

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 1/55

UNIT – I

SYLLABUS

Getting Started With VB.NET: The Integrated Development Environment-IDE Components-

Environment Options. Visual Basic: The Language -Variables-Constants-Arrays – Variables as

Objects-Flow Control Statements.

GETTING STARTED WITH VB.NET

Integrated Development Environment

The Start Page

When we run the Visual Basic Setup program, it allows us to place the program items

in an existing program group or create a new program group and new program items for Visual

Basic in Windows.

To start Visual Basic from Windows

1. Click Start on the Task bar.

2. Select Programs, Visual Studio and then Microsoft Visual Basic 6.0.–or–

Click Start on the Task bar.

Select Programs.

Use the Windows Explorer to find the Visual Basic executable file.

3. Double-click the Visual Basic icon.

We can also create a shortcut to Visual Basic, and double-click the shortcut.

When we first start Visual Basic, we see the interface of the integrated development

environment, as shown in Figure 2.1.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 2/55

 Figure: The Visual Basic Integrated Development Environment

Using the Windows Form Designer

 Figure: The Windows Forms Toolbox of the Visual Studio IDE

 The above picture shows how is the default Form look like. At the top of the form there

is a title bar which displays the forms title. Form1 is the default name; you can change the

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 3/55

name to your convenience. The title bar also includes the control box, which holds the

minimize, maximize, and close buttons.

Control Properties

The control’s properties will be displayed in the Properties window (Figure). This

window, at the far left edge of the IDE, displays the properties of the selected control on the

form. If the Properties window is not visible, select View ->Properties Window, or press F4. If

no control is selected, the properties of the selected item in the Solution Explorer will be

displayed. Place another TextBox control on the form. The new control will be placed almost

on top of the previous one. Reposition the two controls on the form with the mouse. Then

right-click one of them and, from the context menu, select Properties.

 Figure - The properties of a TextBox control

In the Properties window, also known as the Property Browser, we see the properties

that determine the appearance of the control, and in some cases, its function. Locate the

TextBox control’s Text property and set it to “My TextBox Control” by entering the string

(without the quotes) into the box next to property name. Select the current setting, which is

TextBox1, and type a new string. The control’s Text property is the string that appears in the

control.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 4/55

 Then locate its BackColor property and select it with the mouse. A button with an

arrow will appear next to the current setting of the property. Click this button and we will see a

dialog box with three tabs (Custom, Web, and System), as shown in Figure. On this dialog box,

we can select the color, from any of the three tabs, that will fill the control’s background. Set

the control’s background color to yellow and notice that the control’s appearance will change

on the form.

 Figure - Setting a color property in the Properties dialog box

Figure - The appearance of a TextBox control displaying multiple text lines

Project Types

All the project types supported by Visual Studio are displayed on the New Project

dialog box, and they’re the following:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 5/55

 Class library A class library is a basic code-building component, which has no visible

interface and adds specific functionality to your project. Simply put, a class is a

collection of functions that will be used in other projects beyond the current one.

 Windows control library A Windows control (or simply control), such as a TextBox

or Button, is a basic element of the user interface. If the controls that come with Visual

Basic (the ones that appear in the Toolbox by default) don’t provide the functionality

you need, you can build your own custom controls.

 Console application A Console application is an application with a very limited user

interface.

 This type of application displays its output on a Command Prompt window and

receives input from the same window.

 Windows service A Windows service is a new name for the old NT services, and

they’re long running applications that don’t have a visible interface. These services can

be started automatically when the computer is turned on, paused, and restarted. An

application that monitors and reacts to changes in the file system is a prime candidate

for implementing as a Windows service.

 ASP.NET Web application Web applications are among the most exciting new

features of

 Visual Studio. A Web application is an app that resides on a Web server and services

requests made through a browser. An online bookstore, for example, is a Web

application. The application that runs on the Web server must accept requests made by

a client (a remote computer with a browser) and return its responses to the requests in

the form of HTML pages.

 ASP.NET Web service A Web service is not the equivalent of a Windows service. A

Web service is a program that resides on a Web server and services requests, just like a

Web application, but it doesn’t return an HTML page. Instead, it returns the result of a

calculation or a database lookup. Requests to Web services are usually made by another

server, which is responsible for processing the data

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 6/55

 Web control library Just as you can build custom Windows controls to use with your

Windows forms, you can create custom Web controls to use with your Web pages.

The IDE Components

The IDE of Visual Studio.NET contains numerous components, and it will take you a

while to explore them. It’s practically impossible to explain what each tool, each window, and

each menu does.

The IDE Menu - The IDE main menu provides the following commands, which lead to

submenus. Notice that most menus can also be displayed as toolbars. Also, not all options are

available at all times. The options that cannot possibly apply to the current state of the IDE are

either invisible or disabled. The Edit menu is a typical example.

File Menu - The File menu contains commands for opening and saving projects, or project

items, as well as the commands for adding new or existing items to the current project.

Edit Menu -The Edit menu contains the usual editing commands. Among the commands of the

Edit menu are the advanced command and the IntelliSense command.

Advanced Submenu - The more interesting options of the Edit -> advanced submenu are the

following. Notice that the advanced submenu is invisible while you design a form visually and

appears when you switch to the code editor.

View White Space - Space characters (necessary to indent lines of code and make it easy to

read) are replaced by periods.

Word Wrap - When a code line’s length exceeds the length of the code window, it’s

automatically wrapped.

Comment Selection/Uncomment Selection - Comments are lines you insert between your

code’s statements to document your application. Sometimes, we want to disable a few lines

from our code, but not delete them (because we want to be able to restore them).

IntelliSense Submenu - The Edit -> IntelliSense menu item leads to a submenu with four

options, which are described next. IntelliSense is a feature of the editor (and of other Microsoft

applications) that displays as much information as possible, whenever possible.

List Members - When this option is on, the editor lists all the members (properties, methods,

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 7/55

events, and argument list) in a drop-down list.

TextBox1.

A list with the members of the TextBox control will appear Select the Text property and then

type the equal sign, followed by a string in quotes like the following:

TextBox1.Text = “Your User Name”

If you select a property that can accept a limited number of settings, you will see the

names of the appropriate constants in a drop-down list. If you enter the following statement:

TextBox1.TextAlign =

you will see the constants you can assign to the property (as shown in Figure), they are

the values HorizontalAlignment.Center, HorizontalAlignment.Right, and

HorizontalAlignment.Left).

Parameter Info - While editing code, you can move the pointer over a variable, method, or

property and see its declaration in a yellow toolti

Figure - Viewing the members of a control in an IntelliSense dropdown list

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 8/55

Quick Info - This is another IntelliSense feature that displays information about commands

and functions. When you type the opening parenthesis following the name of a function, for

example, the function’s arguments will be displayed in a tooltip box (a yellow horizontal box).

View Menu - This menu contains commands to display any toolbar or window of the IDE.

You have already seen the Toolbars menu (earlier, under “Starting a New Project”). The Other

Windows command leads to submenu with the names of some standard windows, including the

Output and Command windows.

The Output window is the console of the application. The compiler’s messages, for

example, are displayed in the Output window. The Command window allows you to enter and

execute statements. When you debug an application, you can stop it and enter VB statements in

the Command window.

Project Menu - This menu contains commands for adding items to the current project (an item

can be a form, a file, a component, even another project). The last option in this menu is the Set

As StartUp Project command, which lets you specify which of the projects in a multiproject

solution is the startup project (the one that will run when you press F5).

Build Menu - The Build menu contains commands for building (compiling) your project. The

two basic commands in this menu are the Build and Rebuild All commands. The Build

command compiles (builds the executable) of the entire solution, but it doesn’t compile any

components of the project that haven’t changed since the last build. The Rebuild All command

does the same, but it clears any existing files and builds the solution from scratch.

Debug Menu – This menu contains commands to start or end an application, as well as the

basic debugging tools

Data Menu - This menu contains commands you will use with projects that access data.

Format Menu - The Format menu, which is visible only while you design a Windows or Web

form, contains commands for aligning the controls on the form.

Tools Menu - This menu contains a list of tools, and most of them apply to C++. The Macros

command of the Tools menu leads to a submenu with commands for creating macros. Just as

you can create macros in an Office application to simplify many tasks, you can create macros

to automate many of the repetitive tasks you perform in the IDE. I’m not going to discuss

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 9/55

macros in this book, but once you familiarize yourself with the environment, you should look

up the topic of writing macros in the documentation.

Window Menu -This is the typical Window menu of any Windows application. In addition to

the list of open windows, it also contains the Hide command, which hides all Toolboxes and

devotes the entire window of the IDE to the code editor or the Form Designer. The Toolboxes

don’t disappear completely. They’re all retracted, and you can see their tabs on the left and

right edges of the IDE window. To expand a Toolbox, just hover the mouse pointer over the

corresponding tab.

Help Menu -This menu contains the various help options. The Dynamic Help command opens

the Dynamic

Help window, which is populated with topics that apply to the current operation. The Index

command opens the Index window, where you can enter a topic and get help on the specific

topic.

The Toolbox Window - Here you will find all the controls you can use to build your

application’s interface. The Toolbox window is usually retracted, and you must move the

pointer over it to view the Toolbox. This window contains these tabs:

 Crystal Reports

 Data

 XML Schema

 Dialog Editor

 Web Forms

 Components

 Windows Forms

 HTML

 Clipboard Ring

 General

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 10/55

Solution Explorer Window

The Solution Explorer window gives an overview of the solution we are working with

and lists all the files in the project. An image of the Solution Explorer window is shown on the

right.

Properties Window

The properties window allows us to set properties for various objects at design time.

For example, if you want to change the font, font size, backcolor, name, text that appears on a

button, textbox etc, you can do that in this window. Below is the image of properties window.

You can view the properties window by selecting View->Properties Window from the main

menu or by pressing F4 on the keyboard.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 11/55

Output Window

The output window as you can see in the image below displays the results of building

and running applications. When a project is compiled the result of compilation, Build

succeeded or failed are displayed in the output window

Command Window

The command window in the image below is a useful window. Using this window we

can add new item to the project, add new project and so on. You can view the command

window by selecting View->Other Windows -> Command Window from the main menu. The

command window in the image displays all possible commands with File.

Task List Window

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 12/55

 The task list window displays all the tasks that VB .NET assumes we still have to

finish. You can view the task list window by selecting View->Show tasks->All or View->Other

Windows->Task List from the main menu. The image below shows that. As you can see from

the image, the task list displayed "TextBox1 not declared", "RichTextBox1 not declared". The

reason for that message is, there were no controls on the form and attempts where made to write

code for a textbox and a rich textbox. Task list also displays syntax errors and other errors you

normally encounter during coding.

Environment Options

Open the Tools menu and select Options (the last item in the menu). The Options

dialog box will appear where you can set all the options regarding the environment. Figure

shows the options for the font of the various items of the IDE. Here you can set the font for

various categories of items, like the Text Editor, the dialogs and toolboxes, and so on. Select an

item in the Show Settings For list and then set the font for this item in the box below.

 Figure - The Fonts and Colors options

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 13/55

Figure shows the Projects and Solutions options. The top box is the default location for

new projects. The three radio buttons in the lower half of the dialog box determine when the

changes to the project are saved. By default, changes are saved when you run a project. If you

activate the last option, then you must save your project from time to time with the File -> Save

All command.

 Figure -The Projects and Solutions options

VISUAL BASIC: THE LANGUAGE

Variables

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 14/55

 A variable is nothing but a name given to a storage area that our programs can

manipulate. Each variable in VB.Net has a specific type, which determines the size and layout

of the variable's memory; the range of values that can be stored within that memory; and the

set of operations that can be applied to the variable.

Declaring Variables

 To declare a variable, use the Dim statement followed by the variable's name, the As

keyword, and its type, as follows:

Dim meters As Integer

Dim greetings As String

 The first variable, meters, will store integers, such as 3 or 1,002; the second variable,

greetings, will store text. You can declare multiple variables of the same or different type in the

same line, as follows:

Dim Qty As Integer, Amount As Decimal, CardNum As String

 If you want to declare multiple variables of the same type, you need not repeat the type.

Just separate all the variables of the same type with commas and set the type of the last

variable:

Dim Length, Width, Height As Integer, Volume, Area As Double

 This statement declares three Integer variables and two Double variables. Double

variables hold fractional values (or floating-point values, as they're usually called) that are

similar to the Single data type, except that they can represent non-integer values with greater

accuracy.

Variable-Naming Conventions

 When declaring variables, you should be aware of a few naming conventions. A

variable's name

 Must begin with a letter, followed by more letters or digits.

 Can't contain embedded periods or other special punctuation symbols. The only special

character that can appear in a variable's name is the underscore character.

 Mustn't exceed 255 characters.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 15/55

 Must be unique within its scope. This means that you can't have two identically named

variables in the same subroutine, but you can have a variable named counter in many

different subroutines.

Variable names in VB 2008 are case-insensitive: myAge, myage, and MYAGE all refer to the

same variable in your code. Actually, as you enter variable names, the editor converts their

casing so that they match their declaration.

Variable Initialization

 The general form of initialization is:

variable_name = value;

for example,

Dim pi As Double

pi = 3.14159

You can initialize a variable at the time of declaration as follows:

Dim StudentID As Integer = 100

Dim StudentName As String = "Bill Smith"

Example

Try the following example which makes use of various types of variables:

Module variablesNdataypes

 Sub Main()

 Dim a As Short

 Dim b As Integer

 Dim c As Double

 a = 10

 b = 20

 c = a + b

 Console.WriteLine("a = {0}, b = {1}, c = {2}", a, b, c)

 Console.ReadLine()

 End Sub

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 16/55

End Module

When the above code is compiled and executed, it produces the following result:

a = 10, b = 20, c = 30

Types of Variables

Visual Basic recognizes the following five categories of variables:

 Numeric

 String

 Boolean

 Date

 Object

Numeric variables

 You'd expect that programming languages would use the same data type for numbers.

After all, a number is a number. But this couldn't be further from the truth. All programming

languages provide a variety of numeric data types, including the following:

 Integers (there are several integer data types)

 Decimals

 Single, or floating-point numbers with limited precision

 Double, or floating-point numbers with extreme precision

Integer variable

 There are three types of variables for storing integers, and they differ only in the range

of numbers each can represent. As you understand, the more bytes a type takes, the larger

values it can hold. The type of Integer variable you'll use depends on the task at hand. You

should choose the type that can represent the largest values you anticipate will come up in your

calculations. You can go for the Long type, to be safe, but Long variables are four times as

large as Short variables, and it takes the computer longer to process them.

Single and Double Precision numbers

 The names Single and Double come from single-precision and double-precision

numbers. Double-precision numbers are stored internally with greater accuracy than single-

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 17/55

precision numbers. In scientific calculations, you need all the precision you can get; in those

cases, you should use the Double data type.

The result of the operation 1 / 3 is 0.333333. . . (an infinite number of digits 3). You could fill

256MB of RAM with 3 digits, and the result would still be truncated. Here's a simple example

that demonstrates the effects of truncation:

In a button's Click event handler, declare two variables as follows:

Dim a As Single, b As Double

Then enter the following statements:

a=1/3

Debug.WriteLine(a)

Run the application, and you should get the following result in the Output window:

.3333333

There are seven digits to the right of the decimal point. Break the application by pressing

Ctrl+Break and append the following lines to the end of the previous code segment:

a=a*100000

Debug.WriteLine(a)

This time, the following value will be printed in the Output window:

33333.34

The result is not as accurate as you might have expected initially — it isn't even rounded

properly. If you divide a by 100,000, the result will be

0.3333334

The Decimal Data Type

 Variables of the Decimal type are stored internally as integers in 16 bytes and are

scaled by a power of 10. The scaling power determines the number of decimal digits to the

right of the floating point, and it's an integer value from 0 to 28. When the scaling power is 0,

the value is multiplied by 100, or 1, and it's represented without decimal digits. When the

scaling power is 28, the value is divided by 1028 (which is 1 followed by 28 zeros — an

enormous value), and it's represented with 28 decimal digits.

328.558 * 12.4051

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 18/55

First, you must turn them into integers. You must remember that the first number has three

decimal digits, and the second number has four decimal digits. The result of the multiplication

will have seven decimal digits. So you can multiply the following integer values:

328558 * 124051

and then treat the last seven digits of the result as decimals. Use the Windows Calculator (in

the Scientific view) to calculate the previous product. The result is 40,757,948,458. The actual

value after taking into consideration the decimal digits is 4,075.7948458. This is how the

compiler manipulates the Decimal data type. Insert the following lines in a button's Click event

handler and execute the program:

Dim a As Decimal=328.558D

Dim b As Decimal=12.4051D

Dim c As Decimal

c=a*b

Debug.WriteLine(c.ToString)

The D character at the end of the two numeric values specifies that the numbers should

be converted into Decimal values. By default, every value with a fractional part is treated as a

Double value. Assigning a Double value to a Decimal variable will produce an error if the

strict option is on, so we must specify explicitly that the two values should be converted to the

Decimal type. The D character at the end of the value is called a type character. Table 2.2 lists

all of them.

Infinity and other Oddities

 VB.NET can represent two very special values, which may not be numeric values

themselves but are produced by numeric calculations:NaN (not a number) and Infinity. If your

calculations produce NaN or Infinity, you should confirm the data and repeat the calculations,

or give up. For all practical purposes, neither NaN nor Infinity can be used in everyday

business calculations.

Not a Number (NaN)

Dim dbl Var As Double=999

Then divide this value by zero:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 19/55

Dim infVa ras Double

infVar = dblVar / 0

and display the variable's value:

MsgBox(infVar)

result=largeVar/smallVar

MsgBox(result)

The result will be Infinity. If you reverse the operands (that is, you divide the very small by the

very large variable), the result will be zero. It's not exactly zero, but the Double data type can't

accurately represent numeric values that are very, very close to zero.

To divide zero by zero, set up two variables as follows:

Dim var1, var2 As Double

Dim result As Double

var1=0

var2=0

result=var1/var2

MsgBox(result)

If you execute these statements, the result will be NaN. Any calculations that involve the result

variable will yield NaN as a result. The following statements will produce a NaN value:

result=result+result

result=10/result

result=result+1E299

MsgBox(result)

If you make var2 a very small number, such as 1E-299, the result will be zero. If you make

var1 a very small number, the result will be Infinity.

For most practical purposes, Infinity is handled just like NaN. They're both numbers that

shouldn't occur in business applications (unless you're projecting the national deficit in the next

50 years), and when they do, it means that you must double-check your code or your data.

The Byte Data Type

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 20/55

 None of the previous numeric types is stored in a single byte. In some situations,

however, data are stored as bytes, and you must be able to access individual bytes. The Byte

data type holds an integer in the range of 0 to 255. Bytes are frequently used to access binary

files, image and sound files, and so on. Note that you no longer use bytes to access individual

characters. Unicode characters are stored in two bytes.

To declare a variable as a Byte, use the following statement:

Dim n As Byte

The variable n can be used in numeric calculations too, but you must be careful not to assign

the result to another Byte variable if its value might exceed the range of the Byte type. If the

variables A and B are initialized as follows:

Dim A As Byte, B As Byte

A=233

B = 50

the following statement will produce an overflow exception:

Debug.WriteLine(A + B)

The same will happen if you attempt to assign this value to a Byte variable with the following

statement:

B = A + B

The result (283) can't be stored in a single byte. Visual Basic generates the correct answer, but

it can't store it into a Byte variable.

Boolean variable

 The Boolean data type stores True/False values. Boolean variables are, in essence,

integers that take the value −1 (for True) and 0 (for False). Actually, any nonzero value is

considered True. Boolean variables are declared as

Dim failure As Boolean

and they are initialized to False. Boolean variables are used in testing conditions, such as the

following:

Dim failure As Boolean=False

' other statements ...

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 21/55

If failure Then MsgBox(”Couldn't complete the operation”)

They are also combined with the logical operators And, Or, Not, and Xor. The Not operator

toggles the value of a Boolean variable. The following statement is a toggle:

running = Not running

If the variable running is True, it's reset to False, and vice versa. This statement is a shorter

way of coding the following:

Dim running As Boolean

If running=True Then

running=False

Else

running=True

End If

String variable

 The String data type stores only text, and string variables are declared as follows:

Dim anyText As String

Dim a String As String

aString = "Now is the time for all good men to come " &

" to the aid of their country"

aString=""

aString = "There are approximately 25,000 words in this chapter"

aString = "25,000"

The second assignment creates an empty string, and the last one creates a string that just

happens to contain numeric digits, which are also characters. The difference between these two

variables is that they hold different values:

Dim a Number As Integer=25000

Dim aString As String = "25,000"

The aString variable holds the characters 2, 5, comma, 0, 0, and 0; and aNumber holds a single

numeric value. However, you can use the variable aString in numeric calculations, and the

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 22/55

variable aNumber in string operations. VB will perform the necessary conversions as long as

the strict option is off.

Character Variable

 Character variables store a single Unicode character in two bytes. In effect, characters

are Unsigned Short integers (UInt16); you can use the CChar() function to convert integers to

characters and use the CInt() function to convert characters to their equivalent integer values.

To declare a Character variable, use the Char keyword:

Dim char1, char2 As Char

You can initialize a Character variable by assigning either a character or a string to it. In the

latter case, only the first character of the string is assigned to the variable. The following

statements will print the characters a and A to the Output window:

Dim char1 As Char = "a", char2 As Char = "ABC"

Debug.WriteLine(char1)

Debug.WriteLine(char2)

These statements will work only if the Strict option is off. If it's on, the values assigned to the

char1 and char2 variables will be marked in error. To fix the error that prevents the compilation

of the code, change the Dim statement as follows:

Dim char1 As Char = "a"c, char2 As Char = "A"c

When the Strict option is on, you can't assign a string to a Char variable and expect that only

the first character of the string will be used.

The Integer values that correspond to the English characters are the ANSI (American National

Standards Institute) codes of the equivalent characters. The following statement will print the

value 65:

Debug.WriteLine(Convert.ToInt32("a"))

If you convert the Greek character alpha (α) to an integer, its value is 945. The Unicode value

of the famous character π is 960.

Date variable

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 23/55

 Date and time values are stored internally in a special format, but you don't need to

know the exact format. They are double-precision numbers: the integer part represents the date,

and the fractional part represents the time. A variable declared as Date with a statement like the

following can store both date and time values:

Dim expiration As Date

The following are all valid assignments:

expiration=#01/01/2008#

expiration=#8/27/20086:29:11PM#

expiration="July2,2008"

expiration = Today()

By the way, the Today() function returns the current date and time, while the Now() function

returns the current date. You can also retrieve the current date by calling the Today property of

the Date data type: Date.Today.

Dimd1,d2 As Date

d1=Now

d2 = #1/1/2004#Debug.WriteLine(d1 - d2)

The value of the TimeSpan object represents an interval of 638 days, 8 hours, 49 minutes, and

51.497 seconds.

Data Type Identifier

 Finally, you can omit the As clause of the Dim statement, yet create typed variables,

with the variable declaration characters, or data type identifiers. These characters are special

symbols that you append to the variable name to denote the variable's type. To create a string

variable, you can use this statement:

Dim myText$

The dollar sign signifies a string variable. Notice that the name of the variable includes the

dollar sign — it's myText$, not myText. To create a variable of a particular type, use one of the

data declaration characters shown in the following table. (Not all data types have their own

identifiers.)

Table 2.3 - Data Type Definition Characters

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 24/55

Symbol Data Type Example

$ String A$, messageText$

% Integer (Int32) counter%, var%

& Long (Int64) population&, colorValue&

! Single distance!

Double ExactDistance

@ Decimal Balance@

 Using type identifiers doesn't help to produce the cleanest and easiest-to-read code.

The Strict and Explicit options

 The Visual Basic compiler provides three options that determine how it handles

variables:

 The Explicit option indicates whether you will declare all variables.

 The Strict option indicates whether all variables will be of a specific type.

 The Infer option indicates whether the compiler should determine the type of a variable

from its value.

To change the default behavior, you must insert the following statement at the beginning of the

file:

Option Explicit Off

The Option Explicit statement must appear at the very beginning of the file. This setting

affects the code in the current module, not in all files of your project or solution. You can turn

on the Strict (as well as the Explicit) option for an entire solution. Open the solution's

properties dialog box (right-click the solution's name in Solution Explorer and select

Properties), select the Compile tab, and set the Strict and Explicit options accordingly, as

shown in Figure

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 25/55

 Figure - Setting the variable-related options in the Visual Studio Options dialog box

The Strict option requires that variables are declared with a specific type. In other

words, the Strict option disallows the use of generic variables that can store any data type.

The default value of the Explicit statement is On. This is also the recommended value,

and you should not make a habit of changing this setting. In the section "Reasons for Decalring

Variables" later in this chapter, you will see an example of the pitfalls you'll avoid by declaring

your variables. By setting the Explicit option to Off, you're telling VB that you intend to use

variables without declaring them. As a consequence, VB can't make any assumption about the

variable's type, so it uses a generic type of variable that can hold any type of information.

These variables are called Object variables, and they're equivalent to the old variants.

While the option Explicit is set to Off, every time Visual Basic runs into an undeclared

variable name, it creates a new variable on the spot and uses it. The new variable's type is

Object, the generic data type that can accommodate all other data types. Using a new variable

in your code is equivalent to declaring it without type. Visual Basic adjusts its type according

to the value you assign to it. Create two variables, var1 and var2, by referencing them in your

code with statements like the following ones:

Option Strict On

If you attempt to execute any of the last two code segments while the Strict option is

on, the compiler will underline a segment of the statement to indicate an error. If you rest the

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 26/55

pointer over the underlined segment of the code, the following error message will appear in a

tip box:

Option strict disallows implicit conversions from String to Double

(or whatever type of conversion is implied by the statement).

When the Strict option is set to On, the compiler doesn't disallow all implicit

conversions between data types. For example, it will allow you to assign the value of an integer

to a Long, but not the opposite. The Long value might exceed the range of values that can be

represented by an Integer variable.

Object Variables

 Variants — variables without a fixed data type— were the bread and butter of VB

programmers up to version 6. Variants are the opposite of strictly typed variables: They can

store all types of values, from a single character to an object. If you're starting with VB 2008,

you should use strictly typed variables. However, variants are a major part of the history of

VB, and most applications out there (the ones you may be called to maintain) use them. I will

discuss variants briefly in this section and show you what was so good (and bad) about them.

Variants, or object variables, were the most flexible data types because they could

accommodate all other types. A variable declared as Object (or a variable that hasn't been

declared at all) is handled by Visual Basic according to the variable's current contents. If you

assign an integer value to an object variable, Visual Basic treats it as an integer. If you assign a

string to an object variable, Visual Basic treats it as a string. Variants can also hold different

data types in the course of the same program. Visual Basic performs the necessary conversions

for you.

To declare a variant, you can turn off the Strict option and use the Dim statement

without specifying a type, as follows:

Dim myVar

If you don't want to turn off the Strict option (which isn't recommended, anyway), you

can declare the variable with the Object data type:

Dim myVar As Object

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 27/55

Every time your code references a new variable, Visual Basic will create an object variable.

For example, if the variable validKey hasn't been declared, when Visual Basic runs into the

following line, it will create a new object variable and assign the value 002-6abbgd to it:

validKey = "002-6abbgd"

You can use object variables in both numeric and string calculations. Suppose that the variable

modemSpeed has been declared as Object with one of the following statements:

Dim modemSpeed ' with Option Strict = Off

Dim modemSpeed As Object ' with Option Strict = On

and later in your code you assign the following value to it:

modemSpeed = "28.8"

The modemSpeed variable is a string variable that you can use in statements such as the

following:

MsgBox "We suggest a " & modemSpeed & " modem."

This statement displays the following message:

"We suggest a 28.8 modem."

Converting Variable Types

 In many situations, you will need to convert variables from one type into another. Table

2.4 shows the methods of the Convert class that perform data-type conversions.

In addition to the methods of the Convert class, you can still use the data-conversion

functions of VB (CInt() to convert a numeric value to an Integer, CDbl() to convert a numeric

value to a Double, CSng() to convert a numeric value to a Single, and so on), which you can

look up in the documentation. If you're writing new applications in VB 2008, use the new

Convert class to convert between data types.

To convert the variable initialized as the following

Dim A As Integer

to a Double, use the ToDouble method of the Convert class:

Dim B As Double

B = Convert.ToDouble(A)

Suppose that you have declared two integers, as follows:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 28/55

Dim A As Integer, B As Integer

A=23

B = 7

The result of the operation A / B will be a Double value. The following statement

Debug.Write(A / B)

displays the value 3.28571428571429. The result is a Double value, which provides the

greatest possible accuracy. If you attempt to assign the result to a variable that hasn't been

declared as Double, and the Strict option is on, then VB 2008 will generate an error message.

No other data type can accept this value without loss of accuracy. To store the result to a Single

variable, you must convert it explicitly with a statement like the following:

Convert.ToSingle(A / B)

You can also use the DirectCast() function to convert a variable or expression from one

type to another. The DirectCast() function is identical to the CType() function. Let's say the

variable A has been declared as String and holds the value 34.56. The following statement

converts the value of the A variable to a Decimal value and uses it in a calculation:

Dim A As String="34.56"

Dim B As Double

B = DirectCast(A, Double) / 1.14

The conversion is necessary only if the strict option is on, but it's a good practice to perform

your conversions explicitly. The following section explains what might happen if your code

relies on implicit conversions.

 Table - The Data-Type Conversion Methods of the Convert Class

Method Converts Its Argument To

ToBoolean Boolean

ToByte Byte

ToChar Unicode character

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 29/55

ToDateTime Date

ToDecimal Decimal

ToDouble Double

ToInt16 Short Integer (2-byte integer, Int16)

ToInt32 Integer (4-byte integer, Int32)

ToInt64 Long (8-byte integer, Int64)

ToSByte Signed Byte

CShort Short (2-byte integer, Int16)

ToSingle Single

ToString String

ToUInt16 Unsigned Integer (2-byte integer, Int16)

ToUInt32 Unsigned Integer (4-byte integer, Int32)

ToUInt64 Unsigned Long (8-byte integer, Int64)

User Defined Data Types

You can create custom data types that are made up of multiple values using structures.

A VB structure allows you to combine multiple values of the basic data types and handle them

as a whole.

For example, each check in a check tutorial-balancing application is stored in a separate

structure (or record), as shown in Figure 2.3. When you recall a given check, you need all the

information stored in the structure.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 30/55

 Figure - Pictorial representation of a structure

To define a structure in VB 2008, use the Structure statement, which has the following syntax:

Structure structureName

Dim variable1 As varType

Dim variable2 As varType

...

Dim variable As varType

End Structure

Where, varType can be any of the data types supported by the CLR. The Dim statement

can be replaced by the Private or Public access modifiers. For structures, Dim is equivalent to

Public.

After this declaration, you have in essence created a new data type that you can use in

your application. structureName can be used anywhere you'd use any of the base types

(Integers, Doubles, and so on). You can declare variables of this type and manipulate them as

you manipulate all other variables (with a little extra typing). The declaration for the

CheckRecord structure shown in Figure 2.3 is as follows:

Structure CheckRecord

Dim CheckNumber As Integer

Dim CheckDate As Date

Dim CheckAmount As Single

Dim CheckPaidTo As String

End Structure

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 31/55

This declaration must appear outside any procedure; you can't declare a Structure in a

subroutine or function. Once declared, The CheckRecord structure becomes a new data type

for your application.

To declare variables of this new type, use a statement such as this one:

Dim check1 As CheckRecord, check2 As CheckRecord

To assign a value to one of these variables, you must separately assign a value to each

one of its components (they are called fields), which can be accessed by combining the name

of the variable and the name of a field, separated by a period, as follows:

check1.CheckNumber = 275

Actually, as soon as you type the period following the variable's name, a list of all members to

the CheckRecord structure will appear. Notice that the structure supports a few members on its

own.

Figure - Variables of custom types expose their members as properties

You didn't write any code for the Equals, GetType, and ToString members, but they're

standard members of any Structure object, and you can use them in your code. Both the

GetType and ToString methods will return a string like ProjectName.FormName +

CheckRecord. You can provide your own implementation of the ToString method, which will

return a more meaningful string:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 32/55

Public Overrides Function ToString() As String

Return "CHECK # " & CheckNumber & " FOR " &

CheckAmount.ToString("C")

End Function

As you understand, structures are a lot like objects that expose their fields as properties

and then expose a few members of their own. The following statements initialize a

CheckRecord variable:

check2.CheckNumber=275

check2.CheckDate=#09/12/2008#

check2.CheckAmount=104.25

check2.CheckPaidTo = "Gas Co."

You can also create arrays of structures with a declaration such as the following (arrays

are discussed later in this chapter):

Dim Checks(100) As CheckRecord

Each element in this array is a CheckRecord structure and it holds all the fields of a given

check. To access the fields of the third element of the array, use the following notation:

Checks(2).CheckNumber=275

Checks(2).CheckDate=#09/12/2008#

Checks(2).CheckAmount=104.25

Checks(2).CheckPaidTo = "Gas Co."

Examining the Variable Types

 IsNumeric()

Returns True if its argument is a number (Short, Integer, Long, Single, Double,

Decimal). Use this function to determine whether a variable holds a numeric value before

passing it to a procedure that expects a numeric value or before processing it as a number. The

following statements keep prompting the user with an InputBox for a numeric value. The user

must enter a numeric value or click the Cancel button to exit. As long as the user enters non-

numeric values, the Input box keeps popping up and prompting for a numeric value:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 33/55

Dim str Age As String= ""

Dim Age As Integer

While NotIsNumeric(strAge)

strAge=InputBox("Please enter your age")

EndWhile

Age = Convert.ToInt16(strAge)

The variable strAge is initialized to a non-numeric value so that the While. . .End While loop

will be executed at least once

 IsDate()

 Returns True if its argument is a valid date (or time). The following expressions

return True because they all represent valid dates:

IsDate(#10/12/2010#)

IsDate("10/12/2010")

IsDate("October 12, 2010")

 If the date expression includes the day name, as in the following expression, the

IsDate() function will return False:

IsDate("Sat. October 12, 2010") ' FALSE

 IsArray()

 Returns True if its argument is an array.

A Variable’s Scope

 In addition to its type, a variable also has a scope. The scope (or visibility) of a variable

is the section of the application that can see and manipulate the variable. If a variable is

declared within a procedure, only the code in the specific procedure has access to that variable;

this variable doesn't exist for the rest of the application. When the variable's scope is limited to

a procedure, it's called local.

Suppose that you're coding the Click event of a button to calculate the sum of all even numbers

in the range 0 to 100. One possible implementation is shown in Listing 2.4.

Listing: Summing Even Numbers

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 34/55

Private Sub Button1_Click(ByValsenderAsObject,_ByVale As System.EventArguments)

Handles Button1.Click

Dim I As Integer

Dim Sum As Integer

For i=0 to100 Step2

Sum=Sum+i

Next

MsgBox "The sum is " & Sum.ToString

End Sub

Listing: Variable Scoped in ItsOwn Block

Private SubButton1_Click(ByValsenderAsObject,_ByVale As System.EventArguments)

Handles Button1.Click

Dim i, Sum As Integer

For i=0 to100 Step2

Dim sqrValue As Integer

sqrValue=i*i

Sum=Sum+sqrValue

Next

MsgBox "The sum of the squares is " & Sum

End Sub

Constants

Some variables don't change value during the execution of a program. These variables

are constants that appear many times in your code. For instance, if your program does math

calculations, the value of pi (3.14159. . .) might appear many times. Instead of typing the value

3.14159 over and over again, you can define a constant, name it pi, and use the name of the

constant in your code. The statement

circumference = 2 * pi * radius

is much easier to understand than the equivalent

circumference = 2 * 3.14159 * radius

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 35/55

You could declare pi as a variable, but constants are preferred for two reasons:

Constants don't change value. This is a safety feature. After a constant has been declared,

you can't change its value in subsequent statements, so you can be sure that the value specified

in the constant's declaration will take effect in the entire program.

Constants are processed faster than variables. When the program is running, the values of

constants don't have to be looked up. The compiler substitutes constant names with their

values, and the program executes faster.

' The following statements declare constants.

Const maxval As Long = 4999

Public Const message As String = "HELLO"

Private Const piValue As Double = 3.1415

Example

The following example demonstrates declaration and use of a constant value:

Module constantsNenum

 Sub Main()

 Const PI = 3.14149

 Dim radius, area As Single

 radius = 7

 area = PI * radius * radius

 Console.WriteLine("Area = " & Str(area))

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Area = 153.933

Print and Display Constants in VB.Net

VB.Net provides the following print and display constants:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 36/55

Constant Description

vbCrLf Carriage return/linefeed character combination.

vbCr Carriage returns character.

vbLf Linefeed character.

vbNewLine Newline character.

vbNullChar Null character.

vbNullString
Not the same as a zero-length string (""); used for calling external

procedures.

vbObjectError

Error number. User-defined error numbers should be greater than this

value. For example:

Err.Raise(Number) = vbObjectError + 1000

vbTab Tab character.

vbBack Backspace character.

Arrays

An array stores a fixed-size sequential collection of elements of the same type. An array

is used to store a collection of data, but it is often more useful to think of an array as a

collection of variables of the same type.

