Semester — V
LTPZC
6 2 06

-

17MMUS501A RING THEORY AND LINEAR ALGEBRA |

Scope: On successful completion of course the learners gain about the linear transformations,
homomorphism, isomorphism and its properties.

Objectives: To enable the students to learn and gain knowledge about rings, subrings, vector spaces,
subspaces, algebra of subspaces, isomorphism and its properties.

UNIT I

RINGS

Definition and examples of rings - Properties of rings - Subrings - Integral domains and fields -
Characteristic of a ring. Ideal - Ideal generated by a subset of a ring - Factor rings - Operations on ideals
- Prime and maximal ideals.

UNIT I

RING HOMOMORPHISMS

Ring homomorphisms - Properties of ring homomorphisms - Isomorphism theorems I, Il and Il - Field
of quotients.

UNIT 111

VECTOR SPACES

Vector spaces - Subspaces - Algebra of subspaces - Quotient spaces - Linear combination of vectors -
Linear span - Linear independence - Basis and dimension - Dimension of subspaces.

UNIT IV

LINEAR TRANSFORMATIONS

Linear transformations - Null space - Range - Rank and nullity of a linear transformation — Matrix
representation of a linear transformation - Algebra of linear transformations.

UNIT V
ISOMORPHISM
Isomorphism theorems -Invertability and isomorphisms - change of coordinate matrix.

SUGGESTED READINGS
TEXT BOOK

1. Fraleigh.J.B., (2004). A First Course in Abstract Algebra , Seventh Edition, Pearson Education Ltd,
Singapore.

REFERENCES
1. Joseph A. Gallian., (2013). Contemporary Abstract Algebra, Fourth Edition, Narosa
Publishing House, New Delhi.

2. Kumaresan S., (2000). Linear Algebra- A Geometric Approach, Prentice Hall of India, New
Delhi.
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1. YOUNG’S MODULUS - NON UNIFORM BENDING PIN AND
MICROSCOPE
Expt No:01

AIM
To find the Young's modulus of the given material bar by non uniform bending using pin
and microscope method.

APPARATUS

Pin and Microscope arrangement, Scale ,Vernier calipers, Screw gauge, Weight hanger,
Material bar or rod.

THEORY

Young’s modulus is named after Thomas Young,19th century ,British scientist. In solid
mechanics, Young’s modulus is defines as the ratio of the longitudinal stress over
longitudinal strain, in the range of elasticity the Hook’s law holds (stress is directly
proportional to strain). It is a measure of stiffness of elastic material.

If a wire of length L and area of cross-section 'a' be stretched by a force F and if a change
(increase) of length '1' is produced, then

Normal stress ~ Fla

Young's mod ulus= =
Longitudinal strain 1/ L

Non Uniform Bending Using Pin and Microscope

Here the given beam(meter scale) is supoorted symmetrically on two knife edges and loaded
at its centre. The maximum depression is produced at its centre. Since the load is applied
only one point of the beam, the bending is not uniform through out the beam and the
bending of the beam is called non- uniform bending.

In non-uniform bending (central loading), the Young's modulus of the material of the bar is
given by

v - mgl’
48/e
I is the moment of inertia of the bar.
For a rectangular bar,
3
jobd”
12

Substituting (4) in (3)
In non uniform bending, the young’s modulus of the material of the bar is given by,
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OBSERVATIONS

Value of 1M.S.D 1/20
Number of divisions on the vernier, n = 50

Least count of microscope = 1 m.s.d/n = 1/1000 = 0.001 cm

No | Distance | Load Telescope reading depression | Mean | ;3 Mean
of the | M{kg) for load e ; i3
knife Loading | unloading | mean 4m, e :

edges, |
(em) (em) (em) (cm) Cem |y | (em)
(cm)

1 Wo Xo X4-X0
Wo+m X1 X5-X1
Wo+2m X2 X6-X2
Wo+3m X3 X7-X3
Wo+4m X4
Wo+5m X5
Wo+6m X6
Wo+7m X7

2

3

4

CALCULATIONS
Thickness of the material bar “d” = ... mm.
Breadth of the material bar “b” = ... cm.
Mean value of I’/e S m.
Load applied for depression ~ “e” T e m.
- mgl’

; :  dbd’e 2

Young’s modulus of the material bar, T e N/m
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_ gl $
dbd’e

m - Mass loaded for depression.

g - Acceleration due to gravity.

[ - Length between knife edges.

b - Breadth of the bar using vernier calipers.
d - Thickness of the bar using screw gauge.
e - Depression of the bar.

PROCEDURE

Select the environment and material for doing experiment.

Choose mass, length , breadth and thickness of the material bar using sliders on the right
side of the simulator .

Fix the distance between knife edges.

Focussing the microscope and adjusting the tip of the pin coincides with the point of
intersection of the cross wires using left and top knobs on microscope respectively.
Readings are noted using the microscope reading for Og. Zoomed part of microscope scale is
available by clicking the centre part of the apparatus in the simulator. Total reading of
microsope is MSR+VSR*LC. MSR is the value of main scale reading of the microsope
which is coinciding exacle with the zero of vernier scale. One of the division in the vernier
scale coincides exactly with the main scale is the value of VSR. LC is the least count.
Weights are added one by one say 50g, then pin moves downwards while viewing through
microscope. Again adjust the pin such that it coincides exactly with the cross wire.

The readings are tabulated and Y is determined using equation (2).

! 3
From graph ¢ can be calculated.

RESULT

Young's modulus of the given material using non uniform bending method
Sreereosanrersessareessesnnessessan Nm™.
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DIAGRAM

%
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i
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S

4
e

G
E// Distance (d) of the hole
4+— X —
from one end in cm

OBSERVATIONS:

To draw graph :

No.ofholes| Distance of knife o o Time
) ‘ Time for 10 oscillations (s) . v
from A edge from A: (cm) period 7T (s)

Mean

(s)

CDI oooooooood oooooooool>
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2. MEASUREMENT OF ACCELERATION DUE TO GRAVITY (G) BY A
COMPOUND PENDULUM
Expt No 02

AIM

To determine the acceleration due to gravity (g) by means of a compound
pendulum.

APPARATUS

(i) A bar pendulum, (ii) a knife—edge with a platform, (iii) a sprit level, (iv) a precision stop
watch, (v) a meter scale and (vi) a telescope.

FORMULA

Acceleration of gravity, g= 47 (2K Tomin”)

PROCEDURE

(1) Suspend the bar using the knife edge of the hook through a hole nearest to one end
of the bar. With the bar at rest, focus a telescope so that the vertical cross-wire of the
telescope is coincident with the vertical mark on the bar.

(i1) Allow the bar to oscillate in a vertical plane with small amplitude (within 4° of arc).

(iii)Note the time for 20 oscillations by a precision stop-watch by observing the transits
of the vertical line on the bar through the telescope. Make this observation three
times and find the mean time t for 20 oscillations. Determine the time period T.

(iv)Measure the distance d of the axis of the suspension, i.e. the hole from one of the
edges of the bar by a meter scale.

(v) Repeat operation (i) to (iv) for the other holes till C.G of the bar is approached where
the time period becomes very large.
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To find the value of 'g' :

[ Time
Length of equivalent . g 25
: period, T )
simple pendulum(cm) \ (cm/s*)
SI.No (s)
BD | Mean 15!
AC (cm) : et
(em) | |/
‘ 1 4
05
0
0 0 0 6 80 100
CALCULATION

To find the radius of gyration and the acceleration of gravity (step 3 above):
Radius of gyration about the centre of mass k¢ = EF/2 = ................
Acceleration of gravity, g= 4n2(2kG/Tmin2) S s

To find the radius of gyration (step 4 above):

SINo h=AD)/2 h'=BC/?2 ke=(hh)}?
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RESULTS:
Average acceleration of gravity, g= AT UTH = o, m/s’
1) Average radius of gyration of the pendulum about its centre of mass,
kG . m
2) Mass of the pendulum M = .................. Kg
3) Moment of inertia of the pendulum about its centre of

mass, IG=MkG2 = o Kgm2
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DIAGRAM

Fig.6.4 Spectrometer — Angle of Prism

Fig.6.5 Angle of Minimum Deviation
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3. DETERMINATION OF DISPERSIVE POWER OF A PRISM USING
SPECTROMETER

Expt No.03
AIM

To determine the dispersive power of a given prism for any two prominent lines of
the mercury spectrum.

APPARATUS
A spectrometer, mercury vapour lamp, prism, spirit level, reading lens etc.
FORMULAE

1. Refractive index of the prism for any particular colour
. A+Dj
sin
2
| A
sin| —
2

where A = Angle of the prism in (deg)

D = Angle of minimum deviation for each colour in (deg)

2. The dispersive power of the prism is

Hl — Ho
Mt
2

where p; and p, are the refractive indices of the given prism for any two colours.

=

PROCEDURE
Part I : To determine the angle of the prism (A)

1. The initial adjustments of the spectrometer like, adjustment of the telescope for the
distant object, adjustment of eye piece for distinct vision of cross —wires, levelling
the prism table using spirit level, and adjustment of collimator for parallel rays are
made as usual.

2. Now the slit of the collimator is illuminated by the mercury vapour lamp.

3. The given prism is mounted vertically at the centre of the prism table, with its
refracting edge facing the collimator as shown in figure (6.4) (i.e.) the base of the
prism must face the telescope. Now the parallel ray of light emerging from the
collimator is incident on both the refracting surfaces of the prism.

4. The telescope is released and rotated to catch the image of the slit as reflected by one
refracting face of the prism.
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OBSERVATIONS

_ Value of one MSD= ﬁ_

LC =1
No. of div on VS 30
Table 6.7: To determine the angle of prism (A)
LC=1 TR = MSR + (VSC xLC)
Position Vernier -A Vernier-B
of the
reflected VSR [ VSC T.R MSR VSC T.R
ra .
y degree div degree degree div degree
Left side
(Ry) (R53)

Right
Side (Ry) (Ry)

2A =(R-Ry) = 2A =(R3-Ry) =

..'A=R1_R2 _._A:R3_R4

2 2
A= A=
S.Mean A =
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5.

The telescope is fixed with the help of main screw and the tangential screw is
adjusted until the vertical cross-wire coincides with the fixed edge of the image of
the slit. The main scale and vernier scale readings are taken for both the verniers.

Similarly the readings corresponding to the reflected image of the slit on the other
face are also taken. The difference between the two sets of the readings gives twice
the angle of the prism (2A). Hence the angle of the prism A is determined.

Part 2 : To determine the angle of the minimum deviation (D) and Dispersive power of
the material of the prism

1.

The prism table is turned such that the beam of light from the collimator is incident
on one polished face of the prism and emerges out from the other refracting face.
The refracted rays (constituting a line spectrum) are received in the telescope Fig.
6.5.

Looking through the telescope the prism table is rotated such that the entire spectrum
moves towards the direct ray, and at one particular position it retraces its path. This
position is the minimum deviation position.

Minimum deviation of one particular line, say violet line is obtained. The readings of
both the verniers are taken.

In this manner, the prism must be independently set for minimum deviation of red
line of the spectrum and readings of the both the verniers are taken.

Next the prism is removed and the direct reading of the slit is taken.

The difference between the direct reading and the refracted ray reading
corresponding to the minimum deviation of violet and red colours gives the angle of
minimum deviation (D) of the two colours.

Thus, the refractive index for each colour is calculated, using the general formula.
. (A+D)
sSm

2

sin A/2

M =
and Dispersive power of the prism.

H—H

0=—"5—
M)
2
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To determine the angle of the minimum deviation (D) and Dispersive
power of the material of the prism:

Direct ray reading (R;) : Vernier A :

Vernier B:
LC=1 TR = MSR + (VSC xLC)
Angle of
Refracted ray readings when the prism is minimum
deviation
in minimum deviation position(R;)
D) (=R1~Ry)
Mean
Line Vernier —A Vernier -B
. D
TR Vernier Vernier-
MSR | VSC| TR | MSR | VSC —A B
degree degree
degree | giv | degree | Degree | div degree 8
Violet
Red
Mean (D) :
Result
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The dispersive power of the material of the prism is

DIAGRAM
Rigid
Prepared
Vertical Spring

scale

AR

Jage 14
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OBSERVATION

Least count of vertical scale = 0.1 cm.

Table for load and extension

erial > Load (g) Reading of the scale Extension x
No. while (cm)
Loading Unloading
1
2
3
4
5
4. DETERMINATION OF SPRING CONSTANT OF THE GIVEN
SPRING
Expt No:04
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AIM
To find the force constant of a helical spring by plotting
graph between load and extension.

APPARATUS
Spring, a rigid support, slotted weights, a vertical wooden scale, a fine
pointer, a hook.

THEORY

When a load F suspended from lower free end of a spring hanging from
a rigid support, it increases its length by amount x,

then Fax

or F=k x,

where k is constant of proportionality.
It is called the force constant or the spring constant of the spring.

PROCEDURE

1. Suspend the spring from a rigid support. Attach a pointer
and a hook from . free end.

2. Hang a 20 g hanger from the hook.

3.Set the vertical wooden scale such that the tip of the pointer
comes over the scale.

4. Note the reading of the position of the tip of the pointer on the scale. Record
the reading in loading column against zero load. .

CALCULATIONS
From graph,
k=i, gwt per cm.
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Gently add a 20 g slotted weight to the hanger. The pointer tip moves down. Wait
for few minutes till the pointer tip comes to rest. Repeat step 4.

6. Repeat steps 5 and 6 till five slotted weights have been added.
7. Now remove one slotted weight. The pointer tip moves up. Repeat
step 6. Record the reading in unloading column.
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8. Repeat step 8 till only hanger is left.
Record your observations as given below.

RESULT

The force constant of the given spring is

DIAGRAM

Pre Laser Source

............. g Wt per cm.
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Experimental Setup for Laser Grating

S. DETERMINATION OF LASER PARAMETERS — DIVERGENCE
AND WAVELENGTH FOR A GIVEN LASER SOURCE USING LASER
GRATING

Expt No:05
AIM

To determine the divergence and wavelength of the given laser source
using standard grating.
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APPARATUS
Laser source, grating, a screen etc.,
PRINCIPLE

When a composite beam of laser light is incident normally on a plane
diffraction grating, the different components are diffracted in different directions.
The m™ order maxima of the wavelength A, will be formed in a direction 0 if d sin
0 = mA, where d is the distance between two lines in the grating.

FORMULA
1. The angle of divergence is given by
_ (az — al)

©2(d,—d,)
where a; = Diameter of the laser spot at distance d; from the laser source
a; = Diameter of the laser spot at distance d, from the laser source

2. The wavelength of the laser light is given by

1o sin 0, n
Nm

where m = Order of diffraction

On = Angle of diffraction corresponding to the order m

N = number of lines per metre length of the grating

0 = tan” (x/D)

X = Distance from the central spot to the diffracted spot (m)

D = Distance between grating and screen(m)
OBSERVATION
Determination of wave length of Laser Light:

Distance between grating and screen ( D) = ----------- m

Number of lines per metre length of the grating = N = ---------—--—-

Distance of Different
S.No Order of orders from the Central Mean dﬁ’il'lrf :t?(fn 0
" | Diffraction (m) Spot (*x) m L |A= m
) m 0=tan [x/ Nm
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Left Right D] A

CALCULATION
The angle of divergence

a; = Diameter of the laser spot at distance d; from the laser source
a; = Diameter of the laser spot at distance d, from the laser source
_ (32 _ al)

2(d, —d,)

The wavelength of the laser light

m = Order of diffraction =

On = Angle of diffraction corresponding to the orderm =

N = number of lines per metre length of the grating =

0 = tan” (x/D) =

X = Distance from the central spot to the diffracted spot (m) =
D = Distance between grating and screen(m) =

P 0, n
Nm
PROCEDURE

Part 1: Determination of angle of divergence

1. Laser source is kept horizontally.

2. A screen is placed at a distance d; from the source and the diameter of the spot
(a;) is measured.

3. The screen is moved to a distance d, from the source and at this distance, the
diameter of the spot (a) is measured.
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Part 2: Determination of wavelength

1. A plane transmission grating is placed normal to the laser beam.

2. This is done by adjusting the grating in such a way that the reflected laser
beam coincides with beam coming out of the laser source.

3. The laser is switched on. The source is exposed to grating and it is diffracted
by it.

4. The other sides of the grating on the screen, the diffracted images (spots) are
seen.

5. The distances of different orders from the central spot are measured.

6. The distance from the grating to the screen (D) is measured.

7. 0 1is calculated by the formula 6 = tan™! (x/d).

