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Semester — 111
18MMP302 NUMBER THEORY 4H -4C
Instruction Hours /week: L: 4 T: 0P: 0 Marks: Internal: 40 External: 60 Total: 100

End Semester Exam: 3 Hours

Course Obijectives
This course enables the students to learn

e Mathematical concepts and principles to perform numerical and symbolic computations.
e To investigate and solve mathematical and statistical problems.

e To write clear and precise proofs.

e Tocommunicate effectively in both written and oral form.

e To demonstrate the ability to read and learn mathematics and/or statistics independently.

Course Outcomes (COs)
On successful completion of this course, students will be able to

1. Identify and apply various properties of and relating to the integers including the Well-
Ordering Principle, primes, unique factorization, the division algorithm, and greatest
common divisors.
Identify certain number theoretic functions and their properties.
3. Understand the concept of a congruence and use various results related to congruences
including the Chinese Remainder Theorem.
Solve certain types of Diophantine equations.
Identify how number theory is related to and used in cryptography
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UNIT I
DIVISIBILITY
Introduction - Divisibility - Primes - The Bionomial Theorem

UNIT Il

CONGRUENCES
Congruences - Solutions of Congruences - The Chinese Remainder Theorem - Techniques of
Numerical Calculation - Public-Key Cryptography - Prime Power Moduli - Prime Modulus

UNIT 111

CONGRUENCES (CONTINUITY)

Primitive Roots and Power Residues - Congruences of Degree Two, Prime Modulus - Number
Theory from an Algebraic Viewpoint - Groups, Rings, and Fields

UNIT IV

QUADRATIC RECIPROCITY AND QUADRATIC FORMS

Quadratic Residues - Quadratic Reciprocity - The Jacobi Symbol - Binary Quadratic Forms
- Equivalence and Reduction of Binary Quadratic Forms - Sums of Two Squares - Positive
Definite Binary Quadratic Forms
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UNIT V
SOME FUNCTIONS OF NUMBER THEORY
Greatest Integer Function - Arithmetic Functions - The Mobius Inversion Formula -

Recurrence Functions - Combinatorial Number Theory

SUGGESTED READINGS
1. lvan Nivan and HerbertsZucherman., (1972), An Introduction to Theory of Numbers
third Edition, Wiley Eastern Limited, New Delhi.
2. ApostolT.M., (1976), Introduction to Analytic Number Theory, Springer Verlag,.
3. Kennath and Rosan, (1968).,Elementary Number Theory and its Applications,
Addison Wesley Publishing Company.
4. George E. Andrews., (1989) Number Theory, Hindustan Publishing, New Delhi.
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Subject Name: Number Theory
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Semester: 111 Class: Il M. Sc Mathematics
S.No Lecture Topics to be Covered Support Material/ Page
Duration Nos
Period
UNIT-I
L 1 Introduction Si: Chap 1: P.No:1-4
2 1 Divisibility —definition and theorems Si: Chap 1: P.No:4-6
3. 1 Greatest common divisor —Definition and S;: Chap 1: P.No:7-11
theorem
4. 1 Euclidean algorithm with problems Si1: Chap 1: P.No:11-15
5. 1 Continuation of problems on Euclidean S,: Chap 1: P.N0:21-22
algorithm
6. 1 Least common multiple — definition and Sy Chap 1: P.N0:16
theorems
7. 1 Prime number —definition and theorems Si: Chap 1: P.N0:20-23
8. 1 Fundamental theorem of arithmetic and Euclid Sy Chap 1: P.N0:23-28
theorem
9. 1 Problems on fundamental theorem of arithmetic | S4: Chap 1: P.N0:21-23
10. 1 Binomial theorem —definition and theorems S;: Chap 1: P.N0:35-40
11. Recapitulation and discussion on possible
1 questions
Total no. of hours planned for unit-1is 11
UNIT-II
L 1 Congruence-definition and theorem Si: Chap 2: P.N0:48-50
2. 1 Continuation of theorem on congruence Si: Chap 2: P.N0:50-56
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3. Solution of congruence-definition and theorem Si: Chap 2: P.N0:61-62
4 The Chinese remainder theorem S1: Chap 2: P.N0:64-69
> Problems on The Chinese remainder theorem | Ss: Chap 3: P.N0:113-114
6. . . .
Continuation of the problems on Chinese S;: Chap 2: P.N0:69-71
remainder theorem
7 Techniques of Numerical Calculation Si: Chap 2: P.N0:74-81
8 Public-Key Cryptography Si: Chap 2: P.N0:84-90
9. Prime Power Moduli and Prime Modulu S:: Chap 2: P.N0:91-96
10. Recapitulation and discussion of possible
questions
Total no. of hours planned for unit-2 is 10
UNIT-II
Primitive roots and power residues-definition S1: Chap 2 P.N0:97-101
and theorems
2. . . L
Continuation of theorems on Primitive roots S1: Chap 2: P.N0:101-106
and power residues
3. . . L
Continuation of theorems on Primitive roots S1: Chap 2: P.N0:101-106
and power residues
4. Congruence of Degree Two, Prime Modulus | Si: Chap 2: P.N0:110-114
5. .
Ngmber'Theory from an Algebraic S1: Chap 2: P.N0:115-119
Viewpoint
6 Groups, Rings, and Fields -theorems Si: Chap 2: P.N0:121-124
7. . . .
Cont[nuatlon of theorems on groups, rings, S1: Chap 2: P.N0:124-126
and fields
8. Recapitulation and discussion of possible
questions
Total no. of hours planned for unit 3 is 8
UNIT-1V
1.

Quadratic Residues- definition and

Si: Chap 3: P.N0:131-135
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theorems
2 Quadratic Reciprocity-theorems Si: Chap 3: P.N0:137-140
3. . N
The Jacobi Symbol —definition and S1: Chap 3: P.N0:142-147
theorems
4, . . C .
Binary Quadratic Forms- definition and S1: Chap 3: P.N0:150-154
theorems
5. . . .
Equwalgnce and Reduction of Binary S1: Chap 3: P.N0:155-161
Quadratic Forms
6. Sums of Two Squares -theorems Si: Chap 3: P.N0:163-169
7 Sums of Two Squares -theorems Si: Chap 3: P.N0:163-169
8.
Positive Definite Binary Quadratic Forms S1: Chap 3: P.N0:170-175
9. Recapitulation and discussion of possible
questions
Total no. of hours planned for unit 4 is 9
UNIT-V
1. . oL
Greatest Integer function-definition and S1: Chap 4: P.N0:182-184
theorem
Arithmetic Functions —definition and S1: Chap 4: P.N0:188-191
theorems
3. . . L
The Mobius Inversion Formula-definition S1: Chap 4: P.N0:193-195
and theorems
4. Recurrence Functions-concept and theorems | Si: Chap 4: P.N0:197-201
S Continuation of theorem on recurrence functions | Si: Chap 4: P.N0:201-204
6. Combinatorial Number Theory Si: Chap 4: P.N0:206-210
7. Recapitulation and discussion on possible
guestions
8. Discuss on previous year ESE question papers
S Discuss on previous year ESE question papers
10.

Discuss on previous year ESE question papers
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Total No of Hours Planned for unit5is 10

Total Planned Hours-48

SUGGESTED READINGS
1. lvan Nivan and HerbertsZucherman., (1972), An Introduction to Theory of

Numbers third Edition, Wiley Eastern Limited, New Delhi.

2. ApostolT.M., (1976), Introduction to Analytic Number Theory, Springer
Verlag,.

3. Kennath and Rosan, (1968).,Elementary Number Theory and its Applications,
Addison Wesley Publishing Company.

4. George E. Andrews., (1989) Number Theory, Hindustan Publishing, New
Delhi.
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UNIT-I
SYLLABUS

Introduction - Divisibility - Primes - The Binomial Theorem
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THE GREATEST COMMON DIVISOR
DerinrTioN 2-1. An integer b is said to be divisible by an integer
a # 0, in symbols a | b, if there exists some integer ¢ such that b — ac.
We write @ / & to indicate that b is not divisible by a.

Thus, for example, —12 is divisible by 4, since —12 = 4(—23).

However, 10 is not divisible by 3; for there is no integer ¢ which makes

the statement 10 = 3¢ true.

There is other language for expressing the divisibility relation

a|b. One could say that 4 is a divisor of b, that a is a factor of b or that
b is a multiple of a. Notice that, in Definition 2-1, there is a restriction
on the divisor a: whenever the notation 4 | 4 is employed, it is understood
that # is different from zero.

If a is a divisor of b, then b is also divisible by —a (indeed, b = a¢

implies that b= (—a)(—c¢)), so that the divisors of an integer always
occur in pairs. In order to find all the divisors of a given integer, it is
sufficient to obtain the positive divisors and then adjoin to them the
corresponding negative integers. For this reason, we shall usually limit
ourselves to a consideration of positive divisors.

THEOREM 2-2.  For integers a, b, ¢, the JSollowing hold:

(1)
)
(3)
4
(5)
©)
(7)

al0,1|a,a|a

a|1ifﬂﬁd&n{}rga=il.

U'aH'aﬂa’f[a’,ﬂ}maﬂbd.

Ifalbandb|c, thena| .

a|bandb|aifandonlyif a= | b.

Ifa|band b0, then |a| <| b|.

Ifa|band a|c, then a|(bx + ¢) Jor arbitrary integers x and y,
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DerFINITION 2-2. Let @ and 4 be given integers, with at least one of
them different from zero. The greatest common divisor of a and b,
denoted by gcd (g, &), is the positive integer 4 satisfying

(1) d|aandd|b,
(2) ifc|aandc|b, then e <d.

Example 2-1
The positive divisors of —12 are 1, 2, 3, 4, 6, 12, while those of

30arel, 2, 3,5,06, 10, 15, 30; hence, the positive common divisors of
—12 and 30 are 1, 2, 3, 6. Since 6 is the largest of these integers, it
follows that ged (—12, 30) = 6. In the same way, one can show that

ged (—5,5)=5, gcd(8,17)=1, and gcd(—8, —36)=4.

Note
The next theorem indicates that gcd (¢, £) can be represented as a
linear combination of @ and b (by a /inear combination of a and b, we mean

an expression of the form ax -+ by, where x and y are integers). This is
illustrated by, say,
ged (—12,30) =6 =(—12)2+30-1
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THEOREM 2-3.  Given integers a and b, not both of which are zero, there
exist integers x and y such that

ged (@, &) = ax + by.

Proof: Consider the set S of all positive linear combinations of a
and b:

S={au—+ bv| au+ bv > 0; u, v integers}.

Notice first that § is not empty. For example, if @ 0, then the
integer | a | = a# +& - 0 will lie in 5, where we choose # =1 or #=
—1 according as 4 is positive or negative. By virtue of the Well-
Ordering Principle, § must contain a smallest element 4. Thus, from

the very definition of S, there exist integers x and y for which d=
ax + by. We claim that 4= ged (g, b).

Taking stock of the Division Algorithm, one can obtain
integers ¢ and r such that 2 = gd + r, where 0 << = 4. 'Then r can
be written in the form

r=a—qd=a—q(ax+by)
= (1 — gx) + 6(—47)-

Were r > 0, this representation would imply that r is a member of 5,
contradicting the fact that 4 is the least integer in S (recall that r < d).
Therefore, r =0 and so @ = ¢d, or equivalently, d|a. By similar
reasoning d | 4, the effect of which is to make 4a common divisor of
both 2 and #.

Now it ¢ is an arbitrary positive common divisor of the
integers @ and 4, then part (7) of Theorem 2-2 allows us to conclude
that ¢ | (ax + 4y); in other words, ¢| 4. By (6) of the same theorem,
¢=|¢| <|d|=4d, so that d is greater than every positive common
divisor of 2 and /. Piecing the bits of information together, we see
thatd = gcd (g, £).
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COROLLARY. If a and b are given integers, not both zero, then the set
T'={ax+ by | x, y are integers}
is precisely the set of all multiples of d= gcd (a, b).

Proof: Sinced| aandd| b, we know that d| (ax + by) for all integers
x,y. Thus, every member of T is a multiple of 4. On the other hand,
d may be written as d= ax, + by, for suitable integers x, and Yo,
so that any multiple #d of 4 is of the form

nd = n(axo + bye) = a(nxy) + b(ny,).
Hence, 7d is a linear combination of  and 5, and, by definition, lies
inT.
It may happen that 1 and —1 are the only common divisors of a
given pair of integers 4 and 4, whence gcd (¢, b))=1. For example:

ged (2, 5) = ged (—9, 16) = ged (—27, —35) = 1.

DEeFINITION 2-3. Two integers 4 and 4, not both of which are
zero, are said to be relatively prime whenever ged (a, b)=1.

THEOREM 2-4. Let a and b be integers, not both zero. Then a and b
are relatively prime if and only if there exist integers x and y such that
l =ax -+ E_?}'

Proof: If a and b are relatively prime so that ged (g, #) = 1, then
Theorem 2-3 guarantees the existence of integers x and y satisfying
l=ax+by. As for the converse, suppose that 1=ax -+ by for
some choice of x and j, and that d = gcd (4, 4). Since d| aand d| &,
Theorem 2-2yields d | (ax + by),or d| 1. Inasmuch as d is a positive
integer, this last divisibility condition forces d=1 (part (2) of
Theorem 2-2 plays a role here) and the desired conclusion follows.
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CoroLLAry 1. If ged (4, b) = d, then ged (ald, bjd) = 1.

Proof: Before starting with the proof proper, we should observe
that while 4/d and &/d have the appearance of fractions, they are in
fact integers since d is a divisor both of 4 and of 4. Now, knowing
that ged (4, b)) =4, it is possible to find integers x and y such that
d=ax -+ by. Upon dividing each side of this equation by 4, one
obtains the expression

1 = (aldyx + (/)
Because a/d and b/d are integers, an appeal to the theorem is legiti-
mate. The upshot is that a/d and b/d are relatively prime.
For an illustration of the last corollary, let us observe that
ged (—12, 30) = 6 and
ged (—12/6, 30/6) = ged (—2, 5) =1,

COROLLARY 2. Ifal|candb|c, with gcd (a, b) =1, then ab | c.

Proof: Inasmuchasa|c¢and b | ¢, integers r and s can be found such
that ¢ = ar = bs. Now the relation gcd (4, #) = 1 allows us to write
1= ax + by for some choice of integers x and y. Multiplying the
last equation by ¢, it appears that

¢=c¢-1=c(ax + by) = acx 4+ bey.

If the approptiate substitutions are now made on the right-hand side,
then
¢ = a(bs)x + blar)y = ab(sx + ry)

o, as a divisibility statement, ab | <.
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TrEOREM 2-5 (Euclid’s Lemma). If a| be, with ged (a, b) =1, then

ale.

Proof: We start again from Theorem 2-3, writing 1= ax + by
where x and y are integers. Multiplication of this equation by ¢
produces

¢=1:c¢=(ax+ by)c= acx + bey.

Since @ | ac and a | be, it follows that « | (acx + bey), which can be
recast as a | ¢.

If 2 and 4 are not relatively prime, then the conclusion of Euclid’s
Lemma may fail to hold. A specific example: 12| 9. 8, but 12 4 9 and
12 4 8.

TuroreM 2-0.  Let a, b be integers, not both zero. For a positive integer

d, d = gcd (a, b) if and only if
’

(1) dlaandd|b,
(2) whenever ¢ | a and ¢ | b, then ¢ | d.

THE DIOPHANTINE EQUATION ax + by =c¢
It is customary to apply the term Digphantine equation to any

equation in one or more unknowns which is to be solved in the integers.
The simplest type of Diophantine equation that we shall consider is

the linear Diophantine equation in two unknowns:
ax + by =,

where 4, b, ¢ are given integers and , b not both zero. A solution of this
equation is a pair of integers xo, Jo which, when substituted into the
equation, satisfy it; that is, we ask that ax, + &y, =¢. Curiously enough,
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A given linear Diophantine equation can have a number of
solutions, as with 3x + 6y = 18, where
3.4 4+ 6-1 =18,
3(—6) + 6-6=18,
3.10 + 6(—2) = 18.
By contrast, there is no solution to the equation 2x 4 10y =17. Indeed,

the left-hand side is an even integer whatever the choice of x and j,
while the right-hand side 1s not.

THEOREM 2-9.  The linear Diophantine equation ax + by = ¢ has a solution
if and only if d| ¢, where d=gcd(a, b). If x, yo is any particular

solution of this equation, then all other solutions are given by

x=xo+(bld)t,  y=yo—(ald)!
Sfor varying integers 1.
Proof: To establish the second assertion of the theorem, let us

suppose that a solution x,, 3, of the given equation is known. If
x', y' is any other solution, then

ﬂxn—f—b‘}'u:f: ax’—I—é}r’,

which is equivalent to

a(x' — x0) =630 —J'").
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By the Corollary to Theorem 2-4, there exist relatively prime integers
r and s such that a = dr, b =ds. Substituting these values into the
last-written equation and cancelling the common factor 4, we find
that

r(x" — xo) = 5(yo —").

