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Course Objectives

This course enables the students to learn

e To enable the students to enrich the fundamental of mathematical modeling skills.
e The construction and analysis of mathematical models inspired by real life problems
e Several modeling techniques and the means to analyze the resulting systems.

Course Outcomes (COs)
On successful completion of this course the student will be able to

Solve problems involving dynamic models, and probabilistic models.

Understand the use of modern technology in solving real-world.

Problems through ordinary differential equations, probability theory, graphs.
Formulate a mathematical model given a clear statement of the underlying scientific
principles.

5. Solve basic linear equations and solve application problems.

b s

UNIT1I

MATHEMATICAL MODELING THROUGH ORDINARY DIFFERENTIAL
EQUATIONS OF FIRST ORDER:

Linear Growth and Decay Models — Non-Linear Growth and Decay Models — Compartment
Models — Dynamics problems — Geometrical problems.

UNIT 11

MATHEMATICAL MODELING THROUGH SYSTEMS OF ORDINARY
DIFFERENTIAL EQUATIONS OF FIRST ORDER:

Population Dynamics — Epidemics — Compartment Models — Economics — Medicine, Arms
Race, Battles and International Trade — Dynamics.
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UNIT 111

MATHEMATICAL MODELING THROUGH ORDINARY DIFFERENTIAL
EQUATIONS OF SECOND ORDER

Planetary Motions — Circular Motion and Motion of Satellites — Mathematical Modelling through
Linear Differential Equations of Second Order — Miscellaneous Mathematical Models.

UNIT IV
MATHEMATICAL MODELING THROUGH DIFFERENCE EQUATIONS

Simple Models — Basic Theory of Linear Difference Equations with Constant Coefficients —
Economics and Finance — Population Dynamics and Genetics — Probability Theory.

UNIT V
MATHEMATICAL MODELING THROUGH GRAPHS

Solutions that can be modeled through Graphs — Mathematical Modeling in Terms of Directed
Graphs, Signed Graphs, Weighted Digraphs and Unoriented Graphs.

SUGGESTED READINGS

1. Kapur J.N., (2015). Mathematical Modeling, Wiley Eastern Limited, New Delhi.

2. Kapur, J. N., (1985). Mathematical Models in Biology and Medicine, Affiliated
East —West Press Pvt Limited, New Delhi.

3. Brain Albright, (2010). Mathematical Modeling with Excel, Jones and Bartlett
Publishers, New Delhi.

4. Frank. R. Giordano, Maurice. D.Weir, WilliamP. Fox, (2003). A first course in
Mathematical Modelling, Vikash Publishing House, UK.
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Lesson Plan

2018-2020
Batch

\§2_,/ KARPAGAM ACADEMY OF HIGHER EDUCATION
KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed

to be University)

Coimbatore — 641 021.
LECTURE PLAN

DEPARTMENT OF MATHEMATICS

Staff name: V. Kuppusamy

Subject Name: Mathematical Modeling
Semester: 111

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Sub.Code:18MMP303

Class: II M.Sc Mathematics

Lecture .
SN Duration Topics to be Covered Support Material/
o . Page Nos
Period
UNIT-I
Introduction and simple illustrations S1:Chapter 1, Sec 1.1
1 1 Pg.No: 1-15
Mathematical modeling through differential equations S1 : Chapter 2,Sec 2.1
2 1 Pg.No : 30-35
Linear growth and decay models problems S1 : Chapter 2,Sec 2.1
3 1 Pg.No : 30-35
Non-linear growth and decay models problems S1 : Chapter 2,Sec 2.3
4 1
Pg.No :35-39
5 1 Compartment models problems S1 : Chapter 2,Sec 2.4
Pg.No :39-43
6 1 Mathematical modeling in dynamics through ordinary S1 : Chapter 2,Sec 2.5
differential equations of first order Pg.No :43-45
7 1 Continuation on mathematical modeling in dynamics S1 : Chapter 2,Sec 2.5
through ordinary differential equations of first order Pg.No :45-48
3 1 Mathematical modeling of geometrical problems S4 : Chapter 2,
through ordinary differential equations of first order Pg.No :75 - 74
Continuation on mathematical modeling of geometrical | S4 : Chapter 2,
9 1 problems through ordinary differential equations of first | Pg.No :74 - 79
order
10 1 Recapitulation and discussion of possible questions
Total No. of Lecture hours planned-10 Hours
UNIT-II
Continuation on mathematical modeling in population S1 : Chapter 3,Sec 3.1
1 1 .
dynamics Pg.No :53-60
) 1 Mathematical modeling in population dynamics S1 : Chapter 3,Sec 3.1
Pg.No :53-60
3 1 Mathematical modeling of epidemics through systems S3 : Chapter 4, Pg.No
of ordinary differential equations of first order :118-124
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Batch

4 1 Compartment models through systems of ordinary S1 : Chapter 3,Sec 3.3
differential Equations Pg.No :63-64

5 1 Mathematical modeling in Economics through systems | S1 : Chapter 3,Sec 3.4
of ordinary differential equations of first order Pg.No :64 - 69
Mathematical models in medicine, Arms Race, Battles S4 : Chapter 9, Pg.No

6 1 and International trade in terms of systems of ordinary :350 — 355
differential equations

7 1 Mathematical modeling in dynamics through systems of | S1 : Chapter 3,Sec 3.6
ordinary differential equations of first order Pg.No :72-76
Continuation on mathematical modeling in dynamics S1 : Chapter 3,Sec 3.6

8 1 through systems of ordinary differential equations of Pg.No :72-76
first order

9 1 Recapitulation and discussion of possible questions

Total No. of Lecture hours planned-9 Hours
UNIT-III
1 1 Mathematical modeling of planetary motions S1 : Chapter 4,Sec 4.1
Pg.No :76-82

Continuation on Mathematical modeling of planetary S1 : Chapter 4,Sec 4.1

2 1 .
motions Pg.No :76-82

3 1 Mathematical modeling of circular motion and motion S1 : Chapter 4,Sec 4.2
of satellites Pg.No :82-88

4 1 Continuation on mathematical modeling of circular S1 : Chapter 4,Sec 4.2
motion and motion of satellites Pg.No :82-88

5 1 Mathematical modeling through linear differential S1 : Chapter 4,Sec 4.3
equations of second order Pg.No :88-93

6 1 Continuation of problems on mathematical modeling S3 : Chapter 7,
through linear differential equations of second order Pg.No :238-244

7 1 Problems on mathematical modeling through linear S3 : Chapter 7,
differential equations of second order Pg.No :238-244

2 1 Miscellaneous mathematical model through ordinary S4: Chapter 11, Pg.No :
differential equations of the second order 437-452

9 1 Recapitulation and discussion of possible questions

Total No. of Lecture hours planned-9 Hours

UNIT-1V

The need for mathematical modeling through difference

S1 : Chapter 5,Sec 5.1

! ! equations : some simple models Pg.No :96-98

) 1 Basic theory of linear difference equations with constant | S1 : Chapter 5,Sec 5.2
coefficients Pg.No :98-101

3 1 Continuation of types of basic theory of linear S1 : Chapter 5,Sec 5.2
difference equations with constant coefficients Pg.No :101-105

4 1 Mathematical modeling through difference equations in | S1 : Chapter 5,Sec 5.3
economics and finance Pg.No :105-110

5 1 Mathematical modeling through difference equations in | S1 : Chapter 5,Sec 5.4
population dynamics and genetics PgNo:110-113

6 1 Continuation of types of mathematical modeling S1 : Chapter 5,Sec 5.4
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through difference equations in population dynamics
and genetics

Pg.No:113-117

Mathematical modeling through difference equations in

S4: Chapter 6,

7 ! probability theory Pg.No :217-223

g 1 Miscellaneous examples of mathematical modeling S1 : Chapter 5,Sec 5.6
through difference equations Pg.No :121-122

9 1 Continuation of miscellaneous examples of S1 : Chapter 5,Sec 5.6
mathematical modeling through difference equations Pg.No :122-124

10 1 Recapitulation and discussion of possible questions

Total No. of Lecture hours planned-10Hours

UNIT-V
1 1 Situations that can be modelled through graphs S1 : Chapter 7,Sec 7.1
Pg.No :151-154
) 1 Mathematical models in terms of directed graphs S1 : Chapter 7,Sec 7.2
Pg.No :154-156
3 1 Continuation of types of mathematical models in terms | S1 : Chapter 7,Sec 7.2
of directed graphs Pg.No :156-161
Mathematical models in terms of signed graphs S4 : Chapter 3, Pg.No :
4 ! 101-107
5 1 Mathematical modeling in terms of weighted digraphs S1 : Chapter 7,Sec 7.4
Pg.No :164-170
6 1 Mathematical modeling in terms of unoriented graphs S1 : Chapter 7,Sec 7.5
Pg.No :170-177
7 1 Recapitulation and discussion of possible questions
8 1 Discussion of previous year ESE question papers
9 1 Discussion of previous year ESE question papers
10 1 Discussion of previous year ESE question papers
Total No. of Lecture hours planned-10 Hours
Total Planned Hours 48
SUGGESTED READINGS
TEXT BOOK
1. Kapur J.N,, (2015). Mathematical Modeling, Wiley Eastern Limited, New
2. Kapur, J. N., (1985). Mathematical Models in Biology and Medicine,
Affiliated East —West Press Pvt Limited, New Delhi.
3. Brain Albright, (2010). Mathematical Modeling with Excel, Jones and Bartlett
Publishers, New Delhi.
4. Frank. R. Giordano, Maurice. D.Weir, WilliamP. Fox, (2003). A first course in

Mathematical Modelling, Vikash Publishing House, UK.
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I1 M.Sc MATHEMATICS COURSENAME: MATHEMATICAL MODELING
COURSE CODE: 18SMMP303 UNIT: I BATCH-2018-2020

UNIT-I

Mathematical Modeling through Ordinary Differential Equations of First order: Linear Growth
and Decay Models — Non-Linear Growth and Decay Models — Compartment Models —
Dynamics problems — Geometrical problems.
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2

0 l‘ - f - E -

2.1 MATHEMATICAL MODELLING THROUGH DIFFERENTIAL

EQUATIONS : ; hen the
Mathematical Modelling in terms of dilferential equations arises w _3
varying with res-

situation modelled involves some continuous variable(s)

pect to some other continuous variable(s) and we have some ljeaml'lﬂblﬁ'
hypotheses about the rates of change of dependent variable(s) with respect
to independent variable(s). |

When we have one dependent variable x (say population size) depending '
on one independent variable (say time f), we get a mathematical model in
terms of an ordinary differential equation of the first order, if the hypothesis
is about the rate of change dx/dt. The model will be in terms of an ordinary
differential equation of the second order if the hypothesis involves the rate of
change of dx/dt.

If there are a number of dependent continuous variables and only one
independent variable, the hypothesis may give a mathematical model in
terms of a system of first or higher order ordinary differential egquations.

If there is one dependent continuous variable (say velocity of fluid &) and
a number of independent continuous variables (say space coordinates
x, , z and time 1), we get a mathematical model in terms of a partial dmrgr‘.
ential equation. If there are a number of dependent continuous _variab]e d
a number of independent continuous variables, we can get a math ¢ ‘?n
model in I:er:_tts of systems of partial differential equations. T o

M'athc?mat:‘cai models in terms of ordinary differential equations will b
stud{cd in this and the next two chapters. Mathematical models in ter ‘:‘
partial differential equations will be studied jn Chapter 7, ms o

2.2 LINEAR GROWTH AND DECAY MODELs

2.2.1 Populational Growth Modaels

Let x(7) be the population size at time ¢
x : and let 4 and :
death rates, i.e. the number of individuals borp or g}?iz; :;.he .bg_th‘dand
er individual

T L R
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32 MATHMATICAL MODBLLING

2.2.2 Growth of Sciance and Scientists
Let S(r) denote the number of scientists at time f, bS(0)4t + 0(4r) be the

number of new scientists trained in time iulnrva_l ¢+ d[r} ar.u_d let
dS()4t -+ 0(df) be the number of scientists who retire from science in ‘lh«e
same period, then the above model applies and the number of scientists
should grow exponentially. i

TH . Sntine mndil applies to the growth of Scic:ncf?, Mafhﬂmﬂtics and
Technology. Thus if M(r) is the amount of Mathematics at time ¢, then the
rate of growth of Mathematics is proportional to the amount of Mathe-
matics, so that

dM|dt = aM or M(t) = M(0) exp (at) (6)

Thus according to this model, Mathematics, Science and Technology grow
at an cxponential rute and double (hemselves in a certain period of time.
During the last two centuries this doubling period has been about tap years,
This implies that if in 1900, we had one unit of Mathematics, then 1n 1910,
1920, 1930, 1940, . . . 1980 we have 2, 4, 8, 16, 32, 64, 128, 256 unit of
Mathematics and in 2000 AD we shall have about 1000 units of Mathematics.
This implies that 99.99%, of Mathematics that would exist at the end of the
present century would have been created in this century and 99.9% of all
mathematicians who ever lived, would have lived in this century.

The doubling period of mathematics is 10 years and the doubling period

of the human population is 30-35 years. These doubling periods cannot
obviously be maintained indefinitely because then at some point of time, we
shall have more mathematicians than human beings. Ultimately the doubling
period of both will be the same, but hopefully this is a long way away.
) This mn?del also shows that the doubling period can be shortened by hav-
ing more intensive training programmes for mathematicians and scientists
and by creating conditions in which they continue to do ereative work for
longer durations in life.

2.2.3 Effects of Immigration and Emigration on
Population Size
If there is immigration into the population from outside at a rate propor-
tional to the population size, the effect is equivalent to increasing the birth
rate. Similarly if there is emigration from the population at a rate propor-
tional to the population size, the effect is the same as that of increase in the
death rate.
If however immigration and emigration take pl ;

e respectively, equation (3) is mndi%icd to piee-8t eonsant site fand

s et v PR 2 Pt 7 A, i il e o e e LA 1

ST P

e

dx
Integrating (7) we get

k
#) + — = ({r(ﬂ} + %)e‘" )
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ORDINARY DIFFERENTIAL EQUATIONS OF FIRST ORDER 33

The model also applies to growth of populations of bacteria and micro-
organisms, to the increase of volume of timber in forest, to the growth of
malignant cells ete. In the case of forests, planting of new plants will
correspond to immigration and cutting of trees will correspond to emigration,

2.2.4 Interest Compounded Continuously

Let the amount at time 1 be x(r) and let interest at rate » per unit amount
per unit time be compounded continuously then

Xt 4+ Ay = x(1) + rx(t)dt + 0(dr),
giving

dx

5 = Ari x(1) = x(0)e” (9)

This formula can also be derived from the formula for compound interest
r "
w0 = o1 + L), (10)

when inierest is payable » times per unit time, by taking the limit asn— oo,
In fact comparison of (9) and (10) gives us two definitions of the trancendental
_number e viz.

(i) e is the amount of an initial capital of one unit invested for one umnit
of time when the interest at uhit rate is compounded continuously

i 11"

(ii) e =Lt (I ot ?) (11)

Also from (9) if x(r) = 1, then
x(0) = g™, (12)
so that e~ 'is the present value of a unit amount due one period hence

when interest at’the rate r per unit amount per unit time is compounded
continuously,

2.2.5 Radio-Active Decay
Many substances undergo radio-active decay at a rate proportional to the
amount of the radioactive substance present at any time and each of them
has a half-life period. For uranium 238 it is 4.55 billion years. For potassium
it is 1.3 billion years. For thorium it is 13.9 billion years. For rubidium it
is 50 billion years while for carbonld, itis only 5568 years and for white
lead it is only 22 years. :

In radiogeology, thesc results are used for radioactive dating. Thus the
ratio of radie-carbon to ordinary earbon (carbon 12) in.dead plants and
animals enables us to estimate their time of death. Radioactive dating has

also been used to estimate the age of the solar system and of earth as
4Z billion years.
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34 MATHEMATICAL MODELLING

2.2.6 Decrease of Temperature the rate of change of temperature of

i 's Jaw of coolings emperature T of the
A:ﬂtérdl_ng :E N::;:;:Isto the difference b?twcﬂndtiu:n z‘u !:hat
:md)r ir:; l3‘1’:1:r|l:::':v:'er'.uul‘1! T, of the surrounding Tme ' i)
[
and (14)

() — To = (T00) — Te"

th
and the excess of the temperature of the body over
medium decays exponentially.

at of the surrounding

2.2.7 Diffusion
According to Fick's law of diﬂ'usiuﬂ.r
across a thin membrane is proportiona
to the difference in concentrations of the solute ©
membrane.

If the area of the membrane i 4
on one side is kept fixed at a and the concentrat
other side initially is co << a, then Fick’s law gives

the time rate of movement of 2 solute
| of the area of the membrane and
n the two sides of the

5 constant and the concentration of solute
on of the solution on the

%‘:— = kla — ¢), ¢{0) = ca, (15)
so that
a — clt) = (a — c(0))e~* (16)

and elf) = a as t — o, whatever be the value of co.

2.2.8 Change of Price of a Commodity

Let p(z) be the price of a commadity at time ¢, then its rate of change is
proportional to the difference between the demand 4(¢) and the supply s(7)
of the commeaodity in the market so that

dap
= kid(e) — s(£)), (7

where k > 0, since if demand is more than the supply, the ricice: incradsgs
If d(t) and s(r) are assumed linear functions of p(1), i.e. if *

dt) = dy + dp(), (D=3 +52p(t), & <052~ 0 (18)

we get
dp _
ar = K — o & (da— dp() = Ka — By, B> o (19)
or
dp
ar — Klpe — p(n), )
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mperature
:uf cooling, the rate of © et
the difference between the

i hat
of the surrounding medium, SO t

dT _ 1 — 7T), k<0
dt

hange of temperature of

T
2.2.86 Decrease of Te crature T of the

According to Newton's |2
a body is proportional t0

body and temperature T (13)

d (14)
“ () — T, = (T00) — Te¥

and the excess of the temperature of the body OVer
medium decays exponentially.

hat of the surrounding

2.2.7 Diffusion : f a solute
According to Fick's law of diffusion, the time rate of moveme® & ° 5
across a thin membrane is proportional of the area of the ™ sides of the
to the difference in concentrations of the solute on the two
membrane.

If the area of the membrane is constant and the ©
on one side is kept fixed at a and the concentration o

other side initially is co < a, then Fick’s Jaw gives

oncentration of solate
f the solution on the

%‘:- = kia —¢), ¢{0) = co, (15)
5o that
a — clf) = (a — c(0))e ™ (16)

and e{f) = a as t = o, whatever be the value of co.

2.2.8 Change of Price of a Commodity

Let p(¢) be the price of a commadity at time ¢, then its rate of change is
proportional to the difference between the demand 4(r) and the supply (1)
of the commaodity in the market so that

dap
= k(1) — s(a), a7

where k = 0, since if demand is more than the supply, the O —
If d(t) and s(r) are assumed linear functions of (1), i.c. if :

dit) = + dp(), ()= +52p(t), & <0,5>0 (18)

we get
dp _
= Ky — s (da — .ﬂ')pl:.l')] = k[—ﬂ it ﬂpff}}, B> 0 (19)
or
dp
d'_.f = K{F! — P{l‘_}. {10)
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where p. is the equilibrium price, so that

Py = P(') = (p; — pl(O))e—H (21)

and
plty—=p. as >

EXERCISE 2.2
1. Suppose the population of the world now is 4 billion and its doubling

700 years, 1050 vears? If the surface area of the earth is 1,860,000 billion
square feet, how much space would each person get after 1050 ycars?

2. Find the relation between doubling, tripling and quadrupling times for
a population.

3. In an archeological wooden specimen, only 25% of original radio carbon
12 is present. When was it made?

4. The rate of change of atmospheric pressure p with respect to height

h is assumed proportional to p. If p = 14.7 psiat h = 0 and p = 7.35 at
h = 17,500 feet, what is p at h = 10,000 feet?

5. What is the rate of interest compounded continuously if a bank’s rate
of interest is 1095 per annum?

6. A body where temperature T is initially 300°C is placed in a large
block of ice. Find its temperature at the end of 2 and 3 minutes?

7. The concantration of potassium in kidney is 0.0025 milligrammes per
cubic centimetre. The kidney is placed in a large vessel in which the potas-
sium concentration is 0,0040 mg/cm?* In | hour the concentration in the
kidoey increases to 0.0027 mg/em?. After how much time will the concentra-
tion be 0.0035 mg/cm??

B. A population is decaying exponentially. Can this decay be stopped or
reversed by an immigration at a large constant rate into the population?

2.3 NON-LINEAR GROWTH AND DECAY MODELS

2.3.1 Logistic Law of Population Growth
As population increases, duc to overcrowding and limitations of resources,
the birth rate » decreases and the death rate 4 increases with the population
size x. The simplest assumption is to take
b = b] o bz-\?. d—= l'-'I'I + dﬂﬁ'} bli bﬁ, dl, d) S 'J, {22}
s0 that (2) becomes
%{:E ={b —d) — (b2 4+d2dx) =x(@a— bx),a=>0,b>0 (23)
Integrating (23), we get
x(t) e x(0) 7
a— bx(ty  a — bx(0) o= (24)
Equations (23) and (24) show that
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where p. is the equilibrium price, so that

pe = p(t) = (pe — p(0))e™ (21)

and

p)—>p. as t-—>w

EXERCISE 2.2
1. Buppose the population of the world now is 4 billion and its doubling

700 years, 1050 years? If the surface area of the earth is 1,860,000 billion
square feet, how much space would each person get after 1050 years?

2. Find the relation between doubling, tripling and quadrupling times for
a population.

3. In an archeological wooden specimen, only 25%, of original radio carbon
12 is present. When was it made?

4. The rate of change of atmospheric pressure p with respect to height

h is assumed proportional to p. If p = 14.7 psi at h = 0 and p = 7.35 at
h = 17,500 feet, what is p at h = 10,000 feet?

5. What is the rate of interest compounded continuously if a bank's rate
of interest is 1095 per annum?

6. A body where temperature T is initially 300°C is placed in a large
block of ice. Find its temperature at the end of 2 and 3 minutes?

7. The cancentration of potassium in kidney is 0.0025 milligrammes per
cubic centimetre. The kidney is placed in a large vessel in which the potas-
sium concentration is 0,0040 mgfcm? In | hour the concentration in the
kidney increases to 0.0027 mg/em?. After how much time will the concentra-
tion be 0.0035 mg/cm?7?

B. A population is decaying exponentially. Can this decay be stopped or
reversed by an immigration at a large constant rate into the population?

2.3 NON-LINEAR GROWTH AND DECAY MODELS

2.3.1 Logistic Law of Population Growth
As population increases, duc to overcrowding and limitations of resources,
the birth rate b decreases and the death rate 4 increases with the population
size x. The simplest assumption is to take
b=b — bax,d—dv + dzx, by b2, dy,d2 = 0, (22)
$0 that (2) becomes
L (b —d) — (b2 +dDY) = xa— bx),a>0,6>0 (23)
Integrating (23), we get

x(1) x(0

a—bx(®)  a—bNoy ¢ 24)
Equations (23) and (24) show that

Scanned by CamScanner

Prepared by V.Kuppusamy, Asst Prof, Department of Mathematics KAHE

COURSENAME: MATHEMATICAL MODELING
COURSE CODE: 18MMP303 UNIT: I BATCH-2018-2020

'l

’u-:) lf

. f ]I‘_ '_-J‘ 6‘

period is 33 years, what will be the population of the world after 350 years, =

[ion

Page 8/28




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I1 M.Sc MATHEMATICS COURSENAME: MATHEMATICAL MODELING

COURSE CODE: 18MMP303 UNIT: 1 BATCH-2018-2020

36 MATIEMATICAL MODHLLING B
() is a monotonic increas-

() X0) < afby = xlt) << afb = dxfdi = ?:;
ing function of 1 which appronches aflr ns f i .11{” s a monotonic decreas-

(i) x(0) = afd = x(t) = alh = dvfdt =
ing lunction of ¢ which npproaches ath as 1 —= .

Mow from (23) .
Cic. 00 a — 2hx, (25)
it

Thus in case (i) the growth :::urue
f x > a/2h and it has a p'omt (_:-I‘
i x(¢) against [ is as given In

so that d3x/de? E 0 necording as X *‘3 ﬂ.’!.’:z
is convex if x < af2b and is concave |
inflexion at x =- a/2b. Thus the graph o

Figure 2.2,
x(t)
I"L "“J] F[U}
/o
alb ath p—————m=—— a
|
Concave
alibp===--
anven
e t -+ 1
slal<ailb % ai2ben{o)<alib x{o)=alb
Flgure 2.2
=If () == u/2h, vis) increnses al an increasing rte till xt) reaches a/2b and then it
increases at o decreasing rate and approaches afb at § -+ 00
—II af2h <= $(0) = alb, x(r) increases al a decreasing rate and approaches a/b as
- o0

—=If 2{0) — afb, xir) is always equal Lo afh
—If x(0) = a/b, »{r) deerenses ut o decreasing absolute rate and approaches af/b as
! = oo

2.3.2 Spread of Technological Innovations and

Infactious Diseases
Let N(1) be the number of companies which have adopted a technological
innovation {ill time f, then the rate of change of the number of these com-
panies depends both on the number of companies which have adopted this
innovation and on the number of those which have not vet adopted it, so
that if R is the total number of companies in the region

dN

T = EN(R — N), (26)

wl}ic‘h is the logistic law and shows that ultimately all companies will adopt
this innovation.

Similarly [r N(t) is the number of infected persons, the rate at which the
number of infected persons increases depends on the product of the num-

bers ol infected aind susceptible persons. As su ;
z s ch we again get (26}, wh
is the total number of persons in the system, . dea

Scanned by CamScanner

Prepared by V.Kuppusamy, Asst Prof, Department of Mathematics KAHE

Page 9/28




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I1 M.Sc MATHEMATICS COURSENAME: MATHEMATICAL MODELING
COURSE CODE: 18SMMP303 UNIT: I BATCH-2018-2020

ORDINARY DIFFERENTIAL EQUATIONS OF FIRST ORDER 37

It may be noted that in both the examples, while N(1) is essentially an
integes-valued variable, we have treated it as a continuous variable, This

can be regarded as an idealisation of the situation or as an approximation to
reality.

2.3.3 Rate of Dissolution

Let x(r) be the amount of undissolved solute in a solvent at time { and let
co be the maximum concentration or saturation concentration, i.e. the maxi-
mum amount of the solute that can be dissolved in a unit volume of the
solvent. Let V¥ be the volume of the solvent, It is found that the rate at which
the solute is dissolved is proportional to the amount of undissolved solute
and to the difference between the concentration of the solute at time f and
the maximum ﬁ‘uggibla concentration, so that we get

X _ kxtt) (ﬂ_},ﬂ? _eﬂ) = B0 (1 — o) — ) @)

2.3.4 Law of Mass Action: Chemical Reactions

Two chemical substances combine in the ratio a: b to form a third substance
Z. If 2(t) is the amount of the third substance at time f, then a proportion
az(t)/(a + B) of it consists of the first substance and a proportion hz(1)/
(@ + &) of it consists of the second substance. The rate of formation of the
third substance js proportional to the product of the amount of the two
component substances which have not yet combined together. If 4 and B
are the initial amounts of the two substances, then we get

dz. - az bz
E“k("’a+b)(3 'a+b) (28)
This is the non-linear differential equation for a second order reaction.

Similarly for an sth order reaction, we get the non-linear equation

% = k(A1 — mz)(4d2 — a22) ... (4. = @a2), (29)

where @i + a2+ ...+ an= 1.

EXERCISE 2.3

If in (24), @ = 0.03134, b= (1.5887)(10)"'°, x(0) = 39 106, show
that s y

~ 313,400,000
0 = 5887 + 78,7703 007 )

This is Verhulst model for the population of USA when time zero corresponds
to 1790, Estimate the population of USA in 1800, 1850, 1900 and 1950,
Show that the point of inflexion should have occurred in about 1914, Find
also the limiting population of USA on the basis of this madel.

In (26) k = 0,007, R = 1000, N(0) = 50, find N(10)'and find when
Nit) = 500.
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X Obtain the solution of (273 when xo = ol and xo < eo¥ and interpret
your resulls,

4, Obtain the solutions of (28) and (29).

5 Substances X and ¥ combine in the ratio 2 ¢ 3 to form Z. When 45
prams of ¥ and 60 prams of ¥ are mixed together, 50 gms of Z are formed
in & minutes. How many geams of Z will be found in 210 minutes? How
much time will it like to get 70 gms of Z7

6. Cigarette consamption in a dountry incrensed from 50 per capita in
1900 AD 1o 3900 per capita in 1960 AD. Assuming that the growth in
consumption follows a logistic law with a limiting consumption of 4000 per
capita, estimate the consumption per capita in 1950,

7. Ome possible wenkness of the logistic model is that the average growth
rate 1w dy/dris Inrgest when x is small. Actually some species may become
extinel if this population becomes very small. Suppose m is the minimum
viable population for such a species, then show that

elxfde == r.\'(l - TL-) (] - 3?*)

Inlus_ﬂu: desired property that & becomes extinct if xo < m. Also solve the
differential equutions in the two cases when xo = 1 and Xo < m.
§. Show that the logistic model can be written as

1 dNv K— XN
N at T .-’c’_)

Deduce Llhul Kis I:I1c limiting size of the population and the average rate of
]:T?‘.\'UI is |]I'l'1[10rlIDI'Hl| tothe fraction by which the population is unsaturated.

G000 Fir) is the I'unfl consumed by population N(t) and 5 is the food con=
sumed by the population K, Smith replaced (K—N)/N in Ex. 8 by (§—F)/S
He also argued that sinee a growing population consy mes food Taster [ha_r; |
La:lt:t_mlcd ropulation, we should take F(r) = alN 4 ca dNldt, e, 02 = 0 'l

8¢ this assumption to modify the logisti : he | lii
Sisimtial s gistic model and solve the resulting

9. A peneralisation of the logistic madel is

A aN N\e
N di T(I_(]‘f)),a}u
Solve this differential equation. Show that the fimiti ;
. i i : ' n o g .
lli:“: ”“3. I’_“ll'll of infexiin oceurs when the I'J'L‘PI'JLIhL{inn%:F?’fﬁ:l-it;?::zf S[SI” A ]
at this increases manotonically from K/2 to K as = e = : _huw
“. What is the madel if 2 -» g7 What ha _"‘11_- : reascs from unity to
10, A fish pn"u] appensal g —p 7 7

ation which is growing i
i £ accody isti i
ted at o constant rage It Show that et PRERERRTE o g

N
a =N (1 - %) - n

Show that ir p - kltir — K24 — g

as == w2 K bt s e o) snproachas s constant limit

discontinuous there and cannot predict beyond this

PAv—

P — S e
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X Obiain the solution of (27) when xo = col’ and xo << co¥ and interpret
your resulis,

4, Obtain the solutions of (28) and (29).

S, Bubstances X and Y combine in the rutio 2 : 3 to form Z. When 45
prams of N and 60 grams of ¥ are mixed together, 50 gms of Z are formed
in S minutes, How many grams of Z will be found in 210 minutes? How
much time will it like to get 70 gms of Z?