All arrays consist of contiguous memory locations. The lowest address corresponds to the first

element and the highest address to the last element.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 37/55

Creating Arrays in VB.Net

To declare an array in VB.Net, you use the Dim statement. For example,

Dim intData(30) ' an array of 31 elements

Dim strData(20) As String ' an array of 21 strings

Dim twoDarray(10, 20) As Integer 'a two dimensional array of integers

Dim ranges(10, 100) 'a two dimensional array

You can also initialize the array elements while declaring the array. For example,

Dim intData() As Integer = {12, 16, 20, 24, 28, 32}

Dim names() As String = {"Karthik", "Sandhya","Shivangi", "Ashwitha", "Somnath"}

Dim miscData() As Object = {"Hello World", 12d, 16ui, "A"c}

Initializing Arrays

 Just as you can initialize variables in the same line in which you declare them, you can

initialize arrays, too, with the following constructor (an array initializer, as it's called):

Dim arrayname() As type = {entry0, entry1, ... entryN}

Here's an example that initializes an array of strings:

Dim Names() As String = {"Joe Doe", "Peter Smack"}

This statement is equivalent to the following statements, which declare an array with two

elements and then set their values:

Dim Names(1) As String

Names(0)="JoeDoe"

Names(1) = "Peter Smack"

Array Limits

 The first element of an array has index 0. The number that appears in parentheses in the

Dim statement is one fewer than the array's total capacity and is the array's upper limit (or

upper bound). The index of the last element of an array (its upper bound) is given by the

method GetUpperBound, which accepts as an argument the dimension of the array and returns

the upper bound for this dimension.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 38/55

The arrays we examined so far are one-dimensional and the argument to be passed to

the GetUpperBound method is the value 0. The total number of elements in the array is given

by the method GetLength, which also accepts a dimension as an argument. The upper bound of

the following array is 19, and the capacity of the array is 20 elements:

Dim Names(19) As Integer

The first element is Names(0), and the last is Names(19). If you execute the following

statements, the highlighted values will appear in the Output window:

Debug.WriteLine(Names.GetLowerBound(0))

0

Debug.WriteLine(Names.GetUpperBound(0))

19

To assign a value to the first and last element of the Names array, use the following statements:

Names(0)="Firstentry"

Names(19) = "Last entry"

If you want to iterate through the array's elements, use a loop like the following one:

Dim I As Integer, myArray(19) As Integer

For i=0TomyArray.GetUpperBound(0)

myArray(i)=i*1000

Next

The actual number of elements in an array is given by the expression

myArray.GetUpperBound(0) + 1. You can also use the array's Length property to retrieve the

count of elements. The following statement will print the number of elements in the array

myArray in the Output window:

Debug.WriteLine(myArray.Length)

Dynamic Arrays

Dynamic arrays are arrays that can be dimensioned and re-dimensioned as par the need

of the program. You can declare a dynamic array using the ReDim statement.

Syntax for ReDim statement:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 39/55

ReDim [Preserve] arrayname(subscripts)

Where,

The Preserve keyword helps to preserve the data in an existing array, when you resize it.

arrayname is the name of the array to re-dimension.

subscripts specifies the new dimension.

Module arrayApl

 Sub Main()

 Dim marks() As Integer

 ReDim marks(2)

 marks(0) = 85

 marks(1) = 75

 marks(2) = 90

 ReDim Preserve marks(10)

 marks(3) = 80

 marks(4) = 76

 marks(5) = 92

 marks(6) = 99

 marks(7) = 79

 marks(8) = 75

 For i = 0 To 10

 Console.WriteLine(i & vbTab & marks(i))

 Next i

 Console.ReadKey()

 End Sub

End Module

Multi-Dimensional Arrays

VB.Net allows multidimensional arrays. Multidimensional arrays are also called

rectangular arrays.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 40/55

You can declare a 2-dimensional array of strings as:

Dim twoDStringArray(10, 20) As String

or, a 3-dimensional array of Integer variables:

Dim threeDIntArray(10, 10, 10) As Integer

The following program demonstrates creating and using a 2-dimensional array:

Module arrayApl

 Sub Main()

 ' an array with 5 rows and 2 columns

 Dim a(,) As Integer = {{0, 0}, {1, 2}, {2, 4}, {3, 6}, {4, 8}}

 Dim i, j As Integer

 ' output each array element's value '

 For i = 0 To 4

 For j = 0 To 1

 Console.WriteLine("a[{0},{1}] = {2}", i, j, a(i, j))

 Next j

 Next i

 Console.ReadKey()

 End Sub

End Module

Reinitializing Arrays

We can change the size of an array after creating them. The ReDim statement assigns a

completely new array object to the specified array variable. You use ReDim statement to

change the number of elements in an array. The following lines of code demonstrate that. This

code reinitializes the Test array declared above.

Dim Test(10) As Integer

ReDim Test(25) As Integer

'Reinitializing the array

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 41/55

When using the Redim statement all the data contained in the array is lost. If you want to

preserve existing data when reinitializing an array then you should use the Preserve keyword

which looks like this:

Dim Test() as Integer={1,3,5}

'declares an array an initializes it with three members

ReDim Preserve Test(25)

'resizes the array and retains the the data in elements 0 to 2

Control Flow statements

Decision making structures require that the programmer specify one or more conditions

to be evaluated or tested by the program, along with a statement or statements to be executed if

the condition is determined to be true, and optionally, other statements to be executed if the

condition is determined to be false

Decision Statements

Applications need a mechanism to test conditions and take a different course of action

depending on the outcome of the test. Visual Basic provides three such decision, or

conditional, statements:

 If. . .Then

 If. . .Then. . .Else

 Select Case

Loop Statements

Loop statements allow you to execute one or more lines of code repetitively. Many tasks

consist of operations that must be repeated over and over again, and loop statements are an

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 42/55

important part of any programming language. Visual Basic supports the following loop

statements:

 For. . .Next

 Do. . .Loop

 While. . .End While

Decision Statements

1) If Then Statement

 If Then statement is a control structure which executes a set of code only when the given

condition is true.

Syntax:

If [Condition] Then

 [Statements]

In the above syntax when the Condition is true then the Statements after Then are executed.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 43/55

Flow Diagram:

Example:

Private Sub Button1_Click_1(ByVal sender As System.Object, ByVal e As system.EventArgs)

Handles Button1.Click

 If Val(TextBox1.Text) > 25 Then

 TextBox2.Text = "Eligible"

 End If

Description:

In the above If Then example the button click event is used to check if the age got

using TextBox1 is greater than 25, if true a message is displayed in TextBox2

2) If Then Else Statement

 If Then Else statement is a control structure which executes different set of code

statements when the given condition is true or false.

Syntax:

If [Condition] Then

 [Statements]

Else

 [Statements]

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 44/55

In the above syntax when the Condition is true, the Statements after Then are

executed.If the condition is false then the statements after the Else part is executed.

Flow Diagram:

Example:

 Private Sub Button1_Click (ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles Button1.Click

 If Val(TextBox1.Text) >= 40 Then

 MsgBox("GRADUATED")

 Else

 MsgBox("NOT GRADUATED")

 End If

 End Sub

Description:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 45/55

In the above If Then Else example the marks are entered in TextBox1.When a button is

clicked a message GRADUATED is displayed if the condition (>40) is true and NOT

GRADUATED if it is false.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 46/55

3) Nested If Then Else Statement

 Nested If..Then..Else statement is used to check multiple conditions using if then else

statements nested inside one another.

Syntax:

If [Condition] Then

 If [Condition] Then

 [Statements]

 Else

 [Statements]

Else

 [Statements]

In the above syntax when the Condition of the first if then else is true, the second if

then else is executed to check another two conditions. If false the statements under the Else

part of the first statement is executed.

Flow Diagram

Example:

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles Button1.Click

 If Val(TextBox1.Text) >= 40 Then

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 47/55

 If Val(TextBox1.Text) >= 60 Then

 MsgBox("You have FIRST Class")

 Else

 MsgBox("You have SECOND Class")

 End If

 Else

 MsgBox("Check your Average marks entered")

 End If

 End Sub

Description:

In the above nested if then else statement example first the average mark is checked if it

is more than 40, if true the second if then else control is used check for first or second class. If

the first condition is false the statements under the else part is executed.

4) Select Case Statement

 Select case statement is used when the expected results for a condition can be known

previously so that different set of operations can be done based on each condition.

Syntax:

 Select Case Expression

 Case Expression1

 Statement1

 Case Expression2

 Statement2

 Case Expressionn

 Statementn

 ...

 Case Else

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 48/55

 Statement

 End Select

In the above syntax, the value of the Expression is checked with Expression1..n to

check if the condition is true. If none of the conditions are matched the statements under

the Case Else is executed.

Flow Diagram:

KARPAGAM ACADEMY OF HIGHER
EDUCATION

CLASS: II M.COM CA COURSE NAME:
JAVA
COURSE CODE: 16CCP304 UNIT: I (An Overview of Java) BATCH-2016-
2018

Example:

 Private Sub Button1_Click(ByVal sender As System.Object,ByVal e As System.EventArgs)

Handles Button1.Click

 Dim c As String

 c = TextBox1.Text

 Select c

 Case "Red"

 MsgBox("Color code of Red is::#FF0000")

 Case "Green"

 MsgBox("Color code of Green is::#808000")

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 49/55

 Case "Blue"

 MsgBox("Color code of Blue is:: #0000FF")

 Case Else

 MsgBox("Enter correct choice")

 End Select

 End Sub

Description:

In the above example based on the color input in TextBox1, the color code for RGB

colors are displayed, if the color is different then the statement under Case Else is executed.

Thus we can easily execute the select case statement.

Loop Statements

1) Do While Loop Statement

 Do While Loop Statement is used to execute a set of statements only if the condition is

satisfied. But the loop gets executed once for a false condition once before exiting the loop.

This is also known as Entry Controlled loop.

Syntax:

 Do While [Condition]

 [Statements]

 Loop

In the above syntax the Statements are executed till the Condition remains true.

Example:

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles MyBase.Load

 Dim a As Integer

 a = 1

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 50/55

 Do While a < 100

 a = a * 2

 MsgBox("Product is::" & a)

 Loop

 End Sub

Description:

In the above Do While Loop example the loop is continued after the value 64 to display

128 which is false according to the given condition and then the loop exits.

2) Do Loop While Statement

 Do Loop While Statement executes a set of statements and checks the condition, this is

repeated until the condition is true. .It is also known as an Exit Control loop

Syntax:

 Do

 [Statements]

 Loop While [Condition]

In the above syntax the Statements are executed first then the Condition is checked to find if

it is true.

Example:

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles MyBase.Load

 Dim cnt As Integer

 Do

 cnt = 10

 MsgBox("Value of cnt is::" & cnt)

 Loop While cnt <= 9

 End Sub

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 51/55

Description:

In the above Do Loop While example, a message is displayed with a value 10 only after

which the condition is checked, since it is not satisfied the loop exits.

3) For Next Loop Statement

 For Next Loop Statement executes a set of statements repeatedly in a loop for the given

initial, final value range with the specified step by step increment or decrement value.

Syntax:

 For counter = start To end [Step]

 [Statement]

 Next [counter]

In the above syntax the Counter is range of values specified using

the Start ,End parameters. The Step specifies step increment or decrement value of the

counter for which the statements are executed.

Example:

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles MyBase.Load

 Dim i As Integer

 Dim j As Integer

 j = 0

 For i = 1 To 10 Step 1

 j = j + 1

 MsgBox("Value of j is::" & j)

 Next i

 End Sub

Description:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 52/55

In the above For Next Loop example the counter value of i is set to be in the range of 1

to 10 and is incremented by 1. The value of j is increased by 1 for 10 times as the loop is

repeated.

Nested Control Structures

You can place, or nest, control structures inside other control structures (such as an If. .

.Then block within a For. . .Next loop). Control structures in Visual Basic can be nested in as

many levels as you want. The editor automatically indents the bodies of nested decision and

loop structures to make the program easier to read.

When you nest control structures, you must make sure that they open and close within

the same structure. In other words, you can't start a For. . .Next loop in an If statement and

close the loop after the corresponding End If. The following code segment demonstrates how

to nest several flow-control statements. (The curly brackets denote that regular statements

should appear in their place and will not compile, of course.)

For a=1 To 100

{statements}

If a=99 Then

{statements}

EndIf

While b<a

{statements}

If total<=0 Then

{statements}

EndIf

EndWhile

For c=1 to a

{statements}

Next c

Next a

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 53/55

Listing: Simple Nested If Statements

Dim Income As Decimal

Income=Convert.ToDecimal(InputBox("Enteryourincome"))

If Income >0 Then

If Income>12000 Then

MsgBox"You will pay taxes this year"

Else

MsgBox"You won't pay any taxes this year"

End If

Else

MsgBox"Bummer"

End If

The Exit Statement

The Exit statement allows you to exit prematurely from a block of statements in a

control structure, from a loop, or even from a procedure. Suppose that you have a For. . .Next

loop that calculates the square root of a series of numbers. Because the square root of negative

numbers can't be calculated (the Math.Sqrt method will generate a runtime error

For i=0 ToUBound(nArray)

If nArray(i)<0 Then

MsgBox("Can'tcompletecalculations"&vbCrLf&_

"Item"& i.ToString & "isnegative!"

Exit For

EndIf

nArray(i)=Math.Sqrt(nArray(i))

Next

If a negative element is found in this loop, the program exits the loop and continues

with the statement following the Next statement.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 54/55

There are similar Exit statements for the Do loop (Exit Do), the While loop (Exit

While), the Select statement (Exit Select), and for functions and subroutines (Exit Function and

Exit Sub). If the previous loop was part of a function, you might want to display an error and

exit not only the loop, but also the function itself by using the Exit Function statement.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: I(Overview of VB.NET) BATCH-2017-2019

Prepared by Dr.S.Hemalatha , Department of Commerce, KAHE 55/55

POSSIBLE QUESTIONS

PART A (1 Mark)

(Online Examinations)

PART B (6 Marks)

1. Explain about variables with example.

2. Discuss in detail about flow control structures with example

3. Explain about various data types with example.

4. Write a vb.net program to calculate the Simple interest and Compound Interest.

5. Briefly explain about the IDE environment.

6. Explain about with example.

i) While loop ii) Do while loop iii) if….else stmt iv) else if stmt

7. Discuss in detail about Integrated Development Components.

8. Write a vb.net program to calculate the factorial of n numbers.

9. Briefly explain about arrays and conditional statements with examples

10. Briefly explain about nested if statement with example

SUBJECT: VB.NET

SEMESTER : II UNIT : I

SUBJECT CODE: 18CCP304 CLASS : II M.COM CA

S.

NO QUESTIONS OPTION 1 OPTION 2 OPTION 3 OPTION 4 ANSWER

1

.Net is a technology developed by _________

company

Microsoft Sun

Microsystems

IBM Apple

compters

Microsoft

2

NGWS Stands for Next Generation

Windows Services

Next

Generation

Web Services

Next

Generation

Workflow

Services

Next

Generation

Windows

Server

Next Generation

Windows

Services

3

__________is also known as the "execution engine" of

.NET.

CLR CTS MSIL WPF CLR

4

Code that targets the Common Langage Runtime is

known as _________

Distributed Code Managed

Code

Legacy

code

Native Code Managed Code

5

The _____ defines the minimum standards that .NET

language compilers must conform source code

compiled by a .NET compiler

CLS CTS CLR MSIL CLS

6

Which of the following task is done by the Garbage

collector?

Freeing memory

referenced by

unreferenced

objects

Closing

unclosed Files

and Databases

Freeing

memory on

the stack

Closing the

Connections

used by the

Program

Freeing memory

referenced by

unreferenced

objects

7

VB.Net is a _____________programming paradigm. Procedural Structured Object

Oriented

Monolithic Object Oriented

8 Data members of a class are by default ________ public private static volatile private

9 Member functions of a class are by default ________ public private static volatile public

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under section 3 of UGC Act 1956)

Coimbatore – 641021

(For the candidates admitted from 2018 onwards)

10

IDE stands for Internet Design

Environment

Integrated

Development

Environment

Internet

Distributed

Environme

nt

Interface

Design

Environment

Integrated

Development

Environment

11

The final compiled version of a Project is ____ Form Software Component

s

Files Components

12

______ is a collection of files that can be compiled to

create a distributed component

Form Software Component

s

Project Project

13

______ is a collection of projects and files that

composed an application or component

Solution Software Forms Project Solution

14 Every object has a distinct set of attributes knowns as members datas properties methods properties

15

The property that must be set first for any new object

is the ________

Name Colour Size Binding Name

16

Objects that can be placed on a form are called

Pictures Tools Buttons Controls Controls

17

Controls that do not have physical appearance are

called ________

invisible-at-

runtime-controls

visible-at-

runtime-

controls

virtual

controls

physical

controls

invisible-at-

runtime-controls

18

________ is a template procedure in which we add the

code that is executed when the event is fired

code behind page coding

interface

event

handler

class event handler

19

By default Visual Studio saves all Projects in the

folder______

\My Documents\

Visual Studio

Projects\<Projectn

ame>

wwwroots\ine

tpub\<Project

name>

Either of

the two

Both the two \My Documents\

Visual Studio

Projects\<Project

name>

20 The Design window appears__________ by default. Auto-Hidden Docked Floating Closed Docked

21

________ windows appears attached to the side, top or

bottom of the work area or to some other window

Auto-Hidden Docked Floating Closed Docked

22

_______ can be distributed to other people/computer

and do not require Visual Basic to run

Files Forms Projects Components Components

23

__________ are also called programs Distributable

components

Project files Solution Forms Distributable

components

24

___________ is a programming structure that

encapsulates data and functionality as a single unit.

Class Object Collection methods Object

25

This is the way we refer to properties of an object in

code

{Object

name}.{Property}

{Class}.{Prop

erty}

{Class}.{

Method}

{Object

Name}.{Met

hos name}

{Object

name}.{Property

}

26 To set a property to some value use________ (dot) . (equal)= (*) astrick set() (equal)=

27

When we type the period(dot) after the object name a

small dropdown list containing all the properties and

methods related to that object appears. This feature is

called ________

IntelliSense OnlineHelp QuickMen

u

DropHelp IntelliSense

28

A property that returns an object is called Collection subroutine Object

Oriented

Object

Property

Object Property

29 The process of creating an object is called _______ integration instantiation interfacing inheritance instantiation

30

Event driven programs have logical sections of code

placed within ________

functions methods events subroutines events

31

Events can be triggered by User interaction Calling them

in code

Both None Calling them in

code

32

An Event that continuously triggers itself is called

Looping repititive

event

recursive

event

Nested

events

recursive event

33

___________ is a statement that defines the structure

of an event

event procedure event

triggering

event call event

declaration

event declaration

34

The items within the paranthesis of an event

declaration are called _____

objects parameters properties events parameters

35

The ________ parameter returns a reference to the

control that causes the event.

event args sender caller Trigger sender

36

________ events eventually exhaust Windows'

resources until an exception occurs

Recursive Repititive Simple Continuous Recursive

37

This property is used to change/display the titile of the

form

Name Text Title Form Text

38

The default BackColor of the Form is the system color

named

gray white pale control control

39

A_________ sign at the left of the propertyname in

property window indicates that there are subproperties

to it

+ - * x +

40

The default value of FormBorderStyle property is FixedSingle FixedToolWi

ndow

Sizable SizableTool

Window

Sizable

41

Without the _______ the form cannot be resized by the

user

Minimize /

Maximize button

Border Title bar Control

Menu

Border

42

Without the _______ the form cannot be repositioned

by the user

Minimize /

Maximize button

Border Title bar Control

Menu

Title bar

43

When the FormBorderStyle property is set to ______

the form cannot be resized

None FixedToolWi

ndow

Fixed3D All the above All the above

44 WindowState property is _________ by default Normal Maximized Minimuzed None Normal

45

The Form can be displayed by by calling Show()

method

by setting the

Visible

property of

the form to

True

Both None Both (a) and (b)

46

_____ method does not simply hides the form, but

destroy it completely

Close() Hide() Distroy() Remove() Close()

47

A control can be added to a Form by double clicking the

control in the

toolbos

drag a control

to the Form

Select a

control in

toolbox

and draw it

on the

Form

All the above All the above

48

The Forms Icon is displayed in the forms titlebar taskbar if

minimized

tasklist

while

pressing

Alt+Tab

All the above All the above

49

Which property has to be set to minimize maximize ot

restore a form in code?

Windows

Applications

WindowState FormBorde

rStyle

WindowSize WindowState

50

Which property is used to change the image of the

pointer.

Pointer Image icon Cursor Cursor

51

Lasso is a techniques of _________ selecting a group

of controls

clearing a part

of the form

Aligning a

set of

controls

Setting a

group of

properties to

a control

selecting a group

of controls

52

Options to Align a group of controls, Make them same

size and equally spaced are all in ____ menu

Align Control Format Window Format

53 The control with the tab index _____ first gets focus 0 1 Maximum Minimum 0

when the form is shown value value

54

Transparent forms can be created by setting the

_______ property

Visibility Transparency Opacity Sizable Opacity

55

Which is the default event of a Button Control Click MouseOver TextChang

ed

GetFocus Click

56

To change the Height if the text box _________

property has to be set.

Height Size Multiline LineLength Multiline

57

What increment of time is applied to the interval

property of the Timer control

Seconds Milliseconds Nanosecon

ds

minutes Milliseconds

58

_________ property returns the index of the currently

selected tab.

ItemSelected Item.Index SelectedInd

ex

IdexSelected SelectedIndex

59

_________ property returns the number of items in a

List View

Count List Number Items Count

60 Each item in a Tree View is called _____ branch subtree leaf node node

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 1/60

UNIT II

SYLLABUS

Writing and Using Procedures: Module Coding – Arguments. Working with Forms: Appearance

of Forms- Loading and Showing Forms -Designing Menus. Multiple Document Interface

WRITING AND USING PROCEDURE

 Procedures are also used for implementing repeated tasks, such as frequently used

calculations. The two types of procedures supported by Visual Basic-subroutines and functions

MODULAR CODING

 The idea of breaking a large application into smaller, more manageable sections is not new

to computing. Few tasks, programming or otherwise, can be managed as a whole. The event

handlers are just one example of breaking a large application into smaller tasks. Some event

handlers may require a lot of code.

Subroutines

 A subroutine is a block of statements that carries out a well-defined task. The block of

statements is placed within a set of Sub. . .End Sub statements and can be invoked by name.

 The following subroutine displays the current date in a message box and can be called by

its name, ShowDate():

Sub ShowDate()

MsgBox(Now().ToShortDateString)

End Sub

 Most procedures also accept and act upon arguments. The ShowDate() subroutine displays

the current date in a message box. If you want to display any other date, you have to implement it

differently and add an argument to the subroutine:

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 2/60

Sub ShowDate(ByVal birthDate As Date)

MsgBox(birthDate.ToShortDateString)

End Sub

 birthDate is a variable that holds the date to be displayed; its type is Date. The ByVal

keyword means that the subroutine sees a copy of the variable, not the variable itself. What this

means practically is that the subroutine can't change the value of the variable passed by the calling

application. To display the current date in a message box, you must call the ShowDate()

subroutine as follows from within your program:

 ShowDate() -To display any other date with the second implementation of the subroutine,

use a statement like the following:

Dim myBirthDate = #2/9/1960#

ShowDate(myBirthDate)

 Or, you can pass the value to be displayed directly without the use of an intermediate

variable: ShowDate(#2/9/1960#)

Functions

 A function is similar to a subroutine, but a function returns a result. Because they return

values, functions — like variables — have types. The value you pass back to the calling program

from a function is called the return value, and its type must match the type of the function.

Functions accept arguments, just like subroutines. The statements that make up a function are

placed in a set of Function. . .End Function statement

A procedure is a group of statements that together perform a task, when called. After the

procedure is executed, the control returns to the statement calling the procedure. VB.Net has two

types of procedures:

 Functions

 Sub procedures or Subs

Functions return a value, where Subs do not return a value.

Defining a Function

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 3/60

 The Function statement is used to declare the name, parameter and the body of a function.

The syntax for the Function statement is:

[Modifiers] Function FunctionName [(ParameterList)] As ReturnType

 [Statements]

End Function

Where,

 Modifiers: specifiy the access level of the function; possible values are: Public, Private,

Protected, Friend, Protected Friend and information regarding overloading, overriding,

sharing, and shadowing.

 FunctionName: indicates the name of the function

 ParameterList: specifies the list of the parameters

 ReturnType: specifies the data type of the variable the function returns

Example

 Following code snippet shows a function FindMax that takes two integer values and

returns the larger of the two.

Function FindMax(ByVal num1 As Integer, ByVal num2 As Integer) As Integer

 ' local variable declaration */

 Dim result As Integer

 If (num1 > num2) Then

 result = num1

 Else

 result = num2

 End If

 FindMax = result

End Function

Function Returning a Value

 In VB.Net a function can return a value to the calling code in two ways:

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 4/60

 By using the return statement

 By assigning the value to the function name

The following example demonstrates using the FindMax function:

Module myfunctions

 Function FindMax(ByVal num1 As Integer, ByVal num2 As Integer) As Integer

 ' local variable declaration */

 Dim result As Integer

 If (num1 > num2) Then

 result = num1

 Else

 result = num2

 End If

 FindMax = result

 End Function

 Sub Main()

 Dim a As Integer = 100

 Dim b As Integer = 200

 Dim res As Integer

 res = FindMax(a, b)

 Console.WriteLine("Max value is : {0}", res)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces following result:

Max value is : 200

More Types of Function Return Values

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 5/60

1) Functions returning Structures

 Suppose you need a function that returns a customer's savings and checking account

balances. So far, you've learned that you can return two or more values from a function by

supplying arguments with the ByRef keyword. A more elegant method is to create a custom data

type (a structure) and write a function that returns a variable of this type.

 Here's a simple example of a function that returns a custom data type. This example

outlines the steps you must repeat every time you want to create functions that return custom data

types:

1. Create a new project and insert the declarations of a custom data type in the declarations

section of the form:

Structure CustBalance

Dim SavingsBalance As Decimal

Dim CheckingBalance As Decimal

End Structure

2. Implement the function that returns a value of the custom type. In the function's body, you must

declare a variable of the type returned by the function and assign the proper values to its fields.

The following function assigns random values to the fields CheckingBalance and SavingsBalance.

Then assign the variable to the function's name, as shown next:

Function GetCustBalance(ID As Long) As CustBalance

Dim tBalance As CustBalance

tBalance.CheckingBalance = CDec(1000 + 4000 * rnd())

tBalance.SavingsBalance = CDec(1000 + 15000 * rnd())

Return(tBalance)

End Function

3. Place a button on the form from which you want to call the function. Declare a variable of the

same type and assign to it the function's return value. The example that follows prints the savings

and checking balances in the Output window:

Private Sub Button1 Click(...) Handles Button1.Click

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 6/60

Dim balance As CustBalance

balance = GetCustBalance(1)

Debug.WriteLine(balance.CheckingBalance)

Debug.WriteLine(balance.SavingsBalance)

End Sub

 The code shown in this section belongs to the Structures sample project. Create this

project from scratch, perhaps by using your own custom data type, to explore its structure and

experiment with functions that return custom data types.

2) Function Returning Arrays

 In addition to returning custom data types, VB 2008 functions can also return arrays. This

is an interesting possibility that allows you to write functions that return not only multiple values,

but also an unknown number of values.

In this section, we'll write the Statistics() function, similar to the CalculateStatistics() function you

saw a little earlier in this chapter. The Statistics() function returns the statistics in an array.

Moreover, it returns not only the average and the standard deviation, but the minimum and

maximum values in the data set as well. One way to declare a function that calculates all the

statistics is as follows:

Function Statistics(ByRef DataArray() As Double) As Double()

 This function accepts an array with the data values and returns an array of Doubles. To

implement a function that returns an array, you must do the following:

1. Specify a type for the function's return value and add a pair of parentheses after the type's

name. Don't specify the dimensions of the array to be returned here; the array will be

declared formally in the function.

2. In the function's code, declare an array of the same type and specify its dimensions. If the

function should return four values, use a declaration like this one:

Dim Results(3) As Double

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 7/60

The Results array, which will be used to store the results, must be of the same type as the

function— its name can be anything.

3. To return the Results array, simply use it as an argument to the Return statement:

Return(Results)

4. In the calling procedure, you must declare an array of the same type without dimensions:

Dim Statistics() As Double

5. Finally, you must call the function and assign its return value to this array:

Stats() = Statistics(DataSet())

Here, DataSet is an array with the values whose basic statistics will be calculated by the

Statistics() function. Your code can then retrieve each element of the array with an index value as

usual.

ARGUMENTS

 Subroutines and functions aren't entirely isolated from the rest of the application. Most

procedures accept arguments from the calling program. Recall that an argument is a value you

pass to the procedure and on which the procedure usually acts. This is how subroutines and

functions communicate with the rest of the application.

Subroutines and functions may accept any number of arguments, and you must supply a value for

each argument of the procedure when you call it. Some of the arguments may be optional, which

means you can omit them; you will see shortly how to handle optional arguments.

 The custom function Min(), for instance, accepts two numbers and returns the smaller one:

Function Min(ByVal a As Single, ByVal b As Single) As Single

Min = IIf(a < b, a, b)

End Function

 IIf() is a built-in function that evaluates the first argument, which is a logical expression. If

the expression is True, the IIf() function returns the second argument. If the expression is False,

the function returns the third argument.

To call the Min() custom function, use a few statements like the following:

Dim val1 As Single = 33.001

Dim val2 As Single = 33.0011

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 8/60

Dim smallerVal as Single

smallerVal = Min(val1, val2)

Debug.Write("The smaller value is " & smallerVal)

If you execute these statements (place them in a button's Click event handler), you will see the

following in the Immediate window:

The smaller value is 33.001

 If you attempt to call the same function with two Double values, with a statement like the

following, you will see the value 3.33 in the Immediate window:

Debug.WriteLine(Min(3.33000000111, 3.33000000222))

 The compiler converted the two values from Double to Single data type and returned one

of them.

 Interesting things will happen if you attempt to use the Min() function with the Strict

option turned on. Insert the statement Option Strict On at the very beginning of the file, or set

Option Strict to On in the Compile tab of the project's Properties pages. The editor will underline

the statement that implements the Min() function: the IIf() function. The IIf() function accepts two

Object variables as arguments, and returns one of them as its result. The Strict option prevents the

compiler from converting an Object to a numeric variable. To use the IIf() function with the Strict

option, you must change its implementation as follows:

Function Min(ByVal a As Object, ByVal b As Object) As Object

Min = IIf(Val(a) < Val(b), a, b)

End Function

Argument Passing Mechanisms

 One of the most important topics in implementing your own procedures is the mechanism

used to pass arguments. The examples so far have used the default mechanism: passing arguments

by value. The other mechanism is passing them by reference. Although most programmers use the

default mechanism, it's important to know the difference between the two mechanisms and when

to use each.

 Passing arguments By Value

 Passing arguments by Reference

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 9/60

 Returning Multiple Values

 Passing Objects as Arguments

Passing arguments by value

 This is the default mechanism for passing parameters to a method. In this mechanism,

when a method is called, a new storage location is created for each value parameter. The values of

the actual parameters are copied into them. So, the changes made to the parameter inside the

method have no effect on the argument.

 VB.Net, you declare the reference parameters using the ByVal keyword. The following

example demonstrates the concept:

Module paramByval

 Sub swap(ByVal x As Integer, ByVal y As Integer)

 Dim temp As Integer

 temp = x ' save the value of x

 x = y ' put y into x

 y = temp 'put temp into y

 End Sub

 Sub Main()

 ' local variable definition

 Dim a As Integer = 100

 Dim b As Integer = 200

 Console.WriteLine("Before swap, value of a : {0}", a)

 Console.WriteLine("Before swap, value of b : {0}", b)

 ' calling a function to swap the values '

 swap(a, b)

 Console.WriteLine("After swap, value of a : {0}", a)

 Console.WriteLine("After swap, value of b : {0}", b)

 Console.ReadLine()

 End Sub

End Module

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 10/60

When the above code is compiled and executed, it produces following result:

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :100

After swap, value of b :200

 It shows that there is no change in the values though they had been changed inside the

function.

Passing Parameters by Reference

 A reference parameter is a reference to a memory location of a variable. When you pass

parameters by reference, unlike value parameters, a new storage location is not created for these

parameters. The reference parameters represent the same memory location as the actual

parameters that are supplied to the method.

In VB.Net, you declare the reference parameters using the ByRef keyword. The following

example demonstrates this:

Module paramByref

 Sub swap(ByRef x As Integer, ByRef y As Integer)

 Dim temp As Integer

 temp = x ' save the value of x

 x = y ' put y into x

 y = temp 'put temp into y

 End Sub

 Sub Main()

 ' local variable definition

 Dim a As Integer = 100

 Dim b As Integer = 200

 Console.WriteLine("Before swap, value of a : {0}", a)

 Console.WriteLine("Before swap, value of b : {0}", b)

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 11/60

 ' calling a function to swap the values '

 swap(a, b)

 Console.WriteLine("After swap, value of a : {0}", a)

 Console.WriteLine("After swap, value of b : {0}", b)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces following result:

Before swap, value of a : 100

Before swap, value of b : 200

After swap, value of a : 200

After swap, value of b : 100

Returning Multiple Values

 If you want to write a function that returns more than a single result, you will most likely

pass additional arguments by reference and set their values from within the function's code. The

CalculateStatistics() function, calculates the basic statistics of a data set. The values of the data

set are stored in an array, which is passed to the function by reference. The CalculateStatistics()

function must return two values: the average and standard deviation of the data set. Here's the

declaration of the CalculateStatistics() function:

Function CalculateStatistics(ByRef Data() As Double, ByRef Avg As Double, ByRef StDev As

Double) As Integer

 The function returns an integer, which is the number of values in the data set. The two

important values calculated by the function are returned in the Avg and StDev arguments:

Function CalculateStatistics(ByRef Data() As Double, ByRef Avg As Double, ByRef StDev As

Double) As Integer

Dim i As Integer, sum As Double, sumSqr As Double, points As Integer

points = Data.Length

For i = 0 To points - 1

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 12/60

sum = sum + Data(i)

sumSqr = sumSqr + Data(i) ˆ 2

Next

Avg = sum / points

StDev = System.Math.Sqrt(sumSqr / points - Avg ˆ 2)

Return(points)

End Function

To call the CalculateStatistics() function from within your code, set up an array of Doubles and

declare two variables that will hold the average and standard deviation of the data set:

Dim Values(99) As Double

' Statements to populate the data set

Dim average, deviation As Double

Dim points As Integer

points = Stats(Values, average, deviation)

Debug.WriteLine points & " values processed."

Debug.WriteLine "The average is " & average & " and"

Debug.WriteLine "the standard deviation is " & deviation

 Using ByRef arguments is the simplest method for a function to return multiple values.

However, the definition of your functions might become cluttered, especially if youwant to

returnmore than a few values. Another problem with this technique is that it's not clear whether an

argument must be set before calling the function. As you will see shortly, it is possible for a

function to return an array or a custom structure with fields for any number of values.

Passing Objects as Arguments

 When you pass objects as arguments, they're passed by reference, even if you have

specified the ByVal keyword. The procedure can access and modify the members of the object

passed as an argument, and the new value will be visible in the procedure that made the call.

 The following code segment demonstrates this. The object is an ArrayList, which is an

enhanced form of an array. The ArrayList is discussed in detail later in the tutorial, but to follow

this example all you need to know is that the Add method adds new items to the ArrayList, and

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 13/60

you can access individual items with an index value, similar to an array's elements. In the Click

event handler of a Button control, create a new instance of the ArrayList object and call the

PopulateList() subroutine to populate the list. Even if the ArrayList object is passed to the

subroutine by value, the subroutine has access to its items:

Private Sub Button1 Click(ByVal sender As System.Object, ByVal e As system.EventArgs)

Handles Button1.Click

Dim aList As New ArrayList()

PopulateList(aList)

Debug.WriteLine(aList(0).ToString)

Debug.WriteLine(aList(1).ToString)

Debug.WriteLine(aList(2).ToString)

End Sub

Sub PopulateList(ByVal list As ArrayList)

list.Add("1")

list.Add("2")

list.Add("3")

End Sub

 The same is true for arrays and all other collections. Even if you specify the ByVal

keyword, they're passed by reference.

Passing unknown number of Arguments

 VB 2008 supports the ParamArray keyword, which allows you to pass a variable number

of arguments to a procedure.

Let's look at an example. Suppose that you want to populate a ListBox control with elements. To

add an item to the ListBox control, you call the Add method of its Items collection as follows:

ListBox1.Items.Add("new item")

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 14/60

 This statement adds the string new item to the ListBox1 control. If you frequently add

multiple items to a ListBox control from within your code, you can write a subroutine that

performs this task. The following subroutine adds a variable number of arguments to the ListBox1

control:

Sub AddNamesToList(ByVal ParamArray NamesArray() As Object)

Dim x As Object

For Each x In NamesArray

ListBox1.Items.Add(x)

Next x

End Sub

 This subroutine's argument is an array prefixed with the keyword ParamArray, which

holds all the parameters passed to the subroutine. If the parameter array holds items of the same

type, you can declare the array to be of the specific type (string, integer, and so on). To add items

to the list, call the AddNamesToList() subroutine as follows:

AddNamesToList("Robert", "Manny", "Renee", "Charles", "Madonna")

 If you want to know the number of arguments actually passed to the procedure, use the

Length property of the parameter array. The number of arguments passed to the

AddNamesToList() subroutine is given by the following expression:

NamesArray.Length

The following loop goes through all the elements of the NamesArray and adds them to the list:

Dim i As Integer

For i = 0 to NamesArray.GetUpperBound(0)

ListBox1.Items.Add(NamesArray(i))

Next i

 VB arrays are zero-based (the index of the first item is 0), and the GetUpperBound

method returns the index of the last item in the array.

