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Group Theory Ch. 2

since p is a prime number, we must have that p | a, so that ¢ = 0 mod p;
hence 0 = ¢ = a mod p here also. Thus

COROLLARY 4 (FerMat) If p is a prime number and a is any inleger, then

a? = a mod p.

COROLLARY 5 If G is a finite group whose order is a prime number p, then
G s a cyclic group.

Proof. First we claim that G has no nontrivial subgroups H; for o(H)
must divide o(G) = p leaving only two possibilities, namely, o(H) = 1 or
o(H) = p. The first of these implies H = (¢), whereas the second implies
that H = G. Suppose now that a # ¢ € G, and let H = (a). H is a sub-
group of G, H # (¢) since a # e¢e H. Thus H = G. This says that G is
cyclic and that every element in G is a power of a.

This section is of great importance in all that comes later, not only for its
results but also because the spirit of the proofs occurring here are genuinely
group-theoretic. The student can expect to encounter other arguments
having a similar flavor. It would be wise to assimilate the material and
approach thoroughly, now, rather than a few theorems later when it will
be too late.

2.5 A Counting Principle

As we have defined earlier, if H is a subgroup of G and a € G, then Ha
consists of all elements in G of the form ha where & € H. Let us generalize
this notion. If H, K are two subgroups of G, let

HK = {xe€eG|x = hk,he H ke K}.

Let’s pause and look at an example; in S; let H = {¢, ¢}, K = {¢, ¢y}.
Since ¢% = (¢Y)% = ¢, both H and K are subgroups. What can we say
about HK? Just using the definition of HK we can see that HK consists of
the elements e, ¢, ¢y, p> = . Since HK consists of four elements and
4 is not a divisor of 6, the order of S; by Lagrange’s theorem HK could not
be a subgroup of §;. (Of course, we could verify this directly but it does
not hurt to keep recalling Lagrange’s theorem.) We might try to find out
why HK is not a subgroup. Note that KH = {e, ¢, ¢y, ¢ = ™'} # HK.
This is precisely why HK fails to be a subgroup, as we see in the next lemma.

LEMMA 25.1 HK is a subgroup of G if and only if HK = KH.

Proof. Suppose, first, that HK = KH; that is, if k€ H and ke K,
then hk = kh, for some %, € K, h; € H (it need not be that k£, = k or



Sec. 2.5 A Counting Principle

By = k). To prove that HK is a subgroup we must verify that it is closed
and every element in HK has its inverse in HK. Let’s show the closure
first; so suppose x = hk € HK and y = h'k' € HK. Then sy = hER'E
put since k%' € KH = HK, ki’ = hyk, with h, € H, k, € K. Hence Xy =
h(hok2)k = (hhy) (koK) € HK, and HK is closed. Also x~! = (hk)~! =
g 'h~'e KH = HK, so x™' € HK. Thus HK is a subgroup of G.

On the other hand, if HK is a subgroup of G, then for any k € H, k € K,
p~ ke HK and so kh = (A%~ ')"' e HK. Thus KH < HK. Now if
xis any element of HK, x™' = hke HK andso x = (x™1)"! = (hk) " '=
k~h e KH so HK ¢ KH. Thus HK = KH.

An interesting special case is the situation when G is an abelian group
for in that case trivially HK = KH. Thus as a consequence we have the

COROLLARY If H, K are subgroups of the abelian group G, then HK is a
subgroup of G.

If H, K are subgroups of a group G, we have seen that the subset HK
need not be a subgroup of G. Yet it is a perfect meaningful question to ask:
How many distinct elements are there in the subset HK? If we denote this
number by o(HK), we prove

THEOREM 25.1 If H and K are finite subgroups of G of orders o(H) and
o(K), respectively, then
o(HEK) = 2D
olH n K)

Proof. ~ Although there is no need to pay special attention to the particular
case in which H n K = (¢), looking at this case, which is devoid of some
of the complexity of the general situation, is quite revealing. Here we
should seek to show that 0(HK) = o(H)o(K). One should ask oneself: How
could this fail to happen? The answer clearly must be that if we list all the
elements hk, h e H, k € K there should be some collapsing; that is, some
element in the list must appear at least twice. Equivalently, for some
h# hieH, hk = hk,. But then h,-'h = kk~'; now since h, € H,
A~ must also be in H, thus k,~'he H. Similarly, k™' e K. Since
M7 = bk~ b Yhe HA K = (e, so hy~'h = e, whence k = h, a
Contradiction. We have proved that no collapsing can occur, and so, here,
o(HK) is indeed o(H )o(K).

With this experience behind us we are ready to attack the general case.

above we must ask: How often does a given element hk appear as a
Product in the list of HK? We assert it must appear o(H n K) times!
O see this we first remark that if 2, € H n K, then

hk = (hhy)(h, ™ k), (1)
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where hh, € H, since heH, hye Hn K c H and hy” 'k e K since
hy"'e Hn K < K and ke K. Thus Ak is duplicated in the product at
least o(H N K) times. However, if kk = K'K, then A~ = k()™ ! = u,
and ue HN K, and so k' = hu, k' = u~ 'k; thus all duplications were
accounted for in (1). Consequently k appears in the list of HK exactly
o(H n K) times. Thus the number of distinct elements in HK is the total
number in the listing of HK, that is, o(H)o(K) divided by the number of
times a given element appears, namely, o(H N K). This proves the theorem.

Suppose H, K are subgroups of the finite- group G and o(H) > N/ o(G),
o(K) > Vo(G). Since HK < G, o(HK) < o(G). However,

o(H)o(K) _ No(GWo(G) _ _o(G)

o(G) = o(HK) =
o(H n K) o(H n K) o(H n K)

thus o(H A K) > 1. Therefore, H n K # (¢). We have proved the

CO_F\’OLLARY If H and K are subgroups of G and o(H) > \/O(G), o(K) >
Vo(G), then H A K # (e).

We apply this corollary to a very special group. Suppose G is a finite
group of order pg where p and g are prime numbers with p > g¢. We claim
that G can have at most one subgroup of order p. For suppose H, K are
subgroups of order p. By the corollary, H n K # (¢), and being a sub-
group of H, which having prime order has no nontrivial subgroups, we
must conclude that H n K = H, and so H ¢ Hn K < K. Similarly
K < H, whence H = K, proving that there is at most one subgroup of
order p. Later on we shall see that there is at least one subgroup of order p,
which, combined with the above, will tell us there is exactly one subgroup
of order p in G. From this we shall be able to determine completely the
structure of G.

Problems

1. If H and K are subgroups of G, show that H n K is a subgroup of G.
(Can you see that the same proof shows that the intersection of any
number of subgroups of G, finite or infinite, is again a subgroup of G?)

2. Let G be a group such that the intersection of all its subgroups which
are different from (¢) is a subgroup different from (¢). Prove that
every element in G has finite order. p

3. If G has no nontrivial subgroups, show that G must be finite of
prime order.
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(a) If His a subgroup of G, and a € GletaHa™' = {aha™' | h e H}.
Show that aHa™ ! is a subgroup of G.
(b) If H is finite, what is o(aHa™1)?

. For a subgroup H of G define the left coset aH of H in G as the set

of all elements of the form a%, & € H. Show that there is a one-to-one
correspondence between the set of left cosets of H in G and the set of
right cosets of H in G.

. Write out all the right cosets of H in G where

(a) G = (a) is a cyclic group of order 10 and H = (a?) is the
subgroup of G generated by a2.

(b) G as in part (a), H = (a°) is the subgroup of G generated by a°.

(c) G = A(S), S = {x, %3, %3}, and H = {6 € G | ;06 = x,}.

Write out all the left cosets of H in G for H and G as in parts (a),

(b), (c) of Problem 6.

. Is every right coset of H in G a left coset of H in G in the groups of

Problem 67?

. Suppose that H is a subgroup of G such that whenever Ha # Hb

then aH # bH. Prove that gHg™' < HforallgeG.

Let G be the group of integers under addition, H, the subgroup
consisting of all multiples of a fixed integer n in G. Determine the
index of H, in G and write out all the right cosets of H,, in G.

In Problem 10, what is H, n H,?

If G is a group and H, K are two subgroups of finite index in G,
prove that H n K is of finite index in G. Can you find an upper
bound for the index of H n K in G? -

If e G, define N(a) = {x € G|xa = ax}. Show that N(a) is a
subgroup of G. N(a) is usually called the normalizer or centralizer of
ain G.

If H is a subgroup of G, then by the centralizer C(H) of H we mean
the set {x € G| xh = hx all he H}. Prove that C(H) is a subgroup
of G.

The center Z of a group G is defined by Z = {z€ G| zx = xz all
x € G}. Prove that Z is a subgroup of G. Can you recognize Z as
C(T) for some subgroup T of G?

If H is a subgroup of G, let N(H) = {ae G|aHa™ ' = H} [see
Problem 4(a)]. Prove that
(a) N(H) is a subgroup of G. (b) N(H) o H.

Give an example of a group G and a subgroup H such that N(H) #
C(H). Is there any containing relation between N(#) and C(H)?
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18.
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If H is a subgroup of G let
N =) xHx" L.

xeG
Prove that N is a subgroup of G such that aNa~! = Nforallae G.

If H is a subgroup of finite index in G, prove that there is only a
finite number of distinct subgroups in G of the form aHa™!.

If H is of finite index in G prove that there is a subgroup N of G,
contained in H, and of finite index in G such that aNa~! = N for
all ae G. Can you give an upper bound for the index of this
Nin G?

Let the mapping 7,, for a, b real numbers, map the reals into the
reals by the rule 7,:x — ax + b. Let G = {7, | a + 0}. Prove
that G is a group under the composition of mappings. Find the
formula for 7,,7.,.

In Problem 21, let H = {7, € G| ais rational}. Show that H is
a subgroup of G. List all the right cosets of H in G, and all the left
cosets of H in G. From this show that every left coset of Hin G is a
right coset of H in G.

In the group G of Problem 21, let N = {1y, € G}. Prove
(a) Nis a subgroup of G.
(b) Ifae G, ne N, then ana™! € N.

Let G be a finite group whose order is not divisible by 3. Suppose
that (ab)® = a3b3 for all a, b € G. Prove that G must be abelian.

Let G be an abelian group and suppose that G has elements of orders
m and n, respectively. Prove that G has an element whose order is
the least common multiple of m and #.

If an abelian group has subgroups of orders m and #, respectively,
then show it has a subgroup whose order is the least common multiple
of m and n. (Don’t be discouraged if you don’t get this problem with
what you know about group theory up to this stage. I don’t know
anybody, including myself, who has done it subject to the restriction
of using material developed so far in the text. But it is fun to try.
I’ve had more correspondence about this problem than about any
other point in the whole book.)

Prove that any subgroup of a cyclic group is itself a cyclic group.

How many generators does a cyclic group of order n have? (b€ G
is a generator if (6) = G.)

I

Let U, denote the integers relatively prime to n under multiplication
mod n. In Problem 15(b), Section 2.3, it is indicated that U, is a group:
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In the next few problems we look at the nature of U, as a group for some
specific values of n.

99. Show that Uy is not a cyclic group.

30. Show that U, is a cyclic group. What are all its generators?

31. Show that U, , is a cyclic group. What are all its generators?

32. Show that U, g is a cyclic group.

33. Show that U, is not a cyclic group.

34. Show that both U, s and U, are cyclic groups.

35. Hazard a guess at what all the z» such that U, is cyclic are. (You
can verify your guess by looking in any reasonable book on number
theory.)

36. If a € G and @™ = ¢, prove that o(a) | m.
37. If in the group G, a® = ¢, aba™"' = b for some a, b € G, find o(b).
#38. Let G be a finite abelian group in which the number of solutions in

G of the equation x" = ¢ is at most n for every positive integer n.
Prove that G must be a cyclic group.

39. Let G be a group and 4, B subgroups of G. If x, y € G define x ~ y
if y = axb for some a € 4, b € B. Prove
(a) The relation so defined is an equivalence relation.
(b) The equivalence class of x is AxB = {axb|a€ A, b € B}.
(AxB is called a double coset of A and B in G.)
40. If G is a finite group, show that the number of elements in the double
coset AxB is
o(4)o(B) i
, o(4 ~ xBx™1).
41. If G is a finite group and 4 is a subgroup of G such that all double
cosets AxA4 have the same number of elements, show that gdg~! = 4

for all g € G.

26 Normal Subgroups and Quotient Groups

Let G be the group S; and let H be the subgroup {e, ¢}. Since the index
Offl in G is 3, there are three right cosets of H in G and three left cosets of
Hin G. We list them:

Right Cosets Left Cosets

H = {e, ¢} Hz{gid)}
Hy = {, oy} VH = {y, Yy = ¢y}
HY? = (% oYy YPH = Y2 ¥°¢ = ¢y}

49



50

Group Theory Ch. 2

A quick inspection yields the interesting fact that the right coset Hys is not
a left coset. Thus, at least for this subgroup, the notions of left and right
coset need not coincide.

In G = S; let us consider the subgroup N = {e, ¥, ¥?}. Since the
index of Nin G is 2 there are two left cosets and two right cosets of N in G,
We list these:

Right Cosets Left Cosets

N = {8, l//’ l/12} N = {3, 'pa ll’z}
N = {o, Vo, l/’2¢} ¢N = {o, oY, ¢"//2}
(¢, V20, Yo}

A quick inspection here reveals that every left coset of Nin G is a right
coset in G and conversely. Thus we see that for some subgroups the notion
of left coset coincides with that of right coset, whereas for some subgroups
these concepts differ.

It is a tribute to the genius of Galois that he recognized that those sub-
groups for which the left and right cosets coincide are distinguished ones.
Very often in mathematics the crucial problem is to recognize and to discover
what are the relevant concepts; once this is accomplished the job may be
more than half done.

We shall define this special class of subgroups in a slightly different way,
which we shall then show to be equivalent to the remarks in the above
paragraph.

DEFINITION A subgroup N of G is said to be a normal subgrou[) of G if
for every ge Gand ne N, gng™ le N

! we mean the set of all gng™*, n e N, then N
1 < N for every ge G.

Equivalently, if by gNg~
is a normal subgroup of G if and only if gNg~

LEMMA 2.6.1 N is a normal subgroup of G if and only if gNg~' = N for
every g € G.

Proof. If gNg~! = N for every g € G, certainly gNg=' = N, so N is
normal in G.

Suppose that Nisnormal in G. Thusifge G,gNg~' < Nand g™ 'Ng =
g 'N(g')"' = N. Now, smce g 'Ngc N, N=g(g 'Ng)g 1 c
gNg™! < N, whence N = gNg~!

1

In order to avoid a point of confusion here let us stress that Lemma 2.6. ]
does not say that for every n e N and every g € G, gng ~1 = n. No! This
can be false. Take, for instance, the group G to be S3 and N to be the sub-
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up {e, ¥> ¥?}. If we compute ¢ N~ ! we obtain {e, pydp ™', ¢pyy2¢p ™!} =
{c,lﬁz’ Yl yet ¢y~ ! # Y. All we require is that the set of elements
Vg~ 1 be the same as the set of elements N.

We now can return to the question of the equality of left cosets and

right cosets.

LEMMA 2.6.2  The subgroup N of G is a normal subgroup of G if and only if
every left coset of N in G 1s a right coset of N in G.

Proof. If N is a normal subgroup of G, then for every g€ G, gNg™ ! =
N, whence (gNg~')g = Ng; equivalently gN = Ng, and so the left coset
gN is the right coset Ng.

Suppose, conversely, that every left coset of N in G is a right coset of
N in G. Thus, for g€ G, gN, being a left coset, must be a right coset.
What right coset can it be?

Since g = ge € gN, whatever right coset gN turns out to be, it must
contain the element g; however, g is in the right coset Ng, and two distinct
right cosets have no element in common. (Remember the proofof Lagrange’s
theorem?) So this right coset is unique. Thus gN = Ng follows. In other
words, gNg~! = Ngg~! = N, and so N is a normal subgroup of G.

We have already defined what is meant by HK whenever H, K are
subgroups of G. We can easily extend this definition to arbitrary subsets,
and we do so by defining, for two subsets, 4 and B, of G, 4B = {x € G | x =
ab,ae A, b e B}. As a special case, what can we say when 4 = B = H,
a subgroup of G? HH = {hh, | h,h,e H} < H since H is closed under
multiplication. But HH > He = Hsince e € H. Thus HH = H.

Suppose that N is a normal subgroup of G, and that 4, b € G. Consider
(Na)(Nb); since N is normal in G, aN = Na, and so

NaNb = N(aN)b = N(Na)b = NNab = Nab.

What a world of possibilities this little formula opens! But before we get
carried away, for emphasis and future reference we record this as

LEMMA 263 4 subgroup N of G is a normal subgroup of G if and only if the
Product of two right cosets of N in G is again a right coset of N in G.

_Proof. If Nis normal in G we have just proved the result. The proof of
the other half is one of the problems at the end of this section.

Suppose that N is a normal subgroup of G. The formula NaNb = Nab,
OT a, b € G is highly suggestive; the product of right cosets is a right coset.
we use this product to make the collection of right cosets into a group?
Indeed we can! This type of construction, often occurring in mathematics
and wsually called forming a quotient structure, is of the utmost importance.
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Let G/N denote the collection of right cosets of N in G (that is, the
elements of G/N are certain subsets of G) and we use the product of subsets
of G to yield for us a product in G/N.

For this product we claim

1. X, Y € G/N implies XY € G/N; for X = Na, Y = Nb for some aq, beg,
and XY = NaNb = Nab € G|N.

9. X,Y,ZeG|N, then X = Na, Y = Nb, Z = Nc with a,b,¢c€G,
and so (XY)Z = (NaNb)N¢ = N(ab)Ne = N(ab)c = Na(be) (since G
is associative) = Na(Nbc) = Na(NbNc) = X(YZ). Thus the product
in G/ N satisfies the associative law.

3. Consider the element N = Nee G/N. If Xe G/N, X = Na, a€Q,
so XN = NaNe = Nae = Na = X, and similarly NX = X. Con-
sequently, Ne is an identity element for G/N.

4. Suppose X = Na e G/N (where ae€ G); thus Na~ ' e G|N, and
NaNa~! = Naa~' = Ne. Similarly Na~'Na = Ne. Hence Na~ 1! is
the inverse of Na in G/N.

But a system which satisfies 1, 2, 3, 4 is exactly what we called a group.
That is,

THEOREM 2.6.1 If G is a group, N a normal subgroup of G, then G|N is also
a group. 1t is called the quotient group or factor group of G by N.

If, in addition, G is a finite group, what is the order of G/N? Since G/N
has as its elements the right cosets of N in G, and since there are precisely
ig(N) = o(G)Jo(N) such cosets, we can say

LEMMA 2.6.4 If G is a finite group and N is a normal subgroup of G, then
o(G|N) = o(G)[o(N).

We close this section with an example.

Let G be the group of integers under addition and let N be the set of
all multiplies of 3. Since the operation in G is addition we shall write the
cosets of Nin G as N + a rather than as Na. Consider the three cosets
N, N + 1, N + 2. We claim that these are all the cosets of N in G. For,
given ae G,a = 3b + ¢wherebe Gandc¢ = 0, 1, or 2 (¢ is the remainder
of a on division by 8). Thus N +a =N+ 3b + ¢ = (N +3b) +¢=
N + ¢ since 36 € N. Thus every coset is, as we stated, one of N, N + 1,
or N+ 2,and G/N = {N, N + 1, N + 2}. How do we add elements in
G/N? Our formula NaNb = Nab translates into: (N + 1) + (N + 2) =
N + 3 = N since 3 e N; (N+2)+(N+2)=N+4-=N+1and
so on. Without being specific one feels that G/N is closely related to the
integers mod 3 under addition. Clearly what we did for 3 we could emulate
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for any integer n, in which case the factor group should suggest a relation
to the integers mod n under addition. This type of relation will be clarified
{n the next section.

Problems

1.

10.

11,

*12.

13.

*14,

15,

If H is a subgroup of G such that the product of two right cosets of
H in G is again a right coset of H in G, prove that H is normal in G.

If G is a group and H is a subgroup of index 2 in G, prove that H is
a normal subgroup of G.

. If N is a normal subgroup of G and H is any subgroup of G, prove

that NH is a subgroup of G.

Show that the intersection of two normal subgroups of G is a normal
subgroup of G.

If H is a subgroup of G and N is a normal subgroup of G, show that
H n N is a normal subgroup of H.

Show that every subgroup of an abelian group is normal.

. Is the converse of Problem 6 true? If yes, prove it, if no, give an

example of a non-abelian group all of whose subgroups are normal.

Give an example of a group G, subgroup H, and an element ¢ € G
such that aHa~! <« Hbut aHa ' # H.

Suppose H is the only subgroup of order o(f) in the finite group G.

Prove that H is a normal subgroup of G.

If H is a subgroup of G, let N(H) = {ge G| gHg™' = H}. Proye

(a) N(H) is a subgroup of G. ‘

(b) His normal in N(H).

(c) If His a normal subgroup of the subgroup K in G, then K = N(H)
(that is, N(H) is the largest subgroup of G in which H is normal).

(d) His normal in G if and only if N(H) = G.

If N and M are normal subgroups of G, prove that NM is also a

normal subgroup of G.

Suppose that N and M are two normal subgroups of G and that
N M = (¢). Show that for any ne N, me M, nm = mn.

J€ a cyclic subgroup 7 of G is normal in G, then show that every
subgroup of 7 is normal in G.

Prove, by an example, that we can find three groups £ < F < G,
where E is normal in F, F is normal in G, but E is not normal in G.

If Nis normal in G and a € G is of order o(a), prove that the order,
m, of Na in G/N is a divisor of o(a).
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16.

17.

18.

19.

20.

#21.

2.7

If N is a normal subgroup in the finite group such that ig(N) and
o(N) are relatively prime, show that any element x € G satisfying
™ = ¢ must be in N.

Let G be defined as all formal symbols '/, i = 0, i,7 = 0,1,2,...,
n — 1 where we assume

o

xpl = x'y) ifand only ifi = ', j = j

x2=9"=e¢ n>2

=yt
(a) Find the form of the product (xi/)(x*") as x%*.
(b) Using this, prove that G is a non-abelian group of order 2n.
(c) If nis odd, prove that the center of G is (¢), while if 7 is even

the center of G is larger than (¢).

This group is known as a dikedral group. A geometric realization of
this is obtained as follows: let » be a rotation of the Euclidean plane
about the origin through an angle of 2n/n, and x the reflection about
the vertical axis. G is the group of motions of the plane generated by
y and x.

X.

Let G be a group in which, for some integer n > 1, (ab)" = a"9"
for all a, b € G. Show that

(a) G™ = {x"| x € G} is a normal subgroup of G.

(b) G~V = (4"~ 1| x € G} is a normal subgroup of G.

Let G be as in Problem 18. Show

(a) a" 18" = b"a" ' foralla, beG.

(b) (aba= 6~ 1H™"~ 1 = ¢foralla, beG.

Let G be a group such that (ab)? = aPb® for all a, b € G, where p is
a prime number. Let § = {x € G|4"" = ¢ for some m depending
on x}. Prove

(a) S is a normal subgroup of G.
(b) If G = G/S and if % € G is such that #7 = ¢ then # = é.

Let G be the set of all real 2 x 2 matrices

1 &
01

d
)} . Prove that

—

8 b) where ad # 0,

under matrix multiplication. Let N = {(

(a) Nis a normal subgroup of G.
(b) G/N is abelian.

Homomorphisms

The ideas and results in this section are closely interwoven with those of the
preceding one. If there is one central idea which is common to all aspects
of modern algebra it is the notion of homomorphism. By this one means
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2 mapping from one algebraic system to a like algebraic system which
preserves structure. We make this precise, for groups, in the next definition.

DEFINITION A mapping ¢ from a group G into a group G is said to be a
homomorphism iffor all a, b € G, ¢p(ab) = P(a)P(h).

Notice that on the left side of this relation, namely, in the term ¢(ab),
the product ab is computed in G using the product of elements of G, whereas
on the right side of this relation, namely, in the term ¢(a)@(b), the product
is that of elements in G.

Example 2.7.0 ¢(x) = ¢ all xe G. This is trivially a homomorphism.
Likewise ¢(x) = « for every x € G is a homomorphism.

Example 2.7.1 Let G be the group of all real numbers under addition
(i.e., ab for a, b € G is really the real number a + b) and let G be the group
of nonzero real numbers with the product being ordinary multiplication of
real numbers. Define ¢:G — G by ¢(a) = 2% In order to verify that
this mapping is a homomorphism we must check to see whether ¢(ab) =
¢(a)(b), remembering that by the product on the left side we mean the
operation in G (namely, addition), that is, we must check if 2¢%° = 292",
which indeed is true. Since 2° is always positive, the image of ¢ is not all
of G, s0 ¢ is a homomorphism of G into G, but not onto G.

Example 2.7.2 Let G = S5 = {¢, ¢, ¥, Y%, ¢, py*} and G = {¢, ¢}.
Define the mapping f :G — G by f(¢'y’) = ¢'. Thus f(e) = ¢, f(¢) =
&S W) =, fUU?) =¢ f(¢¥) = ¢, f(¢¥?) = ¢. The reader should
verify that f'so defined is a homomorphism. ‘

‘Example 2.7.3 Let G be the group of integers under addition and let
G = G. For the integer » € G define ¢ by ¢(x) = 2x. That ¢ is a homo-
morphism then follows from ¢(x + ) = 2(x + ) = 2x + 2y = ¢(x) + ¢().

Example 2.7.4 Let G be the group of nonzero real numbers under
multiplication, G = {1, —1}, where 1.1 = 1, (=1)(=1) = 1, 1(=1) =
(=1)1 = —1. Define ¢:G — G by ¢(x) = 1 if x is positive, ¢(x) = —1if
x is negative. The fact that ¢ is a homomorphism is equivalent to the
Statements: positive times positive is positive, positive times negative is
Degative, negative times negative is positive.

Example 2.7.5 Let G be the group of integers under addition, let G, be
the group of integers under addition modulo n. Define ¢ by ¢(x) =
Temainder of x on division by n. One can easily verify this is a homo-
morphism.
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Example 2.7.6 Let G be the group of positive real numbers under
multiplication and let G be the group of all real numbers under addition.
Define ¢p:G — G by ¢(x) = log,ox. Thus

d(x9) = logio(xp) = logo(x) + logio(y) = ¢(x)¢()

since the operation, on the right side, in G is in fact addition. Thus ¢ is a
homomorphism of G into G. In fact, not only is ¢ a homomorphism but,
in addition, it is one-to-one and onto.

#Example 2.7.7 Let G be the group of all real 2 x 2 matrices (j z,)

such that ad — b¢ # 0, under matrix multiplication. Let G be the group
of all nonzero real numbers under multiplication. Define ¢:G — G by

¢(‘; 3) = ad — be.

We leave it to the reader to check that ¢ is a homomorphism of G onto G.

The result of the following lemma yields, for us, an infinite class of
examples of homomorphisms. When we prove Theorem 2.7.1 it will turn
out that in some sense this provides us with the most general example of a
homomorphism.

LEMMA 2.7.1 Suppose G is a group, N a normal subgroup of G; define the
mapping ¢ from G to G/N by ¢p(x) = Nx for all x€ G. Then ¢ ts a homo-
morphism of G onto G| N.

Proof. In actuality, there is nothing to prove, for we already have
proved this fact several times. But for the sake of emphasis we repeat it.

That ¢ is onto is trivial, for every element X € G/N is of the form
X = Ny, yeG, so X = ¢(y). To verify the multiplicative property
required in order that ¢ be a homomorphism, one just notes that if
x, y € G,

d(») = Ngy = NxNy = ¢(x)d().

In Lemma 2.7.1 and in the examples preceding it, a fact which comes
through is that a homomorphism need not be one-to-one; but there is a
certain uniformity in this process of deviating from one-to-oneness. This
will become apparent in a few lines.

DEFINITION If ¢ is a homomorphism of G into G, the kernel of ¢, K,, is
defined by K, = {x € G| ¢(x) = ¢, ¢ = identity element of G}.

Before investigating any properties of K it is advisable to establish that,
as a set, K is not empty. This is furnished us by the first part of
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LEMMA 27.2  If ¢ is a homomorphism of G into G, then

1. ¢(e) = & the unit element of G.
9. $(+~1) = ¢(x)" ' forallxeG.

Proof. To prove (1) we merely calculate ¢(x)é = @P(x) = ¢(xe) =
¢(x)¢(e), so by the cancellation property in G we have that ¢(e) = é.

To establish (2) one notes that ¢ = @(e) = p(xx™!) = p()P(x™ 1), so
by the very definition of ¢(x) ! in G we obtain the result that ¢p(x~!) =

dx) "

The argument used in the proof of Lemma 2.7.2 should remind any
reader who has been exposed to a development of logarithms of the argument
used in proving the familiar results thatlog 1 = 0 and log (1/x) = —log x;
this is no coincidence, for the mapping ¢:x — log x is a homomorphism of
the group of positive real numbers under multiplication into the group of
real numbers under addition, as we have seen in Example 2.7.6.

Lemma 2.7.2 shows that e is in the kernel of any homomorphism, so any
such kernel is not empty. But we can say even more.

LEMMA 2.7.3 If ¢ is a homomorphism of G into G with kernel K, then K is a
normal subgroup of G.

Proof. First we must check whether K is a subgroup of G. To see this
one must show that K is closed under multiplication and has inverses in it
for every element belonging to K.

If x, y € K, then ¢(x) = ¢, ¢(y) = ¢ where ¢ is the identity element of
G, and so ¢(xy) = ¢p(x)p(y) = & = ¢, whence xy € K. Also, if x € K,
¢(x) = ¢ so, by Lemma 272, ¢(x™!) = ¢(x)"! =¢" ! = ¢&; thus
=1 e K. K is, accordingly, a subgroup of G.

To prove the normality of K one must establish that for any g€ G,
ke K, gkg™' € K; in other words, one must prove that ¢(gkg™!) = ¢
Whenever ¢(k) = & But ¢(ghg™") = ¢p()p(K)d(¢™") = d(e)ed(e) ™! =
#(2)p(g)"! = ¢ This completes the proof of Lemma 2.7.3.

Let ¢ now be a homomorphism of the group G onto the group G, and
Suppose that K is the kernel of ¢. If § € G, we say an element x € G is an
tnverse image of § under ¢ if ¢p(x) = g What are all the inverse images of
& For § = ¢ we have the answer, namely (by its very definition) K.
What bout elements g # é2 Well, suppose x € G is one inverse image of g;
€an we write down others? Clearly yes, for if k € K, and if y = kx, then
$(y) = ¢(kx) = ¢p(k)p(x) = ¢§ = 3. Thus all the elements Kx are in

€ inverse image of 7 whenever x is. Can there be others? Let us suppose
that ¢(z) = 7 = ¢(x). Ignoring the middle term we are left with

() = ¢(x), and so P(z)p(x)"! =& But ¢x)"! = d(x~ 1), whence
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€= ¢(2)Pp(x)" = ¢p2)Pp(x~ 1) = ¢(zx~ 1), in consequence of which
zx~ 1 € K; thus z € Kx. In other words, we have shown that Kx accounts
for exactly all the inverse images of § whenever x is a single such inverse
image. We record this as

LEMMA 2.7.4 If ¢ is a homomorphism of G onto G with kernel K, then the set
of all inverse images of § € G under ¢ in G is given by Kx, where x is any particular
inverse image of g in G.

A special case immediately presents itself, namely, the situation when
K = (¢). But here, by Lemma 2.7.4, any & e G has exactly one inverse
image. That is, ¢ is a one-to-one mapping. The converse is trivially true,
namely, if ¢ is a one-to-one homomorphism of G into (not even onto) G, its
kernel must consist exactly of e.

DEFINITION A homomorphism ¢ from G into G is said to be an isomor-
phism if ¢ is one-to-one.

DEFINITION Two groups G, G* are said to be isomorphic if there is an
isomorphism of G onto G*. In this case we write G & G*.

We leave to the reader to verify the following three facts:
G.
G* implies G* =~ G.

1. G
2. G
3. G = G*, G* = G** implies G = G**,

2

When two groups are isomorphic, then, in some sense, they are equal.
They differ in that their elements are labeled differently. The isomorphism
gives us the key to the labeling, and with it, knowing a given computation
in one group, we can carry out the analogous computation in the other.
The isomorphism is like a dictionary which enables one to translate a
sentence in one language into a sentence, of the same meaning, in another
language. (Unfortunately no such perfect dictionary exists, for in languages
words do not have single meanings, and nuances do not come through in a
literal translation.) But merely to say that a given sentence in one language
can be expressed in another is of little consequence; one needs the dictionary
to carry out the translation. Similarly it might be of little consequence to
know that two groups are isomorphic; the object of interest might very well
be the isomorphism itself. So, whenever we prove two groups to be iso-
morphic, we shall endeavor to exhibit the precise mapping which yields
this isomorphism.

Returning to Lemma 2.7.4 for a moment, we see in it a means of character-
izing in terms of the kernel when a homomorphism is actually an isomor-
phism.
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COROLL‘E‘RY A homomorphism ¢ of G into G with kernel Ky, is an isomorphism
of G into G if and only if Ky = (e).

This corollary provides us with a standard technique for proving two
sroups to be isomorphic. First we find a homomorphism of one onto the
other, and then prove the kernel of this homomorphism consists only of
the identity element. This method will be illustrated for us in the proof
of the very important

THEOREM 2.7.1  Let ¢ be a homomorphism of G onto G with kernel K. Then
GIK ~ G.

Proof. Consider the diagram

G —¢—> G

G l
G
K

where ¢(g) = Kg.
We should like to complete this to

o l d
¢~
K

It seems clear that, in order to construct the mapping ¥ from G/K to G,
we should use G as an intermediary, and also that this construction should

be relatively uncomplicated. What is more natural than to complete the
diagram using

59



60

Group Theory Ch.2

With this preamble we formally define the mapping  from G/K to G by:
if Xe G/K, X = Kg, then y(X) = ¢(g). A problem immediately arises:
is this mapping well defined? If X € G/K, it can be written as Kg in several
ways (for instance, Kg = Kkg, ke K); but if X = Kg = K¢, g, 4 €G,
then on one hand Y (X) = ¢(g), and on the other, Y(X) = ¢(g’). For
the mapping ¥ to make sense it had better be true that ¢(g) = ¢(g').
So, suppose Kg = Kg’; then g = kg’, where k € K, hence ¢(g) = ¢(kg') =
o(k)P(g) = ép(g’) = ¢(g') since k € K, the kernel of ¢.

We next determine that i is onto. For, if € G, ¥ = ¢(g), g € G (since
¢ is onto) so ¥ = ¢(g) = Y(Kg).

If X, YeG/K, X =Kg, Y =Kf, g,feG, then XY = KgKf = Kgf,
so that y(XY) = y(Kgf) = ¢(gf) = ¢(g)¢(f) since ¢ is a homomorphism
of G onto G. But Y(X) = y(Kg) = ¢(g), ¥(¥) = ¥(Kf) = ¢(f), so we
see that Y(XY) = Y(X)Y(Y), and ¢ is a homomorphism of G/K onto G.

To prove that  is an isomorphism of G/K onto G all that remains is to
demonstrate that the kernel of ¥ is the unit element of G/K. Since the unit
element of G/K is K = Ke, we must show that if Y (Kg) = ¢, then Kg =
Ke = K. This is now easy, for ¢ = y(Kg) = ¢(g), so that ¢(g) = ¢
whence g is in the kernel of ¢, namely K. But then Kg = K since K is a
subgroup of G. All the pieces have been put together. We have exhibited
a one-to-one homomorphism of G/K onto G. Thus G/K =~ G, and Theorem
2.7.1 is established.

Theorem 2.7.1 is important, for it tells us precisely what groups can be
expected to arise as homomorphic images of a given group. These must be
expressible in the form G/K, where K is normal in G. But, by Lemma 2.7.1,
for any normal subgroup N of G, G/N is a homomorphic image of G. Thus
there is a one-to-one correspondence between homomorphic images of G
and normal subgroups of G. If one were to seek all homomorphic images of
G one could do it by never leaving G as follows: find all normal subgroups
N of G and construct all groups G/N. The set of groups so constructed
yields all homomorphic images of G (up to isomorphisms).

A group is said to be simple if it has no nontrivial homomorphic images,
that is, if it has no nontrivial normal subgroups. A famous, long-standing
conjecture was that a non-abelian simple group of finite order has an even
number of elements. This important result has been proved by the two
American mathematicians, Walter Feit and John Thompson.

We have stated that the concept of a homomorphism is a very important
one. To strengthen this statement we shall now show how the methods and
results of this section can be used to prove nontrivial facts about groups.
When we construct the group G/N, where N is normal in G, if we should
happen to know the structure of G/N we would know that of G *“up to N
True, we blot out a certain amount of information about G, but often
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“enough is left so that from facts about G/N we can ascertain certain ones
.about G. When we photograph a certain scene we transfer a three-
dimensional object to a two-dimensional representation of it. Yet, looking
at the picture we can derive a great deal of information about the scene
Aphotographed.

In the two applications of the ideas developed so far, which are given
low, the proofs given are not the best possible. In fact, a little later in
is chapter these results will be proved in a more general situation in an
sier manner. We use the presentation here because it does illustrate
‘effectively many group-theoretic concepts.

:APPLICATION 1 (Caucuy’s THEOREM FOR ABELIAN GROUPS) Suppose G
s a finite abelian group and p | o(G), where p is a prime number. Then there is an
}lenwnt a # ¢ € G such that a? = e.

- Proof. We proceed by induction over o(G). In other words, we assume
that the theorem is true for all abelian groups having fewer elements than
G. From this we wish to prove that the result holds for G. To start the
induction we note that the theorem is vacuously true for groups having a
ﬁngle element.

' If G has no subgroups H # (¢), G, by the result of a problem earlier in
the chapter, G must be cyclic of prime order. This prime must be p, and
G certainly has p — 1 elements a # e satisfying a? = ¢°@ = ..

So suppose G has a subgroup N # (), G. If p | o(N), by our induction
hypothesis, since o(N) < o(G) and N is abelian, there is an element b € N,
b # e, satisfying b” = ¢; since be N = G we would have exhibited an
element of the type required. So we may assume that p } o(N). Since G
is abelian, N is a normal subgroup of G, so G/N is a group. Moredver,
o(G/N) = o(G)/o(N), and since p } o(N),

' o(G)
o(N)
Also, since G is abelian, G/N is abelian. Thus by our induction hypothesis
there is an element X € G/N satisfying X? = ¢,, the unit element of G/|N,
> By the very form of the elements of G/N, X = Nb, b € G, so that
XP = (Nb)? = NbP. Since e, = Ne, XP = ¢, X # ¢, translates into
Nb?» = N, Nb # N. Thus 6% e N, b ¢ N. Using one of the corollaries to
I-agrange’s theorem, (b?)°™ = o, That is, 6°™? = ¢. Let. ¢ = p°M,
rtainly ¢® = ¢. In order to show that ¢ is an element that satisfies the
_Conclusion of the theorem we must finally show that ¢ # e. However, if
f=¢0"" = ¢ and so (Nb)°™ = N. Combining this with (Nb)? = N,
bXo(N),pa prime number, we find that Nb = N, and so b € N, a contra-

i,:‘ﬁcﬁon. Thus ¢ # e, ¢? = ¢, and we have completed the induction. This
. Proves the result.

) < o(G).
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APPLICATION 2 (Svirow’s THEOREM FOR ABELIAN GRroups) If G is an
abelian group of order o(G), and if p is a prime number, such that p* | o(G), p** ' k¥
o(G), then G has a subgroup of order p*.

Proof. If o = 0, the subgroup (¢) satisfies the conclusion of the result.
So suppose o # 0. Then p | o(G). By Application 1, there is an element
a # e G satisfying a? = e. Let § = {xe G|x? = ¢ some integer n}.
Since a € S, a # ¢, it follows that § # (¢). We now assert that § is a sub-
group of G. Since G is finite we must only verify that § is closed. If
x,9€S, 2" =¢ 9" =e so that (x)”"" = &Y = ¢ (we have
used that G is abelian), proving that xy € §.

We next claim that o(S) = pf with B aninteger 0 < < a. For, if some
prime ¢ | o(S), ¢ # p, by the result of Application 1 there is an element
ceS, ¢ # e satisfying ¢? = ¢. However, ¢" = ¢ for some n since ¢ €.
Since p", ¢ are relatively prime, we can find integers A, p such that Ag +
pp" = 1, so that ¢ = ¢! = M¥PP" = ((*(P")* = ¢, contradicting ¢ # e.
By Lagrange’s theorem 0o(S) | o(G), so that f < «. Suppose that f < «;
consider the abelian group G/S. Since B < o and o(G/S) = o(G)/o(S),
p|0(G]S), there is an element Sx, (x€ G) in G/S satisfying Sx # S,
(8%)P" = S for some integer n > 0. But S = (Sx)”" = Sx?", and so »*" € §;
consequently ¢ = (x?")°® = (x?")?’ = x?"*’. Therefore, x satisfies the
exact requirements needed to put it in §; in other words, x € S. Con-
sequently Sx = § contradicting Sx # §. Thus f < a is impossible and we
are left with the only alternative, namely, that f = «. S is the required
subgroup of order p*

We strengthen the application slightly. Suppose 7 is another subgroup
of G of order p*, T # S. Since G is abelian ST = T, so that ST is a sub-
group of G. By Theorem 2.5.1

5Ty — 2S0(T) _ P
oSnT) oSnT)

and since § # T, o(Sn T) < t% leaving us with o(ST) = p', y > o
Since ST is a subgroup of G, o(ST') | o(G); thus p? | o(G) violating the fact
that « is the largest power of p which divides o(G). Thus no such subgroup
T exists, and S is the unique subgroup of order p*. We have proved the

COROLLARY If G is abelian of order o(G) and p* | o(G), p** 1 ¥ o(G), there
is a unique subgroup of G of order p*.

If we look at G = S;, which is non-abelian, o(G) = 2.3, we see that G
has 3 distinct subgroups of order 2, namely, {e, ¢}, {&, dY}, {e, PP}, s0
that the corollary asserting the uniqueness does not carry over to non-
abelian groups. But Sylow’s theorem holds for all finite groups.

S
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We leave the application and return to the general development. Suppcse

is a homomorphism of G onto G with kernel K, and suppose that H is a
subgroup of G. Let H = {xe G| ¢(x) e H. We assert that H is a sub-

up of G and that H o K. That H > K is trivial, for if x € K, ¢(x) = ¢
is in H, so that K < H follows. Suppose now that x, y € H; hence ¢(x) € A
o€ H from which we deduce that ¢(xy) = ¢(x)p(3) € H There-
fore, xy € H and H is closed under the product in G. Furthermore, if
xeH, ¢(x) € H and so ¢(x~1) = ¢(x)~ ' € A from which it follows that
%~ 1 e H Allin all, our assertion has been established. What can we say
in addition in case H is normal in G? Let g€ G, h e H; then ¢(h) € H,
whence ¢(ghg™!) = ¢(g)dp(h)p(g) ™! € H, since A is normal in G. Other-
wise stated, ghg~! € H, from which it follows that H is normal in G. One
other point should be noted, namely, that the homomorphism ¢ from G
onto G, when just considered on elements of H, induces a homomorphism
of H onto H, with kernel exactly K, since K =« H; by Theorem 2.7.1 we
have that H ~ H|K.

Suppose, conversely, that L is a subgroup of G and K < L. Let L =
{#e G|z = ¢(), le L}. The reader should verify that L is a subgroup
of G. Can we explicitly describe the subgroup T = {ye G| ¢(y) € L}?
Clearly L < T. Is there any element ¢ € T which is not in L? So, suppose
te T; thus ¢(¢) € L, so by the very definition of L, ¢(¢) = ¢(/) for some
leL Thus ¢~ ') = ¢(t)p(!)"! = ¢, whence ' e K < L, thus ¢ is
in LI = L. Equivalently we have proved that T < L, which, combined
with L < T, yields that L = T.

Thus we have set up a one-to-one correspondence between the set of
all subgroups of G and the set of all subgroups of G which contain K. More-
over, in this correspondence, a normal subgroup of G corresponds to a
normal subgroup of G.

We summarize these few paragraphs in

LEMMA 275 Let ¢ be a homomorphism of G onto G with kernel K. For H a
subgroup of G let H be defined by H = {x € G| ¢(x) € H}. Then H is a sub-
&roup of G and H = K; if H is normal in G, then H is normal in G. Moreover,
this association sets up a one-to-one mapping from the set of all subgroups of G onto
ke set of all subgroups of G which contain K.

We wish to prove one more general theorem about the relation of two
-Broups which are homomorphic.

HEOREM 2.7.2.  Let ¢ be a homomorphism of G onto G with kernel K, and let
N be a normal subgroup of G, N = {x € G| ¢(x) € N}. Then GIN ~ G/N.
quivalently, GIN ~ (G/K)|(N|K).
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Proof. As we already know, there is a homomorphism 6 of G onto
G|N defined by 6(3) = N3z. We define the mapping §:G —» G/N by
Y(g) = Np(g) for all ge G. To begin with,  is onto, for if e G,
Z = ¢(g) for some g e G, since ¢ is onto, so the typical element Ng in
G| N can be represented as Np(g) = ¥(g).

If a, b € G, y(ab) = N¢(ab) by the definition of the mapping . How-
ever, since ¢ is a homomorphism, ¢(ab) = ¢(a)¢(b). Thus Y(ab) =
Np(a)p(b) = Np(a)Np(b) = y(a)(b). So far we have shown that y is
a homomorphism of G onto G/N. What is the kernel, 7, of y? Firstly, if
ne N, ¢(n) e N, so that y(n) = Np(n) = N, the identity element of
G/|N, proving that N = T. On the other hand, if t € T, {(¢) = identity
element of G/N = N;but (t) = N¢(t). Comparing these two evaluations
of Y(t), we arrive at N = N¢(t), which forces ¢(¢) € N; but this places
¢tin N by definition of N. Thatis, T = N. The kernel of y has been proved
to be equal to N. But then ¥ is a homomorphism of G onto G/N with
kernel N. By Theorem 2.7.1 G/N =~ G/N, which is the first part of the
theorem. The last statement in the theorem is immediate from the
observation (following as a consequence of Theorem 2.7.1) that G ~ G/K,
N ~ NIK, GIN ~ (G/K)/(N/K).

