

# KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)

**Coimbatore – 641 021.** 

**LECTURE PLAN** 

**DEPARTMENT OF MATHEMATICS** 

| FACULTY NAME | : Dr. K.KALIDASS           |
|--------------|----------------------------|
| SUBJECT NAME | : PROBABILITY & STATISTICS |
| SUB.CODE     | : 17MMU302A                |
| SEMESTER     | : V                        |
| CLASS        | : III B. Sc. MATHEMATICS   |
|              |                            |

| S. No | Lecture<br>Duration | Topics To Be Covered                                | Support         |
|-------|---------------------|-----------------------------------------------------|-----------------|
|       | Hour                | L                                                   | Materials       |
|       |                     | UNIT-I                                              |                 |
| 1     | 1                   | Meaning and definition of statistics                | S1: Ch 1, 1-2   |
| 2     | 1                   | Frequency Distribution Measures of central tendency | S1: Ch 1, 3-4   |
| 3     | 1                   | Arithmetic Mean                                     | S1: Ch 1, 5-4   |
| 4     | 1                   | Tutorial                                            |                 |
| 5     | 1                   | Arithmetic Mean                                     | S1: Ch 1, 6-10  |
| 6     | 1                   | Median                                              | S1: Ch 1, 11-20 |
| 7     | 1                   | Mode                                                | S1: Ch 1, 21-23 |
| 8     | 1                   | Tutorial                                            |                 |
| 9     | 1                   | Measures of dispersion                              | S5: Ch 2, 12-18 |
| 10    | 1                   | Range                                               | S7: Ch 2, 41-44 |
| 11    | 1                   | Coefficient of range                                | S7: Ch 2, 44-47 |
| 12    | 1                   | Tutorial                                            |                 |
| 13    | 1                   | Quartile deviation                                  | S7: Ch 2, 48-50 |
| 14    | 1                   | Coefficient of Quartile deviation                   | S7: Ch 2, 51-55 |
| 15    | 1                   | Standard deviation                                  | S7: Ch 2, 55-60 |
| 16    | 1                   | Tutorial                                            |                 |
| 17    | 1                   | Coefficient of variation                            |                 |
| 18    | 1                   | Recapitulation and discussion of possible questions |                 |
|       |                     | Total number of hours planed for unit I 18 hours    |                 |
|       | 1                   | . UNIT-II                                           |                 |
| 1     | 1                   | Trial, event and sample space                       | S3: Ch 2, 21-23 |
| 2     | 1                   | Mutually exclusive event                            | S3: Ch 2, 24-26 |
| 3     | 1                   | Tutorial                                            |                 |
| 4     | 1                   | Exclusive and exhaustive events                     | S3: Ch 2, 27-29 |

| 5  | 1                                                | Dependent and independent events                      | S3: Ch 2, 30-33   |  |  |  |  |
|----|--------------------------------------------------|-------------------------------------------------------|-------------------|--|--|--|--|
| 6  | 1                                                | Tutorial                                              |                   |  |  |  |  |
| 7  | 1                                                | Simple and compound events                            | S3: Ch 2,34-37    |  |  |  |  |
| 8  | 1                                                | Mathematical properties                               | S3: Ch 2, 38-40   |  |  |  |  |
| 9  | 1                                                | Permutation and combination                           | S3: Ch 2, 41-45   |  |  |  |  |
| 10 | 1                                                | Tutorial                                              |                   |  |  |  |  |
| 11 | 1                                                | Probability axioms                                    | S3: Ch 2, 46-50   |  |  |  |  |
| 12 | 1                                                | Addition and multiplication theorem                   | S3: Ch 2, 51-54   |  |  |  |  |
| 13 | 1                                                | Real random variables (discrete and continuous)       | S3: Ch 2, 55-57   |  |  |  |  |
| 14 | 1                                                | Tutorial                                              |                   |  |  |  |  |
| 15 | 1                                                | Cumulative distribution function                      | S3: Ch 2, 58-59   |  |  |  |  |
| 16 | 1                                                | Probability density functions                         | S3: Ch 2, 60      |  |  |  |  |
| 17 | 1                                                | Moments, MGF, Characteristic function                 | S3: Ch 3, 113-117 |  |  |  |  |
| 18 |                                                  | Tutorial                                              |                   |  |  |  |  |
| 19 | 1                                                | . Recapitulation and discussion of possible questions |                   |  |  |  |  |
|    | Total number of hours planed for unit I 18 hours |                                                       |                   |  |  |  |  |
|    | ľ                                                |                                                       |                   |  |  |  |  |
| 1  | 1                                                | Uniform distribution                                  | S3: Ch 4, 148-150 |  |  |  |  |
| 2  | 1                                                | Binomial distribution                                 | S3: Ch 4, 151-153 |  |  |  |  |
| 3  | 1                                                | Tutorial                                              |                   |  |  |  |  |
| 4  | 1                                                | Poisson distribution                                  | S3: Ch 4, 154-157 |  |  |  |  |
| 5  | 1                                                | Properties                                            | S3: Ch 4,158-160  |  |  |  |  |
| 6  | 1                                                | Joint probability density functions                   | S3: Ch 4, 161-163 |  |  |  |  |
| 7  | 1                                                | Tutorial                                              |                   |  |  |  |  |
| 8  |                                                  | Marginal and conditional distributions                | S3: Ch 4, 164-167 |  |  |  |  |
| 9  | l                                                | Expectation of function of two random variables       | S3: Ch 4, 168     |  |  |  |  |
| 10 | 1                                                | Conditional expectations                              | S3: Ch 4, 169     |  |  |  |  |
| 11 | 1                                                | Tutorial                                              |                   |  |  |  |  |
| 12 | 1                                                | Conditional expectations-contd                        | S3: Ch 4, 170     |  |  |  |  |
| 13 | 1                                                | Conditional expectations-contd                        | S3: Ch 4, 170     |  |  |  |  |
| 14 | 1                                                | Independent random variables                          | S3: Ch 4, 171     |  |  |  |  |
| 15 | 1                                                | Tutorial                                              |                   |  |  |  |  |
| 16 | 1                                                | Independent random variables-contd                    | S3: Ch 4, 171-172 |  |  |  |  |
| 17 | 1                                                | Independent random variables-contd                    | S3: Ch 4, 172     |  |  |  |  |
| 18 | 1                                                | Tutorial                                              |                   |  |  |  |  |
| 19 | 1                                                | Recapitulation and discussion of possible questions   |                   |  |  |  |  |
|    |                                                  | Total number of hours planed for unit III 19 hours    |                   |  |  |  |  |
| 1  | 1                                                | UNIT-IV                                               | 02. OL 5 177 170  |  |  |  |  |
| 1  |                                                  | Uniform distribution,                                 | 53: Ch 5, 1//-1/9 |  |  |  |  |
| 2  | l                                                | Normal distribution                                   | S3: Ch 5, 180-182 |  |  |  |  |
| 3  | 1                                                | Tutorial                                              |                   |  |  |  |  |

Lesson Plan<sup>2017</sup>

| 4                                                 | 1 | Exponential distribution                            | S3: Ch 5, 185-187 |  |  |  |
|---------------------------------------------------|---|-----------------------------------------------------|-------------------|--|--|--|
| 5                                                 | 1 | Joint cumulative distribution function              | S3: Ch 5, 189-190 |  |  |  |
| 6                                                 | 1 | Properties                                          | S3: Ch 5, 191-192 |  |  |  |
| 7                                                 | 1 | Tutorial                                            |                   |  |  |  |
| 8                                                 | 1 | Joint probability density functions                 | S3: Ch 5, 193-195 |  |  |  |
| 9                                                 | 1 | Problems                                            | S3: Ch 5, 196-199 |  |  |  |
| 10                                                | 1 | Bivariate distribution                              | S3: Ch 5, 200     |  |  |  |
| 11                                                | 1 | Tutorial                                            |                   |  |  |  |
| 12                                                | 1 | Correlation coefficient                             | S3: Ch 5, 201-203 |  |  |  |
| 13                                                | 1 | Joint moment generating function                    | S3: Ch 5, 204     |  |  |  |
| 14                                                | 1 | Calculation of covariance                           | S3: Ch 5, 205-207 |  |  |  |
| 15                                                | 1 | Tutorial                                            |                   |  |  |  |
| 16                                                | 1 | Linear regression for two variables                 | S3: Ch 5, 209-210 |  |  |  |
| 17                                                | 1 | Tutorial                                            |                   |  |  |  |
| 18                                                | 1 | Recapitulation and discussion of possible questions |                   |  |  |  |
| Total number of hours planed for unit IV 18 hours |   |                                                     |                   |  |  |  |
|                                                   | I | UNIT-V                                              |                   |  |  |  |
| 1                                                 | 1 | Chebyshev's inequality                              | S2: Ch 1, 58      |  |  |  |
| 2                                                 | 1 | law of large numbers                                | S2: Ch 1, 58      |  |  |  |
| 3                                                 | 1 | Tutorial                                            |                   |  |  |  |
| 4                                                 | 1 | Central Limit theorem                               | S2: Ch 1, 59      |  |  |  |
| 5                                                 | 1 | Central Limit theorem                               | S2: Ch 1, 59      |  |  |  |
| 6                                                 | 1 | Central Limit theorem                               | S2: Ch 1, 60      |  |  |  |
| 7                                                 | 1 | Tutorial                                            |                   |  |  |  |
| 8                                                 | 1 | Markov Chains                                       | S4, Ch 4, 185-187 |  |  |  |
| 9                                                 | 1 | Markov Chains                                       | S4, Ch 4, 189-191 |  |  |  |
| 10                                                | 1 | Markov Chains                                       | S4, Ch 4, 192-195 |  |  |  |
| 11                                                | 1 | Tutorial                                            |                   |  |  |  |
| 12                                                | 1 | classification of states.                           | S4, Ch 4, 196-198 |  |  |  |
| 13                                                | 1 | classification of states.                           | S4, Ch 4, 199-200 |  |  |  |
| 14                                                | 1 | Tutorial                                            |                   |  |  |  |
| 15                                                | 1 | classification of states.                           | S4, Ch 4, 200     |  |  |  |
| 16                                                | 1 | classification of states.                           | S4, Ch 4, 201     |  |  |  |
| 17                                                | 1 | classification of states.                           | S4, Ch 4, 202     |  |  |  |
| 18                                                | 1 | Tutorial                                            |                   |  |  |  |
| 19                                                | 1 | Recapitulation and discussion of possible questions |                   |  |  |  |
| 20                                                | 1 | Discusion of previous year ESE qns                  |                   |  |  |  |
| 21                                                | 1 | Discusion of previous year ESE qns                  |                   |  |  |  |
| 22                                                | 1 | Discusion of previous year ESE qns                  |                   |  |  |  |
| Total number of hours planed for unit V 22 Hours  |   |                                                     |                   |  |  |  |

Unit Hours(L+T)

| Ι     | 18(14+4)  |
|-------|-----------|
| II    | 20(16+4)  |
| III   | 18(14+4)  |
| IV    | 18(14+4)  |
| V     | 22(18+4)  |
| Total | 96(76+20) |

# SUGGESTED READINGS

- 1. Gupta S.P., (2001). Statistical Methods, Sultan Chand & Sons, New Delhi.
- 2. Robert V. Hogg, Joseph W. McKean and Allen T. Craig., (2007). Introduction to Mathematical Statistics, Pearson Education, Asia.
- 3. Irwin Miller and Marylees Miller, John E. Freund, (2006). Mathematical Statistics with Application, Seventh Edition, Pearson Education, Asia.
- 4. Sheldon Ross., (2007). Introduction to Probability Model, Ninth Edition, Academic Press, Indian Reprint.
- 5. Pillai R.S.N., and Bagavathi V., (2002). Statistics , S. Chand & Company Ltd, New Delhi.
- 6. Srivastava T.N., and ShailajaRego., (2012). 2e, Statistics for Management, McGraw Hill Education, New Delhi.
- 7. Dr.P.N.Arora, (2002). A foundation course statistics, S.Chand& Company Ltd, New Delhi.

| Question                                                 | Opt 1            | Opt 2          | Opt 3            | Opt 4             | Answer            |
|----------------------------------------------------------|------------------|----------------|------------------|-------------------|-------------------|
| The word statistics is used as                           | singular word    | a plural word  | both singular    | neither singular  | both singular and |
|                                                          |                  |                | and plural words | nor plural word   | plural words      |
|                                                          |                  |                |                  |                   |                   |
| Classification is a process of arranging data in         | grouping of      | different rows | different        | different         | grouping of       |
|                                                          | related facts in |                | columns and      | columns           | related facts in  |
|                                                          | different        |                | rows             | grouping of       | different classes |
|                                                          | classes          |                |                  | related facts in  |                   |
|                                                          |                  |                |                  | different classes |                   |
| To represent two or more sets of interrelated data,      | bar diagram      | pie diagram    | histogram        | multiple bar      | multiple bar      |
| we use                                                   |                  |                |                  | diagram           | diagram           |
| Histogram is a graph of                                  | Time series      | frequency      | cumulative       | normal            | frequency         |
|                                                          |                  | distribution   | frequency        | distribution      | distribution      |
|                                                          |                  |                | distribution     |                   |                   |
| Univariate data consists of                              | one variable     | two variables  | three variable   | four              | one variable      |
| Data are generally obtained from                         | Primary          | Secondary      | Both primary     | neither primary   | Both primary and  |
|                                                          | sources          | sources        | and secondary    | nor secondary     | secondary         |
|                                                          |                  |                | sources          | sources           | sources           |
| In geographical classification data are classified on    | area             | attributes     | time             | location          | area              |
| the basis of                                             |                  |                |                  |                   |                   |
| In qualitative classification data are classified on the | area             | attributes     | time             | location          | attributes        |
| basis of                                                 |                  |                |                  |                   |                   |
| In quantitative classification data are classified on    | area             | attributes     | time             | magnitude         | magnitude         |
| the basis of                                             |                  |                |                  |                   |                   |
| Number of source of data is                              | 2                | 3              | 4                | 1                 | 2                 |
| Squares and rectangles are                               | Two              | One            | Three            | Multi             | Two dimensional   |
|                                                          | dimensional      | dimensional    | dimensional      | dimensional       | diagram           |
|                                                          | diagram          | diagram        | diagram          | diagram           |                   |
| Data originally collected for an investigation is        | Tabulation       | Primary data   | Secondary data   | Published data    | Primary data      |
| known as                                                 |                  |                |                  |                   |                   |
| The heading of a row in a statistical table is known     | stub             | caption        | title            | heading           | stub              |
| as                                                       |                  |                |                  |                   |                   |

