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Course Objectives
To enable to dealsome of the key ideas of classical mechanics and to understand the concept of
generalized coordinates.

Course Outcomes
On successful completion of this course students will be able to:
e Understand the concept of the D’Alembert’s principle .
e Derive the Lagrange’s equation for holomonic and non holomonic constraints.
o Attain the applications of Lagrange’s formulation .
e Classify Scleronomic and Rheonomic systems .
e Solve the problems of Hamilton equations of motion .

UNIT |

Survey of Elementary principles: Constraints - Generalized coordinates, Holonomic and non-
holonomic systems, Scleronomic and Rheonomic systems. D’ Alembert’s principle and
Lagrange’s

equations — Velocity — dependent potentials and the dissipation function — some applications
of the Lagrange formulation.

UNIT 11

Variation principles and Lagrange’s equations: Hamilton’s principle — Some techniques of
calculus of variations — Derivation of Lagrange’s Equations from Hamilton’s principle —
Extension ofHamilton’s principle to non-holonomic systems — Conservation theorems and
symmetry properties.

UNIT I

Hamilton Equations of motion: Legendre Transformations and the Hamilton Equations of
motion-canonical equations of Hamilton — Cyclic coordinates and conservation theorems —
Routh’sprocedure - Derivation of Hamilton’s equations from a variational principle — The
principle of leastaction.

UNIT IV

Canonical transformations: The equations of canonical transformation — Examples of Canonical
transformations — Poission Brackets and other Canonical invariants — integral invariants of
Poincare, Lagrange brackets.

UNIT V

Hamilton Jacobi Theory: Hamilton Jacobi equations for Hamilton’s principle function —
Harmonic oscillator problem - Hamilton Jacobi equation for Hamilton’s characteristic function
— Separation of variables in the Hamilton-Jacobi equation.
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KA RPAGA M (Deemed to be University Established Under Section 3 of UGC Act 1956)
ACADEMY OF HIGHER EDUCATION Coimbatore — 641 021.

o LECTURE PLAN

DEPARTMENT OF MATHEMATICS
Staff name: Dr.S.Sowmiya

Subject Name: Mechanics Sub.Code:19MMP106
Semester: | Class: 1M.Sc Mathematics
S.No | Lecture Topics to be Covered Support Material/Page Nos
Duration
Period
UNIT-I
1 1 Survey of Elementary principles S1: Chl: P.No: 1-10
2 1 Constraints S1:Ch2: P.N0:11-12
3 1 Generalized coordinates S1:Ch2: P.No: 12-13
4 1 Holonomic and non- S1:Ch2: P.No: 13-15
holonomic systems, Scleronomic and
Rheonomic systems
5 1 D’ Alembert’s principle S1:Ch2: P.No: 16-17
6 1 Lagrange’s equations S1:Ch3: P.No: 17-21
7 1 Velocity- dependent potentials and the S1:Ch3: P.No: 21-24
dissipation function
8 1 Some applications of the Lagrange S1:Ch3: P.N0:25-29
formulation.
9 1 Recapitulation and Discussion of possible
questions
Total No. of Lecture hours planned-9 Hours
UNIT-I1I
1 1 Variation principles and Lagrange’s S1:Ch2: P.No: 35-37
equations Hamilton’s principle
2 1 Some techniques of calculus of variations S1:Ch2: P.No: 37-43
3 1 Derivation of Lagrange’s Equations from S1:Ch2: P.No: 43-45
Hamilton’s principle
4 1 Extension of Hamilton’s principle to non- | S1:Ch2: P.No: 45-50
holonomic systems
5 1 Conservation theorems and symmetry S1:Ch2: P.No: 54-56
properties.
6 1 Continuation of Conservation theorems S1:Ch2: P.No: 56-58
and symmetry properties.
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7 1 Continuation of Conservation theorems S1:Ch2: P.No: 58-60
and symmetry properties.
8 1 Continuation of Conservation theorems S1:Ch2: P.No: 61-63
and symmetry properties.
9 1 Recapitulation and Discussion of possible
questions
Total No. of Lecture hours planned-9 Hours
UNIT-I1I
1 1 Legendre Transformations S1:Ch8: P.No: 334-345
2 1 Continuation of Legendre Transformations | S1: Ch8: P.No: 335-338
3 1 Hamilton Equations of motion S1: Ch8: P.No: 338-339
4 1 canonical equations of Hamilton S1:Ch8 P.No: 339-343
5 1 Cyclic coordinates and conservation S1: Ch8: P.No: 343-347
theorems
6 1 Routh’s procedure S1: Ch8: P.No: 347-349
7 1 Derivation of Hamilton’s equations froma | S1: Ch8: P.No: 353-356
variational principle
8 1 The principle of least action. S1: Ch8: P.No: 356-362
9 1 Recapitulation and Discussion of possible
questions
Total No. of Lecture hours planned-9 Hours
UNIT-IV
1 1 The equations of canonical transformation S1:Ch9: P.No: 368-375
2 1 Examples of Canonical transformations S1:Ch9: P.No: 375-376
3 1 Examples of Canonical transformations S1:Ch9: P.No: 376-377
4 1 Poission Brackets and other Canonical | S2:Ch7: P.No: 388-389
invariants
5 1 Continuation of Poission Brackets and S1:Ch9: P.No: 389-391
other Canonical invariants
6 1 integral invariants of Poincare S2:Ch2: P.No: 55-56
7 1 Continuation of integral invariants of S2:Ch2: P.No: 56-58
Poincare
8 1 Lagrange brackets S1:Ch9: P.No: 391-397
9 1 Recapitulation and Discussion of possible

questions

Total No. of Lecture hours planned-9 Hours
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UNIT-V

1 1 Hamilton Jacobi Theory S1:Ch10: P.N0:430-431

2 1 Hamilton Jacobi equations for Hamilton’s S1:Ch10: P.No: 431-433
principle function

3 1 Continuation of Hamilton Jacobi equations | S1:Ch10: P.No: 433-434
for Hamilton’s principle function

4 1 Harmonic oscillator problem S2:Ch5: P.No: 76-78

5 1 Continuation of Harmonic oscillator S2:Ch5: P.No: 79-81
problem

6 1 Continuation of Harmonic oscillator S1:Ch10: P.No: 434-440
problem

7 1 Hamilton Jacobi equation for Hamilton’s S1:Ch10: P.No: 440-444
characteristic function

8 1 Separation of variables in the Hamilton- S1:Ch10: P.No: 444-445
Jacobi equation.

9 1 Recapitulation and discussion of possible
questions on unit V

10 1 Discussion of Previous year ESE question
paper

11 1 Discussion of Previous year ESE question
paper

12 1 Discussion of Previous year ESE question

paper

Total No. of Lecture hours planned-12 Hours

Total Planned Hours

48

SUGGESTED READINGS

1. Goldstein. H. (2007), Classical Mechanics Third Edition, Narosa Publishing House, New

Delhi.

2. Gantmacher, F., (2013). Lectures in Analytic Mechanics, MIR Publishers, Moscow.
3. Gelfand, I. M., and Fomin, S. V., (2003), Calculus of Variations, Prentice Hall, New Delhi.
4. Loney, S. L., (2015). An elementary treatise on Statics, Kalyani Publishers, New Delhi.
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UNIT-I

Survey of Elementary principles: Constraints - Generalized coordinates, Holonomic and non-
holonomic systems, Scleronomic and Rheonomic systems. D’ Alembert’s principle and
Lagrange’sequations — Velocity — dependent potentials and the dissipation function — some
applications of the Lagrange formulation.

The motion of material bodies formed the subject of some of the earliest research
pursued by the pioneers of physics. From their efforts there has evolved a vast
field known as analytical mechanics or dynamics, or simply, mechanics. In the
present century the term “classical mechanics™ has come into wide use to denote
this branch of physics in contradistinction to the newer physical theories, espe-
cially quantum mechanics. We shall follow this usage, interpreting the name to
include the type of mechanics arising out of the special theory of relativity. It is
the purpose of this book to develop the siructure of classical mechanics and to
outline some of its applications of present-day interest in pure physics. Basic to
any presentation of mechanics are a number of fundamental physical concepts,
such as space, time, simultaneity, mass, and force. For the most part, however,
these concepts will not be analyzed critically here; rather, they will be assumed as
undefined terms whose meanings are familiar to the reader.

1.1 B MECHANICS OF A PARTICLE

T.et r be the radius vector of a particle from some given ongin and v its vector
velocity:

dr
T3

(1.I)

¥

The linear momentum p of the particle is defined as the product of the particle
mass and its velocity:

p=nv. (12)
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In consequence of interactions with external objects and fields, the particle may
experience forces of various types, e.g., gravitational or electrodynamic; the vec-
tor sum of these forces exerted on the particle is the total force F. The mechanics
of the particle is contained in Newton’s second law of motion, which states that
there exist frames of reference in which the motion of the particle is described by
the differential equation

pLge Db (13)

Chapter 1 Survey of the Elementary Principles

or
F = %{mﬂ. (1.4)
In most instances, the mass of the particle 1s constant and Eq. (1.4) reduces to
dv
F=m-— =ma. 15
i dit i (i

where a is the vector acceleration of the particle defined by

Ll 2=
T di?’
The equation of motion is thus a differential equation of second order, assuming
F does not depend on higher-order derivatives.

A reference frame in which Eq. (1.3) is valid is called an inertial or Galilean
system. Even within classical mechanics the notion of an inertial system is some-
thing of an idealization. In practice, however, it is usually feasible to set up a co-
ordinate system that comes as close to the desired properties as may be required.
For many purposes, a reference frame fixed in Earth (the “laboratory system”) is
a sufficient approximation to an inertial system, while for some astronomical pur-

poses it may be necessary to construct an inertial system by reference to distant
galaxies.

a (1.6)
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Many of the important conclusions of mechanics can be expressed in the form
of conservation theorems, which indicate under what conditions various mechan-
ical quantities are constant in time. Equation (1.3) directly furnishes the first of
these. the

Conservation Theorem for the Linear Momentum of a Particle: If the total force,
F, is zero, then p = 0 and the linear momertumn, p, is conserved.

The angular momentum of the particle about point O, denoted by L, is defined
as

L=rxp, (1.7)

where 1 is the radius vector from O to the particle. Notice that the order of the
factors is important. We now define the moment of force or torque about O as

N=rxF. (1.8)

The equation analogous to (1.3) for N is obtained by forming the cross product of
r with Eq. (1.4):

d
= = b - I.
rxF=N rxdr(mv) (1.9)

Equation (1.9) can be written in a different form by using the vector identity:

d d
il — il 1.1
y (rxmv)=vxmv+rx 7 (mv), (1.10)

where the first term on the right obviously vanishes. In consequence of this iden-
tity, Eq. (1.9) takes the form

d dL .
N—E(rxrnv)_E=L. (1.11)

Note that both N and L depend on the point O, about which the moments are
taken.
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As was the case for Eq. (1.3), the torque equation, (1.11), also yields an imme-
diate conservation theorem, this time the

Conservation Theorem for the Angular Momentum of a Farticle: If the total
torque, N, is zero then L. = (), and the angular momentum L is conserved.

Next consider the work done by the external force F upon the particle in going
from point 1 to point 2. By definition, this work is

2
Wy = [ F - ds. 11.12)
A1

For constant mass (as will be assumed from now on unless otherwise specified),
the integral in Eq. (1.12) reduces to

dv m d 2
fF'dS—MfE'?dI—EfE(U }d!,

m
Wip = E(u% —vd). (1.13)

and therefore

The scalar quantity muv?/2 is called the kinetic energy of the particle and is de-
noted by T, so that the work done is equal to the change n the kinetic energy:

Wi =1 —T;. (1.14)

If the force field is such that the work Wy is the same for any physically
possible path between points 1 and 2, then the force (and the system) is said to be
conservative. An alternative description of a conservative system is obtained by
imagining the particle being taken from point 1 to point 2 by one possible path
and then being returned to point 1 by another path. The independence of W}» on
the particular path implies that the work done around such a closed circuit is zero,
ie.

%Ffds=0. (1.15)

Prepared by Dr.S.Sowmiya, Asst Prof, Department of Mathematics KAHE Page 4/36




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSENAME: MECHANICS
COURSE CODE: 19MMP106 UNIT: | BATCH-2019-2021

Physically it is clear that a system cannot be conservative if friction or other dis-
sipation forces are present, because F - ds due to friction is always positive and
the integral cannot vanish.

By a well-known theorem of vector analysis, a necessary and sufficient condi-
tion that the work, W2, be independent of the physical path taken by the particle
is that F be the gradient of some scalar function of position:

F=-VV(@), (1.16)

where V is called the potential, or potential energy. The existence of V can be
inferred intustively by a simple argument. If Wy, is independent of the path of
integration between the end points 1 and 2. it should be possible to express Wy
as the change in a quantity that depends only upon the positions of the end poinis.
This quantity may be designated by —V, so that for a differential path length we
have the relation

F.:ds=—-dV
or
av
Fi = ——
5 aS‘

which is equivalent to Eq. (1.16). Notc that in Eq. (1.16) we can add to V any
quantity constant in space, without affecting the results. Hence the zero level of V
is arbitrary.

For a conservative system, the work done by the forces is

W=V, - W (1.17)

Combining Eq. (1.17) with Eq. (1.14), we have the result
i+ Vi=Th+V,, (1.18)

which states in symbols the

Energy Cunservation Theorem for a Particle: If the forces acting on a particle
are conservative, then the totul energy of the particle, T + V, is conserved.
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The force applied to a particle may in some circumstances be given by the
gradient of a scalar function that depends explicitly on both the position of the

particle and the time. However, the work done on the particle when it travels a
distance ds,

F.ds=——ds,
a5

is then no longer the total change in —V during the displacement, since V also
changes explicitly with time as the particle moves. Hence, the work done as the

particle goes from point 1 to point 2 is no longer the difference in the function V
betwezn those points. While a total energy T + V may still be defined, it is not
conserved during the course of the particle’s motion.

1.2 B MECHANICS OF A SYSTEM OF PARTICLES

In generalizing the ideas of the previous section to systems of many particles,
we must distinguish between the external forces acting on the particles due to
sources outside the system. and internal forces on, say, some particle i due to all
other particles in the system. Thus, the equation of motion (Newton's second law)
for the 7th particle is written as

Y Fu+F9 =p, (119)
J

where F stands for an external force, and F,, is the internal force on the ith
particle due to the jth particle (F,,, naturally, is zero). We shall assume that the
F,; (like the Ff‘”} obey Newton’s third law of motion in its original form: that the
forces two particles exert on each other are equal and opposite. This assumption
(which does not hold for all types of forces) is sometimes referred to as the weak
law of action and reaction

Summed over all particles, Eq. (1.19) takes the form

Prepared by Dr.S.Sowmiya, Asst Prof, Department of Mathematics KAHE Page 6/36




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSENAME: MECHANICS
COURSE CODE: 1I9MMP106 UNIT: | BATCH-2019-2021
d? (e)
—5 2 mr=3 FO+3 K, (1.20)
t i nf
i)

The first sum on the right is simply the total external force F(¢), while the second
term vanishes, since the law of action and reaction states that each pair F,; +F ,
is zero. To reduce the left-hand side, we define a vector R as the average of the
radil vectors of the particles, weighted in proportion to their mass:

R_ Zmir! = Emrri
> om; M
The vector R defines a point known as the center of mass, or more loosely as the

center of gravity, of the system (cf. Fig. 1.1). With this definition, (1.20) reduces
to

(1.21)

d’R ()
o i 1 — Fle
M— = ZF, = F®, (122)
which states that the center of mass moves as if the total external force were
acting on the entire mass of the system concentrated at the center of mass. Purely

internal forces, if the obey Newton’s third law, therefore have no effect on the

Chapter 1 Survey of the Elementary Principles
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motion of the center of mass. An ofi-quoted example 1s the motion of an exploding
shell—the center of mass of the fragments traveling as if the shell were still in a
single piece (neglecting air resistance). The same principle is involved in jet and
rocket propulsion. In order that the motion of the center of mass be unaffected,
the ejection of the exhaust gases at high velocity must be counterbalanced by the
forward motion of the vehicle at a slower velocity.

By Eq. (1.21) the total hnear momentum of the system,

dl‘,' dR
P=ZmlE=M-&-—, (1.23)

is the total mass of the system times the velocity of the center of mass. Conse-
quently, the equation of motion for the center of mass, (1.23), can be restated as

the

Consenation Theorem for the Linear Momentum of a System of Particles: If the
total external force is zero, the total linear momentum is conserved,

We obtain the total angular momentum of the system by forming the cross
product r; x p, and summing over i. If this operatton is performed in Eq. (1.19),
there results, with the aid of the identity, Eq. (1.10),

Y xp)= Z ‘—f;{r, xp)=L= ;“ x F +¥ri xFi. (1.24)

i s
ity

The last term on the right in (1.24) can be considered a sum of the pairs of the
form

L xFpu+r xF;=r-r)xF,, (1.25)
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1.2 Mechanics of a System of Particles

FIGURE 1.2 The vector r;; between the ith and jth particles.

using the equality of action and reaction But r; — r, is identical with the vector
r;; from j toi (cf. Fig. 1.2), so that the right-hand side of Eq. (1.25) can be wntten
as

r; xF,,.

If the internal forces between two particles, in addition to being equal and oppo-
site, also lie alung the line joining the particles—a condition known as thc strong
law of action and reaction—then all of these cross products vanish. The sum over
pairs is zero under this assumption and Eq. (1.24) may be written in the form

% =N@©, (1.26)

The time derivative of the total angular momentum is thus equal to the moment
of the external force about the given point, Corresponding to Eq. (1.26) is the

Conservation Theorem for Total Angular Momentum: L is constant in time if the
applied (external) torque is zero.
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(It is perhaps worthwhile to emphasize that this is a vector theorem; i.e, L,
will be conserved if N9 is zero, even if N and N© are not zero.)

Note that the conservation of linear momentum in the absence of applied forces
assumes that the weak law of action and reaction is valid for the internal forces.
The conservation of the total angular momentum of the system in the absence of
applied torques requires the validity of the strong law of action and reaction—that
the internal forces in addition be central. Many of the familiar physical forces,
such as that of gravity, satisfy the strong form of the law. But it is possible to
find forces for which action and reaction are equal even though the forces are not
central (see below). In a system involving moving charges, the forces between
the charges predicted by the Biot-Savart law may indeed violate both forms of
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the action and reaction law.* Equations (1.23) and (1.26), and their corresponding
conservation theorems, are not applicable in such cases, at least in the form given
here. Usually it is then possible to find some generalization of P or L that is
conserved. Thus, in an isolated system of moving charges it is the sum of the
mechanical angolar momentum and the electromagnetic “angular momentum™ of
the field that is conserved.

Equation (1.23) states that the total linear momentum of the system is the same
as if the entire mass were concentrated at the center of mass and moving with it.
The analogous theorem for angular momentum is more complicated. With the
ongin O as reference point, the total angular momentum of the system is

L:Zr, xp,.
i

Let R be the radius vector from O to the center of mass, and let ¥/ be the radius
vector from the center of mass (o the ¢th particle. Then we have (cf. Fig. 1.3)

rr=r+R (1.27)
and
Vi = 'V: +v
where
dR
V= —
dat

Center
of mass
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FIGURE 1.3 The vectors involved in the shuft of reference point for the angular momen-
tum.

*If two charges are moving uniformly with parallel velocity vectois that are not perpendicular to the
line joining the charges, then the net mutual forces are equal and opposite but do not lie along the
vector between the charges. Consider, further, two charges moving (instantaneously) so as to “cross
the T,” 1.e., onc charge moving directly at the other, which in turn 1s moving at right angles to the first
Then the second charge exerts 1 nonvanishing magnetic force on the first, without cxpeniencing any
magnetic reaction force at that mstant.

is the velocity of the center of mass relative to O, and

.
=t

is the velocity of the ith particle relative to the center of mass of the system. Using
Eq. (1.27), the total angular momentum takes on the form

L=ZR X m,v+Z:r: X m,v, +(Z[:m,r:) x v+ R x g;fzm,r’;.

The last two terms in this expression vanish, for both contain the factor Y m,r!,
which, it will be recognized, defines the radius vector of the center of mass in the
very coordinate system whose origin is the center of mass and is therefore a null
vector. Rewriting the remaining terms, the total angular momentum about O is

L=RxMv+) 1 xp|. (1.28)

In words, Eq. (1.28) says that the total angular momentum about a point O is
the angular momentum of motion concentrated at the center of mass, plus the
angular momentum of motion about the center of mass. The form of Eq. (1.28)
emphasizes that in general L depends on the origin O, through the vector R. Only
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if the center of mass 15 at rest with respect to O will the angular momentum be
independent of the point of reference. In this case, the first term in (1.28) vanishes,
and L always reduces to the angular momentum taken about the center of mass.

Finally, let us consider the energy equation. As in the case of a single particle,
we calculate the work done by all forces in moving the system from an initial
configuration 1, to a final configuration 2:

2 2 2
w‘FZfl Ft-ds,=2ﬁ Ffe]-dst+2£ F,-ds. (129
i i ]

1#)
Again, the equations of motion can be used to reduce the mtegrals to

Z,:KF‘ cds = Zflzm,if, -V, dt = Z{:ﬁzd(%miv?).

Hence, the work done can still be written as the difference of the final and initial
kinetic energies:

Wi =T, — 11,

where T, the total kinetic energy of the system, is
1 2
T=EIZM,1:,. (1.30)
Making use of the transformations to center-of-mass coordinates, given in Eq.

(1.27), we may also write T as

1
T =5 rzm,(v+v:) C(V4V)

1 1 d
= EZM;UE'I"Z"IZH‘I;TJ?-I-V' E? (Zm,r}’),
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and by the reasoning already employed in calculating the angular momentum, the
last term vanishes, leaving

1 1
T =M+ 33 muy] (1.31)
“ i

The kinetic energy, like the angular momentum, thus also consists of two parts:
the kinetic energy obtained if all the mass were concentrated at the center of mass,
plus the kinetic energy of motion about the center of mass.

Consider now the right-hand side of Eq. (1.29). In the special case that the

external forces are derivable in terms of the gradient of a potential, the first term
can be written as

Zj;zFf*’-ds, =-zflzv,vt cds, ==YV,
i ] i

where the subscript i on the del operator ndicates that the derivatives are with
respect to the components of r,. If the internal forces are also conservative, then
the mutual forces between the ith and jth particles, F;, and F,,, can be obtained
from a potential function V. To satisfy the strong law of action and reaction, V;,
can be a function only of the distance between the particles:

2
1

“_i' = Vu (I — y [). (1.32)
The two forces are then automatically equal and opposite,

F;, =-V,\V, =+V,V, = -F,;, (1.33)

and lie along the line joining the two particles,

VVilri—r, ) =0 —r)f (1.34)

where f is some scalar function, If V;; were aiso a function of the difference of
some other pair of vectors associated with the particles, such as their velocities
or (to step into the domain of modern physics) their intrinsic “spin” angular mo-
menta, then the forces would still be equal and opposite, but would not necessarily
lie along the direction between the particles.
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When the forces are all conservative, the second term in Eq. (1.29) can be
rewritten as a sum over pairs of particles, the terms for each pair being of the
form

2
_j; (V, H’j - ds, ‘I’v} V:_j ‘dﬂj}-

If the difference vector r. —r, is denoted by r,;, and if V;; stands for the gradient
with respect to r, ;, then

v;":} = vu'i"u = —‘?;V;j.
and

so that the term for the i pair has the form

—fvuvu *dl‘,}.

The total work arising from internal forces then reduces to

1 2 1 .
_Ezfl v, Vi -dr, = _EEV,JL. (135)
] iy

ey 1#]

The factor % appears in Eq. (1.35) because in summing over both i and j each
member of a given pair ‘s included twice, first in the i summation and then in the
J summation.

From these considerations, it is clear that 1f the external and mternal forces are

both derivable from potentials it is possible to define a rotal potential energy, V,
of the system,

1
V=) VitsD V. (1.36)
I I,
i%)
such that the total energy T + V is conserved, the analog of the conservation
theorem (1.18) for a single particle.
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The second term on the right in Eq. (1.36) will be called the internal potential
energy of the system. In general, it need not be zero and, more important, it may
vary as the system changes with time. Only for the particular class of systems
known as rigid bodies will the internal potential always be constant. Formally,
a rigid body can be defined as a system of particles in which the distances r,
are fixed and cannot vary with time. In such case, the vectors dr;;j can only be
perpendicular to the corresponding r;;, and therefore to the F;;. Therefore, in a
rigid body the internal jorces de no work, and the internal potential must remain

constant. Since the total potential is in any case uncertain to within an additive
constant, an unvarying internal potential can be completely disregarded in dis-
cussing the motion of the system.

1.3 B CONSTRAINTS

From the previous sections one might obtain the impression that all problems in
mechanics have been reduced to solving the set of differential equations (1.19):

mi, =F — Y F,,.
4

One merely substitutes the various forces acting upon the particles of the system,
turns the mathematical crank, and grinds out the answers! Even from a purely
physical standpoint, however, this view is oversimplified. For example, it may be
necessary to take into account the constraints that limit the motion of the system.
We have already met one type of system involving constraints, namely rigid bod-
ies, where the constraints on the motions of the particles keep the distances r,,
unchanged. Other examples of constrained systems can easily be furnished. The
beads of an abacus are constrained to one-dimensional motion by the supporting
wires. Gas molecules within a container are constrained by the walls of the ves-
sel to move only inside the container. A particle placed on the surface of a solid
sphere is subject to the constraint that it can move only on the surface or in the
region exterior to the sphere.

Constraints may be classified in various ways, and we shall use the following
system. If the conditions of constraint can be expressed as equations connecting
the coordinates of the particles (and possibly the time) having the form

f@ryrg,r3,..., 1) =0, (1.37)
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then the constraints are said to be holonomic. Perhaps the simplest example of
holonomic constraints is the rigid body, where the constraints are expressed by
equations of the form

(r, — rJ,)2 — c:j = 0.
A particle constrained to move along any curve or on a given surface is another
obvious example of a holonomic constraint, with the equations defining the curve
or surface acting as the equations of a constraint.

Constiaints nul expressible in this fashion are called nonholonomic. The walls
of a gas container constitute a nonholonomic constraint. The constraint involved
in the example of a particle placed on the surface of a sphere is also nonholo-
nomic, for it can be expressed as an inequality

rr—a®>0

(where a is the radius of the sphere), which is not in the form of (1.37). Thus, in
a gravitational field a particle placed on the top of the sphere will slide down the
surface part of the way but will eventually fall off.

Constraints are further classified according to whether the equations of con-
straint contain the time as an explicit variable (rheonomous) or are not explicitly
dependent on time (scleronomous). A bead sliding on a rigid curved wire fixed
in space is obviously subject to a scleronomous constraint; if the wire is moving
in some prescribed fashion, the constraint is rheonomous. Note that if the wire
moves, say, as a reaction to the bead’s motion, then the tume dependence of the
constraint enters in the equation of the constraint only through the coordinates
of the curved wire (which are now part of the system coordinates). The overall
constraint is then scleronomous.

In the case of holonomic constraints, the first difficulty is solved by the intro-
duction of generalized coordinates. So far we have been thinking implicitly in
terms of Cartesian coordinates. A system of N particles. free from constraints,
has 3N independent coordinates or degrees of freedom. If there exist holonomic
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constraints, expressed 1n k equations in the torm (1.37), then we may use these
equations to eliminate k of the 3N coordinates, and we are left with 3N — k inde-
pendent coordinates, and the system is said to have 3N — k degrees of freedom.
This elimination of the dependent coordinates can be expressed in another way,
by the introduction of new, 3N — k, independent variables g1, 42, ..., g3n— in
terms of which the old coordinates ry, r3, ..., ry are expressed by equations of
the form

r=ri(q1, 42, ..., GiN-, 1)

(1.38)
™w =IN(@1, 92, . ... @3Nk, 1)

containing the constraints in them implicitly. These are transformation equations
from the set of (r;) variables to the (g;) set, or altermatively Egs. (1.38) can be con-
sidered as parametric representations of the (ry) variables. It is always assumed
that we can also transform back fiom the (¢;) to the (r;) set, i.e., that Egs. (1.38)
combined with the k equations of constraint can be inverted to obtain any g; as a
function of the (r;) variable and time.

Usually the generalized coordinates, gy, unlike the Cartesian coordinates, will
not divide into convenient groups of three that can be associated together to form
vectors. Thus, in the case of a particle constrained to move on the surface of a
sphere, the two angles expressing position on the sphere, say latitude and longi-
tude, are obvious possible generalized coordinates. Or, in the example of a double
pendulum moving in a plane (two particles connected by an inextensible ight
rod and suspended by a similar rod fastened to one of the particles), satisfactory
generalized coordinates are the two angles 6y, 2. (Cf. Fig. 1.4.) Generalized co-

ordinates, in the sense of coordinates other than Cartesian, are often useful in
systems without constraints. Thus, in the problem of a particle moving in an ex-
ternal central force field (V = V(r)), there is no constraint involved, but it is
clearly more convenient to use spherical polar coordinates than Cartesian coordi-
nates. Do not, however, think of generalized coordinates in terms of conventional
orthogonal position coordinates. All sorts of gquantities may be impressed to serve
as generalized coordinates. Thus, the amplitudes in a Fourier expansion of r; may
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be used as generalized coordinates, or we may find it convenient to employ quan-
tities with the dimensions of energy or angular momentum.

If the constraint is nonholonomic, the equations expressing the constraint can-
not be used to eliminate the dependent coordinates. An oft-quoted example of
a nonholonomic constraint is that of an object rolling on a rough surface with-
out slipping. The coordinates used to describe the system will generally involve
angular coordinates to specify the orientation of the body, plus a set of coordi-
nates describing the location of the point of contact on the surface. The constraint
of “rolling” connects these two sets of coordinates; they are not independent. A
change in the position of the point of contact inevitably means a change in its
orientation. Yet we cannot reduce the number of coordinates, for the “rolling”
condition is not expressible as a equation between the coordinates, in the manner
of (1.37). Rather, it is a condition on the velacities (i e , the point of contact is
stationary), a differential condition that can be given in an integrated form only
after the problem is solved.

FIGURE 1.4 Double pendulum.

1.4 B D’ALEMBERT’S PRINCIPLE AND LAGRANGE’S EQUATIONS

A virmal (infinitesimali displacement of a system refers to a change in the con-
figuration of the system as the result of any arbitrary infinitesimal change of the
coordinates 8r,, consistent with the forces and constraints imposed on the system
at the given instant t. The displacement is called virtual to distinguish it from an
actual displacement of the system occurring in a time interval d¢, during which
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the forces and constraints may be changing. Suppose the system is in equilibrium;
i.e., the total force on each particle vanishes, F; = 0. Then clearly the dot product
F, « r,, which is the virtual work of the force F; in the displacement dr,, also

vanishes. The sum of these vanishing products over all particles must Jikewise be
Zero:

) F, .81, =0. (1.40)
i

As yet nothing has been said that has any new physical content. Decompose F,
into the applied force, Ffa}, and the force of constraint, f;,

F, =F“ 41, (1.41)
so that Eq. (1.40) becomes
EF‘E‘”.RI*, +ZF‘, A =0 (142)
I I

We therefore have as the condition for equilibrium of a system that the virtual
work of the applied forces vanishes:

> F? . 6r, = 0. (1.43)

To obtain such a principle, we use a device first thought of by James Bernoulli
and developed by D’ Alembert. The equation of motion,

F: =f’n

Equation (1.43) is often called the principle of virtual work. Note that the coef-
ficients of r, can no longer be set equal to zero; i.c., in general Ff"} # 0, since
the dr, are not completely independent but are connected by the constraints. In
order to equate the coefficients to zero, we must transform the principle into a
form involving the virtual displacements of the g,, which are independent. Equa-
tion (1.43) satisfies our needs in that it does not contain the f;, but it deals only
with statics; we want a condition involving the general motion of the system.
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can be written as
Fr i f’: = {]1

which states that the particles in the system will be in equilibrium under a force
equal to the actual force plus a “reversed effective force” —p;. Instead of (1.40),

we can immediately write

Y (Fi —py) - dr, =0, (1.44)

which 1s often called D’Alembert’s principle. We have achieved our aim, in that
the forces of constraint no longer appear. and the superscript > can now e
dropped without ambiguity. It is still not in a useful form to furnish equations
of motion for the system. We must now transform the principle into an expression
involving virtual displacements of the generalized coordinates, which are then in-
dependent of each other (for holonomic constraints), so that the coefficients of the
Aq, can be set separately equal to zero.

The translation from r, to g, language starts from the transformation equations
(1.38),

rl =rl"{QI1 qg?***‘lQﬂ'i t) (]'451)

(assuming n independent coordinates), and is carried out by means of the usual
“chain rules” of the calculus of partial differentiation. Thus, v; is expressed in
terms of the g by the formula

dl‘,‘ t:'.ll'; 1 3!‘;
WE—= —_—k ?

= ) 2k (1.46)

Similarly, the arbitrary virtual displacement ér, can be connected with the virtual
displacements &g, by

dr,
8r, = 2 ?ﬁq', (147)
] J
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Note that no variation of time, 8t, is involved here, since a virtual displacemant
by definition considers only displacements of the coordinates. (Only then is the
virtual displacement perpendicular to the force of constraint if the constraint itself
is changing in time.)

In terms of the generalized coordinates. the virtual work of the F, becomes

EF; 8r; = EF Eagj

=) 0,8q,. (1.48)
7

where the Q; are called the components of the generalized force, defined as
ZF ar. (1.49)

Note that just as the ¢’s need not have the dimensions of length, so the Q’s do
not necessarily have the dimensions of force, but @,8g;, must always have the
dimensions of work. For example, Q; might be a torque N, and dg, a differential
angle d6,, which makes N; d6, a differential of work.

We mrn now to the other other term involved m Eq. (1.45), which may be
written as

Zf’; B 3!’, = Zm;'i:j . 51’;.
!

Expressing 8r; by (1.47), this becomes

2 :mrrr

Consider now the relation
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- 3]‘; d . ari‘ = d (arr )] =
Jan v [4 Jemal o 0 ot LS CEEIN et s
gm'r' oq, ?[d: (m"" aqj) ™3 \ag, i

In the last term of Eq. (1.50) we can interchange the differentiation with respect
to ¢ and gq,, for, in analogy to (1.46).

d (3!‘,) 3i’; azri - azrl
— = )=—= g + :
il Bv,-
aq,’

by Eq. (1.46). Further, we also see from Eq. (1.46) that

av, ar,

hohl TR ) 1.51
3@; g j ( )

Substitution of these changes in (1.50) leads to the result that

. OF d ov av
2-’":1’5 — = ZI:I:E (mlvl . a_') - miV, ﬁ] 3

da; 4;
and the second term on the left-hand side of Eq. (1.45) can be expanded into

Slslma]-4 (i-o]e

Identifying )", 4m,v? with the system kinetic energy T, D’Alembert’s principle
(cf. Eq. (1.45)) becomes

d (0T aT
[ (Bé;) I aq,-] -0} 80, =0 e
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Note that in a system of Cartesian coordinates the partial derivative of T with
respect to g, vanishes. Thus, speaking in the language of differential geometry,
this term arises from the curvature of the coordinates g,. In polar coordinates,
e.g., itis in the partial derivative of T with respect to an angle coordinate that the
centripetal acceleration term appears.

Thus far, no restriction has been made on the nature of the constraints other
than that they be workless in a virtual displacement. The variables g, can be any
set of coordinates used to describe the motion of the system. If, however, the con-
straints are holonomic, then it is possible to find sets of independent coordinates
g, that contain the constraint conditions implicitly in the transformation equations
(1.38). Any virtual displacement 8¢, is then independent of dgy, and therefore the
only way for (1.52) to hold is for the individual coefficients to vanish:

d (0T oT
it (1) 30, ~ 2 wiii

There are n such equations in all.
When the forces are derivable from a scalar potential function V,

F, =-V,V.

Then the generalized forces can be written as

ar; arT,
Q)= ZE *=—Evv dq;

which is exactly the same expression for the partial derivative of a function
—V(ry,r2, ..., Iy, t) with respect to g;:

aVv
= ——, (1.54)
=%
Equations (1.53) can then be rewritten as
E(HT)_B(T_V) mirs (1.55)
dt \ 9q; 9
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The equations of motion in the form (1.55) are not necessarnly restricted to conser-
vative systems, only if V is not an explicit function of time is the system conserva-
tive (cf. p. 4). As here defined, the potential V does not depend on the generalized
velocities. Hence, we can include a term in V in the partial derivative with respect

to g,:

d (B(T— V)) (T —-V) ~0
dt g, a8, | [ET
Or, defining a new function, the Lagrangian L, as
L=T-V, (1.56)
the Eqgs. (1.53) become
4 (E) IR PN (1.57)
dt \ 94, dq,

expressions referred to as “Lagrange’s equations.”