Problems

1. In the following, verify if the mappings defined are homomorphisms,
and in those cases in which they are homomorphisms, determine the
kernel.

(a) G is the group of nonzero real numbers under multiplication,
G =G, ¢(x) = x*allxeG.

(b) G, Gasin (a), ¢(x) = 2%

(c) G is the group of real numbers under addition, G = G, ¢(x) =
x+ lallxeG.

(d) G, Gasin (c), ¢(x) = 13x forx e G.

(e) G is any abelian group, G = G, ¢(x) = x> all x € G.

2. Let G be any group, ¢ a fixed element in G. Define ¢:G - G by
¢(x) = gxg~'. Prove that ¢ is an isomorphism of G onto G.

3. Let G be a finite abelian group of order o(G) and suppose the integer
n is relatively prime to o(G). Prove that every ¢ € G can be written
as g = x" with x e G. (Hint: Consider the mapping ¢:G - G
defined by ¢(») = »", and prove this mapping is an isomorphism
of G onto G.)

4. (a) Given any group G and a subset U, let U be the smallest sub-
group of G which contains U. Prove there is such a subgroup U
in G. (Uis called the subgroup generated by U.)



13.

14.
15.

#16.
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(b) If gug™' e U for all ge G, ue U, prove that U is a normal
subgroup of G.

Let U = {xpx~ 9" ' | x,y € G}. In this case U is usually written as

G’ and is called the commutator subgroup of G.

(a) Prove that G’ is normal in G.

(b) Prove that G/G' is abelian.

(c) If G/N is abelian, prove that N > G’.

(d) Prove that if H is a subgroup of G and H > G’, then H is normal
in G.

If N, M are normal subgroups of G, prove that NM/M ~ N/N n M.

Let V be the set of real numbers, and for a, b real, a # 0 let
TV = V defined by 7,(x) = ax + b. Let G = {1, | a, b real,
a # 0} and let N = {1,, € G}. Prove that N is a normal subgroup
of G and that G/N & group of nonzero real numbers under multi-
plication.

. Let G be the dihedral group defined as the set of all formal symbols

9l i =0,1, j=0,1,...,n — 1, where x2 = ¢, )" = ¢, xy =

9™ 1x. Prove
(a) The subgroup N = {e, », »2,..., 3" 1} is normal in G.
(b) That G/N =~ W, where W = {1, —1} is the group under

‘the multiplication of the real numbers.

. Prove that the center of a group is always a normal subgroup.
10.
11.
12.

Prove that a group of order 9 is abelian.
If G is a non-abelian group of order 6, prove that G = S;.
If G is abelian and if N is any subgroup of G, prove that G/N is

abelian.

Let G be the dihedral group defined in Problem 8. Find the center
of G.

Let G be as in Problem 13. Find G’, the commutator subgroup of G.

Let G be the group of nonzero complex numbers under multiplication
and let NV be the set of complex numbers of absolute value | (that is,
a + bie Nif a> + 6% = 1). Show that G/N is isomorphic to the
group of all positive real numbers under multiplication.

Let G be the group of all nonzero complex numbers under multi-
plication and let G be the group of all real 2 x 2 matrices of the form

—b a
Show that G and G are isomorphic by exhibiting an isomorphism of
G onto G.

a b . T
( , where not both @ and b are 0, under matrix multiplication.
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#17. Let G be the group of real numbers under addition and let N be the
subgroup of G consisting of all the integers. Prove that G/N is
isomorphic to the group of all complex numbers of absolute value 1
under multiplication.

a

#18. Let G be the group of allreal 2 x 2 matrices (
¢

’;), with ad — bc # 0,

under matrix multiplication, and let

N={(a b>eG|ad—bc= l}.
¢ d

Prove that N o G’, the commutator subgroup of G.

*#19. In Problem 18 show, in fact, that N = G.
#20. Let G be the group of all real 2 x 2 matrices of the form (g Z),

where ad # 0, under matrix multiplication. Show that G’ is precisely

the set of all matrices of the form ((l) T)

21. Let S; and §, be two sets. Suppose that there exists a one-to-one
mapping ¥ of S; into S,. Show that there exists an isomorphism of
A(S,) into A(S,), where A(S) means the set of all one-to-one mappings
of § onto itself.

2.8 Automorphisms

In the preceding section the concept of an isomorphism of one group into
another was defined and examined. The special case in which the isomor-
phism maps a given group into itself should obviously be of some importance.
We use the word “into” advisedly, for groups G do exist which have iso-
morphisms mapping G into, and not onto, itself. The easiest such example
is the following: Let G be the group of integers under addition and define
$:G > G by ¢:x— 2x for every x€G. Since ¢ +y > 2(x +) =
2x + 2y, ¢ is a homomorphism. Also if the image of x and y under ¢ are
equal, then 2x = 2y whence x = . ¢ is thus an isomorphism. Yet ¢ is
not onto, for the image of any integer under ¢ is an even integer, so, for
instance, 1 does not appear an image under ¢ of any element of G. of
greatest interest to us will be the isomorphisms of a group onto itself.

DEFINITION By an automorphism of a group G we shall mean an isomorphism
of G onto itself.

As we mentioned in Chapter 1, whenever we talk about mappings of a set
into itself we shall write the mappings on the right side, thus if 7. — S,
% € 8, then xT is the image of x under 7.
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Let / be the mapping of G which sends every element onto itself, that s,
xl = xfor all x € G. Trivially I is an automorphism of G. Let &/ (G) denote
the set of all automorphisms of G; being a subset of 4(G), the set of one-
to-one mappings of G onto itself, for elements of &/ (G) we can use the product

A(G), namely, composition of mappings. This product then satisfies the
sociative law in 4(G), and so, a fortiori, in &/ (G). Also I, the unit element
f A(G), is in & (G), so &(G) is not empty.
An obvious fact that we should try to establish is that &/ (G) is a subgroup
f A(G), and so, in its own rights, &/ (G) should be a group. If T}, T, are
A (G) we already know that 77, € A(G). We want it to be in the
“smaller set o/(G). We proceed to verify this. For all x, y € G,

)Ty = xT)(»Ty),
)T, = (xT,)(»Ty),

() T)T, = (¢T)(T) T,
(T T)((WT))T,) = Ty T,)(»T, Ty).

: That is, 71T, € &/(G). There is only one other fact that needs verifying
~in order that &/ (G) be a subgroup of 4(G), namely, that if 7" e «/(G), then
T 'esd(G). Ifx,ye G, then

(GT™HOT™NT = (T HTHOT™NT) = () = »,

‘therefore
: )T T,

thus
i T DT = ()T,

Pplacing 77! in &/(G). Summarizing these remarks, we have proved

”,VVLEMMA 281 If G is a group, then o (G), the set of automorphisms of G, is
also a group.

~ Of course, as yet, we have no way of knowing that &/(G), in general, has
~elements other than I. If G is a group having only two elements, the reader
should convince himself that & (G) consists only of I. For groups G with
- more than two elements, &/ (G) always has more than one element.
What we should like is a richer sample of automorphisms than the ones
. We have (namely, I). If the group G is abelian and there is some element
X eG satisfying x, # %, !, we can write down an explicit automorphism,
€ mapping 7 defined by x7 = x~ ! for all x € G. For any group G, T is
Onto; for any abelian G, (x) T = (xy) "' =y~ 1~ ! = x~ Yol = xT)(»T).
Also x,T = %)~ ! # xg,50 T # I.
~ However, the class of abelian groups is a little limited, and we should
;ike to have some automorphisms of non-abelian groups. Strangely enough
€ task of finding automorphisms for such groups is easier than for abelian
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Let G be a group; for g € G define T,:G — G by xT, = = g~ 'xg for all

x € G. We claim that 7, is an automorphlsm of G. Flrst T, is onto, for

given y € G, let x = gyg l. Then T, = g g =g l(gyg e =950
T, 1s onto. Now consider, for x, y € G, (xy)T =g Ym)g =g '"(xgg g =
(g Yxg) (g Yg) = (xT,)(»T,). Consequently T, is a homomorphism of G
onto itself. We further assert that 7', is one-to-one, for if x7T, = y7,, then
g 'xg = g~ 'yg, so by the cancellatlon laws in G, x = y. T is called the
inner automorphism corresponding to g. If G is non-abelian, there is a pair
a,b € G such that ab # ba; but then 47, a 'ba # b, so that T, # I
Thus for a non-abelian group G there always exist nontrivial automorphisms.

Let #(G) = {T,e (G) | ge G}. The computation of 7, for g, h € G,
might be of some interest. So, suppose x € G; by definition,

2T, = (gh) " x(gh) = k™ 'g " 'xgh = (g7 'xg) T}, = (xT) Ty = T, T},

Looking at the start and finish of this chain of equalities we find that
T, = T,T, This little remark is both interesting and suggestive. It is of
interest because it immediately yields that #(G) is a subgroup of & (G).
(Verify!) #(G) is usually called the group of inner automorphisms of G. It is
suggestive, for if we consider the mapping ¥:G — o (G) defined by
W(g) = T,for every g € G, then Y(gh) = T, = T, T, = Y(g)y(h). That
is, Y is a homomorphlsm of G into &/(G) whose image is J(G). What is
the kernel of §y? Suppose we call it K, and suppose g, € K. Then V(g = 1
or, equivalently, T, = I. But this says that for any x € G, xT, = x;
however xTy, = 8 'xgo, and so x = 8o 'xgy for all x e G. Thus gox =
2080 ‘xgo = xgo, g, must commute with all elements of G. But the center
of G, Z, was defined to be precisely all elements in G which commute with
every element of G. (See Problem 15, Section 2.5.) Thus K < Z. However,
if zeZ, then xT, = 27 'xz = 27 '(2x) (since zx = xz) = x, whence
T, = I and so z € K. Therefore, Z = K. Having proved both K < Z
and Z < K we have that Z = K. Summarizing, ¥ is a homomorphism of
G into #(G) with image #(G) and kernel Z. By Theorem 2.7.1
#(G) = G|Z. In order to emphasize this general result we record it as

LEMMA 282 J(G) ~ G|Z, where #(G) is the group of inner automorphisms
of G, and Z is the center of G.

Suppose that ¢ is an automorphisms of a group G, and suppose that
a € G has order n (that is, a® = ¢ but for no lower positive power). Then
d@)" = ¢p(a") = ¢(e) = ¢, hence ¢(@)" =e If ¢(a)" = ¢ for some
0 < m < n, then ¢(a™) = ¢(a)™ = e, which implies, since ¢ is one-to-on¢,
that a™ = ¢, a contradiction. Thus

LEMMA 2.8.3 Let G be a group and ¢ an automorphism qf'G. IfaeGis
of order 0(a) > 0, then o(¢(a)) = o(a).
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Automorphisms of groups can be used as a means of constructing new
ups from the original group. Before explaining this abstractly, we con-

’ sxdcl” a particular example.
Let G be a cyclic group of order 7 that is, G consists of all &/, where we
assllme a’ = ¢. The mapping ¢:a’ — a*!, as can be checked trivially, is
an automorphism of G of order 3, thatis, ¢> = I. Letx be a symbol which
yfwc formally subject to the following conditions: x> = ¢, ™ 'alx = ¢(d’) =
" 2i and consider all formal symbols x ‘af, where ¢ = 0,1,2 and
=0,1,2,...,6. We declare that x'a/ = x*4' if and only ifz' = kmod 3

‘andj = [ mod 7. We multiply these symbols using the rules x* = a” = ¢,

x~tax = a®. For instance, (xa)(xa?) = x(ax)a® = x(xa®)a® = xza"' The
reader can verify that one obtains, in this way, a non-abelian group of
‘order 21.

Generally, if G is a group, T an automorphism of order r of G which is
not an inner automorphism, pick a symbol x and consider all elements
x'g, 1 =0, £1, £2,..., g€ G subject to x'g = "¢’ if and only if i =
#modr, g =g and x” 'g'x = gT" for all i. This way we obtain a larger

- group {G, T}; Gis normal in {G, T} and {G, T}/G ~ group generated by
T = cyclic group of order r.
~ We close the section by determining & (G) for all cyclic groups.

Example 2.8.1 Let G be a finite cyclic group of order 7, G = (a), a’ = e.

Suppose T is an automorphism of G. If aT is known, since a'T = (aT)’,
@' T is determined, so g7 is determined for all g € G = (a). Thus we need
‘consider only possible images of @ under T. Since T € G, and since every
element in Gis a power of a, aT = d' for some integer 0 < ¢ < r. However,
since T is an automorphism, T must have the same order as a (Lemma
2.8.3), and this condition, we claim, forces ¢ to be relatively prime to r. For
ifd|t d|r, then (aT)"? = "D = ¢®P = (") = ¢; thus aT has order
a divisor of r/d, which, combined with the fact that aT has order r, leads
us to d = 1. Conversely, for any 0 < s < r and relatively prime to 7, the
‘mapping S:a’ - ¢*! is an automorphism of G. Thus &/(G) is in one-to-one
Correspondence with the group U, of integers less than r and relatively
_Prime to r under multiplication modulo . We claim not only is there such
_,La one-to-one correspondence, but there is one which furthermore is an
:YISOmorphlsm Let us label the elements of &/(G) as T; where T;:a —» a,
0 <i <7 and relatively prlme to r; T;T;:a —» o' —> (a)) = a”, thus
LiT; = T,;. The mapping i —» T, exhibits the isomorphism of Ur onto
: W(G) Here then, &(G) ~ U,.

Example 2.8.2 G is an infinite cyclic group. That is, G consists of all @,
=0, +1, +2,..., where we assume that &' = ¢ if and only if { = 0.
§uppose that T is an automorphism of G. As in Example 2.8.1, aT = d’.
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The question now becomes, What values of ¢ are possible? Since T is ap
automorphism of G, it maps G onto itself, so that a = gT for some g e G,
Thus a = a'T = (aT)’ for some integer i. Since a7 = 4', we must have
that a = @, sothat ''~! = ¢. Hence & — 1 = 0; thatis, # = 1. Clearly,
since ¢ and ¢ are integers, this must force ¢ = +1, and each of these gives
rise to an automorphism, ¢ = 1 yielding the identity automorphism I
t = —1 giving rise to the automorphism 7:g — g~ ! for every g in the
cyclic group G. Thus here, &/ (G) = cyclic group of order 2.

Problems

1. Are the following mappings automorphisms of their respective groups?
(a) G group of integers under addition, T:x — —ux.
(b) G group of positive reals under multiplication, 7T:x — x2.
(c) G cyclic group of order 12, T:x — x3.
(d) G is the group S, T:x — x~ 1.

2. Let G be a group, H a subgroup of G, T an automorphism of G.
Let (H)T = {hT | ke H}. Prove (H)T is a subgroup of G.

3. Let G be a group, T an automorphism of G, N a normal subgroup of
G. Prove that (N)T is a normal subgroup of G.

4. For G = §; prove that G ~ S(G).

5. For any group G prove that #(G) is a normal subgroup of &(G) (the
group & (G)/F(G) is called the group of outer automorphisms of G).

6. Let G be a group of order 4, G = {¢, a, b, ab}, a® = b% = ¢, ab = ba.
Determine &/ (G).

7. (a) A subgroup C of G is said to be a characteristic subgroup of G if
(C)T < C for all automorphisms 7" of G. Prove a characteristic
subgroup of G must be a normal subgroup of G.

(b) Prove that the converse of (a) is false.

8. For any group G, prove that the commutator subgroup G’ is a
characteristic subgroup of G. (See Problem 3, Section 2.7).

9. If G is a group, N a normal subgroup of G, M a characteristic sub-
group of N, prove that M is a normal subgroup of G.

10. Let G be a finite group, T an automorphism of G with the property
that xT" = x for x € G if and only if x = ¢. Prove that every ge G
can be represented as g = x~ 1(xT) for some x € G.

11. Let G be a finite group, 7 an automorphism of G with the property
that ¥7 = x if and only if x = ¢. Suppose further that 72 = I
Prove that G must be abelian.
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. Let G be a finite group and suppose the automorphism 7 sends more
than three-quarters of the elements of G onto their inverses. Prove
that x7 = x~ ! for all x € G and that G is abelian.

. In Problem 12, can you find an example of a finite group which is
non-abelian and which has an automorphism which maps exactly
three-quarters of the elements of G onto their inverses?

. Prove that every finite group having more than two elements has a
nontrivial automorphism.

. Let G be a group of order 2n. Suppose that half of the elements of G
are of order 2, and the other half form a subgroup H of order n. Prove
that H is of odd order and is an abelian subgroup of G.

. Let ¢(n) be the Euler ¢-function. If @ > I is an integer, prove that
n| @@ — 1).
. Let G be a group and Z the center of G. If T is any automorphism
of G, prove that (Z)T < Z.
. Let G be a group and 7T an automorphism of G. If, for a € G, N(a) =
{x € G| xa = ax}, prove that N(aT) = (N(a))T.
. Let G be a group and 7 an automorphism of G. If N is a normal
subgroup of G such that (N)T < N, show how you could use 7 to
define an automorphism of G/N.
. Use the discussion following Lemma 2.8.3 to construct
(a) a non-abelian group of order 55.
(b) a non-abelian group of order 203.
. Let G be the group of order 9 generated by elements a, b, where ¢ =
b® = ¢. Find all the automorphisms of G.

-

29 Cayley's Theorem

When groups first arose in mathematics they usually came from some specific
burce and in some very concrete form. Very often it was in the form of a
t of transformations of some particular mathematical object. In fact,
Inost finite groups appeared as groups of permutations, that is, as subgroups
8, (S, = A(S) when S is a finite set with n elements.) The English
thematician Cayley first noted that every group could be realized as a
;bgroup of A(S) for some S. Our concern, in this section, will be with a
resentation of Cayley’s theorem and some related results.

HEOREM 2.9.1 (CavLEY) Fuvery group is isomorphic to a subgroup of
S) for some appropriate S.

Proof. Let G be a group. For the set S we will use the elements of G;
at is, put § = G. If g€ G, define 7,:5(= G) - S(= G) by XT, = Xg
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for every xe G. If ye G, theny = (g™ Vg = (yg~ Y1, so that T, maps
S onto itself. Moreover, 7, is one-to-one, for if x, y € S and Xty = 1,
then xg = yg, which, by the cancellation property of groups, implies that
x = ». We have proved that for every g € G, 7, € A(S).

If g, ke G, consider 7,,. For any xe§ = G, x1,, = x(gh) = (xg)h =
(xt,)t, = x7,T,. Note that we used the associative law in a very essential
way here. From xt,, = x1,7, we deduce that 7, = 7,7,. Therefore, if
Y:G — A(S) is defined by Y(g) = 1,, the relation 7, = 1,7, tells us that i
is a homomorphism. What is the kernel K of yy? If g, € K, then Y/(g,) = T,
is the identity map on S, so that for x € G, and, in particular, for ¢ e G,
et,, = e. But er,) = egy = go. Thus comparing these two expressions for
et,, we conclude that g, = ¢, whence K = (¢). Thus by the corollary to
Lemma 2.7.4 y is an isomorphism of G into 4(S), proving the theorem.

The theorem enables us to exhibit any abstract group as a more concrete
object, namely, as a group of mappings. However, it has its shortcomings;
for if G is a finite group of order 0(G), ‘then, using S = G, as in our proof,
A(S) has o(G)! elements. Our group G of order o(G) is somewhat lost in
the group A4(S) which, with its 0(G)! elements, is huge in comparison to G.
We ask: Can we find a more economical S, one for which 4(S) is smaller?
This we now attempt to accomplish.

Let G be a group, H a subgroup of G. Let S be the set whose elements
are the right cosets of Hin G. Thatis, S = {Hg|ge G}. S need not be a
group itself, in fact, it would be a group only if H were a normal subgroup
of G. However, we can make our group G act on § in the following natural
way: for g € G let ¢,:§ — § be defined by (Hx)t{, = Hxg. Emulating the
proof of Theorem 2.9.1 we can easily prove

L. ¢, € A(S) for every g € G.
2. by = Ly

Thus the mapping 6:G — A(S) defined by 6(g) = ¢, is a homomorphism of
G into A(S). Can one always say that 6 is an isomorphism? Suppose that K
is the kernel of 6. If g, € K, then 0(g,) = t,, is the identity map on S, so
that for every X € §, Xt,, = X. Since every element of S is a right coset of
H in G, we must have that Hat,) = Ha for every a € G, and using the de-
finition of ¢, , namely, Hat,, = Hag,, we arrive at the identity Hag, = Ha
for every a € G. On the other hand, if b € G is such that. Hxb = Hx for
every x € G, retracing our argument we could show that b € K. Thus
K = {be G| Hxb = Hx all x € G}. We claim that from this character-
ization of K, K must be the largest normal subgroup of G which is contained
in H. We first explain the use of the word largest; by this we mean that if
N is a normal subgroup of G which is contained in H, then N must be con-
tained in K. We wish to show this is the case. That X is a normal subgroup
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of G follows from the fact that it is the kernel of a homomorphism of G.
Now we assert that K < H, for if b € K, Hab = Ha for every a € G, so,
in particular, Hb = Heb = He = H, whence b e H. Finally, if N is a
pormal subgroup of G which is contained in H, if n€ N, a e G, then
dna~t € N « H, so that Hana™ ' = H; thus Han = Ha for all ae G.
erefore, n € K by our characterization of K.

""We have proved

:j‘HEOREM 29.2 If Gis a group, H a subgroup of G, and S is the set of all
Rght cosets of H in G, then there is a homomorphism 0 of G into A(S) and the kernel
of 0 is the largest normal subgroup of G which is contained in H.

The case H = (¢) just yields Cayley’s theorem (Theorem 2.9.1). If H
should happen to have no normal subgroup of G other than (e) in it, then
6 must be an isomorphism of G into A(S). In this case we would have cut
down the size of the S used in proving Theorem 2.9.1. This is interesting
mostly for finite groups. For we shall use this observation both as a means
of proving certain finite groups have nontrivial normal subgroups, and also
as a means of representing certain finite groups as permutation groups on
-small sets.

‘We examine these remarks a little more closely. Suppose that G has a
subgroup H whose index i(#) (that is, the number of right cosets of H in G)
satisfies i(H)! < o(G). Let S be the set of all right cosets of H in G. The

' mapping, 6, of Theorem 2.9.2 cannot be an isomorphism, for if it were,
8(G) would have 0(G) elements and yet would be a subgroup of 4(S) which
has i(H)! < o(G) elements. Therefore the kernel of 6 must be larger than
(¢); this kernel being the largest normal subgroup of G which is contained
in H, we can conclude that H contains a nontrivial normal subgroup of G.
 However, the argument used above has implications even when i(H)! is
Dot less than o(G). Ifo(G) does not divide i(H)! then by invoking Lagrange’s
‘theorem we know that A(S) can have no subgroup of order o(G), hence no
subgroup isomorphic to G. However, A(S) does contain 6(G), whence (G)
Cannot be isomorphic to G; that is,  cannot be an isomorphism. But then,
A3 above, H must contain a nontrivial normal subgroup of G.
- We summarize this as

LEMMA 2.9.1 If G s a finite group, and H # G is a subgroup of G such that

G) ¥ i(H)! then H must contain a nontrivial normal subgroup of G. In particular,
cannot be simple.

PLICATIONS

L. Let G be a group of order 36. Suppose that G has a subgroup H of
der 9 (we shall see later that this is always the case). Then i(H) = 4,
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4! = 24 < 36 = o(G) so that in # there must be a normal subgroup
N # (e), of G, of order a divisor of 9, that is, of order 3 or 9.

2. Let G be a group of order 99 and suppose that H is a subgroup of G
of order 11 (we shall also see, later, that this must be true). Then i(H) = 9,
and since 99 ¥ 9! there is a nontrivial normal subgroup N # (¢) of G in H,
Since H is of order 11, which is a prime, its only subgroup other than (e) is
itself, implying that N = H. That is, H itself is a normal subgroup of G.

3. Let G be a non-abelian group of order 6. By Problem 11, Section 2.3,
there is an a # ¢ € G satisfying a®> = ¢. Thus the subgroup H = {e, a} is
of order 2, and i(H) = 3. Suppose, for the moment, that we know that
is not normal in G. Since H has only itself and (¢) as subgroups, H has no
nontrivial normal subgroups of G in it. Thus G is isomorphic to a subgroup
T of order 6 in A(S), where § is the set of right cosets of H in G. Since
0(4(S)) = i(H)! = 3! =6, T = 8. Inother words, G =& A(S) = §;. We
would have proved that any non-abelian group of order 6 is isomorphic to
S5. All that remains is to show that H is not normal in G. Since it might be
of some interest we go through a detailed proof of this. If H = {e, a} were
normal in G, then for every g e G, since gag™! € H and gag™! # ¢, we
would have that gag™! = a, or, equivalently, that ga = ag for every g€ G.
Let be G, b¢ H, and consider N(b) = {x € G| xb = bx}. By an earlier
problem, N(b) is a subgroup of G, and N(b) o H; N(b) # H since
be N(b), b¢ H. Since H is a subgroup of N(b), o(H) | o(N (b)) |6. The
only even number n, 2 < n < 6 which divides 6 is 6. So o(N (b)) = 6;
whence b commutes with all elements of G. Thus every element of G com-
mutes with every other element of G, making G into an abelian group,
contrary to assumption. Thus H could not have been normal in G. This
proof is somewhat long-winded, but it illustrates some of the ideas already
developed.

Problems

1. Let G be a group; consider the mappings of G into itself, 1,, defined
for g € G by x4, = gx for all x € G. Prove that 1, is one-to-one and
onto, and that 4,, = A,4,.

2. Let A, be defined as in Problem 1, 7, as in the proof of Theorem 2.9.1.
Prove that for any g, & € G, the mappings 4, 1, satisfy 4,7, = T4,
(Hint: For x € G consider x(4,7,) and x(7,4,).)

3. If 6 is a one-to-one mapping of G onto itself such that 1,0 = 04,
for all g € G, prove that 8§ = 1, for some % € G.

4. (a) If H is a subgroup of G show that for every g€ G, gHg ! is a

subgroup of G.
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(b) Prove that W = intersection of all glHg~ ! is a normal subgroup
of G.

5. Using Lemma 2.9.1 prove that a group of order p?, where p is a prime
number, must have a normal subgroup of order p.

" 6. Show that in a group G of order p? any normal subgroup of order p
must lie in the center of G.

' 7. Using the result of Problem 6, prove that any group of order p? is
' abelian.

8. If p is a prime number, prove that any group G of order 2p must have
a subgroup of order p, and that this subgroup is normal in G.

9. If o(G) is pg where p and ¢ are distinct prime numbers and if G has
a normal subgroup of order p and a normal subgroup of order ¢, prove
that G is cyclic.

#10. Let o(G) be pg, p > q are primes, prove
(a) G has a subgroup of order p and a subgroup of order g.
(b) If ¢ ¥ p — 1, then G is cyclic.
(c) Given two primes p, ¢, ¢ | p — 1, there exists a non-abelian group
of order pgq.
(d) Any two non-abelian groups of order pq are isomorphic.

2.10 Permutation Groups

‘We have seen that every group can be represented isomorphically as a sub-
group of A(S) for some set S, and, in particular, a finite group G can, be
represented as a subgroup of S,, for some n, where S, is the symmetric
group of degree n. This clearly shows that the groups S, themselves merit
closer examination.

_ Suppose that § is a finite set having n elements xy, x,,...,x,. If
e A(S) = S, then ¢ is a one-to-one mapping of S onto itself, and we
could write ¢ out by showing what it does to every element, e.g., ¢:x; — x5,
*2 = x4, X, > x3, ¥; — x;. But this is very cumbersome. One short cut
mlght be to write ¢ out as

hel.“e x;, is the image of »; under ¢. Returning to our example just above,
might be represented by

X Xy X3 Xy

Xy, Xy X, x3)°
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While this notation is a little handier there still is waste in it, for there seems
to be no purpose served by the symbol x. We could equally well represent

the permutation as
I 2 - n
o )

Our specific example would read

1 2 3 4

2 41 3)°
Given two permutations 6, { in §,, using this symbolic representation of §
and ¥, what would the representation of 8y be? To compute it we could
start and see what 6y does to x, (henceforth written as 1). 6 takes 1 into

1;, while ¥ takes i; into £, say, then 0 takes 1 into k. Then repeat this
procedure for 2, 3, ..., n. For instance, if 8 is the permutation represented

by
1 2 3 4
31 2 4
1 2 3 4
1 3 2 4)°

then 7; = 3 and ) takes 3 into 2, s0 £k = 2 and O takes | into 2. Similarly
0y:2 > 1, 3 > 3, 4 > 4. That is, the representation for 6 is

1 2 3 4
2 1 3 4)
1 23 4
9“(3124)
1 23 4
'/’=(1 24)’

oy (L 23 H(1 234 _(1 234
“3 12 41 32 47 \2 1 3 4

This is the way we shall multiply the symbols of the form

1 2 --- g 12-'-n)
ot gy)] ky ky o ki)

and ¥ by

If we write

and

(&4}

then
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Let S be a set and 6 € A(S). Given two elements a, b € § we define
g = obifand only if & = ¢’ for some integer i (i can be positive, negative,
or 0). We claim this defines an equivalence relation on S. For

1. a = gasince a = ab° = ae.

2. Ifa = gb, then b = af’, so that a = b0, whence b = 4a.
3* If a = 4b, b =4, then b = ab', ¢ = b0’ = (ab")0’ = af'*’, which
~ implies that a = 4.

~'This equivalence relation by Theorem 1.1.1 induces a decomposition of S
- jnto disjoint subsets, namely, the equivalence classes. We call the equivalence
class of an element s € S the orbit of s under 0; thus the orbit of s under 6
consists of all the elements s0°, i = 0, +1, +2,....

In particular, if S is a finite set and s € S, there is a smallest positive
integer [ = I(s) depending on s such that s6' = 5. The orbit of s under
then consists of the elements s, 50, 502, ..., s6'"'. By a cycle of § we mean
the ordered set (s, s0, 562, . . ., 50"~ 1. If we know all the cycles of 0 we
clearly know 0 since we would know the image of any element under 6.
Before proceeding we illustrate these ideas with an example. Let

(! 23456
“\2 13 5 6 4)

where § consists of the elements 1,2,..., 6 (remember 1 stands for x,,
2 for x,, etc.). Starting with 1, then the orbit of 1 consists of 1 = 16°,
10* = 2, 16% = 20 = 1, so the orbit of 1 is the set of elements 1 and 2.
This tells us the orbit of 2 is the same set. The orbit of 3 consists Jjust of 3;
that of 4 consists of the elements 4, 40 = 5, 402 = 50 = 6, 463 = 60 = 4.
The cycles of § are (1, 2), (3), (4, 5, 6).

- We digress for a moment, leaving our particular 6. Suppose that by the
cycle (if, i,...,4) we mean the permutation ¥ which sends 7, into i,
i, into 7, - t,_y into 7, and ¢, into i;, and leaves all other elements of §
ﬁXed Thus, for instance, if S consists of the elements 1, 2, ..., 9, then the
symbol (1, 3, 4, 2, 6) means the permutation

1 2 3 456 7 89
36 4 2517 8 9)

~w€.multiply cycles by multiplying the permutations they represent. Thus
Again, if § has 9 elements,

M2 35 6 41 9

_(1 234567809/ 23456789
2 31456 789/\8231%647509
(1 23 456 7809
“\238 16475 9
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Let us return to the ideas of the paragraph preceding the last one, and
ask: Given the permutation

0 = 1 2 3 456 789
_(238164—759)’
what are the cycles of 67 We first find the orbit of 1; namely, 1, 16 = 2,
192 =20 =3, 10> =30 =28,10* =80 =5, 10° =50 =6, 10° =60 = 4,
107 = 40 = 1. That is, the orbit of 1 is the set {1, 2, 3, 8, 5, 6, 4}. The
orbits of 7 and 9 can be found to be {7}, {9}, respectively. The cycles of 0
thus are (7), (9), (1, 16, 162,...,16% = (1,2,3,8,5,6,4). The reader
should now verify that if he takes the product (as defined in the last para-
graph) of (1,2,3,8,5,6, 4), (7), (9) he will obtain 6. That is, at least
in this case, 0 is the product of its cycles.

But this is no accident for it is now trivial to prove

LEMMA 2.10.1  Every permutation is the product of ils cycles.

Proof. Let 0 be the permutation. Then its cycles are of the form
(s, 50, ..., s6'"1). By the multiplication of cycles, as defined above, and
since the cycles of § are disjoint, the image of s’ € § under 8, which is 5°0,
is the same as the image of s’ under the product, , of all the distinct cycles
of §. So 0, ¥ have the same effect on every element of S, hence 6 = ,
which is what we sought to prove.

If the remarks above are still not transparent at this point, the reader
should take a given permutation, find its cycles, take their product, and
verify the lemma. In doing so the lemma itself will become obvious.

Lemma 2.10.1 is usually stated in the form every permutation can be
uniquely expressed as a product of disjoint cycles.

Consider the m-cycle (1,2,...,m). A simple computation shows that
(1,2,...,m) = (1,2)(1, 3) - (1, m). More generally the m-cycle
(ag, Ay - - -5 ay) = (a4, a3)(ay, a3) " (a4, a,). This decomposition is not
unique; by this we mean that an m-cycle can be written as a product of
2-cycles in more than one way. For instance, (1,2,3) = (1, 2)(1, 3) =
(3, 1)(3, 2). Now, since every permutation is a product of disjoint cycles
and every cycle is a product of 2-cycles, we have proved

LEMMA 2.10.2 Every permutation is~a product of 2-::))61?&.
We shall refer to 2-cycles as transpositions.

DEFINITION A permutation 6 € S, is said to be an even permutation if it
can be represented as a product of an even number of transpositions.
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The definition given just insists that § have one representation as a product
of an even number of transpositions. Perhaps it has other representations
as a product of an odd number of transpositions. We first want to show
that this cannot happen. Frankly, we are not happy with the proof we give
of this fact for it introduces a polynomial which seems extraneous to the
matter at hand.

Consider the polynomial in n-variables

pxys. oy x,) = H (x:i — x;).
i<j
If 0 € S, let 0 act on the polynomial p(x,, . . ., x,) by
0:p(ess- - %) = IT (% = %) > TI (vt — %agp)-
i<j i<j
It is clear that 0:p(x,..., x,) > +p(x;,..., x,). For instance, in Ss,
0 = (134)(25) takes

Pxps .oy Xs) = (xp — x2) (%) — x3)(% — x4) (%) — %5) (%, — %5)

. X (%3 — x4) (%, — x5) (x5 — x4) (%3 — %5)(x4 — x5)
into

(v3 — x5) (%3 — %) (x3 — x1)(x3 — %) (x5 — %) (x5 — x1)
X (x5 — x3)(xq — %) (%4 — %3)(x; — x3),

which can easily be verified to be —p(x,, ..., x5).

If, in particular, 6 is a transposition, 0:p(xy, ..., x,) - —p(x,. .., x,).
(Verify!) Thus if a permutation IT can be represented as a product of
an even number of transpositions in one representation, Il must leave
p(xy5 ..., x,) fixed, so that any representation of IT as a product of trahs-
position must be such that it leaves p(x,,..., x,) fixed; that is, in any
representation it is a product of an even number of transpositions. This
establishes that the definition given for an even permutation is a significant
one. We call a permutation odd if it is not an even permutation.

The following facts are now clear:

1. The product of two even permutations is an even permutation.

2. The product of an even permutation and an odd one is odd (likewise for
the product of an odd and even permutation).

3. The product of two odd permutations is an even permutation.

The rule for combining even and odd permutations is like that of com-
bining even and odd numbers under addition. This is not a coincidence
since this latter rule is used in establishing 1, 2, and 3.

Let 4, be the subset of S, consisting of all even permutations. Since the
product of two even permutations is even, 4, must be a subgroup of S,.
We claim it is normal in §,. Perhaps the best way of seeing this is as follows:
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let W be the group of real numbers 1 and —1 under multiplication. Define
y:S, » Wby y(s) = 1if sis an even permutation, Y(s) = —1if sis an
odd permutation. By the rules 1, 2, 3 above y is a homomorphism onto IV,
The kernel of  is precisely 4,; being the kernel of a homomorphism 4,
is a normal subgroup of S,. By Theorem 2.7.1 §,/4, = W, so, since

2 = o(W) = o(§> CH
An O(An)

we see that o(4,) = n!. A, is called the alternating group of degree n. We
summarize our remarks in

LEMMA 2.10.3 S, has as a normal subgroup of index 2 the alternating group,
A,,, consisting of all even permutations.

At the end of the next section we shall return to S, again.

Problems

1. Find the orbits and cycles of the following permutations:

()1234 6 7 8 9
2 \2 3 4 5 6 7 9 8)
1 2 3 4 6

(b)(6543 2)'

9. Write the permutations in Problem 1 as the product of disjoint cycles.

_—1 —

3. Express as the product of disjoint cycles:
(@) (1,2, 3)4 5)(1, 6,7, 8, 9)(1, 5).
(b) (1, 2)(1,2,3)(1,2).
4. Provethat(1,2,...,n)‘1 =(mn—1n—-2,...,2, 1)
Find the cycle structure of all the powers of (1, 2,..., 8).
6. (a) What is the order of an n-cycle?
(b) What is the order of the product of the disjoint cycles of lengths
My, Myy oo vy My?
(c) How do you find the order of a given permutation?

@

7. Compute a~ 'ba, where
(1) a= (1, 3, 5)(1, 2), b=(1,579).
() a=(57179),b=1(1,23).
8. (a) Given the permutation » = (1, 2)(3, 4), » = (5, 6)(1, 3), find 2
permutation a such that a™ 'xa = y.
(b) Prove that there is no a such that ¢ (1,2, 3)a = (1,3)(5, 7; 8)-
(c) Prove that there is no permutation a such that a 1(1,2)a =
(3, 9(1, 5).

9. Determine for what m an m-cycle is an even permutation.
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. Determine which of the following are even permutations:
(a) (1,2,3)(1, 2).
(b) (1,2, 3,4, 5)(1, 2, 3)(4, 5).
(© (1,2)(1,3)(1, 4)(2, 5).
. Prove that the smallest subgroup of S, containing (1,2) and
(1,2,...,n) 15 S,. (In other words, these generate S,.)

. Prove that for n > 3 the subgroup generated by the 3-cycles is 4,.

. Prove that if a normal subgroup of 4, contains even a single 3-cycle
it must be all of 4,,.

. Prove that 45 has no normal subgroups N # (e), 4.

. Assuming the result of Problem 14, prove that any subgroup of A,
has order at most 12.

. Find all the normal subgroups in S,.

. If n = 5 prove that 4, is the only nontrivial normal subgroup in §,.

Cayley’s theorem (Theorem 2.9.1) asserts that every group is isomorphic
p a subgroup of A(S) for some S. In particular, it says that every finite
roup can be realized as a group of permutations. Let us call the realization

.1 the permutation represeniation of G.
. Find the permutation representation of a cyclic group of order .

. Let G be the group {e, a, b, ab} of order 4, where a? = b2 = ¢,
ab = ba. Find the permutation representation of G.

. Let G be the group ;. Find the permutation representation of S;.
(Note: This gives an isomorphism of S5 into Sg.) :

- Let G be the group {e, 0, a, b, ¢, Oa, 0b, Oc}, where a? = b% = ¢ = 6,
0% = ¢, ab = Oba = ¢, bc = Ochb = a, ca = Bac = b.
(a) Show that 6 is in the center Z of G, and that Z = {e, ).
(b) Find the commutator subgroup of G.
(c) Show that every subgroup of G is normal.
(d) Find the permutation representation of G.
(Note: G is often called the group of quaternion units; it, and algebraic
systems constructed from it, will reappear in the book.)

- Let G be the dihedral group of order 2z (see Problem 17, Section 2.6).
Find the permutation representation of G.

et us call the realization of a group G as a set of permutations given in
oblem 1, Section 2.9 the second permutation representation of G.

23. Show that if G is an abelian group, then the permutation representation
of G coincides with the second permutation representation of G (i.e.,
in the notation of the previous section, 4, = 7, for all g € G.)
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36|group of order n is ----------- n n"2 phi(n) 0|phi(n)
37|Order of a quotient group G\K is------- 0(G) O(K) 0O(GK) O(G)/(O(K) |0O(G)/O(K)
normal- normal-
38(Any subgroup of index 2 is always ------ subgroup abeliean cyclic identity subgroup
39(Order of an element divides order of -------- subgroup identity group inverse group
Order of permutation is -------- of lenths of
40|disjoint cycles ged lem sum multiplication  |lem
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94. Find the second permutation representation of S,. Verify directly
from the permutations obtained here and in Problem 20 that A,7, =
1,4, for all a, b € S;.

95. Find the second permutation representation of the group G defined in
Problem 21.

26. Find the second permutation representation of the dihedral group of
order 2n.

If H is a subgroup of G, let us call the mapping {t, | g € G} defined in
the discussion preceding Theorem 2.9.2 the coset representation of G by H.
This also realizes G as a group of permutations, but not necessarily iso-
morphically, merely homomorphically (see Theorem 2.9.2).

97. Let G = (a) be a cyclic group of order 8 and let H = (a*) be its
subgroup of order 2. Find the coset representation of G by H.

98. Let G be the dihedral group of order 2n generated by elements a, b
such that a® = " = ¢, ab = b~ 'a. Let H = {¢, a}. Find the coset
representation of G by H.

99. Let G be the group of Problem 21 and let H = {¢, 8}. Find the
coset representation of G by H.

30. Let G be S,, the symmetric group of order =, acting as permutations
on theset {1,2,...,n}. Let H= {ce€G|no = n}.
(a) Prove that H is isomorphic to §,_;.
(b) Find a set of elements ay,...,4, € G such that Ha,,..., Ha,
give all the right cosets of H in G.
(c) Find the coset representation of G by H.

211 Another Counting Principle

Mathematics is rich in technique and arguments. In this great variety one
of the most basic tools is counting. Yet, strangely enough, it is one of the
most difficult. Of course, by counting we do not mean the creation of tables
of logarithms or addition tables; rather, we mean the process of precisely
accounting for all possibilities in highly complex situations. This can some-
times be done by a brute force case-by-case exhaustion, but such a routine
is invariably dull and violates a mathematician’s sense of aesthetics. One
prefers the light, deft, delicate touch to the hammer blow. But the most
serious objection to case-by-case division is that it works far too rarely.
Thus in various phases of mathematics we find neat counting devices which
tell us exactly how many elements, in some fairly broad context, satisfy
certain conditions. A great favorite with mathematicians is the process of
counting up a given situation in two different ways; the comparison of the
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two counts is then used as a means of drawing conclusions. Generally
Speaking, one introduces an equivalence relation on a finite set, measures
the size of the equivalence classes under this relation, and then equates the
number of elements in the set to the sum of the orders of these equivalence
classes. This kind of an approach will be illustrated in this section. We
shall introduce a relation, prove it is an equivalence relation, and then find
a neat algebraic description for the size of each equivalence class. From this
simple description there will flow a stream of beautiful and powerful results
about finite groups.

DEFINITION Ifa, b € G, then b is said to be a conjugate of a in G if there
exists an element ¢ € G such that b = ¢ lac.

We shall write, for this, a ~ b and shall refer to this relation as conjugacy.

- LEMMA 2111 Conjugacy is an equivalence relation on G.

Proof.  As usual, in order to establish this, we must prove that

l.a ~ q
* 2. a ~ bimplies that b ~ a;
3. an~b, b ~ cimplies that a ~ ¢

for all a, b, ¢ in G.
We prove each of these in turn.

1. Since a = ¢ 1

~ of conjugacy.

2. If a ~ b, then b = x 'ax for some x e G, hence, a = (x~ 1) " 1p(x~ 1),
and since y = x"' e Gand a = 3" by, b ~ a follows.

3. Suppose that a ~ b and b ~ ¢ where aq, b,ceG. Then b = x™ lax,
¢ = »'by for some x, y € G. Substituting for 4 in the expression for ¢
we obtain ¢ = y71(x " 'ax) y = (xy) " a(xy); since xeG, a~cis a
consequence.

ae, a ~ a, with ¢ = ¢ serving as the ¢ in the definition

For ae G let C(a) = {xe G|a ~ x}. C(a), the equivalence class of a
“in G under our relation, is usually called the conjugale class of a in Gj it
consists of the set of all distinct elements of the form »~'ay as y ranges
- over G.
- Our attention now narrows to the case in which G is a finite group.
- Suppose that C(a) has ¢, elements. We seek an alternative description of
¢,- Before doing so, note that o(G) = ¥ ¢, where the sum runs over a set
~of a € G using one a from each conjugate class. This remark is, of course,
merely a restatement of the fact that our equivalence relation—conjugacy—
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induces a decomposition of G into disjoint equivalence classes—the conjugate
classes. Of paramount interest now is an evaluation of ¢,.

In order to carry this out we recall a concept introduced in Problem 13,
Section 2.5. Since this concept is important—far too important to leave ty
the off-chance that the student solved the particular problem—we go over
what may very well be familiar ground to many of the readers.

DEFINITION If ¢ e G, then N(a), the normalizer of a in G, is the set
N(a) = {x € G| xa = ax}.

N (a) consists of precisely those elements in G which commute with a.

LEMMA 2.11.2 N(a) is a subgroup of G.

Proof. In this result the order of G, whether it be finite or infinite, is of
no relevance, and so we put no restrictions on the order of G.

Suppose that x,y€ N(a). Thus xa = ax and ya = ay. Therefore,
(9)a = x(ya) = x(ay) = (xa) y = (ax) y = a(xy), in consequence of which
xy € N(a). From ax = xa it follows that x ™ la =x" Y(ax)x ' =x" Y(xa)x~ ! =
ax~ 1, so that x~! is also in N(a). But then N(a) has been demonstrated
to be a subgroup of G. )

We are now in a position to enunciate our counting principle.

