in G then H is normal in G. moreover this association sets up a one to one mapping from the set of all subgroup of G which contains k.

Proof:

Let us first show that kcH and H is a subgroup of G.

Let kɛk.

Then by definition $\Phi(k) = \overline{e}$

Now e ε H

 $\Phi(k)\epsilon H$

.kɛH

ASS: II BSC MATHEMATICS		COURSE NAME: Group theory I
OURSE CODE: 17MMU303	UNIT: III	BATCH-2017-2020
κςH		
low $\Phi(e) = \overline{e} \epsilon \overline{H}$		
εH		
l is a non empty subset of G. let x	, у єН	
$\Phi(\mathbf{x})\mathbf{\overline{EH}}, \Phi(\mathbf{y})\mathbf{\overline{EH}}$		
low consider $\Phi(xy)$		
$\Phi(xy)=\Phi(x).\Phi(y)\in \mathbb{H}$		
ує П		
et x \in H $\Phi(x)\in\overline{H}$		
$\Phi(\mathbf{x})$] ⁻¹ $\varepsilon \overline{\mathbf{H}}$		
$P(\mathbf{x}^{-1})\overline{\mathbf{EH}}$		
^{Γ-1} εΗ		
⁻¹ εH then by lemma H is a subgr	oup of G contai	ning kernel k.
) given that \overline{H} is normal in \overline{G}		
ve have to prove that H is normal	in g.	
et aɛG and xɛH		
ten by definition of H $\Phi(x)\overline{H}$		
$D(a)\overline{G}$		
low consider $\Phi(axa^{-1})=\Phi(a).\Phi(x)$	$\Phi(a^{-1})$	
$\Phi(a)\Phi(a)[\Phi(a)]^{-1}\epsilon\overline{H}$		
$xa^{-1}\varepsilon H$ this is true ¥a εg and $x\varepsilon H$		
I is normal in G.		

Lemma 3.6:

Let G be a group for geG defined as Tg:G \implies G by xTg=g ⁻¹xg ¥xeG prove that Tg is an automorphism of G to itself.

Prepared by Dr. K. Kalidass, Assistant Professor, Department of Mathematics, KAHE

Page 10/25

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: II BSC MATHEMATICS COURSE NAME: Group theory I COURSE CODE: 17MMU303 UNIT: III BATCH-2017-2020 Proof: Let x, y & G then xy&G Now (xy)Tg=g -1(xy)g

```
=g^{-1}xgg^{-1}yg
```

```
=(g^{-1}xg)(g^{-1}yg)
```

=xTg.yTg

Tg is homomorphism.

```
For every y \in G x = gyg^{-1} \in G such that xTg = g^{-1}xg
```

```
=g^{-1}gyg^{-1}g
```

=y

Tg is onto.

We shall now prove that Tg is one to one

```
Now xTg=yTg
```

```
g^{-1}xg=g^{-1}yg
```

x=y

```
Tg is one to one
```

Thus Tg is an isomorphism of G onto itslf and hence Tg is an sutomorphism of G to itself.

Theorem 3.2:

Let Φ be a homomorphism of G ang G with kernel k and let N be a normal subgroup of $\overline{G}, N = \{x \in G/\Phi(x) \in N\}$. Then $G/N \approx \overline{G/N}$ equivalently $G/N \approx G/k/N/k$

Proof:

Define a mapping $\psi: G \longrightarrow \overline{G} / \overline{N}$ by

 $\Psi(g) = \overline{N} \Phi(g) \\$

Since Φ is onto for every $\overline{g} \in \overline{G}$ F a geG such that $\Phi(g) = \overline{g}$

 $\overline{N}\Phi(g)=\overline{N} \ \overline{g}$

 $\psi \Phi(g) = \overline{N} \ \overline{g} = \overline{N} \Phi(g)$

for every element $N\Phi(g)$ such that $\psi(g)=N\Phi(g)$.

KARPAGAM LASS: II BSC MATHEMATICS		COURSE NAME: Group theory I
COURSE CODE: 17MMU303	UNIT: III	BATCH-2017-2020
by definition ψ is onto.		
<u>Claim:</u>		
Ψ is a homomorphism.		
Let x, y ɛG		
Then $\psi(xy) = \overline{N}\Phi(xy)$		
$=\overline{N}\Phi(x).\Phi(y)$		
$\Psi(\mathbf{x}).\psi(\mathbf{y})$		
Ψ is a homomorphism.		
<u>Claim:</u>		
the kernel of ψ is N.		
assume that T is the kernel of ψ th	ien we prove that	at N=T
tεT		
$\psi(t) = \overline{N}$		
$N\Phi(t)=N$		
$\Phi(t)\overline{\epsilon N}$		
tεN		
ΓςΝ		
Let $x \in N$ $\Phi(x) \in \overline{N}$ $\overline{N} \Phi(x) = \overline{N}$ ψ	$v(x) = \overline{N} x \varepsilon T N$	lςT
N=T		
The kernel of ψ is N.		
Thus ψ is a homomorphism of G of	onto \overline{N} is kernel	N.
Then by a theorem 3.1 G/N \approx G/N	_	
We shall now show that		
$\overline{G} \approx G/K$ and $\overline{N} \approx N/k$		
By theorem 3.1 we have		
G/K≈ G		
Since isomorphism is an equivale	nt relation we ca	an write $\overline{\mathbf{G}}\approx\mathbf{G}/\mathbf{k}$
From the definition of N and \overline{N} Φ		—

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: II BSC MATHEMATICS COURSE NAME: Group theory I

COURSE CODE: 17MMU303

UNIT: III BATCH-2017-2020

 $N/k \approx \overline{N}$

G/N≈G/k/N/k

SYLOWS THEOREM:

Statement:

Suppose G is a group of finite order and p is a prime number. If $p^{m}/o(G)$ and p^{m+1} is not a divisor of o(G), then G has a subgroup of order p^{m} .

Proof:

We shall prove that the theorem by induction on o(G).

The theorem is true if o(G)=1

if o(G)=1 then $p^{o}/o(G)$ and $p^{|*}o(G)$ and G has a subgroup G itself of order $p^{*}\{e\}$

let us assume the theorem is true for groups of order less than that of G.

let $o(G)=p^{m}$.n where p is not a divisor of n. if m=0, then the theorem is p={e} obviously true.

If m=1 the theorem is true by cauchys theorem.

So let m>1 then G is a group of composite order and so G must posses a subgroup H such that $H \neq G$

If p is not a divisor of o(G)/o(H), then $p^m/o(H)$ because $o(G)=p^m.n=o(H).o(G)/o(H)$ also p^{mh} cannot be a divisor of o(H) because p^{mh} will be a divisor of o(G) of while o(H) is divisor.

Further o(H) < o(G) by our induction hypothesis, the theorem is true for H.

H is a subgroup of order p^m and this will also be a subgroup of G. so let us assume that for every subgroup H of G where $H \neq G$,

P is a divisor of o(G)/o(H)

Consider the class equation,

 $O(G)=o(z)+\sum asz o(G)/o(N(a))$

Since as $x = N(a) \neq G$,

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICSCOURSE NAME: Group theory ICOURSE CODE: 17MMU303UNIT: IIIBATCH-2017-2020

According to our assumption p is a divisor of $\sum a \le o(G)/o(N(a))$ also p/o(G)

We conclude that p is a divisor of o(z).

Then by cauchys theorem z has an element b of order p.

Hence z is the center of G. also $N=\{b\}$ is a cyclic subgroup of z of order p.

Since bɛz N is a normal subgroup of G of order p.

Now consider the quotient group $G^{\parallel}=G/N$

Then $o(G^{|})=o(G^{|})/o(N)=p^{m}n/p=p^{m-1}$

 $O(G^{\mid}) < o(G)$

By our induction hypothesis $G^{|}$ has a subgroup $s^{|}$ of order p^{m-1}

We know that

 Φ : G \longrightarrow G/N defined as $\Phi(x)=Nx \\$ is a homomorphism of G onto G/N with kernel N.

Let $S = \{x \in G / \Phi(x) \in S^1\}$

Then S is a subgroup of G and $S^1 \approx S/N$

 $O(S^1)=o(S^*)/o(N)$

 $O(s)=o(s^{1}).o(N)=p^{m-1}.p=p^{m}$

S is a subgroup of order p^m

Hence the theorem.

CAUCHY'S THEOREM:

Statement:

Suppose G is finite abelian group and p/o(G) i.e., p is a divisor of o(G) where p is a prime number. Then there is an element $a\neq e\in G$. Such that $a^p = e$.

Proof:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICSCOURSE NAME: Group theory ICOURSE CODE: 17MMU303UNIT: IIIBATCH-2017-2020

Let us prove that this theorem by the method of this induction on the order of G.

Assume that the theorem is true for abelian groups of order is less that G.

The theorem is vacuously true for groups of order one.

If G has no proper subgroups then G must be of prime order because every group of composite order possesses proper subgroups.

But p is prime and p/o(G)=o(G) must be p. also we know that every group of prime order is cyclic each element a \neq eof G will be a generatorof G.

G has p-1 element as $a \neq e$ such that $a^p = a^{o(G)} = e$.

If G has a proper subgroup H $H \neq \{e\}$ and $H \neq G$ and if p/o(H) then by our induction hypothesis the theorem is true for H and also H is abelian group with o(H) < o(G).

F an element bEH and b \neq e show that b^p=e.

Let us assume that p is not a divisor of o(H). since G is a abelian . H is a normal subgroup of G and so G/H is a quotient group.

Since G is a abelian G/H is also abelian.

Since o(G/H) < o(G) since o(H) > 1 since p/o(G) and p is not a divisor of o(H).

P is a divisor of o(G)/o(H). hence by our induction hypothesis the theorem is true for the group G/H.

Since H is the identity element of G/H F an element C in G such that $H_c \neq H$ is G/H.

So that $(H_c)^p = H$

With quotient group G/H, $o(H_c)=p$

 $(H_c)^p = H$

 $H_c^p = H = C^p \epsilon H$

By corollary of lagranges theorem we have $(C^p)^{o(H)} = e$

 $(C^{o(H)})^p = e$

 $d^p = e$

let us prove that this $d\neq e$.

if we assume that d=e, then consider that

CLASS: II BSC MATHEMATICS	1 ACADEMY OF HIC C	OURSE NAME: Group theory I
COURSE CODE: 17MMU303	UNIT: III	BATCH-2017-2020
$(H_c)^{o(H)} = H_c^{o(H)}$		
$=H_d$		
=H _e		
=Н		
$(H_c)^{o(H)}$ =H is the identity of G/H.		
But o(H _c)=p as H _c =G/H		
p/o(H) which is a contradiction of	our assumption d=e i	s wrong
d≠e		
=dp=e		
$d \neq e$ show that $d^p = e$		

hence the induction theorem is proved.

CAUCHY THEOREM :

Statement:

If p is a prime number and p/o(G) then G has an element of order p.

Proof:

It is given that let G be a group and let $a\epsilon G$ is the order of a is the least +ve integer m show that $a^m = e$

- 1. P is a prime number.
- 2. p/o(G).

we shall prove this theorem by the method of induction on o(G).

Hence we may assume this theorem is true for all subgroups of G such that

 $o(T) < o(G) \longrightarrow 1$

if possible let $W \neq G$ be a subgroup of G. hence from equ1 p/o(W). then F an element $b_1 \neq e \in W$ show that $b_1 p = e$. hence the theorem.

In this case let us assume that let p is not a divisor of any proper subgroup of G.

Let $a \in z(A) \longrightarrow 3$

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: II BSC MATHEMATICSCOURSE NAME: Group theory ICOURSE CODE: 17MMU303UNIT: IIIBATCH-2017-2020

$N(a) \neq G \longrightarrow 4$

And also let us assume that p is not a divisor of o(N(a)).

 $p \times _{o}(N(a)) \longrightarrow 5$ we write the class equation as

$$o(G)=o(z(G))+\sum a \& z(G) \quad o(G)/o(N(a)) \longrightarrow 6$$

we have $p/o(G) \longrightarrow 7$ from the hypothesis of the theorem we have

p $\bigvee_{o}(N(a)) \longrightarrow 8$ from the equ5

$$p / \sum a \xi z(a) o(G) / o(N(a)) \longrightarrow 9$$

then equ6 can be written as

$$p / (o(G)-\sum a \xi z(a) o(G)/o(N(a))) = o(z(G)) \longrightarrow 10$$

from 7 and 9 we have $p / o(G) - \sum a \varepsilon z(a) o(G) / o(N(a)) \longrightarrow 11$

 $p/o(z(G)) \longrightarrow 12$

but in this case we have p is not a divisor of any proper subgroup

from 11 and 12 the only possibility is z(G)=G

G is abelian.

The remaining problem of this theorem will be true by use of cauchys theorem for abelian groups.

Cauchys theorem for abelian group is suppose G is a finite abelian group and p is divide o(G) where p is prime then F an element $a\neq e$ show that $a^p = e$.

SYLOWS THEOREM FOR ABELIAN GROUP:

STATEMENT:

If G is an abelian group of order o(p) and if p is a prime number show that $p\alpha/o(G)$ then G has a subgroup of order $p\alpha$.

Proof:

If $\alpha=0$ then the subgroup satisfies the conclusion of the result so let us suppose that $\alpha\neq 0$ then p/o(G).

CLASS: II BSC MATHEMATICSCOUICOURSE CODE: 17MMU303UNIT: III

COURSE NAME: Group theory I BATCH-2017-2020

Then by cauchys theorem for abelian group there is an element $a\neq e \in G$, $a^p = e$

Let $S = \{x \in G/xp^n = e \text{ for some integer } n\}$ we have $ep^n; e < s$.

GeS and $a \neq e$ s = e s is non empty

We claim that S is a subset of G. if possible let $w \neq G$ be a subgroup of G hence p/o(W) then F an element $b_1 \neq e \in W$ show that $b_1^p = e$ hence the theorem in this case is let us assume that p is not a divisor of the order of any proper subgroup of G.

Let
$$a \in z(G) \longrightarrow 3$$

 $N(a) \neq G \longrightarrow 4$

 $P \times N(A) \longrightarrow 5$

We write the class equation as,

 $O(G)=o(z(G))+\sum a \& z(G)o(G)/o(N(G)) \longrightarrow 6$

We have p/o(G) from the hypothesis of the theorem

$$P \bigvee o(N(a))$$
 from equ 5

$$p/a\&z(G)o(G)/o(N(G)) \longrightarrow 9$$

then 6 can be written as

 $o(G)-a\varepsilon z(G)o(G)/o(N(G)) = 0(Z(a))$

from 7 and 9 we have

 $p/o(G)-\sum a \epsilon \lambda(G) o(G)/o(N(a))=p/o(z(G)) \longrightarrow 11$

if H is a non empty finite subset of a group G and H is closed under multiplication then H is a subgroup of G, it is enough if we verify that H is closed.

