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Instruction Hours / week: L: 4 T: 0P: 0 Marks: Internal: 40 External: 60 Total: 100
End Semester Exam: 3 Hours
Course Objectives
This course enables the students to learn
e The concept of algebraic structures, lattices and its special categories which plays an
important role in the field of computers.
e The fundamental concepts in graph theory, with a sense of some its modern applications.
Course Outcomes (COs)
On successful completion of this course, students will be able to
1. Develop new algebraic structures.
2. Think critically and analytically by modeling problems form social and natural sciences
with the help of theory of graphs.
3. Work effectively in groups on a project that requires an understanding of graph theory.

UNIT I

ALGEBRAIC STRUCTURES

Introduction- Algebraic Systems: Examples and General Properties: Definition and examples -
Some Simple Algebraic Systems and General properties - Homomorphism and isomorphism -
congruence relation - Semigroups and Monoids: Definitions and Examples - Homomorphism of
Semigroups and Monoids.

UNIT Il

LATTICES

Lattices as Partially Ordered Sets: Definition and Examples - Principle of duality - Some
Properties of Lattices - Lattices as Algebraic Systems — Sublattices - Direct product, and
Homomorphism.

UNIT 111

BOOLEAN AND SOME SPECIAL LATTICES

Complete, Complemented and Distributive Lattices - Boolean Algebra: Definition and Examples
- Subalgebra - Direct product and Homomorphism - Join irreducible - Atoms and anti atoms.

UNIT IV

GRAPH THEORY

Definition of a graph - applications, Incidence and degree - Isolated and pendant vertices - Null
graph, Path and Circuits: Isomorphism - Subgraphs, Walks -Paths and circuits - Connected
graphs, disconnected graphs — components - Euler graph.



UNIT V

TREES

Trees and its properties - minimally connected graph - Pendant vertices in a tree - distance and
centers in a tree - rooted and binary tree. Levels in binary tree - height of a tree - Spanning trees -
rank and nullity.

SUGGESTED READINGS

1. Tremblay J. P. and Manohar, R., (2017). Discrete Mathematical Structures with
Applications to Computer Science, McGraw-Hill Book Co.

2. Deo N., (2007). Graph Theory with Applications to Engineering and Computer
Sciences, Prentice Hall of India.

3. LiuC.L., (2012). Elements of Discrete Mathematics, Fourth edition McGraw-Hill
Publishing Company Ltd, New Delhi.

4. Wiitala S., (2003),Discrete Mathematics- A Unified Approach, McGraw-Hill Book Co,
New Delhi.

5. Seymour Lepschutz, (2007),Discrete Mathematics, Schaum Series, McGraw-Hill
Publishing Company Ltd, New Delhi.
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Lecture
S.No | Duratio Topics to be covered Support Materials
n (Hr)
UNIT-I
1 1 Algebraic structures :Introduction and | S1: Chap: 3: Pg. No :270-271

basic concepts ;Definition,
General properties and Examples.

2 1 Continuation of Algebraic structures
General properties and Examples S1:Chap :3:pg.No:272-274
3 1 Some Simple Algebraic Systems and | S1: Chap: 3: Pg. N0:274-276

General properties:
Homomaorphism and isomorphism

4 1 Continuation of Homomorphismand | S1:Chap:3:pg.No:277-279
isomorphism

5 1 Congruence Relation S1: Chap: 3: Pg. No: 279-282

6 1 Continuation of Congruence Relation | S1: Chap: 3: Pg. No: 279-282

7 1 Semigroups and Monoids : S1: Chap: 3: Pg. No : 282-286
Definitions and Problems.

8 1 Continuation of Problems on S1: Chap: 3: Pg. No: 284-286
Semigroups and Monoids

9 1 Homomorphism of Semigroups and | S1: Chap: 3: Pg. N0:287-292
Monoids — Problems.

10 1 Continuation of Problems on S1: Chap: 3: Pg. N0:290-292
Homomorphism of Semigroups and
Monoids

11 1 Recapitulation and discussion of

possible questions on unit |

Total 11 HOURS

UNIT-11
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1 1 Introduction of Lattices S1: Chap: 4: Pg. No: 378-
Lattices as Partial Ordered Sets: 386
Definition and Examples
2 1 Principle of duality S5: Chap: 15: Pg. No: 478-
479
3 1 Continuation of Principle of duality S5: Chap: 15: Pg. No: 480-
484
4 1 Properties of Lattices S1: Chap: 4: Pg. No: 382-385
5 1 Continuation of Properties of Lattices | S4: Chap: 6: Pg. N0:413-415
6 1 Lattices as Algebraic Systems S1: Chap: 4: Pg. No: 385-386
7 1 Continuation of Lattices as Algebraic | S4: Chap: 6: Pg. N0:416-419
Systems
8 1 Sublattices , Direct product, and S1: Chap: 4: Pg. No: 387-391
Homomorphism- Problems
9 1 Recapitulation and discussion of
possible questions on unit-II
Total 9 HOURS
UNIT-I111
1 1 Introduction of Some special Lattices | S1: Chap: 4: Pg. No: 392-394
2 1 Complete, Complemented and S1: Chap: 4: Pg. N0:395-399
Distributive Lattices - Problems
3 1 Continuation of Complete, S5: Chap: 14: Pg. No: 454-
Complemented and Distributive 458
Lattices - Problems
4 1 Boolean Algebra: Definition and S1: Chap: 4: Pg. No: 398-400
Problems
5 1 Sub algebra , Direct product and S1: Chap: 4: Pg. No: 401-406
Homomorphism
6 1 Join irreducible , atoms and S1: Chap: 4: Pg. No: 407-410
antiatoms - Problems
7 1 Continuation of Join irreducible , S5: Chap: 14: Pg. No: 411-
atoms and 415
antiatoms - Problems
8 1 Recapitulation and discussion of
possible questions on unit 11
Total 8 HOURS
UNIT-1V
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1 Introduction and basic definition ofa | S2: Chap: 1: Pg. No: 1-3
graph and S2:Chap:1:pg.No:3-6
applications of graph theory

2 Incidence and degree S2: Chap: 1: Pg. No: 7-10

S3: Chap: 4: Pg. No: 190-193

3 Isolated and pendant vertices , Null S2: Chap: 1: Pg. No: 11-13
graph,

4 Path and Circuits: Isomorphism- sub | S2: Chap: 2: Pg. No: 14-16
graphs S1: Chap: 4: Pg. No: 196-198

5 Walks, Paths and circuits - Problems | S2: Chap: 2: Pg. No: 17-21

6 Connected graphs , disconnected S2: Chap: 2: Pg. No: 21-23
graphs, components - Problems

7 Continuation of Connected graphs , S2: Chap: 2: Pg. No: 24-26
disconnected graphs, components -

Problems

8 Euler graph — Introduction and S2: Chap: 2: Pg. No: 28-37
examples

9 Recapitulation and discussion of
possible questions on unit IV

Total 9 HOURS
UNIT-V

1 Introduction of Trees and its S2: Chap: 3: Pg. No: 39-41S3:
properties Chap: 5: Pg. No: 255-257

2 Minimally connected graph S2: Chap: 3: Pg. N0:41-43,48

3 Pendant vertices in a tree — theorems | S2: Chap: 3: Pg. No: 43-44
introduction and examples S4: chap : 7:pg: 156-158

4 Distance and centers in a tree S2: Chap: 3: Pg. No: 45-47

S4: chap : 7:pg: 162-165

5 Rooted and binary tree and S2: Chap: 3: Pg. No: 48-
Levels in binary tree, height of a tree- | 49,52:Chap:3:pg.N0:50-54
Problem.

6 continuation of Rooted and binary S3: Chap: 5: Pg. No: 262-264
tree and
Levels in binary tree, height of a tree-

Problem.
7 Spanning trees- Problems S2: Chap: 3: Pg. No: 55-56
S3: Chap: 5: Pg. No: 272-276
8 Rank and nullity-Introduction and S2: Chap: 3: Pg. No: 57-60

problems
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9 Recapitulation and discussion of
possible questions on unit V

10 Discussion of Previous year ESE
guestion paper

11 Discussion of Previous year ESE

guestion paper

SUGGESTED BOOKS

S1.J .P.Tremblay & R. Manohar, 1997.Discrete Mathematical Structures with
Applications to Computer Science, McGraw-Hill Book Co.(for unit I,11,111)

S2. N. Deo, 2000. Graph Theory with Applications to Engineering and Computer
Sciences, Prentice Hall of India. (for unit 1V,V)

S3. C. L. Liu, 2000. Elements of Discrete Mathematics, McGraw-Hill Publishing
Company Ltd, New Delhi.

S4. S.Wiitala, Discrete Mathematics- A Unified Approach, McGraw-Hill Book

Co,New Delhi.

S5. Seymour Lepschutz, Discrete Mathematics, Schaum Series, McGraw-Hill

Publishing Company Ltd, New Delhi.

Prepared by : J.Jansi ,Department of Mathematics /KAHE

Page




ALGEBRAIC STRUCTURES /2019 BATCH

M‘&:ﬂ

KARPAGAM ACADEMY OF HIGHER EDUCATION

R/——/ (Deemed to be University Established Under Section 3 of UGC Act 1956)
10»: ' (éé' Unersio Pollachi Main Road, Eachanari (Post)

- Coimbatore -641021

DEPARTMENT OF MATHEMATICS

SUBJECT: ADVANCED DISCRETE MATHEMATICS SEMESTER: | LTPC
SUBJECT CODE: 19MMP105A CLASS:I PG(MATHEMATICS) 4004
UNIT I

Algebraic Structures: Introduction- Algebraic Systems: Examples and General
Properties: Definition and examples - Some Simple Algebraic Systems and General
properties - Homomorphism and isomorphism - congruence relation - Semigroups
and Monoids: Definitions and Examples - Homomorphism of Semigroups and

Monoids.
TEXT BOOKS

1. Tremblay J. P. and Manohar, R., (1997). Discrete Mathematical
Structures with Applications to Computer Science, McGraw-Hill Book
Co.(for unit I,11111).

REFERENCES

2.Advance Discrete Mathematics Paperback — 2011 by G.C.Sharma (Author), Madhu
Jain (Author) Publisher: Laxmi Publications; Second edition (2011)
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ALGEBRAIC SYSTEMS

INTRODUCTION:

The algebraic systems contained two binary operations which were
denoted by + and X in each case. The choice of these examples was dictated by our
familiarity with the systems of integers and real numbers. These algebraic system
are not simplest ones. In this section we give examples of algebraic systems
consisting of a single unary or binary operation. It is possible to obtain such
algebraic systems form those given earlier by simply considering one of the two
binary operations; for example, (I,+) and (R,X) are perfectly.

Semigroups are the simplest algebraic structures which satisfy the
properties of closure and associativity.They are very important in the theory of
sequential machines, formal languages, and in certain applications relating to
computer arithmetic such as multiplication.

A Monoid in addition to being a semigroup,also satisfies the identity
property. Monoids are used in a number of applications but most particularly in the
area of syntactic analysis and formal language.

For such algebraic systems , certain properties are taken as axioms of
the system. Any result that is valid for an abstract systems holds for all those
algebraic systems for which the axioms are true.

Definition:

A non-empty set together with a number of binary operations on it is called
an algebraic system.

In what follows,
we shall define some algebraic systems :

Definition: A non-empty set S is said to be a semigroup if in S there is
defined a binary operation « satisfying the following property :

Ifa,b,ce S, thena~(b~c)=(a~b)«c (Associative Law)
Thus

A non-empty set S together with an associative binary operation « defined on S is
called a Semi-group.

We denote the semi group by (S, «).

Definition. A semi group (S, ») is called commutative if the binary operation « is a
commutative  operation, i.e.,ifaxb=b+afora, b €S.

Preparedby:J.JANSI, Departmentof Mathematics, KAHE 20f29
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Examples. 1. Let Z be the set of all integers. Then (Z, +) is a
commutative semigroup. In fact, if a, b, ¢ € Z, then

a.a~b =a+b is an integer. Therefore, the operation + on Z is a binary
operation.

b.a+ (b+c)=(at+b) +c, because associative law holds in the set of
integers.

c.a+ b =Db+ a, because addition in Z is commutative.

2. The setZofintegerswiththe binary operation of subtractionisnota
semi- group since subtraction is not associative in Z.

3.Let S be a finite set and let F(S) be the collection of all functions f: S
— S under the operation of composition of functions. We know that
composition offunctionsisassociative, i.e fo(goh) = (fog)oh wheref,g,h
e F(S) .

Hence F(s) is a semigroup.

4. ThesetP(S),where Sisaset,togetherwiththe operationofunionis
a commutative semigroup.

5.The integers modulo m, denoted by Zn, referto thesetzn={0,1, 2,..., m-1}.

6. The addition in Z isdefined as a + b =r, where r is the remainder when a+b is
divided by m.

7.The multiplication in Z, is defined by a.b =r, where r is the remainder when a+
b is dividedby m.
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For example, consider Z,={0, 1, 2,3}

The addition table is

We note
(1+2)+3 = 3+3=2 and 1+(2+3)=1+1=2
Hence (1+2)+3=1+(2+3)
Ingeneral, (a+b)+c=a+(b+c) ,a,b,ce Z4
Hence Zsis a semigroup.

Definition. A non-empty set S is said to be a monoid if in S there is
defined a binary operation « satisfying the following properties :

1.1fa, b, c € S, then a-(b+c)=(a~b)-c (Associative Law)

2.Thereexistsanelemente € Ssuchthat e-a=a-e=aforalla e S (Existence of
identity element)

Thus
An algebraic system (S, ) is said to be a monoid if

«iS a binary operation on non-empty set S

IS anassociative binary operationonS

There exists anidentity elementein S.
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It, therefore, follows that A monoid is a semi-group (S, =) that has an identity
element.

Example.l. In example 3 above, identity function is an identity element
for F(S).

Hence F(S) is a monoid.

Let M be the set of all n x n matrices and let the binary operation = of M
be taken as addition of matrices. Then (M, +) is a monoid. In fact,

() The sumoftwo n x nmatricesis againamatrixofordernxn. Thus
the operation of matrix addition is a binary operation.

(i) If A, B, C € M, then A+ (B+C) = (A+B) + C (Associative Law)
(iii) The zero matrix acts as additive identity of this monoid because

A+0=0+ A=AforAeM.

Definition. Let A be a non-empty set. A word w on A is a finite sequence of its
elements.

For example ,
w = ab ab bb = ab ab?

isaword on A={a, b}.
Definition. The number of elements in a word w s called its length and
is denoted byl(w).

For example, length of w in the above example is
I(w) =6

Definition. Let u and v be two words on a set A. Then the word obtained by
writing down the elements of u followed by the elements of v is called the
concatenation of the words u and v on A.

For example, if A ={a, b, c} and

u=ababbbandv=acbabh

then w = ab abbb ac bab = abab3acbab is the concatenation of u and v.
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HOMOMORPHISM AND ISOMORPHISM:

A homomorphism is a map between two algebraic structures of the same type (that
is of the same name), that preserves the operations of the structures. This means a map
f:[0 — [J between two sets A, B equipped with the same structure such that, if * is an operation
of the structure (supposed here, for simplification, to be a binary operation), then f(x * y)= f(x) *

f(y)
For example

A group hos a sngke binany ooerotion:
a *
A group homamanohilsrm pressnses the openortiom:

.-’Jf ---H‘-.. f I.-"”d___ﬂ\\

| ) — )
kx_____d,f"} IL'\\__F,M"
S tiarbl =t @ *f b H

A ovestorl sSpace has hwo aperatkons

WS TOT ST W W
SCakar T aThon B W

A limaar fransfonmation prasansas the operations:

TN A

S “\\__/I

* ¥

L{w -+ w)=Lw]-+ Lkw)]

Lk w )= kL[w)
Isomorphism, in modern algebra, a one-to-one correspondence (mapping) between
two sets that preserves binary relationships between elements of the sets. For example,
the set of natural numbers can be mapped onto the set of even natural numbers by
multiplying each natural number by 2. The binary operation of adding two numbers is
preserved—that is, adding two natural numbers and then multiplying the sum by 2 gives
the same result as multiplying each natural number by 2 and then adding the products
together—so the sets are isomorphic for addition.

Theorem:

The algebraic system (N,+) and (Z4 ,+) where N is the set of natural numbers
and + is the operation of addition on N, show that there exists a homomorphism
from (N,+) to (Z4 ,+)

Proof:
Define g:N — Z, given by g(a) = [a(mod 4)] for any a€ N
Fora, [1 € N, let g(a)=[i] and g(b)=[j] ;then

g(atb) =[(i+j)(mod 4)] = [i ]+4 [ ] ] = 9(a) +4 g(b)

observe that g(0) =[0] ; that is, the mapping g also preserves the identity
element.
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CONGRUENCE RELATION:

If two numbers b and chave the property that their difference b-c is integrally divisible
by a number m (i.e., (b-c)/m is an integer), then b and c are said to be "congruent
modulo m. The number m is called the modulus, and the statement b is congruent

to ¢ (modulo m,) is written mathematically as

b= (000 )

If b-c is not integrally divisible by m, then it is said that b is not congruent
to ¢ (modulo m), which is written

b= (D00 )

The explicit "(mod m)" is sometimes omitted when the modulus m is understood by
context, so in such cases, care must be taken not to confuse the symbol = with the
equivalence sign.