| Statistics can                                                      | prove anything | disprove      | neither prove      | none of these         | neither prove nor |
|---------------------------------------------------------------------|----------------|---------------|--------------------|-----------------------|-------------------|
|                                                                     |                | anything      | nor disprove       |                       | disprove anything |
|                                                                     |                |               | anything but it is |                       | but it is just a  |
|                                                                     |                |               | just a tool        |                       | tool              |
| Statistics is also a science of                                     | estimates      | both a and b  | probabilities      | neither a nor b       | both a and b      |
| Statistics is                                                       | quantitative   | a qualitative | both quantitative  | neither               | both quantitative |
|                                                                     | science        | science       | and qualitative    | quantitative nor      | and qualitative   |
|                                                                     |                |               | science            | qualitative           | science           |
| Statistics considers                                                | a single item  | a set of item | either a single    | neither a single      | a set of item     |
|                                                                     |                |               | item or a set of   | item or a set of      |                   |
|                                                                     |                |               | item               | item                  |                   |
| Statistics can be considered as                                     | an art         | a science     | both an art and    | neither an art nor    | both an art and   |
|                                                                     |                |               | science            | a science             | science           |
| The other name of cumulative frequency curve is                     | Ogive          | Bars          | Histogram          | Pie diagram           | Ogive             |
| Number of methods of collection of primary data is                  | 2              | 3             | 4                  | 5                     | 5                 |
| Number of questions in a questionnaire should be                    | .5             | 10            | maximum            | minimum               | minimum           |
| Sources of secondary data are                                       | Published      | Unpublished   | Either Published   | primary source        | Either Published  |
|                                                                     | sources        | sources       | sources or         |                       | sources or        |
|                                                                     |                |               | Unpublished        |                       | Unpublished       |
|                                                                     |                |               | sources            |                       | sources           |
| Compared with primary data, secondary data are                      | more reliable  | less reliable | equally reliable   | uniformly<br>reliable | less reliable     |
| are column headings                                                 | stub           | heading       | bar                | captions              | captions          |
| Mid value=                                                          | lower          | upper         | lower              | lower boundary+       | lower boundary+   |
|                                                                     | boundary/2     | boundary/2    | boundary+          | upper boundary        | upper             |
|                                                                     |                |               | upper              |                       | boundary)/2       |
|                                                                     |                |               | boundary)/2        |                       |                   |
| The origin of the word statistics has been traced to the Latin word | statista       | status        | statistik          | statistique           | status            |
| Graphs of frequency distribution are                                | histogram      | pie diagram   | bar chart          | circle                | histogram         |

| cubes are                                               | Two                | One                | Three                        | Multi             | Three              |
|---------------------------------------------------------|--------------------|--------------------|------------------------------|-------------------|--------------------|
|                                                         | dimensional        | dimensional        | dimensional                  | dimensional       | dimensional        |
|                                                         | diagram            | diagram            | diagram                      | diagram           | diagram            |
| is the difference between the value                     | class interval     | frequency          | number of items              | range             | range              |
| of the smallest item and the valueof the largest item.  |                    |                    |                              |                   |                    |
| is one which is used by the individual or               | primary data       | secondary data     | both                         |                   | primary data       |
| agency which collect it.                                |                    |                    |                              |                   |                    |
| Exclusive class intervals suit                          | discrete           | continuous         | both                         | neither           | continuous         |
|                                                         | variables          | variables          |                              |                   | variables          |
| A table is a systematic arrangement of statistical data | columns            | rows               | both columns                 | stubs             | both columns and   |
| in                                                      |                    |                    | and rows                     |                   | rows               |
| The collected data in any statistical investigation are | raw data           | arranged data      | classified data              | tabulated data    | raw data           |
| known as                                                |                    |                    |                              |                   |                    |
| The emitting form of a frequency polygon is called -    | histogram          | ogive              | bar diagram                  | frequency curve   | frequency curve    |
|                                                         |                    |                    |                              |                   |                    |
| In chronological classification data are classified on  | time               | attributes         | class intervals              | location          | time               |
| the basis of                                            |                    |                    |                              |                   |                    |
| Bar diagrams are dimensional diagrams                   | two                | three              | one                          | multi             | one                |
| Diagrams and graphs are tools of                        | collection of      | presentation       | analysis                     | summarization     | presentation       |
|                                                         | data               |                    |                              |                   |                    |
| In a two dimensional diagram                            | only height is     | only width is      | height,width and             | Both height and   | only height is     |
|                                                         | considered         | considered         | thickness are                | width are         | considered         |
|                                                         |                    |                    | considered                   | considered        |                    |
| Which one of the following is a measure of central      | Median             | range              | variation                    | correlation       | Median             |
| The total of the values of the items divided by their   | Madian             | Arithmetic         | mode                         |                   | A mithematic macon |
| number of items is known as                             | Median             | mean               | mode                         | range             | Anthinetic mean    |
| In the short-cut method of arithmetic mean, the         |                    | A y                | $(\mathbf{x}, \mathbf{A})/2$ |                   |                    |
| deviation is taken as                                   | X - A              | A - X              | (X - A) / c                  | (A - X) / C       | X - A              |
| The sum of the deviations of the values from their      | 1                  |                    | 4                            |                   |                    |
| arithmetic mean is                                      | - 1                | one                | two                          | zero              | zero               |
| The formula for the weighted arithmetic mean is         | $\sum wx / \sum w$ | $\sum w / \sum wx$ | $\sum x / n$                 | $\sum x / \sum f$ | $\sum wx / \sum w$ |
| Find the Mean of the following values. 5, 15, 20, 10,   | 5                  | 18                 | 41                           | 20                | 18                 |
| Which of the followings represents median?              | First quartile     | Third quartile     | Second quartile              | Q.D               | Second quartile    |

| Which of the measure of central tendency is not affected by extreme values?        | Mode                            | Median                           | sixth deciles                    | Mean                         | Median                            |
|------------------------------------------------------------------------------------|---------------------------------|----------------------------------|----------------------------------|------------------------------|-----------------------------------|
| Sum of square of the deviations about mean is                                      | Maximum                         | one                              | zero                             | Minimum                      | Minimum                           |
| Median is the value of item when all the items are in order of magnitude.          | First                           | second                           | Middle most                      | last                         | Middle most                       |
| Find the Median of the following data 160, 180, 175, 179, 164, 178, 171, 164, 176. | 160                             | 175                              | 176                              | 180                          | 175                               |
| The position of the median for an individual series is                             | (N + 1) / 2                     | (N + 2) / 2                      | N/2                              | N/4                          | (N + 1) / 2                       |
| Mode is the value, which has                                                       | Average<br>frequency<br>density | less frequency<br>density        | greatest<br>frequency<br>density | graetest<br>frequency        | greatest<br>frequency density     |
| A frequency distribution having two modes is said to                               | unimodal                        | bimodal                          | trimodal                         | modal                        | bimodal                           |
| Mode has stable than mean.                                                         | less                            | more                             | same                             | most                         | less                              |
| Which of the following is not a measure of dispersion?                             | Range                           | quartile<br>deviation            | standard<br>deviation            | median                       | median                            |
| Range of the given values is given by                                              | L- S                            | L+S                              | S+L                              | LS                           | L-S                               |
| Which one of the following is relative measure of dispersion?                      | Range                           | Q.D                              | S.D                              | coefficient of variation     | coefficient of variation          |
| Coefficient of variation is defined as                                             | (AM *<br>100)/S.D               | (S.D*<br>100)/A.M                | S.D/A.M                          | (1/S.D)*100                  | (S.D* 100)/A.M                    |
| If the values of median and mean are 72 and 78 respectively, then find the mode.   | 16                              | 60                               | 70                               | 76                           | 60                                |
| Find Mean for the following 3, 4, 5.                                               | 4                               | 2.25                             | 3                                | 2.28                         | 4                                 |
| The coefficient of range                                                           | L-S/L+S                         | L+S /L-S                         | L-S                              | L+S                          | L-S /L+S                          |
| Second quartile is also called as                                                  | Mode                            | mean                             | median                           | G.M                          | median                            |
| If A.M = 8, N=12, then find $\sum X$ .                                             | 76                              | 80                               | 86                               | 96                           | 96                                |
| If the value of mode and mean is 60 and 66 then,<br>find the value of median.      | 64                              | 46                               | 54                               | 44                           | 64                                |
| The formula for median for continuous series is                                    | M = (N+1) / 2                   | M = L + [ $(N/2 + cf) / f ]$ * i | M =L -<br>(N/2+cf)/f* i          | M = L + [(N/2 - cf) / f] * i | M = L + [ (N/2 -<br>cf) / f ] * i |

| Median is                                                                                   | Average point               | Midpoint                            | Most likely<br>point | Most remote point     | Midpoint                         |
|---------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------|----------------------|-----------------------|----------------------------------|
| Mode is the value which                                                                     | Is a mid point              | Occur the most                      | Average of all       | Most remote<br>Likely | Occur the most                   |
| Is known as positional average                                                              | Median                      | Mean                                | Mode                 | Range                 | Median                           |
| The median of marks 55, 60, 50, 40, 57, 45, 58, 65, 57, 48 of 10 students is                | 55                          | 57                                  | 52.5                 | 56                    | 56                               |
| The middle most value of a frequency distribution table is known as                         | Mean                        | Median                              | Mode                 | Range.                | Median                           |
| The middle most value of a frequency distribution table is known as                         | Mean                        | Median                              | Mode                 | Range                 | Median                           |
| Measures of central tendency is also known as                                               | Dispersion                  | averages                            | correlation          | tendency              | correlation                      |
| From the given data 35,40,43,32,27 the coefficient                                          | 23                          | 0.23                                | 13                   | 0.13                  | 13                               |
| If $S.D = 6$ , then find variance.                                                          | 6                           | 36                                  | 42                   | 12                    | 36                               |
| Which one of the following shows the relation between variance and standard deviation?      | var = square<br>root of S.D | S.D = square<br>root of<br>variance | variance = S.D       | variance / S.D =<br>1 | S.D = square root<br>of variance |
| If variance is 64, then find S.D.                                                           | 8                           | 13                                  | 14                   | 11                    | 8                                |
| Which of the following measures of averages divide<br>the observation into two parts        | Mean                        | Median                              | Mode                 | Range                 | Median                           |
| Which of the following measures of averages divide<br>the observation into four equal parts | Mean                        | Median                              | Mode                 | Quartile              | Quartile                         |
| Arithmetic mean of the series 1, 3, 5, 7, 9 is                                              | 5                           | 6                                   | 5.5                  | 6.5                   | 5                                |
| Arithmetic mean of the series 3, 4, 5, 6, 7 is                                              | 5.5                         | 6                                   | 5                    | 6.5                   | 5                                |
| The Arithmetic mean for the series 3, 5, 5, 2, 6, 2, 9, 5, 8, 6, is                         | 5                           | 6                                   | 5.5                  | 6.5                   | 5                                |
| The median value for the series 3, 5, 5, 2, 6, 2, 9, 5,                                     | 6                           | 5                                   | 5.5                  | 6.5                   | 5                                |
| The mode for the series 3, 5, 6, 2, 6, 2, 9, 5, 8, 6 is                                     | 5                           | 6                                   | 5.5                  | 6.5                   | 6                                |
| The Arithmetic mean for the series 51.6, 50.3, 48.9, 48.7, 48.5 is                          | 49.8                        | 50                                  | 48.9                 | 49.6                  | 49.8                             |
| The Median for the series 51.6, 50.3, 48.9, 48.7, 49.5, is                                  | 49.8                        | 50                                  | 48.9                 | 49.6                  | 49.6                             |

| The Mode for the series 51.6, 50.3, 48.9, 48.7, 49.5 is | 49.8                             | 50                       | 48.9           | 49.6                         | 48.9                       |
|---------------------------------------------------------|----------------------------------|--------------------------|----------------|------------------------------|----------------------------|
| If standard deviation is 5, then the variance is        | 5                                | 625                      | 25             | 2.23068                      | 25                         |
| Standard deviation is also called as                    | Root mean<br>square<br>deviation | mean square<br>deviation | Root deviation | Root median square deviation | Root mean square deviation |

| Question                                                 | Opt 1            | Opt 2          | Opt 3            | Opt 4             | Answer            |
|----------------------------------------------------------|------------------|----------------|------------------|-------------------|-------------------|
| The word statistics is used as                           | singular word    | a plural word  | both singular    | neither singular  | both singular and |
|                                                          |                  |                | and plural words | nor plural word   | plural words      |
|                                                          |                  |                |                  |                   |                   |
| Classification is a process of arranging data in         | grouping of      | different rows | different        | different         | grouping of       |
|                                                          | related facts in |                | columns and      | columns           | related facts in  |
|                                                          | different        |                | rows             | grouping of       | different classes |
|                                                          | classes          |                |                  | related facts in  |                   |
|                                                          |                  |                |                  | different classes |                   |
| To represent two or more sets of interrelated data,      | bar diagram      | pie diagram    | histogram        | multiple bar      | multiple bar      |
| we use                                                   |                  |                |                  | diagram           | diagram           |
| Histogram is a graph of                                  | Time series      | frequency      | cumulative       | normal            | frequency         |
|                                                          |                  | distribution   | frequency        | distribution      | distribution      |
|                                                          |                  |                | distribution     |                   |                   |
| Univariate data consists of                              | one variable     | two variables  | three variable   | four              | one variable      |
| Data are generally obtained from                         | Primary          | Secondary      | Both primary     | neither primary   | Both primary and  |
|                                                          | sources          | sources        | and secondary    | nor secondary     | secondary         |
|                                                          |                  |                | sources          | sources           | sources           |
| In geographical classification data are classified on    | area             | attributes     | time             | location          | area              |
| the basis of                                             |                  |                |                  |                   |                   |
| In qualitative classification data are classified on the | area             | attributes     | time             | location          | attributes        |
| basis of                                                 |                  |                |                  |                   |                   |
| In quantitative classification data are classified on    | area             | attributes     | time             | magnitude         | magnitude         |
| the basis of                                             |                  |                |                  |                   |                   |
| Number of source of data is                              | 2                | 3              | 4                | 1                 | 2                 |
| Squares and rectangles are                               | Two              | One            | Three            | Multi             | Two dimensional   |
|                                                          | dimensional      | dimensional    | dimensional      | dimensional       | diagram           |
|                                                          | diagram          | diagram        | diagram          | diagram           |                   |
| Data originally collected for an investigation is        | Tabulation       | Primary data   | Secondary data   | Published data    | Primary data      |
| known as                                                 |                  |                |                  |                   |                   |
| The heading of a row in a statistical table is known     | stub             | caption        | title            | heading           | stub              |
| as                                                       |                  |                |                  |                   |                   |

