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S.No Lecture 

Duration 

Period 

Topics to be Covered Support Material/Page 

Nos 

  UNIT-I  

1 1 Banach Spaces – Definition & Examples 

S1. Chapter 9 : 211-212 

S3:Chapter 3: 46 

2 1 Basic definitions -Normed linear spaces  S1. Chapter 9 : 213 

3 1 
Definitions and Theorems on Normed 

linear Spaceswith examples 
S1. Chapter 9 : 214-216 

4 1 
Continuous Linear Transformations –

Definition &Theorem 
S1. Chapter 9 : 219-220 

5 1 
Conjugate Space of N&Hahn- Banach 

lemma 
S1. Chapter 9 : 224-226 

6 1 Continuous of Hahn- Banach lemma 
S1. Chapter 9 : 227-229 

S2:Chapter 2:44-46 

7 1 The Natural imbedding of N in N** S1. Chapter 9 : 231 - 233 

8 1 Properties of N** S1. Chapter 9 : 231 - 233 

9 1 
Recapitulation and discussion of possible 

questions 
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  UNIT-II  

1 1 The Open Mapping –theorem 
S1. Chapter 9 :235-236 
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3 1 Projection of an operator S1. Chapter 9 : 237 
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S1. Chapter 9 : 240-242 
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4 1 Orthogonal Complements – Theorems 
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5 1 
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S1. Chapter 10 : 251-252 

S2: Chapter 3: 97-98 
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S1. Chapter 10 : 252-253 
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7 1 Theorem- Bessel’s Inequality 
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S1. Chapter 10 : 260-261 
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Recapitulation and discussion of possible 
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  UNIT-IV  

1 1 Introduction of Adjoint Operators S1. Chapter 10 : 262-263 
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Adjoint operator – Basic Definition and 
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S1. Chapter 10 : 263-265 
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T1.Chapter 7: 460-461 

4 1 
Some properties and problems on adjoint 

operator 
S1. Chapter 10 : 265-266 

5 1 Theorem on Self Adjoint operator S1. Chapter 10 : 266-269 

6 1 Theorem -Normal operator  S1. Chapter 10 : 269-271 

7 1 Theorem -Unitary operator  S1. Chapter 10 : 271-273 
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S1. Chapter 10 : 273- 274 
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                                           FUNCTIONAL ANALYSIS                            
                                                                                         

UNIT 1 

Banach Spaces 

 

Metric Spaces: 
 A metric d on a nonempty set X is a function  

d : X x X  R such that for all x, y, z  X. 

i. d (x,y) > 0 and d (x,y) = 0 iff x = y 

ii. d(y, x) = d(x,y) 

iii. d(x,y) < d(x, z) + d(z, y) 

 A metric space is a non empty set X along with a metric on it 

 

Normed Linear space: 

 
          A (real) complex normed space is a (real) complex vector space X together with a map 

: X R, called the norm and denoted x such that  

(i) x 0, for all x X, and x= 0 if and only if x = 0.  

(ii) (x) =    x , for all x X and all  C (or R).  

(iii) x + y x + y  , for all x, y X.  

 

Remark: 

     If in (i) we only require that x 0, for all x X, then . is called a seminorm.  

 

Remark : 

          If X is a normed space with norm., it is readily checked that the formula d(x, y) = 

x y , for x, y X, defines a metric d on X. Thus a normed space is naturally a metric space and 

all metric space concepts are meaningful. For example, convergence of sequences in X 

means convergence with respect to the above metric.  

 

Definition 1.4. A complete normed space is called a Banach space.  

    Thus, a normed space X is a Banach space if every Cauchy sequence in X converges 

(where X is given the metric space structure as outlined above). One may consider real or 

complex Banach spaces depending, of course, on whether X is a real or complex linear 

space. 
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Problem: 

 Show that in a normed linear space N  x -y  x -y 

 

Solution: 

 

 It is enough to prove that  x -y  x -y  

 as y  -  x = -(x -  y  )……………..(1) 

 

so that ,  

y -x  y -x  

 

             =  (-1) (x –y) = x -y 

 

Then, -(x -  y  )  x -y……………..(2) 

 

 

Also, x = x-y+y , 

 

                   x-y +y 

 

x -y  x -y,       x,y  N……………(3) 

 

 

From (2) & (3)  

 

Thus   x -y  x -y  

 

                                 Hence shown. 

 

 

Problem: 

Show that norm is a continuous function i.e., xn  x   

 xn x. 

 

Solution: 

          Suppose xn  x  d(xn ,x) 0  as n where d is the  

Metric In  the normed linear space. 

 

        We have  xn – x   0 as n .  

 

From the previous problem we have   xn -x  xn -x 

 

 xn – x   0 as n . 

 

 xn     x. 

 

                              Hence shown. 
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Theorem: 
Let M be a closed linear subspace of a normed linear space N. If the norm of a coset x+M is 

the quotient space then N/M is defined by  x +M   = inf {  x +M   / mM} 

Then N/M is  a normed linear space. Also if N is a banach space , then N/M is also a banach 

space. 

 

Proof: 

 

To prove N/M is  a normed linear space under the norm  

x +M  . 

 

To verify norm properties. 

 

i) x +M    0 as x +M    0 , for mM now 

 x +M  =0. 

 

ii) (x +M) +(y+M)   

                    =  x +y+M   

 

                    = inf{x +y+M   / mM} 

 

                   = inf {(x +m1)+(y+m2)   / m1, m2M} 

 

                    inf {(x +m1) +  (y+m2)   / m1, m2M} 

 

     = inf {(x +m1) / m1M}+ inf {  (y+m2)   / m2M} 

 

     = x +M   +y +M   

 

 

iii) similarly we can prove  

 

      (x +M ) =    x +M  . 

 

 

Hence the quotient N/M is  a normed linear space. 

 

It reminds to prove that N/M is  a  banach space whenever N is a banach space. 

 

     Starting with the Cauchy sequence in N/M it is enough to show that this sequence has a 

convergent subsequence. 

 

      This will prove that the Cauchy sequence itself is convergent in N/M  and hence N/M will 

be complete and also banach. 
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We can find a subsequence {xn +M} of the original Cauchy sequence such that x 1+M  +x2 

+M   <1/2,  

 

x 2+M  +x3 +M   <1/2
2
 and so on . 

 

 

In general we have  x n +M  +xn+1 +M   <1/2
n
. 

 

 

We prove that the sequence {xn +M} is convergent in N/M. Choose a vector  y1  x1 +M, y2   x2 

+M , so that  

 

y1 – y2    < ½. 

 

           Having chosen in the same way y3   x3 +M , so that  

y2 – y3   <1 /2
2
 and so on.  

 

             Thus we obtain a sequence {yn } in N , so that  

 

yn – yn+1   <1 /2
n
. 

 

             Let m<n, consider  ym – yn    

           =  (ym- ym+1)+(ym+1 - ym+2)+ ………+(yn-1 – yn )   

           (ym- ym+1) +  (ym+1 - ym+2) + ……… 

                                                               + (yn-1 – yn )    

          =1/ 2
m-1

. 

             

i.e., ym – yn   < 1 /2
m-1

. thus yn is a Cauchy sequence in N. 

 

      But N in a banach space is complete, 

{ yn } is convergent to a vector  y in N . 

 

but , (xn +M) - (yn+M)    (yn - y)  and yn  y means that  (yn - y)   0. 

 

  (xn +M) - (yn+M)    0  

 (xn +M)  (yn+M) as n  . 

 

         Hence the sub sequence  (xn +M) of the original Cauchy sequence is convergent. 

This proves that N/M is  a complete normed linear space.  

 

                 Hence N/M is a banach space.  

 

                    Hence the proof. 
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Complete: 

 

 A complete metric space is a metric space in which every Cauchy sequence is convergent. 

 

 

Example: 

 

1.The space R and C are the real number and the complex number are the simplest of all 

normed linear spaces.The norm of a number x is of course defined byx =x and each space 

R and C are complete. 

                     Hence R and C are banach. 

 

 

2.The linear spaces R
n
 and C

n
 of all n-tuples  

   x= (x1, x2,…..xn ) of real number and the complex number can be made into  normed linear 

spaces in a infinite variety of way. If  the norm   is defined by 

                               n 

                  x = (  xi
2  

)
1/2 

                                          i=1 

3. Let P be a real number such that 1 P  < . We denote by lp
n
 the space of all n-tuples 

x=( x1, x2,…..xn ) of scalars with the norm defined by  

                                 n 

                  xp = (  xi
p  

)
1/p 

                                             i=1 

here, p=2 so the real and complex numbers l2
n
 are the n- dimensional Euclidean and 

unitary spaces R
n
 and C

n
. 

 

              Then, the completeness of lp
n
 comes from the same reasoning of theorem.  

 

             lp
n 

 is a banach space. 

 

4. Let P be a real number such that 1 P  < . We denote by lp the space of all sequences                        

  

        x=( x1, x2,…..xn ,….) of scalars  such that xn
p
 <   

                                                                       n=1 

 with the norm defined by  

                                 n 

                  xp = (  xi
p  

)
1/p 

                                             i=1 

here lp is actually a banach space. 

 

5. The linear spaces of all n-tuples    x= (x1, x2,…..xn ) of scalars, we define the norm by  
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x = max { x1,x2  ,………. xn }……(1) 

 

This banach space commonly denoted by  

l
n
. i.e., x = lim  xp as p . 

 

 

6. Consider the linear space of all bounded sequences  

 x=( x1, x2,…..xn ,….) of scalars. We define the norm x by  

 

x = sup xn .This we denote in banach space by l. The set C of all convergent sequence   

is to be aclosed linear subspace of l and is therefore itself a banach space. 

 

 

7.The C(x) of all bounde continuous scalar –valued function defined on a topological 

space X, with the norm given by  

 

                  f = sup f(x) . 

 

 This norm is sometimes called Uniform norm. 

 

 

Continuous Linear transformation: 
 

 Let N and N’ be the normed linear space with the same scalars and let T be a linear 

transformation of N into N’. T is continuous if it is continuous as a mapping of the metric 

space N into the metric space N’, xn  x in N  

 T(xn )T( x) in N’. 

 

Theorem: 
Let N & N’ be a normed linear space and T be a linear transformation of N into N’. Then the 

following condition on T are equivalent to one another. 

 

i. T is continuous. 

ii. T is continuous at the origin in the sense that xn0  T (xn) 0; 

iii. There exist a real no. K  0 with the property that ||T(x)|| ≤ K ||x||, xN. 

iv. If s={x : ||x ||  ≤ 1} is the closed unit sphere in N .then its image T(s) is a bounded 

set in N. 

 

Proof:  

     

(i) (ii) 

If T is continuous , then since T(0)=0 it is certainly continuous at the origin .
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i.e., If xn 0 then T (xn)  T(0) =0. 

 

 On the other hand if T is continuous at the origin , then  xn  x. 

 

 xn  -x  T(xn  -x) 0 

 

T(xn ) –T(x) 0 

 

 T(xn )  T(x) 

  

So T is continuous. 

 

(ii) (iii) 

   

 It is obvious that (iii) (ii) 

 

If such a K exists, then xn 0. Clearly implies that  

T(xn)  0. 

 

To show that (ii) (iii). 

 

     We assume that there is no such K. It follows from that for each positive integer n, we can 

find a vector xn such that  

||T(x)|| >n ||xn|| , or equivalently such that  

   

  ||T(x) >n ||xn|| || >1. 

 

           If we put yn = xn / n || xn ||. 

 

           Then it is easy to see that yn 0, but T(yn ) does not tend to zero. So T is not  

continuous at the origin. 

 

 

(iii) (iv) 

  

Since a non-empty subset of a normed linear space is bounded iff it is contained in a closed 

sphere centered in the origin , it is evident that  (iii) (iv), for if all || x  ||  1, then || T (x ) ||  

K for all xN. suppose xs. 

 

 i.e., || x  ||  1, then || T (x ) ||  K  

 

 T(S) is bounded. 
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(iv) (iii) 

 

We assume that T(S) is contained in a closed sphere of radius of K 

centered on the origin. If x=0, then T(x) =0 and clearly, ||T(x)|| ≤ K ||x|| 

and if x  0 then x/  ||x||   S. 

 

  || T (x / ||x|| )||  K, 

 

 

Again, we have ||T(x)|| ≤ K ||x||. 

 

          Hence the proof. 

 

 

Theorem: 
 

The norm of a continuous linear transformation is equivalent to the  following  

   condition. 

i) ||T|| =sup {||T(x )||  : ||x ||  ≤ 1} 

ii) ||T||0 =sup {||T(x )||  : ||x ||  = 1} 

iii) ||T||1 =sup {||T(x )|| / ||x ||  ;xN & ||x || ≠ 0  } 

iv) ||T||2 =inf { k: k 0 &    ||T(x )|| ≤ k ||x || x } 

  

Proof: 

 

( i)  (ii)  

 Let us denote the norm of T in (ii) by ||T||0 and prove ||T|| = ||T||0 where ||T|| is given by (i)  

 

Let A= { ||T(x)|| : ||x || ≤ 1} 

     

      B= {||T(x )||  : ||x ||  = 1}. 

 

Clearly B  A, then sup B ≤ sup A. 

 

      ||T||0 ≤ ||T|| ……….(1) 

 

We now prove  

 

             ||T||0   ||T||  

 

Let  xN, x ≠ 0 such that ||x || ≤ 1. 

 

Define y= x / ||x || , then ||y || = ||x ||/||x || =1. 

 

     NOTES 



 9 

 

 Now, ||T(y)|| = || T(x/||x||) || = || T(x)/ ||x|| || 

                            

                           = || T (x) || /||x|| 

                            

 ||T(x) || as  || x|| ≤ 1. 

 

   sup { ||T(y )||  : || y||  = 1} 

                          sup {||T(x )||  : ||x ||  ≤ 1} 

 

  ||T||0   ||T|| ……………..(2)  

 

 

from (1) and (2)  

 

                ||T||0 =   ||T|| 

 

( ii)  (iii)  

           For xN, x ≠ 0 ,  

                  || T (x) || /||x|| = || T(x/||x||) || 

                                        = || T(y)  ||  

                                where y = x/||x||  and ||y|| =1. 

 

Thus ||T||1 =sup {||T(x )|| / ||x ||  ;xN & ||x || ≠ 0  } 

                 = sup { ||T(y )||  : || y||  = 1}= ||T||0 

 

 

 ||T||1 = ||T||0  

 

( i)  (iv)  

           

        Let P=  {||T(x )||  : ||x ||  ≤ 1} and 

   

Q = { k: k  0 and  ||T(x )|| ≤ k ||x || x such that ||x ||  ≤ 1} 
 
            Let  m be the upper bound of the set  P. Then 

 ||T(x )|| ≤ m x such that ||x ||  ≤ 1.  

 

m Q.  

 

   Conversely,  

           Let k  Q, then k  0 and  ||T(x )|| ≤ k ||x || x such that ||x ||  ≤ 1. 

 

 k is an upper bound of P. 

 

 Q= the set of all upper bound of P. 
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sup P= lub P= the least element of Q 

                    = inf Q. 

 

Let xN , ||x || ≠ 0 and y= x/||x||    ||y|| =1 

 

 ||T (y) ||  P. 

 

||T(y )|| ≤ sup P = inf Q ≤  k, k  Q. 

 

||T(x )|| / ||x || ≤  k, k  Q & xN & ||x || ≠ 0 

 

 

For k  Q,  

              ||T(x )|| ≤ k ||x ||  xN. 
 

Hence Q= { k : k  0, ||T(x )|| ≤ k ||x ||   xN , ||x || ≠ 0 } 

 

Thus, sup {||T(x )||  : ||x ||  ≤ 1}= sup P 

                                                   

                                                 = inf Q. 

   = inf { k : k  0, ||T(x )|| ≤ k ||x ||  xN }. 
 
                   
                   Hence the proof. 

 

Conjugate space of N: 
       Let N be an arbitrary normed linear space . The set of all continuous linear 

transformation of N into  R or C in  

B( N,R) or B( N, C) (as N is real or complex). It is denoted by N* is called the conjugate 

space of N.  

 

           The elements of N* are called continuous linear functional or functional. If f is 

functional  

 

                  || f || =sup {||f (x )||  : ||x ||  ≤ 1}. 

 

Theorem: 
Let N & N’ be a normed linear space the set B (N,N’) of all continuous linear     

transformation of N into N’ is a normed linear space with respect to the point wise  linear 

operations 

i)(T+U)(x)=T(x)+U(x); 

 ii)( T)(x)= T(x). and the norm defined by  

 ||T|| =sup {||T(x )||  : ||x ||  ≤ 1}.Also if N’ is a Banach space  

    then B (N,N’) is also a Banach space. 

 

  

 

     NOTES 
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Proof: 

 

First we prove that B (N,N’) is a linear space . 

 

Let T1, T2  B (N,N’). 

 

Then (T1+ T2 ) (x + y) = T1(x+y)+T2 (x+y)  

                    

                = T1(x)+ T1(y)+  T2 (x) +T2(y). 

               

                =( T1+ T2 ) (x) + ( T1+ T2 ) (y) 

 

Thus ( T1+ T2 )  is linear. 

 

Similarly, ( T1+ T2 ) (x) = ( T1+ T2 ) (x). 

