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Chapter 1

Sets and functions

1.1 Introduction

1 Set theory is a branch of mathematical logic that studies sets,

which informally are collections of objects. Although any type of

object can be collected into a set, set theory is applied most often to

objects that are relevant to mathematics. The language of set theory

can be used in the definitions of nearly all mathematical objects.

The modern study of set theory was initiated by Georg Cantor

and Richard Dedekind in the 1870s. After the discovery of para-

doxes in naive set theory, such as the Russell’s paradox, numerous

axiom systems were proposed in the early twentieth century, of

which the Zermelo − Fraenkel axioms, with the axiom of choice,

are the best-known.

Set theory is commonly employed as a foundational system for

mathematics, particularly in the form of Zermelo − Fraenkel set

theory with the axiom of choice. Beyond its foundational role, set
1source from wikipedia
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theory is a branch of mathematics in its own right, with an active re-

search community. Contemporary research into set theory includes

a diverse collection of topics, ranging from the structure of the real

number line to the study of the consistency of large cardinals.

1.2 Basics of sets

Definition 1 A collection of well defined objects is called a set.

Definition 2 Objects of a set are called elements or members.

Remark 1 • If x is an element of A, we say that x ∈ A.

• If x is not an element of A, we say that x < A.

Example 1 • A = {x : x is an integer}

• N = {1, 2, 3, 4, · · · }, set of all natural numbers.

• Z = {. . . ,−2,−1, 0, 1, 2, . . . }, set of all integers.2

• Q =
{

p
q : p, q ∈ Z and q , 0

}
, set of rational numbers3

Definition 3 A set that contains no elements is called the null set.

It is denoted by ∅.

Definition 4 A set consisting of only one element is called a sin-

gleton set.

2Z is for Zahlen - the German word for integers.
3Q is for quotient - which is how rational numbers are identified.
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Definition 5 If every element of a set A also belongs to a set B, we

say that A ⊆ B (or) B ⊇ A.

Definition 6 A set A is a proper subset of B if A ⊆ B and there is

atleast one element of B which is not in A.

Definition 7 Two sets A and B are said to be equal if A ⊆ B and

B ⊆ A.

Definition 8 The union of sets A and B is the set A ∪ B = {x : x ∈

A or x ∈ B}.

Example 2 Since N is the set of all natural numbers and Z is the

set of all integers, we haveN = {1, 2, 3, · · · } and Z = {· · · ,−2,−1, 0, 1, 2, · · · }.

Then N ∪ Z = {· · · ,−2,−1, 0, 1, 2, · · · }.

and N ∪ Z = Z

Remark 2 (i) If A ⊂ B, then A ∪ B = B

(ii) Since ∅ ⊂ A, then ∅ ∪ A = A.

(iii) Union of two sets is commutative.

Definition 9 The intersection of the sets A and B is the set A∩ B =

{x : x ∈ A and x ∈ B}.

Example 3 Suppose A = {1, 2, 3} and B = {−2,−1, 0, 1}. Then

A ∩ B = {1}.

K. Kalidass 6
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Definition 10 The complement of B relative to A is the set A− B =

{x : x ∈ A and x < B}.

Example 4 Suppose A = {1, 2, 3, 4}. and B = {−2,−1, 0, 1}. Then

A − B = {2, 3, 4}.

Theorem 1 For any three sets A, B and C, we have

(i) A ∪ A = A

(ii) A ∪ ∅ = ∅ ∪ A = A

(iii) A ∪ B = B ∪ A

(iv) A ∪ (B ∪C) = (A ∪ B) ∪C

(v) A ∪ B = B if and only if A ⊆ B

Proof

(iv) Let x ∈ A ∪ (B ∪C) be arbitrary

⇒ x ∈ A (or) x ∈ (B ∪C)

⇒ x ∈ A (or) x ∈ B (or) x ∈ C

⇒ (x ∈ A (or) x ∈ B) (or) x ∈ C

⇒ x ∈ (A ∪ B) (or) x ∈ C

⇒ x ∈ (A ∪ B) ∪C

⇒ A ∈ (B ∪C) ⊆ (A ∪ B) ∪C (1.1)

K. Kalidass 7
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⇒ (x ∈ A ∪ x ∈ B) (or) x ∈ C

⇒ x ∈ A (or) x ∈ B (or) x ∈ C

⇒ x ∈ A (or) (x ∈ B (or) x ∈ C)

⇒ x ∈ A (or) x ∈ (B ∪C)

⇒ x ∈ A ∪ (B ∪C)

⇒ (A ∪ B) ∪C ⊆ A ∪ (B ∪C) (1.2)

From (1.1) and (1.2), we have

A ∈ (B ∪C) = (A ∪ B) ∪C

Theorem 2 For any three sets A, B and C, we have

(i) A ∩ A = A.

(ii) A ∩ ∅ = ∅ ∩ A = A.

(iii) A ∩ B = B ∩ A.

(iv) A ∩ (B ∩C) = (A ∩ B) ∩C

(v) A ∩ B = B if and only if A ⊆ B

Definition 11 Two sets A and B are said to be disjoint if A∩ B = φ

Example 5 Let A = {1, 3, 4} and B = {5, 8, 9} then A ∩ B = φ

Remark 3 1. x < A ∪ B⇔ x < A and x < B

2. x < A ∩ B⇔ x < A (or) x < B

Theorem 3 If A,B and C are sets then

(i) A − (B ∪C) = (A − B) ∩ (A −C)

(ii) A − (B ∩C) = (A − B) ∪ (A −C)

K. Kalidass 8
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Proof

(i) Let x ∈ A − (B ∪C) be arbitrary

⇒ x ∈ A and x < (B ∪C)

⇒ x ∈ A and x < B and x < C

⇒ x ∈ A and x < B and x ∈ A and x < C

⇒ x ∈ (A − B) and x ∈ (A −C)

⇒ x ∈ (A − B) ∩ (A −C)

Therefore, A − (B ∪C) ⊆ (A − B) ∩ (A −C)

similarly, we can prove

(A − B) ∩ (A −C) ⊆ A − (B ∪C)

From the above, we have

A − (B ∪C) = (A − B) ∩ (A −C)

(ii) Let x ∈ A − (B ∩C) be arbitrary

⇒ x ∈ A and x < (B ∩C)

⇒ x ∈ A and x < B or x < C

⇒ x ∈ A and x < B or x ∈ Aandx < C

⇒ x ∈ (A − B) or x ∈ (A −C)

⇒ x ∈ (A − B) ∪ (A −C)

Therefore, A − (B ∩C) ⊆ (A − B) ∪ (A −C)

similarly, we can prove

K. Kalidass 9
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(A − B) ∪ (A −C) ⊆ A − (B ∩C)

From the above, we have

A − (B ∩C) = (A − B) ∪ (A −C)

Hence proved.

Definition 12 If A and B are nonempty sets, then the cartesian

product of A and B is denoted by AXB and is defined by AXB =

{(a, b) : a ∈ Aandb ∈ B}

Definition 13 A set S is said to be finite if it is either empty set (or)

it has n elements for some n ∈ N.

1.3 Functions

Definition 14 Let A and B be nonempty sets. A function f : A→ B

which assigns to each element a ∈ A, a unique element b ∈ B.

Remark 4 The element b is called the image of a under f .

Remark 5 The element a is called preimage of b under f .

Remark 6 The set A is called domain of f and the set B is called

co domain of f .

Remark 7 The set { f (a) : a ∈ A} is called range of f , and is de-

noted by R( f ).
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Definition 15 A function f : A → A is given by f (x) = x ∀x, is

called identity function.

Definition 16 A function f : A → B is given by f (x) = c, a con-

stant is called constant function.

Remark 8 • The range of constant function is always singleton

set.

• Suppose f : A → B is an identity function, then A = B or

A ⊆ B.

Definition 17 A function f : A → B is one-one (injective) if dis-

tinct elements of A have distinct image in B.

Remark 9 f is one-one if f (x) = f (y)⇒ x = y.

Remark 10 f is one-one if x , y⇒ f (x) , f (y).

Definition 18 A function f : A → B is onto(surjective) if range of

f is equal to B.

Definition 19 A function f : A → B is called bijection if f is both

one-one and onto function.

Example 6 Let f : Z→ Z such that f (x) = |x| ∀x ∈ Z.

Here f (−2) = f (2) but −2 , 2

Therefore, f is not one-one.

K. Kalidass 11
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Example 7 Consider f : Z → Z given by f (x) = x + 3 ∀ x ∈ Z.

Suppose

f (x) = f (y)

x + 3 = y + 3

x = y

Therefore, f is one-one. Also R f = Z

Therefore, f is onto. Hence, f is bijection.

Definition 20 Let f : A → B be a bijection. Then for each b ∈ B,

there exists a unique element a ∈ A such that f (a) = b.

Define f −1 : B → A by f −1(b) = a Therefore, f −1 is called the

inverse function of f .

Remark 11 Suppose f : A → B is a bijection. Then A and B are

said to be equivalent.

1.4 Countable sets

Definition 21 A set S is said to be countably infinite if there is a

bijection between N and S ,

Example 8 Let E = {2n : n ∈ N} is a even function.

Let f : N→ E such that f (x) = 2x.

K. Kalidass 12



Real Analysis K. Kalidass

suppose

f (x) = f (y)

2x = 2y

x = y

Therefore, f is one-one.

Also, R f = {2, 4, 6, · · · } = E

Therefore, f is onto.

∴ f is bijection.

∴ E is countably finite.

Example 9 Let A = {12 ,
2
3 , · · · }

Solution

Let f be a function from N→ A, such that

f (n) = n
n+1 .

Suppose

f (n) = f (m)
n

n + 1
=

m
m + 1

n(m + 1) = m(n + 1)

nm + n = mn + m

clearly f is one-one and onto function.

Therefore f is bijection.

Hence A is countably infinite.

K. Kalidass 13



Real Analysis K. Kalidass

Remark 12 A subset of a countable set is countable.

Theorem 4 N × N is countable

Proof

N × N = {(a, b) : a, b ∈ N}

Take all orederd pairs (a, b) such that a + b = 2

There is only one element namely (1, 1)

Take all ordered pairs (a, b) such that a + b = 3

we have (1, 2) and (2, 1).

Next take all the ordered pairs (a, b) such that a + b = 4

we have (1, 3), (2, 2) and (3, 1)

Proceeding like this and listing all the ordered pairs together from

the begining, we get

{(1, 1), (1, 2), (2, 1), (1, 3), · · · }

The set contains every ordered pair belonging toN×N exactly once

∴ N × N is countable (or) countably infinite.

Remark 13 If A and B are countable sets then A×B is also count-

able.

Remark 14 The set of all natural numbers is countable.

Definition 22 A set which is not countable is called uncountable.

Theorem 5 (0, 1] is uncountable.

K. Kalidass 14
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Proof

Suppose (0, 1] is countable.

The elements of (0, 1] can be listed.

i.e., (0, 1] = {x1, x2, . . . } , where

x1 = 0.a11a12a13 . . .

x2 = 0.a21a22a23 . . .

...

with 0 ≤ ai j ≤ 9

Let y = 0.b1b2b3 . . . , clearly y ∈ (0, 1]

Now for each positive integer n select bn such that 0 ≤ bn ≤ 9 and

bn , ann

Here y is different from each xi atleast in the ith place.

Which is contradiction to every elements of (0, 1]listed.

Hence, (0, 1] is uncountable.

Remark 15 The set of all real numbers R is uncountable.

Remark 16 The set of all irrational numbers is uncountable.

1.5 The absolute value of a real number

Definition 23 The absolute value of a real number a is denoted by

|a| is defined by

K. Kalidass 15
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|a| =
{

a if a > 0
−a if a < 0

Remark 17 Suppose a is a real number |a| ≥ 0

Remark 18 |a| = | − a|

Theorem 6 (a) |ab| = |a||b| f oralla, b ∈ R

(b) |a|2 = a2 f oralla ∈ R

(c) If c ≥ 0 , then |a| ≤ c⇔ −c ≤ a ≤ c

(d) −|a| ≤ a ≤ |a| for all a ∈ R.

Proof (a) Case (i): Suppose

a = 0

|a| = 0

|a| · |b| = 0 · |b|

= 0

|a · b| = |0 · b|

= |0|

= 0

Hence|ab| = |a||b|

Case (ii): Suppose b = 0

|b| = 0

K. Kalidass 16
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|a|.|b| = |a|.0 = 0

|a.b| = |a.0| = |0| = 0

|ab| = 0 = |a|.|b|

|ab| = |a||b|

Case (i): Suppose a > 0 and b > 0

|a| = a and |b| = b

|ab| = ab , (ab > 0)

= |a||b|

|ab| = |a||b|

Case(iv): Suppose a > 0 and b < 0

Therefore, |a| = a and |b| = −b

we have ab < 0

|ab| = −(ab)

= a.(−b)

= |a||b|

|ab| = |a||b| case(v): Suppose a < 0 and b < 0

Therefore, |a| = −a and |b| = −b

we have ab > 0

|ab| = (ab)

= (−a).(−b)

= |a||b|

|ab| = |a||b| Hence |ab| = |a.b| for all a, b ∈ R (b) Let a ∈ R be

arbitrary

Then a2 ≥ 0

K. Kalidass 17
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Now |a2| = a2

= a.a

= |a||a|

= |a|2|

Hence, |a|2 = a2 for all a ∈ R

(c) Let us assume c ≥ 0

Suppose a ≤ 0

Then we have both a ≤ c and −a ≤ c

since, a ≤ c and −a ≤ c

−c ≤ a ≤ −a ≤ c

−c ≤ a ≤ c

conversely, suppose −c ≤ a ≤ c

since −c ≤ a, c ≥ −a

∴ we have a ≤ c and −a ≤ c , Then |a| ≤ c

(d) Let a ∈ R be arbitrary , Then |a| ≥ 0

Let c = |a| we know that, |a| ≤ |a|

∴ −|a| ≤ a ≤ |a|

1.6 Triangle inequality

Theorem 7 If a, b ∈ R, then |a + b| ≤ |a| + |b|

Proof By (d) −|a| ≤ a ≤ |a| and −|b| ≤ b ≤ |b|

By adding above inequalities

K. Kalidass 18
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−|a| − |b| ≤ a + b ≤ |a| + |b|

−(|a| + |b|) ≤ a + b ≤ |a| + |b|

|a + b| ≤ |a| + |b|(by (c))

Remark 19 |a + b| = |a| + |b| iff ab > 0

Theorem 8 If a, b ∈ R be arbitrary (a) ||a| − |b|| ≤ |a − b| (b)

|a − b| ≤ |a| + |b|.

Proof (a) Let a, b ∈ R be arbitrary

Now

a = a − b + b

|a| = |a − b + b|

|a| = |(a − b) + b|

|a| ≤ |a − b| + |b|(Bytriangleinequality)

|a| − |b| ≤ |a − b| (1.3)

Now

K. Kalidass 19
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b = b − a + a

|b| = |b − a + a|

|b| = |(b − a) + a|

|b| ≤ |b − a| + |a|(Bytriangleinequality)

|b| − |a| ≤ |b − a|

−|b| + |a| ≥ −|b − a| (1.4)

From (1.3) and (1.4)

−|a − b| ≤ |a| − |b| ≤ |a − b|

∴ ||a| − |b|| ≤ |a − b|

Hence proved.

