
OBJECT ORIENTED PROGRAMMING WITH C++ 2016-2019 Batch

Prepared by Department of Commerce (Computer Application), KAHE 1/3

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.
(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMMERCE (CA)

SYLLABUS
Semester III

16CCU302 OBJECT ORIENTED PROGRAMMING WTIH C++

Course Objective

 To understand the basic principles of Object Oriented Programming with C++ ,

Tokens , Expressions and Control Structures, Classes and Objects, Operator

Overloading and Pointers and Virtual Functions .

Learning Outcomes

 To enriches the knowledge of students on the applicability of oops concepts

 To understand compilation process for the real time Applications.

UNIT I

Principles of Object- Oriented Programming – A Look at Procedure and Object - Oriented

Paradigm – Basic Concepts of Object – Oriented Programming – Benefits of Oop – Object-

Oriented Languages – Applications of Oop . Beginning with C++ - What is C++? –

Applications of C++ - C++ Statements – Structure of C++ Program.

UNIT II

Tokens, Expressions and Control Structures – Tokens – Keywords – Identifiers – Basic &

User – Defined Data Types – Operators in C++ - Operator Over Loading – Operator

Precedence – Control Structures – Functions in C++ - The Main Function – Function

L T P C

4 - - 4

OBJECT ORIENTED PROGRAMMING WITH C++ 2016-2019 Batch

Prepared by Department of Commerce (Computer Application), KAHE 2/3

Prototyping – Call By Reference – Return By Reference – In Line Functions – Function Over

Loading – Friend and Virtual Functions.

UNIT III

Classes and Objects – Introduction – Specifying a Class – Defining Member Function –

Nesting of Member Functions – Private Member Functions – Arrays within a Class- Static

Data Members – Static Member Functions – Array of Objects – Objects as Function

Arguments – Friendly Functions – Pointers to Members. Constructors & Destructors –

Constructors – Copy Constructors – Dynamic Constructors – Construction Two- Dimensional

Arrays – Destructors.

UNIT IV

Operator Over Loading -Type Conversion – Introduction – Defining Operator Over

Loading – Over Loading Unary & Binary Operators – Over Loading Binary Operators using

Friends – Manipulation of String Using Operators – Rules for Over Loading Operators –

Types – Conversions – Inheritance – Extending Classes – Defining Derived Classes – Single,

Multi Level Multiple, Hierarchical & Hybrid Inheritance – Virtual Base Classes – Abstract

Classes.

UNIT V

Pointers, Virtual Functions & Polymorphism – Pointers to Object - Pointers to Derived

Classes – Virtual Functions .Working with Files – Classes for File Stream Operations –

Opening and Closing a File – File Pointers & their Manipulations - Sequential I/O

Operations.

OBJECT ORIENTED PROGRAMMING WITH C++ 2016-2019 Batch

Prepared by Department of Commerce (Computer Application), KAHE 3/3

Suggested Readings:

Text Book:

1. Balagurusamy, E. (2013). Object Oriented Programming With C++, 6th edition, New

Delhi: Tata McGraw Hill Publishing Company Ltd.

Reference Books :

1. BjarneStroustroup. (2014). Programming -- Principles and Practice using C++, 2nd

Edition, Addison-Wesley .

2. BjarneStroustrup,. (2013). The C++ Programming Language, 4th Edition, Addison-

Wesley.

3. Paul Deitel, Harvey Deitel. (2011). C++ How to Program, 8th Edition, Prentice Hall,.

4. D.Ravichandran. (2010). Programming with C++.3rd Edition.. New Delhi: Tata

McGraw Hill Publishing Company Ltd.

Website

 W1: http://www.hscripts.com
 W2: http://www3.ntu.edu
 W3: http://www.bcanotes.com
 W4: http://www.ddegjust.ac.in

Lesson Plan 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),

KAHE 1/8

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMMERCE (CA)

SUBJECT : OBJECT ORIETNED PROGRAMMING WITH C++

SEMESTER : III

SUBJECT CODE: 16CCU302 CLASS : II B.COM CA

UNIT-I

Sl
No.

Lecture
Duration

(Hour)
Topics to be Covered

Support
 Materials

1 1

PRINCIPLES OF OBJECT ORIENTED
PROGRAMMING

 Introduction and Evolution of OOP’s

T:4-7

R2:1-3

2 1
 Procedure oriented and object oriented

paradigm

3 1
Basic concepts of OOP’s T:7-15

4 1

Benefits of OOPs
 Objects
 Classes
 Data abstraction and Encapsulation
 Inheritance

R2:6-11

5 1

Benefits of OOPs
 Polymorphism
 Dynamic binding
 Message passing

6 1  Object Oriented Languages W1,W2

Lesson Plan 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),

KAHE 2/8

7 1 Applications of Oops W1,W2

8 1
Beginning with C++

 Introduction to C++
R3:36-55
T:19-30

9 1
 Applications of C++

R2:13-15

10 1  C++ Statements

11 1  Structure of C++ Program W1,W2

12 1
Recapitulation

Important Questions Discussion

Total No .Of Hours 12 HOURS

Lesson Plan 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),

KAHE 3/8

UNIT – II

Sl
No.

Lecture
Duration

(Hour)
Topics to be Covered

Support
Materials

1 1
Tokens ,Expressions and Control Structures

 Tokens, Keywords, Identifiers
T:35-49

2 1
Basic and User Defined Data Types

 Variable Declaration
 Variable Initialization

R2:32-38
W3

3 1

Operators
 Operators in C++
 Operator Overloading

T:49-64

R2:46-66
W2

4 1
Operators

 Operator Precedence

5 1
Control Structures Decision

 If & If-Else Statements
 Jump Statements

T:64-69

R2:112-159
R1:124-138

6 1

Control Structures Decision
 Goto Statements
 Break Statements

7 1

Looping
 Switch case Statements
 Do-While Statements

R!:185-210
W1

8 1 For Statements W3

9 1

Functions in C++
 The main Function
 Function Prototyping

T:77-90
R2:179-185

10 1
Functions in C++

 Call by Reference, Return by Reference

R3:273-275

11 1
 Inline Functions

12 1 Functions in C++

Lesson Plan 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),

KAHE 4/8

 Function Overloading
 Recapitulation Important Questions

Discussion

Total No .Of Hours 12 HOURS

Lesson Plan 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),

KAHE 5/8

UNIT – III

Sl
No.

Lecture
Duration

(Hour)
Topics to be Covered

Support
Materials

1 1
CLASSES AND OBJECTS

 Introduction
 Specifying a Class

T:96-119

2 1  Defining Member Functions

3 1  Nesting of Member Functions R2:298-423
W2

4 1  Arrays within a Class
W3

R3:326-362
W2

5 1
 Static Data Members
 Static Member Function

6 1  Private Member Functions

7 1
 Array of Objects
 Objects as Function Arguments

T:119-135

8 1
 Friendly Functions
 Pointers to Members

R!:185-210
W1

9 1
Constructors and Destructors

 Constructors
T:144-164

10 1
 Copy Constructor
 Dynamic Constructor

R2:455-476
W4

11 1  Constructor two-dimensional Arrays
R3:499-502

12 1
 Destructor

Recapitulation Important Questions Discussion

Total No .Of Hours 12 HOURS

Lesson Plan 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),

KAHE 6/8

UNIT – IV

Sl
No.

Lecture
Duration

(Hour)
Topics to be Covered

Support
Materials

1 1
Operator overloading T:171-186

R3:571-669
 Type Conversion –Introduction

2 1  Defining Operator Overloading W2

3 1
 Overloading unary and binary operator
 Overloading binary operator using friends

4

1  Manipulation String using Operators T:186-195
R2:518-524

W3
5 1

 Rules for Operator Overloading
 Type Conversions

6
1

Inheritance:
 Extending Classes
 Defining Derived Classes

T:202-232

7
1

 Single Inheritance R2:538-548

8 1  Multilevel Inheritance

9 1
 Multiple Inheritance
 Hierarchical Inheritance

W3
W4

10 1  Hybrid Inheritance

11 1
 Virtual Base Classes
 Abstract Classes

R3:708
W4

12 1
Recapitulation

Important Questions Discussion

 Total No .Of Hours 12 HOURS

Lesson Plan 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),

KAHE 7/8

UNIT – V

Sl
No.

Lecture
Duration

(Hour)
Topics to be Covered

Support
Materials

1 1
Pointers, Virtual Functions and Polymorphism

 Pointers- Introduction

T:251-343
2 1 Pointers to Objects

3 1
 Pointers to Derived Classes

4 1  Virtual Functions

5

1
Working with Files

 Introduction
 Classes for File Stream Operations

R3:841-856

6 1 Opening and Closing File
R2: 638-645

W2 7
1

 File Pointers

8 1  File Pointers Manipulations

9
1

 Sequential I/O Operations

W3

10 1
Recapitulation
Important Questions Discussion
ESE Question Paper Discussions

11 1 Previous ESE Question Paper Discussions

12 1 Previous ESE Question Paper Discussions

 Total No .Of Hours 12 HOURS

Lesson Plan 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),

KAHE 8/8

Suggested Readings:

TEXT BOOK

1. Balagurusamy, E. (2013). Object Oriented Programming With C++, 6th edition,

New Delhi: Tata McGraw Hill Publishing Company Ltd.

REFERENCE BOOKS

1. BjarneStroustroup. (2014). Programming -- Principles and Practice using

C++, 2nd Edition, Addison-Wesley.

2. BjarneStroustrup,. (2013). The C++ Programming Language, 4th Edition,

Addison- Wesley.

3. Paul Deitel, Harvey Deitel. (2011). C++ How to Program, 8th Edition,
Prentice Hall.

4. D.Ravichandran. (2010). Programming with C++.3rd Edition.. New Delhi:

Tata McGraw Hill Publishing Company Ltd.

Website
 W1: http://www.hscripts.com
 W2: http://www3.ntu.edu
 W3: http://www.bcanotes.com
 W4: http://www.ddegjust.ac.in

Concepts of Object Oriented Programming 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
1/14

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.
(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMMERCE (CA)

SUBJECT : OBJECT ORIENTED PROGRAMMING WITH C++
SEMESTER : III
SUBJECT CODE: 16CCU302 CLASS : II B.COM CA

UNIT I

Principles of Object- Oriented Programming – A Look at Procedure and Object - Oriented

Paradigm – Basic Concepts of Object – Oriented Programming – Benefits of Oop – Object-

Oriented Languages – Applications of Oop . Beginning with C++ - What is C++? – Applications

of C++ - C++ Statements – Structure of C++ Program.

Concepts of Object Oriented Programming 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
2/14

Unit 1

Introduction

Object-Oriented Programming (OOP) is the term used to describe a

programming approach based on objects and classes. The object-oriented

paradigm allows us to organize software as a collection of objects that consist

of both data and behaviour. This is in contrast to conventional functional

programming practice that only loosely connects data and behaviour.

The object-oriented programming approach encourages:

 Modularization: where the application can be decomposed into modules.

 Software re-use: where an application can be composed from existing

and new modules.

Procedure-Oriented Programming

High level languages such as COBOL, FORTRAN and C, is commonly known

as procedure oriented programming (POP). In the procedure oriented

programming, program is divided into sub programs or modules and then

assembled to form a complete program. These modules are called functions.

In a multi-function program, many important data items are placed as global

so that they may be accessed by all functions. Each function may have its own

local data. If a function made any changes to global data, these changes will

reflect in other functions. Global data are more unsafe to an accidental change

by a function. In a large program it is very difficult to identify what data is

used by which function.

Concepts of Object Oriented Programming 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
3/14

Characteristics by procedure-oriented programming are:

 Emphasis is on doing things (algorithms).

 Large programs are divided into smaller programs known as functions.

Most of the functions share global data.

 Data move openly around the system from function to function.

Functions transform data from one form to another.

Employs top-down approach in program design.

Features of POP

1. Mainly focused on writing the algorithms.

2. Most function uses Global data for sharing which are accessed freely

from function to function in the system.

3. POP follows the top down approach in program design.

4. It does not have data hiding options.

5. Functions transform data from one form to another.

6. Data can be moved openly from one function to another around the

system.

7. Sub-division of large program into smaller programs called functions.

8. Overloading process is not applicable in POP.

Concepts of Object Oriented Programming 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
4/14

Difference Between Procedure Oriented Programming (POP) & Object

Oriented Programming (OOP)

 Procedure Oriented Programming Object Oriented Programming

Divided
Into

In POP, program is divided into
small parts called functions.

In OOP, program is divided into
parts called objects.

Importance In POP,Importance is not given
to data but to functions as well
as sequence of actions to be
done.

In OOP, Importance
is given to the data
rather than
procedures or
functions because it
works as a real
world.

Approach POP follows Top Down
approach.

OOP follows Bottom Up
approach.

Access
Specifiers

POP does not have any access
specifier.

OOP has access specifiers
named Public, Private,
Protected, etc.

Data
Moving

In POP, Data can move freely
from function to function in the
system.

In OOP, objects can move and
communicate with each other
through member functions.

Expansion To add new data and function in
POP is not so easy.

OOP provides an easy way to
add new data and function.

Data Access In POP, Most function uses
Global data for sharing that can
be accessed freely from function
to function in the system.

In OOP, data cannot move
easily from function to
function, it can be kept public
or private so we can control the
access of data.

Data Hiding
POP does not have any proper
way for hiding data so it is less
secure.

OOP provides Data Hiding so
provides more security.

Overloading
In POP, Overloading is not
possible.

In OOP, overloading is possible
in the form of Function
Overloading and Operator
Overloading.

Examples Example of POP are : C, VB,
FORTRAN, Pascal.

Example of OOP are : C++,
JAVA, VB.NET, C#.NET.

Concepts of Object Oriented Programming 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
5/14

Principles of Object Oriented Programming: Basic concepts of Object

Oriented Programming

 Objects

 Classes

 Data abstraction and Encapsulation

 Inheritance

 Polymorphism

 Dynamic binding

 Message passing

Objects:

 An object can be considered a "thing" that can perform a set of related

activities.

 The set of activities that the object performs defines the object's behavior.

 For example, the hand can grip something or a Student (object) can give

the name or address.

 Objects are run time entity or real world entity.

Classes:

 A class is simply a representation of a type of object.

 It is the blueprint/ plan/ template that describe the details of an object.

 A class is the blueprint from which the individual objects are created.

 Class is composed of three things: a name, attributes, and operations.

 For example Student is an object has name, age, course, etc as

attributes. Read, write, etc as operations

Concepts of Object Oriented Programming 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
6/14

Data abstraction and Encapsulation

 The encapsulation is the inclusion within a program object of all the

resources need for the object to function - basically, the methods and the

data.

 In OOP the encapsulation is mainly achieved by creating classes, the

classes expose public methods and properties.

 The class is kind of a container or capsule or a cell, which encapsulate

the set of methods, attribute and properties to provide its indented

functionalities to other classes.

 In that sense, encapsulation also allows a class to change its internal

implementation without hurting the overall functioning of the system.

 That idea of encapsulation is to hide how a class does it but to allow

requesting what to do.

 Abstraction is an emphasis on the idea, qualities and properties rather

than the particulars.

 The importance of abstraction is derived from its ability to hide irrelevant

details and from the use of names to reference objects.

 Abstraction is essential in the construction of programs.

 It places the emphasis on what an object is or does rather than how it is

represented or how it works.

Inheritance

 Ability of a new class to be created, from an existing class by extending

it, is called inheritance.

 Different kinds of objects often have a certain amount in common with

each other.

Concepts of Object Oriented Programming 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
7/14

 Object-oriented programming allows classes to inherit commonly used

state and behavior from other classes.

 In this example, Bicycle now becomes the super class of MountainBike,

RoadBike, and TandemBike. In the Java programming language, each

class is allowed to have one direct super class, and each super class has

the potential for an unlimited number of subclasses:

 The new class created is called as derived class

 The existing class is called as base class.

 The base class provides the property the derived class receives the

property.

 It reduces the complexity of the programming.

 This is the most common and most natural and widely accepted way of

implement this relationship.

Polymorphism

 Polymorphism is the process taking more then one form.

