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Course Objectives
This course enables the students to learn

e group homomorphism, isomorphism, automorphism and its related properties.

Course Outcomes
On successful completion of the course, students will be able to:
1. Expertise on fundamental theorems of isomorphism.
Know about automorphism and its developments.
Understand the concept of internal and external direct product.
Acquire the knowledge on basic concepts of group actions and their applications.
Apply Sylow’s theorems to determine the structure of certain groups of small order.

Pl

UNIT I

Groups

Definition and Examples of Groups - Elementary Properties of Groups.
UNIT II

Finite Groups and Subgroups

Terminology and Notation - Subgroup Tests -Examples of Subgroups
UNIT I

Cyclic Groups

Properties of Cyclic Groups - Classification of Subgroups of Cyclic Groups
UNIT IV

Permutation Groups

Definition and Notation - Cycle Notation - Properties of Permutations
UNIT V

Isomorphisms

Definition and Examples- Cayley’s theorem - Properties of isomorphisms — Automorphisms
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Lecture
S.No | Duration Topics To Be Covered Support Materials
Hour
[ v =
1 1 Introduction S1: Ch 1, 29
2 1 Definition of group S1: Ch 2,40
3 1 Examples of groups S1: Ch 2, 41
4 1 Tutorial
5 1 Examples of groups - Contd S1: Ch 2,42
6 1 Examples of groups - Contd S1: Ch 2,42
7 1 Examples of groups - Contd S1: Ch 2, 42
8 1 Tutorial
9 1 Examples of groups -Contd S1: Ch 2,43
10 1 Problems on groups S1: Ch 2,44
11 1 Problems on groups - Contd S1: Ch 2, 45
12 1 Tutorial
13 1 Elementary properties of groups. S1: Ch 2, 46
14 1 Elementary properties of groups-Contd S1: Ch 2,47
15 1 Elementary properties of groups - Contd S1: Ch 2, 48-50
16 1 Tutorial
17 1 Elementary properties of groups - Contd S1: Ch 2, 48-50
18 1 Recapitulation and discussion of possible questions
Total number of hours planed for unit I 18 hours
1 1 Finite subgroups _
2 1 SubgroupsTerminology and Notation S1: Ch 3, 58
3 1 Tutorial
4 1 One step subgroup test S1: Ch 3, 59
5 1 Two step subgroup test S1: Ch 3, 59
6 1 Problems on subgroup tests S1: Ch 3, 60
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7 1 Tutorial

8 1 Problems on subgroup tests - Contd S1: Ch 3, 61

9 1 Problems on subgroup tests- Contd S1: Ch 3, 62

10 1 Finite subgroup test [S4,Ch2,33 |
11 1 Tutorial

12 1 Examples of Subgroups S1: Ch 3, 63

13 1 Examples of Subgroups - Contd S1: Ch 3, 64

14 1 Examples of Subgroups - Contd S1: Ch 3, 64

15 1 Tutorial

16 1 Theorems on center of a group S1: Ch 3, 65

17 1 Examples on center of a groups S1: Ch 3, 67

18 1 Problems on center of a group S1: Ch 3, 68-69
19 Tutorial

20 1 Recapitulation and discussion of possible questions

Total number of hours planed for unit II 20 hours

1 1 Introduction to cyclic groups S1,Ch 4,72
2 1 Theorems on cyclic groups S1, Ch 4,73
3 1 Tutorial

4 1 Theorems on f cyclic groups - Contd S1, Ch 4,73
5 1 Properties of cyclic groups S3, Ch 2,54
6 1 Properties of cyclic groups - Contd S1, Ch 4,75
7 1 Tutorial

8 1 Properties of cyclic groups - Contd S1, Ch 4,76
9 1 Theorems on classification of cyclic subgroups S1, Ch 4,77
10 1 Theorems on classification of cyclic subgroups- Contd S1,Ch 4,78
11 1 Tutorial

12 1 Theorems on classification of cyclic subgroups- Contd S1, Ch 4,79
13 1 Problems on cyclic subgroups S1, Ch 4,80
14 1 Problems on cyclic subgroups- Contd S1, Ch 4,80-81
15 1 Tutorial

16 1 Problems on cyclic subgroups - Contd S1, Ch 4,81
17 1 Problems on cyclic subgroups - Contd S1, Ch 4,81
18 1 Tutorial

19 1 Recapitulation and discussion of possible questions

Total number of hours ﬁlaned for unit IIT 19 hours

1 1 Permutation groups Definition and notation S1, Chs, 95

2 1 Examples on permutation groups S1, Ch5, 96

3 1 Tutorial

4 1 Examples on permutation groups - Contd S1, Chs, 97

5 1 Examples on permutation groups - Contd S1, ChS, 98-99
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6 1 Theorems on cycle notation S1, Ch5, 100-101
7 1 Tutorial
8 1 Theorems on cycle notation - Contd S1, Ch5, 102-103
9 1 Theorems on properties of permutation groups S1, Ch5, 104-106
10 1 Theorems on properties of permutation groups - Contd S1, Chs, 107
11 1 Tutorial
12 1 Theorems on properties of permutation groups - Contd S1, Ch5, 108-110
13 1 Theorems on properties of permutation groups - Contd S1, Ch5, 111
14 1 Tutorial
15 1 Theorems on properties of permutation groups - Contd S1, Ch5, 113
16 1 Tutorial
17 1 Recapitulation and discussion of possible questions
Total number of hours planed for unit IV 17 hours
Isomorphism - Defnition S1,Che6, 122
Examples on isomorphism S5,Ch 2, 54

Tutorial

Examples on isomorphism - Contd

S1,Ch 6, 123-124

Examples on isomorphism - Contd

S1, Ch 6, 125-126

1 1
2 1
3 1
4 1
5 1
6 1 Examples on isomorphism - Contd S1, Ch 6, 127
7 1 Tutorial
8 1 Examples on isomorphism -Contd S1, Ch 6, 128
9 1 Cayley’s theorem S1, Ch 6, 129-130
10 1 Problems on Cayley’s theorem S1,Ch 6, 131
11 1 Tutorial
12 1 Theorems on Properties of isomorphisms S1,Che6, 132
13 1 Theorems on Properties of isomorphisms - Contd S1,Ch 6, 133
14 1 Theorems on Automorphisms S1,Ch 6, 133
15 1 Tutorial
16 1 Theorems on Automorphisms - Contd S1,Ch 6, 133
17 1 Theorems on Automorphisms - Contd S1,Ch 6, 133
18 1 Tutorial
19 1 Recapitulation and discussion of possible questions
20 1 Discusion of ESE gns
21 1 Discusion of ESE gns
22 1 Discusion of ESE gns
Total number of hours planed for unit V 22 Hours
Unit Hours(L+T)

I 18(14+4)

M | 20(15+5)

I | 18(13+5)

IV | 1712+5)
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UNIT-I
SYLLABUS

Symmetries of a square, Dihedral groups, definition and examples of groups including permutation
groups and quaternion groups (illustration through matrices), elementary properties of groups

Prepared by Dr. K. Kalidass, Assistant Professor, Department of Mathematics, KAHE Page 1/21




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Group theory I
COURSE CODE: 17MMU303 UNIT: I BATCH-2017-2020

Introduction to set theory

The algebra of sets defines the properties and laws of sets, the set-theoretic operations of

union, intersection, and complementation and the relations of set equality and set inclusion. It

also provides systematic procedures for evaluating expressions, and performing calculations,

involving these operations and relations.

Preliminary notations:

Set theory:

1. Asetis any well defined class or collection of objects.
2. A set ‘A’ is said to be a subset of s. if every element in A is an element of s. if
acA=ags.
3. A setis said to be a finite if it consists of a specific number of different elements,
otherwise it is called as an infinite set.
4. Two sets A and B are said to be equal if and only if every element of A is an
element of B, and also every element of B is an element of A.
If the two sets A and B are equal then we write it as A=B.
If the two sets A and B are not equal then we write it as A#B.
5. A set which contains no element is called as null set or an empty set.
6. A set consisting of a single element is called singleton set.
7. Given a set S we use the notations as,

A={aes/p(a)} means that A is the set of all the elements in s for which the

property p holds

8. The union of the two sets A and B is denoted as AUB the set is {x/xcA or xzB}.

9. The intersection of the two sets A and B is denoted as ANB is the set
{X/xeA and xzB}.
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10. The two sets A and B have no elements is then we say that A and B are disjoint or

mutually exclusive.

Prepositions:

1. Forany 3 sets A,B,C we have
ANBUC)=( ANB)U(ANC)

First we try to prove that
(ANB)U(ANC)g AN(BUC)
Now B ¢ BUC

ANB ¢c AN(BUCy—> 1
c¢BUC

ANC ¢ AN(BUCy——> 2
1 and 2 (ANB)U(ANC) ¢ AN(BUC)—— 3
Next we try to prove
ANBUC) ¢(ANB)U(ANC)
xeA ANBUC)——> 4
Let xeA and (xeB or xeC)

xeA and xeB or xeA and xeC
xe ANB or xe ANC
xe(ANB)UANCy———> 5

from 4 and 5 AN(BUC) ¢(ANB)U(ANCy——> 6
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Definitions:

1. Given a set T we say that T serves as an index set for the family f.f={A,} of sets if for
every aeT, there is a set of A, is the family of F.The index set T can be any finite set or

infinite.

2. By the union of sets A, where a is in T, we mean the set
{x/xe A, for atleast one o in T} we denote it by U A, aeT.

3. By the intersection of he sets A, where o is in T we mean that the set
{ x/xe A, for every a €T } we denote it by N aeT A,.

4. The sets A, are mutually disjoint if o A,NAg is the null set.

5. Given the two sets A and B then the difdferenc set A-B is the set {xcA/xeB} then
B is a subset of A in this case we call A-B is the complement of B in A.

6. Let A and B be any two given sets then their Cartesian product A*B is defined as
the set of all ordered pairs(a,b) where acA and beB.

Note:

1) (a;,b1)=(ay,b,) iff a;=a, and b;=b, given any index set T we can define the Cartesian

product of the sets A, as a varies over T.

i) If the set A is a finite set having elements then the set A*A is also a finite set but
has n? elements.

1ii) The set of all elements (a,a) is A*A is called the diaponal of A*A.

Definition:
The binary relation ~ on A is said to be a equivalence relation if for all a,b,c is A.
1) a~a reflexing
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i) a~b=b~a symmetry
iii) a~b and b~c=a~c transistivity

Example:
Let s be the set of all integers given a,bes defines a~b if a-b is even integer.

Solution:

1) since O=a-a is even a~a

i) if a~b then a-b is even —(b-a) is also even=b~a.

1i)if a~b then a-b is even and b~c then (b-c) is even.

a-c=(a-b)+(b-c) is also even=a~c.

The given relation is equivalence relation.
Definition:
If A is a set and if ~ is an equivalence relation on A then the equivalence class of agA is

the set {xeA/a~x} we write it as cl(a).
Fundamental theorem on equivalence relation:

Theorem 1.1.1

The distinct equivalence classes of an equivalence relation A provide us with a
decomposition of A as a union of mutually disjoint subsets. Conversely given a
decomposition of A as union of mutually disjoint, non empty subsets we can define an

equivalence relation on A for which these subsets are the distinct equivalence classes.
Proof:

Let the equivalence relation on A be denoted by ‘~’ since for any agA, a~a.
A must be in cl(a).

Hence the union of the cl(a) is all of A we now try to prove that given two equivalence
classes they are either equal or disjoint.

Now we suppose that cl(a) and cl(b) are not disjoint then f an element.
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xecl(a)Ncl(b)

Since xecl(a) a~x

Since xecl(b) b~x

But by the symmetry of relation we have x~b.
a~x and x~b=a~b— 1

Now we suppose that yecl(b)

b~y — 2

1 and 2 a~y=yecl(a).

Every element in cl(b) is in cl(a) cl(b)ccl(a) — 3
In a similar way we can prove that
Cl(a)cel(b)—» 4

3 and 4 cl(a)=cl(b)

Thus we have shown that the distinct cl(a) are either they are equal or disjoint.

Let us suppose that A=uA, where A, mutually disjoint non empty set[a is in the some

index set]. Given an element a is A is exactly in one A,.
We define for a,beA,a~b if a and b are in the same A,,.

We now prove that this is an equivalence relations on a and that the distinct equivalence

classes on the A,,..

Now a and a are in the same A,. a~a.

Now assume that a~b, then by definition a and b are in the same A,.
b~a hence if a~b=b~a then it follows that a and b are in the same A,.
B and c are in the same Ag.

Now suppose that A,# Ag since be Ag.= A,NA£0
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Which is a contradiction. Since A, and Ag. Are distinct A,=Ag. Hence a and c are in the

same A,.

a~c thus a~b and b~c=a~c. thus the relation defined above satisfies reflexity symmetry

and transitivity. Hence the above relation is an equivalence relation.

Lat acA let A, be the unique no of the partition such that ag A, then by definition of ~ we
get cl(a)= A,.

Thus distinct equivalence classes are A,,.

State And Prove Demorgan’s Theorem:

Statement:

For a subset ¢ of s let ¢ denotes the complement of ¢ in s. for any two subsets A,B of s
we have,

i) (ANB)'=AlU B! i) (AUB)= Al N B!
Proof:

i)let xe(ANB) — 1

xs(ANB)

xsA and xsB

xeAl and xeB!

xeAlU Bl— 2

from 1 and 2 we get (AﬂB')g AlUBl——3
now let xeAlU Bl— 4

xeAl or xeB!
xsA or xsB

x5(ANB)
xs(ANB) — 5
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from 4 and 5we get (Al U Bh¢(ANB) —— 6
from 3 and 6 we get (ANB)= (Al U Bl)
ii)(AUB)=AINB!

let xs(AUB)'—» 1

x5(AUB)

xsA and xsB

xeAland xeB!

xeAN Bl—» 2

from 1 and 2 we get (AUB)lc ANBL—— 3
now let xeAN Bl ——» 4

xeAland xeB!

xsA and xsB

xsAUB

xe(AUB) — 5

from 4 and 5 we get ANBl¢((AUB) ——» 6
from 3 and 6 we get (AUB)'= AINB.,

Problem:

1. If A is a finite set having n elements then prove that A has exactly 2" distinct subsets.

Solution:

Given that A is a finite set with n elements

Thus A contains obviously the empty set also that it contains the following subsets.

nc,=number of 1 element subsets.

nc,=number of 2 element subsets.

nc,=number of n element subsets.

The total number of subsets=ncy+nci;+nc,+.......
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=1+nc;+nCy+.......... +1

From binomial theorem we know that

nim

(1+x)"=1+nx+

1—
~

When x=1 we have,

nimn

2"=1+n+———

From these both we have the total no of subsets=2".

Introduction to Mappings

In mathematics, the term mapping, usually shortened to map, refers to either
A function, often with some sort of special structure, or
A morphism in category theory, which generalizes the idea of a function.
Mappings:

A mapping from a set S is a rule that associates with each element s in s a unique element
tinT.

Note:
In the above case way that t is the unique of s under the mapping.
Definition:

If Sand T are non empty sets then a mapping from s to T is a subset of M of s*t such that
for every seS there is a unique teT such that the ordered pairs(s, t) is in M.

Note:

Let o be a mapping from S to T we denote this by 6 : ST or T=So.

Examples:

1. Let S be any set. Define i:S =38 by s=si for any sets ses. This mapping I is called the
identity mapping.
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2. Let Sand T be any two sets and let ty be an element of T. define y:S ==>T by an
y(s)=t, for every ses then y is a mapping.

3. Let S and T be any two sets. Define 1 by (a, b)t = a for any (a, b)eS*T. this 1 is called
as the projection of S*T on S. in a similarity we can define the projectionof S* Ton T.

Note: .

Let S be any set we construct a new set s’, the set whose elements are the subsets of S
then we call S the set of subsets of S.

Example:
1. If S:{Xl, X2}

Then "= {{}, {xa}, {x2}, S}

2.Given a mapping t: T, we define for teT, the inverse of t w.r.to T to be the
set {seS/t=ST}.
Definition:

1.The mapping t of S into T is said to be onto T if given teT, F an element seS
such that t=st.
2. The mapping t of s into T is said to be a one to one mapping. If whenever s;#s;
then s;t # s,t.
3. The two mappings ¢ and 1 of s into T are said to be equal is sc=st for every ses.
4 If 6:S=—= T and :T ==> U then the composition (or product) of T andc is the
mapping cot: S—> U.
5. Defined by s(cgt) =(so)t fro every s € S
=tt for every teT
=u for every ueU.

Example:
Let S = {Xq, X5, X3} and T=S.

Let 6 : S==>S be defined by x;6 = X5, X,6 = X3, X306 = X and T : S=—=>S be defined by
X1T = X1, XoT = X3, X3T = X2

thus X;(cet)=(x10)1

= XoT = =X3

K(GoT)=(X20)T
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= X3T = =X,
X3(001)=(x30)T
= X1T = =X;
X1(T00)=(X1T)0
= X260 = =X,
X2(t00)=(x21)0
= X306 = =X
X3(t00)=(x37)0

= X0 = =X3

So from above resets we conclude that is general 64t # 140.

Lemma 1.2.1: Associative law:
If6: S =>t,1: T ==>U and u: U ==>V then

(00T)oM =Go(Tom)
Proof:

We know that ogt makes sense and takes S into U.

Thus (og7) o1t also makes sense and takes S into V.

Now let us prove for any seS,
S[(oot)or]=s[c0(Top)]

L.h.s =s[(cgT)olL]

=s(CoT)1

=((so)D)p
=s50(ToM)

= s[og(Top)]=r.h.s.= associative property.

Lemma 1.2.2:

Let 6:S—> T and t:T—> U then
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1) ot is onto if each of ¢ and 7 is onto.
I1) oot is one to one if each of ¢ and T IS one to one.
Proof:
Since 1: T ==>U is onto for a given ueU , F a teT such that
tt=u — 1
since 0:S==> T is onto
for given teT F a seS such that
so=t —>» 2
now s (6ot)=(so)t
=tt by 2
=uby1l
Thus for every ueU F a seS such that s (cpt)=u
Then by definition ot is onto
Lets;,S, esand sy #S;
Since ¢ is one to one $16#5,6
S10&s,0 are distinct elements in T.
since T is one to one $;T#S,T
= $1(0gT)=(510)T#( S26)T=S2(0(T)
= $1(60T)# S2(007)
=(ogt) is one to one by definition.
Note:
The converse of above lemma is false.
) I[f(op7) is onto then ¢ and 7 is need not be onto.

i) oot is one to one if each of ¢ and 1 is need not be one to one.

Definition:
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Let 6:S T if o is both one to one and on to then we say the mapping ¢ is one to one
correspondence between Sand T.

