Semester — V
L TZPC
17MMU303 MULTIVARIATE CALCULUS 4 2 0 6

Scope: On successful completion of course the learners gain about the functions of several
variables, limit and continuity functions of two variables.

Objectives: To enable the students to learn and gain knowledge about line integrals and its
geometrical applications.

UNIT I

Functions of several variables: Limit and continuity of functions of two variables, partial
differentiation, total differentiability and differentiability, sufficient condition for
differentiability. Chain rule for one and two independent parameters, directional derivatives, the
gradient, maximal and normal property of the gradient, tangent planes.

UNIT 11
Extrema of functions of two variables: Method of Lagrange multipliers, constrained optimization
problems, Definition of vector field, divergence and curl.

UNIT III

Double integration over rectangular region: Double integration over non-rectangular region,
double integrals in polar co-ordinates, Triple integrals, Triple integral over a parallelepiped and
solid regions. Volume by triple integrals, cylindrical and spherical co-ordinates. Change of
variables in double integrals and triple integrals

UNIT IV
Line integrals: Applications of line integrals, Mass and Work. Fundamental theorem for line
integrals, conservative vector fields, independence of path.

UNITV
Green’s theorem: Surface integrals, integrals over parametrically defined surfaces. Stoke’s
theorem, The Divergence theorem.

SUGGESTED READINGS
TEXT BOOK

1. Strauss M.J., Bradley G.L. and Smith K. J., (2007). Calculus, Third Edition, Dorling
Kindersley (India) Pvt.Ltd. (Pearson Education), Delhi.

REFERENCES
1. Thomas G.B., and Finney R.L., (2005). Calculus, Ninth Edition, Pearson Education, Delhi.

2. Marsden E., Tromba A.J. and Weinstein A., (2005). Basic Multivariable Calculus, Springer
(SIE),

Indian reprint, New Delhi.
3. James Stewart., (2001). Multivariable Calculus, Concepts and Contexts, Second Edition,
Brooks Cole,

Thomson Learning, USA.
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(Deemed to be University)
{Under Sacticn 3 of UGC Act 1956)

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University Established Under Section 3 of UGC Act 1956)

Subject Name: Multivariate Calculus

Pollachi Main Road, Eachanari (Po),
Coimbatore —641 021
DEPARTMENT OF MATHEMATICS

Subject Code: 1"7MMUSO03A

UNIT -1
S.NO DURATION | TOPICS TO BE COVERED SUPPORT
HOURS MATERIAL
1 1 Limit and continuity of functions of two T1: chap-1 Pg.No:75-80
variables
2 1 Partial differentiation, total differentiability R3: chap-15 Pg.No:914-
918
3 1 Tutorial
4 1 sufficient condition for differentiability R3: chap-15 Pg.No0:921-
928
5 1 Chain rule for one and two independent R3: chap-15 Pg.N0:937-
parameters 940
6 1 Tutorial
7 1 Gradient and directional derivatives-Problems | R3: chap-15 Pg.No0:946-
960
8 1 Tutorial
9 1 maximal and normal property of the gradient R3: chap-15 Pg.No:960-
963
10 1 Tutorial
11 1 Problems about tangent planes. R3: chap-15 Pg.N0:963-
966
12 1 Tutorial
13 1 Recapitulation and Discussion of possible
questions
Total 13 Hours
UNIT-II
1 1 Introduction to Extrema of functions of two R3: chap-15 Pg.No:970-
variables 971
2 1 Method of Lagrange multipliers R3: chap-15 Pg.No:971-
975
3 1 Tutorial
4 1 Problems of Method of Lagrange multipliers R3: chap-15 Pg.No:975-
976
5 1 Continuation of problems on Method of R3: chap-15 Pg.No:977-
Lagrange multipliers 979
6 1 Tutorial
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7 1 Constrained optimization problems R3: chap-17 Pg.No:1063-
1067
8 1 Definition, Examples and Problems over R3: chap-17 Pg.No:1063-
vector field 1075
9 1 Tutorial
10 1 Problems of divergence R1: chap-10 Pg.No:806-
808
11 1 Tutorial
12 1 Problems of Curl R1: chap-10 Pg.No:815-
818
13 1 Tutorial
14 1 Recapitulation and Discussion of possible
questions
Total 14 Hours
UNIT-III
1 1 Introduction to Double integration over R3: chap-16 Pg.No:987-
rectangular region 990
2 1 Double integration over non-rectangular R3: chap-16 Pg.N0:990-
region 994
3 1 Tutorial
4 1 Double integrals in polar co-ordinates R3: chap-16 Pg.No:1010-
1015
5 1 Triple integrals-Problems R3: chap-16 Pg.No:1026-
1030
6 1 Tutorial
8 1 Triple integral over a parallelepiped and solid | R3: chap-16 Pg.No:1030-
regions 1032
9 1 Volume by triple integrals R3: chap-16 Pg.No:1032-
1035
10 1 Tutorial
11 1 Cylindrical and spherical co-ordinates R3: chap-16 Pg.No:1041-
1048
12 1 Change of variables in double and triple R3: chap-16 Pg.No:1041-
integrals 1048
13 1 Tutorial
14 1 Problems based on Change of variables in R3: chap-16 Pg.No:1048-
double integrals 1055
15 1 Continuous of problems based on Change of | R3: chap-16 Pg.No:1050-
variables in double integrals 1055
16 1 Tutorial
17 1 Recapitulation and Discussion of possible
questions
Total 17 Hours
UNIT-IV
1 | 1 | Introduction to Line integrals | R3: chap-17 Pg.No:1081-
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1083
2 1 Applications and Problems on line integrals R3: chap-17 Pg.No:1070-
1080
3 1 Tutorial
4 1 Concept about Mass and Work R1:Chap-13 Pg.No:1034-
1035
5 1 Problems on Mass and Work R1:Chap- 13 Pg.No:1035-
1037
6 1 Tutorial
7 1 Fundamental theorem for line integrals R3: chap-17 Pg.No:1083-
1090
8 1 Problems on Fundamental theorem for line R3: chap-17 Pg.No:1083-
integrals 1090
9 1 Tutorial
10 1 Problems on Conservative vector fields and R2: chap-10 Pg.No:1061-
independence of path 1090
11 1 Tutorial
12 1 Recapitulation and Discussion of possible
questions
Total 12 Hours
UNIT-V
1 1 Introduction of Green’s theorem R3: chap-17 Pg.No:1091-
1097
2 1 Surface integrals-Problems R3: chap-17 Pg.No:1117-
1128
3 1 Tutorial
4 1 Integrals over parametrically defined surfaces | R1: chap-13 Pg.No:1045-
1050
5 1 Problems on integrals over parametrically R1: chap-13 Pg.No:1051-
defined surfaces 1056
6 1 Tutorial
7 1 Stoke’s theorem- Problems R3: chap-17 Pg.No:1128-
1133
8 1 Tutorial
9 1 Divergence theorem R3: chap-17 Pg.No:1135-
1136
10 1 Tutorial
11 1 Problems on Divergence theorem R3: chap-17 Pg.No:1136-
1138
12 1 Tutorial
13 1 Recapitulation and Discussion of possible
questions
14 1 Discussion on Previous ESE Question Papers
15 1 Discussion on Previous ESE Question Papers
16 1 Discussion on Previous ESE Question Papers
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Total | 16 Hours
Lecture
S. No Duration Topics To Be Covered Support Materials
Hour
UNIT-I
S.NO DURATION | TOPICS TO BE COVERED SUPPORT
HOURS MATERIAL
1 1 Limit and continuity of functions of two T1: chap-1 Pg.No:75-80
variables
2 1 Partial differentiation, total differentiability R3: chap-15 Pg.No:914-
918
3 1 Tutorial
4 1 sufficient condition for differentiability R3: chap-15 Pg.No0:921-
925
5 1 Continuous on sufficient condition for R3: chap-15 Pg.No0:925-
differentiability-Problems 928
6 1 Tutorial
7 1 Chain rule for one and two independent R3: chap-15 Pg.No0:937-
parameters 940
8 1 directional derivatives-Problems R3: chap-15 Pg.No0:946-
958
9 1 Problems for the gradient R3: chap-15 Pg.No0:958-
960
10 1 Tutorial
11 1 maximal and normal property of the gradient R3: chap-15 Pg.No:960-
961
12 1 Continuous on maximal and normal property of | R3: chap-15 Pg.No:962-
the gradient 962
13 1 Continuous on maximal and normal property of | R3: chap-15 Pg.No0:962-
the gradient 963
14 1 Tutorial
15 1 Problems about tangent planes. R3: chap-15 Pg.No0:963-
966
16 1 Continuous the problems on tangent planes. R3: chap-15 Pg.No0:963-
966
17 1 Tutorial
18 1 Recapitulation and Discussion of possible
questions
Total 18 Hours
Text Book:

T1: Strauss M.J., Bradley G.L. and Smith K. J., (2007). Calculus, Third Edition, Dorling Kindersley
(India) Pvt.Ltd. (Pearson Education), Delhi.
Reference Book:
R3: James Stewart., (2001). Multivariable Calculus, Concepts and Contexts, Second Edition, Brooks
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Cole,

Thomson Learning, USA.

UNIT-II
1 1 Introduction to Extrema of functions of two R3: chap-15 Pg.No:970-
variables 971
2 1 Method of Lagrange multipliers R3: chap-15 Pg.No:971-
975
3 1 Problems of Method of Lagrange multipliers R3: chap-15 Pg.No:975-
979
4 1 Tutorial
5 1 Continuous of problems on Method of R3: chap-15 Pg.No:975-
Lagrange multipliers 979
6 1 Constrained optimization problems R3: chap-17 Pg.No:1063
7 1 Continuous of problems on Constrained R3: chap-17
optimization Pg.No0:1064-1067
8 1 Tutorial
9 1 Definition of vector field R3: chap-17
Pg.No:1063-1070
10 1 Examples and Problems over vector field R3: chap-17
Pg.No:1070-1075
11 1 Continuous of problems over vector field R3: chap-17
Pg.No:1070-1075
12 1 Tutorial
13 1 Problems of divergence R1: chap-10 Pg.No:806-
808
14 1 Continuous problem for divergence R1: chap-10 Pg.No:806-
808
15 1 Tutorial
16 1 Problems of Curl R1: chap-10 Pg.No:815-
818
17 1 Continuous problem for Curl R1: chap-10 Pg.No:815-
818
18 1 Tutorial
19 1 Recapitulation and Discussion of possible
questions
Total 19 Hours

Reference Book:

R1: Thomas G.B., and Finney R.L., (2005). Calculus, Ninth Edition, Pearson Education, Delhi.
R3: James Stewart., (2001). Multivariable Calculus, Concepts and Contexts, Second Edition, Brooks

Cole,

Thomson Learning, USA.

UNIT-III
1 1 Introduction to Double integration over R3: chap-16 Pg.No:987-
rectangular region 990
2 1 Double integration over non-rectangular R3: chap-16 Pg.No:990-
region 994
3 1 Continuous on Double integration over non- R3: chap-16 Pg.N0:990-
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rectangular region 994
4 1 Tutorial
5 1 Double integrals in polar co-ordinates R3: chap-16
Pg.No:1010-1015
6 1 Triple integrals-Problems R3: chap-16
Pg.No0:1026-1030
8 1 Tutorial
9 1 Triple integral over a parallelepiped and solid | R3: chap-16
regions Pg.No:1030-1032
10 1 Volume by triple integrals R3: chap-16
Pg.No:1032-1035
11 1 Cylindrical and spherical co-ordinates R3: chap-16
Pg.No0:1041-1048
12 1 Tutorial
13 1 Change of variables in double and triple R3: chap-16
integrals Pg.No0:1041-1048
14 1 Problems based on Change of variables in R3: chap-16
double integrals Pg.No:1048-1055
15 1 Tutorial
16 1 Continuous of problems based on Change of | R3: chap-16
variables in double integrals Pg.No:1050-1055
17 1 Continuous of problems based on Change of | R3: chap-16
variables in double integrals Pg.No:1050-1055
18 1 Tutorial
19 1 Recapitulation and Discussion of possible
questions
Total 19 Hours

Reference Book:
R3: James Stewart., (2001). Multivariable Calculus, Concepts and Contexts, Second Edition,
BrooksCole,Thomson Learning, USA.

UNIT-IV

1 1 Introduction to Line integrals R3: chap-17 Pg.No:1081-
1083

2 1 Applications of line integrals R3: chap-17 Pg.No:1070-
1080

3 1 Problems on Line integral R3: chap-17 Pg.No:1070-
1080

4 1 Tutorial

5 1 Concept about Mass and Work R1:Chap-13 Pg.No:1034-
1035

6 1 Problems on Mass and Work R1:Chap- Pg.No:1035-
1037

7 1 Fundamental theorem for line integrals R3: chap-17 Pg.No:1083-

1090
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8 1 Tutorial

9 1 Problems on Fundamental theorem for line R3: chap-17 Pg.No:1083-
integrals 1090

10 1 Continuous of problems on Fundamental R3: chap-17 Pg.No:1083-
theorem 1090

11 1 Conservative vector fields R2: chap-10 Pg.No:1061-

1090

12 1 Tutorial

13 1 Problems about Conservative vector fields

14 1 Problems on independence of path

15 1 Tutorial

16 1 Recapitulation and Discussion of possible
questions

Total 16 Hours

Reference Book:

R1: Thomas G.B., and Finney R.L., (2005). Calculus, Ninth Edition, Pearson Education, Delhi.

R2: Marsden E., Tromba A.J. and Weinstein A., (2005). Basic Multivariable Calculus, Springer

(SIE),Indian reprint, New Delhi.

R3: James Stewart., (2001). Multivariable Calculus, Concepts and Contexts, Second Edition, Brooks
Cole, Thomson Learning, USA.

UNIT-V

1 1 Introduction of Green’s theorem R3: chap-17
Pg.No:1091-1097

2 1 Surface integrals R3: chap-17
Pg.No:1117-1120

3 1 Problems on Surface integrals R3: chap-17
Pg.No:1120-1128

4 1 Tutorial

5 1 Integrals over parametrically defined surfaces | R1: chap- Pg.No:

6 1 Problems on integrals over parametrically R1: chap- Pg.No:

defined surfaces

7 1 Tutorial

8 1 Stoke’s theorem R3: chap-17
Pg.No:1128-1129

9 1 Problems on Stoke’s theorem R3: chap-17
Pg.No:1129-1133

10 1 Tutorial

11 1 Divergence theorem R3: chap-17
Pg.No:1135-1136

12 1 Problems on Divergence theorem R3: chap-17
Pg.No:1136-1138

13 1 Continuous of problems for divergence R3: chap-17

theorem Pg.No:1136-1138
14 1 Tutorial
15 1 Recapitulation and Discussion of possible
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questions
16 1 Discussion on Previous ESE Question Papers
17 1 Discussion on Previous ESE Question Papers
18 1 Discussion on Previous ESE Question Papers
Total 18 Hours

Reference Book:
R1: Thomas G.B., and Finney R.L., (2005). Calculus, Ninth Edition, Pearson Education, Delhi.

R3:Kenneth Hoffman., Ray Kunze., (2003). Linear Algebra, Second edition, Prentice Hall of

India Pvt Ltd, New Delhi.

Total no. of Hours for the Course: 90 hours

Prepared by: M.Jannath Begam, Department of Mathematics, KAHE

Page 8 of 8




UNIT-I Functions of several variables
2017-Batch

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari (Po),

e spesn | o Coimbatore —641 021
(Deamer! to be Uinkersity] DEPARTMENT OF MATHEMATICS
Subject: Multivariate Calculus Semester: V L TUPC
Subject Code: 177MMUS03A Class: I11-B.Sc Mathematics 4 2 0 6
UNIT I

Functions of several variables: Limit and continuity of functions of two variables,
partial differentiation, total differentiability and differentiability, sufficient condition
for differentiability. Chain rule for one and two independent parameters, directional
derivatives, the gradient, maximal and normal property of the gradient, tangent
planes.

Text Book:

T1: Strauss M.J., Bradley G.L. and Smith K. J., (2007). Calculus, Third Edition,
Dorling Kindersley (India) Pvt.Ltd. (Pearson Education), Delhi.

Reference Book:
R3: James Stewart., (2001). Multivariable Calculus, Concepts and Contexts, Second
Edition, Brooks Cole,Thomson Learning, USA.

Prepared by M.Jannath Begam, Department of Mathematics, KAHE Page 1/30



UNIT-I Functions of several variables
2017-Batch

Functions of several variables
Limit and continuity of several variables:

Limit:
DEFINITION A function f of two variables is a mle that assigns to each ordered
pair of real numbers (x, v) in a et [ a unigue real number denoted by fix, ¥). The
521 [ is the domain q:rf] f and its range is the sef of values that f takes on, that is,
{Ax.¥) | (x.y) € D
EXAMPLE 4 Find the domain and range of g{x, v} = /9 — 17 — ¥%.
soLuToN The domain of g is
D=z |9 -2 —yi=0={xy) |1*+ ¥y =0}
] v which is the disk with center (0. ) and radios 3. (See Figure 4.) The range of g is
r+y=9
=@ —x 3. (xweD}
— FiRe Since - is a positive sguare root, = = (L. Also
g—3'—yi=0 = Jo—zx2—y'=1
So the range is
FIGURE 4
Domain of gix.y1= /9 -1 — % {z|0=z=3}=[0.3] O

DEFINITION If f is a function of two variables with domain 2, then the graph of
f is the set of all points (x, v. z) in B® such that z = f{x, v} and (x. ¥) is in D.

Just as the graph of a function f of one variable is a curve C with equation v = f{x), so
the praph of a function 7 of two variables is 2 surface £ with equation = = 1. ¥). We can
vispalize the graph § of f as lying directly sbove or below its domain D in the xy-plane,
(See Fipure 5.)

LEVEL CURVES

5o far we have two methods for visualizing functions; arrow diagrams and graphs. A third
method, borrowed from mapmakers, is a contoor map on which points of constant eleva-
tion are joinad to form contour curves, or level curves,

DEFINITION The level curves of a function f of two varables are the curves wilh
equations f{x. ¥) = k. where £ is a constant (in the range of /).

Prepared by M.Jannath Begam, Department of Mathematics, KAHE Page 2/30



UNIT-I Functions of several variables
2017-Batch
y L EXAMPLE 9 A conlour map for a function f is shown in Figure 14. Use il to eslimate the
5 + — values of {1, 3) and {4, 5).
RN
A1 Il,f'/”_ T T | :““ \ SOLETICE The point (1. 3) lies partway between the level curves with z-values 70 and 80,
i L ."r 1 MY AR We estimate that
- - :
l'll'.ll'\ ||I||_ I| \ IlIll I| ,I"“.:"l} = T3
e W HU,II““: i { poona .
: \ bego’ )] L 70~ ;" Similarly, we estimate that
‘&_T_". o Tl fi4.5) = 56 O
2 3 4 5 =
EXAMPLE 10 Sketch the level carves of the function fix, ¥} = 6 — 3x — 2y for the
FIGURE |4 values £ = —6. 0, 6, 12
SOLUTIeN The level curves are
: ¥
\ 6—3r—Iv=k or I+ +k—6=0
\ This is a family of lines with slope —é The four particular level curves with
% o 2 k=—606and12are3x+2¥— 12=03x+ 2y —6=0,3r + Zy=10. and
\Q He VL W 3r + 2y + 6= 0. They are skelched in Figure 15. The level curves are equally spaced
\? i parallel lines because the graph of f is a plane (see Figure 6). O
ki EXAMPLE 11 Sketch the level curves of the function
FIGURE 15
Contour map of glr vyl =0 — 1T — 32 for. k=0,1,2.3
firyl=6—-3x— 2y
SOLETIDE The level curves are
VI - -y =ik o X +yi=9-§7
This is a family of concentric circles with center (0, 0) and radius % — &2, The cases
k=1, 1,2, 3 are shown in Figure 16. Try to visualize these level curves lifted up to
form a surface and compare with the graph of g (a hemisphere) in Figure 7. (See TEC
Visual 15.1A4.)
IFIIlfil.IIIE 1&
Contour map of g, ¥ = 49— x* — ¢ O

EXAMPLE 12 Sketch some level curves of the function {x, ¥) = 457 + v2

foLuTies The level curves are

i

—_ 4 '\I: =
k/4

¥ B

44+ ¥ =1

which, for & = 0, describes a family of ellipses with semiaxes /& /2 and /K. Figure 17(a)
shows a contour map of & drawn by a computer with level curves corresponding Lo
k=10.2505,075,..., 4. Figure 17(b} shows these level curves lifted up to the graph
of i (an elliptic paraboloid} where they become horizontal traces. We see from Figure 17
how the graph of & is put together from Lhe level curves.

Prepared by M.Jannath Begam, Department of Mathematics, KAHE
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UNIT-I
2017-Batch

Functions of several variables

EH Vinual 15,18 demonstrates the
connection betwean surfaces znd their

CONCOUT Maps.

FIGURE IT

The graph of bix, )= 41’ + 3"
is formed by lifting the kevel curves. (a) Contoar map {b) Horizoatn traces are raised level curves O

FIGURE 20

FUNCTIOMNS OF THREE OR MORE VARIABLES

r+y+1r'=1

A function of three variables, f, is a rule that assigns to each ordered triple (x,v.z)ina
domain £ © R* a unigue real number denotad by f(x. ¥, -}, For instance, the temperature
T at a point on the surface of the earth depends on the longitude x and latitude v of the
point and on the time {, so we could write T = f{x, v, £).

EXAMPLE 14 Find the domain of [ il
Fx v z)=In{z— ¥ + xysinz

aLTiek The expression for fx, ¥, z) is defined a5 long as = — ¥ = 0, 50 the domain of
is
D={xyz)eR|:>¥

This is a half-space consisling of all points that lie above the plane = = v. O

It’s very difficult o visualize a function [ of three vanables by ils graph, since that
would lie in a four-dimensional space. However, we do gain some insight into by exam-
ining its level surfaces, which are the surfaces with equations f(x, v, =} = & where £ is
a constant. IT the point (x. ¥. =} moves along a level surface, the value of f(x. ¥, ) remains
fixed.

r+y'+:'=9 EXAMPLE 15 Find the level surfaces of the function

3 : KT L & :
-SP Gt flryzl=x+y2 42

TOLITHH The level surfaces are 12 + ¥* + 2* = &k, where k£ = (0. These form a family of
concentric spheres with radius Jk. (See Figure 20.) Thus, as {x, v, 7) varies over any
sphere with cenler O, the value of f{x. v, z) remains fixed.

Functions of any number of variables can be considered. A fonction of a variables
is a rule that assigns a number = = fix;, X2, ..., Xe) 10 an a-tuple (X, vz, . .., X, ) of real
numbers. We denote by B* the set of all such s-tuples. For example, if 4 company uses n
different ingredients in making a food product, ¢, is the cost per unit of the ith ingredient,
and x; units of the {th ingredient are usad, then the total cost C of the ingredients is a func-
tion of the i variables X, Xz, ..., X

C=flx, x5, ..., X=X + EX 4 0+ 6,

The function f is a real-valued function whose domain is a subset of B, Sometimes we
will use vector notation o wrile such functions more compactly: IEx = {I, T, ..., X0,
we often write f{x) in place of f{x;. x3, ..., x), Wilh this nolation we can rewrite the
Tunction defined in Equation 3 as

Prepared by M.Jannath Begam, Department of Mathematics, KAHE Page 4/30



UNIT-I Functions of several variables
2017-Batch

fixi=ec-x

where ¢ = {1, €2, .... o) and ¢ - x denodes the dot product of the vectors ¢ and x in Ve

In view of the ocnedo-one comrespondence between points (X, ¥z, ..., 1) in B® and
their position vectors X = (X, X2, ..., Xg) in Ve, we have three ways of looking at a func-
tion f defined on a subsed of H®:

I. As a function of n real varigbles 13, Xz, ... . X

L Asafunclion of a single point variable (X Xz, ..., Xa)

3. As a function of a single vector variable x = (X, Xz, ..., X}

LIMITS AND CONTINUITY

Let’s compare the behavior of the functions

sinfx? + ¥%) =yt
ey =—7m——7F— and gl ¥l =———=
L X ¥

a5 x and v both approach O [and therefore the point (x, ¥) approaches the origin].

TABLE | Values of flx. ¥) TABLE 2 Voues of ¢lx. ¥)
2 ¥l -10|-05|-02 0 0.z 0.5 1.0 4 Y| -10 | -05 | -02 o 02 0.5 Lo
=10 | Das5 | o759 | OOB29 | GB4] | B9 | 0759 | m4ss =10 | oiwo| D600( %S| oo a2l ) 0600 RECH
05 | orse | oess | ooees 1000 1R, 1 Ca 1. 750 05 N iR N T i ik N
032 | osz LSRG | DGS9 | 1.0 i i, L o -2 932 T Cill B i i T4 7
i} 1.584 G 1 o % [i] 1.0 1000 L] |_|:|r_|§ |.0H 0
D2 | nA2% | oAs | 09w | 100 ] o &2 02 o3| DT o0 | 1.0 K ; M| -091
05 | o7se | ooss | oows | oo 1556 | 05 | oopso 05 LG Dooo0| (k724 | LOOG [ T24) 0000 - 0adbo
1.0 1 T 1 1 | 1.6} il L 1.0 ) il 0K

Tables 1 and 2 show values of f{x, ¥} and glx. ¥}, correct to three decimal places, for
points (x, v) near the origin. (Motice that neither function is defined at the origin) It
appears that as {x, ¥) approaches (0, O), the values of fix, v} are approaching | whereas the
values of g{x, ¥) aren’t approaching any number. It turns out that these puesses based on
numerical evidence are comect, and we write

sin{x® + ¥?) ) -y
[ Ii—= 1 and lim ——=
lep-—+mm x4 y* fep—=no = 4y

does nol exist

In general, we use the notation

2 -.a.!j-!?u!u,.a: fix.yvi=L

1o indicate that the valopes of Flx, ¥) approach the number L as the point (x, ¥) approaches
the point (a, &) along any path that stays within the domain of f. In other words, we can
make the values of f{x.¥) as close to L as we like by taking the point (x, ¥) sufficiently
close to the point (g, b}, but not equal to {a, b). A more precise definifion follows,

[1] pEFIMITION Let f be a function of two variables whose domain [ includes
points arbitrarily close to (a, b). Then we say that the limit of fix, v) as (x, ¥)
approaches (a, b) is L and we wrile

Iiﬂu: Ax¥ =L

[£X 15
if for every number £ = (} there is a corresponding number & = 0 soch that

if (LY)ED ad 0<(x—a+(¥y—F* <8 then |flx.¥) —L|=<s=

Prepared by M.Jannath Begam, Department of Mathematics, KAHE Page 5/30



UNIT-I Functions of several variables
2017-Batch

(Other notations for the limit in Definition 1 are

lim Fflix, ¥} =L and Fxy)—L as (x,¥} —=(a, B

¥—=b

Notice that | fix,¥) — L| is the distance between the numbers fix.y) and L, and
Vi — @t + (v — b)? is the distance belween the point (x, ¥) and the point (g, b). Thos
Deefinition | says that the distznce between fx. ¥) and L can be made arbitrarily small by
making the distance from (x. ¥) to (a, b) sufficiently small (but not 0. Figure 1 illustrates
Definition | by means of an amow diagram. If any small interval (L — &, L + =) is given
around L, then we can find a disk Dy with center (a, &) and radios & = 0 such that 7 maps
all the points in D [except possibly (a. #)] into the interval (L — &, L + &),

Another illustration of Definition 1 is given in Figure 2 where the surface § is the graph
of f.If e = 0 is given. we can find & = 0 such that if (x, ¥} is restricted to lie in the disk
3 D, and (x, v) # {a_h), then the comesponding part of § lies between the horizonial planes

-1 \\-ﬁ'ﬁ" \ r=L—gamz=L+&
/h ———= o L". '.\ ,-'I For functions of a single variable, when we let rapproach a. there are only two pos-
- sible directions of approach, from the left or from the right. We recall from Chapter 2 that
/ 0 = \ % if lim, ., ;’{_:rll # limg., g _,r'_[x}, then In_n,_,:,_,r'f.ﬂ does nol exist _
For functions of two variables the situation is nol as simple because we can let (x, v)
approach (g, ) from an infinite number of directions in any manner whalsoever (see
FIGURE 3 Figure 3) as long as (x. v) stays within the domain of f.

¥

Definition | says that the distance between fix, ¥) and L can be made arbitrarily smail
by making the distance from (x, ¥) o (g, B) sufficiently small (but not 0). The definition
refers only o the distance betwesn {x_v) and (@, 51. [t does not refer 1o the direction of
approach. Therefore, if the limit exists, then f{x. ¥) must approach the same limil no mat-
ter how (x, ¥) approaches (g, ). Thus if we can find two different paths of approach along
which the function f(x, ¥) has different limils, then it follows that limig g 0 X, ¥) does
nol exisk.