▶ 10

Let x,y ϵ S. $x^{pn}=e yp^{m}=e$ for some integers. Now $(xy)^{p n+m}=x^{p m+n}$ $=xp^{n}.p^{m} yp^{n}p^{m}$ $=(xp^{n})p^{m}.(yp^{m})p^{n}$ =e.e=e

CLASS: II BSC MATHEMATICS COURSE CODE: 17MMU303

COURSE NAME: Group theory I UNIT: III BATCH-2017-2020

 $(xy)^{pn+m} = e$ for some integer n+m

xyes s is closed.

S is a subgroup of G. we next claim that $o(s)=p^{\beta}$

With β as an integer o< $\beta < \alpha$.

FOR IF f A PRIME NUMNER Q SHOW THAT Q/0(S), $q\neq p$ then by cauchys theorem for abelian group there is an element ces, $e\neq e$, show that $c^q=e$ since ces, $c^{pn}=e$ for some integer n.

Now pⁿ and q are respectively prime.

We can find integers λ , μ show that $\lambda q + \mu p^n = 1$

$$C=c^{l}=c \lambda q+\mu p^{n}=c^{\lambda q}.c \mu p^{n}$$

 $=(c^{q}).(c^{pn})^{\mu}$

 $=e^{\lambda}.e^{\mu}=e$

C=e this is a contradiction to the fact that $c\neq e$. there is no prime number q/o(s) and $q\neq 0$ $o(s)=p^{\beta}$ for some β show that $0 < \beta < \alpha$. by cauchys theorem o(S)/o(G). $\beta \le \alpha$. Let us assume that $\beta < \alpha$. Let us consider the abelian group G/s

G is abelian G/S is also abelian.

Now o(G/s)=o(G)/o(S) s is a normal subgroup of an abelian group is normal. And $\beta < \alpha = p/o(G/S)$. there is an element $s_x(x \in G)$ is G/S, $s_x \neq S$ such that $(S_x)^{pn} = S$ from some integer n>0. But $S=(S_x)^{pn}=s_x p^n=x^{pn} \in S$. $e=(x^{pn})^{o(s)}=(x^{pn})^{p\beta}=x^{pn+\beta}x \in S$

 $s_x=s$ which is a contradiction to the fact that $s_x\neq s$ $\beta < \alpha$ is impossible. the only possibility is

 $\beta = \alpha$. O(s)= p^{α} .

S is the required subgroup of order p^{α} .

Hence the theorem.

Automorphisms:

Definition:

An automorphism of a group is an isomorphism of an onto itself.

Lemma 3.7:

prove that A(G) is a group or if G is a group then A(G) the set of automorphisms of G is also a group.

CLASS: II BSC MATHEMATICS (COURSE CODE: 17MMU303 UNIT: III

COURSE NAME: Group theory I BATCH-2017-2020

Proof:

We know that A(G) is a collection of all one to one mappings of an onto itself and A(G)is also a group under the composition of mappings as binary operation. We shall now show that A(G) is a subgroup of A(G). Define i:G \longrightarrow G by xi=x $x \in G$ Obviously I is the automorphism of G onto itself ieA(G) A(G) is a non empty subset of A(G) let $T_1, T_2 \in A(G)$ We know that T_1, T_2 is one to one and onto whenever both T_1, T_2 are one to one and onto To show that T_1, T_2 is a homomorphism of G to itself Let x, yEG Then (xy) $T_1, T_2 = ((xy)T_1)T_2$ $=((xT_1)(yT_1))T_2$ $(xT_1)T_2(YT_1)T_2$ ¥x,yɛG by definition T_1,T_2 is a homorphism of G to itself. $T_1, T_2 \in A(G)$ whenever $T_1, T_2 \in A(G)$ next we prove that $T^{-1} \in A(G)$ whenever $T \in A(G)$ to show that T^{-1} is a homomorphism of G to itself Now consider $(xT^{-1}yT^{-1})T = (xT^{-1})T(yT^{-1}T)$ $=x(T^{-1}T)y(T^{-1}T)$ =xiyi =xyPost multiplying on both sides by T^{-1} we get $(xT^{-1}vT^{-1})TT^{-1}=(xv)T^{-1}$ $(xy)T^{-1}=xT^{-1}yT^{-1}$ T^{-1} is a homomorphism of G to itself $T^{-1} \epsilon A(G)$ whenever $T \epsilon A(g)$ is a subgroup of A(G)Hence A(G) is a group under the composition of mappings as binary operations. Note: A(G) is called the group of automorphism of G.

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: II BSC MATHEMATICS COURSE NAME: Group theory I COURSE CODE: 17MMU303

UNIT: III

```
BATCH-2017-2020
```

Definition:

Let G be the group for gEG

Define Tg:G ===>G

By $xTg=gxg^{-1}$ ¥xɛG then this mapping Tg is an automorphism of G. this automorphism of G is called an linear automorphism.

Remark:

An automorphism which is not inner is called as outer automorphism.

Lemma 3.8:

Let G be a group for gcG defined as Tg: $G = G by xTg = g^{-1}xg xcG$

Prove that Tg is an automorphism of G to itself.

Proof:

```
Let x, yeG then xyeG
Now (xy)Tg=g^{-1}(xy)g
=g^{-1}xgg^{-1}yg
=(g^{-1}xg)(g^{-1}yg)
xTg.yTg
Tg is a homomorphism.
For every y \in G x = g y g^{-1} \in G such that
xTg=g^{-1}xg
=g^{-1}gyg^{-1}g
=у
Tg is onto
We shall now prove that Tg is onto.
Now xTg=yTg
G^{-1}xg=g^{-1}yg
X=y
Tg is one to one.
```

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: II BSC MATHEMATICSCOURSE NAME: Group theory ICOURSE CODE: 17MMU303UNIT: IIIBATCH-2017-2020

Thus Tg is an isomorphism of G onto itself and hence Tg is an automorphism of G to itself.

Group of inner automorphism of G:

Define $\Phi(G) = \{Tg \in A(G)/g \in G\}$

We shall prove that $\Phi(G)$ is a subgroup of A(G).

Now eeG

```
.xTe=e<sup>-1</sup>xe=e<sup>-1</sup>x=ex
```

=x

=xi¥ xɛG

Te=iεΦ(a)

```
\Phi(G) is a non empty subset of A(G)
```

Let xEG

```
Let Tg, The \Phi(a) where g, he G
```

Now consider,

```
xTg=(gh)^{-1}x(gh)
```

```
=h^{-1}g^{-1}xgh
```

```
=h^{-1}(g^{-1}xg)h
```

```
=(g^{-1}xg)Th
```

```
=(xTg)Th
```

```
=xTgTh¥ xεG
```

```
Tgh=TgTh whenever Tg,Th \varepsilon \Phi(G)
```

Let TgεΦ(G)

```
We have to show that Tg^{-1} \epsilon \Phi(G)
```

```
To ,prove that TgTg^{-1}=c
```

We have Tgh=TgTh

.xTgTh=xTgh

```
xTgTg<sup>-1</sup>=xTgg<sup>-1</sup>
```

```
=xTe
```

ASS: II BSC MATHEMATICS		GHER EDUCATION COURSE NAME: Group theory I
COURSE CODE: 17MMU303	UNIT: III	BATCH-2017-2020
=e ⁻¹ xe		
=X		
-xi		
$\Gamma g T g^{-1} = i \epsilon \Phi(G)$		
Tg) ⁻¹ =Tg ⁻¹ $\varepsilon \Phi(G)$ since g ⁻¹ εG .		
$\Gamma g^{-1} = T g^{-1} \varepsilon \Phi(G)$ since $g^{-1} \varepsilon G$		
$\operatorname{Tg}^{-1} \varepsilon \Phi(G)$ whenever $\operatorname{Tg} \varepsilon \Phi(G)$		
Then by lemma $\Phi(G)$ is a subgrou	p of A(G).	
₽(G) is a group.		
This group is called the group of in	nner automorphis	n of G.
Note:		
$\Phi(G)\zeta A(G)\zeta$		
<u>Lemma 3.9:</u>		
f g \approx G/zwhere I(G) is the group of	f inner automorph	ism of G and z is the center of G.
Proof:		
Define a map ψ: G===>A(G)		

```
By \psi(g)=Tg \notin g \epsilon G
```

Let g, hEG then ghEG

Now $\psi(gh)=Tgh$

=TgTh

 $=\psi(g)\psi(h)$

 Ψ is a homomorphism of G into A(G) whose image is I(G).

We shall now prove that the kernel of $\boldsymbol{\psi}$ is z.

Suppose that k is the kernel of ψ then we prove that k=z

Let kɛk, then

```
\Psi(k)=identity element of A(G)
```

Tk=i

xTk=xi

CLASS: II BSC MATHEMATICS		HIGHER EDUCATION COURSE NAME: Group theory I
COURSE CODE: 17MMU303	UNIT: III	BATCH-2017-2020
k ⁻¹ xk=x		
xk=kx		
kεz		
kçZ		
zɛZ then by the definition of center	er of z we have	zx=xz¥xεG
$x=z^{-1}xz$		
xi=xTz		
i=Tz		
$i=\psi(Z)$		
zɛk		
z=k		
ψ is a homomorphism of G int	o A(G) whose	image is I(g) and kernel k=z then by
theorem 2.7.1		
G/z \approx the range of ψ is A(G)		
$G/Z \approx I(G)$		
I(G)≈G/Z		
<u>Lemma 3.10:</u>		
Let G be a group and Φ an autom	orphism of G. i	f at G is of order o(a)>0, then
$O(\Phi(a))=o(a).$		
Proof:		

Let us suppose that o(a)=n

Then $a^n = e \rightarrow 1$

Now consider $(\Phi(a))^n = \Phi(a).\Phi(a)....\Phi(a)$

=Φ(a, a, a,a)

 $=\Phi(a^n)$

 $=\Phi(e)=e$ by lemma 2.7.2

If possible let $(\Phi(a))^m = e$ for o<m<n

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: II BSC MATHEMATICS COURSE NAME: Group theory I UNIT: III BATCH-2017-2020 COURSE CODE: 17MMU303 Then $(\Phi(a))^m = e = \Phi(e)$ $\Phi(a^m)=\Phi(e)=a^m=e$ This is a contradiction since o(a)=n Our assumption that $(\Phi(a))^m = e$ is false $\Phi(a^n)$ =e for the least =ve integer n $[\Phi(a)]^n = e$ $\Phi(a)$ has order n $O(\Phi(a))=n=0(a)$. hence the lemma. **Cayley's theorem:** Every group is isomorphic to a subgroup of A(S) for some appropriate S. **Proof:** Let G be a group put s=G, then for $g\in G$. Define the mapping $\tau g: G \longrightarrow G$ By $x\tau G = xg$ ¥ $x \in G$ Let x, yEG Then $x\tau g = xg$ ytg=yg If $x\tau g = y\tau g$ Then xg=yg τg is one to one. x=y If $y \in G$ then $y = yg^{-1}g$ $=(yg^{-1})g$ $=(yg^{-1})\tau g$ yg⁻¹ is the pre image of y in G under τ g. Tg is onto. Now $yg^{-1}\varepsilon G$ Tg ε A(G) ¥ g ε G Now define the mapping ψ :G \Rightarrow A(G) by ψ (g)= τ g ξ g \in G Let us know prove that ψ is homomorphism. Let a, beG then for any xeG we have xtab=xab $\frac{1}{2}$ xeG

Now consider $x\tau a\tau b = (x\tau a)\tau b$

LASS: II BSC MATHEMATICS		COURSE NAME: Group theory I
COURSE CODE: 17MMU303	UNIT: III	BATCH-2017-2020
=(xa)\table b		
=xab ¥xeG		
xtatb=xtab		
τατb=τab		
now consider $\psi(ab) = \tau ab$		
= τατb		
$=\psi(a).\psi(b)$		
Ψ is a homomorphism of G into	A(G) suppose the	hat k is the kernel of ψ . Let k ϵK then
$\psi(k)$ =I by definition of kernel.		
τk=i		
xtk=xi		
xk=xe		
k=e		
Ψ is one to one.		
Ψ is isomorphism of G into A(G).		
Also ψ is onto upto the range of	f ψ . We know th	at the range of a homomorphism is a
subgroup of A(G).		
Hence every group is isomorphic	to a subgroup of	A(S) for some appropriate S.
Theorem 3.3:		
If G is a group H a subgroup of G	G and S is the set	of all right cosets of H in G, then there
is a homomorphism. O of G into	A(S) and the kerr	hel of Θ is the largest normal subgroup

Proof:

Given that $s=\{Hg/g\epsilon G\}$ we observe that s need not be a group and still be a group only if H is a normal subgroup of G.

On s defines a mapping tg:s S

By (Hx)tg=Hxg, gcG, xcG

Let x, $y \in G$ then

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: II BSC MATHEMATICS COURSE NAME: Group theory I BATCH-2017-2020 COURSE CODE: 17MMU303 UNIT: III

(Hx)tg=(Hy)tg

Hxg=Hyg= Hx=Hy=x=y tg is one to one.

If Hx ϵ S for g ϵ G then Hx=Hxg⁻¹g

 $=(Hxg^{-1})g$

 $=(Hxg^{-1})tg$

Hxg⁻¹ is the preimage of Hx for any HxɛS under tg

=tg is onto thus $tg \in A(S)$ for $g \in G$

```
Then define a mapping \Theta: G \Longrightarrow A(S)
```

By $\Theta(g) = tg \pm g \epsilon G$

Let g, heG then Hx tgth=(Hxtg)th

=(Hxg)th

=Hxgh

=Hxtgh

Tgh=tg th

```
Now consider \Theta(gh)=tgh
```

=tgth

 $=\Theta(g).\Theta(H)$

Then by definition Θ is a homomorphism of G into A(S).

Let k be the kernel of Θ then

```
K = \{x \in G / \Theta(x) = i\}
```

```
= \{x \in G/t \in i\}
```

 $= \{x \in G / Hgtx = Hg \neq g \in G\}$

```
={ x \in G/Hgx = Hg \neq g \in G }
```

K is the kernel of Θ iff xɛk

Hgx=Hg ¥geG

We shall know prove that k is the largest normal subgroup of G contained in H. since k is the kernel of Θ by lemma 2.7.3 k is the normal subgroup of G. since is true for all geG We choose g=e

CLASS: II BSC MATHEMATICS COURSE CODE: 17MMU303

COURSE NAME: Group theory I UNIT: III BATCH-2017-2020

Нех=Не Нх=Н хєН

kςH

k is a normal subgroup of G contained in H. now we prove that k is the largest normal subgroup of G contained in H. if N is a normal subgroup of G such that NcH then we prove that Nck let n ϵ N then gng⁻¹ ϵ N ¥g ϵ G and n ϵ N

Hgng⁻¹=H

Hgn=Hg

Nςk

K is the largest normal subgroup of G contained in H. hence the proof.