Lemma 1.2.3:

Statement:

The mapping 6: S=—>T is one to one correspondence between S and T iff there exists a
mapping u:T':> S such that oop and pgo are the identity mappings on S and T
respectively.

Proof:

First let us assume that the mapping o: S—=> T is a one to one correspondence between
SandT.

Since o is onto, for given teT, F an element seS such that so=t —— 1

Since 6 is one to one this s in must be unique now we define the mapping

6 1 Te=>S by s=to ™ iff t=so the mapping ¢ " is the inverse of c.

Letogo 1se—n§

Now for any seS, s (66 ) =(so) 6 *
=to thy1l

=S

=si

6o 0 " is the identity mapping on s.

if we take u=o " then

ool 1s the identity mapping on s.

Now o “go: T==>T then for any teT.
t(c 2o0)=(to Yo

=S0

=t

=ti

6 oo is the identity mapping on T.

Conversely if 6: S—==> T is such that F a mapping on p: ==> S with the property that
oou and poo are the identity mapping on S and T respectively. Then we have to show that
o is a one to one correspondence between S and T. we have to show o is both one to one

and onto.

Let teT then t=t1
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=t (Loo)=(two

Now tu is an element of S. so t is the image under ¢ of the element tu in s. for a given teT
F a tueS such that (tn) o=t by definition o is onto.

Let s, S, € S assume that s;0=s,0
Now consider s;=S;(cgpt)

= (510) 1

= (520) 1

=Sz (Ool)

=S, (opu 1s the identity on s)
Whenever $;6=s,6=s,=5,

Then by definition ¢ is one to one.
Definition:

A binary operation 0 on a non empty set A is a mapping which associates each pair (a, b)
of elements of A an uniquely defined element CeA thus 0 is a mapping of product of the
set A*A to A symbolically a map 0: A*A—> A is called a binary operation on the set A.

Example:
Addition and multiplication on binary operation on N.

If S is non empty set then A(s) is the set of all one to one mappings of s onto itself.
Theorem: 1.2.1:

If o, 7, u are elements of A(S) then 1) ogt is in A(S)

i1) (o07) Op=0yp (Topt)

ii1) F an element I the identity map in A(S) such that 6gi=igo

iv)F an element 6 "€A(S) such that 60 =0 00 =i

Proof:

1.Lemma 1.2.2
2.Lemmal.2.1
3.Clearly the identity map ‘i’ is both one to and on to ieA(S) let seS

Now consider s(cgi)=(so)i

=30 ¥ seS=06pi=0c
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Lemma 1.2.3(write the first part only).

Lemma: 1.2.4:

If s has more than two elements we can find two elements c*t in A(S) such that
GoTETO.
Proof:
Let us assume that S has more than two elements let x; X, and x3 be three distinct
elements in s.
Now we define 6: S——=>S
By X;6=x;
X50=X3
X30=Xx,
So=s for only seS different from x; X, X3
Define t: S—==>8S
By Xo1=x3
X3T=X>
and st=s for any seS different from x,, and x3 clearly both ¢ and t are one to one and
on to and hence in A(S)
NOW X;(6oT)=(X10)T
=X,T
=X — 1
And X;(to0)=(x17T)0
=X10
=X, ——» 2

Comparing 1 and 2 we observe that 6o1#700.

Problem1:
If the set S has n elements then prove that A(S) has n! Elements.
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Solution:

When S={X1, Xo, X3...Xn}

Any one to one mapping on S onto itself is given by specifying the image of each
elements.

The image of x; can be chosen is different ways. Since the image of x, is different
from image of x; it can be chosen in n — 1 different ways and so on. Hence the total
no of one to one mapping of s onto itself is n(n-1)(n-2)......3.2.1=n!.

Problem2:
If f: A—>B is a map and E;, E; are any two subsets of A then show that
i) f(ELUEL)=f(E)UF(E,)
i) f(E:NEz)g f(E)NI(EY)
Solution:
1) Let bef(E;UE))
b=f(a) for some ac E;,UE,— 1
b=f(a) for some acE; or acE,
b=f(a) and f(a)ef(E;)or f(a)ef(E,)
b=f(a) and f(a)e f(E;)U f(E;)—> 2
from 1 and 2 we get f(E{UE,)¢ f(E;)Uf(E,)— 3
now let blef(E,)Uf(E,) — 4
blef(E,) or blef(E,)
bl=f(al) for some a'¢E; or E,

bl=f(a) for some als(E;UE,)
bl=f(al) for some f(aef(E,UE,)—» 5

from 4 and 5 we get f(E,)Uf(E,)c f(E;UE))—> 6
from 3 and 6 we get f(E;UE,)= f(E,)Uf(E,)

i) Letbe f(E;NEy)) —> 7
bef(a) for some agE;NE,

Prepared by Dr. K. Kalidass, Assistant Professor, Department of Mathematics, KAHE Page 16/21




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Group theory I
COURSE CODE: 17MMU303 UNIT: I BATCH-2017-2020

b=f(a) for some a¢ E; and ac E,

b=f(a) and f(a)ef(E,) and f(a)ef(E,)

b=f(a) and f(a)ef(E,)Nf(E,)) — 8

from 7 and 8 we get f(E1NE,)c f(E1)N(E,)
Introduction to Group Theory

In mathematics, a group is a set of elements together with an operation that combines any
two of its elements to form a third element satisfying four conditions called the group axioms,
namely closure, associativity, identity and invertibility. One of the most familiar examples of a
group is the set of integers together with the addition operation; the addition of any two integers
forms another integer. The abstract formalization of the group axioms, detached as it is from the
concrete nature of any particular group and its operation, allows entities with highly diverse
mathematical origins in abstract algebra and beyond to be handled in a flexible way, while
retaining their essential structural aspects. The ubiquity of groups in numerous areas within and

outside mathematics makes them a central organizing principle of contemporary mathematics.

Group theory:

Definition of a group:

A non empty set G is called a group if in G there is defined a binary operation

called a product and denoted by ‘. Such that

i) Fora, beG a.beG *(closure property)

i) a,b,ceG a.(b.c)=(a.b).c(associative property)

I11) F an element eeG such that a.e=e.a ¥ aeG e is called the identity of
the element in G.

iv) For every acG F an element a "¢G such that a.a "=a ".a=e eixtence of
inverse.

The algebra structure of the group is given by (G,.).

Definition:
1) A group G is said to be an abelian group or commutative if for every a,beG
a.b=b.a
i) A group which is not abelian is called a non abelian group.

1ii) The order of a group G, denoted by o(G) is the no of elements in G.
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iv) If G contains finite no of elements we say that G is a finite group otherwise it is
called as an infinite group.

v) We know that if a set S contains ‘n’ elements then A(S) contains n! elements amd
A(S) is a group. This group is called as the symmetric group of degree n
denoted by s,

Some examples of groups.

Let G consists of the integers 0, £1, £2,...... where we means by a.b foe a,beG the
usually sum of integers that is a.b=a+b.

Solution:

Closure property:

Let a, b €G then a+beG, since the sum of two integers is also an integer in G.

Associative property:

Let a,b,ceG then (at+b)+c=a+(b+c) since the associative property is true in the case of
integers.

Existence of identity elements:

OeG, now ato=a ¥aeG o is the additive identity element in G.

Existence of inverse element:

For any aeG we can find an element —a in G such that a+(-a)=0

-a acts as the inverse forain G (G, +) is a group.

Examples:
1. The set of all 2*2 matrices . f a,b,c,deR is a group under matrix addition.

2. Q,R,C groups are all under usual add#ion.

3. Let G consists of real nos (1, -1) under the binary operation multiplication then G
is an abelian group of order 2.

4. Since sum of two integers is commutative for any a,beG atb=b+a G is an
abelian group. Also G contains infinite number of elements. G is an infinite

abelian group to the binary operation addition.
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Some preliminary lemmas:

Lemma2.3.1:

If G is a group then
1. The identity element of G is unique.
2. Every aeG has an unique inverse in G.
3. Left and right cancellation laws hold
a.b=a.c b=c
b.a=c.a b=c
4. for every aeG (a™) '=a
5. for all aeG(a.b) *=b™t.a™
Proof:
If possible let there be two | denoted elements e, f in G.
Let aeG since e is the identity. Consider f as an ordinary elements in G. then by the
definition,
a.e=e.a=a
f.e=e.f=f
since f is the identity consider e as an ordinary element in G. then by definition
a.f=f.a=a
e.f=f.e=e
we know that e.f=f and e.f=e f=e hence the identity element is unique.
2. let aeG

If possible let there be two inverses a and al for a in G. then by definition we know that
l—al o=
a.a'=a.a=e

a.al=ala=e

Since e is the identity element we can wriye
a=ale

= al.(a.a)

= (a.a).af
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= e.a
=4l

a'= al hence every element in G has a unique inverse.
3.. let a,b,ceG let us suppose that a.b=a.c

Since aeG  a'eG

Now premultiplying by a™* we get

at(ab)=a.(ac)

(ata).b=(ata).c

e.b=e.c

b=c

left cancellation law is true.

Since acG  a™'¢G  now post multiplying by a ™ we get
(b.a). a'=(c.a). a™

b.(at.a)=c.(at.a)

b.e=c.e

right cancellation law is true.

4. let acG let a ™' be the inverse of a in G then (a™) ™ will be the inverse of a™ in G.
Since G is a group we have

aa'=ata=e and a*(@H)?'=(ahH™t al=e

wehave ata=at(a™)™

using left cancellation law we have a=(a™) ™.

5..let a,beG leta™ b ™ be the inverse of aand b in G.

Thena.b and b™. a™ exists in G by closure property

Now we consider

(ab).bt.aM=a(bb?).a™

=a.e.a™
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—a.a™
=e
(ab)*=b* a?

Lemma 2.3.2:

Given a,b in the group G then the equations a.x=b and y.a=b have unique solutions for x
andy in G.

Proof:

Given that a,beG

Since a,beG, a 1eG

. x=a 1.beG

Now consider

a.x=a.(a .b)

=(a.ah).b

=e.b

=b

X satisfies the given equation and hence x=a ™.b is a solution.

To establish the uniqueness of the solution, let there be two solution x; and x, for the
equation a.x=b

We have a.x;=a.X,

X1=X2

henc x=a ™.b is a unique solution for a.x=b. in a similar way we can prove that y=b.a " is

a unique solution for y.a=b.

Prepared by Dr. K. Kalidass, Assistant Professor, Department of Mathematics, KAHE Page 21/21




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Group theory I
COURSE CODE: 17MMU303 UNIT: I BATCH-2017-2020
Problem:

Show that the set G ={ a+bV2: a,beQ} is a group with respect to addition.
Solution:

Closure Property:

Let x,y be any two elements of G. Then x= a+bV2, y = c+d\2, where a,b,c,d €Q
Now x+y=(a+c)+(b+d) V2eQ,

Thus x+y G for every x,y €G.

Therefore G is closed with respect to addition.

Associativity:

The elements of G are all real numbers and the addition of real numbesr is associative.
Existence of identity:

We have 0+0V2 €G since 0€Q.

If a+bV2 is any element of G, then (0+0V2 )+(a+bV2) = a+b\2

0+0V2 is the identity.

Existence of inverse:

We have a+b+/2 € G =*(—a) + (—b)4y2 EG sincea,bEQ= -a,-bEQ.

Now [(-a)+(-b)v2] + [a + b] = [(—a) + a] + [—h) + b]V2 = 0 + 042 = the left identity.

There for (-a) +(-b)v'2 is the left inverse of a+b+/2.

Hence G is a group with respect to addition.
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POSSIBLE QUESTIONS:
Part-B( 5X8 = 40 Marks)
Answer all the questions:

1. i) Prove that An(BUC) = (AnB) U (ANC)
i) If a finite set S has n elements, then prove that the power set S has 2" elements.

2. Write about the types of binary operations.

3. If G is a group ,then prove that
i)the identity element of G is unique
i)every acG has a unique inverse in G
iii)for every acG, (a)'=a

iv)for all a,beG, (a.b)* =bta™

4. If a,b are any two elements of a group G, then prove that the equations ax =b and ya=b
have unique solutions in G.

5. Show that the set G ={ a+bV2: a,bQ} is a group with respect to addition.

6. i) Prove that the inverse of the product of two elements of a group G is the product of the
inverse taken in the reverse order.
i)Show that if every element of the group G is its own inverse , then G is abelian.

7. Let G be a group. Then prove that i) identity element of G is unique
i) for any aeG, the inverse of a is unique.
8. Prove that if G is an abelian group, then for all a,beG and all integers n, (a.b)"=a".b".

9. If G is a group, in which (a.b)' = a'b' for three consecutive integers i for all a,beG. Show
that G is abelian.

10. If a.b.c are any elements of G, then prove thatab =ac = b =c andba=ca=b=c .
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UNIT-11
SYLLABUS

Subgroups and examples of subgroups, centralizer, normalizer, center of a group, product of two
subgroups
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Introduction to Subgroups

In algebra, given a group G under a binary operation *, a subset H of G is called a subgroup of G
if H also forms a group under the operation *. More precisely, H is a subgroup of G if the
restriction of = to H x H is a group operation on H. This is usually represented notationally by H
< G, read as "H is a subgroup of G".A proper subgroup of a group G is a subgroup H which is a
proper subset of G (i.e. H # G). The trivial subgroup of any group is the subgroup {e} consisting
of just the identity element. If H is a subgroup of G, then G is sometimes called an overgroup of
H.The same definitions apply more generally when G is an arbitrary semigroup, but this article
will only deal with subgroups of groups. The group G is sometimes denoted by the ordered pair
(G, =), usually to emphasize the operation = when G carries multiple algebraic or other
structures. This article will write ab for a = b, as is usual.

Sub groups:
A non empty subset H of a group G is said to be a subgroup of G if under the product is
G,H itself forms a group.

Note:
If H is a subgroup of G and K is a subgroup of H, K is a subgroup of G.
Lemma 2.1:

A non empty subset H of a group G is a subgroup of G itself:

1) a, beH=abeH
ii) acH=a "eH

Proof:

First we assume that H is a subgroup of G then by definition H is a group under the
same binary operation as in G.
a, beH=abeH and

acH=a ‘eH , ¥a,beH
conversely let us assume that,
a, beH=abeH and

acH=a *¢H , ¥a,beH

now we prove that H is a subgroup of G. from the first result we observe that
closure property is valid.

Since H is a non empty subset of G since the associative law is true in G, itmust be
true to H also.
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Associativity is true also.

From the second result we observe that inverse exists for every element of H.
Existence of inverse is true.

Once again the second result is a, a “cH

aa '1c_;eaH

Existence of identity is true.

Hence H is a subgroup of G.

Note:

It is enough if we prove that if a, beH then ab ‘eH where H is a subgroup of G.
Lemma 2.2:

If H is a non empty finite subset of a group G and H is closed under
multiplication then H is a subgroup of G.

Proof:

By hypothesis a,beH=abeH

Let us now prove that asH=a ‘cH

It is given that H is closed under multiplication
Let acH then a’=a.acH

Let a®=a%acH.........ccovvveiniii,

H contains infinite no of elements a, a2 a°............ but H is given to be a finite
subset of the group G. thus there must be repetitions, in this collection of
elements.

For some integers r, s with r>s>0 a'=a’

Leta" S=a’=e

But a’~°¢H since r-s>0 by definition of H

Let ecsH

Prepared by Dr. K. Kalidass, Assistant Professor, Department of Mathematics, KAHE Page 3/25




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Group theory I
COURSE CODE: 17MMU303 UNIT: I1 BATCH-2017-2020

Now consider a'*=e
(a" %ata=e

a" “'zatbuta" *'eH
but a ‘eH where agH.

We have a,beH=abeH and acH=a ‘¢H where H is subgroup of G.
Examples:

1. Let G be the group of integers under addition H the subset consisting of all the
multiplies of 5. Then H is a subgroup of G.

2. Let G be the group of all real nos under addition and H be the set of all integers
then H is a subgroup of G.

3. Let G be the group of all non zero complex numbers a+ib(a, b real not both
zero) under multiplication and let H={a+ibeG/a’+b?=1} then H is a subgroup of G.
4. Let G be any group agG let (a)= {a'/i=0,+-1,...... } then a is a subgroup of G. it

is called as cyclic subgroup generated by a.

5. Let G be the group of all 2*2 matrices[i b] with the condition ad-bc#0 under

a

multiplication. Let H= {[g ﬁb] £G/ad += 0} H is called subgroup of G.
Definition:

Let G be a group H a subgroup of G also let a,beG then we say that a is concurrent to
bmodH, written as a=b mod H if ab leH

Lemma 2. 3:

The relation a =b mod H is an equivalence relation.

Proof:

Leta,b,ceH
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It is given that H is a subgroup of G eeH aa '=eeH
Then by definition a = a mod H
Reflexitivity is true.
Now we assume that a =b mod H
Then by definition ab cH
(ab ™) 'eH
bH'a'eH ba'eH
Let b =a mod H symmetry is true.
Now we assume that a=b mod H and b = ¢ mod H. then by definition
ab "'eH and bc 'eH
Since H is a subgroup closure property is true ab *bc * ac “eH
Then by definition a = ¢ mod H.
Transition is true. Then the relation is an equivalence relation.
Definition:

if H is a subgroup of G and aeG, then H,={h,/heH} is called a right coset of H in
G. ah={ah/heH} is called left coset of H in G.

Lemma 2.4:

For all aeG Hy={xeG/a = x mod H}.
Proof:

Let [a]= {xeG/a =x mod H}.

Then it is enough if we prove that H,=[a]
First we try to prove that Hyg[a]

Let xeH, then x=Ha for some heH

Post multiplying by a ™ we get,
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(xa'=h)
(xa™ch)
(xa™) 'eH
(a ™) x'eH
ax 'eH
a=xmodH x=amodH
X € [a]
hence H.c[a]
to prove that [a]cH,
let xg[a] then by definition a = x mod H
ax 'eH
(ax™) eH
xa ‘eH
So xa *=n for neH
Post multiplying by ‘a’ we get
xa ‘a=h,
xe=h,
x=h,
but hacH,
xeH,
[a]cHa

From H,=[a] hence the proof.
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Result:

Prove that any two right coset of H in G are either identical or have no element is
common.

Proof:

We know that H,=[a] is an equivalence class of a in G. then by a theorem 1.1.1 these
equivalence classes yields a decomposition of g into disjoint subsets. Thus any two right
coset H in G are either identical or have no element in common.