6. Cigarette consumption in a ¢ountry increased from 50 per capita in
1900 AD to 3900 per capita in 1960 AD. Assuming that the growth in
consumption follows a logistic law with a limiting consumption of 4000 per
capitn, estimate the consumplion per capita in 1950.

7. Omne possible wenkness of the logistic model is that the average growth
rate 1/x dy/de is largest when x is small. Actually some species may become
extinet il this population becomes very small. Suppose m is the minimum
viable population for such a species, then show that

dxldr = m.(| " T\) (] = %)

hlIIS_ﬂu: desired property that & becomes extinet if xo < m. Also solve the
differential equations in the two cases when xo > 7 and Xo = m.

8. Show that the logistic model can be written as

I dN K—N
=@ (—ﬁ.’_)

Deduce Llll-ul K is the limiting size of the population and the average ratle of
growth is proportional to the fraction by which the population is unsaturated

B0 #{r) is the food consumed by population N(¢) and § is the food co ;
sumed by the population K, Smith replaced (K—N)/ NV in Ex. 8 by{S—F‘];g
He also argued that since a growing population consumes food faster th :
o saturited population, we should take F(1) = e/ N r;_d;w.;!r 1 :-2 }Hﬁn

Use this assumplion 1o modif: isti
: y the legistic model ; s ing
differentinl equation. b T Ty

9. A pencralisation of the logistic madel is

_]_l'!',"i'l_ r N‘I
v = (%)) <>

Solve this differential equation. Show that the limiting population is siill K

ane i i i :

”n: tl!:]r:ija_rul‘il“uf inflexion oceurs when the population in Ko1)oy ]
i inereases monotonically from K/2 to K as = increases Wiyt

“. What is the model if 2 -» @) What happens ii'la ; l'llm"’s e o
10, A fish population which is prowing aceo, it ot

ted at a1 constant rafe I, Show that

N
A N
-I"ir.f = JN(' T E) _ ‘F.-_'

Show that ir p - kHir — K24 — al
s f == w2 KR bl s

ding o logistic law is harves-

dlasohti — 0. N(1) approaches a constant limit
continuous there and ennnot predict beyond this

o= R = &
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value of ¢ IT D = 0, show that the limiting population is K/2. If D < 0
show that the ultimate population size is K/2(1 + /1 — 4HrK). q

11. For each of the models discussed in this subsection, state explicitly the
assumptions made, Try to extend the model when one or more of these
assumptions are given up or modified. Obtain some critical results which may
be different between the original and modified models and which may be
capable of being tested through observations and experiments.

2.4 COMPARTMENT MODELS :

In the last two sections, we got mathematical models in terms of ordinary |

differential equations of the first order, in all of which variables were sepa-

rable. In the present section, we get models in terms of linear differential |

equations of first order. '
We also use here the principle of continuity i.e. that the gain in amount

of a substance in a2 medium in any time is equal to the excess of the amount

that has entered the medium in the time over the amount that has left the
medium in this time.

T AR IR

2.4.1 A Simple Compartment Model
Let a vessel contain a volume ¥ of a solution with concentration cf) of a
substance at time ¢ (Figure 2,3) Let :

a solution with constant concentra-
tion C in an overhead tank enter the
vessel at a constant rate R and after
mixing thoroughly with the solution
in the vessel, let the mixture with
concentration ¢{r) leave the vessel at
the same rate R so that the volume
of the solution in the vessel remains

V. Figure 2.3
Using the principle of continuity, &
we get
Vet + A1) — (1)) = RC4At — Re(t)dr + 0(de)
giving
dc ¥
v iy + Re = RC (30)
Integrating
elt) = r:(['.'}cxp(— %I) +- C(l — exp (-—- —t‘ét) (3D

As [ = o0, e(t) = C, so that ultimately the vessel’ has the same concentra-
tion as the overhead tank. Since !

ety = C — (C — co) exp (—-‘f;r), (32)
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if € > co, the concentration in the vessel increases to C; on the other

hand if € < oo, the concentration in  &(t)
the vessel decreases to C (Figure 2.4).

If the rate R’ at which the solution
leaves the vessel is less than R, the clo)r
equations of continuity gives | T o ————=— —=

e e R AR

C — e
A (Vo + (R — RYdel0) o
= RC — R'(ct) (33)
where V is the initial volume of the Tt
solution in the wvessel. This is also a Figure 2.4
linear differential eguation of the first

order.

2.4.2 Diffusion of Glucose or a Medicine in the Blood

Straam
Let the volume of blood in the human body be ¥ and let the initial concen-
tration of glucose in the blood stream be c(0). Let glugose be introduced in
the blood stream at a constant rate /. Glucose is also removed from the
blood stream due to the physiological needs of the human body at a rate
propartional to c{r), so that the continuity principle gives

de

Vo =T — ke (34)

which is similar to (30).

Now let a dose D of a medicine be given to a patient at regular inter-
vals of duration T each. The medicine also disappears from the system at a
rate proportional to e(f), the concentration of the medicine in the blood
stream, then the differential equation given by the continuity principle is

dc |
W = —fkp (35:' ‘
Integrating
= k
oty =D cxp(v— V't)' 0=tr=<T (36)

At time T, the residue of the first dose is D exp (
dose D is given so that we get >

e(r) = (D exp (—- iV .T] - I}) exp (— ir;(r —-T) ]. (37

== o} o k k
D exp ( V') -+ Dexp (— -l - T)), (38)
T=t=<<2T

k
= ?T) and now another
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if € > co, the concentration in the vessel increases to €; on the other
hand if € < o, the concentration in  <{t)y
the vessel decreases to C (Figure 2.4).

If the rate R'at which the solution
leaves the vessel is less than R, the clo)k -
equations of continuity gives | T o ————=— ——

C — e er = — T

Ed,-“[( Vo -+ (R — R"))e()] clolf”

= RC — R'(ct) (33)

L gt —=1
where I is the initial volume of the
solution in the vessel. This is also a Figure 2.4

linear differential equation of the first
order,

RN PSR RO |

2.4.2 Diffusion of Glucose or a Medicine in the Blood

Stream
Let the volume of blood in the human body be I and let the initial concen-
tration of glucose in the blood stream be ¢(0). Let glucose be introduced in
the blood stream at a constant rate /. Glucose is also removed from the
blood stream due to the physiological needs of the human body at a rate
proportional to cff), so that the conlinuity principle gives

i
V?% = I — ke (34)

which is similar to (30).
MNow let a f;luse D of a medicine be given to a patient at regular inter-
vals of duration T each. The medicine also disappears from the system at a

rate proportional to e(r), the concentration of the medicine in the blood
stream, then the differential equation given by the continuity principle is

de |
Ve = —kp |
dr ke

(35) |
Integrating

ot} = D exp (,_ iy:). 0=t<<T (36)

At time T, the residue of the first dose is D exp (— &
Fr o ¥
dose D2 is given so that we get

et) = (D eXp (—- -":-; T) - I}) exXp (— ip-_,(r —-T) ), (37)

e a k
= D exp (— ?:) + D exp (— %l‘,r = T)), (38)
T =t < 2T

T) and now another

B
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The first term pives the residual of the first dose and the second term

gives the residual of the second dose. Proceeding in the same way, we get
after n doses have been given

e(f) = Dexp (— %l‘) + D exp (-— '%{I = T])

+Dtxp(u——;[:-:;[r—2?",‘r) drii +Dexp(— -'f};ﬂ —-n"_—"m)

== N exp(— —::_—:)([ + exp (%—T) + exp (?FLT)

+..-+¢xp((n— [}-f-;-'T))

(39)

I

k

e ) SR

D exp (— ?r) = = DT =t<nT (40)
exp (~—- )— 1

I —exp (— _k_"r)
cnT — 0)=p E

41
exp (EI;) =]

exp (k_]"] — CXp (— —k—nT)
e(nT + 0)= D ¥ ¥

exp (L'—VTj —-_ 1

Thus the concentration never exceeds D,n'(l — exp (— 'I"!—T)) The graph of
~ ¢(t) is shown in Figure 2.5.

(42)

D;“_E-RTIV]F]

N

KTIV_,

— o — ==

oo

/
o
o
4

e |

G- A
Figure 2.5
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concentration decreases. [n any interval, the
at the beginning of this interval and thus maxi

inni an interval goes on increusing as
i ng of an mnter :

icentration at the beginni ! , i
E:Tucrﬂ:m of intervals increases, but the ﬂ_lﬁilmu]m \3;:: aifthe cn& Sitid

D/(1 — e ¥TI¥). The minimum value in ur: mtzr:? 1:;‘::.?;?‘“]’1 o

| i i 3 L ! s iz

i i i ases, but it lies below £ | L
interval, This also 1ncreas e, bl ok oints: of dis

The concentration curve 15 piecey

e g A llin in blood and fitting curve (36) to the

injecting glucose or penici : b .
dai}- \:.'ejcan egsliimte the value of kand V. In particular this givesa metho

for finding the volume of blood in the human body.

Thus in each interval,
concentration is maximum

2.4.3 The Case of a Succession of Compartments g

Let a solution with concentration c(t) of a solute p:dss succe;(s}l)te _(()]

tanks in which the initial concentrations of the solution ir;. ;:.l;t ,Oci;: Gu,téc;;;
finflow in each tank is the same as the Tate

en(0). The rates o gl

from the tank. We have to find the concentrations ¢i{f), ¢2
time t. We get the equations

dey

uriad] P — R

¥ dt Re Cl

pa2 . Rey — Res (43)
dt -
ﬂ'ﬂ'n _ 4 .

V dr . RCJ'I'—| R‘; "

By solving the first of these equations, we get ¢i(r). Substituting the value of
e1(t) and proceeding in the same way, we can find (1), . . . . ea(2).

EXERCISE 2.4

1. Let G(t) be the amount of glucose present in the blod@-stream of a
patient at time r. Assuming that the glucose is injected into the blood
stream at a constant rate of C grames per minute, and at the same time is
converted and removed from the blood stream at a rate proportional to the
amount of glucose present, find the amount G(f) at any time ¢. If G(0)
= G, what is the equilibrium level of glucose in the b'mod' stream?

2. A patient was given .5 micro-Curies (uci) of a type of iodine. Two
hours later .5¢¢; had been taken up by his thryroid. How much would have
been taken by the thyroid in two hours if he had been given 15u¢; ?
ﬁrisr :lgﬁiﬂ :;:1; t:'-'G‘ﬁ:i_cl‘es Aand a which_ occur in proportions p(t) and
% fors tf respectively in-the population at time 1. Suppose that allele

0 a at a constant rate u. If p(0) = ¢(0) = 1/2, find p(0) and g(r).

Write the equations when 3 . =3
ity q both alleles can mutate into each other at different

=

i s 10 0 B TR i e
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concentration decreases. [n any interval, the

Thus in each interval, f this interval and thus maxi-

- : 3 v heginning © 5 ;
yn is maximum at the 5 creasing as
mnmmm“m:ﬂﬁon at the beginning ol an interval goes on 1n 2
mum concentr: "

i value is always below
i rals i ses, but the maximum .
umber of intervals INCreases, _ i e
g‘:““ — ¢~kTi¥), The minimum value in an mtcr';'ﬂl ue:;?rir) hest
interval, This also increases, but it I:::s hclm:-' D} {e‘:q:; & ;1 £t pe ;5-[5_
The concentration curve is piecewise continuous

continuity at 7, 21, 3T, - - - i blood and fitting curve (36) to the

injecting glucose or penici : TV .
daiy '.:.'ejcan eﬁliimte the value of kand V. In particular this givesa metho

for finding the volume of blood in the human body.

2.4.3 The Case of a Succession of Compartments i S
Let a solution with concentration c(t) of a solute pass succe;{s}ne _(0]

tanks in which the initial concentrations of the solution are a1l )y c;.- tﬂc“
,(0). The rates of inflow in each tank is the same as the rate o (‘J.l.l o
from the tank. We have to find the concentralions elt), ex(n) . .. calt) 2

time f. We get the equations

FF— = Rc — Ra

V= = Rei — Rez (43)

...........

e = Rf:r—l 2t R{‘n

By solving the first of these equations, we get ¢i(r}). Substituting the value of
1(t) and proceeding in the same way, we can find &s(2), . .. . ex(?).

EXERCISE 2.4

1. Let G(r) be the amount of glucose present in the blod@-stream of a
patient at time f. Assuming that the glucose is injected into the blood
stream at a constant rate of C grames per minute, and at the same time is
converted and removed from the blood stream at a rate proportional to the
amount of glucose present, find the amount G(f) at any time ¢. If G(0)
= @Go, what is the equilibrium level of glucose in the b'mc-d- stream?

2. A patient was given .5 micro-Curies (sc) of a type of iodine. Two
hours later .5u¢; had been taken up by his thryroid. How much would have
been taken by the thyroid in two hours if he had been given 15ug; ?
ms, :]gciﬂ :Eil; t:-.ro‘a:i_c]f:s A and a which_ occur in proportions p(r) and
P t; . respectively in-the population at time 1. Suppose that allele

al a constant rate . If p(0) = ¢(0) = 1/2, find p(t) and g(r).

Write the equation . : " fos
ity q s when both alleles can mutate into each other at diffcrent

% e 1 il B TR s Bt s
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" Integrating
= ula? — x%), (45)
where .the particle is initially at rest.at x = a. Equation (44) gives
& VivE=F @6)

We take the negative sign since velocity increases as x decreases (Figure 2.5).
— — — —p —— —
WO e P

Figure 2.6

Integrating again and using the condition that at t = 0, x = a

x() = acos Vit (47
s0 Lhat

of) = —aV i sin Vi t, (48)
Thus ipsimple harmonic motion, both displacement and velocity are perio-
dic functions with period 2/ ‘\f" .

The' particle starts from A4 with zero velocity and moves towards 0 with
increasing velocity and reaches 0 at time =/24/p with velocity v/ jia. It
continue to move in the same direction, but now with decreasing velocity
till i_t reaches 4'(0A4' = a) where its velocity is again zero. It then begins
muvmgﬁtowards 0 with increasing velocity and reaches 0 with velocity v/ pa
and again comes to rest at 4 after a total time period 27/v/ 1. The periodic
motion then repeats itself,

As one example of SHM, consider a particle of mass m attached to one
end of a perfectly elastic string, the
other end of which is attached to a a o]
fixed point 0 (Figure 2,7). The particle
moves under gravity in vacuum.

Let lp be the natural length of the
string and let a be its extension when o lo

the particle is in equilibrium so that
by Hooke's law

— a ]
mg = To = Ao (49) I
_ AT
“:hcre A is the coefficient of elasti- X &
city. Now let the string be further A I
stretched a distance ¢ and then the 4M9 oy,

mass b i
2 e Icf? free. The equation of v
motion which stateg that mass x

acceleration in any direction — force
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on the particle in that direction, gives
a tx_ & (50)

or

d A x_ B (s1)
L.E'E' m fo

: f &,
which gives a simple harmenic motion with time period 27 s

ity i ing Medium
2 5.2 Motion Under Gravity in a Rasisting ' _ .
A particle falls under gravity in a medium in ‘whzfzh the resistance 15 pro-
portional to the velocity. The equation of motion 15

= = — mkv
mos = mg

or
I e - (52)
e k
Integrating i
V—o=Vek (53)
If the particle starts from rest with zero velocity. Equation (50) gives
v = (1 — e ™), (54)

<o that the velocity goes on increasing and approaches the limiting velocity
glk as t — o0. Replacing © by dx/dr, we get

'iﬁ: — gkt (55)
= F(l — e *)

Integrating and wsing x = 0 when { = 0, we get

Ve ¥V
> = Vb (56)

2.5.3 Motion of a Rocket . ‘ , i
As a first idealisation, we neglect both gravity and air a:csnstz:mu. J.b‘ rocke
moves forward because of the large supersonic velocity with which gases
produced by the burning of the fuel inside the rocket come out of the con-
verging-diverging nozzle of the rocket (Figure 2.8). ) .

Let m(r) be the mass of the rocket at time # and let it move forward wit
velocity o(r) so that the momentum at time ¢ is m((t).

In the interval of time (1, ¢ 4+ A1), the mass of the rocket becomes

mit 4 41) = m(t) + %"{—'dr 4= ofdn
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mit) mit+A5t)
vit) vit+At)
_dm  A¢
W dt
wdi’ ( vit+ ot )—u
Flgure 2.8

Since the rocket is losing mass, dm/dt is negative and the mass of gases
—dmfdt 4t moves with velocity u relative to the rocket, i.e. with a velocily
ofr 4+ A1) — w relative to the earth so that the total momentum of the rocket

and the gases at time ¢ + 4f is

mir -+ At - d¢) — ‘—'::,mi-.dt(n{f 4+ A1) — ) (57)

Since we are neglecting air resistance and gravity, there is no external force
on the rocket and as such the momentum is conserved, gi ving the equation

mie(f) = (m[r) o ‘%d:) (uff) + f%’dr)

drrt

e Ar(v — u) 4 0(dr)? (58)
Dividing by 4¢ and proceeding to the limit as 4¢ —- 0, we get
dv clrm
mir) e “-:E (59)
or
m g (60)
or
L g 1)
m(0) u (61)

assuming that the rocket starts with zero velocity

As the Tuel burns, the muss of -
(st v g g the rocket decreases, Initially the mass of

swhen mpis the Miss
b : . of the pay-lo -1
55 of the fuel and my is the mass of the sl,rucl.'ur:I:. E\"hf:l: ‘t::f:lse:hi:
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completely burnt out, my becomes zero and if vp is the velocity of the rocket
at this stage, when the fuel is all burnt, then (60) gives

s me + me + Ms mr )
s=uln mp + ms i (1 N h o mp + mg (62)

This is the maximum velocity that the rocket can attain and it depends on
the velocity u of efffux of gases and the ratio mg/(mpe <+ ms). The larger the
values of u and mg/(mp 4+ ms), the larger will be the maximum velocity
attained,

For the best modern fuels and structural materials, the maximum velocity
this gives is abount 7 km/sec. In practice it would be much less since we
have neglected air resistance and gravity, both of which tend to reduce the
velocity. However if a rocket is to place a satellite in orbit, we require a
velocity of more than 7 km/sec.

The problem can be overcome by using the concept of multi-stage
rockets.

The fuel may be carried in a number of containers and when the fuel of

a container is burnt up, the container is thrown away, so that the rocket
has not to carry any dead weight.

Thus in a three-stage rocket, let MEy, MF, MrE, be the masses of the t‘uels

and ms,, ms,, ms, be the three corresponding masses of containers, then
velocity at the end of the first stage is

mp 4+ mr -+ ms, + me + ms. + me, + ms, (63)
mp + me, + ms, + Mr, + Mms,

At the end the second stage, the velocity is

r1 = wln

mp -+ me, + me; = mg,
nmp -+ Mg, _]I_ Ms, (64}

ra=m +uln

and at the end of the third stage, the velocity

Hp + THE,

o 65)

In this way, a much larger velocity is obtained than can be obtuined by a
single-stage rocket.

n=um=uln

EXERCISE 2.5

1. Discuss the problem of Section 2.5.1 when the particle start from A
with velocity vo away from the origin,

2. Draw the graphs of o(t) and x(z) against ¢ for two complete oscillations.

3. Discuss the motion of the particle in Section 2.5.2 when ¢ > a

4. Show that for the same pay-load, same total fuel mass und some total
structure mass, the final velocity of a multistage rocket is more than that of
a single-stage rocket,

5. Discuss the motion of a rocket when gravity is taken into account.
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ﬁ. If the particle attached to the elastic string in Figure 2.7 moves in
resisting medium, discuss its motion when the resistance is Proportiong| 5
(i) velocity (ii) square of the velocity. “

'?.1D|5c:uss tt'!e motion of a particle projected vertically upwards upg
gravity '-':;th initial velocity U when the air resistance is proportional tg 1::
squars of the velocity. With what velocit i rtic
3 ¥ ocity will the particle return to the

8. Assuming that a particle projected vertically upwards from the surfa
of the earth moves in vacuum under 'a force ga?/x? directed toward “l:e
centre of earth, where x is the distance of the particle from the centre 0:-

the earth, find the initial velocity of proiection ; ;
¥ so that
return to earth. 4 e the Pjﬁl'llclﬁ never

2.6 MATHEMATICAL MODELLING OF GEOMETRI:
RICAL
PROBLEMS THROUGH ORDINARY DIFFERENTIAL
EQUATIONS OF FIRST ORDER

2.6.1 Simple Geomatrical Problems
Many gec‘rmetncal entities can be expressed in terms of derivatives and as
such relations between these entities can give rise to differential equations

whose solution ?vil] give us a family of curves for which the given relation
between geometrical entities is satisfied.

(i) .Fm‘drmr:rves for which tangent at a point is always perpendicular to
the linc joining the puint to the origin,

The slope ni:tl_uc _tangcut i5 dy/dx and the slope of line Jjoining the point
(x, ¥) to the origin is ¥/x and since these lines are given to be orthogonal

Aot 8
- b (66)
Integrating
x4 3t = g2 (67)

which represents a family of concentric circle.

G ¥
N
(a) (b) {©)
Figure 2.9

(ii) Find curves for which the.

prajection of't el
constant length. ofthe normal on the Feanis is of
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This condition gives

A _ (68)
Yide T
Integrating
¥ = 2kx + A, (69

which represents a family of parabolas, all with the same axis and sam¢
length of latus rectum.

(iii) Find curves for which tangent makes a constant angle with the radius
vector.

Here it is convenient” to use polar coordinates and the conditions of the
problem gives

r:-ﬁ = tan o« . (70)
ir ;

Integrating
F= Aeteore {T]}

which represents a family of equiangular spirals.

2.6,2 Orthogonal Trajectories

Let
Mz, 3,8 =10 (72)
represent a family of curves, one curve for each value of the parameter a.
Differentiating (72), we get
af | éf dy
Tl (73)
Eliminating a between (72) and {73), we get a differential equation of the
first order
xiv) =
F(-‘f, _P! l’fx g ui (?4]

of which (72) is the general solution.
MNow we want a family of curves
cutting every member of (72) at right
angle at all points of intersection.
At a point of intersection of the
two curves, x, ¥ are the same but the
slope of the second curve is negative
reciprocal of the slope of the first
curve. As such differential equation

of the family of orthogonal trajecto- T ais
ries is

o, - idx) =° £
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Integrating (75), we get
glx. v, b) =0, (76)
which give the orthogonal trajectories of the family (72),
(i) Let the original family be y = mx, when m is a parameter then
dyfde = m

and eliminating m, we get the differential equation of this concurrent family
of straight lines uy

Yool
= =2 (77)
To get the orthogonal trajectories, we replace dy/dx by — 1 /(dydx) to get
Lo 1
x dlwfex

Integrating
x4 g2 = 2

which gives the orthogonal traj
(i) Find the orthogonal

(78)

: ccto?ics as concentric circles (Figure 2.9a).
trajectories of the family of confocal conies

x? pr
a2 _|..l]|+ bz_l_a-__' l| {?gj

- where A i_s a parameter. Differentiating, we get

iy X y__dy
NERA T E a0

=il (80)
Eliminating 2 between (79) and (80), we get
OGP -+ ) =pla® — b, p= % (81)
To get the nrthtrgfi_nal trajectories, we replace p by — 1 Iln get
5 Ye=2) - oo
| i {;:] i J"}{:+ ) F{a h?)
However (81) and (82) arc idcj;:l" ; S h'_*jl 82)

is self-orthogonal, ie. for
same focii which cuts

family consisty

C of confocal

:ﬂ;prms and the other consists of
“oca} hyperbolag with the sam

focii (Figure 2 | 1) :

ﬂn(;ﬂ:hlndpﬂ!&r coordinates after get-

g 7 . z
: ifferential equation of the

amily of curves, we have tq replace

L8 de
ar by l/(r EF"FJ and then integrate
the resulting differentig] equation

Flgure 2.11

[N P
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Then if the original family is

C e ows AEERTTTTE M VAT T

r=lagcosf, (83)

with @ = 0 as a parameter, its differential equation is obtained by eliminating
a between (83) and

i
:T;- = —2gsin 0 (B4)
to get
(¢
rd—- = —cot # : (#5)
ir | KASBC LIBRARY '
. i 4y -t
Replacing r — by —|r—
ors v () e [N
] 17787
r‘j—— = tan ¢ (86)
r
Integrating we get
r = 2b sin § (87)
The orthogonal trajectories are shown in Figure 2.12.
Y -
o774 Science E;ﬁ
A 7 \ - :}ﬁa“ S
;& 7 heen. NEG-D oS i
=1 - apaasy annkamans £
K-:\--'.,l Dat®em. - x
o -~
B o
0 N g et
s Olmﬁmgre-ﬁ'
T e
Figure 2.12 50 P3 EAP

The circles of both families pass through the origin, but while the centre
of one family lie on x-axis, the centres of the orthogonal family lie on y-axis,

EXERCISE 2.6

1. Find a family of curves such that for each curve, the length of the
tangent intercepted between the axes is of constant length. Draw the curves.

2. Find a family of curves such that for each curve, the length of tangent
intercepted. between the point (x, ¥) and the axis of y is of constant length.

3. Find a curve such that all rays of light starting from the origin are
reflected from points of the curve in the direction of the y-axis.

4. Find a curve such that all rays emanating from a given point (—a, 0)
after being reflected from points on the curve pass through the point (a, 0).
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5.. Find the orthogonal trajectories of the families of curves
(i) 2 = dex (i) x2 + * — 2ax =0
(iii) r = ae’*>** (iv) y* = dex + 4c*
(v) r = a(l -+ cos )
5. In electrostatics, lines of force always cut equipo

at right angles. Find lines of force and equipoten
charge (ii) for two charges, and verify the result stated.

tential curves (surfaces)
tial surfaces for (i) one

E
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Part B (6 Marks)

1. Write a note on Radio — Active Decay.

2. Discuss a simple Compartment Model.

3. Give a brief note on diffusion or a medicine in the blood stream.

4. Suppose the population of the world now is 4 billion and its doubling period is 35 years,what will be
the population of the world after 350 years?

5. Design a mathematical model for motion of a rocket.

6. Give an explanatory note on simple compartment models

7. Explain about simple harmonic motion.

8. Discuss in detail about motion under gravity in a resisting medium.

9. Find the relation between doubling, tripling and quadrupling times a population.

Part C (10 Marks)

1. Discuss about logistic law of population growth.
. Discuss a simple Compartment Model.

. Give an explanatory note on simple compartment models.

AW

. Explain about simple geometric problems.
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Unit I

Part A (20x1=20 Marks)

(Question Nos. 1 to 20 Online Examinations)

Possible Questions

Question Opt1 Opt 2 Opt3 Opt 4 Answer
If there is one dependent continuous variable and a
number of independent continuous variables then system
is called ODE PDE LDE None PDE
If there is one dependent variable and a one
independent variable then system is called ODE PDE LDE None ODE

Business and

In populatioanal growth model b and d denotes birth and death death birth and decrease [None birth and death
In populatioanal growth T is called Doubling period |Half life period |Total period Time period Doubling period
In growth if sciences and scientists the no of scientist
should grow Logically exponentially inversely proportionally Exponentially
If there is immigration into the population from outside
at a rate to the population size Logically exponentially inversely proportionally Proportionally
e is the amount of an initial capital of 1 unit invested for
1 unit of time then the interest at unit rate is
continuously simple compounded cumulative principle compounded
e is the amount of an initial capital of 1 unit invested for
______unit of time then the interest at unit rate is
compounded continuously 1 2 3 4 1
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In radio geology the of age solar system is used to

estimate Radio active Diffusion Decay immigration Radio active

The ratio of radio carbon to ordinary carbon in dead

plants and animals enables to estimate their
Time of birth time of death Time of dating None Time of death

law is used in the model' decrease of
temperature' Fick's Hooke's Newton's Gauss Newton's
law is used in the model Diffusion’ Fick's Hooke's Newton's Gauss Fick's

If P(t) price of commodity and its rate of change is

proportional to the between demand and

supply Addition Difference Division Multiplication Difference

If P(t) price of commodity and its rate of change is

to the difference between demand and

supply Logically exponentially inversely Proportional Proportional

In the model 'change of price of commodity S(t) denotes|System Supply Size None Supply

In the model 'change of price of commodity d(t) denotes|Demand Death Decrease Diffusion Demand

In the model 'change of price of commodity p, denotes [Equilibrium price |Eligible price Essential price Evaluation price Equilibrium price

As population increases the birth rate be decrease and

death rate be Increases stable decreases None Increases

As population increases the birth rate be

and death rate be increases Increases stable decreases None Decreases
Total no of companies region rate Total no of companies
companies adopted

In the model spread of technological innovation and technological

infestious diseases kKN(R-N), R denotes innovation

In rate of dissonution CO be

concentration Maximum Minimum Both None Maximum

Two chemical substances combined in the ratio

to form the third substances Z ab a:2b 2a:b a:3b ab

The gain in amount of a substance in a medium in any

time is to the excess of the amount that has

entered the medium Equal Proportional Linear Exponential Equal
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The gain in amount of a substance in a medium in any
time is equal to the excess of the amount that has

the medium exit entered outer None entered
A particle moves in a straight line then its acceleration is

to its distance from the origin Logically exponentially inversely Proportional proportional
A particle moves in a straight line then its acceleration is
proportional to its distance from the origin states that SHM MOR MUG None SHM
A particle falls under in a medium in which
resistance is proportional to the velocity Gravity Sense Force Mass Gravity
A particle falls under gravity in a medium in which
resistance is proportional to the Velocity Sense Force Mass Velocity
The equation of motion which states that mass x
acceleration in any direction is on the
particle Velocity Sense Force Mass Force
A rocket moves forward because of the large

velocity Ultra Supersonic Infrared None Supersonic

m(t) be the mass of rocket at time t with velocity v(t)
then momentum is m(t)+v(t) m(t)v(t) m(t)-v(t) m(t)/v(t) m(t)v(t)
mass of the rocket = mF+mP-+mS then F is Fuel pay load structure ferrocity Fuel
mass of the rocket = mF+mP+mS then P is Pressure pay load structure ferrocity pay load
mass of the rocket = mF+mP-+mS then S is System pay load structure ferrocity structure
Curves for which tangent at a point is to
the line joining the point to the origin. Equal Proportional Perpendicular Exponential Perpendicular
Curves for which tangent at a point is perpendicular to
the line joining the point to the . centre point origin parallel origin
Curves for which the projection of the normal on the x
axis is of length. Variable Constant unit y axis Constant
Curves for which the of the normal on the x
axis is of constant length. Projection Property Process parameter Projection
Curves for which the projection of the on the
x axis is of constant length. Normal Proportional Perpendicular Exponential Normal
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Curves for which makes a constant angle

with the radius vector. tangent Secant Cosecant Cot tangent
Curves for which tangent makes a constant angle with

the vector. diameter radius unit scalar radius
Curves for which tangent makes a angle

with the radius vector. Variable Constant unit y axis Constant

The point of intersection of two curves the slope of
second curve is reciprocal of the first curve. |Positive negative unity trajective negative

The point of intersection of two curves the slope of

second curve is negative of the first curve. Proportional reciprocal Exponential Logically reciprocal
The circles of both families pass through Point centre Origin None Origin
The centres of one family lie on x axis the centres of
orthogonal family lie on X axis Y axis Both axes None Y axis
The centres of one family lie on x axis the centres of
family lie on Y axis. Proportional linear unit orthogonal orthogonal
The centres of one family lie on the centres of
orthogonal family lie on Y axis. X axis Y axis Both axes None X axis
The family of confocal conics are self orthogonal proportional orthogonal linear self orthogonal
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Mathematical Modeling through Systems of Ordinary Differential Equations of First Order:
Population Dynamics — Epidemics — Compartment Models — Economics — Medicine, Arms
Race, Battles and International Trade — Dynamics.
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Mathematical Modelling Through -
Systems of Ordinary Differentlal
Equations of the First Order

3.1 MATHEMATICAL MODELLING IN POPULATION DYNAMICS

3.1.1 Prey-Predator Models : {
Let x(), y(¢) be the populations of the prey and predator species at tlme L. i
We assumé that

(i) if there are no predators, the prey species will grow at a rate propor-
tional to the population of the prey species,

(i) if there are no prey, the predator species will decline at a rate
proportional to the population of the predator species,

(iii) the presence of both predators and preys is beneficial to growth of
predator species and is harmful to growth of prey species. More specifically
the predator species increases and the prey species decreases at rates
proportional to the product of the two populations.