Note that for a particular set of equations of motion there is no unique choice
of Lagrangian such that Fqs (1 57) lead to the equations of motion in the given
generalized coordinates. Thus, in Derivations 8 and 10 itis shown thatif L(q, g, )
is an approximate Lagrangian and F(q,t) is any differentiable function of the
generalized coordinates and time, then

! dF
Lf(qi é: I) = L{Q' g, I} + E (1'5'?!)

is a Lagrangian also resulting in the same equations of motion. It is also often
possible to find alternative Lagrangians beside those constructed by this prescrip-
tion (see Exercise 20). While Eq. (1.56) is always a suitable way to construct a
Lagrangian for a conservative system, it does not provide the onfy Lagrangian
suitable for the given system.
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1.5 B VELOCITY-DEPENDENT POTENTIALS AND
THE DISSIPATION FUNCTION

Lagrange’s equations can be put in the form (1.57) even if there is no potential
function, V, in the usual sense, providing the generalized forces are obtained from
a function U{(g,, ¢,) by the prescription

U d [aUu
=——t =1 =—1. 1.58
In such case, Eqgs. (1.57) still follow from Egs. (1.53) with the Lagrangian given
by
L=T-U. (1.59)

Here U may be called a “generalized potential,” or “velocity-dependent poten-
tial.” The possibility of using such a “potential” is not academic; it applies to one
very important type of force field, namely. the electromagnetic forces on moving
charges. Considering its importance, a digression on this subject is well worth-
while.

Consider an electric charge, ¢, of mass m moving at a velocity. v, in an other-
wise charge-free region containing both an electric field, E, and a magnetic field.
B, which may depend upon time and position. The charge experiences a force,
called the Lorentz force, given by

F =g[E + (v x B)]. (1.60)

Both E(1, x, ¥, z) and B(t, x, y, z) are continuous functions of time and position
derivable from a scalar potential ¢(t, x, y, z) and a vector potential A(z, x, ¥, 2)

by

B= -V — (1.61a)
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B=VxA, (1.61b)

The force on the charge can be derived from the following velocity-dependent
potential energy

U=qg¢p—qgA-v, (1.62)
so the Lagrangian, L =T - U, is

L =jmv*—gp+gA-v. (1.63)

1.5 Velocity-Dependent Potentials and the Dissipation Function 23

Considering just the x-component of Lagrange’s equations gives

3Ax A, A, (.‘:‘np . dAx)

i 4 99 L 48 1.64
ax Uy Uy ax | dt (1.64)

mi=gq (u,;

The total time derivative of A, is related to the particle time derivative through

dAx dA,
= » VA
di ar " *
— . 1.65
dat T U dx Ty dy * vz iz ( )

Equation (1.61b) gives

dA dA dA dA
(vxﬂ};=uy(—yn—_i‘-)+uz( : - I).

dx dz

Combining these expressions gives the equation of motion in the x-direction

mk = q[Ex + (v x B),]. (1.66)
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On a component-by-component comparison, Egs. (1.66) and (1.60) are identical,
showing that the Lorentz force equation is derivable from Eqgs. (1.61) and (1.62).

Note that if not all the forces acting on the system are derivable from a poten-
tial, then Lagrange’s equations can always be written in the form

d (dL dL

—\z )77 =2/

dt \ 9q;

where L contains the potential of the conservative forces as before, and @, rep-
resents the forces not arising from a potential. Such a situation often occurs when

frictional forces are present. It frequently happens that the frictional force is pro-
portional to the velocity of the particle, so that its x-component has the form

where L contains the potential of the conservative forces as before, and Q, rep-
resents the forces not arising from a potential. Such a situation often occurs when
frictional forces are present. It frequently happens that the frictional force is pro-
portional to the velocity of the particle, so that its x-component has the form

Ff,u, = _k_rut.

Frictional forces of this type may be denved in terms of a function J, known as
Rayleigh’s dissipation function, and defined as

I
F=3) (et +kyv2, + ko). 1.67)
¥

whers the summation is over the particles of the system. From this definition it is
clear that

aF
Ff‘. —_ E .
or, symbolically,
Fr=-V,F. (1.68)
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We can also give a physical interpretation to the dissipation function. The work
done by the system against friction is

Wy = —Ff -dr = —Fy-vdt = (keo} + kyv} — ko?) dr.

Hence, 2F is the rate of energy dissipation due to friction. The component of the
gencralized force resulting from the force of friction is then given by

31"; a[','
Q = F A - —_ = vUF » —
! Z ¢ dg, Z g

—-Y v, F. M py (s,
dq,
= (1.69)
9q,

An example is Stokes’ law, whereby a sphere of radius 2 moving at a speed
v, in a medium of viscosity 7 experiences the frictional drag force F s = 6w nav.
The Lagrange equations with dissipation become

2 () -+ =0 (1.70)

so that two scalar functions, L and F, must be specified to obtain the equations
of motion.

1.6 W SIMPLE APPLICATIONS OF THE LAGRANGIAN FORMULATION

The previous sections show that for systems where we can define a Lagrangian,
i.e., holonomic systems with applied forces derivable from an ordinary or gen-
eralized potential and workless constraints, we have a very convenient way of
setting up the equations of motion. We were led to the Lagrangian formulation
by the desire to eliminate the forces of constraint from the equations of motion,
and in achieving this goal we have obtained many other benefits. In setting up the
original form of the equations of motion, Egs. (1.19), it is necessary to work with
many vector forces and accelerations. With the Lagrangian method we only deal
with two scalar functions, T and V, which greatly simplifies the problem.
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A straightforward routine procedure can now be established for all problems
of mechanics to which the Lagrangian formulation is applicable. We have only to
write T and V in generalized coordinates, form L from them, and substitute in
(1.57) to obtain the equations of motion. The needed transformation of T and V
from Cartesian coordinates to generalized coordinates is obtained by applying the

transformation equations (1.38) and (1.45"). Thus, T is given in general by

2
1 2 1 ar; . ar,
T=) gm=25m (Z?a?ﬁ““a: *
f 1 7

It is clear that on carrying out the expansion, the expression for T in generalized
coordinates will have the form

.o 1] =
T = M0+ZM;q; + EZM‘;&?;@'&* (1.71)
J Ik

where My, M,, M j; are definite functions of the r’s and ¢ and hence of the ¢’s
and ¢, In fact, a comparison shows that

1 ar, 2
Mﬂ - Z Eml' (E) fl
1

o E — 1.72
M; , m, > aq}, (1.72)
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and

Thus, the kinetic energy of a system can always be written as the sum of three
homogeneous functions of the generalized velocities,

T=Ty+ T +12 (1.73)

where Ty is independent of the generalized velocities, 77 is linear in the velocites,
and T is quadratic in the velocities. If the transformation equations do not contain
the time explicitly, as may occur when the constraints are independent of time
(scleronomous), then only the last term in Eq. (1.71) is nonvanishing, and 7 is
always a homogeneous quadratic form in the generalized velocities.

Let us now consider simple examples of this procedure:

where Tj is independent of the generalized velocities, T} is linear in the velocities,
and T3 is quadratic in the velocities. If the transformation equations do not contain
the time explicitly, as may occur when the constraints are independent of time
(scleronomous), then only the last term in Eq. (1.71) is nonvanishing, and T is
always a homogeneous quadratic form in the generalized velocities.

Let us now consider simple examples of this procedure:

1. Single particle in space
(a) Cartesian coordinates
(b) Plane polar coordinates

2. Atwood’s machine
3. Time-dependent constraint—bead sliding on rotating wire

1. (a) Motion of one particle: using Cartesian coordinates. The generalized
forces needed in Eq. (1.33) are obviously Fy, Fy, and F,. Then
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w oy
oT _ . 9T _ aT
ox T 3y M
and the equations of motion are
d B . d . d, .
I(ml) = Fx, E(m.}’) = F, E(mz) = F;. (1.74)

We are thus led back to the original Newton’s equations of motion.

(b) Motion of one particle: using plane polar coordinates. Here we must ex-
press T in terms of / and 8. The equations of transformation, i.e., Egs. (1.38), in
this case are simply

X =rcosf

y =rsiné.
By analogy to (1.46), the velocities are given by

X =rcosf —résind,

3 = rsiné +ré cosé.
The kunetic energy T = 1m(x? + y?) then reduces formally to

T =im|#+(r6)]. (1.75)

An alternative derivation of Eq. (1.75) is obtained by recognizing that the plane
polar components of the velocity are 7 along r, and r@ along the direction per-
pendicular to 7, denoted by the unit vector n. Hence, the square of the velocity
expressed in polar coordinates is simply 7° + (r6)2. With the aid of the expression

dr = tdr +r0do +kdz
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for the differential position vector, dr, in cylindrical coordinates, where T and

@ are unit vectors in the r and @- directions, respectively, the components of the
generalized [orce can be obtained from the definition, Eq. (1.49),

0, =F - L —F.i=F,
ar
3
Q3=F*a—;=F~rﬂ=rFa,
rfn
r(6+A8)

FIGURE 1.6 Derivative of r with respect to 6.

since the derivative of r with respect to 6 is, by the definition of a derivative, a
vector in the direction of 8 (cf. Fig. 1.6). There are two generalized coordinates,
and therefore two Lagrange equations. The derivatives occurring in the » equation

are
aT g2 aT . d (BT) .
—_— ree, —_— = mr. — |l = ¥
ar " aF dr \ o7

and the equation itself i«

mit — mré? = Fr,
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the second term being the centripetal acceleration term. For the § equation, we
have the derivatives
ar a! - d [ 5. .. g
— =0, — = mr-o, —(mr H):mr 8 + 2mrro,
a6 a0 dt
s0 that the equation becomes

d = e .2
T (mrzﬂ) — mr8 + 2mri@ = rFp,
Note that the left side of the equation is just the time derivative of the angular
momentumn, and the right side is exactly the applied torque, so that we have simply
rederived the torque equation (1.26), where L = mr?6 and N©© = r Fp.

2. Atwood’s machine—(See Fig. 1.7) an example of a conservative system
with holonomic. scleronomous constraint (the pulley is assumed frictionless and
massless). Clearly there is only one independent coordinate x, the position of
the other weight being determined by the constraint that the length of the rope
between them is /. The potential energy is

V=—-Mpgx—Mgl-x),

FIGURE 1.7 Atwood's machine.
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while the kinetic energy is
T = § (M) + Mp) 3%,
Combining the two, the Lagrangian has the form
L=T-V=23M +M)i*+ Mgx + Mgl — x).

There is only one equation of motion, involving the derivatives

oL
Pl (M) — M) g,
alL
— = (M) + M) x,

ox
so that we have
My +M)x =My — M) g,

or
M —M
M+

which is the familiar result obtained by more elementary means. This trivial prob-
lem emphasizes that the forces of constraint—here the tension in the rope—
appear nowhere in the Lagrangian formulation. By the same token, neither can
the tension in the rope be found directly by the Lagrangian method.

3. A bead (or ring) shiding on a uniformly rotating wire in a force-free space.
The wire is straight, and is rotated uniformly about some fixed axis perpendicular
to the wire. This example has been chosen as a simple illustration of a constraint

being time dependent, with the rotation axis along z and the wire in the xy plane.
The transformation equations explicitly contain the time.

X =rcoswit. (@ = angular velocity of rotaticn)

y = rsinwt. (r = distance along wire from rotation axis)
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While we could then find 7 (here the same as L) by the same procedure used to
obtain (1.71), it is simpler to take over (1.75) directly, expressing the constraint
by the relation # = w:

T =%m(1r"2+1r*2 2).

Note that T is not a homogeneous quadratic function of the generalized velocities,
since there is now an additional term not involving 7. The equation of motion is
then

mi = mro* =0

or
s 2
F=rw,

which 15 the familiar simple harmonic oscillator equation with a change of sign.
The solution r = ¢*' shows that the bead moves exponentially outward because
of the centripetal acceleration. Again, the method cannot furnish the force of con-
straint that keeps the bead on the wire. Equation (1.26) with the angular momen-
tum, L = mr2w?e® . provides the force F = N/r, which produces the constraint
force, F = mrw?e®*, acting perpendicular to the wire and the axis of rotation.
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Semester 3 |

Unit I

Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions

Question Opt 1 Opt 2 Opt 3 Opt 4 Answer
is the branch of
mechanics which deals with conditions under
which the bodies acted upon by forces remain at
rest. Dynamics Statics Kinematics Force Statics
is that which
changes the state of rest or a uniform motion in a
straight line of a body. Weight Mass Force Particle Force
is defined as the Line of action | Components Resultant of Line of action of
line along which the force acts. of force of force force Direction of force |force
The of weight of a
body is due to the attraction caused by the earth. Mass Particle Weight Force Force
If a fine string connecting two particles A and B
passes over smooth surface the force exerted on
the particles by the string is called Thrust of a
Force of string |string Force of tension | Thrust of tension | Force of tension
If a light rod connects two particles A and B the
force exerted by the rod is called
Tension Thrust Force Particle Thrust
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When two bodies are in contact with each other
the force exerted by one of the bodies upon the

another is called Action Reaction Attraction Repulsion Action
when two bodies are in contact with each other the
force exerted by the second body on the first is
called Action Attraction Repulsion Reaction Reaction
Newton's third law of motion states that action and

are equal and opposite. | Action Reaction Force Mass Reaction
A force exerted by another particle of the same Equilibrium of | Resultant of
system is called force force Internal force External force Internal force
A force exerted by another particle of the other Equilibrium of | Resultant of
system is called force force Internal force External force External force
A Particle acted by a force is said to be in

if it doesnot move. Tension Thrust Equilibrium Line of action Equilibrium
The force of thrust is
tension. Zero Positive Negative Unity Negative
The force of
of abody is due to the attraction caused by the
earth. Force Mass Weight Particle Weight
Newton's third law of motion states that action and
reaction are and Positive and
. Zero and unity | One and unity [negative Equal and opposite | Equal and opposite
A Particle acted by a force is said to be in
equilibrium if is at
Move Rest Zero Unity Rest

When the body tend to approach each other the
force is called Action Reaction Attraction Repulsion Attraction
When the body tend to separate each other the
force is called Action Reaction Attraction Repulsion Repulsion
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Every body is attracted towards the centre of the
earth with a force is called

Weight Mass Particle Force Weight
Weight always acts at vertically
Upwards Downwards Rightwards Leftwards Downwards
The forces P and Q are equal and 0=90 then 6=
90 180 0 45 45
If the forces P and Q act along the sane line in the
same direction then o= 0 45 180 90 0
If the forces P and Q acts along the same line in
the opposite direction then o=
0 45 180 90 180
If the forces P and Q are equal then 6=
0 45 180 90 90
The resultant of forces is greater when cosa is
Least Zero Greatest Positive Greatest
The resultant of forces is least when cosa is
Positive Negative Greatest Least Least
If three forces P,Q and R are in equilibrium then
P+Q+R= One Zero Infinity None Zero
Sine formula of triangle is a/sin A=b/sin a/sinA+b/sinB=c | a/sinA- a/sin A=b/sin
B=c/sinC a/b=sinA /sinC b/sinB=c/sinC B=c/sinC
Types of parallel forces is
Five Four Two Three Two
and
are two types of parallel Equal and Equal and
forces. opposite unequal Like and unlike | None Like and unlike
Two parallel forces are said to be Like parallel Unlike parallel
if they act in same direction. Equal force force force Opposite force Like parallel force
Two parallel forces are said to be Like parallel Unlike parallel
if they act in opposite direction. force Opposite force |force Equal force Unlike parallel force
If R=0 then the force is said to be in
Equilibrium Move Equal Unequal Equilibrium
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is the branch of
mathematics which deals with the action of forces

on bodies. Statics Dynamics Kinematics Mechanics Mechanics
A force is completely known by its point of
application and its magnitude and its
. Resultant Direction Moment Mass Direction
If the forces are in equilibrium then the resultant
will be One Two Zero Infinity Zero
Forces acting in a same plane is called Like parallel Unlike parallel
force force Coplanar force | Colinear force Coplanar force
law of motion states Newton's first | Newton's Newton's third
that action and reaction are equal and opposite. law second law law Newton's fourth law| Newton's third law
Forces acting through the
centre of gravity of the body. Upwards Downwards Rightwards Leftwards Downwards
The force of weight of a body is due to the
attraction caused by the Mass Force Weight Earth Earth
Newton's third law of motion states that
and Action and Attraction and | Equal and Like and unlike
are equal and opposite. Reaction Repulsion Unequal forces [forces Action and Reaction
If P and Q are like parallel forces then their
resultant is P+Q P-Q PQ P/Q P+Q
If P and Q are unlike parallel forces then their
resultant is P+Q P-Q PQ P/Q P-Q
Two parallel forces are said to be like parallel
force if they act in
direction. P Q Opposite Same Same
Two parallel forces are said to be unlike parallel
force if they act in
direction. Same Opposite P Q Opposite
The converse of polygon law of force is
True Not true Positive Negative Not true
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By Parallelogram law of force the resultant will

pass through the of the
parallelogram. Diagonal Sides Angles None Diagonal
The maximum value of R occurs when cosa is

Zero Unity Maximum Minimum Maximum
The minimum value of R occurs when cosa is

Zero Unity Maximum Minimum Minimum
Gravitational pull of earth is

Attraction Reaction Action Repulsion Attraction
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UNIT-I1I

Variation principles and Lagrange’s equations: Hamilton’s principle — Some techniques of
calculus of variations — Derivation of Lagrange’s Equations from Hamilton’s principle —
Extension of Hamilton’s principle to non-holonomic systems — Conservation theorems and
symmetry properties.
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2,1 W HAMILTON’S PRINCIPLE

The derivation of Lagrange’s equations presented in Chapter | started from a
consideration of the instantaneous state of the system and small virtual displace-
ments about the instantaneous state, i.e., from a “differential principle” such as
D’ Alembert’s principle. It is also possible to obtain I.agrange’s equations from a
principle that considers the entire motion of the system between times ¢ and f7,
and small virtual variations of this motion from the actual motion. A principle of
this nature is known as an “integral principle.”

Before presenting the integral principle, the meaning attached to the phrase
“motion of the system between times ) and #” must first be stated in more pre-
cise language The instantaneous configuration of a system is described by the
values of the n generalized coordinates gy, .. ., gn, and corresponds to a particu-
lar point in a Cartesian hyperspace where the ¢'s form the n coordinate axes. This
n-dimensional space is therefore known as configuration space. As time goes on,
the state of the system changes and the system point moves in configuration space
tracing out a curve, described as “the path of motion of the system.” The “motion
of the system,” as used above, then refers to the motion of the system point along
this path in configuration space. Time can be considered formally as a parame-
ter of the curve; to each point on the path there is associated one or more values
of the time. Note that configuration space has no necessary connection with the
physical three-dimensional space, just as the generalized coordinates are not nec-
essarily position coordinates. The path of motion in configuration space has no
resemblance to the path in space of any actual particle; each point on the path
represents the entire system configuration at some given instant of time.

The integral Hamilton's principle describes the motion of those mechanical
systems for which all forces (except the forces of constraint) are derivable from a
generalized scalar potential that may be a function of the coordinates, velocities,
and time. Such systems will be denoted as monogenic. Where the potential is an
explicit function of position coordinates only, then a monogenic system is also
conservative (cf. Section 1.2).

For monogenic systems, Hamillon’s principle can be stated as

The motion of the system from time 1| to time 3 is such that the line
integral (called the action or the action integral),

2.1 Hamilion’s Principle

iz
I=f Ldt, (2.1)
h

where L. = T — V, has a stationary value for the acmal parh of the
motion.
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That is, out of all possible paths by which the system point could travel fron
its position at time f; to its position at time t2, it will actually travel along tha
path for which the value of the integral (2.1) is stationary. By the term “station
ary value” for a line integral, we mean that the integral along the given path ha
the same value to within first-order infinitcsimals as that along all neighboring
paths (1.e., those that differ from it by infimtesimal displacements). (Cf. Fig. 2.1.
The notion of a stationary value for a line integral thus corresponds in ordinar,
function theory to the vanishing of the first derivative.

We can summarize Hamilton’s principle by saying that the motion is such tha
the variation of the line integral 7 for fixed #; and #; is zero:

L
‘5‘{:6[ L(‘E‘]----:mejh--uémf}df=n- {22
fl

Where the system constraints are holonomic, Hamilton's principle, Eq. (2.2)
is both a necessary and sufficient condition for Lagrange's equations, Egs. (1.57]
Thus, it can be shown that Hamilton’s principle follows directly from Lagrange’
equations. Instead, however, we shall prove the converse, namely, that Lagrange’
equations follow from Hamilton’s principle, as being the mors important theorem
That Hamilton’s principle is a sufficient condition for deriving the equations o
motior enables us to construct the mechanics of monogenic systems from Hamil
ton's principle as the basic postulate rather than Newton’s laws of motion. Sucl
a formulation has advantages; e g, since the integral 7 is obviously invariant b
the system of generalized coordinates used to express L, the equations of motiol
must always have the Lagrangian form no matter how the generalized coordinate

X

FIGURE 2.1 Path of the system point in configuration space.
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are transformed. More important, the formulation in terms of a variational prin-
ciple 1s the route that is generally followed when we try to describe apparently
nonmechanical systems in the mathematical clothes of classical mechanics, as in
the theory of fields.

2.2 B SOME TECHNIQUES OF THE CALCULUS OF VARIATIONS

Before demonstrating that Lagrange’s equations do follow from (2.2), we must
first examine the methods of the calculus of variations, for a chief problem of this
caleulus is to find the curve for which some given line integral has a stationary
value.

Consider first the problem in an essentially one-dimensional form: We have a
function f(y.y, x) defined on a path y = y(x) between two values x| and x3,
where y is the derivative of y with respect to x. We wish to find a particular path
¥(x) such that the line integral J of the function f between x) and x,

. _ 4y
y=—
d =f‘= f(z, 3 x)dx, (2.3)

has a stationary value relative to paths differing infinitesimally from the comect
function y(x). The variable x here plays the role of the parameter f, and we con-
sider only such varied paths for which y(x1) = y1, y(x2) = y2. (Cf. Fig. 2.2.)
Note that Fig. 2.2 does not represent configuration space. In the one-dimensional
configuration space, both the correct and varied paths are the segment of the
straight line connecting y; and ya; the paths differ only in the functional rela-
tion between y and x. The problem is one-dimensional, v is a function of x not a
coordinate.

¥ {1'2.]’1]

X

FIGURE 2.2 Varied paths of the function of y(x) in the one-dimensional extremum
problem.
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We put the problem in a form that enables us to use the familiar apparatus of
the differential calculus for finding the stationary points of a function. Since J
must have a stationary value for the correct path relative to any neighboring path,
the variation must be zero relative to some particular set of neighboring paths
labeled by an infinitesimal parameter «. Such a set of paths might be denoted by
y(x, ), with y(x, 0) representing the correct path. For example, if we select any
function n(x) that vanishes at x = x; and x = x2, then a possible set of varied
paths is given by

y(x, @) = y(x,0) +an(x). (24)

For simplicity, it is assumed that both the correct path y(x) and the auxiliary
function n(x) are well-behaved functions—continuous and nonsingular between
x1 and x2, with continuous first and second derivatives in the same interval. For
any such parametric family of curves, J in Eq. (2.3) is also a function of a:

J@ = f ? £ (5, @), $(x, @), 3) dx. @.5)
x)

and the condition for obtaining a stationary point is the familiar one that

dJ
(_) ~0. (2.6)
LL
By the usual methods of differentiating under the integral sign, we find that
dl [ (afdy of ﬂj:)
—_— = — =+ = = | dx. 2.7
do ﬂ (Hy3a+ﬂjr3c¢ x @0

Consider the second ol these integrals.

X7 T X3 2
f i{ﬂ_ydx:f f 9 4.
v 0 O o 0Y dx da

1 “1

Integrating by parts, the integral becomes

f”?iaz_}’d,x=£3_}’n_fni(ﬁ)3_ydx. (2.8)
v 0y 0xda aydal, Jy dx ay ) do

Prepared by Dr.S.Sowmiya, Asst Prof, Department of Mathematics KAHE Page 5/34




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.5c MATHEMATICS COURSENAME: MECHANICS
COURSE CODE: 19MMU106 UNIT: 11 BATCH-2019-2021

The conditions on all the varied curves are that they pass through the ponts
(%1, ¥1), (x2, y2), and hence the partial derivative of y with respect o « at x; and
x> must vanish. Therefore. the first term of (2.8) vanishes and Eq. (2.7) reduces to

S CRELALI

da  Jy, \8y dxdy/oa

The condition for a stationary value, Eq. (2.6), is therefore equivalent to the equa-
tion
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249 d o ]
[E-30@e o
o \dy dxay/\da/,

Now, the partial derivative of y with respect to & occurring in Eq. (2.9)is a
function of x that is arbitrary except for continuity and end point conditions. For
example, for the particular parametric family of varied paths given by Eq. (2.4),
it is the arbitrary function n(x). We can therefore apply to Eq (2.9) the so-called
“fundamental lemma” of the calculus of variations, which says if

X2
f M(xnix)dx =0 (2.10)
x|

for all arbitrary functions n7(x) continuous through the second derivative, then
M (x) must identically vanish in the interval (xj, x2). While a formal mathemat-
ical proof of the lemma can be found in texts on the calculus of variations, the
validity of the lemma is easily seen intvitively. We can imagine constructing a
function n that is positive n the immediate vicimty of any chosen pont in the
interval and zero everywhere else. Equation (2.10) can then hold only if M(x)
vanishes at that (arbitrarily) chosen point. which shows M must be zero through-
out the interval. From Eq. (2.9) and the fundamental lemma, it therefore follows
that J can have a stationary value only if

af d [8fY\ _
3y  dx (a?) = (. (211)
The differential quantity,
dy
(E)U do = ﬁ}’, (1 12]

represents the infinitesimal departure of the varied path from the correct path y(x)
at the point x and thus corresponds to the virtual displacement introduced in Chap-
ter 1 (hence the notation 8y). Similarly, the infinitesimal variation of J about the
correct path can be designated

(4

(d—“r) de=38J. (2.13)
da /g

The assertion that J is stationary for the correct path can thus be written
2 faf d Hf)
a7 = — — —— ) éydx — 10,
j;, (ay axay) a0
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Some simple examples of the application of Eg. (2.11) (which clearly
resembles a Lagrange equation) may now be considered:

1. Shortest distance between two points in a plane. An element of length in a

plane 1s
ds = \[dx? +dy?

and the total length of any curve going between points 1 and 2 is

2 1 d 2
.r=f ds=f Jl+(i) dx.
1 X1 dx
The condition that the curve be the shortest path is that / be a minimum. This is
an example of the extremum problem as expressed by Eq. (2.3), with

f=41+32

Substituting in (2.11) with

of _o M __I
ay ¥ 1+
we have
d y
dx \ 1+ 32
or
y
=C.
V1+y?

where ¢ is constant. This solution can be valid only if

y=4,
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where a is a constant related to ¢ by

L

o0 = )
l1-¢c

But this is clearly the equation of a straight line,

y=ax+b,

where b is another constant of integration. Strictly speaking, the straight line has
only been proved to be an extremum path, but for this problem it is obviously also
a minimum. The constants of integration, ¢ and b, are determined by the condition
that the curve pass through the two end points, (xj. y1). (x2, ¥2).

In a similar fashion we can obtain the shortest distance between two points
on a sphere, by setting up the arc length on the surface of the sphere in terms of
the angle coordinates of position on the sphere In general, curves that give the
shortest distance between two points on a given surface are called the geodesics
of the surface.

2. Minimum surface of revolution. Suppose we form a surface of revolution
by taking some curve passing between two fixed end points (xy, y1) and (x2, y2)
defining the xy plane, and revolving it about the y axis (cf. Fig. 2.3a). The problem
then is to find that curve for which the surface area is a minimum. The area of a
strip of the surface is 2rx ds = 2mx./1 + y2 dx, and the total area is

2
Exf xy/1+ y2dx.
1

The extremum of this integral is again given by (2.11) where

fF=x1+32
and
af af _ xy
By 3y 1452

Equation (2.11) becomes in this case
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FIGURE 23a Minimum surface of revolution. Note that this figure is drawn for y; and
y2 having the same sign relative to the rotation axis. This is not assumed in the general

solution.
d xy _o
dx \ /1432
or
X,
o1+ yi

where a is some constant of integration clearly smaller than the minimum value
of x. Squaring the above equation and factoring terms, we have

}',Z(xz _ a!] — az‘

or solving,
dy e
dx  JxI—at

The general solution of this differential equation, in light of the nature of a, is

dx X
=aq | ———=+b=agarccosh-+5b
Y [«u".x!—az a

-b
x=acoshy '
a
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which is the equation of a catenary. Again the two constants of integration, a and
b, are determined in principle by the requirements that the curve pass through the
two given end points, as shown in Fig. 2.3b.

Curves satistying the preceding equation all scale as x/ag and y/a with one
independent parameter b/a. This suggests that when the solutions are examined
in detail they turn out to be a great deal more complicated than these considera-

;xzs :I?]:I

{'Ilf }1]}

a

&

FIGURE 2.3b General catenary solution for minimum surface of revolution.

tions suggest. For some pairs of end points, unique constants of integration @ and
b can be found. But for other end points, it is possible to draw two different cate-
nary curves through the end points, while for additional cases no possible values
can be found for @ and b. Further, recall that Eq. (2.11) represents a condition
for finding curves y(x) continuous through the second derivative that render the
integral stationary. The catenary solutions therefore do not always represent min-
imum values, but may represent “inflection points™ where the length of the curve
is stationary but not minimum.

For certain combinations of end points (an example is x; and x2 both posi-
tive and both much smaller than y; — y; ], the absolute minimum in the surface
of revolution is provided (cf. Exercise &) by a curve composed of straight line
segments—from the first end point parallel to the x axis until the y axis is reached,
then along the y axis until the point (0, y;) and then out in a straight line to the
second end point corresponding to the area Jr(,rf + x%), This curve results when
a = (), forcing either x = 0 or y = constant. Since this curve has discontinuous
first derivatives, we should not expect to hind it as a solution to Eq. (2.11).

This example is valnable in emphasizing the restrictions that surround the
derivation and the meaning of the stationary condition. Exercises 7 and 8 exam-
ine the conditions for the pathological behavior for a symmetric example. More
information can be found in many texts on the calculus of variations.
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3. The brachistachrone problem. (See Fig. 2.4a.) This well-known problem is
w find the curve joining two points, along which a particle falling from rest under
the influence of gravity travels from the higher to the lower point in the least time.

If v is the speed along the curve. then the time required to fall an arc length ds
is ds v, and the problem is to find a minimum of the integral

2 ds

f2 = .
v

¥y

l 2

FIGURE 2.da The brachistochrone problem.

If v is measured down from the initial point of release, the conservation theorem
for the energy of the particle can be written as

%muz = mgy
or
v=,/2gy.
Then the expression for ¢)2 becomes
t P14y dx
12 = — ,
1 /28y
and f is identified as
1+ 52
F= 2y
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The integration of Eq. (2.11) with this form for f is straightforward and is left as
an exercise.
The solution in terms of its one parameter, a, given by

L= tmcos [N,

a a

is sketched in Fig. 2.4b for the first cycle (0 < x < 2ma) and the beginning of the
second cycle. Three cases of solutions are indicated. A power-series expansion of
the solution for the limit y < a gives
b — xz 1
y= 2 a.
The brachistochrone problem is famous in the history of mathematics, for it
was the analysis of this problem by John Bemoulli that led to the formal founda-
tion of the calculus of vanations.

x50 e 2na

ﬂ_
e 4

Jo 1

¥

FIGURE 2.4b Catenary solution to the brachistochrone problem showing positions on
the curve tor the three cases x7 <« ¥2, x3 = S yp,and x3 > ¥

2.3 M DERIVATION OF LAGRANGE'S EQUATIONS
FROM HAMILTON'S PRINCIPLE

The fundamental problem of the calculus of variations is easily generalized to the
case where f is a function of many independent variables y;, and their derivatives
yi. (Of course, all these quantities are considered as functions of the parametric
variable x.) Then a variation of the integral J,

2
8J = ﬁj; FOr(x); y2(x), oo 31 (x); Yalx), ... x)dx, (2.14)

is obtained, as before, by considering J as a function of parameter « that labels a
possible set of curves y; (x, a). Thus, we may introduce & by sefting
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where y(x, 0), ya(x, 0), etc., are the solutions of the extremum problem (to be
obtained) and 1), B2, etc., are independent functions of x that vanish at the end
points and that are continuous through the second derivative, but otherwise are
completely arbitrary.

The calculation proceeds as before. The vartation of J 1s given in terms of

aJ af an af a'}’: )
9 o = z: 9 e dat 2.16

Again we integrate by parts the integral involved in the second sum of Eq. (2.16):

2y, ay, |2 [2oy. d {8
] U Oh g YIS [0 f).ﬁ,
| 0¥ dadx dy da |, oo dx \ 3y

29 af
}’:
'f, da dx (Ey ) ax,
where the first term vanishes because all curves pass through the fixed end points.
Substituting in (2.16), 3J becomes

af d af
= [ (L - L)y, an, 2.17
aJ .fl : (3}’1 e 3:;%)5}? dx (2.17)

where, in analogy with (2.12), the variation 8y; is

Y
dy; = (dﬂf)ﬂ do.

Since the y variables are independent, the variations §y; are independent (e.g.,
the functions #,(x) will be independent of each other). Hence, by an obvious
extension of the fundamental lemma (cf. Eq. (2.10)), the condition that 3. is zero

requires that the coefficients of the §y; separately vanish:

f 8f ¥y dx = A0
1 a¥ B dx &y, o

____..=D:l i=l,2,+...ﬂ. {2‘18}

Equations (2.18) represent the appropriaie generalization of (2.11) to several
variables and are known as the Euler-Lagrange differential equations. Their so-
lutions represent curves for which the variation of an integral of the form given
in (2.14) vanishes. Further generalizations of the fundamental variational prublem
are easﬂy possible. Thus, we can lake fasa funcl:mn of hlgher dmvauves y, ¥,

. w A
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etc., leading to equations different from (2.18). Or we can extend it to cases where
there are several parameters x; and the integral is then multiple, with f also in-
volving as variables derivatives of y, with respect to each of the parameters x ;.
Finally, 1t is possible to consider variations in which the end points are not held
fixed.

For present purposes, what we have derived here suffices, for the integral in
Hamilte1’s principle,

2
f=f L, q.1)dt, 2.19)
1

has just the form stipulated in (2.14) with the transformation
x—t

Yi = 4
f{}‘l!jrf'rx) - L(q“ q.';i f:h

In deriving Egs. (2.18), we assumed that the y, variables are independent. The
corresponding condition im connection with Hamulton’s principle is that the gen-
eralized coordinates g; be independent, which requires that the constraints be
holonomic. The Euler-Lagrange equations corresponding to the integral / then
become the Lagrange equations of motion,

2.4 W EXTENSION OF HAMILTON'’S PRINCIPLE
TO NONHOLONOMIC SYSTEMS

It is possible to extend Hamilton's principle, at least in a formal sense, to cover
certain types of nonholonomic systems. In deriving Lagrange’s equations from

either Hamilton’s or D’ Alembert’s principle, the requirement of holonomic con-
straints does not appear until the last step, when the variations g, are considered
as independent of each other. With nonholonomic systems the generalized coor-
dinates are not independent of each other, and it is not possible to reduce them
further by means of equations of constraint of the form f(g1,42,....¢n.2) =0.
Hence, it is no longer true that the g, s are all independent.

Another difference that must be considered in treating the variational principle
is the manner in which the varied paths are constructed. In the discussion of Sec-
tion 2.2, we pointed out that 8y (or ¢) represents a virtual displacement from a
point on the actual path to some point on the neighboring varied path. But, with
independent coordinates it is the final varied path that is significant, not how it is

Prepared by Dr.S.Sowmiya, Asst Prof, Department of Mathematics KAHE Page 15/34




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.5c MATHEMATICS COURSENAME: MECHANICS
COURSE CODE: 19MMU106 UNIT: 11 BATCH-2019-2021

constructed. When the coordinates are not independent, but subject to constraint
relations, it becomes important whether the varied path is or is not constructed by
displacements consistent with the constraints. Virtual displacements, in particular,
may or may not satisfy the constraints,

It appears that a reasonably straightforward treatment of nonholonomic sys-
tems by a variational principle is possible only when the equations of constraint
can be put in the form

fd(q1.+-.,q;n; l'.;']_++..l'.j;:]=ﬂ+ [22“]

when this can be done the constraints are called semi-holonomic. The index o
indicates that there may be more than one such equation. We will assume there

are m equations in all, i.e., @ = 1, 2, ....m. Equation (2.20) commonly appears
in the restricted form

E a dgi + ap dt =0, (2.20%)
%

We might expect that the varied paths, or equivalently, the displacements con-
structing the varied path, should satisfy the constraints of Eq. (2.20). However, it
has been proven that no such varied path can be constructed unless Egs. (2.20)
are integrable, in which case the constraints are actually holonomic. A variational
principle leading to the correct equations of motion can nonetheless be obtained
when the varied paths are constructed from the actual motion by virtual displace-
ments.

