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Course Objectives
This course enables the students to learn
e To develop the working knowledge on different numerical techniques.
e To solve algebraic and transcendental equations.
e Appropriate numerical methods to solve differential equations.

Course Outcomes (COs)
On successful completion of this course, students will be able to
1. Identify the concept of numerical differentiation and integration.
2. Provide information on methods of iteration.
3. Solve ordinary differential equations by using euler and modified euler method.
4. Study in detail the concept of boundary value problems.

5. Attain mastery in the numerical solution of partial differential equations.

UNIT I

SOLUTIONS OF NON LINEAR EQUATIONS

Newton’s method-Convergence of Newton’s method- Bairstow’s method for quadratic factors.
Numerical Differentiation and Integration: Derivatives from difference tables — Higher order
derivatives — divided difference. Trapezoidal rule- Romberg integration — Simpson’s rules.

UNIT 11

SOLUTIONS OF SYSTEM OF EQUATIONS

The Elimination method: Gauss Elimination and Gauss Jordan Methods — LU decomposition
method. Methods of Iteration: Gauss Jacobi and Gauss Seidal iteration-Relaxation method.

UNIT I

SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

One step method: Euler and Modified Euler methods—Rungekutta methods. Multistep methods:
Adams Moulton method — Milne’s method
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UNIT 1V

BOUNDARY VALUE PROBLEMS AND CHARACTERISTIC VALUE PROBLEMS

The shooting method: The linear shooting method — The shooting method for non-linear systems.
Characteristic value problems —Eigen values of a matrix by Iteration-The power method.

UNIT V

NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

Classification of Partial Differential Equation of the second order — Elliptic Equations. Parabolic
equations: Explicit method — The Crank Nicolson difference method. Hyperbolic equations —
solving wave equation by Explicit Formula.

SUGGESTED READINGS

1. Gerald, C. F., and Wheatley. P. O., (2009). Applied Numerical Analysis, Seventh edition,
Dorling Kindersley (India) Pvt. Ltd. New Delhi.

2. Jain. M. K., Iyengar. S. R. K. and R. K. Jain., (2012). Numerical Methods for Scientific
and Engineering Computation, New Age International Publishers, New Delhi .

3. Burden R. L., and Douglas Faires.J,( 2014). Numerical Analysis, Seventh edition, P. W.
S. Kent Publishing Company, Boston.

4. Sastry S.S., (2009). Introductory methods of Numerical Analysis, Fourth edition, Prentice
Hall of India, New Delhi.
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LECTURE PLAN
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STAFF NAME: Dr.M.M.SHANMUGAPRIYA

SUBJECT NAME: NUMERICAL ANALYSIS SUB.CODE:19MMP103

SEMESTER: I CLASS : IM.Sc (MATHEMATICS)
S.No Lecture Topics to be Covered Support
Duration Material/Page Nos
Period
UNIT -1

1. 1 Introduction and basics of nonlinear equations S1: Ch 1: Pg: 32-33

2. 1 Newton‘s method- Introduction and Problems S3: Ch 2: Pg: 67-69

3. 1 Convergence of Newton‘s method S3: Ch 2: Pg: 69-72

4. 1 Bairstow’s method for quadratic factors S2: Ch 2: Pg: 90-93

5. | Derivative from difference table and higher order S4: Ch 3: Pg: 63-72

derivatives
6. 1 Divided differences-Problems S1: Ch 3: Pg: 157-160
7. . . , S4: Ch 5: Pg: 197-
1 Trapezoidal rule and Simpson’s rule -Problems 202.205-208
8. , . S4: Ch 5: Pg: 202-
1 Romberg’s Integration 204,208-209
9. 1 Recapitulation and discussion of possible questions
Total No of Hours Planned For Unit I =09
UNIT - 11
| | Solutions of system of Equations: Introduction and | S4: Ch 6: Pg: 255-260
Gauss Elimination method-Procedure & problems

2. 1 Gauss Jordan method: Procedure & Problems S4: Ch 6: Pg: 260-264
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LU decomposition method: Procedure & Problems

S4: Ch 6: Pg: 265-269

Continuation of problems on LU decomposition
method

S2: Ch 3: Pg: 122-127

Gauss Jacobi method: Procedure & Problems

S2: Ch 3: Pg: 146-150

Gauss Seidal method : Procedure & Problems

S2: Ch 3: Pg: 150-152

Relaxation method: Procedure & Problems

S3: Ch 7: Pg: 462-466

Continuation of problems on Relaxation method

S1:Ch 2:Pg:169-174

Recapitulation and discussion of possible questions

Total No of Hours Planned For Unit I1 =09

UNIT 111

Solution of ODE- Introduction S4: Ch 7: Pg: 295-297
Euler method -Derivation and Problems S4: Ch 7: Pg: 300-303
Modified Euler method- Derivation and Problems | S4: Ch 7: Pg: 303-304
Runge -Kutta method- Derivation and Problems S4: Ch 7: Pg: 304-308
Continuation of problems on Runge- Kutta method | S2: Ch 6: Pg: 447-456
Multistep methods: Adams Moulton method - S4: Ch 7: Pg: 309-311
Problems

Continuation of problems on Adams Moulton S1: Ch 6: Pg: 351-353
method

Milne’s method - Problems S4: Ch 7: Pg: 311-314

Recapitulation and discussion of possible questions

Total No of Hours Planned For Unit III =09

UNIT-1IV

Boundary value problems

S4: Ch 7: Pg: 318-323

Problems on linear shooting method

S3: Ch 11: Pg: 672-
676
S4: Ch 7: Pg: 318-323

Problems on shooting method for nonlinear
systems

S3: Ch 11: Pg: 678-
683

Continuation of problems on shooting method for

S2: Ch 7: Pg: 567-572
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nonlinear systems

S1: Ch 6: Pg: 381-

5. 1 Characteristics value problems 183
6. 1 Problems on eigen values of a matrix by iteration S1: Ch 6: Pg: 384-385
7 | Continuation of problems on eigen values of a S4: Ch 6: Pg: 279-282
' matrix by iteration
8. 1 The power method-Procedure and problems S3: Ch 9: Pg: 576-583
9. 1 Recapitulation and discussion of possible questions
Total No of Hours Planned For Unit IV =09
UNIT -V
1. 1 Classification of PDE of the second order S4: ChS: Pg: 333-335
2. 1 Problems on Elliptic equation S4: Ch8: Pg: 338-345
3. 1 Problems on Parabolic equation- Explicit method S4: Ch8: Pg: 349-351
4 | P.roblems on parabolic equation- Crank Nicolson S4: Chs: Pg: 351-352
difference method
5 | Ciontinuation of problems on Crank- Nicolson S4: Chs: Pg: 353-355
difference method
6. 1 Hyperbolic equations S1: Ch8: Pg: 499-506
7. 1 Continuation of problems on Hyperbolic equations | S4: Ch8: Pg: 358-362
2. | Problems on solving wave equation by explicit S1: Ch8: Pg: 507-509
formula
9. 1 Recapitulation and discussion of possible questions
10. 1 Discussion on previous ESE question papers.
11. 1 Discussion on previous ESE question papers.
12. 1 Discussion on previous ESE question papers.

Total No of Hours Planned For Unit V=12

Total No of Hours Planned =48
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SUGGESTED READINGS

S1: Gerald, C. F., and Wheatley. P. O., (2009). Applied Numerical Analysis, sixth edition,
Dorling Kindersley (India) Pvt. Ltd. New Delhi.

S2: Jain. M. K., Iyengar. S. R. K. and R. K. Jain., (2012). Numerical Methods for Scientific and
Engineering Computation, New Age International Publishers, New Delhi .

S3: Burden R. L., and Douglas Faires.J,( 2014). Numerical Analysis, Seventh edition, P. W. S.
Kent Publishing Company, Boston.

S4: Sastry S.S., (2009). Introductory methods of Numerical Analysis, Fourth edition, Prentice
Hall of India, New Delhi.
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSE NAME: NUMERICAL ANALYSIS
COURSE CODE: 19MMP103 UNIT: 1 BATCH-2019-2021
UNIT-I
SYLLABUS

Solutions of Non Linear Equations: Newton’s method-Convergence of Newton’s method-
Bairstow’s method for quadratic factors. Numerical Differentiation and Integration: Derivatives from
difference tables — Higher order derivatives — divided difference. Trapezoidal rule- Romberg
integration — Simpson’s rules.

SOLUTIONS OF NON LINEAR EQUATIONS
1.1 Introduction

In the field of Science and Engineering, the solution of equations of the form
f(x) = 0 occurs in many applications. If f(x) is a polynomial of degree two or three or
four, exact formulae are available. But if f(x) is a transcendental function like a+be*+c,
sinx +d, log x etc., the solution is not exact and we do not have formulae to get the
solutions. When the co-efficients are numerical values, we can adopt various numerical
approximate methods to solve such algebric and transcendental equations. We will see
below some methods of solving such numerical equations. Several methods are available

to find the derivative of a function f(x) or to evaluate the definite integral f; flx)dx,a,

b are real finite constants, in the closed form. However, when f(x) is a complicated
function or when it is given in a tabular form, we use numerical methods. In this chapter
we discuss numerical methods for approximating the derivative f(x), x > 1, of a given

function f(x) and for the evaluation of the integral f; f(x) dx where a, b may be finite or

infinite. This unit focuses on the various methods of solving transcendental equations, the
derivatives of a function and the evaluation of the integrals.

1.2 Transcendental And Polynomial Equations

A problem of great importance in applied mathematics and engineering is that of
determining the roots of an equation of the form

fx=0 . (1.1)

The function f(x) may be given explicitly, for example

J (X)) =p(x)

A polynomial of degree n in x or f (x) may be known only implicitly as a transcendental
function.
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Definition : A number & is a solution of f (x) =0 if f (&) =0. Such a solution § is a root
or a zero of f(x)=0.

Geometrically, a root of the equation (1.1) is the value of x at which the graph y= 1 (x)
intersects the x-axis.

Direct methods

These methods give the exact values of the roots in a finite number of steps.
Further, the methods give all the root of the same time. For example, a direct method
gives the root of a linear or first degree equation

ax+a =0,a,#0 ....... (1.2) as x=-a,/a,
Similarly, the root of the quadratic equation

ayx’ +ax+a, =0,a,#0 ........ (1.3) are given by

2
—a, /(a; —4aya,)

2a,

Iterative methods

These methods are based on the idea of successive approximations, i.e., starting
with one or more initial approximations to the root, we obtain a sequence of
approximations or iterates {x, }, which in the limit converges to the root. The methods

give only one root at a time. For example, to solve the quadratic equation (1.3)
we may choose any one of the following iteration methods:
2
a, +a,x
(a).x,, =——2—"% k=012,...
a,

(b). X, =——2 k=02,
aoxk + al

©). x., =274 % 1012, (1.4)

Ao Xy

The convergence of the sequence {x,} to the number &, the root of the equation
(1.3) depends on the rearrangement (1.4) and the choice of the starting approximation x,, .
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Definition: A sequence of iterates { x, } is said to converges to the root &, if
lim |x, —&/=0 or limx, =¢&.

If x,,x,,...x,_,, are m approximations to the root, then a multipoint iteration method is
defined as

xK+1 = ¢( xk’xk—lr"'xkfm.;.l ) ........... (15)

The function is called the multipoint iteration function.

For m =1, we get the one point iteration method

Xy =0(xg) cerreeeenn(1.6)

Then, given one or more initial approximations to the root, we require a suitable iteration
function for a given function f (x), such that the sequence of iterates obtained from (1.5)

or (1.6) converges to the root &. In practice, except in rare cases, it is not possible to find
& which satisfies the given equation exactly. We, therefore,

attempt to find an approximate root & such that either ‘ f(ED)

<&
)

|xK+1—xK|<g ........ 1.7)

Where x, and x,,, are two consecutive iterates and ¢ is the prescribed error tolerance.

Initial Approximate

Initial approximations to the root are often known from the physical
considerations of the problem. Otherwise, graphical methods are generally used to obtain
initial approximations to the root. Since the value of x, at which the graph of y = /' (x)
intersects the x-axis, gives the root of f(x) =0, any value in the neighborhood of this
point may be taken as an initial approximations to the root (see Fig. 1.1 a, b).if the
equation f (x) =0 can be conveniently written in the form, then the point of intersection
of the graphs of gives the roots of f (x) =0 and therefore any value in the neighborhood
of this point can be taken as an initial approximations to the root (see Fig. 1.1 ¢). Another
commonly used method to obtain the initial approximations to the root is based upon the
Intermediate value Theorem, which states:
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If f(x) 1s a continuous function on some in y 1 [a, b] and f (a) f (b) <0, then the
equation f(x) =0 has at least one real root or a 1 number of the real roots in the
interval (a, b)

—.5 Y=¢™ cos x
2 1 1 0 0. 1.0 )
Netvton's Matha ; -
5 0.5 0 0.5 1.0
W termine .. nd a4in f(x 4 2 the conditions. f, =a,x; +aq,
Fig1.1a Fig1.1b . Figl.1c o . ’
Ty eeeees (1.., ___eaprimedenot__ ______entiation with respect to x.

On substituting @, and g, from (1.8) in x = -4 and representing the approximate value

a
of x by x,,,, we obtain
Xgo =Xg —%,k:O,l,Z,... ....... (1.9)
K

This method is called the Newton-Raphson Method. The method (1.9) may also be

obtained directly from x.,, =x, Ay St SBF) .k =123,... by taking limit x, , > x, . In

fK - fK—l
the limit x, , » x, when, the chord through the points (x, f;) and (x, ,, f,_,) becomes
the tangent at the point (x,, ;). Thus, in this case the problem of finding the root of the

equation (1.1) is equivalent to finding the point of intersection of the tangent to the curve
y =f(x) at the point (x,,f,) with x-axis. The method is shown graphically in

Fig.1.2.The Newton-Raphson method requires two evaluations for f,, f; each iteration.

A
y N
Y= f(x)
(Xo, f(xo))
(%1, f(x1))
X
Alternative E X2 X1 X0
Fig 1.2
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Let be an approximation to the root of the equation f (x) =0.let Ax be an
increment in x such that x, + Axis an exact root. Therefore, f(x, +Ax)=0.

Expanding in Taylor series about the point, we get
! 1 "
S(xg) + Axf (xK)+5(Ax)2f (xg)+...= 0.

Neglecting the second and higher powers of Ax, we obtain  f(x, )+ Axf'(x,) =0

Or Ax = _M_
S (xg)
Hence, we obtain the iteration method
Xgo =X TAX =X — f,(XK) ,k=0,1,,...
S(xg)

Which is same as (1.9).
Rate Of Convergence

We now study the rate at which the iteration method converges if the initial
approximation to the root is sufficiently close to the desired root.

Definition: An iterative method is said to be of order p or has the rate of convergence p,
if p is the largest positive real number for which there exists a finite constant C#0 such
that

| < Cleg|” (1.10)
Where ¢, = x, —¢& is the error in the k th iterate.

The constant C is called the asymptotic error constant and usually depends on derivatives

of f(x) at x=¢£.
Newton-Raphson Method
On substituting x, =&+¢, in (1.9) and expanding f(&+¢&,),f (E+¢g,) In
Taylor’s series about the point &, we obtain
! 1 n
(e /' ©) + e [T+ ]
€k =6k~ ; p
J (@) +ep () +...
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=8K_[8K 11, }{ WAGH +}
2 7@ ro°

Ex™ 1 f"(f) +0(8K3)
2 f (f)

On neglecting &, and higher powers of ¢, , we get
&= Cey’

Where Czl&.
2 119

Thus, the Newton-Raphson Method has second order convergence.
System of Nonlinear Equations

We now extend the methods derived for the single equation f(x)=0to a system of

nonlinear equations. We first consider a system of two nonlinear equations in two
unknowns as

fx,yy=0 (1.12)
g(x,y)=0.
Newton-Raphson Method

Let (x,,y,) be a suitable approximation to the root (&,7) of the system (1.12)

Let Ax be an increment in x;, and Ay be an increment in y; such that (x,+Ax, y,+Ay) is an
exact solution, that is

f (X +AX, yitAy) =0
g(xitAX, yitAy) =0

Expanding inTaylor’s series about the point (xy, yi), we get
(ki Y Ax - +Ay Jf(xk,Yk) + {AXHi +Ay— T
ax dy

f(xy1)+.. =0
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g(XioYi)+ [Axi +Ayi g(xk,ykﬂ—i- l[Axi +Ay%} 2

gXyi) .. =0

Neglecting second and higher powers of Ax and Ay, we obtain
f(Xkayk)+AX fx(xkayk)+Ay fy (Xk9Yk) = O

(XY HAX gu(Xk, Vi) TAY gy (XiYi) = 0------- (1.13)

where suffixes with respect to a and y represent partial differentiation.

Solving equations (1.13) for Ax and Ay, we get
-1

Ax = — [f(Xiyi) & KoY - 8XieYi) fy (KoY
-1

Ay = <7 [8(ie¥i) fx (oY) - oY) 2x(Xioyi)]

Where Dk = fx(xkayk) gy (Xkayk) - gx(Xkayk) fy (Xk9Yk)

Writing the equations (1.13) in matrix form, we get

fx(Xk,Yk) fy (Xkayk) Ax - f(Xkayk)
gx(Xk9Yk) gy (Xkayk) Ay = g(Xkayk)

JiAX = -F (Xg,yi)--- (1.14)

f, £, f AX
Where Ji 5 g« gy, ](XY1), F g |(Xy) and Ax = | Ay

The solution of (1.14) is

Ax = -JK'F(Xiy)

f, £,)-1 g, -fy
1
Jk X gy Xy = ﬂ —Lx fx (XiYi)
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[ AX} f(Xk,Yx)
Ay) =-(J)" gy
And

AX| | Xk (X, ¥x)
+|Ay

Xi+1 E(k
N K = vk | G lg(xoyi)
k=0.12...(1.15)

or

XD = x® (g ) Bx®) ....(1.16)

where  x®=[x®, y®1 T F®) = [f(x¢ v, .y )"

The method given by (1.16) is an extension of the Newton-Raphson method (1.9) to a
system of 2x2 equations.

This method can be easily generalized for solving a system of n equations in n unknowns
f1(X1,X2,X3,....X,) = 0.
£H(X1,X2,X3,....X,) = 0.
f(X1,X2,X3,....%,) = 0. wn(1.17)

or

F(x) =0.where x= [X},X,,X3,....Xp ]T = F[f,,f1.f5. ...fn]T

If x(0)= [XI(O),xz(O),X3(O),....xn(o) ]T is an initial approximation to the solution vector x ,
then we can write the method as

xEV=x®_ )" Fx®) k=0,1,2.... (1.18)

where
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Jk = 8f1/6xl af1/6X2 8f1/8x3 .......... 8f1/8Xn \

8f2/6X1 af2/6X2 6f2/8x3 .......... 6f2/6xn

8f3/6xl 8f3/6X2 6f3/8x3 .......... 6f3/6xn

of/ox,  of)ox,  Of/xs...... BOf/0x, ()

\_

Is the Jacobian of the matrix of the functions f},f}.f5....f, evaluated at x(k).
Note that the matrix (J )’ is to be evaluated for each iteration.

The convergence of the method depends on the initial approximate vector x¥ . A
sufficient condition for convergence is that for each k

-1
lao™ | <1
Whereas a necessary and sufficient condition for convergence is p(J )" <I.

Where ||. ||is a suitable norm and p(Ji )" is the spectral radius ( largest eigen value in
magnitude) of the matrix (J, ).

Example 1: Perform three iterations of the Newton's method to solve the system of
equations  x*+xy+y” =7, x'+y" = 9.Take the initial approximations as xo = 1.5 , y, = 0.5.

The exact solution is x=2, y=1.
Solution :
f(x,y) = x*+xy+y* -7

g(xy) =x+y’ -9

(Ju)'=@/Dk) [ g -f 3(yi)’ -(Xi + 2y)
-2 Ik 3x) 22Xy
Where
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D= T = By ) 2%ty ) — (<3000 ) -0 + 2yi)-
We can now write the methos as
Xge+1| = Xk 3(yi)” (% + 238 (X HxiyichyiC -7
Yien| |yic|-(1/Di )| -3(x)” 2xictyic | [xicHy — 9
k=0,1..
Using (x¢,Yo) = (1.5,0.5), we get
x)=(2.267
{ le =] 0.9254
X2]=(2.0373
y2) 10.9645

~

and [ x3) =| 2.0013

0.9987

L Y3
METHODS FOR COMPLEX ROOTS

We can also obtain a root of the equation

f(z)=0 ....(1.19)

in which z is a complex variable.Substituting z = x+1y in equation (1.19) , we get
f(z) = f(xHiy) = u(x,y) +iv(x,y) =0. ........... (1.20)

Thus , the problem of finding the complex root of (1.19) reduces to solving a system of
two nonlinear equations (1.20).The system of equations (1.20) can be solved using the
method dicussed in previous section .

Example 2

Obtain the complex roots of the equation f(z) = z° +1 =0 correct to eight decimal places
.Use the initial approximation to a root as (xo,yo) = (0.25,0.25).

Compare with the exact values of the roots (1£iV3)/2.
Solution:

Substituting z= x+iy in the given equation , we get
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fxHy) = u(x,y) +iv(x,y) = (x+iy)’ +1
= (x’ = 3xy” +1) + i(3x’y — y)=0.

k Zyx

f(z)

Zg+1

(0.25,0.25)

(0.9687, -0.3125)

(0.16667,2.8333)

(0.16667,2.8333)

(-0.3009, - 0.225)

(0.15220, 1.8937)

(0.15220, 1.8937)

(-0.6340, -0.6660)

(0.19264, 1.2772)

(0.19264, .27724)

(-0.6438,-0.1941)

(0.31932, 0.9104)

(0.31932, 0.9104)

(0.2385, -0.4761)

(0.4925, 0.83063)

(0.4925, 0.83063)

(0.1000 , -0.3140)

(0.49983, 0.8673)

Therefore,

ux,y) =x —3xy” +1 , v(x,y)= 3xy — y° =0.
I=(u, u)\= 3)(2—3y2 -6xy
E/x VJ 6xy 3x% — 3y2
D =[] = 9(x* ~ yy+36xy" = 9(x*+y)’
Using (X¢,Yo) = (0.25,0.25), we get
x)=(0.1667
{ yl} =|2.8333
The successive iterates are given in the following table

Obviously, the approximation to the second root is

(0.5, - 0.8660).
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1.4 Bairstow Method

P.(X)=apx,+a;x,1+a2x, 1 +. . .2, X, +a,=0, ag#0 ----- (1.21)
Where a, a;,a,...... a, are real numbers

The Bairstow method extracts a quadratic factor of the form x™tpx+q from the
polynomial(1.2), which may give a pair of complex roots or a pair of real roots. If we
divide the polynomial by the quadratic factor x*+px+q, then we obtain a quotient
polynomial Q,,(x) of degree n-2 and a remainder term which is a polynomial of degree
one, i.e., Rx+S.

Thus
Po(x) = (X" +Px+q) Qp2 (X)+RX+S-mmmmnomv (1.22)
Qn-2(X) = bXpotbiXpst.. . Aby3x+bys

The problem is then to find p and g, such that
R(p,q) =0, S(p ,q) =0

The above equations are two simultaneous equations in two unknowns p and q. Suppose
that (py, qo) 1s an initial approximation and that (py+Ap, qo+Aq) is the true solution.
Following the Newton- Raphson method, we obtain

RS,-SR, R,S-RS,
Ap= - — Aq= - ———  —(1.24)
Rqu - Rqu Rqu—Rqu

Where R,,R,,S,,S, are the partial derivatives of R and S with respect to p and g
respectively. These quantities and R,S are evaluated at py, qo.

The coefficients b;, R and S can be determined by comparing the like powers of x
in(1.22), we obtain

a :b() bOZaO

31:b1+pb0 b1:al'Pb0

a,=by+pb;+qby by=a-pb;-qby
a=bitpby.i+qby., bi=ay-pby.;-qby.o--------- (1.25)
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an. 1=R+pbyotqbys R=a,1-pbya-qbys

a,=S+qb;., S=a,-qbn.s.

We now introduce the recursion formula

by = a-pb.i-qbr =1, 2,...... I (1.26)

Where by=a,,b.; =0

Comparing the last two equations with those of (1.25), we get
R =b,,
S=b,tpbn1 (1.27)

The partial derivatives R,,R,,S, and Sy can be determined by differentiating (1.26) with
respect to p and q.

We have
aﬂ_b +P8bk—1 N dbk-2 8b0 db-1 0
dp ok dp d dp  ’ dp dp
dbk b +P5bk—1| abk—E.ﬁbﬂ_ab—l 0 128
ap—k-z ap Tq p ,ap— ap =0 ....(1.28)
Putting
dbk
— = -, k=1,2,....n
dp

In the first equation of (1.20), we find

Ci1 = bt —pCia-qCy3  --=----- (1.29)

Furthermore, if we write ¢y, = -

Then, the second equation of (1.28) gives

Ci2= bra-pei3-qcis
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Thus, we get a recurrence relation for the determination of ¢, from by as

C=bi-pcr.i-qci, k=1, 2,...n,n-1
db1 A
Where ¢_.;1=0 and cy=- E = —a—p(al-pbo) = Dby

Where
We obtain
R,= -Cpoa, Sp =bn-1-Cn-1-PCn2
Ry = €3 ,Sq =(CpatPCn3).
Substituting the above values in (1.24) and simplifying, we get

bncn—3'bn— 1Cn-2

Ap = -
Czn-Z'Cn-3(Cn- 1 'bn- 1)

bn— 1 (Cn— 1 'bn— 1)'ann—2

Ag= -
Czn—Z'Cn—3(Cn—1'bn-1)
The improved values of py and q are

P1 = PotAp; qi = qotAq

P a; a -=== | Ap2 ap-1 ay
-q -pby | -pb; | ... | -pbns Pbuz | -Pbuai
'qu oo 'qbn-4 'qbn-3 'qbn-z

-p bO bl b2 bn 2 bn 1 bn
-q -pCo | -PCi | ... [-PCn3  [-PCn2 | -PCui
-qCo s -(qCn-4 -(Cn-3 -(qCn-2

Co Ci Cy C3 Cq Cs Ce

Note that the polynomial p,(x) is complete.
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When p and q have been obtained to the desired accuracy, the polynomial
Qua(x) = Po(x)/ (x*+px-+q)
= boXp2tbiXpat... tbyo

is called the deflated polynomial. The coefficients b;, 1 =0, 1,2,...n-2 are known from the
synthetic division procedure. The next quadratic factor is obtained using this deflated
polynomial.

Example 1

Perform two iterations of the Bairstow method to extract a quadratic factor x*+px-+q from
the polynomial

P3(x) = x’+x*-x+2 =0
Use the initial approximation P, =-0.9, qo = 0.9

Starting with P, = -0.9 and q,= 0.9, we obtain

0.9 1 1 -1 2
-0.9 0.9 1.71 -0.171
-0.9 -1.71
i=b, 1.9 -0.19=b, 0.119=bs
0.9 2.52
-0.9
1=Cg 2.8=¢, 1.43=c,

Ap = -(b3co-bacy )/ (ci*-co(Ca-by) = -0.651/6.22 = -0.1047

Aq =- (by(cy-by)-bsci/(ci*-co(ca-by) = 0.6410/6.22 = 0.103 1

p1 = po+Ap = -0.9 -0.1047 = -1.0047
q = qo+Aq = 0.9+0.1031 = 1.0031
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1.0047 1 1 -1 2
-1.0031 1.0047 2.0141 0.0111
-1.0031 -1.71
i=by 2.0147 -0.0110=b,  0.0002=b;
1.0047 3.0235
-1.0031
1=cy 3.0094=c, 2.0314=c,

Ap = -(bsce-byci)/(cy*-co(co-by) = -0.0329/7.0361= 0.0047
Aq =-(b(cs-by)-bsc1/(ci*-co(cr-by) =0.0216/7.0361
=0-0.0031

P> = pi+Ap = -1.0047-0. 0047 = -1.0000

9 = qi+Aq = 1.0031-0.0031= 1.0000

Hence, the extracted quadratic factor is X,+p,x+q° = x*-x+1.The exact factor is x*-x+1

Example 2

Perform one iteration of the Bairstow method to extract a quadratic factor x*+px-+q
from a polynomial

X H2xHx+1 =0
Use the initial iteration py =0.5 and qo = 0.5

Starting with po =0.5 and q, = 0.5, we obtain

-0.5 1 1 2 1 1
-0.5 -0.5 -0.25 -0.625 -0.0625
-0.5 -0.25 -0.625
1 0.5 1.25 0.125=b; 0.3125=b,
-0.5 0.0 -0.375

Prepared by Dr.M.M.Shanmugapriya, Professor, Department of Mathematics, KAHE Page 16/34



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSE NAME: NUMERICAL ANALYSIS
COURSE CODE: 19MMP103 UNIT: I BATCH-2019-2021
-0.5 0.0
1 0.0:C1 0.75:C2 -0.25:C3

Ap = -(bsci-bscy)/(ca*-¢1(c3-bs) = 0.1667

Aq =- (bs(c3-b3)-bsco/ (022-01(03-b3) =0.5
Therefore, p1=po+Ap = 0.6667, q;=qo+Aq = 1.0
The exact values of p and q are 1.0

1.5 Numerical differentiation

The problem of Interpolation is finding the value of y for the given value of x
among (x; , y;) for 1= 1 to n. Now we find the derivatives of the corresponding arguments
. If the required value of y lies in the first half of the interval then we call it as Forward
interpolation .If the required value of y ( derivative value ) lies in the second half of the
interval we call it as Backward interpolation also if the derivative of y lies in the middle
of of class interval then we solve by central difference.

Newton’s forward formula for Interpolation :
Y=y, +u Ayptu(u-1)/2! A*Y, +u (u-1)(u-2) / 3! A*Yo+......

Where u = (x-x¢)/h
Differentiating with respect to x ,

dy/dx = (dy/du). (du/dx) = (1/h) (dy / du)
(dy / dx) x #£xo =(1/h) [Ay +u-1)2 A’y, +(3u”> —6u+2)/ 6 Ay +......... ]
(dy / dx) x =x¢ = (1 /h) [Ays —(1/2) A’yo+(1/3) Ayo+......... ]
(d*y / dx?) x # xo= d/dx ( dy / dx) = d/dx(dy / du. du / dx)
= (1/h%) [A% yo + 6(u-1) / 6 Alyy + (120> =36 u+22) /2 Aty +....... ]
(d%y / dx%) x= x¢=(1/h?) [A? yp - Ayp +(11/12) Atyo +....... ]
Similarly,

(Py / dx*) x £ x= (/D) [ A’yo + (2u—=3) /2 A'yp +....... ]
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(d%y / dx?) x= x=(1/0°) [A® yo —(3/2)Ayo +....... 1.

In a similar manner the derivatives using backward interpolation an also be found out.
Using backward interpolation .

(dy/dx) x #X, =(1/h) [Vy, +Qu+1)2 Viy, +(Bu® +6u+2)/ 6 Viy,+......... ]
(dy/dx)x =x, =(1/h) [Vy,—~(1/2) Vy,+(1/3) Viy,+......... ]

(d’y / dx?) x £ x¢= (1/h®) [V yo + 6(u-1)/ 6 Vyo + (120 =36 u+22) /2 Viyy +....... ]
(d%y / dx®) x=xg=(1/h*) [V yo - V7yo H(11/12) Vyy +.]

