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Scope: This course provides a deep knowledge to the learners to understand the basic concepts 

of Numerical Methods which utilize computers to solve Engineering Problems that are not easily 

solved or even impossible to solve by analytical means. 

 

Objectives: To enable the students to study numerical techniques as powerful tool in scientific 

computing.                                        

 

UNIT I 

Convergence, Errors: Relative, Absolute, Round off, Truncation. Transcendental and Polynomial 

equations: Bisection method - Newton’s method - False Position method - Secant method - Rate 

of convergence of these methods. 

 

UNIT II 

System of linear algebraic equations: Gaussian Elimination - Gauss Jordan methods - Gauss 

Jacobi method - Gauss Seidel method and their convergence analysis  – LU decomposition - 

Power method. 

 

UNIT III 

Interpolation: Lagrange and Newton’s methods. Error bounds - Finite difference operators. 

Gregory forward and backward difference interpolation – Newton’s divided difference – Central 

difference – Lagrange and inverse Lagrange interpolation formula. 

 

UNIT IV 

Numerical Differentiation and Integration: Gregory’s Newton’s forward and backward 

differentiation- Trapezoidal rule, Simpson’s rule, Simpsons 3/8th rule, Boole’s Rule. Midpoint 

rule, Composite Trapezoidal rule, Composite Simpson’s rule. 

 

UNIT V 

Ordinary Differential Equations: Taylor’s series - Euler’s method – modified Euler’s method - 

Runge-Kutta methods of orders two and four.  

 

SUGGESTED READINGS 

 

TEXT BOOK 



 

1. Jain. M.K., Iyengar. S.R.K.,and Jain R.K., (2012). Numerical Methods for Scientific and 
Engineering Computation, New Age International Publishers, New Delhi . 
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2.Gerald C.F., and Wheatley P.O., (2006). Applied Numerical Analysis, Sixth
 
Edition, Dorling   

    Kindersley (India) Pvt. Ltd., New Delhi. 
 
3. Uri M. Ascher and Chen Greif., (2013). A First Course in Numerical Methods, Seventh 

Edition., PHI  Learning Private Limited.  

 

4. John H., Mathews and Kurtis D. Fink., (2012). Numerical Methods using Matlab, Fourth 

Edition., PHI  Learning Private Limited.  

 

5. Sastry S.S., (2008). Introductory methods of Numerical Analysis, Fourth edition, Prentice Hall 
of  India, New Delhi. 
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 (Deemed to be University Established Under Section 3 of UGC Act 1956) 

Coimbatore – 641 021.  

   

LECTURE PLAN 

DEPARTMENT OF MATHEMATICS 

 
STAFF NAME: M.SANTHI 

SUBJECT NAME: NUMERICAL METHODS  SUB.CODE:18MMU401 

SEMESTER: IV     CLASS:  I B.SC MATHEMATICS 

 

S.No Lecture 

Duratio

n Period 

Topics to be Covered Support Material/Page 

Nos 

  UNIT-I  

1.  1 Introduction to  Convergence  T1:ch-1, Pg.No:12-15 

2.  1 Convergence, Errors: Relative, 

Absolute, Round off, Truncation  

T1:ch -1,Pg.No:7-8 

3.  1 Solution of Algebraic and 

Transcendental Equation  -Bisection 

Method  

T1: ch -2,Pg.No:20-22 

4.  1 Newton’s method  and its rate of 

convergence- problems 

 

R2:Ch 1,Pg.No:48-49 

5.  1 Continuous on Newton’s method  and 

rate of convergence problems 

R2:Ch 1,Pg.No:50-51 

6.  1 False Position method and its rate of 

convergence related examples 

T1: ch -2,Pg.No:23-24 

7.  1 Continuous on False Position method 

and its rate of convergence related 

examples 

T1: ch -2,Pg.No:25-26 

8.  1 Secant method related problems and its 

rate of convergence 

R5:ch-2,Pg.No:43-44 

9.  1 Recapitulation and Discussion  of 

possible questions 

 

 Total No of  Hours Planned  For  Unit I=9  

  UNIT-II  

1.  1 Introduction to Solution of 

Simultaneous Linear algebraic 

Equations 

T1:ch -3,Pg.No:114-115 

2.  1 Gauss Elimination Method: Procedure  T1:ch -3,Pg.No:116-117 

3.  1 Gauss Jordan Method and their 

convergence related examples 

T1:ch -3,Pg.No:119-120 
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4.  1 Gauss Jordan Method and its 

convergence related examples 

R1:chater-3,Pg.No:216-

224 

5.  1 Gauss Jacobic Method and its 

convergence related examples 

T1:ch -3,Pg.No:146-149 

6.  1 Gauss Seidal Method  and its 

convergence problems 

T1:ch -3,Pg.No:150-152 

7.  1 Continuation of Problems on Gauss 

Seidal Method 

R2:ch-2,Pg.No:129-134  

8.  1 LU Decomposition related problems R3: ch -5 Pg.No:100-105 

9.  1 Power Method with examples T1: ch -3,Pg.No:192-194 

10.  1 Recapitulation and Discussion  of 

possible questions 

 

  

Total No of  Hours Planned  For  Unit II=10 

 