— m [(a-b) + (b—C)]
— m|(a—cC)
— a = ¢ (mod m), which means that a R c. Definition:

An equivalence relation R on a semigroup (S, =) is called a congruence relation ifaRa and b R
b imply (a «b) R (a « b).

Examples:

1.Let (Z, +) be the semigroup of integers. Consider the relation R defined on Z by A
R b if and only if a=b (mod m).

We know that a = b (mod m) if m divides a—b. We note that
(i) For any integer a, we have a=a (mod m), i.e.,aRa
(i IfaR b, thena=b (mod m) — m | (a—b) — m|(b—a) and so b=a(mod m) which meansbR a.
(i) faR band bR c, then
a =b(mod m) and b = c(mod m)

— m|(a—b) and m|(b—c)
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ThusRisreflexive, symmetricandtransitiveand soisanequivalence
relation. Further, if

Then a=c (modm)andb=d (modm),
m| (a—c) and m | (b—d)
—m | [(a—c) + (b-d)]]

—m|[(a+b) — (c+d)]
—(atb) = (c+d) (mod m)
—(a+b) R (c+d)

Hence R is a congruence relation.

SEMIGROUPS AND MONOID
Binary Operation and itsProperties

Definition. Let A be a non-empty set. Then a mapping f: A x A — A is called a binary
operation. Thus, a binary operation is a rule that assigns to each ordered pair (a, b) € AxA an
element of A.

Examples. 1. Let Z be the set of integers. Then f: Z x Z — Z defined by f(a,b) =a « b=a+b,
a, b € Z is a binary operation on Z because the sum of two integers a and b is again an integer.

Thus, addition of integers is a binary operation.

2. Let N be the set of positive integers. Then f: N x N — N defined by f(a,b)=a<b=a-b is
not a binary operation because difference of two positive integers need not be positive
integer. For example 2-5 is not a positive integer.

a
3. For the set N of positive integers, let f : N x N — N be defined by f(a,b) = E . Then fis

a
not a binary operation. For example, ifa=2,b=7, then — = — is not a positive integer.

4. Let Z be the set of all integers. Then f: Z x Z — Z defined by
f(a,b) = max (a, b)
is a binary operation. For example,

f2,4)=2.4= max(2,4)=4 € Z.
5. Let A= {a, b, c}. Define . by

X«y=X, X,YE A.
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Then the table given below defines the operation .

% a b c
a a a a
b b b b
[ [ c c

Further, if we define . by

XY=y, X, yY€EA,

then the table given below defines the operation .

. a b C
a a b c
b a b C
c a b C
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6. If A= {0, 1}. Then the binary operations » and v are defined by the following tables :

A 0 1

0 0 0

1 0 0
and

Y, 0 1

0 0 1

Properties of Binary Operation

1. Commutative Law :- A binary operation = on a set A is said to be commutative if

a.b=b.a

for any elements a and b in A.

For example, consider the set Z of integers. Since

atb=b+ta and a.b = b.a,
for a, b € Z, the addition and multiplication operations on Z are commutative.
But, on the other hand, subtraction in Z is not commutative since, for example,

2-3#3-2
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Theorem. Let « be a binary operation on a set A. Then any product a, « a; + ... » a, requires no
parenthesis, that is, all possible products are equal.

Proof. We shall prove this result by induction on n. Since « is associative, the theorem holds
forn=1,2and 3. Suppose [a, a, ... a,] denote any product and

(ajay ... ay) =(...(a; ax)as...)a,
It is sufficient then to show that

[a125...2,] = (a3, ... a,)
Since [a, a, ... a,] denote arbitrary product, there is an m < n such that induction yields

[a| &y .. anl = [a, ay ... am]i [am.q an]
=[a; 2y ... ay) (Am+1 ... Q)

=[a, a3 ... ay] ((Ams1 --- ap-1)ay)
=([a1 a2 ... an] (am+1 - 30 1))
=8y .. 8. 8,

=(a; ... 2, 1)a,

=(a,;a,...4a,),

which proves the result.

Definition. Let « be a binary operation on a set A. An element e in A is called an identity
element for « if for any elementa € A,

a+x€=cCs+a —a.

Further e is called right identity if a « e = a and left identity ife - a=a foranya € A.

Let e, the left identity and e, be the right identity for a binary operation «. Then

eex=¢e since e, is left identity
and
e e;=e, since e, is right identity

Hence e; = e, and so identity element for a binary operation is unique.

Preparedby:M.Sangeetha, Departmentof Mathematics, KAHE 110f29



ALGEBRAIC STRUCTURES /2017 BATCH

Definition. Let « be a binary operation on a set A and let A has identity element e. Then
inverse of an element a in A is an element b such that

asb=bsa=e.

We shall see later on that if « is associative, then the inverse of an element, if it exits, is unique.

Definition. A binary operation «on a set A is said to satisfy the left cancellation law if
asb=a.c=>b=c
A binary operation = on a set A is said to obey right cancellation law if

bsa=c«a=>b=c

Let Z be the set of integers. Since

atb=a+tc=>b=c
and
b+a=c+a=b=c fora,b,ce Z,

it follows that addition of integers in Z obeys both cancellation laws.

On the other hand, matrix multiplication does not obey cancellation

laws. To see it, let
I 1 A | 0 -3
A - B B = ° C = *
0 0 0 1 1. 5

1 2
AB=AC=
o o]

Then

butB=#C.

Proposition 2. Let (M, -, e) be a monoid. If an element x in M is invertible, then there
is a unique inverse element, i.e., vx' =2'r=eNxzx’ =x"r=e=2' = 2".

Preparedby:M.Sangeetha, Departmentof Mathematics, KAHE 120f29



ALGEBRAIC STRUCTURES /2017 BATCH

Proof. Let z be invertible and =’ and =7 be its two inverses, i.e., 2z’ = 2’z = e and
z2” = 2"z = e. Then we hiive ¥’ = zle = ol{zzx”) = (F'2)z” = ex” = 2" O

In order to make all operations explicit in the flavor of universal algebra, the follow-
ing equivalent alternative definition is sometimes preferred.

Definition 2. A group is an algebra (G,-, (=)', ¢e) with a carrier set G and three
operations: a binary operation -: G* — G, a unary operation (—=)™': G — G, and
constant (nullary operation) e € G that satisfy the following identities’

[Associativity] z(yz) = (zy)z
[Unit] er=re=2x
[Inverse element] zr ="l =c

As the notation suggests, the image of an element x € G under the unary operation
(=)' is denoted by x~'. In this notation, common elsewhere a well, (=) denotes a

hole to be replaced by an argument. A group (G, -, (=)~1, ) is commutative or abelian
if also ry = yz.

Example 3. Examples of groups are (Z, +, —(—),0), (Q,+,—(—),0), (R, +, —(-).0),
(@\ {0},-.1/(=),1), (R\ {0},-.1/(—=), 1). Convince yourselves that these are indeed
groups! Note that the monoid (N, +, () is not a group, since there are no inverse ele-
ments with respect to addition. The additive inverse of an element z of a group, in e.g.,
(Z,4.—(=),0), is denoted as usual by —z. The monoid (Z, -, 1) is not a group since
there are no inverse elements with respect to multiplication.

Let A be a set and let P(A) denote the set of all permutations on A, i.e.,

P(A)={f: A— A| f is bijective}.

Then (P(A).o,(=)"',id4) is a group, known as the group of permutations on A.
Convince yourself in this as well. Here, as usual, o denotes function composition, f~! is
the inverse function of a bijection f, and id4: A — A is the identity function mapping
every element to itself.

Let A be a set and let + denote the operation of symmetric difference of sets, i.e,
for two subsets B and C' of A, we have

B+C=(B\C)U(C\B)=(BNC)U(CNB°).

Then (P(A), +, idp4). D) is a group.
In the sequel we will use both ways to denote a group as convenient. The following

simple property shows the relationship between the unary operation (inverse elements)
and the binary operation of a group.
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Proposition 3. Let G(-) be a group. Then for any x,y € G it holds that

(zy) "t =yl

Proof. Let x,y € G. We have, applying associativity and unit law,

(1’?/)(3/_11’_1) = :L'(yy_l)lf_l =zex ‘=z l=c¢

and

(y a7 )@y =y @ )y=y ey =y ly=e.

We next show that every group is cancellative.

Theorem 1. Let Gy (*, (=), e1) and Go(-, (=), e2) be two groups and h: G, —
G5 a (group) homomorphism. Then the following three statements hold

(1) ker(h) = {(z,y) | h(z) = h(y)} C G; x G4

is a congruence of G1(*, (=)', e1),
(2) h(G.) is a subgroup of G2, and

(3) G1/ker(h) = h(G}).

where G/ ker(h) denotes the quotient group of G1(x, (=)', e1) under the congru-
ence ker(h). Since the operations of a quotient group and a subgroup are canonical,
we do not write them in (3).

Theorem. Let (S, ¢) and (T. <) be monoids with identities e and e’
respectively. Let F: S — T be a homomorphism from (S «) onto (T, =*). Then
fle)=¢'.

Proof. Letb be any element of T. Since f is surjective, there is an element a
€ S such that f(a) = b. Since e is identity of S, we have

ase=a=e=a (1)

and so
b=f(a)=1f(a-e),by (i)

= f(a) +" f(e) ., because f is homomorphism
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=b+ f(e)
Also,
b=f(a)=1f(e + a)
= fle) +" f(a)
=f(e) <'b
Hence

b+ f(e): f(e) < b=b
and so f(e) is identity for T. Thus, f(e)=¢e".
Remark. The converse of the above theorem is not true.

Theorem. If f is a homomorphism from a commutative semigroup (S, =) onto
a semigroup (T, =), then (T, «) is also commutative, that is, homomorphic
image of an abelian (commutative) semigroup is abelian.

Proof. lett;, tz € T. Since fis onto, there exist s, s € S such that
f(s;)=1t; and f(s2) =tz
Then
t+" o =1(s)) + f(s2)
= f(sy «sy), since f is homomorphism
= f(s2 «s1), since S is abelian
= f(s2) +" f(s1), since f is homomorphism

=t 1.
Hence (T, <) is abelian.

Remark. The converse of the above theorem is not true.
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Theorem. Let f: (S, <) — (T, ') be semigroup homomorphism. If §" is a
subsemigroup of (S, «). then the image of S” under f is a subsemigroup of (T,
2)s

Proof. Let f (S") be the image of S” under f and let t;, t be in £ (S"). Then
there are s; and s; in S such that
t; = f(sy) and t;, = f(s,)
We claim that f(S) is closed under the binary operation -". It is sufficient to
show that t; <" ta € f(S"). We have, in this direction,
L+ ta= f(s1) + f(s2)

= f(sy = s2), because f is homomorphism.

Now since S” is a semigroup and s;, s; € S’, we have s; = s; € S'(due to
closeness of the peration +). Hence f(s; = sp) € f(S”). It follows, therefore, that
ti < e f(S).

Further, since the associativity hold in T, it also holds in f(S"). Hence f(S") is a
subsemigroup of (T, +).

Theorem. The intersection of two subsemigroups of a semigroup (S, =) is
subsemigroup of (S, =).

Proof. Let (Sy, «) and (S, «) be two subsemigroups of the semigroup (S, =).
Letacs S~ S;and be S~ S;. Then

ac SiNnS;=ae S1and ae S,
be SnS;= be S;andbe S,

Since S, is a subsemigroup. therefore, a, b £ S, implies a+ b € S,. Similarly,
since S; is a subsemigroup, a, b € S; impliesa + b S;. Hence

a:be S$1n§;
Hence S; m S» is closed under the operation =. Further associativity in S; and

S; implies the associativity of S; m Sz since S S; 2 Syand S1 » S; < Sa.
Hence S| m S; is a subsemigroup of (S, «).

Corollary.  Intersection of two submonoids of a monoid (S, «) is a
semimonoid of (S, «).
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Proof follows the same line as that in the above Theorem.

Remark. Union of two subsemigroups of a semigroup (S. =) need not be
subsemigroup of (S, +).

For example,
(81,9 = {02, 4, X6, +....]

and

3 =10,+3,%6,. 191 ...}
are subsemigroups of the semigroup (Z. +) of integers. But
SiS=401+2. %3 +4 +6+ ..}
is not a subsemigroup of (Z, +), because

2e S1US, 3e SLUS,,

but 2+43=35 & S, w S; showing that S| w S; is not closed under addition.

Theorem. Let R be a congruence relation on the semigroup (S, «). Then ® :
S/R x S/R — S/R defined by

@ ([a],[b])=[a] @ [b]=[a=b],a,be S
is a binary operation on S/R and (S/R. ®) is a semigroup.

Proof. Suppose that ([a], [b] )=[a], [b] ). ThenaR a"and b R b". Since R
is congruence relation, this impliesa=b R a’ = b". Thus [a = b] = [a" = b'], that
is, ® is a well defined function. Hence ® is a binary operation S/R.

Further we note that

[a]® ([b]® |[c]) =[a]® [b=«c] (bydefinitionof ® )

[as(bsc)] (by definitionof ® )
[(@a+b)=c] (Associativity of = in S)
[a«b] ® [c] (by definition of ®)

([a] ® [b]) ® [c] (by definition of ® )

Hence @ is an associative operation.  This implies that (S/R, ®) is a
semigroup.
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The operation @ is called quotient binary relation on S/R constructed from
the given binary relation - on S by the congruence relation R.

The semigroup (S/R, ®) is called Quotient Semigroup or Factor
Semigroup or the Quotient of S by R.

Theorem. Let R be the congruence relation on the monoid (S, #), then (S/R,
®) is a monoid.

Proof. We have shown above that (S/R, ®) is a semigroup. Further if e is
identity element in(S, « ), then [e] is the identity in (S/R, ® ). Thus (S/R, ® )
is semigroup having identity element [e] and so is a monoid.

Theorem. Let R be a congruence relation on a semigroup (S,+) and let (S/R.

®) be the corresponding quotient semigroup. Then the mapping ¢ : S — S/R
(called the natural mapping) defined by

o(a) = [a]
is an onto homomorphism, known as Natural homomorphism.

Proof. According to definition of ¢, to each [a] in S/R, there is a € S such that
0la] = [a]. Hence ¢ is subjective. Now leta,be S. Then

o(a *b)=[a*b]
= [a] ® [b]
=0(a) @ o(b)

Hence ¢ is homomorphism onto.
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Theorem (Fundamental Theorem of Semi-group Homomorphism). Let f:

S — T be a homomorphism of the semigroup (S, «) onto the semigroup (T, =).
Let R be the relation on S defined by

aRb iff(a)=f(b)fora,be S
Then

(1) R is a congruence relation on S

(i)  (S/R, @) is isomorphic to (T, +').

(If f is not onto, them (ii) shall be **S/R is isomorphic to f(S)™.
Proof. First we show that R is an equivalence relation. We note that
(1) Since f (a) = f (a), we have a R a.

(11) If aRb,thenf(a)=f(b)orf(b)= f(a)and hence bR a.

Preparedby:M.Sangeetha, Departmentof Mathematics, KAHE 190f29



ALGEBRAIC STRUCTURES /2017 BATCH

(1) IfaRbandbRc,then

f(a)=f(b)and f(b)=f(c)
and hence
f(a)="f(c)

andsoaRc.

Thus the relation R is reflexive, symmetric and transitive and so an equivalenct
relation.

Suppose now that
aRa and bRDb".
Then
f(a)=1(a)and f(b)=f(b")

Since f is homomorphism,
fla+b)=1(a)+" f(b)

=f(a") - f(b")
=f(a"«b")
Hence
(a=b)R(a"+b")
and so R is a congruence relation.
Define
y:S/R - T
by

vy ([a] )=f(a).

We claim that y is well defined. Suppose [a] = [b]. w will be well defined i
f(a) = f(b). Now [a] = [b] implies a R b, that is, f(a) = f(b). Hence vy is :
function (well defined).

Further, if [a], [b] € S/R, then
w(la]® [b])= w([a+b]), a,be S
=f(a=«b)

=f(a) +" f(b), because f is homomorphism
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v([la]® [b])=w([a+b]). a.be S
=f(a+=b)

=f(a) +" f(b), because f is homomorphism

=y [a] +" y[b]
So v is semigroup homomorphism.

Also
v([al= w([b]) = f(a)=f(b)
=akb
= [a] = [b],

and so \ is one — to — one .