 

    Thus ( T1+ T2 )  is a continuous linear transformation. Since  T1 & T2 are continuous linear 

transformation. Also, T is a continuous linear transformation.  

 

        Thus B (N,N’) is a linear space. 

 

To verify norm axioms: 

 

Clearly ||T|| 0 and as ||T(x) || 0 

 

i) Also, ||T|| =sup {||T(x )|| / ||x ||  ;xN & ||x || ≠ 0  } 

 

Now , ||T|| =0  iff   ||T(x )|| =0   x. 

 

                        iff   T(x)=0   x 

 

                         iff   T=0. 

ii) Also if  

 

|| T1+ T2 || =sup {|| T1+ T2 (x )||  : ||x ||  ≤ 1} 

 

      = sup {|| T1(x) + T2 (x )||  : ||x ||  ≤ 1} 

 

    sup {|| T1(x) ||  : ||x ||  ≤ 1}+ sup {||  T2 (x )||  : ||x ||  ≤ 1} 

 

 

    =|| T1 || + ||T2 || . 

 

 

iii) Similarly, ||  T|| = || .|| T ||. 
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             Hence B (N,N’) is a normed  linear space. Finally we have to prove B (N,N’) is a 

banach  space whenever N’ is a banach space.  

 

            For doing this consider a Cauchy sequence {Tn}in B (N,N’). If x is an arbitrary vector 

in N, then {Tn(x) } isa sequence in N’, which is Cauchy. 

 

                  But N’ is a banach space which is complete. Hence {Tn (x) } is convergent. 

 

              Let  Tn (x)  T(x) this defines the mapping  T of  

N into N’. By the joint continuity of addition and scalar multiplication T is seen to be a linear 

transformation . 

 

                To conclude the proof we have to show that T is continuous and Tn   T w.r.to the 

norm on B (N,N’). 

 

             Since | || Tn (x) -  Tm(x) || |   || Tn (x) -  Tm(x) || 

                                                         

                                                        <  ( fix  ) 

 

         Fix M so that  || Tn (x)  || < + ||  Tm(x) || . 

Thus sequence {Tn (x) } is a Cauchy sequence in N’ & the norm of the terms of this Cauchy 

sequence form a bounde set of numbers. 

 

 || T (x)  || = || lim  Tn (x)  ||= lim || Tn (x)  ||   

                   

                        sup  || Tn ||  || x  ||  

                    

                        =( sup  || Tn || ) || (x)  ||  

                    

                       = k  || x  ||  where k =sup  || Tn ||. 

 

     Hence T is bounded and therefore continuous . 

 

    It remains to prove that Tn   T. 

  i.e., To prove || Tn – T ||  0 

  

    For a given  >0 , let n0 be a positive integer such that 

|| Tm – Tn || <   m,n  n0 as Tn  is a cauchy sequence .  

      

|| Tm(x) – Tn (x) ||    || Tm – Tn  ||  || (x)  || 

                                  || Tm – Tn  ||    for  || (x)  ||  1.   

                                 <
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 Thus,  || Tm(x) – T (x) ||<   m,n  n0 as Tn (x)  T(x). 

 

This shows that Tm   T and  

 

                         || Tm – T ||  0 

 

                  Hence the proof. 

 

Operators: 
 

 Let N be a normed linear space . A continuous linear transformation N into itself is called an 

operator of N. We denote the normed linear space of all operator of N by B(N) instead of B 

(N,N’).  

 

 

Note: 

 i) B(N) is a banach space when N is a banach space. 

 

ii) B(N) is indeed an algebra in which multiplication of operator is given by  TT’(x) = T( 

T’(x)) and  

 || T T’ ||    || T ||  || T’  ||. 

 

iii)Addition, scalar multiplication are jointly continuous in 

 B(N) i.e., Tn   T, T’n   T’ TnT’n   T T’. 

 

The identity transformation I,I(x)=x is in identity for the algebra B(N) and || I  || =1. 

 

 

Isometrically isomorphic of N intoN’: 
 

Let N and N’ be a normed linear spaces. A 1 to 1 linear transformation of N into N’ such that 

|| T (x)  || = || (x)  || 

for x N, Tx N’ is called an isometrically isomorphic of N into N’. We also say that N and 

N’ are isometrically isomorphic if it satisfies onto also. 

 

 

Hahn- Banach : 

 

         Any functional defined on a linear subspace of a normed linear spaces can be extended 

linearly and continuously to the whole space without increasing its norm. 
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Lemma:  

Let M be a  linear subspace of a normed linear space N.let f be a functional defined on   M of 

x0 is a vector not in M and if M0 =M+ x0 . Then f can be extended to a functional    

 f0 defined on M0 such that   f0= f . 

 

Proof: 

Case ( i): 

        Let N be a real normed linear spaces. Assume  f =1 where f is a functional defined 

on M, a linear subspace of N. 

 

     We may assume, without loss of generality  f =1.  

 

 Since x0  M,each vector y  M0 is uniquely expressible as y = x+ x0  with x  M.Define a 

mapping f0 on M0 as follows f0 (y) = f0 (x+ x0 )    = f0 ( x)+ f0( x0) 

                      = f(x) + r0 . 

 

Where r0 = f0( x0). This is an linear extension of f to M0 and f0 is linear for every choice of the 

real number x. 

 

         Clearly, f0 is continuous as f is a functional on M. we’ve to choose r0 so that  f0 =1. 

 

         r0 has to be chosen so that   |f0 (y) |    || f0||  || y  || 

i.e., | f0 (x+ x0) |    || f0||  || x+ x0 || 

                              =  ||x+ x0  ||      if  ||f0  || =1  were to 

be =1. 

 

      But f0(x+ x0) = f(x) + r0 

i.e., | f (x)+ r0 |      || x+ x0 ||  

 i.e., - f(x/) - | | (x/)+ x0 ||   r0   - f(x/) + | | (x/)+ x0 ||  

                                                                           ……….(1) 

    

     So, if we choose r0 satisfying (1) , then  ||f0  || =1. 

Since f is  linear and continuous, for any two vectors  

x1, x2 M, we’ve  

 

f(x2) –f(x1)   |f (x2 –x1) | 

                     || f  ||  || x2 -  x1 || 

                     =  ||x2 - x1 ||      = || (x2 +x0) –(x1+x0)||  

 || x2+ x0 ||  + ||x1+ x0  ||   

  

- f  (x1) - || x1 + x0 ||     - f  (x2) +|| x2  + x0 ||  ……….(2) 
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Define 2 real numbers a,b by 

 a = sup { - f  (x) - || x + x0 ||  : x M}  

 b= inf   { - f  (x) - || x + x0 ||  : x M}  

 

By(2) a  b 

 

 If we choose r0 to be any real number a  r0  b , then the sequence inequality in (1) is 

satisfied. 

                 

           Hence the proof in the  case (i)  

Case(ii): 

 

       Let N be a complex number in a normed linear spaces. f is a complex valued functional 

defined on M for which  

||f   || =1. A complex linear space can be regarded as a real linear space by restricting the 

scalars to be real. 

 

         Let g and h be the real and imaginary parts of f so that 

 f (x) = g(x) + i h(x)   x M 

 

     Then both g and h are real valued functionals on the real space M. 

 

   Since ||f   || =1, we’ve || g  ||  1. 

 

Also, we’ve f( ix) = i f(x) and 

          i f(x) = g( ix) + ih(ix) 

                   = i[ g(x) + ih(x) ] 

h(x) = -g(ix) 

f(x) = g(x) –ig(ix). 

 

By case (i) we extend g to areal valued functional g0 on the real space M0 in such a way that  

                         g0= g . 

 

We define f0  for x M0 by f 0(x) = g0(x) –ig0(ix). 

 

 

Then f is an extension of f from M to M0. Also, f0 is linear , as  

        f0(x+ y) = g0(x+y) –ig0(i(x+y)) 

                     = g0(x)+g0(y) –ig0(i(x) )+ig0(y) 

                      = f0(x) +f0 (y)                      [since g0 is linear ] 

 

Similarly,f0(x)=f0(x)forallreal.
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This is true for complex  also as f0(ix) = i f0 (x). 

 

So f0 is linear as acomplex valued function defined on the complex space M0. Finally to 

prove  ||f0  || =1. 

 

         If x is avector in M0, for which  ||x  || =1, then we prove , so that  

  || f0  ||  = sup { | f0 (x) |    :|| x || =1 }=1. 

 

 

        If f0 ( x) is complex , then we can write f0(x) = re
i

 with r>0 so that  | f0( x) |=r .It follows 

that f0 (e
-i

 x) is real.  

 

 

                            | f0 (x) |  1 

 

                            Hence the proof. 

 

 

Hahn-Banach theorem: 

 

Let M be a linear subspace of a normed linear space N. Let f be a functional defined on M. 

Then f can be extended to afunctional f0 defined on the whole space N such that  

 f0= f . 

 

Proof: 

           By the above lemma, for any x N and  x M. We’ve an extension of f on M+[x] 

such that  f is preserved for the extension. 

 

            Consider the set G of all such extensions of f to functionals g with the same norm , 

defined on subspaces which contain M. This is a partially ordered set w.r.to the following 

relation. 

 

              g1 g2 iff domain of g1 is contained in domain of g2 and g2 (x) =g1 (x) , for all x in the 

domain of G. 

 

                Now, every chain in G has an upper bound . 

By Zorn’s lemma,  

    “ There is a maximal extension f0. The f0 is the required extension of the entire space n. For 

if f0 is not defined on the whole of x, then there is an x N and not in the domain M0 of f0 , so 

that f0 can be extended to M0 +[x]. But f0 is maximal.”  

                      This is  a contradiction to our assumption. 

                                      Hence the proof.   

     

     NOTES 
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Corollaries of Hahn-Banach theorem: 
 

Corrollary: 
 

If N is a normed linear space and x0 is non-zero vector in N then there exist functional f0 in N* 

such that f0 (x0 )= x0   and  f0=1. 

 

Proof: 

 

   Let M={ x0} be the linear subspace of N spanned by x0.Define f on M by f( x0) =  x0 . 

Clearly, f is afunctional on M such that  f(x0 ) = x0  , taking  =1 and f  =1. 

 

         By Hahn Banach theorem f can be extended to a functional f0 in N* such that f0 (x0) = f(x0) 

= x0  . 

 

   And f0 =  f =1. 

  

                           Hence the proof. 

   

 

Corrollary: 
 

If M is a closed linear subspace of a normed linear space N and x0 is a vector not in M , then 

there exist a functional f0 in  N* such that f0 (M )=0, f0 (x0 )≠ 0. 

 

Proof: 

 

       The natural mapping T of N onto N/M is a continuous linear transformation such that  T(m) 

=0 and  

                        T(x0 )= x0 +M 0. 

 

By the previous corollary  there exist a functional f in (N/M)* such that f(x0 +M) 0.Define f0 by 

f0(x) = f(T(x)). 

 

           Then f0 is the desired functional with the property that f0(M) . 

 

i.e., f0 (M)=0, f0 (x0) = f(T(x0)) = f( x0 +M)  0. 

 

Second Conjugate space: 

 

               The conjugate space of N* is itself a Normed linear space.We can form the conjugate 

space (N*)* . It is denoted by N** and is called the second conjugate space of N. 

                 Each vector xN gives raises to a functional Fx in N** defined by Fx(f) = f(x) , xN. 

 

 

 

     NOTES 

Functional Analysis 
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Properties of natural embedding on N into N**: 

 

1. Fx is linear. 

2.   Fx=  x . 

3. The mapping x Fx is a norm preserving mapping of N into N**. Fx is called an induced 

functional. Thus the isometric isomorphism x Fx is a natural embedding on N into N**. 
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UNIT 2 

Open & Closed mapping 

 
Lemma: 
 If B and B’ are banach spaces and if T is a linear transformation of B onto B’,then the image 

oech open sphere centered on the origin in B contains an open sphere centre on the origin in 

B’. 

 

Proof: 

     We denote by Sr and Sr’ the open spheres with radius r centered on the origin in B and B’. 

 

T(Sr) = T(r S1) = r.T(S1). 

             So it suffices  to show that T(S1) contains some Sr’.  

 

We begin by proving that T(S1 ) contain some Sr’. Since T  

                       

is onto, B’ =   T(Sn ). B’ is complete, so Baire’s theorem  

                     
n=1      

implies that some T(Sn0)  has an interior point y0, which may be assumed to lie in T(Sn0). 

 

            The mapping y y-y0 is a homeomorphism of B’ onto itself, so T(Sn0)  -y0  T(S2n0) . 

         From this we obtain  

T(Sn0)  -y0 = T(Sn0)  -y0  T(S2n0), which shows that the origin is an interior point of T(S2n0). 

            

            Multiplication by an nonzero scalar is a homeomorphism of B’ onto itself, so 

 T(S2n0) = 2n0 . T(S1)          =2n0 .T(S1)                                                 

               

It follows from the fact that the origin is also an interior point of T(S1) , so S’  T(S1) for 

some positive number . 

We complete the proof by showing that  

                   S’  T(S3)=3.T(S1). 

 Let y  S’. Therefore y  T(S1) . hence each neighbourhood of y intersects T(S1) . 

               There is an open sphere centre on y and with radius /2, that intersects T(S1). There 

is a point on  

y1 T(S1) such that   y-y1    < /2 and there is a point  

 x1  Bsuch that y1 =T(x1) and   x1   <1. Now  

 

S’  T(S1). i.e., S/2’  T(S1/2).                  
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Since  y-y1    < /2 ,y-y1 is a vector in  T(S1/2).Each neighbourhood of y-y1 intersects 

T(S1/2). 

 

            Let y2  T(S1/2) such that  y-y1-y2    < /4 where  

 

y2 =T(x2) for x2   B and    x2   <1/2. 

 

 

        Continuing like this we get a sequence of vector  

{xn} in B so that   xn   <1/2
n-1

 and  

        y-(y1+y2+……+yn)    < /2
n
, where yn=T(xn). 

 

        Define Sn = x1+x2 +………+xn.We find that {Sn}is a Cauchy sequence in B.  

 

     Sn   ≤   x1  +  x2   +………+  xn   

                  < 1+1/2+………+1/2
n-1

. 

                  <1/(1-1/2) <2. 

Since B is complete the sequence {Sn } converges to x in B. i.e., Sn → x.  

 

 x  =   lim Sn   =lim   Sn   ≤ 2< 3. 

 

 x  S3. 

 

 Consider T(x) = T(lim Sn ) = lim T (Sn ). 

                                
n→∞               n→∞ 

 

                        = lim [ T(x1+x2 +………+xn) ] 

                        = lim [T(x1 )+ T(x2 ) +…….+T(xn )] 

                         = y.     

y  S’      S’  T(S3)  

 

                 S’/3  T(S1) 

 

 

                     Hence the proof. 

 

Theorem : Open Mapping theorem 

 

If B and B’ are banach spaces and if T is a linear transformation of B onto B’,then T is an 

open mapping . 

 

Proof: 

 

      We must show that if G is open in B, then T(G) is also open set in B’. If Y is appoint in 

T(G) it Suffices to produce an open sphere centered on y and contained in T(G). 
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Let x be a point in G such that T(x)= y. Since G is open, x is the centre of an open sphere 

which can be written in the form x+ r contained in G. 

 

         Our lemma now implies that T( Sr) contains some Sr’. It is clear that y+Sr’ is an open 

sphere centered on y and the fact that it is contained in T(G) at once from  

 

           y+Sr’  y +T(Sr) = T(x)+ T(Sr) 

 T(x+Sr)  T(G). 

 

  Hence the proof. 

 

 

Interior point : 
 

Let X be an arbitrary metric space and let A be a subset of X. A point in ‘ A ‘ is called an 

interior point of A if it is the center of some open sphere contained in A, and the interior of A 

denoted by Int(A), is the set of all interior points . 

 

Int(A) = { x: xA and Sr (x)  A for some r}. 

 

Projection:   
  

Projection E determines a pair of linear subspace M & N such that L= M N where M= { 

E(x): x   L } and  

N={ x: E(x) =0} are the range and null space of E. 

 

Theorem : 

 

If P is a projection on a banach space B and if M and N are its range and null space , then 

M& N  are closed linear subspace of B such that B = M N. 

 

Proof: 

 

       P is an algebraic projection . So the above definition gives everything except  the fact 

that M and N are closed. 

          

        The null space of any continuous linear transformation is closed,so N is obviously 

closed.The fagt that M is also closed is aconsequences of  

                    M= { P(x): x   B }  
                       = {x: P(x) =x} 

                       = {x: (I-P)(x) =0} 

     

 

Which exhibits M as the nullspace of the operator (I-P). 

 

                             Hence the proof. 
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Theorem : 

 

Let B be a Banach space and let M and N be a closed linear subspace of B such that B= M  

N .If Z =x + y is the unique representation of a vector in B as a sum of vectors in M and N , 

then the mapping P defined by P(Z)=x is a projection on B whose range and null spaces are 

M & N. 

 

Proof: 

 

     A pair of linear subspace M and N such that L= M  N determines a projection  E whose 

range and nullspace are M and N .we want to prove that P is continuous. 

        If B’ denotes the linear space B equipped with the norm defined by   Z   ’=   x  + 

 y   . 

 

        Then B’ is a banch space and since  

             P(Z)   =  x      x   +  y   =  Z   ’. 