  UNIT-III  

1.  1 Introduction on Interpolation and its 

formulas 

T1: ch -4,Pg.No: 212-214 

2.  1 Lagrange and Newton’s Methods 

related problmes  

T1: ch -4, Pg.No: 215-216 

3.  1 Continuous on Lagrange and Newton’s 

Methods related problmes  

T1: ch -4, Pg.No: 216-217 

4.  1 Error bounds - Finite difference operators 
related examples 

T1: ch -4,Pg.No: 218-220 

5.  1 Continuous on Error bounds - Finite 

difference operators related examples 
T1: ch -4,Pg.No: 221-224 

6.  1 Gregory Forward and backward  

difference Interpolation related 

examples 

T1: ch -4, Pg.No: 230-236 

7.  1 Newton’s Divided difference and its 

problems 

T1: ch -4,Pg.No: 226-229 

8.  1 Central difference R3:ch -10,Pg.No:306-310 

9.  1 Lagrange and Inverse Interpolation 

formula 

R4: ch -6,Pg.No:334-335 

10.  1 Recapitulation and Discussion  of 

possible questions 

 

 Total No of  Hours Planned  For  Unit III=10  

  UNIT-IV  

1.  1 Introduction to Numerical Differentiation 

and Integration 
T1: ch -5,Pg.No: 320-322 

2.  1 Gregory ‘s Newton’s Forward and 

Backward differentiation 

T1: ch -5,Pg.No: 323-324 

3.  1 Continuous on Gregory ‘s Newton’s 

Forward and Backward differentiation 

T1: ch -5, Pg.No: 325-326 

4.  1 Trapezoidal rule and its examples T1: ch -5,Pg.No:350-352 

5.  1 Simpson’s  1/3 rule  and Simpson’s  T1: ch -5,Pg.No:353-355 
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3/8 rule-Problems 

6.  1 Boole’s Rule  & Midpoint rule related 

problems 

R5:ch-5,Pg.No:200-202 

7.  1 Composite Trapezoidal rule and its 

problems 

T1: ch 5,Pg.No:386-387 

8.  1 Composite Simpson’ rule related 

examples 

T1: ch 5,Pg.No:388-390 

9.  1 Recapitulation and Discussion  of 

possible questions 

 

 Total No of  Hours Planned  For  Unit IV=9  

  UNIT-V  

1.  1 Introduction to Ordinary Differential Equations  R4:ch 9,Pg.No:451-453 

2.   Taylor’s series with examples R4:ch 9,Pg.No:454-456 

3.  1 Euler’s method and  modified Euler’s method 

with problems 

T1: ch -6, Pg.No:425-430 

 

4.  1 Continuous on Euler’s method and  modified 

Euler’s method with problems 

R2:ch:6,Pg.No:455-458 

5.  1 Runge-Kutta methods of orders two and four 

with problems 
T1: ch -6, Pg.No:451-456 

6.  1 Milne’s predictor – corrector method & 

Adam’s Bashforth predictor – corrector 

method and its examples 

R2:ch:6,Pg.No:467-468 

T1: ch -6,Pg.No:487-492 

7.  1 Recapitulation and Discussion  of  possible 

questions 

 

8.  1 Discuss on Previous  ESE Question Papers  

9.  1 Discuss on Previous  ESE Question Papers  

10.  1 Discuss on Previous  ESE Question Papers  

 Total No of  Hours Planned  for  unit V=10  

Total 

Planne

d Hours 

48   
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and Engineering Computation, New Age International Publishers, New Delhi . 
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UNIT - I  

  Solution of Algebraic and  
Transcendental Equations 
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 Bisection Method  
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 The Iteration Method 

 Newton Raphson Method 

 Summary 

 Solved University Questions (JNTU) 

 Objective Type Questions 
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1.1  Solution of Algebraic and Transcendental Equations 

1.1.1  Introduction 

A polynomial equation of the form  

    f (x) = pn (x) = a0 x
n–1 + a1 x

n–1 + a2 x
n–2 + … + an–1 x + an = 0  …..(1) 

is called an Algebraic equation. For example, 

    x4 – 4x2 + 5 = 0, 4x2 – 5x + 7 = 0; 2x3 – 5x2 + 7x + 5 = 0 are algebraic equations. 

 An equation which contains polynomials, trigonometric functions, logarithmic functions, 
exponential functions etc., is called a Transcendental equation. For example, 

    tan x – ex = 0;  sin x – xe2x = 0; x ex = cos x 

are transcendental equations. 

 Finding the roots or zeros of an equation of the form f(x) = 0 is an important problem in 
science and engineering. We assume that f (x) is continuous in the required interval. A root of 
an equation f (x) = 0 is the value of x, say x =  for which f () = 0. Geometrically, a root of 
an equation f (x) = 0 is the value of x at which the graph of the equation y = f (x) intersects the 
x – axis (see Fig. 1) 

 

Fig. 1  Geometrical Interpretation of  a root of f (x) = 0 

 A number  is a simple root of f (x) = 0; if f () = 0 and 0α )(f ' . Then, we can write      

f (x) as,  

     f (x) = (x – ) g(x), g()  0    …..(2) 

 A number  is a multiple root of multiplicity m of f (x) = 0, if f () = f 1() = .... =  f  (m–1) () = 0 
and                 f m () = 0.   

 Then, f (x) can be writhen as, 

     f (x) = (x – )m g (x), g ()   0    …..(3) 
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 A polynomial equation of degree n will have exactly n roots, real or complex, simple or 
multiple. A transcendental equation may have one root or no root or infinite number of roots 
depending on the form of       f (x). 