If fi{x,¥)— Ly as (x.¥) — (a, &) along a path C, and f{x, ¥) — Laos
(x, ¥) — (a, b} along a path Cs, where Ly # Lz, then limg y - ww fX, ¥) does
not exist.
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. =y :
I EXAMPLE | Showthat lim ——— does not exist.
L p-—=inm x* 4 ¥
soLuTion Let fiix, ¥} = (37 — }'ill,-‘_[.r: + ¥}, First let’s approach (0, 0) along the x-axis.
Then y = 0 gives fix. 0) = x%x’ = 1 forallx # 0. s0
X finy)—1 as  (xv) — (0, 0 along the x-axis
-] —yl
d ‘We now approach along the y-axis by putting x = 0. Then f{D, ¥} = 1 = —1 for
ally #0. 50 ¥
I
r=1 fix.v)— —1 as {x,¥) — (0, 0) along the y-axis
(See Figure 4.) Since § has two different limits along two different lines, the given limit
does not exist. (This confirms the conjecture we made on the basis of numerical evidence
FIGURE 4 at the beginning of this section.) O

o ! .
EXAMPLE 2 Iffix. ¥) =———. does lim f{x. ¥} exist?
+ Sl 2 L1, pi—= L, OF

soumiok Bf y = 0, then f{x, 0} = 0/x* = 0. Therefore

fxyi—0 as {x, ¥ — (D, 0} along the r-axis
Ifx =0, then fi0, %) =0/ =050

Flx.¥v)—=0 1= (x, ¥} — {0, O} along the v-axis

Although we have oblained identical limits along the axes, thal does not show thal the
given limit is 0. Let’s now approach (0, 0) along another line. say v = x. For all x = 0,

.

flx.x}=— 7=
B

X
+ x° 2

Therefors Flxr,v) —3 as (x,¥)— (0, D along vy = x

(See Figure 5.) Since we have obtained different limils along different paths, the given

FIGURE 5 limit does not exist. O

Figure 6 sheds some light on Example 2. The ridge that occurs above the line v = x cor-
responds to the fact that f(x. ¥) ={ for all points {(x, ¥) oo that line except the orgin.

LH inVisual 15.2 a rotating line on the
surfzce In Figure & shows different: limits ac
the arigin from diffierent directions

FIGURE &

Ly ===
-r- - 12+:F2

]
X¥
i EXAMPLE 3 If f{r,¥) = ——— . does lim f{x. v) exist?
Jix Iz+}.¢ iUI_'m_:".F. ¥l

SOLUTHM With the solution of Example 2 in mind, let’s ry to save time by lelting
(x. ¥) — (0, 0} along any nonvertical ling throogh the origin. Then ¥ = mx, where m
is the slope, and

ximx) mr? m'x

fix, ) = flx, mo) = — - = _
1) = s, m o4+im)t ©4+mit 1+ mit
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u Figure 7 stows the greph of the function

Exampla 3. Notice the ridge ebove the pesabola

=¥

FIGURE 7

= Another wey to do Example 4 iz to uze the
Sipueas Theorem instaad of Definition 1. From
12} it Sodlows that

fim 3y|=0

and 50 the frst mequality in {3 shows that the
given limit iz .

So flr.y)—=0 as (x, ¥} — (0, O) along ¥ = mx

Thus f has the same limiting value along every aonvertical line through the origin. But
that does not show that the eiven limit is 0, for it we now let (x, ¥) — (0, 0) along the
parabola x = v*, we have

¥yl el 1

Sz vl =flyLy) BT s

S0 Fixy) —1 as (x, ¥} —= (0. 0} along x = ¥°
Since different paths lead o different limiting values, the given limil does not exist. [

MNow let’s look at limits that dr exist. Just as for functions of one variable, the calcula-
tion of limits for functions of two variables can be greatly simplified by the use of proper-
ties of limits. The Limit Laws listed in Section 2.3 can be extended o functions of two
variables; The limit of a sum is the sum of the limits, the limit of a prodoct is the prodoct
of the limils, and 50 on. In particular, the following equations are true,

H| lim x=a lim y=~Fk im c=rc
{o i — L, i Lr yh—=lo B Lx,yi—+in, b

The Squeeze Theorem also holds.

y T
EXAMPLE 4 Find lim ———if it exists.
myp—iao X + ¥

iGLUTION As in Example 3, we could show that the limit along any line through the
origin is 0. This doesn’t prove that the given limit is O, bot the limits along the parabolas

v = xtand x = ¥* also turn out to be 0, so we begin (o suspect that the limit does exist

and is equal o 0.
Lat ¢ > 0. We want to find 8 > 0 such that

if O<yx*+y'=8 then | 57— -0 ==&
r+y

thal is, it O=at4yr<F them — <=
b e

But x* = 1 + y" since ¥7 = 0. s0 xY(x? + ¥*) = | and therefore

B}

Thus if we choose 8 = &3 and let 0 < /x7 + ¥7 = &, then

3_:2.‘.

2+

=0 3

=3,/ Ty < 3= A[EJ — &

Hence, by Definition 1.

3xy -
= = L1

I e
wy—nm X + ¥
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CONTINUITY

Eecall that evaluating mits of continuous functions of a single variable is easy. It can be
accomplished by direct substitution because the defining properly of a continuwous function
is limz—q f1x) = fla). Conlinuows functions of two variables are also defined by the direct
substitution propesty.

[¥] pEFMITION A function f of twoe variables is called continuous at (a, b) if

Iz vl'E-{-!?u ﬂ'—'ﬂ‘x' _‘I-"} = _ﬁﬂ', h}

Wa say [ is continnous on D if f iz continuous at every point (e, b) in D

The intuitive meaning of continuity is that if the point (x, ¥} changes by a small amount,
then the value of fix, ¥) changes by a small amount. This means that a surface that is the
graph of a continuous funclion has no hole or break.

Using the properties of limits, vou can see that sums, differences, products, and guo-
tients of continuoos functions are continuows on their domains. Let’s use this fact to give
examples of continuous functions.

A polvnomial function of two variables (or polynomial, for shon) is 4 sum of terms
of the form cx™", where ¢ iz a constant and m and n are nonnegative integers. A rational
function iz a ratio of polynomials. For instance,

Aryl=*+ W' +6m*—Tr+ 6

is a polynomial, whereas
2xy + 1
gix. ¥) = Ty
is a rational function.

The limits in {2} show that the functions f{x, ¥) = x, g{x. ¥} = ¥, and f(x, ¥} = ¢ are
continnous. Since any polynomial can be built up out of the simple functions [, g, and A
by multiplication and addition, it follows thal all pelveomials are continmows on B2
Likewise, any rational function is continuous on ils domain because it is a quotient of
contingous functions.

I EXAMPLE 5 Evaluate  lim I1x"'_v" — % + I+ ).
1, yh+11, 3

soLUTN Since fix.¥) = £y — 1% + 3x + 2y is a polynomial, it is continuous every-
where, 50 we can find the limit by direct substitotion:

=

dm -y e D) = PP P23l 42-2=1 O

2

. ) =y
EXAMPLE & Where is the function f{x. ¥} = r}pzmnunuuuﬁ?

$oLuTioN The function f is discontinuous at {0, 0) because it is not defined thera.
Since f is a rational function, it is continuous on its domain, which is the set
D ={i{x. ¥ (x. ¥) # (0. 01} O
EXAMPLE 7 Let
-V if(xy) #0.0)
gry =40 +y
0 if (x.¥) = (0,00

Here g is defined at (0, 0) bul g is still disconlinuous there because lim;, g ¢, g{x. ¥)
does nol exisl (see Example 1). m|
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= Figure 3 shows the greph of the continuous
function in Exampie 8

FIGURE 8

FIGURE 9
The function kix, ¥) = arctan(y/x)
is discontinuows where x = 0.

EXAMPLE 8 Let
_3.‘('.‘" _F {x¥) = (0,0)
flr =45+
0 if (.3 =1(0,0)

We know [ is continuous for (x, ¥) # (0, 0) since it is egual 1o a rational function there.
Also, from Example 4, we have

Iy

; 3
Llim ey = lim — =0 =1{0,0)

myp—inm x? + y?

Therefore f is continuous at (0, 0). and so it is continuous on B2 O

Just as for functions of one variable, composition is another way of combining two con-
linuous functions © get a third. In fact, it can be shown that if £ is a continuous Tunction
of two variables and g is a continuous function of a single variable that is defined on the
range of f, then the composite function i = g = f defined by A(x, ¥) = gl flx, ¥)) is also a
continuous function.

EXAMPLE ¥ Where is the function h(x, ¥) = arctan{y/x) continuous?

soLimion The function f{x, ¥) = v/ is a rational function and therefore continuous
except on the ling x = 0. The function g{f) = arctan  is continuous everywhere. 5o the
composite function

gl f{x, ¥} = arctan(y/x}) = hix, ¥)
is continuous except where x = 0. The graph in Figure 9 shows the break in the graph of
h above the v-axis. O

FUNCTIOMNS OF THREE OR MORE VARIABLES

Everything that we have done in this section can be extended o functions of three or more
variables. The notation
lim flxy.z)=L
ir,y zl=~lL B, i

means that the values of f{x. v, =) approach the number L as the poind {x, v, z) approaches
the point (@, b, ¢) along any path in the domain of f. Because the distance between two
points (x, ¥, =) and (a, b, ¢} in R*is given by /Tx — a)* + (¥ — 57 + (z — c}*, we can
wrile the precise definition as follows: For every number & = 0 there is a comresponding
namber & = 0 such that

if (r.¥v,zlisinthedomainof f and O< Ix—a)T+{v—F2+z—0)T < &

then |fixy,z)—Lj<e

The function f is contineouws at (g, b, c) il
lim - flx,v.z) =fla, b, c)
Ly, cl—=te b o
For instance, the function

1
=i =1

is a rational function of three varables and so is continuous at every point in B* except
where x° + ¥* 4+ ¥ = |_In other words. it is discontinuous on the sphers with center the
origin and radius 1.
Il we use the vector notatlon introduced at the end of Section 15,1, then we can wrie
the definitions of a limit for functions of two or three variables in a single compact form
as follows.
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[5] If f is defined on a subset [2 of B, then lim,_., f(x) = L means that for
every number & = 0 Lhere is 4 corresponding number & > () such that

if xED md 0<|x—a|=<& then |[fix)—L|<e

Motice that if m = |, then x = x and a = a, and {3) is just the definition of a limit for
functions of a single varable, For the case n =2, we have x = {x; ¥}, a= {a. b),
and |x — a| =+t — a)* + (¥ — )2, so (3) becomes Definition 1. If a = 3, then
x={x vz}, a= {a b c), and (3) becomes the definition of a limil of a function of
three variables. In each case the definition of continoity can be written as

!i_{:ilf{x} = fla)

PARTIAL DERIVATIVES
In general, if § is a fonction of two variables x and v, suppose we let only x vary while

keeping ¥ fixed, say v = b, where b is a constant. Then we are really considering a func-
tion of a single variable x, namely, g{x) = flx, £). If g has a derivative at a, then we call it
the partial derivative of f with respect to x at (g, ) and denote it by fla. 5). Thus

[ Fela, b) = g'la) where  gilx) = filx. b)
By the definition of a derivaiive, we have
gla + k) — gla)

g'la) = lim :

and =0 Equation | becomes

fla + b B) — fla. i)
i

a

fila, B) = lim
k—

Similarly, the partial derivative of f with respect to ¥ at {a, &), denoted by fia, b), is
obtained by keeping x fixed (x = a) and finding the ordinary derivative at & of the func-
tien Giv) = fla, ¥):

fla. b+ k) — fla. B)
[

fila. b) = lim

If f is a function of two varables, its partial derivatives are the functions f
and f, defined by

fix + k¥ — flx.v)

_II'];{I, 'ﬂ 5 Jlri[rlll fi
L Fny + K — im0
Flx.y) = lim i
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There are many alternative notations for partial derivatives. For instance, instead of
Jrowe can write 7 or Dy F (o indicate differentiation with respect o the first variable) or
dffax. Bul hera if/4x can’t be interpreted as a ratio of differentials.

HOTATIONS FOR PARTIAL DERIVATIVES Ifz = f(x, ¥), we write

df i iz
Mxyi=4F% =;=I_ﬂ]_}' =E=‘ﬁ =hf=D:f

. W@ e
KMoy =f= s Hﬁ.f{x.}}— ay =fi=D0uf=Dyf

To compute partial derivatives, all we have to do is remember from Egquation | that
the partial derivative with respect 10 x is just the ordinary derivative of the function g of a
simgle variable that we get by keeping v fixed. Thus we have the following rule.

RULE FOR FINDING PARTIAL DERIVATIVES OF z=fix, ¥}
1. To find f, regard ¥ as a constan and differentiate f{x, ¥) with respect to x.
1. Tofind f, regard x a5 a constant and differentiate f{x. v) with respect to v,

EXAMPLE | If fix,¥) = x° + x™* — y%, find fi(2, 1) and (2, ).
SOLUTIHN Holding v constant and differentiating with respect to x, we get

filx v = 3% + 2o?
and =0 2 =3-224+2.2.- =16
Holding x constant and differentiating with respect o v, we gel

oy =30 —ay

ML =3-21-1"—4-1=8 O

INTERPRETATIONS OF PARTIAL DERIVATIVES

To give 3 geomeiric interprefation of pariial derivatives, we recall that the equation
z = f{x, ¥) represents a surface S (the graph of 7). If flao. b = c, then the point Ma. b, c)
lies on 5. By fixing ¥ = b, we are restricting our attention to the carve O in which the ver-
tical plane ¥ = P intersects §. {In other words, C; is the trace of § in the plane ¥y = 1)
Likewise, the vertical plane x = g intersects 5 in a curve ;. Both of the curves C, and C;
pass through the poinl F. (See Figure 1.}

FIGURE 1
The partial derivatives of fat |a, &) ore
the slopes of the tangents o O and O

Nofice that the curve O is the graph of the function g(x) = fix. &), so the slope of its
tangent T, at P is g'(a) = fi{a, b). The curve C, is the graph of the function GUy) = fla. ¥}
so the slope of its tangent T3 al Pis GB) = fila, 5).
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FIGURE 4

FIGURE S

Thus the partial dedivatives f{a. b) and fi{a, b) can be interpreted geometrically as the
slopes of the tangent lines at Pla, . ¢) to the traces C and < of § in the planes v = b
and x = a.

As we have seen in the case of the heat index function, partial derivatives can also be
interpreted as rafes of change. If - = fix, ¥), then #z/dx represents the rate of change of =
with respect to x when v is fixed. Similarly, dz/fv represents the rate of change of = with
respect to y when x is fixed.

EXAMPLE 2 If f{x.y) =4 — x* — 2y, find f;{1, 1) and f{1, 1) and interprat these num-
bers as slopes.

SOLUTHN 'We have
flxy) = -2z Fx vl = —dy
KL =-2 A1) = -4

The graph of { is the paraboloid : = 4 — 17 — 2v" and the vertical plane ¥ = | inter-
sects it in the parabola = = 2 — 2% v = L. {As in the preceding discussion, we label
it €, in Figure 2.) The slope of the tangent ling 1o this parabola at the point (1, 1, 1) is
1, 1) = —2. Similarly, the curve C: in which the plane x = | intersects the parabo-
loid is the parabolaz = 3 — 2v% x = 1, and the slope of the tangent line at (1, 1, 1) is
K1, 1) = —4. (See Fipure 3.}

I

FIGURE 1 FIGURE 3 O

Figure 4 15 a computer-drawn counterpart 1o Figere 2. Part (a) shows the plane v = 1
imtersecting the surface to form the curve C; and part (b) shows C; and T,. [We have used
the vector equations r(f} = {1, 1.2 — %) for & and r(f) = {1 + 1.1, 1 — 2¢&) for T..]
Stmilarly, Figure 5 corresponds to Figure 3.
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L EXAMPLE 3 Iffix. ¥) = sin( a ) c:uu:ulawiand —f.
I +¥ ix iy

SOLUTHON Using the Chain Rule for functions of one variable, we have
ar ( I a ( i x 1
— = C0S w= = Cos »
ix I +¥ ax\i+y 1+v 1+¥
3 :
—‘r=1::us( = i( S, SR e )._’ . O
iy I +w av Al +¥ I +¥ (1 + ¥?

= Some computer sigstire systems can plot i EXAMPLE 4 Find az/ax and az /oy if = is defined implicitly as a function of x and ¥

surfeces defined by implicit equations in threa by the equation
weriables. Fiqure B shows such a plot of tha =
surface defined by the equation in Example 4 vt =1

¥ 85 a constant:

. iz
I+ 370 4 Gyz o+ B — =D
i} 4 X

(228

Solving this equation for dz,/dx, we obtain

A x4y

ax 2t 4 2ay

FIGURE &

Similarly, implicit differentiation with respect o v gives

FUNCTIONS OF MORE THAN TWO VARIABLES

Pariial derivatives can also be defined for functions of three or more variables. For example,
if f is a function of three variables x. ¥, and =, then ils pantial derivative with respect (o x

is defined as

Fflx+hv.z)— fAx vz
h

Hryz)= Emg

and it is found by regarding v and - as constants and differentiating f{x, v. z) with respect
10 x. If w = fx. v. z}. then f; = dw/dx can be interpreted as the rate of change of s« with
respect to x when v and - are held fixed. But we can’{ interpret il geomelrically becanse the

graph of [ lies in four-dimensional space.

In general, if o is a fanction of # variables, ¥ = i1, T=. ..., X, ). ils parial derivative

with respect to the ith variable x; is

A el ey ) — Ky oy Ta)
h

and we also write

] ﬂf
it ML e R 5
Xy ax; fu=1i L

EXAMPLE 5 Find fz, f;, and £ if f{x,y,2) = ¢lnz.

ioLiTies Holding v and = constant and differentiating with respect to x, we have

L=z

Similarty, f=x"In: and f=—
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HIGHER DERIVATIVES

If f is a function of two variables, then its partial derivatives f; and f, are also functions of
two variables, so we can consider their panial derivatives (£)., (). UG). and (f)y.
which are called the second partial derivatives of § If - = f(x. v}, we use the following

notation:
(h=fo=fa= %(%} = EI:::-: = ﬁ
(e =fou=fu = ﬁ(%) & ,-rj?::.- - aff:r_-.-

Thus the notation foy (or A dv ix) means that we first differentiate with respect to x and
then with respect to ¥, whereas in computing fi. the order is reversed.

EXAMPLE & Find the second partinl derivatives of
firvi=1+ 1% -’

souiTion In Example | we found that

filx, ¥) =3 + Ixy? Myl =3 -4
Therefore
d 2 3 3 i g "
Jo= _'—{31‘ + My’ =6+ Iy” fo= _'—13.!" + Iv') = 6ny*
i Y
i o . i . . ’
fm= _—t{lt‘}" — dy) = 6oy’ o= _—Wm-_w-- — dy) = 6x’y — 4 O

Notice that fi, = f; in Example 6. This is nol just a coincidence, It turms out that the
mixed partial derivatives [, and f,; are equal for most functions that one meels in practice.
The following theorem, which was discovered by the French mathematician Alexis Clairaut
{I713-1T765), gives conditions under which we can assert thal iy = fi.. The proof is given
in Appendix E o
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= Figure T shows the greph of the fundtion f

m Example b and the graphs of its first- end
second-order pertial dermvatiies for —2 =z 12,
—2 =2 ¥ == 2. Nistice that these graphs ana con-
sistent with our inteneetations of f; and § as
slopes of tamgent lines to iraces of tha graph of I
For instence, the graph of f decreases if we start
at (i, —2) end mova in the postive x-direction.
This i reflected in the negative values of . You
shouzid compare the graphs of fr. and fi, with the
eph of f fo saa tha miationships

fuu foy= b I
FIGURE 7
» Alexiz Claimaut was a child prodigy in CLAIRAUT'S THEOREM Suppose [ is defined on a disk D that contains the point
mathematics: he raad Hospitals tExtboot {a, B). If the functions i, and f5, are both conlinuous on £, then
on cakculus whan he wes ten end presentad a
paper on peemetry to the French Academy of i, B) = figla, B)
Sciencas whan he was 13 At the age of 18, E i g

Clairaut published Aechemhes s fes coubes 5
douiie cooriume, witich was the fist systematic

treatise or three-dimensional analytic peomatry Partial derivatives of order 3 or higher can also be defined. For instance,
and included the calculus of spacs carves ;
N i i A
= { 1 Iy = — e
Feyr = Uty iy ( v ax J vl

and using Clairaut’s Theorem it can be shown that fomy = fisy = fyye if these functions are
Ccontinuous.

i EXAMPLE T Calculate fipp. if flx, ¥, =) = sin{3x + vz}
SOLUTION fo = 3cos(3x + yz)

S = =% sin{3dx + ¥z)

Sy = =9z cos(3x + ¥z)

Jfrzye = —9cos(3x + vo) + vz sin(3x + yz) O
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PARTIAL DIFFEREMTIAL EQUATIOMS
Partial derivatives occur in pardial differeniial equations thal express certain physical laws.
For instance, the partial differential equation
Fu i
Tatsa=0
)
is called Laplace’s equation after Pierre Laplace (17491827}, Soluticns of this equation
are called harmonic functions; they play a role in problems of heat conduction, Auid fow,
and eleciric potential,
EXAMPLE 8 Show that the function ulx, v} = #7sin ¥ is a solution of Laplace’s
equation,
OLUTION H, = e%siny iy = e*cosy
by = 78N Y iy, = —£'5in Y
By + Wy =S5y — esiny =0
Therefore u satisfies Laplace’s equation. |
The wave equafion
i =3 ]
ar? dx?
g describes the motion of a waveform, which could be an ocean wave, a sound wave, a light
/-"" H uix. i) ""\K\ wave, or 2 wave traveling along a vibrating string. For instance, if 4ix, {) represents the dis-
3 placement of a vibrating violin string al time ! and al a distance x from one end of the
string (as in Fipure 8), then u(x, 1) satisfies the wave equation. Here the constant a depends
FIGURE 8 on the density of the string and on the tension in the string.

EXAMPLE 9 Verily that the function wlx, i} = sin{x — ar) satisfies the wave equation.
SOLOTION iy = coslx — at) g = —sin(x — ai)
;= —acoslx — af) Uy = —a” sinfx — af) = 8 ux

50y satisfies the wave equation. O

EXAMPLE 9 Verify that the function u{x, f) = sin{x — ar) satisfies the wave equation.

TOLUTIDN u, = cos(x — af) i = —sin(x — at)
u, = —acos(x — af} Hy = —a’sinfx — af) = gy
So u satisfies the wave eqguation. O

TANGENT PLAMES

Suppose a surface § has equation z = f(x, ¥), where [ has continuous first partial deriva-
tives, and let P{xg, Yo, 2o} be a point on 5. As in the preceding section, let C and C; be the
curves oblained by intersecting the vertical planes ¥ = % and X = Xp with the surface §.
Then the point P lies on both & and C;, Let T and T be the tangent lines to the curves C;
and 3 al the point P. Then the tangent plane (o the surface § at the point P is defined to
be the plane that contains both tangent lines Ty and 7. (See Figure 1.)

[I] Suppose f has continuoos partial derivatives. An equation of the tangent plana

u Muote the similanity between the equation u_ra to the surface = = f(x, ¥) al the point P{xs. Yo, =) is
tengani plans and the equation of & 1angent fine
¥ = ¥o= X)X — o) z — = = falXo. vol{x — X} + filxw, m My — )
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] EXAMPLE | Find the tangent plane to the elliptic paraboloid - = 2x* + ¥* at the
point (1, 1, 3).
souumion Let fix, ¥} = 235 + v Then

flx,v)=4x Flx v =2y

AL =4 Ry =2
Then (2) gives the equation of the tangent plane al (1, 1. 3) as

:—3=4x— 1} +2y—1)
or r=4x 4+ 2y — 3 )
I[J EXAMPLE @ Show that f{r, ¥} = xe™ is differentiable at (1, 0) and find its lineariza-
tion there, Then use it o approximate f{1.1, —0.1).
TOLUTION The partial derivatives are
HHx. v =™ + xye” Hx. ¥ =x%"
m Figure b shows the graphs of the functicn £ L1L0) =1 HLoy=1

and its linearization L in Exempla 2

Both f; and f; are continuous functions, so [ is differentiable by Theorem 8. The
linearization is

Lix,y) = (0, 00 + A1, OHx — 1) + f{1, 00y — O)

1+ 1x—1)+1-y=x+¥

The corresponding linear approximation is

wrl=x+y
50 ALL -01)y=11—-01=1
FIGURE 5 Compare this with the actual value of f{1.1, —0.1) = Lle ™" = 098542,

EXAMPLE 3 Al the beginning of Section 14.3 we discussed the heat index {perceived
temperature) § as a function of the actual temperature T and the relative humidity H and
gave the following table of values from the National Weather Service.
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Relative homidity (%)
:r” s | 55 | 60 | &5 | 0 | 75 | %0 | 85 | 90

o [T of | | e | e | 1132

Actunl
temperature | 94 | 102 [ 107 11 114 | 118 B | g 132
("Fl

Find 4 linear approximation for the heat index f = (T, H) when T is near 96°F and H is
near T0%. Use il to estimale the heat index when the temperature is 97°F and the relative
homidity is 72%.

SOLUTION W read from the table that J{96, 70) = 125. In Section 143 we used the tabu-
lar values to estimate that (96, 70) = 3.75 and fR(%6, 70) = 0.9, (See pages BTE-T9.)
So the linear approximation is

ST, H) == {06, 70) + fr{96, TONT — 96) + ful06, TOH — T0)
=125 + 3.75(T — 96) + 0.9{H — 70}
In particular,
FU97,72) = 125 + A.75(1) +.0.9(2) = 13055
Therefore, when 7= 97°F and H = 72%, the heat index is
I'=131F O

DIFFERENTIALS

For a differentizble function of one variable, v = f{x), we define the differential dx to be
an independent variable; that is, dx can be given the value of any real number. The differ-
enfial of v is then defined as

L] dv = f{x) dx

(See Section 3.10.) Figure & shows the relationship between the increment Ay and the dif-
Z ferential av: Ay represents the change in height of the curve ¥ = fix) and 4y represents the
f change in height of the tangent line when x changes by an amount dx = Ax.
o For a differentiable function of two variables, = = f(x, ¥). we define the differentials
i ’I" [._13 dx and dy to be independent variablas; that is, they can be given any values. Then the dif-
o o ferential d-, also called the total differential, is defined by

P b az

a+ha T dr = fi{x, ¥} elx + flx; vy dv = —dv + ;d*
tengent Hoe dx oy

¥= flal+ f{aix —a)

V]

FIGURE & {Compare with Equation 9.) Sometimes the notation 4 is used in place of dz.

If we take dx = Ax =1 — a4 and dv = Ay = ¥ — b in Equation 10, then the differen-
tial of z is
d= = f{a, B)(x — a) + fia, &)y — b)

S0, in the notation of differentials, the linear approximation (4) can be writien as

Flx.¥) = fla, b) + d=
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Figure 7 is the three-dimensional counterpart of Figure 6 and shows the geometric inter-
pretation of the differential d- and the increment Az d- represents the change in height of
the tangent plane, whereas A- represents the change in height of the surface = = fi{x. ¥)
when (x, v) changes from {a. &) to {a + Ax. b + Av).

T {a+Ax b+ Ay fla+Ax b+ Ayl

sarrum‘_l= x5 i :
— Az
‘|
{2, B, fla, B} | R
ol | J . Fla, &
Fla. i) g I
-2 la+Ax, b+ Ay, 0)
x e

WBO)  Ay—gy \
B tngent plane
FIGURE 7 1= fig by= fia.bjix—a) + f,la. by — bl

I EXAMPLE &

(a) If r = fix.¥) = x* + 3xy — ¥, find the differential d=:

(b} If x changes from 2 to 2.05 and vy changes from 3 (0 2.96, compare the values
of Az and d-.

SOLUTION
(a} Defnition 10 gives

iz iz
de=—dx + —dv={2x + W dr + (3x — v} dv
fax oy

8 In Example 4, d- is close to A - because the (b) Putling x =2, dx = Ax =005,y =3, and dy = Ay = —0.04, we pel
tamgent plane is & geod approximation o the

srface z = 1° + 3xy — ¥ neer (2, 3, 13} dr = [22) + 3(3)]0.05 + [3(2) — 2{1])—-0.04) = 0.65
{5as Figure 2.}

The increment of = 15
Az = f(2.05,2.96) — F(2.3)
= [(2.05) + 32.05)(2.96) — (2968 ] — [2* + 3(2}3) — 3°]
= (L6440

Motice that Az = d- but d- iz easier (o compute. O

EXAMPLE 5 The base radius and height of a right circular cone are measured as 10 cm
FIGURE 8 and 25 cm, respectively, with a possible error in measurement of as much as 0.1 cm in

each. Use differentials to estimate the maximum error in the calculated volume of the
cone.
spLumiok The volume ¥ oof a cone with base radius r and height it is V = wr?h/3. So the
differential of V is
av av. _  2oh
ar i ih 3

wre
dr + ——dh
3

Since each error is at most 0.1 cm, we have |Ar| = 0.1, | Ak| = 0.1. To find the larpest
emor in the volume we take the larpest error in the measurement of r and of h. Therefore
we [ake dr = 0.1 and gdh = 0.1 along with r = 10, i = 25, This gives

dV = —:[:’ {0.1) + muTwm[} = 20

Thus the maximum error in the calculated volume is about 207 em® = 63 cm® O
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FUNCTIOMS OF THREE OR MOREVARIABLES

Linear approximations, differentiability, and differentials can be defined in a similar man-
ner for functions of more than two varables. A differentiable function is defined by an
expression similar to the one in Definition 7. For such functions the linear approximation
is

flx v, 2) = fla, b e) + fila, b.cl{x — a) + Fila, b, ciy — B) + fila, b. o)z — )

and the linearization L{x, ¥, =) is the right side of this expression.
If e = fix, ¥, z}, then the Increment of e« is

Aw=flx +Axy+ Av.z + Az) — flxv.z)

The differential dw is defined in terms of the differeatials dr, dv, and d- of the independ-
ent variables by
iy — T L
X v iz

EXAMPLE & The dimensions of a rectangolar box are measured o be 75 cm, 60 cm,
and 40 cm, and each measurement is comect to within 0.2 em. Use differentials to esti-
male the largest possible error when the volume of the box is calculated from these
MeEsUrements.
soLution I the dimensions of the box are x, ¥, and =, its volume is V = xy: and 50

i ¥ i

dV =—dx + r—d‘_v -+ ',—d: = yzdx + xzdv + xy d=
i i iz

We are piven that | Ax| = 0.2, |Ay| = 0.2, and | A=| = 0.2. To find the targest error in
the volame, we therefore use dx = 0.2, dy = 0.2, and d= = 0.2 topether with x = 73,
¥y =60, and z = 40

AV = gV = (60H40M0.2) + (T5H4000.2) + (T5H60)(0.2) = 1980

Thaus an emror of only 0.2 cm in measuring each dimension could lead to an error of as
much as 1980 cm® in the calculated volume! This may seem like a larpe error, but it's
only about 19 of the volume of the box. O

THE CHAIN RULE

Then = is a differentiable function of f and

& ira
dl ix i iyt

[Z] THE CHAIM RULE (CASE 1) Suppose that = = fix, v} is a differentiable func-
tion of x and ¥, where © = gif) and y = Rif} are both differentiable functions of 1.

