18MMP305A FORMAL LANGUAGES AND AUTOMATA THEORY 4H-4C

Instruction Hours /week: L: 4 T:0P: 0 Marks: Internal: 40 External: 60 Total: 100
End Semester Exam: 3 Hours

Course Objectives
This course enables the students to learn

e The basic concepts in automata theory and theory of computation.
e To identify different formal language classes and their relationships.

Course Outcomes (COs)
On successful completion of this course the students will be able to:

1. Understand the definition of Automata.

2. Discuss the acceptability of a string by finite automation.

3. Construct non-deterministic finite state machine.

4. Know about the different concepts in automata theory and formal languages such as
formal proofs, non-deterministic automata, regular expressions, regular languages
context-free grammars, context-free languages.

5. Design automata, regular expressions and context-free grammars accepting or generating
certain languages.

UNIT I

FINITE AUTOMATA

Definition of an Automation - Description of Finite Automaton — Transition systems - Property
of transition functions - Acceptability of a string by a finite Automaton - Non deterministic finite
automaton - The equivalence of DFA and NDFA.

UNIT 11

FROMAL LANGUAGES

Formal Languages - Basic Definitions and examples - Chomsky classification of Languages -
Languages and their relation - Recursive and Recursively Enumerable sets- Operations on
Languages.

UNIT 111
REGULAR EXPRESSIONS AND LANGUAGES

Regular expressions - Finite Automata and Regular expressions.

UNIT IV



REGULAR SETS

Pumping Lemma for Regular sets - Applications of Pumping Lemma - Closure Property of
Regular sets - Regular sets and Regular grammars.

UNIT V
CONTEXT FREE GRAMMARS

Context free Languages and Derivation trees - Ambiguity in Context free grammars -
Simplification of Context free grammars (examples only).
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Languages and Computation, Prentice Hall of India, New Delhi.

2. John E. Hopcroft, Rajeev Motwani and J.D. Ullman, (2006). Introduction to Automata
theory,
Languages and Computation, Third Edition, Prentice Hall of India,New Delhi.

3. Aho A.V., and Ullman J.D., (2002). Principles of compiler design, Narosa Publishing
Company, London.

4. Rakesh Duke, Adesh Pandey and Ritu Gupta, (2007).Discrete Structures and Automata
theory.Narosa Publishing Company, New Delhi.



Lesson Plan

2018-2020

Batch

Sz - KARPAGAM ACADEMY OF HIGHER EDUCATION
=

e

Ensbie | Enlighten | E
KARPAG
ACADEMY OF HIGHER EDUCATION

(Deemed to he University)
(Established Under Section 3 of UGC Act, 1956 |

Coimbatore — 641 021.

LESSON PLAN
DEPARTMENT OF MATHEMATICS

Name of the faculty : J.Jansi

: ‘A MDeemed to be University Established Under Section 3 of UGC Act 1956)

Class > 11 M.Sc Mathematics
Subject : Formal languages and Automata Theory
Subject Code : 18MMP305A
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Duration
Unit -1
1. 1 Definition of an Automation with examples S1: Ch 3: Pg: 71-72
2. 1 Description of Finite Automaton S1: Ch3:Pg: 73
3. 1 Transition systems S1: Ch 3: Pg: 74
4. 1 Property of transition functions S1: Ch3: Pg: 75
5. 1 Finite Automaton S1: Ch 3: Pg: 77
6. 1 Acceptability of a string by a finite Automaton S1: Ch 3: Pg: 77
7. 1 Non deterministic finite automaton S3: Ch 3: Pg: 147-148
8. 1 The equivalence of DFA S1: Ch 3: Pg: 80
9. 1 The equivalence of NDFA S1: Ch 3: Pg: 80
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question
Total No of Hours Planned For Unit 1- 10 hours
Unit - 11
1. 1 Introduction on Formal Languages S1: Ch 4: Pg: 107
2. 1 Basic Definitions and examples S1: Ch 4: Pg: 107
3. 1 Chomsky classification of Languages S1: Ch 4: Pg: 120-122
4. 1 Languages and their relation S1: Ch 4: Pg: 123
5. 1 Recursive and Recursively Enumerable sets S1: Ch 4: Pg: 124
6. 1 Continuation on Recursive and Recursively S1: Ch 4: Pg: 125
Enumerable sets
7. 1 Operations on Languages. S1: Ch 4: Pg: 126
8. 1 Continuation on Operations on Languages. S3:Ch 3:119-120
9. 1 Recapitulation and discussion of possible
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1. 1 Definitions and examples of Regular expressions | S2: Ch3: Pg: 83
2. 1 Identities for regular expressions S1: Ch5: Pg: 126
3. 1 Finite Automata and Regular expressions. S2: Ch3: Pg: 90
4. 1 Transition system containing A - moves S1: Ch5: Pg: 140
5. 1 Conversion of Nondeterministic Systems to S1: Ch 5: Pg: 146-147

Deterministic Systems
6. 1 Algebraic method using Arden’s theorem S1: Ch 5: Pg: 148-152
7. 1 Constructions of finite automata S1: Ch 5: Pg: 153-156
8. 1 Equivalence of two finite automata S1: Ch 5: Pg: 157-159
9. 1 Equivalence of two regular expressions S1: Ch 5: Pg: 160-161
10. 1 Recapitulation and discussion of possible

question

Total No of Hours Planned For Unit 111 — 10 hours
Unit -1V

1. 1 Basic Definitions and examples of Regular sets S1: Ch5: Pg: 161
2. 1 Pumping Lemma for Regular sets S1: Ch 5: Pg: 162
3. 1 Applications of Pumping Lemma S1: Ch5: Pg: 163-164
4. 1 Closure Property of Regular sets S1: Ch 5: Pg: 165-166
5. 1 Basic Definitions and examples of Regular S1: Ch 5: Pg: 167

grammars
6. 1 Continuation on Regular grammars S1: Ch 5: Pg: 167
7. 1 Construction of a regular grammar S1: Ch5: Pg: 168
8. 1 Construction of a Transition system S1: Ch 5: Pg: 169
9. 1 Examples of construction of a Transition system | S1: Ch 5: Pg: 170
10. 1 Recapitulation and discussion of possible

question

Total No of Hours Planned For Unit 1V — 10 hours
Unit-V

1. 1 Context free Languages S2: Ch5: Pg: 171-172
2. 1 Derivation trees S11: Ch 6: Pg: 181-185
3. 1 Context free grammars S4: Ch 16: Pg: 427-430
4. 1 Ambiguity in Context free grammars S4: Ch 16: Pg: 457-460
5. 1 Simplification of Context free grammars S1: Ch 6: Pg: 189-192
6. 1 Recapitulation and discussion of possible

questions
7. 1 Discussion of previous ESE question papers
8. 1 Discussion of previous ESE question papers
9. 1 Discussion of previous ESE question papers

Total No of Hours P

lanned For Unit V -9 hours
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II M.Sc MATHEMATICS COURSE NAME: FORMAL LANGUAGES

AND AUTOMATA THEORY
COURSE CODE: 18MMP305A UNIT: I BATCH-2018-2020

UNIT-I

Definition of an Automation - Description of Finite Automaton — Transition systems -
Property of transition functions - Acceptability of a string by a finite Automaton - Non
deterministic finite automaton - The equivalence of DFA and NDFA.

DEFINITION OF AN AUTOMATON

We shall give the most general definittion of an automaton and later modify
it to computer applications. An automaton i1s defined as a system where
energy, materials and information are transtormed. transmitted and used for
performing some funcrtions without direct participation of man. Examples are
automatic machine tools. automatic packing machines. and automatc photo
printing machines.

alor

Iy —--l Automaton 0,

Mode! of a discrete automaton
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CLASS: II M.Sc MATHEMATICS

RSE

COURSE NAME: FORMAL LANGUAGES
AND AUTOMATA THEORY

DE: 18MMP305A UNIT:I BATCH-2018-2020

The charactenstics of automaton are now described.

{1)

{it)

(111)

(1v)

(v)

Inpur. At each of the discrete instants of ume 7,. fs. . . .. I, the input
values /,. /.. .. .. [, each of which can take a tinite number of fixed
values trom the input alphabet X, are applied to the input side of the
model shown in Fig. 3.1.

Ourpur. 0, O, . ... O, are the outputs of the model, each of which
can take a finite number of fixed values from an output O.

At any instant of time the automaton can be in one of the
gis . i
Stare relation. The next state of an automaton at any instant of time
is determined by the present state and the present input.

Srares.

states qn,

Outpur relarion. The output is related to either state only or to both
the input and the state. It should be noted that at any instant of time
the automaton is in some state. On “reading” an input symbol. the
automaton moves to a next state which is given by the state relation.

Consider the simple shift register »
and study its operation.

Q D D Q '
Serial | | |
input { '

—_— -

Serial
output

A 4-bit serial shift register using D flip-flops.

DESCRIPTION OF A FINITE AUTOMATON
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CLASS: II M.Sc MATHEMATICS COURSE NAME: FORMAL LANGUAGES

AND AUTOMATA THEORY
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Definition Analyrically. a finite automaton can be represented by a
S-tuple (Q. X. . gy. F). where

(1) @ is a finite nonempty set of states.

(ii) X is a finite nonempty set of inputs called the inpur alphabet.

(iit) &is a funcrion which maps Q x X into Q and is usually called the direct
tramsition function. This is the function which describes the change of
states during the transition. This mapping is usually represented by a
transition table or a transition diagram.

(1v) gy € Q is the nitial state.

