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Course Objectives:

To enable the students
e To come to know volterra integral equations and Fredholm integral equations .

e how to reduce the differential equations to integral equations .

Course Outcomes:
On successful completion of this course the students will be able to ,
e Calculate the Laplace equation in half plane of standard functions both from the
definition and by using tables.
e Equation with seperable kernel and Fredholm alternative approximation
method
e Select and combine the necessary Laplace transform techniques to solve second-
e order ordinary differential equations .
Calculate both real and complex forms of the Fourier series .
e (alculate the Fourier transform of elementary functions from the definition.
UNIT I
Fourier transforms: Fourier Transforms — Definition of Inversion theorem —Fourier cosine transforms -
Fourier sine transforms — Fourier transforms of derivatives -Fourier transforms of some simple
functions - Fourier transforms of rational function.

UNIT II

The convolution integral — convolution theorem — Parseval’s relation for Fourier transforms — solution
of PDE by Fourier transform — Laplace’s Equation in Half plane — Laplace’s Equation in an infinite
strip - The Linear diffusion equation on a semi-infinite line - The two-dimensional diffusion equation.
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UNIT III

Integral equations: Types of Integral equations—Equation with separable kernel- Fredholm Alternative
Approximate method — Volterra integral equations—Classical Fredholm theory — Fredholm’s First,
Second, Third theorems.

UNIT IV
Application of Integral equation to ordinary differential equation — initial value problems — Boundary
value problems — singular integral equations — Abel Integral equation .

UNIT V

Calculus of variations: Variation and its properties — Euler’s equation — Functionals of the integral
forms - Functional dependent on higher order derivatives — functionals dependent on the functions of
several independent variables — variational problems in parametric form.

SUGGESTED READINGS

1. Sneedon. I. N, (1974). The Use of Integral Transforms, Tata Mc Graw Hill, New
Delhi.
2. Kanwal, R. P, (2013). Linear integral Equations Theory and Technique, Academic press, New York.

3.Elsgots, L., (2003). Differential Equations and Calculus of Variation, Mir Publication Moscow.
4. Gelfand, I. M and Francis, S.V. (2000). Calculus of Variation, Prentice Hall, India.

5. Tricomi.F.G, (1985). Integral Equations, Dover, New York.

6. Larry C. Andrews and Bhimson K. Shivamoggi, (1999). The Integral transforms for Engineers ,Spie
Press, Washington.
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LECTURE PLAN

DEPARTMENT OF MATHEMATICS

Subject Code:18MMP306

Semester:I11 Class: II M.Sc Mathematics
S.No Lecture Topics to be Covered Support Material/Page Nos
Duration
Period
UNIT-I
1. 1 Introduction to Fourier T1:chap 2.3:pg.No:36-41
transforms & definition of
Inversion Theorem
2. 1 Fourier cosine transforms T1:chap 2.4:pg.No:42-43
3. 1 Fourier sine transforms T1:chap 2.5:pg.No:44-45
4. 1 Fourier transforms of derivatives | T1:chap 2.6:pg.No:46-48
5. 1 Fourier transforms of some R3:chap 2.4:pg.No:49-52
simple functions
6. 1 Problems on Fourier transforms | R3:chap 2.4:pg.No:53-56
of some simple functions
7. 1 Fourier transforms of rational R3:chap 2.4:pg.No:57-61
function
8. 1 Continuation on Fourier R3:chap 2.4:pg.No:62-65
transforms of rational function
9. 1 Recapitulation and discussion of
important questions
Total Hours 9 Hours
UNIT-II
l. 1 Introduction to the convolution | T1:chap 2.9:pg.No:58-59
integral
2. 1 Convolution theorem T1:chap 2.9:pg.No0:59-60
3. 1 Parseval’s relation for Fourier T1:chap 2.10:pg.No:61-62
transforms
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4. Solution of PDE by Fourier T1:chap 2.16:pg.N0:92-93
transform
5. Laplace’s equation in Half plane | R3:chap 2.7:pg.No:72-74
6. Continuation on Laplace’s R3:chap 2.7:pg.No:75-77
equation in Half plane
7. Laplace’s equation in an infinite | R3:chap 2.7:pg.No:78-80
strip
8. The linear diffusion equation on | R3:chap 2.7:pg.No:81-83
a semi infinite line
0. The two dimensional diffusion R3:chap 2.4:pg.No:84-85
equation
10. Recapitulation and discussion of
important questions
Total Hours 10 Hours
UNIT-IIT
1. Introduction to Integral equation and T2:chap 2:pg.No:7-10
types of integral equations
2. Equations with separable kernel T2:chap 2:pg.No:11-15
3. Fredholm Alternative Approximate T2:chap 2:pg.No:16-20
method
4. Continuation on Fredholm Alternative | T2:chap 2:pg.No:21-25
Approximate method
5. Volterra integral equations R2:chap 1:pg.No:2-8
6. Classical Fredholm theory T2:chap 3:pg.No:31-35
7. Fredholm’s First,second,third theorems | T2:chap 3:pg.No:36-39
8. Continuation on Fredholm’s R2:chap 2:pg.No:49-56
First,second,third theorems
9. Recapitulation and discussion of
important questions
Total Hours 9 Hours
UNIT-1V
1. Introduction for Application of integral | T2:chap 5:pg.No:61-63
equation to ordinary differential
equation
2. Initial value problems T2:chap 5:pg.No:64-65
3. Continuation on initial value problems | T2:chap 5:pg.No:66-67
4. Boundary value problems R2:chap 4:pg.No:57-58
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5. Continuation on boundary value R2:chap 4:pg.No:59-61
problems
6. Singular integral equations T2:chap 8:pg.No:165-166
7. Continuation on singular integral T2:chap 8:pg.No:167-168
equations
8. Abel integral equation T2:chap 8:pg.No:169-170
0. Continuation on Abel integral equation | T2:chap 8:pg.No:171-172
10. Recapitulation and discussion of
important questions
Total Hours 10 Hours
UNIT-V
1. Introduction to calculus T3:chap 6:pg.N0:293-298
transformations and its
properties
2. Euler’s equations and related R1:chap 1:pg.No:5-9
examples
3. Functionals of the integral forms | T3:chap 6:pg.No:305-310
4. Functional dependent on higher | T3:chap 6:pg.No:311-313
order derivatives
5. Functional dependent on the T3:chap 6:pg.No:314-316
functions of several independent
variables
6. Variational problems in R1:chap 2:pg.No:36-40
parametric form
7. Recapitulation and discussion of
important questions
8. Discuss on previous ESE
question papers
0. Discuss on previous ESE
question papers
10. Discuss on previous ESE
question papers

Total Hours

10 Hours

Total Planned Hours | 48 Hours
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SUGGESTED READINGS

TEXT BOOKS

1. Sneedon. I. N, (1974). The Use of Integral Transforms, Tata Mc Graw Hill,
New Delhi. (For Unit -1 & II)
2. Kanwal, R. P, (2013). Linear integral Equations Theory and Technique, Academic press,
New York. (For Unit —III & IV)
3.Elsgots, L., (2003). Differential Equations and Calculus of Variation, Mir Publication
Moscow. (For Unit —V)

REFERENCES

1. Gelfand, I. M and Francis, S.V. (2000). Calculus of Variation, Prentice Hall, India.

2. Tricomi.F.G, (1985). Integral Equations, Dover, New York.

2. Larry C. Andrews and Bhimson K. Shivamoggi, (1999). The Integral transforms for
Engineers , Spie Press, Washington.
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UNIT -1
SYLLABUS

Introduction to Fourier transforms & definition of Inversion Theorem-Fourier cosine transforms
Fourier sine transforms-Fourier transforms of derivatives- Fourier transforms of some simple
functions- Fourier transforms of rational function.
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The Fourier Transform

Fourier transforms as integrals

There are several ways to define the Fourier transform of a function f: R —
C. In this section, we define it using an integral representation and state
some basic uniqueness and inversion properties, without proof. Thereafter,
we will consider the transform as being defined as a suitable limit of Fourier
series, and will prove the results stated here.

Definition 1 Let f: R — R. The Fourier transform of f € L'(R), denoted
by F[f](.), is given by the integral:

1 =
\/E/_‘x.f(t)oxp(—i.rt)df

for x € R for which the integral exists. *

Flfl(=z) :=

We have the Dirichlet condition for mversion of Fourier integrals.

Theorem 1 Let f: R — R. Suppose that (1) f}\ |f| dt converges and (2)
in any finite interval, f,f' are piecewise continuous with at most finitely many
mazima/minima/discontinuities. Let ' = F|[f]|. Then if f is continuous at
t € R, we have ,

Tr= Wor /_i F(x)exp(itz)dz.
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Moreover, if f is discontinuous at t € R and f(t+0) and f(t—0) denote the
right and left limits of f att, then

1 1 -

=[flt+0)+ f(t—0)] = F(.z') exp(itz)dz.

LA Vor
From the above, we deduce a uniqueness result:

Theorem 2 Let f,g: R — R be continuous, f',q' piecewise continuous. If

Ffl(z) = Flg(z), Va

then
f(t) = g(t), Vt.

Proof: We have from inversion, easily that

—

| ™ s
(t) = E/—l F[fl(z) exp(itz)dx

= \/%/:: Flg)(z) explitz)dx
= g(t).
0O

Example 1 Find the Four“im transform of f(t) = exp(—|t|) and hence using
inversion, deduce that fo B =X drid f\ IS'"””([I = M t > 0.

1+ = 2

Solution We write

F(z) = %/)& f(t) exp(—izt)dt
1

0 o0
= — xp(t(1 — ix))dt xp(—t(1 + iz
T [/ A exp(t(1 —ix)) t+L exp(—t(1 +iz))

2
7rl+.1-

Now by the mversion formula,

exp(—|t]) = \/2__/ F(z)exp(izt)dzx
_3 [/ exp(izt) +e':p(—11t)dt]
0

™ 1-r.l4"

2 /"L cos(xt)
= —dz.
T Jo 1422 e3/23
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Now this formula holds at ¢ = 0, so substituting ¢ = 0 into the above gives
the first required identity. Differentiating with respect to ¢ as we may for
t > 0, gives the second required identity. 0.
Proceeding in a similar way as the above example, we can easily show
that
1 -) 1 l)
f[oxp(——§t“)](.r) = exp(——§.r‘), reR.

We will discuss this example in more detail later in this chapter.

We will also show that we can reinterpret Definition 1 to obtain the
Fourier transform of any complex valued f € L?(R), and that the Fourier
transform is unitary on this space:

Theorem 3 If f,g € L?>(R) then F[f],Flg] € L*(R) and

/ S dt = /  FU@FEIE) d.

This 1s a result of fundamental importance for applications in signal process-

ng.

1.2 The transform as a limit of Fourier series

We start by constructing the Fourier series (complex form) for functions on
an interval [—w L, wL]. The ON basis functions are

1 int
er, n=0, 1, =,

VorL

and a sufficiently smooth function f of period 2w L can be expanded as

ex(t) =

oo

1 =L inx int
f(f) f— Z (m /__l _f(l‘)P_TdI) erL .

n=—mo

For purposes of motivation let us abandon periodicity and think of the func-
tions f as differentiable everywhere, vanishing at ¢ = 7L and identically
zero outside [—w L, wL]. We rewrite this as

o0

: ine 1 -7,
= >_ eFo=f7)

n=—o00

which looks like a Riemann sum approximation to the integral

P e
f(t) = E/_ _f(,/\)f")“d)\ (1.2.1)
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to which it would converge as L — oc. (Indeed., we are partitioning the \
interval [—L, L] into 2L subintervals, each with partition width 1/L.) Here,

f) = /f f(t)e ™. (1.2.2)

Similarly the Parseval formula for f on [—wL,wL],

oo

o 21 1 270
[ w@ra= 3 i

WL n=—oo

goes in the limit as L — oo to the Plancherel identity

oC o0
27r/ | £(t)]2dt = / | F(A)|2d. (1.2.3)
—00 —c0

Expression (1.2.2) is called the Fourier integral or Fourier transform of f.
Expression (1.2.1) is called the inverse Fourier integral for f. The Plancherel
identity suggests that the Fourier transform is a one-to-one norm preserving
map of the Hilbert space L?[—oc,oc] onto itself (or to another copy of it-
self). We shall show that this is the case. Furthermore we shall show that
the pointwise convergence properties of the inverse Fourier transform are
somewhat similar to those of the Fourier series. Although we could make
a rigorous justification of the the steps in the Riemann sum approximation
above, we will follow a different course and treat the convergence in the mean
and pointwise convergence issues separately.

A second notation that we shall use is

FINW) === [ 0 ¥t = =) (1.2.4)
1 o0 .
Flgl(t) = ﬁ/_ g(A)e™dA (1.2.5)

Note that, formally, F*[ f](t) = 27 f(t). The first notation is used more
often in the engineering literature. The second notation makes clear that F
and F* are linear operators mapping L?|—o0, oc] onto itself in one view, and
F mapping the signal space onto the frequency space with F* mapping the
frequency space onto the signal space in the other view. In this notation the
Plancherel theorem takes the more symmetric form

[ T\ ORdt = / T IFAIN) A

o0 oC

Examples:
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3. A truncated sine wave.

f(t)—{ sin3t if — o <t<mw

0 otherwise.

Since the sine is an odd function, we have

FQ) = V22 F[fl(A) = /)c F)e Mdt = _1'/ sin(3t) sin(\t)dt

_ —6isin(Am)
9 — A2
4. A triangular wave.
1+ if —1<t<0
FE) = —1 0 <$t<1 (1.2.8)
0 otherwise.

Then, since f is an even function, we have

~ oo - 1
FQ) = V272 F[fl(A) = /_ f®)e Mdt = 2A (1 — t) cos(At)dt

2 —2cos A
= S

>

NOTE: The Fourier transforms of the discontinuous functions above decay

as % for |A\| — oo whereas the Fourier transforms of the continuous functions

decay as Xlr_r The coefficients in the Fourier series of the analogous functions
1

decay as % o7, respectively, as |n| — oc.

1.:2.3 Properties of the Fourier transform

Recall that

= 1 & ] 1 .
FIN = o= [ f©e e = = FN)

1 > _
Frlgl(t) = \/F[ 7 g(\)edA

We list some properties of the Fourier transform that will enable us to build a
repertoire of transforms from a few basic examples. Suppose that f, g belong
to L'[—o0, o], i.e., [To |f(t)|dt < oo with a similar statement for g. We can
state the following (whose straightforward proofs are left to the reader):
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1. F and F* are linear operators. For a,b € C we have

Flaf + bg] = aF[f] + bFlg], F'laf + bg| = aF~[f] + bF~[g].

2. Suppose t" f(t) € L'[—o0, 00| for some positive integer n. Then
FI"F@IA) = "2 AF 1N}

3. Suppose A" f(\) € L'[—o0, o] for some positive integer n. Then

n

: d
F Q)]0 = " AF (D)}

4. Suppose the nth derivative f™(¢) € L'[—o0, oc] and piecewise contin-
uous for some positive integer n, and f and the lower derivatives are
all continuous in (—oo, o0). Then

FIF™A) = GO"F IV}

Suppose nth derivative f™()) € L'[—oc, 00| for some positive integer
n and piecewise continuous for some positive integer n, and f and the
lower derivatives are all continuous in (—oc,o0). Then

[44

F ™)) = (—it)"F*[£](¢).
6. The Fourier transform of a translation by real number a is given by

FIf(t — a)](A) = e F [N,

|

The Fourier transform of a scaling by positive number b is given by
1 A
FIFG0IO) = 3711

8. The Fourier transform of a translated and scaled function 1s given by

FUt =) = g FUIP)

Examples
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e We want to compute the Fourier transform of the rectangular box func-

tion with support on [, d]:

I et <d
R(t)=R 1 ift=cd
0 otherwise.
Recall that the box function
1 f —a<t<mw
[1(t) = 1 ift =+x
0 otherwise.
has the Fourier transform fI(A) — 27 sinc A. but we can obtain R from
IT by first translating ¢t — s =1 — (ng) and then rescaling s — ZZs:
27 c+d
R(t) =11 t— 7 2
() ((l —c d— C)
. 472 ; . 27\
REA) =Mt d=a) g ot~ Ty (1.2.9)
d—c d—c

Furthermore, from (??) we can check that the inverse Fourier transform

of Ris R, i.e., F*(F)R(t) = R(t).

Consider the truncated sine wave
sm3t if —a<t<mw
F(t) = { 0 otherwise
with 6 sin(Ar)
. —6i sin(Ax
FA)=—7F—S3—
9— A2
Note that the derivative f’ of f(¢) 1s just 3g(t) (except at 2 points)
where g(t) is the truncated cosine wave
cosdt f —m<t<m
g(t) = —% e =
0 otherwise.
We have computed
. 2\ sin(Am)
glA) =——5"=
9 — A2

so 3§(A\) = (iX) f(A), as predicted.
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Exercise 20 Prove the following: If f s even,

|’7 o0
Ffl(z) = \/’i / £(t) cos(zt)dt
‘ 0

Flfl(z) = \/ET / f(t) sin(xt)dt.
T Jo

Exercise 21 The Fourier Cosine (F.[f](.)) and Fourier Sine (Fi[f](.)) of
f:R — R are defined as follows:

and if [ is odd,

) VOO
Fe[fl(z) == \,E[) f(t) cos(zt)dt.

9 o0
@)= VEA f(t) sin(xt)dt.

The Fourier Cosine Transform (FCT)

Definitions and Relations to the Exponential Fourier Transtorms
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Frfm}= [wf[-r}cusmrdr, w=0, (3.2.1)
. 8

subject to the existence of the integral. The definition is sometimes more compactly represented as an
operator F_applied to the function f{r), so that

,'iF;[f{r}]=f-':['m'}='[;f{r}cosmrdr. (3.2.2)

The subscript ¢ is used to denote the fact that the kernel of the transformation is a cosine function. The
unit normalization constant used here provides for a definition for the inverse Fourier cosine transform,
given by

;35F;'[Ff{m ]I]=i [wFff_mllccsmr dw, t=0, (3.2.3)

TJo

again subject to the existence of the integral used in the definition. The functions f(¢) and F{w@), if they
exist, are said to form a Fourier cosine transform pair.

Because the cosine function is the real part of an exponential function of purely imaginary argument,
that is,

cos{mr]l=Re[fj“”]=%[|:j“”+|:'j“”]1 (3.2.4)

it is easy to understand that there exists a very close relationship between the Fourier transform and the
cosine transform. To see this relation, consider an even extension of the function f{t) defined over the
entire real line so that

fo=fleh), teRrR (3.2.5)

Its Fourier transform is defined as

.'iF[fr{r}]=j:fr{r}e'}“”dr, weR. (3.2.6)
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The integral in (3.2.6) can be evaluated in two parts over (—w, 0] and [0, =). Then using (3.2.5) and
changing the integrating variable in the (o, 0] integral from f to —t, we have

}[fr{r}]=[£ f[r}f‘f“"d‘r +L‘f{r}fﬁ”drj|= EJ‘I:f[r}cusmrdr.
by (3.2.4), and thus

F(f0] =2F[f(0], if filr) = fllt]). (3.2.7)

Many of the properties of the Fourier cosine transforms can be derived from the properties of Fourier
transforms of symmetric, or even, functions. Some of the basic properties and operational mles are
discussed in Section 3.2.2.

3.2.2  Basic Properties and Operational Rules

1. Inverse Transformation: As stated in (3.2.3), the inverse transformation is exactly the same as the
forward transformation except for the normalization constant. This leads to the so-called Fourier
cosine integral formula, which states that

f{f} =§j:Fr{m }cmmm‘m

=§juu[j:f{r]cosm d'rj|-:nsmrd'm .

The sufficient conditions for the inversion formmula (3.2.3) are that f(f) be absolutely integrable in
[0, =) and that f'(f) be piece-wise continuous in each bounded subinterval of [0, ==). In the range
where the function f{1) is continnous, (3.2.8) represents £ At the point , where f{7) has a jump
discontinuity, (3.2.8) converges to the mean of fi&; + 0) and f{#, — 0), that is,

(3.2.8)

%Lm |:J: f I[r}cnsl[mr }.nf r]cusl[m rﬂ}a‘m = %[f I[:'IJ +CI}+ f { t, —ﬂ}] , (3.2.8")

b

. Transforms of Derivatives: It is easy to show, becanse of the Fourier cosine kernel, that the trans-
forms of even-order derivatives are reduced to multiplication by even powers of the conjugate
variable @, much as in the case of the Laplace transforms. For the second-order derivative, using
integration by parts, we can show that,

F [f”{r]]=rf”{r}fm[mr}dr

=—f’[ﬂ}—m:j f[r}cusmrdr (3.2.9)
o

=-0’E(0)- o)
E where we have assumed that f{r) and " (1) vanish as r — =c. These form the sufficient conditions

for (3.2.9) to be valid. As the transform is applied to higher order derivatives, corresponding
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conditions for higher derivatives of fare required for the operational mle to be valid. Here, we also
assume that the function ff) and its derivative f' () are continuous everywhere in [0, =2). If fi£) and
fi1) have a jump discontinuity at &, of magnitudes d and d' respectively, {3.2.9) is modified to

FLf"(1)] = -e@'Fla) - f(0) - od sin ef, — d' cos o, (3.2.10)
Higher even-order derivatives of functions with jump continuities have similar operational rles

that can be easily generalized from (3.2.10). For example, the Fourier cosine transform of the
fourth-order derivative is

FL¥1)] = @'Fla) + of "(0) - f™(0) (3.2.11)
if fir} is continuous to order three everywhere in [0, =), and £ ', and " vanish as t = = If f{1)
has a jump discontinuity at ; to order three of magnitudes d, d', d", and 4™, then (3.2.11) is

maodified to

F ()] = @'Fla) + @ f(0) - F"(0) + @*dsinat,
+ e'd" cos ety — ed” sin o — d" cos o (3.2.12)

Here, and in (3.2.10), we have defined the magnitudes of the jump discontinuity at r, as
d=flty+0) = fley—0) d' = f'{gy + 0)— fF'{;— 0O);
d" = fr(ty+0) = fr(tg—0) d"=f"(t,+ 0) - f"(;-0).  (3.2.13)
For derivatives of odd order, the operational rules require the definition for the Fourier sine

transform, given in Section 3.3. For example, the Fourier cosine transform of the first order
derivative is given by

j r :mmrdr—— +mj smmrd‘r

-3, [f(t)]- £(0)= oF(@)- £(0),

if fvanishes as t — o0, and where the operator ¥, and the function F{c) are defined in (3.3.1).
When fi1) has a jump discontinuity of magnitude d at 1 = #;, (3.2.14)} is modified to

(3.2.14)

F ()] = @ Flw) — fi0) — d cos(a,). (3.2.15)

Generalization to higher odd-order derivatives with jump discontinuities is similar to that for
even-order derivatives in (3.2.12).

. Scaling: Scaling in the t domain translates directly to scaling in the o domain. Expansion by a

-

factor of a in f results in the contraction by the same factor in @, together with a scaling down
of the magnitude of the transform by the factor a. Thus, as we can show,

m] If mscr.irdr——j cus—a‘r. by letting T =ar

=lﬁ[ﬂ], a=0.
il ]

(3.2.16)
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4. Shifting:

(a) Shifting in the t-domain: The shift-in-t property for the cosine transform is somewhat less
direct compared with the exponential Fourier transform for two reasons. First, a shift to the
left will require extending the definition of the function fir) onto the negative real line.
Secondly, a shift-in-f in the transform kernel does not result in a constant phase factor as in
the case of the exponential kernel.

If f(t) is defined as the even extension of the function f{r) such that f(1) = filt|), and if f{s)
is piece-wise continuous and absolately integrable over [0, =2, then

:-a“-f[fe{n a)+ ffe- u}]=J:[_fr[r+a}+_ﬂ{r—a}]m\smrdr
=J:f=|[r}cnsm{r+a}dr

+Lfr{r)msm{r —n}a‘r_

By expanding the compound cosine functions and using the fact that the function f{71) is
even, these combine to give:

Fflt+ a) + fit— a)] = 2F. (@) cos aw , a = 0. (3.2.17)

This is sometimes called the kernel-product property of the cosine transform. In terms of the
function f{t), it can be written as:

F(flit+a) + fllt—a))] = 2F @) cos ae . (3.2.18)
Similarly, the kernel-product 2F () sin(ac) is related to the Fourier sine transform:
F[filt—a)) - flt + a)] = 2F(@) sin aw, a> 0. (3.2.19)

i(b) Shifting in the o-domain:
To consider the effect of shifting in & by the amount of §{= 0), we examine the following,

onie

Ff{m +,B} =J _ﬂ[r}cnsl[m +,B)m’r

= Jﬂ_ﬂ[r}cns,ﬂrmﬁmrdr—Jmf[r}sinﬁrsinmrdr (3.2.20)
0 1]

=5 [f(t)cosBe -5, [£(¢)sinp].
Similarly,
Filew— B) = F [ fl1) cos Bt] + F [ fir) sin Bt]. (3.2.207)

Combining (3.2.20) and (3.2.20") produces a shift-in-& operational rule involving only the
Fourier cosine transform as

16/23

-

'.'a“-:[_ﬂ[r)msﬁr]=%[ﬁl{m+ﬁ)+Fr{m—ﬁ}l]. (3.2.21) —
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More generally, for a, § > 0, we have,

¥, [f(m)cosﬁ:]=2—la[ﬁ(w+ﬁ )+ a(“"ﬁ]]. (3.2.22)

a a

Similarly, we can easily derive:

%, [ flar)sinpt]= ;a{F,( ‘”:ﬁ )-F,(‘”;p )] (3.2.22')

5. Differentiation in the & domair: Similar to differentiation in the r domain, the transform operation
reduces a differentiation operation into multiplication by an appropriate power of the conjugate
variable. In particular, even-order derivatives in the ® domain are transformed as:

E‘Z"(w)#‘[(-l)'r"f(r)]- (3.2.23)

We show here briefly, the derivation for n = 1:

I-;P](w)= d’ J:f(r)cosand:

dw’

- dZ
==J; f(f)dw2 cos@tdt

u‘["f(r)(—l)tzcoswldl
=:§F‘[(—l)r 2j’(t)].