<u>Remarks:</u>

The above theorem can be applied to decide whether the group is simple as follows.

Suppose the homomorphism Θ is not an isomorphism then $k \neq \{e\}$ k is a non trivial subgroup contained in H. G is simple.

Lemma 3.11:

If G is a finite group and $H \neq G$ is a subgroup of G such that $o(G)^{*i}(H)$ then H must contain a non trivial normal subgroup of G. in particular G cannot be simple.

Since o(A)*i(H)! there are 2 possibilities

o(G) > i(H)!

o(G)< i(H)!

suppose that o(G) > i(H)! by theorem, $\Theta: G \implies A(S)$ is a homomorphism where s is the collection of all right cosets of H in G.

.. o(A(s))=i(H)

=o(G)/o(H)

O(A(S))=i(H)!

We also know that the kernel k is the largest normal subgroup of G contained in H. in this case Θ cannot be an isomorphism as seen below. If Θ were an isomorphism between G and A(S) then Θ (G) would have o(G) elements and yet would be a subgroup of A(S)

CLASS: II BSC MATHEMATICS COURSE CODE: 17MMU303 UNIT: III

COURSE NAME: Group theory I BATCH-2017-2020

. o(A(S))≥o(G)

. $i(H)! \ge o(G)$ which is contradiction. Θ is not an isomorphism but a homomorphism then by the corollary under lemma 2.7.4 k \neq e hence this homomorphism ensures the existence of a non trivial normal subgroup K in H and hence is in G. G is not simple.

Let us know that o(G)<i(H)!

Given that o(G)*i(H)=o(A(S))

By lagranges theorem A(S) can have no subgroup of order o(G). there is no subgroup isomorphism to G. however A(S) contains $\Theta(G)$.

 $\Theta(G)$ cannot be isomorphism in G. Θ cannot be an isomorphism. H must contain a non trivial normal subgroup of G. in this case also G is not simple.

Hence the lemma

Permutation groups:

We know that every group can be represented isomorphically as a subgroup of A(S) for some set S and in particular a finite group G can be represented as a sungroup of S_n , for some n where S_n is the symmetric group of degree n.

Suppose that S is a finite set having four elements x_1 , x_2 , x_3 , x_4 if $\Phi \in A(S)=S_4$ then Φ is a one to one mapping of s onto itself.

For example if $\Phi: x_1 \longrightarrow x_2$

 $\begin{array}{c} x_2 \longrightarrow x_4 \\ x_3 \longrightarrow x_1 \end{array}$

 $x_4 \rightarrow x_3$ this mapping can be represented as $x_4 \rightarrow x_3$ this mapping can be represented as $x_4 \rightarrow x_3$ this mapping can be represented as $x_4 \rightarrow x_3$ this mapping can be represented as $x_2 \rightarrow x_4 \rightarrow x_1 \rightarrow x_3$ we $x_2 \rightarrow x_4 \rightarrow x_1 \rightarrow x_3$ if Φ is a permutation is represented by $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$ and ψ is a permutation can be represented by $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix}$ then the permutation $\Phi\psi$ is given by Prepared by Dr. K. Kalidass, Assistant Professor, Department of Mathematics, KAHE Page 29/25

				K	ARPAG	AM		ADE	MY C	DF I	HIGI	HER	EDI	UCATION
CLASS	: II I	BSC	MA	THE	MATIC	S					CO	UR	SE N	AME: Group theory I
COUI	RSE	CO	DE:	17MN	AU303			UNI	T: III					BATCH-2017-2020
		-	-			-	-				-	-		
Φψ=	1	2	3	4	1	2	3	4	_	1	2	3	4	
$\Psi \psi =$	2	4	1	3	1	3	2	4	_	2	1	3	4	

Let S be a set and $\Theta \epsilon A(S)$

Given two elements a,bes we define $a \equiv \Theta^b$ iff $b=a\Theta^i$ for some integer I, where I can be positive, negative, zero. We claim this defines an equivalence relation since $a \equiv \Theta^{\Theta} \\$ then we have $a \equiv \Theta^a$ relaxitivity is true. Now assume that $a \equiv \Theta^b$ then by definition $b=a\Theta^i$ where I is some integer from this we have $a=b\Theta^{-I}$ where -I is a negative integer.

 $b \equiv \Theta^a$ symmetry is true. Now we assume that $a \equiv \Theta^b$ and $b \equiv \Theta^c$ then by definition $b = a \Theta^i$

 $c=a\Theta^{j}$ where I and j are some integers now $c=b\Theta^{j}$

 $=a\Theta^i\Theta^j$

 $=a\Theta^{i+j}$

 $a \equiv \Theta^c$ transitivity is true. The relation defined above is an equivalance relation on s. hence by theorem 1.1.1 this equivalance relation \equiv indices a decomposition of s into disjoint subsets, namely the equivalance classes. The equivalance classes of an element set is called the orbit of s under Θ .

Orbit of $s = \{s\Theta^{i}/i=0, \pm 1, \pm 2, \dots, \}$

When s is finite, Θ is called as permutation and corresponding orbits are called ccles. In this case F a smallest +ve integer and depending on s such that $s\Theta^{i}=s$

By a cycle of Θ we mean an ordered set {s,s Θ ,s Θ^2 ,.....s Θ^{l-1} }, 1 is called the length of the cycle.

Definition:

A cycle with 2 elements is called as 2-cycles.

Definition:

A transposition is defined to be a permutation with effects only two elements.

Example:

In the cycle (1 3 4) we associate the permutation (1 3 4) = $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 4 & 1 & 5 \end{pmatrix}$

The permutation under the cycle has the same effect on the elements of the cycle but the permutation leaves other elements fixed.

The permutation corresponding to a cycle (2 5) is a permutation $(2 5) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 3 & 4 & 2 \end{bmatrix}$

Lemma 3.12:

CLASS: II BSC MATHEMATICSCOURSE NAME: Group theory ICOURSE CODE: 17MMU303UNIT: IIIBATCH-2017-2020

Every permutation is the product of its cycles or every permutation can be uniquely expressed as a product of disjoint cycles.

Proof:

Let S be a finite set. Let Θ be the permutation. Let ψ be the product of the disjoint cycles of Θ . The cycles of Θ are of the form $(s,s\Theta,s\Theta^2,\ldots..s\Theta^{l-1})$.

By the multiplication of cycles and since the cycles of Θ are disjoint. The image of s¹ under Θ namely s¹ Θ is the same as the image of s¹ under ψ .

 Θ and ψ have the same effect on every element of s. hence $\Theta = \psi$.

Every permutation is the product of its cycles.

Lemma 3.13:

Every permutation is a product of 2cycles(transposition).

Proof:

Consider 'm' cycle (1, 2, 3....m)A single permutation show that (1, 2, 3...m)=(1,2)(1,3)...(1,m)More generally the m-cycles

 $(a_1,a_2,\ldots,a_m)=(a_1,a_2)(a_1a_3)\ldots(a_1a_m)$

This decomposition is not unique.

By this we mean an m-cycle can be written as a product of two cycles is more than one

way

For example,

$$(1 2 3) = (1 2)(13)$$

=(3 1)(3 2)

Now since every permutation is a product of disjoint cycles and every cycle is a product of two cycles, we have every permutation is a product of 2 cycles.

Remarks:

$$(1\ 2\ 3\ 4) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$
$$(1, 2)(1, 3)(1, 4) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$
$$1. \text{ Now } (1\ 2\ 3\) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

OURSE CODE: 17MMU303		COURSE NAME: Group theory I
	UNIT: III	BATCH-2017-2020
$(1, 2)(1, 3) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ 3 \\ 2 \\ 3 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$	
$(3 \ 1)(3 \ 2) = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ $= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$	

1. A permutation $\Theta \epsilon S_n$ is called an even permutation if it can be represented as a

2. A permutation is called an odd permutation if it is not an even permutation

(1 2 3)=(1 2)(1 3)

Definitions:

(3 1)(3 2)

product of even no of transpositions.

KARPAGAM ACADEMY OF	HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE CODE: 17MMU303

COURSE NAME: Group theory I UNIT: III

BATCH-2017-2020

POSSIBLE QUESTIONS:

Part-B(5X8 = 40 Marks)

Answer all the questions:

- 1. If f is a homomorphism of a group G into G', then prove that i) f(e) = e', where e is the identity of G and e' is the identity of G' ii) $f(a^{-1}) = [f(a)]^{-1}, \forall a \in G$
- 2. State and prove fundamental theorem on homomorphism of groups
- 3. State and prove Cayley's theorem.
- 4. State and prove Cauchy's theorem for abelian groups.
- 5. State and prove Sylow's theorem for abelian groups.

6. Suppose G is a group and N is a normal subgroup of G. Let f be a mapping from G to G/N defined by f(x) = Nx, $\forall x \in G$. Then f is a homomorphism of G onto G/N and kernel f =N.

7. Show that $a \rightarrow a^{-1}$ is an automorphism of a group G iff G is abelian.

- 8. If φ is a homomorphism of G into \overline{G} with kernel K, then prove that K is a normal subgroup of G.
- 9. The set I(G) of all inner automorphisms of a group G is a normal subgroup of the group of its automorphisms isomorphic to the quotient group G/Z of G where Z is the centre of G.

10. Define a permutation. If $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ then find AB and BA.

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: II BSC MATHEMATICS COURSE NAME: Group theory I COURSE CODE: 17MMU303 BATCH-2017-2020 UNIT: IV <u>UNIT-IV</u> **SYLLABUS** External direct product of a finite number of groups, normal subgroups, factor groups, Cauchy's theorem for finite abelian groups

UNIT: IV

CLASS: II BSC MATHEMATICS COURSE CODE: 17MMU303

COURSE NAME: Group theory I BATCH-2017-2020

INTRODUCTION TO RING THEORY

In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings (group rings, division rings, universal enveloping algebras), as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.

Definition

A non empty set R is said to be an associative ring if in R these are defined two operations denoted by '+' and '.' Called addition and multiplication respectively such that for all a,b,c $\in R$

- i. $a + b \in R$
- ii. a + b = b + a
- iii. a+(b+c)=(a+b)+c
- iv. There is an element 0 in R such that $a+0=0+a=a \neq a \in R$
- v. There exist an element -a in R such that a+(-a)=0=(-a)+a
- vi. $a.b \in R$
- vii. (a.b).c=a.(b.c)
- viii. (i) Left Distributive law: a.(b+c)=a.b+a.c
 - (ii) Right distributive law:

(b=c).a=b.a=c.a

Definition

A nonempty set R is called a ring, if it has two binary operations called addition denoted by a + b and multiplication denoted by ab for $a, b \in R$ satisfying the following axioms: Multiplication is associative, i.e. a(bc) = (ab)c for all $a, b, c \in R$.

Distributive laws hold: a(b + c) = ab + ac and (b + c)a = ba + ca for all $a, b, c \in \mathbb{R}$.

Definition

- Let R be a ring.
- (1) If multiplication in R is commutative, it is called a commutative ring.
- (2) If there is an identity for multiplication, then R is said to have identity.

CLASS: II BSC MATHEMATICSCOURSE NAME: Group theory ICOURSE CODE: 17MMU303UNIT: IVBATCH-2017-2020

(3) A nonzero element $a \in R$ is said to have a left (resp. right) inverse b if ba = 1

(resp. ab = 1) We say that a is invertible or a unit in R if it has a left and a right inverse.

(4)A commutative division ring is called a field.

(5)An element a of a commutative ring R is called a zerodivisor if there is a nonzero $b \in R$ such that ab = 0. An element $a \in R$ that is not a zerodivisor is called a nonzerodivisor. If all nonzero elements of a commutative ring are nonzerodivisors, then R is called an integral domain.

(6) A nonempty subset S of a ring R is called a subring of R if S is a ring with respect to addition and multiplication in R.

Example of rings

The set of integers Z, the set of rational numbers Q, the set of real numbers R and the set of complex numbers C are commutative rings with identity.

<u>NOTE</u>

- i. In this case we also say that (R,+,.) is a ring
- ii. 0 is called the zero element of the ring and it is the additive identity element
- iii. If there is an element 1 in R such that a.1=1.a=a + a ∈ R then R is called a ring with unit element.
- iv. If for all $a, b \in R$ a.b=b.a then R is called a commutative ring

Some Special Classes Of Rings

Definition

If R is a commutative ring then $a\neq 0 \in R$ is said to be a zero-devisor if there exist a, $b \in R$, $b\neq 0$ such that ab=0

[Eg : define (a1,b1,c1) (a2,b2,c2)=(a1a2,b1b2,c1c2)

(1,2,0) (0,0,7)=(0,0,0)]

Examples

1.Some M is a ring of 2*2 matrices with their elements as integers, the addition and multiplication of matrices being the two ring composition then M is a ring with zero-devisors

CLASS: II BSC MATHEMATICS COURSE CODE: 17MMU303

UNIT: IV

COURSE NAME: Group theory I BATCH-2017-2020

2. The ring of integer is a ring without zero-devisors

Definition

A commutative ring is an integral domain if it has no zero devisors

Example : The ring of integers

Definition

A ring is said to be a division ring if its non-zero element form a group under multiplication

<u>Remark</u>

Sometimes a division ring is called a skew field.