(v) F < Q is the set of final states. It is assumed here that there may be
more than one final state.

(1) Inpur rape. The input tape is divided into squares. each square
containing a single symbol from the input alphabet . The end squares
of the tape contain the endmarker ' at the left end and the end-
marker § at the right end. The absence of endmarkers indicates that
the tape is of infinite length. The left-to-right sequence of symbols
between the two endmarkers i1s the input string to be processed.

(i) Reading head. The head examines only one square at a time and can
move one square either to the left or to the right. For further analysis.
we restrict the movement of the R-head only to the right side.

(111) Finite control. The input to the finite control will usually be the
symbol under the R-head. say «. and the present state of the machine,
say g. to give the following outputs: (a) A motion of R-head along
the tape to the next square (in some a null move, i.e. the R-head
remaining to the same square is permitted); (b) the next state of the
finite state machine given by &g. a).

TRANSITION SYSTEMS
A transition graph or a transition system 1§ a finite directed labelled graph in

which each vertex (or node) represents a state and the directed edges indicate
the transition of a state and the edges are labelled with mput/output.

0/0 1/0 1"

0/0
A transition system.
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Definitior A trapsition system is a S-tuple (Q, L, 8. Qp F). where

(1) Q. X and F are the finite nonempty set of states. the input alphabet,
and the set of final states, respectively. as in the case of finite automata;
(i) @y < Q. and Oy is nonempty: and
(iii) & is a finite subset of Q X I* x Q.

Definition A transition system accepts a string w o ¥ af
(1) therc exists a path which originates from some initial siate, goes
along the arrows, and terminates at some tmal state: and
(it) the path value obrained by concatenation of all edge-labels of the path
is equal to w.

1/0
"’\

in S
foo ) () N )

lransiticn system

Determine the initial stares. the final states. and the acceptability of 101011,
111010.
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Solution

The initial states are ¢, and q,. There i1s only one final state. namely ¢a.
The path-value of qugugags 1s 101011, As g5 1s the final state, 101011 is

accepted by the transition system. But, 111010 is not accepted by the transition

system as there i1s no path with path value 111010.

PROPERTIES OF TRANSITION FUNCTIONS

Property 1 0(g. A) = ¢ is a finite automaton. This means that the state of the
system can be changed only by an input symbol.

Property 2 For all strings w and input svmbols «,
Sig, aw)= 8(d(q. a) w)
g, wa)= 8(8(g, w) al

This propernty gives the state after the automaton consumes or reads the
first symbol of & sinng aw and the state aller the automaton consumes @ prefix
of the string wa.

Prove that for any transition function & and for any two input strings x and y,

alg, xv).= 6(d(q, x), V) /

Proof By the method of induction on |y |. i.¢. length of y.
Basis: When |y| =1, vy =a € Z

LL.H.S. of (3.1)= d(q. xa)
Sl diqg, x), a) by Property 2
R.H.S. of (3.1)

Assume the result, tor all strings x and strings y with | v} = n. Let
v be a string of length n + 1. Write v = y,a where |y, | = n.
L.HS. of (3.1)= d(g, xvya) = &(g. xja), x; = Xy,
= 3dg, x). a) by Property 2
= odg. x3y). a)
= &&(Sig. x), v;), a) by induction hypothesis
R.H.S. of (3.1) = &dlg. x), ¥ja)

= Mg, x} vi). a) by Property 2
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Hence. LH.S. = RH.S.

ACCEPTABILITY OF A STRING BY A FINITE
AUTOMATON

Definition A string v 15 accepted by a finite automaton
M=(Q X 0 qq F)

if 0(qo. x) = q for some ¢ € F.
This is basically the acceptability of a string by the final state.

Consider the finite state machine whose transition function dis given by Table
in the form of a transition table. Here. Q@ = {ga ¢1. 9~ g3}, £ = {0, 1},
F = {qo}. Give the enure sequence of states tor the input string 110001

Transition Function

State RRE
e 1
— i g: g
q g9 q
q g0 4.
q g-
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Solution

l
K. 110101) =

0(g,.10101)
|

gy, 0101)
dig», 101)

0(q5.01)

v
olg. 1)

o Go- N\)

- A

Hence.

! | ] : ] !
o =24 >4y 2> 4qs 241 >4, > g,

The symbol 1 indicates that the current input symbol is being processed by the

machine.

NONDETERMINISTIC FINITE STATE MACHINES

\

4

Transition system representing nondeterministic automaton.
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A nondeterministic finite automaton (NDFA) is a S-tuple
(Q, X. b, qo F), where
{i) Q is a finite nonempty set of states:
(i) X is a finite nonempty set of inputs:
(iii) & is the transition function mapping from Q X ¥ into 2¢ which is the
power set of O, the set of all subsets of Q;
(iv) g € Q 1s the initial state: and
(v) F < Q is the set of final states.

Transition system for a nondeterministic automaton.
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Transition system for a nondeterministic automaton.

0

= qo do = dg > Jg
q3
0
4
States reached while processing 0100.

Definition , A string w € I* is accepted by NDFA M it 6(¢g, w) contains
some final state.

Definition The set accepted by an automaton M (deterministic or

nondeterministic) is the set of all input strings accepted by M. It is denoted by

T(M).

THE EQUIVALENCE OF DFA AND NDFA

We naturally try to find the relation between DFA and NDFA. Intuitively we
now feel that:

(i) A DFA can simulate the behaviour of NDFA by increasing the number
of states. (In other words. a DFA (Q, Z, 6, ¢qo F) can be viewed as an
NDFA (Q, X. &, qo F) by defining &'(q. @) = {d(q, a)}.)

(ii) Any NDFA is a more general machine without being more powerful.
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Construct a deterministic automaton equivalent to

M= gy q}. {0. 1}. 6. g5 {go])

TABLE State Table

State/T 0 1
- @) e 91
a: G % G
Solution

For the deterministic automaton M,

(1) the states are subsets of {gy. q}. i.e. 0. [q). [90. g1} 1q):
(11) [gg] is the initial state:
(iii) [gol and [gy, g;] are the final states as these are the only states
containing ¢y: and
(iv) &1is defined by the state table

State Table of M,

State/L 0 1

) ) )

(q0] [Gc] (q4]

[q4] (q4] [0, G4
[90. g4l (9o g:] (9o, g1
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Possible Questions
Part B(6 marks)
1. Explain characteristic of finite automaton.
2. Prove that for any transition function 6 and for any two input strings x and y,
8(q, xy) = 8(3(q, X), y)-
3. Consider the finite state machine whose transition function d is given by table
in the form of a transition table. Here, Q = {44.41.492.495}, 2 = {0,1},

F ={a,}. Give the entire sequence of states for the input string 110001.

State Input
0 1
— \q: gz G
& Qs (o
G2 do 3
o5 {1 B 9

4. Construct a deterministic finite automaton equivalent toM =( {q4.41.92.93},
{0,1}), 6,4,,{a3})where & is given by table

State table
State/T a b
4+ az of
Gz 3 da
Q) %

5. Define DFA and acceptability of a string by it with example.

6. Construct a DFA accepting all strings over {a,b} ending in ab.
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7. Write a note on deterministic and nondeterministic model with example.

8. Find a DFA equivalent to M=({g,.4,.49,},{a,b},0,3,4,{q-}) and § is given by
6 (q0:a)={d0 91:92}.0 (20-B)= {92}.0 (q1,@)= {90}.8 (91, 5)= {44}, 8 (q2.2)= O,
6 (92,0)= {9094}

9. Construct a DFA equivalent to an NDFA whose transition table is given below

State a b
q{r Q1 v Gz a: Q3
1 g1 qz
T ds Gz
@ — —

10.Find a deterministic acceptor equivalent to M=({qq.q1.42},{a,b},0,d,{a2}) where &
is given by the table

StatelZ a b
—ds Qo G4 a2
a1 : 4 a4

@ Jo. G4

Part- C (Compulsory)

1.Construct a DFA equivalent to the NDFA M whose transition diagram is given below
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AND AUTOMATA THEORY

COURSE CODE: 18MMP305A UNIT: II BATCH-2018-2020

NIT-11

Operations on Languages.

Formal Languages - Basic Definitions and examples - Chomsky classification of
Languages - Languages and their relation - Recursive and Recursively Enumerable sets-

BASIC DEFINITIONS AND EXAMPLES
Definition A phrase-structure grammar (or simply a grammar) is
(Vy, . P, §). where

(1) Vi 1s a finite nonempty set whose elements are called variables,

(ii) Z 1y a finite nonempty set whose elements are called terminals,

i) Vo X = 9.

{(iv) § is a special variable (i.e. an element of V) called the start symbol.
and

iv) P is a finite set whose elements are ¢ — [. where ¢ and [ are strings
on V. U X, o has at least one symbol trom V. The elements of P are
called productions or production rules or rewriung rules,

G = (Vy, Z. PyS) 1s a grammar
where
Vi = {{sentence). (noun,. (verb). (adverb)}
2 = [Ram. Sam. ate. sang. well]
S = {sentence)

P consists of the following productions:

(sentence; — (noun) {verb)
(senience) — {(noun) {verb) {(adverb)
(noun, — Ram

(noun) — Sam

(verb) — ate

(verb) — sang

(adverb) — well
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Definition If oo — fis a production in a grammar G and % O are any

two strings on Vi U X, then we say that yad directly derives yB0 in G (we
write this as yd = yf0). This process is called one-step derivation. In
G

particular. if & — S is a production. then a = f.
G

Definition If o and f are strings on Vy U I, then we say that o derives
Bif o = B. Here = denotes the reflexive-transitive closure of the relation =

: G
in (Vy v 2)*

Definition The language generated by a grammar G (denoted by L(G)) is

defined as {w e X*|S :-? w}. The elements of L{G) are called senrences.
J

Definition G; and G- are equivalent if I(G,;) = L(G»-).
If G = ({S}. {0. 1} {§0= 051, S —> AJ’ S), find L(G).