EEAMPLE | If z = x%v + 3xv', where x = sin 2t and v = cos I, find d=/df when t = 0.
woLuTion The Chain Rule gives

d_ s dr iz dy
i axd v ol
= {2xy + 3 W2 cos 20} + (x + 120" W —=in )
It"s not necessary to substitute the expressions for 1 and v in terms of §. We simply
observe that when § = 0, we have r = sin 0 = 0-and v = cos 0 = 1. Therefore

g
dl i
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Wl - L EXAMPLE 2 The pressure P (in Kilopascals), volume V (in liters), and temperature T
(in kelvins) of a mole of an ideal gas are related by the equation PV = 8.317. Find the
N rate at which the pressure is changing when the temperature is 300 K and increasing ot a

rate of 0.1 K/ and the volume is 100 L and increasing at a rate of 0.2 L/s.
The curve x= 50 2L, ¥ = cos {

WELUTION IT ¢ represents the time elapsed in seconds, then at the given instant we have
T = 300, d7/dr = 0.1, ¥ = 100, dV/di = 0.2. Since

T
P=831—
v

{he Chain Rule gives

df _ aP dT  aP dV 831 4T  B3IT 4V

df AT dt av i V i ¥V: o

831 8.31(300) :
=20 0 — 220 oy — _piodis
100 " 1007 ) -

The pressure is decreasing at a rate of about 0.042 EPa/s. O
We now consider the situation where z = fi{x. ¥) but each of x and v is a function of two
variables 5 and t: x = g{x, 1}, ¥y = s, f). Then z is indirectly a function of s and § and we

wish to find dz/dr and az/af. Recall that in computing 9=/ #f we hold 5 fixed and compute
the ordinary derivative of = with respect o f. Therefore we can apply Theorem 2 (o obtain

ilr iz dx £ ﬁ

il dax i iay

A similar areument holds for 8z/d5 and so we have proved the following version of the
Chain Rule.

[3] THE CHAIN RULE (CASE 2) Suppose that - = f(x, ¥) is a differentiable func-
tion of x and v, where x = g(s, 1) and ¥ = his. 1) are differentiable functions of 5
and 1. Then

dz  dz dx  dz ay dz @z dx | Az Ay

A dxT a5 @y ds Moo M WA

ENAMPLE 3 If r = e¥sin v, where v = st and v = 521, find az,/ds and &=,/ a1
souimon Applving Case 2 of the Chain Rule, we get

iz dz dx iz av
ey K Pmucal: LA

= (" sin ¥)(1*) + (¢ cos ¥){2s)
5 AT g T ( MG+ Y

= %% sinls) + 2ste™ cos(s?)

T - S )
== e —r_ + —r —r_' = (¢*sin ¥)(2st) + (efcos vi(s?)
ol iax il Ayl

= Zate® sinls?) + 5% cos(s) O
Case 2 of the Chain Rule contains three types of variables: 5 and I are independent

variables, x and v are called intermediate variables, and - is the dependenl variable.
Notice that Theorem 3 has one lerm Tor each intermediate variable and each of these lerms
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[4] THE CHAIN RULE (GENERAL YERSION) Suppose thal @ is a differentiable func-
tion of the i variables xq, X2, . Xx and each x; is a differentiable function of the
mvariables ;. F, - . ., In. Then wis a funcionof fy, &, . .., I and
TR 1T I R 1 ) AT,
—_—— — 4 s p———
iy iixy iy axa b idxe My
foreachi= 1,2 _....m
] EXAMPLE 4 Write out the Chain Rule for the case where w = fix, ¥, z, f) and
x=xlu, o), ¥y =viu o), z = z(u, o), 2nd § = 1, v).
gl sLuTion 'We apply Theorem 4 with n = 4 and m = 2. Figure 3 shows the tree diagram.
’d_,-ﬁ"’// ‘\\HH Although we haven't written the derivatives on the branches, it's understood that if a
T ¥ I "1 branch leads from v (o u, then the partial derivative for that branch is v /du. With the aid
J,.-' \ i "-..I ,-"f {H \ of the trea dizgram, we can now write the required expressions:
ot dw _ w x| dw iy w @z e G
FIGURE 3 il ax A Ay du dz au o
i e daX rhi' |}"|r dw dz der b -
AR o g TR Xttt TR O
i X v r'h iy iz dp af
' EXAMPLE & If u = x% + ¥*° where x = rse'. v = rs%e !, and = = rPssin ¢, find the
value of de/ds whenr=2, 5= 1,1 =0.
i soLution 'With the help of the tree diagram in Figure 4, we have
e E\""\
= | e du  dwodx | dw v odu iz
j’|"._| 'i \ ,.-'_| \ a5 Ax a5 oAy Ay Az as
L T - = {4x*¥){re') + (x* + D)2z ') + (W% sing)
FIGURE 4

Whenr=2,s=land! =0, wehavex =2, vy=2 and - = 0, s0

’_:—: — (64)(2) + (16){4) + (D)0} =

O

o4

EXAMPLE & If gis, 1) = f{5* — 1%, 1 — 5%) and { is differentiable, show that g satisfies
the aguation

PR A
]

[

spLUTIoN Let ¥ =57 — t*and y = t* — 5% Then gis, f) = f(x.¥) and the Chain Rule

pives
p 9 AT AF 3y . -
A How, AW e Y
iy ix s ay s ix iy
: ar 3
LR S £ L P O ‘rm]
ol ix af il dr
Therefors

O

1=y .s_—'q= (25:%— Esl_r—fJ + (—EH% + lsti) =0

s i ay iy

EXAMPLE 7 If z = fix, ¥) has continuous second-order partial derivatives and
x=r+ 5 and ¥ = Zrs, find (2) 8z/dr and (b) &z/ar>
SOLUTION
(a) The Chain Rule gives
r'l'_: az X iz iy iz

— = i =—Pr}+—ll;:l
ir X ar ay ar ix
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.'I.'/ x\'li
AW

F ir 3

FIGURE 5

(b) Applying the Product Rule to the expression in part (a), we pet

iz ] iz itz
—=—2r—+ 1.7_—)
dre ar Aax ay

]

But, using the Chain Fule again (see Figure 5), we have

f 2

g faz\ afa\Nax 4 faz\my % b
ol (e ot ovem Bt bl e fem o 1 . e
ar o\ iax ax N\ ax /g odar v \dxJ oar dars dv X

a f dz d fazhax 8 fazhyoow - ¥z
— === e e s S e i e B
dar \ dy ox v ) oar day \dy | ar T Ay av-

(21)

Putting these expressions into Equation 5 and using the equality of the mixed second-
ordes derivatives, we obiain

iz iz ek ¥z 3’z iz
—=2—+ 22 r—+ 25 + 230 2r + 25—
ar? ix . axt iy ax AT Ay iv?

[}

iz L i e . iz
I A+ Brs—— 4 45—
ax dar” &x av v

IMPLICIT DIFFERENTIATION

The Chain Rule can be used to give a2 more complete description of the process of implicit
differentiation thalt was introduced in Sections 3.5 and 14.3. We suppose thal an egua-
tion of the form Fix. v} = 0 defines v implicitly as a differentiable function of x. that is,
¥ = fix). where Fix. f{x}}) = O for all x in the domain of £ If F is differentizble, we can
apply Case 1 of the Chain Rule 1o differentiate both sides of the equation F{r, ¥) = 0with
respect to x. Since both 1 and v are fonctions of x, we obtain

OF dx | OF dy
ax dx av drx

But dx/dx = I, so if aF/dv = 0 we solve for dv/dx and obtain

F
dy _ ox F,
2 dac aF  F
¥

To derive this equation we assumed that F{x, ¥) = 0 defines y implicitly as a function
of x. The Implicit Fonctlon Theorem, proved in advanced calcolus, gives conditions
under which this assumption is valid; It states that if F is defined on a disk containing
(a, b), where Fla, b} = 0, Fy{a, b) £ 0, and F; and F, are continuous on the disk, then the
equation Fix, ¥) = 0 defines v as a function of x near the point (a. &) and the derivative of
this function is given by Equation 6.

EXAMPLE 8 Find ¥ if x* + y* = 6xy.

ioLuTiol The given equation can be written as

Flxyi=x+¥v—6oy=0

so Equation 6 gives
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= The sohution to Example B showld be
compared to the cne m Eample 2 0
Section 35,

u The sohition to: Exemple B should be
companad to the one in Example & in
Saction 14.3

dy K 6 - i
dr -

TR W —6x -

Now we suppose that - is given implicitly as a function = = fix, ¥v) by an equation of
the form F{x, v, z) = 0. This means that F{x, v.f{x, ¥}) = 0 for all (x. ¥) in the domain
of f.1f F and f are differentiable, then we can use the Chain Rule io differenliate the equa-
ion Fix, v, 2} = 0 as follows:

BF dx  9F @y OF Bz

—_— :
ax ix dy fx T

# i

But —ix) =1 and —iy}=10
ax ax

50 this eguation becomes

aF " aF dz
#T oz ax

=0

If @iz # 0, we solve for dz/dx and obiain the first formula in Equations 7. The formula
fior dz/iv is obtained in a similar manner.

aF dF
PO )
iax aF i i
iz iz

Apain, a version of the Implicit Fonction Theorem gives conditions under which
our assumption is valid: If F is defined within a sphere containing (a, b, c), where
Fla.b.c) =10, Fla, b c) # 0, and F,, Fy, and F, are conlinuous inside the sphere, then the
equation F(x, v, z) = 0 defines = as a function of x and ¥ near the point (a, b, ¢} and this
function is differentiable, with partial derivatives given by (7).

itz iz
EXAMPLE 9 F"md'?—tzndﬁifx’ +y By =1.
i) i)

sowmion Let Flx, v, 2) = x° + ¥* + 2% + 6xyz — 1. Then, from Equations 7, we have

2 F BW4e: P+
ix E =+ 6xy 2+ Zrxy
B K. Wiem 42k
i E. 3 + 6xy =+ 2xy

DIRECTIONAL DERIVATIVES

[Z] pernmioN The directional derivative of f at (1o, vo) in the direction of a
unit vector u = {a, b} is

Slxe + ha. v + hb) — filxa, o)
h

Dy (20, ) = lim
B0

if this limit exists.
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[Z] THEQREM If [ is a differentiable function of x and y, then f has a directional
derivative in the direction of any unit vector u = {a, b} and

Dy flx, v =fdx.¥)a + flr.¥ib

PRODE If we define a function g of the single variable i by
__ﬂ[.l’]}l =_ﬂ.\'u + .’!-ﬂ, Yo + fl'b]‘
then, by the definition of a derivative, we have

oo gkl =l . flxa+ ha,ye + hE) — flxs, )
8 AR 7

= Dy x5, ¥a)

On the other hand, we can write g{h) = flx, ¥). where x = Xo + ha, ¥ = ¥ + hb. so the
Chain Rule (Theorem 14.5.2) gives
ar dx  af b

+ —=——=f{x¥a + f{{x.¥)b

oW = T av dh

If we now put A = 0, then x = x;, ¥ = ¥,, and
[E] g'(0) = flxo, Yo} + fylxo, W) b
Comparing Equations 4 and 3, we see that
Dy flxg, ¥o) = f2(Xs, ¥o) @ + fil Xg, ¥o ) 0O

If the unit vector n makes an angle @ with the positive x-axis (as in Figure 2), then we
can write u = {cos . sin@) and the formula in Theorem 3 becomes

[£] Dy fix. ¥} = filx, ¥) cos @ + fi{x, ¥) sin@
EXAMPLE 1 Find the directional derivative 1, fix, ¥) if

fAry=1 -3y + &
and u is the unit vector given by angle @ = #/6. What is Dy F(1. 27

u The directional destvative O, f(1, 2} in SoLUnioN Formula 6 gives
Example ¥ represants the rate of change of 2 in
tiwa direction of w. This & the slope of the tan-
qent lire 1 the curve of intersection of the
surface r = 1% — 3xy + 4¥* and the verfical
piene through (1. 2, 0) o the direction of a N J3 i
showm in Figure 5 = {Ix* — 3}'17 +(—3x + Byvl=

Duflx. ¥ =f(x.¥) ms% + flx vl sinb—_r

=i3.3x - 3x+ (8- 3,/3p]

Therefore
) — . — 13 — 343
Dafi1,2) = 37307 — 301 + (8 - 3,3)0)] = —==
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THE GRADIENT VECTOR

m The gradient vector VF(2, —1) in Exampiz 4

15 shown in Fagure 6 with initial point (2, — 1)
Alen shown is the wector v that gives the dinsc-
tiom of the directional dernative. Both of these
wechors ana sipesimposed on & wontoor plot of

T =

is the vector function ¥ defined by

Vix ¥ = (Lxy) fix ) =%I + —1]

DEFINITION If f is a funclion of two variables x and v, then the pradbent of

EXAMPLE 3 If fix,¥) = sinx + . then

Vii(x¥) = (fe. fy) = (cos x + ve™, xe™)

and VA 1 = (2.0}

With this notation for the gradient vector, we can rewrite the expression (7) for the

directional derivative as

[T Dofix,y) = Vil y) -u

This expresses the directional derivative in the direction of w as the scalar projection of the

gradient vector onto m.

[ exaMPLE 4 Find the directional derivative of the function f{x, ¥} = xv® — 4v ul the

point {2, —1) in the direction of the vector v = 21 + 5.

SOLUTION We first compete the gradient vector at (2, —1):
Ve v =201 + (v — 413

V2, —1) = —4i + 8]

Mote that ¥ is nol a unit vector, but since |v| = 29 the unit vector in the direction

ofvis

J

2 5
OO SR 5 O

[¥] 20 29

Therefore, by Equation 9, we have

2 5
D._,r'il.—H-=‘E’_r’i2.—|:|-u=[—4i+3]h-(‘__.El+ﬁj)
_ —4:3+8-5 3
B V29 VI

FUNCTIOMS OF THREE VARIABLES

DEFINITION The directional derivative of 7 at {xa. wo. z2) in the direction of a
unit vector u = {a, b, ¢} is

- Flxg + ha, vy + kb, 5y + Bo) — Flxg. ¥ z)
B0 h

Dy flX¢, %o, 7)

il thiz limit exists.

fix, + hm) — flx,)

D, f(x;) = lim =
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FIGURE 7

= At (2, 0) the function in Exempla B increases
tastest in the direction of the gradient vector
V2 0 = {1, 2). Notice fom Figure 7 thet
this vactor appears 1o be papandiculer to the

For a function f of threa variables, the gradient vector, denoted by Vf or grad [, is
Vx v 2 = {flx v =h Sl v 2 flx w2y

of. for short,

af
v

a

iz

o V= G f ) = et Ly L

Then, just as with functions of two variables, Formula 12 for the directional derivative can
be rewritten as

Defix, v, 2) =¥fix,y.z} *m

J EXAMPLE 5 If f{x. v, z) = xsin vz, (a) find the gradient of f and (b} find the direc-
tional derivative of 7 at (1, 3.0) in the direction of ¥ =1 + 2j — k.

saLumoN

{a) The gradient of f is
Vix Y, 2} = (Al oy, 2) Gl v 2), Al v, =)
= {5l ¥z, X700 ¥z, TV COS ¥z}

(b) AL(l,3,0) we have V(1. 3, 0) = {0.0, 3). The unit vector in the direction of
y=1+2—Kkis
2 I

u= —_'—'i. e —_l—'k
W /6 ] B
Therefore Equation 14 gives
D1, 3,00 =Vf(1.3.0) - o
1 2 |
=3k - =]+ —=j——7——=k
(. v W j Vb ]
i(-L)-- B
i T e T
EXAMPLE &
(a) If fx,¥) = xe’, find the rate of change of f at the point M2, 0) in the direction from
Pilo erllfl

(by In what direction does § have the maximum rate of change? What is this maximum
rate of change?

LOLUTIR
(&) We first compute the gradient vector:

Yz ¥ = {f. i) = (¥ xe?}
V(200 =(1,2)

The unit vector in the direction of F'rf:? ={—135,2)ism= {— 1' i}l 50 the rate of change

of f in the direction from P to 0 is

teve] curve through {2, 0). Figure B shows the 0 = N Loz x
bbbl it Dufi2.0) = Vf2.00-u = (1.2) (-3.9)
=1(-3}+ 23 =1
Prepared by M.Jannath Begam, Department of Mathematics, KAHE Page 28/30



UNIT-I Functions of several variables
2017-Batch

(b} According to Theorem 13, [ increases fasiest in the direction of the gradient vector
V(2,00 = {1, 2). The maximum rate of change is

[vrz.ol ={L2} =5 |

EXAMPLE 7 Suppose that the temperature at a point (x, ¥, z) in space is given by
Tix, v.z) = 80/{1 + x* + 2v" + 3:%), where T is measured in degrees Celsius and

X. ¥, « in meters. In which direction does the temperature increase Tastest at the point
FIGURE 8 {I. 1. —2)? What is the maximum rate of increase?

soLutiok The gradienl of T is

+ +
ix i iz

- 160x . 320v - 480= .
T4 2t B A (1 + 5% +2¢" + 37 (1+x*+ 297 + 3277
160

[—xl— 2vj — 3=K)

U+ A+ +3F
At the point (1, 1, —2) the gradient vector is
VI L, -2 =2(—1— 2+ 6k} =3(—1 — 2] + 6K
By Theorem 15 the temperature increases fastest in the direction of the gradient vector
Yl 1. -2} = %{—j — 2] + 6K) or, equivaleatly, in the directionof —1 — 2j + 6K or
the unit vector (—1 — 2§ + 6k)//F1. The maximum rate of increase is the length of the
gradient vector:

VT 1,=2) | =3 —1— 2} + 6k| =341

Therafore the maximum rate of increase of temperature is %\-"H = 4°C/m, O
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Possible Questions
PART-B (2 Mark)
1. What is Chain Rule.
2. Define Maximum Principle.
3. Define Limit of a function of three variable.
4. Write the Difference between total and partial derivative.
5. If f(x,y)=x"+x"y=2y*,find f.(1,2)and f,1,2).
6. Define Laplace equation.
7. Caleulate f _if f(x,y,z)=sin(3x+yz).

PART-C (8 Mark)

2

1.Find lim if it exist.

@2)=0.0) x* 4 y?

2. Find the directional derivative of the function f(x, y) = x>y’ — 4y at the point
(2,-1) in the direction of the vector v=2i +5; .

3.Find Z—Z and S—Z if zis implicitly as a function of x and y by the equation
x v

X 4+y 4+ +6xyz=1.
4.1f f(x,y,z)=xsinyz, (a) find the gradient of f and (b) find the directional
derivative of fat (1,3,0)in the direction of v=7 +2; — k.
5. Show that f(x,y)=xe" is differentiable at (1,0) and find its Linearization and use
it to approximate f(1.1,—0.1).
6. suppose that the temperature at the point (x, y,z) in space is given by
80
T N
meters. In which direction does the temperature increases fastest at the point

(1,1,— 2) .What is the maximum rate of increases.
2

7.If f(x,y)= % ,does lim f(x,y)exist?
X4y

(x,y)—>(0,0)

, where T is measured degree celsiusand x, y, z in

8.If g(s,t)=f(s*—t*,t*—s")and fis differentiable, show that g satisfies the

equation ta—g+sa—g =0.

0s ot
9. Find the second partial derivatives of f(x,y)= sin(li} .
+y

10. If z = f(x,y)has continuous partial second order derivative and x =7 +s°and

2
y=2rs, find 152 and 8—?
or or
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KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari (Po),

Coimbatore —641 021

DEPARTMENT OF MATHEMATICS
PART-A Multiple Choice Questions (Each Question Carries One Mark)

Subject Name: Multivariate Calculus

Question
Every codomain element has a preimage then f(x,y)
is
Relation is a subset of
If z= f(x, y) then the variable x and y are
Differentiation of sinhx =
If the partial derivatives are continuous then
In a polar coordinate r denotesa
The Clairaut’s theorem is
continuous.
lim o (sinx / x) =
The equation Uy, +U,,=0 is called
The Linearization process gives
The notation Y F is denoted by
The equation 5x+3 =0 is gives
If z= fx, y) then zis
cosh’ - sinh’x =
The element of R*R*R is
The Level curve of f(x, y) is
In a polar coordinates 0 denotesa
If Uy, + Uy, =0 then U is Called
The Level curve of f(x, y, z) is
The curve of a function f(x, y, z) = k is called
The range of f(x) = 2x for every x in N is
If f(x, y) = L, and f(x, y) = L, as (x, y)—(a ,b) along C, and C,
thenf has
From the below the functions of two variableis
FxG)()=
Yx(Vf)=
Vx (fA) is equal to
¥ (") is equal to
The divergence theorem enables to convert a surface integral
on a closed surface into a
If A is solenoidal , then
If ris position vector , then ¥xr=
If f=4xityj-2k then V¥ .f=?
The function f is said to satisfify the laplace equation if
Ifu, vand w are vectors in R thenu x (v + w) =
F+G)®)=
F-G =
FxG) ()=
(A0}
(F.G) 0=
The square of the time of one complete revolution of a planet
about its orbit is proportional to the cube of the length of the
of its orbit.
lim [ F(t) + G(t) ] =
lim [ F(t) - G(t) ] =
lim [ F(t) . G(t) ] =
lim [ F(t) x G(t) ] =
A vector function F(t) is said to be
domain of F
lim F(t) + lim G(t) =
sinh(2x) =
cosh’ +sinh’x =
differentiation of sinhx =

variable .

at tift is in the

cosh’ - sinh’x =
The slope of a graph on an interval where the graph is
concave up

If the curve y = x* has no atx=0

The slope of a graph ___ on an interval where the graph is
concave down

The graph of the function f is concave up on any open interval I
where

if partial derivatives are

Option-1
Bijective
Function
Independent
(- coshx)
FxyFyx
distance

FxyFyx

0

Laplace

Second degree to linear
Function
Straight line
Dependent

1

(1,2)

X

distance

Laplace
fix,y,z)=1
Identity function
27

Limit for L, .L,

fix.y.2)

F(t) - G(t)

1

N fHA+RN.A)

mr™!

line integral
div A=0

3

1

v
(uxv)+(uxw)
F® - GO
F(t) - Gt
F® - GO
JOF

F® - GO

minor axis

lim F(t) - G(t)

lim F(t) - G(t)

lim F(t) - lim G(t)
lim F(t) - lim G(t)

bounded
lim [ F(t) + G(t) ]
2sinhxcoshx

tanhx
(- coshx)
1

behind
hyperbolic

increases

£1(x) >0

The graph of the function f'is concave down on any open interval I

where

A point P(c, f(c))onacurveis called
sinh(-x) =

coshx coshy + sinhx sinhy =

differentiation of y = In ( sinhx)
lim 4 (sinx / x) =

lim o ((3x - sinx) / x) =

[lim F(t)] [ lim G(t)] =

__ of'the projectile is v sina/g
_____of'the projectile is 2vsina/g

£(x) >0
hyperbolic

(- coshx)

cosh(x +y)

sinhx

0

0

lim [ F(t) + G(t) ]
speed

speed

UNIT-1

Option-2
1-1

1-1 function
Dependent
sinh2x

Fxy = Fyx
area

FxFy

-1

Heat

Linear to linear
Divergence
Circle
Independent

0

2.1

2x

area

Circle

f(x, y, z) =x
Identity function
2R

a Limit for L, L,

z=1(x)
F(t) + G(t)
0

(Nxf).A+f(NxA)

m? ™2

volume integral
curl A =0
2

0

vf
wyv+uw
F(t) + G(t)
F(t) + G(t)
F(t) + G(t)
JOF(®)
F(t) + G(t)

semi major axis

lim F(t) - lim G(t)

lim F(t) - lim G(t)

[lim F(t)] x [ lim G(1)]
[lim F(t)] x [ lim G(t)]

continuous

lim [ F(t) x G(1) ]
sinhx + coshx
cosh2x

sinh2x

0

increases

inflection point
zero
f'x)<1

) <1
inflection point
sinh2x

sin(x - y)

cothx

Q)]

Q)]

lim [ F(t) x G(t) ]
Range

Range

Subject Code: 17MMUS503A

Option-3 Option-4
Onto Reflexive
Bijective Cartesian product
Image Function
coshx (-sinhx)
Fx=Fy FxFy
angle radius
Fx=Fy Fxy = Fyx
1 2
Wave Function

Second degree to second
Curl

Parabola
Image

cosh2x

(xy)

X2

angle

Heat equation
fix,y,z) =x+y
Level curves
2N

a Limit for L, =L,

y = f{x)
F(t) x G(t)
2

(N fxA+fx(N.A)
m(m+1) r™?

surface integral
|A[=0

1

3

v

uv +(u +w)
F(t) x G(t)
F(t) x G(t)
F(t) x G(t)

J®

F(t) x G(t)

major axis

[lim F(t)] [ lim G(t)]
[lim F(t)] [ lim G(t)]
lim F(t) + lim G(t)
lim F(t) + lim G(t)

differentiable
lim [ F(t) . G(1) ]
coshxcoshx

1
coshx

cosh2x

zero

concavity
decreases
f'(x) <0

'(x) <0
concavity

coshx
cosh(x-y)
tanhx

1

1

lim [ F(t) . G(1) ]
Distance
Distance

Linear to second degree
Gradient

Elliptic

Isolated

sinh2x

(%, 2)

15

radius

Harmonic
fix,y,z) = x+y+z
1-1

N

Continuous for L1 =12

z=1(x,y)
F(t)/ G(t
-1
(Nf) x A + f(N x A)
(m+1) m ™'

None

div (curlA) =0
0
2
vf
u+w
F(t) / G(t)
F(t) / G(t)
F(t) / G(t)
F(t)
F(t) . G(t)

semi minor axis

lim F(t) + lim G(t)
lim F(t) + lim G(t)
[lim F(t)] [ lim G(t)]
[lim F(t)] [ lim G(t)]

derivative

lim [ F(t) - G(t) ]
sinhxcoshx
sinh2x

(-sinhx)

sinh2x

decreases

saddle point
behind
f'(x)=0

'(x)=0

saddle point

(- sinhx)

sinh (x+y)
coshx

2

2

lim [ F(t) - G(t) ]
Time of flight
Time of flight

Answer
Bijective
Cartesian product
Independent
coshx
Fxy = Fyx
radius
Fxy = Fyx
1
Laplace
Second degree to linear
Gradient
Straight line
Dependent
1
(%, 2)
15
angle
Harmonic
fix,y,z)=1
Level curves
2N

a Limit for L, =L,

z=1(x,y)
F(t) x G(t)
0

(Nxf).A+f(NxA)
m(m+1) r™?

volume integral
div A=0

0

3

v
(uxv)+(uxw)
F(t) + G(t)

F(t) - G(t)

F(t) x G(t)

JOF(®)

F(1) . G(t)

semi major axis

lim F(t) + lim G(t)

lim F(t) - lim G(t)

[lim F(t)] [ lim G(t)]
[lim F(t)] x [ lim G(t)]

continuous
lim [ F(t) + G(t) ]
2sinhxcoshx

cosh2x
coshx

1

increases

inflection point
decreases
f'(x) >0

'(x) <0
inflection point
(- sinhx)

cosh(x +y)
cothx

1

2

lim [ F(t) . G(t) ]
Range

Time of flight



F(t). G() =

F(t) x G(t) =

F(t) - G(t) =

F(t) + G(t) =

F.G) =

(FxG) ()=

If A—B hence fis calleda .................

If the function fis otherwise called as ........................

If f:A—B in this set Ais called the
If f:A—B in this set B is called the ..
f.

The value of the function f for a and is denoted by

.of the function f.
.of the function

The .coovneennnnne of a function as the image of its domain
The range of a function as the................
The range of a function as the image of its .................

Let fbe a mapping of A to B,Each element of Ahasa .............
and each element in B need not be appear as the image of an
element in A.