(b) Let a and b be any real numbers

since b ∈ R , −b ∈ R (by triangle inequality)

∴ |a + (−b)| ≤ |a| + | − b|

|a − b| ≤ |a| + |b|

Hence proved.

Let S be a non-empty subset of R.

1.7 Bounded sets

Definition 24 Let S is said to be bounded above if there exists a

number u ∈ R such that s ≤ u∀s ≤ S . Each such number u is

called an upper bound of S .

K. Kalidass 20
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Definition 25 The set S is said to be bounded below if there exists

a number u ∈ R such that u ≤ s∀s ∈ S . Each such number u is

called as lower bound of S .

Definition 26 A set S is said to be bounded if it is both bounded

above and bounded below.

Definition 27 A set S is said to be unbounded if it is not bounded.

Example

Let A = {x ∈ R : 0 < x < 1} = (0, 1)

since all the elements of A ≥ 0.

Therefore, A is bounded below.

since all the elements of A ≤ 1

Therefore A is bounded above

Hence A is bounded.

Remark 20 1. Every interval of the form (a, b),[a, b),(a, b] and

[a, b] are bounded subsets of R.

2. Any finite subset of R is a bounded set.

Definition 28 Let S be a nonempty subset of R. If S is bounded

above, then a number u is said to be supremum (or) a least upper

bound of S if (i) u is an upperbound of S . (ii) if v is an upperbound

of S , then u ≤ v

Definition 29 Let S be a nonempty subset of R. If S is bounded

below, then a number w is said to be infimum (or) a greatest lower

K. Kalidass 21
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bound of S if (i) w is an lowerbound of S . (ii) if v is an lowerbound

of S , then v ≤ w

Remark 21 1. There can be only one supremum (infimum) of a

given subset of R.

2. If the supremum (or) the infimum of a set S exists, we will denote

them by supS or in f S .

1.8 The completeness property of R

(i) Every nonempty set of real numbers that has an upper bound

and also has an supremum in R.

(ii) Every nonempty subset or real numbers that has a lower bound

also has an infimum in R.

Example 10 Let S = {d f rac1n : n ∈ N}

S = {1, d f rac12, d f rac13, . . . }

in f S = 0 and S upS = 1.

1.9 Some properties of the supremum

Theorem 9 Let S be a nonempty set of real numbers with a supre-

mum, say bsup S . Then for every a < b there is some x ∈ S such

that a < x ≤ b.

Proof

Let b = sup S .

K. Kalidass 22
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Then we have x ≤ b for all x ∈ S .

To Prove: a < x ≤ b for some a ∈ S and a < b.

Suppose x ≤ a for all x ∈ S and a < b.

Therefore x is an upper bound of S and a < b.

Which is⇒⇐ b is a least upper upper bound.

x > a for atleast one x ∈ S . �

Definition 30 Let S be a nonempty subset of R that is bounded

above and let a be any number in R. Define s = {a + s : s ∈ S }.

Theorem 10 S be a nonempty subset of R. Suppose S is bounded

above and a ∈ R. Then prove that sup(a + S ) = a + supS .

Proof

Let S be a nonempty bounded above subset of R. Therefore S has

an upper bound. By completeness property of R, we have supre-

mum of S exists.

Let u ∈ supS , Then x ∈ u for all x ∈ S

Therefore, a + x ≤ u + a∀x ∈ S

∴ u + a is an upperbound of a + S .

Let

m = sup(a + S )

∴ m ≤ u + a (1.5)

suppose v is an upperbound of a + S

∴ a + x ≤ v for all x ∈ S
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∴ x ≤ v − a for all x ∈ S

Therefore v − a is an upperbound of S

u ≤ v − a

a + u ≤ v

since v is an upperbound of a + S

a + u ≤ m (1.6)

From (1.4) and (1.5), we get

a + u = m

a + supS = sup(a + S ).

Theorem 11 Suppose that A and B are nonempty subset of R, such

that a ≤ b∀a ∈ A and b ∈ B

Then supA ≤ in f B.

Proof

Let B be arbitrary .

Then a ≤ b for all a ∈ A

b is an upper bound of A

supA ≤ b

Therefore sup A is a lower bound of B

∴ supA ≤ in f B

K. Kalidass 24
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1.10 Archimedian property

If x ∈ R then there exist nx ∈ N such that x < nx

Proof

Let x ∈ R be an arbitrary

To prove : There is atleast one nx ∈ N such that x < nx

Suppose n ≤ x for all n ∈ N

∴ x is an upper bound of N.

By completeness property of R

supN exists.

Let u = supN

Then u − 1 is not an upper bound of N

∴ m ∈ N such that

u − 1 < m , u < m + 1

since m + 1 ∈ N, we must have m + 1 ≤ u

∴ there exist nx ∈ N such that x < nx

Example 11 f(x) = 0, if x is even ,

f(x) =1, if x is odd . ∴ Range of f = R f ={0, 1} ⊆ R.

Example 12 f (x) = |x|

Range of f = R f = {0, 1, 2, . . . } ⊆ R

Definition 31 Given a function f : D → R, we say that f is

bounded if the set f (D) = range of f = { f (x) : x ∈ D} is bounded
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above in R. similarly, the function f is bounded below if f (D) is

bounded below in R. we say that, f is bounded if f (D) is bounded

below and bounded above (or) | f (x)| ≤ B, B ∈ RR

Example 13 Let f : N → Q be a function defined by f (n) = n
n+1

The range of f = R f = {d f rac12, d f rac23, d f rac34, . . . } ⊆ Q

S upR f = sup f (N) = 1

in f R f = in f f (N) = 1
2

∴ The given function is bounded.

1.11 Multiple choice questions

1. Let A = {1, 2}. Then A × A is

A. {(1, 1), (2, 2)} B. {(1, 2), (2, 1)}

C.{(1, 1), (2, 2), (1, 2)} D. {(1, 1), (2, 2), (1, 2), (2, 1)}

2. Let A = {1, 2} and B = {a, b, c}. Then number of elements in

A × B is

A. 2 B.3

C. 23 D. 2 × 3

3. Suppose number of elements in A is n and number of elements

in B is m. Then number of elements in A × B is

A. n + m B. n × m

C. nm D. mn

4. Let A = {1, 2, 3} and B = {a, b, c}, then which of the following

element does not belongs to A × B
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A. (1, a) B. (3, c)

C. (c, 2) D. (1, c)

5. Identify the domain of this relation

{(9, 10), (6,−1), (6, 10), (7,−2), (11, 5)} is

A. {6, 7, 9, 11} B. {6, 7, 9, 10}

C. {−1,−2, 5, 10} D.{−1,−2, 5, 11}

6. Identify the range of this relation

{(9, 10), (6,−1), (6, 10), (7,−2), (11, 5)} is

A. {6, 7, 9, 11} B. {6, 7, 9, 10}

C. {−1,−2, 5, 10} D. {−1,−2, 5, 11}

7. Let f : Z → Z be a function defined by f (x) = x2 where Z is

a set of all real numbers. Then the range of f is

A. Z B. N

C.W D. {0, 1, 4, 9, · · · }

8. The set of all positive integers {1, 2, · · · } is

A. finite B. infinite

C. countable D. uncountable

9. Greatest lower bound of set of all positive even integers is

A. 2 B. 0

C. 1 D. 4
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10. Let S be a bounded above set of real numbers and sup S = u.

Then for x ∈ S , we have

A. x > u B. x < u

C. x ≤ u D. x ≥ u

11. Which equation does not represent a function?

A. y = 2x B. y = x2 + 10

C. y = 10
x D. x2 + y2 = 95

12. Let f : R→ R be a function defined by f (x) = x. Then f is

A.one-one B. onto

C. bijection D. neither onto nor one-one

13. Which of the following sets is countable?

A. (0,∞) B. R

C. set of all irrational numbersD. set of all Fibonacci numbers

14. B − (B − A) = A if

A. B ⊂ A B. A ⊂ B

C. A ∪ B = A D. A ∪ B = A

15. Let A = {a, b} and B = {1, 2, 3}. Then the number of distinct

functions from A into B is

A. 8 B. 9

C. 6 D. 5

16. sup {1 − 1
n : n ∈ N}=

A. -1 B. 1
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C. 0 D. 1
2

17. Let A be the set of letters in the word ”trivial” and let B be the

set of letters in the word difficult. Then A − B =

A. {a, r, v} B. {d, f , c, u}

C.{i, l, t} D. {a, i, l, r, t, v}

18. Let S be the set of all 26 letters in the alphabet and let A be

the set of letters in the word ”trivial”. Then the number of el-

ements in Ac is

A. 19 B. 20 C. 21 D. 22

19. Let A = {1, 2}. Then A × A is

A. {(1, 1), (2, 2)} B. {(1, 2), (2, 1)}

C. {(1, 1), (2, 2), (1, 2)} D. {(1, 1), (2, 2), (1, 2), (2, 1)}

20. Let A = {1, 2, 3} and B = {a, b, c}, then which of the following

element does not belongs to A × B

A. (1, a) B. (3, c)

C. (c, 2) D. (1, c)

21. Let F be a function and (x, y) ∈ F and (x, z) ∈ F. Then we

must have

A. y , z B.y < z

C. y > z D. y = z
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22. Let f : A → B be a function and the range of f denoted by

R( f ). Which of the following is always is true?

A. R( f ) , B B. R( f ) ⊆ B

C. B ⊂ R( f ) D. B ⊆ R( f )

23. If a function f : A→ B is such that R( f ) , B then f is a/an ?

A. into function B.onto function

C. surjective D. many to one

24. If a function f : A→ B is such that R( f ) = B then f is a/an ?

A. into function B. onto function

C. one to one function D. many to one

25. If f : {1, 2, · · · } → {0,±1,±2, · · · } defined by

f (x) =

{ x
2 , x is even
−

(
x−1

2

)
, x is odd

then f −1(100) =

A. 100 B. 199

C. 200 D. 201

26. The function f : R→ R defined by f (x) = sin x is

A. one-to-one B. onto

C. bijection D. many to one

27. Let f : X → Y be a function. If f −1 is a function then f −1

A. from R( f ) to X B. from Y to X

C. from X to Y D. R( f ) to Y
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28. If f −1 is a function then

A. f is one-to-one but not ontoB. f is onto but not one-to-one

C. f is both one-to-one and onto D. f is neither onto nor

one-to-one

29. Let f : A→ B be a function. We call f as a sequence in B if

A. A = {0, 1, 2, · · · } B. A = {1, 3, 5, · · · }

C.A = {1, 2, 3 · · · } D. A = {0, 2, 4, · · · }

30. A set S is countable if it is

A. both finite and countably infinite B. either finite or

countably infinite

C. neither finite nor countably infinite D. finite but not

countably infinite

31. Let R be the set of all real numbers. Then number of elements

in R is

A. countably infinite B. uncountable

C. finite D. zero

1.12 Two marks questions

1. Define an uncountable set.

2. Define countable set and give an example.

3. Give two examples for uncountable sets.
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4. State the triangle inequality

5. Define bounded set.

6. Define supremum of a set

7. Define infimum of a set.

8. Define unbounded set.

9. Give two examples for unbounded set

10. Give two example for bounded set

11. Prove that |a + b| = |a| + |b| iff a = b = 0

12. State archimedian property of R

13. Define cluster point

14. Prove that R is uncountable

15. Let S =
{
1 − 1

n : n ∈ N
}
. Find sup S and inf S

16. Prove that the set of all rational number is countable.

17. If a, b ∈ R, ptove that |a + b| ≤ |a| + |b|

OR State and prove triangle inequality

18. State and prove Archimedean property.

19. Let S be a subset of R and a ∈ R. Prove that a + sup S =

sup(a + S )
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20. Prove that the set of all real numbers is uncountable.
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UNIT I

The set of all points between a and b is called ------------ integer interval elements set interval

The set {x: a < x < b} is -------------- (a, b) [a, b] (a, b] [a, b) (a, b)

A real number is called a positive integer if it belongs to ----------- interval open interval closed interval inductive set inductive set

Rational numbers is of the form ----------------- pq p + q p/q p - q p/q

e is --------------- rational irrational prime composite irrational

An integer n is called ----------- if the only possible divisors of n are 1 and nrational irrational prime composite prime

A set with no upper bound is called ------------ bounded above bounded below prime function bounded above

A set with no lower bound is called ------------ bounded above bounded below prime function bounded below

The least upper bound is called ----------- bounded above bounded below supremum infimum supremum

The greatest lower bound is called ----------- bounded above bounded below supremum infimum infimum

The supremum of {3, 4} is ---------- 3 4 (3, 4) [3, 4] 4

Every finite set of numbers is ---------- bounded unbounded prime bounded above bounded 

A set S of real numbers which is bounded above and bounded below is called --------bounded set inductive set super set subset bounded set

The set N of natural numbers is ---------- bounded not bounded irrational rational not bounded 

The infimum of {3, 4} is ------------ 3 4 (3, 4) [3, 4] 3



Sup C = Sup A + Sup B is called -------------- property approximation additive archimedean comparison additive 

For any real x, there is a positive integer n such that ----------- n > x n < x n = x n = 0 n > x

If x > 0 and if y is an arbitrary real number, there is a positive number n such that nx > y is -------------- propertyapproximation additive archimedean comparison archimedean

The set of positive integers is ------------- bounded above bounded below unbounded aboveunbounded belowunbounded above

The absolute value of x is denoted by --------------- |x| ||x|| x < 0 x > 0 |x|

If x < 0 then --------------- |x| = x ||x|| = |x| ||x|| = -x |x| = -x |x| = -x

If S = [0, 1) then sup S = ---------------- 0 1 (0, 1) [0,1] 1

Triangle inequality is ------------------- |a| + |b| greater equal to |a + b||a| > |a + b| |b| > |a + b| |a + b| less than equal to |a | + |b||a + b| less than equal to |a | + |b|

|x + y| greater than equal to ----------------- |x| + |y| |x| |y| |x| - |y| | |x| - |y| | | |x| - |y| |

If (x, y) belongs to F and (x, z) belongs to F, then ------------- x = z x = y xy = z y = z y = z

A mapping S into itself is called ------------ function relation domain transformation transformation

If F(x) = F(y) implies x =y is a --------------- function one-one onto into inverse one-one

One-one function is also called ----------- injective bijective transformation codomain injective

S = {(a,b) : (b,a) is in S} is called --------------- inverse domain codomain converse converse

If A and B are two sets andif there exists a one-one correspondence between them,then it is called ------------- setdenumerable uncountable finite equinumerous equinumerous

A set which is equinumerous with the set of all positive integers is called ---------------- setfinite infinite countably infinitecountably finite countably infinite



A set which is either finite or countably infinite is called ------------ set countable uncountable similar equal countable

Uncountable sets are also called ------------- set denumerable non-denumerablesimilar equal non-denumerable

Countable sets are also called --------------- set denumerable non-denumerablesimilar equal denumerable

Every subset of a countable set is ------------ countable uncountable rational irrational countable

The set of all real numbers is ---------------- countable uncountable rational irrational uncountable

The cartesian product of the set of all positive integers is ---------- countable uncountable rational irrational countable

The set of those elements which belong either to A or to B or to both is called ---------complement intersection union disjoint union

The set of those elements which belong to both A and B is called ------------complement intersection union disjoint intersection

Union of sets is -------------- commutative not commutativenot associative disjoint commutative

The complement of A relative to B is denoted by -------------- B - A B A A - B B - A

If  A intersection B is the empty set, then A and B are called -------- commutative not commutativenot associative disjoint disjoint

B - (union A) = ----------------- union (B -A) B - (intersection A)intersection (B - A){} intersection (B - A)

B - (intersection A) = ----------------------- union (B -A) B - (union A) intersection (B - A){} union (B -A)

Union of countable sets is ----------------- uncountable infinite countable disjoint countable

The set of all rational numbers is --------------- uncountable infinite countable disjoint countable

The set S of intervals with rational end points is ---------- set uncountable infinite countable disjoint countable



The product of two prime numbers will always be 

even number odd number neither prime nor compositecomposite composite  

Let A be the set of all  prime numbers. Then number of elements in A is

countable uncountable finite empty countable

𝐴^𝑐



Chapter 2

Real sequences

2.1 Sequences and their limits

Definition 32 A sequence in R is a function from N into R.