 More precisely Polymorphisms mean the ability to request that the same

operations be performed by a wide range of different types of things.

Concepts of Object Oriented Programming 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
8/14

 In OOP the polymorphisms is achieved by using many different

techniques named method overloading, operator overloading and method

overriding,

 The method overloading is the ability to define several methods all with

the same name.

 The operator overloading (less commonly known as ad-hoc

polymorphisms) is a specific case of polymorphisms in which some or all

of operators like +, - or == are treated as polymorphic functions and as

such have different behaviors depending on the types of its arguments.

Dynamic binding

 Dynamic binding is the process of resolving the function to be associated

with the respective functions calls during their runtime rather than

compile time.

Message passing

 Every data in an object in oops that is capable of processing request

known as message.

 All objects can communicate with each other by sending message to each

other

 Message passing, also known as interfacing, describes the

communication between objects using their public interfaces.

Benefits of OOP

1. Reusability: In OOP’s programs functions and modules that are written by

a user can be reused by other users without any modification.

2. Inheritance: Through this we can eliminate redundant code and extend the

use of existing classes.

3. Data Hiding: The programmer can hide the data and functions in a class

from other classes. It helps the programmer to build the secure programs.

Concepts of Object Oriented Programming 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
9/14

4. Reduced complexity of a problem: The given problem can be viewed as a

collection of different objects. Each object is responsible for a specific task.

The problem is solved by interfacing the objects. This technique reduces the

complexity of the program design.

5. Easy to maintain and Upgrade: OOP makes it easy to maintain and modify

existing code as new objects can be created with small differences to

existing ones.

6. Message Passing: The technique of message communication between

objects makes the interface with external systems easier.

7. Modifiability: it is easy to make minor changes in the data representation

or the procedures in an OO program. Changes inside a class do not affect

any other part of a program, since the only public interface that the external

world has to a class is through the use of methods.

Object Oriented Language

Object-oriented programming is not the right of any particular languages.

Like structured programming, OOP concepts can be implemented using

languages such as C and Pascal. It is specially designed to support the OOP

concepts makes it easier to implement them.

Object Oriented Languages has two categories:

1. Object-based programming languages

2. Object-oriented programming languages

Object-based programming is the style of programming that primarily supports

encapsulation and object identity.

Major feature that are required for object based programming are:

 Data encapsulation

 Data hiding and access mechanisms

 Automatic initialization and clear-up of objects

 Operator overloading Languages that support programming with objects

are said to the objects-based programming languages. They do not support

Concepts of Object Oriented Programming 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
10/14

inheritance and dynamic binding. Ada is a typical object-based programming

language.

Object-Oriented programming language incorporates all of object-based

programming features along with two additional features, namely, inheritance

and dynamic binding.

Object-oriented programming can therefore be characterized by the following

statements:

Object-based features + inheritance + dynamic binding

Applications of OOPs

 For Develop Graphical related application like computer and mobile

games.

 To evaluate any kind of mathematical equation use C++ language.

 C++ Language are also used for design OS. Like window xp.

 Google also use C++ for Indexing

 Few parts of apple OS X are written in C++ programming language.

 Internet browser Firefox are written in C++ programming language

 All major applications of adobe systems are developed in C++

programming language. Like Photoshop, ImageReady, Illustrator and

Adobe Premier.

 Some of the Google applications are also written in C++, including Google

file system and Google Chromium.

 C++ are used for design database like MySQL.

Beginning with C++

 What is C++: C++ is a general-purpose object-oriented programming

(OOP) language, developed by Bjarne Stroustrup, and is an extension of the C

language. It is therefore possible to code C++ in a "C style" or "object-oriented

style.".C++ is one of the most versatile languages in the world. It is used nearly

Concepts of Object Oriented Programming 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
11/14

everywhere for everything… systems programming (operating systems, device

drivers, database engines, embedded, Internet of Things, etc.)

Applications of C++

 Client-Server System

 Object Oriented Database

 Object Oriented Distributed Database

 Real Time Systems Design

 Simulation and Modeling System

 Hypertext, Hypermedia

 Neural Networking and Parallel Programming

 Decision Support and Office Automation Systems

 CIM/CAD/CAM Systems

 AI and Expert Systems

C++ Statements

Preprocessor directives

A preprocessor directive begins with the character #. This must either be the

first character of the line or the first character of the line after some leading

whitespace.

Comments

Comments may be of the form:

 / / Comment \n

 (Or)

 /* comment */

 The first form allows a trailing comment on a single line, while the second

form allows comments that span multiple lines.

 Comments may appear anywhere.

Declarations

Concepts of Object Oriented Programming 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
12/14

 Declarations give the compiler information about the types, storage

requirements and initial values of identifiers.

 General form: void type identifier intializer;

Function Declarations

 void type identifier (formal_argument_list)

{

 function_body

 }

Executable statements

 while (expression) statement

 do statement while (expression)

 for (expression_1; expression_2; expression_3) statement

equivalent to:

expression_1; while (expression_2) { statement expression_3 }

 switch (expression)

{

declarations

case constant_expression: statement

...

default: statement

}

Concepts of Object Oriented Programming 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
13/14

 break;

 continue;

return;

return expression;

goto statement_label;

statement_label: executable_statement

Structure of C++ program

 Include section

 Class declaration

 Member function definition

 Main function program

Output Operator:

cout<<

 Syntax:

 cout<<argument;

 Example:

 cout<<“Welcome to C++”;

Program:

#include<iostream.h>

void main()

{

 cout<<“Welcome to C++”;

}

Compiling and Linking:

 Create the source code.

 Save the code with extension .cpp

Concepts of Object Oriented Programming 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
14/14

 Compile the program with

 Alt + F9 (or)

Select Compile option from Compile menu

 Run the program with

 Ctrl + F9 (or)

Select Run option from Run menu

Input Operator:

Cin>>

 Syntax:

 cin<<argument;

 Example:

 cin>>a;

 a is a variable.

Program:

#include<iostream.h>

void main()

{

 float n1,n2,sum,avg;

 cout<<"Enter the two No:";

 cin>>n1>>n2;

 sum=n1+n2;

 avg=sum/2;

 cout<<"Sum:"<<sum;

 cout<<"\nAverage:"<<avg;

}

OBJECT ORIENTED PROGRAMMING WITH C++ 2016

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed University Established Under Section 3 of UGC Act

1956)
Coimbatore – 21

(For the candidates admitted from 2016 onwards)
DEPARTMENT OF COMMERCE (CA)

SUBJECT : OBJECT ORIENTED PROGRAMMING WITH C++
SEMESTER : III

SUBJECT CODE: 16CCU302 CLASS : II B.COM CA

 POSSIBLE QUESTIONS – UNIT I

 PART A (1 Mark)

 (Online Examination)

 PART B (2 Marks)

1. Define Objects

2. What is C++ Statements

3. List out the Basic Concepts of Oops

4. Specify object Oriented Languages

5. List out Applications of Oops

6. List out Applications of OOPs

7. What is Structure of C++ Program

8. Differentiate between POP and OOPs

9. What is Procedure Oriented Programming

10. What is Object Oriented Programming

11. What is C++ statements

12. What is data abstraction

13. Write any four features of OOPS

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 1/2

OBJECT ORIENTED PROGRAMMING WITH C++ 2016

PART C (6 Marks)

1. Describe about Procedure Oriented Programming

2. Explain Object Oriented Programming

3. Write a Program for Structure of C++ Program

4. List out Benefits of Oops

5. Explain in detail about basic concepts of Object

Oriented Programming.

6. Write a program to find average of two numbers

7. Differentiate between POP and OOPs.

8. Enumerate History of C++

9. Write a program to find largest of three given numbers.

10. Write in about object oriented languages

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 2/2

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
1/39

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.
(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMMERCE (CA)

SUBJECT : OBJECT ORIENTED PROGRAMMING WITH C++
SEMESTER : III
SUBJECT CODE: 16CCU302 CLASS : II B.COM CA

UNIT II

Tokens, Expressions and Control Structures – Tokens – Keywords – Identifiers – Basic &

User – Defined Data Types – Operators in C++ - Operator Over Loading – Operator Precedence

– Control Structures – Functions in C++ - The Main Function – Function Prototyping – Call By

Reference – Return By Reference – In Line Functions – Function Over Loading – Friend and

Virtual Functions.

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
2/39

Unit – II

Tokens:

Smallest unit of a Program is called Token.

 Keywords

 Identifiers

 Constants

 Strings

 Operators

 Special Symbols

Keywords

 Keywords are reserved words.

 Has its predefine meaning.

 C++ consist of c keywords and additional keywords of its own

Keyword List:

asm auto bool break

case catch char Class

const const_cast continue Default

delete do double dynamic_cast

else enum explicit Export

extern false float For

friend goto if Inline

int long mutable Namespace

new operator private Protected

public register reinterpret_cast Return

Short signed sizeof static

static_cast struct switch template

This throw true try

typedef typeid typename Union

unsigned using virtual Void

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
3/39

volatile wchar_t while

Data Types:

Integer Type : Integer data type are like whole numbers, they also include

negative numbers but does not support decimal numbers.

Type
Storage

size
Value range

int 2 or 4 bytes
-32,768 to 32,767 or -2,147,483,648 to

2,147,483,647

unsigned int 2 or 4 bytes 0 to 65,535 or 0 to 4,294,967,295

Data Type

User define Built in Derived

structure

union

class

enumeration

Integer

Float

Void

Character

Arrays

Function

Pointer

Boolean

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
4/39

short 2 bytes -32,768 to 32,767

unsigned

short
2 bytes 0 to 65,535

long 4 bytes -2,147,483,648 to 2,147,483,647

unsigned long 4 bytes 0 to 4,294,967,295

Float-point Type : Float data type allows user to store decimal values in a

variable.

Type Storage size Value range Precision

float 4 byte 1.2E-38 to 3.4E+38 6 decimal places

double 8 byte 2.3E-308 to 1.7E+308 15 decimal places

long double 10 byte 3.4E-4932 to 1.1E+4932 19 decimal places

Character Type : Character data type is used to store only one letter, digit,

symbol at a time.

Type Storage size Value range

char 1 byte -128 to 127 or 0 to 255

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
5/39

unsigned char 1 byte 0 to 255

signed char 1 byte -128 to 127

Reference Types

Array : Array is a collection of similar data type. A single variable can hold only

one value at a time, If we want a variable to store more than one value of same

type we use array.

Pointers : A normal variable is used to store value. A pointer variable is used

to store address / reference of another variable.

Variables

Variables are used to store values. variable name is the name of memory

location where value is stored. It must be alphanumeric, only underscore is

allowed in a variable name. It is composed of letters, digits and only

underscore. It must begin with alphabet or underscore. It cannot be begin with

numeric.

Declaration of Variable

Declaration will allocate memory for specified variable with garbage value.

Syntax :

 Data-Type Variable-name;

Examples :

 int a;

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
6/39

 float b;

 char c;

Variable (Identifiers):

 Identifiers are user define name space

 It change its value during the execution of the program

 It refers the names of variables, functions, arrays, classes, etc

Rules:

1. Only alphabetic characters, digits and underscores are permitted.

2. Cannot start with digits.

3. Uppercase and lowercase are distinct

4. Keyword should not be as a variable name.

Example:

A, welcome

Initialization of Variable

Initialization means assigning value to declared variable. Every value will

overwrite the previous value.

Examples :

 a = 10;

 b = 4.5;

 c = 'a';

Character value must be enclosed with single quotes.

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
7/39

Constants:

 It does not change its value during the execution of the program

Example:

5,’a’,”welcome”

Operators:

 Arithmetic operators

 Assignment operators

 Increment/Decrement

 Comparison operators

 Logical operators

 Bitwise operators

Assignment operator is used to copy value from right to left variable.

Operator Name Description Example

C++ Constants

Primary Constant Secondary Constant

Integer Real Character

Decimal
Octal

Hexadecimal

Float
Exponential

Single
String

Array

Pointer

Structure

Union

Enum,etc.

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
8/39

= Equal sign Copy value from right to left.
X = Y, Now both

X and Y have 5

+=
Plus Equal

to

Plus Equal to operator will return

the addition of right operand and

left operand.

X += Y is similar

to X = X + Y, now

X is 7

-=
Minus Equal

to

Minus Equal to operator will return

the subtraction of right operand

from left operand.

X -= Y is similar

to X = X - Y, now

X is 3

*=
Multiply

Equal to

Multiply Equal to operator will

return the product of right operand

and left operand.

X *= Y is similar

to X = X * Y, now

X is 10

/=
Division

Equal to

Division Equal to operator will

divide right operand by left operand

and return the quotient.

X /= Y is similar

to X = X / Y, now

X is 2.5

%=

Modulus or

Mod Equal

to

Modulus Equal to operator will

divide right operand by left operand

and return the mod (Remainder).

X %= Y is similar

to X = X % Y, now

X is 1

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
9/39

Arithmetic operators are used for mathematical operations.

 Operator Name Description Example

+ Plus
Return the addition of left

and right operands.
(X + Y) will return 7

- Minus

Return the difference b/w

right operand from left

operand.

(X - Y) will return 3

* Multiply
Return the product of left

and right operands.
(X * Y) will return 10

/ Division

Return the Quetiont from

left operand by right

operand.

(X / Y) will return

2(both are int, int

doesn't support

decimal)

%
Modulus

or Mod

Return the Modulus (

Remainder) from left

operand by right operand.

(X % Y) will return 1

Relational Operators

Relational operators are used for checking conditions whether the given

condition is true or false. If the condition is true, it will return non-zero value,

if the condition is false, it will return 0.

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
10/39

 Oper

ator
Name Description Example

> Greater then
Check whether the left operand is

greater then right operand or not.

(X > Y) will

return true

< Smaller then
Check whether the left operand is

smaller then right operand or not.

(X < Y) will

return false

>=
Greater then

or Equal to

Check whether the left operand is

greater or equal to right operand or

not.

(X >= Y) will

return true

<=
Smaller then

or Equal to

Check whether the left operand is

smaller or equal to right operand or

not.

(X <= Y) will

return false

== Equal to
Check whether the both operands

are equal or not.

(X == Y) will

return false

!= Not Equal to
Check whether the both operands

are equal or not.

(X != Y) will

return true

Logical Operators

Logical operators are used in situation when we have more then one

condition in a single if statement.

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
11/39

 Operator Name Description Example

&& AND

Return true if all conditions are

true, return false if any of the

condition is false.

if(X > Y && Y < X)

will return true

|| OR

Return false if all conditions are

false, return true if any of the

condition is true.

if(X > Y || X < Y)

will return true

! NOT
Return true if condition if false,

return false if condition is true.

if(!(X>y)) will

return false

Conditional

The conditional operator is also known as ternary operator. It is called ternary

operator because it takes three arguments. First is condition, second and third

is value. The conditional operator check the condition, if condition is true, it

will return second value, if condition is false, it will return third value.

Syntax :

 val = condition ? val1 : val2;

Example :

 void main()

 {

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
12/39

 int X=5,Y=2,lrg;

 lrg = (X>Y) ? X : Y;

 cout << "\nLargest number is : " << lrg;

 }

 Output :

 Largest number is : 5

Binary operator

Binary operators are those operators that works with at least two operands

such as (Arithmetic operators) +, -, *, /, %.

Unary operators are those operators that works with singal operands such as

(Increment or Decrement operators) ++ and --.

Special Operators:

 ::- Scope resolution operator

 >>-Insertion Operator

 <<-Extraction Operator

 ::*- Pointer-to-member decelerator

 ->*- Pointer-to-member operator

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
13/39

 .*- Pointer to member operator

 new-Memory management operator

 delete- Memory release operator

 endl- Line feed operator

 sew- Memory allocation operator

 setw- Field width operator

Scope Resolution Operator:

:: - Used to access values or methods.

Syntax:

 ::variable name;

 :: function name;

Examples:

 ::a;

 ::add();

Program:

 #include<iostream.h>

 int m=10;

 void main()

 {

 int m=20;

 {

 int m=40;

 cout<<"Value of m in inner block:"<<m;

 cout<<"Value of m in outter block:"<<::m;

 }

 cout<<"Value of m in inner block:"<<m;

 cout<<"Value of m in outter block:"<<::m;

 }

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
14/39

Manipulator:

endl:

 used instead of ”\n”.