Definition

A field is a commutative division ring

<u>Lemma 4.1</u>

If R is ring, then for all $a, b \in R$

1. a.0 = 0.a = 0

- 2. a(-b)=(-a)b=-(ab)
- 3. (-a)(-b)=ab

If in addition, R has a unit element 1 then

- 4. (-1) a =-a
- 5. (-1)(-1)=1

1) Let a \in R then consider

$$a.0 = a.(0+0)$$

=a.0+a.0 (L.D.L)

(i.e) a.0=0 = A. + A.0

=> 0 = a.0 (by L.C.L)

Since R is a group under addition we have

Similarly we can prove 0.a = 0

Thus we have a.0 = 0.a = 0

CLASS: II BSC MATHEMATICS		COURSE NAME: Group theory I
COURSE CODE: 17MMU303	UNIT: IV	BATCH-2017-2020
2) We shall first show that $a(-b) = -(ab)$		
(i.e) To P.T $a(-b) + ab = 0$		
Now consider, $a(-b) + ab = a(-b + b)$		
=a(0)		
= 0 by 1		
(i.e) a(-b) + ab = 0		
(i.e) a(-b) = -ab		
Similarly we can P.T $(-a)b = -ab$		
$\Rightarrow a(-b) = (-a)b = -ab$		
3)Now consider (-a)(-b)		
(-a) (-b) = -(a(-b)) by 2		
= -(-ab)		
=ab		
4)Given that R has a unit element 1		
By definition $1.a = a.1 = a + a \in R$		
Now consider $(-10a = a = (-a) a + 1.a)$		
= (-1 + 1) a		
= 0.a = 0		
\Rightarrow (-1) a = -a		
5)In a proof of fourth result we have,		
(-1) a = -a v- a ∈ R		
If we take $a = -1$ then we have $(-1)(-1) =$	-(-1)	
(-1) (-1) =	= 1	
The Pigeon Hole Principle		
Definition		

If n objects are distributed over m places and if n > m then some places receives at least two objects.

CLASS: II BSC MATHEMATICS COURSE CODE: 17MMU303

COURSE NAME: Group theory I BATCH-2017-2020

Equivalently, if n objects are distributed over n places in such a way that no place receive more than one object, then each place receives exactly one object.

UNIT: IV

Lemma: 4.2

A finite integral domain is a field.

Proof

An integral domain is a commutative ring such that ab=0 if atleast one of a or b is 0.

A field is a commutative ring with unit element in which every non zero element has a multiplicative inverse in the ring.

Let D be the finite integral domain with n elements

In order to show that D is a field we have to P.T

I. There exist an element $1 \in D$ such that

a.1 = 1.a = a + a v D

II. For every element $a \neq 0 \in D$ 7-a b $\in D$ show that ab=1

Let $x_{1,x_{2,..,x_n}}$ be the n elements of D

Let $a \neq 0 \in D$

Consider the elements,

x1a,x2a,...xna they are in D

we claim that they are all distinct

if possible let us assume that

xia = xja for $i \neq j$

then xia - xja = 0

(xi - xj)a = 0 (R.D.L)

Since D is an integral domain and $a \neq 0$ (by assumption)

We have $xi - xj = 0 \Rightarrow xi - xj$

CLASS: II BSC MATHEMATICS		COURSE NAME: Group theory I
COURSE CODE: 17MMU303	JNIT: IV	BATCH-2017-2020
This is contradiction since $i \neq j$		
Our assumption that xia = xja is false		
xia ≠ xja for i≠j		
x1a,x2axna are distinct and these n-dist	tinct elements	lie in D.
therefore by the pigeon hole principle these	se elements ar	e the elements of D
if Y ϵ D then y=xia for some xi		
in particular since a \in D we must have		
a=x a for some xi0 ϵ D		
since D is commutative we have		
a = xi0 a=axi0		
we shall P.T xi0 is a unit element for ever	y element of I	
now yxi0 = (xi a)xi0		
=xi(axi0)		
=xi.a		
=y		
Xi0 is the unit element of D and we write	it as 1	
xi0=1		
Now $1 \in D$ $a.1 = a + a \in D$		
1 must be of the form xia for some xi \in D		
1 = xia		

CLASS: II BSC MATHEMATICS COURSE CODE: 17MMU303

COURS UNIT: IV

COURSE NAME: Group theory I BATCH-2017-2020

7- a, b ϵ b such that 1 = ba

Ab = ba = 1 => Innverse exist

Thus we proved two conditions

Hence every finite integral domain is a field

Corollary:

If p is a prime no then jp, the ring of integers mod p is a field.

Proof:

Jp has a finite no of elements $\overline{0}$, $\overline{1}$, $\overline{2}$, $\overline{3}$, (p-1) where \overline{i} , is the class of integers which give remainder i on division by p.

Then by the above lemma it is enough to prove that jp is an integral domain but we know that jp is a commutative ring. Let $a, b \in jp$ and ab = 0 then p must divide a or b

```
Either a = 0 \mod p or b = 0 \mod p
```

(i.e) a = 0 or b = 0

Jp has no zero divisor

By definition jp is a finite integral domain

Hence by the above lemma, jp is a field

NOTE

Let f be an finite field having m elements like jp, by corollary (ii) of lagranges theorem we have $a^{0(f)} = e$

Under addition we have

```
a + a + ... = 0

m \text{ terms}
```

(i.e) ma = 0

|--|

CLASS: II BSC MATHEMATICS COURSE CODE: 17MMU303

COURSE NAME: Group theory I BATCH-2017-2020

Definition

An integral domain D is said to be of characteristic '0' in the relation ma = 0 where $a \neq 0$ is in D and where m is an integer can hold only if m = 0

UNIT: IV

Example

- i. The ring of integers
- ii. The ring of even integers
- iii. The ring of rationals

Definition

An integral domain D is said to be of finite characteristic if 7 a +ve integer 'm' such that ma = 0 for all a $\in D$

NOTE

- 1. If D is of finite characteristic then we define the characteristic of D to be the smallest the integer p, S.T pa = $0 \neq a \in D$
- 2. If D is of finite characteristic then its characteristics is a prime number
- 3. An integral domain which has an finite characteristics

Definition

An element 'a' of a ring R is said to be Idompotent if $a^2 = a$

A ring R is called a Boolean ring if all elements are idempotent

<u>Homomorphisms</u>

Definition

A mapping from ring R into the ring R is said to be a homomorphism if

i.
$$\Phi(a+b) = \Phi(a) + \Phi(b)$$

ii. $\Phi(ab) = \Phi(a) \cdot \Phi(b) + a, b \in \mathbb{R}$

<u>Lemma 4.3</u>

If Φ is a homo morphism of R into R then

- i. $\Phi(0) = 0$
- ii. $\Phi(-a) = -\Phi(a)$ for every $a \in \mathbb{R}$

<u>Proof</u>

CLASS: I	I BSC MATHEMATICS		COURSE NAME: Group theory I
COURSE	CODE: 17MMU303	UNIT: IV	BATCH-2017-2020
i. Le	et a \in R then $\Phi(a) \in$ R now	$\Phi(\mathbf{a}) + 0 = \Phi(\mathbf{a})$	
(i.e) d	$\Phi(\mathbf{a}) + 0 = \Phi(\mathbf{a} + 0)$		
(i.e) d	$\Phi(\mathbf{a}) + 0 = \Phi(\mathbf{a}) + \Phi(0)$		
=> Φ ((0) = 0 by L.C.L		
ii. Fr	from (i) we have $\Phi(0) = 0$		
(i.	$e) 0 = \Phi(o)$		
=	$\Phi(a + -a)$		
=	$\Phi(a) + \Phi(-a)$		
⇒ Φ	$(-a) = -\Phi(a)$		

Hence the proof

NOTE

If both R and R' have the respective unit element as 1 and 1' for their multiplication, it need not follow that $\Phi(1)=1$ '

However if R' is a integral domain (or) R' is arbitrary but Φ is onto then $\Phi(1) = 1$ '

Definition

If Φ is a homomorphism of R onto R' then the kernel of Φ , denoted by I(Φ) is the set of all elements a \in R such that Φ 9a)=0 where 0 is the zero element of R'.

(i.e) $I(\Phi) = \{ a \in R / \Phi(a) = 0, \text{the zero element of } R' \}$

Lemma : 4.4

If Φ is a homomorphism of R into R' with kernel I(Φ),then

	ACADEMY OF H	IGHER EDUCATION
CLASS: II BSC MATHEMATICS COURSE CODE: 17MMU303	UNIT: IV	COURSE NAME: Group theory I BATCH-2017-2020
1. $I(\Phi)$ is a subgroup of R under	r addition	
2. If $a \in I(\Phi)$ and $r \in R$ then both		Φ)
	(,
<u>Proof</u>		
1. We know that $\Phi(0) = 0$ by len	nma3.3.3	
$0 \in I(\Phi)$		
$I(\Phi)$ is a non-emp	ty subset of R	
Let $a, b \in I(\Phi)$		
$\Phi(a) = 0$ and $\Phi(b)$) = 0	
Since Φ is a home	omorphism we have	е,
$\Phi(a+b) = \Phi(a) + v$	v9b)	
= 0 + 0		
=0		
\Rightarrow a+b $\in I(\Phi)$		
let $a \in I(\Phi)$		
$\Phi(\mathbf{a})=0$		
But we know $\Phi(-a) = -\Phi(a)$		
=0		
$a \in I(\Phi)$ whenever $a \in I(\Phi)$ then	hu a lamma I(A):	s a subgroup of R under addition.
-a $\in I(\Psi)$ whenever a $\in I(\Psi)$ then	by a remina $I(\Psi)$ I	s a subgroup of K under addition.
Since $a \in I(\Phi)$ by definition $\Phi(a)=0$		
Now consider $\Phi(ar)$		
$\Phi(ar) = \Phi(a). \ \Phi(r)$		

=0

CLASS: II BSC MATHEMATICS COURSE CODE: 17MMU303

UNIT: IV

 \Rightarrow ar $\in I(\Phi)$

similarly $\Phi(ra) = \Phi(r)$. $\Phi(a)$

 $= \Phi(r).0$

=0

 $\Rightarrow ra \in I(\Phi)$ Hence if a $\in I(\Phi)$ and r $\in \mathbb{R}$, then both ar and ra are in $I(\Phi)$

Definition

- 1. A homomorphism of R into r' is said to be an isomorphism if it is a one to one mapping.
- 2. Two rings are said to be isomorphic if ther is an isomorphism of one onto the other

Lemma:4.5

The homomorphism Φ of R in R' is an isomorphism iff I(v) = $\{0\}$

Proof

Let us assume that Φ is an isomorphism of R into R'. then by definition Φ is one to one.

Let $a \in I(\Phi)$

 $\Phi(a) = 0$ where 0 is the identity element of R'

 $\Phi(a) = \Phi(0) \quad [\Phi(0)=0]$

 \Rightarrow a = 0 [ϕ is one to one]

Conversely,

Assume that $I(\Phi) = \{0\}$

It is enough to prove that Φ is one to one.

Let $x, y \in R$

Then $\Phi(x)$, $\Phi(y) \in R'$

Now $\Phi(x) - \Phi(y) = \Phi(x) + \Phi(-y)$

LASS: II BSC MATHEMATICS OURSE CODE: 17MMU303	UNIT: IV	COURSE NAME: Group theory I BATCH-2017-2020
$= \Phi(\mathbf{x} - \mathbf{y})$		BATCH 2017 2020
If $\Phi(x) = \Phi(y)$ then		
$\Phi(\mathbf{x}) - \Phi(\mathbf{y}) = 0$		
Thus $\Phi(x - y) = 0$		
$\Rightarrow x - y \in I(\Phi) = \{0\}$		
$\Rightarrow x - y = 0$		
$\Rightarrow x = y$		
$\Rightarrow \Phi$ is one to one		
lence the homomorphism Φ of R in	to R' is an isomorphism	$\inf \{I\{\Phi\}=0\}.$

The intersection of any two left ideals of a ring is again a left ideal of the ring.

Proof:

Let I_1 and I_2 be two left ideals of a ring R. Then I_1 and I_2 are subgroups of R under addition.

Therefore $I_1 \cap I_2$ is also a subgroups of R under addition.

Now to show that $I_1 \cap I_2$ is a left ideal of R, we are only to show that $r \in R$, $s \in I_1 \cap I_2 \Rightarrow rs \in I_1 \cap I_2$ We have $s \in I_1 \cap I_2 \Rightarrow s \in I_1$ and $s \in \cap I_2$ But I_1 and I_2 are left idals of R.

Therefore $r \in \mathbb{R}$, $s \in I_1 \implies rs \in I_1$ and $r \in \mathbb{R}$, $s \in I_2 \implies rs \in I_2$.

Now $rs \in l$ and $rs \in l_2 \Rightarrow rs \in l_1 \cap l_2$.

Therfore $I_1 \cap I_2$ is also a left ideal of R.

Theorem:

Fundamental theorem on homomorphism of rings.

Every homomorphic image of a ring R is isomorphic to some residue class ring thereof.

Proof:

Let R' be the homomorphic image of a ring R and f be the corresponding homomorphism.

Then f is a homomorphism of R onto R'. Let S be the kernel of this homomorphism.

Then S is an idealof R. Therefore R/S is a ring of residue classes of R relative to S.

CLASS: II BSC MATHEMATICS		COURSE NAME: Group theory I
COURSE CODE: 17MMU303	UNIT: IV	BATCH-2017-2020
We shall prove that $R/S \cong R'$.		
If $a \in R$, then $S+a \in R/S$ and $f(a) \in R'$.		
Consider the mapping $\phi: R/S \rightarrow R'$ such	h that $\phi(S+a) = f(a)$	a) $\forall a \in R$.
To prove: φ is well defined		
If $a.b \in R$ and $S+a = S+b$ then $\phi(S+a)$	$=\phi(S+b)$	
We have $S+a = S+b$		
\Rightarrow a-b \in S	4	
\Rightarrow f(a-b) =0'		
$\Rightarrow f[a+(-b)] = 0'$		
$\Rightarrow f(a) + f(-b) = 0'$		
$\Rightarrow f(a) = f(b)$		
$\Rightarrow \phi(S+a) = \phi(S+b)$		
$\Rightarrow \phi$ is well defined.		
To Prove : is 1-1		
We have $\phi(S+a) = \phi(S+b)$		
\Rightarrow f(a) =f(b)		
$\Rightarrow f(a) - f(b) = 0'$		
$\Rightarrow f(a) + f(-b) = 0'$		
\Rightarrow f(a-b) = 0'		
\Rightarrow a-b \in S		
\Rightarrow S+a = S+b		
Therefore ϕ is 1-1.		
Го Prove : ф is onto		
	(a) for some $a \in \mathbb{R}$	

Now $S+a \in R/S$ and we have $\phi(S+a) = f(a) = y$.

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: II BSC MATHEMATICSCOURSE NAME: Group theory ICOURSE CODE: 17MMU303UNIT: IVBATCH-2017-2020

Therefore ϕ is onto R'.

Finally we have $\phi[(S+a) + (S+b)] = \phi[(S+(a+b)] = f(a+b)]$

 $= f(a)+f(b) = \phi(S+a) + \phi(S+b)$

 $\phi[(S+a) (S+b)] = \phi[(S+(ab)] = f(ab) = f(a)f(b) = [\phi(S+a)][\phi(S+b)]$

Therefore ϕ is an isomorphism of R/s onto R'.