Example 1

Find the first two derivatives of x "'¥

at x= 50 and x= 56, given the table below.
X: 50 51 52 53 54 55 56

Y:  3.68403.70843.73253.75633.77983.80303.8259

X |y Ay A’y Ay | Ay

50 |3.6840

51 [3.7084 |0.0244

52 [3.7325 |0.0241 -0.0003 | 0

53 |3.7563 [0.0238 -0.0003 [0 |0

54 |3.7798 |0.0235 -0.0003 [0 |0

55 {3.8030 [0.0232 -0.0003 [0 |0

56 |3.8259 [0.0229 -0.0003

At x= 50,

(dy/dx) x—xo = (1 /W)[Ayo—(1/2) A’yo+(1/3)Ayo +......... ]

= (1/1)[0.024-(1/2)(-0.0003)+0] = 0.02455
(d*y/dx?) s o =(1/h%) [A% yo - Ayo +(11/12) A'yg +....... ]
= (1/1)[-0.003-0]= -.0003
At x=56,
(dy/dx)x = x=(1/0)[V yn H1/2)V 2y, H(1/3)V iy, +...... . ]
= (1/1) [ 0.0229+(1/2)(-0.0003)+0] = 0.02275.
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For the above ptroblem let us find the first two derivatives of x when x= 52 and x= 55.

When x=52, From Newton’s forward formula
(dy / dx) x #x¢ = (1 /h) [Ayp +(2u-1)/2 A%y, +(3u® —
6u+2)/ 6 Alyo+......... 1,
= (1/1) [ 0.0244+(3/2)(-0.0003)+0] = 0.02395,
Since here u= (x-xq) / h = (52-50)/1 =2.

(d*y / dx*) x # x¢= (1/h%) [A? yo + 6(u-1) / 6 A’yy + (12u° =36 u+22) / 2 A'yy +....... ]

=(1/)m [ -0.0003+0] = -0.0003.

When x= 55,from backward interpolation

(dy /dx) x #Xy = (1/h) [Vy, HQv+1)2 Viy, +3V: +6v+2)/ 6 Viy, +......

= (1/1) [ 0.0229+(-1/2)(-0.0003)+0] = 0.02305,
Since here v= (x-x,) / h=(55-56)/1 =-1.

(d*y / dx*) x £ x,= (1/0%) [V yo + 6(v+1) / 6 Viy, + (12vZ +36 v+22) /2 Viy, +....... ]

= (1/1) [ 0.0229+(-1/2)(-0.0003)+0] = 0.02305.
Example 2
Given th following data, find y'(6) and maximum value of y.

X: 0 2 3 4 7 9

Y: 4 26 58 112 466 922
X Y Ay A’y A’y A'y
0 4 (26-4)/(2-0)
=11
2 26 (32-11)=7
32
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3 58 54 11 1
4 112 118 16 1
7 466 228 22 1
9 922

By Newton’s divided difference formula,

Y= 1(x) = f(X0)+(x-X0)f(X0,X1)T(X-X0)(X-X1) f(X0,X1,X2)F....
=4 +(x-0)(11)+(x-0)(x-2)(7)+(x-0) (x-2) (x-3) (1) +0+...
= x> +2x7+3x +4.

f'(x) = 3x’+4x+3, therefore ' (6) = 3(36) +4(6) +3 = 135.
f°(x) = 6x +4 =0, Hence x=(-2/3). so X is imaginary.
Therefore f(x) does not posses extremum.

1.6 Numerical Integration:

We know that ff f(x)dx represents the area between y = f(x), x — axis and the

ordinates x = a and x = b. This integration is possible only if the f(x) is explicitly
given and if it is integrable. The problem of numerical integration can be stated as
follows: Given as set of (n+1) paired values (x;y;), 1= 0,1,2,...,n of the function y=f(x),

where f(x) is not known explicitly, it is required to compute f:; v dx.

As we did in the case of interpolation or numerical differentiation, we replace f(x)
by an interpolating polynomial P, (x) and obtain f;ﬂ” P, (x)dx which is approximately

taken as the value for f:” f(x)dx.

A general quadrature formula for equidistant ordinates (or Newton — cote’s
formula)

For equally spaced intervals, we have Newton’s forward difference formula as

w{u—1)
|

Y(x)=y(xgtuh)=yotuly,+ . Nygt.. (1)

Now, instead of f(x), we will replace it by this interpolating formula of Newton.
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xX—x
Here, u = TG where / is interval of differencing.

x_xO xX— xO
we have

Since x,, = xy + nh, and u = =n=u.

f*“f(x,)a‘x— j’”‘“ Fx)dx

Xp+tnh . 9 . .
= fx P, (x) dx where P, (x) is interpolating polynomial
0
2 1) {u—1) 2
:f.:: (3".::- +udy, + = L) A vy + N jl. —= Ayt o } (hduw)

Since dx = hdu, and when x = xj, u = 0 and when x = xy+nh, u = n.
/3

ul)
U

(=
13 20 4 1 ) - 1
4}70(1/1) + — Jﬂ"l, b —j ﬂ‘ j';l:} + g (L _ -M3 + .uz_) ﬂE j-".:} 4. ]E}

X n? 1 n’ n? a 1
Tfx)dx=hpyt —Avy - — — A
fxnf() Yor 5 8Yo 7 5 ﬂJGJ P

The equation (2), called Newton-cote’s quadrature formula is a general quadrature
formula. Giving various values for n, we get a number of special formula.

Trapezoidal rule

By putting n = 1, in the quadrature formula (i.e there are only two paired values
and interpolating polynomial is linear).

J-:rl +nh " F(x)dx=h [1 Vg + ﬂn ,3,] since other differences do not exist if n = 1.
o

= fGodx= 7T " () dx

ln+¢

f (x,)dx+_]'
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h
=3 E:J’c- V) 20yt ys + "'-+J’]:—1)J

h
= > [(sum of the first and the last ordinates) + 2(sum of the remaining ordinates)]

This is known as Trapezoidal Rule and the error in the trapezoidal rule is of the order /.
Note:

Though this method is very simple for calculation purposes of numerical
integration; the error in this case is significant. The accuracy of the result can be
improved by increasing the number of intervals and decreasing the value of h.

Truncating error on Trapezoidal rule:

In the neighborhood of x = x,, we can expand y = f(x,) by Taylor series in power
of x — xo. That 1s,

Y(X) = Yo H(X-X0) Yo + (X-X0)2y "ot t

(x—xg) , (x—x9)%

where  y(x)=y, + TR + T +. . (1) where y,” = [y’(x)]x=x0
x x (x—xp) , (x—x)*
jx:}’ dx:jxgl Yot — 7 Do F 2!{: Vo'l T ... dx]
(x—x)* (x—xp)” }
{yow S Yot Yoty
(x—2g)? ,  (x—xg)°
=yo (x1—Xg) *——"yp t "+ ...
21 3!
32 13
:hyo-i-;y() +;y0 T e (2)

If & 1s the equal interval length.
h
Also f;i vdx= > (yo + y;) = area of the first trapezium = A,.....(3)
a

Putting x=x; in (1)
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yx)=y:= yo+ TRL + S + ...

- h b hz b

ie, Y=y + L + >0 For e (4)

h (x—xp) ,  (x—xp)?
=—|ygty+——p, +——y, +
Ao S | Yot Yo TR S, 0 T
Using (4) in (3).
=h + hz * 4 hg T
Yo > Yo 2*2!)/0 .............

Subtracting A, value from (2),

EX 13 vy i 1
jxo ¥ d:‘f-A()—hy() [3!-2*2J+ .........

1
Therefore the error in the first interval (x, x;) is - i I’yy"” (neglecting other terms)

Similarly the error in the ith interval = - h3yi_ 1

12
Therefore, the total cumulative error (approx.),
1 3 ) ) ) )

E=-0 00" 4y 4y e Ay )

3
|E|< nl_z (M) where M is the maximum value of |v,""|, [v,"l, "], .....

b—-a)h?®
< (b—a)n” (M) if the interval is (a,b) and
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Hence, the error in the trapezoidal rule is of the order /°.
Romberg’s method

For an interval of size h, let the error in the trapezoidal rule be kh® where k is a
constant. Suppose we evaluate [ = ﬁ:: v dx, taking two different values of h, say h; and

h,, then
1211+E1211+kh12 1212+E2212+kh22

Where [}, I, are the values of I got by two different values of h, by trapezoidal rule and
E,, E, are the corresponding errors.

11 + khl2 = Iz + kh22

I,— 1o

k= =—=

."LE—."LE
L L—1, I3 b3 Ioh
substituting in (1),[ =, + —=—=h*> & [=——
On— 04 Nz — 0y

This I is a better result than either I;, I,

If h=hand h,= %h, then we get

1,($h* -1h? al,—1,

1 1
=L+ (L-1), I=hL+ (-0

l.12 _ .12
- |

We got this result by applying trapezoidal rule twice. By applying the trapezoidal rule
many times, every time halving h, we get a sequence of results A, A,, As,...... we apply
the formula given by (3), to each of adjacent pairs and get the resultants B;, B, Bs .....
(which are improved values). Again applying the formula given by (3), to each of pairs
B,, B, B; .....we get another sequence of better results C;, C, C; ....continuing in this
way, we proceed until we get two successive values which are very close to each other.
This systematic improvement of Richardson’s method is called Romberg method or
Romberg integration.

Simpson’s one-third rule:

Setting n = 2 in Newton- cote’s quadrature formula, we have_]ﬂ:.“ flx)dx = h
o

4 1B 4) ., , .
Vot EﬁyOJr S s A%y, (since other terms vanish)
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h
= 3 V2tyit+yo)
.. X h
Similarly, _I;. flx)dx = 3 2+4ystyy)

: h
.I-:; fx)dx= 3 it 4yieityie2)
If n is an even integer, last integral will be
er h
.I;.r_z f(""jdl = E (yn—2+4yn—1+yn)

Adding all the integrals, if # is an even positive integer, that is, the number of ordinates
Yo, V1, V2....Yn 18 0dd, we have

[ f@de= [ Fdx+ [ fdit ... v
_f:_z fF(x)dx

ZgEyg+yn)+2(y2+y4+....)+ ....... +4(y]+y3+ ..... ﬂ

h
=3 [(sum of the first and the last ordinates) + 2(sum of remaining odd ordinates)
+ 2(sum of even ordinates)]

Note. Though y, has suffix even, it is third ordinate (odd).
Simpson’s three-eighths rule:

Putting n = 3 in Newton — cotes formula
3h
=g 0oty T30yt tyste . Ay )25t

J’6+J’9+----+yn)J ()

Equation (2) is called Simpson’s three — eighths rule which is applicable only when 7 is a
multiple of 3.Truncation error in simpson’s rule is of the order h
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Note 1. In trapezoidal rule , y(x) is a linear function of x. The rule is the simplest one
but it is least accurate.

2. In simpson’s one — third rule, y(x) is a polynomial of degree two. To apply
this rule n, the number of intervals must be even. That is, the number of
ordinates must be odd.

Truncation error in simpson’s rule
By taylor expansion of y=f(x) in the neighborhood of x =x, we get,

. S . 4
(=2, (x—xg) T

Y=Yot Ty F e e (1)

X ¥z (r—xg) [.x—.x,:,jz rr
o ydx=[ [}fﬁ Vot Y +] dx

5 2

_E]OX _|_ ':-x—:!-IJJ j}a;_'_ [-x—;l:lj j_fﬂH + ] :3

e — 2 - ,Ig
= Yo (x2—Xp) + = ;EL 0+ ;U' o+
R LN -3 L
_2h +2h2 ,+Eh3 ”_"_ﬂ ”7+£
—<'Yo Yo T2 Yo T Yo 1=
Vot (2)
: h
A, = area =J:: vdx= 3 (Y2 t4y1+yo)
by simpson’srule ... 3)
Putting x = x; 1n (1)
vi=vyo+|E o | B e+
hE
= 3@"'@’0""5}’0”"‘.... .......... (4)
Putting x = x;in (1)
h o, | &h° )
YI= Yot TYo T Yo F (5)
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substituting (4) in (5) , in (3),

A, =2hy,+2hty, + g hsyo”-i-%yo”’-i-% vo ... .....(6) equations (2) —
(6) give
P ydne A= (A 2ty
15
T o0 Yo

Leaving the remaining terms involving h® and higher powers of h, principal part of the
error in (Xo,X») is

Similarly the principal part of the error in (x,,X4) 1s

2999

R .
=) and so far each interval.

Hence the total error in all the intervals is given by
hE
- =_T 2999 1y 9995 1
E o0 (y0 Y2 cee )

h® . p
E| < 2—0 (M) where M is the numerically greater value of yy*””’, v27""",...Yon

since (Xpn,Xpn) 18 the last paired value because we require odd number of ordinates to
apply simpson’s one — third rule. (i.e., 2n intervals).

(b—1)h*
120

If the interval is(a,b) then b —a = h(2n). using this, |E| < (M).
Hence, the error in simpson’s one — third rule is of the order h

Example 1

Evaluate r_ag x*dx by using (1) trapezoidal rule (2)simpson’s rule. Verify your results by

actual integration.

Solution
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Here y(x) = x*. Interval length(b — a) = 6. So, we divide 6 equal intervals with 4 = E:
g
1.

We form below the table
X -3 -2 -1 0 1 2 3
y 81 16 1 0 1 16 81

(i) By trapezoidal rule:

3, on .
f_g_‘;‘ ax = ; [(sum of the first and the last ordinates) +

2(sum of the remaining ordinates)]

= 2 [(81481)+2(16+1+0+1+16)]

=115

(i) By simpson’s one - third rule (since number of ordinates is odd):
-r—zz-r dx = % [(81+81) +2(1+1) + 4(16+0+16)]

= 98.

(iii)  Since n = 6, (multiple of three), we can also use simpson’s three - eighths rule.
By this rule,

[° v dx= 2[(81+81) + 3(16+1+1+16) + 2(0)]

Sl 3
=99

(iv) By actual integration,

S L.
JZ xctdx = 2*[ ] 228970
3o 5

From the results obtained by various methods, we see that simpson’s rule gives better
result than trapezoidal rule

X 0/ 0.2 0.4 0.6 0.8 1.0
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y=1/1+x" | 1/ 0.961 |0.8620 | 0.73529 |0.609 | 0.5
54 7 76 0

Example 2

1 dx : . : :
Evaluate fn T;E’ using Trapezoidal rule with h = 0.2. hence obtain an

approximate value of . Can you use other formulae in this case.

Solution.

1
Let y(x) = o
Interval is (1-0) = 1. Since the value of y are calculated as points taking h =0.2

(1) By Trapezoidal rule,
1 dx h
s 2 2 | oty 20 +yet vzt Ayn-y)
Z%[(1+0.5)+2(0.96154+O.8620+O.73529+0.60976)]

= (0.1)[1.5+6.33732]
=0.783732

By actual integration,

1 dx _ -1 :E
jﬂ 142 ('t.':’J.I'l x)ﬂ 4

f ~ 0.783732

m & 3.13493 (approximately).

In this case, we cannot use simpson’s rule (both) and weddle’s rule. (since number of
intervals is 5).

Example 3

From the following table, find the areas bounded by the curve and the x-axis from x =
7.47 to x =7.52.
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X 7.47 | 7.48 749 | 7.50 |7.51 7.52

y=f(x) | 1.93 |1.95 |1.98 |[2.01 |2.03 |2.06

Solution.

Since only 6 ordinates (n = 5) are given, we cannot use simpson’s rule. So, we will
use trapezoidal rule.

Area=j';f: f(x) dx

0.01

ZT[(I 93+2.06)+2(1.95+1.98+2.01+2.3)]

=0.09965.

Example 4

Evaluate f; E, using (i) Trapezoidal rule (ii) simpson’s rule (both) .Also, check up

by direct integration.
Solution

Take the number of intervals as 6.

h=22=1

&

X 0 1 2 3 4 5 6

y 1 0.5 [1/3 1/4 | 1/5 [ 1/6 |1/7

i) By Trapezoidal rule
6) =2 ((r Dralirivin ivd)
= 2.02142857

i1) By simpsons’s one — third rule,
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-3 D2 Dot )

1 16 22
= [1 +o+ o4 ;)— 1.95873016

wd | =

i11) By Simpsons’s three - eighths rule,

5 (e Dear it D)

=1.96607143

iv) By actual integration,
f;i = [log(1 + x)]5 = log, 7 = 1.94591015

Example 5

By dividing the range into ten equal parts, evaluate fnn sin xdx by trapezoidal and

Simpson’s rule. Verify your answer with integration.

X 0 /10 21/10 3n/10 | 4n/10 | 57/10
y=sinx | 0 0.3090 | 0.58878 | 0.8090 | 0.9511 | 1.0
X 6m/10 | 7n/10 | 8/10 /10 | =

y=sinx | 0.9511 | 0.8090 | 0.578 0.3090 | 0

Solution
Range=n-0=mu

w
Hence h=—
10

We tabulate below the values of y at different x’s
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Note that the values are symmetrical about x = g

(1) By Trapezoidal rule,
I= 2—12 [ (0+0)+2(0.3090+0.5878+0.8090+

0.9511+1.0+0.9511+0.8090+0.5878+0.3090)]
= 1.9843 nearly.
(i1) By Simpsons’s one — third rule,

=2 (Z) [(0+0)+2(0.5878+0.9511+0.5878+0.9511) +

10
4(0.3090+0.8090+1+0.3090+0.8090)]
=2.00091
Note: We cannot use simpson’s three eighth’s rule.

(i) By actual integration, I = (—cosx)g = 2.
Hence, Simpson’s rule is more accurate than the trapezoidal rule.
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POSSIBLE QUESTIONS:

Part-B( 5X6 = 30 Marks)

1. Perform two iterations of the Bairstow’s method to extract a quadratic x*+px-+q from the
polynomial P4(x) = x*- 3x*+20x%+44x +54 = 0. Use the initial approximation as
Po= 2, Jo = 2.
2. Perform two iterations of the Bairstow’s method to extract a quadratic x*+px+q from the
polynomial P4(x) = x*+ x>+2x%+ x + 1 = 0. Use the initial approximation pp = 0.5, qo=0.5.

3. Write the derivation for systems of nonlinear equations using Newton’s method.
4. Find the real root of the equation x>~ y*=3 and x*+ y*= 13 by Newton's method correct to 4
decimal places.

5. Find a first two derivative of x1/3 at x =50 &x =56 given the table below.
X 50 51 52 53 54 55 56

Y =x® | 3.6840 |3.7084 3.7325 3.7563 3.7798 3.8030 | 3.8259

6. The population of a certain town is given below. Find the rate of growth of the population
in 1931, 1941, 1961 and 1971.
Year : 1931 1941 1951 1961 1971
Population : 40.62 60.80 79.95 103.56 132.65

7. Write Down the Derivative of Newton’s Divided difference .
8. Find the real root of the equation x*+y —11 = 0and y*+y —7 = 0 starting with the initial

values xo=3.5 and y,= —1.5 by Newton’s method.

9. From the following table find f(x) and hence f(6) using Newton’s divided difference formula.
x 1 2 7 8
fix):1 5 5 4

10. Use Romberg’s method to compute [ = fﬁl % correct to 3 decimal places.

11. Compute _I"ﬁl e® dx by taking h =0.05 using Simpson’s rule and Trapezoidal rule.

12. Evaluate _Ir_aa x* dx using Simpson’s rule.
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PART C- (1 x 10 =10 Marks)
( Compulsory )

1. By dividing the range into 10 equal parts evaluate _I": sinxdx by Trapezoidal &

Simpson’s rule. Verify your answer with integration.
2. Find the real root of the equation 2x’- 3x-6 =0 by Newton's method correct to 3 decimal places.

3. Find the value of cos (1.74) from the following table

x 17 1.74 1.78 1.82 1.86
sinx: 0.9916 0.9857 0.9781 0.9691 0.9584
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Class : 1 M.Sc Mathematics

Semester : 1

Subject: Numerical Analysis Subject Code:
Unit I
Part A (20x1=20 Marks)
Question Opt 1 Opt 2 Opt 3 Opt 4 Answer
The order of convergence of Newton Raphson method is ---------- 2 0
In Newton Raphson method, the error at any stage is proportional td Cubic square square root ZEro square
—————————————————— Method is also called method of tangents Gauss Seidal  |Secant Bisection Newton RapiNewton Rapson
If f (x) contains some functions like exponential, trigonometrid Algebraic transcendental |[numerical polynomial |transcendental
The Newton Rapson method fails if --------------- . f’x)=0 fx)=0 f(x)=1 f(x) '0 f’x)=0
The order of convergence in --------------- method is t|Bisection Regula falsi False position |Newton RapfNewton Rapson

In Newton Raphson method the choice of --------------- is very impai

initial value

final value

intermediate v

approximate

initial value

If f(a) and f(b) are of opposite signs, a root of f(x) = 0 lies between |actual root approximate rodintermediate ro|zero approximate root
Newton Rapson method is also called method of --------------- Gauss Seidal  |Regula Falsi  [tangents Bisection [tangents
The -------- method extracts a quadratic factor of the {Bairstow False Position |Newton RapsojRegula falsi|Bairstow
The polynomial Qn-2(x) =bX,, + b;X,s + ...... b,., is called
the......... polynomial.
trinomial monomial deflated binomial |deflated
Bairstow is used to find the ------ roots of polynomial without using{real complex valued|square root cubic complex valued
In Newton’s forward difference formula, the value of nis calfn=(x—x,)/h |n=(x,X%x)/h |n=(x—xy)/h [n=(xyX)/|n=(x—xq)/h
In Newton’s backward difference formula, the value of nisc¢in=(x—x,)/h [n=(Xx,~x%x)/h |n=(xxXxg)/h |n=(xyx)/|n=(x—x,)/h
In Newton’s forward difference formula, the value x can be x,—nh x,—nh X, + nh Xy +nh Xy + nh
Numerical differentiation can be used only when the differen{zero one costant two costant
Relation between A and E is A = ---—--—--- E-1 E+1 E*1 1-E E-1
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To find the unknown value of x for some y, which lies at the | Newton’s Newton’s Newtons inverse Newtons divided
unequal forward backward divided interpolatio |difference
intervals we use formula. difference n
The other name of shifting operator is ------- operator Central average backward displaceme [displacement

nt
Relation between Eand VisV = ---—--—--- E-1 1-E' 1 +E" 1*E" 1-E'
The divided difference operator is ----------- non-linear normal linear Zero linear
The n™ divided difference of a polynomial of degree n are -----| ZEero constant linear non-linear [constant

The order of error in Trapezoidal rule is ------------- . h h’ h? h* h’

The order of error in Simpson’s rule is ------------- h b’ h? h* h*
Numerical evaluation of a definite integral is called -------- . |Integration Differentiation |Interpolation |TriangularizIntegration
Simpson’s ¥s rule can be applied only if the number of sub in|Equal even multiple of thrqunequal multiple of three
By putting n = 2 in Newton cote’s formula we get ----------- 1Simpson’s 1/3 |Simpson’s % | Trapezoidal |Romberg |Simpson’s 1/3

The Newton Cote’s formula is also known as --------------- fdSimpson’s 1/3 [Simpson’s 3/8 |Trapezoidal |quadrature quadrature

By putting n = 3 in Newton cote’s formula we get ----------- Simpson’s 1/3 |Simpson’s %  |Trapezoidal |Romberg |Simpson’s ¥z
By putting n = 1 in Newton cote’s formula we get ----------- Simpson’s 1/3  [Simpson’s % |Trapezoidal |newton's |Trapezoidal

The systematic improvement of Richardon's method is called|Simpson’s 1/3 [Simpson’s % |Trapezoidal |Romberg |Simpson’s %
Simpson’s 1/3 rule can be applied only when the number of |Equal even multiple of thrqunequal even

In Numerical integration, the length of all intervals is in ----------- Greater than the | less than the equal not equal equal
distances. other other
Numerical integration is the process of computing the value of a ---{indefinite definite integral |expression equation definite integral
————— from a set of numerical values of the integrand. integral
Numerical evaluation of a definite integral is called -------- integration differentiation |interpolation |[triangularis |integration

ation
What is the value of h if a=0,b=2 and n=2. 1 2 3 4 1
Integral (f(x) dx)=(h/2) [Sum of the first and last ordinates + 2(sum | Constant rule Simpsons rule  [Trapezoidal Rombergs |Trapezoidal rule
of the remaining ordinates)] is called ----- rule rule

If the given integral is approximated by the sum of ‘n’ Newton's Trapezoidal simpson's rule (none Trapezoidal rule
trapezoids, then the rule method rule

is called as ----------------

What is the formula for ﬁndmg the length interval h in h=(b-a)/n h=(b/a)/n h=(b*a)/n h=(b+a)/n |h=(b-a)/n
trapezoidal tule?
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The accuracy of the result using the Trapezoidal rule can be | Increasing the | Decreasing the |Increasing the |altering the | Decreasing the

improved by -------- interval h length of the  |number of given length of the
interval h iterations function interval h

Simpson’s one-third rule on numerical integration is called a -{closed open semi closed  |semi closed

------- formula. opened

The order of error in Simpson’s formula is ---------- . 1 2 3 4 4

In two point Gaussian quadrature Formula n = -------- 1 2 3 4 2

In Simpsons 1/3™ rule, the number of ordinates must be ----—-- ) odd even 0 3 odd

In three point Gaussian quadrature Formula n = --------- 1 2 3 4 3

Two point Gaussian quadrature Formula requires only -------- 1 2 3 4 2

functional evaluations and gives a good estimate of the value of the
integral.
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UNIT-IT
SYLLABUS

Solutions of system of Equations: The Elimination method: Gauss Elimination and Gauss Jordan
Methods — LU decomposition method. Methods of Iteration: Gauss Jacobi and Gauss Seidal iteration-
Relaxation method.

SOLUTIONS OF SYSTEM OF EQUATIONS
2.1 Introduction

We come across, very often simultaneously linear algebraic equations for
its solutions, especially, in the fields of science and engineering. In lower classes, we
have solved such equations by Cramer’s rule (determinant methods) or by matrix
methods. These methods become tedious when the number of unknown in the system is
large. After the availability of computers, we go to numerical methods which are suited
for computer operations. These numerical methods are of two types namely: (i) direct
and (ii) iterative.

We will study a few methods below deals with the solution of simultaneous Linear
Algebraic Equations

Gauss Elimination Method (Direct Method)

This is a direct method based on the elimination of the unknowns by combining
equations such that the » unknowns are reduced to an equation upper triangular system
which could be solved by back substitution.

Consider the 7 linear equations in # unknowns, Vviz.
Cl]]X]"‘Cl]QXg"‘.... +a1nxn=b1

arx;taxx,+.... +a2,,x,,=b2

apx;tapx;+.....ta,x,=b, ....(1)

Where a;; and b; are known constants and x;’s are unknowns.
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0 (1)

an adpy ......... A XJ b]

Where A S Ay Ary.ee...... ar, X= X2 and B = bg
Ay, Ayo ... Ay X, b,
— J - -

fa“ 255 2 A b] A
(A,B) = ar; (255 R asy, b2
Ay Ay e A | b, | ..(3)
- J

Gjq

Now, multiply the first row of (3) (if @;; # 0) by - @11 and add to the ith row of (A,B),
where i=2,3,...,n. By thia, all elements in the first column of (A,B) except a;; are made
to zero. Now (3) is of the form

- an (255 2N ay bl-\
0 bgz ......... bgn ()
0  by...... bun P 4
2 C/ 4)

Now take the pivet b),. Now, considering b,, as the pivot, we will make all
elements below b,, in the second column of (4) as zeros. That is, multiply second

b;
row of (4) by - D7: and add to the corresponding elements of the ith row
(1i=3.4,...,n). Now all elements below b,, are reduced to zero. Now (4) reduces to

&
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4
an ap Adjze....... A b]\
0 bgg b23 ......... bgn C
0 0 (65 % RN C3n d3
q 0 0 Cpz eeeennnn Con d,| ... (5)

Now taking ¢33 as the pivot, using elementary operations, we make all elements

below ¢33 as zeros. Continuing the process, all elements below the leading diagonal
elements of A are made to zero.

Hence, we get (A,B) after all these operations as

/Clll Ay A3 ceeviiiiinn el A b]\
0 b22 bgg .............. bgn Cr
0 0 Cr3 C3feeiiinnn. C3p d3
0 0 0 0 ... e | dy | (6)

\ . : A
From, (6) the given system of linear equations is equivalent to
apxrraxstagsxst....tagx,=b;
b22X2+b23X3+.... +b2,,x,,=02

033x3+....+03,,x,,=d3

WX =k
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i
Going from the bottom of these equation, we solve for x,= @nn. Using this in the
penultimate equation, we get x,_; and so. By this back substitution method for we solve
Xn s Xpoly Xp2, eeveee X2 Xj.

2.3 Gauss — Jordan Elimination Method (Direct Method)

This method is a modification of the above Gauss elimination method. In this
method, the coefficient matrix A of the system 4X=B is brought to a diagonal matrix or
unit matrix by making the matrix A not only upper triangular but also lower triangular by
making the matrix A not above the leading diagonal of A also as zeros. By this way, the
system AX=B will reduce to the form.

ray 0 0 0 e an | by
0 by 0 0 e by )
....................................................... d;
0 0 0 0 e Ol ky|...(7)
From (7) /
K s b,
X, =%®nn, ...... , x2=bZ:,xn=alz

Note: By this method, the values of x;,x,,.....x, are got immediately without using the
process of back substitution.

Example 1. Solve the system of equations by (i) Gauss elimination method (ii) Gauss —
Jordan method.

x+2y+z=3, 2x+3y+3z=10, 3x-y+2z=13.
Solution. (By Gauss method)

This given system is equivalent to

30 (k)

AX = B
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1 2 1|3
2 3 3 |10
A4B)= 3 -1 =2 Ta | e, (1)
Now, we will make the ntatrix A upper triangluar.
~
1 2 1|3
2 3 3 | 1lo
(4,B) = 3 -1 2 | 13
1 2 1] 3
0 -1 1| 4

~ 0 -7 -1 4+ Ry(2R,, ReH(3)R,

Now, take b,,=-1 as the pivot and make b;, as zero.

3
1 2 1
0o -1 1| 4
A4B) ~lo o -8 |[-24]Ry»(-7)........... (2)
From this, we get
x+2y+z= 3, -y+z=4 , -8z=-24

z=13, y=-1, x =2 by back substitution.
x=2,y=-1,z=3
Solution. (Gauss — Jordan method)

In stage 2, make the element, in the position (1,2), also zero.

3
1 2 1
[n -1 1 4]
(4B) ~ lo o -8 |-24
11
1 o0 3
[n 1 1 4
~lo o -8 —241 Rp(2)
1 0 3 11
0 -1 1 4 (1)
~1lo o -1 —3] R;ls
1 0 0 2
0 -1 0 1
~lo o -1 —3 ] Ry;3(3), Ry(l)
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ie., x=2,y=-1, z=3

Example 2 Solve the system by Gauss- Elimination method
2x+3y-z=15; 4x+4y-3z=3 and 2x-3y+2z=2.

Solution. The system is equivalent to

3230 6

A X =B

3
/|
2

Step 1. Taking a;;= 2 as the pivot, reduce all elements below that to zero.

2 i -1
[4 4 -3
4B)= 12 -3 2

z 3 -1 f
o -2 -1 7
(A ,B) = [ﬂ —6 3 3 ] R21(—2), Rgl(-l)

Step 2. Taking the element -2 in the position (2,2) as pivot, reduce all elements

all elements below that to zero.