For odd orders, these are related to Fourier sine transforms

N w)=9, [(-n)""r’"' f(r)]. (3.2.24)

In both (3.2.23) and (3.2.24), the existence of the integrals in question is assumed. This means
that f{r) should be piece-wise continuous and that *"f(1) and r*™'f(1) should be absolutely
=  integrable over [0, =),
Pl g, Asymptotic behavior: When the function f(r) is piece-wise continuous and absolutely integrable
over the region [0, =), the Reimann-Lebesque theorem for Fourier series® can be invoked to
provide the following asymptotic behavior of its cosine transform:
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7. Integration:
(a) Integration in the ¢ domain:
Integration in the f domain is transformed to division by the conjugate variable, very similar
to the cases of Laplace transforms and Fourier transforms, except the resulting transform is
a Fourier sine transform. Thus,

}[J' f{r}ar}=j:ff[r}dmsmdr
“[L cus:ﬂrdr} flz)dr

by reversing the order of integration. The inner integral results in a sine function and is the
kernel for the Fourier sine transform. Therefore,

;’fiﬁc['[wf[r}dr]=i:¥s [f[r}]=$ﬁf_m). (3.2.26)

1]

Here, again, fif) is subject to the usnal sufficient conditions of being piece-wise continuous
and absolutely integrable in [0, ==).

(b} Integration in the & domain:
A similar and symmetric relation exists for integration in the o-domain.

& [Jm Ff{,ﬁ]ldﬁ]=—%f{r}. (3.2.27)

Mote that the integral transform inversion is of the Fourier sine type instead of the cosine
type. Also the aysmptotic behavior of F{e) has been invoked.
8. The comvolution property: Let fit) and g{r) be defined over [0, «=) and satisfy the sufficiency
condition for the existence of F. and G. If f{r) = f{l¢]) and g(r) = g(|¢|) are the even extensions
of fand g respectively, over the entire real line, then the convolution of f and g, is given by:

.ﬂ*g,=£f,[r}g,{r—r}dr (3.2.28)

where * has been used to denote the convolution operation. It is easy to see that in terms of fand
& we have:

fr*gri[}ﬂf{r)[g[w r}+g(|r— rmdr (3.2.29)

which is an even function. Applying the exponential Fourier transform on both sides and using
(3.2.7) and the convolution property of the exponential Fourier transform, we obtain the convo-
lation property for the cosine transform:
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2F (o )G (o )=F, “.l‘f(r )[g( t+7)+ g(

= rl)]dr}. (3.2.30)

In a similar way, the cosine transform of the convolution of odd extended functions is related to
the sine transforms. Thus,

2F(0)G,(w) =%, {J:f(rig(w r)+g,(t- r)]dr}. (3.2.31)

where

SL.(f)=g(t') fort>0,

o
(S
()
a

=—g[-t) fore<o,

is defined as the odd extension of the function g(z).

The Fourier Sine Transtorm (FST)

Definitions and Relations to the Exponential Fourier Transforms
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Similar to the Fourier cosine transform, the Fourier sine transform of a function f{1), which is piece-
wise continuous and absolutely integrable over [0, =), is defined by application of the operator ¥, as:

F(o)=% [f(t)]=Jmf(r}sinwrdt. ®>0. (3.3.1)
: : 0
The inverse operator &' is similarly defined:

<

.f(r)=5f"'[F(w)]=;J:F,(w)sinw1dw, t20, (3.3.

o
2
(8]
—

subject to the existence of the integral. Functions f{f) and F(®) defined by (3.3.2) and (3.3.1), respectively,
are said to form a Fourier sine transform pair. It is noted in (3.2.3) and (3.3.2) for the inverse FCT and
inverse FST that both transform operators have symmetric kernels and that they are involuntary or
unitary up to a factor of V(2/x).

Fourier sine transforms are also very closely related to the exponential Fourier transform defined in
(3.2.6). Using the property that

) ) fir- . .
smwr=lm[e””]=—7[e’°”—c ’“”]. (3.3.3)
2j
one can consider the odd extension of the function f{1) defined over [0, =) as

flt)=f() t=0,
=—f(-t) t<o0.

Then the Fourier transform of f(7) is

:-j:[j.a(, )] = J:fo(’ )"_jmd' = —J:f(r)e’“”dr + wa(t)e_ mede

= —2jJ:f(t)sina)l dt= —-}",[f(r)]‘

and therefore,
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Loy
,:Fsl_ff_rjl]——z—?_.r[fn[r}]. (3.3.4)

Equation (3.3.4) provides the relation between the FST and the exponential Fourier transform. As in the
case for cosine transforms, many properties of the sine transform can be related to those for the Fourier
transform through this equation. We shall present some properties and operational mles for FST in the
next section.

3.3.2  Basic Properties and Operational Rules

1. Imverse Transformatior: The inverse transformation is exactly the same as the forward transfor-
mation except for the normalization constant. Combining the forward and inverse transformations
leads to the Fourier sine integral formula, which states that,

_ff_rjl = %J:FF{m}sjnmrdw=%j:|:ju‘_ff_ rjlsinmr dr:|sinmr A . (3.3.5)

The sufficient conditions for the inversion formmula (3.3.2) are the same as for the cosine transform.
Where f{r} has a jump discontinuity at 1= i, (3.3.5) converges to the mean of f{i, + 0) and f{r, —0).

. Transforms of Derivatives: Derivatives transform in a fashion similar to FCT, even orders involving
sine transforms only and odd orders involving cosine transforms only. Thus, for example,

[

F L) = —e?Flo) + of(0) (3.3.8)
and
Flf(0))] = —wFlal. (3.3.7)

where f{1) is assumed continuous to the first order.
For the fourth-order derivative, we apply (3.3.6) twice to obtain,

F,| F5(r)] = @*Fle) — o*f(0) + of"(0), (3.3.8)

if fit) is continuous at least to order three. When the function f{t) and its derivatives have jump
discontinuities at f = &, {3.3.8) is modified to become,

F 1)) = @'Flo) — o@f(0) + af"(0) — o’d cos e,
+ @id' sin @ + od" cos @ — d” sin o (3.3.9)

where the jump discontinuities d, d', and d" are as defined in (3.2.13). Similarly, for odd-order
derivatives, when the function f{ r) has jamp discontinuities, the operational rule must be modified.
For example, {3.3.7) will become:

F (1) = —wFla) + d sin o, (3.3.7")

Generalization to other orders and to more than one location for the jump discontinuities is
straightforward.
3. Scaling Scaling in the t~-domain for the FST has exactly the same effect as in the case of FCT, giving,

;‘u‘-s[f['.rrj]=;lﬁ['m,.-"u} a>0. (3.3.10)
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4. Shifting:

(a) Shift in the -domain:
As in the case of the Fourier cosine transform, we first define the even and odd extensions of
the function fir} as,

i) =1{}{), and f[r}=Hf[|r|} (3.3.11)

Then it can be shown that:
Flflr+a)+ fir-al] = 2F{®) cos aw (3.3.12)
and
Flfit+ al + flt—a)] = 2F(w) sin ae; a = 0. (3.3.13)
These, together with {3.2.18) and (3.2.19), form a complete set of kernel-product relations
for the cosine and the sine transforms.
(b} Shift in the m-domain:
For a positive @ shift in the @-domain, it is easily shown that
Flo+ B =F|[flt) cos ft] + F[flt) sin St] (3.3.14)
and combining with the result for a negative shift, we get:
Flflt)cos Bl =(12)Flo+ )+ Fle-p§]l. (3.3.15)
More generally, for a, 8= 0, we have,

¥, [_ﬂ,’_ar)cosﬁr]=['|_.-"2a)lﬁ[ “’:‘B ]+ F,[ ‘”"‘Bﬂ. (3.3.16)

]

Similarly, we can easily show that

#, [ f(at)sing r]=—f_1.-"2a4Fr[ ‘”;"B.]— F{“’;ﬁ}l (3.3.17)

The shift-in-@ properties are useful in deriving some FCTs and F5Ts. As well, becanse the
guantities being transformed are modulated sinusoids, these are useful in applications to
communication problems.
5. Differentiation in the e-domaim The sine transform behaves in a fashion similar to the cosine
transform when it comes to differentiation in the o-domain. Even-order derivatives involve only
sine transforms and odd-order derivatives involve only cosine transforms. Thus,

sz":'l,'_m}=;’:?is[{—1}" rz"f{r}],

and

-
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F ) =.¥[[(—1)R11”"f(r)]. (3.3.18)

It is again assumed that the integrals in (3.3.18) exist.
. Asymptotic behavior: The Reimann-Lebesque theorem guarantees that any Fourier sine transform
converges to zero as @ tends to infinity, that is,

v

lim F(w)=0. (3.3.19)

~

. Integration:
(a) Integration in the r~-domain. In analogy to (3.2.26), we have

F [J'L flz )dr]=(l.f’cu)[{_(w) (3.3.20)

provided f(r) is piece-wise smooth and absolately integrable over [0, =0).
(b) Integration in the e-domain. As in the Fourier cosine transform, integration in the o-domain
results in division by r in the r~-domain, giving,

;5;;'[J’;a(p)dp]=(1,:‘;),{(':) (3.3.21)

in parallel with (3.2.27).
3. The convolution property: If functions f(r) and g(7) are piece-wise continuous and absolately
integrable over [0, o), a convolution property involving F{®) and G{®) is

2F(@)G (w) =5, {J:f(f)[gﬂr —])—2(z+ r)]dr } (3.3.22)

Equivalently,

2F:(w )Gc(w)=;3§ {J‘Owg(t)[f(r+ r)+fu(t - r)]dr} (3.3.23)

where f(x) is the odd extension of the function f{x) defined as in (3.3.11).
One can establish a convolution theorem involving only sine transforms. This is obtained by
imposing an additional condition on one of the functions, say, g(r). We define the function A(r) by,

h(r)=_[mg(r)a'r. (3.3.24)

Then g{r) must satisfy the condition that its integral h(7) is absohately integrable over [0, =0), so
that the Fourier cosine transform of /(1) exists. We note from (3.2.26) that

w
w
¥}
n

Hio) = (1/o)Gleo) (

Applying (3.3.22) to fir) and k(1) yields immediately,
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{2_-"'m:|ﬁ[-m']Gsfmj|= ¥ [' flr) [I ¢ln }di}dr] (3.3.26)
. P ] #|r—r

noting that g(r) = —h'(1).
Because the F5Ts have properties and operation rules very similar to those for the FCTs, we
refer the reader to Section 3.2.24 for simple examples on the use of these rules for FCTs.
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Possible Questions
PART-B (SIX MARKYS)
UNIT |

2

1.Define self reciprocal and prove that ez is self reciprocal under the Fourier transform.

2.Explain about Fourier transforms of some simple functions with examples.

2 _ .2 o
3. show that the Fourier transform of f(x) = {a %, lxl <age 2\/E (22 Hence deduce that
' 0,|x| >a>0 m s3
fooo Slnt;;cost dt —
4. Expalin the Fourier transforms of derivatives.

1

5.Prove that F,[f (1); €] = — (2)} £(0) + ER[f (1) €]
6.Prove thatF,[f(t); €] = —&EF.[F (t); €]

7.0btain the Fourier transform of some simple functions.
8. Obtain Fourier sine transform.
9.0btain the Fourier cosine transform
a—|x|,for|x| <a

10.Find the Fourier Transform of f(x) = {0 for x| >a> 0 .Deduce that f0°°

PART-C (TEN MARKYS)
11. Derive the Fourier transforms of Rational Functions

A
z

sin?
t2

dt=Z
2
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1. Iff is piecewise continuously differentiable and absolutely integrable on the whole real line then its fourier transform F is

a.bounded b.derivative c.continuous d.discontinuous
2.The fourier transform of a function of compact support is a function of compact support.

a.not itself b.itself c.less than d.greater than

og = (2m) = [T F(t— wg(w)du
2. feg=(m) “r“" f( Jg(w) is the convolution of two f and g.
a.simple function  b.characteristic function c.continuous function d. integral function
L
iy 1du
-=-—
ot kdt

3. The equation is

a.linear diffusion equation b.integral equation c.hyperbolic equation d.parabolic equation
4. Afunction f defined in a region Q is said to be if

a.continuous  b.absolutely integrable c.pieswise differentiable d. integrable function
5. Iffis piecewise continuous in (a,b) then it is denoted by

a. b. . c. d.
f <p(a,b) f <plab) f €p(ab) f =p(ab)
6. Fourier cosine transform is an function
a.even b.odd c.odd or even d.zero

7. Fourier sine transform is an function

a.even b.odd c.odd or even d.zero

8. A function £} s said to be self reciprocal under the fourier transform if Flsdl=



10.

11.

12.

13.

14.

15.

16.

17.

18.

. @ b, F(B) .. F@©) d. (&)
Which one is a self reciprocal under the fourier transform.
e= B. ¢ ce_%. d. e%
-1 . —

If f(x) is even then Ff()id]
A6 N ATI€6) . —RIF@)] I A7{€3)
If f(x) is then

a.even b.odd c.odd or even d.zero
A function f defined in a region Q is said to be absolute integrable if Jo 1F G lax =0

a. =0 b.<0 C.<o0 d>eo,
Iff is in (a,b) then it is denoted by

A. piesewise continuous B.discontinuous c.continuous  d.bounded
The transform of a function of compact support is no itself a function of compact support.

a.laplace b. hankel c. fourier d. inverse laplace

If f is pieswise continuously differentiable and on the whole real line then its fourier transform F is continuous.

a.absolutely continuous b.absolutely integrable

Fourier transform is an even function

a.cosine b. sine c.inverse cosine

Fourier transform is an odd function

a.cosine b. sine c.inverse cosine

is a self reciprocal under the transformation.

b. hankel

a.llaplace c. fourier

If f(t) is a piecewise continuously differentiable and absolutely integrable on R,then at a point at whichiitis .............

a. piesewise continuous b.continuous

c.absolutely discontinuous

d.inverse sine

d.inverse sine

d.inverse laplace

c.discontinuous d. bounded

d.absolutely bounded.



19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

If f dependson both t and x, both of them renging over all ..o values

a.complex b.real c.imaginary d.limit

In the application of the Fourier transform to the solution of..................
a.Ordinary differential equations b. absolutely differential equations
c. absolutely integrable equations d.Partial differential equations

The operator d/dt is mapped by the Fourier transform into the ................... Number
a.real b.complex c.limit d.imaginary

The Fourier cosine transformsthe function f(t) is defined only for .............. values of the real variable t.
a.positive b.negative c.zeros d.infinite

The Fourier sine and cosine transforms to solve .................problems involving differential equations
a.initial value  b.boundary value c.singular value d. finite value

The transforms of the derivatives of an ............ function interms of the transform of the function itself.
a.known b.unknown c.differential  d.integrable

In any problem in which f(0) is known and f'(0) is not known make use of the ...............transform
a.Fourier cosine b.Fourier sine c.fourier d.inverse fourier

In any problem in which f'(0) is known and f(0) is not known make use of the ...............transform
a.Fourier cosine b.Fourier sine c.fourier d.inverse fourier

In the Fourier transforms of rational functions the function f(z) has a .............. number of singularities .
a.zero b.non zero c.finite d.infinite

In the Fourier transforms of rational functions the function f(z) has a finite number of singularities in the .......... plane.
a.half b.upper half c.lower half d.semi infinite

In the Fourier transforms of rational functions the function f(z) is ......... at all points of the real axis
a.bounded b.analytic c.singular d.continuous

In the Fourier transforms of rational functions the function f(z) is analytic at all points of the real axis except the points are............
a.simple poles b.double poles c.differential d.continuous

The function has a simplepole at z=0 and ............... singularities
a.no other b.one c.two d.three

The function has a simplepole at z=0 and no other singularities and res f(0)=...........
a.0 b.1 c.2 d.3
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The Fourier Transform

Fourier transformation is the most powerful technigue for solving differential
equations of different type arising in science and engineering. T here are a variety
of both analytical and numerical approaches rely on Fourier transforms. FFT
(Fast Fourier Transform) is . e g., the backbone of numerical approaches for
proeblems in signal analysis. Besides all the traditional applications the modern
technique of wawelet transform is based on (actually is an special version of ) the
Fourier transform.

Suppose that [ is a function on B, For any L > 0 we can expand f on
the interval [~ L, L] in a Fourier series,
1« A
Slwe) = 5T E Cn.p e T, where 7, ; = / ) Flgle T ¥dy. (4.1.1)
Lt
o T
— = Af  and deline &, = = reNE.
L L
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Then the formulas in (4.1.1) become

0 oL

o | Y ) - :
fla) = tzl‘w./.("““"AE- where Cy */ f(y)e ™dy.  (4.1.2)
<% L
Suppose that f(x) vanishes rapidly as & — +oc0, then for sufliciently large L
we gel
L . 00 _
Cop = / f(y)e ’5"-""(1,1/%/ f(y)e "dy. (4.1.3)
. J 7 . o0
Introducing the notation
1—/ [(y)e vdy, (4.1.4)
we have
flx) =~ —Zf AE, where |r|< L. (4.1.5)

Let L — o0, so that A — 0 and the sum in (4.1.5) should turn into an
integral, thus:

flz) = L / " f(e)e®ede, where f(€) = / h f(z)e ®de,  (4.1.6)

2m 00 o

[ is called the Fourier transform of [ and the formula (4.1.6) is the Fourier
inversion theorem.

Definition 12. If [ is an integrable function on R, i.e.. [ € L'(R), ils

Fourier transform is the function [ on R, defined by

f(9 3_/ fz)e ™ ds == [/(l]}( } = .F[_/'(.r]w. (4.1.7)
Lemma 8. The Fourier transform f(f] is (i) bounded. and (ii) continuous.
Proof. (i) Since f(E] is defined for f € L'(R), and |e""| = 1, the integral

(v(m\m;,vh .xbholul(*ly for all €,

1f(€)] = / f(x)e " dr < / f(x)dr < oo where [ e L'(R).

X0 »
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(ii) Let € — &. We want to show that f(&) — f(&). Since
-
| f(x)e's™| = |f(x)| VY& and f e L;(R), i.e., / f(x)de < oo,
-
the dominating convergence theorem give us

lim f(&) = / lim f(x)e %*dx = / f@e S de — f(&,).

E—Z%o ~ =

and the proof is complete. (I

Basic properties of the Fourier transform

Some of the basic properties of the Fourier transform are given in the follow-
ing theorem.

Theorem 15. Suppose [ € L', then
(a) For any a € R, we have

-

= f(€ — a).

(al) .'F[(;r u)} =¢ i'l‘f./'(f') and (a2) f[(t'.""s_/'(.r‘]

-

(b) If 6 > 0 . then we have the scaling formula:
i : 1 ~r&
; Aley - L#(S
(¢) If [ is continuous and piecewise smooth and f' € L', then
(1) FIf(«))(€) = i&f(E)-
On the other hand, of = f(x) 1s integrable, then
(€2  Flof)] =if(©).

Proof. (al) From the definition we have

Convolutions
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Definition 13. If [ and g are functions on R. their convolution is the func
tion [ * g defined by

Fagla)= /‘ fle —y)gly)dy. VeeR (4.3.1)

- %)

With a change of variables we have evidently

/» [z .u).q(y)d.u—/' F(y)g(x — y) dy. (4.3.2)

o0 — )

We can think of the convolution integral as a limit of the Riemann sum:
/ [l —ygly)dy~ Y flz—y;)9(y)Ay;.
B J=—00

The function f;(x) := f(x — y;) is a translation of f along the x-axis by the
amount y,, so the sum on the Right is a linear combination of translates of
[ with coeflicients g(y;)Ay,;. We can therefore think of [ * g as a continuous
superposition of translates of f.

The weighted average of [ on |a, b] with respect to a nonnegative weight
function g is

I Fw)a(y)dy
[ gly)dy

Suppose now that [“b g(y)dy = 1. If we now use the identity (4.3.2) and write
[xg(x)as [T f(y)g(x —y)dy, we see that [« g(x) is the weighted average

of [ with respect to the weight function g(x — y).

In the next two theorems we state (without proof) some basic algebraic
and analytic properties of convolutions.

Theorem 16. Conwvolution obeys the same algebraic laws as ordinary mul
tiplication:

(i) The associative law: [*(ag+bh) = a(f*g)+b( fxh). for a,b constants.
(ii) The commutative law: [ *xg = g* [.

(tii) The distributive law: [ * (g« h) = ([ xg) * h.
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Theorem 17. Suppose that [ and g are differentiable and the convolutions
fxq, ["+qg and [ * g'are well-defined. Then f * g 15 differentiable and

(f+g)(x) = (F +g)(x) = ([ +g')(z).
Now we can give the proof for the convolution theorem:
Theorem 18 (The convolution theorem). Suppose that [, g ¢ L', then
Flf+gl=(f*g)= fq.

Proof. By the definition

(f *g)(&) = ] -(.f % g)(x)e S d _/ j v —y)g(y)e dyde.

Since f, g € L' we can use Fubini's theorem to change the order of integra
tion. Substituting also = — y = z, it follow that

f#* g / / v —y)gly)e ““drdy
= / (4 {/ e~ 8lw+z) g, }ff,r,l
- (/ a(y))e '“”ﬂ’u)(/ f(2edz) = f(©)a(€)

] N o

and thus we have )
(S *gJ(&) = f(E)al€)

and the prool is complete. ]

Exempel 7. Delermine the Fourier transform for the function [(@) = .

Solution: Using the definition of the Fourier transform i follows thal

. 0 =] v
.F{r: r]{ﬂ = ] A —] el ek g -I—] e UFtlr g,
= =) {l

[(1—if)rap e [14iE ) o 1 1 g,
B [ N L S S I B
[1 xf] (14 &) 1o 1= 14 14&£°
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Lemma 9. Let f(x) = sign(z) - e =, then f(€) = T T

Proof. A straightforward calculation yields

i 1R
F|stgnlx) - / sign(x) - e *"e " dx
» X0
/ m i€ ) di +/ e [u+i£}.r(lr
Jo
< - (4.4.1)
I:(m r.,[r [ e (a2 Jor ,I\ ’
a—1€ ] (a + 2&) ¢
2i€

— -} - .
a /E a+ i€ a4+ E?

Exempel 8. Find the Fourier transform for the function [(x)
Solution: By the definition we have that the Fourier transform for [(x) =

e a? is -
f(&) —/ e e 8y,
It will be easier if we first compute (/] (£). Then I(E) will follow easily using

theorem 15(c):

/ ir)e ™ e "
/ ) 2
g 5} —e " (—if)e (4.4.2)
.2 X S ! J
5 v X " e £ )
= S —& T g, — D f(&
e T ¢ di !
: / \ G

e
2 e ol
ig-a’e } = 0. Con
e X

where we used partial integration and the fact that [

sequently we have the differential equation ,/"(E_] +- :;,/ (£) = 0., where solution

is f(€) = Ce=r, withC = §(0).

Note that for € = (),

f(0) = / ey = VT thus C =/,

X
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and hence
R (4.4.3)

™

2 S 3 - — £274
*" and its Fourier transform f(£) = /me %"

Figure 4.2: f(x) = ¢

This means that for a Gaussian distribution [ ils Fourier transform [
is equivalent to a scaling of [ preserving both ils shape and reqularity. In
particular. as we shall see below. the Fourier transform of ¢ /2 is the same
Sunction multiplied by /2.