 The methods of finding the roots of f (x) = 0 are classified as, 

 1. Direct Methods 

 2. Numerical Methods. 

 Direct methods give the exact values of all the roots in a finite number of steps. Numerical 
methods are based on the idea of successive approximations. In these methods, we start with 
one or two initial approximations to the root and obtain a sequence of approximations x0, x1, 
… xk which in the limit as k   converge to the exact root x = a. 

 There are no direct methods for solving higher degree algebraic equations or 
transcendental equations. Such equations can be solved by Numerical methods. In these 
methods, we first find an interval in which the root lies. If a and b are two numbers such that  
f (a) and f (b) have opposite signs, then a root of f (x) = 0 lies in between a and b. We take a or 
b or any valve in between a or b as first approximation x1. This is further improved by 
numerical methods. Here we discuss few important Numerical methods to find a root of                
f (x) = 0. 

1.1.2  Bisection Method 

This is a very simple method. Identify two points x = a and x = b such that f (a) and f (b) are 
having opposite signs. Let f (a) be negative and f (b) be positive. Then there will be a root of   
f (x) = 0 in between a and b. 

 Let the first approximation be the mid point of the interval (a, b). i.e. 

    
 

1 2

a b
x


  

 If f (x1) = 0, then x1 is a root, other wise root lies between a and x1 or x1 and b according as 
f (x1) is positive or negative. Then again we bisect the interval and continue the process until 
the root is found to desired accuracy. Let f (x1) is positive, then root lies in between a and x1 
(see fig.2.). The second approximation to the root is given by, 

    1
2

( )

2

a x
x


  

 If f (x2) is negative, then next approximation is given by 

    2 1
3

( )

2

x x
x


  

 Similarly we can get other approximations. This method is also called Bolzano method. 
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Fig. 2  Bisection Method 

Note:  The interval width is reduced by a factor of one–half at each step and at the end of the 

nth step, the new interval will be [an, bn] of length
–

2n

b a
. The number of iterations n required 

to achieve an accuracy   is given by, 

    

–
log

log 2

 
  

e

e

b a

n      …..(4) 

EXAMPLE 1 

Find a real root of the equation f (x) = x3 – x – 1 = 0, using Bisection method. 

SOLUTION 

First find the interval in which the root lies, by trail and error method. 

   f (1) =13 – 1 – 1 = –1, which is negative 

   f (2) = 23 – 2 – 1 = 5, which is positive 

  A root of f (x) = x3 – x – 1 = 0 lies in between 1 and 2. 

    x1 = 
(1 2) 3

2 2


  = 1.5 

  f (x1) = f (1.5) = (1.5)3 – 1.5 – 1 = 0.875, which is positive. 

  Hence, the root lies in between 1 and 1.5 

    x2 = 
(1 1.5)

2


 = 1.25 

  f (x2) = f (1.25) = (1.25)3 – 1.25 – 1 = – 0.29, which is negative. 

  Hence, the root lies in between 1.25 and 1.5 
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    x3 = 
(1.25 1.5)

2


 = 1.375 

 Similarly, we get x4 = 1.3125, x5 = 1.34375, x6 = 1.328125 etc. 

EXAMPLE 2 

Find a root of f (x) = xex – 1 = 0, using Bisection method, correct to three decimal places. 

SOLUTION 

    f (0) = 0.e0 – 1 = – 1 < 0 

    f (1) = 1.e1 – 1 = 1.7183 > 0 

 Hence a root of f (x) = 0 lies in between 0 and 1. 

    
 

50
2

10
1 .x 


  

    f (0.5) = 0.5 e0.5 – 1 = – 0.1756 

 Hence the root lies in between 0.5 and 1 

    x2 = 
(0.5 1)

2


 = 0.75 

 Proceeding like this, we get the sequence of approximations as follows. 

   x3 = 0.625 
   x4 = 0.5625 
   x5 = 0.59375 
   x6 = 0.5781 
   x7 = 0.5703 
   x8 = 0.5664 
   x9 = 0.5684 
   x10 = 0.5674 
   x11 = 0.5669 
   x12 = 0.5672, 
   x13 = 0.5671, 

 Hence, the required root correct to three decimal places is, x = 0.567. 

1.1.3  Method of False Position 

This is another method to find the roots of f (x) = 0. This method is also known as Regular 
False Method. 

 In this method, we choose two points a and b such that f (a) and f (b) are of opposite signs. 
Hence a root lies in between these points. The equation of the chord joining the two points,  
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(a, f (a)) and (b, f (b)) is given by 

    
– ( ) ( ) – ( )

– –

y f a f b f a

x a b a
     …..(5) 

 We replace the part of the curve between the points [a, f (a)] and [b, f (b)] by means of the 
chord joining these points and we take the point of intersection of the chord with the x axis as 
an approximation to the root (see Fig.3). The point of intersection is obtained by putting y = 0 
in (5), as 

    x = x1 = 
( ) –  ( )

( ) – ( )

a f b b f a

f b f a
    …..(6) 

 x1 is the first approximation to the root of f (x) = 0. 