The situation is now this: 7| s(y, —y"), with ged (r, 5) = 1. Using
Euclid’s Lemma, it must be the case that » | (y, —»'); or, in other
words, y, — ' = r#for some integer 7. Substituting, we obtain

x' — xq= st
This leads us to the formulas

X' = xq+ 5t = xo + (b]d)2,
Y =)o —rt=y,— (ald)t.

It is easy to see that these values satisfy the Diophantine equation,
regardless of the choice of the integer #; for,

ax’ + by’ = a[xo + (bjd)t) + b[ yo — (a|d)?]
= (axo + byo) + (abd — ab|d)¢
=¢c+0.=c.

Thus there are an infinite number of solutions of the given equa-
tion, one for each value of £

Example 2-3
Consider the linear Diophantine equation

1725 + 20y — 1000.

Applying Euclid’s Algorithm to the evaluation of ged (172, 20), we
find that

172 —8.20 4 12,
2021'12+8;
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12=1.844,
8—2.4,

whence ged (172, 20) = 4. Since 4 | 1000, a solution to this equa-
tion exists. To obtain the integer 4 as a linear combination of
172 and 20, we work backwards through the above calculations, as
follows:

4=—12- 8
12— (20 — 12)
—2.12—20

=2(172 — 8- 20) — 20
=2.172 4 (—17)20.
Upon multiplying this relation by 250, one arrives at
1000 — 250 - 4 — 250[2 - 172 + (—17)20]
= 500 - 172 4 (—4250)20,

so that x = 500 and y = —4250 provides one solution to the Dio-
phantine equation in question. All other solutions are expressed by

se = 500 4 (20/4)¢ = 500 4 5¢,
y= —4250 — (172/4)t = —4250 — 43¢

for some integer 7.

A little further effort produces the solutions in the positive
integers, if any happen to exist. For this, # must be chosen so as to
satisfy simultaneously the inequalities

5¢ - 500 >0, —43+— 4250 >0

or, what amounts to the same thing,

—9838 > > —100.
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Since # must be an integer, we are forced to conclude that # — —99,
Thus our Diophantine equation has a unique positive solution x = 5,
=1 cotresponding to the value # = —99,

CORI‘.Z.)LL&RY.. If ged(a, b) =1 and if x,, 3, is a particular solution of
the linear Diophantine equation ax + by = ¢, then all solutions are given
by

x:xu—l—h‘, Y=py— at

Sor integral values of ¢

Example 2-4
A customer bought a dozen pieces of fruit, apples and oranges,
tor $1.32. If an apple costs 3 cents more than an orange and more
apples than oranges were purchased, how many pieces of each kind
were bought?

To set up this problem as a Diophantine equation, let x be
the number of apples and y the number of oranges purchased; also,
let z represent the cost (in cents) of an orange. Then the conditions
of the problem lead to

(z + 3)x + 2y =132
or equivalently

3x + (x +y)z = 132,
Since x 4 y = 12, the above equation may be replaced by
3x 4 122 =132,

which in turn simplifies to x -+ 4z = 44.

o Strippm:_l of inessentials, the object is to find integers x and 2
satisfying the Diophantine equation

(*) | x + 4z = 44,
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Inasmuch as ged (1, 4) = 1 is a divisor of 44, there is a solution to this
equation. Upon multiplying the relation 1 =1(—3) + 4.1 by 44 to

gct
44 = 1(—132) + 4 - 44,

it follows that x, — —132, 2, = 44 serves as one solution. All other
solutions of () are of the form

x=—132 4 44,

z=44 — ¢,

where 7 1s an integer.

Not all of the infinite set of values of # furnish solutions to
the original problem. Only values of # should be considered which
will ensure that 12 > x > 6. This requires obtaining those # such that

12> —132 + 4+ > 6.

Now, 12 = —132 + 4¢ implies that 7 <36, while —132 4+ 4/>06
gives # > 344. The only integral values of # to satisfy both inequali-
ties are # = 35 and #=36. Thus there are two possible purchases:
a dozen apples costing 11 cents apiece (the case where #= 36), or
else 8 apples at 12 cents each and 4 oranges at 9 cents each (the
case where #= 35).

DeFiniTION 3-1.  Aninteger p > 1is called a prime number, or simply

a prime, if its only positive divisors are 1 and p. An integer greater
than 1 which is not a prime is termed composite.

THE GOLDBACH CONJECTURE

While there is an infinitude of primes, their distribution within the positive
integers is most mystifying. Repeatedly in their distribution one finds
hints or, as it were, shadows of a pattern; yet an actual pattern amenable
to precise description remains unfound. The difference between con-
secutive primes can be small as with the pairs 11 and 13, 17 and 19, or
for that matter 1,000,000,000,061 and 1,000,000,000,063. At the same
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time there exist arbitrarily long intervals in the sequence of integers which
are totally devoid of any primes.

It is an unanswered question whether there are infinitely many
pairs of fwin primes; that is, pairs of successive odd integers p and p -+ 2
which are both primes. Numerical evidence leads us to suspect an
affirmative conclusion. Electronic computers have discovered 152,892
pairs of twin primes less than 30,000,000 and twenty pairs between 1012
and 10*2 +10,000, which hints at their growing scarcity as the positive
integers increase in magnitude.

Consecutive primes can not only be close together, but also be
far apart; that is, arbitrarily large gaps can occur between consecutive
primes. Stated precisely: Given any positive integer #, there exist »
consecutive integers, all of which are composite. To prove this, we need
simply consider the integers

P+ 2,4+ 43, ..., (n+ D F(r 4 1),

where (# + 1)l =@ +1) . #n...3.2.1. Clearly there are » integers listed
and they are consecutive. What is important is that each integer is
composite; for, (# -+ 1)! + 2 is divisible by 2, (n + 1)! 4 3 is divisible by
3, and so on.

For instance, if a sequence of four consecutive composite integers
is desired, then the argument above produces 122, 123, 124, and 125:

54+2=122=2. 61,
S514+3=123=3.41,
5!4+4=124=4. 31,
5! +5=125=15.25.
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Of course, one can find other sets of four consecutive composites, such
as 24, 25, 26, 27 or 32, 33, 34, 35.

This brings us to another unsolved problem concerning primes,
the Goldbach Conjecture. In a letter to Euler (1742), Christian Goldbach

hazarded the guess that every even integer is the sum of two numbers

that are either primes or 1. A somewhat more general formulation is that
every even integer greater than 4 can be written as a sum of two odd
prime numbers. This is easy to confirm for the first few even integers:

2=1+1

4=24+2=1+3
6=34+3=145
8=34+5=147

10=—=34+7=54+5

12=54+7=1-+11
4=3+11=7+7=1+13
16=3+4+13=5+11
18=54+13=7+11=1 417
20=34+17=7+13=1-+19
22=3+4+19=54+17=11+11
24=54+19=74+17=11+13=14+23
26=3+4+23=7+19=13 +13
28=54+23=11417
30=74+23=114+19=134+17=1 +29.
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It seems that Euler never tried to prove the result, but, writing to Gold-
bach at a later date he countered with a conjecture of his own: any even
integer (=>6) of the form 47+ 2 is a sum of two numbers each being
either primes of the form 42 + 1 or 1.

The numerical evidence for the truth of these conjectures is
overwhelming (indeed Goldbach’s Conjecture has been verified for all
even integers up to 100,000), but a general proof or counterexample is
still awaited. The nearest approach of modern number theorists to
Goldbach’s Conjecture is the result of the Russian mathematician Vino-
gradov, which states: Almost all even integers are the sum of two primes.
The technical meaning of the term “almost all™ is that if .4(#) denotes
the number of even integers » <# which are not representable as the
sum of two primes, then

lim A(n)fn=0.

| e ]
As Landau so aptly put it, “ The Goldbach conjecturc is false for at most
09 of all even integers; this at most 09, does not exclude, of course, the

possibility that there are infinitely many exceptions.”
We remark that if the conjecture of Goldbach is true, then each

odd number larger than 7 must be the sum of three odd primes. For,
take # to be an odd integer greater than 7, so that # — 3 is even and greater

than 4; if #— 3 could be expressed as the sum of two odd primes, then »
would be the sum of three. In 1937, Vinogradov showed that this does
indeed hold for every sufficiently large odd integer, say greater than IN.
Thus, it is enough to answer the question for every odd integer  in the
range 9 <z < N, which for a given integer becomes a matter of tedious

computation (unfortunately, N is so large that this exceeds the capabilities
of the most modern electronic computers).
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-

Vinogradov’s result implies that every sufficiently large even
integer is the sum of not more than four odd primes. Thus, there is a

number NN such that every even integer beyond N is the sum of either
two or four odd primes.

Having digressed somewhat, let us observe that according to
the Division Algorithm, every positive integer can be written uniquely
in one of the forms

4n, 4n + 1, 4n 2, 4n 1+ 3

for some suitable # > 0. Clearly, the integers 47 and 4x +2=2(2n+1)
are bt.:)th even. Thus, all odd integers fall into two progressions: one
containing integers of the form 4» 4 1,
1,5,9,13,17, 21, ...
and the other containing integers of the form 4 + 3,
3,7,11,15,19, 23, ... .

While each of these progressions includes some obviously prime numbers,
the question arises as to whether each of them contains infinitely many

primes. This provides a pleasant opportunity for a repeat performarice
of Euclid’s method for proving the existence of an infinitude of primes.
A slight modification of his argument reveals that there are an infinite

number of primes of the form 47 + 3. We approach the proof through a

simple lemma.

LemMa.  The product of two or more integers of the Jorm 4n + 1 is of the
same form.

Progf: 1t is sufficient to consider the product of just two integers.
Let A=4n+1 and & =4m + 1. Multiplying these together, we
obtain
AE = (4n + 1)(4m + 1)
= 16nm + 4n + 4m 1+ 1 = 4(4nm + n +m) + 1,
which is of the desired form.

This paves the way for:
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THEOREM 3-6.  There is an infinite number of primes of the form 4n + 3.

Proof: In anticipation of a contradiction, let us assume that there
exist only finitely many primes of the form 4# 4 3; call them ¢, ,
g2, -+-» qs. Consider the positive integer

N=4g,9;-- 9, —1=4g1 42 q.— 1)+ 3

and let N =r,r,--.r, be its prime factorization. Since N is an odd
integer, we have 7, # 2 for all 4, so that each r, is either of the form
47 +-1 or 47+ 3. By the Lemma, the product of any number of
primes of the form 4x + 1 is again an integer of this type. For N to
take the form 4# + 3, as it clearly does, N must contain at least one
prime factot r, of the form 4» +4- 3. But 7, cannot be found among the
listing ¢, , 43, ..., qs, for this would lead to the contradiction that
r;| 1. The only possible conclusion is that there are infinitely many
primes of the form 4# + 3.

Having just scen that there are infinitely many primes of the form
4n + 3, one might reasonably ask: Is the number of primes of the form
41+ 1 also infinite? This answer is likewise in the affirmative, but a
demonstration must await the development of the necessary mathematical
machinery. Both these results are special cases of a remarkable theorem
by Dirichlet on primes in arithmetic progressions, established in 1837.
The proof is much too difficult for inclusion here, so that we content
ourselves with the mere statement.
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Tueorem 3-7 (Dirichlet). If a and b are relatively prime positive .
integers, then the arithmetic progression

a,a-tb,a+2b,a+3b, ...

contains infinitely many primes.

There is no arithmetic progression a, a + b, a + 2b, ... that con-
sists solely of prime numbers. To see this, suppose that z -+ #7b = p, where
pis a prime. If we put m=n | £p for £=1, 2, 3, ..., then the n.th
term in the progression is

a+mb=a+(n4 kp)b = (a + nb) + kpb = p + kpb.
Since each term on the right-hand side is divisible by p, so is @ + #, 4.

In other words, the progression must contain infinitely many composite
numbers.

It has been conjectured that there exist arithmetic progressions of

L - ¥ r - L
finite (but otherwise arbitrary) length, composed of consecutive prime
numbers. Examples of such progressions consisting of three and four

primes, respectively, are 41, 47, 53 and 251, 257, 263, 269. Not long ago,
a computer search revealed progressions of five and six consecutive primes,
the terms having a common difference of 30; these begin with the primes

9,843,019 and  121,174,811.

We are not able to discover, at least for the time being, an arithmetic
progression consisting of seven consecutive primes. When the restriction
that the prime numbers involved be consecutive is removed, then it is
possible to find infinitely many sets of seven primes in an arithmetic
progression; one such is 7, 157, 307, 457, 607, 757, 907.
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In interests of completeness, we might mention anothet famous
problem that so far has resisted the most determined attack. For cen-
turies, mathematicians have sought a simple formula that would yield
every prime number or, failing this, a formula that would produce
nothing but primes. At first glance, the request seems modest enough:
find a function f(n) whose domain is, say, the nonnegative integers and
whose range is some infinite subset of the set of all primes. It was widely
believed in the Middle Ages that the quadratic polynomial

f)=n?+n+41

assumed only prime values. As evidenced by the following table, the
claim is a cotrect one for n =10, 1, 2, ..., 39.

n W S n )
0 41 14 251 28 853
1 43 15 281 29 911
2 47 16 313 30 971
3 53 17 347 31 1033
4 01 18 383 32 1097
5 71 19 421 33 1163
6 83 20 461 34 1231
7 97 21 503 35 1301
8 113 22 547 36 1373
9 131 23 593 37 1447
10 151 24 641 38 1523
11 173 25 691 39 1601
12 197 26 743

13

223 27 797
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However, this provocative conjecture is shattered in the cases
n= 40 and » = 41, where there is a factor of 41:

f(40) =40 - 41 + 41 =417
and
f(41) =41 -42 41 = 41 - 43,

The next value f(42) = 1747 turns out to be prime once again. It is not
presently known whether f(#)=#%+ #7441 assumes infinitely many

prime values for integral ».
The failure of the above function to be prime-producing is no

accident, for it is easy to prove that there is no nonconstant polynomial
f(#) with integral coefficients which takes on just prine values for integral

#n. We assume that such a polynomial f(#) actuﬂlly does exist and argue
until a contradiction i1s reached. Let

fn)=a.n*+a,_#*" - ayn* fayn+a,

where the coefficients a,, 4,, ..., a, are all integers and 4, #0. For a
fixed value of n, say #=n,, p = f(n,) is a prime number. Now, for any
integer #, we consider the expression f(#, + £p):

flno + 19y = a(no + 1p)* + - -+ + as(mo + 1p) + a0
= (@ 1o* + + + - + a1 g + ao) + p(#)

= f(n0) + pQA?)
= p + pO) = p(1 +90)),
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where O(#) is a polynomial in # having integral coefficients. Our reason-
ing shows that p | f(#,+ #p); hence, from our own assumption that f()
takes on only prime values, f(n, +7p)=p for any integer £ Since a
polynomial of degree 4 cannot assume the same value more than 4 times,
we have obtained the required contradiction.

Recent years have seen a measure of success in the search for
prime-producing functions. W. H. Mills proved (1947) that there exists
a positive real number r such that the expression f(#) = [r®"] is prime
for n=1, 2, 3, ... (the bracket indicates the greatest integer function).

Needless to say, this is strictly an existence theorem and nothing is
known about the actual value of r. -

BASIC PROPERTIES OF
CONGRUENCE

DEeFINITION 4-1.  Let # be a fixed positive integer. Two integers a
and & are said to be congruent modulo n, symbolized by

a= b (mod n)
if # divides the difference 2 — 4; that is, provided that 2 — b = An
for some integer £.
To fix the idea, consider = 7. It is routine to check that
3=24(mod 7), —31=11(mod7), —15= 64 (mod 7),

since 3 —24=(—-3)7, —31—11=(—6)7, and —15—(—64)=7.7.
If # ¥ (a—b), then we say that a is incongruent to b modulo n and in this

case we write % & (mod #). For example: 253 12 (mod 7), since 7
fails to divide 25 — 12 = 13,
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Complete Set Residue

Given an integer 4, let g and  be its quotient and remainder upon
division by #, so that

a=gn—+r, 0<r<un

Then, by definition of congruence, a=r (mod #»). Since there are »
choices for r, we see that every integer is congruent modulo # to exactly
one of the values 0, 1, 2, ..., »— 1; in particular, =0 (mod ) if and
only if #| a. The set of # integers 0, 1, 2, ..., »— 1 is called the set of
least positive residues modulo n.

In general, a collection of # integers a,, a,, ..., a, is said to
form a complete set of residues (or a complete system of residues) modulo n if
every integer is congruent modulo # to one and only one of the 4, ; to
put it another way, 4, , 45, ..., @, are congruent modulo # to 0, 1, 2, ...
n — 1, taken in some order, For instance,

12, —4, 11, 13, 22, 82, 91
constitute a complete set of residues modulo 7; here, we have
—12=2, —4=3,11=4,13=6,22—1, 82=5, 91 =0,

all modulo 7. An observation of some importance is that any # intcgcrs
form a complete set of residues modulo # if and only if no two of the
integers are congruent modulo 7.