 

        P is clearly continuous as a mapping of B’ into B. It suffices to prove that B’ and B have 

the same topology. 

          

        If T denotes the identity mapping of B’ onto B, then 

 T(Z)   =  Z  =  x      x   +  y   =  Z   ’. 

     

           This shows that T is continuous as 1 to 1 linear transformation of B’ onto B. Then by 

previous theorem implies that T is a homeomorphism. 

 

                                    Hence the proof. 

 

Definition:  
          The graph of a linear transformation of a banach space B into another banach space B’ 

is that subset of BXB’ which consist of all ordered pairs (x, T(x))  where  

x  B.   

  

Lemma: 
 

If T is  continuous , then its graph is closed as a subset of  the metric space B x B’ With 

metric defined by  

d((x1,y1), (x2,y2))=max { || x1- x2 ||, || y1- y2 ||}. 

 

Proof: 

             Let (x0, y0 ) be in the closure of the graph of T . 
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Then there is a sequence { xn , T( xn )} in the graph of T such that xn  x0 ; T(xn )  y0. 

 

        T is continuous , T(xn )  T(x0). 

 T(x0) = y0. 

  

Thus the point (x0, T (x0) ) belongs to the graph of T. 

 

Hence graph of T is closed as a subset of B X B’. 

 

                    Hence the proof. 

 

 

Theorem : Closed graph theorem: 

If B and B’ are Banach and if T is a linear transformation of B into B’ . Then T is continuous 

iff the graph of T is closed. 

 

Proof: 

 

             T is continuous. 

 The graph T is closed. 

 

Converse,  

          Let the graph of T  be closed. Denote by B, the linear space  ‘B’ with the norm defined 

by 

   x  1 =   x   +  T(x)  . 

 

         We can prove that B1 is a normed linear space  under the norm, now  

  

        T(x)       x   +  T(x)  =  x    

      

           This shows that T is bounded and hence continuous as the linear transformation from 

B1 to B’. 

            

          It is enough to prove that  B and B’ have the same topology.i.e.,  B and B’ are 

homeomorphic. 

 

         The identity mapping of  B1 to B’ is continuous for  

  T(x)  . 

 

We show that B1 is a banach space to show the completeness of B1. 

 

           Consider a Cauchy sequence {xn} in B1. Thus {xn} is a Cauchy sequence in B and 

{T(xn)} is a cauchy sequence in B’ as   xm  - xn   < . 
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   xm - xn   +T(xm)  - T( xn) <   

 

                 Since B and B’  are complete, there exist a sequence x  B, y  B’ 

Such that xn  x  B and T(xn)  y  B’. 

 

              By hypothesis the graph of T is closed in BXB’.  

This implies (x,y) lies in the graph  i.e., y=T(x). 

 

 xn - x  1 =    xn - x   +  T(xn - x)   

                    =    xn - x   +  T(xn )-T( x)   0. 

 

xnx in B1. B is complete and its banach. Thus T is continuous from B to B’. 

 

                        Hence the proof. 

 

Conjugate of an operator: 

 

Each operator T on a normed linear space N induces a corresponding operator , denoted by 

T* and it is called the conjugate space N*. 

 

 

  Theorem : Uniform boundedness  theorem 
 Let B be abanach space and N  a normed linear space . If {Ti} is a non-empty set of 

continuous linear transformations of B into N with the property that {Ti(x)} 

Is a bounded subset of N for each Vector  x in B, then  

{  Ti } is a bounded set of numbers , that is {Ti} is bounded as a subset of (B,N).    

 

Proof: 

 

 For each positive integer n, the set  

              Fn={x: x  B and  Ti(x)   n for all i }is clearly a closed subset of B, and by 

assumption we have 

                                

                         B=  Fn 

                              n=1 

             Since B is complete ,Baire’s theorem shows that one of the Fn’s, say Fn0 has non-

empty interior, and thus contains aclosed sphere S0 with center x0 and radius r0 >0. 

 

              It means that each vector in every set Ti(S0)  has norm less than or equal to n0: 
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For the sake of brevity  Ti(S0)   n0. It is clear that  

S0 –x0 is the closed sphere with  radius r0  centered on the origin , S0 (S0 –x0) /r0  is the closed unit 

sphere S. Since x0  is in S0 , it is evident to show that   Ti(S0- x0)   2n0. 

                      

        This yields  Ti(S0)   2n0/r0, so  Ti(S0)   2n0/r0 for every i. 

 

 

                    Hence the proof. 

 

Theorem : 

 

A non-empty subset of a normed linear space N is bounded iff f(x) is a bounded set of numbers 

for each f in N*. 

 

 

Proof: 

 

         Since  f(x )    f   x  , it is obvious that if X is bounded , then f(x) is bounded, then 

f(x) is also bounded for each f. 

 

              Second part of the theorem , it is convenient to exhibit  that the vectors in X by writing 

X= {xi}. 

 

               We use the natural imbedding from X to the corresponding subset  {Fxi } of N**. 

 

                Our assumption that f(x) = {f(xi) } is bounded for each f is clearly equivalent to  {Fxi 

(f)} is bounded for each f, and since N* is complete.  

 

                      By previous theorem shows that  {Fxi } is a bounded subset of N**.  

 

                         Hence the proof. 

 

 

 

 

 

                           **************** 
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The M is the null space for the projection on 

……………..
P I-P Space subspace I-P

 If P is a projection  on a  Banach space B and if M 

and N are its ………
dense sets

range and null 

space
subspaces projection

range and null 

space

A projection on E determines a pair of linear 

subspace M and N then ……..
L= m+N L=M+N L=M-N L= MÅ N L= MÅ N

The image of open sphere centered on the origin in 

B contains an …………..

Sphere centered on  the origin in B and B'

closed open interior exterior open

The …... is the null space of the operator on the 

projection on I-P
M N L=M-N L= m+N M

The …... is the null space of the operator on the 

projection on P
M N L=M-N L= m+N N

The …... is the  range of the operator on the 

projection on I-P
M N L=M-N L= m+N N

The …... is the  range  of the operator on the 

projection on P
M N L=M-N L= m+N M

A pair  of linear subspace M and N such L= MÅN 

determines a………. on E.
dense sets

range and null 

space
subspaces projection projection

If T is continuous , then its graph is ………. as a 

subset of BxB'
closed open interior exterior closed

A closed set in a topological space in a set whose 

compliment is………..
closed open interior exterior open

A is ………… iff A = Int(A) closed open interior exterior open

Int(A) equals the union of all …………….. of A. closed open open subset open set open subset 

The interior of A is denoted by ………………… Int(A) Cl(A) Ext(A) Im(A) Int(A)

Int(A ) is an open subset of A which contains every 

……………. of A
closed open open subset open set open subset 

Let x be any metric space then any union of open set 

in x is ……...
closed open open subset open set open

Let x be any metric space then any finite intersection 

of …….in x is open.
closed open open subset open set open set

In any metric space x, each open sphere is an 

………………..
closed open open subset open set open set

The open sphere  Sr(x0)  with center x0  and radius r 

is the subset of x define by ……………...
d(x,y) d(y,x) d(x,x0) < r d(x,x0) = r d(x,x0) < r

An open sphere is always non empty for it contain 

its…………..
center radius distance length center

An ………… sphere with radius 1 contain only its 

center.
closed open open subset open set open

If the open sphere is bounded open interval (x0 - r, 

x0 + r) with midpoint x0

 and total length…...

r 2r 3r 0 2r

Sr(x0) is an open sphere  with radius …...centered on 

x0

r 2r 3r 0 r

In the linear space the………. transformation  I 

defined by I(x)=x
 identity linear one to one onto  identity

The mapping P(Z) = x is a  ………………. on B. dense sets
range and null 

space
subspaces projection projection

B and B' have same topology means  they are 

…………….
homomorphic homeomorphic linear connected homeomorphic

B and B' have same …….. means  they are  

homeomorphic

strong 

topology
nullspace topology weak topology topology

The  identity mapping of B' to B is ………. for 

║T(x)║=║x║.
continuous functional linear space convergent continuous



If T is continuous linear transformation of B onto B'  

then T is an ……. mapping.
closed open open subset open set open 

A 1-1 linear transformation  T of abanach space 

onto itself is continuous then

 its inverse is automatically …………

continuous functional linear space convergent continuous

The mapping T →T* is thus anorm preserving map 

onf B(N) into ………..
B(N)* B(N') B(N) B(N)** B(N')
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                                       UNIT 3 

                                  Hilbert  Spaces 

 

 
Inner Product Space: 

 

 Let X be a complex vector space over the complex scalars C.  Then (x,y) is said to be 

an inner product of x  

and y. 

i)(x, x) > o for all x in X and (x, x) = 0 iff x = 0 

 

ii)(y,x) = (x,y) for all x and y in X 

 

 

    iii) (x+y, z) = (x,z) + (y,z) for all x, y and z in X 

 

    iv)  (x, y) = (x,y) for all x,y in X and all complex  

            number  

 

 A complex vector space X having the inner product is said to be an inner product 

space. 

 

 

Hilbert Space: 
 

 A complete inner product space is said to be a Hilbert Space. 

 

 

Examples: 
 

1. Consider the spaces l2
n
 where we denote l2

n 
 as the 

 
 linear spaces of all n-tuples of 

scalars with the norm of a vector    x= (x1, x2,…..xn ) defined by 

                               n 

                  x = (  xi
2  

)
1/2 

                                          i=1 

 

   We know that l2
n 

 is a banach space .Now,we show that the 

 inner product of 2 scalars  x= (x1, x2,…..xn ) and 

y= (y1, y2,…..yn ) is defined by inner product 

 

             n       

(x,y) =  xi yi    

             
i=1 

 Then  l2
n 

 is a Hilbert space. 
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2.Consider the  banach spaces l2 consisting of all infinite sequence x= (xn)


n=1  of a 

complex number with the norm of a vector defined by 

                                

                  x = (  xn
2  

)
1/2 

                                          n=1 

 

  Also, if the inner product of two vectors x= (x1, x2,…..xn ) 

 And y= (y1, y2,…..yn ) is defined by inner product 

 

                    

(x,y) =  xn yn    

             
n=1 

 Then  l2
 
 is a Hilbert space. 

 

 

Theorem:( Schwartz inequality ) 

 

If (x,y) are any two vectors in ahilbert space then 

  

(x , y) <  x . y  

 

Proof: 

     If y=0 then the above inequality becomes equality as both side vanishes. Now y 0 for any 

scalar  we have  

( x + y , x+ y)   0. 

 

 (x,x)+(x, y) +(y,x)+ (y, y)   0. 

                

 (x,x)+  (x, y) +  (x, y)     +  
2
. y 

2      
  0. 

                                                                       ………(1) 

 

Since y 0,  y  0. 

 

Therefore put  = -(x,y)/  y 
2
  in equation (1)  

 

 x  
2
    (x,y) 

2
 / y 

2
  

 

  x  
2
 .  y 

2
  (x,y) 

2
   

 

 (x , y) <  x . y 

 

                  Hence the proof. 

 

Remark: 

             Using these  inequality we see that the inner product function is jointly continuous. 

  

 

     NOTES 

Functional Analysis 
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Problem: 

If x and y are any two vectors in a Hilbert space  H then 

 

i) || x + y ||
2 

+ || x - y ||
2
 =2|| x  ||

2
 +2||  y ||

2
.                           

                     (parallelogram law) 

 

ii) || x + y ||
2 

- || x - y ||
2
 =2(x,y)+2(y,x). 

 

 

    iii)|| x + y ||
2 

+ || x - y ||
2
 + i|| x + iy ||

2 
+ i || x - iy ||

2
  

                                                                     = 4(x,y). 

  (polarization identity) 

 

Solution: 

 

i)|| x + y ||
2 

+ || x - y ||
2
 = (x+y,x+y) +(x-y,x-y) 

                               

                                = (x,x)+(y,x) + (x,y)+(y,y) +(x,x)-(y,x) 

                                                               -(x,y) +(y,y) 

                                = 2(x,x) +2(y,y) 

   

                                 = 2 || x  ||
2
 +2||  y ||

2
 

                     

              Hence (i) solved . 

 

ii) || x + y ||
2 

- || x - y ||
2
 = (x+y,x+y) - (x-y,x-y) 

                               

                                = (x,x)+(y,x) + (x,y)+(y,y) –[(x,x)-(y,x) 

                                                               -(x,y) +(y,y) ] 

                                = 2(y,x) +2(x,y) 

 

                     Hence (ii) solved . 

 

iii)|| x + y ||
2 

+ || x - y ||
2
 + i|| x + iy ||

2 
+ i || x - iy ||

2
 

                              

                 = (x+y,x+y) - (x-y,x-y) + i((x+iy,x+iy) 

- i(x-iy , x- iy) 

   

                   = 2(y,x) +2(x,y) +i[ (x,x) +i(y,x) –i(x,y)+(y,y)] 

                                     -i[ (x,x) - i(y,x) +i(x,y)+(y,y) ] 

 

                    = 2(y,x) +2(x,y) -2( y,x) +2( x,y)  

 

                     = 4(x,y) 

                             

 

                        Hence (iii) solved  
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Problem: 

Every inner product space is a normed linear space 

 

Solutions: 

 

 

Let V be an inner product space. In order to prove that it is a normed linear space it must 

satisfy the properties of normed linear space. 

 

     If x V then || x  ||
2
 = (x,x) 

 

       By the definition of an inner product space we know that  

i) (x,x)  0 & (x,x) =0   x =0 . 

 

         Hence  || x  ||
2
  0 &  || x  ||

2
 =0   x =0 . 

                                                  

ii) || x  ||
2
 = (x, x)  =  (x,x)  

                          = |   |
2
 (x,x)   

                          =  |   |
2
 || x  ||

2
 

                       

                  || x  ||
2
   =   |   | || x  || 

            

                           Hence (ii)  

iii) || x + y ||
2
 = (x+y, x+y)  

                            = (x,x) +(y,x) +(x,y)+(y,y) 

 

                            = || x  ||
2
 + ||  y ||

2
 + (x,y)+(x,y) 

                             

                            = || x  ||
2
 + ||  y ||

2 
 +2 Re (x,y) 

                            

                             =|| x  ||
2
 + ||  y ||

2
 + 2(x,y) 

 

                                    = || x  ||
2
 + ||  y ||

2
 +  2 || x  ||  ||  y ||. 

 

                    || x + y ||
2
   || x  ||+ ||  y || 

 

                              Hence (iii) Solved . 

                   It shows that every inner product space is a normed linear space. 

 

 

Theorem: 

 

A closed convex subset “C” of a Hilbert space H contains a unique vector of smallest norm. 

 

 

     NOTES 
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Proof: 

 

   Let d= inf{  || x  || : x  c} then there exist a {xn } such that   || x n ||   d. 

 

        Consider two vectors xn , xm  {xn } .Since c is aconvex subset of H . xn, xm  C. 

 

 (xn + xm )/2  C. By the definition of d we have 

|| (xn + xm )/2  ||  d. so that || (xn + xm )  ||  2d. 

 

         By the parallelogram law we have  

 

|| x + y ||
2 

+ || x - y ||
2
 =2|| x  ||

2
 +2||  y ||

2
 

 

 || xm + xn ||
2 

+ || xm - xn ||
2
 =2|| xm  ||

2
 +2||  xn ||

2
  

     

  || xm - xn ||
2
 =2|| xm  ||

2
 +2||  xn ||

2
   - || xm + xn ||

2
 

 

                        2|| xm  ||
2
 +2||  xn ||

2
   - 4d

2
  

 

Now,  

 2|| xm  ||
2
 +2||  xn ||

2
   - || xm + xn ||

2
  2d

2
 +2d

2
 - 4d

2
 =0. 

 

  Hence, || xm - xn ||
2
  0 as  m,n   . 

 

 {xn } is a Cauchy sequence in c. 

  

    Since H is complete and c is a closed subset of H.  c is also complete Hence the Cauchy 

sequence {xn } in c is also a Cauchy sequence in c. 

 

         Therefore there exist a vector x in c such that xn  x. 

Now, x = lim xn . 

 

        || x  || = ||  lim x n || = lim || x n || =d. 

 

            Hence x is avector in c with the smallest norm d. 

 

To prove uniqueness  of x: 

 

           Suppose x’ is a vector in c other than x, which also has norm d.Then (x+x’)/2  c & 

by the parallelogram law . 

 

   We have  || (x + x’)/2 ||
2
 =|| x ||

2
/2 + ||  x’||

2
 /2 - || x - x’ ||

2
/2 

                                        

                                          < || x ||
2
/2 + ||  x’||

2
 /2  = d

2
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     Which contradicts the definition of d. 

 

             Hence x  is unique. 

              

             Hence the proof. 

 

 

Theorem: 

 

If B is a complex Banach space whose norm obeys the parallelogram law and if an inner 

product is defined on “ B” by    

4(x,y)= || x + y ||
2 

-|| x - y ||
2
 + i|| x + iy ||

2 
- i || x - iy ||

2
. 

                                                              

 Proof: 

 

 

We have to show that the inner product defined above has three 

properties required by the definition of a Hilbert space namely,  

 

i) To prove (x.x)= || x  ||
2
 

 

4 (x,x) =  || x + x ||
2 

- || x - x ||
2
 + i|| x + ix ||

2 
- i || x - ix ||

2
. 