 

Fig. 3  Method of False Position 

 If f (x1) and f (a) are of opposite signs, then the root lies between a and x1 and we replace b 
by x1 in (6) and obtain the next approximation x2. Otherwise, we replace a by x1 and generate 
the next approximation. The procedure is repeated till the root is obtained to the desired 
accuracy. This method is also called linear interpolation method or chord method. 

EXAMPLE 3 

Find a real root of the equation f (x) = x3 – 2x – 5 = 0 by method of False position. 

SOLUTION 
    f (2) = – 1 and f (3) = 16 

 Hence the root lies in between 2 and 3. 

 Take a = 2, b = 3. 

    x1 =
 ( ) –  ( )

( ) – ( )

a f b b f a

f b f a
 

        = 
2(16) – 3(–1)

16 – (–1)
= 

35

17
 = 2.058823529. 
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      f (x1) = f (2.058823529)  = – 0.390799917 < 0. 

 Therefore the root lies between 0.058823529 and 3. Again, using the formula, we get the 
second approximation as, 

    x2 = 
2.058823529(16) – 3(–0.390799917)

16 – (–0.390799917)
 = 2.08126366 

 Proceeding like this, we get the next approximation as, 

    x3 = 2.089639211, 

    x4 = 2.092739575, 

    x5 = 2.09388371, 

    x6 = 2.094305452, 

    x7 = 2.094460846 

EXAMPLE 4 

Determine the root of the equation cos x – x ex = 0 by the method of False position. 

SOLUTION 

    f (0) = 1 and f (1) = – 2. 177979523 

   a = 0 and b = 1. The root lies in between 0 and 1 

    
   

31466533780
11779795232

1117797952320
1 .

–.–

–.–
x   

    f (x1) = f (0.314653378) = 0.51986. 

  The root lies in between 0.314653378 and 1. 

 Hence,  x2 = 
0.3146653378(–2.177979523) –1(0.51986)

–2.177979523 – 0.51986
 = 0.44673 

 Proceeding like this, we get 
   x3 = 0.49402, 
   x4 = 0.50995, 
   x5 = 0.51520, 
   x6 = 0.51692, 

EXAMPLE 5 
Determine the smallest positive root of x – e–x = 0, correct of three significant figures using 
Regula False method. 

SOLUTION 

 Here,   f (0) = 0 – e–0 = –1 
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 and   f (1) = 1 – e–1 = 0.63212. 

  The smallest positive root lies in between 0 and 1. Here a = 0 and b = 1 

    x1 = 
0(0.63212) –1(–1)

0.63212 1
 = 0.6127 

    f (0.6127) = 0.6127 – e–(0.6127) = 0.0708 

Hence, the next approximation lies in between 0 and 0.6127. Proceeding like this, we get 
   x2 = 0.57219,0  x3 = 0.5677, x4 = 0.5672,  x5 = 0.5671, 

 Hence, the smallest positive root, which is correct up to three decimal places is, 

   x = 0.567 

1.1.4  The Iteration Method 

In the previous methods, we have identified the interval in which the root of f (x) = 0 lies, we 
discuss the methods which require one or more starting values of x, which need not 
necessarily enclose the root of f (x) = 0. The iteration method is one such method, which 
requires one starting value of x. 

 We can use this method, if we can express f (x) = 0, as 

    x =  (x)      ….. (1) 

 We can express f (x) = 0, in the above form in more than one way also. For example, the 
equation x3 + x2 – 1 = 0 can be expressed in the following ways. 

    
–1

2(1 )x x   

    
13 2(1– )x x  

    
12 3(1– )x x  

and so on 

 Let x0 be an approximation to the desired root  , which we can find graphically or 

otherwise. Substituting x0 in right hand side of (1), we get the first approximation as 

    x1 =  (x0)      …..(2) 

 The successive approximations are given by 

    x2 =  (x1) 

    x3 =  (x2)      …..(3) 
    . 
    . 
    . 

    xn =  (xn – 1) 
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Note: The sequence of approximations x0, x1, x2 … xn given by (3) converges to the root   in 

a interval I, if '| ( ) |< 1x  for all x in I. 

EXAMPLE 6 

Using the method of iteration find a positive root between 0 and 1 of the equation 

    x ex = 1 

SOLUTION 

 The given equation can be writhen as x = e–x 

     (x) = e–x. 

 Here | ( ) |< 1 for   < 1x x  

  We can use iterative method 
 Let   x0 = 1 

    x1 = e–1 = 
1

e
 = 0.3678794. 

    x2 =e–0.3678794 = 0.6922006. 
    x3 = e–0.6922006 = 0.5004735 

 Proceeding like this, we get the required root as x = 0.5671. 

EXAMPLE 7 

Find the root of the equation 2x = cos x + 31 correct to three decimal places using Iteration 
method. 

 

SOLUTION 

 Given equation can be written as  

    
(cos 3)

2

x
x


  

    ' sin
| ( ) | 1

2

x
x    

 Hence iteration method can be applied 

 Let  x0 = 
2


 

    x1 = 
1

cos 3 1.5
2 2

   
 
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    x2 =  1
cos1.5 3 1.535

2
   

 Similarly, 
   x3 = 1.518, 
   x4 = 1.526, 
   x5 = 1.522, 
   x6 = 1.524, 
   x7 = 1.523, 
   x8 = 1.524. 