Let us consider two right coset H, and Hy, of H in G where a, b €G.
Assume that H, and H, have an element C in common.
Ce H, N Hy
Ce H, and Ce H, and Hy
C=hja and c=h,b for some hy, h,eH  hja=hyb
Pre multiplying both sides by h, * we get
hy*h,a= hy*hyb
a=hb where hy=h; *h,
H.=Hhsb
=H,
Ha=Hy,
Any two right coset of H in G are either identical or have no element is common.

Lemma 2.4.5:

There is a one to one correspondence between any two right cosets of H in G.
Proof:

Let G be a group and H a subgroup of G. let a, b €G

Let H, and Hy, be two right cosets of H in G

Define ®: H;— H,
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By ®(hy)=h, ¥heH———» 1

Let us prove that the mapping @ is one to one and onto let hy, h,eH
Then h;a and h,agH,
Now ®(h;a)=d(h,a)
Let hyb=hyb
Let hy;=h,
Post multiplying we get hia=h,a
@ is one to one by its definition
Let hyeH, then heH
. h,eHy
But we have the mapping ®(h,)=hy
For every element h,eHy, F an element h,eH, such that ®(h,)=h,
Thus @ is a one to one correspondence.

Theorem 2.1:

Lagrange’s theorem:

Statement:

If G is a finite group and H is a subgroup of G, then o(H) is a division of o(G).
Proof:

Since H,=[a] any two right coset being

1) Equivalence classes are either disjoint or identical.

i) Also the union of the distinct right coset in G.

iii) Let there be K distinct right coset. Since there is an one to one correspondence
between any two right cosets, all the right cosets have the same no of elements.
But H=He is a right coset and has o(H) elements. So the K distinct right cosets
each having o(H) elements fill out g.
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So K.o(H)=0(G)

o(H) is a divisor of o(G)

Hence the theorem.
Note:

let G be aa finite group.

H be a subgroup of G we know that o(H) is a divisor of o(G).
o(H)/o(G)
0(G)=K.o(H) where K is the no of distinct right cosets of H in G.
K=0(G)/o(H)
Problem:
Given an example of an infinite subgroup of an infinite group whose index infinite.
Solution:
Let G=z
Let H=2z

i"s=number of distinct right cosets of H in G=2.

Definition:

Let G be a group and aeG. The order or period of a is the least positive integer m such
that a"=e. it is denoted by o(a)

o(a)=m
aA@=¢

If no such integer exists then a is of infinite order.

Example:
G={1,-1,1,-i} here 1 is the multiplicative identity.
e=1 (%=1 i*=1 i*=1 %=1 ()'=1 ()’=1 (-)=n
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0(-1)=2 0(i)=4 0(-i)=4

Corollary’s for lagrange’s theorem:
Corollary 1:

if G is a finite group and aeG then o(a)/o(G).
Proof:

Let us produce the subgroup of G whose order is 0(a). consider the cyclic subgroup
generated by a.

(a)={e,a,@........ }
Now a°@=e(by def)
The subgroup has atmost 0(a) number of elements.

If it has less than O(a) number of elements then a'=al for some integers | and j where
o<i<j<o(a) j-i>0  a'=e but o<j-i<o(a).

We have an integer j-i<0(a) for which a'=e contradicting the definition of o(a).

The cyclic group a has exactly o(a) number of elements then by lagrange’s theorem
o(a)/o(G)

Corollary 2:

If G is a finite group and agG then a*©)=¢

By corollary 1 we have o(a)/o(G)
0(G)/o(a)=k where K is some positive integer
0(G)=k.o(a)
Now a°@=g"°®@
(@) =¢=e

Hence a°©=¢
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Definition:

If a and b are relatively prime, we can find integers m and n such that ma+nb=1.

Corollary 3:

Euler’s theorem:

If n is a positive integer and ‘a’ is a integer which is relatively prime to n then a®™=1

mod n where ®@(n) is the number of positive integer less than n and relatively prime to n.
Proof:
Let G={[x]/x is an integer less than n and relatively prime to n}.

We know that G is a group w.r.to multiplication of reside classes as the composition also
now o(G)=d(n)

If ‘a’ is a positive integer relatively prime to n then [a]eG
. [a]°®=identity=[1]

ie., [a][a]....... [a]=1

i.e.,a®™=1

i.e.,.a®™=1 modn

hence the corollary.

Corollary 4:

Fermat’s theorem:

Statement:
If p is a prime number and a is any integer then ap=a mod p.
Proof:

let G be the set of non zero residue classes of integers module p. if p is a prime
number then w.r.to multiplication of residue classes. A is a group of order p-1. The
identity elements of this group is [1].
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Now suppose a is an integer
Casel:

p is an divisor of a.

p/a

p/a®

p/aP-a

aP=a mod p

case i) p is not a divisor of a.

in this case [a]#0 [a]eG

now a%®=[1] by corollary 2
a'=[1]

p/aPt-1

p/aP-a

a’=amod p hence the corollary.
Definition:

In a group G and e are said to be trivial subgroup of G and the remaining subgroups are
called non trivial subgroup of G.

Corollary 5:

If G is a finite group whose order is a prime number then G is a cyclic group or prove that
finite group of prime order is cyclic.

Proof:

Let G be a finite group.

Let o(G)=p where p is a prime number
G has no non trivial subgroupsH

If H is a non trivial subgroup of G then by lagranges theorem o(H)/o(G)=p
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Since p is prime its divisors are 1 and p.
o(H)=1 oro(H)=p
If o(H)=1 then since ?H is subgroup of G we must have h=G

G has no non trivial subgroup H let us assume that a#eeG and H=(a), then H is a cyclic
subgroup generated by (a) but H#{e} since a#e.

H=G(G has no non trivial subgroup)

G is a cyclic group generated by (a).

A counting principle:

Let H and K be any two sungroups of a group G. define HK={xeG/x=hk,heH keK} HK 1is
a non empty subset of G. but HK need not be a subgroup of G.

Example:
Let G=sg={e, D, y, y°, Dy, yO}

O(s3)=6 let H={e, ®} and K={e, ®y} H and K are subgroups of G. sine they are closed
and inverse of @ and @y are themselves respectively.

Now HK={e,0Dy, 0%y} (D*=e)

HK consists of 4 elements and 4*6 by lagranges theorem HK is not a subgroup.
Lemma 2.5:

HK is a subgroup of G iff HK=KH.

Proof:

First let us suppose that HK=KH now we try to prove that HK is a subgroup of G since
eeHK, HK is a non empty subset of G. since HK=KH we have h;k;=Kk,h,

Hi,hoeH ki, koeK

Here it need not be h;=h, and k;=k,

Let x;yeHK

Then x=h;k; y=h,k, hih,eH  kikeK
Now consider xy=( hiky)( hoky)
=hs(kihz)ko=hy(hsks)ko=(h:h3)(ksko)eHK
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HK ic closed.

Let xeHK

Then x=hk for some heH  keK
Now x *=(hk) *

=k *h "eKH=HK

X 'eHK whenever xeHK

Then by a lemma HK is a subgroup of G.
Conversely let us assume that HK is a subgroup of G. then we prove that HK=Kh
Let heH; keK then kheKH

Let heH; keK then kheKH

Since H and k are subgroup of G.

heH=h *¢H

keK=k *eK

h 'k *eHK

(h*k ™) "eHK

(k™™ h™) 'eHK

kheHK

KHeHK

Now let xeHK

Then x ‘eHK

x'=hk where heH , keK

(x ) =(hk) -1

x=k "th TeKH=HKcKH

HK=KH
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Hence HK is a subgroup of iff HK=KH

Corollary:
If H and K are subgroups of an abelian group G then Hk is a subgroup of G.

Proof:

Hk is a non empty subset of g since G is aabelian and H, K are subgroups of G we have
hk=kh ¥ keK, heH

HK=Kh

Then by the above lemma HK is a sub group of G.

Theorem 2.2:

If H and K are are finite subgroups of G of orders o(H) and o(K) respectively then
ol H .ol
O(HK)=———

a(HNK}

Proof:

Case i) let HNK={E} o(HNK)=1

In this acse it is enough to prove that o(HK)=0(H).o(K)
The elements of HK are h;ky, hoko,hsks............
Where hy, hy Jhso....... .. eH and kq, Ko, Ks,.......... ek
This list contains o(H).o(K) no of elements.

Claim:

Each product in this list is distinct h;k;#hyk, whenever hy#h, if possible let us assume
that hlkj_:hzkz whenever h]}éhg.

Per multiplying by h, * and post multiplying by k; ™ on both sides we get
hy "hakiky 7= hy hokoky ™

hy "hy= koky ™

but h, *h;eH and k,k; *eK

h, *hieHNK={e}=h, *h;=e  h,=h;
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a contradiction to our assumption H is a subgroup. Thus our assumption is wrong. Hence
each product in this list is distinct all the elements in this list of HK are distinct having
o(H).o(K) number of elements. Thus in this case HNK={e}

olHLo(K)

o (HNK)

case ii) HNK#{e}

we shall know show that the list of elements of HK contains repetitions elements,
repeating exactly o(HNK) times.

we have o(HK)=

Let h,eHNK

Then hk=(hhy)(h; )—— 1

Where hh;eH and h; 1keK thus hk is duplicated in the product atleast o(HNK) times
however if hk=h 'k *

Then h*hk(kh) *=hthik' (k") *

K(k" *=h"*h'=u (say)

ueHNK

h'=hu k'=u~k

thus all duplications are taken into consideration in equation 1.

Hk appears in the list of HK exactly o(HNK) times.

Thus the number of distinct elements in HK is the total no of elements in the list HK.

O(H).o(K) divided by the no of times a given element appears namely o(HNK)
olH).o(K)

o(HNK)

o(HK)=

Definition:

Cyclic group:

A group G is called a cyclic group if for some acG, every element x&G is of the form a™
where m is the some integer. The element a is called a generator of G.

Normal subgroups and Quotient groups.
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Definition:

Let G be a group. A sub group N of G is said to be a normal subgroup of G, if for every
geG and neN, gng "eN.

Equivalently if gNg *={gng */neN} then N is a normal subgroup of G. then gNg ¢ ¥
2eG.

Lemma 2.6:
N is a normal subgroup of G iff gNg =N ¥ geG.
Proof:
If gNg '=N for every geG, certainly gNg “cN so by definition N is normal in G.

Now let us assume that N is normal in G. then by definition if geG, gNg “cN

Now gNg = gN(g 1) 1cN ¥ g 'eG

Now since gNg "cN, N=g(g *Ng)g *c gNg *cN
Now we get, gNg *=N ¥ geG hence the lemma.
Lemma 2.7:

The subgroup N of G is a normal subgroup of G iff every left coset of N is G is a right
coset of N in G.

Proof:

Let us assume that N is a normal subgroup of G then by a lemma 2.6 gNg =N ¥ g¢G.
Post multiplying both sides by g we get gNg g=Ng

i.e., gN=Ng

every left coset of N in G is a right coset of N in G. conversely let N be a subgroup of G.
every left coset of N in G is also a right coset of N in G. let g be any element of G. then
gN=Ng for some geG.

Since eeN, ge=gegN=Ng
geNg
also g=egeNg i.e.,geNg
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gN=Ng
post multiplying both sides by g * we get
-1 -1
gNg "=Ngg
gNg *=N

then by a lemma 2.6 N is a normal subgroup of G.
Note:

If H is a subgroup of G then HH=H or H*=H.
Proof:

Now HH={h;h,/h;h,eH}cH

HHcH

HHeHeeH

HHeH

HH=H or H’=H

Lemma 2.6.3:

A subgroup N of G is a normal subgroup of G iff the product of the two right cosets of N
in G is a right coset of N in G.

Proof:

First we assume that N is a normal subgroup of G. let a, beG and consider the two right
cosets Na and Nb.

Now NaNb=N(aN)b
=(NN)ab

=Nab

=Nc where c=abeG

Hence the product of any two right cosets of N in G is again a right cosets of N in G.
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Conversely let us assume that the product of any two right cosets of N in G is again a
right coset of N in G.

We have to prove that N is a normal in G. by hypothesis NaNb=Nc for some ceG
First we try to prove that NaNb=Nab

To prove that Nc=Nab

Now ab=eaeb=NaNb=Nc

abeNc

now ab=eabeNab

abeNab

but we know that any two right cosets are either distinct or identical.

Now we get Nab=Nc

Hence we have let a=g, b=g *

Then we have NgNg *=Ngg ™

NgNg '=N ¥ geG

Now gNg e gNg "¥neN

gNg *=e gNg "eNgNg =N

gNg'eN ¥ geG and neN

then by definition N is a normal subgroup of G.
Hence the lemma.

SYLOWS THEOREM:

Statement:

Suppose G is a group of finite order and p is a prime number. If p™/o(G) and p™" is not a
divisor of o(G), then G has a subgroup of order p™.

Proof:

We shall prove that the theorem by induction on o(G).
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The theorem is true if 0(G)=1
if 0(G)=1 then p°/0(G) and p*0(G) and G has a subgroup G itself of order p*{e}
let us assume the theorem is true for groups of order less than that of G.

let o(G)=p™.n where p is not a divisor of n. if m=0, then the theorem is p={e} obviously
true.

If m=1 the theorem is true by cauchys theorem.

So let m>1 then G is a group of composite order and so G must posses a subgroup H such
that H~G

If E is not a divisor of o(G)/o(H), then p™/o(H) because o(G)=p™.n=0(H).0(G)/o(H) also
p™ cannot be a divisor of o(H) because p™ will be a divisor of o(G) of while o(H) is
divisor.

Further o(H)<o(G) by our induction hypothesis, the theorem is true for H.

H is a subgroup of order p™ and this will also be a subgroup of G. so let us assume that

for every subgroup H of G where H#G,

P is a divisor of o(G)/o(H)

Consider the class equation,

O(G)=0(2)+) asz o(G)/o(N(a))

Since asz  N(a)#G,

According to our assumption p is a divisor of Y asz 0(G)/o(N(a))also p/o(G)
We conclude that p is a divisor of o(z).

Then by cauchys theorem z has an element b of order p.

Hence z is the center of G. also N={b} is a cyclic subgroup of z of order p.
Since bez N is a normal subgroup of G of order p.

Now consider the quotient group G'=G/N

Then o(G')=0(G!)/o(N)=p™n/p=p™*

0(GN<0(G)
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By our induction hypothesis G! has a subgroup s' of order p™*
We know that

®: G ———= G/N defined as ®(x)=Nx¥xeG is a homomorphism of G onto G/N with
kernel N.

Let S={xeG/®(x)eS'}

Then S is a subgroup of G and S'~S/N
0(SYH=0(S")/o(N)
O(s)=0(s").0(N)=p™*.p=p"

S is a subgroup of order p

Hence the theorem.

CAUCHY'S THEOREM:

Statement:

Suppose G is finite abelian group and p/o(G) i.e., p is a divisor of o(G) where p is a prime
number. Then there is an element aze€G. Such that aP=e.

Proof:

Let us prove that this theorem by the method of this induction on the order of G.
Assume that the theorem is true for abelian groups of order is less that G.

The theorem is vacuously true for groups of order one.

If G has no proper subgroups then G must be of prime order because every group of
composite order possesses proper subgroups.

But p is prime and p/o(G)=0(G) must be p. also we know that every group of prime order
is cyclic each element a#eof G will be a generatorof G.

G has p-1 element as aze such that a"=a°©=e.
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If G has a proper subgroup H H#{e} and H#G and if p/o(H) then by our induction
hypothesis the theorem is true for H and also H is abelian group with o(H)<o(G).

F an element beH and b#e show that bP=e.

Let us assume that p is not a divisor of o(H). since G is a abelian . H is a normal subgroup
of G and so G/H is a quotient group.

Since G is a abelian G/H is also abelian.
Since 0(G/H)<o(G) since o(H)>1 since p/o(G) and p is not a divisor of o(H).

P is a divisor of o(G)/o(H). hence by our induction hypothesis the theorem is true for the
group G/H.

Since H is the identity element of G/H F an element C in G such that H.#H is G/H.
So that (H.)°=H

With quotient group G/H, o(H.)=p

(He)P=H

H=H=C’cH

By corollary of lagranges theorem we have (C")°™=e
(CoHyP=¢

d’=e

let us prove that this d+e.

if we assume that d=e, then consider that

(Ho)™=H""

(Ho)*™=H is the identity of G/H.
But o(H.)=p as H.=G/H
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p/o(H) which is a contradiction our assumption d=e is wrong
d#e

=dp=e

d+#e show that d°=e

hence the induction theorem is proved.

CAUCHY THEOREM :

Statement:
If p is a prime number and p/o(G) then G has an element of order p.
Proof:

It is given that let G be a group and let acG is the order of a is the least +ve integer m
show that a"=e

1. Pisaprime number.
2. plo(G).

we shall prove this theorem by the method of induction on o(G).

Hence we may assume this theorem is true for all subgroups of G such that
o(M<o(G)—> 1

if possible let W#G be a subgroup of G. hence from equl p/o(W). then F an element
b,#eeW show that b;p=e. hence the theorem.

In this case let us assume that let p is not a divisor of any proper subgroup of G.
Let agz(A)— 3

N(@#G— 4

And also let us assume that p is not a divisor of o(N(a)).

P X oN(@)—>5

we write the class equation as

0(G)=0(z(G))+2.a8z(G) o(G)/o(N(a))—>6
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we have p/o(G) — 7 from the hypothesis of the theorem we have

p >< o(N(a)) — 8 from the equ5

p /2a%z(a) o(G)/o(N(a)) — 9
then equ6 can be written as
V(O(G)-Zav(a) 0o(G)/o(N(a)))=0(z(G)) — 10
rom 7 and 9 we have %)(G)- Yagz(a) o(G)/o(N(a)) —> 11
p/o(z(G)) —— 12
but in this case we have p is not a divisor of any proper subgroup
from 11 and 12 the only possibility is z(G)=G
G is abelian.

The remaining problem of this theorem will be true by use of cauchys theorem for
abelian groups.

Cauchys theorem for abelian group is suppose G is a finite abelian group and p is divide
o(G) where p is prime then F an element a#e show that a’=e.

SYLOWS THEOREM FOR ABELIAN GROUP:

STATEMENT:

If G is an abelian group of order o(p) and if p is a prime number show that pa/o(G) then
G has a subgroup of order pa.

Proof:

If a=0 then the subgroup satisfies the conclusion of the result so let us suppose that a0
then p/o(G).

Then by cauchys theorem for abelian group there is an element azecG, a’=e
Let S={xeG/xp"=e for some integer n} we have ep";e<s.

GeS and aZe s=e S isnonempty
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We claim that S is a subset of G. if possible let w#G be a subgroup of G hence p/o(W)
then F an element b;#ecW show that b;"=e hence the theorem in this case is let us assume
that p is not a divisor of the order of any proper subgroup of G.