| Statistics can                                                      | prove anything | disprove      | neither prove      | none of these         | neither prove nor |
|---------------------------------------------------------------------|----------------|---------------|--------------------|-----------------------|-------------------|
|                                                                     |                | anything      | nor disprove       |                       | disprove anything |
|                                                                     |                |               | anything but it is |                       | but it is just a  |
|                                                                     |                |               | just a tool        |                       | tool              |
| Statistics is also a science of                                     | estimates      | both a and b  | probabilities      | neither a nor b       | both a and b      |
| Statistics is                                                       | quantitative   | a qualitative | both quantitative  | neither               | both quantitative |
|                                                                     | science        | science       | and qualitative    | quantitative nor      | and qualitative   |
|                                                                     |                |               | science            | qualitative           | science           |
| Statistics considers                                                | a single item  | a set of item | either a single    | neither a single      | a set of item     |
|                                                                     |                |               | item or a set of   | item or a set of      |                   |
|                                                                     |                |               | item               | item                  |                   |
| Statistics can be considered as                                     | an art         | a science     | both an art and    | neither an art nor    | both an art and   |
|                                                                     |                |               | science            | a science             | science           |
| The other name of cumulative frequency curve is                     | Ogive          | Bars          | Histogram          | Pie diagram           | Ogive             |
| Number of methods of collection of primary data is                  | 2              | 3             | 4                  | 5                     | 5                 |
| Number of questions in a questionnaire should be                    | .5             | 10            | maximum            | minimum               | minimum           |
| Sources of secondary data are                                       | Published      | Unpublished   | Either Published   | primary source        | Either Published  |
|                                                                     | sources        | sources       | sources or         |                       | sources or        |
|                                                                     |                |               | Unpublished        |                       | Unpublished       |
|                                                                     |                |               | sources            |                       | sources           |
| Compared with primary data, secondary data are                      | more reliable  | less reliable | equally reliable   | uniformly<br>reliable | less reliable     |
| are column headings                                                 | stub           | heading       | bar                | captions              | captions          |
| Mid value=                                                          | lower          | upper         | lower              | lower boundary+       | lower boundary+   |
|                                                                     | boundary/2     | boundary/2    | boundary+          | upper boundary        | upper             |
|                                                                     |                |               | upper              |                       | boundary)/2       |
|                                                                     |                |               | boundary)/2        |                       |                   |
| The origin of the word statistics has been traced to the Latin word | statista       | status        | statistik          | statistique           | status            |
| Graphs of frequency distribution are                                | histogram      | pie diagram   | bar chart          | circle                | histogram         |

| cubes are                                               | Two                | One                | Three                        | Multi             | Three              |
|---------------------------------------------------------|--------------------|--------------------|------------------------------|-------------------|--------------------|
|                                                         | dimensional        | dimensional        | dimensional                  | dimensional       | dimensional        |
|                                                         | diagram            | diagram            | diagram                      | diagram           | diagram            |
| is the difference between the value                     | class interval     | frequency          | number of items              | range             | range              |
| of the smallest item and the valueof the largest item.  |                    |                    |                              |                   |                    |
| is one which is used by the individual or               | primary data       | secondary data     | both                         |                   | primary data       |
| agency which collect it.                                |                    |                    |                              |                   |                    |
| Exclusive class intervals suit                          | discrete           | continuous         | both                         | neither           | continuous         |
|                                                         | variables          | variables          |                              |                   | variables          |
| A table is a systematic arrangement of statistical data | columns            | rows               | both columns                 | stubs             | both columns and   |
| in                                                      |                    |                    | and rows                     |                   | rows               |
| The collected data in any statistical investigation are | raw data           | arranged data      | classified data              | tabulated data    | raw data           |
| known as                                                |                    |                    |                              |                   |                    |
| The emitting form of a frequency polygon is called -    | histogram          | ogive              | bar diagram                  | frequency curve   | frequency curve    |
|                                                         |                    |                    |                              |                   |                    |
| In chronological classification data are classified on  | time               | attributes         | class intervals              | location          | time               |
| the basis of                                            |                    |                    |                              |                   |                    |
| Bar diagrams are dimensional diagrams                   | two                | three              | one                          | multi             | one                |
| Diagrams and graphs are tools of                        | collection of      | presentation       | analysis                     | summarization     | presentation       |
|                                                         | data               |                    |                              |                   |                    |
| In a two dimensional diagram                            | only height is     | only width is      | height,width and             | Both height and   | only height is     |
|                                                         | considered         | considered         | thickness are                | width are         | considered         |
|                                                         |                    |                    | considered                   | considered        |                    |
| Which one of the following is a measure of central      | Median             | range              | variation                    | correlation       | Median             |
| The total of the values of the items divided by their   | Madian             | Arithmetic         | mode                         |                   | A mithematic macon |
| number of items is known as                             | Median             | mean               | mode                         | range             | Anthinetic mean    |
| In the short-cut method of arithmetic mean, the         |                    | A y                | $(\mathbf{x}, \mathbf{A})/2$ |                   |                    |
| deviation is taken as                                   | X - A              | A - X              | (X - A) / c                  | (A - X) / C       | X - A              |
| The sum of the deviations of the values from their      | 1                  |                    | 4                            |                   |                    |
| arithmetic mean is                                      | - 1                | one                | two                          | zero              | zero               |
| The formula for the weighted arithmetic mean is         | $\sum wx / \sum w$ | $\sum w / \sum wx$ | $\sum x / n$                 | $\sum x / \sum f$ | $\sum wx / \sum w$ |
| Find the Mean of the following values. 5, 15, 20, 10,   | 5                  | 18                 | 41                           | 20                | 18                 |
| Which of the followings represents median?              | First quartile     | Third quartile     | Second quartile              | Q.D               | Second quartile    |

| Which of the measure of central tendency is not affected by extreme values?        | Mode                            | Median                           | sixth deciles                    | Mean                         | Median                            |
|------------------------------------------------------------------------------------|---------------------------------|----------------------------------|----------------------------------|------------------------------|-----------------------------------|
| Sum of square of the deviations about mean is                                      | Maximum                         | one                              | zero                             | Minimum                      | Minimum                           |
| Median is the value of item when all the items are in order of magnitude.          | First                           | second                           | Middle most                      | last                         | Middle most                       |
| Find the Median of the following data 160, 180, 175, 179, 164, 178, 171, 164, 176. | 160                             | 175                              | 176                              | 180                          | 175                               |
| The position of the median for an individual series is                             | (N + 1) / 2                     | (N + 2) / 2                      | N/2                              | N/4                          | (N + 1) / 2                       |
| Mode is the value, which has                                                       | Average<br>frequency<br>density | less frequency<br>density        | greatest<br>frequency<br>density | graetest<br>frequency        | greatest<br>frequency density     |
| A frequency distribution having two modes is said to                               | unimodal                        | bimodal                          | trimodal                         | modal                        | bimodal                           |
| Mode has stable than mean.                                                         | less                            | more                             | same                             | most                         | less                              |
| Which of the following is not a measure of dispersion?                             | Range                           | quartile<br>deviation            | standard<br>deviation            | median                       | median                            |
| Range of the given values is given by                                              | L- S                            | L+S                              | S+L                              | LS                           | L-S                               |
| Which one of the following is relative measure of dispersion?                      | Range                           | Q.D                              | S.D                              | coefficient of variation     | coefficient of variation          |
| Coefficient of variation is defined as                                             | (AM *<br>100)/S.D               | (S.D*<br>100)/A.M                | S.D/A.M                          | (1/S.D)*100                  | (S.D* 100)/A.M                    |
| If the values of median and mean are 72 and 78 respectively, then find the mode.   | 16                              | 60                               | 70                               | 76                           | 60                                |
| Find Mean for the following 3, 4, 5.                                               | 4                               | 2.25                             | 3                                | 2.28                         | 4                                 |
| The coefficient of range                                                           | L-S /L+S                        | L+S /L-S                         | L-S                              | L+S                          | L-S /L+S                          |
| Second quartile is also called as                                                  | Mode                            | mean                             | median                           | G.M                          | median                            |
| If A.M = 8, N=12, then find $\sum X$ .                                             | 76                              | 80                               | 86                               | 96                           | 96                                |
| If the value of mode and mean is 60 and 66 then,<br>find the value of median.      | 64                              | 46                               | 54                               | 44                           | 64                                |
| The formula for median for continuous series is                                    | M = (N+1) / 2                   | M = L + [ $(N/2 + cf) / f ]$ * i | M =L -<br>(N/2+cf)/f* i          | M = L + [(N/2 - cf) / f] * i | M = L + [ (N/2 -<br>cf) / f ] * i |

| Median is                                                                                   | Average point               | Midpoint                            | Most likely<br>point | Most remote point     | Midpoint                         |
|---------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------|----------------------|-----------------------|----------------------------------|
| Mode is the value which                                                                     | Is a mid point              | Occur the most                      | Average of all       | Most remote<br>Likely | Occur the most                   |
| Is known as positional average                                                              | Median                      | Mean                                | Mode                 | Range                 | Median                           |
| The median of marks 55, 60, 50, 40, 57, 45, 58, 65, 57, 48 of 10 students is                | 55                          | 57                                  | 52.5                 | 56                    | 56                               |
| The middle most value of a frequency distribution table is known as                         | Mean                        | Median                              | Mode                 | Range.                | Median                           |
| The middle most value of a frequency distribution table is known as                         | Mean                        | Median                              | Mode                 | Range                 | Median                           |
| Measures of central tendency is also known as                                               | Dispersion                  | averages                            | correlation          | tendency              | correlation                      |
| From the given data 35,40,43,32,27 the coefficient                                          | 23                          | 0.23                                | 13                   | 0.13                  | 13                               |
| If $S.D = 6$ , then find variance.                                                          | 6                           | 36                                  | 42                   | 12                    | 36                               |
| Which one of the following shows the relation between variance and standard deviation?      | var = square<br>root of S.D | S.D = square<br>root of<br>variance | variance = S.D       | variance / S.D =<br>1 | S.D = square root<br>of variance |
| If variance is 64, then find S.D.                                                           | 8                           | 13                                  | 14                   | 11                    | 8                                |
| Which of the following measures of averages divide<br>the observation into two parts        | Mean                        | Median                              | Mode                 | Range                 | Median                           |
| Which of the following measures of averages divide<br>the observation into four equal parts | Mean                        | Median                              | Mode                 | Quartile              | Quartile                         |
| Arithmetic mean of the series 1, 3, 5, 7, 9 is                                              | 5                           | 6                                   | 5.5                  | 6.5                   | 5                                |
| Arithmetic mean of the series 3, 4, 5, 6, 7 is                                              | 5.5                         | 6                                   | 5                    | 6.5                   | 5                                |
| The Arithmetic mean for the series 3, 5, 5, 2, 6, 2, 9, 5, 8, 6, is                         | 5                           | 6                                   | 5.5                  | 6.5                   | 5                                |
| The median value for the series 3, 5, 5, 2, 6, 2, 9, 5,                                     | 6                           | 5                                   | 5.5                  | 6.5                   | 5                                |
| The mode for the series 3, 5, 6, 2, 6, 2, 9, 5, 8, 6 is                                     | 5                           | 6                                   | 5.5                  | 6.5                   | 6                                |
| The Arithmetic mean for the series 51.6, 50.3, 48.9, 48.7, 48.5 is                          | 49.8                        | 50                                  | 48.9                 | 49.6                  | 49.8                             |
| The Median for the series 51.6, 50.3, 48.9, 48.7, 49.5, is                                  | 49.8                        | 50                                  | 48.9                 | 49.6                  | 49.6                             |

| The Mode for the series 51.6, 50.3, 48.9, 48.7, 49.5 is | 49.8                             | 50                       | 48.9           | 49.6                         | 48.9                       |
|---------------------------------------------------------|----------------------------------|--------------------------|----------------|------------------------------|----------------------------|
| If standard deviation is 5, then the variance is        | 5                                | 625                      | 25             | 2.23068                      | 25                         |
| Standard deviation is also called as                    | Root mean<br>square<br>deviation | mean square<br>deviation | Root deviation | Root median square deviation | Root mean square deviation |

| Question                                                                                                           | Opt 1                              | Opt 2                                    | Opt 3                                               | Opt 4                                 | Answer                                   |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------|-----------------------------------------------------|---------------------------------------|------------------------------------------|
| The regression line cut each other at the                                                                          | Average of X only                  | Average of Y                             | Average of X                                        | the median of X                       | Average of X and                         |
| point of                                                                                                           |                                    | only                                     | and Y                                               | on Y                                  | Y                                        |
| Given the coefficient of correlation being                                                                         | 0.98                               | 0.64                                     | 0.66                                                | 0.54                                  | 0.64                                     |
| 0.8, the coefficient of determination will be                                                                      |                                    |                                          |                                                     |                                       |                                          |
| 0.9, the coefficient of determination will be                                                                      | 0.98                               | 0.81                                     | 0.66                                                | 0.54                                  | 0.81                                     |
| If the coefficient of determination being $0.49$ , what is the coefficient of correlation                          | 0.7                                | 0.8                                      | 0.9                                                 | 0.6                                   | 0.7                                      |
| Given the coefficient of determination being                                                                       |                                    |                                          |                                                     |                                       |                                          |
| 0.36, the coefficient of correlation will be                                                                       | 0.3                                | 0.4                                      | 0.6                                                 | 0.5                                   | 0.6                                      |
| Which one of the following refers the term Correlation?                                                            | Relationship<br>between two values | Relationship<br>between two<br>variables | Average<br>relationship<br>between two<br>variables | Relationship<br>between two<br>things | Relationship<br>between two<br>variables |
| If $r = +1$ , then the relationship between the given two variables is                                             | perfectly positive                 | perfectly negative                       | no correlation                                      | high positive                         | perfectly positive                       |
| If $r = -1$ , then the relationship between the given two variables is                                             | perfectly positive                 | perfectly negative                       | no correlation                                      | low Positive                          | perfectly negative                       |
| If $r = 0$ , then the relationship between the given two variables is                                              | Perfectly positive                 | perfectly negative                       | no correlation                                      | both positive and negative            | no correlation                           |
| Coefficient of correlation value lies between                                                                      | 1 and –1                           | 0 and 1                                  | 0 and $\infty$                                      | 0 and –1.                             | 1 and -1                                 |
| While drawing a scatter diagram if all                                                                             |                                    |                                          |                                                     |                                       |                                          |
| points appear to form a straight line getting<br>Downward from left to right, then it is<br>inferred that there is | Perfect positive correlation       | simple positive correlation              | Perfect negative correlation                        | no correlation                        | Perfect negative correlation             |
| The range of the rank correlation coefficient is                                                                   | 0 to 1                             | -1 to 1                                  | 0 to $\infty$                                       | $-\infty$ to $\infty$                 | -1 to 1                                  |
| If $r = 1$ , then the angle between two lines of regression is                                                     | Zero degree                        | sixty degree                             | ninety<br>degree                                    | thirty degree                         | ninety degree                            |