2 3 -1 5
o0 -2 -1 -7
A4,By=10o o 6 Ils R3,(-3)

Hence 2x+3y-z =15
2y-z=-7
6z =18
z=3, y =2, x = 1. By back substitution
Example 2.3 Solve the following system by Gauss - Jordan method
Sx;tx, tx3tx,=4; x;+7xtx3+x,=12
X;tx,+6x3+x,=-5 x;+x,+x;3+4x,=-6

solution. interchange the first and the last equation, so that coefficient of x; in the first
equation is 1. Then we have
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4 N

1 1 1 4]-6
AB)=[1 7 1 1|12

0 0 5 -3|1 [Ry(-1), R3i(-1), Rui(-3)

1
O o0 5 -3 1 RZ(E) to make the

0 -4 -4 -19 | 34| pivotas 1

0 0 |s| -3 1 Ri2(-1), Ryx(4)

(10 1 45 9 )
0 1 0 -05 3

1
~ 1o o [Y-06 o2 R3(E)

0O 0 -4 -21 46
- J
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1 0 0 51 |-92

~ 10 0 1 -06 | 02 Ria(-1), Ra3(4)
0 0 0 -234 |468

\_ _/
(1 0 0 51 |-922
0 1 0 -05 3
(333)
~ 1o 0o 1 06| 02 AVER
0 0 0 -l 2
- Y,

3 1

0 1 0 -1 R34(_5)’ R24(_E), R14(51)
0

x; =1, x,=2, x3=-1, x;,=-2
Example 4. Solve the system of equations by Gauss — Jordan method:
xtytz+tw=2
x=-y+2z—w=-5
Ix+2y+3z+4w=7
x=2y-3z+2w=35
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Solution.
p
1 1 1 1 ]2
2 -1 2 -1/|-5
(A,B) = 3 2 3 4|7
1 2 3 2|5
- _
S
1 1 1 1 2 R,-2R,
~ 0 -3 0 -3 |-9 R;-3R,
0 -1 0 1 |1 R4-R,
0 3 4 1|3
J
1 M 1 1 2 )
~ 0 ] 0 1 3
1
0 -1 0 1 1 Rz(_i)
0 -3 4 1 3
\_ Y,
) N
1 0 1 0] -1 Ri+(-1)R,
0 1 0 1 3
0 0 0o 2 4 R;+R,
0 0 -4 4] 12 ) Ry+3R,
\
(1 0 1 0] -1
0 1 0 1 3
1
~ 0 0 0 1 2 R3(§)
0 0o -1 1] -3 m(‘%)
\ Y,
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0 1 0 1 3 Interchanging
~ 0 0 1 -1 1| -3 R; and Ry
0 0 0 1 2
. J
10 0 1| 2)
~ 0 1 0 1 3
0 0 1 -1 -3 Ri+(-1)R;
0 0 0 1 2
S J
10 0 0 |0)
~ 0 1 0 O 1 | Ri+(-DRy
0 0 1 0 |-1 | RyH(-1Ry
0 0 0 1 2 Rs+Ry
J

x=0}y=1,z=-1,w=2
Example 5. Apply Gauss — Jordan method to find the solution of the following system:
10x +y+z=12; 2x + 10y +z=13; xty+5z=7.

Solution. since the coefficient of x in the last equation is unity, we rewrite the equations
interchanging the first and the last. Hence the augmented matrix is
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1 1 5 7
~ 0 8 9 -1 Ro+(-2)R;
0 9 49 58 R;+(-10)R,
(1 1 5 7 )
a 1 1
~ 0 1 - B -8 R, (E)
0 9 49 58
N\ _J
1 1 5 7 )
Q 1
~ 0 1 -8B -8
473 473
\o 0 -8 | -8
)
11 5 7 )
g 1 (_i)
™~ O 1 - _3 - E R3 4‘?3
0 0 1 1
NG )
e 4g 57 )
1 0 ' ra
g 1
~ 0 1 -8 -3 R;+(-1)R,
0 0 1 1
NG _/
(1 0 0 1)
9
~ |0 1 0 1 R2+(§)R3
+(_4g)
L0 0 1 1) R, 8 /Ry

BATCH-2019-2021
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x=1, y=1,z=1

2.4 Method Of Triangularization (Or Method Of Factorization) (Direct Method)

This method is also called as decomposition method. In this method, the
coefficient matrix A of the system AX = B, decomposed or factorized into the product of
a lower triangular matrix L and an upper triangular matrix U. we will explain this
method in the case of three equations in three unknowns.

Consider the system of equations
apx;tapxotax; = by
azX;+ a;x,t ax; = by
azx;+ asx,t azxz = bs

This system is equivalent to AX = B

1, 17 Qi Xs bi
3, Uz; Oz, Xz b:
Where A= \G3y @35 @3 , X= X3 , B= bz

Now we will factorize A4 as the product of lower triangular matrix

And an upper triangular matrix

Uy, Uqz; Uq,
0 Uzz Uzg
0 0 U3;/ sothat

LUX =B Let UX =Y And hence LY

10 0\, b,
(h 3. 6
Thatis, “lz: l3z 1/\WVa/ = \b,

vi=b, Lyi+y,=bs L3y, +0:+ty; = b;s

U:

Il
o]

By forward substitution, y;, v, y; can be found out if L is known.

Prepared by Dr.M.M.Shanmugapriya, Professor, Department of Mathematics, KAHE Page 12/38



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSE NAME: NUMERICAL ANALYSIS
COURSE CODE: 19MMP103 UNIT: I1 BATCH-2019-2021
Uqg, UWUq; Uqq X, Vi
0 Uy Ugzg||*s Vs
From (4), 0 0 Uzz/\Xs/ = \Vs
UpXp Y upXy; Y U;sXs =Yy, UpXo T UpsX3 = Voand U33X3 = Y3

From these, x;, x,, x; can be solved by back substitution, since y;, y,, y; are known

if U 1s known.Now L and U can be found from LU=4
1 0 0 uli ul: uls a 11 a 1z e 1=
IZi 1 0 0 Uz Uz |= |0z, Oz; 2
i.e., E13:|_ E1:3: 1 0 0 Uzsq Az, Oz; d3z;
1.e.,
a N
Ujg U Ujs

a 11 a 1z a 1=
Bz, Q29 U2q
gy L tusy  Dugstus =\lz, @3z Uz

Lypugy Lpugotlsougs iugs+lums+us;

Equating corresponding coeft{cients we get nine equations in nine unknowns.
From these 9 equations, we can solve for 3 ’s and 6 u’s.

That is, L and U re known. Hence X is found out. Going into details, we get u;; - % 11-
u; ;- @12 wy;- @ia. That is the elements in the first rows of U are same as the
elements in the first of 4.

AlSO, lglu” =0z, 121u12+u22 = Uz; 1211/113"‘1423 = 025

aa, aa, a,
& = s, — =
lglzali, MQQZQZE - g, %1z and Uy; = ; ;. ajps

again, Lziu;; = 931, Luptiu, = %3z and Lu3+5u3+tu33 = @ 3s

a
3, r
solving, [3; =011, [5, =

Therefore L and U are known.
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Example 1: By the method of triangularization, solve the following system.
Sx=2y+z=4, 7x+y-5z=8 3x+7y+4z=10.

Solution. The system is equivalent to

5 —2 1\/X 4
(7)) (3)
3 7 4/\z/=\lo
A X = B
Now, let LU=4

1 0 1] Uq, Uq
f‘2:1 1 ﬂ)( 0 s

( 1
That is, E‘3:1 E13: 1 0 0

[ ] [ ]

U
i
U

3 -2 1
— (? 1 —5)
3 7 4

z
3

Multiplying and equating coefficients,

Uy = 3, U= -2, upz- 1
Ly =7 bLuptup= 1 Lustu;= —3
7 A 19
lg]— 5, up,=1 -3 5 and
5 _ 7 32
Uzz = 5. ()= 5

Again equating elements in the third row,

Lziup = 3, Lzpupotisous, = 7 and Lzugztlsousstus; = 4

3
7 —g.{—2}

; 9 4

13] = 5, 1322 5 = 19
41 32

3 il it 3 1312

1433:‘!l E(l) - 19( 5)24_54— 95

1635 327
= 95 = 19
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Now L and U are known. Since LUX = B, LY = B where UXx =Y.
From LY = B,
1 0 0
Z 1 0|/MN
3 i 1 Va (E)
5 1 = \lo
7 3 4
yi=4 Sy+y, =8, 5y+ 1o y,4+y; = 10
2ga 12
y2=8-"5 =5
12 4 1, 12 492 4e
y3=10-"5 - 1o X 5 =10-"5 - 95 = 1o
2 —2 1 4
lo 32}, 12
n S —_— - —
226 |
327 |\z 46
. 0 0 —— —_
UX =Y gives 19 = \19
Sx-2y+z=4
l9 32 12
5)y-5 z= 5
327 E
lo z= 1o
dg
z= 327
1o 12 E(ﬁ)
5y= 5 + 2\ 327
284
y = 32}'
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( 568 ) 46
Sx=4+2y- z=4+2\327). 327
366
x= 327
366 284 de

x= 327, y= 327, z= 327
Example 2: Solve, by triangularization method, the following system:
xt+Sy+z=14, 2x+y+3z=13, 3x+ty+4z=17.

Solution. this is equivalent to

1 5 1y/X 14
(31960
3 1 4/\z/=\17

A X =

1 0 0 Uy, Up,
521 1 0 0 Uz,
Now, let LU= \3, I3 1 0 0

By seeing, we can write  u;; - 1. Upp- T up- 1
1 0 0 1 . 5 . 1 1 5 1
Ly 1 0|0 Uy, Uy, |= (2 1 3)
[, 1/%0 0 Uj 3 1 4

Hence, Li=2. Shytup= 1  Dtu;=3

SS

i
) b

Li=2, uy= -9. ujp=1

again, [3; = 3, 513+ 15us = 1 and L3+ 50up3Fusz; = 4

1 -1s5 14 14 5

132: —a :?,' 1/133:4-3-?: Q

LUX =B implies LY =B where UX =Y.
LY = B, gives,
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10 0
2 1 0 :l,i 14
14 3 (13)
3 — 1/\V,
9 <= \17

14

yi=14, 2 yty, =13, 3y,+79 yty; = 17

5

yi=14, y;=-15 y;=-73

14
(a _59 }) X -15
5 (1) _3
UX =Y gives \0 0 T3/ ‘%) = 3
x+5y+z=14
9y +z=-15
5 5
9z= 3

2.5 Iterative Methods

This iterative methods is not always successful to all systems of equations. If this
method is to succeed, each equation of the system must possess one large coefficient and
the large coefficient must be attached to a different unknown in that equation. This
condition will be satisfied if the large coefficients are along the leading diagonal of the
coefficient matrix. When this condition is satisfied, the system will be solvable by the

iterative method. The system,

apx;+ apxot agpx; = b
QX+ ax;xot axx; = b,

azx;+ azxot azx; = b

will be solvable by this method if
Ialil > Ia1:|+ Ialsl

IQEEI > Ia21|+la23|
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IQEEI > Ia31|+|03:|

In other words, the solution will exist (iteration will converge) if the absolute values of
the leading diagonal elements of the coefficient matrix 4 of the system AX=B are greater
than the sum of absolute values of the other coefficients of that row. The condition is

sufficient but not necessary.
2.6 Jacobi Method Of Iteration or Gauss — Jacobi Method
Let us explain this method in the case of three equations in three unknowns.
Consider the system of equations,
ax+tby+tc;z=4d,;
ax+byy+c,z =d,
axtbsy+tcyz=d; ..c......... (1)
Let us assume la,l > |ba]+1cl
1bz] > l1azl+ el
ICzl > 1850+ |bg]
Then, iterative method can be used for the system (1). Solve for x, y, z (whose

coefficients are the larger values) in terms of the other variables. That is,

x=0y (d;-by-cz)

If X°, ¥® Z° are the initial values of x, y, z respectively, then

1
- (0}

=@ (-, -2
1
v = by (d—a, % —e,2')
1
28 = T (a0 3)
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© -y -y
A | £

Again using these values otz in (2), we get

1
) = ﬂ_l(drbjjrl'l'l 'Cjzl'i'l)
L
T"Z" = b, (a'2—2512-1‘"-|'1'I —szl'l'l)
1
(2 - A1 A1
ol S CS (d3-33..!L' ! —b_gj‘ ) (4)

. . . . -t T 4 . .
Proceeding in the same way, if the rth iterates are X7, V" z the iteration
scheme reduces to

1
'LH'+1} — ﬂ_:l. (d]_blj.r{'r') _ C] Z{V'!)

1

:1.'1'("" 1) — b: (dz_ag'!""-{-r" —c, Z{V‘J)

zr+l) _ ¢, (d;-a; X7 — ;77 .(5)

The procedure is continued till the convergence is assured (correct to required
decimals).

Note 1: To get the (r+1)th iterates, we use the values of the rth iterates in the scheme (5).

2: In the absence of the initial values of x, y, z we take, usually, (0, 0, 0) as the
initial estimate.

2.7 Gauss — Seidel Method of Iteration:

This is only a refinement of Guass — Jacobi method. As before,

1
x=0; (d;-bpy-cp2)

1
b: (dg—agx—CQZ)

1
z= E (d3- agx—bgy)

y

We start with the initial values ¥*, Z® for y and z and get ' ' from the first
equation. That is,
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i Rl a, (d] _ b]j.r'. ) _ ¢ A )

While using the second equation, we use Z' %) for zand ' for x instead of X°
as in Jacobi’s method, we get

1
.I.l.l I .|'1'| |'|:|'|
: rard Sy (1} bakel 1.": 1j : :
Now, having known +"@71ad V77 'yse X for x G4 ] for y in the third
equation, we get
! — C (d3- a; A bgj'rl' J )

In finding the values of the unknowns, we use the latest available values on the right hand
side. If X V™ z™ are the rth iterates, then the iteration scheme will be

1
(1 — pr 3
'LH'+1} — ﬂl (d]' b]j' L) - ¢ Z{f!)

1
yir+l _ p (dy— a, XD _ o2

ZH‘+1} — 'C_S (d3_a3_1t-rf'+1} —bgj'hﬂ-l-lb)

This process of iteration is continued until the convergence assured. As the
current values of the unknowns at each stage of iteration are used in getting the values of
unknowns, the convergence in Gauss — seidel method is very fast when compared to
Gauss — Jacobi method. The rate of convergence in Gauss — Seidel method is roughly
two times than that of Gauss — Jacobi method. As we saw the sufficient condition
already, the sufficient condition for the convergence of this method is also the same as we
stated earlier. That is, the method of iteration will converge if in each equation of the
given system, the absolute value of the largest coefficient is greater than the sum of the
absolute values of all the remaining coefficients. (The largest coefficients must be the
coefficients for different unknowns).

Note 1: For all systems of equations, this method will not work (since convergence is
not assured). It onverges only for special systems equations.

Note 2: Iteration method is self — correcting method. That is, any error made in
computation, is corrected in the subsequent iterations.
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Note 3: The iteration is stopped when the values of x, y, z start repeating with the
required degree of accuracy.

Example 1. Solve the following system by Gauss — Jacobi and Gauss — Seidel methods:
10x-5y-2z=3; 4x-10y+3z=-3; x+6y+10z=-3.

Solution: Here, we see that the diagonal elements are dominant. Hence, the iteration
process can be applied.

lo -5 -2
+ -1lo 3
That is, the coefficient matrix L 1 6 lo I is diagonally dominant, since

| 10] > 1-51 4+ 1-21
Flo] > | 41 + | 3 |-
| 10 > 1]+ 6]

Gauss — Jacobi method, solving for x, y, z we have

1

x=10 B+5y+22) e, (1)
1

y=10 3+4x +32) i, )
1

z= 10 (-3-x6y) i, (3)

First iteration: Let the initial values be (0, 0, 0).

Using these initial values in (1), (2), (3), we get

1
i1

X' =10 (3+5(0) +2(0)=0.3
v = To (34 4(0) + 3(0)) = 0.3
zM = Tg (-3- (0) - 6(0)) =- 0.3

Second iteration: using these values in (1), (2), (3), we get

oy L
=10 (3+5(0.3) +2(-0.3)) = 0.39
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S
Vi =10 (3+4(0.3) + 3(-0.3)) = 0.33
z'*) = 10 (-3-(0.3) - 6(0.3)) =-0.51

P R £y
(24 ..l,lz..l (21

Third iteration: using these values of X7/ | V' = 27/ in (1), (2), (3), we get,

1
X3 = To (3+5(0.33) +2(-0.51)) = 0.363
1

,1_,|_3_|

1o (3+4(0.39) + 3(-0.51)) = 0.303

z3) = To (-3- (0.39) - 6(0.33)) = - 0.537

Fourth iteration:

1
x*) = To (3+5(0.303) + 2(-0.537)) = 0.3441

1

AR P

1

.
z*) = Tg (-3- (0.363) - 6(0.303)) = -0.5181

(3+4(0.363) + 3(-0.537)) = 0.2841

Fifth iteration:
.1

¥ =1p (3+5(0.2841) +2 (-0.5181)) = 0.33843
.1

vl =1p (3+4(0.3441) + 3(-0.5181)) = 0.2822

1
z\>) = To (-3-(0.3441) — 6(0.2841)) = - 0.50487

Sixth iteration:

.
18 = To (3+5(0.2822) +2 (-0.50487)) = 0.340126
1

' = To (3+4(0.33843) + 3(-0.50487)) = 0.283911

1
z'®) = To (-3- (0.33843) — 6(0.2822)) = - 0.503163
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Seventh iteration:

1
27} = To (3+5(0.283911) +2(-0.503163)) =0.3413229
2
v =1p

(3+ 4(0.340126) +3(-0.503163)) = 0.2851015

1
z") = To (-3- (0.340126) — 6(0.283911)) = - 0.5043592

Eighth iteration:

_!L-'Z g}

1
1o (3+5(0.2851015) +2 (-0.5043592))

=0.34167891
1

v = T (3+4(0.3413229) + 3(-0.5043592))
1

0.2852214

z'®) = T9(-3-(0.3413229)- 6(0.2851015))

=- 0.50519319

Ninth iteration:

v

¥ = To (3+5(0.2852214) + 2 (-0.50519319))

0.341572062
1

v®) = T (3+4(0.34167891) + 3(-0.50519319))

0.285113607

1
z7) = To (-3- (0.34167891) — 6(0.2852214)) = - 0.50530073 1

Hence, correct to 3 decimal places, the values are

x=0.342, y=0.285, z=-0.505
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Gauss — Seidel method: Initial values : y =0, z=0.

1
First iteration: *'*) = To 0 (3+5(0)+2(0)=0.3

1

= To (3+4(0.3) + 3(0)) = 0.42

1

= 1o (-3-(0.3) - 6(0.42)) =-0.582
Second iteration:

1
10 (3+5(0.42) + 2(-0.582)) = 0.3936
1
v =10 (3+4(0.3936) + 3(- 0.582)) = 0.28284

1
2% = 1o (-3- (0.3936) — 6(0.28284)) = - 0.509064

=
Il

Third iteration:

1 1

= To (3+5(0.28284) + 2(-0.509064)) = 0.3396072 >/ = To (3 +4(0.3396072)+3(-
0.500064))= 0.28312368

1
= To (-3- (0.3396072) — 6(0.28312368))

=-0.503834928

|3|

Fourth iteration:

1
= To (3+5(0.28312368) + 2(-0.503834928))

=0.34079485

1
= To (3+4(0.34079485) + 3(-0.503834928))

=0.285167464

1
z'*) = To (-3-(0.34079485) — 6(0.285167464))

=-0.50517996
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Fifth iteration:

>} = To (3+5(0.285167464) + 2(-0.50517996))

34155477
1

=10 (3+4(0.34155477) + 3(-0.50517996))
=0.28506792
L
= To (-3- (0.34155477) — 6(0.28506792))
=-0.505196229

.'_'ﬁ

Sixth iteration:

1

= 10 (3+5(0.28506792) + 2(-0.505196229))
=0.341494714

1

= 1o (3+4(0.341494714) + 3(-0.505196229))
=0.285039017

1

1o (-3-(0.341494714) — 6(0.28506792))
=-0.5051728

Zu:ﬁ:u _

Seventh iteration:
1
= 10 (3+5(0.285039017) + 2(-0.5051728))
=0.3414849
1
= 1o (3+4(0.3414849) + 3(- 0.5051728))
=0.28504212
1
= To (-3-(0.3414849) — 6(0.28504212))
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=-0.5051737

The values at each iteration by both methods are tabulated below:

Itera Gauss - jacobi method Gauss — seidel method
tion

X v z X y z
1 |03 0.3 -0.3 0.3 0.42 -0.582
2 1039 0.33 -0.51 0.3936 | 0.2828 |-0.5090
3 10363 |0303 |-0.537 |0.3396 |0.2831 |-0.5038
4 10.3441 | 0.2841 | -0.5181 | 0.3407 | 0.2851 | -0.5051
5 10.3384 | 0.2822 | -0.5048 | 0.3415 | 0.2850 | -0.5051
6 0.3401 | 0.2839 | -0.5031 | 0.3414 | 0.2850 | -0.5051
7 10.3413 | 0.2851 | -0.5043 | 0.3414 |0.2850 |-0.5051
8 |0.3416 | 0.2852 | -0.5051
9 |0.3411 |0.2851 | -0.5053

The values correct to 3 decimal places are

x =0.342, y=0.285, z=-0.505

Example 2. Solve the following system of equations by using Gauss — jacobi and Gauss
— Seidel methods (correct to 3 decimal places):

8x —3y+3z=20

4x+11y—-z=33

6x + 3y + 12z = 35.

Solution: since the diagonal elements are dominant in the coefficient matrix, we write x,
v, z as follows
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1
x=820+3y-22) (1)
1
=11 (B3+4x+z) (2)
1
z= T12(35-6x-3y) 3)

Gauss — Jacobi method:
First iteration: Let the initial valuesbex=0,y=0,z=0

Using the valuesx =0,y =0,z=01n (1), (2), (3) we get,

P 1
= 3 (20 +3(0)-2(0)) =25
1
=11 (33 +4(0) +(0))=3.0
1
= 12 (35-6(0)—3(0)) =2.916666
Second iteration: using these values of x\2) , yl2) , z%) in (1), (2), (3), we get,

1
x'%) = 3 (20 + 3(3.0) — 2(2.916666)) = 2.895833

bJ

oL
' = T1 (33 + 4(2.5) + (2.916666)) = 2.356060

1
F= T2 (35-6(2.5) - 3(3.0)) = 0.916666

A

bJ

Third iteration:

- 1
x3) = § (20 + 3(2.356060) — 2(0.916666)) = 3.154356

1 1
— T1 (33+ 4(2.895833) + (0.916666)) = 2.030303 2" =12 (35— 6(2.895833) —
3(2 356060)) 0.879735

Fourth iteration:

[y

x4 = § (20 + 3(2.030303) — 2(0.879735)) = 3.041430
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1

— 11 (33 + 4(3.154356) + (0.879735)) = 2.932937
1
12

(35— 6(3.154356) — 3(2.030303)) = 0.831913

Fifth iteration:

=k

¥} = § (20 + 3(2.932937) — 2(0.831913)) = 3.016873

1
v =T1 (33 + 4(3.041430) + (0.831913)) = 1.969654

1
z\* =12 (35 —6(3.041430) — 3(2.932937)) = 0.912717
Sixth iteration:

. 1
x\®) = 3 (20 + 3(1.969654) — 2(0.912717)) = 3.010441

1
v = 71 (33 + 4(3.016873) + (0.912717)) = 1.985930

1
z'®) =12 (35— 6(3.016873) — 3(1.969654)) = 0.915817

Seventh iteration:

. 1
X7 =g (20 +3(1.985930) — 2(0.915817)) = 3.015770

1
— 11 (33 + 4(3.010441) + (0.915817)) = 1.988550

1
z\") =12 (35-6(3.010441) — 3(1.985930)) = 0.914964

Eighth iteration:

ran 1
x'8) = § (20 + 3(1.988550) — 2(0.914964)) = 3.016946

1
11 (33 + 4(3.015770) + (0.914964)) = 1.986535

Page 28/38

Prepared by Dr.M.M.Shanmugapriya, Professor, Department of Mathematics, KAHE



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSE NAME: NUMERICAL ANALYSIS
COURSE CODE: 19MMP103 UNIT: II BATCH-2019-2021

1
28 =T2 (35 - 6(3.015770) — 3(1.988550)) = 0.911644

Ninth iteration:

P 1

x\?) = § (20 + 3(1.986535) — 2(0.911696)) = 3.017039
o L

Vi =11 (33 + 4(3.016946) + (0.911696)) = 1.985805

1
z%) =17 (35 - 6(3.016946) — 3(1.986535)) = 0.911560

Tenth iteration:

P 1

x\?) = § (20 + 3(1.985805) — 2(0.911560)) = 3.016786
o L

Vi =11 (33 + 4(3.017039) + (0.911560)) = 1.985764

1
z\%) T2 (35— 6(3.017039) — 3(1.985805)) = 0.911696

In 8", 9™ and 10™ iterations the values of x, y, z are same correct to 3 decimal places.
Hence, we stop at this level.

Gauss — Seidel method:
We take the initial values are y = 0, z = 0 and use equations (1)

First iteration:

P 1
' = 5 20+ 3(0)-200) =25

:l_,l_ 1_|

1
11 (33 + 4(2.5) + (0)) =2.090909
o 1
z\1) = 12 (35 -6(2.5) - 3(2.090909)) = 1.143939
Second iteration:

© -y
| £

1
X1 =18 (20 +3(2.090909) — 2(1.143939)) = 2.998106

Prepared by Dr.M.M.Shanmugapriya, Professor, Department of Mathematics, KAHE Page 29/38



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSE NAME: NUMERICAL ANALYSIS
COURSE CODE: 19MMP103 UNIT: II BATCH-2019-2021

1 1
VI3 = 771 (33 + 4(2.998106) + (1.143939)) = 2.0137742'*) =T (35— 6(2.998106) —
3(2.013774)) = 0.914170

Third iteration:

o 1
¥} = § (20 + 3(2.013774) — 2(0.914170)) = 3.026623

1

1 1
v =77 (33 + 4(3.026623) + (0.914170)) = 1.9825162"> =T2 (35— 6(3.026623) —
3(1.982516)) = 0.907726

Fourth iteration:
‘4 1

'\ = § (20 +3(1.982516) — 2(0.907726)) = 3.016512
1

v = 71 (33 + 4(3.026623) + (0.907726)) = 1.985607

1
z\*) =13 (35-6(3.016512) — 3(1.985607)) = 0.912009

Fifth iteration:

(5]

1
g (20 + 3(1.985607) — 2(0.912009)) = 3.016600

.1
V=11 (33 + 4(3.016600) + (0.912009)) = 1.985964
z'% =12 (35-6(3.016600) — 3(1.985964)) = 0.911876

Sixth iteration:

o1
x\® — 3 (20 +3(1.985964) — 2(0.911876)) =3.016767

1
—T1 (33 + 4(3.016767) + (0.911876)) = 1.985892

1

12

,)1_,|_IE|_|
Zl_lﬁ_l -

(35— 6(3.016767) — 3(1.985892)) = 0.911810
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(The values of x, y, z got by jacobi method correct to 3 decimal places are got even in the
6" iteration by Gauss — seidel method.)

Seventh iteration:

..L.I. ? .I

ea| =

(20 + 3(1.985892) — 2(0.911810)) = 3.016757

=

v = 17 (33 + 4(3.016757) + (0.911810)) = 1.985889

[
=

z\7) =12 (35— 6(3.016757) — 3(1.985889)) = 0.911816

Since the seventh and eighth iterations give the same values for x, y, z correct to 4
decimal places, we stop here.

x =3.0168, y =1.9859, z=0.9118

The values of x, y, z by both methods at each iteration are tabulated below:

Iter Gauss — jacobi Gauss — seidel
atio | method method
n

X y z X y z

1 |25 3.0 29166 | 2.5 2.0909 | 1.1439
2.8958 | 2.3560 | 0.9166 |2.9981 |2.0137 |0.9141
3.1543 | 2.0303 | 0.8797 | 3.0266 | 1.9825 | 0.9077
3.0414 | 1.9329 | 0.8319 |3.0165 | 1.9856 | 0.9120
3.0168 | 1.9696 | 0.9127 |3.0166 | 1.9859 | 0.9118
3.0104 | 1.9859 | 0.9158 |3.0167 | 1.9858 | 0.9118
3.0157 | 1.9885 | 0.9149 |3.0167 | 1.9858 | 0.9118
3.0169 | 1.9865 | 0.9116
3.0170 | 1.9858 | 0.9115
10 |3.0167 | 1.9857 | 09116

O© 0 9 N n B~ WD
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This shows that the convergence is rapid in Gauss — seidel method when compared
to Gauss — Jacobi method. We see that 10 iterations are necessary in jacobi method to get
the same accuracy as got by 7 iterations in Gauss — Seidel method.

Example 3. Since the diagonal elements in the coefficient matrix are not dominant, we
arrange the equations, as follows, such that the elements in the coefficient matrix are
dominant.

28x+4y—7=32, x+3y+107=24, 2x +17y +47=35

Solution:Since the diagonal elements in the coefficient matrix are not dominant, we
rearrange the equations, as follows, such that the elements in the coefficient matrix are
dominant.

28x+4y—z=32
2x +17y + 47 =35
x+3y+10z;=24

1
Hence, x= 28 (32-4y+2)  ceveiiiiiienn, (1)
1
y=17 35-2x-42) i ()
L
z= 10(Q4-x-39) i, 3)

setting y =0, z=0, we get

First iteration:
¥ = 7 (32- 4(0) +0) = 1.1429
1
v = 17 (35 - 2(1.1429) - 4(0)) = 1.9244
1
z'M = To (24— 1.1429- 3(1.9244)) = 1.8084

Second iteration:

1
x'2) = 28 (32 - 4(1.9244) + 1.8084) = 0.9325
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' =17 (35 - 2(0.9325) - 4(1.8084)) = 1.5236

1
z'?) = T (24-0.9325- 3(1.5236)) = 1.8497

Third iteration:

1
x3) = 28 (32-4(1.5236) + 1.8497) = 0.9913
v = T7 (35 - 2(0.9913) - 4(1.8497)) = 1.5070
1
z3) = To (24-0.9913 - 3(1.5070)) = 1.8488

Fourth iteration:

1
2% = 28 (32 - 4(1.5070) + 1.8488) = 0.9936
1
jl"'-4" = 17 (35-2(0.9936) - 4(1.8488)) = 1.5069
. 1
ACI . 1o (24 -0.9936- 3(1.5069)) = 1.8486
Fifth iteration:

1

v = 28 (32 - 4(1.5069) + 1. 8486) = 0.9936
k-
17

'1.":5:' _

(35 - 2(0.9936) - 4(1. 8486)) = 1.5069
1

z>) = To (24-0.9936- 3(1.5069)) = 1.8486

Since the values of x, y, z in the 4™ and 5™ iterations are same, we stop the process
here.

Hence, x =0.9936, y =0.5069 and z = 1.8486
2.8 Relaxation Method

Consider the system of equations,

ax+tby+tc;z=d,;
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axtbsytez =d, (1)
asx+bzy+csz =d;s
we define the residuals 1y, 15, 3 by the relations

n=ax+by+ cz -d;
n=ax+tby+tcz-d | (2)
I3 = azx + b3y +c3z - d3

if we can find the values of x, y, z so that r; = 0 = r, = r3 then those values of x, y, z are
the exact values of the system. If it is not possible to make 1, = 0 = r, = r3, then we
make simultaneously the values to r;, r,, r3to as close to zero as possible. In other words
we “liquidate” the residuals r;, 1, 13 by taking better approximate values of x, y, z what
will be the slight change is made in the values of x, y, z what will be the corresponding
changes in the residuals, 1|, 1, 1;? We give below an ‘operation table’ from which we
can easily know the corresponding changes in r;, 15, 13 for a change of 1 unit in x, while
there is no change in re is no change in y and z, for a change of 1 unit in y while there in
no change in x and z for a change of 1 unit in z while there is no change in y and x.