 Example:

 cout<<“welcome to csc”<<endl;

setw:

 used for neat alignment during display.

 Syntax:

 setw (int value)

 Example:

 cout<<setw(5);

Program:

#include<iostream.h>

#include<iomanip.h>

#include<conio.h>

void main()

{

 int m1=50,m2=500,m3=5000;

 clrscr();

 cout<<setw(5)<<"m1:"<<setw(5)<<m1<<endl;

 cout<<setw(5)<<"m2:"<<setw(5)<<m2<<endl;

 cout<<setw(5)<<"m3:"<<setw(5)<<m3<<endl;

}

Output:

 m1: 50

 m2: 500

 m3: 5000

Type Cast:

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
15/39

 Convert the data type of a variable to some other data type variable

Syntax:

 (type name) expression //c

 type name (expression) //c++

Example:

 float (i);

Decision making statements

if ..else, jump, goto, break, continue- switch case statements

Control Structure:

 Sequence structure

 Selection structure

 Loop structure

Selection Structure:

 if statement

 if…else

 Nested if

 if… else ladder

 switch statement

if Statement:

if statement takes condition in parenthesis and a block of statements within
braces. If condition is true, it will return non-zero value, and statements given
in if block will get execute.

Syntax:

 if(condition)

 {

 True Block;

 }

 Next Statement;

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
16/39

Example:

if(i>10)

 cout<<”i greater than 10”;

if …else Statement

if statement takes condition in parenthesis and a block of statements within
braces. If condition is true, it will return non-zero value, and statements given
in if block will get execute. If condition is false, it will returns zero, and
statements given in else block will get execute.

Syntax:

 if(condition)

 {

 True Block;

 }

 else

 {

 False Block;

 }

 Next Statement;

Example:

if(i>10)

 cout<<”i greater than 10”;

else

 cout<<”i less than 10”;

Nested if Statement:

In nested if-else, one if-else statement contains another if-else statement.

Syntax:

 if(condition 1)

 {

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
17/39

 if(condition 2)

 {

 True block

 }

 else

 {

 False block condition 2;

 }

 }

 else

 {

 False block condition 1;

 }

 Next Statement;

Example:

if(m1>40)

{

 if(m2>40)

 {

 cout<<”pass”;

 }

 else

 {

 cout<<”Fail”;

 }

}

else

 {

 cout<<”Fail”;

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
18/39

 }

if… else ladder:

if-else ladder is used for checking multiple conditions, if the first condition will
not satisfy, compiler will jump to else block and check the next condition,
whether it is true or not and so on.

Syntax:

 if(condition 1)

 {

 True block-1

 }

 else if(condition 2)

 {

 True block -2;

 }

 else

 {

 False block;

 }

 Next Statement;

Example:

if(a>b)

{

 if(a>c)

 {

 cout<<”A is Greatest”;

 }

 else

 {

 cout<<”C is Greatest”;

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
19/39

 }

}

else

if(b>c)

{

 cout<<”B is Greatest”;

}

else

{

 cout<<”C is Greatest”;

}

Switch Case:

Syntax:

 switch(expression)

 {

 case exp1:

 Statements

 case exp2:

 Statements

 ………………

 ………………

 default:

 Statements

 }

Example

i=4;

switch(i)

{

 case 1:

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
20/39

 cout<<”one”;

 case 2:

 cout<<”two”;

 case 3:

 cout<<”three”;

 default:

 cout<<”Wrong Choice”;

}

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
21/39

do-while – while statement, for statement

Loop Structure

Entry control:

Entry control Structure checks the condition First and the Statement is

executed

 while loop

 for loop

Exit control:

 Exit control Structure First the Statement is Executed and then

checks the condition

 do… while

While Loop:

While loop is also called entry control loop because, in while loop, compiler will
1st check the condition, whether it is true or false, if condition is true then
execute the statements.

Syntax:

 while(Condition)

 {

 Statement Block

 }

Example:

 while(i<5)

 {

 cout<<”Welcome”;

 i++;

 }

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
22/39

For Loop:

In for loop has initialization, condition and increment/decrement all together.
Initialization will be done once at the beginning of loop. Then, the condition is
checked by the compiler. If the condition is false, for loop is terminated. But,
if condition is true then, the statements are executed until condition is false.

Syntax:

 for(initialization ; condition checking ; Increment/Decrement)

 {

 Statement Block

 }

Example:

 for(i=1;i<5;i++)

 {

 cout<<”Welcome”;

 }

Do..While

The do-while loop is also called exit control loop because, in do-while loop,
compiler will 1st execute the statements, then check the condition, whether it
is true or false.

Syntax:

 do

 {

 }while(condition);

Example:

 do

 {

 cout<<”Welcome”;

 i++;

 }while(i<5);

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
23/39

Difference b/w while loop and do-while loop

while loop do-while loop

It is entry control loop. It is exit control loop.

In this loop condition is checked
before loop execution.

In this loop condition is checked at the
end of loop.

It will never execute loop if
condition is false.

It will executes loop at least once when the
initial condition is false.

There is no semicolon at the end of
while statement

There is semicolon at the end of while
statement.

Jump Statements in C++

Jump statements are used to interrupt the normal flow of program.

Types of Jump Statements

 Break
 Continue
 GoTo

Break Statement

The break statement is used inside loop or switch statement. When compiler
finds the break statement inside a loop, compiler will abort the loop and
continue to execute statements followed by loop.

Example of break statement

 #include<iostream.h>

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
24/39

 void main()

 {

 int a=1;

 while(a<=10)

 {

 if(a==5)

 break;

 cout << "\nStatement " << a;

 a++;

 }

 cout << "\nEnd of Program.";

 }

 Output :

 Statement 1

 Statement 2

 Statement 3

 Statement 4

 End of Program.

Continue Statement

The continue statement is also used inside loop. When compiler finds the
break statement inside a loop, compiler will skip all the followling statements
in the loop and resume the loop.

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
25/39

Example of continue statement

 #include<iostream.h>

 void main()

 {

 int a=0;

 while(a<10)

 {

 a++;

 if(a==5)

 continue;

 cout << "\nStatement " << a;

 }

 cout << "\nEnd of Program.";

 }

 Output :

 Statement 1

 Statement 2

 Statemnet 3

 Statement 4

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
26/39

 Statement 6

 Statement 7

 Statement 8

 Statement 9

 Statement 10

 End of Program.

Goto Statement

The goto statement is a jump statement which jumps from one point to
another point within a function.

Syntax of goto statement

 goto label;

 - - - - - - - - - -

 - - - - - - - - - -

 label:

 - - - - - - - - - -

 - - - - - - - - - -

In the above syntax, label is an identifier. When, the control of program
reaches to goto statement, the control of the program will jump to the label:
and executes the code after it.

Example of goto statement

 #include<iostream.h>

 void main()

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
27/39

 {

 cout << "\nStatement 1.";

 cout << "\nStatement 2.";

 cout << "\nStatement 3.";

 goto last;

 cout << "\nStatement 4.";

 cout << "\nStatement 5.";

 last:

 cout << "\nEnd of Program.";

 }

 Output :

 Statement 1.

 Statement 2.

 Statement 3.

 End of Program.

Function in C++

A function is a block of codes that performs a specific task and may return
value. The main() function is the first user defined function invoked by the
compiler. While it is possible to write any code within main function, it leads
number of problems. The program may become too large and complex and it is
difficult to test, debugg and maintain the complex code. For that reason, We
use function to place independent code in separate modules called function or

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
28/39

subprogram. In order to make a program using function, we need to perform
the followling three steps.

 Function declaration
 Function definition
 Function call

Function declaration

Like variables, all the functions must be declared. Function declaration
statement includes function name, what function will take and what function
will return.

Syntax :

 return-type function-name(argument list);

return-type : type of value function will return.

function-name : any valid C++ identifier.

argument list : represents the type and number of value function will take,
values are sent by the calling statement.

Example for declaration of function

If we want to return the sum of two integer numbers and function will take
two numbers as argument then the function declaration statement will be:

 int Add(int, int);

Function definition

Function definition includes the actual working or implementation.

Syntax for defining function

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
29/39

 return-type function-name(argument list)

 {

 - - - - - - - - - -

 body of function

 - - - - - - - - - -

 }

The body of function contains the number of statements to perform specific
task.

Example for definition of function

The body of function for calculating sum of two integer numbers.

 int Add(int x,int y)

 {

 int sum;

 sum = x + y;

 return sum;

 }

Function call or Function invoke

To execute function we must call it. A function can be called or invoked by
using function name followed by list of arguments (values) that function
definition will recieve to perform task.

Syntax for calling or invoke function

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
30/39

 var = function-name(val1,val2...n);

var can be any variable that will recieve value returning from function
definition.

Example for calling or invoke function

Considering the above example, function calling statement should be :

 int rs;

 rs = Add(10,20); //calling statement

 cout << "\nThe sum is : " << rs;

Passing argument to a function

Like normal variable, pointer variable can be passed as function argument
and it can return from function.

There are two approaches to passing argument to a function:

 Call by Value
 Call by Reference/Address

Call by Value

In this approach, the values are passed as function argument to the definition
of function.

Example of call by value

 #include<iostream.h>

 void main()

 {

 int A=10,B=20;

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
31/39

 cout << "\nValues before calling";

 cout << "\nA : " << A;

 cout << "\nB : " << B;

 fun(A,B); //Statement 1

 cout << "\nValues after calling";

 cout << "\nA : " << A;

 cout << "\nB : " << B;

 }

 void fun(int X,int Y) //Statement 2

 {

 X=11;

 Y=22;

 }

 Output :

 Values before calling

 A : 10

 B : 20

 Values after calling

 A : 10

 B : 20

Tokens, Expre

Prepared by Dr.S.Hemalatha, Department of Commerce

In the above example, statement 1 is passing the values of A and B to the
calling function fun(). fun() will recieve the value of A and B and put it into X
and Y respectively. X and Y are value type variables and are local to fun(). Any
changes made by value type
and B.

Call by Reference

In this approach, the references/addresses are passed as function argument
to the definition of function.

Example of call by reference

 #include<iostream.h>

 void main()

 {

 int A=10,B=20;

Tokens, Expression and Control Structure 2016

, Department of Commerce (Computer Application), KAHE

above example, statement 1 is passing the values of A and B to the
calling function fun(). fun() will recieve the value of A and B and put it into X
and Y respectively. X and Y are value type variables and are local to fun(). Any
changes made by value type variables X and Y will not effect the values of A

In this approach, the references/addresses are passed as function argument
to the definition of function.

Example of call by reference

#include<iostream.h>

ssion and Control Structure 2016 – 2019 Batch

(Computer Application), KAHE
32/39

above example, statement 1 is passing the values of A and B to the
calling function fun(). fun() will recieve the value of A and B and put it into X
and Y respectively. X and Y are value type variables and are local to fun(). Any

variables X and Y will not effect the values of A

In this approach, the references/addresses are passed as function argument

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
33/39

 cout << "\nValues before calling";

 cout << "\nA : " << A;

 cout << "\nB : " << B;

 fun(&A,&B); //Statement 1

 cout << "\nValues after calling";

 cout << "\nA : " << A;

 cout << "\nB : " << B;

 }

 void fun(int *X,int *Y) //Statement 2

 {

 *X=11;

 *Y=22;

 }

 Output :

 Values before calling

 A : 10

 B : 20

 Values after calling

 A : 11

 B : 22

Tokens, Expre

Prepared by Dr.S.Hemalatha, Department of Commerce

In the above example, statement 1 is passing the reference of A and B to
calling function fun(). fun() must have pointer formal arguments to recieve the
reference of A and B. In statement 2 *X and *Y is recieving the reference A and
B. *X and *Y are reference type variables and are local to fun(). Any changes
made by reference type variables *X and *Y will change the values of A and B
respectively.

Difference between Call by Value and Call by Reference.

Call by Value

The actual arguments can be variable
or constant.

The values of actual argument are
sent to formal argument which are
normal variables.

Any changes made by formal
arguments will not reflect to actual

Tokens, Expression and Control Structure 2016

, Department of Commerce (Computer Application), KAHE

In the above example, statement 1 is passing the reference of A and B to
calling function fun(). fun() must have pointer formal arguments to recieve the
reference of A and B. In statement 2 *X and *Y is recieving the reference A and
B. *X and *Y are reference type variables and are local to fun(). Any changes

nce type variables *X and *Y will change the values of A and B

Difference between Call by Value and Call by Reference.

Call by Reference

The actual arguments can be variable The actual arguments can only be
variable.

The values of actual argument are
sent to formal argument which are

The reference of actual argument are
sent to formal argument which are
pointer variables.

Any changes made by formal
arguments will not reflect to actual

Any changes made by formal
arguments will reflect to actual

ssion and Control Structure 2016 – 2019 Batch

(Computer Application), KAHE
34/39

In the above example, statement 1 is passing the reference of A and B to the
calling function fun(). fun() must have pointer formal arguments to recieve the
reference of A and B. In statement 2 *X and *Y is recieving the reference A and
B. *X and *Y are reference type variables and are local to fun(). Any changes

nce type variables *X and *Y will change the values of A and B

The actual arguments can only be

The reference of actual argument are
sent to formal argument which are

Any changes made by formal
arguments will reflect to actual

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
35/39

arguments. arguments.

Inline functions

One of the advantages of using function is to save memory space by making

common block for the code we need to execute many times. When compiler

invoke / call a function, it takes extra time to execute such as jumping to the

function definition, saving registers, passing value to argument and returning

value to calling function. This extra time can be avoidable for large functions

but for small functions we use inline function to save extra time.

When we make an inline function, compiler will replace all the calling

statements with the function definition at run-time.

 Expand itself code during the execution of the program.

 Keyword: inline

Syntax:

 inline function

 {

 function body

 }

Example of inline function

#include<iostream.h>

#include<conio.h>

inline int add(int a,int b)

{

 return(a+b);

}

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
36/39

void main()

{

 int m1,m2;

 clrscr();

 cout<<"Enter the first number:";

 cin>>m1;

 cout<<"Enter the Second number:";

 cin>>m2;

 cout<<"Addition Result:"<<add(m1,m2)<<endl;

}

Function overloading

More than one function with same name, with different signature in a class or

in a same scope is called function overloading. Signature of function includes:

 Number of arguments

 Type of arguments

 Sequence of arguments

Example of function overloading

 #include<iostream.h>

 #include<conio.h>

 class CalculateArea

 {

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
37/39

 public:

 void Area(int r) //Overloaded Function 1

 {

 cout<<"\n\tArea of Circle is : "<<3.14*r*r;

 }

 void Area(int l,int b) //Overloaded Function 2

 {

 cout<<"\n\tArea of Rectangle is : "<<l*b;

 }

 void Area(float l,int b) //Overloaded Function 3

 {

 cout<<"\n\tArea of Rectangle is : "<<l*b;

 }

 void Area(int l,float b) //Overloaded Function 4

 {

 cout<<"\n\tArea of Rectangle is : "<<l*b;

 }

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
38/39

 };

 void main()

 {

 CalculateArea C;

 C.Area(5); //Statement 1

 C.Area(5,3); //Statement 2

 C.Area(7,2.1f); //Statement 3

 C.Area(4.7f,2); //Statement 4

 }

 Output :

 Area of Circle is : 78.5

 Area of Rectangle is : 15

 Area of Rectangle is : 14.7

Tokens, Expression and Control Structure 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
39/39

 Area of Rectangle is : 29.4

Example Program 2:

#include<iostream.h>

#include<conio.h>

int volume(int);

double volume(double,int);

long volume(long,int,int);

void main()

{

 clrscr();

 cout<<"Function with one argument:"<<volume(10)<<"\n";

 cout<<"Function with two argument:"<<volume(5.6,10)<<endl;

 cout<<"Function with three argument:"<<volume(56l,67,89)<<endl;

}

 int volume(int s)

{

 return(s*s*s);

}

double volume(double r,int h)

{

 return(3.14*r*r*h);

}

long volume(long l,int b,int h)

{

 return(l*b*h);

}

 Classes and Objects 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application) ,
KAHE

1/26

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.
(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMMERCE (CA)

SUBJECT : OBJECT ORIENTED PROGRAMMING WITH C++
SEMESTER : III
SUBJECT CODE: 16CCU302 CLASS : II B.COM CA

UNIT III

Classes and Objects – Introduction – Specifying a Class – Defining Member Function –

Nesting of Member Functions – Private Member Functions – Arrays within a Class-

Static Data Members – Static Member Functions – Array of Objects – Objects as

Function Arguments – Friendly Functions – Pointers to Members. Constructors &

Destructors – Constructors – Copy Constructors – Dynamic Constructors – Construction

Two- Dimensional Arrays – Destructors.