THEOREM 4-1.  For arbitrary integers a and b, a=b (mod n) if and
only if a and b leave the same nonnegative remainder when divided by n.

Praaf: First, take @ = b (mod #»), so that a — b + 4# for some integer
4. Upon division by #, b leaves a certain remainder 7: b = gn + r,
where 0 <r <#n. Therefore,

a=b+hn=n—+r)+hin=(g+Fntr,

which indicates that @ has the same remainder as 4.
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On the other hand, suppose we can write a =g, # -+ and
b = g, n -+ r, with the same remainder » (0 <7 <<#). Then

a—b=(q1n+r)—=(gon+7)=(4: — g1,
whence 7| a—b. In the language of congruences, this says that
a=bh (mod #).

Example 4-1
Since the integers —56 and — 11 can be expressed in the form

—56=(—=T)9+7, —11=(—2)9+7

with the same remainder 7, Theorem 4-1 tells us that —56= 11
(mod 9). Going in the other direction, the congruence —31=11
(mod 7) implies that —31 and 11 have the same remainder when
divided by 7; this is clear from the relations

—31=(-57+4, 11=1.744,
THEOREM 4-2. Let n >0 be fixed and a, b, ¢, d be arbitrary integers.
Then the following properties hold:
(1) a=a(mod #).
(2) If a=b(mod #), then b ==a (mod »).
(3) If a=b (mod #) and b= ¢ (mod #), then a= ¢ (mod »).
(4) If a=b (mod #) and ¢ =d (mod n), then a + ¢=b 4 d (mod #)
and ac = bd (mod 7).
(5) Ifa=b(mod n), then a + ¢ ="b + ¢ (mod #) and ac = be (mod »).
(6) If a=b (mod n), then @ =b* (mod #) for any positive integer k.
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Proof: For any integer 4, we have « —a=10.#s, so that a=a
(mod #). Now if a=b (mod #), then a — b = k»n for some integer
k. Hence, b — a = —(kn) = (—4)» and, since —£ is an integet, this
yields (2).

Property (3) is slightly less obvious: Suppose that a==15
(mod #) and b==¢ (mod #). Then there exist integers # and 4 satis-
fyinga—b=hnand b — ¢ = kn. It follows that

a—c=(a—b)+(b—c)=hn+ kn=(h -+ k)n,
in consequence of which a=¢ (mod #).

In the same vein, if 2= 5 (mod #) and =4 (mod #), then
we are assured that a — b= &, # and ¢ — d = A, n for some choice of
4,and £,. Adding these equations, one gets

(@+6)— (b +d)=(a—b) +(c—d)
— kyn+ kon—=(ky + kon

or, as a congruence statement, ¢ - ¢ = b + d(mod n). As regards the
second assertion of (4), note that

ac= b+ kyn)(d + kon)=bd + (bky + dk, + Ky kym)n.

Since bk, + dAy + £y Agn is an integer, this says that ac — bd is divis-
ible by #, whence a¢ = bd (mod #).

The proof of property (5) is covered by (4) and the fact that
¢=¢ (mod #). Finally, we obtain (6) by making an induction argu-
ment. The statement certainly holds for 4 = 1, and we will assume
it is true for some fixed £. From (4), we know that 2 =& (mod »)
and &* = b* (mod #) together imply that aa* = bb* (mod #), or equiv-
alently, @*** = b**' (mod #). This is the form the statement should
take for A + 1, so the induction step is complete.
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Example 4-2

Let us endeavor to show that 41 divides 22° - 1. We begin by
noting that 2° = —9 (mod 41), whence (2%)* =(—9)* (mod 41) by
Theorem 4-2(6); in other words, 22°= 81 . 81 (mod 41). But 81 =

—1 (mod 41) and so 81 - 81=1 (mod 41). Using parts (2) and (5)
of Theorem 4-2, we finally arrive at
220 —1=81:-81—1=1—1=0(mod 41).

Thus 41 | 22° — 1, as desired.

TugoreM 4-3.  If ca=cb (mod #n), then a=b (mod n/d), where d =
ged (¢, 7).

Proof: By hypothesis, we can write
t(a— b) = ca— cb = kn

for some integer £. Knowing that ged (¢, #) = 4, there exist relatively
prime integers r and s satisfying ¢ = dr, # = ds. When these values are
substituted in the displayed cquation and the common factor 4
cancelled, the net result is

r(a— b) = kr.

Hence, 5| r(@a— &) and ged(r, 5)=1. Euclid’s Lemma implies that
5| a— b, which may be recast as a=b (mod s); in other words,

a = b (mod #/d).

CoroLLARY 1. If ca=ch (mod #) and gcd(e,n)=1, then a=b
(mod #).

CoroLLARY 2. If ca=cb (mod p) and p } ¢, where p is a prime number,
then a = b (mod p).
.0‘.

Proof: The conditions p t ¢ and p a prime imply that ged (¢, p) = 1.
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Example 4-4

Consider the congruence 33 = 15 (mod 9) or, if one prefers, 3 - 11 =
3.5 (mod 9). Since ged (3, 9) = 3, Theorem 4-3 leads to the con-
clusion that 11 =5 (mod 3). A further illustration is furnished by
the congruence — 35 = 45 (mod 8), which is the same as 5 - (—7) =
5.9 (mod 8). The integers 5 and 8 being relatively prime, we
may cancel to obtain a correct congruence —7 =9 (mod 8).

LINEAR CONGRUENCES

T

An equation of the form ax = & (mod #)

is called a Jinear congruence, and by a solution of such an equation we
mean an integer x, for which ax, =4 (mod #). By definition, ax, =}
(mod #) if and only if # | ax, — b or, what amounts to the same thing, if
and only if ax,—b=ny, for some integer y,. Thus, the problem of
finding all integers satisfying the linear congruence ax =4 (mod n) is
identical with that of obtaining all solutions of the linear Diophantine
equation ax — sy = b,

It is convenient to treat two solutions of ax = # (mod #») which are
congruent modulo # as being “equal” even though they are not equal in
the usual sense. For instance, x =3 and x = —9 both satisfy the con-
gruence 3x = 9 (mod 12); since 3 = —9 (mod 12), they are not counted as
different solutions. In short: When we refer to the number of solutions
of ax = b (mod ), we mean the number of incongruent integers satisfying
this congruence.
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THEOREM 4-7. The linear congruence ax =b (mod #) has a solution if
and only if d| b, where d— ged (a, #). If d| b, then it has d mutnally
incongruent solutions modulo n.

Proof: We have already observed that the given congruence is
equivalent to the linear Diophantine equation ax — ny=4. From
Theorem 2-9, it is known that the latter equation can be solved if
and only if 4| ; moreover, if it is solvable and x,, y, is one specific
solution, then any other solution has the form

n a
75 =I5t

X=X+

for some choice of #

Among the various integers satisfying the first of these for-
mulas, consider those which occur when # takes on the successive
values 1=0,1,2,...,d—1:

@—1n
=

Xo

27
dj""!

n
Xo, Xo ‘l‘;,:xu"r

We claim that these integers are incongruent modulo », while all

other such integers x are congruent to some one of them. If it hap-
pened that

n "
Xo + 58 =9+ -

p y ¢, (mod #),

where 0 < #, < #, <d— 1, then one would have

t =-t,(mod »).

Bl =
Bl =
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Now gcd (#/d, n) = n|d and so, by Theorem 4-3, the factor #/d could
be cancelled to arrive at the congruence

lf]_ = .lr*g (mﬂd d),

which is to say that 4| 7, — #,. But this is impossible, in view of
the inequality O0< £, — #, < d.

It remains to argue that any other solution x4 + (n/d)? is
congruent modulo # to one of the 4 integers listed above. The
Division Algorithm permits us to write / as #=— gd + r, where
0<r<d—1. Hence

b n
X0 +2f:xu +‘-i,(?d+f)
= u‘|‘-’fﬁ?+3?"

=X, + Sr(mod "),

with x, + (#/d)r being one of our 4 selected solutions. This ends the
proof.

The argument that we gave in Theorem 4-7 brings out a point
worth stating explicitly: If x, is any solution of ax = b (mod #), then the
d = ged (4, #) incongruent solutions are given by

Xo, Xo +nld, xq +2(n[d), ..., xq+(d— 1)(n/d).

Cororrary. Ifged(a, #) = 1, then the linear congruence ax = b (mod #)
has a unique solution modulo n.
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Example 4-6

Consider the lincar congruence 18x = 30 (mod 42). Since gcd (18,
42) = 6 and 6 surely divides 30, Theorem 4-7 guarantees the existence
of exactly six solutions, which are incongruent modulo 42. By

inspection, one solution is found to be x = 4. Our analysis tells us
that the six solutions are as follows:

x=4 4+ (42/6)t = 4 + 7+ (mod 42), t=0,1,...,5
or, plainly enumerated,

x=4,11, 18, 25, 32, 39 (mod 42).
Example 4-7

Let us solve the linear congruence 9x = 21 (mod 30). At the outset,
since gcd (9, 30) = 3 and 3 | 21, we know that there must be three
incongruent solutions.

One way to find these solutions is to divide the given con-
gruence through by 3, thereby replacing it by the equivalent con-
gruence 3x = 7 (mod 10). The relative primeness of 3 and 10 implies

that the latter congruence admits a unique solution modulo 10.
Although it is not the most cfhicicnt mcthod, wc could test the inte-
gers 0, 1, 2, ..., 9 in turn until the solution is obtained. A better
way is this: multiply both sides of the congruence 3x =7 (mod 10)
by 7 to get

21x =49 (mod 10),

which reduces to x = 9 (mod 10). (This simplification 1s no accident,
for the multiples 0-3, 1.3, 2.3, ..., 9.3 form a complete set of
residues modulo 10; hence, one of them is necessarily congruent to
1 modulo 10.) But the original congruence was given modulo 30,

so that its incongruent solutions are sought among the integers

0,1,2,...,29. Taking =0, 1, 2, in the formula "

x =9 4 104,
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one gets 9, 19, 29, whence
x=19 (mod 30), x=19 (mod 30), x =29 (mod 30)

are the required three solutions of 9x = 21 (mod 30).
A different approach to the problem would be to use the

method that is suggested in the proof of Theorem 4-7. Since the
congruence 9x = 21 (mod 30) is equivalent to the linear Diophan-
tine equation

Ox — 30y = 21,
we begin by expressing 3 = gcd (9, 30) as a linear combination of 9

and 30. It is found, either by inspection or by the Euclidean Algo-
rithm, that 3 = 9(—3) 4 30 - 1, so that

21 =73 =9(—21) — 30(—7).

Thus, x = —21, y= —7 satisfy the Diophantine equation and, in
consequence, all solutions of the congruence in question are to be
found from the formula

x=—21 +430% = 21 1102

The integers x = —21 4 10¢, where /=0, 1, 2 are incongruent
modulo 30 (but all are congruent modulo 10); thus, we end up with
the incongruent solutions

= —21 (mod 30), x= —11(mod 30), x= —1 (mod 30)
or, if one prefers positive numbers, x=9, 19, 29 (mod 30).
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Having considered a single linear congruence, it is natural to
turn to the problem of solving a system

ayx=b,(mod m,), a,x=b,(mod m,), ...,a,x=b, (mod )

of simultaneous linear congruences. We shall assume that the moduli
7 are relatively prime in pairs. Evidently, the system will admit no
solution unless each individual congruence is solvable; that is, unless
dy | by for each 4, where d, = gecd (g, m,). When these conditions are
satisfied, the factor 4, can be cancelled in the 4th congruence to produce
a new system (having the same set of solutions as the original one)

ay x =01 (mod m,), ay x =by(mod ny), ..., alx= b, (mod #,),

where #, = my/d, and gcd (n,, n)=1 for i #j; also, gcd (al, n)=1.
The solutions of the individual congruences assume the form

x=¢; (mod n,), x=1¢, (mod n,), ..., x=¢, (mod n,).

Thus, the problem is reduced to one of finding a simultaneous solution of
a system of congruences of this simpler type.

The kind of problem that can be solved by simultaneous con-
gruences has a long history, appearing in the Chinese literature as eatly as
the first century A.D. Sun-Tsu asked: Find a number which leaves the
remainders 2, 3, 2 when divided by 3, 5, 7, respectively. (Such mathe-
matical puzzles are by no means confined to a single cultural sphere;

indeed, the same problem occurs in the Infroductio Arithmeticae of the
Greek mathematician Nicomachus, circa 100 a.p.) In honor of their
early contributions, the rule for obtaining a solution usually goes by the
name of the Chinese Remainder Theorem.
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TreoREM 4-8 (Chinese Remainder Theorem). Lefny, ng, ..., n, be

positive integers such that gcd (n, n)) =1 for i #£j. Then the system of
linear congruences

x=a, (mod #n,),

x = a, (mod n,),

x == a, (mod #,)

has a simuitaneous solution, which is unigue modulo nyny «+ - n,.

Proof: We start by forming the product n==#,#,..-n,. For each
k=1,2,...,r, let

I\ITk=ﬁ‘1"?f.kzﬂl ”'Hk—lﬁ.!ci-l R

in other words, N, is the product of all the integers », with the
factor #, omitted. By hypothesis, the »; are relatively prime in pairs,
so that gcd (N, 7) = 1. According to the theory of a single linear
congruence, it is therefore possible to solve the congruence N, x =1
(mod #,); call the unique solution x,. Our aim is to prove that the
integer

x=ayNyx, +a;Nyxy+---+a, N, x,

is a simultaneous solution of the given system.
First, it is to be observed that N, =0 (mod #,) for 7 £ &,
since 7, | IN, in this case. The result is that

f=a,Nyx,+:+-+a N, x,=a, N,x, (mod »,).

But the integer x;, was chosen to satisfy the congruence N, x==1
(mod #,), which forces

x=a, -1 =a, (mod n,).

This shows that a solution to the given system of congruences
exists,
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As for the uniqueness assertion, suppose that x’ is any other
integer which satisfies these congruences. Then

x = ar = x' (mod m), E=1,2,...,r

and so #, | & — x’ for each value of 4. Because ged (;, #,) = 1, Cot-
ollary 2 to Theorem 2-5 supplies us with the crucial point that
nymy---n | ¥ —x'; hence, ¥ =x"(modn). With this, the Chinese
Remainder Theorem is proven.

Example 4-8

The problem posed by Sun-Tsu cortesponds to the system of three
congruences

x =2 (mod 3),
x =3 (mod 5),
x =2 (mod 7).

In the notation of Theorem 4-8, we have#n =3 -5 .7 — 105 and
Ny=n[3=235, Ny==n[5=21, Nj=n/T=15.
Now the linear congruences
35x=1(mod 3), 2lx=1(mod5), 15x=1 (mod 7)

are satisfied by x; =2, x, =1, x3 =1, respectively. Thus, a solu-
tion of the system is given by

$=2.35.243.21.14+2.15.1— 233,
Modulo 105, we get the unique solution % = 233 =23 (mod 105).

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 33/37




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS 1T M. Sc MATHEMATICS COURSENAME: NUMBER THEORY
COURSE CODE: 18MMU302 UNIT: | BATCH-2018-2020
Example 4-9

For a second illustration, let us solve the linear congruence
17x =9 (mod 276).

Since 276 =3 - 4 - 23, this is equivalent to finding a solution of the
system of congruences

17 =9 (mod 3) or x =0 (mod 3)
17% =9 (mod 4) x=1 (mod 4)
17x=9 (mod 23) 17x =9 (mod 23)

Note that if x =0 (mod 3), then x = 34 for any integer £. We sub-
stitute into the second congruence of the system and obtain

3£=1 (mod 4).

Multiplication of both sides of this congruence by 3 gives us
k=94 =3 (mod 4),
so that £ = 3 -1 4/, where j is an integer. Then
x =303 1 4)=9+12;.
For x to satisfy the last congruence, we must have
17(9 + 12§) =9 (mod 23)

or 2047 = —144 (mod 23), which reduces to 3/=06 (mod 23); that is,
j=2(mod 23). This yields j = 2 + 23¢, # an integer, whence

x=94+12(2 + 23#)= 33 - 2764

All in all, x= 33 (mod 276) provides a solution to the system of
congruences and, in turn, a solution to 17x =9 (mod 276).
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PROBLEMS

1. Solve the following linear congruences:
(a) 25x==15 (mod 29).
(b) 5x = 2 (mod 20).
(c) 6x =15 (mod 21).
(d) 36x =8 (mod 102).
(e) 34x = 60 (mod 98).
(f) 140x = 133 (mod 301). [Hint: ged (140, 301) = 7.]
2. Using congruences, solve the Diophantine equations below:
(a) 4x+51y=9. [Hins: 4x=9 (mod 51) gives x = 15+ 514, while
51y =9 (mod 4) gives y = 3 - 4s. Find the relation between sand ¢
(b) 12x 4 25y = 331.
() S5x —53y=17.
3. Find all solutions of the linear congruence 3x — 7y = 11 (mod 13).