The procedure for eliminating these extra virtual displacements is the method
of Lagrange undetermined muldtipliers. If Eqs. (2.20) hold, then it is also true that

Y hafa=0, (2.21)
a=|

where the Ay, @ = 1,2....,m, are some undetermined quantities, functions in
general of the coordinates and of the time ¢. In addition, Hamilton’s principle,
L]

8 Ldt =0, (2.2)
f

is assumed to hold for this semiholonomic system. Following the development of
Section 2.3, Hamilton’s principle then implies that

2 aL d aL
dt — — —— |} égx = 0. (2.22)
j; Z,,: (31?'& dt Bfﬂ:) o
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The variation cannot be taken as before since the gy are not independent; however,
combining (2.21) with (2.2) gives

I m
8 f (L + D e fa) dt =0 (2.23)
B a=1

The variation can now be performed with the n 84, and m A, for m+n independent
variables. For the simplifying assumption that L, = A4 (1), the resulting equations
from dg, become*

d alL al.
Z =y 2= o 2.
dt (Er:u) el (2.24)
where
_ [ [ _ 4 (3] _ dha 3
N e ) S

while the 32, give the equations of constraint (2.20). Equations (2.24) and (2.20)
together constitute n + m equations for n 4+ m unknowns. The system can now
be interpreted as an m + n holonomic system with generalized forces Q4. The
generalization to Ay = Ag(q1, -+ Gns §1, - - - » G 1) 18 straightforward.

As an example, let us consider a particle whose Lagrangian is

L=

=

m (#2452 +2) = V(x,y. (2.26)
subject to the constraint
fx,y.vVy=xy+ky=0 (2.27)

with & a constant. The resulting equations of motion are

. av
mi+ Ay +Aiy+ % =0, (2.28)
. .. .. av
m}r+lx—kl+lx+—a;=ﬂ, (2.29)
. V
mZ + ﬂ_ =0, (2.30)
az
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and the equation of constraint, (2.20), becomes
yx+ky=0.

In this process we have obtained more information than was originally sought.
Not only do we get the gi's we set out to find, but we also get ma;’s. What is
the physical significance of the A;’s? Suppose we remove the constraints on the
system, but instead apply external forces @} in such a manner as to keep the
motion of the system unchanged. The equations of motion likewise remain the
same, Clearly these extra applied forces must be equal to the forces of constraint,
for they are the forces applied to the system so as to satisfy the condition of
constraint. Under the influence of these forces Q. the equations of motion are

d aL 8L ,

dt dgy  dqr Qs (2.3
But these must be identical with Egs. (2.24). Hence, we can identify (2.25) with
Q,. the generalized forces of constraint. In this type of problem we reaily do not
eliminate the forces of constraint from the formulation. They are supplied as part
of the answer.

Although it is not obvious, the version of Hamilton’s principle adopted here
for semiholonomic systems also requires that the constrainfs do no work in virtual
displacements. This can be most easily seen by rewriting Hamilton’s principle in
the form

2 2 2
ﬁf Ldr:ﬁf Tdr~3f Udt =0. (2.32)
by | n I

If the variation of the integral over the generalized potential is carried out by the
procedures of Section 2.3, the principle takes the form

2 f2 alv d fou
8 Tdr = f [— - — —)] Sgpdr; 2.33)
j:. A Zk: agr  dr \aa 1% (

or, by Eq. (1.58),

Iz f2
8 f Tdt =— f > Cudqudt. (2.34)
r n k

In this dress, Hamilton’s principle says that the difference in the time integral of
the kinetic energy between two neighboring paths is equal to the negative of the
time integral of the work done in the virmal displacements between the paths.
The work involved is that done only by the forces derivable from the generalized
potential. The same Hamilton’s principle holds for both holonomic and semiholo-
nomic systems, it must be required that the additional forces of semiholonomic
constraints do no work in the displacements 8g;. This restriction parallels the ear-
lier condition that the virtual work of the forces of holonomic constraint also be
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zero (cf. Section 1.4). In practice, the restriction presents little handicap to the
applications, as many problems in which the semiholonomic formalism is used
relate to rolling without slipping, where the constraints are obviously workless.

Note that Eq. (2.20) is not the most general type of nonholonomic constraint;
e.g., it does not include equations of constraint in the form of inequalities. On
the other hand, it does include holonomic constraints. A holonomic equation of
constraint,

fla1, 92,93, ---.an, 1) =0, (2.35)

is equivalent to (2.20) with no dependence on g. Thus, the Lagrange multiplier
method can be used also for holonomic constraints when (1) it is inconvenient to
reduce all the ¢’s to independent coordinates or (2) we might wish to obtain the
forces of constraint.

As another example of the method, let us consider the following somewhat
trivial illustration—a hoop rolling, without slipping, down an inclined plane. In
this example, the constraint of “rolling” is actually holonomic, but this fact will
be immaterial to our discussion. On the other hand, the holonomic constraint that
the hoop be on the inclined plane will be contained implicitly in our choice of
generalized coordinates.

The two generalized coordinates are x, 8, as in Fig. 2.5, and the equation of
rolling constraint is

rdf =dx.

The kinetic energy can be resolved into kinetic energy of motion of the center
of mass plus the kinetic energy of motion about the center of mass:

T = iMi* + jMri6.
The potential energy is
V =Mg(l — x)sing,

where { is the length of the inclined plane and the Lagrangian is

N

x

"

FIGURE 2.5 A hoop rolling down an inclined plane.
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L=T-V
Mx?  Mr26?
=3 + 5~ Mg(l = x)sing. (2.36)

Since there is one equation of constraint, only one Lagrange multiplier A is
needed. The coefficients appearing in the constraint equation are:

The two Lagrange equations therefore are

M3% — Mgsing + A =0, (2.37)
Mrii —ir =0, (2.38)

which along with the equation of constraint,
ré = %, (2.39)

constitutes three equations for three unknowns, 8, x, A.
Differentiating (2.39) with respect to time, we have

ré =%
Hence, from (2.38)
MX = A,
and (2.37) becomes
. gsing
= > -
along with
2= Mg sing
2
and
.- gsing
8= -

Thus, the hoop rolls down the incline with only one-half the acceleration it would
have slipping down a frictionless plane, and the friction force of constraint is
A= Mgsing /2.
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2,5 B ADVANTAGES OF A VARIATIONAL PRINCIPLE FORMULATION

Although we can extend the original formulation of Hamilton’s principle (2.2) to
include some nonholonomic constraints, in practice this formulation of mechan-
ics is most useful when a Lagrangian of independent coordinates can be set up
for the system. The variational principle formulation has been justly described as
“elegant,” for in the compact Hamilton's principle is contained all of the mechan-
ics of holonomic systems with forces derivable from potentials. The principle has
the further merit that it involves only physical quantities that can be defined with-
out reference to a particular set of generalized coordinates, namely, the kinetic
and potential energies. The formulation is therefore automatically invariant with
respect to the choice of coordinates for the system.

From the variational Hamilton’s principle, it is also obvious why the La-
grangian is always uncertain to a total time derivative of any function of the
coordinates and time, as mentioned at the end of Section 1.4. The time integral
of such a total derivative between points 1 and 2 depends only on the values of
the arbitrary function at the end points. As the vanation at the end points is zero,
the addition of the arbitrary time derivative to the Lagrangian does not affect the
variational behavior of the integral.

Another advantage is that the Lagrangian formulation can be easily extended
to describe systems that are not normally considered in dynamics—such as
the elastic field, the electromagnetic field, and field properties of elementary
particles. Some of these generalizations will be considered later, but as three
simple examples of its application outside the usual framework of mechanics, let
us consider the cases of an RL circuit, an LC circuit, and coupled circuits.

We consider the physical system of a battery of voltage V in series with an
inductance L and a resistance of value R and choose the electric charge g as
the dynamical variable. The inductor acts as the kinetic energy term since the
inductive effect depends upon the time rate of change of the charge. The resistor
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provides a dissipative term and the potential energy is g V. 'I'he dynamic terms in
Lagrange’s equation with dissipation (1.70) are

T=1L4% F=14Ré",
and potential energy = g V. The equation of motion is
V=L§+ Rg=LI+RI (2.40)
where I = g is the electric current. A solution for a battery connected to the
circuit at time ¢ = 0 is
I=1Io(1 —e M%),

where Iy = V /R is the final steady-state current flow.

The mechanical analog for this is a sphere of radius a and effective mass m'
falling in a viscous fluid of constant density and viscosity n under the force of
gravity. The effective mass is the difference between the actual mass and the mass
of the displaced fluid, and the direction of motion is along the y axis. For this

system,
T =gm'y*, F=3anay’,

and potential energy = m’gy, where the frictional drag force, Fy = 6w nay, called
Stokes’ law, was given at the end of Section 1.5.
The equation of motion is given by Lagrange’s equations (1.70) as

m'g =m'y + 6mnay.
Using v = y, the solution (if the motion starts from rest at 1 = 0), is
V= Uﬂ(] - f_."llr'}

where T = m’/(6zrna) is a measure of the time it takes for the sphere to reach
1 /e of its terminal speed of vy = m’g /6m na.

Another example from electrical circuits is an inductance, L, in series with a
capacitance, C. The capacitor acts as a source of potential energy given by ¢2/C
where g is the electric charge. The Lagrangian produces the equation of motion,

w4
Lj+ =0, (2.41)

which has the solution
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g = qo cos wot,

where go is the charge stored in the capacitor at t = (), and the assumption is that
no charge is flowing at r = 0. The quantity

1
w="Jic

is the resonant frequency of the system.
The mechanical analog of this system is the simple harmonic oscillator de-
scribed by the Lagrangian L = %miz - %k.rz. which gives an equation of motion,

mx +kx =0,
whose solution for the same boundary conditions is
X = Xp COS wyf with wy = Vk/m.

These two examples show that an inductance is an inertial term, the electrical
analog of mass. Resistance is the analog of Stokes’ law type of frictional drag,
and the capacitance term 1/ C represents a Hooke’s law spring constant, With this

FIGURE 2.6 A system of coupled circuits to which the Lagrangian formulation can be
applied.

background, a system of coupled electrical circuits of the type shown in Fig. 2.6
has a Lagrangian of the form

2
1 . 1 . . q
L=32 L,d]+52 Mudyde— 3 50+ D e,0ay,
J sk J / J
%k
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background, a system of coupled electrical circuits ot the type shown n g, 2.0
has a Lagrangian of the form

Z L,gt+5 ZMJngQk Z f + Eej(r)qj,

J'!-k

and a dissipation function
! .
F=3) Rdj.
y

where the mutual inductance terms, M ¢4, g, are added to take into account the
coupling between inductors. The Lagrange equations are

d
L, dl*‘ +ZM R —J_Ej(n 2.42)

where the E (f) terms are the external emf's.

This description of two different physical systems by Lagrangians of the same
form means that all the results and techniques devised for investigating one of the
systems can be taken over immediately and applied to the other. In this particular
case, the study of the behavior of electrical circuits has been pursued intensely
and some special techniques have been developed; these can be directly applied
to the corresponding mechanical systems. Much work has been done in formulat-
ing equivalent electrical problems for mechanical or acoustical systems, and vice
versa. Terms hitherto reserved for electrical circuits (reactance, susceptance, etc.)
are now commonly found in treatises on the theory of vibrations of mechanical

systems.
2.6 B CONSERVATION THEOREMS AND SYMMETRY PROPERTIES

Thus far, we have been concerned primarily with obtaining the equations of mo-
tion, but little has been said about how to solve them for a particular problem
once they are obtained. In general, this is a question of mathematics. A system
of n degrees of freedom will have n differential equations that are second order
in time. The solution of each equation will require two integrations resulting, all
told, in 2n constants of integration. In a specific problem these constants will be
determined by the initial conditions, i.e., the initial values of the ng;'s and the
ng;’s. Sometimes the equations of motion will be integrable in terms of known
functions, but not always. In fact, the majority of problems are not completely
integrable. However, even when complete solutions cannot be obtained, it is often
possible to extract a large amount of information about the physical nature of the
system motion. Indeed, such information may be of greater interest to the physi-
cist than the complete solution for the generalized coordinates as a function of

Prepared by Dr.S.Sowmiya, Asst Prof, Department of Mathematics KAHE Page 24/34




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.5c MATHEMATICS COURSENAME: MECHANICS
COURSE CODE: 19MMU106 UNIT: 11 BATCH-2019-2021

cist than the complete solution for the generalized coordinates as a function of
time. It is important, therefore, to see how much can be stated about the motion
of a given system without requiring a complete integration of the probiem. *

In many problems a number of first integrals of the equations of motion can be
obtained immediately; by this we mean relations of the type

flqr.q2.....41.42, ..., t) = constant. (2.43)

*In this and succeeding sections 1t will be assumed, unless otherwise specified, the system 1s such that
its motion s completely described by a Hamilton's principle of the form (2.2).

which are first-order differential equations. These first integrals are of interest
because they tell us something physically about the system. They include, in fact,
the conservation laws obtained in Chapter 1.

Let us consider as an example a system of mass points under the influence of
forces derived from potentials dependent on position only. Then

_ 1 2, .2 -2)
3%, 8k Ok  ox 8% 2. 2™ (“' itz
=mik, = Pix.

which is the x component of the linear momentum associated with the ith
particle. This result suggests an obvious extension to the concept of momentum.
The generalized momentum associated with the coordinate g; shall be defined as

aL

== (2.44)
aq,;

P

The terms canonical momentum and conjugate momenrum are often also used for
p;. Notice that if g; is not a Cartesian coordinate, p; does not necessarily have
the dimensions of a linear momentum. Further, if there is a velocity-dependent
potential, then even with a Cartesian coordinate g, the associated generalized
momentum will not be identical with the usual mechanical momentum. Thus,
in the case of a group of particles in an electromagnetic field, the Lagrangian is
(cf. 1.63)

L= z %miﬁz - Zq\ﬂb{xl} + ZGJA{xI} * i't

(g, here denotes charge) and the generalized momentum conjugate to x; is
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aL .
Pix = —— =mX, + q Ay, (2.45)
ax,

i.e., mechanical momentum plus an additional term.

If the Lagrangian of a system does not contain a given coordinate g, (although
it may contain the corresponding velocity 4,), then the coordinate is said to be
cyclic or ignorable. This definition is not universal, but it is the customary one
and will be used here. The Lagrange equation of motion,

ar

which mean that
p; = constant. (2.46)

Hence, we can state as a general conservation theorem that the generalized mo-
mentum confugate to a cyclic coordinate is conserved.

Note that the derivation of Eq. (2.46) assumes that g is a generalized coordi-
nate; one that is linearly independent of all the other coordinates. When equations
of constraint exist, all the coordinates are not linearly independent. For exam-
ple, the angular coordinate @ is not present in the Lagrangian of a hoop rolling
without slipping in a honzontal plane that was previously discussed, but the angle
appears in the constraint equations rdf! = dx. As aresult, the angular momentum,
ps = mr28, 1s not a constant of the motion.

Equation (2.46) constitutes a first integral of the form (2.43) for the equations
of motion. It can be used formally to eliminate the cyclic coordinate from the
problem, which can then be solved entirely in terms of the remaining general-
ized coordinates. Briefly, the procedure, originated by Routh, consists in modify-
ing the Lagrangian so that it is no longer a function of the generalized velocity
corresponding to the cyclic coordinate, but instead involves only its conjugate
momentum. The advantage in so doing is that p, can then be considered one of
the constants of integration, and the remaining integrations involve only the non-
cyclic coordinates. We shall defer a detailed discussion of Routh’s method until
the Hamiltonian formulation (to which it is closely related) is treated.

Note that the conditions for the conservation of generalized momenta are more
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general than the two momentum conservation theorems previously derived. For
example, they furnish a conservation theorem for a case in which the law of ac-
tion and reaction is violated, namely, when electromagnetic forces are present.
Suppose we have a single particle in a field in which neither ¢ nor A depends on
x. Then x nowhere appears in L and is therefore cyclic. The corresponding canon-
ical momentum p, must therefore be conserved. From (1.63) this momentum now
has the form

px = mi + gA, = constant. (2.47)

In this case, it is not the mechanical linear momentum mx that is conserved but
rather its sum with g A ,.* Nevertheless, it should still be true that the conservation
theorems of Chapter 1 are contained within the general rule for cyclic coordinates;
with proper restrictions (2.46) should reduce to the theorems of Section 1.2.

#Tt can be shown from classical electrodynamics that under these condiions, 1.e., neither A nor ¢
depending on x, that g Ay is exactly the x-component of the electromagnetic linear momentum of the
field associated with the charge g.

We first consider a generalized coordinate g,, for which a change dg,; repre-
sents a translation of the system as a whole in some given direction. An example
would be one of the Cartesian coordinates of the center of mass of the system.
Then clearly g, cannot appear in T, for velocities are not affected by a shift in the
origin, and therefore the partial derivative of T with respect to g; must be zero.
Further, we will assume conservative systems for which V is not a function of the
velocities. so as to eliminate such complications as electromagnetic forces. The
Lagrange equation of motion for a coordinate so defined then reduces to

Ef}j=__EQJ' {2+4-8_}

We will now show that (2.48) is the equation of motion for the total linear
momentum, i.c., that (¢, represents the component of the total force along the di-
rection of translation of g,, and p, is the component of the total linear momentum
along this direction. In general, the generalized force @, is given by Eq. (1.49):

ar,
0,=Y F;-—.
’ Z.: dq;

Since dg, corresponds to a translation of the system along some axis, the vectors
r.(g,) and r,(g, + dq,) are related as shown in Fig. 2.7. By the definition of a
derivative, we have

or, _ . Tile,+da) —ri(a,) _ da;

g n=n, (2.49)
dq;  dg,—~0 dg, dg,

where n is the unit vector along the direction of the translation. Hence,
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@, =) F-n=n.F,

which (as was stated) is the component of the total force in the direction of n. To
prove the other half of the statement, note that with the kinetic energy in the form

dg

L

FIGURE 2.7 Change in a position vector under translation of the system.

1 .
Pl me
the conjugate momentum is
p 8T ; ar,
= —_—u= by . -
4 3 4, : 1t aqj
ar;
- v 2
dq,

using Eq. (1.51). Then from Eq. (2.49)
p; =N+ Em;"fn
i

which again, as predicted, is the component of the total system linear momentum
along n.

Suppose now that the translation coordinate g, that we have been discussing is
cyclic. Then g, cannot appear in V' and therefore

But this is simply the familiar conservation theorem for linear momentum—that
if a given component of the total applied force vanishes, the corresponding com-
ponent of the linear momentum is conserved.
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In a similar fashion, it can be shown that if a cyclic coordinate g, is such that
dq, corresponds to a rotation of the system of particles around some axis, then
the conservation of its conjugate momentum corresponds to conservation of an
angular momentum. By the same argument used above, T cannot contain g, for
a rotation of the coordinate system cannot affect the magnitude of the velocities.
Hence, the partial derivative of T with respect to g, must again be zero, and since
V is independent of ¢;, we once more get Eq. (2.48). But now we wish to show
that with g, a rotauon coordinate the generalized force is the component of the
total applied torque about the axis of rotation, and p; is the component of the total
angular momentum along the same axis.

The generalized force @, is again given by

Z ar,
= F - —
QJ - I El-:?_; ]

only the derivative now has a different meaning. Here the change in ¢, must cor-
respond to an infinitesimal rotation of the vector r;, keeping the magnitude of
the vector constant. From Fig. 2.8, the magnitude of the derivative can easily be

abtained:
|dr,| = r; sinf dg,
FIGURE 2.8 Change of a position vector under rotanon of the system.
and
ar,
‘_‘: = r; Ein'g,
aq,
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and its direction is perpendicular to both r, and n. Clearly, the derivative can be
written in vector form as

aj =nxr;. (2.50)
dq,

With this result, the generalized force becomes

o, = ZF; +NXT,
I
:En-r, x F,,
I
reducing to

=1‘I-EN;=!‘]*N,
i

which proves the first part. A similar manipulation of p, with the aid of Eq. (2.50)
provides proof of the second part of the statement:

Bq —Em,w o, —Zn-r,xm,v,—n-ZL,_n - L.
i i

2.7 B ENERGY FUNCTION AND THE CONSERVATION OF ENERGY

Another conservation theorem we should expect to obtain in the Lagrangian for-
mulation is the conservation of total energy for systems where the forces are
derivable from potentials dependent only upon position. Indeed, it is possible to
demonstrate a conservation theorem for which conservation of total energy repre-
sents only a special case. Consider a general Lagrangian, which will be a function
of the coordinates ¢, and the velocities ¢, and may also depend explicitly on the
time. (The explicit time dependence may arise from the time variation of external
potentials, or from time-dependent constraints.) Then the total time derivative of
L is
dL aL dg, Z alL dg dg, BL
dr = £ dq, dr dg, dr AT

aL _ d (AL
ag, di \38q,)"
and (2.51) can be rewritten as

dL L dqg, ar
dr Zd:( ) aq_, dt L ar

(2.51)

From Lagrange’s equations,
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aL
o (qu— - L) +o-=0. (2.52)

The quantity in parentheses is oftentimes called the energy function* and will be
denoted by h:

h(@ie ..o qns Gts-erdmi r)_ij——l. (2.53)

and Eq. (2.52) can be looked on as giving the total time derivative of h:

dh 9L 2.54)
dt at
If the Lagrangian is not an explicit function of time, i.e., if ¢ does not appear
in L explicitly but only implicitly through the time variation of g and g, then
Eq. (2.54) says that h is conserved. It is one of the first integrals of the motion and
is sometimes referred to as Jacobi’s im«tgml.T

*The enerpy function b is wdentical in value with the Hamltonian H (See Chapter &) Ttis given
a different name and symbol here to emphasize that & 15 considered a function of n independent
vanables g; and their time derivatives G, (along with the tme), whereas the Hanultonian will be
treated as a function of 2n independent vanables, ¢, p; (and possibly the tme)

"This designation 15 most often confined to a first integral in the restmuted three-body problem. How-
ever, the integral there is merely a special case of the energy funcnion h, and there is some histonical
precedent Lo apply the name Jacobi integral to the more general sitvation

Under certain circumstances, the function 4 is the total energy of the system.
To determine what these circumstances are, we recall that the total kinetic energy
of a system can always be written as

T=To+ T+ T, (1.73)
where Tj is a funcrion of the generalized coordinates only, T (g, g) is linear in the
generalized velocities, and T>(q, ¢) is a quadratic function of the 4's. For a very

wide range of systems and sets of generalized coordinates, the Lagrangian can be
similarly decomposed as regards its functional behavior in the g variables:

L(g,q,1) = Lo(g,t) + Li(g, 4, t) + La(g, 4. 1). (2.55)
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Here L; is a homogeneous function of the second degree (not merely quadratic)
in g, while L; is homogeneous of the first degree in g. There is no reason intrinsic
to mechanics that requires the Lagrangian to conform to Eq. (2.55), but in fact it
does for most problems of interest. The Lagrangian clearly has this form when the
forces are derivable from a potential not involving the velocities. Even with the
velocity-dependent potentials, we note that the Lagrangian for a charged particle
in an electromagnetic field, Eq. (1.63), satisfies Eq. (2.55). Now, recall that Eulers
theorem states that if f is a homogeneous function of degree » in the variables x,,
then

Ex;ﬁ = nf. (2.56)

B.r,-

Applied to the function h, Eq. (2.53), for the Lagrangians of the form (2.55), this
theorem implies that

h=2L,+ L) —L=L;—Ly. (2.57)

If the transformation equations defining the generalized coordinates, Eqs. (1.38),
do not involve the time explicitly, then by Egs. (1.73) T = T. If, further, the
potential does not depend on the generalized velocities, then L; = T and Lp =

h=T+V=E, (2.58)

and the energy function is indeed the total energy. Under these circumstances,
if V does not involve the time explicitly, neither will L. Thus, by Eq. (2.54), h

Note that the conditions for conservation of & are in principle quite distinct
from those that identify h as the total energy. We can have a set of generalized
coordinates such that in a particular problem h is conserved but is not the total
energy. On the other hand, & can be the total energy, in the form T 4+ V, but not
be conserved. Also note that whereas the Lagrangian is uniquely fixed for each

system by the prescription
L=T-U

independent of the choice of generalized coordinates, the energy function & de-
pends in magnitude and functional form on the specific set of generalized co-
ordinates. For one and the same system, various energy fonctions & of different
physical content can be generated depending on how the generalized coordinates
are chosen.

The most common case that occurs in classical mechanics is one in which the
kinetic energy terms are all of the form mg? /2 or pf'eru and the potential energy
depends only upon the coordinates. For these conditions, the energy function is
both conserved and is also the total energy.
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Finally, note that where the system is not conservative, but there are frictional
forces derivable from a dissipation function J, it can be easily shown that F is re-
lated to the decay rate of h. When the equations of motion are given by Eg. (1.70),
including dissipation, then Eq. (2.52) has the form

dh AL _ <~ 3F .
ar~ ar T £ag,

By the definition of F, Eq. (1.67), it is a homogeneous function of the §’s of
degree 2. Hence, applying Euler’s theorem again, we have

dh aL
o= —2F - TR (2.59)

If L is not an explicit function of time, and the system is such that 4 is the same
as the energy, then Eq. (2.59) says that 2.F is the rate of energy dissipation,

dE
— —2F, (2.60)

a statement proved above (cf. Sec. 1.5) in less general circumstances.
DERIVATIONS

1. Complete the solution of the brachistochrone problem begun in Section 2.2 and show
that the desired curve is a cycloid with a cusp at the inital point at which the particle
is released. Show also that if the particle is projected with an initial kinetic energy
i-muuz that the brachistochrone is still a cycloid passing through the two points with a

cusp at a height z above the initial point given by v% = 2g7.

2. Show that if the potenuial in the Lagrangian contams velocity-dependent terms, the
canonical momentum corresponding to a coordinate of rotation & of the entire system

is no longer the mechanical angular momentum Lg but1s given by

pe=1Lg—p m-1, X Vy, U,
i

where Vy 15 the gradient operator in which the derivatives are with respect to the
velocity components and n is a unit vector in the direction of rotation. If the forces are
electromagnetic in character. the canonical momentum is therefore

q
= L +§ n-r, x —A;.
Pa [ - ] oM

3. Prove that the shortest distance between two points 1 space is a straight line.

4. Show that the geodesics of a spherical surface are great circles, i.e., circles whose
centers hie at the center of the sphere.
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POSSIBLE QUESTIONS
Part B (6 Marks)

1. Define canonical momentum. Show that the generalized momentum conjugate to a cyclic co-
ordinate is conserved

2. Write a short note on physical significance of the lagrangian undeterminant multiplier

3. Derive the Brachistochrome problem

4 Find the curve for which some line integral has a stationary value

5. State and prove Euler Lagrange differential equation

6. Find the equation of motion of a hoop or disc rolling without slipping down on the

inclined plane.

Part C (10 Marks)

1. Find the minimum surface of revolution
2. Derive the conservation theorem for total energy of system
3. Show that the shortest curve between any two points in the plane is a straight line

4. Derive the conservation theorem for dissipation function
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(Question Nos. 1 to 20 Online Examinations)
Possible Questions
Question Opt1 Opt 2 Opt3 Opt 4 Answer

of a force is defined to be the
product of the force and perpendicular distance of Angular
the point. Friction Moment momentum Mass Moment

of a force about a point is

that it measures the tendency to rotate the body Angular
about that point. Friction Mass momentum Momentum Momentum
The sign is if F rotates in
anticlockwise direction. Positive Negative Zero Unity Positive
The sign is if F rotates in
clockwise direction. Positive Negative Zero Unity Negative

If the unit of a force is a poundal and the unit of
distance be foot then the unit of moment is a

Poundal Foot Poundal-foot Foot-poundal Poundal-foot
If the unit of a force be dyne and the unit of
distance be cm then the unit of moment is a
Dyne Cm Dyne-cm Cm-dyne Dyne-cm
The algebraic sum of the moment of the two forces
about any point in their plane is equal to the
of their resultant. | Mass Moment Friction Weight Moment
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The vector sum of the moment of two forces about
the point in the plane is equal to the
of their resultant about the

N
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same point. Friction Mass Weight Moment Moment
Resultant R=0 means there is no

for the system. Resultant Resultant Friction Force Resultant
If a system of a coplanar forces is in equilibrium
then the algebraic sum of their moment about any
point is One Zero Two Infinity Zero
If > Pipi=0 then PR= One Two Three Zero Zero
If a heavy body is dragged along the ground by
means of a horizontal force a resistance called the Coefficient of

Moment Friction Tangential force |friction Tangential force
The tangential force is always acts in the direction
to that of applied horizontal force.| Same Opposite Right Left Opposite

If the ground is perfectly smooth then there is no Tangential

. resistance Friction Tangential force | Moment Tangential resistance
Smooth bodies are capable of offering Coefficient of

in the normal direction. Force Resistance Moment friction Resistance
Smooth bodies are capable of offering resistance
only in the direction. Same Opposite Normal Downward Normal
If two rough bodies be in contact then there is a
tangential resistance is Angular
called Friction Moment Resistance momentum Friction
The friction always acts in the
direction to the direction of

body which has tendency to move. Same Opposite Upward Downward Opposite

prevents the sliding of one Angular
body over the other. Moment Resistance Friction momentum Friction
The force exerted by the friction is called Coefficient of

friction Cone of friction | Angle of friction| Force of friction Force of friction

Force of friction is also called

Massive force

Passive force

Coplanar force

Colinear force

Passive force
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The force which opposes the rolling of one body
over another is called the

Sliding friction

Rolling friction

Coefficient of
friction

Cone of friction
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The force which opposes the sliding of one body Coefficient of
over another is called the Sliding friction | Rolling friction |friction Cone of friction Sliding friction
When two bodies are in contact with one another
are in equilibrium then the equilibrium is callled Limiting
Limiting friction | Cone of friction [equilibrium Angle of friction Limiting equilibrium
The force which opposes the of one
body over the other is called sliding friction. Rolling Sliding Equilibrium Existing Sliding
The force which opposes the of one
body over the other is called rolling friction. Rolling Sliding Equilibrium Existing Rolling
Friction is a force. Rolling Sliding Self adjusting Resultant Self adjusting
The maximum value of force of friction is called Limiting Coefficient of
Limiting friction |equilibrium Force of friction [friction Limiting friction
Dynamical friction is than the
limiting friction. Equal Less Greater None Less
The resultant of the normal reaction and the force of Resultant
friction is called Limiting friction |reaction Angle of friction| Cone of friction Resultant reaction

The angle which the resultant reaction makes with

the normal reaction is called Coefficient of
Angle of friction| Cone of friction |friction Force of friction Angle of friction
Angular
is a self adjusting force. Friction Moment momentum Force Friction
friction is less than the Dynamical
limiting friction. Rolling friction | Sliding friction |friction Angle of friction Dynamical friction

The ratio of the limiting friction and the normal

reaction is called the Coefficient of Coefficient of
Angle of friction| Cone of friction |friction Force of friction friction
The coeftficient of friction is defined as the tangent Coefficient of
of the Angle of friction| Cone of friction |friction Force of friction Angle of friction
Coefficient of friction is denoted by the symbol
o () u A v
Angle of friction is denoted by
o () u A A
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One and Unity

Zero and Unity

One and Infinity

Zero and Infinity
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Zero and Unity

tani

pu= tani Sink Cosi Coti
For perfectly smooth bodies u= One Zero Two Infinity Zero
An ideal surface for which the coefficient of friction Perfectly
is Zero is said to be Smooth Rough smooth Perfectly rough Smooth
An ideal surface for which the coefficient of friction Perfectly
is Infinity is said to be Smooth Rough smooth Perfectly rough Perfectly rough
Surfaces which are neither perfectly rough nor
perfectly smooth their coefficient of friction will
lies between One and Unity | Zero and Unity | One and Infinity | Zero and Infinity Zero and Unity
If o>A then the body will move
the plane. Up Down Right Left Down
If o=A then the body will be in
Up Down Equilibrium Right Equilibrium

The direction of dynamical friction is

to the direction of motion
of the body. Same Opposite Equal None Opposite
The coefficient of kinetic friction is denoted by the
symbol v A u' A u'
The coefficient of depends
only on the nature of the surfaces in contact. Friction Kinetic friction | Statical friction | Dynamical friction | Kinetic friction

The angle of repose is equal to the

Angle of friction

Cone of friction

Coefficient of
friction

Kinetic friction

Angle of friction

The
friction.

is equal to the angle of

Coefficient of
friction

Kinetic friction

Dynamical
friction

Angle of repose

Angle of repose

Prepared by: Dr.S.Sowmiya, Department of Mathematics,KAHE




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSENAME: MECHANICS
COURSE CODE: 19MMP106 UNIT: 111 BATCH-2019-2021

UNIT-111

Hamilton Equations of motion: Legendre Transformations and the Hamilton Equations of
motion-canonical equations of Hamilton — Cyclic coordinates and conservation theorems —
Routh’s procedure - Derivation of Hamilton’s equations from a variational principle — The
principle of least action.
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8.1 M LEGENDRE TRANSFORMATIONS AND THE
HAMILTON EQUATIONS OF MOTION

In the Lagrangian formulation (nonrelativistic), a system with n degrees of free-
dom possesses n equations of motion of the form

4 (E) _ ot = 0. (8.1)
dt \ 8g, g,

As the equations are of second order, the motion of the system is determined for
all time only when 2n initial values are specified, for example, the n ¢,’s and n
¢,’s at a particular time #;, or then n g;’s at two times, f; and 2. We represent
the state of the system by a point in an n-dimensional configuration space whose
coordinates are the n generalized coordinates ¢; and follow the motion of the
system point in time as it traverses its path in configuration space. Physically, in
the Lagrangian viewpoint a system with n independent degrees of freedom is a

problem in n independent variables g;(¢), and g, appears only as a shorthand for
the time derivative of g,. All n coordinates must be independent. In the Hamil-
tonian formulation there can be no constraint equations among the coordinates.
If the n coordinates are not independent, a reduced set of m coordinates, with
m < n, must be used for the formulation of the problem before proceeding with
the following steps.

The Hamiltonian formulation is based on a fundamentally different picture.
We seek to describe the motion in terms of first-order equations of motion. Since
the number of initial conditions determining the motion must of course still be 2n,
there must be 2n independent first-order equations expressed in terms of 27 inde-
pendent variables. Hence, the 2n equations of the motion describe the behavior
of the system point in a phase space whose coordinates are the 2n independent
variables. In thus doubling our set of independent quantities, it is natural (though
not inevitable) to choose half of them to be the n generalized coordinates g;. As
we shall see, the formulation is nearly symmetric if we choose the other half of
the set to be the generalized or conjugate momenta p, already introduced by the
definition (cf. Eq. (2.44)):

_ L@, 4,.0)

. no sum on j 8.2
% ( i (82)

1
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We wish now to change the basis of description from x, y to a new distinct set of
variables u, y, so that differential quantities are expressed in terms of the differ-
entials du and dy. Let g be a function of « and y defined by the equation

g=f—ux (B.5)
A differential of g is then given as
dg =df —udx —xdu,
or, by (8.3), as
dg = vdy —xdu,

which is exactly in the form desired. The quantities x and v are now functions of
the variables u and y given by the relations

X=——, V= — I:BE}

where the j index shows the set of ¢'s and §'s. The quantities (g, p) are known
as the canonical variables.*

From the mathematical viewpoint, it can however be claimed that the ¢’s and
q's have been treated as distinct variables. In Lagrange’s equations, Eq. (8.1), the
partial derivative of L with respect to ¢; means a derivative taken with all other ¢’s
and all ¢’s constant. Similarly, in the partial derivatives with respect to 4, the g’s
are kept constant. Treated strictly as a mathematical problem, the transition from
Lagrangian to Hamiltonian formulation corresponds to changing the variables in
our mechanical functions from (g, ¢, t) to (g, p, t), where p is related to g and
g by Eqgs. (8.2). The procedure for switching variables in this manner is provided
by the Legendre transformation, which is tailored for just this type of change of
variable.

Consider a function of only two variables f(x, y), so that a differential of f
has the form

df =udx + vdy, (8.3)
where
_of _af
= A’ U= 3y’ (8.4)

*Unless otherwise specified, in this and subsequent chapters the symbol p will be used only for the
conjugate or canonical momenmm. When the forces are velocny dependent, the canonical momenmm
will differ from the corresponding mechanical momentum (cf. Eq. (2 47)).
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We wish now to change the basis of description from x, y to a new distinct set of
variables u, y, so that differential quantities are expressed in terms of the differ-
entials du and dy. Let g be a function of u and y defined by the equation

g=f—ux (8.5)
A differential of g is then given as
dg =df —udx —xdu,
or, by (8.3), as
dg =vdy —xdu,

which is exactly in the form desired. The quantities x and v are now functions of
the variables u and y given by the relations

X =—-—— Bv=—, (8.6)

which are the analogues of Eqs. (8.4).

