
18CCP301 SOFTWARE MODELS AND ENGINEERING
4H – 4C

Instruction Hours / week: L: 4 T: 0 P : 0 Marks: Internal: 40 External: 60

 Total: 100

UNIT–I

Fundamentals of Software Engineering and Process models : Definition, Software

characteristics and Application. Software myths, Software engineering- A layered technology

and SDLC. Software process models: Linear sequential model, prototyping model, RAD

Model. Evolutionary process models: Incremental process models and Spiral model.

Component based ,4GT. Maturity Models: CMM, CMMI, PCMM, PSP, TSP, Process patterns,

process assessment. Unified process: SEI CMM and ISO 9001. PSP and Six Sigma. Clean

room technique.

UNIT–II

Managing Software Projects & Design Engineering: The management spectrum, software

quality, measurement and metrics. Software project estimation, decomposition techniques.

Empirical estimation models(COCOMO), the Make & Buy Decision. System models: Context

Models, Behavioral models, Data models, Object models. Design process, Design quality and

design model. Fundamental issues in software design: Goodness of design, cohesions,

coupling. Function-oriented design and object – oriented concepts. Architectural styles and

patterns, Architectural Design: Unified Modeling Language (UML), User interface design.

Risk Analysis and management.

UNIT–III

S/W Requirements, S/W Metrices & Testing Strategies: S/W Requirements : Functional

and non-functional requirements, User requirements, System requirements.SRA & SRS. S/W

Metrices: Process Metrices, Project Metrices & Product Metrices. Testing Strategies : A

strategic approach to software testing, Testing fundamentals, Test Case Design. Types Of

Testing: Black-Box Testing, White-Box Testing, Validation testing, System testing, the art of

Debugging. Code walkthrough and reviews. Software Quality, Metrics for Analysis Model,

Metrics for Design Model, Metrics for source code, Metrics for testing, Metrics for

maintenance.

UNIT-IV

Testing Plan and Maintenance: Snooping for information, Coping with complexity through

teaming, Testing plan focus areas, Testing for recoverability, Planning for troubles, Preparing

for the tests: Software Reuse, Developing good test programs , Data corruption, Tools, Test

Execution ,Testing with a virtual computer, Simulation and Prototypes, Managing the Test,

Customer’s role in testing, Software maintenance issues and techniques. Software reuse.

Client-Server software development.

UNIT–V

Software Reengineering and Project Management: Software Reengineering, Reverse

Engineering & Forward Engineering, Life Cycle Phases and Process artifacts, Restructuring.

Model based software architectures, Software process and Iteration workflows, Major and

Minor milestones, Periodic status assessments, Process Planning, Project Control and process

instrumentation: Seven core metrics, management indicators, quality indicators, life-cycle

expectations, CCPDS-R Case Study and Future Software Project Management Practices.

Page 1 of 4

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021.

Lecture Plan

DEPARTMENT OF COMMERCE (Computer Applications)

STAFF NAME: JOTHISH.C

SUBJECT NAME:SOFTWARE MODELS AND ENGINEERING

SUB CODE: 18CCP301SEMESTER:III CLASS: II M. Com CA

S.NO
LECTURE

DURATION
PERIOD

TOPICS TO BE COVERED
SUPPORT

MATERIAL/PAGE NOS

UNIT-I

1.
1 Definition of Software Engineering,

Software characteristics and
Application.

Software engineering a
practitioners approach ,
20,245

2.
1 Software myths, Software engineering- A

layered technology and SDLC
Software engineering a
practitioners approach,
12

3.
1 Software process models: Linear

sequential model, prototyping model,
RAD Model

Software engineering a
practitioners approach,
26

4.
1 Evolutionary process models:

Incremental process models and Spiral
model.

Software engineering a
practitioners approach,
34

5.
1 Component based ,4GT Process Models Software engineering a

practitioners approach ,
42,44

6.
1 Maturity Models: CMM, CMMI, PCMM www.tutorialdspoint.co

m

7.
1 PSP, TSP, Process patterns, process

assessment

https://resources.sei.cmu.ed
u/library/

8.
1 Unified process: SEI CMM and ISO 9001.

PSP and Six Sigma. Clean room
technique.

Software engineering a
practitioners approach,
216

9. 1 Recap of Unit I
UNIT-II

1

1 The management spectrum, software quality,
measurement and metrics

https://www.onlineclassnot
es.com/2013/01/is-
management-spectrum-
describe-four-ps.html,

https://www.onlineclassnotes.com/2013/01/is-management-spectrum-describe-four-ps.html
https://www.onlineclassnotes.com/2013/01/is-management-spectrum-describe-four-ps.html
https://www.onlineclassnotes.com/2013/01/is-management-spectrum-describe-four-ps.html
https://www.onlineclassnotes.com/2013/01/is-management-spectrum-describe-four-ps.html

Page 2 of 4

Software engineering a
practitioners
approach, 193

2
1 Software project estimation, decomposition

techniques
Software engineering a
practitioners
approach, 124

3
1 Empirical estimation models(COCOMO), the

Make & Buy Decision
Software engineering a
practitioners
approach, 133

4
1 System models: Context Models, Behavioral

models, Data models, Object models. Design
process, Design quality and design model.

Software engineering a
practitioners
approach, 311

5
1 Fundamental issues in software design:

Goodness of design, cohesions, coupling.
Software engineering a
practitioners
approach, 324

6
1 Function-oriented design and object –

oriented concepts. Architectural styles and
patterns

Software engineering a
practitioners
approach, 373

7
1 Architectural Design: Unified Modeling

Language (UML), User interface design
Software engineering a
practitioners
approach, 575

8
1 Risk Analysis and management. Software engineering a

practitioners
approach, 145, 829

9 1 Recap of Unit II
UNIT-III

1

1 S/W Requirements: Functional and non-
functional requirements, User
requirements, System requirements &
SRS

Software engineering a
practitioners approach,
292

2
1 S/W Metrices: Process Metrices, Project

Metrices & Product Metrices
Software engineering a
practitioners approach,
74,80,507

3
1 Testing Strategies: A strategic approach

to software testing, Testing
fundamentals

Software engineering a
practitioners approach,
477

4
1 Test Case Design Software engineering a

practitioners approach,
477

5
1 Types of Testing: Black-Box Testing,

White-Box Testing
Software engineering a
practitioners approach,
477

6
1 Validation testing, System testing, The

art of Debugging.Code walkthrough and
reviews

Software engineering a
practitioners approach,
477

7
1 Software Quality, Metrics for Analysis

Model, Metrics for Design Model
Software engineering a
practitioners approach,
193

Page 3 of 4

8

1 Metrics for source code, Metrics for
testing, Metrics for maintenance.

http://ecomputernotes.com/
software-
engineering/classification-of-
software-metrics

9 1 Recap of Unit III
UNIT-VI

1

1 Snooping for information, Coping with
complexity through teaming

https://www.coursehero.co
m/file/pnnhb9/A-Generic-
view-of-process-Software-
engineering-A-layered-
technology-a-process/

2
1 Testing plan focus areas, Testing for

recoverability, Planning for troubles
Software engineering a
practitioners approach,
477, 507

3
1 Testing plan focus areas, Testing for

recoverability, Planning for troubles
Software engineering a
practitioners approach,
477, 507

4
1 Preparing for the tests: Software Reuse,

Developing good test programs
Software engineering a
practitioners approach

5
1 Data corruption, Tools, Test Execution Software engineering a

practitioners approach

6
1 Testing with a virtual computer,

Simulation and Prototypes
Software engineering a
practitioners approach

7
1 Managing the Test, Customer’s role in

testing
Software engineering a
practitioners approach

8
1 Software maintenance issues and

techniques. Software reuse, Client-
Server software development

Software engineering a
practitioners approach

9 1 Recap of Unit IV
UNIT-V

1
1 Software Reengineering, Reverse

Engineering & Forward Engineering
Software engineering a
practitioners approach,
747

2
1 Life Cycle Phases and Process artifacts,

Restructuring

http://umlguide2.uw.hu/app
02lev1sec2.html

3
1 Model based software architectures http://www.pvpsiddhartha.a

c.in/dep_it/lecture%20notes/
SPM/unit3.pdf

4
1 Software process and Iteration

workflows, Major and Minor milestones

sigc.edu/department/mca/st
udymet/SoftwareProjectMan
agment.pdf

5

1 Periodic status assessments, Process
Planning, Project Control

Software Engineering, V.
Anitha Moses, Lakshmi
Publications.

6

1 process instrumentation: Seven core
metrics, management indicators, quality
indicators, life-cycle expectations

Software Engineering, V.
Anitha Moses, Lakshmi
Publications.

Page 4 of 4

7

1 CCPDS-R Case, Study Future Software
Project Management Practices

https://project-management-
software.financesonline.com
/future-project-
management/

8

1 Future Software Project Management
Practices

https://project-management-
software.financesonline.com
/future-project-
management/

9 1 Recap of Unit V
 10 1 Review of Previous question paper

11 1 Review of Previous question paper
12 1 Review of Previous question paper

TEXT BOOKS

1. ISO/IEC TR 19759:2015(en), Software Engineering — Guide to the software
engineering body of knowledge (SWEBOK)

2. Software Engineering, V. Anitha Moses, Lakshmi Publications.
3. Software Engineering: A Practitioner’s Approach. 4/e, Roger. S. Pressman,

McGraw-Hill International Editions.

REFERENCES

1. Jessica Keyes. Software Engineering Handbook

2. Ian Sommerville. Software Engineering (Seventh Edition). ...

Fundamentals of Software Engineering and Process models :Definition, Software characteristics

and Application. Software myths, Software engineering- A layered technology and SDLC. Software

process models: Linear sequential model, prototyping model, RAD Model. Evolutionary process

models: Incremental process models and Spiral model. Component based ,4GT. Maturity Models:

CMM, CMMI, PCMM, PSP, TSP, Process patterns, process assessment. Unified process: SEI CMM

and ISO 9001. PSP and Six Sigma. Clean room technique.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS:IIM.Com(CA)

COURSE NAME: SOFTWARE MODELS AND ENGINEERING

COURSECODE:18CCP301

BATCH-2018-2020

UNIT-I

SYLLABUS

Software Engineering definition proposed by Fritz Bauer at the seminal conference on the

subject still serves as a basis for discussion:

Software engineering is the establishment and use of sound engineering principles in order to

obtain economically software that is reliable and works efficiently on real machines.

Software is defined as collection of computer programs, procedures, rules and data. Software

Characteristics are classified into six major components:

These components are described below:

Functionality:

It refers to the degree of performance of the software against its intended purpose. Required

functions are:

Reliability:

A set of attribute that bear on capability of software to maintain its level of performance under

the given condition for a stated period o

These components are described below:

rs to the degree of performance of the software against its intended purpose. Required

A set of attribute that bear on capability of software to maintain its level of performance under

the given condition for a stated period of time. Required functions are:

rs to the degree of performance of the software against its intended purpose. Required

A set of attribute that bear on capability of software to maintain its level of performance under

 Efficiency:

It refers to the ability of the software to use system resources in the most effective and

efficient manner. The software should make effective use of storage space and executive

command as per desired timing r

 Usability:

It refers to the extent to which the software can be used with ease, the amount of effort or

time required to learn how to use the software.

Required functions are:

 Maintainability:

It refers to the ease with which the modifications can be made in a software system to

extend its functionality, improve its performance, or correct errors. Required functions

are:

It refers to the ability of the software to use system resources in the most effective and

efficient manner. The software should make effective use of storage space and executive

command as per desired timing requirement. Required functions are:

It refers to the extent to which the software can be used with ease, the amount of effort or

time required to learn how to use the software.

with which the modifications can be made in a software system to

extend its functionality, improve its performance, or correct errors. Required functions

It refers to the ability of the software to use system resources in the most effective and

efficient manner. The software should make effective use of storage space and executive

It refers to the extent to which the software can be used with ease, the amount of effort or

with which the modifications can be made in a software system to

extend its functionality, improve its performance, or correct errors. Required functions

 Portability:

A set of attribute that bear on the ability of software to be transferred from one

environment to another, without or minimum changes.

Required functions are:

Software myths—It is erroneous belief about software and the process that is used to build it

can be traced to the earliest days of computing. Myths have a number of attributes that make

them insidious. For instance, they appear to be reasonablestatements of fact (sometimes

containing elements of truth), they have an intuitive feel, and they are o

experienced practitioners who “know the score.” Today, most knowledgeable software

engineering professionals recognize myths for what they are

caused serious problems for managers and practitioners alike.

are difficult to modify, and remnants of software myths remain.

Management myths. Managers with software responsibility, like managers inmost disciplines,

are often under pressure to maintain budgets, keep schedules fromsl

Like a drowning person who grasps at a straw, a softwaremanager often grasps at belief in a

software myth, if that belief will lessen thepressure (even temporarily).

Myth: We already have a book that’s full of standards and pro

Won’t that provide my people with everything theyneed to know?Reality: Are

softwarepractitioners aware of its existence? Does it reflect modernsoftware engineering

A set of attribute that bear on the ability of software to be transferred from one

environment to another, without or minimum changes.

It is erroneous belief about software and the process that is used to build it

can be traced to the earliest days of computing. Myths have a number of attributes that make

them insidious. For instance, they appear to be reasonablestatements of fact (sometimes

containing elements of truth), they have an intuitive feel, and they are often promulgated by

experienced practitioners who “know the score.” Today, most knowledgeable software

engineering professionals recognize myths for what they are—misleading attitudes that have

caused serious problems for managers and practitioners alike. However, old attitudes and habits

are difficult to modify, and remnants of software myths remain.

Management myths. Managers with software responsibility, like managers inmost disciplines,

are often under pressure to maintain budgets, keep schedules fromslipping, and improve quality.

Like a drowning person who grasps at a straw, a softwaremanager often grasps at belief in a

software myth, if that belief will lessen thepressure (even temporarily).

Myth: We already have a book that’s full of standards and procedures forbuilding software.

Won’t that provide my people with everything theyneed to know?Reality: Are

softwarepractitioners aware of its existence? Does it reflect modernsoftware engineering

A set of attribute that bear on the ability of software to be transferred from one

It is erroneous belief about software and the process that is used to build it—

can be traced to the earliest days of computing. Myths have a number of attributes that make

them insidious. For instance, they appear to be reasonablestatements of fact (sometimes

ften promulgated by

experienced practitioners who “know the score.” Today, most knowledgeable software

misleading attitudes that have

However, old attitudes and habits

Management myths. Managers with software responsibility, like managers inmost disciplines,

ipping, and improve quality.

Like a drowning person who grasps at a straw, a softwaremanager often grasps at belief in a

cedures forbuilding software.

Won’t that provide my people with everything theyneed to know?Reality: Are

softwarepractitioners aware of its existence? Does it reflect modernsoftware engineering

practice? Is it complete? Is itstreamlined to improve time-to-delivery while still maintaining

afocus on quality? In many cases, the answer to all of these questionsis “no.”

Myth: If we get behind schedule, we can add more programmers and catch up(sometimes called

the “Mongolian horde” concept).

Reality: Software development is not a mechanistic process like manufacturing.In the words of

Brooks : “adding people to a late softwareproject makes it later.” At first, this statement may

seemcounterintuitive. However, as new people are added, people whowere working must spend

time educating the newcomers, therebyreducing the amount of time spent on productive

developmenteffort. People can be added but only in a planned and coordinatedmanner.

Myth: If I decide to outsource the software project to a third party, I can justrelax and let that

firm build it.

Reality: If an organization does not understand how to manage and controlsoftware projects

internally, it will invariably struggle when it outsourcessoftware projects.

Customer myths. A customer who requests computer software may be a personat the next desk, a

technical group down the hall, the marketing/sales department,or an outside company that has

requested software under contract. In many cases,the customer believes myths about software

because software managers and practitionersdo little to correct misinformation. Myths lead to

false expectations (by thecustomer) and, ultimately, dissatisfaction with the developer.

Myth: A general statement of objectives is sufficient to begin writingprograms—we can fill in

the details later.

Reality: Although a comprehensive and stable statement of requirements isnot always possible,

an ambiguous “statement of objectives” is arecipe for disaster. Unambiguous requirements

(usually derivediteratively) are developed only through effective and continuouscommunication

between customer and developer.

Myth: Software requirements continually change, but change can be easilyaccommodated

because software is flexible.

Reality: It is true that software requirements change, but the impact ofchange varies with the

time at which it is introduced. When requirementschanges are requested early (before design or

code has beenstarted), the cost impact is relatively small. However, as timepasses, the cost

impact grows rapidly—resources have been committed,a design framework has been established,

and change cancause upheaval that requires additional resources and major designmodification.

Practitioner’s myths. Myths that are still believed by software practitioners havebeen fostered by

over 50 years of programming culture. During the early days, programmingwas viewed as an art

form. Old ways and attitudes die hard.

Myth: Once we write the program and get it to work, our job is done.Reality: Someone once said

that “the sooner you begin ‘writing code,’ thelonger it’ll take you to get done.” Industry data

indicate that between60 and 80 percent of all effort expended on software will be expendedafter

it is delivered to the customer for the first time.

Myth: Until I get the program “running” I have no way of assessing its quality.

Reality: One of the most effective software quality assurance mechanismscan be applied from

the inception of a project—the technical review.

Myth: The only deliverable work product for a successful project is the workingprogram.

Reality: A working program is only one part of a software configuration thatincludes many

elements. A variety of work products (e.g., models, documents, plans) provide a foundation for

successful engineeringand, more important, guidance for software support.

Myth: Software engineering will make us create voluminous and unnecessarydocumentation and

will invariably slow us down.

Reality: Software engineering is not about creating documents. It is aboutcreating a quality

product. Better quality leads to reduced rework.And reduced rework results in faster delivery

times.

Layered Technology

Software engineering is a layered technology. Referring to Figure 1.3, any engineering approach

(including software engineering) must rest on an organizational commitment to quality. Total

quality management, Six Sigma, and similar philosophies foster a continuous process

improvement culture, and it is this culture that ultimately leads to the development of

increasingly more effective approaches to software engineering. The bedrock that supports

software engineering is a quality focus. The foundation for software engineering is the process

layer. The software engineeringprocess is the glue that holds the technology layers together and

enables rational and timely development of computer software.

Software engineering is Divided into 4 layers:-

1. A quality Process :-

 Any engineering approach must rest on quality.

 The "Bed Rock" that supports software Engineering is Quality Focus.

2. Process :-

 Foundation for SE is the Process Layer

 SE process is the GLUE that holds all the technology layers together and enables the

timely development of computer software.

 It forms the base for management control of software project.

3. Methods :-

 SE methods provide the "Technical Questions" for building Software.

 Methods contain a broad array of tasks that include communication requirement analysis,

design modeling, program construction testing and support.

4. Tools :-

 SE tools provide automated or semi-automated support for the "Process" and the

"Methods".

 Tools are integrated so that information created by one tool can be used by another.

A maturity level is a well-defined evolutionary plateau toward achieving a mature software

process. Each maturity level provides a layer in the foundation for continuous process

improvement.

Software Life Cycle

A Life Cycle shows how a living thing borns, grows, lives, and dies. The stages from birth to

death.Software life cycle model is the stages of development that a software development goes

through. The following figure shows the stages of software development.

Software life cycle models describe phases of the software cycle and the order in which those

phases are executed. There are tons of models, and many companies adopt their own, but all

have very similar patterns. The general, basic model is shown below:

Each phase produces deliverables required by the next phase in the life cycle. Requirements are

translated into design. Code is produced during implementation that is driven by the design.

Testing verifies the deliverable of the implementation phase against requirements.

A Software Process can be defined as set of activities, methods, practices and transformations

which people employ to develop and maintain software and the associated products. The quality

of a software product is essentially determined by the quality of the processes employed to

develop and maintain it.

The Linear Sequential Model

This is a software process model that involves a systematic progression through analysis,

design, coding, testing and maintenance phases. It is also referred to as the "waterfall model".

Also known as the classic life cycle or waterfall model, it suggests a systematic, sequential

approach to software development. Problems with this approach are:

• Real projects rarely follow the sequential flow and changes can cause confusion.

• This model has difficulty accommodating requirements change

• The customer will not see a working version until the project is nearly complete

• Developers are often blocked unnecessarily, due to previous tasks not being done

The Prototyping Model

Advantages:

- Easy and quick to identify customer requirements

- Customers can validate the prototype at the earlier stage and provide their inputs and

feedback

- Good to deal with the following cases:

1. Customer cannot provide the detailed requirements

2. Very complicated system-user interactions

3. Use new technologies, hardware and algorithms

4. Develop new domain application systems

Problems:

-The prototype can serve as ―the first system.

-Developers usually attempt to develop the product based on the prototype.

-Developers often make implementation compromises in order to get a prototyping that is

working quickly.

-Customers may be unaware that the prototype is not a product, which is held with.

The RAD Model

Rapid Application Development (RAD) is a linear sequential software development process

model that emphasizes an extremely short development cycle.

- A ―high-speed‖ adaptation of linear sequential model

- Component-based construction

- Effective when requirements are well understood and project scope is constrained.

Advantages:

- Short development time

- Cost reduction due to software reuse and component-based construction

Problems:

- For large, but scalable projects, RAD requires sufficient resources.

- RAD requires developers and customers who are committed to the schedule.

- Constructed software is project-specific, and may not be well modularized.

- Its quality depends on the quality of existing components.

- Not appropriate projects with high technical risk and new technologies.

Incremental Process Models

There are many situations in which initial software requirements are reasonably well defined, but

the overall scope of the development effort precludes a purely linear process. In addition, there

may be a compelling need to provide a limited set of software functionality to users quickly and

then refine and expand on that functionalityin later software releases. In such cases, you can

choose a process model that is designed to produce the software in increments. The incremental

model combines elements of linear and parallel process flows

Incremental model applies linear sequences in a staggered fashion as calendar time progresses.

Each linear sequence produces deliverable “increments” of the software in a manner that is

similar to the increments produced by an evolutionary process flow.For example, word-

processing software developed using the incremental paradigm might deliver basic file

management, editing, and document production functionsin the first increment; more

sophisticated editing and document production capabilities in the second increment; spelling and

grammar checking in the third increment; and advanced page layout capability in the fourth

increment. It should be noted that the process flow for any increment can incorporate the

prototyping paradigm.

When an incremental model is used, the first increment is often a core product. That is, basic

requirements are addressed but many supplementary features (some known, others unknown)

remain undelivered. The core product is used by the customer (or undergoes detailed evaluation).

The Spiral Model.

Originally proposed by Barry Boehm, the spiral model is an evolutionary software process model

that couples the iterative nature of prototyping with the controlled and systematic aspects of the

waterfall model. It providesthe potential for rapid development of increasingly more complete

versions of the software. Boehm describes the model in the following manner: The spiral

development model is a risk-driven process model generator that is used to guide multi-

stakeholder concurrent engineering of software intensive systems. It has two main distinguishing

features. One is a cyclic approach for incrementally growing a system’s degree of definition and

implementation while decreasing its degree of risk. The other is a set of anchor point milestones

for ensuring stakeholder commitment to feasible and mutually satisfactory system solutions.

Using the spiral model, software is developed in a series of evolutionary releases. During early

iterations, the release might be a model or prototype. During later iterations, increasingly more

complete versions of the engineered system are produced.

A Typical Spiral Model

Component-based development model

Commercial off-the-shelf (COTS) software components, developed by vendors who offer them

as products, provide targeted functionality with well-defined interfaces that enable the

component to be integrated into the software that is to be built. The component-based

development model incorporates many of the characteristics of the spiral model. It is

evolutionary in nature, demanding an iterative approach to the creation of software. However,

the component-based development model constructs applications from prepackaged software

components. Modeling and construction activities begin with the identification of candidate

components. These components can be designed as either conventional software modules or

object-oriented classes or packages of classes. Regardless of the technology that is used to create

the components, the component-based development

model incorporates the following steps (implemented using an evolutionary approach):

1. Available component-based products are researched and evaluated for theapplication domain

in question.

2. Component integration issues are considered.

3. A software architecture is designed to accommodate the components.

4. Components are integrated into the architecture.

5. Comprehensive testing is conducted to ensure proper functionality.

The component-based development model leads to software reuse, and reusability provides

software engineers with a number of measurable benefits. Your software engineering team can

achieve a reduction in development cycle time as well as a reduction in project cost if component

reuse becomes part of your culture.

4GT Process Model

4GT begins with from “Requirement Gathering” this process go through the customer, the

customer go illustrate the requirements. The customer could actually describe the requirements

and these would be directly translated into an operational prototype. If the product is a smaller

product this process may be possible to move directly from requirements gathering step to

implementation using a non-procedural fourth generation language (4GL), for lager products this

procedure may little hard, therefor it’s necessary to use the design strategy in 4GT.When it

comes to large projects, the design phase it is crucial to avoid poor quality, poor maintainability.

To transform a 4GL implementation into a product, the developer must conduct through testing,

develop meaningful documentation, and perform all other solution integration activities. The

4GT developed software must be built in a manner that enables maintenance to be performed

expeditiously. There are some merits to summarize the current features of 4GT approach. In the

4GL implementation the code can be generated based on some specification. The 4GT developed

software must be built in a manner that enables maintenance to be performed expeditiously.

There are some merits to summarize the current features of 4GT approach. The use of 4GT is a

viable approach for many different application areas coupled with computer- aided software

engineering tools and code generators, 4GT offers a credible solution to many software problem.

Benefits of the 4GT

Flexible: The Fourth Generation applications are Modifiable by Design, which means they are

designed from the beginning to accommodate change. They are easily modifiable, either by you,

the customer, or by your Fourth Generation Authorized reseller to your specifications.

Scalable: The Fourth Generation applications are Modifiable by Design, which means they are

designed from the beginning to accommodate change.They are easily modifiable, either by you,

the customer, or by your Fourth Generation Authorized reseller to your specifications.

Total Data Access: Your data represents your company’s greatest single asset. The worth of that

asset, however, is directly related to your ability to record it and access it.

 The Fourth Generation Technique (4GT) is based on NPL that is the Non-Procedural

Language techniques. Depending upon the specifications made the 4GT move towards uses

various tools for the automatic generation of source codes. It is the very important tool which

make use of the non-procedural language for Report generation, Database query, Manipulation

of data, Interaction of screen, Definition, Generation of code, Spread Sheet capabilities, and High

level graphical capacity etc. 4GT begins with a requirement-gathering stage. The customer

would illustrate requirements and these would be directly converted into an unworkable

operational prototype. For small applications, it may be possible to move directly from

requirements gathering step to implementation using a non-procedural fourth generation

language (4GL), however for large application it is necessary to develop a design strategy for the

system even if a 4GL is to be used. Implementation using a 4GT enables the software developer

to represent desired result in a manner that leads to automatic generation of code to create those

results, obviously, data structure with relevant information must exist and be readily accessible

by the 4GL. To transform a 4GL implementation into a product, the developer must conduct

through testing, develop meaningful documentation, and perform all other solution integration

activities. The 4GT developed software must be built in a manner that enables maintenance to be

performed expeditiously. There are some merits to summarize the current features of 4GT

approach. The use of 4GT is a viable approach for many different application areas coupled with

computer- aided software engineering tools and code generators, 4GT offers a credible solution

to many software problem. Data collected from companies that use 4Gt indicates that the time

required to produce software is greatly reduced for small and intermediate application is also

reduced. However the use of 4GT for large software development efforts demands as much or

more analysis design and testing to achieve substantial timesaving that result from the

elimination of coding.

Compatibility Maturity Model -CMM

Maturity level 1 _Initial

organizations often produce products and services that work; however, they frequently exceed

the budget and schedule of their projects.Maturity level 1 organizations are characterized by a

tendency to over commit, abandon processes in the time of crisis, and not be able to repeat their

past successes.

Maturity Level 2 - Managed

At maturity level 2, an organization has achieved all the specific and generic goals of the

maturity level 2 process areas. In other words, the projects of the organization have ensured that

requirements are managed and that processes are planned, performed, measured, and

controlled.The process discipline reflected by maturity level 2 helps to ensure that existing

practices are retained during times of stress. When these practices are in place, projects are

performed and managed according to their documented plans.At maturity level 2, requirements,

processes, work products, and services are managed. The status of the work products and the

delivery of services are visible to management at defined points.Commitments are established

among relevant stakeholders and are revised as needed. Work products are reviewed with

stakeholders and are controlled.The work products and services satisfy their specified

requirements, standards, and objectives.

Maturity Level 3 - Defined

At maturity level 3, an organization has achieved all the specific and generic goals of the process

areas assigned to maturity levels 2 and 3.At maturity level 3, processes are well characterized

and understood, and are described in standards, procedures, tools, and methods.A critical

distinction between maturity level 2 and maturity level 3 is the scope of standards, process

descriptions, and procedures. At maturity level 2, the standards, process descriptions, and

procedures may be quite different in each specific instance of the process (for example, on a

particular project). At maturity level 3, the standards, process descriptions, and procedures for a

project are tailored from the organization's set of standard processes to suit a particular project or

organizational unit. The organization's set of standard processes includes the processes addressed

at maturity level 2 and maturity level 3. As a result, the processes that are performed across the

organization are consistent except for the differences allowed by the tailoring guidelines.Another

critical distinction is that at maturity level 3, processes are typically described in more detail and

more rigorously than at maturity level 2. At maturity level 3, processes are managed more

proactively using an understanding of the interrelationships of the process activities and detailed

measures of the process, its work products, and its services.

Maturity Level 4 - Quantitatively managed

At maturity level 4, an organization has achieved all the specific goals of the process areas

assigned to maturity levels 2, 3, and 4 and the generic goals assigned to maturity levels 2 and

3.At maturity level 4 Sub processes are selected that significantly contribute to overall process

performance. These selected sub processes are controlled using statistical and other quantitative

techniques.Quantitative objectives for quality and process performance are established and used

as criteria in managing processes. Quantitative objectives are based on the needs of the customer,

end users, organization, and process implementers. Quality and process performance are

understood in statistical terms and are managed throughout the life of the processes.

Maturity Level 5 - Optimizing

At maturity level 5, an organization has achieved all the specific goals of the process areas

assigned to maturity levels 2, 3, 4, and 5 and the generic goals assigned to maturity levels 2 and

3.Processes are continually improved based on a quantitative understanding of the common

causes of variation inherent in processes.Maturity level 5 focuses on continually improving

process performance through both incremental and innovative technological

improvements.Quantitative process-improvement objectives for the organization are established,

continually revised to reflect changing business objectives, and used as criteria in managing

process improvement.

Capability Maturity Model Integration - CMMI

Capability Maturity Model Integration (CMMI) is a process level improvement training and

appraisal program. Administered by the CMMI Institute, a subsidiary of ISACA, it was

developed at Carnegie Mellon University (CMU). It is required by many United States

Department of Defense (DoD) and U.S. Government contracts, especially in software

development. CMU claims CMMI can be used to guide process improvement across a project,

division, or an entire organization. CMMI defines the following maturity levels for processes:

Initial, Repeatable, Defined, Quantitatively Managed, and Optimizing.

https://en.wikipedia.org/wiki/Subsidiary
https://en.wikipedia.org/wiki/ISACA
https://en.wikipedia.org/wiki/Carnegie_Mellon_University
https://en.wikipedia.org/wiki/United_States_Department_of_Defense
https://en.wikipedia.org/wiki/United_States_Department_of_Defense
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Software_development

CMMI Model

1) Initial: The software process is characterized as ad hoc, and occasionally even chaotic. Few

processes are defined, and success depends on individual effort and heroics.

2) Repeatable: Basic project management processes are established to track cost, schedule, and

functionality. The necessary process discipline is in place to repeat earlier successes on projects

with similar applications.

3) Defined: The software process for both management and engineering activities is documented,

standardized, and integrated into a standard software process for the organization. All projects

use an approved, tailored version of the organization’s standard software process for developing

and maintaining software.

4) Managed: Detailed measures of the software process and product quality are collected. Both

the software process and products are quantitatively understood and controlled.

5) Optimizing: Continuous process improvement is enabled by quantitative feedback from the

process and from piloting innovative ideas and technologies.

People Capability Maturity Model (PCMM)

People Capability Maturity Model (PCMM) is a maturity framework that focuses on

continuously improving the management and development of the human assets of a software or

information systems organization. PCMM can be perceived as the application of the principles of

Capability Maturity Model to human assets of a software organization. It describes an

evolutionary improvement path from ad hoc, inconsistently performed practices, to a mature,

disciplined, and continuously improving development of the knowledge, skills, and motivation of

the workforce. Although the focus in People CMM is on software or information system

organizations, the processes and practices are applicable for any organization that aims to

improve the capability of its workforce. PCMM will be guiding and effective particularly for

organizations whose core processes are knowledge intensive.The primary objective of the People

Capability Maturity Model is to improve the capability of the entire workforce. This can be

defined as the level of knowledge, skills, and process abilities available for performing an

organization’s current and future business activities.

10 Principles of People Capability Maturity Model (PCMM)

The People Capability Maturity Model describes an evolutionary improvement path from ad hoc,

inconsistently performed workforce practices, to a mature infrastructure of practices for

continuously elevating workforce capability. The philosophy implicit the PCMM can be

summarized in ten principles.In mature organizations, workforce capability is directly related to

business performance.

Workforce capability is a competitive issue and a source of strategic advantage.

Workforce capability must be defined in relation to the organization’s strategic business

objectives.

Knowledge-intense work shifts the focus from job elements to workforce competencies.

Capability can be measured and improved at multiple levels, including individuals, workgroups,

workforce competencies, and the organization.

An organization should invest in improving the capability of those workforce competencies that

are critical to its core competency as a business.

Operational management is responsible for the capability of the workforce.

The improvement of workforce capability can be pursued as a process composed from proven

practices and procedures.

The organization is responsible for providing improvement opportunities, while individuals are

responsible for taking advantage of them.

Since technologies and organizational forms evolve rapidly, organizations must continually

evolve their workforce practices and develop new workforce competencies.

The People Capability Maturity Model (People CMM) is a roadmap for implementing workforce

practices that continuously improve the capability of an organization’s workforce. Since an

organization cannot implement all of the best workforce practices in an afternoon, the People

CMM introduces them in stages. Each progressive level of the People CMM produces a unique

transformation in the organization’s culture by equipping it with more powerful practices for

attracting, developing, organizing, motivating, and retaining its workforce. Thus, the People

CMM establishes an integrated system of workforce practices that matures through increasing

alignment with the organization’s business objectives, performance, and changing needs.

Although the People CMM has been designed primarily for application in knowledge intense

organizations, with appropriate tailoring it can be applied in almost any organizational setting.

The People CMM’s primary objective is to improve the capability of the workforce. Workforce

capability can be defined as the level of knowledge, skills, and process abilities available for

performing an organization’s business activities.

Personal Software Process (PSP)

Every developer uses some process to build computer software. The process may be

haphazard or ad hoc; may change on a daily basis; may not be efficient, effective, or even

successful; but a “process” does exist. Watts Humphrey [Hum97] suggests that in order to

change an ineffective personal process, an individual must move through four phases, each

requiring training and careful instrumentation. The Personal Software Process (PSP) emphasizes

personal measurement of both the work product that is produced and the resultant quality of the

work product. In addition PSP makes the practitioner responsible for project planning (e.g.,

estimating and scheduling) and empowers the practitioner to control the quality of all software

work products that are developed. The PSP model defines five framework activities:

Planning.

This activity isolates requirements and develops both size and resource estimates. In addition, a

defect estimate (the number of defects projected for the work) is made. All metrics are recorded

on worksheets or templates. Finally, development tasks are identified and a project schedule is

created.

High-level design. External specifications for each component to be constructed are developed

and a component design is created. Prototypes are built when uncertainty exists. All issues are

recorded and tracked.

High-level design review. Formal verification methods are applied to uncover errors in the

design. Metrics are maintained for all important tasks and work results.

Development. The component-level design is refined and reviewed. Code is generated,

reviewed, compiled, and tested. Metrics are maintained for all important tasks and work results.

Postmortem. Using the measures and metrics collected (this is a substantial amount of data that

should be analyzed statistically), the effectiveness of the process is determined. Measures and

metrics should provide guidance formodifying the process to improve its effectiveness.

Team Software Process (TSP)

Because many industry-grade software projects are addressed by a team of practitioners,

Watts Humphrey extended the lessons learned from the introduction of PSP and proposed a

Team Software Process (TSP). The goal of TSP is to build a “selfdirected” project team that

organizes itself to produce high-quality software.

Humphrey defines the following objectives for TSP:

• Build self-directed teams that plan and track their work, establish goals, andown their processes

and plans. These can be pure software teams or integratedproduct teams (IPTs) of 3 to about 20

engineers.

• Show managers how to coach and motivate their teams and how to helpthem sustain peak

performance.

• Accelerate software process improvement by making Level 5behavior normal and expected.

• Provide improvement guidance to high-maturity organizations.

• Facilitate university teaching of industrial-grade team skills.

A self-directed team has a consistent understanding of its overall goals and objectives; defines

roles and responsibilities for each team member; tracks quantitativeproject data (about

productivity and quality); identifies a team process that is appropriate for the project and a

strategy for implementing the process; defines local standards that are applicable to the team’s

software engineering work; continually assesses risk and reacts to it; and tracks, manages, and

reports project status.

TSP defines the following framework activities: project launch, high-level design,

implementation, integration and test, and postmortem. Like their counterparts in PSP (note that

terminology is somewhat different), these activities enable the team to plan, design, and

construct software in a disciplined manner while at the same time quantitatively measuring the

process and the product. The postmortem sets the stage for process improvements.

PROCESS PATTERNS

Every software team encounters problems as it moves through the software process. It would be

useful if proven solutions to these problems were readily available to the team so that the

problems could be addressed and resolved quickly. A process pattern describes a process-related

problem that is encountered during software engineering work, identifies the environment in

which the problem has been encountered, and suggests one or more proven solutions to the

problem. Stated in more general terms, a process pattern provides you with a template—a

consistent method for describing problem solutions within the context of the software process.

By combining patterns, a software team can solve problems and construct a process that best

meets the needs of a project.

Patterns can be defined at any level of abstraction. In some cases, a pattern might be used to

describe a problem (and solution) associated with a complete processmodel (e.g., prototyping).

In other situations, patterns can be used to describe a problem (and solution) associated with a

framework activity (e.g., planning) or an action within a framework activity (e.g., project

estimating).

Ambler has proposed a template for describing a process pattern:

Pattern Name. The pattern is given a meaningful name describing it within the context of the

software process (e.g., TechnicalReviews).

Forces. The environment in which the pattern is encountered and the issues that make the

problem visible and may affect its solution.

Type. Ambler suggests three types of patterns:

1. Stage pattern—defines a problem associated with a framework activity for the process. Since a

framework activity encompasses multiple actions andwork tasks, a stage pattern incorporates

multiple task patterns (see the following) that are relevant to the stage (framework activity). An

example of astage pattern might be EstablishingCommunication. This pattern would incorporate

the task pattern RequirementsGathering and others.

2. Task pattern—defines a problem associated with a software engineering action or work task

and relevant to successful software engineeringpractice (e.g., RequirementsGathering is a task

pattern).

3. Phase pattern—define the sequence of framework activities that occurs within the process,

even when the overall flow of activities is iterativein nature. An example of a phase pattern

might be SpiralModel or Prototyping.

PROCESS ASSESSMENT

The existence of a software process is no guarantee that software will be delivered on time, that

it will meet the customer’s needs, or that it will exhibit the technical characteristics that will lead

to long-term quality characteristics. Process patterns must be coupled with solid software

engineering practice

(Part 2 of this book). In addition, the process itself can be assessed to ensure that it meets a set of

basic process criteria that have been shown to be essential for a successful software engineering..

A number of different approaches to software process assessment and improvement have been

proposed over the past few decades:

Standard CMMI Assessment Method for Process Improvement

(SCAMPI)—provides a five-step process assessment model that incorporates five phases:

initiating, diagnosing, establishing, acting, and learning. The

SCAMPI method uses the SEI CMMI as the basis for assessment.

CMM-Based Appraisal for Internal Process Improvement (CBA IPI) — provides a

diagnostic technique for assessing the relative maturity of asoftware organization; uses the SEI

CMM as the basis for the assessment.

SPICE (ISO/IEC15504)—a standard that defines a set of requirements for software process

assessment. The intent of the standard is to assist organizations

in developing an objective evaluation of the efficacy of any defined software process .

ISO 9001:2000 for Software—a generic standard that applies to any organization that wants to

improve the overall quality of the products, systems,

or services that it provides. Therefore, the standard is directly applicable to software

organizations and companies

Six Sigma for Software Engineering

Six Sigma is the most widely used strategy for statistical quality assurance in industry today.

Originally popularized by Motorola in the 1980s, the Six Sigma strategy “is a rigorous and

disciplined methodology that uses data and statistical analysis to measure and improve a

company’s operational performance by identifying and eliminating defects’ in manufacturing

and service-related processes”. The term Six Sigma is derived from six standard deviations—3.4

instances (defects) per million occurrences—implying an extremely high quality standard. The

Six Sigma methodology defines three core steps:

• Define customer requirements and deliverables and project goals via welldefined methods of

customer communication.

• Measure the existing process and its output to determine current quality performance (collect

defect metrics).

• Analyze defect metrics and determine the vital few causes.

 If an existing software process is in place, but improvement is required, Six Sigmasuggests two

additional steps:

• Improve the process by eliminating the root causes of defects.