4. Solve each of the following sets of simultaneous congruences:
(a) x=1(mod 3), x =2 (mod 5), x=23 (mod 7)
(b) =15 (mod 11), x =14 (mod 29), x = 15 (mod 31)
() x==5(mod 6), x=4 (mod 11), x = 3 (mod 17)
(d) 2x=1 (mod 5), 3x=9 (mod 06), 4x=1 (mod 7), 5x =9 (mod 11)
5. Solve the linear congruence 17x =3 (mod 2-3-5-7) by solving the
system

17x =3 (mod 2), 17x=3(mod 3), 17x=3(mod5), 17x= 3 (mod 7).

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 35/37




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: Il M. Sc MATHEMATICS COURSENAME: NUMBER THEORY
COURSE CODE: 18MMU302 UNIT: | BATCH-2018-2020

Possible Questions

2 Mark Questions:

1.

2.

Define divisible with example.
Prove that ifajb and alc then a|(bx +cy) for arbitrary integers x and .
Define greatest common divisor with example.

What is relatively prime.

Discuss about Diophantine equation.
Prove that if pisa prime and p|ab, then p|a or pjb.
State Euclid theorem.

Define Linear congruence.

Prove if gcd(a,n) =1,then the linear congruence ax =b(mod n) has a unique solution modulo
n.

10. State Chinese Remainder theorem.

8 Mark Questions:

1.

2.

State and Prove Binomial theorem

Prove that the linear Diophantine equation ax+by =c has a solution if and only if d|c

,where d =gcd(a,b). If x,,Y,Is any particular solution of this equation then all other
solutions are given by

X=X, +({O/d)t, y=y,—(a/d)t
for varying integers t.
Determine all the solutions in the integers of each of the following Diophantine equations:
a) 56x+72y=40;
b) 24x+138y=18;

Cc) 221x+91y =117,

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 36/37




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: Il M. Sc MATHEMATICS COURSENAME: NUMBER THEORY
COURSE CODE: 18MMU302 UNIT: | BATCH-2018-2020

10.

11.

d) 84x—438y =156.

Determine all the solutions in the Positive integers of each of the following Diophantine
equations:

a) 30x+17y=300;

b) 54x+21y =906;

c) 123x+360y=99;

State and prove fundamental theorem of Arithmetic.

State and prove Euclid Lemma.

Prove that if p, is the n prime number, then p, < 27"

Prove that there are infinite number of primes of the form4n+3.

Prove that the linear congruence ax =b(mod n) has a solution if and only if d|b, where
d =gcd(a,n). if d|b,then it has d mutually in-congruent solutions modulo n.

State and Prove Chinese Remainder theorem.

Solve the following linear congruence:

a) 25x=15(mod 29) b) 5x = 2(mod 26)
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UNIT-II
SYLLABUS

Congruences - Solutions of Congruences - The Chinese Remainder Theorem - Techniques of Numerical
Calculation - Public-Key Cryptography - Prime Power Moduli - Prime Modulus

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 1/28




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: 11 M. Sc MATHEMATICS COURSENAME: NUMBER THEORY
COURSE CODE: 18MMU302 UNIT: 11 BATCH-2018-2020

FERMAT’S FACTORIZATION METHOD

In a fragment of a letter, written in all probability to Father Marin Mer-
senne in 1643, Fermat described a technique of his for factoring large
numbers. This represented the first real improvement over the classical
method of attempting to find a factor of # by dividing by all primes not
exceeding V7. Fermat’s factorization scheme has at its heart the observa-
tion that the search for factors of an odd integer » (since powers of 2 are
easily recognizable and may be removed at the outset, there is no loss in
assuming that # is odd) is equivalent to obtaining integral solutions x
and y of the equation

n=x?— y2

If 7 is the difference of two squares, then it is apparent that # can be
factored as

n= e — 2 = (x4 y)(x— ).

Conversely, when # has the factorization # = ab, with « > b > 1, then we
may write
(a + 2 fa— E:) 2
H= —_— .
- - (5

Moreover, because # is taken to be an odd integer, « and b are themselves
odd; hence, (@ + £)/2 and (2 — 4)/2 will be nonnegative integers.

One begins the search for possible x and y satisfying the equation
n = x*— y2, ot what is the same thing, the equation

xﬂ — =-y2
by first determining the smallest integer £ for which £#2 >#. Now look
successively at the numbers

A2—n, A+ 12 —n (A+22—n(k+3)2—n ...
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until a value of » >4 is found making »?> — n a square. The process
cannot go on indefinitely, since we eventually arrive at

n 4 1y2 n—1\2
( 2 ) e ( 2 ) ’
the representation of # corresponding to the trivial factorization # =# - 1.
If this point is reached without a square difference having been dis-
covered earlier, then » has no factors other than # and 1, in which case it
is a prime.
Fermat used the procedure just described to factor

2027651281 = 44021 . 46061

in only 11 steps, as compared to making 4850 divisions by the odd primes
up to 44021. This was probably a favorable case devised on purpose to
show the chief virtue of his method: it does not require one to know all

the primes less than V7 in order to find factors of #.

Example 5-1
To illustrate the application of Fermat’s method, let us factor the

integer »=119143. From a table of squares, we find that 345% <
119143 < 3462; thus it suffices to consider values of A2 — 119143
for £ in the range 346 << 4 < (119143 4+ 1)/2 = 59572. 'The calcula-

tions begin as follows:

3462 — 119143 = 119716 — 119143 = 573,

3472 — 119143 = 120409 — 119143 = 1260,

3482 — 119143 = 121104 — 119143 = 1961,

3492 — 119143 = 121801 — 119143 == 2658,

350? — 119143 = 122500 — 119143 = 3357,

3512 — 119143 = 123201 — 119143 = 4058,

3522 119143 = 123904 — 119143 — 4761 — 692,
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This last line exhibits the factorization
119143 = 3522 — 697 — (352 - 69)(352— 69) — 421 . 283,

the two factors themselves being prime. In only seven trials, we
have obtained the prime factorization of the number 119143. Of
course, one does not always fare so luckily; it may take many steps
before a difference turns out to be a square.

Fermat’s method is most effective when the two factors of # are of
nearly the same magnitude, for in this case a suitable square will appear
quickly. To illustrate, let us suppose that » == 23449 is to be factored.

The smallest square exceeding # is 1542, so that the sequence A2 —n
starts with

1542 — 23449 = 23716 — 23449 = 267,

1552 — 23449 — 24025 — 23449 — 576 = 242,

Hence, factors of 23449 are
23449 = (155 + 24)(155—24) =179 - 131,

When examining the differences 42 —» as possible squares, many
values can be immediately excluded by inspection of the final digits.
We know, for instance, that a square must end in one of the six digits
0, 1, 4, 5, 6, 9 (Problem 1a, Section 4.3). This allows us to exclude all
values in the above example, save for 1266, 1961, and 4761. By calcula-
ting the squares of the integers from 0 to 99 modulo 100, one sees further
that, for a square, the last two digits are limited to the following twenty-
two possibilities:

00 21 41 64 89
01 24 4 69 96
04 25 49 76
09 29 56 81
16 36 61 84
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The integer 1266 can be eliminated from consideration in this way.
Since 61 is among the last two digits allowable in a square, it is only
necessary to look at the numbers 1961 and 4761; the former is not a
square, but 4761 = 692,
PROBLEMS
1. Use Fermat’s method to factor
(a) 2279,
(b) 10541;
(c) 340663. [Hint: The smallest square just exceeding 340663 is 5872.]
2. Prove that a perfect square must end in one of the following pairs of
digits: 00, 01, 04, 09, 16, 21, 24, 25, 29, 36, 41, 44, 49, 56, 61, 64, 69, 76, 81,
84, 89, 96. [Hint: Since x?=(50+ x)? (mod 100) and x?= (50 —x)?
(mod 100), it suffices to examine the final digits of x? for the 26 values
x=0,1,2,...,25]
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THE LITTLE THEOREM

The most significant of Fermat’s correspondents in number theory was
Bernhard Frénicle de Bessy (1605-1675), an official at the French mint
who was renowned for his gift of manipulating large numbers. (Frénicle’s
facility in numerical calculation is revealed by the following incident:
On hearing that Fermat had proposed the problem of finding cubes which
when increased by their proper divisors become squares, as is the case
with 7% 4- (1 ++ 7 + 7%) = 202, he immediately gave four different solutions;
and supplied six more the next day.) Though in no way Fermat’s equal as
a mathematician, Frénicle alone among his contemporaries could challenge
him in number theory and his challenges had the distinction of coaxing
out of Fermat some of his carefully guarded secrets. One of the most
striking is the theorem which states: If p is a2 prime and « is any integer
not divisible by p, then p divides 4! — 1. Fermar communicated the
result in a letter to Frénicle dated October 18, 1640, along with the
comment, “I would send you the demonstration, if I did not fear its
being too long.” This theorem has since become known as “ Fermat’s
Little Theorem” to distinguish it from Fermat’s “Great” or  Last
Theorem,” which is the subject of Chapter 11. Almost 100 years were to
elapse before Euler published the first proof of the Little Theorem in
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1736. Leibniz, however, seems not to have recetved his share of recogni-
tion; for he left an identical argument in an unpublished manuscript

sometime before 1683.

Treorem 5-1 (Permat’s Little Theorem). If p is a prime and p ) a,

then 2~ =1 (mod p).

Proof: We begin by considering the first p—1 positive multiples

of a; that is, the integets

a, 22, 3a, ...,(p—Da.

None of these numbers is congruent modulo p to any other, nor is

any congtruent to zero. Indeed, if it happened that

ra = sa (mod p), I1<r<s<p—1

then 2 could be cancelled to give r = 5 (mod p), which is impossible.
Therefore, the above set of integers must be congruent modulo p
to 1, 2,3, ..., p—1, taken in some order. Multiplying all these

congruences together, we find that

a-2-3a--(p—a=1-2.3...(p— 1) (mod p),

whence

a=Y(p—1)! =(p— 1)! (mod p).

Once (p—1)! is cancelled from both sides of the preceding con-
gruence (this is possible since p ¥(p — 1)), our line of reasoning

culminates in #* - =1 (mod p), which is Fermat’s Theorem,

This result can be stated in a slightly more general way in whicl

the requirement that p } 2 is dropped.
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CoROLLARY. If p is a prime, then a”==a (mod p) for any integer a.

Proof: When p|a, the statement obviously holds; for, in this
setting, a” = 0=« (mod p). If p t a, then in accordance with Fer-
mat’s Theotem, 4”~* =1 (mod p). When this congruence is multi-
plied by 4, the conclusion @* = z (mod p) follows.

There is a different proof of the fact that 47 = 4 (mod p), involving
induction on 4. If a==1, the assertion is that 17 =1 (mod p), which
is clearly true, as is the case 2=0. Assuming that the tesult holds for
a, we must confirm its validity for « 4+ 1. In light of the binomial theorem,

<a+1)P=av+(f‘)av~1+--.+(ﬁ’)ar-k+---+(P_{1)a+1,

where the coefficient (ﬁj) is given by

(p): Pl (= EET)
k] Elp—A)! 1.2.3-- £
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Our argument hinges on the observation that (ﬁ) =0 (mod p) for

1 <4 <p—1. To see this, note that
k!(’f) = p(p—1)-+-(p— 4 + 1) =0 (mod p),

by virtue of which | 4! or p| ({;). But p| 4! implies that p | for

some ; satisfying 1 <j << 4 < p— 1, an absurdity. Therefore, p | (ﬁ) or,

converting toa congruence statement,

(ﬁf‘) — 0 (mod p).
The point which we wish to make is that

(@a+1P=a"+1=a-+ 1 (mod p),
where the right-most congruence uses our inductive assumption. Thus,
the desired conclusion holds for 2 + 1 and, in consequence, for all 2 > 0.
If 2 is a negative integer, there is no problem: since a=r (mod p) for
some r, where 0 <r < p—1, we get a” =r?=r=a(mod p).

Fermat’s Theorem has many applications and is central to much
of what is done in number theory. On one hand, it can be a labor-
saving device in certain calculations. If asked to verify that 5% =4
(mod 11), for instance, we would take the congruence 5!%==1 (mod 11)
as our starting point. Knowing this,

538 — 510'3 +8 — (510}3(52)4
—13.34=81 =4 (mod 11),

as desired.
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Another use of Fermat’s Theorem is as a tool in testing the
primality of a given integer ». For, if it could be shown that the con-
gruence

a* = a (mod »)

fails to hold for some choice of 4, then # is necessarily composite. As
an example of this approach, let us look at #= 117. 'The computation is
kept under control by selecting a small integer for 4; say, 2=2. Since
27 may we written as

2117 = 271645 — (PT)16)5
and 2" =128 = 11 (mod 117), we have
T =1176. 25 =(121)® 25 = 4% . 25 = 22! (mod 117).
But 22! = (27)3, which leads to
22 =11"=121.11=4.11=44 (mod 117).
Combining these congruences, we finally obtain
2117 =44 =£ 2 (mod 117),

so that 117 must be composite; actually, 117 =13 .9,

It might be worthwhile to give an example illustrating the failure
of the converse of Fermat’s Theorem to hold; in other words, to show
that if " ~* =1 (mod #) for some integer a, then » need not be prime. As
a prelude we require a technical lemma:
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LemMa.  If p and g are distinet primes such that a®=a (mod q) and
a'=a (mod p), then a* = a (mod pg).

Proof: It is known from the last corollary that (4%) = 4 (mod p),
while 4 = 4 (mod p) by hypothesis. Combining these congruences,
we obtain #* =4 (mod p) or, in different terms, p{ 4" —a. In an
entirely similar manner, ¢| a”* —a. The corollary to Theorem 2-4
now yields pg| 4™ — a, which can be recast as 4" =4 (mod pg).

Our contention is that 234 =1 (mod 341) where 341 = 11. 31,
In working towards this end, notice that 2'° = 1024 = 31 . 33 + 1. Thus,

211 =2.219=2. 1 =2 (mod 31)

Exploiting the lemma,

21181 =2 (mod 11 - 31)
or 2841 = 2 (mod 341). After cancelling a factor of 2, we pass to
2340 =1 (mod 341),

so that the converse to Fermat’s Theorem is false.

The historical interest in numbers of the form 2" — 2 resides
in the claim made by the Chinese mathematicians over 25 centuries ago
that # is prime if and only if #| 2" — 2 (in point of fact, this criterion is
reliable for all integers #» << 340). Needless to say, our example, whete
341 2341 — 2 although 341 = 11 . 31, lays the conjecture to rest; this was
discovered in the year 1819. The situation in which #| 2" —2 occurs
often enough to merit a name though: call a composite integer # pses-
doprime whenever n| 2" — 2. It can be shown that there are infinitely
many pseudoprimes, the smallest four being 341, 561, 645, and 1105.
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PROBLEMS

1. Verify that 185 =1 (mod 7%) for £ =1, 2, 3.
2. (a) If ged(a, 35) =1, show that 2'2 == 1 (mod 35). [Hint: From Fermat’s
Theorem 4® = 1 (mod 7) and &* =1 (mod 5).]
(b) If ged(a,42) =1, show that 168 =3 - 7 - 8 divides 4% — 1.
(¢) If ged (o, 133) = ged (b, 133) = 1, show that 133 | 4'¢ — 518,
3. Prove that there exist infinitely many composite numbers » for which
@"~ 1 =4 (mod #). [Hint: Take n = 2p, where p is an odd prime.]
4. Derive each of the following congruences:
(a) a*!'=g4 (mod 15) for all a. [Him: By Fermat’s Theorem, 4° =a
(mod 5).]
(b) &’ =a(mod 42) for all 4.
() @*=a(mod3-7-13)foralla.

WILSON’S THEOREM

We now turn to anéther milestone in the development of number theory.
In his Meditationes Algebraicae of 1770, the English mathematician Edward
Waring (1741-1793) announced several new theorems. Foremost among
these is an interesting property of ptimes reported to him by one of his
former students, a certain John Wilson. The property is the following:
if p is a prime number, then p divides (p — 1)! +1. Wilson appears to
have guessed this on the basis of numerical computations; at any rate,
neither he nor Waring knew how to prove it. Confessing his inability to
supply a demonstration, Waring added, “Theorems of this kind will be
very hard to prove, because of the absence of a notation to express prime
numbers.” (Reading the passage, Gauss uttered his telling comment on
“notationes versus notiones,” implying that in questions of this nature
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it was the notion that really mattered, not the notation.) Despite Waring'’s

pessimistic forecast, Lagrange soon afterwards (1771) gave a proof of

what in the literature is called “ Wilson’s Theorem” and observed that

the converse also holds. It would be perhaps more just to name the

theorem after Leibniz, for there is evidence that he was aware of the

result almost a century eatlier, but published nothing upon the subject.
Now to a proof of Wilson’s Theorem.

THEOREM 5-2 (Wilson). If pis a prime, then (p — 1)1 = —1 (mod p).