Let agz(G)— 3

N(a)2G—> 4

P N(A——> 5

We write the class equation as,

0(G)=0(z(G))+Y a5z(G)o(G)/o(N(G)) —» 6
We have p/o(G) from the hypothesis of the theorem

P o(N(a)) fromequ 5

p/ a5z(G)o(G)/o(N(G)) — 9

then 6 can be written as

0(G)- acz(G)o(G)/o(N(G)) =0(Z(a))— 10
from 7 and 9 we have

p/o(G)-2aex(G) o(G)/o(N(a)y=p/o(z(G)) — 11
iIf H is a non empty finite subset of a group G and H is closed under multiplication then

H is a subgroup of G, it is enough if we verify that H is closed.

Let x,y €S.

x""=e yp™=e for some integers.
Now (xy)P "M=xP ™"

=xp".p" yp'p"
=(xp")p".(yp")p"

=e.e=e

pn+m

(xy)”™ "=e for some integer n+m

xyes s is closed.
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S is a subgroup of G. we next claim that o(s)=p”
With B as an integer o<p<a.

FOR IF f A PRIME NUMNER Q SHOW THAT Q/0(S),q#p then by cauchys theorem
for abelian group there is an element ces, e#e, show that c®=e since ces, c”'=e for some
integer n.

Now p" and q are respectively prime.

We can find integers A, u show that Aq+up"=1
C=c'=c Aq+pp"=c*.c pp"

=(c").(c™)"

=e’.e'=e

C=e this is a contradiction to the fact that c#e. there is no prime number g/o(s) and q#0
o(s)=p” for some P show that 0<B<o. by cauchys theorem o(S)/o(G). p<a. Let us assume
that B<a. Let us consider the abelian group G/s

G is abelian G/S is also abelian.

Now 0(G/s)=0(G)/o(S) s is a normal subgroup of an abelian group is normal. And
B<o=p/o(G/S). there is an element s,(xeG) is G/S, s,#S such that (S,)""=S from some
integer n>0.  But S=(S,)™=5,p"=x""es. e=(x"")°O=( xPYPP=xP™P xeg

Sx=s which is a contradiction to the fact that s,#s p<a is impossible. the only possibility is

B=a. O(s)=p"”.
S is the required subgroup of order p*.

Hence the theorem.
POSSIBLE QUESTIONS:
Part-B( 5X8 = 40 Marks)

Answer all the questions:

1. Let H be a subgroup of G. Then prove that
i) the identity element of H is the same as that of G

i) for each aeH the inverse of a in H is the same as the inverse of a in G.
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2. State and prove Lagrange’s theorem.

3. A non-empty subset H of a group G is a subgroup of G iff
i)aeH, beH= abeH
i) acH = a'eH where a™ is the inverse of a in G.

4. State and prove Fermat theorem.

5. If H and K are finite subgroups of G of orders O(H) and O(K), then prove that
O(HK): oH)O (K)

O(HnE) *
6. Prove that A subgroup H of a group G is a normal subgroup of G if and only if
the product of two right coset of H in G is a right coset of H in G.

7. State and prove Euler’s theorem.

8. i) Prove that N is a normal subgroup of G if and only if gNg™ =N for all geG.
i) Prove that a subgroup of cyclic group is cyclic.

9. Prove that the subgroup N of G is a normal subgroup of G iff every left coset of
N in G is a right coset of N in G.

10. Let G be a group , N be a normal subgroup of G and G/N denote the collection of all right
cosets of N in G. Then prove that G/N is a group under the operation defined by
(Na)(Nb)=Nab, for all Na,Nb €G/N.
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SYLLABUS

Properties of cyclic groups, classification of subgroups of cyclic groups. Cycle notation for
permutations, properties of permutations, even and odd permutations, alternating group,
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Introduction to Homomorphism

A homomorphism is a map that preserves selected structure between two algebraic structures,
with the structure to be preserved being given by the naming of the homomorphism.

> A semigroup homomorphism is a map that preserves an associative binary operation.

> A monoid homomorphism is a semigroup homomorphism that maps the identity element
to the identity of the codomain.

> A group homomorphism is a homomorphism that preserves the group structure. It may
equivalently be defined as a semigroup homomorphism between groups.

> A ring homomorphism is a homomorphism that preserves the ring structure. Whether the
multiplicative identity is to be preserved depends upon the definition of ring in use.

> A linear map is a homomorphism that preserves the vector space structure, namely the
abelian group structure and scalar multiplication. The scalar type must further be
specified to specify the homomorphism, e.g. every R-linear map is a Z-linear map, but
not vice versa.

> An algebra homomorphism is a homomorphism that preserves the algebra structure.

> A functor is a homomorphism between two categories.

Homomorphism’s :

Definition:
A homomorphism is a mapping from one algebraic system to a like algebraic system
which pressures structure.

A mapping @ from a group G into a group G is said to be a
homomorphism for all a,beG ®(ab)=d(a).D(b).

Example:
Let ®:G——=>G alsolet G =G and ®(x)=e¥xcG

Then @ is a homomorphism.

Proof:
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Let x,yeG is defined by let G =G and ®(x)=e¥xeG
O(x)=e D(y)=e
Since x,yeG we have xyeG
D(xy)=e
Moreover O(x). O(y)=e.e
=e
Now we have ®(xy)= D(x). D(Yy)
@ is homomorphism.
Lemma 3.1:
Suppose G is a group, N a normal subgroup of G define the mapping @ from G to G/N
by @ (x)=Ny for all xe¢G. Then @ is a homomorphism of G onto G/N.
Proof:
Let x,yeG
Then ®©(x)=N, and ®(y)=Ny where ¥ x,yeG
Since x,yeG,xyeG
D(Xy)=Nyy
=Ny.Ny
=D(x).D(y)
Then by definition @ is a homomorphism of G into G/N let yeG/N then Y=Ny where xeG
and O(x)=N,=Y
Foe every YeG/N , F an element of x in G such that ®(x)=Y.
Then by definition @ is onto.
Hence @ is a homomorphism of G onto G/N.

Note:

@ is called the canonical homomorphism of G, onto G/N.

Definition:
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Let ® be a homomorphism of G into G then the kernel of ® is denoted by K® is defined
as ko= {st/CD(x)=€ } where e 1s the identity element of G.

Lemma 3.2:
If @ is a homomorphism of G onto G then

i) ®(e)=e, the unit element of G

i) O(x H=[D(x)] * ¥ xeG

Proof:

i) Let xeG then ®(x)eG
Consider @(x) © =D(x)
=D(xe)
=D(x).D(e)
=D(e)

i) Now e =d(e)
=D(xx 1) ¥xeG
=D(x).D(x )

=[D(x)] '=D(x )
Hence the lemma
Note:
The above lemma shows that e is the kernel of any homomorphism.
The kernel k is always a non empty subset of G.
Lemma 3.3:
If @ is a homomorphism of G into G with kernel k; then k is a normal subgroup of G.
(or) the kernel of a homomorphism is a normal subgroup.
Proof:
By the previous lemma we have ek
K is a non empty subset of G.
Let X,yek then by definition ®(x)=e and ®(y)=¢
Now consider ®(xy)=D(x).D(y)

—e .e
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=€
xyek whenever x,y®k

Let xek then by definition ®(x)=¢

Now consider ®(x )=[D(x)] *

=(e) -1

=e

X ek whenever xek

K is a subgroup of G

Let acG and xek then by definition ®(x)=¢

Now consider ®(axa )= (a)D(x)D(a )

=P(a)ed(a ™)

=P(a)d(a V)

=P(aa )

=D(e)

=e

axa ‘ek ¥xek and aeG

K is normal subgroup of G.

Lemma 3.4:

If @ is a homomorphism of G onto G with lernel k then the set of all inverse images of
EgE under @ in G is given by ky, where X is any particular inverse image ofg
If g & G then we say that an element x&G is an inverse image of g under @,
If d(x)=0

If g=e then the set of all inverse images of g is k.

Let gZe if keK and y=kx#kx then ®(k)=¢

Now consider

D(y)=D(kx)=D(k).D(x)

=ed(X)

=D(x)
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=g by definition

Y=kx is also an inverse image of g thus all the elements is kx are mapped into g
whenever q)(x)%

Even if any othr element z in G is the inverse image of g and G. we can shw that zekx
Now ®(z)=g but O(x)=g

D(z)=D(x)

D(2)[D(x)] =€

O(2)D(x H=E

O(zx 1)=E

zx ek zekx

Kx contains exactly all the inverse images of g whenever x is a single such inverse image
Hence the lemma.

Note:

If k={e} then by lemma 2.7.2 geG has exactly one inverse image. ® is a one to one
mapping.

Definition:

Isomorphism:

A homomorphism @ from a group G into a group G is said to be an isomorphism if @ is
one to one.
Definition:
Two groups G, G are said to be isomorphic if there is an homomorphism of G onto G".
in this case we write GRG~
We have the following three facts

i) GG~

i) G=G'= G'~G

iii) GG "G =G =G~G

Hence the relation of isomorphic is the set of all groups is an equivalent

relation.
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Corollary:

A homomorphism @ of G into_G with the kernel k is an isomorphism of Gnto G iff
k={e}.
Proof:

Let us first assume that @ is an isomorphic of G into G
Then by definition @ is one to one

Let ack ®(a)=e_ where e is the identity element of G.

=d(e)

D(a)=D(e)

A=e¢ @ is one to one.

K={e}

inversly assume that k={e} now it is enough to show that ® is one to one let x,yeG then
D(x), d)(y)sa

now O(x)=D(y)

post multiplying on both sides we get [®(y)] * then we have
D)[D(y)] =Dy)[D(y)]

O(x).D(y H)=e

O(xy H=e

xy ‘ek=e

xy '=e

X=y

there @ is one to one and hence @ is isomorphic.

Theorem 3.1:
Fundamental theorem on homomorphism of groups.
Let ® be a homomorphism of G onto G with kernel k then G/k=G

(or)
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Every homomorphic image of G is isomorphic to some quotient group of G.
Proof:

Let us define y:G/k—> G by

Y(ka)=®(a}—— 1 where ka is any element of G/k and aeG.
Let us first prove that the mapping to show that ka=kb  y(ka)=y(kb)¥ka,kbeG/k
A, beG

Now we assume that ka=kb

Now a¥ka=kb

Aekb

a=kb where kek ——— > 2

now y(ka)=d(a) by equ 1

=d(kb) by equ 2

=D (k)D(b)

=D(b)

=¥y(kb) by equ 1

Y(ka)=y(kb) whenever ka=kb

W is called well defined.

Let ka, kb €G/k where a, beG

Now y(ka, kb)=y(kab)

=®d(ab)

=D(a)D(b)

=y (ka).y(kb)

Y is homomorphism

Given that @ is onto for every geG F a geG such that ®(g)=g
¥(ke)=g

For every'g & G kgeG/k such that y(kg)=g

Then by definition y is onto
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Let us show that y is one to one by showing that the kernel of y namely ky consists of
only one element k which is the identity element of G/k.

By definition ky={kaeG/k/y(ka)=¢}

={kaeG/k/D(a)=¢ }

={k}

Then by previous corollary v is one to one then by definition G/k~G.

Note:

From theorem 2.7.1 we note that the groups G/k form homomporphic images of the given
group G where k is normal in G. but by lemma 2.7.1 for any normal subgroup N of G,
G/N is a homomorphic images of G. thus there is a one to one correspondence between
homomorphc images of G and normal subgroup of G. to get all homomorphic images of
G we can find all normal subgroups of G and construct all groups G/N. the set of all such
constructed groups gves all homomorphic images of G.

Definition:

A group is said to be simple if it has no non trivial normal subgroups. If it has non trivial
homomaorphic images.

Lemma 3.5:

Let @ be a homomorphism of G onto G with kernel k. For H a subgroup of G. let H be
defined by Hz{st/CD(x)s_H} then H is a subgroup of G and H>k._if His normal_in G
then H is normal in G. moreover this association sets up a one to one mapping from the
set of all subgroup of G which contains k.

Proof:

Let us first show that kcH and H is a subgroup of G.

Let kek.

Then by definition ®(k)=¢

Nowe ¢ H

d(k)eH

keH
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kcH
Now ®(e)=¢ ¢ H
eeH

H is a non empty subset of G. let x, y eH
®(x)eH, D(y)eH

Now consider ®(xy)

O(xy)=D(x).D(y)eH

xyeH

let xeH ®(x)eH

[D(x)] *eH

d(x HeH

X 'eH

X '¢H then by lemma H is a subgroup of G containing kernel k.
ii).. given that H is normal in G

we have to prove that H is normal in g.

let aeG and xeH

then by definition of H ®(x)eH

D(a)eG

Now consider ®(axa *)=d(a).®(x).d(a )
=D(a)D(a)[D(a)] ‘eH

Axa 'eH this is true ¥acg and xeH

H is normal in G.

Lemma 3.6:

Let G be a group for geG defined as Tg:G —> G by xTg=g 'xg ¥xeG prove that

Tg is an automorphism of G to itself.
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Proof:

Let x, y €G then xyeG

Now (xy)Tg=g -1(xy)g

=97%g9 Y9

=(g'x9)(9 "y9)

=xTg.yTg

Tg is homomorphism.

For every yeG x=gyg G such that xTg=g 'xg
=9™gyg g

=y

Tg is onto.

We shall now prove that Tg is one to one

Now xTg=yTg

g7xg=9"yg

X=y

Tg is one to one

Thus Tg is an isomorphism of G onto itslf and hence Tg is an sutomorphism of G to
itself.

Theorem 3.2:

Let @ be a homomorphism of G ang G with kernel k and let N be a normal subgroup of
G,N={xeG/D(x)eN}. Then G/N~G/ N equivalently G/N=G/k/N/k

Proof:

Define a mapping y:G— G / N by

¥(g)=NO(g) ¥geG

Since @ is onto for every'g € G F a geG such that d(g)=¢g

NO(g)=N g

y®(g)=N g= Nd(g)

for every element N®(g)such that y(g)=Nd(g).
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by definition v is onto.

Claim:

Y is a homomorphism.

Letx, y eG

Then y(xy)=Nd(xy)

=NO(x).0(y)

P09 (y)

Y is a homomorphism.

Claim:

the kernel of y is N.

assume that T is the kernel of y then we prove that N=T
teT

y(H)=N

NO(t)=N

D(t)eN

teN

TcN

Let xeN ®(x)eN NO(x)=N y(x)=N xeT NcT
N=T

The kernel of vy is N.

Thus v is a homomorphism of G onto N is kernel N.
Then by a theorem 3.1 G/N=G/N

We shall now show that

G~G/K and N=N/k

By theorem 3.1 we have

G/K=G

Since isomorphism is an equivalent relation we can write G=G/k

From the definition of N and N @ is restricted to N as the range N
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N/k=N

N~N/k

G/N~G/k/N/k

SYLOWS THEOREM:

Statement:

Suppose G is a group of finite order and p is a prime number. If p™/0(G) and p™" is not a
divisor of o(G), then G has a subgroup of order p™.

Proof:

We shall prove that the theorem by induction on o(G).

The theorem is true if 0(G)=1

if 0(G)=1 then p°/0(G) and p*0(G) and G has a subgroup G itself of order p*{e}
let us assume the theorem is true for groups of order less than that of G.

let o(G)=p™.n where p is not a divisor of n. if m=0, then the theorem is p={e} obviously
true.

If m=1 the theorem is true by cauchys theorem.

So let m>1 then G is a group of composite order and so G must posses a subgroup H such
that H£G

If p is not a divisor of o(G)/o(H), then p™/o(H) because o(G)=p™.n=0(H).0(G)/o(H) also
p™ cannot be a divisor of o(H) because p™ will be a divisor of o(G) of while o(H) is
divisor.

Further o(H)<o(G) by our induction hypothesis, the theorem is true for H.

H is a subgroup of order p™ and this will also be a subgroup of G. so let us assume that

for every subgroup H of G where H£G,
P is a divisor of o(G)/o(H)
Consider the class equation,

O(G)=o(z)+) a8z o(G)/0(N(a))
Since asz  N(a)#£G,
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According to our assumption p is a divisor of Y asz o(G)/o(N(a))also p/o(G)
We conclude that p is a divisor of 0(z).

Then by cauchys theorem z has an element b of order p.

Hence z is the center of G. also N={b} is a cyclic subgroup of z of order p.
Since bez N is a normal subgroup of G of order p.

Now consider the quotient group G'=G/N

Then o(G')=0(G')/o(N)=p™n/p=p™*

O(GN<o(G)

By our induction hypothesis G! has a subgroup s' of order p™*

We know that

®: G ———> G/N defined as O(x)=Nx¥xeG is a homomorphism of G onto G/N with
kernel N.

Let S={xeG/®(x)eS'}

Then S is a subgroup of G and S'=S/N
0(S")=0(S")/0(N)
O(s)=o0(s")-0(N)=p™".p=p"

S is a subgroup of order p™

Hence the theorem.

CAUCHY'S THEOREM:

Statement:

Suppose G is finite abelian group and p/o(G) i.e., p is a divisor of o(G) where p is a prime
number. Then there is an element aze€G. Such that aP=e.

Proof:
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Let us prove that this theorem by the method of this induction on the order of G.
Assume that the theorem is true for abelian groups of order is less that G.
The theorem is vacuously true for groups of order one.

If G has no proper subgroups then G must be of prime order because every group of
composite order possesses proper subgroups.

But p is prime and p/o(G)=0(G) must be p. also we know that every group of prime order
1s cyclic each element a#eof G will be a generatorof G.

G has p-1 element as aze such that a"=a%©=e.

If G has a proper subgroup H H#{e} and H#G and if p/o(H) then by our induction
hypothesis the theorem is true for H and also H is abelian group with o(H)<o(G).

F an element beH and b#e show that bP=e.

Let us assume that p is not a divisor of o(H). since G is a abelian . H is a normal subgroup
of G and so G/H is a quotient group.

Since G is a abelian G/H is also abelian.
Since 0(G/H)<o(G) since o(H)>1 since p/o(G) and p is not a divisor of o(H).

P is a divisor of o(G)/o(H). hence by our induction hypothesis the theorem is true for the
group G/H.

Since H is the identity element of G/H F an element C in G such that H.#H is G/H.
So that (H.)°=H

With quotient group G/H, o(H.)=p

(He)P=H

H.=H=CPeH

By corollary of lagranges theorem we have (C?)°"=e
(CO(H))IO:e

d’=e

let us prove that this d+e.

if we assume that d=e, then consider that
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(Ho)™=H"
=Hq4

(Ho)°™=H is the identity of G/H.

But o(H.)=p as H.=G/H

p/o(H) which is a contradiction our assumption d=e is wrong
d+#e

=dp=e

d+#e show that d’=e

hence the induction theorem is proved.