 

              = 4|| x  ||
2
 +2i

 
|| x  ||

2
 – 2i|| x ||

2
           

                 

               = 4 || x  ||
2 

  

 

    Hence (i) proved. 

 

ii)  To prove (x,y) = 4 (y,x) 

  

        4(x,y) = 4 (y,x)  

 4( y,x) =  || y + x ||
2 

- || y - x ||
2
                           

               + i|| y + ix ||
2 

- i || y - ix ||
2
  

 

Then , 

4(y,x) = || x + y ||
2 

- || x - y ||
2
  

            + i|| x + iy ||
2 

- i || x - iy ||
2
 

 

4(y,x) = || x + y ||
2 

+ || x - y ||
2
  

            - i|| x - iy ||
2 

+ i || x + iy ||
2
  

 

           = 4(x,y) 
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Then  (x,y)  = (y,x). 

   

            Hence (ii) proved. 

 

iii) (x+y, z) =(x,z) +(y,z)  

    

 4( x+y,z) = || x + y +z||
2 

- || x - y -z||
2
   + i|| x + y +iz ||

2  

                                     
- i || x +y -iz ||

2
 

              

             =4 re(x+y,z) +i4 im(x+y,z) 

                                      ……..(1) 

4(x,z) = || x + z ||
2 

- || x - z ||
2
  

       + i|| x + iz ||
2 

- i || x - iz ||
2
 

         

        = 4 re(x,z) +i4 im(x,z) …(2) 

 

Similarly, 

4(y,z) = 4 re(y,z) +i4 im(y,z) …(3) 

 

Now, (2) +(3)  

 

 4(x,z) +4(y,z) 

      =4 re(x+y,z)+i4 im(x+y,z)..(4) 

 

From (1) & (4)  

 

4(x+y, z) = 4(x,z) +4 (y,z) 

 

          Hence (iii) proved. 

 

iv) (x, y) =  (x,y) 

    

  4(x , y) = || x + y ||
2 

- || x - y ||
2
  

           + i|| x + iy ||
2 

- i || x - iy ||
2
 

 

   = || [|| x + y ||
2 

- || x - y ||
2
  

            + i|| x + iy ||
2 

- i || x - iy ||
2
 ] 

     

   =  [4(x,y)] 

 

     Hence (iv) proved. 

 

Then B is a Hilbert space . 

  

                 Hence the proof. 
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Orthogonal: 

          Two vectors x and y in a Hilbert space H are said to be orthogonal ( written x  y)  if 

(x,y) =0 i.e., x  y [ this  symbol is read as related] . 

 

Remark: 

 

1. The relation of orthogonality in a Hilbert space is symmetry. 

2. If x is orthogonal to y then every scalar multiple is 

       y. 

3.   The zero vector is orthogonal to every vector. 

4.   The zero vector is the only vector which is    

      orthogonal to itself.  

 

Result:Pythogorian theorem 

 

If x and y are any two orthogonal vectors in a Hilbert space H then we can show that  

 

|| x + y ||
2 

 = || x - y ||
2
 =|| x  ||

2
 +||  y ||

2
 

 

Proof: 

 

|| x + y ||
2
 =(x+y, x+y)  

 

                = (x,x) +(y,x) +(x,y)+(y,y)   

  

                =  || x  ||
2
 +||  y ||

2
 +0+0       

                                                      [ since x  y i.e., x,y=0] 

                   

                =  || x  ||
2
 +||  y ||

2
 

 

Similarly, || x - y ||
2
 =|| x  ||

2
 +||  y ||

2
 

 

                   Hence proved. 

 

 

Definition: 

 

         Let S be a nonempty subset of a Hilbert space H the orthogonal compliment of S 

written as S

 is defined by  

 

S

 ={ x H: x  y         y  S} 

 

Theorem: 

The following statement follows directly from the orthogonal compliment of the set 

definition. 

 

     NOTES 
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i) {0}

 = H 

ii) H 

 ={0} 

     iii)S  S 

  {0} 

       iv)  S1 S2  S1
 

 S2

 . 

        v)    S 

 is aclosed linear subspace of H, x1 + x1  S 


.  

              vi) S  S


 

Proof: 

 

 S 

 ={x H / x  y} 

 

i) To prove{0}

 = H 

 

             {0}

 = {x H / x  0} 

                     = {x H / (x ,0) = 0} 

                     = H . 

 

ii) To prove  H 

 ={0} 

     

         Let  x  H 

 then by definition (x,y) =0   y  H. 

 

Taking y=x, (x,x)  =0  

 || x  ||
2
 = 0  || x  || = 0   

 

 x {0}  

 

         Then, H 

 ={0} 

 

iii)To prove  S  S 

  {0} 

 

         Let x S  S 

  x S & 

x  S 

 / (x,y) =0   y  S. 

 

If S is orthogonal to x itself, then (x,x) =0  || x  ||
2
 = 0  x {0}. 

 

  Then, S  S 

  {0} 

 

iv)To prove S1 S2  S1
 

 S2

 

 

             Let x S2
 

  x is orthogonal to every vector in S2. 

 x is orthogonal to every vector in S1. 
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 x S1

 

 

Then , S1
 

 S2

 

 

v)To prove  S 

 is aclosed linear subspace of H, x1 + x1  S 


.  

 

      Let x1, x2  S 

 then (x1 , y) =0 & (x2, y) =0    y  S. 

 

 

( x1 + x2 ,y) = (x1,y) +(x2 ,y)  

                         =0 

( x1 + x2 ,y)   S 

.  

 

To prove   S 

 is closed: 

 

 Let x be a limit point of  S 

 . Then, to prove x   S 


. By definition of limit point there exist 

{xn} in   S 

 such that {xn}  x .i.e., (xn,y) =0   y  S. 

 

 |(xn-y)-(x,y)| = |(xn-x, y)| 

                       

 || xn -x  || || y ||  0  

 

     lim(xn , y) =(x,y)  

 

 x S

. 

 

 

vi) To prove S  S
 

 

 

 

S
 

 = {x/ (x,y) =0   y   S 

} 

 

 

If x   S , then (x,z) =0  z  S 

 . 

 

 

 x S
 

. 

 

                    Hence the proof. 

 

Theorem: 

Let  M be a closed linear subspace of a Hilbert space H. Let x be a vector not in M & let d be 

the distance from x to M. Then there exist a unique vector y0  M such that 

|| x - y0 || =d. 

     NOTES 
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Proof: 

 

Since M is closed, the set c= x+M is a closed convex set.  

 

To prove c is closed:  

 

        Let {x+y} be a limit point of x+M then to prove  

{x+y}  x+M. 

 

There exist a {x+xn} in x+M such that {x+xn }  x+y.  

 

Now {xn } is a sequence in M and {xn } y. 

But M is closed. 

 

Let yM . Thus {x+y}  x+M. 

 

   Since d is the distance from x to M , dis the distance from the origin to c. 

 

         By previous theorem there exist a unique vector z0 in c such that || z 0 || =d. 

  

         Now, the vector y0 = x- z0 is in M and 

 || x - y0 || =|| z0 || =d. 

 

Uniqueness of y0: 

   

It follows from the fact that y1 is a vector in Msuch that 

 y1 y0 and || x – y1 || =d. then z0 =x-y0 is in c such that  

z1 z0 and || z1 || =d.  

          

           Which contradict the uniqueness of z0. 

 

                          Hence the proof. 

 

Theorem: 

If M is a proper closed linear subspace of a Hilbert space then there exist a non-zero  vector 

z0  H, z0  M. 

 

Proof: 

  

Let x be avector not in Mand let d be the distance from x to M.  

 

     By previous theorem there exist a unique vector y0  M such that  || x - y0 || =d. 

 

       We define z0  by z0 =x-y0 . 
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|| z0 || =|| x - y0 || =d. 

 

z0 is anon zero vector. 

 

  We conclude the proof by showing that if y is an arbitrary vectorin M, then z0  y. 

 

For any scalar  we have 

 

   || z0- y || =|| x – (y0+y)  ||   d  = || z0 || . 

 

    || z0  -  y ||
2
 - || z0 ||

2
  0. 

 

   (z0 - y, z0 - y) – (z0, z0 )  0 

                                                            

    (z0 , z0) -( z0 , y) - ( z0 , y) +  (y,y) –( z0 , z0)  0 

                                                                ………….(1) 

   It is true for every scalar . 

 

         Let  =  (z0 ,y) where  is an arbitrary real number.  

                                                                                               

Then  =  (z0 ,y) sub the values of   and   in (1) we have  

 

             (z0 ,y)
2
   0.     ……………..(2) 

 

  The equation (2) is true for real . 

 

Suppose (z0 ,y)  0. Then taking  as positive and so small that  || y ||
2
 <  ,  

 

       We must have (z0, y) =0 which means that z0  M. 

 

                               Hence the proof. 

 

Theorem: 

 

If M and N are closed linear subspaces of a Hilbert space H such that M  N, Then the linear 

subspace M+N is closed.  

 

Proof: 

 

             Let Z be limit point of M+N such that Z  M+N such that Zn  Z.  
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 Since Z is alimit point of M+N there exist a {Zn} in M+N such that  ZnZ. 

          

              Since M  N, M N = {0}. i.e., M and N are disjoint so each Zn can be written 

uniquely in the form.  

 

 

Zn = {xn +yn} where xn M and yn N. Consider two vectors { Zm = xm + ym   & Zn = xn + 

yn } {Zn}. 

 

   Let us consider ,  

  Zm-Zn =(xm - xn)+ (ym - yn ) 

 

   Where xm - xn  M and ym - yn  N. 

 

 And M  N. (xm - xn)  (ym - yn ) . 

 

  Then by the pythogorian theorem we have 

 

||  Zm-Zn||
2
 =|| (xm - xn) ||

2
+ || (ym - yn ) ||

2
 .  

 

Now {Zn } is a Cauchy sequence in H. Every convergent sequence is a cauchy sequence. 

 

 we have || Zm-Zn||
2
  0 as m,n  .  

 

 || (xm - xn) ||
2
  0 || (ym - yn ) ||

2
  0. 

 

 {xn } &{yn } are the Cauchy sequence in M & N respectively. 

 

 Since, H is complete , M & N are closed subspaces of H. 

 

M & N are complete . Hence the Cauchy sequence xn  & yn in M& N are convergent 

sequences in M & N. 

 

       Then there exist a sequence x & y in M & N such that xn  x & yn  y. 

 

Now, Z= lim Zn 

              

               = lim(xn +yn )  

                 

                 = x+y  M+N.   

 

Thus if Z is alimit point of M+N then Z M+N.  
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  M +N is closed. 

 

           Hence the proof. 

 

Theorem : ( Orthogonal decomposition theorem) 

 

If M is a closed linear subspace of a hilbert space H then H is the direct sum of M & M 

 i.e., 

H= M+ M

 . 

 

Proof: 

 

Since M & M
 

 are orthogonal , closed linear subspace of H, then by previous theorem shows 

that M and M
 

is also a closed subspace of H. 

          

         We must prove that M+ M
 

 = H.If possible let we assume that M+ M

  H.  

 

            Then , M+ M
 

is a proper , closed linear subspace of H. Hence by theorem” If M is a 

proper closed linear subspace of a Hilbert space then there exist a non-zero  vector z0  H, z0 

 M.”  

 

          There exist a vector z0   0  in  H, z0  M + M

. 

i.e., (Z0 , x+y) =0 where x M and y  M

. 

   

(or) (Z0 ,x) =0 &   (Z0 ,y) =0 

 

(or) Z0  M

     &   Z0  (M


)
 

 = M


. 

 

 Z0  M

  M


 ={0} . This is not possible as Z0 is anon-zero vector. 

 

  Thus we conclude that M+M

 is not a proper closed linear subspace of H. 

 

 M + M

 = H. 

 

   Since M M

  ={0} , H is a direct sum of M & M


. i.e., H= M   M


. 

 

                       Hence the proof. 

 

Theorem: 

 

If M is a linear subspace of a Hilbert space , Show that it is closed iff  M=M


.

     NOTES 
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Proof: 

 

Let us assume that  

                           M=M


 = (M

) 

 = S 

   
 where S=M 

.
. 

 

S 
 

 is aclosed subspace of H. M is a closed linear subspace of H. 

 

Conversely, M is a closed subspace of H. 

Claim: M=M 

 

 

   

 M  M 

 

.  

 

Assume that the inclusion M  M 

 

 is proper M M 


 
.

 

 

M is a proper closed linear subspace of M 

 

. 

 

Hence by theorem” If M is a proper closed linear subspace of a Hilbert space then there exist 

a non-zero  vector z0  H, z0  M.”  

 

          There exist a vector z0   0  in  M 

 

, z0  M


. 

 

 Z0  M
 
 M 


 

.={ 0}.  

 

There exist a contradiction . 

 

    Then M = M 

 

 . 

 

Hence the proof. 

 

Orthonormal set: 

 

 

A non-empty set {ei} of a Hilbert space H is said to be an orthonormal set if 

 i) i j  ei  ej (i.e.,) (ei ,ej) =  0     i j 

                                               = 1      i=j 

 

ii) || ei  || =1      i 

 

 

Theorem: 

Let {e1, e2,………en} be a finite orthonormal set in a  

Hilbert space H . If x is any vector in H,  

then 
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 n 

 |(x, ei)|
2
          || x  || 

2
 ……………(1) 

 i=1  

 

 Further,  

         n 

   x-   (x, ei)ei  ej  for each j. 

       
  i=1

 

[ Bessel’s inequality for finite orthonormal set]  

 

Proof: 

  

We have 

                   n 

0       || x -  (x, ei) ei || 
2
  

              n   
i=1

                n 

     = (x-   (x, ei) ei .x -  (x, ej) ej  )  

             
 i=1                                j=1

 

                 n                       n                        n 

 =|| x  || 
2
 -   (x, ei)(x,ei) -   (x, ej) (x,ej) +  (x, ei)(x,ei)   

                i=1                    i=1                     i=1                          

 

                     n 

0   || x  || 
2
 -   (x, ej)

2
  

                    j=1 

 

which gives  

    

 n 

 |(x, ei)|
2
          || x  || 

2
  

 i=1  

 

To conclude the proof, we observe that  

 

        n                                     n                     

( x -   (x, ei) ei, ej  )= (x,ej ) -   (x, ei)( ei,ej ) 

        i=1                                  i=1 

 

                                 = (x,ej ) – (x,ej) =0 

 

            n 

   x -   (x, ei) ei  ej for each j. 

            i=1 

 

                  Hence the proof. 

 

Theorem: 
If  {ei} is an orthonormal set in a Hilbert space, H and if X 

     NOTES 
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is any vector in H then the set S ={ei : (x, ei ) ≠ 0} is either empty or countable. 

 

Proof: 

 

For each positive integer n, consider the set  

 

Sn ={ei :    |(x, ei)|
2
     >  || x  || 

2
 /n } 

 

 

By Bessel’s inequality Sn contain atmost n-1 vectors .For if Sn contains say n vectors {e1, 

e2,………en} then 

 

 

        |(x, ei)|
2
     >  || x  || 

2
 /n    for each i=1,2………n 

 

Adding up we get  

 

|(x, ei)|
2
     > n || x  || 

2
 /n 

 

 

 |(x, ei)|
2
     >  || x  || 

2
  

 

 

This contradicts 

 

n 

 |(x, ei)|
2
        || x  || 

2
  

i=1 

 

 

Thus for each positive integer n the set Sn is finite.Now suppose, the set {ei } S then (x,ei) 

0. However small be the value of |(x, ei)|
2
   , we can take n so large that  

 

 

|(x, ei)|
2
     >  || x  || 

2
 /n. 

 

 

If {ei }  S then ei must belong to some Sn. So we can 

                  

 write S=  Sn.  

                
 n=1 

      

        Hence S is expressed as a countable union of finite set. 
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S itself is a countable set. 

 

If we have (x,ei ) =0  I then S is empty. 

 

                 Hence the proof. 

 

Theorem: Bessel’s inequality 

 

If {ei } is an orthonormal set in a Hilbert space H, then  

 |(x, ei)|
2
        || x  || 

2
  for every vector x in H. 

 

Proof: 

 

Let S= {ei  : (x,ei )  0} >By the previous theorem either S is empty (or) it is countable. 

 

        If S is empty, then we have (x,ei ) =0  i. In this case we define   |(x, ei)|
2
  to be the 

number 0 and we have 

 0      || x  || 
2
 .Thus if S is empty then we have  

 

 |(x, ei)|
2
        || x  || 

2
  

 

Now,we assume that S is not empty,. Then either S is finite or it is countably finite. If S is 

finite then we can write  

S= {e1, e2,………en} for some positive integer n. 

 

In this case we define 

                      n 

 |(x, ei)|
2
  =   |(x, ei)|

2
  which is      || x  || 

2
 by bessel’s  

                      i=1 

inequality. 

 

For Finite case: 

           Finally, assume  that S is countably infinite. Let the vectors in S be arranged in a 

definite order 

 S={e1, e2,………en,………}.By the theory of absolutely  

                                   

convergent series if    |(x, en)|
2
 converges then every series  

                                n=1 

obtained from this by rearranging its term also converges and all series have the same sum. 