Solution
As § — A is a production. § = A. So A is in L(G). Also. for all n 2 1,
S = 051 = 0°S1I>= ... = 0's1" = 01"
G G G G G
Therefore,

01" e L(G) forn =20

(Note that in the above derivation. § — 0S1 is applied at every step except
in the last step. In the last step. we apply S — A). Hence. {0"1" | n 2 0} < L(G).

To show that L(G) < {0"1"]| n = 0}. we start with w in L(G). The
derivation of w starts with S. If § — A is applied first, we get A. In this case
w = A. Otherwise the first production to be applied is § — 0S1. At any stage
if we apply § — A. we get a terminal string. Also. the terminal string is
obtained only by applying S — A. Thus the derivation of w is of the form

S :(> 0's1t = 0'1" for some n = 1

’
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L(G) g {0'1"|n 2 0}

Therefore.

L(G) = {0"1"| n > 0}
If GisS— aS|hS|a|b, find L(G).

Solution

We show that L(G) = {a. b}7. As we have only two terminals a, b,
L(G) € {a b}* All productions are S-productions. and so A can be in L(G)
ontv when § — A is a production in the grammar G. Thus.

L(G) < {a b}* - {A} = Aap b}

To show {a, b}™ £ L(G). consider any string a;a- . . . a,. where each q;
is either ¢ or b. The first production in the derivation of aya- ... @, 18 § —
a$ or § — hS according as «) = a or a; = b. The subsequent productions are
obtained in a similar wav. The last production is § — a or § — b according
as ¢, =aora,=>b Soaa .. a, € L(G). Thus. we have L(G) = {a, b}".

Construct a grammar generating L = {wew'|w € {a, b}*}.

Solution

Let G = ({8}, {a b. ¢}, P, S), where P is defined as S — aSa | bSh | c. It
is easy 0 see the idea behind the construction. Any string in L 18 generated
by recursion as follows: (i) ¢ € L: (ii) if x € L. then wxw’ € L. So, as in
the earlier example. we have the productions § — aSa | bSb | c.

Find a grammar generating L = {a"b"c'|n 2 1. i 2 0}.
Solution

L = LI U L:

Li=4a"b" | n2 1}

Li= {abe|nz1:iz 1)
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We construct L; by recursion and L. by concatenating the elements of L,
and ¢, 7 2 1. We define P as the set of the following productions:

S — A, A — ab, A — aAb, S = Se
Let G = ({S, A}, {a. b, c}. P. §). Forn 2 1. i — 0. we have
S = S = A = AP = A labb e = @b

Thus.
{a"b'c' In21.i 2 0} ¢ L(G)

To prove the reverse inclusion. we note that the only S-productions
are § — Sc and § — A. It we start with § — A, we have to apply

Ji= - R iign 0
A= d7'APTY = &' and so d'b'¢” € L(G)

If we start with S — Sc, we have to apply § — Sc repeatedly to get Sc¢'. But
to get a terminal string. we have to apply S — A. As A = a"b", the resulting
terminal string is «"b"¢’. Thus, we have shown that

L(G) ¢ {d'p'¢'{n21.i2 0}

v

Theretore.

v
AV}

L(G) = {d'b'c|n 0}

Problem:
Let G = ({S, A,}. {0. 1. 2}. P. S), where P consists of § — 0S4,2. § — 012.
24, = A,2. 1A, — 11. Show that

LG) = {0"1"2"|n 2 1)
Solution

As § — 012 is a production. we have § = 012. i.e. 012 € L(G).
Also.

S = 07'8(4,2)" by applying § — 054,2 (n — 1) umes
= 0"12(A4,2)"" by applying § — 012
= 0"1A{"12" by applying 24, — A,;2 several times
= 0"1"2" by applving 1A, = 11 (n — 1) times
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Therefore.
0"1"2" e L(G) for all n 2 1
Problem:

Let G = ({S, A,. A-}. {a, b}, P, S), where P consists of
S — aAA-a. A; = baAA>b, A~ — Ajab, aA; — baa, bA-b — abab

Test whether w = baabbabaaabbaba
is in L(G).

Solution

We have to start with an S-production. At every stage we apply a suitable
production which is likely to derive w. In this example, we underline the
substring to be replaced by the use of a production.

S = [Ii Asa
= baa A; a
= baa Ay aba
= baab aA; Asbaba
= baabbaa A; baba

= baabba ﬁ abbaba

= baabbabaaabbaba = w
Therefore.
w e [L(G)
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CHOMSKY CLASSIFICATION OF LANGUAGES

Definition A grammar is called type 1 or context-sensitive or context-
dependent if all its productions are type 1 productions. The production § — A
1s also allowed in a type 1 grammar. but in this case S does not appear on the
right-hand side of any production.

Definition . The language generated by a type 1 grammar is called a
type I or context-sensitive language.

Definition A grammar G = (Vy, Z, P, §) is monotonic (or length-
increasing) if every production in P is of the form a — B with | &| < | B
or S — A. In the second case. S does not appear on the right-hand side of any
production in P.

Definition A type 2 production is a production of the form A — «,
where A € Vy and o € (Vy v X)*. In other words, the L.H.S. has no left
context or right context. For example. S — Aa, A — a. B = abc, A = Aare
type 2 productions.

Definition . A grammar 15 called a type 2 grammar if it contains only
type 2 productions. It is also called a context-free grammar (as A can be
replaced by o in any context). A language generated by a context-free grammar
is called a type 2 language or a context-free language.

Definition A production of the form A — a or A — aB. where
A.B e Vyand ¢ € X. is called a tvpe 3 production.

Definition A grammar is called a tvpe 3 or regular grammar il all its
productions are type 3 productions. A production § — A is allowed in type 3
grammar. but in this case S does not appear on the right-hand side of any
production.
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Example:

Find the highest tvpe number which can be applied to the following
productions:

(a) S — Aa A — c¢|Ba. B — abc

(b) § — ASB|d, A — dA

(ci § = aS|ab

Solution

(a) §$ = Aa. A = Ba, B — abc are type 2 and A — c is type 3. So the
highest type number is 2.

(b) § > ASBis type 2. § — d. A = aA are type 3. Therefore. the highest
type number is 2.

(c) S — a$ i1s type 3 and S — ab is type 2. Hence the highest type
number is 2.

LANGUAGES AND THEIR RELATION

Property 1 From the definition. it follows that #,, < L. L1 S Lo
'JL‘T‘I C :/_.'4‘,.

Property 2 2. C £.4

Property 3 1,4 C L1 S Lo © 4 This follows from properties 1 and 2.

IN

Propeiighd Blme. o . C. K . Lo

RECURSIVE AND RECURSIVELY ENUMERABLE SETS

Definition A set X is recursive if we have an algorithm to determine
whether a given element belongs to X or not.

Definition A recursively enumerable set is a set X for which we have
a procedure to determine whether a given element belongs to X or not.
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Example:

Consider the grammar G given by § — 0SA;2. § — 012, 24, — A,2.
1A, — 11. Test whether (a) 00112 € L(G) and (b) 001122 € L(G).

Solution

(a) To test whether w
etc. |[w| = 5.
Wo= {S}
W, = {012, §. 05A,2}
W.= {012, S, 0SA2}

00112 € L(G), we construct the sets W,, W, W»

As W, = W,, we terminate. (Although 0SA,2 = 00124,2. we cannot
include 0012A,2 in W, as its length is > 5.) Then 00112 ¢ W,. Hence.
00112 ¢ L(G).

(b) To test whether w = 001122 € L(G). Here, |w| = 6. We construct W,

W, Wa, etc.
Wy = {S§}
W, = {012. S. 0SA,2}
W.= {012, S. 0SA,2. 001242}
W, = {012. S. 0SA,2. 001242, 001A4,22}
W, = {012, S. 0SA2, 00124,2. 0014,22, 001122}

Ws:= {012. S. 0SA,2. 00124,2, 001A4,22. 001122}
y Wy = Wy, we terminate. Then 001122 € W, Thus. 001122 € L(G).

OPERATIONS ON LANGUAGES

Theorem Each of the classes Zq, £, Lof1s £ 18 closed under union.

Prepared by J.Jansi, Asst Prof, Department of Mathematics, KAHE Page 9/11




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II M.Sc MATHEMATICS COURSE NAME: FORMAL LANGUAGES
AND AUTOMATA THEORY

RSE CODE: 18MMP305A UNIT: 11 BATCH-2018-2020

Proof let L, and L, be two languages of the same type i. We can apply
Theorem 4.1 to get grammars

G[ = (VT, Zl- P!~ Sl) and G: = (V'ﬂ;. Z:. P:, Sj)
of type 7 generating L, and L. respectively. So any production in G; or G-
is either @ — [, where ¢, [ contain only variables or A — a, where A € V,,
a e X

We can further assume that Vy n V' = @. (This is achieved by renaming
the variables of V' if they occur in V’y.)
Define a new grammar G, as follows:
G,{ = (VI‘.\? () V'_,\: . {S} 21 U Z:. P( S)
where S is a new symbol. ie. S ¢ Vy U V5

P,=PLuUuPuUu{§—>S§. 8§-S9)

We prove I(G,) = L, U L, as follows: If w € L; U L», then S; = w or
G,

S+ = w. Therefore.
G.