| Regression coefficient is independent of                                                                                     | Origin                         | scale                           | both origin and scale          | neither origin nor scale. | Origin                          |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------|--------------------------------|---------------------------|---------------------------------|
| If the correlation coefficient between two<br>variables X and Y is negative, then the<br>Regression coefficient of Y on X is | Positive                       | negative                        | not certain                    | zero                      | negative                        |
| If the correlation coefficient between two<br>variables X and Y is positive, then the<br>Regression coefficient of X on Y is | Positive                       | negative                        | not certain                    | zero                      | Positive                        |
| There will be only one regression line in case of two variables if                                                           | r =0                           | r = +1                          | r = -1                         | r is either +1 or<br>-1   | r =0                            |
| The regression line cut each other at the point of                                                                           | Average of X only              | Average of Y only               | Average of X<br>and Y          | the median of X<br>on Y   | Average of X and Y              |
| If $b_{xy}$ and $b_{yx}$ represent regression<br>coefficients and if $b_{yx} > 1$ then $b_{xy}$ is                           | Less than one                  | greater than one                | equal to one                   | equal to zero             | Less than one                   |
| Rank correlation was discovered by                                                                                           | R.A.Fisher                     | Sir Francis Galton              | Karl Pearson                   | Spearman                  | Spearman                        |
| Formula for Rank correlation is                                                                                              | 1- ( $6\Sigma d^2 /(n(n2-1)))$ | 1- ( $6\Sigma d^2 / (n(n2+1)))$ | $1+ (6\Sigma d^2 / (n(n2+1)))$ | 1 /( n(n2-1))             | 1- ( $6\Sigma d^2 / (n(n2-1)))$ |
| With $b_{xy}=0.5$ , $r = 0.8$ and the variance of Y=16, the standard deviation of X=                                         | 6.4                            | 2.5                             | 10                             | 25.6                      | 2.5                             |
| The coefficient of correlation r =                                                                                           | $(b_{xy.} b_{yx})^{1/4}$       | $(b_{xy}, b_{yx})^{-1/2}$       | $(b_{xy}, b_{yx})^{1/3}$       | $(b_{xy.} b_{yx})^{1/2}$  | $(b_{xy.} b_{yx})^{1/2}$        |
| If two regression coefficients are positive<br>then the coefficient of correlation must be                                   | Zero                           | negative                        | positive                       | one                       | positive                        |
| If two-regression coefficients are negative<br>then the coefficient of correlation must be                                   | Positive                       | negative                        | zero                           | one                       | Positive                        |
| The regression equation of X on Y is                                                                                         | X = a + bY                     | X = a + bX                      | X= a - bY                      | Y = a + bX                | X = a + bY                      |
| The regression equation of Y on X is                                                                                         | X = a + bY                     | $X = \overline{a + bX}$         | X= a - bY                      | Y = a + bX                | Y=a+bX                          |
| The given two variables are perfectly positive, if                                                                           | r = +1                         | r = -1                          | $\mathbf{r} = 0$               | $r \neq +1$               | r = +1                          |
| The relationship between two variables by plotting the values on a chart, known as-                                          | coefficient of correlation     | Scatter diagram                 | Correlogram                    | rank correlation          | Scatter diagram                 |

| If x and y are independent variables then,                      | $cov(x,y) \neq 0$ | cov(x,y)=1     | cov(x,y)=0        | cov(x,y) > 1     | cov(x,y)=0       |
|-----------------------------------------------------------------|-------------------|----------------|-------------------|------------------|------------------|
| Correlation coefficient is the of                               | Mode              | Geometric mean | Arithmetic mean   | median           | Geometric mean   |
| the two regression coefficients.                                | 111040            |                |                   |                  |                  |
| $b_{xy} = 0.4, b_{yx} = 0.9$ then r =                           | 0.6               | 0.3            | 0.1               | -0.6             | 0.6              |
| $b_{xy}=1/5$ , r=8/15, s <sub>x</sub> = 5 then s <sub>y</sub> = | 40/13             | 13/40          | 40/3              | 3                | 40/3             |
| The geometric mean of the two regression                        | Correlation       | regression     | coefficient of    | coefficient of   | Correlation      |
| coefficients.                                                   | coefficient       | coefficients   | range             | variation        | coefficient      |
| If two variables are uncorrelated, then the                     | De met emiet      |                | Parallel to each  | perpendicular to | perpendicular to |
| lines of regression                                             | Do not exist      | coincide       | other             | each other       | each other       |
| If the given two variables are correlated                       | a 1               |                |                   | <i>m</i> / ±1    | . 1              |
| perfectly negative, then                                        | r = +1            | r = -1         | $\mathbf{r} = 0$  | $I \neq \pm I$   | r = -1           |
| If the given two variables have no                              |                   | . 1            |                   |                  | 0                |
| correlation, then                                               | r = +1            | r = -1         | $\mathbf{r} = 0$  | $r \neq \pm 1$   | $\mathbf{r} = 0$ |
| If the correlation coefficient between two                      |                   |                |                   |                  |                  |
| variables X and Y is, the Regression                            | Needin            |                |                   |                  |                  |
| coefficient of Y on X is positive                               | Negative          | positive       | not certain       | zero             | positive         |
|                                                                 |                   |                |                   |                  |                  |
| If the correlation coefficient between two                      |                   |                |                   |                  |                  |
| variables X and Y is, the Regression                            | Negative          |                | ant nation        | 70*0             | Negotine         |
| coefficient of Y on X is negative                               | Negative          | positive       | not certain       | zero             | Negative         |
|                                                                 |                   |                |                   |                  |                  |
| is independent of origin and                                    | Correlation       | regression     | coefficient of    | coefficient of   | Correlation      |
| scale.                                                          | coefficient       | coefficients   | range             | variation        | coefficient      |
| The angle between two lines of regression is                    | r – 2             | r = 0          | r _ 1             | r — 1            | r _ 1            |
| ninety degree, if                                               | 1 - 2             | I = 0          | 1 – 1             | 1 – -1           | 1 - 1            |
| is used to measure closeness of                                 | Degracion         | maan           | Dank correlation  | actualition      | correlation      |
| relationship between variables.                                 | Regression        | mean           | Kalik correlation | correlation      | correlation      |
| If r is either $+1$ or $-1$ , then there will be only           |                   |                |                   |                  |                  |
| one line in case of two variables                               | Correlation       | regression     | rank correlation  | mean             | regression       |
|                                                                 |                   |                |                   |                  |                  |
| When $b_{xy} = 0.85$ and $b_{yx} = 0.89$ , then                 | 0.09              | 0.5            | 0.69              | 0.97             | 0.97             |
| correlation coefficient r =                                     | 0.98              | 0.3            | 0.08              | 0.07             | 0.07             |

| If $b_{xy}$ and $b_{yx}$ represent regression<br>coefficients and if $b_{xy} < 1$ , then $b_{yx}$ is                                                         | less than 1                  | greater than one            | equal to one                 | equal to zero             | greater than one             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------|------------------------------|---------------------------|------------------------------|
| While drawing a scatter diagram if all<br>points appear to form a straight line getting<br>Downward from left to right, then it is<br>inferred that there is | Perfect positive correlation | simple positive correlation | Perfect negative correlation | no correlation            | Perfect negative correlation |
| If r =1, the angle between two lines of regression is                                                                                                        | Zero degree                  | sixty degree                | ninety degree                | thirty degree             | ninety degree                |
| Regression coefficient is independent of                                                                                                                     | Origin                       | scale                       | both origin and scale        | neither origin nor scale. | Origin                       |
| There will be only one regression line in case of two variables if                                                                                           | r =0                         | r = +1                      | r = -1                       | r is either +1 or<br>-1   | r =0                         |

| Question                                     | Opt 1                    | Opt 2                    | Opt 3              | Opt 4           | Answer                |
|----------------------------------------------|--------------------------|--------------------------|--------------------|-----------------|-----------------------|
| Completely randomized design is similar      |                          |                          |                    |                 |                       |
| to                                           | three way                | one way                  | two way            | t test          | one way               |
| Randomized block design is similar to        |                          |                          |                    |                 |                       |
|                                              | two way                  | three way                | one way            | many            | two way               |
| ANOVA is the technique of analysis of        |                          |                          |                    |                 |                       |
|                                              | standard deviation       | variance                 | mean               | range           | variance              |
| Under one way classification, the            |                          |                          |                    |                 |                       |
| influence of only attribute or factor        |                          |                          |                    |                 |                       |
| is considered                                | two                      | three                    | one                | many            | one                   |
| Under two way classification, the            |                          |                          |                    |                 |                       |
| influence of only attribute or factor        |                          |                          |                    |                 |                       |
| is considered                                | four                     | two                      | three              | one             | two                   |
| The word is used to                          |                          |                          |                    |                 |                       |
| indicate various statistical measures like   |                          |                          |                    |                 |                       |
| mean, standard deviation, correlation etc,   |                          |                          |                    |                 |                       |
| in the universe.                             | Statistic                | parameter                | hypothesis         | none of these   | parameter             |
| The term STATISTIC refers to the             |                          |                          |                    |                 |                       |
| statistical measures relating to the         |                          |                          |                    |                 |                       |
|                                              | Population               | hypothesis               | sample             | universe        | sample                |
| A hypothesis may be classified as            |                          |                          |                    |                 |                       |
|                                              | Simple                   | Composite                | null               | all the above   | all the above         |
| Level of significance is the probability of  |                          |                          | Not committing     | any of the      |                       |
|                                              | Type I error             | Type II error            | error              | above           | any of the above      |
| Degrees of freedom are related to            |                          |                          |                    | No. of          |                       |
|                                              | No. of                   |                          | No. of independent | dependent       |                       |
|                                              | observations in a        | hypothesis               | observations in a  | observations in | No. of independent    |
|                                              | set                      | under test               | set                | a set           | observations in a set |
| A critical function provides the basis for - |                          |                          | no decision about  |                 |                       |
|                                              | Accepting H <sub>0</sub> | rejecting H <sub>0</sub> | $H_0$              | all the above   | all the above         |

| Student's t-test is applicable in case of |                         | for sample of               |                                  |                        |                             |
|-------------------------------------------|-------------------------|-----------------------------|----------------------------------|------------------------|-----------------------------|
|                                           |                         | size between                |                                  | none of the            |                             |
|                                           | Small samples           | 5 and 30                    | Large samples                    | above                  | Small samples               |
| Student's t-test is applicable only when  | The variate values      | the variable is             |                                  |                        |                             |
|                                           | are                     | distributed                 | The sample is not                |                        |                             |
|                                           | independent             | normally                    | large                            | all the above          | all the above               |
| If the calculated value is less than the  |                         |                             |                                  |                        |                             |
| table value then we accept the            |                         |                             |                                  |                        |                             |
| -                                         |                         |                             |                                  |                        |                             |
| hypothesis.                               | Alternative             | null                        | both                             | sample                 | null                        |
| Small sample test is also known as        |                         |                             |                                  |                        |                             |
|                                           | Exact test              | t – test                    | normal test                      | F-test                 | t – test                    |
| The formula for c <sup>2</sup> is         | å(O–E) <sup>2</sup> /E  | å(E+O) <sup>2</sup> /E      | å(О-Е) /Е                        | å(О-Е) <sup>2</sup> /О | å(O–E) <sup>2</sup> /E      |
| If a statistic 't' follows student's t    |                         |                             |                                  | $c^2$ distribution     |                             |
| distribution with n degrees of freedom    | $c^2$ distribution with | $c^2$ distribution          | c <sup>2</sup> distribution with | with $(n+1)$           | $c^2$ distribution with     |
| then t <sup>2</sup> follows               | (n-1) degrees of        | with n degrees              | $n^2$                            | degrees of             | (n-1) degrees of            |
|                                           | freedom                 | of freedom                  | degrees of freedom               | freedom                | freedom                     |
| The distribution used to test goodness of |                         |                             |                                  |                        |                             |
| fit is                                    | F distribution          | c <sup>2</sup> distribution | t distribution                   | Z distribution         | c <sup>2</sup> distribution |
| Degree of freedom for statistic chi-      |                         |                             |                                  |                        |                             |
| square incase of contingency table of     |                         |                             |                                  |                        |                             |
| order 2x2 is                              | 3                       | 4                           | 2                                | 1                      | 1                           |
| Larger group from which the sample is     |                         |                             |                                  |                        |                             |
| drawn is called                           | Sample                  | sampling                    | universe                         | parameter              | universe                    |
| Any hypothesis concerning a population    | _                       |                             |                                  | statistical            |                             |
| is called a                               | Sample                  | population                  | statistical measure              | hypothesis             | statistical hypothesis      |
| Rejecting Ho when it is true leads        |                         |                             |                                  |                        |                             |
|                                           | Type I error            | Type II error               | correct decision                 | either (a) or (b)      | Type I error                |
| Accept Ho when it is true leads           |                         |                             |                                  |                        |                             |
|                                           | Type I error            | Type II error               | correct decision                 | either (a) or (b)      | correct decision            |
| Type II error occurs only if              | Reject Ho when it       | Accept Ho                   | Accept Ho when it                | reject Ho when         | Accept Ho when it           |
|                                           | is true                 | when it is false            | is true                          | it is false            | is false                    |

| The correct decision is                     | Reject Ho when it  | Accept Ho        | Reject Ho when it |                 | Reject Ho when it is  |
|---------------------------------------------|--------------------|------------------|-------------------|-----------------|-----------------------|
|                                             | is true            | when it is false | is false          | none of these   | false                 |
| The maximum probability of committing       |                    |                  |                   |                 |                       |
| type I error, which we specified in a test  |                    |                  |                   |                 |                       |
| is                                          |                    | alternative      |                   | level of        |                       |
| known as                                    | Null hypothesis    | hypothesis       | DOF               | significance    | level of significance |
| If the computed value is less than the      |                    | Null             | Alternative       |                 |                       |
| critical value, then                        | Null hypothesis is | hypothesis is    | hypothesis is     |                 | Null hypothesis is    |
|                                             | accepted           | rejected         | accepted          | population      | accepted              |
| If the computed value is greater than the   |                    | Null             | Alternative       |                 |                       |
| critical value, then                        | Null hypothesis is | hypothesis is    | hypothesis is     |                 | Null hypothesis is    |
|                                             | accepted           | rejected         | accepted          | small sample    | rejected              |
| In sampling distribution the standard       |                    |                  |                   |                 |                       |
| error is                                    | np                 | pq               | npq               | sqrt(npq)       | sqrt(npq)             |
| If the sample size is greater than 30, then |                    |                  |                   |                 |                       |
| the sample is called                        | Large sample       | small sample     | population        | Null hypothesis | Large sample          |
| If the sample size is less than 30, then    |                    |                  |                   | alternative     |                       |
| the sample is called                        | Large sample       | small sample     | population        | hypothesis      | small sample          |
| Z - test is applicable only when the        |                    |                  |                   |                 |                       |
| sample size is                              | zero               | one              | small             | large           | large                 |
| The degrees of freedom for two samples      |                    |                  |                   |                 |                       |
| in t – test is                              | $n_1 + n_2 + 1$    | $n_1 + n_2 - 2$  | $n_1 + n_2 + 2$   | $n_1 + n_2 - 1$ | $n_1 + n_2 - 2$       |
| An assumption of t – test is population     |                    |                  |                   |                 |                       |
| of the sample is                            | Binomial           | Poisson          | normal            | exponential     | normal                |
| The degrees of freedom of chi – square      |                    |                  |                   |                 |                       |
| test is                                     | (r-1)(c-1)         | (r+1)(c+1)       | (r+1)(c-1)        | (r-1)(c+1)      | (r-1)(c-1)            |
| In chi – square test, if the values of      |                    |                  |                   |                 |                       |
| expected frequency are less than 5, then    |                    |                  |                   |                 |                       |
| they are                                    |                    |                  |                   |                 |                       |
| combined together with the neighbouring     |                    |                  |                   |                 |                       |
| frequencies. This is known as               |                    |                  |                   |                 |                       |
|                                             | Goodness of fit    | DOF              | LOS               | pooling         | pooling               |