THEOREM 2111 If G is a finite group, then ¢, = o(G)[o(N(a)); in other
words, the number of elements conjugate to a in G is the index of the normalizer of
ain G.

Proof. 'To begin with, the conjugate class of a in G, C(a), consists exactly
of all the elements x~!
distinct x~ 'ax’s. Our method of proof will be to show that two elements in
the same right coset of N(a) in G yield the same conjugate of a whereas
two elements in different right cosets of N(a) in G give rise to different
conjugates of a. In this way we shall have a one-to-one correspondence

ax as x ranges over G. ¢, measures the number of

between conjugates of @ and right cosets of N (a).
Suppose that x, y € G are in the same right coset of N(a) in G. Thus

9 = nx, where n € N(a), and so na = an. Therefore, since ! = (nx)~ 1=

x"n71, y7lay = x7'n lanx = x"'n" 'nax = x” lax, whence x and )
result in the same conjugate of a.

If, on the other hand, x and y are in different right cosets of N(a) in G
we claim that x~ 'ax # y~ 'ay. Were this not the case, from x~ lax =y~ '@
we would deduce that yx~'a = apx™!; this in turn would imply that
yx~! € N(a). However, this declares x and y to be in the samg right coset
of N(a) in G, contradicting the fact that they are in different cosets. The
proof is now complete.
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OROLLARY

¢ this sum runs over one element a in each conjugate class.

Proof. Since o(G) = 3,, using the theorem the corollary becomes
mediate.

The equation in this corollary is usually referred to as the class equation of G.
Before going on to the applications of these results let us examine these
ncepts in some specific group. There is no point in looking at abelian
groups because there two eclements are conjugate if and only if they are
equal (that is, ¢, = 1 for every a). So we turn to our familiar friend, the
up 5. Its elements are ¢, (1, 2), (1, 3), (2, 3), (1,2, 3), (1, 3,2). We

umerate the conjugate classes:
Cle) = fe}

C(1,2) = {(1,2), (1, 3)7 (1, 2)(1, 3), (2,3)7(1,2)(2, 3),
(1,2,3)7%(1,2)(1,2,3), (1,3,2) 7 (1, 2)(1, 3, 2)}

= {(1,2), (1, 3), (2,3)} (Verify!)
C(1,2,3) = {(1,2,3), (1,3,2)} (after another verification).

?’he student should verify that N((1,2)) = {e (1,2)} and N((1, 2, 3)) =
’ (13 2? 3)) (19 3, 2) }, SO that 6(1’2) = %

6
= 3, 6(1,2,3) =3 = 2.

plications of Theorem 2.11.1

Theorem 2.11.1 lends itself to immediate and powerful application. We
heed no artificial constructs to illustrate its use, for the results below which
veal the strength of the theorem are themselves theorems of stature and
mportance.

- Let us recall that the center Z(G) of a group G is the set of all ae G
Buch that ax = xa for all x € G. Note the

UBLEMMA ae Z if and only if N(a) = G. If G is finite, a € Z if and
b if o(N(a)) = o(G).

. Proof. Ifae Z, xa = axforall x € G, whence N(a) = G. If, conversely,
(@) = G, xa = ax for all xe G, so that ae Z. If G is finite, o(N(a)) =
G) is equivalent to N(a) = G.
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APPLICATION 1
THEOREM 2.11.2 Ifo(G) = p" where p is a prime number, then Z(G) # (e).

Proof. 1If a € G, since N (a) is a subgroup of G, 0(N(a)), being a divisor
of o(G) = p", must be of the form o(N(a)) = p"; a € Z(G) if and only if
n, = n. Write out the class equation for this G, letting z = o(Z(G)). We
get p" = o(G) = X (p"[p"); however, since there are exactly z elements
such that n, = n, we find that

p”=z+2§u.

Now look at this! p is a divisor of the left-hand side; since n, < n for each
term in the Y. of the right side,

pT — pn—na
p a

so that p is a divisor of each term of this sum, hence a divisor of this sum.

Therefore,
p"
" — -] =z
(r-2 %)

Since ¢ € Z(G), z # 0; thus z is a positive integer divisible by the prime .
Therefore, z > 1! But then there must be an element, besides ¢, in Z(G)!
This is the contention of the theorem.

i

p

Rephrasing, the theorem states that a group of prime-power order must
always have a nontrivial center.

We can now simply prove, as a corollary for this, a result given in an
earlier problem.

COROLLARY Ifo(G) = p* where p is a prime number, then G is abelian.

Proof. Our aim is to show that Z(G) = G. At any rate, we already
know that Z(G) # (¢) is a subgroup of G so that o(Z(G)) = por p*. U
o(Z(G)) = p?,then Z(G) = G and we are done. Suppose that o(Z(G)) = #;
let aeG, a¢ Z(G). Thus N(a) is a subgroup of G, Z(G) < N(a);
a€ N(a),so that o(N(a)) > p,yet by Lagrange’s theorem o(N (a)) |o(G) = p*
The only way out is for o(N(a)) = p?, implying that a € Z(G), a con-
tradiction. Thus 0(Z(G)) = p is not an actual possibility.

APPLICATION 2 We now use Theorem 2.11.1 to prove an important
theorem due to Cauchy. The reader may remember that this theorem was
already proved for abelian groups as an application of the results Ueveloped
in the section on homomorphisms. In fact, we shall make use of this special
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in the proof below. But, to be frank, we shall prove, in the very next
tion, a much stronger result, due to Sylow, which has Cauchy’s theorem
n immediate corollary, in a manner which completely avoids Theorem
.1. To continue our candor, were Cauchy’s theorem itself our ultimate
only goal, we could prove it, using the barest essentials of group theory,
few lines. [The reader should look up the charming, one-paragraph
of of Cauchy’s theorem found by McKay and published in the American
hematical Monthly, Vol. 66 (1959), page 119.] Yet, despite all these
nter-arguments we present Cauchy’s theorem here as a striking illustration
f Theorem 2.11.1.

HEOREM 2.11.3 (Caucny) If p is a prime number and p | o(G), then
' has an element of order p.

Proof. We seek an element a # ¢ € G satisfying a? = ¢. To prove its
‘existence we proceed by induction on ¢(G); that is, we assume the theorem
be true for all groups 7 such that o(7) < o(G). We need not worry
out starting the induction for the result is vacuously true for groups of
er 1.

If for any subgroup W of G, W # G, were it to happen that p | o(W),
en by our induction hypothesis there would exist an element of order p in
/, and thus there would be such an element in G. Thus we may assume that
is not a divisor of the order of any proper subgroup of G. In particular, if
¢ Z(G), since N(a) # G, p ¥ o(N(a)). Let us write down the class
uation:

o(G)
o(G) = o(Z(G)) + N(;G o(N(a)). -
nce p | o(G), p f o(N(a)) we have that
0(G) ’
o(N(a))
d so
| o(6)

?

N@#G o(N(a)) ;

Ce we also have that p | o(G), we conclude that

o(G) — z : = o(Z(G)).
< @ N@#G o(N(a))) (Z(6)

(G) is thus a subgroup of G whose order is divisible by p. But, after all,
® have assumed that p is not a divisor of the order of any proper subgroup
G, so that Z(G) cannot be a proper subgroup of G. We are forced to

p
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accept the only possibility left us, namely, that Z(G) = G. But then ¢
is abelian; now we invoke the result already established for abelian groups
to complete the induction. This proves the theorem.

We conclude this section with a consideration of the conjugacy relatiop
in a specific class of groups, namely, the symmetric groups S,

Given the integer n we say the sequence of positive integers n;, n,, . .
n, ny < ny <+ < n, constitute a partition of nif n =ny + ny + -+ 4+ n,
Let p(n) denote the number of partitions of n. Let us determine p(n) for
small values of n:

p(1) = Isince 1 = 1 is the only partition of 1,
p(2) =2since2 =2and 2 =1 + 1,
p(3) =3since3 =3,3=14+2,3=1+1+1,
p(4) =5since4 =4,4=1+3,4=1+1+4+ 2
4=14+14+14+1,4=2+2
Some others are p(5) = 7, p(6) = 11, p(61) = 1,121,505. There is a

large mathematical literature on p(n).

Every time we break a given permutation in S, into a product of disjoint
cycles we obtain a partition of z; for if the cycles appearing have lengths n,,
Ny, ..., n, respectively, n, <n, <---<n,thenn==n 4+n, + -+ +n,.
We shall say a permutation ¢ € §, has the cycle decomposition {n,, n,,

.., n} if it can be written as the product of disjoint cycles of lengths
Nyy Mgy eney By g < 1y <--° < ;. Thusin Sy

"=(i 2 g g >0 ; s z)=(1)(2.3)(4,5,6)(7)(8,9)

has cycle decomposition {1, 1,2,2, 3}; notethat 1 + 1 +2 4+ 2 + 3 =09.
We now aim to prove that two permutations in S, are conjugate if and
only if they have the same cycle decomposition. Once this is proved, then
S, will have exactly p(n) conjugate classes.

To reach our goal we exhibit a very simple rule for computing the con-
jugate of a given permutation. Suppose that ¢ € S, and that ¢ sends i — J-
How do we find 07 '66 where 0 € S,? Suppose that 6 sends i — s and
J — t; then 0708 sends s — t. In other words, to compute 0~ 'O replace
every symbol in ¢ by its image under 0. For example, to determine 0~ ‘o0
where 6 = (1,2,3)(4,7) and ¢ = (5, 6, 7)(3, 4, 2), then, since #:5 — 5,
6 >6,7>4,3->51,4—>7 23, 0 60 is obtained from ¢ by re-
placing in o¢,5by 5, 6 by 6, 7by4, 3by 1, 4by 7, and 2 by 3, so that
0”0 = (5,6, 4)(1, 7, 3). ,

With this algorithm for computing conjugates it becomes clear that two
permutations having the same cycle decomposition are conjugate. For if

|
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= (8, Qg o5 5 ) (bys by ooy b)) oo (g, Xy, x,) and T = (ay, o,

“nl)(ﬁl! Bas---s an) (s X2 e s an): then © =0~ 100: where
ne could use as @ the permutation

(al a, N anl bl P bn; N Xy xnr)
O ay o Byt Buy it A,

, for instance, (1, 2)(3, 4, 5)(6, 7, 8) and (7, 5)(1, 3, 6)(2, 4, 8) can be
ibited as conjugates by using the conjugating permutation

-

1 2 3 45 6 7 8
751 3 6 2 4 8)°

That two conjugates have the same cycle decomposition is now trivial
or, by our rule, to compute a conjugate, replace every element in a given
cle by its image under the conjugating permutation.

We restate the result proved in the previous discussion as

MMA 211.3  The number of conjugate classes in S, is p(n), the number of
artitions of n.

'Since we have such an explicit description of the conjugate classes in
» we can find all the elements commuting with a given permutation. We
ustrate this with a very special and simple case.

Given the permutation (1, 2) in §,, what elements commute with it?
ertainly any permutation leaving both 1 and 2 fixed does. There are
— 2)!such. Also (1, 2) commutes with itself. This way we get 2(n — 2)!
ements in the group generated by (I, 2) and the (n — 2)! permutations
aving 1 and 2 fixed. Are there others? There are n(rn — 1)/2 trfans-
ositions and these are precisely all the conjugates of (1, 2). Thus the con-
gate class of (1, 2) has in it n{(n — 1)/2 elements. If the order of the
ormalizer of (1, 2) is 7, then, by our counting principle,

nn — 1) _o(S,) _n!

2 r r

hus r = 2(n — 2)!. That is, the order of the normalizer of (1, 2) is
(n — 2)!. But we exhibited 2(n — 2)! elements which commute with
» 2); thus the general element ¢ commuting with (1, 2) is ¢ = (1, 2)'z,
Where i = 0 or 1, 7 is a permutation leaving both 1 and 2 fixed.

. As another application consider the permutation (1,2, 3,...,n) € S,.
e claim this element commutes only with its powers. Certainly it does
mmute with all its powers, and this gives rise to n elements. Now, any
cycle is conjugate to (1,2,...,n) and there are (n — 1)! distinct
#-cycles in §,. Thus if # denotes the order of the normalizer of (1, 2, ..., 7)
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in §,, since o(S,)/u = number of conjugates of (I,2,...,7n) in §, <
(n — 1),
n!
U=———— =n
(n — 1)!
So the order of the normalizer of (1, 2,...,n) in S, is n. The powers of
(1,2,..., n) having given us n such elements, there is no room left for

others and we have proved our contention.

Problems

I.

10.

List all the conjugate classes in 3, find the ¢,’s, and verify the class
equation.
List all the conjugate classes in S, find the ¢,’s and verify the class
equation.
List all the conjugate classes in the group of quaternion units (see
Problem 21, Section 2.10), find the ¢,’s and verify the class equation.

. List all the conjugate classes in the dihedral group of order 2n, find

the ¢;’s and verify the class equation. Notice how the answer depends
on the parity of .

!
(a) In S, prove that there are 1 (_n—)‘ distinct 7 cycles.
r(n—r)!
(b) Using this, find the number of conjugates that the r-cycle
(1,2,...,7) hasin §,.

(c) Prove that any element ¢ in §, which commutes with (1, 2,...,r
is of the form ¢ = (1,2,...,7)7, where i =0,1,2,...,7 1
is a permutation leaving all of 1, 2, ..., r fixed.

(a) Find the number of conjugates of (1, 2)(3, 4) in S,, n > 4.
(b) Find the form of all elements commuting with (1, 2)(3, 4) in S,

. If p is a prime number, show that in S, there are (p — 1)! + 1

elements x satisfying x” = e.

If in a finite group G an element a has exactly two conjugates, prove
that G has a normal subgroup N # (¢), G.

(a) Find two elements in 4, the alternating group of degree 5, which
are conjugate in S5 but not in A;.

(b) Find all the conjugate classes in A5 and the number of elements
in each conjugate class.

(a) If N is a normal subgroup of G and a € N, show that every con-

jugate of a in G is also in N.
(b) Prove that o(N) = X ¢, for some choices of a in N.
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(c) Using this and the result for Problem 9(b), prove that in A5 there
is no normal subgroup N other than (¢) and 4.

. Using Theorem 2.11.2 as a tool, prove that if o(G) = p", p a prime
number, then G has a subgroup of order p* for all 0 < a < n.

9. If o(G) = p", p a prime number, prove that there exist subgroups
N,i=0,1,...,7r (for some r) such that G = N, :>kN1 SN,o:---
> N, = (¢) where N; is a normal subgroup of N;_; and where
Ni_lei is abelian.

. If o(G) = p", p a prime number, and H # G is a subgroup of G,
show that there exists an ¥ € G, x ¢ H such that x~ 1Hx = H.

14. Prove that any subgroup of order p"~! in a group G of order p",
p a prime number, is normal in G.

- #15. Ifo(G) = p", p a prime number, and if N' # (e) is a normal subgroup
' of G, prove that N n Z # (¢), where Z is the center of G.

. If G is a group, Z its center, and if G/Z is cyclic, prove that G must
be abelian.

. Prove that any group of order 15 is cyclic.
. Prove that a group of order 28 has a normal subgroup of order 7.

. Prove that if a group G of order 28 has a normal subgroup of order 4,
then G is abelian.

212 Sylow's Theorem

Lagrange’s theorem tells us that the order of a subgroup of a finite groyp is
a divisor of the order of that group. The converse, however, is false. There
are very few theorems which assert the existence of subgroups of prescribed
order in arbitrary finite groups. The most basic, and widely used, is a
classic theorem due to the Norwegian mathematician Sylow.

We present here three proofs of this result of Sylow. The first is a very
elegant and elementary argument due to Wielandt. It appeared in the
journal Archiv der Matematik, Vol. 10 (1959), pages 401-402. The basic
elements in Wielandt’s proof are number-theoretic and combinatorial. It
has the advantage, aside from its elegance and simplicity, of producing the
subgroup we are seeking. The second proof is based on an exploitation of
ipduction in an interplay with the class equation. It is one of the standard
classical proofs, and is a nice illustration of combining many of the ideals
developed so far in the text to derive this very important cornerstone due to
Sylow. The third proof is of a completely different philosophy. The basic
dea there is to show that if a larger group than the one we are considering
atisfies the conclusion of Sylow’s theorem, then our group also must.

9
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This forces us to prove Sylow’s theorem for a special family of groups—the
symmetric groups. By invoking Cayley’s theorem (Theorem 2.9.1) we are
then able to deduce Sylow’s theorem for all finite groups. Apart from thig
strange approach—to prove something for a given group, first prove it for 5
much larger one—this third proof has its own advantages. Exploiting the
ideas used, we easily derive the so-called second and third parts of Sylow’s
theorem.

One might wonder: why give three proofs of the same result when, clearly,
one suffices? The answer is simple. Sylow’s theorem is that important that
it merits this multifront approach. Add to this the completely diverse
nature of the three proofs and the nice application each gives of different
things that we have learned, the justification for the whole affair becomes
persuasive (at least to the author). Be that as it may, we state Sylow’s
theorem and get on with Wielandt’s proof.

THEOREM 2121 (Syrow) If p is a prime number and p* | o(G), then
G has a subgroup of order p*.

Before entering the first proof of the theorem we digress slightly to a
brief number-theoretic and combinatorial discussion.

The number of ways of picking a subset of £ elements from a set of n
elements can easily be shown to be

n\) _ n!
k] klin — k)Y
If n = p*m where p is a prime number, and if p" | m but p"* 1 } m, consider
(p“m) __ (rm)
i ) ('m — P!
_ t'm{p'm — D (pfm —0) - (p'm — p* + 1)'
pa(pa _ 1)...([)a _ Z‘)...(p“ — P+ 1)

The question is, What power of p divides ([J m)? Looking at this number,
pa

written out as we have written it out, one can see that except for the term
m in the numerator, the power of p dividing (#*m — ¢) is the same as that
dividing p* — i, so all powers of p cancel out except the power which

divides m. Thus
| pam) but r+1 /l/ (pam)‘
y ( " ror (™
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_ First Proof of the Theorem. Let ./ be the set of all subsets of G which

pm .

/J“ elements. Given M,, M, € 4
(M is a subset of G having p* elements, and likewise so is M,) define
. ~ M, if there exists an element g € G such that M; = M,g. It is
ediate to verify that this defines an equivalence relation on .#. We
im that there is at least one equivalence class of elements in . such that
e number of elements in this class is not a multiple of p"*1, for if p"* ! is
, divisor of the size of each equivalence class, then p"* ! would be a divisor

ve p* elements. Thus .# has

1

b4

of the number of elements in .#. Since .# has <[J in) elements and
?’"’1,}’(‘0 m)’ this cannot be the case. Let {M,,..., M,} be such an
: »

sequivalence class in . where p"* 1 ¥ n. By our very definition of equivalence
in M, if ge G, for each ¢ = 1,...,n, M;g = M; for some j, | <j < n
“We let H= {ge G| Mg = M,}. Clearly H is a subgroup of G, for if
, b € H, then Mya = M,, Mb = M, whence Mab = (Ma)b = Mb =
M,. We shall be vitally concerned with o(H). We claim that no(H) =
‘(G); we leave the proof to the reader, but suggest the argument used in
he counting principle in Section 2.11. Now no(H) = o(G) = p*m; since
Pt Y n and p**7 | p*m = no(H), it must follow that p*|o(H), and so
o(H) > p*. However, if m; € M, then for all he H, mhe M;. Thus
M, has at least o(H) distinct elements. However, M,; was a subset of G
‘eontaining p* elements. Thus p* > o(H). Combined with o(H) > p* we
ave that o(H) = p* But then we have exhibited a subgroup of G having exactly
" elements, namely H. This proves the theorem; it actually has done more—
t has constructed the required subgroup before our very eyes! "

What is usually known as Sylow’s theorem is a special case of Theorem
-12.1, namely that

COROLLARY Ifp™ | o(G), p™* ' k o(G), then G has a subgroup of order p™.

A subgroup of G of order p™, where p™ | o(G) but p™* ! ¥ o(G), is called a
Sylow subgroup of G. The corollary above asserts that a finite group has
~Sylow subgroups for every prime p dividing its order. Of course the
Conjugate of a p-Sylow subgroup is a p-Sylow subgroup. In a short while
€ shall see how any two p-Sylow subgroups of G—for the same prime p—
€ related. We shall also get some information on how many p-Sylow
ubgroups there are in G for a given prime p. Before passing to this, we want
0 give two other proofs of Sylow’s theorem.

We begin with a remark. As we observed just prior to the corollary,
e corollary is a special case of the theorem. However, we claim that the
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theorem is easily derivable from the corollary. That is, if we know that ¢
possesses a subgroup of order p™, where p™ [ o(G) but P Y o(G), they
we know that G has a subgroup of order p* for any a such that p* | o(G).
This follows from the result of Problem 11, Section 2.11. This result states
that any group of order p”, p a prime, has subgroups of order p* for any
0 < o < m. Thus to prove Theorem 2.12.1—as we shall proceed to do,
again, in two more ways—it is enough for us to prove the existence of
p-Sylow subgroups of G, for every prime p dividing the order of G.

Second Proof of Sylow’s Theorem. We prove, by induction on the order
of the group G, that for every prime p dividing the order of G, G has a
p-Sylow subgroup.

If the order of the group is 2, the only relevant prime is 2 and the group
certainly has a subgroup of order 2, namely itself.

So we suppose the result to be correct for all groups of order less than
0(G). From this we want to show that the result is valid for G. Suppose,
then, that p™ | o(G), p™* ! ¥ o(G), where p is a prime, m > 1. If p™ | o(H)
for any subgroup H of G, where H # G, then by the induction hypothesis,
H would have a subgroup T of order p™. However, since 7 is a subgroup
of H, and H is a subgroup of G, T too is a subgroup of G. But then 7" would
be the sought-after subgroup of order p™.

We therefore may assume that p™ } o(H) for any subgroup H of G, where
H # G. We restrict our attention to a limited set of such subgroups.
Recall that if a € G then N(a) = {x € G|xa = ax} is a subgroup of G;
moreover, if a ¢ Z, the center of G, then N(a) # G. Recall, too, that the
class equation of G states that

T
() = 2 TN@y

where this sum runs over one element a from each conjugate class. We
separate this sum into two pieces: those a which lie in Z, and those which
don’t. This gives

o(G)
o(G) =z + ,
P ey

where z = 0(Z). Now invoke the reduction we have made, namely, that
™ ¥ o(H) for any subgroup H # G of G, to those subgroups N (a) for a ¢ Z.
Since in this case, p™ | 6(G) and p™ ¥ o(N{(a)), we must have that

0o(G)

P sy

Restating this result,
0(G)
o(N(a))

i
1
!
i
:
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gorevery a € Gwhere a ¢ Z. Look at the class equation with this information
ﬁl pand. Since p™ | o(G), we have that p | o(G); also

o(G)
57 o(N(a)

us the class equation gives us that p | z. Since p | z = o(Z), by Cauchy’s
heorem (Theorem 2.11.3), Z has an element & # ¢ of order p. Let
= (), the subgroup of G generated by b. B is of order p; moreover,
ince b € Z, B must be normal in G. Hence we can form the quotient group
} = G/B. We look at G. First of all, its order is o(G)/o(B) = o(G)/p,
hence is certainly less than o(G). Secondly, we have p™~ 11o(G), but
_p"',{’o(G Thus, by the induction hypothesis, G has a subgroup P of order
,:?""1 Let P = {xe G|xB e P}; by Lemma 2.7.5, P is a subgroup of
6. Moreover, P & P|B (Prove!); thus

V4

= op) = 2 < T

his results in o(P) = p™. Therefore P is the required p-Sylow subgroup of
. This completes the induction and so proves the theorem.

With this we have finished the second proof of Sylow’s theorem. Note
that this second proof can easily be adapted to prove that if p*| o(G), then
has a subgroup of order p* directly, without first passing to the existence
f a p-Sylow subgroup. (This is Problem 1 of the problems at the end of
this section.)

We now proceed to the third proof of Sylow’s theorem.

Third Proof of Sylow’s Theorem. Before going into the details of the
roof proper, we outline its basic strategy. We will first show that the
Symmetric groups S,., p a prime, all have p-Sylow subgroups. The next
tep will be to show that if G is contained in M and M has a p-Sylow sub-
oup, then G has a p-Sylow subgroup. Finally we will show, via Cayley’s
theorem, that we can use § o for large enough £, as our M. With this we
will have all the pieces, and the theorem will drop out.

In carrying out this program in detail, we will have to know how large
b-Sylow subgroup of S, should be. This will necessitate knowing what
ower of p divides (#")!. This will be easy. To produce the p-Sylow sub-
roup of S, will be harder. To carry out another vital step in this rough
ketch, it will be necessary to introduce a new equivalence relation in groups,
nd the corresponding equivalence classes known as double cosets. This
ill have several payoffs, not only in pushing through the proof of Sylow’s
€orem, but also in getting us the second and third parts of the full Sylow
heorem.
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So we get down to our first task, that of finding what power of a prime
p exactly divides (!, Actually, it is quite easy to do this for n! for any
integer n (see Problem 2). But, for our purposes, it will be clearer and will
suffice to do it only for (p*)!.

Let n(k) be defined by $"® | ($*)! but POy (P90

LEMMA 2121 n(k) = 1 + p + -+ pL

Proof. If k = 1 then, since p! = 1:2---(p — 1)-p, it is clear that
p|p! but p? y p!. Hence n(l) = 1, as it should be.

What terms in the expansion of (#*)! can contribute to powers of p
dividing ($*)!? Clearly, only the multiples of p; that is, p, 20, ... ,p ¥ 1p.
In other words n(k) must be the power of p which divides
225)(3p) - (#19) = p7 (P 1)L But then n(k) = p71 + n(k — 1).
Similarly, n(k — 1) = n(k — 2) + £~ 2, and so on. Write these out as

n(k) —nk — 1) =71,
nk — 1) = n(k — 2) = p77,

n(2) — n(1) = p,
n(l) = 1.

Adding these up, with the cross-cancellation that we get, we obtain
nk) =1 +p+p>+-+ p*~ 1. This is what was claimed in the lemma,
so we are done.

We are now ready to show that Sy has a p-Sylow subgroup; that is, we
shall show (in fact, produce) a subgroup of order 2"® in S .

LEMMA 2.12.2 S has a p-Sylow subgroup.

Proof. 'We go by induction on k. If k£ = 1, then the element (12 ...p),
in S, is of order p, so generated a subgroup of order p. Since n(1) =1,
the result certainly checks out for £ = 1.

Suppose that the result is correct for £ — 1; we want to show that it
then must follow for k. Divide the integers 1,2,..., p* into p clumps,
each with p*~ ! elements as follows:

,2,..., 07, P+ L+ 2,..., 2051, ...,
N {([7 - l)pk—l + 1,~~-9Pk}~

The permutation ¢ defined by o= (L' + 1,271 +1,...

(b= D 4+ 1) G 5200 g (= P A L)
(1,251, .., (p — 1)pFT L, pY) has the following properties:

l. 6 =e.
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2. If 7 is a permutation that leaves all ¢ fixed for i > p*~! (hence, affects
only 1,2,...,4*""), then 6™ '7¢ moves only elements in {p*~ ! + I,
PN+ 2,00, 20471}, and more generally, ¢ 76’ moves only elements
in {p*70 + Lttt + 2, (4 DA

Consider 4 = {reSu|t() = iifi > p*7'}. 4 is a subgroup of S,
and elements in 4 can carry out any permutation on 1,2,..., %" L
From this it follows easily that 4 &~ S-:. By induction, 4 has a subgroup
P, of order p"*~ D,

Let T = Pi(¢7'Pyo)(06™*P6%) -+ (6”@ VPg?~Y) = P,P,---P,_,,
where P; = ¢7'P;6’. Each P, is isomorphic to P, so has order p"*~ D,
Also elements in distinct P;’s influence nonoverlapping sets of integers,
hence commute. Thus T is a subgroup of Su. What is its order? Since
P,nP;=()if0<i#j<p— 1, weseethato(T) = o(P,)? = pPrk— 1,
We are not quite there yet. T is not the p-Sylow subgroup we seek!

Since o = ¢ and ¢ ‘P;¢' =P, we have ¢ 1T = T. Let P =
{6't]te T, 0 <j<p— 1} Since 6 ¢ T and 6”76 = T we have two
things: firstly, T is a subgroup of S, and, furthermore, o(P) = p-o(T) =
pepmET P = prem P Now we are finally there! P is the sought-after
p-Sylow subgroup of S .

Why? Well, what is its order? It is p"*~Dr+1  But n(k — 1) =
L+p4+--+p72 hence prk — 1) + 1l =1 + p+ -+ + p~ 1 = n(k).
Since now o(P) = p"®, P is indeed a p-Sylow subgroup of S e

Note something about the proof. Not only does it prove the lemma, it
actually allows us to construct the p-Sylow subgroup inductively. We
follow the procedure of the proof to construct a 2-Sylow subgroup in .

Divide 1, 2, 3,4 into {I,2} and {3,4}. Let P, = ((12)) and ¢™=
(13)(24). Then P, = ¢”'Pjg = (34). Our 2-Sylow subgroup is then
the group generated by (1 3)(2 4) and

T =PP, = {(12),(34),(12)(34),¢}.

In order to carry out the program of the third proof that we outlined, we
now introduce a new equivalence relation in groups (see Problem 39,
Section 2.5).

DEFINITION Let G be a group, 4, B subgroups of G. If x, y € G define
x ~ pif y = axb for some a € A, b € B.

We leave to the reader the verification—it is easy—of

LEMMA 2123 The relation defined above is an equivalence relation on G.
The equivalence class of x € G is the set AxB = {axb|a € A, b € B}.
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We call the set AxB a double coset of 4, Bin G.

If A, B are finite subgroups of G, how many elements are there in the
double coset AxB? To begin with, the mapping 7:4xB — AxBx~ ! given
by (axb)T = axbx™' is one-to-one and onto (verify). Thus o(4xB) =
o(AxBx~1). Since xBx~ ! is a subgroup of G, of order o(B), by Theorem 2.5.1,
o(Ao(xBx~ 1) _ o(A)o(B)

0(AxB) = o(AxBx™1') = — —
oA nxBx~') o(4 nxBx™ ")

We summarize this in

LEMMA 2.12.4 If A, B are finite subgroups of G then

o(4)o(B)

o(AxB) = m.

We now come to the gut step in this third proof of Sylow’s theorem.

LEMMA 2.12.5 Let G be a finite group and suppose that G is a subgroup of the
finite group M. Suppose further that M has a p-Sylow subgroup Q. Then G has a
p-Sylow subgroup P. In fact, P = G 0 xQx~ v for some x € M.

Proof. Before starting the details of the proof, we translate the hypoth-
eses somewhat. Suppose that p™ | o(M), p™*' f o(M), @ is a subgroup
of M of order p™. Let o(G) = p"t where p f t. We want to produce a sub-
group P in G of order p".

Consider the double coset decomposition of M given by G and @;
M = |) GxQ. By Lemma 2.12.4,

JGxg) — _NCNQ "

oG nxQx~ 1) oG xQx~ 1Y)

Since G N xQx~ ! is a subgroup of x@Qx~ !, its order is p™. We claim that
m, = n for some x € M. If not, then

o(GxQ) = L = gpmtn=m-

m
so is divisible by p"* 1. Now, since M = |} GxQ, and this is disjoint union,
o(M) = Y 0(GxQ), the sum running over one element from each double
coset. But p™*1|0(GxQ); hence p™* *|o(M). This contradicts p™* '} o(M).
Thus m, = n for some x e M. But then o(G nxQx™ ') = p". Since
G ~ xQ x~! = Pis a subgroup of G and has order ", the lemma is proved.

3

We now can easily prove Sylow’s theorem. By Cayley’s theorem
(Theorem 2.9.1) we can isomorphically embed our finite group G in S,
the symmetric group of degree n. Pick £ so that n < p*; then we can iso-
morphically embed S, in Sy (by acting on 1,2,...,n only in the set
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1,2,...,m,...,4", hence G is isomorphically embedded in Sy By
Lemma 2.12.2, S, has a p-Sylow subgroup. Hence, by Lemma 2.12.5,
G must have a p-Sylow subgroup. This finishes the third proof of Sylow’s
theorem.

This third proof has given us quite a bit more. From it we have the
machinery to get the other parts of Sylow’s theorem.

THEOREM 2.12.2 (Seconp Part oF SyLow’s THEOREM) If G is a finite
group, p a prime and p" | o(G) but p"* ' ¥ o(G), then any two subgroups of G of
order p" are conjugate.

Proof. Let A4, B be subgroups of G, each of order 4. We want to show
that A = gBg~?! for some g € G.

Decompose G into double cosets of 4 and B; G = U 4xB. Now, by
Lemma 2.12.4, :

o(4)o(B)

o(AxB) = —2A4)\5)
o(4 n xBx~ 1)

If A # xBx™! for every x € G then o(4d N xBx~1!) = p™ where m < n.
Thus

and 22 — m > n + 1. Since p"*!|o(4xB) for every x and since o(G) =
2 o(4xB), we would get the contradiction p"**|o(G). Thus 4 = gBg™!
for some g € G. This is the assertion of the theorem. -

Knowing that for a given prime p all p-Sylow subgroups of G are conjugate
allows us to count up precisely how many such p-Sylow subgroups there
are in G. The argument is exactly as that given in proving Theorem 2.11.1.
In some earlier problems (see, in particular, Problem 16, Section 2.5) we
discussed the normalizer N(H), of a subgroup, defined by N(H) =
{x e G|xHx~' = H}. Then, as in the proof of Theorem 2.11.1, we have
that the number of distinct conjugates, xHx~*, of H in G is the index of N(H) in G.
Since all p-Sylow subgroups are conjugate we have

LEMMA 2.12.6  The number of p-Sylow subgroups in G equals o(G)/o(N(P)),
where P is any p-Sylow subgroup of G. In particular, this number is a divisor of o(G).

However, much more can be said about the number of p-Sylow subgroups
there are, for a given prime g, in G. We go into this now. The technique
will involve double cosets again.
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THEOREM 2.12.3 (Tumrp Part oF Syrow’s THEOREM)  The number of
p-Sylow subgroups in G, for a given prime, is of the form 1 + kp.
Proof. Let P be a p-Sylow subgroup of G. We decompose G into double

cosets of P and P. Thus G = () PxP. We now ask: How many elements
are there in PxP? By Lemma 2.12.4 we know the answer:

o(P)*
o(P n xPx™ 1)’
Thus, if P nxPx~ ' # P then p"*'|o(PxP), where p" = o(P). Para-
phrasing this: if x ¢ N(P) then p"*! | o(PxP). Also, if x € N(P), then PxP =
P(Px) = P*x = Px, so o(PxP) = p" in this case.
Now

o(PxP) =

o(G) = Z o(PxP) + Z o(PxP),

xeN(P) x¢N(P)
where each sum runs over one element from each double coset. However,
if x e N(P), since PxP = Px, the first sum is merely ¥, ycp) 0(Px) over
the distinct cosets of P in N(P). Thus this first sum is just o(N(P)). What
about the second sum? We saw that each of its constituent terms is divisible
by "*1, hence
Pt Z o(PxP).
x ¢ N(P)
We can thus write this second sum as
D o(PxP) = ptlu.
x¢ N(P)
Therefore 0(G) = o(N(P)) + p"*'u, so
O(G) _1 [7"+ lu
o(N(P)) o(N(P))
Now o(N(P)) | o(G) since N(P) is a subgroup of G, hence p"*'ujo(N (P))
is an integer. Also, since p"*! ¥ o(G), p"* ! can’t divide o(N(P)). But then
" ufo(N(P)) must be divisible by p, so we can write p"* 'ujo(N(P)) as kp,
where £ is an integer. Feeding this information back into our equation
above, we have

o(G)
o(N(P))

Recalling that o(G)/o(N(P)) is the number of p-Sylow subgroups in G,
we have the theorem.

=1+ kp.

In Problems 20-24 in the Supplementary Problems at the end of this
chapter, there is outlined another approach to proving the second and third
parts of Sylow’s theorem.

We close this section by demonstrating how the various prrts of Sylow’s
theorem can be used to gain a great deal of information about finite groups
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&  Let G be a group of order 112-132, We want to determine how many
& 11-Sylow subgroups and how many 13-Sylow subgroups there are in G.
b The number of 11-Sylow subgroups, by Theorem 2.12.13, is of the form
| 1 + 11k By Lemma 2.12.5, this must divide 112-132; being prime to 11,
it must divide 132. Can 132 have a factor of the form 1 + 114? Clearly no,
| other than 1 itself. Thus I + 11% = 1, and so there must be only one 11-
L Sylow subgroup in G. Since all 11-Sylow subgroups are conjugate (Theorem
f 2.12.2) we conclude that the 11-Sylow subgroup is normal in G.
. What about the 13-Sylow subgroups? Their number is of the form
| 1 + 13% and must divide 112- 132, hence must divide 112. Here, too, we
| conclude that there can be only one 13-Sylow subgroup in G, and it must
i be normal.
®  We now know that G has a normal subgroup 4 of order 112 and a normal
F subgroup B of order 132, By the corollary to Theorem 2.11.2, any group
’ of order p? is abelian; hence A4 and B are both abelian. Since 4 N B = (e),
i we casily get AB = G. Finally, if ae 4, be B, then aba='p~1 =
a(ba™ ') e A since A is normal, and aba™ "6~ = (aba )6~ ! € B since
W B is normal. Thus aba~ 151 €4 N B = (¢). This gives us aba~ 15~ 1 = e
¥ andsoab = baforae A4, be B. This, together with 4B = G, A, B abelian,
 allows us to conclude that G is abelian. Hence any group of order 112-132
must be abelian.
We give one other illustration of the use of the various parts of Sylow’s
heorem. Let G be a group of order 72;0(G) = 2332, How many 3-Sylow
ubgroups can there be in G? If this number is t, then, according to Theorem
2.3, t =1 + 3%, According to Lemma 2.12.5, t| 72, and since ¢ is
rime to 3, we must have ¢ | 8. The only factors of 8 of the form 1 + 3k
re ] and 4; hence t = 1 or ¢ = 4 are the only possibilities. In other words
has either one 3-Sylow subgroup or 4 such.
If G has )only one 3-Sylow subgroup, since all 3-Sylow subgroups are
‘conjugate, this 3-Sylow subgroup must be normal in G. In this case G
‘would certainly contain a nontrivial normal subgroup. On the other hand
if the number of 3-Sylow subgroups of G is 4, by Lemma 2.12.5 the index of
¥ in Gis 4, where N is the normalizer of a 3-Sylow subgroup. But 72 4 4! =
(i(NV))!. By Lemma 2.9.1 N must contain a nontrivial normal subgroup of
G (of order at least 3). Thus here again we can conclude that G contains a
nontrivial normal subgroup. The upshot of the discussion is that any group

of order 72 must have a nontrivial normal subgroup, hence cannot be
simple.

E Problems

1. Adapt the second proof given of Sylow’s theorem to prove directly
i that if p is a prime and %] 0(G), then G has a subgroup of order p*

-
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10.

11.

*12.

13.

. If x > 01is a real number, define [x] to be m, where m is that integer

such that m < x < m + 1. If p is a prime, show that the power of

p which exactly divides »! is given by

B[]

. Use the method for constructing the p-Sylow subgroup of Sy to find

generators for
(a) a 2-Sylow subgroup in Sg. (b) a 3-Sylow subgroup in S,.

. Adopt the method used in Problem 3 to find generators for

(a) a 2-Sylow subgroup of §5. (b) a 3-Sylow subgroup of S¢.

. If p is a prime number, give explicit generators for a p-Sylow sub-

group of §,..

. Discuss the number and nature of the 3-Sylow subgroups and 5-

Sylow subgroups of a group of order 32.52,

. Let G be a group of order 30.

(a) Show that a 3-Sylow subgroup or a 5-Sylow subgroup of G
must be normal in G.

(b) From part (a) show that every 3-Sylow subgroup and every
5-Sylow subgroup of G must be normal in G.

(c) Show that G has a normal subgroup of order 15.

(d) From part (c) classify all groups of order 30.

(e¢) How many different nonisomorphic groups of order 30 are there?

. If G is a group of order 231, prove that the 11-Sylow subgroup is in

the center of G.

. If G is a group of order 385 show that its 11-Sylow subgroup is normal

and its 7-Sylow subgroup is in the center of G.

If G is of order 108 show that G has a normal subgroup of order 3,
where £ > 2.

If o(G) = pg, p and ¢ distinct primes, p < g, show
(a) ifp ¥ (¢ — 1), then G is cyclic.
*(b) if p] (¢ — 1), then there exists a unique non-abelian group of
order pq.

Let G be a group of order pgr, p < g < r primes. Prove

(a) the r-Sylow subgroup is normal in G.

(b) G has a normal subgroup of order gr.

(c) if ¢ ¥ (r — 1), the g-Sylow subgroup of G is normal in G.

If G is of order p2q, p, ¢ primes, prove that G has a noatrivial nor-
mal subgroup.




Sec. 2.13 Direct Products

*14. If G is of order p?q, p, q primes, prove that either a p-Sylow sub-
group or a ¢-Sylow subgroup of G must be normal in G.

15. Let G be a finite group in which (ab)? = aPb? for every a, be G,
where p is a prime dividing o(G). Prove
(a) The p-Sylow subgroup of G is normal in G.
*(b) If P is the p-Sylow subgroup of G, then there exists a normal
subgroup N of G with P n N = (¢) and PN = G.
(c) G has a nontrivial center.

. ¥*16. If G is a finite group and its p-Sylow subgroup P lies in the center of

4 G, prove that there exists a normal subgroup N of G with P N =
(¢) and PN = G.

*17. If H is a subgroup of G, recall that N(H) = {xe G|xHx" ! = H}.
If P is a p-Sylow subgroup of G, prove that N(N(P)) = N(P).

*18. Let P be a p-Sylow subgroup of G and suppose a, b are in the center

of P. Suppose further that a = xbx~ ! for some x € G. Prove that
there exists a y € N(P) such that a = yby~ 1.

E **19. Let G be a finite group and suppose that ¢ is an automorphism of G
such that ¢> is the identity automorphism. Suppose further that
¢(x) = x implies that ¥ = ¢. Prove that for every prime p which
divides o(G), the p-Sylow subgroup is normal in G.

#20. Let G be the group of # X n matrices over the integers modulo p,
p a prime, which are invertible. Find a p-Sylow subgroup of G.

21. Find the possible number of 11-Sylow subgroups, 7-Sylow subgroups,
and 5-Sylow subgroups in a group of order 52-7-11.

22. If Gis 83 and 4 = ((1 2)) in G, find all the double cosets Axd of
4in G.

23. If Gis S, and 4 = ((1234)), B = ((12)), find all the double
cosets AxB of A, B in G.

24. If G is the dihedral group of order 18 generated by a? = 4° = ¢,
ab = b~ 'a, find the double cosets for H, K in G, where H = (a)
and K = (53).

213 Direct Products

On several occasions in this chapter we have had a need for constructing a
€w group from some groups we already had on hand. For instance,
owards the end of Section 2.8, we built up a new group using a given group
and one of its automorphisms. A special case of this type of construction
as been seen earlier in the recurring example of the dihedral group.
However, no attempt had been made for some systematic device for
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constructing new groups from old. We shall do so now. The method re-
presents the most simple-minded, straightforward way of combining groups
to get other groups.

We first do it for two groups—not that two is sacrosanct. However,
with this experience behind us, we shall be able to handle the case of any
finite number easily and with dispatch. Not that any finite number is
sacrosanct either; we could equally well carry out the discussion in the
wider setting of any number of groups. However, we shall have no need for
so general a situation here, so we settle for the case of any finite number of
groups as our ultimate goal.

Let 4 and B be any two groups and consider the Cartesian product
(which we discussed in Chapter 1) G = 4 x B of 4 and B. G consists
of all ordered pairs (a, b), where a € 4 and b € B. Can we use the operations
in A and B to endow G with a product in such a way that G is a group?
Why not try the obvious? Multiply componentwise. That is, let us define,
for (ay, b;) and (a,, b,) in G, their product via (ay, b;)(a,, b,) = (a,a,, b.b,).
Here, the product a,a, in the first component is the product of the elements
a; and a, as calculated in the group 4. The product 4,5, in the second
component is that of b, and b, as elements in the group B.

With this definition we at least have a product defined in G. Is G a
group relative to this product? The answer is yes, and is easy to verify.
We do so now.

First we do the associative law. Let (ay, b,), (a,, b,), and (aj, b;) be
three elements of G. Then ((ay, b,)(a,, b,))(as, b3) = (a,a,, b1b,)(as, b3) =
((a1a5)as, (byby)bs), while (ay, by)((ay, by) (a3, b3)) = (ay, by)(a2as, bybs) =
(a(aya3), b1(b,b3)). The associativity of the product in 4 and in B then
show us that our product in G is indeed associative.

Now to the unit element. What would be more natural than to try
(e, f), where ¢ is the unit element of 4 and f that of B, as the proposed
unit element for G? We have (q, b)(e,f) = (ae, bf) = (a, b) and
(e,f)(a, b) = (ea, fb) = (a, ). Thus (¢, f) acts as a unit element in G.

Finally, we need the inverse in G for any element of G. Here, too,
why not try the obvious? Let (a,b) € G; try (a” !, 5™ 1) as its inverse.
Now (a, b)(a™',671Y) = (aa™ ', 66 ") = (e,f) and (a” %, 6" Y)(a, b) =
(@™ 'a, b7 'b) = (¢, f), so that (a~ !, b~ ') does serve as the inverse for (a, b).

With this we have verified that G = 4 x B is a group. We call it the
external direct product of A and B.

Since G = 4 x B has been built up from 4 and B in such a trivial
manner, we would expect that the structure of 4 and B would reflect heavily
in that of G. This is indeed the case. Knowing 4 and B completely gives
us complete information, structurally, about 4 x B.