As a consequence of this example we have the following important formula

for the Fourier transform of a general Gaussian function:

Lemma 10. -
2 ] {27 &2
J—"[( fJ @)= g es (4.4.4)
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Proof. The proof is straightforward using the scaling formula with § = /%,
viz, ‘
7 W) o
Fle|© = JovEe T = [T
[ a /[ a
O

Later on we shall use the above formula with the substituting: » = £ and

E=(x—y):

KZ.T I.r—|,'|.‘e

FleF | —y) = /T2 (4.45)

Theorem 19 (The Fourier Inversion Theorem). Suppose [ ¢ L'(R),
[. piecewise continuous, and defined al its points of disconlinuily so as to

satisfy [f(x) = '?[[(r ) + _/'(.1'+)} forall x € R Then

f(x) = lim L | _/"'(E']("\"(' :.'j. d€. (4.5.1)

e—=0 27

Moreover, since [ € L'(R), the [ is continuous and

fx) = - / | F(€)e*de. (4.5.2)

2T

Proof. Note that the cutoff function e <€/2 iy (4.5.1) is just to make the
integrals converge, then passing to the limit the cutoff is removed. A straight-

forward calculation vields

1 09 e a 22 1 B S, g2e?
—/ HEJEE 7= )_/ / f(y)e Eeoe—T=dydg
X0 —'Tr X « X
1 = %

2
= s '/1(”){./“ ¢ EW "i‘(lf}(/y (4.5.3)
— O f(-'/)}-[" - }(!/ x)dy.
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Now we apply (4.4.5) above with a = £? to get

dgs

f[(f':"-’ }(!/ - 7)

Replacing in (4.5.3) it follows that

N T R ) 5
o ;}./(f)( e 2 d§ \/2?/\_/(,(/)}—_( dy. (4.5.4)

1

=z gives y = & + \/j, and dy = \/:)&(/:. Thus

Substituting %=
V &c

l X0 . s _‘Jt,i 1 (X . > 2 e
21 J oo F(&)e™ e~ 7 dE = ﬁ/ S+ V2ez)e ™ dz. (4.5.5)

Now since [ is bounded we have

’f("r + V2ez)e :2’ < Me ™ and ‘f'(fl('és"(' 5 f(¢)| e L.

<

Taking limit in both sides of (4.5.5), by Lebesgue dominated convergence
theorem, we can pass the limits inside integrals to get

2

) ,.’/(5)({5 {luu(r ) }(IE—-—/_/:‘ I]:_l_l}(%j(.‘l'-*- V2ez)e © dz.

27 e—0 VT

Hence by the continuity of f it follows that

| A T | O o ; 1 [ .2 _
Z_T ) f(€)e'~"dé = F/\/ (x)e * dz = ](I]F/ x‘(' = de={z),
and the proof is complete. M

The Fourier inversion formula can simply be interpreted as a improper
integral if [ is integrable and piecewise smooth on R Below, we state this
as a theorem (without proof!):

Theorem 20. If [ is integrable and piecewise smooth on R, then

lim / ¢S f(E)dE = é[,/'(.r ) + ,/‘(.;-+)}. (4.5.6)

r—00 X 2

Jor every x € R.
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Theorem 21. Suppose that f.f.g and § are in L'. Then

2m(f, 9) = {f.3). (4.6.1)

Proof. Using the Fourier inversion theorem for ¢:

mﬂ——] (&)’ de,

2m

and the definition of the inner product yields

27(f,g) = 27/ f(x)g(x)dx —/ :)/ e "STde
/ / frw’Wh}F*/MJRMkMG—UWX

where we used the fact that since f,§ € L', and the proof is complete. [

Remark. The definition of the Fourier transform can be developed to arbi-
trary L?-functions. If f. g, / and ¢ are in L', then [, g, / and g are also in

L.

Because of our interest in Lo spaces we formulate the following result:

Theorem 22 (The Plancherel Theorem). The Fourier transform. defined
originally on L' N L?, extends uniquely to a map on L? satisfying

2a(f.9) = (f.4) Jorall f,g€ L*

As a consequence of the Plancherel theorem we have
The Parsevals formula: For [ = ¢ € L? we have that

zj/“uwﬂww—/'wnah&

27| f («)[IZ2 = /(N7 (4.6.2)

or
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FEFxempel 10. Recalling sorm of owur ey exarnples:

2 2a
f[(' &* :I — = carecd .'F'[(: I :I _— ==
1 + &2 EZ 4+ a®
The syrnnrneltry rule give wus
2 < € 1 €
T [— :l — 2me El — Dgme 8l = F [ _ :I s srea—IE] (4.7.4)
1 + =2 1 + == >

Sérreelariy. by the syrnirnnelry rale

2 - 1 7 €
7 [%} — Z2ae el — .F[ﬁ] — (1)( = (1.7.5)
S ity el S et e @
Fxempel 1 1. Since

> £z

me o - /2

bLay the syrnnrnelry rule

=2

=l
o

T
P
o

Applications of Fourier transform
Partial differential equations

We now use the Fourier transform to solve problems on unbounded re-
gions. The Fourier transform converts differentiation into a simple algebraic
operation and we can reduce partial differential equations to easily solvable
ordinary differential equations.

Exempel 13. Consider the heal flow in an infinitely long road. given the
initial temperature u(x,0) = f(x):

y=ks: T2>0; OO 00: (4.8.1)

Solution: To find the temperature u(x,t). let u(E.t) = F, [ll.(.r'.l)}(f).

Then
Ra [ g = o Jil
Flu(§) = N O—ll,(' Wrde = E/ R u(r; t)e s vde = d—;l
Further Flu,)(§) = i&u(€) gives that Flu,|(&) = (i€)*u(§) = —&%a(é).
Hence the Fourier transform of (4.8.1) yields
o 5
= = _ke%a(), (4.8.2)
ot '
with the general solulion ‘
(€, 1) = Ce 7, (4.8.3)

Pre _____, ___. o __,1_9
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Fourier transform of the the initial data u(§,0) = f(&): (& 0) = f(),

inserted in (4.8.3) give u(€,0) = C = [(€). Thus we have
a(E ) = f(E)e €T, (4.8.4)

To recover the solution u we recall thal .7:[(' T](5) = \/g( . Letting

2'—” = ki thus a = 7', we then have
x? P g2 1 a2 .
.'F[(' ’T} €) = Varkt -e ¥, hence ' = _.’F[(' T} £}
(&) =V Tarh (£)
Inserting in (4.8.4) we gel
| 22 1 "
i(€,1) = f(©F [t (€) = a(6)F(©). 185)
£:%) o e (€)f(&) (

9
o=

where g(&) = _']-‘[(r T
Jollows that

(£). Using the convolution theorem: /q = (f xg) il

—

u(z,t) = \/:‘TT(./ *g)(x) = V/:_IT/ e '%f(f/)du- (4.8.6)

Exempel 14. Solve the Poisson’s equaltion,
Uzg + Uyy =0, o<r<oo, y>0, (4.8.7)
where the boundary condition, u(x,0) = f(x). is bounded.

Solution: As in the previous example the Fourier transform of the equa
tion and the boundary. with respect to x, yields to the following ordinary
differential equation in y:

2*u(€, y)

(€ y)+—35—=0 and i(€,0) = f(€), (4.8.8)

oy

with the general solution given by
i(€,y) = C1(§)e*Y + Ca(E)e*2. (4.8.9)

By the boundedness requiremnent we have that C(€) = 0. Moreover using the
Fourier transform of the boundary data from (4.8.8) we get u(€.0) = Cy(€) =
f(€). Thus

(&, y) = [(E)e5Y, (4.8.10)
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To take the iwverse transform, in this case, the appropriate Fourier transform
Jormula 1s:

.F[;} = z(f a8 where a> 0. (4.8.11)
2+ a? a

Choosing a = y in (4.8.11) we gel

1 ™ cly
:F'I:l. ﬁ} — _I.(j S “‘_ (4.8.12]
T T4yl 1

Thus the inverse transform of (4.8.10) is

u(ae,y) = flx) * e, % = (—// | ”)I—s))da (4.8.13)
T oac+ Yy il sh SS=fgys

which is the Poisson integral formula for the solution the given problem.

Remark. This solution make sense since the Poisson kernel ﬁ e L’
and f(x) is bounded, |f(x)| < M. Thus we have
| 1 M §\®
lu(x, y)| < M - —/ %(lh‘ = —arctan (l) = M.
' Tl o0 8B Y ) Y/ -
Exempel 15. Solve the Dirichlet problem
Ugy + Uyy =0, z>0 y >0, where (4.8.14)
u(0,y) =0, wu(x0)= ,)'+ and ul(x,y) s bounded. (4.8.15)
T2
Solution: First we solve the following full range (in x) problem:
Uzy + Uyy =0, T €R, y >0, where (4.8.16)
u(z, 0) = — and ulx,y) is bounded. (4.8.17)

2+ 1

In this case since —— is odd then u(x, y) is odd in x and we have automat

ically the condition u(0, y) = 0. Now we recall the formula

.) )
-

B AR

signa -e —_—
T a? + &2
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By the symmetry rule we gel

> _;T_ > Y —mi - sign(€) - e ¢, (4.8.18)
a? +
Thus fora =1 we have
I kS . . £
s D wi-sign(&) et

hence
u(z,0) 1= f(x) 27 —mi- sign(€)-e ¥,
Now the Fourier transform of the solution 4(€,y) = f(€)e €Y, (see previous

example), can be wrillen as

(1+y) €

i€ y) = —mi-sign(€) e T ¥ = —qi- sign(€) - e

Thus with a =1+ y in (4.8.18) we finally get

ME
r.'.(;r'. _r,.'_] = m {4.8.11”

Definition 14. Let [ & L'(0, o). Then the Fourier cosine transform and
Fourier sine transform of [ are the functions F.[f](€) and FJ[f](E) on [0, 00)
defined by

Felf1(€) = [ fle)eosEode  and  F[[(E) = / J{x) sinEx de. (4.9.5)
LT l] 4 l]
Thus, if fepen and fo4q0 are the even and odd extensions of f to R, then

FI(E) and F[[](€) are restrictions to [0, oo) of M oven and Lfo 4o since

fevenl€) = 2 [ ;_f't,.,..t,ﬂl[;r'] cosErdr = 2F.[f](€),

<

) 0 )
_Jrlf,-:!t!{&] - 2 [ .J‘-lf;cl'cl'{:rl:l Hjﬂ &_.j,. r'{"rl = J'J-?__-.[-{“Es] = T-F'-[JFH‘E:I

S0
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The inversion formulas therefore become

) o) .) o)

flz) =2 / F[f](€) cosx dE = = / FLLF1(E) sin & de.
aJo aJo

Plancherel Theorem for F,[[| and F [ [].

Using the above relations it follows that the norm of F.[f](£) on [0, o)
is given by

o i 1 B | ) O 9
I My = | [ghon@] de =55 [ (e e
i.e.,
1112 l " / 9 -\
L ) = (O oncmy (196)
Recalling the Parsevals formula: ||/(§)||;I - _)'r|[f(1)||,’I ooy the
relation (4.9.6) is written as
. a0 o T 5 2
T O A
Similarly,
N7 = —l) / | foad(x) |* dx = %H./L.MH?‘- (4.9.8)
- l.] -

We summarize the relation (4.9.7) and (4.9.8) in the:

Theorem 25 ( Plancherel Theorem for cos and sin transforms). F.[[]
and F,[f]| extend to maps from L?(0,00) onto itself that satisfy

IELAN7 = IELAE = S0

Exempel 16. Use the Fourier sine transform to find a bounded solution
u(x,y) for the problem:

Uy + ‘”.I,'_I‘,' - U. H “. 1 > (). (l.”!)]

\V4

with the boundary conditions

M

u(0.y)=0. and ulx.0) = 3
(0,9) (,0) ]
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Fourier Transforms of impulse functions

The Dirac’s delta function is an even [unction defined by

aMax) =0, for a #0, (4.10.6)
and -
/ ola)dr =1 for all a > 0. (4.10.7)
O lx)

|
T
Figure 4.7: The Dirac function 4, (x).
For x =1 — T this definition give
ot —T) = / ot — T)dx = 1. (4.10.8)

To derive the Fourier transform of 4(f — T'), we recall that by the evaluation
formula:

!

f()8(t —T) = f(T)5(t —T) we have e 8t —T)=e¢*"§(t - T)
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Figure 4.8: The Dirac function d; ).

and thus we have
ot —T) / ot — Te 7“tdt = e /’/ 5t — T)dt = e 74T, (4.10.9)

Then for T = 0: (1) "= €¢” = 1. Using symmetry rule and the fact
that & is an even function we have the following “formal relations™: 1 3
2m0(—w) = 27wo(w), i.e., we have

~F
N

é(t) D=1, and 1 57 276(w). (4.10.10)

The steady-state temperature distribution for y > 0 with the prescribed temperature u(x, 0) = f(x) on an
infinite wall, y = 0, is described by the equation: PDE: uxx + uyy =0, —ee < x < o0,y >0 (1) BC: u(x, 0) =
f(x), —oo < x < oo, (2) where u is bounded as y = . Both uand ux - 0 as |x| = o=. Solution. To solve this
problem, we proceed as follows. Let F[u](w) = "u(w, y), F[f(x)] = "f(w). Step 1. (Transforming the problem
using FT ) Taking FT of the PDE (1) in the variable x and using linearity property we have F[uxx] + F[uyy] =
0. (3) Since uand ux = 0 as x| = oo, it follows that —w 2F[u](w, y) + 1 V 21t [ o0 —oo uyye —iwxdx =0 ==
-w 2u”(w, y) + 0 2 Ay2 [J oo —oo u(x, y)e —iwxdx] =0==>d 2 dy2 u™(w, y) - w 2u”(w, y) =0, (4) which is a
second-order linear ODE in y. Taking FT of the BC yields u”(w, 0) = F[f(x)] = "f(w). (5) Step 2. (Solving the
Transformed the problem) The general solution of (4) is given by u™(w, y) = A(w)e wy + B(w)e -wy, (6)
where A(w) and B(w) are to be determined. Since u is bounded as 'y = oo, its FT "u(w, y) must be
bounded as y = oo. This implies A(w) =0 for w > 0. If w <0 then B(w) =0. Thus, u™(w, y) = Ke-|w]|y, K=
is a constant. (7)
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Possible Questions
PART-B (SIX MARKYS)
UNIT 11

. . 2d
1. Using Fourier transforms evaluate fomm.

2.Derive the solution of two dimensional diffusion equations in an infinite region.

3.State and prove Parseval’s theorem for Fourier transform.
4.0btain Parseval’s theorem for cosine and sine transform.
5.Derive the solutions of two dimensional diffusion equations.

6. Find the solution of a Laplace equation in a half plane.

7.Find the solutions of a Linear diffusion equation on a semi-strip

8.State and proof convolution theorem for Fourier transform.

9.Evaluate [ ax

0 m using transforms.

PART-B (TEN MARKS)

1.Derive the solution of Laplace’s equation in an infinite strip.
2.Find the solutions of a Linear diffusion equation on a semi-strip
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UNITII

10.

11.

In the convolution integral both the function f and g are.................... functions
a.continuous  b.bounded c.differentiable d.integrable
In convolution integral functions are commutative then.............
afog=gof b.fog=-gof c.fog=(gof) d.fog=fog
Iffo(g oh)=(fog)oh thisrelation is called as......
a.commutative b.associative c.bounded d.closure
The Parseval's relation for fourier transforms may be written in the form...........

L IFI<If LR R o IFI=171

Fourier transforms may be used in the solution of ............ value problems
a.boundary b.initial c.boundary and initial d.singular
Fourier transforms may be used in the solution of boundary and initial value problems for linear............. equations

a.differential b.integral c.ordinary differential d.partial differential
In Laplace's equation A_n u(r)=0 where nisthe ..........................of the space
a.order b.number c.dimension d.total
In Laplace's equation A_n u(r)=0 where n is the dimension of the space u is the function of the ............ vector
a.position b.direction c.rotation d.irrotation

In Laplace's equation A_n u(r)=0 where n is the dimension of the space u is the function of the position vector & A_n denotes.....
a.Laplacian operator  b.vector operator c.scalar operator d.differential operator
The Laplace's equation in a half-plane a function u(x,y) satisfying Lapace equation in the half plane............
a.y>0 b.x>0 c.y20 d.x>0
The Laplace's equation in a half-plane a function u(x,y) satisfying Lapace equation in the half plane y20, the boundary condition
u(x,0)=f(x) in.....
a.0<x<oo b.o<y<oo C.-00<X< 00 d.-co<y<oo



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

Laplace's equation in a half plane the limiting condition u(x,y)>...... as

a.0 b.1 c.2 d.3
Laplace'sequation in an infinite strip in the strip.............

a.y>a b.y>a c.0sy<a02y>a d.O<sy<a
Laplace's equation in an infinite strip with the boundary conditions...........

a.u(x,0)=f(x), u(x,a)=g(x)  b.u(x,0)=g(x), u(x,a)=f(x) c.u(x,0)=f(x), u(x,0)=g(x) d.u(x,a)=f(x), u(x,a)=g(x)

The Laplace's equation in a half-plane a function u(x,y) satisfying Lapace equation in the half plane y=0, the boundary condition ......

a.u(x,0)=0 b.u(x,0)=1 c.u(x,0)=-f(x) d.u(x,0)=f(x)
The ........... State distribution of temperature in aslab whose faces are maintained at prescribed temperatures.
a.Steady b.unsteady c.finite d.infinite
The stady state temperature in a thick slab when the temperature of one face of the slab is prescribed and other face is insulated against
the flow of...........
a.heat b.strip c.slab d.value
The Laplace equation in a semi infinite strip maintained at .............. temperature
a.prescribed  b.unprescribed c.finite d.infinite
The Laplace equation in a semi infinite strip maintained at prescribed temperature -one face (x=0) being ata ........... temperature.
a.Finite b.infinite c.prescribed  d.constant
The Laplace equation in a semi infinite strip maintained at prescribed temperature -one face ............ being at a constant temperature.
a.x=0 b.x=1 c.x=2 d.x=3

The Laplace equation in a semi infinite strip maintained at prescribed temperature -one face (x=0) being at a constant temperaturewhich
is the .....temperature

a.finite b.reference c.prescribed d.bounded

The Fourier sine transform consider the derivation of the solution the linear............... equations
a.differential b.integral c.diffusion d.Laplace

The ........... transform consider the derivation of the solution the linear diffusion equations
a.Fourier sine b.Inverse Fourier c.Fourier cosine d.Fourier

The linear diffusion equation on a semi infinite line............
a.y>0 b.x>0 c.y=0 d.x20
The linear diffusion equation on a semi infinite line having the initial condition u(x,0)=......



26.

27.

28.

29.

30.

31.

32.

a.l b.2 c3 d.o
The linear diffusion equation on a semi infinite line having the boundary condition u(o,t)=f(t),
a.t>0 b.t=0 c.t20 d.f(t)=0
The linear diffusion equation on a semi infinite line having theboundary condition u(x,t)=>0 as x>.............
a.0 b.1 c.2 d.oo
In general the solution of the linear diffusion equation satisfying the boundary conditions u(0,t)=...... as x>oo
a.0 b.1 c.2 d.3
In general the solution of the linear diffusion equation satisfying the boundary conditions u(x,t)=> ....... as x—>oo
a.l b.2 c.3 d.o
In general the solution of the linear diffusion equation satisfying the initial conditions are u(x,0)=............
a.0 b.oo c.f(x) d.i
The use of double Fourier transforms derive the solution u(x,y,t) of the ...............equation
a.differential  b.integral c.diffusion d.linear
The use of double Fourier transforms derive the solution ............ of the diffusion equation
a.u(x,y,t) b.u(x,y) c. u(y,t) d.u(x,t)
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UNIT III

An integral equation is an equation in which an unknown function
appears under one or more integral signs. Naturally, in such an equation
there can occur other terms as well. For example, for a <s<b,
a < t < b, the equations

b
) = [ Ksng@dr (1)
b
9(s) =) + [ K(s,g() dt , @)
b
9() = [ K(s,0[g () dt, 3)

where the function g(s) is the unknown function while all the other
functions are known, are integral equations. These functions may be
complex-valued functions of the real variables s and +.

Integral equations occur naturally in many fields of mechanics and
mathematical physics. They also arise as representation formulas for the
solutions of differential equations. Indeed, a differential equation can be
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replaced by an integral equation which incorporates its boundary con-
ditions. As such, each solution of the integral equation automatically
satisfies these boundary conditions. Integral equations also form one of
the most useful tools in many branches of pure analysis, such as the
theories of functional analysis and stochastic processes.

One can also consider integral equations in which the unknown
function is dependent not only on one variable but on several variables.
Such, for example, is the equation

g(s) = () + | K(s,ng() dr , )
O

where s and ¢ are n-dimensional vectors and £ is a region of an n-
dimensional space. Similarly, one can also consider systems of integral
equations with several unknown functions.

An integral equation is called linear if only linear operations are
performed in it upon the unknown function. The equations (1) and (2)
are linear, while (3) is nonlinear. In fact, the equations (1) and (2) can be
written as

Llg()] = f(s), (5)

where L is the appropriate integral operator. Then, for any constants ¢,
and ¢,, we have

Llcigi(s)+ c29,(5)) = ¢, LLg,1(5)] + c2 LLga(s)] - (6)

This is the general criterion for a linear operator. In this book, we shall
deal only with linear integral equations.
The most general type of linear integral equation is of the form

h($)g(s) = f(s) + 4 [ K(s.0g () dt , @)

where the upper limit may be either variable or fixed. The functions f, A,
and K are known functions, while g is to be determined; A is a nonzero,
real or complex, parameter. The function K(s,t) is called the kernel.
The following special cases of equation (7) are of main interest.

(i) FREDHOLM INTEGRAL EQUATIONS. In all Fredholm integral
equations, the upper limit of integration b, say, is fixed.
(i) In the Fredholm integral equation of the first kind, A(s)=0.
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Thus,
b
f(s) + 4 j K(s,0g(dt=0. (8)
a

(i) In the Fredholm integral equation of the second kind, A(s)=1;

b
9(s) = f(5) + 4 [ K(s,0g (D) dr . ©)

(iti) The homogeneous Fredholm integral equation of the second
kind is a special case of (ii) above. In this case, f(s) =0;

b
g(s) = AJ‘ K(s,1)g(2) dr . (10)

(ii) VOLTERRA EQUATIONS. Volterraequationsofthe first, homo-
geneous, and second kinds are defined precisely as above except that
b = s is the variable upper limit of integration.

Equation (7) itself is called an integral equation of the third kind.

(iii) SINGULAR INTEGRAL EQUATIONS. When one or both
limits of integration become infinite or when the kernel becomes infinite
at one or more points within the range of integration, the integral
equation is called singular. For example, the integral equations

g(s) = f(s) + A f (exp — |s—1]) g (1) dt (1n

and

S8 = [ [s—Tgde, 0<a<l (12)
0

are singular integral equations.
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(i) SEPARABLE OR DEGENERATE KERNEL. A kernel K(s,7) is
called separable or degenerate if it can be expressed as the sum of a
finite number of terms, each of which is the product of a function of s
only and a function of ¢ only, 1.e.,

K(s, 1) — gla;(s)b;(f) . (1)

The functions a;(s) can be assumed to be linearly independent, otherwise
the number of terms in relation (1) can be reduced (by linear inde-
pendence it is meant that, if ¢,a, +c,a,+---+c¢,aq, =0, where ¢; are
arbitrary constants, then ¢;, = ¢, =--- = ¢, = 0).

(ii) SYMMETRIC KERNEL. A complex-valued function K(s,r) is
called symmetric (or Hermitian) if K(s, 1) = K*(z, 5), where the asterisk
denotes the complex conjugate. For a real kernel, this coincides with
definition K (s, r) = K(, s).

1.4. EIGENVALUES AND EIGENFUNCTIONS

If we write the homogeneous Fredholm equation as

b
[ KG.ogwar = patsr, n= 12,

we have the classical eigenvalue or characteristic value problem; u is
the eigenvalue and g (r) is the corresponding eigenfunction or character-
istic function. Since the linear integral equations are studied in the form
(1.1.10), it is A and not 1/4 which is called the eigenvalue.

1.56. CONVOLUTION INTEGRAL

Many interesting problems of mechanics and physics lead to an
integral equation in which the kernel K (s, ) is a function of the difference
(s— 1) only:

K(s, 1) = k(s—1), (1)

where k is a certain function of one variable. The integral egquation

g(s) = /() + 4 [ k(s—D g dri, ()

and the corresponding Fredholm equation are called integral equations
of the convolution type.
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2.1. REDUCTION TO A SYSTEM OF ALGEBRAIC EQUATIONS

In Chapter 1, we have defined a degenerate or a separable kernel
K(s, 1) as

n

K(s,0) = ) ai(s)b;(1) (1

i=1

where the functions a,(s),...,a,(s) and the functions b,(r),...,5,(1)
are linearly independent. With such a kernel, the Fredholm integral
equation of the second kind,

9(s) = f(9) + 4 | K(s,ng(0) 2
becomes

9() = f(5) + 2 Y. a(s) [ b(Dyg (o)t 3

i= *

It emerges that the techniquz of solving this equation is essentially
dependent on the choice of the complex parameter A and on the definition
of

¢ = [ bngar. @

The function defined by the integral

fk@—ﬂﬁﬂ&::fﬂﬁg@—ﬂ& (3)
0 0

is called the convolution or the Faltung of the two functions & and g.
The integrals occurring in (3) are called the convolution integrals.