CAUCHY THEOREM :

Statement:
If p is a prime number and p/o(G) then G has an element of order p.
Proof:

It is given that let G be a group and let agG is the order of a is the least +ve integer m
show that a™=e

1. Pisa prime number.
2. plo(G).

we shall prove this theorem by the method of induction on o(G).

Hence we may assume this theorem is true for all subgroups of G such that
o(T<o(G)— 1

if possible let W#G be a subgroup of G. hence from equl p/o(W). then F an element
b,#e€W show that byp=e. hence the theorem.

In this case let us assume that let p is not a divisor of any proper subgroup of G.

Let agz(A)— 3
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N(@2G—> 4
And also let us assume that p is not a divisor of o(N(a)).

P X oN@)—>5

we write the class equation as

0(G)=0(z(G))+2asz(G) o(G)/o(N(a))—6

we have p/o(G) — 7 from the hypothesis of the theorem we have

p >< o(N(a)) —— 8 from the equ5

p /2agz(a) o(G)/o(N(a)) — 9
then equ6 can be written as
vIC/(O(G)-ZaQZ(fﬂ) 0o(G)/o(N(a)))=0(2(G)) — 10
rom 7 and 9 we have %)(G)- Yaez(a) o(G)/o(N(a)) — 11
p/o(z(G)) —— 2
but in this case we have p is not a divisor of any proper subgroup
from 11 and 12 the only possibility is z(G)=G
G is abelian.

The remaining problem of this theorem will be true by use of cauchys theorem for
abelian groups.

Cauchys theorem for abelian group is suppose G is a finite abelian group and p is divide
o(G) where p is prime then F an element a#e show that a’=e.

SYLOWS THEOREM FOR ABELIAN GROUP:

STATEMENT:

If G is an abelian group of order o(p) and if p is a prime number show that pa/o(G) then
G has a subgroup of order pa.

Proof:

If a=0 then the subgroup satisfies the conclusion of the result so let us suppose that a0
then p/o(G).
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Then by cauchys theorem for abelian group there is an element azecG, a"=¢
Let S={xeG/xp"=e for some integer n} we have ep";e<s.
GeS and aze s=e s is non empty

We claim that S is a subset of G. if possible let w#G be a subgroup of G hence p/o(W)
then F an element b;#ecW show that b;"=e hence the theorem in this case is let us assume
that p is not a divisor of the order of any proper subgroup of G.

Let agz(G)— 3

N(@G—> 4

P N(A—— 5

We write the class equation as,

0(G)=0(z(G))*+Y asz(G)o(G)/o(N(G))— 6
We have p/o(G) from the hypothesis of the theorem

P o(N(a)) fromequ 5

p/ a8z(G)o(G)/o(N(G)) — 9

then 6 can be written as

0(G)- a&z(G)o(G)/o(N(G)) =0(Z(a))— 10
from 7 and 9 we have

p/o(G)-2aex(G) o(G)/o(N(a)y=p/o(z(G)) —> 11
iIf H is a non empty finite subset of a group G and H is closed under multiplication then

H is a subgroup of G, it is enough if we verify that H is closed.

Let x,y €S.

x""=e yp™=e for some integers.
Now (xy)P "M=xP ™"

=xp".p" yp"p"
=(xp")p".(yp")p"

=e.e=e
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(xy)""""=e for some integer n+m

xyes s is closed.

S is a subgroup of G. we next claim that o(s)=p”
With B as an integer o<f<a.

FOR IF f A PRIME NUMNER Q SHOW THAT Q/0(S),q#p then by cauchys theorem
for abelian group there is an element ces, e#e, show that c’=e since ces, c”'=e for some
integer n.

Now p" and q are respectively prime.

We can find integers A, pu show that Aq+up"=1
C=cl=c Aq+pp"=c.c pp"

=(c).(c™)"

=e’ e'=e

C=e this is a contradiction to the fact that c#e. there is no prime number g/o(s) and q#0
o(s)=p” for some B show that 0<B<a. by cauchys theorem o(S)/0(G). f<a. Let us assume
that B<a. Let us consider the abelian group G/s

G is abelian G/S is also abelian.

Now 0(G/s)=0(G)/o(S) s is a normal subgroup of an abelian group is normal. And
B<o=p/o(G/S). there is an element s,(xeG) is G/S, s,#S such that (S,)*'=S from some

integer n>0.  But S=(S,)™=s,p"=x""es. e=(xP")°C=( xPMPP=xP*P yeg
Sx=s which is a contradiction to the fact that s,#s p<a is impossible. the only possibility is
B=a. O(s)=p".

S is the required subgroup of order p®.

Hence the theorem.

Automorphisms:

Definition:

An automorphism of a group is an isomorphism of an onto itself.

Lemma 3.7:

prove that A(G) is a group or if G is a group then A(G) the set of automorphisms of G is

also a group.
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Proof:

We know that A(G) is a collection of all one to one mappings of an onto itself and A(G)
is also a group under the composition of mappings as binary operation.

We shall now show that A(G) is a subgroup of A(G).

Define 1:G——> G by xi=x¥xeG

Obviously 1 is the automorphism of G onto itself

ieA(G)

A(G) is a non empty subset of A(G) let T,,T,eA(G)

We know that T4,T, is one to one and onto whenever both T4, T, are one to one and onto
To show that T,,T, is a homomorphism of G to itself

Let x, yeG

Then (xy) Ty, To=((xy)T1) T2

=((XT)(YT1)T2

(XT)TL(YTYT, ¥x,yeG by definition Ty, T, is a homorphism of G to itself.

T1,T2eA(G) whenever Ty, T,6A(G) next we prove that T '¢A(G) whenever TeA(G) to
show that T * is a homomorphism of G to itself

Now consider (XT *yT H)T=(xT HT(yT *T)

(T Ty(T"T)

=Xiyi

=Xy

Post multiplying on both sides by T we get

XT Y THTT *=(xy)T*

(xy)T '=xT tyT*

Tt is a homomorphism of G to itself

T '18A(G) whenever TeA(g) is a subgroup of A(G)

Hence A(G) is a group under the composition of mappings as binary operations.

Note:

A(G) is called the group of automorphism of G.
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Definition:

Let G be the group for geG

Define Tg:G ——>G

By xTg=gxg " ¥xeG then this mapping Tg is an automorphism of G. this automorphism
of G is called an linear automorphism.

Remark:
An automorphism which is not inner is called as outer automorphism.
Lemma 3.8:

Let G be a group for geG defined as Tg: G——>G by xTg=g 'xg ¥xeG
Prove that Tg is an automorphism of G to itself.
Proof:

Let x, yeG then xyeG

Now (xy)Tg=g ~(xy)g

=97xg9™yg

=(g 'xg)(g™y9)

xTg.yTg

Tg is a homomorphism.

For every yeG x=gyg'18G such that

xTg=g 'xg

=g9yg™g

=y

Tg is onto

We shall now prove that Tg is onto.

Now xTg=yTg

G xg=g"yg

X=y

Tg is one to one.
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Thus Tg is an isomorphism of G onto itself and hence Tg is an automorphism of G to
itself.

Group of inner automorphism of G:

Define ®(G)={TgeA(G)/geG}

We shall prove that ®(G) is a subgroup of A(G).

Now eeG

xTe=e 'xe=e 'x=ex

=X

=x1¥ xeG

Te=ie®d(a)

@d(G) is a non empty subset of A(G)
Let xeG

Let Tg, The®(a) where g,heG
Now consider,

xTg=(gh) "x(gh)

=h*g *xgh

=h (g *xg)h

=(g 'xg)Th

=(xTg)Th

=xTgTh ¥ xeG

Tgh=TgTh whenever Tg,Th e®(Q)
Let Tged(G)

We have to show that Tg 'e®(G)
To ,prove that TgTg *=c

We have Tgh=TgTh
XTgTh=xTgh

xTgTg *=xTgg ™

=xXTe
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=e 'xe
=X
=xi

TgTg *=ie®(G)

(Tg) '=Tg *ed(G) since g '¢G.

Tg '=Tg'e®d(G) since g 'eG

Tg *e®(G) whenever Tged(G)

Then by lemma ®(G) is a subgroup of A(G).

®d(G) 1s a group.

This group is called the group of inner automorphism of G.
Note:

D(G)cA(G)s

Lemma 3.9:

If g~G/zwhere I(G) is the group of inner automorphism of G and z is the center of G.
Proof:

Define a map y: G=——=>A(G)

By y(g)=Tg ¥ geG

Let g, heG then gheG

Now y(gh)=Tgh

=TgTh

—y(g)y(h)

¥ is a homomorphism of G into A(G) whose image is I(G).
We shall now prove that the kernel of v is z.

Suppose that k is the kernel of y then we prove that k=z
Let kek, then

Y(k)=identity element of A(QG)

Tk=i

XTk=xi
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k "xk=x

xk=kx

kez

ke¢Z

zeZ then by the definition of center of z we have zx=xz ¥ xeG
x=z 'xz

Xi=XTz

=Tz

i=y(2)

zek

z=k

vy is a homomorphism of G into A(G) whose image is 1(g) and kernel k=z then by
theorem 2.7.1

G/z=the range of y is A(G)

G/Z~1(G)

(G)=G/Z

Lemma 3.10:
Let G be a group and @ an automorphism of G. if agG is of order o(a)>0, then

O(®(a))=o(a).
Proof:

Let us suppose that o(a)=n

Then a"=e— 1

Now consider (D(a))"=D(a).d(a)........ d(a)
=d(a, a, a, ........a)

=d(a")

=®d(e)=e by lemma 2.7.2

If possible let (d(a))"=e for o<m<n
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Then (®(a))"=e=d(e)
d(a™)=D(e)=a"=e

This is a contradiction since o(a)=n
Our assumption that (d(a))™=e is false
d(a™)=e for the least =ve integer n
[D(a)]"=e

®d(a) has order n

O(®(a))=n=0(a). hence the lemma.

Cayley’s theorem:

Every group is isomorphic to a subgroup of A(S) for some appropriate S.
Proof:

Let G be a group put s=G, then for geG.

Define the mapping 1g:G—=> G

By x1G=xg ¥xeG

Let x, yeG

Then xtg=xg

yig=yg

If x1g= y1g

Then xg=yg X=y 1g1is one to one.

If yeG then y=yg 19

=(yg™)g

=(yg g

Now yg 'eG  yg ™ is the pre image of y in G under tg. Tg is onto.
Tg e A(G) ¥ geG

Now define the mapping y:G——— A(Q) by y(g)=1g ¥geG
Let us know prove that y is hpomomorphism.
Let a, beG then for any xeG we have xtab=xab ¥ xeG

Now consider xtatb=(xta)tb
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=(xa)tb
=xab ¥ xeG
xtatb=xtab
tatb=tab

now consider y(ab)= tab
= tatb
=y(a).y(b)
¥ is a homomorphism of G into A(G) suppose that k is the kernel of y. Let keK then
y(k)=I by definition of kernel.
k=1
xtk=xi
xk=xe
k=e
Y is one to one.
Y is isomorphism of G into A(G).
Also v is onto upto the range of y. We know that the range of a homomorphism is a
subgroup of A(G).
Hence every group is isomorphic to a subgroup of A(S) for some appropriate S.
Theorem 3.3:
If G is agroup H a subgroup of G and S is the set of all right cosets of H in G, then there

1s a homomorphism. © of G into A(S) and the kernel of O is the largest normal subgroup
of G which is contained in H.

Proof:

Given that s={Hg/geG} we oberve that s need not be a group and still be a group only if
H is a normal subgroup of G.

On s defines a mapping tg;S—=—= S

By (Hx)tg=Hxg, geG, xeG

Let x, yeG then
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(Hx)tg=(Hy)tg

Hxg=Hyg= Hx=Hy=x=y tg is one to one.

If HxeS for geG then Hx=Hxg g

=(Hxg")g

=(Hxg “)tg

Hxg ™ is the preimage of Hx for any HxeS under tg

=tg 1s onto thus tgeA(S) for geG

Then define a mapping ©:G=> A(S)

By O(g)=tg ¥geG

Let g, heG then Hx tgth=(Hxtg)th

=(Hxg)th

=Hxgh

=Hxtgh

Tgh=tg th

Now consider O(gh)=tgh

=tgth

=6(g)-O(H)

Then by definition © is a homomorphism of G into A(S).
Let k be the kernel of © then

K={xeG/O(x)=1}

={xeG/tc=1}

={xeG/Hgtx=Hg ¥gcG}

={ xeG/Hgx=Hg ¥geG }

K is the kernel of © iff xek

Hgx=Hg ¥geG

We shall know prove that k is the largest normal subgroup of G contained in H. since k is
the kernel of © by lemma 2.7.3 k is the normal subgroup of G. since is true for all geG

We choose g=e
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Hex=He Hx=H xeH

kcH

k is a normal subgroup of G contained in H. now we prove that k is the largest normal
subgroup of G contained in H. if N is a normal subgroup of G such that NcH then we
prove that Nck let neN then gng ‘N ¥geG and neN

.gng ‘eH ¥geG and neN

Hgng *=H

Hgn=Hg

Nck

K is the largest normal subgroup of G contained in H. hence the proof.

Remarks:

The above theorem can be applied to decide whether the group is simple as follows.
Suppose the homomorphism © is not an isomorphism then k#{e} k is a non trivial
subgroup contained in H. G is simple.

Lemma 3.11:

If G is a finite group and H#G is a subgroup of G such that o(G)*i(H) then H must
contain a non trivial normal subgroup of G. in particular G cannot be simple.

Since o(A)*i(H)! there are 2 possibilities

o(G)> i(H)!

o(G)< i(H)!

suppose that o(G)> i(H)! by theorem, ©:G ——>A(S) is a homomorphism where s
Is the collection of all right cosets of H in G.

.. 0(A(s))=i(H)

=0(G)/o(H)

O(A(S))=i(H)!

We also know that the kernel k is the largest normal subgroup of G contained in H. in this
case O cannot be an isomorphism as seen below. If © were an isomorphism between G

and A(S) then ©(G) would have o(G) elements and yet would be a subgroup of A(S)
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. 0(A(S))>0(G)

. i(H)!>0(G) which is contradiction. © is not an isomorphism but a homomorphism then
by the corollary under lemma 2.7.4 k#e hence this homomorphism ensures the existence
of a non trivial normal subgroup K in H and hence is in G. G is not simple.

Let us know that o(G)<i(H)!

Given that o(G)*i(H)=0(A(S))

By lagranges theorem A(S) can have no subgroup of order o(G). there is no subgroup
isomorphism to G. however A(S) contains O(G).

O(G) cannot be isomorphism in G. © cannot be an isomorphism. H must contain a non
trivial normal subgroup of G. in this case also G is not simple.

Hence the lemma

Permutation groups:

We know that every group can be represented isomorphically as a subgroup of A(S) for
some set S and in particular a finite group G can be represented as a sungroup of S,, for
some n where S, is the symmetric group of degree n.
Suppose that S is a finite set having four elements Xi, X,, X3, X4 if ®€A(S)=S, then @ is a
one to one mapping of s onto itself.
For example if ®:x;—> X,

Xo —> X4

X3 —» X3

X4— X3 this mapping can be represented as ¥1oa2 o3 x4 we
¥2 x4 x1 x3

can represent this permutation as 123 4
2 4 1 3

2 3 4
4 1

3

if @ is a permutation is represented by E

J and y is a permutation can be

1 3 2
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D= 1 2 3 4 1 2 3 4 _ 1 2 3 4

V"2 401 3 1 3 2 4 2 1 3 4
Let S be a set and ©eA(S)

Given two elements a,bes we define a=0" iff b=aO' for some integer I, where | can be
positive, negative, zero. We claim this defines an equivalence relation since a=0%¥aes
then we have a=0©" relaxitivity is true. Now assume that a=0" then by definition b=a6'
where I is some integer from this we have a=b© ' where —I is a negative integer.

b=0% symmetry is true. Now we assume that a=0" and b=6° then by definition b=a0'
c=a®' where I and j are some integers now c=be

=a0'0!

—a0™

a=0° transitivity is true. The relation defined above is an equivalance relation on s. hence
by theorem 1.1.1 this equivalance relation = indices a decomposition of s into disjoint
subsets, namely the equivalance classes. The equivalance classes of an element seS is
called the orbit of s under ©.

Orbit of s={s0'/i=0, +1, +2,........ }

When s is finite, O is called as permutation and corresponding orbits are called ccles. In
this case F a smallest +ve integer and depending on s such that sO'=s

By a cycle of © we mean an ordered set {s,s0,s6%,....... s6"}, 1is called the length of
the cycle.

Definition:

A cycle with 2 elements is called as 2-cycles.

Definition:

A transposition is defined to be a permutation with effects only two elements.

Example:

In the cycle (1 3 4) we associate the permutation (1 3 4)= ; i i ‘: g
The permutation under the cycle has the same effect on the elements of the cycle but the

permutation leaves other elements fixed.

The permutation corresponding to a cycle (2 5) is a permutation (2 5)= {i é g i g]

Lemma 3.12:
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Every permutation is the product of its cycles or every permutation can be uniquely
expressed as a product of disjoint cycles.

Proof:

Let S be a finite set. Let © be the permutation. Let y be the product of the disjoint cycles
of ©. The cycles of © are of the form (s,s0,s6%,....... so" b,

By the multiplication of cycles and since the cycles of © are disjoint. The image of sles
under © namely s'O is the same as the image of s' under .

O and y have the same effect on every element of s. hence ©=y.

Every permutation is the product of its cycles.

Lemma 3.13:

Every permutation is a product of 2cycles(transposition).

Proof:

Consider ‘m’ cycle (1, 2, 3.....m)

A single permutation show that

(1,2, 3...m)=(1,2)(1,3)...(1,m)

More generally the m-cycles

(al,ag. .. ..am)=(a1,a2) (alag). .. .(alam)

This decomposition is not unique.

By this we mean an m-cycle can be written as a product of two cycles is more than one
way
For example,
(123)=(12)(13)

=313 2)
Now since every permutation is a product of disjoint cycles and every cycle is a product
of two cycles, we have every permutation is a product of 2 cycles.