 A procedure that accepts multiple arguments relies on the order of the arguments. To omit

some of the arguments, you must use the corresponding comma. Let's say you want to call such a

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 15/60

procedure and specify the first, third, and fourth arguments. The procedure must be called as

follows:

ProcName(arg1, , arg3, arg4)

 The arguments to similar procedures are usually of equal stature, and their order doesn't

make any difference. A function that calculates the mean or other basic statistics of a set of

numbers, or a subroutine that populates a ListBox or ComboBox control, are prime candidates for

implementing this technique. If the procedure accepts a variable number of arguments that aren't

equal in stature, you should consider the technique described in the following section. If the

function accepts a parameter array, this must the last argument in the list, and none of the other

parameters can be optional.

Param Arrays

 At times, while declaring a function or sub procedure you are not sure of the number of

arguments passed as a parameter. VB.Net param arrays (or parameter arrays) come into help at

these times.

The following example demonstrates this:

Module myparamfunc

 Function AddElements(ParamArray arr As Integer()) As Integer

 Dim sum As Integer = 0

 Dim i As Integer = 0

 For Each i In arr

 sum += i

 Next i

 Return sum

 End Function

 Sub Main()

 Dim sum As Integer

 sum = AddElements(512, 720, 250, 567, 889)

 Console.WriteLine("The sum is: {0}", sum)

 Console.ReadLine()

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 16/60

 End Sub

End Module

When the above code is compiled and executed, it produces following result:

The sum is: 2938

Named Arguments

 The main limitation of the argument-passing mechanism, though, is the order of the

arguments. By default, Visual Basic matches the values passed to a procedure to the declared

arguments by their order.

This limitation is lifted by Visual Basic's capability to specify named arguments. With named

arguments, you can supply arguments in any order because they are recognized by name and not

by their order in the list of the procedure's arguments. Suppose you've written a function that

expects three arguments: a name, an address, and an email address:

Function Contact(Name As String, Address As String, EMail As String)

When calling this function, you must supply three strings that correspond to the arguments Name,

Address, and EMail, in that order. However, there's a safer way to call this function: Supply the

arguments in any order by their names. Instead of calling the Contact() function as follows:

Contact("Peter Evans", "2020 Palm Ave., Santa Barbara, CA 90000", _

"PeterEvans@example.com")

you can call it this way:

Contact(Address:="2020 Palm Ave., Santa Barbara, CA 90000", _

EMail:="PeterEvans@example.com", Name:="Peter Evans")

The := operator assigns values to the named arguments. Because the arguments are passed by

name, you can supply them in any order.

To test this technique, enter the following function declaration in a form's code:

Function Contact(ByVal Name As String, ByVal Address As String, _ByVal EMail As String) As

String

Debug.WriteLine(Name)

Debug.WriteLine(Address)

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 17/60

Debug.WriteLine(EMail)

Return ("OK")

End Function

Then call the Contact() function from within a button's Click event with the following statement:

Debug.WriteLine(Contact(Address:="2020 Palm Ave., Santa Barbara, CA 90000", _

Name:="Peter Evans", EMail:="PeterEvans@example.com"))

You'll see the following in the Immediate window:

Peter Evans

2020 Palm Ave., Santa Barbara, CA 90000

PeterEvans@example.com

OK

 The function knows which value corresponds to which argument and can process them the

same way that it processes positional arguments. Notice that the function's definition is the same,

whether you call it with positional or named arguments. The difference is in how you call the

function and not how you declare it.

 Named arguments make code safer and easier to read, but because they require a lot of

typing, most programmers don't use them. Besides, when IntelliSense is on, you can see the

definition of the function as you enter the arguments, and this minimizes the chances of swapping

two values by mistake.

Named Visual Basic Arguments

 Some obvious ways to write readable code include the use of program comments in your

code -- no matter what the language you are using to develop your program, all major languages

provide for comments. Something else that can make your Visual Basic more readable is the use

of Named Arguments.

 This is illustrated by executing the Visual Basic MsgBox Function to display a Windows

Message Box. The Visual Basic MsgBox function has one required argument (Prompt), and four

optional arguments (Buttons, Title, HelpFile and Context).

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 18/60

MsgBox "I love Visual Basic"

 By default, this code will display a Message Box with a single command button captioned

OK, with the text "I love Visual Basic", and the Visual Basic Project name displayed in the Title

Bar of the Message Box.

 Suppose I'm not happy with the default Title in the Message Box, and I decide I want to

customize it. Doing this is easy-all I need to do is supply the Title argument to the MsgBox

function. However, since Title is the third argument, I either need to supply the second argument -

- Buttons, which is by default presumed to be the value vbOKOnly -- or provide a 'comma

placeholder', like this.

MsgBox "I love Visual Basic",, "SearchVB.Com"

 Notice the two commas back-to-back, with no value in-between. This is the 'comma

placeholder' and is how we tell VB that although we have a value for the third argument, we have

no explicit value for the second argument.

 When we execute this code, we'll see a Message Box that reads "I love Visual Basic", and

that has "SearchVB.Com" for its Title Bar.

 Named Arguments can make passing optional arguments easier-and make your code

infinitely easier to read and modify. For instance, the code we wrote above can be re-written the

following way using Named Arguments.

MsgBox Prompt:="I love Visual Basic", Title:="SearchVB.Com"

 With Named Arguments, we specify the name of the argument, followed by a colon and

equals sign (:=), then the value for the argument. By using Named Arguments, we don't need to

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 19/60

provide a 'comma placeholder' for the second argument Buttons. Since we are naming the

argument, VB knows that 'SearchVB.Com' is the value for the Optional Argument 'Title'. And

since we name the arguments, being able to read and understand the code in the future is much

easier.

Overloading Functions

 Function overloading, means that you can have multiple implementations of the same

function, each with a different set of arguments and possibly a different return value. Yet all

overloaded functions share the same name.

 The Next method of the System.Random class returns an integer value from –

2,147,483,648 to 2,147,483,647. (This is the range of values that can be represented by the

Integer data type.) We should also be able to generate random numbers in a limited range of

integer values. To emulate the throw of a die, we want a random value in the range from 1 to 6,

whereas for a roulette game we want an integer random value in the range from 0 to 36. You can

specify an upper limit for the random number with an optional integer argument. The following

statement will return a random integer in the range from 0 to 99:

randomInt = rnd.Next(100)

 You can also specify both the lower and upper limits of the random number's range. The

following statement will return a random integer in the range from 1,000 to 1,999:

randomInt = rnd.Next(1000, 2000)

 The same method behaves differently based on the arguments we supply. The behavior of

the method depends either on the type of the arguments, the number of the arguments, or both. As

you will see, there's no single function that alters its behavior based on its arguments. There are as

many different implementations of the same function as there are argument combinations. All the

functions share the same name, so they appear to the user as a single multifaceted function. These

functions are overloaded, and you'll see how they're implemented in the following section.

 Let's return to the Min() function we implemented earlier in this chapter. The initial

implementation of the Min() function is shown next:

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 20/60

Function Min(ByVal a As Double, ByVal b As Double) As Double

Min = IIf(a < b, a, b)

End Function

 To write a Min() function that can handle both numeric and string values, you must, in

essence, write two Min() functions. All Min() functions must be prefixed with the Overloads

keyword. The following statements show two different implementations of the same function:

Overloads Function Min(ByVal a As Double, ByVal b As Double) As Double

Min = Convert.ToDouble(IIf(a < b, a, b))

End Function

Overloads Function Min(ByVal a As String, ByVal b As String) As String

Min = Convert.ToString(IIf(a < b, a, b))

End Function

 We need a third overloaded form of the same function to compare dates. If you call the

Min() function, passing as an argument two dates, as in the following statement, the Min()

function will compare them as strings and return (incorrectly) the first date.

Debug.WriteLine(Min(#1/1/2009#, #3/4/2008#))

 This statement is not even valid when the Strict option is on, so you clearly need another

overloaded form of the function that accepts two dates as arguments, as shown here:

Overloads Function Min(ByVal a As Date, ByVal b As Date) As Date

Min = IIf(a < b, a, b)

End Function

 If you now call the Min() function with the dates #1/1/2009# and #3/4/2008#, the function

will return the second date, which is chronologically smaller than the first.

Event-Handler Arguments

 Events are basically a user action like key press, clicks, mouse movements etc., or some

occurrence like system generated notifications. Applications need to respond to events when they

occur.

 Clicking on a button, or entering some text in a text box, or clicking on a menu item all are

examples of events. An event is an action that calls a function or may cause another event.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 21/60

Event handlers are functions that tell how to respond to an event.

VB.Net is an event-driven language. There are mainly two types of events:

 Mouse events

 Keyboard events

Handling Mouse Events

 Mouse events occur with mouse movements in forms and controls. Following are the

various mouse events related with a Control class:

 MouseDown - it occurs when a mouse button is pressed

 MouseEnter - it occurs when the mouse pointer enters the control

 MouseHover - it occurs when the mouse pointer hovers over the control

 MouseLeave - it occurs when the mouse pointer leaves the control

 MouseMove - it occurs when the mouse pointer moves over the control

 MouseUp - it occurs when the mouse pointer is over the control and the mouse

button is released

 MouseWheel - it occurs when the mouse wheel moves and the control has focus

The event handlers of the mouse events get an argument of type MouseEventArgs.

The MouseEventArgs object is used for handling mouse events. It has the following properties:

 Buttons - indicates the mouse button pressed

 Clicks - indicates the number of clicks

 Delta - indicates the number of detents the mouse wheel rotated

 X - indicates the x-coordinate of mouse click

 Y - indicates the y-coordinate of mouse click

Handling Keyboard Events

Following are the various keyboard events related with a Control class:

 KeyDown - occurs when a key is pressed down and the control has focus

 KeyPress - occurs when a key is pressed and the control has focus

 KeyUp - occurs when a key is released while the control has focus

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 22/60

The event handlers of the KeyDown and KeyUp events get an argument of type KeyEventArgs.

This object has the following properties:

 Alt - it indicates whether the ALT key is pressed/p>

 Control - it indicates whether the CTRL key is pressed

 Handled - it indicates whether the event is handled

 KeyCode - stores the keyboard code for the event

 KeyData - stores the keyboard data for the event

 KeyValue - stores the keyboard value for the event

 Modifiers - it indicates which modifier keys (Ctrl, Shift, and/or Alt) are pressed

 Shift - it indicates if the Shift key is pressed

 The event handlers of the KeyDown and KeyUp events get an argument of

type KeyEventArgs. This object has the following properties:

 Handled - indicates if the KeyPress event is handled

 KeyChar - stores the character corresponding to the key pressed

WORKING WITH FORMS

 In Visual Basic, the form is the container for all the controls that make up the user

interface. When a Visual Basic application is executing, each window it displays on the desktop is

a form. In previous chapters, we concentrated on placing the elements of the user interface on

forms, setting their properties, and adding code behind selected events. Now, we’ll look at forms

themselves and at a few related topics, such as menus (forms are the only objects that can have

menus attached), how to design forms that can be automatically resized, and how to access the

controls of one form from within another form’s code. The form is the top-level object in a Visual

Basic application, and every application starts with the form.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 23/60

 The forms that constitute the visible interface of your application are called Windows

forms; this term includes both the regular forms and dialog boxes, which are simple forms you

use for very specific actions, such as to prompt the user for a specific piece of data or to display

critical information. A dialog box is a form with a small number of controls, no menus, and

usually an OK and a Cancel button to close it. These are also called Modal Forms and the regular

forms are non-Modal.

APPEARANCE OF FORMS

 Applications are made up of one or more forms (usually more than one), and the forms are

what users see. You should craft your forms carefully, make them functional, and keep them

simple and intuitive. You already know how to place controls on the form, but there’s more to

designing forms than populating them with controls. The main characteristic of a form is the title

bar on which the form’s caption is displayed.

 Clicking the icon on the left end of the title bar opens the Control menu, which contains

the commands shown in Table 2.1 On the right end of the title bar are three buttons: Minimize,

Maximize, and Close. Clicking these buttons performs the associated function. When a form is

maximized, the Maximize button is replaced by the Restore button. When clicked, this button

resets the form to the size and position before it was maximized. The Restore button is then

replaced by the Maximize button

Commands of the Control Menu of the Form

Command Effect

Restore Restores a maximized form to the size it was before it was maximized;

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 24/60

 available only if the form has been maximized.

Move Lets the user move the form around with the arrow keys.

Size Lets the user resize the form with the arrow keys.

Minimize Minimizes the form.

Maximize Maximizes the form.

Close Closes the current form

Properties of the Form Object

 You're familiar with the appearance of forms, even if you haven't programmed in the

Windows environment in the past; you have seen nearly all types of windows in the applications

you're using every day. The floating toolbars used by many graphics applications, for example,

are actually forms with a narrow title bar. The dialog boxes that display critical information or

prompt you to select the file to be opened are also forms. You can duplicate the look of any

window or dialog box through the following properties of the Form object.

AcceptButton, CancelButton

 These two properties let you specify the default Accept and Cancel buttons. The Accept

button is the one that's automatically activated when you press Enter, no matter which control has

the focus at the time, and is usually the button with the OK caption. Likewise, the Cancel button

is the one that's automatically activated when you hit the Esc key and is usually the button with

the Cancel caption. To specify the Accept and Cancel buttons on a form, locate the AcceptButton

and CancelButton properties of the form and select the corresponding controls from a drop-down

list, which contains the names of all the buttons on the form. For more information on these two

properties, see the section "Forms versus Dialog Boxes in VB.NET," later in this chapter.

AutoScaleMode

 This property determines how the control is scaled, and its value is a member of the

AutoScale-Mode enumeration: None (automatic scaling is disabled), Font (the controls on the

form are scaled relative to the size of their font), Dpi, which stands for dots per inch (the controls

on the form are scaled relative to the display resolution), and Inherit (the controls are scaled

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 25/60

according to the AutoScaleMode property of their parent class). The default value is Font; if you

change the form's font size, the controls on it are scaled to the new font size.

AutoScroll

 The AutoScroll property is a True/False value that indicates whether scroll bars will be

automatically attached to the form if the form is resized to a point that not all its controls are

visible. Use this property to design large forms without having to worry about the resolution of

the monitor on which they'll be displayed. The AutoScroll property is used in conjunction with

two other properties, AutoScrollMargin and AutoScrollMinSize. Note that the AutoScroll

property applies to a few controls as well, including the Panel and SplitContainer controls. For

example, you can create a form with a fixed and a scrolling pane by placing two Panel controls on

it and setting the AutoScroll property of one of them (the Panel you want to scroll) to True.

AutoScrollPosition

 This property is available from within your code only (you can't set this property at design

time), and it indicates the number of pixels that the form was scrolled up or down. Its initial value

is zero, and it assumes a value when the user scrolls the form (provided that the form's AutoScroll

property is True). Use this property to find out the visible controls from within your code, or

scroll the form programmatically to bring a specific control into view.

AutoScrollMargin

 This is a margin, expressed in pixels, that's added around all the controls on the form. If

the form is smaller than the rectangle that encloses all the controls adjusted by the margin, the

appropriate scroll bar(s) will be displayed automatically.

AutoScrollMinSize

 This property lets you specify the minimum size of the form before the scroll bars are

attached. If your form contains graphics that you want to be visible at all times, set the Width and

Height members of the AutoScrollMinSize property to the dimensions of the graphics. (Of course,

the graphics won't be visible at all times, but the scroll bars indicate that there's more to the form

than can fit in the current window.) Notice that this isn't the form's minimum size; users can make

the form even smaller. To specify a minimum size for the form, use the MinimumSize property,

described later in this section.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 26/60

FormBorderStyle

 The FormBorderStyle property determines the style of the form's border; its value is one

of the FormBorderStyle enumeration's members, which are shown in Table 2.3. You can make the

form's title bar disappear altogether by setting the form's FormBorderStyle property to

FixedToolWindow, the ControlBox property to False, and the Text property (the form's caption)

to an empty string

Tabel 2.3 - The FormBorderStyle Enumeration

Value Effect

None A borderless window that can't be resized. This setting is rarely used.

Sizable (default) A resizable window that's used for displaying regular forms.

Fixed3D
A window with a fixed visible border, ‘‘raised'' relative to the main area. Unlike the None

setting, this setting allows users to minimize and close the window.

FixedDialog A fixed window used to implement dialog boxes.

FixedSingle A fixed window with a single-line border.

FixedToolWindow
A fixed window with a Close button only. It looks like a toolbar displayed by drawing and

imaging applications.

SizableToolWindow
Same as the FixedToolWindow, but is resizable. In addition, its caption font is smaller than

the usual.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 27/60

 ControlBox

 This property is also True by default. Set it to False to hide the control box icon and

disable the Control menu. Although the Control menu is rarely used, Windows applications don't

disable it. When the ControlBox property is False, the three buttons on the title bar are also

disabled. If you set the Text property to an empty string, the title bar disappears altogether.

MinimizeBox, MaximizeBox

 These two properties, which specify whether the Minimize and Maximize buttons will

appear on the form's title bar, are True by default. Set them to False to hide the corresponding

buttons on the form's title bar.

MinimumSize, MaximumSize

 These two properties read or set the minimum and maximum size of a form. When users

resize the form at runtime, the form won't become any smaller than the dimensions specified by

the MinimumSize property and no larger than the dimensions specified by the MaximumSize

property. The MinimumSize property is a Size object, and you can set it with a statement like the

following:

Me.MinimumSize = New Size(400, 300)

Or you can set the width and height separately:

Me.MinimumSize.Width = 400

Me.MinimumSize.Height = 300

 The MinimumSize.Height property includes the height of the form's title bar; you should

take that into consideration. If the minimum usable size of the form is 400 × 300, use the

following statement to set the MinimumSize property:

Me.MinimumSize = New Size(400, 300 + SystemInformation.CaptionHeight)

 The default value of both properties is (0, 0), which means that no minimum or maximum

size is imposed on the form, and the user can resize it as desired.

KeyPreview

 This property enables the form to capture all keystrokes before they're passed to the

control that has the focus. Normally, when you press a key, the KeyPress event of the control with

the focus is triggered (as well as the KeyUp and KeyDown events), and you can handle the

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 28/60

keystroke from within the control's appropriate handler. In most cases, you let the control handle

the keystroke and don't write any form code for that.

SizeGripStyle

 This property gets or sets the style of the sizing handle to display in the bottom-right

corner of the form. You can set it to a member of the SizeGripStyle enumeration: Auto (the size

grip is displayed as needed), Show (the size grip is displayed at all times), or Hide (the size grip is

not displayed, but users can still resize the form with the mouse).

StartPosition, Location

 The StartPosition property, which determines the initial position of the form when it's first

displayed, can be set to one of the members of the FormStartPosition enumeration: Center-Parent

(the form is centered in the area of its parent form), CenterScreen (the form is centered on the

monitor), Manual (the position of the form is determined by the Location property),

WindowsDefaultLocation (the form is positioned at the Windows default location), and

WindowsDefaultBound (the form's location and bounds are determined by Windows defaults).

The Location property allows you to set the form's initial position at design time or to change the

form's location at runtime.

TopMost

 This property is a True/False value that lets you specify whether the form will remain on

top of all other forms in your application. Its default property is False, and you should change it

only on rare occasions. Some dialog boxes, such as the Find & Replace dialog box of any text-

processing application, are always visible, even when they don't have the focus.

Size

 Use the Size property to set the form's size at design time or at runtime. Normally, the

form's width and height are controlled by the user at runtime. This property is usually set from

within the form's Resize event handler to maintain a reasonable aspect ratio when the user resizes

the form. The Form object also exposes the Width and Height properties for controlling its size.

Placing Controls on Forms

 The first step in designing your application's interface is, of course, the analysis and

careful planning of the basic operations you want to provide through your interface. The second

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 29/60

step is to design the forms. Designing a form means placing Windows controls on it, setting the

controls' properties, and then writing code to handle the events of interest.

To place controls on your form, you select them in the Toolbox and then draw, on the form, the

rectangle in which the control will be enclosed. Or you can double-click the control's icon to place

an instance of the control on the form. All controls have a default size, and you can resize the

control on the form by using the mouse.

Setting the TabIndex Property

 Another important issue in form design is the tab order of the controls on the form. As you

know, pressing the Tab key at runtime takes you to the next control on the form. The order of the

controls is the order in which they were placed on the form, but this is never what we want. When

you design the application, you can specify in which order the controls receive the focus (the tab

order, as it is known) with the help of the TabIndex property. Each control has its own TabIndex

setting, which is an integer value. When the Tab key is pressed, the focus is moved to the control

whose tab order immediately follows the tab order of the current control. The values of the

TabIndex properties of the various controls on the form need not be consecutive.

To specify the tab order of the various controls, you can set their TabIndex property in the

Properties window or you can choose the Tab Order command from the View menu. The tab

order of each control will be displayed on the corresponding control, as shown in Figure 5.3.

Setting the Tab order by using the TabIndex property of the form

 To set the tab order of the controls, click each control in the order in which you want them

to receive the focus. You must click all of them in the desired order, starting with the first control

in the tab order. Each control's index in the tab order appears in the upper-left corner of the

control. When you're finished, choose the Tab Order command from the View menu again to hide

these numbers. As you place controls on the form, don't forget to lock them, so that you won't

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 30/60

move them around by mistake as you work with other controls. You can lock the controls in their

places either by setting each control's Locked property to True or by locking all the controls on

the form at once via the Format > Lock Controls command.

Anchoring and Docking Controls

Anchoring Controls

 The Anchor property lets you attach one or more edges of the control to corresponding

edges of the form. The anchored edges of the control maintain the same distance from the

corresponding edges of the form.

 Place a TextBox control on a new form, set its MultiLine property to True, and then open

the control's Anchor property in the Properties window. You will see a rectangle within a larger

rectangle and four pegs that connect the small control to the sides of the larger box (see Figure

5.5). The large box is the form, and the small one is the control. The four pegs are the anchors,

which can be either white or gray. The gray anchors denote a fixed distance between the control

and the form. By default, the control is placed at a fixed distance from the top-left corner of the

form. When the form is resized, the control retains its size and its distance from the top-left corner

of the form.

 The settings of the Anchor property

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 31/60

 We want our TextBox control to fill the width of the form, be aligned to the top of the

form, and leave some space for a few buttons at the bottom. We also want our form to maintain

this arrangement, regardless of its size. Make the TextBox control as wide as the form (allowing,

perhaps, a margin of a few pixels on either side). Then place a couple of buttons at the bottom of

the form and make the TextBox control tall enough that it stops above the buttons. This is the

form of the Anchor property example project.

Now open the TextBox control's Anchor property and make all four anchors gray by clicking

them. This action tells the Form Designer to resize the control accordingly at runtime, so that the

distances between the sides of the control and the corresponding sides of the form are the same as

those you set at design time. Select each button on the form and set their Anchor properties in the

Properties window: Anchor the left button to the left and bottom of the form, and the right button

to the right and bottom of the form.

 Resize the form at design time without running the project, and you'll see that all the

controls are resized and rearranged on the form at all times. Figure 5.6 shows the Anchor project's

main form in two different sizes.

Use the Anchor property of the various controls to design forms that can be resized gracefully

at runtime.

 Yet, there's a small problem: If you make the form very narrow, there will be no room for

both buttons across the form's width. The simplest way to fix this problem is to impose a

minimum size for the form. To do so, you must first decide the form's minimum width and height

and then set the MinimumSize property to these values. You can also use the AutoScroll

properties, but it's not recommended that you add scroll bars to a small form like ours.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 32/60

Docking Controls

 In addition to the Anchor property, most controls provide the Dock property, which

determines how a control will dock on the form. The default value of this property is None.

Create a new form, place a multiline TextBox control on it, and then open the control's Dock

property. The various rectangular shapes are the settings of the property. If you click the middle

rectangle, the control will be docked over the entire form: It will expand and shrink both

horizontally and vertically to cover the entire form. This setting is appropriate for simple forms

that contain a single control, usually a TextBox, and sometimes a menu. Try it out.

Let's create a more complicated form with two controls (see the Docking sample project). The

form shown in Figure 5.7 contains a TreeView control on the left and a ListView control on the

right. The two controls display folder and file data on an interface that's very similar to that of

Windows Explorer. The TreeView control displays the directory structure, and the ListView

control displays the selected folder's files.

Setting the Dock property of the controls to Fill so the form at runtime will be filled with

controls even when it is re-sized

 Place a TreeView control on the left side of the form and a ListView control on the right

side of the form. Then dock the TreeView to the left and the ListView to the right. If you run the

application now, as you resize the form, the two controls remain docked to the two sides of the

form — but their sizes don't change. If you make the form wider, there will be a gap between the

two controls. If you make the form narrower, one of the controls will overlap the other.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 33/60

End the application, return to the Form Designer, select the ListView control, and set its Dock

property to Fill. This time, the ListView will change size to take up all the space to the right of the

TreeView. The ListView control will attempt to fill the form, but it won't take up the space of

another control that has been docked already.

Form Events

 The Form object triggers several events. The most important are Activated, Deactivate,

Form-Closing, Resize, and Paint.

The Activated and Deactivate Events

 When more than one form is displayed, the user can switch from one to the other by using

the mouse or by pressing Alt+Tab. Each time a form is activated, the Activated event takes place.

Likewise, when a form is activated, the previously active form receives the Deactivate event.

Insert in these two event handlers the code you want to execute when a form is activated (set

certain control properties, for example) and when a form loses the focus or is deactivated. These

two events are the form's equivalents of the Enter and Leave events of the various controls. Notice

an inconsistency in the names of the two events: the Activated event takes place after the form has

been activated, whereas the Deactivate event takes place right before the form is deactivated.

The FormClosing and FormClosed Events

 The FormClosing event is fired when the user closes the form by clicking its Close button.

If the application must terminate because Windows is shutting down, the same event will be fired

as well. Users don't always quit applications in an orderly manner, and a professional application

should behave gracefully under all circumstances. The same code you execute in the application's

Exit command must also be executed from within the closing event.

Listing: Cancelling the Closing of a Form

Public Sub Form1 FormClosing(...) Handles Me.FormClosing

Dim reply As MsgBoxResult

reply = MsgBox("Document has been edited. " &

"OK to terminate application, Cancel to " &

"return to your document.", MsgBoxStyle.OKCancel)

If reply = MsgBoxResult.Cancel Then

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 34/60

e.Cancel = True

End If

End Sub

 The e argument of the FormClosing event provides the CloseReason property, which

reports how the form is closing. Its value is one of the following members of the CloseReason

enumeration: FormOwnerClosing, MdiFormClosing, None, TaskManagerClosing,

WindowsShutDown. The names of the members are self-descriptive, and you can query the

CloseReason property to determine how the window is closing.

 The FormClosed event fires after the form has been closed. You can find out the action

that caused the form to be closed through the e.CloseReason property, but it's too late to cancel

the closing of the form.

The Resize, ResizeBegin, and ResizeEnd Events

 The Resize event is fired every time the user resizes the form by using the mouse. With

previous versions of VB, programmers had to insert quite a bit of code in the Resize event's

handler to resize the controls and possibly rearrange them on the form.With the Anchor and Dock

properties, much of this overhead can be passed to the form itself. If you want the two sides of the

form to maintain a fixed ratio, however, you have to resize one of the dimensions from within the

Resize event handler

Private Form1 Resize(...) Handles Me.Resize

Me.Width = (0.75 * Me.Height)

End Sub

 The Resize event is fired continuously while the form is being resized. If youwant to keep

track of the initial form's size and perform all the calculations after the user has finished resizing

the form, you can use the ResizeBegin and ResizeEnd events, which are fired at the beginning

and after the end of a resize operation, respectively. Store the form's width and height to two

global variables in the ResizeBegin event and use these two variables in the ResizeEnd event

handler.

The Scroll Event

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 35/60

 The Scroll event is fired by forms that have their AutoScroll property set to True when the

user scrolls the form. The second argument of the Scroll event handler exposes the OldValue and

NewValue properties, which are the displacements of the form before and after the scroll

operation. This event can be used to keep a specific control in view when the form's contents are

scrolled.

 The AutoScroll property is handy for large forms, but it has a serious drawback: It scrolls

the entire form. In most cases, we want to keep certain controls in view at all times. Instead of a

scrollable form, you can create forms with scrollable sections by exploiting the AutoScroll

properties of the Panel and/or the SplitContainer controls. You can also reposition certain controls

from within the form's Scroll event handler. Let's say you have placed a few controls on a Panel

container and you want to keep this Panel at the top of a scrolling form. The following statements

in the form's Scroll event handler reposition the Panel at the top of the form every time the user

scrolls the form:

Private Sub Form1 Scroll(...) Handles Me.Scroll

Panel1.Top = Panel1.Top + (e.NewValue - e.OldValue)

End Sub

The Paint Event

 This event takes place every time the form must be refreshed, and we use its handler to

execute code for any custom drawing on the form. When you switch to another form that partially

or totally overlaps the current one and then switch back to the first form, the Paint event will be

fired to notify your application that it must redraw the form. The form will refresh its controls

automatically, but any custom drawing on the form won't be refreshed automatically.

LOADING AND SHOWING FORMS

 One of the operations you’ll have to perform with multi-form applications is to load and

manipulate forms from within other forms’ code. For example, you may wish to display a second

form to prompt the user for data specific to an application. You must explicitly load the second

form, read the information entered by the user, and then close the form. Or, you may wish to

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 36/60

maintain two forms open at once and let the user switch between them.. To show Form2 when an

action takes place on Form1, first declare a variable that references Form2:

Dim frm As New Form2

This declaration must appear in Form1 and must be placed outside any procedure. (If you place it

in a procedure’s code, then every time the procedure is executed, a new reference to Form2 will

be created. This means that the user can display the same form multiple times.

Then, to invoke Form2 from within Form1, execute the following statement:

 frm.Show

 This statement will bring up Form2 and usually appears in a button’s or menu item’s Click

event handler. At this point, the two forms don’t communicate with one another. However,

they’re both on the desktop and you can switch between them. There’s no mechanism to move

information from Form2 back to Form1, and neither form can access the other’s controls or

variables. The Show method opens Form2 in a modaless manner. The two forms are equal in

stature on the desktop, and the user can switch between them. You can also display the second

form in a modal manner, which means that users won’t be able to return to the form from which

they invoked it.

 While a modal form is open, it remains on top of the desktop and you can’t move the

focus to the any other form of the same application (but you can switch to another application).

To open a modal form, use the statement

 frm.ShowDialog

 The modal form is, in effect, a dialog box, like the Open File dialog box. You must first

select a file on this form and click the Open button, or click the Cancel button, to close the dialog

box and return to the form from which the dialog box was invoked.

The Startup Form

 A typical application has more than a single form. When an application starts, the main

form is loaded. You can control which form is initially loaded by setting the startup object in the

Project Properties window. To open this, right-click the project’s name in the Solution Explorer

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 37/60

and select Properties. In the project’s Property Pages, select the Startup Object from the drop-

down list.

 You can also start an application with a subroutine without loading a form. This

subroutine must be called Main() and must be placed in a Module. Right-click the project’s name

in the Solution Explorer window and select the Add Item command. When the dialog box appears,

select a Module. Name it StartUp (or anything you like; you can keep the default name Module1)

and then insert the Main() subroutine in the module. The Main() subroutine usually contains

initialization code and ends with a statement that displays one of the project’s forms; to display

the AuxiliaryForm object from within the Main() subroutine, use the following statements:

Module StartUpModule

Sub Main()

System.Windows.Forms.Application.Run(New _ AuxiliaryForm())

End Sub

End Module

 Then, you must open the Project Properties dialog box and specify that the project’s

startup object is the subroutine Main(). When you run the application, the form you specified in

the Run method will be loaded.

Controlling One Form from within Another

 Loading and displaying a form from within another form’s code is fairly trivial. In some

situations, this is all the interaction you need between forms. Each form is designed to operate

independently of the others, but they can communicate via public variables (see, “Private &

Public Variables”). In most situations, however, you need to control one form from within

another’s code. Controlling the form means accessing its controls and setting or reading values

from within another form’s code.

Example:

 TextPad is a text editor that consists of the main form and an auxiliary form for the Find

& Replace operation. All other operations on the text are performed with the commands of the

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 38/60

menu you see on the main form. When the user wants to search for and/or replace a string, the

program displays another form on which they specify the text to find, the type of search, and so

on. When the user clicks one of the Find & Replace form’s buttons, the corresponding code must

access the text on the main form of the application and search for a word or replace a string with

another. The Find & Replace dialog box not only interacts with the TextBox control on the main

form, it also remains visible at all times while it’s open, even if it doesn’t have the focus, because

its TopMost property was set to True. In the Properties window, you can specify which form is to

be displayed when the application starts.

Forms Vs Dialog Boxes

 A dialog box is simply a modal form. When we display forms as dialog boxes, we change

the border of the forms to the setting FixedDialog and invoke them with the ShowDialog method.

Modeless forms are more difficult to program, because the user may switch among them at any

time. Not only that, but the two forms that are open at once must interact with one another. When

the user acts on one of the forms, this may necessitate some changes in the other, and you’ll see

shortly how this is done.

DESIGNING MENUS

 The MenuStrip class is the foundation of menus functionality in Windows Forms. If you

have worked with menus in .NET 1.0 and 2.0, you must be familiar with the MainMenu control.

In .NET 3.5 and 4.0, the MainMenu control is replaced with the MenuStrip control.

Menu Editor

 Menus can be attached only to forms, and they're implemented through the MenuStrip

control. The items that make up the menu are ToolStripMenuItem objects. As you will see, the

MenuStrip control and ToolStripMenuItem objects give you absolute control over the structure

and appearance of the menus of your application. The MenuStrip control is a variation of the Strip

control, which is the base of menus, toolbars, and status bars.

 We can create a MenuStrip control using a Forms designer at design-time or using the

MenuStrip class in code at run-time or dynamically. To create a MenuStrip control at design-time,

you simply drag and drop a MenuStrip control from Toolbox to a Form in Visual Studio. After

you drag and drop a MenuStrip on a Form, the MenuStrip1 is added to the Form and looks like

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 39/60

Figure below. Once a MenuStrip is on the Form, you can add menu items and set its properties

and events.

 Creating a MenuStrip control at run-time is merely a work of creating an instance of

MenuStrip class, set its properties and adds MenuStrip class to the Form controls.

First step to create a dynamic MenuStrip is to create an instance of MenuStrip class. The

following code snippet creates a MenuStrip control object.

VB.NET Code:

Dim MainMenu As New MenuStrip()

In the next step, you may set properties of a MenuStrip control. The following code snippet sets

background color, foreground color, Text, Name, and Font properties of a MenuStrip.

MainMenu.BackColor = Color.OrangeRed

MainMenu.ForeColor = Color.Black

MainMenu.Text = "File Menu"

MainMenu.Font = New Font("Georgia", 16)

Once the MenuStrip control is ready with its properties, the next step is to add the MenuStrip to a

Form. To do so, first we set MainMenuStrip property and then use Form.Controls.Add method

that adds MenuStrip control to the Form controls and displays on the Form based on the location

and size of the control. The following code snippet adds a MenuStrip control to the current Form.

Me.MainMenuStrip = MainMenu

Controls.Add(MainMenu)

Setting MenuStrip Properties

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 40/60

 After you place a MenuStrip control on a Form, the next step is to set properties.

The easiest way to set properties is from the Properties Window. You can open Properties

window by pressing F4 or right click on a control and select Properties menu item.

The Properties window looks like Figure below.

Name

 Name property represents a unique name of a MenuStrip control. It is used to access the

control in the code. The following code snippet sets and gets the name and text of a MenuStrip

control.

MainMenu.Name = "MailMenu"

Positioning a MenuStrip

 The Dock property is used to set the position of a MenuStrip. It is of type DockStyle that

can have values Top, Bottom, Left, Right, and Fill. The following code snippet sets Location,

Width, and Height properties of a MenuStrip control.

MainMenu.Dock = DockStyle.Left

Font

 Font property represents the font of text of a MenuStrip control. If you click on the Font

property in Properties window, you will see Font name, size and other font options. The following

code snippet sets Font property at run-time.

MainMenu.Font = new Font("Georgia", 16)

Background and Foreground

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 41/60

 BackColor and ForeColor properties are used to set background and foreground color of a

MenuStrip respectively. If you click on these properties in Properties window, the Color Dialog

pops up.

Alternatively, you can set background and foreground colors at run-time. The following code

snippet sets

BackColor and ForeColor properties.

MainMenu.BackColor = System.Drawing.Color.OrangeRed

MainMenu.ForeColor = System.Drawing.Color.Black

Then the MenuStrip looks like Figure below.

MenuStrip Items A Menu control is nothing without menu items. The Items property is used to

add and work with items in a MenuStrip. We can add items to a MenuStrip at design-time from

Properties Window by clicking on Items Collection as you can see in Figure below.

 When you click on the Collections, the String Collection Editor window will pop up where you

can type strings. Each line added to this collection will become a MenuStrip item. (See the Figure

below.)