The convolution defined by relation (3) is a special case of the standard
convolution

jk(s-—r)g(:)dr = fk(r)g(s—r}a’t. @

The integrals in (3) are obtained from those in (4) by taking k(?) =
g(z)=0,fort <0 and ¢ > s.
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Prepared s,

The quantities ¢; are constants, although hitherto unknown.
Substituting (4) in (3) gives

86) =S + 1Y ca(®), o

and the problem reduces to finding the quantities ¢;. To this end, we put
the value of g(s) as given by (5) in (3) and get

Ya0 - [bOUO+2Y aa®ldi 0. ©

But the functions a;(s) are linearly independent; therefore,
c,—J‘bl(t)[f(:)+ Ay qa@®ldt=0, i=1,..,n. (7)
k=1

Using the simplified notation

[b0s =1, [b@a@d = o, ®)

where f; and a;, are known constants, equation (7) becomes

n

- A Y age = f f=1,..,n; (9)

k=1

that is, a system of » algebraic equations for the unknowns ¢;. The
determinant D(A) of this system is

l—J.au —Aalz LR —Aaln
—Aa 1 —Aa e —JAg
DU.)= ‘ 21 22 2In ’ (10)
—Aa,, —Aa,, - l—Aa,,

which is a polynomial in A of degree at most n. Moreover, it is not
identically zero, since, when A =0, it reduces to unity.

For all values of A for which D(1) # 0, the algebraic system (9), and
thereby the integral equation (2), has a unique solution. On the other
hand, for all values of 4 for which D(A) becomes equal to zero, the
algerbaic system (9), and with it the integral equation (2), either is
insoluble or has an infinite number of solutions. Setting A= 1/u in

te] y D i it

T
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equation (9), we have the eigenvalue problem of matrix theory. The
eigenvalues are given by the polynomial D(1) =0. They are also the
eigenvalues of our integral equation.

Note that we have considered only the integral equation of the second
kind, where alone this method is applicable.

This method is illustrated with the following examples.

2.2. EXAMPLES

Example 7. Solve the Fredholm integral equation of the second kind
g(s) =s+lf(stz+szr)g(r)dr. )
0
The kernel K(s, r) = s> +s%1 is separable and we can set
€, = ftzg(f}dr, €y = J‘Irg(r)dz.
0 0

Equation (1) becomes
g(s) = s+ Ac, s + Acy 5%, (2)
which we substitute in (1) to obtain the algebraic equations

¢, = %+ e, + ey,

c; = 3+ ey + {hc, . C)

The solution of these equations is readily obtained as
¢, = (60+1)/(240— 1201 - A%), c, = 80/(240-1201-1%) . (4)
From (2) and (4), we have the solution
g(s) = [(240—604) s + 80A52]/(240 — 1201 — A%) . (5)

Example 2. Solve the integral equation

1
9(s) = [ + 4 [ s+Dg( i (6)
0

and find the eigenvalues.
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Here, a,(s) =5, a,(s)=1, b, (D) =1, b, (1) =1,

1 = d =_%9 12 = d = ’
a, ﬁfr t a,, off I
a21="‘]!2d!'=-}, a22=J1IdI=%,
0 0
fl=ff(1)dra fz_—"J‘ff‘(!)df.
0

0

Substituting these values in {2.1.9), we have the algebraic system

(1=3%) e, — de; = 11, -+ (1=3) e, = £, .

The determinant D(1)=0 gives A?+121—12=0. Thus, the eigen-

values are
iy =(-6+4/3), Ay = (—6—4J3).

For these two values of 4, the homogeneous equation has a nontrivial
solution, while the integral equation (6) is, in general, not soluble.
When A differs from these values, the solution of the above algebraic

system is
e, = [—12f, + A(6f, — 12/5)]/(A% + 122 — 12) ,

¢, = [—12f5 — A(4f, — 6/5)]/(A* + 124 — 12) .

Using the relation (2.1.5), there results the solution

1

g(s) = f(s) + lJ.

0

6(A—2)(s+1) — 124st — 4

P
2412412 Sy dt .

The function I'(s, 7 4),
C(s,t;4) = [6(A—2)(s+1) — 1245t — 4A]/(A% + 124 — 12),

is called the resolvent kernel. We have therefore succeeded in inverting
the integral equation because the right-hand side of the above formula is

a known quantity.
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2.3. FREDHOLM ALTERNATIVE

In the previous sections, we have found that, if the kernel is separable,
the problem of solving an integral equation of the second kind reduces
to that of solving an algebraic system of equations. Unfortunately,
integral equations with degenerate kernels do not occur frequently in
practice. But since they are easily treated and, furthermore, the results
derived for such equations lead to a better understanding of integral
eguations of more general types, it is worthwhile to study them. Last,

but not least, any reasonably well-behaved kernel can be written as an
infinite series of degenerate kernels.

When an integral equation cannot be solved in closed form, then
recourse has to be taken to approximate methods. But these approximate
methods can be applied with confidence only if the existence of the
solution is assured in advance. The Fredholm theorems explained in
this chapter provide such an assurance. The basic theorems of the general
theory of integral equations, which were first presented by Fredholm,
correspond to the basic theorems of linear algebraic systems. Fredholm’s
classical theory shall be presented in Chapter 4 for general kernels. Here,
we shall deal with degenerate kernels and borrow the results of linear
algebra.

In Section 2.1, we have found that the solution of the present problem
rests on the investigation of the determinant (2.1.10) of the coefficients of
the algebraic system (2.1.9). If D(4) # 0, then that system has only one
solution, given by Cramer’s rule

c; = (D fi + Dyfs + - + D, ) D(A), i = 1,2,---,mn, (1)

where D,,; denotes the cofactor of the (#, i)th element of the determinant
(2.1.10). Consequently, the integral equation (2.1.2) has the unique
solution (2.1.5), which, in view of (1), becomes

Dle‘fl -+ Dz-‘fz + o+ Dm'f:u
D)

g = f(s) + 2 >

=1

a;(s) , @

while the corresponding homogeneous equation

g() = 1 | K(s,0g(0) dr 3

has only the trivial solution g(s) = 0.
Substituting for f; from (2.1.8) in (2), we can write the solution g (s) as

g(s) = f(s5) + [A/ D(A)]

[ { 3 [Dubi(0) + Dy + - + Dby (D] @ ()} S(0) .
. @

Now consider the determinant of (# 4 1)th order
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0 a (s) a(s) o a,(s)
by(t) 1—4ay, —lay, o —lay,
D(f,!;l} = — bz(f) ""J{az' I —Aazz e _lazn . (5)
b“(f] _.A.a'” _j.anz e I "'A.am.‘

By developing it by the elements of the first row and the corresponding
minors by the elements of the first column, we find that the expression in
the brackets in equation (4) is D(s, 7;4). With the definition

[(s,1;4) = D(s,t; 1)/ DY), (6)
equation (4) takes the simple form
g(s) = f(s) + 4 [ T(s,; Df (1) dt . (M

The function ["(s,¢;4) is the resolvent (or reciprocal) kernel we have
already encountered in Examples 2 and 4 in the previous section. We
shall see in Chapter 4 that the formula (6) has many important con-
sequences. For the time being, we content ourselves with the observation
that the only possible singular points of I'(s, 7; 4) in the A-plane are the
roots of the equation D(1) =0, ie., the eigenvalues of the kernel
K(s, 1).

The above discussion leads to the following basic Fredholm theorem.

Fredholm Theorem. The inhomogeneous Fredholm integral
equation (2.1.2) with a separable kernel has one and only one solution,
given by formula (7). The resolvent kernel I'(s, 7; 1) coincides with the
guotient (6) of two polynomials.

If D(A) =0, then the inhomogeneous equation (2.1.2) has no solution
in general, because an algebraic system with vanishing determinant
can be solved only for some particular values of the quantities f;. To
discuss this case, we write the algebraic system (2.1.9) as

(I—iA)e =1, (8)

where I is the unit (or identity) matrix of order n and A is the matrix
(a;;). Now, when D(4) = 0, we observe that for each nontrivial solution
of the homogeneous algebraic system

(I—AA)c =0 9
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there corresponds a nontrivial solution (an eigenfunction) of the homo-
geneous integral equation (3). Furthermore, if 4 coincides with a certain
eigenvalue A, for which the determinant D(4y) = |I— A,A| has the rank p,
1 £ p < n, then there are r = n—p linearly independent solutions of the
algebraic system (9); r is called the index of the eigenvalue 4,. The same
holds for the homogeneous integral equation (3). Let us denote these r
linearly independent solutions as gg,(s), go2(5), ", go,(s), and let us
also assume that they have been normalized. Then, to each eigenvalue
Ao of index r = n—p, there corresponds a solution g, (s) of the homo-
geneous integral equation (3) of the form

gols) = ;Zn % Gok (5) 5

where o, are arbitrary constants.

Let m be the multiplicity of the eigenvalue A,, i.e., D(1) =0 has
m equal roots 4,. Then, we infer from the theory of linear algebra that,
by using the elementary transformations on the determinant [T—AA|,
we shall have at most m + | identical rows and this maximum is achieved
only if A is symmetric. This means that the rank p of D(4,) is greater
than or equal to n—m. Thus,

r=n—p<n—(@n—-m)=m,

and the equality holds only when a;; = a;.

Thus we have proved the theorem of Fredholm that, if A=/, 1is a
root of multiplicity m = 1 of the equation D(Ad)=0, then the homo-
geneous integral equation (3) has r linearly independent solutions;
r is the index of the eigenvalue such that 1 <r < m.

The numbers r and m are also called the geometric multiplicity and
algebraic multiplicity of A,, respectively. From the above result, it
follows that the algebraic multiplicity of an eigenvalue must be greater
than or equal to its geometric multiplicity.

To study the case when the inhomogeneous Fredholm integral
equation (2.1.2) has solutions even when D{(1) =10, we need to define
and study the transpose of the equation (2.1.2). The integral equation’

W(s) = /) + A [ K5y (o) dr (10)
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is called the transpose (or adjoint) of the equation (2.1.2). Observe that
the relation between (2.1.2) and its transpose (10} 1s symmetric, since
(2.1.2) is the transpose of (10).

If the separable kernel K(s,/) has the expansion (2.1.1), then the
kernel K(t,s) of the transposed equation has the expansion

K(t,s) = 3 a()bys) . an

=1
Proceeding as in Section 2.1, we end up with the algebraic system
(I-AADe =1, (12)

where AT stands for the transpose of A and where ¢; and f; are now
defined by the relations

= [aawar,  fi= [ams@ . (13)

The interesting feature of the system (12) 1s that the determinant D(1)
is the same function as (2.1.10) except that there has been an inter-
change of rows and columns in view of the interchange in the functions
a; and b;. Thus, the eigenvalues of the transposed integral equation are
the same as those of the original equation. This means that the rransposed
equation (10} also possesses a unigque solution whenever (2.1.2) does.

As regards the eigenfunctions of the homogeneous system

I—2AT|c =0, (14)

we know from linear algebra that these are different from the correspond-
ing cigenfunctions of the system (9). The same applies to the eigen-
functions of the transposed integral equation. Since the index r of 4, is
the same in both these systems, the number of linearly independent
eigenfunctions is also r for the transposed system. Let us denote them by

Yo, Waa, -, W, and let us assume that they have been normalized.
Then, any solution ,(s) of the transposed homogeneous integral
equation

Wis) = A [ K(ns)y () dr (15)

corresponding to the eigenvalue A, 1s of the form

Yrol(s) = Eﬂf‘i’m(s) )

where f; are arbitrary constants.
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We prove in passing that eigenfunctions g (s) and ¥ (s) corresponding
to distinct eigenvalues A, and 4,, respectively, of the homogeneous
integral equation (3) and its transpose (15) are orthogonal. In fact,
we have

gy =4 [ K090 di, ¥ =4 [ K@)y dr.

Multiplying both sides of the first equation by A4,y (s) and those of the
second equation by A4, g(s), integrating, and then subtracting the
resulting equations, we obtain

b
(Aa—21) [ g()Y(s)ds = 0.

But A, # A,, and the result follows.

We are now ready to discuss the solution of the inhomogeneous
Fredholm integral equation (2.1.2) for the case D(4)=0. In fact, we
can prove that the necessary and sufficient condition for this equation
to have a solution for A =4, a root of D(X)=0, is that f(s) be
orthogonal to the r eigenfunctions ,; of the transposed equation (15).

The necessary part of the proof follows from the fact that, if equation
(2.1.2) for A =4, admits a certain solution g(s), then

[ £ o) ds = [ g()Yoils) ds
— e J' Woi () ds j K(s,0) g () dt
= [ 9@ ¥oils) ds
—do [ gy dt [ K(s,0)¥0:(s)ds = 0,

because 4, and i, (s) are eigenvalues and corresponding eigenfunctions
of the transposed equation.

To prove the sufficiency of this condition, we again appeal to linear
algebra. In fact, the corresponding condition of orthogonality for the
linear-algebraic system assures us that the inhomogeneous system (8)
reduces to only n —r independent equations. This means that the rank
of the matrix (I—4A) is exactly p = n—r, and therefore the system (8)
or (2.1.9) is soluble. Substituting this solution in (2.1.5), we have the
solution to our integral equation.

Finally, the difference of any two solutions of (2.1.2) is a solution of
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the homogeneous equation (3). Hence, the most general solution of the
inhomogeneous integral equation (2.1.2) has the form

g(s) = G(8) + o, go1 () + 23 go2(8) + - + 2, 6,(5) , (16)

where G(s) is a suitable linear combination of the functions a,(s),

a (.5‘), M) ﬂ'n(S).

We have thus proved the theorem that, if A= 4, is a root of multi-
plicity m=1 of the equation D(4)=0, then the inhomogeneous
equation has a solution if and only if the given function f(s) is orthogonal
to all the eigenfunctions of the transposed equation.

The results of this section can be collected to establish the following

theorem.

Fredholm Alternative Theorem. Either the integral equation
g(s) = f(s) + 2 [ K(s, 09 (1) dt (17)

with fixed 1 possesses one and only one solution g(s) for arbitrary
P,-functions f(s) and K(s,1), in particular the solution g =0 for
f=0; or the homogeneous equation

9(s) = 4 [ K(s,0)g (1) dt (18)

possesses a finite number r of linearly independent solutions gg;,
i=1,2,---,r. In the first case, the transposed inhomogeneous equation

V() = )+ 4 [ K(t,5) (1) di (19)

also possesses a unique solution. In the second case, the transposed
homogeneous equation

V() = A [ K@) de (20)

also has r linearly independent solutions g, i=1,2,---,r; the in-
homogeneous integral equation (7) has a solution if and only if the given
function f{s) satisfies the r conditions

(Vo) = ff(S)'#m(S} ds=0, i=12""r. (1)

In this case, the solution of (17) is determined only up to an additive
linear combination ¥ 7_, ¢;go;
The following examples illustrate the theorems of this section.
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Example 7. Show that the integral equation

2
g(s) = /() + (Um) | [sin(s+0]g () di (1)

0

possesses no solution for f{s) = s, but that it possesses infinitely many

solutions when f(s) = 1.

For this equation,
K(s,t) = sinscost + cosssint ,
a,(s) = sins, a,(s) = coss, b,(ty = cosr, by(f) = sint.

Therefore,
2

a,, = J- sinfcostdt = 0 = a,, ,

Il
Se—p ©

1 — A 1 2
= =1— ) 2
D(A) e I | 1—A*m (2)
The eigenvalues are A1, =1/n, 4, = —1/n and equation (1) contains
A, =1/ n. Therefore, we have to examine the eigenfunctions of the trans-
posed equation (note that the kernel is symmetric)
27
g(s) = (lf::}J‘sin(s+r)g(r)dr . (3)
0
The algebraic system corresponding to (3) is
¢, — Ane, = 0, —Ane, + ¢, =0,
which gives
cy = C, for A, = l/n; €, = —C3 for A, = —1/n.

Therefore, the eigenfunctions for A, = I/ follow from the relation
(2.1.5) and are given by
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g(s) = c(sins + coss) . (4)
Since

2
f(ssins+.s‘coss) ds = —2n # 0,
0

while

2
I (sins + coss)ds =0,
0

we have proved the result.

Example 2. Solve the integral equation
1
9G) = f(5) + A [ (1 -3s)g ()t 5)
0

The algebraic system (2.1.9) for this equation is

(I1-=De, + 3Aey = f, —3tey +(1+Dey, =15, (6)
while

-2 34

b=\ 3 1+A|=&(4~Az). ™

Therefore, the inhomogeneous equation (5) will have a unique solution
if and only if 4 # + 2. Then the homogeneous equation

1
g(s) = A [ (1=3s1)g (1) dr (8)
0

has only the trivial solution.

Let us now consider the case when A is equal to one of the eigenvalues
and examine the eigenfunctions of the transposed homogeneous
equation

g(s) = AI(I-—Bsr)g(:) dt . (9)

For 1 = +2, the algebraic system (6) gives ¢, = 3c,. Then, (2.1.5) gives
the eigenfunction

g@s) = c(l-s), (10)
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where ¢ is an arbitrary constant. Similarly, for A = — 2, the correspond-
ing eigenfunction is
g(s) = c(1—-3s5). (11)
It follows from the above analysis that the integral equation

1
g(s) = £ +2 [ (1350 g (1) dt
0
will have a solution if f(5) satisfies the condition
1
[a=91rds =0,
Q
while the integral equation
1
9(s) = fs) =2 [ (1 =3s1) g (1) dt
i
will have a solution if the following holds:

1
_f{l —35)f(s)ds = O .
]

VOLTERRA INTEGRAL EQUATION

The same iterative scheme is applicable to the Volterra integral
equation of the second kind. In fact, the formulas corresponding to
(3.1.13) and (3.1.25) are, respectively,

9(s) = f(s) + 3. i [ KoGs.0f () di | (1)

g(s) = f(s) + 2 [ T(s,: )/ dt (2)
where the iterated kernel K,,(s, t) satisfies the recurrence formula
Kul(s,0) = [ K(s,%) Kp 1 (x,1) dx 3)
t

with K, (s,1) = K(s, 1), as before. The resolvent kernel I'(s, 7; A1) is given
by the same formula as (3.1.26), and it is an entire function of A for any
given (s, t) (see Exercise 8).

We shall illustrate it by the following examples.
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From the formula (3.3.3), we have

Kl(3$r) = (S_I) .

- a3
K;(s,1) =.[{s—x)(x—f) dx = (33:) s

o 3 S
Koo = | © x);!x 0 %

I
and so on. Thus,

2 3 4 5
st s s s
gis) =1 +s+ﬂ(2—! +3—_,)+ 12(E+§)+ e 2
For A =1, g(s) =¢°.

Example 2. Solve the integral equation

9(s) = f(s) + 4 [ e~ g(0) dt 3
0

and evaluate the resolvant kernel.
For this case,
KI(S? t) = es—r ’
K,(s, 1) = fes“e‘”‘ dx = (s—1)ef™",

-2
Ks(s,1) =f(x—r)e‘“e*"dx =S5
‘ !
(s—pm~ 1 _
K, (5,1 = ———¢e"
m (8, 1) E—
The resolvent kernel is
= Am—l(s_r)m—l r<s,
| . AAT 15 —1)
C(s,t4) =1 € Zl m-nt ¢ ’ (4)
o, " > 5.

Hence, the solution is
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g(s) = f(s) + A _[ AT DG £0py |
[n ]

41. THE METHOD OF SOLUTION OF FREDHOLM

In the previous chapter, we have derived the solution of the Fredholm
integral equation

9(s) = f(9) + 4 | K(s,0g(t) dt (1)

as a uniformly convergent power series in the parameter 4 for |A| suitably
small. Fredholm gave the solution of equation (1) in general form for
all values of the parameter A. His results are contained in three theorems
which bear his name. We have already studied them in Chapter 2 for
the special case when the kernel is separable. In this chapter, we shall
study equation (1) when the function f(s) and the kernel K(s,t) are
any integrable functions. Furthermore, the present method enables us
to get explicit formulas for the solution in terms of certain determinants.
The method used by Fredholm consists in viewing the integral
equation (1) as the limiting case of a system of linear algebraic equations.
This theory applies to two- or higher-dimensional integrals, although we
shall confine our discussion to only one-dimensional integrals in the
interval (a, b). Let us divide the interval (g, b) into # equal parts,

s,=tHh=a, S§=L=a+h, .., Ss==a+m-1)h,
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where i = (b — a)/n. Thereby, we have the approximate formula
[ KG.og@ar =~ n ,-Z:.K("’ PYIOE 2
Equation {1) then takes the form
() = S() + A 3 K559 (55 3
which must hold for all values of 5 in the interval (a, #). In particular,

this equation is satisfied at the »n points of division s;,, f =1, ...,n. This
leads to the system of equations

GG = Ss) + 3 3 Ksouspa (). 0= l.n. @
Writing
f(si) :.ﬁ > g(si) = d;i » K(Sis'-"j) = ij > (5)

equation (4) yields an approximation for the integral equation (1) in
terms of the system of » linear equations

Ll
g — 23 Kipg; =1 f=1...n, ©®

in 7 unknown quantities g,, ..., g,- I he values of g; obtained by solving
this algebraic system are approximate solutions of the integral equation
(1) at the points s,, 52, ..., 5,- YWe can plot these solutions g; as ordinates
and by interpolation draw a curve g{s) which we may expect to be an
approximation to the actual solution. With the help of this algebraic
system, we can also determine approximations for the eigenvalues of
the kernel.
The resolvent determinant of the algebraic system (6) is

I—Mij —M.K]z .. —j.hKln
— ARK 1 — AhK — AAKS,

D"(Jl) — . 21 22 2 (7}
— ARK,, —2hK,, - 1—AhK,,

The approximate eigenvalues are cobtained by setting this determinant
equal to zero. We illustrate it by the following example.
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Example.

g(s) - Ajsm(sﬂ)g(:)dz =0,
]

By taking n =3, we have h = /3 and therefore
.5'1=I|=U, 32=f2=ﬂ,{3, S3=I3=2ﬂfl3,

and the values of K;; are readily calculated to give

0 0.866  0.866
(K,) =| 0866 0866 0
0866 0  —0.866

The homogeneous system corresponding to (6) will have a non-
trivial solution if the determinant

1 ~0.9072  —0.9074
D,(l) =| —09072 (1-0907)) 0 =0,
~09072 0 (1+0.9071)

or when 1-3(0.0907)242 = 0. The roots of this equation are 1=
+0.6363. This gives a rather close agreement with the exact values (see
Example 3, Section 3.2), which are +./2/r = + 0.6366.

[n general, the practical applications of this method are limited
because one has to take a rather large n to get a reasonable approxi-
mation.
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4.2. FREDHOLM'S FIRST THEOREM

The solutions g¢,,¢,,...,g, of the system of equations (4.1.6) are
obtained as ratios of certain determinants, with the determinant D, (/)
given by (4.1.7) as the denominator provided it does not vanish. Let us
expand the determinant (4.1.7) in powers of the quantity (— k). The
constant term is obviously equal to unity. The term containing ( — Ah)
in the first power is the sum of all the determinants containing only one
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The analysis is simplified by introducing the following symbol for
the determinant formed by the values of the kernel at all points (s, 1))

K(Slﬁrl) K(sl’ !2) K(S],f”)

K(Si!srl) K{Sb fz} T K{Sz,f”) _ K(Shsl'p-..,xfn) , (2)
: fislan i,

K{Su! Il} K(Sm Il) K(Sn! 'rn)

the so-called Fredholm determinant. We observe that, if any pair of
arguments in the upper or lower sequence is transposed, the value of
the determinant changes sign because the transposition of two arguments
in the upper sequence corresponds to the transposition of two rows of
the determinant and the transposition of two arguments in the lower
sequence corresponds to the transposition of two columns.

In this notation, the series (1) takes the form

D,(A) =1 —h anc( )+(-,u:)= i K(°r%
maA o _ 5o S 21 - 8,5
p=1 pg=1 e
(—-2h)? < S ps Sq S
NS K(S:’S:,SF)JF---. 3

pogr=1

If we now let n tend to infinity, then 4 will tend to zero, and each term
of the sum (3) tends to some single, double, triple integral, etc. There
results Fredholm’s first series:

A2 S1s 82
DA)=1-4A| K(s,9)ds+—| K ds, ds,
21! 51,52

Jla 81, 52,53
— K rUe cae 4
3!J‘J]. (3“32’53 ds, ds, dsy + 4)

Hilbert gave a rigorous proof of the fact that the sequence D,(1)— D(4)
in the limit, while the convergence of the series (4) for all values of A
was proved by Fredholm on the basis that the kernel K(s, 1) is a bounded
and integrable function.! Thus, D(A) is an entire function of the complex
variable A.