These assumptions give the systems of non-linear first order ordinary
differential equations

L ax by =xa—h),  ab>0 M
dy . . | ; '
T TRy + gy = =yp—qx), p,qg>0 )
Now dx/dt, dy/dt both vanish if
s taa s b LR .
)f Xe q Y =Y 5 R 3)
If the initial populations of prey and predator species are p/q and a/b ¥

respectively, the populations will not change with time. These are the equi-
librium sizes of the populations of the two species. Of course x = 0,y =0
also gives another equilibrium position.

‘From.(1) and (2)

dy _ e —ax) 4/ : @
dx xla —by) - —7717—

—
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or
a— by iy s P = Bgx. xo = x(0), yo = ¥(0) (5)
: x
Integrating
aln 2 4+ pln = = by — yo) + g(x — xo) (6)
Yo Xo

Thus through every point of the first quadrant of the x-y plane, there is a
unique trajectory. No two trajectories can intersect, since intersection will
imply two different slopes at the same point. '

1f we start with (0, 0) or ( p/g, a/b), we get point trajectories. If we s_tart
with X = xo, » =0, from (1) and (2), we find that x increases while y
remains zero. Similarly if we start with x = 0, y = yo, we find that x

remains zero while y decreases. Thus positive axes of x and y give two line
trajectories (Figure 3.1).

y )
A/

—>= X (t)

1 s if the initi i
positive, the populations will be always positi P tie v lations, gp
(or both) species is initially zero, it will

The lines through (p/q, a/b) parallel t
first quadrant into four parts I, II, 111

always remain zero,

o the axes of coordinates divi
i livide the
and IV. Using (1), (2), we find that

dyfdt > 0,  gydx < o
dyldt < 0, dyldx > 0
dyldt < 0, dyldx < 0
dvldt >0,  dyjax > ¢

inl, dx[dt < 0,
inll, dx/dt < o,
in I, dx/dt > o,
in 1V, dx/dt > O,
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This give the direction field at all points as shown in Figure 3.1. Each
trajectory is a closed convex curve. These trajectories appear relatively
cramped near the axes.

In T'and II, prey species decreases and in III and IV, it increases. Similarly
in IV and 1, predator specics increases and in II and III, it decreases. After
a certain period, both species return to their original sizes and thus both
species sizes vary periodically with time.

3.1.2 Competition Models

Let x(#) and y(f) be the populations of two species competing for the same
resources, then each species grows in the absence of the other species, and
the rate of growth of each species decreases due to the presence of the other
species. This gives the system of differential equations

L‘:—T-=ax—bxy=bx(%"y); a>0, b>0 ‘ ™

d
‘7);—=py-*qu=y(13—qx)=qy(%—x); #7>>0, ¢>0 (@)

There are two equilibrium positions viz. (0, 0) and (p/g, a/b). There are
two point trajectories viz. (0, 0) and (p/q, a/b) and there are two line
trajectories viz. x = O and y = 0.
In I dx(dt < 0, dyldr << 0, dyldx = 0 S ()
In Il dx/dt < 0, dyldt > 0, dyldx < 0
InII dx/dt >0, dyldt >0, dyldc>0
In1V dx/dt >0, dyldt <0, dyldx <0 (10)

This gives the direction field as shown in Figure 3.2. From (7) and (8)

dy _ y(p — gx) W g 2 e :
de  xa—by y % = ol ()
Integrating ‘
K . ) Simed b 3
aln e by —yo)=pln = g(x — xo) 12)

o}
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The trajectory which passes through (p/g, a/b) is
::In-l:z—y—-by-l-a:pln%t—qx—i—p (13)

If the initial populations correspond to the point A4, 'ultimz.a.tely. the first
specics dies but and the second species increases in size to.infinity. If the
initial populations correspond to the point B, then uI_tm.latE]y‘the S‘_?c?f_ld
species dies out and the first species tends to infinity. Similarly if the initial
populations correspond to point C, the first species dies out and the second
species goes to infinity and if the initial populations correspt_)ﬂd to point D,
the second species dies out and the first species goes to infinity. _

If the initial populations correspond to point E or F, the SPESs popula-
tions converge to equilibrium populations p/g, a/b and if the initial popula-
tion correspond to point G, H, the first and second species die out
respectively. ’

Thus except when the initial populations correspond to points on curves
O'E and O'F, only one species will survive in the competition process and
the species can coexist only when the initial population sizes correspond to
points on the curve EF.

It is also interesting to note that while the initial populations correspond-.
ing to A, E, B are quite close to one another, the ultimate behaviour of these
populations are drastically different. For populations starting at A, the
second species alone survives, for populations starting at B, the first species
alone survives, while for population starting at E, both species can coexist.
Thus a slight change in the initial population sizes can have a catastrophic
effect on the ultimate behaviour.

It may also be noted that for both prey-predator and competition models,
we have obtained a great deal of insight into the models “without using the
solution of these equations (1), (2) or (7), (8). By using numerical methods
of integration with the help of computers, we can draw some typical trajec-

tories in both cases and can get additional insight into the behaviour of these
models.

_ 3.1.3 Multi-species Models

We can consider the model represented by the system of differential equations

d. .
% = aix1 + bnx% + b11x1x2 -+ .. . blnxlxn

axs | |
dtz = azx2 + baxaxt + bax3 4 .. 4+ banx2xn (14
dxn 3 ] H
= A buxaxt - buxexa + i 4 by
!
. 1 -"3
Here x1(1), xa(t), . . ., xx(t) represent the populations of the z species. |

Also a; is positive or negative according as the ith species grows or decays
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in the absence of other species and by is positive or negative according as
the ith species benefits or is harmed by the presence of the jth species. In
general b;; is negative since members of the ith species also compete among
themselves for limited resources.

We can find the positions of equilibrium by putting
dxifdt = 0 for i=1,2,...n

and solving the n algebraic equations for x1, x2, . . ., x». We can also obtain
all degenerate solutions in which one or more x/’s are zero, i.e. in which
one or more species have disappeared and finally we have the equilibrium
position in which all species can disappear.

If x10, x20, . . ., xn0 is an equilibrium position, we can discuss its local
stability by substituting
X1 =Xx10+ w1, x2= 220+ u2,..., Xn= Xn0 + Un (15)
14) and getting a system of linear differential equations
du|
ar = cnm =+ ciau2 + .. . 4+ cCintin
u
‘(}?2 = caty + c2auz + ... -+ Canlin ) (16)
du
?!" = Cnillt + Cuztiz + . . . & Conlin,

by neglecting squares, products and higher powers of w’s. We can try the
solutions w1 = A1e™, ua = AzeM, . . ., us = Ane™ to get

cip — A Ci2 c13 . Cln
€21 2 — A c23 c. C2n

=0 an
Cnil Cn2 Cn3 e Crin — A

Thus the equilibrium position would be stable if the real parts of all the
eigenvalues of the matrix [c;] are negative. The conditions for this are given
by Routh-Hurwitz criterion which states that all the roots of

aox” + aix™ ' + ...+ an =0, ap > 0 (18)

will have negative real parts if and only if To, T, T2, , . . are positive where

ai ao 0
a ao |
To=a, Th=a, T2= sy T3 =| m az a
as as
as as as
a agp 0 0
a3 az @ 0
Ty = (19)
as a4 as az
az 273 as 28]
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This is true if and only if @ > 0 and either all even-numbered 7% or nll odd-
numbered Tk are positive. Alternatively (18) will have allvoots with neguative
real parts iff this is true for the (n — 1)th degree equation

@ -2 G0 nd =2 () (20
' =, 1 n—=3 — vemm il - - ] "
ax=! + @x*? + ax" + ... X " ' (20)

The above method will enable us to discuss only locnl stability ‘.”‘ n ‘plml—
tion of equilibrium, i.e. this will decide that if the populations of dilferent
species are changed slightly from these cquiliblriun? values, whether rt'lm
population sizes will return to their original cqmlihru‘lm values or not, The
problem of discussing the global stability i.e. of disoussing whether the
populations will return to these equilibrium values, whatever be the magni-
tudes of the disturbances, is a more difficult problem and it ia posaible to
solve this problem in special cases only.

ek g A A S

JEPREEYC

3.1.4 Age-Structured Population Models

Let xi(r), x2(1), - . ., xz(t) be the populations of the p pre-reproduct ive nge-
groups; let xp11(7), - . . , Xpiq(f) be the populations of ¢ reproductive age-
groups and let Xpig+1(?), - - -, Npia+r(r) be the populations of the r post-
reproductive age-groups. Let bpi1, Bpia, . . ., bpig be the birth rates in the
g reproductive age-groups, let d; be the death rates in the ith nge-group
(i=1,2,...,p + g+ r) and let m; be the rate of migration from the Jih
age-group to the (j 4 1)th age-group (/= 1,2,....p - q -+ r —1),
then we get the system of differential equations

dxr :
d—? = bpr1Xps1 + . o . BpigXpre — (di -F mi)x

o = X — (ds + ma)x2

................

dxn
?t = Mp-1Xn-1 — dn.\'n; n=pn + q "i_' r |
X |
M x )
d x2(1) f
(_It_ 4
L xa() .
[ —(d + m) 0 Dot wvs Dyt esa 0 0°
my —2+m) .. 0o ... 0 . O 0
= 0 ma ‘o . § 0 . 0 0
- S

. Mot —tln ] é
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xi(1)
xa(1)
p (22)
.\'rl(’)
or
dx 23
g = AX®), (23)

where A is a matrix, all of whose diagonal elements are negative, all of whose
main subdiagonal clements are positive, ¢ other elements of the first row are
positive and all other elements are zero, Equation (22) has the solution

X(1) = exp (ANX(0) (24)

EXERCISES 3.1

1. Draw some trajectories for the model

dx & _ o1
T x(1 — 0.1y), = = y(1 — 0.1x)

2 Discuss the stability of the equilibrium positions (0, 0) and (p/q, a/b)
for the prey-predator model represented by equations (1) and (2) and the
competition model represented by equations (7) and (8).

3. Draw some trajectories for the competition model

dx dy

Tl -0y, T =1 — 0.1%).
4. By integrating (1), (2) round a closed trajectory, show that
0 =a% — bxy, 0= —py+ qxy
0 =a— by 0= —p + ¢X,

T __1Td——_1j7“ 4
where ¥ = _fju x(t)ydt, ¥ = —T—L ytyde, xy= 7o x(6)y(1) dt,

and T is the time for the populations to return to original values.

5. Write the basic equations for the wolf-goat-cabbage model in which
wolves cat goats, goats eat cabbages, but wolves do not cat cabbages.

6. Show that the model represented by

‘) -
A  (4—x—y), ZF=y15—5x—3), x>0, y>0
dt dt

has a position of equilibrium, this position is stable and two species can

coexist,
7. Show that the model represented by
dx dy

dx e By , = = —x—, x =0 »=0
< = x(15 — 5x ) g =YW »
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has a position of equilibrium, this position is unstable, onl_y'one_spec'es will
survive and which species survives depends on initial conditions:
8. Show that the model represented by

'i—f-—-x(m — 60 — Sy),g—f*—*y(lz g0 - Bl X2 N
¢

\Y

0

has no position of ¢quilibrium and that only the first species will ssmviye
9. Show that the model represented by

2 di i =0,y=0
g%=x(12—4x——3y)= ;rf‘=y(30—6x ), * P

has no position of equilibrium and that only the second species \jnll sgr;wz.f

10. For the model representing competition between two species, € ch. 4
which can exist and grow without the other El!:ld. contact between whic
inhibits the growth of both, the differential equations are given by

. d _
;i,f- = x(41 — Bix — C1y), z‘,—'}v = y(A2 — B2y C2x),

where 41, B1, Ci1, A2, Ba, C2 are all positive. .
Show that

(i) the equilibrium will be biologically meaningful, i.e. the equilibrium
position will be in the first quadrant if

B2/C2 > Aaf/Ay > Cz/Bj or Caf/B1 > AxfA1 > Bs/C;.

(ii) if a biologically meaningful equilibrium exists, it will be stable iff

BiB2 > C1Cs, i.e. if the product of self-restraint coefficients is greater than
the product of the other restraint coefficients.

(iii) if the equilibrium does not exist, the first species will survive if

A1/C2 > A2/B, and A1/B1 > A2/Ca.
11. Discuss the modification of the prey-predator model when

(i) the predator population is harvested at a constant rate /; or
(1_1) the prey population is harvested at a constant rate /2 or
(iif) both species are harvested at constant rates,

12. Discuss the possibility of

' the existence of a stable age-structure i.e.
age-structure which does not ch

ange with time in the model of Section 3.1.4.
3.2 MATHEMATICAL MODELL|

SYSTEMS OF ORDINAR
OF FIRST ORDER

NG OF EPIDEMICS THROUGH
DIFFERENTIAL EQUATIONS

3.2.1 A Simple Epidemic Model
Let

N S(t) and I_(t) be the number of susceptibles (i.e. those who can get a
'Sf’ase) and infected pérsons (i.e. those who have already got the disease).
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Initially let there be n susceptible and one infected person in the system so
that

SO +I10)=n 41, S(0) = n, 10) =1 (25)

The numb'cr of infected persons grows at a rate proportional.to the product
of susceptible and infected persons and the number of susceptible persons
decreases at the same rate so that we get the system of differential equations

% = —Bs1, % = BSI, (26)
so that
=y -+ g =0, S(1) -+ I(t) = constant = n + 1 7N
and
%g = —BS(r + 1 — 9),
(28)
& — 1 +1 - 1.
Integrating
s = 2, = @Dt 29)
so that
;&E: S(r) =0, l.;ato Ir) =n+1 (30)

3.2.2 A Susceptible-Infected-Susceptible (SIS) Model
Here, a susceptible person can become infected at a rate proportional to S7
and an infected persen can recover and become susceptible again at a rate

Y1, so that

ds _ ' ar _ 1

= —BSI+ ¥, &= BST — ¥I, _ (31)
which gives

A B+ 1) — N1 — B2 e

3.2.3 SIS Model with Constant Number of Carriers
Here infection is spread both by infectives and a constant number C of
carriers, so that (30) becomes

' 5 = B+ C)s I
-i .
| S =pCn + 1)+ Bl 1 —

=t

c-vpr—pn G
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el

i i i iers
3.2.4 Simple Epidence Model with Carri .
In this model, only carriers spread the disease and t.hﬂl-l' number lv;'iecn::as*.es
exponentially with time as these are identified and eliminated, so that we get

g‘; = "‘ﬁS(t)C(I) -+ VYI(I), g—{ — ‘BC(;)S(Q -"‘7'1'(1),
e 0 -
7 i —aC ‘
so that . |
S(t) + I(I) =5+ h = N(say), c(t) = _Co exp (—at) (35) ;
and ’
il = ﬁCONCXP (_Qﬂ‘) = [ﬂCo exXp (——czt) —[— Y]I (36) {

dt

3.2.3 Model with Removal )
Here infected persons are removed by death or hospitalisation at a rate

~ proportional to the number of infectives, so that the model is

ds & . dl g - _1’_)
E{“‘_'BSI’ 5 = BSI ')’I—BI(S g

= BIS —p); P= o

wi'th initial conditions
S(0) =S0>0, K0)= Ir)>0, R(0) = Ro=0,
So+ Io = N. (38)
3.2.6 Model with Removal and Immigration

We modify the above model to allow for the increase of susceptibles at a
constant rate pn so that the model is

s _ ar dR
ar = ~BSI+p, 5 = BSI— I, o ="L. (39)
EXERCISE 3.2

1. Verify (29) and (30).
2. Integrate (32) and show that ' .

0 = bl AF 18 e PlE

, =0 if - n4+1<p
2. ISolve: SIS model when B is a known function of .
- Integrate (36) and find limit of I(t)as t - o

5. Discuss integration of A
your results, models given by (37) and (39) and interpret
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3.3 COMPARTMENT MODELS THROUGH SYSTEMS OF
ORDINARY DIFFERENTIAL EQUATIONS

Pharmokinetics (also called drug kinetics or tracer kinetics or multi-compart-

ment analysis) deals with the distribution of drugs, chemicals, tracers or

radio-active substances among various compartments of the body where

compartments are real or fictitious spaces for drugs.

Let xi(r} be the amount of the drug in the ith compartment at time 7. We
shall assume that the amount that can be transferred from the ith to the jth.
compartment (j # i) in the time interval (¢, t + 4¢) is kyxi(1)4t + 0(d¢)
where ki; is called the transfer coefficient from the ith to the jth compart-
ment. The total change 4.x;intime 4¢ is given by the amount entering the ith
compartment from other compartments which is reduced by the amount
leaving the ith compartment for other compartments including the zeroeth

compartment that denotes the outside system.
Thus we get

n n

Adx; = — ‘anij.\f.‘!jt 4 2 kuxidr + 0(49) (40)
J= i=1
i Jei

Dividing by 4t and proceeding to the limit as 47 — 0, we get

dxf n n
ik —".ijfl ki - jfl kjix; (41)
J#i Jj#l
= f kleCj, (I‘ = ],'2, - e e M, (42)
where we define
ki = — f\ ky, (i=1,2,"..,n) (43)
J#Q
In matrix notation, we have
dX/dr = KX, (44)
where
xi(t) 7]
k k ek
alt) u ka L)
X(t) = . , K=| kiz ko2 .-+ [y (45)
0 kin an .’\—' i
L »\'n(f) o
If X = Be*, when B is a column matrix, (44) gives
ABeM = K BeM (46)
This gives a consistant system of equations to determine B if
| K —AI'| =0 (47)
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where 7 is n % n unit matrix. Thus A has to be an eigenvalue of the matrix K. 1
We note that all the diagonal elements of K are negative, all the non-diago- |
nal elements are non-negative and the sum of element of every column is
greater than or equal to zero. For such a matrix, it can be shown that the

real parts of the cigenvalues are always less than or equal to zero, and the
imaginary part is non-zero only when the real part is strictly less than zero.

Thus if Ay, A2, . .., Ay are the eigenvalues then

Re () < 0

Im (A) # 0 only if R1 (A;) < 0 - (48)

If the drug is injected at a constant rate given by the column vector D
with components Dy, Dz, ..., Da, (44) becomes -

dX/dt = KX + D (49)

Equations (44) and (49) constitute the basic equations for the analysis of
drug distribution in the n-compartment system.

EXERCISE 3.3
1. Solve (44) and (49) for given initial conditions.
2. Let dose D be given at time O, T, 2T, 3T, ..., Find

X(nT — 0), X(nT +0), X(nT + 1), 0O<t<T)

3. Discuss the special cases whenn = 1, n = 2.
3.4 MATHEMATICAL MODELLING IN ECONOMICS BASED

ON SYSTEMS OF ORDINARY DIFFERENTIAL
EQUATIONS OF FIRST ORDER

3.4.1 Domar Macro Model

Let S(1), I(2), ¥(1) be the Savings, Investment and National Income at time
7, then it is assumed that

(i) Savings are proportional to national income, so that
S(t) = a¥(t), >0

(ii) Investment is proportional to the rate of increase of national income

50 that
) =BY'(1), B> 0 (51) |
(iii) All savings are invested, so that ;
(1) = K1) 2 4

We get a system of three ordinary dj iz i .
et y differential equations of first order fo
determining S(1), Y(1), I(1). Solving we get ;s

YO = YO) e, (1) = av(0)ex? = s(1), (53)

50 that the national income, inv

. estment and i ; %
tially. savings all increase exponen
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3.4.2 Domar First Debt Model : \
Let D(r), Y(¢) denote the total national debt and total national income
respectively, then we assume that

(i) Rate at which national debt changes is proportional to national income

so that /

D'(1) = o¥(t) (54)
(ii) National income increases at a constant rate, so that

Y'(t) =8 _ (55)
Solving D(t) = D(0) + ai’(O)t -+ —%ﬂﬁtz (56)
Y(r) = Y(0) + Bt ; (57)
D(t)_ D(0) + «¥(0)t + 1/2xBt2 sg
so that Yo) = Y0) + Bt (58)

In this model, the ratio of national debt to national income tends to increase
without limit.

3.4.3 Domar’s Second Debt Model

In this model, the first assumption remains the same, but the second assump-
tion is replaced by the assumption that the rate of increase of national
income is proportional to the national income so that

Y'(n) = BY(1) (59)
Solving (54) and (59) ’

Y(1) = Y(0)eP* (60_)

() = D(0) + FYOXe™ — 1) (61)

2 = T+ F— e )

In this case D(7)/Y(t) = «/B as t = . Thus when debt increases at a rate
proportional to income, then if the ratio of debt to income is notto increase
indefinitely, income must increase exponentially.

3.4.4 Allen’s Speculative Model
Let d(1), s(i), p(t) denote the demand, supply and price of a commodity,
then this model is given by
d(t) = xo + oap(t) + a2p’(t), 20 > 0,01 < 0,02 >0 (63)
s(t) = Bo + Pip(t) + Bap'(£), Bo>0,$1 > 0,2 <0 (64)
If w3 =0, B2 = O this gives Evan’s price-adjustment model in which
%; < 0 since when price increases, demand decreases and B; > 0 since

when price increases, supply increases. In Allen’s model, coefficients a2, B2
account for the effect of speculation. If the price is increasing, demand
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increases in the expectation of the further increase in prices and supply
decreases for the same reason,

For dynamic equilibrium

d) = s, ®s 4

so that (63), (64) and (65) give
(B2 — o) L - (B, — ) pl1) = o0 — B 66) §

Solving | | a
p(&) = pe + (p(0) — poeX, . 6n

where ;

oo — Po ap —.B

= y A= —T

i p—r- Bz — a2

The behaviour of p(r) depends on whether p(c0) or p. is large and
whether A < 0 or A > 0. The speculative model is highly unstable.

——————e i,

(68)

JOSEATS,

—

3.4.5 Samuelson's Investment Model

Let K(#) represent the capital and I(f) the investment at time ¢, then we
assume that

(i) the investment gives the rate of increase of capital so that

d
—dif = 1(t) (69)

(ii) the deficiency of capital below a certain equilibrium level leads to an
acceleration of the rate of investment proportional to this deficiency and a 3
surplus of capital above this equilibrium level leads to a declaration of the
rate of investment, again proportional to the surplus, so that

ar

| 7 = —m(K() —Ko), (70)
where K. is the capital equilibrium level. If k(r) = K(t) — K., we get
dk _ .~ dl | |
ar = 10, 2= —mk(1), an
so that ; :
-
ity = L _ AL dk _ar -
mk(t) i e Iﬁ -(72)
Integrating :
P = m(ki — k2); ko = k(0); 1(0) = 0, (73)
so that
dk Sy o
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and k(1) = k(0) cos 4/ ¢ (75)
I(t) = —k(0) /m sin Vb (76)

so that both k(1) and 7(¢) oscillate with a time period 2@/+/m.

It will be noted that if we put k(r) = x(£), I(f) = »(1), equations (71) are
the equations for simple harmonic motion. Thus the mathematical models-
for the oscillation of a particle in a simple harmonic motion and for the
oscillation of capital about its equilibrium value are the same,

3.4.6 Samuelson’s Modified Investment Model
In this case, -th‘e rate of investment is slowed not only by excess capital as
before, but it is also slowed by a high investment level so that (71) become

dk dr : ‘ ;
5 = (), e —mk(t) — ni(t), : (77)
so that
| LA—_ |
T + mk(t) + nl(t) = 0, (78)
dk dk :
or e +”§;‘+mk =0, (79)

which are the equations for damped harmonic motion corresponding to the
case when a particle performing SHM is acted as by a resistance force pro-
portional to the velocity. i

3.4.7 Stability of Market Equilibrium - . . 1
Let p(#), 5/(t) and d,(1) be the price, supply and demand of a commodity
im the rth market, so that Evan’s price adjustment model mechanism
suggests

dpr
% =—plsr—d), r=1,2,...,n (80)

Now we assume that the supply and demand of the commodity in the rth
market depends upon its price in all the markets, so that

r — dr = CF A:': rs Ps
K o + .2 drs P @8N
where ¢,’s and d,s’s are constants. From (80) and (81), we get

dp &

== —filee + Z dupd, r=12,...,n (82)
If p1e, pae, . .. pac are the equilibrium prices in the n markets and

Py = Pr — Pre,

we get

dP' n n

T&" == _F’;E‘: desPy = :{‘l ersP;, r = ) e L) _ (83)
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thre Cry = "".“rdr.l (84).
Substituting P, = A,eM and eliminating Ay, Az, . .., 4a, we get
I Al — E' = 0, E = [ers] (85)

Thus the equilibrium will be stable if all'the eigen-values of the matrix E
have negative real parts.

Ifds = 0 when r # s, the markets are independent so that non-zero
value of some or all of these drs’s introduce dependence among markets.

3.4.8 Leontief's Open and Closed Dynamical Systems for
Inter-industry Relations
We consider n industries. Let

Xrs = contribution from the rth industry to the sth industry per unit time
Xr = contribution from the rth industry to consumers per unit time
&+ = total output of the rth industry per unit time
& = input of labour in the rth industry
Pr = price per unit of the product of the rth industry
W = wage per unit of labour per unit time
¥ = total labour input into the system
Sre = stock of the product of the rth industry held by the sth industrey
Sr = stock of the rth industry, '
Thus we get the following equations:

(i) From the principle of continuity, the rate of change of stock of the

rth industry = excess of the total output of the rth industry per unit time
over the contribution of the rth indust
per unit time, so that

d n

ES,.:X;-—X.P _J_z; Xrs (86)
nd si r= z s
and since Sr=Z 8 7 7)
-E. ‘f' S - n V -
dr 5, o= Xr — Xy — sfl Xrs, -(r =1, 2, & W iy n) (83)

(ii) Since the total labour input into the system = sum of labour inputs
into all industries, we get

n
¥ = ,‘3 (2 (89)
(iii) Assuming the condition of perfect competition and no profit

industry, we should have for each industry the value of input equa
value of output so that

n

prX, = .'{] DPsXsr + W E'j r=1, 2 g n) (90)

in each
l to the
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(iv) We further assume that the input coeflicients
__ Xrs "Srs f &
Qrs = — TRt =
rs Xs, by Xg’ br-ﬁ(?,.j‘: 1, 2,‘..,’1) (91)
are constants,
We then get the equations

duinl ‘ n
ar S X=X —x— Zax, ¢=12...m 62

Y= 2 bX, ‘ (93)

n

Pr= s‘-"."l Pslsr -+ whyy, (r=1,2,...,n) (94)

We assume that the constants a,,, b, b;, are known. We -also assume that
X1, X2,.. . ., Xnand w are given to us as function of time, then equations
(92) determine X1, X, . . ., X, and then (93) determines Y-and finally (94)
determine p1, p2, . . . , Pa. .

Thus if the final consumer’s demands rom all industries are known as
functions of time, we can find the outpit which each industry must give
.and the total labour force required at any time. Knowihg the wage rate at
any time, we can find the prices of products of different industries.

EXERCISE 3.4

1. Solve Domer debt model when Y'(r) = BY™(#) and deduce the two
models of subsections 3.4.2 and 3.4.3 by letting n — 0 and n — 1. Discuss
the behaviour of D((¢)/¥(t) as t — o for a general value of .

2. Discuss the solution of Allen’s speculative model When (i) A > 0
(ii) A < 0 (iii) p > p(0) (iv) p. < p(0) and interpret the solution in each

case.

3. Discuss the solution of Samuelson’s modified investment models, when |
dk __ |
i (1), e mk"(t)
e I _ _pok(e) — nI

4. Discuss in detail the particular case of 3.4.7 when n = 2.
5. Obtain the steady-state solution of Leontief’s model.

S RACE

3.5 MATHEMATICAL MODELS IN MEDICINE, ARM :
BATTLES AND INTERNATIONAL TRADE IN TERMS OF
SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

3.5.1 A Model for Diabetes Mellitus .
Let x(1), y(¢) be the blood sugar and insulin levels in the bl-ood strea_m‘:t
time ¢ 'i"he rate of change dy/dt of insulin level is proportional to (i) the

P}
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excess \(r)--,\u of sugar in.blood over its fasting level, since this exces
makes the pancreas secréte ‘insulin into the blood stream (ii) the amoun
»(r) of insulin since insulin left to itself tends to decay at a rate proportiona 3
to its amount and (iii) the insulin dose d(r) injected per unit time. This give

:';_J'" = ar (x — xo) H(x — xo) —azy + axd(f), (95

where a1, a2, a» are positive constants and H(x) is a step function whict
takes the value unity when x > 0 and taken the value zero otherwise. This
ocecurs in (95) because if blood sugar level is less than xo, there is no secre-
tion of insulin from the pancreas.

Again the rate of change dx/dt of sugar level is proportional to (i) the
product xy since the higher the levels of sugar and insulin, the higher is
the mefabolism of sugar (ii) xo — x since if sugar level falls below fasting
level, sugar is rclLascd from the level stores to raise the sugar level to
normal (iii) x — xo since if x > xo, there is a natural decay in sugar level
proportional to its excess over fasting level (iv) function of # — %o where l‘o ;
is the time at which food is taken

dx
dr

i L

= ——ngjf + ba(xo — x) H(xo — x) —bs(x — x0) H(x — xo)

~baz(t — to), : (96)
where a suitable form for z(t — o) can be '
z2(t — t)) = 0, t<<to
= Qe~t—t), 1> 1o CH)
Equations (95) and (96) give two simultaneous differential equations to
determine x(¢) and y(t). These equation can be numerically integrated.