8. Substituting the value of 6, N and m in the above formula, the wavelength of
the given monochromatic beam can be calculated.

RESULT

1. The angle of divergence is = ----------- .

2. The wavelength of the given monochromatic source is = ----------- A
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\Sa_, KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University Established Under Section 3 of UGC Act 1956)

N

KARPAGAM

(Deemed to he University]
(Established Under Section 3 of UGC Act, 1956 )

Coimbatore — 641 021.

LECTURE PLAN

DEPARTMENT OF MATHEMATICS

Staff name: U.R.Ramakrishnan
Subject Name: Ring Theory and Linear Algebra |

Sub.Code:17MMUS01A

Semester: V Class: 111 B. Sc Mathematics
S.No Lecture Topics to be Covered Support Material/ Page Nos
Duration
Period
UNIT-I

L 1 Definition and examples of rings R1: Ch 12, 237-239
2. 1 Continuation of examples on rings R1: Ch 12, 237-239
3. 1 Properties of rings R1: Ch 12, 239-240
4. 1 Tutorial-1
5. 1 Theorems on sub rings R1: Ch 12, 241-242
6. 1 Integral domains R1: Ch 13, 249-250
7. 1 Theorems on fields R1: Ch 13, 250-251
8. 1 Tutorial-2
9. 1 Characteristic of a ring R1: Ch 13, 251-252
10. 1 Theorems on ideal R1: Ch 13, 252-253
11. 1 ;Egorems on ideal generated by a subset of a R1: Ch 13, 253-254
12. 1 Tutorial-3
13. 1 Definition and examples on factor ring R1: Ch 13, 254-245
14. 1 Theorems on factor rings R1: Ch 14, 262-263
15. 1 Operations on ideals R1: Ch 14, 262-263
16. 1 Tutorial-4
17. 1 Theorems on prime ideals R1: Ch 14, 264-266
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Lesson Plan

2017 -2020
Batch

18. Theorems on maximal ideals R1: Ch 14, 264-266
19. Problems on maximal ideals R1: Ch 14, 267-268
20. Tutorial-5 R1: Ch 14, 268-269
21. Recapitulation and Discussion of possible
guestions
Total No of Hours Planned For Unit 1=21
L Definitions and examples on ring R1: Ch 15. 280-281
homomorphisms ’ '
2. Theorems on ring homomorphisms R1: Ch 15, 281-282
3. Tutorial-1
4. Continuation of theorems on ring R1: Ch 15. 282-283
homomorphisms ' '
S properties of ring homomorphisms R1: Ch 15, 283-284
6. L . :
Continuation of properties on ring . i
homomorphisms R1: Ch 15, 284-285
! Tutorial-2
8. Continuation of properties on ring R1: Ch 15. 285
homomaorphisms ) '
9. Continuation of properties on ring R1: Ch 15. 285-286
homomorphisms ] '
10. Isomorphism theorem | T1:Ch7,301-302
11 Tutorial-3
12. Isomorphism theorem 11 T1: Ch 7, 303-305
1. Continuation of isomorphism theorem I1 T1: Ch 7, 303-305
14. Isomorphism theorem I11 T1: Ch 7, 306-309
15 Tutorial-4
16. Continuation of isomorphism theorem 11l T1: Ch 7, 306-309
17. Theorems on field of quotients T1: Ch 7, 309-310
18. Theorems on field of quotients T1:Ch7,310-311
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19. 1 Tutorial-5
20. 1 . . . : .
Recapitulation and Discussion of possible
guestions
Total No of Hours Planned For Unit 11=20
UNIT-1I
L 1 Introduction to VVector spaces R1: Ch 19, 345-346
2. 1 Theorems on subspaces R1: Ch 19, 346-347
3. 1 Tutorial-1
4. 1 Continuation of theorems on subspaces R1: Ch 19, 347-348
S 1 Theorems on spaces R1: Ch 19, 348-349
6. 1 properties of subspaces T1: Ch 6, 283-284
7. 1 Tutorial-2
8. 1 Theorems on algebra of subspaces T1: Ch 6, 285-286
S 1 Theorems on quotient spaces T1: Ch 6, 287-288
10. 1 Theorems on linear span T1: Ch 6, 289-290
11. 1 Tutorial-3
12. 1 Theorems on linear independence T1: Ch6, 291-292
13. 1 Theorems on basis and dimension T1: Ch 6, 293-294
14, 1 . .
Theorems on dimension of subspaces
15 ! Tutorial-4 T1: Ch 6, 294
16. 1 Theorems on dimension of subspaces T1: Ch 6, 295-296
17. 1 Recapitulation and Discussion of possible
guestions
Total No of Hours Planned For Unit I11=17
UNIT-1V
1. 1 Linear transformations-Definition and examples | T: Ch 2, 33
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Lesson Plan

2017 -2020
Batch

2. Tutorial-1
8. Theorems on linear transformations R1: Ch9, 212-213
4 Theorems on null space R1: Ch 9, 214-215
> Continuation of theorems on null space R1: Ch 9, 217-219
6. Tutorial-2
7. properties of null space R1: Ch 9, 220-223
8. Theorems on range R2: Ch 11, 320-323
9. Theorems on rank of a linear transformation R2: Ch 11, 324-325
10. Tutorial-3
11. Theorems on nullity of a linear transformation R2: Ch 11, 326-327
12. . . .

Theorems on matrix representation of a linear .

transformation R2: Ch 11,327-329
13 Continuation of theorems on matrix

. . . R2: Ch 11, 330-332

representation of a linear transformation
14. Tutorial-4
15. Theorems on algebra of linear transformations R2: Ch 11, 333-334
16. . . .

Continuation of theorems on algebra of linear R2: Ch 11, 335-337

transformations
17 Continuation of theorems on algebra of linear

transformations
18. Tutorial-5
19. Recapitulation and Disscussion of possible

guestions

Total No of Hours Planned For Unit V=19
UNIT-V

L Isomorphism theorems R2: Ch 12, 340-343
2. Isomorphism theorems R2: Ch 12, 344-345
3.

Tutorial-1
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Batch

4. 1 Isomorphism theorems R2: Ch 12, 346-347
5. 1 Isomorphism theorems R2: Ch 12, 348-349
6. 1 Theorems on invertibility and isomorphisms | R2: Ch 12, 350-353
7. Tutorial-2
8. 1 Theorems on invertibility and isomorphisms | R2: Ch 12, 354-355
9. 1 Theorems on invertibility and isomorphisms | R2: Ch 12, 356-357
10. 1 Theorems on change of coordinate matrix R2: Ch 12, 358-359
1L. Tutorial-3
L2. 1 Theorems on change of coordinate matrix R2: Ch 12, 360-361
13. 1 Theorems on change of coordinate matrix n R2: Ch 12, 362-363
14. 1 Theorems on change of coordinate matrix n R2: Ch 12, 362-363
15 ! Tutorial-4
16. 1 . . . . .

Recapitulation and Discussion of possible

questions
17. 1 . . . .

Discussion of previous year ESE questions
18. 1 Discussion of previous year ESE questions
19. 1 Discussion of previous year ESE questions

Total No of Hours Planned for unit V=19
Total Planned Hours-96

SUGGESTED READINGS
TEXT BOOK

1. David M. Burton, (2007). Elementary Number Theory, Sixth Edition, Tata McGraw-Hill,
Delhi.

REFERENCES

1. Neville Robinns, (2007). Beginning Number Theory, 2nd Ed., Narosa Publishing House Pvt.
Ltd., Delhi.

2. Neal Koblitz., (2006).A course in Number theory and cryptography,Second Edition,
Hindustan Book Agency, New Delhi.
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: 11l B. Sc MATHEMATICS COURSE NAME: Ring Theory and Linear Algebra-11

COURSE CODE: 17MMU501A UNIT: I BATCH-2017-2020
UNIT-I
SYLLABUS
RINGS

Definition and examples of rings - Properties of rings - Subrings - Integral domains and fields
- Characteristic of a ring. Ideal - Ideal generated by a subset of a ring - Factor rings -
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RINGS

Definition Ring
A ring R is a set with two binary operations, addition (denoted by
a + b) and multiplication (denoted by ab), such that for all a, b, ¢ in R:

l.a+b=>b+a

2. (a+b)+c=a+ (b+ o).

3. There is an additive identity 0. That is, there is an element 0 in R
such thata + 0 = a for all a in R.

4, There is an element —a in R such thata + (—a) = 0.

5. a(bc) = (ab)c.

6. alb+ c)=ab + acand (b + ¢c)a = ba + ca.

So, a ring is an Abelian group under addition, also having an asso-
ciative multiplication that is left and right distributive over addition.
Note that multiplication need not be commutative. When it is, we say
that the ring is commutative. Also, a ring need not have an identity

under multiplication. A unity (or identity) in a ring is a nonzero element
that is an identity under multiplication. A nonzero element of a com-
mutative ring with unity need not have a multiplicative inverse. When it
does, we say that it is a unit of the ring. Thus, a is a unit if a~! exists.

The following terminology and notation are convenient. If a and b
belong to a commutative ring R and a is nonzero, we say that a divides
b (or that a is a factor of b) and write a | b, if there exists an element ¢
in R such that b = ac. If a does not divide b, we write a + b.

Recall that if a is an element from a group under the operation of
addition and n is a positive integer, na means a + a + - - - + a, where
there are n summands. When dealing with rings, this notation can cause
confusion, since we also use juxtaposition for the ring multiplication.
When there is the potential for confusion, we will use n - a to mean
a+ a+ ---+ a(nsummands).
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Examples of Ring

B EXAMPLE 1 The set Z of integers under ordinary addition and
multiplication is a commutative ring with unity 1. The units of Z are
l and —1. 0

B EXAMPLE 2 The set Z = {0, I, ..., n — 1} under addition and
multiplication modulo n is a commutative ring with unity 1. The set of
units 1s U(n). [

B EXAMPLE 3 The set Z[x] of all polynomials in the variable x with
integer coefficients under ordinary addition and multiplication is a

commutative ring with unity fix) = 1. i

B EXAMPLE 4 The set M,(Z) of 2 X 2 matrices with integer entries

: g s ; o IR et

1s a noncommutative ring with unity 0 1 ] 0
B EXAMPLE 5 The set 2Z of even integers under ordinary addition
and multiplication is a commutative ring without unity. g

B EXAMPLE 6 The set of all continuous real-valued functions of a
real variable whose graphs pass through the point (1, 0) is a commuta-
tive ring without unity under the operations of pointwise addition and
multiplication [that is, the operations ( f + g)(a) = fla) + g(a) and
(fo)(a) = fla)g(@)]. 0

B EXAMPLE?7 LetR, R, ..., R berings. We can use these to con-
struct a new ring as follows. Let

ROR,D---BR ={(a,a,...,a)la ER}

and perform componentwise addition and multiplication; that is, define
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(a,ay ...,a)+b,b,....,b)=(@a, +b,a,+b, ...,a, +b)

and
(a,a

.a)b,b, ...,b)=(ab,ab,,...,ab).

22 *Unn

This ring is called the direct sum of R.R,....R. |

n

Properties of Rings:

Theorem

Let a, b, and c belong to a ring R. Then

1. a0 = 0a = 0.

2. a(—b) = (—a)b = —(ab).

3. (—a)(—b) =ab.’

4. alb —c)=ab—ac and (b — c)a= ba — ca.
Furthermore, if R has a unity element 1, then

5. (-a = —a.
6. (—1)(—1)=1.

PROOF We will prove rules 1 and 2 and leave the rest as easy exercises
(see Exercise 11). To prove statements such as those in Theorem 12.1, we
need only “play off ” the distributive property against the fact that R 1s a
group under addition with additive identity 0. Consider rule 1. Clearly,

0+ a0 =a0 = a0+ 0) = a0 + a0.

So, by cancellation, 0 = a0. Similarly, Oa = 0.

To prove rule 2, we observe that a(—b) + ab = a(—b + b) =
a0 = 0. So, adding —(ab) to both sides yields a(—b) = —(ab). The re-
mainder of rule 2 is done analogously. |
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Theorem

If a ring has a unity, it is unique. If a ring element has a multipli-
cative inverse, it is unique.

Many students have the mistaken tendency to treat a ring as if it were
a group under multiplication. It is not. The two most common errors are
the assumptions that ring elements have multiplicative inverses—they
need not—and that a ring has a multiplicative identity—it need not. For
example, if a, b, and ¢ belong to a ring, a # 0 and ab = ac, we cannot
conclude that b = ¢. Similarly, if a*> = a, we cannot conclude that a = ()
or 1 (as is the case with real numbers). In the first place, the ring need
not have multiplicative cancellation, and in the second place, the ring
need not have a multiplicative identity. There is an important class of
rings that contains Z and Z[x| wherein multiplicative identities exist and

for which multiplicative cancellation holds. This class is taken up in the
next chapter.

Subrings:

Definition Subring

A subset S of a ring R is a subring of R if S is itself a ring with the
operations of R.

Theorem

A nonempty subset S of a ring R is a subring if S is closed under
subtraction and multiplication—that is, if a — b and ab are in S
whenever a and b are in S.

PROOF Since addition in R is commutative and S is closed under sub-
traction, we know by the One-Step Subgroup Test (Theorem 3.1) that §
is an Abelian group under addition. Also, since multiplication in R is
associative as well as distributive over addition, the same is true for
multiplication in S. Thus, the only condition remaining to be checked
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is that multiplication is a binary operation on §. But this is exactly what

closure means. |
B EXAMPLE 8 {0} and R are subrings of any ring R. {0} is called the
trivial subring of R. |

B EXAMPLE 9 {0, 2, 4} is a subring of the ring Z, the inte-

gers modulo 6. Note that although 1 is the unity in Z, 4 is the unity in
{0, 2, 4}. i

B EXAMPLE 10 For each positive integer n, the set
nZ =10, £n, £2n, *3n, ...}

is a subring of the integers Z. |

B EXAMPLE 11 The set of Gaussian integers
Zlil={a+ bila,beE Z}

is a subring of the complex numbers C. |

B EXAMPLE 12 Let R be the ring of all real-valued functions of a sin-
gle real variable under pointwise addition and multiplication. The sub-
set § of R of functions whose graphs pass through the origin forms a
subring of R. |

B EXAMPLE 13 The set
a 0
{9
of diagonal matrices is a subring of the ring of all 2 X 2 matrices
over Z. |
We can picture the relationship between a ring and its various sub-

rings by way of a subring lattice diagram. In such a diagram, any ring
is a subring of all the rings that it is connected to by one or more up-

a,bEZ}
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ward lines. Figure 12.1 shows the relationships among some of the
rings we have already discussed.

/ |

Zlil={a + bila, b e Z) (x'2}={a+bﬁla,f;eg}

\|
//\\

EAVAN
AN/

12Z 18Z
In the next several chapters, we will see that many of the fundamen-

tal concepts of group theory can be naturally extended to rings. In par-
ticular, we will introduce ring homomorphisms and factor rings.

Integral Domain:

Definition Zero-Divisors
A zero-divisor is a nonzero element a of a commutative ring R such
that there is a nonzero element b € R with ab = 0.

Definition Integral Domain
An integral domain is a commutative ring with unity and no
zero-divisors.

Thus, in an integral domain, a product is 0 only when one of the
factors is O; that is, ab = 0 only when a = 0 or b = 0. The following
examples show that many familiar rings are integral domains and some
familiar rings are not. For each example, the student should verify the
assertion made.
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EXAMPLE 1 The ring of integers is an integral domain. |
B EXAMPLE 2 The ring of Gaussian integers Z[i| = {a + bil a, b € Z}
is an integral domain. |

B EXAMPLE 3 The ring Z[x] of polynomials with integer coefficients
is an integral domain. |

B EXAMPLE 4 The ring ZIV2] = {a+bV2la,bEZ}isan integral
domain. |

B EXAMPLE 5 The ring Z, of integers modulo a prime p is an integral
domain. i

B EXAMPLE 6 The ring Z of integers modulo n is not an integral do-
main when » is not prime. i

B EXAMPLE 7 The ring M(Z) of 2 X 2 matrices over the integers is
not an integral domain. |

B EXAMPLE 8 Z @ Zis not an integral domain. I

What makes integral domains particularly appealing is that they have
an important multiplicative group theoretic property, in spite of the fact
that the nonzero elements need not form a group under multiplication.
This property is cancellation.

Theorem

Let a, b, and c belong to an integral domain. If a # 0 and ab = ac,
then b = c.

PROOF From ab = ac, we have a(b — ¢) = 0. Since a # 0, we must
have b — ¢ = 0. |
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Field:

Definition Field
A field is a commutative ring with unity in which every nonzero
element is a unit.