 The required root is x = 1.524 

EXAMPLE 8 

 Find a real root of 2x – log10 x = 7 by the iteration method 

SOLUTION 

 The given equation can be written as, 

    x = 
1

2
 (log10 x + 7) 

 Let   x0 = 3.8 

    x1 = 
1

2
 (log10 3.8 + 7) = 3.79 

     x2 = 
1

2
 (log10 3.79 + 7) = 3.7893 

     x3 = 
1

2
 (log10 3.7893 + 7) = 3.7893. 

  x = 3.7893 is a root of the given equation which is correct to four significant digits. 

1.1.5 Newton Raphson Method 

This is another important method. Let x0 be approximation for the root of f (x) = 0. Let             
x1 = x0 + h be the correct root so that f (x1) = 0. Expanding f (x1) = f (x0 + h) by Taylor series, 
we get 

    f (x1) = f (x1 + h) = f (x0) + h 'f (x0) + 
!

h

2

2

 f   (x0) + …… = 0  …..(1) 

 For small valves of h, neglecting the terms with h2, h3 ….. etc,. We get 
    f (x0) + h 'f (x0) = 0        …..(2) 



Solution of Algebraic and Transcendental Equations  11

 and   h = – 0
1

0

( )

( )

f x

f x
 

    x1 = x0 + h 

        = x0 – 0
'

0

( )

( )

f x

f x
 

 Proceeding like this, successive approximation x2, x3, … xn + 1 are given by,  

    xn + 1 = xn – 
'

( )

( )
n

n

f x

f x
.        …..(3) 

 For n = 0, 1, 2, …… 

Note:  

(i) The approximation xn+1 given by (3) converges, provided that the initial 

approximation x0 is chosen sufficiently close to root of f (x) = 0. 

(ii) Convergence of Newton-Raphson method: Newton-Raphson method is similar to 

iteration method  

   
'

( )
( ) –

( )

f x
x x

f x
        …..(1)  

differentiating (1) w.r.t to ‘x’ and using condition for convergence of iteration method i.e. 

   '( ) 1x  , 

We get  

   
2

'( ). '( ) – ( ) "( )
1 – 1

[ '( )]

f x f x f x f x

f x
  

Simplifying we get condition for convergence of Newton-Raphson method is  

   2( ). "( ) [ ( )]f x f x f x    

EXAMPLE 9 

 Find a root of the equation x2 – 2x – 5 = 0 by Newton – Raphson method. 

SOLUTION 

 Here f (x) = x3 – 2x – 5. 

    1f (x) = 3x2 – 2 
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 Newton – Raphson method formula is 

     xn + 1 = xn – 
'

( )

( )
n

n

f x

f x
 

     xn + 1 = xn – 
3

2

– 2 – 5

3 – 2
n n

n

x x

x
,  n = 0, 1, 2, . . . .  ..…(1) 

 Let  x0 = 2 

    f (x0) = f (2) = 23 – 2 (2) – 5 = – 1 

 and  1f (x0) = 1f (2) = 3 (2)2 – 2 = 10 

 Putting n = 0 in (I), we get  

    x1 = 2 – 
–1

10
 
 
 

 = 2.1 

    f (x1) = f (2.1) = (2.1)3 – 2 (2.1) – 5 = 0.061 

    1f (x1) = 1f (2.1) = 3 (2.1)2 – 2 = 11.23 

    x2 = 2.1 – 
0.061

11.23
 = 2.094568 

 Similarly, we can calculate x3, x4 …… 

EXAMPLE 10 

Find a root of x sin x + cos x = 0, using Newton – Raphson method 

SOLUTION 

    f (x) = x sin x + cos x. 

    'f (x) = sin x + x cos x – sin x = x cos x 

 The Newton – Raphson method formula is, 

    xn + 1 = xn – 
sin cos

cos
n n n

n n

x x x

x x


,  n = 0, 1, 2,  …. 

 Let   x0 =  = 3.1416. 

    x1 = 3.1416 –
3.1416sin cos

3.1416cos

 


= 2.8233. 
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 Similarly, 

   x2 = 2.7986 

   x3 = 2.7984 

   x4 = 2.7984 

   x = 2.7984 can be taken as a root of the equation x sin x + cos x = 0. 

EXAMPLE 11 

Find the smallest positive root of x – e–x = 0, using Newton – Raphson method. 

SOLUTION 

Here    f (x) = x – e–x 

    1f (x) = 1 + e–x 

    f (0) = – 1 and  f (1) = 0.63212. 

  The smallest positive root of f (x) = 0 lies in between 0 and 1. 

 Let    x0 = 1 

 The Newton – Raphson method formula is, 

    xn + 1 = xn – 
–

–

–

1

x
n

x

x e n

e n
, n = 0, 1, 2, …… 

    f (0) =  f (1) = 0.63212 

    'f  (0) = 'f  (1) = 1.3679 

    x1 = x0 – 
0

0

–
0

–

–

1

x

x

x e

e
 = 1 – 

0.63212

1.3679
 = 0.5379. 

    f (0.5379) = – 0.0461 

    'f  (0.5379) = 1.584. 

    x2 = 0.5379 + 
0.0461

1.584
 = 0.567 

 Similarly,  x3 = 0.56714 

  x = 0.567 can be taken as the smallest positive root of x – e–x = 0., correct to three 
decimal places. 