A ToolStripMenuItem represents a menu items. The following code snippet creates a menu item

and sets its properties.

 Dim FileMenu As New ToolStripMenuItem("File")

 FileMenu.BackColor = Color.OrangeRed

 FileMenu.ForeColor = Color.Black

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 42/60

 FileMenu.Text = "File Menu"

 FileMenu.Font = New Font("Georgia", 16)

 FileMenu.TextAlign = ContentAlignment.BottomRight

 FileMenu.TextDirection = ToolStripTextDirection.Vertical90

 FileMenu.ToolTipText = "Click Me"

 Figure showing Menu Item Collection

Once a menu item is created, we can add it to the main menu by using MenuStrip.Items.Add

method. The following code snippet adds FileMenu item to the MainMenu.

MainMenu.Items.Add(FileMenu)

Adding Menu Item Click Event Handler

 The main purpose of a menu item is to add a click event handler and write code that we

need to execute on the menu item click event handler. For example, on File >> New menu item

click event handler, we may want to create a new file. To add an event handler, you go to Events

window and double click on Click and other as you can see in Figure below.

 We can also define and implement an event handler dynamically. The following code

snippet defines and implements these events and their respective event handlers.

Dim NewMenuItem As New ToolStripMenuItem("New", Nothing, New

EventHandler(AddressOf NewMenuItemClick))

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 43/60

Private Sub NewMenuItemClick(ByVal sender As Object, ByVal e As EventArgs)

MessageBox.Show("New menu item clicked!")

End Sub

Manipulating Menu’s at Runtime

 Dynamic menus change at runtime to display more or fewer commands, depending on the

current status of the program. This section explores two techniques for implementing dynamic

menus:

 Creating short and long versions of the same menu

 Adding and removing menu commands at runtime

Creating Short and Long Menus

 A common technique in menu design is to create long and short versions of a menu. If a

menu contains many commands, and most of the time only a few of them are needed, you can

create one menu with all the commands and another with the most common ones. The first menu

is the long one, and the second is the short one. The last command in the long menu should be

Short Menu, and when selected, it should display the short version. The last command in the short

menu should be Long Menu, and it should display the long version.

Figure shows a long and a short version of the same menu for the example the LongMenu

Example. The short version omits infrequently used commands and is easier to handle.

The two versions of the Format menu of the LongMenu application

 To implement the LongMenu command, start a new project and create a menu with the

options shown in Figure. Listing is the code that shows/hides the long menu in the MenuSize

command's Click event.

Listing :TheMenuSizeMenu Item's Click Event

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 44/60

Private Sub mnuMenuSize_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles mnuSize.Click

If mnuSize.Text = "Short Menu" Then

mnuSize.Text = "Long Menu"

mnuUnderline.Visible = False

mnuStrike.Visible = False

mnuSmallCaps.Visible = False

mnuAllCaps.Visible = False

Else

mnuSize.Text = "Short Menu"

mnuUnderline.Visible = True

mnuStrike.Visible = True

mnuSmallCaps.Visible = True

mnuAllCaps.Visible = True

End If

End Sub

 The subroutine in Listing 5.11 doesn't do much. It simply toggles the Visible property of

certain menu commands and changes the command's caption to Short Menu or Long Menu,

depending on the menu's current status.

Adding and Removing Commands at Runtime

 The RunTimeMenu project (Figure 5.18) demonstrates how to add items to and remove

items from a menu at runtime. The main menu of the application's form contains the Run Time

Menu submenu, which is initially empty.

 Adding and removing menu items at runtime

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 45/60

 The two buttons on the form add commands to and remove commands from the Run Time

Menu. Each new command is appended at the end of the menu, and the commands are removed

from the bottom of the menu first (the most recently added commands are removed first). To

change this order and display the most recent command at the beginning of the menu, use the

Insert method instead of the Add method to insert the new item. Listing shows the code behind

the two buttons that add and remove menu items.

Listing :Adding and RemovingMenu Items at Runtime

Private Sub bttnAddItem_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles bttnAddItem.Click

Dim Item As New ToolStripMenuItem

Item.Text = "Run Time Option" &

RunTimeMenuToolStripMenuItem.DropDownItems.Count.ToString

RunTimeMenuToolStripMenuItem.DropDownItems.Add(Item)

AddHandler Item.Click, New System.EventHandler(AddressOf OptionClick)

End Sub

Private Sub bttnRemoveItem_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles bttnRemoveItem.Click

If RunTimeMenuToolStripMenuItem.DropDownItems.Count > 0 Then

Dim mItem As ToolStripItem

Dim items As Integer = RunTimeMenuToolStripMenuItem.DropDownItems.Count

mItem = RunTimeMenuToolStripMenuItem.DropDownItems(items - 1)

RunTimeMenuToolStripMenuItem.DropDownItems.Remove(mItem)

' To remove a menu item other than the last one, use the following statement:

'

' RunTimeMenuToolStripMenuItem.DropDownItems.RemoveAt(position)

'

' WHERE position IS THE INDEX OF THE ITEM TO BE REMOVED IN THE DROP DOWN

MENU

End If

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 46/60

End Sub

 The Remove button's code uses the Remove method to remove the last item in the menu

by its index, after making sure the menu contains at least one item. The Add button adds a new

item, sets its caption to Run Time Option n, where n is the item's order in the menu. In addition, it

assigns an event handler to the new item's Click event. This event handler is the same for all the

items added at runtime; it's the OptionClick() subroutine.

All the runtime options invoke the same event handler — it would be quite cumbersome to come

up with a separate event handler for different items. In the single event handler, you can examine

the name of the ToolStripMenuItem object that invoked the event handler and act accordingly.

The OptionClick() subroutine used in Listing displays the name of the menu item that invoked it.

It doesn't do anything, but it shows you how to figure out which item of the Run Time Menu was

clicked.

Listing: Programming DynamicMenu Items

Private Sub OptionClick(ByVal sender As Object, ByVal e As EventArgs)

Dim itemClicked As New ToolStripMenuItem

itemClicked = CType(sender, ToolStripMenuItem)

MsgBox("You have selected the item" & itemClicked.Text)

End Sub

Creating Context Menus

 To create a context menu, place a ContextMenuStrip control on your form. The new

context menu will appear on the form just like a regular menu, but it won't be displayed there at

runtime. You can create as many context menus as you need by placing multiple instances of the

ContextMenuStrip control on your form and adding the appropriate commands to each one. To

associate a context menu with a control on your form, set the control's ContextMenuStrip property

to the name of the corresponding context menu.

 Designing a context menu is identical to designing a regular menu. The only difference is

that the first command in the menu is always ContextMenuStrip and it's not displayed along with

the menu. Figure shows a context menu at design time and how the same menu is displayed at

runtime.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 47/60

A context menu at design time (left) and at runtime (right)

 You can create as many context menus as you want on a form. Each control has a

ContextMenu property, which you can set to any of the existing ContextMenuStrip controls.

Select the control (In Figure it is the TextBox control) for which you want to specify a context

menu and locate the ContextMenu property in the Properties window. Expand the drop-down list

and select the name of the desired context menu.

Created ContextMenuStrip controls at the bottom of the Designer

 To edit one of the context menus on a form, select the appropriate ContextMenuStrip

control at the bottom of the Designer as shown in Figure .The corresponding context menu will

appear on the form's menu bar, as if it were a regular form menu. This is temporary, however, and

the only menu that appears on the form's menu bar at runtime is the one that corresponds to the

MenuStrip control (and there can be only one of them on each form).

 Iterating a Menu’s Items

 The last menu-related topic in this chapter demonstrates how to iterate through all the

items of a menu structure, including their submenus, at any depth. The main menu of an

application can be accessed by the expression Me.MenuStrip1 (assuming that you’re using the

default names). This is a reference to the top-level commands of the menu, which appear in the

form’s menu bar. Each command, in turn, is represented by a ToolStripMenuItem object. All the

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 48/60

items under a menu command form a ToolStripMenuItems collection, which you can scan to

retrieve the individual commands.

 The first command in a menu is accessed with the expression Me.MenuStrip1.Items(0);

this is the File command in a typical application. The expression Me.MenuStrip1.Items(1) is the

second command on the same level as the File command (typically, the Edit menu).

To access the items under the first menu, use the DropDownItems collection of the top command.

The first command in the File menu can be accessed by this expression:

Me.MenuStrip1.Items(0).DropDownItems(0)

 The same items can be accessed by name as well, and this is how you should manipulate

the menu items from within your code. In unusual situations, or if you’re using dynamic menus to

which you add and subtract commands at runtime, you’ll have to access the menu items through

the DropDownItems collection.

MULTIPLE DOCUMENT INTERFACE

MDI Overview

 This session introduces the concept of Multiple Document Interface (MDI) and to create

menus within an MDI application. You will learn to create an MDI application in Microsoft

Visual Studio .NET and learn why you might want to use this type of interface. You will learn

about child forms that are contained within the MDI application, and learn to create shortcut, or

context-sensitive, menus.

 MDI is a popular interface because it allows you to have multiple documents (or forms)

open in one application. Examples of MDI applications include Microsoft Word, Microsoft Excel,

Microsoft PowerPoint®, and even the Visual Studio integrated development environment itself.

Each application consists of one (or more) parent windows, each containing an MDI client area—

the area where the child forms (or documents) will be displayed. Code you write displays as many

instances of each of the child forms that you want displayed, and each child form can only be

displayed within the confines of the parent window—this means you can't drag the child forms

outside the MDI container. Figure shows a basic MDI application in use.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 49/60

Using MDI – multiple windows contained within the parent area

Single Document Interface

 MDI is only one of several possible paradigms for creating a user interface. You can also

create applications that display just a single form. They're easier to create, in fact. Those

applications are called Single Document Interface (SDI) applications. Microsoft Windows®

Notepad is an SDI application, and you can only open a single document at a time. (If you want

multiple documents open, you simply run Notepad multiple times.) You are under no obligation

to create your applications using the MDI paradigm. Even if you have multiple forms in your

project, you can simply have each one as a stand-alone form, not contained by any parent form.

Uses of MDI

 MDI are used most often in applications where the user might like to have multiple forms

or documents open concurrently. Word processing applications (like Microsoft Word),

spreadsheet applications (like Microsoft Excel), and project manager applications (like Microsoft

Project) are all good candidates for MDI applications. MDI is also handy when you have a large

application, and you want to provide a simple mechanism for closing all the child forms when the

user exits the application

Creating an MDI Parent Form

 To create an MDI parent form, you can simply take one of your existing forms and set its

IsMDIContainer property to True. This form will now be able to contain other forms as child

forms. You may have one or many container forms within your application.

Tip Note the difference here between Visual Studio .NET and Microsoft Visual Basic® 6.0

behavior. In Visual Basic 6.0, you could only have a single MDI parent form per application, and

you had to use the Project menu to add that one special form. In Visual Studio .NET, you can

turn any form into an MDI parent form by simply modifying a property, and you can have as

many MDI parent forms as you require within the same project.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 50/60

You may have as many different child forms (the forms that remain contained within the parent

form) as you want in your project. A child form is nothing more than a regular form for which

you dynamically set the MdiParent property to refer to the MDI container form.

Run-time Features of MDI Child Forms

 At run time, the MDI parent form and the MDI child forms take on special features:

 All child forms are displayed within the MDI parent's client area. The client area is the

area below the MDI parent's title bar, any menus, and any tool bars.

 Child forms can be moved and sized only within the MDI parent's client area.

 Child forms can be minimized and their icon will be displayed within the parent's client

area.

 Child forms can be maximized within the parent's client area and the caption of the child

form is appended to the caption of the MDI form.

 Windows automatically gives child forms that have their FormBorderStyle property set

to a sizable border a default size. This size is based on the size of the MDI parent's client

area. You can override this by setting the FormBorderStyle property of the child form to

any of the fixed type of borders.

 Child forms cannot be displayed modally.

Create an MDI Project

 In this section, you will walk through the steps of creating a simple MDI application using

Visual Studio .NET. To do this, you will create a new form that will be the MDI parent form. You

will add some menus to this new form, and then you will load the product form from a menu as a

child form.

Create the MDI Parent Form

To create the MDI parent form

1. Open Visual Studio .NET

2. Create a new Windows application project.

3. Set the name of the project to MDI.sln.

4. Rename the form that is created automatically to frmMain.vb.

5. With the frmMain selected, set the form's IsMdiContainer property to True.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 51/60

6. Set the WindowState property to Maximized.

Now we have created an MDI parent form.

Creating Menus in MDI Main Form

 Your main form will require menus so that you can perform actions such as opening child

forms, copying and pasting data, and arranging windows. Visual Studio .NET includes a new

menu designer that makes creating & modifying menus easy.

To add menus to your MDI parent form

1. Double-click the MenuStrip tool in the Toolbox window to add a new object named

MenuStrip1 to the form tray.

2. At the top of the MDI parent form, click the box with Type Here in it and type &File.

3. Press Enter to move to the next menu item and type &Products.

4. Press Enter to move to the next menu item and type a hyphen (-).

5. Press Enter and type E&xit.

You have now created the first drop-down menu on your main form. You should have something

that looks like Figure.

The menu designer allows you to type your menu structure in a WYSIWYG fashion

To the right of the File menu and at the same level, you'll see another small box with the text,

Type Here. Click it and type the following menu items by pressing Enter after each one.

 &Edit

 Cu&t

 &Copy

 &Paste

Once more to the right of the Edit menu and at the same level, add the following menu items in

the same manner.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 52/60

 &Window

 &Cascade

 Tile &Horizontal

 Tile &Vertical

 &Arrange Icons

Creating Names for Each Menu

 After creating all the menu items, you'll need to set the Name property for each. (Because

you'll refer to the name of each menu item from any code you write concerning that menu item,

it's important to choose a name you can understand from within your code.) Instead of clicking

each menu item one at a time and then moving over to the Properties window to set the Name

property, Visual Studio provides a shortcut: Right-click an item in the menu, then select Edit

Names from the context menu..

Use the following names for your menu items:

 mnuFile

 mnuFProducts

 mnuFExit

 mnuEdit

 mnuECut

 mnuECopy

 mnuEPaste

 mnuWindow

 mnuWCasade

 mnuWHorizontal

 mnuWVertical

 mnuWArrange

Test out your application: Press F5 and you should see your main MDI window appear with your

menu system in place.

Display a Child Form

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 53/60

 To add the code that displays the child form, frmProducts, make sure the main form is

open in Design view, and on the File menu, double-click Products. Visual Studio .NET will

create the stub of the menu item's Click event handler for you. Modify the procedure so that it

looks like the following:

Private Sub mnuFProducts_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles_ mnuFProducts.Click

 Dim frm As New frmProducts()

 frm.MdiParent = Me

 frm.Show()

End Sub

 This code declares a variable, frm, which refers to a new instance of the frmProducts form

in the sample project. Then, you set the MdiParent property of the new form, indicating that its

parent should be the current form (using the Me keyword). Finally, the code calls the Show

method of the child form, making it appear on the screen.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 54/60

Child Menus in MDI Applications

 In Visual Studio .NET, however, you can control how the menus interact, using the

MergeOrder and MergeType properties of the individual menu items.

The MergeOrder property controls the relative position of the menu item when its menu

structure gets merged with the parent form's menus. The default value for this property is 0,

indicating that this menu item will be added at the end of the existing menu items. The

MergeType property controls how the menu item behaves when it has the same merge order as

another menu item being merged. Table shows a list of the possible values you can assign to the

MergeType property.

The MergeType property allows you to specify what happens when menu items merge

Value Description

Add The MenuItem is added to

the collection of existing

MenuItem objects in a

MergeItems All submenu items of this

MenuItem are merged with

those of existing MenuItem

Remove The MenuItem is not

included in a merged

Replace The MenuItem replaces an

existing MenuItem at the

same position in a merged

 By default, a menu item's MergeOrder property is set to 0. The MergeType property is

set to Add by default. This means that if you create a child form with a menu on it, the menu will

be added at the end of the main menu. Consider Figure 3, which shows a child form called from

the parent form's main menu. This form has a Maintenance menu on it (and the parent form does

not). All of the items on the parent's main menu have their MergeOrder properties set to 0 and

this menu's MergeOrder property is set to 0, so this menu will be added at the end of the main

menu on the MDI parent form.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 55/60

A child form that has menus will by default be added to the end of the main menu

To create the form in Figure 3

1. On the Project menu, click Add Windows Form.

2. Set the new form's name to frmChildWithMenus.vb.

3. Add a MenuStrip control to this form.

4. Set the Name property for the MenuStrip control to mnuMainMaint.

5. Add the following menus as shown in Table 2.

 Windows Form menus

Menu Name

&Maintenance mnuMaint

&Suppliers mnuMSuppliers

&Categories mnuMCategories

 If you were to call this form exactly like you did the Products form in the previous section

you will see that your main form looks like Figure 4. You can see that by default, the menu is

added to the end of this form.

Menus are added to the end of the main menu by default

Call this form by adding a new menu item under the File menu:

1. Open frmMain.vb in Design view.

2. Click on the separator after the Products menu item and press the Insert key to add a new

menu item.

3. Type Child form with Menus as the text of this new menu item.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 56/60

4. Set the Name property of this new menu item to mnuFChild.

5. Double click this new menu item and modify its Click event handler so that it looks like

this:

Private Sub mnuFChildMenus_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles mnuFChildMenus.Click

 Dim frm As New frmChildWithMenus()

 frm.MdiParent = Me

 frm.Show()

End Sub

 Note: If you wish to merge the Maintenance menu in between the Edit and Window

menus, you could set the MergeOrder property on the Edit menu item to 1, and the

MergeOrder property on the Window menu to a 2. Then on the Maintenance menu item on

frmChildWithMenus, set the MergeOrder property to 1 and leave the MergeType with its

default value, Add. Taking these steps will add the Maintenance menu after the menu on the

main form with the same MergeOrder number as it has (that is, after the Edit menu, but before

the Window menu).

Working with MDI Child Forms

 If you have multiple child forms open, you may want to have them arrange themselves,

much as you can do in Word or Excel, choosing options under the Window menu. Table lists the

available options when arranging child windows.

Choose one of these values when arranging child windows

Menu Item Enumerated Value

Tile Horizontal MdlLayout.TileHorizontal

Tile Vertical MdiLayout.TileVertical

Cascade MdiLayout.Cascade

Arrange Icons MdiLayout.ArrangeIcons

Add some menus to your main form for each of these options:

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 57/60

1. Open frmMain.vb in Design view.

2. On the Window menu, double-click Cascade.

3. For the Cascade menu item, modify the Click event handler so that it looks like the

following:

Private Sub mnuWCascade_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles mnuWCascade.Click

 Me.LayoutMdi(MdiLayout.Cascade)

End Sub

On the Window menu, double-click each menu item and add the appropriate code.

Tracking Child Windows

 Visual Basic .NET will keep track of all child forms that you create, and it's easy to create

a window list menu to manage the child windows. If you wish to see a list of all of the child forms

and be able to give a specific child form focus, follow these steps:

1. Load frmMain in Design view.

2. Select frmMain's Window menu.

3. In the Properties window, set the MdiList to True.

4. Run the project, open a couple of Products forms, and then click the Window drop-down

menu. You should see each instance of the Product form that you opened displayed in the

window list.

Ending an MDI Application

 In most cases, ending an application with the End statement isn’t necessarily the most

user-friendly approach. Before you end an application, you must always offer your users a chance

to save their work. Ideally, you should maintain a True/False variable whose value is set every

time the user edits the open document terminating an MDI application with the End statement is

unacceptable. First, you need a mechanism to detect whether a document needs to be saved or not.

In a text-processing application, you can examine the Modified property of the TextBox control.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 58/60

 Insert the proper code in the Close command’s event handler to detect whether the

document being closed contains unsaved data and prompt the user accordingly. When the user

clicks the child form’s Close button, the child form’s Closing event is fired, this time by the child

form. Finally, when the MDI form is closed, each of the child forms receives the Closing event. In

addition, the MDI form’s Closing event is also fired. Normally, there’s no reason to program this

event. As long as you handle the Closing event of the child form, no data will be lost. In the

Closing event, you can cancel the operation of closing a document, or the MDI form itself, by

settings the e.Cancel property to True.

 To close the active child form, execute the following statements (they must appear in the

Close command’s Click event handler):

Private Sub FileExit_Click(ByVal sender As System.Object, _ByVal e As System.EventArgs)

Handles FileExit.Click

Me.Close()

End Sub

The Close method invokes the Closing event of the child form.

A Scrollable PictureBox

 The scrollable PictureBox isn’t a new control; it’s not even a PictureBox with its own

scroll bars. It’s a child form filled with a PictureBox control. The size of the PictureBox is

determined by the user at runtime, but if it gets smaller than the size of the image, the scroll bars

will be attached automatically. This is a feature of the Form object, and child forms support it,

because they inherit the Windows.Forms.Form class. Figure shows a child form with an image

and the appropriate scroll bars attached to it. From a user’s point of view, it looks just like a

PictureBox with scroll bars.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 59/60

Using an MDI form to simulate a scrolling PictureBox control

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: II(Using Procedures) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 60/60

POSSIBLE QUESTIONS

PART A (1 Mark)

(Online Examinations)

PART B (6 Marks)

1) Explain in detail about Argument Passing Mechanisms.

2) Write about Forms Vs DialogBoxes.

3) Write a brief notes about overloading functions. Give Example.

4) Compare and contrast the subroutines and functions. Give Example for each.

5) How will you Manipulating Menu’s at Runtime. Explain in detail

6) Write a program to implement calculator

7) Explain in detail about Argument Passing Mechanism with example.

8) Illustrate the usage of message box.

9) Explain on Loading and showing forms

10) Describe the properties and methods of Text box.

SUBJECT: VB.NET

SEMESTER : II UNIT : II

SUBJECT CODE: 18CCP304 CLASS : II M.COM CA

S.

NO QUESTIONS OPTION 1 OPTION 2 OPTION 3 OPTION 4 ANSWER

1 Toolbar items are part of _______________ collection items Buttons properties Opions Buttons

2 A _______ is a place to store the code we write class module method subroutine module

3 What is the statement used to declare variable? loc dim global redim dim

4

The data type of the variable is defined by using the -------

-- clause

in where as is as

5 A composite data type is of ----------- types 3 4 5 2 2

6 Constants are declared using the keyword constant const consta fixed const

7

An abstract class contains abstract

methods

non-abstract

methods

friend method overloading

method

abstract methods

8 The storage size for Byte data types is -------- 2 4 1 8 1

9 Resizing can be done by using ------ statement Dim ReDim Int Float ReDim

10

To ensure that the existing contents of an array are not lost

------- keyword is used

ReDim Dim Preserve New Preserve

11

The ------- class provided by the .NET framework serves

as the base class for all arrays

Hash Table Stack Queue Array Array

12

 ---------- is an array of arrays in which the length of each

array can differ

onedimension

al array

rectangular

array

jagged array sorted array jagged array

13

 ------- loop is used in a situation to execute every single

element or item in a group

For Do For Each While For Each

14

The ------ Function in VB.NET can be used to make the

computer emit a beep

Stack Beep Sound Exit Beep

15 ------- are arrays of controls sharing a common event Arrays Control rectangular jagged array Control Array

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under section 3 of UGC Act 1956)

Coimbatore – 641021

(For the candidates admitted from 2018 onwards)

handler Array array

16

The String data type comes from the ------- class System.String System System.Forms System.Arra

y

System.String

17

_______is nothing but the name that is used for naming

the variables, Objects etc.

Variable Identifier Constants Datatypes Identifier

18

The --------- function in String Class will insert a String in

a specified index in the String instance.

Length() Insert() Length() Format() Insert()

19

 --------- method is create a new String object with the

same content

CopyTo() Copy() Format() Compare() Copy()

20

The ----- function returns an array of String containing the

substrings delimited by the given System.Char array.

Length() Length() Split() Format() Split()

21

The ----------- function remeove an item from a specified

position

Add Insert() RemoveAt Remove RemoveAt

22 ---------- stores a Key Value pair type collection of data AyyayList HashTable Stack Queue HashTable

23

What is the maximum no of dimension that an array can

have in VB.NET ?

3 5 32 unlimited 32

24

Which of the following when turned on do not allow to

use any variable without proper declaration?

Option

Restrict

Option

Explicit

Option

Implicit

 Option All Option Explicit

25

Which of the following methods cane be used to add

items to an ArrayList class?

Insert method collection

method

top method Add method Add method

26

Parameters to methods in VB.NET are declared by default

as ---------

 ByVal ByRef Val Ref ByVal

27

Which of the following Access Specifies and scope are

used with VB.NET?

Private Protected Protected

Friend

All All

28
Which of the following does not denote a arithmetic

operator allowed in VB.Net?

Mod / * ~ ~

29

Which of the following denote the method used for

compatible type conversions?

TypeCov() Type() CTyp() CType() CType()

30

Which of the following does not denote a data type in

VB.Net?

Boolean Float Decimal Byte Float

31

The ----- event happens when the mouse pointer hovers

over the form/control

MouseWheel MouseUp MouseDown MouseHover MouseHover

32

 ------ specifies number of times the mouse button is

pressed and released

Button Click Delta X Click

33 The fornat used for Date is --------- {0:D} {0:T} {0:DD} {0:Dy} {0:D}

34 The fornat used for Time is --------- {0:D} {0:T} {0:TT} {0:TTY} {0:T}

35

The ---- method Copies a specified number of characters

from a specified position in this instance to a specified

position in an array of characters

CopyTo() Copy() Format() Compare() CopyTo()

36

The -------- method in the VB.NET String Class check the

specified parameter String exist in the String

Compare Exists Contains Found Contains

37

A procedure may return ---------- values 0 1 0 or 1 value more than

one value

0 or 1 value

38 Procedures that returns a value are called ---------------- subroutines sub units parameters functions functions

39

 ----------- scope restricts access to the procedure to only

code in the module in which the procedure resides

public private protected Friend private

40

The first word in the procedure declaration is always the -

function name Keyword

'Function'

Keyword

'Sub'

Scope

designator

Scope designator

41

 -------- is a key word used to declare a procedure that

doesnot return a value

Function Sub Scope Private Sub

42

In the function 'Public Function fname(ByVal str as

String) As Integer' the return type is -------------

Void String Integer Any Integer

43

A calling procedure passes data to the parameters by way

of ------------

objects arguments strings numbers arguments

44

To create a procedure as an entry point in code, you must

name the procedure ---------

Main Sub Entry Start Main

45 Which of the following can be called by value? Class Module Assembly Function Function

46

Which of the following cannot occur multiple number of

times in a program?

Entry point class functions module Entry point

47 Varible of ---------- type can store any type of data Variant Decimal Object Boolean Object

48 This data type can be used for currency values Currency Dollar Object Decimal Decimal

49 Size of integer data type is -------- bits 8 16 24 32 32

50

Which of the given data types used to represent integer

numbers

long short byte All the above All

51 ------- is the operator used for string concatenation Cat Str ^ & &

52

The order in which the operators in an expression are

evaluated is known as -------------

operator

precedence

operator

overloading

associativity

of operators

operator

evaluation

operator

precedence

53 And , Or , Not, Xor are called ________ operators Boolean Relational comparision String Boolean

54
_________ function is used to retrieve only the month

part of the date

DateDiff() DatePart() DateInterval() Date.Month(

)

DatePart()

55

Which function returns the system's current date and time DateTime.No

w

DateTime.To

day

DateTime.Sys

tem

DateTime.C

urrent

DateTime.Now

56

In Select Case _______ Case is used to define codes that

executes, if the expression does not evaluate to any of the

Case statement

Default Otherwise Else False Else

57

While using GoTo, ____ has to be defines to specify the

location to jump to.

Variable Index Code label Pointer Code label

58

What statement is used to close a loop started with For

statement?

Close End For Loop Next Next

59

What statement is used to terminate a Do..Loop without

evaluating the test expression?

End Do Loop Exit Exit Do Exit Do

60 _________ errors are called Exceptions compile time build runtime None runtime

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 1/66

UNIT – III

SYLLABUS

Basic Windows Controls: Textbox Control- ListBox, CheckedListBox-Scrollbar and TrackBar

Controls. More Windows Control: The common Dialog Controls-The Rich TextBox

Control.The TreeView and ListView Controls: Examining the Advanced Controls-The

TreeView Control-The ListView Control-Content Page Holder

BASIC WINDOWS CONTROLS

The TextBox Control

The TextBox control is the primary mechanism for displaying and entering text. It is a

small text editor that provides all the basic text-editing facilities: inserting and selecting text,

scrolling if the text doesn’t fit in the control’s area, and even exchanging text with other

applications through the Clipboard.

 Figure - TextBox Examples

Basic Properties of the TextBox Control

Let’s start with the properties that specify the appearance and, to some degree, the

functionality of the TextBox control; these properties are usually set at design time through the

Propertieswindow.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 2/66

TextAlign

This property sets (or returns) the alignment of the text on the control, and its value is a

member of the HorizontalAlignment enumeration: Left, Right, or Center.

MultiLine

This property determines whether the TextBox control will hold a single line or multiple

lines of text. Every time you place a TextBox control on your form, it’s sized for a single line of

text and you can change its width only. To change this behavior, set the MultiLine property to

True. When creating multiline TextBoxes, you will most likely have to set one or more of the

MaxLength, ScrollBars, and WordWrap properties in the Properties window.

MaxLength

This property determines the number of characters that the TextBox control will accept.

Its default value is 32,767, which was the maximum number of characters the VB 6 version of

the control could hold. Set this property to zero, so that the text can have any length, up to the

control’s capacity limit — 2,147,483,647 characters, to be exact.

ScrollBars

This property lets you specify the scroll bars you want to attach to the TextBox if the

text exceeds the control’s dimensions. Single-line text boxes can’t have a scroll bar attached,

even if the text exceeds the width of the control. Multiline text boxes can have a horizontal or a

vertical scroll bar, or both.

WordWrap

This property determines whether the text is wrapped automatically when it reaches the

right edge of the control. The default value of this property is True. If the control has a

horizontal scroll bar, however, you can enter very long lines of text.

AcceptsReturn, AcceptsTab

These two properties specify how the TextBox control reacts to the Return (Enter) and

Tab keys. The Enter key activates the default button on the form, if there is one. The default

button is usually an OK button that can be activated with the Enter key, even if it doesn’t have

the focus.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 3/66

The default value of the AcceptsReturn property is True, so pressing Enter creates a new

line on the control. If you set it to False, users can still create new lines in the TextBox control,

but they’ll have to press Ctrl+Enter.

Likewise, the AcceptsTab property determines how the control reacts to the Tab

key.Normally, the Tab key takes you to the next control in the Tab order, and we generally

avoid changing the default setting of the AcceptsTab property.

CharacterCasing

This property tells the control to change the casing of the characters as they’re entered

by the user. Its default value is Normal, and characters are displayed as typed. You can set it to

Upper or Lower to convert the characters to upper- or lowercase automatically.

PasswordChar

This property turns the characters typed into any character you specify. If you don’t

want to display the actual characters typed by the user (when entering a password, for instance),

use this property to define the character to appear in place of each character the user types.

The default value of this property is an empty string, which tells the control to display

the characters as entered. If you set this value to an asterisk (*), for example, the user sees an

asterisk in the place of every character typed. This property doesn’t affect the control’s Text

property, which contains the actual characters. If the PasswordChar property of the TextBox

control is set to any character, the user can’t copy or cut the text on the control.

ReadOnly, Locked

If you want to display text on a TextBox control but prevent users from editing it (such

as for an agreement or a contract they must read, software installation instructions, and so on),

you can set the ReadOnly property to True.When ReadOnly is set to True, you can put text on

the control from within your code, and users can view it, yet they can’t edit it.

Text-Manipulation Properties

Most of the properties for manipulating text in a TextBox control are available at

runtime only. This section presents a breakdown of each property.

Text

The most important property of the TextBox control is the Text property, which holds

the control's text. You can set this property at design time to display some text on the control

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 4/66

initially. Notice that there are two methods of setting the Text property at design time. For

single-line TextBox controls, set the Text property to a short string, as usual. For multiline

TextBox controls, open the Lines property and enter the text in the String Collection Editor

window, which will appear.

Dim strLen As Integer = TextBox1.Text.Length

The IndexOf method of the String class will locate a specific string in the control's text. The

following statement returns the location of the first occurrence of the string Visual in the text:

Dim location As Integer

location = TextBox1.Text.IndexOf("Visual")

For more information on locating strings in a TextBox control, see the section "VB 2008

The TextPad Project" later in this chapter, where we'll build a text editor with search-and-

replace capabilities. For a detailed discussion of the String class, see Chapter, "Handling Strings,

Characters, and Dates."

To store the control's contents in a file, use a statement such as the following:

StrWriter.Write(TextBox1.Text)

Similarly, you can read the contents of a text file into a TextBox control by using a statement

such as the following:

TextBox1.Text = StrReader.ReadToEnd

 Listing 6.1: Locating All Instances of a String in a TextBox

Dim startIndex = -1

startIndex = TextBox1.Text.IndexOf("Basic", startIndex + 1)

While startIndex > 0

Console.WriteLine "String found at " & startIndex

startIndex = TextBox1.Text.IndexOf("Basic", startIndex + 1)

End While

The following statement appends a string to the existing text on the control:

TextBox1.Text = TextBox1.Text & newString

To append a string to a TextBox control, use the following statement:

TextBox1.AppendText(newString)

TextBox1.AppendText(newString & vbCrLf)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 5/66

Lines

In addition to the Text property, you can access the text on the control by using the

Lines property. The Lines property is a string array, and each element holds a paragraph of text.

The first paragraph is stored in the element Lines(0), the second paragraph in the element

Lines(1), and so on. You can iterate through the text lines with a loop such as the following:

Dim iLine As Integer

For iLine = 0 To TextBox1.Lines.GetUpperBound(0) - 1

{ process string TextBox1.Lines(iLine) }

Next

READONLY, LOCKED

If you want to display text on a TextBox control but prevent users from editing it (an

agreement or a contract they must read, software installation instructions, and so on), you can

set the ReadOnly property to True. When ReadOnly is set to True, you can put text on the

control from within your code, and users can view it, yet they can’t edit it

PASSWORDCHAR

Available at design time, this property turns the characters typed into any character you

specify. If you don’t want to display the actual characters typed by the user (when entering a

password, for instance), use this property to define the character to appear in place of each

character the user types.

The default value of this property is an empty string, which tells the control to display

the characters as entered. If you set this value to an asterisk (*), for example, the user sees an

asterisk in the place of every character typed.

Text-Selection Properties

The TextBox control provides three properties for manipulating the text selected by the

user: SelectedText, SelectionStart, and SelectionLength. Users can select a range of text with a

click-and-drag operation, and the selected text will appear in reverse color. You can access the

selected text from within your code through the SelectedText property, and its location in the

control's text through the SelectionStart and SelectionLength properties.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 6/66

SelectedText

This property returns the selected text, enabling you to manipulate the current selection

from within your code. For example, you can replace the selection by assigning a new value to

the SelectedText property. To convert the selected text to uppercase, use the ToUpper method

of the String class:

TextBox1.SelectedText = TextBox1.SelectedText.ToUpper

SelectionStart, SelectionLength

Use these two properties to read the text selected by the user on the control, or to select

text from within your code. The SelectionStart property returns or sets the position of the first

character of the selected text, somewhat like placing the cursor at a specific location in the text

and selecting text by dragging the mouse. The SelectionLength property returns or sets the

length of the selected text.

Dim seekString As String = "Visual"

Dim strLocation As Long

strLocation = TextBox1.Text.IndexOf(seekString)

If strLocation > 0 Then

TextBox1.SelectionStart = strLocation

TextBox1.SelectionLength = seekString.Length

End If

TextBox1.ScrollToCaret()

HideSelection

The selected text in the TextBox does not remain highlighted when the user moves to

another control or form; to change this default behavior, set the HideSelection property to False.

Use this property to keep the selected text highlighted, even if another form or a dialog box,

such as a Find & Replace dialog box, has the focus. Its default value is True, which means that

the text doesn't remain highlighted when the TextBox loses the focus.

Locating the Cursor Position in the Control

The SelectionStart and SelectionLength properties always have a value even if no text is

selected on the control. In this case, SelectionLength is 0, and SelectionStart is the current

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 7/66

position of the pointer in the text. If you want to insert some text at the pointer's location, simply

assign it to the SelectedText property, even if no text is selected on the control.

Text-Selection Methods

 addition to properties, the TextBox control exposes two methods for selecting text. You

can select some text by using the Select method, whose syntax is shown next:

TextBox1.Select(start, length)

The Select method is equivalent to setting the SelectionStart and SelectionLength properties. To

select the characters 100 through 105 on the control, call the Select method, passing the values

99 and 6 as arguments:

TextBox1.Select(99, 6)

TextBox1.Select(3, 4)

If you insert a line break every third character and the text becomes the following, the same

statement will select the characters DE only:

ABC

DEF

GHI

In reality, it has also selected the two characters that separate the first two lines, but special

characters aren’t displayed and can’t be highlighted. The length of the selection, however, is 4.

A variation of the Select method is the SelectAll method, which selects all the text on the

control.

Undoing Edits - CanUndo property

An interesting feature of the TextBox control is that it can automatically undo the most

recent edit operation. To undo an operation from within your code, you must first examine the

value of the CanUndo property. If it’s True, the control can undo the operation; then you can

call the Undo method to undo the most recent edit.