To verify that every field is an integral domain, observe that if a and
b belong to a field with a # 0 and ab = 0, we can multiply both sides
of the last expression by a ! to obtain b = 0.

It is often helpful to think of ab™! as a divided by b. With this in
mind, a field can be thought of as simply an algebraic system that
is closed under addition, subtraction, multiplication, and division
(except by 0). We have had numerous examples of fields: the complex
numbers, the real numbers, the rational numbers. The abstract theory of
fields was initiated by Heinrich Weber in 1893. Groups, rings, and
fields are the three main branches of abstract algebra. Theorem 13.2
says that, in the finite case, fields and integral domains are the same.

Theorem

A finite integral domain is a field.

PROOF Let D be a finite integral domain with unity 1. Let a be any
nonzero element of D. We must show that @ 1s a unit. If a = 1, a 1s its
own inverse, so we may assume that @ # 1. Now consider the following
sequence of elements of D: a, a*, @*, . . .. Since D is finite, there must
be two positive integers i and j such that i > j and @’ = a/. Then, by can-
cellation, ¢’/ = 1. Since a # 1, we know that i — j > 1, and we have
shown that a7~ ! is the inverse of a. |

Corolary:

For every prime p, Zp. the ring of integers modulo p is a field.
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PROOF According to Theorem 13.2, we need only prove that Z, has
no zero-divisors. So, suppose thata, b € Z and ab = 0. Then ab = pk
for some integer k. But then, by Euclid’s Lemma (see Chapter 0), p
divides a or p divides b. Thus, in Zﬂ, a=0Qorb=0. [

I EXAMPLE 9 Field with Nine Elements
Let Zlil={a+bila,beZ}
={0,1,2,4, 1 +i,2+1i,2i, 1+ 20,2+ 2i},
where i? = —1. This is the ring of Gaussian integers modulo 3. Ele-
ments are added and multiplied as in the complex numbers, except that

the coefficients are reduced modulo 3. In particular, —1 = 2. Table 13.1
is the multiplication table for the nonzero elements of Z.[i]. |

Table 13.1 Multiplication Table for Zg[f]*

1 2 i 1+i 24+ 2 1+2i 242
1 1 2 [ 1+i 241 2 1+2i 242§
2 2 1 2i 24+2i 1+2i i 24+ 1 + 1
] [ 20 2 24+i 2+2i 1 1+ 1 + 2§
1+ 1 +i 242 2+ 2i 1 1+2i 2 [
2+ 2+ 1+2i 2+2i 1 i 1 +i 2i 2
2i 20 i 1 1 +2i 1+ 2 242 2+
1+2i | 1+2i 2+ 1 +i 2 2i 24+ 2i i 1
242 | 2+21 1+ 1+2i i 2 2+ 1 2i

B EXAMPLE 10 Let O[V2] = {a + bV2 1 a, b € Q). Itis easy to see
that Q[\V/2] is a ring. Viewed as an element of R, the multiplicative in-
verse of any nonzero element of the form a + b\/2 is simply 1/(a +
b\/i). To verify that Q[\/ﬁ] is a field, we must show that 1/(a + b\V2)
can be written in the form ¢ + d\/2. In high school algebra, this process
is called “rationalizing the denominator.” Specifically,

1 B 1 a—b\/z_ a - b V3
a+bvV2 a+bV2a-bvV2 & =20 o200
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(Note that @ + b\/2 # 0 guarantees that a — bV2 # 0.) ]

Characteristics of Rings:

Note that for any element x in Z,[i], we have 3x = x + x + x = 0, since
addition is done modulo 3. Similarly, in the subring {0, 3, 6,9} of Z,,
we have 4x = x + x + x + x = 0 for all x. This observation motivates
the following definition.

Definition Characteristic of a Ring

The characteristic of a ring R is the least positive integer n such that
nx = 0 for all x in R. If no such integer exists, we say that R has char-
acteristic (. The characteristic of R is denoted by char R.

Thus, the ring of integers has characteristic 0, and Z has character-
istic n. An infinite ring can have a nonzero characteristic. Indeed, the

ring Z,[x] of all polynomials with coefficients in Z, has characteristic 2.
(Addition and multiplication are done as for polynomials with ordinary
integer coefficients except that the coefficients are reduced modulo 2.)
When a ring has a unity, the task of determining the characteristic is
simplified by Theorem 13.3.
Theorem

Let R be a ring with unity 1. If 1 has infinite order under addition,

then the characteristic of R is 0. If 1 has order n under addition,
then the characteristic of R is n.

PROOF If 1 has infinite order, then there is no positive integer n such
that n - 1 = 0, so R has characteristic 0. Now suppose that 1 has addi-
tive order n. Then n - 1 = 0, and n is the least positive integer with this
property. So, for any x in R, we have
n+-x=x-+x+ -+ x(nsummands)
= Ix + 1lx + - - - + 1x (n summands)
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=(1+1+---+ 1)x{h summands)
=m-1x=0x=0.
Thus, R has characteristic n. [

Theorem

The characteristic of an integral domain is 0 or prime.

PROOF By Theorem 13.3, it suffices to show that if the additive order
of 1 is finite, it must be prime. Suppose that 1 has order n and that n = st,
where 1 = s, t = n. Then, by Exercise 15 in Chapter 12,

O=n-1=(@t)-1=(s-D(t-1).

So,s- 1 =0o0rz-1 = 0. Since n is the least positive integer with the
property that n - 1 = 0, we must have s = n or t = n. Thus, n is
prime. |
Table 13.2 Summary of Rings and Their Properties

Integral
Ring Form of Element Unity Commutative Domain Field Characteristic
A k 1 Yes Yes No 0
Z . ncomposite  k 1 Yes No No n
ZP, p prime k 1 Yes Yes Yes P
Zx] ax"+ -+ fixy=1 Yes Yes No 0
ax + day
nZ,n =1 nk None Yes No No 0
M(2) {“ b} [1 0] No No No 0
- c d 0 1
2a 2b
M,(2Z) LC Zd] None No No No 0
Z]i] a + bi 1 Yes Yes No 0
Z,[i] a+tbiia,bEZ, 1 Yes Yes Yes 3
Z[V?2] at+bV2abezZ | Yes Yes  No 0
oV2] a+bV2a,beEQ 1 Yes Yes  Yes 0
ZDZ (a, b) (1. 1) Yes No No 0
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Idle:

Normal subgroups play a special role in group theory—they permit us
to construct factor groups. In this chapter, we introduce the analogous
concepts for rings—ideals and factor rings.

Definition Ideal

A subring A of a ring R is called a (two-sided) ideal of R if for
every r € R and every a € A both ra and ar are in A.

So, a subring A of a ring R is an ideal of R if A “absorbs” elements
from R—thatis,if rA = {rala€ A} CAandAr = {larla€ A} CA
for all r € R.

An ideal A of R is called a proper ideal of R if A is a proper subset
of R. In practice, one identifies ideals with the following test, which is
an immediate consequence of the definition of ideal and the subring
test given in Theorem 12.3.

Theorem

A nonempty subset A of a ring R is an ideal of R if

1. a — b& A whenevera, b € A.
2. raand ar are in A whenevera © A andr € R.

B EXAMPLE 1 Forany ring R, {0} and R are ideals of R. The ideal {0}
is called the trivial ideal. |

B EXAMPLE 2 For any positive integer n, the set nZ = {0, *n,
+2n, ...} 1s an ideal of Z. |

B EXAMPLE 3 Let R be a commutative ring with unity and let a € R.
The set (a) = {ra | r € R} is an ideal of R called the principal ideal

generated by a. (Notice that (a) is also the notation we used for
the cyclic subgroup generated by a. However, the intended meaning

will always be clear from the context.) The assumption that R is com-
mutative is necessary in this example

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 13/20




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: 11l B. Sc MATHEMATICS COURSE NAME: Ring Theory and Linear Algebra-11
COURSE CODE: 17MMU501A UNIT: I BATCH-2017-2020

B EXAMPLE 4 Let R[x] denote the set of all polynomials with real co-
efficients and let A denote the subset of all polynomials with constant
term 0. Then A is an ideal of R[x] and A = (x). i

B EXAMPLE 5 Let R be a commutative ring with unity and let a,
a,, ...,a belong to R. Then I = (al, a,, ..., a”) = {ra, + na, +
-+ +ra |r, €R}is an ideal of R called the ideal generated by a,,
a, ...,a.The verification that 7 is an ideal is left as an easy exercise
(Exercise 3). |

B EXAMPLE 6 Let Z[x] denote the ring of all polynomials with inte-
ger coefficients and let I be the subset of Z[x] of all polynomials with
even constant terms. Then 7 is an ideal of Z|x] and I = {(x, 2) (see
Exercise 37). |

B EXAMPLE 7 Let R be the ring of all real-valued functions of a real

variable. The subset S of all differentiable functions is a subring of R
but not an ideal of R. |

Factor Ring:

Let R be aring and let A be an ideal of R. Since R is a group under addi-
tion and A is a normal subgroup of R, we may form the factor group
R/A = {r + A | r € R}. The natural question at this point is: How may
we form a ring of this group of cosets? The addition is already taken care
of, and, by analogy with groups of cosets, we define the product of two
cosets of s + A and t + A as st + A. The next theorem shows that this de-
finition works as long as A is an ideal, and not just a subring, of R.

Theorem

Let R be a ring and let A be a subring of R. The set of cosets {r + A |
r € R} is a ring under the operations (s + A) + (t + A)=s+t+ A
and (s + A)(t + A) = st + Aifand only if A is an ideal of R.
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PROOF We know that the set of cosets forms a group under addition.
Once we know that multiplication is indeed a binary operation on the
cosets, it is trivial to check that the multiplication is associative and
that multiplication is distributive over addition. Hence, the proof boils
down to showing that multiplication is well-defined if and only if A is
an ideal of R. To do this, let us suppose that A is an ideal and lets + A =
s +Aandt+ A =1t + A Then we must show that st + A = s't" + A.
Well, by definition, s = 5" + aand t = t' + b, where a and b belong
to A. Then

st=(s"+a)t' +b)=s"t +at' + s'b + ab,
and so

st +tA=5't +at' +s’b+ab+A=5"t +A,

since A absorbs at” + s'b + ab. Thus, multiplication is well-defined
when A is an ideal.

On the other hand, suppose that A is a subring of R that is not an
ideal of R. Then there exist elements a € A and r € R such that ar & A
or ra €& A. For convenience, say ar € A. Consider the elementsa + A =
0 +Aandr + A. Clearly, (a + A)(r + A) =ar + Abut (0 + A) -
(r+A)=0-r+A=A.Since ar + A # A, the multiplication is not
well-defined and the set of cosets is not a ring. i
B EXAMPLES8 Z/4Z={0+4Z, 1 +4Z, 2+ 4Z,3 + 4Z}. To see how
to add and multiply, consider 2 + 4Z and 3 + 4Z.

2Q+42)+ (3+4Z2)=5+4Z=1+4+4Z=1+4Z,
Q+42)3+42) =6 +4Z=2+4+4Z=2 + 4Z

One can readily see that the two operations are essentially modulo 4
arithmetic. |
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B EXAMPLE @ 27/6Z = {0 + 6Z,2 + 6Z,4 + 6Z}. Here the opera-
tions are essentially modulo 6 arithmetic. For example, (4 + 62) +
(4+6Z)=2+6Zand (4 + 6Z2)(4 + 6Z) = 4 + 6Z. |

Here is a noncommutative example of an ideal and factor ring.

B EXAMPLE 10 Let R = {[“1 ag] a;EZ} and let I be the

3 dy
subset of R consisting of matrices with even entries. It is easy to
show that 7 is indeed an ideal of R (Exercise 21). Consider the factor
ring R/I. The interesting question about this ring is: What is its size?
r

We claim R/I has 16 elements; in fact, R/l = { {rl +1|r,€]0, 1}}.

3 Iy
An example illustrates the typical situation. Which of the 16 elements

. 7 B 7 8 1 0
1S + 1?7 Well, observe that 5 + I = { +

5 -3 -3 1
6 8 1 0 . , .
4 -4 + 1= {1 + I, since an ideal absorbs its own elements.
The general case is left to the reader (Exercise 23). |

B EXAMPLE 11 Consider the factor ring of the Gaussian integers
R = Z[i]/{2 — i). What does this ring look like? Of course, the elements
of R have the form a + bi + (2 — i), where a and b are integers, but the
important question is: What do the distinct cosets look like? The fact
that2 — i + (2 — i) = 0 + (2 — i) means that when dealing with coset
representatives, we may treat 2 — i as equivalent to 0, so that 2 = i. For
example, thecoset3 +4i + 2 —)=3+8+ 2 —1i) =11 + (2 —i).
Similarly, all the elements of R can be written in the form a + (2 — i),

where a is an integer. But we can further reduce the set of distinct coset
representatives by observing that when dealing with coset representa-

tives, 2 = i implies (by squaring both sides) that 4 = —1 or 5 = 0.
Thus, thecoset3 +4i+ 2 - =11+2—-D=1+5+5+2—-10) =
1 + (2 — i). In this way, we can show that every element of R is equal to

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 16/20




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: 11l B. Sc MATHEMATICS COURSE NAME: Ring Theory and Linear Algebra-11
COURSE CODE: 17MMU501A UNIT: I BATCH-2017-2020

one of the following cosets: 0 + (2 — i), 1 + (2 — 0,2+ 2 —1i),3 +
(2 — i), 4 + (2 — i). Is any further reduction possible? To demonstrate
that there is not, we will show that these five cosets are distinct. It suf-
fices to show that 1 + (2 — i) has additive order 5. Since 5(1 + (2 — i)) =
5+2—-—0)=0+2—1i),1+ (2 —1i)hasorder 1 or 5. If the order is
actually 1,then 1 + 2 — ) =0+ (2 —i),s01 € (2 — i). Thus, 1 =
(2 — i) (a + bi) = 2a + b + (—a + 2b)i for some integers a and b. But

this equation implies that 1 = 2a + band 0 = —a + 2b, and solving these
simultaneously yields b = 1/5, which is a contradiction. It should be

clear that the ring R is essentially the same as the field Z.. |

B EXAMPLE 12 Let R[x] denote the ring of polynomials with real co-
efficients and let (x> + 1) denote the principal ideal generated by
x? + 1; that is,

(2 + 1) = {fix)x® + 1) | fix) € R[x]).
Then

R[x]/{x* + 1) = {g(x) + (&2 + 1) | g(x) € R[x]}
={lax+b+ &2+ 1)la, beE R}
To see this last equality, note that if g(x) is any member of R[x], then
we may write g(x) in the form g(x)(x> + 1) + r(x), where g(x) is the
quotient and r(x) is the remainder upon dividing g(x) by x* + 1. In

particular, r(x) = O or the degree of r(x) is less than 2, so that r(x) =
ax + b for some a and b in R. Thus,

gx) + (*+ 1) =qgx)x* + 1) + r(x) + (x> + 1)
=rx) + (x*+ 1),

since the ideal (x* + 1) absorbs the term g(x)(x*> + 1).
How is multiplication done? Since

X+H1+EE+D=0+G+1),
one should think of x* + 1 as 0 or. equivalently. as x* = —1. So. for
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example,

+E3+ @+ D)) - 2x+5+&+ 1))
=22+ 1Ix+ 15+ 2+ 1) =11x+ 13 + 2+ 1).

In view of the fact that the elements of this ring have the form ax +
b + (x* + 1), where x> + (x> + 1) = —1 + (x* + 1), it is perhaps not
surprising that this ring turns out to be algebraically the same ring as
the ring of complex numbers. This observation was first made by Cau-
chy in 1847. i

Prime ideal and Maximal ideal:

Definition Prime Ideal, Maximal Ideal

A prime ideal A of a commutative ring R is a proper ideal of R such
thata, b € R and ab € A imply a € A or b € A. A maximal ideal of a
commutative ring R is a proper ideal of R such that, whenever B is an
idealof Rand A CBC R,thenB=AorB = R.

So, the only ideal that properly contains a maximal ideal is the en-
tire ring. The motivation for the definition of a prime ideal comes from
the integers.