Remark 22 (i) The sequence is denoted by the symbol {sn} or (sn).

(ii) The image of of n, sn is called the nth term of the sequence.

Example 14 Let f be function from N→ R such that f (n) = 0

Range of f ={0}

Definition 33 If b ∈ R, the sequence B = {b, b, b, . . . } is called

constant sequence.

Definition 34 The Fibnacci sequence F = ( fn) is given by

f1 = 1

f2 = 2

fn+1 = fn + fn−1, n ≥ 2

34
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Definition 35 A sequence (xn) in R is said to converge to x ∈ R or

x is said to be a limit of (xn) if for every ε > 0 there exists a positive

integers N such that |xn − x| < ε for all n ≥ N.

If a sequence has a limit, we say that the sequence is convergent, if

it has no limit, we say that the sequence is divergent.

Remark 23 Suppose a sequence (xn) has limit x, Then we can

write

lim xn = x or xn → x as n→ ∞

Theorem 12 Let (xn) be a sequence of real numbers and let x ∈ R.

If (an) be a sequence of positive real numbers with lim an = 0 and

if for some constant c > 0 and some m ∈ N we have

|xn − x| ≤ can∀n ≥ m, then lim xn = x

Proof suppose let ε > 0 be given, then ∈c > 0

Given that lim an = 0

Therefore for ε
c > 0, there exist a positive integer N such that

|an − 0| <
ε

c
|an| <

ε

c
an <

ε

c
∀n ≥ N

Suppose for some m ∈ N such that

|xn − x| ≤ c.an ∀n ≥ N

≤ c.
ε

c
= ε
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∴ xn → x

Example 15 If a > 0, then lim( 1
1+na) = 0

Solution Since a > 0, na > 0, 0 < na < 1 + na

∴ 1
na >

1
1+na

Now

|
1

1 + na
− 0| = |

1
1 + na

|

=
1

1 + na
<

1
na

∴ |
1

1 + na
− 0| <

1
a

(
1
n

)

Since lim(1
n) = 0, lim( 1

1+na) = 0

Remark 24 Convergence of (|xn|) need not imply the convergence

of (xn).

Consider a sequence ((−1)n)

Then (|(−1)n|) = (1, 1, . . . )

Clearly, lim |xn| = 1

Now ((−1)n) = (−1, 1,−1, 1, . . . )

This is not a convergent sequence.

2.2 Limit theorems

Theorem 13 If 0 < b < 1, then lim(bn) = 0

Proof Suppose 0 < b < 1

Then b = 1
1+a if a > 0
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|bn − 0| = |bn|

= bn

= [
1

1 + a
]n]

=
1n

(1 + a)n

=
1

(1 + a)n

≤
1

1 + na
≤ 1na

= c
1
n

(2.1)

Since lim xn = 0 and by previous theorem, lim(bn) = 0

Theorem 14 If c > 0, then lim(c
1
n )=1

Proof Case(i) suppose c = 1

Then (c
1
n ) is a constant sequene and lim(c

1
n ) = 1

Case(ii) suppose 0 < c < 1

Then c
1
n = 1

1+hn
where hn > 0

(c
1
n )n = (c

1
1+hn )n

c = 1
(1+hn)n

< 1
n.hn

Now |c
1
n−1| = |1 − c

1
n |

= |1 − 1
1+hn
|
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= |1+hn−1
1+hn

=| hn
1+hn
|

< hn

since c < 1
nhn

, hn <
1
nc

∴ |c
1
n − 1| < 1

nc

since 1
c > 0 and

liman = 0 if an = 1
n

Then

lim(c
1
n ) = 1

case(iii)

suppose c > 1

Then c
1
n = 1 + dn where dn > 0

Now c = (1 + dn)n

= 1 + n.dn + · · · + dn
n

≥ 1 + ndn

∴ c − 1 ≥ ndn

c−1
n ≥ dn

Now |c
1
n−1| = |dn|

= dn

c−1
n

= (c − 1).1n
Hence

lim(c
1
n ) = 1
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2.3 Bounded sequences

Definition 36 A (xn) of real numbers is said to bounded if there

exists a real number M > 0 such that

|xn| ≤ M for all n ∈ N, −M ≤ xn ≤ M

Theorem 15 A convergent sequence of real numbers is bounded.

Proof

suppose that

lim(xn) = x

Let ∈= 1 > 0

Then there exists a positive integer N such that |xn− x| < 1 if n ≥ N

Now |xn| = |xn − x + x|

≤ |xn − x| + |x|

≤ 1 + |x| if n ≥ N

Then |xn| ≤ M for all n ≥ 1

Therefore (xn) is bounded.

Definition 37 If x = (xn) and y = (yn) are sequences of real num-

ber, we define their sum to be the sequene x + y = (xn + yn), their

difference to be the sequence x − y = (xn − yn) and their product to

be the sequence xy = (xnyn) .

If c ∈ R, we define the sequence cx = (cxn)

If z = (zn) is a sequence of non-zero real numbers, then we define
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the quotient of x and Z to be the sequence
x
Z =

(
xn

zn).

Theorem 16 Let X = (xn) and Y = (yn) converge to x and y re-

spectively and c ∈ R. Then the sequence x + y x − y, xy and cx

converge to x + y, x − y, xy and cx respectively.

Proof

Let ∈> 0 be given. suppose xn → x and yn → y
∈

2 > 0 and xn → x

There exist a positive integer N1 such that

|xn − x| < ∈

2

since ∈2 > 0 and yn → y

Thereexist a positive integer N2 such that

|yn − y| < ∈

2 ∀n ≥ N2

Now |(xn + yn) − (x + y)| = |(xn − x) + (yn − y)|

≤ |xn − x| + |yn − y|

let N = max{N1,N2}

|(xn + yn) − (x + y)| < ∈

2 + ∈

2

=∈

Therefore, (xn + yn)→ x + y

By using similar arguments, we have

The sequence (xn − yn) converges to x − y

consider |xnyn − xy| = |xnyn − xny + xny − xy|

= |xn(yn − Y) + y(xn − x)|
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≤ |xn(yn − y)| + |y(xn − x)|

= |xn||yn − y| + |y||xn − x|

since (xn)→ x, Thereexist a positive real number M1 such that

|xn| ≤ M,∀n ≥ 1

Hence |xnyn − xy| ≤ M , |yn − y| + |y||xn − x|

let M = sup{M1, |y|}

|xnyn − xy| ≤ yM|yn − y| + M|xn − x|

let ∈> 0 be given

since (xn)→ x, there exist a positive integer N1 such that

|xn − x| < ∈

2M ∀n ≥ N1

since (yn)→ y, there exist a positive integer N2 such that

|yn − y| < ∈

2M ∀n ≥ N2

N = sup{N1,N2}

Therefore |xnyn − xy| < M (
∈
2M) + M (

∈
2M) if n ≥ N

Therefore |xnyn − xy| <∈ if n ≥ N

i.e., (xnyn)→ xy

Let (yn) be a constant sequence(c)

Then (yn)→ c

By the above argument, (xnyn)→ xc

i.e.,(xnc)→ xc

i.e.,(cxn)→ cx

Theorem 17 If X = (xn) converges to x and z = (zn) is a sequence

of non-zero real numbers that converge to z and if z , 0, then the
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quotient sequence ( xn
zn

)→ x
z

Proof

Let α = 1
z > 0

since (zn)→ z, there exist a positive integer N1 such that |zn−z| < α

if n ≥ N1

−|zn − z| > −α if n ≥ N1 Therefore, −α < −|zn − z| ≤ |zn| − |z| if

n ≥ N1

−α < |zn| − |z| if n ≥ N1

1
2 |z| = |z| −

1
2 |z|

= |z| − α

< |zn| if n ≥ N1

1
2 |z| ≤ zn if n ≥ N1

2
|z| ≥

1
|zn|

if n ≥ N1

Now | 1zn
− 1

z |

=
|z−zn|

|znz|

=
|z−zn|

|zn||z|
≤
|zn−z
|z| .

2
|z|

=
2|zn−2|
|z|2

let ∈> 0 be given

since (zn)→ z1 there exist a positive integer N2 such that

|zn − z| < ∈

2 |z|
2 if n ≥ N2

Hence | 1zn
− 1

z | ≤
2
|z|2∈|z|

22 if n ≥ N = sup{N1,N2}

Therefore, ( 1
zn

)→ (1
z )

Theorem 18 If (xn) is a convergent sequence of real number and

K. Kalidass 42



Real Analysis K. Kalidass

if xn ≥ 0 for all n ∈ N, then x = lim(xn) ≥ 0.

Proof

suppose (xn)→ x

To prove

x ≥ 0

suppose x < 0

Then −x > 0

Let ∈= −x > 0

since (xn)→ x, There esixt a positive integer N such that

|xn − x| < −x if n ≥ N

Then x < xn − x < −x if n ≥ N

Therefore, xn − x < −x if n ≥ N

xn < −x + x if n ≥ N

xn < 0 if n ≥ N

i.e., xN < 0, xN+1 < 0, . . .

⇒ xn ≥ 0 ∀n

Hence xn ≥ 0

Note

(i) suppose sequence (xn) is convergent to x and xn > 0. Then

lim(xn) = x need not be greater than zero.

Theorem 19 If (xn) and (yn) are convergent sequence of real num-

bers and if xn ≤ yn forall n ∈ N, then lim(xn) ≤ lim(yn).

K. Kalidass 43



Real Analysis K. Kalidass

Proof Let zn = yn − xn

Then (zn) is a sequence of real numbers and zn ≥ 0.

By previous theorem,

lim(zn) ≥ 0

lim(yn − xn) ≥ 0

lim(yn) − lim(xn) ≥ 0

lim(yn) ≥ lim(xn)

Theorem 20 If (xn) is a convergent sequence and if a ≤ xn ≤ b for

all n ∈ N, then a ≤ lim(xn) ≤ b.

Proof Let (yn) be q sequence such that yn = b∀n ∈ N

since a ≤ xn ≤ b, we have n ≤ yn ∀n ∈ N

By previous theorem, lim(a) ≤ lim(yn) ≤ lim(b)

a ≤ lim(yn) ≤ b

2.4 Squeeze theorem

Theorem 21 suppose that (xn), (yn) and (zn) are sequences of real

numbers such that xn ≤ yn ≤ zn ∀n ∈ N

and lim(xn) = lim(zn)

lim(xn) = lim(yn) = lim(zn)

Proof Given that lim(xn) = lim(zn)

Then lim(xn) = lim(zn) = w

Let ∈> 0 be given.
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Then there exist positive integer N such that

|xn − w| <∈ if n ≥ N

and |zn − w| <∈ if n ≥ N

Also given that xn ≤ yn ≤ zn, Then xn − w ≤ yn − w ≤ zn − w

∈< xn − w < yn − w < zn − w <∈

− ∈< yn − w <∈

|yn − w| <∈ if n ≥ N

Therefore, lim(yn) = w

Theorem 22 Let the sequence (xn) converges to x. Then the se-

quence (|xn|) of absolute values converges to |x|.

Proof Let ∈> 0 be given

There exist a positive integer N such that

|xn − x| <∈ for all n ≥ N

Now, ||xn| − |x|| ≤ |xn − x| <∈

∴ lim(xn) = |x|

2.5 Monotone sequence

Definition 38 Let (xn) be a sequence of real numbers. we say that

sequence (xn) is increasing if x1 ≤ x2 ≤ · · · ≤ xn ≤ xn+1 ≤ . . .

we say that sequence (xn) is decreasing if x1 ≤ x2 ≤ · · · ≤ xn ≤

xn+1 ≤ . . . , we say that (xn) is monotone if it is either increasing or

decreasing.
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Problem

Give an example of two divergent sequences X and Y such that (i)

sum x + y converges (ii) Product X.Y converges.

Solution

Let X = (−1)n = (−1, 1,−1, 1, . . . ) Y = (−1)n+1 = (−1, 1,−1, 1, . . . )

clearly X and Y are divergent

Now X + Y = (0, 0, 0, . . . ) converges

X.Y = (−1,−1,−1, . . . ) converges

Problem 1 Show that if X and Y are sequences such that X and Y

X + Y are convergent then Y is convergent.

Solution Given X and X +Y are convergent. Then X +Y −X is also

convergent. i.e., Y is convergent.

2.6 Monotone convergence theorem

Theorem 23 A monotone sequene of real numbers is convergent if

and only if it is bounded. Moreover (i) If X = (xn) is a bounded

increasing sequene, then lim(xn) = sup{xn : n ∈ N} (ii) If Y = (yn)

is a bounded decreasing sequence, then lim(yn) = in f {yn : n ∈ N}

Proof Suppose a monotone sequence is convergent then the se-

quence is bounded. conversely, suppose a monotone sequence is
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bounded. since given sequence is monotone, we have either in-

creasing or decreasing.

(i) Let X be a increasing sequence and bounded.

since, X is bounded, there is a real number M such that xn ≤ M

∀n ∈ N

Therefore, {xn : n ∈ N} is bounded above.

By completeness property of R, there exist the sup{xn : n ∈ N}

∈> 0 be given

Then x∗− ∈ is not an upper bound.