§ = 8§ = w or,. S = S > whie w e LG,)
G“ GH (;N Gll
Thus, L, U L, ¢ L(G,).

To prove that L(G,) ¢ L, v L-. consider a derivation of w. The first step
should be § = S, or § = §.. If § = §, is the first step. in the subsequent steps
S, is changed. As Vi N V’{: # @, these steps should involve only the variables
of V4 and the productions we apply are in P;. So § %? w. Similarly, if the
first stepis § = S5, then § = §- = w. Thus, L(G,) = L, U L.. Also, L(G,)

G, G.
is of type 0 or type 2 according as L, and L, are of type O or type 2. If A
is not in L, W L,, then L(G,) is of type 3 or type 1 according as L, and L.
are of type 3 or type 1.
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Suppose A € L;. In this case, define
Gu = (.V,A\’ o v/.,\’ oA {S S,}s zl W ZL" Pn" S,)
where (i) §" is a new symbol, ie. § € V'y U V5 U {S}, and (i) P,

PLUPU{S -8 §S—S5,5—> 8} So. LIG,) is of type 1 or type 3
according as L, and L~ are of type 1 or type 3. When A € L., the proof is

similar. |
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Possible Questions

Part-B(6 mark)

-

G =({S}, {0,1},{S — 0S1, S — A}.S), find L(G).

2. Let G=({S, C}, {a, b}, P,S)where P consists of S —»aCa, C —aCa |b. Find
L(G).

3. IfGisS —aS|bS|a]|b, find L(G).

4. LetG=({S, A1}, {0, 1,2}, P, S) where P consists of S — 0SA12, S — 012, 2A;
—A12. 1A1 — 11. Show that L(G) = {0”172” | n>1}.

5 LetG=(S, A,A2}, {a, b}, P, S) where P consists of S — aA1Aa, As
—baA1A2b, A2 — A1 ab, aAi1—baa, bAsb —abab. Test whether w =
baabbabaaabbaba is in G.

6. Consider the grammar G given by S — 0SA12. S — 012, 2A1— A12, 1A1— 11.
Test whether (a) 00112 € L(G) and (b) 001122 € L(G).

7. Show that there exists a recursive set which is not a context- sensitive language
over {0,1}.

8. Show that {a" n? | n> 1} is generated by the grammar S — a, S — AszAs , As—

A1AzA;,

Az— A1A2, AtAr—aArAl, Ata—aA1, Aca—aAr, AtA1—A4a, A2As —Asa, As

— d.

9. Explain about the Chomsky classification of languages and their properties.
10. Show that each of the classes Lo, Lcs1, Ler1, Lra is closed under concatenation.

PART C(10 mark)

1. Show that each of the classes Lo, Lcs1, Ler1, Lra is closed under union.
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UNIT-111

Regular expressions - Finite Automata and Regular expressions.

REGULAR EXPRESSIONS

The regular expressions are useful for representing certain sets of strings in an
algebraic fashion. Actually these describe the languages accepted by finite state
automata.

We give a formal recursive definition of regular expressions over I as
follows:

1. Any terminal symbol (i.e. an element of X), A and @ are regular

expressions. When we view «a in £ as a regular expression, we denote

it by a.

The union of two regular expressions R; and R». written as R, + R,

is also a regular expression.

3. The concatenation of two regular expressions R; and R,, written as
R R,, is also a regular expression.

4. The iteration (or closure) of a regular expression R. written as R*. is

also a regular expression.

If R is a regular expression. then (R) is also a regular expression.

The regular expressions over X are precisely those obtained

recursively by the application of the rules 1-5 once or several times.

(B9

N

Definition Any set represented by a regular expression is called a regular
sef.

If. for example, @, b € Z. then (i) a denotes the set {a}, (ii) a + b denotes
{a, b}, (iii) ab denotes {ab}, (iv) a* denotes the set {A. a, aa. aaaq, ...} and
(v) (a + b)* denotes {a. b}*.

The set represented by R is denoted by L(R).
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Example:

Describe the following sets by regular expressions: (a) {101}. (b) {abba},
(¢’ {01. 10}. (d) {A. ab}, (e) {abb. a, b, bba}, (f) {A, 0. 00, 000. ...}. and
& [, 1l 111, ...}

Solution

(a) Now. {1}. {0} are represented by 1 and 0. respectively. 101 is obtained
by concatenating 1. 0 and 1. So. {101} is represented by 101.

(b) abba represents {abba}.

(c) As {01, 10} is the union of {01} and {10}, we have {01, 10}
represented by 01 + 10.

(d) The set {A. ab} is represented by A + ab.

(e) The set {abb, a, b, bba} is represented by abb + a + b + bba.

(f) As {A, 0. 00, 000, ...} is simply {O}*. it is represented by 0*.

(g) Any element in {1. 11, 111. ...} can be obtained by concatenating
1 and any element of {1}*. Hence 1(1)* represents {1, 11, 111, ...}.

Example:

Describe the following sets by regular expressions:
(a) L, = the set of all strings of 0’s and 1's ending in 00.
(b) L~ = the set of all strings of 0's and 1's beginning with 0 and ending
with 1.
(e) La = {A 11; T11Y: 1111115 seaks

Solution

(a) Any string in L, is obtained by concatenating any string over {0, 1}
and the string 00. {0, 1} is represented by 0 + 1. Hence L, 1s
represented by (0 + 1)* 00.

(b) As any element of L- is obtained by concatenating 0, any string over
{0, 1} and 1. L. can be represented by 0(0 + 1)* 1.

(c) Any element of L, is either A or a string of even number of 1s, i.e.
a string of the form (11)", n 2 0. So L; can be represented by (11)*.
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IDENTITIES FOR REGULAR EXPRESSIONS

Two regular expressions P and Q are equivalent (we write P = Q) if P and
Q represent the same set of strings.

We now give the identities for regular expressions; these are useful for
simplifying regular expressions.

I @ +R=R

I. OR=RQ =0

I; AR=RA =R

I, A*=Aand @¢*=A

kI R+R=R

Is  R*R* = R*

I RR* = R'R

Iy, (RH* =R

Ivy A+ RR*=R*=A+R*R
Io (PQ*P = P(QP)*

[ PR Q*=PQ¥ = (P* £ Q%)*
[~ (P+QR=PR+QR and R(P + Q) =RP + RQ

Theorem . (Arden’s theorem) Let P and Q be two regular expressions
over . If P does not contain A, then the following equation in R, namely
R=Q +RP

has a unigue solution (i.e. one and only one solution) given by R = QP*,

Proof Q + (QP*)P = Q(A + P*P) = QP* by /g
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To prove uniqueness. replacing R by Q + RP on the

R.H.S.. we get the equation
Q+RP=Q + (Q + RPP
= Q + QP + RPP
=Q + QP + RP”
=Q+ QP + QP° + ... + QP' + RP!
=QA +P + P + ...+ P)+ RPH

R=QA +P+P + ... +P) + RP* for i = 0

: Let w be a string of length 7 in the set
R. Then w belongs to the set Q(A + P + P* + ... + P)) + RP™*, As P does
not contain A. RP™' has no string of length less than i + | and so w is not
in the set RP™'. This means that w belongs to the set QA + P + P- + . ..
+ PY). and hence to QP*.

Consider a string w in the set QP*. Then w is in the set QP* for some
k = 0. and hence in O(A + P + P° + ... + PY), )

Thus R and QP* represent the
same set. This proves the uniqueness of the solution .

Example:

(a) Give an r.e. for representing the set L of strings in which every 0 is
immediately followed by at least two I's.

(by Prove that the regular expression R = A + 1#(011)*(1* (011)*)* also
describes the same set of strings.
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Solution

(a) If wis in L, then either (a) w does not contain any 0, or (b) it contains
a 0 preceded by | and followed by 11. So w can be written as
wiws ... w,, where each w; is either 1 or Ol1. So L is represented

by the re. (1 + 011)%.
(b) R = A + PP* where P, = 1*(011)*
= P using /g
= (1¥(011)%)*
= (PyP;)* letting P> = 1. P. = 011
= (P, + Py)* using /7,
= (1 + 011)*

Prove (1 + 00%1) + (1 + 00%1)(0 + 10*%1)* (0 + 10*1) = 0*1(0 + 10%1)*.

Solution
LHS. = (1 + 00*1) (A + (0 + 10*D* (0 + 10*1)A using />
= (1 + 00%1) (0 + 10%1)* using o
= (A + 00%)1 (0 + 10*1)* using /;5 for 1 + 00%1
= 0*%1(0 + 10%1)* using fy
= R.H.S.

FINITE AUTOMATA AND REGULAR EXPRESSIONS

TRANSITION SYSTEM CONTAINING A-MOVES

Suppose we want to replace a A-move from vertex v, to vertex v,.. Then
we proceed as follows:

Step 1 Find all the edges starting from v-.

Step 2 Duplicate all these edges starting from v;, without changing the edge

Step 3 If v, is an initial state. make v~ also as initial state.

Step 4 If v, is a final state. make v, also as the final state.
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CONVERSION OF NONDETERMINISTIC SYSTEMS TO
DETERMINISTIC SYSTEMS

Step 1 Convert the given transition system into state transition table where
each state corresponds to a row and each input symbol corresponds to a
column.

Step 2 Construct the successor table which lists the subsets of states
reachable from the set of initial states. Denote this collection of subsets by Q.