 Classes and Objects 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application) ,
KAHE

2/26

Unit – III

Classes and objects : Specifying a class

 Class is composed of three things: a name, attributes, and

operations.

 Class is a way to bind the data and its associated functions

together

Class specification has 2 parts:

 Class Declaration.

 Class function definitions

Access Specifies:

 The Status of the accessibility of the data members are

determined by the Access Specifies

 There are 3 access specifies

 Public

 Private

 Protected

Public:

 It allows functions and data to be accessible to any part of the

program.

Private:

 It allows functions and data cannot be accessible to any part of the

program except the class where it is declared.

Protected

 It allows functions and data to be accessible to only the derived

classes.

Class Declaration:

Syntax:

 Classes and Objects 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application) ,
KAHE

3/26

 class class_name

 {

 private:

 variable declaration;

 function declaration;

 public:

 variable declaration;

 function declaration;

 }

Example:

 class book

 {

 int pgno;

 public:

 void getpage();

 }

Creation of Objects:

Once the class is created, one or more objects can be created from the

class as objects are instance of the class.

Just as we declare a variable of data type int as:

int x;

Objects are also declared as:

class_name followed_by object_name;

 Classes and Objects 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application) ,
KAHE

4/26

Example:

exforsys e1;

This declares e1 to be an object of class exforsys.

Accessing Class Members:

Creating Object:

 Syntax:

 classname object_name;

 Example:

 book i;

Accessing Methods:

 Syntax:

 object.function_name(argument)

 Example:

 i.getpage();

Defining member functions

Defining a Member

 Definition in 2 places

 Outside the class definition.

 Inside the class definition.

Outside the Class Definition

Syntax:

 return_type class_name :: function_name(argument list)

 {

 - - - - - - - - - -

 body of function

 Classes and Objects 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application) ,
KAHE

5/26

 - - - - - - - - - -

 }

return_type Type of value function will return.

class_name:: A program may contain more than one class and these
classes may have similar member functions. Class_name:: tells the
compiler which class the function belongs to and the scope of the
member function is restricted to the class_name.

function_name Can be any valid C++ identifier.

argument list Represents the type and number of value function will
take, values are sent by the calling statement.

Example of defining member function outside class

 #include<iostream.h>

 #include<conio.h>

 class Employee

 {

 int Id;

 char Name[25];

 int Age;

 long Salary;

 public:

 void GetData();

 void PutData();

 Classes and Objects 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application) ,
KAHE

6/26

 };

 void Employee :: GetData() //Statement 1 : Defining GetData()

 {

 cout<<"\n\tEnter Employee Id : ";

 cin>>Id;

 cout<<"\n\tEnter Employee Name : ";

 cin>>Name;

 cout<<"\n\tEnter Employee Age : ";

 cin>>Age;

 cout<<"\n\tEnter Employee Salary : ";

 cin>>Salary;

 }

 void Employee :: PutData() //Statement 2 : Defining PutData()

 {

 cout<<"\n\nEmployee Id : "<<Id;

 cout<<"\nEmployee Name : "<<Name;

 cout<<"\nEmployee Age : "<<Age;

 cout<<"\nEmployee Salary : "<<Salary;

 }

 void main()

 {

 Classes and Objects 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application) ,
KAHE

7/26

 Employee E; //Statement 3 : Creating Object

 E.GetData(); //Statement 4 : Calling GetData()

 E.PutData(); //Statement 5 : Calling PutData()

 }

 Output :

 Enter Employee Id : 1

 Enter Employee Name : Kumar

 Enter Employee Age : 29

 Enter Employee Salary : 45000

 Employee Id : 1

 Employee Name : Kumar

 Employee Age : 29

 Employee Salary : 45000

Inside the Class Definition:

Syntax:

 return_type function_name(argument list)

 {

 - - - - - - - - - -

 body of function

 - - - - - - - - - -

 }

return_type Type of value function will return.

 Classes and Objects 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application) ,
KAHE

8/26

function_name Can be any valid C++ identifier.

argument list Represents the type and number of value function will
take, values are sent by the calling statement.

Definition of member function inside class is similar to defining normal
function. There is no need to tell compiler about the class the function
belongs to because the definition of member function is already in the
class.

Example of defining member function inside class

 #include<iostream.h>

 #include<conio.h>

 class Employee

 {

 int Id;

 char Name[25];

 int Age;

 long Salary;

 public:

 void GetData() //Statement 1 : Defining GetData()

 {

 cout<<"\n\tEnter Employee Id : ";

 cin>>Id;

 cout<<"\n\tEnter Employee Name : ";

 cin>>Name;

 Classes and Objects 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application) ,
KAHE

9/26

 cout<<"\n\tEnter Employee Age : ";

 cin>>Age;

 cout<<"\n\tEnter Employee Salary : ";

 cin>>Salary;

 }

 void PutData() //Statement 2 : Defining PutData()

 {

 cout<<"\n\nEmployee Id : "<<Id;

 cout<<"\nEmployee Name : "<<Name;

 cout<<"\nEmployee Age : "<<Age;

 cout<<"\nEmployee Salary : "<<Salary;

 }

 };

 void main()

 {

 Employee E; //Statement 3 : Creating Object

 E.GetData(); //Statement 4 : Calling GetData()

 E.PutData(); //Statement 5 : Calling PutData()

 }

 Classes and Objects 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application) ,
KAHE

10/26

 Output :

 Enter Employee Id : 1

 Enter Employee Name : Kumar

 Enter Employee Age : 29

 Enter Employee Salary : 45000

 Employee Id : 1

 Employee Name : Kumar

 Employee Age : 29

 Employee Salary : 45000

Static data members

Static Variables (Static Data members):

 By default it is initialized to zero

 Only one copy of that variable is created for entire class

 It is visible only within the class, but lifetime is the entire program

 static is the keyword used to declare static data members

Syntax:

static datatype variable=value

Example:

 static int i=5;

Program:

#include<iostream.h>

void main()

{

 static int i=3;

 while(i)

 Classes and Objects 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application) ,
KAHE

11/26

 {

 cout<<i<<"\n";

 i--;

 main();

 }

}

Static member functions

Static Member Functions:

 A static function can have access to only other static members

declared in the class

 A static member function can be called using the class name

Syntax:

 classname::functionname

Program:

#include<iostream.h>

class test

{

 int code;

 static int cn;

 public:

 void set()

 {

 code=++cn;

 }

 void showcode()

 {

 cout<<"\nObject number:"<<code<<"\n";

 }

 Classes and Objects 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application) ,
KAHE

12/26

 static void showcount()

 {

 cout<<"\ncount:"<<cn;

 }

};

int test::cn;

void main()

{

 test t1,t2;

 t1.set();

 t2.set();

 test::showcount();

 test t3;

 t3.set();

 test::showcount();

 t1.showcode();

 t2.showcode();

 t3.showcode();

}

Array of objects

 An object of class represents a single record in memory,

 an array is a collection of similar type, therefore an array can be a

collection of class type..

Syntax:

 Class name object[size];

Example:

 Item i[50];

Program:

 Classes and Objects 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application) ,
KAHE

13/26

#include<iostream.h>

class employee

{

 char name[30];

 float age;

 public:

 void get();

 void put();

};

void employee::get()

{

 cout<<"Enter name:";

 cin>>name;

 cout<<"Enter age:";

 cin>>age;

}

void employee::put()

{

 cout<<"Name:"<<name<<"\n";

 cout<<"Age:"<<age<<"\n";

}

void main()

{

 employee e[50];

 int n;

 cout<<"Enter the No of Employees:";

 cin>>n;

 cout<<"Enter the Details:";

 for(int i=0;i<n;i++)

 Classes and Objects 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application) ,
KAHE

14/26

 e[i].get();

 cout<<"\nDetails of"<<n<<"Employees";

 for(i=0;i<n;i++)

 {

 cout<<"\nEmployee"<<i+1<<"\n";

 e[i].put();

 }

}

Friendly functions

Private members are accessed only within the class they are declared.

Friend function is used to access the private and protected members of

different classes. It works as bridge between classes.

 Friend function must be declared with friend keyword.

 Friend function must be declare in all the classes from which we

need to access private or protected members.

 Friend function will be defined outside the class without specifying

the class name.

 Friend function will be invoked like normal function, without any

object.

Syntax:

 friend returntype functionname(Arg list)

Program:

#include<iostream.h>

class second;

class first

{

 Classes and Objects 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application) ,
KAHE

15/26

 int a;

 public:

 void set(int x)

 {

 a=x;

 }

 friend void max(first,second);

};

class second

{

 int b;

 public :

 void set(int y)

 {

 b=y;

 }

 friend void max(first,second);

};

void max(first m,second n)

{

 if(m.a>=n.b)

 cout<<m.a;

 else

 cout<<n.b;

}

void main()

{

 first f;

 f.set(10);

 Classes and Objects 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application) ,
KAHE

16/26

 second s;

 s.set(20);

 max(f,s);

}

Constructors and destructors: Constructors

Constructors:

Constructor is a special function used to initialize class data members

or we can say constructor is used to initialize the object of class.

 Constructor name class name must be same.

 Constructor doesn't return value.

 Constructor is invoked automatically, when the object of class is

created.

Characteristics

 Should be in the public section

 Invoked automatically

 Do not have any return value

 Cannot be inherited

 Can have arguments

 Cannot be virtual

 Cannot refer to their address

 Make implicit calls to the operators new and delete.

Types of Constructor

 Default Constructor
 Parameterize Constructor
 Copy Constructoronstructor

Construct without parameter is called default constructor.

 Classes and Objects 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application) ,
KAHE

17/26

Example of C++ default constructor

 #include<iostream.h>

 #include<string.h>

 class Student

 {

 int Roll;

 char Name[25];

 float Marks;

 public:

 Student() //Default Constructor

 {

 Roll = 1;

 strcpy(Name,"Kumar");

 Marks = 78.42;

 }

 void Display()

 {

 cout<<"\n\tRoll : "<<Roll;

 cout<<"\n\tName : "<<Name;

 cout<<"\n\tMarks : "<<Marks;

 }

 };

 void main()

 {

 Classes and Objects 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application) ,
KAHE

18/26

 Student S; //Creating Object

 S.Display(); //Displaying Student
Details

 }

 Output :

 Roll : 1

 Name : Kumar

 Marks : 78.42

Default Constructor

Construct without parameter is called default constructor.

Example of C++ default constructor

 #include<iostream.h>

 #include<string.h>

 class Student

 {

 int Roll;

 char Name[25];

 float Marks;

 public:

 Classes and Objects 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application) ,
KAHE

19/26

 Student() //Default
Constructor

 {

 Roll = 1;

 strcpy(Name,"Kumar");

 Marks = 78.42;

 }

 void Display()

 {

 cout<<"\n\tRoll : "<<Roll;

 cout<<"\n\tName : "<<Name;

 cout<<"\n\tMarks : "<<Marks;

 }

 };

 void main()

 {

 Student S; //Creating Object

 S.Display(); //Displaying
Student Details

 }

 Classes and Objects 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application) ,
KAHE

20/26

 Output :

 Roll : 1

 Name : Kumar

 Marks : 78.42

Parameterized Constructors

 Parameters are arguments to the Constructor

 This can be done in 2 ways

 By calling the Constructor explicitly

 Class-name obj=constructorname(arg list);

 By calling the Constructor implicitly

 Class-name obj(arg list);

Program:

#include<iostream.h>

class assign

{

 int a,b;

 public:

 assign(int x,int y)

 {

 a=x;

 b=y;

 }

 void show()

 {

 cout<<"\nNumber1:"<<a;

 cout<<"\nNumber2:"<<b;

 }

 Classes and Objects 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application) ,
KAHE

21/26

};

void main()

{

 assign f(34,35);

 f.show();

 assign s=assign(75,76);

 s.show();

}

Copy Constructor

 A reference variable is used as an argument to copy constructor

 Constructor contains the address value of another object or a

variable as its argument.

Program

#include<iostream.h>

class copy

{

 int y;

 public:

 copy()

 {

 cout<<"\nNo Arguments";

 }

 copy(int i)

 {

 y=i;

 }

copy(copy &x)

 {

 Classes and Objects 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application) ,
KAHE

22/26

 y=x.y;

 }

 void display()

 {

 cout<<"\nValues:"<<y;

 }

};

void main()

{

 copy a(111);

 copy b(a);

 copy c=a;

 copy d; d=a;

 cout<<"\nValue of a:";

 a.display();

 cout<<"\nValue of b:";

 b.display();

 cout<<"\nValue of c:";

 c.display();

 cout<<"\nValue of d:";

 d.display();

}

Multiple constructors in a class

 More than one Constructor with in a class is called Multiple

Constructor

 It is also known as Constructor Overloading

Program

 Classes and Objects 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application) ,
KAHE

23/26

#include<iostream.h>

class Method

{

 public:

 Method()

 {

 cout<<"\nNo Arguments";

 }

 Method(int i)

 {

 cout<<"\nInteger Argument:"<<i;

 }

 Method(double i)

 {

 cout<<"\nDouble Argument:"<<i;

 }

 Method(char i)

 {

 cout<<"\nCharacter Argument:"<<i;

 }

};

void main()

{

 Method b;

 Method b1(5);

 Method b2(6.5);

 Method b3('c');

 Classes and Objects 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application) ,
KAHE

24/26

}

Dynamic Constructor

Basically, it's a way of constructing an object based on the run-time type

of some existing object. It basically uses standard virtual

functions/polymorphism.

class base

{

public:

virtual base* create() = 0;

virtual base* clone() = 0;

protected:

base();

base(const base&);

};

virtual der1 : public base

{

public:

base* create() { return new der1; }

base* clone() { return new der1(*this); }

};

virtual der2 : public base

{

public:

base* create() { return new der2; }

base* clone() { return new der2(*this); }

};

int main()

{

base* b = new der1;

 Classes and Objects 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application) ,
KAHE

25/26

base* b1 = b->create();

base* b2 = b->clone();

}

Destructor

Constructor allocates the memory for an object.

Destructor deallocate the memory occupied by an object. Like

constructor, destructor name and class name must be same, preceded

by a tilde(~) sign. Destructor take no argument and have no return

value.

Constructor is invoked automatically when the object created.

Destructor is invoked when the object goes out of scope. In other words,

Destructor is invoked, when compiler comes out form the function

where an object is created.