We are now ready to solve the Fredholm equation (4.1.1) and express
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the solutions in the form of a quotient of two power series in the
parameter A, where the Fredholm function D(4) is to be the divisor.
In this connection, recall the relations (2.3.6) and (2.3.7). Indeed, we
seek solutions of the form

g(s) =f(s) + 4 j Uis, t; ) f(0) dt (5)

and expect the resolvent kernel I'(s, £; 1) to be the quotient
[(s,1;2) = D(s,t; 1)/ D(4), (6)
where D(s,1; A), still to be determined, is the sum of certain functional

series.
Now, we have proved in Section 3.5 that the resolvent ["(s, 7; 4) itself
satisfies a Fredholm integral equation of the second kind (3.5.5):

C(s,t0) = K(s, 1) +AJK(s,x}F(x,t;A) dx . (7
From (6) and (7), it follows that
D(s,t;4) = K(s,1) D(4) + AJ. K(s,x) D(x,1;2) dx . (8)

The form of the series (4) for D(A) suggests that we seek the solution of
equation (8) in the form of a power series in the parameter A:

P (— W
D(s,r;l)=Cﬁ(s,r)+Z( 2
p=1

Co(s.0) . &)

For this purpose, write the numerical series (4) as

< (- ,l)"

D(A) = (10)

¢ _I J. (s“sb' "’)dsl ds, . (an
sl"gzs- L) p

The next step is to substitute the series for D(s, 1;A) and D(A) from (9)
and (10) in (8) and compare the coefficients of equal powers of A. The
following relations result:

Cols, 1) = K(s,1), (12)
Cplsst) = ¢, K(s,) = p [ K(5,%) oy (x,0) dix . (13)

where

Our contention is that we can write the function C,(s,7) in terms of
the Fredholm determinant (2) in the following way:
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C,(s5,0) =J-.-IK(S’X"IZ"“’xf)dxl cedx, . (14)
stls-xzv---)xp
In fact, for p = 1, the relation (13) becomes

C,(s,0) = ¢, K(s 1) — f K(s,%x) Co(x, 1) dx
— K(s, 1) _[' K(x, x) dx — f K (s, x) K(x, 1) dx

_ J'K(S x) dx (15)
I X

where we have used (I11) and (12).
To prove that (14) holds for general p, we expand the determinant
under the integral sign in the relation:

K(S) f) K(S>x1) me K(S’xp)
K S,xl,‘--,xp . K(xlsl) K{xlsxl) . K(x]’xp}
1, Xy, a X, o ?
K(xp) f) K(xp)xl) e K{xpsxp)

with respect to the elements of the given row, transposing in turn the

first column one place to the right, integrating both sides, and using the

definition of ¢, as in (1 1); the required result then follows by induction.
From (9), (12), and (14) we derive Fredholm’s second series:

D(s,t;i}=K(s,r)+Z( ‘l)pf j (‘:i‘ )dxl-—-dxp.(lﬁ)

p=1 "

This series also converges for all values of the parameter A. Itis interesting
to observe the similarity between the series (4) and (16).

Having found both terms of the quotient (6), we have established the
existence of a solution to the integral equation (4.1.1) for a bounded and
integrable kernel K (s, 7), provided, of course, that D(4) = 0. Since both
terms of this quotient are entire functions of the parameter A, it follows
that the resolvent kernel I'(s, ;1) is a meromorphic function of A,
i.e., an analytic function whose singularities may only be the poles,
which in the present case are zeros of the divisor D(A4).

MNext, we prove that the solution in the form obtained by Fredholm
is unique and is given by

g(s) = £(5) + AI (s, 13 4) £ (D) dr . a7n
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In this connection, we first observe that the integral equation (7) satisfied
by I'(s,t;4) is valid for all values of A for which D(1)# 0. Indeed,
(7) is known to hold for |A| < B! from the analysis of Chapter 3,
and since both sides of this equation are now proved to be meromorphic,
the above contention follows. To prove the uniqueness of the solution,
let us suppose that g(s) is a solution of the equation (4.1.1) in the case
D(A)y # 0. Multiply both sides of (4.1.1) by I'(s, #; 1), integrate, and get

I [(s,x;A)g(x)dx = jl"(s,x;l)f{x) dx

+4 U C(s, x; A K(x, 1) dx] g de. (18)
Substituting from (7) into left side of (18), this becomes

f K(s, 1) g(t) dt = j (s, x; 1) f(x) dx , (19)
which, when joined by (4.1.1), yields
g() =)+ A [ T, 150 (1) dr (20)

but this form is unique.
In particular, the solution of the homogeneous equation

g(s) = 1 [ K(s,ng(1) dr 21
is identically zero.
The above analysis leads to the following theorem.

Fredholm’s First Theorem. Theinhomogeneous Fredholmequation

9(9) = /) + A [ K(s,ng (@) dt , 22)
where the functions f(s) and g(¢) are integrable, has a unique solution
9(s) = f() + 4 [ D(s,1: Sy at , 23

where the resolvent kernel T'(s,7;4),
[(s,1:4) = D(s,1;4)/D(4) , (24)

with D(4) # 0, is a meromorphic function of the complex variable A,
being the ratio of two entire functions defined by the series

D(s,t:3) = K(s, r)+z (= )P.[ f (f f" . p)dxl -dx,, (25)

p=1
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and

D) =1+ ( ’WJ‘ f (i' ’x”)dxl...dx,, (26)
p— 1

both of which converge for all values of A. In particular, the solution of
the homogeneous equation

g(s) = 4 [ K(s,1)g (1) dt 7)
is identically zero.

4.3. EXAMPLES

Example 1. Evaluate the resolvent for the integral equation

1
9(s) = f&) + A [ (s+Dg @) dr . (1)
o
The solution to this example is obtained by writing
< (=P < (=)
renn - > CF e |[> S, @
=10 =0
where C, and ¢, are defined by the relations (4.2.11) and (4.2.13):
o =1, Co(s, 1) = K(s5,0) = (s+1) . 3)
¢y = | Cpor(s,9)ds, 4)
1
Cp = ¢, K(s,0) = p [ K(s,X) ¢, (x, N dx. (5)
0

Thus,
1
cy = JEsds =1,

1
C,(5,0) = (s4+1) — j (s+x)(x+) dx = L(s+1) — st — %,
(]

€y = (3—32—§) ds = —¢ ,
|
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Cy(s,f) = —L(s+1) =2 j (s+X)[L(x+8) —xt —H]dx = 0.
0

Since C,(x, ) vanishes, it follows from (5) that the subsequent co-
efficients C; and ¢, also vanish. Therefore,

(s+1)—[F(s+8) —st—1]14

r 5 ;j. = 3
(.13 4) [ — 2 - (212) ©)
which agrees with result (2.2.8) found by a different method.
Example 2. Solve the integral equation
I
g(s) = s+ 4 f [st+(s1)%1g (1) dt . (7
0
In this case,
co=1, Col(s,0) = st +(s1)*,

¢ = f](S“JrS)ds =,
6
Ci(s,1) = §[st+(s0)] - Jl [sox + (sx)%%] [xt + (x1) ] dt
= 45t + §(s1)" — Oé(sr"&ﬂs”’*) :
;= J!{%.5'2+-}3—§s”5)ds = 1775,
Cy(s,0) = ;,

and therefore all the subsequent coefficients vanish. The value of the
resolvent is

st + (0% — {dst + 1(s0)% — F(sr%+ 5V 0)}A

I'(s,1;4) = 8
(5,1:4) [ — 34+ (1/150) A2 ®
The solution g (s) then follows by using the relation (4.2.23),
150s + A(60 /s —755) + 21A%s
g(s) = J : €)

A2 — 1254 + 150
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4.4. FREDHOLM'S SECOND THEOREM

Fredholm’s first theorem does not hold when A is a root of the
equation D(A) = 0. We have found in Chapter 2 that, for a separable
kernel, the homogeneous equation

g9() = 2 [ K(s,0g(0) at ey

has nontrivial solutions. It might be expected that same holds when the
kernel is an arbitrary integrable function and we shall then have a

spectrum of eigenvalues and corresponding eigenfunctions. The second
theorem of Fredholm is devoted to the study of this problem.

We first prove that every zero of P(A) is a pole of the resolvent kernel
(4.2.24); the order of this pole is at most equal to the order of the zero
of P2(A). In fact, differentiate the Fredholm’s first series (4.2.26) and
interchange the indices of the variables of integration to get

D’ (A) = —J‘ D(s,s; A) ds . 2)
From this relation, it follows that, if A, is a zero of order & of D(A),
then it is a zero of order kX — 1 of (1) and consequently A, may be a

zero of order at most £ — 1 of the entire function D(s,r;A). Thus, Ag
is the pole of the quotient (4.2.24) of order at most k. In particular,
if Ay is a simple zero of D(1), then D(AL) =0, D'(A3) =0, and A, is
a simple pole of the resolvent kernel. Morecover, it follows from (2) that
D(x,¢; )= 0. For this particular case, we observe from eqguation
(4.1.8) that, if D(A) =0 and D(s,r; A) = 0, then D(s,¢; 1), as a function
of s, is a solution of the homogeneous eguation (1). So is xD(s,r; 1),
where o is an arbitrary constant.
I et us now consider the general case when A is a zero of an arbitrary
multiplicity #7, that is, when
D(lo} = 0’ R D{r}(;"-o) = 0 » Dtm}(lﬂ} ?“r__ 0 EY (3)
where the superscript r stands for the differential of order r, r=1,

v.na mi— 1. For this case, the analysis is simplified if one defines a
determinant known as the Fredholm minor:

D (31,32,---, ] ;’L)

‘rla 'r2’-- £l u

- K 51,32,--—13..)+ o (— AP
tl’£2""- =1 p!
[ [ e, @
Il—’ = N’xly--’a

where {s;} and {#}, i=1,2.....mn, are two sequences of arbitrary
variables. Just as do the Fredholm series (4.2.25) and (4.2.26), the series
(4) also converges for all values of A and consequently is an entire
function of 4. Furthermore, by differentiating the series (4.2.26) n times
and comparing it with the series (4), there follows the relation
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D@D _ 1 s S,
o (n"ff (S A)a'sl - ds, (5)

From this relation, we conclude that, if 4, is a zero of multiplicity m
of the function D(A), then the following holds for the Fredholm minor
of order m for that value of 4;:

,10) #0.

S1582 cees S

" (r,, f2sees b

Of course, there might exist minors of order lower than m which also do
not identically vanish (compare the discussion in Section 2.3).

Let us find the relation among the minors that corresponds to the

resolvent formula (4.2.7). Expansion of the determinant under the

integral sign in (4),

K(s,ty) K(sy, 1) - K(s,t) K(s,x) - K(s,,xp)
K(sy, 1) K(sp,13) - K(sp, 1) K(sp,xy) - K($3,x,)
KGwt) Kmt) o KGpt) KGpx) - Kepx) | ©
K(x,t;) K(x,t) - K(x,t) K(xy,x) - K(xhxp)
K(xps:l) K('tpsfl} e K(XPSIM} K(xpvxl) e K(xpsxp)

by elements of the first row and integrating p times with respect to
Xy, X2, ..., X, fOr p= 1, we have

RTINS PR o
() o,
Fisorslyy X1y ey X
Z — 1K (s, 1)
NP TR R o 1
.[ J. ( ] LR T ] ny-*1s ] p-) dxlde“'dxp
Il,..+,!h_|,f,,+l,...,Fﬂ,xl,...,xp
+z(_])h+n—l

=1
Spr X1s X2y wevy Xpy oeny Xp
J .[K(Slaxh)K(
sl e by Xy s Xp— 13 X 15 -2 X
x dxy - (7
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Note that the symbols for the determinant K on the right side of (7) do
not contain the variables s, in the upper sequence and the variables ¢,
or x, in the lower sequence. Furthermore, it follows by transposing the
variable s, in the upper sequence to the first place by means of A+n—2
transpositions that all the components of the second sum on the right
side are equal. Therefore, we can write (7) as

"'J\K(SI"“’SN'XI' --°9xp)
.r,....,.r,,,x.,...,xp
< h+1
+
= Z (—1 K(sy,1y)
k=1
Say.nn S Xy oeea X
x |- | K[ mRTTTr Y dxy - dx,
rl!+"9Ih—19rh+]3“'9In"x11'-+s-xp
Ky Ty veeaFa Xy ovs Xy
Fistaseeinlyy Xqyoony Xpo g
x dxy e dx,_ .] dx (8)

where we have omitted the subscript # from x. Substituting (8) in (7),
we find that Fredholm minor satisfies the integral equation

n
Spseees Sy h+1 834 --. P P
D, A) = (—1 K(s,, 1) D, _ ( )
( ) ;,ZI v BT T Y X

U
Xy X9p.eun ¥

+ i | K(s,,x) D, z "

tirtas oty

;L) dx . (9)

Expansion by the elements of any other row leads to a similar identity,
with x placed at the corresponding place. If we expand the determinant
(6) with respect to the first column and proceed as above, we get the
integral equation

PR ¥ - S5 aees S (55 U ¥
D,,( v ,1) = > (=1 K1) Doy (f' e ;‘)
FEEEE] s iy

Lis ool =

+1fK{x,r,)D,(S""' ’S")dx, (10)
K

I3, .- 0y

and a similar result would follow if we were to expand by any other
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column. The formulas (9) and (10) will play the role of the Fredholm
series of the previous section.

Note that the relations (9) and {(10) hold for all values of 4. With the
help of (9), we can find the solution of the homogeneous equation (1) for
the special case when 4 =4, is an eigenvalue. To this end, let us suppose
that A = A, is a zero of multiplicity m of the function D(A). Then, as
remarked earlier, the minor D, does not identically vanish and even the
minors D, D,,..., D,,_, may not identically vanish. Let D, be the
first minor in the sequence D, D,,...,D,_, that does not wvanish
identically. The number r lies between 1 and m and is the index of the
eigenvalue A, as defined in Section 2.3. Moreover, this means that
D__, = 0. But then the integral equation (9) implies that

%) (1)

1s a solution of the homogeneous equation (1). Substituting s at different
points of the upper sequence in the minor D,, we obtain r nontrivial
solutions g;(s), i=1,...,r, of the homogeneous equation. These
solutions are usually written as

40)

Dr(sh---a"iilasr S TREErE

O —
Fineens 1,

g1 () = D,(

Fiwan il ]
®D,(s) = ' s . di=1,2,...,r. (12)
Spusene®is yofisd: WO, |
Dr 1% i—1 ] + 1 r ‘10
F fr — w Lo

Observe that we have already established that the denominator is
not zero.

The solutions @, as given by (12) are linearly independent for the
following reason. In the determinant (6) above, if we put two of the
arguments s; equal, this amounts to putting two rows equal, and
consequently the determinant vanishes. Thus, in (12), we see that
®d, (5;) =0 for i # k, whereas @, (s5;) = 1. Now, if there exists a relation
3, C. ®,=0, we may put s=s;, and it follows that C;=0; and this
proves the linear independence of these solutions. This system of
solutions @; is called the fundamental system of the eigenfunctions
of 1y, and any linear combination of these functions gives a solution
of (1).

Conversely, we can show that any solution of equation (1) must be
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a linear combination of @, (s), ®,(s), ..., P (5). We need to define a
kernel H (s, r; A) which corresponds to the resolvent kernel I' (s, r; ) of

the previous section
Sgy-n-
tl L ]

In (10), take » to be equal to r, and add extra arguments s and ¢ to

obtain
,a(,)

% S Pa—
D,
[ I U A
Iy Ss s S 1y St g5 -

L . &

H(s, t; 1) = D,.+1(I ;
ES 1:--'9

A.}) ) (13)

,1.,) — K(s,0) D, ”:"“"S"
1 =n=

LI &

r

> 1P K D

h=1

+ AQJK(L:) D, (-:S;,----,S.-

1» --:rtr

IE‘13 tls*—- 1rr

%)

,-10) dx . (14)

In every minor D, in the above equation, we transpose the variable s
from the first place to the place between the variables 5, _, and s,,,
and divide both sides by the constant

}'D) o 0 »

H(s,r; A — K(s,1) — AOJH(:,J:;A) Ki{x,r) dx

Spyeens Sy

D,

gy ores dp
to obtain

— _ﬁi. K(5,.7) @, (5) . (15)

If g(s) is any solution to (1), we multiply (15) by g(¢) and integrate
with respect to z,

fg(t)h'(-f,!;l)df— —IQ{X)r(s,x;A) dx

S g (sp)
A=1 Ao

where we have used (1) in all terms but the first; we have also taken
Ao _f K(sp, 1) g(t)dt = g(s,). Cancelling the equal terms, we have

D,(s) (16)
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96) = 3 gD - (17)

This proves our assertion. Thus we have established the following result,

Fredholm’s Second Theorem. 1If /, is a zero of multiplicity m
of the function D (A1), then the homogeneous equation

g(s) = Ao [ K(s,)g(0) at (18)

possesses at least one, and at most m, linearly independent solutions

).

i=1,..,r: l1l<r<m (19

519"-;S|':—|s553i+11 wees Sy

g:(s) = Dr(

1% »=- :fr

not identically zero. Any other solution of this eqguation is a linear
combination of these solutions.

4.5. FREDHOLM’'S THIRD THEOREM

In the analysis of Fredholm’s first theorem, it has been shown that
the inhomogeneous equation

g(s) = () + 4 [ K(s,0g(0) d O

possesses a unique solution provided D(4)# 0. Fredholm’s second
theorem is concerned with the study of the homogeneous equation

g(s) = 4 [ K(s,0g (1) dt ,

when D(4) =0. In this section, we investigate the possibility of (1)
having a solution when D(A) =0. The analysis of this section is not
much different from the corresponding analysis for separable kernels as
given in Section 2.3. In fact, the only difference is that we shall now give
an explicit formula for the solution. Qualitatively, the discussion is the
same.

Recall that the transpose (or adjoint) of equation (1) is (under the
same assumption as in Section 2.3)
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b
W) = S() + 4 [ Kty dr . @)

It is clear that Fredholm’s first series D(A) as given by (4.1.26) is the
same for the transposed equation, while the second series 1s D(zs,5;4)

Gl P e ST e o

as obtained from (4.1.25) by interchanging the roles of s and /. This
means that the kernels of equation (1) and its transpose (2) have the
same eigenvalues. Furthermore, the resolvent kernel for (2) is

(s, 5:4) = D(,s; )/ D(A) , (3)
and therefore the solution of (2) 1s
U (s) = S() + 4 [ [Dt, 552/ DLW et @

provided A is not an eigenvalue.

It is also clear that not only has the transposed kernel the same cigen-
values as the original kernel, but also the index r of each of the eigenvalues
is equal. Moreover, corresponding to equation (4.4.12), the ecigen-
functions of the transposed equation for an eigenvalue for 4, are given as

. s,
D, r“ r 1,1 ’t AO)
“Pi(t) — 1y vongbje— 13 Fn #f4 ] 3=mny Sp , (5)
(.5'1,.., 3 )
Dr "10
D DI N R 3
where the wvalues (s,,....s.) and (7,,....7) are so chosen that the

denominator does not vanish. Substituting » in different places in the
lower sequence of this formula, we obtain a linearly independent system
of » cigenfunctions. Also recall that each @, is orthogonal to cach
Y¥; with different eigenvalues.

If a solution g(s) of (1) exists, then multiply (1) by each member
W,(s) of the above-mentioned system of functions and integrate to
obtain

[9G)Puts) ds — 4 [ [ K(s, 0 g (0 Wi (s) dst

(6)
[ o) ds W) — A [ Kt ) We() di] = 0,

[ A ¥uts) ds =

where the term in the bracket vanishes because W, (s) is an eigenfunction
of the transposed equation. From (6), we see that a necessary condition*
for (1) to have a solution is that the inhomogeneous term jf(s) be
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orthogonal to each solution of the transposed homogeneous equation.

Conversely, we shall show that the condition (6) of orthogonality is
sufficient for the existence of a solution. Indeed, we shall present an
explicit solution in that case. With this purpose, we again appeal to the
resolvent function H(s, 7; 1) as defined by (4.4.13) under the assumption
that D, £ 0 and that r is the index of the eigenvalue A,.

Our contention is that if the orthogonality condition is satisfied,
then the function

Go(s) = S() + Lo [ H(s,t;2)/() dr (7)
is a solution. Indeed, substitute this value for g(s) in (1), obtaining
S + do [ H(s, 5DF() dt = f(5) + 2o [ K(s,1)
< [f(1) + Ao f H (1, x; D) f(x) dx] dt

or
jf(:) dt [H(s, 1:4) — K(s,1) — Ag f K(s,x)YH(x,t;2)dx] = 0. (8)
Now, just as we obtained equation (4.4.15), we can obtain its “transpose,”
His, t;2) — K(s.1) — Jo | K(s,X) H(x, ;1) dx
= _hil K(s, 1) W, (D) . @)

Substituting this in (8) and using the orthogonality condition, we have
an identity, and thereby the assertion is proved.

The difference of any two solutions of (1) is a solution of the
homogeneous equation. Hence, the most general solution of (1) is

96 = f(5) + 3o [ H: /W d + ¥ G0 . (10)

The above analysis leads to the following theorem.

Fredholm’s Third Theorem. For an inhomogeneous equation

g(s) = f() + Ao [ K(s,0g (1) dr (n

to possess a solution in the case D(21,) = 0, it is necessary and sufficient
that the given function f(s) be orthogonal to all the eigenfunctions
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W.(s), i=1,2,...,v, of the transposed homogeneous equation corre-
sponding to the eigenvalue 4,. The general solution has the form

g(s) =f(s)+AOI[Dr+l(S,31531,...,Sr lg)]/D,(':”s”""j' io)
ITREE y I

Lty ok
x f(1) dt + i C,D,(s). (12)
h=1
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Possible OQuestions
UNIT III
Part — B (Six Marks)

1.Solve g(s) =1+ /lfol(l — 3st)g(t)dt.
2.0btain the reduction to a system of algebraic equation.
3.Show that the integral equation

g(s) = f(s) + %f:n sin(s + t) g(t)dt passes number of solution

for f(s) = s it passes many solution when f(s) = 1.
4.Find the resolvent kernel for the integral equation

9(s) = f(s) + A [ (st + s2t?)g(t)dt
5.State and prove Fredholm theorem for First and Second Kind.

6.Solve g(s) = f(s) + 1 fos e~ g(t)dt and evaluate resolvent
kernel.
7.State and prove Basic Fredholm theorem.

8.Show that the integral equation g(s) = f(s) + 2 fol(l —3t)g(t)dt

will have a solution if f satisfies the condition [ 01(1 —s)f(s)ds =0
9.Solve the IE and find the Eigen value of

1
g(s) = f()+ [ (s +t)g(t)de.
10.State and prove Ferholm’s First Theorem

PART-C (Ten Marks)
11.Explain the Fredholm alternative approximate method.
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UNIT Il

1.