Step 3 The transition graph given by the successor table is the required
deterministic system. The final states contain some final state of NDFA. If
possible. reduce the number of states.

Obtain the deterministic graph (system) equivalent to the transition system

Solution

We construct the transition table corresponding to the given nondeterministic
system
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State/T E] b
—@ 1. 92
gy o
@ ql]l: Q'1

We construct the successor table by starting with [gq, ¢].
we see that [gg. g, g-] is reachable from [gy. ¢;] by a b-path. There are no
a-paths from [gg. q,]. Similarly, [gg, ¢,] is reachable from [gy ¢, ¢:] by an
a-path and [qy. ¢q;. g-] is reachable from itself. We proceed with the

construction for all the elements in Q°

Deterministic Transition Table W --.

Q a b
[90. 1] 0 (9. 9+, G2
[92. 91, G2 [90. 94 (G0, G4, Q2]
) p R )
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Deterministic transition system

as ¢, and g- are the final states of the nondeterministic system [gy. ¢,] and
{gs. 1. g-] are the final states of the deterministic system.

ALGEBRAIC METHOD USING ARDEN’S THEOREM

The following assumptions are made regarding the transition system:

(i) The transition graph does not have A-moves.

(ii) It has only one initial state. say v;.

(1i1) Its vertices are vy ... Vv,

(iv) V; the r.e. represents the set of strings accepted by the system even
though y; is a final state.

(v) oy denotes the r.e. representing the set of labels of edges from 1; to
v, When there is no such edge. o; = §. Consequently, we can get the
tollowing set of equations in V; ... V.

‘r‘ = Vyi.aH + Vfafl 2 RS ¢ vnanl + A

-
2
[l

‘Viall + “73(13: + o+ V;,('l,,:

\'rp: = Vlaln + ‘73aln o sl Vnann
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Consider the transition sysiem Prove that the strings

recognized are (a + a(b + aa)*h)* a(b + aa)* a.

Transition system

Solution

We can directly apply the above method since the graph does not contain any
A-move and there is only one initial state.
The three equations for g;. g» and g: can be written as

q, = qa + ;b + A, q> = q,a + q-b + q:a. q: = Q-2

q;a + ;b + g;aa

=
12
I

= qa + q-(b + aa)
= qa(b + aa)*

Substituting g~ in q;, we get
q = qa + qa(b + aa)*bh + A

= gq(a + a(b + aa)*bh) + A
Hence,
q,= A(a + a(b + aa)*b)*

q>= (a + a(b + aa)*b)* a(b + aa)*
q:= (a + a(b + aa)*b)* a(b + aa)*a
Since ¢ is a final state, the set of strings recognized by the graph is given by

(a + a(b + aa)*b)*a(b + aa)*a

Prepared by J.Jansi, Asst Prof, Department of Mathematics, KAHE Page 9/12




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II M.Sc MATHEMATICS COURSE NAME: FORMAL LANGUAGES
AND AUTOMATA THEORY
COURSE CODE: 18MMP305A UNIT: II1 BATCH-2018-2020

CONSTRUCTION OF FINITE AUTOMATA EQUIVALENT
TO A REGULAR EXPRESSION

Step 1 Construct a transition graph (transition system) equivalent to the
given regular expression using A-moves. This is done by using Theorem 5.2.

Step 2 Construct the transition table for the transition graph obtained in
step 1. Using the method given in Section 5.2.3. construct the equivalent DFA.
We reduce the number of states if possible.

EQUIVALENCE OF TWO REGULAR EXPRESSIONS

Suppose we are interested in testing the equivalence of two regular
expressions, say P and Q. The regular expressions P and Q are equivalent iff
they represent the same set. Also. P and Q are equivalent iff the corresponding
finite automata are equivalent.

Theorem {Kleene's theorem) The class of regular sets over I is the
srallest class R contamning {a} for every @ € T and closed under union,
concatenation and closure.

Proof The set {a} is represented by the regular expression a. So {a} is
regular for everv « € X. As the class of regular sets is closed under union,
concatenation. and closure. R is contained in the class of regular sets.

Let L be a regular set. Then L = T(M) for some DFA, M = ({q;, .. ..
(/m},- Z, o) oy F). - -

n
L=U B
j=r
where F = {q,~I ... qs } and PY; is obtained by applying union, concatenation

and closure to singletons in X. Thus, L is in R.
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Possible Questions:

Part-B(6 mark)

1. Describe the following sets by regular expressions :
I) L1 = the set of all strings of 0’s and 1’s ending in 00.
ii) L2 = the set of all strings of 0’s and 1’s beginning with 0 and ending with 1.
i) Le={ A, 11, 1111, 111111, ...}.

N

. State and prove Arden’s theorem
3. State and prove Kleen’s theorem.

4. Prove that the strings recognized are (a + a(b + aa)*b)* a(b + aa) * a.
b

a
M’i\/\
— gy ) | 92 @
a

5. Construct a regular expression corresponding to the state diagram described by
given below.
A
__.."[/‘/37\'\
o/

.\ T
)
r ™\
. 0 lo \\
T
7N\ 1 ||
({ s )} 93 )
N N
\x/\‘\ o :
\—‘_/
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7. Determine M and M’ are equivalent. Automaton M and M’ are given below.

c c
M A
\ \
=X . -
7N 7\ . 7%
—_—i Oy - : Qa ) ( 97 }
N/ // \ i
—a d N b ¢
) \_; —~ ?\_/ i ‘||
\ /‘\* | " [ |
dl ¢ | 93 | a d| ¢l ¢
| e /-/ }-‘_/"/ ’ | l |
P / \ | |' |

\..} 5 \ |/
(‘) (o) (% )

8.(1)Give an r.e for representing the set L of strings in which every 0 is immediately
followed by at least two 1°s.

(ii) Prove that the regular expression R = A + 1*(011)*(1* (011)*)* also describe
the same set of strings.

9. Prove (1 +00*1) + (1 + 00*1)(0 + 10*1)* (0 + 10*1) = 0*1(0 + 10*1)*.

10. Find the equivalent automation without A-moves.

0 1 A
Y N\ \
vH. A /I\( \ A ‘/,)/\W&|
| Gy — { @1 }— ~{( 42 ))
p—g N ‘\v

Part-B(10 mark)

1. Construct a DFA with reduced states equivalent to the r.e10 + (0 + 11))0*1
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UNIT-1V

Pumping Lemma for Regular sets - Applications of Pumping Lemma - Closure Property
of Regular sets - Regular sets and Regular grammars.

PUMPING LEMMA FOR REGULAR SETS

Theorem (Pumping Lemma) Let M = (Q, £. & ¢y F) be a finite
automaton with n states. Let L be the regular set accepted by M. Let w € L
and | w ] 2 m. 1f m 2 n, then there exists x, y, ¢ such that w = xvz, v # A and
'z & L for each i 2 0.

Proof - Let
W= q,as ... dy,. mz2n

0(ge, ayas ... a) =¢; tori=1 2. ... m; Q1 = {go Gir - Gl

That 15, Q, is the sequence of states in the path with path value w = aa; . . . @,
As there are only n distinct states. at least two states in  must coincide.
Among the various pairs of repeated states, we take the first pair. Let us take
them as ¢; and ¢;{q; = q;). Then j and £ satisty the condition 0 £ j < k £ n.

The string w can be decomposed into three substrings ajay ... aj djpy ...
a; and appy .. .oa, Let x, v,z denote these stnngs aias ... @, Gy« -« a4
Qpay - - - (0, tespectively. As k € n, |xv| € 7 and w = xyz. The path with the
path value w in the transition diagram of M

The string w can be decomposed into three substrings ¢,a; . .. a;, @y . ..
a; and @y ... @, Let x, ¥, I denote these strings aya, ... a;, Gy ...

Qrey - - - dy, respectively. As k € n, |x¥] £ n and w = xyz. The path with the
path value w in the transition diagram of M

The automaton M starts from the initial state g5 On applying the string
x, it reaches g{=g;). On applying the string y, it comes back to g{(= g). So
after application of y* for each 7 2 0, the automaton is in the same state ¢;

On applying =. it reaches ¢,,, a final state. Hence. xv'z € L. As every state in
Q, is obtained by applying an input symbol, v # A. |
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APPLICATION OF PUMPING LEMMA

Step 1 Assume that L is regular. Let » be the number of states in the
corresponding finite automaton.

Step 2 Choose a string w such that { w | 2 n. Use pumping lemma to write
w = xvz with x| € nand | v| > 0.

Step 3 Find a suitable integer ¢ such that xv'z ¢ L. This contradicts cur
assumption. Hence L is not regular,

Note: The crucial part of the procedure is to find 7 such that xv'z 2 L In
some cases we prove xv'z € L by considering | xv'z | In some cases we may
have to use the ‘structure’ of strings in L.

Show that the set L = {.--f | i2 1} 1s not regular.
Solution

Step 1 Suppose L is regular. Let » be the number of states in the finite
automaton accepting L.

Step 2 Let w = " Then [w| = »n~ > 5. By pumping lemma, we can write
w = xv: with |xy| € nand |»] > 0.

o

Step 3 Consider xv=z. |y z| = |x| + 2[v] + 2] > x| + |y] + |z] as
|v1 > 0. This means n° = |xvz| = la] + 1v] + [2] < |072] As [av] €0
we have |v| < n. Therefore.

oz = x| + 2yl + 1z €0+ m
ie.
r "\‘ ] al
nmeinTisar < +nra+1
Hence, | vv=z | strictly lies between n= and (n + 1)°, but is not equal to any

- ol - - T
one of them. Thus | xvz | is not a perfect square and so xy'z ¢ L. But by
pumping lemma. xv-z € L. This Is a contradiction.
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Show that L = {¢"|p is a prime} is not regular.