B EXAMPLE 13 Letn be an integer greater than 1. Then, in the ring of
integers, the ideal nZ is prime if and only if n is prime (Exercise 9).
({0} is also a prime ideal of Z.) |

B EXAMPLE 14 The lattice of ideals of Z,, (Figure 14.1) shows that
only (2) and (3) are maximal ideals. |

B EXAMPLE 15 The ideal {(x* + 1) is maximal in R[x]. To see this,
assume that A is an ideal of R[x] that properly contains (x* + 1). We will
prove that A = R[x] by showing that A contains some nonzero real
number c. [This is the constant polynomial #(x) = ¢ for all x.] Then 1 =
(1/c)c € A and therefore, by Exercise 15, A = R|[x]. To this end, let

fix) € A, but fix) & (x> + 1). Then
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flx) = gx)(x* + 1) + rx),

where r(x) # 0 and the degree of r(x) is less than 2. It follows that
r(x) = ax + b, where a and b are not both 0, and

ax + b = r(x) = fix) — g(x)(x* + 1) € A.

\/\N
/NS

NN
AN e

<|2> <|8>

/
N\

<()=

Thus,
a*x* — b2 = (ax + b)(ax —b)E A and a’(x* + 1) € A.
So.

0+#a’ + b’ = (a’x* + a°) — (a’x* — b*) E A. |
B EXAMPLE 16 The ideal (x> + 1) is not prime in Z,|x], since it con-
tains (x + 1> = x>+ 2x + 1 = x> + 1 but does not contain x + 1. |
Theorem

Let R be a commutative ring with unity and let A be an ideal of R.
Then R/A is an integral domain if and only if A is prime.

PROOF Suppose that R/A is a field and B is an ideal of R that properly
contains A. Let » € Bbut b & A. Then b + A is a nonzero element
of R/A and, therefore, there exists an element ¢ + A such that
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(b +A):-(c +A) =1+ A, the multiplicative identity of R/A. Since
b € B, we have bc € B. Because

l1+A=((b+A)(c+ A =bc+ A,
we have | —bc € A C B. So, 1 = (1 — bc) + be € B. By Exercise 15,
B = R. This proves that A is maximal.

Now suppose that A is maximal and let » € R but b & A. It suffices
to show that b + A has a multiplicative inverse. (All other properties
for a field follow trivially.) Consider B = {br + al r € R,a € A}. This
is an ideal of R that properly contains A (Exercise 25). Since A is maxi-
mal, we must have B = R. Thus, 1 € B, say, | = bc + a’, where a’ € A.
Then

l+A=bc+a +A=bc+A=(b+A)c+ A). |
B EXAMPLE 17 The ideal (x) is a prime ideal in Z[x] but not a maxi-
mal ideal in Z[x]. To verify this, we begin with the observation that
(x) = {fix) € Z[x] | fi0) = 0} (see Exercise 29). Thus, if g(x)h(x) € (x),
then g(0)2(0) = 0. And since g(0) and h(0) are integers, we have g(0) = 0
or h(0) = 0.
To see that {x) is not maximal, we simply note that (x) C (x, 2) C
Z|x] (see Exercise 37). |
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Definitions Ring Homomorphism, Ring Isomorphism
A ring homomorphism ¢ from a ring R to a ring S is a mapping from
R to S that preserves the two ring operations; that is, for all @, b in R,

d(a+b)=¢@) + () and  H(ab) = P(a)d(b).

A ring homomorphism that is both one-to-one and onto is called a
ring isomorphism.

B EXAMPLE 1 For any positive integer n, the mapping k — k mod n is
a ring homomorphism from Z onto Z (see Exercise 9 in Chapter 0).
This mapping is called the natural homomorphism from Z to Z . i

B EXAMPLE 2 The mapping a + bi — a — bi is a ring isomorphism
from the complex numbers onto the complex numbers (see Exercise 35
in Chapter 6). i

B EXAMPLE 3 Let R[x] denote the ring of all polynomials with real
coefficients. The mapping f(x) — f(1) is a ring homomorphism from
R|[x] onto R. |

B EXAMPLE 4 The correspondence ¢: x — 5x from Z, to Z
1s a ring homomorphism. Although showing that $(x + y) =
¢(x) + ¢(v) appears to be accomplished by the simple statement that
5(x + y) = 5x + S5y, we must bear in mind that the addition on the left is
done modulo 4, whereas the addition on the right and the multiplication
on both sides are done modulo 10. An analogous difficulty arises in show-
ing that ¢ preserves multiplication. So, to verify that ¢ preserves both op-
erations, we write x + y = 4q, + r and xy = 4q, + r,, where 0 = r, <4
and 0 = r, <4.Then ¢(x + y) = ¢(r) = 5r, =5(x +y—4q) =5x +
Sy = 20g, = 5x + S5y = ¢(x) + ¢(y) in Z, . Similarly, using the fact that
5-5=5mnZ, we have ¢(xy) = ¢(r,) = 5r, = S(xy — 4q,) = Sxy —

(s

20g, = (5 * S)xy = 5x5y = p(x)p(y) in Z . |
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B EXAMPLE 5 We determine all ring homomorphisms from Z , to Z, .
By Example 10 in Chapter 10, the only group homomorphisms from Z ,
to Z,, are x — ax, where a = 0, 15, 10, 20, 5, or 25. But,since 1 - 1 = 1

in Z;z, we must have a - a = a in Z . This requirement rules out 20 and 5

as possibilities for a. Finally, simple calculations show that each of the
remaining four choices does yield a ring homomorphism. i

Properties of Ring Homomorphisms

1 Theorem 15.1 Properties of Ring Homomorphisms

Let ¢ be a ring homomorphism from a ring R to a ring S. Let A be a
subring of R and let B be an ideal of S.

1. For any r € R and any positive integer n, d(nr) = nd(r) and

&(r") = (p(r)"

&d(A) = {Pla) | a € A} is a subring of S.

If A is an ideal and ¢ is onto S, then ¢(A) is an ideal.

¢~Y(B) = {r € R | ¢(r) € B} is an ideal of R.

If R is commutative, then ¢(R) is commutative.

If R has a unity 1, S # |0}, and ¢ is onto, then (1) is the unity

of S.

7. & is an isomorphism if and only if ¢ is onto and Ker ¢ =
{[re R | ¢(r) = 0} = {0}

8. If ¢ is an isomorphism from R onto S, then ¢~ is an
isomorphism from S onto R.

—al et L

B Theorem 15.2 Kernels Are Ideals

Let ¢ be a ring homomorphism from a ring R to a ring S. Then Ker ¢
= {r€ R | ¢(r) = 0} is an ideal of R.

I Theorem 15.3 First Isomorphism Theorem for Rings

Let ¢ be a ring homomorphism from R to S. Then the mapping from
R/Ker ¢ to d(R), given by r + Ker ¢ — ¢(r), is an isomorphism. In
symbols, R/Ker ¢ = ¢(R).
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B Theorem 15.4 ldeals Are Kernels

Every ideal of a ring R is the kernel of a ring homomorphism of R.
In particular, an ideal A is the kernel of the mappingr —r + A
from R to R/A.

The homomorphism from R to R/A given in Theorem 15.4 is called
the natural homomorphism from R to R/A. Theorem 15.3 is often re-
ferred to as the Fundamental Theorem of Ring Homomorphisms.

In Example 17 in Chapter 14 we gave a direct proof that (x) is a
prime ideal of Z[x] but not a maximal ideal. In the following example
we illustrate a better way to do this kind of problem.

I Theorem 15.5 Homomorphism from Z to a Ring with Unity

Let R be a ring with unity 1. The mapping ¢: Z— R givenbyn—n - 1
is a ring homomorphism.

PROOF Since the multiplicative group property a™*" = a™a" translates to
(m + n)a = ma + na when the operation is addition, we have ¢(m + n) =
(m+n)-1=m-1+n-1.So, ¢ preserves addition.

That ¢ also preserves multiplication follows from Exercise 15 in
Chapter 12, which says that (m - a)(n - b) = (mn) - (ab) for all integers
m and n. Thus, d(mn) = (mn) - 1 = (mn) - (1)(1))=(m - 1)(n-1) =
db(m)d(n). So, ¢ preserves multiplication as well. |

B Corollary 1 A Ring with Unity Contains Z or Z

If R is a ring with unity and the characteristic of R is n = (0, then
R contains a subring isomorphic to Z . If the characteristic of R is 0,
then R contains a subring isomorphic to Z.

PROOF Let1betheunityof RandletS = {k- 1 | k € Z}. Theorem 15.5
shows that the mapping ¢ from Z to § given by &(k) = k - | is a homo-
morphism, and by the First Isomorphism Theorem for rings, we have
Z/Ker ¢ = S. But, clearly, Ker ¢ = (n), where n is the additive order of 1
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and, by Theorem 13.3, n is also the characteristic of R. So, when R
has characteristic n, S = Z/(n) = Z. When R has characteristic 0, § =
ZK0) = Z. |

I Corollary2 Z Is a Homomorphic Image of Z
m

For any positive integer m, the mapping of ¢: Z — Z _ given by x —
x mod m is a ring homomorphism.

PROOF This follows directly from the statement of Theorem 15.5,

since in the ring Z , the integer x mod m is x - 1. (For example, in Z, if
x=5 wehave5-1=1+1+1+1+1=2) |

I Corollary 3 A Field Contains Z,or Q (Steinitz, 1910)

If F is a field of characteristic p, then F contains a subfield
isomorphic to ZP. If F is a field of characteristic 0, then F contains
a subfield isomorphic to the rational numbers.

PROOF By Corollary 1, F contains a subring isomorphic to Z if F has
characteristic p, and F has a subring § isomorphic to Z if F has charac-
teristic 0. In the latter case, let

T={ab 'la,bE S, b+#0}].
Then T 1s isomorphic to the rationals (Exercise 63). |

Since the intersection of all subfields of a field is itself a subfield
(Exercise 11), every field has a smallest subfield (that is, a subfield
that is contained in every subfield). This subfield is called the prime
subfield of the field. It follows from Corollary 3 that the prime
subfield of a field of characteristic p is isomorphic to Z , whereas the
prime subfield of a field of characteristic 0 is isomorphic to Q. (See
Exercise 67.)
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The Field of Quotients

Theorem 15.6 Field of Quotients

Let D be an integral domain. Then there exists a field F (called the
field of quotients of D) that contains a subring isomorphic to D.

PROOF LetS = {(a,b) | a,b € D, b # 0}. We define an equivalence
relation on § by (a, b) = (¢, d) if ad = be (compare with Example 17
in Chapter ). Now, let F be the set of equivalence classes of S under
the relation = and denote the equivalence class that contains (x, y) by
x/y. We define addition and multiplication on F by

alb + cld = (ad + bc)/(bd) and alb - cld = (ac)/(bd).

(Notice that here we need the fact that D is an integral domain to ensure
that multiplication is closed; that is, bd # 0 whenever b # O and d # 0.)

Since there are many representations of any particular element of ¥
(just as in the rationals, we have 1/2 = 3/6 = 4/8), we must show that
these two operations are well-defined. To do this, suppose that a/b = a'/b’
and c¢/d = ¢'/d’, so that ab’ = a'b and ¢d’ = ¢'d. It then follows that

(ad + be)b'd' = adb'd' + beb'd’ = (ab')dd' + (cd')bb'
= (a'b)dd' + (c'd)bb' = a'd'bd + b'c'bd
= (a'd + b'c")bd.

Thus, by definition, we have
(ad + be)/(bd) = (a'd" + b'c")(b'd"),

and, therefore, addition is well-defined. We leave the verification that
multiplication is well-defined as an exercise (Exercise 55). That F'is a
field 1s straightforward. Let 1 denote the unity of D. Then 0/1 is the
additive identity of F. The additive inverse of a/b is —a/b; the multipli-
cative inverse of a nonzero element a/b is b/a. The remaining field
properties can be checked easily.

Finally, the mapping ¢: D — F given by x — x/1 1s a ring isomor-
phism from D to (D) (see Exercise 7). |
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B EXAMPLE 11 Let D = Z]x]. Then the field of quotients of D is {f(x)/
g(x) | f(x), g(x) € D, where g(x) is not the zero polynomial }. |

When F is a field, the field of quotients of F[x] is traditionally de-
noted by F(x).

B EXAMPLE 12 Let p be a prime. Then Zﬁ{x] = {f(x)/g(x) | f(x), g(x)
e Zp[x]. g(x) # 0} is an infinite field of characteristic p. |
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Vector Spaces

_-:,EDEFINITIDN A nonempty set V is said to be a vector space over a field F
1f V is an abelian group under an operation which we denote by +, and
- if for every a € F, v € V there is defined an element, written av, in ¥ subject
4

i to

Hl (v + w) = av + ouw;
2. (¢ + Plv = aw + fu;
8. a(py) = (ap)o;

(4. lo = v;

"for all o, e F, v, we V (where the | represents the unit element of F
" under multiplication).

Example 4.1.1 Let F be a field and let K be a field which contains F as
a subfield. We consider K as a vector space over F, using as the + of the
vector space the addition of clements of K, and by defining, for a e F,
v € K, aw to be the products of & and v as elements in the field K. Axioms
1, 2, 3 for a vector space are then consequences of the right-distributive
law, left-distributive law, and associative law, respectively, which hold for
K as a ring.

Example 4.1.2 Let F be a field and let V be the totality of all ordered

n-tuples, (ay, ..., a, where the a; € . Two elements (ay,..., ,) and
(Bys ..., B,) of V are declared to be equal if and only if ; = p, for each
i =1,2,...,n. We now introduce the requisite operations in V' to make

of it a vector space by defining:

Lo (s eves @) + (Buseoos Ba) = (a1 + Bty + oy 0n + B
2. ylay, ..., a,) = (yay,..., ya,) for y e F.

Example 4.1.3 Let F be any field and let ¥V = F[x], the set of poly-
nomials in x over F. We choose to ignore, at present, the fact that in F[x]
we can multiply any two elements, and merely concentrate on the fact that
two polynomials can be added and that a polynomial can always be multi-
plied by an element of F. With these natural operations F[x] is a vector
space over F.
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Example 4.1.4 1In F[x] let V, be the set of all polynomials of degree less
than n. Using the natural operations for polynomials of addition and
multiplication, ¥, is a vector space over F.

What is the relation of Example 4.1.4 to Example 4.1.2? Any element of
V, is of the form ag + oyx + +++ + a,_¥"~ !, where «; € F; if we map
this element onto the element (g, &y, - . -, %,— ) in F™ we could reasonably
expect, once homomorphism and isomorphism have been defined, to find

that ¥, and F™ are isomorphic as vector spaces.

DEFINITION If ¥ is a vector space over I and if W < V, then W is a
subspace of V if under the operations of V, W, itself, forms a vecter space
over F. Equivalently, W is a subspace of V whenever w;,w,€ W,
o, p € F implies that aww; + Pfw, € W.

DEFINITION If U and V are vector spaces over F then the mapping T
of U into V is said to be a homomorphism if

A (4 + )T =u, T + u,T;
2. (au)T = a(u, T);

for all u;, u, € U, and all a € F.

As In our previous models, a homomorphism is a mapping preserving
all the algebraic structure of our system.

TLEM MA 4.1 1 If Vis a vector space over F then

it a0 = 0 forae F.

®. 00 =0 forveV.

W (—a)o = —(av) foraeF, ve V.

- Ifo # 0, then aw = 0 implies that o = o.

t Proof. The proof is very easy and follows the lines of the analogous

fesults proved for rings; for this reason we give it briefly and with few
_]Jlanation&
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» Since ov = (0 + 0)v = o0 + ov we get ov = 0,

3. Since 0 = (a + (—a))v = w + (—a)o, (—2)p = —(aw).
4, If gv = 0 and o # o then

0 =0 10 =a Y aw) = (" 0)o = lv = w

I‘I Since «0 = a(0 + 0) = a0 + a0, we get 20 = 0.

The lemma just proved shows that multiplication by the zero of V" or of
F always leads us to the zero of V. Thus there will be no danger of confusion
in using the same symbol for both of these, and we henceforth will merely
use the symbol 0 to represent both of them.

Let ¥ be a vector space over F and let W be a subspace of V. Considering
these merely as abelian groups construct the quotient group V/Wj its
elements are the cosets v + W where ve V. The commutativity of the
addition, from what we have developed in Chapter 2 on group theory,
assures us that V/W is an abelian group. We intend to make of it a vector
space. If x € F, v + We V|W, define a(v + W) = aw + W. Asis usual,
we must first show that this product is well defined; that is, if o + W =
o + Wthen a(v + W) = a(t’ + W). Now, because v + W =" + W,
v — o' is in W; since W is a subspace, a(v — ') must also be in W. Using
part 3 of Lemma 4.1.1 (see Problem 1) this says that v — e’ € W and so
aw+ W=av +W. Thus afv + W)=aw + W= + W= a(v' + W);
the product has been shown to be well defined. The verification of the
vector-space axioms for V/W is routine and we leave it as an exercise.
We have shown

LEMMA 4.1.2 If V is a vector space over I and if W is a subspace of V, then
VIW is a vector space over F, where, for vy + W, v, + We V|W and a€F,

1. (E}l + Wj - (ﬂz + W) = (ﬂl + Uz) + W.
24 I:C(Ul + W) = GCEJI + W.
VIW is called the quotient space of V by W.