KARPAGAM ACADEMY OF HIGHER EDUCATION				
CLASS: II BSC MATHEMATICS		COURSE NAME: Group theory I		
COURSE CODE: 17MMU303	UNIT: IV	BATCH-2017-2020		
POSSIBLE QUESTIONS: Par	rt-B(5X8 = 40 N	larks)		

Answer all the questions:

1. If R is a ring, then foe all $a, b \in R$,

- (i) a0 = 0a = 0.
- (ii) a(-b) = (-a)b = -(ab)
- (iii) (-a)(-b) = ab.
- (iv) a(b-c) = ab ac
- 2. i) Define Integral domain with example.
 - ii) Prove that every finite integral domain is a field.
- 3. Prove that every field is an integral domain.
- 4. i) Define field with example.

ii) Prove that a skew field has no divisors of zero.

- 5. Show that the set of numbers of the form $a+b\sqrt{2}$, with a and b as rational numbers is a field.
- 6. Prove that a ring R has zero divisors iff cancellation law is valid in R.
- 7. Prove that a finite commutative ring R without zero divisors is a field.
- 8. Let R and R' be a rings and f:R→R' be an isomorphism. Then prove that
 i) R is commutative ⇒ R' is commutative
 ii) R is ring with identity ⇒ R' is ring with identity
 iii) R is an integral domain⇒ R' is an integral domain
 iv) R is a field⇒ R' is a field
- Prove that the homomorphism φ of a ring into a ring R' is an isomorphism of R into R' iff I(φ) =(0), where I(φ) denotes the kernel of φ.
- 10. State and Prove fundamental theorem on homomorphism of rings.

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: II BSC MATHEMATICS COURSE NAME: Group theory I		
COURSE CODE: 17MMU303	UNIT: V	BATCH-2017-2020
	UNIT-V	
	<u>SYLLABUS</u>	
Abelian groups, finitely generated abel	lian group, divisible and	d reduced groups, Torsion group,
· · · · · · · · · · · · · · · · · · ·		

CLASS: II BSC MATHEMATICS COURSE CODE: 17MMU303

COURSE NAME: Group theory I UNIT: V BATCH-2017-2020

INTRODUCTION TO IDEALS AND QUOTIENT RINGS

In ring theory, an **ideal** is a special subset of a ring. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any other integer results in another even number; these closure and absorption properties are the defining properties of an ideal. Among the integers, the ideals correspond one-for-one with the non-negative integers: in this ring, every ideal is a principal ideal consisting of the multiples of a single non-negative number. However, in other rings, the ideals may be distinct from the ring elements, and certain properties of integers, when generalized to rings, attach more naturally to the ideals than to the elements of the ring. For instance, the prime ideals of a ring are analogous to prime numbers, and the Chinese remainder theorem can be generalized to ideals. There is a version of unique prime factorization for the ideals of a Dedekind domain (a type of ring important in number theory). An ideal can be used to construct a quotient ring similarly to the way that, in group theory, a normal subgroup can be used to construct a quotient group.

IDEALS AND QUOTIENT RINGS

Definition

If R is any ring then a subset L of R is called a left Ideal of R, if

- i. L is a subgroup of R under addition
- ii. $r \in R, a \in L \Longrightarrow ra \in L$

In a similar way we can define a right ideal

Definition

A non empty subset u of R is said to be a (two sided) ideal of R if

i. u is a subgroup of R under addition

CLASS: II BSC MATHEMATICSCOURSE NAME: Group theory ICOURSE CODE: 17MMU303UNIT: VBATCH-2017-2020

ii. For every $u \in U$ and $r \in R$, both ur and $ru \in U$

<u>NOTE</u>

- i. An ideal is thus simultaneously a left ideal and right ideal of R
- ii. Since the ring R is an abelian group w.r.to addition it follows that any ideal U is normal subgroup of r (since any subgroup of an abelian group is normal)
- iii. If u is an ideal of the ring R then $\frac{R}{H}$ is a ring and is homomorphic of R

Lemma:5.1

If U is an ideal of R, U is a normal subgroup of R (by note (i))

w.r.to addition $\frac{R}{U}$ is the set of all distinct cosets of U in R, mearly we say that coset and we do ot say left coset or right coset. Since R is an abelian group w.r.to addition,

 $\mathbf{a} + \mathbf{U} = \mathbf{U} + \mathbf{a}$

 $\frac{R}{U}$ consists of all cosets a+u,a $\in R$

From a theorem 2.6.1 we know that $\frac{R}{U}$ is a group under addition (prove here), where the composition law is $(a + u) + (b + u) = (a + b) + U + a, b \in R$

 $\frac{R}{U}$ is also abelian since R is abelian w.r.t.addition. let us define the multiplication in $\frac{R}{U}$ as follows

 $(a+u) + (b+u) = ab + u + a, b \in R$

Now we prove, the above said multiplication is well defined

If a + u = a' + u

And b + u = b' + u

Then by our definition of multiplication ,we have to prove that

(a+u)(b+u) = (a'+u)(b'+u)

Prepared by Dr.M.M.Shanmugapriya, Asst Prof, Department of Mathematics, KAHE Page 3/25

LASS: II BSC MATHEMATICS	COURSE	E NAME: Group theory I
COURSE CODE: 17MMU303	UNIT: V	BATCH-2017-2020
i.e) to prove that $(ab + u) = (a'b' + u)$	1)	
Since $a + u = a' + 0$		
Ve have		
$A = a' + u1$ where $u1 \in u$		
Similarly since $b + u = b' + u$		
We have $b = b' + u^2$ where $u^2 \in u$		
b = (a' + u1)(b' + u2)		
a'b' + a'u2 + b'u1 + u1u2	Ť	
ince u is an ideal of R we have		
$^{2}u2 + b^{2}u1$ and $u1u2 \in u$		
$u^2 + b^2 u^2 + u^2 u^2 \in U$		
b=a'b' + u3 where u3=a'u2 + b'u1 +	- u1u2 ∈ u	
b + u = a'b' + u3 = u	VV	
a'b' + u		
\Rightarrow ab+u =a'b' = u		
The multiplication defined above is w	vell defined now (a +	$(b + u) (b + u) = ab + u \in \frac{R}{U}$
As a,b \in R by closure property ab \in u		
is closed with respect is multiplicati	ion	
ince R is associative w.r.to multiplic	cation,	
t is also associative w. r. to multipli		

Prepared by Dr.M.M.Shanmugapriya, Asst Prof, Department of Mathematics, KAHE Page 4/25

CLASS: II BSC MATHEMATICS	COURSE	NAME: Group theory I
COURSE CODE: 17MMU303	UNIT: V	BATCH-2017-2020
Let x,y,z $\in \frac{R}{U}$		
Let $x, y, z \in \frac{1}{U}$		
Then $x = a + u$		
v-b u		
y=b+u		
$z=c+u$ where $a,b,c \in R$		
now we P.T $x(y + z) = xy + xz$		
L.H.S = x(y+z)		
=(a + u) (b + u + c + u)		
=(a + u)[(b + c) + u]		
=(a(b+c)+u)		
=ab + ac + u		
=(ab+u)+(ac+u)		
-(ab + a) + (ac + a)		
=(a + u) (b + u) + (a + u) 9c + u)		
=xy + yz		
DHC		
=R.H.S		
Similarly we prove that $(y + z) x = yy$	x + zy	
If R is commutative then $\frac{R}{U}$ is also co	ommutative as seen he	low
	Similatari ve as seen de	
Consider $(a + u) (b + u) = ab + u$		
=ba + u (R is commutative ab=ba)		
=(b+u)(a+u)		
_		
$\frac{R}{U}$ is also commutative, if R is commu	utative	

CLASS: II BSC MATHEMATICS	COURSE	NAME: Group theory I
COURSE CODE: 17MMU303	UNIT: V	BATCH-2017-2020
If R has an unit element 1, then $\frac{R}{U}$ has	s unit element 1 + u	
Define a mapping $\phi: R \rightarrow \frac{R}{U}$		
By $\phi(a) = a = u$ for $a \in R$		
Let a,b \in R		
Then ϕ (a + b) = (a + b) + U		
=(a + u) + (b + u)		
$= \phi(a) + \phi(b)$		
And $\phi(ab) = ab + u$		
=(a + u) (b + u)		
Φ (a). ϕ (b)		
$\Rightarrow by def \phi is a homomorphism let y \in \frac{R}{U}$ then y= a + u for a $\in R$ and ϕ		
a is the pre image of Y in $\frac{R}{U}$		
φ is onto		
If $u \in U$ then $\phi(u) = u + U = u$ whih i	s the identity element	of $\frac{R}{U}$
The kernel of ϕ is exactly U		0
Hence the lemma		
<u>Remark</u> :		
The ring $\frac{R}{U}$ is known as quotient Ring	5	
U		

let R, R' be ring and ϕ a homomorphism of R onto R' with kernel U. then R' is isomorphic To $\frac{R}{U}$

Theorem 5.1

CLASS: II BSC MATHEMATICSCOURSE NAME: Group theory ICOURSE CODE: 17MMU303UNIT: VBATCH-2017-2020

Moreover there is a one to one correspondence between the set of ideals of R' and the set of ideals of R which contain U. this correspondence can be achieved by associating with an idel W' in R', the ideal W in R defined by

W = { $x \in R / \phi(x) \in W$ so defined $\frac{R}{W} \rightarrow R'$ by

 Ψ (u + a) = ϕ (a) ------ 1

Where u + a is an arbitrary element of $\frac{R}{U}$ and $a \in R$

Let us prove that the mapping is well defined (i.e) to show that U + a = U + b

 $\Rightarrow \psi(u+a) = \psi(u+b) \neq u+a, U+b \in \frac{R}{U} \text{ where } a, b \in R$

let us prove that the mapping is well defined

(i.e) to show that U + a = U + b

$$\Rightarrow \psi (u + a) = \psi (U + b) + u + a, U + b \in \frac{R}{U}$$
 where $a, b \in R$

Now assume that u + a = u + b

Since $a = 0 = a \in u + a \dots (o \in u)$

 $a \in u + a = u + b$ by an assumption

a = u + b for some $u \in U$

now ψ (u + a) = ϕ (a)

$$= \phi(u + b)$$
$$= \Phi(u) + \phi(b)$$
$$= 0' + \phi(b)$$

 $=\psi (u+b) by 1$

 ψ is well defined

 $\psi[(u+a) = (u+b)] = \psi(u+(a+b))$

$$= \phi(a + b)$$
$$= \Phi(a) + \phi(b)$$
$$= \psi (u + a) + \psi (u + b)$$
$$\psi[(u + a) = (u + b)] = \psi (u + ab)$$

CLASS: II BSC MATHEMATICS	COURSE NAME: Group theory I	
COURSE CODE: 17MMU303	UNIT: V BATCH-2017-2	2020
= φ(al	o)	
=Φ(a)	. φ(b)	
=ψ (u -	$(+ a) \psi (u + b)$	
Ψ is a homomorphism		
Given that ϕ is onto'.		
For every r' \in R' 7 ar \in R such that ϕ	$(\mathbf{r}) = \mathbf{r}'$	
$\Psi(\mathbf{u}+\mathbf{r})=\mathbf{r}^{\prime}$		
U + r is thepre image of r' under ψ		
Ψ is onto		
Let us now show that ψ is one to one		
N	that the transit of we non-alw II accesses of anti-	1 .

Now we prove the result by proving that the kernel of ψ namely U_{ψ} consist of only one element U which is the identity element of $\frac{R}{U}$

By definition of kernel we have,

 $U_{\psi} = \{ U + a \in \frac{R}{U} / \psi(u + a)^{=0} \text{ the zero element of } R' \}$

$$= \{ u + a \in \frac{\mathbf{R}}{\mathbf{U}} / \phi(a)^{=0'} \} \text{ by } 1$$

={u} since $\phi(a) = 0$ '

$$\Rightarrow$$
 u + a =U

 ψ is one to one

$$\psi: \frac{R}{U} \rightarrow R'$$
 is an onto isomorphism

$$\frac{\mathbf{R}}{\mathbf{U}} \sim \mathbf{R}^2$$

(i.e) R' ~ $\frac{R}{U}$ (isomorphism is an equivalence relation)

(ii) Given that $W = \{ x \in R / \varphi(x) W' \}$ and W' is an ideal of R'

<u>To prove</u>

Prepared by Dr.M.M.Shanmugapriya, Asst Prof, Department of Mathematics, KAHE Page 8/25

LASS: II BSC MATHEMATICS	COURS	E NAME: Group theory I
COURSE CODE: 17MMU303	UNIT: V	BATCH-2017-2020
U C W and W is an ideal of R		
Let x \in U		
$\Phi(\mathbf{x}) = 0' \in \mathbf{W}'$		
$\Rightarrow x \in W$ x \epsilon U => x \epsilon W		
U C W		
Now $\phi(0) = 0$ ' \in W' (W' is an ideal of	of R')	
$\Phi(0) \in W'$		
$0 \in W W$ is an non empty subset of	f R	
Let $x, y \in W$,		
$\Phi(\mathbf{x}) \in \mathbf{W}', \Phi(\mathbf{y}) \in \mathbf{W}'$		
$\Phi(x + y) = \Phi(x) + \Phi(y) \in W'$ (W' is	closed under additio	n)
$\Rightarrow x + y \in W \text{ whenever } x, y \in W$ let $x \in W$		
$\Phi(\mathbf{x}) \in \mathbf{w}'$		
Now $\Phi(-x) = -\Phi(x) \in W'$		
$\Phi(-\mathbf{x}) \in \mathbf{W}'$		
$\Rightarrow -x \in W' \text{ whenever } x \in W$ Then by a lemma W is a subgroup of	f R under addition	
Next we prove that W is an ideal of I	R let $r \in R$ and $x \in W$	
$\Phi(\mathbf{r}) \in \mathbf{R}'$ and $\Phi(\mathbf{x}) \in \mathbf{W}' \dots \mathbf{x} \in \mathbf{R}$		
Xr and $rx \in R$ (R is closed under mul	tiplication)	
$\Phi(\mathbf{xr}) = \Phi(\mathbf{x}). \ \Phi(\mathbf{r}) \in \mathbf{W}'$ (W' is an id	eal of R')	
xr ε W		
similarly we can prove that		
rx ∈ W v r ∈ W , x ∈ W		