Therefore there exist a member of set xn such that x∗− ∈ ¡ xk

Then x∗− ∈< xn ∀n ≥ k

Hence x∗− ∈< xk ≤ xn ≤ x∗ < x∗+ ∈

− ∈< xn − x∗ <∈ if n ≥ k

|xn − x∗| <∈ if n ≥ k

lim(xn) = x∗

(ii) Let Y = (yn) be a bounded decreasing sequence

Then X = −Y = (−yn) is an increasing sequence

By (i) lim(−yn) = sup{−yn : n ∈ N}

= −in f {yn : n ∈ N}

lim X = −in f {yn : n ∈ N}

lim(−y) = −in f {yn : n ∈ N}

− lim(y) = −in f {yn : n ∈ N}

lim(y) = in f {yn : n ∈ N}
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Problem 2 show that lim( 1
√

n) = 0

Solution lim( 1
√

n) = x and x = ( 1
√

n)

Now X.X = ( 1
√

n)( 1
√

n)

= ( 1
√

n → 0)

Therefore x2 = 0 and x = 0

Problem 3 consider a (xn) with x1 = 2 and xn+1 = 2 + 1
xn
, n ∈ N.

Find the limit of the sequence (xn).

Solution Let lim(xn) = x

since xn ≥ 0 ∀n, we have x ≥ 0

Moreover xn ≥ 2 and x , 0

Now x = lim(xn)

= lim(xn+1)

= lim(2 + 1
xn

)

Let yn = 2 and zn = 1

Then lim(yn) = 2 and lim(zn) = 1

x = lim(yn + zn
xn

)

= lim(yn) + lim( zn
xn

)

= lim(yn) +
lim(zn)
lim(xn)

x = 2 + 1
x

x2 = 2x + 1

x2 − 2x − 1 = 0

Therefore, x = 1 +
√

2 (or) x = 1 −
√

2 < 0

Problem 4 Show that (−1)n is divergent
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Solution Suppose sequence (−1)n is convergent and lim(−1)n = a

Let ∈= 1 > 0

There exists a positive integer N such that

|(−1)n − a| < 1 if n ≥ N

suppose n is even

|1 − a| ¡ 1 if n ≥ N

−1 < 1 − a < 1 if n ≥ N

−2 < −a < 0 if n ≥ N

2 > a > 0 if n ≥ N suppose n is odd

| − 1 − a| ¡ 1 if n ≥ N

−1 < −1 − a < 1 if n ≥ N

−1 + 1 < −a < 1 + 1 if n ≥ N

0 > a > −2 if n ≥ N

Therefore we have a > 0 and a < 0

Hence (−1)n is diverges.

Theorem 24 Let (xn) be a sequence of positive real numbers such

that lim( xn+1
xn

) = L exists. If L < 1, then (xn) converges and lim(xn) =

0

Proof since (xn) is a sequence of positive real numbers. we have

( xn+1
xn

) is also a sequence of positive real numbers.

By previous theorem, L ≥ 0

suppose L < 1, then 0 ≤ L < 1

let r ∈ R such that L < r < 1
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let ∈= r − L > 0

since ( xn+1
xn

) converges, there exist a positive integer N, such that

|
xn+1
xn
− L| <∈ if n ≥ N

Then xn+1
xn

<∈ +L if n ≥ N
xn+1
xn

< (r − L) + L if n ≥ N
xn+1
xn

< r if n ≥ N

Therefore xn+1 < rxn if n ≥ N

∴ 0 ≤ xn+1 < r.xn < r2xn−1 < · · · < rn−N+1xN

Let C =
xN
rN

∴ 0 ≤ xn+1 < C.rn+1

since 0 < r < 1, lim(xn) = 0

Problem 5 Consider a sequence {xn} with xn = n
2n .Discuss about

the convergent of (xn) and find the limit of the sequence.

Solution Given xn = n
2n . Then xn+1 = n+1

2n+1

xn+1

xn
=

n + 1
2n+1 .

2n

n

=
2n.n + 1

2n.2n

=
n + 1

2n

lim
(

xn+1

xn

)
=

1
2
< 1

By previous theorem, we have (xn) converges and lim(xn) = 0

Problem 6 Let a > 0 and construct a sequence (sn) of real num-

bers such that lim(sn) =
√

a
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Solution Let s1 > 0 be arbitrary and define sn+1 = 1
2(sn + a

sn
) for

n ∈ N

Now

sn+1 =
1
2

(
s2

n + a
sn

)

2sn+1 =
s2

n + a
sn

2sn+1sn = s2
n + a

s2
n − 2sn+1.sn + a = 0

since the quadratic has real roots, we must have (n ∈ N)

4.s2
n+1 − 4a ≥ 0

4s2
n+1 ≥ 4a

s2
n+1 ≥ a

Now

sn − sn+1 = sn −
1
2

(sn +
a
2n

)

=
1
2

(
s2

n − a
sn

)

sn − sn+1 ≥ 0

sn ≥ sn+1, n ∈ N

clearly (sn) is a monotone decreasing sequence.

∴ (sn) is convergent
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Let lim(sn) = s

lim(sn) = lim(sn+1)

= lim[
1
2

(sn +
a
sn

)]

= lim[
1
2

(sn +
a
2

1
sn

)]

= [
1
2

lim(sn) +
a
2
.

1
lim(sn)

]

=
1
2

s +
a
2
.
1
s

=
1
2

(s +
a
s

)

2s2 = s2 + a

s2 = a

s =
√

a or −
√

a

∴ lim(sn) =
√

a since s > 0

Theorem 25 Let en = (1 + 1
n)n, n ∈ N then, lim(en) = e

Proof Given en = (1 + 1
n)n

since, the expression for en contains n+1 terms, and the expression

for en+1 contains n + 2 terms and each term appearing in en ≤ en+1.

Therefore (en) is monotone increasing sequence

since 2p−1 ≤ p! , (p = 1, 2, . . . , n)
1

2p−1 ≥
1
p!

Hence 2 ≤ en = 3

∴ (en) is bounded.

Hence (en) is convergent and lim(en) lies between 2 and 3. We
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define the number e to be the limit of this sequence.

∴ lim(en) = e

2.7 Multiple choice questions

1. Suppose lim(xn) = x and lim(−xn) = x. Then x =

A. 1 B. 1
2

C. 0 D. −1

2. Suppose lim(xn) = x. For every ε > 0, there is a +ve integer

N such that we have

A. x − ε < xn B. x + ε > xn

C. both A and B D. neither A nor B

3. The sequence
(

1
n

)
is

A. convergent B. bounded

C. both A and B D. neither A nor B

4. The sequence ((−1)n) is

A. convergent B. bounded

C. both A and B D. neither A nor B

5. Constant sequence is

A. increasing B. decreasing

C. both A and B D. neither A nor B

6. If X = ((−1)n)) and Y =
(
(−1)n+1)

)
then X + Y

A. coverges B. diverges
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C. both A and B D. neither A nor B

7. If X and X + Y are convergent, then Y

A. coverges B. diverges

C. both A and B D. neither A nor B

8. If x1 = 8 and xn+1 = xn
2 + 2, (xn) is

A.monotone B.bounded

C. both A and B D. neither A nor B

9. If zn = (an + bn)n and 0 < a < b, then lim(zn) =

A. 0 B. 1

C. a D. b

10. If X converges to x and XY converges then Y converges if

A. x , 0 B. xn , 0

C. both A and B D. neither A nor B

11. A sequence (xn) in A is a function from —- to A

A. R B. Z

C. N D.W

12. The range of a real sequence is

A. R B. Z

C. N D.W

13. lim
(

3n+2
n+1

)
=

A. 1 B. 2

C. 3 D. 4
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14. lim(bn) = 0 if

A. b > 1 B. 0 ≤ b ≤ 1

C. b ≥ 1 D. 0 < b < 1

15. lim
(

1
1+na

)
= 0 if

A. a > 0 B. 0 ≤ a ≤ 1

C. a ≥ 0 D. 0 < a < 1

16. lim
(
a

1
n

)
= 0 if

A. a > 0 B. 0 ≤ a ≤ 1

C. a ≥ 0 D. 0 < a < 1

17. The nth of the sequence 1
2 ,−

1
4 ,

1
8 · · · is

A. 1
2n B. (−1)n

2n

C. (−1)n+1

2n D. (−1)n+1

2n+1

18. lim(bn) =

A. 0 B. 2

C. 3 D. 1

19. The sequence (an) where an = n
2n is

A. increasing B. decreasing

C. both A and B D. neither A nor B

20. lim
(

1
√

n

)
=

A. 0 B. 2

C. 3 D. 1
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21. If y1 = 1 and yn+1 = 1
4 (2yn + 3) for n ≥ 1, lim(yn) =

A. 1
2 B. 3

2

C. 1
3 D. 2

3

22. If s1 > 0 and sn+1 = 1
2

(
sn + a

sn

)
for n ≥ 1, lim(sn) =

A. a B.
√

a

C. 1
a D. 1

√
a

23. If sn =
(
1 + 1

n

)n
for n ≥ 1, lim(sn) =

A. π B.
√
π

C. 1
e D. e

24. Let x1 = a > 0 and xn+1 = xn+ 1
xn

for n ≥ 1. Then the sequence

(xn) is

A. increasing B. decreasing

C. both A and B D. neither A nor B

2.8 Two marks questions

1. Give an example for unbounded sequence.

2. Define a bounded sequence.

3. Define a convergent sequence.

4. Give an example for bounded sequence need not be a conver-

gent sequence

5. Define a sequence.
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6. Give an example monotonic sequence need not be a conver-

gent sequence

7. Given an example for a monotonic sequence which is conver-

gent

8. Prove that if c > 0, lim c
1
n = 1

9. State and prove squeeze theorem

10. If a > 0, then prove that lim 1
1+na = 0

11. Prove that a convergent sequence of real numbers is bounded.

Also prove that the converse is need not be true.

12. Prove that lim n
1
n = 0

13. Let X = (xn) and Y = (yn) be sequence of real numbers that

converges to x and y respectively. Prove that the sequences

X + Y and XY converge to x + y and xy, respectively.

14. State and prove uniqueness theorem on limit.

15. Prove that a convergent sequence of real numbers is bounded

16. Prove that a sequence in R can have at most one limit.
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If A is the set of even prime numbers and B is the set of odd prime numbers. Then  

A is a subset of B B is a subset of A A and B are disjointA and B are not disjointA and B are disjoint

which relation is not a function? {(2,5),(3,6).(4,7)} {(2,1),(3,2).(4,7)} {(2,1),(2,3).(3,4),(4,1))}{(2,1),(3,3),(4,1)} {(2,1),(2,3).(3,4),(4,1))}

Given the relation A={(5,2),(7,4),(9,10),(x,5)}. Which of the following value for x will make relation on A as a function?7 9 4 5 4

Let A be the set of letters in the word  " trivial" and let B  be the set of letters in the word difficult. Then A-B={a,r,v} {d,f,c,u} {I,l.t} {a,I,l,r,t,v} {a,r,v}

Let S be the set of of all 26 letters in the alphabet and let A be the set of letters in the word "trivial". Then the number of elements in                    is 19 20 21 22 21

Let A={1,2}. Then A X A = {(1,1),(2,2)} {(1,2),(2,1)} {(1,1)(1,2),(2,1),(2,2)}{(1,1),(2,2),(2,1)} {(1,1)(1,2),(2,1),(2,2)}

Let A={1,2} and B={a,b,c}. Then number of elements in A X B =2 3 2*2*2 2*3 2*3

Suppose n(A)=a and n(B)=b. Then number of elements in A X B isa b ab a+b ab

Let A={1,2} and B={a,b,c}. Then which of the following element does not belongs to  A X B =(1,a) (3,c) (c,2) (1,c) (c,2)

Let F be a function and  (x,y) in F and (x,z) in F. Then we must havex=y y=z z=x x=x y=z

If the number of elements in a set S are %. Then the number of elements  of the power set P(S)=5 6 16 32 32

If range of f is equal to codain set, then f is into onto one-one many to one onto

Converse of function is a function only if f is into onto one-one bijection bijection

Inverse function is always into onto one-one bijection bijection

If A and B contains n elements then number bijection between A and B isn! n n+1 n-1 n!

𝐴^𝑐



Let f be  a function from A to B. Then we call f as a sequence only if  A is aset of positive integersset of all real numbersset of all rationals set of irrationals set of positive integers

Two sets A and B are said to be similar iff there is a function f exists such that f isinto one-one onto bijection bijection

If two sets A={1,2,…,m} and B={1,2,..,n} are smilar thenm<n n<m n=m n>0 n=m

Which of the following is an example for countable? set of real numbersset of all irrationalsset of all rationals (0,1) set of all rationals

Number of elements in the set of all real numbers is finite countably infinite 10000000000 uncountable uncountable

The union of elements A and B is the set of elements belongs to either A or B neither A not B both A and B A and not in B either A or B

The set of elements belongs A and not in B is B A B-A A-B A-B

The set of elements belongs B and not in A is B A B-A A-B B-A

Countable union of countable set is uncountable countable finite countably infinite countable

N X N is uncountable countable finite countably infinite countable

 Z X R is uncountable countable finite countably infinite uncountable

R x R is uncountable countable finite countably infinite uncountable

The set of sequences consists of only 1 and 0 is uncountable countbale finite countably infinite uncountable

Every subset of a countable set is uncountable countable finite countably infinite countable

Every subset of a finite set is uncountable countable finite countably infinite finite

Fibonnaci numbers is  an example for uncountable set countable set finite set infinte set countable



Suppose A  and  B is countable then A X B is uncountable countable finite infinite countable

A X B is  similar to A B A XA A X B A X B

The set of all even integers is uncountable countable finite infinite countable

(0,1] is uncountable countable finite countably infinite uncountable

{1,2,…..,100000} uncountable countable infinite countably infinite countable

Suppose f is a  one to one function. Then x not eqaul y impliesf(x)  is not equal to f(y)f(x)=f(y) f(x)<f(y) f(x)>f(y) f(x) is not equal to f(y)

Suppose f is  a one to one function. Then f(x)=f(y) impliesx=-y y=x+10 x=y x is not eqaul y x=y

Let f be a bijection  between A and B and A is counatble then B isuncountable countable finite similar to R countable

Let f be a function defined on A and itself such that f(x)=x. Then f isonto one to one bijection neither one to one nor ontobijection

Constant function is an example for onto one to one many to one bijection many to one

Stricly increasing function is an onto function one to one many to one bijection one  to one

Strictly decreasing function is an onto function one to one many to one bijection one to one

If g(x)  = 3x + x + 5, evaluate g (2) 8 9 13 17 13

A = {x: x ≠ x }represents {1} {} {0} {2} {}

If a set A has n elements, then the total number of subsets of A isn! 2n 2
n

n 2
n











Chapter 3

Infinite series

3.1 Introduction

If x = (xn) is a sequence in R then the infinite series or series

generated by x is the sequence s = sn defined by

s1 = x1

s2 = x1 + x2

s3 = x1 + x2 + x3

...

Remark 25 1. clearly

sn = x1 + x2 + · · · + xn

= x1 + x2 + · · · + xn−1 + xn

= sn−1 + xn

2. The numbers xn are called the terms of the series and the num-

bers sn is called the partial sum of this series.
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3. If lim S exists, we say that the series is convergent and this limit

is the sum or the value of this series.

4. If this limit does not exists, we say that the series is divergent.

5. It is convenient to use symbols such as
∑

(xn) to denote the infi-

nite series.