The construction of G = A x B has been from the outside, external.
Now we want to turn the affair around and try to carry it out internally in G.
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Consider 4 = {(a,f)eG|aed} c G = 4 x B, where f is the unit
element of B. What would one expect of 4? Answer: 4 is a subgroup of
G and is isomorphic to 4. To effect this isomorphism, define ¢:4 — 4
by ¢(a) = (a,f) for ae A. Tt is trivial that ¢ is an isomorphism of 4
onto A. Tt is equally trivial that 4 is a subgroup of G. Furthermore, 4 is
normal in G. For if (¢, f) € 4 and (a,, b,) € G, then (ay, 1) (a, f)(ay, b))~ =
(ay, bl)(aif)(al_ Y bl*l) = (ajaa,7", blfblal) = (alaal_lif) e A. Sowe
have an isomorphic copy, 4, of 4 in G which is a normal subgroup of G.

What we did for 4 we can also do for B. If B — {(e;b)eG|be B},
then B is isomorphic to B and is a normal subgroup of G.

We claim a little more, namely G = 4B and every ¢ € G has a unique
decomposition in the form g = @b withae 4 and b ¢ B. For, g = (a, b) =
(a,.f)(e, b) and, since (a,f) e 4 and (¢, b) € B, we do have g = ab with
@ = (a,f) and b = (¢, 6). Why is this unique? If (a, ) = %j, where
feAdandjeB, then 7 = (x, f), xedandj = (¢,3), y& B; thus (a, b) =
% = (xf)(ey) = (x,). This gives x=a and y = b, and so % = 4
and j = 5.

Thus we have realized G as an internal product 4B of two normal sub-
groups, 4 isomorphic to A, B to B in such a way that every element g e G
has a unique representation in the form g = @b, with 2e 4 and b € B,

We leave the discussion of the product of two groups and go to the case
of n groups, n > 1 any integer.

Let Gy, G,,...,G, be any n groups. Let G =Gy x G, x -+ x G, =
{(¢1,82,---,8,) | g:€G;} be the set of all ordered n-tuples, that is, the
Cartesian product of G, Gy, ..., G,. We define a product in G via

(€15 82, -, 8,)(83 &2, -5 &) = (2181, 8283, - - -, ga8l), that is, via com-
ponentwise multiplication. The product in the ith component is carried

in the group G;. Then Gis a group in which (e, ¢,,. .., ¢,) is the unit ele-
ment, where each ¢, is the unit element of Gy, and where (g, g,,...,5,)"! =
(&g oo 87 Y. We call this group G the external direct product of
G, Gy,...,G,

InG=6G, xG, x-x G, let G; = {(ersens v oslisg, i Civrs-ons 2,)]
& €G;}. Then G; is a normal subgroup of G and is isomorphic to G;.
Moreover, G = GG, - G, and every g€ G has a unique decomposition
& =84, &, where 3, €G,,..., 3,eG,. We leave the verification of
these facts to the reader.

Here, too, as in the case 4 x B, we have realized the group G internally
as the product of normal subgroups Gy, ..., G, in such a way that every
element is uniquely representable as a product of elements g, - - - g,, where
each g; € G;. With this motivation we make the

DEFINITION Let G be a group and Ny, N,, ..., N, normal subgroups of
G such that :
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n

2. Given g € G then g = mym, - --m,, m; € N; in a unique way.

1. G = N,N,---N,.

We then say that G is the internal direct product of Ny, Ny, ..., N,.

Before proceeding let’s look at an example of a group G which is the
internal direct product of some of its subgroups. Let G be a finite abelian
group of order p*p,* - - - p,** where py, ps, - .-, p, are distinct primes and
each o; > 0. If P,,..., P, are the p,-Sylow subgroup,..., p,-Sylow
subgroup respectively of G, then G is the internal direct product of
P, P,,..., P, (see Problem 5).

We continue with the general discussion. Suppose that G is the internal
direct product of the normal subgroups N;,..., N,. The N, ..., N,
are groups in their own right—forget that they are normal subgroups of G
for the moment. Thus we can form the group T'= N; X N, x -+ X N,
the external direct product of Ny, ..., N,. One feels that G and T should
be related. Our aim, in fact, is to show that G is isomorphic to 7. If we
could establish this then we could abolish the prefix external and internal
in the phrases external direct product, internal direct product—after all
these would be the same group up to isomorphism—and just talk about the
direct product.

We start with

LEMMA 2.13.1 Suppose that G is the internal direct product of Ny, ..., N,
Then for i # j, N; A N; = (e), and if a € N;, b€ N; then ab = ba.

Proof. Suppose that x € N; n N;. Then we can write x as
K= ey ey Xei e e
where ¢, = ¢, viewing x as an element in N;. Similarly, we can write x as
K= egte e ey e

where ¢, = ¢, viewing # as an element of N;. But every element—and so,
in particular x—has a unique representation in the form mym,---m,
where m; € Ny, ..., m, € N,. Since the two decompositions in this form for
x must coincide, the entry from N; in each must be equal. In our
first decomposition this entry is x, in the other it is e; hence x = ¢
Thus N; n N; = (e) for i # ;.

Suppose a € N;, b€ N;, and i # j. Then aba™' € N; since N; is normal;
thus aba™'6~' € N;. Similarly, since a”' € N, ba™'b~' € N;, whence
aba™ 6~ 'e N, Butthen aba™'6"'e N, N; = (¢). Thus aba™'b""' =¢;
this gives the desired result ab = ba.

One should point out that if Ky, ..., K, are normal subgroups of G
such that G = K;K,-+- K, and K; n K; = (¢) for i # j it need not be
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true that G is the internal direct product of K,,..., K, A more stringent
condition is needed (see Problems 8 and 9).

! We now can prove the desired isomorphism between the external and
f internal direct products that was stated earlier.

THEOREM 2131 Let G be a group and suppose that G is the internal direct
L product of Ny,..., N, L& T = Ni x Ny x-+-x N,. ThenG and T

b are isomorphic.
Proof. Define the mapping Y:T — G by

| V(b b, b)) = b6y -8,

4, where each b, e N, i = 1,...,n. We claim that i is an isomorphism
. of T onto G.

i To begin with, y is certainly onto; for, since G is the internal direct
L product of N, .. ., N,, if x € G then x = a,a, - - “a,for somea, e N, ...,
b a, € N,. But then y((ay, a,,..., a,)) = aja,-+-a, = x. The mapping
Y is one-to-one by the unigueness of the representation of every element as
La product of elements from N, ..., N, For, if y((ay,...,a,) =
?‘z//((cl, -++5 €y)), where a;€e Ny, ¢; e Ny for i =1,2,..., 1, then, by the
 definition of ¢, aa, - - - @, = ¢163 """ ¢,. The uniqueness in the definition
internal direct product forces 4 =1, @ =0y,...,a, =¢, Thus y
 is one-to-one.

. All that remains is to show that ¥ is a homomorphism of 7 onto G.
10X = (a,...,a,), Y=(by,..., b,) are elements of T then

lﬁ(XY) = l//((als SRR an)(bls cees bn))
Y(aiby, azbs, ..., a,b,)

= abiazb, - -ab,.

oi

b

{ However, by Lemma 2.13.1, ab; = bja; if i # j. This tells us that
101426, -a,b, = aja,-- “a,biby b, Thus Y(XY) = aiayaybib,---b,.
ut we can recognize a,a, - -a, as Y((ay, a,, . . ., a,)) = Y(X)and b.b,---b,
s Y(Y). We therefore have Y(XY) = y(X)y(Y). In short, we have shown
hat y is an isomorphism of 7" onto G. This proves the theorem.

Note one particular thing that the theorem proves. If a group G is

omorphic to an external direct product of certain groups G;, then G is,
fact, the internal direct product of groups G, isomorphic to the G;. We

Lsimply say that G is the direct product of the G; (or G,).

~ In the next section we shall see that every finite abelian group is a direct

Product of cyclic groups. Once we have this, we have the structure of all

finite abelian groups pretty well under our control.

~ One should point out that the analog of the direct product of groups

‘exists in the study of almost all algebraic structures. We shall see this later

-
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for vector-spaces, rings, and modules. Theorems that describe such an
algebraic object in terms of direct products of more describable algebraic
objects of the same kind (for example, the case of abelian groups above) are
important theorems in general. Through such theorems we can reduce the
study of a fairly complex algebraic situation to a much simpler one.

Problems

1. If 4 and B are groups, prove that 4 x B is isomorphic to B x 4.

10.

*11.

12.

If G,, G,, G, are groups, prove that (G; x G;) X Gj is isomorphic

to G; x G, x G,. Care to generalize?

If T=G, x G, x -+ x G, prove that for each : =1,2,...,n

there is a homomorphism ¢; of T onto G;. Find the kernel of ¢;.

Let Gbe agroupandlet T = G x G.

(a) Show that D = {(g,g)€G x G|ge G} is a group isomorphic
to G.

(b) Prove that D is normal in 7"if and only if G is abelian.

. Let G be a finite abelian group. Prove that G is isomorphic to the

direct product of its Sylow subgroups.

Let 4, B be cyclic groups of order m and #, respectively. Prove that
A x Bis cyclic if and only if m and 7 are relatively prime.

Use the result of Problem 6 to prove the Chinese Remainder Theorem;
namely, if m and n are relatively prime integers and u, 2 any two
integers, then we can find an integer x such that x = u mod m and
x = v mod n.

Give an example of a group G and normal subgroups Ny,..., N,
such that G = N;N,--- N, and N; n N; = (¢) for i # j and yet
G is not the internal direct product of Ny, ..., N,

. Prove that G is the internal direct product of the normal subgroups

N,,..., N, if and only if

1. G = N;--*N,

2. N, (N\N,-+*N;_(Nyyy--N,) = (e)fori=1,...,n

Let G be a group, K, . .., K, normal subgroups of G. Suppose that
K, nKy,n---nK, = (). Let V; = G/K;. Prove that there is an
isomorphism of G into V; x V3 x -+ x V.

Let G be a finite abelian group such that it contains a subgroup
H, # (¢) which lies in every subgroup H # (¢). Prove that G must
be cyclic. What can you say about o(G)?

Let G be a finite abelian group. Using Problem 11 show that G is
isomorphic to a subgroup of a direct product of a finite number of
finite cyclic groups.
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13. Give an example of a finite non-abelian group G which contains a
subgroup H, # (¢) such that Hy < H for all subgroups H # () of G.

14. Show that every group of order £%, p a prime, is either cyclic or is
isomorphic to the direct product of two cyclic groups each of order p.

. Let G = 4 x A where 4 is cyclic of order t; p a prime. How many
automorphisms does G have?

I G =K, x K, x -+ x K, describe the center of G in terms of
those of the K.

17. If 6 = K; x K, x --- xK, and g € G, describe

N(g) = {xe G|xg = gx}.

18. If G is a finite group and MN,,..., N, are normal subgroups of G
such that G = NN, -+ N, and o(G) = o(Ny)o(N,) - -+ o(N,), prove
that G is the direct product-of Ny, N,,..., N..

214 Finite Abelian Groups

We close this chapter with a discussion (and description) of the structure
. of an arbitrary finite abelian group. The result which we shall obtain is a
- famous classical theorem, often referred to as the Fundamental Theorem on
- Finite Abelian Groups. It is a highly satisfying result because of its de-
cisiveness. Rarely do we come out with so compact, succinct, and crisp a
result. In it the structure of a finite abelian group is completely revealed,
‘and by means of it we have a ready tool for attacking any structural problem
“about finite abelian groups. It even has some arithmetic consequenees.
For instance, one of its by-products is a precise count of how many non-.
‘isomorphic abelian groups there are of a given order. ,

In all fairness one should add that this description of finite abelian groups
is not as general as we can go and still get so sharp a theorem. As you shall
see in Section 4.5, we completely describe all abelian groups generated by
- finite set of elements—a situation which not only covers the finite abelian
8roup case, but much more.

.~ We now state this very fundamental result.

THEOREM 2.14.1 Every finite abelian group is the direct product of cyclic
Fgroups.

Proof. Our first step is to reduce the problem to a slightly easier one.
We have already indicated in the preceding section (see Problem 5 there)
tthat any finite abelian group G is the direct product of its Sylow subgroups.
df we knew that each such Sylow subgroup was a direct product of cyclic
?él‘oups we could put the results together for these Sylow subgroups to

S
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realize G as a direct product of cyclic groups. Thus it suffices to prove the
theorem for abelian groups of order " where p is a prime.

So suppose that G is an abelian group of order p". Our objective is to
find elements 4y, . . . , @ in G such that every element x € G can be written
in a unique fashion as x = a,"a,* - - - ;. Note that if this were true and
ay, .., @ were of order p™, ..., p", where ny 2 ny 2 *°° > n, then the
maximal order of any element in G would be p™ (Prove!). This gives us
a cue of how to go about finding the elements a, ..., & that we seek.

The procedure suggested by this is: let @, be an element of maximal
order in G. How shall we pick a,? Well, if A, = (a;) the subgroup
generated by a;, then a, maps into an element of highest order in G/4,.
If we can successfully exploit this to find an appropriate a,, and if 4, =
(a,), then a; would map into an element of maximal order in G[4,4,,
and so on. With this as guide we can now get down to the brass tacks of
the proof.

Let a, be an element in G of highest possible order, p", and let 4; =
(a,). Pick b, in G such that b,, the image of b, in G = G[4,, has maximal
order p". Since the order of b, divides that of b,, and since the order of
a, is maximal, we must have that n; > n,. In order to get a direct product
of A, with (b,) we would need 4; N (b,) = (¢); this might not be true
for the initial choice of b,, so we may have to adapt the element b,. Suppose
that 4, n (b,) # (¢); then, since b,7"2 € A, and is the first power of b, to
fall in 4, (by our mechanism of choosing b,) we have that b7 = a,’.
Therefore (a,/)?" ™ = (bP")P" ™ = b,”" = e, whence a,"7"*"" = e. Since
a, is of order p" we must have that p™ | ™", and so p" | 2. Thus, re-
calling what ¢ is, we have b,P"r = a,t = a7 This tells us that if a, =
a, 7b, then a,?" = e. The element a, is indeed the element we seek. Let
A, = (a3). We claim that 4, n 4, = (¢). For, suppose that a,' € 4y;
since a, = a; 'b,, we get (a;77b,)" € 4, and so b,' € A,. By choice of by,
this last relation forces p™ | ¢, and since a,?"* = ¢ we must have that a) = ¢
In short 4, N A, = (¢).

We continue one more step in the program we have outlined. Let
b, € G map into an element of maximal order in GJ(4,4,). If the order
of the image of by in G/(4,4,) is p™, we claim that n3 < n; < ;. Why?
By the choice of ny, b57™ € 4; s0 is certainly in 4;4,. Thus ny < n,. Since
by € A Ay, b7 = a;"a,. We claim that p™ | i, and p" |ip. For
b,”" € A, hence (a,"a,)?"*™™ = (b57)?"2 "> = b7 € 4. This tells us
that a,"">"" € 4, and so p" | i,p™ ™", which is to say, p™ | i,. Also by =
¢, hence (a;a,?)7"1 "™ = b7 = ¢; this says that a P ed, 04y = (e)s
that is, ;""" = e. This yields that p™ | 7;. Let i = by = 2P thus
byP"s = aJ1P"ayP. Letay = a, Jay 9%, Ay = (aj); note that a?" = ¢
We claim that 45 n (4,4,) = (¢). Forif a;' € 4,4, then (a,"1a, 772bs)" €
A, A,, giving us by € 4;4,. But then p™ [, whence, since az¥* = ¢, we have
a = e. In other words, 43 N (4;43) = (€).
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Continuing this way we get cyclic subgroups 4, = (a)), 4, =
- (a3)s -5 4 = () of order pm, pma ... p™ respectively, with n, >
. my == m such that G = 4,4,-- ‘4, and such that, for each i,
Ay (4,4, 4;_)) = (¢). This tells us that every x € G has a unique
epresentation as x = ajay ‘-, where aj € 4;,...,a,€ 4,. In other
words, G is the direct product of the cyclic subgroups A4, 4,, ..., 4,
The theorem is now proved.

% DEFINITION If G is an abelian group of order p", p a prime, and G =
. Ay, x Ay x -+ x 4, where each 4, is cyclic of order P with ny > n, >
*+ 2 m >0, then the integers nj, n,,...,n, are called the invarianis

Just because we called the integers above the invariants of G does not
mean that they are really the invariants of G. That is, it is possible that we
an assign different sets of invariants to G. We shall soon show that the
invariants of G are indeed unique and completely describe G.
Note one other thing about the invariants of G. If G = 4; x -+ x A,
where 4; is cyclic of order p™, n; > n, >+ >n, > 0, then o(G) =
(41)0(4,) * - - 0o(4y), hence p" = priphz. .. e = prtmatetme Whence p =
1 + 7y + -+ . In other words, ny, n,,. .., n, give us a partition of n.
We have already run into this concept earlier in studying the conjugate
lasses in the symmetric group.

Before discussing the uniqueness of the invariants of G, one thing should
be made absolutely clear: the elements aj, ..., @ and the subgroups
1> -+, 4, which they generate, which arose above to give the decom-
osition of G into a direct product of cyclic groups, are not unique. Let%
. see this in a very simple example. Let G = {e, g, b, ab} be an abelian
. 8roup of order 4 where a? = b2 = ¢, ab = ba. Then G = A x B where
= (a), B = (b) are cyclic groups of order 2. But we have another
ecomposition of G as a direct product, namely, G = C x B where
= (ab) and B = (b). So, even in this group of very small order, we can
et distinct decompositions of the group as the direct product of cyclic
oups. Our claim—which we now want to substantiate—is that while
ese cyclic subgroups are not unique, their orders are

EFINITION If G is an abelian group and s is any integer, then G(s) =
x eCG l x5 = e}

Because G is abelian it is evident that G(s) is a subgroup of G. We now

:'EMMA 2141 If G and G’ are isomorphic abelian groups, then for every
Buieger 5, G (s), and G'(s) are isomorphi.
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Proof. Let ¢ be an isomorphism of G onto G'. We claim that ¢ maps
G(s) isomorphically onto G'(s). First we show that ¢(G(s)) = G'(s).
For, if x € G(s) then x* = ¢, hence ¢(+°) = $le) = ¢. But ¢(x°) = d(x)°;
hence ¢(x)* = ¢ and so ¢(x) is in G'(s). Thus ¢(G(s)) = G'(s).

On the other hand, if #' € G'(s) then («')* = ¢. But, since ¢ is onto,
u = ¢(y) for some yeG. Therefore ¢ = W) = ¢(9)° = o). Be-
cause ¢ is one-to-one, we have y° = ¢ and 50y € G(s). Thus ¢ maps G(s)
onto G'(s).

Therefore since ¢ is one-to-one, onto, and a homomorphism from G(s)
to G'(s), we have that G(s) and G'(s) are isomorphic.

We continue with

LEMMA 2.14.2 Let G be an abelian group of order p", p a prime. Suppose
that G = Ay x A, x -+ x Ay, where each A, = (a;) is cyclic of order p™,
andny > n, > = mn > 0. Ifmisan integer such that n, > m > n,., then
G(p™ = By x =+ x By x Ajyq X0 X A, where B; is cyclic of order
p™, generated by P ", for i < t. The order of G(p™) is p", where

k
u=mt+ Z n;.

i=t+1

Proof. TFirst of all, we claim that 4,,4,..., 4, are all in G(p™). For,

since m>myq =-cr=m >0, if j=t4+1 af” = (af)P" i = e
Hence 4, forj > ¢ + 1 lies in G(p™).

Secondly, if ¢ < ¢ then n; > m and (g ™P" = af" = e, whence
each such % ™ is in G(p™) and so the subgroup it generates, B,, is also
in G(p™).

Since By, ..., By Ay, ..+ 5 4y are all in G(p7), their product (which
is direct, since the product 4,4, -4 is direct) is in G(p™). Hence
G(p™ o By X+ x By x 4,4 X r X 4.

On the other hand, if x = a,*a,*? -+ - g** isin G(p™), since it then satisfies
X" = e, weset ¢ = 27" = aMP" - g}, However, the product of the
subgroups 4, . .., 4, is direct, so we get

m m
MPT = gL, g = e

ay k

Thus the order of a;, that is, p™ must divide A;p™ for i=1,2,...,k If
i > t + 1 this is automatically true whatever be the choice of Apots oo Pk
since m > 4y > >m, hence p%|p", i =t + 1. However, for
i <1, we get from p" | A;p™ that p"~™| 4. Therefore 1; = ppmi~™ for
some integer v;. Putting all this information into the values of the A;’s in
the expression for x as x = a,* - - - g™ we see that

" - -
x = g P a " "’aHllgH - aklk.
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This says that x € By x -+ x B, x 4,,, x -+ x 4.
Now since each B; is of order p™ and since o(4;) = p™ and since
G =By x X B X A4y x x4,

o(G) = o(B1)o(By) =+ 0(B)o(dy1y) -+~ o(dy) = prpm- - prprert - p,
e —

Thus, if we write o(G) = ", then t-times

- The lemma is proved.

' COROLLARY I G is as in Lemma 2.14.2, then o(G (p)) = p*

- Proof. Apply the lemma to the case m = 1. Then ¢ = k, hence
cu = lk = kand so o(G) = p*.

We now have all the pieces required to prove the uniqueness of the
. invariants of an abelian group of order p".

THEOREM 2.14.2  Tuwo abelian groups of order p" are isomorphic if and only
" if they have the same invariants.

: In other words, if G and G’ are abelian groups of order p" and G = Ay x -+ x A,
- where each A; is a cyclic group of order p", ny > -+ > n > 0, and G’ =
Bi x -+ x By, where each B is a cyclic group of order Py = >k >0,
\ then G and G’ are isomorphic if and only if k = s and for each i, n; = h;.

Proof. One way is very easy, namely, if G and G’ have the same “in-
_ variants then they are isomorphic. For then G = 4, x +-- x A, where
. 4; = (a;) is cyclic of order p™, and G’ = B} x -+ x Bj where B = (b))
~is cyclic of order p". Map G onto G’ by the map ¢(a,* - g =
(61)% -+ - (b;)™. We leave it to the reader to verify that this defines an
isomorphism of G onto G'.
Now for the other direction. Suppose that G = 4, x -+ x 4,
G' =B} x - x By, 4;, Bj as described above, cyclic of orders p™, i
respectively, where n; >--->n, > 0 and hy >+ >h >0. We
- want to show that if G and G’ are isomorphic then ¥ = s and each n; = h,.
If G and G’ are isomorphic then, by Lemma 2.14.1, G(p™) and G'(p™)
- must be isomorphic for any integer m > 0, hence must have the same order.
Let’s see what this gives us in the special case m = 1; that is, what in-
formation can we garner from o(G(p)) = o(G’(p)). According to the
~corollary to Lemma 2.14.2, o(G(p)) = #* and o(G'(p)) = #°. Hence
#* =p°and so k = 5. At least we now know that the number of invariants
for G and G’ is the same.
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If n, # h; for some i, let ¢ be the first ¢ such that n, # h,; we may sup-
pose that n, > h. Let m = k. Consider the subgroups, H = {x”"|x € G}
and H' = {(x')?" | ' € G}, of G and G’, respectively. Since G and G’ are
isomorphic, it follows easily that H and H' are isomorphic. We now ex-
amine the invariants of H and H'.

Because G = A, x *+* x A, where 4; = (g;) is of order p™, we get that

H=C xxC, xxC,

where C, = (™) is of order p"~™, and where r is such that n, > m =
h, > n,_;. Thus the invariants of H are ny —m, n, —m,...,n —m
and the number of invariants of His r > t.

Because G’ = B} x -+ x Bj, where B; = (b;) is cyclic of order ey
we get that H' = D} x -+* x D;_,, where D; = ((b;)P™) is cyclic of order
p~™ Thus the invariants of H' are by — m, ..., h_, — m and so the
number of invariants of H"is ¢ — 1.

But H and H' are isomorphic; as we saw above this forces them to have
the same number of invariants. But we saw that assuming that n; # &
for some i led to a discrepancy in the number of their invariants. In con-
sequence each n; = k;, and the theorem is proved.

An immediate consequence of this last theorem is that an abelian group
of order p" can be decomposed in only one way—as far as the orders of the
cyclic subgroups is concerned—as a direct product of cyclic subgroups. Hence
the invariants are indeed the invariants of G and completely determine G.

If ny>--+2m >0 n=n + - +mn, is any partition of », then
we can easily construct an abelian group of order p” whose invariants are
n, >+ 2mn > 0. To do this, let 4; be a cyclic group of order p™ and
let G = A, x -+ x 4, be the external direct product of A;,..., 4
Then, by the very definition, the invariants of G are ny > -+ = m > 0.
Finally, two different partitions of n give rise to nonisomorphic abelian
groups of order p". This, too, comes from Theorem 2.14.2. Hence we have

THEOREM 2.14.3 The number of nonisomorphic abelian groups of order "
p a prime, equals the number of partitions of n.

Note that the answer given in Theorem 2.14.3 does not depend on the
prime p; it only depends on the exponent n. Hence, for instance, the number
of nonisomorphic abelian groups of order 2* equals that of orders 34, or
54 etc. Since there are five partitions of 4, namely: 4 = 4, 3 + 1,2 + 2,
24+ 1+1,1+1+1+1, then there are five nonisomorphic abelian
groups of order p* for any prime p.

Since any finite abelian group is a direct product of its Sylow subgroups,
and two abelian groups are isomorphic if and only if their corresponding
Sylow subgroups are isomorphic, we have the
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COROLLARY  The number of nonisomorphic abelian groups of order p,**- - -p,*,

where the p; are distinct primes and where each «; > 0, is p(ay)p(oy) - - p(at,),
where p(u) denotes the number of partitions of u.

Problems
1. If G is an abelian group of order p", p a prime and n, > n, > -+ >

m > 0, are the invariants of G, show that the maximal order of any
element in G is p™.

2. If G is a group, 4,..., 4; normal subgroups of G such that 4; N
(414, -+ 4;_1) = (e) for all ¢, show that G is the direct product of
A, ..., A4, G = 4,4, 4,.

3. Using Theorem 2.14.1, prove that if a finite abelian group has sub-
groups of orders m and n, then it has a subgroup whose order is the least
common multiple of m and n.

4. Describe all finite abelian groﬁps of order
(a) 28. (b) 116. (c) 7°. (d) 24-34

5. Show how to get all abelian groups of order 23 - 34 -5,

6. If G is an abelian group of order p" with invariants n; > -+ >n, > 0
and H # (¢) is a subgroup of G, show that if oy > -+ > h, > 0 are
the invariants of A, then ¥ > sand for each i, 4; < n;fori = 1,2,..., s

If G is an abelian group, let G be the set of all homomorphisms of G
into the group of nonzero complex numbers under multiplication.

If ¢, ¢, € G, define ¢, - ¢, by (9, $2)(8) = ¢,(2)$s(g) forall ge G.
7. Show that G is an abelian group under the operation defined.

8. If ¢ € G and G is finite, show that ¢(g) is a root of unity for eveky
geG.

9. If G is a finite cyclic group, show that G is cyclic and o(G) = o(G),
hence G and G are isomorphic.

10. If g, # g, are in G, G a finite abelian group, prove that there is a
¢ € G with ¢(g;) # ¢(&2)-

1. IfGis a finite abelian group prove that o(G) = 0o(G) and G is iso-
morphic to G.

12. If ¢ # 1 € G where G is an abelian group, show that Z o(g) = 0.

geG

Supplementary Problems

There is no relation between the order in which the problems appear and
the order of appearance of the sections, in this chapter, which might be
relevant to their solutions. No hint is given regarding the difficulty of any
problem.
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1. (a) If G is a finite abelian group with elements 4;, 4, - - ., @,, Prove
that a,a, * - * a, is an element whose square is the identity.

(b) If the G in part (a) has no element of order 2 or more than one

element of order 2, prove that a;a,* - a

(c) If G has one element, j, of order 2, prove that a;a, "+ a, =J.

(d) (Wilson’s theorem) If p is a prime number show that - D=

. = €

- 1(p)-
2. If p is an odd prime and if
1 1 1 a
l+ -4+t — =7
2 3 p—1 b
where a and b are integers, prove that p|a. If p > 3, prove that %
p*la :

3. If p is an odd prime, a # 0 (p) is said to be a quadratic residue of p if
there exists an integer x such that x% = a(p). Prove
(a) The quadratic residues of p form a subgroup @ of the group of

nonzero integers mod p under multiplication.

(b) o(Q) = (p = D/2.
(c) Ifge @, n¢Q (nis called a nonresidue), then ng is a nonresidue.
(d) If ny, n, are nonresidues, then n;n, is a residue.
(¢) Ifais a quadratic residue of p, then dP~ V2 = 4+ 1(p).

4. Prove that in the integers mod p, p a prime, there are at most n
solutions of 8" = 1(p) for every integer n.

R

5. Prove that the nonzero integers mod p under multiplication form a
cyclic group if p is a prime.

6. Give an example of a non-abelian group in which ()3 = x3y> for
all x and .

7. If G is a finite abelian group, prove that the number of solutions of
x" = ¢ in G, where n | o(G) is a multiple of n.

8. Same as Problem 7, but do not assume the group to be abelian.

9. Find all automorphisms of 3 and S, the symmetric groups of degree
3 and 4.

DEFINITION A4 group G is said to be solvable if there exist subgroups G =
NyoN oN,>2N = (¢) such that each N, is normal in N;_, and
N;_,|N; is abelian.

10. Prove that a subgroup of a solvable group and the homomorphic
image of a solvable group must be solvable.

11. If G is a group and N is a normal subgroup of G such that both N
and G/N are solvable, prove that G is solvable.

19. If G is a group, 4 a subgroup of G and N a normal subgroup of G
prove that if both 4 and N are solvable then so is AN.




13.

14.
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If G is a group, define the sequence of subgroups G? of G by

(I) GY = commutator subgroup of G = subgroup of G generated
by all aba™ 16~ ! where a, b € G.

(2) G = commutator subgroup of G¢~V if i > 1.

Prove

(a) Each G is a normal subgroup of G.

(b) G is solvable if and only if G® = (¢) for some & > 1.

Prove that a solvable group always has an abelian normal subgroup

M # (e).

If G is a group, define the sequence of subgroups G;, by

(a) G4y = commutator subgroup of G.

(b) G(;y = subgroup of G generated by all aba™*b~* where a € G,
b e Gy

G is said to be nilpotent if Gy = () for some £ > 1.

15.

16.

17.

18.

19.

20.

21.

22,

(a) Show that each G;) is a normal subgroup of G and G;, > G.
(b) If G is nilpotent, prove it must be solvable.
(c) Give an example of a group which is solvable but not nilpotent.

Show that any subgroup and homomorphic image of a nilpotent group
must be nilpotent.

Show that every homomorphic image, different from (¢), of a nil-
potent group has a nontrivial center.

(a) Show that any group of order ", p a prime, must be nilpotent.
(b) If G is nilpotent, and H # G is a subgroup of G, prove that
N(H) # Hwhere N(H) = {xe G|xHx" ! = H}. -

If G is a finite group, prove that G is nilpotent if and only if G is the
direct product of its Sylow subgroups.

Let G be a finite group and H a subgroup of G. For 4, B subgroups

of G, define 4 to be conjugate to B relative to H if B = ™ 14x for

some x € . Prove

(a) This defines an equivalence relation on the set of subgroups of G.

(b) The number of subgroups of G conjugate to A4 relative to H
equals the index of N(4) n Hin H.

(a) If G is a finite group and if P is a p-Sylow subgroup of G, prove
that P is the only p-Sylow subgroup in N (P).

(b) If P is a p-Sylow subgroup of G and if a”* = ¢ then, if a € N(P),
a must be in P.

(c) Prove that N(N(P)) = N(P).

(a) If G is a finite group and P is a p-Sylow subgroup of G, prove
that the number of conjugates of P in G is not a multiple of p.

-
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23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

#33.

(b) Breaking up the conjugate class of P further by using conjugacy
relative to P, prove that the conjugate class of P has 1 + kp
distinct subgroups. (Hint: Use part (b) of Problem 20 and
Problem 21. Note that together with Problem 23 this gives an
alternative proof of Theorem 2.12.3, the third part of Sylow’s
theorem.)

(a) If Pis a p-Sylow subgroup of G and B is a subgroup of G of order
¥, prove that if B is not contained in some conjugate of P, then
the number of conjugates of P in G is a multiple of p.

(b) Using part (a) and Problem 22, prove that B must be contained
in some conjugate of P.

(c) Prove that any two p-Sylow subgroups of G are conjugate in G.
(This gives another proof of Theorem 2.12.2, the second part of
Sylow’s theorem.)

Combine Problems 22 and 23 to give another proof of all parts of
Sylow’s theorem.

Making a case-by-case discussion using the results developed in this
chapter, prove that any group of order less than 60 either is of prime
order or has a nontrivial normal subgroup.

Using the result of Problem 25, prove that any group of order less
than 60 is solvable.

Show that the equation x“ax = a~ ' is solvable for x in the group
G if and only if a is the cube of some element in G.

2 1

Prove that (1 2 3) is not a cube of any element in §,.

Prove that xax = b is solvable for x in G if and only if ab is the square
of some element in G.

If G is a group and a € G is of finite order and has only a finite number
of conjugates in G, prove that these conjugates of a generate a finite
normal subgroup of G.

Show that a group cannot be written as the set-theoretic union of
two proper subgroups.

Show that a group G is the set-theoretic union of three proper sub-
groups if and only if G has, as a homomorphic image, a noncyclic
group of order 4.

Let p be a prime and let Z, be the integers mod p under addition and
multiplication. Let G be the group (: Z) where a,b,¢,d € Z,

are such that ad — bc = 1. Let

¢= 16 1) (T -]

and let LF (2, p) = G/C.




A e —g

KARPAGA

Subject: ALGEBRA
Class :1-M.Sc. Mathematics

Coimbatore —641 021

Unit II
Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)

Possible Questions

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari (Po),

Subject Code: 1I9MMP101
Semester : 1

SL.NO Questions Optl Opt2 Opt3 Opt4 Answer
If o(G)=p2 where p is a prime number then is ---
1|------- non-Abelian subgroup group Abelian Abelian
If - where p is a prime number then is
2|abelian o(G)=p2 o(G)=p o(G)=1 o(G)=n o(G)=p2
Let G be a -------- then the identity element is  [normal-
3|unique subgroup subgroup group permutation  |group
The product of even permutation is an --------
4|permutation even even & odd |odd prime even
The product of two odd permutation is an -------
5|-- permutation even even & odd  |odd prime even
6|Conjugacy is an ---------- relation on G reflexive symmetric transitive equivalence |equivalence
If G is a group of order231then the --------- is  [sylow 11sylow normal 11sylow
7|in the center of G subgroup subgroup subgroup subgroup subgroup
If G is a group of order231then the 11- sylow |sylow normal
8|subgroup is in the ---------- of G subgroup subgroup subgroup center center
If o(G)=pq ,p and q are distinct primes p<q then
p/(g-1) there exists a unique -------- group of
9|order pq non abelian  |abelian cyclic non cyclic non abelian
If o(G)= -------- ,p and q are distinct primes p<q
then p/(q-1) there exists a unique non abelian
10|group of order pq p q rq p/q Prq
If o(G)=pq ,p and q are distinct primes p<q then
--------- there exists a unique non abelian group
11|of order pq p/(q-1) p-1/g-1 p/q rq p/(g-1)
11sylow
12|Sy has ------- subgroup sylow k-sylow p-sylow subgroup p-sylow
Every finite ------------- group is the direct
13|product of cyclic groups abeliean Non-abeliean |cyclic permutation  |abeliean
14|If b = c¢*-lac then b and a is ------- elements inverse co prime conjugate equal conjugate
15| The conjugacy class of a is denoted as ------- c(a) a2 ca ca ca
16(a in Z(G), then N(a)-------- G equal greater than less than not equal equal
If p is a prime number and p\O(G), then G has an
17|element of order p is -------- therorem Cayley's Cauchy's fundamental Fermat's Cauchy's
18]1f O(G) =p”3, the G is --------- normal abelian cyclic identity Abelian
19| The number of conjugate classes in S_n is----- n c(n) p(n) 0 p(n)
20|The number of conjugate classes in S 3 is------- 3 0 1 4 3
If A and B are two groups then A x B is isomorphic
21|to------- A B BxA {e} BxA
The number of non-isomorphic abelian groups of
22|order p™n is --------- n 1 0 p(n) p(n)
23|The number p-sylow subgroups of G is ------ 1 kp 1+kp 0 1+kp
Two abelian groups of order p”n are isomorphic iff
24|they have same -------- invariants subgroups elements identity invariants
If G is direct product of its sylow subgroups then G
25|is------- abeliecan normal nilpotent idempotent nilpotent




26||A|=m, |B|=n, then A, B are cyclic iff---------- m=n m>n gcd(m,n)=1 m=0 gcd(m,n)=1

27(2(G) = G iff G is ------- normal cyclic nilpotent solvable cyclic

28|Every cyclic group is --------- abeliean {0} infinite solvable Abelian

29(Subgroup of a abelian group is --------- abeliean normal cyclic solvable normal
element of order |subgroup of

30(If p \O(G), then G has a --------- p order p idempotent both a and b both a and b




L)

T ——

KARFAGAM

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari (Po),

Coimbatore —641 021

CLASS: I M.Sc. MATHEMATICS COURSENAME: ALGEBRA

COURSE CODE: 19MMP101 BATCH-2019-2021

UNIT-III

RING THEORY

Euclidean rings - A particular Euclidean ring - Polynomial rings — Polynomials over the
rational field - Polynomial rings over commutative rings.




Ty

Sec. 3.7 Euclidean Rings

Let 4 be the set of all ordered pairs (r,5) where re R, s §. In
M define (r,5) ~ (r',s') if there exists an element s” € § such that

s"(rs' — sr') = 0.

(a) Prove that this defines an equivalence relation on /.

Let the equivalence class of (7, s) be denoted by [, s], and let R be
the set of all the equivalence classes. In Ry define [r1, 811 + [y, 5] =
[ri52 + 7281, 515,] and [ry, 5][ry, 5] = (7172, 515,]-

(b) Prove that the addition and multiplication described above are
well defined and that Rg forms a ring under these operations.

(c) Can R be imbedded in Rg?

(d) Prove that the mapping ¢:R — R, defined by ¢(a) = [as, 5] is
a homomorphism of R into Ry and find the kernel of o.

(e) Prove that this kernel has no element of S in it.

(f) Prove that every element of the form [51, s;](where s, 5, € §) in
Rg has an inverse in Ry.

6. Let D be an integral domain, a, b € D. Suppose that a" = " and

a™ = ™ for two relatively prime positive integers m and #. Prove that
a = b.

7. Let R be a ring, possibly noncommutative, in which xp = 0 implies
x=0o0ry =0. Ifa, b € R and @" = b" and a™ = b™ for two relatively
prime positive integers m and #, prove that a = b.

' 3.7 Euclidean Rings

The class of rings we propose to study now is motivated by several existing
examples—the ring of integers, the Gaussian integers (Section 3.8), and
. polynomial rings (Section 3.9). The definition of this class is designed to
. incorporate in it certain outstanding characteristics of the three concrete
- examples listed above.

DEFINITION An integral domain R is said to be a Euclidean ring if for
‘ every a # 0 in R there is defined a nonnegative integer d(a) such that

1. For all 4, b € R, both nonzero, d(a) < d(ab).
2. For any q, b € R, both nonzero, there exist ¢, r € R such that a = th + r
+ Wwhere either r = Q or d(r) < d(b).

- We do not assign a value to d(0). The integers serve as an example of a
- Euclidean ring, where d(a) = absolute value of a acts as the required
?’function. In the next section we shall see that the Gaussian integers also
form a Euclidean ring. Out of that observation, and the results developed
/in this part, we shall prove a classic theorem in number theory due to

-
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Fermat, namely, that every prime number of the form 4z + 1 can be
written as the sum of two squares.

We begin with

THEOREM 3.7.1 Let R be a Euclidean ring and let A be an ideal of R. Then
there exists an element ay € A such that A consists exactly of all ayx as x ranges over R.

Proof. If A just consists of the element 0, put ¢, = 0 and the conclusion
of the theorem holds.

Thus we may assume that 4 # (0); hence there is an a # 0 in 4. Pick
an ag € 4 such that d(a,) is minimal. (Since d takes on nonnegative integer
values this is always possible.)

Suppose that a € A. By the properties of Euclidean rings there exist
t,re R such that a = tay + r where r = 0 or d(r) < d(a,). Since
ay € A and A4 is an ideal of R, ta; is in 4. Combined with a € 4 this results
ina — tayg € A;butr = a — tay, whencer e A. Ifr # O thend(r) < d(ay),
giving us an element 7 in 4 whose d-value is smaller than that of a4, in
contradiction to our choice of a4, as the element in 4 of minimal d-value.
Consequently r = 0 and a = ta,, which proves the theorem.

We introduce the notation (a) = {xa|x € R} to represent the ideal of
all multiples of a. :

DEFINITION An integral domain R with unit element is a principal ideal
ring if every ideal 4 in R is of the form 4 = (a) for some a € R.

Once we establish that a Euclidean ring has a unit element, in virtue of
Theorem 3.7.1, we shall know that a Euclidean ring is a principal ideal ring.
The converse, however, is false; there are principal ideal rings which are
not Euclidean rings. [See the paper by T. Motzkin, Bulletin of the American
Mathematical Society, Vol. 55 (1949), pages 1142-1146, entitled ‘“The
Euclidean algorithm.”]

COROLLARY TO THEOREM 3.7.1 A4 Euclidean ring possesses a unit
element.

Proof. Let R be a Euclidean ring; then R is certainly an ideal of R, so
that by Theorem 3.7.1 we may conclude that R = (u,) for some u, € R.
Thus every element in R is a multiple of u,. Therefore, in particular,
ug = ugc for some ce R. If ae R then a = xu, for some x € R, hence
ac = (xup)c = x(uge) = xuy = a. Thus ¢ is seen to be the required unit
element.

DEFINITION Ifa # O and & are in a commutative ring R then a is said
to divide b if there exists a ¢ € R such that b = ac. We shall use the symbol
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a| b to represent the fact that a divides b and a } b to mean that a does
not divide b.

The proof of the next remark is so simple and straightforward that we
omit it.

REMARK 1. Ifa|bandb|c thena|c.
2. Ifalbanda|cthenal (b + c).
3. If a| b then a | bx for all x € R.

' D‘EFINITION If a, b € R then d € R is said to be a greatest common divisor
of a and b if

1. d|aand d]b.
'2. Whenever ¢|aand ¢ | b then ¢ | d.

We shall use the notation d = (g, ) to denote that d is a greatest common
divisor of a and b.

LEMMA 3.71 Let R be a Euclidean ring. Then any two elements a and b in
R have a greatest common divisor d. Moreover d = Ja + ub for some A, p € R.

Proof. Let 4 be the set of all elements ra + sb where 7, s range over R.
We claim that 4 is an ideal of R. For suppose that x, y € 4; therefore
¥=ra+s5b, y=ra+s5h and so x+y=(r, £ 1)a+ (5 +s5,)beA.
Similarly, for any ue R, ux = u(rja + s,b) = (ur,)a + (us,)b e A.

Since 4 is an ideal of R, by Theorem 3.7.1 there exists an element d € 4
such that every element in 4 is a mutiple of d. By dint of the fact that
de 4 and that every clement of 4 is of the form ra + sb, d = Aa + b
for some A, u € R. Now by the corollary to Theorem 3.7.1, R has a unit
element 1; thus a = la + Obed, b = 0a + lbe A. Being in 4, they
are both multiples of d, whence d | a and d | b.

Suppose, finally, that ¢|a and ¢|b; then ¢| Az and ¢| ub so that ¢
certainly divides A + pb = d. Therefore d has all the requisite conditions
for a greatest common divisor and the lemma is proved.

DEFINITION Let R be a commutative ring with unit element. An
element a € R is a unit in R if there exists an element b € R such that ab = 1.

Do not confuse a unit with a unit element! A unit in a ring is an element
Whose inverse is also in the ring.

LEMMA 3.7.2 Let R be an integral domain with unit element and suppose that
Jor a, b e R both a|b and b | @ are true. Then a = ub, where u is a unit in R.

-
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Proof. Since a|b, b = xa for some x € R; since b | a, a = yb for some
yeR. Thus b = x(yb) = (xp)b; but these are elements of an integral
domain, so that we can cancel the b and obtain xy = 1; y is thus a unit in
R and a = yb, proving the lemma.

DEFINITION Let R be a commutative ring with unit element. Two
elements 4 and b in R are said to be associates if b = ua for some unit #in R,

The relation of being associates is an equivalence relation. (Problem 1
at the end of this section.) Note that in a Euclidean ring any two greatest
common divisors of two given elements are associates (Problem 2).

Up to this point we have, as yet, not made use of condition 1 in the
definition of a Euclidean ring, namely that d(a) < d(ab) for b # 0. We
now make use of it in the proof of

LEMMA 3.7.3 Let R be a Euclidean ring and a, b € R. If b # 0 is not a unit
in R, then d(a) < d(ab).

Proof. Consider the ideal 4 = (a) = {xa|x € R} of R. By condition
1 for a Euclidean ring, d(a) < d(xa) for x # 0 in R. Thus the d-value of
a is the minimum for the d-value of any element in 4. Now ab € 4; if
d(ab) = d(a), by the proof used in establishing Theorem 3.7.1, since the
d-value of ab is minimal in regard to 4, every element in 4 is a multiple of
ab. In particular, since a € 4, a must be a multiple of ab; whence a = abx
for some x € R. Since all this is taking place in an integral domain we
obtain bx = 1. In this way b is a unit in R, in contradiction to the fact that
it was not a unit. The net result of this is that d(a) < d(ab).

DEFINITION 1In the Euclidean ring R a nonunit « is said to be a prime
element of R if whenever m = ab, where q, b are in R, then one of a or bis a
unit in R.

A prime element is thus an element in R which cannot be factored in R
in a nontrivial way.

LEMMA 3.7.4 Let R be a Euclidean ring. Then every element in R is either a
unit in R or can be written as the product of a finite number of prime elements of R.

Proof. The proof is by induction on d(a).

If d(a) = d(1) then a is a unit in R (Problem 3), and so in this case, the
assertion of the lemma is correct.