 Destructor destroys the objects that have been created by a

constructor

 It is also a special member function

 Its also same name as the class name preceded by a tilde

Syntax:

 ~class-name();

 It never takes any arguments and have no return value

 Automatically invoked by compiler at the end of program

 delete is used for free memory

Program:

#include<iostream.h>

int count=0;

class copy

{

 Classes and Objects 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application) ,
KAHE

26/26

 int y;

 public:

 copy()

 {

 count++;

 cout<<"\nNo Objects Created:"<<count;

 }

 ~copy()

 { cout<<"\nNo Objects Deleted:"<<count;

 count--;

 }

};

void main()
{
 copy a,b,c,d;
}

OBJECT ORIENTED PROGRAMMING WITH C++ 2016

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore – 21
(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMMERCE (CA)

SUBJECT : OBJECT ORIENTED PROGRAMMING WITH C++
SEMESTER : III
SUBJECT CODE: 16CCU302 CLASS : II B.COM CA

POSSIBLE QUESTIONS – UNIT III

PART A (1 Mark)

(Online Examinations)

PART B (2 Marks)

1. Define Class.

2. Define Object.

3. How will you Specify a class

4. How will you define member functions

5. What is pointers to Members

6. Define Constructor

7. Define Destructor

8. How many types of Constructor

9. Define Static data members

10. What is Static Member Function

11. What is Nesting of Member Functions

12. What is Jump Students

13. What is Goto Statements

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 1/2

OBJECT ORIENTED PROGRAMMING WITH C++ 2016

PART C (6 Marks)

1. Explain Member functions in a class

2. Explain Static Data members with example.

3. Explain Static Member functions with example

4. Describe Constructor and Destructor

5. Discuss Private Member Functions

6. Write a program to subtract two numbers (member functions

should be define outside the class)

7. Elucidate dynamic destructor with example.

8. Explain member function and nesting of member function

9. What is constructor? Explain the types of constructor with an

suitable example

10. Engrave on friend function with suitable example.

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 2/2

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

1/37

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.
(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMMERCE (CA)

SUBJECT : OBJECT ORIENTED PROGRAMMING WITH C++
SEMESTER : III
SUBJECT CODE: 16CCU302 CLASS : II B.COM CA

UNIT IV

Operator Over Loading -Type Conversion – Introduction – Defining Operator Over

Loading – Over Loading Unary & Binary Operators – Over Loading Binary Operators

using Friends – Manipulation of String Using Operators – Rules for Over Loading

Operators – Types – Conversions – Inheritance – Extending Classes – Defining Derived

Classes – Single, Multi Level Multiple, Hierarchical & Hybrid Inheritance – Virtual Base

Classes – Abstract Classes.

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

2/37

Unit – IV

Operator overloading: Defining operator overloading

 The process of giving special meaning to a method or an operator is

called Operator Overloading

 Overloading is the process of adding an extra or additional

operation to an existing operation

 Overloading consist of same name but differ in their argument list,

Number of argument or both.

 There are two types of overloading

 Function overloading

 Operator overloading

Method Overloading

• Change the meaning of a function

• The name of the function is same but differ in their operation differ

in their arguments list

• Function overloading is done by using various number arguments

to a function

• Function perform different operation based on the requirements

Program:

#include<iostream.h>

class over

{

 public:

 void add(int a,int b)

 {

 cout<<"\nAddition of integer:"<<a+b;

 }

 void add(double a,double b)

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

3/37

 {

 cout<<"\nAddition of double:"<<a+b;

 }

 void add(int a,double b)

 {

 cout<<"\nAddition of integer & double:"<<a+b;

 }

void add(double a,int b)

 {

 cout<<"\nAddition of double and integer:"<<a+b;

 }

 void add(int a)

 {

 cout<<"\nOne Argument:"<<a;

 }

};

void main()

{

 over b;

 b.add(5,6);

 b.add(8.2,7.8);

 b.add(7,8.3);

 b.add(8.3,7);

 b.add(111);

}

Operator Overloading

• Mechanism of giving special meaning to an operator

• It creates a new definition for most c++ operators

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

4/37

• Semantics of an operator is extended

• It does not change the meaning of the operator

Rules for Overloading Operators:

1. Only existing operators can be overloaded. New operators

cannot be created

2. The overloaded operator must have at least one operand that

is of user-defined type

3. Can not be able to change the predefined meaning of the

Operator.

4. An overloaded operator follows the syntax rules of the original

operators. They can not be overridden

5. Some Operators that can not be overloaded.

6. Certain Operators can not be overloaded using the friend

Function.

Operators Cannot be Overloaded

• Membership operators (.)

• Pointer-to-member operator (.*)

• Scope resolution operator (::)

• Size of operator (sizeof)

• Conditional operator (?:)

Operators Cannot be Overloaded Using friend Function

• Assignment operator (=)

• Function call operator (())

• Subscripting operator ([])

• Class member access operator (->)

Defining Operator Overloading

• Done with the help of a special function, operator function, which

describes the task

Syntax:

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

5/37

• Declaration:

 RT operator operatorsymbol(argument list)

• Definition:

 RT classname :: operator(op-arglist)

 {

 function body

 }

Example:

 void operator –()

• Operator function must be either member functions or friend

function

• Difference: a friend function will have only 1 argument for unary

operators and 2 arguments for binary operator

Steps:

• Create a class that defines the data type that is to be used in the

overloading operation

• Declare the operator function operator op() in the public part of the

class

• Define the operator function to implement the required operations

Example

#include<iostream.h>

class Add

{

 int lat,log;

 public:

 Add(){}

 Add(int l,int lt)

 {

 lat=l;

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

6/37

 log=lt;

 }

 void show()

 {

 cout<<lat<<" ";

 cout<<log<<" ";

 }

 Add operator -(Add o);

};

Add Add::operator -(Add o)

{

 Add t;

 t.lat=o.lat+lat;

 t.log=o.log+log;

 return t;

}

void main()

{

 Add a(10,20),b(30,50);

 a.show();

 b.show();

 a=a-b;

 a.show();

}

Overloading unary operators

Overloading Unary Operators:

 The operator has only one Operand.

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

7/37

 Unary operators are unary +, unary –,++,--, this operator changes

the sign of the operand.

Program

#include<iostreams.h>

class space

{

 int x;

 int y;

 int z;

 public:

 void get(int a,int b,int c);

 void display(void);

 void operator -();

};

void space::get(int a,int b,int c)

{

 x=a;

 y=b;

 z=c;

}

void space::display(void)

{

 cout<<x<<"\n";

 cout<<y<<"\n";

 cout<<z<<"\n";

}

void space::operator -()

{

 x=-x;

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

8/37

 y=-y;

 z=-z;

}

void main()

{

 space s;

 s.getdata(10,-20,30);

 cout<<"\nValues before Call Operator Overloading\n";

 s.display();

 -s;

 cout<<"\nValues After Call Operator Overloading\n";

 s.display();

}

Overloading binary operators

 The operator has two Operand.

Program:

#include<iostreams.h>

class Time

{

 int h,m;

 public:

 Time(){}

 Time(int hr,int min)

 {

 h=hr;

 m=min;

 }

 void display(void);

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

9/37

 Time operator+(Time);

};

void Time::display(void)

{

 cout<<h<<"hours and"<<m<<" Min\n";

}

Time Time::operator+(Time t)

{

 Time t1;

 t1.m=m+t.m;

 int bal=t1.m/60;

 t1.m=t1.m%60;

 t1.h=h+t.h+bal;

 return(t1);

}

void main()

{

 Time h1,h2,h3;

 h1=Time(2,50);

 h2=Time(2,50);

 h3=h1+h2;

 cout<<"\nTime t1:";

 h1.display();

 cout<<"\nTime t2:";

 h2.display();

 cout<<"\nTime t3:";

 h3.display();

}

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

10/37

Overloading binary operators using friends

 Non member function of a class can be able to access the private

members of a class through friend function

 Friend Function are created with the keyword friend

 A friend function requires two arguments to be explicitly passed to

it.

Program:

#include <iostream.h>

#include <conio.h>

class Point

{

 int x, y;

 public:

 Point()

 {}

 Point(int px, int py)

 {

 x = px;

 y = py;

 }

 void show()

 {

 cout << x << " ";

 cout << y << "\n";

 }

 friend Point operator+(Point op1, Point op2); // now a friend

 Point operator=(Point op2);

};

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

11/37

// Now, + is overloaded using friend function.

Point operator+(Point op1, Point op2)

{

 Point temp;

 temp.x = op1.x + op2.x;

 temp.y = op1.y + op2.y;

 return temp;

}

// Overload assignment for Point.

Point Point::operator=(Point op2)

{

 x = op2.x;

 y = op2.y;

 return op2; // i.e., return object that generated call

}

int main()

{

 clrscr();

 Point ob1(10, 20), ob2(5, 30);

 ob1 = ob1 + ob2;

 ob1.show();

 return 0;

}

type conversions

 Type Conversion is the process of change the data type of variable.

 When constants and variables of different types are mixed in an

expression, C applies automatic type conversion to the operand as per

certain rules.

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

12/37

 In the Assignment Operation the type of data to the right of an

assignment operator is automatically converted to the type of the variable

on the left.

Example: int m;

 float x=5.89;

 m=x;

The value of m is 5 since the fraction part is truncated.

 The Compiler does not support automatic type conversion for user

defined data types. Since the type conversion should be performed

explicitly.

 Three types of situations arises in the data conversion between

incompatible types:

 Conversion from basic type to class type

 Conversion from class type to basic type

 Conversion from one class type to another class type.

Conversion from basic type to class type

 In this left hand operand of = operator is always a class object.

Example:

 String s1,s2;

 char *name1=”C++ Programming”;

 char *name2=”C Programming”;

 s1=String(name1);

 s2=name2;

String is the class, name1 is char variable which is converted explicitly in

the statement

 s1=String(name1);

name2 is char variable which is converted implicitly by call the

constructor in the statement

 s2=name2;

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

13/37

The constructor used for type conversion takes a single argument whose

type is to be converted. This conversion is done by overloaded = operator.

Conversion from class type to basic type

 In this left hand operand of = operator is always a variable type or

basic type.

 The constructor performs a fine job in conversion from basic to

class type.

 The conversion of class to basic model is done by overloaded

casting operator.

 The general form of an overloaded casting operator function is

 operator typename()

 {

 ………..

 ………..//function statement

 }

Example:

 String :: operator double()

 {

 double d=0;

 d=s[0]+s[1];

 return(d);

 }

String is a class converted to basic type double, where s is a String class

object

 String s1,s2;

 float c1,c2;

 c1=float(s1);

 c2=s2;

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

14/37

c1 is float variable , String is the class which is converted explicitly in the

statement

 c1=float(s1);

c2 is float variable , String is the class which is converted implicitly in

the statement

 c2=s2;

The casting operator function should satisfy the following conditions:

 It must be a class member

 It must not specify a return type

 It must not have any arguments.

Conversion from one class type to another class type.

Example:

 S1= S2 // objects of different types

 S1 and S2 are the object of two different classes class X and class

Y.

 The class Y type is converted into X type.

 Y is known as the source class and X is known as the designation

class.

 This type of conversion is performed using either a contractor or a

conversion function

 Casting function is of the form

 operator typename()

Type Conversion Table

Conversions Required

Conversion takes place in

Source class
Designation

class

Basic class Not applicable Constructor

ClassBasic Casting operator Not applicable

Classclass Casting operator Constructor

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

15/37

Inheritance :- Inheritance

 Sharing the properties of one class by the other.

 Ability of a new class to be created, from an existing class by

extending it, is called inheritance.

 Different kinds of objects often have a certain amount in common

with each other.

 Object-oriented programming allows classes to inherit commonly

used state and behavior from other classes.

 A class which provides the data is called Base class

 A class receives the data is called Derived class

 No changes are made to the base class

Advantage of Inheritance:

 Reusability of code

 Save a lot of time and efforts, retyping the same

 Data and methods of super class are physically available to its

subclasses

Forms of Inheritance

 In C++ there are 5 forms of inheritance.

 Single Inheritance

 Multiple Inheritance

 Multilevel Inheritance

 Hierarchical Inheritance

 Hybrid Inheritance

Defining derived classes

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

16/37

 Derived class can be defined by specifying the relationship with the

base class in addition to its own details.

 : (colon) operator is used for inheritance.

Syntax:

 class derived-class-name : visibility-mode base-class-name

 {

 ……………

 ……………. //derived class member functions

 …………….

 };

 The colon indicates that the derived-class-name is derived from the

base-class-name.

 The visibility-mode is optional, if presents private or public or

protected access specifies can be specified

 By default visibility-mode is private.

 The visibility-mode specifies whether the features of the base class

are privately derived or publicly derived.

Example:

class ABC

{

 …………..

 …………..// base class members

}

class der : private ABC //Privately inherited from class ABC

{

 …………..

 …………..// derived class members

}

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

17/37

class der : public ABC //Publicly inherited from class ABC

{

 …………..

 …………..// derived class members

}

class der : ABC //Privately inherited from class ABC by default

{

 …………..

 …………..// derived class members

}

Single, multilevel, multiple, hierarchical inheritance

 Single inheritance consist of single base class and single derived

class

Syntax:

class derived-class-name : visibility-mode base-class-name

{

 …………..

Base Class

Derived Class

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

18/37

 …………..// derived class members

}

The colon (:), indicates that the class derived-class-name is derived from

the class base-class-name.

Program:

#include<iostream.h>

class Rectangle

{

 private:

 float length ; // This can't be inherited

 public:

 float breadth ; // The data and member functions are inheritable

 void Enter_lb(void)

 {

 cout << "\n Enter the length of the rectangle : ";

 cin >> length ;

 cout << "\n Enter the breadth of the rectangle : ";

 cin >> breadth ;

 }

 float Enter_l(void)

 {

 return length ;

 }

}; // End of the class definition

class Rectangle1 : public Rectangle

{

 private:

 float area ;

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

19/37

 public:

 void Rec_area(void)

 {

 area = Enter_l() * breadth ;

 }

 void Display(void)

 {

 cout << "\n Length = " << Enter_l() ;

 cout << "\n Breadth = " << breadth ;

 cout << "\n Area = " << area ;

 }

};

void main(void)

{

 Rectangle1 r1 ;

 r1.Enter_lb();

 r1.Rec_area();

 r1.Display();

}

Visibility of Inherited Members

Base class

visibility

Derived class visibility

public

derivation

private

derivation

protected

derivation

private Not Inherited Not Inherited Not Inherited

protected protected private protected

public public private protected

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

20/37

Multilevel Inheritance:

 C++ also provides the facility of multilevel inheritance, according to

which the derived class can also be derived by another class, which in

turn can further be inherited by another and so on.

Syntax:

class derived-class-name1 : visibility-mode base-class-name

{

 …………..

 …………..// derived class members

}

class derived-class-name2 : visibility-mode derived-class-name1

{

 …………..

 …………..// derived class members

}

Base Class

Derived Class 1

Derived Class 2

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

21/37

derived-class-name1 is inherited from base-class-name then the derived-

class-name2 is inherited from derived-class-name1.

Program:

#include<iostream.h>

class Base

{

 protected:

 int b;

 public:

 void EnterData()

 {

 cout << "\n Enter the value of b: ";

 cin >> b;

 }

 void DisplayData()

 {

 cout << "\n b = " << b;

 }

};

class Derive1 : public Base

{

 protected:

 int d1;

 public:

 void EnterData()

 {

 Base:: EnterData();

 cout << "\n Enter the value of d1: ";

 cin >> d1;

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

22/37

 }

 void DisplayData()

 {

 Base::DisplayData();

 cout << "\n d1 = " << d1;

 }

};

class Derive2 : public Derive1

{

 private:

 int d2;

 public:

 void EnterData()

 {

 Derive1::EnterData();

 cout << "\n Enter the value of d2: "; cin >> d2;

 }

 void DisplayData()

 {

 Derive1::DisplayData();

 cout << "\n d2 = " << d2;

 }

};

int main()

{

 Derive2 objd2;

 objd2.EnterData();

 objd2.DisplayData();

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

23/37

 return 0;

}

Multiple Inheritance

When a class is inherited from more than one base class, it is known as

multiple inheritance.

Syntax:

class derived-class-name : visibility-mode base-class-name1, visibility-

mode base-class-name2

{

 …………..