Example 16 consider the series
∑ 1

n(n+1)

Solution
∑ 1

n(n+1)

Now 1
n(n+1) = 1

n −
1

n+1

Then

sn =
1

1.2
+

1
2.3

+ . . .

= (1 −
1
2

) + (
1
2
−

1
3

) + . . .

= 1 −
1

n + 1

lim sn = lim
(
1 −

1
n + 1

)
= lim(1) − lim

(
1

n + 1

)
= 1 − 0

= 1

∴
∑ 1

n(n+1) is converges.

3.2 Geometric series

Example 17 Consider the series
∑

rn = 1 + r + r2 + . . .

Solution
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sn = 1 + r + r2 + · · · + rn−1

sn(1 − r) = sn − snr

= 1 + r + r2 + · · · + rn−1 − (1 + r + r2 + · · · + rn−1).r

= 1 − rn

sn(1 − r) = 1 − rn

sn =
1

1 − r
−

rn

1 − r

sn −
1

1 − r
= −

rn

1 − r

sn −
1

1 − r
= −

rn

1 − r

lim
(
sn −

1
1 − r

)
= lim

(
−

rn

1 − r

)
= 0 if |r| < 1

lim sn =
1

1 − r

∴
∑

rn converges if |r| < 1

3.3 The nth term test

Theorem 26 If the series
∑

xn converges then lim(xn) = 0

Proof Suppose
∑

xn converges

Let sn be the partial sum of
∑

xn

By definition of convergence of
∑

xn, we have lim(sn) = x
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Now

sn − sn−1 = (x1 + x2 + · · · + xn) − (x1 + x2 + . . . xn−1)

= xn

i.e. , xn = sn − sn−1

lim(xn) = lim(sn − sn−1)

= lim(sn) − lim(sn−1)

= x − x = 0

Therefore lim(xn) = 0

Example 18 Consider
∑ 1

r(r+1)

Clearly the series converges.Also

∞∑
r=1

1
r(r + 1)

=
1

1.2
+

1
2.3

+ · · · +
1

r(r + 1)
+ · · ·

lim
(

1
r(r + 1)

)
= lim(

1
r
−

1
r + 1

)

= lim(
1
r

) − lim(
1

r + 1
)

= 0

Example 19 Consider the series
∑

rn, |r| < 1

Clearly the series converges. Also

∞∑
n=1

rn = r0 + r1 + · · · + rn + . . .

lim(rn) = 0
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Example 20 Consider
∑

(−1)n

∑
(−1)n = (1)0 + (−1)1 + . . .

= 1 − 1 + 1 − 1 + 1 − 1 + . . .

lim(sn) does not exist.

There fore the sereis diverges.

Remark 26 If lim xn , 0, then the series
∞∑

n=1
xn cannot converge.

Theorem 27 Let (xn) be a sequence of nonnegative real numbers.

Then the series
∑

xn converges if and only if the sequence s =

(sk) of partial sums is bounded. In this case
∑

xn = lim(sk) =

sup{sk : k ∈ N}

Proof since xn > 0, we have

s1 = x1

s2 = x1 + x2

= S 1 + x2

s2 > s1

s3 = x1 + x2 + x3

= s2 + x3

s3 > s2

∴, the sequence of partial sums satisfies s1 < s2 < s3 < . . .

∴ (sk) is monotone sequence.
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Suppose
∑

xn converges

By convergence definition, (sk) converges.

∴ (sk) is bounded.

Conversely (sk) is bounded

i.e., (sk) is monotone and bounded.

By monotone convergence theorem, (sk) converges

Therefore
∑

xk converges.

Moreover, lim(sk) = sup{sk : k ∈ N}

∴
∑

xk = sup{S k : k ∈ N}

Example 21 Consider the series
∑

(1
n)

SolutionHere

s1 = 1

s2 = 1 +
1
2

=
3
2

s3 = 1 +
1
2

+
1
3

=
11
6

...

Therefore s1 < s2 < . . .

clearly (sk) is not bounded.

∴
∑

(1
n) is divergent.

Problem 7 Show that
∑ 1

(n+1)(n+2) = 1
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Solution

sn =
1

1.2
+

1
2.3

+ · · · +
1

(n + 1)(n + 2)

= 1 −
1

n + 2
since

1
(n + 1)(n + 2)

=
1

(n + 1)
−

1
(n + 2)

Therefore, sequence of partial sums (sn) bounded. Hence
∑ 1

(n+1)(n+2)

converges.

Also

lim(sn) = lim(1 −
1

n + 2
)

= lim(1) − lim(
1

n + 2
)

= 1 − lim(
1
n

)

= 1

Hence
∑ 1

(n+1)(n+2) = 1

Theorem 28 The p-series
∑ 1

np diverges when 0 < p ≤ 1

Proof We know that

np ≤ n if 0 < p ≤ 1
1
np ≥

1
n

i.e.
1
n
≤

1
np

Since the harmonic series,
∑ 1

n diverges, we have
∑ 1

np diverges.
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3.4 Cauchy criterion

Theorem 29 The series
∑

xn converges if and only if for every ∈>

0 there exist M(∈) ∈ N such that if m > ≥ M(∈) then |S m − S n| =

|xn+1 + xn+2 + · · · + xm| <∈

3.5 Comparison test

Let X = (xn) and Y = (yn) be real sequences and suppose that for

some k ∈ N we have 0 ≤ xn ≤ yn for n ≥ k

(a) Then the convergence of
∑

yn implies the convergence of
∑

xn.

(b) The divergence of
∑

xn implies the divergence of
∑

yn.

Proof (a) suppose that
∑

yn converges.

By cauchy criterion, for given ε > 0 there exist M(ε) ∈ N such that

|yn+1 + yn+2 + · · · + ym| < ε if m > n ≥ M(ε)

yn+1 + yn+2 + · · · + ym < ε

xn+1 + xn+2 + · · · + xm < yn+1 + yn+2 + · · · + ym

xn+1 + xn+2 + · · · + xm < ε if m > n ≥ M(ε)

|xn+1 + xn+2 + · · · + xm| < ε

By cauchy criterion,
∑

xn converges.

(b) Suppose
∑

xn diverges

To prove
∑

yn diverges

suppose
∑

yn converges
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by(a)
∑

xn converges

⇒⇐ to
∑

xn diverges.

∴
∑

yn diverges.

3.6 Limit comparison test

Theorem 30 suppose that X = (xn) and Y = (yn) are strictly pos-

itive sequences and suppose that the following limit exists in R.

r = lim( xn
yn

)

(a) If r , 0 then
∑

xn is convergent if and only if
∑

yn converges.

(b) If r = 0 and if
∑

yn is convergent the
∑

xn converges.

Proof (a) Suppose r = lim( xn
yn

) and r , 0 then, clearly r > 0.

By convergence of sequence ( xn
yn

), for r
2 > 0 there exist a N such
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that

|
xn

yn
− r| <

r
2

if n ≥ N

−r
2
<

xn

yn
− r <

r
2

−r
2

+ r <
xn

yn
− r + r <

r
2

+ r

r
2
<

xn

yn
<

3r
2

r
2
<

xn

yn
<

3r
2
< 2r

r
2
<

xn

yn
< 2r

r
2

yn ≤ xn < 2r.yn

Suppose
∑

yn convergent.∑
(2r)yn converges.

By comparison test,
∑

xn converges.

By comparison test,
∑

( r
2)yn converges.

Therefore
∑

yn converges.

(b) Suppose r = lim( xn
yn

) and r = 0

For ∈= 1 > 0, there exist N such that

|
xn

yn
− r| < 1 ifn ≥ N

|
xn

yn
| < 1

xn < yn

Suppose
∑

yn converges, by comparison test,
∑

xn converges.
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Theorem 31
∑ 1

n2 is convergent.

Proof Let k1 = 21 − 1 = 2 − 1 = 1

S k1 = S 1 = 1(sum of first term)

Let k2 = 22 − 1 = 4 − 1 = 3

S k2 = S 3 = 1 +
1
22 +

1
32

< S k2 = S 3 = 1 +
1
22 +

1
22

= 1 +
2
2x

= 1 +
1
2

Therefore S k2 < 1 + (1
2)1

S k3 = 7 sum of first 7 terms

= S k2 + (
1
42 +

1
52 +

1
62 +

1
72 )

< 1 +
1
2

+ (
1
42 +

1
42 +

1
42 +

1
42 )

< 1 +
1
2

+
1
4

= 1 +
1
2

+
1
22

Therefore S k3 < 1 + (1
2)1 + (1

2)2

By mathematical induction , S k j < 1 + 1
2 + (1

2)2 + · · · + (1
2) j−1

Since the terms in the ( R.H.S) is a partial sum of a geometric series∑
rn with r = 1

2 < 1
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Also
∞∑

n=0

(
1
2

)n

=
1

1 − (1
2)

= 2

∴ The partial sum of
∑ 1

n2 is bounded also s1 ≤ s2 ≤ . . .

∴ The sequence of partial sum is monotone.

By previous theorem,
∑ 1

n2 converges.

Problem 8 Prove that
∑ 1

n2+n converges.

Solution clearly 0 < 1
n2+n <

1
n2 , n ∈ N

since the series
∑ 1

n2 converges, by comparison test,
∑ 1

n2+n con-

verges.

Problem 9 Prove that the series
∑

1n2 − n + 1 is convergent.

Solution Let xn = 1
n2−n+1 and yn = 1

n2

Then

xn

yn
=

1
n2−n+1

1
n2

=
n2

n2 − n + 1

lim
(

xn

yn

)
= lim

 1
1 − 1

n + 1
n2


= 1 , 0

By limit comparison test, since
∑ 1

n2 converges, we have∑ 1
n2−n+1 converges.
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Problem 10 Prove that the series
∑ 1
√

n+1
is divergent.

Solution Let xn = 1
√

n+1
and yn = 1

√
n

xn

yn
=

√
1

√
n + 1

1
√

n

=

√
n

√
n + 1

=

√
1

1 + 1
n

= 1 , 0

By limit comparison test, since
∑ 1
√

n diverges then
∑ 1
√

n+1
is also

divergent.

3.7 Root Test

Theorem 32 Given a series
∑

an of non-negative terms, Let ρ =

lim n
√

an

(a) The series
∑

an converges if ρ < 1

(b) The series
∑

an diverges if ρ > 1

(c) The test is inconclusive if ρ = 1

Proof (a) suppose ρ < 1

Let x be a real number such that ρ < x < 1 given that ρ = lim n
√

an
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Therefore there exist a positive integer N such that

n
√

an < ρ for all n ≥ N

n
√

an < x < 1

an < xn < 1

Since
∑

xn converges, we have
∑

an converges.

(b) Suppose ρ > 1

Then

(an)
1
n > 1 for infintely many

(an) > 1 for infintely many

lim(an) > 1 , 0

∴
∑

an diverges.

(c) Consider the series
∑ 1

n and
∑ 1

n2

For both series ρ = 1

Clearly,
∑ 1

n diverges and
∑ 1

n2 converges

Therefore, the test is inconclusive.

Problem 11 Discuss about the convergence of
∑

[ n
n+1]n2
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Solution Let an =
[

n
n+1

]n2

Therefore,

n
√

an = (an)
1
n

=

[[ n
n + 1

]n2] 1
n

= (
n

n + 1
)n

∴ lim n
√

an = lim(
n

n + 1
)n

= lim

 1
(1 + 1

n)n


=

lim(1)
lim(1 + 1

n)n

=
1
e
< 1

Therefore, ρ < 1

By root test,
∑

[ n
n+1]n2

converges.

Problem 12 Discuss about the convergence of
∑

(logn)−n
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Solution Let

an = (logn)−n

n
√

an = (an)
1
n

= (logn)−1

=
1

logn

lim n
√

(an) = lim(
1

logn
) < 1

ρ < 1

By root test,
∑

(logn)−n converges.

3.8 Ratio test

Theorem 33 Let
∑

an be a series of positive terms such that lim an+1
an

=

L

(a) The series
∑

an converges if L < 1.

(b) The series
∑

an diverges if L > 1.

(c) The test is inconclusive if L = 1

Proof (a) suppose L < 1

Let x be a real number such that L < x < 1
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Then there exist a positive integer N such that

an+1

an
< x for all n ≥ N

an+1

an
<

xn+1

xn

an+1 < xn+1 an

xn

≤ xn+1 aN

xN for all n ≥ N

an+1 < c.xn+1 if c =
aN

xN

Since x < 1 and
∑

xn converges for |x| < 1, we have
∑

an con-

verges.

(b) suppose L > 1

an+1

an
> 1 for infinitely many

an+1 > an for infinitely many

∴
∑

an diverges.

(c) consider the series
∑ 1

n and 1
n2 .

For both series L = 1

Clearly,
∑ 1

n diverges and
∑ 1

n2 converges.

∴ The test is inconclusive.

Remark 27 Let
∑

an be a series of positive terms such that lim an
an+1

=

L

(a) The series
∑

an converges if L > 1
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(b) The series
∑

an diverges if L < 1

(c) The test is inconclusive if L = 1

Problem 13 Test the convergence of the series
∑ 5n−1

n!

Solution Here

an = nth term

=
5n−1

n!
an+1 = nth term

=
5n

(n + 1)!

=
5n

n!(n + 1)
an

an+1
=

5n−1

n!
n!(n + 1)

5n

=
n + 1

5

lim(
an

an+1
) = lim(

n + 1
5

) > 1

Therefore, by ratio test,
∑ 5n−1

n! converges

Problem 14 Test the convergence of the series
∑ 2n

n3+1

Solution Here an = nthterm = 2n

n3+1

an+1 = nthterm = 2n+1

(n+1)3+1
an

an+1
= ( an

n3+1). (n+1)3+1
2n.2

= 1
2 < 1
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lim an
an+1

= 1
2

By ratio test
∑ 2n

n3+1 is divergent.

Problem 15 Test the convergence of the series
∑ (n+1)n

n!

Solution an =
∑ (n+1)n

n!

an+1 =
∑ (n+2)n+1

(n+1)!
an

an+1
=

(n+1)n

n!
n!(n+1)
(n+2)n+1

=
(n+1)n+1

(n+2)n+1

=
(n+1)n+1

[(n+1)+1]n+1

= 1
[1+ 1

n+1 ]n+1

an
an+1

= 1
e ¡ 1

∴ By ratio test
∑ (n+1)n

n! is diverges.

Problem 16 Test the convergence of the series 2!
3 + 3!

32 + . . .

Solution Here an =
(n+1)!

3n

an+1 =
(n+2)!
3n+1

an
an+1

= 3
n+2

lim( an
an+1

) = lim( 3
n+2) = 0 < 1

(n+1)!
3n is diverges.

Problem 17 Test the convergene of the series 1
1+2 + 2

1+22 + . . .

Solution Here an = n
1+2n

an+1 = n+1
1+2n+1

an
an+1

=
n(1+2n+1)
1+2n(n+1)
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lim an
an+1

=

lim n(1+2n+1)
1+2n(n+1)

= 2 > 1

∴ The above series is convergent.