The ListBox, CheckedBox, and ComboBox Controls

The ListBox, CheckedListBox, and ComboBox controls present lists of choices, from

which the user can select one or more. The ListBox control occupies a user-specified amount of

space on the form and is populated with a list of items. If the list of items is longer than can fit

on the control, a vertical scroll bar appears automatically.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 8/66

The CheckedListBox control is a variation of the ListBox control. It’s identical to the

ListBox control, but a check box appears in front of each item. The user can select any number

of items by selecting the check boxes in front of them. As you know, you can also select

multiple items from a ListBox control by pressing the Shift and Ctrl keys.

The ComboBox control also contains multiple items but typically occupies less space on

the screen. The ComboBox control is an expandable ListBox control: The user can expand it to

make a selection, and collapse it after the selection is made. The real advantage of the

ComboBox control, however, is that the user can enter new information in the ComboBox,

rather than being forced to select from the items listed.

Basic Properties The ListBox, CheckedListBox, and ComboBox Controls

In this section, you’ll find the properties that determine the functionality of the three

controls. These properties are usually set at design time, but you can change their setting from

within your application’s code.

IntegralHeight

This property is a Boolean value (True/False) that indicates whether the control’s height

will be adjusted to avoid the partial display of the last item. When set to True, the control’s

actual height changes in multiples of the height of a single line, so only an integer number of

rows are displayed at all times.

Items

The Items property is a collection that holds the control’s items. At design time, you can

populate this list through the String Collection Editor window. At runtime, you can access and

manipulate the items through the methods and properties of the Items collection, which are

described shortly.

MultiColumn

A ListBox control can display its items in multiple columns if you set its MultiColumn

property to True. The problem with multicolumn ListBoxes is that you can’t specify the column

in which each item will appear. ListBoxes with many items and their MultiColumn property set

to True expand horizontally, not vertically. A horizontal scroll bar will be attached to a

multicolumn ListBox, so that users can bring any column into view. This property does not

apply to the ComboBox control.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 9/66

SelectionMode

This property, which applies to the ListBox and CheckedListBox controls only,

determines how the user can select the list’s items. The possible values of this property—

members of the SelectionMode enumeration— are shown in Table 4.3.

 Table - The SelectionMode Enumeration

Value Description

None No selection at all is allowed.

One (Default) Only a single item can be selected.

MultiSimple Simple multiple selection: A mouse click (or pressing the spacebar)

selects or deselects an item in the list. You must click all the items you

want to select.

MultiExtended Extended multiple selection: Press Shift and click the mouse (or press one

of the arrow keys) to expand the selection. This process highlights all the

items between the previously selected item and the current selection. Press

Ctrl and click the mouse to select or deselect single items in the list.

Sorted

When this property is True, the items remain sorted at all times. The default is False,

because it takes longer to insert new items in their proper location. This property’s value can be

set at design time as well as runtime.

Text

The Text property returns the selected text on the control. Although you can set the Text

property for the ComboBox control at design time, this property is available only at runtime for

the other two controls. Notice that the items need not be strings.

The Items Collection

To manipulate a ListBox control from within your application, you should be able to do the

following:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 10/66

 Add items to the list

 Remove items from the list

 Access individual items in the list

If you add a Color object and a Rectangle object to the Items collection with the following

statements:

ListBox1.Items.Add(New Font("Verdana", 12, FontStyle.Bold)

ListBox1.Items.Add(New Rectangle(0, 0, 100, 100))

then the following strings appear on the first two lines of the control:

[Font: Name=Verdana, Size=12, Units=3, GdiCharSet=1, gdiVerticalFont=False]

{X=0, Y=0, Width=100, Height=100}

However, you can access the members of the two objects because the ListBox stores objects,

not their descriptions.

Debug.WriteLine(ListBox1.Items.Item(1).Width)

100

If ListBox1.Items.Item(0).GetType Is GetType(Rectangle) Then

Debug.WriteLine(CType(ListBox1.Items.Item(0), Rectangle).Width)

End If

The Add Method

To add items to the list, use the Items.Add or Items.Insert method. The syntax of the

Add method is as follows:

ListBox1.Items.Add(item)

The following loop adds the elements of the array words to a ListBox control, one at a time:

Dim words(100) As String

{ statements to populate array }

Dim i As Integer

For i = 0 To 99

ListBox1.Items.Add(words(i))

Next

Similarly, you can iterate through all the items on the control by using a loop such as the

following:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 11/66

Dim i As Integer

For i = 0 To ListBox1.Items.Count - 1

{ statements to process item ListBox1.Items(i) }

Next

You can also use the For Each . . . Next statement to iterate through the Items collection, as

shown here:

Dim itm As Object

For Each itm In ListBox1.Items

{ process the current item, represented by the itm variable }

Next

The Insert Method

To insert an item at a specific location, use the Insert method, whose syntax is as

follows:

ListBox1.Items.Insert(index, item)

The Clear Method

The Clear method removes all the items from the control. Its syntax is quite simple:

List1.Items.Clear

The Count Property

This is the number of items in the list. If you want to access all the items with a For . . .

Next loop, the loop's counter must go from 0 to ListBox.Items.Count - 1, as shown in the

example of the Add method.

The CopyTo Method

The CopyTo method of the Items collection retrieves all the items from a ListBox

control and stores them in the array passed to the method as an argument. The syntax of the

CopyTo method is

ListBox.CopyTo(destination, index)

The Remove and RemoveAt Method

To remove an item from the list, you must first find its position (index) in the list, and all

the Remove method passing the position as argument:

ListBox1.Items.Remove(index)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 12/66

The index parameter is the order of the item to be removed, and this time it’s not optional. The

following statement removes the item at the top of the list:

 ListBox1.Remove(0)

If the control contains strings, pass the string to be removed. If the same string appears

multiple times on the control, only the first instance will be removed. If the control contains

object, pass a variable that references the item you want to remove.

You can also remove an item by specifying its position (reference) in the list via the RemoveAt

method, which accepts as argument the position of the item to be removed:

ListBox1.Items.RemoveAt(index)

The index parameter is the order of the item to be removed, and the first item's order is 0.

The Contains Method

The Contains method of the Items collection — not to be confused with the control's

Contains method — accepts an object as an argument and returns a True/False value that

indicates whether the collection contains this object. Use the Contains method to avoid the

insertion of identical objects into the ListBox control. The following statements add a string to

the Items collection, only if the string isn't already part of the collection:

Dim itm As String = "Remote Computing"

If Not ListBox1.Items.Contains(itm) Then

ListBox1.Items.Add(itm)

End If

Searching:

 Two of the most useful methods of the ListBox control are the

FindString and FindStringExact methods, which allow you to quickly locate any item in the list.

The FindString method locates a string that partially matches the one you’re searching for;

FindStringExact finds an exact match. If you’re searching for Man, and the control contains a

name such as Mansfield, FindStringmatches the item, but FindStringExact does not.

Both the FindString and FindStringExact methods perform case-insensitive searches. If you’re

searching for visual, and the list contains the item Visual, both methods will locate it. Their

syntax is the same:

 itemIndex = ListBox1.FindString(searchStr As String)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 13/66

where searchStr is the string you’re searching for. An alternative form of both methods allows

you to specify the order of the item at which the search will begin:

 itemIndex = ListBox1.FindString(searchStr As String, startIndex As Integer)

The startIndex argument allows you to specify the beginning of the search, but you can’t specify

where the search will end.

The ListBoxSearch Application

The application you’ll build in this section (seen in Figure 4.5) populates a list with a large

number of items and then locates any string you specify. Click the button Populate List to

populate the ListBox control with 10,000 random strings. This process will take a few seconds

and will populate the control with different random strings every time. Then, you can enter a

string in the TextBox control at the bottom of the form.

 Figure - ListBox Control Search example

Listing: Searching the List

Private Sub TextBox1 TextChanged(...) Handles TextBox1.TextChanged

Dim srchWord As String = TextBox1.Text.Trim

If srchWord.Length = 0 Then Exit Sub

Dim wordIndex As Integer

wordIndex = ListBox1.FindStringExact(srchWord)

If wordIndex >= 0 Then

ListBox1.TopIndex = wordIndex

ListBox1.SelectedIndex = wordIndex

Else

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 14/66

wordIndex = ListBox1.FindString(srchWord)

If wordIndex >= 0 Then

ListBox1.TopIndex = wordIndex

ListBox1.SelectedIndex = wordIndex

Else

Debug.WriteLine("Item " & srchWord &

" is not in the list")

End If

End If

End Sub

The ComboBox Control

 The ComboBox control is similar to the ListBox control in the sense that it contains

multiple items and the user may select one, but it typically occupies less space onscreen. The

ComboBox is practically an expandable ListBox control, which can grow when the user wants

to make a selection and retract after the selection is made. Normally, the ComboBox control

displays one line with the selected item, as this control doesn’t allow multiple item selection.

The essential difference, however, between ComboBox and ListBox controls is that the

ComboBox allows the user to specify items that don’t exist in the list.

Table - Styles of the ComboBox Control

Value Effect

DropDown

(Default) The control is made up of a drop-down list, which is

visible at all times, and a text box. The user can select an item from

the list or type a new one in the text box.

DropDownList

This style is a drop-down list from which the user can select one of

its items but can’t enter a new one. The control displays a single

item, and the list is expanded as needed.

Simple The control includes a text box and a list that doesn’t drop down.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 15/66

The user can select from the list or type in the text box.

 The DropDown and Simple ComboBox controls allow the user to select an item from

the list or enter a new one in the edit box of the control. Moreover, they’re collapsed by default

and they display a single item, unless the user expands the list of items to make a selection. The

DropDownList ComboBox is similar to a ListBox control in the sense that it restricts the user to

selecting an item (the user cannot enter a new one).

 Figure VB.NET ComboBox control's Simple style, DropDown style and

DropDownList style.

Adding Items to the ComboBox Control

 Although the ComboBox control allows users to enter text in the control’s edit box, it

doesn’t provide a simple mechanism for adding new items at runtime. Let’s say you provide a

ComboBox with city names. Users can type the first few characters and quickly locate the

desired item.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 16/66

Figure - Adding items to ComboBox control at runtime - VB.NET

VB.NET ComboBox Control Example

 The ellipsis button next to the City ComboBox control prompts the user for the new item

via the InputBox() function. Then it searches the Items collection of the control via the

FindString method, and if the new item isn’t found, it’s added to the control. Then the code

selects the new item in the list. To do so, it sets the control’s SelectedIndex property to the value

returned by the Items.Add method, or the value returned by the FindString method, depending

on whether the item was located or added to the list. Listing 4.14 shows the code behind the

ellipsis button.

Listing : Adding a New Item to the ComboBox Control at Runtime

 Private Sub Button1 Click(...) Button1.Click

 Dim itm As String

 itm = InputBox("Enter new item", "New Item")

 If itm.Trim <> "" Then AddElement(itm)

 End Sub

The AddElement() subroutine, which accepts a string as an argument and adds it to the control,

is shown in Listing 4.15. If the item doesn’t exist in the control, it’s added to the Items

collection. If the item is a member of the Items collection, it’s selected. As you will see, the

same subroutine will be used by the second method for adding items to the control at runtime.

Listing: The AddElement() Subroutine

 Sub AddElement(ByVal newItem As String)

 Dim idx As Integer

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 17/66

 If ComboBox1.FindString(newItem) > 0 Then

 idx = ComboBox1.FindString(newItem)

 Else

 idx = ComboBox1.Items.Add(newItem)

 End If

 ComboBox1.SelectedIndex = idx

 End Sub

You can also add new items at runtime by adding the same code in the control’s LostFocus

event handler:

 Private Sub ComboBox1 LostFocus(...) Handles ComboBox1.LostFocus

 Dim newItem As String = ComboBox1.Text

 AddElement(newItem)

 End Sub

The ScrollBar and TrackBar Controls

 The ScrollBar and TrackBar controls let the user specify a magnitude by scrolling a

selector between its minimum and maximum values. In some situations, the user doesn’t know

in advance the exact value of the quantity to specify (in which case, a text box would suffice),

so your application must provide a more-flexible mechanism for specifying a value, along with

some type of visual feedback.

The vertical scroll bar that lets a user move up and down a long document is a typical

example of the use of the ScrollBar control. The scroll bar and visual feedback are the prime

mechanisms for repositioning the view in a long document or in a large picture thatwon’t fit

entirely in its window.

The TrackBar control is similar to the ScrollBar control, but it doesn’t cover a

continuous range of values. The TrackBar control has a fixed number of tick marks, which the

developer can label. Users can place the slider’s indicator to he desired value.Whereas the

ScrollBar control relies on some visual feedback outside the control to help the user position the

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 18/66

indicator to the desired value, the TrackBar control forces the user to select from a range of

valid values.

The ScrollBar Control

 There’s no ScrollBar control per se in the Toolbox; instead, there are two versions of it:

the HScroll-Bar and VScrollBar controls. They differ only in their orientation, but because they

share the same members, I will refer to both controls collectively as ScrollBar controls. Actually,

both controls inherit from the ScrollBar control, which is an abstract control: It can be used to

implement vertical and horizontal scroll bars, but it can’t be used directly on a form. Moreover,

the HScrollBar and VScrollBar controls are not displayed in the Common Controls tab of the

Toolbox. You have to open the All Windows Forms tab to locate these two controls.

Minimum - The control’s minimum value. The default value is 0, but because this is an Integer

value, you can set it to negative values as well.

Maximum - The control’s maximum value. The default value is 100, but you can set it to any

value that you can represent with the Integer data type.

Value - The control’s current value, specified by the indicator’s position.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 19/66

The ScrollBar Control Colors Exercise

 Figure 4.8 shows the main form of the Colors sample project, which lets the user specify

a color by manipulating the value of its basic colors (red, green, and blue) through scroll bars.

Each basic color is controlled by a scroll bar and has a minimum value of 0 and a maximum

value of 255. If you aren’t familiar with color definition in the Windows environment, see the

section "Specifying Colors" in Chapter, "Manipulating Images and Bitmaps."

 Figure - When the ScrollBar is moved the corresponding color is displayed

The ScrollBar Control’s Events

 The user can change the ScrollBar control’s value in three ways: by clicking the two

arrows at its ends, by clicking the area between the indicator and the arrows, and by dragging

the indicator with the mouse. You can monitor the changes of the ScrollBar’s value from within

your code by using two events: ValueChanged and Scroll. Both events are fired every time the

indicator’s position is changed. If you change the control’s value from within your code, only

the ValueChanged event will be fired.

The Scroll event can be fired in response to many different actions, such as the scrolling of the

indicator with the mouse, a click on one of the two buttons at the ends of the scroll bars, and so

on. If you want to know the action that caused this event, you can examine the Type property of

the second argument of the event handler. The settings of the e.Type property are members of

the ScrollEventType enumeration (LargeDecrement, SmallIncrement, Track, and so on).

Handling the Events in the Colors Application

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 20/66

 The Colors application demonstrates how to program the two events of the ScrollBar

control. The two PictureBox controls display the color designed with the three scroll bars. The

left PictureBox is colored from within the Scroll event, whereas the other one is colored from

within the ValueChanged event. Both events are fired as the user scrolls the scrollbar’s indicator,

but in the Scroll event handler of the three scroll bars, the code examines the value of the e.Type

property and reacts to it only if the event was fired because the scrolling of the indicator has

ended. For all other actions, the event handler doesn’t update the color of the left PictureBox.

Listing: Programming the ScrollBar Control’s Scroll Event

Private Sub redBar Scroll(...) Handles redBar.Scroll

If e.Type = ScrollEventType.EndScroll Then

ColorBox1()

lblRed.Text = "RED " & redBar.Value.ToString("###")

End If

End Sub

Private Sub redBar ValueChanged(...) Handles redBar.ValueChanged

ColorBox2()

End Sub

The ColorBox1() and ColorBox2() subroutines update the color of the two PictureBox

controls by setting their background colors. You can open the Colors project in Visual Studio

and examine the code of these two routines.

The TrackBar Control

 The TrackBar control is similar to the ScrollBar control, but it lacks the granularity of

ScrollBar. Suppose that you want the user of an application to supply a value in a specific range,

such as the speed of a moving object. Moreover, you don’t want to allow extreme precision; you

need only a few settings, as shown in the examples in this page. The user can set the control’s

value by sliding the indicator or by clicking on either side of the indicator.

Granularity is how specific youwant to be inmeasuring. Inmeasuring distances between

towns, a granularity of amile is quite adequate. In measuring (or specifying) the dimensions of a

building, the granularity could be on the order of a foot or an inch. The TrackBar control lets

you set the type of granularity that’s necessary for your application.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 21/66

Similar to the ScrollBar control, SmallChange and LargeChange properties are available.

SmallChange is the smallest increment by which the Slider value can change. The user can

change the slider by the SmallChange value only by sliding the indicator. (Unlike the ScrollBar

control, there are no arrows at the two ends of the Slider control.) To change the Slider’s value

by LargeChange, the user can click on either side of the indicator.

The TrackBar Control Inches Exercise

 The Figure demonstrates a typical use of the TrackBar control. The form in the figure is

an element of a program’s user interface that lets the user specify a distance between 0 and 10

inches in increments of 0.2 inches. As the user slides the indicator, the current value is

displayed on a Label control below the TrackBar. If you open the Inches application, you’ll

notice that there are more stops than there are tick marks on the control. This is made possible

with the TickFrequency property, which determines the frequency of the visible tick marks.

 Figure - A typical use of TrackBar control in VB.NET - The Inches Application

The properties of the TrackBar control in the Inches application are as follows:

 Minimum = 0

 Maximum = 50

 SmallChange = 1

 LargeChange = 5

 TickFrequency = 5

The TrackBar needs to cover a range of 10 inches in increments of 0.2 inches. If you set

the SmallChange property to 1, you have to set LargeChange to 5. Moreover, the

TickFrequency is set to 5, so there will be a total of five divisions in every inch. The numbers

below the tick marks were placed there with properly aligned Label controls.

Private Sub TrackBar1 ValueChanged(...)Handles TrackBar1.ValueChanged

lblInches.Text = "Length in inches = " &

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 22/66

Format(TrackBar1.Value / 5, "#.00")

End Sub

The Label controls below the tick marks can also be used to set the value of the control.

Every time you click one of the labels, the following statement sets the TrackBar control’s value.

Notice that all the Label controls’ Click events are handled by a common handler:

 Private Sub Label Click(...) Handles Label1.Click, Label9.Click

 TrackBar1.Value = sender.text * 5

 End Sub

Common Dialog Controls

The common dialog controls are invisible at runtime, and they're not placed on your forms,

because they're implemented as modal dialog boxes and they're displayed as needed. You

simply add them to the project by double-clicking their icons in the Toolbox; a new icon

appears in the components tray of the form, just below the Form Designer. The common dialog

controls in the Toolbox are the following:

 OpenFileDialog - Lets users select a file to open. It also allows the selection of multiple

files for applications that must process many files at once.

 SaveFileDialog - Lets users select or specify the path of a file in which the current

document will be saved.

 ColorDialog - Lets users select a color from a list of predefined colors or specify

custom colors. FontDialog Lets users select a typeface and style to be applied to the

current text selection. The Font dialog box has an Apply button, which you can

intercept from within your code and use to apply the currently selected font to the text

without closing the dialog box.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 23/66

 Figure - Common Font and Open dialog controls

There are three more common dialog controls: the PrintDialog, PrintPreviewDialog, and

PageSetupDialog controls. These controls are discussed in detail in Chapter, "Printing with

Visual Basic 2008," in the context of VB's printing capabilities.

Using the Common Dialog Controls

To display any of the common dialog boxes from within your application, you must first

add an instance of the appropriate control to your project. Then you must set some basic

properties of the control through the Properties window. Most applications set the control's

properties from within the code because common dialogs interact closely with the application.

When you call the Color common dialog, for example, you should preselect a color from within

your application and make it the default selection on the control. When prompting the user for

the color of the text, the default selection should be the current setting of the control's ForeColor

property. Likewise, the Save dialog box must suggest a filename when it first pops up (or the

file's extension, at least).

Here is the sequence of statements used to invoke the Open common dialog and retrieve the

selected filename:

If OpenFileDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then

fileName = OpenFileDialog1.FileName

' Statements to open the selected file

End If

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 24/66

The ShowDialog method returns a value indicating how the dialog box was closed. You

should read this value from within your code and ignore the settings of the dialog box if the

operation was cancelled.

The variable fileName in the preceding code segment is the full pathname of the file

selected by the user. You can also set the FileName property to a filename, which will be

displayed when the Open dialog box is first opened:

OpenFileDialog1.FileName = "C:\WorkFiles\Documents\Document1.doc"

If OpenFileDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then

fileName = OpenFileDialog1.FileName

' Statements to open the selected file

End If

Similarly, you can invoke the Color dialog box and read the value of the selected color by using

the following statements:

ColorDialog1.Color = TextBox1.BackColor

If ColorDialog1.ShowDialog = DialogResult.OK Then

TextBox1.BackColor = ColorDialog1.Color

End If

The ShowDialog method is common to all controls. The Title property is also common to all

controls and it's the string displayed in the title bar of the dialog box. The default title is the

name of the dialog box (for example, Open, Color, and so on), but you can adjust it from within

your code with a statement such as the following:

ColorDialog1.Title = "Select Drawing Color"

Color Dialog Box Control

The Color dialog box, shown in Figure 4.11, is one of the simplest dialog boxes. Its

Color property returns the color selected by the user or sets the initially selected color when the

user opens the dialog box.

The following statements set the initial color of the ColorDialog control, display the

dialog box, and then use the color selected in the control to fill the form. First, place a

ColorDialog control in the form and then insert the following statements in a button’s Click

event handler:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 25/66

Private Sub Button1 Click(...) Handles Button1.Click

ColorDialog1.Color = Me.BackColor

If ColorDialog1.ShowDialog =

Windows.Forms.DialogResult.OK Then

Me.BackColor = ColorDialog1.Color

End If

End Sub

The following sections discuss the basic properties of the ColorDialog control.

 Figure - The Color Dialog Box

AllowFullOpen

Set this property to True if you want users to be able to open the dialog box and define

their own custom colors, like the one shown in Figure 8.2. The AllowFullOpen property doesn’t

open the custom section of the dialog box; it simply enables the Define Custom Colors button in

the dialog box. Otherwise, this button is disabled.

AnyColor

This property is a Boolean value that determines whether the dialog box displays all

available colors in the set of basic colors.

Color

This is the color specified on the control. You can set it to a color value before showing

the dialog box to suggest a reasonable selection. On return, read the value of the same property

to find out which color was picked by the user in the control:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 26/66

ColorDialog1.Color = Me.BackColor

If ColorDialog1.ShowDialog = DialogResult.OK Then

Me.BackColor = ColorDialog1.Color

End If

CustomColors

This property indicates the set of custom colors that will be shown in the dialog box.

The Color dialog box has a section called Custom Colors, in which you can display 16

additional custom colors. The CustomColors property is an array of integers that represent

colors. To display three custom colors in the lower section of the Color dialog box, use a

statement such as the following:

Dim colors() As Integer = {222663, 35453, 7888}

ColorDialog1.CustomColors = colors

You’d expect that the CustomColors property would be an array of Color values, but it’s not.

You can’t create the array CustomColors with a statement such as this one:

Dim colors() As Color = {Color.Azure, Color.Navy, Color.Teal}

Because it’s awkward to work with numeric values, you should convert color values to integer

values by using a statement such as the following:

Color.Navy.ToArgb

The preceding statement returns an integer value that represents the color navy. This value,

however, is negative because the first byte in the color value represents the transparency of the

color. To get the value of the color, you must take the absolute value of the integer value

returned by the previous expression. To create an array of integers that represent color values,

use a statement such as the following:

Dim colors() As Integer = {Math.Abs(Color.Gray.ToArgb),

Math.Abs(Color.Navy.ToArgb), Math.Abs(Color.Teal.ToArgb)}

Now you can assign the colors array to the CustomColors property of the control, and the colors

will appear in the Custom Colors section of the Color dialog box.

SolidColorOnly

This indicates whether the dialog box will restrict users to selecting solid colors only.

This setting should be used with systems that can display only 256 colors. Although today few

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 27/66

systems can’t display more than 256 colors, some interfaces are limited to this number. When

you run an application through Remote Desktop, for example, only the solid colors are

displayed correctly on the remote screen, regardless of the remote computer’s graphics card

(and that’s for efficiency reasons).

Font Dialog Box Control

The Font dialog box, shown in Figure 4.12, lets the user review and select a font and

then set its size and style. Optionally, users can also select the font’s color and even apply the

current settings to the selected text on a control of the form without closing the dialog box, by

clicking the Apply button.

FontDialog1.Font = TextBox1.Font

If FontDialog1.ShowDialog = DialogResult.OK Then

TextBox1.Font = FontDialog1.Font

End If

Use the following properties to customize the Font dialog box before displaying it.

 Figure - The Font Dialog Control

AllowScriptChange

This property is a Boolean value that indicates whether the Script combo box will be

displayed in the Font dialog box. This combo box allows the user to change the current

character set and select a non-Western language (such as Greek, Hebrew, Cyrillic, and so on).

AllowVerticalFonts

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 28/66

This property is a Boolean value that indicates whether the dialog box allows the display

and selection of both vertical and horizontal fonts. Its default value is False, which displays only

horizontal fonts.

Color, ShowColor

The Color property sets or returns the selected font color. To enable users to select a

color for the font, you must also set the ShowColor property to True.

FixedPitchOnly

This property is a Boolean value that indicates whether the dialog box allows only the

selection of fixed-pitch fonts. Its default value is False, which means that all fonts (fixed- and

variable-pitch fonts) are displayed in the Font dialog box. Fixed-pitch fonts, or monospaced

fonts, consist of characters of equal widths that are sometimes used to display columns of

numeric values so that the digits are aligned vertically.

Font

This property is a Font object. You can set it to the preselected font before displaying

the dialog box and assign it to a Font property upon return. You’ve already seen how to

preselect a font and how to apply the selected font to a control from within your application.

You can also create a new Font object and assign it to the control’s Font property. Upon return,

the TextBox control’s Font property is set to the selected font:

Dim newFont As Font("Verdana", 12, FontStyle.Underline)

FontDialog1.Font = newFont

If FontDialog1.ShowDialog() = DialogResult.OK Then

TextBox1.ForeColor = FontDialog1.Color

End If

FontMustExist

This property is a Boolean value that indicates whether the dialog box forces the

selection of an existing font. If the user enters a font name that doesn’t correspond to a name in

the list of available fonts, a warning is displayed. Its default value is True, and there’s no reason

to change it.

MaxSize, MinSize

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 29/66

These two properties are integers that determine the minimum and maximum point size

the user can specify in the Font dialog box. Use these two properties to prevent the selection of

extremely large or extremely small font sizes, because these fonts might throw off a well-

balanced interface (text will overflow in labels, for example).

ShowApply

This property is a Boolean value that indicates whether the dialog box provides an

Apply button. Its default value is False, so the Apply button isn’t normally displayed. If you set

this property to True, you must also program the control’s Apply event — the changes aren’t

applied automatically to any of the controls in the current form.

The following statements display the Font dialog box with the Apply button:

Private Sub Button2 Click(...) Handles Button2.Click

FontDialog1.Font = TextBox1.Font

FontDialog1.ShowApply = True

If FontDialog1.ShowDialog = DialogResult.OK Then

TextBox1.Font = FontDialog1.Font

End If

End Sub

The FontDialog control raises the Apply event every time the user clicks the Apply

button. In this event’s handler, you must read the currently selected font and use it in the form,

so that users can preview the effect of their selection:

Private Sub FontDialog1 Apply(...) Handles FontDialog1.Apply

TextBox1.Font = FontDialog1.Font

End Sub

ShowEffects

This property is a Boolean value that indicates whether the dialog box allows the

selection of special text effects, such as strikethrough and underline. The effects are returned to

the application as attributes of the selected Font object, and you don’t have to do anything

special in your application.

Open Dialog Box and Save Dialog Box Controls

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 30/66

Open and Save As, the two most widely used common dialog boxes (see Figure 4.13),

are implemented by the OpenFileDialog and SaveFileDialog controls. Nearly every application

prompts users for filenames, and the .NET Framework provides two controls for this purpose.

The two dialog boxes are nearly identical, and most of their properties are common, so we'll

start with the properties that are common to both controls.

When either of the two controls is displayed, it rarely displays all the files in any given

folder. Usually the files displayed are limited to the ones that the application recognizes so that

users can easily spot the file they want. The Filter property limits the types of files that will

appear in the Open or Save As dialog box.

 Figure - The OpenDialog and SaveDialog controls

The extension of the default file type for the application is described by the DefaultExtension

property, and the list of the file types displayed in the Save As Type box is determined by the

Filter property.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 31/66

To prompt the user for a file to be opened, use the following statements. The Open dialog box

displays the files with the extension .bin only.

OpenFileDialog1.DefaultExt = ".bin"

OpenFileDialog1.AddExtension = True

OpenFileDialog1.Filter = "Binary Files|*.bin"

If OpenFileDialog1.ShowDialog() =

Windows.Forms.DialogResult.OK Then

Debug.WriteLine(OpenFileDialog1.FileName)

End If

The following sections describe the properties of the OpenFileDialog and SaveFileDialog

controls.

AddExtension

This property is a Boolean value that determines whether the dialog box automatically

adds an extension to a filename if the user omits it. The extension added automatically is the

one specified by the DefaultExtension property, which you must set before calling the

ShowDialog method. This is the default extension of the files recognized by your application.

CheckFileExists

This property is a Boolean value that indicates whether the dialog box displays a

warning if the user enters the name of a file that does not exist in the Open dialog box, or if the

user enters the name of a file that exists in the Save dialog box.

CheckPathExists

This property is a Boolean value that indicates whether the dialog box displays a

warning if the user specifies a path that does not exist, as part of the user-supplied filename.

DefaultExt

This property sets the default extension for the filenames specified on the control. Use

this property to specify a default filename extension, such as .txt or .doc, so that when a file

with no extension is specified by the user, the default extension is automatically appended to the

filename. You must also set the AddExtension property to True. The default extension property

starts with the period, and it's a string — for example, .bin.

DereferenceLinks

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 32/66

This property indicates whether the dialog box returns the location of the file referenced

by the shortcut or the location of the shortcut itself. If you attempt to select a shortcut on your

desktop when the DereferenceLinks property is set to False, the dialog box will return to your

application a value such as C:\WINDOWS\SYSTEM32\lnkstub.exe, which is the name of the

shortcut, not the name of the file represented by the shortcut. If you set the DereferenceLinks

property to True, the dialog box will return the actual filename represented by the shortcut,

which you can use in your code.

FileName

Use this property to retrieve the full path of the file selected by the user in the control. If

you set this property to a filename before opening the dialog box, this value will be the

proposed filename. The user can click OK to select this file or select another one in the control.

The two controls provide another related property, the FileNames property, which returns an

array of filenames. To find out how to allow the user to select multiple files, see the discussion

of the MultipleFiles and FileNames properties in ‘‘VB 2008 at Work: Multiple File Selection''

at the end of this section.

Filter

This property is used to specify the type(s) of files displayed in the dialog box. To

display text files only, set the Filter property to Text files|*.txt. The pipe symbol separates the

description of the files (what the user sees) from the actual extension (how the operating system

distinguishes the various file types).

If you want to display multiple extensions, such as .BMP, .GIF, and .JPG, use a

semicolon to separate extensions with the Filter property. Set the Filter property to the string

Images|*.BMP; *.GIF;*.JPG to display all the files of these three types when the user selects

Images in the Save As Type combo box, under the box with the filename.

Don't include spaces before or after the pipe symbol because these spaces will be displayed on

the dialog box. In the Open dialog box of an image-processing application, you'll probably

provide options for each image file type, as well as an option for all images:

OpenFileDialog1.Filter =

"Bitmaps|*.BMP|GIF Images|*.GIF|" &

"JPEG Images|*.JPG|All Images|*.BMP;*.GIF;*.JPG"

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 33/66

FilterIndex

When you specify more than one file type when using the Filter property of the Open

dialog box, the first file type becomes the default. If you want to use a file type other than the

first one, use the FilterIndex property to determine which file type will be displayed as the

default when the Open dialog box is opened. The index of the first type is 1, and there's no

reason to ever set this property to 1. If you use the Filter property value of the example in the

preceding section and set the FilterIndex property to 2, the Open dialog box will display GIF

files by default.

InitialDirectory

This property sets the initial folder whose files are displayed the first time that the Open

and Save dialog boxes are opened. Use this property to display the files of the application's

folder or to specify a folder in which the application stores its files by default. If you don't

specify an initial folder, the dialog box will default to the last folder where the most recent file

was opened or saved. It's also customary to set the initial folder to the application's path by

using the following statement:

OpenFileDialog1.InitialDirectory = Application.ExecutablePath

The expression Application.ExecutablePath returns the path in which the application's

executable file resides.

RestoreDirectory

Every time the Open and Save As dialog boxes are displayed, the current folder is the

one that was selected by the user the last time the control was displayed. The RestoreDirectory

property is a Boolean value that indicates whether the dialog box restores the current directory

before closing. Its default value is False, which means that the initial directory is not restored

automatically. The InitialDirectory property overrides the RestoreDirectory property.

The following four properties are properties of the OpenFileDialog control only: FileNames,

MultiSelect, ReadOnlyChecked, and ShowReadOnly.

FileNames

If the Open dialog box allows the selection of multiple files (see the later section "VB

2008 at Work: Multiple File Selection"), the FileNames property contains the pathnames of all

selected files. FileNames is a collection, and you can iterate through the filenames with an

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 34/66

enumerator. This property should be used only with the OpenFileDialog control, even though

the SaveFileDialog control exposes a FileNames property.

MultiSelect

This property is a Boolean value that indicates whether the user can select multiple files

in the dialog box. Its default value is False, and users can select a single file. When the

MultiSelect property is True, the user can select multiple files, but they must all come from the

same folder (you can't allow the selection of multiple files from different folders). This property

is unique to the OpenFileDialog control.

ReadOnlyChecked, ShowReadOnly

The ReadOnlyChecked property is a Boolean value that indicates whether the Read-

Only check box is selected when the dialog box first pops up (the user can clear this box to open

a file in read/write mode). You can set this property to True only if the ShowReadOnly property

is also set to True. The ShowReadOnly property is also a Boolean value that indicates whether

the Read-Only check box is available..

The OpenFile and SaveFile Methods

The OpenFileDialog control exposes the OpenFile method, which allows you to quickly

open the selected file. Likewise, the SaveFileDialog control exposes the SaveFile method,

which allows you to quickly save a document to the selected file.

OpenDialog and SaveDialog controls example: Multiple File Selection

The Open dialog box allows the selection of multiple files. This feature can come in

handy when you want to process files en masse. You can let the user select many files, usually

of the same type, and then process them one at a time. Or, you might want to prompt the user to

select multiple files to be moved or copied.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 35/66

 Figure - Selecting multiple files in an open dialog box - Visual Basic

The code behind the Open Files button is shown in Listing 4.17. In this example, I used the

array's enumerator to iterate through the elements of the FileNames array. You can use any of

the methods discussed in the section "Arrays in Visual basic 2008" to iterate through the array.

Listing: Processing Multiple Selected Files

Private Sub bttnFile Click(...) Handles bttnFile.Click

OpenFileDialog1.Multiselect = True

OpenFileDialog1.ShowDialog()

Dim filesEnum As IEnumerator

ListBox1.Items.Clear()

filesEnum = OpenFileDialog1.FileNames.GetEnumerator()

While filesEnum.MoveNext

ListBox1.Items.Add(filesEnum.Current)

End While

End Sub

Print Dialog Box Control

A PrintDialog control is used to open the Windows Print Dialog and let user select the

printer, set printer and paper properties and print a file. A typical Open File Dialog looks like

Figure 1 where you select a printer from available printers, set printer properties, set print range,

number of pages and copies and so on. Clicking on OK button sends the document to the printer.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 36/66

Figure – Print Dialog Control

Creating a PrintDialog

We can create a PrintDialog at design-time as well as at run-time.

Design-time

To create a PrintDialog control at design-time, you simply drag and drop a PrintDialog

control from Toolbox to a Form in Visual Studio. After you drag and drop a PrintDialog on a

Form, the PrintDialog looks like Figure 2.

Figure – design time

Run-time

Creating a PrintDialog control at run-time is simple. First step is to create an instance of

PrintDialog class and then call the ShowDialog method. The following code snippet creates a

PrintDialog control.

Dim PrintDialog1 As New PrintDialog()

PrintDialog1.ShowDialog()

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 37/66

Printing Documents

PrintDocument object represents a document to be printed. Once a PrintDocument is

created, we can set the Document property of PrintDialog as this document. After that we can

also set other properties. The following code snippet creates a PrintDialog and sends some text

to a printer.

Imports System.Drawing.Printing

Public Class Form1

 Private Sub PrintButton_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles PrintButton.Click

 Dim printDlg As New PrintDialog()

 Dim printDoc As New PrintDocument()

 printDoc.DocumentName = "Print Document"

 printDlg.Document = printDoc

 printDlg.AllowSelection = True

 printDlg.AllowSomePages = True

 If (printDlg.ShowDialog() = DialogResult.OK) Then

 printDoc.Print()

 End If

 End Sub

End Class

The RichTextBox Control

The RichTextBox control is the core of a full-blown word processor. It provides all the

functionality of a TextBox control; it can handle multiple typefaces, sizes, and attributes, and

offers precise control over the margins of the text (see Figure 4.16). You can even place images

in your text on a RichTextBox control (although you won’t have the kind of control over the

embedded images that you have with Microsoft Word).