 

            We define therefore   |(x, ei)|
2
 to be  

  |(x, en)|
2
 …..(1).  

                 

               Hence this sum will depend only on the set S and not on the rearrangement of its 

vectors. 

 

 

     NOTES 

Functional Analysis 
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Now by the bessels inequality in the finite case, we have 

n 

 |(x, ei)|
2
    || x  || 

2
 …………..(2) 

i=1 

 

 

For various values of n, the sum on the left side of (2) are non negative . So they form a 

monotonic increasing sequence. Since this sequence is bounded above by  || x  || 
2
 

 It converges. 

 

   Since this sequence is the sequence of the partial sum of the series on the right side of (1) it 

converges and we have  

 

For ei  S,  

 

                     

 |(x, ei)|
2
 = 

 
 |(x, en)|

2
   || x  || 

2
 

                    
n=1 

      

                Hence the proof. 

 

Complete: 

             

         An orthonormal set {ei } in a Hilbert space H is complete if it is not possible to adjoint a 

vector e to {ei } in such a way that {ei , e} is an orthonormal set which properly contains {ei 

}. 

 

Theorem: 

 Let H be a Hilbert space and let {ei} be an orthonormal set in H then the following 

conditions all are equivalent to one another. 

i) {ei} is complete. 

ii)  x  {ei} x=0 

iii)  If x is an arbitrary vector in H then 

               x=  (x, ei) ei .   

iv) If x is an arbitrary vector in H then 

         || x || 
2 

=  | (x, ei)|
 2

  .   

 

 

Proof: 

(i) (ii)  

          If (ii) is not true there exist a vector x 0  such that x  {ei}. we now define e by e= 

x/ || x || & we observe that {ei , e} is an orthonormal set which properly contains {ei } . 
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   This contradicts the completeness of ei. 

 

(ii)  (iii) 

 

It is given that x  {ei} x=0. we have to show that if x is an arbitrary vector in H then x = 

 (x, ei) ei. 

 

 

        By the previous theorem the vector x -  (x, ei) ei is orthogonal to every vector in the set 

ei 

i.e., x -  (x, ei) ei  ei .  

 

  Therefore by hypothesis  

            x -  (x, ei) ei =0  x -  (x, ei) ei. 

 

(iii)  (iv)  

               

       It is given that for any vector x H. We have  

x =  (x, ei) ei . We have to prove that  || x || 
2 

=  | (x, ei)|
 2

 

 

|| x || 
2 

= (x,x) 

            = (  (x, ei)ei ,    (x, ej)ej ) 

 

             =   (x, ei) (x,ej ) (ei, ej ) 

 

               =   | (x, ei)|
 2

 

 

(iv)  (i)  

 

   Suppose {ei } is not complete. Then {ei } is a proper subset of an orthonormal set {ei , e}. 

By hypothesis we have  

 

           || e || 
2 

=  | (e, ei)|
 2

 =0  

 

Since e  ei for each i. 

 

Now, || e || 
2 

= 0 which contradicts the fact that e is a unit vector. 

 

 The orthonormal set {ei } must be complete. 

 

                    Hence the proof. 

 

Conjugate space H*: 

               Let H be a Hilbert space . A  continuous linear transformation from H into c is 

called a continuous linear functional or more briefly a functional of H. 

 

 

Functional Analysis 
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    The elements of H* are called continuous linear functional  

 

 H* ={ f/f      :H C} 

 

Theorem: 
Let y be a fixed vector in a Hilbert space H. Let fy be a scalar valued function defined on H as 

fy (x) = (x,y) for every xH. Show that fy is functional in H* and  

  || fy || = || y ||. 

 

Proof: 

 Since inner product (x,y) is a scalar , clearly fy : H C. 

 

To prove that fy is functional on H.we must show that fy is linear and continuous. 

 

i)To prove fy is linear: 

          Let x1, x2 H and ,C. 

We have  

 fy (x1+x2 ) = (x1+x2  ,y)  

                       

                        = (x1,y) +( x2 ,y)  

                        

                        =  fy (x1 ) +fy (x2 ) 

 

 fy is linear 

    

 

ii) To prove fy is continuous: 

 

                For every x H, fy (x) = (x,y) . 

 

 | fy  (x) | =| (x, y)| 

 

                   || x || || y || 

 

Since y is a fixed vector in H. 

 

 

Let || y || =k. 

 

Then | fy  (x) |   k || x ||        x H. 

 

 fy is bounded.
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 fy is continuous. 

 

fy is norm preserving: 

 

To prove that  || fy || = || y ||  

 

|| fy || =sup {|| fy (x )||  : ||x ||  ≤ 1} 

 

          sup{ || x || || y || : ||x ||  ≤ 1} 

           

         =|| y ||  sup{ || x ||: ||x ||  ≤ 1} 

    

Thus fy  || y || …………..(1) 

 

  Now we show that the relation takes the form an equality. If y=0  then || y || =0. 

 

    Also, if y=0 then fy (x) =(x,y) =(x,0) =0  x  H. 

 

Then fy is a zero functional & || fy || =0. 

 

Thus if y=0; then fy = || y || =0. 

 

Now let us take y 0. then H is not a zero space .  

 

We have || fy || =sup {|| fy (x )||  : ||x ||  ≤ 1} 

 

Since y 0; y / ||y || is a unit vector  

 

Taking x = y / ||y ||  .  

 

          we have fy     || y ||  ………….(2)  

 

From (1) & (2) we have  

 

                || fy || = || y || 

 

               Hence the proof. 

 

Theorem : Riesz Representation theorem 

 

Let H be a Hilbert space and let f be an arbitrary functional  

In H then there exist a unique vector y H such that  

f(x) =(x,y)      x in H. 

 

Proof: 

          First we shall show that if there exist a vector y such that  f(x) =(x,y)      x in H. 

     NOTES 
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 Then y is necessarily unique. 

 

Suppose y1,y2 are any two vectors satisfying the property we have  

 f (x) =(x,y1 )     x in H. 

  &  f (x) =(x,y2 )     x in H.  

 

we have (x,y1 ) =(x,y2 )  x in H. 

 

 (x,y1 –y2 ) =0    x in H . 

 

 y1 –y2 =0  y1 = y2. 

 

If f is a zero functional then f( x) =0  x in H. 

 

Also, if y=0 then f(x) =(x,y) =(x,0) =0. 

 

If f is a zero functional then the vector y=0 such that  

 

 f(x) =(x,y)   x in H. 

 

Suppose f is not a zero functional. Let M be the null space of f. i.e., M= {x  / f(x) =0} . Then 

M is aproper subspace of H.Also the null space of  any continuous linear transformation is 

closed. 

 

            Hence M is a proper closed linear subspace of a Hilbert space H. 

 

    We claim that for some suitably chosen scalar , the vector y=  y0. 

 

Case(i)  

 

         We take any value for scalar   in  the vector y=  y0. 

Satisfies the property (1) for every x  M. 

 

           If  x  M then f(x) =0 . Also if x  M , then 

                                

 (x,y) = (x,  y0 ) = (x,y0) =0. 

 

Thus if x  M & if y =  y0 then we have f(x) =(x,y) =0. 

 

               Hence case (1) is satisfied. 

 

Case(ii) 

          Let us try to choose the scalar  in such a way that  
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The vector y= y0 satisfies equation(1)  for x=y0. Then  

                                                       

f(y0) =(y0,  y0) =  (y0, y0) =  || y0 ||
2
. 

                        

Here we take    = f(y0) /  || y0 ||
2 

. then the veactor y = y0 satisfies  

for every x  M & for every x =y0 then it must satisfy (1) for every  

x   H.  

 

        Let x be an arbitrary vector in H. Since M 
 
 M 


 ={0} and  

y0 is anon zero vector belongs to 
 
 M 


. 

 

    y0  M. Then 

                 f(x) -  f(y0) =0. 

                

                 x-   y0  M 

                 

                 x-   y0 =m   M 

 

 

Thus xH   x = m+  y0 where  is some scalar &  

m  M. now,  

 

 

f(x) = f(m+  y0) = f(m) + f( y0) = (m,y) + (y0 , y)  

 

         = (m+  y0 ,y) = (x,y)  

 

 

Thus if a vector y satisfying (1) for every x  M & for every x =y0 

 then it must satisfy (1) for every x   H.  

 

        Hence y =  y0  the required vector where   

              

 = f(y0) /  || y0 ||
2
 . 

                       

 

                  Hence the proof. 

 

 

 

 

*************************** 



Question Opt 1 Opt 2 Opt 3 Opt 4 Answer

Every inner product space is a……………
normed  

linear space
hilbert space banach space continuous

normed  

linear space

The ……….. is orthogonal to any vector. product scalar zero vector real value zero vector

The relation of orthogonality in a  Hilbert space is 

………….
asymmetry symmetry abelian commutate symmetry

The zero vector is the only vector which is 

………… to itself.
asymmetry symmetry orthogonal direction orthogonal

A complex banach space is said to be a ………….. 

if there is an inner 

product which satisfies the three conditions.

Banach space hilbert space 
Inner product 

space
linear space hilbert space 

For the space l2
n 

we use cauchy inequality to prove 

…………inequality.
minkowski's schwartz triangle

cauchy 

triangle
schwartz

Two vectors x and y in a hilbert space H are said to 

be orthogonal if ……
(x,y)>1 (x,y)=0 (x,y)=1 (x,y)<1 (x,y)=0

If x is orthogonal to y then every scalar multiple is 

………….. to  y.
parallel symmetry orthogonal perpendicular perpendicular

The ………………. is orthogonal to every vector. product scalar zero vector real value zero vector

The d is the distance from  ……….. to c. center vertices edges origin origin

If M is a closed linear subspace of ahilbert space H 

then H is the …………

of M and M perp

product scalar zero vector direct sum direct sum

If M and N are closed linear subspace of ahilbert 

space H such that 

M┴N then the linear subspace M+N is………

closed open open subset open set closed

The scalars in a Hilbert space are usually 

……………. numbers.
Irrational algebraic complex rational complex

The  distance property in inner product space is   

(ax+by, Z) =…………
a(x,z)+b(y,z) a(x,x)+b(y,x) a(x,z)-b(y,z) a(x,z)+b(x,z) a(x,z)+b(y,z)

The  distance property in inner product space is   

(ax-by, Z) =…………
a(x,z)+b(y,z) a(x,x)+b(y,x) a(x,z)-b(y,z) a(x,z)+b(x,z) a(x,z)-b(y,z)

An orthonormal set cannot has an ………… product scalar zero vector real value zero vector

The set  S is finite or………………….. countable uncountable countably 

infinite

countably 

finite

countably 

infiniteThe orthonormal set is either ………………. or 

countable.
countable uncountable finite empty empty

The orthonormal set is either  empty or 

……………..
countable uncountable finite empty countable

A nonempty set {ei} of a hilbert space H is said to 

be an orthonormal set if …………… for all i=j
(ei, ej) >0 (ei, ej) =0 (ei, ej) =1 (ei, ej) <1 (ei, ej) =1

A nonempty set {ei} of a hilbert space H is said to 

be an orthonormal set if ………… for all i≠ j
(ei, ej) >0 (ei, ej) =0 (ei, ej) =1 (ei, ej) <1 (ei, ej) =0

If H contains only the zero vector then it has no 

…………………

orthonormal 

set

orthonormal 

basis
Banach space hilbert space 

orthonormal 

set

If H contains a nonzero vector and if we normalised 

x then ║e ║=……
zero four five one one

If (x,y) are any two vectors in a Hilbert space then 

│(x,y)│<=………..
║x ║║y║ ║x ║/║y║ ║x ║-║y║ ║x ║+║y║ ║x ║║y║

The sum of Z and  Z conjugate is equal to……… 2 im Z 2 Re z 2 z Re z 2 Re z

Every inner product space is expressed as  a║x║
2 

……………
(x,y)>1 (x,x) (y,y) (y,x) (x,x)

A close convex subset of a hilbert space H contains 

a unique vector of 

smallest  ………………

metric space subset norm norm

A close ………. subset of a hilbert space H contains 

a unique vector of 

smallest  norm.

concave convex linear metric convex

Parseval's equation is otherwise called as parseval's 

………….
transform fourier identity subscript identity



Let x be anarbitrary vector in H the numbers (x,ei) 

are called the ,,,,,,,,,

coefficient of x.

parseval fourier schwartz bessels fourier

The set of all continuous linear functional on H is 

denoted by ……………
H H** H* T* H*



 

 

1 

 

           UNIT 4 

               Adjoint In Banach Spaces 

 
Adjoint of an operator : 

 

 

    Let T be an operator on a Hilbert spaces H. We define the adjoint of T denoted by T* 

on  H as follows whenever (x, y)  H. We have 

          (Tx, y) = (x, T*y) 

 

The mapping T* is unique: 

 

         If T‟ is any mapping of H into itself such that  

  ( Tx, y) = (x,T‟ y)   (x, y)  H. 

 

Then, (x,T‟y) = (Tx,y) = (x, T*y) 

  

 (x, T‟y) =  (x, T*y) 

 

 

 (x, T‟y- T*y) = 0 

 

 

 (x, (T‟- T*)y) = 0         x  H. 

 

 

 (T‟- T*)y = 0  

 

 

   T‟ =T* .  

 

                Thus T is unique. 

 

The adjoint mapping  T* is  linear and bounded : 
 

Let y1 and y2 be any two vectors in H and let ,  be any 2 scalars . For any vector x  H 

we have 

 

  (x,  T* (y1+  y2) )  = (Tx , (y1+ y2 ) ) 

                                                       

                                   = (Tx,y1) +  (Tx,y2). 

                                                         

                                   = (x, T*y1) +  (x, T*y2). 

 

                                   = (x,  T*y1 ) + (x,  T*y2)    



 

 

2 

 

= (x,  T*y1 +   T*y2)  

 

 T* (y1+ y2 ) =  T*y1 +   T*y2 

 

 T* is linear. 

 

To prove T* is bounded: 

 

 For any vector y in H. we have 

 

   T*y  
2
  = (T*y, T*y)  

                     

                     =(TT*y,y)  

 

                    =  (TT*y,y)   

                     

                         TT*y   .  y   

 

     T  .   T*y   .  y   

 

   T*y      T  .   y  . 

 

 T is bounded .  T   k , where k is finite. Hence we  

 

get   T*y   k  y     y  H. 

 

 T* is bounded. 

 

 T* is a bounded linear operators on H. 

 

 T*  B(H) where B(H) is the set of all bounded linear operators on a Hilbert space H. 

 

Theorem: 

 

The adjoint operator T to T* on B(H) has the following properties. 

 

    i) (T1+T2)* = T1* + T2* 

                      

    ii)(

    iii)( T1 T2)*= T2* T1* 

    iv)T* * = T 

     v)|| T ||= || T* ||



 

 

3 

 

 

vi) || T* T ||  = || T ||
2
 

 

Proof: 

 

i)(T1+T2)*  

 

  (x, (T1 +T2 )* y) 

                            =((T1+T2 ) x,y)  

                            = (T1x,y) + (T2 x,y) 

 

                            =  (x,T1*y) + (x,T2*y) 

                            =  (x, T1*y +T2*y) 

                            =  (x,(T1* + T2*)y) 

 

      (T1+T2)* = T1* + T2* 

   

             Hence (i) proved. 

 

ii)( x, (y ) 

                        = (x ,y) 

                       =  x ,y)    

                       =  x , T*y) 

                                 

                      =  (x ,*y)    

               

 (



Hence (ii) proved

 

iii) (x, (T1 T2 )* y) 

                            =((T1T2 ) x,y)  

                            = (T2 x ,T1* y) 

 

                            =  (xT2*  , T1*y) 

 

       ( T1 T2)*= T2* T1* 


             Hence (iii) proved 

 

iv) (x,T**y) =  (x, (T*)* y) 

 

                    = (T*x,y) 

 

                    = (y, T*x) 

 

                    = (Ty,x) 

  



 

 

4 

 

                 = (x,Ty) 

      

          T* * = T  

              

              Hence (iv) proved. 

 

v) To prove || T ||= || T* || 

 

       We know that || T* y  ||   || T || || y ||   y  H. 

 

     || T*  ||   || T || …………(1) 

 

Applying (1) to the operator T* we get  

  || (T* )*  || =  || T** ||= || T ||   || T *|| ………..(2) 

 

From (1) & (2)  

  

           || T  || =  || T* ||   

               

                  Hence (v) proved     

 

vi) To prove  || T* T ||  = || T ||
2
 . 

 

    We have ,  T* T      T*  .   T   

 

                                      =    T  .   T   

 

                                      =   T  
2
 

 

                        T* T      T  
2
……………….(3) 

Also,  

               T(x)  
2
 =(Tx,Tx) 

 

                                = (T*Tx,x) 

                                 = (T*Tx,x)  

                                 

  T* Tx  .   x  

 

    T* T  .   x 
2
 

 

                      T  
2 

     T*T   ………..(4)    

     

   From (3) & (4)     

      

                       || T* T ||  = || T ||
2
 

                

                     Hence (vi) proved 
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Problem: 
 

Show that the adjoint operaion on B(H) is 1 to 1 and onto. 