The non homogeneous integral equation of the type
b b
K(s t)g(t)dt Al K(st t)dt
KG9 o A, K(s0) g(t) ¢, gls)=fls)+

If the upper limit of the integral equation is a variable then the integral equation is called

a.Abel’s equation b.Volterra integral equation  c.homogeneous equation d.Laplace equation

Find k1(s,t) for the integral equation g(s)=(1+s)
a.s+t b.s-t c.t d.s/t
Find k2(s,t) for the integral equation g(s)=f(s)+

a.s-t b.s-t est c.t d.st

The most general form of linear equation is h(s)g(s)=

a.8(s)=f(s)+ * I K Co D o an b.‘l fﬁb K(s t) g(t)dt c. Fls) + A f k(s tydt d. g(s)=f(s)/ A [P K (s D g(O)de

R = £ + A [ k(s g o) ar

In the linear integral equation where the upper limit may be

a.fixed b.variable c.constant d.either variable or fixed
If h(s)=1 in the linear integral equation it is known as the fredholm integral equation is of the type

AT K(s ) g(t)de d.g(s)=F(s) A [P K (s ) g(t)dt

a.first kind b.second kind c.homogeneous fredholm integral equation d.third kind
In the separable kernel k(s,t)=5i=1nai (s) bi (t) the functions ai(s)can be assumed to be

a.Independent b.dependent c.linearly independent d.equal
In the kernel set k(s,t)=s+t,a2(s)=

a.S b1l c.2 d.t

The non homogeneous Fredholm integral equation is g(s)

a.g(s)=f(s)+ 4 J= K (s D g()ar b.f(s)+Afk(s,)g(t)dt  cAfk(s,t)g(t)dt d.g(s)=f(s)/ 1= KD g(D)dr



10. A non-homogeneous Fredholm integral equation with seperable kernel has one and only solution and is given by
a.g(s)=f(s)+AJT(s,t;e)f(t)dt b.AST(s,t;N)f(t)dt . 1+AJT(s,t;A)g(t)dt d.gls)= 2 K= Dgar

11. The non-homogeneous Fredholm integral equation reduces algebraic system of equation of the form

c; — @ € = fowhere i = 1,2,3 ... - P o ~ o = O
a. Z bZi c. Z‘ d.o
12. In the non-homogeneous Fred Holm integral equation the solution of I'(s,t;A) is given by
a.D(s,t;A)/D(A) b.D(s,t;A)/D(t) c.D(s,t;A)/t d.none of these
13. y"+ A(S)y'+B(S)Y= F(S) is
a.Initial value problem b.Boundary value problem c. Fredolm’s equation d.Parseval’s equation
14. The kernel K(s,t)= H(s,t)|t-s|a, O<a<1 is
a.Singular b. Weakly singular c.Strongly singular d.Regular
15. The integrable equation g(s) = f(s)+ g(t) dtis known as
a.a non —homogeneous fredholm IE b.a homogenous fredholm IE
c.a non —homogeneous volterra IE d.a homogeneous volterra IE
16. Fc[f(at);€]=
-1
2.0 b. % Fo gy, ¢/ ¢. %F [5(y), ¢/ d.1
17. The general form of voltera integral equation,if h(s)=0 is
a. A[D k(s,)g(e)de b.f(s)+ A k(s )g(B)de c.f(s)+ J; k(s £} g(e)de d. Lgk(s, £ o (D e
18.The most general type of the linear integral equation is of the form
AP K(s ) g(t)dt
a.g(s)=f(s)+ “rﬁ (s 8)9(2) b.g(s)h(s)=f(s)+g(s) c.AJk(s,t)g(t)dt d.g(s)+h(s)=f(s)+g(s)
18. In the linear integral equation if the upper limit of the integration is a fixed constant it is called
a.Fredolm integral equation b.voltera integral equation c.homogeneous equation d.Laplace equation

19. The abbreviate notation is called laplace integral equation



a.z=f(x,y) b. Z<f(xy) c.Z>f(x,y) d.z=0

20. The most general form of is h(s)g(s)=f(s)+
a.linear integral equation b. integral equation c.fredholm IE d.Abel’s integral equation
21. In the linear integral equation h(s)g(s)= f(s)+ A _I“: k(s g (t)de where the may be either variable or fixed
a. upper limit b.lower limit c.both upper and lower limit d.no limit
22. If in the linear integral equation it is known as the fredholm integral equation is of the type of second kind
a.h(s)=0 b.h(s)=1 c.h(s)>0 d.h(s)<0
23. If h(s)=1in the linear integral equation it is known as the is of the type of second kind
a.fredholm integral equation b.linear integral equation c.homogenous IE d.voltera IE
24. The Fredholm integral equation is f(s)+ A “rﬂb k(s t)g(£)de
a.non homogeneous b.homogeneous c.liner d.non linear
25. A Fredholm integral equation with seperable kernel has one and only solution and is given by g(s)=f(s)+
ALTT(s, 6 DF (Hde
a.non homogeneous b.homogeneous c.liner d.non linear non homogeneous
26. A non homogeneous Fredholm integral equation with seperable kernel has solution
a.two b.0 c.one and only d.three
27. The non-homogeneous reduces algebraic system of equation of the form
a.linear integral equation b.Fredholm integral equation c.voltera integral equation d.homogeneous integral
equation
D(s.r;d)
28. In the the solution of 2 is given by
a. a.non-homogeneous Fred holm integral equation b.homogeneous Fred Holm integral equation
b. c. homogeneous linear integral equation d. non-homogeneous linear integral equation
28. The of a function V(y(x))= e
a.variation b.solution c.simple d.characteristic
29. A function f defined in a region v is a said to be if

a.absolutely integrable b.absolutely continuous c.absolutely dis continuous d.bounded



30.

is an even function
a.Fc(x) b.F(x)

c. Fs(x)

d.f(y)



UNIT IV

1. Once a boundary value or an initial value problems has been forulated in terms of an ..........cccc.c........ equation
a.differential  b.ordinary c.partial d.integral

2. Afundamental relationship between ................. Equations and ordinary differential equations
a.Fredolm integral equation b.voltera integral equation c.Laplace equation d.Bessel's equation

3. Afundamental relationship between Volterra Equations and ordinary differential equations with prescribed ................. value
a.bounded b.boundary c.initial d.final

4. The simple initial value problem is...................
a.y"+A(s)y'+B(S)y=F(s) b.y"+B(S)y=F(s) c.y"+A(s)y'=F(s) d.y"+A(s)y'+B(S)y=0

5. The simple initial value problem is y"+A(s)y'+B(S)y=F(s) with the condition...............

a.y(a)=0 ,y'(a)=ql b.y(a)=q0 ,y'(a)=a1 c.y(a)=q0 ,y'(a)=-q1  d.y(a)=ql ,y'(a)=q0
6. The simple initial value problem is y"+A(s)y'+B(S)y=F(s) the functions A,B and F are continuous in the closed interval.................

a.ass<1 b.0<s<b c.go<s<b dass<b
7. The Volterra integral equation y(s)=f(s)+] k(s,t) y(t) dt is the ....................kind
a.first b.second c.third d.zeroth
8. Aninitial value problem to Volterra integral equation is applicable a..................... differential equation
a.linear partial b.linear ordinary c.linear d.linear integrable

9. Aninitial value problem to Volterra integral equation is applicable a linear ordinary differential equation of order........
a.n b.n-1 c.n(n-1) d.n-2
10. Aninitial value problem to Volterra integral equation is applicable a linear ordinary differential equation of order n, when there are ....
prescribed initial conditions

a.n-1 b.n(n-1) c.n-2 d.n
11. The reduction of the initial value problem to the Volterra integral equation by introducing an ..................... function g(s).
a.Known b.unknown c.integral d.differential

12. The integral equation the value obtained for g(s) of the system,derive the ................... solution of the initial value problems



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

a.0 b.1 c.unique d.different

The integral equation the value obtained for g(s) of the system,derive the unique solution of the ............. problems
a.initial value b.boundary value c.finite value  d.infinite value
Initial value problems in ordinary differential equations lead to ..............type integral equations
a.Fredolm integral equation b.voltera integral equation c.Laplace equation d.Bessel's equation
Initial value problems in ........... differential equations lead to Volterra type integral equations
a.partial b.ordinary c.infinite d.finite
............. value problems in ordinary differential equations lead to Volterra type integral equations
a.boundary b.final c.Initial d.bounded
Boundary value problems in ordinary differential equations lead to ..............type integral equations
a.Fredolm integral equation b.voltera integral equation c.Laplace equation d.Bessel's equation
Boundary value problems in ........... differential equations lead to Fredolm type integral equations
a.partial b.ordinary c.infinite d.finite
............. value problems in ordinary differential equations lead to Fredolm type integral equations
a.boundary b.final c.Initial d.bounded
The simple boundary value problem is y"+A(s)y'+B(S)y=F(s) with the condition...............

a.y(a)=0 y'(a)=ql b.y(a)=y0 ,y'(a)=yl  cy(a)=q0 ,y(b)=-q1  d.y(a)=y0 ,y(b)=y1l
A boundary value problems in the Fredolm type integral equations the Kernel K(s,t) is ......cccc.......

a.symmetric b.asymmetric c.singular d.non singular

A boundary value problems in the Fredolm type integral equations the Kernel K(s,t) is asymmetric and discontinuous at

a.t=0 b.t=a c.t=b d.t=s



23.

24.
25.

26.

27.

28.

29.

30.

31

32.

33.

34.

A boundary value problems in the Fredolm type integral equations the Kernel K(s,t) is asymmetric and discontinuous at t=s unless

a.A<0 b.A>0 c.A=0 d.A=S
The kernel of the integral equation is that of ..................type
a. a.Integral b.volterra c.fredolm d.convolution
The..veenns of the integral equation is that of convolution type
a.value b.kernel c.singular d.limit

The kernel of the integral equation is that of convolution type equations can be solved by ............

a.Fourier b.Laplace c.Z d.inverse fourier
An integral equation is called ................... if either the range of integration is infinite
a.Singular b.non singular c.finite d.infinite

An integral equation is called singular if either the range of integrationiis .................

a.zero b.finite c.infinite d.bounded
An ... equation is called singular if either the range of integration is infinite
a.differential b.Laplace c.integral d.Bessel's

An integral equation is called singular if either the range of integration is infinite or the .......

weeeeeentransform methods

has singularities within the range of

integration
a.limit b.kernel c.boundedness d.double
An integral equation is called singular if either the range of integration is infinite or the kernel has ............. within the range of integration
a.singularities b.poles c.residues d.zero
An integral equation is called singular if either the range of integration is infinite or the kernel has singularities.............. the range of
integration
a.without b.finite c.infinite d.within
One of the simplest singular integral equations is the ..........cccuuu....... integral equation

a.Lebegue b.fourier c.finite d.Abel



35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Abel integral equation aries in the problem in................... statics

a.dynamics b.mechanics c.physics d.mechanics
In Fredholm integral equation with kernel of the type where H(s,t) is a ............. function
a.continuous b.bounded c.integral d.differential
In Fredholm integral equation with kernel of the type where H(s,t) is a bounded function can be transformed to a............... which is
bounded
a.bounded b.kernel c.continuous  d.finite

In Fredholm integral equation with kernel of the type where H(s,t) is a bounded function can be transformed to a kernel which is

a.finite b.continuous c.bounded d.infinite
If the singular kernel always exists a.........ccceuuuene integer po.
a.positive b.negative c.finite d .infinite
If the .............. kernel always exists a positive integer po.
a.poles b.residue c.singular d.non singular

If the singular kernel always exists a positive integer .............
a.po b.pl c.p2 d.p3
In Fredholm integral equation with kernel of the type where H(s,t) is a bounded function can be transformed to a kernel which is
bounded is done by the method......
a.iterated kernels b.bounded kernels c.finite kernels d.continuous kernels
In Fredholm integral equation with a kernel of the type is called .......................
a.Singular b.strongly singular c.weakly singular d.bounded singular
In Fredholm integral equation with a kernel of the type for this hypothesis, the condition ....................... is essential
a.asl b.a>1 c.o>l d.a<1
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UNIT V
SYLLABUS

Calculus of Variations and its properties-Euler’s equation- Functionals of the integral
forms-Functional dependent on higher order derivatives-Functional dependent on the
functions of several independent variables-Variational problems in parametric form.
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The method of variations in problems

with fixed boundaries

Methods of solving variational problems, i.

1. Variation and Its Properties
e. problems invol-

ving the investigation of functionals for maxima and minima, are
extremely similar to the methods of investigating functions for ma-
xima and minima. It is therefore worth while recalling briefly the
theory of maxima and minima of functions and in parallel intro-
duce analogous concepts and prove similar theorems for functionals.

1. A variable z is a function
of a variable quantity x ([writ-
ten z=f(x)] if to every value of
x over a certain range of x there
corresponds a value of 2z; i.e.,
we have a correspondence: to the
number x there corresponds a
number 2.

Functions of several variab-
les are defined in similar fashion.

2. The increment Ax of the
argument x of a function [f(x) is
the difference between two values
of the variable Ax=x—x,.
If x is the independent variable,
then the differential x coincides
with the increment, dx= Ax.

3. A function f(x) is called
continuous if to a small change
of x there corresponds a small
change in the function f(x).

1. A variable quantity vis a
functional dependent on a func-
tion y(x) [written v=vly(x)]] if
to each function y(x) of a cer-
tain class of functions y(x) there
corresponds a value v, i.e. we
have a correspondence: to the
function y(x) there corresponds
a number v.

Functionals dependent on se-
veral functions, and functionals
dependent on functions of seve-
ral independent variables are si-
milarly defined.

2. The increment, or variation,
6y of the argument y(x) of a
functional vy (x)] is the difier-
ence between two functions 8y =
= y (x) —y, (x). Here it is assumed
that y(x) varies in arbitrary
fashion in some class of functions.

3. A functional v [y (x)] is cal-
led continuous if to a small change
of y(x) there corresponds a small
change in the functional v [y (x)].

The latter definition requires some explanation, for the question
immediately arises as to what changes of the function y(x), which
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is the argument of the functional, are called small or, what is the
same, what curves y=y(x) and y=y, (x) are considered close or
only slightly different.

It may be taken that the functions y(x) and y, (x) are close if
the absolute value of their difference y(x)—y, (x) is small for all
values of x for which the functions y(x) and y, (x) are prescribed;
that is, we can consider as close such curves as have close-lying
ordinates.

However, for such a definition of proximity of curves, the func-
tionals of the kind

oly@)={F(x, y, y)ax

that frequently occur in applications will be continuous only in
exceptional cases due to the presence of the argument y’ in the
integrand function. For this reason, in many cases it is more na-
tural to consider as close only those curves which have close-lying
ordinates and are close as regards the directions of tangents at the
respective points; that is, to require that, for close curves, not only
should the absolute value of the difference y(x)—y, (x) be small,
but also the absolute value of the difference y’ (x)—y; (x).

It is sometimes necessary to consider as close only those func-
tions for which the absolute values of each of the following diffe-
rences are small:

yx)—y, (x), Yy (¥)—y; (%),
Y () =y (x), ..., ¥P(x)—y® (x).

This compels us to introduce the following definitions of proximity
of the curves y=y(x) and y=y, (¥).

The curvesy =y (x)and y =y, (x) are close in the sense of zero-order
proximity if the absolute value of thedifference y(x)—y,(x) is small.

The curves y=y(x) and y=y, (x) are close in the sense of first-
order proximity if the absolute values of the differences y(x)—y, (x)
and y' (x)—y, (x) are small.

The curves

y=y(x) and y=y, (x)

are close in the sense of kth order proximity if the absolute values
of the differences

Yy {x)_yl'(x):

Yy (X)—yi(x),

y® (x)—y (x)
are small.
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Fig. 6.1 exhibits curves close in the sense of zero-order proximity
but not close in the sense of first-order proximity, since the ordi-
nates are close but the directions of the tangents are not. In Fig. 6.2.
are depicted curves close in the sense of first-order proximity.

Ay
fz

A

Ay B

Fig. 6-1 Fig. 6-2

From these definitions il follows that if the curves are close in
the sense of kth order proximity, then they are definitely close in
the sense of any lesser order of proximity.

We can now refine the concept of continuity of a functional.

3’. A function f(x) is continuous
at x=x, if for any positive e
there is a &6>0 such that
|F () —Fxo) | < & for | £— x| <.

t is assumed here that x takes
on values at which the function
f(x) is defined.

3’. The functional v[y(x)] is
continuous at y=y,(x) in the
sense of kth order proximity if
for any positive & there is a
>0 such that |ov[y(x)]—
— vy, (x)]| <e for

|4 () —y, (x)| <9,
|y’ () —y, (x)| <9,

---------

|4 () —5® (1) ] <8.

It is assumed here that the
function y(x) is taken from a
class of functions on which the
functional v [y(x)] is defined.

One might also define the notion of distance p(y,, y,) between
the curves y=y, (x) and y=y, (x) (x, <<x<x,) and then close-lying
curves would be curves with small separation.
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1f we assume that
P, ¥y,)= max |y, (¥)—y, ()],
Xo & X & X,

that is if we introduce the space metric C, (see pages 54-55), we

have the concept of zero-order proximity. If it is taken that

R

P W Yo)= 2

max

[yi” () —yd? (x) |

p=Elx, < x < xy

(it is assumed that y, and y, have continuous derivatives up to
order k inclusive), then the proximity of the curves is understood
in the sense of kth order proximity.

4. A linear function is a func-
tion [ (x) that satisfies the following
conditions:

[ (cx) =cl (x),

where ¢ is an arbitrary constant,
and
Hx, + x,)=1(x,)+1(x,).
A linear function of one variable
is of the form
l (x)=kx,

where % is constant.

5. If the increment of a func-

tion
Af =f(x+ Ax)—] (x)
may be represented in the form
Af=A (x) Ax+PB (x, Ax)-Ax,

where A (x) does not depend on
Ax, and B (x, Ax) - 0as Ax— 0,
then the function is called diffe-
rentiable, while the part of the
increment that is linear with
respect to Ax— A (x) Ax—is called
the differential of the function
and is denoted by df. Dividing

4. A linear functionalis a func-
tional L [y(x)] that satisfies the
following conditions

L [cy (x)] =cL [y (x)],

where ¢ is an arbitrary constant
and

L [y1 (x) + y, (x) ] =
=L [.‘h (x)} +L [ys (x) ]
The following is an instance
of a linear functional:

Lly)=(0®y+qwy)dx.

5. If the increment of a func-
tional

Av=uv [y (x) 4 by] —v [y (x)]
may be represented in the form

Av=L [y(x), dy]+
+B (y (x), Sy)max|dy],

where L [y (x), 0y] isa functional
linear with respect to 8y, and
max | dy| is the maximum value
of |6y| and B (y(x), 6y)— 0 as
max |6y| — 0, then the part of
the increment of the functional
that is linear with respect to
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since by virtue of linearity
L(y! Gﬁy)=f£L(y, by)

Bly(x), ady]|a|max|dy|
v 4

and

lim

a-+0
because p [y (x), ady] — 0 as a— 0. Thus, if there exists a varia-
tion in the senseof the principal linear part of the increment of the
functional,then there also exists a variation in the sense of the derivative
with respect to the parameter for the initial value of the parameter,
and both of these definitions are equivalent.

The latter definition of a variation is somewhat broader than the
former, since there are instances of functionals, from the increments
of which it is impossible to isolate the principal linear part, but
the variation exists in the meaning of the second definition.

=1imo|3 [y (x), abdy]max]|dy|=0

6. The differential of a function 6. The variation of a functio-
f(x) is equal to nal v[y(x)] is equal to
a%f(x+rxﬂx)la=o- %v[y(x)+aéy]la=o.

Definition. A functional v[y(x)] reaches a maximum on a curve
Yy =1y, (x) if the values of the functional v[y(x)] on any curve close
toy =y, (x) do not exceed v [y, (x)}; thatisAv=v [y (x)]—v [y, (x)] < 0.

If Av<CO0, and Av=0 only for y(x)=y,(x), then it is said that
a strict maximum is reached on the curve y=y,(x). The curve
y=1Y,(x), on which a minimum is achieved, is defined in similar
fashion. In this case, Av > 0 for all curves close to the curve y =y, (x).

7. Theorem. If a differentiable 7. Theorem. If a functional
function f(x) achieves a maximum v [y(x)] having a variation achie-
or a minimum at an interior point ves a maximum or a minimum al
x = xo of the domain of definition y=y,(x), wherey (x)is an interior
of the function, then at this point point of the domain of definition

df =0. of the functional, then at y = y, (x),

duv=0.
Proof of the theorem for functionals. For fixed y,(x) and 8y

vy, (x)+aby]=¢(a) is a function of @, which for @=0, by
hypothesis, reaches a maximum or a minimum; hence, the derivative

¢’ (0)=0* and ‘%v (¥, (x) +a by) Ia=0=0'

* @ can take on either positive or negative values in the neighbourhood
ol the point =0, since yo(x) is an interior point of the domain of definition
of the functional.
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since by virtue of linearity
L(y, ady)=aL (y. dy)
and

lim
-+ 0

Bly(x), «dy]|a|max|dy|
o

=lirno|3 [¢ (x), a8y]max|by|=0

because B [y (x), @ 8y] — 0 as o — 0. Thus, if there exists a varia-
tion in the sense of the principal linear part of the increment of the
functional,then there also exists a variation in the sense of the derivative
with respect to the parameter for the initial value of the parameter,
and both of these definitions are equivalent.

The latter definition of a variation is somewhat broader than the
former, since there are instances of functionals, from the increments
of which it is impossible to isolate the principal linear part, but
the variation exists in the meaning of the second definition.

6. The differential of a function 6. The variation of a functio-
f(x) is equal to nal v[y(x)] is equal to
2 Fa+280)a-o. 501y (0 + 0y lamo.

Definition. A [unctional v[y(x)] reaches a maximum on a curve
y =1y, (x) if the values of the functional v[y(x)] on any curve close
to y = y, (x) do not exceed v [y, (x)]; that is Av=v [y (x)] —v [y, (x)] < 0.

If Av<<0, and Av=0 only for y(x) =y, (x), then it is said that
a sirict maximum is reached on the curve y=y,(x). The curve
¥ =Yy (x), on which a minimum is achieved, is defined in similar
fashion. In this case, Av = 0 for all curves close to the curve y=y, (x).

7. Theorem. If adifferentiable 7. Theorem. If a functional
Junction f(x) achieves @ maximum v [y (x)] having a variation achie-
or a minimum at an interior point wvesa maximum or a minimum al
x =xq of the domain of definition y=y, (x), where y (x)is an interior
of the function, then at this point point of the domain of definition

df=0. of the functional, then at y = y, (x),

Sv=0,

Proof of the theorem for functionals. For fixed y,(x) and &y
v Y, gx)-i—aﬁy]:tp(a) is a function of @, which for a=0, by
hypothesis, reaches a maximum or a minimum; hence, the derivative

¢ (0=0% and 2 v [y, (x)+cdy] Lﬂ:o,
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i. e. Su=0. Thus, the variation of a functional is zero on curves
on which an extremum of the functional is achieved.

The concept of the exfremum of a functional must be made more
specific. When speaking of a maximum or a minimum, more preci-
sely, of a relative maximum or minimum, we had in view the
largest or smallest value of the functional only relative to values
of the functional on close-lying curves. But, as has already been
pointed out, the proximity of curves may be understood in diffe-
rent ways, and for this reason it is necessary, in the definition of
a maximum or minimum, to indicate the order of proximity.

If a functional v([y(x)] reaches a maximum or a minimum on a
curve y=y,(x) with respect to all curves for which the absolute
value of the difference y(x)—y,(x) is small, i.e. with respect to
curves close to y=y,(x) in the sense of zero-order proximity, then
the maximum of minimum is called strong.

However, if a functional v[y(x)] attains, on the curve y =y, (x),
a maximum or minimum only with respect to curves y= y(x) close
to y=y,(x) in the sense of first-order proximity, i.e. with respect
to curves close to y=y,(x) not only as regards ordinates hut also
as regards the tangent directions, then the maximum or the mini-
mum is termed weak.

Quite obviously, if a strong maximum (or minimum) is attained
on a curve y=y,(x), then most definitely a weak one has been
attained as well, since if the curve is close to y=y,(x) in the
sense of first-order proximity, then it is also close in the sense
of zero-order proximity. It is possible, however, that on the
curve y=y,(x) a weak maximum (minimum) has been attained,
yet a strong maximum (minimum) is not achieved; in other words,
among the curves y=y(x' close to y=y,(x) both as to ordinates
and as to the tangent directions, there may not be any curves for
which v [y (x)] > v [y, (x)] (in the case of a minimumv [y (x)] << v[y,(x)]),
and among the curves y=y(x) that are close as regards ordinates
but not close as regards the tangent directions there may be those
for which v{y (xgl] >0 [¢,(x)] (in the case of a minimum v [y(x)] <<
<u[y, (x)]). The difference between a strong and weak extremum will
not have essential meaning in the derivation of the basic necessary
condition for an extremum, but it will be extremely essential in
Chapter 8 in studying the sufficient conditions for an extre-
mum.

Note also that if on a curve y=y,(x) an extremum is attained,

then not only -;; v (Y, (x) + abdy] L o =0, but also a% vy (x,@)] L o =0,

where y(x, @) is any family of admissible curves, and for e-=0
and a=1 the function y(x, a) must, respectively, transform to
y, (x) and y,(x)+8y. Indeed, v|y(x, a)] is a function of a since
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specifying a determines a curve of the family y=y(x, @), and
this means that it also defines the value of the functional v [y (x, @)].

It is assumed that this function achieves an extremum at =0,
hence, the derivative of this function vanishes at a=0.*

Thus, £~v[y (x, @)] L=u=0’ however, this derivative generally

speaking will no longer coincide with the variation of the function
but will, as has been shown above, vanish simultaneously with 6v
on curves that achieve an extremum of the functional.

All definitions of this section and the fundamental theorem
(page 302) can be extended almost without any change to functio-
nals dependent on several unknown functions:

0[5 (%), :(2)s -. .y Yalx)]

or dependent on one or several functions of many variables:

ﬂ[z{xn 'i:m semy n)]

U2 B X wnes Xdv Bl s xRl wmse ZagBin® ooy dal)s
For example, the variation 6v of the functional v[z(x. y)] may be
defined either as the principal part of the increment

Av=v[z(x, y)+8z)—v(z2(x, ¥),

linear in 8z, or as a derivative with respect to the parameters for
the initial value of the parameter

ad
Ev[z (x, y)+adz] L___o ‘

and if for z=z(x, y) the functional v attains an extremum, then
for z=2z(x, y) the variation du=0, since v[z(x, ¥)+ abz] is a func-
tion of e, which for =0, by hypothesis, attains an extremum
and, hence, the derivative of this function with respect to a for

a =0 vanishes, a%u[z(x, y}—l—aﬁz]la:n:(] or Sv=0.

2. Euler's Equation
Let us investigate the functional

Xy

oly ()= F(x, y(x), v (Nde 6.1)

Xy

* It is assumed that « can take on any values close to a=0 and

ovly (x, a)]

g o exists.
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for an extreme value, the boundary points of the admissible curves
being fixed: y(x))=y, and y(x,)=y, (Fig. 6.3). We will consider
the function F(x, y, y’) three times differentiable.

We already know that a necessary condition for an extremum is
that the variation of the functional vanish. We will now show how
this basic theorem is applied to the functional under consideration,
and we will repeat the earlier argument as applied to the func-
tional (6.1). Assume that the extremum is attained on a twice-
differentiable curve y=y(x) (by only requiring that admissible

*y Ay
B
A
%
Yo
o7 x
g To % o g
Fig. 6-3 Fig. 6-4

curves have first-order derivatives, we can prove by a different method
that the curve which achieves the extremum has a second deriva-
tive as well). _

Take some admissible curve y=y(x) close to y=y(x) and in-
clude the curves y=y(x) and y=T7(x) in a one-parameter family
of curves

Y (x, a)=y(x)+ a(y (x)—y (x));

for a=0 we get the curve y=y(x), for a=1 we have y=7(x)
(Fig. 6.4). As we already know, the difference 7 (x)—y (x) is called
the variation of the function y(x) and is symbolized as &y.