| The expected frequency of chi – square         |                               | (RT - CT) /     |                             |                     |                             |
|------------------------------------------------|-------------------------------|-----------------|-----------------------------|---------------------|-----------------------------|
| test can be calculated as                      | (RT + CT) / GT                | GT              | (RT * CT) / GT              | (RT*CT)             | (RT * CT) / GT              |
| In F – test, the variance of population        |                               |                 |                             |                     |                             |
| from which samples are drawn are               |                               |                 |                             |                     |                             |
|                                                | equal                         | not equal       | small                       | large               | equal                       |
| If the data is given in the form of a series   |                               |                 |                             |                     |                             |
| of variables, then the DOF is                  |                               |                 |                             |                     |                             |
|                                                | n                             | n-1             | n+1                         | (r-1)(c-1)          | n-1                         |
| The characteristic of the chi-square test      |                               |                 |                             | independence        | independence of             |
| is                                             | DOF                           | LOS             | ANOVA                       | of attributes       | attributes                  |
| If $S_1^2 > S_2^2$ , then the F – statistic is |                               |                 |                             |                     |                             |
|                                                | $\mathbf{S}_1 / \mathbf{S}_2$ | $S_2 / S_1$     | ${\bf S_1}^2 / {\bf S_2}^2$ | $S_1^{3} / S_2^{3}$ | ${\bf S_1}^2 / {\bf S_2}^2$ |
| The value of Z test at 5% level of             |                               |                 |                             |                     |                             |
| significance is                                | 3.96                          | 2.96            | 1.96                        | 0.96                | 1.96                        |
| In, the variance of population from            |                               |                 |                             |                     |                             |
| which samples are drawn are equal              |                               |                 |                             |                     |                             |
|                                                | t-test                        | Chi-Square test | Z-test                      | F-test              | F-test                      |
| F – statistics is                              |                               | Variance        |                             |                     |                             |
|                                                |                               | within the      | Variance between            | Variance within     |                             |
|                                                | Variance between              | samples /       | the rows /                  | the rows /          | Variance between            |
|                                                | the samples /                 | variance        | variance between            | variance within     | the samples /               |
|                                                | variance within the           | between the     | the columns                 | the columns         | variance within the         |
|                                                | samples                       | samples         |                             |                     | samples                     |
| Analysis of variance utilizes:                 |                               |                 |                             |                     |                             |
|                                                | t-test                        | Chi-Square test | Z-test                      | F-test              | F-test                      |
| F – test whish is also known as                | Chi-Square test               | Z-test          | varience ratio test         | t-test              | varience ratio test         |
| The technique of analysis of variance          |                               |                 |                             |                     |                             |
| refered to as                                  | ANOVA                         | F – test        | Z – test                    | Chi- square test    | ANOVA                       |
| The two variations, variation within the       |                               |                 |                             |                     |                             |
| samples and variations between the             |                               |                 |                             |                     |                             |
| aammlaa                                        |                               |                 |                             |                     |                             |
| samples                                        |                               |                 |                             |                     |                             |

| Under classification, the influence      |         |           |         |      |         |
|------------------------------------------|---------|-----------|---------|------|---------|
| of only one attribute or factor is       |         |           |         |      |         |
| considered.                              | two way | three way | one way | many | one way |
| Under classification, the                |         |           |         |      |         |
| influence of two attribute or factors is |         |           |         |      |         |
| considered                               | two way | three way | one way | many | two way |

| Question                                    | Opt 1          | Opt 2            | Opt 3             | Opt 4            | Answer          |
|---------------------------------------------|----------------|------------------|-------------------|------------------|-----------------|
| Study to portray accurately characteristics |                |                  |                   |                  |                 |
| of a particular individual, situation or a  |                |                  |                   |                  |                 |
| group is called research                    |                |                  |                   | Hypothesis       |                 |
|                                             | Exploratory    | Diagnostic       | Descriptive       | testing          | Descriptive     |
| Critical evaluation made by the             |                |                  |                   |                  |                 |
| researcher with the facts and information   |                |                  |                   |                  |                 |
| already available is called                 |                |                  |                   | Hypothesis       |                 |
| research.                                   | Analytical     | Exploratory      | Diagnostic        | testing          | Analytical      |
| Research to find reason, why people         |                |                  |                   |                  |                 |
| think or do certain things is an example of | Quantitative   |                  | Qualitative       | Fundamental      | Qualitative     |
|                                             | Research       | Applied Research | research          | research         | research        |
| Which one is considered a major             |                |                  |                   |                  |                 |
| component of the research study             | Interpretation | research report  | finding           | draft            | research report |
| Research task remains incomplete till the   |                |                  |                   | objective and    |                 |
| has been presented.                         | Report         | objective        | finding           | finding          | Report          |
| What is the last step in a research study   | Writing report | writing finding  | limitations       | research report  | Writing report  |
| Which is the final step in report           |                |                  |                   | writing          |                 |
| writing                                     | Writing report | writing finding  | writing drafts    | limitations      | writing drafts  |
| What is usually appended to the research    |                |                  |                   |                  |                 |
| work                                        | Editing        | bibliography     | coding            | research report  | bibliography    |
| The is one which gives                      |                |                  |                   | writing          |                 |
| emphasis on simplicity and attractiveness   | popular report | research report  | article report    | limitations      | popular report  |
| should slow originality                     |                |                  |                   |                  |                 |
| and should necessarily be on attempt to     |                |                  |                   |                  |                 |
| solve some intellectual problem             | Interpretation | research report  | finding           | draft            | research report |
| The researcher must remain caution about    |                |                  |                   |                  |                 |
| the that can possibly arise in              |                |                  |                   |                  |                 |
| the process of interpreting results         | Analysis       | conclusions      | findings          | error            | error           |
| Which one should be considered while        |                |                  | both validity and |                  |                 |
| interpreting a given data                   | Validity       | reliability      | reliability       | technical jargon | reliability     |

| is asking questions face to                 |                 | mailed         |                   | personal           | personal        |
|---------------------------------------------|-----------------|----------------|-------------------|--------------------|-----------------|
| face                                        | Indirect method | questionnaire  | through post      | interview          | interview       |
| Journals, books, magazines etc are useful   |                 |                |                   |                    |                 |
| sources of collecting                       |                 |                | both primary and  |                    |                 |
|                                             | Primary data    | secondary data | secondary data    | objective          | secondary data  |
| The collected raw data to detect errors and |                 |                |                   |                    |                 |
| are called,                                 |                 |                |                   |                    |                 |
|                                             |                 |                |                   |                    |                 |
|                                             | Editing         | coding         | classification    | all the above      | Editing         |
| The formal, systematic and intensive        |                 |                |                   |                    |                 |
| process of carrying on a scientific method  |                 |                |                   |                    |                 |
| of                                          | Research        |                |                   | research           |                 |
| analysis is                                 | Design          | research       | interpretation    | analysis           | research        |
| Refers to the process of assigning          |                 |                |                   |                    |                 |
| numerals or symbols to answers of           |                 |                |                   |                    |                 |
| response                                    | Coding          | editing        | classification    | all the above      | Coding          |
| The research study, which is based on       |                 |                |                   |                    |                 |
| describing the characteristic of a          |                 |                |                   |                    |                 |
| particular                                  | Experience      |                |                   |                    |                 |
| individual or group                         | survey          | Descriptive    | Diagnostic        | Exploratory        | Descriptive     |
| Research is a                               | Finding         | assumption     | statement         | all the above      | all the above   |
| The research, which has the purpose of      |                 | <b>1</b>       |                   |                    |                 |
| improving a product or a process testing    |                 |                |                   |                    |                 |
| theoretical concepts in actual problem      |                 |                |                   |                    |                 |
| situations isresearch.                      | Statistical     | Applied        | Domestic          | Biological         | Applied         |
| The chart of research process indicates     |                 |                |                   |                    |                 |
| that the process consists of a number of    | Closely related | unrelated      | Closely unrelated | moderately         | Closely related |
|                                             | activities      | activities     | activities        | related activities | activities      |

| The objective of a good design is           | Maximize the       | Minimize the       | Minimize the       | Maximize the       | Maximize the       |
|---------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|                                             | bias               | bias and           | bias and           | bias and           | bias and           |
|                                             | andmaximize        | minimize           | maximize           | maximize           | maximize           |
|                                             | the reliability of |
|                                             | data               | data               | data               | data               | data               |
| A is used whenever a full written           |                    |                    |                    |                    |                    |
| report of the study is required.            | Popular report     | Technical report   | article            | monograph          | Technical report   |
| The is one which gives                      |                    |                    |                    |                    |                    |
| emphasis on simplicity and attractiveness.  |                    |                    |                    |                    |                    |
|                                             | Popular report     | Technical report   | article            | monograph          | Popular report     |
| Study to portray accurately characteristics |                    |                    |                    |                    |                    |
| of a particular individual, situation or a  |                    |                    |                    |                    |                    |
| group is called research                    |                    |                    |                    | Hypothesis         |                    |
|                                             | Exploratory        | Diagnostic         | Descriptive        | testing            | Descriptive        |
| Critical evaluation made by the             |                    |                    |                    |                    |                    |
| researcher with the facts and information   |                    |                    |                    |                    |                    |
| already available is called                 |                    |                    |                    | Hypothesis         |                    |
| research.                                   | Analytical         | Exploratory        | Diagnostic         | testing            | Analytical         |
| Research to find reason, why people         |                    |                    |                    |                    |                    |
| think or do certain things is an example of | Quantitative       |                    | Qualitative        | Fundamental        | Qualitative        |
|                                             | Research           | Applied Research   | research           | research           | research           |
| Which one is considered a major             |                    |                    |                    |                    |                    |
| component of the research study             | Interpretation     | research report    | finding            | draft              | research report    |
| Research task remains incomplete till the   |                    |                    |                    | objective and      |                    |
| has been presented.                         | Report             | objective          | finding            | finding            | Report             |
| What is the last step in a research study   | Writing report     | writing finding    | limitations        | research report    | Writing report     |
| Which is the final step in report           |                    |                    |                    | writing            |                    |
| writing                                     | Writing report     | writing finding    | writing drafts     | limitations        | writing drafts     |
| What is usually appended to the research    |                    |                    |                    |                    |                    |
| work                                        | Editing            | bibliography       | coding             | research report    | bibliography       |
| The is one which gives                      |                    |                    |                    | writing            |                    |
| emphasis on simplicity and attractiveness   | popular report     | research report    | article report     | limitations        | popular report     |

| should slow originality                     |                 |                 |                   |                  |                 |
|---------------------------------------------|-----------------|-----------------|-------------------|------------------|-----------------|
| and should necessarily be on attempt to     |                 |                 |                   |                  |                 |
| solve some intellectual problem             | Interpretation  | research report | finding           | draft            | research report |
| The researcher must remain caution about    |                 |                 |                   |                  |                 |
| the that can possibly arise in              |                 |                 |                   |                  |                 |
| the process of interpreting results         | Analysis        | conclusions     | findings          | error            | error           |
| Which one should be considered while        |                 |                 | both validity and |                  |                 |
| interpreting a given data                   | Validity        | reliability     | reliability       | technical jargon | reliability     |
| is asking questions face to                 |                 | mailed          |                   | personal         | personal        |
| face                                        | Indirect method | questionnaire   | through post      | interview        | interview       |
| Journals, books, magazines etc are useful   |                 | -               |                   |                  |                 |
| sources of collecting                       |                 |                 | both primary and  |                  |                 |
|                                             | Primary data    | secondary data  | secondary data    | objective        | secondary data  |
| The collected raw data to detect errors and | -               |                 |                   | -                |                 |
| are called,                                 |                 |                 |                   |                  |                 |
|                                             |                 |                 |                   |                  |                 |
|                                             | Editing         | coding          | classification    | all the above    | Editing         |
| The formal, systematic and intensive        |                 |                 |                   |                  | _               |
| process of carrying on a scientific method  |                 |                 |                   |                  |                 |
| of                                          | Research        |                 |                   | research         |                 |
| analysis is                                 | Design          | research        | interpretation    | analysis         | research        |
| Refers to the process of assigning          |                 |                 |                   | -                |                 |
| numerals or symbols to answers of           |                 |                 |                   |                  |                 |
| response                                    | Coding          | editing         | classification    | all the above    | Coding          |
| The research study, which is based on       |                 |                 |                   |                  | _               |
| describing the characteristic of a          |                 |                 |                   |                  |                 |
| particular                                  | Experience      |                 |                   |                  |                 |
| individual or group                         | survey          | Descriptive     | Diagnostic        | Exploratory      | Descriptive     |
| Research is a                               | Finding         | assumption      | statement         | all the above    | all the above   |
| The research, which has the purpose of      |                 |                 |                   |                  |                 |
| improving a product or a process testing    |                 |                 |                   |                  |                 |
| theoretical concepts in actual problem      |                 |                 |                   |                  |                 |
| situations isresearch.                      | Statistical     | Applied         | Domestic          | Biological       | Applied         |

| The chart of research process indicates                                                      |                                                     |                                                  |                                                    |                                                             |                                                  |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|
| that the process consists of a number of                                                     | Closely related                                     | unrelated                                        | Closely unrelated                                  | moderately                                                  | Closely related                                  |
|                                                                                              | activities                                          | activities                                       | activities                                         | related activities                                          | activities                                       |
| The objective of a good design is                                                            | Maximize the                                        | Minimize the                                     | Minimize the                                       | Maximize the                                                | Maximize the                                     |
|                                                                                              | bias                                                | bias and                                         | bias and                                           | bias and                                                    | bias and                                         |
|                                                                                              | andmaximize                                         | minimize                                         | maximize                                           | maximize                                                    | maximize                                         |
|                                                                                              | the reliability of                                  | the reliability of                               | the reliability of                                 | the reliability of                                          | the reliability of                               |
|                                                                                              | data                                                | data                                             | data                                               | data                                                        | data                                             |
| A is used whenever a full written                                                            |                                                     |                                                  |                                                    |                                                             |                                                  |
| report of the study is required.                                                             | Popular report                                      | Technical report                                 | article                                            | monograph                                                   | Technical report                                 |
| The is one which gives                                                                       |                                                     |                                                  |                                                    |                                                             |                                                  |
| emphasis on simplicity and attractiveness.                                                   |                                                     |                                                  |                                                    |                                                             |                                                  |
|                                                                                              | Popular report                                      | Technical report                                 | article                                            | monograph                                                   | Popular report                                   |
| The square of the S.D is                                                                     | Variance                                            | Coefficient of variation                         | Square of variance                                 | Square of<br>coefficient of<br>variation                    | Variance                                         |
| Analysis of variance is a statistical method of comparing the of several populations.        | Standard deviations                                 | Means                                            | Variances                                          | Proportions                                                 | Means                                            |
| The analysis of variance is a statistical test that is used to compare how many group means? | Three                                               | More than three                                  | Three or more                                      | Two or more                                                 | Two or more                                      |
| Analysis of variance utilizes:                                                               | F-test                                              | Chi-Square test                                  | Z-test                                             | t-test                                                      | F-test                                           |
| What is two-way ANOVA?                                                                       | An ANOVA<br>with two<br>variables and<br>one factor | An ANOVA with<br>one variable and<br>two factors | An ANOVA with<br>one variable and<br>three factors | An ANOVA<br>with both<br>categorical and<br>scale variables | An ANOVA with<br>one variable and<br>two factors |
| Which of the following is the correct F ratio in the one-way ANOVA?                          | MSA/MSE                                             | MSBL/MSE                                         | MST/MSE                                            | MSE/MST                                                     | MST/MSE                                          |
| For validity of F-test in Anova, parent population should be                                 | Binomial                                            | Poisson                                          | Normal                                             | Exponential                                                 | Normal                                           |