F+G)(®

(F+G)(H
F+G)(®

(F+G) (0

(F.G)® - (F.G)D)
(F'x GO+ (Fx G)(D)
function

limit

domain
domain
a(f)
B-image
f-image
domain

range
co domain

unique preimage

F-G)(®
(F-G) (1)
F-G)(®
(F-G) (1)
F(t) .Gt
F(t) x G'(t)
form
mapping

co domain
co domain
fa)
a-image
pre-image
range

domain
image

unique image

FxG) (1)
(FxG) ()
FxG)(®)
(FxG) ()
F'G'(t)
F'x G' (1)
formula
lopping

set

set

A-image

domain
co domain
image
domain

unique zero

(F.G)(t)

(F.G)(®

(F.G)(t)

(F.G)(®
(F'.G)(t)+(F.G)
(F.G)(® + (F. GO
fuzzy

inverse

element

element

f-image

codomain
image
preimage
range

unique range

(F.G)(®
FxG) (1)
F-G)(®
(F+G) (1)
(F'.G)(t)+(F.G)V
(F'x G )(t) + (F x G)(t)
function
mapping

domain
co domain
fla)
f-image
pre-image
range

image
domain

unique image
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Extrema of functions of two variables

TANGENT PLAMES TO LEVEL SURFACES

» Figura 10 shows tha ellipscid, tangent plane,
and normel Ime in Example B

4

2 EH

ol B
| =is
4 B
-6

Ty 2
ki T
FIGURE 10

L]

Folxa, Y. :.;,HJ-' = I.}::l + F,"Xu. Va. :u}[_‘!-' = }':|.f + .F"_-{I.:._\'u.:u‘:l": == I.l.f =0

The normal line 1o § al P is the line passing through P and perpendicular 1o the tan-
geni plane. The direction of the normal line is therefore given by the gradienl vector
VF{xa, Yo, zo) and so, by Eguation 1353, iz symmetric aquations are

X —-Xa _ ¥—M _ |
Fdxo. Y, ) FlX.Yo.z)  Fdx, Yoz}

d EXAMPLE B Find the equations of the tangeni plane and normal line at the point
{—2, 1, —3) o the ellipsoid

saLutios The ellipsoid is the level surface (with & = 3) of the function

3 1

X .
Fx,y.z) =—+ ¥+

4 ¥ U'
Therefore we have
X 2z
Fix, vz} = i Fix.y,z) =2y Fix, vzl =—
Fl—2,1, -3 =—1 Fi-2,1,-3) =2 F{-2,1,-3)=-3

Then Equation 19 gives the equation of the tangent plane at {—2, 1, —3} as
—Hrx+N+2y—1) —i=+N=0

which simplifies o 3r — 6y + 2z + 18 =0,
By Equaticen 20, symmetric squations of the normal line are

MAXIMUM AND MINIMUM YALUES

_. local
absobiste minimum
minimum
FIGURE |

Prepared by M.Jannath Begam, Department of Mathematics, KAHE

Look at the hills and valleys in the graph of f shown in Figure 1. There are two points
{a, b) where § has a local mavimum, that is, where flq. ) is lareer than nearby values of
Jx, ¥). The larger of these two values is the absolute macimum. Likewise, £ has two local
miima, where f{q. £ is smaller than nearbv values. The smaller of these two values is the
absolute muinimeum.

[M permMiTiON A function of two variables has a local maximum at (g, B} if
Fix, ¥ = fila, b) when (x, ¥) is near (a, ). [This means that f(x. ¥} = f{a, &) for
all points (x, v) in some disk with center (a. £#).] The number fla, &) is called a
local maximum valuwe. If f{x, v) = fia, F) when (x, v) is near (g, ), then f has a
local minimum at (2. &) and (a2, b) is a local minimum value.
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UNIT-II Extrema of functions of two variables
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# Matice that the conclusion of Thearem I can [I] THEOREM If f hasa local maximuem or minimum at (a. &) and the first-order
H#;Edgm[r}wm" of gradsEt vechors partial derivatives of f exist there, then fi(a, &) = 0 and fi{a, b) = 0.
as . T} = i

FRODE Let gix} = fix, &), If f has a local maximum (or minimum} at {a. b), then g has a
local maximom (or minimum}) af g, 50 g'(a} = 0 by Fermat's Theorem (see Theorem 4.1.4).
But g'la} = fi{a. b) (see Equation 15.3.1) and so f{a, &) = 0. Similarly, by applying

Fermat’s Theorem to the functicn G{¥) = f(a, v}, we obtain fi{a. &) = 0. O

If we put fi{a, b) = 0 and fila. &) = 0 in the equation of a tangent plane {Equation
15.4.2), we get - = zp. Thos the geometric interpretation of Theorem 2 is thal if the graph
of f has a tangent plane at a local maximum or minimum, then the tangent plane must be
horizontal.

A point (@, b} &5 called a critical point {or stationary point) of §if fla, b) = 0 and
S, B) = 0, or if one of these partial derivatives does not exist. Theorem 2 says that if f
has a local maximum or minimum at {g. ), then (a, b is a critical point of f. However, as
in single-variable caleulus, not all critical points give rise (0 maxima or minima. Al 4 crit-
ical point. a function could have a local maximum of a local minimom or neither.

EXAMPLE 1 Let f(x.v) = x* + ¥* — 2x — 6v + 14. Then
MHryy=2x-2 Mryvi=X—-6

These partial derivatives are equal to O when x = 1 and ¥ = 3, s0 the only critical point
is {1, 3). By completing the square, we find that

Axvi=4+(x- 1P+ (v—30°

v Sinceixr — 17 = 0and (v — 3)" = 0, we have fix,¥) = 4 for all values of x and ¥.
Therefore f{1.3) = 4 is a local minimum, and in fact it is the absolute minimum

FIGURE 2 of f. This can be confirmed geomelrically from the graph of f, which is the elliptic

=x+¥ -Zx—Gy+ 14 paraboloid with vertex (1, 3. 4) shown in Figure 2. O

EXAMPLE 1 Find the extreme values of fixr, ¥) = ¥* — %

SOLTION Since ;= —2xand f = 2v, the onby critical point is (0, 0). Motice that

for points on the r-axis we have v = 0, so flx. ¥) = —x? = 0{if x # 0). However, for

points on the v-axis we have x = 0. 5o flx, v} =¥ = 0(if v # 0). Thus every disk

with center (0, 0) conitnins points where f takes positive values as well as points where

J takes negative values. Therefore j(0, 0} = 0 can’t be an extreme value for £, so § has

no extreme value. O

[3] sEcoMD DERIVATIVES TEST Suppose the secomd partial derivatives of f are
continuous on a disk with center (4, &), and suppose that f{a. b) = 0 and
Fila, B) = 0 [that is_ (a, B) is a critical point of f]. Lat

D= Dig, b} = fula, b) fipla, &) — [fola. T
{2y If 0 = 0 and fola, 6) = 0, then f{g, ) is a local minimum.
by If & = 0 and jida, &) < 0, then g, b) is a local maximum.

(c) If I = 0, then f{a. b) is not a local maximum or minimum.

In case {¢) the point (g, b) is called a saddle point of [ and the graph of §
crosses its tangent plang at (a, ).
Ir D = 0, the test gives no information:  could have a local maximum or local
minimum at (g, &), or {a. b) could be a saddle point of f.

To remember the formula for D, it’s helpful to write it as a determinant:

Ju iy

D=
Fa S

= farfyy — Ul
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Extrema of functions of two variables

ki EXAMPLE 3 Find the local maximum and minimum values and saddle points of

fxy)

=x*+v'—do+ L

WOLOTION ‘W first locate the critical points:

f=A4x* — 4y fi=4v — Ax

Setting these partial derivatives equal to 0, we obtain the equations

y—x=0

'—y=0 and

To solve these equations we substitute v = x* from the first eguation into the second
one. This gives

B=1"—x=xx"—=xx*—Dx*+ D=x{z"— 22+ I + 1)

FIGURE 4
s=x'+y' —dy+ 1

= A contowr map of the function F in Exsmpla 3
v shown in Figure b The level coves near {1 L)
and {— 1. — 1) ere oval in shepe and indicate
that as we move away from (1, Thar (—1, —1)
m any direction the vatoss of f ane increasing.
The leval oorves resar (T, (), on the otfer hend,
mezemble hyperbolaz. They reveal that azwa
moree aaay from the orgin fwhers the value of
= 1}, the values of [ decresse in some directions
bunt incrasse in otfer drections. Thas the contowr
ma suggass the presence of the minima end
saddle point that we found in Examgle 3

FIGURE 5

L34 In Moduda 15.7 you can use contowr
mags to estmare the lomcions of crivcal
points.

=0 there are three real roots: x = 0, 1. — . The three critical points are (0, 00, (1. 1),
and (—1, —1).
Mext we calculate the second partial dedvatives and Dix, v):

S =12x7 Foy=—4
DX Y) = fufiy — Ul = 18455 — 16

Since N0, 0) = — 16 = O, it follows from case (¢} of the Second Derivatives Tesl thal
the origin is a saddle point; that is, f has no local maximum or minimoem at (0, ).
Since {1, 1) = 128 = Oand f,(1. 1) = 12 = 0, we see from case (2) of the test that
J{1,. 13 = —1 is alocal minimom. Similarly. we have D{—1, —1} = 128 > 0 and
fal—1,—1) =12 = 0,50 f{—1. —1}) = —1 is also a local minimuom.

The graph of [ is shown in Figure 4.

1
J= 12¥°

EXAMPLE 4 Find and classify the critical points of the function
Fix,¥) = 10xy — 51% — 4y? — x* — 2¢*

Also find the highest point on the graph of f.

ieLUTHN The frst-order partial derivatives are
o= 20xy — 10x-— 4x7 E =10z — 8y — By
5o to find the critical points we need (o solve the equations

G

2x{loy — 5 — 2x) =10

Sxt— 4y —4vi =10

From Equation 4 we s¢e that either

=0 o v —5—2x=0

In the first case (x = ). Equation 5 becomes —4w(1 + v7) =0, 50 v = 0 and we
have the critical point (0, 0.
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In the second case {10y — 5 — 2x" = 0), we gal
[£] =5 —15

and, putting this in Equation 3, we have 25y — 12.5 — 4y — 4y = 0. S0 we have o
solve the cubic equation

™M 4 — 2y + 125 =10
Using a graphing calculator or computer to graph the function

/—’fﬂ\\\ /1 gly) = 4% — 21y + 125

a5 in Figure 6, we see thal Equation 7 has three real roots. By zooming in, we can find
the roots 1o four decimal places:

¥ = —2.5452 ¥ = (L6468 ¥ &= | BO%4
FIGURE &
{Altemnatively, we could have used Newton's method or a rootfinder to locate these
roots. ) From Equation 6, the corresponding x-values are given by

r==+/5-23
Iy == —2.5452, then x has no comesponding real values. IT v = 06468, then

x = =0.B567. If v = 1 .B984, then x = +2.6442. S0 we have a total of five critical
paoints, which are analyzed in the following charl. All quantities are rounded to two
decimal places.

Critical potm Viilue of f fiz i) Conchusion

Figures 7 and § give two views of the graph of f and we see that the surface opens
downward. [This can also be seen from the expression for f(x, v} The dominant terms
are —x"* — 2y* when |x| and |v| are large.] Comparing the values of f at its local maxi-
mum points, we see that the absolute maximum value of §is f{+2.64, 1.90) = 850, In
other words, the highest points on the graph of [ are {+2.64, .90, 8.50).

Vigual | 5.7 shows several families
of surfaces. The surface in Figures 7 and B
1z 3 member of one of thase amilles.

FIGURE 7 FIGURE 8

O

® The five critical points of the function f in
Exemgia 4 are shown in red i the contour map
of f in Figura 8.

FIGURE @
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i EXAMPLE 5 Find the shortest distance from the point (1, 0, —2) to the plane
I+hy+r=4

soLuTiod The distance from any point (x, ¥, z) to the point (1,0, —2} is

d=J{x— 1P+ y* + (- +2F

but if {x. ¥, z) lies on the plane x + 2y + = = 4, then z = 4 — x — 2y and 50 we have
d=+{x— 1P +¥*+ (6 — x — 2¥)°. We can minimize d by minimizing the simpler
expression

=z =(—1p+ 2+ 6—x— 2
By solving the equations
F=Hx—-1D-Xo—x—I¥=4x+4y—14=0
= —-4b—x-N=4+1v-—24=0

we find that the only critical point is (£.3). Since fz = 4, fry =4, and fi7 = 10, we
have D(x, ¥) = fafiy — (fiy)” = 24 = O and fiz = (0, 50 by the Second Dervalives Test f
has a local minimum at {1, 2), Intuitively, we can see that this local minimum is actually
an absolute minimum because there must be a point on the given plane thal is closest to

(1.0, -2 x =2and v=1, then

== 1R Lty £6—1— 11 =JEF + ZP E—
Example & could alen be zohved ming e PP —a—n) Yf‘} T ‘!}—+ Eﬁ}r il
itore. Compare with the methods of
stion 135, The shoriest distance from (1,0, —2) to the plane x + 2v + = = 4 is 1,/6. O
L EXAMPLE & A rectangular box without a lid is to be made from 12 m* of cardboard.
Find the maximum volume of such a box.

ol T SOLUTHN Let the length, width, and height of the box (in meters) be x, v, and =, as shown
— - in Figure 10. Then the volume of the box is
| Ll V==
= = r We can express ¥V oas a function of just two varables x and v by using the fact that the
y area of the four sides and the bottom of the box is

FIGURE 10 iz + 4y =12
Solving this equation for z, we get = = (12 — xy}/[2(x + y)]. so the expression for V
becomes

v 12—xy 12xy-— =y?
Yx ) 2xty

We compute the partial derivatives:

aVv _ yH12 —2xy —x7) aV _ x{12 —2xy — y')
ax 2(x + _\'}1 day 2(x + ¥F

If V15 a maximum, then d#V/dx = aVfay = 0, but x = 0 or y = 0 gives V = 0}, 50 we
must solve the equations

12 —2xy —x*=0 12 —2xy —y*=

These imply that x* = y* and so x = y. (Note that x and y must both be positive in this
problem.) If we put x = v in either equation we get 12 — 3x* = 0, which gives x = 2,
y=2Zandz= {12 -2 2)/[2(2 + 2)] = L.
We could use the Second Derivatives Test to show that this gives a local maximum

of V. or we could simply argue from the physical nature of this problem that there must
be an absolute maximum volume. which has to occur at a critical point of V., so it must
occurwhenx =2, y=2 = 1. ThenV=2-2 + | = 4, so the maximum volume of
the box is 4 m*. u
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[8] EXTREME VALUE THEOREM FOR FUNCTIONS OF TWO YARIABLES If f is continu-
ous on a closed, bounded set D in R then f attains an absolute maximum value
flxi. i) and an absolute minimum value f(xz, y2) at some points {xy, vi) and

{x2. y2) in D0,

To find the extreme values guaranteed by Theorem 8, we note that, by Theorem 2, if f
has an extreme value at (x.. ), then {x.. ¥) is either a critical point of f or a boundary
point of ). Thus we have the following extension of the Closed Interval Method.

[#] To find the absolute maximum and minimum values of a continuous function
fon a closed, bounded set D

1. Find the values of f at the crtical points of f in D.
2. Find the extreme values of f on the boundary of D.

3. The largest of the values from steps | and 2 is the absolute maximum value;
the smallest of these values is the absolute minimum value.

EXAMPLE 7 Find the absolute maximum and minimum values of the function
flr.y)=x"—2xy + Zvonthe rectangle D = {(x.y) |0 =x =3, 0=y = 2}.

SOLUTION Since f is a polynomial, it is continuous on the closed, bounded rectangle I3,
50 Theorem 8 tells us there is both an absolute maximum and an absolute minimum.
According to step 1 in (9), we first find the critical points. These occur when

f=2—2y=0 fi=—2t+2=0

so the only critical point is (1, 1), and the value of f thereis f(1.1) = L.
In step 2 we look at the valoes of f on the boundary of D, which consists of the four
¥ g line segments L, L, Ls, L, shown in Figure 12. On L, we have y = 0 and
¥ 2.2
) W o S ¥
fle. 0) =x" 0=x=3

s ;
This is an increasing function of x. so its minimum value is f(0, 0) = 0 and its maxi-
mum value is f(3,0) = 9. On L: we have x = 3 and

L0y L; 3.m X
A3y =9—4y 0=y=2

iURE 12

This is a decreasing function of y. so its maximum value is (3, 0) = 9 and its minimum
value is f(3.2) = 1. On L, we have v = 2 and

fir,)=x"—dxr+4 D=x=3

By the methods of Chapter 4, or simply by observing that f{x. 2) = (x — 2), we see
that the minimum value of this function is f(2, 2) = 0 and the maximum value is
[0, 2) = 4. Finally, on Li we have x = 0 and

fO.0) =2y D=y=2

with maximum value f{0, 2) = 4 and minimum value f{0, 0} = (. Thus, on the bound-
ary, the minimum value of f is () and the maximum is 9.

In step 3 we compare these values with the value f{l. 1} = 1 at the critical point and
FIGURE 13 conclude that the absolute maximum value of f on D is f(3, 0) = 9 and the absolute
flryi=x"—2xy+ 2y minimum value is f{0, 0) = f{2. 2) = 0. Figure 13 shows the graph of f. =
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PROOF OF THEOREM 3, PART (4) We compute the second-order directional derivative of f in
the direction of u = (i, k). The first-order derivative is given by Theorem 15.6.3:

D.f=fh + fk

Applying this theorem a second time, we have

2 o & :
Dif = DuDaf) = 5= (Duf)l + 5= (Daf )k

= (fuh + fuk) + (fiuh + fiek)k

=F fuhz =+ E.r""j’k = .ﬂ_pk: fhy Cluirnut’s Theorem)
If we complete the square in this expression, we obtain

xx

We are given that fi.{a, b) = 0 and D{a, b) > 0. But f,, and D = f,, f,, — fi are con-
tinuous functions, so there is a disk B with center (a. b} and radius & > () such that

Sfudx v} = 0 and D x. ¥) = () whenever (x, v) is in 8. Therefore, by looking at Equation
10, we see that DZ f(x, ¥) = 0 whenever (x, ¥) is in B. This means that if C is the curve
obtained by intersecting the graph of f with the vertical plane through Pla. b. fla. b)) in
the direction of u, then C is concave upward on an interval of length 24, This is true in
the direction of every vector w. so if we restrict (x, ¥) to lie in B, the graph of f lies
above its horizontal tangent plane at P. Thus flx. v) = fla. b) whenever (x, v) is in B.
This shows that f(a. b) is a local minimum. |

LAGRANGE MULTIPLIERS

In Example 6 in Section 15.7 we maximized a volume function V = xyz subject to the
constraint 2xz + 2yz + xy = 12, which expressed the side condition that the surface area
was 12 m’. In this section we present Lagrange’s method for maximizing or minimizing
a general function f(x, v, z) subject to a constraint (or side condition) of the form

glx.ywz) =k
It's easier to explain the geometric basis of Lagrange's method for functions of two
variables. So we start by trying to find the extreme values of f{x, v} subject to a constraint
fir.yi=1 of the form gix, ¥) = k. In other words, we seek the extreme values of f{x. ¥} when the
fix.y)=10 point (x, v) is restricted to lie on the level curve glx, v} = k. Figure | shows this curve
fix.y)=9 together with several level curves of f. These have the equations fix, v} = ¢, wheree = 7.
fix.¥y)=8 8.9, 10, 11. To maximize f(x, v} subject to glx. v} = ks to find the largest value of ¢ such
fix.y)=1 that the level curve f(x. v} = ¢ intersects g{x, v} = k. It appears from Figure 1 that this
¥  happens when these curves just touch each other, that is, when they have a common tan-
gent line. (Otherwise. the value of ¢ could be increased further. ) This means that the nor-

FIGURE 1| mal lines at the point (xa. yu) where they touch are identical. So the gradient vectors are
parallel; that is, Vf(xa, vo) = A Vglxo, vo) for some scalar A.

B3 visual 158 animates Figure | for This kind of argument also applies to the problem of finding the extreme values of

both level curves and level surfaces. fix, ¥, z) subject to the constraint g(x, v, z) = k. Thus the point (x, ¥, £) is restricted to lie

on the level surface § with equation glx, v, z) = k. Instead of the level curves in Figure 1,
we consider the level surfaces f(x, . z) = ¢ and argoe that if the maximum valoe of f
is f(Xp, ¥a. ) = c. then the level surface fix, v,z) = c is langent to the level surface
glx. v. z) = k and so the corresponding gradient vectors are parallel.
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This intuitive argument czn be made precise as follows. Suppose that a function f has
an extreme value at a point P{xa. ¥o. za) on the surface § and let C be a curve with vector
equation rir) = {xir), ¥{s). =)} that lies on § and passes through P. If o is the parameter
value corresponding to the point P then rifs) = {xu. vu. za). The composite function
Rz} = flxda), ylr), z{1)) represents the values that [ takes on the curve C. Since [ has an
extreme value at {xq, vo. 20, it follows that ft has an extreme value at fy. so h'{ta) = 0. But
if f is differentiable, we can use the Chain Rule to write

0 = hliy)
= filxo, Yo, Zo)a(5g) + J_ru'[-ru- ¥o. Za)¥lia) + Flxg, Yo Za)2(t)

= ¥ flxa. Yo, Zo) * r'lta)

This shows that the gradient vector ¥V f{x,. vy, 2y) is orthogonal to the tangent vector r'(f;)
to every such curve C. But we already know from Section 15.6 that the gradient vector
of g, Vglxy, va, 29). is also orthogonal to r'{;) for every such curve, (See Equation 15.6.18.)
This means that the gradient vectors Vfixs, ¥, zo) and Vgixa. ¥g. 2o) must be parallel.
Therefore, if Vg(x,, vo, Zo) # 0, there is a number A such that

agrange multipliers are named after the

ach-lalan mathematician Josaph-Louis

range |1736=1813). See page 217 for a |IJ
sraphical sketch of Lagrange.

YV f(x0. ¥o. 2a) = & Vglxo, ¥o. z0)

The number A in Equation 1 15 called a Lagrange multiplier. The procedure based on
Equation 1 is as follows.

METHOD OF LAGRANGE MULTIPLIERS To find the maximom and minimum values
of f(x. ¥, z) subject to the constraint g{x, ¥. z} = k [assuming that these extreme
values exist and Vg # 0 on the surface gi(x. v, z) = &]:

@ I lariving Lyrange’s mathod wer assismad (a) Find all values of x, y, z. and A such that

that ¥g = 0. In each of our examphes you can

check that g = 0 at all points where Vilx;3.z) = aVglx. v, 2)
gix. v, =) = k. Sea Bxercise 21 for what can
o weong if Vg = 0 and glxy.z)=k

{b) Ewvaluate f at all the points (x. v, z) that result from step (a). The largest of
these values is the maximum value of f: the smallest is the minimum value
of f.

If we write the vector equation ¥ f = A Vg in terms of its components, then the equa-
tions in step (a) become

=M fi=l&  f=M  glayz) =k

This is a system of four equations in the four unknowns x, y. z, and A. but it is not neces-
sary to find explicit values for A.

For functions of two variables the method of Lagrange multipliers is similar to the
method just described. To find the extreme values of f{x. y) subject to the constraint
glx, ¥v) = k. we look for values of x, v, and A such that

Vilx. y) = AVglx. v) and  giry)=k
This amounts to solving three equations in three unknowns:
fo = Ag 5= Ag glx.y)=k

Owr first illustration of Lagrange’s method 15 to reconsider the problem given in
Example 6 in Section 15.7.
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= Another method for solving the system of
equations [2=5) is 1o solve sach of Equations 2,
3, and 4 for A and then to sguate the resulting
axgessons.

u In peamatric tenms, Examgle 7 asks for the
highest and howest pomts on the curve C in Fig-
ure 2 that lies on the pasaboloid - = x* + 2y°
and directly above tha constsaint cicle

Brvi=1

KA EXAMPLE | A rectangular box without a lid is to be made from 12 m* of cardboard.
Find the maximum volume of such a box.

(DLUTION As in Example 6 in Section 15.7, we let x, v, and z be the length, width, and
height. respectively, of the box in meters. Then we wish to maximize

V =1xy=z
subject to the constraint
glx,y,z) =2xz + 2yz + xy=12

Using the method of Lagrange multipliers, we look for values of x. y, z. and A such that
¥V = AVygand g(x, v, z) = 12. This gives the equations

V.= Ag, Vi = Ag, V:= Ag: 2xr +2yz +tay=12
which become
[z vz = A2z + ¥)
3] xm=A2z+x)
3] vy =A2x + 2y)
5] Lxz + 2yz + ay = 12

There are no general rules for solving systems of equations. Sometimes some ingenuity
is required. In the present example you might notice that if we multiply (2) by x, (3} by v,
and (4) by z. then the left sides of these equations will be identical. Doing this, we have

[EI xyz = A2az + xy)
Ll xyz = A(2yz + xy)
xyz = A(2xz + 2y2)

We observe that A # 0 because A = () would imply vz = xz = xy = 0 from (2}, (3), and
{4) and this would contradict (5). Therefore, from (6) and (7), we have

2xz 4+ xy=2yz + x¥

which gives xz = yz. But z # 0 (since z = 0 would give V = 0}, so x = y. From (7} and
(8) we have

Zyz + xy=2xz + 2yz
which gives 2xz = xy and so (since x 7 0) vy = 2=z. If we now put x = ¥y = 2z 1in (5),
we get

47 + 42 +477= 12

Since x, y, and z are all positive, we therefore have z = | and so x = 2 and ¥ = 2. This
agrees with our answer in Section 15.7. 2

@ EXAMPLE 2 Find the extreme values of the function fix,v) = x* + 2y* on the
circle x* + y' = L.

SOLUTION We are asked for the extreme values of f subject to the constraint
glx, v) = x* + y* = L. Using Lagrange multipliers, we solve the equations V= A Vg
and g{x, v) = 1, which can be written as
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Extrema of functions of two variables

FIGURE 2

= The geometry behird the use of Lagrange

multipliers in Example 2 is shown in Figue 3.
The extrame valves of fix, v = x* + 2y*
carrespand 1o the level curves that touch tha

cirde x? + yi=1.

o427 =2

IGURE 3

fe=14g fy=Ag, glx,v)=1
or as
[ 2x = 2xA
4y = 2yA
1] xt+yi=1

From (9) we have r=0o0rA = L. If x = 0, then (11) gives y = £1. If A = 1. then
¥ = 0 from (10}, so then (11) gives x = * 1. Therefore f has possible extreme values
at the poimts (0, 1), (0, —1). (1, 0). and {—1, 0). Evaluating f at these four points, we
find that

flo, 1)y =2 flo,—1)=2 fALO)=1 fi—=1.0)=1
Therefore the maximum value of f on the circle x* + y* = 1 is f{0, £1) = 2 and the
minimum value is f(*1, 0) = 1. Checking with Figure 2, we see that these values look
reasonzble. |

EXAMPLE 3 Find the extreme values of f(x, ¥} = x* + 2y" on the disk x* + y* = L.

LLITION According to the procedure in (15.7.9), we compare the values of f at the criti-
cal points with values at the points on the boundary. Since f; = 2y and f; = 4v, the only
critical point is (0, 0). We compare the value of f at that point with the extreme values
on the boundary from Example 2:

Fl0.0)=0 AxL0) =1 flo.£1)=2

Therefore the maximum value of f on the disk x* + ¥* = Lis f{0. £1) = 2 and the
minimum value is f(0, 0) = 0. B

EXAMPLE 4 Find the points on the sphere x* + ¥ + =% = 4 that are closest to and
farthest from the point (3, 1, —1).

SOLUTION The distance from a point (x, v, =) to the point (3, 1, —1) is

d=Jx—3P+{y— 1P+ z+1p

but the algebra is simpler if we instead maximize and minimize the square of the
distance:
d=flry.d=x-3"+ -1+ E+I1P

The constraint is that the point (x. y. ) lies on the sphere, that is.

glr.y,z)=x*+y'+:"=4

According to the method of Lagrange multipliers, we solve V= A Vg, g = 4. This gives

[iz] 2{x—3)=12xA
® 2y — 1) =2
[i9] Hz+ 1)=12=A
[i5] 24y =4

The simplest way to solve these equations is to solve for x, v, and z in terms of A from
(12), (13), and (14), and then substitute these values into (15). From (12) we have

x—3=xA or xl—A)=3 or i=—
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= Fgwe 4 shows the sphere and the nearest
paint P in Example 4. Can you s8e how to find
the eoordinates of P without using caloulus?