Remarks:

_(1 2 3 4
(1234)= [2 2 J

saconod; 5 1[50

1 2 3 4
4 2 3 1
2 4)
3

3
4 1

1
2

J

1. Now (123) = [z § ﬂ
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1 2 (12 3
(1’2)(1’3):[2 1 ;iJ (3 2 1]
1 273
_fz 3 1\

(1 2 3) (1 2 3
BLE2 = 3 2 1) |1 3 2
N
{1 2 3
2 3 1
(123)=(12)(13)
B1)(32)
Definitions:

1. A permutation O¢S,, is called an even permutation if it can be represented as a

product of even no of transpositions.
2. A permutation is called an odd permutation if it is not an even permutation
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POSSIBLE QUESTIONS:
Part-B( 5X8 = 40 Marks)

Answer all the questions:

1. If f is a homomorphism of a group G into G', then prove that
1) f(e) = €', where e is the identity of G and €' is the identity of G'
i) f(@a) = [f@)]", VaeG

2. State and prove fundamental theorem on homomorphism of groups .

3. State and prove Cayley’s theorem.

4. State and prove Cauchy’s theorem for abelian groups.

5. State and prove Sylow’s theorem for abelian groups.

6. Suppose G is a group and N is a normal subgroup of G. Let f be a mapping from G to G/N
defined by f(x)= Nx, V¥ xeG. Then f is a homomorphism of G onto G/N and kernel f =N.

7. Show that a—a™ is an automorphism of a group G iff G is abelian.

8. If @ is a homomorphism of G into G with kernel K, then prove that K is a normal subgroup
of G.

9. The set I(G) of all inner automorphisms of a group G is a normal subgroup of the group of its
automorphisms isomorphic to the quotient group G/Z of G where Z is the centre of G.

123
231

123

]andB=(3 12

10. Define a permutation. If A= [ ] then find AB and BA.
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UNIT-1V
SYLLABUS

External direct product of a finite number of groups, normal subgroups, factor groups, Cauchy’s
theorem for finite abelian groups
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INTRODUCTION TO RING THEORY

In algebra, ring theory is the study of rings—algebraic structures in which addition and
multiplication are defined and have similar properties to those operations defined for the
integers. Ring theory studies the structure of rings, their representations, or, in different
language, modules, special classes of rings (group rings, division rings, universal enveloping
algebras), as well as an array of properties that proved to be of interest both within the theory
itself and for its applications, such as homological properties and polynomial identities .

Definition

A non empty set R is said to be an associative ring if in R these are defined two
operations denoted by ‘+’ and ‘.” Called addition and multiplication respectively such that for all
a,b,c eR

i. atbeR
ii. a+b=b+a
iii.  at+(b+c)=(atb)+c
iv.  Thereis an element 0 in R such that a+0=0+a=a¥a € R
v.  There exist an element —a in R such that a+(-a)=0=(-a)+a
vii abeR
vii.  (a.b).c=a.(b.c)

viii. (i) Left Distributive law:
a.(b+c)=a.b+a.c

(ii) Right distributive law:
(b=c).a=b.a=c.a
Definition
A nonempty set R is called a ring, if it has two binary operations called addition

denoted by a + b and multiplication denoted by ab for a, b € R satisfying the following axioms:

Multiplication is associative, i.e. a(bc) = (ab)c foralla, b, c € R.

Distributive laws hold: a(b + ¢) =ab +acand (b + c)a=ba+caforalla, b,c € R.
Definition
Let R be aring.
(1) If multiplication in R is commutative, it is called a commutative ring.

(2) If there is an identity for multiplication, then R is said to have identity.
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(3) A nonzero element a € R is said to have a left (resp. right) inverse b if ba=1
(resp. ab = 1) We say that a is invertible or a unit in R if it has a left and a right inverse.
(4)A commutative division ring is called a field.
(5)An element a of a commutative ring R is called a zerodivisor if there is a nonzero b € R
such that ab = 0. An element a € R that is not a zerodivisor is called a nonzerodivisor. If all
nonzero elements of a commutative ring are nonzerodivisors, then R is called an integral
domain.
(6) A nonempty subset S of a ring R is called a subring of R if S is a ring with respect to
addition and multiplication in R.

Example of rings

The set of integers Z, the set of rational numbers Q, the set of real numbers R and the
set of complex numbers C are commutative rings with identity.
NOTE
I.  Inthis case we also say that (R,+,.) is a ring
ii.  Oiscalled the zero element of the ring and it is the additive identity element
iii.  If there is an element 1 in R such that a.1=1.a=a ¥ a € R then R is called a ring with unit
element.

iv. Ifforall a,b € R a.b=b.athen R is called a commutative ring

Some Special Classes Of Rings

Definition

If R is a commutative ring then a#0 € R is said to be a zero-devisor if there exist a,b €

R,b# 0 such that ab=0
[Eg : define (al,bl,cl) (a2,b2,c2)=(ala2,b1lb2,c1c2)
(1,2,0) (0,0,7)=(0,0,0)]

Examples

1.Some M is a ring of 2*2 matrices with their elements as integers, the addition and
multiplication of matrices being the two ring composition then M is a ring with zero-devisors
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2.The ring of integer is a ring without zero-devisors
Definition
A commultative ring is an integral domain if it has no zero devisors
Example : The ring of integers
Definition

A ring is said to be a division ring if its non-zero element form a group under
multiplication

Remark

Sometimes a division ring is called a skew field.
Definition

A field is a commutative division ring
Lemma4.1l
If R is ring, then for all a,b € R

1. a0 =0.a=0
2. a(-b)=(-a)b=-(ab)
3. (-a)(-b)=ab

If in addition,R has a unit element 1 then

4. (k) a=-a
5 (-1)(-1)=1

1) Let a € R then consider
a.0 = a.(0+0)
=a.0+a.0 (L.D.L)
(i.e)a.0=0=A.+A0
=>0=a.0 (by L.C.L)
Since R is a group under addition we have
a.0=0
Similarly we can prove 0.a=0

Thus we have a.0=0.a=0

Prepared by Dr.K.Kalidass, Assistant Professor, Department of Mathematics, KAHE. Page 4/13




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Group theory I
COURSE CODE: 17MMU303 UNIT: IV BATCH-2017-2020

2) We shall first show that a(-b) = -(ab)
(ie) ToP.Ta(-b) +ab=0
Now consider, a(-b) + ab = a(-b + b)
=a(0)
=0hby1l
(ie)a(-b)+ab=0
(i.e) a(-b) = -ab
Similarly we can P.T (-a)b = -ab
= a(-b)=(-a)b=-ab
3)Now consider (-a)(-b)
(-a) (-b) = -(a(-b)) by 2
= -(-ab)
=ab
4)Given that R has a unit element 1
By definition L.a=al=awvaeR
Now consider (k10a=a=(-a)a+ l.a
=(-1+1)a
=0a=0
= (-l)a=-a
5)In a proof of fourth result we have,
(-(l)a=-avaeR
If we take a = -1 then we have (-1)(-1) = -(-1)
() (D=1
The Pigeon Hole Principle

Definition

If n objects are distributed over m places and if n > m then some places receives at least
two objects.
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Equivalently, if n objects are distributed over n places in such a way that no place receive
more than one object, then each place receives exactly one object.

Lemma: 4.2
A finite integral domain is a field.
Proof
An integral domain is a commutative ring such that ab=0 if atleast one of a or b is 0.

A field is a commutative ring with unit element in which every non zero element has a
multiplicative inverse in the ring.

Let D be the finite integral domain with n elements
In order to show that D is a field we have to P.T
I.  There existan element 1 € D such that
al=la=awvavD
Il.  For every element a # 0 € D #a b € D show that ab=1
Let x1,x2...xn be the n elements of D
Leta#0eD

Consider the elements,

xla,x2a,...xna they are in D

we claim that they are all distinct

if possible let us assume that

xia =xja fori#j

then xia—xja=0

(xi—xj))a=0(R.D.L)

Since D is an integral domain and a # 0 (by assumption )

We have xi — xj =0 => xi — X]
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This is contradiction since i #j
Our assumption that xia = xja is false
xia # xja for i#
xla,x2a...xna are distinct and these n-distinct elements lie in D.
therefore by the pigeon hole principle these elements are the elements of D
if Y € D then y=xia for some xi
in particular since a € D we must have
a=x a for some xi0 € D
since D is commutative we have
a = xi0 a=axi0
we shall P.T xi0 is a unit element for every element of D
now yxi0 = (xi a)xi0

=xi(axi0)

=xi.a

=y
Xi0 is the unit element of D and we write it as 1

xi0=1

NowleD.al=avaeD
1 must be of the form xia for some xi € D

1 =xia
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+abebsuchthat1l =ba
Ab =ba =1 => Innverse exist
Thus we proved two conditions
Hence every finite integral domain is a field
Corollary:
If p is a prime no then jp, the ring of integers mod p is a field.

Proof:

Jp has a finite no of elements 0, 1, 2, 3, (»p — 1) where 1, is the class of integers which

give remainder i on division by p.

Then by the above lemma it is enough to prove that jp is an integral domain but we know

that jp is a commutative ring. Let a,b € jp and ab = 0 then p must divide a or b
Eithera=0mod p orb=0mod p

(ie)a=0o0rb=0

Jp has no zero divisor

By definition jp is a finite integral domain

Hence by the above lemma, jp is a field

NOTE

Loe(;[)f be an finite field having m elements like jp, by corollary (ii) of lagranges theorem we have
a‘’ =e

Under addition we have
ata+...=0
«—>

m terms

(i,eyma=0
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Definition

An integral domain D is said to be of characteristic ‘0’ in the relation ma = 0 where a #
0 is in D and where m is an integer can hold only if m=0

Example

i. Thering of integers
ii. The ring of even integers
iii. The ring of rationals

Definition

An integral domain D is said to be of finite characteristic if # a +ve integer ‘m’ such that
ma=0 forallaeD

NOTE
1. If D is of finite characteristic then we define the characteristic of D to be the
smallest the integer p, S.Tpa=0wvaeD
2. If D is of finite characteristic then its characteristics is a prime number
3. An integral domain which has an finite characteristics
Definition

An element ‘a’ of a ring R is said to be Idompotent if a° = a
A ring R is called a Boolean ring if all elements are idempotent

Homomorphisms

Definition
A mapping from ring R into the ring R is said to be a homomorphism if
i. ®(a+b)=d()+D(b)
ii. ®(ab)=D(a). D (b) vabeR

Lemma 4.3
If @ is a homo morphism of R into R then

. ®@0)=0
ii. @ (-a) =- d(a) forevery ae R

Proof
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i.  LetaeR then ®(a) € R now d(a) + 0 = d(a)
(i.c) D(a) + 0 = D(a + 0)
(i.) D(a) + 0 = d(a) + D(0)
=>®(0)=0by L.C.L

ii.  From (i) we have ®(0) =0
(i.e) 0 = ®(o)

=®(a+-a)
= ®d(a) + O(-a)
= @(-a) = - O(a)
Hence the proof
NOTE

If both R and R’ have the respective unit element as 1 and 1’ for their multiplication, it

need not follow that ®(1)=1"
However if R’ is a integral domain (or) R’ is arbitrary but @ is onto then ®(1) =1’
Definition

If @ is a homomorphism of R onto R’ then the kernel of @, denoted by I(®) is the set of

all elements a € R such that ®9a)=0 where 0 is the zero element of R’.

(i.e) [(®) ={ a e R / ®(a)=0,the zero element of R’}

Lemma: 4.4

If ®@ is a homomorphism of R into R* with kernel I(®),then
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1. I(®) is a subgroup of R under addition
2. Ifael(®) and r € R then both ar and ra are in I(D)

Proof

1. We know that ®(0) = 0 by lemma3.3.3
0 € I(D)

I(®) is a non-empty subset of R

Let a,b € (D)

®(a) =0 and ©(b) =0

Since @ is a homomorphism we have,
®(atb) = d(a) + vIib)

=0+0

= atb e (D)
let a € [(D)

®d(a)=0
But we know ®(-a) = - ®(a)
=0
-a € [(®) whenever a € [(®) then by a lemma I(®) is a subgroup of R under addition.
Since a € (D) by definition ®(a)=0

Now consider ®(ar)
®(ar)=D(a). D(r)
=0
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= arel (D)

similarly @(ra) = @ (r). d(a)
=®d(1).0
=0

= rae (D)
Hence if a € [(®) and r € R, then both ar and ra are in [(D)

Definition
1. A homomorphism of R into r’ is said to be an isomorphism if it is a one to one
mapping.
2. Two rings are said to be isomorphic if ther is an isomorphism of one onto the
other

Lemma:4.5
The homomorphism @ of R in R’ is an isomorphism iff I(v) = {0}

Proof

Let us assume that @ is an isomorphism of R into R’. then by definition @ is one to one.
Leta e [(D)

®(a) = 0 where 0 is the identity element of R’

O(a) = D(0) [D(0)=0]

= a=0[¢ 1s one to one]

Conversely,

Assume that [(D)={0}

It is enough to prove that @ is one to one.
Letx,yeR

Then @(x), (y) e R’

Now ®(x) — D(y) = D(x) + D(-Y)
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= O(x-y)

If ®(x) = D(y) then
O(x) — D(y)=0
Thus ®(x-y)=0

X—yel(®)= {0}
X—-y=0
X=y

@ is one to one

g 4 4 3

Hence the homomorphism ® of R into R’ is an isomorphism iff [{ ®}=0.

Theorem:
The intersection of any two left ideals of a ring is again a left ideal of the ring.
Proof:
Let I, and I, be two left ideals of a ring R. Then I, and I, are subgroups of R under

addition.
Therefore I, ~I, is also a subgroups of R under addition.

Now to show that I; I, is a left ideal of R, we are only to show that reR, sel; "I, =>rsel; M,
We have sel, mil,= sel; and s,

But I, and I, are left idals of R.

Therefore reR, sel; =rsel; and reR, sel,=rsel,.

Now rs &l and rsel,=rsely ;.

Therfore I; ~{; is also a left ideal of R.

Theorem:
Fundamental theorem on homomorphism of rings.

Every homomorphic image of a ring R is isomorphic to some residue class ring thereof.
Proof:

Let R’ be the homomorphic image of a ring R and f be the corresponding homomorphism.
Then f is a homomorphism of R onto R’. Let S be the kernel of this homomorphism.

Then S is an idealof R. Therefore R/S is a ring of residue classes of R relative to S.
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We shall prove that R/S=R’.

If acR, then S+aeR/S and f(a) eR’.

Consider the mapping ¢:R/S—R’ such that $(S+a) =f(a) ¥ a € R.

To prove: ¢ is well defined
If a.b eR and S+a = S+b then ¢(S+a) = ¢p(S+b)
We have S+a = S+b

= a-beS

=f(a-b) =0’

=>flat(-b)] =0’

=f(a) + f(-b) =0’

=f(a) =f(b)

=¢(S+a)= ¢(S+b)

= ¢ is well defined.

To Prove: ¢is1-1

We have ¢(S+a) = ¢(S+b)
=f(a) =f(b)

=f(a) -f(b) =0’

=f(a) + f(-b) =0’
=f(a-b)=0

= a-beS

= S+a=S+b

Therefore ¢ is 1-1.

To Prove : ¢ is onto

Let y be any element of R’. Then y=f(a) for some aeR because fis onto R’.

Now S+aeR/S and we have ¢(S+a) =f(a) =y.
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Therefore ¢ is onto R’.
Finally we have ¢[(S+a) + (S+b)]= ¢[(S+(a+b)] = f(a+b)
= f(a)+f(b) = $(S+a) +¢(S+b)

¢[(S+a) (S+h)]= ¢[(S+(ab)] = f(ab) = f(a)f(b) = [$(S+a)I[ $(S+b)]

Therefore ¢ is an isomorphism of R/s onto R’.
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POSSIBLE QUESTIONS:
Part-B( 5X8 = 40 Marks)

Answer all the questions:
1. IfRis aring, then foe all a,b ER,

(a0 =0a=0.

(ii) a(-b) = (-a)b = -(ab)

(iii) (-a)(-b) = ab.

(iv) a(b-c) = ab - ac

2. 1) Define Integral domain with example.

i) Prove that every finite integral domain is a field.
3. Prove that every field is an integral domain.
4. 1) Define field with example.

ii) Prove that a skew field has no divisors of zero.

5. Show that the set of numbers of the form a+b+v2, with a and b as rational numbers
is a field.

6. Prove that a ring R has zero divisors iff cancellation law is valid in R.

7. Prove that a finite commutative ring R without zero divisors is a field.

8. Let R and R' be a rings and f:R—R" be an isomorphism. Then prove that
i) R is commutative = R' is commutative
i) R is ring with identity = R" is ring with identity
iii) R is an integral domain—= R’ is an integral domain
iv) Ris afield= R'is a field

9. Prove that the homomorphism ¢ of a ring into a ring R' is an isomorphism of R into R’
iff 1(¢) =(0), where I(¢) denotes the kernel of ¢.

10. State and Prove fundamental theorem on homomorphism of rings.
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UNIT-V
SYLLABUS

Abelian groups, finitely generated abelian group, divisible and reduced groups, Torsion group,
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INTRODUCTION TO IDEALS AND QUOTIENT RINGS

In ring theory, an ideal is a special subset of a ring. Ideals generalize certain subsets of the
integers, such as the even numbers or the multiples of 3. Addition and subtraction of even
numbers preserves evenness, and multiplying an even number by any other integer results in
another even number; these closure and absorption properties are the defining properties of an
ideal. Among the integers, the ideals correspond one-for-one with the non-negative integers: in
this ring, every ideal is a principal ideal consisting of the multiples of a single non-negative
number. However, in other rings, the ideals may be distinct from the ring elements, and certain
properties of integers, when generalized to rings, attach more naturally to the ideals than to the
elements of the ring. For instance, the prime ideals of a ring are analogous to prime numbers, and
the Chinese remainder theorem can be generalized to ideals. There is a version of unique prime
factorization for the ideals of a Dedekind domain (a type of ring important in number theory). An
ideal can be used to construct a quotient ring similarly to the way that modular arithmetic can be
defined from integer arithmetic, and also similarly to the way that, in group theory, a normal

subgroup can be used to construct a quotient group.