• Control the process to ensure that future work does not reintroduce the causes of defects.

Clean room technique (clean room design)

The clean room technique is a process in which a new product is developed by reverse

engineering an existing product, and then the new product is designed in such a way that

patent or copyright infringement is avoided. The clean room technique is also known as clean

room design. (Sometimes the words "clean room" are merged into the single word,

"cleanroom.") Sometimes this process is called the Chinese wall method, because the intent is

to place a demonstrable intellectual barrier between the reverse engineering process and the

development of the new product.

The use of the clean room technique can be compared, in some respects, with the fair use of

copyrighted publications in order to compile a new document. For example, a new book about

Linux can be authored on the basis of information obtained by researching existing books,

articles, white papers, and Web sites. This does not necessarily constitute copyright

infringement, even though other books on Linux already exist, and even if the new book

contains essentially the same information as the existing publications. However, this is the case

only as long as passages from the existing works are not copied verbatim or nearly verbatim,

https://searchsoftwarequality.techtarget.com/definition/reverse-engineering
https://searchsoftwarequality.techtarget.com/definition/reverse-engineering
https://searchsecurity.techtarget.com/definition/copyright
https://whatis.techtarget.com/definition/Chinese-wall
https://searchdatacenter.techtarget.com/definition/Linux-operating-system
https://whatis.techtarget.com/definition/Web-site

and as long as the new work does not have substantially the same structure as any of the

existing works.

Use of the clean room technique puts engineers and enterprises in a legal gray area. If the

owner of the original copyright or patent can demonstrate that the development of a new

product was done by means of reverse engineering and is not significantly different from the

existing product, a lawsuit may result. Any attempt to reverse engineer an existing product, and

then create a new product based on the results of the reverse engineering process, should be

undertaken only with the advice of a reputable attorney who is experienced in copyright

infringement and reverse engineering issues.

https://searchwindowsserver.techtarget.com/definition/enterprise

Managing Software Projects & Design Engineering: The management spectrum, software quality,

measurement and metrics. Software project estimation, decomposition techniques. Empirical

estimation models (COCOMO), the Make & Buy Decision. System models: Context Models,

Behavioral models, Data models, Object models. Design process, Design quality and design model.

Fundamental issues in software design: Goodness of design, cohesions, coupling. Function-oriented

design and object – oriented concepts. Architectural styles and patterns, Architectural Design:

Unified Modeling Language (UML), User interface design. Risk Analysis and management.

UNIT II

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS:IIM.Com(CA)

COURSE NAME: SOFTWARE MODELS AND ENGINEERING

COURSECODE:18CCP301

BATCH-2018-2020

MANAGEMENT SPECTRUM

Effective software project management focuses on the four P’s: people, product,

process, and project. The order is not arbitrary. The manager who forgets that software

engineering work is an intensely human endeavor will never have success in project

management. A manager who fails to encourage comprehensive stakeholder communication

early in the evolution of a product risks building an elegant solution for the wrong problem. The

manager who pays little attention to the process runs the risk of inserting competent technical

methods and tools into a vacuum. The manager who embarks without a solid project plan

jeopardizes the success of the project.

ThePeople

The cultivation of motivated, highly skilled software people has been discussed since the 1960s.

In fact, the “people factor” is so important that the Software Engineering Institute has developed

a People Capability Maturity Model (People-CMM), in recognition of the fact that “every

organization needs to continually improve its ability to attract, develop, motivate, organize, and

retain the workforce needed to accomplish its strategic business objectives”. The people

capability maturity model defines the following key practice areas for software people: staffing,

communication and coordination, work environment, performance management, training,

compensation, competency analysis and development, career development, workgroup

development, team/culture development, and others. Organizations that achieve high levels of

People-CMM maturity have a higher likelihood of implementing effective software project

management practices. The People-CMM is a companion to the Software Capability Maturity

Model– Integration that guides organizations in the creation of a mature software process.

The Product

Before a project can be planned, product objectives and scope should be established, alternative

solutions should be considered, and technical and management constraints should be identified.

Without this information, it is impossible to define reasonable (and accurate) estimates of the

cost, an effective assessment of risk, a realistic breakdown of project tasks, or a manageable

project schedule that provides a meaningful indication of progress. As a software developer, you

and other stakeholders must meet to define product objectives and scope. In many cases, this

activity begins as part of the system engineering or business process engineering and continues

as the first step in software requirements engineering. Objectives identify the overall goals for

the product (from the stakeholders’ points of view) without considering how these goals will be

achieved. Scope identifies the primary data, functions, and behaviors that characterize the

product, and more important, attempts to bound these characteristics in a quantitative manner.

Once the product objectives and scope are understood, alternative solutions are considered.

Although very little detail is discussed, the alternatives enable managers and practitioners to

select a “best” approach, given the constraints imposed by delivery deadlines, budgetary

restrictions, personnel availability, technical interfaces, and myriad other factors.

The Process

A software process provides the framework from which a comprehensive plan for software

development can be established. A small number of framework activities are applicable to all

software projects, regardless of their size or complexity. A number of different task sets—tasks,

milestones, work products, and quality assurance points—enable the framework activities to be

adapted to the characteristics of the software project and the requirements of the project team.

Finally, umbrella activities—such as software quality assurance, software configuration

management, and measurement—overlay the process model. Umbrella activities are independent

of any one framework activity and occur throughout the process.

The Project

We conduct planned and controlled software projects for one primary reason—it is the only

known way to manage complexity. And yet, software teams still struggle. In a study of 250 large

software projects between 1998 and 2004, Capers Jones found that “about 25 were deemed

successful in that they achieved their schedule, cost, and quality objectives. About 50 had delays

or overruns below 35 percent, while about 175 experienced major delays and overruns, or were

terminated without completion.” Although the success rate for present-day software projects may

have improved somewhat, our project failure rate remains much higher than it should be. To

avoid project failure, a software project manager and the software engineers who build the

product must avoid a set of common warning signs, understand the critical success factors that

lead to good project management, and develop a commonsense approach for planning,

monitoring, and controlling the project.

Software quality, measurement and metrics

Software quality assurance is composed of a variety of tasks associated with two different

constituencies—the software engineers who do technical work and an SQA group that has

responsibility for quality assurance planning, oversight, record keeping, analysis, and reporting.

Software engineers address quality (and perform quality control activities) by applying solid

technical methods and measures, conducting technical reviews, and performing well-planned

software testing.

Measurements in the physical world can be categorized in two ways: direct measures

(e.g., the length of a bolt) and indirect measures (e.g., the “quality” of bolts produced, measured

by counting rejects). Software metrics can be categorized similarly.

Direct measures of the software process include cost and effort applied. Direct measures of the

product include lines of code (LOC) produced, execution speed, memory size, and defects

reported over some set period of time. Indirect measures of the product include functionality,

quality, complexity, efficiency, reliability, maintainability, and many other “–abilities”.

The cost and effort required to build software, the number of lines of code produced, and other

direct measures are relatively easy to collect, as long as specific conventions for measurement

are established in advance.

However, the quality and functionality of software or its efficiency or maintainability are more

difficult to assess and can be measured only indirectly. The software metrics domain can be

partitioned into process, project, and product metrics. Project metrics are then consolidated to

create process metrics that are public to the software organization as a whole. But how does an

organization combine metrics that come from different individuals or projects? To illustrate,

consider a simple example. Individuals on two different project teams record and categorize all

errors that they find during the software process. Individual measures are then combined to

develop team measures. Team A found 342 errors during the software process prior to release.

Team B found 184 errors. All other things being equal, which team is more effective in

uncovering errors throughout the process? Because you do not know the size or complexity of

the projects, you cannot answer this question. However, if the measures are normalized, it is

possible to create software metrics that enable comparison to broader organizational averages.

Size-Oriented Metrics

Size-oriented software metrics are derived by normalizing quality and/or productivity

measures by considering the size of the software that has been produced. If a software

organization maintains simple records, a table of size-oriented measures can be created.

Function-Oriented Metrics

Function-oriented software metrics use a measure of the functionality delivered by the

application as a normalization value. The most widely used function-oriented metric is the

function point (FP). Computation of the function point is based on characteristics of the

software’s information domain and complexity.

The function point, like the LOC measure, is controversial. Proponents claim that FP is

programming language independent, making it ideal for applications using conventional

and nonprocedural languages, and that it is based on data that are more likely to be known early

in the evolution of a project, making FP more attractive as an estimation approach. Opponents

claim that the method requires some “sleight of hand” in that computation is based on subjective

rather than objective data, that counts of the information domain (and other dimensions) can be

difficult to collect after the fact, and that FP has no direct physical meaning—it’s just a number.

Object-Oriented Metrics

Conventional software project metrics (LOC or FP) can be used to estimate object

orientedsoftware projects. However, these metrics do not provide enough granularity for the

schedule and effort adjustments that are required as you iterate through an evolutionary or

incremental process.

Lorenz and Kidd suggest the followingset of metrics for Object Oriented projects:

Number of scenario scripts:

A scenario script is a detailed sequence of steps that describe theinteraction between the user

and the application. Each script is organized into triplets of the form

{initiator, action, participant}

where initiator is the object that requests some service (that initiates a message), action is the

result of the request, and participant is the server object that satisfies the request. The number of

scenario scripts is directly correlated to the size of the application and to the number of test cases

that must be developed to exercise the system once it is constructed.

Number of key classes:Key classes are the “highly independent components” that are defined

early in object-oriented analysis . Because key classes are central to the problem domain, the

number of such classes is an indication of the amount of effort required to develop the software

and also an indicationof the potential amount of reuse to be applied during system development.

Number of support classes: Support classes are required to implement the system but are not

immediately related to the problem domain. Examples might be user interface (GUI) classes,

database access and manipulation classes, and computation classes. In addition, support classes

can be developed for each of the key classes. Support classes are defined iteratively throughout

an evolutionary process. The number of support classes is an indication of the amount of effort

required to develop the software and also an indication of the potential amount of reuse to be

applied during system development.

Average number of support classes per key class: In general, key classes areknown early in

the project. Support classes are defined throughout. If the average number of support classes per

key class were known for a given problem domain, estimating (based on total number of classes)

would be greatly simplified. Lorenz and Kidd suggest that applications with a GUI have between

two and three times the number of support classes as key classes. Non-GUI applications have

between one and two times the number of support classes as key classes.

Number of subsystems: A subsystem is an aggregation of classes that support a function that is

visible to the end user of a system. Once subsystems are identified, it is easier to lay out a

reasonable schedule in which work on subsystems is partitioned among project staff.

Use-Case–Oriented Metrics: Use cases are used widely as a method for describing customer-

level or business domain requirements that imply software features and functions. It would seem

reasonable to use the use case as a normalization measure similar to LOC or FP.

SOFTWARE PROJECT ESTIMATION

Software cost and effort estimation will never be an exact science. Too many variables—human,

technical, environmental, political—can affect the ultimate cost of software and effort applied to

develop it. However, software project estimation can be transformed from a black art to a series

of systematic steps that provide estimates with acceptable risk. To achieve reliable cost and

effort estimates, a number of options arise:

1. Delay estimation until late in the project (obviously, we can achieve 100 percentaccurate

estimates after the project is complete!).

2. Base estimates on similar projects that have already been completed.

3. Use relatively simple decomposition techniques to generate project cost andeffort estimates.

4. Use one or more empirical models for software cost and effort estimation.

Unfortunately, the first option, however attractive, is not practical. Cost estimatesmust be

provided up-front. However, you should recognize that the longer you wait,the more you know,

and the more you know, the less likely you are to make seriouserrors in your estimates.The

second option can work reasonably well, if the current project is quite similarto past efforts and

other project influences (e.g., the customer, business conditions,the software engineering

environment, deadlines) are roughly equivalent. Unfortunately,past experience has not always

been a good indicator of future results.The remaining options are viable approaches to software

project estimation.Ideally, the techniques noted for each option should be applied in tandem;

each usedas a cross-check for the other.

Decomposition techniques

Software project estimation is a form of problem solving, and in most cases, the problem to be

solved (i.e., developing a cost and effort estimate for a software project) is too complex to be

considered in one piece. For this reason, you should decompose the problem, recharacterizing it

as a set of smaller (and hopefully, more manageable) problems.But before an estimate can be

made, you must understand the scope of the software to be built and generate an estimate of its

“size.”

Software Sizing

The accuracy of a software project estimate is predicated on a number of things:

(1) the degree to which you have properly estimated the size of the product to be built;

(2) the ability to translate the size estimate into human effort, calendar time, and dollars

(a function of the availability of reliable software metrics from past projects);

(3) the degree to which the project plan reflects the abilities of the software team; and

(4) the stability of product requirements and the environment that supports the software

engineering effort.

Putnam and Myers suggest four different approaches to the sizing problem:

• “Fuzzy logic” sizing. This approach uses the approximate reasoning techniques that are the

cornerstone of fuzzy logic. To apply this approach, the planner must identify the type of

application, establish its magnitude on a qualitative scale, and then refine the magnitude within

the original range.

 Function point sizing. The planner develops estimates of the information domain

characteristics

Standard component sizing. Software is composed of a number of different “standard

components” that are generic to a particular application area. For example, the standard

components for an information system are subsystems, modules, screens, reports, interactive

programs, batch programs, files, LOC, and object-level instructions. The project planner

estimates the number of occurrences of each standard component and then uses historical project

data to estimate the delivered size per standard component.

Change sizing. This approach is used when a project encompasses the use of existing software

that must be modified in some way as part of a project. The planner estimates the number and

type (e.g., reuse, adding code, changing code, deleting code) of modifications that must be

accomplished.

Problem-Based Estimation

LOC and FP data are used in two ways during software project estimation:

(1) as estimation variables to “size” each element of the software and

(2) as baseline metrics collected from past projects and used in conjunction with estimation

variables to develop cost and effort projections.

LOC and FP estimation are distinct estimation techniques. Yet both have a number of

characteristics in common. You begin with a bounded statement of software scope and from this

statement attempt to decompose the statement of scope into problem functions that can each be

estimated individually. LOC or FP (the estimation variable) is then estimated for each function.

Alternatively, you may choose another component for sizing, such as classes or objects, changes,

or business processes affected.

The LOC and FP estimation techniques differ in the level of detail required for decomposition

and the target of the partitioning. When LOC is used as the estimation variable, decomposition is

absolutely essential and is often taken to considerable levels of detail. The greater the degree of

partitioning, the more likely reasonably accurate estimates of LOC can be developed. For FP

estimates, decomposition works differently. Rather than focusing on function, each of the

information domain characteristics—inputs, outputs, data files, inquiries, and external interfaces

are estimated. The resultant estimates can then be used to derive an FP value that can be tied to

past data and used to generate an estimate.

Regardless of the estimation variable that is used, you should begin by estimating a range of

values for each function or information domain value. Using historical data or (when all else

fails) intuition, estimate an optimistic, most likely, and pessimistic size value for each function or

count for each information domain value. An implicit indication of the degree of uncertainty is

provided when a range of values is specified. A three-point or expected value can then be

computed. The expected value for the estimation variable (size) S can be computed as a weighted

average of the optimistic (sopt), most likely (sm), and pessimistic (spess) estimates.

For example,

COCOMO - COnstructiveCOstMOdel. The original COCOMO model became one of the

most widely used and discussed software cost estimation models in the industry. It has evolved

intoa more comprehensive estimation model, called COCOMOII . Like its predecessor,

COCOMO II is actually a hierarchy of estimation models that address the following areas:

• Application composition model. Used during the early stages of software engineering,

when prototyping of user interfaces, consideration of software and system interaction,

assessment of performance, and evaluation of technology maturity are paramount.

• Early design stage model. Used once requirements have been stabilized and basic software

architecture has been established.

• Post-architecture-stage model. Used during the construction of the software. Like all estimation

models for software, the COCOMO II models require sizing information. Three different sizing

options are available as part of the model hierarchy: object points, function points, and lines of

source code.

Context model

The fundamental system modelor context diagram depicts the security function as a single

transformation, representingthe external producers and consumers of data that flow into and out

of thefunction. Figure below depicts a level 0 context model

Context-level DFD for the SafeHome security function

The behavioral model

The behavioral model indicates how software will respond to external events or stimuli. To

create the model, you should perform the following steps:

1. Evaluate all use cases to fully understand the sequence of interaction within

the system.

2. Identify events that drive the interaction sequence and understand how theseevents relate to

specific objects.

3. Create a sequence for each use case.

4. Build a state diagram for the system.

5. Review the behavioral model to verify accuracy and consistency.

Identifying Events with the Use Case

In general, an event occurs whenever the system and an actor exchange information.

State Representations

In the context of behavioral modeling, two different characterizations of states must be

considered: (1) the state of each class as the system performs its function and

(2) the state of the system as observed from the outside as the system performs its function.

The state of a class takes on both passive and active characteristics.

 A passive state is simply the current status of all of an object’s attributes.

State diagrams for analysis classes.

 One component of a behavioral model is a UML state diagram that represents active states for

each class and the events (triggers) that cause changes between these active states. Figure below

illustrates a state diagram for the Control Panel object in the SafeHome security function.

Figure : State diagram for the ControlPanel class

Sequence diagrams. The second type of behavioral representation, called a sequence diagram in

UML, indicates how events cause transitions from object to object. Once events have been

identified by examining a use case, the modeler creates a sequence diagram—a representation of

how events cause flow from one object to another as a function of time. In essence, the sequence

diagram is a shorthand version of the use case. It represents key classes and the events that cause

behavior to flow from class to class.

DATA MODEL

If software requirements include the need to create, extend, or interface with a database or if

complex data structures must be constructed and manipulated, the software team may choose to

create a data model as part of overall requirements modeling. A software engineer or analyst

defines all data objects that are processed within the system, the relationships between the data

objects, and other information that is pertinent to the relationships. The entity-relationship

diagram (ERD) addresses these issues and represents all data objects that are entered, stored,

transformed, and produced within an application.

Data Objects

A data object is a representation of composite information that must be understood by software.

By composite information, I mean something that has a number of different properties or

attributes. Therefore, width (a single value) would not be a valid data object, but dimensions

(incorporating height, width, and depth) could be defined as an object.

Data Attributes

Data attributes define the properties of a data object and take on one of three different

characteristics. They can be used to (1) name an instance of the data object, (2) describe the

instance, or (3) make reference to another instance in another table. In addition, one or more of

the attributes must be defined as an identifier—that is, the identifier attribute becomes a “key”

when we want to find an instance of the data object. In some cases, values for the identifier(s) are

unique, although this is not a requirement. Referring to the data object car, a reasonable identifier

might be the ID number.

Relationships

Data objects are connected to one another in different ways. Consider the two data objects,

person and car. These objects can be represented using the simple notation illustrated in Figure

below. A connection is established between person and car because the two objects are related.

But what are the relationships? To determine the answer, you should understand the role of

people (owners, in this case) and cars within the context of the software to be built. You can

establish a set of object/relationship pairs that define the relevant relationships.

For example,

• A person owns a car.

• A person is insured to drive a car.

Design Process

Software design is an iterative process through which requirements are translatedinto a

blueprint” for constructing the software. Initially, the blueprint depicts a holisticview of

software. That is, the design is represented at a high level of abstraction—a level that can be

directly traced to the specific system objective and more detaileddata, functional, and behavioral

requirements. As design iterations occur, subsequentrefinement leads to design representations at

much lower levels of abstraction.These can still be traced to requirements, but the connection is

more subtle.

Design Quality

Throughout the design process, the quality of the evolving design is assessed with a series of

technical reviews. In order to evaluate the quality of a design representation, you and other

members of the software team must establish technical criteria for good design.

Quality Guidelines

1. A design should exhibit an architecture that has been created using recognizable

architectural styles or patterns is composed of componentsthat exhibit good

design characteristics and can be implemented in an evolutionary fashion,2

thereby facilitating implementation and testing.

2. A design should be modular; that is, the software should be logically

partitionedinto elements or subsystems.

3. A design should contain distinct representations of data, architecture, interfaces,

and components.

4. A design should lead to data structures that are appropriate for the classes tobe

implemented and are drawn from recognizable data patterns.

5. A design should lead to components that exhibit independent

functionalcharacteristics.

6. A design should lead to interfaces that reduce the complexity of

connectionsbetween components and with the external environment.

7. A design should be derived using a repeatable method that is driven by

informationobtained during software requirements analysis.

8. A design should be represented using a notation that effectively communicatesits

meaning.

Cohesion and coupling

Cohesionis an indication of the relative functional strength of a module. Coupling is

an indication of the relative interdependence among modules. Cohesion is a natural extension of

the information-hiding concept. A cohesive module performs a single task, requiring little

interaction with other components in other parts of a program. Stated simply, a cohesive module

should (ideally) do just one thing. Although you should always strive for high cohesion (i.e.,

single-mindedness), it is often necessary and advisable to have a software component perform

multiple functions. However, “schizophrenic” components (modules that perform many

unrelated functions) are to be avoided if a good design is to be achieved.

Coupling is an indication of interconnection among modules in a software

structure.Coupling depends on the interface complexity between modules, the point atwhich

entry or reference is made to a module, and what data pass across the interface.In software

design, you should strive for the lowest possible coupling. Simpleconnectivity among modules

results in software that is easier to understand and lessprone to a “ripple effect”, caused when

errors occur at one location and propagatethroughout a system.

Object Oriented Concepts

Requirements modeling (also called analysis modeling) focuses primarily on classes that are

extracted directly from the statement of the problem. These entity classes typically represent

things that are to be stored in a database and persist throughout the duration of the application

(unless they are specifically deleted). Design refines and extends the set of entity classes.

Boundary and controller classes are developed and/or refined during design. Boundary classes

create the interface (e.g., interactive screen and printed reports) that the user sees and

interactswith, as the software is used. Boundary classes are designed with the responsibility of

managing the way entity objects are represented to users.

Controller classes are designed to manage:

(1) the creation or update of entityobjects

(2) the instantiation of boundary objects as they obtain information from entity objects,

(3) complex communication between sets of objects, and

(4) validation of data communicated between objects or between the user and the application.

The concepts discussed in the paragraphs that follow can be useful in analysis and design work.

Inheritance.

 Inheritance is one of the key differentiators between conventional and object-oriented systems.

A subclass Y inherits all of the attributes and operations associated with its superclass X. This

means that all data structures and algorithms originally designed and implemented for X are

immediately available for Y—no further work need be done. Reuse has been accomplished

directly. Any change to the attributes or operations contained within a superclass is immediately

inherited by all subclasses. Therefore, the class hierarchy becomes a mechanism through which

changes (at high levels) can be immediately propagated through a system. It is important to note

that at each level of the class hierarchy new attributes and operations may be added to those that

have been inherited from higher levels in the hierarchy. In fact, whenever a new class is to be

created, you have a number of options:

• The class can be designed and built from scratch. That is, inheritance is not used.

• The class hierarchy can be searched to determine if a class higher in the hierarchy contains

most of the required attributes and operations. The new class inherits from the higher class and

additions may then be added, as required.

• The class hierarchy can be restructured so that the required attributes and operations can be

inherited by the new class.

• Characteristics of an existing class can be overridden, and different versions of attributes or

operations are implemented for the new class.

Like all fundamental design concepts, inheritance can provide significant benefit for the design,

but if it is used inappropriately, it can complicate a design unnecessarily and lead to error-prone

software that is difficult to maintain.

Messages.

Classes must interact with one another to achieve design goals. A message stimulates some

behavior to occur in the receiving object. The behavior is accomplished when an operation is

executed.

Polymorphism. Polymorphism is a characteristic that greatly reduces the effort required to

extend the design of an existing object-oriented system. To understand polymorphism, consider a

conventional application that must draw four different types of graphs: line graphs, pie charts,

histograms, and Kiviat diagrams. Ideally, once data are collected for a particular type of graph,

the graph should draw itself.To accomplish this in a conventional application (and maintain

module cohesion), it would be necessary to develop drawing modules for each type of graph.

UML
The Unified Modeling Language (UML) is “a standard language for writingsoftware blueprints.

UML may be used to visualize, specify, construct, anddocument the artifacts of a software-

intensive system”. In otherwords, just as building architects create blueprints to be used by a

constructioncompany, software architects create UML diagrams to help software developersbuild

the software.

To model classes, including their attributes, operations, and their relationships and associations

with other classes, UML provides a class diagram. A class diagram provides a static or structural

view of a system. It does not show the dynamic nature of the communications between the

objects of the classes in the diagram. The main elements of a class diagram are boxes, which are

the icons used to represent classes and interfaces. Each box is divided into horizontal parts. The

top part contains the name of the class. The middle section lists the attributes of the class. An

attribute refers to something that an object of that class knows or can provide all the time.

Attributes are usually implemented as fields of the class, but they need not be. They could be

values that the class can compute from its instance variables or values that the class can get from

other objects of which it is composed.

For example, an object might always know the current time and be able to return it to you

whenever you ask. Therefore, it would be appropriate to list the current time as an attribute of

that class of objects. However, the object would most likely not have that time stored in one of

its instance variables, because it would need to continually update that field. Instead, the object

would likely compute the current time (e.g., through consultation with objects of other classes) at

the moment when the time is requested. The third section of the class diagram contains the

operations or behaviors of the class. An operation refers to what objects of the class can do. It is

usually implemented as a method of the class.

Figure A1 presents a simple example of a Thoroughbred class that models thoroughbred horses.

It has three attributes displayed—mother, father, and birthyear. The diagram also shows three

operations: getCurrentAge(), getFather(), and getMother(). There may be other suppressed

attributes and operations not shown in the diagram.

Figure A1 : A class diagram for a Thoroughbred class

Each attribute can have a name, a type, and a level of visibility. The type and visibility are

optional. The type follows the name and is separated from the name by a colon. The visibility is

indicated by a preceding –, #, ~, or +, indicating, respectively, private, protected, package, or

public visibility. In Figure A1, all attributes have private visibility, as indicated by the leading

minus sign (–). You can also specify that an attribute is a static or class attribute by underlining

it. Each operation can also be displayed with a level of visibility, parameters with names and

types, and a return type. An abstract class or abstract method is indicated by the use of italics for

the name in the class diagram. See the Horse class in Figure A2 for an example. An interface is

indicated by adding the phrase “«interface»” (called a stereotype) above the name. See the

OwnedObject interface in Figure A2. An interface can also be represented graphically by a

hollow circle. It is worth mentioning that the icon representing a class can have other optional

parts. For example, a fourth section at the bottom of the class box can be used to list the

responsibilities of the class. This fourth section is not shown in any of the figures in this

appendix. Class diagrams can also show relationships between classes. A class that is a subclass

of another class is connected to it by an arrow with a solid line for its shaft and with a triangular

hollow arrowhead. The arrow points from the subclass to the superclass. In UML, such a

relationship is called a generalization. For example, in Figure A2, the Thoroughbred and

QuarterHorse classes are shown to be subclasses of the Horse abstract class. An arrow with a

dashed line for the arrow shaft indicates implementation of an interface. In UML, such a

relationship is called a realization. For example, in Figure A2, the Horse class implements or

realizes the OwnedObject interface.

Figure A2: A class diagram regarding horses

An association between two classes means that there is a structural relationship between them.

Associations are represented by solid lines. An association has many optional parts. It can be

labeled, as can each of its ends, to indicate the role of each class in the association. For example,

in Figure A2, there is an association between OwnedObjectand Person in which the Person

plays the role of owner. Arrows on either or both ends of an association line indicate

navigability. Also, each end of the association line can have a multiplicity value displayed.

Navigability and multiplicity are explained in more detail later in this section. An association

might also connect a class with itself, using a loop. Such an association indicates the connection

of an object of the class with other objects of the same class. An association with an arrow at one

end indicates one-way navigability. The arrow means that from one class you can easily access

the second associated class to which the association points, but from the second class, you cannot

necessarily easily access the first class. Another way to think about this is that the firs class is

aware of the second class, but the second class object is not necessarily directly aware of the first

class. An association with no arrows usually indicates a two-way association, which is what was

intended in Figure A2, but it could also just mean that the navigability is not important and so

was left off.

It should be noted that an attribute of a class is very much the same thing as an association of the

class with the class type of the attribute. That is, to indicate that a class has a property called

“name” of type String, one could display that property as an attribute, as in the Horse class in

Figure A2. Alternatively, one could create a one-way association from the Horse class to the

String class with the role of the String class being “name.” The attribute approach is better for

primitive data types, whereas the association approach is often better if the property’s class plays

a major role in the design, in which case it is valuable to have a class box for that type. A

dependency relationship represents another connection between classes and is indicated by a

dashed line (with optional arrows at the ends and with optional labels). One class depends on

another if changes to the second class might require changes to the first class. An association

from one class to another automatically indicates a dependency. No dashed line is needed

between classes if there is already an association between them.

However, for a transient relationship (i.e., a class that does not maintain any long-term

connection to another class but does use that class occasionally) we should draw a dashed line

from the first class to the second. For example, in Figure A2, the Thoroughbred class uses the

Date class whenever its getCurrentAge() method is invoked, and so the dependency is labeled

“uses.” The multiplicity of one end of an association means the number of objects of that class

associated with the other class. A multiplicity is specified by a nonnegative integer or by a range

of integers. A multiplicity specified by “0..1” means that there are 0 or 1 objects on that end of

the association. For example, each person in the world has either a Social Security number or no

such number (especially if they are not U.S. citizens), and so a multiplicity of 0..1 could be used

in an association between aPerson class and a SocialSecurityNumberclass in a class diagram. A

multiplicityspecified by “1..*” means one or more, and a multiplicity specified by “0..*” or just

“*“means zero or more. An * was used as the multiplicity on the OwnedObjectend ofthe

association with class Person in Figure A2 because a Person can own zero ormore objects..

If one end of an association has multiplicity greater than 1, then the objects of the class referred

to at that end of the association are probably stored in a collection, such as a set or ordered list.

One could also include that collection class itself in the UML diagram, but such a class is usually

left out and is implicitly assumed to be there due to the multiplicity of the association.

Anaggregationis a special kind of association indicated by a hollow diamond on one end of the

icon. It indicates a “whole/part” relationship, in that the class to which the arrow points is

considered a “part” of the class at the diamond end of the association.

A compositionis an aggregation indicating strong ownership of the parts. In a composition, the

parts live and die with the owner because they have no role in the software system independent

of the owner.

UML use-case diagram help you determine the functionality and features of the software from

the user’s perspective. To give you a feeling for how use cases and use-case diagrams work, we

will create some for a software application for managing digital music files, similar to Apple’s

iTunes software.

Some of the things the software might do include:

• Download an MP3 music file and store it in the application’s library.

• Capture streaming music and store it in the application’s library.

• Manage the application’s library (e.g., delete songs or organize them in playlists).

• Burn a list of the songs in the library onto a CD.

• Load a list of the songs in the library onto an iPod or MP3 player.

• Convert a song from MP3 format to AAC format and vice versa.

A use-case diagram for the digital music application is shown in Figure A3.

Figure A3: Use case diagram for music system

RISK ANALYSIS

Software development is activity that uses a variety of technological advancements and requires

high levels of knowledge. Because of these and other factors, every software development

project contains elements of uncertainty. This is known as project risk. The success of a software

development project depends quite heavily on the amount of risk that corresponds to each project

activity. As a project manager, it’s not enough to merely be aware of the risks. To achieve a

successful outcome, project leadership must identify, assess, prioritize, and manage all of the

major risks. Risk is the possibility of suffering loss, and total risk exposure to a specific project

will account for both the probability and the size of the potential loss.

Risk management

Risk management means risk containment and mitigation. First, you’ve got to identify and plan.

Then be ready to act when a risk arises, drawing upon the experience and knowledge of the

entire team to minimize the impact to the project.

Risk management includes the following tasks:

 Identify risks and their triggers

 Classify and prioritize all risks

 Craft a plan that links each risk to a mitigation

 Monitor for risk triggers during the project

 Implement the mitigating action if any risk materializes

 Communicate risk status throughout project

Identify and Classify Risks

Most software engineering projects are inherently risky because of the variety potential problems

that might arise. Experience from other software engineering projects can help managers classify

risk. The importance here is not the elegance or range of classification, but rather to precisely

identify and describe all of the real threats to project success. A simple but effective

classification scheme is to arrange risks according to the areas of impact.

Five Types of Risk In Software Project Management

For most software development projects, we can define five main risk impact areas:

 New, unproven technologies

 User and functional requirements

 Application and system architecture

 Performance

 Organizational

New, unproven technologies. The majority of software projects entail the use of new

technologies. Ever-changing tools, techniques, protocols, standards, and development systems

increase the probability that technology risks will arise in virtually any substantial software

engineering effort. Training and knowledge are of critical importance, and the improper use of

new technology most often leads directly to project failure.

User and functional requirements. Software requirements capture all user needs with respect

to the software system features, functions, and quality of service. Too often, the process of

requirements definition is lengthy, tedious, and complex. Moreover, requirements usually change

with discovery, prototyping, and integration activities. Change in elemental requirements will

likely propagate throughout the entire project, and modifications to user requirements might not

translate to functional requirements. These disruptions often lead to one or more critical failures

of a poorly-planned software development project.

Application and system architecture. Taking the wrong direction with a platform, component,

or architecture can have disastrous consequences. As with the technological risks, it is vital that

the team includes experts who understand the architecture and have the capability to make sound

design choices.

Performance. It’s important to ensure that any risk management plan encompasses user and

partner expectations on performance. Consideration must be given to benchmarks and threshold

testing throughout the project to ensure that the work products are moving in the right direction.

Organizational. Organizational problems may have adverse effects on project outcomes. Project

management must plan for efficient execution of the project, and find a balance between the

needs of the development team and the expectations of the customers. Of course, adequate

staffing includes choosing team members with skill sets that are a good match with the project.

Risk Management Plan

After cataloging all of the risks according to type, the software development project manager

should craft a risk management plan. As part of a larger, comprehensive project plan, the risk

management plan outlines the response that will be taken for each risk—if it materializes.

Monitor and Mitigate

To be effective, software risk monitoring has to be integral with most project activities.

Essentially, this means frequent checking during project meetings and critical events.

Monitoring includes:

 Publish project status reports and include risk management issues

 Revise risk plans according to any major changes in project schedule

 Review and reprioritize risks, eliminating those with lowest probability

 Brainstorm on potentially new risks after changes to project schedule or scope

When a risk occurs, the corresponding mitigation response should be taken from the risk

management plan.

Mitigating options include:

 Accept: Acknowledge that a risk is impacting the project. Make an explicit decision to

accept the risk without any changes to the project. Project management approval is

mandatory here.

 Avoid: Adjust project scope, schedule, or constraints to minimize the effects of the risk.

 Control: Take action to minimize the impact or reduce the intensification of the risk.

 Transfer: Implement an organizational shift in accountability, responsibility, or authority

to other stakeholders that will accept the risk.

 Continue Monitoring: Often suitable for low-impact risks, monitor the project

environment for potentially increasing impact of the risk.

Communicate

Throughout the project, it’s vital to ensure effective communication among all stakeholders,
managers, developers, QA—especially marketing and customer representatives. Sharing
information and getting feedback about risks will greatly increase the probability of project
success.

S/W Requirements, S/W Metrices& Testing Strategies: S/W Requirements : Functional and non-

functional requirements, User requirements, System requirements.SRA& SRS. S/W Metrices:

Process Metrices, Project Metrices& Product Metrices. Testing Strategies : A strategic approach to

software testing, Testing fundamentals, Test Case Design. Types Of Testing: Black-Box Testing,

White-Box Testing, Validation testing, System testing, the art of Debugging. Code walkthrough and

reviews. Software Quality, Metrics for Analysis Model, Metrics for Design Model, Metrics for

source code, Metrics for testing, Metrics for maintenance.

UNIT-III

SYLLABUS

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS:IIM.Com(CA)

COURSE NAME: SOFTWARE MODELS AND ENGINEERING

COURSECODE:18CCP301

BATCH-2018-2020

Requirements engineering (RE) is the process of establishing the services that the customer

requires from a system and the constraints under which it operates and is developed. The

requirements themselves are the descriptions of the system services and constraints that are

generated during the requirements engineering process. Requirements may range from a high-

level abstract statement of a service or of a system constraint to a detailed mathematical

functional specification. As much as possible, requirements should describe what the system

should do, but not how it should do it.

A functional requirement describes what a software system should do, while non-functional

requirements place constraints on how the system will do so.

In software engineering, a functional requirement defines a system or its component. It describes

the functions a software must perform. A function is nothing but inputs, its behavior, and

outputs. It can be a calculation, data manipulation, business process, user interaction, or any

other specific functionality which defines what function a system is likely to perform.

Functional software requirements help you to capture the intended behavior of the system. This

behavior may be expressed as functions, services or tasks or which system is required to

perform.

Functional requirements

The functional requirements for a system describe what the system should do. These

requirements depend on the type of software being developed, the expected users of the software,

and the general approach taken by the organization when writing requirements. When expressed

as user requirements, functional requirements are usually described in an abstract way that can

be understood by system users. However, more specific functional system requirements describe

the system functions, its inputs and outputs, exceptions, etc., in detail. Functional system

requirements vary from general requirements covering what the system should do to very

specific requirements reflecting local ways of working or an organization’s existing systems.

For example, here are examples of functional requirements for the MHC-PMS system, used to

maintain information about patients receiving treatment for mental health problems:

1. A user shall be able to search the appointments lists for all clinics.

2. The system shall generate each day, for each clinic, a list of patients who are expected to

attend appointments that day.

3. Each staff member using the system shall be uniquely identified by his or her eight-digit

employee number.

These functional user requirements define specific facilities to be provided by the system. These

have been taken from the user requirements document and they show that functional

requirements may be written at different levels of detail (contrast requirements 1 and 3).

Imprecision in the requirements specification is the cause of many software engineering

problems. It is natural for a system developer to interpret an ambiguous requirement in a way

that simplifies its implementation. Often, however, this is not what the customer wants. New

requirements have to be established and changes made to the system. Of course, this delays

system delivery and increases costs. For example, the first example requirement for the MHC-

PMS states that a user shall be able to search the appointments lists for all clinics. The rationale

for this requirement is that patients with mental health problems are sometimes confused. They

may have an appointment at one clinic but actually go to a different clinic. If they have an

appointment, they will be recorded as having attended, irrespective of the clinic. The medical

staff member specifying this may expect ‘search’ to mean that, given a patient name, the system

looks for that name in all appointments at all clinics. However, this is not explicit in the

requirement. System developers may interpret the requirement in a different way and may

implement a search so that the user has to choose a clinic then carry out the search. This

obviously will involve more user input and so take longer. In principle, the functional

requirements specification of a system should be both complete and consistent. Completeness

means that all services required by the user should be defined. Consistency means that

requirements should not have contradictory definitions. In practice, for large, complex systems, it

is practically impossible to achieve requirements consistency and completeness. One reason for

this is that it is easy to make mistakes and omissions when writing specifications for complex

systems. Another reason is that there are many stakeholders in a large system. A stakeholder is a

person or role that is affected by the system in some way. Stakeholders have different— and

often inconsistent—needs. These inconsistencies may not be obvious when the requirements are

first specified, so inconsistent requirements are included in the specification. The problems may

only emerge after deeper analysis or after the system has been delivered to the customer.

Non Functional Requirements

Non-functional requirements, as the name suggests, are requirements that are not directly

concerned with the specific services delivered by the system to its users. They may relate to

emergent system properties such as reliability, response time, and store occupancy.

Alternatively, they may define constraints on the system implementation such as the capabilities

of I/O devices or the data representations used in interfaces with other systems. Non-functional

requirements, such as performance, security, or availability, usually specify or constrain

characteristics of the system as a whole. Non-functional requirements are often more critical than

individual functional requirements. System users can usually find ways to work around a system

function that doesn’t really meet their needs. However, failing to meet a non-functional

requirement can mean that the whole system is unusable. For example, if an aircraft system does

not meet its reliability requirements, it will not be certified as safe for operation; if an embedded

control system fails to meet its performance requirements, the control functions will not operate

correctly. Although it is often possible to identify which system components implement specific

functional requirements (e.g., there may be formatting components that implement reporting

requirements), it is often more difficult to relate components to non-functional requirements. The

implementation of these requirements may be diffused throughout the system. There are two

reasons for this:

1. Non-functional requirements may affect the overall architecture of a system rather than the

individual components. For example, to ensure that performance requirements are met, you may

have to organize the system to minimize communications between components.

2. A single non-functional requirement, such as a security requirement, may generate a number

of related functional requirements that define new system services that are required. In addition,

it may also generate requirements that restrict existing requirements.

Types of non-functional requirement

Three classes of non-functional requirements:

1. Product requirements

Requirements which specify that the delivered product must behave in a particular way

e.g. execution speed, reliability, etc.

2. Organizational requirements

Requirements which are a consequence of organizational policies and procedures e.g.

process standards used, implementation requirements, etc.

3. External requirements

Requirements which arise from factors which are external to the system and its

development process e.g. interoperability requirements, legislative requirements, etc.

Non-functional requirements may be very difficult to state precisely and imprecise requirements

may be difficult to verify. If they are stated as a goal (a general intention of the user such as ease

of use), they should be rewritten as a verifiable non-functional requirement (a statement using

some quantifiable metric that can be objectively tested). Goals are helpful to developers as they

convey the intentions of the system users.