Thus vy, as a map, is bijective and homomorphism. Hence vy is an
isomorphism and

SR =T
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Remark. We have proved that the mapping ¢ : S — S/R is natural

homomorphism. Also, we proved that the mapping v : S'/R — T is an
isomorphism. Thus diagram of the situation becomes

f
S FT
0 v
S/R
Also, we note that
(yoo)(a) = w(o(a))
=y ([a])

=f(a)forallae S.
Hence
voo="f
Direct product of semigroups :

Let (S, «) and (T, <) be two semigroups. Consider the cartesian product
S x T. Define a binary operation " on S x T by

(Si.t) " (s2. t2) = (s1+82. 41+ 1)

In what follows, we prove that (S x T, +”) is a semigroup.
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Theorem. let (S, «) and (T, +) be semigroups. Then (S x T, +”) is a

semigroup under the binary operation " defined by
(S, 1) " (s2, )= (s1+82, 1+ to).
Proof. If (s, t)).(s2,t2) and (s3,t3) € S x T, then
[(s1,t1) «" (82, t2) ] «" (83, 3) = (51 =82, t; +" tp) « (83, t3)
=((s1=(s2+83). 41 " (12) < 13))
=(S; (S =83). Uy« (1p +" 3))
=(81,ty) < (82 =83, tp < t3)

=(s1, t1)+" [(s2, 2) =" (53, 13) |

Hence +” is associative and so (S x T, «”) is a semigroup.

Corollary. If (S, ) and (T. +") are monoids, then (S x T, +”) is also a

monoid.

Proof. We have proved above that (S x T, <) is a semigroup. We further note
that if es is identity of (S, <) and et is identity of (T, "), then for (s;. t;) € S x T,

we have
(es.er)<”" (si. ) =(es = si. er="ty)
= (81, 1)
and
(s1.ty) + (es.er) = (sy = es, by <" ey)
= (s1. 1)
Thus

(S|, ty) o (eg, er) = (es, er) *”(Sl. t) = (84, t|)

showing that (es, er) is identity element of (S x T, +), thatis. (S x T, ") is a

semigroup with identity (es, et) and hence is a monoid.
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Theorem. The inverse of every element in a semigroup with identity e is
unique.

Proof. We shall use associativity of the binary operation + to prove the
uniqueness of the inverse element.

So, suppose that b and ¢ are two inverses of an element a in a monoid (S, =).
Therefore, we have

asc=Cc+«a=¢e (11)

We note that
b«(a-c)= b-«e. byl(il)
= b, because e is identity (i11)

and

(bsa)+c=e=c, by(i)
= ¢, because e is identity (iv)

But associativity of binary operation + implies
bs(a:c)=(b=a)+c
Hence, from (iii) and (iv) it follows that
b=c

proving that inverse, if exist, of every element in a monoid is unique.

Theorem :

If (S,*) and (T, ) are commutative semigroups then their productis also
commutative semigroup.

Proof:

We have already shown that if (S,*) and (T, ) are semigroups then their
product is semigroup.

we now show that product SxT is commutative.
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Let (a,b) ,(c,d) be any two elements in SxT .
Then
(a,b) + (c,d) = (a*c ,bo d)
=(c*a, do b)
Because both * and o are commutative
=(c,d) (a,b)
Thus + is a commutative operation on S*T.
Hence (SxT, +)is commutative semigroup.
Theorem:

Letf:s—Tbeanontomappingfromasemigroup (S,*)toan
algebraic structure (T, )where o isabinary operationonT .Iffis
semigroup homomorphismthen (T,e ) is a semigroup.

Proof:
In order to prove that (T, ) is a semigroup.
we must showthat. isanassociative operationonT.
Letx,y,z be any three elementsinT.
Since fonto mapping the exists a,b,cis S such thatx=f(a) , y=f(b) and z=f(c)

Now (xe y)z=f(a)e f(b)eo f(c)

=f(a*b)e f(c) f ishomomorphism
=f(a*b)*c) f ishomomorphism
=f(a*(b*c)) * isassociative
=f(a)o f(b*c) f ishomomorphism
=f(a) o (f(b)o f(c)) f is homomorphism
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=Xe (ye z)
Hence o is associative and Se (T,o ) is a semigroup.
Theorem:

If (M,*)isacommutativemonoidthentheset ofallidempotentelements of M forms a
submonoid.

Proof:
LetShethesetofallidempotentelementofM>. That is S={
XM ; x2=x}
Sincetheidentity elementeIM isidempotent, We havee[]S. We now show
thatSisclosed withrespectto*.
Leta,bbeanytwoelementsofS. Then a2
=aand b2=b
Now

(a*b)?= (a*b)(a*b)

=a*(b*a)*b * jsassociative
=a*(a*b)*b * iscommutative
=(a*a)*(b*b) * jsassociative
=g2* b2

=a*b a2=a andb2=b

Thus a*b is idempotent element of M . Hence

a*bllJandse (S,*)isasubmonoid.
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Theorem:

Let (M,*)and(T,> )betwomonoidswithidentityeande respectively. Iff isanonto
mappingfromMontoTsuchthatf(a*b)=f(a). f(b)v a,0[1M thenf(e)=¢’

Proof:
Lety be any element of T.
Sincefisonto,thereexistsanelementx ] Msuchthatf(x)=y. Now,
Y =f(x)=f(x*e) (eistheidentity of (M,*))
=f(x) o f(e)
=ye f(e)
Similarly
Y=f(x) =f(e*x)
=f(e)o f(x)
=f(e)o y
Thus f(e) o y =y o f(e) =y
Which implies f(e) is the identity for T.

Since Identity element in a monoid is unique, we have e’ =f(e).
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PART - B
POSSIBLE QUESTIONS - SIX MARKS

1. Prove that under the semigroup homomorphism the properties associativity , idempotency
and commutative are preserved.

2. Show that every monoid <M, *, e> is isomorphic to a submonoid of <MM,°, A > where
A is the identity mapping of M.

3. Given the algebraic system <N, +> and <Zs, +4>, where N is the set of natural numbers ,
show that there exists a homomorphism from <N, +> to <Zs, +4>.

4.Show that the set of all the invertible elements of a monoid form a group under the
same operation as that of the monoid.

5. Show that the intersection of any two congruence relations on a set is also a
congruence relation.

6. Let <S, *> be a given semigroup. There exists a homomorphism g: S— S5, where < S° ,°is
a semigroup of functions from S to S under the operation of (left) composition.

7. Show that the set of all semigroup endomorphisms of a semigroup is a semigroup
under the operation of left composition.

8. Define homomorphism with example.
9. Show that the composition of two homomorphisms is also a homomorphism.
10. Let <S, *>, <T, A> and <V, +> be semigroups and g: S—T and h: T —V be semigroup

homomorphisms. Then (h°g): S— V is a semigroup homomorphism from <S, *> to
<V, +>.

11. Let | be the set of integers and - denote the operation of multiplication so that <I, -, 1> is
a monoid. Show that <{0}, -> is a semigroup but not a submonoid.

PART -C
POSSIBLE QUESTIONS - TEN MARKS
1.State and prove the function theorem of semigroup homomorphism.

2.Let (M, *) be a monoid .Then there exists a subset T < [~ such that (M, *) is isomorphic
to the monoid (T, o).

3.Prove that every finite semigroup has an idempotent element.(That is an element a such
that a®=a).

4.Letf: S— T be an onto mapping from a semigroup (S,*) to an algebraic structure (T,0) , where 0 is
a binary operation on T. If f is semigroup homomorphism then (T,0) is a semigroup.
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LATTICES

Definitions and Examples

Definition: A lattice is a partially ordered set (L, <) in which every subset
{a, b} consisting of two element has a least upper bound and a greatest
lower bound.

We denote lub({a, b}) by a v b and call it join or sum of a and b.
Similarly,

we denote GLB({a, b}) by a A b and call it meet or product of a and b.
Other symbol used are:

LUB:® , +, U

GLB:+.,N

Thus Lattice is a mathematical structure with two binary operations, join
and meet. Lattice structures often appear in computing and mathematical
applications.

A totally ordered set is obviously a lattice but not all partially ordered sets are
lattices.

Example 1. Let A be any set and P(A) be its power set. The partially ordered
set (P(A), <) is a lattice in which the meet and join are the same as the
operations m and U respectively. If A has single element, say a, then P(A) =
{p, {a}} and

LUB({ ¢, {a}) = {a}

GLB({o, {a}) = ¢

The Hasse diagram of (P(A), ©) is a chain containing two elements ¢ and {a}
as shown below:
I la]
l;'

If A has two elements, say a and b. Then P(A) = {o, {a}, {b}, {a, b}}. The

2123
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Hasse diagram of {P(A), <) is then as shown below :

{a.b]

(a (b}

We note that

1. LUB exists for every two subsets andis L UM

2. GLB exists for every two subsets and isinL n M for L, M € P(A).
Hence P(A) in alattice.

Example 2. Consider the poset (N, <), where < is relation of divisibility. Then
N is a lattice in which

joinofaandb=avb=LC M(a, b)

meetofaandb=aAb=GCD (a,b)fora, b eN.

Example 3. Let n be a positive integer and let Dn be the set of all positive
divisors of n. Then Dnis a lattice under the relation of divisibility. The Hasse
diagram of the lattices Ds, D20 and D3o are respectively.
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Dy ={1.2,3,5, 6,10, 15, 30}.
The TransiDefinition: The Transitive closure of a relation R is the
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smallest transitive relation containing R. It is denoted by R.

Example: LetA={1, 2, 3,4} and R =[(1, 2), (2, 3), (3, 4), (2, 1)] Find the

transitive closure of R.
Solution: The digraph of R is
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O 4

We note that from vertex 1, we have paths to the vertices 2, 3, 4 and 1. Note
that path from 1 to 1proceeds from 1 to 2 to 1. Thus we see that the ordered
pairs (1, 1), (1, 2), (1, 3) and (1, 4) are in R«. Starting from vertex 2, we have

paths to vertices 2, 1, 3 and 4 so the ordered pairs (2, 1), (2, 2), (2, 3) and (2,
4)

are in Rw. The only other path is from vertex 3 to 4, so we have

R»={(1,1), (1, 2),(1,3),(1,4), (2, 1), (2, 2), (2,3), (2, 4), 38:4)}

Example: Let R be the set of all equivalence relations on a set A. As such R

consists of subsets of A x A and so R is a partially ordered set under the
partial order of set inclusion. If R and S are equivalence relations on A, the
same property may be expressed in relational notations as follows:

RcSifandonlyifxRy xSyforallxy e A.

Then (R, ©) is a poset. R is a lattice, where the meet of the equivalence

relations R and S is their intersection R N S and their join is (R U S)«, the
transitive closure of their union.

Definition: Let (L, <) be a poset and let (L, >) be the dual poset. If (L, <) is a

lattice, we can show that (L, >) is also a lattice. In fact, forany aand b in L,
the

LUBofaandbin (L, <)is equal to the GLB of aand b in (L, ). Similarly,
the GLBofaandbin (L, <)isequalto LU B in (L, >).
The operation v and A are called dual of each other.

Example: Let S be asetand L = P(S). Then (L, <) is a lattice and its dual
lattice is (L, D), where D represents “contains”. We note that in the poset
(L, ), the join A v B is the set A m B and the meet A A B is the set A U B.

Cartesian Product of Lattices

Theorem: If (L1, <) and (L2, <) are lattices, then (L, <) is a lattice, where
L = L1 x L2and the partial order < of L is the product partial order.

Proof: We denote the join and meet in L1 by v1, and A1 and the join and meet
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in L2 by v2 and A2 respectively.

We know that Cartesian product of two posets is a poset.

Therefore L = L1 x L2is a poset. Thus all we need to show is that if
(a1, b1) and (a2, b2) € L,

Then (a1, b1) v (a2, b2)and (a1, b1) A (a2, b2) existin L.

Further, we know that

(a1, b1) v (a2, b2) = (a1 v a2, b1 v b2) and

and

(a1, b1) A (a2, b2) = (a1 A @z, b1 A b2)

Since Liis lattice, a1 v 1a2and a1 A 1 a2 exist. Similarly, since L2is a lattice,
b1v b2and b1 A b2 exist. Hence (a1, b1) v (a2, b2) and (a1, b1) A (a2, b2)
both exist and therefore (L, <) is a lattice, called the direct product of
(L1, ) and (L2, ).

(11, I2)

{11‘ id) {ll.b}

N
(1,,0,) «

/ (04. b)
(04, 0n)

L=L1>(L3

(0y,a)

Properties of Lattices:

Let (L, <) be alattice and let a, b, ¢ € L. Then, from the definition of v (join)
and A (meet)

we have
(la<awvbandb<avb;avbisan upper bound of a and b.
(ihifa<candb<c,thenavb<c;avbistheleast bound of a andb.
(ilanb<aandaaAb<b;anbisalowerbound of aand b.

(iv) ifc<aand c<b, then c <a A b;anbisthe greatest lower bound of a
and b

623
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Theorem:
Let L be a lattice. Then for everyaand binL,

(avb=Dbifandonlyifa<b

(ilanb=aifandonlyifa<b

(ianb=aifandonlyifavb=>b

Proof:

(i) Letav b =Dh. Sincea<avb,wehavea<h.

Conversely, if a < b, then since b < b, it follows that b is an upper bound of a
and b. Therefore, by the definition of least upper bound, a v b <b. Alsoavb
being an upper bound, b <a v b. Hencea v b =bh.

(i) Leta A b = a. Since a A b < b, we have a <b. Conversely, ifa<b and

since a< a, ais a lower bound of a and b and so, by the definition of greatest
lower bound, we have

a<anab
Since a A b is lower bound,
anb<a
Hence
anb=a.
(i) From (ii )
anb=a<a<gb....... (iv)
From (i)
a<b<avb=b........(V)

Hence, combining (iv) and (v),

we have
anb=a<avb=h.

Example: Let L be a linearly (total) ordered set. Therefore a, b € L imply
either a < b or b < a. Therefore, the above theorem implies that
avb=a

anb=a

Thus for every pair of elements a, binL, a v b and a A b exist. Hence a
linearly ordered set is a lattice.

Theorem :
Let (L, <) be a lattice and let a, b, ¢ € L. Then we have

L1: Idempotent property
(hava=a
(Dana=a
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L2: Commutative property
(lavb=bva
(Danb=bAaa

L3: Associative property
hav(bvec)=(avb)yvec
(iJar(barc)=(@arb)ac

L4: Absorption property
(av(aab)=a
(lan(@avb)=a

Proof: L1: The idempotent property follows from the definition of LUB and
GLB.

L2 : Commutativity follows from the symmetry of a and b in the definition of
LUB and GLB.

L3 : (i) From the definition of LUB, we have

a<av(bve).a... (1)
bvc<av((bvce)...... (2)
Also b <b v candc<b v cand so transitivity implies
b<avbve)........ (3)
and
c<av(bvoe)......... (4)

Now, (1) and (3) imply that a v (b v ¢) is an upper bound of a and b and hence
by the definition of least upper bound, we have

avb<avbve)a...... (5)

Also by (4) and (5), a v (b v c) is an upper bound of c and a v b . Therefore
(avb)vc<av(bvo)....... (6)

Similarly
av(pvec)<(avb)vec..... (7)

Hence, by antisymmetry of the relation <, (6) and (7) yield
av(pvc)=(avb)vec
The proof of (ii) is analogous to the proof of part (i).

L4: (i) Since a A b <aanda<a, it follows that a is an upper bound of a A b
and a. Therefore, by the definition of least upper bound

av@anb)<a............ (8)

On the other hand, by the definition of LUB, we have
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a<av@Aab) . (9)
The expression (8) and (9) yields

av(aab)=a.
(i) Sincea<av banda<a, it follows that a is a lower bound of a v b

and a.
Therefore, by the definition of GLB,

a<an(@vDb) ... (10)
Also, by the definition of GLB, we have
an(@vb)<a..nnee (11)

Then (10) and (11) imply
an(avb)=a
and the proof is completed.

In view of L3, we can writeav (bvc)and (avb)vcasavbvc.
Thus, we can express

LUB ({a1, a2,....an) as a1 v az v...... V an
GLB ({a1, a2,....an) as a1 A az A...... A an

Remark:
Using commutativity and absorption property, part (ii) of previous
Theorem can be proved as follows :
LetaAb=a.
We note that
bv(@ab)=bva
= a v b (Commutativity)
But
b v (a A b)=Db (Absorption property)
Hence
avb=>Db
and so by part (i),a<b. HenceaAb =aifand onlyifa<b.

Theorem: Let (L, <) be a lattice. Then for any a, b, ¢ € L, the following
properties hold :

1. (Isotonicity) : Ifa< b, then
havc<bvc
(ilanc<bac

This property is called “Isotonicity”.

2.a<candb<cifandonlyifavb<c

3.c<aandc<bifandonlyifc<anab
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4. Ifa<bandc<d, then
(avec<bvd
(anc<bad.

Proof : 1 (i). We know that
avb=Dbifandonlyifa<hb.