In variational problems, the variation 6y plays a role similar to
that of the increment of the independent variable Ax in problems
involving investigating functions f(x) for extreme values. The va-
riation 8y=7T (x)—y(x) of the function is a function of x. This
function may be differentiated once or several times; (8y)' =7’ (x) —
—y' (x)=20y’, that is, the derivative of the variation is equal to
the variation of the derivative, and similarly

0y)" =7 (x) —y" (x) = by",

----------

}l CpdiCu vy Ivi.jdillidiil DTgdlill, UTPAL LULITIL UL IVIdUITHIAULD, DAL 1agc 1v/ov
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We consider the family y=y(x, @), where y(x, &)=y (x)+ ady,
which for a=0 contains a curve on which an extreme value is
achieved, and which for @=1 contains a certain close-lying ad-
missible curve, the so-called comparison curve.

If one considers the values of the functional

Xy

oly@) = Fix, g, y)dx
Xp
only on curves of the family y=y(x, «), then the functional be-
comes a function of a:

v[y(x, @)]=9 (),

since the value of the parameter o determines the curve of the
family y=y(x, &) and thus determines also the value of the func-
tional v{y(x, «)]. This function ¢ (&) is extremized for =0 since
for =0 we have y=y(x), and the functional is assumed to have
achieved an extremum in comparison with any neighbouring ad-
missible curve and, in particular, with respect to curves of the fa-
mily y=y(x, a) in the neighbourhood. A necessary condition for
the extremum of the function ¢ () for a=0 is, as we know, that
its derivative for a=0 vanish:

¢’ (0)=0.
Since

Xy
P (%)= S F(x, y(x, o), y: (x, o)) dx,
. X0
it follows that

¢ (a)=xf | Fyzay e @)+Fy 5y (x, )] dx,

X,

where

Fy=a%F *x y(x ), ¥ (x o),

Fb"=aiy'F(xl y(‘r'! CE), y' (.x'! a)):
or since

3 56, @)= [y (x)+aby] = by
and

;3%9’ (x, @)= a%‘; [v'(x) +abdy’) =8y,
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Xy

¢ @)= [F,(x, yix, ), ¢ (x, @)dy+
' +Fy(x, y(x, o), v (x, a)by']dx;

¢’ (0)=S[F, (x, y(x), ¥ (x)8y+ Fu (x, y(x), ¥ (x)Sy’']dx.
Xp

As we already know, ¢’ (0) is called the variation of the func-
tional and is denoted b 6v. A necessary condition for the extre-
mum of a functional v is that its variation vanish: 6v=0. For the
functional

v[y (x)] = S Fx, y, y)dx

this condition has the form

\ [F, 8y+ F,. 8y') dx =0,
X,

We integrate the second term by parls and, taking into account
that &y’ = (8y)’, we get
. x d
Ov = l.Fy 6_{]];;—{-— g (Fy — T Fy') 69’ dx.
But "

‘Sy'x=x.=zf(xg)"‘y(xn)=0 and 6y1x=t.=;(x1}—"y(xt]=0-

because all admissible curves in the elementary problem under
consideration pass through fixed boundary points and, hence,

T d
‘Stj===.§'(:fiv.-.éiz frsf:) i55; dx.

X

Thus, the necessary condition for an extremum takes the form

I d '
(£~ Fu) bydr=0, (6.2)
x5

the first factor F,—-g; F, on the extremizing curve y=y(x) is a

given confinuous function, while the second factor 8y, because of
the arbitrary choice of the comparison curve y=T(x), is an arbit-
rary function that satisfies only certain very gencral conditions,

207
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namely: at the boundary points x=x, and x=1x, the function &y
vanishes, it is continuous and differentiable once or several times;
dy or 8y and 8y’ are small in absolute value.

To simplify the condition obtained, (6.2), let us take advantage
of the following lemma.

The fundamental lemma of the calculus of wvariations.
I for every continuous function m(x)

{® @)1 dx=0,
X,

where the function @ (x) is continuous on the interval (x,, x,], then

D (x)=0
on that interval.

Noute. The statement of the lemma and its proof do not change
if the following restrictions are imposed on the functions: q(xﬁ)
= n(x,)=0; n(x) has continuous derivatives to order p, |9 (x)| <
<e(s=0, 1, ..., ¢ g<p)

*9

Fig. 6-5

Proof. Assuming that at the point x=x lying on the interval
x, <x=x, P@)s0, we arrive at a contradiction. Indeed, from

the continuity of the function ®(x) it follows that if @(x)sﬁﬂ
then @ (x) maintains its sign in a certain neighbourhood (x, << x <C

< x,) of the point x; but then, having chosen a function m (x), which
also maintains its sign in this neighbourhcod and is equal to zero
outside this neighbourhood (Fig. 6.5), we get

Xy

{OomnEd={OwnEde#0,
5 x
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since the product @ (x)n(x) does not change sign on the interval

(x,<<x<x,) and vanishes outside this interval. We have thus
arrived at a contradiction; hence, ®(x)=0. The function v (x)
may for example be chosen thus: m(x)=0 outside the interval
(x, < x < x)); M(x) = k(x—x,)*" (x—X,)* on the interval (x, <x < x,),
where n is a positive integer and k is a constant factor. It is obvious
that the function 7 (x) satisfies the above conditions: it is continu-
ous, has continuous derivatives up to order 2n—1, vanishes at the
points x, and x, and may 2
be made arbitrarily small in |
absolute value together with
its derivatives by reducing the
absolute value of the con-

stant k.
Note. Repeating this argu-
ment word for word, one can 0 o

prove that if the function

®(x, y) is continuous in the
region D on the plane (x, y)
and{ | @ (x, p) n(x,y)dxdy=0 ~

D

for an arbitrary choice of the Fig. 66
function n (x, y) satisfying only certain general conditions (continuity,
difierentiability once or several times, and vanishing at the

boundaries of the region D, |n|<e, |n.|<e, |n,|<e), then

®(x, y)=0 in the region D. When proving the fundamental lemma,
the function n(x, y) may be chosen, for example, as follows:

n(x, ¥)=0 outside a circular neighbourhood of sufficiently small
radius e, of the point (x, y) iE which @ (x, _f;');éﬂ, and in this
neighbourhood of the point (x, y) the functionn(x, y) =k [(x—x)® +

+ (y—y)'—et)'* (Fig. 6.6). An analogous lemma holds true for
n-fold multiple integrals.

Now let us use the fundamental lemma to simplify the above-
obtained condition (6.2) for the extremum of the elementary func-
tional (6.1)

E(F,—C%Fw)ﬁydx=0. (6.2)

All conditions of the lemma are fulfilled: on the extremizing curve
the factor (F}, _d—i F,,,) is a continuous function, and the varia-

tion 6y is an arbitrary function on which only restrictions of a
general nature that are provided for by the fundamental lemma have
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been imposed; hence, Fr_d_i Fpy=0 on the curve y=y(x) which
extremizes the functional under consideration, i.e. y=y(x) is a
solution of the second-order differential equation

d
Fy—aFy'=0’

or in expanded form
Fy—Fxyr—Fyyy’ — Fyyy” =0.
This equation is called Euler’s equation (it was first published

in 1744). The integral curves of Euler’s equation y=y(x, C,, C,)
are called exiremals. It is only on extremals that the functional

oly ()] ={ Fx, v, y)ax

Xp

can be extremized. To find the curve that extremizes the func-
tional (6.1), integrate the Euler equation and determine both
arbitrary constants that enter into the general solution of this
equation, proceeding from the conditions on the boundary y(x,) =
=y, Y(x,)=y, Only on extremals that satisfy these conditions
can the functional be extremized. However, in order to establish
whether indeed an extremum (and whether it is a maximum or a
minimum) is achieved on them, one has to take advantage of the
sufficient conditions for an extremum given in Chapter 8.

Recall that the boundary-value problem
FP__% Fy =0, Y(x) =Y, y(x)=y,
does not always have a solution and if the solution exists, it may
not be unique (see page 166).

Note that in many variational problems the existence of a solu-
tion is obvious from the physical or geometrical meaning of the
problem and if the solution of Euler’s equation satisfying the
boundary conditions is unique, then this unique extremal will be
the solution of the given variational problem.

Example 1. On what curves can the functional
ELY

vy (x)] = 5[(3’)’-—9"] dx; y(0)=0, y(%—)=]

be extremized? The Euler equation is of the form y"4-y=0; its

general solution is y=C,cosx+C,sinx. Utilizing the boundary
= conditions we get C, =0, C,=1; hence, only on the curve y=sinx
I' can an extremum be achieved.
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3. Functionals of the Form

N R N

X

[n order to obtain the necessary conditions for the extremum
of a functional o of a more general type

X

v(¥, Yy - - .y.,]=SF{x. Yso Yso v« o+ Yo Y1 Yo -+, Ya) X

for the given boundary conditions of all functions
Y1 (%) =ros  Ya (%) =laos + s Y (Xo) = Yoo
V()= Y (%)= Y1y + =, Y (X2) = Yrs
we shall vary only one of the functions
yx) (j=1, 2,...,n),

holding the other functions unchanged. Then the functional
o[y, Yas --., 4,) will reduce to a functional dependent only on
a single varied function, for example, on g, (x).

U[yn Yay o ey gﬂ}:ﬁ [y.f]

of the form considered in Sec. 2, and, hence, the extremizing
function must satisfy Euler’s equation

d
Fy—5F i =0.

Since this argument is applicable to any function y;(i=1, 2, ..., n),
we get a system of second-order differential equations

Fy—gFp=0 @=12...,n),

{
which, generally speaking, define a 2n-parameter family of integral
curves in the space x, y,, ¥, .- ., y,—which is the family of ext-
remals of the given variational problem.

i, for example, the functional depends only on two functions
y(x) and z(x):

vjy(x), z(x)] = S Fx,y, 2,y 2')dx,

4 (X,) = W, Z(x,) = 2,, y(x,)=y,, Z(x)=2,,

that is to say, it is defined by the choice of space curve y=y(x),
z==2(x) (Fig. 6.11), then by varying y(x) alone and holding z(x)
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constant we can change our curve so that its projection on the
xz-plane does not- change, i.e. the curve all the time remains on
the projecting cylinder z=2z(x) (Fig. 6.12).

It
B
a lz'}
A g-ﬂz)
ﬂ / v -
¥
Fig. 6-11
12
3 y-yla) g
Bef—f———— z-2(z) 7|
=
———=
ﬂa
0 »d
i el
A8 y=ylx)
I

* Fig. 6-12

Similarly, by fixing y(x) and varying z(x), we vary the curve
so that all the time it lies on the projecting cylinder y=y (x).
We then obtain a system of two Euler’s equations:

Fy—%F,=0 and F,—%F, =0
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Example 1. Find the extremals of the functional

n

—

2
v[y(x), z(x))= S [y +2" +2yz] dx, y(0)=0, y (—’25) =1,
0
n
20=0, z(3)=—1
The system of Euler’s differential equations is of the form
y. —Z= Ol
' —y=0.

Eliminating one of the unknown functions, say z, we get yV —y=0.
Integrating this linear equation with constant coefficients, we obtain

y=Ce*+Cee *4+C5cosx+C,sinx;
z=y", z=C,e*4C,e *—C,cosx—C,sinx.
Using the boundary conditions, we find
C,=0, C,=0, C,=0, C,=1;

hence, y=sinx, z=—sinx.
Example 2. Find the extremals of the functional

v[y(x), z(0)={F, )dx

The system of Euler’s equations is of the form
Fopy'+Fypr2" =0, Fypy"+ Frr2"=0,

whence, assuming Fp Frr—(Fy2)'5=0, we get 4"=0 and 2 =0 or
y=Cx+C,, 2=Cx+C, are a family of straight lines in space.

Example 3. Find the differential equations of the lines of propa-
gation of light in an optically nonhomogeneous medium in which
the speed of light is v(x, y, #).

According to Fermat’s principle, light is propagated from one
point A(x,, y,) to another B(x,, y,) along a curve for which the
time T of passage of light will be least. 1f the equation of the
desired curve y=y(x) and z=2z(x), then

r- | Ve

vix, g, 2) dx.

%
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For this functional, the system of Euler’s equations

@V l+yil+zrt _i_i y.i =0
T R AT
dv Vigyrsz® d g -0
0z ol dr | V‘m

will be a system that defines the lines of light propagation.

4. Functionals Dependent on Higher-Order Derivatives

Let us investigate the extreme value of the functional
vly@)={ Fle. gy, ¥ (), ..., y"™ () ax,

Xo

where we consider the function F differentiable n 4+ 2 times with
respect to all arguments and we assume that the boundary conditions
are of the form

y"xﬂ)=yﬂx y' [xtt):yih il y{n—ll(xo}=y(nﬂ-u;
ylxl):-yl' y’ {xl)=ylf R ] y‘n-u{xl}=y‘l"—'h.
i.e. at the boundary points are given the values not only of the

furction but also of its derivatives up to the order n—1 inclusive.
Suppose that an extremum is attained on the curve y=y(x), which

is 2n times differentiable, and let y=y(x) be the equation of some
comparison curve, which is also 2n times differentiable.
"Consider the one-parameter family of functions
y (% @)=y () +aly(0)—y@®) or y(x, @)=y +ady.

For =0, y(x, a)=y(x) and for a=1, y(x, a)=y(x). Ii one
considers the value of the functional v[y(x)] only on curves of the
family y=y(x, @), then the functional reduces to a function of the

parameter a, which is extremized for o =0; hence,d%— vy (x, =) | saa =0

According to Sec. 1, this derivative is called the wvariafion of the
functional v and is symbalized by v

=0

auﬂ[%gﬂx, y(x, ), ¥ (x, @), ..., ¥y (x, a)]dx] =

= S {Fy ﬁy-l—Fb(ﬁy' +Fy«6y'+ o +wa’ éy””jdx.
5

21---37R
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Integrate the sccond summand on the right once term-by-lerm

X, ' X, P
S F,by dx =[F, éy]i;——gafy. by dx,

the third summand twice:
I ” x d Xy I d*
SFrﬁy dx=[F,8y']5— [EFwﬁy]xﬁh;r Fy by dx,
&y ¥o

and so forth; the last summand, n times:

Xy

S‘Fylllj (Sy‘mdx= [Fyl,m ﬁy‘""”]i:— [-{f;- Fyuu ay[“-gl] A —|— e

Xx. d"
...+(———i)"S o Fym bydr.

Taking into account the boundary conditions, by virtue ol which
for x=x, and for x=ux,, the variations dy=0y =08y =...=
=0y'" " "=0, we finally get

Ik d d .
6U=S(FH—'H?F§.'+F Fy”+...+(—l)“

Xo

dl’l
£ Fym) Sydx.

Since on the extremizing curve we have
¢ d d3 dn
bv={ (Fy—gp Fu 5 Fot oo+ (=1 55 Fuw) Bydx =0
for an arbitrary choice of the function 6y and since the first factor
under the integral sign is a continuous function of x on the same
curve y =y (x), it follows that by virtue of the fundamental lemma
the first factor is identically zero:

Byl F 1)* 2 Fyon==0
' e y“'l"&*;; v+ +(—1) A YRR

Thus, the function y=y(x), which extremizes the funclional
vy (x)] = S Fix, 0, 0 ¥'s vovy P™)dx,
must be a solution of the equation

d d? dn
] FF_EF"F_‘hd_I’FF‘fﬁi_”'_}'{_ljnmfh”m}_—'—o'
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This differential equation of order 2n is called the Euler-Poisson
equation, and its integral curves are termed exfremals of the varia-
tional problem under consideration. The general solution of this
equation contains 2n arbitrary constants, which, generally speaking,
may be determined from the 2a boundary conditions:

Yy ="Yo ¥ (%) =0 --os §7 " (%) =yi"";

Y=y, v (x)=y. .... ¥ () =y"".

Example 1. Find the extremal of the functional
1

vy (x)] =§ (1 +4™) d;

y(M=0, y(O)=1, y(I)=1, y(1)=1.
The Euler-Poisson equation is of the form %(2{]30 or y'V=0;

its general solution is y=C x* 4 C,x*4-C,x +-C,. Using the boundary
conditions, we get

C,=0, C,=0, C,=1, C,=0.
And so the extremum can be attained only on the straight line y==x.
Example 2. Determine the extremal of the functional

vy (®))=\E"—y +x"dx,

Gmuln

that satisfies the conditions
y(O =1, ¥ (0)=0, g (—g—) =0, ¢ (%) = —1.

The Euler-Poisson equation is of the form y'V—y=0; its general
solution is y=C,e*+4+C.e *+C,cosx +C,sinx. Using the boundary
conditions, we get C, =0, C,=0, C;=1, C;=0. And so the extre-
mum can be achieved only on the curve y=cosz.

Example 3. Determine the extremal of the functional
{
|
oly() = { (Fy* +oy)ds,
-1
that satisfies the boundary conditions
y(—hH=0, y (—1)=0, y(1)=0, ¥ ()=0.

This is the variational problem to which is reduced the problem
of finding the axis of a flexible bent cylindrical beam fixed at the
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ends. If the beam is homogeneous, then p and p are constants and
the Euler-Poisson equation has the form

d'l
P+'I§(Py')=0 or yw='—"%'

whence
i _gT“; +O# 08 g el
Using the boundary conditions, we finally get

Y= —gm =200 1Y) o y= — o (1)

If the functional v is of the form

xy
U[y(x), Z(x)]:SF{x, Y, y" cens y{n)‘ z, z! : i 5 z""}dx.

Xe

then by varying only y(x) and assuming z(x) to be fixed, we find
that the extremizing functions y(x) and z(x) must satisfy the Euler-
Poisson equation

Fy'_% F.v*'i‘ ..,-{-(——l)"%ﬂ,m.=0,

whereas by varying z(x) and holding y(x) fixed we find that the
very same functions must satisfy the equation

Fz‘_:_sz"!‘ P -I-(—”" %F;.n: =0.

Thus, the functions z(x) and y(x) must satisfy a system of two
equations: ; ;
FH—EFV'-F . +(_l)"'&"x?Fyu':=0.

d am
Fomae Fo . (—1) 2 Fam =0,

We can argue in the same fashion when investigaling for the
extremum of a functional dependent on any number of functions:

7-'I..‘J|- Ygp vens yu]_-"

Xy
"=S FX i Yoo oonv B Une Yor -2 ¥, .
) coo s Yo Yoo oes YO d.

Varying some one function y; (x) and holding the others fixed, we
get the basic necessary condition for an extremum in the form

d da™ . fy
Fy-_ﬁFy}‘i'---"i'(—Umdxﬂa Fy‘g""r=0 (=1, 2, ..., m).
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5. Functionals Dependent on the Functions
of Several Independent Variables

Let us investigate the following functional for an extremum:
d d
v(z (x, y)]=SSF (x. Y, 2, -d%, Tt‘g’) dx dy;
D

the values of the function z(x, y) are given on the boundary C of
domain D, that is, a spatial path (or contour) C is given, through

AZ

Z=2z(zy)

- |

Fig. 6-13

which all permissible surfaces have to pass (Fig. 6.13). To abbre-
viate notation, put -g%=p, -gi=-q. We will consider the function F
as three times differentiable. We assume the extremizing surface

z=2z(x, y) to be twice differentiable.
Let us consider a one-parameter family of surfaces z=2z(x, y, @)=

=z(x, y)+adx, where 8z=2z(x, y)—z(x, y), including for
a=0 the surface z=2z(x, y) on which the extremum is achieved,

and for =1, a certain permissible surface z=2(x, y). On functions
of the family z(x, y, @), the functional v reduces to the function e,
which has to have an extremum for a=0; consequently,

%U[Z(I. Y, @)]]eeo=0. If, in accordance with Sec. 1, we call

the derivative of v[z(x, y, «)] with respect to a, for a='0, the
variation of the functional and symbolize it by 8v, we will have

5”“{'5%55”"' ¥ 2(x, 4, @), p(x, 4, @), (%, 4, a))dxdy}a=o=
° = (((F.02 + F,bp+F bq1dxdy,
n
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where
z2(x. y, a)=2(x, y)+adz,
oz (x, y, o
pix, y, a) =%—} =p(x, y)-+ abp,
dz(x, vy, o)
q(x, y, a}au-——ay =g(x. y)+adg.

Since
ad d
o (Fpd2t =77 {F,} 82+ F, p,

d i
EE{FGGZ}=—65‘-{FG.} 63—|—Fq6q,
it follows that

SS(FPGP+Fg'5q)dxdy=
D
=SS[ (F, 82} + 2 {F, az}]dxdy—
_S§ E-{Fp}—}—W{Fq}]ﬁzdxdy,

where —;;[FP} is the so-called total partial derivative with respect

to x. When calculating it, y is assumed to be fixed, but the depen-
dence of 2z, p and ¢ upon x is taken into account:

a dz dq
'a‘,?{‘FP} =FP#+FP¢a_x+FPP ox +FP¢T
and similarly

0 02
ﬁy—{f-"q}=_-F‘?,,-1-F¢,,3;+F,.,J,,--a—+Fﬂr 3
Using the familiar Green's function
aN , M
D c
we get

SS[ {F,02} + z%{Fq62}]dxdy=§w,,dy—ndx)az=o.

The last integral is equal to zero, since on the contour C the varia-
tion 6z=0 because all permissible surfaces pass through one and
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the same spatial contour C. Consequently,
ad 9
(§1r 00+ Fo0q1dxdy= — (|3 (F ) + 5 (o |2 dxay,
D D
and the necessary condition for an extremum,
(§(F.624F,6p+F, 8q)dxdy=0,

D
takes the form

SS (F‘_'t% {Fp}—?%* qu}) 6zdxdy =0.

Since the variation 6z is arbitrary (only restrictions of a general
nature are imposed on 6z that have to do with continuity and
differentiability, vanishing on the contour C, etc.) and the first
factor is continuous, it follows from the fundamental lemma (page 308)
that on the extremizing surface z=2z(x, y)

d a
Fz_-ﬂ {Fp}_'a-_,_}'{Fq] =0.
Consequently, z(x, y) is a solution of the equation
a d
Fo— g {Fb— 55 {Fg} =O.

This second-order partial differential equation that must be satisfied
by the extremizing function z(x, y) is called the Ostrogradsky equa-
tion after the celebrated Russian mathematician M. Ostrogradsky
who in 1834 first obtained the equation (for rectangular domains
D it had already appeared in the works of Euler).

Example 1. s \
ote s 1= [(32)"+(3) o

the values of the function z are given on the boundary C of the
domain D: z= f(x, y). Here the Ostrogradsky equation is of the form
0%z d*z -0
o T
or, in abbreviated notation,
Az=0,

which is the familiar Laplace equation; we have to find a solution,

continuous in D, of this equation that takes on specified values on
. the boundary of the domain D. This is one of the basic problems
1 of mathematical physics, called the Dirichlet problem.
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6. Variational Problems in Parametric Form

In many variational problems the solution is more conveniently
sought in parametric form. For example, in the isoperimetric problem
(see page 295) of ﬁnding a closed curve of given length / bounding

I, a maximum area S, it is incon-
venient to seek the solution in

the form y=y(x), since by the
very meaning of the problem the
function y(x) is ambiguous (Fig.
6.14). Therefore, in this problem
it is advisable to seek the solu-
tion in parametric form: x = x (),

= =%  y=y(t). Hence, in the given
case we have to seek the ext-
Fig. 6-14 remum of the functional
T
S, yi0) = | y—yvdt

L=1

T
provided that I:S V:'c“-{- _z,;’ dt, where [ is a constant.

0 L]
In the investigation of a certain functional

vyl x)]—SF(x Yy, y')dx

for an extremum let it be more advisable to seek the solution in

the parametric form x=x(f), y=y(¢); then the functional will be
reduced to the following form:

t

olx@), v = F(x@. v, £ )k,

L
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Note that after transformation of the variables, the integrand

F(x(n.y(n,-ifl)x(n

x(8)

does not contain ¢ explicitly and, with respect to the variables

x and y, is a homogeneous function of the first degree.
Thus, the functional vx(f), y(f)] is not an arbitrary functional

of the form
¢

fou, xo. v, 0. gt at

ty

that depends on two functions x (f) and y (), but only an extremely
particular case of such a functional, since its integrand does not
contain f explicitly and is a homogeneous function of the first
degree in the variables x and y.

II we were to go over to any other parametric representation of
the desired curve x=ux(t), y=y(z), then the functional v([x, y)

T, .
would be reduced to the form SF(x, Y, -!!-‘—) x.dtv. Hence, the in-
T ¥
tegrand of the functional v does not change its form when the
parametric representation of the curve is changed. Thus, the functional
v depends on the type of curve and not on its parametric represen-
tation.
It is easy to see the truth of the following assertion: if the in-
tegrand of the functional

1
UHULyUH=§¢U,xULyﬂLkﬁhéﬂnﬂ

does not contain ¢ explicitly and is a homogeneous function of the
first degree in x and y, then the functional v[x(¢), y(¢)] depends
solely on the kind of curve x=x(¢f), y=y(f), and not on its para-
metric representation. Indeed, let
[ 51
o[x (), yO]= OG®), v, @), §@t) dt,
]

where . o
D(x, y, kx, ky) =kO(x, y, x, y).