The Legendre transformation so defined is used frequently in thermodynamics.
The first law of thermodynamics relates the differential change in energy, dU, to
the corresponding change in heat content, dQ, and the work done, dW:

dU =dQ — dW. (8.7)
For a gas undergoing a reversible process, Eq. (8.7) can be written as

dU=TdS§S - FPdV, (8.8)

where U7 (S5, V) is written as a function of the entropy, S5, and the volume, V,
where the temperature, T, and the gas pressure, F . are given by

altv au
—-— and P=——. 8.9
a8 oV -9

The enthalpy, H (S, P) is generated by the Legendre transformation

T =

H=U+4+ PV, (8.10)
which gives
dH =Td5+VdP. (8.11)
where
aH a H
=35 and VvV = 2P
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Additional Legendre transformations,

F=U-TS
(8.12)
G=H-T§,

generate the Helmholtz free energy, F(T, V), and the Gibbs free energy, G(7, P).
The transformation from (g, ¢, t) to (g, p, t) differs from the type considered

in Eqs. (8.3) to (8.12) only in that more than one variable is to be transformed.
We begin by writing the differential of the Lagrangian, L(g, ¢, 1), as

dL dL aL

dL = —d —dgq, + —dt. 8.13

EY ‘?:‘Faé; fh+az ( )
The canonical momentum was defined in Eq. (2.44) as p; = 9L /d4,; substituting
this into the Lagrange equation (8.1), we obtain

aL
= —, 8.14
P 34, ( )
so Eq. (8.13) can be written as
. ) aL ,

ot
The Hamiltonian H (g, p, t) is generated by the Legendre transformation

H(Q: P! r) =élpl - L':‘-?: ésr): {3115}
which has the differential
which has the differential
dH =g, dp, — pr dgi — 1_::_., (8.16)

where the term p; dg; is removed by the Legendre transformation. Since  H can
also be written as

daH aH aE
— —— dp, + ——dr, 8.17
dH ) deg, -+ o, fo a1 dr ( )

we obtain the 21 + 1 relations

G = oH
' aps
_ 5 - 3H R
p-l - aql
arL aH
—_— e 8.19
at ar ( )
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Equations (8.18) are known as the canonical equations of Hamilton; they consti-
tute the desired set of 2n first-order equations of motion replacing the n second-
order Lagrange equations.*

The first half of Hamilton's equations give the g,’s as functions of (g, p, ).
They form therefore the inverse of the constitutive equations (8.2), which define
the momenta p, as functions of (g, ¢, #). It may therefore be said that they provide
no new information. In terms of solving mechanical problems by means of the
canonical equations, the statement is correct. But within the framework of the
Hamiltonian picture, where H (g, p. ) is some given function obtained no matter
how, the two halves of the set of Hamiltonian equations are equally independent
and meaningful. The first half says how ¢ depends on g, p, and t; the second says
the same thing for p.

Of course, the Hamiltonian H is constructed in the same manner, and has iden-
tically the same value, as h, the energy function defined in Eq. (2.53). But they
are functions of different variables: Like the Lagrangian, h is a function of g, ¢
(and possibly ), while H must always be expressed as a function of g, p (and
possibly ). It is to emphasize this difference in functional behavior that differ-
ent symbols have been given to the quantities even though they have the same
numerical values.
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Nominally, the Hamiltonian for each problem must be constructed via the La-
grangian formulation. The formal procedure calls for a lengthy sequence of steps:

1. With a chosen set of generalized coordinates, g;, the Lagrangian L (q,. g, f)
= T = V is constructed.

2. The conjugate momenta are defined as functions of g,, ¢,, and ¢ by
Egs. (8.2).

3. Equation (8.15) is used to form the Hamiltonian. At this stage we have some
mixed function of ¢,, g;, p, and ¢.

4. Equations (8.2) are then inverted to obtain g, as functions of (g, p, #). Pos-
sible difficulties in the inversion will be discussed below.

5. The results of the previous step are then applied to eliminate § from H so
as to express it solely as a function of (g. p, t).

Now we are ready to use the Hamiltonian in the canonical equations of motion.
For many physical systems it is possible to shorten this drawn-out sequence

quite appreciably. As has been described in Section 2.7, in many problems the

Lagrangian is the sum of functions each homogeneous in the generalized veloc-

=Canomcdl 15 uscd here presumably in the sense of designating a simple, general set of standard
equanons. Tt appears that the term was first introduced by C. G. 1. Jacobi wn 1837 (Compres rendus de
l'Académie dev Scrences de Paria, 5. p 61) but in a slightly different context referring w an application
of Hamilton's equations of motion fo perturbation theory, Although the term rapidly gamned cormmon
usapge, the reason for its introduction apparently remaned obscure even 1o conlemporaries, By 1879,
only 45 years afier Hamulton expheuly imtroduced his equanons, Thomson (Lord Kelvin) and Tan
were moved by the adjective "canomcal™ o exclaim ““Why 1t has been so called would be hard to
say”
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ities of degree 0, 1, and 2, respectively. In that case, H by the prescription of
Eq. (8.15) is given by (cf. Eqgs. (2.53) and (2.55))

H= fj:l"l P - L= @': P — [L{.‘r{‘-’?is 1)+ Li (q:, f:lék + LZ(*?!: ”éﬁ:f}m] (8.20)

(no sum on { in the square brackets) where Ly is the part of the Lagrangian that is
independent of the generalized velocities, L, represents the coefficients of the part
of the Lagrangian that is homogeneous in g, in the first degree, and L, is the part
that is homogeneous in g, in the second degree. Further, if the equations defining
the generalized coordinates don’t depend on time explicitly, then Lagegm = T
(the kinetic energy), and if the forces are derivable from a conservative potential
V (that is, work is independent of the path), then Ly = —V. When both these
conditions are satisfied, the Hamiltonian is automatically the total energy:

H=T+V=E. (8.21)

If either Eq. (8.20) or (8.21) holds, then much of the algebra in steps 3 and 4 above
is eliminated.

We can at times go further. In large classes of problems, it happens that Lo is a
quadratic function of the generalized velocities and L is a linear function of the
same variables with the following specific functional dependencies:

L(gi,di.1) = Lo(q, ) + Giar(g. 1) + 2T (q, 1), (8.22)

where the a,’s and the T;’s are functions of the ¢’s and .

The algebraic manipulations required in steps 2-5 can then be carried out, at
least formally, once and for all. To show this, let us form the ¢;’s into a single
column matrix q. Under the given assumptions the Lagrangian can be written as

L(g.g.¢) = Lo(q.t) + ga+ 3§Tq, (8.23)

where the single row matrix E[ has been written explicitly as the transpose of a
single column maitrix, §. Here a is a column matrix, and T is a square n > n matrix
(much like the corresponding matrix introduced in Section 6.2). The elements of
both are in general functions of ¢ and ¢. To illustrate this formalism, let us consider
the special case where g, = [x. ¥, z} and T is diagonal. We would then write

1. I m 0 O X m
sATq=3GE3) [0 m O |y | = E(x'z + 3% + %) (8.24a)
Q 0 m P
and
- ax
qa=(xyz) |ay | =axt +ayy+az=a-F (8.24b)
az
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In this notation the Hamiltonian, H = gp — L, becomes
H =§(p—a) — 1qT4 - L,. (8.24¢)

The conjugate momenta, considered as a column matrix p, is then, by Eq. (8.2),
given as

p=Tq+a, (8.25)
which can be inverted (step 4) to the column vector ¢
q=T""(p-a). (8.26a)

This step presupposes that T~! exists, which it normally does by virtue of the
positive definite property of kinetic energy.
The corresponding equation for q is

q=@p-aT17". (8.26b)

To obtain the correct functional form for the Hamiltonian, Eqgs. (8.26) must be
used to replace q and q, yielding the final form for the Hamiltonian:

H(g.p.0)=4(p—-T ' (p—a) — Lo(g.1). (827

If the Lagrangian can be written in the form of Eq. (8.23), then we can imme-
diately skip the intervening steps and write the Hamiltonian as Eq. (8.27). The
inverse matrix T~' can usually most easily be obtained straightforwardly as

-1 L
Lk
where T. is the cofactor matrix whose elements (T.);x are (—1)/*% times the
determinant of the matrix obtained by striking out the jth row and the &£th column

of T.
In the example Eq. (8.24a), these three matrices are given explicitly by

m O O — 0
T=|0 m o0f{, T'=|0 o . and
0 0 m 0 %

B m2 O 4]
T, = 0 m2 O .
0 0 m?2

and the determinant |T] = m?. It is easy to see that for the usual case when T is
diagonal, then T—! is also diagonal with elements that are just the reciprocals of
the corresponding elements of T.

(8.28)

oio
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A number of exercises in applying this formalism to various mechanical sys-
tems will be found in the problems at the end of the chapter. Two very simple
examples are considered here because they illustrate some important aspects of
the technique. First consider the spatial motion of a particle in a central force
field, using spherical polar coordinates (r, 8. ¢) for the generalized coordinates.
The potential energy is some function V (r) and the kinetic energy is

2
pom? _m
2 2
Clearly the Hamiltonian has the form of Eq. (8.21) and corresponds to the total
energy T + V. Since T is diagonal the form of H is, by inspection,

(72 + r? sin® 6¢% + r’8%). (8.28")

2
1 2 P% Pg
[ RSE ] u ] = - - -— = V . 29
H O, proper Po) = 50 (pr+r2+r25in23 e 829
Note that the Hamiltonian would have a different functional form if the gener-
alized coordinates were chosen to be the Cartesian coordinates x, of the particle.
If we make that choice, then the kinetic energy has the form

mu mx, X,
I'=—=7"
0 that the Hamiltonian is now
H(x, p) = % +V (). (8.30)

It is sometimes convenient to form the canonical momenta p, conjugate to x; into
a vector p such that the Hamiltonian can be written as

It is sometimes convenient to form the canonical momenta p, conjugate to x; into
a vector p such that the Hamiltonian can be written as

H p) = 558 4+ V(/xx0). (8.31)
We can of course take the components of p relative to any coordinate system
we desire, curvilinear spherical coordinates, for example. But it is important not to
confuse, say, pa with the & component of p, designated as (p)g. The former is the
canonical momentum conjugate to the coordinate &; the latter is the # component
of the momentum vector conjugate to the Cartesian coordinates. Dimensionally.
it is clear they are quite separate quantities; pg i1s an angular momentum, (p)g is a
linear momentum. Whenever a vector iy used from here on to represent canonical
momenia it will refer to the momenta conjugate to Cartesian position coordinates.
For a second example, let us consider a single (nonrelativistic) particle of mass
m and charge ¢ moving in an electromagnetic field. By Eq. (1.63), the Lagrangian
for this system is

L=T—V=3imvw*—g¢p+gA v

where the scalar potential term. —g¢, is the Lg term of the Lagrangian as ex-
pressed in Eq. {8.22) and the vector potential terrn, gA + v, is the L term.
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Using Cartesian position coordinates as generalized coordinates, the La-

grangian can also be written as
mx, x :
L= 2‘ -+ qA X — g, (8.32)

where the potentials ¢ and A are in general functions of x, and the time.

There is now a linear term in the generalized velocities such that the matrix
a has the elements g A,. Because of this linear term in V, the Hamiltonian is not
T + V. However, it is still in this case the total energy since the “potential” energy
in an electromagnetic field is determined by ¢ alone. The canonical momenta,
either by Eq. (8.2) or Eq. (8.25), are

and the Hamiltonian (cf. Eq. (8.27)) is

(pr —qA)(p —qA)
2m

H=

+q¢, (8.34)

which is the total energy of the particle. Again, the momenta p, can be formed
into a vector p and A written as

N SPERC
H = —(p—qA) +¢¢, (8.35)

and remembering that p refers only to momenta conjugate to x;.

It is clear that Hamilton's equations of motion do not treat the coordinates and
momenta in a completely symmetric fashion. The equation for p has a minus sign
that is absent in the equation for ¢. Considerable ingenuity has been exercised
in devising nomenclature schemes that result in entirely symmetric equations,
or combine the two sets into one. Most of these schemes have only curiosity
value, but one has proved to be an elegant and powerful tool for manipulating the
canonical equations and allied expressions.

For a system of n degrees of freedom, we construct a column matrix 9 with 2n
elements such that

e = dzs Mi+n = P i =n. (8.36)
Similarly. the column matrix 8 H /9% has the elements
( dHY  8H (aH __ 8H
amn/, B’ 0 Jirn  Opi
Finally, let ] be the 2n x 2n sguare matrix composed of four # x n zero and unit
matrices according to the scheme

0o 1
j=[_1 0] (8.38a)

i<n. (8.37)
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with the following transpose matrix, which is its inverse

] = [? —“1] . (8.38h)
which means
N=l=1= [:, I"] : (8.38¢)
S0
j=-1=J"" (8.384)
and
P =1, (8.38e)
and the determinant is
Nl = +1. (8.38)

Here 0 is the n x n matrix all of whose elements is zero, and 1 is the standard
n x n unit matrix. Hamilton’s equations of motion can then be written in compact
form as

=) (8.39)

For two coordinate variables, this has the expanded form

For two coordinate variables, this has the expanded form

q1 0 o 1 0 —P1

2| | o o o 1 —p2

mnl=l=1 o o0 o g |- (8.40)
Pz 0 —1 O 0 gz

where use was made of Eqs. (8.37) and (8.18). This method of displaying the
canonical equations of motion will be referred to as Hamilton’s equations in ma-
trix or symplectic* notation. In subsequent chapters we shall frequently employ
this matrix form of the equations.

8.2 B CYCLIC COORDINATES AND CONSERVATION THEOREMS

AMccording to the definition given in Section 2.6, a cyclic coordinate g, is one that
does not appear explicitly in the Lagrangian; by virtue of Lagrange’s eguations

*The term syrplecric comes from the Greek for “intertwaned,” particularly appropriate for Hamulton®s
equations where ¢ is matched with a derivative with respect vo @ and p samilarly with the negative of
a g denvative H. Weyl first introduced the term 1n 1939 in his bock The Classical Groups.
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its conjugate momentum p; is then a constant. But comparison of Eq. (8.14) with
Eq. (8.16) has already told us that

A coordinate that is cyclic will thus also be absent from the Hamiltonian.* Con-
versely if a generalized coordinate does not occur in H, the conjugate momentum
is conserved. The momentum conservation theorems of Section 2.6 can thus be
transferred to the Hamiltonian formulation with no more than a substitution of H
for L. Tn particular, the connection between the invariance or symmetry proper-
ties of the physical system and the constants of the motion can also be derived in
terms of the Hamiltonian. For example, if a system is completely self-contained,
with only internal forces between the particles, then the system can be moved as
a rigid ensemble without affecting the forces or subsequent motion. The system
is said to be invariant under a rigid displacement. Hence, a generalized coordinate
describing such a rigid motion will not appear explicitly in the Hamiltonian, and
the corresponding conjugate momentum will be conserved. If the rigid motion is
a translation along some particular direction, then the conserved momentum is the
corresponding Cartesian component of the total linear (canonical) momentum of
the system. Since the direction is arbitrary, the total vector linear momentum is
conserved. The rigid displacement may be a rotation, from whence it follows that
the total angular momentum vector is conserved. Even if the system interacts with
external forces, there may be a symmetry in the situation that leads to a conserved
canonical momentum. Suppose the system is symmetrical about a given axis so
that H is invariant under rotation about that axis. Then H obviously cannot in-
volve the rotation angle about the axis and the particular angle variable must be a
cyclic coordinate. It follows, as in Section 2.6, that the component of the angular
momentum about that axis is conserved.T
The considerations concerning A in Section 2.7 have already shown that if L
{and in consequence of Eq. (8.15), also H) is not an explicit function of ¢, then

H is a constant of motion. This can also be seen directly from the equations of
motion (8.18) by writing the total time derivative of the Hamiltonian as

dH _9H,  8H .  9H
ar  ag, " T ap P T e

In consequence of the equations of motion (8. 18), the first two sums on the right
cancel each other, and it therefore follows that

dH _ 9H _ 3L (8.41)
dr ar ar

*This conclusion also follows [rom the defimtion of Eq (8.15). for H differs from —£L only by p 4, .

which does not involve g, explicitly.

TThe relation between conservation laws, symmnetry of the Lagrangian, (and the Hamaltoman) of the

system is called Noether's theorem. The formal proof is given in Section 13 7.
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Thus if r doesn’t appear explicitly in L, it will also not be present in H, and H
will be constant in time,

Further, it was proved in Section 2.7 that if the equations of transformation that
define the generalized coordinates (1.38),

e = O (1. ns f),

do not depend explicitly upon the time, and if the potential is velocity indepen-
dent, then H is the total energy, T + V. The identification of H as a constant of the
motion and as the total energy are two separate matters, and the conditions suffi-
cient for the one are not enough for the other. It can happen that the Eqgs. (1.38)
do involve time explicitly but that H does not. In this case, H is a constant of
the motion but it is not the total energy. As was also emphasized in Section (2.6),
the Hamiltonian is dependent both in magnitude and in functional form upon the
initial choice of generalized coordinates. For the Lagrangian, we have a specific
prescription, L = T — V, and a change of generalized coordinates within that
prescription may change the functional appearance of L but cannot alter its mag-
nitude. On the other hand, use of a different set of generalized coordinates in the
definition for the Hamiltonian, Eq. (8.15), may lead to an entirely different quan-
tity for the Hamiltonian. It may be that for one set of generalized coordinates H
is conserved, but that for another it varies in time.

To illustrate some of these points in a simple example, we may consider a
somewhat artificial one-dimensional system. Suppose a point mass m is attached
to a spring, of force constant k, the other end of which is fixed on a massless cart
that is being moved uniformly by an external device with speed vy (cf. Fig. 8.1).
If we take as generalized coordinate the position x of the mass particle in the
stationary system, then the Lagrangian of the system is obviously

mi2  k

. o co e e s 2 >
Lx,x,)=T —V e 2(x vo?f) (8.42)

(For simplicity, the origin has been chosen so that the cart passes through it at
t = 0.) The corresponding equation of motion is clearly

mx = —k(x — vot).

x'——'

oYe) Yol
r-—x——i

FIGURE 8.1 A harmonic oscillator fixed to a uniformly moving cart.
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An obvious way of solving this equation is to change the unknown to x'(r)
defined as

x' = x = wt, (8.43)
and noting that ¥’ = ¥, the equation of motion becomes
mi' = —kx'. (8.44)

From Eq. (8.43), x is the displacement of the particle relative to the cart;
Eq. (8.44) says that to an observer on the cart the particle exhibits simple har-
monic motion, as would be expected on the principle of equivalence in Galilean
relativity.

Having looked at the nature of the motion, let us consider the Hamiltonian
formulation. Since x is the Cartesian coordinate of the particle, and the potential
does not involve generalized velocities, the Hamiltonian relative to x is the sum
of the kinetic and potential energies, that is, the total energy. In functional form
the Hamiltonian is given by

p?

k 2
H{x.p,r)—T+V—ﬂ+§(x-vur] . (8.43)

The Hamiltonian is the total energy of the system, but since it is explicitly a func-
tion of 7, it is not conserved. Physically this is understandable; energy must flow

into and out of the “external physical device” to keep the cart moving uniformly

against the reaction of the oscillating particle.*
Suppose now we formulated the Lagrangian from the start in terms of the rel-
ative coordinate x'. The same prescription gives the Lagrangian as

) 2 kx.rz
L', ) = T 4 mi'vo + % - = (8.46)

In setting up the corresponding Hamiltonian, we note there is now a term linear
in x’, with the single component of a being mup. The new Hamiltonian is now
(p' — mug)? kx'? mv,%

H'(x', py= 2 + 5~ 2 (8.47

Mote that the last term is a constant involving neither x' nor p'; it could, if we
wished, be dropped from H' without affecting the resultant equations of motion.
MNow H' is not the total energy of the system, but it is conserved. Except for the
last term, it can be easily identified as the total energy of motion of the particle
relative to the moving cart. The two Hamiltonian’s are different in magnitude.

*Put another way, the moving cart constitutes 4 time-dependent constraint on the particle, and the
force of ithe constraint does do work 1n actual (nor virtual) displacement of the system.
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{a) (b)

FIGURE 8.2 Vibrating dumbbell under two conditions: (a) freely oscillating, and (b) os-
cillating with mass m2 kept at a constant velocity

time dependence, and functional behavior. But the reader can easily verify that
both lead 1o the same motion for the particle.

Additional insight into the problem of the mass cart previously discussed can
be gained by considering a dumbbell of two masses connected by a spring of
constant k. We shall consider the case where the center of mass of the dumbbell
is in constant motion at a speed vp along the direction determined by the spring
and allow oscillations of the masses only along this direction. This 1s shown in
Fig. 8.2, where C-O-M denotes the center of mass.

The dumbbell is made to vibrate while its center of mass has an initial velocity
vp. It will continue with this velocity with uniform translational motion. This
translational motion will have no effect on the oscillations. The motion of the
center of mass and the motion relative to the center of mass separate as they do
in the Kepler problem. Once the motion is started, energy is conserved and the

Hamiltonian is the total conserved energy. The situation is different if the mass
mz moves at the constant speed wp since a periodic force is applied. The center
of mass and the mass /| then oscillate relative 10 m2. Since a changing external
force must be applied to the system to keep m2 at the constant velocity vg, the
Hamiltonian is no longer conserved, nor is the Hamiltonian the total energy.

8.3 m ROUTH’'S PROCEDURE

Tt has been remarked that the Hamiltonian formulation is not particularly helpful
in the direct solution of mechanical problems. Often we can solve the 2n first-
order equations only by eliminating some of the variables, for example, the p
wvariables, which speedily leads back to the second-order Lagrangian equations of
meotion. But an important exception should be noted. The Hamiltonian procedure
is especially adapted to the trearment of problems involving cyclic coordinates.

Let us consider the situation in Lagrangian formulation when some coordinate,
SaY gg. is cyclic. The Lagrangian as a function of g and § can then be written

L=L(q1.-~-,qn—[: Gla-oa é’n; ).
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All the generalized velocities still occur in the Lagrangian and in general will be
functions of the time. We still have to solve a problem of n degrees of freedom,
even though one degree of freedom corresponds to a cyclic coordinate. A cyclic
coordinate in the Hamiltonian formulation, on the other hand, truly deserves its al-
ternative description as “ignorable,” for in the same situation p, is some constant
«, and H has the form

H=H(g, .c.@n-1i Pls+..s Pn_1; Q).

In effect, the Hamiltonian now describes a problem involving only n — 1 coordi-
nates, which may be solved completely ignoring the cyclic coordinate except as
it is manifested in the constant of integration «, to be determined from the initial
conditions. The behavior of the cyclic coordinate itself with time is then found by
integrating the equation of motion

. 8H
= Ba

The advantages of the Hamiltonian formulation in handling cyclic coordinates
may be combined with the Lagrangian conveniences for noncyclic coordinates by
a method devised by Routh. Essentially, we carry out a mathematical transforma-
tion from the g, ¢ basis to the g, p basis only for those coordinates that are cyclic,
obtaining their equations of motion in the Hamiltonian form, while the remain-
ing coordinates are governed by Lagrange equations. If the cyclic coordinates are
labeled g, 41, ..., gn, then a new function R (known as the Routhian) may be
introduced, defined as

R(G1,....qn3 G151 453 PsglseosPns D= ) pg—L,  (848)
1=%41

which is equivalent to writing
R(Gi, - -, qns Grs---sdsi Pstls---s Pns 1) =
Heyed(Ps41, -« Pud) — Looncyet (g1 -1 g5t G1, ..., @s). (8.49)

It is easy to show for the 5 nonignorable coordinates, the Lagrange equations

d (3R AR i
d_r(a_@)-a_m_ﬂ’ i=1,...5 (8.50)
are satisfied. while for the n —s ignorable coordinates, Hamilton's equations apply
as
aR . oR . .
E'_.:;-',__p'_ﬂl' and E_m_q" i=s+1,...,n (8.51)
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gated in Section 3.7, that of a single particle moving in a plane under the influence
of the inverse-square central force f(r) derived from the potential V (r) = —k/r".
The Lagrangian is then

m .5 sk
L——E-{i' +rﬁ*}+r—n,

As noted before, the ignorable coordinate is #, and if the constant conjugate mo-
mentum is denoted by pg, the corresponding Routhian (8.49) is

2
) _ Py 1 ., k
R(r, 7, pg) = Y imr -
Physically we see that the Routhian is the equivalent one-dimensional potential
V'(r) minus the kinetic energy of radial motion.
Applying the Lagrange equation (8.50) to the noncyclic radial coordinate r,
we obtain the equation of motion (3.11)

= 0. (8.52)

Applying Hamilton's equation (8.51) to the cyclic variable 8, we obtain the pair
of equations

pe=0 and 2 —g, (8.53)

whose solution is the same as Eq. (3.8),
pg = mr26 = | = constant.

Typically, Routh’s procedure does not add to the physics of the analysis pre-
sented earlier in Chapter 3, but it makes the analysis more automatic. In compli-
cated problems with many degrees of freedom, this feature can be a considerable
advantage. it is not surprising therefore that Routh’s procedure finds its greatest
usefulness in the direct solution of problems relating to engineering applications.
But as a fundamental entity, the Routhian is a sterile hybrid, combining some of
the features of both the Lagrangian and the Hamiltonian pictures. For the devel-
opment of various formalisms of classical mechanics, the complete Hamiltonian
formulation is more fruitful.
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8.4 B THE HAMILTONIAN FORMULATION OF RELATIVISTIC MECHANICS

As with the Lagrangian picture in special relativity, two attitodes can be taken to
the Hamiltonian formulation of relativistic mechanics. The first makes no pretense
at a covariant description but instead works in some specific Lorentz or inertial
frame. Time as measured in the particular Lorentz frame is then not treated on a

common basis with other coordinates but serves, as in nonrelativistic mechanics,
as a parameter describing the evolution of the system. Nonetheless, if the La-
grangian that leads to the Hamiltonian is itself based on a relativistically invariant
physical theory (for example, Maxwell's equations and the Lorentz force), then
the resultant Hamiltonian picture will be relativistically correct. The second ap-
proach of course attempts a fully covariant description of the Hamiltonian picture,
but the difficulties that plagued the corresponding Lagrangian approach (cf. Sec-
tion 7.9) are even fiercer here. We shall consider the noncovariant method first.
For a single-particle Lagrangian of the form of Eq. (7.136),

L=-mct/1-82-v,

we have already shown that the Hamiltonian (in the guise of the energy function
h) is the total energy of the system:

H=T+4YV.

The energy T can be expressed in terms of the canonical momenta p, (Eq. 7.139)
through Eq. (7.38):*

T2 = p2c? + m2ch,

50 that a suitable form for the Hamiltonian is

H=,p*t+mict4+ V. (8.54)

When the system consists of a single particle moving in an electromagnetic
field, the Lagrangian has been given as (cf. Eq. (7.141))

L=-—me? /1 — B2 4gA-v—gp.

The term in L linear in the velocities does not appear explicitly in the Hamiltonian
(cf. Eq. (8.54)), as we have seen, whereas the first term leads to the appearance of
T in the Hamiltonian. Thus, the Hamiltonian is again the total particle energy:

H=T 4+gd¢. (8.55)

For this system, the canonical momenta conjugate to the Cartesian coordinates of
the particle are defined by (cf. Eq. (7.142))

pP=mu" +gA",
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It should be emphasized again that p here is the vector of the canonical momenta
conjugate to the Cartesian position coordinates of the particle. We may also note
that (i — g¢)/c is the zeroth component of the 4-vector

mu" +gA"®

(cf. Eqgs. (7.27), (7.38"), and (7.166)). While the Hamiltonian (8.56) is not ex-
pressed in covariant fashion, it does have a definite transformation behavior under
a Lorentz transformation as being, in some Lorentz form, the zeroth component
of a 4-vector.

In a covariant approach to the Hamiltonian formulation, time must be treated in
the same fashion as the space coordinates; that is, time must be taken as one of the
canonical coordinates having an associated conjugate momentum. The founda-
tions of such an extension of the dimensionality of phase space can in fact be con-
structed even in nonrelativistic mechanics, Following the pattern of Section 7.10,
the progress of the system point along its trajectory in phase space can be marked
by some parameter &, and r “released,” so to speak, to serve as an additional co-
ordinate. If derivatives with respect to & are denoted by a superscript prime, the
Lagrangian in the (g1, ..., gn; ¢) configuration space is (cf. Eq. (7.159))

i\(q‘ql’,f+t")=;"L (q,%.t). (8.57)
The momentumn conjugate to { is then
dA , OL
P.*-— ar, -—L+f E

If we make explicit use of the connection § = ¢'/t’, this relation becomes
p=L—=t = =L-§ — =-H. (8.58)

The momentum conjugate to the time “coordinate” is therefore the negative of the
ordinary Hamiltonian.* While the framework of this derivation is completely non-
relativistic, the result is consistent with the identification of the time component of
the 4-vector momentum with E /c. As can be seen from the definition, Eg. (8.2),
if ¢ is multiplied by a constant ¢, then the conjugate momentum is divided by «.
Hence, the canonical momentum conjugate to ¢t is H/c.
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Thus, there seems to be a natural route available for constructing a relativis-
tically covariant Hamiltonian. But the route turns out to be mined with booby
traps. It will be recalled that the covariant Lagrangian used to start the process,
Eq. (7.159) or Eq. (8.57), is homogeneous in first degree in the generalized ve-
locities ¢', and for such a Lagrangian the recipe described above for constructing
the Hamiltonian formulation breaks down irreparably. If L is of type L, the cor-
responding Hamiltonian, call it H.(q, ¢, p, py). is identically zero!

Fortunately, there does not seem to be any compelling reason why the covari-
ant Lagrangian has to be homogeneous in the first degree, at least for classical
relativistic mechanics. It has already been seen that for a single free particle the
covariant Lagrangian

Alx®, u?) = %muﬁu“

leads to the correct equations of motion. Of course the four-velocity components,
uf, are still not all independent, but the constraint can be treated as a “weak con-
dition” to be imposed only after all the differentiations have been carried through.
There is now no difficulty in obtaining a Hamiltonian from this Lagrangian, by
the same route as in nonrelativistic mechanics; the result is clearly

7
H, = %‘ (8.59)

For a single particle 1n an electromagnetic field, a covariant Lagrangian has been
found previously: (cf. Eq. (7.165))*

AG*, k) = tmuyu” + qut A, (x)), (7.147)
with the canonical momenta (cf. Eq. (7.167)),
Pu=muy, +gA,. (7.149)

In the corresponding Hamiltonian, the term linear in u, does not appear ex-
plicitly in the Hamiltonian, and the remaining L» part in terms of the canonical
momenta is

v _ (Pu=qAu) (P* — qA¥)
f = .
2m

Both Hamiltonians, Eqgs. (8.59) and (8.60), are constant, with the same value.
~mc? /2, but to obtain the equations of motion it is the functional dependence on
the 4-vectors of position and momenta that is important. With a system of one
particle, the covariant Hamiltonian leads to eight first-order equations of motion

(8.60)
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dx* _8H, dp®  8Hc

= 8.61
dt ap¥ AR

odr o e’
We know that these equations cannot be ull independent. The space parts of
Egs. (8.61) obviously lead to the spatial equations of motion. We should expect
therefore that the remaining two equations tell us nothing new, exactly as in the
Lagrangian case. This can be verified by examining the v = 0 equations in some
particular Lorentz frame. One of them is the constitutive equation for pu:

e =4 (- 00)

or

H;

1
0_ _ = —t
p=-(T+q¢)=—", (8.62)

a general conclusion that has been noted before. The other can be written as

I dPn laH,

J1—p2 dt T
ar
dH aH,
— =,/1-p2—. 8.63
dt =4 at (8.63)

As with the covariant Lagrangian formulation, we have the problem of finding
suitable covariant potential terms in the Lagrangian to describe the forces other
than electromagnetic. In multiparticle systems we are confronted in full measure
with the critical difficulties of including interactions other than with fields. In
Hamiltonian language, the “no-interaction™ theorem already referred to in Sec-
won 7.10 says that only in the absence of direct particle interactions can Lorentz
invariant systems be described in terms of the usual position coordinates and cor-
responding canonical momenta. The scope of the relativistic Hamiltonian frame-
work is therefore quite limited and so for the most part we shall confine ourselves
to nonrelativistic mechanics.

8.5 B DERIVATION OF HAMILTON’S EQUATIONS FROM
A VARIATIONAL PRINCIPLE

Lagrange's equations have been shown to be the consequence of a variational
principle, namely, the Hamilton's principle of Section 2.1. Indeed, the variational
method is often the preferable one for deriving Lagrange’s equations, for it is
applicable to types of systems not usually included within the scope of mechanics.
It would be similarly advantageous if a variational principle could be found that
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leads directly to the Hamilton’s equations of motion. Hamilton’s principle,
L
81 EE[ Ldt =10, (8.64)
h

lends itself to this purpose, but as formulated originally it refers to paths in con-
figuration space. The first modification therefore is that the integral must be eval-
uated over the trajectory of the system point in phase space, and the varied paths
must be in the neighborhood of this phase space trajectory. In the spirit of the
Hamiltonian formulation, both g and p must be treated as independent coordi-
nates of phase space, to be varied independently. To this end the integrand in the
action integral, Eq. (8.64), must be expressed as a function of both g and p, and
their time derivatives, through Eq. (8.15). Equation (8.64) then appears as

]
51 =34 f (p.d: — H(g, p,1))dt =0. (8.65)
n

As a variational principle in phase space, Eq. (8.65) is sometimes referred to as
the meodified Hamilton’s principle. Although it will be used most frequently in
connection with transformation theory (see Chapter 9), the main interest in it here
is to show that the principle leads to Hamilton’s canonical equations of motion.
The modified Hamilton’s principle is exactly of the form of the variational
problem in a space of 2n dimensions considered in Section 2.3 (cf. Eq. (2.14)):

81 =ﬁf!2f{q,¢,p,_&,r)dr={l, (8.66)
n
for which the 2n Euler-Lagrange equations are
%(% —%zﬂ F=1,...,n (8.67)
Fd; %)—%:ﬂ i=1...,n (8.68)

The integrand f as given in Eq. (8.65) contains §; only through the p,§, term,
and g; only in /. Hence, Eqgs. (8.67) lead to

P+ o =0. (8.69)

On the other hand, there is no explicit dependence of the integrand in Eq. (8.65)
on p;. Equations (8.68) therefore reduce simply to

aH

- = (R.70)
ap,

4;
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Equations (8.69) and (8.70) are exactly Hamilton’s equations of motion, Egs.
(8.18). The Euler-Lagrange equations of the modified Hamilton’s principle are
thus the desired canonical equations of motion.

This derivation of Hamilton's equations from the variational principle is so
brief as to give the appearance of a sleight-of-hand trick. One wonders whether
something extra has been sneaked in while we were being misdirected by the
magician’s patter. Is the modified Hamilton’s principle equivalent to Hamilton's
principle, or does it contain some additional physics? The question is largely ir-
relevant; the primary justification for the modified Hamilton’s principle is that it
leads to the canonical equations of motion in phase space. After all, no further
argument was given for the validity of Hamilton's principle than that it corre-
sponded to the Lagrangian equations of motion. So long as Hamiltonian can be
constructed, the Legendre transformation procedure shows that the Lagrangian
and Hamiltonian formulations, and therefore their respective variational princi-
ples, have the same physical content.

One question that can be raised however is whether the derivation puts limita-

tions on the variation of the trajectory that are not present in Hamilton's principle.
The variational principle leading to the Euler-Lagrange equations is formulated,
as in Section 2.2, such that the variations of the independent variables vanish at
the end points. In phase space, that would require 8g, = 0 and dp, = 0 at the
end points, whereas Hamilton’s principle requires only the vanishing of 8g; un-
der the same circumstances. A look at the derivation as spelled out in Section 2.2
will show however that the variation is required to be zero at the end points only
in order to get rid of the integrated terms arising from the vanations in the time
derivatives of the independent variables. While the f function in Eq. (8.66) that
corresponds to the modified Hamilton’s principle, Eq. (8.65), is indeed a func-
uon ot g,, there 1s no explicit appearance ot p,. Equations (5.0%) and theretore
(8.70) follow from Eq. (8.65) without stipulating the variations of p, at the end
points. The modified Hamilton’s principle, with the integrand L defined in terms
of the Hamiltonian by Eq. (8.19), leads to Hamilton’s equations under the same
variation conditions as those in Hamilton’s principle.*

Nonetheless, there are advantages to requiring that the varied paths in the mod-
ified Hamilton’s principle return to the same end points in both ¢ and p, for we
then have a more generalized condition for Hamilton’s equations of motion. As
with Hamilton’s principle, if there is no variation at the end points we can add a
total time derivative of any arbitrary (twice-differentiable) function F(g, p, t) to
the integrand without affecting the validity of the variational principle. Suppose,
for example. we subtract from the integrand of Eq. (8.65) the quanuty
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The modified Hamilton’s principle would then read

Ly
Ef (—pgr — Hig, p, 1)) dt = 0. (8.71)
I

Here the f integrand of Eq. (8.66) is a function of p, and it is easily verified that
the Euler-Lagrange equations (8.67) and (8.68) with this f again correspond to
Hamilton’s equations of motion, Eqs. (8.18). Yet the integrand in Eq. (8.71) is
not the Lagrangian nor can it in general be simply related to the Lagrangian by a
point transformation in configuration space. By restricting the variation of both ¢
and p to be zero at the end points, the modified Hamilton's principle provides an
independent and general way of setting up Hamilton’s equations of motion with-
out a prior Lagrangian formulation. If you will, it does away with the necessity
of a linkage between the Hamiltonian canonical variables and a corresponding
Lagrangian set of generalized coordinates and velocities. This will be very impor-
tant to us in the next chapter where we examine transformations of phase space
variables that preserve the Hamiltonian form of the equations of motion.