We assume that the lemma is true for all elements x in R such that
d(x) < d(a). On the basis of this assumption we aim to prove it for a.
This would complete the induction and prove the lemma. :

S
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If a is a prime element of R there is nothing to prove. So suppose that
a = bc where neither b nor ¢is a unitin R. By Lemma 3.7.3,d(b) < d(bc) =
d(a) and d(¢c) < d(bc) = d(a). Thus by our induction hypothesis b and ¢
can be written as a product of a finite number of prime elements of R;
5 = MMy " My ¢ = W Ty * * * W,, where the ’s and 7”’s are prime elements
of R. Consequently a = bc = Ty "' W,My My *** @, and in this way a
‘has been factored as a product of a finite number of prime elements. This
‘completes the proof.

'DEFINITION In the Euclidean ring R, a and b in R are said to be relatively
prime if their greatest common divisor is a unit of R.

Since any associate of a greatest common divisor is a greatest common
divisor, and since | is an associate of any unit, if @ and b are relatively
prime we may assume that (a, b)) = 1.

LEMMA 3.7.5 Let R be a Euclidean ring. Suppose that for a, b, c € R, a | be
but (a, b) = 1. Thena|ec.

Proof. As we have seen in Lemma 3.7.1, the greatest common divisor
of a and b can be realized in the form Aa + pb. Thus by our assumptions,
Aa + pb = 1. Multiplying this relation by ¢ we obtain Aac + pbc = c.
Now a| Aac, always, and a| pbc since a|bc by assumption; therefore
a| (Zac + pbc) = ¢. This is, of course, the assertion of the lemma.

We wish to show that prime elements in a Euclidean ring play the same
role that prime numbers play in the integers. If 7 in R is a prime element
of R and a € R, then either n|a or (n,4) = 1, for, in particular, (rm, 'a)
is a divisor of 7 so it must be 7 or 1 (or any unit). If (n, @) = I, one-half
our assertion is true; if (7, @) = =, since (m,a) |a we get 7 |a, and the
other half of our assertion is true.

LEMMA 3.7.6 If n is a prime element in the Euclidean ring R and w | ab
where a, b € R then nt divides at least one of a or b.

Proof. Suppose that © does not divide a; then (n,a) = 1. Applying
Lemma 3.7.5 we are led to © | .

COROLLARY If 7 is a prime element in the Euclidean ring R and mt|ajay -+ - a

n
then 1 divides at least one ay, ay, . . ., a,

We carry the analogy between prime elements and prime numbers
further and prove
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THEOREM 3.7.2 (Unique FacrorizaTion THEOREM) Let R be a Eu-
clidean ring and a # 0 a nonunit in R. Suppose that a = mT,- - 7, =
T,y + -+ W, where the m; and T; are prime elements of R. Then n = m and each
n, | < i < nis an associate of some mj; 1 < J < m and conversely each T

is an associate of some T,

Proof. Lookattherelationa= 7,7, * *m, =77y * "7, Butmy |7, - 7w,
hence r, | 77} * - * T}, By Lemma 3.7.6, m; mustdivide some 7;; since 7; and
7, are both prime elements of R and 7, | 7; they must be associates and
n} = w,m,, where u, is a unit in R. Thus 77,7, = MMy """ Ty =
UL T+ T _ Wy - * " s cancel off 7, and we are left with 7, --- 7, =
Uy W Mipq " T Repeat the argument on this relation with 7,.
After n steps, the left side becomes 1, the right side a product of a certain
number of ©’ (the excess of m over n). This would force n < m since the
7' are not units. Similarly, m < n, so that n = m. In the process we have
also showed that every 7; has some 7} as an associate and conversely.

Combining Lemma 3.7.4 and Theorem 3.7.2 we have that every nonzero
element in a Euclidean ring R can be uniquely written (up to associates) as a product
of prime elements or is a unit in R.

We finish the section by determining all the maximal ideals in a Euclidean
ring.

In Theorem 3.7.1 we proved that any ideal 4 in the Euclidean ring R is of
the form A = (g,) where (a) = {xa | x € R}. We now ask: What con-
ditions imposed on a, insure that 4 is a maximal ideal of R? For this
question we have a simple, precise answer, namely

LEMMA 3.7.7 The ideal A = (a,) is a maximal ideal of the Euclidean ring
R if and only if ay is a prime element of R.

Proof. We first prove that if 4, is not a prime element, then 4 = ()
is not a maximal ideal. For, suppose that g, = bc where b,ceR and
neither b nor ¢ is a unit. Let B = (b); then certainly a4 € B so that 4 < B.
We claim that 4 # B and that B # R.

If B = R then 1 €B so that | = xb for some x € R, forcing b to be 2
unit in R, which it is not. On the other hand, if 4 = B then be B = A
whence b = xa, for some x€ R. Combined with a; = bc this results in
a4y = xcay, in consequence of which xc = 1. But this forces ¢ to be a unit
in R, again contradicting our assumption. Therefore B is neither 4 nor R
and since 4 = B, A cannot be a maximal ideal of R.

Conversely, suppose that g, is a prime element of R and that U is an
ideal of R such that 4 = (g,) = U = R. By Theorem 3.7.1, U.= (up)-
Since aye A c U = (), ao = x4, for some xeR. But g, is a prime
element of R, from which it follows that either x or %, is a unit in R. If u
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is a unit in R then U = R (see Problem 5). If, on the other hand, x is a
unit in R, then x~! € R and the relation a, = xu, becomes u, = 2" 'a, € 4
since 4 is an 1deal of R. This implies that U < 4; together with 4 < U
- we conclude that U = A. Therefore there is no ideal of R which fits
- strictly between 4 and R. This means that 4 is a maximal ideal of R.

~ Problems
1. In a commutative ring with unit element prove that the relation a is
an associate of b is an equivalence relation.

2. In a Euclidean ring prove that any two greatest common divisors of
a and b are associates.

3. Prove that a necessary and sufficient condition that the element @ in
the Euclidean ring be a unit is that d(a) = d(1).

4. Prove that in a Euclidean ring (a, b) can be found as follows:
b = goa + r;, where d(r;) < d(a)
a = gqr; +r,, where d(r,) < d(r))
7, = qu7, + 13, where d(r;) < d(r,)

Th—1 = qul'n

and r, = (a, b).
5. Prove that if an ideal U of a ring R contains a unit of R, then U = R.

6. Prove that the units in a commutative ring with a unit element form
an abelian group. -

7. Given two elements a, b in the Euclidean ring R their least common
multiple c € R is an element in R such that a | ¢ and & | ¢ and such that
whenever a | x and b | x for x € R then ¢ | x. Prove that any two elements
in the Euclidean ring R have a least common multiple in R.

8. In Problem 7, if the least common multiple of @ and & is denoted by
[a, b], prove that [a, b] = ab/(a, b).

3.8 A Particular Euclidean Ring

An abstraction in mathematics gains in substance and importance when,
Particularized to a specific example, it sheds new light on this example.
We are about to particularize the notion of a Euclidean ring to a concrete
- ring, the ring of Gaussian integers. Applying the general results obtained
about Euclidean rings to the Gaussian integers we shall obtain a highly
nontrivial theorem about prime numbers due to Fermat.

-
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Let J[] denote the set of all complex numbers of the form a + b7 where
a and b are integers. Under the usual addition and multiplication of com-
plex numbers J[i] forms an integral domain called the domain of Gaussian
integers.

Our first objective is to exhibit J[:] as a Euclidean ring. In order to do
this we must first introduce a function d(x) defined for every nonzero
element in J[] which satisfies

1. d(x) is a nonnegative integer for every x # 0 e J[i].

2. d(x) < d(xp) for every y # O 1in J[i].

3. Given u, v € J[i] there exist ¢, r € J[i] such that v = tu + r where
r=0ord(r) < d(u).

Our candidate for this function d is the following: if x=a+ b € J[i],
then d(x) = a® + b2 The d(x) so defined certainly satisfies property 1;
in fact, if x % 0 € J[z] then d(x) > 1. As is well known, for any two com-
plex numbers (not necessarily in J[i]) x, 5, d(xp) = d(x)d(»); thus if x
and y are in addition in J[i] and y # 0, then since d(y) = 1, d(x) =
d(x)] < d(x)d(y) = d(xp), showing that condition 2 is satisfied. All our
effort now will be to show that condition 3 also holds for this function d in
JI]. This is done in the proof of

THEOREM 3.8.1 J[{] is a Euclidean ring.

Proof.  As was remarked in the discussion above, to prove Theorem 3.8.1
we merely must show that, given x, y e J[i] there exists ¢, r € J[i] such
that y = tx 4+ r where r = O or d(r) < d(x).

We first establish this for a very special case, namely, where y is arbitrary
in J[{] but where x is an (ordinary) positive integer n. Suppose that
» = a + bi; by the division algorithm for the ring of integers we can find
integers u, v such that ¢ = un + u, and & = vn + v, where u, and v, are
integers satisfying |u,| < 4nand |o;| < 4n. Let t = u + viand 7 = u, + v,1;
theny = a4+ b = un + u; + (on + vy)t = (4 + vi)n + 4, + vi =
tn + r. Sinced(r) = d(u, + v,3) = u;*> + v,® < n?j4 + n?/4 < n® = d(n),
we see that in this special case we have shown that y = tn + r with r = 0
or d(r) < d(n).

We now go to the general case; let x # 0 and y be arbitrary elements
in J[7]. Thus x% is a positive integer n where # is the complex conjugate of
x. Applying the result of the paragraph above to the elements % and n we
see that there are elements ¢, r € J[i] such that y# = tn + r with r =0
or d(r) < d(n). Putting into this relation n = x% we obtain d( y% — tx&) <
d(n) = d(x%); applying to this the fact that d( % — tx%) = d(y — tx)d(%)
and d(x%) = d(x)d(%) we obtain that d(y — tx)d(%) < d(x)d(%). Since
x # 0, d(%) is a positive integer, so this inequality simplifies to d(y — tx) <.
d(x). We represent y = tx + r,, where r, = y — tx; thus ¢t and 7, are in

AR 00 o
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JI] and as we saw above, 7, = 0 or d(r,) = d(y — tx) < d(x). This
?proves the theorem.

Since J[i] has been proved to be a Euclidean ring, we are free to use the
results established about this class of rings in the previous section to the
‘Euclidean ring we have at hand, J[].

EMMA 3.81 Let p be a prime integer and suppose that Sor some integer ¢
rglatwely prime to p we can find integers x and y such that x* 4+ y* = ¢p. Then
can be written as the sum of squares of two integers, that is, there exist integers
a and b such that p = a? + b2

& Proof. The ring of integers is a subring of J[i]. Suppose that the integer
p is also a prime element of J[i]. Since ¢p = x% + »2 = (x + yi)(x — 1),
. by Lemma 3.7.6, p | (x + 1) or p|(x — yi) in J[i]. Butifp| (x + i) then
x + ¥ = p(u + vi) which would say that x = pu and y = pv so that p
? also would divide x — yi. But then p? | (x + 9i)(x — i) = ¢p from which we
_ would conclude that p | ¢ contrary to assumption. Similarly if p | (x — 7).
' ' Thus p is not a prime element in J[7]! In consequence of this,

£

% p=(a+bi)(g + di)

g where a + 4 and g + di are in J[{] and where neither a + bz nor g + a’z
- isa unit in J[¢]. But this means that neither a®> 4 62 = 1 nor g? + 4% =

,(See Problem 2.) From p = (a + bi)(g + di) it follows easily that p =
. (a — bi)(g — di). Thus

= (a + bi)(g + di)(a — bi) (g — di) = (a® + b2)(g? + d?).

* Therefore (a? + %) |p% so a®> + b2 =1, p or p2; a® + b* # 1 since
~a + bi is not a unit, in J[i]; a® + 6% # p2, otherwise g + d% = 1, con-
 trary to the fact that g + diis not a unit in J[i]. Thus the only feasibility
o left is that a® + b2 = p and the lemma is thereby established.

The odd prime numbers divide into two classes, those which have a
. remainder of 1 on division by 4 and those which have a remainder of 3 on
. division by 4. We aim to show that every prime number of the first kind
can be written as the sum of two squares, whereas no prime in the second
-~ class can be so represented.

s

T

{ LEMMA 3.8.2 If p is a prime number of the form 4n + 1, then we can solve
* the congruence x* = —1 mod p.

Proof. Letx =1:2-3--- (p— 1)R. Since p — 1 = 4n, in this prod-
- uct for x there are an even number of terms, in consequence of which

s = 029 (+(£5H)
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But p — k = —k mod p, so that

x2 = (1.2...1’; 1)(_1)(_2)...(_(12_;_1>>
.. b= lptl
2 2

=1 e (p = 1)
=(—-D!= —1modp.
We are using here Wilson’s theorem, proved earlier, namely that if p is
a prime number (p — 1)! = —1(p).
To illustrate this result, if p = 13,
x=12-3-4-5-6 =720 = 5mod 13 and 52 = —1 mod 13.

THEOREM 3.8.2 (FermaT) If p is a prime number of the form 4n + 1,
then p = a® + b2 for some integers a, b.

Proof. By Lemma 3.8.2 there exists an x such that x> = —1 mod .
The x can be chosen so that 0 < x < p — 1 since we only need to use the
remainder of ¥ on division by p. We can restrict the size of x even further,
namely to satisfy [x| < p/2. For if x > p/2, then y = p — x satisfies
»2= —1modp but |y <p/2. Thus we may assume that we have an
integer x such that |x| < /2 and x? + 1 is a multiple of p, say ¢p. Now
¢p=x>+1<p*4+1<p? hence ¢ <p and so ptfec Invoking
Lemma 3.8.1 we obtain that p = a® + b2 for some integers a and b,
proving the theorem.

Problems
1. Find all the units in J[{].
2. If a + biis not a unit of J[i] prove that a®> + b2 > 1.

3. Find the greatest common divisor in J[¢] of

(a) 3 + 47and 4 — 3. (b) 11 + 7iand 18 — i.
4. Prove that if p is a prime number of the form 4n + 3, then there is
no x such that x> = —1 mod p.

5. Prove that no prime of the form 4n + 3 can be written as a® + b2
where a and b are integers.

6. Prove that there is an infinite number of primes of the form 4n + 3. A
*7. Prove there exists an infinite number of primes of the form 4n + 1. ;
*8. Determine all the prime elements in J[¢].

*9. Determine all positive integers which can be written as a sum of two
squares (of integers).
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3.9 Polynomial Rings

Very early in our mathematical education—in fact in junior high school or
early in high school itself—we are introduced to polynomials. For a seemingly
endless amount of time we are drilled, to the point of utter boredom, in
factoring them, multiplying them, dividing them, simplifying them. Facility
in factoring a quadratic becomes confused with genuine mathematical
talent.

Later, at the beginning college level, polynomials make their appearance
in a somewhat different setting. Now they are functions, taking on values,
and we become concerned with their continuity, their derivatives, their
integrals, their maxima and minima.

We too shall be interested in polynomials but from neither of the above
viewpoints. To us polynomials will simply be elements of a certain ring
and we shall be concerned with algebraic properties of this ring. Our
primary interest in them will be that they give us a Euclidean ring whose
properties will be decisive in discussing fields and extensions of fields.

Let F be a field. By the ring of polynomials in the indeterminate, x, written
as F[x], we mean the set of all symbols ¢, + a;x + *** + a,x", where =
can be any nonnegative integer and where the coefficients a;, a,, .. ., a,
are all in . In order to make a ring out of F[x] we must be able to recognize
when two elements in it are equal, we must be able to add and multiply
elements of F[x] so that the axioms defining a ring hold true for F[x].
This will be our initial goal.

We could avoid the phrase “the set of all symbols” used above by intro-
ducing an appropriate apparatus of sequences but it seems more desirable
to follow a path which is somewhat familiar to most readers.

DEFINITION If p(x) = ay + ax + * -+ + a,x™ and g¢(x) = by + byx +
“++ + bx" are in F[x], then p(x) = ¢(x) if and only if for every integer
t>0, g = b,

Thus two polynomials are declared to be equal if and only if their corre-
sponding coefficients are equal.

DEFINITION If p(x) = ay + a;x + ** + a,#™ and g¢(x) = by + byx +
***+ b,x" are both in F[x], then p(x) + q(x) = ¢o + ¢;x + - + ¢'

where for each i, ¢; = a; + b;.

In other words, add two polynomials by adding their coefficients and

- collecting terms. To add 1 + x and 3 — 2x + x% we consider 1 + x as

1 + x + 0x? and add, according to the recipe given in the definition, to
obtain as their sum 4 — x + x2.

-
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The most complicated item, and the only one left for us to define for
F[x], is the multiplication.

DEFINITION If p(x) = ay + ayx + -+ + a,x™ and g(x) = by + byx +
-o- 4 b", then p(x)g(x) =¢o + 6x + - + cx* where ¢, = aby +
a_1by + a,_3b, + 0 + apb,.

This definition says nothing more than: multiply the two polynomials
by multiplying out the symbols formally, use the relation x*’ = x**/,
and collect terms. Let us illustrate the definition with an example:

px) =1 + x — 22, g(x) = 2 4+ x* + x°
Here ap =1, a, =1, 8, = =1, a3 =0a,=--+=0, and b, = 2, b, =0,
by =1,b;=1,by =bs=---=0. Thus
6o = aghp = 1.2 = 2,
¢, = ayby + aghy = 1.2 + 1.0 = 2,
¢y = ayby + aby + agb, = (—1)(2) + 1.0 + 1.1 = —1,
¢y =azby + azb, + ajby + agby = (0)(2) + (=1)(0) + 1.1 + LI =2,
¢y = azhy + azb, + ayb, + a,b3 + aghs
= (0)(2) + (0)(0) + (=1)(1) + (H(A) + 1(0) =0,
¢s = ashy + asby + ashy + axby + a1bs + aobs |
= (0)(2) + (0)(0) + (O)(1) + (=1)(1) + ((©O) + (0)(0) = ~1,
¢s = aghy + asb, + asb, + azbs + axby + a;bs + agbg
= (0)(2) + (0)(0) + (0)(1) + (0)(1) + (=1)(0) + (1)(0) + (1)(0) =0,
¢ =¢g ="+=0.
Therefore according to our definition,
A+x—x)2+2>+x%) =cg+ox+-=2+2—2 + 2 —2°

If you multiply these together high-school style you will see that you get
the same answer. Our definition of product is the one the reader has always
known.

Without further ado we assert that F[x] is a ring with these operations,
its multiplication is commutative, and it has a unit element. We leave the
verification of the ring axioms to the reader.

DEFINITION If f(x) = ao 4+ a;x + - + a,x" # 0 and a, # 0 then
the degree of f (x), written as deg f (%), is n.

That is, the degree of f (x) is the largest integer ¢ for which the ith co-
efficient of f (x) is not 0. We do not define the degree of the zero poly-
nomial. We say a polynomial is a constant if its degree is O. The degree .
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function defined on the nonzero elements of F[x] will provide us with the
function d(x) needed in order that F[x] be a Euclidean ring.

LEMMA 3.9.1 If f (x), g(x) are two nonzero elements of F[x], then

deg (f (x)g(x)) = degf (x) + degg(x).

.~ Proof. Suppose that f(x) = a5 + ayx + -+ + a,x™ and g(x) = b, +
- byx + -+ + bx" and that a, # 0 and b, # 0. Therefore deg f(x) = m
- and deg g(x) = n. By definition, f(x)g(x) = ¢y + ¢;x + -+ + ¢x* where
e = aby + a_by + -+ ah,_; + agb,. We claim that ¢,,,
a,b, # 0 and ¢; = 0 for ¢ > m + n. That ¢, , = a,b, can be seen at a
- glance by its definition. What about ¢; for ¢ > m + n? ¢; is the sum of
terms of the form a;b,_;; since i =j 4+ (i — j) > m + n then either j > m
or (i —j) > n. But then one of a; or b;_; is 0, so that a;b;,_; = 0; since ¢;
is the sum of a bunch of zeros it itself is 0, and our claim has been
- established. Thus the highest nonzero coefficient of f (x) g(x) is ¢,,., ,, whence

deg f(x)g(x) = m + n = deg f(x) + deg g(x).

COROLLARY If f(x), g(x) are nonzero elements in Flx] then deg f(x) <
- deg f(x)g(x).

- Proof. Sincedeg f(x)g(x) = deg f(x) + deg g(x), and since deg g(x) >
. 0, this result is immediate from the lemma.

. COROLLARY F [x] is an integral domain.

We leave the proof of this corollary to the reader.
. Since F[x] is an integral domain, in light of Theorem 3.6.1 we can
- construct for it its field of quotients. This field merely consists of all quotients
of polynomials and is called the field of rational functions in x over F.

The function deg f (x) defined for all f(x) # 0 in F[x] satisfies

1. deg f(x) is a nonnegative integer.
2. deg f(x) < deg f(x)g(x) for all g(x) # 0in F[x].

In order for F[x] to be a Euclidean ring with the degree function acting as
the d-function of a Euclidean ring we still need that given f (x), g(x) € F[x],
there exist ¢(x), r(x) in F[x] such that f (x) = t(x)g(x) + r(x) where either
- 7(x) = Oordegr(x) < deg g(x). This is provided us by

LEMMA 3.9.2 (Tut DrvisioNn ALGoriTHM) Given two polynomials f (x)
- and g(x) # 0 in F[x], then there exist two polynomials t(x) and r(x) in F[x] such
that f (x) = t(x)g(x) + r(x) where r(x) = 0or deg r(x) < deg g(x).

Proof. The proof is actually nothing more than the “long-division”
Process we all used in school to divide one polynomial by another.

-
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If the degree of f (x) is smaller than that of g(x) there is nothing to prove,
for merely put ¢t(x) = 0, r(x) = f(x), and we certainly have that f(x) =
0g(x) + f(x) where deg f(x) < deg g(x) or f(x) = 0.

So we may assume that f (x) = ¢y + a ¥ + -+ + a,x" and g(x) = by +
bix + -+ bx" wherea, # 0, b, # Oand m > n.

Let f,(x) = /(3) — (ag/b)" "g(x); thus degfy() <m — 1, so by
induction on the degree of f(x) we may assume that f;(x) = ¢;(x)g(x) +
r(x) where r(x) =0 ordeg r(x) < deg g(x). Butthen f (x) — (a,,/b,)x™ "g(x) =
t;(x)g(x) + r(x), from which, by transposing, we arrive at f(x)=
((anfbp)x™ ™" + 1,(x))g(x) + 7(x). If we put t(x) = (2,/b,)x""" + (%)
we do indeed have that f(x) = t(x)g(x) + r(x) where t(x), r(x) € F[x]
and where r(x) = 0 or deg r(x) < deg g(x). This proves the lemma.

This last lemma fills the gap needed to exhibit #[x] as a Euclidean ring
and we now have the right to say

THEOREM 3.9.1 F|x] s a Euclidean ring.

All the results of Section 3.7 now carry over and we list these, for our
particular case, as the following lemmas. It could be very instructive for
the reader to try to prove these directly, adapting the arguments used in
Section 3.7 for our particular ring F[x] and its Euclidean function, the
degree.

LEMMA 3.9.3 F[x] is a principal ideal ring.

LEMMA 3.9.4 Given two polynomials f (x), g(x) in F[x] they have a greatest
common divisor d(x) which can be realized as d(x) = A(x) f(x) + u(x)g(x).

What corresponds to a prime element?

DEFINITION A polynomial p(x) in F[x] is said to be irreducible over F if
whenever p(x) = a(x)b(x) with a(x), b(x) € F[x], then one of a(x) or b(x)
has degree 0 (i.e., is a constant).

Irreducibility depends on the field; for instance the polynomial x? + 1
is irreducible over the real field but not over the complex field, for there
x2 + 1 = (x + {)(x — i) where i = —1.

LEMMA 3.9.5 Any polynomial in F[x] can be written in a unique manner as a
product of irreducible polynomials in F|[x].

LEMMA 3.9.6 The ideal A = (p(x)) in F[x] is a maximal ideal if and only
if p(x) is irreducible over F. ,




Sec. 3.9 Polynomial Rings

In Chapter 5 we shall return to take a much closer look at this field
F[x]/(¢(x)), but for now we should like to compute an example.

Let F be the field of rational numbers and consider the polynomial
p(x) = x* — 2in Fx]. Asis easily verified, it is irreducible over F, whence
F[x]/(x*® — 2) is a field. What do its elements look like? Let 4 — (x* = 2)
the ideal in F[x] generated by x3 — 2. :

Any element in F[x]/(x® — 2) is a coset of the form f(x) + A of the
ideal A with f(x) in F[x]. Now, given any polynomial f (x) € F[x], by
the division algorithm, f(x) = ¢(x)(x> — 2) + r(x), where r(x) =0 or
deg r(x) < deg (x* — 2) = 3. Thus r(x) = g, + a;% + ax® where ay, a,,
a, are in F; consequently f(x) + 4 = a5 + ax + a,x? + tx)(x* = 2) +
A = ay + a;x + apx* + 4 since t(x)(x> — 2) is in 4, hence by the addi-
tion and multiplication in F[x]/(x* — 2), f(x) + 4 = (@ + 4) +
ay(x + A) + ay(x + A)% If we put ¢t = x + A, then every element in
F[x]/(x* — 2) is of the form g, + a,¢ + a,¢% with ay, a1, a, in F. What about
t? Since 1* —2=(x+ A3 =-2=x3—-9244=4=0 (since 4 is
the zero element of F[x]/(x> — 2)) we see that ¢3 = 2.

Also, if @y + a;t + a5t = by + byt + byt?, then (ay — by) + (a, — b))t +
(ay — by)1* = 0, whence (a9 ~ by) + (a; — b)x + (a, — by)x? is in
A4 = (x* — 2). How can this be, since every element in 4 has degree at
least 37 Only if ay — by + (a; — by)x + (a, — by)x% = 0, that is, only
if ay = by, @, = by, a, = b,. Thus every element in F[x]/(x* — 2) has
a unique representation as 4y + a,¢ + a,t*> where ay, a;, a, € F. By Lemma
3.9.6, F[x]/(x* — 2) is a field. It would be instructive to see this directly;
all that it entails is proving that if a5 4+ a;¢ + a,¢% 5 0 then it has an
inverse of the form « + ft + yt2. Hence we must solve for o, B, y in the
relation (ay + azt + a5t%)(« + Pt + y2) = 1, where not all of a, 4, a,
are 0. Multiplying the relation out and using 3 = 2 we obtain
(a0 + 20,8 + 2a19) + (010 + aof + 2a,9)t + (2,00 + ayB + aoy)t? = 1;
thus

b

a0 + 24,8 + 2ayy = 1,
a0 + af + 2a,y = 0,
a0 + a;f + agy = 0.

We can try to solve these three equations in the three unknowns o, B, y.
When we do so we find that a solution exists if and only if

ay® + 2a,° + 4a,® — 6aya,a, # 0.

Therefore the problem of proving directly that F[x]/(x® — 2) is a field
boils down to proving that the only solution in rational numbers of

ap® + 2a3 + 4a,® = 6aya,a, (D

157



158

Ring Theory Ch. 3

is the solution gy = @, = a, = 0. We now proceed to show this. If 4
solution exists in rationals, by clearing of denominators we can show that
a solution exists where g, a,, @, are integers. Thus we may assume that
ay, a1, a, are integers satisfying (1). We now assert that we may assume
that ay, a;, a, have no common divisor other than 1, for if a, = b,
a, = b,d, and a, = b,d, where d is their greatest common divisor, then
substituting in (1) we obtain d(by* + 26, + 4b,%) = d3(6byb,b,), and so
bo> + 2b,> + 4b,® = 6byb,b,. The problem has thus been reduced to
proving that (1) has no solutions in integers which are relatively prime.
But then (1) implies that a,> is even, so that g, is even; substituting ¢, = 2ot
in (1) gives us 4ay* + a,®> + 2a,®> = 6aya,a,. Thus a3, and so, a4, is even;
a; = 2a;. Substituting in (1) we obtain 205> + 4o, + a,® = 60504,
Thus a,> and so a,, is even! But then a,a,,a, have 2 as a common
factor! This contradicts that they are relatively prime, and we have proved
that the equation ao® + 24,3 + 4a,®> = 6aya,a, has no rational solution
other than a, = ¢; = a, = 0. Therefore we can solve for a, f, y and
F[x]/(x* — 2) is seen, directly, to be a field.

Problems

I. Find the greatest common divisor of the following polynomials over
F, the field of rational numbers:
(a) x* — 6x% + x + 4and x*> — 6x + 1.
(b) x> + land x® + x> + x + 1.
2. Prove that
(a) #* + x + 1is irreducible over F, the field of integers mod 2.
(b) x* + 1 is irreducible over the integers mod 7.
(c) % — 9 is irreducible over the integers mod 31.
(d) x* — 9 is reducible over the integers mod 11.
3. Let F, K be two fields F « K and suppose f (x), g(x) € F[x] are re-
latively prime in F[x]. Prove that they are relatively prime in K[x].
4. (a) Prove that x? + 1 is irreducible over the field F of integers mod 11
and prove directly that F[x]/(x* + 1) is a field having 121 elements.
(b) Prove that x* + x + 4 is irreducible over F, the field of integers

mod 11 and prove directly that F[x]/(x®> + x + 4) is a field
having 121 elements.

*(c) Prove that the fields of part (a) and part (b) are isomorphic.

5. Let F be the field of real numbers. Prove that F[x]/(x? + 1) is a field
isomorphic to the field of complex numbers.

*6. Define the derivative f'(x) of the polynomial
S =a +ax + -0+ ap”
as S(%) = ay + 2a,x + 3a3x2 + -+ naat
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Prove that if f (x) € F[x], where F is the field of rational numbers, then
S (x) is divisible by the square of a polynomial if and only if f (x) and
J'(x) have a greatest common divisor d(x) of positive degree.

7. If f(x) is in F[x], where F is the field of integers mod p, p a prime,

and f (x) is irreducible over F of degree n prove that F[x]/(f(x)) is a
field with p" elements.

3.10 Polynomials over the Rational Field

We specialize the general discussion to that of polynomials whose co-
- efficients are rational numbers. Most of the time the coefficients will
~ actually be integers. For such polynomials we shall be concerned with their
. irreducibility.

DEFINITION The polynomial f (x) = ay + a;x + * -+ + a,x", where the
i @9, 44,4, ...,a, are integers is said to be primitive if the greatest common
_ divisor of ay, ay, ..., a,is .

~ LEMMA 3.101 If f (x) and g(x) are primitive polynomials, then f (x)g(x)

isa primitive polynomial.

. Proof. Letf(x) =ay +ax+ -+ ayx" and g(x) = by + byx + ++ +

. b,x™ Suppose that the lemma was false; then all the coefficients of
- f(x)g(x) would be divisible by some integer larger than 1, hence by some
' prime number p. Since f (x) is primitive, p does not divide some coefficient
" a;. Let a; be the first coefficient of f (x) which p does not divide. Similarly
. let b, be the first coefficient of g(x) which p does not divide. In Sx)glx)

~ the coefficient of x/*%, ¢, is

Ciok = by + (@jp1byy + a5 i0b 5 + -+ + a; +1bo)
+ (@-1brsr + G5gbyyy + 0+ dhsyy). (1)

Now by our choice of by, p|b;_y, by, - . - 50 that p[ (a4 10—y + aj42b,-5 +
"** + aj44b). Similarly, by our choice of a;, p|a;_y, a;_,,... so that
PUa;_ybyyy + ajpbyyy + 0 + aoby+j). By assumption, p|cjy. Thus
by (1), p| a;b,, which is nonsense since b X a; and p f b,. This proves
the lemma.

DEFINITION The content of the polynomial f(x) = a + ax + -+
a,x", where the a’s are integers, is the greatest common divisor of the
integers ag, ay, . . ., a,.

Clearly, given any polynomial p(x) with integer coefficients it can be
written as p(x) = dg(x) where d is the content of p(x) and where ¢(x) is a
primitive polynomial.

-
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THEOREM 3.10.1 (Gauss’ LEmma) If the primitive polynomial f(x) can
be factored as the product of two polynomials having rational coefficients, it can be
Sfactored as the product of two polynomials having integer coefficients.

Proof. Suppose that f (x) = u(x)v(x) where u(x) and »(x) have rational
coefficients. By clearing of denominators and taking out common factors
we can then write f (x) = (a/b)A(x)u(x) where a and b are integers and
where both A(x) and p(x) have integer coefficients and are primitive.
Thus &f (x) = aA(x)u(x). The content of the left-hand side is b, since
f (x) is primitive; since both A(x) and u(x) are primitive, by Lemma 3.10.1
A(x)u(x) is primitive, so that the content of the right-hand side is . There-
fore a = b, (a/b) =1, and f(x) = A(x)u(x) where A(x) and u(x) have
integer coeflicients. This is the assertion of the theorem.

DEFINITION A polynomial is said to be integer monic if all its coefficients
are integers and its highest coefficient is 1.

Thus an integer monic polynomial is merely one of the form " +
ax""' + -+ + a, where the a’s are integers. Clearly an integer monic
polynomial is primitive.

COROLLARY If an integer monic polynomial factors as the product of two non-
constant polynomials having rational coefficients then it factors as the product of two
integer monic polynomials.

We leave the proof of the corollary as an exercise for the reader.

The question of deciding whether a given polynomial is irreducible or not
can be a difficult and laborious one. Few criteria exist which declare that a
given polynomial is or is not irreducible. One of these few is the following
result:

THEOREM 3.10.2 (THE EsensteiN CRITERION) Let f (x) = ag + ax +
ax? + -+ 4+ ax" be a polynomial with integer coefficients. Suppose that for
some prime number p, p X ap P as, p |z .. p | g, p* X ag. Then f(x) is

trreducible over the rationals. )

Proof. Without loss of generality we may assume that f (x) is primitive,
for taking out the greatest common factor of its coefficients does not disturb
the hypotheses, since p f a,. If f(x) factors as a product of two rational
polynomials, by Gauss’ lemma it factors as the product of two polynomials
having integer coefficients. Thus if we assume that f (%) is reducible, then

S@) = (B + byx oo+ ) (@ + erx + oo 0,

where the ’s and ¢’s are integers and where 7 > 0 and s > 0. Reading off
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the coefficients we first get ay = byco. Since p | ay, p must divide one of
by or ¢o. Since p? f a4, p cannot divide both b, and ¢o- Suppose that p | b,
p & ¢ Not all the coefficients by, ..., b, can be divisible by p; otherwise
all the coeflicients of f () would be divisible by p, which is manifestly false
since p Y a,. Let b, be the first b not divisible by p, £k < r < n. Thus
p | bi—y and the earlier &’s. But a, = bycy + by_16; + by_pey + - + botes
and p|a,plby_y, by, ..., by, so that p|be,. However, b Ao, p kb,
which conflicts with p | b,co. This contradiction proves that we could not
have factored f (x) and so f (x) is indeed irreducible.

Problems

1. Let D be a Euclidean ring, F its field of quotients. Prove the Gauss
Lemma for polynomials with coefficients in D factored as products of
polynomials with coefficients in F.

2. If p is a prime number, prove that the polynomial ¥* — p is irreducible
over the rationals.

3. Prove that the polynomial 1 + x + --- + x?~ 1 where p is a prime
number, is irreducible over the field of rational numbers. (Hint: Con-
sider the polynomial 1 + (x + 1) + (x + 1)2 + -+ + (x + 1)»~1, and
use the Eisenstein criterion.)

~
4. If m and n are relatively prime integers and if
m r
= =l (@ + ayx + -+ + o),
n
where the @’s are integers, prove that m | @y and 7 | g,. -

5. If a is rational and » — a divides an integer monic polynomial, prove
that ¢ must be an integer.

3.11 Polynomial Rings over Commutative Rings

In defining the polynomial ring in one variable over a field F, no essential
use was made of the fact that F was a field; all that was used was that F was
a commutative ring. The field nature of F only made itself felt in proving
that F[x] was a Euclidean ring.

Thus we can imitate what we did with fields for more general rings.
While some properties may be lost, such as “Euclideanism,” we shall see
that enough remain to lead us to interesting results. The subject could have
been developed in this generality from the outset, and we could have

~obtained the particular results about F [x] by specializing the ring to be a
field. However, we felt that it would be healthier to go from the concrete
to the abstract rather than from the abstract to the concrete. The price we

-
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pay for this is repetition, but even that serves a purpose, namely, that of
consolidating the ideas. Because of the experience gained in treating
polynomials over fields, we can afford to be a little sketchier in the proofs here.

Let R be a commutative ring with unit element. By the polynomial ring
in x over R, R[x], we shall mean the set of formal symbols @, + a;x+ -+ +
a,x", where ag, ay,...,a, are in R, and where equality, addition, and
multiplication are defined exactly as they were in Section 3.9. As in that
section, Rx] is a commutative ring with unit element.

We now define the ring of polynomials in the n-variables x4, . . ., x, over R,
R[x,...,x,], as follows: Let R, = R[x,], R, = R,[x,], the polynomial
ring in x, over Ry,..., R, = R,_,[x,]. R, is called the ring of polynomials
in xy,...,x, over R. Its elements are of the form Ya; ; ; x x,"2 -2,
where equality and addition are defined coefficientwise and where multipli-
cation is defined by use of the distributive law and the rule of exponents
(xihle'z ce x"i") (xlflxzjz P xn_in) = xlin +J'1x2i2+j2 . x"i"+j". Of particular
importance is the case in which R = F is a field; here we obtain the ring
of polynomials in n-variables over a field.

Of interest to us will be the influence of the structure of R on that of
R[x,,...,x,]. The first result in this direction is

LEMMA 3.11.1 If R is an integral domain, then so is R[x].

Proof. For 0 # f(x) = ay + a;x + -+ + a,x™, where a, # 0, in R[x],
we define the degree of f (x) to be m; thus deg f (x) is the index of the highest
nonzero coefficient of f(x). If R is an integral domain we leave it as an
exercise to prove that deg (f(x)g(x)) = degf (x) + deg g(x). But then,
for f(x) # 0, g(x) # 0, it is impossible to have f(x)g(x) = 0. That is,
R[x] is an integral domain.

Making successive use of the lemma immediately yields the
COROLLARY If R is an integral domain, then so is R[x,, . . ., x,].

In particular, when F'is a field, F[x,, . . ., x,] must be an integral domain.
As such, we can construct its field of quotients; we call this the field of rational
Sunctions in xy,...,x, over F and denote it by F(x,,...,«,). This field
plays a vital role in algebraic geometry. For us it shall be of utmost im-
portance in our discussion, in Chapter 5, of Galois theory.

However, we want deeper interrelations between the structures of R and
of R[x,...,x,] than that expressed in Lemma 3.11.1. Our development
now turns in that direction.

Exactly in the same way as we did for Euclidean rings, we car speak
about divisibility, units, etc., in arbitrary integral domains, R, with unit
element. Two elements @, b in R are said to be associates if a = ub where u
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is a unit in R. An element @ which is not a unit in R will be called irreducible
(or a prime element) if, whenever a = b¢ with b, ¢ both in R, then one of b or
¢ must be a unit in R. An irreducible element is thus an element which
cannot be factored in a ‘“‘nontrivial®’ way.

_ DEFINITION  An integral domain, R, with unit element is a unique
factorization domain if

a. Any nonzero element in R is either a unit or can be written as the product
of a finite number of irreducible elements of R.

b. The decomposition in part (a) is unique up to the order and associates
of the irreducible elements.

Theorem 3.7.2 asserts that a Euclidean ring is a unique factorization
domain. The converse, however, is false; for example, the ring F[x,, %],
where F is a field, is not even a principal ideal ring (hence is certainly not
Euclidean), but as we shall soon see it is a unique factorization domain.
~ In general commutative rings we may speak about the greatest common
- divisors of elements; the main difficulty is that these, in general, might not
_ exist. However, in unique factorization domains their existence is assured.
This fact is not difficult to prove and we leave it as an exercise; equally easy
~ are the other parts of

LEMMA 3.11.2 If R is a unique factorization domain and if a, b are in R, then
a and b have a greatest common divisor (a, b) in R. Moreover, if a and b are
relatively prime (i.e., (a, b) = 1), whenever a | bc then a | c.

COROLLARY  Ifa € R is an irreducible element and a | be, then a | b or a I'c

We now wish to transfer the appropriate version of the Gauss lemma
(Theorem 3.10.1), which we proved for polynomials with integer co-
efficients, to the ring R[x], where R is a unique factorization domain.

Given the polynomial f(x) = ay + a;x + **- + a,x™ in R[x], then the
content of f (x) is defined to be the greatest common divisor of ay, ay, . . ., a,,.
It is whique within units of R. We shall denote the content of S (x) by ¢(f).
A polynomial in R[x] is said to be primitive if its content is 1 (that is, is a
unit in R). Given any polynomial f (x) € R[x], we can write f (x) = af, (x)
where a = ¢(f) and where f;(x) € R[x] is primitive. (Prove!) Except for
multiplication by units of R this decomposition of f (x), as an element of
R by a primitive polynomial in R[x], is unique. (Prove!)

. The proof of Lemma 3.10.1 goes over completely to our present situation;
~ the only change that must be made in the proof is to replace the prime
number p by an irreducible element of R. Thus we have
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LEMMA 3.11.3 If R is a unique factorization domain, then the product of two
primitive polynomials in R[x] is again a primitive polynomial in R[x].

Given f(x), g(x) in R[x] we can write f(x) = af;(x), g(x) = bg;(x),
where a = ¢(f), b = ¢(g) and where f;(x) and g (x) are primitive. Thus
f(x)g(x) = abfi(x)g,(x). By Lemma 3.11.3, f(x) g4(x) is primitive. Hence
the content of f (x) g(x) is ab, that is, it is ¢(f)c(g). We have proved the

COROLLARY If R is a unique factorization domain and if f (x), g(x) are in
R[x], then c(fg) = c(f)c(g) (up to units).

By a simple induction, the corollary extends to the product of a finite
number of polynomials to read c¢(f; /5« fi) = ¢{(f1)e(Sfa) = e(fo)-

Let R be a unique factorization domain. Being an integral domain, by
Theorem 3.6.1, it has a field of quotients F. We can consider R[x] to be a
subring of F[x]. Given any polynomial f (x) € F[x], then f (x) = ( fo(x)/a),
where fy(x) € R[x] and where a € R. (Prove!) It is natural to ask for the
relation, in terms of reducibility and irreducibility, of a polynomial in R[x]
considered as a polynomial in the larger ring F[x]

LEMMA 3.11.4 If f(x) in R[x] is both primitive and irreducible as an element
of R[x], then it is irreducible as an element of F[x]. Conversely, if the primitive
element f (x) in R[x] is irreducible as an element of F[x], it is also irreducible as an
element of R[x].

Proof. Suppose that the primitive element f (x) in R[x] is irreducible in
R[x] but is reducible in F[x]. Thus f (x) = g(x)h(x), where g(x), A(x) are in
F[x] and are of positive degree. Now g(x) = (go(x)/a), h(x) = (hy(x)/[b),
where a, be R and where go(x), hy(x) € R[x]. Also go(x) = ag (%),
ho(x) = Phy(x), where o = ¢(go), B = ¢(hy), and g,(x), hy(x) are primitive
in R[x]. Thus f(x) = («Bfab) g,(x)h,(x), whence abf (x) = afig,(x)h (%)
By Lemma 3.11.3, g, (x)k,(x) is primitive, whence the content of the right-
hand side is af. Since f (x) is primitive, the content of the left-hand side is
ab; but then ab = «ff; the implication of this is that f (x) = g,(x)k,(x), and
we have obtained a nontrivial factorization of f(x) in R[x], contrary to
hypothesis. (Note: this factorization is nontrivial since each of g (x), k(%)
are of the same degree as g(x), &(x), so cannot be units in R[x] (see Problem
4).) We leave the converse half of the lemma as an exercise. ‘

LEMMA 3.11.5 If R is a unique factorization domain and if p(x) is a primitive
polynomial in R[x), then it can be factored in a unique way as the product of irreducible
elements in R[x]. '

Proof. When we consider p(x) as an element in F[x], by Lemma 3.9.5,.

we can factor it as p(x) = p,(x) - - - p(x), where p;(x), p2(%), - . ., py(x) are
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irreducible polynomials in F[x]. Each p,(x) = (fi(x)/a;), where fi(x) e
R[x] and g; € R; moreover, f;(x) = c;q;(x), where ¢; = ¢(f;)) and where
© g;(x) is primitive in R[x]. Thus each p;(x) = (¢;¢;(x)/a;), where a,¢;e R
v and where ¢,(x) € R[x] is primitive. Since p,(x) is irreducible in F [«],
;(x) must also be irreducible in F[x], hence by Lemma 3.11.4 it is irreducible

n R[x].

%2 % g (x) e qi(),

a,a, - a,

p(x) = pi(x) - pulx) =

~ whence aa; -+ g p(x) = ¢165 -+ - qy(x) - - - q(x). Using the primitivity of
: p(x) and of ¢g,(x) - - - g (x), we can read off the content of the left-hand
side as a4, - a and that of the right-hand side as ¢;¢,--¢. Thus
may -t =6, 6, hence p(x) = q,(x)---q.(x). We have factored
~ p(x), in R[], as a product of irreducible elements.
.~ Can we factor it in another way? If p(x) = r,(x) - - - r,(x), where the
* 1,(x) are irreducible in R[], by the primitivity of p(x), each r,(x) must be
. primitive, hence irreducible in F[x] by Lemma 3.11.4. But by Lemma 3.9.5
© we know unique factorization in F[x]; the net result of this is that the
- ri(x) and the ¢;(x) are equal (up to associates) in some order, hence p(x)
 has a unique factorization as a product of irreducibles in R[x].
~ We now have all the necessary information to prove the principal theorem
- of this section.

-; THEOREM 3.11.1  IfRis aunique factorization domain, then so is R[x].