Solution

Step 1 We suppose L Is regular. Let i be the number of states in the finite
autcmaton accepting L.

Step 2 Let p be a prime number greater than n. Let w = ¢’. By pumping
lemma. w can be written as w = xyz, with |xy| <rnand |v| > 0. x ¥ z are
simply strings of «'s. So, v = &" for some m 2 | (and £ n).

Step3 Leti=p+ L. Thenin'z| =|uozl + ' =p+(-Dm=p+
pm. By pumping lemma. v’z € L. But | xi'z| = p + pm = p(1 + m). and p(1
+m) is not a prime. So xy'z € L. This is a contradiction. Thus L is not regular.

Show that L = {0'1'li = 1} is not regular.
Solution

Step 1 Suppose L is regular. Let # be the number of states in the finite
automaton accepting L. '

Step 2 Let w = 0"1". Then |w| = 2n > n. By pumping lemma, we write
wo= vz with [xy| £ noand |y 2 0.

Step 3 We want to find / so that xv'z € L for getting a contradiction. The
string v can be in any of the following forms:
Case 1 v has 0°s. i.e. v = 0" for some k > 1.
Case 2 v has only 1's, i.e. y = 1’ for some [ > 1.
Case 3 v has both 0's and L's, ie. v = 0°V for some k. j = 1.
In Case 1. we can take i = 0. As vz = 0"1", a2 = 01" As k2 1Ln—
k#n So, xze L
In Case 2. take i = 0. As beiore. x: is 01" and n#n-1 So.xz ¢ L
In Case 3. take i = 2. As vz = OO, vz = O ORVOME Y As s
is not of the form O'l, xy'z ¢ L.
Thus in all the cases we get a contradiction. Therefore. L is not regular.
Show that L = {ww |w € {a b}*} is not regular.

Solution

Step 1 Suppose L is regular. Let n be the number of states in the automaton
M accepting L. "
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Step 2 Let us consider ww = a"ba"h in L. lww | = 2(n + 1) > n. We can

apply pumping lemma to write ww = xyz with [ v| = 0. |xv| < n

Step 3 We want to find 7 so that xv'z & L for getiing a contradiction. The
string v can be in only one of the following forms:

Case I v has no p’s. i.e. v = a* for some k > 1.
Case 2 v has only one b.

We mayv note that y cannot have two b’s. If so, v} 21 + 2. But |y] <
|xv| 7. In Case 1, we can take i = 0. Then »'z = xz is of the form a”ba'b,
where m = n - k < n (or a"ba”'b). We cannot wnite 17 in the form wie with
ue {a b}* and so xz ¢ L. In Case 2 too, we can take 7 = 0. Then 0'z = xz
has only one b {as one b 1s removed from xvZ. b being in v). So az € L as
any element in L should have an even number of ¢'s and an even number of
b’s.

Thus in both the cases we get a contradiction. Therefore. L is not regular.

CLOSURE PROPERTIES OF REGULAR SETS

If L is regular then L' is also regular.

We construct a transition system M7 by starting with the state diagram of
M, and reversing the direction of the directed edges. The set of iniual states
of M’ is defined as the set F, and ¢ is defined as the (enly) final state of M
Le. M" =10, X. 0. F. {g}).

It w e T(M), we have a path from ¢, to some final state in £ with path
value w. By ‘reversing the edges’. we get a path in M’ from some final state
in F 10 go Its path vaiue is w’. So w’ e T(M’). In a similar way. we can
see that if w, € T(M’), then w/ € T(M). Thus from the state diagram it is
easy 1o see that T{M") = T(M)'. We can prove rigorously that w € T(M) iff
wl & T(M’) by induction on hvl. So T(M) = T(M"). By (viii) of Section
5.2.7. T(M') is regular. ie. TOMT is regular. 1

It L is a regular set over L. then X* — L 1s also regular over L.
We construct another DFA M =(Q, L. 0. gy, F') by defining " = Q - F,
i.e. M and A’ differ only in their final states. A final state of 37" is a nonfinal
state of M and vice versa. The state diagrams of M and M" are the same except
for the final states.
woe T(Myif and only if gy w) € F' = @ — F, Le. iff w ¢ L. This
proves T(IMy = I% - X |
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Theorem It X and VY are regular sets over X, then X Y 1s also regular

gver .

Proof By DeMorgan's law for sets. X N Y =Z% — ((2* - X) w (Z¥ - 1)). By

. X%~ Xoand ¥ - ¥ are regular. So. (ZF = X) U (ZF - P) is
also regular. By applving Theorem 5.7. once again Z¥ — ((Z¥ — X)
(Z* — ¥)) s regular. 1e. ¥ m Y 1s regular. |

REGULAR SETS AND REGULAR GRAMMARS

CONSTRUCTION OF A REGULAR GRAMMAR
GENERATING T(M) ror A GiVEN DFA M

Let M = ({gg, - ... g,}. Z. 6. go F). If wis in T(M), then it is obtained by
concatenating the labels corresponding to several transitions. the tirst from gy
and the last terminating at some final state. So for the grammar G o be
constructed. productions should correspond to transitions. Also. there should
be provision for terminating the derivation once a (ransition terminating at
some final state is encountered. With these ideas in mind. we construct & as

G = ('{AE-’" A]“ An}: z. P. 14{})
where P is defined by the following rules:

(1y A, — aA; is included in P if 8(g. a) = q; &€ F.
(i) A; — aA; and A, — a are included in P if (g a) = q; € F.
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We can show that L(G) = T(M) by using the construction of P. Such a
construction gives

A;= A, Iff 8(g. a) = g

A= a iff &(qg;. a) € F
So.

Ay = @Ay = aqa-d> = .0 = a0 oA = aas L. qQy
iff Slgo. a1) = q 0(g, @) = qu ... Olgp ap) € F

This proves that w = a, ... a; € L(G) iff 6(go, @ ... a) € F. ie. iff
w e T(M).

Construct a regular grammar G generating the regular set represented by
P = a*h(a + b)*

Solution

We construct the DFA corresponding to P using the construction

) o AN W L
-/ —( -/ O

LO;ﬁg‘_\@c’O @ @

M

Let G = ({A0, A;}. {a b}. P. Ay). where P is given by
z":lrl} — ﬂ'.-"lﬂ, A.U — bfh. AU —> b
A, — aAy, A, — bA,, A = a A — b

(; is the required regular grammar.
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CONSTRUCTION OF A TRANSITION SYSTEM M
ACCEPTING L(G) FOR A GIVEN REGULAR
GRAMMAR G

Let G = ({Aq Ay, ..o A} E0 P Ap). We construct a transition system A
whose (i) states correspond to variables. (ii) initial state corresponds to Ag.
production applied in any derivation is of the form A4; — a, the corresponding
transition terminates at a new state. and this 1s the unique final state.

We define M as ({gn. . ... g, g}, Z. 0. g {g;}) where 9 is detined as
follows: | ‘

(1) Each producton A; — aA; induces a transinon from ¢; to ¢; with
label a.

(i1) Each production A; — « induces a transition from ¢ to g; with
label 4.

From the construction it is easy to see that Ay = /A, = qja-d» = ...
= a; ... 4,4, = a; ... a, s a derivation of aya- ... a, iff there is a

path in M starting from ¢, and terminating in ¢, with path value aya- ... a,
Therefore. L(G) = T(M).

Let G = ({An Ay}, {a. b} P, Ap), where P consists of Ag — aA|. A| — bA|.
Ay — a, Ay — bAy. Construct a transition system M accepting L(G).

Solution

Ler M = ({¢guo. g1 q#}. {a. b}. 6. gp. {g:}). where gy and g, coirespond to Ay
and A,, respectively and ¢, is the new (finaly state introduced. 4, — ad;
induces a transition from gp to ¢, with label a. Similarly. 4; — bA, and
A, — bAg induce transitions from g, to ¢, with label b and from ¢, to ¢, with
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label b, respectively. A; — « induces a transition from ¢; to g, with label a.
M is given mm Fig. 5.33.

b

If a regular grammar G is given by S — aS |« find M accepting L(G),

Solution

Let ¢y correspond to S and ¢, be the new (final) state. M is given in
Fig. 5.34. Symbolically.

l‘r‘f = {{f}';;. &'.}'_r“}‘- {a}x 53 8 {q‘f})

Find the regular expression representing the set of all strings of the form
(a) a"B'" where m. n. p 2 1
(b) a"b"c? where w1, n, p 2 1
(c) a'ba™b where m 2 0, n 2 1

Solution

(a) aa*bb*cc*
(b) aa*(bb)(bb)*ccc(cee)*
(¢) aa*b(aa)*bb
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Find the sets represented by the following regular expressions.
(a) (a + b)*(aa + bb + ab + ba)*
(b) (aa)* + (aaa)*
(¢) (1 +01 +00D*A + 0+ 00)
(d) a + b(a + b)*

Solution

(a) The set of all strings having an odd number of symbols from {a, b}*

(b) {x € {a}*| | x| is divisible by 2 or 3]

(¢) The set of all strings over {0, 1} having no substring of more than
two adjacent 0’s.

(d) {a. b. ba. bb, baa, bab, bba. bbb, ...}

Show that {w £ {a. b}* | w contains an equal number of a’'s and b’s} is not
regular.