Therefore, to show that a v ¢ < b v ¢, we shall show that
(a@avec)v(bvcec)=bve.
We note that
(avec)vibve=[(avec)vblvec=av(cvb)vece
—av(bvecve
=(avb)v(vc
=bvc(@®avb=bandcvc=c)
The part 1 (ii) can be proved similarly.
2. If a < c, then 1(i) implies
avb<cvhb
But

b<c&o bvce=c
< ¢ Vv b = ¢ (commutativity)
Hencea<candb<cifandonlyifavb<c

3. Ifc<a,then 1(ii)impliescAb<anab

But
c<b&cAab=c

Hence
c<aandc<bifandonlyifc<aAb.

4 (i) We note that 1(i) implies thatifa<b,thenavc<bvc=cvDb

fc<d, thencvb<dvb=bvd

Hence, by transitivity
avc<bwvd

(i) We note that 1(ii) implies that
ifa<b,thenanc<bAc=cAb
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fc<d,thencAb<dAb=bAd.
Therefore transitivity implies

anc<bhbnad.

Theorem:

Let (L, <) be a lattice. If a, b, ¢c € L, then
(Davbac)<(avb)a(avrc)
2)an(bvc)z(@aanb)v(ananc)

These inequalities are called “Distributive Inequalities”.

Proof: We have

a<avbanda<avc()

Also, by the above theorem, if x <y and x < z in a lattice, then x < y A z.
Therefore (i) yields

a<(avb)A@VO).......... (i)
Also

bac<b<avhb
and

bac<c<Lavec,

thatis,bAc<awvbandbAc<avcand so, by the above argument,
we have

bAac<(avb)A (avc) (i)
Also, again by the above theorem if x < zand y < z in a lattice, then
Xvy<z
Hence, (ii) and (iii) yield
ac(bac)<(avb)a(avec
This proves (1).
The second distributive inequality follows by using the principle of
duality.

Theorem: (Modular Inequality) : Let (L, <) be a lattice. If a, b, c € L,
then

a<cifandonlyifav(bac)<(avb)ac
Proof: Weknowthat a<c<avc=cC....... (1)

Also, by distributive inequality,
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avbacZ(avb)aAa(ave)
Therefore using (1) a < c if and only if

av(bac)<(avc)ac,
which proves the result.

The modular inequalities can be expressed in the following way
also:

(@nb)v(aanc)<an[bv(anc)]
(@avbA(aveczaviba(avc)]

Example: Let (L, <) be alattice and a, b,c € L. Ifa< b <c, then
()avb=bAac,(i)(@arnb)v(bac)=(avb)A(avec)

Solution: (i) We know that
a<bsavb=b
and

b<c&s bac=b
Hencea<b<cimpliesav b=bAc.
(i) Since a< b and b < c, we have

anb=aandbAc=Db
Thus

(@nb)v(bAac)=avhb
= Db,
sincea<b<avb=h.
Also, a<b < c__a<c by transitivity. Then
a<banda<c _avb=b,avc=c
and so
(avb)aA(avec)=bAac
=bsinceb<c< bAac=Dh.
Hence
(@Anb)vbac)=b=(avb)A(avc),
which proves (ii).
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1.21. Lattices as Algebraic System
Definition. A Lattice is an algebraic system (L, v , A ) with two binary

operations v and A , called join and meet respectively, on a non-empty
set L

which satisfy the following axioms fora, b, c € L:

1. Commutative Law :

avb=bvaandaanb=bAaa.
2. Associative Law :

(avbyvc=av(bvc
and
(@aAnbAac=an(bAac)

3. Absorption Law :

(Jav(anb)=a

(Dan(avb)=a

We note that Idempotent Law follows from axiom 3 above. Infact,

ava=avVv[aa(avb)using............. 3(ii)
=ausing....ccceeeeennnn. 3(i)

The proof of a A a = a follows by principle of duality.

Partial Order Relations on a Lattice

A patrtial order relation on a lattice (L) follows as a consequence of the
axioms for the binary operations v and A .
We define a relation < on L such that fora, b € L,

a<b<savb=b
or analogously,

) ai<b&s aanb=a.
We note that

(i) Foranya € L
a v a = a (idempotent law),
therefore a < a showing that < is reflexive.

(i) Let a < b and b < a. Therefore
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avb=Db

bva=a
But

aVv b =Dbva(Commutative Law in lattice)
Hence

a=b,
showing that < is antisymmetric.

(i) Suppose thata<band b <c. Thereforeavb=bandbvc=c.
Then

avc=av(bveoe)
= (a Vv b) v c (Associativity in lattice)
=bvc
=cC,
showing that a < ¢ and hence < is transitive.

This shows that a lattice is a partially ordered set

Least Upper Bounds and Latest Lower Bounds in a
Lattice

Let (L, v, A) be a lattice and let a, b € L. We now show that LUB of
{a, b} < L with respect to the partial order introduced above is a v b and
GLB of {a, b}isa A b.

From absorption law
an(avb)=a
bAa(avb)=b

Therefore a<a v band b <av b, showing that a v b is upper bound for
{a,b}. Suppose that there exists ¢ € L such thata < c, b <c. Thus we
have avc=candbvc=c

and then
(avb)vc=av(bvc=avc=c

implying that a v b < c.
Hence a v b is the least upper bound of a and b.
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Similarly, we can show that a A b is GLB of a and b.

The above discussion shows that the two definitions of lattice
given

so far are equivalent.

Sublattices

Definition: Let (L, <) be a lattice. A non-empty subset S of L is called a
sublatticeof Lifavb e SandaAnb e Swheneverae S,b € S.

(Or)
Let (L, v, A ) be alattice and let S — L be a subset of L. Then (S, v, A)
is
called a sublattice of (L, v, A)if and only if S is closed under both
operations of join(v ) and meet( A ).

From the definition it is clear that sublattice itself is a lattice.
However, any subset of L which is a lattice need not be a sublattice.
For example, consider the lattice shown in the diagram:

1

e f
c
a b
]
0
L
We note that
(1) the subset S shown by the diagram below is not a sublattice of L, since
a~beSand avbeS.
I
e f
a b
S
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(i1) the set T shown below is not a sublattice of L since a v bg T.

N
NP

However, T is a lattice when considered as a poset by itself.

(iii) the subset « of L shown below is a sublattice of L:
C
*0
U

Example: Let A be any set and P(A) its power set. Then (P(A), v, A ) is

a
lattice in which join and meet are union of sets and intersection of sets

respectively.

A family _ of subsets of AsuchthatS U Tand S N T arein _for S,

T € _is a sublattice of (P(A), v, A). Such a family _is called aring
of

subsets of A and is denoted by (R(A), v, A) (This is not a ring in the
sense of algebra). Some author call it lattice of subsets.
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Example: The lattice (Dn, <) is a sublattice of (N, <), where < is the
relation of divisibility.

Definition: Let (B;, A1, v, %, 01, 11) and (B, A2, Vva, 7, 05, 15) be two
Boolean algebras. The Direct Product of the two Boolean algebras is defined
to be a Boolean algebra, denoted by, (B X Ba, A3, V3,7, 05 1)) 1n
which the operations are defined for any (a;, by) and (as, b2) € By X Bz as

(ai, b1) Az (a2, b)) =(a1 Araxbi A2by)
(ai, b1) vi(az,b)=(a1 viabr vaby)
(@i, by = (ar, b”)
03 = (01, 02) and Iz = (L1, L)

Thus, from a Boolean algebra B, we can generate B> =B x B, B’ =B xB x B
etc.

Lattice Isomorphism

Definition: Let (L1, v 1, A 1) and (L2, Vv 2, A 2) be two lattices. A mapping
f:

L1 — L2is called a lattice homomorphism from the lattice the lattice
(L1, V 1,

A1) to (L2, v 2, A2)if forany a, b € Li,

fav 1b) =f(a) v 2f(b) and f(a A 1b) = f(a) A 2f(b)

Thus, here both the binary operations of join and meet are preserved.
There

may be mapping which preserve only one of the two operations.
Such mapping are not lattice homomorphism

Let <1 and <2 be partial order relations on (L1, v 1, A 1) and
(L2, Vv 2, A 2) respectively. Let f : L1 — L2 be lattice homomorphism. If
a, b € L1, then

aib&savib=b
and so

f(b) =f(av 1b)
=f(a) v 2f(b)
< f(a) <2f(b)
Thus
a<ib < f(a) <21(b)
Thus order relations are also preserved under lattice homomorphism.

17123
Prepared by : J.Jansi , Department of Mathematics , KAHE



UNIT Il LATTICES / 2019 BATCH

If a lattice homomorphism f: L1 — L2 is one-to-one and onto, then it is
called lattice isomorphism.

If there exists an isomorphism between two lattices, then the lattices are
called isomorphic.

Since lattice isomorphism preserves order relation, therefore
iIsomorphic lattices can be represented by the same diagram in
which nodes are replaced by images .

Theorem: Let A ={a1, a2,....,an} and B = {b1, b2,...... bn} be any two finite
sets with n elements. Then the lattices (P(A), <) and (P(B), <) are
iIsomorphic

and so have identical Hasse-diagram.
Proof: Consider the mapping f: P(A) — P(B)
defined by

f({an} = {bn}, f({a1, az,....,am}) = {ba, bo,...... bn} form<n.

Then f is bijective mapping and L < M < f(L) < f(M) for subsets L and
M of P(A).

Hence P(A) and P(B) are isomorphic.
For example,
let A ={a, b, c}, B={2, 3, 5}. The Hasse-diagram of

P(A) and P(B) are then given below:

18123
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Define a mapping f: P(A) — P(B) by

f(9) = o, f({a}) = {2}, f({b}) = {3}, f({c}) = {5}
f({a, b}) = {2, 3}, f({b, c}) = {3, 5}, f({a, c}) = {2, 5}

and
f({a, b, c}) = {2, 3, 5}.

This is a bijective mapping satisfying the condition that if S and T are
subsets

of A, then S — T if and only if f(S) < f(T). Hence f is isomorphism and
(P(A),

<) and (P(B), <) are isomorphic.

Thus, foreachn =0, 1, 2,...., there is only one type of lattice and this
lattice

depends only on n, the number of elements in the set A, and not on A. It
has 2n

elements. Also, we know that if A has n elements, then all subsets of A
can be

represented by sequences of 0’s and 1’s of length n. Wecan therefore
label the
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Hasse diagram of a lattice (Pl(A), <) by such sequence of 0’s and 1’s.

e lll
110/\ 011
10]
01
100 001
000

The lattice so obtained is named B,. The properties of the partial order in By
can be described directly as follows:

Let x = a; a3.....ap and y = by by.....b, be any two elements of B,. Then
(I)x <yifand only if ax <bx, k=1, 2.......n, where ax and bx are O or 1.
(2) X A y=cp C2....Cn. Where cx = min(ag, by).
(3) x v y=di d2....dn. where dx = max(ak, hg).
(4) x has a complement X" = z; 7;...... Zp Where zx = 1 if X = 0 and zx = 0 if x¢

= 1.

Remark: (B,, <) under the partial order < defined above is isomorphic to
(P(A), ©), when A has n elements. In such a case x <y corresponds to S T, x
vy corresponds to S U T and x” corresponds to A",

Example : Let Dg = {1, 2. 3, 6}, set of divisors of 6. Then Dg is isomorphic to
B,. In fact f: Dg — B, defined by
f(1)=00, f(2)=10,f(3)=01,f(6) =11

is an isomorphism.

o

00

D(, BZ

Bounded, Complemented and Distributive Lattices
Definition: A lattice L is said to be bounded if it has a greatest element | and a
least element 0.

For the lattice (L, v, A ) with L = {a1, a2,....,an},
aiv azv..... van=landaiAnaza....... Aan=0.
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Example : The lattice Z+

of all positive integers under partial order of

divisibility is not a bounded lattice since it has a least element (the integer 1)
but no greatest element.

Example: The lattice Z of integers under partial order < (less than or equal to)
is not bounded since it has neither a greatest element nor a least element.
Example: Let A be a non-empty set. Then the lattice (P(A), <) is bounded.

Its greatest element is A and the least element is empty set ¢.

If (L, <) is a bounded Lattice, then for alla € L

O<ax<l
av0=aan0=0
avi=l,anl=a

Thus 0 acts as identity of the operation v and | acts as identity of the operation
AN

Definition: Let (L v, A, O, I) be a bounded lattice with greatest element | and
the least element 0. Leta € L. Then an element b € L is called a complement
of aif

avb=landaanb=0

It follows from this definition that

0 and | are complement of each other.

Further, 1 is the only complement of 0. For suppose that ¢ # | is a complement
of 0 and c € L, then

Ovc=land0OAc=0

But O v ¢ = c. Therefore ¢ = | which contradicts ¢ # I.

Similarly, 0 is the only complement of I.

Definition: A lattice (L, v, A, 1, 0) is called complemented if it is bounded
and if every element of L has at least one complement.

Example:

The lattice (P(A), <) of the power set of any set A is a bounded

lattice, where meet and join operations on e(A) are N and U respectively. Its
bounds are ¢ and A. The lattice (P(A), <) is complemented in which the
complement of any subset B of AisA—-b

Definition:

A lattice (L, v, A) is called a distributive lattice if for any elements a, b and c in L,
Daan(bvec)=(@aanb)v(anac)

() av(bac)=(avb)a(avc)

Properties (1) and (2) are called distributive properties.

Thus, in a distributive lattice, the operations A and v are distributive over
each other.

We further note that, by the principle of duality, the condition (1) holds if and
only if (2) holds. Therefore it is sufficient to verify any one of these two
equalities for all possible combinations of the elements of a lattice.
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If a lattice L is not distributive, we say that L is non-distributive.

Example: For a set S, the lattice (P(S), <) is distributive. The meet and join
operation in P(S) are n and U respectively. Also we know, by set

theory, that for A, B, C € P(S),
An(BuC)=(AnB)U(AnC)
AuBNC)=(AuB)n(AuC).
Example:

The five elements lattices given in the following diagrams are non
distributive.

- I
a a C
®h
b \ C
0 (1

0
(11)

)
In fact for the lattice (i), we notethatan(bvc)=anl=a,
while
(@anrb)v(@ananc)=bv0=b
Hence
an(bvec)#(aanb)v(anc),
showing that (i) is non-distributive.

For the lattice (ii) ,

we have

an(bvec)=anal=a,
while

(@nrb)v(@anc)=0v0=0.
Hence

an(bvec)z(@nanb)v(@aac),

showing that (ii) is also non-distributive
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POSSIBLE QUESTIONS (SIX MARKS)
1. Define sublattice, lattice homomorphism, order isomorphic.

2. Show that in a bounded distributive lattice, the elements which have complements
form a sublattice.

3. Show that a lattice is distributive iff (@ *b) + (b*c)+ (c*a)=(a+b) *
(b +c) * (c+ a).

4. Define complete, distributive lattice, Complemented lattice.

5.Every chain is a distributive lattice.

6. Show that every distributive lattice is modular but not conversely.

7. Show that a lattice is distributive iff (a * b) + (b*c¢) + (c *a) = (a+ b) * (b +c) * (c+ a).

8. Show that a lattice homomorphism on a Boolean algebra which preserves 0 and 1 is
Boolean homomorphism.

9. The direct product of any two distributive lattices is a distributive lattice.

10. Prove that two bounded lattices A and B are complemented iff A xB is complemented.

11.Prove that two lattices A and B are relatively complemented iff A:B is relatively
complemented.

POSSIBLE QUESTIONS (TEN MARKS)

1. If the meet operation is distributive over the join operation in a lattice, then the
join operation is also distributive over the meet operation. If the join operation is
distributive over the meet operation, then the meet operation is also distributive over the
join operation.

2. Let L be a finite distributive lattice. Then every a in L can be written uniquely (except
for order) as the join of irredundant join irreducible elements.

3. In a distributive lattice, if an element has a complement then this complement is unique.

4.Every finite lattice is a complete .
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Introduction: SOME SPECIAL LATTICES

In this chapter we will consider mathematical objects known as Lattices. Lattices is a set of
points in n dimensional space with a periodic structure.More recently,Lattices have become a
topic of active research in computer science .They are used as an algorithmic tool to solve a
wide variety of problems ; and they have have some unique properties from a computational
complexity point of view.

Bounded, Complemented and Distributive Lattices

Definition: A lattice L is said to be bounded if it has a greatest element I and a
least element 0.

For the lattice (L, v, A) with L = {ay, az,....,a,}.

aVv av....va=landa; A ayAn.......An a,=0 _

Prepared by : J.Jansi , Department of Mathematics , KAHE 10f 29



UNIT Il SOME SPECIAL LATTICES /2019 BATCH

Definition: Let (L v, A, 0, I) be a bounded lattice with greatest element I and

the least element 0. Let a € L. Then an element b £ L is called a complement
of aif

a vb=Ilanda A b=0
It follows from this definition that
0 and I are complement of each other.

Further, 1 is the only complement of 0. For suppose that ¢ = I is a complement
of 0and c € L, then

Ovc=IlandO Ac=0
But 0 v ¢ = c. Therefore ¢ = I which contradicts ¢ = L.
Similarly, O is the only complement of L.