Operation Table

Operation | Change in ( or increment in)

x |y | z r; | r3
R, 100 a|a]| a
R, 01| 0] b |b| bs
R; 01011 ¢ |b;5] c

What is the meaning of the above table ?
The operator R increase the value of x by 1, y by zero, z by zero

(no change in y and z) and this operation increases the residuals r; by a;, r, by a, and r; by
a; (the increase in 1], 1,, 13 are the nothing but the coefficients of x in the equations
given). Similarly R; increases the value of z by 1 (while x, y are kept constant) and the
effect of this operation increases the values of ry, 1, r3 by ¢ ¢, c;respectively.
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One can easily see that the operation table consists of the unit matrix / and the
transpose of the matrix A4 and A°, where 4 is the coefficient matrix of the system of
equations.

Convergence of the relaxation method:

If the method should converge, the diagonal elements of the coefficient matrix A
should be dominant; that is, A is diagonally dominant. Referring to the system of
equations given above; the system can be solved by this method successfully only if

la,l > [by]+1c,l
bz > 121+ 1c
Iczl > lagl+ |bs|
Where at least once the strict inequality holds.
Example 1. Solve the following equations using relaxation method
10x-2y—2z=6
x+10y—2z=7
x—-y+10z=8
Solution: Since the diagonal elements are dominant, we will do by relaxation method.
The residuals 1y, 1y, r3 are given by
rn=10x-2y—-2z-6
n=-x+10y—2z-7
r3=-x—y+10z—-8
Operation Table (write 1,A’)

Changes in
X v z 7 ) 73
R; 1 0 10 -1 -1
R; 0 1 0 -2 10 -1
R; 0 0 1 -2 -2 10

Prepared by Dr.M.M.Shanmugapriya, Professor, Department of Mathematics, KAHE Page 35/38



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSE NAME: NUMERICAL ANALYSIS
COURSE CODE: 19MMP103 UNIT: II BATCH-2019-2021

We will take the initial values of x, y, z as 0, 0, 0.
Setting x=0=y=z, we getr; =-6, 1, =-7, 13=-8

We write these residuals below and relax these values making changes in  x, y, z
as shown below:

Analysis: In line (1), for x=0, y= 0, z = 0 the residuals are -6,-7,-8. The
numerically largest residual is -8 which is encircled.

First, we liquidate the numerically largest residual r; = -8 by a proper multiple of
R;. Since Rj3 operation increases r; by 10, by operation 1.R3, we get (i.e., put x=0, y=0,
z=1)1; = -6+(-2) = -8; 1, = -7+(-2) = -9; r; = -8+10 = 2 giving line (2). Now, in line (2),
numerically greatest residual is -9 which is encircled. We will liquidate this r, by proper
multiple of R,. An increase of 1 in y will increase r, by 10, r; by -2 and r; by -1. Hence
doing the operation 1.R; new r;=-8-2=-10,r,=-9+10=1, r;=2+(-1)=1 and we get the line
(3). Now in line (3), r;=-10 is the numerically greatest value. Now, we will liquidate this
r;=-10 by a proper multiple of R;. Doing the operations R, (1, 0, 0), r;=-10+10=0,
r,=1+(-1)=0, r;=1+(-1)=0. Fortunately all the residuals have become zero after the 3
operations. Adding the values of x, y, z wag'et x=1, y= 1, z = 1 as the exact solution for
the system.
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POSSIBLE QUESTIONS:

Part-B( 5X6 = 30 Marks)

Answer all the questions:

1. Solve the following system of equations using Gauss Elimination method.
2x+y+z=10; 3x+2y+3z=18; x+4y+9z=16

2.Solve the following system by Gauss Elimination method
x+tyt+2z =4
3x+y-3z =-
2x-3y-5z = -5

3. Solve the following system by Gauss Jordan method .
x+2y+tz =3
2x +3y+3z =10
3x-y+2z =13

4.Explain the algorithm of LU decomposition method

5. Solve the following system by triangularization method
x+ty+z =1,4x+3y-z=6, 3x+5y+3z =4

6. Solve the following system of equations by Gauss-Jacobi method
10x -5y -2z=3
4x -10y +3z =-3
x +6y+10z =-3

7. Solve the following system by Gauss Jacobi method .

8x+y+z= 8
2x+4y+z =4
x+3y+3z =5

8. Solve the following system of equations by Gauss-Seidal method.
28x+4y—z =32
x+3y+10z =24
2x +17y +4z =35
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9. Solve the system of equation by Gauss Seidel method
10x—5y—2z =3; 4x—10y+3z =—3; x+6y+10z =3

10. Solve the following system by Relaxation method.
10x—2y— 2z = 6; — x+10y— 2z =7; — x— y+10z =8

PART C- (1 x 10 =10 Marks)
(Compulsory)

1. Solve the following system by Gauss elimination method
10x+y+z =12, x+10y+z =12, x+y+10z

2.Solve the following system by triangularisation method.
Sx-2y+z =4
Tx+y—5z =8
3x+7y+4z =10

3. Solve the following system by Relaxation method.
10x+ y+z =31; 2x+8y—z =24; 3x+4y+10z =58

12
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Class : 1 M.Sc Mathematics Semester  : 1
Subject: Numerical Analysis Subject Code: 19MMP103
Unit 11
Part A (20x1=20 Marks)
Question Optl Opt 2 Opt 3 Opt 4 Answer
The numerical method of solving linear equations is of two types one is |. ) C . .
. . 1terative elimination  |Newton exact 1terative
direct, other is---------- method.
------------- Method produces the exact solution after a finite number of ) Gauss Iterative ) )
Gauss Siedal . Direct Direct
steps Jacobbi method
iterative
Gauss elimination method is a ----------------- . Indirect method |direct method |method convergent direct method
The rate of convergence in Gauss — Seidel method is roughly ---------
times than that of Gauss Jacobi method. 0 3 2 2
Gauss Gauss Newton's
Example for iterative method ------------- elimination Gauss Jordan |Seidal forward Gauss Seidal
Upper
When Gauss Jordan method is used to solve AX = B, A is transformed diagonal triangular  |lower triangular
nto ----- Scalar matrix  |matrix matrix matrix diagonal matrix
The modification of Gauss — Elimination method is called ----------------- Gauss
-—- Gauss Jordan  |Gauss Seidal [Jacobbi Crout Gauss Jordan
------------- Method produces the exact solution after a finite number of
steps. Gauss Seidal ~ [Gauss Jacobi | Iterative  |Direct. Direct.
In the upper triangular coefficient matrix, all the elements below the
diagonal are...... positive non zero Zero Negative Zero
Gauss Seidal method always --------- for a special type of systems. converges diverges oscillates  |infinity converges
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coefficient coefficient coefficient
matrix is not matrix is matrix is
diagonally pivot element |diagonally |pivot element is |diagonally
Condition for convergence of Gauss Seidal method is --------------- . dominant is Zero dominant |not zero dominant
In Gauss elimination method by means of elementary row operations, back forward direct forward
from which the unknowns are found by ----------------- method. random substitution |substitution [substitution substitution
upper
In Gauss elimination method the given matrix is transformed into --------- diagonal triangular  |lower triangular [upper triangular
----- unit matrix matrix matrix matrix matrix
indirect iterative
Gauss Jordan method is a ----------------- . direct method |method method convergent direct method
indirect iterative
Gauss Jocobi method is a ----------------- . direct method |method method convergent indirect method
Gauss Gauss
The modification of Gauss — Jacobi method is called Gauss Jordan |elimination [Seidal Crout Gauss Seidal
upper
In Gauss Jordan method the given matrix is transformed into -------------- diagonal triangular |lower triangular [upper triangular
. unit matrix matrix matrix matrix matrix
In the direct methods of solving a system of linear equations, at first the [An augment atriangular  [Constant [coefficient An augment
given system is written as ------------- form matrix matrix matrix matrix matrix
All the row operations in the direct methods can be carried out on the negative positive
basis of -- all elements pivot element |elements  |elements pivot element
In solving the system of linear equations, the system can be written as ----
----- . BX=A AX=A AX=B AB=X AX=B
If the coefficient matrix is diagonally dominant, then ---------- method  |Gauss
converges quickly. elimination Gauss Jordan |Choleskey |Gauss Seidal Gauss Seidal
Iteration Interpolatio
-------------- is also a self-correction method. direct method [method n extrapolation Iteration method
In ----------- method, the coefficient matrix is transformed into diagonal [Gauss Gauss
matrix elimination Gauss Jordan [Jacobi Gauss Seidal Gauss Jordan
The iterative process continues till ------------- is secured convergency divergency |oscillation [infinity convergency
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The augment matrix is the combination of ------------------ .

Coefficient
matrix and
constant matrix

Unknown
matrix and
constant
matrix

Coefficient
matrix and
Unknown

matrix

Coefficient
matrix, constant
matrix and
Unknown matrix

Coefficient
matrix and
constant matrix

Gauss LU LU
Method of triangularisation is also known as--------- Gauss Seidal  |Gauss Jordan [Elimination |Decoposition Decoposition
In decomposition method, the coefficient matrix is factorized into the ----
--- of upper and lower triangular matrix. sum difference product division product
Method of triangularisation is also --------- method indirect iterative convergent |direct direct
Coefficient Coefficient Coefficient
matrix is not matrix is matrix is
diagonally pivot element [diagonally |pivot element is |diagonally
Condition for convergence of Relaxation method is --------------- dominant 1s Zero dominant |not zero dominant
Jacobis method is used only when the matrixis symmetric 21;fnvrr;etric singular non-singular symmetric

Prepared by: Dr.M.M.Shanmugapriya, Professor, Department of Mathematics, KAHE




Numerical Analysis

Prepared by: Dr.M.M.Shanmugapriya, Professor, Department of Mathematics, KAHE



KARPAGAM ACADEMY OF HIGHER EDUCATION
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UNIT-TII
SYLLABUS

Solutions of Ordinary Differential Equations:  One step method: Euler and Modified Euler
Methods —Runge-Kutta methods. Multistep methods: Adams Moulton method — Milne’s method

SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS
3.1 Introduction

In the fields of engineering and science we come across physical and natural phenomena
which when represented by mathematical model happen to be differential equations. For
example simple harmonic motion, equation motion, deflection of a beam etc.. are
represented by differential equations,. Hence the solution of differential equations is a
necessity in such studies. There are number of differential equations which we studied in
calculus to get closed form solutions. But all differential equations do not possess closed
form or finite form solutions.

Even if they possess closed form solutions, we do not know the method of getting it. In
such situations depending upon the need of the hour we go in far in numerical solutions
of differential equations. In researchers after advent of computer the numerical solutions
of the differential equations have become easy for manipulation. Hence we present below
some of the methods of numerical solutions are approximate solutions. But in many cases
approximate solutions to the required accuracy are quite sufficient.

In solving a differential equation for approximate solution we find numerical
values of yi,y,,ys,... corresponding to given numerical values of independent variable
values X,X»,X3, ...s0 that the ordered pairs (x,y;),(Xyy2) ... satisfy a particular solution,
though approximately. A solution of this type is called a point wise solution.

Suppose we require to solve dy/dx=f(x,y) with the initial condition y(x¢)=yo. By
numerical solution of y at x=x,, x;, X,,.. let y=y(x)be the exact solution. If we plot and
draw the graph of y=y(x), (exact curve) and also draw the approximate curve by plotting

(X0, ¥0), (X1.1), (X2, ¥2),... We get two curves.

PM= exact value, QM=approximate value at x=x;
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Then

QP=MQ-MP=y;-y (x;) = ¢ is called the truncation error at x= x;

ys approximate Q
solution _--

.

@ @ @
0 A(xg) X Xy eeeen (Xn) X

QP=MQ-MP=y;-y(x;)= &; is called return error at x=Xx;
3.2 Euler's Method

In solving a first order differential equation by numerical methods, we come across two
types of solutions:

(1) A series solution of y in terms of x, which will yield the value of Y at a particular
value of x by direct substitution in the series solution.

(i1) Values of y at specified values of x.

The following methods due to Euler, Runge-Kutta, Adam-Bashforth and Milne come
under the second category. The methods of second category are called step-by-step
methods because the values of y are calculated by short steps ahead of equal interval h of
the independent variable x.

Euler's Method

AIM. To solve dy / dx = f{x, y) with the initial condition
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Let the actual solution of the differential equation be denoted by the graph (continuous
line graph) P, (xo, Yy) lies on the curve. We require the value of y of the curve at x=x;

The equation of tangent at (x, yo) to the curve is
Y = Yo = ¥'x0.y0) (X —Xo)
= (X0,¥0)- (X — Xo)
y=Yot f(X0,¥0). (X —Xo)
This y is the value of y on the tangent corresponding to x = x. In the interval (x, x;), the

curve is approximated by the tangent. Therefore, the value of y on the curve is
approximately equal to the value of y. on the tangent at (x,yo) corresponding to x=Xx;.

Y1=Yot f(Xo,¥0) (X — Xo)
Le., yi=yot hyy'.
Where h=x,-X,.
(M,P;= M,Q=y1)

Again, we approximate curve by the line through (x;,y;) and whose slope is f(x;,y;) we
get  yr=yi+hi(xy,y1) = yithy'

Thus y,1=y,+ hf(x,,y,); n=0,1,2......
This formula is called Euler’s algorithm.

In other words,
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MO M1 MZ

Xo X

This formula is called Euler’s algorithm.

y(x+h) = y(x)+h f(x,y).

In this method, the actual curve is approximated by a sequence of short straight lines.
As the intervals increase the straight line deviates much from the actual curve. Hence the
accuracy cannot be obtained as the number of intervals increase.

QP ,=error at x=x;

(x1- Xo)2 h’
—Y'"(xpy) = ¥ (x,y1)
2! 2
It is of order h*.
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3.3 Improved Euler Method

Let the tangent at (x0,y0) to the curve be PyA.. In the interval (x0,x1), by previous
Euler’s method, we approximate the curve by the tangent PyA.

(O
1

yi =yothf(Xo,yo) where Y1(l): 1Qi

Ql(xl,yl(l)). Let Q; C be the line at Q; whose slope is f(xl,yl(l)). Now take the average of
the slopes at Py and Q; i.e.,

Ya [f(xo,yo)Hx1,:1™")]
Now draw a line PyD through P((xy,yo) with this as the slope.
That is, y-yo= % [f(Xo,y0)H(x1,y1"")](X-Xo)
This line intersects x=x; at
yi=yot+ Ysh [f(xo,y0)H(x1,y1™M)]
y D

A

A

(X0,¥0) QI(XIsYI(l))

Xo X1
0 + /IU 1\'/11 » X
yi=yot Vah [f(Xo,yo) t(X1,yothf(X0,¥0))]  ----------- (3) writing generally,
Yaet=Yur+ Yoh [y 00y Hhf(pye)]  —oeeeeee 4

Equation (4) gives the formula for y,,; This is improved Euler’s method.
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3.4 Modified Euler Method
Now let this tangent meet the ordinate at x=x, + %2 h at N; y-coordinate of N; = y0+ %2 hf

AR J—— (1)
Calculate the slope at N i.e f(xo+ %2 h, yo+ 2 hf (x¢,y0))

Now draw the line through P (x,,yo) with this slope as the slope. Let this line meet x=x; at
ki(x1,y1"). This y,V is taken as the approximate value of y at x=x,

A
k1(x1,y1)
B
Po(Xo,Yo) ,
A
i i N
yiP=yoH h [fx4+ %4 Hyo+ Yah f(xo,y0))] 4
Ir O al, Xo Xot%h o Xo+h=x
Yot =yt b [+ V2 h, yot V2 hf(Xn,ya))] ------=- (2)
or
y(x+th)=y(x)th[f(x+ 2 h, y+ /2 hf(x,y))] -=----------- 3)

Equations (2) or (3) is called modified Euler’s formula.
Note 1: Hence the Euler predictor is
Yar1=YaT hys'
and the corrector is
Vo 1=Yath/2 (y,' + ¥'ne1 ) in the improved Euler method:

Note 2: There is a lot of confusion among the authors: Some take the improved Euler
method as the modified Euler method and the modified Euler method is not mentioned at
all. You can see this in some books.
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Example 1

Given y'=-y and y (0) =1, determine the values of y at x=(0.01) (0.01) (0.04) by Euler
method.

Solution: y'=-y andy (0) =1; f(x,y)=-y.

Here, x¢=0, yo=1, x;=0.01, x,=0.02, x5=0.03, x4,=0.04

We have to find y,y,,y3,y4. Take h=0.01.

By Euler algorithm,

Ynr1=Yothyn' = yothf(Xn,yn)  -meeeeeeeee- (1)
y1=Yo+hf(X,y0)=1+(0.01)(-1)=1-0.01=0.99
yo=yr+hy; ' = 0.99+(0.01)(-y; )

=0.99+(0.01)(-0.99)
=0.9801
y3=y>+thf(X,,y2)=0.9801+(0.01)(-0.9801)
=0.9703
v4=y3+thf(X3,y3)=0.9703+(0.01)(-0.9703)
=0.9606

Tabular values (step values) are:

X 0 10.01 0.02 0.03 0.04

Y 0.9900 10.9801 |0.9703 |0.9606

1
Exacty |1 10.9900 |0.9802 ]0.9704 |0.9608

Since, y=e™ is the exact solution.
Example 2: Using Euler’s method, solve numerically the equation,
y'=x+y, y(0)=1, for x=(0.0) (0.2)(1.0)
check your answer with the exact solution.
Solution: Here h=0.2, f(x,y)=x+y, x0=0, yo=1
x;=0.2, x,=0.4, x3=0.6, x,=0.8, x5=1.0
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By Euler algorithm,

y1=Yothf(x0,y0)=yoth[Xotyo]
=1+(0.2)(0+1)=1.2
yo=y1th[x;+y;]=1.2+(0.2)(0.2+1.2)=1.48
y3=y2th[xatys]
— 1.48+(0.2)(0.4+1.48)=1.856
y4=1.856+(0.2)(0.6+1.856)=2.3472
ys=2.3472+(0.2)(0.8+2.3472)=2.94664

Exact Solution is y=2¢e*-x-1. hence the tabular values are:

X 0102 0.4 0.6 0.8 1.0

Eulery |1 |12 1.48 1.856 | 2.3472 | 2.94664

Exacty |1 | 1.2428 | 1.5836 | 2.0442 | 2.6511 | 3.4366

The values of y deviates from the exact values as x increases. Hence we require to use
either modified Euler or improved Euler method for the above problem.

Example 3:Solve numerically y'=y+e*, y(0)=0; f(x,y)=y+e"
x0=0, yo=0, x;=0.2, x,=0.4, h=0.2
By improved Euler method.
Yur1=Yn= 72 h[{(Xp,yn) H(Xyth, yothi(x,,y0))]
yi=yot+ V2 h[f(Xo,y0)H(x1,yothf(X0,y0))]  -------- (D
=0+ (0.2/2) [yote 0+yot+h(yote 0)+e*0+h]
=(0.1)[0+1+0+0.2(0+1)+e"?]
y(0.2)=(0.1)[1+0.2+1.2214] = 0.24214
y2=yrt+ 2 h [f(x,y ) H(x+th, yi+hi(x,y;))] -------- (2)
Here f(x1,y,)=y;+e"1=0.24214+¢"*=1.46354
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y1+hif(x;,y;) = 0.24214+(0.2) (1.46354) = 0.53485
f(x;+h, y;+hf(x,,y1)) = (0.4, 0.53485)
=0.53485+¢0.4 =2.02667
Using (2),
v>=y(0.4)=0.24214+(0.1) [1.46354+2.02667]
=0.59116
y(0.4)=0.59116
Example 4: Compute y at x = 0.25 by Modified Euler method given y' = 2xy, y(0) = 1.
Solution: Here , f(x,y) = 2xy : x0=0, yo= 1.
Take h=0.25, x;,=0.25
By Modified Euler method,
Yot = Yo+ h [ (i Yoo rch fxay) )] ens(D)
yi= Yo th[f(xo+ 2 h, yo+ 2 h f( xo,y0) )]
f( xo,y0) + £(0,1) =2 (0)(1) = 0.
yi= 1+ (0.25) [f(0.125,1)]
=1+(0.25)[2x0.125x 1]
y(0.25)=1.0625
By solving dy = 2xy, we get y=e **using y(0) = I,
dx
y(0.25)=¢ “*2=1.0645
Exact value of y(0.25) = 1.0645
Error is only 0.002.

Note : To improve the result we can take h=0.125 and get y( 0.125) first and then get y
(0.25). of course, labour is more.
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3.5 Runge- Kutta Method

The use of the previous methods to solve the differential equation numerically is
restricted due to either slow convergence or due to labour involved , especially in Taylor-
series method. But , in Runge- Kutta methods, the derivatives of higher order are not
required and we require only the given function values at different points. Since the
derivation of fourth order Runge-Kutta method is tedious, we will derive Runge-Kutta
method of second order.

Second order Runge-Kutta method (for first order O.D.E)
AIM : To solve dy / dx = f(x,y) given y(Xo)=Yy ....(1)

Proof. By Taylor series, we have,

y (x+h) = y(x)+ hy' (x)+ h*/2! y’(x)+On’) ........ (2)
Differentiating the equation (1) w.r.t.x,

of of dy
y'=—+ . — =fi +y' f =+
ox Oy dx
Using the values of y' and y" got from (1) and (3), in (2), we get,
Y(x +h)-y(x)=hf+ % h*[ £+ ff;] + O(h’)

Ay=hf+ % h*(f+ff,)+ O( hY)
Let Ayy=k=f(x,y). Ax=hf(x,y), Ayy=k, =hf(x+mh,y+mk;)

and Ay=ak;+ bk, , Where a, b and m are constants to be determined to get the better
accuracy of Ay. Expand k, and Ay in powers of h.

Expanding k,, by Taylor series for two variables, we have

K, =hf(x+mh,y+mk;)

= h[f +mhf; +mhff+{(mho/0x +mk;, dIoy)*£/21 +....] ...(8)
= hf+mh,(f,+ffy)+.... Higher powers of h ........... 9)
Substituting ki,k, in (7),

Ay=ahf+b[hf+mh*(f+ff,)+O(h’)]
=(atb)hf+bmh’*(f+f,)+O(h’) ... 10)
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Equating Ay from (4) and (10), we get

=hf+mh2(fx+ffy)+ ...... higher powers of h.......... 9)

Substituting ki, k; in (7),

Ay = ahf+b[hf+mh’(f,+ff,)+O(h’)] =(a+b)hf+bmh*(f+ff,)+O(h%) ............. (10)
Equating Ay from (4) and (10), we get

atb=l andbm='%  ............ (11)

Now we have only two equations given by (1) to solve for three unknowns a,b,m.
From a+b=1, a=1-b and also m= 1/2b using (7),

Ay=(1-b)k,;+bk,  Where k;=hf(x,y)

K,=hf(x+h/2b, y+h{/2b) Now Ay=y(x+h)-y(x)

Y (x+h)=y(x)+(1-b)hf+bhf(x+h/2b,y+hf/2b)

i.e., Ynr1=yaH(1-b)hf(x,,yn) +bhf(x,+h/2b,y,+h/2bf(x,,y,))+O(h’)

from this general second order Runge kutta formula, setting a=0, b=1, m=1/2, we get the
second order Runge kutta algorithm as

ki=hf(x,y) & ky=hf( x+'2h, y+ ' k) and Ay=k, where h=Ax

Since the derivation of third and fourth order Runge Kutta algorithm are tedious, we state
them below for use.

The third order Runge Kutta method algorithm is given below :
K=hf(x,y)

Ky=hf(x+1/2h, y+1/2k;)

K;=hf(x+h,y+2k;,-k;)

and Ay=1/6 (k;+4k,+ks)

The fourth order Runge Kutta method algorithm is mostly used in problems unless
otherwise mentioned. It is

Kl:hf(xay)
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Ky=hf(x+1/2h, y+1/2k;)

K;=hf(x+1/2h, y+1/2k,)

K,=hf(x+h, y+k;)

and Ay= 1/6 (k;+2k,+2k;+ky)

yxth)=y(x)+ Ay

Working Rule :

To solve dy/dx = f(x,y), y(X0)=Yo

Calculate k;=hf(x,,yo)
Ky=hf(x¢+1/2h,yy+1/2k;)

K;= hf(xo+1/2h,y,+1/2k;)

Ky=hf(xoth, yotks)

and Ay= 1/6 (k,+2k,+2k3+ky)

where Ax=h

Now y;=yot+ Ay

Now starting from (X;,y;) and repeating the process, we get (X,,y») etc.,
Note 1: In second order Runge kutta method .
Ayo=k,=hf(x¢th/2, yot+ Y2 k;)

Ayo=hf(x¢th/2, yot V2 hf(Xe,y0))

Yi=Yot Ayoe=yothf(Xeth/2, yot 2 hi(x0,¥0))
This is exactly the modified Euler method.
So, The Runge Kutta method of second order is nothing but the modified Euler method.

Note 2: If f(x,y)=f(x), i.e., only a function x alone, then the fourth order Runge Kutta
method reduces to

K 1 zhf(Xo)
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Ay=1/6h[f(xo)+4f(x0-+h/2)+f(xo+h)]
—[(h/2)/3][f(xo)+4f(x+h/2)+H(xo+h)]

= the area of y=f(x) between x=x, and x=x,+h with 2 equal intervals of length h/2 by
Simpson’s one third rule.

i.e., Ay reduces to the area by Simpson’s one third rule

Note 3: In all the three methods, (2nd order, 3" order and 4™ order) the values of ki, k, are
same. Therefore, one need not repeat the work while doing by all the three methods.

Example 1
Apply the fourth order Runge- Kutta method to find y(0.2) given that y' = x+y, y(0) =1.
Solution: Since h is not mentioned in the question, we take h=0.1
y'=xty, y(0) = 1. f(x,y)=xty, x¢=0, yo=1
x;=0.1,x,=0.2
By fourth order Runge-Kutta method, for the first interval,
k1= hf(x¢,y0) = (0.1) (X0, + ¥o) = (0.1) (0+1)=0.1
ko=hf(xo+ Y2 h, yo+ Y2 k; ) =(0.1) £(0.05,1.05)
=(0.1)(0.05 +1.05)=0.11
ky; =hf(xg+ 2 h,yo+ 2 k,)
=(0.1) 1(0.05,1.055) = (0.1)(0.05 + 1.05) = 0.1105
K4 =hi(xgth, yot /2 k3)
=(0.1)f(0.1,1.1105) = (0.1)(0.1 + 1.1105) = 0.12105
Ay =1/6 (k;+ 2k, + 2k; + ky)
= 1/6(0.1+0.22+0.2210 +0.12105)=0.110341667.
y(0.1) = y;=yotAy=1.110341667 = 1.110342.

Now starting from (x;,y;) we get (X»,y,). Again apply Runge-Kutta algorithm replacing
(XO,YO) by (XbYI)-
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ki=hf(x1,y1)=(0.1)(x;+y;)
=(0.1)(0.1+1.110342)=0.1210342

ko=hf(x,+h/2,y,+ 2 k;) = (0.1)f(0.15,1.170859)
=(0.1)(0.15+1.170859)=0.1320859

ks=hf(x,+h/2,y;+1/2k,)=(0.1)f(0.15,1.1763848)
=(0.1) (0.15+1.176348)=0.13263848

ks=hf(x;+h,y;+k3)=(0.1)f(0.2,1.24298048)
=0.144298048

y(0.2) = y(0.1)+(1/6)(k+2k,+2k3+ky)
=1.110342+(1/6)(0.794781008)

y(0.2)=1.2428055

Correct four decimal places, y(0.2) = 1.2428

Example 2

Obtain the values of'y at x=0.1, 0.2 using R.K method of (i) second order (ii) third order
and (iii) fourth order for the differential equation y'=-y, given y(0)=1.

Solution :Here f(x,y)=-y,xc=0, yo=1, x;=0.1, x,=0.2
(1) Second Order:
k;=hf(X0,y0)=(0.1)(-yo)=- 0.1
ky=hf(x¢+ % h, yot+ Y2 k;) = (0.1) £(0.05,0.95)
=-0.1(x0.95)=- 0.095= Ay
y1=Yo+tAy=1-0.095=0.905
y1=y(0.1)=0.905
Again starting from (0.1, 0.905) replacing (X,yo) by (x,y;)we get
k;=(0.1) f(x;,y1)=(0.1) (-0.905)= - 0.0905
ky=hf(x;+ %2 h, y1+ Y2 ky)
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=(0.1)[f(0.15,0.85975)]=(0.1)(-0.85975)=-0.085975
Ay=k,  y,=y(0.2)=y;+Ay=0.819025
(11) Third Order:
k= hf(x¢, yo) =-0.1
ko= hf(x¢t+ % h, yot+ %2 k;) = - 0.095
ks=hf(x¢+h,yo+2k,-k;)
=(0.1)1(0.1,0.9)=(0.1)(-0.9)=-0.0.9
Ay=1/6 (k,+4k,tks3)
y(0.1)=y,=y,+Ay=1-0.09=0.91
Again taking (x,y;) has (xo,yo) repeat the process
ky=hf(x;,y;)=(0.1) (-0.91)=-0.091
ko=hf(x;+ 2 h, y;+ %2 k)
= (0.1)£(0.15,0.865)=(0.1) (-0.865)= - 0.0865
ks=hf(x;+h, y;+2k,-k;)
=(0.1)£(0.2,0.828) = -0.0828
y>=y1+Ay=0.91+1/6 (k;+4k,+Kk3)
=0.91+1/6 (- 0.091-0.3460 — 0.0828)
y(0.2)=0.823366
(ii1) Fourth order:
ky=hf(x0,y0)=(0.1)f(0.1)=-0.1
ky=hf(x¢+ %2 h, yo+1/2k;)=(0.1)£(0.05, 0.95) = - 0.095
ks=hf(xo+ "2 h, yot+ Y2 k;) = (0.1) £(0.05, 0.9525)=- 0.09525
ks=hf(x¢th,yotk;)=(0.1)f(0.1,0.90475) = -0.090475
Ay=1/6 (k;+2k,+2ks+ky)
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y1=YotAy=1+1/6 (k+2ky+2k;+ky)
y1=y(0.1)=0.9048375
Again start from this (x;,y;) and replace (Xo,y,) and repeat
ki=hf(x,y;)=(0.1)(-y1)= - 0.09048375
ko=hf(x,+1/2h,y,+1/2k;)

= (0.1)f(0.15,0.8595956) = -0.08595956
ks=hf(x;+ 2 h,y,+ 2 k)

= (0.1)f(0.15,0.8618577)= - 0.08618577
ks=hf(x,+h,y;+k3)

=(0.1)f(0.2,0.8186517)=-0.08186517
Ay=1/6(-0.09048375-2x 0.08595956- 2x 0.08618577 — 0.08186517) =-0.0861066067
y>=y(0.2)=y,+Ay=0.81873089

Tabular values are:

X Second Third order | Fourth order | Exact value
order Y=e-x

0.1 10.905 0.91 0.9048375 |0.904837418

0.2 ]0.819025]0.823366 | 0.81873089 | 0.818730753

Example 3

Using Runge Kutta method of fourth order solve dy/dx=y*-x*/y*+x* given y(0) = 1 at
x=0.2, 0.4

Solution : y'=f(x,y)=y*-x*/y*+x*:

Here x,=0, h=0.2, x1=0.2, x2=0.4, y0=1
f(x0,y0)=1(0,1)=1-0/1+0=1
k;=hf(x0,y0)=(0.2)x,=0.2

ko=hf(x¢+ %2 h, yot+ %2 k;)=(0.2)f(0.1,1.1)
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=(0.2)[(1.1)*~(0.1)*/(1.1)*+(0.1)*]

=(0.2)[1.21-0.01/1.21+0.01]  =0.1967213
ks=hf(xo+ 2 h, yo+ ¥ k»)

=(0.2) f(0.1, 1+ % (0.1967213))

= (0.2) (0.1, 1.0983606)

= (0.2) [(1.0983606)*-(0.01)/ (1.0983606)*+(0.01)]

=0.1967
ks=hf(x,+h,yotk3)

= (0.2) £(0.2,1.1967)

=(0.2) [(1.1967)*-(0.2)*/(1.1967)*+(0.2)*] = 0.1891
Ay=1/6[k;+2k>+2ks+Ky]

= 1/6[0.2+2(0.19672)+2(1.1967)+0.1891]

=0.19598.
y(0.2)=y;=y,+Ay=1.19598
Again to find y(0.4), start from (x;, y;) = (0.2, 1.19598)
Now, ki=hf(x,,y1)
=(0.2) [ (1.19598)*-(0.2)*/(1.19598)*+(0.2)*] =0.1891
k=hf(x;+ ¥ h, yi+ % k) = (0.2) (0.3, 1.29055)
=(0.2) [(1.29055)* — (0.3)*/(1.29055)*+(0.3)*] = 0.17949
ks=(0.2) £ (0.4, y1+k3) = (0.2) £ (0.4, 1.37528)

=0.1687
Ay=1/6 (k;+2k+2ks+k,)

= 1/6[0.1891+2(0.1795)+2(0.1793)+0.1687]

=0.1792
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y>,=y(0.4)=y,+Ay=1.3751.