3.5.2 Richardson’s Model for Arms Race

Let x(#), (1) be the expenditures on arms by two countries 4 and B, then

the rate of change dx/dt of the expenditure by the country 4 has a term
proportional to y, since the larger the expenditure in arms by B, the larger
will be the rate of expenditure on arms by 4. Similarly it has a term pro-
portional to (—x) since its own arms expenditure has an inhibiting effect on ~ *
the rate of expenditure onarms by A. It may : also contama termindependent

of the expenditures dependifig on mutual SUS]_JIOIOIIS or mutual goodwill.
With these consxderatlons, Rlchardson gave the model

5}r-—ay—mx+r,g—-:'bx—ny+s (98)

bl D S o v bt i i Y niaena

Here a, b, m, n are all > 0, r and s will be positive in the case of mutual
suspicions and negative in the case of mutual goodwill.
A position of equilibrium xo, yo, if it exists, will be given by

XY =cayg — p.== 0 & Xo e Yo
ihxy —amyo -f 5= 0. — as — nr — br —ms
| i 1
Ok i G =G s D iYL S _m

¢ g O (Vs AR e M
i salRdielite s LO0 0 Sl
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% o s A8 EETHE __ms + br
X0 ‘_“‘—’nn o ﬂb » Yo = "*"——mn = ab' (99)
If r, s are positive, a position of equilibrium exists if ab < mn. If
X=2x—x0,Y=y— yo, we get ;
ax dY
F ks a¥ — mX, e bX — nYy (100)
X = deM, Y = BeM will satisfy these equatiohs if
A m —a
=0, A4 ) - =
cocfin 535 o B A AR ool A

Now'thefollowing,pascs arise:

() mn —ab > 0,r>0,5> 0. In this case xo > 0, yo > 0 and from
(101) A1 < 0, A2 < 0. As'such there is a position of equilibrium and it is
stable.

(i)mn —ab>0,r <0,5 < 0, there is no position of equilibrium since
xo < 0, yo < 0. However since A; < 0, Ay < 0, X(1) — 0, Y(t) > 0 as
¢ = @, so that x(r) = xo, y(r) = yo. However xo and yo are negative and
populations cannot become negative. In any case to become negative, they

“have to pass through zero values. As such, as x(f) becomes zero, (98) is
modified to

d X
% = —ny + s (102)

and since s < 0, y(r) decreases till it reaches zero. Similarly if y(¢) becohies
zero first, (98) is modified to

d. .
d;:= —mx +r, _ (103)

and since r << 0, x(¢) decreases till it reaches zero. Thus if mn — ab > 0,
r < 0, s < 0, there will ultimately be complete disarmament.
(iii) ma — ab < 0, r > 0, s > 0. These give xo < 0, yo < 0, one of
A1, A2 is positive and the other is negative. In this case there will be a run-
‘away arms race. . ' '
(iv) ma — ab < 0,r <0, s <0. These give xo > 0, yo.> 0 one of
Ai, Az is positive and the other is negative. In this case there will be a run-
~away arms race or disarmament depending on the initial expenditure on arms.

3.5.3 Lanchester’s Combat Model 7

Let x(r) and y(¢) be the strengths of the two forces engaged in combat
and let M and N be the fighting powers of individuals depending on
physical fitness, types of arms and training, then Lanchester postulated that
the reduction in strength of each force is proportional to the effective
fighting strength of the opposite force, so that

dx - A : (104
ar = s~ o m= A yitied ‘_)—
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i dx _ dy ‘
giving N "M
If the proportional reduction of strengths in t ;

Ldy _ Ly N¥ M or  Mx2= Ny (106)
¥y

—_—— —_—

x dt y dt X

This is the square law. The fighting strength of an
square of its numerical strength and directly on
individuals.

or - Mx* — Ny* = constant (105)

he two forces are the same

army depends on the
the fighting quality of

3.5.4 International Trade Model

Since international trade is beneficial to all parties, we can consider the

model
"(% = aipx1x2 + anxi 4 ... T @nNiNa
¢
% = axax; + azxaxs -+ oo T @ax2xn
gt g o e o BN (107)
ddxtn = @mXaX1 + An2¥nX2 + .. . T Gan-1XnXn-t
where all ay’s are positive. An equilibrium position is (0, 0, . . ., 0) and this
is stable.
EXERCISE 3.5
1. For the Richardson’s model, draw the lines av — mx + r =0,

bx — ny + s = 0 in the four cases discussed in section 3.5.2. Draw the
direction fields and possible trajectories in each case and verify the results
obtained in that section. '

2. For the model

dNi dn- a, a2>0
~ar = Ve — biNi — baNa), 7172 = Nxoaz — 1Ny — c2Ny), b1, b2 > 0
¢, 2> 0

find the positions of equilibrium and discuss their stability. Draw also the
direction fields and possible trajectories.
3. Show that for the Lanchester model, the tr
all of which have the same asymptotes.
4. Show that for the international trade model
, & position of stable equilibrium,

ajectories are hyperbolas,

(107), the origin represents

3.6 MATHEMATICAL MODELLING IN DYNAMICS THROUGH

SYSTEMS OF ORDINARY DIFFERE
aF FIRST oo NTIAL EQUATIONS

3.6.1 Modelling in Dvnarﬁics
If a particle I‘miwes in two dimensional Space, we want to determine x(¢),

e T

P IS
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(1), its coordinates at any time ¢ and u(y), u(t) its
the same time. Similarly for the moti
we have to determine x(1), y(1), z(1), u(r), (1), w(1). For motion of a rigid
body in three dimensional space, we require twelve quantities at time ¢ viz.
six coordinates and velocities of its centre of gravity and six angles and
angular velocities about the centre of gravity,

Since f:qua.tion of motion are-based on the principle: mass % acceleration
in any dfrectlon = force in that direction, we get systems of second order
differential equations. However since acceleration is the rate of change of
velocity and velocity is the rate of change of displacement, we can decom-
pose one ordinary differential equation of the second order into two ordinary
-differential equations of the first order.

We discuss below the motion of a particle in a plane under gravity. More
general dynamical motions will be discussed in the next chapter.

velocity components at
on of a particle in three dimensions,

3.6.2 Motion of a Projectile
A particle of mass m is projected from the origin in vacuum with velocity V
inclined at an angle « to the horizontal. Suppose at time ¢, it is at position

x(1), »(t) and its horizontal and vertical velocity components are u(t), ()
respectively, then the equations of motion are:

du dv
ma?——O mo = —mg (108)
AY
v(t)

1
I
I
|
I
I
|
|
|
1

> X
Figure 3.3

Integrating w=Vcose, v=Vsine— gt (109)
dx dy _ s 10)
—_— = sa, = = Vsine — gt (1

50 that 7 V co it

Integrating again }
y=.Vcosat, y= Vs.incx!--—z--gt1 (111)

Eliminating ¢ between these two equations, we get

1 gx2 (112)
y=xtane = 7 Proos? a
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= T [ . ct
which is a parabola, since the terms of the second degree form,a-perfe

square. The parabola cuts v = 0, when

' 2 sin 2o
xem (0 or X == o (113)
corresponding to position 0 and A4 in Figure 3.3 so that the range of the

particle is given by ;
‘ R 72 sin 2a (1 14) i
g

Putting » = 0 in (111) we get

2Visin o - (115)
g v

This gives the time 7' of flight, Since the horizontal velqcity is constant
and equal to V cos «, the total horizontal distance travelled is

t=0 or =-

V cos a(2V sin @)/(g) = V2 sin 2a/g
which gives us the same range.

3.6.3 External Ballistics of Gun Shells :
To study the motion of gun shells, the following additional factors have to

be taken into account:

(i) air resistance which may be proportional to v", but the power 1 can be
different for different ranges of v

(i) wind velocity, humidity and pressure

(iii) rotation of the earth

(iv) the fact that shell is a rigid body and as such both motion of its
centre of gravity and motion ‘about the centre of gravity have to be studied.
When the shell comes out of the gun, it is rotating with a large angular
velocity.

It is obvious that the problems will be quite complex, but all these prob-
lems have been solved and powerful computers have been developed to solve
these problems because of their importance to defence.

In the case of intercontinental ballistic missiles, heatingand aerodynamic
effects have also to be considered,

EXERCISE 3.6
1. Show that the projectile attains the maximum height V2 sin? «/2g at 3
time ¥V sin/g.

2: If the projectile is projected on a plane inclined at an angle B to the
horizontal, find the range and time of flight.

3 Wruc the system of differential equations if there is air-resistance
proportional to the nth power of the velocity. Solve the system when n=1.
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which is a parabola, since the terms of the second degree !orm,a'perfect
square. The parabola cuts v = 0, when ‘

' 12 sin 2a 113

x=0 or x= --'-”!—;—""" ( )

corresponding to position 0 and A in Figure 3.3 so that the range of the

particle is given by ;
; R = 2 sin 2o (1 14) i
4
Putting y = 0 in (111) we get
== 0 e A
f or ;

This gives the time 7" of flight. Since the horizontal velocity is constant

and equal to ¥ cos «, the total horizontal distance travelled is

2Visin o - (115)

V cos «(2V sin @)/(g) = V2 sin 2a/g
which gives us the same range.

3.6.3 External Ballistics of Gun Shells :
To study the motion of gun shells, the following additional factors have to

be taken into account:

(i) air resistance which may be proportional to v”, but the power n can be
different for different ranges of v

(ii) wind velocity, humidity and pressure

(iii) rotation of the earth

(iv) the fact that shell is a rigid body and as such both motion of its
centre of gravity and motion about the centre of gravity have to be studied.
When the shell comes out of the gun, it is rotating with a large angular
velocity.

It is obvious that the problems will be quite complex, but all these prob-
lems have been solved and powerful computers have been developed to solve
these problems because of their importance to defence.

In the case of intercontinental ballistic missiles, heating'and aerodynamic
effects have also to be considered,

EXERCISE 3.6

1. Show that the projectile attains the maximum height V2 sin? o/2g at
time ¥ sin/g.

2: If the projectile is projected on a plane inclined at an angle B to the
horizontal, find the range and time of flight,

3. W!'uc the system of differential equations if there is air-resistance
proportional to the nth power of the velocity. Solve the system when n=1.
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POSSIBLE QUESTIONS
Part B (6 Marks)

1.Discuss in detail prey prey-predator models.

2.Discuss in detail on Samuelson’s investment model.

3.Derive a Simple Epidemic Model.

4.Show that national income , investment and savings increase exponentially.

5.Design any two mathematical models in economics based on ordinary differential equations of first
order give by Domar.

6.Give a detailed note on multi .multi-species models.

7.Explain about motion of a projectile.

Part C (10 Marks)
1.Discuss in detail on Samuelson’s investment model.
2.Explain a simple epidemic model.

3.Discuss in detail Domar Macro model.

Prepared by V.Kuppusamy, Asst Prof, Department of Mathematics KAHE Page 25/36




Mathematical Modeling / 2018-2021 Batch

é@ﬁy KARPAGAM ACADEMY OF HIGHER EDUCATION
K AVR ‘P‘ A G‘;\ M (Deemed to be University Established Under Section 3 of UGC Act 1956)
ACADEMY OF HIGHER EDUCATION Pollachi Main Road, Eachanari (Po),

(Deemed to be University)
Established Under Section 3 of UGC Act, 19

Coimbatore —641 021

Subject: Mathematical Modelling Subject Code: 1I8SMMP303
Class :II - M.Sc. Mathematics Semester 11

Unit 11

Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions

Question Opt1 Opt 2 Opt3 Opt 4 Answer
If there are no predators the species will
grow at a rate proportional to the population. Prey trajectory permanent persuieng Prey
If there are no predators the prey species will grow
at a rate -1 to the population. Proportional reciprocal Exponential Logically Proportional
The predator species  and the prey species
decreases at a rate proportional to the product of
two populations. increases decreases uniformly stable increases

The predator species increases and the prey species
at a rate proportional to the product

of two populations. increases decreases uniformly stable decreases
The predator species increases and the prey species

decreases at a rate to the product of two

populations. Proportional linear unit orthogonal Proportional
The predator species increases and the prey species

decreases at a rate proportional to the of

two populations. Addition subtraction product division product

If there are no prey the species will decline

at a rate proportional to the population. Prey Predator permanent persuieng Predator
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If there are no prey the predator species will

at a rate proportional to the population. decline denied different decrease decline
If there are no prey the predator species will decline
at a rate to the population. Proportional reciprocal Exponential Logically Proportional
The initial populations of prey and preador species
are p/q and a/b a/b and p/q a/b p/q p/q and a/b
The population of x=0 and y=0 is called
position. Zero equilibrium unit none equilibrium
x(t) and y(t) are the populations of two species
competing for the same resources stands
model epidemic population dynamic competition competition
The rate of growth of each species due to
the presence of the other. increases decreases uniformly stable decreases
The rate of growth of each species decreases due to
the of the other. presence absence both none presence
x1(t(),x2(t).....xn(t) represent the populations of n
species states model. multi-species single-species  |prey predator multi-species
The real parts of all the eigenvalues of the
matrix[cij] is negative are called Rout-Herwitz  |fick's newtyons gauss Rout-Herwitz
Age structured population model deals
age groups productive reproductive decline increase reproductive
In simple epidemic mode S(t) denotes susceptible system Synopsis success susceptible
In simple epidemic mode I(t) denotes Infected increase innovation intensity Infected
In simple epidemic mode S(t)+I(t) = n n+1 n-1 2n n+1
In simple epidemic mode limit t tends to infinity of
S(t) denotes 0 1 2 3 0
In simple epidemic mode limit t tends to infinity of
I(t) denotes n n+1 n-1 2n n+1
A susceptible person can infected at a rate
proportional to SI SIS SHM MOC SI
In SIS Infected person can recover and become
susceptible at a rate Gamma [ SI SHM SIS Gamma [
A susceptible person can infected at a rate
to SI Proportional linear unit orthogonal Proportional
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Only carriers spread the disease deals

model Simple epidence |epidemic SIS SI Simple epidence
The model with removal deals the infected persons
are removed by Death moving migration none Death
The model with removal deals the infected persons
are removed by Hospitalisation |moving migration none Hospitalisation
Model with removal and immigration allows the
of susceptible. Increases decreases decline equate Increases
Model with removal and immigration allows the
increase of susceptible. infected susceptible preys predators susceptible
deals the distribution of drugs ,
chemicals tracers or radio active. Pharmokinetics |kinetics medicine diffusion Pharmokinetics
Parmokinetics deals the distribution of Drugs blood Glucose Rice Drugs
Parmokinetics deals the distribution of Chemicals blood Glucose Rice Chemicals
Parmokinetics deals the distribution of Tracers blood Glucose Rice Tracers
Parmokinetics deals the distribution of Radio active blood Glucose Rice Radio active
In Domar Macro Model S(t) denotes Savings Success Susceptible System Savings
In Domar Macro Model I(t) denotes Increases Investment innovation Instalment Investment
In Domar Macro Model Y(t) denotes Income National Income |Debt National debt National Income
In Domar Macro Model savings are proportional to |Income National Income |Debt National debt National Income
In Domar Macro Model Investment is proportional
to the rate of increase of Income National Income [Debt National debt National Income
In Domar Macro Model all savings are Investment
so that S(t) = I(t) S(t) =1/2 I(t) 2S(t) = 1(t) None S(t) = 1(t)
total national
In Domar first Debt model D(t) denotes debt debt income national income total national debt
total national
In Domar first Debt model Y(t) denotes income total income national income [income total national income
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In Domar first Debt model rate at which national

debt changes is to the national income. |Proportional linear unit orthogonal Proportional

In Domar first Debt model rate at which national total national

debt changes is proportional to the income total income national income |income national income

In Domar first Debt model national income

increases at a rate. Variable Constant unit orthogonal Constant

In Domar first Debt model national income

at constant rate. Increases decreases decline equate Increases

In Domar's Second Debt model the ratio of debt to

on come is not to increase indefinitely income must

increase Proportional reciprocal Exponential Logically Exponential
price of a

In Allen's Speculative Model d(t) denotes demand supply commodity debt demand
price of a

In Allen's Speculative Model s(t) denotes demand supply commodity System supply
price of a

In Allen's Speculative Model p(t) denotes demand supply commodity Prey price of a commodity

In Samuelson's Investment model K(t) denotes Capital investment savings debt Capital

In Samuelson's Investment model the investment

gives rate of increase of Capital investment savings debt Capital

In Samuelson's Investment model the investment

gives rate of of capital. Increases decreases investment decline Increases

In Samuelson's Modified Investment model a

particle performing is acted by a resistance

force proportional to velocity. SHM MOC SIS none SHM

In Samuelson's Modified Investment model a

particle performing SHM is acted by a resistance

force to velocity. Proportional linear unit orthogonal Proportional

In a model for Diabetes Mellitus x(t ) denotes blood sugar salt urea fat blood sugar

In a model for Diabetes Mellitus y(t ) denotes insulin thyroid salt urea insulin
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In Leontief's Inter - Industries relation model, the
notation of contribution from the rth industry to sth
industry per unit time is XTS Xr Xr Xr XIS
In Leontief's Inter - Industries relation model,the
notation of contribution from the rth industry to
consumers per unit time is XIS XT Xr Xr XT
In Leontief's Inter - Industries relation model,the
notation of total output of the rth industry per unit

time is XIS Xr Xr Xr Xr
In Leontief's Inter - Industries relation model,the
notation of input of the labour in the rth industry is |xrs Xr Xr Xr XT

In Leontief's Inter - Industries relation model,the
notation of price per unit of the product of the rth

industry is pr XT Xr Xr pr
In Leontief's Inter - Industries relation model,the
notation of wage per unit of labour per unit time is |w XT Xr XT w
In Leontief's Inter - Industries relation model,the
notation of total labour input into the system is Y XT Xr XT Y

In Leontief's Inter - Industries relation model,the
notation of stock of the product of the rt industry

held by the sth industry is Srs Xr Xr Xr Srs

In Leontief's Inter - Industries relation model, the

notation of stock of the rt industry 1is Sr Srs Xr Xr Sr

The excess of sugar in blood over its fasting level

makes secrete insulin into the blood

stream. thyroid harmone pancreas none pancreas

The fighting strength of an army depends on the

of its numerical strength and directly on the
fighting quality of individuals. square circle rectangle ellipse square
A particle of mass m is projected from the origin in
vacuum with velocity inclined at an angle
proportional to the vertical slope horizontal equal horizontal
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A particle of mass m is projected from the origin in
vacuum with velocity inclined at an angle

to the horizontal. Proportional reciprocal Exponential Logically proportional
In the case of intercontinental ballistic missiles
eating and have to be considered. aerodynamics dynamics mechanics aeromechanics aerodynamics
Both range and maximum eight of projectile are
reduced by resistance. air water liquid solid air
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4

Mathematical Modelling Thro_ugh
Ordinary Differential Equations
of Second Order

41 MATHEMATICAL MODELLING OF PLANETARY
MOTIONS

4.1.1 Need for the Study of Motion Under Central Forces
Every planet moves mainly under the gravitational attractive force exerted
by the Sun. If S and P are masses of the Sun and the planet and G is the
universal constant of gravitation, then the forces of gravitational attraction
on the Sun and planet are both GSP/r?, where r is the distance between the
Sun and the planet. Accordingly the acceleration (Fig. 4.1) of the Sun
towards the planet is GP/r? and the acceleration of the planet towards the
Sun is GS/r2. The acceleration of the planet relative to the Sun is

G(S + P)jr = pjr. |

Now we take the Sun as fixed, then the planet can be said to move under a

central force u/r? per unit mass i.e. under a force which is always directed
towards a fixed centre S.

Figure 4.1

We shall for the present also re
motion of the planet, we have to
under a central force.
always along the radius

gard P as a particle so that to study the
study the motion of a particle moving
We can take S as origin so that the central force is
vector. To study this motion, it is convenient to use

: o find the components of th i
{ P ; e velocity and accelera-
« tion along and perpendicular to the radius vector, Y
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4.1.2 Components of Velocity and Acceleration Vectors
along Radial and Transverse Directions

As the particle moves from P to Q, the displacement along the radius vector
=ON — OP=(r + Ar) cos 40 — r 1
and the radial component u of velocity is

u= Lt ('_+-ér)___99&_r

4150 At
— dr _ dr
AIfqt-o at  dr @

Figure 4.2

Similarly the displacement perpendicular to the radius vector

= (r + 4r) sin 46 (3)
and the transverse component v of the velocity is given by
- (r + 4r)sin 40 sin 40 40 _ 49
? —A!:}o 4t o Alx:—m —a8 ar = "t @

As such the velocity components in polar coordinates are

ar _ 49 _ .
u= g =r and v—rdr—rﬁ (5)

Now the change in the velocity along the radius vector
= (u + 4u) cos 40 — (v + 4v) sin 46 — y (6)
V4+AV

Figure 4.3
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and the radial component of acceleration
g ot dw) cos 40~ (@ -} d) sin 40 - u

vy t

P ..lu - J" ) (!“ - ;‘_.Ji, - -‘!_ L (‘l o
- _rl;:u T ar ;Tfﬂ o dt dt () !
= o g2 @)

Similarly the transverse compenent of acceleration
o g Gt du) sinde - (v - dv) cos 40 — v

L0 dr ]
- _,I,:I(. ud@ jr dv
— %‘i: + :%‘ = r'f" - :‘{;(rﬂ') = -:;- ;}:—(rz(}') (8)
Thus the radial and transverse components of acceleration are
r'—rf? and -rl— (—}i—(,-m') )

4.1.3 Motion Under a Central Force

Let the force acting on a particle of mass m be mF(r) and let it be directed
towards the origin, then the equations of motion are

m(r'' — r3) = —mF(r) S (10)
m d ,
= m‘(r’ﬂ) =0 (1
From (11)
ri8" = constant = j (say),
then (10) gives g e
r— = —F() (13)

We can eliminate ¢ between (12) and (13) to get a differential equation
between r and 8. We find it convenient to use i = 1/r instead of r, so that
making use of (12), we get

o= _drdudl _  1duh du
" dudbdi T TR@ A= kg (14
and
4 dr( "dr) a H’é(“hﬁ dr
Y d?u d?
= —h S5 P = —;,zuza-g (15
From (12), (13) and (15)

) = L L (B4 )

VP g0 U AR DO i) :“" g, h ik o
et e S G i RN e s R :
PN Sulissfier e Il ;.f!;*--;;g..%,5’""!.5.9"-.‘4-"1‘. T LA

Pe AL Ak
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d*u F
or 02 + u= ' (16)
where F can be casily expressed as a function of u. This is the differential
equation of the second order whose integration will give the relation
between u and @ or between r and 0 j.e. the equation of the path described
by a particle moving under a central force F per unit mass.

4.1.4 Motion Under the Inverse Square Law
If the central force per unit mass is u/r2 or pu?, Equation (16) gives

d*u B
z‘—:+u=ﬁ (17)

Integrating this linear equation with constant coefficients, we get
— »"
u—-—ACOS(a'-'\I)-Fﬁ

or ’ﬁr/ﬁ=%=l+ecos(t?—a);h2=pi., (18)
which represents a conic with a focus at the centre of force. Thus if a parti-
cle moves under a central force u/r? per unit mass, the path is a conic sec-
tion with a focus at the centre. The conic can be an ellipse, parabola, or
hyperbola according as e § 1.

Now the velocity ¥ of the particle is given by

, . [(dr dud8)? | 1 . .,
V=12 4 202 = (—du 7] d—'r) + i)
e du 2
[ "= w(G) + e (19)
Using (18)
du _ _sin(® — 20
L= e sin (§ — «) , (20)

From (19) and (20)

in2 (0 —a) , (1 + ecos (8 — ap
V2=“L(ésml(} = ¥ 12 )

:%(1 + e + 2e cos (8 — %))
(@ — 1+ 2(1+ ecos(d — )

@-n+2% an

If the path is an ellipse L = a(l — e?)

(22)
If the path is a parabola € =1
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If the path is a hyperbola L = alex — 1)

2 1 . _ . l
2 = = 4 — the case of 2 hyperbola
so that | '—H(r‘r' a)’“

=pn (_}_) in the case of a parabola (23)
-

=p (—2— s —1-) in the case of an ellipse.
r a i

ty ¥ from a point at a distance r

if icle is projected with veloci
Thus if the particle is proj dullmir ety spoaliil e ltipas

from the centre of force, the path will be a

according as

2 (24)
-~ r

{_We have proved that if the central force is g/ per unit mass, .the path is

a conic section with the centre of forces at one focus: Conversely if we know

that the path is a conic section

0

]"2 L,

Allv

§=Lu=1+emus—@, (25)

with a focus at the centre of force, then the force per unit mass is given by

F=h3u=(§£+u)

_ . [ —ecos(8 — x) 1 + cos (? — x)

-—h’u—( ya + + )

=L -k, 6)
~N

so that the central force follows the inverse square law.
/Since all planets are observed to move in elliptic orbits with the Sun at one
~focus, it follows that the law of attraction between different planets and Sun

must be the inverse square law.

Lt
4.1.5 Kepler's Laws of Planetory Motions
On the basis of the long period of observations of planetory motions by his
predecessors and by Kepler himself, Kepler deduced the following three laws
of motion empirically

(i) Every planet describes an ellipse with the Sun at one focus

(ii) The radius vector from the Sun to a planet describes equal areas in
equal intervals of time.

(iii) The_ squares of periodic time of planets are proportional to the cubes
of the semimajor axes of the orbits of the planets

Of\zran:ae:t! ded““et_ all ;hese three laws from the mathematical modelling
; ory motion discussed above, when the : P
inverse square law. en the law of attraction is the ‘
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(i) We have already seen that under th
to be a conic section and this includes e}
(ii) Since r26' = h, we get

¢ inverse square law, the path has
liptic orbits.

1 248 1
s A = 5k @n

From Figur‘e 4.2, the area 44 bounded by radius vectors OP and OQ and
the arc PQ is 1/2/2 sin 40 so that (27) gives

di. = .l.}, 2
df - 2 : r\ﬁ-g)

and t_he taftc of description of sectorical area is constant and equal areas are
described in equal intervals of time. This is Kepler’s second law.

(iii) The total area of the ellipse is mab and since the areal velocity is A,
the periodic time T is given by

™ ab 27 ab 27 ab 2=
Feux SO 2500 iWar Ix g 29
th AV L Vv a A% P'a =5

For two different planets of masses P;, P2, and semiaxes of orbits a;, a2,

this gives
T _ Ve a® VGS*P) ar’
T:T Vi &' VoS TP) & o
2 3 1—‘-ﬁ 3

or Z:'._—_S+P2-?l== S a 31
T22 S+Pl az 3 PI ag

Since P;, P; are very small compared with S, this gives, as a very good
approximation

Lf = a_i (32)
T§ 5]
which is Kepler’s third law of planetory motion.

Deduction of Kepler’s three lJaws of planetory motion from the universal
law of gravitation was an important success of mathematical modelling.
Results which took hundreds of years to obtain by observation could be
obtained in a very short time by using mathematical modelling.

Here we have neglected the forces of attraction of other planets on the
given planet. These are very small as compared with the attractive force of
the Sun. However these can be taken into account. In fact possibly the most
sensational achievement of mathematical modelling was achieved when the
discrepancies from the above theory observed in the motion of planets were
explained as possibly due to the existence of another small planet. The posi-
tion of this planet, not observed till that time, was calculated, and when ti:e
telescope was pointed out to that position in the sky, the planet was there!
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Again the occurrence of many of the fundamental p.articlcs in Physics has
been theoretically predicted on the basis of mathcrna:llcal modelling, :

The advantages of developing a successful theoretical r_nodt.:l over relying
on purely observational and empirical models are tha! (1.) th:s_ deve_:lopment
can suggest development of mathematical models for SImll_z_lr situations e-Ise..
where and those new models can later be validated and (ii) the theoretical
models, unlike empirical models, can be generalisecj. Thus the model deve-
loped by Newton for planetory motion could be easily extend?d to apply to
motion of artificial satellites. Similarly in urban transportation, a gravity
model was developed by trial and error and ad hoc empirical methods ex-
tending over a period of thirty to forty years. When the same 1:node1 was
obtained theoretically from the principle of maximum entropy, it could be
easily generalised for many more complex situations than could ever be
handled by the empirical methods.

EXERCISE 4.1
1. You are given the-following data on orbits of major planets

Planet Mean distance a Eccentricity Period T
from the Sun in e
millions of miles
Mercury 36.0 0.2056234 87.967 days
Venus 67.3 0.0067992 224.701 davs
Earth 93.0 0.0167322 365.256 days
Mars 141.7 0.0935543 1.881 years
Jupiter 483.9 0.0484108 11.862 years
Saturn: 857.1 0.0557337 29.458 years
Uranus 1785.0 0.0471703 84.015 years
Neptune 2797.0 0.0085646 164.788 years
Pluto 3670.0 0.2485200 - 247.697 years

(i) Show that the periods T verify Kepler’s third law quite closely.

(ii) Given mass of the Sun is 2< 103 gms, find G
(iii) Given G = 6.673% 10~® cm?/gm sec?, estimate the mass of the Sun.
(iv) Find the velocity of each planet at perihelion and apehilion.

2. Find the dentral force F(r) if the orbit is an ellipse with the centre of
force coinciding with the centre of the ellipse.

3: For a particle moving in a circular orbit|of radius a, find expressions
for its velocity and acceleration components. E

4. Find the value of g at the surface of the Sun,

4.2 MATHEMATICAL MODELLING OFVCIRCUL R MOTIO
MOTION OF SATELLITES - i

4.2.1 Circular Motion _ :
When a particle moves in a circle of radius a so that » = a, the radial
component of velocity = ' = 0, the transverse component of velocity =
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r8’ = af' the radial component of acceleration = ;' — /82 = — b2, the

transverse component of acceleration — L g. (r28) = L g—(a’o’) = ab"

: —_ " roat a dt :
Thus the V?,l ocity is a0’ along the tangent and the acceleration has two com-
ponents a6’ along the tangent and a6’z along the normal.

17 a particle moves in a circle of radius a, its equations of motion are
mab" == external force in the direction of the tangent
2 . . .
ma8'? = external force in the direction of the inward normal.
Thus if a particle is attached to
one end of a string, the other end
of which is fixed and the particle

moves in a vertical circle, the equa-
tions of motion are (Figure 4.4)

mad"’ = —mgsin 6 (33)
mat2 =T —mgcos@  (34)
If @ is small, (33) gives

g = — L g, (39)
a

which is the equation for a simple harmonic motion. Thus for small oscilla-
tions of a simple pendulum, the time period is

T == 2m\/alg (36)
If 8 is not necessarily small, integration of (33) gives
at’? = 2g cos & + constant 3an

If the particle is projected from the lowest point with velocity w, then
a6’ = u when @ == 0, so that

o u?

"2 e = = = — 8 [} . 38
atb p = 2g(1 — cos 0) (38)
where v is the velocity of the particle, so that

22 = ut — 2ga(l — cos 0) (39)
or -12— mp* = —;- mu? — mga(l — cos 6) = -;—mu2 — mgh (40)

where h is the vertical distance travelled by the particle. Equation (40) can
be obtained directly from the principle of conservation of energy. Equation
(34) then gives

o2 = wo_ 3mgcos @ 41
7‘_—..m—a-+mgcosﬂ m— 2mg + 3 mg

u? .
At the highest point & = 7 and T = m— — Smg. If 4 = Sag, the particle

will move in the complete vertical circle again and again. However if

Scanned by CamScanner

Prepared by V.Kuppusamy, Asst Prof, Department of Mathematics KAHE Page 9/22




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSENAME: MATHEMATICAL MODELING
COURSE CODE: 18SMMP303 UNIT: ITI BATCH-2018-2020

84 MATHEMATICAL MODELLING
tension will vanish before the particle reaches the highest poifu_
the particle begins to move freely l}nder gravity
{ill the string again becomes tight and the

u? < Sag,
When the tension vanishes,
and describes a parabolic patp
circular motion is started again.

on a Smooth or Rough Vertical Wire

.2.2. Motion of a Particle . ;
: ¢ inside of a smooth wire, the equations of

(a) If the particle moves on th
motion (Fig. 4.5a) are: ;
mab’' = —mg sin 0 42)

mad’? = R — mg cos 0 (43)

R
8%
\")
m
@ (b)

Figure 4.5

These are the same as (33) and (34) when T is replaced by the normal reac-
tion R. As such if u* = 5ag, the particle makes an indefinite number of
complete rounds of the circular wire. If u? < 5ag, the reaction vanishes
before the particle reaches the highest point, the particle leaves the curve,
describes a parabolic path till it meets the circular wire again and it again
describes a circular path. This motion is repeated again and again.