Proof. Let f (x) be an arbitrary element in R[x]. We can write f (xJ'in
. a unique way as f (x) = ¢f;(x) where ¢ = ¢(f) is in R and where f(x),
in R[x], is primitive. By Lemma 3.11.5 we can decompose f; (x) in a unique
way as the product of irreducible elements of R[x]. What about ¢?
Suppose  that ¢ = q,(x)a,(x) - --a,(x) in R[x]; then 0 =degc¢ =
deg (a,(x)) + deg (a,(x)) + - -+ + deg (a,(x)). Therefore, each a;(x) must
be of degrée 0, that is, it must be an element of R. In other words, the
only f@ctorizations of ¢ as an element of R[x] are those it had as an element
of R. In particular, an irreducible element in R is still irreducible in R[x].
Since R is a unique factorization domain, ¢ has a unique factorization as a
Product of irreducible elements of R, hence of R[x].
Putting together the unique factorization of /' (x) in the form ¢f; (x) where
J1(x) is primitive and where ¢ € R with the unique factorizability of ¢ and
of £ (x) we have proved the theorem.

Given R as a unique factorization domain, then R, = R[x,] is also a
unique factorization domain. Thus R, = R,[x,] = R[x,,x,] is also a
unique factorization domain. Continuing in this pattern we obtain

-
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COROLLARY 1 If R is a unique factorization domain then so is R[xy, . . ., x,].
A special case of Corollary | but of independent interest and importance is

COROLLARY 2 If F is a field then F[x,,...,x,] is a unique factorization
domain.

Problems

1. Prove that R[] is a commutative ring with unit element whenever R is.

2. Prove that R[x,...,x,] = R[x;,...,x;], where (i,...,7,) is a
permutation of (1, 2,...,a).

3. If R is an integral domain, prove that for f(x), g(x) in R[x],
deg (f (x)g(x)) = deg (f (%)) + deg (g(x)).

4. If R is an integral domain with unit element, prove that any unit in
R[x] must already be a unit in R.

5. Let R be a commutative ring with no nonzero nilpotent elements (that
is, ¢" = 0 implies a = 0). If f(x) = gy + ayx + ** + @,x™ in R[]
is a zero-divisor, prove that there is an element ¥ # 0 in R such that
bay = bay = -+ = ba, = 0.

*6. Do Problem 5 dropping the assumption that R has no nonzero nilpotent
elements.

*7. If R is a commutative ring with unit element, prove that a, + a.x +
*** + a,#" in R[x] has an inverse in R[x] (i.e., is a unit in R[x]) if and
only if a5 is 2 unit in R and a,, .. ., a, are nilpotent elements in R.

8. Prove that when Fis a field, F[x,, x,] is not a principal ideal ring.

9. Prove, completely, Lemma 3.11.2 and its corollary.

10. (a) If R is a unique factorization domain, prove that every f (x) € R[]
can be written as f (x) = af;(x), where a € R and where f,(x) is
primitive.

(b) Prove that the decomposition in part (a) is unique (up to associates).

11. If R is an integral domain, and if F is its field of quotients, prove that
any element f(x) in F[x] can be written as f(x) = (fy(x)/a), where

Jo(x) € R[x] and where a € R. !

12. Prove the converse part of Lemma 3.11.4.

13. Prove Corollary 2 to Theorem 3.11.1.

14. Prove that a principal ideal ring is a unique factorization domain.

15. If J is the ring of integers, prove that J[x,...,x,] is a unique fac-
torization domain.
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Supplementary Problems

1. Let R be a commutative ring; an ideal P of R is said to be a prime ideal
of Rifabe P, a, b € R implies that ae P or b € P. Prove that P is a
prime ideal of R if and only if R/P is an integral domain.

2. Let R be a commutative ring with unit element; prove that every
maximal ideal of R is a prime ideal.

3. Give an example of a ring in which some prime ideal is not a maximal
ideal.

4. If R is a finite commutative ring (i.e., has only a finite number of
elements) with unit element, prove that every prime ideal of R is a
maximal ideal of R.

5. If F is a field, prove that F[x] is isomorphic to F[¢].

6. Find all the automorphisms ¢ of F[x] with the property that o( f) = f
for every f € F.

7. If R is a commutative ring, let N = {x € R | x* = 0 for some integer n}.
Prove
(a) Nis an ideal of R.
(b) InR = R/Nif #™ = 0 for some m then ¥ = 0.
8. Let R be a commutative ring and suppose that 4 is an ideal of R.
Let N(4) = {x € R| x" € 4 for some n}. Prove
(a) N(A) is an ideal of R which contains 4.
(b) N(N(4)) = N(4).
N (4) is often called the radical of A.
9. If n is an integer, let J, be the ring of integers mod n. Describg. N
: (see Problem 7) for J, in terms of ».
10. If 4 and B are ideals in a ring R such that 4 n B = (0), prove that
foreveryae A, be B, ab = 0.
I If R is a ring, let Z(R) = {xe R|xy = yx all y € R}. Prove that
Z(R) is a subring of R.
12. If R is a division ring, prove that Z(R) is a field.

13. Find a polynomial of degree 3 irreducible over the ring of integers,
J3>, mod 3. Use it to construct a field having 27 elements.

14. Construct a field having 625 elements.
15. If F is a field and p(x) € F[«], prove that in the ring
R o FI
(6(x))

N (see Problem 7) is (0) if an only if p(x) is not divisible by the square of
any polynomial.

-
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16.

17.

18.

19.

20.

21.

22.

28.

24.

25.

26.

27.

28.

Prove that the polynomial £ (x) = 1 + x + x*® + x* is not irreducible
over any field F.

Prove that the polynomial f(x) = x* + 2x + 2 is irreducible over
the field of rational numbers.

Prove that if Fis a finite field, its characteristic must be a prime number
p and F contains p" elements for some integer. Prove further that if
a € F then o™ = a.

Prove that any nonzero ideal in the Gaussian integers J[i] must contain
some positive integer.

Prove that if R is a ring in which a* = a for every a € R then R must
be commutative.

Let R and R’ be rings and ¢ a mapping from R into R’ satisfying

(a) ¢(x +) = ¢(x) + $()) for every x, y € R.

(b) ¢(») = d(x)d(») or $(»)¢(x).
Prove that for all a, b € R, ¢(ab) = ¢(a)¢(b) or that, for all a, b e R,

o(a) = ¢(b)Pp(a). (Hint: IfaeR, let
W, = {xeR| ¢(ax) = ¢(a)¢(x)}

and
U, = {xe R| ¢(ax) = p(x)§(a)}.)

Let R be a ring with a unit element, 1, in which (ab)2 = a2b? for

all @, b € R. Prove that R must be commutative.

Give an example of a noncommutative ring (of course, without 1) in

which (ab)? = a?b? for all elements a and 5.

(a) Let R be a ring with unit element 1 such that (ab)? = (ba)? for
alla,b e R. Ifin R, 2x = 0 implies x = 0, prove that R must be
commutative.

(b) Show that the result of (a) may be false if 2x = 0 for some x # 0
in R.

(c) Even if 2x = 0 implies x = 0 in R, show that the result of (a)
may be false if R does not have a unit element.

Let R be a ring in which " = 0 implies x = 0. If (ab)? = a%b>

for all a, b € R, prove that R is commutative.

Let R be a ring in which »" = 0 implies x = 0. If (ab)? = (ba)?

for all a, b € R, prove that R must be commutative. ‘

Let py, p2, - - - » by be distinct primes, and let n = pyp, - p. If R is

the ring of integers modulo #, show that there are exactly 2% elements

a in R such that a? = a.

Construct a polynomial ¢(x) # 0 with integer coefficients which has

no rational roots but is such that for any prime p we can solve the

congruence ¢(x) = 0 mod p in the integers.
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Fields

In our discussion of rings we have already singled out a special class
which we called fields. A field, let us recall, is a commutative ring
with unit element in which every nonzero element has a multiplicative
inverse. Put another way, a field is a commutative ring in which we
can divide by any nonzero element.

Fields play a central role in algebra. For one thing, results about
them find important applications in the theory of numbers. For
another, their theory encompasses the subject matter of the theory.of
equations which treats questions about the roots of polynomials.

In our development we shall touch only lightly on the field of
algebraic numbers. Instead, our greatest emphasis will be on aspects
of field theory which impinge on the theory of equations. Although
we shall not treat the material in its fullest or most general form, we
shall go -far enough to introduce some of the beautiful ideas, due to
the brilliant French mathematician Evariste Galois, which have

Aerved as a guiding inspiration for algebra as it is today.

5.1 Extension Fields

In this section we shall be concerned with the relation of one field to
another. Let F be a field; a field K is said to be an extension of F if K
contains F. Equivalently, K is an extension of F if F is a subfield of K.
Throughout this chapter F will denote a given field and K an extension of F.
As was pointed out earlier, in the chapter on vector spaces, if K is

7
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an extension of F, then, under the ordinary field operations in K, K is a vector
space over F. As a vector space we may talk about linear dependence,
dimension, bases, etc., in K relative to F.

DEFINITION The degree of K over F is the dimension of K as a vector
space over F.

We shall always denote the degree of K over F by [K:F]. Of particular
interest to us is the case in which [K:F] is finite, that is, when K is finite-
dimensional as a vector space over F. This situation is described by saying
that K is a finite extension of F.

We start off with a relatively simple but, at the same time, highly effective
result about finite extensions, namely,

THEOREM 5.1.1 If L is a finite extension of K and if K is a finite extension of
F, then L is a finite extension of F. Moreover, [L:F] = [L:K][K:F].

Proof. The strategy we employ in the proof is to write down explicitly
a basis of L over F. In this way not only do we show that L is a finite
extension of F, but we actually prove the sharper result and the one which
is really the heart of the theorem, namely that [L:F] = [L:K][K:F].

Suppose, then, that [L:K] = m and that [K:F] =n. Let vy,...,0,
be a basis of L over K and let w,, ..., w, be a basis of K over F. What
could possibly be nicer or more natural than to have the elements 2w,
where i =1,2,...,m, j=1,2,...,n, serve as a basis of L over F?
Whatever else, they do at least provide us with the right number of elements.
We now proceed to show that they do in fact form a basis of L over F.
What do we need to establish this? First we must show that every element
in L is a linear combination of them with coefficients in F, and then we
must demonstrate that these mn elements are linearly independent over F.

Let ¢ be any element in L. Since every element in L is a linear combination

of vy,...,0, with coefficients in K, in particular, ¢ must be of this form.
Thus ¢ = k0, + -+ + knv,, where the elements £, ..., k, are all in K.
However, every element in K is a linear combination of wy, ..., w, with

coefficients in F. Thus k; = fj,w, + = + fi@Wp -+ s ki = fuw, + -+
Sintns « v s by = fry + *** F frua¥n where every f;; is in F.

Substituting these expressions for &y, . . ., k,, into ¢ = kjo; + *** + kpm
we obtain = (fi@, +* + fi0.)00 + 0+ (fu@r + 700+ Snn)n
Multiplying this out, using the distributive and associative laws, we finally
arrive at t = fi0,0; + 0 4 fis0 W, + 00+ fipaw; + 000t SunOnn
Since the f;; are in F, we have realized ¢ as a linear combination over F of
the elements v,w;. Therefore, the elements v,w; do indeed span all of L over
F, and so they fulfill the first requisite property of a basis.
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We still must show that the elements ,w; are linearly independent over F.
Suppose that f,o;w; +- - + fi 0w, + - + fipw;+ 0+ S, =0,
where the f;; are in F. Our objective is to prove that each fii = 0. Re-
ouping the above expression yields (f;,w, + - - + fia0n)o + 0+
nwr o fiw)os + o+ (fwg 4 fw,)0, = 0.

Since the w; are in K, and since K > F, all the elements &, = frw + -
Jinwn are in K. Now kv, + -+ + kv, = 0 with ky,...,k,e K. But,
assumption, vy, ..., v, form a basis of L over K, so, in particular they
‘must be linearly independent over K. The net result of this is that k, =
=+ =k, = 0. Using the explicit values of the k;, we get

Jawy + 0+ fiw, =0 for 1 =1,2,...,m

But now we invoke the fact that the w; are linearly independent over F;
this yields that each f;; = 0. In other words, we have proved that the
vaw; are linearly independent over F. In this way they satisfy the other
requisite property for a basis.

We have now succeeded in proving that the mn elements v;w; form a
basis of L over F. Thus [L:F] = mn; since m = [L:K] and n = [K:F]
we have obtained the desired result [L:F] = [L:K][K:F].

' Suppose that L, K, F are three fields in the relation L > K o F and,
suppose further that [L:F] is finite. Clearly, any elements in I linearly
ndependent over K are, all the more so, linearly independent over F.
Thus the assumption that [L:F] is finite forces the conclusion that [L:K]
is finite. Also, since K is a subspace of L, [K:F] is finite. By the theorem,

[L:F] = [L:K] [K:F], whence [K:F] | [L:F]. We have proved the

COROLLARY If L is a finite extension of F and K is a subfield of L which
. tontains F, then [K:F] | [L:F].

Thus, for instance, if [L:F] is a prime number, then there can be no
fields properly between F and L. A little later, in Section 5.4, when we
discuss the construction of certain geometric figures by straightedge and
fompass, this corollary will be of great significance.

DEFINJTION An element a € K is said to be algebraic over F if there exist
lements o, 5., 0, in F, not all 0, such that oya" + o;a" ™! + -+ +
= 0.

If the polynomial q(x) € F[x], the ring of polynomials in x over F, and
9(x) = Box™ + Px™ "1 4 oo 4 B> then for any element b € K, by q(b)
£ e shall mean the element Bob™ + B5" ™! + -+ + B in K. In the ex-
fPression commonly used, ¢(b) is the value of the polynomial ¢(x) obtained
1Dy substituting b for x. The element 5 is said to satisfy q(x) if q(b) = 0.
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In these terms, a € K is algebraic over F if there is a nonzero polynomial
p(x) € F[x] which a satisfies, that is, for which p(a) = 0.

Let K be an extension of F and let a be in K. Let # be the collection of
all subfields of K which contain both F and a. . is not empty, for K itself
is an element of #. Now, as is easily proved, the intersection of any number
of subfields of K is again a subfield of K. Thus the intersection of all those
subfields of K which are members of .# is a subfield of K. We denote this
subfield by F(a). What are its properties? Certainly it contains both F
and a, since this is true for every subfield of K which is a member of .#.
Moreover, by the very definition of intersection, every subfield of K in .#
contains F(a), yet F(a) itself is in #. Thus F(a) is the smallest subfield of K
containing both F and a. We call F(a) the subfield obtained by adjoining a to F.

Our description of F(a), so far, has been purely an external one. We now
give an alternative and more constructive description of F(a). Consider all
these elements in K which can be expressed in the form f, + fa + - - + f.a%;
here the f’s can range freely over F and s can be any nonnegative integer.
As elements in K, one such element can be divided by another, provided
the latter is not 0. Let U be the set of all such quotients. We leave it as
an exercise to prove that U is a subfield of K.

On one hand, U certainly contains F and @, whence U > F(a). On
the other hand, any subfield of K which contains both F and a, by virtue
of closure under addition and multiplication, must contain all the elements
Bo + Bia + -+ + Ba® where each B,e F. Thus F(a) must contain all
these elements; being a subfield of K, F(a) must also contain all quotients
of such elements. Therefore, F(a) > U. The two relations U < F(a),
U > F(a) of course imply that U = F(a). In this way we have obtained
an internal construction of F(a), namely as U.

We now intertwine the property that a € K is algebraic over F with
macroscopic properties of the field F(a) itself. This is

THEOREM 5.1.2  The element a € K is algebraic over F if and only if F(a)

is a finite extension of F.

Proof. As is so very common with so many such “if and only if” pro-
positions, one-half of the proof will be quite straightforward and easy,
whereas the other half will be deeper and more complicated.

Suppose that F(a) is a finite extension of F and that [F(a):F] = m
Consider the elements 1, a, a2, ..., a™; they are all in F(a) and are m +1
in number. By Lemma 4.2.4, these elements are linearly dependent over
F. Therefore, there are elements oy, a4, ..., a, in F, not all 0, such that
ol + oya + 0a® + -+ + a,a™ = 0. Hence a is algebraic over F and
satisfies the nonzero polynomial p(x) = oy + oyx + - -+ + 0,x™ in F[#]
of degree at most m = [F(a):F]. This proves the “if”’ part of the theorem.

Now to the “only if”” part. Suppose that a in K is algebraic over F. By
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sumption, a satisfies some nonzero polynomial in F [x]; let p(x) be a
olynomial in F[x] of smallest positive degree such that pla) = 0. We
aim that p(x) is irreducible over F. For, suppose that p(x) = f(x)g(x),
here f (x), g(x) € F[x]; then 0 = p(a) = f(a)g(a) (see Problem 1) and,
ce f (a) and g(a) are elements of the field K, the fact that their product
0 forces f{a) = 0 or g(a) = 0. Since p(x) is of lowest positive degree
ith p(a) = 0, we must conclude that one of deg S (x) = degp(x) or
eg £(x) > deg p(x) must hold. But this proves the irreducibility of p(x).
We define the mapping  from F[x] into F(a) as follows. For any
%) € F[x], h(x)Y = h(a). We leave it to the reader to verify that  is a
g homomorphism of the ring F[x] into the field F (a) (see Problem 1).
hat is V, the kernel of ? By the very definition of v, V=
{h(x) € F[x] | h(a) = 0}. Also, p(x) is an element of lowest degree in the
eal Vof F[x]. By the results of Section 3.9, every element in Vis a multiple
£(x), and since p(x) is irreducible, by Lemma 3.9.6, V is a maximal ideal
of F[x]. By Theorem 3.5.1, F[x]/V is a field. Now by the general homo-
morphism theorem for rings (Theorem 3.4.1), F [x]/V is isomorphic to the
age of F[x] under y. Summarizing, we have shown that the image of
{x] under ¥ is a subfield of F(a). This image contains x|y = a and, for
gvery a € F, o)y = a. Thus the image of F[x] under Y is a subfield of
F[a] which contains both F and a; by the very definition of F(a) we are
forced to conclude that the image of F[x] under y is all of F(a). Put more
%ccinctly, F[x]/V is isomorphic to F(a).

. Now, V' = (p(x)), the ideal generated by p(x); from this we claim that
the dimension of F[x]/V, as a vector space over F, is precisely equal to
tleg p(x) (see Problem 2). In view of the isomorphism between F [x]/V and
F(a) we obtain the fact that [F(a):F] = deg p(x). Therefore, [F(a):F] is
_ieertainly finite; this is the contention of the “only if” part of the theorem.
NOte that we have actually proved more, namely that [F(a):F] is equal to
the degree of the polynomial of least degree satisfied by a over F.

The proof we have just given has been somewhat long-winded, but
eliberately so.- The route followed contains important ideas and ties in
ults and concepts developed earlier with the current exposition. No part
mathematics is an island unto itself.

- We now redo the “only if”” part, working more on the inside of F(a).
Chis reworking is, in fact, really identical with the proof already given; the
Ponstituent pieces are merely somewhat differently garbed.

- Again let p(x) be a polynomial over F of lowest positive degree satisfied
BY a. Such a polynomial is called a minimal polynomial for a over F. We
ay assume that its coefficient of the highest power of x is 1, that is, it is
Bonic; in that case we can speak of the minimal polynomial for a over F
Or any two minimal, monic polynomials for a over F are equal. (Prove!)

-
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Suppose that p(x) is of degree n; thus p(x) = " + a4+ %,

where the «; are in F. By assumption, a" + @t 4+ 4o, =0,
whence @ = —aa" ! — aza" 2 — -+ — @, What about a"*'? From
the above, a"*! = —a 8" — 0ya"" ! — -+ — a,a; if we substitute the

expression for a" into the right-hand side of this relation, we realize a"*!

as a linear combination of the elements 1, a,...,a"~ ! over F. Con-
tinuing this way, we get that a"** for k > 0, is a linear combination over
Fofl,a, a%...,a" L

Now consider T = {Bo + B1a + *** + Bue1@"" ' | Bos B1>-+ > Bao1 € F}.
Clearly, T is closed under addition; in view of the remarks made in the
paragraph above, it is also closed under multiplication. Whatever further
it may be, T has at least been shown to be a ring. Moreover, T contains
both F and a. We now wish to show that T is more than just a ring, that
it is, in fact, a field.

Let 0 # u=fy + fia+ -+ By—ya" ' be in T and let h(x) = By +
Byx + -+ + B,_1x" e F[x]. Since u # 0, and u = h(a), we have that
h(a) # 0, whence p(x) f h(x). By the irreducibility of p(x), p(x) and A(x)
must therefore be relatively prime. Hence we can find polynomials s{x)
and t(x) in F[x] such that p(x)s(x) + k(x)t(x) = 1. But then 1 =
p(a)s(a) + h(a)t(a) = h(a)t(a), since p(a) = 0; putting into this that
u = h(a), we obtain ut(a) = 1. The inverse of u is thus {(a); in t(a) all
powers of a higher than n — 1 can be replaced by linear combinations of 1,
a,...,a" ! over F, whence ¢(a) € T. We have shown that every nonzero
element of 7 has its inverse in T; consequently, 7" is a field. However,
T < F(a), yet F and a are both contained in 7, which results in 7' = F (a).
We have identified F(a) as the set of all expressions B, + Bia + - +
ﬁn—la"- 1'

Now T is spanned over F by the elements 1, a,..., a in consequence
of which [T:F] < n. However, the elements 1,4,4%..., a1 are
linearly independent over F, for any relation of the form y, + y,a + **~
+ y,-4a"" 1, with the elements y; € F, leads to the conclusion that 4
satisfies the polynomial y, + yyx + +* + Yu-12""1 over F of degree
less than n. This contradiction proves the linear independence of 1, 4, .. -»
a"~ 1, and so these elements actually form a basis of 7" over F, whence, in
fact, we now know that [T:F] = n. Since 7T = F(a), the result
[F(a):F] = nfollows.

n—1

DEFINITION The clement a € K is said to be algebraic of degree n over
F if it satisfies a nonzero polynomial over F of degree n but no nonzero
polynomial of lower degree.

In the course of proving Theorem 5.1.2 (in each proof we gave), we proved
a somewhat sharper result than that stated in that theorem, namely,
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THEOREM 5.1.3 Ifa € K is algebraic of degree n over F, then [F(a):F] = n.

This result adapts itself to many uses. We give now, as an immediate
consequence thereof, the very interesting

THEOREM 51.4 Ifa b in K are algebraic over F then a + b, ab, and alb

(if b # 0) are all algebraic over F. In other words, the elements in K which are
algebraic over F form a subfield of K.

Proof.  Suppose that a is algebraic of degree m over F while b is algebraic
of degree n over F. By Theorem 5.1.3 the subfield 7" — F(a) of K is of
degree m over F. Now b is algebraic of degree n over F, a fortiori it is algebraic
of degree at most # over T which contains F. Thus the subfield I — T(b)
of K, again by Theorem 5.1.3, is of degree at most n over 7. But [W:F] =
[W:T][T:F] by Theorem 5.1.1; therefore, [W:F] < mn and so W is a
finite extension of F. However, a and b are both in W, whence all of
a + b, ab, and a/b are in W. By Theorem 5.1.2, since [W:F] is finite,
these elements must be algebraic over F, thereby proving the theorem.

Here, too, we have proved somewhat more. Since [W:F] < mn, every
element in W satisfies a polynomial of degree at most mn over F, whence the
COROLLARY  Ifaand b in K are algebraic over F of degrees m and n, respectively,
then a + b, ab, and afb (if b # 0) are algebraic over F of degree at most mn.

In the proof of the last theorem we made two extensions of the field F.
The first we called T'; it was merely the field F'(a). The second we called W
and it was 7'(b). Thus W = (F(a))(b); it is customary to write it"as
F(a, b). Similarly, we could speak about F (b, a); it is not too difficult to
prove that F(a,b) = F(b,a). Continuing this pattern, we can define
F(ay, a,,...,a,) for elements ay,...,a,in K.

DEFINITION The extension K of F is called an algebraic extension of F
if every element in K is algebraic over F.

W prove one more result along the lines of the theorems we have proved

A HEOREM 5.1.5 If L is an algebraic extension of K and if K is an algebraic
extension of F, then L is an algebraic extension of F.

Proof. Let u be any arbitrary element of L; our objective is to show that
- U satisfies some nontrivial polynomial with coefficients in F. What infor-
Mation do we have at present? We certainly do know that u satisfies some
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polynomial x" + o' +---+ o, where 0y,...,0, are in K. But K
is algebraic over F; therefore, by several uses of Theorem 5.1.3, M =
F(oy,...,0,) is a finite extension of F. Since u satisfies the polynomial
4 gx" ' + -+ + o, whose coefficients are in M, u is algebraic over
M. Invoking Theorem 5.1.2 yields that M(u) is a finite extension of M.
However, by Theorem 5.1.1, [M(u):F] = [M (u):M][M:F], whence
M (u) is a finite extension of F. But this implies that u is algebraic over F,
completing proof of the theorem.

A quick description of Theorem 5.1.5: algebraic over algebraic is algebraic.

The preceding results are of special interest in the particular case in
which Fis the field of rational numbers and K the field of complex numbers.

DEFINITION A complex number is said to be an algebraic number if it is
algebraic over the field of rational numbers.

A complex number which is not algebraic is called transcendental. At the
present stage we have no reason to suppose that there are any transcendental
numbers. In the next section we shall prove that the familiar real number
¢ is transcendental. This will, of course, establish the existence of trans-
cendental numbers. In actual fact, they exist in great abundance; in a
very well-defined way there are more of them than there are algebraic
numbers.

Theorem 5.1.4 applied to algebraic numbers proves the interesting fact
that the algebraic numbers form a field; that is, the sum, products, and quotients
of algebraic numbers are again algebraic numbers.

Theorem 5.1.5 when used in conjunction with the so-called “fundamental
theorem of algebra,” has the implication that the roots of a polynomial
whose coefficients are algebrafc numbers are themselves algebraic numbers.

Problems

1. Prove that the mapping :F[x] - F(a) defined by h(x)y = h(a)
is 2 homomorphism.

2. Let F be a field and let F[x] be the ring of polynomials in x over F.
Let g(x), of degree n, be in F[x] and let ¥V = (g(x)) be the ideal
generated by g(x) in F[x]. Prove that F[x]/V is an n-dimensional
vector space over F.

3. (a) If Vis a finite-dimensional vector space over the field K, and if
F is a subfield of K such that [K:F] is finite, show that V is a
finite-dimensional vector space over F and that moreover
dimg (V) = (dimg (V) (IK:F1).

(b) Show that Theorem 5.1.1 is a special case of the result of part (a)-
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4. (a) Let R be the field of real numbers and Q the field of rational
numbers. In R, N 2 and V 3 are both algebraic over . Exhibit
a polynomial of degree 4 over Q satisfied by v 2+ V3.
(b) What is the degree of N 2+ Vv 3 over Q? Prove your answer.
(c) What is the degree of \/5 V3 over Q?
5. With the same notation as in Problem 4, show that \/5 + i/g is
algebraic over Q of degree 6.
*6. (a) Find an element u € R such that Q(\/E, 2/3) = Q(u).
(b) In Q(\/E, i/g) characterize all the elements w such that Q(w) #
Q(V2, V5).
7. (a) Prove that F(a, b) = F(b, a).
(b) If (i, 1y,...,1,) is any permutation of (1,2,...,n), prove that

F(ala D) an) = F(aila Qips v+ s ai,,)'

8. If @, b € K are algebraic over F of degrees m and n, respectively,
and if m and 7 are relatively prime, prove that F (a, b) is of degree mn
over F.

9. Suppose that F is a field having a finite number of elements, gq.
(a) Prove that there is a prime number p such that a + a4+ - 4+ a4 =0
for all a e F. T
(b) Prove that ¢ = p" for some integer n.
(c) Ifa e F, prove that a? = a.
(d) If b € K is algebraic over F, prove 4" = b for some m > 0.

An algebraic number a is said to be an algebraic integer if it satisfies an
equation of the form a™ + a;e" "' + -+ + a,, = 0, where ay, ..., a, are
integers.

10. If a is any algebraic number, prove that there is a positive integer n
such that na is an algebraic integer.

11. If the rational number 7 is also an algebraic integer, prove that r
must be an ordinary integer.

12 If a is an algebraic integer and m is an ordinary integer, prove
(a) a + mis an algebraic integer.
(b) ma is an algebraic integer.

13. If  is an algebraic integer satisfying @®> + ¢ + 1 = 0 and B is an
algebraic integer satisfying B2 4+ g — 3 = 0, prove that both
@ + B and af are algebraic integers.

**14. (a) Prove that the sum of two algebraic integers is an algebraic
integer.

-

215



216

Fields Ch.5

(b) Prove that the product of two algebraic integers is an algebraic
integer.
15. (a) Prove thatsin 1° is an algebraic number.
(b) From part (a) prove that sin m° is an algebraic number for any
integer m.

5.2 The Transcendence of e

In defining algebraic and transcendental numbers we pointed out that it
could be shown that transcendental numbers exist. One way of achieving
this would be the demonstration that some specific number is transcendental.

In 1851 Liouville gave a criterion that a complex number be algebraic;
using this, he was able to write down a large collection of transcendental
numbers. For instance, it follows from his work that the number
.101001000000100 ... 10 ... is transcendental; here the number of zeros
between successive ones goes as 11,21,... ..., nl.. ..

This certainly settled the question of existence. However, the question
whether some given, familiar numbers were transcendental still persisted.
The first success in this direction was by Hermite, who in 1873 gave a proof
that ¢ is transcendental. His proof was greatly simplified by Hilbert. The
proof that we shall give here is a variation, due to Hurwitz, of Hilbert’s
proof.

The number 7 offered greater difficulties. These were finally overcome
by Lindemann, who in 1882 produced a proof that m is transcendental.
One immediate consequence of this is the fact that it is impossible, by
straightedge and compass, to square the circle, for such a construction
would lead to an algebraic number 0 such that 8% = =. But if 0 is algebraic
then so is 02, in virtue of which © would be algebraic, in contradiction to
Lindemann’s result.

In 1934, working independently, Gelfond and Schneider proved that if
a and b are algebraic numbers and if 4 is irrational, then a® is transcendental.
This answered in the affirmative the question raised by Hilbert whether
2¥2 was transcendental.

For those interested in pursuing the subject of transcendental numbers
further, we would strongly recommend the charming books by C. L. Siegel,
entitled Transcendental Numbers, and by 1. Niven, Irrational Numbers.

To prove that ¢ is irrational is easy; to prove that 7 is irrational is much
more difficult. For a very clever and neat proof of the latter, see the paper
by Niven entitled “A simple proof that = is irrational,” Bulletin of the American
Mathematical Society, Vol. 53 (1947), page 509.

Now to the transcendence of e. Aside from its intrinsic interest,-its proof
offers us a change of pace. Up to this point all our arguments have been of
an algebraic nature; now, for a short while, we return to the more familiar
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grounds of the calculus. The proof itself will use only elementary calculus;
the deepest result needed, therefrom, will be the mean value theorem.

. THEOREM 5.2.1  The number ¢ is transcendental.

Proof. In the proof we shall use the standard notation f (%) to denote
~ the ith derivative of f (x) with respect to x.
Suppose that f(x) is a polynomial of degree r with real coefficients,
Let F(x) = f(x) + fOx) + fO) 4.+ 4 SO(x). We compute
(d/dx)(e”*F (x)); using the fact that f¢*D(x) = 0 (since f () is of degree 7)
and the basic property of e, namely that (dldx)e* = ¢*, we obtain
(d]dx)(e™ F (x)) = —e *f (x).

The mean value theorem asserts that if g (x) is a continuously differentiable,
single-valued function on the closed interval [#1, x,] then

g(xy) — g(xy)
X1 — Xy

=gV, + 0(x, — %)), where 0 < 0 < 1.

We apply this to our function ¢~*F (x), which certainly satisfies all the
required conditions for the mean value theorem on the closed interval
[, x,] where x; = 0 and x, = k, where £ is any positive integer. We then
obtain that ¢ *F (k) — F(0) = —e™%f (0,k)k, where 0, depends on £ and
is some real number between 0 and 1. Multiplying this relation through by
¢ yields F(k) — F(0)e* = —¢(1-00ks (0:k)k. We write this out explicitly:

F(l) = eF(0) = =177 (0,) = g,

F(n) — F0) = —n"T"0f (0 ) = ¢

-
Suppose now that ¢ is an algebraic number; then it satisfies some relation

of the form
("ne'l + Cn—len_l +o + c1€ + Co = 09 (2)

Whe;e €0 €15 - - -, €, are integers and where ¢, > 0.
In the relations (1) let us multiply the first equation by ¢,, the second by
€2, and so on; adding these up we get et F(1) + c;F(2) + -+ + ¢,F(n) —
FO)(cre + e + -+ + 0pf") = cy8, + €287 + " + .8,

In view of relation (2), ¢,e + cy¢® + <+ + ce" = —¢;, whence the
above equation simplifies to

F(0) + ¢, F(1) + - + ¢,F(n) = €18+t + 8, (3)
All this discussion has held for the F(x) constructed from an arbitrary
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polynomial f (x). We now see what all this implies for a very specific
polynomial, one first used by Hermite, namely,

1
) = ——— 211 = P2 = 2)P(n — 2
(p - D!
Here p can be any prime number chosen so that p > n and p > ¢. For
this polynomial we shall take a very close look at F(0), F(1),...,F(n)
and we shall carry out an estimate on the size of &, &, ..., &
When expanded, f (x) is a polynomial of the form

(n!)? K1 agx” ax?* !

-1 Te-mte-u’

where ag, ay, . . ., are integers.

When i > p we claim that f?(x) is a polynomial, with coefficients
which are integers all of which are multiples of p. (Prove! See Problem 2.)
Thus for any integer j, f (), for i = p, is an integer and is a multiple of p.

Now, from its very definition, f (x) has a root of multiplicity  at x = 1,2,
...,n. Thusforj=1,2,...,n,f (J) =0,fM()=0,..., @ Y(j) =0
However, F(j) = f(j) + FOU) + -+ fC0G) + fPG) + +
£®(j); by the discussion above, for j = 1,2,...,n, F(j) is an integer and
is a multiple of p.

What about F(0)? Since f(x) has a root of multiplicity p — 1 at x = 0,
FO) =fD) =---=f®"D(0) = 0. For i >p, f@(0) is an integer
which is a multiple of p. But f®~1(0) = (n!)? and since p > n and is a
prime number, p t (r!)? so that f ®=1(0) is an integer not divisible by p.
Since F(0) = f(0) + f(0) + -+ + f®7P(0) + @~ D(0) + fP(0) +
-+« 4 £©(0), we conclude that F(0) is an integer not divisible by p. Because
¢ > 0 and p > ¢, and because p t F(0) whereas p |F(D),p| F2),---,
p| F(n), we can assert that ¢oF'(0) + ¢;F(l) + - + ¢, F'(n) ts an integer
and is not divisible by p..

However, by (3), ¢oF(0) + ¢,F(1) + -+ + ¢, F(n) =8 + - + Cube
What can we say about ;7 Let us recall that

—e (1m0 (] _ 0P (n — i0,)7(:0,)P~ 4

g = )
(¢ - D!
where 0 < 0; < 1. Thus
el < o 20
(¢ - !
Asp —» o0,
e'nP(n!)?

3




Sec. 5.3  Roots of Polynomials 219

(Prove!) whence we can find a prime number larger than both ¢, and n and
large enough to force [c&; + -+ ¢8| < 1. But ¢, + -+ + ¢, =
6F(0) + -+ ¢,F(n), so must be an integer; since it is smaller than 1 in
size our only possible conclusion is that ¢;¢, + -+ + ¢,e, = 0. Conse-
quently, ¢,F(0) + -+ + ¢,F(n) = 0; this however is sheer nonsense, since
we know that p } (¢oF(0) + - + ¢,F(n)), whereas p | 0. This contradic-
tion, stemming from the assumption that ¢ is algebraic, proves that ¢ must
be transcendental.

Problems

1. Using the infinite series for e,

1 1 1 1
g=l+_+__+_+...+__+...,
2t 3t m!

prove that ¢ is irrational.

2. If g(x) is a polynomial with integer coefficients, prove that if p is a prime
number then for z > p,
d( g
' \(p — 1!

is a polynomial with integer coefficients each of which is divisible by .
3. If a is any real number, prove that (a"/m!) - 0 as m — oo.

4. If m > 0 and n are integers, prove that ¢"/" is transcendental.

5.3 Roots of Polynomials -

In Section 5.1 we discussed elements in a given extension K of F which were
algebraic over F, that is, elements which satisfied polynomials in F[x].
We now turn the problem around; given a polynomial p(x) in Flx] we
wish to find a field K which is an extension of F in which p(x) has a root.
No longer is the field K available to us; in fact it is our prime objective to
construct it. Once it is constructed, we shall examine it more closely and

see what consequences we can derive.
7

DEFINITION If p(x) € F[x], then an element a lying in some extension
field of F is called a root of p(x) if p(a) = 0.

We begin with the familiar result known as the Remainder Theorem.

LEMMA 5.3.1 If p(x) € F[x] and if K is an extension of F, then for any ele-
ment b e K, p(x) = (x — b)g(x) + p(b) where q(x) € K[x] and where deg q(x) =
deg p(x) — 1.

-
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Proof. Since F < K, F[x] is contained in K[x], whence we can con-
sider p(x) to be lying in K[x]. By the division algorithm for polynomials
in K[x], p(x) = (x — b)g(x) + r, where ¢(x) € K[x] and where 7 =0
or degr < deg (x — b) = 1. Thus either r =0 or degr = 0; in either
case 7 must be an element of K. But exactly what element of K is it?
Since p(x) = (x — b)g(x) + r, p(b) = (b — b)q(b) + r = r. Therefore,
p(x) = (x — b)q(x) + p(b). That the degree of g(x) is one less than that of
p(x) is easy to verify and is left to the reader.

COROLLARY Ifae K is a root of p(x) € F[x], where F = K, then in K[x],
(x — a) | p(x)-

Proof. From Lemma 5.3.1, in K[x], p(x) = (x — a)g(x) + pla) =
(x — a)q(x) since p(a) = 0. Thus (x — a) | p(x) in K[x].

DEFINITION The element ae K is a root of p(x) € F[x] of multiplicity
m if (x — a)™| p(x), whereas (x — &)™ !} p(x).

A reasonable question to ask is, How many roots can a polynomial have
in a given field? Before answering we must decide how to count a root of
multiplicity m. We shall always count it as m roots. Even with this convention
we can prove

LEMMA 5.3.2 A polynomial of degree n over a field can have at most n roots in
any extension field.

Proof. 'We proceed by induction on n, the degree of the polynomial p(x).
If p(x) is of degree 1, then it must be of the form ax + f where a, § are
in a field F and where a # 0. Any a such that p(a) = 0 must then imply
that oa + B = 0, from which we conclude that a = (—f/a). That is,
p(x) has the unique root — f/a, whence the conclusion of the lemma
certainly holds in this case.

Assuming the result to be true in any field for all polynomials of degree
less than n, let us suppose that p(x) is of degree n over F. Let K be any
extension of F. If p(x) has no roots in K, then we are certainly done, for the
number of roots in K, namely zero, is definitely at most n. So, suppose that
p(x) has at least one root a € K and that a is a root of multiplicity m. Since
(x — a)™| p(x), m < n follows. Now p(x) = (x — a)™g(x), where g(x) € K[x]
is of degree n — m. From the fact that (x — a)™*! y p(x), we get that
(x — a) } g(x), whence, by the corollary to Lemma 5.3.1, a is not a root
of ¢g(x). If b # a is a root, in K, of p(x), then 0 = p(b) = (b — a)™q(b);
however, since b — a # 0 and since we are in a field, we conclude that
¢(b) = 0. That is, any root of p(x), in K, other than a, must be a root of
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b g(x). Since q(x) is of degree n — m < n, by our induction hypothesis, q(x)
- has at most n — m roots in K, which, together with the other root a,
L counted m times, tells us that p(x) has at most m + (n — m) = n roots in
| K. This completes the induction and proves the lemma.

One should point out that commutativity is essential in Lemma 5.3.2.
If we consider the ring of real quaternions, which falls short of being a field
only in that it fails to be commutative, then the polynomial x2 + | has at
least 3 roots, 4, 7, k (in fact, it has an infinite number of roots). In a some-
what different direction we need, even when the ring is commutative, that
it be an integral domain, for if ab = 0 with 4 # 0 and b % 0 in the com-
- mutative ring R, then the polynomial ax of degree 1 over R has at least
~ two distinct roots x = 0 and x = 4 in R.
~ The previous two lemmas, while interesting, are of subsidiary interest.
We now set ourselves to our prime task, that of providing ourselves with
. suitable extensions of F in which a given polynomial has roots. Once this is
~ done, we shall be able to analyze such extensions to a reasonable enough
- degree of accuracy to get results. The most important step in the construction
- is accomplished for us in the next theorem. The argument used will be very

reminiscent of some used in Section 5.1.

THEOREM 531 If p(x) is a polynomial in F[x] of degree n > 1 and is
irreducible over F, then there is an extension E of F, such that [E:F] = n, in which
b(x) has a root.

Proof. Let F[x] be the ring of polynomials in x over F and let V =
(£(x)) be the ideal of F[x] generated by p(x). By Lemma 3.96, Vis a
maximal ideal of F[x], whence by Theorem 3.5.1, E = F[x]/V is a field.
This E will be shown to satisfy the conclusions of the theorem.

First we want to show that E is an extension of F ; however, in fact, it is
not! But let F¥ be the image of F in E; that is, F = {x + V|aeF}. We
assert that F is a field isomorphic to Fj; in fact, if y is the mapping from
F[x] into F[x]/V = E defined by f (%)Y = f(x) + V, then the restriction
of ¥ to F induces an isomorphism of F onto F. (Prove!) Using this iso-
morphism, we identify F and F; in this way we can consider E to be an extension
of B

We claim that E is a finite extension of F of degree n = deg p(x), for the
elements | + V, x + V, (x + V)2 = 22 + Vieeosx+ V)i=2+1,...,
(x + V)" =41 4 V form a basis of E over F. (Prove!) For con-
venience of notation let us denote the element XYy = x + V in the field
E as a. Given f(x) € F[x], what is J(*)¢? We claim that it is merely
S (a), for, since y is a homomorphism, if f(x) = B, + B + -+ + B,
then f(x)y = Boy + (By)(wh) + - + (BU)(xy)%, and using  the
identification indicated above of By with B, we see that f(x)y = f(a).

-
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In particular, since p(x) € V, p(x)y = 0; however, p(x)y = p(a). Thus
the element a = x\ in E is a root of p(x). The field E has been shown to satisfy
all the properties required in the conclusion of Theorem 5.3.1, and so this
theorem is now proved.

An immediate consequence of this theorem is the

COROLLARY If f(x) € F[x], then there is a finite extension E of F in which
S (x) has a root. Moreover, [E:F] < deg f ().

Proof. Let p(x) be an irreducible factor of f(x); any root of p(x) is a
root of f(x). By the theorem there is an extension E of F' with [E:F] =
deg p(x) < deg f(x) in which p(x), and so, f (x) has a root.

Although it is, in actuality, a corollary to the above corollary, the next
theorem is of such great importance that we single it out as a theorem.

THEOREM 5.3.2 Let f(x) € F[x] be of degree n > 1. Then there is an ex-
tension E of F of degree at most n! in which f (x) has n roots (and so, a full com-
plement of roots).

Proof. 1In the statement of the theorem, a root of multiplicity m is, of
course, counted as m roots.

By the above corollary there is an extension E, of F with [Ey:F] < n in
which f (x) has a root o. Thus in Ey[x], f (x) factors as f (x) = (x — a)q(x),
where ¢(x) is of degree n — 1. Using induction (or continuing the above
process), there is an extension F of E; of degree at most (r — 1)! in which
¢(x) has n — 1 roots. Since any root of f (x) is either « or a root of ¢(x), we
obtain in E all n roots of f (x). Now, [E:F] = [E:E)][Ey:F]1 < (n—1)ln=n!
All the pieces of the theorem are now established.

Theorem 5.3.2 asserts the existence of a finite extension E in which the
given polynomial f(x), of degree n, over F has n roots. If f(x) = apx" +
a X"~ ' + - + a, ay # 0 and if the n roots in E are a, ..., a,, making
use of the corollary to Lemma 5.3.1, f (x) can be factored over E as f (x) =
ag(x — ay)(x — oy) * -+ (* — a,). Thus f(x) splits up completely over E
as a product of linear (first degree) factors. Since a finite extension of F
exists with this property, a finite extension of F of minimal degree exists which
also enjoys this property of decomposing f (x) as a product of linear factors.
For such a minimal extension, no proper subfield has the property that
f (%) factors over it into the product of linear factors. This prompts the

DEFINITION If f(x) € F[x], a finite extension E of F is said to be a
splitting field over F for f(x) if over E (that is, in E[x]), but not over any
proper subfield of E, f(x) can be factored as a product of linear factors.
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We reiterate: Theorem 5.3.2 guarantees for us the existence of splitting fields.
In fact, it says even more, for it assures that given a polynomial of degree
_n over F there is a splitting field of this polynomial which is an extension of
F of degree at most n! over F. We shall see later that this upper bound of
‘n! is actually taken on; that is, given n, we can find a field F and a poly-
" nomial of degree n in F[] such that the splitting field of f(x) over F has
degree n!.

Equivalent to the definition we gave of a splitting field for f (x) over F is
_the statement: E is a splitting field of f(x) over F if E is a minimal extension
of F in which f (x) has n roots, where n = deg f(x).

An immediate question arises: given two splitting fields E; and E, of the
- same polynomial f(x) in F[x], what is their relation to each other? At
first glance, we have no right to assume that they are at all related. Our
next objective is to show that they are indeed intimately related; in fact,
that they are isomorphic by an isomorphism leaving every element of F
fixed. Itisin this direction that we now turn.

Let F and F’ be two fields and let 7 be an isomorphism of F onto F’.
For convenience let us denote the image of any « € F under 7 by «; that
is, at = o’. We shall maintain this notation for the next few pages.