3.9 Alternating series

The series
∑

(−1)n−1an = a1−a2 + a3−a4 + . . . is alternating series

where each a0 > 0.

3.10 Leibniz’s rule

Theorem 34 If {an} is an monotone decreasing sequence with limit

0, the alternating series
∑

(−1)n−1an converges. If S denotes its

sum and S n its nth partial sum, we also have 0 < (−1)n(S − S n) <

an+1 for all n ≥ 1

Proof

The partial sums S 2n form an increasing sequence.

S 2n+2 − S 2n = (a1 − a2 + a3 − a4 + · · · − a2n + a2n+1 − a2n+2)− (a1 −

a2 + a3 − · · · + a2n−1 − a2n

= a2n+1 − a2n+2 > 0

= S 2n+2 − S 2n > 0

∴ S 2n+2 > S 2n
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Also the partial sums S 2n−1 form a decreasing sequence.

Both sequenes are bounded below by S 2 and bounded above by S 1.

∴ Each sequence (S 2n) and (S 2n−1) are monotone and bounded.

∴ By monotone convergence theorem (S 2n) and (S 2n−1) converges

∴ lim S 2n = S
′

and lim S 2n−1 = S
′′

Now, S
′

− S
′′

= lim S 2n − lim S 2n−1

= lim(S 2n − S 2n−1)

= lim(−a2n) = − lim a2n = 0

Therefore S
′

= S
′′

= S Therefore sequence of partial sums con-

verges.

∴
∑

(−1)n−1an converges.

since (S 2n) is a monotonicallly increasing sequence, we have

S 2n < S 2n+2 ≤ S

since (S 2n−1) is a monotonically decreasing sequence, we have

S 2n < S 2n+2 < S 2n−1

∴ we have

0 < S 2n−1 − S ≤ S 2n−1 − S 2n = a2n+1

and 0 < S 2n−1 − S ≤ S 2n−1 − S 2n = a2n

Hence we have. 0 < (−1)n(S − S n) < an+1

3.11 Absolute convergence

Let X = (xn) be a sequence in R. we say that the series
∑

xn is

absolutely convergent if |xn| is convergent in R.
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Conditional convergent

A series is said to be conditionally convergent but not absolutely

convergent.

Example 22 Consider a series
∑ (−1)n

n

By Leibnitz’s test,
∑ (−1)n

n converges.

Now
∑
|
(−1)n

n | =
∑ |(−1)n|

|n| =
∑ 1

n diverges is conditionally convergent.

Remark 28 A series of positive terms is absolutely convergent if

and only if it is convergent.

3.12 Two marks questions

1. Define a geometric series.

2. Define a geometric sequence.

3. Define a harmonic sequence.

4. State the nth term test.

5. Prove that the converse of the nth term test need not be true,

6. Define alternating harmonic series.

7. Give an example for alternating series

8. Define p-series

9. Estabilish the convergence or the divergence of the series whose

nth term is n
(n+2)()n+3
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10. Show that
∞∑

n=1

1
n·(n+1)·(n+2) = 1

4

11. Show that
∞∑

n=1

1
n2+n

12. State and prove limit comparison test.

13. Show that
∞∑

n=0

1
(n+1)(n+2) = 1

14. Prove that
∞∑

n=1

1
n2−n+1 converges

15. Prove that if
∑

xn converges then lim xn = 0

16. Prove that the 2-series converges.

17. State and prove the comparison test for the series

18. Discuss about the series (i)
∑ 1

n2+n (ii)
∑ 1

n!

19. State and prove the nth term test for series

20. State and prove Cauchy criterion for series.

21. Prove the p-series converges if p > 1.
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UNIT III

If an increasing sequence is bounded above then

seqeunce 

converges to 

inf of its range

sequence 

converges to 

sup of its 

range

sequence 

converges to 1

sequence 

converges to 0

sequence 

converges to 

sup of its 

range

If an  decreasing sequence is bounded below  then

seqeunce 

converges to 

inf of its range

sequence 

converges to 

sup of its 

range

sequence 

converges to 2

sequence 

converges to 1

sequence 

converges to 

inf of its range

Fibonacci sequence is 

an increasing 

sequence

a decresing 

sequence

constant 

sequence

bounded 

sequence

an incresing 

sequence

A sequence in a metric space (S,d)  can converge 

at least one 

point

more than 

two point

atmost one 

point

more than 

three point

atmost one 

point

Suppose a sequence in a metric space (S,d) converges to both a  and 

b. Then we must have a<b a>b a-b=1 a=b a=b

In a metric space (S,d), a sequence converges to p. Then range of the 

sequence is bounded unbounded finite infinite bounded

The range of a constant sequence is infinite

countably 

infinite uncountable singlton set singleton set

Suppose in  a metric space (S,d), a sequence converges to p. Then   

the point p is 

an adherent 

point of S

an 

accumulation 

point of S

an isolated 

point of S

not an 

adherent 

point of S

an adherent 

point of S

Suppose in  a metric space (S,d) , a sequence converges to p and the 

rnage of the sequence is infinite. Then p is 

an adherent 

point of S

an 

accumulation 

point of S

an isolated 

point of S

not an 

accumulation  

point of S

an 

accumulation 

point of S

Suppose in  a metric space, a sequence converges.  Then 

every 

sequence in a 

metric space 

converges

every 

subsequence 

of convergent 

sequence 

converges

some 

subsequence 

of convergent 

sequence 

converges

some 

sequence in a 

metric space 

converges

every 

subsequence 

of convergent 

sequence 

converges

A sequence is said to be bounded if if its range is unbounded bounded countable uncountable bounded

The range of the sequence {1/n} is finite {1} {} infinite infinite

The range of the sequence {1/n} is unbounded bounded {} {1,0} bounded

The esequence {1/n} converges diverges oscilates converges to 1 converges



In Euclidean metric space every cauchy sequence is convergent divergent oscilates

convergent to 

0 converges

Every convergent sequence is a

constant 

seqeunce

cauchy 

sequence

increasing 

sequence 

decreasing 

sequence

cauchy 

sequence

The sequence {n^2} converges diverges oscilates converges to 2 diverges

The range of the sequence {n^2} is unbounded bounded {} {0.1} unbounded

The range of the sequence {n^2} is finite {1} {} infinite infinite

The sequence {i^n} converges diverges oscilates converges to 0 diverges

The range of the sequence {i^n} is unbounded bounded {} {0,1} bounded

The range of the sequence {i^n} is finite infinite {} {0,1} finite

The sequence {1} converges diverges oscilates converges to 0 converges

The range of the sequence {1} is {} {1} {1,0} {1,2,3} {1}

The range of the sequence {1} is bounded unbounded {1,0} {0} bounded







Chapter 4

Subsequences

4.1 Subsequences

Definition 39 Let X = (xn) be a sequence of real numbers and let

n1 < n2 < n3 < . . . be a strictly increasing sequence of natural

numbers. Then the sequence X
′

= (xnk) given by (xn1 , xn2 , . . . ) is

called a subsequence of X

Example 23 Consider a sequence X = (1, 1
2 ,

1
3 , . . . )

Let X
′

= (1
2 ,

1
4 , . . . )

clearly, x
′

is a subsequence of X. note that n1 = 2, n2 = 4, . . .

Definition 40 If X(x1, x2, . . . ) is a sequence of real numbers and if

m is a given natural numbers, then the m-tail of X is the sequence.

Xm = (xm+1, xm+2, . . . )

Remark 29 A tail of a sequence is a special type of subsequence.

(ii) Not every subsequence of a given sequence need be a tail of the

sequence.
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Theorem 35 If a sequence X = (xn), of real numbers converges

to a real number x, then any subsequencece x
′

= (xnk) of x, also

converges to x.

Proof

Given that,

limxn = x

∴ for given ∈> 0, there exist a positive integer N such that |xn −

x| <∈ if n ≥ N

Let X
′

= (xnk) be a subsequence of X. The n1 < n2 < n3 < . . .

clealy nk ≥ k

suppose k ≥ N, then nk ≥ N

|xnk − x| <∈

Therefore (xnk) converges to x

Definition 41 For a sequence (xn), we say that the mth term xm of

(xn) if xm ≥ xn for all n ≥ M.

Remark 30 In a decreasing sequence, every term is peak and in

an increasing sequence no term is peak.

4.2 The cauchy sequences

Definition 42 A sequence X = (xn) of real number is said to be a

cauchy sequence if for every ∈> 0, there exist a natural number N
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such that |xn − xm| ∈ if n,m ≥ N

Theorem 36 If X = (xn) is a convergent sequence of real numbers

then X is a cauchy sequence.

Proof

Let X = (xn) be a convergent sequence. Let lim xn = x

Let ∈> 0 be arbitrary, then for ∈2 > 0, there exist a positive integer

N such that

|xn − x| < ∈

2 if n ≥ N

Let n,m ≥ N

Now |xn − xm| = |xn − x + x − xm|

≤ |xn − x| + |x − xm| ¡ ∈2 + ∈

2 = ∈

|xn − xm| <∈ if n,m ≥ N

Therefore (xn) is a cauchy sequence.

Theorem 37 A caushy sequence of real number is bounded

Proof

Let X = (xn) be a cauchy sequence

Let ∈= 1, then there exist a positive integer N such that

|xn − xm| < 1 if n,m ≥ N

In particular, |xn − xm| < 1 if n,m ≥ N

Now |xn| − |xN | ≤ |xn − xN | < 1 if n ≥ N

∴ |xn| − |xN | < 1 if n ≥ N
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|xn| < 1 + |xN | if n ≥ N

Let M = sup{|x1|, |x2|, . . . , |xN+1|, 1 + |xN |}

Then |xn| < M for all n

Therefore −M < xn < m for all n

Therefore (xn) is bounded.

4.3 Cauchy convergence criterion

Theorem 38 A sequence of real number is convergent if and only

if it is cauchy sequence.

Proof

Suppose X = (xn) is a convergent sequence

by previous theorem, X is a cauchy sequence.

Conversely suppose X = (xn) is a cauchy sequence. by previous

theorem, X is bounded

By Bolzono theorem, X has a convergent subsequence.

Let xnk → x

claim xn → x

since X is cauchy sequence, for given ∈2 > 0, there exist a positive

integer N such that

|xn − xm| <
∈

2 if n,m ≥ N

since (xnk) converges to x, for ∈2 > 0, there exist a positive integer

k ≥ N such that

|xk − x| < ∈

2 if n ≥ N
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Now |xn − x| = |xn − xk + xk − x|

≤ |xn − xk| + |xk − x|= ∈

i,e., |xn − x| <∈ if n ≥ N, therefore xn → x

i.e., X is a convergent sequence.

Problem 18 Discuss the convergence of the series 1− 1
√

2
+ 1
√

3
−. . .

Solution

Given series is an alternating series.

Let an = 1
√

n

an+1 = 1
√

n+1

an+1 − an = 1
√

n+1
− 1
√

n

=
√

n−
√

n+1
√

n
√

n+1
< 0

an+1 − an < 0

An+1 < an

∴ {an} is monotonically decreasing also lim an = 1
√

n = 0

∴ The given Solution satisfies all the conditions of Leibnitz rule.

The given series converges.

Problem 19 Discuss the convergence of 5
2 −

7
4 + 9

6 − . . .

Solution

Given series is an alternating series

LEt an = 2n+3
2n

an+1 =
2(n+1)+3

2(n+1)

= 2n+5
2n+2

an+1 − an = −6
2n(2n+2) < 0
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an+1 < an

∴ {an} is monotonically decreasing. Also

liman = 2n+3
2n

2+0
2 = 1 , 0

∴ the given series does not satisfies one of the condition of Leibnitz

test.

∴ the given series diverges.

Problem 20 Discuss the convergence of the series 1
log2−

1
log3 + 1

log4−

. . .

Solution

Given series is alternating series

Let an = 1
log(n+1)

an+1 = 1
log(n+2)

an+1 − an = 1
log(n+2) −

1
log(n+1) ¡ 0

an+1 − an < 0

an+1 < an

∴ {an} is a monotonically decreasing.

liman = 1
log(n+1)

= 1
∞

= 0

Therefore the given series satisfies all the condition of leibnitz test.

The given series is convergent.
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4.4 Two marks questions

1. Show that the sequence {xn} is monotone, where xn = 3n+1
2n−3 for

all n ≥ 2

2. Give an example of a bounded sequence that is not a Cauchy

sequence.

3. Give an example for Cauchy sequence.

4. Define Cauchy sequence

5. State monotone subsequence theorem.

6. Define a subsequence.

7. Let X = {1, 1
2 , 3,

1
4 , · · · }. Find any one susequence of X which

is convergent

8. State monotone theorem.

9. State Cauchy criterion for a sequence

10. Show that the sequence {xn} is monotone, where xn = 3n+1
2n−3 for

all n ≥ 2

11. State and prove monotone subsequence theorem.

12. State and prove Cauchy convergence criterion for sequences

13. State and prove Bolzano- Weirstrass theorem.
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14. Prove that every convergent sequence is Cauchy sequence.

Also prove that the converse need not be true.

15. State and prove monotone subsequence theorem.

16. Prove that a bounded sequence converges to x if every subse-

quence converges to x.

17. Prove that any convergent sequence is a Cauchy sequence.

18. State and prove Cauchy convergence criterion
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Unit IV

Constant sequence converges oscillates diverges converges to 1 Converges

The sequence {1,1,1,1,1,…..} converges oscillates diverges converges to 1 converges to 1

The sequence {1,0,1,0,1,0,…} converges oscillates diverges converges to 1 Oscillates

The harmonic series converges if P=1 p>1 P<1 P=0 p>1

In limit comparison test both the series converges absolutely if r=1 r=0
r is not equal to 

zero
R=2

r is not equal to 

zero

For the absolute  convergence of the series, the ratio between n+1th term and nth 

term must be 
Less than r Greater than r

Less than or equal 

to r

Greater than 

equal to r 

Less than or equal 

to r

For the absolute  convergence of the series, the   nth root of nth  term must be Less than r Greater than r
Less than or equal 

to r

Greater than 

equal to r 

Less than or equal 

to r

The alternating harmonic series converges oscillates diverges converges to 1 Converges

If a series converges absolutely, the series converges oscillates diverges converges to 1 Converges

A series converges iff converges absolutely if the series consists of ----terms positive negative Non zero Either a or b Positive

The series 1-1+1-1+1-1+… converges oscillates diverges converges to 1 Diverges





Chapter 5

Sequences and series of
functions

5.1 Sequences of functions

Definition 43 Let A ⊆ R be given and suppose that for each n ∈ N

there is a function fn : A → R, we say that ( fn) is a sequence of

functions A to B→ R.

Definition 44 A sequence ( fn) of functions on A ⊆ R to R, con-

verges to a function f : A → B if for every ∈> 0 there exist a

positive integer N(∈, x) such that | fn(x) − f (x)| <∈ if x ∈ A and

n ≥ N

Remark 31 (i) The positive integer N will depend on both ∈ and

x ∈ A.