(b) If the particle moves on the outside of the smooth vertical wire
(Fig. 4.5b), the equations of motion are ;

mabl’”’ = mg sin 0. \ |  (44)
mad'' = — R + mg cos 0 ' (45)
Integrating (44) 02 = w2 + 2ga(l — cos 6) . (46)
Using (45 R=13 g . _
g (45) . mg cos 5 2mg 47)
At the highets point 6 = 0, R = mg — ™% =4l huris
g poin mg = . 7(48)
: s g o mud : : !
At the point 4, =72, R =— i 2mg : : (49)

If .u’ > ag, the particle leaves contact with the wire immediately and des-
cribes a parabolic path.
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If ¥* < ga, the particle remains in contact for some distance, but leaves
contact when R vanishes i.e. before it reaches 4 and then it describes a
parabolic path.

(c) If the particle moves on the inside of rough vertical circular wire, then
there is an additional frictional force uR along the tangent opposing the
motion. As such equations (42) and (43) are modified to

ma#"’ = — mgsind — pR (50)

maf'? = — mgcosf + R (51)

Eliminating R between these equations, we get a non-linear differential
equation

a¥’ = — gsin b — p(—gcos 0 — ab’?) (52)

which can be integrated by substituting 8’ = w, 8" = w dw/df.
Similarly (44) and (45) are modified to

mad”’ = mgsin @ — pR (53)
mad'2 = — R + mgcos ¥ (54)
We can again eliminate R, solve for 6 and @ and find the value of 6 when

R vanishes.

4.2.3 Circular Motion of Satellites
Just as planets move in elliptic orbits with the Sun
made artificial satellites move in ellip-
tic (or circular) orbits with the Earth y
(or rather its centre) at one focus.

If the Earth is of mass M and
radius @ and a satellite of mass — / 1

in one focus, the man-

m (€ M) is projected from a point

P at a height /& above the Earth with

velocity V at right angles to OP

(Figure 4.6) it will move under a

central force Gm M]r?. Since the -
central force of a circular orbits is

mV?/r, we get, if the path is to be circular,

mv:  GmM - GM 55
ath G@+rE Vi=aTh 3)

If g is the acceleration due to gravity, then the gravitational fgrcc on a
particle of mass m on the surface of the Earth is mg. Alternatively from

Newton'’s inverse square law, it is GMm/a? so that

Gﬂfm =mg or Gm = ga? (56)
a
From (55) and (56)
_ &2 (57)
v = a+h
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This gives the velocity of a satellite describing a circular orbit at a height 4
above the surface of the Earth, Its time period is given by

2n(a - h) _ 2n(a - k)
P Vga

The carth completes one revolution about its axis in twenty-four hours, Assuch

il T is 24 hours, the satcellite would have the same period as the Earth and would

appear stationary, to an obscrver on the Earth. Now taking g = 32 frfv.cze;z,
a = 4000 miles, T = 24 hours, we get if h is measured in miles

T = (a + V2 = vz% (a + myy2 (5%)

24 60 604/ 324000 2 1760 .23, 7
2722
1642607.416 » 10%
(4000 + ) #5280 = 13919,3408 » | 0*
4000 + h = 26.36238788 % 10? == 26362.34878%
h = 22362.38788 miles

This gives the height of the synchronous or synchron satellite, which is
very useful for communication purposes,

((4000 -+ h)« 1760 x 3)32 ==

I

4.2.4 Eiliptic Motion of Satellites i
lf. a salcllitfz is projected at a height a 4+ / above the centre of the Earth
with a velocity different from~/ga/\/a+ h orif it is not projected at right

angles to the radius vector, the orbit ;

will not be circular, but can be ellip- f—\\
tic, parabolic or hyperbolic depend- ”

ing on ¥ and the angle of projection. afi-e) a'(i+2)

If the angle of projection is 90° S
and the orbit is an elliptic with semj
major axis a’ and ccecentricity ¢, then
there are two possibilities depending '

on whether the point of projection e
is the apogoee or the perigee
Using equation (23)
2 1
V2 = e A , A
#(a'(iﬁ-e) ‘ ar)' a'(l + &)t g 4 (59)
; 2 1
or V: == ettt | ey | pmimay ’
3 3 "(a'(l i e ) d(l—~e)=a+p . (60)
ie. 2 = 82 (1'="%) . ga? '
or V=& :
. aj. Fi C 2+ 1+ ¢)
1 == o vi= i 4 (61;

orbit to the centre

of the Earth and if ¥ < Vo, this point is the furthest point.
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For the elliptic orbit, the time period is

2w
T = Z_ g2
) gaaf ©2)
2
where if V < vy P=JI—V a a+ h ©
1 » == 3)
v 1+ V1 — vy
. - B 2 )
and if V> Vu’eﬁs/_z“l, 2 a+ h (64)
Vo 1 — V22 -1

If Amax and hn:in are the maximum and minimum heights of a satellite
above the Earth’s surface and ¢ is the radius of the Earth, we get

a(l+ e _ a+ hma 14+ e l1—e
a:(l — e) a h or -_
+ Amin a + hmax a + Amin
_ 2
2a 4 Amax + hmin_
or 1+e _ 1 _ e
a—+ hm“ a -+ hmu + hmin Hmax — HAmin
2 2
hmu — hmin
or ==
€ 2a + hmn - flmin (65)

EXERCISE 4.2

1. Show that the force required to make a particle of mass move in a

circular orbit of radius a with velocity v is mi2/a directed towards the
centre.

2. A particle of mass m is attached to the end of string, of length L, the
other end of which is attached to a fixed point. The particle now moves in

a horizontal circle of radius a(< L). Discuss the motion of this conical
pendulum.

3. Integrate (38) when & = 0 when 8 = « and « is small.

4. Complete the discussion of section 4.1.1 when u? = dag.

5. Complete the discussion of motion of a particle on the inside of a
smooth vertical circular wire when it is projected from the lowest period with
horizontal velocity 24/ ag.

6. Complete the discussion of motion of a particle on the outside of a
smooth vertical circular wire when it is projected from the highest point with
velocity 3v/ag.

7. The following table gives data on some earth satellites

Name max ht,  min ht, weight . . orbit time
(miles) miles 1bs " 'mts
Sputnik I 560 145 7 184.00 ~.96.2
Sputnik I1 1056 ., ., . 150, 112000 .  103.7
Explorer 1 1567 219 30.80 114.5
(contd.)

g
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Vanguard 2466 405 3,%5 132.0
Explorer 111 1741 117 31_1.'0 115.7
Sputnik III 1168 150 292000 16,4
Explorer 1V 1386 178 3%-_1{77 B ]_m.fJ

Find the semi-major axis, semi-minor axis, eccentricity and the orbit time of

each orbit and verify that the given values of the orbit times are what yoy
expect on theoretical considerations. " . )
8. Given g = 981 cm/s?, a = 6440 < 10° cm, G = 6.670 - 107% em/(g- s},

find the mass of the Earth.
9. Find V so that the orbit may be a parabola or a hyperbola,

4.3 MATHEMATICAL MODELLING THROUGH LINEAR
DIFFERENTIAL EQUATIONS OF SECOND ORDER

4.3.1 Rectilinear Motion ‘

Let one end O of an elastic string of natural length L(== (04) be fixed

(Figure 4.8) and let the other end to which a particle of mass m is attached
L L T -

0 A z m
Figure 4.8

be stretched a distance a and then released. At any time ¢, let x(r) be the
extension, then the equation of motion of the particle is

d*x X

L = )= = —
. m .dfz 2 kX, ((h())
where k is the elastic constant, If the particle moves in a resisting medium
with resistance proportional to the velocity x’, (66) becomes

mx'" 4+ cx' + kx = 0, (67)
which is a linear differential equation of the second order. Its solution is
: x() = A’V + Ae' (6%)
where Ay, A2 are the roots of
mi2 -+ cA k=0 (69)
Here f\l -f- == %’ Adg = -’%' The sum of the roots is negative and

the product of the roots is positive,
Case (i) ¢ > 4km, the roots are rezl and distinct and are negative. As
_such x(t) = 0 as ¢t = o, The motion is said be overdamped.
~ Case (ii) & = 4 km, the roots are real and equal and

== e
0 = U+ A enp (~55r ) (70)
and again x(t) = 0 as ¢ — . In this case the motion is said to be eritically

daniped. -
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Case (iii) 2 << 4km, the roots are complex conjugate with the real parts of
the roots negative. .}'(r) always oscillates but oscillations are damped out and
tend to zero. In this case, the motion is said to be under damped.

Next we -consider the case when there is an external force m- F(t) acting
on the particle. In this case (67) becomes

mx" + ex' 4 kx = mF(t) an
A particular case of interest is given by the model
X" + wix = F cos wt (72)

ie., vyhen in the absence of the external force, the motion is simple harmo-
nic with period 27/w, and the external force is periodic with period 2m/w.
The solution of (72) is given by

x(1) = A cos (wot — &) + F cos wt/(wé — w?) w # wo (73)
= A cos (wot — ) + F, sin wot W = wp (74)
2wo

When w = wy, the first term is periodic and its amplitude never exceeds
| A ]. However as t — o along a sequence for which sin wot = 4+ 1, the
magnitude of the second term approaches infinity.

The phenomenon we have discussed here is known as of pure or undamp-
ed resonance. Tt occurs when ¢ = 0 and the input and natural frequencies
are equal. We shall get a similar phenomenon when ¢ is small. The forcing
function F cos wt is then said to be in resonance with the system.

Bridges, cars, planes, ships are vibrating systems and an external periodic
force with the same frequency as their natural frequency can damage them.
This is the reason why soldiers crossing a bridge are not allowed to march
in step. However resonance phenomenon can also be used to advantage e.g.
in uprooting trees or in getting a car out of a ditch.

When w and wo differ only slightly, the solution represents superposition
of two sinusoidal waves whose periods differ only slightly and this leads to
the occurrence of beats.

4.3.2 Electrical Circuits
Figure 4.9 shows an eclectrical circuit. The current i(t) amperes represents
the time rate of change of charge g flowing in the circuits, so that

dg _ .

5~ i(r) (75)
(i) There is a resistance of R Ohms in the circuit. This may be provided

by a light bulb, an electric heater or any other electrical device opposing

the motion of the charge and causing a potential drop of magnitude

Er = Ri volts.
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Swilch
Figure 4.9

(ii) There is an induction of inductance L henrys which produces a

potential drop E. = L Aifdt.

(iii) There is a capacitance C which produces a potential drop

I
E. = 7

All these potential drops are balanced by the battery which produces a
voltage E volts. Now according to Kirchhoff’s second law, the algebraic
sum of the voltage drops round a closed circuit is zero so that

di

Ri + L}—E

+ &= EW (76)

Differentiating and using (75), we get

a2, di .l:iE 77
Lt Ry T~ \ L an

Also substituting for (75) in (76) we get

{i_zq s 55 .‘.{-{!- -I— == .' 3
L P41 R+ g = EW® _ (78)

Both (77) and (78) represent linear differential equat'ions with constant
coefficients and their solutions will determine i(¢) and g(r).
Comparing (71) and (78), we get the correspondences
mass m ++ inductance L
friction coefficient ¢ « resistance R
spring constant k « inverse capacitance 1/C
impressed force FF impressed voltage E
displacement x « charge ¢

velocity v = dx/dt «» current [ = g,-q-' 3
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This shows the correspondence between mechanical and electrical systems.
This forms the basis of analogue computers. A linear differential equation
of the second order can be solved by forming an electrical circuit and
measuring the electric current in it. Similar analogues exist between hydro-
dynamical and electrical systems. Mathematical modelling brings out the
isomorphisms between mathematical structures of quite different systems
and gives a method for solving all these models in terms of the simplest of
these models.

We can have analogues of (71), (78) in economic system when k(1) repre-
_sents the excess of the capital invested over the equilibrium capital and
E(t) can represent external investments,

4.3.3 Phillip's Stabilization Model for a Closed Economy
The assumptions of the model are:

(i) The producers adjust the national production Y of a product accord-
ing to the aggregate demand D. If D > Y, they increase production and
if D < Y, they decrease production so that we get

dYldt = «(D — Y), « > 0, (79)
where « is a reaction coefficient representing the velocity of adjustment.
(ii) Aggregate demand D is the sum of private demand, government

demand G and an exogenous disturbance u. The private demand is propor-
tional to the national income or output so that

D=(10—-L)Y+G—u (80)

where | — Lis the marginal propensity to spend i.e. it is the marginal
propensity to consume plus the marginal propensity to invest. We assume
that 0 < L < 1.

(iii) The government adjusts its demand to bring the national out-put to
a desired level, which without loss of generality may be taken as zero.

The Government decides its demand according to one of the following
policies:

(a) proportionate stabilization policy according to which

G*=—f Y (81)
where f, > 0 is the coefficient of proportionality and we use the negative
sign on the right hand side since if the output is less than the described
level, government will come out with a positive demand.

(b) derivative stabilization policy according to which

G*=—f1Y, (82)

where fs > 0 and the government demand is proportional to Y.
(¢c) mixed proportionate derivative policy according to which

G*=—fo, Y—-faY (83)
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() integral stabilization policy according to which
! . .
G"Y = —f;j Y di, fr s () (34)
3 0

(iv) G* is the potential demand which the CGiovernment may like to make,
but the actual demand G will be gradually adjusted so that
G o= BGY — G), (85)

where 8 is the reaction coefficient. f = 0 since if ¢ =< G*, the government
tends to increase the demand to reach G*.
Now from (79) and (80)

dYldt = 2((l — L)Y ++ G — u —Y), (86)
so that ,
d2Y[dt? = —al dY/[dt - o dG/dt (87) "
Eliminating G between (85), (86) and (87)
CYME o Laviin = 86* — T 1y 4+ ) (38)
or d2Y[der - dY[dt (xL + B) + «aBLY -+ afu == aff G* (89)

If we substitute for G* from (81), (82) or (83), we get a lincar differential
equation of the second order with constant coefficients. If however the
government uses integral stabilization policy, we use (84) to get the third
order differential equation

dMY[d + (2] + B) d2Y[dt® A+ oB dY/dt -+ of JSi¥ =0 (90)
The equations (89) and (90) can be easily solved. Even without solving

these, the stability of the sdlutions and their behaviour as ¢ —» =0 can be
casily obtained. ¢

EXERCISE 4.3 ' T ERa !

l_. Solve x" + 13x" - 36x = 0; x(0) = 1, x'(0) = 0 and plot: x(¢)
against f. ]

2. Solve x'" + 8x' + 36x = 24 cos 6/ and discuss the behaviour of the
solution as ¢ approaches infinity.

3. Solve X" - 25x = 25 cos.5¢ and plot x(¢). Discuss. the nature of the
motion.

4. Solve (89) for the proportionate stabilization pdlicy. Show that the
solution is ;

1
Y(1) == A oM - B ehat |- T
where both Ay, A; are real and negative if 4 > 0 where

_ 4 = (L — ) — doff,

and thesc are complex with negative real parts of 4 < 0,
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5. Solve (89) for mixed proportionate-derivative stabilization policy and
discuss the stability of the solution.

6. Show that all the roots of apA* + a; A2 + a2 A + a3 = 0 have nega-
tive real parts of

a>0, >0, a3>0, aa—aa>0

7. Show that if (89) is solved subject to (84) and u = 1, the characteris-

tic equation is
X (L + B) N + aB(L + fX + affi = O

and deduce that the stability condition is

Jr < (2L + B) (L + fp).
4.4 MISCELLANEOUS MATHEMATICAL MODELS THROUGH

ORDINARY DIFFERENTIAL EQUATIONS OF THE SECOND
ORDER

4.4.1 The Catenary | \
A perfectly inflexible string is suspended under gravity from two fixed
points A and B (Fig. 4.10).

A

Figure 4.10

Consider the equilibrium of the part CD of the string of length s where
C is the lowest point of the string at which the tangent is horizontal.

The forces acting on this part of the string are (i) tension Ty at C (ii)
tension T at point D along tangent at D (iii) weight ws of the string.

Equating the horizontal and vertical components of forces, we get

T cosy¢ = To, Tsin ¢ — ws 1))
Let 7o be equal to weight of length ¢ of the string, then (91) give

ws ws 5

tan¢r=ﬂ—‘-v—c-? 92)
ds _ 2
o P = ¢ sec? ¢, (93)
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where P is rndius of curvature of the string at D; so that

Iv\2\/2 :
(& oo e
ix _ v
_..___di‘_"i—-—- = c(l -+ (dx)
(T\'.‘z

d? fi’)“z ' (94
or () = (@) £

e
which is a non-lincar differential equation of second order. “'3; —__f,"then

(94) gives
PP — (95)
: X

Integrating sinh~! p = . + A (96)
When x = 0, p = 0, so that 4 = 0 and

g% = sinh % (97
Integrating

y = ccosh -:—. (98)

where we choose x-axis in such a way that y = ¢ when x = 0. This is the
equation of the common catenary. :

It may be noted that here we get a differential equation of the second
order from a problem of statics rather than from a problem of dynamics.

4.4.2 A Curve of Pursuit
A ship at the point (a, 0) sights a ship at (0, 0) moving along y-axis with a
uniform velocity ku(0 < k < 1). It begins to pursie ship B with a velocity
u always moving in the direction of the ship B so that at any time AB is
along the tangent to the path of 4.

From Figure 4.11 =~ "

Jtan (n' 2 gy = Rutiz y
i =

' s gy
or e T
dx X + x
dy ;
or =y = - ik Tl :
X = — kut £ (99)
Differentiating with respect to x, we get
dy .t ‘ o
v R 4 ~ (100)
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x a-x (o,o)rx

Figure 4.11

Now dx/dt <= horizontal component of velocity of 4 = ucos (m — )

u

== —ucosp = — —— 1 =
dy (101)
J L+ ()
so that f’rom 799) and (100)
diy _ J dy)* |
Yo =kJLF (c?é) g
. dy
P 2 - '
utting; o P, we get
dp dx
o
i =+ 0y
Integrating g;—r = k(sinh“‘ (ln %)) (104)

Integratiing once again, we get y as a function of x.

EXERCISE 4.4

1. Prove that for tie common catenary -~
J,z=cz+_s¢’ § = ctany, v Q{a‘-‘. L oz }
. X ./

y = csec § = ¢ sinh— !
i D wdier !

XxX=¢ my+—“/;‘;2_7_‘.f == ¢ In (sec ¢ + tan ¢)

= ¢ 'n f—ﬂ——:’:—i

c

1. Integrate (104) and find y «s a function of x.
. Obtain the curves of pursuit’ when k =1, k > 1.
. When k < 1, when and whe're does A intercept B?

Lo
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Part B (6 Marks)

1.

Derive the components of velocity and acceleration vectors along radial and transverse

directions.

2.

3.

Prepared by V.Kuppusamy, Asst Prof, Department of Mathematics KAHE

Find the height of synchronous from the circular motion of satellites.

Explain about the catenary.

. Design a mathematical model for motion of a projectile.
. Explain on elliptic motion of satellites.
. Discussion detail on a curve of pursuit.

. Discuss motion of a particle on a rough vertical wire.

Part C (10 Marks)

. Explain in detail Kepler’s law of planetary motion.
. Explain on circular motion of satellites.

. Discuss motion of a particle on a rough vertical wire.
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Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions

Question Opt1 Opt 2 Opt3 Opt 4 Answer
Every planet moves mainly under the gravitational
attractive force exerted by Jupiter earth sun star sun
If S and P are masses of sun and planet then G is
the gravitation generation gauss glimpse gravitation
The acceleration of the Sun towards the planet is
Gp/r2 Gpr2 r2/Gp GPS Gp/r2
The acceleration of the planet towards the sun is
GS/r2 GSr2 r2/GS GPS GS/r2

In a model Motion under central force the equation
of the path described by a particle moving under
force F. central corner linear nonlinear central
In a model Motion under central force the equation
of the path described by a particle moving under

central force . A B C F F

A particle moves under a central force per unit mass

the path is conic circle cube square conic
In a model Motion under inverse square law, the

conic is ellipse then e<l e=1 e>1 e=0 e<l
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In a model Motion under inverse square law, the

conic is parabola then e<l e=1 e>1 e=0 e=1

In a model Motion under inverse square law, the

conic is hyperbola then e<l e=1 e>1 e=0 e>1

The law of attraction between different planets and

sun must be law. Inverse square  |inverse cube inverse rectangle |inverse circle Inverse square
Every planets describes an ellipsis with sun at one

focus states law Inverse square  |Kepler's Gauss Newton's Kepler's

The radius vector from the sun to a planet describes
equal areas in equal interval of time states
law Inverse square  |Kepler's Gauss Newton's Kepler's
The squares of periodic time of planets are
proportional to the cubes of the semi major axes of
the orbits of the planets states law Inverse square  |Kepler's Gauss Newton's Kepler's
The squares of periodic time of planets are

to the cubes of the semi major axes of
the orbits of the planets. Proportional linear unit orthogonal Proportional
no of kepler's law are in planetary
motion 1 2 3 4 3
Detection of Kepler's 3 laws of planetary motion
from universal law of gravitation was success of

modelling Mathematical Physical Chemical Biological Mathematical
Detection of Kepler's 3 laws of planetary motion
from universal law of was success
of mathematical modelling Gravitation generation gauss glimpse gravitation

The partial begins to move freely under gravity and
describe  path till the string again becomes
tight and the circular motion is started again Parabola Hyperbola Ellipse Circle Parabola
The particle begins to move freely under gravity and
describes a parabolic path till the string again
becomes tight . States Circular motion |SHM MOC SIS Circular motion
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In a model of circular motion satellites the man
made artificial satellites move in orbit
with earth Parabola Hyperbola Elliptic Circle Elliptic
In rectilinear motion model the roots are real and
distinct and are negative as such x(t) tends to 0 as t Critically undamped
tends infinity then motion is Overdampped  |damped under damped  [resonance over damped
In rectilinear motion model the roots are real and
equal as such x(t) tends to 0 as t tends infinity then Critically undamped
motion is Overdampped  |damped under damped  [resonance Critically damped
In rectilinear motion model the roots are complex Critically undamped
and the roots are negative then the motion said to be |Overdampped  [damped under damped  [resonance under damped
In rectilinear motion model the roots are complex
and the roots are negative and also external force Critically undamped
acting on the particle then the motion Overdampped  |damped under damped  [resonance undamped resonance
In the model of catenary differential equation of the
second order from a problem of statics rather than
Dynamics Mechanics Statistics Analysis Dynamics
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Mathematical Modeling through Difference Equations: Simple Models — Basic Theory of Linear
Difference Equations with Constant Coefficients — Economics and Finance — Population
Dynamics and Genetics — Probability Theory.
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‘Mathematical Modelling Through
' Difference Equations

5.1 THE NEED FOR MATHEMATICAL MODELLING THROUGH
DIFFERENCE EQUATIONS: SOME SIMPLE MODELS

We need difference equation models when either the independent variable
is discrete or it is mathematically convenient to treat it as a discrete
variable.

fhus in Genetics, the genetic characteristics change from generation to
generation and the variable representing a generation is a discrete variable.

In Economics, the price changes are considered from year to year or from
month to month or from week to week or from day to day. In every case,
the time variable is discretized. il

In Population Dynamics, we consider the changes in population from one
age-group to another and the variable representing the age-group is a discrete
variable.

In finding the probability of n persons in a queue or the probability of n
persons in a state or the probability of n successes in a certain number of
trials, the independent variable is discrete. ‘

. For mathematicz.ﬂ modelling thn?ugh differential equations, we give an
chre‘mgm 4x to mdep_}cndent w_.'arsable x, find the change 4y in y and let
1x =0 to get d:ﬁ'erenhal equations. In most cases, we cannot justify the

limiting process r:_gorously. _Thus f:or modelling fluid motion, making 4x—0
E:z'ssta l:lgcrr;:z:;i s::f)enae if;E;docl::;?:ss!s c;tf_al large number of partiFles and the
Continuum mechanics is only an fpl:)io;?r;:.tizgn({:;fe m:(:'e P g
good one) to reality. S igrquuatsly s very
il 1 e, e, whng e ied =8 when the independent
analytically, "’Wcj then solve it nume.;xT IT! i i - soivab'ic
replace the differential equation b 2y and_ L EurgeRe, We agal)
¥ a system of difference equations. Numeri-

cal methods of solving differential e s :
: : uations esse :
difference equations. 9 : ntially mean solving _
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_]t is even argued that since in most cases, we have to ultimately solve
difference equations, we

TSI muy avoid modelling through differential equations
altogether. This is of course going too far since as we have seen in earlier

chapters, mathematical moaelling through differential equations is of immense
importance to science and technology. Another argument in favour of
difference equation models is that those biological and social scientists who
do not know calculus and transcendental numbers like e can still work with
difference equation models and some important consequences of these models
candbetdcduccd with the help of even pocket calculators by even high school
students,

Wc‘now give simple difference equation models parallel to the differential
equation models studied in earlier chapters.

(i) Population Growth Model: 1f the population at time ¢ is x(f), then
assuming that the number of births and deaths in the next unit interval of
time are proportional to the populations at time f, we get the model:

X(t 4 1) X0 = bx(0) — dx(1) or x(r 4 1) = ax(0), (1)
so that
x() = ax(t — 1) = a®x(t — 2) = a’x(t — 3) = ... = a'x(0) @
This may be compared with the differential equation model:
gf = ax with the solution x(¢) = x(0)e* 3)

For solving the difference equation model, we require only simple algebra,
but for solving the differential equation model, we require knowledge of
calculus, differential equation and exponential functions.

(ii) Logistic Growth Model: This is given by

x(t + 1) — x(1) = ax(t) — bx¥1) (4)

This is not easy to solve, but given x(0), we can find x(1), x(2), x(3), . . . in
succession and we can get a fairly good idea of the behaviour of the model
with the help of a pocket calculator.

(iii) Prey-Predator Model: This is given by

x(t + 1) — x(6) = —ax(t) + bx()y(r) ] ab>0

Wt 4 1) = 1) = pylt) — qx()¥(1) Pg>0

and again given x(0), »(0), we can find x(1), y(1); x(2), ¥(2); x(3), »(3), ...,
in succession. o
(iv) Competition Model: This is given by

x(t + 1) — x(0) = ax()) — bx()y(r) ] ab>0

(5)

(6)
yt 4 1) — y() = px(1) — gx()y() 1 p.g>0
(v) Simple Epidemics Model: This is given by .
; (t + 1) — x(5) = —Bx(O(0) ] 550 o
% & A+ 1) — H0) = Bx(y(r)

s
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EXERCISE 5.1
L Bor model (1), let Q) = 100, @ = 0.5 or 1 or 2; find x(¢) for ¢ - |

to 30 and plot agr) as a function of 7 in cach ease.

2. For model Gi) let x(0) = 100, @ = 0.1, b = 0.001, find x(¢) for ; . |
to 100 and plot a(1) as a function of ¢,

3, In models () and (v) let A(0) = 40, ¥(0) = 10, a = 0.01, b = 0,001,
» = 0.003, ¢ = 0.0001. Plot points x(1), y(¢) for 1 = 0 to 50. '

4. In model (v), let x(0) == 100, 3(0) == 1, B = 0.5, plot x(r), y(f) in the
A=y plane for 7 = 0 to 100,

5.2 BASIC THEORY OF LINEAR DIFFERENCE EQUATIONS
WITH CONSTANT COEFFICIENTS

This theory is parallel to the corresponding theory of linear differentig
squations with constant coeflicients, but is not usually taught in many
places. We are therefore including a brief account here.

§.2,1 The Linear Differance Equation

M
A equation of the form
‘{‘\ .’tv‘.ﬂ-ls Xedn=ly « o 0y Xiy f) =0 (8)
is called a difference equations of nth order, The equation
ﬁ"(l).\'nn +fl(f).i’n-n-l S T _ﬁ.(!).ﬁ == ?(f) (9)
is called a linear difference equation, since it involves x,, Redtsev 5 v Xiwi
only in the first degree. The equation >
@oXesn T ANy o+ L - anxy = plt) ' (10)
is called a linear difference equation with constant coefficients. The equation
@Xerr + OXean-t o+ oL awx, =0 (11)
is called a homogencous linear difference equations with constant coefficients.
Let xy = gi(r), g2(1), . . ., ga(?) be n linearly independent solutions of (11),
then it is easily seen that ' .
= Aigi(r) b Aaga(n) L. L+ Anga(d) (12
is also a solution of (11) where 4y, A2, ..., Ay are n arbitrary constants.
This is the most general solution of (11),

Again it can be shown that if G\(1) is the solution of (11) containing n
arl,\flrary constants and Ga(r) is any particular solution of (10) containing n¢
arbitrary constant, then Gi(r) + Ga(r) is the most general solution of (10)
(1) is called the complementary function and G is called a particula)
solution.

\ 5.2.2 The Complementary Function

~ We try the solution x; == a). If this satisfies (11), we get .
) = aod® + @ Aml g2 an =0 (13
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This algebraic equation of nth degree has n roots Ay, Az, ..., A, T2al or
complex. The complementary function is then given by
Gi(t) =c\i + A + ...+ el (i4)

Case (i): If Ay, A2, ... A, are all real and distinct, (14) gives us the
complementary function when ¢y, ¢2, ..., ¢, are any n arbitrary real
constants.

Case (ii): If two of the roots A, A; are equal, then (14) contains ounly
n — | arbitrary constants and as such it cannot be the most general solution.
We try the solution crA]. We get
ao(t +a + it +n— DAT™"+ ... +an=0
or tg(M) + g'(A) = 0, (15)
which is identically satisfied since both g(A;) = 0 and g'(M) =0 as A is a
repeated root. In this case
Gi(t) = (c1 + Al + c3A) + cds + .. . + Cakta (16)
Case (iii): If a root A, is repeated k times, the complementary function is
Gif) = (a1 + cat + 3 + ...+ at* DA] + cerrdhst
+ ...+ con an
Case (iv): Let g(A) = 0 have two complex roots « + if, then their
contribution to complementary function is
cilx + iBy + eo= — iBY (18)
Putting « = rcos §, B = rsin 6 and using De Moivre’s theorem, this
reduces to
cir(cos 8 + i sin 0 + cor'(cos & — i sin 0Y
= r cos (81)(c1 + c2) + rf sin (01)icy — ica)
= ri(dy cos (81) + da sin (61))
= (22 + P2y1%(d) cos (81) + dasin (61)), (19)

where tan 6 = -f— (20)

and d,, d; are arbitrary constants. . ‘
Case (v): If the complex roots x + iB are repeated k times, then contri-

bution to the complementary functionis =
(a2 + PYP((do + dit + . .. + du-rt*! cos (61
+(fo +Nit+ ... +fe—11*1) sin (81) n
where do, di, . . . » dk=1, fo, - . - » Ju-1 are 2k arbitrary constants.