| sum of squares measures the<br>variability of the observed values around<br>their respective tabulated values                            | Treatment                              | Error                                                | Interaction                                     | Total                                    | Error                                      |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------|-------------------------------------------------|------------------------------------------|--------------------------------------------|
| The sum of squares measures<br>the variability of the sample treatment<br>means around the overall mean.                                 | Total                                  | Treatment                                            | Error                                           | Interaction                              | Treatment                                  |
| If the true means of the $k$ populations are equal, then MST/MSE should be:                                                              | more than 1.00                         | Close to 1.00                                        | Close to -1.00                                  | A negative<br>value between 0<br>and - 1 | Close to 1.00                              |
| If MSE of ANOVA for six treatment<br>groups is known, you can<br>compute                                                                 | Degree of freedom                      | The standard<br>deviation of each<br>treatment group | Variance                                        | The pooled<br>standard<br>deviation      | The pooled<br>standard<br>deviation        |
| To determine whether the test statistic of<br>ANOVA is statistically significant,to<br>determine critical value we need                  | Sample size,<br>number of<br>groups    | Mean, sample<br>standard<br>deviation                | Expected<br>frequency,<br>obtained<br>frequency | MSTR, MSE                                | Sample size,<br>number of groups           |
| Which of the following is an assumption<br>of one-way ANOVA comparing samples<br>from 3 or more experimental treatments?                 | Variables<br>follow F-<br>distribution | Variables follow<br>normal<br>distribution           | Samples are<br>dependent each<br>other          | Variables have<br>different<br>variances | Variables follow<br>normal<br>distribution |
| The error deviations within the SSE statistic measure distances:                                                                         | Within groups                          | Between groups                                       | Between each<br>value and the<br>grand mean     | Betweeen<br>samples                      | Within groups                              |
| In one-way ANOVA, which of the following is used within the <i>F</i> -ratio as a measurement of the variance of individual observations? | SSTR                                   | MSTR                                                 | SSE                                             | MSE                                      | SSE                                        |
| When conducting a one-way ANOVA, the the between-treatment variability is when compared to the within-treatment variability              | More random<br>larger                  | Smalller                                             | Larger                                          | More random<br>smaller                   | Smaller                                    |

| When conducting a one-way ANOVA, the value of $F$ DATA will be tend to be                                                                                                                                  | More random<br>larger                                                        | Smalller                                                                                      | More random smaller                                                                                                   | Larger                                    | Smaller                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| When conducting an ANOVA, F DATA will always fall within what range?                                                                                                                                       | Between<br>negative infinity<br>and infinity                                 | Between 0 and 1                                                                               | Between 0 and infinity                                                                                                | Between 1 and infinity                    | Between 0 and infinity                                                                                                |
| If $F$ DATA = 5, the result is statistically significant                                                                                                                                                   | Always                                                                       | Sometimes                                                                                     | Never                                                                                                                 | Is impossible                             | Sometimes                                                                                                             |
| If F DATA= 0.9, the result is statistically significant                                                                                                                                                    | Always                                                                       | Sometimes                                                                                     | Never                                                                                                                 | Is impossible                             | Never                                                                                                                 |
| When comparing three treatments in a one-<br>way ANOVA ,the alternate hypothesis<br>is                                                                                                                     | All three<br>treatments have<br>different effect<br>on the mean<br>response. | Exactly two of<br>the three<br>treatments have<br>the same effect<br>on the mean<br>response. | At least two<br>treatments are<br>different from<br>each other in<br>terms of their<br>effect on the<br>mean response | All the<br>treatments have<br>same effect | At least two<br>treatments are<br>different from<br>each other in<br>terms of their<br>effect on the<br>mean response |
| If the sample means for each of <i>k</i> treatment groups were identical,the observed value of the ANOVA test statistic?                                                                                   | 1                                                                            | 0                                                                                             | A value between 0.0 and 1.0                                                                                           | A negative<br>value                       | 0                                                                                                                     |
| If the null hypothesis is rejected, the probability of obtaining a $F$ - ratio > the value in the $F$ table as the 95th % is:                                                                              | 0.5                                                                          | >0.5                                                                                          | <0.5                                                                                                                  | 1                                         | <0.5                                                                                                                  |
| ANOVA was used to test the outcomes of<br>three drug treatments. Each drug was<br>given to 20 individuals. If MSE =16,<br>What is the standard deviation for all 60<br>individuals sampled for this study? | 6.928                                                                        | 48                                                                                            | 16                                                                                                                    | 4                                         | 4                                                                                                                     |
| Analysis of variance technique originated in the field of                                                                                                                                                  | Agriculture                                                                  | Industry                                                                                      | Biology                                                                                                               | Genetics                                  | Agriculture                                                                                                           |

| With 90, 35, 25 as TSS, SSR and SSC , in case of two way classification, SSE is                                                                             | 50                                      | 40                                     | 30                                | 20                                     | 30                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------|-----------------------------------|----------------------------------------|----------------------------------------|
| Variation between classes or variation due<br>to different basis of classification is<br>commonly known as                                                  | Treatments                              | Total sum of squares                   | Sum of squares                    | Sum of squares due to error            | Treatments                             |
| The total variation in observations in Anova is classified as:                                                                                              | Treatments and<br>inherent<br>variation | SSE and SST                            | MSE and MST                       | TSS and SSE                            | Treatments and inherent variation      |
| In Anova, variance ratio is given by                                                                                                                        | MST/MSE                                 | MSE/MST                                | SSE/SST                           | TSS/SSE                                | MST/MSE                                |
| Degree of freedom for TSS is                                                                                                                                | N-1                                     | k-1                                    | h-1                               | (k-1)(h-1)                             | N-1                                    |
| For Anova, MST stands for                                                                                                                                   | Mean sum of<br>squares of<br>treatment  | Mean sum of<br>squares of<br>varieties | Mean sum of squares of tables     | Mean sum of<br>sources of<br>treatment | Mean sum of<br>squares of<br>treatment |
| An ANOVA procedure is applied to data<br>of 4 samples, where each sample contains<br>10 observations. Then degree of freedom<br>for critical value of F are | 4 numerator and<br>9 denominator        | 3 numerator and<br>40 denominator      | 3 numerator and<br>36 denominator | 4 numerator and<br>10 denominator      | 3 numerator and<br>36 denominator      |
| The power function of a test is denoted by                                                                                                                  | M(w,Q)                                  | M(Q,Qo)                                | P(w,Q)                            | P(w,Qo)                                | M(w,Q)                                 |
| Sum of power function and operation characteristic is                                                                                                       | Unity                                   | Zero                                   | two                               | Negative                               | Unity                                  |
| Operation characteristic is denoted by                                                                                                                      | L(w,Q)                                  | M(w,Q)                                 | L(w,Qo)                           | M(w,Qo)                                | L(w,Q)                                 |
| Operation characteristic is also known as                                                                                                                   | Test<br>characteristic                  | Power function                         | best characteristic               | unique<br>characteristic               | Test<br>characteristic                 |
| The formula to find OC is $L(w,Q)=$                                                                                                                         | 1-Power<br>Function                     | 2xPower<br>Function                    | Power Funtion -1                  | 2xConfidance<br>Interval               | 1-Power Function                       |
| Operation Characteristic is of a test is related to                                                                                                         | Power Function                          | Best Test                              | Unique Test                       | Uniformally Best<br>Test               | Power Function                         |

| If the Hypothesis is correct the operation charectristics will be                                             | 1                                                                                        | 0                                                                                                                 | -1                              | 0.5                                                              | 1                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| If the Hypothesis is wrong the operation charectristics will be                                               | 0                                                                                        | 1                                                                                                                 | 0.5                             | 0.333333                                                         | 0                                                                                                                 |
| In which test we verify a null hypothesis<br>against any other definite alternate<br>hypothesis?              | Best Test                                                                                | Unique Test                                                                                                       | Uniformally Best<br>Test        | Unbiased Test                                                    | Best Test                                                                                                         |
| A Best Test is a Test such that the critical region for which attains least value for a given $\alpha$ .      | Beta                                                                                     | 1-Beta                                                                                                            | Alpha                           | 1-Alpha                                                          | 1-Beta                                                                                                            |
| A Test whose power function attains its mean at point $Q = Qo$ is called Test                                 | Unique                                                                                   | Unbiased                                                                                                          | Power                           | Operation<br>Characteristic                                      | Unique                                                                                                            |
| A Best Unique Test exist                                                                                      | Always                                                                                   | Never                                                                                                             | Sometimes                       | When Q not = to $Qo$                                             | Sometimes                                                                                                         |
| Operation Characteristic is related to                                                                        | Power Function                                                                           | Unique Test                                                                                                       | Best Test                       | Uniformally Best<br>Test                                         | Power Function                                                                                                    |
| Power is the ability to detect:                                                                               | A statistically<br>significant<br>effect where one<br>exists                             | A psychologically<br>important effect<br>where one exists                                                         | Both (a) and (b)<br>above       | Design flaws                                                     | A statistically<br>significant effect<br>where one exists                                                         |
| Calculating how much of the total<br>variance is due to error and the<br>experimental manipulation is called: | Calculating the variance                                                                 | Partitioning the variance                                                                                         | Producing the variance          | Summarizing the variance                                         | Partitioning the variance                                                                                         |
| ANOVA is useful for:                                                                                          | Teasing out the<br>individual<br>effects of<br>factors on an<br>Independent<br>Variables | Analyzing data<br>from research<br>with more than<br>one Independent<br>Variable and one<br>Dependent<br>Variable | Analyzing<br>correlational data | Individual<br>effects of factors<br>on an Dependent<br>Variables | Analyzing data<br>from research<br>with more than<br>one Independent<br>Variable and one<br>Dependent<br>Variable |

| What is the definition of a simple effect?                                                                                                                                                               | The effect of<br>one variable on<br>another                                | The difference<br>between two<br>conditions of one<br>Independent<br>Variable at one<br>level of another<br>Independent<br>Variable | The easiest way<br>to get a<br>significant result         | Difference<br>between two<br>Dependent<br>Variables                           | The difference<br>between two<br>conditions of one<br>Independent<br>Variable at one<br>level of another<br>Independent<br>Variable |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| In a study with gender as the manipulated variable, the Independent Variable is:                                                                                                                         | Within participants                                                        | Correlational                                                                                                                       | Between participants                                      | Regressional                                                                  | Between participants                                                                                                                |
| Which of the following statements are true of experiments?                                                                                                                                               | The<br>Independent<br>Variable is<br>manipulated by<br>the<br>experimenter | The Dependent<br>Variable is<br>assumed to be<br>dependent upon<br>the IV                                                           | They are difficult<br>to conduct                          | both (a) and (b)                                                              | both (a) and (b)                                                                                                                    |
| All other things being equal, repeated-<br>measures designs:                                                                                                                                             | Have exactly<br>the same power<br>as independent<br>designs                | Are often less<br>powerful than<br>independent<br>designs                                                                           | Are often more<br>powerful than<br>independent<br>designs | Are rarely less<br>powerful when<br>compare to than<br>independent<br>designs | Are often more<br>powerful than<br>independent<br>designs                                                                           |
| Professor P. Nutt is examining the<br>differences between the scores of three<br>groups of participants. If the groups show<br>homogeneity of variance, this means that<br>the variances for the groups: | Are similar                                                                | Are dissimilar                                                                                                                      | Are exactly the same                                      | Are enormously different                                                      | Are similar                                                                                                                         |
| Differences between groups, which result<br>from our experimental manipulation, are<br>called:                                                                                                           | Individual differences                                                     | Treatment effects                                                                                                                   | Experiment error                                          | Within-<br>participants<br>effects                                            | Treatment effects                                                                                                                   |

| Herr Hazelnuss is thinking about whether<br>he should use a related or unrelated design<br>for one of his studies. As usual, there are<br>advantages and disadvantages to both. He<br>has four conditions. If, in a related design,<br>he uses 10 participants, how many would<br>he need for an unrelated design? | 40                                                        | 20                                          | 10                                                                         | 100                                                                | 40                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------|
| Individual differences within each group                                                                                                                                                                                                                                                                           | Treatment                                                 | Between-                                    | Within-                                                                    | Individual biases                                                  | Within-                                     |
| of participants are called:                                                                                                                                                                                                                                                                                        | effects                                                   | participants error                          | participants error                                                         | marviadar biases                                                   | participants error                          |
| Calculating how much of the total<br>variance is due to error and the<br>experimental manipulation is called:                                                                                                                                                                                                      | Calculating the variance                                  | Partitioning the variance                   | Producing the variance                                                     | Summarizing the variance                                           | Partitioning the variance                   |
| The decision on how many factors to keep                                                                                                                                                                                                                                                                           | Statistical                                               | Theoretical                                 | Both (a) and (b)                                                           | Neither (a) nor                                                    | Both (a) and (b)                            |
| is decided on:                                                                                                                                                                                                                                                                                                     | criteria                                                  | criteria                                    |                                                                            | (b)                                                                |                                             |
| It is possible to extract:                                                                                                                                                                                                                                                                                         | As many factors<br>as variables                           | More factors than variables                 | More variables<br>than factors                                             | Correlation<br>between the<br>actual and<br>predicted<br>variables | As many factors<br>as variables             |
| Four groups have the following means on the covariate: 35, 42, 28, 65. What is the grand mean?                                                                                                                                                                                                                     | 43.5                                                      | 42.5                                        | 56.7                                                                       | 58.9                                                               | 42.5                                        |
| You can perform ANCOVA on:                                                                                                                                                                                                                                                                                         | Two groups                                                | Three groups                                | Four groups                                                                | All of the above                                                   | All of the above                            |
| When carrying out a pretestposttest study, researchers often wish to:                                                                                                                                                                                                                                              | Partial out the<br>effect of the<br>dependent<br>variable | Partial out the<br>effect of the<br>pretest | Reduce the<br>correlation<br>between the<br>pretest and<br>posttest scores | Correlation<br>between the two<br>tests scores                     | Partial out the<br>effect of the<br>pretest |

| Using difference scores in a pretest<br>posttest design does not partial out the<br>effect of the pretest for the following<br>reason:                       | The pretest<br>scores are not<br>normally<br>correlated with<br>the posttest<br>scores            | The pretest scores<br>are normally<br>correlated with<br>the different<br>scores | The posttest<br>scores are<br>normally<br>correlated with<br>the different<br>scores    | Up normal<br>relationship with<br>the different<br>scores | The pretest scores<br>are normally<br>correlated with<br>the different<br>scores               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Experimental designs are characterized by:                                                                                                                   | Two conditions                                                                                    | No control condition                                                             | Random<br>allocation of<br>participants to<br>conditions                                | More than two conditions                                  | Random<br>allocation of<br>participants to<br>conditions                                       |
| Between-participants designs can be:                                                                                                                         | Either quasi-<br>experimental or<br>experimental                                                  | Only<br>experimental                                                             | Only quasi-<br>experimental                                                             | Only correlational                                        | Either quasi-<br>experimental or<br>experimental                                               |
| A continuous variable can be described as:                                                                                                                   | Able to take<br>only certain<br>discrete values<br>within a range<br>of scores                    | Able to take any<br>value within a<br>range of scores                            | Being made up of categories                                                             | Being made up<br>of variables                             | Able to take any<br>value within a<br>range of scores                                          |
| In a within-participants design with two<br>conditions, if you do not use<br>counterbalancing of the conditions then<br>your study is likely to suffer from: | Order effects                                                                                     | Effects of time of day                                                           | Lack of participants                                                                    | Effects of participants                                   | Order effects                                                                                  |
| Demand effects are possible confounding variables where:                                                                                                     | Participants<br>behave in the<br>way they think<br>the<br>experimenter<br>wants them to<br>behave | Participants<br>perform poorly<br>because they are<br>tired or bored             | Participants<br>perform well<br>because they have<br>practiced the<br>experimental task | Participants perform strongly                             | Participants<br>behave in the way<br>they think the<br>experimenter<br>wants them to<br>behave |