(ii) The sequence ( fn) converges on A to f , we have fn → f (or)

f (x) = lim fn(x)
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Example 24 Let f (x) = x
n , x ∈ R

Now f (x) = lim fn(x) =

lim( x
n)

= lim x
lim n = x

∞
= 0

Therefore, fn → f for all x ∈ R.

Example 25 Let fn(x) = xn, x ∈ R

f (x) = lim fn(x) = lim xn

fn → f (x) = 0,−1 < x < 1 (or) fn → f (x) = 1, x = 1

Example 26 fn(x) =
sin(nx+n)

n , x ∈ R

f (x) = lim fn(x) = lim sin(nx+n)
n = 0

5.2 Uniform convergence

A sequence ( fn) of functions on A ⊆ R to R converges uniformly

on A to a function f : A→ R if for every ∈> 0 there exist a positive

integer N such that | fn(x) − f (x)| <∈ if n ≥ N

Uniform norm

If A ⊆ R and f : A → B is a function an f is bounded we define

the uniform norm of f on A by ‖ f ‖A = sup{| f (x)| : x ∈ A}

Example

Let f (x) = f rac1x

Then ‖ f ‖ = 1

Note

Suppose ∈> 0, and ‖ f ‖A ≤∈
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By definiton of norm of f ,

‖ f ‖ = sup{| f (x)| : x ∈ A} ≤ ∈

| f (x)| ≤ ∈

suppose | f (x)| ≤ ∈

for all x ∈ A

‖ f ‖ ≤ ∈

Hence, ‖ f ‖A ≤ ∈ ⇔ | f (x)| ≤ ∈ for all x ∈ A

Theorem 39 A sequence ( fn) of bounded function on A ⊆ R con-

verges uniformly on A to f ⇔ ‖ fn − f ‖ → 0.

Proof

Suppose fn → f uniformly on A. Then for ∈> 0, there exist a pos-

itive integer N such that | fn(x) − f (x)| <∈ if n ≥ N

by previous theorem, ‖ fn − f ‖ <∈ if n ≥ N

‖ fn − f ‖ → 0

conversely suppose ‖ fn − f ‖ → 0

on A

Then for given ∈> 0, thereexistapositiveintegerN such that

|(‖ fn − f ‖) − 0| <∈ if n ≥ N

‖ fn − f ‖ <∈ if n ≥ N

i.e., ‖ fn − f ‖ <∈ if n ≥ N

i.e., | fn(x) − f (x)| <∈ if n ≥ N

∴ fn → f uniformly on A.
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5.3 Series of functions

Definition 45 If ( fn) is a sequence of functions defined on a subset

D of R with values in R, the sequence of partial sums (S n) of the

infinite series
∑

fn is efined for x in D by

S 1(x) = f1(x)

S 2(x) = f1(x) + f2(x)

S 3(x) = f1(x) + f2(x) + f3(x)
...

In case, the sequence (S n) of functions converges on D to a function

f , we say that the infinte series of functions
∑

fn converges to f on

D.

Definition 46 If the series
∑
| fn(x)| converges for each α in D, we

say that
∑

fn is absolutely convergent on D.

Definition 47 If the sequence (S n) of partial sums is uniformly

convergent on D to a function f , we say that
∑

fn is uniformly

convergent on D to f .

5.4 Weierstross M - test

Theorem 40 Let (Mn) be a sequence of positive real numbers such

that | fn(x)| ≤ Mn for x ∈ D, n ∈ N

If the series
∑

Mn is convergent, then
∑

fn is uniformly convergent

on D.
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Proof

Suppose m > n

| fn+1(x) + fn+2(x) + · · · + fm(x)|

≤ | fn+1(x)| + | fn+2(x)| + · · · + | fm(x)|

≤ Mn+1 + Mn+2 + · · · + Mm

By cauchy criterion for series, The series
∑

xn converges if and

only if for every ∈> 0 there exist a positive integer M that if

m > n ≥ M(∈) then

|S m − S n| = |xn+1 + xn+2 + · · · + xm| <∈

since ∈ Mn converges, |Mn+1 + Mn+2 + · · · + Mm| <∈

Mn+1 + Mn+2 + · · · + Mm <∈

Therefore | fn+1(x) + fn+2(x) + · · · + fm(x)| <∈

By cauchy criterion for sequence of functions | fn+1(x) + fn+2(x) +

· · · + fm(x)| <∈

∴
∑

fn uniformly convergent on D.

5.5 Power series

Definition 48 A series of real functions
∑

fn is said to be a power

series around x = c if the function fn is of the form fn(x) = an(x−c)n

where an and c belong to R and where n = 0, 1, 2, 3, . . .

Definition 49 Let
∑

anXn be a power series. If the sequence (|an|
1
n )

is bounded, we get ρ = lim sup(|an|
1
n

If this sequence is not bounded, we get ρ = +∞. we define the ra-
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dius of convergence of
∑

anxn to be given by

R = 0 if ρ = +∞

= 1
ρ
i f 0 < ρ < ∞

= ∞ if ρ = 0

Remark 32 The radius of convergence of the series
∑

anxn is also

given by

lim(| an
an+1

) provided the limits exists.

Problem 21 Find the radius of convergence of the series
∑

anxn

there an = 1
n!

Solution

an = 1
n!

an+1 = 1
(n+1!)

|
an

an+1
| = | 1n! x (n+1)!

1 |

= |n + 1| = n + 1

lim |

an
an+1| = lim(n + 1) = ∞

Therefore, The radius of convergence is +∞

5.6 Cauchy-Hadmard Theorem

Theorem 41 If R is the radius of convergence of the power series∑
anxn, then the series

∑
anxn is absolutely convergent if |x| < R

an is divergent if |x| > R

K. Kalidass 94



Real Analysis K. Kalidass

Proof

Suppose 0 < R < +∞ suppose |x| < R

i.e., 0 < |x| < R , then there is a positive real number c < 1 such

that |x| < c.R

Therefore |x| < c.1
ρ

⇒ ρ < c
|x|

⇒ lim sup
√
|an| <

c
|x|

Therefore |an| <
cn

|x|n

⇒ |an||x|n < cn

⇒ |anxn| < cn

since c < 1, the geometric series
∑

cn converges.

By comparison test,
∑
|anxn| converges.

Therefore
∑

anxn converges absolutely.

Suppose |x| > R

|x| > 1
ρ

∴ lim sup
√

an >
1
|x|

⇒ |an| ≥
1
|x|n

⇒ |anxn| ≥ 1 for infintely many n

By comparison test,
∑

anxn diverges.

Problem 22 Discuss the uniform convergence of
∑ sinnx

n2

Solution

Given fn(x) = sinnx
n2

| fn(x)| = | sinnx
n2 |

=
|sinnx|

n2
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≤ 1
n2

since
∑ 1

n2 converges, we have
∑

sinnxn2 converges uniformly.

5.7 Cluster Point

Definition 50 Let A ⊆ R. A point C ∈ R is a cluster point of A if

for every ∈> 0 there exist atleast one point x ∈ A, x , C, such that

|x − c| <∈

Example 27 Let A = {1, 2} 1 and 2 are not cluster point of A.

Moreover A has no cluster points of A.

Remark 33 Finite set has no cluster points. Cluster point is also

called limit point.

5.8 Two marks questions

1. Define uniformly convergent of a series.

2. Define radius of convergence.

3. Define power series.

4. Define absolutely convergent of a series.

5. Find the radius of convergence of the power series
∞∑

n=1
an xn,

where an = nn

n!
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6. Find the radius of convergence of the series
∑

n2 3n zn

7. State M-test

8. Define uniform norm of a function

9. State Cauchy criterion for sequence of functions

10. State and prove Weierstrass M test

11. State and prove Cauchy Hadamard theorem

12. If R is the radius of convergence of the power series
∑

anxn,

prove that the series absolutely convergent if |x| < R and di-

vergent if |x| > R.

13. If
∑

anxn and
∑

bnxn converges on some interval (−r, r), r > 0,

to the same function f , then prove that an = bn for all n? ≥ N.

14. State and prove Cauchy criterion for series of functions.

15. State and prove Weierstrass M test
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UNIT V

If R is the radius of convergence of the series, the series 

converges absolutely if |x|
>R =R <R

Less than or 

equal to R
<R

If rho=infinity, the radius of convergence R is 0 1 2 3 0

If rho=0, the radius of convergence R is 0 1 2 infinity Infinity

If rho is finite, the radius of convergence R is 0 Rho
Reciprocal 

of rho
infinity

Reciprocal of 

rho

If R is the radius of convergence of the series, the series  

diverges  if |x|
>R =R <R

Less than or 

equal to R
>R

If R is the radius of convergence then the interval of 

convergence is
(-R,R] [-R,R] (-R,R) [-R,R) (-R,R)

The sequence of functions (x/n) converges to a function x= 0 1 2 3 0

The sequence of functions x power n converges to a function 

x=0 if  x lies between 
1 and 2 -1 and 1 0 and 1 -1 and 0 -1 and 1

A series of positive terms converges then the series
converges 

only

converges 

absolutely

both A and 

B

neither A 

nor B
both A and B

A convergent series contains only finite number of negative 

terms then it is 

converges 

only

converges 

absolutely

both A and 

B

neither A 

nor B

converges 

absolutely

A convergent series contains only -------- number of negative 

terms then it is converges absolutely
infinite

10

finite countable finite 

A convergent series contains only  finite number of --------- 

terms then it is converges absolutely
negative positive zero

1

negative



Reg. No...................

19MMU202

Karpagam Academy of Higher Education
Coimbatore-21

Department of Mathematics
Second Semester- I Internal test

Real Analysis

Date: Time: 2 hours
Class: I B.Sc Mathematics Max Marks: 50

Answer ALL questions
PART - A (20 × 1 = 20 marks)

1. Let f : Z → Z be a function defined by f (x) = x2

whereZ is a set of all real numbers. Then the range
of f is
A. Z B.N
C.W D. {0, 1, 4, 9, · · · }

2. The set of all positive integers {1, 2, · · · } is
A. finite B. infinite
C. countable D. uncountable

3. If f : {1, 2, · · · } → {0,±1,±2, · · · } defined by

f (x) =

{ x
2 , x is even
−

(
x−1

2

)
, x is odd

then f−1(100) =
A. 100 B. 99
C. 200 D. 201

4. Let S be a bounded above set of real numbers and
sup S = u. Then for x ∈ S, we have
A. x > u B. x < u
C. x ≤ u D. x ≥ u

5. Which equation does not represent a function?
A. y = 2x B. y = x2 + 10
C. y = 10

x D. x2 + y2 = 95

6. Let f : R → R be a function defined by f (x) = x.
Then f is
A.one-one B. onto
C. bijection D. neither onto nor one-one

7. Which of the following sets is countable?
A. (0,∞) B. R
C. set of all irrational numbers D. set of all
Fibonacci numbers

8. B − (B − A) = A if
A. B ⊂ A B. A ⊂ B
C. A ∪ B = A D. A ∪ B = A

9. Let A = {a, b} and B = {1, 2, 3}. Then the number of
distinct functions from A into B is
A. 8 B. 9
C. 6 D. 5

10. sup {1 − 1
n : n ∈N}=

A. -1 B. 1
C. 0 D. 1

2

11. Which of the following is not true?
A. Z: {0, 1, 2, · · · } B. {1, 2, 3, · · · } : {2, 4, 6, · · · }
C. {1, 2, 3, · · · } :(0,∞) D. {1, 2, 3, · · · } : {1, 3, 6, · · · }

12. Two sets A and B are similar iff there exists a func-
tion f such that
A. f is one-to-one only B. f is bijection
C. f is onto only D. f is many one

13. If {1, 2, 3 · · · ,m} : {1, 2, 3, · · · ,n} then
A. m < n B. m = n
C. m > n D. m¬n

1



14. The cardinal number of ∅ is
A. 1 B. 0
C. both A and B D. neither A nor B

15. A set S is countable if it is
A. finite B. countably infinite
C. both A and B D. neither A nor B

16. Let R be the set of all real numbers. Then number
of elements in R is
A. finite B. countably infinite
C. uncountable D. zero

17. The union A1 ∩ A2 is the set of those elements be-
longs
A. A B. B
C. both A and B D. either A nor B

18. If a function f : A → B is such that R( f ) = B then
f is a/an
A. one to one B. onto
C. both A and B D. neither A nor B

19. Let f : RtoR be a function defined by f (x) =
[x]2 + [x + 1]3 where [] denotes greatest integer
function, then f (x) is
A. manyone into B. manyone onto
C. oneone into D. oneone onto

20. The total number of points of undefined points of
f (x) in x ∈ [2, 2] are
A. 1 B. 3
C. 4 D. infinite

Part B-(3 × 2 = 6 marks)

21. If a, b ∈ R, prove that |a + b| = |a| + |b| iff ab ≥ 0

22. State the order properties of R

23. Let S = {1, 2} and T = {a, b, c}. Determine all differ-
ent injections from S into T

Part C-(3 × 8 = 24 marks)

24. a) (i) State and prove triangle inequality. (4)
(ii) State and prove Archimedian property

of R

OR

b) Prove that Z is countable

25. a) State and prove Bernoulli’s inequality

OR

b) Prove the following

(i) If a ∈ R and a , 0, then a2 > 0.
(ii) 1 > 0.

(iii) If n ∈N, then n > 0.

26. a) Prove that there does not exist a rational
number r such that r2 = 2.

OR

b) State and prove Cantor’s theorem
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Reg. No...................

16MMU103

Karpagam Academy of Higher Education
Coimbatore-21

Department of Mathematics
First Semester- II Internal test

Real Analysis

Date: Time: 2 hours
Class: I B.Sc Mathematics Max Marks: 50

Answer ALL questions
PART - A (20 × 1 = 20 marks)

1. Suppose lim(xn) = x and lim(−xn) = x. Then x =
A. 1 B. 1

2
C. 0 D. −1

2. Suppose lim(xn) = x. For every ε > 0, there is a
+ve integer N such that we have
A. x − ε < xn B. x + ε > xn
C. both A and B D. neither A nor B

3. The sequence
(

1
n

)
is

A. convergent B. bounded
C. both A and B D. neither A nor B

4. The sequence ((−1)n) is
A. convergent B. bounded
C. both A and B D. neither A nor B

5. Constant sequence is
A. increasing B. decreasing
C. both A and B D. neither A nor B

6. If X = ((−1)n)) and Y =
(
(−1)n+1)

)
then X + Y

A. coverges B. diverges
C. both A and B D. neither A nor B

7. If X and X + Y are convergent, then Y
A. coverges B. diverges
C. both A and B D. neither A nor B

8. A sequence in R has ——- one limit
A. atmost B. atleast
C. no D. all the above

9. 5. Fibonacci sequence is a ——- sequence
A. Bounded B. decreasing
C. increasing D. constant

10. {xn} is a constant sequence if xn = c, —
A. for some n ∈N B. for all n ∈N
C. for no n ∈N D. for only one n ∈N

11. lim
(

2
n

)
= − − −

A. 1 B. -1
C. 0 D.∞

12. lim ((2n/(n + 2)) = − − −
A. 1 B. -1
C. 0 D.∞

13. If lim |xn| = 0 then lim xn = − − −
A. 1 B. -1
C. 0 D.∞

14. If lim |xn| = 0 then lim xn = − − −
A. 1 B. -1
C. 0 D.∞

15. lim
(

1
n2+1

)
= − − −− A. 1 B. -1

C. 0 D.∞

1



16. (2n) is —
A. convergent B. divergent
C. both A and B D. Either A or B

17. (1n) is —
A. convergent B. divergent
C. both A and B D. Either A or B

18. ( 1
3n ) is —

A. convergent B. divergent
C. both A and B D. Either A or B

19. ((−2)nn2) is —
A. convergent B. bounded
C. both A and B D. Either A or B

20. ((−1)n) is —
A. monotonic B. bounded
C. both A and B D. either A or B

Part B-(3 × 2 = 6 marks)

21. Give an example of an unbounded sequence that
has a convergent subsequence

22. Prove that lim
(

3n+1
n+1

)
= 0

23. State Fibonacci sequence

Part C-(3 × 8 = 24 marks)

24. a) Prove that convergent sequence of real num-
bers is bounded.