. 5.2.3 The Particular Solution ' .
. Here we want a solution of (10) not containing any arbitrary constant.

b Case (i Let p(f) = AP, B is not a root of g() = 0 @
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We try the solution CB'. Substituting in (10), we get

CBaoB" + a1B"™' + ... -+ an) = AB' (23)
IfFB # M, 42, . .., An, We get
C = A i
£ aan+aan—l “+ ...+ an < : (24)
and the particular solution is
AB¢ $Ti e
aB" + @B + ... + a, : (25)
Case (ii): ' Let
¢(1) = AB', B is a non-repeated root of gA)=0 (26)
We try the solution CtB, Substituting in (10), we get
B(Ctg(B) + Cg'(B)) = AB* . : 27
Since g(B) =0, g'(B) # 0
Ry
~ 2B’ (28)
so that the particular solution is
AtB
2B T axn — DB + ... T aney (29)
Case (iii): Let ; _
p(t) = AB', g(B) =0, g(B)—o,..., |
gF(E) =0, - . g™(B) %0, ; (30)
then the particular solution is )
Alk_]B‘ .
£™(B) ' s (31
‘ Case (iv): Let “e(D) = A : ) (32)
We try the solution v
dot* + dyt*=1 + datk-2 .+ d (33

Substntutmg in (10) we get

ao(do(t + n)* + di(t + n)k1 dz(! ) i S di)
+aldo(t +n— 1) +di(t +n — 1%t 4 dz(t + n — 1)k-2
toooFd) + L+ aldott + dyk +dak2 |+ d)
= T wav(34)
Equatmg the coefficients of ¥, r*-1, » on. both sides, we get (k + 1)

equations which in general will enablc us to deter
mine do, di, da, . . . d
‘thus the particular solution will be .determined, ot E
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6.2.4 Obtaining Complementary Function by Use

Fu‘ 5 of Matrices
Fiet = xot) = x(1 4 1)
X142 = (1) = xpft 4 1) (35)
Xein = Xngy(1) = .;1
so that (1) becomes ' faltie
aoxa(t + 1) = =@Xnt) ~ azxy_y(t) — _ 36
Equations (35) and (36) give l wllonn e
xi(t + 1) = xa(t)
xalt + 1) = x5(s)
s g (371
xn—l(‘ + I) == -"-’n(f)
Xt + 1) = —;L;x..(t) — Zxul) =+ = xi(0),
which can be written in the matrix form
x4 1)
xadt + 1)
L xle 1) ]
r 0 1 AR 0 x1(1)
0 0 1 ‘i ‘0 x2(t)
an @i _Gn2 < '
L —;4; ao a a9 L x(0 —I( )
38
£ 'X(t + 1) = AX0), (39)
r x(n
x2(1)
where X(1) = i
L xd) J
0 L X
0 0 1 0 !
e i3 (40) °
A= 0 0 9 :
an ,__.a._'!':.'- e —= .-I
% By do ao .
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Applying (39) repeatedly
X(k) = A¥X(0), (41)
where ;
[ xa(0) ] r xi(0) i [ xo
x2(0) xi(1) X1
X0 =| x0) - x1(2) [ m X1 (42)
L x;(ﬂ) J L xi(n—1) J e T inm

Thus knowing the values of x; at times 0, 1, 2. ..., 7 — 1, we can find its
value at all subsequent times.

5.2.6 Solution of a System of Linear Homogeneous
Difference Equations with Constant Coefficients
Let the system be given by

xi(t + 1) = anxi(t) + an,x:(l) + ... 4+ aaxa(t)
x(t + 1) = azm(t) + azzxz(t) + ... F azaxa(t)

xn(l' 4+ 1) = Gnlxl(-‘-') -+ anzxz(f) + ... Guaxa(t)

(43)
This can be written in the matrix form F:
X(t +1) = AX(1), (44
where .
r x( 7
xa(1) an a2 ... dia
X(1) = . A= an anz ... aa, (45)
R0 any 2 ... dsn |
Applying (44) repeatedly, we wet
X(k) = 4%X(0) (46)
6.2.8 Solution of Linear Di

fferenc i
Laplace Transform i ot PN
Let the linear difference equation be

wf)+aftt~ 1)+ ... 4 a5 — n) = p(r)
JO =0 whcnt<0 '
Let 7(}) be the Laplace transform of J(1) so that e
X = L)) = _[ L€ [ di @8)
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then L{f(r — o e
(fir — 1)) jl Nt~ 1y ‘

= I o ENW) dt = e fia)

e =2 I: &N St — e

= g=2A j: e”"’f(t) dt = e"”‘f(/\) (49)

and sc() on so tha: taking Laplace transform of both sides of (49), we get
a0 + aed 4 g 4. + ae™MFN) = Lip() = p(), (50)

so that f(A) i i

ity i;fie) lsdkr(llown. Inverting the Laplace transform, we get f(z). In this

ey garded as a continuous variate such that f(tf) = 0 when ¢ < 0. If
18 a discrete variate, it is better to use the z-transform.

572.7 Solution of Linear Difference Equations by Using

1\_5}3‘ z-Transform
Let {us} be an infinite Sequence, then its z-transform is defined by

Z(un) =n§° ez ™", (51)
whenever this infinite series converges. If {u,} is a probability distribution |

and z = l/'s, ‘it will be the same as the probability generating function.
The following results can be easily established

D) If k>0, Z(unr) = z%Z(u,) (52)
) 1Pk >0, Zur) = MZ) — 2. upz-m] (53)
(i) un : L o, an ean, e

Z(tun): zfz =1) z/(z —a) z/(z — &) © o (54)

Taking z-transform of both sides of a linear difference equation, we can find
Z(u.) and expanding it in powers of 1/z and finding the coefficient of i,

we can get u,.
/

.;5}’2.8 Solution of non-Linear Diffarenc; Equations Reducible
-\-g‘/;" to Linear Equations :
{30“‘ : Thus equations

RTR S V™ (55)
Yn¥ns2 = yiﬂ (56)
become linear on substitution u» = In y». Also F
}’n}’m-l I ) ,
RN 1. L 57 |
Va4 = 57X yau (

becomes linear on substitution ., = 1/yn.

™
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5.2.9 stability Theor

_— K satisfies - .

If x: f(x“ Xe+ly Xt+2y = = v » -"H-R) =1 5 - - )
ilibri i To find its stability, we substitute

. _:es an equilibrium position. 1 hmerrs
p t}r:'lsf I::-eﬁin (58) and simplify neglecting squares and products gher
= . :

e ? inear equation
powers of u's to get a linear €q »

+ aue: =0

Qidssn + Q2lrin-1 + ... -
haracteristic equation

We try the solution v, = AA* and get the c
ao?l”+a|f\""+...+an=0 Sl o

ts of this equation 1s less than

If the absolute value of each of th;e i rgg ;or i ok distarbices

nity, then u would tend to zero as :
:ndlzhe :quillibrium position would be locally asymptotically stable.

i itude less than unity
ditions for all the roots of (60) having magni s
areT Z?V‘:znh; Schur’s criterion viz. that all the following determinants should

(60)

be positive. ,
ao 0 r dn dn-1 l
do an ai do 0 de
Hi , dy = | - . . .
an do an 0 ao ai I
an-1 an 0 ao !
|
i ao 0 s 0 an dn-1 gl ai
' ai do “aa 0 0 an e az
Yy . Y . L 30 . . .
dn-1 an res ao 0 0 i an
an ) 0 asa 0 ‘?0 ai en s Qn-1
an dn 0 s U]. aop g an-2 .
ai az B an 0 0 ) ao
i (61)
EXERCISE 5.2
1. Solve the following and discuss the behaviour of each solution as
t =00

() x42 — Txe1 + 12, = 0

() xr43 — Sxe42 + Txe41 — 300 = 0
(iii) x42 — 2x41 + 2x: = 0
(iv) 8xi43 — 12x42 + 6Xeg1 — X = 0
(V) xt42 + 2641 + x5 =0
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(vi) 2x1402 — 2x000 + Xy =0 |
(Vi) Xe2 — Xt + X = 0
2. Solve the following difference equations
() X4z — 4xp1 + 4y, = o
(ii) Xe+2 — dxep + 3xe = ¢
(ii1) Xr42 — TXep1 -+ 120, = 3¢ 44 + 4¢3,
3. Solve the following simultaneous equations
() Xnit == Xn+ 2ppi = 0
Yntt = Ya — 2x, = 2n
(1) Xmr1 — 200’ — y = p
Yasl = 2xy — = —1p
4.7 Solve difference equations in Exercises 1 and 2 by using
(i) Laplace transform method
(ii) Z-transform method
(iii) Transforming to a matrix equation.
5. Prove results (52), (53), (54) and solve equations (55), (56), (57).

6. ‘Show that the system (44) will be stable if all the eigenvalue of this
matrix have magnitude less than unity.

7. Prove that for (44) to be stable, it is necessary that
|4 <1, —n < trace 4 < n

8. 'Prove that if the sum of the elements of each column of a square
ma_tr{x with non-negative elements is less than unity, then all the charac-
teristic roots of this matrix have magnitude less than unity.

9. Discuss the stability of the following systems

(D) X435 + 9x; r2 — Sxpp1 = 2x, = 0

(ii) 2x42 — 2x41 + x, =0

[ Xes1 6 —11 6 Xt
(i) | 34 == 1 0 0 -] (y,
Zr1 0 1 0 J A
10. Write explicitly the conditions that all roots of
(i) @A + g A + g, =0 (i) aod® + a1 + asd + a5 = 0

are less than unity in magnitude.

' 5.3 MATHEMATICAL MODELLING THROUGH DIFFERENCE
EQUATIONS IN' ECONOMICS AND FINANCE

—9.3.1 The Harrod Model

‘_j,.‘f Let :S'(t). Y(1), I(1) denote the savings, national income and investment res-
pectively. We make now the following assumptions:

) (i) Savings made by the people in a country depend on the national
income i.e, ‘

S@) =a¥Y(), a>0 (62)
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(ii) The investment depends on the difference between the income of the

current year and the last year ie.

) = By — e =1 >0 (63)
(iii) All the savings made are invested, so that
From (62), (63) and (64), we get the difference equation
B
Y(t) = o Yt — 1), (65)
which has the solution _
By 5 e
Y(:)=A(ﬁ_m)-~-Y(0)(ﬁ_Gt )
Assuming that Y(¢) is always positive,
B> BB —x)>1, (67)
so that the national income increases with 7. The national incomes at different
times 0, 1, 2, 3, ... form a geometrical progression.

Thus if all savings are invested, savings are proportional to national in-
come and the investment is proportional to the excess of the current years
income over the preceding years income, then the national income increases
geometrically.

_/6.3.2 The Cobweb Model

Let p, = price of a commodity in the year  and
¢+ = amount of the commodity available in the market in year t,
then we make the following assumptions

: (i).Amount o'f the commodity produced this year and available for sale
is a linear function of the price of the commodity in the last year, i.e

@ = « + Bppy, (68)

where B > 0 since if the last year’s
year would also be high. -

(ii) The price of the commodit
available this year i.e.

price was high, the amount available this

y this year is a linear function of the amount

ko . b =7 4 &g, (69)
Where © < 0, since if g is large, the price would be low. From (68) aﬁd (69)
P — Bsﬁl-l =Y 4 «d
which has the solution - . e
od ¥y 5
IR s 8L ) 2 s 4 ¥
(- 725) (o = P o, e
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so that
( ab oy -
Pr— —_" ) 20 - Y\ ..
Since B4 is negative Pa, 1, pa
(@d + M1 — Bs), i

It B85 | = -
| B3 | > 1, the deviation of pifrom (28 4 ¥)/(1 — P8) goes on increas-

ing. On the other hand if | B his deviation goes on decreasing and
- { l X i i
ultimately p; — (28 L )1 HIBS} astr —lj- @0 . v -

Figures 5.
& 5-laand 5.1b show how the price approaches the equilibrium

price pe = (28 + ¥)/(1 — B5) ag ¢ ; i
t inc - = I
pehiggly sl reases in the two cases when po > p

Pe P,

D Py Py PrASHE. BB o P AT e B
6§ Pu P2 Pg Pg P2 Pi PgdO+Y P; Py P3 Py
1-B& 1-B&

73, ... arealternatively greater and less than

PonSPe Py < Pe

(a) (b)
Figure 5.1

In the same way, eliminating p, from (67), (68) we get
g = o + BY 4 Bd g, (73)
which has the solution

(o - %?‘%}é‘) = (7 = 55 ) ey (74)

so that g; also oscillates about the equilibrium quantity level

qr=(ﬂ+ﬁ?’)/(l—§5) if [B3]| <1 .
The variation of both prices and quantities is shown simultaneously in
Figure 5.2. ' _ ‘
Suppose we start in the year zero with price po, and quantity go represen-

ted by the point 4. In year |, the quantity g1 is given by « + B po and the

price is given by p1 = ¥ + 8qu. This brings us to the point C in two steps
via B. The path of prices and quantities is thus given by the Cobweb path

ABCDEFGHI, . . . and the equilibrium price and quantity are given by the
intersection of the two straight lines. :

6.3.3 Sahuelson's Interaction Models
The basic equations for the first interaction model are:

Y(r) = C(1) + 1), C(1) = «Y(t — 1), I(t) = BlC(1) — C(t — N1 (75)
to consume Wwith

e :ive constant « is the marginal propensity :
Here the positive ¢ 3w io

respect 1o income of the previous year and the positive
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Qe '
po‘»:?“"éqf
& B. qt=d+§pt
C .
G F v
Y A
H
D
Figure 5.2

relation given by the acceleration principle i.e. B is the increase in investment
per unit of excess of this years consumption over the last year's.

From (75), we get the second order difference equation

Y@ —=(1 + Yt — 1)+ =8¥¢t —2) =0

In the second interaction model, there is an additional investment by the
government and this investment is assumed to be a constant ¥. In this case
(76) is modified to

Y(©) —a(l +BY(e— 1) +28Y(t—2)—?Y=0

The solution of (76) and (77) can show either an increasing trend in Y(¢) or
a decreasing trend in ¥(r) or an oscillating trend in it.

(76)

(77

+L 5.3.4 Application to Actuarial Science
«~ “One important aspect of actuarial science is what is called mathematics of

finance or mathematics of investment.

If a sum 5o is invested at compound interest of / per unit amount per
unit time and $; is the amount at the end of time ¢, then we get the difference
equation :

Ste1 = 8 + iS; = (1 + I-)Sr, (78)

which has the solution
1

S = So(l1 + iy, 2 (79)

which is the well-known formula for compound interest. ;

Suppose a person borrows a sum Sy at compound interest i and wants to <
amortize his debt, i.e. he wants to pay the amount and interest back by
payment of n equal instalments, say R, the first payment to be made at the
end of the first year.

l_
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cqll;:llifr‘l be the amount def at the end of ¢ years, then we have the difference
St = 8§ -} g . :
Its solution is i gl A Bt i
Si = (So-— {.3)(1 + i)+ ? @81
=Sl + ey —gLED—1
If the amount is paid back in years, S, = 0, ;o that =
R = S.,—lin'q_—iF; it S a;_“ e le (83)

where a7 called the amortization f: i
alle actor is the present v i
of | per unit time for n periods at P R

il el an interest rate ;.
ns anii and (azj)~1 are tabulated for.common values of »# and i.

Suppose an amount R jg deposited at the end of every period in a bank
and let S¢ be the amount at the end of ¢ periods, then

St = S(1 + 1) + R, (84)
so that (since So = 0)

Si= g Ut

= RS (85)
From (83) and (85)
Sain = (1 + Drany (86)
' | SR O o 1 Nk
or S @ (87)

If a person has to pay an amount S at the end of n years, he can do it by
paying into a sinking find an amount R per period where

1

R=S S (88)

where

!_ is the sinking fund factor and can be tabulated by using (87)
St .

EXERCISE 5.3
1. Show that the necessary and sufficient conditions for both roots of
m+ am-+a=0 '
to be less than unity in absolute magnitude are
l4+a+a2>0, 1—a+a>0, 1—aga>0

2, Use the condition of Ex. | to show that the model of equation (76) is
stable if
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1 —a>0, | —af >0
i.e. il both the marginal propensity to consume and its product with ths

relation must be less than unity. ‘
1. Show that if the condition of Ex. 2 are satisfied, then for the made|

i!l"t‘;[llilli()l\ (77), the national income will tend to its cquili_brium v?.tu,:
(1 ), Show also that the approach to equilibrium value will be oscil|z-
tory if
a(l 4 PR < 4sB
4, For the model
Yoe= L€, Co=C+mV, rh'="Ymi =Y

find Ci, £, Y, and discuss stability of equilibrium pcsi'tion.

S, Let S, denote the amount due at the end of t periods when the amounts
being paid are R, 2R, 3R, .. .. Show that

So= 8 + i)+ ¢+ DR

Show that the solution is

s =R+ nsa -1

6. Discuss the extended Cohweb model for which
Pt — Pe = e(l — P)(Pr—i = Pr) + CP(P.'AI = pf)!
where ¢ is the ratio of slopes of supply and demand curves and P (usually
0 = P < 1) represents the expectation of suppliers about price reversal, in
the case when the roots of the auxiliary equation are complex.

7. Discuss the nature of _the solution of (76) when the roots of the auxi-
linry equation are real and distinct, real and coincident or complex

conjugate,
8. Discuss the Harrod-Domar growth model

Ye=(1 + 0)¥i-1 — (v + Y2 ‘
where s = 1 — ¢ = marginal propensity to save and v is the power of the
accelerator. Discuss also all possible solutions of

- :]; S)Yr—: — (@ + )Y,z

Yr = (l' + Y
5.4 MATHEMATICAL MODELLING THROUGH DIFFERENCE
EQUATIONS IN POPULATION DYNAMICS AND GENETICS

5.4.1 Non-Linear Difference Equations Model for Population
Growth: Non-Linear Difference Equations

Let x; be the population at time ¢ and let births and deaths in time-interval®

(r, £ 4 1) be proportional to Xty then the population x,.;:at time ¢ + 1 is

given by :

Xeel = Xp + b.\‘| L d.\’: = -\'r(l + a) k (89)

Scanned by CamScanner

Prepared by V.Kuppusamy, Asst Prof, Department of Mathematics KAHE Page 16/31




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSENAME: MATHEMATICAL MODELING
COURSE CODE: 18SMMP303 UNIT: IV BATCH-2018-2020

DIFFERENCE EQUATIONS 111
This has the solution

Xt = xo(l ~- a), (90)
so that the population increases or decreases ¢
a > 0ora < 0. We now consider the generalisat
b and d per unit population depend linearly on x

xponentinlly according as !
ion when births-and deaths ‘|

¢ S0 that
Xeet = x¢ + (bo — bix)xy — (do -+ dhx))xs
S 2 r '
=OMXe = rXp = mx, (l g )
’ [} o X (9])

This is the sim]?lest non-linear generalisation of (90) and gives the discrete
version of the logistic law of population growth, However this model shows
many new features not present in the continuous version of the logistic
model. Let rx;/m = y,, then (91) becomes

Yirt = myl — y) (92)

One-Period Fixed Points and Their Stability
A one-period fixed point of this equation is that value of y, for which
y+1 = yr i.e. for which
ye = my(l — y)), 93)

so that there are two one-period fixed points 0 and (m ~- 1)/m. If yo = 0,
then y1, y2, ¥3, . . . are all zero and the population\rcmains fixed at zero
value: ,
If yo = (m — 1)[m, then y1, y2, ys,. .. are all equalto (m — 1)/m. The second
fixed point exists only if m > 1.

We now discuss the stability of equilibrium of each of these equilibrium

positions. \ . .
Putting )» = 0 + u, in (92) and neglecting squares and higher powers of
w, we get ur.1 = mu, and since m > 0, the first equilibrium position is one
of unstable equilibrium. ) ‘ |
Again putting y; = (m — 1)/m + w in (92) and neglecting squares and !
higher powers of u;, we get

w1 = (2 — mue, ; (94)

so that the second position of equilibrium is stable only if —1 <2 —m <1
orif 1 >m—2>—1lorifl<m<3. ‘ Nod el

Thus if 0 < m < 1, there is only one one-period fixed point and it is
unstable. 1If 1 < m < 3, there are two one-period fixed points, tpe first is
unstable.and the second is stable. If m > 3, there are two one-period fixed

points, both of which are unstable.

Two-Peri ints and Their Stability ' ‘ ‘
Au:o:;?’i‘;i:l’l:;d:t:o-pcriod-ﬁxed point if it repeats itself after two periods
i.e. irJ'H:I =M ie. if

" , o
Yiya = m)’nl(] - J'Hl) = m:.l';(l ey J'r)(l — my + m.l'f) =W (95)
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or : _
polmye — (m = D)myi = m(L =+ m)ye F r iy = 6)

This is a fourth degree equation and as such there can be four t"j'O'perio d
fixed points. Two of these are the same as the one-period fixed points. Thig
is obvious from the consideration that every ‘onc-penod i.ixed poug- is also g
two-period fixed point. The genuine two-period fixed points are obtained by
solving the equation

aty: — m(l + mye + (1 Fm) =0 o)

Its roots are real if m > 3. Thus if m >3, the two o‘ne-perl.od fixed points
become unstable, but two new two-period fixed points exist and we cap
discuss their stability as before. 1

It can be shown that if m2 < m < ma, where mz2 = 3 and my is a number
slightly greater than 3, then the two two-period fixed points are stable but if
m > ma, all the four one- and two-periods become unstable, but four new
four-period fixed points exist which are stable if ms < m < mg and become
unstable if m > ms. '

2n-Period Fixed Points and Their Stability

It can be shown that there exists an:increasing infinite sequence of real
numbers mz2, m4, M, ..., M2N, Mya+1, - -+ such that when man < m <
myn+t there are  2++12a+l-period fixed points, out of which 2” fixed points
are also fixed points of lower order time periods and all these are unstable

and the remaining 2" points are genuine 2"*! period fixed points and are
stable.

From 5.3 represents the stable fixed period points.

!

A i L l'rnlsi
my mZ'mL mIS >m

Figure 5.3

When m lies between m; and ma, there is one stable one-period fixed point-

W!?cn m lies between mz and my there are two stable two-period fixed
points.
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When m lies between miy and My,

i, el s o there are four stable four-period fixed

Fixed Points of other Periods

! The seq*uence M2, M4, my, ... is bounded above by a fixed number m*. If
m > m<, lhere_can be a three-period fixed point and if there is a three-
. period fixed point, there will also be fixed points of periods,
73,5v799,...
2:3,2-5.2:7,2-9, ... (98)
22.3,22.5 22.7
This is expressed by saying that Period Three Means Chaos.

Chaotic Behaviour of the Non-linear Model

If m lies between ms and mig, there will be eight 16-period stable fixed
points. If a population size starts from any one of these values;-it will osci-
llate through fifteen other values to return to the original value and this
pattern will go on repeating itself. If we draw the graph, it will show rapid
oscillations and will look like the graph representing a random phenomenon.

Our model is perfectly deterministic, though its bahaviour may appear to be
random and stochastic.

Special Features of Non-linear Difference Equation Models

' The simple model illustrates the differences in behaviour between difference
and differential equation models. The problems of existence and uniqueness
of solutions, of the stability of equilibrium positions are all different due to
the basic fact that inspite of similarities, the Discrete and the Continuous
are really different.

v+; 5.4.2 Age-Structured Population Models
U Let xi(r), x2(0), . . ., xp(1) be the population sizes of p pre-reproductive
. age-groups at time f;
| Let xp+1(2), Xp+2(1), . . ., Xp:4(t) be the population sizes of ¢ reproductive
i age-groups at time t, and
Let xpig+1(), Xpiqs2(D), - . ., Xprq+r(t) be the population sizes of r post-
g reproductive age-groups at time .
i Let bpo1, bpr2, - - -» bosq be the birth rates ie. the number of births per
' unit time per individual in the reproductive age groups.
i In other age-groups, the birth rates are zero.
Let di, da, . . ., dp+q+r D& the death rates in the p 4 g + r age-groups.
Let my, ma, . . ., Mprq+r, be the rates of migration to the next age-groups,
then we get the system of difference equations
xi(t + 1) = bpraxpua(t) + ... + bpraxpra(t) — (di + mdxi(0)

x2t + 1) = mx(t) — (da + ma)xa(t)

. (99)

Xprasr—a(t -+ 1) = mprgrr-2(t) = (dprqer-t + mprqrr=)Xprarr-1(1)
Xprasr(t + 1) = Mprqre-1rprgrr-1(t) — (dpra+r)Xprarr(l)

|
|
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Which vt be written in the matrix form

X(t+ 1) = LX{(0), (100)
wheye
xi(1) 1
x2(r)
X = A

.\‘p'a-qn(f) J

[ —(d + mi) 0 0...0 byt bpez oo . bpre O .. 0
my —(d2+m2) O... 0 ) STRIRTEE IR | NPT ) B
L= 0 ma —(dy +nm) 0 o ... 0 O 0 o
L 0 £y 6. 0 0 0 0 .. may~d,

(101)
where p4+g+r=n.

L is called the Leslie matrix. All the elements of its main diagonal are
negative and all the elements of its main subdiagonal are positive. In addi-
tion g elements in the first row are positive and the rest of the elements are
all zero. The solution of (100) can be written as

X() = L'Xx(0) (102)
Nolw t}lc Leslie matrix has the property that it has a dominant eigenvalue
w:hlch is real and positive, which is greater in absolute value than any other
eigenvalue and for which the corresponding eigenvector has all its compo-
nents positive. If this dominant eigenvalue is greater than unity, then the
po_pulations of all age-groups will increase exponentially and if it is'lcss than
unity the population of all age-groups will die out. If this dominant
eigenvalue is unity, the population can have a stable age structure

The Leslie model is in terms of a system of linear diffe ‘
we take the effects of overcrowdin
the equations are nonlinear.

: ; rence equations, If
g and density dependence into account,

5.4.3 Mathematical Modellin

g throu
Equations in Genetics ough Difference

(a) Hardy-Weinberg Law
Every characteristic of an indjy; :

ind ; i g
determined by a pair of gen tvidual, like height or colour of the hair, is

: es, one obtained from the f:
obt e father and the other
ained from the mother. Every gene occurs in two forms, a dominant
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| (dcnqtcd by a capital letter say G) and a recessive (denoted by the corres-
P"“_dfng small letter say g). Thus with respect to a characteristic, an
individual may be a dominant (GG), a hybrid (Gg or gG) or a recessive (gg).

In the nth generation, let the proportions of dominants, hybrids and
recessives be pa, gn, r, so that

Pnt gnt+rn=1, Pn=0,g.>0, rn>=0 (103)

We assume that individuals, in this generation mate at random. Now
Pert = the probability that an individual in the (n 4 I)th generation is a
dominant ‘(GG) = (probability that this individual gets a G from the father)
x (probability that the individual gets a G from the mother)

(Pu + %qn)(p,. + %q,.) = (p,. + —;-q.)z

f

2
or Payy = (Pn + —;qn) (104)
Similarly gnyl = 2(P|r 4 %qn)(rn + ";"‘Qn) (105)
l 2
nyl = (rn + EQn) 3 (106)

2
0 that  Part + Guet + Fuer = (p,. 4 %q.. + %q, s r,.) =1, (107)

as expected. Similarly

1 2
Pny2z = (pnfl + 54':4-:)

._(( _Ll)z+( +_1 (,._|_l g
Pn i qul Pn 2ql! n 2q;|

1 \2 1 1 2
= (p,. -+ -2—%) (Pu + 3 + 54n + r'n)

- 2
= (p.u + %Qn) = Pn+} (108)

and gni2 = Gn+l, In2 = Inil, (109)

so that the proportions of dominants, hybrids 2nd recessives in the (n + 2)th
generation are same as in the (# 4+ 1)th generation.

Thus in any population in which random mating takes place with respect

to a characteristic, the proportions of dominants, hybrids and recessive do
not change after the first generation. This is known as Hardy-Weinberg law
after the mathematician Hardy and geneticist Weinberg who jointly
discovered it.

The equations (104)-(107) is a set of difference equations of the first order.

COURSENAME: MATHEMATICAL MODELING
COURSE CODE: 18MMP303 UNIT: IV BATCH-2018-2020
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imination of Recessives
ts through Elim
c: ;{‘Zia:re undesirable and as such we do not allgy, the
Suppose i :on to breed. ) )
recessives in any scni;aéﬂzl:oportions of dominants, hybrids a_nd recessi, !
Let pn 9 t’jn n":’) d let ph, g O be the populations afeey g,
before eliminatio

elimination, then

(b) Improvemen

f recessives an

’ s 1
: q,:=pn +qﬂ=.__..—- (“0
EJPT=E: patan 1—7n )
om mating and let Pas1, Gnsl, T+l be the proportions j

before elimination of recessives, then using (104)~(1gg

Now we allow rand
the next generation

l ’
ot = (7 + 305)’ (i1
[ I ’ l / S i ' + _!. 4 l
Gnt1 = 2(}75 + 3\ 29) = qn\ Pn 29" (113
2 f
rn = (3) - = 59 (1)
After elimination of recessives, let the new proportions be pa+1, gasy,
so that
Phvt _ Ghet 1 = 1 (119
Pnsl o qni1 = Prst + Gnst 1 — iq{,z
’ [} 7 ’
so that i = g(px + 3g) _ 9:(1 — 347)
q +1 1 - }q;z 1 — }q;z
Tz i
This is a non-linear difference equation of the first order. To solve it we
substitute
q:’ = 1/un
to get Unpl = Uy + % {]16)
which h - i3 1 '
as the solution w, = A4 + 57 a1
or 2o 1 :
T (118)

so that g1 — 0 and
with all dominant
disappcar_

EXERCISE 5.4

1. Show that jn Figure 5.3

" » ABis t
2. Find my and draw the t.:l.n'v.vesmB(‘:':l Z;:lc;;a e e <

Pr—>1lasn—> oo,

Thus ultim '
s. Equation (118) ately we should be left

determines the rate at which hybrids

Scanned by CamScanner

Prepared by V.Kuppusamy, Asst Prof, Department of Mathematics KAHE Page 22/31




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSENAME: MATHEMATICAL MODELING
COURSE CODE: 18SMMP303 UNIT: IV BATCH-2018-2020

DIFFERENCE EQUATIONS 117

3. Find the four stable eight-period fixed points.
4, Ff)r the condition for the existence of a three-period fixed point.
5. Find the characteristic equation for the Leslie matrix and show that it

always has a positive real root. Find the condition that this.root is less than
unity.

6. Let yyr1 = 3.1(1 — y,). Draw the graph of its solution for yo = 0.5.

7. Draw the graphs of In x,(1), In x2(z), In x3(z) for the system
X(t + 1) = AX(f) when

B 11
ro 10 87 rfo 2 27 |0 3 -;4—‘\
1 1
A=13 0 ¢ or | 3 0 0 or —;— 0 0’
1 1
o 4L 1
7 9] 0 5 0 o —15 OJ]

when x1(0) = 10, x2(0) = 10, x3(0) = 10
and interpret the graphs.