 

 

Solution: 

 

Let  : B(H) B(H) such that  (T ) =T* 

 

 

 is 1  1: 

 

       Let T1 , T2 B(H), then (T1) = T1*; (T2) = T2*; 

 

(T1) = (T2) ;  T1* = T2* 

 

                         (T1*)* = (T2*)* 

                          T1 = T2 . 

 

For every element T* B(H) then  (T* ) =(T*)* =T 

 

                     Hence solved. 

 

Problem: 

Show that 0* =0 & I* =I. 

 

Solution: 

  (0*x, y) =(x,0y)  = (x,0) =0 = (0x,y) 

 

 0*= 0. 

 

( I*x, y) = (x,Iy) = (x, y) =( Ix,y). 

 

 I* = I. 

 

          Hence solved. 

 

 

Problem: 

 

If T is nonsingular operator on H then T* is also nonsingular then (T*)
-1

 =(T
-1

 )* 

 

Solution: 

 

  If T is nonsingular  

   Now T* is nonsingular  when T is non singular, then  

 

         TT
-1

 = T
-1

T = I 
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(TT
-1

)* 

            =(T
-1

T)*=I*=I. 

 

 

(T
-1

)*T* = T*(T
-1

)* =I. 

 

 

 T* is non singular. 

 

 

(T
-1

 )* = (T*)
-1

. 

 

 

          Hence solved. 

 

 

Self Adjoint operator: 
 

          An operator T in B(H) is said to be self adjoint. If T= T*. 

clearly , 0 and 1 are self adjoint operators. 

 

Theorem: 

The self adjoint operators in B(H) form a closed real linear subspace 

of B(H) and therefore  a real banach space which contains the 

identity transformation. 

 

Proof: 

 

Let S be the set of  all self adjoint operators  on a Hilbert space H. 

 

To prove that  S is aclosed real linear subspace of B(H). Let T1 &T2 

 S then  

        T1*= T1 and T2* = T2 . 

For any ,  we have  

(T1+  T2 ) * = (T1)* +( T2 )* 

                            

                        = T1* +T2* 

 

                               

 = T1 +  T2 

                          

                           = T1 + T2





 

 

7 

 

 

 T1 + T2   S. 

 S is areal linear subspace of B(h) . next, we show that S is closed. Let A be 

a limit point of s. Then to show that  

A S. 

 

Since A is  a limit point of S.there exist {An} in S such that  

An  A. 

 

        We have  || A- A* || = || A- An  +An  -A* || 

 

                                          ≤  || A- An  || + || An  -A* || 

 

Since An  S, An* =An . 

 

                                      =  || A- An  || + || An*   -A* || 

                                      =  || A- An  || + || (An  -A)* || 

                                      = || A- An  || + || An  -A || 

                                      =2 || A- An  || .→ 0. as An → A. 

 

 A =A* and so A  S .Then S is a closed real linear subspace of B(H) and 

hence s is a real banach space. Also 

 I  S as I is self adjoint . 

 

                               Hence the proof. 

 

Theorem: 

If A 1 & A2 are self adjoint operator on  H then their product A1 A2 is self 

Adjoint iff  A1 A2= A2A1. 

 

Proof: 

Let A1 A2 = A2 A1 and also it is given that A1*= A1 &  

A2*= A2. 

 

Now, (A1A2)* = A2*A1*  

                        = A2 A1. 

                        = A1 A2. 

 

Conersely, let A1 A2 be a self adjoint and show that they commute. 

 

    By hypothesis, (A1A2)*   = A1 A2 ………(1) 

 

But  (A1A2)* = A2*A1*  = A2 A1…………..(2) 

 

From (1) & (2) we have 

              

                       A1 A2 = A2 A1 

 

                               Hence the proof.    
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    Theorem: 
 

    If  T is an operator on H for which (Tx,x) = 0,  x in H  

    iff   T = 0. 

 

    Proof: 

   Suppose T=0 then x H.  

    

    We have, (Tx,x) =(0x,x)  

                              = (0,x) 

                              = 0. 

                   (Tx,x) =0. 

 

      Given that T is an operator on h, for which (Tx,x)=0,  

   x  H. 

              

      To prove : T is zero operator on H. 

 

    If  , be any 2 scalars and x,y are anu two vectors in H. 

 

      Then we have , 

      (T(x+y), x+y )= ( Tx + Ty, x+y) 

 

                                       = ( Tx,  x)+(  Tx, y )  

                                          +(Ty ,  Tx)+( Ty, y) 

                                                                   

             = 
2
 (Tx,x)+ (Tx,y) + (Ty,x) +

2
 (Ty,y) 

 

   By hypothesis , (Tx,x) =0   x  H. 

                                     

        (Tx,y) + (Ty,x) =0 …………(1) 

 

    Put  =1,  =1 in (1) we have, 

    

       (Tx,y) +(Ty,x) =0.  ……………(2) 

 

     Put  = i,  =1 in (1) we have, 

    

       i(Tx,y) – i(Ty,x) =0.  ……………..(3) 

 

    (2) x i , we get  

     

      i(Tx,y) + i(Ty,x) =0         …………(4) 

 

   (3) +(4)  

     

      2i(Tx,y) =0  x ,y H. 
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(Tx,y) =0  x ,y H.  

          T= 0  

 T is a zero operator on H.  

    

          Hence the proof. 

    

Theorem:  

 

An operator T on a Hilbert space H is self adjoint if (Tx,x) is real  x. 

 

Proof: 

 

  Let T be self adjoint then T= T*. 

 

To prove: 

 

          (Tx,x) is real. 

 

Now, (Tx,x) = (x,T*x) 

                      =(x,Tx) 

                           

            (Tx,x) = (Tx,x) 

 

 (Tx,x) is real. 

 

Conversely, Let (Tx,x) is real    x. 

 

To prove: T on H is self adjoint. 

    

    (Tx,x) = (Tx,x) 

                   

              = (x,T*x) 

              

               =(T*x,x)  

 

(Tx,x)-(T*x,x)  =0  x  H. 

 

( (T-T*)x,x) =0 

 

T-T* =0  

 

T= T* 

 

 

 

T on H is self adjoint. 

 

 

       Hence the proof. 
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Normal Operator: 

 

  An operator N on H is said to be normal if it commutes with its adjoint. 

 

i.e., NN*=N*N 

 

 

Remark: 
 

 Every self adjoint operator is normal. Since T is self adjoint then T= T*, we have 

TT*=T*T is true so that T is normal. 

 

 

Theorem: 
 

The set of all normal operators on H is a closed subset of B(H) which contains the 

set of all self adjoint operators and is closed under scalar multiplication. 

 

Proof: 

 

   Let M be the set of all normal operators on ahilbert space H. 

 

 

To prove: H is a closed subspace of B(H). 

 

 

Let N be a limit point of M. We have to show that N  M.Since N is a limit point of 

msuch that a sequence {Nk } of disjoint points of M such that Nk N as K  ∞  

 

   Consider ,  

 

|| NN*- N*N ||  

      = || NN*- NkNk*  + NkNk*  - Nk*Nk+ Nk*Nk-NN* || 

 

     ≤ || NN*- NkNk* || + ||NkNk*  - Nk*Nk||+ ||Nk*Nk-NN* || 
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Hence || NN*-N*N|| =0 

 

 NN*=N*N and so NM. 

 

M is a closed subset of B(H). we know that every   

self adjoint operator is normal. 

 

 M is closed subset of B(H) which contains the set of  

  all self adjoint operators. 

 

To prove: H is closed under scalar multiplication. 

 

i.e., If   is a scalar & N M.then N  H. 

                                  

(N)( N)*  =(N) (   N*)  =( )(NN*) 

(N)*( N) = (  N*) (N)  =(   )(N*N) 

 Since , N is normal we get,  

(N)( N)*  = (N)* ( N) 

This proofs if N is normal , (N) is also normal 

 for any scalar. 

Hence M is closed under scalar multiplication. 

                  Hence the proof. 

Theorem: 

If N1 and N2 are normal operators on H with the property that either commutates with the 

adjoint of the other, then 

 i)N1 + N2 

 

ii) N1 and N2 are normal 

 

Proof: 

 

Given that N1 &N2 are normal operators. 

 

N1 N1* = N1* N1  and 

   

   N2 N2* = N2* N2 

       N1 N2* = N2* N1  
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  And N1* N2  = N2 N1* 

 

i)(N1 + N2) (N1 + N2)* 

                     =  N1 N1* + N2 N1*+ N1 N2*+ N2 N2* 

                   

                     = N1*( N1 +N2 )+N2*( N1 +N2) 

 

                     = ( N1 +N2 )* ( N1 +N2 ) 

 

 ( N1 +N2 ) is normal. 

 

ii) (N1N2)(N1N2) * = (N1N2)(N2*N1*) 

                               = N1(N2N2*) N1* 

                               = (N2 *N1*)(N1 N2)  

                               = (N1N2)*(N1N2) 

 

  (N1N2) is normal 

 

                Hence the proof. 

 

 

    Theorem: 

   An operator T on H is normal iff || T*x || = || Tx || x. 

               

    Proof.:    

  

       || T* x || = || Tx ||     || T* x ||
2
 = || Tx ||

2
 

 

     (T* x, T*x)  =(Tx,Tx) 

 

      (TT*x,x)  = (T*Tx,x)  

  

      ( ( TT*  - TT*)x,x) =0 

 

      TT*  - TT*  =0 

 

      TT*  =  TT*         

 

                     Hence the proof. 

 

Theorem:      
If N is a normal operator on H, then  || N

2 
|| = || N || 

2
 . 

 

Proof: 

 We have  || Tx || = || T*x ||  x 
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Replace T  by N & Nx in place of x. we have,  

 

|| N(Nx ) || = || N*(Nx) || 

 

 || N
2 

x || = || N*Nx ||      x. 

 

 

Now, || N
2
  || = sup{  || N

2
x ||  : || x ||  1}  

                          

                    = sup{ || N*Nx || : || x ||  1} 

 

                    = || N*N || 

 

But we know  

 

                      || T* T ||
2
 = || T ||

2
  

 

                  Hence  || N
2 

|| = || N || 
2
. 

                 

                           Hence the proof. 

 

Theorem: 

 If T is an operator on H, then T is normal iff its real and imaginary parts commutes . 

 

Proof: 

 

Claim : T is normal if AB=BA. 

 

If A& B are the real and imaginary parts of T, so that  

T= A+iB and T* = A-iB. 

 

Then, TT* =(A+iB) (A-iB) 

 

                   = A
2
+ B

2
 +i( BA- AB) …..(1) 

 

        T*T     = (A-iB) (A+iB) 

 

                     = A
2
 +B

2
 +i( AB- BA) …….(2) 

 

 Suppose AB=BA then from (1) & (2). We have  

 

 TT*  = T*T   T is normal . 

 

Conversely , suppose that  T is normal then  

 

TT* =T*T  
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From (1) & (2) we have 

 

A
2
+ B

2
 +i( BA- AB)= A

2
+ B

2
 +i( AB- BA) 

 

 BA-AB =  AB-BA 

 

2 BA = 2 AB 

 

 AB= BA. 

 

            Hence the proof. 

 

Definition : 

 

            Let A1,A2 be two self adjoint operators. We say that A1  A2 if   (A1x, x)  (A2 x,x)    

 x. 

 

Theorem: 

 The real banach space of all self adjoint operators on a Hilbert space H is a partially 

ordered set whose linear structure and order structure are related by the following 

properties. 

i. If  A1 ≤  A2 then A1+A ≤ A2+A for every AS. 

ii.If  A1 ≤  A2 and   0 then A1 ≤ A2. 

 

Proof: 

 

 

Let S be the set of all self adjoint operators on H. If AS 

Then (Ax,x) 

 

i.e., (Ax,x) = (Ax,x)     A  A. 

 

  Hence”  “ is reflexive . 

 

Suppose A1  A2   and A2  A3  

Then (A1x,x)  (A2 x,x)    & ( A2 x,x)  (A3 x,x)  x H. 

 

 (A1x,x)  (A3 x,x)  

 

 A1   A3  

 

Hence   “ “ is transitive. 

 

Suppose if A1  A2   and A2  A1. Then 

 

  (A1x,x)  (A2 x,x)    & ( A2 x,x)  (A1 x,x)
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 (A1x,x) =  (A2 x,x) 

  

 ( ( A1 –A2 ) x,x) =0  

 

 A1 –A2 =0. 

 

 A1 =A2 .  

 

Hence   “ “ is antisymmetric. 

 

So  is a partially ordered set in S. 

 

 

i) Suppose A1  A2   Then (A1x,x)  (A2 x,x) . 

 

Hence (A1x,x) +(Ax,x)  (A2 x,x) +(Ax,x). 

 

 ( ( A1 +A) x,x)  ( ( A2+A) x,x)  

 

 A1+A ≤ A2+A for every AS. 

 

 

ii) Given A1 ≤  A2 and   0    

 

 then (A1x,x)  (A2 x,x)   

 

(A1x,x)   (A2 x,x)    xH. 

 

( ( A1 )x,x)  (  ( A2 )x,x)   

 

 A1 ≤ A2. 

 

               Hence the proof. 

 

Positive operator: 

                 The self adjoint operator “ A” is said to be positive if A  0 i.e., (Ax,x)  0    

xH. 

 

 

Theorem: 

If A is a positive operator on H then If  A is non-singular. In particular I+  T*T   and  

I+TT* are non-singular for any arbitrary operator T on H . 

   

Proof: 

         To prove that I+A is non – singular . We have to show that  I+A is 1 to 1, onto 

mapping of H into itself. 
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I+A is 1 to 1. First we show that (I+A) x=0  x=0. 

 

 

We have (I+A) x=0  x+Ax =0. 

 

                         Ax = -x  

 (Ax,x) = (- x,x)   = - || x  ||
2
. 

 

Since A is a positive operator.  

 

i.e., (Ax, x)  0 . Hence given - || x  ||
2
   0.which cannot be unless  || x  ||   =0. 

 

This proves that x =0. 

 

Thus (I+ A)x = 0  x=0 . 

 

Now (I+A ) x = (I+ A) y  (I+A) (x-y) =0 

 

                                          x-y =0  

          

                                            x = y . 

 Hence I+A is 1 to 1. 

 

Now, we show that I+A is into.If M is the range of I+A then I+A is onto if M=H. 

 

For every vector xH. We have  

   

   || (I+A) x ||
2
 = || x +Ax ||

2
 = (x+ Ax, x+Ax)  

                        

                       = (x,x) + (x,Ax) +(Ax,x) +(Ax,Ax)  

                                            

                         =   || x  ||
2
 + (Ax,x) + (Ax,x) +  || Ax ||

2
 

 

                         =   || x ||
2
 +2(Ax,x) +  || Ax ||

2
      || x ||

2
  

 

Thus  || x  ||    || (I+A) x ||   x  H.     ………..(1) 

 

Let {(I+A)xn}  be a Cauchy sequence in M.  

 

|| (I+A) xn – (I+A ) xm  ||  0 as m,n  . 

 

 (I+A) xn   (I+A ) x . 

 

& (I+A) x  M. Thus every Cauchy sequence  {(I+A)xn} in M coverges to {(I+A)x} in M. 
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 M is complete. But every complete subspace is closed. Hence M is closed. 

 

    Now M is a proper closed subspace of H. Then by an earlier theorem there exist a 

nonzero vector x0  H such that x0  M. 

 

    Now {(I+A)x0}is in M & x0  M. 

.  

 ( x0 ,( (I+A)x0)  =0  

 

 ( x0 , x0 ) +( x0 , Ax0 )  =0  

 

 (Ax0 , x0 )  = - (x0 , x0 ) ……..(2) 

  

 

Since A is a positive operator. 

 

 

(Ax0 , x0 )  0. so(2) gives - || x0 ||
2
   0 which implies  

|| x0  ||
2
    0 . which cannot be unless || x0  ||

2 
 =0.so that  

x0  =0.  

 

Contradicting the fact that x0 is anon zero vector.  

 

M= H. 

 

 (I+A) H= H 

 

 (I+A) is onto. 

 

Hence I+A is non singular. 

 

If T is any operator in B(H). We notice that T*T and TT*  

Are both positive operators . Then by the first part of the  

Theorem it follows that  

 

  I+  T*T   and  I+TT*  are both Non singular. 

 

              Hence the proof. 

 

 

 

Unitary operators: 

            An operator U on H is said to be unitary 

 if UU*= U*U =I. 
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Theorem: 

If T is an operator on Hilbert space H, then the following conditions are equivalent to one 

another. 

i. T*T = I 

ii.(Tx,Ty) = (x,y)  x,y  H .     

iii.|| Tx || = || x || x.  

 

Proof: 

 

(i) (ii)  

 Let T*T =I . Thus for any x,y  H. 

 

(Tx,Ty) = (x, T*Ty)  

      

              = (x,Iy)  

  

              =(x , y)  

 

(ii)  (iii) 

 Suppose (Tx, Ty) = (x,y)    x,y  H. 

 

In particular if we take y =x. 

 

     We have (Tx,Tx) = (x,x)  

 

 || T x ||
2
 = ||  x ||

2
  

 || T x ||
 
  = || x || 

   

(iii)   (i)  

 

Let   || T x||
 
  = || x ||

 
  x  

 

 || T x ||
2
 = ||  x ||

2
  

 

 (Tx, Tx) = (x,x)  

 

 (T*Tx, x ) =(x,x)  

 

 ( ( T* T –I ) x,x) =0  

 

 T* T –I =0  

 

 T*T =I 

 

         Hence the proof. 