The requirement of independent variation of ¢ and p, so essential for the above
derivation, highlights the fundamental difference between the Lagrangian and
Hamiltonian formulations. Neither the coordinates g, nor the momenta p, are
to be considered there as the more fundamental set of variables; both are equally
independent. Only by broadening the field of independent variables from n to 2n
quantities are we enabled to obtain equations of motion that are of first order. In
a sense, the names “coordinates” and “momenta” are unfortunate, for they bring
to mind pictures of spatial coordinates and linear, or at most, angular momenta. A
wider meaning must now be given to the terms. The division into coordinates and
momenta corresponds to no more than a separation of the independent variables
describing the motion into two groups having an almost symmetrical relationship
to each other through Hamilton’s equations.

8.6 W THE PRINCIPLE OF LEAST ACTION

Another variational principle associated with the Hamiltonian formulation is
known as the principle of least action. It involves a new type of variation, which
we shall call the A-variation, requiring detailed explanation. In the &-variation
process used in the discussion of Hamilton’s principle in Chapter 2, the varied
path in configuration space always terminated at end points representing the
system configuration at the same time #; and r, as the correct path. To obtain
Lagrange’s equations of motion, we also required that the varied path return
to the same end points in configuration space, that is, 8g,(t;) = 8g,(t2) = 0.
The A-variation is less constrained; in general, the varied path over which an
integral is evaluated may end at different times than the correct path, and there
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may be a variation in the coordinates at the end points, We can however use the
same parameterization of the varied path as in the §-variation. In the notation
of Section 2.3, a family of possible varied paths is defined by functions (cf. Eq.
(2.15))

g, (1, @) = gq,(t,0) + an, (1), (8.72)

where « is an infinitesimal parameter that goes to zero for the correct path. Here
the functions »; do not necessarily have to vanish at the end points, either the orig-
inal or the varied. All that is required is that they be continuous and differentiable,
Figure 8.3 illustrates the correct and varied path for a A-variation in configuration

space.
Let us evaluate the A-variation of the action integral:
f tan Ly
a.f Ldt Ef L(a)dt—f L(0)dt, (8.73)
n I +4n iy

where L(«) means the integral is evaluated along the varied path and L(0) corre-
spondingly refers to the actual path of motion. The variation is clearly composed
of two parts. One arises from the change in the limits of the integral; to first-order
infinitesimals, this part is simply the integrand on the actual path times the differ-
ence in the limits in time. The second part is caused by the change in the integrand
on the varied path, but now between the same time limits as the original integral.
We may therefore write the A-variation of the action integral as

) g
A f Ldt = L(ta)Ata — L(t))AH + f SLdt. (8.74)
n h

Here the variation in the second integral can be carried out through a parame-
terization of the varied path, exactly as for Hamilton’s principle except that the

.

9

FIGURE 8.3 The A-variation in configuration space.
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variation in g, does not vanish at the end points. The end point terms arising in
the integration by parts must be retained, and the integral term on the right appears

as
f2 2TaL d faL alL
.s:.m:f [ L—(—,)}a dr+ 2L s
I, o Lg ~ar\3q, ) [T T 5 0

By Lagrange’s equations the quantities in the square brackets vanish, and the A-
variation therefore takes the form

2

L
a.f Ldt = (LAt + p,8g) [, (8.75)
i

In Eq. (8.75), 84, refers to the variation in g, at the original end point times #; and
12. We would like to express the A-variation in terms of the change Ag, between
g, at the end points of the actual path and g, at the end points of the varied path,
including the change in end point times. It is clear from Fig. 8.3 that these two
variations are connected by the relation*

Ag, = 8q; + g, At. (8.76)

Hence, Eq. (8.75) can be rewritten as

L]
ﬁf Ldt = (LAt — p;c}..ﬁ!+p.&q;}ﬁ

I
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Hence, Eq. (8.75) can be rewritten as

f2
ﬁf Ldr = (LAr - p;c}..ﬁ!+p.&q;)ﬁ

f

Iz
af Ldt = (p,Ag — H An. (8.77)
1

To obtain the principle of least action, we restrict our further considerations by
three important qualifications:

1. Only systems are considered for which L, and therefore H, are not explicit
functions of time, and in consequence H is conserved.

2. The variation is such that H is conserved on the varied path as well as on
the actual path.

3. The varied paths are further limited by requiring that Ag; vanish at the end
points (but not At).

*Equation (8 76) may be denved tormally from the parameter form. Eq. (8.72), of the vaned path.
Thus, at the upper end pount we have

Agi (2) = q,(t2 + Ay, @) — (12, 0) = g, (12 + Af2,0) — g, (12,0} + am, (t + Az,
which to first order in small quantives o and Arp 15
Ag, (2) = §; (2 A + 3g, (2),
which is what Eq. (8 76) predicts

The nature of the resultant variation may be illustrated by noting that the varied
path satisfying these conditions might very well describe the same curve in con-
figuration space as the actual path. The difference will be the speed with which
the system point traverses this curve; that is. the functions g, (r) will be altered in
the varied path. In order then to preserve the same value of the Hamiltonian at all
points on the varied path, the times of the end points must be changed. With these
three qualifications satisfied, the A-variation of the action integral, Eq. (8.77).
reduces to

fa
:’_\f Ldr = —H(An — Arn). (8.78)
f
But under the same conditions, the action integral itself becomes
2 2
f Ldr = f gy dt — H(tz — n),
iai n
the A-variation of which is

] e
ﬁ[ Ldr = af Dedhy dt — H{AR — An)d. (B.79)
I i
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the A-variation of which is
L] L)
ﬂ.[ Ldt = af by dt — H(A — An). (8.79)
I i
Comparison of Egs. (8.78) and (8.79) finally gives the principle of least action:*
[
f_\f pig, dt =0, (8.80)
It

By way of caution, note that the modified Hamilton’s principle can be written
in a form with a superficial resemblance to Eq. (8.80). If the trajectory of the sys-
tem point is described by a parameter €, as in Sections 7.10 and 8.4, the modified
Hamilton’s principle appears as

L
8§ (pig, — H)t' df = 0. (8.81)
&

It will be recalled (cf. footnote on p. 351) that the momenta p, do not change
under the shift from ¢ to 6, and that §;t' = ¢,. Further, the momentum conjugate
to t is — H. Hence, Eq. (8.81) can be rewritten as

a n+1
8 f D pigidé =0, (8.82)
Ei =1

where ¢ has been denoted by gyn+1. There should however be no confusion be-
tween Eq. (8.82) and the principle of least action, Equations (8.82) involve phase

space of (2n + 2) dimensions, as is indicated by the explicit summation to | =
n + 1, whereas Eq. (8.80) is in the usual configuration space. But most important,
the principle of least action is in terms of a A-variation for constant H, while
Eq. (8.82) employs the §-variation, and H in principle could be a function of time.
Equation (8.82) is nothing more than the modified Hamilton’s principle, and the
absence of a Hamiltonian merely reflects the phenomenon that the Hamiltonian
vanishes identically for the “homogeneous problem.”

The least action principle itself can be exhibited in a variety of forms. In non-
relativistic mechanics, if the defining equations for the generalized coordinates do
not involve the time explicitly, then the kinetic energy is a quadratic function of
the g,'s (cf. Eq. (1.71)):

T = 5M,i(g)d 4. (8.83)
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When in addition the potential is not velocity dependent, the canonical momenta
are derived from T only, and in consequence

f o} q.; = 2Tr

The principle of least action for such systems can therefore be written as
ta
é.f Tdt=0. (8.84)
iy

If, further, there are no external forces on the system, as, for example, a rigid body
with no net applied forces, then T is conserved along with the total energy H. The
least action principle then takes the special form

Atz — ;) =0. (8.85)

Equation (8.85) states that of all paths possible between two points, consistent
with conservation of energy, the system moves along that particular path for which
the time of transit is the least (more strictly, an extremum). In this form the princi-
ple of least action recalls Fermat’s principle in geometrical optics that a light ray
travels between two points along such a path that the time taken is the least. We
discussed these considerations in Section 10-8 of the Second Edition when we
considered the connection between the Hamiltonian formulation and geometrical
optics.

In Section 7.4 we discussed the infinitesimal interval in a metric space giving

the interval as

ds* =g uudx®dx® (7.32)

where g, was the metric of a possibly curvilinear space and ds® was the interval
traversed for displacements given by dx*. We can do something entirely similar
here whenever T is of the form of Eq. (8.83). A configuration space is therefore
constructed for which the M coefficients form the metric tensor. In general, the

space will be curvilinear and nonorthogonal. The element of path length in the
space is then defined by (cf. Eqg. (7.33"))

dp)? = M, dg, dax (3.86)

so that the kinetic energy has the form

1 do =
T==-{|—— -
5 (d: N (B.8B7)
or eguivalently
do
gt = - B_BR
Y o { >
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Equation (8.88) enables us to change the variable in the abbreviated action
integral from ¢ to p, and the principle of least action becomes

I &
a.f Tdr=0=ﬂ.f VT/2dp,
Iy £t

or, finally

7]
A f VH =V(g)dp =0. (8.89)
Pt

Equation (8.89) is often called Jacobi's form of the least action principle. It now
refers to the path of the system point in a special curvilinear configuration space
characterized by a metric tensor with elements M ;. The system point traverses
the path in this configuration space with a speed given by /2T . If there are no
forces acting on the body, T is constant, and Jacobi's principle says the system
point travels along the shortest path length in the configuration space. Equiva-
lently stated, the motion of the system is then such that the system point travels
along the geodesics of the configuration space.

Note that the Jacobi form of the principle of least action is concerned with the
path of the system point rather than with its motion in time. Equation (8.89) is a
statement about the element of path length dp; the time nowhere appears, since
H is a constant and V depends upon g, only. Indeed, it is possible to use the
Jacobi form of the principle to furnish the differential equations for the path, by a
procedure somewhat akin to that leading to Lagrange’s equations. In the form of
Fermat's principle, the Jacobi version of the principle of least action finds many
fruitful applications in geometrical optics and in electron optics. To go into any

detail here would lead us too far afield.
A host of other similar, variational principles for classical mechanics can be

derived in bewildering variety. To give one example out of many, the principle
of least action leads immediately to Hertz's principle of least curvature, which
states that a particle not under the influence of external forces travels along the
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POSSIBLE QUESTIONS
Part B (6 Marks)

1.Define Cyclic coordinates and Explain conservation theorems.

2.Derive Hamilton’s canonical equation of motion

3.0Obtain the hamilton’s equation of motion considering a single non relativistic particle
moving in an electromagnetic field

4.Explain the principle of least action

5.Explain the construction of Hamilton through Lagrangian.

Part C (10 Marks)

1.ExplainRouth’s procedure.

2.0btain the hamilton’s equation of motion using spherical polar co-ordinates considering
the spatial motion of a particle in the central force field

3.Derivation of Hamilton equation from a variational principle

4.Explain the principle of least action
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Class :1- M.Sc. Mathematics Semester
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Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions
Question Opt1 Opt 2 Opt3 Opt 4 Answer

When a particle moves in a plane its motion is said Coplanar
to be Colinear motion [motion Radial Transverse Coplanar motion
The radial component of radius vector is

3 ) T G 3
The transverse component of radius vector is

1) 0 G T 1)
The intersection of the plane and the cone is called | Equiangular Angular

spiral Apse Conic momentum Conic

is a curve in which the angle

between the radius vector and the respective Equiangular Angular
tangent is a constant. spiral Apse Conic momentum Equiangular spiral
Equiangular spiral is a curve in which the angle
between the radius vector and the respective
tangent is a Unity Zero Infinity Constant Constant
A is a force whose
line of action always passes through a fixed point. | Central force Apse Areal velocity | Central orbit Central force
The path describe by a particle under a central force
is called Central force Apse Areal velocity | Central orbit Central orbit
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The polar equation of a conic is

l/r=1+ecos0 = 1+ecos0 r=1/(1+ecosB) | r=1-ecosb 1/r=1+ecos0
1/r=1+ecos0 is the polar equation of
Coplanar Conic Central force Central orbit Conic
The corresponding value for r at an apse point is
called Apse Areal velocity | Apsidal distance | Areal distance Apsidal distance
Each planet describes an
with the sun at one of the focus. Parabola Hyperparabola | Conic Ellipse Ellipse
Kepler's first law states that the orbit is an
orbit with the sun. Elliptic Hyperparabola | Parabola Conic Elliptic
Kepler's second law states that the
is constant. Apse Areal velocity | Central force Central orbit Areal velocity
Kepler's third law states that square of the
is proportional to the cube of
the semimajor axis. Amplitude Periodic time | Acceleration Areal velocity Periodic time
law states that the orbit is
an elliptic orbit with the sun. Kepler's first Kepler's second | Kepler's third Kepler's fourth Kepler's first
law states that the areal
velocity is constant. Kepler's first Kepler's second | Kepler's third Kepler's fourth Kepler's second
law states that square of the
periodic time is proportional to the cube of the
semimajor axis. Kepler's first Kepler's second | Kepler's third Kepler's fourth Kepler's third
Kepler's second law states that the areal velocity is
Constant Zero Unity Infinity Constant
The deduction of newton's law of gravitation is a Newton's Newton's third
consequence of Kepler's law second law law Newton's first law | Kepler's law
The deduction of of gravitation | Kepler's first Kepler's Kepler's third
is a consequence of kepler's law. law second law law Newton's law Newton's law
Equiangular spiral is a curve in which the angle
between the and the
respective tangent is a constant. Acceleration Radius Radius vector | Acceleration vector | Radius vector
Equiangular spiral is a curve in which the angle
between the radius vector and the respective Tangential
is a constant. Tangent resistance Radius Acceleration Tangent
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Let r be the position vector of the moving particle
of mass m having a velocity v then the momentum

vector is . mtv m-v mv m/v mv
is an orbit under a Angular
central circular forces. Conic Central orbit Areal velocity |[momentum Central orbit

Central orbit is an orbit under a central

Colinear force | Circular force | Coplanar force | Cardiod Circular force
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Canonical transformations: The equations of canonical transformation — Examples of Canonical
transformations — Poission Brackets and other Canonical invariants — integral invariants of
Poincare, Lagrange brackets.

9.1 B THE EQUATIONS OF CANONICAL TRANSFORMATION

There is one type of problem for which the solution of the Hamilton's equations is
trivial. Consider a situation in which the Hamiltonian is a constant of the motion,
and where all coordinates g, are cyclic. Under these conditions, the conjugate
momenta p; are all constant:

=,

and since the Hamiltonian cannot be an explicit function of either the time or the
cyclic coordinates, it may be written as

H=H(u,...,a,).

Consequently, the Hamilton's equations for g, are simply

,_HH_ 9.1
q:—aml—wn (9.1)

where the e,’s are functions of the «;’s only and therefore are also constant in
time. Equations (9.1) have the immediate solutions

gy = wil + ﬁh {92)

where the 8,’s are constants of integration, determined by the initial conditions.

It would seem that the solution to this type of problem, easy as it is, can only
be of academic interest, for it rarely happens that all the generalized coordinates
are cyclic. But a given system can be described by more than one set of general-
ized coordinates. Thus, to discuss motion of a particle in a plane, we may use as
generalized coordinates either the Cartesian coordinates

q1 = x, Q=Y
or the plane polar coordinates

gi=r, q: = 6.
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Both choices are equally valid, but one of the other set may be more convenient
for the problem under consideration. Note that for central forces neither x nor y
is cyclic. while the second set does contain a cyclic coordinate in the angle 8. The
number of cyclic coordinates can thus depend upon the choice of generalized co-
ordinates, and for each problem there may be one particular choice for which all
coordinates are cyclic. If we can find this set, the remainder of the job is trivial.
Since the obvious generalized coordinates suggested by the problem will not nor-
mally be cyclic, we must first derive a specific procedure for transforming from
one set of variables to some other set that may be more suitable.

The transformations considered in the previous chapters have involved going
from one set of coordinates g; to a new set @, by transformation equations of the
form

= Qi (g, r). (9.3)

For example, the equations of an orthogonal transformation, or of the change
from Cartesian to plane polar coordinates, have the general form of Egs. (9.3).
As has been previously noted in Derivation 10 of Chapter 1, such transformations
are known as point iransformations. But in the Hamiltonian formulation the mo-
menta are also independent variables on the same level as the generalized coordi-
nates. The concept of transformation of coordinates must therefore be widened to
include the simultaneous transformation of the independent coordinates and mo-
menta, q,, p;, to a new set ¢;, P,, with (invertible) equations of transformation:

Qi: = Ql ("?f P r}'l
P, = P (g, p.1). (9.4)

In developing Hamiltonian mechanics, only those transformations can be of in-
terest for which the new @, P are canonical coordinates. This requirement will be
satisfied provided there exists some function K(Q, P, f) such that the equations
of motion in the new set are in the Hamiltonian form

: aK . aK
0 = a_ﬁ'. P = -a—Q'. (9.5

The function K plays the role of the Hamiltonian in the new coordinate set.*
It is important for future considerations that the transformations considered be
problem-independent. That is to say, (. P) must be canonical coordinates not
only for some specific mechanical systems, but for all systems of the same num-
ber of degrees of freedom. Equations (9.5) must be the form of the equations of
motion in the new coordinates and momenta no matter what the particular initial
form of H. We may indeed be incited to develop a particular transformation from
(g, p) to {2, P) to handle, say, a plane harmonic oscillator. But the same trans-
formation must then also lead to Hamilton's equations of motion when applied.
for example, to the two-dimensional Kepler problem.
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As was seen in Section 8.5, if @, and P, are to be canonical coordinates, they
must satisfy a modified Hamilton’s principle that can be put in the form

i1 .
§1 (RO —K(Q,P.1))dt =0, (9.6)

f

(where summation over the repeated index 7 is implied). At the same time the old
canonical coordinates of course satisfy a similar principle:

ta
[~ Ha. ) dr =0 ©.7)

The simultaneous validity of Eqgs. (9.6) and (9.7) does not mean of course that the
integrands in both expressions are equal. Since the general form of the modified
Hamilton's principle has zero variation at the end points, both statements will be
satisfied if the integrands are connected by a relation of the form

. . dF
AfPr'?t—H]=PrQJ—K+'E;- (9.8)
Here F is any function of the phase space coordinates with continuous second
derivatives, and A is a constant independent of the canonical coordinates and the
time. The multiplicative constant A is related to a particularly simple type of trans-
formation of canonical coordinates known as a scale transformation.

Suppose we change the size of the units used to measure the coordinates and
momenta so that in effect we transform them to a set (Q’, P’) defined by

Q! = ug,, P/ =vp,. (9.9)

Then it is clear Hamilton’s equations in the form of Egs. (9.5) will be satisfied
for a transformed Hamiltonian K'(Q’, P') = uvH(g, p). The integrands of the
corresponding modified Hamilton's principles are, also obviously, related as

uv(pig. — H)y=P/Q; — K', (9.10)

which is of the form of Eq. (9.8) with A = gv. With the aid of suitable scale trans-
formation, it will always be possible to confine our attention to transformations
of canonical coordinates for which A = 1. Thus, if we have a transformation of
canonical coordinates (g, p) — (@', P’) for some A # 1, then we can always
find an intermediate set of canonical coordinates (Q, P) related to (Q’, P") by a
simple scale transformation of the form (9.9) such that s v also has the same value
A. The transformation between the two sets of canonical coordinates (g, p) and
(@, P) will satisfy Eq. (9.8), but now with A = 1:
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Since the scale transformation is basically trivial, the significant transformations
to be examined are those for which Eq. (9.11) holds.

A transformation of canonical coordinates for which A £ 1 will be called an
extended canonical transformation. Where A = 1, and Eq. (9.11) holds, we will
speak simply of a canonical transformation. The conclusion of the previous para-
graph may then be stated as saying that any extended canonical transformation
can be made up of a canonical transformation followed by a scale transforma-
tion. Except where otherwise stated, all future considerations of transformations
between canonical coordinates will involve only canonical transformations. It is
also convenient to give a specific name to canonical transformations for which the
equations of transformation Eqs. (9.4) do not contain the time explicitly; they will
be called restricted canonical transformations.

The last term on the right in Eq. (9.11) contributes to the variation of the ac-
tion integral only at the end points and will therefore vanish if F is a function of
(g, p,t) or (Q, P, 1) or any mixture of the phase space coordinates since these
have zero variation at the end points. Further, through the equations of transfor-
mation, Eqgs. (9.4) and their inverses F can be expressed partly in terms of the old
set of variables and partly of the new. Indeed, F is useful for specifying the exact
form of the canonical transformation only when half of the variables (beside the
time) are from the old set and half are from the new. It then acts, as it were, as
a bridge between the two sets of canonical variables and is called the generating

Junction of the transformation. )
The last term on the right in Eq. (9.11) contributes to the variation of the ac-

tion integral only at the end points and will therefore vanish if F is a function of
(g, p,t) or (Q, P, 1) or any mixture of the phase space coordinates since these
have zero variation at the end points. Further, through the equations of transfor-
mation, Eqgs. (9.4) and their inverses F can be expressed partly in terms of the old
set of variables and partly of the new. Indeed, F is useful for specifying the exact
form of the canonical transformation only when half of the variables (beside the
time) are from the old set and half are from the new. It then acts, as it were, as
a bridge between the two sets of canonical variables and is called the generating
JSunction of the transformation.

To show how the generating function specifies the equations of transforma-
tion, suppose F were given as a function of the old and new generalized space

coordinates:
F = Filg, 2.1). (9.12)
Equartion (9.11) then takes the form

) - d
gy — H=FiQ, — K + dr
. aF; ad F aF] -
=PO —K+— +"15 Lo,. (9.13)

ar g V30,
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Since the old and the new coordinates, g, and Q,, are separately independent,
Eq. (9.13) can hold identically only if the coefficients of g, and Q; each vanish;

aF
pi = —, (9.14a)
dgq,
aF
P,=—=——mr 9.14b
leaving finally
adF
K=H+—.
+ 3 (9.14¢)

Equations (9.14a) are n relations defining the p, as functions of ¢;, Q,, and 1.
Assuming they can be inverted, they could then be solved for the n Q;'s in terms
of g;, p;, and ¢, thus yielding the first half of the transformation equations (9.4).
Once the relations between the Q;'s and the old canonical variables (g, p) have
been established, they can be substituted into Egs. (9.14b) so that they give the n
FP,’s as functions of q,, p;, and r, that is, the second half of the transformation
equations (9.4). To complete the story, Eq. (9.14¢) provides the connection be-
tween the new Hamiltonian, X, and the old one, H. We must be careful to read
Eq. (9.14c) properly. First g and p in H are expressed as functions of Q and P
through the inverses of Egs. (9.4). Then the g, in 3 F) /3¢ are expressed in terms
of @, P in a similar manner and the two functions are added to yield K (Q, P, ).

The procedure described shows how, starting from a given generating function
Fi, the equations of the canonical transformation can be obtained. We can usually
reverse the process: Given the equations of transformation (9.4), an appropriate
generating function F; may be derived. Equations (9.4) are first inverted to ex-
press p, and P, as functions of ¢, @, and ¢. Equations (9.14a, b) then constitute
a coupled set of partial differential equations than can be integrated, in principle,
to find F} providing the transformation is indeed canonical. Thus, F; is always
uncertain to within an additive arbitrary function of ¢ alone (which doesn’t affect
the equations of transformation), and there may at times be other ambiguities.

It sometimes happens that it is not suitable to describe the canonical transfor-
mation by a generating function of the type Fi(g, Q. t). For example, the trans-
formation may be such that p, cannot be written as functions of ¢, Q, and ¢, but

rather will be functions of g, P, and r. We would then seck a generating func-
tion that is a function of the old coordinates ¢ and the new momenta P. Clearly
Eq. (9.13) must then be replaced by an equivalent relation involving P; rather than
Q;. This can be accomplished by writing F in Eg. (9.11) as

F =F(q, P, 1) — O P (9.15)
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Substituting this F in Eq. (9.11) leads to
d

piql_H:_Q'P!_K-I_dI

Fy(g, P, 1). (9.16)

Again, the total derivative of F> is expanded and the coefficients of g, and P,
collected, leading to the equations

- aF

b= (9.17a)
g,
aFs
Q = op," (9.17b)
with
aF:
K =H+a—:. (9.17¢)

As before, Egs. (9.17a) are to be solved for £; as functions of g, p,, and t to cor-
respond to the second half of the transformation equations (9.4). The remaining
half of the transformation equations is then provided by Egs. (9.17b).

The corresponding procedures for the remaining two basic types of generating
functions are obvious, and the general results are displayed in Table 9.1.

It is tempting to look upon the four basic types of generating functions as
being related to each other through Legendre transformations. For example, the

TABLE 9.1 Properties of the Four Basic Canonical Transtormations

Generating Function Generating Funclion Derivatives Trivial Special Case
ﬂFl daF)

F=Fg.0.1) = — Py F|= . i = P, P ==

1g P 3 [ a0, 1=q & =p i a4

dfa aFz

F=Fg P.n)-QF, Pi= a0 Q’=ﬁ Fr=qP, Q=g F=p
aF 8 F

F=Fp.0.0) +an ql=__3 sz__3 F=pQ, OG=-q F=-p
ap, a0,
aF, o F,

F=Fyp, PO+ qp—O P Q:=__4 Q!=_4 Fy=p F, @ = p1, Fi=-gq
ap, aF,

transition from Fy to F; is equivalent to going from the variables g, Q to g, P
with the relation

—Fj = a—Q:q (913}
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Thoivs is o ine form required Tor alegendre wansiormanon of the basis vandoies,
as described in Section 8.1, and in analogy to Eq. (8.5) we would set

F(q, P,t) = Fi(g, Q,1) + P, Q,, (9.19)

which is equivalent to Eq. (9.15) combined with Eq. (9.12). All the other defining
equations for the generating functions can similarly be looked on, in combina-
tion with Eq. (9.12) as Legendre transformations from F|, with the last entry in
Table 9.1 describing a double Legendre transformation. The only drawback to
this picture is that it might erroneously lead us to believe that any given canoni-
cal transformation can be expressed in terms of the four basic types of Legendre
transformations listed in Table 9.1. This is not always possible. Some transfor-
mations are just not suitable for description in terms of these or other elementary
forms of generating functions, as has been noted above and as will be illustrated
in the next section with specific examples. If we try to apply the Legendre trans-
formation process, we are then led to generating functions that are identically
zero or are indeterminate. For this reason, we have preferred to define each type
of generating function relative to F, which is some unspecified function of 2
independent coordinates and momenta.

Finally, note that a suitable generating function doesn’t have to conform to
one of the four basic types for all the degrees of freedom of the system. It is
possible, and for some canonical transformations necessary, to use a generating
function that is a mixture of the four types. To take a simple example, it may be
desirable for a particular canonical transformation with two degrees of freedom
to be defined by a generating function of the form

F'(q1, p2, P1, Q2. 1). (9.20)
This generating function would be related to F in Eq. (9.11) by the equation

F = F'(g1, p2, P, Q2.1) — Q1 P\ + @22, (9.21)

and the equations of transformation would be obtained from the relations

_aF _aF
aF' aF’
== e —— (9’22]
= o aQ
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aF’
K=H+ R (9.23)

Specific illustrations are given in the next section and in the exercises.

9.2 B EXAMPLES OF CANONICAL TRANSFORMATIONS

The nature of canonical transformations and the role played by the generating
function can best be illustrated by some simple yet important examples, Let us
consider, first, a generating function of the second type with the particular form

Fy=gqi P (9.24)
found in column 3 of Table 9.1. From Egs. (9.17), the transformation equations
are

aF
=——=P
.pl aqr [ ]
dF
0 = IP:' =4,
K=H. (9.25)

The new and old coordinates are the same; hence F2 merely generates the identity
rransformation (cf. Table 9.1). We also note, referring to Table 9.1, that the par-
ticular generating function F3 = p, 0, generates an identity transformation with

e — —————

A more general type of transformation is described by the generating function
Fz = filg1.,....Gn: )P, (9.26)

where the f; may be any desired set of independent functions. By Eqgs. (9.17b),
the new coordinates (; are given by
d 2

o, = 3P, = Fildss - - -+ Gus ) (9.27)

Thus, with this generating function the new coordinates depend only upon the
old coordinates and the time and do not involve the old momenta. Such a trans-
formation is therefore an example of the class of point transformations defined
by Eqs. (9.3). In order to define a point transformation, the functions f; must be
independent and invertible, so that the g; can be expressed in terms of the O,.
Since the f; are otherwise completely arbitrary, we may conclude that il poinr
fransformations are canconical. Equation (9.17c¢) furmishes the new Hamiltonian
in terms of the old and of the time derivatives of the f; functions.
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Note that F; as given by Eq. (9.26) is not the only generating function leading
to the point transformation specified by the f;. Clearly the same point transfor-
mation is implicit in the more general form

Fa=filgi.....qn: )P, +8(g1,....qn 1), (9.28)

where g(g, 1) is any (differentiable) function of the old coordinates and the time.
Equations (9.27), the transformation equations for the coordinates, remain unal-
tered for this generating function. But the transformation equations of the mo-
menta differ for the two forms. From Egs. (9.17a), we have

Ak of dg
= P+ , (9.29
dq, 9q, dq; )

Py =

using the form of F> given by Eq. (9.28). These equations may be inverted to give
P as a function of (g, p), most easily by writing them in matrix notation:
_Mp

dq aq
Here p, P, and 3g/3q are n-elements of single-column matrices, and 3f/3q is a

square matrix whose ijth element is 3f;/dg,. In two dimensions, Eq. (9.29") can
be wrilten as

p (9.29')

oh i %
[pl] _| % ¢ [PI N dq
plT on o |LR]T | 2
g1 Aq 9g2
It follows that B is a linear function of p given by
P— [%]_i |:p - g-f‘-] . (9.30)
In two dimensions, (9.30) becomes
afi 37 og
[i;] = g g [g;] - z : (9.31)
dq1 g2 9q2

Thus, the transformation equations {(9.27) for ( are independent of g and depend
only upon the f; (g, r), but the transformation equations (9.29) for P do depend
upon the form of g and are in general functions of both the old coordinates and
momenta. The generating function given by Eq. (9.26) is only a special case of
Eq. (9.28) for which g = 0, with comrespondingly specialized transformation
equations for P.
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An instructive transformation is provided by the generating function of the first
kind, Fi(g, @, t), of the form

Fy =g Q.

The corresponding transformation equations, from (9.14a, b) are

a F,
P = B_qr;i =0, (9.32a)
aF
P = ~é?1 = —q. (9.32b)

In effect, the transformation interchanges the momenta and the coordinates; the
new coordinates are the old momenta and the new momenta are essentially the old
coordinates. Table 9.1 shows that the particular generating function of type Fs =
p: F, produces the same transformation, These simple examples should emphasize
the independent status of generalized coordinates and momenta. They are both
needed to describe the motion of the system in the Hamiltonian formulation. The
distinction between them is basically one of nomenclature. We can shift the names
around with at most no more than a change in sign. There is no longer present in
the theory any lingering remnant of the concept of g, as a spatial coordinate and
p; as a mass times a velocity. Incidentally, we may see directly from Hamilton's
equations,

0H . 8H
aqg! QI apll

that this exchange transformation is canonical. If g, is substituted for p,, the equa-

J'i': =

that this exchange transformation is canonical. If g, is substituted for p,, the equa-
tions remain in the canonical form only if —p, is substituted for g,.

A transformation that leaves some of the (g, p) pairs unchanged, and inter-
changes the rest (with a sign change), is obviously a canonical transformation of
a “mixed” form. Thus, in a system of two degrees of freedom, the transformation

i =qi1, P =p,
Q2= p2, Py = —q,

is generated by the function

F=q P+ q@Q:, (9.33)

which is a mixture of the F and F; types.
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9.3 B THE HARMONIC OSCILLATOR

As a final example, let us consider a canonical transformation that can be used to
solve the problem of the simple harmonic oscillator in one dimension. If the force

constant is k. the Hamiltonian for this problem in terms of the usual coordinates
is

2 2
_p- kg
H= ot (9.34a)

Designating the ratio k/m by w?, H can also be written as
1
— ﬁ(ﬂz +m2mzq1]. (9.34b)
This form of the Hamiltonian, as the sum of two squares, suggests a transfor-

mation in which H is cyclic in the new coordinate. If we could find a canonical
transformation of the form

p= f(P)cos @, (9.35a)
_f(P) .
= = sin Q, (9.35b)

then the Hamiltonian as a function of Q and P would be simply

AP, .y o fAP)
- (cos® Q +sin“ Q) = o

so that Q is cyclic. The problem is to find the form of the yet unspecified function
f(P) that makes the transformation canonical. If we use a generating function of
the first kind given by

K=H=

(9.36)

rcog?
2

Fi = cot (2, (9.37)

Egs. (9.14) then provide the eguations of transformation,

dF
P = - moang cot O, (9.38a)
dg
2
p=_2F1 __ mwg (9.38b)

T80 2sin2 o’

Solving for g and p., we have™

g = .||'| 2P sin O, (9.39a)
e
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and comparison with Eq. (9.35a) evaluates f(P):
F(P) = /2mwP. (9.40)
It follows then that the Hamiltonian in the transformed variables is
H=wP. (9.41)

Since the Hamiltonian is cyclic in Q, the conjugate momentum P is a constant. It
is seen from Eqg. (9.41) that P is in fact equal to the constant energy divided by w:

p==.
w

The equation of motion for O reduces to the simple form

5 aH
C=a T
with the immediate solution
0 =wt+a, (9.42)

where @ is a constant of integration fixed by the initial conditions. From Eqgs.
(9.39), the solutions for ¢ and p are

where « is a constant of integration fixed by the initial conditions. From Eqgs.
(9.39), the solutions for ¢ and p are

2E .
g =,/ — sin(wt + o), (9.43a)
P = ' 2mE cos(wt + o). (9.43b)

It is instructive to plot the time dependence of the old and new wvariables as is
shown in Fig. 9.1. We see that g and p oscillate (Fig. 9.1a, b) whereas @ and P
are linear plots (Fig. 9.1d, e). The figure also shows the phase space plots for p
versus g (Fig. 9.1¢) and for P versus Q (Fig. 9.1f). Fig. 9.1c is an ellipse with the
following semimajor axes (for the ¢ and p directions, respectively):

2FE
rrco

where m is the mass of the oscillator, w its frequency, and E the oscillator’s en-
ergy. The area, A, of this ellipse in phase space is

and b= ~2mE,

a =

A=:ﬂ‘ab=£.
o
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FIGURE 2.1 The harmonic oscillator in two canonical coordinate systems. Draw-
mgs (a)(c) show the g, p systemn and (d)}—(f) show the F, O system.

When we invoke gquantum mechanics, we write £ — Row, where R = /2w, and h
is Planck’s constant. The coordinate and momentum g and p can be normalized as

2
FRL GO ¥ -
o and P = -
25 2m E

g’ =

to make the phase space plot of p’ versus g’ a circle of area sr. This normalized
form will be useful in Section 11.1 on chaos.
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9.4 WM THE SYMPLECTIC APPROACH TO CANONICAL TRANSFORMATIONS

Another method of treating canonical transformations, seemingly unrelated to the
generator formalism, can be expressed in terms of the matrix or symplectic for-
mulation of Hamilton’s equations. By way of introduction to this approach, let us
consider a restricted canonical transformation, that is, one in which time does not
appear in the equations of transformation;

o = (g, p).
P, = Pi(q, p). (9.44)

We know that the Hamiltonian function does not change in such a transformation.
The time derivative of Q,, on the basis of Eqgs. (9.44), is to be found as

_ 90, 00, 30, 8H 93Q,0H

Qi = —4 p, = - . (9.45
dg; "' " 3p,"’ " dq, 8p; dp, dg, :
On the other hand, the inverses of Egs. (9.44),

q; == QJ(Q- P)?

p; = pj(Q, P), (9.46)
enables us to consider H (g, p, t) as a function of Q and P and to form the partial
derivative

dH 8H 3 dH @
_ 220, 4 (9.47)

P, ~ dp, 3P,  8q, 8P,
Comparing Eqs. (9.45) and (9.47), it can be concluded that

aH

Qr=ﬁ::

that is, the transformation is canonical, only if

9, (2,
o =|— . — =—|— . 048
( 3q; g.p aF; Q.P ap, g.p ap Q.r ( )
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The subscripts on the derivatives are to remind us that on the left-hand side of
these equations ; is considered as a function of (g, p) (cf. Egs. (9.44)), while
on the right-hand side the derivatives are for g, and p, as functions of (Q, P) (cf.
Eqgs. (9.46)). A similar comparison of P, with the partial of H with respectto Q,

leads to the conditions
(ﬂ) . ( 3"1) (ﬂ) = (a‘?} ) . (9.48b)
a“?.l' g.p aQI o.p H.PJ G.p aQr o.P
The sets of Eqgs. (9.48) together are sometimes known as the “direct conditions™
for a (restricted) canonical transformation.