T

|
1

a/‘
/
(3.1.-1)

FIGURE 4
TWO CONSTRAINTS

//'\

—

p,=>v v

4
E~p
.

i ¥

e
=

FIGURE 5

[Note that | — A # 0 because A = | 1s impossible from (12).] Similarly, (13) and (14)
give

1 - 1
R -4
Therefore, from (15), we have
32 3 32
o N g |
(1—AF  (L—AF (1 —aF
which gives (1 — AF =41 — A = =J/T1/2, 50
P AL
S

These values of A then give the corresponding points (x, v, z)

=1
[
-l

6 2 2 d 2
AL S . A
It's easy to see that f has a smaller value at the first of these points, so the closest point
is (6/4/11, 2//11, —2/4/11) and the farthest is {—6/yT1, —2//11, 2//11). =

—

Suppose now that we want to hnd the maximom and mmmum values of a tunchion
fla. v, z) subject to two constraints (side conditions) of the form glx, y.z) = &k and
Rix, v, z) = ¢. Geometrically. this means that we are looking for the extreme values of f
when (x, v. z) is restricted to lie on the curve of intersection C of the level surfaces
gix. v.z) = k and &(x. v. 2z} = ¢. (See Figure 5.) Suppose f has such an extreme value at a
point P{xo. yu. Zo). We know from the beginning of this section that V is orthogonal to C
at P. But we also know that Vg is orthogonal to g{x. v. z) = & and Vh is orthogonal to
hix, v, z) = ¢, s0 Vg and Vi are both orthogonal to C. This means that the gradient vector
V fixg. ¥o. Zo) 15 in the plane determined by Vigl{xa. vg. zp) and Vi(xy, ¥y, 79). (We assume
that these gradient vectors are not zero and not parallel.) So there are numbers A and p

Vf(xo. yo. 20) = A Valxo, yo. z0) + p Vhixa, yo, 20)

In this case Lagrange’s method is to look for extreme values by solving five equations in
the five unknowns x, v. =, A, and p. These equations are obtained by writing Equation 16
in terms of its components and using the constraint equations:
= Ag. + ph,
fe = Ag, + ph,
f:=Ag: + ph:
glx.yz) =k

My v.z)=rc
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= The cyfinder x* + v* = 1 intersects the @ EXAMPLE 5 Find the maximum value of the function f(x. y.z) = x + 2y + 3z on the
plane x — y + = = 1 inan ellipse (Figure 6). curve of intersection of the plane x — v + z = | and the cylinder x* + y* = 1.
Example 5 zsks for the maximum value of £
when (.. y. =) is restricted 1o fia o the ellipse. SOWTION 'We maximize the function f(x. v, z) = x + 2y + 3z subject to the constraints
gla.¥.z2) =x — y + z= land A(x. y, z) = x* + y* = |. The Lagrange condition is
Vf= AVg + pVh, so we solve the equations
4
g [i7) 1= A+ 2xp
: L 2=—A+ 2vu
i [i] I=A
B 28] F=ypF+z=1
-1 1] K yi=1
- “F g Putting A = 3 [from (19)] in (17), we get 2xp = —2, so x = —1 /. Similarly. (18)
¥ gives v = 5/(2pu). Substitution in (21) then gives
FIGURE &
1 25
_— - = E
ueo 4ps

andsop’ =%, p= '_"\,-'EE_Q. Then x = +2/,/739, v= =5/./20 . and, from (20),
z=1—-—x+y=1=7/Jy29. The corresponding values of f are

__2 +T(+ 5'+1(| 7 ——
= . [ 3 b =3 afd
\."Ia-’_g \ \-'@ \ \-‘@ e
Therefore the maximum value of f on the given curve is 3 + \,-“T"}-. |
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Possible Questions
PART-B (2Mark)

Define Vector Field.
2. What is Lagrange’s Multiplier.

3. Define Limit of a function f(x,y) ( l)in}l 2)()cz Y =X’y +3x+2y)

4. Find f., f, and f.if f(x,y,z)=e"Inz.

5. Verify that the function u(x,?) = sin(x — at) satisfies the wave equation.
6. Define Gradient of the function f.

7. What is Level curve.

PART-C (8 Mark)
1. Find the Local maximum, minimum and saddle point of
f(x,y)=x"+y* —dxy+1.
2. Find the maximum value of the function f(x, y,z)=x+2y+ 3z on the curve of

intersection of the plane x — y + z =1and the cylinder x*+3” =1.
3. Find and classify the critical points of the function
f(x,y)=10x"y-5x" —4y* —x* —2y*
4. Find the points on the sphere x* + y* + z° = 4 that are closest to farthest from the
point (3,1,-1).
5. Find the shortest distant form the point (1,0,—2) to the plane x+2y+z=4.
6. Find the Extreme value of the function f(x, y) = x> +2y” on the circle x> +y° =1.
7. A rectangular box without a lid is to be made from 12m? of cardboard. Find the
maximum value of the box.
8. Find the absolute maximum and minimum of the
function f(x, y) = x* —2xy+2y on the rectangle D ={(x,y)/0<x<3,0<y<2}.
9. (1)Write about Local maximum, minimum and saddle point.
(i1) Find the local minimum and saddle point of the function
f(x,y)=x"+y*—2x—-6y+14
10. A rectangular box without a lid is to be made from 12m” of cardboard. Use
Lagrange multiplier method to Find the maximum value of the box.
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Subject Name: Multivariate Calculus

Question

The volume of reci lar box is V=

The equation Uy, :aZUXX is called

In this equation ¥ f=1 ¥ g,is called

The function fis Local minimum at (a, b) if

The function is at every(x, y) in D.

The value of [ ] (4-x-y) dx dy x,y in (0,1) is

If X and e are lagrange’s multiplier and then the equation is

Divergence of a function fis denoted by

The operator ¥ is called

The equation of circle is

IfFy Fyy - (Fy)*> 0 and F, > 0 then f{a, b) is

If f has a local maximum or minimum at (a, b) and the first order
partial derivatives of f exist then

Curl of fis denoted by

Ifr is position vector , then ¥.r =

If A is irrotational , then

The divergence of the position vector r is

If r=xi+yj +zk, then V¥ .(ar) is equal to

Which of the following is a scalar function ?

Given that f= x*> +y* +2*, then V2 fis

Ifi, jand k are the unit vectors along the coordinate axes , then (i
d)is

Ifx=a(0 - sinf) and y = a ( 1- cosb) is called a equation of

The parametric equation of is x = acost and y = asint
The parametric equation of is x = acost and y = bsint
If x = sect and y = tan t the find dy/dx
The parametric equation of is x = asect and y = btant
Iff (x) = x + sin x, then f'(x) =
The curve represented by the parametric equations x =  and y=
£ is called
The volume of the cylinderis
A function with a continuous first derivative is said to be smooth
and its graph is called
If a right cylinder is generated by translating a region of area A
through a distance h, then h is called
A function with a continuous first derivative is said to be
A piece of cone is called a
(base circumference x slant height ) / 2 =
Volume of a right circular cylinder is

is a solid that generayte when a plane region is
translated along a line or axis that is perpendicular to the region
A right cylinder is a solid that generayte when a plane region is
translated along a line or axis that is to the region
The volume of a solid can be obtained by integrating the

from one end of the solid to the other .

volume of a sphere is

is a solid enclosed by two concentric right circular
cylinders
volume of a cylindrical shell =
A is a surface that is generated by revolving a plane
curve about an axis thatb lies in the same plane as the curve.

Option-1
x+y+z
Laplace
Euler multiplier
fix, y) <f(a, b)
Local maximum
1

VE=1 Vg

V.F

integral operator
(x-2)+(x-b)’ =1
Local minimum

£(a,b)=0

V.F

hyperbola
ellipse
hyperbola
1/tan t
hyperbola

sin X — X cos X

ellipse
base - height

smooth curve
circumference
length

frustum
volume of cone
2

sphere

perpendicular

length
4/3 mr3

right cylinder
2n

lateral surface area

UNIT-IT

Option-2
Xytyz+xz
Heat
Lagrange multiplier
fix, y)>fla, b)
absolute maximum
2

VE=(Ate) Vg

V*F

Matrix operator
K=

Local maximum

fy (a,b) =0 or f; (a, b)
=0

V*F

1

VxA=0

parabola
circle
parabola
sect / tant
parabola
1+ cos x

semicubical parabola
base x height

length

base

smooth derivative
surface

lateral surface area
2mi2h

right cylinder
bounded

height
1/2 mr2h

surface area
mr2

surface of revolution

PART-A Multiple Choice Questions (Each Question Carries One Mark)

Subject Code: 17MMUS503A

Option-3
Xyz
Quadratic
Legendre multiplier
fix, y) = f(a, b)
Local minimum
3

VF=(\-¢) Vg

VF

Differential operator
ety =r*

absolute maximum
fi(a,b)=0

YF
2
|AI=0

Y(V.A)

p

cycloid
hyperbola
ellipse
tant / sect
ellipse
cos X

hyperbola
2(base + height)

smooth plane
height

smooth

area

volume of solid
2nr

cone

parallel

cross sectional area
nr2h

cylindrical shell
2mr2h

area of revolution

Option-4
(xyz)"2
Wave
Laplace multiplier
fix, y)<fla, b)
absolute minimum
4

VE=L V¥g+e Vh
(V.Y)F

Laplace operator
ey’ =1

absolute minimum

f, (a,b)=0and f, (a, b) =0

\A 4t

3

Y.A=0

3

3a
VXA

0
i

solid
parabola
circle
1/sect
circle
1-cos x

parabola
(base x height) / 2

smooth derivative
length

smooth curve
radil

area of revolution
nr2h

pyramid

linear

surface area

cross sectional area

Answer
Xyz
Laplace
Lagrange multiplier
fix, y) = f(a, b)
absolute maximum
3

VF=LV¥g+eVh

V.F

Differential operator
(x-a)*+(x-b)’=r’
Local minimum

f, (a,b) =0 and f, (a, b) = 0

V*F

1
V.A=0
1

0

VA

[3

cycloid
circle
ellipse
sect / tant
hyperbola
1+ cos x

semicubical parabola
base x height

smooth curve
height

smooth

frustum

lateral surface area
nr2h

right cylinder

perpendicular

cross sectional area
4/3 mr3

cylindrical shell
2n

surface of revolution
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DOUBLE INTEGRALS OVER RECTAMNGLES

[5] DEFINITION The double integral of f over the rectangle R is

u Motice the similasity between Definition 5 o WA
and the definition of a sinple intagral in H. fle,y)dA = lim ¥ ¥ flxd. v AA
Equation 2. ' MRS ) el

if this limit exists.

¥ i EXAMPLE | Estimate the volume of the solid that lies above the square

4 (2,3} R =[0,2] % [0, 2] and below the elliptic paraboloid z = 16 — x* — 2y Divide R
into four equal squares and choose the sample point to be the upper nght comner of
each square Ry. Sketch the solid and the approximating rectangular boxes.

[

s (1)
{5 ® SOLUTION The squares are shown in Figore 6. The paraboloid is the graph of

Ry Ry, flx.¥) = 16 — x* — 2y and the area of each sguare is 1. Approximating the volume
by the Riemann sum with m = n = 2_ we have

V=S % flx.y) A4

=] =l
=fL1AA + f(1,2) AA + f(2, 1D AA + f(2.2) AA
= 13(1) + T(1) + 10{1) + 4(1) = 34

il EXAMPLE 2 If R = {(x,¥)| —1 = x = 1. =2 = y = 2}, evaluate the integral
[ vT=>7an

[
SoLmod It would be very difficult to evaluate this integral directly from Definition 5 but,
because 4/1 — x* = 0, we can compute the integral by interpreting it as a volume. If
= 4/l — x?, then x* + =% = | and = = 0, so the given double integral represents the
volume of the solid 5 that lies below the circular cylinder x* + z* = 1 and above the
rectangle R. (See Figure 9.) The volume of § is the area of a semicircle with radius 1
times the length of the cylinder. Thus

\ T
(1.0.0) 20 o
G [[Vi—Fda=tatipxa=2x s
FIGURE 9 k
MIDPOINT RULE FOR DOUBLE INTEGRALS
[ rteyan = 3 3 fix.5) a4
B =1 p=i
where X; is the midpoint of [x.—,. x;] and ¥, is the midpoint of [ -y, ¥%].
il EXAMPLE 3 Use the Midpoint Rule with m = n = 2 to esimate the value of the
integral [, (x — 3v")dA. where R ={(x.¥) [0 =x=2 1 =y=2}
¥ S0LUTION In using the Midpoint Rule with m = n = 2, we evaluate f{x, v) = x — ’n at
the cenlﬂrs of the four subrectangles shown in Figun: 10. Sox = % L=iLn= 3, and
2 ) (2.2) V= "_ The area of each subrectangle is AA = 5. Thus
3 o Ry - ¥ 3
2 .R—I Ry ) x—3v)da = 3 3 f(%.5) A4
1 s = i

= fiX. W) AA + (X, Vo) AA + F(T. 7)) AA + f(T. 72) AA
=fl5.3)8A + f(5.3)AA + F(3.3)AA + f(3.7)AA
=i——];+t——J + (-2l +(-5i

FIGURE 10 _ = —11.875

Thus we have JJ (x — 3v%) dA = —11.875
.
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_PROPERTIES OF DOUBLE INTEGRALS

We list here three properties of double integrals that can be proved in the same manner as
in Section 5.2. We assume that all of the integrals exist. Properties 7 and 8 are referred to
as the linearity of the integral.

& ([ L) + gl ) da = ([ ey da + [ gl v) aa
= Doutiba mtegrals behave this way because 4 g *
the doubbe sums that define them beliave
this wiay. is =
J' cfix.yldd =¢ JJ flx, v) dA where ¢ is a constant
3 R’
If fix, v) = glx, ¥) for all (x, y} in R, then
B [J recyaa = (f gty as
# ®
EXAMPLE | Evaluate the iterated integrals.
52, r
(a) ' + xvdydx (b) 1 + xvdrdy
J8 1 Jita
SOLUTION
{a) Regarding x as a constant, we obtain
=1
o ¥ | o 27 o F
| Pydy = I:.r'—} = .r'(—) = .r'(—) =it
L 2 | 2, %
Thus the function A in the preceding discussion is given by A(x) = é.rz in this example.
We now integrate this function of x from 0 to 3:
ch e 2l 2.a
Ju JI Xydydx= L I:J.I xly d_'n] dx
3
s i i _ 27
REEEI] T
(b} Here we first integrate with respect to x:
o 3 =3
eV E 2| 3 ] x
+ 1- Pydedy = | | xydy | dy = ' — dy
Jida T ! |l t : Ji 3° |0
— [oyay=0L o
LT T
u Thearem 4 is named after the Italian mathe- [#] FUBINI'S THEOREM If f is continuous on the rectangle
matician Guido Fubini {1879=1943], who proved R= {{_t_ vl i a=x=hc=yv= ‘-”- then

a wery general version of this theosem i 1907
But the versien for continuous functions was e b rd d b
known 1o the French mathematician Augustia- JJ flxy)dAd= || flx.y)dvdx=|"| flx,y)drdy

Louis Cauchy almest a eantury earlier 5 e, ok i

More generally, this is true if we assume that f is bounded on R, f is discontin-
uous only on a finite number of smooth curves, and the iterated integrals exist.
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Il EXAMPLE 2 Evaluate the double integral J1, {x — 3y ) dA. where
R={lx,»|0=x=2 1=y= 2} (Compare with Example 3 in Section 15.1.)

SOLUTIoN | Fubini's Theorem gives
= Notice the negative answes in Bampls 2;
nothing Is wrong with that. The funetion fin
that example is not a positive function, 5o its

“ {x— 3_\-3}‘5[4 i‘: .'I: (x— 3)_:}‘!-‘. s [:I.t_r _ ‘_]:::[ i

wik
integral doesn’t represant 4 volumea. From 4
Figure 3 we sea that f is abways negative on = 2 1
R, 50 the value of the mtagral is the negative = ' (x— Thdx= . ?.r] = —12
of the volisne that liss abave the graph of £ o 2 3
and balow R.

SOLUTION I Again applying Fubini's Theorem, but this time integrating with respect to x
first, we have

[, J; b= 3 dxay

[ = 3v%)aa
E

| 2 s b
- [T _ 3_‘..,,._} "
Jo 12 -
FIGURE 3 = ]'I“tz — 6yl )dy =2y — ']} = —12 =

Il EXAMPLE 3 Evaluate ||, v sin(xy) 4A, where R = [1, 2] % [0, #].

SOLUTION | If we first integrate with respect to x. we get

JJ ysin{xy) dd = I."' I‘I: ysin(xy) dx dy = +‘U' [—cas[_r_\‘)]j:f dv
. L :

"
(—cos 2y + cos y) dv
H

i . "
= —ssin2y + sin _1.']., =0
S0LUTioN 2 If we reverse the order of integration, we get

u For a function f that takes on both positive A 3 g

and negative values, [J, flx. ¥) dA is a differ- 1. vsin(xy) dd = I ‘. ysin(xy) dv dx
ance of volumes: V, — V,, whare V, is tha vol- it w40

uma above K and below the graph of £ and v ks

the volume balow R and above the gaph. Tha To evaluate the inner integral, we use integration by parts with
fact that the integral in Example 3 is () means

that thase twn volumes V, and Vy are equal n=y dy = sinlxv) dv
[See Figura 4.) 4 ] 3
cos{xv)
du = d‘r = _;
x
Fr ycos(xy) [ x
and so ysinfxy) dy = ———— L H ' cos(ay) dy
«0 X =i X 0
TCOS WX

=i
=y

~IEE s fintay]

FIGURE 4 _ _Tmeosmx sin mwx
x x*
If we now integrate the first term by parts with u = — |/x and dv = rcos mx dx, we get

du = dx/x*, v = sin 7x, and

. . .
T COS TX sinarx ¢ sin X
' —— |dx = — - ' ——dx
X x 4 x

[ T COS X sin X sin X
Therefore l ——t— | dy = ————
J x x° x
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straightfonwand, bt m Examgle 3 the first solu- - .'3 "' il dydx
tion is much aasier than the sacond one. There- Jido ® il
fore, whan we evaluate double imegrals, it is

wise to choose the arder of infegration that gives sin 2

simpler integrals. =——F tsnw=20

= In Examgle 2, Solutions 1 and 2 are agually i 3
510 WX

I

[ EXAMPLE 4 Find the volume of the solid § that is bounded by the elliptic paraboloid
x? 4+ 2y? + z = 16, the planes ¥ = 2 and v = 2, and the three coordinate planes.

SOLUTION W first observe that § is the solid that lies under the surface - = 16 — x* — 2y?
and above the square R = [0, 2] % [0, 2]. (See Figure 5.) This solid was considered in
Example | in Section 15.1, but we are now in a position to evaluate the double integral
using Fubini’s Theorem. Therefore

V= ” (16 —x* — 2y?)dA = +: L (16 — x> — 2y dr dv
o Jo

" I3 3 =2
= |II llﬁx B 2.‘_':]1-0 dy

e - E-a)a =[5 -ph- -

In the special case where fix. v) can be factored as the product of a function of x only
and a function of ¥ only, the double integral of f can be written in a particularly simple
form. To be specific, suppose that f(x, v) = glx)h(v) and R = [a, b] X [c, d]. Then
Fubini's Theorem gives

J.J.,ﬂ.t._ﬂ dA = ‘J +‘b glx) iy} dx dy = [‘ |: l-a glx)hiv) d'.t] dy

L
In the inner integral, v is a constant, so /il y) is a constant and we can write

[ [1"' g A(y) d.t:] dy=[" [n{_\-i( [ glx) d.\-)] dy = [" gt dx [ hiy) dy

since 1|:’ glx) dx is a constant. Therefore, in this case. the double integral of f can be writ-
ten as the produoct of two single integrals:

J]--“-"- wda=[“[* gloh(y) dx dy = J"’ [[" gl h(y) d.rJ dy
. #& Ja (8 v

In the inner integral, y is a constant, so /i y) is a constant and we can write

ji [{* gl hiy) u’.r] dy=[" |:!!{yi( [ gx) d.r)] dy =" glx) dx [ hiy) dv

e

since II:’ glx) dx is a constant. Therefore, in this case, the double integral of f can be writ-
ten as the product of two single integrals:

(5] 1" glx)hivl dA = J-* glx) dx J.ﬂI Il v) dy where R = [a, b] X [c. d]
-R- i L

EXAMPLE 5 If R = [0, m/2] X [0, m/2]. then, by Equation 5,
. 2 _—
l[ sin x cos ydA = [' sin x dx i'f cos vdy
.R' «0 #lh

= J—cns I]:f:[ﬁil'l _l.']:ﬂ= 1-1=1 |
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DOUBLE INTEGRALS OVER GEMERAL REGIONS

For single integrals, the region over which we integrate is always an interval. But for
double integrals, we want to be able to integrate a function f not just over rectangles but
also over regions D of more general shape, such as the one illustrated in Figure 1. We sup-
pose that [ is a bounded region, which means that D) can be enclosed in a rectangular
region R as in Figure 2. Then we define a new function F with domain K by

[

fle, w) i (x, v)isin D
Flx,y)= ¢ ! R s )
. 0 if {x, ¥) 1s in R but not in

¥ ¥
e el =
¥ | D |
| |
1] x 1] X
FIGURE 1 FIGURE 2

" If F is integrable over R, then we define the double integral of f over D by

gnlp&: of f
I | [2] J-T,f(x. VidA= U Flx, y) dA where F is given by Equation |
[ i

= EE

[3] If f is continuous on a type I region D such that

D={xy)|a=x=b g =y= g}

- H flx,y) dA = I: _[:i:l,f (x. v} dv dx
D

The integral on the right side of (3) is an iterated integral that is similar to the ones we
considered in the preceding section, except that in the inner integral we regard x as being
constant not only in fix, v) but also in the limits of integration, gi(x) and g2(x).

We also consider plane regions of type IL which can be cxpressed as

x=Myl¥) | D Ix=ﬂ-:4_'|.'i

. @ D={xy|c=y=d hiy)=x=hiy}
ey where f and h» are continuous. Two such regions are illustrated in Figure 7.
a=hiy)| B Jx=hyy) Using the same methods that were used in establishing (3), we can show that
o 5 x s
e} IR—— = PR
E ) reeyyaa= |7 " rlx, ) dxdy
B rEE
FIGURE 7 where D is a type II region given by Equation 4.
Some type I regions

il EXAMPLE | Evaluate .H.u [x + 2v} dA. where D is the region bounded by the
parabolas y = 2x*and vy = | + x°.
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y=1+r -Jlli.ll

1.2}

FIGURE 8

=
(=
b

FIGURE ¢
D as atype I region

¥ /
4 fi2,4)
|
I=73¥)
[ Ja=s
/B
i} x
FIGURE 10

u Figure 11 shows the solid whose volume

ig caleulatad in Example 2. 1 Hes above the
xy-plane, below the paraboloid = = ©* + 2
and betwean the plane v = 2y and tha
parabalic eylindes v = x°.

S0LUTION The parabolas intersect when 2x* = 1 + x° thatis, x* = |, s0 x = £1. We
note that the region D, sketched in Figure 8, 1s a type [ region but not a type II region
and we can write

D={xy)|-l=x=12=y=1+x}

Since the lower boundary is ¥ = 2x” and the upper boundary is v = | + x°. Equation 3

gives

[ "+ 2 dvax

[ x+ 29
B

.1 141
= I [I‘\: + _1'2]'::; dx
) ’

[ [ + 2+ (1 + 20 — d20%) — (262 ]dx
=l

' (=3t =2+ 2+ Ddr

x'!

5

]
(=]

-3

xt e xs j
—— 42—+ =—+x| =
4 3 2

1

=]

=1

NOTE | When we set up a double integral as in Example 1. it is essential to draw a

diagram. Often it is helpful to draw a vertical amow as in Figure 8. Then the limits of
integration for the iner integral can be read from the diagram as follows: The arrow
starts at the lower boundary v = gi(x). which gives the lower limit in the integral, and
the arrow ends at the upper boundary v = ga(x), which gives the upper limit of integration.
For a type II region the ammow is drawn horizontally from the left boundary to the right
boundary.

EXAMPLE 2 Find the volume of the solid that lies under the paraboloid z = x* + v* and
above the region D in the xv-plane bounded by the line y = 2x and the parabola v = x%

S0LUTION | From Figure 9 we see that D is a type I region and

D= {(.t. W0=sx=2 ¥=y= 1_r}

Therefore the volume under = = x* 4 v and above D is

v

[ 2+ y2vaa = 7 7 (2 + y)dy aix

a2 e Ol ra [ 25 ) g
* Py + 2 dx = J x2x) + L i it — Lo dx
Jo ) o 3 3

af xf L 1A O 2 | 216
=* e gl = i e | i
M\ 3 3 215 6|, 35

50LTioN 2 From Figure 10 we see that D can also be written as a type Il region:
D= {{_'l.', y|0o=y=4, hy=r= \.-"_\_'

Therefore another expression for V is

v=[[ 2+ yhaa = [ [ + v )dxdy
.-L.I <0 Jz¥
[ o2 N o [ 32 i 33
s e e L - T e A '
M i i P o W Gt i~ L

__ 2 s;m 39 L
=f{y" +iy _E_"']u—'!?
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e it [ EXAMPLE 3 Evaluate Hn-"." dA, where D is the region bounded by the line v =x — 1

and the parabola v* = 2x + 6.

S0LUTION The region D is shown in Figure 12. Again D is both type I and type IL but the
description of I as a type I region is more complicated because the lower boundary con-

sists of two pans. Therefore we prefer to express D as a type I region:

D={xn|-2=y=4 Y -3=x=y+1}

v v
s 5 g
y=y/2x+6h . l . r=%5-3
I | y=xr—1 =y +1
—3 T | o x 0 X
f ; :I'—'— —=1.—2) |_L_1]' i S |
y=—y2z+6 ~ :
FIGURE 12 (a) I3 as a type | region {b) I3 a5 a type Il region
Then (5) gives

=4[ ol + 0= (= 3P ay

y k-]
= Jj.l_l (—\T +dyt + 2ypt— S.\') dy
-4 S l -rh 4 8] -T-‘ ¥ 3 ' Py
Sl Tty iy Y| TR

If we had expressed D as a type I region using Figure 12(a), then we would have

obtained
[ ayaa =" [ yavax + [* [ aydvx
)= Lilss®oaT], ), YOoa
o
but this would have involved more work than the other method. B

EXAMPLE 4 Find the volume of the tetrabedron bounded by the planes x + 2y + z =2,

FIGURE 13 r=Iyx=0aamd:=0.
SOLUTION In a guestion such as this, it’s wise to draw two diagrams: one of the three-
y dimensional solid and another of the plane region D over which it lies. Figure 13 shows
ok 2y —=d y the tetrahedron T bounded by the coordinate planes x = 0, = = 0, the vertical plane
Ly . ey 1= x =2y, and the plane x + 2y + = = 2. Since the plane x + 2y + = = 2 intersects the
/ xy-plane (whose equation is = = 1) in the line x + 2y = 2, we see that T lies above the
b = (11) triangular region [ in the ry-plane bounded by the lines x =2y, x + 2y =2 and x = 0.
(See Figure 14.)
“y=x/2 The plane x + 2y + z = 2 can be written as - = 2 — x — 2y, so the required volume
0 \ =t lies under the graph of the function z = 2 — x — 2y and above
FIGURE 14 p={x.y|o=x=1 x2=y=1—x/2}
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Therefore
=l == B L o S e
v ‘L\l (2—x—2v)dA .l.. .L;: (2 —x — 2y dydx
il spr=li—xf3
= Ju [2_" = _"-"f\m.rz dx
i i £\2 e R—
=J‘ ==l l—=1] — = =k ——f—
i 2 2 7 4
(. s x? " ; 1
=J (= —2x+Nde=——x +tx| ==
g 3 P
[ EXAMPLE 5 Evaluate the iterated integral | [ sin(y?) dy dx.
A SOLUTION If we try to evaluate the integral as it stands, we are faced with the task of first
i evaluating ‘|' sin( v*) dy. But it's impossible to do so in finite terms since J sinf v*)dy is
A not an elementary function. (See the end of Section 7.5.) So we must change the order
of integration. This is accomplished by first expressing the given iterated integral as a
D double integral. Using (3) backward, we have
y=x S s
| | sin(y*)dydx= “ sinfy*) dA
S8 Jx e
I
o I
! ! where D={(_r,_\')!0£_r5£I,.r‘c'éy-fé i]'
FIGURE 15 ‘We sketch this region D in Figure 15. Then from Figure 16 we see that an alternative
Nasa iype | mgiu“ dBSCl'iPl'iDll of I is
) D={xy|osy=10=x=)}
This enables us to use {5) to express the double integral as an iterated integral in the
. 7 reverse order:
vt IR J“I j: sin(y” ) dy dx = H sinf ¥} dA
=y n
= J.I J-" sin{y*) dx dv = +-l Ex sin( y* J]:.:; dy
7] 5 L) B
= [ ysin(y?)dy = —4cos(v?)];
Ji
FIGURE 18 4
D as a type 11 region =35{l —cos 1)
Note:

FIGURE 19
Cylinder with base [} and height 1

The next property of integrals says that if we integrate the constant function f(x, y) = 1

over a region [, we get the area of D:

[ 1aa =ai)
b

Figure 19 illustrates why Equation 10 is true: A solid cylinder whose base is I and whose
height is | has volume A(D) - | = A(D), but we know that we can also write its volume

as |, 1 dA.

Finally, we can combine Properties 7. 8, and 10 to prove the following property. {See

Exercise 57.)

[[i] Hm=f(xy) =M forall (x, y) in D, then

mAD) = ([ fix.y) da < MA(D)
‘B
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EXAMPLE & Use Property 11 to estimate the integral ‘I'_l'” et =Y dA where D is the disk
with center the origin and radius 2.

SOLUTION Since —1 = sinxy = land —1 =cosy = L,wehave —]1 = sinxcosy = 1 and
therefore

el gty gyl =

Thus, using m = e'=1fe. M= ¢ and A(D) = w(2) in Propernty 11, we obtain

TRIPLE INTEGRALS

— = || """ dA = dme | |

if this limit exists.

DEFINITION The triple integral of f over the box B is

|| flx.y.2dv = tim % X F flafe. vl z5) AV

i m m

Lma—= ) fmy i

FIGURE 4
Atype | solid region with a type T1
projection

E FUBINI'S THEOREM FOR TRIPLE INTEGRALS If f is continuous on the rectan-
gular box B = [a, b] X [c, d] > [r. 5]. then

“ fﬂ.l. ¥, Z)dV = Ju |T'I l‘bﬂx. ¥, 2V dx dy d=

il EXAMPLE | Evaluate the triple integral .J'“s xvz"dV, where B is the rectangular box
given by
B={xyo|0=sx=l —-l=sy=2 0=:z=3}

S0LITION We could use any of the six possible orders of integration. If we choose to
integrate with respect to x, then v, and then z. we obtain

T 3 e 3 W oy
'ij xyz dV = ,1:1 }_L'LI vz dyxdydz = I l [ 5 ]

el e =1

=1

dv dz
=1

o

b4 4
EXAMPLE 2 Evaluate [{{, z dV, where £ is the solid tetrahedron bounded by the four
planes x =0,y =0, z=0,andx+ y+z=1.