User requirements

High-level abstract requirements written as statements, in a natural language plus diagrams, of

what services the system is expected to provide to system users and the constraints under which

it must operate. The user requirement(s) document (URD) or user requirement(s) specification

(URS) is a document usually used in software engineering that specifies what the user expects

the software to be able to do. Once the required information is completely gathered it is

documented in a URD, which is meant to spell out exactly what the software must do and

becomes part of the contractual agreement. A customer cannot demand features not in the URD,

whilst the developer cannot claim the product is ready if it does not meet an item of the URD.

The URD can be used as a guide to planning cost, timetables, milestones, testing, etc. The

explicit nature of the URD allows customers to show it to various stakeholders to make sure all

necessary features are described. Formulating a URD requires negotiation to determine what is

technically and economically feasible. Preparing a URD is one of those skills that lies between a

science and an art, requiring both software technical skills and interpersonal skills.

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Contractual_agreement
https://en.wikipedia.org/wiki/Stakeholder_(corporate)
https://en.wikipedia.org/wiki/Negotiation
https://en.wikipedia.org/wiki/Science
https://en.wikipedia.org/wiki/Art
https://en.wikipedia.org/wiki/Interpersonal_skills

The user requirements for a system should describe the functional and nonfunctional

requirements so that they are understandable by system users who don’t have detailed technical

knowledge. Ideally, they should specify only the external behavior of the system. The

requirements document should not include details of the system architecture or design.

Consequently, if you are writing user requirements, you should not use software jargon,

structured notations, or formal notations. You should write user requirements in natural

language, with simple tables, forms, and intuitive diagrams.

User requirements are almost always written in natural language supplemented by

appropriate diagrams and tables in the requirements document. System requirements may also be

written in natural language but other notations based on forms, graphical system models, or

mathematical system models can also be used. Graphical models are most useful when you need

to show how a state changes or when you need to describe a sequence of actions. UML sequence

charts and state charts show the sequence of actions that occur in response to a certain message

or event. Formal mathematical specifications are sometimes used to describe the requirements

for safety- or security-critical systems, but are rarely used in other circumstances.

System requirements

System requirements are expanded versions of the user requirements that are used by software

engineers as the starting point for the system design. They add detail and explain how the user

requirements should be provided by the system. They may be used as part of the contract for the

implementation of the system and should therefore be a complete and detailed specification of

the whole system. Ideally, the system requirements should simply describe the external behavior

of the system and its operational constraints. They should not be concerned with how the system

should be designed or implemented. However, at the level of detail required to completely

specify a complex software system, it is practically impossible to exclude all design information.

There are several reasons for this:

1. You may have to design an initial architecture of the system to help structure the requirements

specification. The system requirements are organized according to the different sub-systems that

make up the system.

2. In most cases, systems must interoperate with existing systems, which constrain the design

and impose requirements on the new system.

3. The use of a specific architecture to satisfy non-functional requirements may be necessary. An

external regulator who needs to certify that the system is safe may specify that an already

certified architectural design be used.

Software requirements specification (SRS)

It is a document that describes what the software will do and how it will be expected to perform.

An SRS describes the functionality the product needs to fulfill all stakeholders (business, users)

needs. A software requirements specification (SRS) is a document that captures complete

description about how the system is expected to perform. It is usually signed off at the end of

requirements engineering phase.

A software requirements specification (SRS) is a document that is created when a detailed

description of all aspects of the software to be built must be specified before the project is to

commence. It is important to note that a formal SRS is not always written. In fact, there are many

instances in which effort expended on an SRS might be better spent in other software

engineering activities. However, when software is to be developed by a third party, when a lack

of specification would create severe business issues, or when a system is extremely complex or

business critical, an SRS may be justified.

Quality Characteristics of a good SRS

�Correctness:

User review is used to ensure the correctness of requirements stated in the SRS. SRS is said to be

correct if it covers all the requirements that are actually expected from the system.

� Completeness:

Completeness of SRS indicates every sense of completion including the numbering of all the

pages, resolving the to be determined parts to as much extent as possible as well as covering all

the functional and non-functional requirements properly.

� Consistency:

Requirements in SRS are said to be consistent if there are no conflicts between any set of

requirements. Examples of conflict include differences in terminologies used at separate places,

logical conflicts like time period of report generation, etc.

� Unambiguousness:

An SRS is said to be unambiguous if all the requirements stated have only 1 interpretation. Some

of the ways to prevent unambiguousness include the use of modelling techniques like ER

diagrams, proper reviews and buddy checks, etc.

� Ranking for importance and stability:

There should a criterion to classify the requirements as less or more important or more

specifically as desirable or essential. An identifier mark can be used with every requirement to

indicate its rank or stability.

� Modifiability:

SRS should be made as modifiable as possible and should be capable of easily accepting changes

to the system to some extent. Modifications should be properly indexed and cross-referenced.

� Verifiability:

An SRS is verifiable if there exists a specific technique to quantifiably measure the extent to

which every requirement is met by the system. For example, a requirement stating that the

system must be user-friendly is not verifiable and listing such requirements should be avoided.

� Traceability:

One should be able to trace a requirement to a design component and then to a code segment in

the program. Similarly, one should be able to trace a requirement to the corresponding test cases.

� Design Independence:

There should be an option to choose from multiple design alternatives for the final system. More

specifically, the SRS should not include any implementation details.

� Testability:

An SRS should be written in such a way that it is easy to generate test cases and test plans from

the document.

� Understandable by the customer:

An end user maybe an expert in his/her specific domain but might not be an expert in computer

science. Hence, the use of formal notations and symbols should be avoided to as much extent as

possible. The language should be kept easy and clear.

� Right level of abstraction:

If the SRS is written for the requirements phase, the details should be explained explicitly.

Whereas, for a feasibility study, fewer details can be used. Hence, the level of abstraction varies

according to the purpose of the

Software Requirement Analysis(SRA)

Software requirement is a functional or non-functional need to be implemented in the system.

Functional means providing particular service to the user. For example, in context to banking

application the functional requirement will be when customer selects "View Balance" they must

be able to look at their latest account balance. Software requirement can also be a non-functional,

it can be a performance requirement. For example, a non-functional requirement is where every

page of the system should be visible to the users within 5 seconds.

Necessity Of Requirement Analysis

According to statistics major reason of failure of software is that it does not meet with the

requirement of the user. Requirement analysis involves the task that determines the needs of the

software, which mainly includes complaints and needs of various clients/stakeholders.

Software Requirement Analysis Process

The steps for effective capturing on present requirements of users are:

 Requirement Knowledge:

It is very necessary to know about the requirements of the users before starting any project.

Working on the present requirements of the users will be helpful in gaining popularity of your

project.

 Identification of Stakeholders:

Stakeholders includes customers, end-users, system administrators etc. identifying the correct

stakeholder is second step and is one of the most important step in all. Identifying the correct

stakeholders help to properly analyze and create a road map for gathering requirements.

 Collection of Requirements:

After identifying stakeholders one has to collect requirements for them. Based on the nature and

aim of the project there can be many kinds of stakeholders. Interacting with stakeholder groups

can be in person interviews, focus groups, market study, surveys and secondary research.

 Analysis of Collected Requirements:

Once the data is gathered structured analysis must be done of the data to make models. Data are

analysed on the basis of various parameters depending on the goals of the software. These

include animation, automated reasoning, knowledge based critiquing, consistency checking,

analogical and case based reasoning.

 System requirement Specification (SYRS):

Once the data is analyzed they are put together in the form of system requirement specification

document (SYRS) or system requirement specification (SRS). It acts as a blueprint for the

designing team to make the project. It serves as a technical collection of all the requirements of

stake holders which includes user requirements, system requirements, user interface and

operational requirements.

 Management Of Software Requirements:

The last step of this analysis process is correcting and validating all elements of requirement

specifications document. Errors can be corrected at this stage. Minor changes can also be done

according to the requirement of the software user.

Code Walkthrough is a form of peer review in which a programmer leads the review process
and the other team members ask questions and spot possible errors against development
standards and other issues.

http://www.professionalqa.com/srs-vs-frs-vs-brs

 The meeting is usually led by the author of the document under review and attended by
other members of the team.

 Review sessions may be formal or informal.
 Before the walkthrough meeting, the preparation by reviewers and then a review report

with a list of findings.
 The scribe, who is not the author, marks the minutes of meeting and note down all the

defects/issues so that it can be tracked to closure.
 The main purpose of walkthrough is to enable learning about the content of the document

under review to help team members gain an understanding of the content of the document
and also to find defects.

1

Fundamentals of Software Engineering and Process models :Definition, Software characteristics

and Application. Software myths, Software engineering- A layered technology and SDLC. Software

process models: Linear sequential model, prototyping model, RAD Model. Evolutionary process

models: Incremental process models and Spiral model. Component based ,4GT. Maturity Models:

CMM, CMMI, PCMM, PSP, TSP, Process patterns, process assessment. Unified process: SEI CMM

and ISO 9001. PSP and Six Sigma. Clean room technique.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS:IIM.Com(CA)

COURSE NAME: SOFTWARE MODELS AND ENGINEERING

COURSECODE:18CCP301

BATCH-2018-2020

UNIT-I

SYLLABUS

Software Engineering definition proposed by Fritz Bauer at the seminal conference on the subject still serves as a

basis for discussion:

Software engineering is the establishment and use of sound engineering principles in order to obtain economically

software that is reliable and works efficiently on real machines.

Software is defined as collection of computer programs, procedures, rules and data. Software Characteristics are

classified into six major components:

These components are described below:

Functionality:

It refers to the degree of performance of the software against its intended purpose. Required functions are:

Reliability:

A set of attribute that bear on capability of software to maintain its level of performance under the given condition

for a stated period of time. Required functions are:

2

rs to the degree of performance of the software against its intended purpose. Required functions are:

A set of attribute that bear on capability of software to maintain its level of performance under the given condition

f time. Required functions are:

rs to the degree of performance of the software against its intended purpose. Required functions are:

A set of attribute that bear on capability of software to maintain its level of performance under the given condition

 Efficiency:

It refers to the ability of the software to use system resources in the most effective and efficient

The software should make effective use of storage space and executive command as per desired timing

requirement. Required functions are:

 Usability:

It refers to the extent to which the

learn how to use the software.

Required functions are:

 Maintainability:

It refers to the ease with which the modifications can be made in a software system to extend its

functionality, improve its performance, or correct errors. Required functions are:

 Portability:

A set of attribute that bear on the ability of software to be transferred from one environment to another,

without or minimum changes.

Required functions are:

3

It refers to the ability of the software to use system resources in the most effective and efficient

software should make effective use of storage space and executive command as per desired timing

equirement. Required functions are:

It refers to the extent to which the software can be used with ease, the amount of effort or

with which the modifications can be made in a software system to extend its

functionality, improve its performance, or correct errors. Required functions are:

A set of attribute that bear on the ability of software to be transferred from one environment to another,

It refers to the ability of the software to use system resources in the most effective and efficient manner.

software should make effective use of storage space and executive command as per desired timing

the amount of effort or time required to

with which the modifications can be made in a software system to extend its

A set of attribute that bear on the ability of software to be transferred from one environment to another,

Software myths—It is erroneous belief

the earliest days of computing. Myths have a number of attributes that make them insidious. For instance, they

appear to be reasonablestatements of fact (sometimes containing elements of truth), they have an intuitive feel, and

they are often promulgated by experienced practitioners who “know the score.” Today, most knowledgeable

software engineering professionals recognize myths for what they are

serious problems for managers and practitioners alike.

and remnants of software myths remain.

Management myths. Managers with software responsibility, like managers inmost disciplines, are often under

pressure to maintain budgets, keep schedules fromsl

grasps at a straw, a softwaremanager often grasps at belief in a software myth, if that belief will lessen thepressure

(even temporarily).

Myth: We already have a book that’s full of standards and pro

people with everything theyneed to know?Reality: Are softwarepractitioners aware of its existence? Does it reflect

modernsoftware engineering practice? Is it complete? Is itstreamlined to improve time

maintaining afocus on quality? In many cases, the answer to all of these questionsis “no.”

Myth: If we get behind schedule, we can add more programmers and catch up(sometimes called the “Mongolian

horde” concept).

Reality: Software development is not a mechanistic process like manufacturing.

people to a late softwareproject makes it later.” At first, this statement may seemcounterintuitive. However, as new

people are added, people whowere working must spe

amount of time spent on productive developmenteffort. People can be added but only in a planned an

coordinatedmanner.

Myth: If I decide to outsource the software project to a third party, I can justrel

Reality: If an organization does not understand how to manage and controlsoftware projects internally, it will

invariably struggle when it outsourcessoftware projects.

Customer myths. A customer who requests computer softwar

4

It is erroneous belief about software and the process that is used to build it

the earliest days of computing. Myths have a number of attributes that make them insidious. For instance, they

appear to be reasonablestatements of fact (sometimes containing elements of truth), they have an intuitive feel, and

ften promulgated by experienced practitioners who “know the score.” Today, most knowledgeable

software engineering professionals recognize myths for what they are—misleading attitudes that have caused

serious problems for managers and practitioners alike. However, old attitudes and habits are difficult to modify,

Management myths. Managers with software responsibility, like managers inmost disciplines, are often under

pressure to maintain budgets, keep schedules fromslipping, and improve quality. Like a drowning person who

grasps at a straw, a softwaremanager often grasps at belief in a software myth, if that belief will lessen thepressure

Myth: We already have a book that’s full of standards and procedures forbuilding software. Won’t that provide my

people with everything theyneed to know?Reality: Are softwarepractitioners aware of its existence? Does it reflect

modernsoftware engineering practice? Is it complete? Is itstreamlined to improve time

maintaining afocus on quality? In many cases, the answer to all of these questionsis “no.”

Myth: If we get behind schedule, we can add more programmers and catch up(sometimes called the “Mongolian

elopment is not a mechanistic process like manufacturing.In the words of Brooks

people to a late softwareproject makes it later.” At first, this statement may seemcounterintuitive. However, as new

people are added, people whowere working must spend time educating the newcomers, therebyreducing the

amount of time spent on productive developmenteffort. People can be added but only in a planned an

Myth: If I decide to outsource the software project to a third party, I can justrelax and let that firm build it.

Reality: If an organization does not understand how to manage and controlsoftware projects internally, it will

invariably struggle when it outsourcessoftware projects.

Customer myths. A customer who requests computer software may be a personat the next desk, a technical group

about software and the process that is used to build it—can be traced to

the earliest days of computing. Myths have a number of attributes that make them insidious. For instance, they

appear to be reasonablestatements of fact (sometimes containing elements of truth), they have an intuitive feel, and

ften promulgated by experienced practitioners who “know the score.” Today, most knowledgeable

misleading attitudes that have caused

However, old attitudes and habits are difficult to modify,

Management myths. Managers with software responsibility, like managers inmost disciplines, are often under

ipping, and improve quality. Like a drowning person who

grasps at a straw, a softwaremanager often grasps at belief in a software myth, if that belief will lessen thepressure

cedures forbuilding software. Won’t that provide my

people with everything theyneed to know?Reality: Are softwarepractitioners aware of its existence? Does it reflect

modernsoftware engineering practice? Is it complete? Is itstreamlined to improve time-to-delivery while still

maintaining afocus on quality? In many cases, the answer to all of these questionsis “no.”

Myth: If we get behind schedule, we can add more programmers and catch up(sometimes called the “Mongolian

In the words of Brooks : “adding

people to a late softwareproject makes it later.” At first, this statement may seemcounterintuitive. However, as new

nd time educating the newcomers, therebyreducing the

amount of time spent on productive developmenteffort. People can be added but only in a planned and

ax and let that firm build it.

Reality: If an organization does not understand how to manage and controlsoftware projects internally, it will

e may be a personat the next desk, a technical group

5

down the hall, the marketing/sales department,or an outside company that has requested software under contract.

In many cases,the customer believes myths about software because software managers and practitionersdo little to

correct misinformation. Myths lead to false expectations (by thecustomer) and, ultimately, dissatisfaction with the

developer.

Myth: A general statement of objectives is sufficient to begin writingprograms—we can fill in the details later.

Reality: Although a comprehensive and stable statement of requirements isnot always possible, an ambiguous

“statement of objectives” is arecipe for disaster. Unambiguous requirements (usually derivediteratively) are

developed only through effective and continuouscommunication between customer and developer.

Myth: Software requirements continually change, but change can be easilyaccommodated because software is

flexible.

Reality: It is true that software requirements change, but the impact ofchange varies with the time at which it is

introduced. When requirementschanges are requested early (before design or code has beenstarted), the cost

impact is relatively small. However, as timepasses, the cost impact grows rapidly—resources have been

committed,a design framework has been established, and change cancause upheaval that requires additional

resources and major designmodification.

Practitioner’s myths. Myths that are still believed by software practitioners havebeen fostered by over 50 years of

programming culture. During the early days, programmingwas viewed as an art form. Old ways and attitudes die

hard.

Myth: Once we write the program and get it to work, our job is done.Reality: Someone once said that “the sooner

you begin ‘writing code,’ thelonger it’ll take you to get done.” Industry data indicate that between60 and 80

percent of all effort expended on software will be expendedafter it is delivered to the customer for the first time.

Myth: Until I get the program “running” I have no way of assessing its quality.

Reality: One of the most effective software quality assurance mechanismscan be applied from the inception of a

project—the technical review.

Myth: The only deliverable work product for a successful project is the workingprogram.

6

Reality: A working program is only one part of a software configuration thatincludes many elements. A variety of

work products (e.g., models, documents, plans) provide a foundation for successful engineeringand, more

important, guidance for software support.

Myth: Software engineering will make us create voluminous and unnecessarydocumentation and will invariably

slow us down.

Reality: Software engineering is not about creating documents. It is aboutcreating a quality product. Better quality

leads to reduced rework.And reduced rework results in faster delivery times.

Layered Technology

Software engineering is a layered technology. Referring to Figure 1.3, any engineering approach (including

software engineering) must rest on an organizational commitment to quality. Total quality management, Six

Sigma, and similar philosophies foster a continuous process improvement culture, and it is this culture that

ultimately leads to the development of increasingly more effective approaches to software engineering. The

bedrock that supports software engineering is a quality focus. The foundation for software engineering is the

process layer. The software engineeringprocess is the glue that holds the technology layers together and enables

rational and timely development of computer software.

Software engineering is Divided into 4 layers:-

1. A quality Process :-

 Any engineering approach must rest on quality.

 The "Bed Rock" that supports software Engineering is Quality Focus.

2. Process :-

 Foundation for SE is the Process Layer

 SE process is the GLUE that holds all the technology layers together and enables the timely development

of computer software.

7

 It forms the base for management control of software project.

3. Methods :-

 SE methods provide the "Technical Questions" for building Software.

 Methods contain a broad array of tasks that include communication requirement analysis, design modeling,

program construction testing and support.

4. Tools :-

 SE tools provide automated or semi-automated support for the "Process" and the "Methods".

 Tools are integrated so that information created by one tool can be used by another.

A maturity level is a well-defined evolutionary plateau toward achieving a mature software process. Each maturity

level provides a layer in the foundation for continuous process improvement.

Software Life Cycle

A Life Cycle shows how a living thing borns, grows, lives, and dies. The stages from birth to death.Software life

cycle model is the stages of development that a software development goes through. The following figure shows

the stages of software development.

Software life cycle models describe phases of the software cycle and the order in which those phases are executed.

There are tons of models, and many companies adopt their own, but all have very similar patterns. The general,

basic model is shown below:

Each phase produces deliverables required by the next phase in the life cycle. Requirements are translated into

design. Code is produced during implementation that is driven by the design. Testing verifies the deliverable of the

implementation phase against requirements.

A Software Process can be defined as set of activities, methods, practices and transformations which people

employ to develop and maintain software and the associated products. The quality of a software product is

essentially determined by the quality of the processes employed to develop and maintain it.

The Linear Sequential Model

This is a software process model that involves a systematic progression through analysis, design, coding, testing

and maintenance phases. It is also referred to as the "waterfall model".

8

Also known as the classic life cycle or waterfall model, it suggests a systematic, sequential approach to software

development. Problems with this approach are:

• Real projects rarely follow the sequential flow and changes can cause confusion.

• This model has difficulty accommodating requirements change

• The customer will not see a working version until the project is nearly complete

• Developers are often blocked unnecessarily, due to previous tasks not being done

The Prototyping Model

Advantages:

- Easy and quick to identify customer requirements

- Customers can validate the prototype at the earlier stage and provide their inputs and

feedback

- Good to deal with the following cases:

1. Customer cannot provide the detailed requirements

2. Very complicated system-user interactions

3. Use new technologies, hardware and algorithms

4. Develop new domain application systems

Problems:

-The prototype can serve as ―the first system.

-Developers usually attempt to develop the product based on the prototype.

-Developers often make implementation compromises in order to get a prototyping that is

working quickly.

-Customers may be unaware that the prototype is not a product, which is held with.

The RAD Model

Rapid Application Development (RAD) is a linear sequential software development process model that

emphasizes an extremely short development cycle.

- A ―high-speed‖ adaptation of linear sequential model

- Component-based construction

- Effective when requirements are well understood and project scope is constrained.

Advantages:

- Short development time

- Cost reduction due to software reuse and component-based construction

Problems:

- For large, but scalable projects, RAD requires sufficient resources.

9

- RAD requires developers and customers who are committed to the schedule.

- Constructed software is project-specific, and may not be well modularized.

- Its quality depends on the quality of existing components.

- Not appropriate projects with high technical risk and new technologies.

Incremental Process Models

There are many situations in which initial software requirements are reasonably well defined, but the overall scope

of the development effort precludes a purely linear process. In addition, there may be a compelling need to provide

a limited set of software functionality to users quickly and then refine and expand on that functionalityin later

software releases. In such cases, you can choose a process model that is designed to produce the software in

increments. The incremental model combines elements of linear and parallel process flows

Incremental model applies linear sequences in a staggered fashion as calendar time progresses. Each linear

sequence produces deliverable “increments” of the software in a manner that is similar to the increments produced

by an evolutionary process flow.For example, word-processing software developed using the incremental

paradigm might deliver basic file management, editing, and document production functionsin the first increment;

more sophisticated editing and document production capabilities in the second increment; spelling and grammar

checking in the third increment; and advanced page layout capability in the fourth increment. It should be noted

that the process flow for any increment can incorporate the prototyping paradigm.

When an incremental model is used, the first increment is often a core product. That is, basic requirements are

addressed but many supplementary features (some known, others unknown) remain undelivered. The core product

is used by the customer (or undergoes detailed evaluation).

The Spiral Model.

Originally proposed by Barry Boehm, the spiral model is an evolutionary software process model that couples the

iterative nature of prototyping with the controlled and systematic aspects of the waterfall model. It providesthe

potential for rapid development of increasingly more complete versions of the software. Boehm describes the

model in the following manner: The spiral development model is a risk-driven process model generator that is

used to guide multi-stakeholder concurrent engineering of software intensive systems. It has two main

distinguishing features. One is a cyclic approach for incrementally growing a system’s degree of definition and

implementation while decreasing its degree of risk. The other is a set of anchor point milestones for ensuring

stakeholder commitment to feasible and mutually satisfactory system solutions. Using the spiral model, software is

developed in a series of evolutionary releases. During early iterations, the release might be a model or prototype.

During later iterations, increasingly more complete versions of the engineered system are produced.

10

A Typical Spiral Model

Component-based development model

Commercial off-the-shelf (COTS) software components, developed by vendors who offer them as products,

provide targeted functionality with well-defined interfaces that enable the component to be integrated into the

software that is to be built. The component-based development model incorporates many of the characteristics of

the spiral model. It is evolutionary in nature, demanding an iterative approach to the creation of software.

However, the component-based development model constructs applications from prepackaged software

components. Modeling and construction activities begin with the identification of candidate components. These

components can be designed as either conventional software modules or object-oriented classes or packages of

classes. Regardless of the technology that is used to create the components, the component-based development

model incorporates the following steps (implemented using an evolutionary approach):

1. Available component-based products are researched and evaluated for theapplication domain in question.

2. Component integration issues are considered.

3. A software architecture is designed to accommodate the components.

4. Components are integrated into the architecture.

5. Comprehensive testing is conducted to ensure proper functionality.

The component-based development model leads to software reuse, and reusability provides software engineers

with a number of measurable benefits. Your software engineering team can achieve a reduction in development

cycle time as well as a reduction in project cost if component reuse becomes part of your culture.

4GT Process Model

4GT begins with from “Requirement Gathering” this process go through the customer, the customer go illustrate

the requirements. The customer could actually describe the requirements and these would be directly translated

11

into an operational prototype. If the product is a smaller product this process may be possible to move directly

from requirements gathering step to implementation using a non-procedural fourth generation language (4GL), for

lager products this procedure may little hard, therefor it’s necessary to use the design strategy in 4GT.When it

comes to large projects, the design phase it is crucial to avoid poor quality, poor maintainability. To transform a

4GL implementation into a product, the developer must conduct through testing, develop meaningful

documentation, and perform all other solution integration activities. The 4GT developed software must be built in

a manner that enables maintenance to be performed expeditiously. There are some merits to summarize the current

features of 4GT approach. In the 4GL implementation the code can be generated based on some specification. The

4GT developed software must be built in a manner that enables maintenance to be performed expeditiously. There

are some merits to summarize the current features of 4GT approach. The use of 4GT is a viable approach for many

different application areas coupled with computer- aided software engineering tools and code generators, 4GT

offers a credible solution to many software problem.

Benefits of the 4GT

Flexible: The Fourth Generation applications are Modifiable by Design, which means they are designed from the

beginning to accommodate change. They are easily modifiable, either by you, the customer, or by your Fourth

Generation Authorized reseller to your specifications.

Scalable: The Fourth Generation applications are Modifiable by Design, which means they are designed from the

beginning to accommodate change.They are easily modifiable, either by you, the customer, or by your Fourth

Generation Authorized reseller to your specifications.

Total Data Access: Your data represents your company’s greatest single asset. The worth of that asset, however, is

directly related to your ability to record it and access it.

 The Fourth Generation Technique (4GT) is based on NPL that is the Non-Procedural Language techniques.

Depending upon the specifications made the 4GT move towards uses various tools for the automatic generation of

source codes. It is the very important tool which make use of the non-procedural language for Report generation,

Database query, Manipulation of data, Interaction of screen, Definition, Generation of code, Spread Sheet

capabilities, and High level graphical capacity etc. 4GT begins with a requirement-gathering stage. The customer

would illustrate requirements and these would be directly converted into an unworkable operational prototype. For

small applications, it may be possible to move directly from requirements gathering step to implementation using a

non-procedural fourth generation language (4GL), however for large application it is necessary to develop a design

strategy for the system even if a 4GL is to be used. Implementation using a 4GT enables the software developer to

represent desired result in a manner that leads to automatic generation of code to create those results, obviously,

12

data structure with relevant information must exist and be readily accessible by the 4GL. To transform a 4GL

implementation into a product, the developer must conduct through testing, develop meaningful documentation,

and perform all other solution integration activities. The 4GT developed software must be built in a manner that

enables maintenance to be performed expeditiously. There are some merits to summarize the current features of

4GT approach. The use of 4GT is a viable approach for many different application areas coupled with computer-

aided software engineering tools and code generators, 4GT offers a credible solution to many software problem.

Data collected from companies that use 4Gt indicates that the time required to produce software is greatly reduced

for small and intermediate application is also reduced. However the use of 4GT for large software development

efforts demands as much or more analysis design and testing to achieve substantial timesaving that result from the

elimination of coding.

Compatibility Maturity Model -CMM

Maturity level 1 _Initial

organizations often produce products and services that work; however, they frequently exceed the budget and

schedule of their projects.Maturity level 1 organizations are characterized by a tendency to over commit, abandon

processes in the time of crisis, and not be able to repeat their past successes.

Maturity Level 2 - Managed

At maturity level 2, an organization has achieved all the specific and generic goals of the maturity level 2 process

areas. In other words, the projects of the organization have ensured that requirements are managed and that

processes are planned, performed, measured, and controlled.The process discipline reflected by maturity level 2

helps to ensure that existing practices are retained during times of stress. When these practices are in place,

projects are performed and managed according to their documented plans.At maturity level 2, requirements,

processes, work products, and services are managed. The status of the work products and the delivery of services

are visible to management at defined points.Commitments are established among relevant stakeholders and are

revised as needed. Work products are reviewed with stakeholders and are controlled.The work products and

services satisfy their specified requirements, standards, and objectives.

Maturity Level 3 - Defined

At maturity level 3, an organization has achieved all the specific and generic goals of the process areas assigned to

maturity levels 2 and 3.At maturity level 3, processes are well characterized and understood, and are described in

standards, procedures, tools, and methods.A critical distinction between maturity level 2 and maturity level 3 is the

scope of standards, process descriptions, and procedures. At maturity level 2, the standards, process descriptions,

and procedures may be quite different in each specific instance of the process (for example, on a particular

project). At maturity level 3, the standards, process descriptions, and procedures for a project are tailored from the

13

organization's set of standard processes to suit a particular project or organizational unit. The organization's set of

standard processes includes the processes addressed at maturity level 2 and maturity level 3. As a result, the

processes that are performed across the organization are consistent except for the differences allowed by the

tailoring guidelines.Another critical distinction is that at maturity level 3, processes are typically described in more

detail and more rigorously than at maturity level 2. At maturity level 3, processes are managed more proactively

using an understanding of the interrelationships of the process activities and detailed measures of the process, its

work products, and its services.

Maturity Level 4 - Quantitatively managed

At maturity level 4, an organization has achieved all the specific goals of the process areas assigned to maturity

levels 2, 3, and 4 and the generic goals assigned to maturity levels 2 and 3.At maturity level 4 Sub processes are

selected that significantly contribute to overall process performance. These selected sub processes are controlled

using statistical and other quantitative techniques.Quantitative objectives for quality and process performance are

established and used as criteria in managing processes. Quantitative objectives are based on the needs of the

customer, end users, organization, and process implementers. Quality and process performance are understood in

statistical terms and are managed throughout the life of the processes.

Maturity Level 5 - Optimizing

At maturity level 5, an organization has achieved all the specific goals of the process areas assigned to maturity

levels 2, 3, 4, and 5 and the generic goals assigned to maturity levels 2 and 3.Processes are continually improved

based on a quantitative understanding of the common causes of variation inherent in processes.Maturity level 5

focuses on continually improving process performance through both incremental and innovative technological

improvements.Quantitative process-improvement objectives for the organization are established, continually

revised to reflect changing business objectives, and used as criteria in managing process improvement.

Capability Maturity Model Integration - CMMI

Capability Maturity Model Integration (CMMI) is a process level improvement training and appraisal program.

Administered by the CMMI Institute, a subsidiary of ISACA, it was developed at Carnegie Mellon University

(CMU). It is required by many United States Department of Defense (DoD) and U.S. Government contracts,

especially in software development. CMU claims CMMI can be used to guide process improvement across a

project, division, or an entire organization. CMMI defines the following maturity levels for processes: Initial,

Repeatable, Defined, Quantitatively Managed, and Optimizing.

https://en.wikipedia.org/wiki/Subsidiary
https://en.wikipedia.org/wiki/ISACA
https://en.wikipedia.org/wiki/Carnegie_Mellon_University
https://en.wikipedia.org/wiki/United_States_Department_of_Defense
https://en.wikipedia.org/wiki/Software_development

14

CMMI Model

1) Initial: The software process is characterized as ad hoc, and occasionally even chaotic. Few processes are

defined, and success depends on individual effort and heroics.

2) Repeatable: Basic project management processes are established to track cost, schedule, and functionality. The

necessary process discipline is in place to repeat earlier successes on projects with similar applications.

3) Defined: The software process for both management and engineering activities is documented, standardized,

and integrated into a standard software process for the organization. All projects use an approved, tailored version

of the organization’s standard software process for developing and maintaining software.

4) Managed: Detailed measures of the software process and product quality are collected. Both the software

process and products are quantitatively understood and controlled.

5) Optimizing: Continuous process improvement is enabled by quantitative feedback from the process and from

piloting innovative ideas and technologies.

People Capability Maturity Model (PCMM)

People Capability Maturity Model (PCMM) is a maturity framework that focuses on continuously improving the

management and development of the human assets of a software or information systems organization. PCMM can

be perceived as the application of the principles of Capability Maturity Model to human assets of a software

organization. It describes an evolutionary improvement path from ad hoc, inconsistently performed practices, to a

mature, disciplined, and continuously improving development of the knowledge, skills, and motivation of the

workforce. Although the focus in People CMM is on software or information system organizations, the processes

15

and practices are applicable for any organization that aims to improve the capability of its workforce. PCMM will

be guiding and effective particularly for organizations whose core processes are knowledge intensive.The primary

objective of the People Capability Maturity Model is to improve the capability of the entire workforce. This can be

defined as the level of knowledge, skills, and process abilities available for performing an organization’s current

and future business activities.

10 Principles of People Capability Maturity Model (PCMM)

The People Capability Maturity Model describes an evolutionary improvement path from ad hoc, inconsistently

performed workforce practices, to a mature infrastructure of practices for continuously elevating workforce

capability. The philosophy implicit the PCMM can be summarized in ten principles.In mature organizations,

workforce capability is directly related to business performance.

Workforce capability is a competitive issue and a source of strategic advantage.

Workforce capability must be defined in relation to the organization’s strategic business objectives.

Knowledge-intense work shifts the focus from job elements to workforce competencies.

Capability can be measured and improved at multiple levels, including individuals, workgroups, workforce

competencies, and the organization.

An organization should invest in improving the capability of those workforce competencies that are critical to its

core competency as a business.

Operational management is responsible for the capability of the workforce.

The improvement of workforce capability can be pursued as a process composed from proven practices and

procedures.

The organization is responsible for providing improvement opportunities, while individuals are responsible for

taking advantage of them.

Since technologies and organizational forms evolve rapidly, organizations must continually evolve their workforce

practices and develop new workforce competencies.

The People Capability Maturity Model (People CMM) is a roadmap for implementing workforce practices that

continuously improve the capability of an organization’s workforce. Since an organization cannot implement all of

the best workforce practices in an afternoon, the People CMM introduces them in stages. Each progressive level of

the People CMM produces a unique transformation in the organization’s culture by equipping it with more

powerful practices for attracting, developing, organizing, motivating, and retaining its workforce. Thus, the People

CMM establishes an integrated system of workforce practices that matures through increasing alignment with the

organization’s business objectives, performance, and changing needs.

16

Although the People CMM has been designed primarily for application in knowledge intense organizations, with

appropriate tailoring it can be applied in almost any organizational setting. The People CMM’s primary objective

is to improve the capability of the workforce. Workforce capability can be defined as the level of knowledge,

skills, and process abilities available for performing an organization’s business activities.

Personal Software Process (PSP)

Every developer uses some process to build computer software. The process may be

haphazard or ad hoc; may change on a daily basis; may not be efficient, effective, or even successful; but a

“process” does exist. Watts Humphrey [Hum97] suggests that in order to change an ineffective personal process,

an individual must move through four phases, each requiring training and careful instrumentation. The Personal

Software Process (PSP) emphasizes personal measurement of both the work product that is produced and the

resultant quality of the work product. In addition PSP makes the practitioner responsible for project planning (e.g.,

estimating and scheduling) and empowers the practitioner to control the quality of all software work products that

are developed. The PSP model defines five framework activities:

Planning.

This activity isolates requirements and develops both size and resource estimates. In addition, a defect estimate

(the number of defects projected for the work) is made. All metrics are recorded on worksheets or templates.

Finally, development tasks are identified and a project schedule is created.

High-level design. External specifications for each component to be constructed are developed and a component

design is created. Prototypes are built when uncertainty exists. All issues are recorded and tracked.

High-level design review. Formal verification methods are applied to uncover errors in the design. Metrics are

maintained for all important tasks and work results.

Development. The component-level design is refined and reviewed. Code is generated, reviewed, compiled, and

tested. Metrics are maintained for all important tasks and work results.

Postmortem. Using the measures and metrics collected (this is a substantial amount of data that should be

analyzed statistically), the effectiveness of the process is determined. Measures and metrics should provide

guidance formodifying the process to improve its effectiveness.

Team Software Process (TSP)

Because many industry-grade software projects are addressed by a team of practitioners, Watts Humphrey

extended the lessons learned from the introduction of PSP and proposed a Team Software Process (TSP). The goal

of TSP is to build a “selfdirected” project team that organizes itself to produce high-quality software.

Humphrey defines the following objectives for TSP:

• Build self-directed teams that plan and track their work, establish goals, andown their processes and plans. These

17

can be pure software teams or integratedproduct teams (IPTs) of 3 to about 20 engineers.

• Show managers how to coach and motivate their teams and how to helpthem sustain peak performance.

• Accelerate software process improvement by making Level 5behavior normal and expected.

• Provide improvement guidance to high-maturity organizations.

• Facilitate university teaching of industrial-grade team skills.

A self-directed team has a consistent understanding of its overall goals and objectives; defines roles and

responsibilities for each team member; tracks quantitativeproject data (about productivity and quality); identifies a

team process that is appropriate for the project and a strategy for implementing the process; defines local standards

that are applicable to the team’s software engineering work; continually assesses risk and reacts to it; and tracks,

manages, and reports project status.

TSP defines the following framework activities: project launch, high-level design, implementation, integration and

test, and postmortem. Like their counterparts in PSP (note that terminology is somewhat different), these activities

enable the team to plan, design, and construct software in a disciplined manner while at the same time

quantitatively measuring the process and the product. The postmortem sets the stage for process improvements.

PROCESS PATTERNS

Every software team encounters problems as it moves through the software process. It would be useful if proven

solutions to these problems were readily available to the team so that the problems could be addressed and

resolved quickly. A process pattern describes a process-related problem that is encountered during software

engineering work, identifies the environment in which the problem has been encountered, and suggests one or

more proven solutions to the problem. Stated in more general terms, a process pattern provides you with a

template—a consistent method for describing problem solutions within the context of the software process. By

combining patterns, a software team can solve problems and construct a process that best meets the needs of a

project.

Patterns can be defined at any level of abstraction. In some cases, a pattern might be used to describe a problem

(and solution) associated with a complete processmodel (e.g., prototyping). In other situations, patterns can be

used to describe a problem (and solution) associated with a framework activity (e.g., planning) or an action within

a framework activity (e.g., project estimating).

Ambler has proposed a template for describing a process pattern:

Pattern Name. The pattern is given a meaningful name describing it within the context of the software process

(e.g., TechnicalReviews).

Forces. The environment in which the pattern is encountered and the issues that make the problem visible and may

affect its solution.

Type. Ambler suggests three types of patterns:

18

1. Stage pattern—defines a problem associated with a framework activity for the process. Since a framework

activity encompasses multiple actions andwork tasks, a stage pattern incorporates multiple task patterns (see the

following) that are relevant to the stage (framework activity). An example of astage pattern might be

EstablishingCommunication. This pattern would incorporate the task pattern RequirementsGathering and others.

2. Task pattern—defines a problem associated with a software engineering action or work task and relevant to

successful software engineeringpractice (e.g., RequirementsGathering is a task pattern).

3. Phase pattern—define the sequence of framework activities that occurs within the process, even when the

overall flow of activities is iterativein nature. An example of a phase pattern might be SpiralModel or

Prototyping.

PROCESS ASSESSMENT

The existence of a software process is no guarantee that software will be delivered on time, that it will meet the

customer’s needs, or that it will exhibit the technical characteristics that will lead to long-term quality

characteristics. Process patterns must be coupled with solid software engineering practice

(Part 2 of this book). In addition, the process itself can be assessed to ensure that it meets a set of basic process

criteria that have been shown to be essential for a successful software engineering.. A number of different

approaches to software process assessment and improvement have been proposed over the past few decades:

Standard CMMI Assessment Method for Process Improvement

(SCAMPI)—provides a five-step process assessment model that incorporates five phases: initiating, diagnosing,

establishing, acting, and learning. The

SCAMPI method uses the SEI CMMI as the basis for assessment.

CMM-Based Appraisal for Internal Process Improvement (CBA IPI) — provides a diagnostic technique for

assessing the relative maturity of asoftware organization; uses the SEI CMM as the basis for the assessment.

SPICE (ISO/IEC15504)—a standard that defines a set of requirements for software process assessment. The

intent of the standard is to assist organizations

in developing an objective evaluation of the efficacy of any defined software process .

ISO 9001:2000 for Software—a generic standard that applies to any organization that wants to improve the

overall quality of the products, systems,

or services that it provides. Therefore, the standard is directly applicable to software organizations and companies

Six Sigma for Software Engineering

Six Sigma is the most widely used strategy for statistical quality assurance in industry today. Originally

popularized by Motorola in the 1980s, the Six Sigma strategy “is a rigorous and disciplined methodology that uses

data and statistical analysis to measure and improve a company’s operational performance by identifying and

19

eliminating defects’ in manufacturing and service-related processes”. The term Six Sigma is derived from six

standard deviations—3.4 instances (defects) per million occurrences—implying an extremely high quality

standard. The Six Sigma methodology defines three core steps:

• Define customer requirements and deliverables and project goals via welldefined methods of customer

communication.

• Measure the existing process and its output to determine current quality performance (collect defect metrics).

• Analyze defect metrics and determine the vital few causes.

 If an existing software process is in place, but improvement is required, Six Sigmasuggests two additional steps:

• Improve the process by eliminating the root causes of defects.

• Control the process to ensure that future work does not reintroduce the causes of defects.