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 38/66

The fundamental property of the RichTextBox control is its Rtf property. Similar to the

Text property of the TextBox control, this property is the text displayed on the control. Unlike

the Text property, however, which returns (or sets) the text of the control but doesn’t contain

formatting information, the Rtf property returns the text along with any formatting information.

 Figure - A word processor based on the functionality of the RichTextBox control

The RTF Language

A basic knowledge of the RTF format, its commands, and how it works will certainly

help you understand the RichTextBox control’s inner workings. RTF is a language that uses

simple commands to specify the formatting of a document. These commands, or tags, are ASCII

strings, such as \par (the tag that marks the beginning of a new paragraph) and \b (the tag that

turns on the bold style). And this is where the value of the RTF format lies. RTF documents

don’t contain special characters and can be easily exchanged among different operating systems

and computers, as long as there is an RTF-capable application to read the document. Let’s look

at an RTF document in action.

Open the WordPad application (choose Start > Programs > Accessories > WordPad) and enter

a few lines of text (see Figure 4.17). Select a few words or sentences, and format them in

different ways with any of WordPad’s formatting commands. Then save the document in RTF

format: Choose File > Save As, select Rich Text Format, and then save the file as Document.rtf.

If you open this file with a text editor such as Notepad, you’ll see the actual RTF code that

produced the document. A section of the RTF file for the document shown in Figure 4.17 is

shown in Listing 4.20.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 39/66

Figure - The formatting applied to the text by using WordPad’s commands is stored along with

the text in RTF format.

The RichTextBox’s Properties

The RichTextBox control provides properties for manipulating the selected text on the

control. The names of these properties start with the Selection or Selected prefix, and the most

commonly used ones are shown in Table 4.5. Some of these properties are discussed in further

detail in following sections.

SelectedText

The SelectedText property represents the selected text, whether it was selected by the

user via the mouse or from within your code. To assign the selected text to a variable, use the

following statement:

selText=RichTextbox1.SelectedText

You can also modify the selected text by assigning a new value to the SelectedText property.

The following statement converts the selected text to uppercase:

RichTextbox1.SelectedText =

RichTextbox1.SelectedText.ToUpper

You can assign any string to the SelectedText property. If no text is selected at the time, the

statement will insert the string at the location of the pointer.

 Table - RichTextBox Properties for Manipulating Selected Text

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 40/66

Property What It Manipulates

SelectedText The selected text

SelectedRtf The RTF code of the selected text

SelectionStart The position of the selected text’s first character

SelectionLength The length of the selected text

SelectionFont The font of the selected text

SelectionColor The color of the selected text

SelectionBackColor The background color of the selected text

SelectionAlignment The alignment of the selected text

SelectionIndent,

SelectionRightIndent,

SelectionHangingIndent

The indentation of the selected text

RightMargin The distance of the text’s right margin from the left edge of the

control

SelectionTabs An array of integers that sets the tab stop positions in the control

SelectionBullet Whether the selected text is bulleted

BulletIndent The amount of bullet indent for the selected text

SelectionStart, SelectionLength

SelectionLength, report (or set) the position of the first selected character in the text and the

length of the selection, respectively, regardless of the formatting of the selected text. One

obvious use of these properties is to select (and highlight) some text on the control:

RichTextBox1.SelectionStart = 0

RichTextBox1.SelectionLength = 100

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 41/66

You can also use the Select method, which accepts as arguments the starting location and the

length of the text to be selected.

SelectionAlignment

Use this property to read or change the alignment of one or more paragraphs. This

property’s value is one of the members of the HorizontalAlignment enumeration: Left, Right,

and Center. Users don’t have to select an entire paragraph to align it; just placing the pointer

anywhere in the paragraph will do the trick, because you can’t align part of the paragraph.

SelectionIndent, SelectionRightIndent, SelectionHangingIndent

These properties allow you to change the margins of individual paragraphs. The

Selection Indent property sets (or returns) the amount of the text’s indentation from the left edge

of the control. The SelectionRightIndent property sets (or returns) the amount of the text’s

indentation from the right edge of the control. The SelectionHangingIndent property indicates

the indentation of each paragraph’s first line with respect to the following lines of the same

paragraph. All three properties are expressed in pixels.

The SelectionHangingIndent property includes the current setting of the SelectionIndent

property. If all the lines of a paragraph are aligned to the left, the SelectionIndent property can

have any value (this is the distance of all lines from the left edge of the control), but the

SelectionHangingIndent property must be zero. If the first line of the paragraph is shorter than

the following lines, the SelectionHangingIndent has a negative value. Figure 4.18 shows several

differently formatted paragraphs. The settings of the SelectionIndent and

SelectionHangingIndent properties are determined by the two sliders at the top of the form.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 42/66

Figure - Various combinations of the SelectionIndent and SelectionHangingIndent properties

produce all possible paragraph styles.

SelectionBullet, BulletIndent

You use these properties to create a list of bulleted items. If you set the SelectionBullet

property to True, the selected paragraphs are formatted with a bullet style, similar to the

tag in HTML. To create a list of bulleted items, select them from within your code and assign

the value True to the SelectionBullet property. To change a list of bulleted items back to

normal text, make the same property False.

The paragraphs formatted as bullets are also indented from the left by a small amount. To set

the amount of the indentation, use the BulletIndent property, which is also expressed in pixels.

SelectionTabs

Use this property to set the tab stops in the RichTextBox control. The Selection tab

should be set to an array of integer values, which are the absolute tab positions in pixels. Use

this property to set up a RichTextBox control for displaying tab-delimited data.

Methods of the RichTextBox control

The first two methods of the RichTextBox control you need to know are SaveFile and

LoadFile. The SaveFile method saves the contents of the control to a disk file, and the

LoadFile method loads the control from a disk file.

SaveFile

The syntax of the SaveFile method is as follows:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 43/66

RichTextBox1.SaveFile(path, filetype)

where path is the path of the file in which the current document will be saved. By default, the

SaveFile method saves the document in RTF format and uses the .RTF extension. You can

specify a different format by using the second optional argument, which can take on the value

of one of the members of the RichTextBoxStreamType enumeration, described in Table 4.6.

 Table - The RichTextBoxStreamType Enumeration

Format Effect

PlainText Stores the text on the control without any formatting

RichNoOLEObjs
Stores the text without any formatting and ignores any

embedded OLE objects

RichText
Stores the text in RTF format (text with embedded RTF

commands)

TextTextOLEObjs Stores the text along with the embedded OLE objects

UnicodePlainText Stores the text in Unicode format

 LoadFile

Similarly, the LoadFile method loads a text or RTF file to the control. Its syntax is

identical to the syntax of the SaveFile method:

RichTextBox1.LoadFile(path, filetype)

The filetype argument is optional and can have one of the values of the

RichTextBoxStreamType enumeration. Saving and loading files to and from disk files is as

simple as presenting a Save or Open common dialog to the user and then calling one of the

SaveFile or LoadFile methods with the filename returned by the common dialog box.

Select, SelectAll

The Select method selects a section of the text on the control, similar to setting the

SelectionStart and SelectionLength properties. The Select method accepts two arguments: the

location of the first character to be selected and the length of the selection:

RichTextBox1.Select(start, length)

The SelectAll method accepts no arguments and it selects all the text on the control.

Editing Features in RichTextBox

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 44/66

The RichTextBox control provides all the text-editing features you’d expect to find in a

text-editing application, similar to the TextBox control. Among its more-advanced features, the

RichTextBox control provides the AutoWordSelection property, which controls how the

control selects text. If it’s True, the control selects a word at a time.

In addition to formatted text, the RichTextBox control can handle object linking and

embedding (OLE) objects. You can insert images in the text by pasting them with the Paste

method. The Paste method doesn’t require any arguments; it simply inserts the contents of the

Clipboard at the current location in the document.

CanUndo, CanRedo

These two properties are Boolean values you can read to find out whether there’s an

operation that can be undone or redone. If they’re False, you must disable the corresponding

menu command from within your code. The following statements disable the Undo command if

there’s no action to be undone at the time (EditUndo is the name of the Undo command on the

Edit menu):

If RichTextBox1.CanUndo Then

EditUndo.Enabled = True

Else

EditUndo.Enabled = False

End If

UndoActionName, RedoActionName

These two properties return the name of the action that can be undone or redone. The

most common value of both properties is Typing, which indicates that the Undo command will

delete a number of characters. Another common value is Delete, whereas some operations are

named Unknown. If you change the indentation of a paragraph on the control, this action’s

name is Unknown. Even when an action’s name is Unknown, the action can be undone with the

Undo method.

The following statement sets the caption of the Undo command to a string that indicates the

action to be undone (Editor is the name of a RichTextBox control):

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 45/66

If Editor.CanUndo Then

EditUndo.Text = ”Undo ” & Editor.UndoActionName

End If

Undo, Redo

These two methods undo or redo an action. The Undo method cancels the effects of the

last action of the user on the control. The Redo method redoes the most recent undo action. The

Redo method does not repeat the last action; it applies to undo operations only.

Cutting and Pasting

To cut, copy, and paste text in the RichTextBox control, you can use the same

techniques you use with the regular TextBox control. For example, you can replace the current

selection by assigning a string to the SelectedText property. The RichTextBox, however,

provides a few useful methods for performing these operations. The Copy, Cut, and Paste

methods perform the corresponding operations. The Cut and Copy methods are straightforward

and require no arguments. The Paste method accepts a single argument, which is the format of

the data to be pasted. Because the data will come from the Clipboard, you can extract the format

of the data in the Clipboard at the time and then call the CanPaste method to find out whether

the control can handle this type of data. If so, you can then paste them in the control by using

the Paste method.

This technique requires a bit of code because the Clipboard class doesn’t return the

format of the data in the Clipboard. You must call the following method of the Clipboard class

to find out whether the data is of a specific type and then paste it on the control:

If Clipboard.GetDataObject.GetDataPresent(DataFormats.Text) Then

RichTextBox.Paste(DataFormats.Text)

End If

This is a very simple case because we know that the RichTextBox control can accept text. For a

robust application, you must call the GetDataPresent method for each type of data your

application should be able to handle. (You may not want to allow users to paste all types of data

that the control can handle.) By the way, you can simplify the code with the help of the

ContainsText/ContainsImage and GetText/GetImage methods of the

My.Application.Clipboard object.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 46/66

Searching in a RichTextBox Control

To locate a string in the text of the RichTextBox control, use the Find method. The Find

method is quite flexible, as it allows you to specify the type of the search, whether it will locate

entire words, and so on. The simplest form of this method accepts the search string as an

argument and returns the location of the first instance of the word in the text. If the search

argument isn’t found, the method returns the value −1.

RichTextBox1.Find(string)

Another equally simple syntax of the Find method allows you to specify how the control will

search for the string:

RichTextBox1.Find(string, searchMode)

The searchMode argument is a member of the RichTextBoxFinds enumeration, which is shown

in Table 4.7.

 Table - The RichTextBoxFinds Enumeration

Value Effect

MatchCase Performs a case-sensitive search.

NoHighlight The text found will not be highlighted.

None
Locates instances of the specified string even if they’re not

whole words.

Reverse The search starts at the end of the document.

WholeWord
Locates only instances of the specified string that are whole

words.

 Two more forms of the Find method allow you specify the range of the text in which the search

will take place:

RichTextBox1.Find(string, start, searchMode)

RichTextBox1.Find(string, start, end, searchMode)

The arguments start and end are the starting and ending locations of the search (use them to

search for a string within a specified range only). If you omit the end argument, the search will

start at the location specified by the start argument and will extend to the end of the text.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 47/66

Tree View and List View Controls

The TreeView control implements a data structure known as a tree. A tree is the most

appropriate structure for storing hierarchical information. The organizational chart of a

company, for example, is a tree structure. Every person reports to another person above him or

her, all the way to the president or CEO. Figure 4.21 depicts a possible organization of

continents, countries, and cities as a tree. Every city belongs to a country, and every country to a

continent. In the same way, every computer file belongs to a folder that may belong to an even

bigger folder, and so on up to the drive level. You can’t draw large tree structures on paper, but

it’s possible to create a similar structure in the computer’s memory without size limitations.

 Figure - The World View as Tree

Note: The items displayed on a TreeView control are just strings. Moreover, the TreeView

control doesn’t require that the items be unique. You can have identically named nodes in the

same branch — as unlikely as this might be for a real application. There’s no property that

makes a node unique in the tree structure or even in its own branch.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 48/66

 Figure - The tree implemented with a TreeView control

The tree structure is ideal for data with parent-child relations (relations that can be described as

belongs to or owns). The continents-countries-cities data is a typical example. The folder

structure on a hard disk is another typical example. Any given folder is the child of another

folder or the root folder.

The ListView control implements a simpler structure, known as a list. A list’s items

aren’t structured in a hierarchy; they are all on the same level and can be traversed serially, one

after the other. You can also think of the list as a multidimensional array, but the list offersmore

features. A list item can have subitems and can be sorted according to any column. For example,

you can set up a list of customer names (the list’s items) and assign a number of subitems to

each customer: a contact, an address, a phone number, and so on. Or you can set up a list of files

with their attributes as subitems. Figure 4.23 shows a Windows folder mapped on a ListView

control. Each file is an item, and its attributes are the subitems. As you already know, you can

sort this list by filename, size, file type, and so on. All you have to do is click the header of the

corresponding column.

 Figure - A folder’s files displayed in a ListView control (Details view)

The ListView control is a glorified ListBox control. If all you need is a control to store sorted

objects, use a ListBox control. If you want more features, such as storing multiple items per row,

sorting them in different ways, or locating them based on any subitem’s value, you must

consider the ListView control. You can also look at the ListView control as a view-only grid.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 49/66

The TreeView and ListView controls are commonly used along with the ImageList control. The

ImageList control is a simple control for storing images so they can be retrieved quickly and

used at runtime. You populate the ImageList control with the images you want to use on your

interface, usually at design time, and then you recall them by an index value at runtime. Before

we get into the details of the TreeView and ListView controls, a quick overview of the

ImageList control is in order.

The ImageList Control

The ImageList is a simple control that stores images used by other controls at runtime.

For example, a TreeView control can use icons to identify its nodes. The simplest and quickest

method of preparing these images is to create an ImageList control and add to it all the icons

you need for decorating the TreeView control’s nodes. The ImageList control maintains a series

of bitmaps in memory that the TreeView control can access quickly at runtime. Keep in mind

that the ImageList control can’t be used on its own and remains invisible at runtime.

 Figure - The Images Collection Editor of ImageList Control

The other method of adding images to an ImageList control is to call the Add method of the

Images collection, which contains all the images stored in the control. To add an image at

runtime, you must first create an Image object with the image (or icon) you want to add to the

control and then call the Add method as follows:

ImageList1.Images.Add(image)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 50/66

where image is an Image object with the desired image. You will usually call this method as

follows:

ImageList1.Images.Add(Image.FromFile(path))

where - path is the full path of the file with the image.

The Images collection of the ImageList control is a collection of Image objects, not the

files in which the pictures are stored. This means that the image files need not reside on the

computer on which the application will be executed, as long as they have been added to the

collection at design time.

TreeView Control

Let’s start our discussion of TreeView control with a few simple properties that you can

set at design time. To experiment with the properties discussed in this section, open the

TreeView Example project. The project’s main form is shown in Figure. After setting some

properties (they are discussed next), run the project and click the Populate button to populate the

control. After that, you can click the other buttons to see the effect of the various property

settings on the control.

Figure - The TreeView Example project demonstrates the basic properties and methods of the

TreeView control.

Here are the basic properties that determine the appearance of the control:

 ShowCheckBoxes - If this property is True, a check box appears in front of each node.

If the control displays check boxes, you can select multiple nodes; otherwise, you’re

limited to a single selection.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 51/66

 FullRowSelect - This True/False value determines whether a node will be selected even

if the user clicks outside the node’s caption.

 HideSelection - This property determines whether the selected node will remain

highlighted when the focus is moved to another control. By default, the selected node

doesn’t remain highlighted when the control loses the focus.

 HotTracking - This property is another True/False value that determines whether nodes

are highlighted as the pointer hovers over them.When it’s True, the TreeView control

behaves like a web document with the nodes acting as hyperlinks — they turn blue

while the pointer hovers over them. Use the NodeMouseHover event to detect when the

pointer hovers over a node.

 Indent - This property specifies the indentation level in pixels. The same indentation

applies to all levels of the tree—each level is indented by the same number of pixels

with respect to its parent level.

 PathSeparator - A node’s full name is made up of the names of its parent nodes,

separated by a backslash. To use a different separator, set this property to the desired

symbol.

 ShowLines - The ShowLines property is a True/False value that determines whether the

control’s nodes will be connected to its parent items with lines. These lines help users

visualize the hierarchy of nodes, and it’s customary to display them.

 ShowPlusMinus - The ShowPlusMinus property is a True/False value that determines

whether the plus/minus button is shown next to the nodes that have children. The plus

button is displayed when the node is collapsed, and it causes the node to expand when

clicked. Likewise, the minus sign is displayed when the node is expanded, and it causes

the node to collapse when clicked. Users can also expand the current node by pressing

the left-arrow button and collapse it with the right-arrow button.

 ShowRootLines - This is another True/False property that determines whether there will

be lines between each node and root of the tree view. Experiment with the ShowLines

and ShowRootLines properties to find out how they affect the appearance of the

control.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 52/66

 Sorted - This property determines whether the items in the control will be automatically

sorted. The control sorts each level of nodes separately. In our Globe example, it will

sort the continents, then the countries within each continent, and then the cities within

each country.

Adding New Items at Design Time

Let’s look now at the process of populating the TreeView control. Adding an initial

collection of nodes to a TreeView control at design time is trivial. Locate the Nodes property in

the Properties window, and you’ll see that its value is Collection. To add items, click the ellipsis

button, and the TreeNode Editor dialog box will appear, as shown in Figure 4.26. To add a root

item, just click the Add Root button. The new item will be named Node0 by default. You can

change its caption by selecting the item in the list and setting its Text property accordingly. You

can also change the node’s Name property, as well as the node’s appearance by using the

NodeFont, FontColor, and ForeColor properties.

To specify an image for the node, set the control’s ImageList property to the name of an

ImageList control that contains the appropriate images, and then set either the node’s ImageKey

property to the name of the image, or the node’s ImageIndex property to the index of the desired

image in the ImageList control. If you want to display a different image when the control is

selected, set the SelectedImageKey or the SelectedImageIndex property accordingly.

 Figure - The TreeNode Editor dialog box

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 53/66

Click the Add Root button first. A new node is added automatically to the list of nodes, and it is

named Node0. Select it with the mouse, and its properties appear in the right pane of the

TreeNode Editor window. Here you can change the node’s Text property to Countries. You can

specify the appearance of each node by setting its font and fore/background colors.

Adding New Items at Runtime

Adding items to the control at runtime is a bit more involved. All the nodes belong to the

control's Nodes collection, which is made up of TreeNode objects. To access the Nodes

collection, use the following expression, where TreeView1 is the control's name and Nodes is a

collection of TreeNode objects:

TreeView1.Nodes

This expression returns a collection of TreeNode objects and exposes the proper

members for accessing and manipulating the individual nodes. The control's Nodes property is

the collection of all root nodes.

To access the first node, use the expression TreeView.Nodes(0) (this is the Globe node in our

example). The Text property returns the node's value, which is a string.

TreeView1.Nodes(0).Text is the caption of the root node on the control. The caption of the

second node on the same level is TreeView1.Nodes(1).Text, and so on.

The following statements print the strings shown highlighted below them (these strings

are not part of the statements; they're the output that the statements produce):

Debug.WriteLine(TreeView1.Nodes(0).Text)

Countries

Debug.WriteLine(TreeView1.Nodes(0).Nodes(0).Text)

UnitedStates

Debug.WriteLine(TreeView1.Nodes(0).Nodes(0).Nodes(1).Text)

New York

Let's take a closer look at these expressions. TreeView1.Nodes(0) is the first root node,

the Countries node. Under this node, there is a collection of nodes, the

TreeView1.Nodes(0).Nodes collection. Each node in this collection is a country name. The first

node in this collection is United States, and you can access it with the expression

TreeView1.Nodes(0).Nodes(0). If you want to change the appearance of the node United States,

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 54/66

type a period after the preceding expression to access its properties (the NodeFont property to

set its font, the ForeColor property to set it color, the ImageIndex property, and so on). Likewise,

this node has its own Nodes collection, which contains the states under the specific country.

Adding New Nodes

The Add method adds a new node to the Nodes collection. The Addmethod accepts as

an argument a string or a TreeNode object. The simplest form of the Add method is

newNode = Nodes.Add(nodeCaption)

where nodeCaption is a string that will be displayed on the control. Another form of the Add

method allows you to add a TreeNode object directly (nodeObj is a properly initialized

TreeNode variable):

newNode = Nodes.Add(nodeObj)

To use this form of the method, you must first declare and initialize a TreeNode object:

Dim nodeObj As New TreeNode

nodeObj.Text = "Tree Node"

nodeObj.ForeColor = Color.BlueViolet

TreeView1.Nodes.Add(nodeObj)

The last overloaded form of the Add method allows you to specify the index in the

current Nodes collection, where the node will be added:

newNode = Nodes.Add(index, nodeObj)

The nodeObj TreeNode object must be initialized as usual. To add a child node to the

root node, use a statement such as the following:

TreeView1.Nodes(0).Nodes.Add("United States")

To add a state under United States, use a statement such as the following:

TreeView1.Nodes(0).Nodes(1).Nodes.Add("New York")

The expressions can get quite lengthy. The proper way to add child items to a node is to

create a TreeNode variable that represents the parent node, under which the child nodes will be

added. Let's say that the CountryNode variable in the following example represents the node

United States:

Dim CountryNode As TreeNode

CountryNode = TreeView1.Nodes(0).Nodes(2)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 55/66

Then you can add child nodes to the ContinentNode node:

CountryNode.Nodes.Add("New York")

CountryNode.Nodes.Add("California")

To add yet another level of nodes, the city nodes, create a new variable that represents a

specific state. The Add method actually returns a TreeNode object that represents the newly

added node, so you can add a state and a few cities by using statements such as the following:

Dim StateNode As TreeNode

StateNode = CountryNode.Nodes.Add("New York")

StateNode.Nodes.Add("Alberny")

StateNode.Nodes.Add("Amsterdam")

StateNode.Nodes.Add("Auburn")

Then you can continue adding states under another country as follows:

StateNode = CountryNode.Nodes.Add("United Kingdom")

StateNode.Nodes.Add("London")

StateNode.Nodes.Add("Manchester")

The Nodes Collection Members

The Nodes collection exposes the usual members of a collection. The Count property

returns the number of nodes in the Nodes collection. Again, this is not the total number of nodes

in the control, just the number of nodes in the current Nodes collection. The expression

TreeView1.Nodes.Count

returns the number of all nodes in the first level of the control. In the case of the Countries

example, it returns the value 1. The expression

TreeView1.Nodes(0).Nodes.Count

returns the number of countries in the Countries example. Again, you can simplify this

expression by using an intermediate TreeNode object:

Dim Countries As TreeNode

Countries = TreeView1.Nodes(0)

Debug.WriteLine("There are "& Countries.Nodes.Count.ToString & _

" countries on the control")

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 56/66

The Clear method removes all the child nodes from the current node. If you apply this

method to the control's root node, it will clear the control. To remove all the cities under the

California node, use a statement such as the following:

TreeView1.Nodes(0).Nodes(2).Nodes(1).Nodes.Clear

This example assumes that the third node under Countries corresponds to United States,

and the second node under United Sates corresponds to California.

The Item property retrieves a node specified by an index value. The expression

Nodes.Item(1) is equivalent to the expression Nodes(1). Finally, the Remove method removes

a node from the Nodes collection. Its syntax is

Nodes.Remove(index)

Where - index is the order of the node in the current Nodes collection. To remove the selected

node, call the Remove method on the SelectedNode property without arguments:

TreeView1.SelectedNode.Remove

Or you can apply the Remove method to a TreeNode object that represents the node you want to

remove:

Dim Node As TreeNode

Node = TreeView1.Nodes(0).Nodes(5)

Node.Remove

Basic Nodes Properties

There are a few properties you will find extremely handy as you program the TreeView

control. The IsVisible property is a True/False value indicating whether the node to which it's

applied is visible. To bring an invisible node into view, call its EnsureVisible method:

If Not TreeView1.SelectedNode.IsVisible Then

TreeView1.EnsureVisible

End If

How can the selected node be invisible? It can, if you select it from within your code in

a search operation. The IsSelected property returns True if the specified node is selected, while

the IsExpanded property returns True if the specified node is expanded. You can toggle a

node's state by calling its Toggle method. You can also expand or collapse a node by calling its

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 57/66

Expand or Collapse method, respectively. Finally, you can collapse or expand all nodes by

calling the CollapseAll or ExpandAll method of the TreeView control.

Scanning the Tree View control

The TreeViewScan Example, whose main form is shown in Figure 4.28, demonstrates

the process of scanning the nodes of a TreeView control. The form contains a TreeView control

on the left, which is populated with the same data as the Globe project, and a ListBox control on

the right, in which the tree’s nodes are listed. Child nodes in the ListBox control are indented

according to the level to which they belong.

 Figure - TreeView Scan Example

Recursive Scanning of the Nodes Collection

To scan the nodes of the TreeView1 control, start at the top node of the control by using

the following statement:

ScanNode(GlobeTree.Nodes(0))

This is the code behind the Scan Tree button, and it doesn’t get any simpler. It calls the

ScanNode() subroutine to scan the child nodes of a specific node, which is passed to the

subroutine as an argument. GlobeTree.Nodes(0) is the root node. By passing the root node to

the ScanNode() subroutine, we’re in effect asking it to scan the entire tree.

This example assumes that the TreeView control contains a single root node and that all other

nodes are under the root node. If your control contains multiple root nodes, then you must set up

a small loop and call the ScanNode() subroutine once for each root node:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 58/66

For Each node In GlobeTree.Nodes

ScanNode(node)

Next

Let’s look now at the ScanNode() subroutine shown in Listing

Listing: Scanning a Tree Recursively

Sub ScanNode(ByVal node As TreeNode)

Dim thisNode As TreeNode

Static indentationLevel As Integer

Application.DoEvents()

ListBox1.Items.Add(Space(indentationLevel) & node.Text)

If node.Nodes.Count > 0 Then

indentationLevel += 5

For Each thisNode In node.Nodes

ScanNode(thisNode)

Next

indentationLevel -= 5

End If

End Sub

The ListView Control

The ListView control is similar to the ListBox control except that it can display its items

in many forms, along with any number of subitems for each item. To use the ListView control

in your project, place an instance of the control on a form and then set its basic properties,

which are described in the following list.

View and Arrange - Two properties determine how the various items will be displayed on the

control: the View property, which determines the general appearance of the items, and the

Arrange property, which determines the alignment of the items on the control's surface. The

View property can have one of the values shown in Table

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 59/66

Table: Settings of the View Property of VB.NET ListView Control

Setting Description

LargeIcon

(Default)
Each item is represented by an icon and a caption below the icon.

SmallIcon
Each item is represented by a small icon and a caption that appears

to the right of the icon.

List Each item is represented by a caption.

Details
Each item is displayed in a column with its subitems in adjacent

columns.

Tile

Each item is displayed with an icon and its subitems to the right of

the icon. This view is available only on Windows XP and Windows

Server 2003.

 The Arrange property can have one of the settings shown in Table 4.9.

Table: Settings of the Arrange Property of VB.NET ListView Control

Setting Description

Default
When an item is moved on the control, the item remains where it is

dropped.

Left Items are aligned to the left side of the control.

SnapToGrid
Items are aligned to an invisible grid on the control. When the user

moves an item, the item moves to the closest grid point on the control.

Top Items are aligned to the top of the control.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 60/66

HeaderStyle - This property determines the style of the headers in Details view. It has no

meaning when the View property is set to anything else, because only the Details view has

columns. The possible settings of the HeaderStyle property are shown in Table

Table: Settings of the HeaderStyle Property of VB.NET ListView Control

Setting Description

Clickable Visible column header that responds to clicking

Nonclickable (Default) Visible column header that does not respond to clicking

None No visible column header

AllowColumnReorder - This property is a True/False value that determines whether the user

can reorder the columns at runtime, and it's meaningful only in Details view. If this property is

set to True, the user can move a column to a new location by dragging its header with the mouse

and dropping it in the place of another column.

Activation - This property, which specifies how items are activated with the mouse, can have

one of the values shown in Table

 Table: Settings of the Activation Property of VB.NET ListView Control

Setting Description

OneClick
Items are activated with a single click. When the cursor is over an

item, it changes shape, and the color of the item's text changes.

Standard (Default)
Items are activated with a double-click. No change in the selected

item's text color takes place.

TwoClick
Items are activated with a double-click, and their text changes

color as well.

 FullRowSelect - This property is a True/False value, indicating whether the user can

select an entire row or just the item's text, and it's meaningful only in Details view.

When this property is False, only the first item in the selected row is highlighted.

 GridLines - Another True/False property. If True, grid lines between items and

subitems are drawn. This property is meaningful only in Details view.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 61/66

 Group - The items of the ListView control can be grouped into categories. To use this

feature, you must first define the groups by using the control's Group property, which is

a collection of strings. You can add as many members to this collection as you want.

 LabelEdit - The LabelEdit property lets you specify whether the user will be allowed to

edit the text of the items. The default value of this property is False. Notice that the

LabelEdit property applies to the item's Text property only; you can't edit the subitems

(unfortunately, you can't use the ListView control as an editable grid).

 MultiSelect - A True/False value, indicating whether the user can select multiple items

from the control. To select multiple items, click them with the mouse while holding

down the Shift or Ctrl key. If the control's ShowCheckboxes property is set to True,

users can select multiple items by marking the check box in front of the corresponding

item(s).

 Scrollable - A True/False value that determines whether the scroll bars are visible. Even

if the scroll bars are invisible, users can still bring any item into view. All they have to

do is select an item and then press the arrow keys as many times as needed to scroll the

desired item into view.

 Sorting - This property determines how the items will be sorted, and its setting can be

None, Ascending, or Descending. To sort the items of the control, call the Sort method,

which sorts the items according to their caption. It's also possible to sort the items

according to any of their subitems, as explained in the section "Sorting the ListView

Control" later in this chapter.

The Columns Collection of ListView Control in VB.NET 2008

To display items in Details view, you must first set up the appropriate columns. The first

column corresponds to the item's caption, and the following columns correspond to its subitems.

If you don't set up at least one column, no items will be displayed in Details view. Conversely,

the Columns collection is meaningful only when the ListView control is used in Details view.

The items of the Columns collection are of the ColumnHeader type. The simplest way to set up

the appropriate columns is to do so at design time by using a visual tool. Locate and select the

Columns property in the Properties window, and click the ellipsis button next to the property.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 62/66

The ColumnHeader Collection Editor dialog box will appear, as shown in Figure 4.29, in which

you can add and edit the appropriate columns.

 Figure - ListView Control's Column Header Collection Editor Dialog Box

Adding columns to a ListView control and setting their properties through the dialog box shown

in Figure is quite simple. Don't forget to size the columns according to the data you anticipate

storing in them and to set their headers.

It is also possible to manipulate the Columns collection fromwithin your code as follows. Create

a ColumnHeader object for each column in your code, set its properties, and then add it to the

control's Columns collection:

Dim ListViewCol As New ColumnHeader

ListViewCol.Text = "New Column"

ListViewCol.TextAlign = HorizontalAlignment.Center

ListViewCol.Width = 125

ListView1.Columns.Add(ListViewCol)

Adding and Removing Columns at Runtime

To add a new column to the control, use the Add method of the Columns collection. The

syntax of the Add method is as follows:

ListView1.Columns.Add(header, width, textAlign)

The header argument is the column's header (the string that appears on top of the items). The

width argument is the column's width in pixels, and the last argument determines how the text

will be aligned. The textAlign argument can be Center, Left, or Right.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 63/66

The Add method returns a ColumnHeader object, which you can use later in your code to

manipulate the corresponding column. The ColumnHeader object exposes a Name property,

which can't be set with the Add method:

Header1 = TreeView1.Add("Column 1", 60, ColAlignment.Left)

Header1.Name = "Column1"

After the execution of these statements, the first column can be accessed not only by index, but

also by name.

To remove a column, call the Remove method:

ListView1.Columns(3).Remove

The indices of the following columns are automatically decreased by one. The Clear method

removes all columns from the Columns collection. Like all collections, the Columns collection

exposes the Count property, which returns the number of columns in the control.

The Items and SubItems collection

As with the TreeView control, the ListView control can be populated either at design

time or at runtime. To add items at design time, click the ellipsis button next to the ListItems

property in the Properties window. When the ListViewItem Collection Editor dialog box pops

up, you can enter the items, including their subitems, as shown in Figure

 Figure - ListViewItem Collection Editor Dialog Box

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 64/66

Unlike the TreeView control, the ListView control allows you to specify a different

appearance for each item and each subitem. To set the appearance of the items, use the Font,

BackColor, and ForeColor properties of the ListViewItem object.

 These members are as follows:

BackColor/ForeColor properties - These properties set or return the background/foreground

colors of the current item or subitem.

Checked property - This property controls the status of an item. If it's True, the item has been

selected. You can also select an item from within your code by setting its Checked property to

True. The check boxes in front of each item won't be visible unless you set the control's

ShowCheckBoxes property to True.

Font property - This property sets the font of the current item. Subitems can be displayed in a

different font if you specify one by using the Font property of the corresponding subitem (see

the section titled ‘‘The SubItems Collection,'' later in this chapter). By default, subitems inherit

the style of the basic item. To use a different style for the subitems, set the item's

UseItemStyleForSubItems property to False.

Text property - This property indicates the caption of the current item or subitem.

SubItems collection - This property holds the subitems of a ListViewItem. To retrieve a

specific subitem, use a statement such as the following:

sitem = ListView1.Items(idx1).SubItems(idx2)

where idx1 is the index of the item, and idx2 is the index of the desired subitem.*

To add a new subitem to the SubItems collection, use the Add method, passing the text of the

subitem as an argument:

LItem.SubItems.Add("subitem's caption")

The argument of the Add method can also be a ListViewItem object. Create a ListViewItem,

populate it, and then add it to the Items collection as shown here:

Dim LI As New ListViewItem

LI.Text = "A New Item"

Li.SubItems.Add("Its first subitem")

Li.SubItems.Add("Its second subitem")

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 65/66

‘ statements to add more subitems

ListView1.Items.Add(LI)

LItem.SubItems.Insert(idx, subitem)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: I M.COM CA COURSE NAME: VISUAL BASIC.NET

COURSE CODE: 17CCP204 UNIT: III(Basic Windows Controls) BATCH-2017-2019

Prepared by Dr.S.Hemalatha, Department of Commerce, KAHE 66/66

POSSIBLE QUESTIONS

PART A (1 Mark)

(Online Examinations)

PART B (6 Marks)

1. Discuss in detail about TrackBar, ListBox and TextBox with example

2. Explain about Rich TextBox controls.

3. Describe in detail about ListBox, CheckedListBox and ComboBox Controls.

4. Explain about ListView controls

5. Elucidate about Color, Font, Print Dialog Box controls in VB.NET.

6. Explain SrollBar and CheckedListBox controls with example.

7. Give Explanation about TreeView controls with neat diagram.

8. Elaborate RichTextBox Control properties, methods with an example.

9. Elucidate in detail about ListView Controls

10. Differentiate between list box and combo box.

SUBJECT: VB.NET

SEMESTER : II UNIT : III

SUBJECT CODE: 18CCP304 CLASS : II M.COM CA

S.

NO QUESTIONS OPTION 1 OPTION 2 OPTION 3 OPTION 4 ANSWER

1

__________ is the low-level API through which

all the graphics in a WPF are rendered.

 Direct3D

User32 GDI

 DirectX Direct3D

2

 XAML documents are arranged as ________

Structure

List Tree Stack Queue Tree

3

The ____________ lays out controls in the

available space, one line or column at a time.

WrapPanel StackPanel DockPanel DoublePanel WrapPanel

4

By default, the WrapPanel.Orientation property

is set to ____________

Horizontal Vertical Semi Vertical Rectangle Horizontal

5

Which property determines whether a control is

displayed to the user? Hide Show Visible Enabled Visible

6

The value for Standard Monitor Resolution is

___________ 1024 by 768 pixels

1024 by 868

pixels

1024 by 800

pixels

1024 by 968

pixels

1024 by 768

pixels

7

__________defines a set of portable instructions

that are independent of any specific CPU. CSIL MSIL Native code Managed Code MSIL

8

Which of the Following is not a .NET

Supported Langauge VB C# J# FORTRAN FORTRAN

9

The current status of a Web Forms page and its

controls is called the

viewstate webstatus round trips request/respons

e cycle.

viewstate

10 .NET programs are translated using ________ compiler interpreter both none compiler

11

______ is the function of the CLR memory

management

security garbage

collection

All the above All the above

12 Which is not a common control event? Click SingleClick DoubleClick MouseMove SingleClick

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under section 3 of UGC Act 1956)

Coimbatore – 641021

(For the candidates admitted from 2018 onwards)

13

 XAML documents are arranged as a heavily

________ of elements.

Nested Tree Binary Tree TPR Tree BBX Tree Nested Tree

14

Data types standardized across the CLR are

called ________

Standard Data

Types

Common

Type System

Common

Language

Runtime

System Data

types

Common Type

System

15 The CTS equivalent of Integer data type is System.Int32 System.Int16 System.Int64 System.Int24 System.Int32

16 The Size of 'System.Double' data type is 8 bits 2 bytes 4 bytes 8 bytes 8 bytes

17

______ panel stretches controls against one of

its outside edges

WrapPanel StackPanel DockPanel DoublePanel DockPanel

18

The _________ is the most powerful layout

container in WPF.