Note: A method is said to be of order P or has the rate of convergence P, if P is the largest 
positive real number for which there exists a finite constant c   0, such that 

    
P

K 1 Kc         ….. (A) 
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Where K K –x    is the error in the kth iterate. C is called Asymptotic Error constant and 

depends on derivative of f(x) at x =  . It can be shown easily that the order of 

convergence of Newton – Raphson method is 2. 

Exercise - 1.1 

 1. Using Bisection method find the smallest positive root of x3 – x – 4 = 0 which is correct 
to two decimal places. 

[Ans: 1.80] 

 2. Obtain a root correct to three decimal places of x3 – 18 = 0, using Bisection Method. 

[Ans: 2.621] 

 3. Find a root of the equation xex – 1 = 0 which lies in (0, 1), using Bisection Method. 

[Ans: 0.567] 

 4. Using Method of False position, obtain a root of x3 +x2 + x + 7 = 0, correct to three 
decimal places. 

[Ans: – 2.105] 

 5. Find the root of x3 – 2x2 + 3x – 5 = 0, which lies between 1 and 2, using Regula False 
method. 

[Ans: 1.8438] 

 6. Compute the real root of x log x – 1.2 = 0, by the Method of False position. 

[Ans: 2.740] 

 7. Find the root of the equation cos x – x ex = 0, correct to four decimal places by Method 
of False position 

[Ans: 0.5178] 

 8. Using Iteration Method find a real root of the equation x3 – x2 – 1 = 0. 

[Ans: 1.466] 

 9. Find a real root of sin2x = x2 – 1, using iteration Method. 

[Ans: 1.404] 

 10. Find a root of sin x = 10 (x – 1), using Iteration Method. 

[Ans: 1.088] 

 11. Find a real root of cot x = ex, using Iteration Method. 

[Ans: 0.5314] 

 12. Find a root of x4 – x – 10 = 0 by Newton – Raphson Method. 

[Ans: 1.856] 



Solution of Algebraic and Transcendental Equations  15

 13. Find a real root of x – cos x = 0 by Newton – Raphson Method. 

[Ans: 0.739] 

 14. Find a root of 2x – 3 sin x – 5= 0 by Newton – Raphson Method. 

[Ans: 2.883238] 

 15. Find a smallest positive root of tan x = x by Newton – Raphson Method. 

[Ans: 4.4934] 

 

Summary 

Solution of algebraic and transcendental equations 

 1. The numerical methods to find the roots of f (x) = 0 

  (i) Bisection method: If a function f (x) is continuous between a and b, f (a) and  f 
(b) are of apposite sign then there exists at least one root between a and b. The 

approximate value of the root between them is x0 =
2

a b
 

If f (x0) = 0 then the x0 is the correct root of f (x) = 0. If f (x0) 0, then the root 

either lies in between ,  
2

a b
a

 
 
 

 or ,  
2

a b
b

 
 
 

 depending on whether  f (x0) is 

negative or positive. Again bisection the interval and repeat same method until 
the accurate root is obtained.  

 (ii) Method of false position: (Regula false method): This is another method to find 
the root of f (x) = 0. In this method, we choose two points a and b such that f (a), 
f (b) are of apposite signs. Hence the root lies in between these points [a, f (a)], 
[b, f (b)] using equation of the chord joining these points and taking the point of 
intersection of the chord with the x-axis as an approximate root (using y = 0 on 

x– axis) is x1 = 
 ( )  ( )

( ) ( )

a f b b f a

f b f a




  

  Repeat the same process till the root is obtained to the desired accuracy. 

 (iii) Newton Raphson method: The successive approximate roots are given by 

    xn+1 = xn –
( )

,
( )

n

n

f x

f x
 n = 0, 1, 2 - - - - - 

provided that the initial approximate root x0 is choosen sufficiently close to root 
of f (x) = 0 
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Solved University Questions 

  1. Find the root of the equation 2x – log x = 7 which lies between 3.5 and 4 by            
Regula–False method.       (JNTU 2006) 

Solution  

 Given f(x) = 2x – logx10 = 7      …..(1)  

 Take x0 = 3.5, x1 = 4 

 Using Regula Falsi method 

   x2 = x0 –      1 0
0

1

x – x
. f x

f x – f x
 

   x2 = 3.5 – 
 

4 3 5

0 3979 0 5441

– .

. .
 (–0.5441) 

   x2 = 3.7888 

 Now taking x0 = 3.7888 and x1 = 4 

   x3 = x0 – 
     1 0

0
1 0

x – x
. f x

f x – f x
 

   x3 = 3.7888 – 
4 3 7888

0 3988

– .

.
 (–0.0009) 

   x3 = 3.7893 

 The required root is = 3.789 

 2. Find a real root of xex = 3 using Regula-Falsi method.     (JNTU – 2006)  

Solution  

 Given f(x) = x ex – 3 = 0 

 f (1) = e – 3 = –0.2817 < 0 

 f(2) = 2e2 – 3 = 11.778 > 0 

  One root lies between 1 and 2 

 Now taking x0 = 1, x1 = 2 

 Using Regula – Falsi method 

     x2 = x0 – 
     1 0

0
1 0

x – x
f x

f x – f x
 

   x2 = 
   
   

0 1 1 0

1 0

x f x – x f x

f x – f x
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    x2 = 
   1 11 778 2 0 2817

11 778 0 2817

. – – .