| Power can be calculated by a knowledge of:                                                     | The statistical<br>test, the type of<br>design and the<br>effect size | The statistical<br>test, the criterion<br>significance level<br>and the effect size | The criterion<br>significance level,<br>the effect size and<br>the type of design | The criterion<br>significance<br>level, the effect<br>size and the<br>sample size | The criterion<br>significance level,<br>the effect size and<br>the sample size |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Relative to large effect sizes, small effect                                                   | Engine to detect                                                      | Harder to detect                                                                    | As apprete datast                                                                 | As difficult to                                                                   | As difficult to                                                                |
| sizes are:                                                                                     | Lasier to detect                                                      |                                                                                     | As easy to detect                                                                 | detect                                                                            | detect                                                                         |
| Differences between groups, which result<br>from our experimental manipulation, are<br>called: | Individual<br>differences                                             | Treatment effects                                                                   | Experiment error                                                                  | Within-<br>participants<br>effects                                                | Treatment effects                                                              |
| Completely randomized design is similar to                                                     | three way                                                             | one way                                                                             | two way                                                                           | t test                                                                            | one way                                                                        |
| Randomized block design is similar to                                                          | two way                                                               | three way                                                                           | one way                                                                           | many                                                                              | two way                                                                        |
| ANOVA is the technique of analysis of                                                          | standard deviation                                                    | variance                                                                            | mean                                                                              | range                                                                             | variance                                                                       |
| Under one way classification , the influence of only attribute or factor is considered         | two                                                                   | three                                                                               | one                                                                               | many                                                                              | one                                                                            |
| Under two way classification , the influence of only attribute or factor is considered         | four                                                                  | two                                                                                 | three                                                                             | one                                                                               | two                                                                            |

| Question                                | Opt 1               | Opt 2             | Opt 3          | Opt 4           | Answer          |
|-----------------------------------------|---------------------|-------------------|----------------|-----------------|-----------------|
| Psychometric Methods book is written    | J.P.Guilford        | Likert            | L.L.Thurstone  | Louis Guttman   | J.P.Guilford    |
| by                                      |                     |                   |                |                 |                 |
| Respondents are asked to rank their     | Comparative scaling | arbitrary scaling | rating scale   | differential    | Comparative     |
| choices in                              |                     |                   |                | scale           | scaling         |
| is developed on ad-hoc basis            | Differential scale  | arbitrary scale   | rating scale   | ranking scale   | arbitrary scale |
| scale is developed by                   | Comparative scale   | likert scale      | differential   | rating scale    | likert scale    |
| utilizing item analysis approach        |                     |                   | scale          |                 |                 |
| Scalogram analysis is developed         | J.P.Guilford        | Likert            | L.L.Thurstone  | Louis Guttman   | Louis Guttman   |
| by                                      |                     |                   |                |                 |                 |
| A complete enumeration of all items in  | sampling unit       | sample design     | census inquiry | all the above   | census inquiry  |
| the population is known as              |                     |                   |                |                 |                 |
| The selected respondents                | population          | sample            | sample size    | population size | sample          |
| constitute                              |                     |                   |                |                 |                 |
| The selection process of respondents is | survey              | sampling          | sample survey  | census inquiry  | sampling        |
| called                                  |                     | technique         |                |                 | technique       |
| The survey conducted to select the      |                     | sample survey     | census inquiry | population size | sample survey   |
| respondents is called                   | sampling technique  |                   |                |                 |                 |
| A sample design is a definite plan for  | universe            | sample design     | population     | sample survey   | population      |
| obtaining a sample from a               |                     |                   |                |                 |                 |
| given                                   |                     |                   |                |                 |                 |
| The number of items in universe can     | finite              | infinite          | both           | zero            | both            |
| be                                      |                     |                   |                |                 |                 |
| The population of a city, number of     | infinite            | finite            | both           | zero            | finite          |
| workers in a company                    |                     |                   |                |                 |                 |
| is                                      |                     |                   |                |                 |                 |
| Source list is also known as            | sampling size       | sampling size     | sampling frame | population size | sampling frame  |
| The size of the sample should be        | large               | optimum           | small          | all the above   | optimum         |

| Inappropriateness in sampling frame will result in                                                          | systematic bias        | optimum                     | problems                         | sampling error                | systematic bias                  |
|-------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------|----------------------------------|-------------------------------|----------------------------------|
| Sampling error with increase in size of sample                                                              | decrease               | increase                    | both                             | optimum                       | decrease                         |
| Sampling error can be measured from                                                                         | sample design          | sample size                 | population                       | sample design and sample size | sample design<br>and sample size |
| On the representation basis samples may be                                                                  | probability sampling   | non-probability<br>sampling | both                             | restricted                    | both                             |
| On element selection basis the samples may be                                                               | restricted             | unrestricted                | both                             | probability<br>sampling       | both                             |
| Non-probability sampling is also known as                                                                   | quota sampling         | purposive<br>sampling       | deliberate<br>sampling           | all the three                 | all the three                    |
| Quota sampling is an example<br>of                                                                          | probability sampling   | non-probability<br>sampling | both                             | purposive<br>sampling         | non-probability<br>sampling      |
| Probability sampling is also known<br>as                                                                    | random sampling        | choice sampling             | random and<br>choice<br>sampling | multistage<br>sampling        | random and<br>choice sampling    |
| Lottery method of selecting data is an example of                                                           | random sampling        | choice sampling             | purposive<br>sampling            | quota sampling                | random<br>sampling               |
| Systematic sampling is an improved version of                                                               | quota sampling         | simple random sampling      | choice<br>sampling               | purposive<br>sampling         | simple random sampling           |
| If population is not drawn from<br>homogeneous group<br>technique is applied                                | simple random sampling | quota sampling              | choice<br>sampling               | stratified<br>sampling        | stratified<br>sampling           |
| In total<br>population is divided into number of<br>relatively small sub divisions                          | cluster sampling       | choice sampling             | stratified<br>sampling           | quota sampling                | cluster sampling                 |
| When a particular lot is to be accepted<br>or rejected on the basis of single<br>sampling it is known<br>as | double sampling        | single sampling             | area sampling                    | purposive<br>sampling         | single sampling                  |

| Survey designed to determine attitude of | cross stratification  | stratification     | cluster       | multi stage    | cross              |
|------------------------------------------|-----------------------|--------------------|---------------|----------------|--------------------|
| students toward new teaching plan is     | sampling              | sampling           | sampling      | sampling       | stratification     |
| known                                    |                       |                    |               |                | sampling           |
| as                                       |                       |                    |               |                |                    |
| Sample design is                         | before                | after              | both          | based on the   | before             |
| determined datas are                     |                       |                    |               | survey         |                    |
| collected                                |                       |                    |               |                |                    |
| Indeterminary principle step comes       | step in sample design | criteria to select | both          | step doesnot   | criteria to select |
| in                                       |                       | sample             |               | occur          | sample             |
|                                          |                       | procedure          |               |                | procedure          |
| The measurement of sampling error is     | precision of sampling | sampling survey    | sampling plan | representation | precision of       |
| called as                                | plan                  |                    |               | basis          | sampling plan      |
| The different sub populations divided to | stratified sampling   | survey             | population    | strata         | strata             |
| constitute a sample is known             |                       |                    |               |                |                    |
| as                                       |                       |                    |               |                |                    |
| Every nth item is selected               | stratified sampling   | systematic         | judgement     | all the above  | systematic         |
| in                                       |                       | sampling           | sampling      |                | sampling           |
| is conducted for                         | survey                | sample             | pilot study   | sample plan    | pilot study        |
| determining a more appropriate and       |                       |                    |               |                |                    |
| efficient stratification plan            |                       |                    |               |                |                    |
| is considered                            | purposive sampling    | area sampling      | cluster       | simple random  | purposive          |
| more appropriate when universe           |                       |                    | sampling      | sampling       | sampling           |
| happens to be small                      |                       |                    |               |                |                    |
| When we use rating scales we judge an    | real                  | absolute           | imaginary     | perfect        | absolute           |
| object interms against some              |                       |                    |               |                |                    |
| specified criteria.                      |                       |                    |               |                |                    |
| Rating scale is also known               | Categorical scale     | arbitrary scale    | cumulative    | all the above  | Categorical scale  |
| as                                       |                       |                    | scales        |                |                    |
| The graphical scale isand is             | Problematic           | critical           | simple        | real           | simple             |
| commonly used in practice.               |                       |                    |               |                |                    |
| is also known as                         | Itemized rating scale | graphical rating   | cumulative    | likert scale   | Itemized rating    |
| numerical scale                          |                       | scale              | scale         |                | scale              |

| The chief merit of itemized rating scale | more                  | deep              | critical         | all the above    | more              |
|------------------------------------------|-----------------------|-------------------|------------------|------------------|-------------------|
| is it provides information               |                       |                   |                  |                  |                   |
| occurs when the                          | error of hallo effect | error of leniency | error of central | cumulative       | error of leniency |
| respondents are either easy raters or    |                       |                   | tendency         | scales           |                   |
| hard raters                              |                       |                   |                  |                  |                   |
| occurs when the rater                    | error of hallo effect | error of leniency | error of central | graphical rating | error of hallo    |
| carries a generalized impression of the  |                       |                   | tendency         | scale            | effect            |
| subject from one rating to another.      |                       |                   |                  |                  |                   |
|                                          |                       |                   |                  |                  |                   |
| When the raters are reluctant to give    | error of hallo effect | error of leniency | error of central | cluster sampling | error of central  |
| extreme judgments, the result            |                       |                   | tendency         |                  | tendency          |
| is                                       |                       |                   |                  |                  |                   |
| Systematic bias is also known            | Error of hallo effect | error of leniency | error of central | cumulative       | Error of hallo    |
| as                                       |                       |                   | tendency         | scales           | effect            |
| occurs when the rater is                 | error of hallo effect | error of leniency | error of central | cluster sampling | error of hallo    |
| asked to rate more factors, which has no |                       |                   | tendency         |                  | effect            |
| evidence for judgment.                   |                       |                   |                  |                  |                   |
| is also known as                         | rating scale          | comparative       | likert scale     | graphical rating | comparative       |
| ranking scale                            | _                     | scale             |                  | scale            | scale             |
| We make relative judgments against       | comparative scale     | likert scale      | differential     | rating scale     | comparative       |
| similar objects in                       | -                     |                   | scale            |                  | scale             |
| Paired comparisions                      | nominal               | ordinal           | ratios           | interval         | ordinal           |
| provide data.                            |                       |                   |                  |                  |                   |
| Ordinal data can be converted to         | nominal               | ordinal           | ratio            | interval         | interval          |
| data through Law of                      |                       |                   |                  |                  |                   |
| comparative judgment.                    |                       |                   |                  |                  |                   |
| Law of comparative judgment is           | J.P.Guilford          | Likert            | L.L.Thurstone    | all the three    | L.L.Thurstone     |
| developed by                             |                       |                   |                  |                  |                   |
| Scales have an absolute or true          |                       |                   |                  |                  |                   |
| zero of measurement                      | Ordinal               | Nominal           | interval         | ratio            | ratio             |

| The section of constitutes the              |                       |                 |                |                 |                 |
|---------------------------------------------|-----------------------|-----------------|----------------|-----------------|-----------------|
| main body of the report where in the        |                       |                 |                |                 |                 |
| results of the study are presented in       |                       |                 |                |                 |                 |
| clear.                                      | Appendix              | results         | methods        | Ordinal         | results         |
| Study to portray accurately                 |                       |                 |                |                 |                 |
| characteristics of a particular individual, |                       |                 |                |                 |                 |
| situation or a group is called              |                       |                 |                | Hypothesis      |                 |
| research                                    | Exploratory           | Diagnostic      | Descriptive    | testing         | Descriptive     |
| Critical evaluation made by the             |                       |                 |                |                 |                 |
| researcher with the facts and               |                       |                 |                |                 |                 |
| information already available is called     | -                     |                 |                | Hypothesis      |                 |
| research.                                   | Analytical            | Exploratory     | Diagnostic     | testing         | Analytical      |
| Research to find reason, why people         |                       |                 |                |                 |                 |
| think or do certain things is an example    |                       | Applied         | Qualitative    | Fundamental     | Qualitative     |
| of                                          | Quantitative Research | Research        | research       | research        | research        |
| Which one is considered a major             |                       |                 |                |                 |                 |
| component of the research study             | Interpretation        | research report | finding        | draft           | research report |
| Research task remains incomplete till       |                       |                 |                | objective and   |                 |
| the has been presented.                     | Report                | objective       | finding        | finding         | Report          |
| What is the last step in a research study   |                       |                 | writing        |                 |                 |
|                                             | Writing report        | writing finding | limitations    | research report | Writing report  |
| Which is the final step in report           |                       |                 |                | writing         |                 |
| writing                                     | Writing report        | writing finding | writing drafts | limitations     | writing drafts  |
| What is usually appended to the             |                       |                 |                |                 |                 |
| research work                               | Editing               | bibliography    | coding         | research report | bibliography    |
| The is one which gives                      |                       |                 |                |                 |                 |
| emphasis on simplicity and                  |                       |                 |                | writing         |                 |
| attractiveness                              | popular report        | research report | article report | limitations     | popular report  |
| should slow originality                     |                       |                 |                |                 |                 |
| and should necessarily be on attempt to     |                       |                 |                |                 |                 |
| solve some intellectual problem             | Interpretation        | research report | finding        | draft           | research report |

| The researcher must remain caution       |                   |                |                 |                  |                |
|------------------------------------------|-------------------|----------------|-----------------|------------------|----------------|
| about the that can possibly              |                   |                |                 |                  |                |
| arise in the process of interpreting     |                   |                |                 |                  |                |
| results                                  | Analysis          | conclusions    | findings        | error            | error          |
| Which one should be considered while     |                   |                | both validity   |                  |                |
| interpreting a given data                | Validity          | reliability    | and reliability | technical jargon | reliability    |
| is asking questions face to              |                   | mailed         |                 | personal         | personal       |
| face                                     | Indirect method   | questionnaire  | through post    | interview        | interview      |
| Journals, books, magazines etc are       |                   |                | both primary    |                  |                |
| useful sources of collecting             |                   |                | and secondary   |                  |                |
|                                          | Primary data      | secondary data | data            | objective        | secondary data |
| The collected raw data to detect errors  |                   |                |                 |                  |                |
| and are called,                          |                   |                |                 |                  |                |
|                                          |                   |                |                 |                  |                |
|                                          | Editing           | coding         | classification  | all the above    | Editing        |
| The formal, systematic and intensive     |                   |                |                 |                  |                |
| process of carrying on a scientific      |                   |                |                 |                  |                |
| method of                                |                   |                |                 | research         |                |
| analysis is                              | Research Design   | research       | interpretation  | analysis         | research       |
| Refers to the process of assigning       |                   |                |                 |                  |                |
| numerals or symbols to answers of        |                   |                |                 |                  |                |
| response                                 | Coding            | editing        | classification  | all the above    | Coding         |
| The research study, which is based on    |                   |                |                 |                  |                |
| describing the characteristic of a       |                   |                |                 |                  |                |
| particular                               |                   |                |                 |                  |                |
| individual or group                      | Experience survey | Descriptive    | Diagnostic      | Exploratory      | Descriptive    |
| Research is a                            | Finding           | assumption     | statement       | all the above    | all the above  |
| The research, which has the purpose of   |                   |                |                 |                  |                |
| improving a product or a process testing |                   |                |                 |                  |                |
| theoretical concepts in actual problem   |                   |                |                 |                  |                |
| situations isresearch.                   | Statistical       | Applied        | Domestic        | Biological       | Applied        |