3.6 Predictor — Corrector Methods

The methods which we have discussed so far are called single step methods
because they use only the information from the last step computed. The methods of
Milne’s predictor and corrector , Adams-Bashforth predictor and corrector formulae are
multi step methods.

In solving the equation dy / dx = f(x,y) , y(X¢) = yo we used Euler’s formula.

YiH:}’i +h(f(X1,y1),I= 1,2 ................. (1)

We proved this value by Improved Euler method

Yier = ¥i H(1/2) h[f(x; , yi)+ fXiwr , yie)] 51 = 1,200 ()

In the equation (2) , to get the value of y;;; we require y;.; on the RHS.To overcome this
difficulty , we calculate y;+; using Euler’s formula(1) and then we use it on the RHS of
(2) , to get the LHS of (2).This y;; can be used further to get refined y;.; on the LHS
.Here , we predict a value of y;;; from the rough formula(1) and use in (2) to the correct
value . Every time , we improve using (2).

Hence equation (1) Euler’s formula is a predictor and (2) is a corrector. A
predictor formula is used to predict the value of y at x;;; and a corrector formula is used
to correct the error and to improve that value of y;. ;.

3.7 Milne’s Predictor Corrector Formulae

Suppose our aim is to solve dy / dx = f(X,y) , Y(X0) = Vo «vveevvreennneannn (1)
Numerically,Starting from y, = y(x() , we have to estimate successively
¥1 = y(Xoth) = y(x1) , y2 = y(Xo+2h)= y(X2) , y3 = y(Xot3h)= y(x3)

Where h is a suitable accepted spacing , which is very small.

By Newton’s forward interpolation formula ,

y=vo+ uAy, +u (u-1) /2! A’yo+.......

Where u = (x- x¢) / h.

i.e.x=x, = uh.Changing ytoy’,
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Yy =yo tuly, +u (u-1) /2! Azyo‘-i- ....................

Integrating both sides from x, to x4,

X4 X0+4h

[y dx=][ yo'+tuAy,'+u (u-1) /2! A’yp'+..........

X0 X0
4

W™ =h] [y rudye+u-1) /2! Alyo'+..

X0 0

Since x= xy+| uh and dx =h du

Y4—Y0:h[}’0‘u+Ayo‘u2/2+(1/2)A2y0(u3/3—u2/2)+ ....... ]

between 0 to 4.
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=4h/3 2y, -yy +2y3)+ 14h /45 A* yo' .o (3)

Taking into Account only up to the third order equation , (3) gives
Va=Yo+4h/3 2y -y +2y3) 4)

=yo+4h/3 (2f -, +2 £3)
The error committed in (4) is (14h/45) A* yo+..... and this can be proved to be
(14h /45)y® (£) where x, < £< x4 since A = E-1 = hD for small value of h.
Therefore The error = (14h°/45)y® (£) (3) becomes ,
ya=7vo+4h/3 (2f; - £, +2 f5)+ (14h° / 45 )y® (£) ...(5)
In general ,
Yot = YasT4/3(2yna" - V" 2 ya )+ (1407 45 )y (£)...(6)
Where X3 < £,<Xp:1.
Equation (6) is called Milne’s predictor formula.
To get Milne’s corrector formula , integrate (2) between the limits x, to x¢ +2h.
Therefore
Xot2h Xot2h

[y dx =[{yy+uAy, +u (u-1)/2 A2 y0'+....) dx
X0 X0

=h/3 [ yo' +4y, +y,]-0/90 Aty +. ... (7)

Taking into account only upto third order ,

Y2 = Yo th/3[ yo 4y +y2 ]

and the error in (8) is = -h/90 A'y, +.....

and this can be proved to be( -h’ / 90 )y (£)) , where x, < £<x,.
(7) becomes ,

v, =vyo+ 03 ([ yo +4y: +y2]-h° /90 )y (£) ........(9)

In general,
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Y1 = Yo W3 (Yoi© +4 Yo' +yae )+ (140745 )y (£)...(10)
Where x,.; < £,<X,: -
Equation (10) is called Milne’s corrector formula.

Hence we predict form

Ynrip= Yn3T40/3 (2¥n2 - Yot F2¥n ) eeeeiiiininns (11)
and correct using
Vorte = Y1 T3 (Vntm 4 Yo F¥ne1 )eeveneiiniiiin (12)

Note : Knowing 4 consecutive values of y namely , y,3, ¥ n2 , Y1 and y, we calculate y
21 using predictor formula. Use this n+1 on the RHS of corrector formula to get y,;
after correction. To refine the value further , we can use this latest y ,.; on the RHS of
(12) and get a better y,1.

Example 1

Find y(2) if y(x) is the solution the solution of dy / dx = (1/2) (x+y) given y(0) =2,
y(0.5) =2.636, y(1) =3.595 and y(1.5) = 4.968.

Solution;

Here ,x0=0,%x=0.5,x=10,x3=1.5,%x=2.0,h=0.5,y,=2,y,=2.636,y, =
3.595, y3 =4.968.

f(XY)=X+Y) =¥ o (1)

By Milne’s predictor formula ,

Yortp= Vo3t 403 (2¥n2" - Yo1 T2 ya)

therefore y4, = yo +4h /3 2y, -y2 +2y37).ceivinininnn. (2)
From (1),

vy =Y (x; ty1) = 2 (0.5+2.636)=1.5680

yvo =% (X3 tyy) =2 (1+3.595) =2.2975

y3' =" (x3ty;) = %2 (1.5+4.968) = 3.2340

By (2),
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Y4 P

=2+[4(0.5)/3][2(1.5680) —(2.22975) + 2(3.2340)]

=6.8710

Using Milne’s corrector formula ,

Yor1 = Yo T3 (Yo" 4 yn' +¥ne)

Vac=Yoth/3 (y2  +4 y3 +ys )eeeeeennni 3)

va =(%2) (X4tys) = (1/2) (2+6.8710) = 4.4355

Using (3), we get

Va,c=3.595+(0.5/3)[ 2.2975 + 4(3.2340)+ 4.4355]
=6.8732

Therefore corrected value of'y at x=2 is 6.8732.

Example 2

Using Milne’s method find y (4.4) given 5xy' +y*-2=0 , y(4) =1, y(4.1) = 1.0049 ,
y(4.2) =1.0097 and y(4.3)=1.0143.

Solution:

y = (2-y2/5x),x0=4,xl=4.1 , X742 ,x3=43 ,x4=44,y,=1,y,=1.049 ,y, =
10097 , y3 = 1.0143.

1" =[ 2-(1.0049)* / 5(4.1)] = 0.0493.

¥'a = 2-y%/5%,=2-(1.0097)*/5(4.2)=0.0467

yA3=2-y3/5x3=2-(1.0143)?/5(4.3)=0.0452

By Milne’s Predictor formula,

Vap= Yor4h3Q2yi'-yL+2y3) e (1)
=1 +4(0.1)/3 [2(0.0493)-0.0467+2(0.0452)]
=1.01897

V4= 2- y24/5(x4)= 2-(1.01897)* /5(4.4)= 0.0437
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Using

Vac=y2+h/3(y) Hdy's+ys) 2)

=1.0097 + 0.1/3 [0.0467 + 4(0.0452) + 0.0437]
y'a.=1.101874.
Note :
Use this corrected y4 . and find y's . and again use (2)
Vie= 2- Y4/5(x4)= 2-(1.01874)* /5(4.4)= 0.043735
Now using (2),
¥4 =1.0097 + 0.1/3 [0.0467 + 4( 0.0452) + 0.043735]
=1.01874

Since two consecutive values of y's . are equal, we take y,= 1.01874 (correct to 5
decimals).

3.8 Adam — Bashforth (Or Adam’s) Predictor — Corrector Method

We state below another predictor-corrector method, called Adam’s method or
Adam-Bashforth method. We give below predictor and corrector formula without proof.
Here also, we require four continuous values of y to find the value of y at the fifth point
similar to Milne’s method.

Predictor : yy.1 = yath/24[55 y'hi + 37 y'h2— 9 y'nsl
Corrector: Yniic= Ynth/24[9 yu1'+19 v ' -S5yn1' + Yn2 ']
Example 1

Solve and get y(2) given dy/dx = Y4(x+y),y(0)=2 y(0.5)=2.636, y(1)=3.595, y(1.5)=4.968
by Adam’s method.

Solution: From example 1 under Milne’s method,
We have y'y= " (0+2) =1
y'1 =1.5680, y', =2.2975, y's =3.2340.

By Adam’s predictor formula,
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Va1, = Yot W/24[55 y'n - 59 ' 1+ 37 y'h2- 9 ¥'ns]

Yap= y3+h/24[55y'3 -59 ¥y, + 37y 1-9ys] ....(1)
=4.968+ 0.5/24 [55(3.2340)-9(2.2975)+37(1.5680)- 9(1)]

=6.8708

y'y= "2 (x4+y4) = 1(2+6.8708)=4.4354

By corrector,

Vac=ysth24[9yyoys+yi]l (2)
=4.968+0.5/24[9(4.4354)+19(3.234)-5(2.2975)+1.5680]
=6.8731

Note : we can further improve using this latest y, . again in (2).

Example 2

Using Adam’s method find y(0.4) given
dy/dx= " xy, y(0)=1, y(0.1)=1.01, y(0.2)=1.022, y(0.3)

=1.023

Solution: x(,=0, x,=0.1, x,=0.2, x3=0.3, x,=0.4

vo=1,y1=1.01,y,=1.022, y;=1.023, y,=?

By Adam’s method,

Predictor: y,.1, p=yath/24[55 ¥'v= 59 ¥'0.1 37 V' - 9 Yz
Yap=Yy3th/24[55 y'5=59 ¥’ 37 y'1-9 yo]oeeinnininn (1)

here yy'=" Xoyo =0
yi’=Y2x1y; =(0.1) (1.01) / 2 =0.0505
y2'= Y2 Xy, =(0.2) (1.022) / 2 = 0.1022
y3’= Y2 x3y3 =(0.3) (1.023) /2 =0.1535

using in (1),
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ya4,p = 1.023 + 0.1/24[55(0.1535)-59(0.1022) + 37
(0.0505) — 9(0)]
=1.0408
Yap= 2Xsys = Y2 (0.4)(1.0408)=0.20816.
By Adam’s corrector formula
Yo-te = Yo+ W24 9y + 19y — 5y 1ty nal
Yae=Y3+0/24[ 9y4+ 19y3— Sy tyr]
=1.023 +0.1/24 [ 9(0.2082)+ 19(0.1535)-5(0.1022) + 0.0505]
=1.0410
Y(0.4) =y4. =1.0410
Example 3

Find y(0.1),y(0.2),y(0.3) from dy/dx = xy + y>, y(0) = 1 by using Runge- Kutta method
and hence obtain y(0.4) using Adam’s method.

Solution: f(x,y) = xy +y2, x0=0,x;=0.1,x,=0.2,x3=0.4,x,=0.4,y,=1
k,=hf(xy, yo) = (0.1) £f(0.1)= (0.1) 1=0.1
k,=hf(0.05, yo+ k1/2) = (0.1)f(0.05, 1.05)
= (0.1)[(0.05)(1.05)+(1.05)*]=0.1155
k3= hf(0.05, yotky/2) = (0.1) £(0.05,1.0578)
= (0.1)[(0.05)(1.0578)+(1.0578)*]
=0.1172
k4= hf(xoth,yot k3 )
=(0.1)f(0.1,1.1172)
= (0.1)[(0.1)(1.1172)+(1.1172)*]=0.13598

y1= Yo+ 1/6[k; + 2k + 2k; + 2ky]
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=1.1169

y(0.1)=1.1169
Again , start from y; :
k; = hf(x;,y;) = (0.1)f(0.1,1.1169)  =0.1359
K,=hf(x; +h/2, y; + k;/2)=(0.1)f(0.15, 1.1849) =0.1582
k;=hf(0.15,y1+k5/2)=(0.1)f(0.15,1.196) = 0.16098
k4=(0.1)£(0.2,1.2779)=0.1889
y>=1.1169+1/6[0.1359+2(0.1582+0.16098)+0.1889]
y(0.2)=1.2774

Start from (x,,y,) to get y;

k= hf(x,,y,) = (0.1)f(0.2,1.2774) = 0.1887

ko= hf(x, +h/2, y, + k;/2)=(0.1)f(0.25, 1.3718) = 0.2225

ks=hf(x3,y,tk3/2)=(0.1)f(0.3,1.5048) = 0.2716

y3=1.2774+1/6[0.1887+2(0.2225)+2(0.2274)+0.2716]
=1.5041

Now we use Adam’s predictor formula

Y 4,p=y3th/24[55y3’-59y,’+37y," -9y’ ] cevevinnnn.. (2)

Yo'=Xoyo+y =1

Y =xy1+y"1=1.3592

Y2 =x,y,+y*>=1.8872

Y3 =x3y5+y*5=2.7135

Using (2),

Y4,=1.5041+0.1/2[55(2.7135)-59(1.8872)+37(1.3592)-9(1)]

=1.8341
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Y74 =xayaty2e=(0.4)(1.8341)+(1.8341) = 4.0976
Y= y3th/24[9y’4+19y3” — Syr’+yi ]
= 1.5041+0.1/24[9(4.0976) + 19 (2.7135) — 5
(1.8872) + 1.3592]
=1.8389
Y(0.4)=1.8389.,
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POSSIBLE QUESTIONS:

Part-B( 5X6 = 30 Marks)
Answer all the questions:

1. Solve y’=—-y & y(0)=1 determine the values of y at x=(0.01)(0.01)(0.04) by Euler method.

2. Compute y at x=0.25 by Modified Euler method given y’=2xy, y(0)=1.

3. Solve the equation Z—z = 1—y given y(0)=0 using Modified Euler method and tabulate the
solutions at x=0.1,0.2.

4. Use Runge kutta method of fourth order find y for x = 0.1 and 0.2, given that
dy/dx=x+y, y(0)=1.

5. Apply the fourth order Runge Kutta method to find y(0.1), y(0.2) given that y’=x+y,
y(0)=1.
6. Find y(2), if y(x) s the solution of =% =
y(1)=3.595and y (1.5)=4.968.
7. Given Z—z=1+y2, where y=0 when x=0, find y(0.4) using Adams Moultan method.

2ty VY (0)=2,y(0.5)=2.636,

8. Using Milne’s method find y (4.4) given 5xy’ + y*> —2 = 0 given y(4) =1,
y(4.1) =1.0049, y(4.2) =1.0097 and y(4.3) = 1.0143.

9. Derivative of Milne’s Predicator and Corrector Method.
10. Determine the value of y (0.4) using Milne’s Method given y = xy+y?, y(0)=1 and get the
values of y(0.1),y(0.2) and y(0.3)
PART C- (1 x 10 =10 Marks)

( Compulsory )

1. Solve numerically the equation y’ = x+y , y(0) =1 for x =0.0(0.2)(1.0) by Euler method.

2. using Adam’s moulton predictor- corrector method. Find y(1.4) if y satisfies
A 1Yoy =1, y(1.1) = 0.996,y(1.2)= 0.986, y(1.3) = 0.972.

dx x2

3. Given dy/dx =2 (1 +x2 ) y2 and y(0) =1, y(0.1) =1.06, y(0.2) = 1.12, y(0.3) =1.21. evaluate
y(0.4) by Milne’s predicator corrector method.
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Unit 1
Part A (20x1=20 Marks)
Question Opt 1 Opt 2 Opt 3 Opt 4 Answer

The order of the error in Euler method is --------------- h h? b’ o|h?

Picard’s  [Simpson’s Euler

--------- method is the Runge — Kutta method of first order. Milne’s method |method method method Euler method

A particular case of Runge Kutta method of second order is --------------—1 Picard’s  [Modified Euler | Taylor Modified Euler
- Milne’s method [method method Series method
. Euler method is used for solving --------------- differential equations. |first order fourth order |third order second order |first order
The modified Eulers method is based on the of points sum multiplicatio |average subratction  |average

n
The error in modified Euler method is ---------— O (h%) O (h* O (b’ O (h" O (b’
Modified Euler method will provide error free solutions if the given
function is ---------------- linear parabola  [polynomial non linear |linear

quick
The use of Runge kutta method gives ------------- to the solutions of the |slow convergenc
differential equation than Taylor's series method. convergence |e oscillation divergence |quick convergence

Runge kutta
Runge method of
Runge kutta kutta fourth order Runge kutta
method of method of |Taylor series method of second

is nothing but the modified Euler method.

second order

third order

method

order
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In all the three methods of Rungekutta methods, the values ---------- are ki, ky, ks &
same. k, & ks k; &k, k, &k, ky k, & k;
dy/dx is a function x alone, then fourth order Runge — Kutta method Trapezoidal Taylor Simpson
reduces to --------------- rule series Euler method |method Simpson method
Milne’s is a ---------- method multistep iterative direct singlestep  |multistep
A particular case of Runge Kutta method of second order is ---------------1 Adam’s
- Moulton Milne’s Euler Runge-Kutta|Milne’s
Milne’s method is simple and has a good local error of order --------- h’ h' h' h’ h’
The ------------ method is a method that does not have the same Adam’s
instability problem as the Milne's method Moulton Milne’s Euler Runge-Kutta|Adam’s Moulton
In --------- method the true values should lies between the predicted and Adam’s Runge-
corrected values Milne’s Euler Moulton Kutta. Adam’s Moulton
In numerical methods , the boundary problems are solved by using ------- Finite Runge-
method difference Milne’s Euler Kutta. Finite difference
Runge kutta Runge kutta|Runge kutta Runge kutta
method of method of |method of Taylor series |method of second
is nothing but the modified Euler method. second order  |third order [fourth order method order
Runge kutta
Modified Euler |Euler method of Taylor series |Modified Euler
Runge kutta method of second order is nothing but the ------------------ . method method fourth order method method
Milne's method method is ------- method. single step multi-step |direct indirect multi-step
A predictor formula is used to  ------- the values of y at x;.. correct predict increase decrease predict
A corrector formula is used to ------- the error and to improve that value of
Visi correct predict increase decrease correct
Adams Moulton method is ------- method. single step multi-step |direct indirect multi-step
Adam’s
---------- method integrates over more than one interval. Moulton Milne’s Euler Runge-Kutta|Milne’s
Milne’s method is simple and has a good local error of order --------- h? h* h* h’ h’
The ------------ method is a method that does not have the same Adam’s
instability problem as the Milne's method Moulton Milne’s Euler Runge-Kutta|Adam’s Moulton
The formula is used to predict the value y(i+1) of y at  x(i+1) Predictor Corrector Corrector Picards Predictor
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The formula is used to improve the value of y(i+1) Predictor Corrector Taylors Picards Corrector

In predictor corrector methods,  prior values of y are needed to evaluate |1 2 3 4 4

the value of y at x(i+1)

In methods, 4 prior values of y are needed to evaluate the value of y [Taylor’s predictor Predictor- Euler’s Predictor-corrector
at x(i+1) corrector
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CLASS: I M.Sc MATHEMATICS COURSE NAME: NUMERICAL ANALYSIS
COURSE CODE: 19MMP103 UNIT: 1V BATCH-2019-2021
UNIT-1V
SYLLABUS

Boundary Value Problem and Characteristic value problem: The shooting method: The linear
shooting method — The shooting method for non-linear systems. Characteristic value problems —Eigen
values of a matrix by Iteration-The power method.

BOUNDARY VALUE PROBLEMS AND CHARACTERISTIC VALUE
PROBLEM

4.1 Introduction
Consider the two point boundary value problem
u= f(x,u,w),x €(a, b) (4.1)

Where a prime denotes differentiation with respect to x, with one of the following
three boundary conditions.

Boundary condition of the first kind:

u(@=vy, ,uby=y,. (4.2)
Boundary condition of the second kind:
w(@)=vy, ,wb)y=y,. (4.3)

Boundary condition of the third kind(or mixed kind):
a,u(a)a, w(a=y, (4.41)
b,u(b)tb, w(b)=1vy, (4.411)
Where a,,b,,a,,b,,y,,y, are constant such that
a,a, >0, | a, | + | a, | #0

b,b,>0, |b, |+]| b,|#0and , |a,|+]|b, |0.

In (4.1), if all the non zero terms involve only the dependent variable u and w’, then the
differential equation is called homogeneous, otherwise, it is inhomogeneous. Similarly,
the boundary conditions are homogeneous when v, and y, are zero; otherwise, they are

inhomogeneous. A homogeneous boundary value problem , that is a homogeneous
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differential equation along with homogeneous boundary condition , possesses only a

trivial solution u(x)=0. we, therefore , consider those boundary value problems in which a

parameter

A occurs either in the differential equation or in the boundary condition , and

we determine value of A, called eigenvalues for which the boundary value problem has a

nontrivial

solution. Such a solution is called eigenfunction and the entire problem is

called an eigenvalue or a characteristic value problem.

The solution of the boundary (4.1) exists and is unique if the following conditions are

satisfied:

Let u'=z and -0o< u, z <o

(1)
(i)
(iii)

4.2 Initial

Consider t

conditions

f(x, u, z) 1s continuous,
of/ou and 0f/0z exist and are continuous.
0f/ou>0 and | 6f/0z | < w.

In what follows, we shall assume that the boundary value problems a unique
solution and we shall attempt to determine it. The numerical methods for
solving the boundary value problems may broadly be classified in to the
following three types:

(1). Shooting Methods These are initial value problem methods. Here, we add
sufficient number of conditions at one end point and adjust these conditions
until the required conditions are satisfied at the other end.

(i1)Difference methods  The differential equation is replaced by a set of
difference
Equations which are solved by direct or iterative methods.

(111) Finite element methods  The differential equation is discretized by using
approximate methods with a piece wise polynomial solution.

We shall now discuss in detail the shooting methods and for solving
numerically both the linear and non linear second order boundary value
problems.

Value Problem Method (Shooting Method )

he boundary value problem (4.1) (BVP) subject to the given boundary
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Since the differential equation is of second order, we require two linear independent
conditions to solve the boundary value problem. one of the ways of solving the boundary
value problem is the following.

(i) Boundary conditions of the first kind Here , we are given u(a) = y,.in order that an
initial value method can be used, we guess the value of the slope at x=a as u'(a)=s.

(11) Boundary conditions of the second kind Here, we are given u’(a)=v,.in order that an
initial value method can be used, we guess the value of u(x) at x=a as u(a)=s.

(111) Boundary conditions of the third kind Here, we guess the value u(a) or u'(a). if we
assume that u'(a)=s, then from(4.41), we get  u(a)=(a,stvy,) a, .

The related initial value problem is solved upto x=b, by using single step or a multi-step
method. If the problem is solved directly, then we use the methods for second order
initial value problems. If the differential equation is reduced to a system of two first order
equations, then we use the Runge-Kutta methods or the multi-step methods for a system
of first order equations.

If the solution at x=b does not satisfy the given boundary condition at the other end x=b ,
then we take another guess value of u(a) or u’(a) and solve the initial value problem again
upto x=b. these two solutions at x=b , of the initial value problems are used to obtain a
better estimate of u(a) or u’(a) .A Sequence of such problems are solved, if necessary, to
obtain the solution of the

given boundary value problem. For a linear, non-homogenous boundary value problem, it
is sufficient to solve two initial value problems with two linearly independent guess initial
conditions.

This technique of solving the boundary value problem by using the methods for
solving the initial value problems is called the shooting method.

4.3 Linear Second Order Differential Equations
Consider the linear differential equations
-u"+p(x) w+q(x) u=r(x) , a< x <b (4.5)

Subject to the given boundary conditions. We assume that the functions p(x),
q(x)>0, and r(x) are continuous on [a, b], so that the boundary value problem(4.5) has a
unique solution.

The general solution of (4.5) can written as

u(x)=u, (), u, )+ p, v, (%) (4.6)
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Where (1). u,(x) is a particular solution of the non homogeneous equation (4.5), that is

U, "Hp(X) U, +q(x) up=r(x) (4.7)

(i1) u,(x) and u, (x) are any two linearly independent , complementary solutions of the
corresponding homogeneous equation of (4.5) , that is

-u,"tp(x) u,"+q(x) u,=0 (4.8)
-u, ""‘p(X) u, ""q(X) u, =0 (49)
We choose the initial conditions as follows:

Boundary conditions of the first kind Since u(a) = vy, 1s given, we take a guess value for
u'(a). We have the following two case.

Case 1: vy ,#0. We choose
uy(a) =u,(a)=u, (a)=vy,
uy’ (@)=, . u, (@)=, u, (@)=, (4.101)

Where nz ,M,»"N, are arbitrary. Since u,(x) and u, (x) are linearly independent solutions,

a suitable choice of the initial conditions is

n, =0,m,=1,7, =0. (4.10i1)

Other choices of linearly independent values can also be considered.

We now solve the differential equation (4.7)-(4.9) along with the corresponding initial
conditions, using value methods with the same lengths, and obtain u(b), u,(b) and u,

(b).Now since the solution (4.6) satisfies the boundary conditions at x=a and x=b , we
obtain, at x=a: uy(@)ytp, u, (@t p, u,(@)=vy,

Or Yot v, v =y, 00w, =00 x=b:
up(d)tyu, u, (Ot p, v, (b)=y, (4.11i)

72 -U, (b)

T )0

u,(b)£u, (b). (4.11ii)
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Case 2: y,=0. In this case, we cannot (4.101), since [u,(a), v, (a)]"=[0,1]" and [u, (a), w
,(a)]"=[0,0]" are linearly dependent . We choose the conditions as

uo(a): Mo » ul(a): s uz(a): 7,
u,’ (@, . u, (@)=, u, (@)=,
A suitable set of values is

7,=7,=0, n, =0; 7,=1,m,=0; 7,=0, n; =1. (4.12)
We note that the conditions [u,(a), u’, (a)]"=[0,1]" and[u, (a), v, (a)]"=[0,0]" are
linearly independent . Any other linearly independent set of values can be used.
We now solve the corresponding initial values problems upto x=b.

Now, since the solution (4.6) satisfies the boundary conditions at x=a and x=b, we obtain,
at

x=a: U (@), u, (@)t By u, (a)=y,=0.
Or Mot Wyt py 17,=0
Or u,=0(using (4.12))

Xeb: uy)r, u by, uy )=y,  (4.130)
_ 7274y (b)
Or = L2 O, b0
(4.1311)

We determine p, , p, from (4.11) or (4.13) and obtain the solution of the given boundary
value problem, using (4.6), at mesh point used in integrated the initial value problems.

Boundary conditions of the second kind Since w'(a)=1vy, is given ,we guess the value of
u(a). Again, we consider the following two cases.

Case 1: vy #0. We choose
uo(a): o > u1(a):771 > U, (a)= n,

Uy (@)=u,'(a) =u, (@)=, (4.141)
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A suitable set is values is
770: 05 m :15 1, :O' (41411)
Since the initial conditions [u,(a), u’, (a)]"=[0,1]" and[u, (a), v, (a)]"=[0,0]" are

linearly independent , we obtain linearly independent solutions u,(x) and u, (x). Using

these initial conditions, we solve the corresponding initial value problems, with the same
step lengths, upto x=b.

Now, from (4.6) , we get
w(x) =w (), v (), w,(x)

Using the given condition (4.3), we get , at

X=a: wo(a)tp, w@tp, w,@=y,

Or e L e T (4.161)
Or u,tu, =0

X =b: wo(b)tp, v ()t p, w,(b)=y,

Or W= 2220 ® e ). (4161

u, (b)-u,(b)’

Case 2: y,=0. we cannot use the conditions as in case 1, since [u,(a), u’, (a)]"=[1,0]"
and [u, (a), w, (a)]"=[0,0]" are linearly dependent . In this case, we choose

uo(a): 770 9u1(a)= 771 > uz(a)= 772
W= v, (@=n,, v, (@)=,
A suitable set of values is

17,=0, n, =v,=0; n,=1,1,=0; 7,=0, n; =1. (4.17)

We note that the conditions [u,(a), v, (a)]"=[1,0]" and[u, (a), v, (a)]"=[0,0]" are
linearly independent . Any other linearly independent set of values can be used.

Using (4.6), (4.15) and the boundary conditions (4.3), we get, at

X=a: u,(a)tp, v, (aytp, w,(@=y,=0.
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Or n, +p n+p,n,=0 .. (4.181)
Or Hy=
X=b: w,(b)ytu, v (b)t p, w,(b)=v,
or p,=22%® oo (4.18ii)
u; (b)

We determine p, , p, from (4.16) or (4.18) and obtain the solution of the boundary value
problem, using (4.6), at mesh point used in integrated the initial value problems.

Boundary conditions of the third kind In the case, we assume the arbitrary initial
conditions as

uo(a): Mo u1(a):771 > U, (a): 7,
wy(a)=n, v, (a=n,,w, @)=, (4.191)
A suitable set of values is

77020 ’ n; 209 771217 T];lkzoa 772209 n; =1' (41911)

Again , We note that the conditions [u,(a), u’, (a)]"=[1,0]" and[u, (a), v, (a)]"=[0,0]"
are linearly independent . Using these initial conditions, we solve the corresponding
initial value problems, using the same step lengths, upto x=b.

Using (4.6) (4.19) and the boundary conditions (4.4), we get, at x=a:
a, [uo()tu, u @t p, u,@)]-a, [wy@)tp, w, ()t
w, u, (@)= vy,
Or ay[ntp,m+u, ml-alng +un+u, =y,
Or Ao, -a, U, =Y, e (4.201)
x=b: by [u,(b)ytu, u, ()t p, u, 0)] +b, [wy(b)ytp, w,(b)tp, v, ()= v,
Or u, [byu,(b)+b, w,(b)]+pn, [byu,(b)+b, v, (b)]

=y, [b,u,b)y+b, w,®] . (4.20ii)
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We determine p, , u, from (4.20) and obtain the solution of the boundary value problem,
using (4.6), at mesh point used in integrated the initial value problems.