Progf: Dismissing the cases p=2 and p=73 as being evident,
let us take p >3. Suppose that a is any one of the p — 1 positive
integers

1,2,3,...,p—1

and consider the linear congruence ax =1 (mod p). Then ged
(a, p) = 1. By Theorem 4-7, this congruence admits a unique solution
modulo p; hence, there is a unique integer ', with 1 <a' <p— 1,
satisfying a4’ = 1 (mod p).
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Since p is prime, a=4" if and only if =1 0or a=p—1.
Indeed, the congruence «?=1 (mod p) is equivalent to (a—1)-
(a-+1)=0(mod p). Therefore, cither a — 1 =0 (mod p), in which
case =1, or a + 1 =0 (mod p), in which case a = p — 1.

If we omit the numbers 1 and p — 1, the effect is to group the
remaining integers 2, 3, ..., p — 2 into pairs 4, 4 where ¢ # 4, such
that 42’ =1 (mod p). When these (p — 3)/2 congruences are multi-
plied together and the factors rearranged, we get

2.3--](})—2)51 (mod p)

or rather
(p—2)! =1 (mod p).
Now multiply by p — 1 to obtain the congruence

(p—Dl=p—1=—1 (mod p),

as was to be proved.

A concrete example should help to clarify the proof of Wilson’s
Theotem. Specifically, let us take p =13. It is possible to divide the

integers 2, 3, ..., 11 into (p — 3)/2 =15 pairs each of whose products is
congruent to 1 modulo 13. To write these congruences out explicitly:
2-7=1(mod 13),
3-9=1(mod 13),
4.10=1 (mod 13),
5:8=1(mod 13),
6-11=1 (mod 13).

Multiplving the above congruences gives the result

111=(2-7)(3-9)(4-10)(5-8) (6 11)=1 (mod 13)
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and so

12! =12 = —1 (mod 13).

Thus, (p — 1)! = —1 (mod p), with p = 13.

The converse of Wilson’s Theorem is also true: If (# — 1)1 = —1
(mod #), then # must be prime. For, if # is not a prime, then » has a
divisor d, with 1 <<d <n. Furthermore, since d <<#— 1, 4 occurs as one
of the factors in (#—1)!, whence 4| (#— 1)l. Now we are assuming

that 7 |(n — 1)1 +1, and so 4| (#—1)! +1 too. The conclusion is that
d| 1, which is nonsense.

Taken together, Wilson’s Theorem and its converse provide a
necessary and sufficient condition for determining primality; namely,
an integer # > 1 is prime if and only if (#— 1)!=—1 (mod #). Un-
fortunately, this test is of more theoretical than practical interest since as #
increases, (n — 1)! rapidly becomes unmanageable in size.

We would like to close this chapter with an application of Wilson’s

Theorem to the study of quadratic congruences. [It is understood that
quadratic congruence means a congruence of the form ax2 + bx =0

(mod #), with 4 2 0 (mod #).]
THEOREM 5-3.  The quadratic congruence x* +1=0 (mod p), where p
is an odd prime, has a solution if and only if p=1(mod 4).

Proof: Let a be any solution of x2 + 1 =0 (mod p), so that a2 = —1
(mod p). Since p f &, the outcome of applying Fermat’s Theorem
s

1 =gP-1 E(az)cp— 1)/2 E(_J):p—lua (mod p).

The possibility that p = 44 + 3 for some 4 does not arise. If it did,

we would have

(_1){p—1}f2:(m1)2k+ | — _1’
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hence 1 = —1 (mod p). The net result of this is that p | 2, which is
patently false. Therefore, p must be of the form 44 - 1.

Now for the opposite direction. In the product

—1 1
(p—vi=t1-2- L (p— 2 1),

we have the congruences

p—1=—1(modp),
JD_ZE"_Z(mOdP):

pA1T_ p—l

Rearranging the factors produces
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(p=D1=1+(=1)- 2 (=)L (L5 mod p

E(_-l)<r~1>f2( 2 ) (mod p),

since there are(p — 1)/2 minus signs involved. It is at this point that
Wilson’s Theorem can be brought to bear; for, (p — 1)! = —1 (mod
), whence

e (T

If we assume that p is of the form 44 4 1, then (—1)®-2=1
leaving us with the congruence

—1= [(‘P%l) !]g(modp).

>
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The conclusion: [(p— 1)/2]! satisfies the quadratic congruence
x?2 4+1=0 (mod p).
Let us take a look at an actual example; say, the case p—= 13,

which is a prime of the form 44 + 1. Here, we have (p—1))2=6 and
it is easy to see that

6! =720=5 (mod 13),

while
52 4+ 1=26=0 (mod 13).
Thus the assertion that [(4(p —1))!]*+1=0 (mod p) is correct for
p=13.
Wilson’s Theorem implies that there exists an infinitude of
composite numbers of the form »! 4 1. On the other hand, it is an
open question whether #! -1 is prime for infinitely many values of #.

The only values of # in the range 1 <# <100 for which #! + 1 is known
to be a prime number are #n =1, 2, 3, 11, 27, 37, 41, 73, and 77.

PROBLEMS

1. (a) Find the remainder when 15! is divided by 17.
(b) Find the remainder when 2(26!) is divided by 29. [Hint: By Wilson’s

Theorem, 2(p — 3)! = — 1 (mod p) for any odd prime p > 3.]
2. Determine whether 17 is a prime by deciding whether or not 16! = —1
(mod 17).

3. Arrange the integers 2, 3, 4, ..., 21 in pairs 2 and b with the propetty
that 2b = 1 (mod 23).

4. Show that 18! = —1 (mod 437).
5. (a) Provethataninteger # > 1is prime if aﬁﬂmly if (n —2)! =1 (mod #).

(b) If # is a composite integer, show that (n — 1) =0 (mod n), except
when 7 == 4,
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Number-Theoretic
Functions

THE FUNCTIONS 7 AND ¢

Certain functions are found to be of special importance in connection
with the study of the divisors of an integer. Any function whose domain
of definition is the set of positive integers is said to be a number-theoretic
(or arithmetic) function. While the value of a number-theoretic function
is not required to be a positive integer or, for that matter, even an integer,
most of the number-theoretic functions that we shall encounter are

integer-valued. Among the easiest to handle, as well as the most natural,
are the functions r and o.

DerFmrrion 6-1. Given a positive integer #, let =(#) denote the

number of positive divisors of # and o(n) denote the sum of these
divisots.

For an example of these notions, consider #=12. Since 12 has
the positive divisors 1, 2, 3, 4, 6, 12, we find that

7(12)=6 and o(12)=1-+2-+3 4464 12=28.
For the first few integers,

(1) =1,72)=2,7(3) =2, 7(4) =3, 7(5) = 2, 7(6) =4, ...
and

o(1) =1, 0(2) =3, o(3) =4, o(4) =7, o(5) = 6, a(6) = 12, ... .
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It is not difficult to see that 7(#) =2 if and only if # is a prime number;

also, o(n) = # -+ 1 and if only if » is a prime.

Before studying the functions + and ¢ in more detail, we wish to
introduce a notation that will clarify a number of situations later on.

It is customary to interpret the symbol

> D

ETED
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to mean, “ Sum the values f(4) as 4 runs over all the positive divisors of
the positive integer n.”” For instance, we have

> fd)=1(1) +f@ +f® +fE) +f(10) +f(20).
d|20
With this understanding, + and ¢ may be expressed in the form
(=1, ofn)= > d.
dln d|n

The notation Y 4. 1, in particular, says that we are to add together as
many 1’s as there are positive divisors of 7. To illustrate: the integer
10 has the four positive divisors 1, 2, 5, 10, whence

(10)= > 1=1-41+1+1=4,
d[1o
while

a(10)=2d=1+2+5+10:18.

10
Our first theorem makes it easy to obtain the positive divisors
of a positive integer # once its prime factorization is known.

TueoREM 6-1. If n=p,\""ps 2 p/* is the prime factorization of
n>1, then the positive divisors of n are precisely those integers d of the

form
d=P1m.P2a2' " ra,,
where 0 <<a, <k, (f=1,2,..., 7).

Proof: Note that the divisor 4= 1 is obtained whena; =a; ==
a,=0, and 7z itself occurs when @, =4, ag="Fao, ..., a,=HK,.
Suppose that 4 divides #» nontrivially; say #= dd’, whcrc. 4 >.1,
d'>1. Express both 4 and 4’ as products of (not necessarily dis-

tinct) primes:
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d==q142**"qs5 d'=18t -1,

with ¢,, #, ptime. Then
thPakz "t 'Prkr =gy Gstr by

are two ptrime factorizations of the positive integer #. By the
uniqueness of the prime factorization, each ptime ¢, must be one of

the p;. Collecting the equal primes into a single integral power,
we get

d=gq,q,-- s =p1Mpa" e p,

whete the possibility that z, = 0 is allowed.
Conversely, every number d= 2Up" e p (0 <a, < k)
turns out to be a divisor of ». For we can write

”=P1klﬁzk2 . 'Prkr
— (P;ulpgag . 'Prar)@]_kl_ ﬂlp2k2—ﬂg .. _prkf—u,)
—dd',

with 4= p, 17 %p =02, . k= and k, — 4, >0 for each 7. Then
d'>0and d|n

We put this theorem to work at once.

£MRHI 0-2. If m=p\"ip*- .. p.*" is the prime factorization ofn>1,
then

@) =k + Dk +1) - (h,+ 1), and

kr+1 __I

3P1k1+1_1pzk2+1 ___1 .
(b) olo) pi—1  p,—1 1
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Prm:f' According to Theotem 6-1, the positive divisors of » are
precisely those integers

d:Plat})Eﬂz .. .pr“‘r’

where 0 <4, < #,. There are #, -1 choices for the exponent a,;
%5+ 1 choices for a,, ...; 4, +1 choices for a, ; hence, there are

ks +Dka +1) - (£, +1)
possible divisors of #.
In order to evaluate o(n), consider the product

Akt pa® o 2N+ ot pa? 4 4, -
(A +20 427+ + 55,
Each positive divisor of # appears once and only once as a term in the
expansion of this product, so that
=P PP+ P o (L p 9244,

Applying the formula for the sum of a finite geometric sefies to the
ith factor on the right-hand side, we get
Pikl-l-l _ 1

L pitpd 44l ="0—
It follows that
plk1+1__1pzk2+1___1 Prkr+1__1

pi—1  po—1  p—1

o(n) =

Corresponding to the Y notation for sums, a notation for pro-
ducts may be defined using the Greek capital letter “pi.” The restriction
delimiting the numbers over which the product is to be made is usually

put under the []-sign. Examples are
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[ T r=r0,@73)/@f0G),

1<d =5

[T f@=rms3/0),

4|9

[ [ f@=r@73)/6).
e

With this convention, the conclusion to Theorem 6-2 takes the compact
form: if 7= p,*1p,**-- - p,* is the prime factorization of # > 1, then

)= | Gh+1)
leizgr
and
_ Pik;'i'l _ -1
o) = ET_"_% —
Example 6-1

The number 180 =22 . 3% . 5 has
r(180) =2+ 12+ 1)(1+1)=18
positive divisors. These are integers of the form
201,39 . 58
where ¢, =0, 1, 2; a,=0, 1, 2; 2, =0, 1. Specifically, we obtain
1,2,3,4,5,6,9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180.

The sum of these integers is

28 _ 133 _15K”%2_—
#(180) = SISl T2 45— s

One of the more interesting properties of the divisor function =
is that the product of the positive divisors of an integer #» >1 is equal to
n*™2. It is not difficult to get at this fact: Let 4 denote an arbitrary
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positive divisor of #, so that #—dd’ for some d’. As d ranges over all
7(d) positive divisors of #, (d) such equations occur. Multiplying these

together, we get
n““’=“d- Hd".

dfn a’|n

But as 4 runs through the divisors of #, so does d'; hence, [Tand=
[la1n d'. The situation is now this:

T(n) — 2
=1
prndiz nd

din

or equivalently,

The reader might (o1, at any rate, should) have one lingering
doubt concerning this equation. For it is by no means obvious that the

left-hand side is always an integer. If 7(n) is even, there is certainly no
problem. When #(#) is odd, # turns out to be a perfect square (Problem
7), say n = m?; thus n*™'2 = z*™_settling all suspicions.

For a numerical example, the product of the five divisors of 16
(namely, 1, 2, 4, 8, 16) is

[ [4=16ra012 = 1652 = 45 — 1024.

d|1a

Multiplicative functions arise naturally in the study of the prime
factorization of an integer. Before presenting the definition, we observe
that

7(2-10) =7(20) =6 #2 . 4 = 7(2) - 7(10).
At the same time
o(2-10)=0(20) =42 #3 - 18 =0o(2) - a(10).
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These calculations bring out the nasty fact that, in general, it need not
be true that

w(mn) = (m)r(n) and o(mn) = o(m)o(#).

On the positive side of the ledger, equality always holds provided we

stick to relatively prime m and # This circumstance is what prompts

DerFInrTioN 6-2. A number-theoretic function f is said to be
multiplicative if

f(nn) = f(m) ()
whenever ged (2, #) = 1.

For simple illustrations of multiplicative functions, one need
only consider the functions given by f(#) =1 and g(#) =# for all n = 1.
It follows by induction that if f is multiplicative and n,, #y, ..., #, are
positive integers which are pairwise relatively prime, then

Sy mye-om) = f(m) f(n) -~ f(ny).

Multiplicative functions have one big advantage for us: they
are completely determined once their values at prime powers are known.
Indeed, if » > 1 is a given positive integer, then we can write # = p,*p,"*+ -+
P/~ in canonical form; since the pi are relatively prime in pairs, the
multiplicative property ensures that

[y =F(pi ) f(p") - ("),
If fis a multiplicative function which does not vanish identically,
then there exists an integer » such that f(#) 0. But

fo)y=f(n- 1)=f)/(1).
Being nonzero, f(z) may be cancelled from both sides of this equation
to give f(1)=1. The point to which we wish to call attention is that

(1) = 1 for any multiplicative function not identically zero.
We now establish that + and ¢ have the multiplicative property.
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THeOREM 6-3. The functions v and o are both multiplicative functions.

Proof: Let m and n be relatively prime integers. Since the result
is trivially true if either » or # is equal to 1, we may assume that
m>landn>1. If

i 1
mzplkjpﬁkg V. .Prkr and # = qlflqz z,., 'q,g 5

are the prime factorizations of »# and #, then, since ged (m, n) =1,

no p; can occur among the g,. It follows that the prime factorization
of the product m# is given by

=Pyt p g g

Appealing to Theorem 6-2, we obtain

() =[(Ar + 1) (& 4+ DI[Gh + 1)+ G + 1]
= 1(m)r(n).
In a similar fashion, Theotem 6-2 gives
O-(mﬂ) _ [P1k1+1— 1 3 'Prkﬁ] — 1] [g111+1 —1 N gsfﬁl . 1]
pri—1 pr—1 g1 —1 gs— 1
= a(m)o(n).
Thus, 7 and ¢ are multiplicative functions.

We continue our program by proving a general result on multi-
plicative functions. ‘This requires a preparatory lemma.

LemMa.  If ged (m, n) =1, then the set of positive divisors of mn consists
of all products d\ d, , where d, | #,dy | mand ged (d,, dy) =1, Jurthermore,
these products are all distinct.

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 27/28




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: 11 M. Sc MATHEMATICS COURSENAME: NUMBER THEORY
COURSE CODE: 18MMU302 UNIT: 11 BATCH-2018-2020

Proof: Tt is harmless to assume that »>1 and #>1; let m—
piFipre e plrand =g g2 g7+ be their respective  prime
factonzatlons. Inasmuch as the primes py, ..., p,, 41, ..., g, are
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all distinct, the ptime factorization of m# is

s ky, J
m#._Px LI rrglla--qs"

Hence, any positive divisor 4 of m# will be uniquely representable in
the form

d:._—_Plaj,..Pfﬂrqlbl...?sbs’ Oi:ﬂ{__‘:__ﬁ}, Dgéi Sji.

This allows us to write d as d = d, d,, where d, — 21" p* divides

m and dy = 4," - . ¢,” divides n. Since no p, is equal to any 4,, we
surely have ged (d,, d,) = 1.

A keystone in much of our subsequent work is
THEOREM G-4. If f is a multiplicative function and F is defined by

F(i)= > f(d),
din
then F is also multiplicative.

Proof: Let m and 7 be relatively prime positive integers. Then

Flmn) = > f(d)= > fd:d2),

d|mn di|m
dgln

since every divisor 4 of »# can be uniquely written as a product of
a divisor 4, of m and a divisor d, of », where gcd (d,, d;)=1. By
the definition of a multiplicative function,

f(d1 ﬂ'z) :f(dl)f(dﬁ)‘

Tt follows that
F(mm)= > f(d:)f(d)
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_ (;nf(da) (Z] f(da)) — F(m)F(n).