Definition: A lattice (L, v, A, 1. 0) is called complemented if it is bounded
and if every element of L has at least one complement.

Example: The lattice (P(A), <) of the power set of any set A is a bounded
lattice, where meet and join operations on e(A) are M and w respectively. Its
bounds are ¢ and A. The lattice (P(A), <) is complemented in which the
complement of any subset B of A is A —b.

Example: Let L" be the lattice of n tuples of 0 and 1, where partial ordering is
defined for a=(ay, as,....ap) ,b=(by, by, ......,by) € L" by

as,bs a<hb; foralli=1,2.....n,

where < means less than or equal to. Then (L", <;) is lattice which is bounded.
For example, the bounds are (0, 0, 0) and (1, 1, 1) for 5
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(1,1.0) (0,1.1)
(1,0,0) (0,0.1)
(0,0,0)
The complement of an element of L" can be obtained by interchanging 1 by 0
and O by | in the n-tuple representing the element. For example,

complement of (1,0, 1) in L is (0, 1, 0).

Definition: A lattice (L, v. A) is called a distributive lattice if for any
elementsa.band cin L,

(Daan(bvc)=(aanb)vi(anac)
2)avibac)=(av b) A(av ¢)

Properties (1) and (2) are called distributive properties.

Thus, in a distributive lattice, the operations A and v are distributive over
each other.

We further note that, by the principle of duality, the condition (1) holds if and
only if (2) holds. Therefore it is sufficient to verify any one of these two
equalities for all possible combinations of the elements of a lattice.

If a lattice L 1s not distributive, we say that L is non-distributive.

Example: For a set S, the lattice (P(S). <) is distributive. The meet and join
operation in P(S) are m and U respectively. Also we know, by set
theory, that for A, B, C € P(S),

AnNn(BuUuC)=(AnB)Uu(An(C)

AuBNnOC)=(AuB)n(AuQQ).

Example: The five elements lattices given in the following diagrams are non
distributive.
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I

a a / c
eh

b c \

0

(i1)

0 (1)

In fact for the lattice (1), we note that

anbvcec=ananl=a,
while

@aanb)v(aanc)=bv 0=>b
Hence

an(bvcec)#(aab)vianac),
showing that (1) is non-distributive.

For the lattice (i1) . we have

an(bvel)=aanl=a,

while

@aanblv(anc=0v 0=0.
Hence

an(bvec)z(aanb)vi(ananc),

showing that (ii) is also non-distributive
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Example: Is the following lattice a distributive lattice

I

Solution: The given lattice is not distributive since {0, a, d. e, I} is a
sublattice which is isomorphic to the five-element lattice shown below :

rd

0

Theorem: Every chain is a distributive lattice.

Proof: Let (L. <) be a chain and a, b. ¢ € L. We shall show that distributive
law holds for any a, b, c € L. Two cases arise :
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Theorem: The direct product of any two distributive lattices is a distributive
lattice.

Proof: Let (L, <) and (L2, <;) be two lattices in which meet and join are Ay,
viyand A ,, v respectively. Then meet and join in L; x L, are defined by

(a1, b1) A (az, b2)=(a; Araz by A2by) (1)
and
(a1, by) v (ax, by) =(ay viax, by vaby) (2)
Since L, is distributive,
ap Aa vy a)=(a; Aja) vi(a Aras)  (3)
Since L; is distributive,
by Aa(ba v b3)=(by Aaby) va(by Agbs) 4)
Therefore
(aj, by) Af(ag, by) v (a3, by)]
= (a1, b1) Al(a2 v a3, by vab3)]
=[(a1 Ay (a2 viaz), by Az2(by vabs)]

=[(a; Ayaz) vi(a; Ayas). (by Aaby) va(by Apby)l
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(using (3) and (4))
and using (1) and (2), we have
[(a;. by) A (a3, by) ] v [((a;. by) A (a3, bs)]

=(ar Arag, by Aaba) v (a1 Aras, by A2bs)

=[(a; Ayay) vi(a; Aqas), (by Azby) va(by Ajby)]
Hence
(a1, by) A [(a2, by) v (a3, b3)] = [(a1, bi) A (a2, ba) v [((a1, bi) A (a3, ba)],
proving that L; x L is distributive.

Theorem: Let L be a bounded distributive lattice. If a complement of any
element exists, it is unique.
Proof: Suppose on the contrary that b and ¢ are complements of the element a
€ L. Then
avb=I avce=l
a Anb=0 anc=0
Using distributive law, we have
b=bwv 0
=b v(a A c)
=(bva)a(bvec
=(avbAa((veo
=1IA((vec

=b Ve
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Similarly,
c=cv 0

=cv(aanb)
=(cva)a(cvb)
=(avec)alcvb)
=IA(cvb)
=IA(Mbvec
=0 Ve

Hence b=c.

BOOLEAN ALGEBRA

Definitions and Examples

Definition: A non-empty set B with two binary operations v and A, a unary
operation *, and two distinct elements 0 and 1 is called a Boolean Algebra if

the following axioms holds for any elements a. b, ¢ € B:
[Bi]: Commutative Laws:

avb=bva and anb=bnaa
[Ba]: Distributive Law:

anlbvc)=(aanb)v(aanc)andav(bac)=(@avb)a(@vc)
[B;]: Identity Laws:
av0=a and a Al=a
[Bs]: Complement Laws:

ava=l and anana=0
We shall call 0 as zero element, 1 as unit element and a’ the complement of a.
We denote a Boolean Algebra by (B, v, A, ~,0,1).

Example 1. Let A be a non-empty set and P(A) be its power set. Then the set
algebra (P(A), U, M, —, ¢, A) is a Boolean algebra.
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Example 2 : Let B= {0, 1} be the set of bits (binary digits) with the binary
operations v and A and the unary operation “ defined by the following
tables:

vI| il O All 0O 110
11 4 ; 1| £ 1@ 0 1
O(1 0O 00 O

Here the operations v and A are logical operations and complement of 1 1s 0

whereas complement of O is 1. Then (B, v, A, " , 0, 1) is a Boolean Algebra.
It is the simplest example of a two-element algebra.

Further, a two element Boolean algebra is the only Boolean algebra whose
diagram is a chain.

Example 3 : Let B, be the set of n tuples whose members are either O or 1. Let
a = (a,, ay,....,a,) and b = (by, by,....,.b,) be any two members of B,. Then we
define
avib=(a; v bi,ax v bs,......a, v bp)
anib=(a; A bi,a A ba,......an A by) ,
where v and A are logical operations on {0, 1}. and
a'=(~a,~a,...,~a,) ,

where~0=1and ~1=0.

If 0, represents (0, 0.......0)and 1,=(1, 1,...... 1), then (B,, v1, A1, 7, On, 14)
is a Boolean algebra.

Example 4. The poset D3, = {1, 2, 3, 5, 6, 10, 15, 30} has eight element.

Define v, A and “on D3 by

av b=Icm(a,b) , a A b=gcd(a, b) and a=—.

Then Dsp is a Boolean Algebra with 1 as the zero element and 30 as the unit

element.
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Example 5: Let S be the set of statement formulas involving n statement
variables. The algebraic system (S, A, v, ~, F. T) is a Boolean algebra in
which A ,v, ~ denotes the operations of conjunction, disjunction and negation
respectively. The element F and T denotes the formulas which are
contradictions and Tautologies respectively. The partial ordering
corresponding to A, v is implication = .

We have seen that B, is a Boolean algebra. Using this fact, we can also define
Boolean algebra as follows:

Definition: A finite lattice is called a Boolean Algebra if it is isomorphic with
B, for some non-negative integer n.

For example, D3p is isomorphic to Ba. In fact, the mapping f: D3y — B; defined
by

f(1)=000, f(2)=100, f(3)=010, f(5)=001,
f(6) =110, f(10)=101, f(15)=011, f(30)=111

is an isomorphism. Hence Dy is a Boolean algebra.

If a finite L. does not contain 2" elements for some non-negative integer n,
then L cannot be a Boolean Algebra.

For example, consider Dy = {1, 2, 4, 5, 10, 20} that has 6 elements and 6 = 2"
for any integer n = 0. Therefore, Dy 1s not a Boolean algebra.

If | L | =2" then L may or not be a Boolean Algebra. If L is
isomorphic to B, then it is Boolean algebra, otherwise it is not.

For large value of n, we use the following theorem for determining
whether D, is a Boolean Algebra or not.
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Theorem: Let

where p; are distinct primes, known as set of atoms. Then D, is a Boolean
algebra.

Proof: Let A = {p1, p2......px}. If B Z A and ag is the product of primes in B,
then “gln. Also any divisor of n must be of the form “g for some subset B of A,
where we assume that a; = 1. Further, if C and B are subsets of A, then C — B
if and only if “cl'g. Also

a a A a a a
C-B= C g=ged(e . g)

and
a g .V a a a
os=c s=lcm(c, B)

Thus the function f: P(A) — D, defined by
f(B)="5

is an isomorphism. Since P(A) is a Boolean algebra, it follows that D, is also a
Boolean algebra.

For example, consider D2y, D3g. D210, Des. Dese. We notice that

(1) 20 cannot be represented as product of distinct primes and so Dy is not a
Boolean algebra.

(1) 30 = 2.3.5, where 2, 3, 5 are distinct primes. Hence Ds; is a Boolean
Algebra.

(ii1) 210 =2.3.5.7 (all distinct primes) and so D2jg is a Boolean algebra.

(iv) 66 = 2.3.11 (product of distinct primes) and so Dgs is a Boolean algebra.
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(v) 646 = 2.17.19 (product of distinct primes) and so Dgss 18 a Boolean
Algebra.

Duality: The dual of any statement in a Boolean algebra B is obtained
by interchanging v and A and interchanging the zero element and unit
element in the original statement.

For example, the dualof a A 0=0 is ana I=1

Principle of duality: The dual of any theorem in a Boolean Algebra is
also a theorem.
(Thus, dual theorem is proved by using the dual of each step of the proof of
the original statement).

Properties of a Boolean Algebra

Theorem: Let a, b and ¢ be any elements in a Boolean algebra (B, v, A,
0, I). Then
1. Idempotent Laws:
(i)av a=a (ii)an a=a
2. Boundedness Laws:
(i)av =1 (ii)a n0=0
3. Absorption Laws:
(i)av(ananb)=a (ii)a n(a vb)=a
4. Associative Laws:

MD@vbvec=avibveo)(aanb)ac=ana(ac)

Proof: It is sufficient to prove first part of each law since second part follows
from the first by principle of duality.
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1. (1). We have
a=a v 0 (by identity law in a Boolean algebra)

=a v(a na’) (by complement law)
=(a va) a(a v a’) (by distributive law)
=(a va) Al (complement law)

= a v a (identity law) ,
which proves 1(i).

2(1) : We have

av I=(av I) Al (identity law)

=(av I) A (av a’)(complement law)
=a v (I A a') (Distributive law)

=a v a (identity law)

= I (complement law).

3(i) : we note that
av(aab)=(analv (aab)(identity law)

=a A (I v b) (distributive law)
=a A (b v I) (commutativity)
=a A [ (Identity law)

= a (identity law)
4(i) Let
L=:{(a v b) v ¢, R=av( v c)
Then
anlL=anal(av b)vc]

=la A(a v b)] v (a Ac) (distributive Law)
=a v (a A c)( absorption law)

= a (absorption law)
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and
anR=analav(bv)

=(a A a) v (a A(b v )] (distributive law)

=av (a A (b v ¢)] (idempotent law)

= a (absorption Law)
Thusa A~ L=a » R and so, by duality,a vL=a vR.
Further,
aaAnL=a" A(avb)vc]
=[a" A (av b)] v (a" A ¢) (distributive law)
=[(@ A a) v(a” A b)] v (@ A c)(distributive law)
=[0, v(@ A b)] v (3" A c) (complement Law)
=(a" A b)] v (@a" A c) (Identity law)
=a A (b v c) (distributive law)
On the other hand,
aAnR=a Alav (bv )]
=(a" A a) v[a" A (b v ¢)] (distributive law)
=0 v [a A (b v ¢)] (complement law)
=a’ A (b v ¢)] (identity law)
Hence
a AnL=a A R andso by dualitya” vL=a" vR
Therefore

L=(@wvb)vc
=0 v [(a v b) v ¢]=0 v L (identity law)

=(ana)v[(avbvcl=(anaa’)v L(complement law)
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=(av L) A (@" v L) (distributive law)
=(a vR) A(@ v R)(usingA vL=a v Randa’ v L=a" v R]
=(a » a’) v R (distributive law)
=0 v R (complement law)
= R (identity law)
Hence
(@avb)vcec=av(bve),

which completes the proof of the theorem.
Theorem: Let a be any element of a Boolean algebra B. Then
(1) Complement of a is unique (uniqueness of complement)
(i1) (a") = a (Involution law)
(iii)0’=1land 1'=0
Proof: (i) Let a” and x be two complements of a € B. Then
ava=Il and anaAa=0 (i)
dvx=I and aaAx=0 (i1)
and we have
a’=a" v 0 (Identity law)
=a v (aAX) by (ii)
=(" v a)a (@ v x) (Distributive law)
= A @ v x) by (1)

=a VX [Identity law]
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Also
x=x v 0 (Identity law)
=xv(aaa), by (1)
=(x v a) A (x v a) [Distributive law]
= ['a(xaa) ; ( by (ii))
=XV &'=a"M X (Identity and commutative law)
Hence a” = x and so complement of any element in B is unique.
(i1) Let a" be a complement of a. Then
ava=I and ana=0
or, by commutativity ,
a’va=I and a A a=0
This implies that a is complement of a’, that is,

N\’

a=(a).

(i11) By boundedness law,

Ov 1=1
and by identity law

OA I=0
These two relations imply that 1 is the complement of 0, thatis 1 =0".
By principle of duality, we have then

0=¥.:
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Theorem: Let a, b be elements of a Boolean Algebra. Then (a vb)' =a" A b’
and (a A b)Y'=a" vb"

Proof: we have
(avbv@aab)=(bvav(@aab) (commutative)

=b v (av (@ A b)) (associative)
=b v[(av a” A (av b’)] (distributive)

=bv[l A (avb) (complement)

=b v (avDb) (identity)

=b v (b v a) (commutative)
=(bvb)va (associative law)
=lva (complement law)
=] (Identity law)

Also
(avbAa@nab)=[(av b)aalab (associativity)
=lanad)viibaa)lAab=[0v(baa)] aAb

(complement) (distributive)

=(baa)ab (identity)

=b A Db XA a"'=0ANa=0
Hence a” A b’ is complementofa v b.ie.(av b)’=a" A b

The second part follows by principle of duality.
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We have proved already that Boolean algebra (B, v. A, ", 0, I) satisfies
associative laws, commutative law and absorption law. Hence every Boolean
algebra is a lattice with join as v and meet as A. Also boundedness law hold
in a Boolean algebra. Thus Boolean algebra becomes a bounded lattice. Also
Boolean algebra obeys distributive law and is complemented. Conversely,
every bounded, distributive and complemented lattice satisfied all the axiom of
a Boolean algebra. Hence we can define a Boolean algebra as

Definition: A Boolean Algebra is a bounded distributive and complemented
lattice.

Now, being a lattice, a Boolean algebra must have a partial ordering. Recall

that in case of lattice we had defined partial ordering<bya<bifa v b=bor
anb=a

The following result yields much more than these required conditions:
Theorem: If a, b are in a Boolean algebra, then the following are equivalent:
()avb=>b
(2)anb=a
(3)a" vb=1I

4)aAnb'=0
Proof: (1) & (2) already proved.

(1) = (3): Suppose a v b=b, then
avb=av(vhb)
=@ wvawvb (associativity)

=l vb=I (complement & boundedness)
Conversely, suppose a" v b=1, then
avb=1la(avb=(@ vb)a(avb) (byassumptionof (3))

=@ Aavh (distributivity)
=0v b=b (complement & identity)
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Thus (1) = (3).
Now we show that (3) = (4).

Suppose first that (3) holds. Then, using De-Morgan Law and involution, we
have
0=I'=(@" v b)y=a"Ab’
=a b (Involution)
Conversely, if (4) holds, then
I=0=(@@Ab)=2a"vb'=a"vh
Thus (3) = (4)
Hence all the four condition are equivalent.

Example: Show that the lattice whose diagram is

I

N

a
e ®.d

; \/

0

f

is not a Boolean algebra.

Solution: Elements a and e are both complements of csincec v a=1,¢c A a=
Oandc ve=ILcae=0

But in a Boolean algebra complement of an element is unique. Hence the given
lattice is not a Boolean algebra.
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Definition: Let (B, v, A, ", 0, 1) be a Boolean algebra and S < B. If S
contains the elements 0 and 1 and is closed under the operation v, A and 1,
then (S, A, v.”.0, 1) is called Sub-Boolean Algebra.