Boundary value problem of the first kind we solve the initial value problems
(4.211)(4.21ii) using the initial conditions

w,@ =7y, ,u,(@)=0
u,(@=y, ,v,(@=1 .. (4.231)

up to x =b. Any other value for u’, (a) can also be used. Since the general solution
(4.22) satisfies the boundary condition at x =b, we get

u(b)=v,=2ru,(b)+(1-A) u, (b)

_ V2" (b)

ul(b)-uz(b)’ul(b#uz(b)- e (4.23i0)

Boundary value problem of the second kind we solve the initial value problem (4.211) ,
(4.2111) using the initial conditions

u(d)=0,v,(@=vy, u,(@=1,v,(@=y, ... (4.231i1)
upto x=b. since the general solution (4.22) satisfies the boundary condition at x=b, we
have u (b)=vy,=ruw (b)+(1+ 1) w, (b)
_ 7,-uy(b) .
A=—"——2—— u (b)#Fuw,(b). ... 4.23
or A=y VL) (4.23iv)

Boundary value problem of the third kind we solve the initial value problem (4.211) ,
(4.211i1) using the initial conditions  u, (a)=0,w (a)=-y,/a,

u,(@=1,uw,@) =(a,-v7,)/a, .ccevvevnrrnnn. (4.23v)
upto x=b. the general solution (4.22) satisfies the boundary condition at x=b, we get
7,=byu((b)tb, u(b)=b, [Au,(b)+(1-A) u, (b)]+b,[ 2w, (b)+(1-1) v, (b)]
=A[b,u,(b)tb, w,(b) [+(1-1) [byu, (b)+ b, v, (b)]

72 —bou, (b)+bjusy (b)
Or A= [bou; (b)+bui (b)]-[bguy (b)+bub (b)) eveneninn (4.23vi)
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The results obtained are identical in both the approaches.
Example 1
Using the shooting method, solve the first boundary value problem
r=u+]1, 0< x <1
u(0)=0,u(l)=e-1.

Use the Euler-Cauchy method with h=0.25 to solve the resulting system of first order
initial problems. Compare the solution with the exact solution u(x) =e” -1.

Since boundary value problem in linear and non-homogeneous, we assume the solution in
the form

ux)=u,(xX)tp, u,x)+tp, u,x) (4.241)

Where u ,(x) satisfies the non-homogeneous differential equation and u,(x), u, (x) satisty
the homogeneous differential equation. Therefore, we have

u",-u,(x)=1, v’ ,-u,(x)=0 and wu",-u,x)=1
We assume the initial conditions as given in (4.12), that is
u,(0)=0, v, (0)=0;u,(0)=1, w,(0)=0;u,(0)=0,w,(0)=I.

For the sake of illustration, we shall follow the steps in the method and obtain the
analytical solution also.

Solving the differential equations and using the initial conditions, we obtain
u,(x)=(1/2)(e* +e *)-1, u,(x)=(1/2)(e*+e™),

u, x)=(122)(e*-e™) L (4.2411)

Now from (4.241) we obtain

u(0)=u, (O)y+u, u,(0)+ u, u,(0)

u(D=u,(tp, uy (D+p, u, (1)

=u,(D+p, u,()=e1. (4.24i11)

Now from (4.24ii) we obtain
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u,(1)=(1/2)(e-e " )-1 and u, (1)=(1/2)(e-e ")
Hence, from (4.241i1), we get

:(e—l)—uo(l):2(e—1)—(e+e_1 -2)
T w0 (e—e™)

-1
_e—e
-1
e—e

=1

Therefore, the analytical of the problem is
u(x)=u,(X)tp, u, (x)+p, u,(x)
=(12)(e*+e™)-1+(1/2)(e* -e ™ )=e " -1.

The illustrates the general of implementation of the method.

We now determine the solution of the initial value problems, using the Euler —Cauchy
method with h=0.25.

We need to solve the following three, second order initial problems in 0< x <I.
u”,-u,(x)=1, u,(0)=0,u,(0)=0.
u” -u,(x)=0 ,u, (0)=1,u (0)=0.
u’,-u,( ®x)=L,u,0)=0,u,0)=1. ... (4.24iv)
We write these problems as equivalent first order systems.
Denote u,(x)=Y ,(x), uw,(x)=Y",(x) =Z,(x),
1L (x)=Y (%), u,(0)=Y,(x) =2, (%),
u, X)=Y,x),uv,x)=Y",x)=7Z, X).

then , we can write (4.241v) as the following systems

Y, | — Z, Y, (0) _ 0
Z, 1+Y, )7\ Z,(0) 0
VY _(Z) (hOo)_(1
Z, Y, ) 7 \Z,(0) 0
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Y, ,= Z,) (1,0)) _ (1
Z, Y, )\ Z,(0) 0
Applying the Euler-Cauchy method

uj+l

1
=u; +E(k1+k2 )

k1=h f(tjauj) ’k2=h f (tj—’_h’u./—’_kl)
We obtain the following systems:

System 1 we have /', =Z,and f,=1+Y,
Yy i _ Yy, _'_ﬁ Zy,; _'_ﬁ Zy; +h(1+Y, ;)
Zyin Z,, 2 \UI+Y,, ) 2\ 1+Y,,+hZ,;
(14 /2) h Y, (w02
h 1+(h*/2) Z%f h

Y, h2/2)
=B(h) | 7 |+

%

1+(h2/2) h

Where B(h)= \ .
h 1+(h"/2)
The initial conditions are Y ;,=0 , Z ,=0.

The system 2 and 3 can be immediately written as

Y = B(h) Wlly Sl 70
Zl,j+1 Zl,j o ’ L '

Y, . Y, .
And {Z““J =B(h)|,Zz”J, %,,=0, Z,,=1.

2.j+1 2,j
Where B(h) is same as above.

Using h=0.25 . We obtain

Yo i 1.03125  0.25 Y, 0.03125
J _ v
Ziia 0.25  1.03125]| %4, 0.25
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With Y ,,=0, Z,,=0 for j=0,1,2,3, we get
u,(0.25)=Y,,=0.03125  w,(0.25)=Z,,=0.025
u,(0.50)=Y ,,=0.12598  w ((0.50)=Z,,=0.51563

u,(0.75)=Y ,,=0.29007  w ,(0.75)=Z,,=0.81324

u,(1.00)=Y =0.53369  u',(1.00)~Z,,=1.16117

141 1.03125 0.25 Y,
we have ’ T1LY,=1,Z,,=0.
Z\ 025 1.031 Z,. : :

Lj
u1(0.25)=Y1’1=1.03125 u, (0.25)=Z 1’1=0.025
u1(0.50)2Y1,2=1.12598 u, (0.50)221’2=0.51563
u1(0.75)ZYL3=1.29007 u, (0.75)221’3 =0.81324
u1(1.00)2Y1’4=1.53369 u', (1.00):ZL4=1.16117

Y, .. 1.03125 0.25 Y, .
i L/ , ¥,,=0, Z,,=1.
Zz.m 0.25 1.03125 Zz’j ; ’
u, (0.25)=Y 2,120.025 v, (0.25)=Z 2’1:1.03125

u, (0.50=Y,,=0.51563  w,(0.50~Z,,=1.12598
u,(0.75)=Y,,=0.81324  w,(0.75)~Z,,=1.129007
u, (1.00)=Y,,=1.16117  w,(1.00=Z,,=1.53369

From (4.13) , we get

v, —uy (1) _e—1-0.53369
u, (1) 1.16117

w=0, p,= =1.02017

we obtain the solution of the boundary value problem from

u(x)=u,(x)+1.02017 u, (x).
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the solution at the model points are given in table 4.1 . The maximum absolute error
which

Occurs at x=0.50 is given by
max.abs.error=0.00329

TABLE 1 SOLUTION OF EXAMPLE 1

X Exact:u(x ;) |u,

0.25 0.28403 0.28629
0.50 0.64872 0.65201
0.75 1.11700 1.11971
1.00 1.71828 1.71828

More accurate results can be obtained by using smaller step length h.

Alternative Method

To apply alternative method, we solve the two initial value problems
u=u,+1, u,(0)=0,u, (0)=0

and u=u,+1, u,(0)=0, v, (0)=I.

We can also take the initial condition w',(0) as v’,(0)=a , a#0,1. Therefore, we obtain the

equation

You]_ 103125 025 [, 7 [0.03125
Z, 025 1.03125]|Z,, 0.25
Where Y ,=u, and Z =u, .

Using the condition Y, ,=0, Z, ,=0 , we obtain
Y1 Jo.03125] [y, [0.12598
Z, | L 025 |7 |Z,] [0.51563
Vsl

10.29007] [Y,, ] [0.53369
Z,5] |0.81324]7[Z,,| [1.16117
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Using the condition Y,,=0,Z,, = 1, we obtain
Y,, ) (028125 (v,,) (0.64160
Z,, 1.28125)°( Z,, 1.64160

Y,,)  (1.10330) (Y,,) (1.69485
Z,, 2.10330)° | Z,, ] |2.69485

From (4.23ii1), we get

_(e-D-Y,,  e-1-1.69485
Y, -Y, 0.53369 -1.69485

A =-0.02019

Hence, u(x) =-0.02019 Y ,(x) + 1.02019 Y, (x).

Substituting x= 0.25, 0.5, 0.75 and 1.0, we get
u(0.25) =0.28630, u(0.50) =0.65201, u(0.75) = 1.11972, u(1.0) = 1.71829.

These values are same as given in Table 4.1, except for the round-off error in the
last digit..

Example 2
Use the shooting method to solve the mixed boundary value problem.
u" =u-4xe*,0<x<1.
u(0) - «'(0)=-1,u(l)+ «'(1)=-e.

Use the Taylor series method

) 2 3
¥/ -

_ h
u,,=u,+hu; + Y +?u]

' h2
=u, Thuy +7 uj

!

Uiy

to solve the initial value problems. Assume h = 0.25. Compare with the exact solution
ux)=x(l-x)e".

We assume the solution in the form
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u(x) =u(x) + pu () + g, u,(x)

where u,(x), u,(x) and u, (x) satisfy the differential equations

” 14

u, ~u,=-4xe*, u, -u, =0
u, -u, =0
The initial conditions may be assumed as given in(4.19ii)
u,(0)=0, u, (0)=0.
u,(0)=1, u, (0)=0.

u,(0)=0, u, (0)=0.

To illustrate the solution procedure, we solve analytically the initial value problems. The
analytical solutions of the above initial value problems are given by

u, (x)=(1/2) e -e* (x2-x +(1/2))
u, (%)= (1/2) (e +e™), u, (x) = (1/2)(e* - e™).
We also have
u(0)=uy(0) + g v (0) + g ,u,(0)=
W'(0) =y (0)+ s, (0)+ 1y, (0) = i,
uy, (1) =-(1/2) (e-e™), u,(1) = (12)(e + e™), u, (1) = (1/2)(e - ™).
u, (1)=(1/2)Ge+ e™), u, (1)=(1/2)(e - e, u, (1)=(1/2)(e +e™),
u() =uy(D) + uuy(1) +p yu, (1)
—(12)( e -e)+ (172) (e + e )+ (1/2) u,(e-e™)
w (1) =y (D g (D oy (1)

=-(1/2)Bet e)+(172) py(e-e")+(1/2) p,(ete™)
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Substituting into the boundary condition we get the relations
po-pu =l uy, tu=1lorpu,=0,u,=1
Thus, the initial conditions are given by u(0) =0, «'(0) = 1.

The required solution is u(x) =u,(x) + u, (x) = x (1-x) e* .We now solve the three, second

order initial value problems

14

u, =u, —4xe*,u,(0)=0,u,(0)=0
u” =u, ,u,(0)=1,u, (0)=0
u”,=u, ,u, (0)=1,u, (0)=0
by using the given Taylor series method with h=0.25. we have the following results.

(1) 1=0,u,,=0, w,,=0.

Wy, =u,-4x et ur, =ug -4x ) eV =1, 2, 3.

2
_ ¥,
Henceu,,,=u,;th u'oyj-i-?( u,;-4x e’ )t

h3
6

B (L I AN VR R 2hix | e
—1+7 U, h+? “w'g (I+x,)+2h°x; | e

=1.03125 u,;+0.25260 w’, ;-(0.13542 x ; +0.0625) e~

[ug,-4(x,+1)e"].

Hence,

u,(0.25)~u,,=-0.01042 , u'y(0.25)= w5, =-0.12500,
u,(0.50)2u,,=-0.09917,  w,(0.50)= w,,=-0.65315,
u,(0.75)7u,,=-0.39606,  u',(0.75)~ w,,=1.83185,

u,(1.00)~u,,=1.10823,  u,(1.00)= u, ,=-4.03895.
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() =1, u, =1,

ur=ug s, ur =, 5=1,2.3.
2 3
uu“:ul,j-i-h u'l,j-i-? uld.-i-? L

h? h’
:[14‘7] ulJ "‘(h-i-?] u’l,j

=1.03125 u, ,+0.2560 v,

2

’
Wy

g ur lyj +h un l,j _l’_7 ul 1,]‘
hZ
=hu,; +7 w,;=0.25u, ;+1.03125 v’ ;.
Hence,
u,(0.25)=u,,=1.03125, u',(0.25)= v, =0.25,

u,(0.50)=u,,=1.12663,  w,(0.50)= w',,=0.51563,
u,(0.75)=u,5=1.29209,  w,(0.75)= w',,=0.81340,
u,(1.00)=u,,=1.53794,  w,(1.00)= w',,=1.16184
(iif). i=2 , u,,=0 , u',,=1.

Wl =y, ul =ul, j=1,2, 3.

Since the differential equation is same as for u,, we get

uy ., =1.03125u, , +0.25260u}

s o =0.25u, ; +1.03125u; ;
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Hence,

u, (0.25)=u,,=0.25260, u', (0.25)=w,,=1.03125,

u, (0.50)=u,,=0.52099, u, (0.50)=u,,=1.12663,
u, (0.75)=u, ,=0.82186, u', (0.75)=u,;=1.29208,
u, (1.00)~u,,=1.17393, v, (1.00)=u,,=1.53792.
From (4.20) and the given boundary conditions, we have
a,=a=l,b,=b=1,y=1,vy,=-e.
u, tp, =-1
[, (1w, (D] o+ wy (D u, (D] =
-e-[u,(DFw (1]
Or  2.69978 u, +2.71185 n,=2.42890.
Solving these equations, we obtain p,=-0.05229, n,=0.94771.
We obtain the solution of the boundary value problem from
u(x) = u,(x)-0.05229u,(x) +0.94771u,, (x).

the solution at the nodal points are given table 4.2. The maximum absolute error which
occurs at x=0.75, is given by

max. abs. error = 0.08168.

TABLE 2 :SOLUTION OF EXAMPLE 2

X Exact: u(x ;) |u;

0.25 0.24075 0.17505
0.50 0.41218 0.33567
0.75 0.39694 0.31526
1.00 0.0 -0.07610
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Alternative Method

Here, we solve the initial value problems

u” -u, =-4xe*,u,(0)=0,uw (0)=(-y, /a,)=1

u"z -u, = 4x e” U, (0)21 5 u'2 (0)2[(8.0- Yl)/al ]=2

(See (4.4i), (4.4ii), and (4.23v)).

Using the given Taylor’s method with h=0.25, we obtain (as done earlier)
ul . =0.025u, , +1.03125u] , —2(0.5625x, +0.0625)e™

i=1,2 and j=0, 1, 2, 3.
Using the initial conditions, we obtain

u,(0.25)=u,,=0.24218, w,(0.25)= u',,=0.90625,
u,(0.50)=u,,=0.42182, w,(0.50)= u',,=0.47348,
u,(0.75)=u, ;=0.42579, w,(0.75)= u',,=-0.53976,
u,(1.00)=u, ,=0.06568, u’,(1.00)= w’,,=-2.50102.
u, (0.25)~u,,=1.52603, u', (0.25)= 0, ,=2.18750,
u, (0.50)=u, ,=2.06943, u', (0.50)= u',, =211573,

u, (0.75)=u,,=2.53972, w, (0.75)= v, ,=1.56571,

u, (1.00)~u, ,=2.77751, v, (1.00)= u', , =0.19872.

Using (4.23v1), we get

—e—[u, () +u'(D)]
[, (1) -+ 2] ()]~ [t (1) + w5 ()]

—5.69451

= =1.05228
—2.43534-2.97623

Hence, we have
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u(x) = Au, (x) + (1= Au, (x)
=1.05228u, (x) — 0.05228u, (x)

Substituting x=0.25, 0.5, 0.75 and 1.0, we get

1(0.25) ~ 0.17506,1(0.50) ~ 0.33568,
u(0.75) ~ 0.31527,u(1.00) ~ —0.07609.

These values are same as given in table 4.2, except for the round-off error in the last digit.
4.4 Nonlinear Second Order Differential Equation
We now consider the nonlinear differential equation

u"= f(x,u,u"), a<x<b

Subject to one of the boundary conditions (4.2) to (4.4). Since the differential equation is
nonlinear , we cannot write the solution in the form (4.6). in this case we proceed as
follows.

We assume u'(a) =s and solve the initial value problem
u" = f(x,u,u’)
u(a)=y,, u'(a)=s (4.25)

Up to x=b using any numerical method. The solution of the initial value problem denoted
by u(b,s) should satisfy the boundary conditions at x=b. let

#(s)=u'(b,s)-y, (4.26)
Hence the problem is to find s, such that ¢(s) = 0.

Boundary conditions of the second kind: The boundary conditions are u'(a) = y, and
u'by=y,.

We assume u(a)=s and solve the initial value problem
u" = f(x,u,u’)
u(a)=s, u'(a) =, (4.27)
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Upto x=b using any numerical method. The solution of the initial value problem denoted
by u(b,s) should satisfy the boundary conditions at x=b. let

P(s)=u'(b,s)—7,. (4.28)
Hence the problem is to find s, such that ¢(s) = 0.

Boundary conditions of the third kind: we have the boundary conditions as
ayu(a)—au'(a) =y, and bu(b)—bu'(b) = y,. Here, we assume the initial value of u(a) or

u'(a) . Let u'(a) = s, then from
ayu(a)—au'(a)=y,, we get u(a)=(a,s+y,)/ a,.

We now solve the initial value problem

u"= f(x,u,u’)
u(a) = i(als +y)u'(a)=s (4.29)
ay

Up to x=b using the numerical method. The solution of this initial value problem denoted
by u(b,s) =s should satisfy the boundary condition at x=b. let

#(5) = bu(b, )+ bu'(B,S) =¥y e, (4.30)

Hence, the problem is to find s, such that ¢(s) = 0.

The function ¢(s) in (4.26) or (4.28) or (4.30) is a nonlinear function in s.
We solve the equation

B(s)=0. e, 4.31)

By using iterative method.
Secant Method

The iterative procedure for solving (4.31) is given by

K+ _ (K) s -5 (K)
s =5 - ) ) #(s'M), k=1.2,... (4.32)
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Where s”and s are two initial approximations to s. To start the application of the
secant method, we need to solve the initial value problem (4.25) or (4.27) or (4.29) for

two values of s, that is for s ,s®" . The iteration may be stopped when ‘¢(s“<+” )‘ < (given

error tolerance).
Newton-Raphson Method

The iterative procedure for solving (4.31) is given by

K+ _ ((K) ¢(S(1:) ,k=012,....
#'(s")

To determine ¢'(s'“’), we use the following method. Denote
u, =u(x,s), u,=u'(x,s), u, =u"(x,s).
Then (4.29) can be written as

u, = f(xu,ul)y (4.341)

u (a)= L(als +y)u(a)=s. .. (4.3411)
a

0
Differentiating (4.341) partially with respect to s, we get

g(u:):g@_i_ of Ou, N of ou,
Os ~~ OxOs Ou, Os Ou. Os

_ 9f Ou N of Ou.
Ou, Os Ou. Os

Since x is independent of s. differentiating (4.34i1), partially with respect to s, we get

0 a Oy,
—[u, (@)= = (@]=1. (4.36)
0os a, Os
Let, V= ou, .Then,
0s
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, Ov 0 (ou 0 (ou o, ,
y =—=— S = — S = —(us)
Oox Ox\ Os Os\ Ox Os

, oV 0 0(ou, o(o*u,) o,
V =— = —| — = — > = —(1/[?)
ox Ox\Os\ Ox Os\ O0°x Os

From (4.35) and (4.36), we obtain

L Ay L A (4.37i)
ou, ou!
v(a)=a,/a,,v'(@)=1. (4.3711)

The differential equation (4.371) is called the first variational equation. It can be solved
step-by-step along (4.34), that is, (4.34) and (4.37) can be solved together as a single

system. When the computation of one cycle is completed, v(b) and V'(®) are available.

0 ou'
Now, from (4.30), at x=b, we have of a0 =b, f +b, e
ds os os

=b,v(b)+bV'(b) (4.38)

Thus, we have the value of ¢'(s"®?) to be used in (4.33).

If the boundary conditions of the first kind are given, then we have
a, =1l,a,=0,b, =1,b, =0 And¢(s) =u, (b)—y,. (4.39)

The initial conditions (4.36), on v become

V(@=0 v'(a)=1. (4.40)

Then, we have from (4.38)

9. (4.41)

ds
Example 3
Use the shooting method to solve the boundary value problem

u"=2uu', 0<x <1
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u(0)=0.5,u(l) =1.

Use the Taylor series method

2 3

u,,=u,+hu’ +—u’ +—u"
Jt+ J J 2 J 6 J

(4.42)

hZ
=u' +hu''+—u
J J 2

'
j+l

nr

u j

To solve the corresponding initial value problems and the secant method for the iteration.
Iterate until tolerance is less than 0.005. Assume h=0.25. Compare with the exact solution
u(x)=1/(2-x).

Let the starting value of the slope at x=0 be taken as u'(0) = s” =0.5. therefore, we need

to solve initial value problem

u" =2uu’
u(0)=0.5,u'(0) = s =0.5.

Using the given taylor series method and substituting
u’ =2uu” =2[(u})?* +u,u’] With h=0.25, u, =0.5.
u, =0.5.in (4.42), we obtain,

h’ n’
Uy =u; +hu' +?(2uju})+?[(u})2 +uul] =

u, +0.25u’ +0.0625u ;u’; + 0.00521[(u;)2 +uu]
— ' ! N2 2.0
=u; +0.25u; +0.0625u ;u’; +0.00521[(u )" +2(u;)"u]
(4.43)

u'o o =ul +hQuu') + hz[(u})2 +u,(2uu’)]

=u' +0.5u u’, +0.0625[(u’)* +2(u,;)’u’)] (4.44)_
We obtain from (4.43) and (4.44), =1, 2, 3

1(0.25) ~ u, = 0.64323 , u'(0.25) ~ u! = 0.65625
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u(0.50) ~u, = 0.83875,  u(0.50) ~u} =0.92817

W(0.75) ~u, =1.13074,  u(0.75) ~ u, = 1.45289
u(1.00) ~ u, =1.62699 u(1.00) ~ u,, = 2.63844
From (4.39), we get ¢(s”)=u(1,5”)-1.0 =0.62699

We now take another guess value of the slope at x=0 as #'(0) = s =0.1.Therefore, we

need to solve the equations (4.44) with u, =0.5 and u; = 0.1.we obtain, for j=0, 1, 2, 3.
1(0.25) ~ u, = 0.52844 , 1'(0.25) ~ u! =0.12875..
1(0.50) ~ u, =0.56534,  u(0.50) ~ u, =0.16830.
u(0.75) = u, =0.61407, u(0.75) = u; =0.30698.
u(1.00) ~ u, =0.67991, 1(1.00) ~ ), =—0.32009 .
From (4.39), we get ¢(s")=u(l,s")—1.0 =-0.32009.

Using the secant method (4.32), we obtain

M _ (0 1
s =gt _|:¢(Sfl)) _;(S(O)):I¢(S( ))9

(~0.32009) = 0.23519.
—0.32009—0.62699

:O.l—[ 0.1-0.5

Now we solve the equation #, =0.5 and u; = 0.23519.we obtain, for j=0, 1, 2, 3.
u(0.25) = u, =0.56705, u'(0.25) = u; =0.30479.
1(0.50) ~ u, = 0.65555,  u(0.50) ~ u, = 0.40926 .

u(0.75) = u, =0.77734, u(0.75) = u; =0.57586.

u(1.00) = u, =0.95464 , u(1.00) ~ u; =0.86390 .
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From (4.39), we get ¢(s®)=u(1,5?)~1.0 =—-0.04536.

Using the secant method (4.32), we obtain

(2) M

-8

G) _ @ _ ol
v b(m_ﬂsﬂn

0.23519-0.1
—0.04536+0.32009

= 0.23519—[ }(—0.04536) =0.25751.

Now we solve the equation #, =0.5 and u; = 0.25751.we obtain, for j=0, 1, 2, 3.
1(0.25) ~ u, =0.57344 , 1'(0.25) ~ u! =0.33408..
1(0.50) ~ u, =0.67066,  u(0.50) ~ u, = 0.45058 .
u(0.75) = u, =0.80536, u(0.75) = u; =0.63969.
u(1.00) ~ u, =1.00394 u(1.00) ~ u}, = 0.97472 .

From (4.39), we get ¢(s®)=u(1,5?)~1.0=0.00394 < 0.05. the iteration is now stopped.
Solutions occur at x=0.75 and its value is

max. abs. error = 0.00536.

TABLE 3 SOLUTION OF EXAMPLE 3

X Exact: u(x) |u,

0.25 0.57143 0.17505
0.50 0.66667 0.33567
0.75 0.80000 0.31526
1.00 1.00000 1.00394

4.5 Iterative Method For Eigen Values
Power method

Power method is used to determine numerically largest eigen value and
corresponding eigen vector of a matrix A.

Let A be a nxn square matrix and let 4,,4,....4,be distinct eigen value of so that
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| > 2,] > 4] > |4, (1)

Let v,,v,,...v, be their corresponding eigen vectors
Av,=Av,,i=123,...n (2)

This method is applicable only if the vectors v,,v,,...v, are linearly independent. This
may be true even if the eigen value 4,,4,....4, are not distinct.

These n vectors constitute a vector space of which these vectors from a basis.

Let Y, be any vector of this space.
Then ¥, =Cv, +C,v, +Cyv; +...+C v,
Where C.’s are constants (scalars).
Pre-multiplying by A, we get
Y, =AY, =C/Av, + C,4v, + C;Av; +...+ C Av,

=CAv, +C A4, +CA4v, +....+4 C A v,
Similarly Y, =C 1w, + C,2%v, + C; A%, +...+ C, v,
Continuing this process

K. :AYF1 :Clﬂrlvl +C2/1r2v2 + C3/1’3v3 +....+ Cnﬁfnvn

=11 Cy, +C2(&j v, +C3(£j Vv, +....+CH(£J v,
A A A

Similarly,

41 r+1 r+l
Y., =AY, =" |Cv + Cz(ﬂ—zJ v, + C{ﬁJ Vi Fot C"(ﬁj v,
A A, A

A
As r— w,[ﬁ—’} —0,i=23,..n

1
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In the limit as » > «©
Y —> 1 Cy,
Y., — ﬂ’lrﬂclvl

(AH—IYO)

SA =l ,1=1,2...n.
t lmr—)w ‘Aryvo’

Where the suffix 1 denotes ith component of the vector.
To get the convergence quicker, we normalize the vector before multiplication by A.

Method: Let v,be an arbitrary vector and find

I 2
Example 1: Find the dominant eigen value of A= (3 4} by power method and hence find
the other eigen value also. Verify your results by any other matrix theory.

Solution

0
Let an initial arbitrary vector be X, = (J

sy SOG4

1 2\ 37) (24568 0.4575
AX,= gl | = = 53704 =5.3704.X,
3 4) 9 5.3704 1
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1 2)0.4575 2.4575 0.4574
AX, = = =5.370 = 54.3724X,
3 4 1 5.3724
1 2)0.4574 2.4574 0.4574
AX, = = =5.3723 =5.3723X,
3 4 1 5.3723 1
1 2)0.4574 2.4574 0.4574
AX,= = =5.3723
3 4 1 5.3723 1
. 0.4574
Hence 4, =5.3723 and eigen vector X, = :

Since A, + 4, =Trace of A=1+4=5

Second eigen value=A4,=-0.3723

1
Characterstic equation is A* —(1+4)4 + 3

2‘
=0
4

+ 4/ +
Le, A —51-220: =% ;5+8 _3 —;@ —5.3723.-0.3723.

The values got by power method exactly coinside with the solution from analytical
method.

Example 2: Find the dominant eigen value and the corresponding eigen vector of A=
I 6 1

1 2 0].
0 0 3
Find also the least root and hence the third eigen value also.

Solution

1
Let X, =| 0 |be an arbitrary initial eigen vector.
0
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(1 6 1 1 1
AX, =1 2 0f|0(=[1]|=11|=1.X,
0 0 3] 0 0
1 6 1]1] [7 1
AX,=|1 2 0||1]|=[3]|=7/04286|=7.X,
0 0 3]Jo] |oO 0
1 6 1 1 ] [3.5714 1
AX,=|1 2 0]04286|=|1.8572|=3.57140.52|=3.5714X,
003 0 || 0 0
1 6 1 1 [4.12 1
AX,=1 2 0]052|=|2.04|=4.12/0.4951|=4.12.X,
0 0 3| 0 | 0 0
(1 6 1] 1 1] [3.9706] 1]
AX,=|1 2 0]04951/=/1.9902|=3.97060.5012|=3.9706.X,
003 0 || 0 | 0
(1 6 1] 1 ] [4.0072] 1]
AX,=|1 2 0]0.5012|=|2.0024|=4.00720.4997|=4.0072X,
003 0 || 0 | 0|
1 6 1] 1 ] [3.9982] 1]
AX,=[1 2 0]0.4997=|1.9994|=3.99820.5000{=3.9982.X,
003 0 || 0 | 0
1 6 111 4 1
AX =1 2 0[05(=[2|=405|=4X,
0 0 3[0 0 0
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-. Dominant eigen value = 4; corresponding eigen vector is (1,0.5,0).

To find the least eigen value, let B=A-4I since A, =4.

1 6 1 4 0 O -3 6 1
~B=/1 2 0|-|0 4 0= 1 -2 2
0 0 3 0 04 0 0 -2

We will find the dominant eigen value of B.

1
Let ¥, =| 0 |be an arbitrary initial eigen vector.

0

-3 6 1|1 -3 1
BYy,={1 2 O0]0|=|1|=-3-03333|=-3Y,

0 0 =20 0 0

-3 6 1 1 -5 1
BY,=1 2 0 |-03333|=|1.6666|=-5-0.3333|=-5Y,

0 0 -2 0 0 0

-3 6 1 1 -5 1
BYy,=| 1 2 0 ||-0.3333|=|1.6666|=-5|—0.3333

0 0 -2 0 0 0

dominant eigen value of B is =-5.

Adding 4, smallest value of A=-5+4=-1

Sum of eigen value =Trace of A=1+2+3=6
4+(-1)+2,=6 . A,=3.

All the three eigen value are 4,3,-2.
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Example 3
25 1 2

Find the numerically largest eigen value of A=| 1 3 0 |and the corresponding eigen
2 0 -4

vector.