Without further ado we now state the first homomorphism theorem for
vector spaces; we give no proofs but refer the reader back to the proof of

Theorem 2.7.1.
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THEOREM 4.1.1 If T is a homomorphism of U onto V with kernel W, then V
is isomorphic to U|/W. Conversely, if U is a vector space and W a subspace of U,
then there is a homomorphism of U onto U[W.

DEFINITION Let V be a vector space over F and let U,,..., U, be
subspaces of V. V is said to be the internal direct sum of Uy, ..., U, if'every
element » € V can be written in one and only one way as v = u; + u, +
~++ + u, where u; € U,.

Given any finite number of vector spaces over F, FLaE R A e s e
the set V' of all ordered n-tuples (v, ..., v,) where 2, e V. We declare two
~elements (2,,...,9,) and (v},...,2)) of V to be equal if and only if for

_.each t, ; = ;. We add two such elements by defining (7,,...,2,) +
%.(wl, oo ty) to be (v + w0 +w,,..., 0, +w,). Finally, if a € F
tand (21,...,9,) € V we define a(s,,...,»,) to be (- AT, = i 1

i To check that the axioms for a vector space hold for ¥ with its operations
~as defined above is straightforward. Thus V itself is a vector space over F.
‘We call V the external direct sum of V,, . .., V, and denote it by writing

V = Vl @‘I'@ Vn‘

THEOREM 4.1.2 If V is the internal direct sum g (LAY E i icerg T
isomorphic to the external direct sum of U,, ..., U

Proof. Given v € V, v can be written, by assumption, in one and only
jonc way as v = #, + #; +°-- + u, where 2, € U,; define the mapping
.T of Vinto Uy @ - -® U, by T = (u,..., u,). Since  has a unique
‘representation of this form, 7 is well defined. It clearly is onto, for the
arbitrary element (w,,...,w,) e U, @ - @® U, is wT where w = w; +

***+ w, e V. We leave the proof of the fact that T is one-to-one and a
homomorphism to the reader.

Linear Independence and Bases

DEFINITION If V is a vector space over F and if gy«
any element of the form o0, + a0, + - -
linear combination over F of v, .

s U, € V then
* + a,0,, where the o; e F, is a

vy Upe

DEFINITION IfSis a nonempty subset of the vector space V, then L(S),

the linear span of S, is the set of all linear combinations of finite sets of
elements of §.
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LEMMA 421 L(S)isa subspace of V.

Proof. If v and w are in L(S), then v = A;s5; + ++ + A5, and w =
Pity + -+ + p,t,, where the 2’s and p’s are in F and the 5; ;.I:d t; are all
in §. Thus, for a, BeF, aw + Pw = a(l;s, + -+ + AnSn) + ﬁ?ﬂltl +
Dt #r{:tm} = (@d)sy + o0+ (ady)s, + (Budty + -+ + (Bum)ty and so
15 again in L(S§). L(S) has been shown to be a subspace of V.

LEMMA 4.2.2 If S, T are subsets of V, then

1. S « T implies L(S) < L(T).
2. LSu T) = L(S) + L(T).
3. L(L(S)) = L(S).

DEFINITION The vector space V is said to be finite-dimensional (over F)
if there is a finite subset § in ¥V such that V = L(S).

Note that F™ is finite-dimensional over F, for if § consists of the rn vectors
(1,0,...,0),(0,1,0,...,0),...,(0,0,...,0, 1), then ¥V = L(S).
DEFINITION If Vis a vector space and if 4,..., v, are in V, we say that
they are linearly dependent over F if there exist elements A;,..., 4, in F,
not all of them 0, such that A;»; + A0, + -+ + A2, = 0.

LEMMA 423 Ifv,,...,v, € V are linearly independent, then every element in
their linear span has a unique representation in the form Ao, + -+ + Ap, with
the A; € F.

Proof. By definition, every element in the linear span is of the form
Ay + -+ + Awp, To show uniqueness we must demonstrate that if
Moy + o+ A=+ o+ puw, then A =p A=y ..., A, =ty
But if Ao, + -+ A2, = myv; + - -+ + pv, then we certainly have

.(1] =)oy + (A — pp)o, + 0+ (A, — My, = 0, which by the linear
independence of v,,..., s, forces A=y =0, Ay —p, =0,.
Jl_u - .ur: = 0'

THEOREM 4.21 Ifu,,..., v, are in V then either they are linearly independ-

ent or some vy 15 a linear combination of the preceding ones, Uy -

oy

vy Ug—q-
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Proof. 1fu,,..., v, are linearly independent there is, of course, nothing

t? prove. Suppose then that oo, + -+ + 0,0, = 0 where not all the
‘s are 0. Let k£ be the largest integer for which o, # 0. Since o; = 0
for i > i’c,] P + 0t + oy = 0 which, since « # 0, implies that
% = % (mapy = wpvy =+ = 5, = (=0 lay)o, + - +
(—o ™ "otg_y)v—y. Thus v, is a linear combination of its predecessors.

COH.OLLAHY 1 Ifv,...,0,in V have W as linear span and if vy,
are linearly independent, then we can find a subset of vys ..y v, of the form v,
V2: 4+ 5 Uy Uiy oo, U consisling of linearly independent elements whose linear
Span 1s also W,

Proof. 1fu,,...,u, are linearly independent we are done. If not, weed
out from this set the first vj, which is a linear combination of its predecessors.
Since vy, . .., y, are linearly independent, j > k. The subset so constructed,
vy, . "o ¥ Pjoygs Vjggy -+, 2, has n — 1 elements. Clearly its linear
Span Is contained in W. However, we claim that it is actually equal to W;
for, given w € W, w can be written as a linear combination of gy vnny .
But in this linear combination we can replace o; by a linear combination ;f
V... > Uyt That is, w is a linear combination ofvy,...,0;_4, Vigts e e Upe

Continuing this weeding out process, we reach a subset v,...,y,
Y115 -« ., v, whose linear span is still W but in which no element is a linear
Combination of the preceding ones. By Theorem 4.2.1 the elements

-
U5 U, 5. ., v, must be linearly independent.

CQRDLLAHY 2 If Vis a finite-dimensional vector space, then it contains a
finite set v, . . . vy of linearly independent elements whose linear span is V.

t Proof. Since V is finite-dimensional, it is the linear span of a finite
s Bumber of elements u,, ..., u,. By Corollary 1 we can find a subset of
these, denoted by v,,..., s, consisting of linearly independent elements
whose linear span must also be V.
DEFINITION A subset S of a vector space V is called a basis of V if §

consists of linearly independent elements (that is, any finite number of
elements in § is linearly independent) and V' = L(S).
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COROLLARY 3 If V is a finite-dimensional vector space and if uy,...,u,
span V then some subset of uy,. .., u,, forms a basis of V.

Corollary 3 asserts that a finite-dimensional vector space has a basis
containing a finite number of elements »,, ..., #,. Together with Lemma
4.2.3 this tells us that every element in ¥ has a unique representation in the
form oo, + -+ + o, with oy, ..., o, in F.

Let us see some of the heuristic implications of these remarks. Suppose
that V is a finite-dimensional vector space over F; as we have seen above,
V has a basis #,,...,2, Thus every element v € V has a unique repre-
sentation in the form » = o,p, + *** + a,v, Let us map V into F™ by
defining the image of oo, + *** + a,v, to be (ay, ..., a,). By the unique-
ness of representation in this form, the mapping is well defined, one-to-one,
and onto; it can be shown to have all the requisite properties of an iso-
morphism. Thus V is isomorphic to F™ for some n, where in fact n is
the number of elements in some basis of ¥ over F. If some other basis of
V should have m elements, by the same token V would be isomorphic to
F™_ Since both F™ and F™ would now be isomorphic to V, they would
be isomorphic to each other.

LEMMA 4.24 Ifuv,,...,v, is a basis of V over F and if wy, ..., w, in V
are linearly independent over F, then m < n.

Proof. Every vector in V, so in particular w,, is a linear combination:
of v,,...,v, Therefore the vectors w,, v,,..., 0, are linearly dependent.

Moreover, they span V since vy, ..., , already do so. Thus some proper
subset of these w,, v;,...,v;, with ¥k < n — 1 forms a basis of V. We
have “traded off” one w, in forming this new basis, for at least one v;.
Beptat this procedure with the set w,_,, w,, v;,...,7,. From this
linearly dependent set, by Corollary 1 to Theorem 4.2.1, we can extract a
basis of the form w,_,, w,, v;,...,v;, s < n — 2. Keeping up this
procedure we eventually get down to a basis of V of the form w,,...,
W — 15 Wy Ugs Vg - - - 5 SINCE W is not a linear combination of w,, ..., w, _,, the
above basis must actually include some v. To get to this basis we have
introduced m — 1 w’s, each such introduction having cost us at least one o,
and yet there is a v left. Thus m — 1 < n — 1 and so m < n.
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COROLLARY 1 If V is finite-dimensional over F then any two bases of V
have the same number of elements.

Proof. let v,,...,v, be one basis of ¥V over F and let w,,..., w, be
another. In particular, w,, ..., w,, are linearly independent over ¥ whence,
by Lemma 4.2.4, m < n. Now interchange the roles of the #’s and ©’s and
we obtain that n < m. Together these say that n = m.

COROLLARY 2 F®™ g5 {somorphic F™ if and only if n = m.

Proof. F™ has, as one basis, the set of n vectors, (1,0,...,0), (0, 1,
0,...,0),...,(0,0,...,0,1). Likewise F™ has a basiz containing m
vectors. An isomorphism maps a basis onto a basis (Problem 4, end of this
section ), hence, by Corollary 1, m = n.

COROLLARY 3 If V is finite-dimensional over F then V is isomorphic to F™
Jor a unique integer n; in fact, n is the number of elements in any basis of V over F.

DEFINITION The integer n in Corollary 3 is called the dimension of V
over F.

The dimension of V over F is thus the number of elements in any basis
of V over F.
COROLLARY 4 Any two finite-dimensional vector spaces over F of the same
dimension are isomorphic.

Proof. If this dimension is n, then each is isomorphic to F™, hence
they are isomorphic to each other.
LEMMA 4.25 If V is finite-dimensional over F and if uy,...,u, €V are

linearly independent, then we can find vVeclors Upiy, . .- Umy, in V such that
.y Uy 4, 15 @ basis of V.

u]! ey Upyy l‘tm+],.!' *
Proof. Since V is finite-dimensional it has a basis; let vy,..., 2, be a
basis of V. Since these span V, the vectors u,, ..., Uy, Uy, ..., U, also span

V. By Corollary 1 to Theorem 4.2.1 there is a subset of these of the form
Uy« Uy Uy ---»0;, which consists of linearly independent elements

which span V. To prove the lemma merely put #,,; = V55.. .5 lUpyy, =

v;,-
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LEMMA 4.2.6 If V is finite-dimensional and if W is a subspace of V, then W
is finite-dimensional, dim W < dim V and dim V(W = dim V — dim W.

Proof. By Lemma 4.2.4, if n = dim V then any n + 1 elements in V
are linearly dependent; in particular, any n + 1 elements in W are linearly
dependent. Thus we can find a largest set of linearly independent elements
in W, w,,...,w, and m < n If we W then w,,...,w,, wis a linearly
dependent set, whence ow + o,w; + -+ + o,w, = 0, and not all of the
a;’s are 0. If a = 0, by the linear independence of the w; we would get that
each a, = 0, a contradiction. Thus a # 0, and so w = —a~ '(xw; +
-+ + a,w,). Consequently, w,,...,w, span W; by this, W is finite-
dimensional over F, and furthermore, it has a basis of m elements, where
m < n. From the definition of dimension it then follows that dim W <
dim V.

Now, let w,, ..., w, be a basis of W. By Lemma 4.2.5, we can fill this

out to a basis, wy,..., W, ¥y,...,8, of V, where m + r = dim V and
m = dim W. .

Let 7,,...,7, be the images, in V = V|W, of v;,...,7,. Since any
vector v € V is of the form » = ayw, + *** + Gl + B1v1 + ==+ + B0y,

then v, the image of v, is of the form 7 = Bivy + -+ B3, (since @, =
i il @, = 0). Thus 7,,...,7, span V/W. We claim that they are
linearly independent, for if 9,5, + --- + P9, = 0 then y, + -+ +
Vrdr € H_f’, and so y;0; + -+ pu, = Aaw, + -0 + A,y Which, by the
linear independence of the set w,,...,w,, U15+..,0, forces y, =--+ =

Yo =4 =:-=1,=0. We have shown that VIW has a basis of r
elements, and so, dim V/W = r = dim V — m = dim V — dim W,

COHOLLAH‘.( if A and B are finite-dimensional subspaces of a vector space V,
then A + B is finite-dimensional and dim (4 + B) = dim (4) + dim (B) —
dim (4 A B).

Proof. By the result of Problem 13 at the end of Section 4.1,

bl 8| A 0
B An B

and since 4 and B are finite-dimensional, we get that
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and since 4 and B are finite-dimensional, we get that

dim(A+B)—dimB:dim(A+B):dim( 4 )
B

An B
= dim 4 - dim (4 n B).
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UNIT-IV
SYLLABUS

Linear transformations - Null space - Range - Rank and nullity of a linear transformation —
Matrix representation of a linear transformation - Algebra of linear transformations.
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Linear Transformations

g{DEFINITION If U and V are vector spaces over F then the mapping T
;:‘Ei:'_of Uinto V is said to be a homomorphism if
DL @ + )T = ,T + u,T;

2. (auy)T = afu T);

for all uy, u, € U, and all o € F.

The Algebra of Linear Transformations

Let V be a vector space over a field F and let Hom (V, V), as before, be
the set of all vector-space-homomorphisms of ¥V into itself. In Section 4.3
‘we showed that Hom (V, V) forms a vector space over F, where, for
Ty, T,eHom (V, V), Ty, + T, is defined by o(Ty, + T,) = vT; + vT,
for all ve V and where, for a € F, aT; is defined by v(aT,) = a(vT}).
For Ty, T, e Hom (V, V), since vT, € V for any ve V, (vT;)T, makes
sensc. As we have done for mappings of any set into itself, we define
T,T, by o(T,T,) = (vT,) T, for any ve V. We now claim that 7,7, €
Hom (V, V). To prove this, we must show that for all &, § € F and all
woeV, (au + Po)(T,T,) = a(u(T,T,)) + B((T,T,)). We compute

(o + Po)(TyT3) = ((au + Pv)T,) T,

= (a(uTy) + B(vT))T,

= a(Ty)T, + B(eTy)T,

= a(u(T1T3)) + P((TTy)).
DEFINITION An associative ring 4 is called an algebra over F if 4 is a
vector space over F such that for all ,be 4 and a € F, o(ab) = (aa)b =
a(ob).
DEEINITION A linear transformation on V, over F, is an element of Ag(V).

We shall, at times, refer to A(V) as the ring, or algebra, of linear trans-
formations on V.
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LEMMA 6.1.1 If A is an algebra, with unit element, over F, then A is isomorphic
to a subalgebra of A(V') for some vector space V over F.

Proof. Since A is an algebra over F, it must be a vector space over "
We shall use ¥ = 4 to prove the theorem.

If ac A, let T,:A > A be defined by vT, = va for every ve 4. We
assert that 7, is a linear transformation on V(=4). By the right-distribu-
tive law (v, + 2,)T, = (v, + v5)a = vya + voa = 0, T,+ v, T,. Since A
is an algebra, ()T, = (w)a = a(va) = a(vT,) for ved, ael. Thus
T, is indeed a linear transformation on A.

"Consider the mapping Y:4 — A(V) defined by ay = T, for every
2e A. We claim that i is an isomorphism of 4 into 4(V). To begin with,
if a,bed and o BeF, then for all ved, 2Ty = v(aa + Bb) =
a(va) + B(vb) [by the left-distributive law and the fact that 4 is an algebra
over F] = a(oT,) + B(T,) = v(aT, + BT,) since both T, and T, arc
linear transformations. In consequence, Tpuypp = 0Ty + BT whence ¥
is a vector-space homomorphism of 4 into A(V). Next, we compute, for

abed, vT, = v(ab) = (va)b = (vT,)T, = o( T,T,) (we have used
the associative law of 4 in this computation), which implies that 7, =
T,T,. In this way, ¢ is also a ring-homomorphism of 4. So far we have
proved that  is a homomorphism of 4, as an algebra, into A(V). All that
remains is to determine the kernel of . Let ae 4 be in the kernel of W
then ayy = 0, whence T, = 0 and so vT, =0 for all ve V. Now V = 4,
and 4 has a unit element, e, hence ¢7, = 0, However, 0 = ¢T, = ea = a,
proving that @ = 0. The kernel of i must therefore merely consist of 0,

thus implying that y is an isomorphism of 4 into A(V'). This completes the
proof of the lemma.