Solution

We prove this by contradiction. Assume that L = T{(M) for some DFA M with
n states. Let w = "' € L and |w| = 2", Using the pumping lemma, we write
w = vy with [xv] Snand |v] > 0. As xyz = @B, xy = @ where i < n and
hence v = ¢ for some . 1 < < n. Consider xyv*z. Now xyz has an equal number
of ¢'s and b's. But xv"z has (n + j) a's and # b’s. As n + j # n, .1}'3: g L.
This contradiction proves that L is not regular.

Show that L = {a'¥/c* | k > i + j} is rot regular.

Solution

We prove this by contradiction. Assume L = T(M) for some DFA with n
states. Choose w = ¢'b"c™ m L. Using the pumping lemma, we write w = 1yz
with [xvi <pand vl> 00 Asw = d'B"c. xv = o for some i < n. This means
that v = o' for some j. 1 €j € n. Then x¥*= = &"™*B'c™. Choosing k large
enough so that n + jk > 2, we can make # + jk + n > 3n. So. 'z e L.
Hence L is not regular.
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Prove that P + PQ*Q = a*bhQ* where P = b + aa*b and Q is any regular

expression.
Proof L.H.S. = PA + PQ*Q by 14
= P(A + Q*Q) by 1)
= PQ* by Iy
= (b + aa*bh)Q* by definition of P
= (Ab + aa*h)Q* by I
= (A + aa*)bQ* by /[,
= a*bQ* bv 1
= R.H.S.
Construct a regular grammar accepting L = {w & {a, b}* | w is a string over

{a. b} such that the number of b's is 3 mod 4}.

Solution

We construct a DFA M accepting L directly. The symbol @ can occur in any
place in w and b has to occur in 4k + 3 places. where £ =2 0. So we can have
states ¢;. 1 = 0. 1., 2. 3. for remembering that the string processed so far has
4k, 4k + 1. 4k + 2 and 4k + 3 b's (k =2 0). ¢y is the only final state. Also M
does not change state on reading «'s. The state diagram representing M is

L
o

G = ({Ay, Ay A Az} {a. b}, P. Ap) where P consists of Ay — adA.
Ay — f?A], A = E)A], Ay — bA:. A: -7 GAQ. A: — bA3, Az — b, Az = aAs,
Ax — aAn.
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Possible Questions:
Part-A(6 mark)

State and prove pumping lemma for regular sets.

Show that the set L = { a" i?} |i> 1} is not regular.

Show that L = {aP | p is prime } is not regular.

State and prove Kleen’s theorem.

Show that L = {ww | w € {a, b}*} is not regular.

Prove that If L is regular then LT is also regular.

Prove that If L is a regular set over X. Then X* - L is also regular over X.

Construct a regular grammar G generating the regular set represented by P =

a*b(a + b)*.

9. Let G =({Ao, A1}, {a, b}, P, Ag), where P consists of Ao — a A1, A1 > b A1, A1
— a, A1 — b Ao. Construct a transition system M accepting L(G).

10. Prove that P + PQ*Q = a*bQ* where P = b + aa*b and Q is any regular

expression.

Nk W

Part C(10 mark)

1. Show that L = {0"1"|i> 1} is not regular.
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UNIT-V

Context free Languages and Derivation trees - Ambiguity in Context free grammars -
Simplification of Context free grammars (examples only).

CONTEXT-FREE LANGUAGES AND DERIVATION
TREES

Context-free languages are applied in parser design. They are also usetul for
describing block structures in programming languages. It is easy to visualize
derivations in context-free languages as we can represent derivations using tree
structures.

Construct a context-free grammar G generating all integers (with sign).

Solution

Let
G=(Vi. Z. P, S)
where
V= [S. (sign). (digit). (Integer)}

T={0. L 2.3 ...9 + -}
P consists of § — (sign) (integer), (sign) — + | —,
(integer) — (digit) (integer) | {digit)
(digity — 0]1]2]...19

L(G) = the set of all integers. For example, the derivation of —17 can be
obtained as follows:

S = {sign) {integer) = - (integer)
= — (digit) (integer) = — 1 (integer) = — 1 {digit)

= — 17

DERIVATION TREES
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Definition . A derivation tree (also called a parse tree) for a CFG

G = (Vy. L. P. §) 1s a tree satistying the following conditions:

(1) Every vertex has a label which is a vaniable or terminal or A

(11) The root has label §.

(ii1) The label ot an internal vertex is a variable.

(iv) If the vertices mn. n-. ... m; written with labels X), X-, ..., X, are
the sons of vertex n with label A then A — X;X- ... X, is a
production in P.

(v) A vertex n 1s a leaf if 1ts label 1s @ € Z or A: n is the only son of
its father if its label is A.

For example. let G = ({S. A}, {a. b}. P. 5). where P consists of § —
aAS |a|S§S. A — SbA|ba.

Ordering of Leaves from the Left

Definition The yield of a derivation tree is the concatenation of the
labels of the leaves without repetition in the left-to-right ordering.

kaail 7
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Definition A subtree of a derivation tree T is a tree (i) whose root is

some vertex v of 7. (if) whose vertices are the descendants of v together with
their labels. and (iii) whose edges are those connecting the descendants of 1.

A subtree

{

Theorem Let G = (V. I, P. §) be a CFG. Then S = ¢« if and only if
there is a derivation tree for & with vield «
Proof We prove that A = ¢ if and only if there is an A-tree with vield o
Once this is proved. the theorem follows by assuming that A = §.

Let o be the vield of an A-tree 7. We prove that A = « by induction on
the number of internal vertices in 7.
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Bv condition (iv) of Definition A — AA- ... A, = ¢is a production

in G, i.e. A = o Thus there is basis for induction. Now assume the result
for all wees with at most & — 1 internal vertices (k > 1).

Let 7 be an A-tree with k internal vertices (k = 2). Let vy, va. ..., v,
be (he sons of the root in the left-to-right ordering. Let their labels be
Xi. X-. .. .. X,. By condition (iv) of Definition LA — X X- L0 X, 18 in
P. and so

A= X X-... X,

As k 2 2. at least one of the sons is an internal vertex. By the left-to-right
ordering of leaves, « can be written as o~ . .. ¢, where ¢; is obtained by
the concatenation of the labels of the leaves which are descendants of vertex
v;. It v; 1s an internal vertex, consider the subtree of T with v; as its root. The
number of internal vertices of the subtree 1s less than k (as there are k internal
vertices in T and at least one of them. viz. its root, 15 not in the subtree). Sc
by induction hypothesis applied to the subtree, X, = . If v; is not an internal
vertex. i.e. a leaf, then X, = «,

we gel
A= XlXI e Xm ;5 ("-‘iXEXS TG Xm R £> oo ... Oy = o,

i.e. A = o By the principle of induction. A = & whenever « is the yield
of an A-tree.

To prove the “only if’ part, let us assume that A = @ We have o
construct an A-tree whose yieid is &, We do this by indaction on the number
of steps in A — o
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for induction. Assume the result for derivations in at most k steps. Let
A & oz we can split this as 4 = X; ... X, L o Now, A = X, ... X,
implies A — X;X»... X, is a production in P. In the derivation X;X> ... X,,
k;‘; o, either (i) X; is not changed throughout the derivation, or (i1) X; is
changed in some subsequent step. Let ¢; be the substring of ¢ derived from X;.
Then X, = o in (ii) and X; = o; in (i). As G Is context-free, in every step of
the derivation X, X- ... X,, = o. we replace a single variable by a siring, As
o, Oa. ..., o, account for all the symbols in & we have a = o0 ... o,

We construct the derivation tree with yield o as follows: As A - X, ... X,,
is in P. we construct a tree with m leaves whose labels are X,. .. ., X,, in the
left-to-right ordering. ) '

we leave the

H=1

vertex 1; as it is. In (ii). X; => o4 is less than k steps (as X; ... X,, = a). By
mduction hypothesis there exists an X-tree 7; with vield ¢, We attach the tree

~ let 7 and j be the first and the last indexes such that
X; and X; sausfy (ii). So. ¢, ... o, are the labels of leaves at level 1 in T.
¢: 18 the vield of the Xi-tree T,. etc.
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Thus we get a derivation tree with yield o By the principle of induction
we can get the result for any derivation. This completes the proof of “only 1f”

part. 1

Remark If A derives a terminal string w and if the first step in the derivation
is A = AA. ... A, then we can write w as wypws ... w, so that
A; = w; (Actually, in the derivation tree for w, the ith son of the root has
the label A;. and w; is the vield of the subtree whose root is the ith son.)

Let G be the grammar § — 0B|14A. A — 0|0S|144, B — 1|15|0BB. For
the string 00110101, find (a) the lefumost derivation. (b) the rightmost
dertvation, and (¢) the derivation tree.

Solution
(a) S = 0B = 00BR = 001B = 00115
— 0-1-0B = 0-1°015 = 0-1°010B = 0-1°0101
(b) S = 08 = 00BB => 00BlS = 00B10B
= 0°8101S = 0°B1010B = 0-B10101 = 0-110101.

Prepared by J.Jansi, Asst Prof, Department of Mathematics, KAHE Page 6/11




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II M.Sc MATHEMATICS COURSE NAME: FORMAL LANGUAGES

AND AUTOMATA THEORY
COURSE CODE; 18MMP305A UNIT: V BATCH-2018-2020
(¢) The derivation tree is
S
S

: N T

AMBIGUITY IN CONTEXT-FREE GRAMMARS

Definition A terminal string w € L(G) 1s ambiguous 1f there exist two
or more derivation trees for w (or there exist two or more leftmost derivations
of w).