8. Discuss the probiem of Section 5.4.3(b) when only a fraction k of the
recessives are eliminated at each stage.

5.5 MATHEMATICAL MODELLING THROUGH DIFFERENCE
EQUATIONS IN PROBABILITY THEORY

5.5.1 Markov Chains
Let a system be capable of being in n possible states 1, 2, . . ., n and let the
probability of transition from state i to state j in time interval £to ¢t 4 1
be py. Let pi(¢) denote the probability that the system is in state j at time ¢
G=12,.., n), then at time ¢ 4 1 it can be in any one of the states
1,2,...n

It can be in the ith state at time ¢ 4+ 1 in n exclusive ways since it could
have been in any one of the n states 1, 2, . . ., # at time ¢ and it could have
transited from that state to. ith state in time interval (¢, ¢ 4+ 1). By using the
theorems of total and compound probability, we get '

P+ D) = E o0, 1=1,2...n (119)
or it + 1) = pupi() + pupat) + .. . + pupalt)
\ pat + 1) = ppi(®) + pups't) + .. . + paapat)
(120)
ot + 1) = p1apr(t) + p2qpa(t) + ... + Puapa(t)
Cpt+D7 o e oon pul PO
or pZ(t.+ l) _— Pz P22 P Pn2 PL:(‘) (121)
Lo+ J L2 P Pl g
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or P(r+ 1) = AP(1), (122)

where P(?) is a probability vector and A is a matrix, all of whose clemeny,
lie between zero and unity (since these are all probabilities). Further 1,
sum of elements of every column is unity, since the sum of elements of the

n
ith column isj.’.a py as this denotes the sum of the probabilities of the

system going from the ith state to any other state and this sum must be upjyy,
The solution of the matrix difference equation (122) is i
P(t) = A*P(0) (123)

If all the eigenvalues Ay, Az, . . ., A, of A are distinct, we can write

A = 5457 (124)
[ XA 0 0
where Ao | O 1 0 0 (125)
Qi o 2 0 gl o o B
so that A" = (S4S-1)(SASY) . . . (S45))
= SAt5-1
[ A 0 o0 0 ]
o 4 0 A0
o i il gl A P Y
0 A e T A

The babili i i
(122)Pm ability vector will not change if P(t + 1) = P(t) so that from
(I — AP@E) =0 (127)

Thus if P is the eigenvector of the matrix 4 corresponding to unit eigenvalue
tPeu P x‘iocs.not change i.e. if the system start with probability vector P at,
time 0, it will always remain in this state. Even if the system starts fr

other probability vector, it will ultimately be described by the proggi?il:;

vector P as t = w0,
As a special case, suppose we have 8 machine which can be in two states,

working or pon-working.. Let the probability of jts transition from working
to non-workm_g.be «, of its transition from non-working to working be B,
then the transition probability matrix A is obtained from '-

working non-working

working [ 1 — o &
non-working B ey ] (128)
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The system of difference equations jg

Pt + 1) = PO — w) 4+ Pa(0)B
pat + 1) = Pt + pa(e)(1 — B) (129)
or [p.(r + 1) ] [1-a 8 i)
pat +1) | [ o l-ﬁ][pz(r)] (130)
The eigenvalues of the matrix A is given by {
l —a — A B

o 1 —8 — 2 =00r(3—-1)(ﬁ—l—a—,’8)=0 (131)
Z:; c;ielgve;tor corresponding to the unit eigenvalue is B/(z + B), a/(x + B)
uch ultimately the probability of the machines being found in

work.mg order. is B/(x + B) and the probability of its being found in a non-
working state is «/(x + B),

6.6.2 Gambler’'s Ruin Problems

Let a gambler with capital 2 dollars play against an infinitely rich adversary.
Let the probability of his winning or losing a unit dollar in any game be p
amzl grespectively where p + ¢ = 1 and let Pn be the probability of his being
Fllnmat‘ely ruined. At the next game, the probability of his winning is p and
if he wins, his capital would become 7 4+ 1 and the probability of his ulti-
mate ruin would be p,y1. On the other hand if he loses at the next game,
the probability for which is g, his capital would become # — 1 and the
probability of his ultimate ruin would be p,.1, so that we get the linear
difference equation of the second order -
Pn = pPns1 + qPn-1 (132)

The auxiliary equation for this is l

PR2—-A4+(1-=p=0

or p(A — l)(A o ; p) =0 (133)
As such the solution of (132) is
po=a+8(Z) (134)

Now let the gambler decide to stop this game when his capital becomes a
dollars so that the probability of his being ruined when his starting capital
is g dollars is zero i.c. ps = 0. In the same way when his starting capital is
zero, he is already ruined, so we put po = 1. Using

Do = 1, Pa=0 (]35)

(g/p)* — (q/p)" 13
Pn"‘q'%];F__g-l— (136)

(134) gives
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e expected number of pgames before the panbler js

E ' 'O 1118 - 1 and the
ruined. Ifhe wins at the next game, his capital hwf)-mu]”..' e )3lllci
‘xpccl::d number of games would then be D1 and il l"‘l ‘”‘“’:i I; “/‘\'_
becomes n — 1 and the expected number of games wopid b8 oMY Eaels Ak

such, we get

Now let Dn denote th

Dy == pDayt 1= qDat 1| (137)
with boundary conditions

Do =0, Da=10 (138)

This gives the solution
n a J == (({/_ﬁ)"

D,, == ——'—q il [) or. '(;"‘::‘l‘; ] = (rI/!}J:I

EXERCISE 5.6
1. Show that the solution of (129) is

) = ~ ﬁ g+ (L By (/71(0) & a’f‘"ﬂ)
x A
pat) = et (1 —a— {3)’(/12(0) - 7_;_}1)

2. Show that —1 < | — « — B < | and deduce that p(t) —» ;—-I——ﬁﬁ and

p2(1) = E:-—ﬁ as t = o, Show also that B/(z - ), #/(= -+ £) give the

components of the eigenvector of the matrix A corresponding to the unit
eigenvalue.

3. In a panel survey, a person gives an answer ‘yes' or ‘no’. The proba-
bility of his changing from ‘yes’ to ‘no’ in the next survey is « and that of
changing from ‘no’ to ‘yes’ is A. Find the probability that ultimately he will
answer ‘yes’.

4. In a gamf: of chance, the probability of a person winning a second
game after losing tEge f_irst game is = and the probability of his losing a
se-con-d game after winning the first game is £. Find the ultimate chance of
winning.

5. Show that if p = ¢ = 1/2, the solution of (132) js

Pn=1— H/Cl
Show also that this is the limiting value of i
i g i¢ ol ps given by (136) when p and q
6. Show that if p = ¢ = }, the solution of (137) is

Dn = nla — n) =
Show also that this is the limitin

value of D, gi :
both approach 1/2. ¢ of D, given by (139) when pand g
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7. In gambler’ i ; i
g ler’s ruin problem, discuss the special cases when |

n=1 or p=2¢q-—1.
8. A particle is at the point n or
negative integer. At every
towards the right or toward

on the positive real axis where # is a non-
unit interval of time it can move unit distance

: s the left with probability p and g(p + g = 1)
respectively. If the particle reaches 0 or a, it is absorbed there. Find the

p{oba}?ﬂmes of the particle being ultimately absorbed at O or at a. Find
also the expected duration before absorption in either case.

9. n letters to cach of which corresponds an envelope are placed in the

envelopes at random. If w, is the number of ways in which all letters go
wrong, show that

tn = (0 — D=1 + 14z-2)
Prove that Un = Mlin-y = (—1)" 2y — 2u) = (—1)"
and = 1 -1_ —_— ._1.... ! (_ l)"

Un = n! [2! 3 o N ol
Deduce that the probability that all » letters go wrong is given by the first
(n — 1) terms in expression of | — e-!,

10. A player tosses a coin and is to score one point for every head turned

up and two for every tall. He is to play on until his score reaches or passes
n. If pn is the probability of attaining exactly n, show that

1 ¥
Pn= ‘2"(Pn—| + pn2), pn = -;—[2 + (=1 %{-] i

5.6 MISCELLANEOUS EXAMPLES OF MATHEMATICAL
MODELLING THROUGH DIFFERENCE EQUATIONS |

Difference equations arise in economics since values of prices, quantities,
national income, savings, investments at discrete intervals of time are
related. These arise in genetics because proportions of dominants, hybrids
and recessives in different generations are related by genetic laws. These
arise in population dynamics because population sizes at discrete instants
of time are related by births, deaths, immigration and emigration. These
arise in finance because amounts at discrete instants of time are related by
rates of interest. These arise in gambler’s ruin problem because the
probability of ruin (or duration of game) when gambler’s capital is n is :
related to the probability of ruin (or duration of game) when his capital .
isn+ 1.

Similarly in geometry, difference-equations can arise because the number
of compartments in which n lines or curves divide a plane or surface is re-
lated to the number of components determined by (n -+ 1) lines or curves;
i in dynamics the ranges after successive rebounds of an elastic ball fr?m a .
i horizontal or inclined place are related; in electrical currents, the potential at i
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i i i i i Iated b
]l[:.g Our i g dCS ﬂnd cu Te
1 " |s

Kirchhofl's laws and so on.

EXERCISE 5.6 compartment® formed by n straight lines drawy

is the number of
in Iw'. L';z::clssuch that no two are parallel and no three are concurrent, shqy,
mn ¢

that
L.
Uyt = tin + (0 4+ 1), Un = -2—(}1 4+ n + 2).
2 Show that if i, is the number of compartments formed when r closed
curves are drawn on a closed surface in such a way that no three intersect
at the same point and every pair crosses at two points and only at two points

then
Un =ty -+ 21, Up=n*—n-+2

™ cos nb 4 L —
LI Iy = L — LAl .show that [, + Ja-2 = 2 cos « [,y and
hence show that 7, = = sin nz/sin =,

4. Using the difference equation
(n + DPui(x) — (21 + 1DxPu(x) + nPa_s(x) = 0
valid for Legender’s polynomials, evaluate
’n = ! Pn(x)Pn-I(x) dx
-1 X
by first showing that

(8 A Diwir + af, = 2.
5. N i i
it :lqnl;alo :n;fol::;i ;;)lfts‘l stmlc;lothly Jointed together and at rest in 2
al table, have an impulse J appli
pplied to the free

end : :
Dcnz{ihl:ti?tc;zi']i:;lzi sg:iﬁontal and perpendicular to the line or rods.
i1 “thé cortvantidn L reactions at the ith joint by R;, and adopt-

; impul ; i
measured in the same sense as J,I::nf:e ﬁ;a-':cnng on the (7 + Dth rod is

Riet |+ 4Rt + Ry = 0

3 b :
% €quation hold for j = |, 5 BVen to Ro and Ry, in order to make

i ]'F2= II Fn = Fp + Fa-2
e._

F,, rF == Fn
- j =l + F, =
Llnd rorn-!ula fOr F Fi n=2yr I‘ .

n

DR, 7 P
. B
w and discugg jig Propertieg
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8. In the st - -
is give: bye steady-state, the probability of there being n persons in a queue
A+ wWpn = Ap,_y + BPntt, n=20,1,2,3,...
show that Pn=(l—p)pn, p _ M.
9. Show that the number of try

. ‘ . fisformation of n points into themselves
in which n — r points remain fix

ed is given by
" 1 1 1 (—1
L -
M'(ZI T "“"?T")
10. Shof" that_ tht? number of transformations in which no point remains
fixed and in which just one point remain fixed differ always by unity
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Part B (6 Marks)

1. Give any two disciplines that difference equation arises.

2. Write about Hardy-Weinberg law.

3. Write an explanatory note on complementary function.

4. Discuss about application to actuarial science.

5. Find a solution of linear difference equation by Laplace transform.

6. Explain in detail Harrod model.

Part C (10 Marks)
1. Explain in detail markov chains.
2. Write about Hardy-Weinberg law.

3. Discuss in detail on particular solution.
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Subject Code: 1I8SMMP303
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Unit IV
Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions

Question Opt1 Opt 2 Opt3 Opt 4 Answer
In the genetic characteristics will change
generation to generation and the variable Population
representing generation is discrete variable. Economics Genetics dynamics None Genetics
In genetics, the genetic characteristics will change
generation to generation and the variable
representing generation is variable. Discrete Numeric Feasible Optimum Discrete
In the price changes are consider from
year to year or month to month or week to week or Population
day to day Economics Genetics dynamics None Economics
In _ the changes are consider in population from
one age group to another and the variable Population
representing the age group is discrete Economics Genetics dynamics None Population dynamics
In population dynamics _ the changes are consider
in population from one age group to another and the
variable representing the age group is Discrete Numeric Feasible Optimum Discrete
No of birth and deaths are proportional to the
population then the model is PGM LGM PTM CM PGM
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The solution of linear differential equation is of the

form CF+PI CF-PI CF*PI CF/PI CF+PI
Complementary [convergen Conditional
CF denotes function function function None Complementary function
the sort form of particular integral is PI Par-Ing Ping None PI
Complementary function can be obtained by
Matrix Determinate Eigen value None Matrix
the solution of linear differences equation can be
obtained by transform if t is continuous |Laplace Z Fourier Gauss Laplace
the  is solution of linear differences equation can
be obtained by transform if t is discrete  [Laplace Z Fourier Gauss Z
the non linear difference equations reducible to
linear equation by method Substitution Direct Indirect Normal Substitution
In difference equation theory is applied Stability Non stability Uniformity Non uniformity Stability
The Horrod model is used in the field of Population
Economics Genetics dynamics None Economics
The investment depends on between
the income of current year and last year Addition Difference product division Difference
All the saving made are invested in the Horrod
model then S(t) = 1(t) S(t) =1/2 1(t) 2S(t) = 1(t) None S(t) = 1(t)
In the cobweb model price of the commodity in the
year denotes Pt qt rt st pt
In the cobweb model amount of the commodity
available in the market in year t denotes Pt qt rt st qt
Amount of the commodity produced this year
available for sale is a function of the
price of commodity Linear Non linear Stable Non stable Linear
In the cobweb path ABCEFG]I, .. And the
equilibrium price and quantity are given by
of two straight lines Intersection Union Disjunction Conjunction Intersection
In the cobweb path ABCEFGI, .. And the
equilibrium price and quantity are given by
intersection of two Straight lines Circles Squares Cubes Straight lines
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Mathematics of

Mathematics of

the actuarial science is called finance economics Dynamics Statics Mathematics of finance
Mathematics of |Mathematics of

the actuarial science is called investment economics Dynamics Statics Mathematics of investment

One-period fixed points and their stability Yt+1=yt Yt+2=y2t Yt-1=yt yt+2=yt Ytt+1=yt

Two-period fixed points and their stability Yt+2=yt Yt+2=y2t Yt-1=yt yt+2=y2t Yt+2=yt

Any population in which random meeting take place

with respect to a characteristic , the proportion of

dominants hybrids and recessive do not change after

the first generation states law Gauss Hardy-weinberg |Fick's Routhwelt Hardy-weinberg

The probability of transition from state I to state j is |Markov chain  |Hardy-weinberg |Fick's Routhwelt Markov chain
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Mathematical Modeling through Graphs: Solutions that can be modeled through Graphs —
Mathematical Modeling in Terms of Directed Graphs, Signed Graphs, Weighted Digraphs and
Unoriented Graphs.
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Mathematical Modelling Thro'ugh Graphs

7.1 SITUATIONS THAT CAN BE MODELLED
THROUGH GRAPHS

7.1.1 Qualitative Relations in Applied Mathematics

It has been stated that “Applied Mathematics is nothing but solution of
differential equations”. This statement is wrong on many counts (i) Applied
Mathematics also deals with solutions of difference, differential-difference,
integral, integro-differential, functional and algebraic equations (ii) Applied
Mathematics is equally concerned with inequations of all types (iii) Applied
Mathematics is also concerned with mathematical modelling; in fact mathe-
matical modelling has to precede solution of equations (iv) Applied Mathe-
matics also deals with situations which cannot be modelled in terms of
equations or inequations; one such set of situations is concerned with
qualitative relations.

Mathematics deals with both quantitative and qualitative relationships.
Typical qualitative relations are: y likes x, y hates x, y is superior to x, y is
subordinate to x, y belongs to same political party as x, set y has a non-null
intersection with set x; point y is joined to point x by a road, state y canbe
tansformed into state x, team y has defeated team x, y is father of x, course
y is a prerequisite for course x, operation y has to be done before operation
x, species y eats species x, y and x are connected by an airline, y has a
healthy influence on x, any increase of y leads to a decrease in x, y belongs
to same caste as x, y and x have different nationalities and so on.

Such relationships are very conveniently represented by graphs where a
graph consists of a set of vertices and edges joining some or all pairs of these
vertices. To motivate the typical problem situations which can be modelled
through graphs, we consider the first problem so historically modelled viz.
the problem of seven bridges of Konigsberg.

7.1.2 The Seven Bridges Problem ‘
There are four land masses 4, B, C, D which are connected py seven bridges
numbered 1 to 7 across a river (Figure 7.1). The problem is to s'tart from
any point in one of the land masses, cover each of the seven bridges once
and once only and return to the starting point.
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i

Figure 7.2

Figure 7.1

There are two ways of attacking this.prohlcm. One l‘ncl.hn:i :sl }u l.ry to
solve the problem by ‘walking over the bridges. Hund rcda- u! people trieg (.0
dose in: their evenj'ng walks and failed to ﬂ‘nd a path satisfying the congj.
tions of the problem. A second method [s’lo draw & scale map of (he
bridges on paper and try to find a path by using a pencil. -

It is at this stage that concepts of mathematical modelling are useful, 1
is obvious that the sizes of the land masses are unimportant, the lengths of
the bridges or even whether these are straight or curved are irrelevant, Whay
is relevant information is that 4 and B are connected by two bridges | and
2, B and C are connected by two bridges 3 and 4, B and D are connected
by one bridge number 5, 4 and D are connected by bridge number 6 and C
and D are connected by bridge number 7. All these facts are represented by
the graph with four vertices and seven edges in Figure 7.2, If we can trace
this graph in such a way that we start with any vertex and return to the
same vertex and trace every edge once and once only without lifting the
pencil from the paper, the problem can be solved. Again trial and error methoc
cannot be satisfactorily used to show that no solution is possible.

The number of edges meeting at a vertex is called the degree of that

_vertex. We note that the degrees of A, B, C, D-are 3, 5, 3, 3 respectively
and each of these is an odd number. If we have to start from a vertex and
return to it, we need an even number of edges at that vertex. Thus it is
casily seen that Kénigsberg bridges problem cannot be solved,

This example also illustrates the power of mathematical modelling. We
havé not only disposed of the seven-bridges problem, but we have discover-
ed a technique for solving miny problems of the same type.

7.1.3 Some Types of Graphs

A graph is called complete if ever ir of . o ’
i ¥ pair of its vertices i an edge
(Figure 7.3(a)). p es is joined by g
W.Q graph is called a directed graph or a digraph if every edge is directed
't an arrow, The edge Joining. 4 and B may be directed from A to B or

fmg' B.m A. 1f an edge is left undircclcd"in a digraph, it will be assumed
© be directed both ways (Figure 7.3(b)).
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D
E C
«
A B
Figure 7.3a Fizure 7.3b
D
- 1 15
E C
+ = AN 2
At B 1
Figure 7.3¢ Figure 7.3d

A graph is called a signed graph if every edge has either a plus or minus
sign associated with it (Figure 7.3(c)). y

A digraph is called a weighted digraph if every directed edge has a weight
(giving the importance of the edge) associated with it (Figure 7.3(d)). \.VE
may also have digraphs with positive and negative numbers associated with
edges. These will be called weighted signed digraphs.

7.1.4 Nature of Models in Terms of Graphs

In all the applications we shall consider, the length of the edge joining two
vertices will not be relevant. Tt will not also be relevant whether the edge is
straight or curved. The relevant facts would be (a) which edges are joined;
(b) which edges are directed and in which direction(s); (c) which edges have
positive or negative signé associated with them; (d) which edges have
weights associated with them and what these weights are.

EXERCISE 7.1

1. In the Konigsberg problem suggest deletion or addition of minimum
number of bridges which may lead to a solution of the problem.

2. Show that in any graph, the sum of local degrees of all the vertices is
an even number. Deduce that a graph has an even number of odd vertices.

3. Three houses A, B, C have to be connected with three utilities a, b, ¢
by separate wires lying in the same plane and not crossing one another.
Explain why this is not possible.

4. Each ‘of the four neighbours has connected his house with the other

.- three houses by paths which do not cross. A fifth man builds a house

nearby. Prove that (a) he cannot connect his house with all others by non-
intersecting paths (b) he can however connect with three of the houses.
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- 1P S S o "
r if each of its vertices RESRINESCRree 7, B

5. A graph is called regula

regular graphs with 6 \:?rfices
6. Show that in K onigsberg,

connect the four land masses.

5,4 and 3.
and degree 2, - )
four one-way bridges will be enoygy 4

F
7.2 MATHEMATICAL MODELS IN TERMS O

DIRECTED GRAPHS
7.2.1 Representing Results of Tournaments
The graph (Figure 7.4) shows that
(i) Team A has defeated tears B,

C, E.
(ii) Team B has defeated teamg

C.E

(iii) Team E has defeated D.

(iv) Maiches between A4 and D, g
and D, Cand D and C and E have
yet to be played.

A 8

D
Figure 7.4

7.2.2 One-Way Traffic Problems
The road map of a city can be represented by a directed graph. If only one-

way traffic is allowed from point @ to point », we draw an adge directed
from - to &. If traffic is allowed both ways, we can either draw two edges,
one directed from a to b and the other directed from b to a or simply draw
an undirected edge between a and &. The problem is to find whether we can
introduce one-way traffic on some or all of the roads without preventine
persons from going from any point of the city to any other point. In othe;
wo;ds, we have to find when the edges of a graph can be given direction in
such a way that there is a directed path fro rery i
casily seen that one-way traffic 0?1 the r:;.c? nzger::;r:gtef:’ 'Other. o

. I introduced
without disconnecting the vertices of the graph (Figure 7.5).

A H 2
£ .
M G E-—BQ B
C E - ’
Figure 7.5(a)

Figure 7.5(b)

i ) called separating edges,
it edges. Tt is necessary that on separating
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edges. two-way traftic should be permitted. 1t can also be shown that this
is suflicient. In other words, the following thcorem can be established:

I G is an undirected connected graph, then one can always direct the
arewmt edges of G and leave the separating edges undirected (or both way
directed) so that there is a directed path from any given vertex to any other
vertex.

7.2.3 Genetic Graphs
In a genetic graph, we draw a directed edge from A to B to indicate that B
is the child of 4. In general each vertex will have two incoming edges, one
from the vertex representing the father and the other from the vertex repre-
senting the mother, If the father or mother is unknown, there may be less
then two incoming edges. Thus in a genctic graph, the local degree of incom-
ing edges at each vertex must be less a, A, A

than or equal. to two. This is a
necessary condition for a directed W
graph to be a genetic graph, but it B B8

is not a sufficient condition. Thus I y
Figure 7.6 does not give a genetic

graph inspite of the fact that the

number of incoming edges at each

vertex does not exceed two. Suppose

Ay is male, then 4> must be female, B;

since A1, A2 have a child B,. Then Figure 7.6
Ay must be male, since 42, 43 have

a child Bz. Now A4, 43 being both males cannot have a child Bi.

3

7.2.4 Senior-Subordinate Relationship

If @ is senior to b, we write aSh and draw a directed edge from a to b. Thus
the organisational structure of a group may be represented by a graph like
the following [Figure 7.7].

ae Chancellor

Vice Chancelior

Cm @2 ©u3 Cns Lecturers
Figure 7.7

I'he relationship S satisties the following properties:

() ~(aSa) i.e. no one is his own senior
(i) aSh == ~ (bSa) i.e. a is senior to b implies that b is not senior 1o a

Scanned by CamScanner

Prepared by V.Kuppusamy, Asst Prof, Department of Mathematics KAHE Page 6/28




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSENAME: MATHEMATICAL MODELING
COURSE CODE: 18SMMP303 UNIT: V BATCH-2018-2020

156 MATHEMATICAL MODRLLING
i ior to ¢, then 4y
. if o ia senior to b and b 18 sen %
: e gSe f.e. i @ 18 sentor
(iii) aSh, bSe = aoc .
senior o ¢, § At o ; -
; . « necessary and sufficie
The following theorem €an casily hc_ proved: ] 'iit 'i’:th ”5:; oo ()I'Lrilrl
condition that the above three requirements hold ¥ ; in

s free of cycles” : v
should be free of ¢y status of each person, The

o measure Jor the . ‘
‘ hould satisfy the following rcasonable

organisation
We want now to develop
status m(x) of the individual s
requirements.
(i) m(x) is always a whole number y
(ii) If x has no subordinate, m(x) = ; il
(iii) If, without otherwisc changing the structure, we add a new individual
subordinate to x, then m(x) increases D o
(iv) If, without otherwise changin} the structure, we move a subor inate
of a to a lower level relative to x, then m(x) increases. '
A measure satisfying all these criteria was proposed by Harary. We define

the level of seniority of x over y as the length of the shortest path f:rom x
to y. To find the measure of status of x, we find a1, the number of indivi-
duals who are one level below x, #2 the number of individuals who are two
levels below xand in general, we find s the number of individuals who are
k levels below x. Then the Harary measure A(x) is defined by

h(x) = f’ kni (1)

It can be shown that among all the measure which satisfy the four require-
ments given above, Harary measure is the least.

If however, we define the level of senority of x over y as the length of the
longest path from x to y, and then find H(x) = kEknk, we get another

measure which will be the largest among all measures satisfying the four
requirements. For Figure 7.8, we get

ha) = 1.2 4+ 42 4 2.3 = 16 H(a) = 1.1 + 3.2 4+ 2.3 4 2.4 = 21
M) = 1.3 + 2.4 =1l HE) =21422 4254 1.4 = {5
Me) = 1.2 + 1.2 =4 HO=11412+13  — ¢
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hd) = 1.1 =

1 H(d) = 1.1 = 1
hie) = 1.3 = 3  H(e) =12+ 2.1 = 4
h(f) = 1.1 = 1 H(f)=1.1 = 1
hig) = 1.2 = 2 HE =12 = 2
h(k) = 0  H(k) = 0
h(D = 0 H(@) =0

7.2.5 Food Webs

Here aSb if a eats b and we draw a directed edge from a to b. Here also ~
(aSa) and aSh = ~(bSa). However the transitive law need not hold. Thus

consider the food web in Fig. 7.9. Here fox eats bird, bird eats grass, but
fox does not eat grass.

Bird

Fox

>

Insect Grass

Deer
Figure 7.9

We can however calculate measure of the status of each species in this
food web by using (1) k(bird) = 2, h(fox) = 4, h(insect) = 1, h(grass) = 0,
hdeer) = 1.

7.2.6 Communication Networks

A directed graph can serve as a model for a communication network. Thus
consider the network given in Figure 7.10. If an edge is directed from a to
b, it means that a can communicate with b. In the given network e can
communicate directly with b, but b can communicate with e only indirectly
through ¢ and 4. However every
individual can communicate with
every other individual.

Our problem is to determine the
importance of each individual in this
network. The importance can be
measured by the fraction of the
messages on an average that pass
through him. In the absence of any Figure 7.10
other knowledge, we can assume that
if an individual can send message direct to n individuals, he will send a
message to any one of them with probability 1/n. In the present example,
the communication probability matrix is

COURSENAME: MATHEMATICAL MODELING
COURSE CODE: 18MMP303 UNIT: V BATCH-2018-2020
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a b I -
g Ppt Ty e e )
b 2 0 1/2 0o 0
¢ /3 13 0 /3 0 @)
d 0 0 2 0 12
e Lo 1 o o 0 ]

No individual is to send a message to himself and so all diflgonal ele.
ments are zero. Since all elements of the matrix are non-ncgatwe and the
sum of elements of every row is unity, the matrix is a StOCl‘lf:lSt]c matrix apg
one of its eigenvalues is unity. The corresponding normalised cigenvector
is [11/45, 13/45, 3/10, 1/10, 1/15]. In the long run, these fractions of
messages will pass through a, b, ¢, d, ¢ respectively. Thus we can conclude
that in this network, ¢ is the most important person. -

If in a network, an individual cannot communicate with every other
individual ecither directly or indirectly, the Markov chain is not ergodic
and the process of finding the importance of each individual breaks down,

7.2.7 Matrices Associated with a Directed Graph

For a directed graph with n vertices, we define the n:<n matrix 4 = (ay) by
ay = 1 jf there is an edge directed from i tojand ay = 0 if there js no
edge directed from i to j. Thus the matrix associated with the graph of
Figure 7.11 is given by

1 2 3 4
1 . 0 1 1 0 7
o 2 1 0 1 0
3 I I 0 o (3)
4 1 0 | -6 i

We note that (i) the diagonal elements of the matrix are all zero (ii) the

number of non-zero elements is equal

to the number of edges (iii) the
number of nonp-

degree of the vertex corresponding
to the row (iv) the number of non-
Plgnsa .11 zero elements in a column s equal to
tlhc local inward degree of the verteX
corresponding to the column. Now
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ra
J

4
‘ L I

\ S 2 ‘

. Ll | = @) (4)
3 , 1 i > 0 .‘ ] )
4 Ly 2 ¢ o

2y . R -
rhf element d;‘h gives the number of 2-chains from i to j. Thus from vertex
e wlr‘t_ﬁ I}{A( ere are two 2-chains viz. via vertex 3 and vertex 4. We can
generalise this result in the form of a theorem viz. “The element a2 of 42

gives the number of 2chains i.e. the number of paths with two-edges from
vertex i o vertex ™.

The theorem can be further generalised to *“The element a;” of A™ gives
the number of m-chains i.e. the number of paths with m edges from vertex
i to vertex j. It is also easily seen that “The ith diagonal element of A2
gives the number of vertices with which 7 has symmetric relationship™.

From the matrix 4 of a graph. a symmetric matrix S can be generated by
taking the elementwise product of 4 with its transpose so that in our case

T 1L 1ol roor o1 ro 11 07
1
j[o:alnolo L 010
S=.4\.4r: i\ = }
lt1o0 1100 |1 100
Lt o1olloooo0o] Looo o]
&)

S obviously is the matrix of the graph from which all unreciprocated con-
nections have been eliminated. In the matrix § (as well as in §2,53,.. ) the
elements in the row and column corresponding to a vertex which has no
symmetric relation with any other vertex are all zero.

7.2.8 Application of Directed Graphs to Detection of Cliques

A subset of persons in a socio-psychological group will be said to form a
clique if (i) every member of this subset has a symmetrical relation with
every other member of this subset (ii) no other group member has a sym-
metric relation with all the members of the subset (otherwise it will be
included in the clique) (iii) the subset has at least three members.

If other words a clique can be defined as a maximal completely connected
subset of the original group, containing at least threc persons. This subset
should not be properly contained in any larger completely connected subset.