It might be helpful to take time out and run through the proof
of Theorem 6-4 in a concrete case. Letting » =8 and »= 3, we have

F§-3)= > f(d)

d|2a

= (1) + f(2) +1(3) +F(4) + f(6) +f(8) +/(12) + f(24)
—fA-D+fC - DHfA-+fG-DH/C-D+HSB- 1)
+f(4-3)+f(8-3)

IO RN IO RO ORNIOVIORSIONORSIONG
+f4)f3)+/®)f(3)

— [A) +£@) + &) + /OISO +/O)]
= f@d)- > fd)=F@®FQ).

d|3

Theorem 6-4 provides 2 deceptively short way of drawing the
conclusion that r and ¢ are multiplicative.
CoROLLARY.  The functions T and o are multiplicative functions.

Proof: We have mentioned before that the constant function f(s) = 1
is multiplicative, as is the identity function f(#)=#. Since r and o
may be represented in the form

(1) = Z 1 and  ofn) = Zd’
din djn

the stated result follows immediately from Theorem 6-4.
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PROBLEMS

1. Let m and # be positive integers and p,, p,, ..., p, be the distinct primes
which divide at least one of » or #. Then » and # may be written in the
form

m=p, . p R with £, >0for7i=1,2,...,r

n=p 1p 7, withj, >0fori=1,2,....r
Prove that

gcd (M’, n) :Plulpzua R ,_“lr, lcm (.'li, ﬂ) EP1UIPQ”2‘ oh M

F »

where #, = min {£,, /;}, the smaller of 4, and /, ; and »;, = max {4,, 7}, the
larger of 4, and j,.
2. Use Problem 1 to calculate ged (12378, 3054) and lem (12378, 3054).

3. Deduce from Problem 1 that ged (w, #) lem (w, #) = mn for positive
integers » and ».

4. In the notation of Problem 1, show that gcd (m, #) =1 if and only if
é[j’_=0 fDI2= 1, 2, vaay

5. (a) Verify that 7(n) = r(7+ 1) = 7(n + 2) = (n + 3) holds for #— 3655
and 4503,

(b) When n= 14, 206, and 957, show that o(n) = o(# + 1).
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Possible Questions
2 Mark Questions:

1. Whatis Fermat’s Factorization method.

2. Prove thatif pisa prime, thena® =a(mod p) for any integer a.
3. Verify that 18° =1(mod 7%) for k =1,2,3.

4. Find the remainder when 19! is divided by 17.

5. Write about 7(n) and o(n) with example.

6. What is multiplicative function.

7. Provethatif f isa multiplicative functionand F is defined by

F(n)=>f(d),

djn
then F is also multiplicative.
8. Define Dirichlet Product.

9. Find the remainder when 511 is divided by 7.

10. Use Fermat’s method to factor 23449.

8 Mark Questions:

1. State and prove Fermat’s Little theorem.

2. Prove thatif pand qare distinct primes such that a” =a(mod q) and a® = a(mod p), then
aP =a(mod pq).

3. State and prove Wilson’s theorem.
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4,

10.

11.

Prove that the quadratic congruence x*>+1=0(mod p), where p isan odd prime, has a
solution if and only if p =1(mod 4).

Prove thatif n= plkl pzkz... prkr is the prime factorization of n>1,then the positive

divisors of n are precisely those integers d of the form
d=p"p,"p

where 0<3g, <k (i=12,..,r).

Prove that if n= plkl pzkz... prkr is the prime factorization of n>1,then

a) 7(n)=(k +D(k,+1)...(k, +1),and

ki+1 -1 pzk2+1 -1 p kp+1 -1

r

pm-1 p,-1  p-1

Prove that the function 7 and o are both multiplicative functions.

Prove that if gcd(m,n) =1, then the set of positive divisors of mn consists of all products

d,d,, where d1|n, d2|m and ged(d,,d,) =1, furthermore, these products are all distinct.
Discuss about Dirichlet Product.
Find the remainder when 72'°" is divisible by 31.

Prove that the quadratic congruence x*=-1(mod p), p isa prime, has a solution if and
only if p=1(mod 4).
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UNIT-IV

SYLLABUS

Quadratic Residues - Quadratic Reciprocity - The Jacobi Symbol - Binary Quadratic Forms -
Equivalence and Reduction of Binary Quadratic Forms - Sums of Two Squares - Positive Definite
Binary Quadratic Forms
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Definition 3.1 For all a such that (a,m) = 1, a is called a quadratic
residue modulo m if the congruence x*> = a (mod m) has a solution. If it has
no solution, then a is called a quadratic nonresidue modulo m.

Since a + m is a quadratic residue or nonresidue modulo m accord-
ing as a is or is not, we consider as distinct residues or nonresidues only
those that are distinct modulo m. The quadratic residues modulo 5 are 1
and 4, whereas 2 and 3 are the nonresidues.

Theorem 3.1 Letp be an odd prime. Then

(1) (%) = q»~Y/2 (mod p),

@ 5))-(5)

(3) a = b(mod p) implies that (£)= (E),

p p
it i | 2 Y, (2 (b)
a,p)=1then |—|=1,|—]=|—),
(4 If (a,p n(p (p 5
=
9 ()1 (2] - oo
p p

Remark From our observations in Section 2.9, we see that if p is an odd
prime then for any integer a the number of solutions of the congruence

a
x?=a(mod p) is 1 +(;)

Proof If pla, then Part 1 of the theorem is obvious. If (a, p) = 1 then
Part 1 follows from Euler’s criterion (Corollary 2.38). The remaining parts
are all simple consequences of Part 1.

Part 1 can also be proved without appealing to Euler’s criterion, as

a
follows: If (—) = 1, then x? = a(mod p) has a solution, say x,. Then, by
P

I I
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LI

a
Fermat’s congruence (Theorem 2.7), a?~ "2 =xp-'=1= [—) (mod p).

On the other hand, if ; = —1, then x?> = a(mod p) has no solution,

and we proceed as in the proof of Wilson’s congruence (Theorem 2.11).
To each j satisfying 1 <j < p, choose j', 1 <j <p, so that jj’ =
a(mod p). We pair j with j'. We note that j # j'(mod p), since the
congruence x> = a(mod p) has no solution. The combined contribution of
jand j' to (p — 1)! is jj' = a(mod p). Since there are (p — 1)/2 pairs
j, i’y it follows that a?~P/2 = (p — 1)!(mod p), and then Wilson’s congru-
ence gives Part 1.

Theorem 3.2 Lemma of Gauss. For any odd prime p let (a,p) = 1.
Consider the integers a,2a,3a,---,{(p — 1)/2)a and their least positive

p
residues modulo p. If n denotes the number of these residues that exceed >
a

then (—)= (="
D

Proof Let ry,r,,---,r, denote the residues that exceed p/2, and let

Sy, §2,° ' *, 5 denote the remaining residues. The r; and s; are all distinct,
and none is zero. Furthermore, n + k=(p—1)/2. Now 0 <p — r; <
p/2,i=1,2,--+,n,and the numbers p — r; are distinct. Alsono p —r; is

an s; for if p — r, = s; then r; = pa, 5; = ca(mod p) for some p,a,1 <
p<(p-1/2, 1<o<(p—1/2, and p — pa = oa(mod p). Since
(a, p) = 1 this implies a(p + o) = 0, p + ¢ = 0(mod p), which is impos-
sible. Thus p —ry,p — 15y, D = Iy 51,55, * *, 5, are all distinct, are all
at least 1 and less than p/2, and they are n + k = (p — 1)/2 in number.
That is, they are just the integers 1,2,---,(p — 1)/2 in some order.
Multiplying them together we have

(P=r)(p=r2) (P =r)sis; -+ sy =12 ——

and then
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=1
(P=r)(p=r2) (P =r)sisy + s =120
and then
p—1
(=r)(=r)) o (=r)s s, - s =1-2-+ ) (mod p),
n P - 1
(1) rry - rysys, o 85, =1-2 -T(mudp),
n p—1 p-1
(-1)a-2a-3a - a=1-2--- (mod p).
2 2
We can cancel the factors 2,3, --,(p — 1)/2 to obtain (—1)"a?~V/2 =
a
1(mod p) which gives us (—1)" = P~ V/2 = (; (mod p) by Theorem

3.1, part 1.

Definition 3.3 For real x, the symbol [ x] denotes the greatest integer less
than or equal to x.

This is also called the integral part of x, and x — [x] is called the
fractional part. Such an integer as [1000/23] is the quotient when 1000 is
divided by 23 and is also the number of positive multiples of 23 less than
1000. On a hand calculator, its value, 43, is immediately obtained by
dividing 1000 by 23 and taking the integer part of the answer only. Here
are further examples: [15/2] = 7,[-15/2] = —8,[-15] = —15.

Theorem 3.3 If p is an odd prime and (a,2p) = 1, then
(p-1)/2

(E]=(_1): where t= 3,

p j=1

ja

— ( _ 1)(.02—[}{8‘
P

2
» also | —
p
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Proof We use the same notation as in the proof of Theorem 3.2. The 7,
and s; are just the least posmve remainders obtained on dividing the
mtegers jaby p, j=1,2,---,(p — 1) /2. The quotient in this division is

easily seen to be q = [ja/p]. Then for (a, p) = 1, whether a is odd or
even, we have

n

k
+ er+ ZSJ'

=1 =1

(p—1/2 (p-1)/2

Y ja= Y p|—

j=1 i=1

ja
p

and

(p—-1)/2 n k

Y = ):(p—r)+ ):s =np— L+ LS

i=1 i=1 j=1 i=1 j=1

and hence by subtraction,

(p-1/2 (p—1)/2 ja n
e 5 j=p| % [;]-n)uz,j.

i=1 J=1 i=1
But

(p—-1)/2 p2 1

Y =

j=1

so we have
- l (p— l)/2

8

(a—l)p [ ]—n(modZ).

Jj=1
(p— l)/2
If a is odd, this implies n = [ ‘(mod 2). If a =2 it implies

n = (p? — 1)/8(mod 2) since [2]/p] 0forl <j <(p— 1/2. Our the-
orem now follows by Theorem 3.2.
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QUADRATIC RECIPROCITY
Theorem 3.4 The Gaussian reciprocity law. If p and q are distinct odd

Primes, then
(E)(E) _ (= 1){e-D/2-1/2
q p

Another way to state this is: If p and g are distinct odd primes of the
form 4k + 3, then one of the congruences x> = p(mod g) and x* =
q (mod p) is solvable and the other is not; but if at least one of the primes
is of the form 4k + 1, then both congruences are solvable or both are not.

Proof Let . be the set of all pairs of integers (x, y) satisfying 1 < x <
(p—1/2,1<y<(g—1)/2 The set ./ has (p — 1Xq — 1)/4 mem-
bers. Separate this set into two mutually exclusive subsets .#; and ./,
according as gx > py or gx < py. Note that there are no pairs (x, y) in.”
such that gx = py. The set .#; can be described as the set of all pairs
(x,y)suchthatl <x <(p —1)/2,1 <y < gx/p. The number of pairs in
#, is then seen to be L% gx/p]. Similarly ./, consists of the pairs
(x,y) such that 1 <y <(g —1)/2, 1 <x <py/q, and the number of
pairs in ., is Z\,"/?[ py/q]. Thus we have

(p=1)/2

7 [a

=t LP

(g=1)/2

L

J=1

L)
q

p—1g-1
2 2

and hence

P\(a
— =1 =(-1P-D/2MH@~-1D/2)
[G)3)-

by Theorem 3.3.
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For Example

=) - (=)&) (&)(=)

(%) - -0 -1,

61 |
(62_“ = (_1)(612-1)/8 -1,
(i\ _ ﬂ\(_l)(z/zxco/2)= (l -1
6L) L3 )
7 61 5 7 2
WL [ ol [V AN (Vo) P B ] VOO O Ll () (Y ) N
(&) - (F)e-» (7) - (5)e-n 5)
- (_ 1)24/8 —
Hence ( _6 7 ) = 1. This computation demonstrates a number of different

sorts of steps; it was chosen for this purpose and is not the shortest
possible. A shorter way is

—42 19 61 : 4 .
(51)*(5)'(5) _(19)"
—42
One could also obtain the value of 61 by use of Theorem 3.2 or

the first part of Theorem 3.3, but the computation would be considerably
longer.
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“There is another kind of problem that is of some importance. As an
example, let us find all odd primes p such that 3 is a quadratic residue

modulo p. We have
E - [E](_l)(p—lbﬂ'lj
p 3

(-)=1 if p=1(mod3)
= -1 if p=2(mod3),

and

(—1)P~V72 - 1 if p=1(mod4)
—1 if p=3(mod4).

3
Thus ;]= 1 if and only if p=1(mod3), p=1(mod4), or p=
2(mod 3), p = 3(mod 4); that is p = 1 or 11 (mod 12).

Just as we determined which primes have 3 as a quadratic residue, so
for any odd prime p we can analyze which primes have p as a quadratic

residue. This is done in effect in the following resulit.

Theorem 3.5 Let p be an odd prime. For any odd prime q > p let r be
determined as follows. First if p is of the form 4n + 1, define r as the least
positive remainder when q is divided by p, thus q = kp + r, 0 < r < p. Next

if pis of the form 4n + 3, there is a unique r defined by the relations
r

q=4kp £+ r,0 <r <4p, r = 1(mod 4). Then in both cases {£]= (— _
q p
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Proof If p= 4n + 1, by Theorems 3.4 and 3.1, part 3, we see that
p q r .

[—]: (—]= (—) In case p = 4n + 3, we first prove that r exists to
q P p

satisfy the conditions stated. Let r, be the least positive remainder when g
is divided by 4p, so 0 <r, < 4p. If r, = 1(mod4), take r = ry; if r, =
3 (mod 4) take r = 4p — r,. The uniqueness of r is readily established.

.
Ifg=4kp + r,theng=r = 1(m0d4)andagain(£]= (%)= (—)
q p

If g=4kp —r, then g = —r = 3(mod 4) and by Theorems 3.4 and 3.1,
Parts 3 and 4, we have

()--6G)--17)--5)E)-G)

For example, suppose we want to determine all odd primes g that
have 11 as a quadratic residue. A complete set of quadratic residues r of
11 satisfying 0 <r <44 and r=1(mod4) is 1,5,9,25,37. Hence by
Theorem 3.5 the odd primes g having 11 as a quadratic residue are
precisely those primes of the form 44k + r where r = 1, 5, 9, 25, or 37.

THE JACOBI SYMBOL
Definition
Let Q be positive and odd, so that Q = q,q, ** 4, vyh_gqe

(P
the q; are odd primes, not necessarily distinct. Then the Jacobi symbol (5)

is defined by
( P) (P
Q j=1\4;
P
where q— is the Legendre symbol.
:
Theorem
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Suppose that Q and Q' are odd and positive. Then

0 (P\( P B P
\QLQ')‘(QQ')’
P\ P: ]
o (5)(5)- ()
\QJ\ Q Q

(3) if (P,Q) =1, the P (P)

! > = ? -yl b 5 |= ]
"o \o?

. 'PrPZ )
(4) if (PP',QQ") = 1, then (Q'Q2 = (Q')’
(5) P = P(mod Q) impli il o l

= P (mod Q) implies (E)_(Q)

Proof Part 1 is obvious from the definition of % , and part 2 follows

from the definition and Theorem 3.1, part 2. Then part 3 follows from (2)
and (1) and so also does (4). To prove part 5, we write Q =g,9, *** g

5°

P’ (P

Then P’ = P (mod q)-) so that (—-) = (—) by Theorem 3.1, part 3, and
q; q;

then we have part 5 from Definition 3.4.

Theorem

If Qis odd and Q > 0, then

.i — (—_1\@-Ds2 nd (£)= _1\(Q@%*-1)/8
(Q) . ’ o)~V

Proof We have

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 10/32




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M. Sc MATHEMATICS COURSENAME: NUMBER THEORY
COURSE CODE: 18MMU302 UNIT: 111 BATCH-2018-2020
1 s [ —1 ] 1 _):l(q,-—n/z
(_) = TI|—] = [T~ = (-1)"

If a and b are odd, then

ab — 1 a—1 b — — _
_( 1]_‘ (a —1)(b—-1) _ 0(mod?2)

+
2 2 2 2

and hence

a—1 b—1 ab — 1
+ = (mod 2).

Applying this repeatedly we obtain

s, q;— 1 1(

5 B Q_l
> > [14g; - 1) = (mod 2) (3.1)

J=1

j=1

-1
and thus | — | = (—1)@-b/2
%]
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Similarly, if @ and b are odd, then

a’b? — 1 a?—1 b2-1 (a? —1)(b*>-1)

3 - g T g 2 = 0 (mod 8)
so we have
a’—1 b*2-1 2p2 — 1 13
+ = ,
8 8 g (mod2)
s 2 __ 1 2
)y % = 0 (mod 2)
j=1 8
and hence,
2 2 i(q}*l)/S
— | = —l=(-D""" - (_1)(02—1)/8.
( Q ) J'l:[l ( 4q; )
Theorem

If P and Q are odd and positive and if (P, Q) = 1, then
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f_ g = (_1){(}’—1)/2}{(9—1)/2}

QJ\P '

Proof Writing P = [1]_, p; as well as Q = I'l}_ q;, we have

(_Ii) _ ﬁ(P) f] fl(q}) I—[ n(‘b]( 1) P~ /2~ 172

Q j=1\4; jol =1 jul iwl
5 r
Y Y pi- D/2)a;~ 1 /2)
. g (_1)1=1:=1
P

where we have used Theorem 3.4. But

’p,-—lq,—l rpi—1 & g -1

LEfh

and

rp—1 s g, — 1 1
Epiz = 5 }:qf = (mod 2)

as in (3.1) in the proof of Theorem 3.7. Therefore we have

(f) — (g)(_1){(P—1)/2}{(Q—1)/z}
Q P

which proves the theorem.