Clean room technique (clean room design)

The clean room technique is a process in which a new product is developed by reverse engineering an existing

product, and then the new product is designed in such a way that patent or copyright infringement is avoided.

The clean room technique is also known as clean room design. (Sometimes the words "clean room" are merged

into the single word, "cleanroom.") Sometimes this process is called the Chinese wall method, because the intent

is to place a demonstrable intellectual barrier between the reverse engineering process and the development of

the new product.

The use of the clean room technique can be compared, in some respects, with the fair use of copyrighted

publications in order to compile a new document. For example, a new book about Linux can be authored on the

basis of information obtained by researching existing books, articles, white papers, and Web sites. This does not

necessarily constitute copyright infringement, even though other books on Linux already exist, and even if the

new book contains essentially the same information as the existing publications. However, this is the case only as

long as passages from the existing works are not copied verbatim or nearly verbatim, and as long as the new

work does not have substantially the same structure as any of the existing works.

Use of the clean room technique puts engineers and enterprises in a legal gray area. If the owner of the original

copyright or patent can demonstrate that the development of a new product was done by means of reverse

engineering and is not significantly different from the existing product, a lawsuit may result. Any attempt to

reverse engineer an existing product, and then create a new product based on the results of the reverse

engineering process, should be undertaken only with the advice of a reputable attorney who is experienced in

copyright infringement and reverse engineering issues.

https://searchsoftwarequality.techtarget.com/definition/reverse-engineering
https://searchsecurity.techtarget.com/definition/copyright
https://whatis.techtarget.com/definition/Chinese-wall
https://searchdatacenter.techtarget.com/definition/Linux-operating-system
https://whatis.techtarget.com/definition/Web-site
https://searchwindowsserver.techtarget.com/definition/enterprise

20

Managing Software Projects & Design Engineering: The management spectrum, software quality,

measurement and metrics. Software project estimation, decomposition techniques. Empirical

estimation models (COCOMO), the Make & Buy Decision. System models: Context Models,

Behavioral models, Data models, Object models. Design process, Design quality and design model.

Fundamental issues in software design: Goodness of design, cohesions, coupling. Function-oriented

design and object – oriented concepts. Architectural styles and patterns, Architectural Design:

Unified Modeling Language (UML), User interface design. Risk Analysis and management.

UNIT II

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS:IIM.Com(CA)

COURSE NAME: SOFTWARE MODELS AND ENGINEERING

COURSECODE:18CCP301

BATCH-2018-2020

MANAGEMENT SPECTRUM

Effective software project management focuses on the four P’s: people, product, process, and project.

The order is not arbitrary. The manager who forgets that software engineering work is an intensely human

endeavor will never have success in project management. A manager who fails to encourage comprehensive

stakeholder communication early in the evolution of a product risks building an elegant solution for the wrong

problem. The manager who pays little attention to the process runs the risk of inserting competent technical

methods and tools into a vacuum. The manager who embarks without a solid project plan jeopardizes the success

of the project.

ThePeople

The cultivation of motivated, highly skilled software people has been discussed since the 1960s. In fact, the

“people factor” is so important that the Software Engineering Institute has developed a People Capability Maturity

Model (People-CMM), in recognition of the fact that “every organization needs to continually improve its ability

to attract, develop, motivate, organize, and retain the workforce needed to accomplish its strategic business

objectives”. The people capability maturity model defines the following key practice areas for software people:

21

staffing, communication and coordination, work environment, performance management, training, compensation,

competency analysis and development, career development, workgroup development, team/culture development,

and others. Organizations that achieve high levels of People-CMM maturity have a higher likelihood of

implementing effective software project management practices. The People-CMM is a companion to the Software

Capability Maturity Model– Integration that guides organizations in the creation of a mature software process.

The Product

Before a project can be planned, product objectives and scope should be established, alternative solutions should

be considered, and technical and management constraints should be identified. Without this information, it is

impossible to define reasonable (and accurate) estimates of the cost, an effective assessment of risk, a realistic

breakdown of project tasks, or a manageable project schedule that provides a meaningful indication of progress.

As a software developer, you and other stakeholders must meet to define product objectives and scope. In many

cases, this activity begins as part of the system engineering or business process engineering and continues as the

first step in software requirements engineering. Objectives identify the overall goals for the product (from the

stakeholders’ points of view) without considering how these goals will be achieved. Scope identifies the primary

data, functions, and behaviors that characterize the product, and more important, attempts to bound these

characteristics in a quantitative manner. Once the product objectives and scope are understood, alternative

solutions are considered. Although very little detail is discussed, the alternatives enable managers and practitioners

to select a “best” approach, given the constraints imposed by delivery deadlines, budgetary restrictions, personnel

availability, technical interfaces, and myriad other factors.

The Process

A software process provides the framework from which a comprehensive plan for software development can be

established. A small number of framework activities are applicable to all software projects, regardless of their size

or complexity. A number of different task sets—tasks, milestones, work products, and quality assurance points—

enable the framework activities to be adapted to the characteristics of the software project and the requirements of

the project team. Finally, umbrella activities—such as software quality assurance, software configuration

management, and measurement—overlay the process model. Umbrella activities are independent of any one

framework activity and occur throughout the process.

The Project

We conduct planned and controlled software projects for one primary reason—it is the only known way to manage

complexity. And yet, software teams still struggle. In a study of 250 large software projects between 1998 and

2004, Capers Jones found that “about 25 were deemed successful in that they achieved their schedule, cost, and

quality objectives. About 50 had delays or overruns below 35 percent, while about 175 experienced major delays

22

and overruns, or were terminated without completion.” Although the success rate for present-day software projects

may have improved somewhat, our project failure rate remains much higher than it should be. To avoid project

failure, a software project manager and the software engineers who build the product must avoid a set of common

warning signs, understand the critical success factors that lead to good project management, and develop a

commonsense approach for planning, monitoring, and controlling the project.

Software quality, measurement and metrics

Software quality assurance is composed of a variety of tasks associated with two different

constituencies—the software engineers who do technical work and an SQA group that has responsibility for

quality assurance planning, oversight, record keeping, analysis, and reporting.

Software engineers address quality (and perform quality control activities) by applying solid technical methods

and measures, conducting technical reviews, and performing well-planned software testing.

Measurements in the physical world can be categorized in two ways: direct measures (e.g., the length of a

bolt) and indirect measures (e.g., the “quality” of bolts produced, measured by counting rejects). Software metrics

can be categorized similarly.

Direct measures of the software process include cost and effort applied. Direct measures of the product include

lines of code (LOC) produced, execution speed, memory size, and defects reported over some set period of time.

Indirect measures of the product include functionality, quality, complexity, efficiency, reliability, maintainability,

and many other “–abilities”.

The cost and effort required to build software, the number of lines of code produced, and other direct measures are

relatively easy to collect, as long as specific conventions for measurement are established in advance.

However, the quality and functionality of software or its efficiency or maintainability are more difficult to assess

and can be measured only indirectly. The software metrics domain can be partitioned into process, project, and

product metrics. Project metrics are then consolidated to create process metrics that are public to the software

organization as a whole. But how does an organization combine metrics that come from different individuals or

projects? To illustrate, consider a simple example. Individuals on two different project teams record and categorize

all errors that they find during the software process. Individual measures are then combined to develop team

measures. Team A found 342 errors during the software process prior to release. Team B found 184 errors. All

other things being equal, which team is more effective in uncovering errors throughout the process? Because you

do not know the size or complexity of the projects, you cannot answer this question. However, if the measures are

normalized, it is possible to create software metrics that enable comparison to broader organizational averages.

Size-Oriented Metrics

23

Size-oriented software metrics are derived by normalizing quality and/or productivity measures by

considering the size of the software that has been produced. If a software organization maintains simple records, a

table of size-oriented measures can be created.

Function-Oriented Metrics

Function-oriented software metrics use a measure of the functionality delivered by the application as a

normalization value. The most widely used function-oriented metric is the function point (FP). Computation of the

function point is based on characteristics of the software’s information domain and complexity.

The function point, like the LOC measure, is controversial. Proponents claim that FP is programming language

independent, making it ideal for applications using conventional

and nonprocedural languages, and that it is based on data that are more likely to be known early in the evolution of

a project, making FP more attractive as an estimation approach. Opponents claim that the method requires some

“sleight of hand” in that computation is based on subjective rather than objective data, that counts of the

information domain (and other dimensions) can be difficult to collect after the fact, and that FP has no direct

physical meaning—it’s just a number.

Object-Oriented Metrics

Conventional software project metrics (LOC or FP) can be used to estimate object orientedsoftware projects.

However, these metrics do not provide enough granularity for the schedule and effort adjustments that are required

as you iterate through an evolutionary or incremental process.

Lorenz and Kidd suggest the followingset of metrics for Object Oriented projects:

Number of scenario scripts:

A scenario script is a detailed sequence of steps that describe theinteraction between the user and the application.

Each script is organized into triplets of the form

{initiator, action, participant}

where initiator is the object that requests some service (that initiates a message), action is the result of the request,

and participant is the server object that satisfies the request. The number of scenario scripts is directly correlated to

the size of the application and to the number of test cases that must be developed to exercise the system once it is

constructed.

Number of key classes:Key classes are the “highly independent components” that are defined early in object-

oriented analysis . Because key classes are central to the problem domain, the number of such classes is an

24

indication of the amount of effort required to develop the software and also an indicationof the potential amount of

reuse to be applied during system development.

Number of support classes: Support classes are required to implement the system but are not immediately related

to the problem domain. Examples might be user interface (GUI) classes, database access and manipulation classes,

and computation classes. In addition, support classes can be developed for each of the key classes. Support classes

are defined iteratively throughout an evolutionary process. The number of support classes is an indication of the

amount of effort required to develop the software and also an indication of the potential amount of reuse to be

applied during system development.

Average number of support classes per key class: In general, key classes areknown early in the project. Support

classes are defined throughout. If the average number of support classes per key class were known for a given

problem domain, estimating (based on total number of classes) would be greatly simplified. Lorenz and Kidd

suggest that applications with a GUI have between two and three times the number of support classes as key

classes. Non-GUI applications have between one and two times the number of support classes as key classes.

Number of subsystems: A subsystem is an aggregation of classes that support a function that is visible to the end

user of a system. Once subsystems are identified, it is easier to lay out a reasonable schedule in which work on

subsystems is partitioned among project staff.

Use-Case–Oriented Metrics: Use cases are used widely as a method for describing customer-level or business

domain requirements that imply software features and functions. It would seem reasonable to use the use case as a

normalization measure similar to LOC or FP.

SOFTWARE PROJECT ESTIMATION

Software cost and effort estimation will never be an exact science. Too many variables—human, technical,

environmental, political—can affect the ultimate cost of software and effort applied to develop it. However,

software project estimation can be transformed from a black art to a series of systematic steps that provide

estimates with acceptable risk. To achieve reliable cost and effort estimates, a number of options arise:

1. Delay estimation until late in the project (obviously, we can achieve 100 percentaccurate estimates after the

project is complete!).

2. Base estimates on similar projects that have already been completed.

3. Use relatively simple decomposition techniques to generate project cost andeffort estimates.

4. Use one or more empirical models for software cost and effort estimation.

Unfortunately, the first option, however attractive, is not practical. Cost estimatesmust be provided up-front.

However, you should recognize that the longer you wait,the more you know, and the more you know, the less

likely you are to make seriouserrors in your estimates.The second option can work reasonably well, if the current

25

project is quite similarto past efforts and other project influences (e.g., the customer, business conditions,the

software engineering environment, deadlines) are roughly equivalent. Unfortunately,past experience has not

always been a good indicator of future results.The remaining options are viable approaches to software project

estimation.Ideally, the techniques noted for each option should be applied in tandem; each usedas a cross-check

for the other.

Decomposition techniques

Software project estimation is a form of problem solving, and in most cases, the problem to be solved (i.e.,

developing a cost and effort estimate for a software project) is too complex to be considered in one piece. For this

reason, you should decompose the problem, recharacterizing it as a set of smaller (and hopefully, more

manageable) problems.But before an estimate can be made, you must understand the scope of the software to be

built and generate an estimate of its “size.”

Software Sizing

The accuracy of a software project estimate is predicated on a number of things:

(1) the degree to which you have properly estimated the size of the product to be built;

(2) the ability to translate the size estimate into human effort, calendar time, and dollars

(a function of the availability of reliable software metrics from past projects);

(3) the degree to which the project plan reflects the abilities of the software team; and

(4) the stability of product requirements and the environment that supports the software

engineering effort.

Putnam and Myers suggest four different approaches to the sizing problem:

• “Fuzzy logic” sizing. This approach uses the approximate reasoning techniques that are the cornerstone of fuzzy

logic. To apply this approach, the planner must identify the type of application, establish its magnitude on a

qualitative scale, and then refine the magnitude within the original range.

 Function point sizing. The planner develops estimates of the information domain characteristics

Standard component sizing. Software is composed of a number of different “standard components” that are

generic to a particular application area. For example, the standard components for an information system are

subsystems, modules, screens, reports, interactive programs, batch programs, files, LOC, and object-level

instructions. The project planner estimates the number of occurrences of each standard component and then uses

historical project data to estimate the delivered size per standard component.

Change sizing. This approach is used when a project encompasses the use of existing software that must be

modified in some way as part of a project. The planner estimates the number and type (e.g., reuse, adding code,

changing code, deleting code) of modifications that must be accomplished.

Problem-Based Estimation

26

LOC and FP data are used in two ways during software project estimation:

(1) as estimation variables to “size” each element of the software and

(2) as baseline metrics collected from past projects and used in conjunction with estimation variables to develop

cost and effort projections.

LOC and FP estimation are distinct estimation techniques. Yet both have a number of characteristics in common.

You begin with a bounded statement of software scope and from this statement attempt to decompose the

statement of scope into problem functions that can each be estimated individually. LOC or FP (the estimation

variable) is then estimated for each function. Alternatively, you may choose another component for sizing, such as

classes or objects, changes, or business processes affected.

The LOC and FP estimation techniques differ in the level of detail required for decomposition

and the target of the partitioning. When LOC is used as the estimation variable, decomposition is absolutely

essential and is often taken to considerable levels of detail. The greater the degree of partitioning, the more likely

reasonably accurate estimates of LOC can be developed. For FP estimates, decomposition works differently.

Rather than focusing on function, each of the information domain characteristics—inputs, outputs, data files,

inquiries, and external interfaces are estimated. The resultant estimates can then be used to derive an FP value that

can be tied to past data and used to generate an estimate.

Regardless of the estimation variable that is used, you should begin by estimating a range of values for each

function or information domain value. Using historical data or (when all else fails) intuition, estimate an

optimistic, most likely, and pessimistic size value for each function or count for each information domain value.

An implicit indication of the degree of uncertainty is provided when a range of values is specified. A three-point or

expected value can then be computed. The expected value for the estimation variable (size) S can be computed as

a weighted average of the optimistic (sopt), most likely (sm), and pessimistic (spess) estimates.

For example,

COCOMO - COnstructiveCOstMOdel. The original COCOMO model became one of the most widely used and

discussed software cost estimation models in the industry. It has evolved intoa more comprehensive estimation

model, called COCOMOII . Like its predecessor, COCOMO II is actually a hierarchy of estimation models that

address the following areas:

• Application composition model. Used during the early stages of software engineering,

when prototyping of user interfaces, consideration of software and system interaction, assessment of performance,

and evaluation of technology maturity are paramount.

27

• Early design stage model. Used once requirements have been stabilized and basic software architecture has been

established.

• Post-architecture-stage model. Used during the construction of the software. Like all estimation models for

software, the COCOMO II models require sizing information. Three different sizing options are available as part

of the model hierarchy: object points, function points, and lines of source code.

Context model

The fundamental system modelor context diagram depicts the security function as a single transformation,

representingthe external producers and consumers of data that flow into and out of thefunction. Figure below

depicts a level 0 context model

Context-level DFD for the SafeHome security function

The behavioral model

The behavioral model indicates how software will respond to external events or stimuli. To create the model, you

should perform the following steps:

1. Evaluate all use cases to fully understand the sequence of interaction within

the system.

2. Identify events that drive the interaction sequence and understand how theseevents relate to specific objects.

3. Create a sequence for each use case.

4. Build a state diagram for the system.

28

5. Review the behavioral model to verify accuracy and consistency.

Identifying Events with the Use Case

In general, an event occurs whenever the system and an actor exchange information.

State Representations

In the context of behavioral modeling, two different characterizations of states must be considered: (1) the state of

each class as the system performs its function and

(2) the state of the system as observed from the outside as the system performs its function.

The state of a class takes on both passive and active characteristics.

 A passive state is simply the current status of all of an object’s attributes.

State diagrams for analysis classes.

 One component of a behavioral model is a UML state diagram that represents active states for each class and the

events (triggers) that cause changes between these active states. Figure below illustrates a state diagram for the

Control Panel object in the SafeHome security function.

Figure : State diagram for the ControlPanel class

Sequence diagrams. The second type of behavioral representation, called a sequence diagram in UML, indicates

how events cause transitions from object to object. Once events have been identified by examining a use case, the

modeler creates a sequence diagram—a representation of how events cause flow from one object to another as a

function of time. In essence, the sequence diagram is a shorthand version of the use case. It represents key classes

and the events that cause

29

behavior to flow from class to class.

DATA MODEL

If software requirements include the need to create, extend, or interface with a database or if complex data

structures must be constructed and manipulated, the software team may choose to create a data model as part of

overall requirements modeling. A software engineer or analyst defines all data objects that are processed within

the system, the relationships between the data objects, and other information that is pertinent to the relationships.

The entity-relationship diagram (ERD) addresses these issues and represents all data objects that are entered,

stored, transformed, and produced within an application.

Data Objects

A data object is a representation of composite information that must be understood by software. By composite

information, I mean something that has a number of different properties or attributes. Therefore, width (a single

value) would not be a valid data object, but dimensions (incorporating height, width, and depth) could be defined

as an object.

Data Attributes

Data attributes define the properties of a data object and take on one of three different characteristics. They can be

used to (1) name an instance of the data object, (2) describe the instance, or (3) make reference to another instance

in another table. In addition, one or more of the attributes must be defined as an identifier—that is, the identifier

attribute becomes a “key” when we want to find an instance of the data object. In some cases, values for the

identifier(s) are unique, although this is not a requirement. Referring to the data object car, a reasonable identifier

might be the ID number.

Relationships

Data objects are connected to one another in different ways. Consider the two data objects, person and car. These

objects can be represented using the simple notation illustrated in Figure below. A connection is established

between person and car because the two objects are related. But what are the relationships? To determine the

30

answer, you should understand the role of people (owners, in this case) and cars within the context of the software

to be built. You can establish a set of object/relationship pairs that define the relevant relationships.

For example,

• A person owns a car.

• A person is insured to drive a car.

Design Process

Software design is an iterative process through which requirements are translatedinto a blueprint” for constructing

the software. Initially, the blueprint depicts a holisticview of software. That is, the design is represented at a high

level of abstraction—a level that can be directly traced to the specific system objective and more detaileddata,

functional, and behavioral requirements. As design iterations occur, subsequentrefinement leads to design

representations at much lower levels of abstraction.These can still be traced to requirements, but the connection is

more subtle.

Design Quality

Throughout the design process, the quality of the evolving design is assessed with a series of technical reviews. In

order to evaluate the quality of a design representation, you and other members of the software team must establish

technical criteria for good design.

Quality Guidelines

1. A design should exhibit an architecture that has been created using recognizable architectural

styles or patterns is composed of componentsthat exhibit good design characteristics and can be

implemented in an evolutionary fashion,2 thereby facilitating implementation and testing.

2. A design should be modular; that is, the software should be logically partitionedinto elements or

subsystems.

3. A design should contain distinct representations of data, architecture, interfaces, and components.

31

4. A design should lead to data structures that are appropriate for the classes tobe implemented and are

drawn from recognizable data patterns.

5. A design should lead to components that exhibit independent functionalcharacteristics.

6. A design should lead to interfaces that reduce the complexity of connectionsbetween components

and with the external environment.

7. A design should be derived using a repeatable method that is driven by informationobtained during

software requirements analysis.

8. A design should be represented using a notation that effectively communicatesits meaning.

Cohesion and coupling

Cohesionis an indication of the relative functional strength of a module. Coupling is

an indication of the relative interdependence among modules. Cohesion is a natural extension of the information-

hiding concept. A cohesive module performs a single task, requiring little interaction with other components in

other parts of a program. Stated simply, a cohesive module should (ideally) do just one thing. Although you should

always strive for high cohesion (i.e., single-mindedness), it is often necessary and advisable to have a software

component perform multiple functions. However, “schizophrenic” components (modules that perform many

unrelated functions) are to be avoided if a good design is to be achieved.

Coupling is an indication of interconnection among modules in a software structure.Coupling depends on

the interface complexity between modules, the point atwhich entry or reference is made to a module, and what

data pass across the interface.In software design, you should strive for the lowest possible coupling.

Simpleconnectivity among modules results in software that is easier to understand and lessprone to a “ripple

effect”, caused when errors occur at one location and propagatethroughout a system.

Object Oriented Concepts

Requirements modeling (also called analysis modeling) focuses primarily on classes that are extracted directly

from the statement of the problem. These entity classes typically represent things that are to be stored in a database

and persist throughout the duration of the application (unless they are specifically deleted). Design refines and

extends the set of entity classes. Boundary and controller classes are developed and/or refined during design.

Boundary classes create the interface (e.g., interactive screen and printed reports) that the user sees and

interactswith, as the software is used. Boundary classes are designed with the responsibility of managing the way

entity objects are represented to users.

Controller classes are designed to manage:

(1) the creation or update of entityobjects

(2) the instantiation of boundary objects as they obtain information from entity objects,

(3) complex communication between sets of objects, and

32

(4) validation of data communicated between objects or between the user and the application.

The concepts discussed in the paragraphs that follow can be useful in analysis and design work.

Inheritance.

 Inheritance is one of the key differentiators between conventional and object-oriented systems. A subclass Y

inherits all of the attributes and operations associated with its superclass X. This means that all data structures and

algorithms originally designed and implemented for X are immediately available for Y—no further work need be

done. Reuse has been accomplished directly. Any change to the attributes or operations contained within a

superclass is immediately inherited by all subclasses. Therefore, the class hierarchy becomes a mechanism through

which changes (at high levels) can be immediately propagated through a system. It is important to note that at each

level of the class hierarchy new attributes and operations may be added to those that have been inherited from

higher levels in the hierarchy. In fact, whenever a new class is to be created, you have a number of options:

• The class can be designed and built from scratch. That is, inheritance is not used.

• The class hierarchy can be searched to determine if a class higher in the hierarchy contains most of the required

attributes and operations. The new class inherits from the higher class and additions may then be added, as

required.

• The class hierarchy can be restructured so that the required attributes and operations can be inherited by the new

class.

• Characteristics of an existing class can be overridden, and different versions of attributes or operations are

implemented for the new class.

Like all fundamental design concepts, inheritance can provide significant benefit for the design, but if it is used

inappropriately, it can complicate a design unnecessarily and lead to error-prone software that is difficult to

maintain.

Messages.

Classes must interact with one another to achieve design goals. A message stimulates some behavior to occur in

the receiving object. The behavior is accomplished when an operation is executed.

Polymorphism. Polymorphism is a characteristic that greatly reduces the effort required to extend the design of an

existing object-oriented system. To understand polymorphism, consider a conventional application that must draw

four different types of graphs: line graphs, pie charts, histograms, and Kiviat diagrams. Ideally, once data are

collected for a particular type of graph, the graph should draw itself.To accomplish this in a conventional

application (and maintain module cohesion), it would be necessary to develop drawing modules for each type of

graph.

UML

33

The Unified Modeling Language (UML) is “a standard language for writingsoftware blueprints. UML may be

used to visualize, specify, construct, anddocument the artifacts of a software-intensive system”. In otherwords, just

as building architects create blueprints to be used by a constructioncompany, software architects create UML

diagrams to help software developersbuild the software.

To model classes, including their attributes, operations, and their relationships and associations with other classes,

UML provides a class diagram. A class diagram provides a static or structural view of a system. It does not show

the dynamic nature of the communications between the objects of the classes in the diagram. The main elements of

a class diagram are boxes, which are the icons used to represent classes and interfaces. Each box is divided into

horizontal parts. The top part contains the name of the class. The middle section lists the attributes of the class. An

attribute refers to something that an object of that class knows or can provide all the time. Attributes are usually

implemented as fields of the class, but they need not be. They could be values that the class can compute from its

instance variables or values that the class can get from other objects of which it is composed.

For example, an object might always know the current time and be able to return it to you whenever you ask.

Therefore, it would be appropriate to list the current time as an attribute of that class of objects. However, the

object would most likely not have that time stored in one of its instance variables, because it would need to

continually update that field. Instead, the object would likely compute the current time (e.g., through consultation

with objects of other classes) at the moment when the time is requested. The third section of the class diagram

contains the operations or behaviors of the class. An operation refers to what objects of the class can do. It is

usually implemented as a method of the class.

Figure A1 presents a simple example of a Thoroughbred class that models thoroughbred horses. It has three

attributes displayed—mother, father, and birthyear. The diagram also shows three operations: getCurrentAge(),

getFather(), and getMother(). There may be other suppressed attributes and operations not shown in the diagram.

Figure A1 : A class diagram for a Thoroughbred class

Each attribute can have a name, a type, and a level of visibility. The type and visibility are optional. The type

follows the name and is separated from the name by a colon. The visibility is indicated by a preceding –, #, ~, or +,

indicating, respectively, private, protected, package, or public visibility. In Figure A1, all attributes have private

visibility, as indicated by the leading minus sign (–). You can also specify that an attribute is a static or class

34

attribute by underlining it. Each operation can also be displayed with a level of visibility, parameters with names

and types, and a return type. An abstract class or abstract method is indicated by the use of italics for the name in

the class diagram. See the Horse class in Figure A2 for an example. An interface is indicated by adding the phrase

“«interface»” (called a stereotype) above the name. See the OwnedObject interface in Figure A2. An interface can

also be represented graphically by a hollow circle. It is worth mentioning that the icon representing a class can

have other optional parts. For example, a fourth section at the bottom of the class box can be used to list the

responsibilities of the class. This fourth section is not shown in any of the figures in this appendix. Class diagrams

can also show relationships between classes. A class that is a subclass of another class is connected to it by an

arrow with a solid line for its shaft and with a triangular hollow arrowhead. The arrow points from the subclass to

the superclass. In UML, such a relationship is called a generalization. For example, in Figure A2, the

Thoroughbred and QuarterHorse classes are shown to be subclasses of the Horse abstract class. An arrow with a

dashed line for the arrow shaft indicates implementation of an interface. In UML, such a relationship is called a

realization. For example, in Figure A2, the Horse class implements or realizes the OwnedObject interface.

Figure A2: A class diagram regarding horses

An association between two classes means that there is a structural relationship between them. Associations are

represented by solid lines. An association has many optional parts. It can be labeled, as can each of its ends, to

indicate the role of each class in the association. For example, in Figure A2, there is an association between

OwnedObjectand Person in which the Person plays the role of owner. Arrows on either or both ends of an

35

association line indicate navigability. Also, each end of the association line can have a multiplicity value

displayed. Navigability and multiplicity are explained in more detail later in this section. An association might also

connect a class with itself, using a loop. Such an association indicates the connection of an object of the class with

other objects of the same class. An association with an arrow at one end indicates one-way navigability. The arrow

means that from one class you can easily access the second associated class to which the association points, but

from the second class, you cannot necessarily easily access the first class. Another way to think about this is that

the firs class is aware of the second class, but the second class object is not necessarily directly aware of the first

class. An association with no arrows usually indicates a two-way association, which is what was intended in

Figure A2, but it could also just mean that the navigability is not important and so was left off.

It should be noted that an attribute of a class is very much the same thing as an association of the class with the

class type of the attribute. That is, to indicate that a class has a property called “name” of type String, one could

display that property as an attribute, as in the Horse class in Figure A2. Alternatively, one could create a one-way

association from the Horse class to the String class with the role of the String class being “name.” The attribute

approach is better for primitive data types, whereas the association approach is often better if the property’s class

plays a major role in the design, in which case it is valuable to have a class box for that type. A dependency

relationship represents another connection between classes and is indicated by a dashed line (with optional arrows

at the ends and with optional labels). One class depends on another if changes to the second class might require

changes to the first class. An association from one class to another automatically indicates a dependency. No

dashed line is needed between classes if there is already an association between them.

However, for a transient relationship (i.e., a class that does not maintain any long-term connection to another class

but does use that class occasionally) we should draw a dashed line from the first class to the second. For example,

in Figure A2, the Thoroughbred class uses the Date class whenever its getCurrentAge() method is invoked, and

so the dependency is labeled “uses.” The multiplicity of one end of an association means the number of objects of

that class associated with the other class. A multiplicity is specified by a nonnegative integer or by a range of

integers. A multiplicity specified by “0..1” means that there are 0 or 1 objects on that end of the association. For

example, each person in the world has either a Social Security number or no such number (especially if they are

not U.S. citizens), and so a multiplicity of 0..1 could be used in an association between aPerson class and a

SocialSecurityNumberclass in a class diagram. A multiplicityspecified by “1..*” means one or more, and a

multiplicity specified by “0..*” or just “*“means zero or more. An * was used as the multiplicity on the

OwnedObjectend ofthe association with class Person in Figure A2 because a Person can own zero ormore

objects..

If one end of an association has multiplicity greater than 1, then the objects of the class referred to at that end of

the association are probably stored in a collection, such as a set or ordered list. One could also include that

36

collection class itself in the UML diagram, but such a class is usually left out and is implicitly assumed to be there

due to the multiplicity of the association.

Anaggregationis a special kind of association indicated by a hollow diamond on one end of the icon. It indicates a

“whole/part” relationship, in that the class to which the arrow points is considered a “part” of the class at the

diamond end of the association.

A compositionis an aggregation indicating strong ownership of the parts. In a composition, the parts live and die

with the owner because they have no role in the software system independent of the owner.

UML use-case diagram help you determine the functionality and features of the software from the user’s

perspective. To give you a feeling for how use cases and use-case diagrams work, we will create some for a

software application for managing digital music files, similar to Apple’s iTunes software.

Some of the things the software might do include:

• Download an MP3 music file and store it in the application’s library.

• Capture streaming music and store it in the application’s library.

• Manage the application’s library (e.g., delete songs or organize them in playlists).

• Burn a list of the songs in the library onto a CD.

• Load a list of the songs in the library onto an iPod or MP3 player.

• Convert a song from MP3 format to AAC format and vice versa.

A use-case diagram for the digital music application is shown in Figure A3.

37

Figure A3: Use case diagram for music system

RISK ANALYSIS

Software development is activity that uses a variety of technological advancements and requires high levels of

knowledge. Because of these and other factors, every software development project contains elements of

uncertainty. This is known as project risk. The success of a software development project depends quite heavily on

the amount of risk that corresponds to each project activity. As a project manager, it’s not enough to merely be

aware of the risks. To achieve a successful outcome, project leadership must identify, assess, prioritize, and

manage all of the major risks. Risk is the possibility of suffering loss, and total risk exposure to a specific project

will account for both the probability and the size of the potential loss.

Risk management

Risk management means risk containment and mitigation. First, you’ve got to identify and plan. Then be ready to

act when a risk arises, drawing upon the experience and knowledge of the entire team to minimize the impact to

the project.

Risk management includes the following tasks:

 Identify risks and their triggers

 Classify and prioritize all risks

 Craft a plan that links each risk to a mitigation

 Monitor for risk triggers during the project

 Implement the mitigating action if any risk materializes

 Communicate risk status throughout project

Identify and Classify Risks

Most software engineering projects are inherently risky because of the variety potential problems that might arise.

Experience from other software engineering projects can help managers classify risk. The importance here is not

the elegance or range of classification, but rather to precisely identify and describe all of the real threats to project

success. A simple but effective classification scheme is to arrange risks according to the areas of impact.

Five Types of Risk In Software Project Management

For most software development projects, we can define five main risk impact areas:

 New, unproven technologies

 User and functional requirements

 Application and system architecture

 Performance

 Organizational

38

New, unproven technologies. The majority of software projects entail the use of new technologies. Ever-changing

tools, techniques, protocols, standards, and development systems increase the probability that technology risks will

arise in virtually any substantial software engineering effort. Training and knowledge are of critical importance,

and the improper use of new technology most often leads directly to project failure.

User and functional requirements. Software requirements capture all user needs with respect to the software

system features, functions, and quality of service. Too often, the process of requirements definition is lengthy,

tedious, and complex. Moreover, requirements usually change with discovery, prototyping, and integration

activities. Change in elemental requirements will likely propagate throughout the entire project, and modifications

to user requirements might not translate to functional requirements. These disruptions often lead to one or more

critical failures of a poorly-planned software development project.

Application and system architecture. Taking the wrong direction with a platform, component, or architecture

can have disastrous consequences. As with the technological risks, it is vital that the team includes experts who

understand the architecture and have the capability to make sound design choices.

Performance. It’s important to ensure that any risk management plan encompasses user and partner expectations

on performance. Consideration must be given to benchmarks and threshold testing throughout the project to ensure

that the work products are moving in the right direction.

Organizational. Organizational problems may have adverse effects on project outcomes. Project management

must plan for efficient execution of the project, and find a balance between the needs of the development team and

the expectations of the customers. Of course, adequate staffing includes choosing team members with skill sets

that are a good match with the project.

Risk Management Plan

After cataloging all of the risks according to type, the software development project manager should craft a risk

management plan. As part of a larger, comprehensive project plan, the risk management plan outlines the response

that will be taken for each risk—if it materializes.

Monitor and Mitigate

To be effective, software risk monitoring has to be integral with most project activities. Essentially, this means

frequent checking during project meetings and critical events.

Monitoring includes:

 Publish project status reports and include risk management issues

 Revise risk plans according to any major changes in project schedule

 Review and reprioritize risks, eliminating those with lowest probability

 Brainstorm on potentially new risks after changes to project schedule or scope

39

When a risk occurs, the corresponding mitigation response should be taken from the risk management plan.

Mitigating options include:

 Accept: Acknowledge that a risk is impacting the project. Make an explicit decision to accept the risk

without any changes to the project. Project management approval is mandatory here.

 Avoid: Adjust project scope, schedule, or constraints to minimize the effects of the risk.

 Control: Take action to minimize the impact or reduce the intensification of the risk.

 Transfer: Implement an organizational shift in accountability, responsibility, or authority to other

stakeholders that will accept the risk.

 Continue Monitoring: Often suitable for low-impact risks, monitor the project environment for potentially

increasing impact of the risk.

Communicate

Throughout the project, it’s vital to ensure effective communication among all stakeholders, managers, developers,

QA—especially marketing and customer representatives. Sharing information and getting feedback about risks

will greatly increase the probability of project success.

40

S/W Requirements, S/W Metrices& Testing Strategies: S/W Requirements : Functional and non-

functional requirements, User requirements, System requirements.SRA& SRS. S/W Metrices:

Process Metrices, Project Metrices& Product Metrices. Testing Strategies : A strategic approach to

software testing, Testing fundamentals, Test Case Design. Types Of Testing: Black-Box Testing,

White-Box Testing, Validation testing, System testing, the art of Debugging. Code walkthrough and

reviews. Software Quality, Metrics for Analysis Model, Metrics for Design Model, Metrics for

source code, Metrics for testing, Metrics for maintenance.

UNIT-III

SYLLABUS

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS:IIM.Com(CA)

COURSE NAME: SOFTWARE MODELS AND ENGINEERING

COURSECODE:18CCP301

BATCH-2018-2020

Requirements engineering (RE) is the process of establishing the services that the customer requires from a

system and the constraints under which it operates and is developed. The requirements themselves are the

descriptions of the system services and constraints that are generated during the requirements engineering process.

Requirements may range from a high-level abstract statement of a service or of a system constraint to a detailed

mathematical functional specification. As much as possible, requirements should describe what the system should

do, but not how it should do it.

A functional requirement describes what a software system should do, while non-functional requirements

place constraints on how the system will do so.

In software engineering, a functional requirement defines a system or its component. It describes the functions a

software must perform. A function is nothing but inputs, its behavior, and outputs. It can be a calculation, data

manipulation, business process, user interaction, or any other specific functionality which defines what function a

system is likely to perform.

Functional software requirements help you to capture the intended behavior of the system. This behavior may be

expressed as functions, services or tasks or which system is required to perform.

Functional requirements

41

The functional requirements for a system describe what the system should do. These requirements depend on the

type of software being developed, the expected users of the software, and the general approach taken by the

organization when writing requirements. When expressed as user requirements, functional requirements are

usually described in an abstract way that can be understood by system users. However, more specific functional

system requirements describe the system functions, its inputs and outputs, exceptions, etc., in detail. Functional

system requirements vary from general requirements covering what the system should do to very specific

requirements reflecting local ways of working or an organization’s existing systems.

For example, here are examples of functional requirements for the MHC-PMS system, used to maintain

information about patients receiving treatment for mental health problems:

1. A user shall be able to search the appointments lists for all clinics.

2. The system shall generate each day, for each clinic, a list of patients who are expected to attend appointments

that day.

3. Each staff member using the system shall be uniquely identified by his or her eight-digit employee number.

These functional user requirements define specific facilities to be provided by the system. These have been taken

from the user requirements document and they show that functional requirements may be written at different levels

of detail (contrast requirements 1 and 3). Imprecision in the requirements specification is the cause of many

software engineering problems. It is natural for a system developer to interpret an ambiguous requirement in a way

that simplifies its implementation. Often, however, this is not what the customer wants. New requirements have to

be established and changes made to the system. Of course, this delays system delivery and increases costs. For

example, the first example requirement for the MHC-PMS states that a user shall be able to search the

appointments lists for all clinics. The rationale for this requirement is that patients with mental health problems are

sometimes confused. They may have an appointment at one clinic but actually go to a different clinic. If they have

an appointment, they will be recorded as having attended, irrespective of the clinic. The medical staff member

specifying this may expect ‘search’ to mean that, given a patient name, the system looks for that name in all

appointments at all clinics. However, this is not explicit in the requirement. System developers may interpret the

requirement in a different way and may implement a search so that the user has to choose a clinic then carry out

the search. This obviously will involve more user input and so take longer. In principle, the functional

requirements specification of a system should be both complete and consistent. Completeness means that all

services required by the user should be defined. Consistency means that requirements should not have

contradictory definitions. In practice, for large, complex systems, it is practically impossible to achieve

42

requirements consistency and completeness. One reason for this is that it is easy to make mistakes and omissions

when writing specifications for complex systems. Another reason is that there are many stakeholders in a large

system. A stakeholder is a person or role that is affected by the system in some way. Stakeholders have different—

and often inconsistent—needs. These inconsistencies may not be obvious when the requirements are first

specified, so inconsistent requirements are included in the specification. The problems may only emerge after

deeper analysis or after the system has been delivered to the customer.

Non Functional Requirements

Non-functional requirements, as the name suggests, are requirements that are not directly concerned with the

specific services delivered by the system to its users. They may relate to emergent system properties such as

reliability, response time, and store occupancy. Alternatively, they may define constraints on the system

implementation such as the capabilities of I/O devices or the data representations used in interfaces with other

systems. Non-functional requirements, such as performance, security, or availability, usually specify or constrain

characteristics of the system as a whole. Non-functional requirements are often more critical than individual

functional requirements. System users can usually find ways to work around a system function that doesn’t really

meet their needs. However, failing to meet a non-functional requirement can mean that the whole system is

unusable. For example, if an aircraft system does not meet its reliability requirements, it will not be certified as

safe for operation; if an embedded control system fails to meet its performance requirements, the control functions

will not operate correctly. Although it is often possible to identify which system components implement specific

functional requirements (e.g., there may be formatting components that implement reporting requirements), it is

often more difficult to relate components to non-functional requirements. The implementation of these

requirements may be diffused throughout the system. There are two reasons for this:

1. Non-functional requirements may affect the overall architecture of a system rather than the individual

components. For example, to ensure that performance requirements are met, you may have to organize the system

to minimize communications between components.

2. A single non-functional requirement, such as a security requirement, may generate a number of related

functional requirements that define new system services that are required. In addition, it may also generate

requirements that restrict existing requirements.

43

Types of non-functional requirement

Three classes of non-functional requirements:

1. Product requirements

Requirements which specify that the delivered product must behave in a particular way e.g. execution

speed, reliability, etc.

2. Organizational requirements

Requirements which are a consequence of organizational policies and procedures e.g. process standards

used, implementation requirements, etc.

3. External requirements

Requirements which arise from factors which are external to the system and its development process e.g.

interoperability requirements, legislative requirements, etc.

Non-functional requirements may be very difficult to state precisely and imprecise requirements may be difficult

to verify. If they are stated as a goal (a general intention of the user such as ease of use), they should be rewritten

as a verifiable non-functional requirement (a statement using some quantifiable metric that can be objectively

tested). Goals are helpful to developers as they convey the intentions of the system users.