 

 

 

 

     NOTES 
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Theorem: 

 

An operator on Hilbert space H is unitary iff T is unitary. It is an isometric isomorphism 

of H onto itself . 

 

Proof: 

 

Let T be an unitary operator then TT* =T*T=I. 

 

Which implies that the mapping T is onto. Since T*T =I. It follows from the previous 

theorem that  || T x||
 
  = || x ||. 

 

Thus T is 1 to 1, onto  and preserves norm. 

 

T is an isometric isomorphism of H onto itself. 

 

Conversely, if T is an isometric isomorphism then  

 || T x||
 
  = || x ||   x. T*T =I by the previous theorem and it is given that T is an 

isomorphism. 

 

T
-1

 exist. Hence T*T=I  

 

 (T*T) T
-1

 = I T
-1 

 = T
-1 

 

 

 T* = T
-1

 . 

 

Using this we can easily by premultiplying and post multiplying we have   

 

                   TT* =T*T=I. 

 

Which proves that T is unitary. 

 

               Hence the proof. 

 

Projections: 

 

                  A projection on abanach space B is an idempotent operator and which is 

continuous.T: BB is a projection if T
2 

 = T and T  is continuous.  

 

               If P is a projection on a banach space and if M & N are the range and the null 

space of P then M & N are closed linear subspaces of B such that B= M N. 

 

M is the range of P. M= { P(x)   : x B}={ x : p(x) =x}  

 & N is the null space of P. N= { x   / P(x) =0}. 
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Projections on a Hilbert space: 

 

            A projection P on a hilbert space H is said to perpendicular projection on H. If the 

range M and the nullspace N of  P are orthogonal. 

 

Theorem: 

If  P is a projection on Hilbert space H, with range M and null space N, then  M  N  P is 

self adjoint and in this case N = M

 . 

 

Proof: 

 

Suppose P is a projection on a hilbert space H with range M and nullspace N. 

 

 Then H = M N. 

 

First we show that if M  N then P is self adjoint. 

 

Let Z be any vector in H, then z can be uniquely written as Z = x+y where  x  M and  y  

N.  

 

We have, (Pz, z) =(x,z)  

                                                     

                             = (x,x+y) 

 

                              = (x, x) +(x,y)  

 

                              = (x,x)  

 

            Also, (P* z,z)  =(z, Pz) = (z,x)  

 

                                   = (x+y, x)  

 

                                   = (x,x) +(y,x)  

 

                                  = (x,x)  

                   

                     (Pz,z) = (P*z,z)    z H. 

 

 ( ( P-P* )z,z) =0   P- P* =0  P= P* 

 

 P is self adjoint. 

 

Conversely if P is self adjoint. Let x be any vector in M and y be any vector in N. 

 

 

 

     NOTES 
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Then , (x,y) =(Px,y)  

 

                    = (x,P*y)  

 

                     = (x, Py) 

                      

                     =(x, 0) =0   

  

  M  N  

 

                 Hence the proof. 

 

 

Note: 

 

        An operator P on a Hilbert space H is aprojection on H which satisfies the condition 

P
2
 = P   & P* =P. 

 

 

Theorem: 

 

If  P is a projection on a closed linear subspace M of H iff  I-P is the projection on M

 . 

 

Proof: 

 

Suppose P is the projection on H then P
2
 = P   & P* =P. 

 

We have,  

(I -P) * = I* -P* =I-P  

 

              & (I-P)
2
 =(I-P) (I-P)  

                           = (I- PI – PI+ P
2
 ) 

                           = I-P –P+P  

                           = I- P  

 

(I –P) is the projection on H.  

 

Now, we have to show that if M is the range of P then M

 is the range of  I –P. Let N be 

the range of I-P . 

 

Then x  N  (I –P) x =x   x- Px  = x 

                                              

                                             Px =0  

 

                                            x is the null space of P. 
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 x  M

  

 

 N   M

  

  

    Again x  M

  Px =0  x- Px = x  

                                           (I- P) x  =x 

 

 x is the range of I-P. 

 

 x  N  

 M
  

  N. 

 Hence M
  

 = N. 

 

Conversely, suppose I-P is the projection on M

. Then by the 1 st part of the theorem , I –

(I-P) .i.e., P is the projection on (M

) 

 = M


 

 . 

 

But M is closed  M

 
 

 =M.  

 

 P is the projection on M.  

 

                 Hence the proof. 

 

Definition: 

 

     Let T be an operator on H. A closed linear subspace M(H) is invariant under T, if T(M) 

 M. 

 

 If both M and M
 

 is invariant under T then T is said  to be reduced by M or M reduces T. 

 

 

Theorem: 

 

A closed linear subspace M(H) is invariant under an operator T iff  M

 is invariant under 

T* . 

 

Proof: 

 

 

Let us assume that M is invariant under T. We have to show that M

 is invariant under T*. 

 

 

Let y be an arbitrary vector in M

 , (y,x) =0  x  M.It is enough to show that T* y  M


. 

This is clear  since  

( T*y, x) =(y,Tx)  =0  
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 Thus M
 

 is invariant under T*. 

 

 Conversely, if M
 

 is invariant under T* then (M

) 

 is invariant under (T*)* . 

 

 

 Since M is closed.  

 

(M

) 

 = M


 
  

 = M. 

 

And (T*)* = T** = T. 

 

 Hence, M is invariant  under T.  

 

      Hence the proof. 

 

Theorem: 

 A closed linear subspace M(H) reduces an operator T iff M is invariant under both T and 

T* . 

 

Proof: 

 

     If M reduces T then M and M

 are invariant under T. If M


 is invariant under T.  

 

          By the above theorem (M

 ) 


 is is invariant under T*. i.e., M is invariant under T*. 

 

Conversely, If M is invariant under T* then again by above theorem M
 

is invariant under  

                     (T*)*= T** = T. 

 

It is given that M is invariant under T. Thus both M and M
 

 is invariant under T. 

 

 M reduces T.  

                 

                    Hence the proof. 

 

Theorem: 

If  T is a projection on a closed linear subspace M of H , then M is invariant under an 

operator T   TP = PTP . 

    

Proof: 

 

          If M is invariant under T and x is an arbitrary vector in Hthen to prove x is in M. So 

P( T Px) =TPx & PTP = TP.    
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 Conversely , if TP=PTP & x is  a vector in M, then  

  

Tx= T Px = PTPx     is also in Mand so M is invariant under T.  

 

                      Hence the proof. 

 

 

Theorem: 

 

If  P is a projection on a closed linear subspace M of H , then M reduces an operator T  TP 

= PT . 

 

Proof: 

 

 

M reduces T iff M is invariant under T and T*. 

 

Iff   TP = PTP  & T* P  = PT* P  

 

Iff  TP = PTP  & PT= (T*P)* 

 

                                  = (PT*P)* 

 

                                   = P* (T*)*P* 

                                    

                                   = PTP  

iff    TP =PT. 

 

                        Hence the theorem. 

 

Theorem: 

If  P and Q are the projections on a closed linear subspace M and N of H then     M  N iff  

PQ = 0 iff QP = 0 . 

 

Proof: 

             Since P and Q are the projections on a Hilbert space H. Therefore P*=P & Q* =Q. 

 

First we observe that  

 

                 PQ = 0   (PQ)* =0* 

                              Q*P* =0* 

 QP=0  

    To prove the theorem it is sufficient to prove that  

M N    PQ =0 . 
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 If M N so that N   M
 

 . then the fact that QZ is on N for  

 

Every Z implies that   P(QZ) =0  so PQ=0. 

 

 

Conversely, suppose that PQ=0 & x  M, y N. Since M is the range of P then Px =x  

& N is the range of Q.  

 

Then Qy=y. 

 

We‟ve  (x,y) =( Px,Qy)  

 

                     = (x, P*Qy)  

 

                    = (x, PQy) = (x,0y)  =(x,0) =0  

 

 M  N  =0 . 

 

                    Hence the proof. 

 

Orthogonal: 

 

             Two projections P and Q on a hibert space H are said to be orthogonal if PQ =0. 

 

 

Theorem: 

 

If  P1, P2,…. Pn are the projections on a closed linear subspace M1, M2,…. Mn of H then    

P = P1+ P2+….+Pn  is a projection iff the Pi‟s are pairwise orthogonal  (In the sense  that 

PiPj = 0 whenever i ≠ j ) and in this case P is the projection on   M = M1+ M2+…+Mn .   

 

Proof: 

 

 

Given that P1 P2 ………..Pn are the projection on H. Therefore Pi
2
 =Pi = Pi*      for each 

i=1,2…….n. 

 

 

Suppose that Pi Pj =0 whenever  i j . Then to prove that P is the projection on H.  

 

P* = (P1 +P2+ ………..+Pn)*  = (P1* + P2*+………..+Pn *)  

 

      = P1 + P2 ………..+Pn      

 

       = P
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And  P
2
 = P.P 

 

             =  (P1 +P2+ ………..+Pn) (P1 +P2+ ………..+Pn) 

 

              =  P1
2
 +P2

2
+ ………..+Pn

2
 

 

              =  (P1 +P2+ ………..+Pn)   = P. 

 

 

Thus, P*= P= P
2
 . Therefore P is a projection on H. 

Suppose P is a projection on H. Then  P
2
 = P =P*. we have 

to prove that   Pi Pj =0 whenever i j . 

 

Let x be a vector in the range of Pi so that Pi x = x . 

                                             n 

Then   ||  x ||
2
 = || Pi x ||

2
      || Pj x ||

2
  

                                            
j=1  

 

                                            n 

                                        =  ( Pj x, x) 

                                           
j=1

 

                                        = (P1 x,x) +(P2 x,x) +……… 

                                                                         +( Pn x,x) 

 

                                        = ((P1 +P2+ ………..+Pn) x,x)  

                                         

                                       = ( Px, x)  

 

                                       =   || P x ||
2
  

                                       

                    ||  x ||
2
 . 

                      n 

 We have     || Pj x ||
2
 = || Pi x ||

2
  

                      j=1 

 

 || Pj x ||
2
 =0         whenever j i. 

 

 Pj x=0                              if j i. 

 

 x is the null space of Pj   for   ji. 

 

Range space of Pi is contained in the null space of Pj for ji. 

 

Mi  Mj 

    for  ji. 

 

i.e., Mi  Mj   for every ji. 
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 Then by the previous theorem we have Pi Pj =0. i.e., Pi „s are pair wise orthogonal .  

 

      Finally , we have to show that P is the projection on M . i.e., Range space of  P is M. 

 

      Let x be a vector in the range space of P then 

  

 x = Px = (P1 +P2+ ………..+Pn) x  (M1+M2+ ……..+Mn)  

            = M. 

 

 Range of P  M. 

 

Conversely, since  || Px || = || x ||  for every x in Mi , each Mi is contained in the range of P.  

 

 M= M1 + M2+ ……..+Mn is also contained in the range of P. 

 

                Hence M =R(P). 

 

                         Hence the proof. 

 



Question Opt 1 Opt 2 Opt 3 Opt 4 Answer

The null space  of any continuous linear 

transformation is …………
closed open open subset open set closed

Let M ={x / f(x)=0} then M is the 

……………….. of f.
range linear nullspace open subset nullspace

Let the adjoint of T denoted by 

…………. on H.
H H** H* T* T*

The adjoint of an operator is (Tx,y) 

=……………
(Tx,y) (x,T*y) (T*x,y) (Tx,Ty) (x,T*y)

The adjoint of operator T to T*  on B(H) 

is (aT)* =…………….
a(T)*

 Conjugate of a 

(T)*
T1*+a T*

 Conjugate of a 

(T)*

The adjoint of operator T to T*  on B(H) 

is T** =  ……………
a(T)* T1+T2* T T* T

The adjoint of operator T to T*  on B(H) 

is  ║T║=…………...
 ║T║*  ║T*║ T* T  ║T*║

The adjoint of operator T to T*  on B(H) 

is  ║T*T║=………….
 ║T║*  ║T*║ T*  ║T║

2
 ║T║

2

If T = T* then 0 and I are ……………. 

operators
adjoint commutate self adjoint symmetric self adjoint

If T is an arbitrary operator on  a hilbert 

space H then T=0 iff ……………… 
(Tx,y) (x,T*y) (T*x,y) (Tx,y)=0 (Tx,y)=0

If T is an arbitrary operator on  a hilbert 

space H then (Tx,x)=0 iff ……………… 
T=1 T=0 T=T* T= Tx T=0

The adjoint operator 0*=  ………….. 6 2 0 1 0

The adjoint operator 1*=  ………….. 6 2 0 1 1

If A is a positive operator on a H then 

I+A is ……………….
singular nonsingular commutate self adjoint nonsingular

I+T*T are………….  for any arbitrary 

oprator on T on H .
singular nonsingular commutate self adjoint nonsingular

The self adjoint operator A is said to be 

positive if ………………..
(Ax,x) =0 (Ax,x) >= 0 (A*x,y) (Ax,y)=0 (Ax,x) >= 0

Every complete subspace of a complete 

space is  …………….
closed open open subset open set closed

An operator N on H is said to be 

…………. if it commutes with its 

adjoint.

complete closed normal open normal

An operator N on H is said to be normal  

If it ……………. with its adjoint.
singular nonsingular commutes self adjoint commutes

The normal operator is 

NN*=……………
N* nonsingular N N*N N*N

Every ………………. operator is normal adjoint commutate self adjoint symmetric self adjoint

An operator T on H is ……………. Iff 

║T*x║=║T x║
complete closed normal open normal

If T is an operator on H then T is normal 

iff its real and imaginary parts ……
singular nonsingular commutes self adjoint commutes

An operator U on H is said to be 

……….. If UU*= U*U= I
complete closed normal unitary unitary

An operator U on H is said to be  unitary 

If ………………….
UU*= U*U= I U*U=0 U=1 U=0 UU*= U*U= I

Every unitary opeartor is a 

……………… operator.
complete closed normal unitary normal

………….. operators are precisely 

nonsingular operators.
complete closed normal unitary unitary



Unitary operator inverse equals  theirs 

………… 
adjoint commutate self adjoint symmetric adjoint

 Unitary operators are precisely 

………………. operators.
singular nonsingular commutes self adjoint nonsingular

A closed linear subsapce M(H) is 

………… under T if T(M) Í M 
invariant commutate self adjoint idempotent invariant

Two projectionP and Q on ahilbert space 

H are said to be……... if PQ=0
invariant commutate orthogonal idempotent orthogonal

If P is a…………… on a closed linear 

subspace  M of H then M reduces an 

operator T iff TP=PT.

projection commutate self adjoint idempotent projection
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UNIT 5 

SPECTRAL THEORY 

 
 

Finite dimensional spectral theory: 
              If T is an operator on a Hilbert space H ,then the simplest thing T can do to a vector is to 

transform it into a scalar multiple of itself. 

 

 

Tx =  x ……………….. (1)  

 

 

A non zero vector x is such that eq(1) for some scalar  is called an eigen vector of T and for 

some nonzero x is called an eigen value of T.The expression (2) is called spectral resolution of T. 

 

T=1P1+2P2+…………..+mPm ……..(2) 

 

                                            

T* = 1P1+2P2+…………..+mPm. 

 

 

T*T =1
2
P1+2

2
P2+…………..+m

2
Pm. 

 

 

Matrices: 

 

       Let B={e1,e2,………en}be an ordered basis for H, so that each vector in H is uniquely 

expressed as alinear combination of the ei’s. If T is an operator on H, then for each ej, we have  

 

        n 

Tej= ij ej    . 

       i=1 

 

[T] = 11      12    …………..1n 

           21     22    …………..2n 

          ……………………………          = [ij] 

          …………………………… 

          n1      n2    …………..nn 

 

 The Spectral theorem: 
             Let T be an arbitrary operator on H.The distinct Eigen value of T forms a nonempty  

finite set of complex numbers.

UNIT 1   GROUP THEORY 
 

 

Structure 
 

1.0 Introduction 

 

1.1 Unit objectives:- 

 

1.2Binary Operation: 

 

1.3Algebraic Structure:-  

 

1.4 Group:- 

 

1.5 Some Examples of Groups 

 

1.6Some Preliminary Lemmas: 

 

1.7 Subgroup: 

 

1.8 Normal subgroup: 

 

1.9 Homomorphisms: 

 

1.10Another Counting principle: 

 

  1.11 Sylow’s theorem: 

 

1.12 Summary 

 

1.13 Key Terms 

 

1.14 Answers to ‘Check Your Progress’ 

 

1.15 Questions and Exercises 

 

1.15 Further Reading 

 

 

1.0 Introduction:- 

 

In this chapter we shall study the simplest important  

algebraic structure called a ‘group’ which would serve 

 as a stepping stone for move complex algebraic structure 

 such as rings, fields and vector spaces. Some of the  

vital concepts of algebra like introduced in the set of a 

 group structure become vivid and appealing to a beginner, a  

group being a (non-empty) set together with a single operation  

     NOTES 

Group Theory 
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 Let 1,2,…………..,m be the eigen values.Let M1,M2,…………Mm be their 

corresponding eigen spaces. Let P1,P2,…………Pm be the projection on these eigen spaces. 