IDEALS AND QUOTIENT RINGS

Definition
If R is any ring then a subset L of R is called a left Ideal of R, if

I.  Lisasubgroup of R under addition
ii. reR,aelL=>rael

In a similar way we can define a right ideal

Definition
A non empty subset u of R is said to be a (two sided) ideal of R if

i.  uisasubgroup of R under addition
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ii. ForeveryueUandreR,bothurandrueU
NOTE

I.  Anideal is thus simultaneously a left ideal and right ideal of R
ii.  Since the ring R is an abelian group w.r.to addition it follows that any ideal U is normal

subgroup of r (since any subgroup of an abelian group is normal)

iii.  Ifuisan ideal of the ring R then % is a ring and is homomorphic of R

Lemma:5.1

If U is an ideal of R, U is a normal subgroup of R (by note (i) )

w.r.to addition % is the set of all distinct cosets of U in R, mearly we say that coset and we donot

say left coset or right coset. Since R is an abelian group w.r.to addition,

a+t+U=U+a

R )
5 consists of all cosets a+u,a e R

From a theorem 2.6.1 we know that % IS a group under addition (prove here), where the

composition lawis (a+u)+(b+u)=(a+b)+UwabeR

% is also abelian since R is abelian w.r.t.addition. let us define the multiplication in % as follows

(@+u)+(b+u)=ab+uwvabeR

Now we prove, the above said multiplication is well defined
Ifatu=a>+u

Andb+u=Db’+u

Then by our definition of multiplication ,we have to prove that

(atu)(d+u)=@ +u)d +u
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(i.e) to prove that (ab +u ) =(a’b’ + u)
Sincea+u=a’+0
We have
A=2a’ +ul whereul e€u
Similarly since b+u=b’ +u
We have b= b’+u2 where u2 e u
ab=(a’ +ul) (b’ +u2)
=a’b’ +a’u2 +b’ul +ulu2
Since u is an ideal of R we have
a’'u2 +b’ul andulu2 eu
a’u2 +b’ul tulu2eU
ab=a’b’ + u3 where u3=a’u2 + b’ul +ulu2 eu
ab+u=a’b’+tud=u
=a’b’+u
= abtu=a’b’=u

The multiplication defined above is well defined now (a+u ) (b +u ) =ab+ue %

As a,b € R by closure property ab e u
% is closed with respect is multiplication

Since R is associative w.r.to multiplication,

R
0 is also associative w. r.to multiplication
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Let x,y,z € %

Thenx=a+u

y=b +u

z=c +u where a,b,c ¢ R

now we P.T X(y + z) =xy + Xz

LHS =x(y+2)
=(@a+u)(b+u+c+u)

=@+u)[(b+c)+u]

=(a(b +c) +u)

=ab+ac+u

=(ab + u) + (ac + u)

=(@a+u)(b+u)+(a+u) 9c+u)

=Xy +yz

=R.H.S

Similarly we prove that (y + z) x =yx + zy

. . R . .
If R is commutative then s also commutative as seen below,

Consider (a+u) (b+u)=ab+u

=bpa + u ( R is commutative ab=ba)
=(b+u)(@a+u)

R . . . . .
3 is also commutative, if R is commutative
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If R has an unit element 1, then % has unit element 1 + u

Define a mapping ¢:R -> %

By ¢p(a)=a=uforaeR

Leta,beR

Thenp (a+b)=(a+b)+U
=@+u)+(b+u)
= (a) + d((b)

And ¢ (ab)=ab +u
=(@a+u)(b+u)

@ (). b (b)

= by def ¢ is a homomorphism
letyegthenFa+uforaeRand(p(a)=a+u=Y

a is the pre image of Y in %

¢ is onto

If u € U then ¢(u) =u + U = u whih is the identity element of %

The kernel of ¢ is exactly U

Hence the lemma

Remark :

The ring % is known as quotient Ring

Theorem 5.1

let R, R’ be ring and ¢ a homomorphism of R onto R with kernel U. then R’ is isomorphic

To2
i)
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Moreover there is a one to one correspondence between the set of ideals of R’ and the set of
ideals of R which contain U. this correspondence can be achieved by associating with an idel W’
in R’ the ideal W in R defined by

W ={x€eR/ (x)eW sodefined =->R’ by

¥ (uta)= (@) e 1

Where u + a is an arbitrary element of % anda e R

Let us prove that the mapping is well defined (i.e) to show thatU+a=U +b
= yuta)=vy(u +b)Vu+a,U+b€%wherea,beR
let us prove that the mapping is well defined

(i,e)toshowthatU+a=U+Db

=>\|f(u+a)=w(U+b)Vu+a,U+be%Wherea,beR

Now assume thatu+a=u+Db
Sincea=0=aeu-+a...... (o€eu)
a€u+a=u+b by an assumption
a=u-+bforsomeuelU
now y (u +a) =d(a)

= d(u+b)

=®(u) + d(b)

=0’ + ¢(b)
=y (utb)byl
vy is well defined

y[(u+ta)=(u+b)] = y(u+(ath))

=¢(a+b)
=D(a) + d(b)
=y (u+a)ty(ut+b)

y[(u+a)=(u+b)] = y(u+tab)
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= d(ab)
=D(a) . b(b)

=y (uta) y(utb)
Y is a homomorphism
Given that ¢ is onto’.
Foreveryr’ e R’ Z#are R such that p(r) =1’
Y(u+tr)=r
U + r is thepre image of r’ under y
¥ is onto
Let us now show that y is one to one

Now we prove the result by proving that the kernel of y namely U,, consist of only one element
U which is the identity element of %

By definition of kernel we have,
Uy={U+ae % / w(u + a) " the zero element of R’}
={u+ae=/da) byl

={u} since ¢(a) =0’
= aeu
= u+a=U

y 1is one to one

R 5 . . .
(e R’ is an onto 1somorphism
E_R
u

. R . . . . .
(ile) R~ (isomorphism is an equivalence relation)

(i) Given that W = { x e R/ p(x) W’} and W’ is an ideal of R’

To prove
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U C W and W is an ideal of R
LetxeU
Ox)=0"eW’

2 xeW
xeU=>xeW

Uucw

Now p(0) =0’ € W’ (W’ is an ideal of R”)

O0) e W’

0 € W... W is an non empty subset of R

Letx,ye W,

DO(x) e W, D(y) e W’

D(x +y)=D(x) + D(y) e W (W’ is closed under addition)

= x +ye W whenever x,y e W
letx e W

D(x) ew’
Now ®D(-x) =- O(x) e W’
DO(-x) e W’

= -x € W’ whenever x e W
Then by a lemma W is a subgroup of R under addition

Next we prove that W is an ideal of R letre R and x e W
O(r)eR’>and D(x) e W’ ....xe€R
Xrand rx € R (R is closed under multiplication)

D(xr) = O(x). D(r) e W’ (W’ is an ideal of R’)
xre W
similarly we can prove that

XeWwreW , xeW
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W is an ideal of R containing U

(i.e) inverse image of an ideal W’ of R’ is also an ideal W of R containing U
Conversely assume that w is an ideal of R and we prove that w’ is an ideal of R’
Define W={ x’ e R’/ x’=d(y), y eW}

Now 0 e W ¢(0) =0’ e w’

W’ is a non empty subset of R’

Letx1’,x2’ ew’

X1I’= d(y1)

x2= ¢(y2)

Y1, Yoe W

x1”+x2°= (y)+ d(y2)

= d(y1ty2)

€ W’ since y1+Yy, € w

thus 1" +x2” e w’

then x’= ¢(y), y ew

-yEW

X'=-d(y)

=d(-y) ew ....(-yew)

-x’ € w” whenever X’ e w’

Then by lemma w’ is a subgroup of R’ under addition
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Letx’ew,r’ eR’

Let reR, ¢p(r)=r’

X'=q(y), yew

d(yr)= d(y)- d(x)

=1’

yr € w as w is an ideal of R

b(yr) e w’

X1 ew’

Similarly we can prove that r’x’ e w’
w’ is an ideal of R’

next we prove that the ideal w of R is unique
let T be another ideal of R

T={y R/ d(y) e w’}

We have to prove that W=T
Letyew

b(y) ew’ (by def of W)

y € T (by def of T)

WCT

LetteT

b(t) e W’
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tew
TCW

= W=T

Thus W is unique

Thus there is a one to one correspondence between the ideals of R’ and the ideals of R containing

U

(iii ) Now we define a mapping F: R -> %

By F(a) =W’ +d(a), ae R
Since ¢ is onto,for every a’ € R’ # an element a € R s.t p(a) =a’
Now W’ +d(a) =W’ +a’
= F9a)
A is the pre image of w’ + (a)
F is onto
Letx,y e R
Fx+y) =W +dx+y)
=W’ + d)+ d(y)
=W’ + d)W’+ d(y)
=F(xX) + F (y) ¥ x,y € R
We shall show that the kernel of F namely K¢ is W
Assume that L is the kernel of F and we prove that W = L

Now by def L={xeR/FXx)=w’}

Prepared by Dr.M.M.Shanmugapriya, Asst Prof, Department of Mathematics, KAHE Page 12/25




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Group theory I
COURSE CODE: 17MMU303 UNIT: V BATCH-2017-2020

LetxeL ... Fx)=w’
w+ d(x)=w’

b(x) ew’

X €W

LCW

Letxe W ... p(X) e W’
w+ h(x)=w’
F(x)=w’

xeL

WCL

Hencew =L

The kernel of F is W and is unique

F is a homo of R onto % with kernel W

Then by a theorem (2.7.1) % Is isomorphic to %

R _&K
W W
Lemmab.2

Let R be a commutative ring with unit element whose only ideas are {0} and R itself
,then R is a field

Proof
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In order to prove this result, it is enough if we prove thatvaZ0eRZab#0€R s.t
ab=1
Leta#z0¢cR
Consider the set Ra= { xa/x e R}
We claim that Ra is an ideal of R
Since 0 =0.a € Ra
Ra is a non empty subset of R
Letu,v e Ra
Then u =x" a and v = x2a for some x1,x2 € R)
Now u —Vv = xla —x2a
= (x1-x2)a
€ ...[xI-x2 e Ra]
Ra is a subgroup of R under addition
LetreR letu=xa
Then consider ru = r(xa) = (rx) a € Ra (rx € R)
Similarly we can prove that ur € Ra
By deff Ra is an ideal of R
From the given hypothesis it follows that Ra = { 0} or Ra=R
(i.e) every multiply of R is a multiple of a by some element of R

There exist an element b # 0 s.T ab=1
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R is a field
Definition

An ideal M # R in a ring R is said to be a maximal ideal of R, if whenever u is an ideal

of Rsuchthat M C U CR theneitherR=UorM=U

In otherwords, an ideal of R is a maximal ideal, if it is impossible to sqneeze an ideal

between it and full ring.

NOTE

I.  Anring need not have a maximal ideal

ii.  Ring in the unit element has maximal ideals

Examples

1) Let R be the ring of integers and U be an ideal of R. since U is a subgroup of R under
addition from group theory (eg subgroup of even integersyg) we know that U consists of
all multiples of a fixed integer say ng (i.e) u = (ng) if P is a prime no we claim that p = (p)
is a maximal ideal of R

Proof

If U is an ideal of R and U ) R then U = (no) for some integer ng
Since p € P C U, p=m ng for some integer m

since p is a prime no,

p=mny =>ng=lorny=p

ifng=1thenu=(p)=p

u="p

If ng=1then 1¢ U

LetreR,thenr=1reUforallreR
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[ Uis an ideal of R]

RCU

Since u is an ideal other than R (or) P itself between them
P is a maximal ideal of R

2) Let R be the ring of all real valued continous functions on the closed unit interval
Let M = { f(x) e R/ f(u2)=0} M is certainly an ideal of R. then M is a maximal ideal of R

Proof

If there is an ideal U of R such that m ¢ u and m # u, then there is a function g(x) € u and g(x) €

m
Since g(x) em ,g(*/5 ) =a #0
Leth(X) =g(X) —a

Now h(l.f';g )= g(l.f'flg )—a

h(x) emcu (i.e) h(x) eu
o =g(x)—h(x) eu....[uis an ideal of r so a subgroup of r]
now l =aa’eu

. 1 /
since ot =1/,

=——— R, o is continuous and u is an ideal of R

Thus for any t(x) € R we have
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t(x) = L.t(x) €u ...[u is an ideal of R]
RCU
But U C R [uis an ideal of R]
U=R
Thus m is a maximal ideal of R
Theorem 5.2
If R is a commutative ring with unit element and m is an ideal of R then m is a maximal
ideal of Riff %/, is a field
Proof

Given that m is an ideal of R

Assume that £/, is a field

We shall P.T m is a maximal field of R

Since %/ is a field , its only ideals are {0} and % /;

Then by theorem 93.4.1) there | a one to one correspondence between the set of ideals of R,-“'M
and the set of ideals of R which contain m. the ideal M of R corresponds to the ideal {0} of R,-“'M

whereas the ideal R of R corresponds to the ideal E.,-“'M of R,-“'M in this one to one

correspondence. Thus there is no ideal between m and R other than these two
Hence m is a maximal ideal of R

Conversely assume that m is a maximal ideal of R

Then by the correspondence mentioned above E.,-“'M has only {0} and itself an ideals. Further
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since R is a commutative ring with unit element hen by lemma 3.5.1, R,-“'M is a field.

Definition .
If all ideals of a ring R are finitely generated then R is called a Noetherian ring.
Theroem 5.3
A commutative ring with identity is Noetherian if and only if given any ascending chain of
idealsl; S I, € --- S I, € -+, there exists an m such that I, = I+ for all i > 0.
Proof.

Let R be Noetherian. Since {l,}”n=1 is an ascending chain, | =

U”n=1ln is an ideal of R. Hence we can find a1, @, . . ., 8g € Isuchthat | = (aj, az, ..., ). Itis
easy to see that there is an m such that a; € I, foralli=1,2, ..., g. Hence | € I, which implies
that I, = I+ for all i > 0.

Conversely let every ascending chain of ideals be stationary. Let | be an ideal of R which is not

finitely generated. Then I is nonzero and | < R.
Inductively, we can find a;, a, . . . € I suchthat I, = (a;, a, . . ., a,) and the chain I,,n =1, 2, ..
. 1S not stationary. This is a contradiction.

Hence | is finitely generated.

THE FIELD OF QUOTIENTS OF AN INTEGRAL DOMAIN

Definition
A ring R can be imbedded in a ring R’ if there is an isomorphism of R into R’.

If R and R’ have unit elements 1 and 1’ we insist in addition that this isomorphism takes

land I
R’ is called an over ring or extension of R . if R can be imbedded in 1’

Definition
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Let R be an integral domain. A nonzero element a € R is called irreducible if it is not a
unit and whenever a = bc then either b or ¢ is a unit. We say a is a prime if (a) is a prime ideal.
Theorem 5.4

Every integral domain can be imbedded in a field

Proof

let d be an integral domain

Let m, be the set of all ordered pairs(a,b) where a,b € D and b # 0 [consider (a,b) as E ]

In my, we define a relation ‘~’ as follows

(a,b) ~ (c,d) iff ad = bc ---------------- ---1

We claim that this is an equivalence reletion on m,
Let (a,b), (c,d), (e,f) e m,

Since ab= ba

We can write (a,b) ~ (a,b)

(i.e) reflexivity is satisfied

Now let us assume that (a,b) ~ (c,d)

Then by the definition ad=bc

Cb=da (the ring is commutative0

= (c,d)~(ab)

Summary is true

Let (a,b) ~ (c,d) and (c,d) ~ (e,f)
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(ie) ad=bc and cf = de
a== and f=22
d c

he de

now consider af = —

(i.e) af = be
(i.e) (a,b) ~ (e,f)
(i.e) transitivity is true
Hence the relation ‘~* defined above is an equivalence relation on mg
Let [a,b] be the equivalence class of (a,b) in Mg
Let F be the set of all such equivalence classes [a,b] where a,b €e D and b # 0
We shall prove that F is a field w.r.to two operations addition and multiplication defined below
[a,b] +[c.,d] =[ad + bc + bd]
[a,b] . [c,d] = [ac,bd]
Since D is an integral domain and bothd #0 and b #0
We have bd #0
[ad + bc,bd | € F and
[ac ,bd] € F
We now P.T the addition defined above is well defined
(le) if [a,p] =[a’, b’]
[c,d] =[c’.,d’]

Then we have to prove that
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[a,b] +[c,d] =[a’,b’] +[c’,d’]
Top.T

[ad + bc, bd] =(a’d’ + b’c’, b’d’]
(i.e)toP. T

(ad +bc)b’d’ = (a’d’ + b’c’+ bd
Since [a,b] =[a’b’]

Wehave== Z=>ab’=2a’b
a @

Similarly [c.d] = [¢’,d"] £ = £=>cd = c'd

Now consider

(ad + be)b’d” = ad b’d + beb’d’
=ab’dd’ + bb’cd’
=ba’dd’ + bbb’dc’
=bd(a’d’ =b’c’)

Addition defined above well defined

[0,b] acts as a zero element for this addition and [-a,b] is the additive inverse of [a,b]. then we
can verify that F is an abelian group under the addition defined above.we can also verify that the
non-zero elements of F namely the elements [a,b] , a # 0 form an abelian group under

multiplication
Here [d,d] acts as the unit element and [c,d] * =[d,e] { ¢ #0, [d,c] is in F}
The distributive laws also hold in F

Fis a field

Prepared by Dr.M.M.Shanmugapriya, Asst Prof, Department of Mathematics, KAHE Page 21/25




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Group theory I
COURSE CODE: 17MMU303 UNIT: V BATCH-2017-2020

We have to s.t D can be imbedded in F for x #0, y # 0 in D, we note that
[ax,x] =[ay,y]
Let us denote [ax,x] by [a,1]
Define ¢ : D->F by d(a)=[a,1]¥aeD
LetabeD
Then ¢p(a+b)=[a+b,1]
=[a,1] + [b,1]
=h(a) + d(b)
@ is homomorphism of D into F
Let y € F then Y=[a,1] € F,a €D and ¢(a)=[a,1]=y
A is the pre image of Y under ¢
Then by def ¢ is onto.
Now ¢(a) = ¢(b)

= [a,1] =[b,1]
= a=b

¢ is onto

¢ is an homomorphism of D into F

F is the homomorphic image of D under ¢
If 1 is the unit element of D then ¢(1) € F
Let a’ be any element of F then

db(a)=a’ forsomeaeD
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now consider ¢p(1).2° = d(1). d(a)
=¢(1.2)
=h(a)
—g’
Also a’. d(1)= d(a). Pp(1)
= {(a.l)
= {(a)
—g’
(1) is the unit element of F
thus every integral domain can be imbedded in a field

Definition

Let R be a commutative ring. An ideal P of R is said to be a prime ideal of R. I[f ab e P, ab € R

=>aecPorbeP

Theorem 5.5

Let R be a commutative ring and S an ideal of R then the ring of residue classes % is an integral

domain iff S is a prime ideal
Proof

Let R be a commutative ring and S an ideal of R.

Then == {S+a/acR}

Let S +a, s + b be any two elements of %
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Then ab € R

R . . .
SIS also a commutative ring

Now let S be a prime ideal of R

Then we have to prove that% Is an integral domain
The zero element of% is the residue class S itself

LetS+a,S+b€%

Then(s+a)(s+b)=s

s+ab=s
abes
eitheraorbisins ...(s is a prime ideal)

githers=a=sors+b=s

4 4 4 4 7

. . R
either s +a or s + b is the zero element of =

R . . ..
< Is without zero divisor

. K. . . . .. R . . .
Since — is a commutative ring without zero divisor,  is a integral domain

Conversely, Iet% be an integral domain then we have to P.T S is an prime ideal of R

Let a,b be any two elementinrs.t abes
We have abes

= s+ab=s
= (s+a)(s+b)=s

% is an integral domain it is without zerp divisor
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Eithers+a=sors+b=s
Fitheraesorbes
Then by def s is a prime ideal of R

IMPORTANT RESULTS.
Let R be an integral domain and a, b € R. Then

(1) aisaunitin R if and only if (a) = R.