User requirements

High-level abstract requirements written as statements, in a natural language plus diagrams, of what services the

system is expected to provide to system users and the constraints under which it must operate. The user

44

requirement(s) document (URD) or user requirement(s) specification (URS) is a document usually used in

software engineering that specifies what the user expects the software to be able to do. Once the required

information is completely gathered it is documented in a URD, which is meant to spell out exactly what the

software must do and becomes part of the contractual agreement. A customer cannot demand features not in the

URD, whilst the developer cannot claim the product is ready if it does not meet an item of the URD. The URD can

be used as a guide to planning cost, timetables, milestones, testing, etc. The explicit nature of the URD allows

customers to show it to various stakeholders to make sure all necessary features are described. Formulating a URD

requires negotiation to determine what is technically and economically feasible. Preparing a URD is one of those

skills that lies between a science and an art, requiring both software technical skills and interpersonal skills.

The user requirements for a system should describe the functional and nonfunctional requirements so that

they are understandable by system users who don’t have detailed technical knowledge. Ideally, they should specify

only the external behavior of the system. The requirements document should not include details of the system

architecture or design. Consequently, if you are writing user requirements, you should not use software jargon,

structured notations, or formal notations. You should write user requirements in natural language, with simple

tables, forms, and intuitive diagrams.

User requirements are almost always written in natural language supplemented by appropriate diagrams

and tables in the requirements document. System requirements may also be written in natural language but other

notations based on forms, graphical system models, or mathematical system models can also be used. Graphical

models are most useful when you need to show how a state changes or when you need to describe a sequence of

actions. UML sequence charts and state charts show the sequence of actions that occur in response to a certain

message or event. Formal mathematical specifications are sometimes used to describe the requirements for safety-

or security-critical systems, but are rarely used in other circumstances.

System requirements

System requirements are expanded versions of the user requirements that are used by software engineers as the

starting point for the system design. They add detail and explain how the user requirements should be provided by

the system. They may be used as part of the contract for the implementation of the system and should therefore be

a complete and detailed specification of the whole system. Ideally, the system requirements should simply describe

the external behavior of the system and its operational constraints. They should not be concerned with how the

system should be designed or implemented. However, at the level of detail required to completely specify a

complex software system, it is practically impossible to exclude all design information. There are several reasons

for this:

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Contractual_agreement
https://en.wikipedia.org/wiki/Stakeholder_(corporate)
https://en.wikipedia.org/wiki/Negotiation
https://en.wikipedia.org/wiki/Science
https://en.wikipedia.org/wiki/Art
https://en.wikipedia.org/wiki/Interpersonal_skills

45

1. You may have to design an initial architecture of the system to help structure the requirements specification.

The system requirements are organized according to the different sub-systems that make up the system.

2. In most cases, systems must interoperate with existing systems, which constrain the design and impose

requirements on the new system.

3. The use of a specific architecture to satisfy non-functional requirements may be necessary. An external

regulator who needs to certify that the system is safe may specify that an already certified architectural design be

used.

Software requirements specification (SRS)

It is a document that describes what the software will do and how it will be expected to perform. An SRS describes

the functionality the product needs to fulfill all stakeholders (business, users) needs. A software requirements

specification (SRS) is a document that captures complete description about how the system is expected to perform.

It is usually signed off at the end of requirements engineering phase.

A software requirements specification (SRS) is a document that is created when a detailed description of all

aspects of the software to be built must be specified before the project is to commence. It is important to note that

a formal SRS is not always written. In fact, there are many instances in which effort expended on an SRS might be

better spent in other software engineering activities. However, when software is to be developed by a third party,

when a lack of specification would create severe business issues, or when a system is extremely complex or

business critical, an SRS may be justified.

Quality Characteristics of a good SRS

�Correctness:

User review is used to ensure the correctness of requirements stated in the SRS. SRS is said to be correct if it

covers all the requirements that are actually expected from the system.

� Completeness:

Completeness of SRS indicates every sense of completion including the numbering of all the pages, resolving the

to be determined parts to as much extent as possible as well as covering all the functional and non-functional

requirements properly.

� Consistency:

Requirements in SRS are said to be consistent if there are no conflicts between any set of requirements. Examples

46

of conflict include differences in terminologies used at separate places, logical conflicts like time period of report

generation, etc.

� Unambiguousness:

An SRS is said to be unambiguous if all the requirements stated have only 1 interpretation. Some of the ways to

prevent unambiguousness include the use of modelling techniques like ER diagrams, proper reviews and buddy

checks, etc.

� Ranking for importance and stability:

There should a criterion to classify the requirements as less or more important or more specifically as desirable or

essential. An identifier mark can be used with every requirement to indicate its rank or stability.

� Modifiability:

SRS should be made as modifiable as possible and should be capable of easily accepting changes to the system to

some extent. Modifications should be properly indexed and cross-referenced.

� Verifiability:

An SRS is verifiable if there exists a specific technique to quantifiably measure the extent to which every

requirement is met by the system. For example, a requirement stating that the system must be user-friendly is not

verifiable and listing such requirements should be avoided.

47

� Traceability:

One should be able to trace a requirement to a design component and then to a code segment in the program.

Similarly, one should be able to trace a requirement to the corresponding test cases.

� Design Independence:

There should be an option to choose from multiple design alternatives for the final system. More specifically, the

SRS should not include any implementation details.

� Testability:

An SRS should be written in such a way that it is easy to generate test cases and test plans from the document.

� Understandable by the customer:

An end user maybe an expert in his/her specific domain but might not be an expert in computer science. Hence,

the use of formal notations and symbols should be avoided to as much extent as possible. The language should be

kept easy and clear.

� Right level of abstraction:

If the SRS is written for the requirements phase, the details should be explained explicitly. Whereas, for a

feasibility study, fewer details can be used. Hence, the level of abstraction varies according to the purpose of the

Software Requirement Analysis(SRA)

Software requirement is a functional or non-functional need to be implemented in the system. Functional means

providing particular service to the user. For example, in context to banking application the functional requirement

will be when customer selects "View Balance" they must be able to look at their latest account balance. Software

requirement can also be a non-functional, it can be a performance requirement. For example, a non-functional

requirement is where every page of the system should be visible to the users within 5 seconds.

48

Necessity Of Requirement Analysis

According to statistics major reason of failure of software is that it does not meet with the requirement of

the user. Requirement analysis involves the task that determines the needs of the software, which mainly includes

complaints and needs of various clients/stakeholders.

Software Requirement Analysis Process

The steps for effective capturing on present requirements of users are:

 Requirement Knowledge:

It is very necessary to know about the requirements of the users before starting any project. Working on the

present requirements of the users will be helpful in gaining popularity of your project.

 Identification of Stakeholders:

Stakeholders includes customers, end-users, system administrators etc. identifying the correct stakeholder is

second step and is one of the most important step in all. Identifying the correct stakeholders help to properly

analyze and create a road map for gathering requirements.

 Collection of Requirements:

49

After identifying stakeholders one has to collect requirements for them. Based on the nature and aim of the project

there can be many kinds of stakeholders. Interacting with stakeholder groups can be in person interviews, focus

groups, market study, surveys and secondary research.

 Analysis of Collected Requirements:

Once the data is gathered structured analysis must be done of the data to make models. Data are analysed on the

basis of various parameters depending on the goals of the software. These include animation, automated reasoning,

knowledge based critiquing, consistency checking, analogical and case based reasoning.

 System requirement Specification (SYRS):

Once the data is analyzed they are put together in the form of system requirement specification document (SYRS)

or system requirement specification (SRS). It acts as a blueprint for the designing team to make the project. It

serves as a technical collection of all the requirements of stake holders which includes user requirements, system

requirements, user interface and operational requirements.

 Management Of Software Requirements:

The last step of this analysis process is correcting and validating all elements of requirement specifications

document. Errors can be corrected at this stage. Minor changes can also be done according to the requirement of

the software user.

Code Walkthrough is a form of peer review in which a programmer leads the review process and the other team
members ask questions and spot possible errors against development standards and other issues.

 The meeting is usually led by the author of the document under review and attended by other members of
the team.

 Review sessions may be formal or informal.
 Before the walkthrough meeting, the preparation by reviewers and then a review report with a list of

findings.
 The scribe, who is not the author, marks the minutes of meeting and note down all the defects/issues so that

it can be tracked to closure.
 The main purpose of walkthrough is to enable learning about the content of the document under review to

help team members gain an understanding of the content of the document and also to find defects.

http://www.professionalqa.com/srs-vs-frs-vs-brs

50

Testing Plan and Maintenance: Snooping for information, Coping with complexity through teaming,
Testing plan focus areas, Testing for recoverability, Planning for troubles, Preparing for the tests:
Software Reuse, Developing good test programs , Data corruption, Tools, Test Execution ,Testing with a
virtual computer, Simulation and Prototypes, Managing the Test, Customer’s role in testing, Software
maintenance issues and techniques. Software reuse. Client-Server software development.

UNIT IV

SYLLABUS

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS:IIM.Com(CA)

COURSE NAME: SOFTWARE MODELS AND ENGINEERING

COURSECODE:18CCP301

BATCH-2018-2020

Snooping for information

Snooping, in a security context, is unauthorized access to another person's or company's data. The practice is

similar to eavesdropping but is not necessarily limited to gaining access to data during its transmission. Snooping

can include casual observance of an e-mail that appears on another's computer screen or watching what someone

else is typing. More sophisticated snooping uses software programs to remotely monitor activity on a computer or

network device.

Malicious hackerkeyloggers to monitor keystrokes, capture passwords and login information, and to

intercept e-mail and other private communications and data transmissions. Corporations sometimes snoop on

employees legitimately to monitor their use of business computers and track Internet usage; governments may

snoop on individuals to collect information and avert crime and terrorism.

Test plan focus area

A TEST PLAN is a document describing software testing scope and activities. It is the basis for formally testing

any software/product in a project.

 test plan: A document describing the scope, approach, resources and schedule of intended test activities. It
identifies amongst others test items, the features to be tested, the testing tasks, who will do each task,
degree of tester independence, the test environment, the test design techniques and entry and exit criteria to
be used, and the rationale for their choice,and any risks requiring contingency planning. It is a record of the
test planning process.

 master test plan: A test plan that typically addresses multiple test levels.
 phase test plan: A test plan that typically addresses one test phase.

https://searchfinancialsecurity.techtarget.com/definition/eavesdropping
https://searchsecurity.techtarget.com/definition/keylogger

51

Test Plan Types

One can have the following types of test plans:

 Master Test Plan: A single high-level test plan for a project/product that unifies all other test plans.
 Testing Level Specific Test Plans:Plans for each level of testing.

o Unit Test Plan
o Integration Test Plan
o System Test Plan
o Acceptance Test Plan

 Testing Type Specific Test Plans: Plans for major types of testing like Performance Test Plan and
Security Test Plan.

Recovery testing in software testing

Recovery testing is a type of non-functional testing technique performed in order to determine how quickly the
system can recover after it has gone through system crash or hardware failure. Recovery testing is the forced
failure of the software to verify if the recovery is successful.It involves reverting to a point where the integrity of
the system was known and then reprocessing transactions up to the point of failure.

The purpose of recovery testing is to verify the system’s ability to recover from varying points of failure.

The time taken to recover depends upon:

 The number of restart points
 A volume of the applications
 Training and skills of people conducting recovery activities and tools available for recovery.

When there are a number of failures then instead of taking care of all failures, the recovery testing should be done
in a structured fashion which means recovery testing should be carried out for one segment and then another.

It is done by professional testers. Before recovery testing, adequate backup data is kept in secure locations. This is
done to ensure that the operation can be continued even after a disaster.

Life Cycle of Recovery Process

The life cycle of the recovery process can be classified into the following five steps:

1. Normal operation
2. Disaster occurrence
3. Disruption and failure of the operation
4. Disaster clearance through the recovery process
5. Reconstruction of all processes and information to bring the whole system to move to normal operation

52

1. A system consisting of hardware, software, and firmware integrated to achieve a common goal is
made operational for carrying out a well-defined and stated goal. The system is called to perform
the normal operation to carry out the designed job without any disruption within a stipulated period
of time.

2. A disruption may occur due to malfunction of the software, due to various reasons like input
initiated malfunction, software crashing due to hardware failure, damaged due to fire, theft, and
strike.

3. Disruption phase is a most painful phase which leads to business losses, relation break, opportunity
losses, man-hour losses and invariably financial and goodwill losses. Every sensible agency should
have a plan for disaster recovery to enable the disruption phase to be minimal.

4. If a backup plan and risk mitigation processes are at the right place before encountering disaster
and disruption, then recovery can be done without much loss of time, effort and energy. A
designated individual, along with his team with the assigned role of each of these persons should be
defined to fix the responsibility and help the organization to save from long disruption period.

5. Reconstruction may involve multiple sessions of operation to rebuild all folders along with
configuration files. There should be proper documentation and process of reconstruction for correct
recovery.

While performing recovery testing following things should be considered.

 We must create a test bed as close to actual conditions of deployment as possible. Changes in interfacing,
protocol, firmware, hardware, and software should be as close to the actual condition as possible if not the
same condition.

 Through exhaustive testing may be time-consuming and a costly affair, identical configuration, and
complete check should be performed.

 If possible, testing should be performed on the hardware we are finally going to restore. This is especially
true if we are restoring to a different machine than the one that created the backup.

 Some backup systems expect the hard drive to be exactly the same size as the one the backup was taken
from.

 Obsolescence should be managed as drive technology is advancing at a fast pace, and old drive may not be
compatible with the new one. One way to handle the problem is to restore to a virtual machine.
Virtualization software vendors like VMware Inc. can configure virtual machines to mimic existing
hardware, including disk sizes and other configurations.

 Online backup systems are not an exception for testing. Most online backup service providers protect us
from being directly exposed to media problems by the way they use fault-tolerant storage systems.

 While online backup systems are extremely reliable, we must test the restore side of the system to make
sure there are no problems with the retrieval functionality, security or encryption.

Client server softwaredevelopment

If protection of data is a critical requirement, then a client–server architecture should be used, with the protection
mechanisms built into the server. However, if the protection is compromised, then the losses associated with an
attack are likely to be high, as are the costs of recovery (e.g., all user credentials may have to be reissued). The
system is vulnerable to denial of service attacks, which overload the server and make it impossible for anyone to
access the system database.

53

Client server interaction

client–server model

This is a multi-user, web-based system for providing a film and photograph library. In this system, several servers
manage and display the different types of media. Video frames need to be transmitted quickly and in synchrony
but at relatively low resolution. They may be compressed in a store, so the video server can handle video
compression and decompression in different formats. Still pictures, however, must be maintained at a high
resolution, so it is appropriate to maintain them on a separate server. The catalog must be able to deal with a
variety of queries and provide links into the web information system that includes data about the film and video
clips, and an e-commerce system that supports the sale of photographs, film, and video clips.

54

Software Reengineering and Project Management: Software Reengineering, Reverse Engineering &
Forward Engineering, Life Cycle Phases and Process artifacts, Restructuring. Model based software
architectures, Software process and Iteration workflows, Major and Minor milestones, Periodic status
assessments, Process Planning, Project Control and process instrumentation: Seven core metrics,
management indicators, quality indicators, life-cycle expectations, CCPDS-R Case Study and Future
Software Project Management Practices.

UNIT-V

SYLLABUS

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS:IIM.Com(CA)

COURSE NAME: SOFTWARE MODELS AND ENGINEERING

COURSECODE:18CCP301

BATCH-2018-2020

Techniques for Maintenance

To perform software maintenance effectively, various techniques are used. These include software configuration
management, impact analysis, and software rejuvenation, all of which help in maintaining a system and thus,
improve the quality of the existing system.

Software Configuration Management

Software configuration management can be used effectively while maintaining a system as it keeps track of
changes and their effects on the system components. Many changes occur when the software is delivered to the
users such as failure or users' request for enhancement in the software. For this, configuration control board (CCB)
oversees the entire change process. Note that the representatives of CCB along with the users and developers
manage changes collectively. These changes are managed in the following steps.

1. When the user encounters a problem such as failure report, he requests for change on a formal change
request form. The problem can also be an enhancement to a function, variation in the older function, or
deleting an existing function. The procedure for request of change remains the same. The change reqest
form should include information about how the system works, nature of the problem, and how the new
(expected) system should work.

2. The request for change is reported to CCB.
3. The representative of CCB meets the user to discuss the problem (That is, to determine that the request is

for failure report or for enhancement).

http://ecomputernotes.com/software-engineering/techniques-for-maintenance
http://ecomputernotes.com/fundamental/information-technology/what-do-you-mean-by-data-and-information

55

4. If the user requests for a reported failure, the CCB discusses the source of the problem. If the requested
change is an enhancement, the CCB discusses the parts or the components that will be affected by the
change. In both the cases, developers describe the scope of changes and the expected time to implement
them.

5. The developers determine the source of the problem or the components which will be affected when the
changes will be implemented. For this, they use a test copy instead of the operational system and
implement the requested changes to see whether it (test copy) performs according to the requested changes.

6. Finally, after the changes have been made, all the relevant documentation is updated according to the
requested change.

7. The developers then record all the changes made to the operational system in a change report to keep track
of the next release or version of the software system.

Version control implies the process by which the contents of the software, hardware, or documentation are revised.
It tracks and manages the progress of files and directories within a project. This process is required when one or
more components of a software system are changed (for example, Microsoft has introduced MSN Messenger 7.0,
which is an upgraded version of MSN Messenger 6.2). Software maintenance manages the versions, that is, the
older version (present software) and the new version (when the software is modified). Note that the software
configuration management manages how the versions differ, who made the changes, and why they were made.

The component (existing version) is assigned an identification number. When the version (current) is revised, a
revision number is allotted to each resulting changed component. The records such as name of the component, date
and time, version status, and account of all changes are managed. This helps the software configuration
management to identify the current version and the revised number of the operational system.

Impact Analysis

Impact analysis is used to evaluate the overall effect of the requested change. This includes identifying the
components that will be affected with the change, the extent to which each of the components will be affected, and
the consequences of change on the estimated effort and schedule. There are various advantages of performing
impact analysis, which are listed below.

1. It is used to understand the situations when the modifications required in the software system affect large
segments of software code or several components of the software.

2. It helps identifying the relationship among the components that are affected with the change and thereby
helping to understand the overall software structure.

3. It is used to record the history of modification, which helps in maintaining quality in the software system.

Software Rejuvenation

Sometimes, organizations have to take difficult decisions about how to make their systems more maintainable. The
choices may include enhancing or completely replacing a software system. Note that each choice has the same
objective, that is, to preserve or increase the software quality while keeping the costs low. Software rejuvenation is
a maintenance technique which helps in taking appropriate decisions.

Software rejuvenation checks the system's work products in order to extract additional information or to reformat
them in order to make these work products more understandable. Generally, four types of software rejuvenation
exist, namely, re-documentation, restructuring, reverse engineering, and reengineering. Re-documentation uses
static analysis of the source code to produce additional information, which helps the software maintenance team to
understand and refer to the code. In source code, component size, component calls, calling parameters, and control

56

paths are examined to understand what and how code does it. The output of static code analysis is either graphical
or textual, which can be used to assess whether the re-documentation is required.

Restructuring

Restructuring involves the transformation of unstructured code into structured code thereby making it easier to
understand and change. Restructuring involves the following steps.

1. Static analysis is performed, which provides information that is used to represent code as a directed graph
or associative (semantic) network. The representation mayor may not be in a human readable form; thus,
an automated tool is used.

2. Transformational techniques are used to refine (simplify) the representation.
3. Refined representation is interpreted and used to generate the structured code.

Reverse Engineering

Reverse engineering like re-documentation, focuses on providing information about the specification and design
information using the software code. The information extracted from specification and design is stored in a format
that can be easily modified. Reverse engineering is a useful technique when the software maintenance team is
unable to understand the processes involved in the software system. Reverse engineering involves the following
steps.

1. Source code is collected with the help of an automated tool used for reverse engineering. This tool is used
to represent the structure and the naming information of variables, functions and other components in the
software code.

2. Static analysis is performed.
3. Some methods such as standards structured analysis and design methods are used. These methods are used

to extract information such as data dictionaries, data-flow, control flow, and entity relationship (ER)
diagrams for the reverse engineering technique.

The advantages associated with reverse engineering are listed below.

1. It focuses on recovering the lost information from the programs.
2. It provides the abstract information from the detailed source code implementation.
3. It improves system documentation 'that is either incomplete or out of date.
4. It manages the complexity that is present in the software programs.
5. It detects the adverse effects of modification in the software system.

Re-engineering

Re-engineering is an extension of reverse engineering. This technique refers to the systematic transformation of
the present software system into a new form to make quality improvements in operation, system capability,
functionality, and achieving high performance at low costs.

Re-engineering involves the following steps.

1. The system is reverse engineered and represented internally for human and computer modifications.
2. The software system is corrected and completed. This includes updating internal specification and design.
3. Using new specification and design, a new system is generated.

http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer

57

Advantages

Reduced cost: Generally, it is observed that the software systems that are maintained using re-engineering incur
less cost as compared to developing the software system all over again.

Reduced risk: The incremental nature of re-engineering means that the existing staff skills evolve as the software
system evolves. Due to this fact, the risks associated with the modifications in the software system are reduced.

Better use of existing staff: The individuals who worked on software maintenance can be retained while the re-
engineering technique is being used. In addition, the staff can be extended to accommodate new skills during
reengineering. Due to this fact, the re-engineering technique has less number of risks and incurs less expenditure
while hiring the new staff.

Incremental development: Re-engineering techniques can be carried out in stages according to the availability of
budget and resources. This technique is useful in operational organizations with working software systems. In such
organizations, the staff can easily adapt to the re-engineered software system.

Data corruption

Data corruption refers to errors in computerdata that occur during writing, reading, storage, transmission, or
processing, which introduce unintended changes to the original data. Computer, transmission, and storage systems
use a number of measures to provide end-to-end data integrity, or lack of errors.

In general, when data corruption occurs a file containing that data will produce unexpected results when accessed
by the system or the related application. Results could range from a minor loss of data to a system crash. For
example, if a document file is corrupted, when a person tries to open that file with a document editor they may get
an error message, thus the file might not be opened or might open with some of the data corrupted (or in some
cases, completely corrupted, leaving the document unintelligible). The adjacent image is a corrupted image file in
which most of the information has been lost.

Some types of malware may intentionally corrupt files as part of their payloads, usually by overwriting them with
inoperative or garbage code, while a non-malicious virus may also unintentionally corrupt files when it accesses
them. If a virus or trojan with this payload method manages to alter files critical to the running of the computer's
operating system software or physical hardware, the entire system may be rendered unusable.

Some programs can give a suggestion to repair the file automatically (after the error), and some programs cannot
repair it. It depends on the level of corruption, and the built-in functionality of the application to handle the error.

Causes of data corruption and loss

Common causes of data corruption and loss include:

 Power outages or other power-related problems.
 Improper shutdowns, such as caused by power outages or performing a hard restart: pressing and holding

the power button or, on Macs so equipped, the restart button.
 Hardware problems or failures, including hard drive failures, bad sectors, bad RAM, and the like.
 Failure to eject external hard drives and related storage devices before disconnecting them or powering

them off.
 Bad programming, particularly if it results in either hard restarts or data that is saved incorrectly.

https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Data_integrity
https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/Document_file_format
https://en.wikipedia.org/wiki/Error_message
https://en.wikipedia.org/wiki/Malware
https://en.wikipedia.org/wiki/Payload_(computing)
https://en.wikipedia.org/wiki/Trojan_horse_(computing)

58

Any of these causes can result in a corrupted hard drive directory. A corrupted hard drive directory can cause files
to apparently "go missing" and lead to further data loss or corruption, such files being overwritten with new data as
a corrupted directory may no longer accurately reflect what disk space is free or available vs. the disk space that
contains data. The term data is used here to mean both files you have created as well as application and operating
system code. Technologies such as File System Journaling have helped to reduce the potential for directory
corruption due to power outages or hard restarts, but journaling is not foolproof. Likewise, while hard drives have
become exceedingly reliable, they are still known to fail catastrophically with little or no warning. If operating
system files become corrupted, your Mac may not start up or experience recurring kernel panics when a corrupted
kernel extension is used. In addition to the causes cited above, operating system files can be corrupted by failed
Software Updates. Accordingly, it is appropriate to implement certain strategies to minimize the risks of data
corruption and loss.

http://docs.info.apple.com/article.html?artnum=107249
http://www.thexlab.com/faqs/kernelpanics.html
http://www.thexlab.com/faqs/installswupdates.html

1

Fundamentals of Software Engineering and Process models :Definition, Software characteristics

and Application. Software myths, Software engineering- A layered technology and SDLC. Software

process models: Linear sequential model, prototyping model, RAD Model. Evolutionary process

models: Incremental process models and Spiral model. Component based ,4GT. Maturity Models:

CMM, CMMI, PCMM, PSP, TSP, Process patterns, process assessment. Unified process: SEI CMM

and ISO 9001. PSP and Six Sigma. Clean room technique.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS:IIM.Com(CA)

COURSE NAME: SOFTWARE MODELS AND ENGINEERING

COURSECODE:18CCP301

BATCH-2018-2020

UNIT-I

SYLLABUS

Software Engineering definition proposed by Fritz Bauer at the seminal conference on the subject still serves as a

basis for discussion:

Software engineering is the establishment and use of sound engineering principles in order to obtain economically

software that is reliable and works efficiently on real machines.

Software is defined as collection of computer programs, procedures, rules and data. Software Characteristics are

classified into six major components:

These components are described below:

Functionality:

It refers to the degree of performance of the software against its intended purpose. Required functions are:

Reliability:

A set of attribute that bear on capability of software to maintain its level of performance under the given condition

for a stated period of time. Required functions are:

2

rs to the degree of performance of the software against its intended purpose. Required functions are:

A set of attribute that bear on capability of software to maintain its level of performance under the given condition

f time. Required functions are:

rs to the degree of performance of the software against its intended purpose. Required functions are:

A set of attribute that bear on capability of software to maintain its level of performance under the given condition

 Efficiency:

It refers to the ability of the software to use system resources in the most effective and efficient

The software should make effective use of storage space and executive command as per desired timing

requirement. Required functions are:

 Usability:

It refers to the extent to which the

learn how to use the software.

Required functions are:

 Maintainability:

It refers to the ease with which the modifications can be made in a software system to extend its

functionality, improve its performance, or correct errors. Required functions are:

 Portability:

A set of attribute that bear on the ability of software to be transferred from one environment to another,

without or minimum changes.

Required functions are:

3

It refers to the ability of the software to use system resources in the most effective and efficient

software should make effective use of storage space and executive command as per desired timing

equirement. Required functions are:

It refers to the extent to which the software can be used with ease, the amount of effort or

with which the modifications can be made in a software system to extend its

functionality, improve its performance, or correct errors. Required functions are:

A set of attribute that bear on the ability of software to be transferred from one environment to another,

It refers to the ability of the software to use system resources in the most effective and efficient manner.

software should make effective use of storage space and executive command as per desired timing

the amount of effort or time required to

with which the modifications can be made in a software system to extend its

A set of attribute that bear on the ability of software to be transferred from one environment to another,

Software myths—It is erroneous belief

the earliest days of computing. Myths have a number of attributes that make them insidious. For instance, they

appear to be reasonablestatements of fact (sometimes containing elements of truth), they have an intuitive feel, and

they are often promulgated by experienced practitioners who “know the score.” Today, most knowledgeable

software engineering professionals recognize myths for what they are

serious problems for managers and practitioners alike.

and remnants of software myths remain.

Management myths. Managers with software responsibility, like managers inmost disciplines, are often under

pressure to maintain budgets, keep schedules fromsl

grasps at a straw, a softwaremanager often grasps at belief in a software myth, if that belief will lessen thepressure

(even temporarily).

Myth: We already have a book that’s full of standards and pro

people with everything theyneed to know?Reality: Are softwarepractitioners aware of its existence? Does it reflect

modernsoftware engineering practice? Is it complete? Is itstreamlined to improve time

maintaining afocus on quality? In many cases, the answer to all of these questionsis “no.”

Myth: If we get behind schedule, we can add more programmers and catch up(sometimes called the “Mongolian

horde” concept).

Reality: Software development is not a mechanistic process like manufacturing.

people to a late softwareproject makes it later.” At first, this statement may seemcounterintuitive. However, as new

people are added, people whowere working must spe

amount of time spent on productive developmenteffort. People can be added but only in a planned an

coordinatedmanner.

Myth: If I decide to outsource the software project to a third party, I can justrel

Reality: If an organization does not understand how to manage and controlsoftware projects internally, it will

invariably struggle when it outsourcessoftware projects.

Customer myths. A customer who requests computer softwar

4

It is erroneous belief about software and the process that is used to build it

the earliest days of computing. Myths have a number of attributes that make them insidious. For instance, they

appear to be reasonablestatements of fact (sometimes containing elements of truth), they have an intuitive feel, and

ften promulgated by experienced practitioners who “know the score.” Today, most knowledgeable

software engineering professionals recognize myths for what they are—misleading attitudes that have caused

serious problems for managers and practitioners alike. However, old attitudes and habits are difficult to modify,

Management myths. Managers with software responsibility, like managers inmost disciplines, are often under

pressure to maintain budgets, keep schedules fromslipping, and improve quality. Like a drowning person who

grasps at a straw, a softwaremanager often grasps at belief in a software myth, if that belief will lessen thepressure

Myth: We already have a book that’s full of standards and procedures forbuilding software. Won’t that provide my

people with everything theyneed to know?Reality: Are softwarepractitioners aware of its existence? Does it reflect

modernsoftware engineering practice? Is it complete? Is itstreamlined to improve time

maintaining afocus on quality? In many cases, the answer to all of these questionsis “no.”

Myth: If we get behind schedule, we can add more programmers and catch up(sometimes called the “Mongolian

elopment is not a mechanistic process like manufacturing.In the words of Brooks

people to a late softwareproject makes it later.” At first, this statement may seemcounterintuitive. However, as new

people are added, people whowere working must spend time educating the newcomers, therebyreducing the

amount of time spent on productive developmenteffort. People can be added but only in a planned an

Myth: If I decide to outsource the software project to a third party, I can justrelax and let that firm build it.

Reality: If an organization does not understand how to manage and controlsoftware projects internally, it will

invariably struggle when it outsourcessoftware projects.

Customer myths. A customer who requests computer software may be a personat the next desk, a technical group

about software and the process that is used to build it—can be traced to

the earliest days of computing. Myths have a number of attributes that make them insidious. For instance, they

appear to be reasonablestatements of fact (sometimes containing elements of truth), they have an intuitive feel, and

ften promulgated by experienced practitioners who “know the score.” Today, most knowledgeable

misleading attitudes that have caused

However, old attitudes and habits are difficult to modify,

Management myths. Managers with software responsibility, like managers inmost disciplines, are often under

ipping, and improve quality. Like a drowning person who

grasps at a straw, a softwaremanager often grasps at belief in a software myth, if that belief will lessen thepressure

cedures forbuilding software. Won’t that provide my

people with everything theyneed to know?Reality: Are softwarepractitioners aware of its existence? Does it reflect

modernsoftware engineering practice? Is it complete? Is itstreamlined to improve time-to-delivery while still

maintaining afocus on quality? In many cases, the answer to all of these questionsis “no.”

Myth: If we get behind schedule, we can add more programmers and catch up(sometimes called the “Mongolian

In the words of Brooks : “adding

people to a late softwareproject makes it later.” At first, this statement may seemcounterintuitive. However, as new

nd time educating the newcomers, therebyreducing the

amount of time spent on productive developmenteffort. People can be added but only in a planned and

ax and let that firm build it.

Reality: If an organization does not understand how to manage and controlsoftware projects internally, it will

e may be a personat the next desk, a technical group

5

down the hall, the marketing/sales department,or an outside company that has requested software under contract.

In many cases,the customer believes myths about software because software managers and practitionersdo little to

correct misinformation. Myths lead to false expectations (by thecustomer) and, ultimately, dissatisfaction with the

developer.

Myth: A general statement of objectives is sufficient to begin writingprograms—we can fill in the details later.

Reality: Although a comprehensive and stable statement of requirements isnot always possible, an ambiguous

“statement of objectives” is arecipe for disaster. Unambiguous requirements (usually derivediteratively) are

developed only through effective and continuouscommunication between customer and developer.

Myth: Software requirements continually change, but change can be easilyaccommodated because software is

flexible.

Reality: It is true that software requirements change, but the impact ofchange varies with the time at which it is

introduced. When requirementschanges are requested early (before design or code has beenstarted), the cost

impact is relatively small. However, as timepasses, the cost impact grows rapidly—resources have been

committed,a design framework has been established, and change cancause upheaval that requires additional

resources and major designmodification.

Practitioner’s myths. Myths that are still believed by software practitioners havebeen fostered by over 50 years of

programming culture. During the early days, programmingwas viewed as an art form. Old ways and attitudes die

hard.

Myth: Once we write the program and get it to work, our job is done.Reality: Someone once said that “the sooner

you begin ‘writing code,’ thelonger it’ll take you to get done.” Industry data indicate that between60 and 80

percent of all effort expended on software will be expendedafter it is delivered to the customer for the first time.

Myth: Until I get the program “running” I have no way of assessing its quality.

Reality: One of the most effective software quality assurance mechanismscan be applied from the inception of a

project—the technical review.

Myth: The only deliverable work product for a successful project is the workingprogram.

6

Reality: A working program is only one part of a software configuration thatincludes many elements. A variety of

work products (e.g., models, documents, plans) provide a foundation for successful engineeringand, more

important, guidance for software support.

Myth: Software engineering will make us create voluminous and unnecessarydocumentation and will invariably

slow us down.

Reality: Software engineering is not about creating documents. It is aboutcreating a quality product. Better quality

leads to reduced rework.And reduced rework results in faster delivery times.

Layered Technology

Software engineering is a layered technology. Referring to Figure 1.3, any engineering approach (including

software engineering) must rest on an organizational commitment to quality. Total quality management, Six

Sigma, and similar philosophies foster a continuous process improvement culture, and it is this culture that

ultimately leads to the development of increasingly more effective approaches to software engineering. The

bedrock that supports software engineering is a quality focus. The foundation for software engineering is the

process layer. The software engineeringprocess is the glue that holds the technology layers together and enables

rational and timely development of computer software.

Software engineering is Divided into 4 layers:-

1. A quality Process :-

 Any engineering approach must rest on quality.

 The "Bed Rock" that supports software Engineering is Quality Focus.

2. Process :-

 Foundation for SE is the Process Layer

 SE process is the GLUE that holds all the technology layers together and enables the timely development

of computer software.

7

 It forms the base for management control of software project.

3. Methods :-

 SE methods provide the "Technical Questions" for building Software.

 Methods contain a broad array of tasks that include communication requirement analysis, design modeling,

program construction testing and support.

4. Tools :-

 SE tools provide automated or semi-automated support for the "Process" and the "Methods".

 Tools are integrated so that information created by one tool can be used by another.

A maturity level is a well-defined evolutionary plateau toward achieving a mature software process. Each maturity

level provides a layer in the foundation for continuous process improvement.

Software Life Cycle

A Life Cycle shows how a living thing borns, grows, lives, and dies. The stages from birth to death.Software life

cycle model is the stages of development that a software development goes through. The following figure shows

the stages of software development.

Software life cycle models describe phases of the software cycle and the order in which those phases are executed.

There are tons of models, and many companies adopt their own, but all have very similar patterns. The general,

basic model is shown below:

Each phase produces deliverables required by the next phase in the life cycle. Requirements are translated into

design. Code is produced during implementation that is driven by the design. Testing verifies the deliverable of the

implementation phase against requirements.

A Software Process can be defined as set of activities, methods, practices and transformations which people

employ to develop and maintain software and the associated products. The quality of a software product is

essentially determined by the quality of the processes employed to develop and maintain it.

The Linear Sequential Model

This is a software process model that involves a systematic progression through analysis, design, coding, testing

and maintenance phases. It is also referred to as the "waterfall model".

8

Also known as the classic life cycle or waterfall model, it suggests a systematic, sequential approach to software

development. Problems with this approach are:

• Real projects rarely follow the sequential flow and changes can cause confusion.

• This model has difficulty accommodating requirements change

• The customer will not see a working version until the project is nearly complete

• Developers are often blocked unnecessarily, due to previous tasks not being done

The Prototyping Model

Advantages:

- Easy and quick to identify customer requirements

- Customers can validate the prototype at the earlier stage and provide their inputs and

feedback

- Good to deal with the following cases:

1. Customer cannot provide the detailed requirements

2. Very complicated system-user interactions

3. Use new technologies, hardware and algorithms

4. Develop new domain application systems

Problems:

-The prototype can serve as ―the first system.

-Developers usually attempt to develop the product based on the prototype.

-Developers often make implementation compromises in order to get a prototyping that is

working quickly.

-Customers may be unaware that the prototype is not a product, which is held with.

The RAD Model

Rapid Application Development (RAD) is a linear sequential software development process model that

emphasizes an extremely short development cycle.

- A ―high-speed‖ adaptation of linear sequential model

- Component-based construction

- Effective when requirements are well understood and project scope is constrained.

Advantages:

- Short development time

- Cost reduction due to software reuse and component-based construction

Problems:

- For large, but scalable projects, RAD requires sufficient resources.

9

- RAD requires developers and customers who are committed to the schedule.

- Constructed software is project-specific, and may not be well modularized.

- Its quality depends on the quality of existing components.

- Not appropriate projects with high technical risk and new technologies.

Incremental Process Models

There are many situations in which initial software requirements are reasonably well defined, but the overall scope

of the development effort precludes a purely linear process. In addition, there may be a compelling need to provide

a limited set of software functionality to users quickly and then refine and expand on that functionalityin later

software releases. In such cases, you can choose a process model that is designed to produce the software in

increments. The incremental model combines elements of linear and parallel process flows

Incremental model applies linear sequences in a staggered fashion as calendar time progresses. Each linear

sequence produces deliverable “increments” of the software in a manner that is similar to the increments produced

by an evolutionary process flow.For example, word-processing software developed using the incremental

paradigm might deliver basic file management, editing, and document production functionsin the first increment;

more sophisticated editing and document production capabilities in the second increment; spelling and grammar

checking in the third increment; and advanced page layout capability in the fourth increment. It should be noted

that the process flow for any increment can incorporate the prototyping paradigm.

When an incremental model is used, the first increment is often a core product. That is, basic requirements are

addressed but many supplementary features (some known, others unknown) remain undelivered. The core product

is used by the customer (or undergoes detailed evaluation).

The Spiral Model.

Originally proposed by Barry Boehm, the spiral model is an evolutionary software process model that couples the

iterative nature of prototyping with the controlled and systematic aspects of the waterfall model. It providesthe

potential for rapid development of increasingly more complete versions of the software. Boehm describes the

model in the following manner: The spiral development model is a risk-driven process model generator that is

used to guide multi-stakeholder concurrent engineering of software intensive systems. It has two main

distinguishing features. One is a cyclic approach for incrementally growing a system’s degree of definition and

implementation while decreasing its degree of risk. The other is a set of anchor point milestones for ensuring

stakeholder commitment to feasible and mutually satisfactory system solutions. Using the spiral model, software is

developed in a series of evolutionary releases. During early iterations, the release might be a model or prototype.

During later iterations, increasingly more complete versions of the engineered system are produced.

10

A Typical Spiral Model

Component-based development model

Commercial off-the-shelf (COTS) software components, developed by vendors who offer them as products,

provide targeted functionality with well-defined interfaces that enable the component to be integrated into the

software that is to be built. The component-based development model incorporates many of the characteristics of

the spiral model. It is evolutionary in nature, demanding an iterative approach to the creation of software.

However, the component-based development model constructs applications from prepackaged software

components. Modeling and construction activities begin with the identification of candidate components. These

components can be designed as either conventional software modules or object-oriented classes or packages of

classes. Regardless of the technology that is used to create the components, the component-based development

model incorporates the following steps (implemented using an evolutionary approach):

1. Available component-based products are researched and evaluated for theapplication domain in question.

2. Component integration issues are considered.

3. A software architecture is designed to accommodate the components.

4. Components are integrated into the architecture.

5. Comprehensive testing is conducted to ensure proper functionality.

The component-based development model leads to software reuse, and reusability provides software engineers

with a number of measurable benefits. Your software engineering team can achieve a reduction in development

cycle time as well as a reduction in project cost if component reuse becomes part of your culture.

4GT Process Model

4GT begins with from “Requirement Gathering” this process go through the customer, the customer go illustrate

the requirements. The customer could actually describe the requirements and these would be directly translated

11

into an operational prototype. If the product is a smaller product this process may be possible to move directly

from requirements gathering step to implementation using a non-procedural fourth generation language (4GL), for

lager products this procedure may little hard, therefor it’s necessary to use the design strategy in 4GT.When it

comes to large projects, the design phase it is crucial to avoid poor quality, poor maintainability. To transform a

4GL implementation into a product, the developer must conduct through testing, develop meaningful

documentation, and perform all other solution integration activities. The 4GT developed software must be built in

a manner that enables maintenance to be performed expeditiously. There are some merits to summarize the current

features of 4GT approach. In the 4GL implementation the code can be generated based on some specification. The

4GT developed software must be built in a manner that enables maintenance to be performed expeditiously. There

are some merits to summarize the current features of 4GT approach. The use of 4GT is a viable approach for many

different application areas coupled with computer- aided software engineering tools and code generators, 4GT

offers a credible solution to many software problem.

Benefits of the 4GT

Flexible: The Fourth Generation applications are Modifiable by Design, which means they are designed from the

beginning to accommodate change. They are easily modifiable, either by you, the customer, or by your Fourth

Generation Authorized reseller to your specifications.