LASS: II BSC MATHEMATICS	COURSE	NAME: Group theory I
COURSE CODE: 17MMU303	UNIT: V	BATCH-2017-2020
V is an ideal of R containing U		
i.e) inverse image of an ideal W' of	R' is also an ideal W of	of R containing U
Conversely assume that w is an idea	l of R and we prove that	at w' is an ideal of R'
Define W'={ x' $\in $ R'/ x'= $\phi(y)$, y $\in $ W	/ }	<u>_</u>
Now $0 \in W \phi(0) = 0$ ' $\in W$ '		
V' is a non empty subset of R'		
Let $x1', x2' \in W'$		
$x_1' = \phi(y_1)$		
$2' = \phi(y_2)$		
1, y₂€ W		
$1' + x2' = \phi(y_1) + \phi(y_2)$		
$= \phi(y_1+y_2)$		
w' since $y_1+y_2 \in w$	YY	
hus $x_1' + x_2' \in W'$		
hen $x' = \phi(y), y \in w$		
y ∈ w		
х'= - ф(у)		
$\phi(-y) \in w' \dots (-y \in w)$		
$x' \in w'$ whenever $x' \in w'$		

Then by lemma w' is a subgroup of R' under addition

ASS: II BSC MATHEMATICS OURSE CODE: 17MMU303	COURSET	NAME: Group theory I
	UNIT: V	BATCH-2017-2020
et x' \in w, r' \in R'		
et $r \in R$, $\phi(r)=r'$		
$\dot{y} = \phi(y), y \in w$		
$(yr)=\phi(y).\phi(x)$		
۲'r'		
ϵ w as w is an ideal of R		
(yr) € w'		
$r' \in W'$		
milarly we can prove that $r'x' \in w'$		
' is an ideal of R'		
ext we prove that the ideal w of R is	unique	
t T be another ideal of R		
$= \{ y \in \mathbb{R}/\phi(y) \in \mathbf{w'} \}$		
e have to prove that W= T		
et y e w		
(y) ϵ w' (by def of W)		
ε T (by def of T)		
′СТ		
et t \in T		
(t) ∈ w'		

CLASS: II BSC MATHEMATICS COURSE CODE: 17MMU303 UNIT: V

COURSE NAME: Group theory I V BATCH-2017-2020

 $t\in w$

T C W

 $\Rightarrow W = T$

Thus W is unique

Thus there is a one to one correspondence between the ideals of R' and the ideals of R containing U

(iii) Now we define a mapping $F : R \rightarrow \frac{R}{W}$

By $F(a) = W' + \phi(a)$, $a \in R$

Since ϕ is onto, for every a' $\in \mathbb{R}$ ' 7 an element a $\in \mathbb{R}$ s.t $\phi(a) = a'$

Now W' + $\phi(a) = W' + a'$

= F9a)

A is the pre image of w' + $\phi(a)$

F is onto

Let $x, y \in R$

$$F(x + y) = W' + \varphi(x + y)$$

 $=W' + \phi(x) + \phi(y)$

 $==W' + \phi(x)W' + \phi(y)$

 $=F(x) + F(y) + x, y \in R$

We shall show that the kernel of F namely K_F is W

Assume that L is the kernel of F and we prove that W = L

Now by def L = { $x \in R / F(x) = w'$ }

Prepared by Dr.M.M.Shanmugapriya, Asst Prof, Department of Mathematics, KAHE Page 12/25

CLASS: II BSC MATHEMATICS	COURSE	NAME: Group theory I
COURSE CODE: 17MMU303	UNIT: V	BATCH-2017-2020
Let $x \in L \dots F(x) = w'$		
$w' + \phi(x) = w'$		
$\phi(\mathbf{x}) \in \mathbf{w}'$		
X€W		
LCW		
Let $x \in W \dots \varphi(x) \in w'$		
$w' + \phi(x) = w'$		
$F(\mathbf{x}) = \mathbf{w}'$		
x ε L		
WCL		
Hence $w = L$		
The kernel of F is W and is unique		
F is a homo of R onto $\frac{R'}{W'}$ with kerne	el W	
Then by a theorem (2.7.1) $\frac{R}{W}$ is isom	to $\frac{R'}{W'}$	
$\frac{\mathbf{R}}{\mathbf{W}} \sim \frac{\mathbf{R}'}{\mathbf{W}'}$		

Lemma 5.2

Let R be a commutative ring with unit element whose only ideas are $\{0\}$ and R itself ,then R is a field

Proof

Prepared by Dr.M.M.Shanmugapriya, Asst Prof, Department of Mathematics, KAHE Page 13/25

LASS: II BSC MATHEMATICS COURSE CODE: 17MMU303	COURSE NAME: Group theory I UNIT: V BATCH-2017-2020
In order to prove this result, it is enou	ugh if we prove that $\mathbf{v} a \neq 0 \in \mathbb{R} \neq a b \neq 0 \in \mathbb{R}$ s.t
ab = 1	
Let $a \neq 0 \in \mathbb{R}$	
Consider the set $Ra = \{ xa / x \in R \}$	
We claim that Ra is an ideal of R	
Since $0 = 0.a \in Ra$	
Ra is a non empty subset of R	
Let u,v ∈ Ra	
Then $u = x$ a and $v = x2a$ for some x	$(1, x2 \in \mathbb{R})$
Now $u - v = x1a - x2a$	
= (x1-x2)a	
€[x1-x2 € Ra]	
Ra is a subgroup of R under addition	
Let $r \in R$ let $u = xa$	
Then consider $ru = r(xa) = (rx) a \in Ra$	$a(rx \in R)$
Similarly we can prove that ur ϵ Ra	
By deff Ra is an ideal of R	
From the given hypothesis it follows	that $Ra = \{ 0 \}$ or $Ra = R$
(i.e) every multiply of R is a multiple	e of a by some element of R
There exist an element $b \neq 0$ s.T ab=	

Prepared by Dr.M.M.Shanmugapriya, Asst Prof, Department of Mathematics, KAHE Page 14/25

COURSE NAME: Group theory I UNIT: V BATCH-2017-2020

R is a field

Definition

An ideal $M \neq R$ in a ring R is said to be a maximal ideal of R, if whenever u is an ideal of R such that M C U C R then either R = U or M = U

In otherwords, an ideal of R is a maximal ideal, if it is impossible to squeeze an ideal between it and full ring.

NOTE

- i. An ring need not have a maximal ideal
- ii. Ring in the unit element has maximal ideals

Examples

1) Let R be the ring of integers and U be an ideal of R. since U is a subgroup of R under addition from group theory (eg subgroup of even integers₀) we know that U consists of all multiples of a fixed integer say n_0 (i.e) $u = (n_0)$ if P is a prime no we claim that p = (p)is a maximal ideal of R

Proof

If U is an ideal of R and U) R then $U = (n_0)$ for some integer n_0

Since $p \in P \cap U$, $p=m n_0$ for some integer m

since p is a prime no,

 $p = m n_0 \implies n_0 = 1 \text{ or } n_0 = p$

if $n_0 = 1$ then u = (p) = p

U = P

If $n_0 = 1$ then $1 \in U$

Let $r \in R$, then r = 1. $r \in U$ for all $r \in R$

CLASS: II BSC MATHEMATICS COURSE CODE: 17MMU303

COURSE NAME: Group theory I UNIT: V BATCH-2017-2020

[U is an ideal of R]

R <u>C </u>U

Since u is an ideal other than R (or) P itself between them

P is a maximal ideal of R

2) Let R be the ring of all real valued continous functions on the closed unit interval Let M = { $f(x) \in R / f(u2)=0$ } M is certainly an ideal of R. then M is a maximal ideal of R

Proof

If there is an ideal U of R such that m c u and m \neq u, then there is a function $g(x) \in u$ and $g(x) \in m$

Since $g(x) \in m$, $g(\frac{1}{2}) = \alpha \neq 0$

Let $h(x) = g(x) - \alpha$

Now
$$h(\frac{1}{2}) = g(\frac{1}{2}) - 0$$

$$= \alpha - \alpha$$

= 0

 $h(x) \in m c u (i.e) h(x) \in u$

 $\alpha = g(x) - h(x) \in u \dots [u \text{ is an ideal of } r \text{ so a subgroup of } r]$

now $1 = \alpha \alpha^{-1} \epsilon u$

since $\alpha^{-1} = \frac{1}{\alpha}$

 $=\frac{1}{g(x)-h(x)} \in \mathbb{R} \dots \alpha^{-1} \text{ is continuous and } u \text{ is an ideal of } \mathbb{R}$

Thus for any $t(x) \in R$ we have

Prepared by Dr.M.M.Shanmugapriya, Asst Prof, Department of Mathematics, KAHE Page 16/25

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: II BSC MATHEMATICSCOURSE NAME: Group theory ICOURSE CODE: 17MMU303UNIT: VBATCH-2017-2020

 $t(x) = 1.t(x) \in u \dots [u \text{ is an ideal of } R]$

R <u>C</u> U

But U C R [u is an ideal of R]

U=R

Thus m is a maximal ideal of R

Theorem 5.2

If R is a commutative ring with unit element and m is an ideal of R then m is a maximal ideal of R iff $\frac{R}{M}$ is a field

Proof

Given that m is an ideal of R

Assume that $\frac{R}{M}$ is a field

We shall P.T m is a maximal field of R

Since $R/_{M}$ is a field , its only ideals are {0} and $R/_{M}$

Then by theorem 93.4.1) there I a one to one correspondence between the set of ideals of $R/_M$ and the set of ideals of R which contain m. the ideal M of R corresponds to the ideal {0} of $R/_M$ whereas the ideal R of R corresponds to the ideal $R/_M$ of $R/_M$ in this one to one correspondence. Thus there is no ideal between m and R other than these two

Hence m is a maximal ideal of R

Conversely assume that m is a maximal ideal of R

Then by the correspondence mentioned above R/M has only {0} and itself an ideals. Further

CLASS: II BSC MATHEMATICSCOURSE NAME: Group theory ICOURSE CODE: 17MMU303UNIT: VBATCH-2017-2020

since R is a commutative ring with unit element hen by lemma 3.5.1, $\frac{R}{M}$ is a field.

Definition .

If all ideals of a ring R are finitely generated then R is called a Noetherian ring.

Theroem 5.3

A commutative ring with identity is Noetherian if and only if given any ascending chain of ideals $I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq \cdots$, there exists an m such that $I_m = I_{m+i}$ for all $i \ge 0$.

Proof.

Let R be Noetherian. Since $\{I_n\}_{n=1}^{\infty}$ is an ascending chain, I =

 $\bigcup_{n=1}^{\infty} I_n$ is an ideal of R. Hence we can find $a_1, a_2, \ldots, a_g \in I$ such that $I = (a_1, a_2, \ldots, a_g)$. It is easy to see that there is an m such that $a_i \in I_m$ for all $i = 1, 2, \ldots, g$. Hence $I \subseteq I_m$ which implies that $I_m = I_{m+i}$ for all $i \ge 0$.

Conversely let every ascending chain of ideals be stationary. Let I be an ideal of R which is not finitely generated. Then I is nonzero and I < R.

Inductively, we can find $a_1, a_2, \ldots \in I$ such that $I_n = (a_1, a_2, \ldots, a_n)$ and the chain $I_n, n = 1, 2, \ldots$. is not stationary. This is a contradiction. Hence I is finitely generated.

THE FIELD OF QUOTIENTS OF AN INTEGRAL DOMAIN

Definition

A ring R can be imbedded in a ring R' if there is an isomorphism of R into R'.

If R and R' have unit elements 1 and 1' we insist in addition that this isomorphism takes 1 and 1'

R' is called an over ring or extension of R . if R can be imbedded in r'

Definition

Prepared by Dr.M.M.Shanmugapriya, Asst Prof, Department of Mathematics, KAHE Page 18/25

CLASS: II BSC MATHEMATICSCOURSE NAME: Group theory ICOURSE CODE: 17MMU303UNIT: VBATCH-2017-2020

Let R be an integral domain. A nonzero element $a \in R$ is called irreducible if it is not a unit and whenever a = bc then either b or c is a unit. We say a is a prime if (a) is a prime ideal.

Theorem 5.4

Every integral domain can be imbedded in a field

<u>Proof</u>

let d be an integral domain

Let m_0 be the set of all ordered pairs(a,b) where $a, b \in D$ and $b \neq 0$ [consider (a,b) as $\frac{a}{b}$]

In m_o we define a relation '~' as follows

 $(a,b) \sim (c,d)$ iff ad = bc -----1

We claim that this is an equivalence reletion on m_o

Let (a,b) , (c,d) , (e,f) ε m_o

Since ab= ba

We can write $(a,b) \sim (a,b)$

(i.e) reflexivity is satisfied

Now let us assume that $(a,b) \sim (c,d)$

Then by the definition ad=bc

Cb=da (the ring is commutative0

 \Rightarrow (c,d) ~ (a,b)

Summary is true

Let $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: II BSC MATHEMATICSCOURSE NAME: Group theory ICOURSE CODE: 17MMU303UNIT: VBATCH-2017-2020

(ie) ad= bc and cf = de

$$a = \frac{bc}{d}$$
 and $f = \frac{de}{c}$

now consider af $= \frac{bc}{d} \cdot \frac{de}{c}$

(i.e) af = be

(i.e) (a,b) ~ (e,f)

(i.e) transitivity is true

Hence the relation '~' defined above is an equivalence relation on m_0

Let [a,b] be the equivalence class of (a,b) in M_0

Let F be the set of all such equivalence classes [a,b] where a, b \in D and b \neq 0

We shall prove that F is a field w.r.to two operations addition and multiplication defined below

[a,b] + [c,d] = [ad + bc + bd]

[a,b] . [c,d] = [ac,bd]

Since D is an integral domain and both $d \neq 0$ and $b \neq 0$

We have $bd \neq 0$

 $[ad + bc, bd] \in F$ and

 $[ac,bd] \in F$

We now P.T the addition defined above is well defined

(I.e) if [a,b] = [a', b']

$$[c,d] = [c',d']$$

Then we have to prove that

CLASS: II BSC MATHEMATICS	COURS	E NAME: Group theory I
COURSE CODE: 17MMU303	UNIT: V	BATCH-2017-2020
[a,b] + [c,d] = [a',b'] + [c',d']		
To p.T		
[ad + bc, bd] = (a'd' + b'c', b'd']		
(i.e) to P.T		
(ad +bc)b'd' = (a'd' + b'c' + bd		
Since [a,b] =[a'b']		
We have $\frac{a}{b} = \frac{a'}{b'} = ab' = a'b$		
Similarly $[c,d] = [c',d'] \frac{c}{d} = \frac{c'}{d'} \Rightarrow cd$	l' = c'd	
Now consider		
(ad + bc)b'd' = ad b'd + bcb'd'		
=ab'dd' + bb'cd'		
=ba'dd' + bbb'dc'		
=bd(a'd'=b'c')		

Addition defined above well defined

[0,b] acts as a zero element for this addition and [-a,b] is the additive inverse of [a,b]. then we can verify that F is an abelian group under the addition defined above.we can also verify that the non-zero elements of F namely the elements [a,b], $a \neq 0$ form an abelian group under multiplication