In practice, it is sufficient to check closure with respect to the set of operations
(A, )or(v,”) for proving a subset S of B as the sub-Boolean algebra.
The definition of sub-Boolean implies that it is a Boolean algebra.

But a subset of Boolean algebra can be a Boolean algebra, but not necessarily a
Boolean subalgebra because it is not closed with respect to the operations in B.
For any Boolean algebra (B, . v. ", 0, 1), the subsets {0, 1} and the set B are
both sub-Boolean algebras.

In addition to these sub-Boolean algebras, consider now any element a € B
such that a= 0 and a = 1 and consider the set {a, a’, 0, 1}. Obviously this set is
a sub-Boolean algebra of the given Boolean algebra.

For example Do = {1, 2,5, 7. 10, 14, 35, 70} is a Boolean algebra and
{1,2, 35,70} is a subalgebra of Dyy.

Every element of a Boolean algebra generates a sub-Boolean algebra,
More generally, any subset of B generates a sub-Boolean algebra.

Example: Consider the Boolean algebra given in the diagram below:

I

a./I’\ b’

av

| >0

b \l a’
0

Verify whether the following subsets are Boolean algebras or not :

Si={a,a’,0,1]}

S;={a vb,aAb,0,1}
S;={aAb,ba l}
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S;={b’,a A b, 2", 0}

Ss={a,b’, 0,1}

Solution: The subset S; and S; are sub-Boolean algebras. The subsets S3 and
Ss are Boolean algebras but not sub-Boolean algebras of the given Boolean
algebra. The subset Ss is not even a Boolean algebra.

LATTICES OF DIRECT PRODUCT:

Definition: Let (By, A1, v, ', 01, 11) and (B1, A2, va2, 7, 02, 12) be two
Boolean algebras. The Direct Product of the two Boolean algebras is defined
to be a Boolean algebra. denoted by, (B;x By, A3, vi3,”, 05 1)) in
which the operations are defined for any (a;, by) and (az, bz) € By x By as

(a;, b)) Az(ay.b))=(a; Aja;b; Agby)
(ar, by) va(az,.b)=(a1 viaysbi vab)
(ar. b)) =(ar’. by")
03=1(01,0y) and ;= (I;, )

Thus, from a Boolean algebra B, we can generate B =B x B, B'=B xB x B
elc.

Boolean Homomorphism

Definition: Let (B. A, v. . 0, 1) and (P, n, W, —. «. ) be two Boolean
Algebras. A mapping f: B — P is called a Boolean Homomorphism if all the
operations of the Boolean Algebra are preserved , thatis , foranya,be B

fla A b)=f(a) nf(b)
fla v b)=f(a) w f(b)

f(a’) = f(a)
f(0)= o
f(l)=p
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Representation Theorem

Let B be a finite Boolean algebra. We know that an element a in B is called an
atom (or min term) if a immediately succeed the least element 0. Let A be
the set of atoms of B and let P(A) be the Boolean algebra of all subsets of the

set A of atoms. Then (as proved in chapter on lattices) each x = 0 in B can be
expressed uniquely (except for order) as the join of atoms (i.e. elements of A).
So, let

X=a Vv a Vv ...... V ap
Consider the function
f:B— PA)

defined by

foreachx=a; v a v....v a,.

Stone’s Representation Theorem: Any Boolean Algebra is isomorphic to a
power set algebra (P(S), m, u, ~, 0, S) for some set S.

Restricting our discussion to finite Boolean Algebra B, the
representation theorem can be stated as :
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Theorem: Let B be a finite Boolean Algebra and let A be the set of atoms of
B. If P(A) is the Boolean Algebra of all subsets of the set A of atoms, then the

mapping f : B — P(A) is an isomorphism.

Proof: Suppose B is finite Boolean algebra and P(A) is the Boolean algebra of
all subsets of the set A of atoms of B. Consider the mapping

f:B— P(A)
defined by
f(x) = {a;, a,....,aa} ,

where X = a; v az v ....v a,is the unique representation of x £ B as the join of
atoms aj, az,.....ap € A. If a; are atoms, then we know that a;
A aj=a; buta; A a;= 0 for a; = a;.

Let x and y are in the Boolean algebra B and suppose

where
A= { di, d2,..., 4, b]. bg.....bs., Cly--+5Cts d[dk}
is the set of atoms of B. Then

XVvy=a Vv..vavb v..vb vc.veg

XAy=bi v....vb
Hence
f(x vy)={ ay, as...., &, by, by,......b, €y, C2....,¢}
= { ay;ivi0 biiaa b} W by, baiiiiaibs, o eaisiisel)
=f(x) w f(y)
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and
A Y=101:0005 b.}
={ 81, 8p:ee:5 A Dy} O {Dyss 5000 B 61}
= f(x) N f(y)
Let
V=) ¥isu VA SLY I LY v dy
Then

xvy=I andx Ay=0
and soy =x". Thus
ix)=Hy)= teyu.was Cilyssas dy }
= { a1, 4:..., @, by, by...bs)®
= (f(x))".
Since the representation is unique, f is one-to-one and onto. Hence f is a

Boolean algebra isomorphism. Thus, every finite Boolean algebra is
structurally the same as a Boolean algebra of sets.

If a set A has n elements, then its power set P(A) has 2" elements. Thus we
have

JOIN IRREDUCIBLE:

Definition: Let (L, A, v ) be a lattice. An element a € L is said to be join-
irreducible if it cannot be expressed as the join of two distinct elements of L.

In other words, a € L is join-irreducible if forany b,c e L
a=bvc=a=bora=c.

For example, prime number under multiplication have this property. In fact if p
is a prime number, thenp=ab=paorp=bh.
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Clearly 0 is join - irreducible.

Further, if a has at least two immediate predecessors, say b and c¢ as in the
diagram below:

a
b / C
Thena=b v cand so a is not join — irreducible.

On the other hand if a has a unique immediate predecessor c, then

a = sup(by, by) = b; v b, for any other elements b, and b, because ¢
would lie between by, b, and a.
a

b, b,

In other words. a # 0 is join irreducible if and only if a has a unique
predecessor.
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Definition: Those elements, which immediately succeed 0, are called atoms.
From the above discussion, it follows that the atoms are join-irreducible.

a b

y

However, lattices can have other join-irreducible elements. For example, the
element c in five-element lattice is not an atom, even then it is join irreducible
because it has only one immediate predecessor, namely a.

C

Let a be an element of a finite lattice which is not join irreducible, then we can
write

a=bwvie

If b and c are not join irreducible, then we can write them as the join of other
elements. Since L is finite we shall finally have

a=dyvdyvdzwv...... 0 o T (1)

where d;, 1= 1, 2, ...,n are join-irreducible. If d; precedes d;, then d; v d;=d;,
so we delete d; from the expression. Thus d’s are irredundant, ie., no d
precedes any other d.
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The expression (1) need not be unique. For example, in lattice shown above
[=av bandI=b v c.

Theorem: Let (L, A, v ) be a finite distributive lattice. Then every a in L can
written uniquely (except for order) as the join of irredundant join irreducible
elements.

Proof: Let a € L. Since L is finite, we can express a as the join of irredundant
join irreducible elements (as discussed above). To prove uniqueness let

a=byvbv....vby=civecav.... vV Cn,

where b; are irredundant join-irrducible and c¢; are irrdundant and join-
irreducible. For any given i, we have

b<(byvbyv....vb)=cvecav... vy,
Hence
bi=bi A (€1 V C2 Viiic. V Cw)
=i{b; A €)' v Oy A €) Vicisasaias v (b A Cp)

Since b; is join-irreducible, there exists | such that b;=b; A ¢; and so b; < ¢;.
Similarly, for c; there exists a by such that ¢; < by . Hence
bi<c;<byg ,

which gives b; = ¢j = by since b; are irredundant. Hence b; and c; may be paired
off. Hence the representation for a is unique except for order.

PART - B

POSSIBLE QUESTIONS - SIX MARKS

1.Define sublattice, lattice homomorphism, order isomorphic.

2.Show that in a bounded distributive lattice, the elements which have complements form
sublattice.

3.Show that a lattice is distributive iff (a * b) + (b* c) + (c * a) = (a + b) * (b +c) * (c+a).
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4. Define complete, distributive lattice, Complemented lattice.

5.1F (L, A,v) is a complemented and distributive lattice , then the complement a of any element
aelL is unique.

6.Every chain is a distributive lattice.

7.Show that every distributive lattice is modular but not conversely.

8.Show that a lattice is distributive iff (a * b) + (b* ¢) + (c * @)= (a + b) * (b +c) * (c+ a).

9. In a distributive lattice, if an element has a complement then this complement is unique.

10. Show that a lattice homomorphism on a Boolean algebra which preserves 0 and 1 is a Boolean
homomorphism.

11. The direct product of any two distributive lattices is a distributive lattice.

12.Prove that two bounded lattices A and B are complemented iff A XB is complemented.

13.Prove that two lattices A and B are relatively complemented iff AB is relatively
complemented.

PART -C

POSSIBLE QUESTIONS — TEN MARKS

1. If the meet operation is distributive over the join operation in a lattice, then the join operation is
also distributive over the meet operation. If the join operation is distributive over the meet
operation, then the meet operation is also distributive over the join operation.

2. Let L be afinite distributive lattice. Then every a in L can be written uniquely (except for order)
as the join of irredundant join irreducible elements.

3. If (A,<) and (B, <) are posets , then (AXB , <) is a poset with partial order defined
by (a,b) <(a,b)ifa< aandb< b

4.Every finite lattice is complete.
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INTRODUCTION : GRAPH THEORY

Graph theory is used to analyses problems of combinatorial nature that
arise in computer science, operations research , physical science and economics .
The term graph is familiar to you because it has been used in the context of
straight lines and linear in equalities .In this chapter, first we will combine the
concepts of graph theory with digraph of a relation to define a more general type
of graph that has more than one edge between a pair of vertices. Second , we will
identify basic components of a graph ,its features any many applications of
graphs.

Definitions and Examples

Definition: A graph G = (V.E) is a mathematical structure consisting of two
finite sets V and E. The elements of V are called Vertices (or nodes) and the
elements of E are called Edges. Each edge

is associated with a set consisting of either one or two vertices called its
endpoints.

The correspondence from edges to endpoints is called edge-endpoint
function. This function is generally denoted by y. Due to this function, some
author denote graph by G = (V. E,y).

Definition: A graph consisting of one vertex and no edges is called a trivial
graph.

Definition: A graph whose vertex and edge sets are empty is called a null
graph.

Definition: An edge with just one end point is called a loop or a self loop.
Thus, a loop is an edge that joins a single endpoint to itself.

Definition: An edge that is not a self-loop is called a proper edge.
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Definition: If two or more edges of a graph G have the same vertices, then
these edges are said to be
parallel or multi-edges.

Definition: Two vertices that are connected by an edge are called adjacent.
Definition: An endpoint of a loop is said to be adjacent to itself.

Definition: An edge is said to be incident on each of its endpoints.

Definition: Two edges incident on the same endpoint are called adjacent
edges.

Definition: The number of edges in a graph G which are incident on a vertex is
called the degree of
that vertex.

Definition: A vertex of degree zero is called an isolated vertex.

Thus, a vertex on which no edges are incident is called isolated.

Definition: A graph without multiple edges (parallel edges) and loops is
called Simple graph.

Notation: In pictorial representations of a graph, the vertices will be denoted
by dots and edges by line segments.

€5
] 2
S|
or €3 €4
3 4
€2
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The edges e, and e3 are adjacent edges because they are incident on the same

vertex B.

2. Consider the graph with the vertices A, B ., C, D and E pictured in the figure
below.

D oL
In this graph, we note that
No. of edges =5
Degree of vertex A =4
Degree of vertex B =2
Degree of vertex C =3

Degree of vertex D = 1

Prepared by : J.Jansi, Department of Mathematics , KAHE 4 0of 26



UNIT IV GRAPH THEORY / 2019 BATCH

Degree of vertex E =0

Sum of the degree of vertices=4+2+3+1+0=10
Thus, we observe that

5
Y. deg(vi)=2e ,
i=1

where deg(v;) denotes the degree of vertex v; and e denotes the number of
edges.

Euler’s Theorem: (The First Theorem of Graph Theory): The sum of the
degrees of the vertices of a graph G is equal to twice the number of edges
in G.

(Thus, total degree of a graph is even)

Proof: Each edge in a graph contributes a count of 1 to the degree of two
vertices (end points of

the edge), That is, each edge contributes 2 to the degree sum. Therefore the
sum of degrees of the

vertices is equal to twice the number of edges.

Corollary: There must be an even number of vertices of odd degree in a given
graph G.
Proof: We know, by the Fundamental Theorem, that

n

D deg(vi) = 2 x no. of edges

i=1

Thus the right hand side is an even number. Hence to make the left-hand side
an even number there
can be only even number of vertices of odd degree.

Theorem: A non-trivial simple graph G must have at least one pair of vertices
whose degrees are
equal.

Proof: Let the graph G has n vertices. Then there appear to be n possible
degree values, namely O, 1. .....n — 1. But there cannot be both a vertex of
degree O and a vertex of degree n — | because if there is a vertex of degree 0
then each of the remaining n — 1 vertices is adjacent to atmost n—2 other

Prepared by : J.Jansi, Department of Mathematics , KAHE 5 of 26



UNIT IV GRAPH THEORY / 2019 BATCH

vertices. Hence the n vertices of G can realize atmost n—1 possible values for
their degrees. Hence the pigeonhole principle implies that at least two of the
vertices have equal degree.

Definition: A graph G is said to simple if it has no parallel edges or loops. In a
simple graph, an edge with endpoints v and w is denoted by {v, w}.
Definition: For each integer n > 1, let D, denote the graph with n vertices and
no edges. Then D, is called the discrete graph on n vertices.

For example, we have

° ® ® and ® 3 ® [ @

D; Ds

Definition: Let n > 1 be an integer. Then a simple graph with n vertices in
which there is an edge between each pair of distinct vertices is called the

complete Graph on n vertices. It is denoted by K.

For example. the complete graphs K,, K3 and K4 are shown in the
figures below:

V3

Definition: If each vertex of a graph G has the same degree as every other

vertex, then G is called a regular graph.
A Kk-regular graph is a regular graph whose common degree is k.

But this graph is not complete because v, and v4 have not been connected
through an edge. Similarly, v; and v3 are not connected by any edge.

Thus
A Complete graph is always regular but a regular graph need not

be complete.

Subgraphs
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Definition: A graph H is said to be a subgraph of a graph G if and only if
every vertex in H is also a vertex in G, every edge in H is also an edge in G
and every edge in H has the same endpoints as in G.

€1
Vi Va
c2 €4
V3 V¢
4 es 4

Similarly, the graph

A B

D C

is a subgraph of the graph given below:

Ae B

De oC

Definition: A subgraph H is said to be a proper subgraph of a graph G if
vertex set Vy of H is a proper subset of the vertex set Vg of G or edge set Ey is
a proper subset of the edge set Eg.

For example. the subgraphs in the above examples are proper subgraphs

of the given graphs.
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Definition: Let G = (V. E) be a graph. Then the complement of a subgraph
G™ = (V" E’) with respect to the graph G is another subgraph G = (V™" E")
such that E”"= E — E” and V"’ contains only the vertices with which the edges
in E*” are incident.

For example, the subgraph

vie v

is the complement of the subgraph

Vi \ )

3
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Definition: If G is a simple graph, the complement of G, (Edge
complement). denoted by G” or G° is a graph such that

(i) The vertex set of G’ is identical to the vertex set of G, that is Vg = Vg

(ii) Two distinct vertices v and w of G” are connected by an edge if and only if
v and w are not connected by an edge in G.
For example. consider the graph G

Va2

Vi Vi

V4
G

Then complement G” of G is the graph

oy 2

V4
G ’

Isomorphisms of Graphs

We know that shape or length of an edge and its position in space are not part
of specification of a graph. For example, the figures

V3 €7 Vi € V2

oV, and -\/ °

€3

V3
represent the same graph.
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Definition: Let G and H be graphs with vertex sets V(G) and v(H) and Edge
sets E(G) and E(H) respectively. Then G is said to isomorphic to H iff there
exist one-to-one correspondences g : V(G) — v(H) and h : E(G) — E(H) such
that for all ve V(G) and e € E(G),

v is an endpoint of e & g(v) is an endpoint of h(e).

Definition: The property of mapping endpoints to endpoints is called
preserving incidence or the

continuity rule for graph mappings.

As a consequence of this property, a self-loop must map to a self-loop.

Thus, two isomorphic graphs are same except for the labeling of their vertices
and edges.

Example: Show that the graphs

T1 V3
Z
Vi e; Co6 €2 €3
Vs
€4 V4
G

and

are iIsomorphic.
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Solution: To solve this problem. we have to find g: V(G) — V(H) and h : E(G)
— E(H) such that for all ve V(G) and e € E(G),

v is an endpoint of e & g(v) is an endpoint of h(e).