 …………..// derived class members

}

derived-class-name is derived from two base classes namely base-class-

name1 and base-class-name1

Program:

#include<iostream.h>

class Circle // First base class

{

 protected:

 float radius ;

 public:

Base Class 1

Derived Class

Base Class 2

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

24/37

 void Enter_r(void)

 {

 cout << "\n\t Enter the radius: "; cin >> radius ;

 }

 void Display_ca(void)

 {

 cout << "\t The area = " << (22/7 * radius*radius) ;

 }

};

class Rectangle // Second base class

{

 protected:

 float length, breadth ;

 public:

 void Enter_lb(void)

 {

 cout << "\t Enter the length : ";

 cin >> length ;

 cout <<"\t Enter the breadth : " ;

 cin >> breadth ;

 }

 void Display_ar(void)

 {

 cout << "\t The area = " << (length * breadth);

 }

};

class Cylinder : public Circle, public Rectangle // Derived class,

inherited

{ // from classes Circle & Rectangle

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

25/37

 public:

 void volume_cy(void)

 {

 cout << "\t The volume of the cylinder is: "<< (22/7*

radius*radius*length) ;

 }

};

void main(void)

{

 Circle c ;

 cout << "\n Getting the radius of the circle\n" ;

 c.Enter_r();

 c.Display_ca();

 Rectangle r ;

 cout << "\n\n Getting the length and breadth of the rectangle\n\n";

 r.Enter_lb();

 r.Display_ar();

 Cylinder cy ;

 cout << "\n\n Getting the height and radius of the cylinder\n";

 cy.Enter_r();

 cy.Enter_lb();

 cy.volume_cy();

}

Hierarchical Inheritance:

 When two or more classes are derived from a single base class,

then Inheritance is called the hierarchical inheritance.

 In this type there exists a hierarchical relation in the inheritance.

Base Class

Derived Class 1 Derived Class 1 Derived Class 1

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

26/37

Syntax:

class derived-class-name1 : visibility-mode base-class-name

{

 …………..

 …………..// derived class members

}

class derived-class-name2 : visibility-mode base-class-name

{

 …………..

 …………..// derived class members

}

derived-class-name1, derived-class-name2 are two derived class derived

from the class base-class-name.

Example:

#include<iostream.h>

const int len = 20 ;

class student

{

 private:

 char F_name[len] , L_name[len] ;

 int age,roll_no ;

 public:

 void Enter_data(void)

 {

 cout << "\n\t Enter the first name: " ; cin >> F_name ;

 cout << "\t Enter the second name: "; cin >> L_name ;

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

27/37

 cout << "\t Enter the age: " ; cin >> age ;

 cout << "\t Enter the roll_no: " ; cin >> roll_no ;

 }

 void Display_data(void)

 {

 cout << "\n\t First Name = " << F_name ;

 cout << "\n\t Last Name = " << L_name ;

 cout << "\n\t Age = " << age ;

 cout << "\n\t Roll Number = " << roll_no ;

 }

};

class arts : public student

{

 private:

 char asub1[len] ;

 char asub2[len] ;

 char asub3[len] ;

 public:

 void Enter_data(void)

 {

 student :: Enter_data();

 cout << "\t Enter the subject1 of the arts student: ";

 cin >> asub1 ;

 cout << "\t Enter the subject2 of the arts student: ";

 cin >> asub2 ;

 cout << "\t Enter the subject3 of the arts student: ";

 cin >> asub3 ;

 }

 void Display_data(void)

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

28/37

 {

 student :: Display_data();

 cout << "\n\t Subject1 of the arts student = " << asub1 ;

 cout << "\n\t Subject2 of the arts student = " << asub2 ;

 cout << "\n\t Subject3 of the arts student = " << asub3 ;

 }

};

class science : public student

{

 private:

 char csub1[len], csub2[len], csub3[len] ;

 public:

 void Enter_data(void)

 {

 student :: Enter_data();

 cout << "\t Enter the subject1 of the science student: ";

 cin >> csub1;

 cout << "\t Enter the subject2 of the science student: ";

 cin >> csub2 ;

 cout << "\t Enter the subject3 of the science student: ";

 cin >> csub3 ;

 }

 void Display_data(void)

 {

 student :: Display_data();

 cout << "\n\t Subject1 of the science student = " << csub1 ;

 cout << "\n\t Subject2 of the science student = " << csub2 ;

 cout << "\n\t Subject3 of the science student = " << csub3 ;

 }

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

29/37

};

void main(void)

{

 arts a ;

 cout << "\n Entering details of the arts student\n" ;

 a.Enter_data();

 cout << "\n Displaying the details of the arts student\n" ;

 a.Display_data();

 science s ;

 cout << "\n\n Entering details of the science student\n" ;

 s.Enter_data();

 cout << "\n Displaying the details of the science student\n" ;

 s.Display_data();

}

Hybrid inheritance

 Combination of multiple and multilevel inheritance is called hybrid

inheritance.

Syntax:

class derived-class-name1 : visibility-mode base-class-name

{

 …………..

 …………..// derived class members

}

class derived-class-name2 : visibility-mode base-class-name

{

 …………..

 …………..// derived class members

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

30/37

}

class derived-class-name3 : visibility-mode derived-class-name1,

visibility-mode derived-class-name2

{

 …………..

 …………..// derived class members

}

Example:

#include<iostream.h>

#include<conio.h>

class stu

{

 protected:

 int rno;

 public:

 void get_no(int a)

 {

 rno=a;

 }

 void put_no(void)

 {

 cout<<"Roll no"<<rno<<"\n";

 }

};

class test:public stu

{

 protected:

 float part1,part2;

 public:

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

31/37

 void get_mark(float x,float y)

 {

 part1=x;

 part2=y;

 }

 void put_marks()

 {

 cout<<"Marks

obtained:"<<"part1="<<part1<<"\n"<<"part2="<<part2<<"\n";

 }

};

class sports

{

 protected:

 float score;

 public:

 void getscore(float s)

 {

 score=s;

 }

 void putscore(void)

 {

 cout<<"sports:"<<score<<"\n";

 }

};

class result: public test, public sports

{

 float total;

 public:

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

32/37

 void display(void);

};

void result::display(void)

{

 total=part1+part2+score;

 put_no();

 put_marks();

 putscore();

 cout<<"Total Score="<<total<<"\n";

}

int main()

{

 clrscr();

 result stu;

 stu.get_no(111);

 stu.get_mark(27.5,33.0);

 stu.getscore(10.0);

 stu.display();

 return 0;

}

Virtual base classes

Parent 1

Child

Parent 2

Grand Parents

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

33/37

 In some situations which requires the use of both multiple and

multilevel inheritance

 Consider a situation where all three kinds if inheritance, namely

multiple, multilevel and hierarchical inheritance are involved.

 In the above figure ‘Child’ has two base classes ‘Parent1’ and

‘Parent2’ which themselves have common base class ‘Grand Parents’.

 The ‘Child’ inherits the traits of ‘Grand Parent’ via two separate

paths.

 It can also inherit directly as shown by broken line.

 The ‘Grand Parents’ is sometimes referred as indirect base class.

 In the above case there exist a problem all the public and protected

members of ‘Grand Parents’ are inherited into ‘Child’ twice, first via

‘Parent 1’ and again via ‘Parent 2’. This introduces ambiguity and should

be avoided.

 The duplication of inherited members due to these multiple paths

can be avoided by making the common base class as virtual base class

while declaring the direct or intermediate base class.

Syntax:

class base-class-name

{

 …………..

 …………..// base class members Grand Parents

}

 class derived-class-name1 : virtual visibility-mode base-class-name

{

 …………..

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

34/37

 …………..// derived class members Parent1

}

class derived-class-name2 : visibility-mode virtual base-class-name

{

 …………..

 …………..// derived class members Parent2

}

class derived-class-name3 : visibility-mode derived-class-name1,

visibility-mode derived-class-name2

{

 …………..

 …………..// derived class members Child

}

 When a class is made ‘virtual’ base class, c++ takes necessary care

to see that only one copy of that class is inherited, regardless of how

many inheritance paths exist between the virtual base class and a

derived class.

Program:

#include<iostream.h>

#include<conio.h>

class stu

{

 protected:

 int rno;

 public:

 void get_no(int a)

 {

 rno=a;

 }

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

35/37

 void put_no(void)

 {

 cout<<"Roll no"<<rno<<"\n";

 }

};

class test:virtual public stu//Virtually inherited

{

 protected:

 float part1,part2;

 public:

 void get_mark(float x,float y)

 {

 part1=x;

 part2=y;

 }

 void put_marks()

 {

 cout<<"Marks

obtained:\npart1="<<part1<<"\n"<<"part2="<<part2<<"\n";

 }

};

class sports: public virtual stu

{

 protected:

 float score;

 public:

 void getscore(float s)

 {

 score=s;

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

36/37

 }

 void putscore(void)

 {

 cout<<"sports:"<<score<<"\n";

 }

};

class result: public test, public sports

{

 float total;

 public:

 void display(void);

};

void result::display(void)

{

 total=part1+part2+score;

 put_no();

 put_marks();

 putscore();

 cout<<"Total Score="<<total<<"\n";

}

int main()

{

 clrscr();

 result stu;

 stu.get_no(123);

 stu.get_mark(27.5,33.0);

 stu.getscore(6.0);

 stu.display();

 return 0;

Operator Overloading and Inheritance 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE

37/37

}

Abstract classes

 abstract keyword is used to create abstract class.

 An abstract class is one that is not used to create object

 An abstract class is designed only to act as a base class.

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 1/53

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.
(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMMERCE (CA)

SUBJECT : OBJECT ORIENTED PROGRAMMING WITH C++
SEMESTER : III
SUBJECT CODE: 16CCU302 CLASS : II B.COM CA

UNIT V

Pointers, Virtual Functions & Polymorphism – Pointers to Object - Pointers to

Derived Classes – Virtual Functions .Working with Files – Classes for File Stream

Operations – Opening and Closing a File – File Pointers & their Manipulations -

Sequential I/O Operations.

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 2/53

Unit – V

Pointers: Pointers to objects

 Object pointers are useful in creating objects at run time.

 Pointer objects are useful to access the public members of an

object.

Syntax:

 classname *ptr-variable;

Example:

#include<iostream.h>

class item

{

 int code;

 float price;

 public:

 void getdata(int a, float b)

 {

 code=a;

 price=b;

 }

 void show()

 {

 cout<<"Code:"<<code;

 cout<<"\nPrice:"<<price;

 }

};

void main()

{

 item *p=new item[3];

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 3/53

 item *d=p;

 int x,i;

 float y;

 for(i=0;i<3;i++)

 {

 cout<<"Input Code and Price for Item"<<i+1;

 cin>>x>>y;

 p->getdata(x,y);

 p++;

 }

 for(i=0;i<3;i++)

 {

 cout<<"Item"<<i+1<<endl;

 d->show();

 d++;

 }

}

this pointer

 this is used to represent current object.

 this is a keyword.

 this is an object that invokes a member function.

 This unique pointer is automatically passed to a member function

when it is called.

 The pointer this acts as an implicit argument to all the member

functions.

Syntax:

 this - > variable or function name;

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 4/53

Example:

 this->a;

 return this;

Program:

#include<iostream.h>

class person

{

 char name[20];

 float age;

 public:

 person(char *s, float a)

 {

 strcpy(name,s);

 age=a;

 }

 person &person :: greater(person &x)

 {

 if(x.age>=age)

 return x;

 else

 return *this;

 }

 void display()

 {

 cout<<"Name : "<<name;

 cout<<"\nAge : "<<age;

 }

};

void main()

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 5/53

{

 person p1("Raja",42.78),p2("Ram",35.8),p3("Arun",45.3);

 person p=p1.greater(p3);

 cout<<"Elder Person is :\n ";

 p.display();

 p=p1.greater(p2);

 cout<<"Elder Person is :\n ";

 p.display();

}

Pointers to derived classes

 Pointers are used not only to base class but also to derived class.

 Pointers to objects of a base class are type-compatible with

pointers to objects of derived class.

 A single pointer variable can be made to point to object belonging

to different classes.

Example:

B *ptr;

B b;

D d;

ptr=&b;

Program:

#include<iostream.h>

class BC

{

 public :

 int b;

 void show()

 {

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 6/53

 cout<<"b = "<<b<<endl;

 }

};

class DC: public BC

{

 public:

 int d;

 void show()

 {

 cout<<"b = "<<b<<endl;

 cout<<"d = "<<d<<endl;

 }

};

void main()

{

 BC *ptr;

 BC base;

 cout<<"Base Class Pointer Call"<<endl;

 ptr=&base;

 ptr->b=100;

 ptr->show();

 cout<<"Base Class Pointer Call using Derived Class"<<endl;

 DC dc;

 ptr=&dc;

 ptr->b=200;

 ptr->show();

 cout<<"Derived Class Pointer Call"<<endl;

 DC *dptr;

 dptr=&dc;

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 7/53

 dptr->d=100;

 dptr->show();

 cout<<"Using (DC*)bptr)\n";

 ((DC *)ptr)->d=200;

 ((DC *)ptr)->show();

}

Virtual functions

 The appropriate member function could be selected while the

program is running. This is known as runtime Polymorphism

 Runtime Polymorphism is achieving through virtual function.

 Virtual function is created using the keyword virtual.

 When the function made virtual, C++ determines which function to

use at run time based on the type of the object pointed to by the base

pointer, rather than the type of the pointer.

 By making the base class pointer to point to different objects, can

execute different versions of the virtual function.

Syntax:

 virtual RT function-name(arg list)

 {

 …….

 …….

 }

Example:

 virtual void show()

 {

 ……..

 ……..

 }

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 8/53

Program:

#include<iostream.h>

class Base

{

 public :

 void display()

 {

 cout<<"\nDisplay Base Class";

 }

 virtual void show()

 {

 cout<<"Base Class Show";

 }

};

class Derived: public Base

{

 public :

 void display()

 {

 cout<<"\nDisplay Derived Class";

 }

 virtual void show()

 {

 cout<<"Derived Class Show";

 }

};

void main()

{

 Base *ptr;

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 9/53

 Base b;

 Derived d;

 cout<<"\nPointer point to Base Class";

 ptr=&b;

 ptr->display();

 ptr->show();

 cout<<"\nPointer point to Derived Class";

 ptr=&d;

 ptr->display();

 ptr->show();

}

Rules:

1. The virtual function must be members of some class.

2. They can not be static members.

3. They are accessed by using object pointers.

4. A virtual function can be a friend of another class.

5. A virtual function in a base class must be defined, even through it

may not be used.

6. The prototype of the base class version of a virtual function and all

the derived class versions must be identical. If two functions with

the same name have different prototypes, C++ considers them as

overloaded function.

7. Can have virtual constructors not have virtual destructors.

8. While a base class pointer can point to any type of derived object,

the reverse is not true.

9. When a base class pointer points to a derived class, incrementing

or decrementing it will not make it to point to the next object of the

derived class

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 10/53

10. If a virtual function is defined in the base class, it need not

be necessarily redefined in the derived class.

Pure Virtual Function:

 A pure virtual function is a function declared in a base class that

has no definition relative to the base class.

 In this case the compiler requires the derived class to either define

the function or redeclare it as pure virtual function.

Syntax:

 virtual RT function-name()=0;

Example:

 virtual void show()=0;

Managing Console I/O Operations:

 C++ provides rich set of I/O functions and operations to manage

console I/O operations.

 C++ uses the concept stream and stream classes to implement its

I/O operations with the console and disk files.

Managing console I/O operations :- C++ streams

C++ Streams:

 The I/O system in C++ is designed to work with a wide variety of

devices including terminals, disks, and tape drives.

 The I/O stream supplies an interface to the programmer that

independent of the actual device being accessed. This interface is known

as stream.

 A stream is a sequence of bytes.

 It acts either as a source from which the input data can be

obtained or as a designation to which data can be sent.

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 11/53

 The source stream that provides data to the program is called the

input stream and the designation stream that receives output from the

program is called the output stream.

 The data in the input stream can come from the keyboard or any

other storage devices.

 The data in the output stream can go to the screen or any other

storage devices.

 A stream is an interface between the program and the I/O devices.

 C++ contains pre-defined streams that are automatically opened

when a program begins its execution.

 cin and cout also belongs to such streams.

 cin represents the input stream connected to the standard input

device.

 cout represents the output stream connected to the standard

output device.

C++ stream classes

 The C++ I/O system contains a hierarchy of classes that are used

to define various streams to deal with console and disk files. These

classes are called stream classes.

Input Device

Output Device

Program

Input Stream

Output Stream

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 12/53

 The header file iostream should be included in all the programs

that communicate with console unit.



 ios is the base class for istream and ostream.

 istream and ostream are the base class of iosteam.

 ios is declared as virtual so only one copy of its members are

inherited by the iostream

 ios provides the basic support for all I/O operations.

 The class istream provides the facilities for formatted and

unformatted Input.

 The class ostream provides the facilities for formatted output.