SOLUTION When we set up a triple integral it’s wise to draw fwe diagrams: one of
the solid region E (see Figure 5) and one of its projection D on the xy-plane (see
Figure 6). The lower boundary of the tetrahedron is the plane = = 0 and the upper

boundary is the plane x + v + z= 1 {orz = I — x — ¥), s0 we use w,{x, ¥y) = 0 and
uslx, ¥) = 1 — x — y in Formula 7. Notice that the planes x + y + z = land=z=10
intersect in the line x + y = 1 (or y = | — x) in the xy-plane. So the projection of E is
the triangular region shown in Figure 6, and we have

B E={xypa|0=sx=lL0=y=s1l—-x0=z=1—x—y
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0.0, 1) 1
: y=l—x

FIGURE § FIGURE &
[7] E={|_'.",_1.‘,Z]iﬂ=¥_1"5 LO0=sy=l—-x 0=:z=1] —_t—_\'}

This description of E as a type | region enables us to evaluate the integral as follows:

. 11—y

i [ o2 1
f[fzav=[ [ [ cdzayax=| | [?} dy dx

“r B =il

B - T v=l—x
=_é+nl+]_“.1 _-t__lr}zﬂt\'d_r=§*||:_ui| dx
" =0

Jo 3 e

: 1 [l
=§|;{l—.l']“dx=g|:—%-i| - [
= (4]

A solid region E is of type 2 if it is of the form
E= {Lr. vwi|[(pdED wiv)=x= erl{_\'.:!}

where, this time, D is the projection of £ onto the yz-plane (see Figure 7). The back sur-
face is x = wn(y. z). the front surface is x = ua(y. z), and we have

H.{ﬂ.\’. y.2)dV = || |: |‘"'I:‘_:Iﬂ.r. v, z) .'.f.l] dA
£ 0 e

o i

ons [ and ¥).

I EXAMPLE 3 Evaluate Ul;_ v x? + z? dV. where E is the region bounded by the parabo-
loid y = x* + =% and the plane y = 4.

S0LUTION The solid E is shown in Figure 9. If we regard it as a type | region, then we
need to consider its projection 2 onto the xy-plane, which is the parabolic region in
Figure 10. (The trace of y = x* + =% in the plane z = 0 is the parabola v = x%)

B Visual 156 illuserates how solid
regions {including the one in Figure 9)
project onto coordinate planes.

FIGURE %
Region of integration

v From y = x* + =¥ we obtain - = *+4/y — 2, so the lower boundary surface of E is
z = —4/¥ — x7 and the upper surface is z = +/y — x?. Therefore the description of E as
\ v=4 atype | region is
l_ = E= {I_!.', v 2=x=2 P=y=s4 —Jfy—rl=r=y— _1':}
] ]
, [ ¥=x and so we obtain
M omTgv= 2 17 Er g dv
= - [l ve=F=mav=_ [ |F__—,; JET Zd-dydx
E
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; Thcn ﬂ:lB left buum:lﬂry of E is the pamboluld v = x* + =% and the right boundary is

. the plane y = 4, so taking u,(x, z) = x* + =% and w,(x, z} = 4 in Equation 11, we have
| rr+r=4

(8] [ vEF=av=f [J‘{ :\,Wz{v]da=ﬂ'[4—x=—:3],,mm
LD ,-": % ¥ B, L7 B,
12 Although this integral could be written as
1] 4= = )T A dzdx
FIGURE 11

Projection on xz-plane it’s easier to convert to polar coordinates in the xz-plane: x = rcos 6, z = rsin 8. This

gives
B The most difficult stap in evalisating a triple lJ Jat+ 71 dv = " 4—x*— ""I\'f’f' + 2 dA
integral is setting up an expression for the region e -
of integration [such as Equation 9 in Examgle 2). '
Remamber that the limits of integration in the = |'21|- j.: 4 — rl)rrdr Jda = +-2' da +‘= (4r* — r*) dr
inner integral contain at most two variables, the Jo o Jo Ju
fimits of integration in the middle integral coa- 5 2
tain a1 most one variable, and the limits of inte- e I N -
gration in the outar inteqgral must ba constants, TEEW 3 5k T

R o L= o 2 EIe
EXAMPLE 4 Evaluate J_; J_r_-}n—: (* + ¥%) d= dy d.
SOLUTION This iterated integral is a triple integral over the solid region
E= {{.r,_\'.:jl —2=x=2 -y ,4d—x* JxPt+yE=z= 2}
and the projection of E onto the xy-plane is the disk x* + y* = 4. The lower surface of
E is the cone z = +/x? + v* and its upper surface is the plane = = 2. (See Figure 9.)
This region has a much simpler description in cylindrical coordinates:

={{r,ﬂ,:,'|i{]£ A=2m 0=r=12, rfé_-él}

Therefore, we have

I . - i ,
J‘.,w-.,, an+ J-}é d_\' dx = + (x* + ‘I-"J:ﬂ»"

FIGURE 9 '_5'_“ : F
= +‘h * "1 rrdz drd
ol SO Jr
= |76 |, P2 —rdr
Ju
= 7:'r[-1"4 == -r:‘]' = %rr
EVALUATING TRIPLE INTEGRALS WITH CYLINDRICAL COORDINATES
B =uyixy) Suppose that E is a type | region whose projection D on the xy-plane is conveniently

described in polar coordinates (see Figure 6). In particular. suppose that f 1s continuous
and

E= {[.1',_\'_ D WED wmix,y) == ;.t;t.r.;r}]

where I} is given in polar coordinates by

D={r.o)|a= 8= g o) =r=hio)}

‘We know from Equation 15.6.6 that

FIGURE &

3 J‘rfflr v, z)dV = U [I”::l_ﬂx. ¥, z) c.'::l dA
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Double integration over rectangular region

rdft

FIGURE 7

Volume element in cylindrical
coordinates: dV = r d= dr 48

{1.0.0)
x

FIGURE 8

But we also know how to evaluate double integrals in polar coordinates. In fact. combin-
ing Equation 3 with Equation 15.4.3, we obtain

ol ) {..,u- cos d, F sin #)

IE J}:‘f{x' ¥ V= .l-: -IMIII s cos @, r sin @)

flrcosd, rsiné, z) rdz drdé

Formula 4 is the formula for triple integration in cylindrical coordinates. It says that
we convert a triple integral from rectangular to cylindrical coordinates by writing
x = rcos#, vy = rsin f, leaving = as it is, using the appropriate limits of integration for =,
r, and &, and replacing dV by rd= dr 48. (Figure 7 shows how to remember this.) It is
worthwhile to use this formula when E is a solid region easily described in cylindrical
coordinates, and especially when the function f(x, v, z) involves the expression x* + 3,

iJ EXAMPLE 3 A solid E lies within the cylinder v* + y° = I, below the plane - = 4
and above the paraboloid - = 1 — x” — y”. (See Figure 8.) The density at any point is

proportional to its distance from the axis of the cylinder. Find the mass of E.

S0LUTION In cylindrical coordinates the cylinder is r = | and the paraboloidisz = 1 — 7,

SO We can write

E={r82]0=6=2m0=r=1,1-r=:=4}

Since the density at (x. ¥. z) 1s proportional to the distance from the z-axis. the density

function is

fley.z)= K\.m = Kr
where K is the proportionality constant. Therefore, from Formula 15.6.13, the mass
of E is
m= l” Kyxi+y2dv
Y
rd

E’J" [, (&n) rdzdrdo

0

[:' +D' kP[4 — (1 — r)]drde

XJ':’ dﬂj:: Gr® + )dr

g 1
2rr.'(|:r'*+ %:l = 127k
1]

5
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EXAMPLE 4 Use a triple integral to find the volume of the tetrahedron T bounded by the
planesx + 2y + z=2 x=2p, x=0,andz=0.

SLITION The tetrahedron T and its projection [2 on the xy-plane are shown in Figures 12
and 13. The lower boundary of T is the plane = = 0 and the upper boundary is the plane
x+2y+z=2thatis, z=2 —x — 2y.

FIGURE 12 FIGURE 13

Therefore we have
J TR dy dx
(L]

TRIPLE INTEGRALS IN SPHERICAL COORDIMNATES
SPHERICAL COORDINATES
The spherical coordinates (p, f. ¢) of a point P in space are shown in Figure 1. where

p = | OP| is the distance from the origin to P, # is the same angle as in cylindrical coor-
dinates, and ¢ is the angle between the positive z-axis and the line segment OF. Note that

p=0 0=¢=x
Pip, & gy
J‘J
fb

o
W ‘H_\_'_"""-ﬂ.

. ¥

FIGURE | !
The spherical coordinates of a point

: The relationship between rectangular and spherical coordinates can be seen from Fig-
ure 5. From triangles OPQ and OPP’ we have

z=pcosd r= psin &

But x = rcos # and y = r sin 8, so to convert from spherical to rectangular coordinates,
we use the equations

] ‘ X = psin ¢ cos f ¥ = psin ¢ sin & 2= pcosd

Also, the distance formula shows that

FIGURE 5

@

We use this equation in converting from rectangular to spherical coordinates.
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d EXAMPLE | The point (2, /4. /3) is given in spherical coordinates. Plot the point
and find its rectangular coordinates.

SoLUTioN 'We plot the point in Figure 6. From Equations | we have

B S 1 VL W
.'I.'—pﬁlﬂd.lLDS = 51I'.I.3C054—._ 5 :II.T _'\I.)

(2. w4, mf3)

] : W V£ 1 {B
y= psing sinf=2sin—sin—=2 —= = i
e 7 (2)(»@) \E
T
:=pmﬂdm=3cmT=2l:H =]

X -

FIGURE & Thus the point (2, /4, w/3) is l:\.-'3f2. v'3/2., 1) in rectangular coordinates. |
B WARNING Thera is not universal agree- ] EXAMPLE 2 The point (0, 2,-@. —-2)is given in rectangular coordinates. Find spheri-
manl an the natation fior spherical cosrdinatas. cal coordinates for this point.
ozt books an physics reverse the meanings
of & and dband use r in place of p. S0LUTION From Equation 2 we have

p=Jri+yvi+i=/0+12+4=4

and so Equations | give

& =2 1 _ 2w
e & 2z T3
cos i = - =1 H=E

fr Sin ¢ 2

A in Module 15.8 you can investigats
?:::;:l : ik el " (Notw that # # 37/2 because y = 2./3 = 0.} Therefore spherical coordinates of the

given noint are (4. /2. 2/3).

EVALUATING TRIPLE INTEGRALS WITH SPHERICAL COORDIMNATES
Consequently, we have armived at the following formula for triple integration in spherical
coordinates.

@ ([ fexzrav

=y |-..r I'Ig rﬂp sind cos #. p sind sin 8, p cos ¢) p'sind dp df ded

where E is a spherical wedge given by

E={(p.0d)|la<p=bh as8<p c=d=d}

Formula 3 says that we convert a triple integral from rectangular coordinates to spher-
ical coordinates by writing

x= psind cos f y=psind sin f z=pcos ¢

[ EXAMPLE 3 Evaluate [[f, ¢“""**"" 4V, where B is the unit ball:
B= {(x. ¥.z) 14‘3 +y' += 1!
SOLUTION Since the boundary of B is a sphere, we use spherical coordinates:
B={(pod)|0=p=10=0<2m 0=d=m}

In addition. spherical coordinates are appropriate because

x:+_‘l‘1+:-l=ﬂ:
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Thus (3} gives
[T _I|11+'|-1—::|""’I F = [® 2= 1 Ipill"—' r S
‘||:!j e av=|"|"| ¢"p’sind dpdé deb
f® ("2 R |
= 2l
ju sim ¢ didb }u de -+“ petdp
i ai
= [—EUS d:fuu'rr] I%e" ]u, =3mle — 1) -
NOTE | Tt would have been extremely awkward to evaluate the integral in Example 3
without sphenical coordinates. In rectangular coordinates the iterated integral would have
been
ol T o e S B e I;:'P_n.':f::i"" o
L + ) a="* gy
Il EXAMPLE 4 Use spherical coordinates to find the volume of the solid that lies above
the cone = = 4/x? + ¥? and below the sphere x* + v* + z* = z. (See Figure 9.)
o
FIGURE ¢
u Figtire 10 gives anather loak {this tima S0LITION Notice that the sphere passes through the origin and has center (0, 0.3). We
dreswin by Maple) at the sofid of Bxamgle 4. write the equation of the sphere in spherical coordinates as

= pcos ¢ or p=cos ¢

The equation of the cone can be written as

peos ¢ = /p*sin?dh cos?@ + pFsinidh sin?@ = psin b

This gives sin ¢ = cos ¢, or ¢ = m/4. Therefore the description of the solid E in
spherical coordinates is

E={(p.0.4)|0=0=2m 0= d=n/8 0=p=cosd}

FIGURE 19 Figure 11 shows how E is swept out if we integrate first with respect to p, then ¢, and
then 8. The volume of E is
118 "2w ’Jr-l “cos @ s
NE) = f = 2
VIE) .”J dV J“ Ju J" o sin¢h dp dep Bl
E
s 3P g | P=ons
= ["do [ si:nqb|:p—j| dé
Jin My 3
=0
B4 visual 15.8 shows an animation 2o rud ; 27 cos'dh o £
el Tah CESRRE | T
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CHANGE OF VARIABLES IN MULTIPLE INTEGRALS

In one-dimensional calculus we often use a change of variable (a substitution) to simplify
an integral. By reversing the roles of x and u. we can wrnte the Substitution Rule (5.5.6) as

M [ £t dx = [ flatu))gtu) du

where x = glu) and a = glc). b = gld). Another way of writing Formula 1 is as follows:

0 i dx
2] | flx) dr = j‘_ Flx(u)) Edﬂ

A change of variables can also be useful in double integrals. We have already seen one
example of this: conversion to polar coordinates. The new variables r and 8 are related to
the old variables x and v by the eguations

x=rcosf y=rsinf

and the change of variables formula (15.4.2) can be written as

H-‘f{.t’. vidA = H‘f{rcus 8, rsin ) r dr 48
b o

where § is the region in the ré-plane that comresponds to the region R in the xy-plane.
More generally, we consider a change of variables that is given by a transformation T
from the wr-plane to the xy-plane:

Mo, v) = (x. ¥)

where x and y are related to u and v by the equations
3] x = glu, v} v =hlu. v}

or, 5 We sometimes write,
x=xlw,v) y=ylu, )

We usually assume that T is a C' transformation, which means that g and h have contin-
vous first-order partial derivatives.

A transformation T is really just a function whose domain and range are both subsets
of B™ If T{u, v,) = (x, i), then the point (x,, ¥} is called the image of the point (1;, v,).
If no two points have the same image, T is called one-to-one. Figure | shows the effect of
a transformation T on a region § in the we-plane. T transforms § into a region R in the
xy-plane called the image of §, consisting of the images of all points in §.

1 ¥

=N
T i \“-u_

| 5 | T R =
lepiy) T l\
— 7.1 L.
o u 0 x
FIGURE 1
If T is a one-to-one transformation, then it has an inverse transformation 7' from the
xyv-plane to the yr-plane and it may be possible to solve Equations 3 for i and » in terms
of x and v:
= Glx.v) v= H(x,y)
= The Jacobian is named afer the German [7] DEFINITION The Jacobian of the ransformation T given by x = glu, v) and
mathamatician Carl Gustav Jacob Jacobi v = hiu, v)is
(1804=1851). Although the French mathematician =
Cauchy first used these special detarminants dr  dr
involving partial derivatives, Jacobi developed | e aue 4 " 5 .
them into a method for evaluating multiphe M = w4y = ."E._a.‘_ == .'15 _a.l.
integrals. olu, v) d_'. dy au dp e ou
du  dr
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EI CHANGE OF YARIABLES IN A DOUBLE INTEGRAL Suppose that Tisa C" trans-
formation whose Jacobian is nonzero and that maps a region § in the we-plane onto
aregion R in the xv-plane. Suppose that f is continuous on R and that R and § are
type [ or type I plane regions. Suppose also that T 15 one-to-one, except perhaps
on the boundary of S. Then

alx, ¥
o, 1

j dir dr

.Il flx.y)dd = J‘J'f{_r[u_ v), vin, #))

I EXAMPLE 2 Use the change of variables x = n” — v°, ¥ = 2uw to evaluate the integral
7I1. v dA. where R is the region bounded by the x-axis and the parabolas y* = 4 — 4x
andy*=4 +4ryv=10

S0LUTION The region R is pictured in Figure 2 (on page 1014). In Example | we discov-
ered that T(5) = R, where § is the square [0, 1] % [0, 1]. Indeed, the reason for making
the change of variables to evaluate the integral is that § is a much simpler region than R.
First we need to compute the Jacobian:

dx ox
dalx, ¥) du  dv n —2v 2 >
——= = =du* +40* =0
) |av av | |2o 2| T
du dv
Therefore, by Theorem 9.
T (7 dix, y "L 3 3
H‘ ydd = H Zuy Ax ) dA = IJ +l[2m'i4hr + ) du do
':I ¢ du, v) Jo .0

=g +: J:.l (1'y + ue*) dudv = 8 +:IL Hu"ﬂ - :iu!,_rsl::; dv

= LI (2 + 40°)dv = [uz + u*l:, =2 | |
suitable change of variables. If we are not supplied with a transformation, then the first step
is to think of an appropriate change of variables. If fix. y) is diffcult to integrate. then the
form of fix. ¥} may suggest a transformation. If the region of integration R is awkward,
then the transformation should be chosen so that the corresponding region § in the ur-plane
has a convenient description.

EXAMPLE 3 Evaluate the integral || """ 44 where R is the trapezoidal region with
vertices (1, 0), (2. 0). (0, —2), and (0. —1).

S0LUTION Since it isn’t easy to integrate ¢+~ we make a change of variables sug-
gested by the form of this function:

H=x+y g=x—y
These equations define a transformation T~ from the xy-plane to the ur-plane.
Theorem 9 talks about a transformation T from the we-plane o the xy-plane. It is
obtained by solving Equations 10 for x and v:

x=iu+rn  yv=ilu—rv)

The Jacobian of T 1s

dx dx
ary) | @ | |44,
&[u.u]_ dy dy _1: -1 — ik
oo
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To find the region § in the ur-plane corresponding to R. we note that the sides of R lie on

the lines
pe y=0 x—y=12 x=0 x—y=1
—32 =7 2
23 et L and, from either Equations 10 or Equations 11, the image lines in the ur-plane are
p=—r% & S n=1
P B i et i 8. u=r r=2 t=—y r=1
r=1
D | ¥ Thus the region § is the trapezoidal region with vertices (1, 1). (2, 2}, (=2, 2), and
(—1. 1) shown in Figure 8. Since
-1
T\ ‘T S={{u.v'l]|5r£l —v=u<=rp}
¥ Theorem 9 gives
x—vy=1
1 | 2 “ oAM= gy — H‘ o d(x, ¥) i
0 L"" . 'n" "E alu, o)
LB :
—1 f SRR oy . .
,-""”'r = = ‘1_1. e (L) du dv =1 |_ [oe |27, dv
. A1 J/—m W1
—2
= L[ e — ot S | P |
i 5 Il (e —e'pde=73(e — ") - |

TRIPLE INTEGRALS

There is a similar change of variables formula for triple integrals. Let T be a transfor-
mation that maps a region § in wrw-space onto a region R in xyz-space by means of the
equations

x = glu, v, w) ¥ = hiu. v, w) z = klu, v, w)
The Jacobian of T is the following 3 * 3 determinant:

dxr dxr dx

du dv  odw

i dx, vz [dy &y dy
e, v, w) dy  dv  dw
oz oz iz

du dv  dw

Under hypotheses similar to those in Theorem 9, we have the following formula for triple
integrals:

dix, ¥, 2)

du dv dw
alu, v, w)

i3] H]F fle, v, z)dV = JJJ Flaclu, v, w), viu, v, w), z(u, v, w))

I EXAMPLE 4 Use Formula 13 to derive the formula for triple integration in spherical
coordinates.

S0LUTION Here the change of variables is given by
x = psind cos # ¥y = psind sin @ z=pcosd

We compute the Jacobian as follows:

R sinchcos @ —psindsin @ peos docos B

m= sin ¢b sin # £ sin ¢ cos @ poos o sin @

cos g 0 — 2 5in

| —psindsin @ pcos ¢ cos &

i sin b cos # —psin ¢ sin 8

— psin ¢

psindcos @ peosdsin sinéh sin @ psin b cos @
= cos ¢ (—p”sin ¢ cos & sin’# — p sin b cos &b cos*H)
— psin ¢ (psin‘d cos’@ + psin’d sin’)

= —p’sin ¢ cos’ — psin ¢ sin'dp = —psin
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Since 0 = ¢ = w, we have sin ¢» = 0. Therefore

dix, v. z)

7{1“1 0. &) = | —p’sindh| = p"sindh

and Formula 13 gives

m._f{.r. ¥, z)dV = Hl flp sin ¢ cos 8, p sin ¢ sin 6, p cos &) p’ sind dp 46 dd
. R

which is equivalent to Formula 15.8.3.
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Possible Questions
PART-B (2 Mark)

What is Double Integral.

Define Change of Variables.

Define continuous function with three variable.
How to define Triple integral.

State Clairaut’s theorem.

Define tangent plane to the surfacez = f(x, y).

N kW=

Define Directional derivative.

8. Find the domain and range of g(x,y)=+9-x>—»".

PART-C (8 Mark)
1. (i) Evaluate the double integral I I (x—3y°)dA, where
R

R={(x,y)/0<x<2]1<y<2}.
(i1) Evaluate ” ysin(xy)dA, where R =[1,2]x[0, z].
R

2. Find the area of the surface generated by revolving the curve about the x-axis.
Evaluate I I(x +2y)dA, where D is the region bounded by the parabolas y = 2x” and
D

y=1+x".
3. Discuss about the application of line integral.
4. Find the volume of the solid that lies under the paraboloid z = x” + y* and above
the region Dinthe xy-—plane bounded by the line y =2xand the parabola y = x’.
5. Write the change of variable example for triple integral.
6. Evaluate I I(Sx +4y”)dA,where Ris the region in the upper half -plane bounded

R

by thecircles x*+y*>=land x*+)° =4.

2 V4-x? 2

7. Evaluate _[ I I (x2 +y° )dz dydx.

8. Find the mass and center of mass of the triangular lamina with vertices
(0,0),(1,0) and (0,2) if the density function is p(x,y)=1+3x+ y.

9. Evaluate the triple integral Ijjxyzzd V,where Bis the rectangular box given by
B

B={(x,y,2)/0<x<1,-1<y<2,0<z<3}.
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KARPAGAM ACADEMY OF HIGHER EDUCATION

Subject Name: Multivariate Calculus

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Pollachi Main Road, Eachanari (Po),
Coimbatore —641 021
DEPARTMENT OF MATHEMATICS

PART-A Multiple Choice Questions (Each Question Carries One Mark)

Subject Code: 17MMUS03A

UNIT-III

Question Option-1 Option-2 Option-3 Option-4
Double Riemann sum is used for Double integral Single integral Triple integral Scalar value
The ordinates of Spherical is (X, ¥, 2) x,y) (r,0) (r, 0, ¢)
The vector 0 is denoted i+tj+k Div f Curl f 0i + 0j +0k
Jsecx tanx dx = . tanx sinx secx cos X
The graph of f crosses it tangent plan for D <0 then (a, b) is Max Min Saddle Max and min
volume of a sphere is 4/3 mr3 1/2 mr2h ar2h 2nr
The circumference of rectangular box is Xyt+yz+xz 2(xy+yz+xz) 2xy+2yz+xz Xy+2yz+2xz
The area of (x2/a"2) + (y"2+b"2) = lis mab Xy b 2n
The value of ¥ x f gives Vector Scalar 0 0
The integral is theorem. Stock’s Red's theorem Green’s Convergence
Ifi, jand k are the unit vectors along the coordinate axes , then (jxj) is 1 k 0 p
Ifi andj are the unit vectors along x and y projections, then (i.j) is 0 1 k 3
If r=xi+yj +zk, then ¥.r=? 1 2 0 3
Ifi, jand k are the unit vectors along the X, y, z axes , then jxk is equalto 0 1 1 3
If r=2xi-yj +2zk, then ¥.r=? 0 4 2 3
If A =3i-5j+2k and B =4i+3j then A.B is equal to -3 19 -14 11
If A is irrotational , then V.A=0 VxA=0 V.A#0 VXA #0
A vector A is said to be solenoidal if VXA #0 VxA=0 V.AA0 Y.A=0
If F is solinoidal ,then V.F=0 VxF=0 V2F=0 V.VXF=0
In a polar cooridinates r denotesa distance area angle radius
An Rectangular coordinates means pole cartesian coordinate polar plane polar coordinate
In a polar cooridinates 6 denotesa distance area angle radius
The polar coordinates is denoted by S(r, 0) P(r,0) R(r,0) Q(r,0)
The polar angle is denoted by 0 O r P
If the polar equation is r cos® = 2 then the cartesian equation is x=-1 x=2 X=-2 x=0
The slope of the polar curve = f(0) is given by 2(dy"/dx") dy'/dx' dy/dx dx/dy
Only ......eeneen mapping posses inverse mappings. one-one and into one-one one-one and many one one-one and onto
If A—B is one-one onto, then f"':B—A is also one-one and into one-one one-one and many one  one-one and onto
If f:A—B is one-one onto, then the inverse mapping of fis zero unique different same
If £X—Y and gY—Zthenthe .................... of the function fand g demcinverse composite different one-one

If £X—Y and g:Y—Zthen the composite of the function fand g demoted t (fg):X—Z. (fog):X—Y. (gf):y—Z. (gof):X—Z.



Answer
Double integral
(1,0, ¢)
0i + 0j +0k
secx
Max and min
nr2h
2(xytyz+xz)
mab
Vector
Convergence

W= wo o

-3

VxA=0

V.A=0

Y.F=0

distance

cartesian coordinate
angle

P(r,0)

0

x=2

dy/dx

one-one and onto
one-one and onto
unique
composite
(go0):X—>Z.
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LINE INTEGRALS

DEFINITION If f is defined on a smooth curve C given by Equations 1, then
the line integral of f along C is
J‘ flx, ¥) ds = lim 3, f(x?, v¥) As,

BT )

if this limit exists.

[ L flx, y) ds = [’ Flxto), vin) \Jlf (ﬁ)z + ("’-"' )] dr

dt dr

EXAMPLE | Evaluate J'L‘ (2 + x*y) ds. where C is the upper half of the unit circle
2+yi=1L

SOLUTION In order to use Formula 3, we first need parametric equations to represent C.
¥ Recall that the unit circle can be parametrized by means of the equations
=+ _\': =1

=0 X=cost y=sint

and the upper half of the circle is described by the parameter interval 0 = r = .
(See Figure 3.) Therefore Formula 3 gives

= o ¥ 2 - f 2 A3
! ! J (2 +x*y) ds } {2 + cos’rsing) (dx) + (E\-) dt
g {t] -\

|\ dr dt
FIGURE 3
. P R
= + (2 + cos™r sin f)4/sin?t + cos’t dt
»0
3 .
i & i cos
= +'E2+c0.=.'r_~'.mr]Jr= I:Zi'— ]
¥ i 3 1
Cs )
e =2+
AN § -

Suppose now that C is a piecewise-smooth curve: that is. C is a union of a finite num-
ber of smooth curves C,, C, .. .. C,. where. as illustrated in Figure 4, the initial point of
Ci+y 15 the terminal point of C;. Then we define the integral of f along C as the sum of the
integrals of f along each of the smooth pieces of C:

FIGURE 4

A piecewise-smooth curve J.: flx.y)ds = L Axyrds+ J:-. fley)ds + -+ l,_ Six, ¥hds
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EXAMPLE 2 Evaluate | 2x ds, where C consists of the arc Cy of the parabola y = x
from (0. 0) to (1. 1) follnwed by the vertical line segment C: from (1, 1) to (1, 2).
¥ S0LUTION The curve C is shown in Figure 5. C is the graph of a function of x, so we can
_— choose x as the parameter and the equations for C become
QE r=x y=ux D=x=1
(L]
C Therefore
. 1 dx dy
oo |, 2xds=| 1‘\'{(3) + (E) dx = | 201+ dx7 dx
FIGURE 5 =131 + 48 w] M
C=C, UG 6

On C; we choose y as the parameter, so the equations of C; are

x=1 y=y Il=y=2
P
and [ 2eds= [ 204/ S (LY a=ray=2
e T \JI dy dy = Rt +
-F-_
Thus | 2xds=| 2xds+ | de=203 L 4 5
Je Je, Je, [

Any physical interpretation of a line integral | f(x, v) ds depends on the physical inter-
pretation of the function f. Suppose that plx, \i represents the linear density at a point
(x, ¥) of a thin wire shaped like a curve C. Then the mass of the part of the wire from Pi-,
to P, in Figure | is approximately p(x. ¥*) As, and so the total mass of the wire is approx-
imately £ p(+F, v} As,. By taking more and more points on the curve. we obtain the mass
m of the wire as the limiting value of these approximations:

m = lim Z plxf. vF) As, = ‘_pf.l’._\']d.\'
L 1|
[For example, if f{x.y) = 2 + x*y represents the density of a semicircular wire, then the
integral in Example | would represent the mass of the wire.] The center of mass of the
wire with density function p is located at the point (X, ¥}, where

1 -
= ) s d
[a] X m.r.rp{.r ¥) ds ] = | yplx, v) ds
[l EXAMPLE 3 A wire takes the shape of the semicircle x* + y* =1, vy = 0, and is

thicker near its base than near the top. Find the center of mass of the wire if the linear
density at any point 15 proportional to its distance from the line v = 1.