Since e; and e3 are parallel (have the same endpoints), h(e) and h(e3) must also
be parallel. Thus we have

h(e,) = f; and h(e3) = f; or h(e,) = f; and h(e3) = f;.
Also the endpoints of e; and e3 must correspond to the endpoints of f; and f;

and so
g(v3) = wp and g(v4) = ws or g(v3) = ws and g(v4) = wy.
Further, we note that v, is the endpoint of four distinct edges ey, e7. es

and e4 -and so g(vy) should be the endpoint of form distinct edges. We observe
that w, is the vertex having four edges and so g(vy) = wy. If g(v3) = wy, then
since v; and v3 are endpoints of e; in G, g(vy) = wp and g(v3) = w; must be
endpoints of h(e;) in H. This implies that h(e;) = f3.

Continuing in this way we can find g and h to define the isomorphism
between G and H.

One such pair of functions (of course there exist several) is shown

below:

V(G) V(H)

|
| ‘A
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E(G) E(H)

Remark: Each of the following properties is invariant under graph
isomorphism, where n, m and h are all non-negative integers:

. has n vertices

. has m edges

. has a vertex of degree k

has m vertices of degree k

Walks, Paths and Circuits

Definition: In a graph G. a walk from vertex v, to vertex v, is a finite alternating

s Lo o —

sequence:
{vo. €1, V1, €2,.....,Vn—1, €n, Vn}
of vertices and edges such that v;_; and v; are the endpoints of e;.

The trivial walk from a vertex v to v consists of the single vertex v.
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Definition: In a graph G, a path from the vertex vy to the vertex v, is a walk
from vy to v, that does not contain a repeated edge.

Thus a path from vy to v, is a walk of the form
{ Vo, 61, V1,5 €2; Voo Vil €6 Vi)
where all the edges ey are distinct.
Definition: In a graph, a simple path from vg to v, is a path that does not contain a
repeated vertex.

Thus a simple path is a walk of the form

L

{ V0, €1V 15605 Vsuunwnng Viis Cns Vs

where all the e; are distinct and all the v; are distinct.

Definition: A walk in a graph G that starts and ends at the same vertex is
called a closed walk.
Definition: A closed walk that does not contain a repeated edge is called a
circuit.
Thus, closed a closed path is called a circuit (or a cycle) and so a circuit is a
walk of the form

Vs s V1580 ViieameansVinds Gas Vol

where vg = v, and all the e; are distinct.

Definition: In a graph the number of edges in the path {vg. e;. vi.es........ Cis
vn} from v to v, is called the length of the path.

Theorem: If there is a path from vertex vy to v, in a graph with n vertices, then
there does not exist a path of more than n-1 edges from vertex vy to va.
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Proof: Suppose there is a path from v; to v,. Let

Vilawwaemnss Vs swaeds V2

be the sequence of vertices which the path meets between the vertices v; and
va. Let there be m edges in the path. Then there will be m + I vertices in the
sequence. Therefore if m > n—1, then there will be more than n vertices in the
sequence. But the graph is with n vertices. Therefore some vertex, say v,
appears more than once in the sequence. So the sequence of vertices shall be

Wifiassamwmsi Wi sosimseiNiissnonsiMissas sowmss VS

<

Deleting the edges in the path that lead vk back to vk we have a path from v; to
v, that has less edges than the original one. This argument is repeated untill we
get a path that has n-1 or less edges.

CONNECTED AND DISCONNECTED GRAPHS :
Definition: Two vertices vy and v, of a graph G are said to be connected if and
only if there is a walk from v, to v,.

Definition: A graph G is said to be connected if and only if given any two
vertices v, and v, in G, there is a walk from v, to v,.

Thus, a graph G is connected if there exists a walk between every two
vertices in the graph.
Definition: A graph which is not connected is called Disconnected Graph.
Example: Which of the graph below are connected?

Definition: If a graph G is disconnected, then the various connected pieces of
G are called the connected components of the graph.

Example: Consider the graph given below:

A Vo Vs
€4
€ (S Vg €5
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This graph is disconnected and have two connected components:

€]
H] . \A LA'%)
with vertex set {vy, va, v3} and edge set {ey, ez, €3}
) €3
.\73
H» €4 LA
R es with vertex set {vy4, Vs, v} and edge set {ey, €5, €¢}.
Ce *Ve

Solution: The connected components are :

and

Example: Find the number of connected components in the graph

A
XVX
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Eulerian Paths And Circuits

Definition: A path in a graph G is called an Euler Path if it includes every
edge exactly once.

Definition: A graph is called Eulerian graph if there exists a Euler circuit for

that graph.

Definition: A circuit in a graph G is called an Euler Circuit if it includes
every edge exactly once. Thus, an Euler circuit (Eulerian trail) for a graph G is
a sequence of adjacent vertices and edges in G that starts and ends at the same
vertex, uses every vertex of G at least once, and uses every edge of G exactly
once.

Theorem 1. If a graph has an Euler circuit, then every vertex of the graph has
even degree.

Proof: Let G be a graph which has an Euler circuit. Let v be a vertex of G. We
shall show that degree of v is even. By definition, Euler circuit contains every
edge of graph G. Therefore the Euler circuit contains all edges incident on v.
We start a journey beginning in the middle of one of the edges adjacent to the
start of Euler circuit and continue around the Euler circuit to end in the middle
of the starting edge. Since Euler circuit uses every edge exactly once, the edges
incident on v occur

Starting point

in entry / exist pair and hence the degree of v is a multiple of 2. Therefore the
degree of v is even. This completes the proof of the theorem.

We know that contrapositive of a conditional statement is logically equivalent
to statement. Thus the above theorem is equivalent to:
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Theorem:2. If a vertex of a graph is not of even degree. then it does not have
an Euler circuit.

or
“If some vertex of a graph has odd degree. then that graph does not have an
Euler circuit™.
Example: Show that the graphs below do not have Euler circuits.
(a)

Vi Vs

V3 Vi

Solution: In graph (a), degree of each vertex is 3. Hence this does not have a
Euler circuit.
In graph (b), we have
deg(vy)=3
deg(vy) =3
Since there are vertices of odd degree in the given graph. therefore it does not

have an Euler circuit.
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are graphs in which each vertex has degree 2 but these graphs do not have
Euler circuits since there is no path which uses each vertex at least once.
Theorem 3. If G is a connected graph and every vertex of G has even degree,
then G has an Euler circuit.

Proof: Let every vertex of a connected graph G has even degree. If G consists
of a single vertex, the trivial walk from v to v is an Euler circuit. So suppose G
consists of more than one vertices. We start from any verted v of G. Since the
degree of each vertex of G is even, if we reach each vertex other than v by
travelling on one edge, the same vertex can be reached by travelling on another
previously unused edge. Thus a sequence of distinct adjacent edges can be
produced indefinitely as long as v is not reached. Since number of edges of the
graph is finite (by definition of graph), the sequence of distinct edges will
terminate. Thus the sequence must return to the starting vertex. We thus obtain
a sequence of adjacent vertices and edges starting and ending at v without
repeating any edge. Thus we get a circuit C.

If C contains every edge and vertex of G, then C is an Eular circuit.

If C does not contain every edge and vertex of G, remove all edges of C from
G and also any vertices that become isolated when the edges of C are removed.
Let the resulting subgraph be G’. We note that when we removed edges of C,
an even number of edges from each vertex have been removed. Thus degree of
each remaining vertex remains even.

Further since G is connected, there must be at least one vertex common to both
C and G’. Let it be w(in fact there are two such vertices). Pick any sequence of
adjacent vertices and edges of G starting and ending at w without repeating an
edge. Let the resulting circuit be C”.

Join C and C’ together to create a new circuit C”. Now, we observe that if we
start from v and follow C all the way to reach w and then follow C” all the way
to reach back to w. Then continuing travelling along the untravelled edges of
C, we reach v.
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Theorem 5. If a graph G has more than two vertices of odd degree, then there
can be no Euler path in G.

Proof : Let vy. v and v3 be vertices of odd degree. Since each of these vertices
had odd degree, any possible Euler path must leave (arrive at) each of vy, v, v3
with no way to return (or leave). One vertex of these three vertices may be the

beginning of Euler path and another the end but this leaves the third vertex at
one end of an untravelled edge. Thus there is no Euler path.

(Graphs having more than two vertices of odd degree).
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Theorem 6. If G is a connected graph and has exactly two vertices of odd
degree, then there is an Euler path in G. Further, any Euler path in G must
begin at one vertex of odd degree and end at the other.

Proof: Let u and v be two vertices of odd degree in the given connected graph
G.

u

A%

G G

If we add the edge e to G, we get a connected graph G’ all of whose vertices
have even degree. Hence there will be an Euler circuit in G’. If we omit e from
Euler circuit, we get an Euler path beginning at u(or v) and edning at v(or u).

Examples. Has the graph given below an Eulerian path?

—F
&D

Solution: In the given graph,

deg(A) =1

deg(B)=2
deg(C)=2
deg(D)=3
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Thus the given connected graph has exactly two vertices of odd degree. Hence,
it has an Eulerian path.

If it starts from A(vertex of odd degree), then it ends at D(vertex of odd
degree). If it starts from D(vertex of odd degree), then it ends at A(vertex of
odd degree).

But on the other hand if we have the graph as given below :

JC— eB ©4__ oC
i
2D
&3

then deg(A) = 1, deg(B) = 3 deg(C) = 1. degree of D = 3 and so we have four
vertices of odd degree. Hence it does not have Euler path.

Example: Does the graph given below possess an Euler circuit?

€7

Va
Cq

7 J
Vi e 2

Solution: The given graph is connected. Further

J

deg(vy) =

deg(v3) =3
deg(v4) =4
Since this connected graph has vertices with odd degree, it cannot have Euler

circuit. But this graph has Euler path, since it has exactly two vertices of odd
degree. For example, vzes vae7 V4€6 V2€1 V1 €4 V4€3 V3€5 V]
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Example:  Consider the graph

V3

V4
Here, deg(v)) = 4. deg(vz) = 4, deg(v3) = 2, deg(vs) = 2. Thus degree of each
vertex is even. But the graph is not Eulerian since it is not connected.

Example 4:. The bridges of Konigsberg: The graph Theory began in 1736
when Leonhard Euler solved the problem of seven bridges on Pregel river in
the town of Konigsberg in Prussia (now Kaliningrad in Russia). The two
islands and seven bridges are shown below:

\
— Bridee

—

g
Bridge

. Bridge
-~

C

Bridge Bridge

Bridge—] Bridge

\ .
- River
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The people of Konigsgerg posed the following question to famous Swiss
Mathematician Leonhard Euler:

“Beginning anywhere and ending any where, can a person walk through the
town of Konigsberg crossing all the seven bridges exactly once?

Euler showed that such a walk is impossible. He replaced the islands A. B and
the two sides (banks) C and D of the river by vertices and the bridges as edges
of a graph. We note then that

deg(A) =3
deg(B)=5
deg(C)=3
deg(D) =3

Thus the graph of the problem is

A(island)

(side of the river) C(side of the river)

B(Island)
(Euler’s graphical representation of seven bridge problem)

The problem then reduces to

“Is there any Euler’s path in the above diagram?”.

To find the answer, we note that there are more than two vertices having odd
degree. Hence there exist no Euler path for this graph.

Definition: An edge in a connected graph is called a Bridge or a Cut Edge if
deleting that edge creates a disconnected graph.
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In this graph, if we remove the edge es, then the graph breaks into two
Connected Component given below:

€
\ l :/‘\‘\{2
€s

Vs

Hence the edge e; is a bridge in the given graph.

METHOD FOR FINDING EULER CIRCUIT

We know that if every vertex of a non empty connected graph has even degree,
then the graph has an Euler circuit. We shall make use of this result to find an
Euler path in a given graph.

Consider the graph

We note that
deg(v;) = deg(vy) = deg(ve) = deg(vg) =2
deg(vy) = deg(vs) = deg(vs) = deg(vy) =4
Hence all vertices have even degree. Also the given graph is connected. Hence

the given has an Euler circuit. We start from the vertex v; and let C be

. B Vi V2 V3 Vi
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Then C is not an Euler circuit for the given graph but C intersect the rest of the
graph at vy and v;. Let C" be
C’ . V1V4 V3 V5 V7 Vg V5 Vg V7 Vi

(In case we start from vs, then C” will be v3 v4 V| V7 Vg V5 V7 Vg Vs)
Path C’ into C and obtain

C”: ViV2 V3 V1 V4 V3 V5 V7 V6 V5 Vg V7 Vi
Or we can write

C”:ejere3eqeseqe7€8€9€10€11 €12

(If we had started from v,. then C” : v{V, V3 V4 V{ V7 Vg V5 V7 Vg V5 V3 V| OF
€1€2€5€4€12€8€9€7€11 €10€6€3 )

In C” all edges are covered exactly once. Also every vertex has been covered at
least once. Hence C” is a Euler circuit.

PART -B

POSSIBLE QUESTIONS - SIX MARKS

1.Show that if a graph G(either connected (or) disconnected) has exactly two
vertices of odd degree there is a path joining these two vertices.

2.In a (directed or undirected) graph with n vertices, if there is a path from
vertex vi to vertex vp,then there is a path of no more than n-1 edges from
vertex vi to vertex vy,

3. Show that a simple graph with n vertices and k-components can have at most
n—k¥n—%k+ 1)
2
4, State and prove the Handshaking theorem.

5.Show that the sum of the degree of all vertices in a graph equal to twice ina
number of edges incidence in G.

6.Show that if there isa (u, v )- walk in G, then there is also a (u, v)- path in G.

7.In a connected graph G with exactly 2k odd vertices, there exist k edge-disjoint
subgraphs such that they together contain all edges of G and that each is a
unicursal graph.

8. The number of vertices of odd degree in a graph is even.

9.Draw all possible simple graph of one, two, three, four, five vertices .

10. Prove that a connected graph is Euler graph iff it has even degree.
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PART -C

POSSIBLE QUESTIONS — TEN MARKS

1. A non- empty connected graph G is Eulerian if and only if G is the union of

some edges disjoint circuits.
2.Show that a connected graph G is an Euler graph if and only if the degree of

every vertex in G is even.
3. A connected graph G is an Euler graph iff it can be decomposed into circuits.
4.1f the intersection of two paths in a graph G disconnected thentheir union has

atleast one circuit.
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Introduction:

The graphs that we come across in most of the applications are connected.
Among the connected graphs, trees are probably the most important ones. Inthis
chapter ,We shall study trees and its properties. The relationships among circuits,
trees and other associated concepts in a graph are also explored.

TREES:
Definition:
A connected graph without any circuits is called a Tree.

Example: Trees with one ,two three and four vertices are shown below

] =

(Figure 5.1)

Since parallel edges and self — loops both form circuits , a tree can not have
parallel edges and elf loops. Thus a tree has to be a simple graph.
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Theorem 5.1 :

A graph G is a tree iff there is one and only one path between any two vertices of
G.

Proof:

First suppose that the graph G is a tree. Then by definition of a tree ,G is a
connected graph. Therefore ,there must exist atleast one path between any two
vertices in G. Now suppose that there are two distinct paths between vertices a
and b of G. Then the union of these two paths will contain a circuit and G can not
be a tree. Thus there is one and only one path between any two vertices of G.

Conversely, suppose that there is one and only path between any two
vertices of G. We shall show G is a tree. Since there exists a path between any two
vertices of G, therefore G is connected. A circuit in a graph with two or more
vertices implies that there exists a pair of vertices a, b such that there are two
distinct paths between a and b. Since G has one and only one path between any
two vertices, G can have no circuits. Thus G is a tree.

Theorem 5.2:
A tree with n vertices has n-1 edges.
Proof:

We shall prove the theorem by induction on the number of vertices .Clearly,
the theorem is true for trees with one or two vertices(see Fig.5.1).Assume that
the theorem is true for all trees with fewer than n vertices.

Let us consider a tree G with n vertices .Let ex be any edge in G with end
vertices vi and v;.
According to theorem 1 above , the edge e is the only path between v; and v;.
Hence deletion of ex from G will disconnect the graph. Thus G-ei is not connected.
Further ,G-e will contain exactly two components ,for otherwise the graph G will
not be connected. Let these two components of G-e¢ be G; and G, respectively.
Since n1 <n and n,<n, we have by the induction hypothesis

Number of edges in G1=n, -1
and
Number of edges in G, =n, -1

Thus , number of edges in G —egis equal to (n; -1 )+(ny-1)=(ny+ny)-2=n-2.
Hence G has exactly n-1 edges.
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Theorem 5.3:
Every connected graph with n vertices and n-1 edges is a tree.
Proof:

Let G be a connected graph with n vertices and n-1 edges. The theorems will
be proved if we show that G has no circuit. Suppose that G contains atleast one
circuit. Since removing an edge from a circuit does not disconnect a graph, we
may remove edges, but no vertices from circuits in G until the resulting graph G
is a circuit free.

Now G" is a connected graph with n vertices and contains no circuit .Thus G"is a
tree with n vertices .Hence G* has n-1 edges (by theorem 2).But now the graph G
has more than n-1 edges, a contradiction.