Layout Grid Flexgrid Datagrid Grid

19

_______an ideal tool for carving your window

into smaller regions that user can manage with

other panels

WrapPanel StackPanel DockPanel Grid Grid

20

_______ allows user to resize rows or columns

in WPF Applications

Grid Spliter Grid Extractor Grid Merger Grid Arrabger Grid Spliter

21 Which of the following is not a Text Control TextBox RichTextBox PasswordBox ListBox ListBox

22

ScrollBar, ProgressBar, and Slider are derive

from the _________ class

RangeBase ControlBase ListBase QueryBase RangeBase

23

The ________control provides a convenient

way to enable scrolling of content in Windows

Presentation Foundation (WPF) applications. ScrollViewer

ImageViewer ListViewer GridViewer

ScrollViewer

24

_______Control provide an out-of-the-box

spell checking functionality. TextBox ListBox ComboBox LabelBox TextBox

25

The _______ control is a special type of

TextBox designed to enter passwords TextBox ListBox PictureBox LabelBox PictureBox

26 _____is the Base Class for All the Controls Control Class Base Class

ControlBase

Class

BaseControl

Class Control Class

27

 The default event of the TextBox is the

__________ Click TextChanged KeyPress GotFocus TextChanged

28 The default event of Label is _____________ Click TextChanged KeyPress GotFocus Click

29 The default event of ListBox is _________

SelectedIndexCha

nged GotFocus KeyPress GotFocus

SelectedIndexC

hanged

30

_____________ is a combination of a TextBox

and a ListBox ComboBox ListBox RichTextBox LabelBox ComboBox

31

_________method is used to clear the content of

ListBox Remove Clear Close RemoveAt Clear

32

_______________ are those controls which

contain other controls GroupBox Panel Layout Picture Panel

33

________ is used to delete specific item from

the ListBox RemoveAt DeleteAt Remove ClearAt RemoveAt

34 Which of The Control displays HyperLink Label LinkLabel

HyperLink

Label HyperText LimkLabel

35

To halt execution at a specific statement in

code, use ______.

Stop statement Break point Wait () method End statement Break point

36

VB.NET is a ___________ programming

language. Structured

object

oriented

procedural

oriented machine object oriented

37

OOPS follows______________ approach in

program design. bottom_up top_down middle top bottom_up

38 Objects take up ______________in the memory Space Address Memory Bytes Space

39

 ________ is a collection of objects of similar

type. Objects methods classes messages classes

40

Keyword _________ indicates that method do

not return any value. Static Void Final Null Void

41 _________ is used to define the objects Class Object Function Sub Class

42

The class members that have been declared as

________ can be accessed only from within the

class Public Static Private Protected Private

43

Whole numbers are declared as __________

data type. float integer string byte integer

44 _____ keyword is used to declare a variable. Dim Var Integer Const Dim

45

Which one of the following is not a part of .Net

framework? ADO VB c# C++ C++

46

Which of these access specifier can be used for

a method so that other methods from different

class can use it? Public Protected Private default Public

47

Which of the following statement declares and

defines one or more constants? Dim Const Enum Class Const

48

Which of the following keyword of VB.NET is

used to throw an exception when a problem

shows up? Try Catch Finally Throw Throw

49

The default property for a text box control is

________ Text Enable Multiline Password char Text

50 GUI stands for ____________

Graphical User

Interface

Graphical

Used

Intraface

Graphical

UseD Interface

Graphical User

Intraface

Graphical User

Interface

51 CLR stands for ________

Common

Language Runtime

Common

Language

Refresh

Common

Language

Resource

Common

Language

Research

Common

Language

Runtime

52

 ________ statement execute for the ‘n’ number

of time till the condition turns false. Looping Selection Conditional Branching Looping

53

 _________ statement selects a particular

statement for execution within a ‘n’ number of

choice. With Select choose for Select

54

Choose statement return ________ of the given

option. value type index memory index

55 Which one of the not a access modifier? Public Private Protected Principle Principle

56

Which of the following is not an assignment

operator? = = += -= *=

*=

57 Variable can hold ________ value at a time. Double Triple Single Multiple Single

58

Which of the following expression results in a

value 1?

 2 % 1 15 % 4 9%9 37 % 6 37 % 6

59

The "less than or equal to" comparison operator

in VB.NET is __________.

 < <= > << <=

60

Suppose x=10 and y=10 what is x after

evaluating the expression (y > 10) & (x++ >

10).

9 10 11 12 11

Objects and collections 2015 Batch

Prepared ByDr. D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 1 of 25

Coimbatore -21

Unit – IV

Syllabus

Objects and collections: Understanding objects, Properties, Methods. Understanding

collections. Files : Introduction – Classification of files – Processing files – handling files

and folder using class – Directory class – file class.

Object Oriented Programming

Though VB2008 is very much similar to VB6 in terms of Interface and program

structure, their underlying concepts are quite different. The main different is that VB2008

is a full Object Oriented Programming Language while VB6 may have OOP capabilities,

it is not fully object oriented. In order to qualify as a fully object oriented programming

language, it must have three core technologies namely encapsulation, inheritance and

polymorphism. These three terms are explained below:

Encapsulation refers to the creation of self-contained modules that bind processing

functions to the data. These user-defined data types are called classes. Each class contains

data as well as a set of methods which manipulate the data. The data components of a

class are called instance variables and one instance of a class is an object. For example, in

a library system, a class could be member, and John and Sharon could be two instances

(two objects) of the library class.

Inheritance

Classes are created according to hierarchies, and inheritance allows the structure and

methods in one class to be passed down the hierarchy. That means less programming is

required when adding functions to complex systems. If a step is added at the bottom of a

hierarchy, then only the processing and data associated with that unique step needs to be

added. Everything else about that step is inherited. The ability to reuse existing objects is

considered a major advantage of object technology.

Polymorphism
Object-oriented programming allows procedures about objects to be created whose exact

type is not known until runtime. For example, a screen cursor may change its shape from

an arrow to a line depending on the program mode. The routine to move the cursor on

screen in response to mouse movement would be written for "cursor," and polymorphism

allows that cursor to take on whatever shape is required at runtime. It also allows new

shapes to be easily integrated.

VB6 is not a full OOP in the sense that it does not have inheritance capabilities although

it can make use of some benefits of inheritance. However, VB2008 is a fully functional

Object Oriented Programming Language, just like other OOP such as C++ and Java. It is

different from the earlier versions of VB because it focuses more on the data itself while

the previous versions focus more on the actions. Previous versions of VB are known as

procedural or functional programming language. Some other procedural programming

languages are C, Pascal and Fortran.

Objects and collections 2015 Batch

Prepared ByDr. D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 2 of 25

Coimbatore -21

VB2008 allows users to write programs that break down into modules. These modules

will represent the real-world objects and are knows as classes or types. An object can be

created out of a class and it is known as an instance of the class. A class can also

comprise subclass. For example, apple tree is a subclass of the plant class and the apple

in your backyard is an instance of the apple tree class. Another example is student class

is a subclass of the human class while your son John is an instance of the student class.

A class consists of data members as well as methods. In VB2008, the program structure

to define a Human class can be written as follows:

Public Class Human

'Data Members

Private Name As String

Private Birthdate As String

Private Gender As String

Private Age As Integer

'Methods

Overridable Sub ShowInfo()

MessageBox.Show(Name)

MessageBox.Show(Birthdate)

MessageBox.Show(Gender)

MessageBox.Show(Age)

End Sub

End Class¡¡

After you have created the human class, you can create a subclass that inherits the

attributes or data from the human class. For example, you can create a students class that

is a subclass of the human class. Under the student class, you don't have to define any

data fields that are already defined under the human class, you only have to define the

data fields that are different from an instance of the human class. For example, you may

want to include StudentID and Address in the student class. The program code for the

StudentClass is as follows:

Public Class Students

Inherits Human

Public StudentID as String

Public Address As String

 Overrides Sub ShowInfo()

MessageBox.Show(Name)

Objects and collections 2015 Batch

Prepared ByDr. D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 3 of 25

Coimbatore -21

MessageBox.Show(StudentID)

MessageBox.Show(Birthdate)

MessageBox.Show(Gender)

MessageBox.Show(Age)

MessageBox.Show(Address)

End Sub

We will discuss more on OOP in later lessons. In the next lesson, we will start learning

simple programming techniques in VB2008

VB.Net – COLLECTIONS

Collection classes are specialized classes for data storage and retrieval. These classes

provide support for stacks, queues, lists, and hash tables. Most collection classes

implement the same interfaces.

Collection classes serve various purposes, such as allocating memory dynamically to

elements and accessing a list of items on the basis of an index, etc. These classes create

collections of objects of the Object class, which is the base class for all data types in

VB.Net.

Various Collection Classes and Their Usage

The following are the various commonly used classes of

the System.Collection namespace. Click the following links to check their details.

Class Description and Useage

ArrayList

It represents ordered collection of an object that can

be indexed individually.

It is basically an alternative to an array. However, unlike array, you

can add and remove items from a list at a specified position using

an index and the array resizes itself automatically. It also allows

dynamic memory allocation, add, search and sort items in the list.

Hashtable

It uses a key to access the elements in the collection.

A hash table is used when you need to access elements by using key,

and you can identify a useful key value. Each item in the hash table

has a key/value pair. The key is used to access the items in the

collection.

SortedList

It uses a key as well as an index to access the items in a list.

A sorted list is a combination of an array and a hash table. It contains

a list of items that can be accessed using a key or an index. If you

access items using an index, it is an ArrayList, and if you access

http://www.tutorialspoint.com/vb.net/vb.net_arraylist.htm
http://www.tutorialspoint.com/vb.net/vb.net_hashtable.htm
http://www.tutorialspoint.com/vb.net/vb.net_sortedlist.htm

Objects and collections 2015 Batch

Prepared ByDr. D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 4 of 25

Coimbatore -21

items using a key, it is a Hashtable. The collection of items is always

sorted by the key value.

Stack

It represents a last-in, first out collection of object.

It is used when you need a last-in, first-out access of items. When you

add an item in the list, it is called pushing the item, and when you

remove it, it is calledpopping the item.

Queue

It represents a first-in, first out collection of object.

It is used when you need a first-in, first-out access of items. When

you add an item in the list, it is called enqueue, and when you

remove an item, it is calleddeque.

BitArray

It represents an array of the binary representation using the values 1

and 0.

It is used when you need to store the bits but do not know the number

of bits in advance. You can access items from the BitArray collection

by using an integer index, which starts from zero.

ArrayList Class

It represents an ordered collection of an object that can be indexed individually. It is

basically an alternative to an array. However, unlike array, you can add and remove items

from a list at a specified position using an index and the array resizes itself automatically.

It also allows dynamic memory allocation, adding, searching and sorting items in the list.

Properties and Methods of the ArrayList Class

The following table lists some of the commonly used properties of the ArrayList class:

Property Description

Capacity
Gets or sets the number of elements that the ArrayList can

contain.

Count Gets the number of elements actually contained in the ArrayList.

IsFixedSize Gets a value indicating whether the ArrayList has a fixed size.

IsReadOnly Gets a value indicating whether the ArrayList is read-only.

Item Gets or sets the element at the specified index.

The following table lists some of the commonly used methods of the ArrayList class:

S.N. Method Name & Purpose

1
Public Overridable Function Add (value As Object) As Integer
Adds an object to the end of the ArrayList.

2
Public Overridable Sub AddRange (c As ICollection)
Adds the elements of an ICollection to the end of the ArrayList.

http://www.tutorialspoint.com/vb.net/vb.net_stack.htm
http://www.tutorialspoint.com/vb.net/vb.net_queue.htm
http://www.tutorialspoint.com/vb.net/vb.net_bitarray.htm

Objects and collections 2015 Batch

Prepared ByDr. D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 5 of 25

Coimbatore -21

3
Public Overridable Sub Clear
Removes all elements from the ArrayList.

4
Public Overridable Function Contains (item As Object) As Boolean
Determines whether an element is in the ArrayList.

5

Public Overridable Function GetRange (index As Integer, count As

Integer) As ArrayList
Returns an ArrayList, which represents a subset of the elements in the source

ArrayList.

6
Public Overridable Function IndexOf (value As Object) As Integer
Returns the zero-based index of the first occurrence of a value in the ArrayList

or in a portion of it.

7
Public Overridable Sub Insert (index As Integer, value As Object)
Inserts an element into the ArrayList at the specified index.

8
Public Overridable Sub InsertRange (index As Integer, c As ICollection)

Inserts the elements of a collection into the ArrayList at the specified index.

9
Public Overridable Sub Remove (obj As Object)
Removes the first occurrence of a specific object from the ArrayList.

10
Public Overridable Sub RemoveAt (index As Integer)
Removes the element at the specified index of the ArrayList.

11
Public Overridable Sub RemoveRange (index As Integer, count As

Integer)

Removes a range of elements from the ArrayList.

12
Public Overridable Sub Reverse
Reverses the order of the elements in the ArrayList.

13
Public Overridable Sub SetRange (index As Integer, c As ICollection)
Copies the elements of a collection over a range of elements in the ArrayList.

14
Public Overridable Sub Sort
Sorts the elements in the ArrayList.

15
Public Overridable Sub TrimToSize
Sets the capacity to the actual number of elements in the ArrayList.

Example:

The following example demonstrates the concept:

 Sub Main()

 Dim al As ArrayList = New ArrayList()

 Dim i As Integer

 Console.WriteLine("Adding some numbers:")

Objects and collections 2015 Batch

Prepared ByDr. D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 6 of 25

Coimbatore -21

 al.Add(45)

 al.Add(78)

 al.Add(33)

 al.Add(56)

 al.Add(12)

 al.Add(23)

 al.Add(9)

 Console.WriteLine("Capacity: {0} ", al.Capacity)

 Console.WriteLine("Count: {0}", al.Count)

 Console.Write("Content: ")

 For Each i In al

 Console.Write("{0} ", i)

 Next i

 Console.WriteLine()

 Console.Write("Sorted Content: ")

 al.Sort()

 For Each i In al

 Console.Write("{0} ", i)

 Next i

 Console.WriteLine()

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Adding some numbers:

Capacity: 8

Count: 7

Content: 45 78 33 56 12 23 9

Content: 9 12 23 33 45 56 78

Hashtable Class

The Hashtable class represents a collection of key-and-value pairs that are organized

based on the hash code of the key. It uses the key to access the elements in the collection.

A hashtable is used when you need to access elements by using key, and you can identify

a useful key value. Each item in the hashtable has a key/value pair. The key is used to

access the items in the collection.

Properties and Methods of the Hashtable Class

The following table lists some of the commonly used properties of the Hashtable class:

Property Description

Objects and collections 2015 Batch

Prepared ByDr. D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 7 of 25

Coimbatore -21

Count
Gets the number of key-and-value pairs contained in the

Hashtable.

IsFixedSize Gets a value indicating whether the Hashtable has a fixed size.

IsReadOnly Gets a value indicating whether the Hashtable is read-only.

Item Gets or sets the value associated with the specified key.

Keys Gets an ICollection containing the keys in the Hashtable.

Values Gets an ICollection containing the values in the Hashtable.

The following table lists some of the commonly used methods of the Hashtable class:

S.N Method Name & Purpose

1
Public Overridable Sub Add (key As Object, value As Object)
Adds an element with the specified key and value into the Hashtable.

2
Public Overridable Sub Clear
Removes all elements from the Hashtable.

3
Public Overridable Function ContainsKey (key As Object) As Boolean
Determines whether the Hashtable contains a specific key.

4
Public Overridable Function ContainsValue (value As Object) As

Boolean
Determines whether the Hashtable contains a specific value.

5
Public Overridable Sub Remove (key As Object)
Removes the element with the specified key from the Hashtable.

Example:

The following example demonstrates the concept:

Module collections

 Sub Main()

 Dim ht As Hashtable = New Hashtable()

 Dim k As String

 ht.Add("001", "Zara Ali")

 ht.Add("002", "Abida Rehman")

 ht.Add("003", "Joe Holzner")

 ht.Add("004", "Mausam Benazir Nur")

 ht.Add("005", "M. Amlan")

 ht.Add("006", "M. Arif")

 ht.Add("007", "Ritesh Saikia")

 If (ht.ContainsValue("Nuha Ali")) Then

 Console.WriteLine("This student name is already in the list")

 Else

Objects and collections 2015 Batch

Prepared ByDr. D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 8 of 25

Coimbatore -21

 ht.Add("008", "Nuha Ali")

 End If

 ' Get a collection of the keys.

 Dim key As ICollection = ht.Keys

 For Each k In key

 Console.WriteLine(" {0} : {1}", k, ht(k))

 Next k

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

006: M. Arif

007: Ritesh Saikia

008: Nuha Ali

003: Joe Holzner

002: Abida Rehman

004: Mausam Banazir Nur

001: Zara Ali

005: M. Amlan

Stack Class

It represents a last-in, first-out collection of objects. It is used when you need a last-in,

first-out access of items. When you add an item in the list, it is called pushing the item,

and when you remove it, it is called popping the item.

Properties and Methods of the Stack Class

The following table lists some of the commonly used properties of the Stack class:

Property Description

Count Gets the number of elements contained in the Stack.

The following table lists some of the commonly used methods of the Stack class:

S.N Method Name & Purpose

1
Public Overridable Sub Clear
Removes all elements from the Stack.

2
Public Overridable Function Contains (obj As Object) As Boolean

Determines whether an element is in the Stack.

3
Public Overridable Function Peek As Object
Returns the object at the top of the Stack without removing it.

Objects and collections 2015 Batch

Prepared ByDr. D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 9 of 25

Coimbatore -21

4
Public Overridable Function Pop As Object
Removes and returns the object at the top of the Stack.

5
Public Overridable Sub Push (obj As Object)
Inserts an object at the top of the Stack.

6
Public Overridable Function ToArray As Object()
Copies the Stack to a new array.

Example:

The following example demonstrates use of Stack:

Module collections

 Sub Main()

 Dim st As Stack = New Stack()

 st.Push("A")

 st.Push("M")

 st.Push("G")

 st.Push("W")

 Console.WriteLine("Current stack: ")

 Dim c As Char

 For Each c In st

 Console.Write(c + " ")

 Next c

 Console.WriteLine()

 st.Push("V")

 st.Push("H")

 Console.WriteLine("The next poppable value in stack: {0}", st.Peek())

 Console.WriteLine("Current stack: ")

 For Each c In st

 Console.Write(c + " ")

 Next c

 Console.WriteLine()

 Console.WriteLine("Removing values ")

 st.Pop()

 st.Pop()

 st.Pop()

 Console.WriteLine("Current stack: ")

 For Each c In st

 Console.Write(c + " ")

 Next c

 Console.ReadKey()

 End Sub

End Module

Objects and collections 2015 Batch

Prepared ByDr. D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 10 of 25

Coimbatore -21

When the above code is compiled and executed, it produces the following result:

Current stack:

W G M A

The next poppable value in stack: H

Current stack:

H V W G M A

Removing values

Current stack:

G M A

Queue

It represents a first-in, first-out collection of object. It is used when you need a first-in,

first-out access of items. When you add an item in the list, it is called enqueue, and when

you remove an item, it is calleddeque

Properties and Methods of the Queue Class

The following table lists some of the commonly used properties of the Queue class:

Property Description

Count Gets the number of elements contained in the Queue.

The following table lists some of the commonly used methods of the Queue class:

S.N Method Name & Purpose

1
Public Overridable Sub Clear
Removes all elements from the Queue.

2
Public Overridable Function Contains (obj As Object) As Boolean

Determines whether an element is in the Queue.

3
Public Overridable Function Dequeue As Object
Removes and returns the object at the beginning of the Queue.

4
Public Overridable Sub Enqueue (obj As Object)
Adds an object to the end of the Queue.

5
Public Overridable Function ToArray As Object()
Copies the Queue to a new array.

6
Public Overridable Sub TrimToSize
Sets the capacity to the actual number of elements in the Queue.

Example:

The following example demonstrates use of Queue:

Objects and collections 2015 Batch

Prepared ByDr. D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 11 of 25

Coimbatore -21

Module collections

 Sub Main()

 Dim q As Queue = New Queue()

 q.Enqueue("A")

 q.Enqueue("M")

 q.Enqueue("G")

 q.Enqueue("W")

 Console.WriteLine("Current queue: ")

 Dim c As Char

 For Each c In q

 Console.Write(c + " ")

 Next c

 Console.WriteLine()

 q.Enqueue("V")

 q.Enqueue("H")

 Console.WriteLine("Current queue: ")

 For Each c In q

 Console.Write(c + " ")

 Next c

 Console.WriteLine()

 Console.WriteLine("Removing some values ")

 Dim ch As Char

 ch = q.Dequeue()

 Console.WriteLine("The removed value: {0}", ch)

 ch = q.Dequeue()

 Console.WriteLine("The removed value: {0}", ch)

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Current queue:

A M G W

Current queue:

A M G W V H

Removing some values

The removed value: A

The removed value: M

Objects and collections 2015 Batch

Prepared ByDr. D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 12 of 25

Coimbatore -21

WORKING WITH FILES

File handling in Visual Basic is based on System.IO namespace with a class library that

supports string, character and file manipulation. These classes contain properties,

methods and events for creating, copying, moving, and deleting files. Since both strings

and numeric data types are supported, they also allow us to incorporate data types in files.

The most commonly used classes are FileStream, BinaryReader, BinaryWriter,

StreamReader and StreamWriter.

CLASSIFICATION OF FILES
 In Visual Basic .NET, files can be classification into three categories on the basic

of their mode of access, as follows:

1. Sequential access:

 The sequential access mode is used for accessing a text file. A text file consists of

a long chain of ASCII characters.

Generally, the data in the text file is accessed line by line or paragraph by

paragraph.

2. Binary access:

 The binary access mode is used for accessing a binary file. Generally, a non-

text file is called as binary file. For example, an image file is a binary file.

3. Random access:

 The random access mode is used for accessing a file that consists of records. In

the random files, you can read or write any particular record without disturbing

other records. For medium and large-size databases you must use the ADO.NET

that comes with Visual Basic.NET.

GENERIC PROCEDURE OF PROCESSING FILES

 In Visual Basic the user can read files, create files, write to the files, modify files, and

also delete files. The generic procedure is as follows:

 Open the file.

 Now process the file as per your requirement.

 Close the file.

HANDLING FILES AND FOLDERS USING FUNCTIONS

 The various functions that handle the files and folders are as follows:

 Kill (),

 File Data Time (),

 File Len (),

Objects and collections 2015 Batch

Prepared ByDr. D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 13 of 25

Coimbatore -21

 MkDir (),

 RmDir (),

 ChDir (),

 ChDrive (),

 CurDir (),

 Dir(),

 FileCopy (),

 Rename ().

Functions

 Kill (filename with path)

 This function deletes the file or files from the disk and not moved to the

Recycle Bin. The use of wild cards (* and ?) is permitted in this function. For

example, notice the line of code given below:

Kill (“c:\files\satara.txt”)

Kill (“c:\files*.txt”)

 FileDateTime (filename with path)

 This function returns the date and time of creation of the file.

Debug.writeLine(“Date & Time:”&(FileDateTime((“c:\files\satara.txt”)

 After the execution, display the following line of the text in the Debug window:

Date & Time: 14/3/2014 4:02:44 PM

 FileLen (filename with path)

 This function returns the size of the file in bytes.

Debug.writeLine(“Size of file in byte : “& FileLen ((“c:\files\satara.txt”)

After execution displays the following line of text in the Debug window:

Size of file in bytes: 81

 MkDir (Foldername with path):

 This function creates a new folder or folders

MkDir(“C:\myfiles”)

MkDir(“C:\myfiles\stock”)

The user can create comfortably create a number of folders in a single line of the

code.

MkDir(“C:\Mina\Lina\Bina”)

 RmDir (foldername with path)

Objects and collections 2015 Batch

Prepared ByDr. D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 14 of 25

Coimbatore -21

 This function deletes the folder. Only one folder can be deleted in a single

function call. You cannot use wild card characters (* and ?) in argument. The

folder to be deleted must be empty

RmDir(“c:\files\stock”) removes the folder stock successfully

RmDir(“c:\files\stock”) error occurs as folder stock doesn’t exist

 ChDir(foldername with path)

 This function sets the folder as current.

ChDir(“C:\Files”)

Once a given folder becomes current, you can handle the file in that folder

simply by mentioning their file names (you are not requiring to write the full path

of that file). For example, suppose the folder C:\Files contains may files and you

want to delete two files in the folder, namely: satara.txt and London.doc. You can

delete these files by using the line of codes given below:

ChDir(“C:\File”) Now folder C:\Files is the current folder

Kill(“satara.txt”) File satara.txt in the current folder is deleted

Kill(“London.doc”) File London.doc in the current folder is deleted.

 ChDrive(drivename)

 This function sets the drive as current.

ChDrive(“A”)

After execution of this line of code, drive A becomes the current drive.

 CurDir ()

 This function returns the name of the current directory.

Debug.writeLine(“current directory is : “&CurDir ())

After execution of this line of code, the following line of text is displayed in the

Debug window:

Current directory is: A:\

 Dir (filename or folder name with path)

This function is used to check the existence of the file or folder. If that file or

folder exists, then this function returns the name of that file or folder. If that file

or folder doesn’t exist, then this function returns the empty string.

strCheck = Dir(“C:\Files\satara.txt”)

if strCheck =”satara.txt” Then

Objects and collections 2015 Batch

Prepared ByDr. D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 15 of 25

Coimbatore -21

 Debug.WriteLine(“The file satara.txt exists.”)

Else

 Debug.WriteLine(“The file satara.txt doesn’t exists.”)

End if

Assuming that file satara.txt really exist in the folder C:\Files, the piece of code,

after execution displays the following line of text in the Debug window:

File satara.txt exist.

 FileCopy (SourseFile, DestinationFile)

 This functions copies the given files and place it in the desired destination.

FileCopy(“C:\Files\satara.txt”,”C:\My files\city.txt”)

 Rename (oldName ,NewName)

 This is functions renames the file or folder.

Rename (“C:\My Files”,”C:\ourfiles”)

Rename (“C:\Fiels\satara.txt”, “C:\Files\comport.txt”)

Rename (“C:\Files\comport.txt”,”C”\Files\nice.txt”)

Let the folder C:\Files contains the file satara.txt and sangli.txt. now if you try to

renames satara.txt as sangli.txt then run-time error occurs. Notice the line of the

code give below:

Rename(“C:\Files\satara.txt”, “C:\Files\sangli.txt”) error!!!

HANDLING FILES AND FOLDERS USING CLASSES

Visual Basic.NET allows handling the files and folders by using class.

 Directory Class

 File Class

In order to use these classes in a program, type the following statement at the top

of the code window:

Imports System.IO

Directory Class

Directory class offers a number of methods to handle folders.

Exist (), CreateDirectory (), Delete (), SetCurrentDirectory (),

GetCurrentDirectory (), GetDirectories (), GetDirectoryRoot (),GetFiles (),

GetFileSystemEntries (), GetLastAccessTime (), SetLastAccessTime (),and

GetLogicalDrives ().

Exists(foldername with path)

Objects and collections 2015 Batch

Prepared ByDr. D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 16 of 25

Coimbatore -21

This method checks whether the folder exists. If the folder exists, then method

returns the value true; otherwise, it returns the value false. For example notice the piece

of code given below:

If Directory.Exists(“C:\MyFiles”) Then

 Debug.WriteLine(“Folder C:\MyFiles exist.”)

Else

 Debug.WriteLine(“Folder C:\MyFiles exist.”)

End If

CreateDirectory(foldername with path)
This method creates the folder or nested folders.

Directory.CreateDirectory(“C:\MyFiles\stock\Reserve”)

Directory.CreateDirectory(“C:\ExFiles”)

Delete (foldername with path,force)

 This method deletes the folder. This method also accepts a second argument

(force) which is optional and its data type is Boolean. It means that the possible values of

force are True and False. If force is True, then a non-empty folder is also deleted and if

force is False, then only an empty try to delete the non-empty folder, then run-time error

occurs.

 Directory.Delete (“C:\BigFolder”) Folder is empty and gets deleted

 Directory.Delete (“C:\JamboFolder”) Folder is non-empty, run-time error occurs

 Directory.Delete (“C:\ JamboFolder”,True) Folder is non-empty and gets deteled.

SetCurrentDirectory(Foldername with path)

This method set the folder as current.

Directory.SetCurrentDirectory(“C:\myfiles”)

GetDirectories (Foldername with path)

This method returns the name of all the folders in the said folder as String data

type

strArray=Directory.GetDirectories(“C:\Myfiles”)

For Each strText in strArray

 Debug.WriteLine(strtext)

Next

GetDirectoryRoot(path)

 This method returns the root part of the path.

strText=Directory.GetDirectoryRoot (“C:\Myfiles”)

 After execution, the string “C:\” is assigned to the strimg variable strText.

GetFiles(foldername with path)

 This method returns the names of all the files in the said folders

strArray=Directory.GetDirectories(“C:\Myfiles”)

For Each strText in strArray

 Debug.WriteLine(strtext)

Next

Objects and collections 2015 Batch

Prepared ByDr. D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 17 of 25

Coimbatore -21

GetFileSystemEntries(Foldername with path)

 This method returns the names of all the files and folder in the said folder.

strArray = Directory. GetFileSystemEntries(“C:\MyFiles”)

For Each strText in strArray

 Debug.WriteLine(strtext)

Next

For each .. next loop that span lines 2,3 and 4, retrieve these strings and display them in

the debug window, as shown below:

C:\MyFiles\HisFiles

C:\ MyFiles\Stock

C:\ MyFiles\Satara.txt

C:\ MyFiles\Kolhapur.txt

GetLastAccessTime (foldername with path)

 This method returns the date of the last access of the said folder.

dteDate = Directory. GetLastAccessTime(“C:\MyFiles”)

Debug.writeLine(“LastAccessTime of C:\MyFiles is :”&dteDate)

 After execution, display the following line of text in the debug window:

LastAccessTime of C:\MyFiles is :14/3/2002

SetLastAccessTime (Foldername with path, date)

 The user can set the last access time of a folder by using this method. Two arguments

are passed to this method, the first argument (string type 0 is the name of the folder and

the second argument (data type) is the date to be set.

Directory. SetLastAccessTime(“C:\MyFiles”, Now

 After execution, set the current date as the last access time of the folder C:\MyFiles.

GetLogicalDrives ()

 This method returns the name of all the drives in your computer. For example, notice

the piece of code given below

strArray = Directory. GetLogicalDrives ()

For Each strText in strArray

 Debug.WriteLine(strtext)

Next

 After execution, displays the following line of text in the debug window.

A:\

C:\

D:\

E:\

Objects and collections 2015 Batch

Prepared ByDr. D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 18 of 25

Coimbatore -21

File Class

 File class offers a number of methods for handling files. We will discuss the

following methods of file class in this section:

 Copy ()

 Exist ()

 Delete ()

 GetCreationTime ()

 SetCreationTime ()

 GetLastAccessTime()

 SetLastAccessTime ()

Copy (source filename, destination filename,overwrite)

 This method creates a copy of the file. This method accepts three arguments, the first

and second argument are required while the third argument is optional. The first

argument (string type) is the name of the source file with path, the second argument (

string type) is the name of the destination file with path, and third argument (Boolean

type) takes one of the two values : true and false. If the value of third argument is false

(or the third argument is omitted), then overwriting is not permitted and if the third

argument is true, then overwriting is permitted

File.Copy(“C:\MyFiles\satara.txt”, C:\MyFiles\HisFiles\ satara.txt”, True)

 Exist (filename with path)

 This method checks whether the file exist. This method returns the value true if the

file exists, and false if the file doesn’t exist.

If File.Exist(“C:\MyFiles\satara.txt”) Then

 Debug.WriteLine(“File Satara.txt Exist.”)

Else

 Debug.WriteLine(“File Satara.txt doesn’t Exist.”)

End if

Delete (filename with path)

 This method deletes the file. The deleted file is not sent to Recycle Bin and cannot be

recovered.

If File.Exists (“C:\ MyFiles\satara.txt”) Then

 File.delete (“C:\ MyFiles\His Files\satara.txt”)

Endif

GetCreationTime ()

This method returns the date and time of creation of the file.

dteDate = File.GetCreationTime (“C:\ MyFiles\satara.txt”)

Debug.WriteLine(“Creation time of satara.txt is : “&dteDate)

After the execution, displays the following line of text in the debug window.

Creation time of satara.txt is : 10/3/2012 4.33.22 PM

SetCreationTime (filename with path,date)

This method allows to set the creation time of file. The first argument (string

type) is the name of the file with path and second argument (data type) is the date to be

set.

File.Setcreation.Time (“C:\Myfiles\satara.txt”,Now)

Objects and collections 2015 Batch

Prepared ByDr. D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 19 of 25

Coimbatore -21

GetLastAccessTime ()

This method returns the date of last access of file.

dteDate = File. GetLastAccessTime(“C:\Myfiles\satara.txt”)

Debug.WriteLine(“Last access time of satara.txt is :”&dteDate)

After execution, displays the following line of text in the Debug window.

Last access time of satara.txt is : 10/12/2013

SetLastAccessTime (filename with path,date)
This method allows to set the last access time of the file.

File.SetLastAccessTime(“C:\Myfiles\satara.txt”, Now)

FILE PROCESSING USING FUNCTIONS

Function

Freefile()

The function returns a number that can be used as file number.

IntN1=FreeFile()

FileOpen (intN1, “C:\Files\Satara.txt”,OpenMode.Input)

‘-----------generic code

intN2=FreeFile()

FileOpen (intN2, C:\Files\Sangli.txt”, OpenMode.Input)

‘-----------generic code

FileClose (intN1)

‘-------------generic code

FileClose (intN2)

FileOpen()
The function is used for opening a file.

FileOpen(fileNumber,fileName,OpenMode [,access][,share][recordLen]

The first three arguments are required while the three remaining are optional. The various

value of OpenMode are Input,Output,and Append are meant for sequence files,the value

random is meant for random access files,and the value Binary is meant for binary

file.Values of OpenMode Enumeration

 Value Description

Input Sequential(text) file is opened for reading

Output sequential(text) file is opened for writing

Append Sequential(text)file is appending new text to the existing

contents of the file

Random File is opened in random mode

Binary File is opened binary mode

Objects and collections 2015 Batch

Prepared ByDr. D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 20 of 25

Coimbatore -21

Values of OpenAccess Enumeration

Value Description

Default File is Opened for reading and writing .This is the default

access

Read File is Opened for reading only

Write File is opened for writing only

ReadWrite File is openedfor reading and writing.same as default

Values of OpenShare Enumeration

Value Description

Default other applications can share this file .This is default status.

Shared other applications can share this file.same as default.

LockRead other application cannot read this file.

LockWrite other application cannot write to this file.

LockReadWrite other application can neither read nor write to this file

FileOpen(1, “c:\File.dat”, OpenMode.Random,OpenAccess.Read,

OpenShare.LockWritee, 42)

FileClose (fileNumber)

This function closes the file when its file number is passed to this function.

FileClose(1) ‘Line 1, file with file number 1 is now closed.

Reset ()

The function reset () closes all the files. It is equivalent to the FileCose() function

without argument.

EOF(fileNumber)
Funtion EOF() returns the value true,if the end of the file is reached.Otherwise it

returns the value false.

LOF(fileNumber)
Function LOF() returns the length of the filein bytes.

FileOpen(1, “C:\Files\satara.txt”,OpenMode.Input)

Debug.WriteLine (“Length(size)of file in bytes:” &LOF(1))

After execution,displays the following lines of code in the debug window:

Length (size) of file in bytes:81

Print(FileNumber,OutputData) and PrintLine (FileNumber,OutputData)

These functions are used for writing data into sequential

FileOpen(1, “C:\Files\Mina.txt”, OpenMode.Input)

Print(1, “Mina”, “Learn” , “VisualBasic”)

C:\Files>TYPE MINA.TXT

Mina Learn Visual Basic

Objects and collections 2015 Batch

Prepared ByDr. D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 21 of 25

Coimbatore -21

FileOpen(1,”C:\Files\Lina.txt”,OpenMode.Output) ‘Line1

Print(1,”Lina”) ‘Line2

Print(1,”Learns”) ‘Line3

Print(1, “VisualBasic”) ‘Line4

FileOpen(2,”C:\Files\Mina.txt”,OpenMode.Output) ‘Line5

PrintLine(2,”Mina”) ‘Line6

PrintLine(2,”learns”) ‘Line7

PrintLine(2,”Visual Basic”) ‘Line8

Open the command Prompt window and view the content of the file Lina.txt(written

using the Print

C:\Files>TYPE LINA.TXT

Lina learns visual Basic

C:\Files>

The content of file Mina.txt are shown below:

C:\files>TYPE MINA.TXT

Mina

 Learns

 Visual Basic

C:\Files>

Input(FileNumber,Variable)

This function is used for reading a sequential file. It reads a data from a file(the

file number of which is passed to this function as first arguments) and assign the data to

the variable that is passed to this function as second argument.