It the group consists of n persons, we can represent the group by_ n
vertices of a graph. The structure is provided by persons knowing or being
connected to other persons. If a person i knows j, we can draw a dnregted
edge from i to j. If i knows jand j knows i, then we have a symmetrical
relation between i and j.
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With this interpretation, the graph of Figure 7.11 shows that
23 fo?m a clique. With very small groups, we can find cliques bpmsﬁns ;
observing the corresponding graphs. For larger groups analytica)i( oreful
pased. on the following results are useful: (i) 7 is a member of a cli mEFhOd
:ll} diagonal element of S* is different from zero. (ii) If there jsq:)‘“::]lf e
clique of k members in the group, the corresponding k elements of gay OI.]
be (k — 1)(k — 2)/2 and the rest of the diagonal elements will be i
__(m) lf there are only two cliques with k and m members respective] —
there is no element common to these cliques, then & elements of 3 w)fl?nd
(k — D — 2)/2, m elements of S? will be (m — 1)(m — 2)/2 and th; i
of the elements will be zero. (iv) If there are m disjoint cliques with ky r;zt

-..,kmmembe,t 3 s . _
rs, then the trace of $3 is 1 ’_.fl kilki — 1)(k: — 2). ) A

member is non-cliguical if only i i !
: : y if the corresponding row and
$2> S consists entirely of zeros. . M

EXERCISE 7.2

1. Show that the graph of Figure 7.12 i i : ;
onlyif n.is ever. g -12 1s a possible genetic graph if ang

Figure 7.12

2. For each of the following communication networks, set up the corres-

ponding transition probability matrix and find the :
member in the network. ' ¢ Importance of each

a

b c d C e
Figure 7.13

3. Ani i 5 " :
and each lsz:;])hg?nce officer can communicate with each of his # subordinates
r matelcan communicate with him, but the subordinates cannot
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communicate among themselyes. Draw {

of each subordinate relative to the o, he graph and find the importance
4. Find the Harary measur S

. e fi e
graphs of Figure 7.14. of each individual in the organisational

161

X

0 G OGN

Figure 7.14 Figure 7.15

5. In Exercise 4, find the measure if the definj
the longest number of steps between two persons (ii) on the average of the
shortest and longest number of steps between two persons

6. Find the eigenvector corresponding to the unit eigenvalue of matrix (2).

7. Prove all the theorems stated in Section 7.2.7. '

8. Prove all the theorems stated in Section 7.2.8.

9. Write the matrix 4 associated with the graph of Figure 7.15. Find 42,
A3, A%, S, S%, 53, and verify the theorems of Sections 7.2.7 and 9.2.8. ‘

10. Enumerate all possible four-cliques.

tion of level is based (i) in

7.3 MATHEMATICAL MODELS IN TERMS OF SIGNED GRAPHS

7.3.1 Balance of Signed Graphs

A signed (or an algebraic) graph is one in which every edge has a positive
or negative sign associated with it. Thus the four graphs of Figure 7.16 are
signed graphs. Let positive sign denote friendship and negative sign denote
enemity, then in graph (i) A is a friend of both Band C and B and C are

A A A A
+ ¢ B - € 8B - C B .

B

Figure 7.16

i
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v i is friend of B and A and B are both i..
also friends. In graph (ii) A 18 11 i ; Hing,
(::uf:ui:r*urt:!" ¢ In praph (iii), A is friend of both Band C, but g 404 o 'l,

and €, bi P v~ e
enemies. In graph (iv) 4 is an enemy of both # and C, but ff ang ¢ -~

~ r,:,’{
friends,

The first two graphs represents normal behaviour and are g4

y to g,
E .present unbalanced situationg ..~ %
I‘Jilf““(;c(l, WI"I(.: ”": lﬁl't two gl"«tphq l“(-f)f(..i(,m. e ny -.]ﬁ!_ve ;r

A s u friend both B and € and B and C are ""cm'cj" :jh;,’ ;r‘c'atc-, 4 tengj,
in the system and there it i m'm[ilur :‘Lﬂ'zl}if: when B and € have g COmmyg,,
enemy A, but are not friends of cach other. P

chdc;inc the sign of a cycle as the product of t.hrc _"”grf:’ of COMPongy,
edges. We find that in the two hnlzm.ccd cases, this 81gn is positive zp4 in
the two unbalanced cases, this is negative. . i ) :

We say that a cycle of length three or 4 triangle " balanced if and only
il its sign js positive. A complete algebraic ggraph is -c?cfmcd 't(') bcacornpm.v.
graph such that between any two edges of it, there 13 2 POB't}VG Or fegatiy,
sign. A complete algebraic graph is said to be balanced if all its triangles gy,
bilanced. An alternative definition states that a complete algebraic graph
balanced ii all its cycles are positive. It can be shown that the two defip;.
tions are equivalent. ’

A graph is locally balanced at a point @ if all the cycles _passing through
a are balanced. If a graph is locally balanced at all points of the graph,
it will obviously be balanced. A graph is defined to be m-balanced if all s
cycles of length m are positive, For an incomplete graph, it is preferable 1o
define it to be balanced if all its cycles are positive. The definition in terms
of triangle is not satisfactory, as there may be no triangles in tke graph,

7.3.2 Structure Theorem and Its implications
Theorem. The following four conditions are equivalent:

(i) The graph is balanced i.e. every cycle in it is positive.

(ii) All closed line-sequences in the graph are positive i.e. any sequence
of edges starting from a given vertex and ending on it and possibly passing
through the same vertex more than once is positive. _

(iii) Any two line-sequences between two vertices have the same sign.

(iv) The set of all points of the graph can be partitioned into two disjoint

- sets such that every positive sign connects two points in the same set and
every negative sign connects two points of different sets.

The last condition has an interesting interpretation with-possibi]it&'{ of
application, It states that if in a group of persons there are only two possible
relationships viz. liking and disliking and if the algebraic graph represen®”
ing these relationships is balanced, then the group will break up into two0
separate parties such that persons within a party like one another, but cach
person of one party dislikes every person of the othér party. If a bala®
situation is regarded as stable, this theorem can be interpreted to imply!
a two-party political system is stable,

hat
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7.3.3 Antibalance and Dusbalance of o
An algebraie graph s said (o he Al
even number ab positive gdpey

Graph
ol i avery cycles in it has an
Fhe cone i b obtiined From that of a
batanced graph by chiwnging (he slpnn of the edpes. 11 will then be seen that
ainalgebrate graph oo antibatanced 11 i only iF s vertices can be separal-
e it two disjoing “""“-"‘i. sUCh that eyl -
ol the same ¢ lins i ¢ h Poaitive g
A signed praph s spid (o |
antibalanced,

negiutive edge joins twao vertices
dee joins persons from different classes,
duohulanced i {1 s bath balanced and

1.3.4 The Degres of Unbalance of a Graph

For many purposes it s not enough (o know (hat o siteation is unbalanced.
We may he interested i the degree of unbalance and the possibility of a
balancimg provess which may enable one o pass Trom an unbalanced
toa balaneed graph. The possibility i imteresting as it can give an approach
to groun dynamivs and demonatrate that methods of graph theory can be
apphied to dynamic situations also p

Cartwright and Harvary define the degree of balance of o group G to be
the ratio of the positive cycles of € o the total number of cycles in G, This
balance index obviously lies between 0 and 1, 6 has «ix negative triangles
viz (abe), Cade), (bed), (bee), (hede), (cde) and has four positive triangles. 2
has tour negative trinngles viz (abe), (ahd), (hee) and (bele) and six positive
tnangle, The degree of balance of ¢ is (herefore less than the degree of
balance ol Gy

G;

Figure 7.17

However in order to get a balanced graph from Gy, we have to change
the sign of only two edges viz. be and de and similarly to make ¢z balanced
we have to change the signs of two edges viz be and bd, From this point of
view both €/ and G are equally unbalanced,

Abelson and Rosenberg therelore gave an alternative detinition. They
defined the degree of unbalance of an algebraic graph as the number of tne
smallest set of edpes of ¢ whose chunge of sign produces a balanced graph.

The degree of an antibalanced complete algebraic graph (i.e. of a graph all
O whose triangles are negalive) 18 given by {mn 2) | K|/4 where h |
ifais odd and A O if n is even, 1t has been conjectured that the degree
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plete algebralc graph is less thap s

other com Qug)

of unbalancing of every
to this value.

EXERCISE 7.3 L
1. State which of the
mposition guaranteed by the s

following graphs are balanced. If balanced, fing
tructure theorem. If unbalanced, fing lh:

deco
degree of unbalance.
g = b
+
F d
+
€ = T

Figure 7.18

2. Draw some antibalanced graphs and verify the structure theorems for

d—

t}k?",r.n-’l'he adjacency matrix of a signed graph is defined as follows:
ay = 1 if there is + sign associated with edge 7, f
= —1 if there is — sign associated with edge 7, j
= 0 if there is no edge i, j.

Write the adjacency matrices of the four signed graphs is Figure 7.18.

4. A signed graph G is said to have an idealised party structure if the
vertices of G can be partitioned into classes so that all edges joining the
vertices in the same class have + sign and all edges joining vertices in
different sets have negative sign (a) Give an example of a signed graph which
does not have an ideslised party structure (b) Give an example of a graph
which is not balanced but which has an idealised party structure.

5. Show that a signed graph has an idealised party structure if and only
no circuit has exactly one — sign.

6. Show t_h?t if all cycles of a signed graph are positive, then all its cycles
are also positive. State and prove its converse also.

7.4 MATHEMATICAL MODELLING bt
BIGEAPYS IN TERMS OF WEIGHTED

7.41 Communication Network i iliti
o Mgt $ with Known Probabilities of

In the communication graph of Figure 7.10, we know that a can communi-
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cate with dboth & and ¢ only and 5

in the absence of any other know = —
lodge, we assignad equal probabilities ) .‘:_

o &% communicating with & or b \\’;‘
Howaver we may have & priort Keow ;' P e
lodge that @s chances of commumica f ————"
ting with » and ¢ arc in the ratio Y4 S .
312, then we assign probadility o to L‘

a's communcating with b and .4 o o P
a’s communicating with ¢ Similarh 7

We can associate a probabiliny with
every directed odge and we get the

- v — - N 5 - e
weighted digraph (Figure 7.19) with the associated matrin

Figure 7.19

a b « « LIS
a . 0 0.6 0.4 Q 0l
A 0.3 0 03 0 0
B= ¢ 04 0.3 0 0.3 0 (6)
d 0 Q 3 Q (U
el 0 10 0 0 0_5-

We note that the elements are all non-negative and the sum of the elements
of every row is unity so that B is a stochastic matrix and unity is one of its
cigenvalues. The eigenvector corresponding to this eigenvalues will be
different from the eigenvector found in Section 7.2.6 and so the relative

importance of the individuals depends both on the directed edges as well as
on the weights associated with the edges.

7.4.2 Weighted Digraphs and Markov Chains

A Markovian system is characterised by a transition probability matrix. Thus
if the states of a system are represented by 1.2,.. ., n and p; gives the
probability of transition from the ith state to jth state, the system is charac-
terised by the transition probability matrix (t.p.m)

f—Pn P2 .. Py .. Pin 1
| pn Pz .. py .. pu |

i Pi Pz .. Pi .. Din @

Lre P .. pw . pum |

Since ‘_2‘7‘ py represents the probability of the system going from ith state to

i any other state or of remaining in the same state, this sum must be equal to
unity. Thus the sum of elements of every row of a L.p.m. is unity.
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Consider a set of & such Markov systems where N is large and SUPDOg.
atany instant NPy, NPy, . . ., NPsof these (Pr + P2 5~ ... - p, o 1 are
in states 1, 2, 3, ..., n respectively. After one step, let the PToportign, i:

these states be denoted by Pi, Ph,. . ., Ph, then

P{= Pipu - Pap - Pap 4 .o o - Papm
Py = Pipia + Papra - Pipsa 4 . .. ... 4 Prpma
.................................. ®
Phi= Pipin+t+ Ppan+ Pipan+...... + PnPpn

N Wt i (9)

\\'hc.rc P and P’ are row matrices representing the proportions of systems in
virious states before and after the step and T is the t.p.m.

We assume that the system has been in operation for a long time ang
the proportions Py, Ps, . . ., P, have reached equilibrium values. In this case

P=PT or PI—T)=0, (10

wl}c!'e 1 is the unit matrix. This represents a system of n equations for deter-
mining the equilibrium values of Py, P, .. ., P,. If the cquations are consjs-
tent, the determinant of the coefficient must vanish i.e. | T—7r!l=0 Th-is

requires that unity must be an eigenvalue of T. However this, as we have

seen already is true. This shows that an equilibrium state is always possible
tor a Markov chain.

; A Markpvian system can be represented by a wei
Thus consider the Markovian system with the stoch

a b c d

& T 0.2 hpg s g 0 7
b | 03 0.6 0.1 0

ghted directed graph.
astic matrix

e [iidi2e. 04, ~03. .. 0.1

d Lo 0 0 Lt |
Its weighted digraph is given in Figure 7.20.
0.8

0.1
Figure 7.20
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In this example  is an absorbing state ora stats of 2quilibriam. Once a
gystem reaches the state d, 1t stavs there for

i here for ever.
It is clear from Figure 7.20, that in whichever state, the sysiem may start,
it will vitimately end in state . However ths nu Hah‘. of steps that may be

required to reach d"*-:mis on chance. Thus starting ftom c, ﬂ._

number of
steps to reach dmay be 1, 2, 3, £, | - start ting from & the number of steps
to l““-.h.h o maybe2 3. 4....and starang for a. the numbear of steps may
be 3, 4.5, . . . In each case, we can find the probability that the number
of steps required is # and then w= can find the expacted number of steps to
reach it
Thus for the matrix
a h
a 1 0
(12)
h i 13 23
ais an absorbing state. Starting from b, we can reach ainl, 2. 3. .. .. n sleps
with probabilities (1/3), (1/3) (273). (1/3) (23R, . ... (1/3) (23)", . . . so0

(1}
that tbe expected number of steps is
] 2 \=-1
n—,—(:) - (13)

7.4.3 General Communication Networks

So for we have considered communication networks in which the weight
associated with a directed edge represents the probability of communication
along that edge. We can however have more general networks e.g.

(2) for communication of messages where the directed edge represents
the channel and the weight represents the capacity of the channel say in bits
per second

(b) for communication of gas in pipelines where the weights are the
capacities, say in gallons per hour

(c) communication roads where the weights are the capacities is cars per
hour.

An interesting problem is to find the maximum flow rate, of whatever is
being communicated, from any vertex of the communication network to any
other. Useful graph-theoretic algorithms for this have been developed by
Elias. Feinstein and Shannon as well as by Ford and Fulkerson.

7.4.4 More General Weighted Digraphs

In the most general case, the weight associated with a directed edge can be
positive or negative. Thus Figure 7.21 means that a unit change al
vertex 1 at time r causes changes of -2 units at vertex 2, of 2 units at
vertex 4 and of 3 units at vertex 3 at ume r + 1. Similarly a change of I unit

COURSENAME: MATHEMATICAL MODELING
COURSE CODE: 18MMP303 UNIT: V BATCH-2018-2020
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at vertex 2 causes a 'chnngc of —3
units at 3 vertex, 4 units at vertex 4
and of 2 units at vertex 5 and so g,
Given the values at all vertices y
time f, we can find the values y
times £ - 1, 1 °F 2,.t + 3. .0 The
process of doing this systematically
is known as the pulse rule.

These general wcightc('] digraphs
are useful for representing energy
flows, monetary ﬂow's.:md changes in
R environmental conditions.

7.4.5. Signal Flow Graphs

The system of algebraic equations

¥ = dyo + 6x2 — 2%3

x2 = 2p0 — 2x1 1+ 2X3 (14)
N3 = 2x; — 2x2

the weighted digraph in Figure 7:22. For solving for

= ted b . :
bt i g yminate x3 and x2 to get the graphs in Figure 7.23 and

x1, we successively eli
finally we get _
Xl = 4}0

We can similarly represent the solution of any number of linear equations

' graphically.
0 2
4 X) 4 Xy
X3 Yo 8 Yog 8
ey X

2 ] X2
-2
O > [} < 0
Yo 8 9 yo 4 Xy
Figure 7.22 J 8 Figure 7.23

7.4.5 Woeighted Bipartitic Digraphs and Difference Equations
Consider the system of difference equations

Xrpl = anXe b a2y + aiaz;
Yer1 = auxe + any + anz (15)
T4l = anxy + any -+ asz

Th.is can be represented by a weighted bipartitic digraph (Figure 7.24). The
weights can be positive or negative.
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L4y

Figure 7.24

EXERCISE 17.4

1. A machine can be in any one of the states a, b, c. The transitions
between states are governed by the transition probability matrix
a b c
a 1 0 0
bl 1/2 0 1/2 (16)
el 1/3 1/3 1/3

Draw the weighted digraph and find the limiting probabilities for the machine
to be found in each of the three states,

2. The entropy of a Markov machine is defined by

H= 1‘51 PH, = — :"n:. .i"l Py lnpy D)
- -
Show that
(a) When | 2 3
1 1/4 3/4 0
T=2| 3/4 0 1/4
3L 1/8 3/4 1/8
P = 0449, Pz =0429, P;=0.122
Hy = 0811, H; =0811, H; = 1.663
: (b) When
’ | 2 3 4
170 06 04 0 1
2 0 0.6 0.4 0
T 3003 0 0 07
sLo03 0 0 07 ]
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’ p = 6/35, Pz = 9135,
py = 6/35, P4 = 14/35
H = 0.92

d a question to which he can angy,,
y of his being in state 1 (ch)

is aske

X . ¢ son ors
3. Ina panel survey, A PEIS. o probabilit

' In the next surveys

‘Yes' or ‘No ‘
or siate 2 (No) is given by ,
1
W ;i ] (18)
Show that ,
(@) p(t + 1) =p( (1 — )+ pa() )

pat + 1) = pi(t) « + pat) (1 — B) 3
(b) palt) = — f 5+ (s g ﬁ)‘[m(ﬂ) - ,—jr—g]

(20)

o
pAt) = a—_";ﬁ 4 (L} 8 o B)’[pz(O) s v_-l—'?]

(c) pi(t), pa(t) approaches B/(x -+ B) and «/(x + B)ast—> w ifa B
< 1.

4. In Exercise 3, find the expected number of time units in which the

system now in state 1(2) will change to state 2(1).
5. Interpret the models and results of Exercises 3 and 4 when states 1, 2

refer to

(a) a neuron being excited or not excited

(b) a machine being in working order or out of order

(c) a stimulus being or not being available in a learning situation
(d) a daily wage worker being employed or not employed.

6. Give the graphical solution of
3 X1 — 2x2 + 3x3 = 2
3x1 + x2 — x3 =3 (21
- X1+ 2x2 +'x3 = 4

7.5 MATHEMATICAL MODELLING IN TER
UNORIENTED GRAPHS s

7.5.1 Electrical Networks and Kirchoffs’ Laws

iI;O: ggmg ::a: 3 hundred years after Euler solved the Kdnigsberg problem
in ]849,thatpKi::}? rﬁ"(fol;tmued to deal with interesting puzzles only. It was
. A olls” formulation of his laws of electrical currents in

Ic terms led to interest in serious applications of graph theory
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An electrical circuit (Figures 7.25a, b) consists of resistors Ri, Rz. . . .,
inductances Li, L2, . . ., capacitors Cy, 2 and batteries By Bz, etc.

Figure 7.25

The network diagram represents two independent aspects of an electrical
network. The first gives the interconnection between components and the
second gives voltage-current relationship of each component. The first aspect
is called network topology and can be modelled graphically. This aspect 1s
independent of voltages and currents. The second aspects involves voltages
and current and is modelled through differential equations.

For topological purposes, lengths and shapes of connections are n})t
important and graphs of Figures 7.25(a), 7.25(b) and 7.25(c) are iSOTﬂOl’Pth.

For stating Kirchoff’s laws, we need two incidence matrices accocmte_d
with the graph. If » and e denote the number of vertices and edges respecti-
vely, we define the vertex or incidence matrix 4 = [a;] as follows:

ay = 1 if the edge j is incident at vertex i
aj = 0 if the edge j is not incident at vertex i

This consists of v rows and e columns. For graph 7.25, 4 is given by

1 2 3 4 5 6
aCO 1 1 0 1 017

|1 1 o 1 0 o0

A= (22)
cel1 0o 1 0o o 1
ilLo o o 1 1 1]

We note that every column has two non-zero elements.
Similarly we define the circuit matrix B = [b«;) as follows

bi; = 1  if element j is in circuit k

=0 if element j is not in circuit &

The matrix B contains as many rows as there are circuits and it has e columns.
In our case
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1 2 3 6
A S N 0 0 ]
2 0 1 0 1 1 0
B = 5
R AR ok R A (23)
4 [ 1 0 0 ] 0 1]
Now Kirchoft’s laws can be written in the matrix form as follows:
Al = 0 (Kirchoff’s current law) (24)
BV = 0 (Kirchoff’s voltage law) (25)

where 7 is an exl column matrix giving the e currents and V' is exl columy
matrix giving e voltages.

Matrices A4 and B depend on the graph only, matrices 7 and ¥ depend o,
currents and voltages only. 4 and B can be written independently of 7 ang
V. Now an important question js as to how many of the components of
the current and voltage vectors are independent.

It can be proved that the rank of A isv — 1 and the rank of g
¢ — o+ 1. Thusv — 1 and e — v + 1 are the numbers of linearly indepen-
dent Kirchoffs current and voltage equations.

The graph-theoretic methods can now be used to (i) establish the validity
of the circuit and vertex equations and find their generalisations (ii) condit-
ions under which unique solutions of these equations exist (iii) Jjustify the
duality procedures used in network theory (iv) develop short-cut methods
for writing equations (v) develop techniques for network synthesis.

7.5.2 Lumped Mechanical Systems

If the linear graph represents a lumped mechanical systam with the vertices
representing rigid bodies, matrices 4 and B arise for NeWtons’ force and dis-
placements equations respectively ands — | and e — ~+ 1 represent the
number of linearly independent force and displacement equations.

7.5.3 Map-Colouring Problems

The four co-lour problem that every plane map, however complex, can be

colou.red with four colours in such a way that two neighbourin,g regions

get different colours, challenged and fascinated mathematicians for over

one hundred years till it was finally solved by Appall and Haken in 1976

by using over 1000 hours of computer time. The problem is essentially
graph-theoretic since the sizes and
shapes of regions are not important.

| 4 That four colours are necessary is
easily seen by considering the simple

3 graph in Figure 7.26. It was the proof

= of the sufficiency that took more than
gure 7.2 hundred years. However the efforts
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to solve this problem led (o (he
maodels

Similar map-colouring problems arise
A sphere, atorus or other surfuces, How
before the simpler-looking four-colour |

development of many other graph-theoretic ~

for colouring of maps on surface of
ever many of these were solved even
problem was disposed of,

7.6.4 Planar Graphs

In printing of T.V. and radio circuits: we want that the wires. all | in
ina plane, should not intersect. In the graph of Figure 7.27a wi;es a yeagr
to intersect, l\u! We can find an isomorphic graph in Figul"e 7.27(b) in \r:rﬁich
ngﬁ d“‘“‘“ ."“,”s“" A graph which is such that we can draw a graph
isomorphic to it in which edges do not intersect is called a planar graph.

Figure 7.27 (a) Figure 7.27 (b)

A complete graph with five vertices is not planar (Figure 7.28a). We can
draw nine of the edges so that these do not intersect (Figure 7.28b) but how-
ever we may draw, we cannot draw all the ten edges without at least two of
them intersecting. The proof of this depends on Jordan’s theorem that every
simple closed curve divides the plane into two regions, one inside the curve
and one outside the curve. 4BCDE in Figure 7.28(b) is a closed Jordan
curve and we cannot draw three edges either inside it or outside it without
intersecting.

Figure 7.28 (a) Figure 7.28 (b)

7.5.5 Euler's Formula for Polygonal Graphs
A polygonal graph with n vertices and n straight or curved edges has n
vertices, n edges and two faces (one inside and one outside) so that for this

graph
V-E+ F=2 (26)

If we add on one edge, another polygonal region of r vertices, we increase
the number of vertices by r — 2, the number of edges by r — 1 and the
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reases in ¥ — E + F is zero apg
‘be shown by using the principle ¢
lygonal graph with any number ¢

- number of faces by 1, so that the net inc
the formula (26) remains valid. It can
induction that (26) is valid for any po
regions.

To draw the dual grap
draw an edge through it
obvious that for this dual graph the number of v
given by

h G* of G, we take a point inside each region and
intersecting one of the edges of the region, It g
ertices, edges and faces g

V*=F, E=E* F*=V, (30)
so that yx _E* L F*=F—E+ V=2, (€33

as expected.

7.5.6 Regular Solids . B

A polygonal graph G is said to be completely regular if both G and its dual
G* are regular i.e. if the degree of each vertex of G is the same (say P) and
the degree of each vertex of G* is the same (say P*). From this definition, it

follows

2E = PV = P*F ' - (32)
or ozt %pV,F=-PP;V (33)

Substituting (33) in (26)
VotV By =2 (34)
or V(2P + 2% — pp¥) = 4p* (35)

Since V, p, P* are positive integers

2P 4 2P* — pp* > 0 or P—=2)(Pr* —2) < 4 (36)

If > 2, P* > 2, the only solutions of the inequality (36) are
P=3, P*=3 pP=3 p*r=y P =3, p*¥ =5
P=35 p*=3,
Substituting in (35) and (33), we get the table and graphs
P V. E F p* p* Epo p»
4 6 4

; P=4, p* =3

(i)

3 3 4

3 B m:- 6 # g 12 :
G) 3.20 30 124958 jpregg 20
) 450G g 6 ety g gt vty
005 120 A ™ gt 30

12

The corre : 2 ;
tc”ahe‘h‘:smgdl‘:;)igrizplzisu:ll-e tg oy in Figure 7.29(a)-(e). It is obvious that
Dodocahedron and | O 1itself, cube is dual of octahedron and

cosahedron are dualg of each other
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Tetrahedron Dodacedriedron

Oclahedron Jcosahedron

\

Figure 7.29

These five graphs corresponding to five Platonic regular solids (Figure 7.30).

N &

Figure 7.30

Figure 7.31

| There is another solution of (36) viz. P =2, P* =2, 3,4,... The

| corresponding graphs G and G* are shown in Figure 7.31.
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EXERCISE 7.5
' Z J
:’____——,-H..wf‘r..__._. N

s
£
o

Figure 7.32

3. Draw some polygonal graphs. Draw their dual

(31) for them.

4. Prove that all repetitive planar graph pattern or moraics 1

= B

1. For the graph of Figure 713
write the adjacency rnatrin A z-4
’ - EiT V..

matrix B and find 1heir rar r4

circust
Find a set of independent Circuits
“ . p F st Yoo s
2. Prove that if the colurnra of

matrices A and B are arranged

the same element order, trer
ABT -0, BAT -0 (%7,

Is and verify (26 ard

't\'l ”’

formed either by triangles or by quadrangles or by hexagzon.
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POSSIBLE QUESTIONS
Part B (6 Marks)

1.Explain in detail senior-subordinate relationship.
2.Write an explanatory note on planar graphs.
3.Discuss in detail weighted digraphs and markov chains.
4.Write a note on the following

1) Signal flow graphs

i1) Map-colouring problems

ii1) Planar graphs

iv) Euler’s formula for polygonal graphs
5.Explain about one-way traffic problems.
6.Discuss in detail about communication networks
7.Write a note on seven bridges problem.

8.Give a brief note on Genetic graphs.

Part C (10 Marks)
1.Discuss in detail about communication networks.
2.Give a detailed note on electrical networks and Kirchoff’s laws.

3.Give a brief note on Genetic graphs.
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Possible Questions

Question Opt1 Opt 2 Opt3 Opt 4 Answer
Mathematics deals with both quantative and
relationship Qualitative Numeric Decimal Integer Qualitative
Apply mathematics deals with solution of
Difference Numeric Decimal Integer Difference
Apply mathematics deals with solution of
Integral Numeric Decimal Integer Integral
Apply mathematics deals with solution of
Functional Numeric Decimal Integer Functional
Apply mathematics deals with solution of
Algebraic Numeric Decimal Integer Algebraic
In graphical model the problem of 7 bridges is
called Fick's Routhwelt Konigsberg Gauss Konigsberg
A graph is called if every pair of
vertices is joined by an edge Complete Incomplete Digraph Continuous Complete
A graph is called if every edge is
directed with an arrow Complete Incomplete Digraph Continuous Digraph
A graph is called if every edge has
either + or - sign associated with it Complete Incomplete Digraph signed graph signed graph
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A digraph is called if every directed |Weighted
edge has a weight associated wit it digraph signed graph Digraph Complete Weighted digraph
A graph is called if each of its vertices
has same degree r. regular irregular solid unsolid regular
If traffic is allowed from point a to b the edge can
draw from a to b. undirected directed complete incomplete directed
If G is undirected connected graph then one can
always direct edge of G Non circuit Vertex Non vertex Circuit Circuit
In genetic graph, the local degree of incoming edges
at eac vertex must be less then or equal to

1 2 3 4 2
The necessary condition for a directed graph is to be

one way traffic [Two way traffic [Genetic Nature Genetic
The measure m(x) is always a number |Real complex whole natural Whole
If x has no subordinates then measure m(x) equals |1 0 2 3 0
If witout oterwise changing the struture we move
subordinate of a to a lower level relative to x then
m(x) Increases decreases stable unstable increases
If witout oterwise changing the struture we add a
new individual subordinate to x then
m(X) Increases decreases stable unstable increases
In communication network a graph can
serve as a model undirected stable directed unstable directed
An individual can send message direct to n
individuals with propability n I/n 2n 3n I/n
in a matrix representation an individual can send
message to himself then elements are 0 [row column digonal all digonal
All the elements of matrix are non negative and the
sum of elements of every row is unity, the matrix is

stochastic propabilistic direct ergodic stochastic
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All the elements of matrix are non negative and the
sum of elements of every row is , the

matrix is stochastic 2 unity 3 4 unity
The markov chain is not stochastic propabilistic direct ergodic ergodic
A subset is to form clique if every member of subset
has a relation with other member symmetrical non symmetrical [stable unstable symmetrical
A subset of persons in a socio - psychological group
will set to form a queue clique line None clique
The subset has atleast member 1 2 3 4 3
If the group consists of n persons then can
represents the group by verties of
graph n+1 n-1 n 2n n
For each communication netwrok can set up the
corresponding propability matrix Digonal Unit row Transition Transition
A graph Is one in which every edge
has positive or negative sign direct undirect signed unsigned signed
A graph Is one in which every edge
has positive or negative sign direct undirect algebraic unsigned algebraic
The graph is balanced, every cycle in it is

Positive negative both none positive
All closed line sequences in the graph is

Positive negative both none positive
Any two lines sequence between two verties have
the same sign number constant variable sign
Any two lines sequence between two verties have
the sign same different equal none same
The set of all points of graph can be partitioned into

disjoints sets 1 2 4 3 2

Every negative sign connects points
of differents set 1 2 3 4 2
Every positive sign connects points of]
differents set 1 2 3 4 2
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An algebraic grap is set to be antibalanced if every
cycle in it has no of positive edges even odd real distinct even
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