Unformatted I/O operations

Overloaded operators >> and <<

istream_withassign iostream_withassign ostream_withassign

iostream

ios

streambuf ostream istream

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 13/53

 The objects cin and cout for the input and output of data of

various types.

 This is done by overloading the operator >> and <<.

 The operator >> is overloaded in the istream class and <<

overloaded in the ostream.

Example:

 cin>>a;

 cout<<a;

put() and get() Functions:

 The classes istream and ostream defines two member functions

get() and put() to handle the single character input/output operations.

 There are two type of get() function

 get(char *) – assign the input to a variable

 get(void) – returns the input character.

Example:

 cin.get(c); //read and assign the value for c

 c=cin.get(); // returns the read character to c

 put() is a member of ostream class, can be used to output a line of

text, character by character.

Syntax:

 cin.put(char *);

Example:

 cout.put(‘m’);

Program:

#include<iostream.h>

void main()

{

 char c;

 int ct=0;

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 14/53

 cout<<"Input Text:\n";

 cin.get(c);

 cout.put(c);

 while(c!='\n')

 {

 cout.put(c);

 c=cin.get();

 ct++;

 }

 cout<<"Number of Characters Entered : "<<ct;

}

getline() and write() Function:

 getline() and write() is used to read the text line by line.

 The getline() function reads a whole line of text that ends with a

newline character.

Syntax:

 cin.getline(line,size)

 line- variable name

 The reading is terminated as soon as either the newline character

‘\n’ is encountered or size-1 characters are read.

Example:

 char name[20];

 cin.getline(name,20);

Program:

#include<iostream.h>

void main()

{

 char name[25];

 cout<<"\nEnter the name:\n";

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 15/53

 cin.getline(name,20);

 cout<<"\nName : "<<name;

}

 The write() function display an entire line

Syntax:

 cout.write(line,size)

 line- variable name

 The writing is terminated as soon as either the newline character

‘\n’ is encountered or size-1 characters are written.

Example:

 char name[20]=”welcome”;

 cout.write(name,20);

Program:

#include<iostream.h>

#include<string.h>

void main()

{

 char name[25];

 int i;

 cout<<"\nEnter the name:\n";

 cin.getline(name,20);

 int l1=strlen(name);

 for(i=1;i<l1;i++)

 {

 cout.write(name,i);

 cout<<endl;

 }

 for(i=l1;i>0;i--)

 {

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 16/53

 cout.write(name,i);

 cout<<endl;

 }

}

Formatted console I/O operations

 C++ support a number of features that could be used for

formatting the output

 It includes

 ios class function and flags.

 Manipulators.

 User defined output functions.

ios Class Function and Flags:

 The ios class contain a large number of member functions that

would help us to format the output in a number of ways.

The members are

Function Task

width()
To specify the required fields size for displaying an

output value

precision()
To specify the number of digits to be displayed after

the decimal point of a float values.

fill()
To specify a character that is used to fill the unused

portion of a field

setf()
To specify format flags that can control the form of

output display.

unsetf() To clear the flags specified

width():

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 17/53

 To specify the required fields size for displaying an output value

Syntax:

 cout.width(size)

Example:

cout.width(5);

Program:

#include<iostream.h>

void main()

{

 int item[4]={7,12,80,89};

 int cost[4]={75,100,125,90};

 cout.width(5);

 cout<<"Items";

 cout.width(8);

 cout<<"Cost";

 cout.width(20);

 cout<<"Total Values\n";

 int sum=0;

 for(int i=0;i<4;i++)

 {

 cout.width(5);

 cout<<item[i];

 cout.width(8);

 cout<<cost[i];

 cout.width(15);

 cout<<cost[i]*item[i]<<endl;

 sum=sum+cost[i]*item[i];

 }

 cout<<"\nGrand Total=";

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 18/53

 cout.width(2);

 cout<<sum<<"\n";

}

Output:

Items Cost Total Values

 7 75 525

 12 100 1200

 80 125 10000

 89 90 8010

Grand Total=19735

precision():

 To specify the number of digits to be displayed after the decimal

point of a float values.

Syntax:

 cout.precision(size)

Example:

cout.precision(2);

Program:

#include<iostream.h>

#include<math.h>

void main()

{

 cout.precision(3);

 cout.width(7);

 cout<<"Values";

 cout.width(15);

 cout<<"Squrt values\n";

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 19/53

 for(int i=1;i<5;i++)

 {

 cout.width(5); cout<<i; cout.width(13);

 cout<<sqrt(i)<<endl;

 }

}

Output:

Values Squrt values

 1 1

 2 1.414

 3 1.732

 4 2

fill():

 To specify a character that is used to fill the unused portion of a

field

Syntax:

 cout.fill(character)

Example:

cout.fill(‘*’);

Program:

#include<iostream.h>

void main()

{

 int a=5679; cout.width(10);

 cout.fill('*'); cout<<"Values"; cout<<a<<"\n";

}

Output:

****Values5679

setf():

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 20/53

 To specify format flags that can control the form of output display.

Syntax:

cout.setf(arg1,arg2);

 arg1-formatting flags defined in the class ios.

 arg2-formatting flags defined in the class ios. It is also known as

bit fields

Flags and Bit Fields

Format required Flag (arg1) Bit-field(arg2)

Left-justified O/P ios::left ios::adjustfield

Right- justified O/P ios::right ios::adjustfield

Padding after sign or

base Indicator(+##20)
ios::internal ios::adjustfield

Scientific notation ios::scientific ios::floatfield

Fixed point notation ios::fixed ios::floatfield

Decimal base ios::dec ios::basefield

Octal base ios::oct ios::basefield

Hexadecimal base ios::hex ios::basefield

Flags Without Bit Fields

Flag Meaning

ios::showbase Use base indicator on output

ios::showpos Print + before positive numbers

ios::showpoint
Show trailing decimal point and

zeroes

ios::uppercase
Use uppercase letters for hex

output

ios::skipus Skip white space on input

ios::unitbuf Flush all streams after insertion

ios::stdio Flush stdout and stderr after

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 21/53

insertion

Example:

cout.setf(ios::left. ios::adjustfield);

Program:

#include<iostream.h>

#include<math.h>

void main()

{

 cout.fill('*');

 cout.setf(ios::left,ios::adjustfield);

 cout.width(10); cout<<"Values";

 cout.setf(ios::right,ios::adjustfield);

 cout.width(15);

 cout<<"Sqrt Of Value \n";

 cout.fill('.'); cout.precision(4);

 cout.setf(ios::showpoint); cout.setf(ios::showpos);

 cout.setf(ios::fixed,ios::floatfield);

 for(int n=1;n<10;n++)

 {

 cout.setf(ios::internal,ios::adjustfield);

 cout.width(5); cout<<n;

 cout.setf(ios::right,ios::adjustfield);

 cout.width(20);

 cout<<sqrt(n)<<endl;

 }

 cout.setf(ios::scientific,ios::floatfield);

 cout<<"sqrt(100)= "<<sqrt(100)<<"\n";

}

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 22/53

Output:

Values****Sqrt Of Value

+...1.............+1.0000

+...2.............+1.4142

+...3.............+1.7321

+...4.............+2.0000

+...5.............+2.2361

+...6.............+2.4495

+...7.............+2.6458

+...8.............+2.8284

+...9.............+3.0000

sqrt(100)= +1.0000e+01

Managing output with manipulators

 The header file iomanip provides a set of functions called

manipulators which can be used to manipulate the output formats.

 Provide the same features as that of the ios member functions and

flags.

 The various manipulators are

Manipulator Meaning Equivalent

setw(int w) Set the field width to w width()

setprecision(int d)
Set the floating point precision

to d
precision()

setfill(char c) Set the fill character to c fill()

setiosflags(long f) Set the format flag f setf()

resetiosflags(long f) Clear the flag specified by f unsetf()

endl
Insert new line and flush

stream
“\n”

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 23/53

Program:

#include<iostream.h>

#include<iomanip.h>

void main()

{

 cout.setf(ios::showpoint);

 cout<<setw(5)<<"n"<<setw(15)<<"Inverse of n"<<setw(15)<<"Sum of

terms"<<endl<<endl;

 double term, sum;

 for(int n=1;n<10;n++)

 {

 term=1.0/float(n);

 sum=sum+term;

cout<<setw(5)<<n<<setw(14)<<setprecision(2)<<setiosflags(ios::scientific)<

<term<<setw(13)<<resetiosflags(ios::scientific)<<sum<<endl;

 }

}

Output:

n Inverse of n Sum of terms

 1 1.00e+00 1.00

 2 5.00e-01 1.50

 3 3.33e-01 1.83

 4 2.50e-01 2.08

 5 2.00e-01 2.28

 6 1.67e-01 2.45

 7 1.43e-01 2.59

 8 1.25e-01 2.72

 9 1.11e-01 2.83

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 24/53

Designing Our Own Manipulators:

 Own manipulators are designed for certain special purposes.

 The general form is

ostream &manipulator-name(ostream &output)

{

 ………..

 ………..(code)

}

Example:

ostream &unit(ostream &output)

{

 output<<” inches”;

 return output;

}

Program:

#include<iostream.h>

#include<iomanip.h>

ostream &unit(ostream &output)

{

 output<<" inches";

 return output;

}

void main()

{

 cout<<"Height : 56 "<<unit;

}

Output:Height :

56 inches

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 25/53

Files: Classes for file stream operations

Working With Files:

 The data is stored in secondary devices using the concept of File.

 A File is a collection of related data stored in a particular area on

the disk.

 Programs typically involves either or both of the following kinds of

data communication:

 Data transfer between the console unit and the program.

 Data transfer between the program and the disk

Classes for File Stream Operations:

 The C++ I/O system contains a set of classes that define the file

handling methods.

 File handling class includes ifstream, ofstream, and fstream. These

classes are derived from the corresponding iostream class.

 These are the class designed to manage the disk files

 All the classes are declared in fstream so all the program should

include this header file

Output Device

Program

Output Stream

Disk File

Input Device

Input Stream

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 26/53

File Operations:

 Open file

 Read and Write Operations

 Closing a file

Opening and closing a file

 Use a disk file requires

 Suitable name for the file.

 Data type and structure.

 Purpose

 Opening method

 Opening Files Using Constructor:

 A constructor is used to initialize an object while it is being

created.

ifstream fstream ofstream

iostream

ios

streambuf ostream istream

filebuf

fstream base
iostream

file

fstream
file

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 27/53

 A file name is used to initialize the file stream object.

Steps for Creating Object:

 Create a file stream object to manage the stream using appropriate

class. The class ofstream is used to create the output stream and the

class ifstream to create the input stream

 Initialize the file object with the desired filename.

Example:

ofstream outfile(“result”);

 This create outfile as ofstream object that manages the

output stream. This statement also opens the file result and attaches to

the output stream outfile.

ifstream infile(“data”)

 This create infile as ifstream object that manages the input

stream. This statement also opens the file data and attaches to the input

stream infile.

Program:

#include<iostream.h>

#include<fstream.h>

void main()

{

 ofstream outf("Item");

 char name[30];

 float cost;

 cout<<"Enter the Item Name: ";

 cin>>name;

 outf<<name<<"\n";

 cout<<"Enter the Item Cost: ";

 cin>>cost;

 outf<<cost<<"\n";

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 28/53

 outf.close();

 ifstream inf("Item");

 inf>>name;

 inf>>cost;

 cout<<"\n Item Name:"<<name<<"\n";

 cout<<"Item cost:"<<cost<<"\n";

 inf.close();

}

Opening a Files Using open():

 The function open() can be used to open multiple files that use

the same stream object.

Syntax:

 File-stream-class stream-object;

 stream-object.open(“file name”);

Example:

 ofstream outfile;

 outfile.open(“data”);

 ………………..

 ………………..

 outfile.close();

Program:

#include<iostream.h>

#include<fstream.h>

void main()

{

 ofstream outf;

 char name[30];

 int i;

 outf.open("prog");

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 29/53

 cout<<"Enter the 3 Programming Language:\n ";

 for(i=0;i<3;i++)

 {

 cin>>name;

 outf<<name<<"\n";

 }

 outf.close();

 outf.open("soft");

 cout<<"Enter the 3 softwares:\n ";

 for(i=0;i<3;i++)

 {

 cin>>name;

 outf<<name<<"\n";

 }

 outf.close();

 ifstream inf;

 inf.open("prog");

 cout<<"Programming Language:\n";

 while(inf)

 {

 inf.getline(name,50);

 cout<<name<<"\n";

 }

 inf.close();

 inf.open("soft");

 cout<<"Software:\n";

 while(inf)

 {

 inf.getline(name,50);

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 30/53

 cout<<name<<"\n";

 }

 inf.close();

}

Detecting End of File:

 eof() function is used to detect end of File.

 It is the member function of ios class.

 It returns a non-zero value if the end-of-file condition is

encountered and a zero otherwise.

Example:

if(fileobj.eof() !=0)

{ exit(0);}

File Modes:

 istream and ostream constructors and function open() to create

new files as well as to open the existing files.

 open() method takes two arguments one for file name and other for

mode.

Syntax:

 Stream-object.open(“file-name”,mode);

 mode specifies the purpose for which the file is opened.

 The default mode values are:

 ios::in for ifstream functions meaning open for reading only.

 ios::out for ofstream functions meaning open for writing only.

File Mode Parameters:

Parameter Meaning

ios::app Append to end of file

ios::ate Go to end of the file on opening

ios::binary Binary file

ios::in Open file for reading only

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 31/53

ios::nocreate Open fails if the file does not exist

ios::noreplace Opens fails if the file already exist

ios::out Open file for writing only

ios::trunc Delete the contents of the file if it exists.

 Opening a file in ios::out mode also open it in the ios::trunc mode

by default.

 ios::app and ios::ate takes to the end of the file when it is opened

 The difference between ios::app and ios::ate is ios::app allows us to

add data to the end of the file but ios::app mode permits to add

data or to modify data anywhere in the file.

 ios::app can be used only with the file capable of output.

 Creating a stream using ifstream implies input and creating a

stream using ofstream implies output. So in this cases it is not

necessary to provide the mode parameters.

 The fstream class does not provide a mode by default and therefore

it is necessary to provide the mode explicitly when using an object

of fstream class.

 The mode can combine two or more parameters using the bitwise

OR operator

fout.open(“data”,ios:app | ios::nocreate)

File Pointers and Their Manipulation

All I/O streams objects have, at least, one internal stream pointer:

ifstream, like istream, has a pointer known as the get pointer that points

to the element to be read in the next input operation.

ofstream, like ostream, has a pointer known as the put pointer that

points to the location where the next element has to be written.

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 32/53

Finally, fstream, inherits both, the get and the put pointers, from

iostream (which is itself derived from both istream and ostream).

File Manipulators

seekg() moves get pointer(input) to a specified location

seekp() moves put pointer (output) to a specified location

tellg() gives the current position of the get pointer

tellp() gives the current position of the put pointer

The other prototype for these functions is:

seekg(offset, refposition);

seekp(offset, refposition);

The parameter offset represents the number of bytes the file pointer is to

be moved from the location specified by the parameter refposition.

The refposition takes one of the following three constants defined in the

ios class.

ios::beg- start of the file

ios::cur- current position of the pointer

ios::end- end of the file

example: file.seekg(-10, ios::cur);

Sequential input and output operations

 The file stream support a number of member functions for

performing the input and output operations on files.

put() and get() function:

 The function put() writes a single character to the associated

stream.

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 33/53

 The function get() reads a single character to the associated

stream.

Syntax:

 File-object.get(character)

 File-object.put(character)

Program:

#include<iostream.h>

#include<fstream.h>

#include<string.h>

void main()

{

 fstream file;

 char name[30];

 int i;

 cout<<"Enter Name: ";

 cin>>name;

 int l=strlen(name);

 file.open("text",ios::in | ios::out);

 for(i=0;i<l;i++)

 {

 file.put(name[i]);

 }

 file.seekg(0);

 char c;

 while(file)

 {

 file.get(c);

 cout<<c;

 }

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 34/53

 file.close();

}

write() and read() function:

 The function write() and read() handles the data in binary

form. This means that the values stored in the disk file in the same

format in which they stored in the internal memory.