Scalable: The Fourth Generation applications are Modifiable by Design, which means they are designed from the

beginning to accommodate change.They are easily modifiable, either by you, the customer, or by your Fourth

Generation Authorized reseller to your specifications.

Total Data Access: Your data represents your company’s greatest single asset. The worth of that asset, however, is

directly related to your ability to record it and access it.

 The Fourth Generation Technique (4GT) is based on NPL that is the Non-Procedural Language techniques.

Depending upon the specifications made the 4GT move towards uses various tools for the automatic generation of

source codes. It is the very important tool which make use of the non-procedural language for Report generation,

Database query, Manipulation of data, Interaction of screen, Definition, Generation of code, Spread Sheet

capabilities, and High level graphical capacity etc. 4GT begins with a requirement-gathering stage. The customer

would illustrate requirements and these would be directly converted into an unworkable operational prototype. For

small applications, it may be possible to move directly from requirements gathering step to implementation using a

non-procedural fourth generation language (4GL), however for large application it is necessary to develop a design

strategy for the system even if a 4GL is to be used. Implementation using a 4GT enables the software developer to

represent desired result in a manner that leads to automatic generation of code to create those results, obviously,

12

data structure with relevant information must exist and be readily accessible by the 4GL. To transform a 4GL

implementation into a product, the developer must conduct through testing, develop meaningful documentation,

and perform all other solution integration activities. The 4GT developed software must be built in a manner that

enables maintenance to be performed expeditiously. There are some merits to summarize the current features of

4GT approach. The use of 4GT is a viable approach for many different application areas coupled with computer-

aided software engineering tools and code generators, 4GT offers a credible solution to many software problem.

Data collected from companies that use 4Gt indicates that the time required to produce software is greatly reduced

for small and intermediate application is also reduced. However the use of 4GT for large software development

efforts demands as much or more analysis design and testing to achieve substantial timesaving that result from the

elimination of coding.

Compatibility Maturity Model -CMM

Maturity level 1 _Initial

organizations often produce products and services that work; however, they frequently exceed the budget and

schedule of their projects.Maturity level 1 organizations are characterized by a tendency to over commit, abandon

processes in the time of crisis, and not be able to repeat their past successes.

Maturity Level 2 - Managed

At maturity level 2, an organization has achieved all the specific and generic goals of the maturity level 2 process

areas. In other words, the projects of the organization have ensured that requirements are managed and that

processes are planned, performed, measured, and controlled.The process discipline reflected by maturity level 2

helps to ensure that existing practices are retained during times of stress. When these practices are in place,

projects are performed and managed according to their documented plans.At maturity level 2, requirements,

processes, work products, and services are managed. The status of the work products and the delivery of services

are visible to management at defined points.Commitments are established among relevant stakeholders and are

revised as needed. Work products are reviewed with stakeholders and are controlled.The work products and

services satisfy their specified requirements, standards, and objectives.

Maturity Level 3 - Defined

At maturity level 3, an organization has achieved all the specific and generic goals of the process areas assigned to

maturity levels 2 and 3.At maturity level 3, processes are well characterized and understood, and are described in

standards, procedures, tools, and methods.A critical distinction between maturity level 2 and maturity level 3 is the

scope of standards, process descriptions, and procedures. At maturity level 2, the standards, process descriptions,

and procedures may be quite different in each specific instance of the process (for example, on a particular

project). At maturity level 3, the standards, process descriptions, and procedures for a project are tailored from the

13

organization's set of standard processes to suit a particular project or organizational unit. The organization's set of

standard processes includes the processes addressed at maturity level 2 and maturity level 3. As a result, the

processes that are performed across the organization are consistent except for the differences allowed by the

tailoring guidelines.Another critical distinction is that at maturity level 3, processes are typically described in more

detail and more rigorously than at maturity level 2. At maturity level 3, processes are managed more proactively

using an understanding of the interrelationships of the process activities and detailed measures of the process, its

work products, and its services.

Maturity Level 4 - Quantitatively managed

At maturity level 4, an organization has achieved all the specific goals of the process areas assigned to maturity

levels 2, 3, and 4 and the generic goals assigned to maturity levels 2 and 3.At maturity level 4 Sub processes are

selected that significantly contribute to overall process performance. These selected sub processes are controlled

using statistical and other quantitative techniques.Quantitative objectives for quality and process performance are

established and used as criteria in managing processes. Quantitative objectives are based on the needs of the

customer, end users, organization, and process implementers. Quality and process performance are understood in

statistical terms and are managed throughout the life of the processes.

Maturity Level 5 - Optimizing

At maturity level 5, an organization has achieved all the specific goals of the process areas assigned to maturity

levels 2, 3, 4, and 5 and the generic goals assigned to maturity levels 2 and 3.Processes are continually improved

based on a quantitative understanding of the common causes of variation inherent in processes.Maturity level 5

focuses on continually improving process performance through both incremental and innovative technological

improvements.Quantitative process-improvement objectives for the organization are established, continually

revised to reflect changing business objectives, and used as criteria in managing process improvement.

Capability Maturity Model Integration - CMMI

Capability Maturity Model Integration (CMMI) is a process level improvement training and appraisal program.

Administered by the CMMI Institute, a subsidiary of ISACA, it was developed at Carnegie Mellon University

(CMU). It is required by many United States Department of Defense (DoD) and U.S. Government contracts,

especially in software development. CMU claims CMMI can be used to guide process improvement across a

project, division, or an entire organization. CMMI defines the following maturity levels for processes: Initial,

Repeatable, Defined, Quantitatively Managed, and Optimizing.

https://en.wikipedia.org/wiki/Subsidiary
https://en.wikipedia.org/wiki/ISACA
https://en.wikipedia.org/wiki/Carnegie_Mellon_University
https://en.wikipedia.org/wiki/United_States_Department_of_Defense
https://en.wikipedia.org/wiki/Software_development

14

CMMI Model

1) Initial: The software process is characterized as ad hoc, and occasionally even chaotic. Few processes are

defined, and success depends on individual effort and heroics.

2) Repeatable: Basic project management processes are established to track cost, schedule, and functionality. The

necessary process discipline is in place to repeat earlier successes on projects with similar applications.

3) Defined: The software process for both management and engineering activities is documented, standardized,

and integrated into a standard software process for the organization. All projects use an approved, tailored version

of the organization’s standard software process for developing and maintaining software.

4) Managed: Detailed measures of the software process and product quality are collected. Both the software

process and products are quantitatively understood and controlled.

5) Optimizing: Continuous process improvement is enabled by quantitative feedback from the process and from

piloting innovative ideas and technologies.

People Capability Maturity Model (PCMM)

People Capability Maturity Model (PCMM) is a maturity framework that focuses on continuously improving the

management and development of the human assets of a software or information systems organization. PCMM can

be perceived as the application of the principles of Capability Maturity Model to human assets of a software

organization. It describes an evolutionary improvement path from ad hoc, inconsistently performed practices, to a

mature, disciplined, and continuously improving development of the knowledge, skills, and motivation of the

workforce. Although the focus in People CMM is on software or information system organizations, the processes

15

and practices are applicable for any organization that aims to improve the capability of its workforce. PCMM will

be guiding and effective particularly for organizations whose core processes are knowledge intensive.The primary

objective of the People Capability Maturity Model is to improve the capability of the entire workforce. This can be

defined as the level of knowledge, skills, and process abilities available for performing an organization’s current

and future business activities.

10 Principles of People Capability Maturity Model (PCMM)

The People Capability Maturity Model describes an evolutionary improvement path from ad hoc, inconsistently

performed workforce practices, to a mature infrastructure of practices for continuously elevating workforce

capability. The philosophy implicit the PCMM can be summarized in ten principles.In mature organizations,

workforce capability is directly related to business performance.

Workforce capability is a competitive issue and a source of strategic advantage.

Workforce capability must be defined in relation to the organization’s strategic business objectives.

Knowledge-intense work shifts the focus from job elements to workforce competencies.

Capability can be measured and improved at multiple levels, including individuals, workgroups, workforce

competencies, and the organization.

An organization should invest in improving the capability of those workforce competencies that are critical to its

core competency as a business.

Operational management is responsible for the capability of the workforce.

The improvement of workforce capability can be pursued as a process composed from proven practices and

procedures.

The organization is responsible for providing improvement opportunities, while individuals are responsible for

taking advantage of them.

Since technologies and organizational forms evolve rapidly, organizations must continually evolve their workforce

practices and develop new workforce competencies.

The People Capability Maturity Model (People CMM) is a roadmap for implementing workforce practices that

continuously improve the capability of an organization’s workforce. Since an organization cannot implement all of

the best workforce practices in an afternoon, the People CMM introduces them in stages. Each progressive level of

the People CMM produces a unique transformation in the organization’s culture by equipping it with more

powerful practices for attracting, developing, organizing, motivating, and retaining its workforce. Thus, the People

CMM establishes an integrated system of workforce practices that matures through increasing alignment with the

organization’s business objectives, performance, and changing needs.

16

Although the People CMM has been designed primarily for application in knowledge intense organizations, with

appropriate tailoring it can be applied in almost any organizational setting. The People CMM’s primary objective

is to improve the capability of the workforce. Workforce capability can be defined as the level of knowledge,

skills, and process abilities available for performing an organization’s business activities.

Personal Software Process (PSP)

Every developer uses some process to build computer software. The process may be

haphazard or ad hoc; may change on a daily basis; may not be efficient, effective, or even successful; but a

“process” does exist. Watts Humphrey [Hum97] suggests that in order to change an ineffective personal process,

an individual must move through four phases, each requiring training and careful instrumentation. The Personal

Software Process (PSP) emphasizes personal measurement of both the work product that is produced and the

resultant quality of the work product. In addition PSP makes the practitioner responsible for project planning (e.g.,

estimating and scheduling) and empowers the practitioner to control the quality of all software work products that

are developed. The PSP model defines five framework activities:

Planning.

This activity isolates requirements and develops both size and resource estimates. In addition, a defect estimate

(the number of defects projected for the work) is made. All metrics are recorded on worksheets or templates.

Finally, development tasks are identified and a project schedule is created.

High-level design. External specifications for each component to be constructed are developed and a component

design is created. Prototypes are built when uncertainty exists. All issues are recorded and tracked.

High-level design review. Formal verification methods are applied to uncover errors in the design. Metrics are

maintained for all important tasks and work results.

Development. The component-level design is refined and reviewed. Code is generated, reviewed, compiled, and

tested. Metrics are maintained for all important tasks and work results.

Postmortem. Using the measures and metrics collected (this is a substantial amount of data that should be

analyzed statistically), the effectiveness of the process is determined. Measures and metrics should provide

guidance formodifying the process to improve its effectiveness.

Team Software Process (TSP)

Because many industry-grade software projects are addressed by a team of practitioners, Watts Humphrey

extended the lessons learned from the introduction of PSP and proposed a Team Software Process (TSP). The goal

of TSP is to build a “selfdirected” project team that organizes itself to produce high-quality software.

Humphrey defines the following objectives for TSP:

• Build self-directed teams that plan and track their work, establish goals, andown their processes and plans. These

17

can be pure software teams or integratedproduct teams (IPTs) of 3 to about 20 engineers.

• Show managers how to coach and motivate their teams and how to helpthem sustain peak performance.

• Accelerate software process improvement by making Level 5behavior normal and expected.

• Provide improvement guidance to high-maturity organizations.

• Facilitate university teaching of industrial-grade team skills.

A self-directed team has a consistent understanding of its overall goals and objectives; defines roles and

responsibilities for each team member; tracks quantitativeproject data (about productivity and quality); identifies a

team process that is appropriate for the project and a strategy for implementing the process; defines local standards

that are applicable to the team’s software engineering work; continually assesses risk and reacts to it; and tracks,

manages, and reports project status.

TSP defines the following framework activities: project launch, high-level design, implementation, integration and

test, and postmortem. Like their counterparts in PSP (note that terminology is somewhat different), these activities

enable the team to plan, design, and construct software in a disciplined manner while at the same time

quantitatively measuring the process and the product. The postmortem sets the stage for process improvements.

PROCESS PATTERNS

Every software team encounters problems as it moves through the software process. It would be useful if proven

solutions to these problems were readily available to the team so that the problems could be addressed and

resolved quickly. A process pattern describes a process-related problem that is encountered during software

engineering work, identifies the environment in which the problem has been encountered, and suggests one or

more proven solutions to the problem. Stated in more general terms, a process pattern provides you with a

template—a consistent method for describing problem solutions within the context of the software process. By

combining patterns, a software team can solve problems and construct a process that best meets the needs of a

project.

Patterns can be defined at any level of abstraction. In some cases, a pattern might be used to describe a problem

(and solution) associated with a complete processmodel (e.g., prototyping). In other situations, patterns can be

used to describe a problem (and solution) associated with a framework activity (e.g., planning) or an action within

a framework activity (e.g., project estimating).

Ambler has proposed a template for describing a process pattern:

Pattern Name. The pattern is given a meaningful name describing it within the context of the software process

(e.g., TechnicalReviews).

Forces. The environment in which the pattern is encountered and the issues that make the problem visible and may

affect its solution.

Type. Ambler suggests three types of patterns:

18

1. Stage pattern—defines a problem associated with a framework activity for the process. Since a framework

activity encompasses multiple actions andwork tasks, a stage pattern incorporates multiple task patterns (see the

following) that are relevant to the stage (framework activity). An example of astage pattern might be

EstablishingCommunication. This pattern would incorporate the task pattern RequirementsGathering and others.

2. Task pattern—defines a problem associated with a software engineering action or work task and relevant to

successful software engineeringpractice (e.g., RequirementsGathering is a task pattern).

3. Phase pattern—define the sequence of framework activities that occurs within the process, even when the

overall flow of activities is iterativein nature. An example of a phase pattern might be SpiralModel or

Prototyping.

PROCESS ASSESSMENT

The existence of a software process is no guarantee that software will be delivered on time, that it will meet the

customer’s needs, or that it will exhibit the technical characteristics that will lead to long-term quality

characteristics. Process patterns must be coupled with solid software engineering practice

(Part 2 of this book). In addition, the process itself can be assessed to ensure that it meets a set of basic process

criteria that have been shown to be essential for a successful software engineering.. A number of different

approaches to software process assessment and improvement have been proposed over the past few decades:

Standard CMMI Assessment Method for Process Improvement

(SCAMPI)—provides a five-step process assessment model that incorporates five phases: initiating, diagnosing,

establishing, acting, and learning. The

SCAMPI method uses the SEI CMMI as the basis for assessment.

CMM-Based Appraisal for Internal Process Improvement (CBA IPI) — provides a diagnostic technique for

assessing the relative maturity of asoftware organization; uses the SEI CMM as the basis for the assessment.

SPICE (ISO/IEC15504)—a standard that defines a set of requirements for software process assessment. The

intent of the standard is to assist organizations

in developing an objective evaluation of the efficacy of any defined software process .

ISO 9001:2000 for Software—a generic standard that applies to any organization that wants to improve the

overall quality of the products, systems,

or services that it provides. Therefore, the standard is directly applicable to software organizations and companies

Six Sigma for Software Engineering

Six Sigma is the most widely used strategy for statistical quality assurance in industry today. Originally

popularized by Motorola in the 1980s, the Six Sigma strategy “is a rigorous and disciplined methodology that uses

data and statistical analysis to measure and improve a company’s operational performance by identifying and

19

eliminating defects’ in manufacturing and service-related processes”. The term Six Sigma is derived from six

standard deviations—3.4 instances (defects) per million occurrences—implying an extremely high quality

standard. The Six Sigma methodology defines three core steps:

• Define customer requirements and deliverables and project goals via welldefined methods of customer

communication.

• Measure the existing process and its output to determine current quality performance (collect defect metrics).

• Analyze defect metrics and determine the vital few causes.

 If an existing software process is in place, but improvement is required, Six Sigmasuggests two additional steps:

• Improve the process by eliminating the root causes of defects.

• Control the process to ensure that future work does not reintroduce the causes of defects.

Clean room technique (clean room design)

The clean room technique is a process in which a new product is developed by reverse engineering an existing

product, and then the new product is designed in such a way that patent or copyright infringement is avoided.

The clean room technique is also known as clean room design. (Sometimes the words "clean room" are merged

into the single word, "cleanroom.") Sometimes this process is called the Chinese wall method, because the intent

is to place a demonstrable intellectual barrier between the reverse engineering process and the development of

the new product.

The use of the clean room technique can be compared, in some respects, with the fair use of copyrighted

publications in order to compile a new document. For example, a new book about Linux can be authored on the

basis of information obtained by researching existing books, articles, white papers, and Web sites. This does not

necessarily constitute copyright infringement, even though other books on Linux already exist, and even if the

new book contains essentially the same information as the existing publications. However, this is the case only as

long as passages from the existing works are not copied verbatim or nearly verbatim, and as long as the new

work does not have substantially the same structure as any of the existing works.

Use of the clean room technique puts engineers and enterprises in a legal gray area. If the owner of the original

copyright or patent can demonstrate that the development of a new product was done by means of reverse

engineering and is not significantly different from the existing product, a lawsuit may result. Any attempt to

reverse engineer an existing product, and then create a new product based on the results of the reverse

engineering process, should be undertaken only with the advice of a reputable attorney who is experienced in

copyright infringement and reverse engineering issues.

https://searchsoftwarequality.techtarget.com/definition/reverse-engineering
https://searchsecurity.techtarget.com/definition/copyright
https://whatis.techtarget.com/definition/Chinese-wall
https://searchdatacenter.techtarget.com/definition/Linux-operating-system
https://whatis.techtarget.com/definition/Web-site
https://searchwindowsserver.techtarget.com/definition/enterprise

20

Managing Software Projects & Design Engineering: The management spectrum, software quality,

measurement and metrics. Software project estimation, decomposition techniques. Empirical

estimation models (COCOMO), the Make & Buy Decision. System models: Context Models,

Behavioral models, Data models, Object models. Design process, Design quality and design model.

Fundamental issues in software design: Goodness of design, cohesions, coupling. Function-oriented

design and object – oriented concepts. Architectural styles and patterns, Architectural Design:

Unified Modeling Language (UML), User interface design. Risk Analysis and management.

UNIT II

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS:IIM.Com(CA)

COURSE NAME: SOFTWARE MODELS AND ENGINEERING

COURSECODE:18CCP301

BATCH-2018-2020

MANAGEMENT SPECTRUM

Effective software project management focuses on the four P’s: people, product, process, and project.

The order is not arbitrary. The manager who forgets that software engineering work is an intensely human

endeavor will never have success in project management. A manager who fails to encourage comprehensive

stakeholder communication early in the evolution of a product risks building an elegant solution for the wrong

problem. The manager who pays little attention to the process runs the risk of inserting competent technical

methods and tools into a vacuum. The manager who embarks without a solid project plan jeopardizes the success

of the project.

ThePeople

The cultivation of motivated, highly skilled software people has been discussed since the 1960s. In fact, the

“people factor” is so important that the Software Engineering Institute has developed a People Capability Maturity

Model (People-CMM), in recognition of the fact that “every organization needs to continually improve its ability

to attract, develop, motivate, organize, and retain the workforce needed to accomplish its strategic business

objectives”. The people capability maturity model defines the following key practice areas for software people:

21

staffing, communication and coordination, work environment, performance management, training, compensation,

competency analysis and development, career development, workgroup development, team/culture development,

and others. Organizations that achieve high levels of People-CMM maturity have a higher likelihood of

implementing effective software project management practices. The People-CMM is a companion to the Software

Capability Maturity Model– Integration that guides organizations in the creation of a mature software process.

The Product

Before a project can be planned, product objectives and scope should be established, alternative solutions should

be considered, and technical and management constraints should be identified. Without this information, it is

impossible to define reasonable (and accurate) estimates of the cost, an effective assessment of risk, a realistic

breakdown of project tasks, or a manageable project schedule that provides a meaningful indication of progress.

As a software developer, you and other stakeholders must meet to define product objectives and scope. In many

cases, this activity begins as part of the system engineering or business process engineering and continues as the

first step in software requirements engineering. Objectives identify the overall goals for the product (from the

stakeholders’ points of view) without considering how these goals will be achieved. Scope identifies the primary

data, functions, and behaviors that characterize the product, and more important, attempts to bound these

characteristics in a quantitative manner. Once the product objectives and scope are understood, alternative

solutions are considered. Although very little detail is discussed, the alternatives enable managers and practitioners

to select a “best” approach, given the constraints imposed by delivery deadlines, budgetary restrictions, personnel

availability, technical interfaces, and myriad other factors.

The Process

A software process provides the framework from which a comprehensive plan for software development can be

established. A small number of framework activities are applicable to all software projects, regardless of their size

or complexity. A number of different task sets—tasks, milestones, work products, and quality assurance points—

enable the framework activities to be adapted to the characteristics of the software project and the requirements of

the project team. Finally, umbrella activities—such as software quality assurance, software configuration

management, and measurement—overlay the process model. Umbrella activities are independent of any one

framework activity and occur throughout the process.

The Project

We conduct planned and controlled software projects for one primary reason—it is the only known way to manage

complexity. And yet, software teams still struggle. In a study of 250 large software projects between 1998 and

2004, Capers Jones found that “about 25 were deemed successful in that they achieved their schedule, cost, and

quality objectives. About 50 had delays or overruns below 35 percent, while about 175 experienced major delays

22

and overruns, or were terminated without completion.” Although the success rate for present-day software projects

may have improved somewhat, our project failure rate remains much higher than it should be. To avoid project

failure, a software project manager and the software engineers who build the product must avoid a set of common

warning signs, understand the critical success factors that lead to good project management, and develop a

commonsense approach for planning, monitoring, and controlling the project.

Software quality, measurement and metrics

Software quality assurance is composed of a variety of tasks associated with two different

constituencies—the software engineers who do technical work and an SQA group that has responsibility for

quality assurance planning, oversight, record keeping, analysis, and reporting.

Software engineers address quality (and perform quality control activities) by applying solid technical methods

and measures, conducting technical reviews, and performing well-planned software testing.

Measurements in the physical world can be categorized in two ways: direct measures (e.g., the length of a

bolt) and indirect measures (e.g., the “quality” of bolts produced, measured by counting rejects). Software metrics

can be categorized similarly.

Direct measures of the software process include cost and effort applied. Direct measures of the product include

lines of code (LOC) produced, execution speed, memory size, and defects reported over some set period of time.

Indirect measures of the product include functionality, quality, complexity, efficiency, reliability, maintainability,

and many other “–abilities”.

The cost and effort required to build software, the number of lines of code produced, and other direct measures are

relatively easy to collect, as long as specific conventions for measurement are established in advance.

However, the quality and functionality of software or its efficiency or maintainability are more difficult to assess

and can be measured only indirectly. The software metrics domain can be partitioned into process, project, and

product metrics. Project metrics are then consolidated to create process metrics that are public to the software

organization as a whole. But how does an organization combine metrics that come from different individuals or

projects? To illustrate, consider a simple example. Individuals on two different project teams record and categorize

all errors that they find during the software process. Individual measures are then combined to develop team

measures. Team A found 342 errors during the software process prior to release. Team B found 184 errors. All

other things being equal, which team is more effective in uncovering errors throughout the process? Because you

do not know the size or complexity of the projects, you cannot answer this question. However, if the measures are

normalized, it is possible to create software metrics that enable comparison to broader organizational averages.

Size-Oriented Metrics

23

Size-oriented software metrics are derived by normalizing quality and/or productivity measures by

considering the size of the software that has been produced. If a software organization maintains simple records, a

table of size-oriented measures can be created.

Function-Oriented Metrics

Function-oriented software metrics use a measure of the functionality delivered by the application as a

normalization value. The most widely used function-oriented metric is the function point (FP). Computation of the

function point is based on characteristics of the software’s information domain and complexity.

The function point, like the LOC measure, is controversial. Proponents claim that FP is programming language

independent, making it ideal for applications using conventional

and nonprocedural languages, and that it is based on data that are more likely to be known early in the evolution of

a project, making FP more attractive as an estimation approach. Opponents claim that the method requires some

“sleight of hand” in that computation is based on subjective rather than objective data, that counts of the

information domain (and other dimensions) can be difficult to collect after the fact, and that FP has no direct

physical meaning—it’s just a number.

Object-Oriented Metrics

Conventional software project metrics (LOC or FP) can be used to estimate object orientedsoftware projects.

However, these metrics do not provide enough granularity for the schedule and effort adjustments that are required

as you iterate through an evolutionary or incremental process.

Lorenz and Kidd suggest the followingset of metrics for Object Oriented projects:

Number of scenario scripts:

A scenario script is a detailed sequence of steps that describe theinteraction between the user and the application.

Each script is organized into triplets of the form

{initiator, action, participant}

where initiator is the object that requests some service (that initiates a message), action is the result of the request,

and participant is the server object that satisfies the request. The number of scenario scripts is directly correlated to

the size of the application and to the number of test cases that must be developed to exercise the system once it is

constructed.

Number of key classes:Key classes are the “highly independent components” that are defined early in object-

oriented analysis . Because key classes are central to the problem domain, the number of such classes is an

24

indication of the amount of effort required to develop the software and also an indicationof the potential amount of

reuse to be applied during system development.

Number of support classes: Support classes are required to implement the system but are not immediately related

to the problem domain. Examples might be user interface (GUI) classes, database access and manipulation classes,

and computation classes. In addition, support classes can be developed for each of the key classes. Support classes

are defined iteratively throughout an evolutionary process. The number of support classes is an indication of the

amount of effort required to develop the software and also an indication of the potential amount of reuse to be

applied during system development.

Average number of support classes per key class: In general, key classes areknown early in the project. Support

classes are defined throughout. If the average number of support classes per key class were known for a given

problem domain, estimating (based on total number of classes) would be greatly simplified. Lorenz and Kidd

suggest that applications with a GUI have between two and three times the number of support classes as key

classes. Non-GUI applications have between one and two times the number of support classes as key classes.

Number of subsystems: A subsystem is an aggregation of classes that support a function that is visible to the end

user of a system. Once subsystems are identified, it is easier to lay out a reasonable schedule in which work on

subsystems is partitioned among project staff.

Use-Case–Oriented Metrics: Use cases are used widely as a method for describing customer-level or business

domain requirements that imply software features and functions. It would seem reasonable to use the use case as a

normalization measure similar to LOC or FP.

SOFTWARE PROJECT ESTIMATION

Software cost and effort estimation will never be an exact science. Too many variables—human, technical,

environmental, political—can affect the ultimate cost of software and effort applied to develop it. However,

software project estimation can be transformed from a black art to a series of systematic steps that provide

estimates with acceptable risk. To achieve reliable cost and effort estimates, a number of options arise:

1. Delay estimation until late in the project (obviously, we can achieve 100 percentaccurate estimates after the

project is complete!).

2. Base estimates on similar projects that have already been completed.

3. Use relatively simple decomposition techniques to generate project cost andeffort estimates.

4. Use one or more empirical models for software cost and effort estimation.

Unfortunately, the first option, however attractive, is not practical. Cost estimatesmust be provided up-front.

However, you should recognize that the longer you wait,the more you know, and the more you know, the less

likely you are to make seriouserrors in your estimates.The second option can work reasonably well, if the current

25

project is quite similarto past efforts and other project influences (e.g., the customer, business conditions,the

software engineering environment, deadlines) are roughly equivalent. Unfortunately,past experience has not

always been a good indicator of future results.The remaining options are viable approaches to software project

estimation.Ideally, the techniques noted for each option should be applied in tandem; each usedas a cross-check

for the other.

Decomposition techniques

Software project estimation is a form of problem solving, and in most cases, the problem to be solved (i.e.,

developing a cost and effort estimate for a software project) is too complex to be considered in one piece. For this

reason, you should decompose the problem, recharacterizing it as a set of smaller (and hopefully, more

manageable) problems.But before an estimate can be made, you must understand the scope of the software to be

built and generate an estimate of its “size.”

Software Sizing

The accuracy of a software project estimate is predicated on a number of things:

(1) the degree to which you have properly estimated the size of the product to be built;

(2) the ability to translate the size estimate into human effort, calendar time, and dollars

(a function of the availability of reliable software metrics from past projects);

(3) the degree to which the project plan reflects the abilities of the software team; and

(4) the stability of product requirements and the environment that supports the software

engineering effort.

Putnam and Myers suggest four different approaches to the sizing problem:

• “Fuzzy logic” sizing. This approach uses the approximate reasoning techniques that are the cornerstone of fuzzy

logic. To apply this approach, the planner must identify the type of application, establish its magnitude on a

qualitative scale, and then refine the magnitude within the original range.

 Function point sizing. The planner develops estimates of the information domain characteristics

Standard component sizing. Software is composed of a number of different “standard components” that are

generic to a particular application area. For example, the standard components for an information system are

subsystems, modules, screens, reports, interactive programs, batch programs, files, LOC, and object-level

instructions. The project planner estimates the number of occurrences of each standard component and then uses

historical project data to estimate the delivered size per standard component.

Change sizing. This approach is used when a project encompasses the use of existing software that must be

modified in some way as part of a project. The planner estimates the number and type (e.g., reuse, adding code,

changing code, deleting code) of modifications that must be accomplished.

Problem-Based Estimation

26

LOC and FP data are used in two ways during software project estimation:

(1) as estimation variables to “size” each element of the software and

(2) as baseline metrics collected from past projects and used in conjunction with estimation variables to develop

cost and effort projections.

LOC and FP estimation are distinct estimation techniques. Yet both have a number of characteristics in common.

You begin with a bounded statement of software scope and from this statement attempt to decompose the

statement of scope into problem functions that can each be estimated individually. LOC or FP (the estimation

variable) is then estimated for each function. Alternatively, you may choose another component for sizing, such as

classes or objects, changes, or business processes affected.

The LOC and FP estimation techniques differ in the level of detail required for decomposition

and the target of the partitioning. When LOC is used as the estimation variable, decomposition is absolutely

essential and is often taken to considerable levels of detail. The greater the degree of partitioning, the more likely

reasonably accurate estimates of LOC can be developed. For FP estimates, decomposition works differently.

Rather than focusing on function, each of the information domain characteristics—inputs, outputs, data files,

inquiries, and external interfaces are estimated. The resultant estimates can then be used to derive an FP value that

can be tied to past data and used to generate an estimate.

Regardless of the estimation variable that is used, you should begin by estimating a range of values for each

function or information domain value. Using historical data or (when all else fails) intuition, estimate an

optimistic, most likely, and pessimistic size value for each function or count for each information domain value.

An implicit indication of the degree of uncertainty is provided when a range of values is specified. A three-point or

expected value can then be computed. The expected value for the estimation variable (size) S can be computed as

a weighted average of the optimistic (sopt), most likely (sm), and pessimistic (spess) estimates.

For example,

COCOMO - COnstructiveCOstMOdel. The original COCOMO model became one of the most widely used and

discussed software cost estimation models in the industry. It has evolved intoa more comprehensive estimation

model, called COCOMOII . Like its predecessor, COCOMO II is actually a hierarchy of estimation models that

address the following areas:

• Application composition model. Used during the early stages of software engineering,

when prototyping of user interfaces, consideration of software and system interaction, assessment of performance,

and evaluation of technology maturity are paramount.

27

• Early design stage model. Used once requirements have been stabilized and basic software architecture has been

established.

• Post-architecture-stage model. Used during the construction of the software. Like all estimation models for

software, the COCOMO II models require sizing information. Three different sizing options are available as part

of the model hierarchy: object points, function points, and lines of source code.

Context model

The fundamental system modelor context diagram depicts the security function as a single transformation,

representingthe external producers and consumers of data that flow into and out of thefunction. Figure below

depicts a level 0 context model

Context-level DFD for the SafeHome security function

The behavioral model

The behavioral model indicates how software will respond to external events or stimuli. To create the model, you

should perform the following steps:

1. Evaluate all use cases to fully understand the sequence of interaction within

the system.

2. Identify events that drive the interaction sequence and understand how theseevents relate to specific objects.

3. Create a sequence for each use case.

4. Build a state diagram for the system.

28

5. Review the behavioral model to verify accuracy and consistency.

Identifying Events with the Use Case

In general, an event occurs whenever the system and an actor exchange information.

State Representations

In the context of behavioral modeling, two different characterizations of states must be considered: (1) the state of

each class as the system performs its function and

(2) the state of the system as observed from the outside as the system performs its function.

The state of a class takes on both passive and active characteristics.

 A passive state is simply the current status of all of an object’s attributes.

State diagrams for analysis classes.

 One component of a behavioral model is a UML state diagram that represents active states for each class and the

events (triggers) that cause changes between these active states. Figure below illustrates a state diagram for the

Control Panel object in the SafeHome security function.

Figure : State diagram for the ControlPanel class

Sequence diagrams. The second type of behavioral representation, called a sequence diagram in UML, indicates

how events cause transitions from object to object. Once events have been identified by examining a use case, the

modeler creates a sequence diagram—a representation of how events cause flow from one object to another as a

function of time. In essence, the sequence diagram is a shorthand version of the use case. It represents key classes

and the events that cause

29

behavior to flow from class to class.

DATA MODEL

If software requirements include the need to create, extend, or interface with a database or if complex data

structures must be constructed and manipulated, the software team may choose to create a data model as part of

overall requirements modeling. A software engineer or analyst defines all data objects that are processed within

the system, the relationships between the data objects, and other information that is pertinent to the relationships.

The entity-relationship diagram (ERD) addresses these issues and represents all data objects that are entered,

stored, transformed, and produced within an application.

Data Objects

A data object is a representation of composite information that must be understood by software. By composite

information, I mean something that has a number of different properties or attributes. Therefore, width (a single

value) would not be a valid data object, but dimensions (incorporating height, width, and depth) could be defined

as an object.

Data Attributes

Data attributes define the properties of a data object and take on one of three different characteristics. They can be

used to (1) name an instance of the data object, (2) describe the instance, or (3) make reference to another instance

in another table. In addition, one or more of the attributes must be defined as an identifier—that is, the identifier

attribute becomes a “key” when we want to find an instance of the data object. In some cases, values for the

identifier(s) are unique, although this is not a requirement. Referring to the data object car, a reasonable identifier

might be the ID number.

Relationships

Data objects are connected to one another in different ways. Consider the two data objects, person and car. These

objects can be represented using the simple notation illustrated in Figure below. A connection is established

between person and car because the two objects are related. But what are the relationships? To determine the

30

answer, you should understand the role of people (owners, in this case) and cars within the context of the software

to be built. You can establish a set of object/relationship pairs that define the relevant relationships.

For example,

• A person owns a car.

• A person is insured to drive a car.

Design Process

Software design is an iterative process through which requirements are translatedinto a blueprint” for constructing

the software. Initially, the blueprint depicts a holisticview of software. That is, the design is represented at a high

level of abstraction—a level that can be directly traced to the specific system objective and more detaileddata,

functional, and behavioral requirements. As design iterations occur, subsequentrefinement leads to design

representations at much lower levels of abstraction.These can still be traced to requirements, but the connection is

more subtle.

Design Quality

Throughout the design process, the quality of the evolving design is assessed with a series of technical reviews. In

order to evaluate the quality of a design representation, you and other members of the software team must establish

technical criteria for good design.

Quality Guidelines

1. A design should exhibit an architecture that has been created using recognizable architectural

styles or patterns is composed of componentsthat exhibit good design characteristics and can be

implemented in an evolutionary fashion,2 thereby facilitating implementation and testing.

2. A design should be modular; that is, the software should be logically partitionedinto elements or

subsystems.

3. A design should contain distinct representations of data, architecture, interfaces, and components.

31

4. A design should lead to data structures that are appropriate for the classes tobe implemented and are

drawn from recognizable data patterns.

5. A design should lead to components that exhibit independent functionalcharacteristics.

6. A design should lead to interfaces that reduce the complexity of connectionsbetween components

and with the external environment.

7. A design should be derived using a repeatable method that is driven by informationobtained during

software requirements analysis.

8. A design should be represented using a notation that effectively communicatesits meaning.

Cohesion and coupling

Cohesionis an indication of the relative functional strength of a module. Coupling is

an indication of the relative interdependence among modules. Cohesion is a natural extension of the information-

hiding concept. A cohesive module performs a single task, requiring little interaction with other components in

other parts of a program. Stated simply, a cohesive module should (ideally) do just one thing. Although you should

always strive for high cohesion (i.e., single-mindedness), it is often necessary and advisable to have a software

component perform multiple functions. However, “schizophrenic” components (modules that perform many

unrelated functions) are to be avoided if a good design is to be achieved.

Coupling is an indication of interconnection among modules in a software structure.Coupling depends on

the interface complexity between modules, the point atwhich entry or reference is made to a module, and what

data pass across the interface.In software design, you should strive for the lowest possible coupling.

Simpleconnectivity among modules results in software that is easier to understand and lessprone to a “ripple

effect”, caused when errors occur at one location and propagatethroughout a system.

Object Oriented Concepts

Requirements modeling (also called analysis modeling) focuses primarily on classes that are extracted directly

from the statement of the problem. These entity classes typically represent things that are to be stored in a database

and persist throughout the duration of the application (unless they are specifically deleted). Design refines and

extends the set of entity classes. Boundary and controller classes are developed and/or refined during design.

Boundary classes create the interface (e.g., interactive screen and printed reports) that the user sees and

interactswith, as the software is used. Boundary classes are designed with the responsibility of managing the way

entity objects are represented to users.

Controller classes are designed to manage:

(1) the creation or update of entityobjects

(2) the instantiation of boundary objects as they obtain information from entity objects,

(3) complex communication between sets of objects, and

32

(4) validation of data communicated between objects or between the user and the application.

The concepts discussed in the paragraphs that follow can be useful in analysis and design work.

Inheritance.

 Inheritance is one of the key differentiators between conventional and object-oriented systems. A subclass Y

inherits all of the attributes and operations associated with its superclass X. This means that all data structures and

algorithms originally designed and implemented for X are immediately available for Y—no further work need be

done. Reuse has been accomplished directly. Any change to the attributes or operations contained within a

superclass is immediately inherited by all subclasses. Therefore, the class hierarchy becomes a mechanism through

which changes (at high levels) can be immediately propagated through a system. It is important to note that at each

level of the class hierarchy new attributes and operations may be added to those that have been inherited from

higher levels in the hierarchy. In fact, whenever a new class is to be created, you have a number of options:

• The class can be designed and built from scratch. That is, inheritance is not used.

• The class hierarchy can be searched to determine if a class higher in the hierarchy contains most of the required

attributes and operations. The new class inherits from the higher class and additions may then be added, as

required.

• The class hierarchy can be restructured so that the required attributes and operations can be inherited by the new

class.

• Characteristics of an existing class can be overridden, and different versions of attributes or operations are

implemented for the new class.

Like all fundamental design concepts, inheritance can provide significant benefit for the design, but if it is used

inappropriately, it can complicate a design unnecessarily and lead to error-prone software that is difficult to

maintain.

Messages.

Classes must interact with one another to achieve design goals. A message stimulates some behavior to occur in

the receiving object. The behavior is accomplished when an operation is executed.

Polymorphism. Polymorphism is a characteristic that greatly reduces the effort required to extend the design of an

existing object-oriented system. To understand polymorphism, consider a conventional application that must draw

four different types of graphs: line graphs, pie charts, histograms, and Kiviat diagrams. Ideally, once data are

collected for a particular type of graph, the graph should draw itself.To accomplish this in a conventional

application (and maintain module cohesion), it would be necessary to develop drawing modules for each type of

graph.

UML

33

The Unified Modeling Language (UML) is “a standard language for writingsoftware blueprints. UML may be

used to visualize, specify, construct, anddocument the artifacts of a software-intensive system”. In otherwords, just

as building architects create blueprints to be used by a constructioncompany, software architects create UML

diagrams to help software developersbuild the software.

To model classes, including their attributes, operations, and their relationships and associations with other classes,

UML provides a class diagram. A class diagram provides a static or structural view of a system. It does not show

the dynamic nature of the communications between the objects of the classes in the diagram. The main elements of

a class diagram are boxes, which are the icons used to represent classes and interfaces. Each box is divided into

horizontal parts. The top part contains the name of the class. The middle section lists the attributes of the class. An

attribute refers to something that an object of that class knows or can provide all the time. Attributes are usually

implemented as fields of the class, but they need not be. They could be values that the class can compute from its

instance variables or values that the class can get from other objects of which it is composed.

For example, an object might always know the current time and be able to return it to you whenever you ask.

Therefore, it would be appropriate to list the current time as an attribute of that class of objects. However, the

object would most likely not have that time stored in one of its instance variables, because it would need to

continually update that field. Instead, the object would likely compute the current time (e.g., through consultation

with objects of other classes) at the moment when the time is requested. The third section of the class diagram

contains the operations or behaviors of the class. An operation refers to what objects of the class can do. It is

usually implemented as a method of the class.

Figure A1 presents a simple example of a Thoroughbred class that models thoroughbred horses. It has three

attributes displayed—mother, father, and birthyear. The diagram also shows three operations: getCurrentAge(),

getFather(), and getMother(). There may be other suppressed attributes and operations not shown in the diagram.