The algebraic manipulation that leads to Egs. (9.48) can be performed in a
compact and elegant manner if we make use of the symplectic notation for the
Hamiltonian formulation introduced above at the end of Section 8.1. If pis a
column matrix with the 2n elements ¢,, p,, then Hamilton’s equations can be
written, it will be remembered, as Eq. (8.39)

b= aH
=g
i) oH
n= on’
where ] is the antisymmetric matrix defined in Eq. (8.38a). Similarly the new set
canonical transformation the equations of transformation (9.44) s fie ey

&=E).

Analogously to Eq. (9.45) we can seek the equations of motion for fhe www
ables by looking at the time derivative of a typical element of {

o
an, J

In matrix notation, this time derivative can be written as
{ = M.
where M is the Jacobian matrix of the transformation with elememes
9¢,

1y = 3’71’

L= ij=1,...,2n.

Making use of the equations of motion for 0, Eq. (9.50) becomes
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. dH
=M] —. 9.52
¢ ) o (9-32)

Now, by the inverse transformation H can be considered as a function of £, and
the derivative with respect to i, evaluated as

oH _ 3R 3,
am 9L, dm,’
or, in matrix notation*®
dH ~98H
—_ =M 9.53

The combination of Eqgs. (9.52) and (9.53) leads to the form of the equations

of motion for any set of variables { transforming, independently of time, from the
canonical set n:

. ~ 3 H
= MM —. 9.54
£ =MIM ©54)
We have the advantage of knowing from the generator formalism that for a re-
stricted canonical transformation the old Hamiltonian expressed in terms of the
new variables serves as the new Hamiltonian:

. oH ,
{= —E’E. (9.54")

The transformation, Eq. (9.49), will therefore be canonical if M satisfies the con-
dition

MIM = J. (9.55)

That Eqg. (92.55) is also a necessary condition for a restricted canonical transforma-
tion is easily shown directly by reversing the order of the steps of the proof. Note
that for an extended time-independent canonical transformation, where K = A H,
the condition of Eq. {9.55) would be replaced by

MIM = A). (9.56)

Equation (9.55) may be expressed in various forms. Multiplying from the right
by the matrix inverse to M leads to

MJ = JM Y, (9.57)
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(since the transpose of the inverse is the inverse of the transpose). The elements
of the matrix equation (9.57) will be found to be identical with Egs. (9.48a) and
(9.48b). If Eq. (9.57) is multiplied by } from the left and —J from the right, then
by virtue of Eq. (8.38e) we have

M =M,

MIM = ). (9.58)

Equation (9.55), or its equivalent version, Eq. (9.58), is spoken of as the sym-
plectic condition for a canonical transformation, and the matrix M satisfying the
condition is said to be a symplectic matrix.

These concepts may become more obvious if we display the details of the J and
M matrices corresponding to the mixed generating function F = Fa(g1, P1) +
Fi(g2, Q32) of Eq. (9.33). The variables n and { are column vectors given by

q1 Q1

_| % and _ [07]
" Pl £ P
P2 Pa

The transformation g = M1} (cf. Eq. (9.50)) is made by the following M matrix:

o} 1 0 0 0][d g1
Q2 _ (0 0 O 1ifga|_| P2
Pl (0 0 1 Opip| | A
Py 0 -1 0 0] [p —G2

in agreement with the expressions obtained by differentiating the results of the
generating function with respect to time (cf. Column 3, Table 9.1). Hamilton's

equations for the transformed variables ¢ = ]% (Eq. (9.54")) are expressed as
follows independent of the generating function F

Q1 1] 1] 1 —f':';
Oa _ 1] 4] 0 — P
Sl |l—1 o o el
Pz 0 —1 0 Q2

where — P, = 8H /8L for &) and &2 and @, = 8H /8¢ for ¢3 and £4. MNote
that M depends on F whereas J does not (cf. Eq. (8.38a)). This formalism is not
applicable to all cases. For example, a simple M matrix cannot be written for the
harmonic oscillator example discussed in Section 9.3.

=Nl
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A canonical transformation of the form

L=E&(n1n (9.59)

evolves continuously as time increases from some initial value #. It is a single-
parameter instance of the fumily of continuous transformations first studied sys-
tematically by the mathematician Sophus Lie and as such plays a distinctive role
in the transformation theory of classical mechanics.

If the transformation

n— {(t) (9.60a)
is canonical, then so obviously is the transformation

1 — L(t). (9.60b)

It follows then from the definition of canonical transformation that the transfor-
mation characterized by

L) = L) (9.60c)

is also canonical. Since #j in Eq. (9.60b) is a fixed constant, this canonical trans-
formation satisfies the symplectic condition (9.58). If now the transformation of
Eq. (9.60c) obeys the symplectic condition, it is easy to show (cf. Derivation 13)
that the general transformation Eq. (9.60a) will also.
To demonstrate that the symplectic condition does indeed hold for canonical
u'ansfun'natmns of the type of Eq. (9.60c), we introduce the notion of an infinites-
" imal canonical transformation {abbreviated I.CT.), a concepl that Will prove to
be widely useful. As in the case of infinitesimal rotations, such a transformation
is one in which the new variables differ from the old only by infinitesimals. Only
first-order terms in these infinitesimals are to be retained in all calculations. The
transformation equations can then be written as

QO =qg; + g, (9.61a)
P,=p, +8p, (9.61b)

or in matrix form
L=n+dn (9.61c)

(Here dg, and 8p, do nof represent virtual displacements but are simply the in-
finitesimal changes in the coordinates and momenta.) An infinitesimal canonical
transformation thus differs only infinitesimally from the identity transformation
discussed in Section 9.1. In the generator formalism, a suitable generating func-
tion for an LC.T. would therefore be

F; =g, P +€G(g, P, 1), (9.62)
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where ¢ is some infinitesimal parameter of the transformation, and G is any (dif-
ferentiable) function of its 2n + 1 arguments. By Eq. (9.17a), the transformation
equations for the momenta are to be found from

aF; G
=—=P+e—
PI agJ J aqj
or
G
8p, =P, —pj=—€—. (9.63a)
dq,

Similarly. by Eq. (9.17b), the transformation equations for 0, are determined by
the relations
OF, _ , 9G

Q)=3p, =V *e3p;

Since the second term is already linear in €, and P differs from p only by an in-
finitesimal, it is consistent to first order to replace P, in the derivative function by
p;. We may then consider 7 as a function of ¢, p only (and possibly t). Following
the usual practice, we will refer to G(g, p) as the generating function of the in-
finitesimal canonical transformation, although strictly speaking that designation
belongs only to F. The transformation equation for @, can therefore be written
as

aG
8g, =€ —. (9.63b)
dp,
Both transformation equations can be combined into one matrix equation
3G
5"[ = Elﬁ- (9.630]

An obvious example of an infinitesimal canonical transformation would be the
transformation of Eq. (9.60c) when ¢ differs from fp by an infinitesimal #:

£(to) — £(ro + dr), (9.64)

with dr as the infinitesimal parameter €. The continuous evolution of the trans-
formation £(n, ) from £(7n. o) means that the transformation £(f) — £(¢) can
be built up as a succession of such LC.T.'s in steps of dr. It will therefore suffice
to show that the infinitesimal transformation, Eq. (9.64), satisfies the symplectic
condition (9.58). But it follows from the transformation equations (9.63) that the
Jacobian matrix of any L.C.T. is a symplectic matrix. By definition the Jacobian
matrix (9.51) for an infinitesimal transformation is

_ 8z asn
=an_1+ T
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or by Eg. (9.63¢)

%G
andn

M=1+¢) (9.65)

The second derivative in Eq. (9.65) is a square, symmetric matrix with elements

26\ 9%
dndn y ~ any, 5!3;‘

Because of the antisymmetrical property of |, the transpose of M is

M=1-¢ J. (9.66)

inon

The symplectic condition involves the value of the matrix product

~ 3°G 3°G
MM = |1 1- .
) ( +Ela1]31])l( € Fmaqj)

The symplectic condition involves the value of the matrix product

~ 82G 92G
MM = [1 1- \
) ( +E]a‘qﬂ"q)l( € &naql)

Consistent to first order in this product is

382G 2G
] —Je

ME“I=
) }+ €l amom omom

)
=],

thus demonstrating that the symplectic condition holds for any infinitesima
canonical transformation. By the chain of reasoning we have spun out, it there
fore follows that any canonical transformation, whether or not it involves time a:
a parameter, obeys the symplectic conditions, Eqgs. (9.55) and (9.58).

The symplectic approach, for the most part, has been developed independentl
of the generating function method, except in the treatment of infinitesimal canon
ical transformations. They are of course connected. We shall sketch later, for ex
ample, a proof that the symplectic condition implies the existence of a generatin;
function. But the connection is largely irrelevant. Both are valid ways of looking a
canonical transformations, and both encompass all of the needed properties of th
transformations. For example, either the symplectic or the generator formalism:
can be used to prove that canonical transformations have the four properties tha
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characterize a group (cf. Appendix B).

1. The identity transformation is canonical.

2. If a transformation is canonical, so is its inverse.

3. Two successive canonical transformations (the group “product” operation)
define a transformation that is also canonical.

4. The product operation is associative.

9.5 H POISSON BRACKETS AND OTHER CANONICAL INVARIANTS

The Poisson brackes of two functions u, v with respect to the canonical variables
(g, p) is defined as

[u, U]q,p = T T . (9.67)

In this bilinear expression we have a typical symplectic structure, as in Hamilton’s
equations, where g is coupled with p, and p with —g. The Poisson bracket thus
lends itself readily to being written in matrix form, where it appears as

Ju_ d
[, v]y = a_:;' a_:; (9.68)

The transpose sign is used on the first matrix on the right-hand side to indicate
explicitly that this matrix must be treated as a single-row matrix in the multi-
plication. On most occasions this specific reminder will not be needed and the
transpose sign may be omitted.

Suppose we choose the functions u, v out of the set of canonical variables

(g, p) themselves. Then it follows trivially from the definition, either as Eq. (9.67)
or (9.68), that these Poisson brackets have the values

9. qklg.p = 0= [.Pj!qk]'i's.‘?'

and
[‘?Jr P"‘]q.p = ‘ajk = _[ij ‘Ik}q.p' (9.69)
We can summarize the relations of Egs. (9.69) in one equation by introducing

a square matrix Poisson bracket, [q, nj], whose Im element is [, nm]. Equa-
tions (9.69) can then be written as
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Now let us take for u, v the members of the transformed variables (Q, P), or
£, defined in terms of (g, p) by the transformation equations (9.59). The set of
all the Poisson brackets that can be formed out of (Q, P) comprise the matrix
Poisson bracket defined as

_ 3L, 8
But we recognize the partial derivatives as defining the square Jacobian matrix of
the transformation, so that the Poisson bracket relation is equivalent to

[£, L1y = MIM. (9.71)

If the transformation  — { is canonical, then the symplectic condition holds
and Eq. (9.71) reduces to (cf. Eq. (9.58))

Lg: g]‘l'] = li (9;?2}

and conversely, if Eq. (9.72) is valid, then the transformation is canonical.

Poisson brackets of the canonical variables themselves, such as Eqs. (9.70)
or (9.72), are referred to as the fundamental Poisson brackeis. Since we have
from Eq. (9.70) that

[£. &g =1, (9.73)

Eq. (9.72) states that the fundamental Poisson brackets of the { variables have the
same value when evaluated with respect to any canonical coordinate set. In other
words, the fundamental Poisson brackets are invariant under canonical transfor-
mation. We have seen from Eq. (9.71) that the invariance is a necessary and suffi-
cient condition for the transformation matrix to be symplectic. The invariance of
the fundamental Poisson brackets is thus in all ways equivalent to the symplectic
condition for a canonical transformation.

It does not take many more steps to show that @Il Poisson brackets are invariant
under canonical transformation. Consider the Poisson bracket of two functions
u, v with respect to the n set of coordinates, Eq. (9.68). In analogy to Eq. (9.53),
the partial derivative of v with respect to v can be expressed in terms of partial
derivatives with respect to £ as

Awv ~ By

am 3z
{that is. the partial derivative transforms as a 1-form). In a similar fashion,
5w <~ ou  Bu

am Moz~ o™
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Hence the Poisson bracket Eq. (9.68) can be written

If the transformation is canonical, the symplectic condition in the form of
Eqg. (9.55) holds, and we then have

3u_ v
9" oL
Thus, the Poisson bracket has the same value when evaluated with respect to any
canonical set of variables—all Poisson brackets are canonical invariants. In writ-
ing the symbol for the Poisson bracket, we have so far been careful to indicate by
the subscript the set of variables in terms of which the brackets are defined. So
long as we use only canonical variables that practice is now seen to be unneces-
sary, and we shall in general drop the subscript.*

The hallmark of the canonical transformation is that Hamilton’s equations of
motion are invariant in form under the transformation. Similarly, the canonical in-
variance of Poisson brackets implies that equations expressed in terms of Poisson
brackets are invariant in form under canonical transformation. As we shall see, we
can develop a structure of classical mechanics, paralleling the Hamiltonian for-
mulation, expressed solely in terms of Poisson brackets. Historically this Poisson
bracket formulation, which has the same form in all canonical coordinates, was
especially useful for carrying out the original transition from classical to quantum
mechanics. There is a simple “correspondence principle” that says that the clas-
sical Poisson bracket is to be replaced by a suitably defined commutator of the
corresponding quantum operators.

The algebraic properties of the Poisson bracket are therefore of considerable
interast. We have already used the obvious properties

[u, v]g = = [u. v];. (9.74)

[u,u]=0, (9.75a)
[u, v] = —[v, ul. (antisymmetry) (9.75b)

Almost equally obvious are the characteristics
[au + bv, w] = alu. w] + blv, w], (linearity) (9.75¢)
where a and b are constants, and

[uv, w] = [u, wlv + ulv, w). (9.75d)
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One other property is far from obvious, but is very important in defining the
nature of the Poisson bracket. It is usually given in the form of Jacobi's iden-
tity, which states that if u, v, and w are three functions with continuous second
derivatives, then

[, [v, w]] + [v, [w, #]] + [w, [¥, v]] = 0; (9.75e)

that is, the sum of the cyclic permutations of the double Poisson bracket of three
functions is zero. There seems to be no simple way of proving Jacobi’s identity for
the Poisson bracket without lengthy algebra. However, it is possible to mitigate
the complexity of the manipulations by introducing a special nomenclature. We

shall use subscripts on u, v. w (or functions of them) to denote partial derivatives
by the corresponding canonical variable, Thus,

" = du and Qv
= an;! "IJ == E:h an'

In this notation the Poisson bracket of u and v can be expressed as
[, v1 = u; 7y v,.

Hete J,;, as usual, is simply the ijth element of }. In the proof, the only property
of ] that we shall need is its antisymmerry.
Now let us consider the first double Poisson bracket in Eq. (9.75e):

[u, [v, w]] = u, Iy [v, w]J = w, Jij (v Jwy), .

Because the elements Jj; are constants, the derivative with resect to n doesn’t act
on them, and we have

[u, [v, w]] =u, J:j':ukorﬂw{, + [EF Jrwg). [9;?6}

The other double Poisson brackets can be obtained from Eq. (9.76) by cyclic
permutation of u, v, w. There are thus six terms in all, each being a fourfold sum
over dummy indices i, j. k, and . Consider the term in Eq. (9.76) involving a
second derivative of w:

J;_,-Jk;u,ww;',‘
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Since the order of differentiation is immaterial, wyj = w,y, and the sum of the
two terms is given by

{Ju + th)JkIurvkw!; =0,

by virtue of the antisymmetry of J. The remaining four terms are cyclic permuta-
tions and can similarly be divided in two pairs, one involving second derivatives
of u and the other of v. By the same reasoning, each of these pairs sums to zero,
and Jacobi’s identity is thus verified.

If the Poisson bracket of u, v is looked on as defining a “product™ operation
of the two functions, then Jacobi's identity is the replacement for the associa-

tive law of multiplication. Recall that the ordinary multiplication of arithmetic is
associative; that is, the order of a sequence of multiplications is immaterial:

a(be) = (ab)c.

Jacobi's identity says that the bracket “product” is not associative and gives
the effect of changing the sequence of “multiplications.” Brackets that satisfy
Eqgs. (9.75), together with the expression

(s uy) = ek u. (9.77)
k

constitute a generally noncommunitive algebra called a Lie algebra. For Poisson
brackets in three-dimensional space, either the structure constants cf are all zero
or only one term in the right-hand side of Eq. (9.77) exists for any pair of indices.
Examples of this will be given later, and a more detailed discussion of Lie algebras
is given in Appendix B.

Poisson bracket operation is not the only type of “product” familiar to physi-
cists that satisfies the conditions for a Lie algebra. It will be left to the exercises
to show that that vector product of two vectors,

v[A.B] — A x B, (9.78a)
and the commutator of two matrices,
mla, B] — AB — BA, (9.78b)

satisfy the same Lie algebra conditions as the Poisson bracket. It is this last that
makes it feasible to replace the classical Poisson bracket by the commutator of the
quantum mechanical operators. In other words, the “correspondence principle™
can work only because both the Poisson bracket and commutator are representa-
tions of a Lie algebra “product.”*
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There are other canonical invariants besides the Poisson bracket. One, mainly
of historical interest now, is the Lagrange bracket, denoted by {u, v}. Suppose u
and v are two functions out of a set of 2n independent functions of the canonical
variables. By inversion, the canonical variables can then be considered as funec-
tions of the set of 2n functions. On this basis, the Lagrange bracket of 4 and v
with respect to the (g, p) variables is defined as

dq, dp,  dp, dg; (9.79)

o1, in Matrix notation,
am, 8
(4, V) = =) 2. (9.80)

Proof of the canonical invariance of the Lagrange bracket parallels that for the
Poisson bracket.

If for u and v we take two members of the set of canonical variables, then we
obtain the fundamental Lagrange brackets:

{q“qj}qp =0={p, pj}qp fa, Pj}qp = Elj-r (9.81)

or, in matrix notation,

(n.ml =1 (9.82)

The Lagrange and Poisson brackets clearly stand in some kind of inverse rela-
tionship to each other, but the precise form of this relation is somewhat compli-
cated to express. Let w,, i = 1, ..., 2n, be a set of 2n independent functions of
the canonical variables, to be represented by a column (or row) matrix u. Then
{u, u} is the 2n x 2n matrix whose ijth element is {1, , u,}, with a similar descrip-
tion for [u, u]. The reciprocal character of the two brackets manifests itself in the
relation

{u, u}u, u] = -1. (9.83)

If for u we choose the canonical set itself, n, then Eq. (9.83) obviously fol-
lows from the fundamental bracket formulas, Eqs. (9.70) and (9.82), and the
properties of ). The proof for arbitrary u is not difficult if written in terms of
the matrix definitions of the brackets and is reserved for the exercises. While
the properties of the Lagrange and Poisson brackets parallel each other in
many aspects, note that the Lagrange brackets do nor obey Jacobi’s identity.
Lagrange brackets therefore do not qualify as a “product™ operation in a Lie
algebra.
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Another important canonical invariant is the magnitude of a volume element in
phase space. A canonical transformation 1 — { transforms the 2n-dimensional
phase space with coordinates 7, to another phase space with coordinates ¢,. The
volume element

(dn) =dqidqz...dgndp) . ..dpy
transforms to a new volume element

@d¢) =d01dQs...d0xdP,...dP,.

As is well known, the sizes of the two volume elements are related by the
absolute value of the Jacobian determinant ||M|;

(d¢) = IMI (dn).

For example, in the two-dimensional transformation fromn, = g, pto; = 0, P,
this expression becomes

dqg g
i dP
doap =% °"\dgap =1, ple dg dp. (9.84)
p dp
a0 9P

But, by taking the determinant of both sides of the symplectic condition, Eq. (9.58),
we have

IMPJ] = ). (9.85)

Thus, in a real canonical transformation the Jacobian determinant is 41, and the
absolute value is always unity, proving the canonical invariance of the volume
element in phase space. It follows, also, that the volume of any arbitrary region in

phase space,
T = f -~«f{dr;), (9.86)

is a canonical invariant. Tn our two-dimensional example, the invariant is dn =
dgdpand J1 = [dgdp.

The volume integral in Eq. (9.86) is the final member of a sequence of canon-
ical invariants known as the integral invariants of Poincaré, comprising integrals
over subspaces of phase space of different dimensions. The other members of the
sequence cannot be stated as simply as J,, and because they are not needed for
the further development of the theory, they will not be discussed here.
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Finally, the invariance of the fundamental Poisson brackets now enables us to
outline a proof that the symplectic condition implies the existence of a generat-
ing function, as mentioned at the conclusion of the previous section. To simplify
considerations, we shall examine only a system with one degree of freedom; the
general method of the proof can be directly extended to systems with many de-
grees of freedom.™ We suppose that the first of the equations of transformation,

Q = Qlg, p), P = P(g, p),

is invertable so as to give p as a function g and Q, say

p=¢(g.0). (9.87)

Substitution in the second equation of transformation gives P as some function
of ¢ and Q, say

P =1v(q, Q). (9.88)

In such a case, we would expect the transformation to be generated by a generating
function of the first kind,* F, with Egs. (9.87) and (9.88) appearing as

_ R, Q) _ _0F
p= g P = E(Q- 0). (9.89)
If Eq. (9.89) holds, then it must be true that
g oy
50" 9g° (9.90)

Conversely, if we can show that Eq. (9.90) is valid, then there must exist a function
F) such that p and P are given by Egs. (9.89).

To demonstrate the validity of Eq. (9.90), we try to look on all quantities as
functions of ¢ and Q. Thus. we of course have the identity

Conversely, if we can show that Eq. (9.90) is valid, then there must exist a function
Fy such that p and P are given by Egs. (9.89).

To demonstrate the validity of Eq. (9.90), we try to look on all quantities as
functions of ¢ and Q. Thus. we of course have the identity

a0

a0
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but if Eq. (9.87) be substituted in the first transformation equation,

Q= 0(q.¢(q. Q)), (9.91)

the partial derivative can also be written
30 _ 30 a9
90 = dpaQ’

50 that we have the relation

03 _,
apaQ

In the same spirit we evaluate the Poisson bracket

(9.92)

dQ 3P dPaQ
WPlEee—ra—-F—F——=1
LG, P dg dp  dq dp

The derivatives of P are derivatives of ¥ from Eq. (9.88) considered as a function
of ¢ and Q(g, p). Hence, the Poisson bracket can be written

dQ Yy aQ 80 foy oy aQ
Pl=—m———— - = — —_—
[Q, P] (aq+agaq)‘
or, consolidating terms, as

0.,m= 2% (2232 _3030)_s0v

a0\ dq ap dp g dp dq
and therefore
g ay
=%, % (9.93)
Combining Eqs. (9.92) and (9.93), we have
Q3¢ _ aQay

EHQ_ dp dg

Since the partial derivative of Q with respect to p is the same on both sides of the
equation, that is, the othér variable being held constant is g in both cases, and since
the derivative doesn’t vanish (else the O equation could not be inverted), it follows
that Eg. (9.90) must be true. Thus, from the value of the fundamental Poisson
bracket [@, P], which we have seen is equivalent to the symplectic condition, we
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In terms of the symplectic notation, the derivation of Eq. (9.94) would run

did du . Odu du_ dH du
=—N+—-—=—)—

ar g or T an g T At

from whence Eq. (9.94) follows, by virtue of (9.68). Equation (9.94) may be
looked on as the generalized equation of motion for an arbitrary function « in
the Poisson bracket formulation. It contains Hamilton’s equations as a special
case when for 1 we substitute one of the canonical variables

g = [g:, H], P = [p, H), (9.95a)
or, in symplectic notation,
n=[n, H]. (9.95b)

That Eq. (9.95b) is identical with Hamilton's equations of motion may be seen
directly from the observation that by the definition of the Poisson bracket,
Eq. (8.39), we have

a
[, H] =) —f | (0.96)
1

so that Eq. (9.95b) is simply another way of writing Eq. (8.31). Another familiar
property may be oblained from Eq. (9.94) by taking u as H itself. Equation (9.94)
then says that

dH_EiH
dr A’

as was obtained previously in Eq. (8.41).

Note that the generalized equation of motion is canonically invariant; it is valid
in whatever set of canonical variables g, p is used to express the function u or to
evaluate the Poisson bracket. However, the Hamiltonian used must be appropriate
to the particular set of canonical variables. Upon transforming to another set of
variables by a time-dependent canonical transformation, we must also change to
the transformed Hamultonian K.

If u is a constant of the motion, then Eq. (9.94) says it must have the property

(H,u) = 2% ©.97)

af
All functions that obey Eq. (9.97) are constants of the motion, and conversely the
Poisson bracket of H with any constant of the motion must be equal to the explicit
time derivative of the constant function. We thus have a general test for seeking
and identifying the constants of the system. For those constants of the motion not
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POSSIBLE QUESTIONS

Part B (6 Marks)

Explain the canonical transformation with an example

State and Prove Jacobi identity

Explain the simple harmonic oscillator problem

Explain the integral invariants of poincare

Derive an expression for §pand §v

Show that how the generating function specifies the equations of transformations
Explain the Lagrange’s bracket

Show that the transformation P=1/2 x(p? + ¢?), Q = tan~*(g/p) is canonical.

Part C (10 Marks)
Derive Jacobi’s theorem
Explain that the fundamental poisson brackets are invariant under
canonical transformation
Show that the transformation = g cot p , Q = log(s'i#) is canonical.

Also find the generating function.
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Unit IV

Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Question Opt1 Opt 2 Opt 3 Opt 4 Answer
Examples for simple harmonic motion is

Simple pendulun| Moving car Throwing ball | Rope Simple pendulum

When a particle moves in a stright line, its
acceleration is directed towards a fixed point and
proportional to the distance from that point, its
motion is called Simple harmonic | Acceleration Angular velocity |Areal velocity Simple harmonic motion
Equation of Simple Harmonic Motion is

. ux Ax -ux -AX -Ux

Acceleration of Simple Harmonic Motion is

) ux AX -ux -AX ux
Velocity of Simple Harmonic Motion is

. p(a2 + xz) u(a2 - xz) X(a2 + xz) 7»(212 - xz) u(a2 - xz)

Maximum acceleration of Simple Harmonic Motion
1S . A uo pa Aa pa
Maximum acceleration of Simple Harmonic Motion
occurs only when ) u=A X=a X=\ a=| X=a
The symbol & is called . Theta Omega Gamma Epoch Epoch
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The composition of two simple harmonic motion
with the same period along the same line is
. Areal velocity | Angular momen| Constant Simple Harmonic M| Simple Harmonic Motion
If the particle possess two Simple Harmonic Motion
in perpendicular direction and of the same period
then the path is an ) Parabola Hyperbola Ellipse Curve Ellipse
If £&=0 then the path of Simple Harmonic Motion is
. Curve Ellipse Straight line Parabola Straight line
If £ =n then the path of Simple Harmonic Motion is
. Curve Straight line Ellipse Parabola Straight line
When the velocity is zero the particle oscillates
through a distance on either side of the fixed point
then this distance is called
) Period Simple Harmoni Amplitude Phase Amplitude
The constant interval of time between two
consecutive instants when it passes through the
same point in the same direction is called
Period Simple Harmoni Amplitude Phase Period
is independent of the
amplitude. Period Phase Simple Harmonid Frequency Period
is the rate of acceleration
at unit distance from the origin. Frequency Phase Simple Harmoniq Period Period
is the reciprocal of the
perid. Phase Amplitude Frequency Velocity Frequency
is the number of oscillations
made per second. Phase Frequency Velocity Acceleration Frequency
The consistts of a heavy
particle attached t a fixed point by a light string. phase of Simple | simple pendulun seconds penduluif period of Simple Ha| simple pendulum
motion takes place in a
vertical plane. Simple pendulun{ Period of Simplq Phase of Simple | Seconds pendulum | Simple pendulum
A is one which
beats seconds . Simple pendulun{ Seconds penduly Acceleration Velocity Seconds pendulum
is one for which the period
of one vibration is one second. Seconds pendulu| Frequency Simple Harmoniq Simple pendulum | Seconds pendulum
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In seconds pendulum if 'g' is in foot per second units
then 1 = feet. 1.24 2.24 3.24 4.24 3.24
If g is in centigram second units then 1 =
99.5 cm 89.5 cm 79.5 cm 69.5 cm 99.5 cm

The time of depends upon
land g. Phase Oscillation Period Simple Harmonic M| Oscillation
The loss or gain in the number of seconds per day
may be due to a change in 1 g both lorg both
A seconds pendulum is said to gain 'n' seconds a
day if it makes half
oscillations per day. 76400-n 86400-n 76400 + n 86400 +n 86400 + n
A seconds pendulum is said to lose 'n' seconds per
day if it makes half
oscillations per day. 76400-n 86400-n 76400 +n 86400 +n 86400-n
A seconds pendulum is said to gain 'n'seconds a day
hence its period Increase Decrease Remain same Zero Decrease
A seconds pendulum is said to lose 'n seconds a day
hence its period Increase Decrease Remain same Zero Increase
Period of Simple Harmonic Motion is 1ndependent
of . amplitude phase period oscillation amplitude
Period of Simple Harmonic Motion is the root of

at unit distance from the
origin. amplitude velocity Acceleration phase Acceleration
The velocity of Simple Harmonic Motion is zero
when . X =a X =-a x=aandx=-a [x=aorx=-a X =a Or X=-a
Frequency is the reciprocal of the

. velocity amplitude period phase period

Ifé= the path of Simple
Harmonic Motion becomes circle. T /2 0 0 /2
Ifé= the path f Simple
Harmonic Motion becomes a straight line. T /2 0 0 T
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The resultant motion of two Simple Harmonic
Motion of same period along perpendicular is an

. circle ellipse straight line parabola ellipse
Simple pendulum is an example of
. amplitude velocity simple harmnic 1] impact simple harmnic motion
Simple pendulum motion takes place in
. horizontal plane | vertical plane | along the plane | perpendicular t the ff vertical plane
In seconds pendulum if 'g' is in foot per second units
then the unit {1 is feet Second cm foot per second feet
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Hamilton Jacobi Theory: Hamilton Jacobi equations for Hamilton’s principle function —
Harmonic oscillator problem - Hamilton Jacobi equation for Hamilton’s characteristic function
— Separation of variables in the Hamilton-Jacobi equation.
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10.1 ® THE HAMILTON-JACOBI EQUATION
FOR HAMILTON'S PRINCIPAL FUNCTION

We can automaticaily ensure that the new variables are constant in time by requir-
ing that the transformed Hamiltonian, K, shall be identically zero, for then the
equations of motion are

dK .
H_F'; =0 =0,
dK .
—— =5 =0, 10.1
70, (10.1)

As we have seen, K must be related to the old Hamiltonian and to the generating
function by the equation

H=H+¥.

Chapter 10 Hamilton—jacobi Theory and Action-Angle Variables

Equation (10.24) can be immediately “turned inside out” to furnish g as a
function of ¢ and the two constants of integration « and f = 8'w:

2o
g = HT&?SIH{MI + B), (10.25)

which is the familiar solution for a harmonic oscillator. Formally, the solution
for the momentum comes from the transformation equation (10.7), which, using
Eq. (10.22), can be written

a5

aw
—_— e — o = — 2
P=3 = 5 = \/2ma — m2wq?, (10.26)

In conjunction with the solution for 4, Eq. (10.25), this becomes

p = \/2ma(l — sin(er + B)),

p = +/2ma cos{ar + ) (10.27)

Of course, this result checks with the simple identification of p as mqg.
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To complete the story, the constants o and g must be connected with the initial
conditions g¢ and pp at time ¢ = 0. By squaring Eqgs. (10.25) and (10.27), it is
clearly seen that o is given in terms of gp and pg by the equation

2ma = pi + m w’qf]. (10.28)

The same result follows immediately of course from the previous identification of
o as the conserved total energy E. Finally, the phase constant § is related to gp
and pg by

tan g = ma 32 (10.29)
Po

The choice go = 0 and hence § = 0 corresponds to starting the motion with the
oscillator at its equilibrium position g = 0.

Thus, Hamilton’s principle function is the generator of a canonical transforma-
tion to a new coordinate that measures the phase angle of the oscillation and to a
new canonical momentum identified as the total energy.

If the solution for g is substituted into Eq. (10.23), Hamilton’s principal func-
tion can be written as

S = zafmsﬂ(mz + B dt —at = zuf{msiim: +B8)— 3)dt.  (10.30)
Now, the Lagrangian is
I = —1'(}3‘1 _mzwzgz}
2m

= ot(cos*(wt + B) — sin®(wr + §))
= 2a(cos* (wt + B) — 1),

so that § is the time integral of the Lagrangian, in agreement with the general
relation (10.13). Note that the identity could not be proved until after the solution
to the problem had been obtained.

As another illustration for the Hamilton—Jacobi method, it is instructive to con-
sider the two-dimensional anisotropic harmonic oscillator. If we let m be the mass
of the oscillating body and k&, and &, be the spring constants in the x- and y-
directions, respectively, the Hamiltonian is

1 4 2 2.2.2 222
E=£{pr—|—p},—|—m wix” +mw,y),

where
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Since the coordinates and momenta separate into two distinct sets, the principal
function can be written as a sum of the characteristic function for each pair. As-
suming that we solve the y-functional dependency first, this means

S(x, y, o, @y, 1) = Fx(x, a) + Fy(y, ay) — ar, (10.31)

and the Hamilton-Jacobi equation assumes the form

1 aWN: 4 ., [fAWNE L, 5,
5;[("3—) el (G) 4wl | e a0m

in analogy with Eq. (10.18). Since the variables are separated, the y-part of the
Eq. (10.32) must be equal to a constant, which we call &y, so

1 fawy? 1
E(a_y) +§mm§y1=a,,, (10.33)

and we replace the y-term in (10.32) with «,, from (10.33), yielding

1 faw)* 1
oy (aT) + Emmﬁxi = tty, (10.34)

where we write ® — oy = o, showing the symmetry of Egs. (10.33) and (10.34).

Chapter 10 Hamilton—Jacobi Theory and Action-Angle Variables

Each equation has a solution analogous to Egs. (10.25) and (10.27), so

x = 20 sinfe,
=\ mo? <t + Bi)

X

Px = +/ 2ma, cos(w. + ;)

(10.35)
2oy

y = M2

¥y

Py =/ 2may cos(wyt + By),
where the f§;’s are phase constants and the total energy is given by

sinfwyt + By)

E=a;+a,=a.

As a third example of Hamilton—Jacobi theory, we again consider the two-
dimensional harmonic oscillator; only we will assume the oscillator is isotropic,
50

kxzkyzk and Wy =Wy = w,
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x =rcosf r=,/x2+y?
}I'=!'Siﬂ|5' ﬂ:tan_lz
. o (10.36)
Px = mMx Pr =mr
py = my pe =mr’f.
The Hamiltonian now written as
1
E=_— (pfq. ﬁg - mzmzri) (10.37)
2m r

is cyclic in the angular coordinate 8. The principle function can then be written as
S(r, 6, a,a8) = We(r,a) + Wa (P, ap) — at
= We(r, o) + Pag — ar, (10.38)

where, as we show later, a cyclic coordinate ¢; always has the characteristic func-
tion component Wy, = g;a;. The canonical momentum pg associated with the
cyclic coordinate, @, is calculated from the generating function

_ﬂ'Fn_a
Ps = a8 g

has its expected constant value.
When this pg is substituted into Eqs. (10.37) and (10.38), W,(r, @) satisfies

om \ 37 I -+ Emw r°=a. {10.39)

Rather than solving this equation directly for W,, we shall write the Cartesian
coordinate solution for these conditions as

P
x =1fmsin[wr+ﬁ} Prx = + 2ma cos(wr + B)

[20 .
y= g sin i Py =~ 2mu cos wt,

and use these to get the polar counterparts,

(10.35")
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/ 20 [, .2 . .
r= m_aﬁ\/sm wt + sin” (et 4+ B), pr = mr,
and (10.40)
0 — tan~! sin wt =
N sin(wt + ) | pe = mrg.

There are two limiting cases. The linear case is when 8 = 0, for which

[ 4
r =,/ —sinaor, Pr = +2ma cosawt,
mew

and (10.41)
T
9=" =0.
4 po =0

The motion in an x-y plot will be an oscillation along a diagonal line as shown
in Fig. 10.1a. The other limiting case is when 8 = n/2, for which

r=r= 2a =10
¥ mea?’ Pr=

0 = wt, ps = mr&m.

(10.42)

The motion in an x-y plot for this limiting case is a circle of radius ry as is shown
in Figure 10.1b. For other values of 8 (0 < 8 < 7/2), the orbit in coordinate
space is an ellipse. The case for § = /4 is shown in Fig. 10.1c. The plots shown
in Fig. 10.1 are further examples of Lissajous figures.