LEMMA 6.1.2 Let A be an algebra, with unit element, over F, and suppose that

4 is of dimension m over F. Then every element in A satisfies some nontrivial poly-
nomial in F[x] of degree at most m.

Proof. Let ¢ be the unit element of 4; if 4 e A, consider the m + 1

2 - - * * -
elements ¢, a, a®, ..., a" in A. Since 4 is m-dimensional over F, by Lemma
2 " - -
424, ¢ a,a%,...,a", being m + 1 in number, must be linearly dependent
over F. In other words, there are elements o, ay, ..., %y In F, not all

p,' s.uf:h t}_mt e + oga + -+ + a,a™ = 0. But then a satisfies the non-
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!:rivia] polynomial ¢(x) = oy + ayx + -+ + a,x™, of degree at most i,
m F[x].

45 4 . '

-I_;_THEOREI\{I 611 If V{f an n-dimensional vector space over F, then, given any
:-ﬁmmi T in A(V), there exists a nontrivial polynomial q(x) € F[x| of degree at
most n*, such that (T = 0.

R

DEFINITION An element T € A(V) is called right-invertible if there exists
an S € A(V) such that TS = 1. (Here 1 denotes the unit element of A(V).)

Similarly, we can define left-invertible, if there is a Ue A(V) such
that UT = 1. If T is both right- and left-invertible and if TS = UT = 1,
it is an easy exercise that § = U and that § is unique.

DEFINITION An element T in A(V) is invertible or regular if it is both
right- and left-invertible; that is, if there is an element S € A(V) such that
ST = TS = 1. We write Sas T~ 1.

THEOREM 6.1.2 If V is finite-dimensional over F, then T e A(V) is in-
vertible if and only if the constant term of the minimal polynomial for T is not 0.

Proof. Let p(x) = ag + g% + -+ + o4x*, a; # 0, be the minimal
polynomial for T over F.

If qg # 0, since 0 = p(T) = a@T* + o (T " 4 - + o, T + 0o, WE
obtain

I

T( L5 (o T ' 4 oy T* 2 -+ 4 tx,])
ao .
= ( gL (o T* 1 4 -+ + ml))T.
to

Therefore,

1 :
§=—— (""" 4+ + a)

Oo
acts as an inverse for 7, whence T is invertible.

Suppose, on the other hand, that T is invertible, yet a, = 0. Thus
0=0o,T+T? + 4+ T"= (2, + 0T + -+ + o T* 1) T. Multi-
plying this relation from the right by 7' yields o, + o, T + - -+ +
ati‘_“"'_l = 0, whereby T satisfies the polynomial ¢(x) = a; + a,x + -+ +
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o+~ ' in F[x]. Since the degree of ¢(x) is less than that of p(x), this is
impossible. Consequently, o, # 0 and the other half of the theorem is
established.

COROLLARY 1 If V is fimite-dimensional over F and if T e A(V) is in-
vertible, then T~ is a polynomial expression in T over F.

Proof. Since T is invertible, by the theorem, ay + o, 7 + +-- +
a7 = 0 with oy # 0. But then

T = — —]— (ay + 0T + -+ + o, TF 1),
%o
COROLLARY 2 If V is finite-dimensional over F and if T € A(V) is singular,
then there exists an S # 0 in A(V) such that ST = TS = 0.

Proof. Because T is not regular, the constant term of its minimal
polynomial must be 0. That is, p(x) = a;x + -+ + ", whence 0 =
T+ + T If S=a +- -4 7" ' then § # 0 (since
o + -+ + ox* "1 is of lower degree than p(x)) and ST = TS = 0. ..

COROLLARY 3 If V is finite-dimensional over F and if T e A(V) is right-
invertible, then it is invertible.

Proof. Let TU = 1. If T were singular, there would be an § # 0
such that ST = 0. However, 0 = (ST)U = S(TU) = S1 = § # 0,
a contradiction. Thus 7 is regular.

THEOREM 6.1.3 If V is finite-dimensional over F, then T'e A(V) is singular
if and only if there exists av # 0 in V such that vT = 0.

Proof. By Corollary 2 to Theorem 6.1.2, T is singular if and only if
fhﬁrc is an § # 0 in A(V) such that ST = TS = 0. Since S # 0 there
18 an element w € V such that wS # 0.

Let v = wS; then 0T = (wS)T = w(ST) = w0 = 0. We have produced
a nonzero vector v in ¥V which is annihilated by T. Conversely, if 7" = 0
with o # 0, we leave as an exercise the fact that 7" is not invertible.

DEFINITION If T e A(V), then the range of T, VT, is defined by VT =
{(wT |ve V}.
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THEOREM 6.1.4 If V is finite-dimensional over F, then T € A(V) is regular
if and only if T maps V onto V.

Proof. As happens so often, one-half of this is almost trivial; namely,
if T is regular then, given veV, v = (7T~ ')7T, whence VT =V and

T is onto.
On the other hand, suppose that T is not regular. We must show that

T is not onto. Since T is singular, by Theorem 6.1.3, there exists a vector
9, # 0 in V such that o, T = 0. By Lemma 4.2.5 we can fill out, from v,,
to a basis v, U3, ..., 0, of V. Then every element in VT is a linear com-
bination of the elements w; = v, T, w, = v,7T,...,w, = v,T. Since
w, = 0, VT is spanned by the n — 1 elements w,,...,w,; therefore
dim VT < n— 1 < n=dim V. But then VT must be different from V;

that is, 7 1s not onto.

DEFINITION If V is finite-dimensional over F, then the rank of T is the
dimension of VT, the range of T, over F.

We denote the rank of T by 7(T"). At one end of the spectrum, if 7(7) =
dim V, T is regular (and so, not at all singular). At the other end, if
r(T) = 0, then T = 0 and so T is as singular as it can possibly be. The
rank, as a function on 4(V), is an important function, and we now investigate

some of its properties.
LEMMA 6.1.3 If V is finite-dimensional over F then for S, T e A(V').

1. 7(ST) < r(T);
2. r(TS) < (T);
(and so, r(ST) < min {r(T), r(S)})
8. r(ST) = r(TS) = r(T) for S regular in A(V).

Proof. 'We go through 1, 2, and 3 in order.

1. Since VS < V, V(ST) = (V)T < VT, whence, by Lemma 4.2.6,
dim (V(ST)) < dim VT; thatis, 7(ST) < #(T).

2. Suppose that 7(T) = m. Therefore, VT has a basis of m elements,
Wy, Wy, - - -, W, But then (VT)S is spanned by w,S, w,S, ..., w,S, hence

has din‘ue:nsiun at most m. Since 7(TS) = dim (V(7§)) = dim (VT)S) <
m = Ehm VT = r(T), part 2 is proved.
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3. It § is invertible then VS = V, whence V(ST) = (VS)T = VT.
Thereby, r(ST) = dim (V(ST)) = dim (VT) = r(T). On the other hand,
if VT has w,,...,w, as a basis, the regularity of § implies that w,S, . .,
w,,S are linearly independent. (Prove!) Since these span V(T5) they form
a basis of V(TS). But then r(7S) = dim (V(TS)) = dim (VT) = +(T).

COROLLARY If T'e A(V) and if S € A(V') is regular, thenr(T) = r(STS™1).

{Pruof. By part 3 of the lemma, r(STS™!) = 7(S(TS™ 1)) =r((TS"~ Ns) =
r(T).

MATRIX REPRESENTATION ON LINEAR TRANSFORMATION
| LEt V o ' TTTTmevveccas ARl UL LLIC DLIIET.
e _bcfan n-dimensional vector space over a field F and let », v
: - L
asis of Vover F. If T e A(V) then T is determined on any vector a;

N o .
1 as we know its action on a basis of V. Since T maps Vinto V, o, T
] 1 ]

0,T,...,v,Tmustallbein V. Aseclements of V, each of these is realizable

in a unique way as a linear combination of 7y, ..., v, over F. Thus
o T = 0300y + g0y + 700+ gty
0,7 = 0310y + U203 + "+ %2p¥y

o, T = ooy + oy + 00+ Uity

Z.’"T = C[nli-'l + D:,QU: + = + aguvul

where each a;; € F. This system of equations can be written more compactly as
n
”ET=Z“5J'”_;: for i = 1,2,...,?!.
j=1

The ordered set of n? numbers a;; in F completely describes T, They will
serve as the means of representing 7.,

DEFINITION Let ¥ be an n-dimensioned vector space over F and let
b, ...,0, be a basis for ¥ over F. If T'e A(V) then the matrix of T in the
basis vy, . . ., v,, written as m(T'), is
C11 G2 7T Ogu
m{T} —_— '_5"'21 Ele ol 2“211 !
":Inl ;xnﬁ 1 El"m':
where v, T = 2.; o;;0)-
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A matrix then is an ordered, square array of elements of F, with, as yet,
no further properties, which represents the effect of a linear transformation
on a given basis.

Let us examine an example. Let F be a field and let V be the set of all
polynomials in x of degree n — 1 or less over F. On V let D be defined
by (Bo + Bix + " + Buy® DD =By + 2Bpx + - +ifx'T 4o +
(n — 1)B,_,¥"~ 2 It is trivial that D is a linear transformation on V; in
fact, it is merely the differentiation operator.

What is the matrix of D? The questions is meaningless unless we specify
a basis of V. Let us first compute the matrix of D in the basis v; = 1,

2 _ im1 _ -1
Dy = X, U3 = x%,...,0; =x"",...,0, =x""" Now,

v,D =1D =0 =0y, + Ov; +--++ Oy,
v,D =xD =1 = lo, + 0v; +---+ Oy,
oD = x"'D = (i — 1)&"~2
= 05"1 + Oﬂz + -+ Ozj!_z + {! = I)UI_..I + Uﬂi
+ 0+ UU"
2,D = ¥~ 'D = (n — 1)~ 2

=00, + 00, + -+ 00,5 + (n — )0,y + Ov,

Going back to the very definition of the matrix of a linear transformation

in a given basis, we see the matrix of D in the basis o, . .., Uy My (D), is
4n fact

| ‘0 0 0 0 0'

r 1 00 0 0

m(D) =0 2 0 0 0

E' 0 0 3 ... 0 0

"~ 000 ... (n—=1) 0

THEOREM 6.31 The set of all n x n matrices over F form an associative
algebra, F,, over F. If V is an n-dimensional vector space over F, then A(V) and
F, are isomorphic as algebras over F. Given any basis Vis+ -5 Uy of V over F, if
Jor Te A(V), m(T) is the matrix of T in the basis &y, .. ..v,, the mapping
T — m(T) provides an algebra isomorphism of A( V') onto F,.
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The zero under addition in F, is the zero-matrix all of whose entries are 0;
we shall often write it merely as 0. The unit matrix, which is the unit element
of F, under multiplication, is the matrix whose diagonal entries are 1 and
whose entries elsewhere are 0; we shall write it as J, I, (when we wish to
emphasize the size of matrices), or merely as 1. For o € F, the matrices

b

o

ol =
of

:.fbi’cmk spa‘ce.f indicate only O entries) are called scalar matrices. Because of the
1Isomorphism between A(V) and F,, it is clear that T e A(V) is invertible
if and only if m(T), as a matrix, has an inverse in F,.

.T!-IEOHEM_ 6.3.2 If V is n-dimensional over F and if T € A(V) has the ma-
trix m, (T) in the basis vy, . . ., vy and the matrix m,(T) in the basis w,, ..., w,
i'?f V over F, then there is an element C e F, such that my(T) = Cm,(T)C™ 1.

In fact, if S is the linear transformation of V defined by v,S = w; fori=12,...,n,
then C can be chosen to be m(S).

w; T = > Bijwy .

Let S Bre tthrr:F linear transformation on V defined by 2,8 = w;. Since
vy .50, and wy, ..., w, are bases of ¥ over F, § maps V onto V, hence,
by Theorem 6.1.4, §is invertible in A(V). I N

Now w,T = X; Biw;; since w; = ;S, on substituting this in the ex-
pression for w;T we obtain (ST =3 ; ﬁij(u{S). | But then UE{S_T;} =
(X; Bijv;)S; since S is invertible, this further simplifies to v,(STS ' ) =
> Jﬁ‘:.rj By the very definition of the matrix of a linear transformatmn' in
a J,c;_ri':'tﬂzjn basis, m(STS™') = (Bi;) = m,(T). However, the mziplpmg
T — m,(T) is an isomorphism of A(V) onto F; t}lﬂr&fﬂl‘t, T?IJ(S TS™) =
m,($)m, (T)my(S™1) = ml[S}ml(T)ml(S)". Puf;tmg the pieces togc:[hf:r,
we obtain m,(T) = m,(S)m,(T")m, (§)~*, which is exactly what is claimed

in the theorem.
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THE ISOMORPHISM THEOREMS

Definition 1. Let R = (R, +p.-g) and (S, +s.-5) be rings. A set map ¢: R — S is a (ring)
homomarphism if

{]) l:;.'.IIlI:?‘l +5r ?‘2] = {j{l‘"]] +g {,?:"{1"‘3] fﬂ?" all T, T2 & i,

(2) é(ry g 72) = @(r1) -5 @(r2) for allry,ry € R, and

(3) é(1g) = 1s.
For simplicity, we will often write conditions (1) and (2) as ¢(r1 + r2) = @(r1) + @(r2) and
@(rirz2) = @(r1)o(r2) with the particular addition and multiplication implicit.

Remark 1. If ¢: (R, +.-) = (S, +,-) is a ring homomorphism then ¢: (R, +) — (S,+) is
a group homomorphism.

Example 1. If R is any ring and § C R is a subring, then the inclusion i: 5 == R is a ring
homomaorphism.

Exercise 1. Prove fthat

a () ]

i (

w: Q= 11:1{@] ‘;{ﬂ} = : .
00 il

is a ring homomorphism.

Lemma 1. Let ¢: R — S be a ring homomorphism. Then
(1) ¢(0g) = 0g,
(2) ¢(=r) = —o¢(r) for all T € R,
(3) if r € R* then ¢(r) € S* and ¢(r~') = &(r)~!, and
(4) if R' C R is a subring, then ¢(R') is a subring of S.
Proof. Statements (1) and (2) hold because of Remark [I] We will repeat the proofs here for
the sake of completeness.
Since Og + 0 = Og, ¢(0g) + @¢(0g) = ¢(0g). Then since S is a ring, @(0z) has an additive
inverse, which we may add to both sides. Thus we obtain
$(0r) = &(0r) + ¢(0r) + —4(0r) = ¢(0r) + —&(0r) = Os,
as desired.
Let r € R. Since r + —r = —r + r = (p, we have
o(r) + o(—r) = o(—r) + o(r) = &(0g) = 0g,
where the last equality comes from (1). Thus ¢(—r) = —¢(r) as additive inverses are unique.

Now let r € R*. Then there exists r=* € R such that r-r~' = r=! .y = 1. Then since ¢
is a ring homomorphism we have

o(r) - o(r™t) = o(r~!)é(r) = ¢(1g) = 1s.
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Thus ¢(r) has a multiplicative inverse and it is ¢(r™!).

Lastly, let R C R be a subring. To show that ¢(R') is a subring we must show that
ls € ¢(R') and for all 51,5, € ¢(R'), s, — 53 and 515, are also in ¢(R'). Since s, 55 € ¢(R'),
there exists ry, 79 € R’ such that ¢(ry) = s, and ¢(ry) = so. Thus
51 =83 = P(r1) = d(r2) = d(r1) + o(=r2) = ¢(ry = 13), and s185 = @(r1)d(r2) = d(r172).
Since R’ is a subring, r; — ry and r 7y are contained in R'. Hence s; — s and s;s, are in
¢(R'). Furthermore, 1 € R so 1g = ¢(1g) € ¢(R'). Therefore, ¢(R') is a subring of S. O
Definition 2. Let R and S be rings and let ¢: R — S5 be a set map. We say that ¢ is a
(ring) isomorphism if

(1) ¢ is a (ring) homomorphism and
(2) ¢ is a bijection on sets.
We say that two rings Ry and Rs are isomorphic if there erists an isomorphism between them.
Lemma 2. Let R and S be rings and let ¢: R — S be an isomorphism. Then:
(1) ¢~! is an isomorphism,
(2) r € R is a unit if and only if ¢(r) is a unit of S,
(3) r € R is a zero divisor if and only if ¢(r) is a zero divisor of S,
(4) R is commutative if and only if S is commutative,
(5) R is an integral domain if and only if S is an integral domain, and

(6) R is a field if and only if S is a field.
KERNEL= IMAGE, AND THE ISOMORPHISM THEOREMS
Definition 3. Let ¢: R — S be a ring homomorphism. The kernel of ¢ is
kerg:={re R:¢(r)=0} C R

and the image of ¢ is
img :={s € S:s=¢(r) for somer € R} CS.