 An int takes two bytes to store its value in the binary form,

irrespective of its size.

 The binary format is more accurate for storing the numbers

in the exact internal representation.

 The binary format is much faster to saving the data to.

Syntax:

 inFile-object.read((char *) &v, sizeof(v))

 outFile-object.write((char *) &v, sizeof(v))

 The first argument is the address of variable v.

 The second argument is the length of the variable in bytes.

 The address of the variable must be cast to type char *.

Program:

#include<iostream.h>

#include<fstream.h>

#include<iomanip.h>

void main()

{

 float height[5]={176,182,167.89,177.9,160.24};

 ofstream ofile;

 int i;

 ofile.open("data");

 ofile.write((char *) &height, sizeof(height));

 ofile.close();

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 35/53

 ifstream infile;

 infile.open("data");

 infile.read((char *) &height, sizeof(height));

 for(i=0;i<5;i++)

 {

 cout.setf(ios::showpoint);

 cout<<setw(10)<<setprecision(2)<<height[i]<<endl;

 }

 infile.close();

}

Reading and Writing a Class Object:

 C++ supports features for writing to and reading from the disk files

objects directly.

 The binary input and output functions read() and write() are

designed to do exactly this job.

 These functions handle the entire structure of an object as a single

unit, using the computer’s internal representation of data.

 For instance, the function write() copies a class object from the

memory byte by byte with no conversion.

 Only data members are written to the disk file and the member

functions are not.

 The length of the object is obtained by sizeof operator.

Program:

#include<iostream.h>

#include<fstream.h>

#include<iomanip.h>

class Inventory

{

 char name[20];

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 36/53

 int code;

 float cost;

 public:

 void readdata();

 void show();

};

void Inventory::readdata()

{

 cout<<"Enter Name: ";

 cin>>name;

 cout<<"Enter Code: ";

 cin>>code;

 cout<<"Enter Cost: ";

 cin>>cost;

}

void Inventory::show()

{

 cout<<setiosflags(ios::left)<<setw(10)<<name

 <<setiosflags(ios::right)<<setw(10)<<code

 <<setprecision(2)<<setw(10)<<cost<<endl;

}

void main()

{

 Inventory item[3];

 fstream file;

 file.open("stock.dat",ios::in |ios::out);

 cout<<"Enter Details of Items\n";

 for(int i=0;i<3;i++)

 {

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 37/53

 item[i].readdata();

 file.write((char *) &item[i], sizeof(item[i]));

 }

 file.seekg(0);

 cout<<"\n\nOutput\n\n";

 for(i=0;i<3;i++)

 {

 file.read((char *) &item[i], sizeof(item[i]));

 item[i].show();

 }

 file.close();

}

updating a file random access

 Updating is a routine take in the maintenance of any data file.

 Updating include the following task.

 Displaying the contents of a file.

 Modifying an existing item.

 Adding a new item.

 Deleting an existing item.

Program:

#include<iostream.h>

#include<fstream.h>

#include<iomanip.h>

class Inventory

{

 char name[20];

 int code;

 float cost;

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 38/53

 public:

 void readdata();

 void show();

};

void Inventory::readdata()

{

 cout<<"Enter Name: ";

 cin>>name;

 cout<<"Enter Code: ";

 cin>>code;

 cout<<"Enter Cost: ";

 cin>>cost;

}

void Inventory::show()

{

 cout<<setiosflags(ios::left)<<setw(10)<<name

 <<setiosflags(ios::right)<<setw(10)<<code

 <<setprecision(2)<<setw(10)<<cost<<endl;

}

void main()

{

 Inventory item;

 fstream file;

 file.open("stock.dat",ios::ate| ios::in |ios::out |ios::binary);

 file.seekg(0,ios::beg);

 cout<<"\nCurrent Contant of File\n";

 while(file.read((char *) &item, sizeof(item)))

 {

 item.show();

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 39/53

 }

 file.clear();

 cout<<"\nAdd An Item\n";

 item.readdata();

 char ch;

 cin.get(ch);

 file.write((char *) &item, sizeof(item));

 file.seekg(0);

 cout<<"\nContant of File After Appended\n";

 while(file.read((char *) &item, sizeof(item)))

 {

 item.show();

 }

 int ls=file.tellg();

 int n=ls/sizeof(item);

 cout<<"\nNumber of Objects="<<n;

 cout<<"\nTotal bytes in the file="<<ls;

 cout<<"Modify An Item";

 int no;

 cout<<"\nEnter the Object Number to Update : ";

 cin>>no;

 cin.get(ch);

 int loc=(no-1)*sizeof(item);

 if(file.eof())

 file.clear();

 file.seekp(loc);

 cout<<"\nEnter New values of object:\n";

 item.readdata();

 cin.get(ch);

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 40/53

 file.write((char *) &item, sizeof(item))<<flush;

 file.seekg(0);

 cout<<"\nContant of File After Modified\n";

 while(file.read((char *) &item, sizeof(item)))

 {

 item.show();

 }

 file.close();

}

Command-line Arguments:

 C++ support a feature of supply of arguments to the main()

function.

 The command-line arguments are achieved by the arguments of

the main() function.

Syntax:

main(int argc, char *argv[])

 argc known as argument counter, represents the number of

arguments in the command line.

 argv known as argument vector, is an array of char type

pointers that pointers that points to the command line arguments.

 The size of this array will be equal to the value of argc.

 Arguments are supplied at the time of invoking the program.

Example:

 C:\>program-file-name first-file second-file

 Program-file-name is the name of the file containing the program to

be executed.

 first-file and second-file are the file names passed to the program

as command-line arguments.

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 41/53

 The first argument is always the file name and contains the

program to be executed.

 The value of argc would be 3 and the argv would be an array of 3

pointers to strings

 argv[0] program-file-name

 argv[1] first-file-name //used for reading purpose

 argv[2] second-file-name //used for writing purpose

Templates and Exceptions:- Templates

Templates:

 Templates is one of the features added to C++ recently.

 It is a new concept which enables us to define generic classes and

functions and thus provides support for generic programming.

 Generic programming is an approach where generic types are used

as parameters in algorithms so that they work for a variety of suitable

data types and data structure.

 A template can be used to create a family of classes or functions.

 For example, a class template for an array class would enable us to

create arrays of various data types such as int array and float array.

 Similarly, define a template for a function, say mul(), that would

help us create various versions of mul() for multiplying int, float and

double type values.

 A template can be considered as a kind of macro.

 When an object of a specific type is defined for actual use, the

template definition for that class is substitute with required data type.

Since a template defined with a parameter that would be replaced by a

specified data type at the time of actual use of the class or function, the

templates are sometimes called parameterized classes or functions.

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 42/53

Class templates

Class Templates:

 A simple process to create a generic class using a template with

anonymous type.

 template is the keyword used to create Template

 The class template definition is very similar to an ordinary class

definition expect the prefix template<class T> and the use of type T.

 This prefix tells the compiler that is going to declare a template

and use T as a type name in the declaration.

Syntax:

 template <class T>

 class class-name

 {

 //……

 //class member specification

 //with anonymous type T

 //wherever appropriate

 //……..

 };

Example:

int size=3;

template<class T>

class vector

{

 T* v;

 int size;

 public:

 vector()

 {

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 43/53

 v=new T[size];

 for(int i=0;i<3;i++)

 v[i]=0;

 }

 vector(T* a)

 {

 for(int i=0;i<size;i++)

 v[i]=a[i];

 }

 T operator *(vector &y)

 {

 T sum=0;

 for(int i=0;i<size;i++)

 sum+=this->v[i]*y.v[i];

 return sum;

 }

};

Class Templates with Multiple Parameters:

 More than one generic data type in a class template.

 It is declared as a comma separated list within the template

specification .

Syntax:

 template <class T1, class T2,…,class Tn>

 class class-name

 {

 ……

 ……

 ……//body of the class

 };

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 44/53

Program:

#include<iostream.h>

template<class T1, class T2>

class Test

{

 T1 a;

 T2 b;

 public:

 Test(T1 x, T2 y)

 {

 a=x;

 b=y;

 }

 void show()

 {

 cout<<"\na : "<<a<<"\nb : "<<b;

 }

};

void main()

{

 Test <float, int> t1(1.23,123);

 Test <int, char> t2(100,'M');

 t1.show();

 t2.show();

}

Function templates

 Defining function Templates that could be used to create a family

of functions with different argument types.

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 45/53

Syntax:

 template <class T>

 return-type function-name(argument of type T)

 {

 //……

 //body of function

 //with type T

 //wherever appropriate

 //……..

 }

 The function template syntax is similar to that of the class

template expect that defining functions instead of classes.

 Use template parameter T as and when necessary in the function

body and its argument list.

Program:

#include<iostream.h>

template<class T>

void swap(T &x, T &y)

{

 T temp=x;

 x=y;

 y=temp;

}

void fun(int m,int n,float a,float b)

{

 cout<<"\nm and n before swap: "<<m<<" "<<n;

 swap(m,n);

 cout<<"\nm and n after swap: "<<m<<" "<<n;

 cout<<"\na and b before swap: "<<a<<" "<<b;

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 46/53

 swap(a,b);

 cout<<"\na and b after swap: "<<a<<" "<<b;

}

void main()

{

 fun(100,200,11.53,33.44);

}

Function Templates with Multiple Parameters:

 Use more than one generic data type in the template statement

using a comma-separated list.

Syntax:

 template <class T1, class T2,…,class Tn>

 return-type function-name(arguments of types T1,T2,….)

 {

 ……

 ……

 ……//body of the function

 }

Program:

Overloading of Template Functions:

 A template function may be overloaded either by template

functions or ordinary functions of its name.

 The overloading resolution is accomplished as follows:

 Call an ordinary function that has an exact match.

 Call a template function that could be created with an exact

match.

 Try normal overloading resolution to ordinary functions and call

the one that matches.

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 47/53

 An error is generated if no match is found.

 No automatic conversions are applied to arguments on the

template functions.

Program:

#include<iostream.h>

template<class T>

void display(T x)

{

 cout<<"\nTemplate method : "<<x;

}

void display(int x)

{

 cout<<"\nExplicit method : "<<x;

}

void main()

{

 display(11.53);

 display(44);

 display("welcome");

}

Member function templates

 All the member functions were defined as inline is not necessary.

 Define members outside that class is also possible.

 The member function of the template classes are parameterized by

the type arguments and functions must be defined by the function

templates.

Syntax:

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 48/53

 template <class T>

 return-type class-name<T>:: function-name(argument list)

 {

 ……

 ……

 ……//body of the function

 }

Example:

template<class T>

class vector

{

 T* v;

 int size=3;

 public:

 vector(int m);

 vector(T* a);

 T operator*(vector &y);

};

template<class T>

vector<T>::vector(int m)

{

 v=new T[size];

 for(int i=0;i<size;i++)

 v[i]=0;

}

template<class T>

vector<T>::vector(T* a)

{

 for(int i=0;i<size;i++)

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 49/53

 v[i]=a[i];

}

template<class T>

vector<T>::operator *(vector &y)

{

 T sum=0;

 for(int i=0;i<size;i++)

 sum+=this->v[i]*y.v[i];

 return sum;

}

Exception handling

Exceptions are run-time anomalies, such as division by zero, that require

immediate handling when encountered by your program. The C++

language provides built-in support for raising and handling exceptions.

With C++ exception handling, your program can communicate

unexpected events to a higher execution context that is better able to

recover from such abnormal events. These exceptions are handled by

code that is outside the normal flow of control

The C++ language provides built-in support for handling anomalous

situations, known as exceptions, which may occur during the execution

of your program. The try, throw, and catch statements implement

exception handling. With C++ exception handling, your program can

communicate unexpected events to a higher execution context that is

better able to recover from such abnormal events. These exceptions are

handled by code that is outside the normal flow of control. The Microsoft

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 50/53

C++ compiler implements the C++ exception handling model based on

the ANSI C++ standard.

The following syntax shows a try block and its handlers:

try {

 // code that could throw an exception

}

[catch (exception-declaration) {

 // code that executes when exception-declaration is thrown

 // in the try block

}

[catch (exception-declaration) {

 // code that handles another exception type

}] . . .]

// The following syntax shows a throw expression:

throw [expression]

C++ also provides a way to explicitly specify whether a function can

throw exceptions. You can use exception specifications in function

declarations to indicate that a function can throw an exception. For

example, an exception specification throw(...) tells the compiler that a

function can throw an exception, but doesn't specify the type, as in this

example:

void MyFunc() throw(...) {

 throw 1;

}

Sample Programs in c++

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 51/53

Prime Number

#include<iostream.h>

#include<conio.h>

int main()

{

clrscr();

int st_no,end_no,div,no_div=0;

cout<<"Enter the starting no ";

cin>>st_no ;

cout<<"Enter the enging no ";

cin>>end_no ;

 while(st_no<=end_no)

 { div=st_no;

 no_div=0;

 while(div>=1)

 {

 if(st_no%div==0)

 {

 no_div= no_div+ 1 ;

 }

 div--;

 }

if(no_div<=2)

{

cout<<st_no<< " IS PRIME"<<endl<<endl;

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 52/53

}

st_no++;

}

return 0;

}

String Program

#include <iostream>

#include <string>

#include <fstream>

#include <conio.h>

using namespace std;

int main()

{

ifstream file;

string s, city, bigstring, substring;

int count = 0;

file.open("c:\\cities.txt");

cout << "Enter all or part of a city name: ";

 getline(cin,city);

 if (bigstring.find(substring) != -1)

 while (getline(file,s))

{

 cout << s << endl;

 count++

 }

 cout << "There were " << count << " matches in the file" << endl;

getch();

 return 0;

}

Pointers and File Concepts 2016 – 2019 Batch

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application),
KAHE 53/53

Palindrome

#include <iostream>

#include <deque>

#include <string>

#include <cctype>

using namespace std;

int main()

{

 string input;

 deque<string> stackOne;

 deque<string> stackTwo;

 cout << "Enter a text . Do not include spaces or punctuation.\n";

 getline(cin, input);

 stackOne.push_front(input);

 while(!stackOne.empty())

 {

 input = stackOne.front();//retrieve the user entered input

 stackTwo.push_front(input); // put input into stack two at

the front

 }

 if(stackOne == stackTwo)

 {

 cout << "It is a palindrome." << endl;

 }

 else

 cout << "It is not a palindrome." << endl;

 return 0;

}

OBJECT ORIENTED PROGRAMMING WITH C++ 2016

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore – 21
(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMMERCE (CA)

SUBJECT : OBJECT ORIENTED PROGRAMMING WITH C++
SEMESTER : III
SUBJECT CODE: 16CCU302 CLASS : II B.COM CA

POSSIBLE QUESTIONS – UNIT V

PART A (1 Mark)

(Online Examinations)

PART B (2 Marks)

1. Define Pointer to object

2. Define to Derived classes

3. What is Virtual Functions

4. How pointer to derived Classes used in a program

5. Define File

6. List out File Stream Operation’

7. How will you Open and Close a file

8. What is File Pointer

9. What are Sequential I/O operations

10. How files are manipulated.

11. What are streams?

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE

1/2

OBJECT ORIENTED PROGRAMMING WITH C++ 2016

PART C (6 Marks)

1. Describe on file operations.

2. Explain Virtual Functions with example.

3. Describe about Pointers to Object

4. Describe about Pointers to Derived Classes.

5. Explain file stream Operations.

6. Explain file pointers and their manipulators.

7. List out and explain Sequential I/O operations.

8. Write a program using file operation (to open and close a file).

9. Describe file pointers with example.

10. Differentiate between pointers to object and pointers to derived class.

Prepared by Dr.S.Hemalatha, Department of Commerce (Computer Application), KAHE
2/2

	1.pdf (p.1-3)
	2.pdf (p.4-11)
	3.pdf (p.12-25)
	4.pdf (p.26-27)
	5.pdf (p.28-66)
	6.pdf (p.67-92)
	7.pdf (p.93-94)
	8.pdf (p.95-131)
	9.pdf (p.132-184)
	11.pdf (p.185-186)