Figure A1 : A class diagram for a Thoroughbred class

Each attribute can have a name, a type, and a level of visibility. The type and visibility are optional. The type

follows the name and is separated from the name by a colon. The visibility is indicated by a preceding –, #, ~, or +,

indicating, respectively, private, protected, package, or public visibility. In Figure A1, all attributes have private

visibility, as indicated by the leading minus sign (–). You can also specify that an attribute is a static or class

34

attribute by underlining it. Each operation can also be displayed with a level of visibility, parameters with names

and types, and a return type. An abstract class or abstract method is indicated by the use of italics for the name in

the class diagram. See the Horse class in Figure A2 for an example. An interface is indicated by adding the phrase

“«interface»” (called a stereotype) above the name. See the OwnedObject interface in Figure A2. An interface can

also be represented graphically by a hollow circle. It is worth mentioning that the icon representing a class can

have other optional parts. For example, a fourth section at the bottom of the class box can be used to list the

responsibilities of the class. This fourth section is not shown in any of the figures in this appendix. Class diagrams

can also show relationships between classes. A class that is a subclass of another class is connected to it by an

arrow with a solid line for its shaft and with a triangular hollow arrowhead. The arrow points from the subclass to

the superclass. In UML, such a relationship is called a generalization. For example, in Figure A2, the

Thoroughbred and QuarterHorse classes are shown to be subclasses of the Horse abstract class. An arrow with a

dashed line for the arrow shaft indicates implementation of an interface. In UML, such a relationship is called a

realization. For example, in Figure A2, the Horse class implements or realizes the OwnedObject interface.

Figure A2: A class diagram regarding horses

An association between two classes means that there is a structural relationship between them. Associations are

represented by solid lines. An association has many optional parts. It can be labeled, as can each of its ends, to

indicate the role of each class in the association. For example, in Figure A2, there is an association between

OwnedObjectand Person in which the Person plays the role of owner. Arrows on either or both ends of an

35

association line indicate navigability. Also, each end of the association line can have a multiplicity value

displayed. Navigability and multiplicity are explained in more detail later in this section. An association might also

connect a class with itself, using a loop. Such an association indicates the connection of an object of the class with

other objects of the same class. An association with an arrow at one end indicates one-way navigability. The arrow

means that from one class you can easily access the second associated class to which the association points, but

from the second class, you cannot necessarily easily access the first class. Another way to think about this is that

the firs class is aware of the second class, but the second class object is not necessarily directly aware of the first

class. An association with no arrows usually indicates a two-way association, which is what was intended in

Figure A2, but it could also just mean that the navigability is not important and so was left off.

It should be noted that an attribute of a class is very much the same thing as an association of the class with the

class type of the attribute. That is, to indicate that a class has a property called “name” of type String, one could

display that property as an attribute, as in the Horse class in Figure A2. Alternatively, one could create a one-way

association from the Horse class to the String class with the role of the String class being “name.” The attribute

approach is better for primitive data types, whereas the association approach is often better if the property’s class

plays a major role in the design, in which case it is valuable to have a class box for that type. A dependency

relationship represents another connection between classes and is indicated by a dashed line (with optional arrows

at the ends and with optional labels). One class depends on another if changes to the second class might require

changes to the first class. An association from one class to another automatically indicates a dependency. No

dashed line is needed between classes if there is already an association between them.

However, for a transient relationship (i.e., a class that does not maintain any long-term connection to another class

but does use that class occasionally) we should draw a dashed line from the first class to the second. For example,

in Figure A2, the Thoroughbred class uses the Date class whenever its getCurrentAge() method is invoked, and

so the dependency is labeled “uses.” The multiplicity of one end of an association means the number of objects of

that class associated with the other class. A multiplicity is specified by a nonnegative integer or by a range of

integers. A multiplicity specified by “0..1” means that there are 0 or 1 objects on that end of the association. For

example, each person in the world has either a Social Security number or no such number (especially if they are

not U.S. citizens), and so a multiplicity of 0..1 could be used in an association between aPerson class and a

SocialSecurityNumberclass in a class diagram. A multiplicityspecified by “1..*” means one or more, and a

multiplicity specified by “0..*” or just “*“means zero or more. An * was used as the multiplicity on the

OwnedObjectend ofthe association with class Person in Figure A2 because a Person can own zero ormore

objects..

If one end of an association has multiplicity greater than 1, then the objects of the class referred to at that end of

the association are probably stored in a collection, such as a set or ordered list. One could also include that

36

collection class itself in the UML diagram, but such a class is usually left out and is implicitly assumed to be there

due to the multiplicity of the association.

Anaggregationis a special kind of association indicated by a hollow diamond on one end of the icon. It indicates a

“whole/part” relationship, in that the class to which the arrow points is considered a “part” of the class at the

diamond end of the association.

A compositionis an aggregation indicating strong ownership of the parts. In a composition, the parts live and die

with the owner because they have no role in the software system independent of the owner.

UML use-case diagram help you determine the functionality and features of the software from the user’s

perspective. To give you a feeling for how use cases and use-case diagrams work, we will create some for a

software application for managing digital music files, similar to Apple’s iTunes software.

Some of the things the software might do include:

• Download an MP3 music file and store it in the application’s library.

• Capture streaming music and store it in the application’s library.

• Manage the application’s library (e.g., delete songs or organize them in playlists).

• Burn a list of the songs in the library onto a CD.

• Load a list of the songs in the library onto an iPod or MP3 player.

• Convert a song from MP3 format to AAC format and vice versa.

A use-case diagram for the digital music application is shown in Figure A3.

37

Figure A3: Use case diagram for music system

RISK ANALYSIS

Software development is activity that uses a variety of technological advancements and requires high levels of

knowledge. Because of these and other factors, every software development project contains elements of

uncertainty. This is known as project risk. The success of a software development project depends quite heavily on

the amount of risk that corresponds to each project activity. As a project manager, it’s not enough to merely be

aware of the risks. To achieve a successful outcome, project leadership must identify, assess, prioritize, and

manage all of the major risks. Risk is the possibility of suffering loss, and total risk exposure to a specific project

will account for both the probability and the size of the potential loss.

Risk management

Risk management means risk containment and mitigation. First, you’ve got to identify and plan. Then be ready to

act when a risk arises, drawing upon the experience and knowledge of the entire team to minimize the impact to

the project.

Risk management includes the following tasks:

 Identify risks and their triggers

 Classify and prioritize all risks

 Craft a plan that links each risk to a mitigation

 Monitor for risk triggers during the project

 Implement the mitigating action if any risk materializes

 Communicate risk status throughout project

Identify and Classify Risks

Most software engineering projects are inherently risky because of the variety potential problems that might arise.

Experience from other software engineering projects can help managers classify risk. The importance here is not

the elegance or range of classification, but rather to precisely identify and describe all of the real threats to project

success. A simple but effective classification scheme is to arrange risks according to the areas of impact.

Five Types of Risk In Software Project Management

For most software development projects, we can define five main risk impact areas:

 New, unproven technologies

 User and functional requirements

 Application and system architecture

 Performance

 Organizational

38

New, unproven technologies. The majority of software projects entail the use of new technologies. Ever-changing

tools, techniques, protocols, standards, and development systems increase the probability that technology risks will

arise in virtually any substantial software engineering effort. Training and knowledge are of critical importance,

and the improper use of new technology most often leads directly to project failure.

User and functional requirements. Software requirements capture all user needs with respect to the software

system features, functions, and quality of service. Too often, the process of requirements definition is lengthy,

tedious, and complex. Moreover, requirements usually change with discovery, prototyping, and integration

activities. Change in elemental requirements will likely propagate throughout the entire project, and modifications

to user requirements might not translate to functional requirements. These disruptions often lead to one or more

critical failures of a poorly-planned software development project.

Application and system architecture. Taking the wrong direction with a platform, component, or architecture

can have disastrous consequences. As with the technological risks, it is vital that the team includes experts who

understand the architecture and have the capability to make sound design choices.

Performance. It’s important to ensure that any risk management plan encompasses user and partner expectations

on performance. Consideration must be given to benchmarks and threshold testing throughout the project to ensure

that the work products are moving in the right direction.

Organizational. Organizational problems may have adverse effects on project outcomes. Project management

must plan for efficient execution of the project, and find a balance between the needs of the development team and

the expectations of the customers. Of course, adequate staffing includes choosing team members with skill sets

that are a good match with the project.

Risk Management Plan

After cataloging all of the risks according to type, the software development project manager should craft a risk

management plan. As part of a larger, comprehensive project plan, the risk management plan outlines the response

that will be taken for each risk—if it materializes.

Monitor and Mitigate

To be effective, software risk monitoring has to be integral with most project activities. Essentially, this means

frequent checking during project meetings and critical events.

Monitoring includes:

 Publish project status reports and include risk management issues

 Revise risk plans according to any major changes in project schedule

 Review and reprioritize risks, eliminating those with lowest probability

 Brainstorm on potentially new risks after changes to project schedule or scope

39

When a risk occurs, the corresponding mitigation response should be taken from the risk management plan.

Mitigating options include:

 Accept: Acknowledge that a risk is impacting the project. Make an explicit decision to accept the risk

without any changes to the project. Project management approval is mandatory here.

 Avoid: Adjust project scope, schedule, or constraints to minimize the effects of the risk.

 Control: Take action to minimize the impact or reduce the intensification of the risk.

 Transfer: Implement an organizational shift in accountability, responsibility, or authority to other

stakeholders that will accept the risk.

 Continue Monitoring: Often suitable for low-impact risks, monitor the project environment for potentially

increasing impact of the risk.

Communicate

Throughout the project, it’s vital to ensure effective communication among all stakeholders, managers, developers,

QA—especially marketing and customer representatives. Sharing information and getting feedback about risks

will greatly increase the probability of project success.

40

S/W Requirements, S/W Metrices& Testing Strategies: S/W Requirements : Functional and non-

functional requirements, User requirements, System requirements.SRA& SRS. S/W Metrices:

Process Metrices, Project Metrices& Product Metrices. Testing Strategies : A strategic approach to

software testing, Testing fundamentals, Test Case Design. Types Of Testing: Black-Box Testing,

White-Box Testing, Validation testing, System testing, the art of Debugging. Code walkthrough and

reviews. Software Quality, Metrics for Analysis Model, Metrics for Design Model, Metrics for

source code, Metrics for testing, Metrics for maintenance.

UNIT-III

SYLLABUS

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS:IIM.Com(CA)

COURSE NAME: SOFTWARE MODELS AND ENGINEERING

COURSECODE:18CCP301

BATCH-2018-2020

Requirements engineering (RE) is the process of establishing the services that the customer requires from a

system and the constraints under which it operates and is developed. The requirements themselves are the

descriptions of the system services and constraints that are generated during the requirements engineering process.

Requirements may range from a high-level abstract statement of a service or of a system constraint to a detailed

mathematical functional specification. As much as possible, requirements should describe what the system should

do, but not how it should do it.

A functional requirement describes what a software system should do, while non-functional requirements

place constraints on how the system will do so.

In software engineering, a functional requirement defines a system or its component. It describes the functions a

software must perform. A function is nothing but inputs, its behavior, and outputs. It can be a calculation, data

manipulation, business process, user interaction, or any other specific functionality which defines what function a

system is likely to perform.

Functional software requirements help you to capture the intended behavior of the system. This behavior may be

expressed as functions, services or tasks or which system is required to perform.

Functional requirements

41

The functional requirements for a system describe what the system should do. These requirements depend on the

type of software being developed, the expected users of the software, and the general approach taken by the

organization when writing requirements. When expressed as user requirements, functional requirements are

usually described in an abstract way that can be understood by system users. However, more specific functional

system requirements describe the system functions, its inputs and outputs, exceptions, etc., in detail. Functional

system requirements vary from general requirements covering what the system should do to very specific

requirements reflecting local ways of working or an organization’s existing systems.

For example, here are examples of functional requirements for the MHC-PMS system, used to maintain

information about patients receiving treatment for mental health problems:

1. A user shall be able to search the appointments lists for all clinics.

2. The system shall generate each day, for each clinic, a list of patients who are expected to attend appointments

that day.

3. Each staff member using the system shall be uniquely identified by his or her eight-digit employee number.

These functional user requirements define specific facilities to be provided by the system. These have been taken

from the user requirements document and they show that functional requirements may be written at different levels

of detail (contrast requirements 1 and 3). Imprecision in the requirements specification is the cause of many

software engineering problems. It is natural for a system developer to interpret an ambiguous requirement in a way

that simplifies its implementation. Often, however, this is not what the customer wants. New requirements have to

be established and changes made to the system. Of course, this delays system delivery and increases costs. For

example, the first example requirement for the MHC-PMS states that a user shall be able to search the

appointments lists for all clinics. The rationale for this requirement is that patients with mental health problems are

sometimes confused. They may have an appointment at one clinic but actually go to a different clinic. If they have

an appointment, they will be recorded as having attended, irrespective of the clinic. The medical staff member

specifying this may expect ‘search’ to mean that, given a patient name, the system looks for that name in all

appointments at all clinics. However, this is not explicit in the requirement. System developers may interpret the

requirement in a different way and may implement a search so that the user has to choose a clinic then carry out

the search. This obviously will involve more user input and so take longer. In principle, the functional

requirements specification of a system should be both complete and consistent. Completeness means that all

services required by the user should be defined. Consistency means that requirements should not have

contradictory definitions. In practice, for large, complex systems, it is practically impossible to achieve

42

requirements consistency and completeness. One reason for this is that it is easy to make mistakes and omissions

when writing specifications for complex systems. Another reason is that there are many stakeholders in a large

system. A stakeholder is a person or role that is affected by the system in some way. Stakeholders have different—

and often inconsistent—needs. These inconsistencies may not be obvious when the requirements are first

specified, so inconsistent requirements are included in the specification. The problems may only emerge after

deeper analysis or after the system has been delivered to the customer.

Non Functional Requirements

Non-functional requirements, as the name suggests, are requirements that are not directly concerned with the

specific services delivered by the system to its users. They may relate to emergent system properties such as

reliability, response time, and store occupancy. Alternatively, they may define constraints on the system

implementation such as the capabilities of I/O devices or the data representations used in interfaces with other

systems. Non-functional requirements, such as performance, security, or availability, usually specify or constrain

characteristics of the system as a whole. Non-functional requirements are often more critical than individual

functional requirements. System users can usually find ways to work around a system function that doesn’t really

meet their needs. However, failing to meet a non-functional requirement can mean that the whole system is

unusable. For example, if an aircraft system does not meet its reliability requirements, it will not be certified as

safe for operation; if an embedded control system fails to meet its performance requirements, the control functions

will not operate correctly. Although it is often possible to identify which system components implement specific

functional requirements (e.g., there may be formatting components that implement reporting requirements), it is

often more difficult to relate components to non-functional requirements. The implementation of these

requirements may be diffused throughout the system. There are two reasons for this:

1. Non-functional requirements may affect the overall architecture of a system rather than the individual

components. For example, to ensure that performance requirements are met, you may have to organize the system

to minimize communications between components.

2. A single non-functional requirement, such as a security requirement, may generate a number of related

functional requirements that define new system services that are required. In addition, it may also generate

requirements that restrict existing requirements.

43

Types of non-functional requirement

Three classes of non-functional requirements:

1. Product requirements

Requirements which specify that the delivered product must behave in a particular way e.g. execution

speed, reliability, etc.

2. Organizational requirements

Requirements which are a consequence of organizational policies and procedures e.g. process standards

used, implementation requirements, etc.

3. External requirements

Requirements which arise from factors which are external to the system and its development process e.g.

interoperability requirements, legislative requirements, etc.

Non-functional requirements may be very difficult to state precisely and imprecise requirements may be difficult

to verify. If they are stated as a goal (a general intention of the user such as ease of use), they should be rewritten

as a verifiable non-functional requirement (a statement using some quantifiable metric that can be objectively

tested). Goals are helpful to developers as they convey the intentions of the system users.

User requirements

High-level abstract requirements written as statements, in a natural language plus diagrams, of what services the

system is expected to provide to system users and the constraints under which it must operate. The user

44

requirement(s) document (URD) or user requirement(s) specification (URS) is a document usually used in

software engineering that specifies what the user expects the software to be able to do. Once the required

information is completely gathered it is documented in a URD, which is meant to spell out exactly what the

software must do and becomes part of the contractual agreement. A customer cannot demand features not in the

URD, whilst the developer cannot claim the product is ready if it does not meet an item of the URD. The URD can

be used as a guide to planning cost, timetables, milestones, testing, etc. The explicit nature of the URD allows

customers to show it to various stakeholders to make sure all necessary features are described. Formulating a URD

requires negotiation to determine what is technically and economically feasible. Preparing a URD is one of those

skills that lies between a science and an art, requiring both software technical skills and interpersonal skills.

The user requirements for a system should describe the functional and nonfunctional requirements so that

they are understandable by system users who don’t have detailed technical knowledge. Ideally, they should specify

only the external behavior of the system. The requirements document should not include details of the system

architecture or design. Consequently, if you are writing user requirements, you should not use software jargon,

structured notations, or formal notations. You should write user requirements in natural language, with simple

tables, forms, and intuitive diagrams.

User requirements are almost always written in natural language supplemented by appropriate diagrams

and tables in the requirements document. System requirements may also be written in natural language but other

notations based on forms, graphical system models, or mathematical system models can also be used. Graphical

models are most useful when you need to show how a state changes or when you need to describe a sequence of

actions. UML sequence charts and state charts show the sequence of actions that occur in response to a certain

message or event. Formal mathematical specifications are sometimes used to describe the requirements for safety-

or security-critical systems, but are rarely used in other circumstances.

System requirements

System requirements are expanded versions of the user requirements that are used by software engineers as the

starting point for the system design. They add detail and explain how the user requirements should be provided by

the system. They may be used as part of the contract for the implementation of the system and should therefore be

a complete and detailed specification of the whole system. Ideally, the system requirements should simply describe

the external behavior of the system and its operational constraints. They should not be concerned with how the

system should be designed or implemented. However, at the level of detail required to completely specify a

complex software system, it is practically impossible to exclude all design information. There are several reasons

for this:

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Contractual_agreement
https://en.wikipedia.org/wiki/Stakeholder_(corporate)
https://en.wikipedia.org/wiki/Negotiation
https://en.wikipedia.org/wiki/Science
https://en.wikipedia.org/wiki/Art
https://en.wikipedia.org/wiki/Interpersonal_skills

45

1. You may have to design an initial architecture of the system to help structure the requirements specification.

The system requirements are organized according to the different sub-systems that make up the system.

2. In most cases, systems must interoperate with existing systems, which constrain the design and impose

requirements on the new system.

3. The use of a specific architecture to satisfy non-functional requirements may be necessary. An external

regulator who needs to certify that the system is safe may specify that an already certified architectural design be

used.

Software requirements specification (SRS)

It is a document that describes what the software will do and how it will be expected to perform. An SRS describes

the functionality the product needs to fulfill all stakeholders (business, users) needs. A software requirements

specification (SRS) is a document that captures complete description about how the system is expected to perform.

It is usually signed off at the end of requirements engineering phase.

A software requirements specification (SRS) is a document that is created when a detailed description of all

aspects of the software to be built must be specified before the project is to commence. It is important to note that

a formal SRS is not always written. In fact, there are many instances in which effort expended on an SRS might be

better spent in other software engineering activities. However, when software is to be developed by a third party,

when a lack of specification would create severe business issues, or when a system is extremely complex or

business critical, an SRS may be justified.

Quality Characteristics of a good SRS

�Correctness:

User review is used to ensure the correctness of requirements stated in the SRS. SRS is said to be correct if it

covers all the requirements that are actually expected from the system.

� Completeness:

Completeness of SRS indicates every sense of completion including the numbering of all the pages, resolving the

to be determined parts to as much extent as possible as well as covering all the functional and non-functional

requirements properly.

� Consistency:

Requirements in SRS are said to be consistent if there are no conflicts between any set of requirements. Examples

46

of conflict include differences in terminologies used at separate places, logical conflicts like time period of report

generation, etc.

� Unambiguousness:

An SRS is said to be unambiguous if all the requirements stated have only 1 interpretation. Some of the ways to

prevent unambiguousness include the use of modelling techniques like ER diagrams, proper reviews and buddy

checks, etc.

� Ranking for importance and stability:

There should a criterion to classify the requirements as less or more important or more specifically as desirable or

essential. An identifier mark can be used with every requirement to indicate its rank or stability.

� Modifiability:

SRS should be made as modifiable as possible and should be capable of easily accepting changes to the system to

some extent. Modifications should be properly indexed and cross-referenced.

� Verifiability:

An SRS is verifiable if there exists a specific technique to quantifiably measure the extent to which every

requirement is met by the system. For example, a requirement stating that the system must be user-friendly is not

verifiable and listing such requirements should be avoided.

47

� Traceability:

One should be able to trace a requirement to a design component and then to a code segment in the program.

Similarly, one should be able to trace a requirement to the corresponding test cases.

� Design Independence:

There should be an option to choose from multiple design alternatives for the final system. More specifically, the

SRS should not include any implementation details.

� Testability:

An SRS should be written in such a way that it is easy to generate test cases and test plans from the document.

� Understandable by the customer:

An end user maybe an expert in his/her specific domain but might not be an expert in computer science. Hence,

the use of formal notations and symbols should be avoided to as much extent as possible. The language should be

kept easy and clear.

� Right level of abstraction:

If the SRS is written for the requirements phase, the details should be explained explicitly. Whereas, for a

feasibility study, fewer details can be used. Hence, the level of abstraction varies according to the purpose of the

Software Requirement Analysis(SRA)

Software requirement is a functional or non-functional need to be implemented in the system. Functional means

providing particular service to the user. For example, in context to banking application the functional requirement

will be when customer selects "View Balance" they must be able to look at their latest account balance. Software

requirement can also be a non-functional, it can be a performance requirement. For example, a non-functional

requirement is where every page of the system should be visible to the users within 5 seconds.

48

Necessity Of Requirement Analysis

According to statistics major reason of failure of software is that it does not meet with the requirement of

the user. Requirement analysis involves the task that determines the needs of the software, which mainly includes

complaints and needs of various clients/stakeholders.

Software Requirement Analysis Process

The steps for effective capturing on present requirements of users are:

 Requirement Knowledge:

It is very necessary to know about the requirements of the users before starting any project. Working on the

present requirements of the users will be helpful in gaining popularity of your project.

 Identification of Stakeholders:

Stakeholders includes customers, end-users, system administrators etc. identifying the correct stakeholder is

second step and is one of the most important step in all. Identifying the correct stakeholders help to properly

analyze and create a road map for gathering requirements.

 Collection of Requirements:

49

After identifying stakeholders one has to collect requirements for them. Based on the nature and aim of the project

there can be many kinds of stakeholders. Interacting with stakeholder groups can be in person interviews, focus

groups, market study, surveys and secondary research.

 Analysis of Collected Requirements:

Once the data is gathered structured analysis must be done of the data to make models. Data are analysed on the

basis of various parameters depending on the goals of the software. These include animation, automated reasoning,

knowledge based critiquing, consistency checking, analogical and case based reasoning.

 System requirement Specification (SYRS):

Once the data is analyzed they are put together in the form of system requirement specification document (SYRS)

or system requirement specification (SRS). It acts as a blueprint for the designing team to make the project. It

serves as a technical collection of all the requirements of stake holders which includes user requirements, system

requirements, user interface and operational requirements.

 Management Of Software Requirements:

The last step of this analysis process is correcting and validating all elements of requirement specifications

document. Errors can be corrected at this stage. Minor changes can also be done according to the requirement of

the software user.

Code Walkthrough is a form of peer review in which a programmer leads the review process and the other team
members ask questions and spot possible errors against development standards and other issues.

 The meeting is usually led by the author of the document under review and attended by other members of
the team.

 Review sessions may be formal or informal.
 Before the walkthrough meeting, the preparation by reviewers and then a review report with a list of

findings.
 The scribe, who is not the author, marks the minutes of meeting and note down all the defects/issues so that

it can be tracked to closure.
 The main purpose of walkthrough is to enable learning about the content of the document under review to

help team members gain an understanding of the content of the document and also to find defects.

http://www.professionalqa.com/srs-vs-frs-vs-brs

50

Testing Plan and Maintenance: Snooping for information, Coping with complexity through teaming,
Testing plan focus areas, Testing for recoverability, Planning for troubles, Preparing for the tests:
Software Reuse, Developing good test programs , Data corruption, Tools, Test Execution ,Testing with a
virtual computer, Simulation and Prototypes, Managing the Test, Customer’s role in testing, Software
maintenance issues and techniques. Software reuse. Client-Server software development.

UNIT IV

SYLLABUS

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS:IIM.Com(CA)

COURSE NAME: SOFTWARE MODELS AND ENGINEERING

COURSECODE:18CCP301

BATCH-2018-2020

Snooping for information

Snooping, in a security context, is unauthorized access to another person's or company's data. The practice is

similar to eavesdropping but is not necessarily limited to gaining access to data during its transmission. Snooping

can include casual observance of an e-mail that appears on another's computer screen or watching what someone

else is typing. More sophisticated snooping uses software programs to remotely monitor activity on a computer or

network device.

Malicious hackerkeyloggers to monitor keystrokes, capture passwords and login information, and to

intercept e-mail and other private communications and data transmissions. Corporations sometimes snoop on

employees legitimately to monitor their use of business computers and track Internet usage; governments may

snoop on individuals to collect information and avert crime and terrorism.

Test plan focus area

A TEST PLAN is a document describing software testing scope and activities. It is the basis for formally testing

any software/product in a project.

 test plan: A document describing the scope, approach, resources and schedule of intended test activities. It
identifies amongst others test items, the features to be tested, the testing tasks, who will do each task,
degree of tester independence, the test environment, the test design techniques and entry and exit criteria to
be used, and the rationale for their choice,and any risks requiring contingency planning. It is a record of the
test planning process.

 master test plan: A test plan that typically addresses multiple test levels.
 phase test plan: A test plan that typically addresses one test phase.

https://searchfinancialsecurity.techtarget.com/definition/eavesdropping
https://searchsecurity.techtarget.com/definition/keylogger

51

Test Plan Types

One can have the following types of test plans:

 Master Test Plan: A single high-level test plan for a project/product that unifies all other test plans.
 Testing Level Specific Test Plans:Plans for each level of testing.

o Unit Test Plan
o Integration Test Plan
o System Test Plan
o Acceptance Test Plan

 Testing Type Specific Test Plans: Plans for major types of testing like Performance Test Plan and
Security Test Plan.

Recovery testing in software testing

Recovery testing is a type of non-functional testing technique performed in order to determine how quickly the
system can recover after it has gone through system crash or hardware failure. Recovery testing is the forced
failure of the software to verify if the recovery is successful.It involves reverting to a point where the integrity of
the system was known and then reprocessing transactions up to the point of failure.

The purpose of recovery testing is to verify the system’s ability to recover from varying points of failure.

The time taken to recover depends upon:

 The number of restart points
 A volume of the applications
 Training and skills of people conducting recovery activities and tools available for recovery.

When there are a number of failures then instead of taking care of all failures, the recovery testing should be done
in a structured fashion which means recovery testing should be carried out for one segment and then another.

It is done by professional testers. Before recovery testing, adequate backup data is kept in secure locations. This is
done to ensure that the operation can be continued even after a disaster.

Life Cycle of Recovery Process

The life cycle of the recovery process can be classified into the following five steps:

1. Normal operation
2. Disaster occurrence
3. Disruption and failure of the operation
4. Disaster clearance through the recovery process
5. Reconstruction of all processes and information to bring the whole system to move to normal operation

52

1. A system consisting of hardware, software, and firmware integrated to achieve a common goal is
made operational for carrying out a well-defined and stated goal. The system is called to perform
the normal operation to carry out the designed job without any disruption within a stipulated period
of time.

2. A disruption may occur due to malfunction of the software, due to various reasons like input
initiated malfunction, software crashing due to hardware failure, damaged due to fire, theft, and
strike.

3. Disruption phase is a most painful phase which leads to business losses, relation break, opportunity
losses, man-hour losses and invariably financial and goodwill losses. Every sensible agency should
have a plan for disaster recovery to enable the disruption phase to be minimal.

4. If a backup plan and risk mitigation processes are at the right place before encountering disaster
and disruption, then recovery can be done without much loss of time, effort and energy. A
designated individual, along with his team with the assigned role of each of these persons should be
defined to fix the responsibility and help the organization to save from long disruption period.

5. Reconstruction may involve multiple sessions of operation to rebuild all folders along with
configuration files. There should be proper documentation and process of reconstruction for correct
recovery.

While performing recovery testing following things should be considered.

 We must create a test bed as close to actual conditions of deployment as possible. Changes in interfacing,
protocol, firmware, hardware, and software should be as close to the actual condition as possible if not the
same condition.

 Through exhaustive testing may be time-consuming and a costly affair, identical configuration, and
complete check should be performed.

 If possible, testing should be performed on the hardware we are finally going to restore. This is especially
true if we are restoring to a different machine than the one that created the backup.

 Some backup systems expect the hard drive to be exactly the same size as the one the backup was taken
from.

 Obsolescence should be managed as drive technology is advancing at a fast pace, and old drive may not be
compatible with the new one. One way to handle the problem is to restore to a virtual machine.
Virtualization software vendors like VMware Inc. can configure virtual machines to mimic existing
hardware, including disk sizes and other configurations.

 Online backup systems are not an exception for testing. Most online backup service providers protect us
from being directly exposed to media problems by the way they use fault-tolerant storage systems.

 While online backup systems are extremely reliable, we must test the restore side of the system to make
sure there are no problems with the retrieval functionality, security or encryption.

Client server softwaredevelopment

If protection of data is a critical requirement, then a client–server architecture should be used, with the protection
mechanisms built into the server. However, if the protection is compromised, then the losses associated with an
attack are likely to be high, as are the costs of recovery (e.g., all user credentials may have to be reissued). The
system is vulnerable to denial of service attacks, which overload the server and make it impossible for anyone to
access the system database.

53

Client server interaction

client–server model

This is a multi-user, web-based system for providing a film and photograph library. In this system, several servers
manage and display the different types of media. Video frames need to be transmitted quickly and in synchrony
but at relatively low resolution. They may be compressed in a store, so the video server can handle video
compression and decompression in different formats. Still pictures, however, must be maintained at a high
resolution, so it is appropriate to maintain them on a separate server. The catalog must be able to deal with a
variety of queries and provide links into the web information system that includes data about the film and video
clips, and an e-commerce system that supports the sale of photographs, film, and video clips.

54

Software Reengineering and Project Management: Software Reengineering, Reverse Engineering &
Forward Engineering, Life Cycle Phases and Process artifacts, Restructuring. Model based software
architectures, Software process and Iteration workflows, Major and Minor milestones, Periodic status
assessments, Process Planning, Project Control and process instrumentation: Seven core metrics,
management indicators, quality indicators, life-cycle expectations, CCPDS-R Case Study and Future
Software Project Management Practices.

UNIT-V

SYLLABUS

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS:IIM.Com(CA)

COURSE NAME: SOFTWARE MODELS AND ENGINEERING

COURSECODE:18CCP301

BATCH-2018-2020

Techniques for Maintenance

To perform software maintenance effectively, various techniques are used. These include software configuration
management, impact analysis, and software rejuvenation, all of which help in maintaining a system and thus,
improve the quality of the existing system.

Software Configuration Management

Software configuration management can be used effectively while maintaining a system as it keeps track of
changes and their effects on the system components. Many changes occur when the software is delivered to the
users such as failure or users' request for enhancement in the software. For this, configuration control board (CCB)
oversees the entire change process. Note that the representatives of CCB along with the users and developers
manage changes collectively. These changes are managed in the following steps.

1. When the user encounters a problem such as failure report, he requests for change on a formal change
request form. The problem can also be an enhancement to a function, variation in the older function, or
deleting an existing function. The procedure for request of change remains the same. The change reqest
form should include information about how the system works, nature of the problem, and how the new
(expected) system should work.

2. The request for change is reported to CCB.
3. The representative of CCB meets the user to discuss the problem (That is, to determine that the request is

for failure report or for enhancement).

http://ecomputernotes.com/software-engineering/techniques-for-maintenance
http://ecomputernotes.com/fundamental/information-technology/what-do-you-mean-by-data-and-information

55

4. If the user requests for a reported failure, the CCB discusses the source of the problem. If the requested
change is an enhancement, the CCB discusses the parts or the components that will be affected by the
change. In both the cases, developers describe the scope of changes and the expected time to implement
them.

5. The developers determine the source of the problem or the components which will be affected when the
changes will be implemented. For this, they use a test copy instead of the operational system and
implement the requested changes to see whether it (test copy) performs according to the requested changes.

6. Finally, after the changes have been made, all the relevant documentation is updated according to the
requested change.

7. The developers then record all the changes made to the operational system in a change report to keep track
of the next release or version of the software system.

Version control implies the process by which the contents of the software, hardware, or documentation are revised.
It tracks and manages the progress of files and directories within a project. This process is required when one or
more components of a software system are changed (for example, Microsoft has introduced MSN Messenger 7.0,
which is an upgraded version of MSN Messenger 6.2). Software maintenance manages the versions, that is, the
older version (present software) and the new version (when the software is modified). Note that the software
configuration management manages how the versions differ, who made the changes, and why they were made.

The component (existing version) is assigned an identification number. When the version (current) is revised, a
revision number is allotted to each resulting changed component. The records such as name of the component, date
and time, version status, and account of all changes are managed. This helps the software configuration
management to identify the current version and the revised number of the operational system.

Impact Analysis

Impact analysis is used to evaluate the overall effect of the requested change. This includes identifying the
components that will be affected with the change, the extent to which each of the components will be affected, and
the consequences of change on the estimated effort and schedule. There are various advantages of performing
impact analysis, which are listed below.

1. It is used to understand the situations when the modifications required in the software system affect large
segments of software code or several components of the software.

2. It helps identifying the relationship among the components that are affected with the change and thereby
helping to understand the overall software structure.

3. It is used to record the history of modification, which helps in maintaining quality in the software system.

Software Rejuvenation

Sometimes, organizations have to take difficult decisions about how to make their systems more maintainable. The
choices may include enhancing or completely replacing a software system. Note that each choice has the same
objective, that is, to preserve or increase the software quality while keeping the costs low. Software rejuvenation is
a maintenance technique which helps in taking appropriate decisions.

Software rejuvenation checks the system's work products in order to extract additional information or to reformat
them in order to make these work products more understandable. Generally, four types of software rejuvenation
exist, namely, re-documentation, restructuring, reverse engineering, and reengineering. Re-documentation uses
static analysis of the source code to produce additional information, which helps the software maintenance team to
understand and refer to the code. In source code, component size, component calls, calling parameters, and control

56

paths are examined to understand what and how code does it. The output of static code analysis is either graphical
or textual, which can be used to assess whether the re-documentation is required.

Restructuring

Restructuring involves the transformation of unstructured code into structured code thereby making it easier to
understand and change. Restructuring involves the following steps.

1. Static analysis is performed, which provides information that is used to represent code as a directed graph
or associative (semantic) network. The representation mayor may not be in a human readable form; thus,
an automated tool is used.

2. Transformational techniques are used to refine (simplify) the representation.
3. Refined representation is interpreted and used to generate the structured code.

Reverse Engineering

Reverse engineering like re-documentation, focuses on providing information about the specification and design
information using the software code. The information extracted from specification and design is stored in a format
that can be easily modified. Reverse engineering is a useful technique when the software maintenance team is
unable to understand the processes involved in the software system. Reverse engineering involves the following
steps.

1. Source code is collected with the help of an automated tool used for reverse engineering. This tool is used
to represent the structure and the naming information of variables, functions and other components in the
software code.

2. Static analysis is performed.
3. Some methods such as standards structured analysis and design methods are used. These methods are used

to extract information such as data dictionaries, data-flow, control flow, and entity relationship (ER)
diagrams for the reverse engineering technique.

The advantages associated with reverse engineering are listed below.

1. It focuses on recovering the lost information from the programs.
2. It provides the abstract information from the detailed source code implementation.
3. It improves system documentation 'that is either incomplete or out of date.
4. It manages the complexity that is present in the software programs.
5. It detects the adverse effects of modification in the software system.

Re-engineering

Re-engineering is an extension of reverse engineering. This technique refers to the systematic transformation of
the present software system into a new form to make quality improvements in operation, system capability,
functionality, and achieving high performance at low costs.

Re-engineering involves the following steps.

1. The system is reverse engineered and represented internally for human and computer modifications.
2. The software system is corrected and completed. This includes updating internal specification and design.
3. Using new specification and design, a new system is generated.

http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer

57

Advantages

Reduced cost: Generally, it is observed that the software systems that are maintained using re-engineering incur
less cost as compared to developing the software system all over again.

Reduced risk: The incremental nature of re-engineering means that the existing staff skills evolve as the software
system evolves. Due to this fact, the risks associated with the modifications in the software system are reduced.

Better use of existing staff: The individuals who worked on software maintenance can be retained while the re-
engineering technique is being used. In addition, the staff can be extended to accommodate new skills during
reengineering. Due to this fact, the re-engineering technique has less number of risks and incurs less expenditure
while hiring the new staff.

Incremental development: Re-engineering techniques can be carried out in stages according to the availability of
budget and resources. This technique is useful in operational organizations with working software systems. In such
organizations, the staff can easily adapt to the re-engineered software system.

Data corruption

Data corruption refers to errors in computerdata that occur during writing, reading, storage, transmission, or
processing, which introduce unintended changes to the original data. Computer, transmission, and storage systems
use a number of measures to provide end-to-end data integrity, or lack of errors.

In general, when data corruption occurs a file containing that data will produce unexpected results when accessed
by the system or the related application. Results could range from a minor loss of data to a system crash. For
example, if a document file is corrupted, when a person tries to open that file with a document editor they may get
an error message, thus the file might not be opened or might open with some of the data corrupted (or in some
cases, completely corrupted, leaving the document unintelligible). The adjacent image is a corrupted image file in
which most of the information has been lost.

Some types of malware may intentionally corrupt files as part of their payloads, usually by overwriting them with
inoperative or garbage code, while a non-malicious virus may also unintentionally corrupt files when it accesses
them. If a virus or trojan with this payload method manages to alter files critical to the running of the computer's
operating system software or physical hardware, the entire system may be rendered unusable.

Some programs can give a suggestion to repair the file automatically (after the error), and some programs cannot
repair it. It depends on the level of corruption, and the built-in functionality of the application to handle the error.

Causes of data corruption and loss

Common causes of data corruption and loss include:

 Power outages or other power-related problems.
 Improper shutdowns, such as caused by power outages or performing a hard restart: pressing and holding

the power button or, on Macs so equipped, the restart button.
 Hardware problems or failures, including hard drive failures, bad sectors, bad RAM, and the like.
 Failure to eject external hard drives and related storage devices before disconnecting them or powering

them off.
 Bad programming, particularly if it results in either hard restarts or data that is saved incorrectly.

https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Data_integrity
https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/Document_file_format
https://en.wikipedia.org/wiki/Error_message
https://en.wikipedia.org/wiki/Malware
https://en.wikipedia.org/wiki/Payload_(computing)
https://en.wikipedia.org/wiki/Trojan_horse_(computing)

58

Any of these causes can result in a corrupted hard drive directory. A corrupted hard drive directory can cause files
to apparently "go missing" and lead to further data loss or corruption, such files being overwritten with new data as
a corrupted directory may no longer accurately reflect what disk space is free or available vs. the disk space that
contains data. The term data is used here to mean both files you have created as well as application and operating
system code. Technologies such as File System Journaling have helped to reduce the potential for directory
corruption due to power outages or hard restarts, but journaling is not foolproof. Likewise, while hard drives have
become exceedingly reliable, they are still known to fail catastrophically with little or no warning. If operating
system files become corrupted, your Mac may not start up or experience recurring kernel panics when a corrupted
kernel extension is used. In addition to the causes cited above, operating system files can be corrupted by failed
Software Updates. Accordingly, it is appropriate to implement certain strategies to minimize the risks of data
corruption and loss.

http://docs.info.apple.com/article.html?artnum=107249
http://www.thexlab.com/faqs/kernelpanics.html
http://www.thexlab.com/faqs/installswupdates.html

UNIT 1

S.NO QUESTION OPTION A OPTION B OPTION C OPTION D ANSWER

1

___________ is a
logical rather than a
physical element. software hardware network Mother board software

2

The foundation for
engineering is

__ methods tools process software process

3

Identify the water fall
model from the options
given below. Linear Sequential Prototyping RAD Linear

4

Identify the model that
emphasizes on a short
development cycle Linear Sequential Prototyping

RAD RAD

5

__________ software is
written to service other
programs Real time System Business Embedded System

6

 __________ is an
evolutionary process
model. Incremental Spiral Linear Waterfall Spiral

7

 The use of 4GT without
design will cause

poor
customer
acceptance maintainability unacceptable quality

difficult to
customize

poor
customer
acceptance

8

Engineering based
activity begins with

Identificatio
n of
candidate
class

Examining the
data

application to
accompolish the
manipulation class package

Identificatio
n of
candidate
class

9

Identify the direct
measure from the
options

Functionalit
y quality efficiency execution speed

execution
speed

10

 It is derived by
normalizing quality
and / or productivity
measures by
considering the size
of the software that
is to be produced

Function
oriented Size oriented Object Oriented

LOC

 Size
oriented

11

Identify the option that
is not used to achieve
reliability of cost and
effort

Delay
estima
tion
till
project
is
compl
ete

Estimate on
related projects

Use techniques
without
decomposing the
projects

Use empirical
models

Use
techniques
without
decomposin
g the
projects

12

FP in software quality
measurement
means___________

Frequent
patterns Function point First process Function quality

Function
point

13

In this approach, the
planner must
identify the type of
application,
establish its
magnitude on a
qualitative scale,
and then refine the

Function
point Fuzzy logic Change sizing Component sizing

 Fuzzy
logic

magnitude within
the original range.