Theorem 3 (First isomorphism theorem). Let R and S be rings and let ¢: R — S be a
homomorphism. Then:

(1) The kernel of ¢ is an ideal of R,
(2) The image of ¢ is a subring of S,
(3) The map
p: R/ker¢ - im¢ C S, r+ker¢ > ¢(r)
i1s a well-defined isomorphism.
Proof. The image of ¢ is a subring by Lemma Let us prove that ker ¢ is an ideal. By

Lemma [1} ¢(0) = 0 so 0 € ker ¢ and hence the kernel is nonempty. Let a,b € ker ¢ and let
r € R. Then since ¢ is a homomorphism we have
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dla+b) = ¢la) + ¢(b) =0+ 0 =0,
¢(ra) = ¢(r)o(a) = ¢(r)-0=10,
d(ar) = p(a)d(r) = 0- ¢(r) = 0.
Thus a + b, ra, and ar are in ker ¢ and so ker ¢ is an ideal.

Consider the map ¢. We first show that it is well-defined. Let r,r" € R be such that
r — 71’ € ker ¢, i.e., such that r 4+ ker ¢ = r’ + ker ¢. Then

o(r) =o(r' + (r=71")) = o(r') + o(r = r') = o(r') + 0 = ¢(r'),
3
so ¢ is well defined. Let ry + I,ro + I € R/I. Then since ¢ is a homomorphism we have:
ori+I+ra+I)=9(r +r2+ 1) =d(ry +72) = ¢(r1) + ¢(r2)
=p(ri+1)+plra+1)
@((r1 + I)(r2 + 1)) = p(rirz + I) = ¢(rira) = ¢(r1)e(r2)
= p(ry + Ie(rs + 1)
e(1+1)=¢(1)=1.
Therefore ¢ is a homomorphism.
Let us prove that g is bijective. If r 4+ ker¢ € ker g, then ¢(r + I) = ¢(r) = 0 and so
r € ker ¢ or equivalently r + ker ¢ = ker ¢. Thus ker ¢ is trivial and so by Exercise 9] ¢
is injective. Let s € im¢. Then there exists an r € R such that ¢(r) = s or equivalently

that o(r + ker ¢) = s. Thus s € im ¢ and so ¢ is surjective. Hence p is an isomorphism as

desired. O

Theorem 4 (Second isomorphism theorem). Let R be a ring, let S C R be a subring, and
let I be an ideal of R. Then:

(1) S+I:={s+a:s€S,a€l}isasubring of R,

(2) SN 1 is an ideal of S, and

(3) (S+I)/I is isomorphic to S/(SNI).

Proof. (1): S is a subring and [ is an ideal so 1 + 0 € S+ I. Let s; + a; and so + ay be
elements of S + I. Then

Sty )—Satas) = (51— $2) +(a —a and S1+ay ) Satas) = 5152 + 5109 + @152 + aa:
(1 ].)(2 2) (1 E’}(l 2) (1 1}(2 2} \_L'_%\_IQ 122 162

€S el es pet
Hence S + I is a subring of R.

(2): The intersection SN is nonempty since () is contained in I and S. Let aj,a; € SNI
and let s € S. Then a;4as € SNI since S and I are both closed under addition. Furthermore
say; and ays are in S N [ since [ is closed under multiplication from R > S and S is closed
under multiplication. Therefore SN [ is an ideal of S.
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(3): Consider the map ¢: S — (S+I)/I which sends an element s to s+ I. This is a ring
homomorphism by definition of addition and multiplication in quotient rings. We claim that
it is surjective with kernel S N I, which would complete the proof by the first isomorphism
theorem. Consider elements s € S and @ € I. Then s+ a+ I = s+ [ since a € I, so
s+a+ I € im ¢ and hence ¢ is surjective. Let s € S be an element of ker¢. Then s+ 1 =1
which holds if and only if s € I or equivalently if s € SN 1. Thus ker ¢ = 5N 1 and we have
our desired result. 1

Theorem 5 (Third isomorphism theorem). Let R be a ring and let J C I be ideals of R.
Then 1/.J is an ideal of R/J and

R/J
177 R/I.

Proof. Since I and J are ideals, they are nonempty and so I/J = {a+ J : a € I} is also
nonempty. Let ay,a; € [ and let r € R. By definition of addition and multiplication of
cosets, we have

(ay + J)+ (az + J) = (ay + az) + J.
(r+J)a+.J)=ra; +.J, and
(ay + J)(r+J)=ayr+ J.
Since [ is an ideal, a; + as, ra,, and a,r are contained in [ so I/.J is an ideal of R/J.
Consider the map ¢: R/J — R/I that sends r + .J to r + I. We claim that this is a

well-defined surjective homomorphism with kernel equal to I/J. (See Exercise ) Then
(R/.J)/(1/J) is isomorphic to R/I by the first isomorphism theorem. a

Matrix Representation of a Linear Operator

Let T be a linear operator (transformation) from a vector space V into itself, and suppose
S ={uy,us,...,u,} is a basis of V. Now T(u;), T(u5),...,T(u,) are vectors in V, and so each is a
linear combination of the vectors in the basis §; say,

The following definition applies.

DEFINITION: The transpose of the above matrix of coefficients, denoted by mg(T) or [T]. is called
the matrix representation of T relative to the basis S, or simply the matrix of T in the
basis §. (The subscript § may be omitted if the basis § is understood.)

Using the coordinate (column) vector notation, the matrix representation of I' may be written in the
form

mg(T) = [Ty = [[T("l)ls- (T(u)s, -- -, IT(HIJ]S]
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That is, the columns of m(T) are the coordinate vectors of T'(u,), T(u), ..., T(u,), respectively.

EXAMPLE 6.1 Let F:R> — R” be the linear operator defined by F(x,y) = (2x + 3y, 4x — 5y).

(a) Find the matrix representation of F relative to the basis S = {u, w2} = {(1,2), (2,5)}.
(1) First find F(u, ), and then write it as a linear combination of the basis vectors u; and w,. (For notational
convenience, we use column vectors.) We have

N 1 N 81 |1 12 x+2y= 8
w-r() =[] w13
Solve the system to obtain x = 52, y = —22. Hence, F(u) = 52u; — 22u,.

(2) Next find F(u,), and then write it as a linear combination of u; and u,:

- 2 - 9] |1 12 x+2y= 19
re=r([3])-[ 0] f] i) w2220
Solve the system to get x = 129, y = =55, Thus, F(u;) = 129u; — 55u;.

Now write the coordinates of F{u;) and F(u,) as columns to obtain the matrix

n- 2

(b) Find the matrix representation of F relative to the (usual) basis £ = {e;,e;} = {(1,0), (0,1)}.
Find F (e, ) and write it as a linear combination of the usual basis vectors e, and ,, and then find F(e,) and
write it as a linear combination of ¢, and e,. We have

Fle,) =F(1,0) = (2,2) =2e, +4e,

Fle,) = F(0,1) = (3,—5) = 3e, — Se,

and so [F]E:E _ﬂ

Note that the coordinates of F(e,) and F(e,) form the columns, not the rows, of [F].. Also, note that the
arithmetic is much simpler using the usual basis of R*.

EXAMPLE 6.2 Let V' be the vector space of functions with basis § = {sint, cost, et LandletD:V — V
be the differential operator defined by D( /(1)) = d( f(t))/dt. We compute the matrix representing D in
the basis §:

D(sinf) = cost= 0(sinz) + 1(cost) + 0(e’t)

D(cos t) = —sint = —1(sint) + O(cost) + 0(e”")

D(e¥) = 3¢ = O0(sint) + 0(cost) + 3(e)

0 -1 0
and so D] = |1 0
0

Note that the coordinates of D(sin¢), D{cos¢), D(e*) form the columns, not the rows, of [D].
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Matrix Mappings and Their Matrix Representation

Consider the following matrix 4, which may be viewed as a linear operator on R”, and basis S of R*:

A:[i :ﬂ and S:{"l'-”?.}:{|:;:|!|:§ }

(We write vectors as columns, because our map is a matrix.) We find the matrix representation of A
relative to the basis §.

(1) First we write 4(u,) as a linear combination of #, and u,. We have

A(uy) = {i :ﬁ] M - [:;] =x ;] +.v[§] and so x+2y=-1

x4+ 5y =-6
Solving the system yields x = 7, y = —4. Thus, A(u;) = Tu, — 4u,.

(2) Next we write A(u,) as a linear combination of «, and u,. We have

3 =2)[2]_[-4]_.[1]..[2 x+2y = —4
A("z)_h —5“5]_[—?]_1[2}“[5] ndso vt sy=—7

Solving the system yields x = —6, y = 1. Thus, 4(u,) = —6u; + u,. Writing the coordinates of
A(u,) and A(u,) as columns gives us the following matrix representation of A:

7 -6
—4

Remark: Suppose we want to find the matrix representation of A relative to the usual basis
E ={e;.e;} = {[1.0]", [0.1]"} of RZ. We have
= {3} = 3e; +4e,

w8 22

o=} [ (3]s

Note that [4]. is the original matrix 4. This result is true in general:

[A]s =

andso  [4], = [i :g]

The matrix representation of any n x n square matrix A over a field K relative to the
usual basis £ of K" is the matrix A itself; that is,

[A]E =4

Algorithm for Finding Matrix Representations

Next follows an algorithm for finding matrix representations. The first Step 0 is optional. It may be useful
to use it in Step 1(b), which is repeated for each basis vector.

ALGORITHM 6.1: The input is a linear operator T on a wvector space } and a basis
§ = {uy.u5.....u,} of V. The output is the matrix representation [T.
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Step 0. Find a formula for the coordinates of an arbitrary vector v relative to the basis §.
Step 1. Repeat for each basis vector u;, in §:
(a) Find T(u).

(b) Write T(u;) as a linear combination of the basis vectors u, u,, ..., u

Step 2. Form the matrix [T]; whose columns are the coordinate vectors in Step 1(b).
EXAMPLE 6.3 Let F: R* — R” be defined by F(x,y) = (2x + 3y, 4x — 5y). Find the matrix representa-

tion [F| of F relative to the basis S = {u;,u,} = {(1.-2), (2,-5)}.
(Step 0) First find the coordinates of (a.b) € R’ relative to the basis S. We have

al _ . l_|_f_ 2 or x+2y=a or x+2y=a
bl = 2| Y| -5 —2x—5y=b —y=2a+b

Solving for x and y in terms of @ and b yields x = 5a + 2b, v = —2a — b. Thus,
(a,b) = (5a + 2bju, + (—2a — b)u,

(Step 1) Now we find F(r; ) and write it as a linear combination of u; and u, using the above formula for (a. b),
and then we repeat the process for F(u,). We have

Flu)=F(1,-2) = (—4,14) = 8u;, — 6u,
F(uy)) = F(2,—5) = (—11,33) = 11u, — 11u,

(Step 2) Finally, we write the coordinates of F(u,) and F{u;) as columns to obtain the required matrix:

SN

Properties of Matrix Representations

This subsection gives the main properties of the matrix representations of linear operators T on a vector
space V. We emphasize that we are always given a particular basis § of V.

Qur first theorem, proved in Problem 6.9, tells us that the *‘action’” of a linear operator T on a vector v
is preserved by its matrix representation.

THEOREM 6.1: Let 7: ¥ — V' be a linear operator, and let § be a (finite) basis of V. Then, for any
vector vin V, [T]¢[v]g = [T(v)]s.

EXAMPLE 6.4 Consider the linear operator F on R* and the basis § of Example 6.3; that is,

Fix,y)=(2x+ 3y, 4x-5y) and S={u,u} ={(1,-2), (2,-5)}

Let
v=(5,=7), and so F(v) = (-11,55)

Using the formula from Example 6.3, we get

W] =[11,-3]" and  [F(v)] = [55,—33]"
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We verify Theorem 6.1 for this vector v (where [F] is obtained from Example 6.3):
55

Fi= |5 ][0 =] 53] = e

THEOREM 6.2: Let V' be an n-dimensional vector space over K, let S be a basis of V, and let M be
the algebra of n x n matrices over K. Then the mapping

mAV)—M defined by m(T) = [T]g

is a vector space isomorphism. That is, for any F,G € A(V) and any k € K,
(i) m(F+G)=m(F)+m(G) or [F+G|=I[F|+|[G]
(i) m(kF) =km(F) or [kF|=k[F]

(iii) m is bijective (one-to-one and onto).

Change of Basis

Let IV be an n-dimensional vector space over a field K. We have shown that once we have selected a basis
S of ¥, every vector v € V can be represented by means of an n-tuple [v]; in K", and every linear operator
T in A(V) can be represented by an n x n matrix over K. We ask the following natural question:

How do our representations change if we select another basis?

In order to answer this question, we first need a definition.

DEFINITION: Let S = {u,,u,,....u,} be a basis of a vector space V, and let §' = {v,. v;,...,v,}
be another basis. (For reference, we will call § the “*old” basis and 5§’ the *‘new’’
basis.) Because S is a basis, each vector in the “‘new”” basis §' can be written uniquely
as a linear combination of the vectors in §; say,

Py = dyi; + dppti; + - -+ g,
Ty = dy U] + dyalis + - - + o,

Uy = dy iy + dyaliz Tt Ayl

Let P be the transpose of the above matrix of coefficients; that is, let P = [p;], where
Py = a;. Then P is called the change-of-basis matrix (or transition matrix) from the
““old”* basis § to the ““new’’ basis 5'.

Remark 1: The above change-of-basis matrix P may also be viewed as the matrix whose columns
are, respectively, the coordinate column vectors of the *‘new’’ basis vectors v; relative to the *‘old” basis
S; namely,

P= “?rl]s. [t]gs .-, [?"u].s:]

Remark 2: Analogously, there is a change-of-basis matrix Q from the *‘new’’ basis S’ to the
“‘old’" basis S. Similarly, Q may be viewed as the matrix whose columns are, respectively, the coordinate
column vectors of the “‘old™ basis vectors u, relative to the ‘‘new’’ basis §’; namely,

0= [[”L]S‘-‘ U]+ [un].‘:“]
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PROPOSITION 6.4: Let P and Q be the above change-of-basis matrices. Then 0 = P!,

Now suppose S = {u, 1y, ..., u,} is a basis of a vector space V, and suppose P = [p,] is any

nonsingular matrix. Then the n vectors

W = Py + Paitta + - -+ Puillyy, i=1.2,....n

corresponding to the columns of P, are linearly independent [Problem 6.21(a)]. Thus, they form another
basis §' of V. Moreover, P will be the change-of-basis matrix from § to the new basis §'.

EXAMPLE 6.5 Consider the following two bases of R”:
S={u,u} ={(1,2), (3,5)} and S ={v, v} ={(1,-1), (1,-2)}

(a) Find the change-of-basis matrix P from § to the “‘new’” basis §'.
Write each of the new basis vectors of §’ as a linear combination of the original basis vectors u, and u, of
S. We have

{_:] =1B] +y[;] or Zzig:i l_l yielding xr=-8, y=3

| 1 3 x+3y=1 N
{_l]=1|:2 +y[; or 2§+5:L=_1 yielding x=-=11, y=4
Thus,
vy = —8uy + 3, -8 —11
: : - and hence, P:[ ]
vy = —11luy + 4y 3 4

Note that the coordinates of v, and v, are the columns, not rows, of the change-of-basis matrix P.

{b) Find the change-of-basis matrix Q from the “‘new’’ basis 8’ back to the *“*old’" basis S.
Here we write each of the ““old’” basis vectors u; and w, of §" as a linear combination of the ‘‘new’” basis
vectors vy and v, of §'. This yields

u, = 4v; — 3w,

t, = 1lv; — By -3 -8

and hence, 0= { 4 “j|
As expected from Proposition 6.4, 0 = P~'. (In fact, we could have obtained Q by simply finding P~'))

EXAMPLE 6.6 Consider the following two bases of R*:

E={eepe;} ={(1,0,0), (0,1,0), (0,0,1)}
and S={uju,uyy ={(1,0,1), (2,1,2), (1,2,2)}

(a) Find the change-of-basis matrix P from the basis E to the basis 5.
Because F is the usual basis, we can immediately write each basis element of § as a linear combination of
the basis elements of E. Specifically,

y, =(1,0.1)= e + 2y 1 21
i, =(2,1.2) =2, + e5 4+ 2ey and hence, P=10 1 2
wy=(1,2,2) = e +2e, + ey 1 2 2
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Again, the coordinates of w, u,, 4y appear as the columns in P. Observe that P 1s simply the matrix whose
columns are the basis vectors of §. This is true only because the original basis was the usual basis E.