 

 

i) The Mi’s are pairwise orthogonal and span H. 

 

ii) The Pi’s are pairwise orthogonal , 

           m                     m 

     I=   Pi,    and T=   i Pi  

          i=1                   i=1 

 

Theorem: 

If T is normal then x is an eigen vector of T with eigen  

                                                                                        

value  iff  x is an eigen vector of T* with eigen value . 

  

Proof: 

          Since T is normal , then the operator T-  I is also normal for every scalar .  

 

Then we have ,                          

                Tx-  x   = T*x -  x   . 

 

                   Hence the proof. 

 

Theorem: 

If T is normal then the Mi’s are pairwise orthogonal. 

 

 

Proof: 

               Let xi and xj be vectors in Mi and Mj for i≠ j, so that Txi = i x i and  Txj = j x j . 

The preceding theorem shows that  

 

         i (x i , xj )  =  (i x i , xj )   = (T x i , xj ) 

                                                                           

                             =   (x i , T*xj )  = (x i , j xj ) 

                             = j  (x i , xj ). 

     & since  i ≠ j , it is clear that we have (x i , xj ) =0. 

 

                     Next we say that Mi’s span H when T is normal. 

                                      Hence the proof.
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Theorem: 

If  T is normal then each  Mi reduces T. 

 

 

Proof: 

                    Each Mi is invariant under T . It is enough to show that Mi is also invariant 

under T*. 

 

             As we know If xi  is avector in Mi, so that  

                                            

 Txi = i x I , then T* xi = i x i.  Finally we can say that Mi reduces T. 

 

                        Hence the proof. 

 

Theorem: 

If  T is normal then the   Mi’s  span H. 

 

 

Proof: 

   

          The Mi’s are pair wise orthogonal . 

 

We know that M = M1+M2+…………+Mm is aclosed linear subspace of H and that its 

associated projection is  

P= P1+P2+…………+Pm 

 

 

Since each Mi reduces T . we see that T Pi = Pi T    Pi. 

It follows from the fact that TP= PT, so M reduces T.  

           Consequently M

 is invariant under T. If  

M

 ≠

 
 {0}then since all the eigen vector of T are contained in M, the restriction of T to M


 

is an operator on a nontrivial finite dimensional Hilbert space which has no eigen vectors 

and hence no eigen values. 

 

 

          It means that M

 ≠

 
 {0} and so M= H and the Mi’s span H. 

 

                       Hence the proof. 

 

 

Banach algebras: 

                   A banach algebra is a complex banach space which is also an algebra with 

identity 1 and which the  
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structure is related to the norm by the following condition. 

 

i) xy   x y 

 

ii) I  =1. 

 

 

 

Example  

 

The set of all complex numbers is a Banach algebra. 

 

 

Notation : 

 

        Let A be a banach algebra .we denote the set of all regular elements in A by G and its 

compliment the set of  singular elements is denoted by S. Clearly, the identity element in A 

is invertible and so I G. 

 

 

Theorem: 

Every element x for which  x -1   < 1 is regular and the inverse of such an element is 

given by the formula  

                        

        x
-1

 = 1+   (1 –x )
n
 

                      n=1 

 

Proof: 

 

                Put r = x -1  so that r < 1.  

Consider, 

 (1- x)
n
  = (1-x) (1-x)……… (1-x)  

                  (1-x)    (1-x) ………  (1-x)  

                  (1-x) 
n
  = r 

n
 

 

consider , next                                        n 

                              (1 –x )
n
 , then  Sn =    (1 –x )

k
 

                             n=1                               k=1 

 

Then for n>m, 

  Sn - Sm   = (1-x)
m+1

+ (1-x)
m+2

+………+ (1-x)
n
  

                      (1-x)  
m+1

  (1-x) 
 m+2

………  (1-x) 
n
 

                      r
m+1

+ r 
m+2

 +………….+r
n
 .  

Since    r
n
 is convergent then there exist an integer such that   Sn - S   <    n,m  N.
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{Sn } is a Cauchy sequence in A. But A is complete. This partial sum converges to an 

element of A. we denote this by  

 

 

 (1 –x )
n
 .  

n=1 

                                                       

            If we define y by y =  1+   (1 –x )
n
 …………(1) 

                                                     n=1 

 

Then the joint continuity of multiplication in A such that,  

 

 

y-xy = y(1-x) = (1-x)(1+   (1 –x )
n
 ) =  (1 –x )

n
 = (y-1) 

 

 

Then x has an inverse in A and so x is regular. The inverse of x is given by (1) . 

 

                         Hence the proof. 

 

 

 Theorem: 

 

G is an open set and therefore S is a closed set. 

 

 

Proof: 

 

         Let x0 be an element in G and x is any other element in A so that  

 

     x – x0   < 1/  x0
-1

   

 

Note that x0 ≠ 0 . Now,  

 

 x0
-1

x – 1    =  x0
-1

x – x0
-1

x0   =  x0
-1 

(x – x0)   

                         x0
-1

     (x – x0)   

 

                       <  x0
-1

   .1/  x0
-1

  =1. 

  

 

 i.e.,  x0
-1

x – 1  <1. Since x= x0(x0
-1

 x) . It follows that x is also in G . So G is open. 

Then S= A-G, where S is the set of all singular elements. Since G is open in A. Then its 

complement  S is closed in A. 

 

                                  Hence the proof.
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Theorem: 

The mapping x x
-1

 of G into G is continuous and its therefore a homeomorphism of G 

onto itself. 

 

Proof: 

 

         Clearly , the maspping x x
-1 

 is 1 to 1 and onto from G into itself. Let x0 be an 

element of G, and x be another element of G such that, 

 

 

 x – x0   < 1/  2 x0
-1

  

 

 

Note that x0 ≠ 0 . Now,  

 

 x0
-1

x – 1    =  x0
-1

x – x0
-1

x0   =  x0
-1 

(x – x0)   

                         x0
-1

     (x – x0)   

 

                       <  x0
-1

   .1/ 2  x0
-1

  =1/2 <1. 

 

i.e.,  x0
-1

x – 1  <1.  

 By the theorem x0
-1

 x  G and  

 

 (x0
-1

 x)
-1

 =  1+   (1 – x0
-1

x )
n
 

 

 

x
-1

 x0 =  1+   (1 –x0
-1

x )
n
 

 

 

Now,  x
-1

– x0
-1

   =  x
-1

x0x
-1

 – x0
-1

    

 

                                  x0
-1

    ( x
-1

 x0 -1 )   

 

                                     x0
-1

     ( 1- x0
-1

 x)
n
   

 

                                      x0
-1

     ( 1- x0
-1

 x) 
n
 

 

                                 =   x0
-1

  2  1- x0
-1

x  

                                  =   x0
-1

  2   x0
-1

    x- x0  

 

 Hence when x x0 ,  x
-1

– x0
-1

    0.  

 

 x
-1
 x0

-1
  .i.e., The mapping is continuous . also the inverse mapping is continuous.  
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It is a homeomorphism of G onto Itself.  

 

                  Hence the proof. 

 

Topological divisors of Zero: 
           

                 The element Z in abanach algebra A is called a topological divisors of zero.If 

there exist a sequence {zn } inA such that   zn  =1 and either zzn  0 or znz  0 .  

                Clearly , even divisor of zero is a topological divisor of zero.There exist z  

zz =0 .  

Choose zn = z/  z   such that   zn  =1  

 and zzn = zz/  z   0 . Hence z is a topological divisor of zero. We denote theset of all 

topological divisor of zero by  z. 

 

Theorem: 

 Z is a subset of S. 

 

Proof: 

      Let z is in Z. Then there exist a sequence zn such that  

 zn  =1 and zzn  0 .If z is in G then by joint continuity of multiplication  we have, 

 

            z
-1

(zzn) = (z
-1

z)zn   0 

            zn  0. 

Which contradicts the fact that   zn  =1. 

 

zn  S.  

  

Z  S. 

 

                      Hence the proof. 

 

 

 Theorem: 

 The boundary of S  is a subset of Z. 

 

Proof: 

 

          Since S is closed, its boundary consist of all points in S which are limits of 

convergent sequence in G.We show that if z is such a point (i.e.,) if z  S there exist {rn } 

 G such that rn  z , then z Z.  

 

             Now, (rn
-1

 z -1) = (rn
-1

 z - rn
-1

rn) = rn
-1

( z - rn) 
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The sequence rn
-1 

 is unbounded. For otherwise if the sequence rn
-1 

is bounded then there 

exist a number M such that   rn
-1
 < M . Also  rn   z     rn – z  < 1/M. 

 

           Now,  rn
-1

 z – 1     rn
-1

   z- rn   < M.(1/M)=1. 

Also, rn
-1

 z  G . thus z = rn (rn
-1

 z)  G. 

 

         This is a contradiction to the fact that z  S. 

{ rn
-1

 } is unbounded. We can take   rn
-1

     as n . 

 

          Let zn = rn
-1

/   rn
-1
 , then  zn  =1 and  

 

 zzn = z rn
-1

/   rn
-1
 = [1- (1- z rn

-1
) ] /   rn

-1
 

 

        =  [1+ (z -  rn )rn
-1

 ] /   rn
-1
 

        

         = 1/   rn
-1
 +( z- rn ) zn  0   as rn   z and  

 

   rn
-1
  . 

 

                So, zzn  0 which means that z is a topological divisor of zero.i.e., z  Z. 

 

                        Hence the proof. 

 

The Spectrum:  
 

If H is a nontrivial Hilbert space then the spectrum of t is  

(t) = {  c: T-  I is singular } where T is an operator on H. If x is an element of an 

banach algebra A then the spectrum of x is given by  

                   (x) = { : x-  I is singular }. We write (x) as A(x). 

 

Theorem: 

For every element x in a banach algebra A, (x) is non-empty and compact. 

 

Proof: 

     Consider the function  : C  A defined by   x-  I. this function is continuous. 

Also,  S is closed in A. 

 

 The inverse image of closed set is closed if the function is continuous. 

{  c: T-  I is singular } is closed. 

(x) is closed. 
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To prove (x) is bounded: 

 

Claim:  

     If    (x) then       x  . 

 

 

If the claim is proved then (x) is bounded .Suppose    C such that    >  x   

 

  Then,  x /   < 1. 

 

 (1-(x/ )) is regular , (1-(x/ )) is regular,  I – x is regular     (x) . Hence the 

claim is proved. Since (x)is closed and bounded, (x) is compact. 

 

To prove (x) is non-empty: 

 

         (x) is asubset of C. The compliment of (x) is  

c-(x) =  (x) is called the resolvement of x. Since (x) is closed,  (x) is an open subset 

of the complex plane and it contains the set {Z: Z  >x}. 

 

        Suppose     (x)      (x). 

                                         x-  I is regular 

                                        (x-  I )
-1 

exists. 

 

Define the resolvement of x is the function  (x)  A given by  x( ) =  (x-  I )
-1

 .  

         

This is a continouous function .Also, 

x( ) =   
-1

(x/ - 1 )
-1

,   0. 

 

  x() 0 as  . 

 

 If   and  are both in   (x). then , 

   x( ) =  x()(x- I ) (x- I ) 
-1

      

 

 

 x( ) – x() = ( - ) .x( ).x() 

 

This relation is called the resolvement equation . Let f be functional on A. i.e., f  

conjugate space A* . 

 

        Define f() = f(x()) , x  A,     (x).  
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It has a derivative at each point of  (x).  

Also, f() =  f(x())= f x(). As   , f()0. 

 

 

Assume now  (x) is empty. 

 

Then  (x) = C- (x)= C ( whole complex plane) 

 

By Liouville’s theorem, we conclude that f() =0 for all  

   (x). Since f is an arbitrary functional on A. 

 

 x() =0      .  

          

             This is impossible , for no inverse can equal to zero and therefore it cannot be true 

that (x) is empty. 

 

                                  Hence the proof. 

 

Regular: 
 

             A division algebra is an algebra with identity in which nonzero element is regular. 

 

Theorem: Gelfand Mazur theorem: 

If A is a division algebra then it equals the set of all scalar multiples of the identity. 

 

Proof: 

We have to prove that if x is an element of A then x equals   I.Suppose on the contrary 

that x    I for every  , then  

 

x-  I  0 for every  . 

 

 x-  I is regular  for every   and therefore (x) is empty. 

 

This contradicts that (n )   . 

 

 x =  I for some  . 

 

Hence the proof. 
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Theorem: 

If ‘0’ is the only topological  divisor of zero in abanach algebra A  then A=C. 

Proof: 

 Let x  A, (x) is non-empty and closedset it has a boundary point in , then x-  I is a boundary point of the set ‘ S’ of 

a singular elements. 

 

            Since the boundary of S is a subset of Z. It follows that  x-  I  Z. i.e., x-  I is a topological divisor of zero. 

 

Then x-  I =0     x =  I. 

 

Every element x  A is of the form  I where   C.  

 

  A= C. 

 

                Hence the proof. 

 

Theorem: 

If the norm in a banach algebra A satisfies  x y  Kx y 

for some positive constant, then A=C. 

Proof: 

 

    If Z  is a topological divisor of zero then  there exist a sequence zn such that   zn  =1 and zzn  0 .  

 

           By hypothesis  z zn   Kz   zn  K z . 

 

Since K>0 ,    z  = 0 .  

 

              0 is the only topological divisor of zero.                    

            A=C. 

 

                                                    Hence the proof. 

 

 

 

 

 

 

 

        *********************** 

                                   

 

 

 

 

 

 



Question Opt 1 Opt 2 Opt 3 Opt 4 Answer

A non zero vector x such that Tx=l x is true for some 

scalar l is called an …………..  of T. 
eigen value eigen vector scalar idempotent eigen value

A scalar l such that Tx=lx holds for some nonzero x 

is called an……… of T.
eigen value eigen vector scalar idempotent eigen vector

Each eigen vector corresponds precisely to 

one…………………..
eigen value eigen vector scalar idempotent eigen value

Each eigen value has one or more ……………. 

associated with it.
eigen value eigen vector scalar idempotent eigen vector

Eigen value are otherwise called as 

………………………..

 characterestic 

value

characterestic 

vector
eigen vector scalar

 characterestic 

value

Eigen vector are otherwise called as 

………………………..

 characterestic 

value

characterestic 

vector
eigen value scalar

characterestic 

vector

If T is an operator on hilbert space H, then T to a 

vector x is to transform it

 into a scalar multiple ………………

Tx=lx Tx =0 Tx=1 l x=1 Tx=lx

If T has different Eigen values then each one is 

……….. to one another 
corresponding same distinct identity distinct

The image of the identity operator is the ………… 

matrix.
singular identity nonsingular null identity

The ……….. Matrix is 1's down the main diagonal 

and zero elsewhere.
singular identity nonsingular null identity

Two matrices in An are ………… iff they are the 

matrices of a single operator .

on H relative to different bases

similar asimilar vary distinct similar

The …………. of S is a subset of Z. boundary resolvement spectral distinct boundary

The set of all …………… divisor of zero by z. identical topological boundary resolvement topological

The set of all complex number is a…………….. 

Algebra.
Ring hardy banach functional banach

The regular element is the compliment of 

…………… element.
singular identity nonsingular null singular

A banach algebra is acomplex ………….. which is 

also an algebra 

with identity 1.

Banach space Hilbert space 
Inner product 

space
Linear space Banach space

Let A be a …………. algebra then the set of all 

reular elements in A by G.
Ring hardy Banach functional Banach

Let A be a …………. algebra then the set of all 

reular elements in A by S.
singular identity nonsingular null singular

The set of all values in a banach algebra is ……….. 

Number.
complex real inverse scalar complex

G is an open set and therefore s is an …………. set. closed open open subset open set closed

The compliment of spectrum is called the 

……………… of x.
resolvement spectral distinct identity resolvement

For every element x in a banach algebra A the 

……….. of x is nonempty and 

compact.

resolvement spectrum distinct identity spectrum

A division algebra is an algebra with identity in 

which each non zero element

 is ……………..

singular nonsingular commutate regular regular

 0 is the only …………… divisor of zero in a banach 

algebra then A=C.
identical topological boundary resolvement topological

 0 is the only topological divisor of zero in a banach 

algebra then ………..
A=C A=1 A=0 A=V A=C

A banach algebra is called a banach* algebra if it 

has an …………
involution topological boundary resolvement involution

The element x* is called the ………… of x and so 

asubalgebra of A is said to be self adjoint if it 

contains the adjoint of each of its elements.

adjoint commutate self adjoint idempotent adjoint

An element xÎA is ………… if there exist  an 

element y such that xy=yx=1.
singular left regular right regular regular regular

An element xÎA is ………… if there exist  an 

element y such that yx=1.
singular left regular right regular regular left regular



An element xÎA is ………… if there exist  an 

element y such that xy=1.
singular left regular right regular regular right regular

Every maximal left ideal in A is …………….. closed open open subset open set closed

If x is not right regular then it is called……………..  right singular left regular right regular regular right singular

If x is not left regular then it is called……………..  left singular left regular right regular regular left singular

If x is both right and left regular then it is called 

…………
 left singular left regular right regular regular regular

A is the intersection of all its ……….. left ideal.  maximal minimal right regular regular maximal

A maximal left ideal in A is a proper left ideal which 

is not properly contained if their …………… left 

ideal.

 maximal minimal proper regular proper
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