. .
 

    x2 = 1.329 

 Now f (x2) = f(1.329) = 1.329 e1.329 –3 = 2.0199 > 0 

          f (1) = –0.2817 < 0 

  The root lies between 1 and 1.329 taking x0 = 1 and x2 = 1.329 

  Taking x0 = 1 and x2 = 1.329 

   x3 = 
   
   

0 2 2 0

2 0

x f x – x f x

f x – f x
 

       
    

   
1 2 0199 1 329 0 2817

2 0199 0 2817

. . .

. .





 

       
2 3942

2 3016

.

.
  = 1.04  

 Now f (x3) = 1.04 e1.04 –3 = –0.05 < 0 

 The root lies between x2 and x3 

 i.e., 1.04 and 1.329     [  f (x2) > 0 and f (x3) < 0] 

   x4 = 
   
   

2 3 3 2

3 2

x f x – x f x

f x – f x
 = 

     
   

1 04 0 05 1 329 2 0199

0 05 2 0199

. – . – . .

– . – .
 

  x4 = 1.08 is the approximate root 

 3. Find a real root of ex sin x = 1 using Regula – Falsi method  (JNTU 2006) 

Solution  

 Given f(x) = ex sin x – 1 = 0 

 Consider x0 = 2 

  f(x0) = f (2) = e2 sin 2 – 1 = –0.7421 < 0 

  f (x1) = f (3) = e3 sin 3 – 1 = 0.511 > 0 

  The root lies between 2 and 3 

  Using Regula – Falsi method 

   x2 = 
   
   

0 1 1 0

1 0

x f x – x f x

f x – f x
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   x2 = 
   2 0 511 3 0 7421

0 511 0 7421

. .

. .




 

   x2 = 2.93557 

  f (x2) = e2.93557 sin(2.93557) – 1 

  f (x2) = –0.35538 < 0 

  Root lies between x2 and x1 

 i.e., lies between 2.93557 and 3 

    x3 = 
   
   

2 1 1 2

1 2

x f x – x f x

f x – f x
 

                        
    2 93557 0 511 3 35538

0 511 0 35538

. . – –

. .



 

  x3 = 2.96199 

  f (x3) = e2.90199 sin(2.96199) –1 = –0.000819 < 0 

  root lies between x3 and x1 

    x4 = 
   
   

3 1 1 3

1 3

x f x – x f x

f x – f x
 

    x4 
   2 96199 0 511 3 0 000819

0 511 0 000819

. . .

. .





 = 2.9625898 

  f (x4) = e2.9625898 sin(2.9625898) – 1 

  f (x4) = –0.0001898 < 0   

  The root lies between x4 and x1 

    x5 = 
   
   

4 1 1 4

1 4

x f x – x f x

f x – f x
 

       
   

 
2 9625898 0 511 3 0 0001898

0 511 0 0001898

. . .

. .





 

    x5 = 2.9626 

 we have 

    x4 = 2.9625 

   x5 = 2.9626 

   x5 = x4 = 2.962 

 The root lies between 2 and 3 is 2.962 
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 4. Find a real root of x ex  = 2 using Regula – Falsi method  (JNTU 2007) 

Solution  

f (x) = x ex – 2 = 0 

f (0) = –2 < 0,  f (1) = i.e., –2 = (2.7183)–2  

 f (1) = 0.7183 > 0 

 The root lies between 0 and 1 

 Considering x0 = 0, x1 = 1 

 f(0) = f(x0) = –2; f (1) = f (x1) = 0.7183 

By Regula – Falsi method 

   x2 = 
   
   

0 1 1 0

1 0

x f x – x f x

f x – f x
 

   x2 = 
   

 
0 0 7183 1 2 2

0 7183 2 2 7183

. – –

. – – .
  

   x2 = 0.73575 

 Now f (x2) = f (0.73575) = 0.73575 e0.73575 – 2 

  f (x2) = –0.46445 < 0 

 and  f (x1) = 0.7183 > 0 

  The root x3 lies between x1 and x2 

   x3 = 
   
   

2 1 1 2

1 2

x f x – x f x

f x – f x
 

   x3 = 
  0 73575 0 7183

0 7183 0 46445

. .

. .
 

   x3 = 
0 52848 0 46445

1 18275

. .

.


 

   x3 = 
0 992939

1 18275

.

.
 

   x3 = 0.83951 f (x3) = 
 

  2

0 83951

0 83951 –

.

. e
 

  f (x3) = (0.83951) e0.83951 –2 

  f (x3) = –0.056339 < 0 
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  One root lies between x1 and x3 

   x4 = 
   
   

    3 1 1 3

1 3

0 83951 0 7183 1 0 056339

0 7183 0 056339

x f x – x f x . . – – .

f x – f x . .



 

   x4 = 
0 65935

0 774639

.

.
 = 0.851171 

  f (x4) = 0.851171 e0.851171 – 2 = –0.006227 < 0 

 Now x5 lies between x1 and x4 

   x5 = 
   
   

4 1 1 4

1 4

x f x – x f x

f x – f x
 

   x5 = 
    0 851171 0 7183 006227

0 7183 0 006227

. . .

. .




 

   x5 = 
0 617623

0 724527

.

.
 = 0.85245 

 Now f (x5) = 0.85245 e0.85245 e0.85245 – 2 = –0.0006756 < 0 

  One root lies between x1 and x5, (i.e., x6 lies between x1 and x5) 

 Using Regula – Falsi method 

   x6 = 
  0 85245 0 7183 0 0006756

0 7183 0 0006756

. . .