BINARY QUADRATIC FORMS
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A monomial ax{'x%2 -+ x*» in n variables with coefficient a # 0 is said
to have degree k, + k, + -+ + k,. The degree of a polynomial in n

variables is the maximum of the degrees of the monomial terms in the
polynomial. A polynomial in several variables is called a form, or is said to

be homogeneous if all its monomial terms have the same degree. A form of

degree 2 is called a quadratic form. Thus the general quadratic form is a

sum of the shape

A form in two variables is called binary. The remainder of this chapter is
devoted to the study of binary quadratic forms

flx,y) = ax® + by + &y’
Theorem
Let f(x,y) = ax® + bxy + cy? be a binary quadratic form
with integral coefficients and discriminant d. If d # 0 and d is not a perfect

square, then a # 0, ¢ # 0, and the only solution of the equation f(x,y) = 0
in integers is given by x =y = 0.

Proof We may presume that a # 0 and ¢ # 0, for if a = 0 or ¢ = 0 then
ac = 0 and d = b* — d4ac = b?, a perfect square. Suppose that x, and y,
are integers such that f(x,, y,) = 0. If y,= 0 then ax? = 0, and hence
x, = 0 because a # 0. If x, = 0, a parallel argument gives y, = 0. Conse-
quently we take x, # 0 and y, # 0. By completing the square we see that

daf (x,y) = (2ax + by)* — dy’ (3.3)

and hence (2ax, + by,)* = dy? since f(x,,y,) = 0. But dy? # 0, and it
follows by unique factorization that d is a perfect square. The proof is now
complete.
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Definition 3.5 A form f(x, y) is called indefinite if it takes on both positive
and negative values. The form is called positive semidefinite (or negative

semidefinite) if f(x, y) > 0 (or f(x, y) < 0) for all integers x, y. A semidefi-
nite form is called definite if in addition the only integers x,y for which
flx,y) =0arex=0,y=0.

Theorem

Let d be a given integer. There exists at least one binary

quadratic form with integral coefficients and discriminant d, if and only if
d =0 or 1 (mod 4).

Proof Since b* =0 or 1(mod4) for any integer b, it follows that the
discriminant d = b*> — 4ac = 0 or 1(mod 4). For the converse, suppose
first that d = 0(mod 4). Then the form x? — (d /4)y? has discriminant d.

d-1
Similarly, if d = 1(mod 4) then the form x? + xy —(

criminant d, and the proof is complete.

]yz has dis-

Theorem

Let n and d be given integers with n + 0. There exists a
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binary quadratic form of discriminant d that represents n properly if and only
if the congruence x* = d (mod 4|n|) has a solution.

Proof Suppose that b is a solution of the congruence, with b* — d = 4nc,
say. Then the form f(x,y) = nx? + bxy + cy? has integral coefficients
and discriminant d. Moreover, f(1,0) = n is a proper representation of n.

Conversely, suppose we have a proper representation f(x,, y,) of n
by a form f(x, y) = ax? + bxy + cy* = n with discriminant b — 4ac = d.
Since g.c.d.(xy, ¥yo) =1, we can choose integers m;, m, such that
m,m, = 4|n|, g.c.d.(m,, y,) = 1 and g.c.d.(m,, x,) = 1. For example, take
m, to be the product of those prime-power factors p“ of 4n for which
plx,, and then put m, = 4|n|/m,. From equation (3.3) we see that
4an = Qax, + by,)* — dyg, and hence (2ax, + by,)* = dy2 (mod m,). As
(y9,m,) = 1, there is an in}eger?’o such that y,y,= 1(mod m,), and we

find that the congruence u” = d(mod m,) has a solution, namely u = u,
= (2ax, + byy)y, We interchange a and ¢, and also x and y, to see that

the parallel congruence u? = d (mod m,) also has a solution, say u = u,.
Then by the Chinese remainder theorem we find an integer w such that
w = u,(mod m,) and w = u, (mod m,). Thus w? = 4} = d(mod m,), and
similarly w? = u3 = d (mod m,), from which we get w? = d (mod m,m,).
But this last modulus is 4|n|, so the theorem is proved.

Corollary

Suppose that d = 0 or 1(mod 4). If p is an odd prime, then
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there is a binary quadratic form of discriminant d that represents p, if and only
d

if (_) 1
P

Proof Any representation of p must be proper. Hence if p is repre-

sented, then it is properly represented, and thus (by the theorem) d must

d
be a square modulo 4p, so that { — | = 1. Conversely, if | — | = 1, then d

1s a square modulo p. By hypothesis, d is a square modulo 4. Since p is
odd, it follows by the Chinese remainder theorem that 4 is a square
modulo 4p, and hence (by the theorem) p is properly represented by some
form of discriminant d, thus completing the proof.
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POSSIBLE QUESTIONS

2 Mark Questions:
1. Define Mobius Inversion Formula.
2. Prove that the function  is a multiplicative function.

3. Define greatest positive integer.
N N

4. IfNis a positive integer, then Zz'(n) = Z[N /n].
n=1 =1

Define Euler Phi function with example.
Find the value of ¢(36000).

Prove that for N>2, #(n) is an even integer.

® N owm

Prove that for any positive integer n, ¢(n) = nz,u(d)/d.
djn

9. State Gauss lemma.
10. Prove thatif pisaprimeand p does not divides a,then a** =1(mod p).

8 Mark Questions:
1. State and prove Mobius inverse formula.
2. Prove thatif F is multiplicative function

F(n)=Yf(d),

djn
Then fis also multiplicative.

3. Prove thatifnis a positive integer and p is a prime, then the exponent of the highest
power of p that divides n! is

>[n/ pk]

(That is an infinite series, since [n/ p“]= 0 for p*>n.)

4. Proveif nand rare positive integers with 1<r < n, then the binomial coefficient

n n!
r) ri(n-r)
is also an integer.

5. Let f and F be number-theoretic function such that
F(n)=> f(d),
djn

then, prove for any positive integer N,
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i_F(n) zzl\i:f(k)[N /K].

6. Prove that the function ¢ is a multiplicative function.

7. Prove thatif the integer N >1has the prime factorization n= plk1 p2kz prkr , then
#(n) = (" =" )P, = P, )P = P
=n(1-1/p)1-1/p,)...A-1/p,).

8. Let n>land gcd(a,n)=1.1If a,a,,...,3,,, are the positive integer less than n and

relatively prime to n, then
aa,aa,,...,ad,
are congruent modulo N to a;,8,,...,3,,, in some order.

9. State and prove Euler theorem.
10. Prove that for each positive integer n>1,
n=Y¢(d),
dn

the sum being extended over all positive divisor of n.
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SYLLABUS

Greatest Integer Function - Arithmetic Functions - The Mobius Inversion
Formula - Recurrence Functions - Combinatorial Number Theory
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GREATEST INTEGER FUNCTION

The function [x] was introduced in Section 1.2, and again in Definition 3.3
in Section 3.1. It is defined for all real x and it assumes integral values
only. Indeed, [x] is the unique integer such that [x] <x <[x] + 1. For
brevity it is useful to put {x} = x — [x]. This is known as the fractional part
of x. Many of the basic properties of the function [x] are included in the
following theorem.

Theorem 4.1 Let x and y be real numbers. Then we have

(D [x]<x<[x]+1, x-1<[x] <x,0<x-[x]<1,
(2) [x]=X,c.clifx>
(3) [x + m] = [x]+mtfmtsan integer .
@ [x]1+[yl<lx+yl<[x]+[y]l+ 1L
(5) [x]+ [~x] = {Ozfxis an f'nteger,
- - \ 1 otherwise.
[x] x
(6) | — | = |—| if mis a positive integer.
m m

(7) —[—x] is the least integer > x.
(8) [x + 3] is the nearest integer to x. If two integers are equally near
to x, it is the larger of the two.
(9) —[—x + 3] is the nearest integer to x. If two integers are equally
near to x, it is the smaller of the two.
(10) If n and a are positive integers, [n /a] is the number of integers
among 1,2,3, -+, n that are divisible by a.

Proof The first part of (1) is just the definition of [x] in algebraic form.
The two other parts are rearrangements of the first part.

In (2) the sum is vacuous if x < 1. We adopt the standard convention
that a vacuous sum 1s zero. Then, for x > 0, the sum counts the number of
positive integers i that are less than or equal to x. This number is
evidently just [x].
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Part (3) is obvious from the definition of [x].
To prove (4) we write x=n +v, y=m + u, where n and m are
integersand 0 < v < 1,0 < pu < 1. Then

[x] +[y]=n+m<[n+v+m+pu]l=[x+y]
=n+m+[v+pl<sn+m+1=[x]+[y] +1.

Again writing x =n + v,we alsohave —x=n-1+1-»,0<1 -
v < 1. Then

[x] +[-x]=n+[-n-1+1-7]

ifr=20

="_”_1+[1_"]={0—1 if v > 0

and we have (5).
To prove (6) we write x=n+v, n=gm +r, 0<v <1, 0<r<
m — 1, and have

2] =520 [ 5] -

since 0 < r + v < m. Then (6) follows because

ol e 2] e

Replacing x by —x in (1) we get —x — 1 <[—x] < —x and hence
x < —[—x] < x + 1, which proves (7).

To prove (8) we let n be the nearest integer to x, taking the larger one
if two are equally distant. Then n =x + 0, — 3 < 0 < 3, and [x + 3] =

n+[—0+3]=n,sinced< -0+ <1

The proof of (9) is similar to that of (8).

To prove part (10) we note that if a,2a, 3a,- - -, ja are all the positive
integers < n that are divisible by a, then we must prove that [n/a] = j.
But we see that (j + 1)a exceeds n, so
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ja<n<(j+1)a, j<n/a<j+1, [n/a]=].

ARITHMETIC FUNCTIONS

Definition 4.1 For positive integers n we make the following definitions.

d(n) is the number of positive divisors of n.

o(n) is the sum of the positive divisors of n.

a,(n) is the sum of the kth powers of the positive divisors of n.
w(n) is the number of distinct primes dividing n.

Q(n) is the number of primes dividing n, counting multiplicity.

For example, d(12) = 6, o(12) = 28, o,(12) = 210, «(12) = 2, and
Q(12) = 3. These are all arithmetic functions. The value of k can be any
real number, positive, negative, or zero. Complex values of k are useful in
more advanced investigations. The divisor function d(n) is a special case,
since d(n) = oy(n). Similarly, o(n) = o(n). It is convenient to use the
symbols ¥, f(d) and I1,, f(d) for the sum and product of f(d) over all
positive divisors d of n. Thus we write

dn)= Y1, o(n)=Xd afn = Ld,

d\n dln d\n
and similarly

w(n) = Y 1, Qn)= Y a= ) 1.

pln plin pPln

In the formulae for (), the first sum is extended over all prime powers
p“ that exactly divide n, while the second sum is over all prime powers p”
dividing n.

Theorem

For each positive integer n, d(n) = [] (@ + 1).
p*lin
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In this notation, a« = a(p) depends on the prime being considered,
and on n. Those primes p not dividing » may be ignored, since a = 0 for
such primes, and the factor contributed by such p is 1. If n = 1 then this

is the case for all p, and we see that this formula gives d(1) = 1.

Proof Let n =[Ip* be the canonical factorization of n. A positive
integer d = [1p? divides n if and only if 0 < B(p) < a(p) for all prime

numbers p. Since B( p) may take on any one of the values 0, 1, -

"y a(p),

there are a(p) + 1 possible values for B(p), and hence the number of

divisors is [, «y,(a + 1).

pin

From Theorem 4.3 it follows that if (m,n) =1 then d(mn) =

d(m)d(n).

Definition 4.2 If f(n) is an arithmetic function not identically zero such that
fGmn) = f(m)f(n) for every pair of positive integers m. n satisfying (m, n) =
1, then f(n) is said to be multiplicative. If f(mn) = f(m)f(n) whether m and
n are relatively prime or not, then f(n) is said to be totally multiplicative or

completely multiplicative.

If f is a multiplicative function, f(n) = f(n)f(1) for every positive
integer n, and since there is an n for which f(n) # 0, we see that

f)=1

From the definition of a multiplicative function f it follows by mathe-
matical induction that if m, m,,- - -, m, are positive integers are relatively

prime in pairs, then

flmmy == m,) = f(m)f(my) -~ f(m,).
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Theorem 4.4 Let f(n) be a multiplicative function and let F(n) = L, f(d).
Then F(n) is multiplicative.

Proof Suppose that m = m,m, with (m,,m,) = 1. If d|m, then we set
d, =(d,m)) and d, = (d,m,). Thus d = d,d,, d,lm,, and d,|m,. Con-
versely, if a pair d,, d, of divisors of m, and m, are given, then d = dd,
is a divisor of m, and d, = (d,m,), d, = (d, m,). Thus we have estab-
lished a one-to-one correspondence between the positive divisors d of m
and pairs d,, d, of positive divisors of m, and m,. Hence

F(m) =YL f(d) = X L f(dd,)

dlm dylm, d,|m,

for any arithmetic function f. Since (d,,d,) =1, it follows from the
hypothesis that f is multiplicative that the right side is

L T f@)fd) = | T @) T f(dn)) = FOm)F(ms).

dllml d2|m2 dllml dzl"‘lz

We could have used this theorem and Definition 4.1 to prove that
d(n) is multiplicative. Since d(n) = L,,1 is of the form ¥,,f(d), and
since the function f(n) = 1 is multiplicative, Theorem 4.4 applies, and we
see that d(n) is multiplicative. Then Theorem 4.3 would have been easy to
prove. If p is a prime, then d(p®) =a + 1, since p* has the a + 1
positive divisors 1, p, p,---, p* and no more. Then, since d(n) is multi-
plicative,

d( TTp) = T1d(p) = T (a+1).

peln p%ln pelin
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pa+l _ 1
Theorem 4.5 For every positive integer n, o(n) = [] ——-—-—1—-)
peln p—

In case n =1, a =0 for all primes p, so that each factor in the
product is 1, and the formula gives o (1) = 1.

Proof By definition o(n) = L,,d, so we can apply Theorem 4.4 with
f(n) = n, F(n) = o(n). Thus o(n) is multiplicative and o(n) = [Ta(p®).
But the positive divisors of p® are just 1, p, p%---, p® whose sum is
(pe*' = 1)/(p - 1).

THE MOBIUS INVERSION FORMULA

Definition 4.3 For positive integers n put u(n) = (—1D*"™ if n is square
free, and set u(n) = 0 otherwise. Then u(n) is the Mobius mu function.

Theorem 4.7 The function u(n) is multiplicative and

1 if n=1
dzl::#(d)={0 if n>1.

Proof It is clear from the definition that w(n) is multiplicative. If
F(n) = L,, u(d), then F(n) is multiplicative by Theorem 4.4. Clearly

F(1) = p(1) = 1. f n > 1, then a > 0 for some prime p, and in this case
F(p®) = £5_o n(pP) =1 + (—1) = 0, and we have the desired result.
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Theorem 4.8 Mobius inversion formula. If F(n) =L,, f(d) for every
positive integer n, then f(n) = L, u(d)F(n/d).

Proof We see that

2 p(d)F(n/d) = Yu(d) X f(k)
dln dln kl(n/d)
= ) u(d)f(k)
dk|n

where the last sum is to be taken over all ordered pairs (d, k) such that
dk|n. This last formulation suggests that we can reverse the roles of d and
k to write the sum in the form

Lf(k) L w(d)

kin d|(n/k)
and this is f(n) by Theorem 4.7.

Theorem 4.9 If f(n) = L,,,u(d)F(n/d) for every positive integer n, then
F(n) = L, ,f(d).

Proof First we write

Lf(d) = ¥ Lu(k)F(d/k).

dln din k|d

As k runs through the divisors of d, so does d/k, and hence this sum can
be written as

2 2 pn(d/k)F(k).

dln k|d

In this double sum, F(k) appears for every possible divisor k of n. For
each fixed divisor k of n, we collect all the terms involving F(k). The
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coefficient is the set of all u(d/k), where d/k is a divisor of n/k or, more

simply, the set of all u(r), where r is a divisor of n /k. It follows that the
last sum can be rewritten as

Y. Y u(r)F(k).

kin rl(n/k)

By Theorem 4.7, we see that the coefficient of F(k) here is zero unless
n/k = 1, so the entire sum reduces to F(n).

It should be noted that Theorem 4.8 and its converse, Theorem 4.9, do
not require that f(n) or F(n) be multiplicative.