Here [d,d] acts as the unit element and [c,d] $^{-1} = [d,e] \{ c \neq 0, [d,c] \text{ is in } F \}$

The distributive laws also hold in F

F is a field

Prepared by Dr.M.M.Shanmugapriya, Asst Prof, Department of Mathematics, KAHE Page 21/25

LASS: II BSC MATHEMATICS	COURS	E NAME: Group theory I
COURSE CODE: 17MMU303	UNIT: V	BATCH-2017-2020
Ve have to s.t D can be imbedded in	F for $x \neq 0$, $y \neq 0$ in	D, we note that
ax,x] =[ay,y]		
Let us denote [ax,x] by [a,1]		
Define ϕ : D -> F by $\phi(a) = [a, 1] + a$	ι є D	
Let a,b ∈ D		
Then $\phi(a + b) = [a + b, 1]$		
=[a,1] + [b,1]		
$=\phi(a) + \phi(b)$		
Φ is homomorphism of D into F		
Let $y \in F$ then $Y=[a,1] \in F$, $a \in D$ and c	þ(a)=[a,1]=y	
A is the pre image of Y under ϕ		
Then by def ϕ is onto.		
Now $\phi(a) = \phi(b)$	\mathbf{V}	
\Rightarrow [a,1] =[b,1]		
\Rightarrow a=b		
φ is onto		
þ is an homomorphism of D into F		
F is the homomorphic image of D ur	ıder φ	
If 1 is the unit element of D then $\phi(1)$) ¢ F	
• ~		

Let a' be any element of F then

 $\phi(a) = a'$ for some $a \in D$

Prepared by Dr.M.M.Shanmugapriya, Asst Prof, Department of Mathematics, KAHE Page 22/25

CLASS: II BSC MATHEMATICS	COURSE NAME: Group theory I		
COURSE CODE: 17MMU303	UNIT: V	BATCH-2017-2020	
now consider $\phi(1).a' = \phi(1).\phi(a)$			
= φ(1.a)			
=ф(а)			
=a'			
Also a'. $\phi(1) = \phi(a)$. $\phi(1)$			
$= \phi(a.1)$			
$= \phi(a)$			
=a'			
$\phi(1)$ is the unit element of F			

thus every integral domain can be imbedded in a field

Definition

Let R be a commutative ring. An ideal P of R is said to be a prime ideal of R. If $ab \in P$, $ab \in R$ => $a \in P$ or $b \in P$

Theorem 5.5

Let R be a commutative ring and S an ideal of R then the ring of residue classes $\frac{R}{S}$ is an integral domain iff S is a prime ideal

Proof

Let R be a commutative ring and S an ideal of R.

Then $\frac{R}{S} = \{ S + a / a \in R \}$

Let S + a, s + b be any two elements of $\frac{R}{s}$

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: II BSC MATHEMATICS COURSE NAME: Group theory I COURSE CODE: 17MMU303 UNIT: V BATCH-2017-2020 Then ab $\in \mathbb{R}$

inen do Cix

 $\frac{R}{s}$ is also a commutative ring

Now let S be a prime ideal of R

Then we have to prove that $\frac{R}{s}$ is an integral domain

The zero element of $\frac{R}{s}$ is the residue class S itself

Let S + a, S + b $\epsilon \frac{R}{s}$

Then (s + a) (s + b) = s

- $\Rightarrow s + ab = s$
- \Rightarrow ab \in s
- \Rightarrow either a or b is in s ...(s is a prime ideal)
- \Rightarrow either s = a = s or s + b = s
- \Rightarrow either s +a or s + b is the zero element of $\frac{R}{s}$

```
\frac{R}{s} is without zero divisor
```

Since $\frac{R}{s}$ is a commutative ring without zero divisor, $\frac{R}{s}$ is a integral domain

Conversely, let $\frac{R}{S}$ be an integral domain then we have to P.T S is an prime ideal of R

Let a,b be any two element in r s.t ab \in s

We have $ab \in s$

- \Rightarrow s + ab = s
- $\Rightarrow (s+a)(s+b) = s$

 $\frac{R}{s}$ is an integral domain it is without zerp divisor

CLASS: II BSC MATHEMATICS COURSE CODE: 17MMU303

COURSE NAME: Group theory I UNIT: V BATCH-2017-2020

Either s + a = s or s + b = s

Either a ϵ s or b ϵ s

Then by def s is a prime ideal of R

IMPORTANT RESULTS.

Let R be an integral domain and a, $b \in R$. Then

- (1) a is a unit in R if and only if (a) = R.
- (2) a and b are associates if and only if (a) = (b)
- (3) a | b if and only if (b) \subset (a)
- (4) a is a proper divisor of b if and only if (b) < (a) < R.
- (5) a is irreducible if and only if (a) is maximal among proper principal ideals.

Definition

An integral domain R is called a factorization domain, abbreviated as FD, if every nonzero element of R can be expressed as a product of irreducible elements.

Definition

. A ring R is said to satisfy ascending chain condition

(acc) on principal ideals if for any chain $(a_1) \subset (a_2) \subset ...$ of principal ideals of R, there exists an n such that $(a_n) = (a_{n+i})$ for all i = 1, 2, 3, ...

CLASS: II BSC MATHEMATICS COURSE CODE: 17MMU303

COURSE NAME: Group theory I UNIT: V BATCH-2017-2020

POSSIBLE QUESTIONS:

Part-B(5X8 = 40 Marks)

Answer all the questions:

1. i) Define an ideal. Prove that the intersection of any two left ideals of a ring is again a

left ideal of the ring.

- 2. Prove that every integral domain can be imbedded into a field.
- 3. i) If U is an ideal of a ring R with unity and $1 \in U$, prove that U=R.

ii) If F is a field then prove that its only ideals are (0) and F itself

- 4. If R is a commutative ring with unit element and M is an ideal of R, then prove that M is a maximal ideal of R iff R | M is a field.
- 5. Prove that a commutative ring without zero divisor can be imbedded in a field
- 6. Let R be a commutative ring and S an ideal of R. Then prove that the ring of residue classes R/S is an integral domain iff S is a prime ideal.
- 7. State and prove unique factorization theorem.
- 8. Prove that the ring of Gaussian integers is a Euclidean ring.
- 9. i) Prove that a Euclidian ring possesses a unit elementii) Prove that every field is a Euclidean ring.
- 10. Prove that every euclidean ring is a principal ideal ring.

	8MMU302	a.	$V = \{e, a, b, c\} $ is th < a > < c >	the Klein 4 group, $V \neq b. < b > d.$ all the above
Karpagam Academy of Higher Educa Coimbatore-21 Department of Mathematics Third Semester- I Internal test	tion		U(15), 2 = 1	b. 2 d. 4
Group Theory I Date :□□.07.2019(FN) Tin	ne: 2 hours	8. Su	ppose $g \in G$ h < g >	has finite order in G. Then
	Marks: 50	a. c.	≠ -	b. < d. =
Answer ALL questions PART A ($20 \times 1 = 20$ marks)		f(: a.	x) = x^{-1} for all $x \in not$ an one to one	
1. On \mathbb{Z}^+ , define $a * b = \frac{a}{b}$ then $(\mathbb{Z}^+, *)$ is r since a. * is not closed	ot a group		a bijective $(\mathbb{Z}, +)$, number o	d. an one to one but not onto f elements with finite order is
b. identity element does not exist	l the above	a. c.2	0	b. 1 d.3
 The set {1, −1, <i>i</i>, −<i>i</i>} is a group under mul What is the probability to select an eler own inverse? a. 1 	nent to has		$ = - in Z_{80}$	b. 7 d. 30
c. $\frac{1}{4}$	b. $\frac{1}{2}$ d. $\frac{1}{3}$	12. If	$a \in Z_{8000000}$ with	
3. Number of idempotent elements in a g a. 0	b. 1		3000000 neither a nor b	b. 5000000 d. both a and b
c. <i>G</i>	d. <i>n</i>		= < 1 >	b. < 2 >
4. $ U(101) =$ a. 101	b. 100		< 0 >	d. all the above
c. neither a nor b	d. 99			up with $n > 1$ elements. Then
5. $Z_4 =$	b. < 1 >		mber of element exactly one	s of <i>G</i> to be non generator is b. atmost one
a. < 0 > c. < 2 > d. b	b. < 1 > oth b and c		atleast one	d. 0

5. The set of integers \mathbb{Z} with the binary operation "*"	15.
defined as $a * b = a + b + 1$ for $a, b \in \mathbb{Z}$, is a group.	
The identity element of this group is	
a. a b. b	
c. 1 d1	

16.	In the group (G , .), the value of (a^{-1}	$(1b)^{-1}$ is
	a. ab^{-1}	b. <i>ba</i> ⁻¹
	c. $b^{-1}a$	d. all the above

- 17. In the group $G = \{2, 4, 6, 8\}$ under multiplication modulo 10, the identity element is a. 2 b. 4 c. 6 d. 8
- 18. Generator of a group $\{1, -1, i, -i\}$ under multiplication is a. 1 b. -i c. both a and b d. neither a nor b
- 19. Consider the group (Z₁₀₀₀₀₀, ⊕₁₀₀₀₀₀). Number of elements with order 1 is

 a. 1000
 b. 100
 c. 10
 d. 1
- 20. Consider the group $(Z_5 \{0\}, \odot_5)$. Number of elements with order 4 is a. 1 b. 2 c. 3 d. 4

Part B ($3 \times 2 = 6$ marks)

- 21. Determine all the subgroups of Z_{20} .
- 22. Prove that number of idempotent element in a group is only one.
- 23. Find the orders of all elements of Z_{10}

Part C ($3 \times 8 = 24$ marks)

24. a) Prove that the set of all 2×2 matrices with entries from \mathbb{R} and determinant ± 1 is a group under matrix multiplication

(OR)

- b) The integers 5 and 15 are among a collection of 12 integers that form a group under multiplication modulo 56. List all 12.
- 25. a) Prove that the set of all 3×3 matrices with real entries of the form

$$\left[\begin{array}{rrrr}1&a&b\\0&1&c\\0&0&1\end{array}\right]$$

is a group under multiplication defined by

$\left[\begin{array}{rrrr}1&a\\0&1\\0&0\end{array}\right]$	$\begin{bmatrix} b \\ c \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	a' 1 0	$\begin{bmatrix} b' \\ c' \\ 1 \end{bmatrix} =$	$\left[\begin{array}{c}1\\0\\0\end{array}\right]$	a' + a 1 0	$\begin{bmatrix} b' + ac' + b \\ c' + c \\ 1 \end{bmatrix}$
--	---	--------------	---	---	------------------	---

(OR)

b) Construct the Cayley table for U(25). Find two elements $a, b \in U(25)$ such that

< a > = < b > = U(25)

26. a) In any group *G*, prove that each element has a unique inverse. Also prove that $(g^{-1})^{-1} = g$, for all $g \in G$

(OR)

b) State and prove one-step subgroup test.

Reg. No 18MMU302 Karpagam Academy of Higher Education Coimbatore-21 Department of Mathematics III Semester- II Internal test Group theory I	5. The set of all positive rational numbers forms an abelian group under the binary operation defined by $a \star b = \frac{ab}{2}$. Identity of this group is —— a. 1 b. 2 c. 0 d. neither a nor b 6. Minimum nymber of elements in a gruop is —— a. 1 b. 2 c. 0 d. neither a nor b
Date:28.08.19(AN)Time: 2 hoursClass: II B.Sc MathematicsMax Marks: 50	7. If <i>H</i> be any subgroup of a group <i>G</i> and $h \in H$, then a. $Hh \neq H = hH$ c. $Hh \neq H \neq hH$ b. $Hh = H \neq hH$ d. $Hh = H = hH$
Answer ALL questions PART - A (20 × 1 = 20 marks)1. If G is a cyclic group of order 24 and $a^{2002} = a^n$ where $a \in G$ and $0 < n < 24$ Then the value of n is $\overline{a.4}$ b. 6 c. 8 $c.8$ d. 102. $\{-3n : n \in \mathbb{Z}\}$ is an abelian group under a. subtraction b. division c. multiplication d. addition3. The set $G = \{\cdots, 3^{-2}, 3^{-1}, 1, 3^1, 3^2, \cdots\}$ under multiplication is a a. group b. cyclic c. abelian4. One of the element of Quaternion group is a. $\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$ b. $\begin{bmatrix} i & 0\\ 0 & -i \end{bmatrix}$	8. The number of generators of the cyclic group <i>G</i> of order 8 is <u>—</u> a. 2 b. 4 c. 6 d. 8 9. Every cyclic group is <u>—</u> a. permutation group b. non abelian group c. abelian group d. all the above 10. A non commutative group has atleast <u>—</u> elements a. 0 b. 1 c. 6 d. 7 11. Let <i>G</i> be the additive group of integers and let $H = \{\dots, -6, -3, 0, 3, 6, \dots\}$. Then number of distinct right cosets is <u>—</u> a. 0 b. 1 c. 2 d. 3

12.	Let <i>G</i> be a group and let <i>H</i> be a subgroup of <i>G</i> . Let $h \in H$. Then number distinct left cosets of <i>H</i> in <i>G</i> generated by <i>h</i> is ——-		
	a. 0 c. 2	b. 1 d. 3	
13.	Any two left cosets of a subgroup a. identical b. disjoint c. neither a nor b	o are ——- d. both a and b	
14.	Consider (\mathbb{Z}_{12}, \oplus). Then $H = \{0, 4\}$,8} is a subgroup	
	of <i>G</i> . Now 5 + <i>H</i> = —— a. {0,4,8}	b. {1,5,9}	
	c. {2, 6, 10}	d. both a and b	
15.	Let <i>G</i> be a group and let <i>H</i> be a Then for $a \in G$, $\{ha h \in H\} =$	a subgroup of G.	
	a. <i>Ha</i>	b. <i>aH</i>	
	c. neither a nor b	d. both a and b	
16.	Kelin 4 group is ——		
	a. cyclic	b. non cyclic	
	c. abelian	d. both b and c	
17.	Example for kelin 4 group is —	with ⊙ ₈	
	a. {0, 1, 2, 3} c. {1, 3, 5, 7}	b. {1,2,3,4} d. {1,3,5,8}	
18.	Number of subgroups of Q_8 is —		
	a. 1	b. 5	
	c. 4	d. 6	
19.	$Z(Q_8) =$	\mathbf{b} $(i = i)$	
	a. {1, -1}	b. { <i>i</i> , − <i>i</i> }	

			ν.	(1)	•	Э.
c.	both a and b	d.	neither a	no	r l	b

- 20. Let $G = \{I_2, R, R^2, R^3, H, D, V, T\}$ with usual matrix mulipilication. Then Z(G) = --
 - a. {*I*2, *R* b. {*R*} c. $\{R^2\}$ d. $\{I_2, R^2\}$

Part B-($3 \times 2 = 6$ marks)

- 21. List all generators of \mathbb{Z}_{30}
- 22. Give an example of a noncyclic group, all of whose proper subgroups are cyclic
- 23. Let *a* and *b* belong to a group. If |a| and |b| are relatively prime, show that $\langle a \rangle \cap \langle b \rangle = \{e\}$.