Hence G has no circuit.This completes the proof.

Theorem 5.4: A graph G with n vertices ,n-1 edges and no circuit is tree.
Proof:

Let G be a graph with n vertices , n -1 edges and has no circuit. It wii be a tree
if we show that it is connected .If possible, suppose that G is disconnected. Then
G will consist of two or more circuitless components.Without loss of generality
let G consist of two components G; and G,

we add an edge e between a vertex vy in G; and v, in G,. Since vi and v; are in
different components of G, there is no path between v; and v, in G.Thus addition
of edge e will not create a circuit.Thus GU e is a circuitless,connected graph (and
therefore a tree)of n vertices and n edges,which is not possible because of
theorem 2.This completes the proof.

Prepared by: J.Jansi , Department of Mathematics , KAHE 4/22



UNITV TREES/ 2019 BATCH

Definition: A collection of disjoint trees is called a forest.
Thus a graph is a forest if and only if it is circuit free.

Definition: A vertex of degree 1 in a tree is called a leaf or a terminal node or
a terminal vertex.

Definition: A vertex of degree greater than 1 in a tree is called a Branch node
or Internal node or Internal vertex.

Consider the tree shown below:

b

In this tree the vertices b, c, d, f, g, and i1 are leaves whereas the vertices a, e, h
are branch nodes.
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CHARACTERIZATION OF TREES

We have the following interesting characterization of trees:
Lemma 1: A tree that has more than one vertex has at least one vertex of
degree 1.

Proof: Let T be a particular but arbitrary chosen tree having more than one
vertex.

1. Choose a vertex v of T. Since T is connected and has at least two vertices, v
is not isolated and there is an edge e incident on v.

2. If deg (v) > 1, there is an edge " # e because there are, in such a case, at
least two edges incident on v. Let v’ be the vertex at the other end of e’. This is
possible because e’ is not a loop by the definition of a tree.

3. If deg(v’) > 1, then there are at least two edges incident on v'. Let e” be the

other edge different from e and v” be the vertex at other end of e”. This is
again possible because T is acyclic.

4. If deg(v”) > 1, repeat the above process. Since the number of vertices of a
tree is finite and T is circuit free, the process must terminate and we shall
arrive at a vertex of degree 1.

Remark: In the proof of the above lemma, after finding a vertex of degree 1, if
we return to v and move along a path outward from v starting with e, we shall
reach to a vertex of degree 1 again. Thus it follows that **Any tree that has
more than one vertex has at least two vertices of degree 17,

Prepared by: J.Jansi , Department of Mathematics , KAHE 6/22



UNITV TREES/ 2019 BATCH

Lemma 2: There is a unique path between every two vertices in a tree.

Proof: Suppose on the contrary that there are more than one path between any
two vertices in a given tree T. Then T has a cycle which contradicts the
definition of a tree because T is acyclic. Hence the lemma is proved.

Lemma 3: The number of vertices i1s one more than the number of edges in a

tree.

Or

For any positive integer n, a tree with n vertices has n-1 edges.
Proof: We shall prove the lemma by mathematical induction.

Let T be a tree with one vertex. Then T has no edges, that is, T has 0 edge. But
0=1- 1. Hence the lemma is true for n = 1.

Suppose that the lemma 1s true for k > 1. We shall show that it is then true for k
+ 1 also. Since the lemma is true for k, the tree has k vertices and k-1 edges.

Let T be a tree with k +1 vertices. Since k is +ve, k+1 = 2 and so T has more
than one vertex. Hence, by Lemma 1, T has a vertex v of degree 1. Also there
1s another vertex w and so there is an edge e connecting v and w. Define a
subgraph T" of T so that

V(T)=V(T) - {v}
E(T)=E(T) - {e}

Then number of vertices in T" = (k+1) — 1 = k and since T 1s circuit free and T
has been obtained on removing one edge and one vertex, it follows that T" is
acyclic. Also T is connected. Hence T is a tree having k vertices and therefore
by induction hypothesis, the number of edges in T" 1s k-1. But then

No. of edges in T = number of edges in T" + 1

=k-1+1=k
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Thus the Lemma is true for tree having k + 1 vertices. Hence the lemma is true
by mathematical induction.

Corollary 1. Let C(G) denote the number of components of a graph. Then a
forest G on n vertices has n — C(G) edges.

Proof: Apply Lemma 3 to each component of the forest G.
Corollary 2. Any graph G on n vertices has at least n — C(G) edges.

Proof: If G has cycle-edges. remove them one at a time until the resulting
eraph G¥ is acyclic. Then G* has n — C(G*) edges by corollary 1. Since we
have removed only circuit, C(G*) = C(G). Thus G* has n — C(G) edges. Hence
G has at least n — C(G) edges.

Lemma 4: A graph in which there is a unique path between every pair of
vertices is a tree

(This lemma is converse of Lemma 2).
Proof: Since there is a path between every pair of points, therefore the graph is

connected. Since a path between every pair of points is unique, there does not
exist any circuit because existence of circuit implies existence of distinct paths

between pair of vertices. Thus the graph is connected and acyclic and so is a
tree.

Lemma 5. (converse of Lemma 3) A connected graph G withe =v — 1 1s a tree
Proof: The given graph is connected and

e=v—1l.

To prove that G is a tree, it 1s sufficient to show that G is acyclic. Suppose on
the contrary that G has a cycle. Let m be the number of vertices in this cycle.
Also, we know that number of edges in a cycle is equal to number of
vertices in that cycle. Therefore number of edges in the present case is m.
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Since the graph is connected, every vertex of the graph which is not in cycle
must be connected to the vertices in the cycle.

Now each edge of the graph that is not in the cycle can connect only one vertex
to the vertices in the cycle. There are v-m vertices that are not in the cycle. So
the graph must contain at least v — m edges that are not in the cycle. Thus we
have

e = vVv-m+m=V,

which is a contradiction to our hypothesis. Hence there is no cycle and so the
graph in a tree.

ROOTED AND BINARY TREE :

Definition: A directed tree is called a rooted tree if there 1s exactly one vertex
whose incoming degree 1s 0 and the incoming degrees of all other vertices are
1.

The vertex with incoming degree 0 is called the root of the rooted tree.

A tree T with root vy will be denoted by (T, vy).

Definition: In a rooted tree, a vertex, whose outgoing degree is 0 is called a
leaf or terminal node, whereas a vertex whose outgoing degree is non - zero 18
called a branch node or an internal node.

Definition: Let u be a branch node in a rooted tree. Then a vertex v is said to

be child (son or offspring) of u if there is an edge from u to v. In this case u is
called parent (father) of v.

Definition: Two vertices in a rooted tree are said to be siblings (brothers) if
they are both children of same parent.
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Definition: A vertex v is said to be a descendent of a vertex u if there is a
unique directed path from u to v.
In this case u is called the ancestor of v.

Definition: The level (or path length) of a vertex u in a rooted tree is the
number of edges along the unique path between u and the root.

Definition: The height of a rooted tree is the maximum level to any vertex of
the tree.
As an example of these terms consider the rooted tree shown below:

level 0

Here y 1s a child of x; x is the parent of y and z. Thus y and z are siblings. The
descendents of u are v, w, t and s. Levels of vertices are shown in the figure.
The height of this rooted tree 1s 3.

Definition: Let u be a branch node in the tree T = (V, E). Then the subgraph T’
=(V'", E") of T such that the vertices set V' contains u and all of its descendents

and E’ contains all the edges in all directed paths emerging from u is called a
subtree with u as the root.
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Theorem: If T is a full binary tree with 1 internal vertices, then T has i+1
terminal vertices (leaves) and 2141 total vertices.

Proof: The vertices of T consists of the vertices that are children (of some
parent) and the vertices that are not children (of any parent). There is nonchild
— the root, Since there are 1 internal vertices, each having two children, there
are 21 children. Thus the total number of vertices of T i1s 2i+1 and the number
of terminal vertices is

i+ 1) —-i=1i+1
This completes the proof.

In the context of above example, we have

No. of leaves=p=1+1

Or
i=p-1
Remark: In case of full n-ary tree, if 1 denotes the number of branch nodes,
then total number of vertices of T is ni + 1 and the number of terminal
vertices 1s
ni+l-i=in-1)+1

If p 1s the number of terminal vertices, then

p=in-1)+1
or
m-1i=p-1
SPANNING TREE:

Definition: A spanning tree for a graph G is a subgraph of G that contains
every vertex of G and is a tree.

Or

“A spanning tree for a graph G is a spanning subgroup of G which is a
tree”.
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Example: Determine a tree and a spanning tree for the connected graph given
below:

G
Solution: The given graph G contains circuits and we know that removal of the
circuits gives a tree. So, we note that the figure below 1s a tree.

And the figure below 1s a spanning tree of the graph G.

Example: Find all spanning trees for the graph G shown below:

V3 P V3 Ve

Vi Vi Vs

Solution: The given graph G has a circuit v va vi vi. We know that removal of
any edge of the circuit gives a tree. So the spanning trees of G are
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Vo P Vo Vg Vo Vi Vi

V2 Vi Ve

Vi V4 Vs
Ty

Remark: We know that a tree with n vertices has exactly n — 1 edges.
Therefore if G is a connected graph with n vertices and m edges, a spanning
tree of G must have n — 1 edges. Hence the number of edges that must be
removed before a spanning tree is obtained must be

m—-(n—-1l=m-n+1.

For Illustration, in the above example, n = 6, m = 6, so, we had to remove one
edge to obtain a spanning tree.

Theorem: A graph G has a spanning tree if and only if G is connected.

Proof: Suppose first that a graph G has a spanning tree T. If v and w are
vertices of G, then they are also vertices in T and since T is a tree there 1s a

path from v to w in T. This path is also a path in G. Thus every two vertices are
connected in G. Hence G is connected.

Conversely, suppose that G is connected. If G 1s acyclic, then G is its own
spanning tree and we are done. So suppose that G contains a cycle C;. If we
remove an edge from the cycle, the subgraph of G so obtained is also
connected. If it is acyclic, then it is a spanning tree and we are done. If not, it
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has at least one circuit, say Cs . Remm'i}]g Dne_edge from C;, we get a subgraph
of G which is connected. Continuing in this way, we obtain a connected circuit
free subgraph T of G. Since T contains all vertices of G, it is a spanning tree of

G.

Cayley’s Formula : The number of spanning trees of the complete

graph K,, n = 2 is n"~.

(Proof of this formula is out of scope of this book)

Example: Find all the spanning trees of K.

Solution: According to Cayley’s formula, K4 has 4** = 4* = 16 different

spanning trees.

) N‘r
V1 * V2
K4

Here n = 4, so the number of edges in any tree should ben—1=4 - 1= 3. But
here number of edges is equal to 6. So to get a tree, we have to remove three

edges of Ky. The 16 spanning trees so obtained are shown below:

Vi ><j Vi V4 V3
Vi V3 Vi V>
Vg X Vi Vy V3
Vi Vs Vi V>
Vi -[v Ve Vi
Vi Vs Vi Vs
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Vi ¥ Va2

V4 g

Vie———— & V>
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Vi Va Ve Va
Vy N Vi Vg M‘r‘;
Vi Va Vi V1
V4 & Vg ‘r'q_ﬂ V3
Vi Va Vi V1

Vi Vi V4 V V3
Ve V2 Vi ¥ V2
Minimal Spanning Tree

Definition : Let G be a weighted graph. A spanning tree of G with minimum
weight is called minimal spanning tree of G.
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Minimally connected graph :

A connected graph G is said to be minimally connected if removal of any edge
from G disconnected the graph G.

Theorem:
A graph G is a tree iff it is minimally connected .
Proof:

Suppose that G is a tree.

We show G is minimally connected. Since G is a tree,it is connected .if G is not
minimally connected then there must exist an edge e in G such that G-e is
connected .

Therefore, e is an some circuit , which implies that G is not a tree, a
contradiction.Thus G is minimally connected .

Conversely, suppose that G is a minimally connected graph.Then G is connected
and cannot have a circuit; otherwise , we could remove one of the edge in the
circuit and still leave the graph connected.Thus a minimally connected graph is a
tree.

Minimum number of pendent vertices in a tree.

Recall that a pendent vertex in a graph is that vertex whose degree is
one .In general,trees have several pendent vertices.The minimum
number of pendent vertices ina tree is given by the following theorem .
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Theorem

In any tree ( with two or more vertices ) there are atleast two
pendent vertices .

Proof:

Let G be any tree having n vertices.Then G has n-1 edges.since each
edge contributes two degrees,the sum of the degrees of all vertices in G
is 2(n-1).

Now 2(n-1) degrees are to be divided amoung n vertices in G.
Let the number of vertices of degree one in G be x.

Since no vertex in a tree can be of zero degree,we have

2(n—1)—x
e ———
n—x
- X2

Thus , we must atleast two vertices of degree one is tree.
Distance and centre in a tree:

Let G be a connected graph. We know that the distance between two vertices
vy and vz, denoted by d(v1, v2), is the length of the shortest path.

Definition: The diameter of a connected graph G, denoted by diam (G), is the
maximum distance between any two vertices in G.
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For example, in graph G shown below, we have

ae b

G

d(a,e)=3,d(a,c)=2,d(b,e)=2 and diam (G) = 3.

Definition: A vertex in a connected graph G is called a cut point if G — v is
disconnected, where G — v 1s the graph obtained from G by deleting v
and all edges containing v.

For example, in the above graph. d is a cut point.
Definition: An edge e of a connected graph G is called a bridge (or cut edge)

if G — e 1s disconnected, where G — e 1s the graph obtained by deleting the edge
e.

For example, consider the graph G shown below :
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We observe that G — e; is disconnected. Hence the edge e is a bridge.

Definition: A minimal set C of edges in a connected graph G is said to be a cut
set (or minimal edge — cut) if the subgraph G — C has more connected
components than G has.

For example, in the above graph, if we delete the edge (b, d) = e, the

resulting subgraph G — e5 1s as shown below :
3]
a &) b
€4
c
€5
ee

Thus G —e3 has two connected components

€y
a = b d
and es
€4
C e

So. in this example, the cut set consists of single edge (b, d) = es. which is
called edge or bridge.
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Theorem: Let G be a connected graph with n vertices. Then G is a tree if and
only if every edge of G is a bridge (cut edge).
(This theorem asserts that every edge in a tree is a bridge).

Proof: Let G be a tree. Then it is connected and has n — 1 edges (proved
already). Let e be an arbitrary edge of G. Since G — e has n — 2 edges, and also
we know that a graph G with n vertices has at least n — ¢(G) edges, it follows
that n — 2 = n - ¢(G — e). Thus G — e has at least two components. Thus
removal of the edge e created more components than in the graph G. Hence e is
a cut edge. This proves that every edge in a tree is a bridge.

Conversely, suppose that G is connected and every edge of G is a
bridge. We have to show that G is a tree. To prove it, we have only to show
that G 1is circuit — free. Suppose on the contrary that there exists a cycle
between two points x and y in G. Then any edge on this cycle is

— >

X y
not a cut edge which contradicts the fact that every edge of G is a cut edge.
Hence G has no cycle. Thus G is connected and acyclic and so is a tree.

Rank and Nullity:

Consider a graph G with n vertices, e edges and k components .The
rank of graph G is defined as

Rank r = n-k
And the nullity of the graph G is defined as
Nullity p=e-n+k
=e-r
We note that

Rank +nullity = no. of edges in a graph
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The nullity of a graph is also called cyclomalic number or first Betti
number.

If a graph G is connected then k=1 and therefore rank of a connected
graph is n-1 and the nullity is e-n+1.

It follows from the definition of spanning tree that

Rank of a connected graph G = number of branches in any spanning
tree of G

Nullity of connected graph G = number of chords in G
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POSSIBLE QUESTIONS ( SIX MARKS)
1.Show that a tree with n-vertices has (n-1) edges.

2.The number of pendent vertices (leaf) of a tree is equal to 2+L
2

3. Show that every connected graph with n-vertices has (n-1) edges is a tree.
4.Show that a graph G is a tree if and only if it is minimally connected.

5.Show that an arborescence is a tree in which every vertex other than the root has an indegree
of exactly one.

6. Show that a tree with n-vertices has (n-1) edges.
7.Define Centre and Eccentricity of vertex withexample.

8. Show that a graph G is a tree if and only if there is one and only one path between any 2
vertices of G

9.Explain the properties of binary tree
10.Prove that in a tree, any two vertices are connected by exactly one path.

11.Show that every tree has one (or) two centre’s.

POSSIBLE QUESTIONS ( TEN MARKS)

1. In any tree (with two or more vertices), there are atleast two pendant vertices.
2.Prove that the number of labeled trees on ‘n’ vertices is n"2.

3.Show that the minimum height of a n-vertex binary tree is equal to [logz (n+1)-1].
4.Show that in any tree with two (or) more vertices there are at least two pendent vertex

5.Show that every tree with two or more vertices is 2 chromatic.
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