SOLUTION As in Example | we use the parametrization v =cosf, y =sinf, 0 = r = m,
and find that ds = df. The linear density is

plx, y) = k(1 — y)

where k is a constant, and so the mass of the wire is
m= J k(1 — y)ds =J.’kll — sing) dr = .i'[.r + c:b.\'..'l: =kim—2)
[ 1}
From Equations 4 we have

1 =
__2 -L_)'k(] —¥) ds

i
T=—| valr v ds =
’ m}‘-"‘P“JJ ¥ klm
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Line integrals

center of
. Eass

e

-1

o/

0

19,2y

0

Fﬂ_ﬂ_ﬂ__,d-—d

=33

r=4—y

FIGURE 7

1 [ 5 ] =
e 1:- (sin¢ — sin“) dt = —— —cos t — 5 + §5in 2t}
_ 4-=

A7 —2)

By symmetry we see that ¥ = (), so the center of mass is

((}. 4__”) = (0, 0.38)
2{mr—12)

Two other line integrals are obtained by replacing As; by either Ax; = x — x— or
Ay = ¥ — ¥~ in Definition 2. They are called the line integrals of f along C with
respect to x and y:

(5] ':_f{.l'. ¥ dx=lim X fxf, ¥¥) Ax
o L

@ | £x.¥) dy = lim 3 fx¥. 37) Aw
J e

When we want to distinguish the criginal line integral }'L.ﬂ_r_ v) ds from those in Equa-
tions 5 and 6. we call it the line integral with respect to arc length.

The following formulas say that line integrals with respect to x and v can also be
evaluated by expressing everything in terms of 2 x=x(r), y= y{r), dx= x'(r) dr,
dy = y'(f) dt.

[Lree sy as = [ rleto. yio) <0 d

[ rx. )y = |': Flx(o), i) y'(6) dr

It frequently happens that line integrals with respect to x and v occur together. When

this happens, it’s customary to abbreviate by writing

[ Px.y)dx + | Otx.y)dy = [ Plx.y)dx + Qlx.y) dy
v L v

resentation of the line segment that starts at rp and ends at r, s given by

i) = (1 — firy + ¢ty o=r=1

Ed EXAMPLE 4 Evaluate [, v*dx + xdy, where (a) C = Ci is the line segment from
{(—5.—3) 10 (0, 2) and (b) C = C: is the arc of the parabola x = 4 — ¥* from (—5, —3)
to (0, 2). (See Figure 7.)

SOLUTION
{a) A parametric representation for the line segment is

x=5—75 y=5-—3 D=r=1

(Use Equation 8 with ry = {—5, —3) and r, = (0. 2}.) Then dx = 5 dt, dy = 5 dr, and
Formulas 7 give

[ y¥dx + xdy= [ (51 = 35 dn) + (51 = 5)(5 )

=5 (' (250 — 25¢ + 4)
«0

35 258 .5
=5 - +4t| = %

3 2 :
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-]

-
C
A
- .
a b

=

FIGURE 8

(b) Since the parabola is given as a function of v, let’s take v as the parameter and write
Cs as
r=4—y y=y =3I=y=2

Then dx = —2y dv and by Formulas 7 we have
J. vidr + xdv = [z vi=2¥) dy + (4 — ¥y )dy
ol 3

I (=2v° —y* + d) dy

¥ ¥ "
[T_T 4_\-] =403 =]

-3

Notice that we got different answers in parts (a) and (b) of Example 4 even though the
two curves had the same endpoints. Thus, in general. the value of a line integral depends
not just on the endpoints of the curve but also on the path. (But see Section 16.3 for con-
diticns under which the integral is independent of the path.)

Notice also that the answers in Example 4 depend on the direction, or orientation. of the
curve. If —C, denotes the line segment from (0, 2} to (—5, —3), you can verify, using the
parametrization

In general. a given parametrization x = x(7). y = y{¢). @ = 1 = b. determines an orien-
tation of a curve C, with the positive direction corresponding to increasing values of the
parameter {. {See Figure 8, where the initial point A corresponds to the parameter value a
and the terminal point B corresponds to 1 = b.)

If —C denotes the curve consisting of the same points as C but with the opposite ori-
entation ( from initial point & to terminal point A in Figure 8), then we have

[y dx=—| fxy) dr | ey dy == [ flx.y) dy

But if we integrate with respect to arc length. the value of the line integral does not change
when we reverse the orientation of the curve:

".—c flx. v)ds = Lﬁ[ x.v) ds

This is because As, is always positive, whereas Ax; and Ay, change sign when we reverse
the orientation of C.

LINE INTEGRALS IN SPACE

We now suppose that C is a smooth space curve given by the parametric equations
x=x{r ¥ =1 z=z(1) a=t1=h
or by a vector equation r{s) = x(r) i + y(r) j + z(r) k. If f is a function of three variables

that is continuous on some region containing C. then we define the line integral of f
along C (with respect to arc length) in a manner similar to that for plane curves:

iL flr.y. 21 ds = lim 2 flxf. v¥, =%) As
J a—z o

We evaluate it using a formula similar to Formula 3:

- o lll 2 - .\ 2
E L_ ft.r,y.z]d.'s=j:ﬂ_ri;],_-,—[:a,:(:}]\ll'(%) + (%) + (%) dr
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6 [ EXAMPLE 5§ Evaluate _|'r_, v sin = ds. where C is the circular helix given by the equations
x=cost,y=sint.z=¢ 0=t = 2m (See Figure 9.)
4 SOLUTION Formula 9 gives

[
Lo

vsinzds = l‘:'Isin t) sin Illll(ﬁ)_ + (ﬁ)_ + (ﬁ)_ dt
5 Jo \l dr et dr

I o S Y s e parr RN E
= ‘ sinty/sin®t + cos?t + L dt = /2 h H1 — cos 21) dt
s &0

™

2 V'E_ 1 In o=
o =5 [!—Esinl'].. =217 B

FIGURE 9
EXAMPLE & Evaluate |,.vdx + zdy + xdz, where C consists of the line segment C,

from (2, 0, 0) to (3, 4, 5). followed by the vertical line segment C: from (3, 4. 5) to
13.4.0)

SOLUTION The curve C 1s shown in Figure 10. Using Equation 8, we write C; as
i) = (1 —1(2,0,0) +£{3,4,5) = {2 + 1,41, 5¢)

or, in parametric form, as

ka
[
L

x=2+1 v=4dt t 0=t=1

Thus

[ ydx+zdy +xd:= [ (@n0dr + (S04di + 2 + 05 de
FIGURE 10 L -

1]
. !‘—
= [ (10 + 291 dr = 10 + 193] =245
«0

Likewise, C: can be written in the form
r()=(1 —nN{3,4,5) + 1{3,4,0) = {3,4.5 — 51}
or x=3 yv=4 z=15—5¢ D=r=1
Then dx = 0 = dy, so
| yde+ zdy + xde = [[3(=5)dr = ~15
Adding the values of these integrals, we obtain

| ydr+ zdy +xdz =245 — 15=195
i

LINE INTEGRALS OF VECTOR FIELDS

[(3] peFINITION Let F be a continuous vector field defined on a smooth curve C
given by a vector function r(7), a = ¢t = b. Then the line integral of F along C is

[ Fedr= [ F(r0): r)dar=| F-Tads
o il SO
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= Figure 12 shows the force feld and the cuve EXAMPLE 7 Find the work done by the force field F(x, y) = x* i — xv j in moving a

in Examgle 7. The wark done is negative because  narficle along the quarter-circle f{f) = cos i + sinj, 0= r = =/2.
the figld impades movemeant alang the curve.

¥ SOLUTION Since x = cos t and y = sin t, we have
S b 3. - - .
= % \Q Firit)) = cos1i — cost sint j
[ '. \l \\ﬂ
LR e and r{t)= —sinti + costj
v g R Therefore the work done is
2 = . ¥ fmf2 =2 -
L_ F:dr= Jn F(r()) - r'(f) di = B (—2 cost sin 1) dt
1] x
1 5 [
—> o5t __2 -
FIGURE 12 3 1 3
NOTE | Even though | F - dr = |_F - T ds and integrals with respect to arc length are
unchanged when orientation 1s reversed. it is still true that
= Figura 13 shows the twistad cubic C in -
Example B and some typical wactors acting at I-_“ F:dr= —Jl_F = dr
three points on €. .
I because the unit tangent vector T is replaced by its negative when C 1s replaced by —C.

EXAMPLE 8 Evaluate '|':_F ~dr, where Flx, y.z) = xvi+ yzj + zx K and C 1s the
twisted cubic given by

(LL1)

s Firi3f4) r\"\x\\f

x=t y=t' == 0=r=1l

SOLUTION We have

: S
Uu A= ri=ri+fj+ 'k
1 -
Ty ! B rf) =i+ 2rj+ 3k
FIGURE 13 F(r{t) =i+ 'j + 'k
Thus [(F.ar= J" Fir() - r'(e) dr
« 0
- « 57 27
=J‘:{:3 +50)dr="1 4 2| =5
4 7], 8
Note:

—

Fedr— |‘ Pdr+ Qdy+ Rdz  where F=Pi+ Qj+ Rk
: L.

C

THE FUNDAMENTAL THEOREM FOR LINE INTEGRALS

[Z] THEGREM Let C be a smooth curve given by the vector function rith.a = 1 = b.
Let f be a differentiable function of two or three variables whose gradient vector
Vf is continuous on C. Then

E Vi - dr = fir(b)) — f(rla))
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If fis a function of three variables and C is a space curve joining the point Alxi, ¥, 2:)

to the point B(x2, 2, 2:), then we have

L Vi«dr = flxs, va,22) — floew. vi, 21)

Let's prove Theorem 2 for this case.

Alx.y) Bixy. w1l
Al ¥.5)
‘) A Bixy, 1. 73)
Q\_)C x

PROOF OF THEOREM ! Using Definition 16.2.13, we have

[ fdr = [ Vriew) - ) d

- ("_f“i+ ﬂ_fﬂ,,ié) P
dx ot dy dt dz dt

ol

= "’%f{r“”m (by the Chuin Rule)
= fir{b)) — flrla))

[3] THEOREM | F - dr is independent of path in D if and only if | F - dr = 0 for
every closed path C in D.

[4] THEOREM Suppose F is a vector field that is continuous on an open connected
region D). If 'I'L.F + dr is independent of path in D, then F is a conservative vector
field on [J; that is, there exists a function f such that Vf=F.

simple, not simple,
not closed not closed
simple, nol simple,
closed closed
FIGURE &
Types of curves

[5] THEOREM If Fix. y) = Plx. ¥)i + Q(x. ¥) j is a conservative vector field.
where P and @ have continuous first-order partial derivatives on a domain D, then
thronghout D we have

aP a0
oy dx

The converse of Theorem 3 is true only for a special type of region. To explain this, we
first need the concept of a simple curve, which is a curve that doesn't intersect itself any-
where between its endpoints. [See Figure 6; r{a) = r{b) for a simple closed curve, but
i) #rit:)whena <n <6< b]

In Theorem 4 we needed an open connected region. For the next theorem we need a
stronger condition. A simply-connected region in the plane is a connected region I such

regions that are not simply-connected

FIGURE 7

[6] THEOREM LetF = Pi + O j be a vector field on an open simply-connected
region [). Suppose that F* and (0 have continuous first-order derivatives and

af a0
e throughout D
oy o

Then F is conservative.
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FIGURE 8

= Figures 8 and 9 show the vector fialds in
Examples 2 and 3, raspectively. The vectors in
Figure 8 that start on the closed curve C all
appear o point in roughly the same direction

as C. So it logks as if | F - dr > 0 and there-
fore F is not conservative. The calculation in
Exampla 2 confirms this impression. Some of the
veclons near the cuves C; and s in Rgue 8
paint in appaoxmataly the same direction as the
curves, whereas others point in the epposite
disaction. 3o it appears plausible that line inte-
grals asound all closed paths are 0. Example 3
shinws that F is indead consenative.

FIGURE 9

I EXAMPLE 2 Determine whether or not the vector field
Flxyi=(x—yi+tix—2)j
is conservative.

{oLuTioN Let Pix, ¥) = x — yand @(x, ¥) = x — 2. Then

P __, aQ
dy dx
Since aP/dy # oQ/ix, F is not conservative by Theorem 5. | |

I EXAMPLE 3 Determine whether or not the vector field
Flo,y) = (3 + 2xy) i + (x* — 3p?)j
is conservative.
50LUTIoN Let P{x, ¥v) = 3 + 2xy and @(x, ¥} = x* — 3y* Then
L 1
dy ax

Also, the domain of F is the entire plane (D = R*), which is open and simply-
connected. Therefore we can apply Theorem 6 and conclude that F 1s conservative. |

In Example 3. Theorem 6 told us that F is conservative, but it did not tell us how to find
the (potential) function f such that F = V. The proof of Theorem 4 gives us a clue as to
how to find f. We use “partial integration”™ as in the following example.

EXAMPLE 4
(a) HFix,y) = (3 + 2xy)i + (x* — 3v*}j, find a function f such that F = Vf.
(b} Evaluate the line integral ,lIL' F - dr, where C is the curve given by
rif) =¢e'sinri + e'cosrj O=r=xw

SOLUTION
(a) From Example 3 we know that F is conservative and so there exists a function f
with Vf=F, that is,

@ flx, v} =3 + 2xy

(2] My =x—3*
Integrating (7) with respect to x. we obtain
& flx,y) =3x+ x%y + g(y)

Notice that the constant of integration is a constant with respect to x, that is, a function
of v, which we have called g(v). Next we differentiate both sides of (9) with respect to y:

flx )= e+ gy}
Comparing (8) and (10}, we see that
gy = -3
Integrating with respect to y. we have
g =-y+K
where K 18 a constant. Putting this in (9), we have

flxy)=3c+ry—y' +K
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as the desired potential function.

(b} To use Theorem 2 all we have to know are the initial and terminal points of C.
namely, r(0) = (0, 1) and r{z) = (0, —€7). In the expression for f{x, y) in part {(a), any
value of the constant X will do, so let's choose K = 0. Then we have

[[F-dr=[ Vf-de=f0.—e) = f0.1) =¥~ (~) =™ + |

i EXAMPLE 5 If Fx, v.2) = v7i + (2xy + £¥)j + 3ve™ k. find a function f such
that Vi=F.

SOLUTION If there is such a function f, then

| fle vz =y
iz filw, v, 2) = 2xy + €%
E] filx, v, 2) = 3ye™

Imtegrating (11) with respect to x, we get

flx, v, z) = xy* + gly, 2)
where g{v, z) is a constant with respect to x. Then differentiating ( [4) with respect to v,
we have

Al wz)=2xy + gyl 2)
and comparison with (12) gives
goly.2) = e*
Thus g(y. z) = ve® + hiz) and we rewrite (14) as
Fleovoz) = xy? + ve® + hiz)

Finally, differentiating with respect to = and comparing with (13), we obtain h'(z) = 0
and therefore iz} = K, a constanl. The desired function is

flx,pz)=xy* + ye* + K

It is easily verified that Vf=F. B
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Possible Questions
PART-B (2 Mark)

Define Mass.
State Fundamental theorem for line integrals.
Write about work.

Define Limit of the function f(x,y,z).

Find the tangent plane to the elliptic paraboloid z=2x"+ )’

Write the implicit formula

Define chain rule.

S I I S

Define domain and range.

PART-C (8 Mark)

1. EvaluateJ. ysinzdS, where C is the circular helix given by the equation
C

x=cost,y=sint,z=t,0<t<2r.

2. Evaluate _[ ydx+zdy+xdz,where C consists of the line segment C; from (2, 0, 0)
C

to (3,4,5), followed by the vertical line segment C, from (3, 4, 5) to (3, 4, 0).

3. EvaluateJ. ¥ dx+ xdy,where (i) C = C,is the line segment from (-5, -3) to (0, 2)
C

and (ii) C = C, is the arc of the parabola x =4— y” from (-5, -3) to (0, 2).

4. Find the work done by the force field F(x,y)=x" i—xy j in moving a particle

- -
along the quarter circle »(¢f)=costi+sint j,0<t<7x/2.

5. A wire takes the shape of semi circle x* + y* =1, y > 0, and is thicker near its base

then near the top. Find the center of mass of the wire if the linear density at any point
is proportional to is distance the liney = 1.

6. EvaluateJ.F dr,where F(x,y,z)=xyi+yzjzxk and C is the twisted cube given
C

by x=t,y=t2,z=t3,0ﬁtﬁl.
7. Evaluate I 2xdS, where C consist of arc C; of the parabola y=x" from (0, 0) to
C

(1, 1) followed by the vertical line segment C, from (1, 1) to (1, 2).
8. State and prove fundamental theorem for line integral.

9. Evaluate I (2+x”y)dS where C is the upper half of the unit circle x*+y” =1.

C

10.If F(x,y,z)=y" i+(2xy+e”) j+3ye” k,find a function f suchthatVf =F .
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The average value of fis

In the fundamental theorem of line integral gives

The vector field F is called a conservative field if

IfF = ¥ {fthen F is called

JeF.dris independent of path in D iff ¢ F.dr= 0 for every in

D.

The process Jc f{x) dx = [¢' f{g(w)) g'(u) du is called

A single valued function f(x,y,z) is said to be a hormonic function
if its second partial derivatives exist and are continuous and

if the function satisfies the

Iseczx dx=
Jaxydx=__
Icotx dx =

Isec xdx=

Ilog xdx=

lim o (tanx / x) =

Isechzx dx=

Isec xdx=

Icotx dx =

I sechx tanhx dx =
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Subject Name: Multivariate Calculus

Question
If F is conservative then

Icosech x cothx dx =

equation

Option-1
Curl F=0
(1/(b-a)) | f(x) dx as x in
(a,b)
JeWE. dr="f(x(b)- f
(r(a))
VF=f
Mass

Open path

Moment

Integral
tanx

X

log cosx
secx + tanx
x log x

0

sinhx

secx + tanx
log cosx
(-cosh x)
(-cosech x)

Subject Code: 17MMUS03A
UNIT-IV
Option-2 Option-3 Option-4

DivF=0 V.F Y. F=0

(1/(b-a)) | f(x) dx as x (1/(b-a)) | f(x) dx as xin (1/(b+a)) [ f{x) dx as x in
in (b, a) (c,d) (a,b)

JeWf. dr=f(r(b)+f [cWE*dr=f((b)+f  JcWf*dr="F(r(b)-f
(r(a)) (r(a)) (r(a))

V.F=f V *F=f v.Vvf

Center of mass Moment Conservative field
Closed path Path Open curve

Mass Change of variable Center of mass
Laplace continuous Differential

sinx (-cos x) (-sinx)

log x 2x 1-x

log tanx log secx logsinx

log [ secx + tanx] secx + ¢os X log [ secx + cosec x]
log x +x xlog x - x xlogx +x

(-1) 1 2

cothx tanhx sechx

log [ secx + tanx] secx + ¢os X log [ secx + cosec x]
log tanx log secx logsinx

(-sech x) (-sinh x) (-tanh x)

(-tanh x) (-sech x) (-sinh x)

PART-A Multiple Choice Questions (Each Question Carries One Mark)

Answer
Curl F=0
(1/(b-a)) | f(x) dx as x in
(ab)

JeW£. dr="f(r(b)-  (r(a))

VE=f
Conservative field

Closed path

Change of variable

Laplace

tanx

log x

logsinx

log [ secx + tanx]
xlog x - x

1

tanhx

log [ secx + tanx]
logsinx

(-sech x)
(-cosech x)
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FIGURE |

FIGURE 2

u Fecall that the beit sida of this equation
is amather way of weiting |_F « dr, whers
F-Pi+@j

= Green's Theorem is nemed after the
zelf-taught English sdentizt Gacepe Green
(178318411 He worked full-time in his fathar's
hakeey fram the age of nime ard taught himsalf
mathamatics from fbrany bocz. In 1828 he
mublished privetaly An Fzsy on fie Aot ion
of Matfe matical Anaiysis to the Theories of
Electrinty and Magretizm. but anly 100 copies
weere printed end most of thosa went tobis
friands. Thiz pamphiet contained a theoram
thet is equivalent to what we know 65 Graen'’s
Theorem, but it didn't becoma widely known
gt that time. Fmally, et ape 40, Gresn entsred
Cemiridge Uninversity 85 an undergraduste

Bt diad foar years ahar gredustion. In 1848
Willizm Thomson |Lond Befvin) lccated 3 copy
of Green's essay, realized its significanca, and
had it raginted. Green wars the first person to
iry to fomwulate a mathematicel theory of slec-
tricity and megnatism. His work was the basis
tor the sutrequent elactromagnstic theores of
Thomeoe, Stoies, Azyleigh, and Maoaall

F=dalxl
o

"‘-»\"I'_',

e
£y o ig,
_f-f_
T
¥=gqln
u ;. |‘.:| x
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Green’s theorem

GREEN'S THEOREM

Green'’s Theorem gives the relationship between a line integral arpund a simple closed
curve C and a double integral over the plane region [ bounded by C. {See Figure 1. We
assume thal [¥ consists of all points inside C as well as all points on C.) In stating Green's
Theorem we use the convention that the positive orientation of a simple closed curve C
refers o a single counlerclockwise traversal of C. Thus if C is given by the vector func-
tion r{f), @ = 1 = b then the region I is always on the left as the point r(f) raverses C.
(See Figure 2.)

(2} Positive orientation {b) Negative orientation

GREEN'S THEOREM Lel C be a posilively oriented, piecewise-smooth, simple
closed curve in the plane and let I be the region bounded by C. If P and O have
continuous partial derivatives on an open region that contains D, then

r T T
f.pax+ gav j [i—‘—)m
c J\ar ay

PROOF OF GREEWS THEDAEN FOR TRE CASE I WHICH D |5 & SIWPLE RECIOR Motice that Green's
Theorem will be proved if we can show that
- i AP
Pdy = —|| —dA
@ foree=-}
and
ag
b Jooar={] o

We prove Equation 2 by expressing IJ as a type | region:
D= {{x._v‘] |a=x=b qixi=y= g;l’ﬂ}

where g and g: are continuous functions. This enables us to compute the double integral
on the right side of Equation 2 as follows:

.s {.,;.r- P

@ %dﬂ. = [ [ ndvar= J,“' [P(x, gAx)) — P(x, g,(x)] dx
3 A il r_' [

where the last step follows from the Fundamental Theorem of Calculus.

Mow we compate the left side of Equation 2 by breaking up C as the union of the
four curves Cy, Cr, Ca, and C, shown in Figure 3. On O we lake x as the parameter and
write the parametric equations as x = X, ¥ = gi{x}, @ = x = b, Thus

[ Plxy) ax = [* Pl gt dx

Observe that Cs goes from right to lefl but —C; goes from left to right, 5o we can write
the parametric equations of —C3 a5 1 = X, ¥ = go{x). @ = x = b. Therefore
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[ Plevdr=—[ Py dr=—[ P(x gx)) dx

On C: or Oy (either of which might reduce (o just a single point), x is constant, so
dx =} and

[ Pxvdr=0=[ Plx.y)dx
I Jo
Hence
f Plxy)dx = } Plx.v)dx + f Pix, vidr + [ Pix, ¥) dx + { P(x.¥) dx
o £ wily o = &0

- J.? Pix. gilx)) dx — {: P(x, gx)) dx

Comparing this expression with the one in Equation 4. we see that

| Plxyydr=— [Efm
Je o

EXAMPLE | Evaluate ‘|'c.r‘ dx + xvdy, where C is the triangular curve consisting of the
line segmeats from (0, 0) o (1, 0), from (1. 0) to (0, 1), and from (0, 1) to (0, 0).

¥ socumios Although the given line inlegral could be evaluated as usual by the methods of
1} F=1-1 Section 162, that would involve selting up three separate integrals along the three sides
/’f of the triangle, so let’s use Green’s Theorem instead. Notice that the region [ enclosed
By, C by C is simple and € has positive orientation (see Figure 4. [f we let P(x, ) = x* and

Nx, v} = xv, then we have

I

18 U:l| .i.l.iJI x j‘rx‘ dr+xvdy = "‘ (ﬂ =i ﬁ) dA = .‘I “'1 {y— o) dvdx

FIGURE 4 = [ hiar =4[ 0 - xrax

LU EXAMPLE 2 Evaluate {3y — e™ ) dx + (Tx + v¥* + 1) dy, where C is the
circle x* + y* =0,

sOLUTIoN The region £ bounded by € is the disk x” + ¥ = 9, so lel’s change to polar
coordinates afier applying Green's Theorem:

\CCG-"' — ey + (Tx + AT Thdy

smply use the fact thet I is a disk of radivs 3
ani write

ffeaa—1.mizp - 36w = J.u"Ju{? —3) rdr a8 = 4_|':'dﬁ J'? rdr = YT

m fstead of using peler coonfinates, we could — ” [i”-_r + v+ 1) _*_“{3‘. — 2"nry | g
M| ax : av o
0

EXAMPLE 3 Find the area enclosed by the ellipse % + % =L

ioLimion The ellipse has parametric equations © = gcos [ and ¥ = P sin I, where
0 = | = 27 Using the third formuola in Equation 5, we have

A =é|‘ xdy —vdx
Pl
== %J:'Ea cos 1){bcos () df — (b sgin {—asin 1) gt

ab e
= 7‘{: dt = wab |

K EXAMPLE 4 Evaluate ic‘ dx + 3xy dv. where C is the boundary of the semiannular
region [ in the upper hali-plane between the circles x* + v* = | and x* + ¥v* = 4.

nlumies Notice that although D is not simple, the y-axis divides il inlo two simple
regions (see Figare 7). In polar coordinales we can write

D={iro |1 =r=2 0=8=n}
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Green’s theorem

Therefore Green's Theorem gives
- ol ] d .
yidx + Jxvdy = —{3xy) — — (%) | dA
fvan s s = [f | Lo - Lo

= ([ yaa=["["(rsin @) rardo

cisnoc 7T

[
]
. [I'sinﬁlrfﬂ .Flr’n‘r = [—c[:siil]:[’;r-‘},f = % E

I EXAMPLE 5 ITFix. ¥) = (=y 1 + x}/(x* + ¥}, show that [_F - dr = 2= for every
positively oriented simple closed path that encloses the origin.

_C' 10LUTION Since C is an arbifrary closed path that encloses the origin, it"s difficull to
| compute the given integral directly. So let’s consider a counterclockwise-criented circle

FIGURE 10

Prepared by M.Jannath Begam, Department of Mathematics, KAHE

" with center the origin and radius @, where a is chosen o be small enough that &' lies
inside C. {See Figure 10.} Lel [ be the region bounded by C and C". Then its positively
oriented boundary is C U (—C') and =0 Lhe peneral version of Green's Thaorem gives

e ap
[
) i iy
[}
B e }.2 _— )
= j )

i

L_Pri:: 4 Ddy = ‘{:- Pdx+ Qdy

IL_Fd.t+ Qdy + [ Pdr+ Qdy =

vio gt
— — (dA =0
{x* + ¥
Therefore

that is, | Fedr=[ Fear

We now easily compuie this last inlegral using the parametrization given by
i) =acostl + asintj, 0= [ = 27 Thus

{c Fdr= J.( F-dr = E’F[mﬂ -l dt

- ll-zz (—asin 1 —asin 1) + {gcos Macos 1)
i

I
. dr=‘{ di =2 Ol
accos T + a” sinr ]

CURL AMND DIVERGEMCE
CURL

IfF =PI+ Q]+ Ekisavector field on B and the partial derivatives of P, (. and R
all exist, then the curl of F is the vector field on B defined by

AR a0 P R a0 P
AF= | 2 iy [y [ 2= L g
m i [ v iz J i [ iz X )J ( ax ﬂ'-‘)

As an aid lo our memory, let’s rewrite Equation | using operator notation. We introduce
the vector differential operator ¥V (“del™) as

i b
4+ k rhd
] iz

v ]H+
=it

It has meaning when it operates on a scalar function 10 produce the gradient of f:

il il i i) o] )
ViV g M Y W, W
iax iy iz ax i iz

Thus the easiest way o remember Definilion | is by means of the symbolic expression

[ cudF=V x F
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EXAMPLE | I FIX. ¥. 2} = Xz 1 + X¥z ) — ¥* K Ind cor ¥.
ipLutiol Using Equation 2, we have
i i k
LU )
ax  av oz

= v -V
VTR . B o, B
& Most compater algebra systems kave ) ==l 1= — (=) ——1xz) [}
commands thet compute the curl end divengence ay iz T oz

of vector Selds. i you have access to 2 CAS, use |:
e

cul F=V X F =

these commands to chack the answers o the
sxamples and exsrrizes in this saction.

it i
— (xyz) — .r—lx:li| k
af] if_‘"
=(-¥y—-xi—(0—-x0)j+(px-0k
=—-WW2+x)l+xj+ 3=k m}
Recall that the gradient of a function f of three variables is a vector field on B and so0

wie can compute its curl. The following theorem says that the curl of a gradient vector field
is 0.

[3] THEOREM If f is a function of three variables that has continuous second-
order partial derivatives, then

curliVi) =0
PREOF  We have
i i | k
i . S
m Matite the similasity to what we know curl(Wi) =V x (Vf)=| ax ay az
from Section 12.4: a = & = 1 for every ar -
tiree-dimensional vecior & i d_-'r L—'r
X ay  az

nl Al al, sl =T 2
=(.|.l_‘f B .;Jr)H( o .r.l_:f'JjJ._(-df - .af)k
vz az dy dzdx axdz ax dy iy dx

=0i+0j+0K=0
by Clairaut’s Theorem. O

Since a conzervative vector field is one for which F = Vf, Theorem 3 can be rephrased
as follows:

w Compae this with Bescize 27 in

Soction 6.2, If F is conservative, then curl F = 0.