| The chart of research process indicates    |                         |                    | Closely         |                    |                    |
|--------------------------------------------|-------------------------|--------------------|-----------------|--------------------|--------------------|
| that the process consists of a number of - | Closely related         | unrelated          | unrelated       | moderately         | Closely related    |
|                                            | activities              | activities         | activities      | related activities | activities         |
| The objective of a good design is          | -                       | Minimize the       | Minimize the    | Maximize the       | Maximize the       |
|                                            |                         | bias and           | bias and        | bias and           | bias and           |
|                                            | Maximize the bias       | minimize           | maximize        | maximize           | maximize           |
|                                            | andmaximize             | the reliability of | the reliability | the reliability    | the reliability of |
|                                            | the reliability of data | data               | of data         | of data            | data               |
| A is used whenever a full                  |                         |                    |                 |                    |                    |
| written report of the study is required.   | Popular report          | Technical report   | article         | monograph          | Technical report   |
| The is one which gives                     |                         |                    |                 |                    |                    |
| emphasis on simplicity and                 |                         |                    |                 |                    |                    |
| attractiveness.                            | Popular report          | Technical report   | article         | monograph          | Popular report     |
| Which of the following are                 |                         |                    |                 |                    |                    |
| measurements of scale?                     | Nominal                 | ordinal            | interval        | all the above      | all the above      |
| Scale is a system of assigning             |                         |                    |                 |                    |                    |
| numbers, symbols to events in order to     |                         |                    |                 |                    |                    |
| label them.                                | Interval                | ordinal            | Nominal         | ratio              | Nominal            |
| The qualitative phenomena are              |                         |                    |                 |                    |                    |
| considered in the scale.                   | Ordinal                 | Nominal            | interval        | ratio              | Ordinal            |
| Scales can have an arbitrary               |                         |                    |                 |                    |                    |
| zero, but it is not possible to determine  |                         |                    |                 |                    |                    |
| the absolute zero.                         |                         |                    |                 |                    |                    |
|                                            | Ordinal                 | Nominal            | interval        | ratio              | interval           |

| Reg. No<br>17MMU502A<br>Karpagam Academy of Higher Education<br>Coimbatore-21<br>Department of Mathematics<br>Fifth Semester- I Internal test<br>Probability & Statistics<br>Date :DD.07.2019(FN)<br>Time: 2 hours   | 6. $P(A E) =$<br>A. $\frac{P(A \cup E)}{P(E)}$ B. $P(A \cap E)P(E)$<br>C. $P(A \cup E)P(E)$ D. $\frac{P(A \cap E)}{P(E)}$<br>7. An event <i>B</i> is said to be independent of an event <i>A</i><br>if $P(B) =$<br>A. $P(A B)$ B. $P(A)$<br>C. $P(B A)$ D. 0<br>8. A man is dealt 5 cards one after the other from an |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Answer ALL questions<br>PART A (20 × 1 = 20 marks)                                                                                                                                                                   | ordinary deck of 52 cards. What is the probability<br>$p$ that they are all spades?A. $\frac{33}{66640}$ B. $\frac{31}{66640}$ C. $\frac{32}{66640}$ D. $\frac{30}{66640}$                                                                                                                                            |
| 1. Two events <i>A</i> and <i>B</i> are called mutually exclusive<br>if<br>A. $A \cap B = \emptyset$ B. <i>A</i> and <i>B</i> are non disjoint<br>C. $A \cap B = A$ D. $A \cap B = B$                                | 9. If <i>A</i> is a subset of <i>B</i> , $P(B A) =$<br>A. $\frac{1}{3}$<br>C. 0<br>B. 1<br>D. $\frac{1}{2}$                                                                                                                                                                                                           |
| <ul> <li>2. Every subset of <i>S</i> is an event if <i>S</i> is</li> <li>A. finite</li> <li>C. countable</li> <li>D. uncountable</li> </ul>                                                                          | 10. If A and B are mutually exclusive, $P(B A) =$ A. $\frac{1}{3}$ C. 0B. 1D. $\frac{1}{2}$                                                                                                                                                                                                                           |
| 3. If <i>A</i> and <i>B</i> are mutually exclusive events, $P(A \cup B) = A$ . $P(A)P(B)$<br>C. $P(A) + P(B)$ B. $P(AB)$<br>D. $P(A)$                                                                                | 11. A box contains three coins; one coin is fair, one coin is two-headed, and one coin is weighted so that the probability of heads appearing is 9. A coin is selected at random and tessed. Then the                                                                                                                 |
| 4. If <i>A</i> and <i>B</i> are any two events, then $P(A) + P(B) - P(A \cap B) = A$ . $P(A)$ B. $P(B)$ C. $P(A \cup B)$ D. $P(\emptyset)$                                                                           | probability that heads appears =<br>A. $\frac{11}{18}$ B. $\frac{1}{18}$<br>C. $\frac{12}{18}$ D. $\frac{13}{18}$                                                                                                                                                                                                     |
| 5. Three horses <i>A</i> , <i>B</i> and <i>C</i> are in a race; <i>A</i> is twice as likely to win as <i>B</i> and <i>B</i> is twice as likely to win as <i>C</i> . Then $P(A) = A$ . $\frac{1}{7}$ B. $\frac{4}{7}$ | 12. A die is rolled three times, the probability of get-<br>ting large number than the previous number is<br>$\overline{A}$ . $\frac{1}{54}$ B. $\frac{5}{54}$                                                                                                                                                        |
| C. $\frac{3}{7}$ D. $\frac{2}{7}$                                                                                                                                                                                    | C. $\frac{5}{108}$ D. $\frac{13}{108}$                                                                                                                                                                                                                                                                                |

- 13. A pair of fair dice is tossed. Let X assign to each point (a, b) in S the maximum of its numbers. Then P(X = 3) =
  - A.  $\frac{5}{36}$ C.  $\frac{3}{36}$ B.  $\frac{4}{36}$ D.  $\frac{1}{36}$
- 14. If the sum of the ordinate and the abscissa of a point P(x, y) is 2n(x, y) are natural numbers), then the probability that *P* does not lie on the line y = xis A.  $\frac{n-1}{n+3}$ 
  - B.  $\frac{2n-2}{2n-1}$ D.  $\frac{2n_{C_n}}{2^{2n}}$ C.  $\frac{2n+1}{2n+3}$
- 15. From a set of 40 cards numbered 1 to 40, 5 cards drawn at random and arranged in ascending order of magnitude  $x_1 < x_2 < x_3 < x_4 < x_5$ . The probability that  $x_3 = 24$  is - - -

A. 
$$\frac{16_{C_2}}{40_{C_5}}$$
 B.  $\frac{23_{C_2}}{40_{C_5}}$ 

 C.  $\frac{16_{C_2} \times 23_{C_2}}{40_{C_5}}$ 
 D.  $\frac{16_{C_2} + 23_{C_2}}{40_{C_5}}$ 

- 16. From a set of 100 cards numbered 1 to 100, one card is drawn at random. e probability that the number obtained on the card is divisible by 6 or 8 but not by 24 is ---
  - A.  $\frac{6}{25}$ C.  $\frac{2}{5}$ B.  $\frac{8}{25}$ D.  $\frac{1}{5}$
- 17. Two circles are constructed taking two sides of a triangle as diameters, then the probability of these two circles intersecting on the  $3^{rd}$  side of the triangle is
  - Ă. 0 B. 1
  - C.  $\frac{1}{2}$ D.  $\frac{1}{2}$

- 18. Suppose *X* is a continuous random variable. Then P(X = x) =
  - B. ∞ A. 0 C. 1 D. −∞
- 19. If selecting an integer from a set S=  $\{1, 2, 3, \dots, 100\}$  is an random experiment, the probability that a selecting integer to be prime is B.  $\frac{52}{100}$ D.  $\frac{53}{100}$ A.  $\frac{1}{100}$ C.  $\frac{25}{100}$
- 20. Let  $\mathbb{Z}_{800}$  be a cyclic group with addition modulo 800. Let *p* the probability that selecting an element from  $\mathbb{Z}_{800}$  of order is 8. Then p =
  - A.  $\frac{1}{800}$ C.  $\frac{3}{800}$ B.  $\frac{2}{800}$ D.  $\frac{4}{800}$

#### **Part B-(** $3 \times 10 = 30$ marks)

21. a) State and prove multiplication theorem

#### OR

- b) State and prove Baye's lemma
- 22. a) A box contains three coins, two of them fair and one two-headed. A coin is selected at random and tossed. If heads appears the coin is tossed again; if tails appears, then another coin is selected from the two remaining coins and tossed.
  - (i) Find the probability that heads appears twice.
  - (ii) If the same coin is tossed twice, find the probability that it is the two-headed coin.

(iii) Find the probability that tails appears twice.

## OR

- b) A fair coin is tossed until a head or five tails occurs. Find the expected number of tosses of the coin.
- 23. a) Let *X* be a continuous random variable whose distribution *f* is constant on an interval, say  $I = \{a \le x \le b\}$ , and 0 elsewhere:

$$f(x) = \begin{cases} k & \text{if } a \le x \le b \\ 0 & \text{elsewhere} \end{cases}$$

Then (i) Determine k. (ii) Find the mean of X. (iii) Determine the cumulative distribution function F of X.

#### OR

b) A fair die is tossed. Let X denote twice the number appearing, and let Y denote 1or 3 according as an odd or an even number appears. Find the distribution, expectation, variance and standard deviation of (i) X, (ii) Y, (iii) X + Y, (iv) XY.

| Reg. No                                                                                                     | 6. Suppose X follows a normal distribution. Then                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17MMU50                                                                                                     | $\begin{array}{cccc}  & m_{1003} = & & & \\ 2A & a. 0 & & b. 1 \\  & c. 2 & & d. 3 \end{array}$                                                                                                               |
| Coimbatore-21<br>Department of Mathematics                                                                  | 7. Suppose X follows a normal distribution. Then $m_4 =$                                                                                                                                                      |
| Fifth Semester- II Internal test-July 2019<br>Probability & Statistics                                      | a. 0 b. 1<br>c. 2 d. 3                                                                                                                                                                                        |
| Date :28.08.2019(AN)Time: 2 hoClass: III B.Sc MathematicsMax Marks                                          | 8. $\phi(t)$ is a characteristic function of <i>X</i> , then the char-<br>acteristic function of <i>Y</i> = <i>X</i> + <i>b</i> is<br>a. $b\phi(t)$ b. $\phi(tb)$<br>c. $e^{itb}\phi(t)$ d. $e^{itb}\phi(tb)$ |
| Answer ALL questions<br>PART A ( $20 \times 1 = 20$ marks)                                                  | 9. If X is a continuous r.v with c.f $\phi(t)$ . then                                                                                                                                                         |
| 1. The characteristic function of a r.v X is<br>a. $E[e^{itX}]$ b. $E[$<br>c. $E[e^{-itX}]$ d. $E[e^{itX}]$ | $ \begin{array}{c} \int_{-\infty} e^{-x} \phi(t)  dt = \\ a. F(x) \\ tX \end{bmatrix}  \begin{array}{c} a. F(x) \\ c. F'(x) \end{array}  \begin{array}{c} b. f(x) \\ d. f'(x) \end{array} $                   |
| 2. $ \phi(t) $<br>a. $\leq 1$<br>c. = 1<br>b.<br>d.                                                         | 10. The random variable X has a one-point distribution if there exists a point $x_0$ such that $P(X = x_0) = $ a. 0 b. 1 c. 2 d. 3                                                                            |
| 3. $\phi(0) =$<br>a. 0<br>c. 2                                                                              | 11. If a r.v X has a one point distribution, then variance<br>of $X =$<br>a. 0<br>b. 1<br>c. 2<br>b. 1<br>d. 3                                                                                                |
| 4. $\phi(-t) =$<br>a. $-\phi(t)$<br>c. $\phi(t)$<br>b. $\phi(t)$<br>d. $-\phi(t)$                           | $\frac{D(t)}{D(t)}$ 12. Suppose X is a standardized r.v then $E[X] =$ a. 0 b. 1 c. 2 b. 1 d. 3                                                                                                                |
| 5. The central moment of the second order of Pois distribution is<br>a. $\sqrt{\lambda}$ k<br>c. $\lambda$  | in the symmetry distribution then center of symmetry= $\frac{1}{\lambda}$ a. $Var(X)$ b. $E(X)$ c. $E(X^2)$ d. 0                                                                                              |

| 14. | If X is a discrete r.v with $P(X = 1)$ | = p | and         |
|-----|----------------------------------------|-----|-------------|
|     | $P(X = 0) = 1 - p (0$                  | ,   |             |
|     | a. <i>p</i> – 1                        |     | b. <i>p</i> |

- c. 1 p d. 0
- 15. The c.f of Poisson distribution is a.  $e^{\lambda t}$ c.  $e^{\lambda e^{it}}$ b.  $e^{\lambda(e^{it}-1)}$ d. 3t
- 16. In a Poisson distribution,  $m_1 m_2$ a. 0c. 2b. 1d. 3
- 17. Suppose X follows a normal distribution. Then  $\mu_{1003} =$ a. 0 b. 1 c. 2 d. 3
- 18. Suppose *X* follows a normal distribution. Then  $\mu_4 =$  a. 0 b. 1
  - c. 2 d. 3
- 19. Gamma function defined for<br/>a.  $p \ge 0$ <br/>c. p < 0b. p > 0<br/>d. $p \le 0$
- 20. The mean value of a Gamma distribution is a. *p* b.*b* c. *p*/b d. *b*/*p*

#### **Part B-(** $3 \times 2 = 6$ marks)

- 21. Define exponential random variable
- 22. Define binomial random variable
- 23. Define Gamma distribution

#### Part C-( $3 \times 8 = 24$ marks)

24. a) If *X* has an expoential distribution with mean find P(X < 1|X < 2)

# OR

- b) State and prove Markov property of exponential distribution
- 25. a) Let *X* and *Y* be integer valued random variables with  $P(X = m, Y = n) = q^2 p^{m+n-2}$ ,  $m, n = 1, 2, \cdots$  with p + q = 1. Are *X* and *Y* independent?

### OR

- b) Find the characteristic function and moments of a r.v with density function  $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$
- 26. a) Prove that Poisson distribution is the limit of a sequence of probability functions of the binomial distribution

### OR

b) Define normal distribution and find the characteristic function of normal distribution