Definition A context-free grammar G is ambiguous if there exists some
w e L(G). which is ambiguous.

SIMPLIFICATION OF CONTEXT-FREE GRAMMARS

In a CFG G, it may not be necessary to use all the symbols in Vy U Z, or
all the productions in P for deriving sentences. So when we study a context-
free language L(G), we try to eliminate those symbols and productions in G
which are not useful for the derivation of sentences.
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Consider, for example.

G = ({S. A. B. C, E}. {a, b, c}. P. §)
where

P={S—>AB A —>a B—>bB—C E- c|A}

It is easy to see that L(G) = {ab}. Let G’ = ({5, A. B}, {a. b}. P’, §), where
P’ consists of § — AB. A — a. B — b, L(G) = L(G’). We have eliminated
the symbols C, E and ¢ and the productions B — C. E — c|A. We note the

following points regarding the symbols and productions which are eliminated:

(i) € does not derive any terminal string.

(i) £ and ¢ do not appear in any sentential form.

(iii) £ — A is a null production.

(1v) B — C simply replaces B by C.

In this section., we give the construction to eliminate (i) variables not
deriving terminal strings, (i) symbols not appearing in any sentential form,
(iit) null productions. and (iv) productions of the form A — B.

CONSTRUCTION OF REDUCED GRAMMARS

Let & = (Vy, Z. P, §) be given by the productions § — AB, A — a. B = b,
B — C. E — ¢, Find G’ such that every variable in " derives some terminal
string.

Solution
(a) Construction of V'y:
W, = {A. B. E} since A = a. B — b. E — c are productions with a
terminal string on the R.H.S.
W= W, u {4, € Vy|A, — o forsome a € (£ U {A, B, E})*}
=W, v {§} = {A. B, E. §}
W= W, U {4, € Vy|4, — aforsome o e (Z v {5, A, B, E})y*}

=W13Uﬁ=wf3
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Therefore.
v = {5, Al B, F}

(b) Construction of P':
P’ = {Al — ﬂlx“'{ll o < (V::.,_ L Ej'q}

= (S > AB.A > a B = b, E — ¢}
Theretore,

G = ({S. A, B, E}. {a. b. ¢c}. P’. §)
Now we prove:

(i) If each A € V). then A = w for some w & £*; conversely, if A ? W,
G !
then A € V.
(i) L(G") = L(G).

To prove (i) we note that W, = W, u W, ... o W, We prove by
induction on i that for i = 1, 2. .. .. k, A € W, implies A = w for some
G

we X* If A e W, then A = w. So the production A — w is in P
G

Therefore. A = w. Thus there is basis for induction. Let us assume the result
e
for i Let A € W.,. Then either A € W, in which case, A = w for some
o

w € X* by induction hypothesis. Or, there exists a production A — o with

e (X v wy)* By definiton of P\ A — « is in P. We can write
XXy o0 X, where X; € X0 W, If X; € W, by induction hypothesis,
= w; for some w; € L*. S0, A = wiw, ... w, € I¥ (when X; 1s a terminal.
o _ pot :
w; = X;). By induction the result is true for i = 1. 2. .. .. &

o
(94
Xj

The converse part can be proved in a similar way by induction on the

number of steps in the derivation A = w. We see immediately that L(G") C
G

L(G) as Vi ¢ Vyand P' < P. To prove L(G) < L(G’), we need an auxiliary
result

A= o if A :-(; w for some w & X¥
G-i
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We prove by induction on the number of steps in the derivation A = w.
G
IfAa = w,thenA - wisinPandA e W, V. AsA e Viyand w € %,
c :
A — wisin P, SoA = w. and there is basis for induction,
GI‘
A+
Let A = w.
&
N - #
we can split this as A I('-“’ XX ... X, :é‘ WiWs ... W,, such

that X; :> wi It X; e I, then w; = X,

It X; € Vy then by (i). X, € V. As X; =G> w; in at most k steps,

X, = w. Also, X, Xo, X,, € (2 U V¥ implies that A — XX, ... X,, is

o
in P’. Thus, A =:> X X-... X, :> wiws ... w,. Hence by induction,

1s true for all denvations In pamcular S —_-> w implies § ::> w. This proves

that L(G) < L(G’), and (ii) is completely pmved.
Find a reduced grammar equivalent to the grammar G whose productions are

S — AB|CA, B — BC|AB. A —a  C — aBl|b

Solution

Step 1 W, = {A, C} as A — a and C — b are productions with a terminal
string on RH.S.

Wo= {A. C} U {A||A, - « mth o (U {A. CH*}

= {A. C} U {S} as we have § — CA
(A, C, S} U {A 1A — awith e (2 u {S. A C}H)*}
fA.C. St @

W,
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As ﬁ‘: = W:
Viy= Wa = {80 A, C}
P'={A — a|A, ae (Vi o Iy}
={S —- CA. A = a C — b}
Thus.

G, = ({S. A. C}. {a. b}. {S — CA. A = a. C = b}. §)

Step 2 We have to apply Theorem 6.4 to G, Thus,
W, = {S}

As we have production § — CA and § € W,, W, = {§} U (A, C})
As A — a and C — b are productions with A, C e W,, W5 ={S, A, C. a. b}

As Wy = V4 U X P ={S—>alA e Wy} =P
Therefore,
G =({S. A, C}, {a, b}, {§ = CA, A = a C = b}, 5)

1s the reduced grammar.

ELIMINATION OF NULL PRODUCTIONS

A context-free grammar may have productions of the form A — A. The
production A — A is just used to erase A. So a production of the form A —
A, where A is a variable, is called a null production.

Definition A variable A in a context-free grammar is nullable if A = A.

P E

ELIMINATION OF UNIT PRODUCTIONS

Definition A unit production (or a chain rule) in a context-free
grammar G 1s a production of the form A — B. where A and B are variables
m G.
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Let Gbe S 5 AB,A —>a B— (C|b,C—- D.D — E and E — a. Eliminate
unit productions and get an equivalent grammar.

Solution
Step 1 VWi(S) = {S}, Wi(S) = Wy(S) u @
Hence W(S) = {S}. Similarly,
W(A) = {A}.  WI(E) = {E}
Wo(B) = {B}.  Wi(B) = {B} v {C} = {8, C}
Wx(B) = {B. C} U {D}. Wi(B) = {B. C, D} U {E}, W,(B) = Wy(B)
Therefore, _
W(B) = {B. C. D. E}
Similarly,
Wo(C) = {C}. WiO) = {C, D). Wi{C} = {C. D, E] = W5(CO)

Therefore,

W(O) = (C. D, E}. WD) = {D)

Hence,

W,(D) = {D, E} = Ws(D)
Thus.

WD) = (D, E}

Step 2 The productions in G are

S — AB. A — a E — a

B — b|a. C — a. D — a

By construction. G has no unit productions.
To complete the proof we have to show that L(G') = L(G)).
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Step 3 L(G) = L(G). If A —» ¢ is in P, — P. then it is induced by 8 — ¢
in Pwith Be WA), ae Vi Be WA) implies A 5 B. Hence, A % B
::-a So, if A : o, then A ::- o. This proves L(Gl) c L(G).

To prove the Teverse mciuswn we start with a leftmost derivation
S>>0 0. oo, =
in G ¢ 0 ¢

Let 7 be the smallest index such that ¢ ? o, 1s obtained by a unit
production and j be the smallest index greater than / such that o — oy 18
o\

obtained by a nonunit production. So, § = ;. and = o, can be
G, G

written as
(o]
o = wAD = wALLL = ... = wAL = wY B = o

A; € W(A)) and A; — 7y is a nonunit production. Therefore, A; = yis a

production in P;. Hence, «; = O;,;. Thus, we have § = (e2%
. GL . C}

Repeating the argument whenever some unit production occurs in the
remaining part of the derivation. we can prove that § = o, = w. This proves
G,

LG c LG). |
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Possible Questions:

10.

Part-A(6 mark)

Consider G whose productions are S — aAS |a, A— SbA | SS | ba. Show that S

aabbaa and construct a derivation tree whose yield is aabbaa.

Prove thatif A w in G, then there is leftmost derivation of w.

Let G be the grammar S — 0B | 1A, A — 0/ 0S| 1 AA, B — 1|1S |0BB. For the

string 00110101, find (a) the leftmost derivation, (b) the rightmost derivation and

(c) the derivation tree.

If G is the grammar S — SbS | a, show that G is ambiguous.

If G is a CFG such that L(G) # ¢. Find an equivalent grammar G” such that each

variable in G’ derives some terminal String.

Let G = (Vn, Z, P, S) be given by the productions S — AB, A —a, B— b,

B—C, E—c. Find G such that every variable in G’ derives some terminal string.
Prove that for every CFG G there exists a reduced grammar G’ which is

equivalent to G.

Find a reduced grammar equivalent to the grammar G whose productions are S

— AB|CA,S—>BC|AB,A —a, C—aB|b.

Construct a reduced grammar equivalent to the grammar S — aAa, A — Sb | bCC

| DaA, C — abb | DD, E — aC, D — aDA.

Consider the grammar G whose productions are S — aS|AB,A—- A, B— A, D

— b. construct a grammar G1 without null productions generating L(G) — {A}.

Part C(10 mark)

1.Let Gbe S — AB, A —a, B— CJb, C —» D, D — E and E — a. Eliminate unit

productions and get an equivalent grammar.
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