Can we make use of 7 to set up an isomorphism between F[x] and F'[¢],
the respective polynomial rings over F and F'? Why not try the obvious?
For an arbitrary polynomial f (x) = apx" + a 2"~ 1 + -+« + a, € F[x] we
define * by f(x)t* = (apx" + ax" 1 + -0 4 a,)t* = apt” + ajt"" ! +
e a:r

It is an easy and straightforward matter, which we leave to the reader,
to verify.

LEMMA 5.3.3 t* defines an isomorphism of F[x] onto F'[t] with the property
that at* = o for every a € F.

If f (x) is in F[x] we shall write f (x)t* as f’(¢). Lemma 5.3.3 immediately
implies that factorizations of f(x) in F[x] result in like factorizations of
S'(t) in F'[t], and vice versa. In particular, f (x) is irreducible in F[x]
if and only if £(¢) is irreducible in F'[¢].

However, at the moment, we are not particularly interested in polynomial
rings, but rather, in extensions of F. Let us recall that in the proof of
Theorem 5.1.2 we employed quotient rings of polynomial rings to obtain
suitable extensions of F. In consequence it should be natural for us to study
the relationship between F[x]/(f(x)) and F'[t]/(f'(t)), where (f (%))
denotes the ideal generated by f (x) in F[x] and (f’(t)) that generated by
JS(¢) in F'[t]. The next lemma, which is relevant to this question, is actually
part of a more general, purely ring-theoretic result, but we shall content
ourselves with it as applied in our very special setting.

-
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LEMMA 5.3.4 There is an isomorphism %% of F[x]/( f (x)) onto F'[t]/( f'(t))
with the property that for every o € F, at** = o, (x + (f(x)))t** =t + (f'(¥)).

Proof. Before starting with the proof proper, we should make clear what
is meant by the last part of the statement of the lemma. As we have already
done several times, we can consider F as imbedded in F[x]/(f(x)) by
identifying the element o € F with the coset o + (f(x)) in F[x]/(f (x)).
Similarly, we can consider F’ to be contained in F'[t]/(f'(t)). The
isomorphism t** is then supposed to satisfy [a+ (f (x))]** =o' + (f'(2)).

We seek an isomorphism t** of F[x]/(f(x)) onto F'[t]/(f'(2)).
What could be simpler or more natural than to try the t** defined by
[g(x) + (f(x)]e** = g'(¢) + (f'(t)) for every g(x) e F[x]? We leave
it as an exercise to fill in the necessary details that the t** so defined is well
defined and is an isomorphism of F[x]/(f (x)) onto F'[t]/(f'(¢)) with the
properties needed to fulfill the statement of Lemma 5.3.4.

For our purpose—that of proving the uniqueness of splitting fields—
Lemma 5.3.4 provides us with the entering wedge, for we can now prove

THEOREM 5.3.3 If p(x) is irreducible in F[x] and if v is a root of p(x), then
F(v) is isomorphic to F'(w) where w is a root of p'(1); moreover, this isomorphism
6 can so be chosen that

1. vo = w.
2. a6 = o for every a € F.

Proof. Let v be a root of the irreducible polynomial p(x) lying in some
extension K of F. Let M = {f (x) e F[x] | f(v) = 0}. Trivially M is an
ideal of F[x], and M # F[x]. Since p(x) € M and is an irreducible poly-
nomial, we have that M = (p(x)). As in the proof of Theorem 5.1.2, map
F[x] into F(v) = K by the mapping ¥ defined by g(x)y = ¢(v) for every
q(x) € F[x]. We saw earlier (in the proof of Theorem 5.1.2) that i maps
F[x] onto F(v). The kernel of y is precisely M, so must be (#(x)). By the
fundamental homomorphism theorem for rings there is an isomorphism ¥*
of F[x]/(p(x)) onto F(v). Note further that ay* = a for every aeF.
Summing up: §* is an isomorphism of F[x]/(p(x)) onto F(v) leaving
every element of F fixed and with the property that v = [x + (p(x))]¢*.

Since p(x) is irreducible in F[x], p’(¢) is irreducible in F'[t] (by Lemma
5.3.3), and so there is an isomorphism 8* of F'[¢]/(#'(¢)) onto F’'(w) where
w is a root of p'(¢) such that 6* leaves every element of F’ fixed and such
that [t + (p'(2)]6* = w.

We now stitch the pieces together to prove Theorem 5.3.3. By Lemma
5.3.4 there is an isomorphism t** of F[x]/(p(x)) onto F'[t]/(#'(t)) which
coincides with 7 on F and which takes x + (p(x)) onto t + (p'(¢)). Con-
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sider the mapping ¢ = (Y*) ™ 17**0* (motivated by

” G F[x] faid F'[t] L

F F'(w
©) (6(x) (') ()

~of F(v) onto F'(w). It is an isomorphism of F () onto F’(w) since all the
mapping Y*, t** and 0* are isomorphisms and onto. Moreover, since
o= [+ (P, 10 = (*)THTHO* = ([x + (p(x)]er*)0* =
[t + (' (#)10* = w. Also, for aeF, ao = (a(*) ™ )r**0* = (ar**)6* =
a'6* = o’. We have shown that ¢ is an isomorphism satisfying all the
requirements of the isomorphism in the statement of the theorem. Thus
Theorem 5.3.3 has been proved.

A special case, but itself of interest, is the

COROLLARY If p(x) € F[x] is irreducible and if a, b are two roots of p(x),
. then F(a) is isomorphic to F(b) by an isomorphism which takes a onto b and which
- leaves every element of F fixed.

We now come to the theorem which is, as we indicated earlier, the
foundation stone on which the whole Galois theory rests. For us it is the
focal point of this whole section.

THEOREM 5.3.4  Any splitting fields E and E' of the polynomials S(x) e F[x]
and f'(t) € F'[t], respectively, are isomorphic by an isomorphism ¢ with the prop-
erty that ap = o' for every o € F. (In particular, any two splitting fields of the

same polynomial over a given field F are isomorphic by an isomorphism leaving every
element of F fixed.)

-

Proof. We should like to use an argument by induction; in order to do
$0, we need an integer-valued indicator of size which we can decrease by
some technique or other. We shall use as our indicator the degree of some
splitting field over the initial field. It may seem artificial (in fact, it may
even be artificial), but we use it because, as we shall soon see, Theorem 5.3.3
provides us with the mechanism for decreasing it.

If [E:F] = 1, then E = F, whence f(x) splits into a product of linear
facgors over F itself. By Lemma 5.3.3 JS'(t) splits over F’ into a product of
linear factors, hence E' = F'. But then ¢ = © provides us with an iso-
morphism of E onto E’ coinciding with 7 on F.

Assume the result to be true for any field F, and any polynomial f(x) €
Fy[x] provided the degree of some splitting field E, of f (x) has degree less
than n over F,, that is, [Ey:F,] < n.

Suppose that [E:F] = n > 1, where Eis a splitting field of f( x) over F.
Since n > 1, f(x) has an irreducible factor p(x) of degree r > 1. Let
~ #'(t) be the corresponding irreducible factor of Sf'(t). Since E splits f (x), a

s
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full complement of roots of f (x), and so, a priori, of roots of p(x), are in E.
Thus there is a v € E such that p(v) = 0; by Theorem 5.1.3, [F(v):F] = r.
Similarly, there is a w € E’ such that p'(w) = 0. By Theorem 5.3.4 there
is an isomorphism ¢ of F(v) onto F’'(w) with the property that ac = «
for every a € F.

Since [F(v):F] =r > 1,

[E:F(v)] = LEF] < n
[F(v):F] r

We claim that E is a splitting field for f (x) considered as a polynomial over
Fy = F(v), for no subfield of E, containing F, and hence F, can split f (x),
since E is assumed to be a splitting field of f (x) over F. Similarly E’ is a
splitting field for f'(¢) over F; = F'(w). By our induction hypothesis there
is an isomorphism ¢ of E onto E’ such that a¢ = ac for all ae F,. But
for every aeF, oo = o hence for every aeF < F,, a¢ = ag = o'.

This completes the induction and proves the theorem.

To see the truth of the “(in particular...)” part, let F = F’ and let ©
be the identity map at = a for every a € F. Suppose that E; and E, are
two splitting fields of f(x) € F{x]. Considering E;, = E o F and E, =
E’' o F' = F, and applying the theorem just proved, yields that E; and
E, are isomorphic by an isomorphism leaving every element of F fixed.

In view of the fact that any two splitting fields of the same polynomial
over F are isomorphic and by an isomorphism leaving every element of F
fixed, we are justified in speaking about tke splitting field, rather than a
splitting field, for it is essentially unique.

Examples

1. Let F be any field and let p(x) = x> + ax + B, a, f € F, be in F[x].
If K is any extension of F in which p(x) has a root, a, then the element
b= —« — aalso in K is also a root of p(x). If b = a it is easy to check
that p(r) must then be p(x) = (x — a)?, and so both roots of p(x) are in
K. If b # a then again both roots of p(x) are in K. Consequently, p(x)
can be split by an extenston of degree 2 of F. We could also get this result
directly by invoking Theorem 5.3.2.

2. Let F be the field of rational numbers and let f (x) = x> — 2. In the
field of complex numbers the three roots of f(x) are i/ é, ¥/ 5, o® 3/ 2,
where w = (=1 + \/g 7)/2 and where i/é is a real cube root of 2. Now
F (i/ é) cannot split x> — 2, for, as a subfield of the real field, it cannot

contain the complex, but not real, number a)i/ 2. Without explicitly
determining it, what can we say about E, the splitting field of x* — 2 over
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F? By Theorem 5.3.2, [E:F] < 3! = 6; by the above remark, since
x> — 2 is irreducible over F and since [F(i/ﬁ) :F] = 3, by the corollary to
Theorem 5.1.1, 8 = [F(Y/2):F] | [E:F). Finally, [E:F] > [F(}/2):F] = 3.
The only way out is [E:F] = 6. We could, of course, get this result by

making two extensions F; = F (i/ 5) and E = F,(w) and showing that ¢
satisfies an irreducible quadratic equation over F,.

3. Let F be the field of rational numbers and let
S =x* + x> + 1 e F[a].

We claim that E = F(w), where @ = (=1 + +/34)/2, is a splitting field
of f(x). Thus [E:F] = 2, far short of the maximum possible 4! = 24,

Problems

1. In the proof of Lemma 5.3.1, prove that the degree of ¢(x) is one less
than that of p(x).

2. In the proof of Theorem 5.3.1, prove in all detail that the elements
1L+ V,x+ V,...,+" ! + Vform a basis of E over F.

3. Prove Lemma 5.3.3 in all detail.

4. Show that 7** in Lemma 5.3.4 is well defined and is an 1somorphism
of F[x]/(f (x)) onto F[t]/(f'(2)).

5. In Example 3 at the end of this section prove that () is the splitting
field of x* + x2 + 1.

6. Let F be the field of rational numbers. Determine the degrees of the

splitting fields of the following polynomials over F. -
(@) x* + 1. (b) x% + 1.
(c) x* — 2. (d) x5 — 1.

(e) x% 4+ x3 + 1.
7. If p is a prime number, prove that the splitting field over F, the field
of rational numbers, of the polynomial x? — 1 is of degree p — 1.
¥*8. If n > 1, prove that the splitting field of x* — 1 over the field of
rational numbers is of degree ®(n) where ® is the Euler ®-function.

v (This is a well-known theorem. I know of no easy solution, so don’t
be disappointed if you fail to get it. If you get an easy proof, I would
like to see it. This problem occurs in an equivalent form as Problem 15,
Section 5.6.)

*9. If F is the field of rational numbers, find necessary and sufficient
conditions on @ and & so that the splitting field of #3 + ax + b has
degree exactly 3 over F.

10. Let p be a prime number and let F = Jps the field of integers mod p.
(a) Prove that there is an irreducible polynomial of degree 2 over F.

-

227 |



228 Fields Ch.5

(b) Use this polynomial to construct a field with p? elements.
*(c) Prove that any two irreducible polynomials of degree 2 over F
lead to isomorphic fields with p? elements.

11. If E is an extension of F and if f (x) € F[x] and if ¢ is an automor-
phism of E leaving every element of F fixed, prove that ¢ must take a
root of f (x) lying in E into a root of f(x) in E.

12. Prove that F (i/ §), where F is the field of rational numbers, has no
automorphisms other than the identity automorphism.

13. Using the result of Problem 11, prove that if the complex number
o is a root of the polynomial p(x) having real coefficients then @, the
complex conjugate of a, is also a root of p(x).

14. Using the result of Problem 11, prove that if m is an integer which is
not a perfect square and if a + ﬁ\/ m (a, § rational) is the root of a

polynomial p(x) having rational coefficients, then o — ﬁ\/ m is also a
root of p(x).

*15. If F is the field of real numbers, prove that if ¢ is an automorphism
of F, then ¢ leaves every element of F fixed.
16 (a) Find all real quaternions ! = gy + @, + a,j + azk satisfying
12 = —1
*(b) For a t as in part (a) prove we can find a real quaternion s such
that sts™! = 4.

5.4 Construction with Straightedge and Compass

We pause in our general development to examine some implications of the
results obtained so far in some familiar, geometric situations.

A real number « is said to be a constructible number if by the use of straight-
edge and compass alone we can construct a line segment of length a. We
assume that we are given some fundamental unit length. Recall that from
high-school geometry we can construct with a straightedge and compass a
line perpendicular to and a line parallel to a given line through a given
point. From this it is an easy exercise (see Problem 1) to prove that if
o and f are constructible numbers then so are a + f, «f, and when g # 0,
a/f. Therefore, the set of constructible numbers form a subfield, W, of the
field of real numbers.

In particular, since 1 e W, W must contain F;, the field of rational
numbers. We wish to study the relation of W to the rational field.

Since we shall have many occasions to use the phrase “construct by
straightedge and compass” (and variants thereof) the words construct, con-
structible, construction, will always mean by straightedge and compass.

If w e W, we can reach w from the rational field by a finite number of
constructions.
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. Let F be any subfield of the field of real numbers. Consider all the points
(x,») in the real Euclidean plane both of whose coordinates x and y are in
F; we call the set of these points the plane of F. Any straight line joining two
points in the plane of F has an equation of the form ax + by +¢=0
where a, b, ¢ are all in F (see Problem 2). Moreover, any circle having as
center a point in the plane of F and having as radius an element of F has
én equation of the form x? + »% + ax + by + ¢ = 0, where all of q, b, ¢
are in F (see Problem 3). We call such lines and circles lines and circles
in F.
Given two lines in F which intersect in the real plane, then their inter-
~ section point is a point in the plane of F (see Problem 4). On the other hand,
 the intersection of a line in F and a circle in F need not yield a point in the
~ plane of F. But, using the fact that the equation of a line in F is of the form
“ax + by + ¢ = 0 and that of a circle in F is of the form x2 + % + dx +
&y + f = 0, where g, b, ¢, d, ¢, f are all in F, we can show that when a line
“and circle of F intersect in the real plane, they intersect either in a point in

the plane of F or in the plane ofF(\/y) for some positive y in F (see Problem
= 5). Finally, the intersection of two circles in F can be realized as that of
a line in F and a circle in F, for if these two circles are x2 + 9% + ax +
by 4+ ¢, =0 and x* + »% + ayx + byy + ¢, = 0, then their intersection
is the intersection of either of these with the line (@ — ay)x + (b, — b))y +
?“,”; {¢q — ¢;) = 0, so also yields a point either in the plane of F or of F(\/y)
- for some positive y in F.
Thus lines and circles of F lead us to points either in F or in quadratic
- extensions of F. If we now are in F (\/ 7;) for some quadratic extension of
- F, then lines and circles in F (\/ p;) intersect in points in the plang of
F(\/yl, \/;2) where p, is a positive number in F(\/;l) A point is con-
~ structible from F if we can find real numbers Ais--+s Ay such that 1,2 e F,
NP eF(Ly), A2 € F(Ay Ay)sev oy A2 € F(Ayy..., A, ), such that the
; ' point is in the plane of F(4,,..., 4,). Conversely, if y e F is such that
\/ ¥ is real then we can realize y as an intersection of lines and circles in F
(see Problem 6). Thus a point is constructible from F if and only if we
can find a finite number of real numbers Aty + -+ Ay such that

L [F(2,):F] = 1or2;
2. [F(Ay oy A):F(Ayeeay Aim)] = lor2fori = 1,2,...,m;

and such that our point lies in the plane of F(Ayy...s Ap).

We have defined a real number « to be constructible if by use of straight-
edge and compass we can construct a line segment of length . But this
translates, in terms of the discussion above, into: « is constructible if starting
from the plane of the rational numbers, F,, we can imbed « in a field
obtained from F, by a finite number of quadratic extensions. This is

-
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THEOREM 5.4.1 The real number o is constructible if and only if we can fing
a finite number of real numbers Ay, . . ., A, such that

1. 1,2 €eF,,
9. A2 € Fo(Ay vy dyy) fori=1,2,...,n,

such that o € Fo(Agy ..., A,).

However, we can compute the degree of Fy(4,, ..., 4,) over F, for by
Theorem 5.1.1

[FolAg, .y An)iFgl = [FolAgs ooy An) i Fo(Agsevvy Agey)) oot
X [FolAyy-eos A)iFo(Ags ooy Aim)Y
X [Fo(4y):Fo).
Since each term in the product is either 1 or 2, we get that

[Fo(Ays -y Ay)iFp) = 27,
and thus the

COROLLARY 1 If a is constructible then o lies in some extension of the rationals
of degree a power of 2.

If « is constructible, by Corollary 1 above, there is a subfield K of the real
field such that a € K and such that [K:F,} = 2. However, Fy(a) K,
whence by the corollary to Theorem 5.1.1 [Fy(«) :Fp] | [K:F,) = 27; thereby
[Fo(a):Fy] is also a power of 2. However, if a satisfies an irreducible
polynomial of degree k over F,, we have proved in Theorem 5.1.3 that
[Fo(a):Fo] = k. Thus we get the important criterion for nonconstructibility

COROLLARY 2 If the real number o salisfies an irreducible polynomial over
the field of rational numbers of degree k, and if k is not a power of 2, then o is not
constructible.

This last corollary enables us to settle the ancient problem of trisecting
an angle by straightedge and compass, for we prove

THEOREM 5.4.2 It is impossible, by straightedge and compass alone, to trisect
60°.

Proof. 1f we could trisect 60° by straightedge and compass, then the
length o = cos 20° would be constructible. At this point, let us recall the
identity cos 30 = 4 cos® @ — 3 cos §. Putting § = 20° and remembering
that cos 60° = 1, we obtain 4¢® — 3a = 1, whence 8a® — 60 — 1 = 0.
Thus o is a root of the polynomial 8x3 — 6x — 1 over the rational field.




Sec. 5.4 Construction with Straightedge and Compass

owever, this polynomial is irreducible over the rational field (Problem
(a)), and since its degree is 3, which certainly is not a power of 2, by
orollary 2 to Theorem 5.4.1, « is not constructible. Thus 60° cannot be
isected by straightedge and compass.

Another ancient problem is that of duplicating the cube, that is, of
pnstructing a cube whose volume is twice that of a given cube. If the
inal cube is the unit cube, this entails constructing a length « such that
= 2. Since the polynomial x* — 2 is irreducible over the rationals
roblem 7(b)), by Corollary 2 to Theorem 5.4.1, a is not constructible.
us

HEOREM 5.4.3 By straightedge and compass it is impossible to duplicate the
be.

We wish to exhibit yet another geometric figure which cannot be con-
structed by straightedge and compass, namely, the regular septagon. To
carry out such a construction would require the constructibility of ¢ =
2 cos (2n/7). However, we claim that o satises x° + 22 — 2 — 1
(Problem 8) and that this polynomial is irreducible over the field of rational
numbers (Problem 7(c)). Thus again using Corollary 2 to Theorem 5.4.1
€ obtain

YHEOREM 5.4.4 It is impossible to construct a regular septagon by straightedge
and compass.

. Prove that if o, B are constructible, then so are o + B, aff, and «/f
(when g # 0).

2. Prove that a line in F has an equation of the form ax + by+c¢=0
with a, b, ¢ in F.

3. Prove that a circle in F has an equation of the form
2+ +ax+by+c=0,
#with a, b, ¢ in F.
4. Prove that two lines in F, which intersect in the real plane, intersect
at a point in the plane of F.
5. Prove that a line in F and a circle in F which intersect in the real

plane do so at a point either in the plane of F or in the plane OfF(\/;)
where 7 is a positive number in F,

6. If y € F is positive, prove that +/ y is realizable as an intersection of
lines and circles in F.
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7. Prove that the following polynomials are irreducible over the field of
rational numbers.
(a) 8x% — 6x — 1.
(b) x* — 2.
(c) > + x2 — 2x — 1.

8. Prove that 2 cos (2m/7) satisfies x> + x% — 2x — 1. (Hint: Use
2 cos (2nf7) = ™7 4 ¢~ 2wl

9. Prove that the regular pentagon is constructible.

10. Prove that the regular hexagon is constructible.

11. Prove that the regular 15-gon is constructible.

12. Prove that it is possible to trisect 72°.

13. Prove that a regular 9-gon is not constructible.

*14. Prove a regular 17-gon is constructible.

5.5 More about Roots

We return to the general exposition. Let F be any field and, as usual, let
F[x] be the ring of polynomials in x over F.

DEFINITION If f(x) = otpx" + o™ 1 4+ oo+ ax™ P 4 oo+ 4 a,_yx +
o, in F[x], then the deriwative of f(x), written as f'(x), is the polynomial
Fl(x) =nagx" P+ (n =Doyga® 2 4+ -+ + (n — Daa" T 4 o,
in F[x].

To make this definition or to prove the basic formal properties of the
derivatives, as applied to polynomials, does not require the concept of a
limit. However, since the field F is arbitrary, we might expect some strange
things to happen.

At the end of Section 5.2, we defined what is meant by the characteristic
of a field. Let us recall it now. A field F is said to be of characteristic 0 if
ma # Ofora # Oin Fand m > 0O, an integer. If ma = 0O for some m > 0
and some a # 0 € F, then F is said to be of finite characteristic. In this
second case, the characteristic of F is defined to be the smallest positive
integer p such that pa = 0 for all a € F. It turned out that if F is of finite
characteristic then its characteristic p is a prime number.

We return to the question of the derivative. Let F be a field of character-
istic p # 0. In this case, the derivative of the polynomial x? is px?~! = 0.
Thus the usual result from the calculus that a polynomial whose derivative
is 0 must be a constant no longer need hold true. However, if the charac-
teristic of F is O and if f'(x) = O for f(x) € F[x], it is indéed true that
f(x) = aeF (see Problem 1). Even when the characteristic of F is
p # 0, we can still describe the polynomials with zero derivative; if
S'(x) = 0, then f (x) is a polynomial in x? (see Problem 2).
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- We now prove the analogs of the formal rules of differentiation that we
know so well.

EMMA 5.5.1  For any f (%), g(x) € F[x] and any o € F,

(S () +g(x) =f"(x) + g ().
(of (%))" = af"(x).
(f()g() =F"(x)g) + f(x)g (x).

Proof. 'The proofs of parts 1 and 2 are extremely easy and are left as
ercises. To prove part 3, note that from parts 1 and 2 it is enough to
rove it in the highly special case f(x) = x' and g(x) = x/ where both
and j are positive. But then f(x)g(x) = x'*J, whence (f(x)g(x))’ =
@+ )57 however, f'(x)g(x) = ix' "' = ixiti™1 and Sfx)gx) =
j Tt = jx 71 consequently, (1) g(x) + £ () g'(x) = (i + f)xit- 1 =
@)

Recall that in elementary calculus the equivalence is shown between the
~ existence of a multiple root of a function and the simultaneous vanishing of
~ the function and its derivative at a given point. Even in our setting, where
~ Fis an arbitrary field, such an interrelation exists.

LEMMA 55.2  The polynomial f (x) € F[x] has a multiple root if and only if
- S (x) and ' (x) have a nontrivial (that is, of positive degree) common factor.

~ Proof.  Before proving the lemma proper, a related remark is in order,
- namely, if f (x) and g(x) in F[x] have a nontrivial common factor in K [x],
_ for K an extension of F, then they have a nontrivial common factor in F [x].
- For, were they relatively prime as elements in F [x], then we would be
- able to find two polynomials a(x) and 4(x) in F[x] such that a(x) f (x) +
b(x)g(x) = 1. Since this relation also holds for those elements viewed
as elements of K[x], in K[] they would have to be relatively prime.
Now to the lemma itself. From the remark Jjust made, we may assume,
- without loss of generality, that the roots of f (x) all lie in F (otherwise ex-
- tend F to K, the splitting field of f (#)). If £ (x) has a multiple root «, then
S (@) = (x — 9)"g(x), where m > 1. However, as is easily computed,
A £ o)™ = m(x — )t whence, by Lemma 5.5.1, f'(x) =
(> — 0)"g’(x) + m(x — a)" " 1g(x) = (x — a)r(x), since m > 1. But this
says that f (x) and J'(x) have the common factor x — a, thereby proving
¢ lemma in one direction.
On the other hand, if S (x) has no multiple root then f(x) =

(> — o) (x — o)+ (x — a,) where the as are all distinct (we are
Supposing f (x) to be monic). But then

Fi) =3 =) (F @) (x — o)

i=1
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where the A denotes the term is omitted. We claim no root of f (x) is a
root of f'(x), for
@) =11 (& — a;) #0,
J#i

since the roots are all distinct. However, if f (x) and f’(x) have a nontrivial
common factor, they have a common root, namely, any root of this common
factor. The net result is that f (x) and f’(x) have no nontrivial common
factor, and so the lemma has been proved in the other direction.

COROLLARY 1 Iff (x) € F[x] is irreducible, then

1. If the characteristic of F is O, f (x) has no multiple rools.
2. If the characteristic of F is p # 0, f (x) has a multiple root only if it is of the

Sorm f (x) = g(xP).

Proof. Since f () is irreducible, its only factors in F[x] are 1 and f (x).
If f (x) has a multiple root, then f (x) and f’(x) have a nontrivial common
factor by the lemma, hence f (x) | f'(x). However, since the degree of f'(x)
is less than that of f (x), the only possible way that this can happen is for
f'(¥) to be 0. In characteristic O this implies that f (x) is a constant, which
has no roots; in characteristic p # 0, this forces f (x) = g(xP).

We shall return in a moment to discuss the implications of Corollary 1
more fully. But first, for later use in Chapter 7 in our treatment of finite
fields, we prove the rather special

COROLLARY 2 If F is a field of characteristic p # O, then the polynomial
x"" — x e F[x], for n > 1, has distinct roots.

Proof. The derivative of x*" — x is p"x?"~! — | = —1, since F is of
characteristic p. Therefore, " — x and its derivative are certainly rela-
tively prime, which, by the lemma, implies that %" — x has no multiple
roots.

Corollary 1 does not rule out the possibility that in characteristic p # 0
an irreducible polynomial might have multiple roots. To clinch matters,
we exhibit an example where this actually happens. Let F, be a field of
characteristic 2 and let F = Fy(x) be the field of rational functions in #
over F,. We claim that the polynomial t* — x in F[t] is irreducible over F
and that its roots are equal. To prove irreducibility we must show that
there is no rational function in Fy(x) whose square is x; this is the content
of Problem 4. To see that 2 — x has a multiple root, notice that its deriv-
ative (the derivative is with respect to ¢; for , being in F, is considered as 2
constant) is 2¢ = 0. Of course, the analogous example works for any prime
characteristic.
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- Now that the possibility has been seen to be an actuality, it points out
a sharp difference between the case of characteristic 0 and that of charac-
teristic p. The presence of irreducible polynomials with multiple roots in
e latter case leads to many interesting, but at the same time complicating,
btleties. These require a more elaborate and sophisticated treatment
hich we prefer to avoid at this stage of the game. Therefore, we make the
at assumption for the rest of this chapter that all fields occurring in the text material
oper are fields of characteristic 0.

EFINITION The extension K of F is a simple extension of F if K = F ()
for some « in K.

In characteristic O (or in properly conditioned extensions in characteristic
. p # 0; see Problem 14) all finite extensions are realizable as simple ex-
tensions. This result is

THEOREM 5.5.1 If F is of characteristic O and if a, b, are algebraic over F,
then there exists an element ¢ € F(a, b) such that F(a, b) = F(c).

Proof. Let f(x) and g(x), of degrees m and n, be the irreducible poly-
nomials over F satisfied by a and b, respectively. Let K be an extension
of F in which both f (x) and g(x) split completely. Since the characteristic
of F is 0, all the roots of f (x) are distinct, as are all those of g(x). Let the
roots of f(x) be a = a, ay,...,a, and those of g(x), b = b;, b,,...,b,.
Ifj # 1, then b; # b, = b, hence the equation a; + Ab; = a; + Aby =
@ + b has only one solution 1 in K, namely,

Since F is of characteristic 0 it has an infinite number of elements, so we
can find an element y € F such that q; + yb; # a + b for all i and for
all j # 1. Let ¢ = a + pb; our contention is that F(c) = F(a, b). Since
€€ F(a, b), we certainly do have that F(¢) c F(a, b). We will now show
that both ¢ and b are in F(¢) from which it will follow that F (a, b) = F(c).

N¢w b satisfies the polynomial g(x) over F, hence satisfies g(x) considered
a3 a polynomial over K = F (¢). Moreover, if A(x) = f(c — px) then
#(x) € K[x] and h(b) = f(c — yb) = f(a) = 0, since a = ¢ — pb. Thus in
Some extension of K, k(x) and g(x) have x — b as a common factor. We
assert that x — 4 is in fact their greatest common divisor. For, if b; # b

another root of g(x), then A(b)) = f(c — yb;) # 0, since by our choice
ofy, ¢ — ybjforj # 1avoids all roots g; of f (x). Also, since (x ~ )% ¥ g(x),
(* — )2 cannot divide the greatest common divisor of 4(x) and g(x). Thus
* — b is the greatest common divisor of 4(x) and g(x) over some extension
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of K. But then they have a nontrivial greatest common divisor over K,
which must be a divisor of x — b. Since the degree of x — b is 1, we see
that the greatest common divisor of g(x) and A(x) in K[x] is exactly x — b,
Thus x — b € K[x], whence b € K; remembering that K = F(c), we obtain
that b € F(c). Since a = ¢ — yb, and since b,ce F(c), ye F < F(c), we
get that a e F(c), whence F(a,b) = F(c). The two opposite containing
relations combine to yield F(a, b) = F(c).

A simple induction argument extends the result from 2 elements to any
finite number, that is, if «,, ..., a, are algebraic over F, then there is an
element ce F(ay,...,q,) such that F(¢) = F(a,...,a,). Thus the

COROLLARY  Any finite extension of a field of characteristic O is a simple extension.

Problems

1. If F is of characteristic 0 and f (x) € F[«] is such that f'(x) = 0,
prove that f (x) = a € F.

9. If F is of characteristic p # 0 and if f(x) € F[x] is such that
f'(x) = 0, prove that f (x) = g(x*) for some polynomial g(x) € F[x].

3. Prove that (f(x) + g(x))’ = f'(x) + g'(x) and that (af(x)) =
af '(x) for f (x), g(x) € F[x] and a € F.

4. Prove that there is no rational function in F (x) such that its square is x.

5. Complete the induction needed to establish the corollary to Theorem
5.5.1.

An element a in an extension K of F is called separable over F if it satisfies
a polynomial over F having no multiple roots. An extension K of Fis
called separable over F if all its elements are separable over F. A field F
is called perfect if all finite extensions of F are separable.

6. Show that any field of characteristic 0 is perfect.
7. (a) If Fis of characteristic p # 0 show that for a, b€ F, (a + b =
" + b7
(b) If F is of characteristic p # 0 and if K is an extension of F let
T = {ae K| a?”" € F for some n}. Prove that T is a subfield of
K.
8. If K, T, F are as in Problem 7(b) show that any automorphism of K
leaving every element of F fixed also leaves every element of T fixed.
*9. Show that a field F of characteristic p # 0 is perfect if and only if
for every a € F we can find a b € F such that b” = a.

10. Using the result of Problem 9, prove that any finite field is perfect
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~##]1. If K is an extension of F prove that the set of elements in K which
' are separable over F forms a subfield of K.

. If F is of characteristic p # 0 and if K is a finite extension of F,
prove that given a € K either a”" € F for some n or we can find an
integer m such that " ¢ F and is separable over F.

. If K and F are as in Problem 12, and if no element which is in K
but not in F is separable over F, prove that given a € K we can find
an integer n, depending on q, such that ¢*" € F.

. If K is a finite, separable extension of F prove that K is a simple
extension of F.

15. If one of a or b is separable over F, prove that F(a, b) is a simple
extension of F.

6.6 The Elements of Galois Theory

_ Given a polynomial p(x) in F[«], the polynomial ring in x over F, we shall
. associate with p(x) a group, called the Galois group of p(x). There is a very
close relationship between the roots of a polynomial and its Galois group;
in fact, the Galois group will turn out to be a certain permutation group
of the roots of the polynomial. We shall make a study of these ideas in this,
# and in the next, section.
- The means of introducing this group will be through the splitting field
of p(x) over F, the Galois group of p(x) being defined as a certain group of
automorphisms of this splitting field. This accounts for our concern, in so
many of the theorems to come, with the automorphisms of a field. A
beautiful duality, expressed in the fundamental theorem of the Galois theery
(Theorem 5.6.6), exists between the subgroups of the Galois group and the
subfields of the splitting field. From this we shall eventually derive a
condition for the solvability by means of radicals of the roots of a polynomial
in terms of the algebraic structure of its Galois group. From this will follow
the classical result of Abel that the general polynomial of degree 5 is not
solvable by radicals. Along the way we shall also derive, as side results,
theorems of great interest in their own right. One such will be the funda-
mental theorem on symmetric functions. Our approach to the subject is
lounded on the treatment given it by Artin.
~ Recall that we are assuming that all our fields are of characteristic 0,
tence we can (and shall) make free use of Theorem 5.5.1 and its corollary.

By an automorphism of the field K we shall mean, as usual, a mapping ¢
of K onto itself such that ¢(a + b) = o(a) + o(b) and o(ab) = o(a)o(d)
or all a,be K. Two automorphisms ¢ and 7 of K are said to be distinct
6(a) # 1(a) for some element g in K.

We begin the material with
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A field K is said to be an extension of F if --
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A field K is said to be an  -----------—- Fif
FcK zero divisor primitive irreducible extension extension
The ------------—---- is the dimension of K as degree of K over degree of K over
a vector space over F degree of F over K F degree of F none F
The degree of K over F is the -----------------
of K as a vector space over F degree of F over K dimension degree of F none dimension

If L is a finite extension of K and K is a
finite extension of F,then---- --------

L is a finite extension
of K

K is a finite
extension of K

L is a finite
extension of F

K is a finite
extension of L

L is a finite
extension of F

If- and K is a finite
extension of F,then L is a finite extension of
F

L is a finite extension
of K

K is a finite
extension of K

L is a finite
extension of F

K is a finite
extension of L

L is a finite
extension of K

If L is a finite extension of K and -----------—--1
---- ,then L is a finite extension of F

L is a finite extension
of K

K is a finite
extension of F
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extension of F
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extension of L
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rational number

irrational number

complex number

real number

If the real number o satisfies an irreducible
polynomial over the field of rational

numbers of degree k,and if k ig----------- ,then

o is not constuctible. power of 2 power of 3 nota power of 3 [nota power of 2 [nota power of 2
G(K/F) is a ------------- of the group of all

automorphisms of K group sub group normal subgroup |none sub group
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---- and is a homomorphic image of R field group sub group ring ring
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If R is a commutative ring with a unit
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of R then U=R Euclidean ring ring field ideal ring

If an ideal U of a ring R contains a unit of R

then-------- U=R U<R U>R U<R U=R
A said to be generating set of V if

L(S)=V. set S ring ideal U Euclidean ring  |set S

A set S said to be ------------ of Vif L(S) =

V. maximal ideal ideal generating set field generating set
A set S said to be generating set of V if ------

- L(S)=V L(S)=0 L(V) =S L(S)=1 L(S)=V

Any ------------ F is a finite extension of F.  |ring field ideal group field

Any field F is @ -—--------——- of F. primitive irreducible extension finite extension |finite extension
An element a €k is said to be ---------------

over F if it is not algebraic over F generating set transcendental  [extension finite extension [transcendental

An element a ek is said to be transcendental
over Fif it is --------omemme--

not algebraic over F

algebraic over F

finite extension of
L

not a finite
extension of L

not algebraic over
F

A - K is said to be an extension F if
FcK field ring ideal group field
A - is said to be an algebraic

number if it is algebraic over field of
rational number.

real number

rational number

irrational number

complex number

complex number

A complex number is said to be an ------------

--- if it is algebraic over field of rational irrational

number. rational number number algebraic number |[real number algebraic number
A complex number is said to be an algebraic

number if it i§ ---------- over field of rational

number. real algebraic integers rational algebraic

A complex number is said to be an algebraic

number if it is algebraic over ----- of rational

number. field ring ideal group field

A complex number is said to be an algebraic

number if it is algebraic over field of --—------- irrational

----- real number number rational number |algebraic number |rational number

YN R of a fields F is said to be

simple extension if k = F(a) for some ack

Euclidean ring R

transcendental k

extension k

finite extension k

extension k




An extension k of a fields F is said to be -----

--- if k = F(a) for some ack Euclidean ring transcendental  |extension simple extension |simple extension
An extension k of a fields F is said to be

simple extension if --------—-- for some ack |k =F(0) k=F(a) k=F(1) k=F(a*1) k=F(a)

A - is called Prefect if all its Finite

extension of F is separable. field ring ideal group field

A field F is called ---------- if all its Finite

extension of F is separable. algebraic Prefect prime normal Prefect

A field F is called Prefect if all its--------------|

-- of F is separable. primitive irreducible extension finite extension |finite extension
A field F is called Prefect if all its Finite

extension of F i§ --—---—--——-—-- irreducible transcendental  |separable inseparable separable
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Sec. 5.6 Elements of Galois Theory

~##]1. If K is an extension of F prove that the set of elements in K which
' are separable over F forms a subfield of K.

. If F is of characteristic p # 0 and if K is a finite extension of F,
prove that given a € K either a”" € F for some n or we can find an
integer m such that " ¢ F and is separable over F.

. If K and F are as in Problem 12, and if no element which is in K
but not in F is separable over F, prove that given a € K we can find
an integer n, depending on q, such that ¢*" € F.

. If K is a finite, separable extension of F prove that K is a simple
extension of F.

15. If one of a or b is separable over F, prove that F(a, b) is a simple
extension of F.

6.6 The Elements of Galois Theory

_ Given a polynomial p(x) in F[«], the polynomial ring in x over F, we shall
. associate with p(x) a group, called the Galois group of p(x). There is a very
close relationship between the roots of a polynomial and its Galois group;
in fact, the Galois group will turn out to be a certain permutation group
of the roots of the polynomial. We shall make a study of these ideas in this,
# and in the next, section.
- The means of introducing this group will be through the splitting field
of p(x) over F, the Galois group of p(x) being defined as a certain group of
automorphisms of this splitting field. This accounts for our concern, in so
many of the theorems to come, with the automorphisms of a field. A
beautiful duality, expressed in the fundamental theorem of the Galois theery
(Theorem 5.6.6), exists between the subgroups of the Galois group and the
subfields of the splitting field. From this we shall eventually derive a
condition for the solvability by means of radicals of the roots of a polynomial
in terms of the algebraic structure of its Galois group. From this will follow
the classical result of Abel that the general polynomial of degree 5 is not
solvable by radicals. Along the way we shall also derive, as side results,
theorems of great interest in their own right. One such will be the funda-
mental theorem on symmetric functions. Our approach to the subject is
lounded on the treatment given it by Artin.
~ Recall that we are assuming that all our fields are of characteristic 0,
tence we can (and shall) make free use of Theorem 5.5.1 and its corollary.

By an automorphism of the field K we shall mean, as usual, a mapping ¢
of K onto itself such that ¢(a + b) = o(a) + o(b) and o(ab) = o(a)o(d)
or all a,be K. Two automorphisms ¢ and 7 of K are said to be distinct
6(a) # 1(a) for some element g in K.

We begin the material with
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THEOREM 5.6.1 If K is a field and if 64, . . ., 0, are distinct automorphisms
of K, then it is impossible to find elements a,, ..., a,, not all 0, in K such tha
a,0,(u) + ayo,(u) + -+ + a,0,(u) =0 forallueK.

Proof. Suppose we could find a set of elements a,, . .., a, in K, not all
0, such that a;6,(x) + -+ + a,0,(u) = 0 for all ue K. Then we could
find such a relation having as few nonzero terms as possible; on renumbering
we can assume that this minimal relation is

a6,(u) +--- + a,0,(u) =0 (1

where ay, . . ., a, are all different from 0.

If m were equal to 1 then a;0,(u) = O for all u € K, leading to a; = 0,
contrary to assumption. Thus we may assume that m > 1. Since the auto-
morphisms are distinct there is an element ¢ € K such that o,(c) # 0,(c).
Since cu € K for all u € K, relation (1) must also hold for cu, that is,
a,0,(cu) + ayo,(cu) + + -+ + a,0,(cu) = 0 for all ue K. Using the hypo-
thesis that the ¢’s are automorphisms of K, this relation becomes

0,0,()0, () + a;0,()02(6) + + + agon(@)on(®) = 0. ()

Multiplying relation (1) by o¢,(c) and subtracting the result from (2)
yields

a,(05(¢) = 01(0))o3(u) + *++ + ap(0n(¢) — 01())0n(®) = 0. (3)

If we put b; = a,(6;(c) — o,(c)) for i = 2,..., m, then the b; are in K,
b, = a,(c,(c) — 0,(c)) # 0, since a, # 0, and 6,() — o.(c) # 0 yet
b,6,(u) + -+ + b,0,,(u) =0 for all ue K. This produces a shorter rela-
tion, contrary to the choice made; thus the theorem is proved.

DEFINITION If G is a group of automorphisms of K, then the fixed field
of G is the set of all elements a € K such that ¢(a) = a for all 6 € G.

Note that this definition makes perfectly good sense even if G is not 2
group but is merely a set of automorphisms of K. However, the fixed field
of a set of automorphisms and that of the group of automorphisms generated
by this set (in the group of all automorphisms of K) are equal (Problem 1),
hence we lose nothing by defining the concept just for groups of auto-
morphisms. Besides, we shall only be interested in the fixed fields of groups
of automorphisms.

Having called the set, in the definition above, the fixed field of G, it
would be nice if this terminology were accurate. That it is we see in

LEMMA 5.6.1 The fixed field of G is a subfield of K.




Sec. 5.6 Elements of Galois Theory

Proof. Let a, b be in the fixed field of G. Thus for all 6 € G, g(a) = a
d o(b) = b. But then g(a + b) = 6(a) + 0(b) =a + b and o(ab) =
a)o(b) = ab; hence a + b and ab are again in the fixed field of G. If
#0, then ¢(b”') = g(b)"! =671, hence b~ ! also falls in the fixed
eld of G. Thus we have verified that the fixed field of G is indeed a sub-
eld of K.

We shall be concerned with the automorphisms of a field which behave
a prescribed manner on a given subfield.

EFINITION Let K be a field and let F be a subfield of XK. Then the
oup of automorphisms of K relative to F, written G(K, F), is the set of all
utomorphisms of K leaving every element of F fixed; that is, the auto-
orphism ¢ of K is in G (K, F) if and only if ¢(a) = « for every a € F.

It is not surprising, and is quite easy to prove
EMMA 56.2 G(K, F) is a subgroup of the group of all automorphisms of K.

We leave the proof of this lemma to the reader. One remark: K contains
e field of rational numbers F, since K is of characteristic 0, and it is easy
see that the fixed field of any group of automorphisms of K, being a field,
must contain Fy,. Hence, every rational number is left fixed by every
automorphism of K.

We pause to examine a few examples of the concepts just introduced.

Example 5.6.1 Let K be the field of complex numbers and let F be the
eld of real numbers. We compute G(K, F). If ¢ is any automorphism of
, since 12 = —1, 0(i)? = (i?) = o(—1) = —1, hence o(i) = +:i. If,
addition, ¢ leaves every real number fixed, then for any a + bi where
b are real, o(a + bi) = g(a) + d(b)a(i) = a + bi. Each of these possi-
lities, namely the mapping o,(a + i) = a + bi and 6,(a + b1) = a — bi
efines an automorphism of K, o, being the identity automorphism and
@, complex-conjugation. Thus G(K, F) is a group of order 2.

What is the fixed field of G (K, F)? It certainly must contain F, but does
contain more? If a + b7 is in the fixed field of G(K, F) then a + bi =
2(@ + bi) = a — bi, whence b =0 and a =a + bieF. In this case
We see that the fixed field of G (K, F) is precisely F itself.

Exa_mple 5.6.2 Let F, be the field of rational numbers and let K =
Fo(i/ 2) where 3[ 2 is the real cube root of 2. Every element in K is of the
form oy + a13/2 + ocz(i/Q)z, where a, o, @, are rational numbers. If
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o is an automorphism of K, then 0(3/5)3 = O'((i/é-) 3 = ¢(2) = 2, hence
a(z/ 2) must also be a cube root of 2 lying in K. However, there is only
one real cube root of 2, and since K is a subfield of the real field, we must
3/5 3/ 3/5 3/5, 2

have that a_(\/2) =32. But then o(a + a1\/2 + ozz(\/2) ) = o +
ocli/ 2 + az(g/ 2)2, that is, ¢ is the identity automorphism of K. We thus
see that G (K, F,) consists only of the identity map, and in this case the
fixed field of G (K, Fy) is not Fy but is, in fact, larger, being all of K.