I &,/ I C-// I
() p=0 ®B=7 © =7

FIGURE 10.1 The two limiting cases (a) and (b) for the harmonic oscillator and an
intermediate example (c).
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10.3 B THE HAMILTON-JACOBI EQUATION FOR
HAMILTON’S CHARACTERISTIC FUNCTION

It was possible to integrate the Hamilton-Jacobi equation for the simple harmonic
oscillator primarily becanse § could be separated into two parts, one involving g
only and the other only time. Such a separation of variables using Hamilton’s
characteristic function Wig, @) (Eq. (10.14)) is always possible whenever the old
Hamiltonian does not involve time explicitly. This provides us with the restricted

Hamilton—Jacobi equation

dW

H i,—) =ai, (10.43)
(q 94,

which no longer involves the time. One of the constants of integration, namely
&, is thus equal to the constant value of H. (Normally A will be the energy, but
remember that this need not always be the case, cf, Section 8.2.)

The time-independent function, Hamilton's characteristic function W, appears
here merely as a part of the generating function § when H is constant. [t can
also be shown that W separately generates its own contact transformation with
properties quite different from that generated by S. Let us consider a canonical
transformation in which the new momenta are all constants of the motion oy, and
where & in particular is the constant of motion H. If the generating function for
this transformation be denoted by W(g, P), then the equations of transformation
are

_ W _aw  aw
~ agi "T AP bei
While these equations resemble Eqgs. (10.7) and (10.8) respectively for Hamil-

ton’s principal function §, the condition now determining W is that H is the new
canonical momentum oy

Pi (10.44)

H(gi, py) = a.
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Using Eqgs. (10.44), this requirement becomes the partial differential eguartion:

aIW
# (g ) ==

which is seen to be identical with Eq. (10.43). Since W does not involve the time,
the new and old Hamiltonians are equal, and it follows that K = ay.

Hamilton’s characteristic function W thus generates a canonical transforma-
tion in which all the new coordinates are cyclic. It was noted in the introduction
to this chapter that when H is a constant of the motion, a transformation of this
nature in effect solves the mechanical problem involved, for the integration of the
new equations of motion is then trivial. The canonical equations for F;, in fact,
merely repeat the statement that the momenta conjugate to the cyclic coordinates
are all constant:

9K

p=_2% _
Tag;

0, Fi =a. (10.45)

Because the new Hamiltonian depends upon only one of the momenta o;, the
equations of motion for {J; are

. K
j=—=1, i=l,
Q 3&';
=0, i#1,
with the immediate solutions
aw
Qi=t+p = Py
3“1 (10.46)
Qi= Pfi=o—- I#1L
4]

The only coordinate that is not simply a constant of the motion is @, which is
equal to the time plus a constant. We have here another instance of the conjugate
relationship between the time as a coordinate and the Hamiltonian as its conjugate
momentum.

The dependence of W on the old coordinates g; is determined by the par-
tial differential equation (10.43), which, like Eq. (10.3), is also referred to as the
Hamilton—Jacobi equation. There will now be n constants of integration in a com-
plete solution, but again one of them must be merely an additive constant. The
n — 1 remaining independent constants. a2, ..., &, together with oy may then be
taken as the new constant canonical momenta, When evaluated at ¢y the first half
of Eqgs. (10.44) serve to relate the n constants o; with the initial values of g; and
pi. Finally, Egs. (10.45) and (10.46) can be solved for the g; as a function of a;,
Bi, and the time ¢, thus completing the solution of the problem. It will be noted
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that (n — 1) of the Egs. (10.46) do not involve the time at all. One of the g;'s can
be chosen as an independent variable, and the remaining coordinates can then be
expressed in terms of it by solving only these time-independent equations. We are
thus led directly to the orbit equations of the motion. In central force motion, for
example, this technique would furnish » as a function of @, without the need for

separately finding » and @ as functions of time.

It is not always necessary to take «; and the constants of integration in W as
the new constant canonical momenta. Occasionally it is desirable rather to use
some particular set of n independent functions of the ;s as the transformed mo-
menta. Designating these constants by j; the characteristic function W can then
be expressed in terms of g; and y; as the independent variables. The Hamiltonian
will in general depend upon more than one of the ;s and the equations of motion

for (; become

Qf =T =1
3}-’;' !

where the v;"s are functions of y;. In this case, all the new coordinates are linear

funetions of time:

Qi = vit + p;.

The form of W cannot be found a priori without obtaining a complete integral of
the Hamilton—Jacobi equation. The procedures involved in solving a mechanical
problem by either Hamilton's principal or characteristic function may now by

summarized in the following tabular form:

The two methods of solution are applicable when the Hamiltonian

is any general function of g, p, 1:
Hig,p,1).

is conserved:
H{g, p) = constant.

We seek canonical transformations to new variables such that

all the coordinates and momenta
Q;. P; are constants of the motion.

all the momenta P, are constants.

To meet these requirements it is sufficient to demand that the new Hamiltonian

shall vanish identically:
K =0.

shall be cyclic in all the coordi-

Under these conditions, the new equations of motion become

. aK
= — ={L
ef} 3P
[ EK
Bi=——1=0,
T a0

nates:
K =H(P) =w.
: aK
0 = H_P, = Ui,
aK
[ —_——— = D.
T}
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with the immediate solutions

Qi = B, | Qi = v+ B;
Pi=y, Pi=y

which satisfy the stipulated requirements.
The generating function producing the desired transformation is Hamilton's

Principal Function: Characteristic Function:
Si(g, P, 1), Wiq, P),

satisfying the Hamilton—Jacobi partial differential equation:

a8 iR aw
H(:E:E)+_=ﬂa H(qqa)—ﬂlzﬂp

A complete solution to the equation contains
n nontrivial constants of integra- | n — 1 nontrivial constants of in-
tonay,..., dy. tegration, which together with o
form a set of n independent con-
stants o, ..., 0.

The new constant momenta, F; = j;, can be chosen as any n independent func-
tions of the » constants of integration:

P; = yilay, ..., ap), [ P = ylay, ..., Op),

so that the complete solutions to the Hamilton—Jacobi equation may be considered
as functions of the new momenta:

S = S(g;, v, 1) | W = Wigi, »).

In particular, the y;’s may be chosen to be the a;’s themselves. One-half of the
transformations equations,

as
pi=—

dg; '

P =T

ag;’

are fulfilled automatically, since they have been used in constructing the Hamilton—
Jacobi equation. The other half,

dw
i=+—=p = — = vi(y; )t + B,
0 | =5 =wr+a
can be solved for g; in terms of ¢ and the 2n constants B;, 3. The solution to the
problem is then completed by evaluating these 2n constants in terms of the initial
values, (gip, pio), of the coordinates and momenta.
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When the Hamiltonian does not involve time explicitly, both methods are suit-
able, and the generating functions are then related to each other according to the
formula

Sig, P.1) = Wi(g, P) —ayt.

10.4 W SEPARATION OF VARIABLES IN THE HAMILTON-JACOBI EQUATION

It might appear from the preceding section that little practical advantage has been
gained through the introduction of the Hamilton—Jacobi procedure. Instead of
solving the 2n ordinary differential equations that make up the canonical equa-
tions of motion, we now must solve the partial differential Hamilton-Jacobi equa-
tion, and partial differential equations can be notoriously complicated to solve.
Under certain conditions, however, it is possible to separate the variables in the
Hamilton-Jacobi equation, and the solution can then always be reduced to quadra-
tures. In practice, the Hamilton—Jacobi technique becomes a useful computational
tool only when such a separation can be effected.

A coordinate g; is said to be separable in the Hamilton—Jacobi equation when
(say) Hamilton’s principal function can be split into two additive parts, one of
which depends only on the coordinate g; and the other is entirely independent of
gj. Thus, if g; is taken as a separable coordinate, then the Hamiltonian must be
such that one can write

S(gry....gns a1, ..., 00 1) = S1(qus @1, ..., 0 1)
'+' S’{‘-’?Luu !?m ﬂllt = ~1-ﬂlﬂ:: I]! [1{}43.}

and the Hamilton-Jacobi equation can be split into two equations—one separately
for §; and the other for §'. Similarly the Hamilton—-Jacobi equation is described as
completely separable (or simply, separable) if all the coordinates in the problem
are separable. A solution for Hamilton’s principal function of the form

S= Sig:ar....an ) (10.49)
will then split the Hamilton-Jacobi equation into n equations of the type

LAY as.
H; (‘i‘;‘i ﬁ;ah--.,a,.;r)ﬂka—::u. (10.50)
J

If the Hamiltonian does not explicitly depend upon the time, then, for each §; we
have

Si(gy, e1...., 00 1) =Wilg;; ar, ..., 00 1) — oyt (10.51)

which provide n restricted Hamilton—Jacobi equations,
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a Wi
"qi v = e ey g | = 08}, .
(‘Il 3 ) o ) o (10.52)

{No summation in Egs. (10.50) to (10.52)1)

The functions H; in Egs. (10.50) and (10.52) may or may not be Hamiltonians,
and the o; may be an energy, an angular momentum squared, or some other quan-
tity depending on the nature of g;. We shall show this by example in the Kepler
problem in the next section.

The constants «; are referred to now as the separation constants. Each of the
Egs. (10.52) involves only one of the coordinates g; and the corresponding partial
derivative of W; with respect to g;. They are therefore a set of ordinary differential
equations of a particularly simple form. Since the equations are only of first order,
it is always possible to reduce them to quadratures; we have only to solve for the
partial derivative of W; with respect to g; and then integrate over g;. In practice,
each H; will only contain one or at most a few of the a’s. There will also be
cases where a subset of r variables can be separated in this fashion, leaving n — r
variables, which will not separate. We shall also examine this eventuality in the
next section.

It is possible to find examples in which the Hamilton-Jacobi equation can be
solved without separating the time variable (cf. Exercise 8), Nonetheless, almost
all useful applications of the Hamilton-Jacobi method involve Hamiltonians not
explicitly dependent upon time, for which ¢ is therefore a separable variable. The
subsequent discussion on separability is thus restricted to such systems where H
is a constant of motion, and Hamilton’s characteristic function W will be used
exclusively.

10.5 M IGNORABLE COORDINATES AND THE KEPLER PROBLEM
We can easily show that any cyclic or ignorable coordinate is separable. Suppose

that the cyclic coordinate is g;; the conjugate momentum p; is a constant, say .
The Hamilton—Jacobi equation for W is then

H( VR LA LA 10.53
G2, 0004 gn: Vs qu;"”'ﬂq,, = i¥]. (10.53)
If we try a separated solution of the form

W =Wiq.a)+ Wig,...,qn @), (10.54)

then it is obvious that Eq. (10.53) involves only the separate function W', while
Wi is the solution of the equation

_ a W
aq
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The constant ¢ is thus the separation constant, and the obvious solution for W
(to within a trivial additive constant) is

Wi =yaq,
and W is given by
W=W +yq. (10.56)

There is an obvious resemblance between Eq. (10.56) and the form § assumes
when H is not an explicit function of time, Eq. (10.43). Indeed, both equations
can be considered as arising under similar circumstances. We have seen that t may
be considered in some sense as a generalized coordinate with —/f as its canonical
momentum (cf. Eq. (8.58)). If H is conserved, then ¢ may be treated as a cyclic

coordinate.
If § of the n coordinates are noncyclic (that is, they appear explicitly in the
Hamiltonian), then the Hamiltonian is of the form H{gy, ..., gs; @1, ..., @n; ).

The characteristic function can then be written as

x5 "
Wan....qian....a) =Y Wilgi: @1, ...,an)+ Y g, (10.56)

i=l 1=5+1
and there are 5 Hamilton—Jacobi equations to be solved:

aw,

H (qu ez, . -..an) = . (10.57)
dq

Since these are ordinary first-order differential equations in the independent vari-
able g, they can be immediately reduced to quadratures, and the complete solu-
tions for W can be obtained.

In general, a coordinate g; can be separated if 4; and the conjugate momentum
pj can be segregated in the Hamiltonian into some function f(g;, p;) that does
not contain any of the other variables. If we then seek a trial solution of the form

W =W;lg;,a) + Wig,a),

where g; represents the set of all ¢’s except g ;, then the Hamilton-Jacobi equation

appears as
aw’ aw;
H (s o s '1-_; = 4+ 1 =
(‘i’: ba: f(t?,a 3q; )) @ (10.58)

In principle, at least, Eq. (10.58) can be inverted so as to solve for f:

aw; aw’
f (‘h’: H_J ) =8 (-‘i'h —,ﬁl) . (10.59)
qj i
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The argument used previously in connection with Eq. (10.51) holds here in
slightly varied guise; f is not a function of any of the ¢’s except g;; g on the
other hand is independent of g;. Hence, Eq. (10.59) can hold only if both sides
are equal to the same constant, independent of all g's:

g ( b ﬂ) = a;j, (10.60)
i

and the separation of the variable has been accomplished.

Note that the separability of the Hamilton—Jacobi equation depends not only
on the physical problem involved but also on the choice of the system of general-
ized coordinates employed. Thus, the one-body central force problem is separable
in polar coordinates, but not in Cartesian coordinates. For some problems, it is not
possible to completely separate the Hamilton—Jacobi equation, the famous three-
body problem being one illustration. On the other hand, in many of the basic prob-
lems of mechanics and atomic physics, separation is possible in more than one set
of coordinates. In general, it is feasible to solve the Hamilton—Jacobi equation in
closed form only when the variables are completely separable. Considerable inge-
nuity has therefore been devoted to finding the separable systems of coordinates
appropriate to each problem.

No simple criterion can be given to indicate what coordinate systems lead to
separable Hamilton-Jacobi equations for any particular problem. In the case of
orthogonal coordinate systems, the so-called Staeckel conditions have proved use-
ful. They provide necessary and sufficient conditions for separability under certain
circumstances. A proof of the sufficiency of the conditions and references will be
found in Appendix D of the second edition of this text.

The Staeckel conditions for the separation of the Hamilton—Jacobi eguations
are:

1. The Hamiltonian is conserved.

2. The Lagrangian is no more than a quadratic function of the generalized
velocities, so the Hamiltonian takes the form:

H=3p-)T (p—a)+Vig). (8.27)
3. The vector a has elements g; that are functions only of the corresponding

coordinate, that is a; = a;(g;).
4. the potential function can be written as a sum of the form

Vilgi
Vigr=>_ % (10.61)
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5. Consider the matrix ¢!, with an inverse ¢ whose elements are

ﬁijtﬁ,}l = TL (no summation on i) (10.62)
i

where

with ¥ a constant unspecified vector. If the diagonal elements of both ¢
and ¢! depend only upon the associated coordinate, that is, ¢~';; and
¢;; are constants or a function of g; only, then provided 14 are true, the
Hamiltonian—Jacobi equations separate.

Since we have assumed that the generalized coordinates g; form an orthogonal
coordinate system, the matrix T (introduced in Section 8.1) is diagonal. It follows
that the inverse matrix T~! is also diagonal and, if we are dealing with a particle
in an external force field, the diagonal elements are:

a1 1 :
O === (no summation) (10.63)
i m
so the fifth Stackel condition is satisfied.

If the Staeckel conditions are satisfied, then Hamilton's characteristic function

is completely separable:

Wig) =) Wilq)),
i

with the W; satisfying equations of the form

aw; 2
(—-l - ﬂi) = —=2Vi(g:) + 2¢ij¥;. (10.64)
a4,
where y, are constants of integration (and there is summation only over the in-

dex j).

While these conditions appear mysterious and complicated, their application
usually is fairly straightforward. As an illustration of some of the ideas developed
here about separability, the Hamilton—Jacobi equation for a particle moving in
a central force will be discussed in polar coordinates. The problem will then be
generalized to arbitrary potential laws, to furnish an application of the Staeckel
conditions.

Let us first consider the central force problem in terms of the polar coordinates
(r, ) in the plane of the orbit. The motion then involves only two degrees of
freedom and the Hamiltonian has the form

_ [ p_ﬁ,)
;it:'_ziw(;sﬂtjr1 + Vi), (10.65)
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which is cyelic in . Consequently, Hamilton's characteristic function appears as
W= Wi(r)+ ayv, (10.66)

where wy is the constant angular momentum py conjugate to . The Hamilton—
Jacobi equation then becomes

2
a W, oy,
(?r—l) T -—~ +2mV(r) = 2may, (10.67)

where o is the constant identified physically as the total energy of the system.
Solving Eq. (10.66) for the partial derivative of W, we obtain

a?
aw
— ‘/Zm(m V) - iz"

so that W is
oty
W= fdr 2mioy — V) — 77 + g (10.68)
With this form for the characteristic function, the transformation equations
(10.46) appear as
d
,.Hgl___f mar (10.69a)
JZm[m -V)- —f-
and
HW cydr
B = L4 + . (10.69b)
aﬂ!'!;.- 2

rz\/ZM(al—-V}— %

Equation (10.69a) furnishes r as a function of + and agreees with the correspond-
ing solution, Eq. (3.18), found in Chapter 3, with o) and ey written explicitly as E
and [, respectively. It has been remarked previously that the remaining transforma-
tion equations for Q;, here only Eq. (10.69b), should provide the orbit equation.
If the variable of integration in Eq. (10.69b) is changed to u = 1/r, the equation
reduces to

du

¥r=p—
f\/ﬁm, - V) —u?

which agrees with Eq. (3.37) previously found for the orbit, identifying y as #
and 8- as .
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As a further example of separation of variables, we shall examine the same
central force problem, but in spherical polar coordinates, that is, ignoring our
a priori knowledge that the orbit lies in a plane. The appropriate Hamiltonian has
been shown to be (cf. Eq. (8.29)):

1 P P
H=_—|p?+-L . -
> (P, + 2 + rlsinzﬁ') + V(r) (10.70)

If the variables in the corresponding Hamilton—Jacobi equation are separable, then
Hamilton's characteristic function must have the form

W =W, (r) + Wa (8) + Wy (). (10.71)
The coordinate ¢ is cyclic in the Hamiltonian and hence
Wy = apd (10.72)

where g is a constant of integration. In terms of this form for W, the Hamilton—
Jacobi equation reduces to

2 2 s
(ﬂ) +é{(3“’ﬂ) + 2 }+2mvtr)=2mﬁ, (10.73)

ar 28 sint @

where we have explicitly identified the constant Hamiltonian with the total en-
ergy E. Note that all dependence on £, and on 6 alone, has been segregated into
the expression within the sguare brackets. The Hamilton-Jacobi equation then
conforms to the appearance of Eg. (10.58), and following the argument given
there we see that the quantity in the square brackets must be a constant:

aWe\? %,
= s, 10.74
(%) + s =2t oo
Finally the dependence of W on r is given by the remainder of the Hamilton—
Jacobi equation:
W, \* e}
W) + % _omE - viry. (10.75)
ar ri

The variables in the Hamilton-Jacobi equation are thus completely separated.
Equations (10.74) and (10.75) may be easily reduced to quadratures providing
at least a formal solution for Wy(8) and W, (r), respectively.

Note that the constants of integration a, g, @) all have directly recognizable
physical meanings. The quantity ay is of course the constant value of the angular
momentum about the polar axis (cf. Eq. (10.44)):

W,
4y = pp = ?:‘ (10.76)
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To identify ay we use Eq. (10.44) to rewrite Eq. (10.74) as
p2
Pi+ 2 =ap, (10.74')
sin“ @

so that the Hamiltonian, Eg. (10.70) appears as

2

_ L 2, %
H= > (p, -+ r2) + V(r). (10.70"

Comparison with Eq. (10.65) for the Hamiltonian as expressed in terms of polar
coordinates in the plane of the orbit shows that o is the same as py, the magni-
tude of the total angular momentum:

ap = py =1 (10.77)

Lastly, e is of course the total energy E. Indeed, the three differential equations
for the component parts of W can be looked on as statements of conservation the-
orems. Equation (10.75) says the z-component of the angular momentum vector,
L, is conserved, while Eq. (10.74) states the conservation of the magnitude, I,
of the angular momentum. And Eq. (10.75) is a form of the energy conservation
theorem.

In this simple example, some of the power and elegance of the Hamilton—
Jacobi method begins to be apparent. A few short steps suffice to obtain the de-
pendence of r on ¢ and the orbit equation, Eqs. (10.69a and b), results derived
earlier only with considerable labor. The conserved quantities of the central force
problem also appear antomatically. Separation of variables for the purely central
force problem can also be performed in other coordinate systems, for example,
parabolic coordinates, and the conserved quantities appear there in forms appro-
priate to the particular coordinates.

Finally, we can employ the Staeckel conditions to find the most general form of
a scalar potential V for a single particle for which the Hamilton-Jacobi equation
is separable in spherical polar coordinates. The matrix ¢ of the Staeckel condi-
tions depends only on the coordinate system and not on the potential. Since the
Hamilton-Jacobi equation is separable in spherical polar coordinates for at least
one potential, that is, the central force potential, it follows that the matrix ¢ does
exist. The specific form of ¢ is not needed to answer our question. Further, since a
by hypothesis is zero, all we need do is apply Eq. (10.62) to find the most general
separable form of V. From the kinetic energy (Eq. 8.28"), the diagonal elements
of T are

Tr=m, Tw= mrz, TM = mr? sin2 a.
By Eq. (10.62) it follows that the desired potential must have the form

_ Ve8) , Vo(¢)
Vigg=Ve(N+— t o als

(10.78)
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It is easy to verify directly that with this potential the Hamilton—Jacobi equation
is still completely separable in spherical polar coordinates.

10.6 W ACTION-ANGLE VARIABLES IN
SYSTEMS OF ONE DEGREE OF FREEDOM

Of especial importance in many branches of physics are systems in which the
motion is periodic. Very often we are interested not so much in the details of the
orbit as in the frequencies of the motion. An elegant and powerful method of han-
dling such systems is provided by a variation of the Hamilton—Jacobi procedure.
In this technique, the integration constants «; appearing directly in the solution of
the Hamilton—Jacobi equation are not themselves chosen to be the new momenta.
Instead, we use suitably defined constants J;, which form a set of n independent
functions of the ; s, and which are known as the action variables.

For simplicity, we shall first consider in this section systems of one degree of
freedom. It is assumed the system is conservative so that the Hamiltonian can be
Wwritten as

Hig, p) = a.

Solving for the momentum, we have that

p = plg. 1), (10.79)

which can be looked on as the equation of the orbit traced out by the system
point in the two-dimensional phase space, p,g when the Hamiltonian has the
constant value ;. What is meant by the term “periodic motion” is determined by
the characteristics of the phase space orbit. Two types of periodic motion may be
distinguished:

1. In the first type, the orbit is closed, as shown in Fig. 10.2(a), and the system
point retraces its steps periodically. Both g and p are then periodic functions
of the time with the same frequency. Periodic motion of this nature will be
found when the initial position lies between two zeros of the kinetic energy.
It is often designated by the astronomical name libration, although to a
physicist it is more likely to call to mind the common oscillatory systems,
such as the one-dimensional harmonic oscillator.

2. Inthe second type of periodic motion, the orbit in phase space is such that p
is some periodic function of g, with period go, as illustrated in Fig. 10.2(b).
Equivalently, this kind of motion implies that when a is increased by gy,
the configuration of the system remains essentially unchanged. The most
familiar example is that of a rigid body constrained to rotate about a given
axis, with g as the angle of rotation. Increasing g by 27 then produces no
essential change in the state of the system. Indeed, the position coordinate
in this type of periodicity is invariably an angle of rotation, and the motion
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{4} Libration {b} Rotation

FIGURE 10.2 Orbit of the system point in phase space for periodic motion of one-
dimensional systems.

will be referred to simply as rotation, in contrast to libration. The values of
g are no longer bounded but can increase indefinitely.

It may serve to clarify these ideas to note that both types of periodicity may
occur in the same physical system. The classic example is the simple pendulum
where g is the angle of deflection 6. If the length of the pendulum is ! and the
potential energy is taken as zero at the point of suspension, then the constant
energy of the system is given by

P2
=5 5:2 — mglcosé. (10.80)
m
Solving Eq. (10.64) for pg, the equation of the path of the system point in phase
space is
po = 1/ 2mI2(E + mgl cos6). (10.81)

If E is less than mgl, then physical motion of the system can only occur for ||
less than a bound, ¢', defined by the equation

cosf’ = — i
mgl

Under these conditions, the pendulum oscillates between —8" and +6', which is a
periodic motion of the libration type. The system point then traverses some such
path in phase space as the curve | of Fig. 10.3. However, if E = mgl, all values
of # correspond to physical motion and # can increase without limit to produce a
periodic motion of the rotation type. What happens physically in this case is that
the pendulum has so much energy that it can swing through the vertical position
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FIGURE 10.3 Phase space orbits for the simple pendulom.

8 = m and therefore continues rotating. Curve 3 in Fig. 10.3 corresponds to the
ratation motion of the pendulum. The limiting case when £ = mgl is illustrated
by curves 2 and 2" in Fig. 10.3. At this energy, the pendulum arrives at 8 = , the
vertical position, with zero kinetic energy, that is, pg = 0. It is then in unstable
equilibrium and could in principle remain there indefinitely. However, if there
is the slightest perturbation, it could continue its motion either along curve 2 or
switch to curve 2'—it could fall down either way. The point # = m, pg = 0
is a saddle point of the Hamiltonian function H = E(pg, #) and there are two
paths of constant E in phase space that intersect at the saddle point. We have here
an instance of what is called a bifurcation, a phenomenon that will be discussed
extensively in the next chapter. (See also Section 6.6.)

For either type of periodic motion, we can introduce a new variable J designed
to replace o) as the transformed (constant) momentum. The so-called action vari-
able J is defined as (cf. Eq. (8.80))

J:%p@, (10.82)

where the integration is to be carried over a complete period of libration or of
rotation, as the case may be. (The designation as action variable siems from the
resemblance of Eq. (10.82) to the abbreviated action of Section B.6. Note that J
always has the dimensions of an angular momentum.) From Eq. (10.79), it follows
that J is always some function of @) alone:

oy = H = H{J). (10.83)
Hence, Hamilton's characteristic function can be written as

W=W(g,J). (10.84)
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The generalized coordinate conjugate to J, known as the angle variable w, is
defined by the transformation equation:

aw
= —, 10.85
W=7 ( )
Correspondingly, the equation of motion for w is
. BH()
W= 57 = v(J), (10.86)

where v is a constant function of J only. Equation (10.86) has the immediate
solution

w=uvt+ 8, (10.87)

so that w is a linear function of time, exactly as in Eq. (10.47).

So far the action-angle variables appear as no more than a particular set of the
general class of transformed coordinates to which the Hamilton—Jacobi equation
leads. Equation (10.85) could be solved for 4 as a function of w and J, which, in
combination with Eq. (10.87), would give the desired solution for ¢ as a function
of time. But when employed in this fashion the variables have no significant ad-
vantage over any other set of coordinates generated by W. Their particular merit
rises rather from the physical interpretation that can be given to v. Consider the
change in w as g goes through a complete cycle of libration or rotation, as given
by

duwr
Aw=d %, 10.88
w 9§ o da (10.88)

By Eq. (10.85), this can also be written

W
Aw = dg. 10.89
w 5£ g7 q ( )
Because J is a constant, the derivative with respect to J can be taken outside the
integral sign:
d aw d
Aw=— @ —dg = — dg =1, 10.90
w=-793 a 9= -7 prdq ( )

where the last step follows from the definition for J, Eq. (10.82).

Equation (10.90) states that w changes by unity as g goes through a complete
period. But from Eq. (10.87), it follows that if 7 is the period for a complete cycle
of g, then

Aw =1 = vr.
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Hence, the constant v can be identified as the reciprocal of the period,

W=

1

—, (10.91)
T
and is therefore the frequency associated with the periodic motion of g. The use
of action-angle variables thus provides a powerful technique for obtaining the
frequency of periodic motion without finding a complete solution to the motion of
the system. If it is known a priori that a system of one degree of freedom is pe-
riodic according to the definitions given above, then the frequency can be found
once H is determined as a function of J. The derivative of H with respect to J,
by Eq. (10.86), then directly gives the frequency v of the motion. The designa-
tion of w as an angle variable becomes obvious from the identification of v in
Eq. (10.87) as a frequency. Since J has the dimensions of an angular momentum,
the coordinate w conjugate to it is an angle.*

As an illustration of the application of action-angle variables to find frequen-
cies, let us again consider the familiar linear harmonic oscillator problem. From
Egs. (10.26) and the defining equation (10.82), the constant action variable J is
given by

J= fpdq = ﬁ.‘/Zma —miawlq?dg, (10.92)

where @ is the constant total energy and w® = k/m. The substitution (10.25)

= £sinu&i'
T=Y mar

reduces the integral to

Y [T
J== f cos> 6 d, (10.93)
@ Jo
where the limits are such as to correspond to a complete cycle in ¢. This integrates
to
J= 2ro
[V

or, solving for o,

a=H=1% (10.94)

i

The frequency of oscillation is therefore

*For some applications the action variable 15 defined in the literature of celestial mechanics as (27)~!
times the value given in Eq. (10.82). By Eq. (10.90), the comresponding angle variable is 2x times our
definition and in place of v we have w, the angular frequency. However, we shall stick throughout to
the familiar definitions used in physics, as given above,
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aH @ 1 [k

ﬁ_u_z_n.._z—; — (10.95)

which is the customary formula for the frequency of a linear harmonic oscillator.
Although it is entirely unnecessary for obtaining the frequencies, it is nevertheless
instructive (and useful for future applications) to write the solutions, Eqs. (10.25)
and (10.27), in terms of J and w. It will be recognized first that the combination
(wt + B) is by Eqgs. (10.95) and (10.87) the same as 2mw, with the constant
of integration suitably redefined. Hence, the solutions for ¢, Eq. (10.25), and p,
Eq. (10.27), take on the form

g = sin2mw, (10.96)

T

p= “I' mJw cos 2mw. (10.97)
T

Note that Egs. (10.96) and (10.97) can also be looked on as the transformation
equations from the (w, J) set of canonical variables to the (g, p) canonical set.

10.7 B ACTION-ANGLE VARIABLES FOR COMPLETELY
SEPARABLE SYSTEMS*

Action-angle variables can also be introduced for certain types of motion of sys-
tems with many degrees of freedom, providing there exists one or more sets of
coordinates in which the Hamilton-Jacobi equation is completely separable. As
before, only conservative systems will be considered, so that Hamilton's charac-
teristic function will be used. Complete separability means that the equations of
canonical transformation have the form

Wil a1, am)
g '

(10.98)

Fi
which provides each p; as a function of the g; and the n integration constants

Pi = pilgi; o1, ..., 08). (10.99)

Equation (10.99) is the counterpart of Eqg. (10.79), which applied to systems of
one degree of freedom. It will be recognized that Eq. (10.99) here represents
the orbit equation of the projection of the system point on the (p;, ;) plane in
phase space. We can define action-angle variables for the system when the orbit
equations for all of the (g;, p;) pairs describe either closed orbits (libration, as in
Fig. 10.2(a)) or periodic functions of g; (rotation, as in Fig. 10.2(b)).

Note that this characterization of the motion does not mean that each g; and
pi will necessarily be periodic functions of the time, that is, that they repeat their

*Inless otherwise stated, the summation convention will not be used in this section.
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values at fixed time intervals. Even when each of the separated (g;, p;) sets are in-
deed periodic in this sense, the overall system motion need not be periodic. Thus,
in a three-dimensional harmonic oscillator the frequencies of motion along the
three Cartesian axes may all be different. In such an example, it is clear the com-
plete motion of the particle may not be periodic. If the separate frequencies are
not rational fractions of each other, the particle will not traverse a closed curve in
space but will describe an open “Lissajous figure.” Such motion will be described
as multiply periodic. It is the advantage of the action-angle variables that they
lead to an evaluation of all the frequencies involved in multiply periodic motion
without requiring a complete solution of the motion.

In analogy to Eq. (10.82), the action variables J; are defined in terms of line
integrals over complete periods of the orbit in the (g;, p;) plane:

J; = f Pi dq;. lelm:l

If one of the separation coordinates is cyclic, its conjugate momentum is constant.
The corresponding orbit in the g;, p; plane of phase space is then a horizontal
straight line, which would not appear to be in the nature of a periodic motion.
Actually the motion can be considered as a limiting case of the rotation type of
periodicity, in which ¢; may be assigned any arbitrary period. Since the coordinate
in a rotation periodicity is invariably an angle, such a cyclic g; always has a natural
period of 2m. Accordingly, the integral in the definition of the action variable
corresponding to a cyclic angle coordinate is to be evaluated from 0 to 27, and
hence

Ji = 2npi (10.101)

for all cyclic variables.
By Eq. (10.98), J; can also be written as

;e f AW (g a"”"ﬂ”}dqg. (10.102)
dgi

Since g; is here merely a variable of integration, each action variable J; is a
function only of the n constants of integration appearing in the solution of the
Hamilton—Jacobi equation. Further, it follows from the independence of the sep-
arate variable pairs (g;, p;) that the J;'s form n independent functions of the ;s
and hence are suitable for use as a set of new constant momenta. Expressing the
o;'s as functions of the action variables, the characteristic function W can be writ-
ten in the form

W=W@i....qn; J1. .o dn) =D Wy(q;3 Nio-ony du),
J

while the Hamiltonian appears as a function of the J;s only:
H=oy=H(N,...,d). (10.103)
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As in the system of one degree of freedom, we can define conjugate angle
variables w; by the equations of transformation that here appear as

aw _i AW () Jia-ees Tn)

:"E;‘Tf,-_ 37, (10.104)

w
j=1

Note in general w; could be a function of several or all of the g;; that is, w; =
Wi (Gis---.gns Jis.-., Ju). The w;'s satisfy equations of motion given by

_AH(, . d)
- aJ;

=v(J, .. da) (10.105)

why

Because the ;s are constants, functions of the action variables only, the angle
variables are all linear functions of time

w; =t 4 B (10.106)

Note that in general the separate w;'s increase in time at different rates.

The constants v; can be identified with the frequencies of the multiply peri-
odic motion, but the argument to demonstrate the relation is more subtle than for
periodic systems of one degree of freedom. The transformation equations to the
(w, J) set of variables implies that each g (and p;) is a function of the constants
J; and the variables w;. What we want to find is what sort of mathematical func-
tion the g’s are of the w's. To do this, we examine the change in a particular w;
when each of the variables g; is taken through an integral number, m j, of cycles
of libration or rotation. In carrying out this purely mathematical procedure, we
are clearly not following the motion of the system in time. It is as if the flow of
time were suspended and each of the ¢’s were moved, manually as it were, inde-
pendently through a number of cycles of their motion. In effect, we are dealing
with analogues of the virtual displacements of Chapter 1, and accordingly the in-
finitesimal change in wy; as the g;'s are changed infinitesimally will be denoted
by Swy; and is given by

dwy; atw
Swy=Y —dgi=9Y% ——dg,
T Laag Y Eﬂirﬁq;' o

where use has been made of Eq. (10.104). The derivative with respect to g; van-
ishes except for the W; constituent of W, so that by Eq. (10.98) dw; reduces to

a
dwy = — LA dgy 10.107
wi a7 ;pﬂq; )dg; { )

Equation (10.107) represents dw; as the sum of independent contributions each
involving the g; motion. The total change in w; as a result of the specified ma-
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neuver is therefore

)
Awy =Eﬂ_‘#fpj{qjlf)dq'j. (10.108)
4 m

the differential operator with respect to J; can be kept outside the integral signs
because throughout the cyclic motion of g; all the J's are of course constant. Be-
low each integral sign, the symbol m ; indicates the integration is over m; cycles
of g;. But each of the integrals is, by the definition of the action variables, exactly
m;J;. Since the J's are independent, it follows that

Aw; = m;. (10.109)

Further, note that if any g; does not go through a complete number of cycles, then
in the integration over ¢; there will be a remainder of an integral over a fraction
of a cycle and Aw; will not have an integral value. If the sets of w’s and m’s are
treated as vectors w and m, respectively, Eq. (10,109) can be written as

Aw =m. (10.109")

Suppose, first, that the separable motions are all of the libration type so that
each g, as well as p;, returns to its initial value on completion of a complete
cycle. The result described by Eq. (10.109") could now be expressed somewhat
as follows:  (the vector of ¢'s and p's) is such a function of w that a change
Am = 0 corresponds to a change Aw = m, a vector of integer values. Since the
number of cycles in the chosen motions of g are arbitrary, m can be taken as zero
except for m; = 1, and all the components of 1 remain unchanged or return to
their original values. Hence, in the most general case the components of 0 must
be periodic functions of each w; with period unity; that is, the ¢'s and p’s are
multiply periodic functions of the w's with unit periods. Such a multiply periodic
function can always be represented by a multiple Fourier expansion, which for gy,
say, would appear as

Z Z E }k} g iUrwetpwgtjpwsttand (libration)

I.u.-Jﬂ
=—c0 jy=—00 Jn =—00

(10.110)
where the j's are n integer indices running from —oo to 0o. By treating the set of
J's also as a vector in the same n-dimensional space with w, the expansion can be
written more compactly as

g =Y a"a®I™  (ibration). (10.110")
]

If we similarly write Eq. (10.109') as a vector equation,

w=vt+B, (10.106")
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then the time dependence of g appears in the form

gr(t) = ¥ al P+ (libration). (10.111)
i

Note that in general gy (1) is not a periodic function of r. Unless the various v;"s
are commensurate (that is, rational multiples of each other), g; will not repeat its
values at regular intervals of time. Considered as a function of 1, g; is designated
as a guasi-periodic function. Finally it should be remembered that the coefficients
ajk:' can be found by the standard procedure for Fourier coefficients; that is, they
are given by the multiple integral over the wnit cell in w space:

| !
o =f f qr(we " (dw). (10.112)
0 0

Here (dw) stands for the volume element in the n-dimensional space of the w,’s.