(2) aand b are associates if and only if (a) = (b)

(3) a|bifandonlyif (b) c (a)

(4) ais aproper divisor of b if and only if (b) < (a) < R.

(5) ais irreducible if and only if (a) is maximal among proper principal ideals.

Definition

An integral domain R is called a factorization domain, abbreviated as FD, if every non-
zero element of R can be expressed as a product of irreducible elements.
Definition
. Aring R is said to satisfy ascending chain condition
(acc) on principal ideals if for any chain (a;) © (az) c . . . of principal ideals of R, there exists an
n such that (a,) = (an+) foralli=1,2,3,. ...
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POSSIBLE QUESTIONS:
Part-B( 5X8 = 40 Marks)

Answer all the questions:

1. i) Define an ideal. Prove that the intersection of any two left ideals of a ring is again a
left ideal of the ring.
2. Prove that every integral domain can be imbedded into a field.
3. 1) If U is an ideal of a ring R with unity and 1€U, prove that U=R.
ii) If F is a field then prove that its only ideals are (0) and F itself
4. If R is a commutative ring with unit element and M is an ideal of R, then prove
that M is a maximal ideal of R iff R | M is a field.

5. Prove that a commutative ring without zero divisor can be imbedded in a field

6. Let R be a commutative ring and S an ideal of R. Then prove that the ring of residue
classes R/S is an integral domain iff S is a prime ideal.

7. State and prove unique factorization theorem.

8. Prove that the ring of Gaussian integers is a Euclidean ring.

9. 1) Prove that a Euclidian ring possesses a unit element

ii) Prove that every field is a Euclidean ring.

10.Prove that every euclidean ring is a principal ideal ring.
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Answer ALL questions
PART A (20 x 1 =20 marks)

. On Z*, define a = b = { then (Z*,+) is not a group
since

a. * is not closed

b. identity element does not exist

c. inverse does not exist d. all the above

. Theset{1, -1, i, —i}is a group under multiplication.
What is the probability to select an element to has
own inverse?

a. 1 b. 3

c 1 d. %
. Number of idempotent elements in a group is

a. 0 .1

c. |Gl d. n
. |u(101)| =

a. 101 b. 100

c. neither anor b d. 99
Ly =

a.<0> b. <1>

d. bothb and ¢

10.

11.

12.

13.

14.

If V ={e,a,b,c} is the Klein 4 group, V #

a. <a> b. <b>

c.<c> d. all the above
In U(15), 12| =

a. 1 b. 2
c. 3 d. 4
Suppose ¢ € G has finite order in G. Then
Igl-——-1<g>1|

a. # b. <
c. > d. =

Let G be a group, and let f : G — G be the map

f(x) = x7! for all x € G. Then f is — function
a. not an one to one b. not an onto
c. a bijective d. an one to one but not onto

In (Z, +), number of elements with finite order is

a. 0 b. 1
c.2 d.3
| < 30 > |:— in Zg

a. 1 b. 7
c. 8 d. 30
Ifae Zgoooooo with |(1| = 8, a=—-—-

a. 3000000 b. 5000000
¢. neither anor b d. bothaandb
Z=—-—--—

a.<1> b.<2>
c. <0> d. all the above

Suppose G is a group with n > 1 elements. Then
number of elements of G to be non generator is

a. exactly one b. atmost one
c. atleast one d. o



15.

16.

17.

18.

19.

20.

21.
22.

23.

/am

The set of integers Z with the binary operation ”
definedasa*b=a+b+1forab € Z, is a group.
The identity element of this group is

a.a b.b
c. 1 d. -1
In the group (G, .), the value of (@ 'b)lis

a. ab™1 b. ba™l
c. b la d. all the above

In the group G = {2,4, 6,8} under multiplication
modulo 10, the identity element is

a.2 b. 4
c.6 d.8

Generator of a group {1, -1, i, —i} under multipli-
cation is

a. 1 b. -
c. bothaandb d. neither anor b

Consider the group (Z100000, ®100000). Number of

elements with order 1 is
a. 1000 b. 100
c. 10 d. 1

Consider the group (Zs — {0}, ©5). Number of ele-

ments with order 4 is
a. 1 b. 2
c. 3 d. 4

Part B (3 X 2 = 6 marks)

Determine all the subgroups of Z.

Prove that number of idempotent element in a
group is only one.

Find the orders of all elements of Zg

Part C (3 X 8 = 24 marks)

24. a) Prove that the set of all 2 X 2 matrices with
entries from R and determinant +1 is a group
under matrix multiplication

(OR)

b) The integers 5 and 15 are among a collection
of 12 integers that form a group under mul-
tiplication modulo 56. List all 12.

25. a) Prove that the set of all 3 X 3 matrices with
real entries of the form

1 a b
01 ¢
0 01

is a group under multiplication defined by

1 a b 1 a Vb 1 a+a V +ac’ +b
01 ¢ 0 ¢ =
0 01 0 1

(OR)

= (01 c+c
0 0 1

b) Construct the Cayley table for U(25). Find

two elements a, b € U(25) such that

<a>=<b>=U(25)

o8

26. a) Inany group G, prove that each element has
aunique inverse. Also prove that (¢71)™! = g,
forallge G

(OR)
b) State and prove one-step subgroup test.
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Answer ALL questions
PART - A (20 x 1 = 20 marks)

. If G is a cyclic group of order 24 and 4?%? = g"

where g € G and 0 < 1 < 24 Then the value of 7 is

a. 4 b. 6
c.8 d. 10
. {=3n:n € Z}is an abelian group under a. subtrac-
tion b. division c. multiplication d.
addition
. ThesetG ={---,372,371,1,3!,32,.--} under multi-
plication is a
a. group b. cyclic
c. abelian d. all the above

. One of the element of Quaternion group is
10 b [1 0
a- 0 1 . 0 _i

C. [ ? 6 ] d. all the above

10.

11.

The set of all positive rational numbers forms an

abelian group under the binary operation defined
a

by a x b = 2. Identity of this group is

a. 1 b. 2
c. 0 d. neither a nor b
Minimum nymber of elements in a gruop is

a. 1 b. 2
c. 0 d. bothaand b
If H be any subgroup of a group G and h € H, then
a. Hh# H=hH b. Hh = H # hH
c. Hh # H # hH d. Hh=H =hH
The number of generators of the cyclic group G of
order 8 is

a.2 b. 4
c. 6 d. 8
Every cyclic group is ——

a. permutation group
c. abelian group

b. non abelian group
d. all the above

A non commutative group has atleast —— ele-
memts

a. 0 b. 1
c. 6 d. 7
Let G be the additive group of integers and let

H={--,-6,-3,0,3,6,---}. Then number of dis-
tinct right cosets is
a. 0 b. 1
c.?2 d. 3




12.

13.

14.

15.

16.

17.

18.

19.

Let G be a group and let H be a subgroup of G. Let
h € H. Then number distinct left cosets of H in G

generated by h is -
a. 0 b. 1
c.2 d.3

Any two left cosets of a subgroup are
a. identical
b. disjoint

c. neither a nor b d. bothaandb

Consider (Zi2,®). Then H = {0, 4, 8} is a subgroup
of G. Now5+ H = ——
a. {0,4, 8}

c. {2,6,10}

b. {1,5,9}
d. bothaand b

Let G be a group and let H be a subgroup of G.
Then fora € G, {halh € H} = ——
a. Ha

c. neither anorb

b. aH
d. bothaandb

Kelin 4 group is —

a. cyclic b. non cyclic
c. abelian d. bothb and c
Example for kelin 4 group is - with ©g

a. {0,1,2,3} b. {1,2,3,4}
c. {1,3,5,7} d. {1,3,5,8}
Number of subgroups of Qg is

a. 1 b. 5
c. 4 d. 6
Z(Qg) = — o
a. {1,-1} b. {i, —i}

c. bothaandb d. neither anor b

20.

21.
22.

23.

24.

25.

26.

Let G = {I,R,R? R3 H,D, V, T} with usual matrix
mulipilication. Then Z(G) = —

a. {I2,R b. {R}
c. [R?) d. {I,, R?)

Part B-(3 X 2 = 6 marks)

List all generators of Z3,

Give an example of a noncyclic group, all of whose
proper subgroups are cyclic

Let a and b belong to a group. If |a| and [b| are
relatively prime, show that <a >N <b >= {e}.

Part C-(3 X 8 = 24 marks)

a) List the cyclic subgroups of U(30)
(OR)
b) Prove that H = {[ (1) ;l ] ‘ne Z} is a cyclic
subgroup of GL(2, R)

a) Show that number of elements x of group G
such that x> = e is odd

(OR)
b) Prove thatsubgroup of a cyclic group is cyclic
a) Prove that for any group elementaq, |a| =< a >
(OR)

b) State and prove fundamental theorem of
cyclic groups
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1. If G is a cyclic group of order 24 and 4?°? = 4" where
a € Gand 0 < n < 24 Then the value of n is
a. 4 b. 6
c. 8 d. 10

Answer All elements of G =< x > is of the form x*
where k € {0,1,...,23}). Then fora € G, a = x* for some
ke{0,1,...,23}.
2002 _ ;199210
— (xk)1992 10

%

_ 1992k 40
e A

:%Q)é 3ka10
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2. {-3n:neZ}is argg ehan group under
a. subtraction ky'division c¢. multiplication d. addition

Answer: d. addition
3. The set G = {---,372%,371,1,31,3?,-- -} under multiplica-

tionisa —
a. group b. cyclic
c. abelian d. all the above

Answer: G is an cyclic group. Also, every cylic group is
abelain. Therefore, d is correct choice.

4. One of the element of Quaternion group is
10 b i 0
@101 10 —i
C. [ ? 6 ] d. all the above

Answer: d. all the above
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5.

10.

The set of all positive rational numbers forms an abelian
group under the binary operation defined by a x b = %
Identity of this group is

a. 1 b. 2
c.0 d. neither a nor b
Answer:

. Minimum number of elements in a gruop is
a. 1 b. 2
c.0 d. bothaandb

Answer: a. 1

If H be any subgroup of a group G and 1 € H, then
a. Hh + H =hH b. Hh = H # hH
c. Hh # H # hH x» d.Hh=H=hH

K
Answer: d. Hh = H = hH ?g\

. The number of generator@i%f\ the cyclic group G of order
8 is Y
a.2 w b. 4
c. 6 & d.8

&.
Answer: Let G?)e a cyclic group generated by < a >

of order n then G =< a* > iff gcd(k,n) = 1. Leta € G be

a generator of G. Then generators of G are a,a%,a°,4”.

Therefore correct choice is b.4

. Bvery cyclic group is
a. permutation group b. non abelian group
c. abelian group d. all the above

Answer: c. abelian

A non commutative group has atleast elememts
a. 0 b. 1
c. 6 d. 7

Answer: c. 6



Group theory I Dr. K. Kalidass

11. Let G be the additive group of integers and let H =
{---,-6,-3,0,3,6,---}. Then number of distinct right

cosets is
a. 0 b. 1
c. 2 d.3
Answer:
OH = 0+H
= {"'1_61_3/0/3/6/"'}
1H = 1+H
= {"'/_5/_2/1/4/7/"'}
2H = 2+ H
{"'1_41_1/2/5/8/"'}
Hence [Z :H] =3 &

>

12. Let G be a group and let H be a@%’bgroup of G. Leth € H.
Then number distinct left %%)&ts of H in G generated by
his

a. 0 ®v b. 1

c.2 @N d. 3

Answer Given l@@%i Then

hH = f{ha:a € H}
= H

Hence [G: H] =1

13. Any two left cosets of a subgroup are
a. identical
b. disjoint
c. either a or b d. both aand b

Answer Let G be the additive group of integers and let
H={--,-6,-30,36,---}. Consider OH and 1H. They
are not disjoint. Consider OH and 3H. They are identi-
cal. Hence any two left cosets of a subgroup are either
identical or disjoint.
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14.

15.

16.

17.

18.

19.

20.

Consider (Z1,,®). Then H = {0, 4, 8} is a subgroup of G.
Now 5+ H =
a. {0,4, 8} b. {1,5,9}
c. {2,6,10} d. bothaandb

Let G be a group and let H be a subgroup of G. Then for
a € G,tlhalh e H} =
a. Ha b. aH
c. neither a nor b d. bothaandb

Answer a. Ha

Kelin 4 group is
a. cyclic b. non cyclic
c. abelian d. bothband c

Answer d. both b and ¢

Example for kelin 4 group is —@“—— with Gg
a. {0,1,2,3) w b.
c. {1,3,5,7} 2 d. {1,
X
»
Answer &
{_Y’
Number of sub%gh'ps of Qg is
a. 1
c. 4

Answer

Z(Qs) =—— o
a. {1,-1} b. {i, —i}
c. bothaand b d. neither anor b

Answer

Let G = {I,R,R?,R%, H, D, V, T} with usual matrix mulip-
ilication. Then Z(G) =
a. {I2,R b. {R}
c. {R? d. {I, R?)

Part B
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21.

22.

23.

List all generators of Zs

Answer: Let G be a cyclic group generated by < a > of
order n then G =< a* > iff gcd(k,n) = 1. Since 1 is a gen-
erator of Zs of order 30, Zzy =< a* > iff ged(k,30) = 1.

Possible values for k = 1,7,11,13,17,19,23,29. Hence
generators of Z3j are 1,7,11,13,17,19, 23,29

Give an example of a noncyclic group, all of whose
proper subgroups are cyclic

Answer Consider the Klein-4 group, V = {e,a, b, c}. Sub-
groups of V are

le} = <e>
{eal = <a>g
(bl = <b>
le, c} =§\c>

and V #< x > for all x eo\vé{éo\

N
Let a and b belong t @)group. If |a| and |b| are relatively
prime, show that >N <b>={e}.

Answer Let |a] =Q1§ and |b| = m. Since < a > and < b > are
subgroups, e €<a >N <b>. Suppose g €E<a>N<b>.
Then ¢ €< a > and g = a" for some k; € Z. Similarly, we
have ¢ = b* for some k, € Z. Let |g| = . Then

r

§ = ¢
@y = e
afo= e

This implies r divides n. Similarly, we have r divides m.
That is, » common divisor of n and m. Since (n,m) = 1,
r=1. Hence |g| = 1. Thatis, g =e.

Part C
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24. a) List the cyclic subgroups of U(30)

Answer All cyclic subgroups of U(30) are of the
form < a > for a € U(30). We know that U(30) =
{1,7,11,13,17,19, 23,29}. Therefore

<1l> = {1}

<7> = {1,7,13,19}
<11> = {1,11}
<13> = {1,7,13,19}
<17> = {1,17,19,23}
<19> = {1,19}
<23> = {1,17,19,23}
<29> = {1,29}

Therefore we have following (;%\&?mct cyclicsubgroups:
<1>,<7><17>, <11>>§¥*29> <19>.

c@R)

b) ProvethatH = {Léy@f’] ‘n € Z} is a cyclic subgroup
of GLQR) i

&.
25. a) Show that nitmber of elements x of group G such that
x> = eis odd

Answer Let T be the set of all elements x in G such
that x> = e. Sincee® = ¢, e € T. Then T is a nonemepty
set. Let

S=T-{e}

Suppose x € S. Then

(x3)—1 e—l

Therefore, if x € S, then its inverse x~! € S.
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Letx € S. Then

X = e
= xx’ e
=>x! = &
=x> € S
Suppose
X x?
=xx = xx
>x =
=x = e

=>ex? € S=T—{e}

Hence, ifx € S, thenx X
Therefore, S = x x Ly y '\T That is, every ele-
ment of S can be palred \ﬁ another element of S,

so S has an even num of elements. Hence T has
odd number of elerg@n

@N (OR)
b) Prove that s%b“gfoup of a cyclic group is cyclic
26. a) Prove that for any group element g, |a| =<a >

First we have to prove the following theorem

Theorem 1 Let G be a group, and let a belong to G. If
a has finite order, say, n, then < a >= {e,a,a?,...,a"1}
and a' = a/ if and only if n divides i — j.

Proof Suppose a has finite order. Let |a| = n. First we
have to prove that < a >= {e,a,4?,...,a" 1}

Clearly e,a,a%,...,a" 1 are the elements of < a >.

Therefore

2

le,a,a®,...,a" ') c<a>

Suppose that a* is an arbitrary member of < a >. Sup-
pose k = 0. Then there is nothing to prove. Let us as-
sume that k > 0. Then either k <nork =nork > n.
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Suppose k < n. Then a* € {e,a,a?,...,a"'}. Suppose
k = n. Then

d=a"=eelead,... a

n—l}
Suppose k > n. By the division algorithm, there exist
integers g and r such that

k=gn+rwith0O<r<n

Then

ko _ g
= 47y
= (@)

eda
r

)
Since 0 < r < n, a Qo\ﬁe’, a,a?,...,a" 1} and hence
ak € fe,a,a?,...,a" )57
Let us assume that®< 0.
By the division @%orithm, there exist integers g < 0
and r such that~
Q

k=gn+rwith0O<r<n

r
(&)
S
>

Then

k a1+

ama"
(a")a"
ea’

:ar

Since 0 < r < n, a € {ea,a?...,a" 1} and hence

akele,a,a?, ..., a" ).

Therefore a* € {e,a,a?,...,a""!} for all integers k.
Hence < a >C {e,a,a?,...,a" ).

Therefore < a >={e,a,a?,...,a" 1}
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Next we assume that 2’ = a/. Then

d@)? = d@)’
dal = e
Al o= e

Again by division algorithm there are integers g and
r such that

i—j=gn+rwithO<r<mn
. Now

e = a7/
aE]TH'V

= gr
Since 1 is the least positive integer such that a" = e,
we must have 7 = 0. That is, i57] = ng.
Therefore n|i — j. \Q\
Conversely, suppose nl(io =~J. Then

W_j — anq

‘ﬁf a@’) = e

< —jy-1 i

< @h™ = a
a = d

Let |a| = n. By previous theorem,

<a>={ead, ... a1

Hence |a| = | <a > |.
(OR)
b) State and prove fundamental theorem of cyclic groups
Statement Every subgroup of a cyclic group is cyclic.
Moreover, if |a| = n, then the order of any subgroup

of a is a divisor of n; and, for each positive divisor k
of n, the group a has exactly one subgroup of order

k namely, < ar >.
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