Solution:

1
Let X, =| 0 |be an arbitrary initial eigen vector.
0

25 1 21 25 1
AX, =1 3 0 |0|=]1]=]|0.04]|=25X,
2 0 —-4)0 2 0.08

25 1 2Y 1 25.2 1
AX,=[1 3 0 ]004|=|1.12]=252]00444 |=25X,
2 0 —-4)008) (1.68 0.0667

251 2Y 1 25177 1

AX,=[ 1 3 0 |00444/=| 11332 |=2517780.0450/=251778,
2 0 -4/00667 | 17337 0.0688
251 2Y 1 1

AX,=| 1 3 0 |00450/=2518240.0451|=25.1826X,
2 0 —4)0.0688 0.0685
251 2Y 1 1

AX.=| 1 3 0 ]00451|=25182]0.0451|=25.1821X,
2 0 —4)0.0685 0.0685

We have reached the limit.
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1
- A, =25.1821and the corresponding eigen vector is | 0.0451 |.

0.0685
5 0 1
Example 4: Using power method , find all eigen values of A=|0 -2 0
I 0 5
Solution.
1
Let X, =|0|be an approximation eigen vector.
0
5 0 1 5 1
AX, =|0 -2 ofo0|=|0|=3 0 |=5X,
I 0 50 1 0.2
5 0 1 5.2 1
AX,=|0 -2 0] 0|=] 0 |=52 0 |=52x,
0 5|02 2 03846
5 0 1] 1 5.3846 1
AX,=|0 =2 0] 0 |=| 0 |=53846 0 |=53846,
I 0 510384 29231 0.5429
5 0 1 1 5.542 1
AX,=[0 =2 0] 0 |=| 0 |=55420 0 |[=5542%,
I 0 5105429 |[3.7143 0.6701
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5 0 1] 1 56701 1
AX,=/0 -2 0] 0 |=| 0 |=5670]1 0 |[=5670K,
1 0 5]0670] [43505 0.7672
5 0 1T 1 57672 1
AX,=|0 =2 0] 0 |=| 0 [=57672 0 |=57672,
1 0 5]07672] |48360 0.8385
5 0 17 1 5.8385 1
AX,=|0 -2 0] 0 |=| 0 |=58385 0 |=5838%,
1 0 5]08383 |5.1927 0.889
5 0 1] 1 5.8894 1
AX,=|0 =2 0] 0 |[=| 0 |=5 0 |=58894x,

I 0 5[0.8894| |5.4470 0.9249

50 1T 1 5.9249 1
AX,=[0 =2 0] 0 |=| 0 |=5 0 [=59249x,
10 509249 |56244] 09493

5 0 1T 1 59493 1
AX,=[0 =2 0] 0 [=| 0 [|=59498 0 |=59493,
1 0 509493 |5.7465 0.9659
5 0 1T 1 5965 1
AX, =0 =2 0] 0 |=| 0 |=59659 0 |=5965%,,
1 0 5[09659 |5.829 0977
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5 0 1T 1 ] [5977 1
X,=l0 2 0] 0 |=| 0 [=59771 0 |=5977K,
1 0 5[0977] |5885 0984

5 0 1T 1 7 [5984 1
AX, =0 =2 0| 0 |=| 0 |=5984] 0 |=59847%,
1 0 5[09847 |5923 0989

5 0 1T 1 7 [5989 1

AX,=0 =2 0] 0 |=| 0 |=59898 0 [=5989%,
1 0 5/09898 |5948 0993
500 1T 1 7 [5993 1

AX.=(0 =2 0] 0 |5 0 |=59932 0 |=5993%,
1 0 509932 |5965 0995
5 0 1T 1 59954 1

AX,=[0 =2 0] 0 |=[ 0 |=3 0 [=59954,

1 0 5]09954 59772 |09970

5.0 1 1 1
AX,=/0 -2 0| 0 |=599700 0
1 0 5[0.9954 0.9980

1
- A, = 6; eigen vector=| 0
1
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-1 0 1 1
B=A-6I=| 0 -8 0 [takeY, =|0

1 0 -1 0
-1 0 171 1
BY,={0 -8 0[0|=-10 [=-1,
i 0 -1]0 -1
-1 0 17 -2 1
BY,=|0 -8 0 0|=|0 |=-2 0|=-2Y,
i 0 -1]-1 2 -1
-1 0 171 1
BY,=|0 -8 0| 0|=-20
10 —-1]-1 -1

Greatest eigen value of B=-2
Smallest eigen value of A=-2+6=4
A + A, + A, Trace =5-2+5=8
6+4+1,=8. 1,=-2.

The eigen values are 6, 4, -2
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POSSIBLE QUESTIONS:

Part-B( 5X6 = 30 Marks)

Answer all the questions:

. Explain the types for solving boundary value problem
2
. Solve the boundary value problemZTZ —vy =0, with y(0) =0 and y(2) =3.62686.
. Write the derivation of shooting method.
. Solve the boundary value problem y''(x) = y(x); y(0) =0, y(1) = 1 by shooting
method, taking my=0.7 and m;=0.8

AW N =

5. Solve the boundary value problem y''(x) = y(x); y(0)=0; y(1)=1.1752 by shooting
method, taking my=0.7 and m;=0.8.
6. Write the Derivative of Characteristic value Problems

7. Using Jacobi method , find the eigen value of A = (13 2)

1 3 -1
8. Using Power method find all the eigen values are A=< 3 2 4 )
-1 4 10

9. Using Power method find all the eigen values are

5 01
AZ(O -2 0)
1 05

10. Using Jacobi method , find the eigen value of

_(2 1
A=(%,)
PART C- (1 x 10 =10 Marks)
( Compulsory )
1 6 1
1. Find the dominant eigen value and the corresponding eigen vectorof A=|1 2 0
0 0 3

2. Solve the boundary value problem % —y =0 with y(0) = 0 and y(2) = 3.62686

251 2
3. Using power method find eigen value and eigen vector of A = ( 130 )
20 —4
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Class :1 M.Sc Mathematics Semester  : 1
Subject: Numerical Analysis Subject Code: 19MMP103
Unit IV
Part A (20x1=20 Marks)
Question Opt 1 OPt 2 Opt 3 Opt 4 Answer
----------- method is used to determine numerically largest eigen
value and the corresponding eigen vector of matrix A Gauss Jordan  [Power Choleskey Gauss Seidal |Power
Sum of the eigen values of a matrix is equal to the -------- of the
diagonal element of the matrix. sum product divide square sum
The power method, will work satisfactorily only if A has a -------
- eigen value. dominant smallest greatest Zero dominant
If the coefficient matrix is diagonally dominant, then ---------- Gauss
method converges quickly. elimination Gauss Jordan  [Choleskey Gauss Seidal |Gauss Seidal
If the eigen values of A are 1,3,4 then the dominant eigen value of]
A 1§ -------- 4 3 4
The iterative process continues till ------------- is secured convergency |divergency oscillation infinite convergency
------ method is used to find the eigen values of a real symmetric |Gauss
matrix. elimination Gauss Jordan |Choleskey  |Jacobi Jacobi
A square matrix A is said to be orthogonal if --------- AA'=1 AA' '] AA'=0 AA'=1 AA'=1
For an orthogonal matrix , if det A = --------- 1{£1 I +1
For a real symmetric matrix,A all the eigen values are ------- real imaginary Zero one real
------------ method is initial value problem methods. Milne’s Euler Shooting Runge-Kutta |Shooting
----------------- methods are the implicit (or) explicit relation
between the derivatives and the function values at the adjacent Finite
nodal points. Shooting Euler Runge-Kutta |difference [Finite difference
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In numerical methods , the boundary problems are solved by Finite Runge-
using ------- method difference Milne’s Euler Kutta. Finite difference
In Finite difference method, the nodes x_; and x,, , are called -------
-- nodes fictitious normal isolated Zero fictitious
In numerical methods, the boundary problems are solved by using |Finite Runge-
--------- method. difference Milne’s Euler Kutta. Finite difference
----------------- method is initial value problem methods Milne’s Euler Shooting Runge-Kutta |Shooting
If all the non zero terms involve only the dependent variable u and w’
then the
differential equation is called non
homogeneous |homogeneous [linear non linear  |homogeneous
In power method the element in vector in each iteration will
become very large, to avoid this we divide each vector by its smallest largest positive negative largest
component

Power method generally gives the largest Eigen value of A . "y real and .

. | equal negative positive . real and distinct
provided the Eigen values are distinct
If the eigen values of A are -3,3,1 then the dominant eigen value 3 1 3 No dominant|No dominant
of Ais eigen value |eigen value
T'he smallest eigen value of A is the reciprocal of the dominant ANC-D) det A AAT A ANC-D)
eigen value of
If the Eigen values of A are -6, 2, 4 then is dominant. 2 4 -6 -2 -6
If the eigen values of A are 4,3,1 then the dominant eigen value of]

) 3 1 4 none 4

A'is
The Power method is used for finding eigen value dominant least central positive dominant
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UNIT-V
SYLLABUS

Numerical Solution of Partial Differential Equations: Classification of Partial Differential
Equation of the second order — Elliptic Equations. Parabolic equations: Explicit method — The Crank
Nicolson difference method. Hyperbolic equations — solving wave equation by Explicit Formula.

NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS
5.1 Introduction

Partial differential equations occur very frequently in science, engineering and
applied mathematics. Many Partial differential equations cannot be solved by analytical
methods in closed form solution, in most of the research work.

In fields like applied elasticity, theory of plates and shells, hydrodynamics,
quantum mechanism etc., the research problems reduce to Partial differential equation.
Since analytical solutions are available, we go in for numerical solutions of the Partial
differential equations by various methods. Certain types of boundary value problems can
be solved by replacing the differential equation by the corresponding differential equation
and then solving the latter by a process of iteration. This method was devised and first
used by [.F.Richardson and it was later improved by H.Liebmann.

5.2 Difference Quotients

A difference quotient is the Quotient obtained by dividing the difference between
two values of a function by the difference between two corresponding values of the
independent variable.

We know dy = Lt y(x+h)- y (x)

dx h
h—0
If 4 is small we approximate
dy = yxth-yx) = yxth)-y(x)
dx h (x+h)- x

The right side is a difference quotient. Therefore the derivative is replaced by a
difference quotient. In the case of partial derivatives, we have two independent variables
and hence we consider the differences in both variables.
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If yo is fixed and x is a variable, be Taylor series,
U(XQ,VQ"‘k)' 2U(XQJXQ)+ U(XQ,VQ-k)
and Uyy (XOaYO) = k2

And the truncation error is k,/12 uyy(Xo,n) where yo- k <n <yy=k.

5.3 Graphical representation of partial quotients

The xy plane is dived into a series of rectangles whose sides are parallel to x and
y- axes such that Ax=y and Ay=k. the gried points or mesh points lattice points are

(x,y),(x+h,y),(x+2h,y)...(x-h),y),(x-2h,y))...

If (x;,y;) 1s any grid point

xi=Xotih,y=ystjk. If we take one corner as origin,
Xi:ih,Yj,i,jZO, 1 ,2 .

y
(x,y+2k)
(x,y+k)
(x-2hy) (%) (x+h,y) | (x+2h,y)
(x-h,y)
(X>Y'k)
(x,y-2k)
0
Ax=y h
Coordinates of grid points
(1,+2)
(ij+1)
(1'29.]) (1'13.]) (13.]) (17+17J) (17 +29.])
(ij-1)

Mesh points denoted by suffices.
Here (x=1h, y=jk) is denoted by (i,j).
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From the figures,
Ui Ui (forward difference) ... (D)
u, =
ujjui;  (back ward difference) ... (2)
u = h
U1 j-uij  (forward difference) ...(3)
u, =
ujj-uij . (back ward difference) ... (4)
u = k
Uy = Upj2Ui5 + Ui
12
Uy = Ujj=2U55 T U0
12

We can also write

Ux = Uit 1,j~Wi-1,j
2h
Uy = Ui j+1-Uij-1
2k

5.4 Classification Of Partial Differential Equations Of The Second Order

The most general liner Partial differential equations of the second order can be write as

O’u O’u O’u ou ou

A +B +C +D +E + Fu=0
ox’ OXOy Gyz oy OXx

1.e.. A uy+Bu,,+Cuy,+Du,+Eu,+Fu=0

where A,B,C,D,E,F are in general functions of x and y.

the above equation of second order (liner) (1) is said to
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(i) Elliptic at a point (x,y) in the plane if B>-4AC<0

(ii) Parabolic if B>-4AC=0
(iii)  Hyperbolic if B2-4AC>0

Examples:
Ou O
- —— =0(Laplace equation in two dimension)
ox’ oy
Parabolic type:
O’u 1 Ou
= ——{one dimensional heat equation)
Ox* of Ot
Hyperbolic type:
O’u 1 S
= (one dimensional wave equation)
Ox’ o O
Su Su
+ = f(x,y) (Poisson’s equation)
Ox* oy’

Example 1: Classify the following equations:
O’u Ou B
(1) = + =0
ox’ S)<S)Y% ox’
(i)  x* fi + (1-y) £, =0
(1)Here A=1, B=2, C=1

B 4AC=- 4x* (1-y%)
=4 (y*-1)

For all x except x=0, x” is +ve.
If-1 <y<l,y*— 1 is negative.

- B? —4AC is —ve if -1<y<1,x#0

Prepared by Dr.M.M.Shanmugapriya, Professor, Department of Mathematics, KAHE Page 4/40



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSE NAME: NUMERICAL ANALYSIS
COURSE CODE: 19MMP103 UNIT: V BATCH-2019-2021
- For - oo <x< 0 (x20), 1<y<l, the equation is elliptic;
For -0 <x<o0,x#0,y>1, the equation is hyperbolic;

For x=0 for all y of for all x,y = £1 the equation is parabolic.

B’ - 4AC=4(x+2) -4 (x+ 1)(x + 3)
=4[11=4>0
.. the equation is hyperbolic at all points of the region.

Example 2: classify the following partial differential equations:
(i) Uo= dugy + (x° + 4y°) uyy = sin (x+y)

M+ DHuw—2x+2)uyyt+ (x+3)u,=0.
(1) Xf=yf,y=0,x>0,y>0.
Solution

(i)  Here, A =1, B=4, C=(x" + 4y?)
B” - 4AC = 16-4 (x* + 4y

= 4[4 — x*— ay’]
The equation is elliptic if 4 — x> 4y*<0
ie., x>+ 4y >4
1e., R Y2
— +— >1
4 1

.. It is elliptic in the region outside the ellipse

2 2
X y
— +—>1.
4 1

It is hyperbolic inside the ellipse

Xy
— + — >1.
4 1

It is parabolic on the ellipse

—+ — >4
4 1
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(1)) here, A=x+1,B=-2(x+2),C=x+3

B’ - 4AC=4 (x+2) -4 (x+ 1)(x + 3)
=4[11=4>0
.. the equation is hyperbolic at all points of the region.
(i) A=x,B=0,C=y
B? -4AC = - 4xy, (x>0, y>0 given)

=-ve
. It is elliptic for all x>0, y > 0.
5.5 Elliptic equations
An important and frequently occurring elliptic Equations] is Laplace’s Equation,
1.e.,
o’u o%u
+ =01.e., A? u=0 or Uy + Uy, = 0:
ox’ oy’
Replacing the derivatives by difference equations we get,
Uir1 52055 + Uy Uij+1-2U5 5 + Ui
+ =0
h’ K

Taking k = h, (square mesh) in the above equation,
A= Ui g+ Uiy + Ut Ui

AU =V [yt U Ui+ Ui ]
That is the value of u at any interior point is the arithmetic mean of the values of u at the
four lattice (Two of them are vertically just above and below and the other two in the
horizontal line just after and below this point).

h
h ui,i +1
Uiy | uy Ui j

Uiji-1

Or
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Schematic diagram
Central value = average of the other four values.
Diagonal five point formula
Instead of the formula (1) we can also used the formula
Uj; = Va [ Uicgjor F Uigj=1, + Uisrgon + Uit1j+1 ] ~.(2)

Which is called the Diagonal five point formula since this formula involves the
values on Diagonals u;; Since the Laplace equation is invariant in any coordinate system,
the formula remains same when the coordinate axes are rotated through 45 degree. But
the error in the Diagonals formula is four times the error in the standard formula.
Therefore, we always prefer the standard formula to the diagonals formula.

Uij+1 h
\ h\/ 2 Ujt1,j
W
Uij
Ui 1 j-1 Uir1j-1
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Uj+1,j+1

Ui 1,j-1

Ui+1,5-1

Ui 15+1

5.6 Solution Of Laplace’s Equation :( By Liebmann’s Iteration Process)

AIM: To solve the Laplace’s Equation uy + uy, = 0 (i) in bounded square region R with
a boundary C when the boundary values of u are given on the bound ary(or at least at the
grid points in the boundary).

Let us divide the square region into a network of sub- squares of side h

b, b, bs b, bs
Uy Uy Uz
bis
Uy Us Ug
bis
DY) Ug Uy
b4
bi; b, by bio o
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The values of u at the interior lattice of grid points are assumed to be u; u, u3. . ug.  To
start the iteration process, initially we find rough values at interior points and then we
improved them by iterative process mostly using standard five point formula.

Find us first: us = 4 (b; +bs+by;+bs) (by standard five point formula — SFPF)

Knowing us we find u;_ u;, u;uy that is the values at the centers of the four larger inner
squares by using diagonal five point formula DFPF.

That is u; = Y (bytb;s+bi+us)
u3 = 4 (bstustbs+by)
u7 =4 (ustbi3tbytbys)
up = Y4 (bytbytbytus)
the remaining 4 values u,,u4,us,ug can be got by using SFPF.
That is u, = Y4 (bytustu;+us)
uy = 74 (utustustbs)
us = 4 (u3tugt ust by)
ug= "4 (ustbyi+ustug)

Now we know all the boundary values of u and rough values of u at every grid point in
the interior of the region R. Now we iterate the process and improve the values of u with
accuracy. Start with us and proceed to get the values of u;,u;....uy always using SFPF
taking into account the latest available values of u to use in the formula. The iterative
formula is

~ (nt1)

n ntl n n+l
Ui :%(uij+l( )ui-j( )"'ui,j-x( )+ui,j+1( )) .|

Let the interior values of u at the grid points be uy, u,,...us. We will find the values
of u at the interior mash as explained in the previous article. We will first the rough
values of u and then proceed to refine them.
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Example 1

Solve the equation V*u = 0 for the following mesh, with boundary values as shown, using
Leibmann’s iteration procedure.

0 500 100 500 O

0
1000 u;, w w3 1000
2000 us  us; us 2000
1000 u;  ug U 1000
0 500 100 500

Solution:
Take the central horizontal and vertical lines as AB and CD
Letuy, u,....u9 be the values of u at the interior grid points of the mesh.
The values of u on the boundary are symmetrical w.r.t. the lines AB and CD.
Hence the values of u inside the mesh will also be symmetrical about AB and CD.
- U1=U3=U7=Ug;U3=Ug;Us=Ug and us is not equal to any value.
.. it 1s enough if we find u;,u,,u4 and us.
Rough values of u’s:
us = % (2000+2000+1000+1000)=1500 (SFPF)
u; = ¥ (0+1500+1000+2000)=1125 (DFPF)
w, Y (1000+1500+1125+1125)=1187.5 (SFPF)
us 7 (u+ustus+2000) =1437.5 (SEPF)
us (2.2 uy) =1312.5 (SFPF)
Here after we use only SFPF.
First iteration
u; V=14 (1000+500+1187.5+1437.5) =1031.5
u, V=14 (1000+1031.25+1031.25+1.341.25) =1093.75
V7% (2000+2(1031.25)+1312.5) = 1343.75
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us V77 (2u.2 )
=14 (1093.75+1343.75)=1218.75
Now we go to second iteration
u; V'=984.38
u, V'=1046.88
u,M” 1296.88
us V71171.88
0 500 1000 | 500 0
1000 | u, U, Us 1000
1125 1187.5
1031.25 1093.75
984.38 1046.88
960.94 1023.44
949.22 1011.72
943.36 1005.86
940.43 1002.93
939.1 1001.6
938.3 1000.4
937.7 1000.2
937.6 1000.1
937.6 1000.1
2000 | uy Us Us 2000
1437.5 1500
1343.75 1312.5
1296.88 1218.75
1273.44 1171.88
1261.72 1148.44
1255.86 1136.72
1252.93 1130.86
1250.8 1127.93
1250.2 1126.6
1250.1 1125.8
1250.1 1125.2
1125.1
1125.1
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1000 | uy ug Uog 1000
0 500 1000 | 500 0

Hence solution is

u; =937.6, u,-1000.1, uy, = 1250.1, us = 1125.1

Example 2 : Evaluate the function u (x,y) satisfying V>u = 0, at the lattice points given

the boundary values as follows.

D1000 | 1000 | 1000 | 1000C

2000 | u u, 500

2000 Uz Uy 0

A1000 | 500 |0 0B

Solution Method 1:
We have
4u; = 1000+2000+ uz: up= 3000+ up: u3
4u, =1500+uy: uy
4u; =2500+ uys ug
du, =urt us
1.e., 4u; - uy- uz = 3000
u -4u,+ uy, =-1500
u; -4ust+ uy =-2500

U+ us -4114 =0

We eliminate u; from (5) and (6) and (7)

15u, -uz-4us =9000
4u,- 4u; =-1000

We eliminate u; from (8) and (9)

(D)
-2

. 3)
. (@)

(5

..(6)

(7
(8
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4u, - 2u3 = 9000 . (11)

From (10) and (11), u, =791.7, u; =1041.7
From (5), u;=1208.4 and uy, =458.4
Method 2:

Instead getting 4 equations in u;, up us and uy, and solving them for u’s , we can assume
some value for uy (or any other u)and proceed iterative procedure; we can take uy = 0 and
proceed or take a value of uy = 400 ( guess this seeing the values of u on the vertical line
through u, uy).

Rough values:

u; = (1000+2000+1000+400+)/4=1100  (DFPF)

u, =Y (utug+ 1500 ) =750 (SFPF)
U3 =Y (u+uy+ 2500 ) = 1000 (SFPF)
Uy = Ya (uz +113) =437. (SFPF)

First iteration: here after we adopt only SFPF.
u, V=1 (750+1000+3000) =1187.5

u, V=1, (1187.5+437.5+1500) =781.25
w7 (1187.54437.5+2500) = 1031.25

us V7 %(781.25+1032.25)= 453.25

Second iteration

u, P=14(781.25+1031.25+3000)=1203.125
w, P=14(1203.125+453.125+1500)=789.1
u; @7 Y4 (1203.125+453.125+2500)=1039.1
u® ™% (789.1+1039.1)=457.1

Third iteration

u; ¥=14(789.1+1039.1+3000)=1207.1

w, ¥=14(1207.1+457.1+1500)=791.1

u; @7 Y (1207.1+457.1+2500)=1041.1
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P =% (791.1+1041.1)=458.1

Fourth iteration

u, @=14(791.1+1041.1+3000)=1208.1
w, @=14(1208.1+458.1+1500)=791.6
u; @7 Y4 (1208.1+458.1+2500)=1041.6
@ (791.1+1041.1)=458.3

Fifth iteration

u; ©'= 1% (791.6+1041.6+3000)=1208.3
u, ©'=1 (1208.3+458.3+1500)=791.7
u; @7 Y4 (1208.3+458.3+2500)=1041.7
¥ (791.7+1041.7)=458.4

We are getting result correct to one decimal place. Further the increase in the value is
<0.1.

We stop here. One more iteration will give you the decision to make.
soup =1208.3, uy, =791.7u3=1041.7,u, =458.4

Note : instead of taking uy = 400, if we have started with u, = 0, we require more iteration.
So avoid this excess labor, judiciously assume the value.

Example 3

Solve uy,* uy,y, = 0 for the following square mesh with boundary conditions as shown
below. Iterate until the maximum difference between successive values at any grid point
is less than. 0.001
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Solution:

From the above figure, we see that it is symmetrical about the diagonals AB and BD.
Let uy, uyus ,us be the values at interior grid points.

By symmetrical uj= uy u,-u;,

Therefore, we need to find only two values u; and u,.

\A\ 1 |2 B
1 \4\ u, 2
2 w7 m\ 1
D72 |1 t\

Since the corner values are not known, assuming u, , we will get u; but assume u,.
Judiciously seeing the values of u in the vertical line through u, Therefore let u, = 1.6
( please note u,is 1/3 distance of the side length from the volue 2)

Rough values estimation:

u =1.6

u; =% (1+1+1.6+1.6) = 1.3

u, Y (2+2+1.3+1.3) =1.65

Method 1

First iteration
u=1/4(2+2u,)=1/2(1+u,)=1.325
u,=1/4(4+2u,)=1/2(2+u;)=1..6625
Second iteration

u=1/2(1+2u,) =1/2(1+1.6625) =1.33125
w,=1/2(2+u,)=1/2(3.33125)=1.6656
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Third iteration
u;=1/2(1+1.6656)=1.3328
u,=1/2(3.3328)=1.6664
Fourth iteration
u=1/2(1+1.6664)=1.3332
u,=1/2(3.3332)=1.6666
Method 2

u=1/2(1+uy)
w=1/2(2+u,)

Solving

u;=4/3=1.3333

and u,=5/3=1.6666

The difference between 2 consecutive values of u; is 0.0004 and that between 2
consecutive values of u, is 0.0002 which are less than 0.001. Hence, u; = 1.3332 and u, =
1.666.

5.7 Poisson’s Equation

An Equation of the form V*u= f(x,y)

(i.e) &/ Ox>+ WOy = f(X,Y) wvveeeann, (1)

is called as Poisson equation where f(X,y) is a function of x and y only.

We will solve the above equation numerically at the points of the square mesh , replacing the derivativ
by difference coefficients . Taking x=ih,y=jk=jh (here) the differential equation reduces to

(Wi j2uij tuig ) /( h) +(y G720 Uiy 4 h%) = f(ih,jh)
(1e) uiﬂJ + ui_l,j_ +11i ,j_1—4ui,j_+ ui,jﬂ = hzf(lh,_]h) ...... (2)

By applying the above formula at each mesh point , we get a system of linear equation in
the pivotal values 1.

We can follow this method easily by working out the following example.
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Example 1 Solve V*u = -10(x*+y*+10) over the square mesh with sides x=0, x=3, y=3
with u=0 on the boundary and mesh length 1 unit.

Solution u=0
A B
D |yE |[u |u=0
F |uG |u | C

The P.D.E is VZu=-10(x+y*+10)

using the theory, (here h=1)

22
Uipj T Uiy + Ui+ U — 4 u=-1007457+10)

Applying the formula at D(i=1,j=2)

0+0+ up + , - 4 1, =-10(15)=-150

u, + uz- 4111:150

Applying at E(i=2,j=2)

u +uy- 41,12 =-180

Applying at F(i=1,j=1)

ut+uy - 4113 =-120

Applying at G(i=2,j=1)
W+ uy- 4u,=102*+1*+10)=-150

(3)

(6)

We can solve the equation 3,4,5,6 either by elimination or by Gauss-Seidel method.

Method 1.

(5)-(4) gives (Eliminate u,)

4(112 + U3) =60

u, + U3=15

Eliminate u; from (3) and (4); (3)+ 4(4) gives,

-15112 + uz+ 41,14 =-870

Adding (6) and (8)
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-7112 + uy =-510

From (7),(9) adding u, =82.5
Using (7), u3=1u, -15 = 82.5-15=67.5
putin (3), 4 u; =300
Therefore u, =75
4u, = 150+150;
uy =75.
U =uy =75, u,=82.5, u3=67.5
Note:

Since the differential equation is unchanged when X,y are interchanged and boundary
conditions are also same after interchange x and y, the result will be symmetrical about
the line y=x

Therefore Us =1

If we use this idea the 4 equations would have reduced to 3 equations namely,
u, + uz-4u;=150

2u; - 4u, =-180

2u; - 4u;=-120

u, + uz-4u;=150

Solving will be easier now.

Method 2

We can use Gauss-Seidel method to solve.
u;=1/2(150+u, + u3)

u,=1/4(2u,+180)

u;=1/4(2u,+120)
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The tabulated values are:

1 2 3 4 5 6 7 8 9 10

Uy 37. 165. |72. |74. |74. |[T4. |74 |75 |75
-5 56 64 (41 |85 |96 |.9
uy 9

u, |063. |77. |81. |82. |82. |82. |82 |82 |82
75 |79 |32 |21 (43 |48 |5 |5 |5

u; | 048, | 62. | 66. |67. |67. |67. |67 |67 |67.
75 |78 |32 |21 |43 |48 |5 |5 |5

We get the values after 9 iteration.
Example 2

Solve V?u = 8x’y* for the square mesh given u=0 on the 4boundaries dividing the square
into 16 sub-squares of length 1 unit.

Solution

u=0

U | U U3

U7 | Ug Ug

u=0

Take the coordinate system with origin at centre of the square. Since the P.D.E and
boundary conditions are symmetrical about X,y axes and y=x we have, u;=u3;=u; = Uy

Ur=Us5=Ug = Ug,
We need to find u; ,u, , us only.(here h=1)

Uigj + Ui + Ui Ui — 4 ui,j=h2 f(ih jh) = (1)) ...1
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At(i=-j , j=-1), we have, u, + uy- 41, =8(-1)*(-1)* =8
u, - 2u; =4 2
At(i=0, j=1) u; + u3; +us- 4 u,=0
2u; + us-4uy=0
At(1=0, j=0) uy+uy tusug-4us=0
4u,-4us5=0
up-us=0 4
From (2),
u=1/2(u,- 4)
From (4)
us=u,
Using in (3), u, -4 -4u, - u,=0.
w=-2;us=-2;u,=-3
u;=-3, up=-2=1u;
5.8 Parabolic Equations
Bender-Schmidt Method
The one dimensional heat equation , namely
du/ ot = o’d*u/ 6t , where o = k/ pc is an example of parabolic equation.
Setting o” = 1/a, the equation becomes ,
6°u/ 0x> -a ou/ ot =0.
Here A=1, B=0, C=0 .Therefore B>-4AC =0, it is parabolic at all the points.
AIM: Our aim is to solve this by the method of finite differences .To solve u,=au, .....(1)
With boundary conditions
wotny=T1, .. (2)
w(lyy=T1, 3)

and with initial condition  u(x,0) = f(x), 0<x<l....(4)
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We a spacing h for the variable a x and a spacing k for the time
variable t.
U= (Wi 2w +uipy VB and w= (uip—ui )k
Hence (1) becomes
(Ui 2035 + Uiy /B =a(uij1—u)k
Therefore, u jj: —u ;= k/ah’ (Ui+1j-2u5 T Uiy )
=\ (1205 + u;j)  where A =k/ ah’.
(ie) Wi =AUt (- 22)u;j+Ahdig j ceeeenn 5)

writing the boundary conditions as

un,i=T ........(7)

where nh =1 and the initial condition as

u;o=f(ih),i=0,1,.... ....(8)

U is known at t= 0.

Equation (5) facilitates to get the value of u at x= ih and time t ;.
Equation (5) is called explicit formula.

It is valid if 0< A< V5.

If we take , A = '4, the coefficient of u ;; vanishes.

Hen wijn=02)[uigjtauyjl «ceeeenenn 9)

when A==k /ah® (i.e) k=ah?/2

(i.e) the value of u at x=x; at t=tj;, 1s equal to the average of the values of u the
surrounding points X ;.; and x ;4; at the previous time t;.

Equation (9) is called Bender-Schmidt recurrence equation.

This is valid only if k = ah? / 2.(so, select k like this)
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Example 1

Solve (8%u / 6x%) — 2(6u/6t)=0 given u(0,t)=0 , u(4,)=0 , u(x,0)=x(4-x). Assume h=1. Find

the values of u upto t=5.

Solution.

Uy = a Uy Therefore a=2

To use Bender-Schmidt equation, k=a/2 h* = 1.