(b) Find the change-of-basis matrix () from the basis § to the basis E.
The definition of the change-of-basis matrix © tells us to write each of the (usual) basis vectors in £ as a
linear combination of the basis elements of S. This yields

e =(1,0,0) = =2u; + 2u; — 1y -2 =2 3
e, =(0,1,0) = =2u; + u, and hence. 0= 2 1 -2
e; =(0,0,1) = 3y — 2u; + uy -1 0 1

We emphasize that to find (0, we need to solve three 3 x 3 systems of linear equations—one 3 x 3 system for
each of e, es, e4.

Alternatively, we can find Q0 = P~! by forming the matrix M = [P,]] and row reducing M to row
canonical form:

1 21100 1 00 —2 -2 3
M={0 120 10[(~|010 2 1 =2|=[P"
1 220 0 1 001 —1 0 1
-2 -2 3
thus, o=rP'=| 2 1 =2
-1 0 1

(Here we have used the fact that O is the inverse of P.)

The result in Example 6.6(a) is true in general. We state this result formally, because it occurs often.

PROPOSITION 6.5:  The change-of-basis matrix from the usual basis £ of K" to any basis § of K" is
the matrix P whose columns are, respectively, the basis vectors of .

THEOREM 6.6: Let P be the change-of-basis matrix from a basis S to a basis $’ in a vector space V.
Then, for any vector v £ V, we have

Plv|o = [v]g and hence, P '[v], =[],

Namely, if we multiply the coordinates of v in the original basis S by P~!, we get the coordinates of v
in the new basis §'.

Remark 1: Although P is called the change-of-basis matrix from the old basis § to the new basis
S', we emphasize that P~ transforms the coordinates of v in the original basis § into the coordinates of v
in the new basis §'.

Remark 2: Because of the above theorem, many texts call O = P!, not P, the transition matrix
from the old basis § to the new basis §’. Some texts also refer to O as the change-of-coordinates matrix.

We now give the proof of the above theorem for the special case that dim V' = 3. Suppose P is the
change-of-basis matrix from the basis § = {u;, 4y, u;} to the basis §' = {v, 1, 13 }; say,

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc MATHEMATICS COURSE NAME: Ring Theory and Linear Algebra-I
COURSE CODE: 17MMUS501A UNIT: V BATCH-2017-2020

vy = ajiy + axli; + dydy
vy = byuy + byuy + by and hence, P=
Uy = ¢l + oy + Cyliy

a, b ¢
a by, o
a; by ey

Now suppose v € V' and, say, v = kjv; + kv, + kyvy. Then, substituting for v, 15, vy from above, we
obtain

v =ky(a,u; + astiy + azuz) + ky(byuy + botts + bauz) + ks(cquy + cquy + c3u3)
= (ayky + biky + e ky)uy + (anky + baks + caky)uy + (asky + byky + ks )ug

Thus,
ky aky + bk, + o1k
g = | ks and [v]s = | a2ky + boks + 2k
Accordingly,
a b o ||k avky, + bk + ek
Plofg = |ay by | [k | = |ack) + by + ok | = [v]g
a; by || ks ask, + biky + 3k,

Finally, multiplying the equation [v]g = P[], by P!, we get

P o]y = PPy = I[v]g = [v]g
THEOREM 6.7:

Let P be the change-of-basis matrix from a basis S to a basis 8’ in a vector space V
Then, for any linear operator 7" on V,

[Tl =P~ [T)sP
That is, if 4 and B are the matrix representations of T relative, respectively, to § and
§', then

B=pP'4P
EXAMPLE 6.7 Consider the following two bases of R*:

E:{€]€2£’3}:{(10G] (Ulﬁj {DOlj}

and S ={u;,u,u5} = {(1,0,1), (2,1,2), (1,2,2)}

The change-of-basis matrix P from E to § and its inverse P~! were obtained in Example 6.6.

(a) Write v = (1,3,5) as a linear combination of u, u, 13, or, equivalently, find [¢],.
One way to do this is to directly solve the vector equation v = xu; 4 vu, + zuy; that is,

1 1 2 1 x+2y+ z=1
3| =x|0| +y|1]|+z|2 or y+2z=3
5 1 2 2

x+2y+2z=5

The solutionis x=7, y=-5 z=4, sowv =_:_?u| — Su; + duy.
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On the other hand, we know that [¢], = [1,3,5]", because E is the usual basis, and we already know P~'.

Therefore, by Theorem 6.6,

-2 -2 3 1 7
Wg=P '], =] 2 1 =2([3]=]-5
—1 0 1 5 4
Thus, again, v = Tuy — Susy + 4y,
1 3 =2
by Letd= |2 -4 1 |, which may be viewed as a linear operator on R*. Find the matrix B that represents 4
3 -1 2

relative to the basis S.

The definition of the matrix representation of 4 relative to the basis § tells us to write each of A(u, ), 4(u,),
A(us) as a linear combination of the basis vectors uy, u,, u; of §. This yields

A(uy) = (—1,3,5) = 1luy; — S5u, + 6uy 11 21 17
Aluy) = (1,2,9) = 21uy; — 14u; + 8uy and hence, B=|-5 —14 -8
A(uy) = (3,—4,5) = 1Tu; — 8ey + 2u; 6 g 2

We emphasize that to find B, we need to solve three 3 = 3 systems of linear equations—one 3 x 3 system for
each of A(u,), Aluz), Alus).
On the other hand, because we know P and P!, we can use Theorem 6.7. That is,

-2 -2 3 1 3 =2111 21 11 21 17
B=P AP = 2 1 =212 —4 1ffo 1 2f{=|-5 —-14 -8
-1 0 1113 -1 21|11 2 2 6 8 2

This, as expected, gives the same result.
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Internal-1 Question Paper

PART-A(20X1=20 Marks)
Answer all the Questions:

1. Every subgroup of Z is of Z.

(@) right ideal (b) left ideal  (c) ideal (d) both (a) and (b)
2. If lis anideal R then I is of R.

(@) ring (b) integral domain (c) sub ring (d) unique ideal
3. Which of the following is/are field?

(@) Z bQRC (©Z
4. The number of ideals of Zgx Zs

(@) 30 (b) 38 (c) 32 (d) 36
5. If R is commutative ring with identity then every maximal ideal

of Ris

(@) Ideal(b) minimal ideal (c) prime ideal
6. Which of the following is not true?

(@) 2Z is prime ideal of Z (b) 5Z is prime ideal of Z

(b) m > 1 then is prime ideal of Z

(d) m > 1 then is not prime ideal of Z
7. A characteristic of ring (R, +, .) is

(a) Positive integer (b) negative integer

(c) order of aring (d) least positive integer
8. If f:Zy—>Zy then the number of ring homomorphism is

(d) both (b) and (c)

(d) sub ring

(@5 (b) 4 ©0 (d)1
9. Which of the following is Boolean ring
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(@) Q (b)R (© (P(S), u,n)  (d) (P(S), AN)
10. Aring R is said to be commutative if

(@ ab=ba (b)ab#hba (c)a*=Db’ (d) a® # b?
11. A commutative skew field is called

(@) Subring  (b) ring (c) integral domain (d) field
12. Any integral domain is a field

(@) infinite (b) finite  (c) skew (d) non skew

13. A homomorphism of a ring into its self is called a
(a) monomorphism (b) epimrphism
(c) endomorphism (d) isomorphism
14. The only idempotent element of an integral domainare__

(@) 0and prime (b)0Oand1l (c) primes (d) units
15. R is a sub ring of
(@) Q (b)Z ©C (dN
16. The number of unit in the ring (Z,+,.) is
(@2 (b) 1 (c)3 (d)4
17. Therings {O}and R are sub ring of the any ring R.{0} is called
_____subring of R
(@) infinite (b) singleton  (c) trivial (d) Non trivial

18. The ring of Gaussian integer Z [i] ={a+ bi\a, be Z}
is

(d) Ring with zero divisor (b) an integral domain

(c) Not an integral domain (d) both (a) and (b)
19. AringnZis a
(@) Ideal  (b) rightideal  (c) left ideal (d) maximal ideal

20. The characteristicof Z, is
(@0 (b) n (€)1 (d)2
PART-B (3X2=6 Marks)
Answer all the Questions:
21. Define Characteristic of a ring R.
22. Write an example of right ideal but left ideal.
23. Define Kernel of homomorphism.
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PART-C (3X8=24 Marks)
Answer all the Questions:
24. (a) Prove that Z, is an integral domain if and only if n is prime.
(OR)
(b) Prove that if R is a ring with identity then set of all units in R
is a group under multiplication.
25. (a) Prove that any field is an integral domain. Also discuss for
the converse part of the statement.
(OR)
(a) Prove that if R is a commutative ring with identity then an
ideal M of R is maximal if and only if R/M is a field.
26. (a) Prove that the fundamental theorem of homomorphism.
(OR)
(b) Prove that if R is a commutative ring with identity then every
maximal ideal is a prime ideal.
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PART-A(20X1=20 Marks)

Answer all the Questions:

1.

2.

Number of units in R is

(@) finite  (b) countable (c) infinite (d) uncountable
The set of all units ina ring R is under multiplication
(@) ring (b) group
(c) bothaand b (d) neither a nor b
Field is

(a) commutative (b) skew field

(c) neither a nor b (d) bothaand b

The set of all matrices of the form (8 g) where a, b €
Qis
(a) commutative (b) with unity

(c) neither a nor b (d) bothaand b

Which of the following is a field?

@)z (b) nZ (c)n+z dQ
Number of identity elements exists in a ring is
(@ o (b) 2 (c)3 d1

The set of all units in a ring R is not a group under

(a) addition
(c) bothaand b
Skew Field is also called as
(@) integral domain
(c) neither a nor b

(b) multiplication
(d) neither a nor b

(b) division ring
(d) bothaand b
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
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The set of complex number C is

(a) integral domain
(c) neither a nor b
Which of the following is a field?

(b) field
(d) bothaand b

@z (b) nz (c)n+z dR
Number of identity elements exists in a ring of integers is
(@ o (b) 2 (c)3 @1
1 and -1 are the only units of
@z (b) nz (c) n+Z dR

Number of binary operations involved in vector space is

@ o0
Z, isa
(a) commutative ring
(c) bothaandb
M,(Z)isa

(b) 1 (€)2 (d) 22
(b) ring with unity

(d) neither a nor b

(a) non commutative ring (b) ring with unity

(c) bothaand b (d) neither a nor b

Which one of the following is not true

(@) set of all polynomial over F[x] (b) C is vector space over R
(c) R is vector space over R (d) R is vector space over C
The value of (@ + B)(v) is

(a) vector (b) Scalar (c) both (d) neither nor
Dimension of any two basis in a vector space is

(@) Same (b) different  (c) twice (d) not related
Dimension of a polynomial with degree n is

@) n (b) n+1 (c)n-1 (d) 2n

The dimension of m X n matrices set is

(@) m+n (b) m-n (d) mn (d morn

PART-B (3X2=6 Marks)

Answer all the Questions:
21.
22.
23.

Define a basis.
Define epimorphism.
Define linear span.
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PART-C (3X8=24 Marks)
Answer all the Questions:
24. (a) State and prove first theorem isomorphism of rings.
(OR)

(b) Let vV be vector space over a field F. Prove that a non-empty
subset W of V is a subspace if and only if u,v € W and
a,fEF=>au+pPrew

25. (a) Let H be a nonempty subset of a vector space V. Then prove
that H is a subspace of V if and only if H is closed under addition
and scalar multiplication.

(OR)

(b) Prove that the field of quotients F of an integral domain D is
the smallest field containing D
26. (a) Let S = {v4,v,, ..., v, } be a linearly independent set of vectors
in a vector space V over a field F then prove L(S)can be uniquely
written in the form v, + a,v, + - + @, v, Where a; € F.
(OR)
(b) Let f:Z > Z,, bedefinedby f(x) =rifx=nq+r,
0 < r < n. Prove that f is a homomorphism
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PART-A(20X1=20 Marks)

Answer all the Questions:

1.

Dimension of any two basis in a vector space is

(@) Same (b) different  (c) twice (d) not related
If T is a linear transformation , then T(0)=.............
(@ 0 (b)1 (c)2 (d)3

Let V& W be vector spaces over the field F. A linear

transformation from V into W is a function T from V into W such

that T(cu+v)=............. for all u,vin V and all scalars ¢ in F.

@ TW+T() (b) cT(u)+cT(v)(c) T(u)+cT(v) (d) cT(U)+T(v)
Every ......cooeininn. transformation is a linear transformation.
(@) matrix (b) row (c) column (d) unit

The set of all vector space-homomorphisms of V into itself

(@ Hom(V,W) (b) Hom(W,V) (c) Hom(V,V) (d) Hom(W,W)

A linear transformation on V,over F is an element of
(@ AW)  (B)BHY)  ©AHV) () WKV)
An element T in A(V) is called --------------
A(V) such that TS =1.
(@) both invertible

(b) right-invertible
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(c) right-invertible (d) invertible

---------- T in A(V) is said to be unitary if (uT,vT)=(u,v) for
alluvinV

(@) normal transformation (b) linear transformation
(c) unitary (d) Nilpotent transformation
If V is finite dimensional and there is an STA(V) such

that E=TS 10 is an idempotent

(@ T>0 (b) T=0 () T+0 (d) T<0
Dimension of a polynomial with degree n is

@ n (b) n+1 (c)n-1 (d) 2n

The ------------- W of V is invariant under T in A(V) if WT
contained W.

() subspace  (b) space (c) field (d) sub field
The element Ain F is a characteristic root of T in A(V) if and only
if for some ------- inV, vT=Av.

@) 1=0 (b) 2 =0 (c) v=0 (d) v=0

The Hermitian

T is non negative if and only if its
characterstic roots are non negative.

(a) normal transformation (b) linear transformation

(c) unitary (d) Nilpotent transformation

Any subset of a lineary independent set is

(@) linearly dependent (b) linearly independent

(c) linear (d) non linear

Any set which contains a lineary dependent set is

(@) linearly dependent (b) linearly independent

(c) linear (d) non linear
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16. The subset consisting of the................. vector alone is a (OR)

subspace of V, called zero subspace of V. b) Let V and W be two vector spaces. Suppose T : V — Wiisa

. . Lo linear transformation. Then prove the following

(@) zero (b) unit (c) unit (d) infinite ) T(0) = 0

17. A product of invertible ................ is invertible
. . . i) T(—v) = =T() forallv € V.

a) matrices b) functions  (c) vectors d) equations .

@) (b) © (@) eq 28. a) State and prove fundamental theorem of homomorphism of
18. A polynomial with coefficients which are complex numbers has linear transformations

all its roots in the ------------- (OR)

(@) real field (b) rational field

b) State and prove rank theorem
(c) complex field (d) irrational field

19. If T TA(V) isHermitian then all its characteristic roots are --------
(@) real (b) complex  (c) rational (d) irrational
20. The dimension of m X n matrices set is

(@ m+n (b) m-n (d) mn (d)morn

PART-B (3X2=6 Marks)
Answer all the Questions:
21. Define rank of a linear transformation.
22. Define isomorphism.
23. Define direct sum of two sub spaces.

PART-C (3X8=24 Marks)
Answer all the Questions:

24. a) Let S = {v4, vy, ..., v, } be a linearly independent set of vectors
in a vector space V over a field FF then prove L(S)can be
uniquelywritten in the form ayv; + ayv, + -+ + a, v, Where
a; €.

(OR)
b) State and prove basis theorem.

25. a) State and prove fundamental theorem of homomorphism of

linear transformations

Prepared by U.R.Ramakrishnan, Department of Mathematics, KAHE



	01.pdf (p.1)
	02.pdf (p.2-23)
	03.pdf (p.24-28)
	04.pdf (p.29-48)
	05.pdf (p.49-55)
	06.pdf (p.56-66)
	07.pdf (p.67-75)
	08.pdf (p.76-88)
	09.pdf (p.89-90)
	10.pdf (p.91-92)
	11.pdf (p.93-94)