Part C-($3 \times 8 = 24$ marks)

a) List the cyclic subgroups of U(30)24.

(OR)

- b) Prove that $H = \left\{ \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} : n \in \mathbb{Z} \right\}$ is a cyclic subgroup of $GL(2, \mathbb{R})$
- 25. a) Show that number of elements x of group Gsuch that $x^3 = e$ is odd

(OR)

- b) Prove that subgroup of a cyclic group is cyclic
- a) Prove that for any group element a, $|a| = \langle a \rangle$ 26.

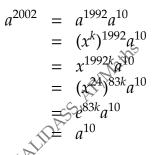
(OR)

b) State and prove fundamental theorem of cyclic groups

Karpagam Academy of Higher Education Coimbatore-21 Department of Mathematics Third Semester- I Internal test Group theory I

1. If G is a cyclic group of order 24 and $a^{2002} = a^n$ where $a \in G$ and 0 < n < 24 Then the value of n is ______a. 4c. 8b. 6d. 10

Answer All elements of $G = \langle x \rangle$ is of the form x^k where $k \in \{0, 1, ..., 23\}$. Then for $a \in G$, $a = x^k$ for some $k \in \{0, 1, ..., 23\}$.



2. $\{-3n : n \in \mathbb{Z}\}$ is an abelian group under a. subtraction by division c. multiplication d. addition

Answer: d. addition

3. The set $G = \{\cdots, 3^{-2}, 3^{-1}, 1, 3^1, 3^2, \cdots\}$ under multiplication is a a. group b. cyclic c. abelian d. all the above

Answer: *G* is an cyclic group. Also, every cylic group is

4. One of the element of Quaternion group is —

abelain. Therefore, d is correct choice.

a.	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	~	0	b. $\begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$
c.	$\left[\begin{array}{cc} 0 & i \\ i & 0 \end{array}\right]$			d. all the above

Answer: d. all the above

5. The set of all positive rational numbers forms an abelian group under the binary operation defined by $a \star b = \frac{ab}{2}$. Identity of this group is — a. 1 b. 2 c. 0 d. neither a nor b

Answer:

6. Minimum number of elements in a gruop is ——
a. 1 b. 2
c. 0 d. both a and b

Answer: a. 1

7. If *H* be any subgroup of a group *G* and $h \in H$, then a. $Hh \neq H = hH$ b. $Hh = H \neq hH$ c. $Hh \neq H \neq hH$ b. $Hh = H \neq hH$ d. Hh = H = hH

Answer: d. Hh = H = hH

8. The number of generators of the cyclic group *G* of order 8 is ______ a. 2 b. 4 c. 6 d. 8

Answer: Let *G* be a cyclic group generated by $\langle a \rangle$ of order *n* then $G = \langle a^k \rangle$ iff gcd(k, n) = 1. Let $a \in G$ be a generator of *G*. Then generators of *G* are a, a^3, a^5, a^7 . Therefore correct choice is *b*.4

9. Every cyclic group is —a. permutation groupc. abelian groupd. all the above

Answer: c. abelian

- 10. A non commutative group has atleast —— elements
 - a. 0 b. 1 c. 6 d. 7

Answer: c. 6

11. Let *G* be the additive group of integers and let $H = \{\cdots, -6, -3, 0, 3, 6, \cdots\}$. Then number of distinct right cosets is a. 0 b. 1 c. 2 b. 1 d. 3

Answer:

$$\begin{array}{rcl} 0H &=& 0+H \\ &=& \{\cdots, -6, -3, 0, 3, 6, \cdots\} \\ 1H &=& 1+H \\ &=& \{\cdots, -5, -2, 1, 4, 7, \cdots\} \\ 2H &=& 2+H \\ &=& \{\cdots, -4, -1, 2, 5, 8, \cdots\} \end{array}$$

aths

Hence $[\mathbb{Z}:H] = 3$

12. Let *G* be a group and let *H* be a subgroup of *G*. Let $h \in H$. Then number distinct left cosets of *H* in *G* generated by h is ______a. 0 b. 1 c. 2 b. 1

Answer Given $h \in H$. Then

$$hH = \{ha : a \in H\}$$
$$= H$$

Hence [G:H] = 1

- 13. Any two left cosets of a subgroup are ——
 - a. identical
 - b. disjoint
 - c. either a or b

d. both a and b

Answer Let *G* be the additive group of integers and let $H = \{\dots, -6, -3, 0, 3, 6, \dots\}$. Consider 0*H* and 1*H*. They are not disjoint. Consider 0*H* and 3*H*. They are identical. Hence any two left cosets of a subgroup are either identical or disjoint.

	E. Consider (\mathbb{Z}_{12} , ⊕). Then $H = \{0, 4, 8\}$ is a subgroup of G . Now 5 + $H =$			
a. $\{0, 4, 8\}$ c. $\{2, 6, 10\}$	b. {1,5,9} d. both a and b			
15. Let <i>G</i> be a group and let <i>H</i> be a sub-	bgroup of G. Then for			
$a \in G$, { $ha h \in H$ } = a. Ha c. neither a nor b	b. <i>aH</i> d. both a and b			
Answer a. Ha				
 16. Kelin 4 group is —— a. cyclic c. abelian 	b. non cyclic d. both b and c			
Answer d. both b and c	1 ⁶			
 17. Example for kelin 4 group is	with \odot_8 b. {1,2,3,4} d. {1,3,5,8}			
Answer				
18. Number of subgroups of Q_8 is — a. 1 c. 4	– b. 5 d. 6			
Answer				
19. $Z(Q_8) =$ a. $\{1, -1\}$ c. both a and b	b. $\{i, -i\}$ d. neither a nor b			
Answer				
20. Let $G = \{I_2, R, R^2, R^3, H, D, V, T\}$ wit ilication. Then $Z(G) =$ a. $\{I2, R$ c. $\{R^2\}$	th usual matrix mulip- b. $\{R\}$ d. $\{I_2, R^2\}$			

Part B

21. List all generators of \mathbb{Z}_{30}

Answer: Let *G* be a cyclic group generated by $\langle a \rangle$ of order *n* then $G = \langle a^k \rangle$ iff gcd(k, n) = 1. Since 1 is a generator of \mathbb{Z}_{30} of order 30, $\mathbb{Z}_{30} = \langle a^k \rangle$ iff gcd(k, 30) = 1. Possible values for k = 1, 7, 11, 13, 17, 19, 23, 29. Hence generators of \mathbb{Z}_{30} are 1, 7, 11, 13, 17, 19, 23, 29

22. Give an example of a noncyclic group, all of whose proper subgroups are cyclic

Answer Consider the Klein-4 group, $V = \{e, a, b, c\}$. Subgroups of *V* are

$$\begin{cases}
e\} &= \langle e \rangle \\
e, a\} &= \langle a \rangle \\
e, b\} &= \langle b \rangle \\
e, c\} &= \langle c \rangle \\
x \in V^{S^{1}}
\end{cases}$$

and $V \neq < x >$ for all $x \in V$

23. Let *a* and *b* belong to a group. If |a| and |b| are relatively prime, show that $\langle a \rangle \cap \langle b \rangle = \{e\}$.

Answer Let |a| = n and |b| = m. Since $\langle a \rangle$ and $\langle b \rangle$ are subgroups, $e \in \langle a \rangle \cap \langle b \rangle$. Suppose $g \in \langle a \rangle \cap \langle b \rangle$. Then $g \in \langle a \rangle$ and $g = a^{k_1}$ for some $k_1 \in \mathbb{Z}$. Similarly, we have $g = b^{k_2}$ for some $k_2 \in \mathbb{Z}$. Let |g| = r. Then

$$g^r = e$$
$$(a^{k_1})^r = e$$
$$a^{rk_1} = e$$

This implies *r* divides *n*. Similarly, we have *r* divides *m*. That is, *r* common divisor of *n* and *m*. Since (n,m) = 1, r = 1. Hence |g| = 1. That is, g = e.

Part C

24. a) List the cyclic subgroups of U(30)

Answer All cyclic subgroups of U(30) are of the form $\langle a \rangle$ for $a \in U(30)$. We know that $U(30) = \{1, 7, 11, 13, 17, 19, 23, 29\}$. Therefore

 $\begin{array}{rcl} <1> &=& \{1\}\\ <7> &=& \{1,7,13,19\}\\ <11> &=& \{1,11\}\\ <13> &=& \{1,7,13,19\}\\ <17> &=& \{1,7,13,19\}\\ <17> &=& \{1,17,19,23\}\\ <19> &=& \{1,19\}\\ <23> &=& \{1,17,19,23\}\\ <29> &=& \{1,29\} \end{array}$

Therefore we have following distinct cyclic subgroups: < 1 >, < 7 >, < 17 >, < 11 >, < 29 >, < 19 > .

b) Prove that
$$H = \left\{ \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} : n \in \mathbb{Z} \right\}$$
 is a cyclic subgroup of $GL(2, \mathbb{R})$

25. a) Show that number of elements *x* of group *G* such that $x^3 = e$ is odd

Answer Let *T* be the set of all elements *x* in *G* such that $x^3 = e$. Since $e^3 = e, e \in T$. Then *T* is a nonemepty set. Let

$$S = T - \{e\}$$

Suppose $x \in S$. Then

$$\begin{array}{rcrcr} x^3 &=& e \\ (x^3)^{-1} &=& e^{-1} \\ &=& e \end{array}$$

Therefore, if $x \in S$, then its inverse $x^{-1} \in S$.

Let $x \in S$. Then

$$x^{3} = e$$

$$\Rightarrow xx^{2} = e$$

$$\Rightarrow x^{-1} = x^{2}$$

$$\Rightarrow x^{2} \in S$$

Suppose

$$x = x^{2}$$

$$\Rightarrow xx = x^{2}x$$

$$\Rightarrow x^{2} = x^{3}$$

$$\Rightarrow x^{2} = e$$

$$\Rightarrow \Leftarrow x^{2} \in S = T - \{e\}$$

Hence, if $x \in S$, then $x \neq x^{-1}$. Therefore, $S = \{x, x^{-1}, y, y^{-1}, \infty\}$. That is, every element of *S* can be paired with another element of *S*, so S has an even number of elements. Hence *T* has odd number of elements.

b) Prove that subgroup of a cyclic group is cyclic

26. a) Prove that for any group element a, $|a| = \langle a \rangle$

First we have to prove the following theorem

Theorem 1 Let G be a group, and let a belong to G. If a has finite order, say, n, then $\langle a \rangle = \{e, a, a^2, ..., a^{n-1}\}$ and $a^i = a^j$ if and only if n divides i - j.

Proof Suppose *a* has finite order. Let |a| = n. First we have to prove that $\langle a \rangle = \{e, a, a^2, \dots, a^{n-1}\}$.

Clearly $e, a, a^2, ..., a^{n-1}$ are the elements of $\langle a \rangle$. Therefore

 $\{e,a,a^2,\ldots,a^{n-1}\} \subset <a>$

Suppose that a^k is an arbitrary member of < a >. Suppose k = 0. Then there is nothing to prove. Let us assume that k > 0. Then either k < n or k = n or k > n.

Suppose k < n. Then $a^k \in \{e, a, a^2, \dots, a^{n-1}\}$. Suppose k = n. Then

$$a^{k} = a^{n} = e \in \{e, a, a^{2}, \dots, a^{n-1}\}$$

Suppose k > n. By the division algorithm, there exist integers q and r such that

$$k = qn + r \text{ with } 0 \le r < n$$

Then

$$a^{k} = a^{qn+r}$$

$$= a^{qn}a^{r}$$

$$= (a^{n})^{q}a^{r}$$

$$= ea^{r}$$

$$= a^{r}$$
Since $0 \le r < n, a^{r} \in \{e, a, a^{2}, \dots, a^{n-1}\}$ and hence $a^{k} \in \{e, a, a^{2}, \dots, a^{n-1}\}$.
Let us assume that $k < 0$.
By the division algorithm, there exist integers $q < 0$ and r such that

$$\hat{k} = qn + r \text{ with } 0 \le r < n$$

Then

$$a^{k} = a^{qn+r}$$

$$= a^{qn}a^{r}$$

$$= (a^{n})^{q}a^{r}$$

$$= ea^{r}$$

$$= a^{r}$$

Since $0 \le r < n, a^r \in \{e, a, a^2, ..., a^{n-1}\}$ and hence $a^k \in \{e, a, a^2, ..., a^{n-1}\}$. Therefore $a^k \in \{e, a, a^2, ..., a^{n-1}\}$ for all integers *k*. Hence $< a > \subset \{e, a, a^2, ..., a^{n-1}\}$. Therefore $< a > = \{e, a, a^2, ..., a^{n-1}\}$

Next we assume that
$$a^i = a^j$$
. Then
 $a^i(a^j)^{-1} = a^j(a^j)^{-1}$
 $a^i a^{-j} = e$
 $a^{i-j} = e$

Again by division algorithm there are integers *q* and *r* such that

.

.

$$i - j = qn + r$$
 with $0 \le r < n$

. Now

$$e = a^{i-j}$$
$$= a^{qn+i}$$
$$= a^r$$

Since *n* is the least positive integer such that $a^n = e$, we must have r = 0. That is, $i \neq j = nq$. Therefore n|i - j. Conversely, suppose $n|i \neq j$. Then

$$a^{i-j} = a^{nq}$$

$$= e$$

$$a^{i}(a^{-j}) = e$$

$$(a^{-j})^{-1} = a^{i}$$

$$a^{j} = a^{i}$$

Let |a| = n. By previous theorem,

$$< a >= \{e, a, a^2, \dots, a^{n-1}\}.$$

Hence |a| = | < a > |.

(OR)

b) State and prove fundamental theorem of cyclic groups

Statement Every subgroup of a cyclic group is cyclic. Moreover, if |a| = n, then the order of any subgroup of *a* is a divisor of *n*; and, for each positive divisor *k* of *n*, the group a has exactly one subgroup of order *k* namely, $\langle a^{\frac{n}{k}} \rangle$.