Step size in time=k=1. The values of u;; are tabulated below.

\ 0 1 2 3 4
J
0 0 (3 4 3 0
I <«ux
0)
=x(4-x)
1 0 2 3 2 0
2 0 1.5 |2 1.5 |0
3 0 1 1.5 |1 0
4 0 0.75 | 1 0.75 10
5 0 0.5 [0.75]05 |0

Analysis: Range for x: (0,4); for t: (0,5)

U(x,0)=x(4-x). This gives u(0,0)=0,u(1,0)=3,u(2,0)=4,u(3,0)=3 ,u(4,0)=0

For all t, at x=0, u=0 and for all t at x=4 , u=0.

Using these values we fill up coloum under x=90 , x= 4 and row against t=0.

a b

This means c=(a+b)/2
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The values of u at t = 1 are written by seeing the values of u at t=0 and using the average
formula.

Example 2

Solve (0*u / 0x*) =(du/dt)=0 given u(0,t)=0 , u(4,t)=0 , u(x,0)=x(4-x) assuming h=k=1.
Find the values of u upto t=5.

Solution
If we want to use Bender-Schmidt formula, we should have k=a/2 h*

Here h=k=1, a=1. These values do not satisfy the condition.. hence we cannot
employ Bender-Schmidt formula.

Hence we go to the basic equation,
U= A Uiy i+ (1-2R) uij + X ugy ...(1)
Now A=k/ah®> =1/ 1x1 =1
Hence (1) reduce to,
Ujj+1= Uirrj - Uiy Uy
That is,

Uiy Ui Ui j+1

O O O
\F / c
10
Ujt1,j

Value of u at D= value of u at A+ value of u at C — value of u at B.

Now we are ready to create the table values.
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- x director

0 1 |2 3 |4

}

t direction

Here a b C
O O O
O This figure means d=a+c-b
d

Note: Since A=1 is used in the working , it violates the condition for use of Explicit
formula. So the solution is not stable and it is not a practical problem. Such question
should be avoided, since unstable solution do not exist.
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Example 3

Solve u; = u, subject to u(0,t)=0 , u(1,t)=0 and u(x,0)=sinnx, 0<x<I1.
Solution.

Since h and k are not given we will select them properly and use Bender-Schmidt
Method.

k=a/2 h* =%’
Therefore a=1.
Since range of x is (0,1) , take h=0.2.
Hence k=(0.2)* / 2 = 0.02.
The formula is u;j11= 72 (Ui1j, Uit )
u(0,0) =0, u(0.2,0) = sinm/5 = 0.5878
u(0.4,0) = sin 27t/5 = 0.9511; u(0.6,0) = sin 37/5 = 0.9511; u(0.8,0) = sin 41/5 = 0.5878

We form the tablex — direction h=0.2

x| 0 0.2 0.4 0.6 0.8 1.0
0 0 | 05878 | 0.9511 0.9511 | 0.5878 | 0O
0.02 | 0 | 04756 | 0.7695 | 0.7695 | 0.4756 | O
0.04 | O | 0.3848 | 0.6225 | 0.6225 | 0.3848 | 0
0.06 | 0 | 03113 | 0.5036 | 0.5036 | 0.3113 | O
0.08 | 0 | 0.2518 | 0.4074 | 0.4074 | 0.2518 | O
0.1 | 0 |0.2037| 03296 | 0.3296 | 0.2037 | O

t direction
k=0.02
Example 4

Given (6°f / 6x”) +(8f/6t)=0 given £(0,t)=0 , f(5,)=0 , f(x,0)=x*(25-x>) Find f in the range
taking h=1and upto 5 seconds.
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Solution.

To use Bender-Schmidt Method.

k=a/2 h’

Therefore a=1, h=1.

Therefore k="

Step time =2 =t

Step size =1 =h

f(1,0) = 24; 1(2,0) = 84; 1(3,0) = 144; (4,0)=144;1(5,0)=0.

The formula is ujj 1= 72 (Ui.1j + Ui ) »
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i 1 2 3 4

i

0 24 84 144 144

12 42 84 144 |72

1 42 78 78 57

1.5 39 60 67.5 |39

2 30 5325 1495 |33.75

2.5 26.625 [39.75 |43.5 | 24.75

3 19.875 [35.06 | 3225 |[21.75

25

3.5 17.531 |26.06 |28.406 |16.125
2 25 2

4 13.031 [22.96 |21.093 | 14.2031
2 87 8

4.5 11.484 | 17.06 | 18058 | 10.5469
3 25 59

5 8.5312 | 15.03 |13.804 |9.2929
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Crank-Nicholson Difference Method
To solve this by the method of finite differences.
To solve u,x=au, .....(1)
With boundary conditions
uO0,t)=T, L (2)
wlyy=T1, L. 3)
and with initial condition u(x,0) = f(x), 0<x<lI....(4)
We a spacing h for the variable a x and a spacing k
for the time variable t.
Atuij, U= (U205 + Ui )/h2
and  atu i ,Ua= (U je - 2055 + Ui )/h
Taking the average of these two values,
U = (W 2055 + Uiy + Uiy jor - 2055 + Upp g )/2h°
Usingu = (ujj1—uij) /k, equation (1)reduces to
(Ui j 2055 + Uiy + Ui - 2055 + Ui 20 = a (Ui —uyy) /k
Setting k / ah>= A , the above equation reduces to
AUt 2huig ju—A+Dug i =
-2 Aui —(12) huig j+A-Duy; (D
Equation (I) is called Crank — Nicholson difference scheme or method.

Note 1: A convenient choice of A makes the scheme simple. Setting A = 1 (i.e) k= ah’
the Crank — Nicholson method

Wi = (1/4) [ Ui, j+1 +u i+1, j+1 +u i-1,j +u i+1,j] .. ..(H)

In problems , we will use this simplified formula subject to k = a h*.
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Note 2:

The Crank — Nicholson scheme converges for all values of A.

Example 1

Solve by Crank-Nicholson Method the equation u,, = u, subject to u(x,0)=0 , u(0,t)=0 and
u(1,t)=t for two time steps.

Solution.
X ranges from 0 to 1. Take h=1/4; here a=1
K=ah’ to use simple form
K=1(1/4)* = 1/16
Ui =14 {Ui e T Ui+ Ui T Ui )

X — direction

i 0 0.25(05(0.75 |1

1116 1o U |w |u | 1/16
2/16 |0 Uy Us | Ug 2/16

3/16 |0 3/16

Let the unknown represents by u; u, uj,
The boundary conditions are marked in the table against t=0 , x=0 and x=1.
Using the scheme(1),

u; = % (0+0+0+ uy)
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Uy = YVa (O+O+ U +L13)

U3 = Y (0+0+ uy +1/16)

That 1s

ulz%uz

uy = Va (uptuy)

Uz = Va (U2+1/16)

Solving the three equations we get u; u, us,

Substituting u; u; values in u,

u, = Y4 (1/4 u, +1/4(uy,+1/16))

w,_1/224 (0.0045) , u,=1/896 (0.0011) , us = 0.0168

Similarly us us uecan be got again getting 3 equations in 3 unknown uy us  Ug

We getuy = 0.005899 , us=0.01913 ug=0.05277.

Example 2

Using Crank-Nicholson’s scheme, solve u,, = 16u, , 0<x<1 , t>0 given u(x,0)=0 , u(0,t)=0

and u(1,t)=100t.

Solution.

Here h=1/4 ; a=16,K=ah’ to use simple form

K=16(1/4)*=1.

Uij=1/4 {uinja T Uija T Ui+ Ui}

X — direction

0 0.25{05(0.75|1
0 0 0 0 |0 0
1 0 u U | us 100

u; = % (0+0+0+ uy)

It
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u, = Y4 (0+0+u; +u3)
u; = % (0+0+ u, +100)
That is
u =%,
uy = Va (uptuy)
u; = % (u; +100)
Solving the three equations we get u; u, us,
Substituting u; u; values in u,
w, =Y (1/4 (2u, +100) = 1/8 u, + 25/4
u,=50/7="7.1429 , u,;=1.7857 , u3 = 26.7857.
The values are
u;=1.7857 ; u,= 7.1429 ; u; = 26.7857
5.9 Hyperbolic Equations
The wave equation in one dimension ( vibration of strings) is
a’ o’/ 0x> - 0%u/ ot =0, (i.e) a Uy — U ¢ =0
Here A = a ,B=0, C=-1. Therefore B?- 4 AC = +ve.
Hence the equation is hyperbolic.

Let us solve this equation by reducing it to difference equation.

AIM: Solvea’u, —us=0  .eocovrrrininn, (1)

and the initial conditions

ud(x,0)=0........ (%)

Assuming Ax =h , At =k, we have
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U = (Uir,j— 2y +ui—1,j)/h2

U= —2uyj +ui,j-1)/k2 .

substituting these values in (1),

[az/h2 ](ui+1,j —Zui,j +ui_1,j)—(1 /kz) (ui’j-ﬂ —2ui,j
tuj.0)=0.

(i.e)

WMk -2t )i —2ugtug ) =0

Where A=k / h.

2.2 2.2
Ui =2(1-2a" )ujtA a (uijtuim)—uij

To make the equation simpler , select A such that
1-2a’=0" (le)A’=1/a® =k’/h* , (i.e) k=l/a.
Under this selection of A*> = 1/a* the equation (6) reduces to the simplest form
PETERE R BTy o | FTRR I | I G (7)
Equation (6) is called an Explicit scheme or explicit formula to solve the wave equation.
Equation (7) gives a simpler form under the condition k= h/a.

Note 1: The boundary condition u(0,t ) = 0 gives the values of u along the line x=0 , that
all u =0.

The boundary condition u (I,t ) = 0 gives the values of u along the line x=1, i.e. all u=0
along this line.

Note 2: Initial condition u (x,0) = f(x) becomes
u (1,0) =f (ih) , i=1,2...
This gives the value of u along t=0 for various values of 1.

u (i,0) = f (ih)= f.
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Note 3:The initial condition u (x,0) =0 gives u;; =u; ;. which implies

Ui =(1/2) (Wi 0t Uirip)

Note 4 : If 1- A* a><0, Aa >1, (i.e) ak / h >1, the solution is unstable. Ifka /h =1, it is
stable and if ka / h <1 , it is stable but the accuracy of the solution decreases as ak / h

decreases.
That i1s , for A = 1/a the solution is stable.

Example 1

Solve numerically, 4u,,=u, with the boundary conditions u(0,t)=0, u(4,t)=0 and the initial

conditions u(x,0) = 0 and u(x,0)=x(4-x), taking h=1.(for 4 time steps)

Solution.

Since a® =4, h=1, k=h/a = ¥

Taking k=1/2, we use the formula

Ujj+1 = Ui T Ujrj — Ujjer

From u(0,t)=0 = u along x=0 are all zero.
From u(4,t)=0 = u along x=4 are all zero.
u(x,0)=x(4-x) implies that

u(0,0) =0, u(1,0)=3 , u(2,0)=4 , u(3,0) = 3.
Now, we fill up the row t=0 using the above values
u;(x,0) = 0, implies uj; = (Wir1,0 + i1 0)/ 2
Now we draw the table; for that we require
up 1 =(u +ugp) /2 = (4+0)/2=2

Uy 1=(us tupg) /2 =(3+3)/2=3

us 1 =(Usp T Upg) /2 =2

Ug 1= 0.
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0 1 2 3 4
RN

N
0 0 3 4 3 0
0.5 0 2 3 2 0
1 0 0 0 0 0

(3+0-3) | (2+2-4) | (3+0-
3)

1.5 o\ -2/ -3 2 0
2 0 \-3\/ -4 3 0
2.5 0 2 3 2 0
3 0 0 0 0 0
3.5 0 2 3 2 0
4 0 3 4 3 0

Period is 4 seconds or 8(k) = 8(1/2) = 4 secs.
Example 2

Solve numerically, 25u,, - u, =0 for u at a pivotal points, given u(0,t)=0, u(5,t)=0 and the
initial conditions uy(x,0) = 0 and u(x,0)=2x for 0<x <2.5

=10—-2xfor2.5<x<5.

for one half period of viberation.
Solution.

Since a* = 25

Period of viberation = 2l/a = (2x5 )/ 5 = 2 seconds,
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Half period = 1 second.
therefore we want the values upto t=1 second
k=h/a = 1/5, taking h=1
step size in t-direction = 1/5.
The explicit scheme is
i1 = Uit Uikj — Ui eeeennnns (1)
Boundary conditions are
u(0,t)=0 or ugy;Fo0.
u(5,t)=0 us;=0 for all j.
u;(x,0) = 0, implies u;; = (Wi+1,0 + i1 0)/ 2
u(x,0)=2x for 0<x <2.5
=10-2x for 2.5 <x <5.
u(0,0) =0, u(1,0)=2 , u(2,0)=4 , u(3,0) = 4, u(4,0)=2, u(5,0)=0.
uy 1 =(up0 +ugp) /2 =(4+0)2=2
u =(uzptu9) /2 =(3+3)/2=3
us 1 =(ugp tuge) /2 =3

uy 1= (Usp +usp) /2 =2.

t 0 |1 2 13 |4 |5
0 0 |2 4 |14 |2 o
(G=0)
=1/5 |0 |2 3 (3 |2 o
G=1)
=2/5 |0 |1 1 1 1 |0
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(G=2)

t=3/5 10 |-1 -1 -1 -1 0
(G=3)

t=4/5 |0 |-2 -3 -3 -2 0
(G=4)

2.5 0 |-2 -3 -2 0
3 0 (0 0 0 0
3.5 0 |2 3 2 0
4 0 |3 4 3 0
Note 1.

First fill up all value against j=0 and j=1 and then go for filling up other rows using
formula(1)

Note 2.

In using u(x,0)=0 we used central difference approximation for first derivative

U= (ui,j+1 - ui,j-l) / 2k

But instead, we could also use

u= (uij+1— ;) / k in which case u(x,0)=0 = u;; = uj

In other words the value of u corresponding to j=0 and j=1 are same. If this is adopted,
then the value of u against t=0 and t=0.5 in the table of worked will be same.

y 0

1

2

3

4
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This will make all the entries of the table different from the one given.

This assumption of u;(x,0) makes the value of u same at t=0; and t=0.5 which is not
acceptable in practice.

Hence, we do not adopt this definition u(t,0) and so we accepted the central difference
approximation which is more reasonable.

Prepared by Dr.M.M.Shanmugapriya, Professor, Department of Mathematics, KAHE Page 38/40



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSE NAME: NUMERICAL ANALYSIS
COURSE CODE: 19MMP103 UNIT: V BATCH-2019-2021
POSSIBLE QUESTIONS:

Part-B( 5X6 = 30 Marks)
Answer all the questions:

1. Explain the classification of Partial differential Equations.

2. Find by Libmann’s method the values at the interior points of the square region of the
harmonic function u whose boundary values are as shown in the following figure.

0 11.1  17.0 19.7 18.6
U U, Us
0 21.9
Uy Us Us
0
U Us U 21.0
0 17.0

0 8.7 12.1 128 9.0

3. Solve W?u = 8x%y? for square mesh given u=0 on the 4 boundaries dividing the square
into 16 sub-squares of length 1 unit.

4. Write the Derivative for Crank Nicholson method.

5. Using Crank-Nicholson's scheme, solve u,,, = 16u, , 0<x<I, t>0 given

u(x,0) =0, u(0,t) = 0, u(1,t) = 100t. Compute u for one step in t direction taking h= /4.

6. Solve by Crank Nicholson method the equation ux= u; subject to u(x, 0)=0, u(0, t)=0 &
u(1, t)=t for two time steps.

7. Solve u, = u,.., subject to u(0,t) = 0, u(1,t) =0 and u(x,0) = sin nx, O0<x<1.
8. Use Bender Schmidt recurrence relation to solve the equation z% =2 Z—': with the

conditions u(x, 0)=4x-x>, u(0, t)=u(4, t)=0. Assume h=0.1. find the values of u upto t=5.
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9. Write the derivative of Bender Schmidt method to solve parabolic equations.

10. Solve the poisson equation uyy + Uyy = -10(x*+y*+10).

(
PART C- (1 x 10 =10 Marks)

( Compulsory )

1. Solve numerically 4uy, = uy with the boundary condition, u(0, t)=u(4, t)=0 and the initial
condition u«(x, 0)=0 & u(x, 0)=x(4-x), taking h=1(for 4 time steps).

2. Solve u+ uyy = 0 over the square mesh of side 4 units;satisfying the following
Boundary conditions:
Du(0,y)=0 for 0<y<4
iu4,y)=12+y for 0<y<4
i) u(x,0) =3x for0<x <4
iv) u(x,4) = x> for 0 <x <4

3. Solve V?u = -10(x*+y*+10) over the square mesh with sides x =0, y =0,x =3, y =3 withu=0
on the boundary and mesh length one unit.
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Unit V
Part A (20x1=20 Marks)

Question Opt 1 Opt 2 Opt 3 Opt 4 Answer
A - quotient is obtained by dividing the difference between
two values of a function by the difference between two
corresponding values of the independent variable difference partial normal binomial difference
If B2-4AC = 0, then the differential equation is said to be . parabolic elliptic hyperbolic equally spaced |parabolic
If B2-4AC > 0, then the differential equation is said to be . parabolic elliptic hyperbolic equally spaced [hyperbolic
If B"2-4AC < 0, then the differential equation is said to be . parabolic elliptic hyperbolic equally spaced |elliptic

Auxx + Buxy + Auxx + Buxy +

The linear partial differential equation of second order can be Cuy, +Du,+  |Auy, + Buy, + Auy, + Bu,, + |Dug + Euy +  |Cuyy + Duy + Eu,
written as --------- Eu, + Fu=0 Cu,y + Du, =1 Cu,y =0 Fu=0 + Fu=0
The linear partial differential equation of second order is said to be
elliptic at a point (x,y) in the plane if ------- B°’—4AC=0 |[B*-4AC<0 |B*-—4AC>0 |B*—4AC'0. |B*—4AC <0
The linear partial differential equation of second order is said to
be parabolic at a point (x,y) in the plane if ------- B°’-—4AC=0 |[B*-4AC<0 |B*—4AC>0 |B*-4AC'0. |B*—4AC=0
The linear partial differential equation of second order is said to be
hyperbolic at a point (x,y) in the plane if ------- B°’—4AC=0 |[B*-4AC<0 |B°—4AC>0 |B°—4AC'0. |B*—4AC>0
The differential equation xuxx + uyy = 0 is said to elliptic if -------- x <0 x=0 x'0 x>0 x>0
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The differential equation xuxx + uyy = 0 is said to hyperpolic if ----
- x <0 x=0 x'0 x>0 x <0
. The differential equation xu,, + uy, = 0 is said to parapolic if ------
-- x <0 x=0 x'0 x>0 x=0
The error in the diagonal formula is ------ times the error in the
standard formula 4
Crank-
Nicholson Liebmann’s Bender- Liebmann’s
------- method is used to solve the Laplace’s equation. difference iteration Schmidt Laplace iteration
An equation of the form NPu= f(x,y) is called as --------- equation. [laplace parabolic poisson elliptic poisson
Crank-
Nicholson Liebmann’s Bender- Explicit Crank-Nicholson
------- method is used to solve the parabolic equation. difference iteration Schmidt scheme difference
Crank-
Liebmann’s Explicit Nicholson Crank-Nicholson
The ----------- scheme converges for all values of 1. . iteration Bender-Schmidt |scheme difference difference
The wave equation in one dimension is---------- hyperbolic parabolic poisson elliptic hyperbolic
Crank-
Liebmann’s Nicholson Explicit
------- method is used to solve the wave equation iteration Bender-Schmidt |difference scheme Explicit scheme
Liebmann’s iteration process is used to solve laplace equation in --
----- dimension one two three Zero two
Classify the equation u,, + 2u,, + 4uy, = 0 is ---------- hyperbolic parabolic poisson elliptic elliptic
If u is harmonic, then it satisfies | DT — 0
An important and frequently occurring elliptic equation is ---------
equation laplace parabolic hyperbolic elliptic laplace
Classift the equation f,, — 2f,, = 0 as------- laplace parabolic hyperbolic elliptic hyperbolic
Classift the equation fxy —f, =0 as——- hyperbolic parabolic poisson elliptic hyperbolic
Classift the equation u,,=u, as------- laplace parabolic hyperbolic elliptic parabolic
The number of condition required to solve the Laplace equation is -
------- 4
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Crank-Nickolson’s method is used to solve the --------

equation of

the form u,= au, laplace parabolic hyperbolic elliptic parabolic
one
Explicit method is used to solve the ---------- equation dimensional poisson laplace wave wave
One dimensional heat equation is the example of equation. Laplace Poisson Parabolic Hyperbolic Parabolic
rectangular
One dimensional wave equation is the example of equation. elliptic hyperbolic Parabolic Hyperbolic Hyperbolic
rectangular
Two dimensional heat equation is the example of equation. elliptic hyperbolic Parabolic Hyperbolic elliptic
rectangular
Poisson equation is an example of equation. Parabolic elliptic hyperbolic hyperbolic elliptic
One dimensional [One dimensional One dimensional
equation is an example of parabalic equation. heat wave Poisson Laplace heat
One dimensional |One dimensional One dimensional
equation is an example of hyperbolic equation. heat wave Poisson Laplace wave
One dimensional [One dimensional
equation is an example of elliptic equation. heat wave Poisson Laplace Poisson
Liebmanns
process is used to solve two dimensional heat equations [Explicit Bender-Schmidt  |Crank-Nicolson |iteration Liebmanns iteration
Liebmanns
One dimensional heat equation can be solved using method. [Newtons Crank-Nicolson |elimination iteration Crank-Nicolson
Liebmanns
One dimensional heat equation can be solved using method. [Newtons Bender-Schmidt  [elimination iteration Bender-Schmidt
Liebmanns
One dimensional wave equationcan be solved using method. |Explicit Bender-Schmidt  |Crank-Nicolson |iteration Explicit
Liebmanns
Poisson equationcan be solved using method. Explicit Bender-Schmidt  |Crank-Nicolson |iteration Liebmanns iteration
two
One dimensional |dimensional two dimensional
Liebmanns iteration process is used to solve ----------- equations. heat heat heat
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One
dimensional One dimensional
equation can be solved using Crank-Nicolson method. heat heat
One
dimensional One dimensional
equation can be solved using Bender-Schmidt method. heat heat
One
One dimensional [dimensional One dimensional
equationcan be solved using Explicit method. heat wave wave
One dimensional
equationcan be solved using Liebmanns iteration method. heat Poisson Poisson
Crank-Nicolson method is also called as method. Explicit Implicit elimination reduction Implicit
Bender-Schmidt method is also called as method. Explicit Implicit elimination reduction Explicit
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Karpagam Academy of Higher Education
(Established Under Section 3 of UGC Act 1956)
COIMBATORE - 641 021
(For the candidates admitted from 2017 onwards)

M.Sc., DEGREE EXAMINATION, NOVEMBER 2017
First Semester

MATHEMATICS

. NUMERICAL ANALYSIS
Time: 3 hours Maximum : 60 marks

PART - A (20 x 1=20 Marks) (30 Minutes)
(Question Nos. 1 to 20 Online Examinations)

(Part-B & C 2 % Hours)

PART B (5 x 6 =30 Marks)
Answer ALL the Questions

21. 2. By dividing the range into 10 equal parts. Evaluate] sin x dx by Trapezoidal
0
Rule
Or
b. Find the 1% two derivation of x and y for =50 using newton forward method

x 150 {51 52 33 54 55 56
y |3.6840 [3.7084 |3.7325 [3.7563 |3.7798 3.8030 |3.8259

22. 2. Solve x+y+2=L;4x+3y-2=6, dr+5y+3z=4 by factorization method
Or
b. Solve 27x+6y-2=85; 6x+15y+22=T2, x+y+54z=110 by Gauss Jacobi

method

23, 2. Determine the velue of y when x=0.1 given that y(0)=1 and y=2+y.
Or

b. Solve the initial value problem y' =3x+§with the condition y(0)=1 and y(0.2)
using Runge-kutta IV® order with h=0.05

1
24, 3, Solve the boundary value problem ‘;—’;- y=0 with y(0)=0, y(2)=3.62686, The

exact solution of this problem is y = sinhx.
Or

501
b, Using power method, find all eigen values of 4 =[0 &) 0}.
105§

25. 2. Solve the equation ¥ T, =0in the domain of figure below by Jacobi’s
method .

1 1
0 Wy ) 0
0 U Y/} 0
0 0
Or

b. Solve Vu=8x'y? for square mesh given =0 on the 4 boundaries dividing the
square into 16 sub squares of length 1 unit

PART C (1 x 10=10 Marks)
(Compulsory)

26, Using Stirlings formula, find y(1.22) from the following table

x |10 1l 12 |13 14 1.5 1.6 17 18
y | 084147 | 0.89121 | 093204 [ 096356 | 098545 | 099749 | 099957 0.99385 | 097385
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KARPAGAM UNIVERSITY

(Under Section 3 of UGC Act 1956)
COIMBATORE - 641 021
(For the candidates admitted from 2014 onwards)

M.Se. DEGREE EXAMINATlON, NOVEMBER 2014
. First Semester

MATHEMATICS
NUMERICAL ANALYSIS
Time: 3 hours Maximum : 60 marks
PART-A(10x2=29 Marks)
Answer any TEN Questions
1. Write down the N

ewton raphson’s method formula,
2. Write down the formula for (x)arx=x,
formula,
3 Define Deflated polynomial,
4. Solve the following system by
X 3y =11
IX+2y=4
5. What is the condition (or convergence of Gauss Seidal Method?
L 6. What do you mean by diagonally dominant?
7. What are the two types of Euler’s method?
8. Write down the Adam's corrector formula.
9. Write down the third order Runge-kutta method.
10. What are the three kinds of boundary conditions?
I What is mean by homogeneous?
12. Define shooting method in the boundary value problem,
13. Write down the general lincar partial differential equation of second order.
- 14. Write down the diagonal five point formula for ug,
13. Write down the hy perbolic equation.

in Newton's backward difference

Gauss Elimination method.

PART B (5 X 8= 40 Marks)
Answer ALL the Questions
16.2 Find the real root of the equation x’- 3x™+7x -8 =0. correct to 3 decimal
1 places by Newton Raphson method.
Or

b. Perform wwo iterations of the Bairstow's method 10 extract 2 quadratic x’wxoq
from the polynomial Py(x) = x*+x%.x+2 = (. Use the initial approximation
P(; = '0.9, Qo = 0.9.

17. a. Solve the following system of equations by Gauss-seidal method
Sx-2y+z=-4
X+6y-2z =-]
x+y+5z =13
Or
b. Solve the following equations using LU decomposition method.
Xty +z =1
4x +3y -z =6
3x +5y +3z=4,

18. 2. Giveny’ = -y, y(0) = 0. Determine the value of y atx = (0.01)0.01) {0.04) by
Euler method.

Or
b. using Adam’s moulton predictor- corrector method. Find ¥(1.4) if y satisfies
%x!'_g Y1) =1, y(1.1) = 0.99%6,y(1.2)= 0.986, y(1.3) = 0.972.
X

19. a. Solve by finite difference method the boun

dary value problem ¥'(x) -y(x) =2.
where y(0) =0 and ¥(1) =1 taking h =1/4,

Or
50 l]
b. Using Power method find all the eigenvalues are A= 0-20
(oo s
\ /

20. Compulsory : -

Solve by crank-Nicholson method the equation u,, = u; subject to u(x, 0) =0
u(0, ) =0and u(1, t) =t for wo time steps.
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KARPAGAM UNIVERSITY
KarPagam Academy of Higher Education
(Established Under Section 3 of UGC Act 1956)

COIMBATORE - 641 021

(For the candidates admitted from 2015 onwards)

M.Sc., DEGRE

Time: 3 hours

E EXAMINATION, NOVEMBER 2015 >

First Semester
MATHEMATICS

NUMERICAL ANALYSIS
Maximum : 60 marks

PART - A (20 x 1 =20 Marks) (30 Minutes)
(Question Nos. 1 to 20 Online Examinations)

(Part- B & C 2 % Hours)

PART B (5 x 6 = 30 Marks)
Answer ALL the Questions

21. 2) Find the real root of x’-2x-5=0 using Newton's mgthod and correct to four

decimal places.

Or
b) Using trapezoidal rule , evaluate j i%’- taking 8 intervals.
-l
22.2) Solve x + 3y =3z=16 '
x-dy+3z2=18
x+3y+4z=19 by Gauss elimination method.
Or
b) Solve the following equations by Gauss-Side! method
ax+2y+z2=14
x+S5y-2=10
x+y+82=20

23.2) Evaluate y (1.2) comrectto 3 decimal places by modified Euler method given

that &= (y-x)' y()
o

b) Apply the fourth ord
y when x=0.2 given

)=0 taking h=0.2

Or
er Runge - Kutta method , o find an approximate value of

that y|= x+y ,y(0)= Iwith h=0.2

(=

24. ) Explain bricfly boundary value problems with an example.
Or

3410
b) Find the Eigen values of matrix A, A =[~2 4 -Jl
0 -1 1

25. a) Explain types of partial differential equations.
Or
b) Explain the text : PARABOLIC EQUATIONS

PART C (1 x 10 =10 Marks)
(Compulsory)

2, Solve %ﬂ—z%inkx«,legivenlhatu(x,0)=20.u(5,l)"I00
Compute u for the time step with h=1 by Crank - Nicholson method,
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(Deemed to be University)
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M.Sc., DEGREE EXAMINATION, NOVEMBER 2018
First Semester
MATHEMATICS

NUMERICAL ANALYSIS

Time: 3 hours Maximum : 60 marks

PART - A (20 x 1 =20 Marks) (30 Minutes)
(Question Nos. 1 to 20 Online Examinations)

(Part - B & C 2 % Hours)

PART B (S x 6 =30 Marks)
Answer ALL the Questions

21. a. Solve f(x,y)=x*+y*-4=0 and g(x,y)=y+e*-1=0 starting with an approximate
solution (1,-1.7) by Newton’s method.
Or
¢ odx

b. Evaluate ._..ﬂ by Simpson’s 1/3 rule with h=1.
0 1

22. a. Solve by Gauss Elimination method
Ix+4y+5z=18, 2x-y+8z=13, 5x-2y+7z=20
Or
b. Solve the following system by Gauss-seidel method correct to four decimal
places.
x+y+54z=110, 27x+-6y-z=85, 6x+15y+2z=72

23. a. Obtain the values of y at x=0.1, 0.2 using Runge Kutta method of second order
for the differential equation y’=-y, given that y(0)=1.
Or
b. Using Milne’s method, find y(4.4), given that xy’-+y*-2=0, given y(4)=1,
¥(4.1)=1.0049, y(4.2)=1.0093 & y(4)=1.0143.

24. a. Explain shooting method. .
Or
S 0 1
b. Using power method, find the dominant cigen value of A=|0 -2 0.
I 0 §
25. a. Evaluate the pivotal values of the following equation taking h=1 and up to one
half of the period of the oscillation if uu=uy, given that u(0,t)=u(5,t)=0,
u(x,0)=x*(5-x) and u(x,0)=1.

Or
b. Solve uutu,,=0 over the square mesh of side 4 units, satisfying boundary
conditions
i. u(0,y)=0 for 0<y<4 iii. u(x,0)=3x for 0<x<4

ii. u(4,y)=12+y for 0<y<4 iv. u(x,4)=x* for 0<x<4

PART C (1 x 10 =10 Marks)
(Compulsory)

26. By LU decomposition method, solve
5x-2y+z=4, 7Txty-5z=8, 3x+7y+dz=10.
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