OR

b) Prove that if c > 0 then lim(c1n) = 0

25. a) Find lim
(

n2

n!

)

OR

b) Prove that lim(
√

n + 1 −
√

n) = 0

26. a) Prove that if 0 < b < 1 and lim(bn) = 0

OR

b) State and prove uniqueness of limit of a se-
quence

2
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1. Let A = {1, 2}. Then A × A is
A. {(1, 1), (2, 2)} B. {(1, 2), (2, 1)}
C.{(1, 1), (2, 2), (1, 2)} D. {(1, 1), (2, 2), (1, 2), (2, 1)}

2. Let A = {1, 2} and B = {a, b, c}. Then number of elements
in A × B is
A. 2 B.3
C. 23 D. 2 × 3

3. Suppose number of elements in A is n and number of
elements in B is m. Then number of elements in A × B is
A. n + m B. n ×m
C. nm D. mn

4. Let A = {1, 2, 3} and B = {a, b, c}, then which of the fol-
lowing element does not belongs to A × B
A. (1, a) B. (3, c)
C. (c, 2) D. (1, c)

5. Identify the domain of this relation
{(9, 10), (6,−1), (6, 10), (7,−2), (11, 5)} is
A. {6, 7, 9, 11} B. {6, 7, 9, 10}
C. {−1,−2, 5, 10} D.{−1,−2, 5, 11}

6. Identify the range of this relation
{(9, 10), (6,−1), (6, 10), (7,−2), (11, 5)} is

A. {6, 7, 9, 11} B. {6, 7, 9, 10}
C. {−1,−2, 5, 10} D. {−1,−2, 5, 11}
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7. Let f : Z → Z be a function defined by f (x) = x2 where
Z is a set of all real numbers. Then the range of f is
A. Z B.N
C.W D. {0, 1, 4, 9, · · · }

8. The set of all positive integers {1, 2, · · · } is
A. finite B. infinite
C. countable D. uncountable

9. Greatest lower bound of set of all positive even integers
is
A. 2 B. 0
C. 1 D. 4

10. Let S be a bounded above set of real numbers and sup S =
u. Then for x ∈ S, we have
A. x > u B. x < u
C. x ≤ u D. x ≥ u

11. Which equation does not represent a function?
A. y = 2x B. y = x2 + 10
C. y = 10

x D. x2 + y2 = 95

12. Let f : R→ R be a function defined by f (x) = x. Then f
is
A.one-one B. onto
C. bijection D. neither onto nor one-one

13. Which of the following sets is countable?
A. (0,∞) B. R
C. set of all irrational numbers D. set of all Fibonacci
numbers

14. B − (B − A) = A if
A. B ⊂ A B. A ⊂ B
C. A ∪ B = A D. A ∪ B = A

15. Let A = {a, b} and B = {1, 2, 3}. Then the number of
distinct functions from A into B is
A. 8 B. 9
C. 6 D. 5

Page 2



Dr.K
.K

ALID
ASS

, A
P/M

ath
s

Real analysis Dr. K. Kalidass

16. sup {1 − 1
n : n ∈N}=

A. -1 B. 1
C. 0 D. 1

2

17. Let A be the set of letters in the word ”trivial” and let B
be the set of letters in the word difficult. Then A − B =
A. {a, r, v} B. {d, f , c,u}
C.{i, l, t} D. {a, i, l, r, t, v}

18. Let S be the set of all 26 letters in the alphabet and let
A be the set of letters in the word ”trivial”. Then the
number of elements in Ac is

A. 19 B. 20 C. 21 D. 22

19. Let A = {1, 2}. Then A × A is

A. {(1, 1), (2, 2)} B. {(1, 2), (2, 1)}
C. {(1, 1), (2, 2), (1, 2)} D. {(1, 1), (2, 2), (1, 2), (2, 1)}

20. Let A = {1, 2, 3} and B = {a, b, c}, then which of the fol-
lowing element does not belongs to A × B
A. (1, a) B. (3, c)
C. (c, 2) D. (1, c)

21. Let F be a function and (x, y) ∈ F and (x, z) ∈ F. Then we
must have
A. y , z B.y < z
C. y > z D. y = z

22. Let f : A → B be a function and the range of f denoted
by R( f ). Which of the following is always is true?
A. R( f ) , B B. R( f ) ⊆ B
C. B ⊂ R( f ) D. B ⊆ R( f )

23. If a function f : A → B is such that R( f ) , B then f is
a/an ?
A. into function B.onto function
C. surjective D. many to one

24. If a function f : A → B is such that R( f ) = B then f is
a/an ?
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A. into function B. onto function
C. one to one function D. many to one

25. If f : {1, 2, · · · } → {0,±1,±2, · · · } defined by

f (x) =

{ x
2 , x is even
−

(
x−1

2

)
, x is odd

then f−1(100) =
A. 100 B. 199
C. 200 D. 201

26. The function f : R→ R defined by f (x) = sin x is
A. one-to-one B. onto
C. bijection D. many to one

27. Let f : X→ Y be a function. If f−1 is a function then f−1

A. from R( f ) to X B. from Y to X
C. from X to Y D. R( f ) to Y

28. If f−1 is a function then
A. f is one-to-one but not onto B. f is onto but not
one-to-one
C. f is both one-to-one and onto D. f is neither onto nor
one-to-one

29. Let f : A→ B be a function. We call f as a sequence in B
if
A. A = {0, 1, 2, · · · } B. A = {1, 3, 5, · · · }
C.A = {1, 2, 3 · · · } D. A = {0, 2, 4, · · · }

30. A set S is countable if it is
A. both finite and countably infinite B. either finite or
countably infinite
C. neither finite nor countably infinite D. finite but not
countably infinite

31. Let R be the set of all real numbers. Then number of
elements in R is
A. countably infinite B. uncountable
C. finite D. zero
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32. Suppose lim(xn) = x and lim(−xn) = x. Then x =
A. 1 B. 1

2
C. 0 D. −1

33. Suppose lim(xn) = x. For every ε > 0, there is a +ve
integer N such that we have
A. x − ε < xn B. x + ε > xn
C. both A and B D. neither A nor B

34. The sequence
(

1
n

)
is

A. convergent B. bounded
C. both A and B D. neither A nor B

35. The sequence ((−1)n) is
A. convergent B. bounded
C. both A and B D. neither A nor B

36. Constant sequence is
A. increasing B. decreasing
C. both A and B D. neither A nor B

37. If X = ((−1)n)) and Y =
(
(−1)n+1)

)
then X + Y

A. coverges B. diverges
C. both A and B D. neither A nor B

38. If X and X + Y are convergent, then Y
A. coverges B. diverges
C. both A and B D. neither A nor B

39. If x1 = 8 and xn+1 = xn
2 + 2, (xn) is

A.monotone B.bounded
C. both A and B D. neither A nor B

40. If zn = (an + bn)n and 0 < a < b, then lim(zn) =
A. 0 B. 1
C. a D. b

41. If X converges to x and XY converges then Y converges
if
A. x , 0 B. xn , 0
C. both A and B D. neither A nor B
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42. A sequence (xn) in A is a function from —- to A
A. R B. Z
C.N D.W

43. The range of a real sequence is
A. R B. Z
C.N D.W

44. lim
(

3n+2
n+1

)
=

A. 1 B. 2
C. 3 D. 4

45. lim(bn) = 0 if
A. b > 1 B. 0 ≤ b ≤ 1
C. b ≥ 1 D. 0 < b < 1

46. lim
(

1
1+na

)
= 0 if

A. a > 0 B. 0 ≤ a ≤ 1
C. a ≥ 0 D. 0 < a < 1

47. lim
(
a

1
n

)
= 0 if

A. a > 0 B. 0 ≤ a ≤ 1
C. a ≥ 0 D. 0 < a < 1

48. The nth of the sequence 1
2 ,−

1
4 ,

1
8 · · · is

A. 1
2n B. (−1)n

2n

C. (−1)n+1

2n D. (−1)n+1

2n+1

49. lim(bn) =
A. 0 B. 2
C. 3 D. 1

50. The sequence (an) where an = n
2n is

A. increasing B. decreasing
C. both A and B D. neither A nor B

51. lim
(

1
√

n

)
=

A. 0 B. 2
C. 3 D. 1
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52. If y1 = 1 and yn+1 = 1
4
(
2yn + 3

)
for n ≥ 1, lim(yn) =

A. 1
2 B. 3

2
C. 1

3 D. 2
3

53. If s1 > 0 and sn+1 = 1
2

(
sn + a

sn

)
for n ≥ 1, lim(sn) =

A. a B.
√

a
C. 1

a D. 1
√

a

54. If sn =
(
1 + 1

n

)n
for n ≥ 1, lim(sn) =

A. π B.
√
π

C. 1
e D. e

55. Let x1 = a > 0 and xn+1 = xn + 1
xn

for n ≥ 1. Then the
sequence (xn) is
A. increasing B. decreasing
C. both A and B D. neither A nor B

Page 7



Dr.K
.K

ALID
ASS

, A
P/M

ath
s

Real analysis Dr. K. Kalidass

Real Analysis

Unit I

1. Define an uncountable set.

2. Define countable set and give an example.

3. Give two examples for uncountable sets.

4. State the triangle inequality

5. Define bounded set.

6. Define supremum of a set

7. Define infimum of a set.

8. Define unbounded set.

9. Give two examples for unbounded set

10. Give two example for bounded set

11. Prove that |a + b| = |a| + |b| iff a = b = 0

12. State archimedian property of R

13. Define cluster point

14. Prove that R is uncountable

15. Let S =
{
1 − 1

n : n ∈N
}
. Find sup S and inf S
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16. Prove that the set of all rational number is countable.

17. If a, b ∈ R, ptove that |a + b| ≤ |a| + |b|
OR State and prove triangle inequality

18. State and prove Archimedean property.

19. Let S be a subset of R and a ∈ R. Prove that a + sup S =
sup(a + S)

20. Prove that the set of all real numbers is uncountable.

Unit II

1. Give an example for unbounded sequence.

2. Define a bounded sequence.

3. Define a convergent sequence.

4. Give an example for bounded sequence need not be a
convergent sequence

5. Define a sequence.

6. Give an example monotonic sequence need not be a con-
vergent sequence

7. Given an example for a monotonic sequence which is
convergent

8. Prove that if c > 0, lim c
1
n = 1

9. State and prove squeeze theorem

10. If a > 0, then prove that lim 1
1+na = 0

11. Prove that a convergent sequence of real numbers is
bounded. Also prove that the converse is need not be
true.

12. Prove that lim n
1
n = 0
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13. Let X = (xn) and Y = (yn) be sequence of real numbers
that converges to x and y respectively. Prove that the
sequences X + Y and XY converge to x + y and xy, re-
spectively.

14. State and prove uniqueness theorem on limit.

15. Prove that a convergent sequence of real numbers is
bounded

16. Prove that a sequence in R can have at most one limit.

Unit III

1. Define a geometric series.

2. Define a geometric sequence.

3. Define a harmonic sequence.

4. State the nth term test.

5. Prove that the converse of the nth term test need not be
true,

6. Define alternating harmonic series.

7. Give an example for alternating series

8. Define p-series

9. Estabilish the convergence or the divergence of the series
whose nth term is n

(n+2)()n+3

10. Show that
∞∑

n=1

1
n·(n+1)·(n+2) = 1

4

11. Show that
∞∑

n=1

1
n2+n

12. State and prove limit comparison test.
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13. Show that
∞∑

n=0

1
(n+1)(n+2) = 1

14. Prove that
∞∑

n=1

1
n2−n+1 converges

15. Prove that if
∑

xn converges then lim xn = 0

16. Prove that the 2-series converges.

17. State and prove the comparison test for the series

18. Discuss about the series (i)
∑ 1

n2+n (ii)
∑ 1

n!

19. State and prove the nth term test for series

20. State and prove Cauchy criterion for series.

21. Prove the p-series converges if p > 1.

Unit IV

1. Show that the sequence {xn} is monotone, where xn = 3n+1
2n−3

for all n ≥ 2

2. Give an example of a bounded sequence that is not a
Cauchy sequence.

3. Give an example for Cauchy sequence.

4. Define Cauchy sequence

5. State monotone subsequence theorem.

6. Define a subsequence.

7. Let X = {1, 1
2 , 3,

1
4 , · · · }. Find any one susequence of X

which is convergent

8. State monotone theorem.

9. State Cauchy criterion for a sequence
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10. Show that the sequence {xn} is monotone, where xn = 3n+1
2n−3

for all n ≥ 2

11. State and prove monotone subsequence theorem.

12. State and prove Cauchy convergence criterion for se-
quences

13. State and prove Bolzano- Weirstrass theorem.

14. Prove that every convergent sequence is Cauchy se-
quence. Also prove that the converse need not be true.

15. State and prove monotone subsequence theorem.

16. Prove that a bounded sequence converges to x if every
subsequence converges to x.

17. Prove that any convergent sequence is a Cauchy se-
quence.

18. State and prove Cauchy convergence criterion

Unit V

1. Define uniformly convergent of a series.

2. Define radius of convergence.

3. Define power series.

4. Define absolutely convergent of a series.

5. Find the radius of convergence of the power series
∞∑

n=1
an xn,

where an = nn

n!

6. Find the radius of convergence of the series
∑

n2 3n zn

7. State M-test

8. Define uniform norm of a function
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9. State Cauchy criterion for sequence of functions

10. State and prove Weierstrass M test

11. State and prove Cauchy Hadamard theorem

12. If R is the radius of convergence of the power series∑
anxn, prove that the series absolutely convergent if |x| <

R and divergent if |x| > R.

13. If
∑

anxn and
∑

bnxn converges on some interval (−r, r), r >
0, to the same function f , then prove that an = bn for all
n? ≥ N.

14. State and prove Cauchy criterion for series of functions.

15. State and prove Weierstrass M test
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