Example 5.6.3 Let Fy be the field of rational numbers and let @ =
¢2%/5 thus @° = | and o satisfies the polynomial x* + %3+ a1
over Fy. By the Eisenstein criterion one can show that x* + x* + x% +
x + 1 is irreducible over F, (see Problem 3). Thus K = Fy(w) is of degree
4 over F, and every element in K is of the form oy + a0 + a0 + a0?
where all of o, 0y, &y, and a3 are in Fo. Now, for any automorphism
¢ of K, o(w) # 1, since o(l) =1, and o(@)’ = o(@®) =a(l) =1,
whence a() is also a 5th root of unity. In consequence, o(w) can only
be one of w, w?, w3 or w*. We claim that each of these possibilities
actually occurs, for let us define the four mappings 6,, 6,, 03, and o, by
o0 + 1o + 007 + 00°%) = o + a (@) + ay(0)? + ay(@)?, for
i=1,2,3,and 4. Each of these defines an automorphism of K (Problem
4). Therefore, since o€ G(K, Fp) is completely determined by o(w),
G(K, F,) is a group of order 4, with g, as its unit element. In light of
6,2 = 6,4, 0,° = 03, 6,* = 0;, G(K, Fy) is a cyclic group of order 4.
One can easily prove that the fixed field of G (K, Fp) is F,, itself (Problem 5).
The subgroup 4 = {0y, 6,} of G(K, F,) has as its fixed field the set of all
elements oy + 0,(®? + @?), which is an extension of F, of degree 2.

The examples, although illustrative, are still too special, for note that in
each of them G(K, F) turned out to be a cyclic group. This is highly
atypical for, in general, G (K, F) need not even be abelian (see Theorem
5.6.3). However, despite their speciality, they do bring certain important
things to light. For one thing they show that we must study the effect of
the automorphisms on the roots of polynomials and, for another, they point
out that F need not be equal to all of the fixed field of G(K, F). The cases in
which this does happen are highly desirable ones and are situations with
which we shall soon spend much time and effort.

We now compute an important bound on the size of G(K, F).

THEOREM 5.6.2 If K is a finite extension of F, then G (K, F) is a fimite group
and its order, o(G (K, F)) satisfies o(G (K, F)) < [K:F]. —

Proof. Let [K:F] = n and suppose that u,, ..., 4, is a basis of K over
F. Suppose we can find n + 1 distinct automorphisms 64, 65,..., Op+1
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’ in G(K, F). By the corollary to Theorem 4.3.3 the system of n homogeneous
linear equations in the n 4+ I unknowns x;,...,x,,,:

?1(“1)’61 + oy (u)xy + o+ Oy (), =0
‘_71(“i)x1 + 0(u)xy + o+ 0y (424 =0
o1 (u)xy + 03 (u)xy + 0+ Gy (Up)x4y =0

has a nontrivial solution (not all 0) ¥, = a;,...,x,,, = a,,; in K. Thus

a,01(4;) + a,05(u;) + -+ @y 10,4,(4;) =0 (1)

Tfori=1,2,...,n
 Since every element in F is left fixed by each ¢; and since an arbitrary
element ¢ in K is of the form ¢ = oyu; + --- + a,u, with a, ..., a,
~in F, then from the system of equations (1) we get a;6,(¢) + - +
8,410,+1(t) = 0 for all e K. But this contradicts the result of Theorem
©'5.6.1. Thus Theorem 5.6.2 has been proved.

‘ Theorem 5.6.2 is of central importance in the Galois theory. However,
-aside from its key role there, it serves us well in proving a classic result
iconcerned with symmetric rational functions. This result on symmetric
_ functions in its turn will play an important part in the Galois theory.
 First a few remarks on the field of rational functions in n-variables over a
field F. Let us recall that in Section 3.11 we defined the ring of polynomials
in the n-variables Xy...,%, over F and from this defined the field of
‘rational functions in #x,...,x,, F(x;,...,x,), over F as the ring of all
‘quotients of such polynomials.
- Let S, be the symmetric group of degree n considered to be acting on the
-set [1,2,...,n]; for 6§, and 7 an integer with | <7 < n, let (i) be
e image of ¢ under 6. We can make S, act on F(x,, ..., x,) in the
llowing natural way: for ¢ €S, and r(x;,..., x,) € F(x,, ..., x,), define
the mapping which takes 7(x, ..., %,) onto 7(x,q), - - -, X,(y). We shall
rite this mapping of F(x;,...,x,) onto itself also as ¢. It is obvious
at these mappings define automorphisms of F(x,,...,x,). What is
e fixed field of F(x,,...,x,) with respect to §,? It consists of all
atiorfal functions r(%g5 .« 5 %,) such that r(x, ..., %,) = 7(X,;1y+ -+ » X))
or all ¢ €S, But these are precisely those elements in F(xy, ..., x,)
hich are known as the symmetric rational functions. Being the fixed field
f §, they form a subfield of F(x,,...,x,), called the field of symmetric
ational functions which we shall denote by §. We shall be concerned
ith three questions:
- What is [F(xy, . .., x,) :5]?
- What is G(F(xg, ..., %,),S)?
- Can we describe S in terms of some particularly easy extension of F?

241



242 Fields Ch.5

We shall answer these three questions simultaneously.

We can explicitly produce in § some particularly simple functions con-
structed from xy,...,%, known as the elementary symmetric functions in
Xi,. -+ %, Theseare defined as follows:

a1=x1+x2+"'+x,,=zxi

i=1
a, = Z ; XX;

i<j

az = E XX Xy
i<j<k

a, = XXy " Xy

That these are symmetric functions is left as an exercise. Forn = 2, 3 and
4 we write them out explicitly below.

n=2
ay = % + %
a, = X;%;.
n=3 |
a, = x + % + %
a, = X%y + %1X3 + %%3.
ay = X1%¥3%X3.
n=4%

a;, =% + % + X3 T X4
a, = %%, + X1%3 + %1% 4 x,%5 + XpX4 + X3%4-
ay = X1Xp%3 + X1¥pXq T+ X X3Xq + Xxyx3%4.

a4

XXy X3 Xy

Note that when n = 2, x; and x, are the roots of the polynomial 2 -
a,t + a,, that when n = 3, %;, x,, and x; are roots of 3 — at* + ajt — @ |
and that when n = 4, x,, %, %3, and x4 are all roots of t* — at® + ayt? - ;
azt + ag. i

Since ay, .. ., a, are all in S, the field F(ay,- - ., a,) obtained by ad-
joining 4, ...,a, to F must lie in S. Our objective is now twofold,
namely, to prove

1. [F (%, - %,) 58] = nl.
2.8 =F(ay,...,a,)-

Since the group S, is a group of automorphisms of F(%g,---> Xn)
leaving § fixed, S, = G(F(%p,---> x,), 8). Thus, by Theorem 5.6.2,
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[Frgs-eos 2,):8] = 0o(G(F (% .. 5 %,),8)) = 0(S,) =n!l. If we could
- show that [F(x,,...,x,):F(ay,...,a,)] <n!, well then, since Flay,...,a,)
s a subfield of S, we would have n! > [F(x,...,,):F(a,,..., a,)] =
[F(x5- ., %,):S1[S:F(ay,...,a,)] >n!. But then we would get that
[Fx, .5 %,):8]=n!, [S:F(ay,...,a,)]=1 and so S=F(ay,..., a,),
nd, finally, §, = G(F(xy,...,x,),S) (this latter from the second sen-
ence of this paragraph). These are precisely the conclusions we seek.

Thus we merely must prove that [F(x,...,x,):F(a,...,a,)] < nl.
To see how this settles the whole affair, note that the polynomial p(t) =
"—ayt" ' 4 ayt" 2 + (—1)"a,, which has coefficients in F(ay,...,a,),
actors over F(x;,...,x,) as p(t) = (t — x)(t — x,) * -+ (¢t — x,). (This
_is in fact the origin of the elementary symmetric functions.) Thus p(¢),
. of degree n over F(ay,...,a,), splits as a product of linear factors over
F(xy,...,x,). It cannot split over a proper subfield of F(x,,..., X)
which contains F(ay, ..., a,) for this subfield would then have to contain
“both F and each of the roots of p(¢), namely, x,, x,, . .., x,; but then this
ubfield would be all of F(x,,...,x,). Thus we see that F(x,,..., x,) is
he splitting field of the polynomial p(t) = t" — a;t"" 1 4 -+ 4 (—1)"a,
ver F(ay,...,a,). Since p(t) is of degree n, by Theorem 5.3.2 we get
F(xy,...,%,):F(ay,...,a,)] <n!. Thus all our claims are established.
We summarize the whole discussion in the basic and important result

HEOREM 5.6.3 Let F be a field and let F(x,, . . ., x,) be the field of rational

Unctions in xy, ..., x, over F. Suppose that S is the Sfield of symmetric rational
netions ; then

 [F(xyy ..., 2,):8] = nl.

. G(F(xy,...,x,),8) = S,, the symmetric group of degree n. -

< If ay,...,a, are the elementary symmetric functions in Kiy ooy X, then
S = F(a,a,,...,a,.

- Fxy,. .., x,) is the splitting field over F(ay,...,a,) = S of the polynomial
1" — " g2 4 (= 1)"a,

We mentioned earlier that given any integer z it is possible to construct
field and a polynomial of degree n over this field whose splitting field is of
axil(?al possible degree, n!, over this field. Theorem 5.6.3 explicitly
ovides us with such an example for if we put S = F(q,,...,a,), the
ational function field in n variables a ..., a, and consider the splitting
eld of the polynomial " — g,t"" 1 + a,t""2--+ 4 (=1)"a, over S then
is of degree n! over S.

Part 3 of Theorem 5.6.3 is a very classical theorem. Ii asserts that a sym-
etric rational function in n variables is a rational Sunction in the elementary symmetric
nctions of these variables. This result can even be sharpened to: A symmetric
olynomial in n variables is a polynomial in their elementary symmetric

-
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functions (see Problem 7). This result is known as the theorem on symmetric
polynomials.

In the examples we discussed of groups of automorphisms of fields and of
fixed fields under such groups, we saw that it might very well happen that F
is actually smaller than the whole fixed field of G (K, F). Certainly F is
always contained in this field but need not fill it out. Thus to impose the
condition on an extension K of F that F be precisely the fixed field of
G (K, F) is a genuine limitation on the type of extension of F that we are
considering. It is in this kind of extension that we shall be most interested.

DEFINITION K is a normal extension of F if K is a finite extension of F
such that F is the fixed field of G(K, F).

Another way of saying the same thing: If K is a normal extension of F,
then every element in K which is outside F is moved by some element in
G(K, F). In the examples discussed, Examples 5.6.1 and 5.6.3 were
normal extensions whereas Example 5.6.2 was not.

An immediate consequence of the assumption of normality is that it
allows us to calculate with great accuracy the size of the fixed field of any
subgroup of G (K, F) and, in particular, to sharpen Theorem 5.6.2 from an
inequality to an equality.

THEOREM 5.6.4 Let K be a normal extension of F and let H be a subgroup
of G(K,F); let Ky = {xe K| o(x) = xjorall 6 € H} be the fixed field of H.
Then

1. [K:Ky] = o(H).
2. H = G(K, Ky).

(In particular, when H = G(K, F), [K:F] = o(G(K, F)).)

Proof. Since very element in H leaves K elementwise fixed, certainly
H < G(K, Ky). By Theorem 5.6.2 we know that [K:Ky) > o(G(K, Ky));
and since o(G(K, Ky)) = o(H) we have the inequalities [K:Ky] =
o(G(K, Ky)) > o(H). If we could show that [K:Ky] = o(H), it would
immediately follow that o(H) = o(G(K, K;)) and as a subgroup of
G (K, K;) having order that of G(K, K), we would obtain that H =
G (K, Ky). So we must merely show that [K:Ky] = o(H) to prove every-
thing.

By Theorem 5.5.1 there exists an a € K such that K = Ky(a); this 4
must therefore satisfy an irreducible polynomial over Ky of degree m =
[K:K,] and no nontrivial polynomial of lower degree (Theorem 5.1.3)-
Let the elements of H be 6y, 6,, . . . , 6, where g, is the identity of G (K, F)
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and where 4 = o(H). Consider the elementary symmetric functions of
a = 0, (a)’ ‘72(“): cees oh(a): namely,

a0 = 64(a) + ay(a) + - + oy(a) = Z o(a)

% = Z O'i(“)aj(a)

i<j

% = 0,(0)05(a) - - ay(a).

Each «; is invariant under every o € H. (Prove!) Thus, by the definition
of Ky, a;,a,,...,a, are all elements of K;. However, a (as well as
65(a),...,04(a)) is a root of the polynomial p(x) = (x — g, (@)(x — a,(a))- -
(x—ou(a) =" — ™t pog a2 (=1)*x, having coefficients
in Ky. By the nature of a, this forces £ 2 m = [K:Ky], whence o(H) >
[K:Ky]. Since we already know that o(H) < [K:K,] we obtain o(H) =
[K:Ky], the desired conclusion.

When H = G(K, F), by the normality of K over F, Ky = F; consequently
for this particular case we read off the result [K:F] = o(G(K, F)).

We are rapidly nearing the central theorem of the Galois theory. What
we still lack is the relationship between splitting fields and normal extensjons.
This gap is filled by

"THEOREM 5.6.5 K is a normal extension of F if and only if K is the splitting
Jield of some polynomial over F.

Proof, In one direction the proof will be highly reminiscent of that of
Theorem 5.6.4. .

Suppose that X is a normal extension of F; by Theorem 5.5.1, K = F(a).
Consider the polynomial (%) = (x — 0,(a))(x — o,(a)) -~ (x — o,(a)
over K, where 6y, 0,,..., 0, are all the elements of G (K, F). Expanding
b(x) we see that p(x) = ¥" — g1 4 %" "% + oo 4 (—1)", where
%15 - .., &, are the elementary symmetric functions in a = 6,(a), 6,(a), ...,
6,(a). But then %5 ..., &, are each invariant with respect to every
0 €G(K, F), whence by the normality of K over F, must all be in F.
Thergfore, K splits the polynomial p(x) € F[x] into a product of linear
factors. Since a is a root of £(x) and since a generates K over F, a can be in
- 1o proper subfield of K which contains F. Thus K is the splitting field of

(x) over F.

Now for the other direction; it is a little more complicated. We separate
off one piece of its proof in

LEMMA 5.6.3 Let K be the splitting field of f (x) in F[x] and let p(x) be an

-
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irreducible factor of f (x) in F[x]. If the roots of p(x) are oy, . .., o, then for
each i there exists an automorphism &; in G(K, F) such that o,(a;) = a;.

Proof. Since every root of p(x) is a root of f(x), it must lie in K. Let
&y, o; be any two roots of p(x). By Theorem 5.3.3, there is an isomorphism
v of F, = F(a;) onto F{ = F(;) taking a, onto &; and leaving every
element of F fixed. Now K is the splitting field of f (x) considered as a
polynomial over Fy; likewise, K is the splitting field of f (x) considered as a
polynomial over Fj. By Theorem 5.3.4 there is an isomorphism ¢; of K
onto K (thus an automorphism of K) coinciding with 7 on F;. But then
o;(a;) = t(a;) = a; and o; leaves every element of F fixed. This 1s, of
course, exactly what Lemma 5.6.3 claims.

We return to the completion of the proof of Theorem 5.6.5. Assume that
K is the splitting field of the polynomial f (x) in F[x]. We want to show
that K is normal over F. We proceed by induction on [K:F], assuming
that for any pair of fields K,, Fy of degree less than [K:F] that whenever
K, is the splitting field over Fy of a polynomial in F;[x], then K, is normal
over F,.

If f(x) € F[x] splits into linear factors over F, then K = F, which is
certainly a normal extension of F. So, assume that f (x) has an irreducible
factor p(x) € F[x] of degree r > 1. The r distingt TOOtS Oy, Oy ..., O Of
p(x) all lie in K and K is the splitting field of £ (x) considered as a poly-
nomial over F(a;). Since
[KF(a)] = -2l 2oy

[(F(a):F] r
by our induction hypothesis K is a normal extension of F(a,).

Let 6 € K be left fixed by every automorphism ¢ € G (K, F); we would
like to show that 8 is in F. Now, any automorphism in G (K, F(«,)) certainly
leaves F fixed, hence leaves 6 fixed; by the normality of K over F(a,),
this implies that 6 is in F(a;). Thus

0= Ao + Aoty + Aoty + -+ A" where Ao, 4, €F. (1)

By Lemma 5.6.3 there is an automorphism o; of X, ¢, € G (K, F), such
that o,(a;) = a;; since this ¢; leaves 6 and each 4; fixed, applying it to
(1) we obtain

0 =g + Aoy + Aot + 00 + Jpoqof”Y for i=1,2,...,1 (2)
Thus the polynomial
qx) = hot® N AR+ A+ (Ao — 0)

in K[x], of degree at most r — 1, has the r distinct roots oy, tp, . - - 5 O
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This can only happen if all its coefficients are 0; in particular, 2, — 0 = 0
whence 6 = J; so is in F. This completes the induction and proves that K
is a normal extension of F. Theorem 5.6.5 is now completely proved.

DEFINITION Let £ (x) be a polynomial in F[x] and let K be its splitting
field over F. The Galois group of f (x) is the group G(K, F) of all the auto-
morphisms of K, leaving every element of F fixed.

Note that the Galois group of f(x) can be considered as a group of
permutations of its roots, for if o is a root of f(x) and if ¢ e G(K, F),
then g(a) is also a root of f(x).

We now come to the result known as the fundamental theorem of Galois
theory. It sets up a one-to-one correspondence between the subfields of the
splitting field of f (x) and the subgroups of its Galois group. Moreover, it
gives a criterion that a subfield .of a normal extension itself be a normal
extension of F. This fundamental theorem will be used in the next section
to derive conditions for the solvability by radicals of the roots of a poly-
nomial.

THEOREM 5.6.6 Let f(x) be a polynomial in Flx], K its splitting field over
F, and G(K, F) its Galois group. For any subfield T of K which contains F let
G, T)={ceG(K, F)|ot) =t for everyte T} and for any subgroup
 Hof GK,F) let Ky = {xeK| o(x) = x forevery c € HY. Then the asso-
ciation of T with G (K, T) sets up a one-to-one correspondence of the set of subfields
of K which contain F onto the set of subgroups of G (K, F) such that

L T = Kg.1y
2. H=G(K,Ky,).
3. [K:T] = o(G(K, T)), [T:F] = index of G(K, T)in G(K, F).
4. T is a normal extension of F if and only if G(K, T') is a normal subgroup of
G(K, F).
5. When T is a normal extension of F, then G(T, F) is isomorphic lo
G(K, F)|G(K, T).

Prpof. Since K is the splitting field of f (x) over F it is also the splitting
field of £ (x) over any subfield 7" which contains F, therefore, by Theorem
5.6.5, K is a normal extension of T. Thus, by the definition of normality,
T is the fixed field of G(K, T), thatis, T = K, 1), proving part 1.

Since K is a normal extension of F, by Theorem 5.6.4, given a subgroup H
of G(K, F), then H = G(K, Ky), which is the assertion of part 2. More-

.over, this shows that any subgroup of G (K, F) arises in the form G (K, T),
whence the association of 7" with G (K, T') maps the set of all subfields of K
containing F onfo the set of all subgroups of G (K, F). That it is one-to-one

-
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is clear, for, if G(K, Ty) = G(K, T,) then, by part 1, T, = Kok,ry) =

Kok,ry = T2
Since K is normal over 7, again using Theorem 5.6.4, [K:T] =
o(G(K, T)); but then we have o(G(K, F)) = [K:F] = [K:T)[T:F] =
o(G (K, T))[T:F], whence
7y = (G )

= index of G(K, T)
o(G(K, T))

in G(K, F). This is part 3.

The only parts which remain to be proved are those which pertain to
normality. We first make the following observation. T is a normal extension
of F if and only if for every 6 e G(K, F), o(T) T. Why? We know
by Theorem 5.5.1 that T' = F(a); thus if o(T) c T, then o(a)e T for
all ¢ € G(K, F). But, as we saw in the proof of Theorem 5.6.5, this implies
that T is the splitting field of

p) = JI (& —dld)

¢EG(K,F)

which has coefficients in F. As a splitting field, 7, by Theorem 5.6.5, is
a normal extension of F. Conversely, if 7 is a normal extension of F, then
T = F(a), where the minimal polynomial of a, p(x), over F has all its roots
in T (Theorem 5.6.5). However, for any o € G(K, F), o(a) is also a root
of p(x), whence ¢(a) must be in T. Since T is generated by a over F, we
get that ¢(T') < T for every ¢ € G(K, F).

Thus T is a normal extension of F if and only if for any o € G(K, F),
1e€G(K, T) and te T, o(t)€ T and so 7(a(t)) = o(¢); that is, if and
only if ¢~ '16(t) = t. But this says that T is normal over F if and only
if 67'G(K, T)o < G(K, T) for every oceG(K, F). This last condition
being precisely that which defines G(K, T) as a normal subgroup of
G (K, F), we see that part 4 is proved.

Finally, if T is normal over F, given 6 eG(K, F), since o(T) = T,
¢ induces an automorphism g, of T defined by o,4(¢) = o(t) for every
te T. Because o, leaves every element of F fixed, 6, must be in G(T, F).
Also, as is evident, for any o,Y € G(K, F), (6y)x = o4y whence the
mapping of G(K, F) into G(T, F) defined by ¢ — 04 is a homomorphism
of G(K, F) into G(T, F). What is the kernel of this homomorphism?
It consists of all elements ¢ in G (K, F) such that gy is the identity map on
T. That is, the kernel is the set of all 0 € G(K, F) such that ¢ = 0,(t) =
o(t); by the very definition, we get that the kernel is exactly G(K, T).
The image of G(K, F) in G(T, F), by Theorem 2.7.1 is isomorphic to
G(K, F)|G(K, T), whose order is o(G (K, F)o(G(K, T)) = [T:F] (by
part 3) = o(G(T, F)) (by Theorem 5.6.4). Thus the image of G(K, F)
in G(T, F) is all of G(T, F) and so we have G(T, F) isomorphic to
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G (K, F)|G(K, T). This finishes the proof of part 5 and thereby completes
the proof of Theorem 5.6.6.

Problems

1.

*7.

*10.

/

11.

12.

If K is a field and S a set of automorphisms of K, prove that the fixed
field of S and that of § (the subgroup of the group of all automorphisms
of K generated by S) are identical.

. Prove Lemma 5.6.2.

- Using the Eisenstein criterion, prove that x* 4 x3 + 2% + x + 1

is irreducible over the field of rational numbers.

. In Example 5.6.3, prove that each mapping o; defined is an auto-

morphism of Fy(w).

. In Example 5.6.3, prove that the fixed field of Fy(w) under o,

03, 03, 04 is precisely F,.

. Prove directly that any automorphism of K must leave every rational

number fixed.

Prove that a symmetric polynomial in Xyy ..., %, Is a polynomial in
the elementary symmetric functions in Hiy ooy Xpe

. Express the following as polynomials in the elementary symmetric

functions in x;, x,, x5:
(@) % + x,2 + x,2.
(b) %% + x,3 + 2,3
(©) (r1 — x)%(x, — x3) (%, — x3)2.

. If «y, 0y, a3 are the roots of the cubic polynomial x3 + 7x2 —

8x + 3, find the cubic polynomial whose roots are

@ ot al b)) 6w

%y 0y O3
Prove Newton’s identities, namely, if a;, &5, ..., a, are the roots of
J@&) =+ +ax"" ' + a2 4ot g, and if S = ot +
a* + -+ + o, then
(@) se+ apsiqy + agsp_y + -0 + G185, + ko, =01k =1,2,.. ., 5
(b) st + aysp_y + -+ + aSi—n =0fork > n.
(c) Forn = 5, apply part (a) to determine s,, s,, 54, and ss.
Prove that the elementary symmetric functions in Xis ..., X, are
indeed symmetric functions in Kiyooos Xy
If p(x) = 2" — 1 prove that the Galois group of p(x) over the field
of rational numbers is abelian.

The complex number o is a primitive nth root of unity if " = 1 but @™ # 1
or0 < m < n. F, will denote the field of rational numbers.

-
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13. (a) Prove that there are ¢(n) primitive nth roots of unity where
¢(n) is the Euler ¢-function.

(b) If @ is a primitive ath root of unity prove that Fy(w) is the
splitting field of " — 1 over F, (and so is a normal extension
of Fy).

(c) If @y, - .-, Dy(ny aTC the ¢(n) primitive nth roots of unity, prove
that any automorphism of Fo(w;) takes w; into some ;.

(d) Prove that [Folw,) Fo] < ¢(n).

14. The notation is as in Problem 13.
*(a) Prove that there is an automorphism g; of Fo(®;) which takes @,
into w;.

(b) Prove the polynomial p,(x)=(x — @) (x — @) (x — @y(m)
has rational coefficients. (The polynomial p,(x) is called the
nth cyclotomic polynomial.)

*(c) Prove that, in fact, the coefficients of p,(x) are integers.

#%]5. Use the results of Problems 13 and 14 to prove that p,(x) is irreducible
over F, for all n > 1. (See Problem 8, Section 3.)

16. For n = 3,4, 6, and 8, calculate p,(%) explicitly, show that it has
integer coefficients and prove directly that it is irreducible over Fj.

17. (a) Prove that the Galois group of x3 — 2 over F, is isomorphic to
S;, the symmetric group of degree 3.
(b) Find the splitting field, K, of x3 — 2 over Fj,.
(c) For every subgroup H of 8, find Ky and check the correspondence
given in Theorem 5.6.6. '
(d) Find a normal extension in K of degree 2 over Fy.

18. If the field F contains a primitive nth root of unity, prove that the
Galois group of " — a, for a€ F, is abelian.

5.7 Solvability by Radicals

Given the specific polynomial x2 + 3x + 4 over the field of rational
numbers F,, from the quadratic formula for its roots we know that its
roots are (—3 + v/ —7)/2; thus the field Fy(¥71) is the splitting field of
x2 + 3x + 4 over F,. Consequently there is an element y = —7 in o
such that the extension field Fy(w) where ®? = y is such that it contains
all the roots of x> + 3x + 4.

From a slightly different point of view, given the general quadratic poly-
nomial p(x) = x? + a;x + ap over F, we can consider it as a particular
polynomial over the field F(a,, a,) of rational functions in the two variables
a, and a, over F; in the extension obtained by adjoining @ to F (a5, a2)
where w? = a,% — 4a, € F(ay, a3), we find all the roots of p(x). There is
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a formula which expresses the roots of p(x) in terms of a,, a, and square
roots of rational functions of these.

For a cubic equation the situation is very similar; given the general cubic
equation p(x) = x> + 4,22 + a,x + a3 an explicit formula can be given,
involving combinations of square roots and cube roots of rational functions
in a,, a5, a;. While somewhat messy, they are explicitly given by Cardan’s
Sormulas: Let p = a, — (a,2/3) and

3
_ 24,  aa,

27 3
3 2
P=s\/_z+\/ﬁ_+q_
2 27 4
sf_g¢_ B, ¢
2 \/ 9 \/27+4

. (with cube roots chosen properly); then the roots are P + Q — (¢,/3),
- 0P + 0?Q — (4,/3), and w?P + ®Q — (a,/3), where w # 1 is a cube
~root of 1. The above formulas only serve to illustrate for us that by
adjoining a certain square root and then a cube root to F(ay, ay, a3) we
reach a field in which p(x) has its roots.

For fourth-degree polynomials, which we shall not give explicitly, by
using rational operations and square roots, we can reduce the problem to
that of solving a certain cubic, so here too a formula can be given expressing
the roots in terms of combinations of radicals (surds) of rational functions
of the coefficients.

For polynomials of degree five and higher, no such universal radical
formula can be given, for we shall prove that it is impossible to express
- their roots, in general, in this way.

. Given a field F and a polynomial p(x) € F[x], we say that p(x) is solvable
by radicals over F if we can find a finite sentence of fields F, = Flw,),
P, = F(w,),...,F, = F,_,(w) such that o' €F, w,*eF,,..
o e F,_y such that the roots of p(x) all lie in F,.

IfK is.the splitting field of p(x) over F, then p(x) is solvable by radicals
over F if we can find a sequence of fields as above such that X < F,. An
important remark, and one we shall use later, in the proof of Theorem
3.7.2, is that if such an Fy can be found, we can, without loss of generality,
assume it to be a normal extension of F; we leave its proof as a problem
(Problem 1).

By the general polynomial of degree n over F, p(x) = x" + ax" V4o a,
We mean the following: Let F(ay, ..., a,) be the field of rational functions,

and let

and

I
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in the n variables a,,...,a, over F, and consider the particular
polynomial p(x) = &" + a;#"~ ' + -+ + a, over the field F(ay, ..., a,).
We say that it is solvable by radicals if it is solvable by radicals over
F(ay,...,a,). This really expresses the intuitive idea of “finding a for-
mula” for the roots of p(x) involving combinations of mth roots, for various
m’s, of rational functions in aj, a,, . .., a, Forn = 2, 3, and 4, we pointed
out that this can always be done. For n > 5, Abel proved that this cannot
be done. However, this does not exclude the possibility that a given poly-
nomial over F may be solvable by radicals. In fact, we shall give a criterion
for this in terms of the Galois group of the polynomial. But first we must
develop a few purely group-theoretical results. Some of these occurred as
problems at the end of Chapter 2, but we nevertheless do them now officially.

DEFINITION A group G is said to be solvable if we can find a finite chain
of subgroups G = Ny > N; > N, o -+ > N, = (¢), where each N; is a

normal subgroup of N;_; and such that every factor group N;_,/N; is
abelian.

Every abelian group is solvable, for merely take Ny, = G and N, = (¢)
to satisfy the above definition. The symmetric group of degree 3, S;, is
solvable for take N, = {e, (1,2, 3), (1, 3,2)}; N, is a normal subgroup of
S5 and S3/N; and N,/(¢) are both abelian being of orders 2 and 3, respec-
tively. It can be shown that S, is solvable (Problem 3). For n > 5 we
show in Theorem 5.7.1 below that S, is not solvable.

We seek an alternative description for solvability. Given the group G and
elements a, b in G, then the commutator of a and b is the element a~ 157 'ab.
The commutator subgroup, G’, of G is the subgroup of G generated by all the
commutators in G. (It is not necessarily true that the set of commutators
itself forms a subgroup of G.) It was an exercise before that G’ is a normal
subgroup of G. Moreover, the group G/G’ is abelian, for, given any two
elements in it, aG’, bG’, with a, b € G, then

(aG")(bG") = abG' = ba(a™ b~ 'ab)G’
= (since a~'b"Yab € G') baG’ = (bG")(aG’).

On the other hand, if M is a normal subgroup of G such that G/ is abelian,
then M o G, for, given a,be G, then (aM)(bM) = (bM)(aM), from
which we deduce abM = baM whence a~'b"'abM = M and so
a” 15" 'ab e M. Since M contains all commutators, it contains the group
these generate, namely G'.

G’ is a group in its own right, so we can speak of its commutator subgroup
G» = (G')’. This is the subgroup of G generated by all elements
(a")~1(") " 'a’b’ where d’, b’ € G'. Tt is easy to prove that not only is (elSy
a normal subgroup of G’ but it is also a normal subgroup of G (Problem 4).




Sec. 5.7 Solvability by Radicals 253

We continue this way and define the higher commutator subgroups G™ by
G™ = (G™ DY Each G™ is a normal subgroup of G (Problem 4) and
G™ DIG™ is an abelian group.

In terms of these higher commutator subgroups of G, we have a very
succinct criterion for solvability, namely,

LEMMA 5.7.1 G is solvable if and only if G® = (e) for some integer k.

Proof. If G® = (;) let Ny=G, N, = ¢, N, =GP, .. N, =
G® = (¢). We have

G=NODN1:N23---DNk=(e);

each N; being normal in G is certainly normal in N;_,. Finally,

Ni—l GG-1 GG-1n
N, T ¢® T g@ny

hence is abelian. Thus by the definition of solvability G is a solvable group.

Conversely, if G is a solvable group, there is a chain G = N, > N, o
N; > -+ 5 N, = (¢) where each N, is normal in N;_; and where N;_ /N,
is abelian. But then the commutator subgroup N/ _; of N,_, must be
contained in N;. Thus N, o Ny =G, N,> N, o (G = G,
Ny o> N2 (GP) =GP, .. N, GD, () = N, > G®. We therefore
obtain that G® = (¢).

COROLLARY If G is a solvable group and if G is a homomorphic image of G,
then G is solvable.

Proof. Since G is 2 homomorphic image of G it is immediate that (G_ )@
is the image of G®. Since G® = (¢) for some &, (G)™® = (¢) for the same
k, whence by the lemma G is solvable.

The next lemma is the key step in proving that the infinite family of
groups S, with n > 5, is not solvable; here S, is the symmetric group of
degree n.

LEMMA 572 Le G =S, where n > 5; then G for k=1,2, ...,
contains évery 3-cycle of S,

Proof. We first remark that for an arbitrary group G, if N is a normal
subgroup of G, then N’ must also be a normal subgroup of G (Problem 5).

We claim that if N is a normal subgroup of G = §,, where n > 5, which
contains every 3-cycle in ,, then N’ must also contain every 3-cycle. For
Suppose a = (1,2,3), b = (1,4,5) are in N (we are using here that
7 2 5); then a” ' 'ab = (3,2, 1)(5, 4, 1)(1,2,38)(1,4,5) = (1,4, 2), as
a commutator of elements of N must be in N’. Since N’ is a normal

-
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subgroup of G, for any € S,, n~ (1,4, 2)n must also be in N’. Choose a
7 in S, such that n(l) = iy, n(4) = iy, and n(2) = iy, where iy, 1,, i3 are
any three distinct integers in the range from 1 to n; then 77 1(1, 4, 2)n =
(iy, 15, i3) is in N’. Thus N’ contains all 3-cycles.

Letting N = G, which is certainly normal in G and contains all 3-cycles,
we get that G’ contains all 3-cycles; since G’ is normal in G, G(? contains
all 3-cycles; since G® is normal in G, G® contains all 3-cycles. Con-
tinuing this way we obtain that G® contains all 3-cycles for arbitrary £.

A direct consequence of this lemma is the interesting group-theoretic
result.

THEOREM 5.7.1 S, is not solvable for n > 5.

Proof. If G = §,, by Lemma 5.7.2, G® contains all 3-cycles in §, for
every k. Therefore, G® s () for any k, whence by Lemma 5.7.1, G cannot
be solvable.

We now interrelate the solvability by radicals of p(x) with the solvability,
as a group, of the Galois group of p(x). The very terminology is highly
suggestive that such a relation exists. But first we need a result about the
Galois group of a certain type of polynomial.

LEMMA 5.7.3 Suppose that the field F has all nth roots of unity ( for some
particular n) and suppose that a # O is in F. Let " — ae F[x] and let K be
its splitting field over F. Then

1. K = F(u) where u is any root of x" — a.
2. The Galois group of x* — a over F is abelian.

Proof. Since F contains all nth roots of unity, it contains & = i,
note that {" = L but ™ # 1l for0 < m < n.

If e K is any root of x" — a, then u, &u, E2u, ..., " Yy are all the
roots of #* — a. That they are roots is clear; that they are distinct follows
from: &u = &y with 0 < i < j < n, thensince u # 0, and (&' — Eu =0,
we must have &' = &/ which is impossible since E-i=1, with 0 <j —1
< n Since ¢eF, all of u, &u,..., ¢ 'u are in F(u), thus F(x) splits
x" — a; since no proper subfield of F(u) which contains F also contains
no proper subfield of F(u) can split " — a. Thus F(u) is the splitting
field of " — a, and we have proved that K = F(u).

If 6,7 are any two elements in the Galois group of " — a, that is, if
@, T are automorphisms of K = F(u) leaving every element of F fixed, then
since both o(u) and t(x) are roots of x* — a, ¢(u) = ¢'u and t(x) = &
for some i and j. Thus o1(x) = o(&u) = Eo(u) (since EeF) = tu=
Eitiy; similarly, ta(u) = & Ju. Therefore, gt and 7o agree on u and on
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F hence on all of K = F(u). But then 67 = 74, whence the Galojs group
is abelian.

- Note that the lemma says that when F has all nth roots of unity, then
- adjoining one root of ¥ — 4 to F, where a € F, gives us the whole splitting
_ field of x" — 4; thus this must be a normal extension of F.

We assume for the rest of the section that F is a Sield which contains all nth roots
of unity for every integer n. We have

.THEOREM 5.7.2  If p(x) € F[x] is solvable by radicals over F, then the Galois
~ group over F of p(x) is a solvable group.

~ Proof. Let K be the splitting field of £(x) over F; the Galois group of
p(x) over Fis G(K, F). Since p(x) is solvable by radicals, there exists a
sequence of fields

FecFy=F(w)cF,= 1(@) = < Fy = F_y(wy),

~where w,"€F, w,"€F,,..., w0 €F,_, and where K c F,. As we
. pointed out, without loss of generality we may assume that F, is a normal
extension of F. As a normal extension of F, F, is also a normal extension
of any intermediate field, hence F, is a normal extension of each F,.

By Lemma 5.7.3 each F; is a normal extension of F;_, and since F, is
normal over F;_,, by Theorem 5.6.6, G(F,, F;) is a normal subgroup in
G(F,, F;_,). Consider the chain

G(F, F) o G(F, Fy) o GF,F;) >--> G(Fy, Fy_y) o (o). (1

As we just remarked, each subgroup in this chain is a normal subgroup
in the one preceding it. Since F; is a normal extension of F;_,, by the
fundamental theorem of Galois theory (Theorem 5.6.6) the group of F;
over F,_,, G(F;, F;_,) is isomorphic to G(F,, F;_,)|G(F,, F,). However,

by Lemma 5.7.3, G(F, F;_,) is an abelian group. Thus each quotient
group G (Fy, F;_,)/G (F,, F;) of the chain (1) is abelian.

Thus the group G (F,, F) is solvable! Since K — F, and is a normal
extension of F (being a splitting field), by Theorem 5.6.6, G(F, K)
is normal subgroup of G(F,F) and G(K, F) is isomorphic to
G(I?,:, F)|G(Fy, K). Thus G(K, F) is a homomorphic image of G(F,, F), a
Solvable group; by the corollary to Lemma 5.7.1, G (K, F) itself must then
be a solvable group. Since G (K, F) is the Galois group of p(x) over F the
theorem has been proved.

We make two remarks without proof.

L. The converse of Theorem 5.7.2 is also true; that is, if the Galois group
of p(x) over F is solvable then p(x) is solvable by radicals over F.

-

255



P

Fields Ch.5

9. Theorem 5.7.2 and its converse are true even if F does not contain
roots of unity.

Recalling what is meant by the general polynomial of degree n over F,
p(x) = " + 2"~ * + -+ + a,, and what is meant by solvable by radicals,
we close with the great, classic theorem of Abel:

THEOREM 5.7.3 The general polynomial of degree n > 5 is not solvable by
radicals.

Proof. In Theorem 5.6.3 we saw that if F(ay,...,a,) is the field of
rational functions in the n variables ay, ..., a,, then the Galois group of
the polynomial p(t) = t" + a;t"~ ' + -+ a, over F(ay,...,a,) was S,
the symmetric group of degree n. By Theorem 5.7.1, S, is not a solvable
group when n > 5, thus by Theorem 5.7.2, p(¢) is not solvable by radicals
over F(ay,...,a,) when n > 5.

Problems

*]. If p(x) is solvable by radicals over F, prove that we can find a sequence
of fields
FcF, =F(o) cF,=F (0)c- < F = F_ (@),

where o, € F, w,*€F,,..., o *€F_;, F, containing all the
roots of p(x), such that F is normal over F.
Prove that a subgroup of a solvable group is solvable.

Prove that .S, is a solvable group.

. If G is a group, prove that all G® are normal subgroups of G.

o s N

If N is a normal subgroup of G prove that N’ must also be a normal
subgroup of G.

6. Prove that the alternating group (the group of even permutations in
S.) 4, has no nontrivial normal subgroups for n > 3.

5.8 Galois Groups over the Rationals

In Theorem 5.3.2 we saw that, given a field F and a polynomial p(x), of
degree n, in F[x], then the splitting field of p(x) over F has degree at most
n! over F. In the preceding section we saw that this upper limit of n! is,
indeed, taken on for some choice of F and some polynomial p(x) of degree
n over F. In fact, if Fy is any field and if F is the field of rational functions
in the variables aj, . .., a, over Fy, it was shown that the splitting field, K,
of the polynomial p(x) = x* + a;x"~ ' + -+ + a, over F has degree
exactly n! over F. Moreover, it was shown that the Galois group of K over
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F is §,, the symmetric group of degree n. This turned out to be the basis
for the fact that the general polynomial of degree n, with n > 5, is not
solvable by radicals.

However, it would be nice to know that the phenomenon described
above can take place with fields which are more familiar to us than the
. field of rational functions in # variables. What we shall do will show that
~ for any prime number p» at least, we can find polynomials of degree p over
the field of rational numbers whose splitting fields have degree p! over the
rationals. This way we will have polynomials with rational coefficients
whose Galois group over the rationals is Sp- In light of Theorem 5.7.2, we
will conclude from this that the roots of these polynomials cannot be ex-
* pressed in combinations of radicals involving rational numbers. Although
in proving Theorem 5.7.2 we used that roots of unity were in the field, and
roots of unity do not lie in the rationals, we make use of remark 2 following
the proof of Theorem 5.7.2 here, namely that Theorem 5.7.2 remains valid
even in the absence of roots of unity.

We shall make use of the fact that polynomials with rational coefficients
have all their roots in the complex field.

We now prove

THEOREM 5.8.1 Let q(x) be an irreducible polynomial of degree p, p a prime,
over the field Q of rational numbers. Suppose that q(x) has exactly two nonreal roots
in the field of complex numbers. Then the Galois group of q(x) over Q s S, the

symmetric group of degree p. Thus the splitting field of q(x) over Q has degree p!
over Q.

Proof. Let K be the splitting field of the polynomial ¢(x) over @. If
a is a root of ¢(x) in K, then, since ¢(x) is irreducible over @, by Theorem
5.1.3, [Q(x):Q] = p. Since K o Q(x) © @ and, according to Theorem
5.1, [K:Q] = [K:Q()][Q(a):Q] = [K:Q(x)]p, we have that p|[K:Q].
If G is the Galois group of K over @, by Theorem 5.6.4, o(G) = [K:F].
Thus p|o(G). Hence, by Cauchy’s theorem (Theorem 2.11.3), G has
an element ¢ of order p.

To this point we have not used our hypothesis that ¢(x) has exactly two
nog,real roots. We use it now. If a, a, are these nonreal roots, then
Oy = 0, o = &, (see Problem 13, Section 5.3), where the bar denotes
the complex conjugate. If a3, - .., o, are the other roots, then, since they
are real, &; = @; for ; > 3. Thus the complex conjugate mapping takes
K into itself, is an automorphism 7 of K over @, and interchanges «, and
@y, leaving the other roots of q(x) fixed.

Now, the elements of G take roots of g(x) into roots of g(x), so induce
permutations of «, ..., o,. In this way we imbed G in S,. The auto-
morphism 7 described above is the transposition (1, 2) since t(o)) = aty,

4
-

257



258

Fields Ch.5

7(at,) = oy, and t(e;) = a; for 7 > 3. What about the element o €G,
which we mentioned above, which has order p? As an element of S,
o has order p. But the only elements of order p in §, are p-cycles. Thus ¢
must be a p-cycle.

Therefore G, as a subgroup of §,, contains a transposition and a p-cycle.
It is a relatively easy exercise (see Problem 4) to prove that any transposition
and any p-cycle in S, generate §,. Thus ¢ and 7 generate S,. But since
they are in G, the group generated by ¢ and 7 must be in G. The net result
of this is that G = S,. In other words, the Galois group of g(x) over @ is
indeed §,. This proves the theorem.

The theorem gives us a fairly general criterion to get S, as a Galois group
over Q. Now we must produce polynomials of degree p over the rationals
which are irreducible over @ and have exactly two nonreal roots. To pro-
duce irreducible polynomials, we use the Eisenstein criterion (Theorem
3.10.2). To get all but two real roots one can play around with the co-
efficients, but always staying in a context where the Eisenstein criterion is
in force.

We do it explicitly for p = 5. Let g(x) = 2+ — 10x + 5. By the
Eisenstein criterion, ¢(x) is irreducible over @. We graph y = ¢(x) =
2x5 — 10x + 5. By elementary calculus it has a maximum at x = —1
and a minimum at x = 1 (see Figure 5.8.1). As the graph clearly indicates,

J
4

IR
i

+—

T @ =3)

Figure 5.8.1

y = q(x) = 2x5 — 10x 4+ 5 crosses the x-axis exactly three times, so ¢(¥)
has exactly three roots which are real. Hence the other two roots must be
complex, nonreal numbers. Therefore g¢(x) satisfies the hypothesis of
Theorem 5.8.1, in consequence of which the Galois group of g(x) over @
is S5. Using Theorem 5.7.2, we know that it is not pussible to express the
roots of ¢(x) in a combination of radicals of rational numbers.

s i
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Problems
1. In §5 show that (1 2) and (1234 5) generate .
- In 85 show that (1 2) and (1 324 5) generate Ss.
. If p > 2 is a prime, show that (12) and (12---p — 1 p) generate S,
. Prove that any transposition and p-cycle in S, p a prime, generate Sy

. Show that the following polynomials over @ are irreducible and have
exactly two nonreal roots.
(a)p(x) =% - 3x — 3:
(€) p(x) = 2> + 5x* 4 1023 + 10x2 — » — 9.

6. What are the Galois groups over Q of the polynomials in Problem 5?

7. Construct a polynomial of degreee 7 with rational coefficients whose
Galois group over Q is S,.
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is not solvable by radicals equal >= <= not equal >=

If p(x) in F[x] is solvable by radicals over F,

then the Galois group F of p(x) is------- abelian normal solvable cyclic solvable
Subgroup of a solvable is -------- solvable abelian group  |cyclic normal solvable

G is solvable iff GNK) is--------- 0 e G H e

If G is solvable then G\N is ------ normal not solvable solvable e solvable
Any group G is solvable if O(G) =------ n p’n p*n

Any group G is solvable if O(G) =------ not solvable solvable abelian cyclic solvable

The collection of all automorphisms of K is

denoted as---------- (K) G(K) Aut(K) Hom(K) Aut(K)




If both N and G\N are solvable then G is---- |abelian normal solvable cyclic solvable
The dihedral groups are------ solvable abelian group normal cyclic solvable
The symmetric group S 5 is------ abelian normal not solvable solvable not solvable
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