When the motion is in the nature of a rotation, then in a complete cycle of the
separated variable pair (gg. pi) the coordinate g3 does not return to its original
value, but instead increases by the value of its period gypy. Such a rotation coordi-
nate is therefore not itself even multiply periodic. However, during the cycle we
have seen that w; increases by unity. Hence, the function g3 — wggne does return
to its initial value and, like the librational coordinates, is a multiply periodic func-
tion of all the w’s with unit periods. We can therefore expand the function in a
multiple Fourier series analogous to Eqg. (10.110)

g — weqoe = »_ae?™™,  (rotation) (10.113)
j

ar

qk = qok (vt + B) + D @V P VHB) - (rotation). (10.114)
i

Thus, it is always possible to derive a multiply periodic function from a rotation
coordinate, which can then be handled exactly like a libration coordinate. To sim-
plify the further discussion, we shall therefore confine ourselves primarily to the
libration type of motion.

The separable momentum coordinates, pj, are by the nature of the assumed
motion also multiply periodic functions of the w’s and can be expanded in a mul-
tiple Fourier series similar to Eq. (10.110). It follows then that any function of the
several variable pairs (gg, px) will also be multiply periodic functions of the w's
and can be written in the form

flg,p) =" be™ ™ =" pemii B, (10.115)
i J

For example, where the Cartesian coordinate of particles in the system are not
themselves the separation coordinates, they can still be written as functions of
time in the fashion of Eqg. (10.115).
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While Eqs. (10.110) and (10.111) represent the most general type of motion
consistent with the assumed nature of the problem, not all systems will exhibit
this full generality. In particular, for most problems simple enough to be used as
illustrations of the application of action-angle variables, Eq. (10.104) simplifies
to

dw
w; = a—ﬁw;; Jiaeon d) (10.116)

and each separation coordinate g, is a function only of its corresponding wy.
When this happens, gy is then a periodic function of wy (and therefore of time),
and the multiple Fourier series reduces to a single Fourier series:

kY Imij kY 2wif
= Zaﬁ )tmijuy ZaE e et +Be) (10.117)
] i

In the language of Chapter 6, in such problems the g;'s are in effect the normal
coordinates of the system. However, even when the motion in the g’s can be so
simplified, it frequently happens that functions of all the ¢’s, such as Cartesian co-
ordinates, remain multiply periodic functions of the w’s and must be represented
as in Eq. (10.115). If the various frequencies v are incommensurate, then such
functions are not periodic functions of time. The motion of a two-dimensional
anisotropic harmonic oscillator provides a convenient and familiar example of
these considerations.

Suppose that in a particular set of Cartesian coordinates the Hamiltonian is
given by

H= %rcp} +4rm*ulx?) + (ph + dn’mPolyh).
These Cartesian coordinates are therefore suitable separation variables, and each
will exhibit simple harmonic motion with frequencies v, and vy, respectively.
Thus, the solutions for x and y are particularly simple forms of the single Fourier
expansions of Eq. (10.117). Suppose now that the coordinates are rotated 45°
about the z axis; the components of the motion along the new x’, y" axes will be
x = \%[xqms 2 (vet + B ) + yocos 2w (vyt + )1,

1
y = ?i[ygmsirrlfvyr + By) — xgcos 2w (vyt + By)]. (10.118)

If vy /vy is a rational number, these two expressions will be commensurate. corre-
sponding to closed Lissajous figures of the type shown in Fig. 10.4. But if v, and
vy are incommensurable, the Lissajous figure never exactly retraces its steps and
Eqgs. (10.118) provide simple examples of multiply periodic series expansions of
the form (10.117).

Even when gy is a multiply periodic function of all the w's, we intuitively feel
there must be a special relationship between gy and its corresponding wy (and
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FIGURE 104 Lissajous figures for Eq, (10.118). (a) fx = fy = §, % = @) fx = 1,
ﬁ_’!‘ = '}'r _:‘:_' = %-

therefore vy ). After all, the argument culminating in Eq. (10.109) says that when
gy alone goes through its complete cycle, wy increases by unity, while the other
w's return to their initial values. It was only in 1961 that J. Vinti succeeded in
expressing this intuitive feeling in a precise and rigorous statement.*

Suppose that the time interval T contains m complete cycles of g plus a frac-
tion of a cycle. In general, the times required for each successive cycle will be
different, since g; will not be a periodic function of 7. Then Vinti showed, on the
basis of a theorem in number theory, that as T increases indefinitely,

Lim & = y. (10.119)

The mean frequency of the motion of g, is therefore always given by v, even
when the entire motion is more complicated than a periodic function with fre-
quency vg.

Barring commensurability of all the frequencies, a multiply periodic function
can always be formed from the generating function W. The defining equation
for J;, Eq. (10.102), in effect states that when g; goes through a complete cycle;
that is, when w; changes by unity, the characteristic function increases by J;. It
follows that the function

W=W-3 w (10.120)
k

remains unchanged when each wy is increased by unity, all the other angle vari-
ables remaining constant. Equation (10.120) therefore represents a multiply peri-
odic function that can be expanded in terms of the w; (or of the frequencies v;)
by a series of the form of Eq. (10.115). Since the transformation equations for the
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angle variables are

_aw
e

it will be recognized that Eq. (10.120) defines a Legendre transformation from
the g, J basis to the g. w basis. Indeed, comparison with Eq. (9.15) in combina-
tion with Eq. (9.12) shows that if W(g, J) is a generating function of the form
Fi(g. P), then W'(g, w) is the corresponding generating function of the type
Fy(g, @), transforming in both cases from the (g, p) variables to the (w, J) vari-
ables. While W' thus generates the same transformation as W, it is of course not
a solution of the Hamilton Jacobi equation.

It has been emphasized that the system configuration is multiply periodic only
if the frequencies v; are not rational fractions of each other. Otherwise, the con-
figuration repeats after a sufficiently long time and would therefore be simply
periodic. The formal condition for the commensurability of two frequencies v,
and v; is that they satisfy the relation j;v; = j;v; (no sum) where j; and j; are
nonzero positive integers. For complete commensurability, all pairs of frequencies
must satisfy relations of the form

Wi

Jivi = Jevg. (no sum) (10.121)

where the j; and ji are nonzero positive integers.

When we can express any v; as a rational fraction of any of the other frequen-
cies, the system is said to be completely commensurate. If only m + | of the n
frequencies satisfy Eq. (10.121), the systern is said to be m-fold commensurate.
For example, consider the set of seven frequencies vy = 3 MHz, v2 = 5 MHz,
va = 7 MHz, v4 = 24/2 MHz, vs = 3+/2 MHz, vg = +/3 MHz, 17 = +/7 MHz.
The first three vy, vy, and vy are triply commensurate, the next two vy4 and vs are
doubly commensurate.

There is an interesting connection between commensurability and the coordi-
nates in which the Hamilton—Jacobi equation is separable. It can be shown that the
path of the system point for a noncommensurate system completely fills a limited
region of both configuration and phase space. This can be seen in the Lissajous
figures of incommensurate frequencies.

Suppose the problem is such that the motion in any one of the separation coor-
dinates is simply periodic and has therefore been shown to be independent of the
motion of the other coordinates. Hence, the path of the system point as a whole
must be limited by the surfaces of constant g; and p; that mark the bounds of the
oscillatory motion of the separation variables. (The argument is easily extended to
rotation by limiting all angles to the region 0 to 2sr.) These surfaces therefore de-
fine the volume in space that is densely filled by the system point orbit. Tt follows
that the separation of variables in noncommensurate systems must be unique: the
Hamilton-Jacobi equation cannot be separated in two different coordinate sys-
tems (aside from trivial variations such as change of scale). The possibility of
separating the motion in more than one set of coordinates thus normally provides
evidence that the system is commensurate,
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The simplest example of being commensurate is degeneracy which occurs
when two or more of the frequencies are equal. If two of the force constants
in a three-dimensional harmonic oscillator are equal, then the corresponding fre-
quencies are identical and the system is singly degenerate. In an isotropic linear
oscillator, the force constants are the same along all directions, all frequencies are
equal, and the system is completely degenerate.

Whenever this simple degeneracy is present, the fundamental frequencies are
no longer independent, and the periodic motion of the system can be described
by less than the full complement of n frequencies. Indeed, the m conditions of
degeneracy can be used to reduce the number of frequencies ton — m + 1. The
reduction of the frequencies may be most elegantly performed by means of a point
transformation of the action-angle variables. The m degeneracy conditions may be
written where ji; are positive or negative integers

n
Y gkvi=0. k=1,....m. (10.122)
i=1

Consider now a point transformation from (w, J) to (w', J') defined by the
generating function (cf. Eqg. (9.26) where the summation convention is used):

= iiﬂ;ﬁ;;wi + i J;ka (lllll‘i]

k=1 1=1 k=m+1

The transformed coordinates are

"
wp =3 ju. k=1....m,
i=1
= wy, k=m+1,...,n. (10.124)

Correspondingly, the new frequencies are

n
y=wp=Y juui=0 k=1...,m,

i=]

=1 k=m<+1,...,n. (10.125)

Thus in the transformed coordinates, m of the frequencies are zero, and we are left
with a set of n — m independent frequencies plus the zero frequency. It is obvious
that the new w;, may also be termed as angle variables in the sense that the system
configuration is multiply periodic in the w; coordinates with the fundamental
period unity. The corresponding constant action variables are given as the solution
of the n equations of transformation

i n
E="Rik+ Y Tbu. (10.126)
k=1

k=m+1
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The zero frequencies correspond to constant factors in the Fourier expansion.
These are of course also present in the original Fourier series in terms of the
v's, Eq. (10.110), occurring whenever the indices j; are such that degeneracy
conditions are satisfied. Since

_EIH
A

o
L

the Hamiltonian must be independent of the action variables J; whose corre-
sponding frequencies vanish. In a completely degenerate system, the Hamiltonian
can therefore be made to depend upon only one of the action variables.

Note that Hamilton’s characteristic function W also serves as the generating
function for the transformation from the (g, p) set to the (w', J') set. Since the J'
quantities are » independent constants, the original constants of integration may
be expressed in terms of the J' set, and W given as W(g, J'). In this form, it is a
generating function to a new set of canonical variables for which the J' quantities
are the canonical momenta. But by virtue of the point transformation generated
by the F; of Eq. (10.123), we know that w’ is conjugate to J'. Hence, it follows
that the new coordinates generated by W (g, J') must be the angle variable w' set,
with equations of transformation given by
' aw

w; = BJ;"

(10.127)

(For a more formal proof of Eq. (10.127) based on the algebraic structure of
Eq. (10.123), see Derivation 3.)

The problem of the bound motion of a particle in an inverse-square law central
force illustrates many of the phenomena involved in degeneracy. A discussion of
this problem also affords an opportunity to show how the action-angle technique is
applied to specific systems, and to indicate the connections with Bohr’s quantum
mechanics and with celestial mechanics. Accordingly, the next section is devoted
to a detailed treatment of the Kepler problem in terms of action-angle variables.

THE KEPLER PROBLEM IN ACTION-ANGLE VARIABLES*

To exhibit all of the properties of the solution, we shall examine the motion in
three dimensional space, rather than make use of our a priori knowledge that the
orbit lies in a plane. In terms of spherical polar coordinates, the Kepler problem
becomes a special case of the general treatment given above in Section 10.5 for
central force motion in space. Equations (10.70) through (10.77) can be taken
over here immediately, replacing V (r) wherever it occurs by its specific form

k
Ve =——. (10.128)

*The summation convention will be resumed from here on.

Page 33/45




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSENAME: MECHANICS
COURSE CODE: 1I9MMP106 UNIT: V BATCH-2019-2021
10.8 The Kepler Problem in Action-angle Variables 467

Since the potential V (r) depends only upon one of the three coordinates, it fol-
lows that the Hamilton—Jacobi equation is completely separable in spherical polar
coordinates. We shall confine our discussion to the bound case, that is, E < 0.
Hence, the motion in each of the coordinates will be periodic—libration in r and
), and rotation in ¢. The conditions for the application of action-angle variables
are thus satisfied, and we can proceed to construct the action variables on the basis
of the defining equation (10.102). From Eq. (10.72), it follows that

Jo = f#; W g = fa.,.@ (10.1292)

Similarly, on the basis of Eq. (10.74), Jy is given by

Jo = —de = 5£ a2 — (10.129b)
Finally the integral for J, from Eq. (10.75), is
2
Jr—f—rdr—f\/ZmEﬂ—@—‘:—gdn (10.129¢)

The first integral is trivial; ¢ goes through 27 radians in a complete revolution
and therefore

Jp = 2mag = 2mpg. (10.130)

This result could have been predicted beforehand, for ¢ is a cyclic coordinate
in H, and Eq. (10.130) is merely a special case of Eq. (10.101) for the action
variables corresponding to cyclic coordinates. Integration of Eq. (10.129b) can
be performed in various ways; a procedure involving only elementary rules of
integration will be sketched here. If the polar angle of the total angular momentum
vector is denoted by i, so that

Eah

cosi = —, 10.131
p” ( )

then Eq. (10.129b) can also be written as

Ja = aig ?g V1 —cos?icsc? 6 db. (10.132)

The complete circuital path of integration is for @ going from a limit —8y to +fy
and back again, where sinfly = cosi, or g = (7/2) — i. Hence, the circuital
integral can be written as 4 times the integral over from 0 to 8y, or after some

manipulation,
By
Jo = mgf csc@y/sin? i — cos? 6 d#.
1]
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The substitution

cosf = sinisiny

transforms the integral to

af2 2 d
Jg = dag sinzif b ff "!; . (10.133)
0 1 —sin®isin”y

Finally, with the substitution
H = tan y,
the integral becomes

du
(1 4+ u?)(1 + u?cos? i)

oo
Js = dag sin’ i f
[}

o0 1 cos®i
= 4o d - . -
”f.;. “(1+u2 1+u2mslf) (10.134)
This last form involves only well-known integrals, and the final result* is
Jg = 2mwag(1 — cosi) = 2m(oe — ag). (10.135)

The last integral (Eq. (10.129¢)), for J,, can now be written as

dmk (Jp + Jg)?
J,zjf;\/szJr mk _ e+ Jo)” (10.136)
r 4yl

After performing the integration, this equation can be solved for the energy E =
H in terms of the three action variables Jg, Jg, J;. Note that J; and Jg can occur
in E only in the combination Jy + J4, and hence the corresponding frequencies
v and v must be equal, indicating a degeneracy. This result has not involved the
inverse-square law nature of the central force; any motion produced by a central
force is at least singly degenerate. The degeneracy is of course a consequence
of the fact that the motion is confined to a plane normal to the constant angular
momentum vector L. Motion in this plane implies that § and ¢ are related to
each other such that as ¢ goes through a complete 2 period, # varies through a
complete cycle between the limits (7 /2) % i. Hence, the frequencies in # and ¢
are necessarily equal.

The integral involved in Eq. (10.136) can be evaluated by elementary means,
but the integration is most elegantly and guickly performed using the complex

*In evaluating the integral of the second term in the final integrand of Eqg. {10.134}, it has been assumed
that cosf is positive. This is always possible, since there is no preferred direction for the z axis in the
problem and it may be chosen at will. If cos i were negative, the sign of g in Eqg. (10.135) would be
positive. For changes in the subsequent formulas, see Exercise 23,
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contour integration method of residues. For the benefit of those familiar with this
technique, we shall outline the steps involved in integrating Eq. (10.136). Bound
motion can occur only when E is negative (cf. Section 3.3), and since the inte-
grand is equal to p, = mr, the limits of the motion are defined by the roots r; and
ra of the expression in the square root sign. If ry is the inner bound, as in Fig. 3.6,
a complete cycle of r involves going from r to ra and then back again to ry. On
the outward half of the journey, from r; to r;, p, is positive and we must take
the positive square root. However, on the return trip to ry, p, is negative and the
square root must likewise be negative. The integration thus involves both branches
of a double-valued function, with r| and r as the branch points. Consequently,
the complex plane can be represented as one of the sheets of a Riemann surface,
slit along the real axis from r| to r; (as indicated in Fig. 10.5).

Since the path of integration encloses the line between the branch points r;
and r7, the method of residues cannot be applied directly. However, we may also
consider the path as enclosing all the rest of the complex plane, the direction of
integration now being in the reverse (clockwise) direction. The integrand is single-
valued in this region, and there is now no bar to the application of the method of
residues. Only two singular points are present, namely, the origin and infinity, and
the integration path can be distorted into two clockwise circles enclosing these
two points. Now, the sign in front of the square root in the integrand must be neg-
ative for the region along the real axis below ry, as can be seen by examining the
behavior of the function in the neighborhood of ry. If the integrand is represented

as
2B C
- .A + - — —2.
r ¥
the residue at the origin is
Rp = —~=C.

Above ra, the sign of the square root on the real axis is found to be positive,
and the residue is obtained by the standard technique of changing the variable of
integration to z = r—1:

1
—ﬁ z—z-./A +2Bz — Cz2 dz. (10.137)

N~ Nwawe (O

W square root \r'l + ¥+ Fj square root \:/

FIGURE 10.5 The complex r plane in the neighborhood of the real axis: showing the
paths of integration occurring in the evaluation of J.

Prepared by Dr.S.Sowmiya, Asst Prof, Department of Mathematics KAHE Page 36/45




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSENAME: MECHANICS
COURSE CODE: 19MMP106 UNIT: V BATCH-2019-2021

Expansion about z = () now furnishes the residue

B
Rop = ———.
oo JH
The total integral is —27i times the sum of the residues:
B
Jr =2mi «J—C+—), 10.138
(Ve+ 7z (O39)
or, upon substituting the coefficients A, B, and C:
2m
ufr = _{th + Jd_..} + mk -—-E {1':'139)

Equation (10.139) supplies the functional dependence of H upon the action
variables; for solving for E, we have
27 mk?
H=E G dst T (10.140)
Note that, as predicted, Jg and Jg occur only in the combination Jy + Js. More
than that, all three of the action variables appear only in the form J, + Js +
Js. Hence. all of the frequencies are equal; the motion is completely degenerate.
This result could also have been predicted beforehand, for we know that with
an inverse-square law of force the orbit is closed for negative energies. With a
closed orbit, the motion is simply periodic and therefore, in this case, completely
degenerate. If the central force contained an r > term, such as is provided by first-
order relativistic corrections, then the orbit is no longer closed but is in the form
of a precessing ellipse. One of the degeneracies will be removed in this case, but
the motion is still singly degenerate, since vy = vy for all central forces. The one
frequency for the motion here is given by

J_H _OH _H _  4x’mk?
TAg T Al 0dy (e + g

If we evaluate the sum of the J's in terms of the energy from Eq. (10.140) the

period of the orbit is
S i%_ (10.142)

This formula for the period agrees with Kepler's third law, Eq. (3.71), if it is
remembered that the semimajor axis a is equal to —k/2E.

The degenerate frequencies may be eliminated by canonical transformation
to a new set of action-angle variables, following the procedure outlined in the
previous section. Expressing the degeneracy conditions as

(10.141)

vy —vg =0, vg — v =10,
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the appropriate generating function is
F = (wg —we)y + (we — wr)J2 + w, Ja. (10.143)
The new angle variables are
w) = uwy — Wy
Wy = Wy — Wy,
w3 = Wy, (10.144)

and, as planned, two of the new frequencies, v and v, are zero. We can obtain
the new action variables from the transformation equations

Js = 11,
Jog =T — Iy,
Jr =43 — h,
which yields the relations
B = Jg,
Jo=Js + Ja, (10.145)

In terms of these transformed variables the Hamiltonian appears as

(10.146)

a form involving only that action variable for which the corresponding frequency
is different from zero.

If we are willing to use, from the start, our a priori knowledge that the motion
for the bound Kepler problem is a particular closed orbit in a plane, then the inte-
grals for Jy and J, can be evaluated very quickly and simply. For the Jy integral,
we can apply the following procedure. It will be recalled that when the defining
equations for the generalized coordinates do not involve time explicitly, then (cf.
Eqg. (8.20) and the material following (8.20))

pigi = 2L»¢;gi = 2T.
Knowing that the motion is confined to a plane, we can express the kinetic energy
T either in spherical polar coordinates or in the plane polar coordinates (r, ¥). It
follows, then, that

2T = pF + pab + ppd = prt + py, (10.147)
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where p (= I) is the magnitude of the total angular momentum. Hence, the defi-
nition for Jz can also be written as

Jo = f pe df = 5{ pdy — fpﬁdcﬁ. (10.148)

Because the frequencies for & and ¢ are equal, both ¢ and y vary by 2 as 6 goes
through a complete cycle of libration, and the integrals defining Jz reduce to

Jo =2n(p — pp) = 2mlag — otg),

in agreement with Eq. (10.135).

The integral for J,, Eq. (10.136), was evaluated in order to obtain // = E in
terms of the three action variables. If we use the fact that the closed elliptical orbit
in the bound Kepler problem is such that the frequency for » is the same as that
for & and ¢, then the functional dependence of H on J can also be obtained from
Eq. (10.147). In effect then we are evaluating J, in a different way. The virial
theorem for the bound orbits in the Kepler problem says that (cf. Eq. (3.30))

V =-2T,

where the bar denotes an average over a single complete period of the motion. It
follows that

H=E=T+V=-T. (10.149)

Integrating Eq. (10.147) with respect to time over a complete period of motion we
have
%‘E =J, +Js+Jp= s, (10.150)
3
where v3 is the frequency of the motion, that is, the reciprocal of the period.
Combining Egs. (10.149) and (10.150) leads to the relation
2 n 1 dH
=2 =T 10.151
Js H HdR ¢ )
where use has been made of Eq. (10.105). Equation (10.151) is in effect a differ-
ential equation for the functional behavior of H on J3. Integration of the equation
immediately leads to the solution

H=—, (10.152)

S

where D is a constant that cannot involve any of the J's, and must therefore de-
pend only upon m and k. Hence, we can evaluate D by considering the elementary
case of a circular orbit, of radius rg, for which J. = 0 and J3 = 2np. The total
energy is here
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k
H=—— (10.153)
2rg

(as can most immediately been seen from the virial theorem). Further, the con-
dition for circularity, Eq. (3.40), can be written for the inverse-square force law
as

k 2 J

S = r __35 (10.154)

ré mrg  dnimrg

Eliminating rp between Egs. (10.153) and (10.154) leads to

_ 2 imk?
13

(10.155)

This result has been derived only for circular orbits. But Eq. (10.152) says it must
also be correct for all bound orbits of the Kepler problem, and indeed it is identical
with Eq. (10.146). Thus, if the existence of a single period for all coordinates is
taken as known beforehand, it is possible to obtain H(J) without direct evaluation
of the circuital integrals.

In any problem with three degrees of freedom, there must of course be six
constants of motion. It has previously been pointed out that in the Kepler problem
five of these are algebraic functions of the coordinates and momenta and describe
the nature of the orbit in space, and only the last refers to the position of the
particle in the orbit at a given time (cf. Sections 3.7 to 3.9). It is easy to see that
five parameters are needed to completely specify, say, the elliptical orbit of the
bound Kepler problem in space. Since the motion is in a plane, two constants are
needed to describe the orientation of that plane in space. One constant is required
to give the scale of the ellipse, for example, the semimajor axis a, and the other
the shape of the ellipse, say, through the eccentricity e. Finally, the fifth parameter
must specify the erientation of the ellipse relative to some arbitrary direction in
the orbital plane.

The classical astronomical elements of the orbit provide the orbital parameters
almost directly in the form given above. Two of the angles appearing in these
elements have unfamiliar but time-honored names. Their definitions, and func-
tions as orbital parameters, can best be seen from a diagram, such as is given in
Fig. 10.6. Here xyz defines the chosen set of axes fixed in space, and the unit
vector m characterizes the normal to the orbital plane. The intersection between
the xy plane and the orbital plane is called the line of nodes. There are two points
on the line of nodes at which the elliptical orbit intersects the xy plane; the point
at which the particle enters from below into the upper hemisphere (or goes from
the “southern™ to the “northern” hemispheres) is known as the ascending node. In
Fig. 10.6, the portion of the orbit in the southern hemisphere is shown, for clarity,
as a dashed line. The dot-dashed line OV is a portion of the line of nodes contain-
ing the ascending node. We can measure the direction of ON in the xy plane by
the angle xON, which is customarily denoted by £2, and is known as the longitude
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X
A==

FIGURE 10.6 Angular elements of the orbit in the bound Kepler problem.

of the ascending node. Finally, if C denotes the point of periapsis in the orbit,
then the angle N OC in the orbital plane is denoted by w and is called the argu-
ment af the perihelion * The more familiar angle i, introduced in Eq. (10.131), is
in its astronomical usage known as the inclination of the orbit. One usual set of
astronomical elements therefore consists of the six constants

i, 2, a.e T,

where the last one, T, is the time of passage through the periapsis point. Of the
remaining five, the first two define the orientation of the orbital plane in space,
while a, e, and @ directly specify the scale, shape, and orientation of the elliptic
orbit, respectively.

The action-angle variable treatment of the Kepler problem also leads to five
algebraic constants of the motion. Three of them are obvious as the three constant
action variables, Jy, J/;, and J3. The remaining two are the angle variables w
and wy, which are constants, because their corresponding frequencies are zero. It
must therefore be possible to express the five constants Jy, J5, J3, wy, and ws in
terms of the classical orbital elements i, £, a, ¢, and w, and vice versa. Some of
these interrelations are immediately obvious. From Egs. (10.145) and (10.135) it
follows that

Jo = 2wy = 2w, (10.156)
and hence, by Eq. (10.131),
J
21— cosi. (10.157)
Ja

As is well known, the semimajor axis a is a function only of the total energy E
(cf. Eq. (3.61)) and therefore, by Eq. (10.146), a is given directly in terms of J3:

*This terminology appears to be commonly used ewen for orbits that are not around the sun., The
proper term for orbits about stars is periastra; for Earth-orbiting satellites, this term is perigee.
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k J?
= = , 10.158
@=T3E T antmk ( )

In terms of J2, Eq. (3.62) for the eccentricities can be written as

J3
amrlmka’

£ = -

2
e=,1-— (—'{E) . (10.159)

It remains only to relate the angle variables w; and u; to the classic orbital
elements. Obviously, they must involve £2 and w. In fact, it can be shown that for
suitable choice of additive constants of integration they are indeed proportional to
2 and w, respectively. This will be demonstrated for w; the identification of w,
will be left as an exercise.

The equation of transformation defining wy is, by Eq. (10.127),

_ W
Toad

It can be seen from the separated form of W, Eq. (10.71), that W can be written
as the sum of indefinite integrals:

un

W=fp¢d¢+fp.edﬁ'+fp,dr. (10.160)

As we have seen from the discussion on Jy, the radial momentum p, does not
involve Jy, but only J; (through E) and the combination Jg + Jg = J3. Only the
first two integrals are therefore involved in the derivative with respect to Jy. By

Eq. (10.130),

pp =0y = ;le (10.161)

and by Eq. (10.74), with the help of Egs. (10.156) and (10.161),

2 2

o 1 J
=4 o2 —¢ — 4 [g2__1 10.162
PO==N " Gnte ~ 22Y 72 T sinle ( )

It turns out that in order to relate w; to the ascending node, it is necessary to
choose the negative sign of the square root.* The angular variable w is therefore
determined by

*Note that when the particle passes through the ascending node (cf. Fig. 10.6) @ is decreasing and
the corresponding moementum is negative. In caleulating Jg, it was not necessary to worry about the
choice of sign because in going through a complete cycle both signs are encountered.
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¢ J1 de
w = - + Ef s
“ sin? 8,/ JF — Il csc? 6

dtd
sin® 8+/1 — cos? i csc? @

_¢+f coticsc? 6 d6
V1 —=cot?icot?d

2w =¢+r:{&sif

By a change of variable to u, defined through
sinu = coticotd, (10.163)
the integration can be performed trivially, and the expression for wy reduces to
2nw; = ¢ — u. (10.164)

The angle coordinate ¢ is the azimuthal angle of the projection on the xy plane
measured relative to the x axis. Clearly, from Eq. (10.163) u is a function of the
polar angle @ of the particle. But what is its geometrical significance? We can
see what u is by reference to Napier's rules* as applied to the spherical triangle
defined by the line of nodes, the radius vector, and the projection of the radius
vector on the xy plane. However, it may be more satisfying to indulge in a little
trigonometric manipulation and derive the relation ab initio. In Fig. 10.7, the line
ON is the line of nodes, OR is the line of the radius vector at some time, and the
dotted line O P is the projection of the radius vector on the xy plane. The angle
that O P makes with the x axis is the azimuth angle ¢o. We contend that u is the
angle OP makes with the line of nodes. To prove this, imagine a plane normal
both to the xy plane and to the line of nodes, which intersects the radius vector
at unit distance O B from the origin @. The points of intersection A, B, and C of
this plane, with the three lines from the origin, define with the origin four right
triangles. Since OB has unit length, it follows that BC = cosf and therefore
AC = cosf coti. On the other hand, OC = sin# and therefore it is also true that
AC = sin@ sinu. Hence, sinu = coti cot &, which is identical with Eq. (10.163)
and proves the stipulated identification of the angle u. Figure 10.7 shows clearly
that the difference between ¢ and 1 must be €2, so that

2mw; = 8. (10.165)

In a similar fashion, we can identify the physical nature of the constant w. Of
the integrals making up W, Eq. (10.160), the two over # and r contain J3 and

*For an explanation of Napier's rules for spherical triangles, see handbooks such as the Handbook of
Mathematical Tables (Chemical Rubber Fublishing Co.) or Handboak of Applied Mathematics (Van
MNosirand-Reinhold).
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FIGURE 10.7 Diagram illustrating angles appearing in action-angle treatment of the
Eepler problem.

are therefore involved in finding w». After differentiation with respect to J2, the
integral over & can be performed by the same type of trigonometric substitution as
employed for wj . The corresponding integral over r can be carried out in a number
of ways, most directly by using the orbit equation for r in terms of the polar
coordinate angle in the orbital plane. By suitable choice of the arbitrary lower
limit of integration, it can thus be found that 277w, is the difference between two
angles in the orbital plane, one of which 1s the angle of the radius vector relative
to the line of nodes and the other is the same angle but relative to the line of the
periapsis. In other words, 2w is the argument of the perihelion:

2run = w. (10.166})

Detajled derivation is left to one of the exercises.

The method of action-angle variables is certainly not the quickest way to solve
the Kepler problem, and the practical usefulness of the set of variables is not ob-
vious. However, their value has long been demonstrated in celestial mechanics,
where they appear under the guise of the Delaunay variables.* As will be seen in
Section 12.2, they provide the natural orbital elements that can be used in pertur-
bation theory, to describe the modifications of the nominal Kepler orbits produced
by small deviations of the force from the inverse-square law. Many of the basic
studies on possible perturbations of satellite orbits were carried out in terms of
the action-angle variables.

*As customarily defined, the Delaunay variables differ from the (J,, w,) set by multiplicative con-
stanis.
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POSSIBLE QUESTIONS
Part B (6 Marks)

. Derive Hamilton Jacobi equation from Hamilton’s characteristic function
. Explain the physical significance of Hamilton Jacobi equation
. Derive Jacobi’s theorem

. Derive kepler’s problem solution by Hamilton Jacobi method

g B~ W N

. Derive the separation of variables in the Hamilton Jacobi equation

Part C (10 Marks)

1. Derive Harmonic oscillator problem by Hamilton Jacobi method
2. Derive Hamilton Jacobi equation from Hamilton’s characteristic function

3. Derive the Lagrange’s equation from Hamilton’s principle for holonomic system
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Unit V
Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions
Question Opt1 Opt 2 Opt3 Opt 4 Answer

A is a position of
matter occupying finite space. Impact Body Momentum Elastic body Body
A body is said to be if it
remains in its original position after the removal of
deforming forces. Direct Impact Oblique impact | impact Elastic Elastic
The common normal at the point of contact is called

Direct Impact Oblique impact | line of impact | Elastic line of impact
In case of two spheres the
is the line joining their centre. Direct Impact Oblique impact | line of impact | Impulsive line of impact
Two bodies is said to if the
motion after impact of both the bodies is along the
common normal. Direct Impact Oblique impact | line of impact | Impulsive Direct Impact
Two bodies is said to if the
motion after impact of atleast one of the body is not
along the common normal. Direct Impact Oblique impact | Impulsive impact Oblique impact
A force of large magnitude acting for a very short
interval time is called an

central force Colinear force | Impulsive force | Circular force Impulsive force
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is always measured by its

impulse. Impulsive force | Colinear force | Central force Circular force Impulsive force
Forward momentum of the shot = Forward Backward equal Backward

of the gun. momentum momentum momentum Bothaand b momentum
The principle of conservation of linear momentum
applies along the Direct Impact Oblique impact | line of impact | Impulsive line of impact
Two bodies when they strike against each other are
said to ) Elastic Implinge line of impact | Pressure Implinge
The impact of elastic bodies, the bodies are

smooth rough perfectly smooth| perfectly rough smooth

Elastic spheres and the mutual action between them
is along the

line of action

line of force

line of centres

line of impact

line of centres

Two bodies are said to implinge dlrectly on each
other then the impact is called

. Direct Impact Oblique impact | line of impact | Impulsive Direct Impact
Two bodies are said to implinge obliquely on each
other then the impact is called
Direct Impact Oblique impact | line of impact | Impulsive Oblique impact
In the direction of motion is
along the common normal at the point of contact. Direct Impact Oblique impact | line of impact | Impulsive Direct Impact
In the direction of
motion is opposite to the direction of the impact. Direct Impact Oblique impact | Elastic body Impact Oblique impact
In smooth spheres the horizontal components of the
velocity beffore and after impact are
same opposite perpendicular | parallel same
In a triangle, o + B + Y = 90 then tan a. tan B + tan
Btan Y +tan Y tan a = 1 T /2 0 0
In a triangle, o + B + Y = 90 then tan o / tan B is
. 1 0 e 00 e
If e = 1 then the sphere is smooth perfectly smoth | Elastic perfectly elastic perfectly elastic
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If e=0 then the sphere is in

. smooth perfectly smoth | Elastic perfectly elastic Elastic

The formula for velocity of rebound is e x velocity of | e/ velocity of [ e + velocity of | e - velocity of e x velocity of

. impinge impinge impinge impinge impinge
The formula for height accended is vertical velocity | vertical Vertical velocity | vertical veloocity -

X 2g velocity/ 2g +2g 2¢g vertical velocity/ 2g
of a shot = Forward Backward equal
Backward mmentum of a gun. momentum momentum momentum Bothaand b Forward momentum
A body is a position of
occupying finite space. weight mass matter velocity matter
Two bodies are said to implinge directly if the
motion after impact of both the bodies is
the common normal. along not along parallel to Perpendicular along
Two bodies are said to implinge obliquely if the
motion after impact of both the bodies is
the common normal. along not along parallel to Perpendicular not along

The impulse of F is given by Ft=

. mv X mu mv/mu mv+ mu mv - mu mv - mu
The impulse of a force is measured by the

change. Force velocity momentum weight momentum
Any momentum generated to the gun in the
perpendicular direction to that of recoil is Impulsive impulsive
neutralised by the Impulsive force |pressure momentum impulse Impulsive pressure
Forward momentum of the
= Backward momentum of the gun. shot pressure gun force shot
Forward momentum of the shot = Backward
momentum of the . shot pressure gun force gun
The momentum destroyed per unit time is called
the mean on the Impulsive impulsive
surfaces. Impulse pressure imjpulsive force |momentum Impulsive pressure
If the two spheres are equal and perfectly elastic
then they interchange their
after impact. force pressure velocity momentum velocity
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There is a loss of kinetic energy due to

Direct Impact Oblique impact | Elastic body Impact Direct Impact
In oblique impact e= for inelastic
bodies. 0 1 2 o0 0
coefficient of coefficient of coefficient of
e is called the friction restitution eccentricity latus rectum restitution
In oblique impact e= for perfectly
elastic bodies. 0 1 2 o0 1
is called the coefficient f
restitution. X a e u e
In oblique impact e= 0 for
bodies. elastic perfectly elastic | smooth inelastic inelastic
In oblique impact e =1 for
bodies. elastic perfectly elastic | smooth inelastic perfectly elastic
There is a loss of due to direct
impact. kinetic energy | Impulse pressure force kinetic energy
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