On inserting the identity of Theorem 4.6 in the inversion formula of
Theorem 4.8, we find that

¢(n) =n) p(d)/d. (4.1)

d|n

Here the summand is multiplicative, so that by Theory 4.4 we see once
more that ¢(n) is multiplicative. Indeed, if n is a prime power, say
n = p“, then

Y. u(d)sd =Y wu(p?)/p?P=1-1/p.
B=0

d| p”

This, with (4.1), gives again the formula for ¢(n) in Theorem 2.15.

Theorem 4.6 For every positive integer n, ) ¢(d) = n.
d|n

Proof Let F(n)denote the sum on the left side of the proposed identity.
From Theorem 2.19 we see that ¢(n) is multiplicative. Thus F(n) is
multiplicative, by Theorem 4.4. Since the right side, n, is also a multiplica-
tive function, to establish that F(n) = n for all n it suffices to prove that
F(p®) = p* for all prime powers p® From Theorem 2.15 we see that if
B > 0 then ¢(p?) = pP — pP~'. Thus

F(p*) = X ¢(d) = i¢(pﬁ)=1+ ip"’—pﬁ“=p“-
B=0

d|p“ B=1
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Theorem 4.6 can be proved combinatorially, as follows. Let n be
given, and put .#= (1,2, -, n}. For each divisor d of n, let ./, be the
subset of those members k € . for which (k,n) =d. Clearly each
member of .~ lies in exactly one of the subsets .#;. (In such a situation
we say that the subsets partition the set.) We note that k € ./ if and
only if k is of the form k = jd where (j,n/d) =1and 1 <j < n/d. Thus
by Theorem 2.5 we deduce that .#; contains precisely ¢(n/d) numbers.
Since .’ contains exactly n» numbers, it is now evident that n =
Lan®(n/d). This is an alternative formulation of the stated identity.

COMBINATORIAL NUMBER THEORY
PIGEONHOLE PRINCIPLE

In this section, we treat a few elementary combinatorial problems of
number theory, especially those that can be solved by the use of two
simple ideas. First, if n sets contain » + 1 or more distinct elements in all,
at least one of the sets contains two or more elements. This is sometimes
familiarly called the pigeonhole principle, the idea being that if one places
n + 1 letters in n slots (called “pigeonholes”) then there is a pigeonhole
containing more than one letter. The second idea is the one-to-one
correspondence procedure, used to pair off elements in a finite set or
between two sets to determine the number of elements or to prove the
existence of an element of a specified kind.

Example 1 Given any m + 1 integers, prove that two can be selected
whose difference is divisible by m.

Since there are m residue classes modulo m, two of the integers must
be in the same class, and so m is a divisor of their difference.

In this and most other problems in this section, the statement is the
best possible of its kind. In Example 1, we could not replace the opening
phrase by “Given any m integers,” because the integers 1,2,3,---,m do

not have the property that two can be selected whose difference is divisible
by m.

Example 2 Given any m integers a,, a,," -, a,,, prove that a nonempty
subset of these can be selected whose sum is a multiple of m.
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Solution Consider the m + 1 integers

0,a,,a, ta,,a, +a,+a;3," -,a, +a,+a;+ - +a,,
consisting of zero and the sums of special subsets of the integers. By
Example 1, two of these m + 1 integers have a difference that is a
multiple of m, and the problem is solved.

Example 3 Let .~ be a set of k integers. If m > 1 and 2* > m + 1,
prove that there are two distinct nonempty subsets of ., the sums of

whose elements are congruent modulo m. Prove that the conclusion is
false if 2 = m + 1.

Solution The set ./, containing k elements, has 2% subsets in all, but
only 2¥ — 1 nonempty subsets. For each of these nonempty subsets,
consider the sum of the elements, so that there are 2 — 1 of these sums.
Since 2¥ — 1 > m, two of these sums are in the same residue class modulo
m, and so are congruent (mod m).

In case 2¥ = m + 1, define .~ as the set {1,2,4,8,---,2% 1}, with k
elements each of a power of 2. It is not difficult to see that the sums of the
nonempty subsets of .~ are precisely the natural numbers 1, 2,3, - -, 2k —
1, each occurring once. One way to see this is to observe that the elements
of ., when written to base 2, can be expressed in the form
1, 10, 100, 1000, - - -, 10¥~'. The sums of the nonempty subsets are then all
the integers, in base 2,

1,10,11,100,101,111,---,111 -- - 111
where the last integer here contains k digits 1 in a row.

Example 4 If ~ is any set of n + 1 integers selected from 1,2,3,- - -, 2n,
prove that there are two relatively prime integers in .~

Solution The set . must contain one of the pairs of consecutive integers
1,2or3,40rS5 6o0r -+ or2n — 1,2n.
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Example 5 Find the number of integers in the set .= {1, 2,3, - -, 6300}
that are divisible by neither 3 nor 4; also the number divisible by none of
3,4, or 5.

Solution Of the 6300 integers in ., exactly 2100 are divisible by 3, and
1575 are divisible by 4. The subtraction 6300 — 2100 — 1575 does not give
the correct answer to the first part of the problem, because the sets
removed by subtraction are not disjoint. Those integers divisible by 12
have been removed twice. There are 525 such integers, so the answer to
the first part of the problem is

6300 — 2100 — 1575 + 525 = 3150.

Turning to the second part of the problem, we begin by removing from
the set .~ those integers divisible by 3, in number 2100, those divisible by
4, in number 1575, and those divisible by 5, in number 1260. So we see
that

6300 — 2100 — 1575 — 1260

is a start toward the answer. However, integers divisible by both 3 and 4
have been removed twice; likewise, those divisible by both 3 and 5 and
those divisible by both 4 and 5. Hence, we add back in 6300/12 or 525 of
the first type, 6300/15 or 420 of the second type, and 6300/20 or 315 of
the third type to give

6300 — 2100 — 1575 — 1260 + 525 + 420 + 315.

This is still not the final answer, because one more adjustment must be
made, for the integers 50, 120, 180, - - - that are divisible by 3, 4, and 5.
Such integers are counted once in each term of the expression above, and
so the net count for each such integer is 1. There are 6300/60 or 105 such
integers, so if we subtract this number we get the correct answer,

6300 — 2100 — 1575 — 1260 + 525 + 420 + 315 — 105 = 2520.
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The Inclusion-Exclusion Principle Example 5 illustrates a basic combinato-
rial argument as follows: Consider a collection of N objects of which N(a)
have a certain property a, N(B) have property 8, and N(y) have property
y. Similarly, let N(a, B) be the number having both properties @ and B,

and N(a, B,7y) be the number having properties «, B, and y. Then the
number of objects in the collection having none of the properties a, B,y is

N — N(a) = N(B) = N(v) + N(a,B)

+ N(a,y) + N(B,y) — N(a,B,v) (4.15)

This is the inclusion-exclusion principle in the case of three properties.
The proof of (4.15) can be given along the same lines as in Example 5:
First, that an object having exactly one of the properties, say B, is counted
once by N and once by N(B) for a net count of 1 — 1 or 0; that an object
having exactly two of the properties has a net count of 1 —1 -1 + 1,
again 0; next, that an object with all three properties has a net count of
1-1-1-1+1+1+1-1, again 0. On the other hand, an object
having none of the properties is counted by N once in (4.15), and so a net

count of 1.
The extension of (4.15) to a collection of N objects having (variously)

k properties is very natural. Where (4.15) has three terms of the type
N(a), the general formula has k& such terms; where (4.15) has three terms
of the type N(a, B), the general formula has k(k — 1)/2 such terms; and
SO on.

It may be noted that the inclusion-exclusion principle can be used to
give an entirely different proof of the formula for the evaluation of the
Euler function ¢(n), as set forth in Theorem 2.15. Because that result has
been proved in full detail already, we make the argument in the case of an
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integer n having exactly three distinct prime factors, say p, g, and r. The
problem is to determine the number of integers in the set /=
{1,2,3, - -, n} having no prime factor in common with n. Let an integer in
the set . have property a if it is divisible by p, property g if it is divisible
by g and property v if it is divisible by . A direct application of (4.15)
gives

n—n/p—n/q—n/r+n/pq+n/pr+n/qr—n/pgr
=n(1-1/p)(1 - 1/q)(1 = 1/r)

as the number of integers in the set . divisible by none of p, g, or r.

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 14/38




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: Il M. Sc MATHEMATICS COURSENAME: NUMBER THEORY
COURSE CODE: 18MMU302 UNIT-V BATCH-2018-2020
POSSIBLE QUESTIONS

2 Mark Questions:

Evaluate the Legendre symbol (71/73)
Evaluate the Legendre symbol (— 219/ 383).

Solve the congruence x* =31(mod11").

What is Hash function.
Define Pythagorean triple.

SouE w e

If x,y,z is a primitive Pythagorean triple, then prove one of the integers x and y is

even, while the other is odd.
7. Give an example of Pythagorean triple.

8 Mark Questions:

1. State and prove Gauss Quadratic Reciprocity Law.
2. If p isan odd prime and gcd(a, p) =1, then prove that e congruence

x> =a(mod p"), n>1
has a solution if and only if (a/ p)=1.
3. Let a be an odd integer. then prove
(i) x*=a(mod 2) always has a solution.
(ii) x*=a(mod4) has a solution if and only if a =1(mod 4).
(iii) x*=a(mod2"), for n> 3, has a solution if and only if a =1(mod 8).

4. Explain about Public key encryption.
Describe RSA encryption and decryption.

6. If ab=c",where gcd(a,b) =1, then prove a and b are nt power. this is, there exist
positive integers &, forwhich a=a",b=h".
7. Find all the solution of the Pythagorean equation
X2 + y2 — ZZ
Satisfying the conditions
ged(x,y,z) =1, 2x,x>0,y>0,z>0

are given by the formulas
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X=2st,y =5"—t?, 7 =5% +1°
for integers S >t >0 such that gcd(s,t) =1and s #t(mod 2).
8. Find all primitive solution of x>+ y? = z* having 0<z <30.

9. Prove that the area of a Pythagorean triangle can never be equal to a perfect (integral)
square.

10. Prove that the Diophantine equation X*+Yy*=2z* has no solution in positive integer
X, Y, 2.

11. Prove that the Diophantine equation X*—Yy*=2* has no solution in positive integer
X, Y, Z.
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PART-A(20X1=20 Marks)
Answer all the Questions:

1. Ifadivides b and b divides c then
(@ a=c  (b) adivides c (c) c divides a (d) a not equal to ¢

2. Suppose d divides a and d divides b then d is

(a)Factor (b) any integer
3. If(a, b)=1then

(c) common divisor (d)1

(a) ax+by=1 (b) ax+by=a  (c) ax+by=b (d) ax+by=c
4. How many prime numbers are less than 50 ?

(@) 16 (b)15 (c) 14 (d) 18
5. Ifaand b are relatively prime then (a, b) =

(@1 (b) a (©b (d) ab

6. Any positive integer n can be written in the form

(a) pi*.p2".ps°..pa". (b) PPy Ps-e- Py

(€) p:".p2"2.ps°... (d) p.-P,.Ps---
7. Ifadivides b then
(a) b=ac (b) a=bc (c)a=b (d) a>b

8. aand b are co prime if
Prepared by U.R.Ramakrishnan, Department of Mathematics, KAHE
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11.

12.

13.

14.

15.

16.
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(b) ged (a, b) = gced (b, @)

(d) ged(b, a) = d

(@) gcd (a, b) =1
(c)gcd (a, b)=d
In Fermat’s little theorem a* =1(mod p) if

@ @p=a  O@Ea=p©@p=pdEpa=1
The equation ax=b(mod n) has a solution if

(@) gcd (a, n) divides b (b) gcd (a, b) divides n
(c) gcd (b, n) divides a (d) gcd (a, x) divides b
(n-1)!'=-1(mod n) is valid only if

(@) nis positive  (b) nis prime (c) n is composite
Gcd (a, b)=d then (a/d, b/d)=

(@) a ()b ()1 (d) d

The arithmetic progression a, atb, a+2b, ... contains infinitely

(d) n>2

many primes if

(a) a and b are positive co prime (b) a and b are co prime

(c) negative co prime (d) a=b

p= —1(mod p).

(a) 0 (b) p (c) p-1 (d) 1
s the remainder when 8.8.8....(30 times) divided by
31.

(@0 (b) 1 (c)-1 (d) 30

The number 1729 is called

(a) pseudo prime (b) prime

(c) composite (d) special prime
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17. The quadratic congruence x* =—1(mod p), p is a prime, has a

solution if
(@) p=1(mod 4)
(¢) p=1(mod p)

(b) p=-1(mod 4)
(d) p=-1(mod p)

18. The Euler phi function ¢(p) = for any prime p.
@p (O p+1  (Qp-1 (@) p’
19. The integer 701 is
(a) composite (b) prime
(c) special prime (d) either prime or composite
20. are all primes is of the form of 4n+3

(8) 2,3and 5 (b) 7,11, 19 (c)7,11,15 (d) 7,11, 17
PART-B (3X2=6 Marks)
Answer all the Questions:
21. Define primitive root.
22. State Wilson’s theorem.
23. Define Legendre symbol.
PART-C (3X8=24 Marks)
Answer all the Questions:
24. (a) State and prove division algorithm.

(OR)

(b) Using Euclidean algorithm and find the greatest common
divisor g of 1819 and 3587, and then find integers x and y
to satisfy 1819x + 3587y = g.
25. (a) Prove that the following statements
i. ax = ay(modm)ifandonlyif x = y (mod (:—b)) :
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ii. If ax =ay(modm) and (a,m) = 1, then x =
y (mod m).
. x=y(@modm;)fori=1,2,..,rifand only if
x =y (mod[m;,my, ..., m.]).

(OR)

(b) Prove that the congruence f(x) = 0(mod p) of degree
n has at most n solutions.
26. (a) State and prove binomial theorem.
(OR)

(b) State and prove Euler’s generalization theorem.
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Number Theory 8. The value of o(15) =
Date: -10-2019 Time: 2 Hours
Class: I11-M. Sc. Mathematics Maximum Marks:50 () 4 (b) 24 (c) 6 (d) 39
PART-A(20X1=20 Marks) 9. a“=1(modn)and aand b has same order if
Answer all the Questions:
1. limo(n) = (@) a=b(mod n) (b) a=b(mod k)
@0 (b) 1 ©) @ (d) not defined (¢) a=k(mod n) (d) a=n(mod k)
2. The number of divisor function is 10. If an integer a has order ¢(n) modulo nand (a,n) =1 then a
(a) Regular (b) irregular S
(c) real valued function (d) onto (a) prime (b) order of n
. (c) a primitive root of n (d) root of n
3. The order of 2 modulo7 is
(a) 2 (b) 7 (c) 3 (d) 6 11. There exists a primitive root for p* when pis
4. If a“=1(modn) and a=b(mod n)then (a) even prime (b) prime
(@) k is the order of n (b) n is order of k (c) odd prime (d) special prime
(c) b has order k (d) a has order n 12. If pis a prime and ais an integer co prime to pthen a is
5. For the Legendre symbol, (abj _ called quadratic residue if
p) T (a) x* =a(mod p) has a solution
p p? pAP (c) x=a(mod p) has a solution

(d) x=a(mod p) has no solution

6. If pisodd prime then o
13. If n =100 then the number of divisor is
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(@9 (b) 10 (c) 8 (d) 11 PART-B (3X2=6 Marks)
14. The notation o (n) is denoted by Answer all the Questions:
21. Define Legendre symbol
(a) number of divisors (b) number of co primes 22. Define Congruence.
(c) sum of co primes (d) sum of divisors 23. What is the value of ¢(500)?

15.

16.

17.

18.

19.

20.

The Mobius inversion formula for a positive integer n,

u(n) = forn=1

(@)1 (b)0 (c)-1 (d) (-1
The value of ¢(15) =

(@) 5 (b) 8 ()3 d1
Ifnis___ then ¢(2n) =¢(n).

(a) even integer (b) odd integer

(c) prime (d) composite

In the property of Legendre symbol, (a_2] =

p
(8 a (b) 1 (©) [p) @]
If pis then "f(”j:o
1\ P
(a) any prime (b) odd prime
(c) even prime (d) special prime

If a=b(mod m) then

of3) o)
of e
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PART-C (3X8=24 Marks)
Answer all the Questions:
24. (a) State and Prove Chinese Remainder theorem.
(OR)
(b) Find the least positive integer x such that
x = 5(mod 7), x = 7(mod 11) and x = 3(mod 13).
25. (a) State and prove Gaussian reciprocity law.

(OR)
(b) For any odd prime p let (a,p) = 1. Consider the

integers a, 2a, 3a, ... ,{pT_l}a and their least positive

residue modulo p. If n denotes the number of these residues
p a\ _ (_1\n
that exceed o then prove (p) =(—-1D™.

26. (a) If p is a prime then prove there exist ¢ (p — 1) primitive
roots modulo p.
(OR)

(b) Inany group G, ab = ac implies b= ¢, and likewise
ba = ca implies b = c. If a is any element of a finite group
G with identity element e, then prove that there is a unique
smallest positive integer rsuch that a” = e.
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