This gives us a way of verifying that a vector field is nol conservative.

d EXAMPLE 2 Show that the vector field Fix, v, z) = xz i + xyz ] — v*k is not
conservative.

sacumion In Example 1 we showed that
cufF=—¥2+xjl+xj +v:k

This shows that curl F = 0 and so, by Theorem 3, F is not conservative,

[4] THEOREM IfF is a vecior field defined on all of B whose component func-
tions have continuous partial derivatives and curd F = 0, then F is a conservative
vector field.

KJ EXAMPLE 3
{a) Show that

Flx, ¥, z) = ¥v21 + 2ay2§ + 3oy k

i5 a conservative vector field.
{b) Find a function f such that F = Vf.
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EBLUTIOR
{a) We compute the curd of F;

i ] k
F i ]
alF=VxF=|— — !
ax av iz
¥ 2rve? 3yt

= (axys’ — 6oy — (32 — i) + (v - 2v2Mk
=1

Since curl F = 0 and the domain of ¥ is B, F is a conservative vector field by
Theorem 4.

{b) The technigue for finding f was given in Section 16.3. We have

E] Flxy. ) =%
[&] Flx y.2) = 2xyd?
Ll flxyos) = 3%

Integrating (5) with respect to x, we obtain
Az v, ) =x¥2 + giy.2)

Differentiating (8) with respect to v, we gat flx, .z} = 2xy=" + g v, =), so comparison
with (6} gives gy, ) = 0. Thus gly, =} = kiz) and

Fix.¥.o) =3y + 02
Then (7) gives h'{z) = 0. Therefore
flrv =24+ K O

DIVERGEMCE

IfTF =PI+ @j + Rkis avector field on B and aP/fax, a0 /iy, and #R/az exist, then
the divergence of F is the function of three variables defined by

w0 R
X iy -

® div F =

Observe that curl Fis a vector field but div F is a scalar field. In terms of the gradient oper-
ator V = (afax) i + {afavd § + (afdc) K, the divergence of F can be written symbolically
as the dot product of ¥ and F:

divF=V -F

EXAMPLE 4 IfF(x,v.z) =1zl + xvz] — ¥ Kk find div F.

faLumioy By the definition of divergence (Equation 9 or 10) we have

i i i
divF =VF=—Ix) + —lxyz) + —(—¥*) =z + 1z
Ml} Ml_? a:t_b

If F is a vector field on B, then curl F is also a vector field on B3 As such, we can
compute its divergence. The next theorem shows that the resull is 0.

[l1] THEOREM IfF = P14+ @] + RKis a vector field on B and P, 0, and R
have continuous second-crder partial derivatives, then

divcurl F =0
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PEODF Using the definitions of divergence and curl, we have

= Note the enalogy with the scalsr tripls 2
peudwta-{nt;rhh-{" divecurl F =V - (V X F)

e 30N, o k. oK) A (90), pe)
T ax ity iz iy o\ 8z ax ) e\ ax av

&
R #g | &P iR i g WP

axiy  axdz  Avd:  Ayaxr  dzax dzaw

=0
because the terms cancel in pairs by Clairaut’s Theorem.

PARAMETRIC SURFACES

In much the same way thal we describe a space curve by a vector function rif} of a single
parameter ¢, we can describe a surface by a vector function ru, o) of two parameters u and
r. We suppose that

M el o) =xfu, o) 1+ vin o) ] + z(w vl k

i5 a vector-valued fenction defined on a region D in the &e-plane. So x, v, and z, the com-
panent functions of r, are Tunctions of the two variables u and v with domain D. The set
of all points (x, v, z) in B such that

@ x = xiu, vl v =viu, o r=zlu. o)

and (u, v) varies throughout 0, is called a parametric sarface 5 and Equations 2 are called
parametric eguations of 5. Each choice of « and ¢ gives a poinl on 5; by making all
choices, we get all of 5. In other words, the surface § is traced out by the tip of the posi-
tion vector riu, v) as (4, o} moves throughout the region 0. {See Figore 1.)

i

FIGURE | —
A parametnic surface

EXAMPLE | Ideniify and skeich the surface with vector equation

2 o, v)=2cosui+ o] + 2sinuk
10,1, 7}

SOLUTEON The parametric equations for this serface are
x=2cosu y=up r=2sinu

So for any point (x, ¥, ) on the surface, we have

xt+ P =4cos’u + 4zinfu =4
This means that vertical cross-sections parallel to the x=-plane (ihat is, with ¥ constant)
are all circles with radius 2. Since ¥ = v and no restriction is placed on o, the surface is a

FIGURE 2 circular cylinder with radius 2 whose axis is the y-axis. (See Figure 2.) m|
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TAMGENT PLAMES

We now find the tangent plane to a parametric surface § traced out by a vector function
rlu, v) = xiuw, o) § + W o) §j + (o, o) K

at a point Py with position vector o oc). If we keep u constant by putting & = .. then

Fitin, v) becomes 4 vector function of the single parameler v and defines a grid corve C,

Iying on 5. {See Figure 11.) The tangenl vector (o O, al P, is obtained by taking the partiad
derivalive of r with respect to o

ax dy 0z | :
. = — (b, o )0 + — (e, + — (s, ) K
E H:.rt b ) Hl.r':L o)) ity G

g, L)
=,

FIGURE 11

Similarly, if we keep v constani by putling v = vp, we g2t a grid curve C; given by
ri, vy} that lies on S, and ils tangent vector at Py is

(T iy itz
H 1y = — (g, )| + = (o, )] + — (o, o) k&
il il i

If ry x r, is mot 0, then the surface 8 is called smoeth (it has no “comers™), For a smooth
surface, the tangent plane is the plane that contains the langent vectors r, and .. and the
vector ry ¥ T, is a normal vector o the tangent plane.

 Figure 17 shows the salf-intarsecting surfacs. [0 EXAMPLE 9 Find the tangent plane (o the surface with parametric aguations © =
i Example 8 and its tengant plana at (1, 1, 3) ¥ =% = u + Zoatthe point (1, 1, 3).

fLumion We first compute the tanpent vectors:

[k iy iz
=+ ]+ —k=2ui+k

Ll i i

ax .y
r,=—I1+—]+—k=2] + 2k

iy i v

Thus a mormal vector to the tangent plane is

FIGURE 11 1]k
Xr,=|20 0 1|=-2vl—4u)+ 4wk
0 2o 2
Matice that the point (1, 1, 3) corresponds to the parameter values @ = | and v = 1. 50

the normal vector there is
—-2i—-4j+14k
Therafore an equation of the tangent plane at (1, 1. 3) is
—Hx—1)—4y— 11+ Hz—3) =0

or I+y—2=4+3=0 O
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SURFACE AREA
FIGURE 14 [£] DEFINITION I 8 smooth paramelric surface § is given by the equation
Approximating a paich
by a paralledogram o) =xlu, o)l + viw o) J+ o) k (. o) = D

and 5 is covered just once as (4, ¢) ranges throughout the parameter domain I,
then the sarface area of § is

AlS) = |T [P % 1| dd
g

ik i thz i g Y =
where n=—I+—J+—k L=—I1+—] +—k
il it i dr e i

EXAMPLE 10 Find the surface area of a sphere of radius a.
ioLumen In Example 4 we found the parametric represeatation
X = qasin¢ cosf ¥=asineg sinf z=acosg¢
where the paramater domain is
pD={i¢g.0)|0=d=m 0=08=2r}

‘We first compute the cross product of the tangent vectors:

i ] k
o dy # i ] k
Fa X Te=|dgp dgp dp|[=| acosgp cosd acosg sind —asing
dr iy d —asindg sin @ asing cosd ]

ETRE T
= a*sin’ch cos A1 + a’sin’d sin 6j + a’sing cos b k
Thus

|Te X me] = Jatsindg cos?i + a?sin®d sin?d + a'sinid cosid

= Ja*sin®g + a*sin’g cosid = a®sincd = a’singd
since singh = 0 for 0 = ¢ = «. Therefore, by Definition 6, the area of the sphere is
A= |u{ | by 3 Fe | A = L .[ a*sin o deb it
=gt |'I:’du J.”sin & dd = a¥2%)2 = dzu? O
<M {1

SURFACE AREA OF THE GRAPH OF A FUNCTION

For the special case of a surface § with eguation = = f(x, v}, where (x, ¥) lies in D and [
has continuous partial derivaiives, we take ¥ and v as paramelers. The paramelric equations

are
x=x ¥=¥% ==flxy
.“f. ar’
0 np=1+|—|k n=]+|—|k
! (r}r] =] (h)
and
i j kK
af ar.  ir
=1 0 —|=-Ti-j+k
M e ax ax 1'5}'j
g 1 o
ay
Thus we have

Ifar\® | ar\? [ =\t )
m Metite the similasity batween the surfece area |re % my| = -‘IIII(_—_] + (—J +1= -\IIII + (TJ + (—)
Foemuela in Epastion B and the anc length fomiula dx ay o ay
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w | dy\? and the surface area formula in Definition & becomes
L=| 1+ (5)

i w=[f 1+ () +(5)

[

from Section B.1.

7 EXAMPLE 11 Find the area of the part of the parsholoid - = x* + ¥ that lies under
the plane z = 90,

1LY ‘The plane intersacts the paraboloid in the circle x° + ¥* = 9, z = 0, There-
fore the given surface lies above the disk D with center the origin and radius 3. (See
Figure 15.) Using Formula 9, we have

s |[ [‘-': J: - (E)l da = [[ YT+ 207 + @ aA

i+ -
LI, ax i
o o

FIGURE 15§ - 1 JTF A £ 0 dA
[

Converting to polar coordinates, we obtain

A= [T TFar rarae = ["ao [ T+ 30 dr

(331 + 472 = %l[zh-'ﬁ —1)

SURFACE INTEGRALS

PARAMETRIC SURFACES

Suppose that 2 surface § has a vector eguation

riu, o) = 2l o) i+ viu, o) j+ ={u. 0l k el ED

AT iy iz iy iy iz
where L=+ —J+—k =it 4tk
it du i iy e de

are the tangent vectors at a corner of 5. I the components are continoous and T, and T,
are ponzero and nonparallel in the interior of I, it can be shown from Definition 1, even
when £ is not a reclangle, that

= W2 azzume thet the suriace & covared anly x
once 38 (4. #h ranges throughout I The value (a2 dS = (| riee, o)) |r, > r.ldd
ot the surfeca integral does not depend on the II' ‘H. Al JDJ f | F "

parematrization that is wsad.

=

EXAMPLE | Compute the surface integral [f, x* S, where § is the unit sphere
rT+¥y+S=1 ;

W0LITION As in Example 4 in Section 16.6, we use the paramelric representalion
I=3s5iNngg cosd y=3singsind :=cosgd O=gdg=x O=6=1r
that is, righ, #) = sin¢h cos@l + singh sind ) + cos bk
As in Example 10 in Section 16.6, we can compute that
|Ts ¥ re| = sin ¢

Therefore, by Formula 2,

Ff xhds = “ {sin g cos AP £y = 1. |d4
A

o

= Here we oe the identities

cos'f = 1 (1 + oos T4)

st = | — cos'd
Inetead, wa could use Formulas 64 and B7 in
the Table of Integrais.

L‘a -I-: sin’dh cos’i sin ¢ d dif = j:" T j‘u: ' dd
A

41 + cos 20) dd [ (sin ¢ — sin cos’d) dep

=10 + Lsin 20f " [-cos p + L cosg]] = ?
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The total mass of the sheet is
m= I_j‘ plx. v,z ds

-

and (he center of mass is (T, V. ), whare
X
m

H. xplry,2)d5  F= J:le yplry.z)dS T= #“ spix.v,z)dS

I 5

GRAPHS

Any surface ¥ with equation = = g{x, ¥) can be regarded as a parametric surface with para-
melric equations

I=x y=v¥ P gI:I, ¥
; 4
and so we have n:j.,.(ﬁjk [‘_=l+[_ﬂ)k
ax i
Thus
m r;xr'l=—ﬂ—g|—d—!?j-rk
ar ay

Therefore, in this case, Formula 2 becomes

[

I
P
o

b

]
o

"
0
-
#

EXAMPLE 2 Evaluate [[, v &S, where § is the surface =
(See Figure 2.)

SOLOTION Simce

dz iz

FIGURE 1 ax iy

Formula 4 gives

[ras=foyi+(5) (5 =

= [ [T T+ a7 avax

1347
3

YT + 3_1,-1]!-':]: e

Kd EXAMPLE 3 Evaluate _|'_|'5 - dS, where 8 is the surfey:e wt_u:rse sides &, are piven by the
cylinder x° + ¥* = 1, whose bottom 5: is the disk x° + ¥° = | in the plane - = 0, and
whose top 5z is the parl of the plane : = 1 + x that lies above 5;.
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soLumiok The surface S is shown in Figure 3. (We have changed the usual position of
the axes to get a better look at 5.) For §, we use # and = as paramelers (see Example 5
in Section 16.6) and wrile its parameiric equations as

X = cosd ¥y =sinf =1z

where
0=#8=2y and b=z=1+x=14+cosé
Therefore
i i k'
FIGURE 3 Fe X F.= |—sind cosd 0Of=cosdl+ sind)
0 0 1
and | ¥ .| = +/cos™@ + sin% = 1

Thus the surface integral over §, is
jj‘:d.'i = ﬂ- z|re X or|dA
i b

= [T zd=do = [T H1 + cosa)
LR

=%L:’[| + 20058 + 31 + cos 24)] 48

i PO |
= 1[0 + 2sin# + 4 sin 20" = et

Since 5 lies in the plane - = 0, we have

&

[[zas=([oas =0
4

The top surface &5 lies above the unit disk D and is part of the plane z = 1 + x. So,

taking g(x, v} = 1 + x in Formula 4 and converting o polar coordinates, we have
[[zas= ([0 +n ha (22) 1 (EY w
J;. N EJ g i i

J‘”J.;"n + reos @)1 + 1+ 0 rdrdé

n

JE {:' J: (r + ricosd) drdd

&0

JT I’ (L4 Lcosa)do

]
[

8 sing|T  ~—
z

Theraefore

STOKES" THEOREM
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STOKES' THEOREM Let § be an oriented piecewise-smooth surface that is boundad
by a simple. closed, piecewise-smooth boundary curve C with positive orientation.
Let F be a vector field whose components have continuous partial derivatives on
an open region in B that contains 5. Then

_[EF-dr=.|[J.‘cunF-ds

] EXAMPLE | Evaluate ij = dr, where Flx,v.z} = —v*1 + 1] + 2k and C is the
curve of intersection of the plane ¥ + z = 2 and the cylinder x* + ¥* = 1. (Orent C to
be counterclockwise when viewed from above.)

soLumioN The curve C (an ellipse) is shown in Figure 3. Although Jc F - dr could be
evalpated directly, it’s easier to use Stokes” Theorem. We first compute

R R
o 2 3

rlF=|— — —|={1+2k
ax. v iz
—y* 1

Although there are many surfaces with boundary C, the most convenient choice is the
elliptical region § in the plane ¥ + - = 2 that is bounded by C. If we orieat § upward,
then C has the induced positive orientation. The projection [ of § on the xv-plane is the
disk x° + ¥* = 1 and s0 using Equation 16.7.10 with = = g(x, ¥} =2 — ¥, we have

FIGURE 3

[ ¥ edr = ([ cuntw-as = [ (1+ 2 an
| ) ]

= [ J.; {1 + 2rsin @) rdrd8

n
LR 1 1 1

=J" Eral goel 40— [*(2 + Zsing) do
(] 2 3 [ LS ’ .

=i+ 0=m mi

3 EXAMPLE 2 Use Stokes' Theorem to compute the integral [, curl F - &S, where
Fix,v.z) = xz1 4 vz ] + vk and 5 is the part of the sphere x* 4+ ¥* 4 z* = 4 that
lies inside the cylinder x* + ¥* = | and above the xv-plane. (Ses Figure 4.)

10iumod To find the boundary curve C we solve the equations x* + y* + 27 = 4 and
x* + ¥' = |. Subiracting, we gei - = 3 and 50z = /3 (since = = 0). Thus  is the
circle given by the equations x° + ¥* = 1, - = /3. A vector equation of € is

rif) =costi+sintj+/3Ik O=1=27
FIGURE 4 50 r't) = —sinfl + cost)
Also, we have

Fir{t)) =3 costl + I sint] + costsintk

Therafore, by Stokes’ Theorem,

JLJ curl F - dS = | F-dr= | “Fir) - vl ar

[2' (—3 costsinf +/3 sint cos t) o

=3[0 =0 0
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THE DIVERGENCE THEOREM

THE DIVERGENCE THEOREM Lat E be a simple solid region and let § be the bound-
ary surface of E, given with positive (outward) crientation. Lel F be a vector field
whose component functions have continuous partial derivatives on an open region
that contains E. Then

}JF-dS=‘{1|.;|.— div F aV

PAOOF LetF =PI+ (0] + Rk Then

div p_%+% -
50 J‘J.‘c[nrdv _|f|| ”Pd$+}‘| db+{if%d?‘

If m is the unil ootward normal of 5, then the surface integral on the left side of the

Divergence Theorem is

FI‘F-dS=JTF-n.£IS=_||T (Pi+ Q]+ RK -nds
E i § i

=:|:||‘Pt-nd5+ J.J @j-nds + {{Hk-ndﬁ'

7

s

Therefore, to prove the Divergence Theorem, it suffices to prove the following three

equations:
@ _EFFi : ndS:j;[{ %:ﬂ"
® ff @3- nas— [ff Zrav
[ {J. RE-nds =_[{_[%dv

To prove Equation 4 we use the fact that E is a type 1 region:
E= {[.1'. voz) | () € Doailx, ¥} =z = walx, _ﬁ}

where I is the projection of E onto the xy-plane. By Equation 15.6.6, we have

}-.-p iR dV = .FI |:j‘a Ll § AR Lz ¥ "Jd‘]ﬂrﬂ
E

iyt dz

and therefore, by the Fundamental Theorem of Calculus,

E }}‘ ﬂrﬁ" H [R(x. ¥, ualx, ¥)) — R(x. ¥, mix, v))] da

s
The boundary surface § consists of three pieces: the bottom surface 5, the top surface
5., and possibly a vertical surface §:, which lies above the boundary curve of D, {See

Figure 1. [t might happen thal §; doesn't appear, as in the case of a sphere.) Notice that
on §; we have k - n = 0, because K is vertical and n is horizontal, and so

||'|f;::k nds i{ads=u

5

Thus, regardless of whether there is a vertical surface, we can write

& jJRL ndS—I{RIL nds+J.|Hk n ds

5 LA
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The equation of 5 is = = wdx, ¥), {x.¥) £ D, and the outward normal o points
upward, so from Equation 16.7.10 {with F replaced by R k) we have

{J‘ Rk-nds = ([ Rixy, uixy))da
Ha o

On 5 we have = = w(x, ¥). but here the outward normal n peints downward, so
we multiply by — 12

ﬂ Rk-mds=— 1_[ Rix. v, wix ¥)) dA
EA F
Therefore Equation 6 gives

[ Rk -mas = (| [Rx v, walx. ) — R(x v, m(x.3))] a4
) )

k)
Comparison with Equation 5 shows that
ser AR
{J. RE-ndS = |{J. SV
L EXAMPLE | Find the flux of the vector field Fix,v,z) = =1 + v] + x k over the unit
sphere x” + v + 22 = 1.

soLumion First we compute the divergence of F:

. \ ;
divF = {5 + (3 + () =
ax ay z

The unit sphere § is the boundary of the unit ball B given by x* + v* + =% = L. Thus the
Divergence Theorem gives the Aux as
= Tha saliicn in Example * should be

oo i . s 4w
red with the sphtion in Exarle 4 ~d8 = ' = VIB) =51 =— O
comperet it e i B Jsl F-dS [ﬂ. divF dV = {!f LdV = ViB) = 3m(1f == m

: [J EXAMPLE 2 Evaluate H‘ F - dS, where

Fir.v.2) = vl + (v + e=)] + sin(ry) k
and § is the surface of the region £ bounded by the parabolic cylinder = = 1 — x* and
the planes : = 0, ¥ = 0, and ¥ + =z = 2. (See Figure 2.}

soumon It would be extremely difficult to evaluate the given surface integral directly.
(We would have 1o evaluaie four surface integrals comresponding o the Tour pieces of 5.)
Furthermore, the divergence of F is much less complicaled than F itself:

FIGURE 1 ) il §- 5 n 3 [
dGivF=—1{x¥) + —Iy" + &™)} + —(cinxy) =¥+ 2y =3y
ax e } ay { } iz = g ; k

Therefore we use the Divergence Theorem (o transform the given surface integral into a
Iriple integral. The easiest way to evaluate the triple integral is lo express E as atype 3
region:

E={xwa|-l=x=10=z=1-x,0=y=2—:}

‘I'hen we have
i1 divEav = {[[ 3yav
jr.a=ffara=[fv

=3[ { T-J'.: “vavaedr =3 Hr"'fd_dr

:l

# 7 _ # .
=%l |: 2 '}] dx=—{|'_[(_r:+lil:‘—ﬂlri'.r
2 - |

= —[J' (F 43+ 30— T)dr =2 o
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Possible Questions
PART-B (2 Mark)

1.  What is Surface integral.

g and g

2. If f(x,y)=sin x ,calculate
1+y Ox oy

3.  Write down the Linearization formula.
4. Define Define partial derivative

5. Find y'if x*+y° =6xy

6. State Green’s theorem.

7. State Gauss Divergence theorem.

8.

State Stoke’s theorem.

PART-C (8 Mark)

1. Evaluate J.F.dr, where F(x,y,z)=—-y" i+x j+z" kand C is the curve of
C

intersection of the plane y+z =2and the cylinder x*+y”> =1.

2. The temperature U in a metal ball is proportional to the square of the distance from
center of the ball. Find the rate of heat flow across a sphere S of radius a with
center at all the center of the ball.

3. Evaluate ”F.dS, where F(x,y,z)=yi+x j+zk andS is the boundary of solid
N

region E enclosed by the paraboloid z=1-x" -3 and the plane z=0.

4. Find the tangent plane to the surface with parametric equations

X =u2,y =v’,z=u+2v atthe point (1, 1, 3).

5. Find the surface area of the sphere with radius a.

6. Evaluate Hde, where S is the surface z=x+3",0<x<1,0<y<2.
S

7. Find the area of the part of paraboloid z =x’+y”that lies under the plane z=9.
8. Evaluate szS ,where S is the surface whose sides S; are given by the cylinder
N

x* +y” =1, whose bottom S, is the disk x”+y* <lin the plane z=0 and whose top
S; is the part of the planez =1+ x that lies above S,.

9. Find the surface integral J. I x’dS where S is the unit sphere x” +y° +z° =1.
N
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N

10. Find the flux of the vector field F(x, y,z) =z i+y j+xk across the unit
sphere x* + > +z% =1.
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Subject Name: Multivariate Calculus Subject Code: 17MMUS03A
UNIT-V
Question Option-1 Option-2 Option-3 Option-4
] Pdx +Qdy = I1@Qx- Py) dAis Green’s theorem Red theorem Stock’s theorem Divergence theorem
If Curl F =0 then F is Irrotational Solenoidal Divergence Curl
IfF(x, y) = P(x, y) i *Q(x, y) j is a conservative vector field, where P, Q _ _ _
P, =0 P, +Q,=0 P,= P, =

have first order partial derivative then we have v Q T Q v=Q = Q
The potential energy and kinetic energy is Law of potential Law of Kinetic Igr?e\’:g(;f conservation of Law of vector field

IfF(x,y) = (x-y) i+ (x-2) j is a vector field not a vector field a conservative field

If fis a function f that has continuous second order partial derivatives

then Div f=0 Vxf=0 Div(¥f)=0
Ifr=xi+yj+zk then, ¥ (1/1) = - i e e
The divergence of a curl of a vector is --- one three zero

If A =A,i +A,j + Ask, where Al, A2, A3 have continuous second
partials, then V¥ . (V¥ xA)=--- 2 1 -1

If ¥ . V=0, then the vector V is said to be Irrotational vector ~ Position vector Solenoidal vector
If ¥ x V=0, then the vector V is said to be Irrotational vector ~ Position vector Zero vector

The vector A = x’Z%i + xyzzj —xz’k is
If fis a hormonic function, then V¥ f'is
If A and B are irrotational, then AxB is

Zero vector
Solenoidal vector
Solenoidal vector

Solenoidal vector
Position vector
Position vector

Irrotational vector
Irrotational vector
Irrotational vector

If A is irrotational, then W xA is 1 -1 2
If A is solenoidal, then ¥ .Ais 1 -1 0
div (curl A) = ---- 0 1 -1

1 non zero 2

Curl ( grad f) = ---
CuTZ - Curl B cur[A Curl B curTR* Curl B

Cul BB) = -

d/dt(A.B) = ----- A.dA/dt +dB/dt. B A.dB/dt +dA/dt .B A.dA/dt - dB/dt
If T constant vector, then curl F 1 2 non zero

Y . (Vf)=eee \& 0 vf

Grad 1"= - ! r " r (-D"? ¢

not a conservative
field

curl(¥f)=0

e
two

-2

Zero vector
Solenoidal vector
Position vector
Zero vector
Zero vector

0

-2

2

0

curl A7 Curl B
A.dA/dt + dB/dt

Answer
Green’s theorem
Irrotational

Py=Q
Law of conservation of
energy

not a conservative field

curl(¥f)=0

e
three

2

Solenoidal vector
Irrotational vector
Solenoidal vector
Zero vector

Zero vector

1

-2

0

1

cur[A™ Curl B
A.dA/dt - dB/dt
0

\ &

n-2

nr T
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KARPAGAM ACADEMY OF HIGHER EDUCATION
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DEPARTMENT OF MATHEMATICS
Fifth Semester
Multivariate Calculus
I Internal Test - July'2019
Date: Time: 2 Hours
Class: 111 B.Sc Mathematics Maximum:50 Marks

PART-A(20x1=20 Marks)
Answer all the Questions:

1. Every codomain element has a preimage then f(x,y) is
a) Bijective b) 1-1 c) Onto d) Reflexive
2. Relation is a subset of

a)Function b) 1-1 function c) Bijective d) Cartesian product
3. If z= f(x, y) then the variable x and y are
a) Independent b) Dependent  c) Image  d) Function

4. Differentiation of sinhx =

a) (- coshx) b) sinh2x c) coshx d) (-sinhx)
5.Ifz=f(x, y) then zis variable .

a) Dependent b) Independent  c) Image d) Isolated
6. cosh?x - sinh?x =

a)l b) 0 C) cosh2x d) sinh2x

7.The element of R3is

a) (1,2) b)21) oky d&xvVy.2)
8.The Level curve of f(x, y) is
a) X b) 2x c) X2 d) 15

9. The curve of a function f(x, y, z) = k is called
a) ldentity function b) Level curves c) Family of curves d) 1-1

10.The range of f(x) = 2x for every x in N is

a) 2Z b) 2R c)2N d) N
11.1f the partial derivatives are continuous then

a) Fxy = Fyx b) Fyy=Fyx C)Fx=Fy d) Fx=Fy
12. In a polar coordinate, r denotesa

a) distance b) area c) angle d) radius
13.The Clairaut’s theorem is if partial derivatives are

continuous.

a) F)fy;t Fyx b) Fx=Fy C) Fx=Fy d) Fxy = Fyx
14. IxiTo SInTX -

a) 0 b) (-1) c)l d)2
15. In a polar coordinates 0 denotesa

a) distance b) area c) angle d) radius
16.1f Uxx + Uyy =0 then U is Called

a) Laplace  b) Circle  ¢) Harmonic d) Heat equation



17. The function f is Local minimum at (a, b) if
a)f(x, y)<f(a, b) b) f(x, y)>f(a, b)
c) f(x, y)<f(a, b) d) f(x, y)>f(a, b)
18. If f(x, y) >f(a, b) as (X, y) = (a, b) then fis
a) Not continuous  b) Function c) Relation d) Continuous
19. From the below the functions of two variable is
a) f(x, y, 2) b)z=1(x) c)y=1(x) d)z=1(xy)
20.1f Fxx Fyy - (Fxy)?> 0 and Fxx> O then f(a, b) is
a) Local minimum b) Local maximum

c) absolute maximum d) absolute minimum

PART-B (3x2=6 Marks)
Answer all the Questions:

21.Sketch the level curves of the function f(x,y) = 6-3x-2y for the
values k=-6, 0, 6, 12.

22 .Define continuous function for two variables.

23.State Clairaut’s theorem

PART-B(3x8=24 Marks)
Answer all the Questions:
2
24. @) Find  lim Y ifitexist
(Y00 X* 4y

(OR)
(b) Find Z—)Z( and Z—Z if zis implicitly as a function of x and
y

y by the equation x*+y®+2%+6xyz=1.

25. (a) Find the directional derivative of the function f(x,y) = x? y3-4y
at the point (2,-1) in the direction of the vector v=2i +5].

(OR)
(b) Find and classify the critical points of the function

f(x,y) =10x’y —5x* —4y* —x* - 2y*

26. (a) Find the shortest distance from the point (1,0,—2) to the plane
X+2y+z2=4.

(OR)
(b) Find the Extreme values of the function f (x, y) = x* +2y®on
the circle x*+y*=1.
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