14

Change sizing
encompasses the use of
existing software Yes No Yes

15

Identify the ways that
LOC and FP use the
data for software project
estimation.

As an
estimation
variable to
assess cost

 as baseline
metric from
current
projects

As a baseline metric
from past projects

 as an estimation
variable to modify

As a
baseline
metric from
past projects

16

If historical data
indicates that 10 lines
per report is required,
what would be planners
estimate of LOC that
will be required for 100
such reports 10 100 110 1000 1000

17

It refers to the
degree of
performance of the
software against its
intended purpose.

Functionalit
y Efficiency Reliability Maintainability

Functionalit
y

18

 It refers to the
ability of the
software to use
system resources in
the most effective
and efficient
manner.

Functionalit
y Efficiency Reliability Maintainability Efficiency

19

 ______________ is the

capability of a
software to
maintain its level of
performance under
the given condition
for a stated period
of time.

Functionalit
y Efficiency Reliability Maintainability Reliability

20

 ___________ means,

the ease with which
the modifications
can be made in a
software system to
extend its
functionality,
improve its
performance, or
correct errors

Functionalit
y Efficiency Reliability Maintainability

Maintainabi
lity

21

means the ability of
software to be
transferred from
one environment to
another, without or
minimum changes.

Functionalit
y Efficiency Reliability Portability Portability

22

Process based
estimation begins with

Delineation
of software
functions Effort average labour rates average labour rates

Delineation
of software
functions

23

Identify the approach to
software sizing that use
the reasoning technique

Function
point

Standard
component Fuzzy logic

Change sizing
Fuzzy logic

24

Automated tools
implement
decomposition
technique or empirical
models Yes No Yes

25

PSP follows

approach.

Evolutionar
y systematic disciplined quantifiable

Evolutionar
y

26

People with software
responsibility are often
under pressure to
maintain budgets, keep
schedules from slipping,
and improve quality.
Identify the myth here. Customer Management Practitioner Mongolian horde

Managemen
t

27

The foundation for
software
engineering is the
______________. tools Methods Quality focus process layer

process
layer

28 RAD stands for

Relative
Application
Developme
nt

 Rapid
Application
Development

Rapid Application
Document

None of the
mentioned

Relative
Application
Developme
nt

29
 SDLC stands for

Software
Developme
nt Life
Cycle

System
Development
Life cycle

Software Design
Life Cycle

System Design Life
Cycle

Software
Developme
nt Life
Cycle

30

Which model can be
selected if user is
involved in all the
phases of SDLC?

Waterfall
Model

Prototyping
Model RAD Model

Prototyping Model
& RAD Model RAD Model

31

The "Bed Rock" that
supports software
Engineering
is____________. tools Methods Quality focus process layer

Quality
focus

32

 Identify the
software process
model that involves
a systematic
progression through
analysis, design,
coding, testing and
maintenance
phases.

Waterfall
model

Prototyping
Model RAD model

Incremental
process

Waterfall
model

33

Identify the model
that emphasizes an
extremely short
development cycle.

Waterfall
Model

Prototyping
Model RAD Model

Incremental
process RAD Model

34

Identify the model
that combines
elements of linear
and parallel process
flows.

Waterfall
model

Prototyping
Model RAD model

Incremental
process

Increment
al process

35

Identify the
software process
model that couples
the iterative nature
of prototyping with
the controlled and
systematic aspects
of the waterfall
model.

Spiral
model

Prototyping
Model RAD model

Incremental
process

Spiral
model

36

It provides the
potential for rapid
development of
increasingly more
complete versions
of the software.

Spiral
model

Prototyping
Model RAD model

Incremental
process

Spiral
model

37

It is evolutionary in
nature, demanding
an iterative
approach to the
creation of
software.

Compone
nt-based
model 4GT model CMM PCMM

Compone
nt-based
model

38

Identify the model
that is based on
Non-Procedural
Language
techniques.

Compone
nt-based
model 4GT model CMM PCMM 4GT model

39

Organizations at this
level are
characterized by a
tendency to over
commit, abandon
processes in the
time of crisis, and
not be able to
repeat their past
successes.

Maturity
level 1

Maturity
Level 2 Maturity Level 3 Maturity Level 4

Maturity
level 1

40

Identify the level
where the
requirements,
processes, work
products, and
services are
managed.

Maturity
level 1

 Maturity
Level 2 Maturity Level 3 Maturity Level 4

 Maturity
Level 2

41

Identify the level
when processes are
well characterized
and understood,
and are described in
standards,
procedures, tools,
and methods.

Maturity
level 1

Maturity
Level 2 Maturity Level 3 Maturity Level 4

Maturity
Level 3

42

 At this level
processes are
managed more
proactively using an
understanding of
the
interrelationships of
the process
activities and
detailed measures
of the process, its
work products, and
its services.

Maturity
level 1

Maturity
Level 2 Maturity Level 3 Maturity Level 4

Maturity
Level 3

43

At this level sub
processes are
selected that
significantly
contribute to overall
process
performance.

Maturity
level 1

Maturity
Level 2 Maturity Level 3 Maturity Level 4

Maturity
Level 4

44

This maturity level
focuses on
continually
improving process
performance
through both
incremental and

Maturity
Level 2

Maturity
Level 3 Maturity Level 4 Maturity Level 5

Maturity
Level 5

innovative
technological
improvements.

45

It is a process level
improvement
training and
appraisal program. ISO CMMI CMM PCMM CMMI

46

Recognize the

maturity framework
model that focuses on

continuously improving
the management
and development of
the human assets of
a software. PSP TSP CMM PCMM PCMM

47

This process
emphasizes
personal
measurement of
both the work
product that is
produced and the
resultant quality of
the work. PSP TSP CMM PCMM PSP

48

The goal of this
software process is
to build a “self PSP TSP CMM PCMM TSP

directed” project
team that organizes
itself to produce
high-quality
software.

49

Recognize the
framework activity
where code is
generated,
reviewed, compiled,
and tested.

Post
mortem Development Planning High level design Development

50

Identify the
framework activity
where defect
estimate is made.

Post
mortem Development Planning High level design Planning

51

Recognize the
process in which a
new product is
developed by
reverse engineering
an existing product. Six Zigma SPICE Clean room SCAMPI Clean room

52

This level
determines the
effectiveness of the
process using the
measures and
metrics collected.

Post
mortem Development Planning High level design Development

53

The primary objective of
this model is to improve
the capability of the
workforce. PSP TSP CMM PCMM PCMM

54

In this model

developers often
make
implementation
compromises.

Compone
nt-based Prototyping CMM PCMM Prototyping

55

It is a rigorous and
disciplined
methodology that
uses data and
statistical analysis to
measure and
improve a
company’s
operational
performance by
identifying and
eliminating defects. SEI CMMI CBA IPI SPICE SCAMPI SCAMPI

56

It is the capability of
software to
maintain its level of
performance under
the given condition
for a stated period
of time. Reliability Accuracy Compliance interoperability Reliability

57

 It is a well-defined
evolutionary plateau
toward achieving a
mature software
process.

Maturity
level Quality level ISO level

Team software
level

Maturity
level

58

Identify the
framework activity
that is not part of
PSP model.

Post
mortem Development Planning Reuse Reuse

59

Identify the step
that is not a core
step in Six Sigma
methodology. Define Measure Analyze Assess Assess

60

Which is the first step in
the software
development life cycle? Analysis Design

Problem/Opportunit
y Identification

Development and
Documentation

Problem/Op
portunity
Identificatio
n

 UNIT 2

 18CCP301 SOFTWARE MODELS AND ENGINEERING

 QUESTION OPTION A OPTION B OPTION C OPTION D ANSWER

1

The most desirable
form of cohesion
is

logical cohesion
procedural cohesion functional cohesion

temporal
cohesion procedural cohesion

2

The most desirable
form of coupling
is

(a)control coupling (b) data coupling
(c)common
coupling

(d) content
coupling

(b) data coupling

3

COCOMO was
developed initially
by

(a) B.W.Bohem (b) Gregg Rothermal (c) B.Beizer (d) Rajiv Gupta (a) B.W.Bohem

4

Identify the
elements of
software project
management from
the options

People, Product,
Process, Project

Principles, People,
Product, Price

Price, People,
Process, Perks

People, Product,
Process, Plan People, Product, Process,

Project

5

Recognize the
direct measure of
the software
process among the
following options

Functionality

Percentage of Quality Reliabilty

 Execution Speed Execution Speed

6

Recognize the
indirect measure
of the software
process among
the following
options Functionality Memory size Defects reported LOC Functionality

7

 Discover the
metric widely used
for functionality
oriented metric.

Function oriented
 Number of Scenario
scripts c) Key classes d) LOC

Function

8

It is a form of
problem solving
where the
problem to be
solved is too
complex to be

Decomposition

Comprehensiveness Thoroughness

Completeness Decomposition

considered in one
piece

9

Expand
COCOMO.

Constructive Cost
model Conversion cost model

Complete cost
model

Comprehensive
cost model

Constructive Cost model

10

This system model
depicts the whole
function as a
single
transformation. context model behaviour model data model waterfall model context model

11

Discover the
model that
indicates how
software will
respond to
external events or
stimuli. context model behaviour model data model waterfall model behaviour model

12

___________ is a
component of
behaviour model. DFD UML ERD USE CASE UML

13

represents active
states for each
class and the
events (triggers)
that cause changes
between these
active states. DFD UML ERD USE CASE UML

14

represents all data
objects that are
entered, stored,
transformed, and
produced within
an application. DFD UML ERD USE CASE ERD

15

It is a
representation of
composite
information that
must be
understood by
software. Data attributes Relationships Data objects Design process Data objects

16

__________ is an
iterative process
through which
requirements are
translated into a
blueprint” for
constructing the
software. Software design Relationships Data objects Design process Software design

17

__________is an
indication of the
relative functional
strength of a
module. Cohesion Relationships Data objects Coupling Cohesion

18

Coupling is an
indication of the
relative
interdependence
among modules. Cohesion Relationships Data objects Coupling Coupling

19

A
_________should
(ideally) do just
one thing. cohesive module Relationships Data objects Coupling module cohesive module

20

focuses primarily
on classes that are
extracted directly
from the statement
of the problem.

Requirements
modeling Design modeling Testing modeling code modeling Requirements modeling

21

greatly reduces the
effort required to
extend the design
of an existing
object-oriented
system. Inheritance Polymorphism Data abstraction none of these Polymorphism

22

Characteristics of
an existing class
can be overridden,
and different
versions of
attributes or
operations are
implemented for
the new class.
What is
implemented Inheritance Polymorphism Data abstraction none of these Inheritance

here?

23

A _________
provides a static
or structural view
of a system. class diagram use case diagram ERD DFD class diagram

24

___________ are
the icons used to
represent classes
and interfaces in
UML. Boxes Oval Pointers dashed lines Boxes

25

In UML, if the
arrow points from
to a class with a
solid line. What
does it denote?

A class is a subclass
of another class

implementation of an
interface

Public visibility

Private visibility

A class is a subclass of
another class

26

What does a
leading minus sign
(–) in UML
denote?

A class is a subclass
of another class

implementation of an
interface

Public visibility

Private visibility Private visibility

27

A dependency
relationship
represents
another
connection
between classes
and is indicated by
a ___________. Solid line Oval Pointers Dashed lines Dashed lines

28

An __________is
a special kind of
association
indicated by a
hollow diamond
on one end of the
icon. aggregation composition generalization authorization aggregation

29

Every software
development
project contains
elements of
uncertainty. This
is known as
_________ project risk module risk temporary risk software risk project risk

30

Risk management
means risk
__________.

both containment
and mitigation mitigation action containment action Risk analysis

both containment and
mitigation

31

The use of

technologies often
leads directly to
project failure.

new or unproven
technologies

complex user and
functional
requirements

Non performing
hardware

proven
technologies

new or unproven
technologies

32

It is measured by
benchmarks and
threshold testing
throughout the
project to ensure
that the work
products are
moving in the
right direction. performance

organizational
objective

Architecture
requirements efficiency performance

33

should find a
balance between
the needs of the
development team
and the
expectations of the
customers. performance

organizational

Architecture

Module level organizational

34

The __________
outlines the
response that will
be taken for each
risk. monitoring plan

risk management plan

mitigating plan
Risk mitigation
plan

risk management plan

35

Revise risk plans
according to any
major changes in
project schedule is
done during
_______. mitigation monitoring containment Risk analysis mitigation

36

When a risk
occurs, the
corresponding
mitigation
response should
be taken from the
_______________ monitoring plan risk management plan mitigating plan

Risk mitigation
plan risk management plan

37

Identify the
mitigating action
when a risk is
impacting the
project accept monitor contain avoid accept

38

Taking an action
to minimize the
impact or reduce
the intensification
of the risk is
_________. control transfer contain avoid control

39

Implementing an
organizational
shift in
accountability,
responsibility, or
authority to other
stakeholders that
will accept the risk
is _____________ control transfer

continue
monitoring avoid transfer

40

Adjusting the
project scope,
schedule or
constraints to
minimize the
effects of the risk
is_____________
. control transfer

continue
monitoring avoid avoid

41

Sharing
information and
getting feedback
about risks is
___________. control transfer

continue
monitoring communicate communicate

42

Which metrics are
derived by
normalizing
quality and/or
productivity
measures by
considering the
size of the
software that has
been produced? size oriented function oriented object oriented use case oriented size oriented

43

What is the most
common measure
for correctness? defects per kloc errors per kloc $ per kloc

page
documentation
per kloc defects per kloc

44

Line of code(LOC)
of the product
comes under
which type of
measures? Direct measures Indirect measures Coding Testing Direct measures

45

Which among
these best
represents
Coupling for an
ideal device?

Do exactly one job
completely

Be loosely coupled to
the rest of the program

Hide its
Implementation

Never change its
interface

Be loosely coupled to the
rest of the program

46

47.

is a measure of
the degree of
interdependence
between modules. Cohesion Coupling Interconnection Interrelation Coupling

47

Which risk gives
the degree of
uncertainty and
the project
schedule will be
maintained so
that the product
will be delivered
in time? Business risk

Technical risk

Schedule Risk

Project risk

Schedule Risk

48

LOC based
estimation
techniques
require problem
decomposition
based on

Information domain
values

Project schedule

Software functions Process activities Information domain values

49

Process based
estimation
techniques
require problem
decomposition
based on

Information domain
values and project
schedule Process schedule only

Software functions
and Process
activities

Project Schedule

Software functions and
Process activities

50

Coupling is a
qualitative
indication of the

can be written more
compactly

focuses on just one
thing

is able to complete
a function in a
timely manner

is connected to
other modules
and the outside focuses on just one thing

degree to which a
module

world

51

Cohesion is a
qualitative
indication of the
degree to which a
module

can be written more
compactly

focuses on just one
thing

is able to complete
a function in a
timely manner

is connected to
other modules
and the outside
world

is connected to other
modules and the outside
world

52

What
encapsulates both
data and data
manipulation
functions ? Object Class Super Class Sub Class Object

53

Which of the
following is a
mechanism that
allows several
objects in a class
hierarchy to have
different methods
with the same
name? Aggregation Polymorphism Inheritance Abstraction Polymorphism

54

Identify the sizing
approach that
uses reasoning
techniques. Fuzzy logic Change sizing

Function point
sizing

Standard
component sizing Fuzzy logic

55

Identify the
approach when a
project
encompasses the
use of existing
software that
must be modified
in some way as
part of a project Fuzzy logic Change sizing

Function point
sizing

Standard
component sizing Function point sizing

56

Identify the
system model that
depicts the
security function
as a single
transformation Context Process Product DFD Level 1 Context

57

What assess the
risk and your
plans for risk Risk monitoring Risk planning Risk analysis Risk identification Risk monitoring

mitigation and
revise these when
you learn more
about risk?

58
The worst type of
coupling is Data coupling Control coupling

Stamp coupling
Content coupling Content coupling

59

____________ is a
central modeling
technique that
runs through
nearly all object-
oriented methods. class diagram component diagram object diagram package diagram class diagram

60

__________ is
also know as
Successive version
model.

ncremental process
model

Component based
model Spiral model 4GT ncremental process model

 UNIT 3

 18CCP301 SOFTWARE MODELS AND ENGINEERING

 QUESTION OPTION A OPTION B OPTION C

1

One weakness
of boundary
value analysis
and equivalence
partitioning is

 They are not
effective

They do not
explore
combinations of
input
circumstances

They explore
combinations of
input circumstances

2

During the
development phase,
the following testing
approach is not
adopted

Unit testing Bottom up testing Integration testing

3
 KPA in CMM stands
for

Key Process
Area Key Product Area Key Principal Area

4

Which one of the
following is not a
functional requirement
? a) Maintainability b) Portability c) Robustness

5

“Consider a system
where, a heat sensor
detects an intrusion and
alerts the security
company.” What kind of
a requirement the
system is providing ? Functional Non-Functional Known Requirement

6

 This requirement
document does not

include details of
the system
architecture or
design.

user system functional

7

 It is a complete
and detailed
specification of the

user system functional

whole system.

8

Recognize the
document that
captures complete
description about
how the system is
expected to
perform

SRS SRA UCD

9

Software
requirement can
be

_

 system

Non-Functional Known Requirement

10
The intent of
project metrics is

 minimization of
development
schedule

 for strategic
purposes

assessing project
quality on ongoing
basis

11

The user system
requirements are the
parts of which
document? SDD SRS DDD

12

Which is one of the
most important
stakeholder from the
following ? Entry level personnel Managers Middle level stakeholder

13

 Which of the
following is not
defined in a good
Software Requirement
Specification (SRS)
document?

Functional
requirement

 Nonfunctional
requirement

 Goals of implementation

14

Software Requirement
Specification (SRS) is
also known as
specification of
_______.

White box testing Black box testing Integrated testing

15

Which document is
created by system
analyst after the
requirements are

 SRS user documentation
Software design
documentation

collected from Various
stakeholders

16

Which of the following
is not a direct measure
of SE process? Efficiency Cost Effort Applied

17

The amount of time
that the software is
available for use is
known as Reliability Usability Efficiency

18

Which of the following
is a direct measure of
product?

LOC Complexity Reliability

19

 In size oriented
metrics, metrics are
developed based on
the

_

number of Functions number of user inputs number of lines of code

20
User Acceptance
testing is

 White box testing Black box testing Gray box testing

21
Error guessing is a

 Test verification
techniques

Test execution
techniques

 Test control management
techniques

22

Which of the following
is not a part of test
plan? Scope

Mission Objective

23

A set of activities that
ensure that software
correctly implements
a specific function.

verification testing implementation

24

What do you call
testing individual
components?

 system testing unit testing validation testing

25

A testing strategy that
test the application as
a whole.

Requirement
Gathering

Verification testing Validation testing

26

Which of the
following is NOT a
white box technique?

 Statement testing Path testing State transition testing

27

Which of the
following would NOT
normally form part of
a test plan?

 Features to be tested Risks Incident reports

28

 What is the main
difference between a
walkthrough and an
inspection?

 A walkthrough is lead
by the author, whilst
an inspection is lead
by a trained
moderator.

An inspection has a
trained leader, whilst a
walkthrough has no
leader.

Authors are not present
during inspections, whilst
they are during
walkthroughs.

29

Which one of the
following statements
about system testing is
NOT true?

 System tests are often
performed by
independent teams.

 Functional testing is
used more than
structural testing.

Faults found during system
tests can be very expensive
to fix.

30
 What is testing
process’ first goal?

Bug prevention Testing Execution

31

Software mistakes
during coding are
known as

errors failures bugs

32

Which of the
following is not a part
of bug report?

Test case Output Software Version

33

Which is a black box
testing technique
appropriate to all
levels of testing?

Acceptance testing Regression testing Equivalence partitioning

34
Effective testing will
reduce _______ cost. maintenance design coding

35
 Size and Complexity
are a part of

 Product Metrics Process Metrics Project Metrics

36
Cost and schedule are
a part of

Product Metrics Process Metrics Project Metrics

37
Boundary value analysis
belong to? White Box Testing Black Box Testing

White Box & Black Box
Testing

38

Quality Management
in software
engineering is also
known as

SQA SQM SQI

39

What is Six Sigma?

It is the most widely
used strategy for
statistical quality
assurance

The “Six Sigma” refers
to six standard
deviations

It is the most widely used
strategy for statistical
quality assurance AND
The “Six Sigma” refers to
six standard deviations

40

Non-conformance to
software requirements
is known as

Software availability Software reliability Software failure

41
Why is software
difficult to build ?

 Controlled changes Lack of reusability Lack of monitoring

42

What is validating the
completeness of a
product?

Identification Software Auditing and Reviewing

43

__________ methods
can be used to drive
validations tests Yellow-box testing Black-box testing White-box testing

44

Which of the
following is black-box
oriented and can be
accomplished by
applying the same
black-box methods
discussed for
conventional
software?

 Conventional testing
OO system validation
testing

Test case design

45

In which of the
following testing
strategies, a smallest
testable unit is the
encapsulated class or
object? Unit testing Integration testing System testing

46

Which of the
following testing
types is not a part of
system testing?

Recovery testing Stress testing System testing

47

Which is not a
desirable
characteristic of SRS?

 Concise Ambiguous Traceable

48

Which of the
following is not
included in SRS
document?

Functional
requirements

 Non Functionl
Requirements

Goals of implementation

49

Which of the quality
of SRS document
compares th eresuolts
of the phase with
another phase?

Structured Verifiable Traceable

50

If every requirement
stated in the Software
Requirement

Unambiguous Consistent Verifiable

Specification (SRS)
has only one
interpretation, SRS is
said to be correct
_____ .

51

Quality of the product
comes under which type
of measures?

 Indirect measures Direct measures Coding

52

During software
development which
factor is most crucial ?

People Process Product

53
Milestones are used to
?

 Know the cost of the
project

 Know the status of the
project

 Know the user
expectations

54

White box testing, a
software testing
technique is
sometimes called ?

Basic path Graph Testing Dataflow

55
Black box testing
sometimes called ?

Data Flow testing Loop Testing Behavioral Testing

56
 The objective of
testing is ?

Debugging To uncover errors To gain modularity

57
Context diagram
explains

 The overview of the
system

 The internal view of the
system

The entities of the system

58

1. Which is not a
characteristic of a
good SRS?

Correct Complete Brief

59

1. Outcome of
requirements
specification phase is

Design Document Test Document UML Diagram

60

Which one is a
functional
requirement?

 Scalability Reliability Authenticate

 UNIT 4

 18CCP301 SOFTWARE MODELS AND ENGINEERING

 QUESTION OPTION A OPTION B OPTION C

1

 It is referred to any
program or utility that
performs a monitoring
function.

 Snooping Recoverability Prototyping

2

 Identify the test
plan that typically
addresses multiple test
levels

Test plan Master test plan Phase test plan

3

Identify the testing
plan done at a specific
level of testing from
the options below

unit test plan security test plan Integration test plan

4

 _________is the
forced failure of the
software to verify if
the recovery is
successful.

 Recovery testing failure testing verification testing

5

Which of the following
is not project
management goal?

Keeping overall costs
within budget

Delivering the software
to the customer at the
agreed time

Maintaining a happy
and well-functioning
development team

6

Identify the software
testing type that is
performed to
determine whether
operations can be
continued after a
disaster or after the
integrity of the system
has been lost.

 recovery testing validation testing Black box testing

7

 _____________ is
functional testing.

Recovery testing System testing stability testing

8

The open source
movement has meant
that there is a huge

free of cost low cost high cost

https://whatis.techtarget.com/definition/utility
https://whatis.techtarget.com/definition/utility
https://whatis.techtarget.com/definition/utility
https://whatis.techtarget.com/definition/utility

reusable code base
available at

9
 COTS stands for

 Commercial Off-The-
Shelf systems

 Commercial Off-The-
Shelf states

Commercial Off
System state

10

Which of the following
is not an advantages of
software reuse?

lower costs
faster software
development

high effectiveness

11

A special case of
software reuse is
……………. where a
whole application
system is reused by
implementing it across
a range of different
computers and
operating systems.

Application System
Reuse

Generator Based Reuse Domain Oriented Reuse

12

 …………….. involves
analyzing the system
state to gauge the
extent of the state
corruption.

Exception Handling Defensive Programming Failure Prevention

13

 …………….. is the process
of modifying the state
space of the system so
that the effects of the
fault are minimized.

Fault avoidance Fault detection Fault repair

14

 The modification of the
software to match
changes in the ever
changing environment,
falls under which
category of software
maintenance?

Corrective Adaptive Perfective

15

What type of software
testing is generally used
in Software
Maintenance?

 Regression Testing System Testing Integration Testing

16

Which selective retest
technique selects every
test case that causes a
modified program to
produce a different
output than its original
version?

Coverage Minimization Safe

17

measures the ability of
a regression test
selection technique to
handle realistic
applications.

Efficiency Precision Generality

18

 Which regression test
selection technique
exposes faults caused
by modifications?

 Efficiency Precision Generality

19

Which one of the
following is not a
maintenance model?

Waterfall model Reuse-oriented model
 Iterative enhancement
model

20

Which of the following
manuals is not a user
documentation?

 Beginner’s Guide Installation guide Reference Guide

21

How many stages are
there in Iterative-
enhancement model
used during software
maintenance?

 two three four

22

 Which subsystem
implements the
requirements defined
by the application?

 UI DBMS Application subsystem

23

 “A client is assigned all
user presentation tasks
and the processes
associated with data
entry”.Which option
supports the client’s
situation?

Distributed logic
Distributed
presentation

Remote presentation

24

What is used to pass
SQL requests and
associated data from
one component to
another?

Client/server SQL
interaction

Remote procedure calls SQL Injection

25

Which of the following
services is not provided
by an object?

Activating &
Deactivating Objects Security features

 Files implementing the
entities identified
within the ERD

26

 Which of the following
term is best defined by
the statement:”When
one object invokes
another independent
object, a message is
passed between the

Control couple Application object Data couple

two objects.”?

27

CORBA stands
for_________.

Common Object
Request Build
Architecture

 Common Object
Request Broker
Architecture

Common Object
Request Break
Architecture

28 RMI stands for? Remote Mail Invocation
Remote Message
Invocation

Remaining Method
Invocation

29

A typical _________
program creates some
remote objects, makes
references to these
objects accessible, and
waits for clients to
invoke methods on
these objects.

Server Client Thread

30

 A typical __________
program obtains a
remote reference to
one or more remote
objects on a server and
then invokes methods
on them.

 Server Client Thread

31

The ___________ layer,
which provides the
interface that client and
server application
objects use to interact
with each other. Increasing Count Bit

32

A layer which is the
binary data protocol
layer.

stub layer skeleton layer remote layer

33

A middleware layer
between the stub
skeleton and transport. remote layer instruction layer reference layer

34

 An object acting as a
gateway for the client
side.

skeleton stub remote

35

A gateway for the
server side object.

skeleton stub remote

36

 RMI uses stub and
skeleton for
communication with
the ________ object.

 client remote server

37

File transfer protocol
(FTP) is built on
_________architecture

 peer to peer client server CLIENT TO CLIENT

38

The time taken by a
packet to travel from
client to server and
then back to the client
is called ____

 STT RTT PTT

39

The first line of HTTP

request message is
called ____.

request line header line status line

40

Cyclomatic
Complexity cannot be
applied in
__________.

 Re-engineering Risk Management Test Planning

41

Verification is the
responsibility of
_______.

 Developer Designer Tester

42

Which activity is carried
out first?

Verification Validation Maintenance

43

Which of the following
is / are not a verification
activity?

 Inspection Testing Walkthrough

44

Which is the odd one
out?

 Error Guessing Walkthrough Data flow analysis

45

Which of the
nfollowing are
advantages of using
LOC as a size orientes
nmetric?

 LOC is easily
computed

 LOC is a language
dependent measure

 LOC is a language
independent measure

46

 Validation is focused on
________.

 Product Process Risk

47
What are prototypes ?

 Prototypes is a working
model of part or all of a
final product

 Prototypes does not
represent any sort of
models

 Prototype can never
consist of full size

48

 What are the notations
for the Use case
Diagrams ?

 Use case Actor Prototype

49

White box testing can
be started

 After SRS creation After designing After programming

50

The type of software
testing in which each
model is tested along

 Integration Acceptance Mutation

in an attempt to
discover any errors in
code

51

Which of the following
is a possible benefit of
independent testing?

Independent testers see
other and different
defects and are
unbiased.

Independent testers do
not need extra
education and training.

Independent testers
reduce the bottleneck
in the incident
management process.

52

 ………… are used for
risk-based testing
where testing is
directed to areas of
greatest risk.

 Analytical approaches
 Model-based
approaches

 Methodical approaches

53

 ……………. describes any
guiding or corrective
actions taken as a result
of information and
metrics gathered and
reported.

 Test control Test monitoring Test reporting

54

 ……………. is concerned
with summarizing
information about the
testing endeavor.

 Test control Test monitoring Test reporting

55

The purpose of
……………… is to
provide feedback and
visibility about test
activities.

 Test control Test monitoring Test reporting

56

The purpose of
…………………. is
to establish and
maintain the integrity
of the products of the
software or system
through the project
and product lifecycle.

Test control Test monitoring Test reporting

57

Which of the following
risk does NOT include
product risks in
software testing?

 Failure-prone software
delivered

 Software that does not
perform its intended
functions

 Low quality of the
design and coding

58

 For testing ……………..
may involve ensuring all
items of test ware are
identified, version
controlled, tracked for
changes, related to
each other and related
to the development

Test control Test monitoring Test reporting

items, so that
traceability can be
maintained throughout
the test process.

59

The testing in which
code is checked

 Black box testing White box testing Red box testing

60
 Unit testing is done by Users Developers Customers

 UNIT 5

 18CCP301 SOFTWARE MODELS AND ENGINEERING

 QUESTION OPTION A OPTION B

1

 Reverse engineering of data focuses on
from the options below

Internal data structures Quality

2
The process of generating analysis and
design documents is known as Software engineering Software re-engineering

3
The process of transforming a model into
source code is known as Forward engineering Reverse engineering

4
Which of these benefits can be achieved
when software is restructured? Higher quality programs Reduced maintenance effort

5
What are the problems with re-
structuring? Loss of comments Loss of documentation

6
Which of the following is not an example
of a business process? designing a new product hiring an employee

7

In reverse engineering process, what
refers to the sophistication of the design
information that can be extracted from the
source code? interactivity completeness

8

In reverse engineering, what refers to the
level of detail that is provided at an
abstraction level? interactivity completeness

9
The core of reverse engineering is an
activity called restructure code directionality

10 Forward engineering is also known as extract abstractions renovation

11

Reverse engineering is the process of
deriving the system design and
specification from its GUI Database

12

Architecture description language
represent architectural structures that can
be divided into which of the following? Static Dynamic

13

 Why is Requirements Management
Important ? It is due to the changes

 to the environment

in technology

14

 Which technique is applied to ensure
the continued evolution of legacy systems
? Forward engineering

 Reverse Engineering

15

 Which of the following items are not
measured by software project metrics?

Inputs Outputs

16
Which of the following is not a module
type? Object modules Hardware modules

17 Which of the following is a data problem? hardware problem record organisation problems

18
When does one decides to re-engineer a
product?

when tools to support
restructuring are disabled

when system crashes
frequently

19

19. In reverse engineering process, what
refers to the sophistication of the design
information that can be extracted from the
source code? interactivity completeness

20
Which of the following is the task of
project indicators:

help in assessment of status
of ongoing project track potential risk

21

Consider the example and categorize it
accordingly, “A pattern-matching system
developed as part of a text-processing
system may be reused in a database
management system”. Application system reuse Component reuse

22

Which of the following is a generic
structure that is extended to create a more
specific subsystem or application? Software reuse

Object-oriented programming
language

23
Which of the following is not an
advantages of software reuse? lower costs faster software development

24
Which of the following is not a metric for
design model? Interface design metrics Component-level metrics

25
Architectural Design Metrics are
___________ in nature. Black Box White Box

26
The process each manager follows during
the life of a project is known as Project Management Manager life cycle

27 Milestones are used to ?

Know the cost of the project Know the status of the project

28

a new _____ is defined when major
changes have been made to one or more
configuration objects entity item

29

which of the following activity is not part
of a software reengineering process
model? forward engineering inventory analysis

30
which of the model is not to be considered
when reverse engineering abstraction level completeness

31
the first reverse enginnering activity
involves seeking to understand data processing

32

When does one decides to re-engineer a
product?

when tools to support
restructuring are disabled

when system crashes
frequently

33

In reverse engineering process, what
refers to the sophistication of the design
information that can be extracted from
the source code?

interactivity completeness

34

In reverse engineering, what refers to the
level of detail that is provided at an
abstraction level?

interactivity completeness

35
Which of the following is not included in
Architectural design decisions? a) type of application b) distribution of the system

36
Which one of the following models is not
suitable for accommodating any change? Build & Fix Model Prototyping Model

37
it is a tangible by-product produced
during the development of software. artifacts prototype

38

___________ is a form of perfective
maintenance that modifies the structure
of a program's source code. Software restructuring Reverse Engineering

39

Xthis model does not attempt to start
with a full specification of requirements.
Instead, development begins by
specifying and implementing just part of
the software iterative life cycle model water fall model

40
It refers to the process of reinventing the
business processes Software restructuring Reengineering

41
Is a software design approach for the
development of software systems Model-driven architecture Reengineering

42

___________is a set of required activities
and the outcome of the activities with a
target to produce a software product.

Software Process

Software restructuring

43

Failure to meet _______ indicates that a
project is not proceeding to plan and
usually triggers corrective action by
management. Milestone Error detection

44

_________ is a software development
methodology, which favors iterative
development and the rapid construction of
prototypes instead of large amounts of up-
front planning. RAD Spiral

45

The___________ is a sequential
development approach, in which
development is seen as flowing steadily
downwards waterfall model Spiral Model

46
___________ is a structure imposed on
the development of a software product.

Software Process

Software restructuring

47

The __________ provides a mechanism
for managing everyone's expectations
throughout the project lifecycle. periodic Status Assessment SDLC

48

An iterative process of software
development where requirements are
continually revised waterfall model iterative model

49
These systemwide events are held at the
end of each development phase. Major milestones Minor mile stones

50

These iteration-focused events are
conducted to review the content of an
iteration in detail and to authorize
continued work. Major milestones Minor mile stones

51

These periodic events provide
management with frequent and regular
insight into the progress being made. Major milestones Minor mile stones

52 Quality Indicators indicate __________ . work and progress breakage and modularity

53
Management Indicators indicate
__________ . work and progress budgeted cost

54

_______ during the engineering stage is
geared mostly toward establishing initial
baselines and expectations in the
production stage plan Metrics activity Analysis

55

__________ is the process of building
from a high-level model or concept to
build in complexities and lower-level
details. Forward engineering Software restructuring

56

__________ is nothing but the re-
implementation of the legacy system to
achieve more sustainability. Software re-engineering Software restructuring

57
___________ consumes more time as
compared to the reverse engineering. Forward engineering Software restructuring

58 __________ is a rebuilding activity Reengineering Software restructuring

59

_____________dividing project work into
short sprints, using adaptive planning and
continual improvement, and fostering
teams’ self-organization and collaboration
targeted to produce maximum value.

Agile Project Management

PERT

60

This technique involves detecting the
longest path (sequence of tasks) from the
beginning to the end of a project and
defining the critical tasks.

Agile Project Management

PERT

	1.pdf (p.1)
	2.pdf (p.2-5)
	3.pdf (p.6-28)
	KARPAGAM ACADEMY OF HIGHER EDUCATION
	Clean room technique (clean room design)
	The clean room technique is a process in which a new product is developed by reverse engineering an existing product, an then the new product is designed in such a way that patent or copyright infringement is avoided. The clean room technique is also known as clean room design. (Sometimes the words "clean room" are merged into the single word, "cleanroom.") Sometimes this process is called the Chinese wall method, because the intent is to place a demonstrable intellectual barrier between the reverse engineering process and the development of the new product.
	The use of the clean room technique can be compared, in some respects, with the fair use of copyrighted publications in rder to compile a new document. For example, a new book about Linux can be authored on the basis of information obtained by researching existing books, articles, white papers, and Web sites. This does not necessarily constitute copyright infringement, even though other books on Linux already exist, and even if the new book contains essentially the same information as the existing publications. However, this is the case only as long as passages from the existing works are not copied verbatim or nearly verbatim, and as long as the new work does not have substantially the same structure as any of the existing works.
	Use of the clean room technique puts engineers and enterprises in a legal gray area. If the owner of the original copyriht or patent can demonstrate that the development of a new product was done by means of reverse engineering and is not significantly different from the existing product, a lawsuit may result. Any attempt to reverse engineer an existing product, and then create a new product based on the results of the reverse engineering process, should be undertaken only with the advice of a reputable attorney who is experienced in copyright infringement and reverse engineering issues.

	4.pdf (p.29-52)
	KARPAGAM ACADEMY OF HIGHER EDUCATION

	5.pdf (p.53-64)
	KARPAGAM ACADEMY OF HIGHER EDUCATION
	Quality Characteristics of a good SRS

	6.pdf (p.65-122)
	KARPAGAM ACADEMY OF HIGHER EDUCATION
	Clean room technique (clean room design)
	The clean room technique is a process in which a new product is developed by reverse engineering an existing product, an then the new product is designed in such a way that patent or copyright infringement is avoided. The clean room technique is also known as clean room design. (Sometimes the words "clean room" are merged into the single word, "cleanroom.") Sometimes this process is called the Chinese wall method, because the intent is to place a demonstrable intellectual barrier between the reverse engineering process and the development of the new product.
	The use of the clean room technique can be compared, in some respects, with the fair use of copyrighted publications in rder to compile a new document. For example, a new book about Linux can be authored on the basis of information obtained by researching existing books, articles, white papers, and Web sites. This does not necessarily constitute copyright infringement, even though other books on Linux already exist, and even if the new book contains essentially the same information as the existing publications. However, this is the case only as long as passages from the existing works are not copied verbatim or nearly verbatim, and as long as the new work does not have substantially the same structure as any of the existing works.
	Use of the clean room technique puts engineers and enterprises in a legal gray area. If the owner of the original copyriht or patent can demonstrate that the development of a new product was done by means of reverse engineering and is not significantly different from the existing product, a lawsuit may result. Any attempt to reverse engineer an existing product, and then create a new product based on the results of the reverse engineering process, should be undertaken only with the advice of a reputable attorney who is experienced in copyright infringement and reverse engineering issues.
	KARPAGAM ACADEMY OF HIGHER EDUCATION
	KARPAGAM ACADEMY OF HIGHER EDUCATION
	Quality Characteristics of a good SRS
	KARPAGAM ACADEMY OF HIGHER EDUCATION
	Test Plan Types
	Life Cycle of Recovery Process

	KARPAGAM ACADEMY OF HIGHER EDUCATION
	Techniques for Maintenance
	Software Configuration Management
	Impact Analysis
	Software Rejuvenation
	Restructuring
	Reverse Engineering
	Re-engineering
	Causes of data corruption and loss

	7.pdf (p.123-180)
	KARPAGAM ACADEMY OF HIGHER EDUCATION
	Clean room technique (clean room design)
	The clean room technique is a process in which a new product is developed by reverse engineering an existing product, an then the new product is designed in such a way that patent or copyright infringement is avoided. The clean room technique is also known as clean room design. (Sometimes the words "clean room" are merged into the single word, "cleanroom.") Sometimes this process is called the Chinese wall method, because the intent is to place a demonstrable intellectual barrier between the reverse engineering process and the development of the new product.
	The use of the clean room technique can be compared, in some respects, with the fair use of copyrighted publications in rder to compile a new document. For example, a new book about Linux can be authored on the basis of information obtained by researching existing books, articles, white papers, and Web sites. This does not necessarily constitute copyright infringement, even though other books on Linux already exist, and even if the new book contains essentially the same information as the existing publications. However, this is the case only as long as passages from the existing works are not copied verbatim or nearly verbatim, and as long as the new work does not have substantially the same structure as any of the existing works.
	Use of the clean room technique puts engineers and enterprises in a legal gray area. If the owner of the original copyriht or patent can demonstrate that the development of a new product was done by means of reverse engineering and is not significantly different from the existing product, a lawsuit may result. Any attempt to reverse engineer an existing product, and then create a new product based on the results of the reverse engineering process, should be undertaken only with the advice of a reputable attorney who is experienced in copyright infringement and reverse engineering issues.
	KARPAGAM ACADEMY OF HIGHER EDUCATION
	KARPAGAM ACADEMY OF HIGHER EDUCATION
	Quality Characteristics of a good SRS
	KARPAGAM ACADEMY OF HIGHER EDUCATION
	Test Plan Types
	Life Cycle of Recovery Process

	KARPAGAM ACADEMY OF HIGHER EDUCATION
	Techniques for Maintenance
	Software Configuration Management
	Impact Analysis
	Software Rejuvenation
	Restructuring
	Reverse Engineering
	Re-engineering
	Causes of data corruption and loss

	8.pdf (p.181-193)
	9.pdf (p.194-202)
	10.pdf (p.203-208)
	11.pdf (p.209-215)
	12.pdf (p.216-221)