Let us pass to a new parametric representation putting
=) (p@)+0), x=x(1), y=y(.
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Then

) Ly
(@ ey, 20, 5ty at = [D(x0), y(@), 50900, 6.05(0) et
1y L™

By virtue of the fact that @ is a homogeneous function of the first
degree in x and y, we have

(D(xn Y, 'i:':':b- ytq))=(P[D(xt Y, ‘x"ﬂ .‘i‘t)i
whence

¢ L3}
S(D(.I, Y, Xy, Yy dt = SQ)(JC, Y, ¥ y.)dr,
te To

that is, the integrand has not changed with a change in the para-

metric representation.
ty

The arc length 5 x*4y* dt * and an area bounded by a certain
f.

5
curve %5‘ (xy—yx)dt are examples of such functionals.

fo
In order to find the extremals of functionals of this kind,
4

o[x(1), y(O]=§O( x, 4 % Hdt,

to

where @ is a homogeneous function of the first degree in x and y,
and also for functionals with an arbitrary integrand function

@(f, x, y, x, y), one has to solve a system of Euler’s equations:

d d
O,—— 0i=0, O,——-D;=0.

However, in the case under consideration, these equations are not
independent, since they must be satisfied by a certain solution
x=x(t), y=y({) and also by any other pairs of functions that
yield a different parametric representation of the same curve, which,
in the case of Euler’s equations being independent, would lead to
a contradiction with the theorem of the existence and uniqueness
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of a solution of a system of differential equations. This is an indi-
cation that for functionals of the form

’y
vlx (), y(f)]=f§m(x. v, %, y)dt,

where @ is a homogeneous function of the first degree in x and g,
one of the Euler equations is a consequence of the other. To find
the extremals, we have to take one of the Euler equations and
integrate it together with the equation defining the choice of para-

meter. For example, to the equation ®, — %CD;, = 0 we can adjoin

the equation x*®+ y*=1, which indicates that the arc length of the
curve is taken as the parameter.
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Possible Questions

PART-B (Six Mark)

1) Explain about Euler equation.
2) Find the extremals of the functional V[y(x)] = | 01 1+ (y"%dx ,
y(©0)=0,y(1D)=1,y(0)=1,y"(1) =1
3)1) Solve V[y()] = [' (v + 2xyy")dx with y(xe) = yo and y(x;) = y1.
ii) Solve V[y(x)] = f;:l(y + xy")dx with y(x) = y, and y(x1) = y;.
4) Obtain variational problem in parametric form.

5) Find the curve joining two body points rotated about absicca’s axis generated.
6) Find the curve joining the points (0,0) and (1,0) for which the integral

[, ¥"™dx is minimum if y’(0) = a and y’(1) = b.
7) Obtain the differential equation of the vibrating string.
8) Find the extremals of the functional V[y(x),Z(x)] = [ 05 (y'?+Z'? + 2yZ)dx,

y(0) = o,y(g) — 1 and Z(0) = o,z(g) - 1.
9) Obtain the equation of vibrating of a rectilinear bar.
10) Explain the functional dependent on the functions of several independent variables.

PART-C (Ten Mark)

1.0n what curve can the functional V[y(x)] = fol(y’z + 12xy)dx ,y(0) = 0 and
y(1) = 1 be extremized.
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a
Vv =—WV + ad,, [
1. The equation el =5 vy + ad,] _ is

a.BVP b.convolution IE c.variation of functional d.fredholm IE

2. The variation of a functional is zero on the

a.Circumference b. curve c. circle d.cone
3. The variation of a functional is ___ on the curve.
a.zero b. one c.finite d. infinite
4. Invariational problem the variation is denoted by __
a. 9o b. Ox C. 0z d. Oy
8F 4 [8F
5 e (3y7) =0
5. The equation “¥ ey

a. heat equation  b.euler equation c. wave equation d. Laplace equation

6. Ineuler equation F is independent of y then

af
B—F, = constant 8% _ constant 5- =0 7 — o
dy ay dy ay"
b. c. d.
7. Ineuler equation F is independent of y’ then
a. % b. &' c. & d.
8. The variational problem does not have any solution in the case of
a. laplace equation b.discontinuous function c. euler equation d.continuous function
_ S —wae
9. In hamiltons principal “"@
a.stationary b.stable c. continuous d.unstable

10. The equation of vibrating string is
8%y E du 1 E‘_J 8%y 3 8%u E'_..L 1 8%

ar

o - i a
dx b. at a dx C. ar? dx? d. de g dx*



11. The equation of vibration of the rectilinear bar

Pu_  &u #u _ 8u °u _ 1du u__ p 3w
A, 8x° P o b, dx* P c. dx? k ot d. 8% Kk ar?
12. The does not have any solution in the case of continuous function
a.BVP b.IVP c.Laplace problem d. variational problem

16.When one or both the limits of integration become infinite or when the kernel becomes infinite at one or more points in the range of the
integration, the integral equation is

a. a.Volterra equation b.Fredholm equation  c.Singular integral equation d.Laplace equation
13. A function g(t) is said to be square integrable if
a.fab]g(t)|2 dt<ee b.fab|g(t)|2 dt<0 c.fab|g(t)|2 dt<1 d.fab|g(t)|2 dt>1

14. A function @ is called normalized if
al@ll=0  b.foll=1 clIol =9l d.[|o]| =2

15. The variational problem for the functional V[y(x)] =[(y2+2xy)dx, y(x)=y_O, is meaningless
a.True b.flase c.sometimes true d.zero

16. If a(x) is continous in [a,b],and if for every function h(x)€C(a,b) such that h(a)=h(b)=0, then a(x)=0 for all x in [a,b]

J-ba:[x]h[x]dx =0

a. b. J a(x)h(=)d= =0 C. h(=x)d= =0 d. h[x:]d}-:<0

17. Eulers equation for the extremals of [01(y'2+12xy)dx is
a.y”’-2x=0 b.y”-6x=0 c.2y”’-6x=0 d.y”’-12x=0
18. Solution of the equation [0s(g(t)dt)/V(s-tc )=s is

a.g(t)=2t/m b.g(t)= (2vt)/nt c.g(t)= vt/nt d.g(t)= vt/2n

19. The mth iterated kernel km(s,t) is given by




20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Sy @dx [ EeaGe0dr [k k(o g

The abbreviate notation AZ=f(x,y) is called
a.poisson equation b.laplace equation c.abel’s equation d.volterra equation

(1+s)+ J-s[s —t)g(t)dt =

a.e b.e® c.e?d d.e?

The most general form of linear equation is h(s)g(s)=

b i = 5 B
a glo)efie)e Mo K(sDg@ar | ALK (s D) g(t)dt S +2 [ k(s rae LA (D g

R()g(s) = F(s) + A f k(s, )g(t) dt

In the linear integral equation where the upper limit may be

a.fixed b.variable c.constant d.either variable or fixed
The variation of the functional v[y(x)] is given by

a.0/0x v[y(x) + «<by]a=0 b.0/0x [y(x) + xby]a=0 c.x=0 d. év =20
The function v[ y(x)]= JO1y'2+ 12xydx , y(0)=0 y(1) is extremized on

a.Y=x b. Y=x3 c. Y=x* d. Y=x°
The euler equation of the function v[ y(x)]= for/2(y'-y2)dx,y(0)=0,y(r/2)=1 is

. a¥ a¥ da*¥
a. #+1=0 b. @4y =0 c. @ 4x=0 d. @ +1=0
arF

In Euler’s equation F is of y1 then ¥ o0

a.dependent b.independent c. neither dependent nor independent d.continuous
The function V(y(x))= 2+x2y1)dx y(0) and y(1)=a is extrmized by the curve

a.y=x b.y=-x c.y=x2 d.y=-x2

The functional V(y(x))= 1+y2)dx y(0)=0 and y(p/2)=1 be extrimized by

a.y(x)=cosx b.y(x)=sinx c.y(x)=tanx d.y(x)=cotx

Brachistochrone problem is a



a.cycloid b.circle c.parabola d.ellipse
31. Fc(x)isan ........ function

a.even b.odd c.singular d.non singular
ar
32. . In Euler’s equation F is explicitly independent of x then F-yl= &»*
a.constant b.0 c.l d.infinite
aF

33. In Euler’s equation F is independent of y1 then = 8»*
a.0 b.1 c.constant d.2

@

o

34. In Euler’s equation F is independent of y1 then = 2>
a.constant b.0 c.2 d.3

even
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UNIT IV
SYLLABUS

Introduction for Application of Integral equation to ordinary differential equation-Initial value
Problems-Boundary value problems-Singular integral equations-Abel integral equation.
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UNIT 1V
APPLICATION OF INTEGRAL EQUATION TOORDINARY DIFFERENTIAL
EQUATION

INITIAL VALUE PROBLEMS

There is a fundamental relationship between WVolterra integral
equations and ordinary differential equations with prescribed initial
values. We begin our discussion by studying the simple initial value
problem

Yo+ Ay + B(s)y = F(s), (1)

yla) = go . yiay = gq, . (2)

where a prime implies differentiation with respect to 5, and the functions
A, B, and F are defined and continuous in the closed interval ¢ < 5 < b.

The result of integrating the differential equation (1) Mmom ¢ Lo s
and using the inttial values (2) is

V() —a = — A — [ [B(s) — A" (s)] p(s)) ds,

I _[ F(s) ds, |- A(@qy -

Similarly, a second integration yields

5 £z

¥() —qo = — [ Al y(s ) ds, — [ [ [BGs)— A (s )] p(sy) ds, ds,

+ [ [ PG dsyds, + [A@qo + a1 (s—a) - (3

@

With the help of the identity (see Appendix, Section A.1)
_” F(s,) ds, ds, = f(s—r)F(r') dt . (@

a a

the two double integrals in (3) can be converted to single integrals.
Hence, the rclation (3) takes the form

V() = Go + LA@go + q ) (s—a) + [ (s—0 F() dt

— [t + (s—DLBW — A" ()1 p() dt . (5
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From relations (5)—(7), we have the Volterra integral equation of the
second kind:

P = 1) + [ K(siyyp(e) i ®)

Conversely, any solution g(s) of the integral equation (8) is, as can
be verified by two differentiations, a solution of the initial value problem
(1-(2).

Note that the crucial step is the use of the identity (4). Since we have
proved the corresponding identity for an arbitrary integer n in the
Appendix, Section A.l, it follows that the above process of converting
an initial value problem to a Volterra integral equation is applicable to a
linear ordinary differential equation of order n when there are n pre-
scribed initial conditions. An alternative approach is somewhat simpler
for proving the above-mentioned equivalence for a general differential
equation. Indeed, let us consider the linear differential equation of
order n:

da" du—l 5
= o 1(5')-@:1}‘

sll

d
bt A (DS 4Oy = FO, )

with the nitial conditions

y@=gqy, Y@=q, -, Y@ =gq,—y, {10
where the functions 4,,4,,..., 4, and F are defined and continuous
nma<s<bh.

The reduction of the initial value problem (9)-(10) to the Volterra
integral equation is accomplished by introducing an unknown funection
gi(s):

d"ylds" = g(s) . (11)

From (10) and (11), it follows that

5

= fﬂ(f) dt + Gpy »

“ (12)
(continued)

d"'(y
dS“_l

du—zy o
A2 = (3_1}9(” dt + (‘;‘_H)Qu—l =+ Qu-2 »
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d . 2 2 3
s—1)" —a)' s—ayt”
_y= ( } (r]df+( ) u—]+¥(ﬂr—2
ds (n—2)1 (n—2)! (n—3)!
+ e+ (5—a)gy + qy ,
‘ 12
I (S—f)"_l (I)dr+(s_a)lr-—l +(S__a)n-'2 ( )
-1 ¢ =11 = T oy -2
[

+--+ (s—a)q, + 4, -

Now, if we multiply relations (11) and (12) by 1, A4, (s), 4, (s), etc. and
add, we find that the initial value problem defined by (9)-(10) is reduced
to the Volterra integral equation of the second kind

g(s) = f(s) +_[ K(s,0)g(f) dt , (13)
where
B (s—f)F1
K(s,1) = ,ZA NG ] (14)
and

J@) = F($) = g, A (8) = [(s=a) Gy + ¢,-2] A2(5)
— o = {[5=a)"" {(n=1)1g,- + =+ +(s—a)g, + g5}
x A,(5). (15)

Conversely, if we solve the integral equation (13) and substitute the
value obtained for g(s) in the last equation of the system (12), we derive
the (unique) solution of the initial value problem (9)-{(10).

5.2. BOUNDARY VALUE PROBLEMS

Just as initial value problems in ordinary differential equations lead
to Volterra-type integral equations, boundary value problems in
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ordinary differential equations lead to Fredholm-type integral equations.
Let us illustrate this equivalence by the problem

Y'Y+ A)y + B(s)y = F(s), (1)
y@ =y, y(b)=y;. (2)
When we integrate equation (1) from a to s and use the boundary

condition y(a) = y,, we get

Y(s) = C+ [ Fs) ds — A(s)y(s) + A(a)yo

+ [ [4°6) = BOIp(s) ds

where C is a constant of integration.
A second integration similarly yields

§ 5

Yy = yo = [C+ A@yo) (s—a) + [ [ F(s)) ds, ds,

¥ 5z

= [ Alsy) ds, + [ [ [4'(s) = Bls)]y(s)) dsy dsy . (3)

Using the identity (5.1.4), the relation (3) becomes

&

25} — yo = [C+ A@p,) (s—a) + [ (s— D) F(r) de

a

= f {AW) = (s—0[A"(1) — B())}y(r) dr . @

The constant C can be evaluated by setting s = b in (4) and using the
second boundary condition y(b) = y,:

= yo = [C+ A@yo)b—a) + [ b= F(o) di
- [{A — G- 14 W - BOV @) dr

or
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C + A@)yo = (b -0 {1 ~y0) — [ (=D F() dt
+ [ 4@ - G-D[4O - BODO) d1} . (9

From (4) and (5), we have the relation
y() = yo + f(s- 1) F() dt + [(s—a)/(b—a)]
% [(y1—¥o) — [ (b= 1) F(t) dr]
- j (AW — =D~ BOD y () dt

+ I [(s —a)/(b—a)] {A(:) — (b—-D[A4'(1) — B()]} y(1ydr . (6)

Equation (6) can be written as the Fredholm integral equation

Y5y = fls) + [ Kis, ) p(e) dr, (7)

provided we set
S@) = yo + [ s—D)Fy

; + [s-a)b-all0n—yo) = [ (-0 FWd] @)
dan
[ [s—@/(b—a1{A®) — (- [4'() — B0} ,

K, 1) = 4 " (9)
AWy {[(s—a)(b—a)] — 1} — [A'(1) — B(1)]

x [(t—a)(b—s)/(b—a)] , L -

For the special case when A and B are constants, a=0, o= 1, and
¥(0) = y(1) = 0, the above kernel simplifies to

( ) BS(I—I)+AS, s < I, (l)
R _g’; = “
Bt(l—s5)+ As— A4, " -

Note that the kernel (10) is asymmetric and discontinuous at 1=y,
unless 4 = 0. We shall elaborate on this point in Section 5.4.
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Example 1. Reduce the initial value problem

Y'(s) + dy(s) = F(s), (1)
y@ =1, »@©0=0, (2

to a Volterra integral equation.
Comparing (1) and (2) with the notation of Section 5.1, we have
A(s) =0, B(s) = A. Therefore, the relations (5.1.6)-(5.1.8) become

K(s,0) = i(t—s),

fu)=1,+f(m_gpu)m, (3)
0
and

ﬂﬂal+fﬁ—ﬂﬂﬂ&+if&~ﬂﬂﬂm.
Q 0

Example 2. Reduce the boundary value problem
V(s)+ AP(s)y = @9, C)
Y@ =0, yb)=0 (5)

to a Fredholm integral equation.

Comparing (4) and (5) with the notation of Section 5.2, we have
A=0, B=AP(s), F(s)= Q(s). vo =0, y; =0. Substitution of these
values in the relations (5.2.8) and (35.2.9) yields

1) = [ s—nowWdi - [s—ajb-a) [ 6-nQmd  (6)

a

and

K(s.0) = {)LP(I} [(G—a)(b—O/B—a)], s<1, o
IPO(t—a)y(b—s)(b—a)]), s>t,
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which, when put in (5.2.7), gives the required integral equation. Nole
that the kernel is continuous at s = 1.
As a special case of the above example, let us take the boundary value

problem
y'+iy=0, (8)
y0 =0, y@=0. 9

Then, the relations (6) and (7) take the simple forms: f(s) = 0, and

As|EY(E —1) 3
(.0) — [(sj W —1) s <t (10)

(At/EYL —s) , §> 1.

Note that, although the kernels (7) and (10) are continuous at s =,
their derivatives are not continuous. For example, the derivative of the
kernel (10) is

ALL=(@H],  s<t,

dK(s, 1)/ds =
s {-—Arﬂ", -

The value of the jump of this derivative at s =t is

dK(s, 1) _ dK(s,1) — _3
ds  Ji+o ds -9 o

Similarly, the value of the jump of the derivative of the kernel (7) at

s=118
[dK (s,0) [d'K (s, I}:| — _APU).
t— O
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An integral equation is called singular if either the range of integration
is infinite or the kernel has singularities within the range of integration,
Such equations occur rather frequently in mathematical physics and
possess very unusual properties. For instance, one of the simplest
singular integral equations is the Abel integral equation

& = [g®s—01dt, 0<a<t, ()
0

which arises in the following problem in mechanics. A material point
moving under the influence of gravity along a smooth curve in a vertical
plane takes the time f(s) to move from the vertical height s to a fixed
point 0 on the curve. The problem is to find the equation of that curve.
Equation (1) with « = 1/2 is the integral-equation formulation of this
problem.

The integral equation (1) is readily solved by multiplying both sides
by the factor ds/(«—s)' ~* and integrating it with respect to s from 0 to u:
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o u &
f(s) ds ds g(t) dt 2
(u—s)' " (u—s)") =07’
b

The double integration on the right side of the above equation is so
written that first it is to be integrated in the t direction from 0 to s and
then the resulting single integral is to be integrated in the s direction
from 0 to w. The region of integration therefore is the triangle lying below
the diagonal s = . We change the order of integration so that we first
integrate from s = ¢ to s = u and afterwards in the ¢ direction from ¢ =0
to ¢ = u. Equation (2) then becomes

u u u
f(s) ds ds
J(u—s pe ng 4 J(u—s)l_’(s—r)' ‘ 3)
!
"
{u,u)
(0,00 u R
Figure 8.1

To evaluate the integral

F o ds
w—s)'"2(G—0*"
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one sets y = (u— s)/(u— 1), and obtains
u 1
J(u—s)""(.s—t)"’ ds = ff_l{l —y)"*dy = mjfsinan,
' 0

where we have used the value of the Eulerian beta function B(x, 1 —)
= m/sin 2z, Substituting this result in (3), we have

sin:xrr S(s) ds J’ o) dr,

n (u P

which, when differentiated with respect to , and then changing u to ¢,
gives the required solution:

SINam d

9 () = [jf(s)(r sy as] )

T

The integral equation (1) is a special case of the singular integral
equation [18]

g(1) dt
[h(s) — AT’

f(s) = D<u<l, (5)

where /(r) is a strictly monotonically increasing and differentiable
function in (a, &), and A’(#) # 0 in this interval. To solve this, we con-
sider the integral

5

b (1) £ () du
[h(s) — A(w)]' ™’

and substitute for f(x) from (5). This gives

”‘ g(8) W () dt du
. [h(u) — h()]*[A(s) — h()]* %"

which, by change of the order of integration, becomes




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS:Il M.SC MATHEMATICS COURSE NAME:MATHEMATICAL METHODS

COURSE CODE:18MMP306 UNIT -1V BATCH :2018-2020

] : B (1) du
I B f [h () — hOOT [his) — AT

The inner integral is easily proved to be equal to the beta function
B(ua, 1 —a). We have thus proved that

5 &

W fwde — n
f[h(s) — h(w)]'™*  sinan J.g(") dt, (6)

a o

and by differentiating both sides of (6), we obtain the solution

it

sinir E k' (1) f(u) du

90 =" & | ) = hr = 0
Similarly, the integral equation
F gd
g (1) dt
f(s}=.[ my 0O<a<l, &)
(h) — 5] ‘
and a < s < b, with A(r) a monotonically increasing function, has the
solution
b
sinan d h' (1) f(u) du
g = —— 9)

n o dt ) [h(w) k(@] "

We close this section with the remark that a Fredholm integral
equation with a kernel of the type

K(s, 0y = H(s,Dllt—=s]*, O<oa<l, (10)

where H (s, t) is a bounded function, can be transformed to a kernel
which is bounded. It is done by the method of iterated kernels. Indeed,
it can be shown [11, 15, 20] that, if the singular kernel has the form as
given by the relation (10), then there always exists a positive integer p,,
dependent on «, such that, for p> p,, the iterated kernel K (s, 1) is
bounded. For this reason, the kernel (10) is called weakly singular.
Note that, for this hypothesis, the condition « < 1 is essential, For
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the important case o — 1, the integral equation differs radically from
the equations considered in this section. Moreover, we need the notion
of Cauchy principal value for this case. But, before considering the case
o = 1, let us give some examples for the case « < 1.

Example 1. Solve the integral equation

() dt
5 = m u (1_)
1]

Comparing this with integral equation (8.1.1), we find that f(s) =s,
o = | /2. Substituting these values in (8.1.4), there results the solution:

1

1d[ 5
0=l e
0

Ld| -2 i

=28t u—s)n
wdi| 3(.5‘+ 1 (t—s) :L
1d[4 ™% 2%

= e@l|3 ]“ = &

Example 2. Solve the integral equation
g dt
— e g .
J(s) J(cost—coss)%’ Ofa<s<bsn 3)

Comparing (8.1.5) and (3), we see that a=1/2, and h(#)=1—cost,
a strictly monotonically increasing function in (0, #). Substituting this
value for A(u) in (8.1.7), we have the required solution

[ ) du]

n="'2
gaed = (cosu — cos1)”

7 dt

o R R 8 4)
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Similarly, the integral equation

_ g (1) dt
fs) = J(WSS cos )%’ Osa<s<bs<n, (5)

has the solution

b
1 d (sin u) f(u) du
g(@) = -Ed_:l: T —cosu}‘fz] agt b, (6)
I
Example 3. Solve the integral equations
r _
@ fls) = g(")z;, O<ca<l; a<s<b, (7)
and
‘ d
(b) f(s) = (;q(f)z;’ O<a<l; a<s<b. (8)

From (8.1.5) and (7), we find that 4(r) = £*, which is a strictly mono-
tonic function. The solution, therefore, follows from (8.1.7):
{
2sinan d uf(u) du

= a (—m, a<t<b. 9

g(n) =

Similarly, the solution of the integral equation (8) is
' b
2sinon d uf(u) du

g(!)=_"TE W‘, a<it<éb. (10}

The results (9) and (10) remain valid when a tends to 0 and »
tends to + 0. Hence, the solution of the integral equation

Cgdr

(2 2)&’ ﬁ‘:a{‘l! (II)

S =
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is
t

_ 2sinoam d [ uf(u) du
g(n) = d{J‘(FZ_LHZ)la y (12)
Similarly, the solution of the integral equation
| g@dt
f(s)y = _[(—:2—52)“ s D=t<l, (13)
is
_ 2sinan d d uf(u) du
glak== 4 drj(uzmrz)““' (4

t
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Possible Questions

PART-B (Six Marks)
UNIT IV

1) Obtain the relationship between Voltera integral equation and initial value problem.

2) Reduce the BVP to a Fredholm integral equation y"(s) + Ay(s) = 0
with y(0)=0, y(/) = 0.
3) Solve the homogeneous fredholm integral equation g(s) = A [ 01 estg(t)dt

4) Obtain the Abel integral equation.
5) Solve y”+sy =1, y(0)=y(1) =0.

6) Solve the integral equation s = |, OS (ngi S dt
7) Reduce the IVB y"(s) + Ay(s) = F(s),y(0) = 1,y'(0) = 0 to a voltera integral

equation.

8) Solve the integral equation f(s) = fs 90 g4t ,0<a<1l,a<s<band

a (s2-t>)ar

f&)=[ -2 dr ,0<a<la<s<b

(t2-s2)a
9) Reduce the BVP to a Fredholm integral equation y"(s) + Ap(s)y(s) = g(s)
with y(a) =0 and y(b) =0.

10) Solve the BVP y”’- y =F(s), y(0) =y(1)=0.
PART-C (Ten Marks)

1) Reduce the boundary value problemy’’ (s) + AP(s)y = Q(s), y(a)=0, y(b)=0 to a Fredholm
integral equation.
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