FileOpen(1,”C:\Files\Lina.txt”,OpenMode.Input) ‘Line1

Input(1,strText) ‘Line2

Debug.writeLine(“Contents of strText: &strText) ‘Line3

After execution, displays the following line of text in the debug window:

Content of the strText : Lina learns Visual Basic

LineInput(FileNumber)
This function is used for reading a sequential file. It reads the contents of files and

returns the text that is generally assigned to string variable.

FileOpen(1, “C:\Files\Lina.txt”,OpenMode.Input)

strText=LineInput(1)

Debug.WriteLine(“Contents of strText: “&strText)

After execution,displays the following lines of text in the Debug window.

Contents of strText: Lina Learns VisualBasic.

Functions filePut() and FileGet()

These functions are used in random access file which are used to creating mini

database. If you want to create a medium or large database, then use a ADO.NET and

random- mode file are the most suitable for the task of creating mini database.

FilePut(FileNumber,Value [,RecordNumber])

Objects and collections 2015 Batch

Prepared ByDr. D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 22 of 25

Coimbatore -21

This function is used for writing a record to a random access file. Three

arguments are passed to this function –the first arguments(requires)is a file number,

second arguments(required)is a value to be written in a record, and the third

argument(optional)is a record number. if the third argument is omitted ,then the value is

written to the current record.

FilePut(1, “member”)

File Get (File Number, variable [, Record Number])
This function is used for reading a record from a random-access file. Three

arguments are passed to this function-the first argument (required) is a file number, the

second argument(required) is a variable in which the record that is read from the file is

stored, and the third argument (optional) is a record number. If the third argument is

omitted, then the value is read from the current record.

FileGet(1, “member”,1)

FILE PROCESSING USING STREAMS

There are four stream-based classes are available

1. StreamReader. Using the StreamReader object, you can read a text file.

2. StreamWriter. Using the StreamWriter object, you can write into a text file.

3. Binary Reader. Using the BibaryReader object, you can read a binary file.

4. BinaryWriter. Using the BinaryWriter object, you can write into a binary file.

StreamReader and StreamWriter Class
The StreamReader and StreamWriter classes enables us to read or write a sequential

stream of characters to or from a file.

BinaryReader and BinaryWriter Class

The BinaryReader and BinaryWriter classes enable us to read and write binary data, raw

0's and 1's, the form in which data is stored on the computer.

Using the StreamReader Class

In order to understand the generic syntax of using the StreamReader

Dim myStream As StreamReader

MyStream=New StreamReader(“C/Files/Kolhapur.txt”)

txtShirish.Tex=myStream.ReadToEnd()

txtShrish. Select (0,0)

myStream.Close ()

Using the StreamWriter Class

In order to understand the generic syntax of using StreamWriter

Dim myStream As StreamWriter

myStream=New StreamWriter (“C:Files/Delhi.txt”, False)

myStream.Write(txtShirish.Text)

myStream.Close ()

Objects and collections 2015 Batch

Prepared ByDr. D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 23 of 25

Coimbatore -21

Code to create a File

Imports System.IO

'NameSpace required to be imported to work with files

Public Class Form1 Inherits System.Windows.Forms.Form

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e_As

System.EventArgs) Handles MyBase.Load

Dim fs as New FileStream("file.doc", FileMode.Create, FileAccess.Write)

'declaring a FileStream and creating a word document file named file with

'access mode of writing

Dim s as new StreamWriter(fs)

'creating a new StreamWriter and passing the filestream object fs as argument

s.BaseStream.Seek(0,SeekOrigin.End)

'the seek method is used to move the cursor to next position to avoid text to be

'overwritten

s.WriteLine("This is an example of using file handling concepts in VB .NET.")

s.WriteLine("This concept is interesting.")

'writing text to the newly created file

s.Close()

'closing the file

End Sub

End Class

The default location where the files we create are saved is the bin directory of the

Windows Application with which we are working. The image below displays that.

Objects and collections 2015 Batch

Prepared ByDr. D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 24 of 25

Coimbatore -21

Code to create a file and read from it

Drag a Button and a RichTextBox control onto the form. Paste the following code which

is shown below.

Imports System.IO

'NameSpace required to be imported to work with files

Public Class Form1 Inherits System.Windows.Forms.Form

Private Sub Button1_Click(ByVal....., Byval.....)Handles Button1.Click

Dim fs as New FileStream("file.doc", FileMode.Create, FileAccess.Write)

'declaring a FileStream and creating a document file named file with

'access mode of writing

Dim s as new StreamWriter(fs)

'creating a new StreamWriter and passing the filestream object fs as argument

s.WriteLine("This is an example of using file handling concepts in VB .NET.")

s.WriteLine("This concept is interesting.")

'writing text to the newly created file

s.Close()

'closing the file

fs=New FileStream("file.doc",FileMode.Open,FileAccess.Read)

'declaring a FileStream to open the file named file.doc with access mode of reading

Dim d as new StreamReader(fs)

'creating a new StreamReader and passing the filestream object fs as argument

d.BaseStream.Seek(0,SeekOrigin.Begin)

'Seek method is used to move the cursor to different positions in a file, in this code, to

'the beginning

while d.peek()>-1

'peek method of StreamReader object tells how much more data is left in the file

RichTextbox1.Text &= d.readLine()

'displaying text from doc file in the RichTextBox

End while

d.close()

End Sub

The image below displays output of the

above code.

Objects and collections 2015 Batch

Prepared ByDr. D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 25 of 25

Coimbatore -21

Possible Questions

Part B (8 Marks)

1. Write the Date difference function in VB.NET

2. What is the use of FileDateTime() Function in VB.NET

3. Explain Objects and Collection in detail.

4. Describe any five File Operations in VB.NET

5. Explain any three Collection Classes in VB.NET with a Program.

6. Write the Vb.NET program to demonstrate File Operations

7. Write the Vb.NET program to perform Read () and Write () to a File

SUBJECT: VB.NET

SEMESTER : II UNIT : IV

SUBJECT CODE: 18CCP304 CLASS : II M.COM CA

S.

NO QUESTIONS OPTION 1 OPTION 2 OPTION 3 OPTION 4 ANSWER

1

How do you create method which can be

accessed without the use of objects reference ?

Using FRIEND

Keyword

Using STATIC

Keyword

Using

SHARED

Keyword

Using

PRIVATE

Keyword

Using SHARED

Keyword

2 VB.NET supports --------- encapsulation abstraction inheritance all all

3

A -------- is a conceptual representation of all

entities that share common attributes and

behaviors

specifier member object class class

4

In VB.Net one can create an abstract class

using the ----------- keyword

MustOverride MustInherit Overrides public MustInherit

5

 -------- contains only the declaration of

members

Encapsulation Inheritance Interface Polymorphis

m

Inheritance

6

To create objects, first create its template called

Procedure Module Class Collection Class

7

An OOP's conscept that defines wrapping of

code and data into a single unit is called -------

Abstraction Inheritance Polymorphis

m

Encapsulation Encapsulation

8

To create a property that can be read but not

changed by client code include ------- construct

only Get construct only Set

construct

Either Get or

Set construct

Both Get and

Set construct

only Get construct

9

If an Object variable is declared As Object,

Which binding is used?

Early Binding Static Binding Data Binding Late Binding Late Binding

10

What is the best way to destroy an object

reference?

Start Garbage

Collection

Set object

varibale to

'Nothing'

Call the

destructor

function

use

dispose(object

variable)

Set object varibale

to 'Nothing'

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under section 3 of UGC Act 1956)

Coimbatore – 641021

(For the candidates admitted from 2018 onwards)

11

What object is used to manipulate files? System.IO.Files System.IO.Stre

ams

Streams.IO.Fi

les

System.IO.Dir

ectories

Streams.IO.Files

12

What object is used to manipulate directories? System.IO.Files System.IO.Stre

ams

Streams.IO.Fi

les

System.IO.Dir

ectories

System.IO.Director

ies

13

 --------- is used to rename a file System.IO.Files.Co

py()

System.IO.File

s.Move()

System.IO.Fil

es.Rename()

System.IO.Fil

es.CopyTo()

System.IO.Files.M

ove()

14

 ----------- is a programming structure that

encapsulates data and functionality as a single

unit.

Class Object Collection methods Object

15

This is the way we refer to properties of an

object in code

{Object

name}.{Property}

{Class}.{Prope

rty}

{Class}.{Met

hod}

{Object

Name}.{Meth

od name}

{Object

name}.{Property}

16

A property that returns an object is called ------

Collection subroutine Object

Oriented

Object

Property

Object Property

17

The process of creating an object is called ------

integration instantiation interfacing inheritance instantiation

18 A _______ is a place to store the code we write class module method subroutine module

19

Codes written in ________ modules are always

available and need not instantiate an object for

it

class module standard

module

library

modules

None of the

above

standard module

20

We cannot create ________ based on standard

modules

classes methods objects properties objects

21 Interfaces are similar to ------------- classes abstract collection inheritance polymorphism abstract

22 How many types of constructors are there? 3 4 5 2 2

23

 -------- are the special methods that are used to

release the instance of a class from memory

constructors destructors inheritance abstract destructors

24

The ------ method is called to release a resource

such as a database connection

compose() release() destroy() dispose() dispose()

25

File handling in Visual Basic is based on -------

--- namespace

System.Input System.Output System.IO System.Files System.IO

26 How many access methods are there in file? 2 4 5 3 3

27

The ------ class provides access to files and file-

related information

Stream FileStream StreamFile FileMode StreamFile

28

The FileStream class opens a file either in ------

--- mode

synchronous asynchronous synchronous

or

asynchronous

sequential synchronous or

asynchronous

29

The ------- method is used to open a file in

synchronous mode

BeginRead() Read() BeginWrite() Write() Read(), Write()

30

The ------- method is used to open a file in

asynchronous mode

Read() BeginRead() Write() BeginWrite() BeginRead(),

BeginWrite()

31

By default FileStream class opens file in ------

mode

synchronous asynchronous sequential random synchronous

32 The ----- class is used to read from binary file StreamReader StreamWriter BinaryReader BinaryWriter BinaryReader

33 The ----- class is used to write to binary file StreamReader BinaryReader BinaryWriter StreamWriter BinaryWriter

34

The -------- method is used to set the file

pointer to the beginning of the file

Offset Peek() Seek() SeekOrigin() Seek()

35

The ------- method is used to read characters

from the file

Read() ReadChars() ReadCharacte

rs()

BinaryRead() ReadChars()

36

The System.IO model also enables to work

with drives and folders by using the ------- class

File Directory Reader Stream Directory

37

How many methods are most frequently used

in Directory class

5 3 7 6 6

38

The -------- method is used to delete a directory

and all its contents

remove destroy delete dispose delete

39

VB.Net run-time functions allow ----- types of

file access

4 2 5 3 3

40

The functions that allow the types of file access

are deifned in the -------- namespace

System.IO System.Assem

blies

System.IO.Fil

es.Rename()

System.IO.Fil

e

System.IO.File

41

The function that is used to retrieve the date

and time when a file was created or modified is

Dir FileCopy FileDateTime FreeFile FileDateTime

42

The ------ function is used to retrieve a vlaue

specifying the current read/write position

within an open file

GetAttr FreeFile FileDateTime Loc Loc

43

The ------ function is used to write data from a

variable to a disk file

FreeFile GetAttr FilePut Print FilePut

44

The file I/O operations can be done in --------

ways

3 4 2 5 2

45

The ------ function is used to retrieve the next

file number available for use by FileOpen()

function

FreeFile FileCopy FileDateTime FilePut FreeFile

46

The ------ function is used to retrieve String

value containing characters from a file opened

in Input or Binary mode

PrintLine InputString FilePut Loc InputString

47

The function that allows to open a file in any

access methods is -----------

Open() Read() Create() FileOpen() FileOpen()

48

WPF Stands for Windows

Presentation

Foundation

Windows

Program

Foundation

Windows

Presentation

Function

Windows

Procedure

Foundation

Windows

Presentation

Foundation

49

______ is designed for .NET, influenced by

modern display technologies such as HTML

and Flash, and hardware-acceleration.

WPF WCM WFM WWM WPF

50

______ provides the familiar Windows look

and feel for elements such as windows, buttons

and text boxes User32 GDI GDI+ GUI User32

51

________GDI/GDI+ provides drawing support

for rendering shapes, text, and images at the

cost of additional complexity

GDI/GDI+ CDI/CDI+ GUI/GUI+ CUII/CUI+ GDI/GDI+

52

DirectX introduced as an error-prone toolkit for

creating games on the __________platform

Linux Unix Windows Red Hat Windows

53

A WPF window and all the elements inside it

are measured using ___________

device-dependent

units

device-

independent

units

Graphic-

independent

units

Graphic-

dependent

units

device-independent

units

54

A single device-independent unit is defined as

__________ of an inch one by 96 one by 186 one by 248 one by 32 one by 96

55 The First Versions of WPF is ___________ 2 2.5 3 3.5 3

56

What is the name of the protocol used by .NET

to marshal object requests across the Web?

HTTP WSDL TCP/IP SOAP SOAP

57

What does XAML stand for? eXtraordinary

Application

Markup Language

eXtensible

Application

Markup

Language

eXtended

Application

Markup

Language

eXtreme

Application

Markup

Language

eXtensible

Application

Markup Language

58

________ are designed specifically to run in

browser over the web

Web Forms Windows

Forms

XML Files Component

Libraries

Web Forms

59

______ dynamically buids Web-based client

server applications.

XML VB ASP.NET None ASP.NET

60

___________ holds base types, such as

UIElement and Visual, from which all shapes

and controls derive

PresentationCore.dl

l

WindowsBase.

dll

milcore.dll WindowsCod

ecs.dll

PresentationCore.dl

l

Database programming with ADO.Net 2015 Batch 2015 Batch

Prepared By Dr.D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 1 of 10

Coimbatore -21

Unit – V

Syllabus

Database programming with ADO.NET: Overview of ADO, from ADO to ADO.NET, Accessing

Data using Server Explorer. Creating Connection, Command, Data Adapter and Data Set with

OLEDB and SQLDB. Display Data on data bound controls, display data on data grid. Generate

Reports Using CrystalReportViewer.

ADO .NET

Most applications need data access at one point of time making it a crucial component when

working with applications. Data access is making the application interact with a database, where all

the data is stored. Different applications have different requirements for database access. VB .NET

uses ADO .NET (Active X Data Object) as it's data access and manipulation protocol which also

enables us to work with data on the Internet. Let's take a look why ADO .NET came into picture

replacing ADO.

Evolution of ADO.NET

The first data access model, DAO (data access object) was created for local databases with

the built-in Jet engine which had performance and functionality issues. Next came RDO (Remote

Data Object) and ADO (ActiveX Data Object) which were designed for Client Server architectures

but soon ADO took over RDO. ADO was a good architecture but as the language changes so is the

technology. With ADO, all the data is contained in a recordset object which had problems when

implemented on the network and penetrating firewalls.

ADO was a connected data access, which means that when a connection to the database is

established the connection remains open until the application is closed. Leaving the connection

open for the lifetime of the application raises concerns about database security and network

traffic. Also, as databases are becoming increasingly important and as they are serving more people,

a connected data access model makes us think about its productivity.

Example: an application with connected data access may do well when connected to two

clients, the same may do poorly when connected to 10 and might be unusable when connected to

100 or more. Also, open database connections use system resources to a maximum extent making

the system performance less effective.

Why ADO.NET?

To cope up with some of the problems mentioned above, ADO .NET came into existence.

ADO .NET addresses the above mentioned problems by maintaining a disconnected database

access model which means, when an application interacts with the database, the connection is

opened to serve the request of the application and is closed as soon as the request is completed.

Likewise, if a database is Updated, the connection is opened long enough to complete the Update

operation and is closed. By keeping connections open for only a minimum period of time, ADO

.NET conserves system resources and provides maximum security for databases and also has less

impact on system performance. Also, ADO .NET when interacting with the database uses

XML and converts all the data into XML format for database related operations making them more

efficient.

The ADO.NET Data Architecture

Data Access in ADO.NET relies on two components: DataSet and Data Provider.

Database programming with ADO.Net 2015 Batch 2015 Batch

Prepared By Dr.D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 2 of 10

Coimbatore -21

DataSet
The dataset is a disconnected, in-memory representation of data. It can be considered as a

local copy of the relevant portions of the database. The DataSet is persisted in memory and the data

in it can be manipulated and updated independent of the database. When the use of this DataSet is

finished, changes can be made back to the central database for updating. The data in DataSet can be

loaded from any valid data source like Microsoft SQL server database, an Oracle database or from a

Microsoft Access database.

Data Provider

The Data Provider is responsible for providing and maintaining the connection to the database.

A DataProvider is a set of related components that work together to provide data in an efficient and

performance driven manner. The .NET Framework currently comes with two DataProviders: the

SQL Data Provider which is designed only to work with Microsoft's SQL Server 7.0 or later and the

OleDb DataProvider which allows us to connect to other types of databases like Access and Oracle.

Each DataProvider consists of the following component classes:

1. The Connection object which provides a connection to the database

2. The Command object which is used to execute a command

3. The DataReader object which provides a forward-only, read only, connected recordset

4. The DataAdapter object which populates a disconnected DataSet with data and performs

update

Data access with ADO.NET can be summarized as follows:

1. A connection object establishes the connection for the application with the database.

2. The command object provides direct execution of the command to the database. If the

command returns more than a single value, the command object returns a DataReader to

provide the data. Alternatively, the DataAdapter can be used to fill the Dataset object. The

database can be updated using the command object or the DataAdapter.

Component classes that make up the Data Providers

The Connection Object

The Connection object creates the connection to the database. Microsoft Visual Studio .NET

provides two types of Connection classes: the SqlConnection object, which is designed specifically

to connect to Microsoft SQL Server 7.0 or later, and the OleDbConnection object, which can

provide connections to a wide range of database types like Microsoft Access and Oracle. The

Connection object contains all of the information required to open a connection to the database.

The Command Object

The Command object is represented by two corresponding classes: SqlCommand and

OleDbCommand. Command objects are used to execute commands to a database across a data

connection. The Command objects can be used to execute stored procedures on the database, SQL

commands, or return complete tables directly. Command objects provide three methods that are

used to execute commands on the database:

Database programming with ADO.Net 2015 Batch 2015 Batch

Prepared By Dr.D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 3 of 10

Coimbatore -21

1. ExecuteNonQuery: Executes commands that have no return values such as INSERT,

UPDATE or DELETE

2. ExecuteScalar: Returns a single value from a database query

3. ExecuteReader: Returns a result set by way of a DataReader object

The DataReader Object

The DataReader object provides a forward-only, read-only, connected stream recordset from

a database. Unlike other components of the Data Provider, DataReader objects cannot be directly

instantiated. Rather, the DataReader is returned as the result of the Command object's

ExecuteReader method. The SqlCommand.ExecuteReader method returns a SqlDataReader object,

and the OleDbCommand.ExecuteReader method returns an OleDbDataReader object. The

DataReader can provide rows of data directly to application logic when you do not need to keep the

data cached in memory. Because only one row is in memory at a time, the DataReader provides the

lowest overhead in terms of system performance but requires the exclusive use of an open

Connection object for the lifetime of the DataReader.

The DataAdapter Object

Database programming with ADO.Net 2015 Batch 2015 Batch

Prepared By Dr.D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 4 of 10

Coimbatore -21

The DataAdapter is the class at the core of ADO .NET's disconnected data access. It is

essentially the middleman facilitating all communication between the database and a DataSet. The

DataAdapter is used either to fill a DataTable or DataSet with data from the database with it's Fill

method. After the memory-resident data has been manipulated, the DataAdapter can commit the

changes to the database by calling the Update method. The DataAdapter provides four properties

that represent database commands:

1. SelectCommand

2. InsertCommand

3. DeleteCommand

4. UpdateCommand

When the Update method is called, changes in the DataSet are copied back to the database and the

appropriate InsertCommand, DeleteCommand, or UpdateCommand is executed.

Data Access with Server Explorer

Visual Basic allows us to work with databases in two ways, visually and code. In Visual

Basic, Server Explorer allows us to work with connections across different data sources visually.

Lets see how we can do that with Server Explorer. Server Explorer can be viewed by selecting

View->Server Explorer from the main menu or by pressing Ctrl+Alt+S on the keyboard. The

window that is displayed is the Server Explorer which lets us create and examine data

connections. The Image below displays the Server Explorer.

Let’s start working with the Server Explorer. We will work with SQL Server, the default

provider for .NET. We'll be displaying data from Customers table in sample North wind database in

SQL Server. First, we need to establish a connection to this database. To do that, right-click on the

http://www.startvbdotnet.com/ado/serverexplorer.aspx

Database programming with ADO.Net 2015 Batch 2015 Batch

Prepared By Dr.D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 5 of 10

Coimbatore -21

Data Connections icon in Server Explorer and select Add Connection item. Doing that opens the

Data Link Properties dialog which allows you to enter the name of the server you want to

work along with login name and password. The Data Link properties window can be viewed in the

Image below.

Since we are working with a database already on the server, select the option "select the

database on the server". Selecting that lists the available databases on the server, select Northwind

database from the list. Once you finish selecting the database, click on the Test Connection tab to

test the connection. If the connection is successful, the message "Test Connection Succeeded" is

displayed. When connection to the database is set, click OK and close the Data Link Properties.

Closing the data link properties adds a new Northwind database connection to the Server Explorer

and this connection which we created just now is part of the whole Visual Basic environment which

can be accessed even when working with other applications. When you expand the connection node

("+" sign), it displays the Tables, Views and Stored Procedures in that Northwind sample

database. Expanding the Tables node will display all the tables available in the database. In this

example we will work with Customers table to display its data.

Now drag Customers table onto the form from the Server Explorer. Doing that creates

SQLConnection1 and SQLDataAdapter1 objects which are the data connection and data adapter

objects used to work with data. They are displayed on the component tray. Now we need to

generate the dataset that holds data from the data adapter. To do that select Data->Generate DataSet

from the main menu or right-click SQLDataAdapter1 object and select generate DataSet menu.

Doing that displays the generate Dataset dialog box like the image below.

Database programming with ADO.Net 2015 Batch 2015 Batch

Prepared By Dr.D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 6 of 10

Coimbatore -21

Once the dialogbox is displayed, select the radio button with New option to create a new

dataset. Make sure Customers table is checked and click OK. Clicking OK adds a dataset,

DataSet11 to the component tray and that's the dataset with which we will work. Now, drag a

DataGrid from toolbox. We will display Customers table in this data grid. Set the data grid's

DataSource property to DataSet11 and it's DataMember property to Customers. Next, we need to

fill the dataset with data from the data adapter. The following code does that:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)_

Handles MyBase.Load

DataSet11.Clear()

SqlDataAdapter1.Fill(DataSet11)

'filling the dataset with the data adapter’s fill method

End Sub

Once the application is executed, Customers table is displayed in the data grid. That's one of

the simplest ways of displaying data using the Server Explorer window.

Microsoft Access and Oracle Database

The process is same when working with Oracle or MS Access but with some minor changes.

When working with Oracle you need to select Microsoft OLE DB Provider for Oracle from the

Provider tab in the DataLink dialog. You need to enter the appropriate Username and password.

The Data Link Properties window can be viewed in the Image below.

Database programming with ADO.Net 2015 Batch 2015 Batch

Prepared By Dr.D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 7 of 10

Coimbatore -21

When working with MS Access you need to select Microsoft Jet 4.0 OLE DB provider from

the Provider tab in DataLink properties.

Using OleDb Provider

The Objects of the OleDb provider with which we work are:

1. The OleDbConnection Class : The OleDbConnection class represents a connection to

OleDb data source. OleDb connections are used to connect to most databases.

2. The OleDbCommand Class: The OleDbCommand class represents a SQL statement or

stored procedure that is executed in a database by an OLEDB provider.

3. The OleDbDataAdapter Class : The OleDbDataAdapter class acts as a middleman between

the datasets and OleDb data source. We use the Select, Insert, Delete and Update commands

for loading and updating the data.

4. The OleDbDataReader Class :The OleDbDataReader class creates a data reader for use with

an OleDb data provider. It is used to read a row of data from the database. The data is read

as forward-only stream which means that data is read sequentially, one row after another not

allowing you to choose a row you want or going backwards.

Coding

Public Class Form1

DECLERATION

 Dim con As ADODB.Connection

 Dim cmd As ADODB.Command

 Dim str, cnstr, sql As String

Database programming with ADO.Net 2015 Batch 2015 Batch

Prepared By Dr.D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 8 of 10

Coimbatore -21

 Dim cn As OleDb.OleDbConnection

FORM LOAD

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As

 System.EventArgs) Handles MyBase.Load

 con = New ADODB.Connection

 con.Open("Provider=Microsoft.Jet.OLEDB.4.0;Data Source=c:\new

 folder\employee.mdb")

 End Sub

ADDING A RECORD

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

 System.EventArgs) Handles Button1.Click

 str = "insert into table1 values('" + TextBox1.Text + "','" +

 TextBox2.Text + "','" + TextBox3.Text + "','" + TextBox4.Text +

 "','" + TextBox5.Text + "','" + TextBox6.Text + "','" +

 TextBox7.Text + "')"

 cmd = New ADODB.Command

 cmd.ActiveConnection = con

 cmd.CommandText = str

 cmd.Execute(MsgBox("Add"))

 cmd.Cancel()

 End Sub

DELETING A RECORD

 Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As

 System.EventArgs) Handles Button2.Click

 str = "delete * from table1 where empno=" + ComboBox1.Text + ""

 cmd = New ADODB.Command

 cmd.ActiveConnection = con

 cmd.CommandText = str

 cmd.Execute()

 MsgBox("Delete")

 cmd.Cancel()

 End Sub

ADDING ITEMS IN COMBO BOX

Private Sub ComboBox1_GotFocus(ByVal sender As Object, ByVal e As

 System.EventArgs) Handles ComboBox1.GotFocus

 ComboBox1.Items.Clear()

 cnstr = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=c:\new

 folder\employee.mdb"

 cn = New OleDb.OleDbConnection(cnstr)

 cn.Open()

 sql = "select empno from table1"

 Dim ocmd As New OleDb.OleDbCommand(sql, cn)

 Dim odatareader As OleDb.OleDbDataReader = ocmd.ExecuteReader

 While odatareader.Read

 ComboBox1.Items.Add(odatareader.GetValue(0).ToString())

 End While

Database programming with ADO.Net 2015 Batch 2015 Batch

Prepared By Dr.D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 9 of 10

Coimbatore -21

 odatareader.Close()

 cn.Close()

 End Sub

SELECTING ITEMS IN COMBO BOX & DISPLAYING IN TEXT BOX

Private Sub ComboBox1_SelectedIndexChanged(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles ComboBox1.SelectedIndexChanged

cnstr = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=c:\new folder\employee.mdb"

 cn = New OleDb.OleDbConnection(cnstr)

 cn.Open()

 sql = "select * from table1 where empno=" & CInt(ComboBox1.SelectedItem) & ""

 Dim ocmd As New OleDb.OleDbCommand(sql, cn)

 Dim odatareader As OleDb.OleDbDataReader = ocmd.ExecuteReader

 While odatareader.Read

 TextBox1.Text = odatareader.GetValue(0).ToString

 TextBox2.Text = odatareader.GetValue(1).ToString

 TextBox3.Text = odatareader.GetValue(2).ToString

 TextBox4.Text = odatareader.GetValue(3).ToString

 TextBox5.Text = odatareader.GetValue(4).ToString

 TextBox6.Text = odatareader.GetValue(5).ToString

 TextBox7.Text = odatareader.GetValue(6).ToString

 End While

 odatareader.Close()

 cn.Close()

 End Sub

UPDATING A RECORD

 Private Sub Button3_Click(ByVal sender As System.Object, ByVal e As

 System.EventArgs) Handles Button3.Click

 str = "delete * from table1 where empno=" + ComboBox1.Text + ""

 cmd = New ADODB.Command

 cmd.ActiveConnection = con

 cmd.CommandText = str

 cmd.Execute()

 cmd.Cancel()

 str = "insert into table1 values('" + TextBox1.Text + "','" + TextBox2.Text + "','" +

TextBox3.Text + "','" + TextBox4.Text + "','" + TextBox5.Text + "','" + TextBox6.Text + "','" +

TextBox7.Text + "')"

 cmd = New ADODB.Command

 cmd.ActiveConnection = con

 cmd.CommandText = str

 cmd.Execute()

 MsgBox("Update")

 cmd.Cancel()

 End Sub

End Class

Database programming with ADO.Net 2015 Batch 2015 Batch

Prepared By Dr.D.Shanmuga Priyaa Department of CS, CA & IT, KAHE 10 of 10

Coimbatore -21

Possible Questions

Part B (8 Marks)

1. Name any two Data Providers in ADO.NET

2. Why ADO.NET was called as Disconnected Architecture?

3. What is Data provider?

4. Explain ADO.NET Architecture in detail with a Block diagram.

5. Write a Program in VB.NET to Store and Retrieve student information.

6. Explain ADO.NET Architecture in detail with a Block diagram.

7. Write a Program in VB.NET to Add, Delete, Update records to database

8. Explain ADO.NET Architecture in detail with a Block diagram.

9. Write a Program to calculate Employee Salary and store the Details in Database

SUBJECT: VB.NET

SEMESTER : II UNIT : I

SUBJECT CODE: 18CCP304 CLASS : II M.COM CA

S.

NO QUESTIONS OPTION 1 OPTION 2 OPTION 3 OPTION 4 ANSWER

1

ADO Refers to _________ ActiveX Data

object

Active Data

Object

Application

Development object

None ActiveX Data

object

2

Which of this is not a server component Counter

Component

Permission

Checker

Component

Distributed

component

Content

Linking

Distributed

component

3

The Provider to access MS Access database is OLEDB Data

Provider

SQL Data

Provider

ADO Data Provider DOA Data

Provider

OLEDB Data

Provider

4

Which object is used to perform retrieve

Operation

Connection

Object

Command

Object

Data object Request Object Command Object

5

________ provides a language for describing

Web Services

UDDI WSDL DDT XML WSDL

6

Drive,Folder,File Objects allbelong to

TextStream

Object

FileSystem

Object

Dictionary Object NetworkSyste

m Object

FileSystem Object

7

Which of these properties belong to

TextStream Object

Drive Line Path Size Line

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under section 3 of UGC Act 1956)

Coimbatore – 641021

(For the candidates admitted from 2018 onwards)

8

CTS Refers to _________ Common type

system

Common type

service

Central type system None Common type

system

9

What data type is the output of a Web

Service?

Any data type we

choose

Only

numberic

values

Text Strings None of the

Above

None of the Above

10
SQL Data Provider is used For MS Access SQL Server Oracle All the above SQL Server

11

Which of the following operations can you

NOT perform on an ADO.NET DataSet? Development

A DataSet

can be

synchronised

with a

RecordSet

A DataSet can be

converted to XML

You can infer

the schema

from a DataSet

A DataSet can be

synchronised with

a RecordSet

12 Which of this not a OLE DB Provider ODBC drivers

DTP

Packages

OLAP

services MSDataShape

DTP Packages

OLAP services

13

__________ Object is specifically designed to

run commands against a data store Connection Command Dataset Object

DataReader

Object Command

14

__________ Object allows to connect to the

data stores Connection Command Dataset Object

DataReader

Object Connection

15

___________ ADO Object is to handle data

not formatted in structured rows and colums Connection Command Dataset Object Record Record

16 Which of these is a Access Data Type Text String Char Long Text

17

RDO stands for _______________ Remote data

object

remote

development

object

Remote data oriented Real Data

Object

Remote data object

18

Data set is a _______________ architecture connected disconnected self constructed locally

connected

disconnected

19

____________is responsible for providing and

maintaining connection to database

Data reader Data adapter data set Data provider Data provider

20

DAO stands for ______________ Data access object Data adapter

object

Data available object Data provider

oriented

Data access object

21

Local copy of database is called as

Data base copy Dataset Data provider Data tables Dataset

22

ADO NET comes with _____________

providers

2 3 4 6 2

23

OLEDB Data Provider is used For MS Access SQL Server Oracle SQL Server

and Oracle

a

24 _________ was a connected data access
RDO ADO.NET ASP.NET DAO ADO

25

In ADO.NET, The data are converted in to

__________ Format

XML XAML HTML CSS XML

26

______is a disconnected, in-memory

representation of data.

Dataset Data Reader Data Adapter Data Provider Dataset

27

The __________object which provides a

forward-only, read only, connected recordset

Dataset Data Reader Data Adapter Data Provider Data Reader

28

The ______ object which populates a

disconnected DataSet with data and performs

update

Dataset Data Reader Data Adapter Data Provider Data Adapter

29

A ______object establishes the connection for

the application with the database. Connection Command Dataset Object Record Connection

30

_________is the Extension for Access

Database .MDB .RTF .XML .GCC .MDB

31

__________Returns a single value from a

database query

ExecuteNonQuer

y ExecuteScalar ExecuteReader

Non

ExecuteReader ExecuteScalar

32

_________Returns a result set by way of a

DataReader object

ExecuteNonQuer

y ExecuteScalar ExecuteReader

Non

ExecuteReader ExecuteReader

33

__________ is essentially the middleman

facilitating all communication between the

database and a DataSet.

Dataset Data Reader Data Adapter Data Provider Data Adapter

34

Which Command is used to insert the New

Record to the Database Table Insert Add Update New Insert

35 _________ is a collection of Record Database Table File Document Table

36

Which of the Component is not a Component

of ADO.NET DataReader DataProvider DataAdapter DataChanger DataChanger

37

Which of the Following does not support

Client Server Technology DAO ADO RDO ADO.NET DAO

38

Which object is used to perform Update

Operation

Connection

Object

Command

Object

Data Adapter Request Object Data Adapter

39

In Access, the Image data type are stored

using _______ data type

Text BLOB Memo Number BLOB

40

In SQL, the Image data type are stored in

________ format

Text Unicode Binary Special Binary

41
Which of these is not a Access Data Type Text String memo date String

42
Last In First Out is called as ------------- Stack Queue Hash ArrayList Stack

43
First In First Out is called as ------------- Stack ArrayList Queue ArrayList Queue

44
Removing an item from queue is ----------- Enqueue Insert() deleting Dequeue Dequeue

45

A _______ is a combination of an array and a

hash table.

Stack Queue Sorted List ArrayList Sorted List

46

 ________ Property Gets or sets the number of

elements that the ArrayList can contain Capacity Count Item

Set

Capacity

47

 __________ Property Gets or sets the element

at the specified index. Capacity Count Item

Set

Item

48

The method used to Determines whether an

element is in the ArrayList.

Contains Item Available Capacity Contains

49

__________Returns an ArrayList, which

represents a subset of the elements in the

source ArrayList.

Set Range Get Range Index of Index Range Get Range

50

Which methods an element with the specified

key and value into the Hashtable.

Add() Insert() Insertat() addat() Add()

51

____________ Determines whether the

Hashtable contains a specific key.

ContainsKey Containsvalue ContainsIndex ContainsItem ContainsKey

52

Which Method Inserts an object at the top of

the Stack.

Push() Insert() Pop() Add() Push()

53

___________Adds an object to the end of the

Queue.

Enqueue Dequeue Insert Insertat Enqueue

54

which Method Sets the capacity to the actual

number of elements in the Queue.

LTrimToSize RTrimToSize TrimToSize STrimToSize TrimToSize

55

_____ Method Removes all elements from the

Queue.

Clear Remove Cls Removeat Clear

56

Which method is used to print the total

elements in the list

capacity count total sum count

57
Adding items to the queue is ----------- Enqueue Insert() deleting Dequeue Enqueue

58

 ---------- can hold more than one value for a

corresponding Key

HashTable ArrayList NameValueCollection Queue NameValueCollect

ion

59

How do you Create Constructors in VB.NET? Create a method

and name it with

the same name as

class name

Create a

method and

which is

named as

New

Create a method and

which is named as

Initialize

Create a

method and

which is named

as Inherit

Create a method

and name it with

the same name as

class name

60

How does VB.NET achieve polymorphism? Encapsulation Main function Abstract

Class/Functions

Using

Implementation

Abstract

Class/Functions

	1.pdf (p.1-2)
	2.pdf (p.3-57)
	3.pdf (p.58-62)
	4.pdf (p.63-122)
	5.pdf (p.123-126)
	6.pdf (p.127-192)
	7.pdf (p.193-196)
	8.pdf (p.197-221)
	VB.Net – COLLECTIONS
	Various Collection Classes and Their Usage
	Properties and Methods of the ArrayList Class
	Example:
	Properties and Methods of the Hashtable Class
	Example: (1)
	Properties and Methods of the Stack Class
	Example: (2)
	Properties and Methods of the Queue Class
	Example: (3)

	9.pdf (p.222-226)
	10.pdf (p.227-236)
	11.pdf (p.237-241)