. .




  

   x6 = 0.85260 

 Now f (x6) = –0.00006736 < 0 

  One root x7 lies between x1 and x6 

 By Regula – Falsi method 

   x7 = 
   
   

6 1 1 6

1 6

x f x – x f x

f x – f x
 

   x7 = 
  0 85260 0 7183 0 0006736

0 7183 0 0006736

. . .

. .




 

   x7 = 0.85260 

 From x6 = 0.85260 and x7 = 0.85260 

 A real root of the given equation is 0.85260 
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 5. Using Newton-Raphson method (a) Find square root of a number (b) Find a reciprocal 
of a number        [JNTU 2008] 

Solution 

  (a) Let n be the number 

    and  x = n     x2 = n 

   If  f (x) = x2 – n = 0     …..(1) 

   Then the solution to f (x) = x2 – n = 0 is x = .n  

      f 1(x) = 2x 

  by Newton Raphson method 

      xi + 1 = xi – 
2

1

( )
–

( ) 2
i i

i
i i

f x x n
x

f x x

 
  

 
 

      xi + 1 = 
1

2 i
i

x
x

x

 
 

 
     …..(2) 

  using the above formula the square root of any number ‘n’ can be found to required 
accuracy 

  (b) To find the reciprocal of a number ‘n’ 

    f (x) = 
1

x
– n = 0     …..(1) 

   solution of (1) is x = 
1

n
 

      f 1(x) = – 2

1

x
 

  Now by Newton-Raphson method,  xi+1 = xi – 1

( )

( )
i

i

f x

f x

 
 
 

 

      xi + 1 = xi – 

2
1

1

1
i

N
x

x

  
 
  
 

 

      xi + 1 = xi  (2 – xi n)  

  using the above formula the reciprocal of a number can be found to required accuracy.  
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6.  Find the reciprocal of 18 using Newton–Raphson method        [JNTU 2004]  

Solution 

  The Newton-Raphson method 

    xi+1 = xi (2 – xi n)     …..(1)  

  considering the initial approximate value of x as x0 = 0.055 and given n = 18  

   x1 = 0.055 [2 – (0.055) (18)]  

   x1 = 0.0555 

    x2 = 0.0555 [2 – 0.0555 × 18] 

    x2 = (0.0555) (1.001) 

    x2 = 0.0555 

   Hence x1 = x2 = 0.0555 

   The reciprocal of 18 is 0.0555  

 7.  Find a real root for x tan x +1 = 0 using Newton–Raphson method [JNTU 2006]  

Solution 

  Given f (x) = x tan x + 1 = 0 

    f 1 (x) = x sec2 x + tan x 

    f (2) = 2 tan 2 + 1 = – 3.370079 < 0 

    f (3) = 2 tan 3 + 1 = – 0.572370 > 0 

   The root lies between 2 and 3 

  Take  x0 = 
2 3

2


 = 2.5   (average of 2 and 3)  

  By Newton-Raphson method 

      xi+1 = xi – 1

( )

( )
i

i

f x

f x

 
 
 

 

      x1 = x0 – 0
1

0

( )

( )

f x

f x

 
 
 

 

      x1 = 2.5 – 
( 0.86755)

3.14808


 

      x1 = 2.77558 
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      x2 = x1 – 
1

( )
;

( )
i

i

f x

f x
       

    f ( x1) = – 0.06383,  f 1( x1) =  2.80004 

      x2 = 2.77558 – 
( 0.06383)

2.80004


 

      x2 = 2.798 

     f (x2) = – 0.001080,  f 1(x2) = 2.7983 

      x3 = x2 – 2
1

2

( )

( )

f x

f x
=  2.798 – 

[  0.001080]

2.7983


 

      x3 = 2.798. 

    x2 = x3 

   The real root of x tan x + 1 = 0 is 2.798 

 8.  Find a root of ex sin x = 1 using Newton–Raphson method [JNTU 2006]  

Solution 

  Given f (x) = ex sin x – 1 = 0 

    f 1 (x) = ex sec x + ex cos x 

   Take x1 = 0, x2 = 1 

      f (0) = f (x1) = e0 sin 0 – 1 = –1 < 0 

      f (1) = f (x2) = e1 sin (1) – 1 = 1.287 > 0 

  The root of the equation lies between 0 and 1 

  Using Newton-Raphson method 

      xi + 1 = xi – 
1

( )

( )
i

i

f x

f x
 

  Now consider x0 = average of 0 and 1 

      x0 = 
1 0

2


 = 0.5 

      x0 = 0.5 

      f (x0) = e0.5 sin (0.5) – 1 

      f 1 (x0) = e0.5 sin (0.5) + e0.5 cos (0.5) = 2.2373 

      x1 = x0 – 0
1

0

( )

( )

f x

f x
 = 0.5 – 

( 0.20956)

2.2373


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      x1 = 0.5936 

      f (x1) = e0.5936 sin (0.5936) – 1 = 0.0128 

      f 1 (x1) = e0.5936 sin (0.5936) + e0.5936 cos (0.5936) = 2.5136 

      x2 = x1 – 1
1

1

( )

( )

f x

f x
 = 0.5936 – 

(0.0128)

2.5136
 

 x2 = 0.58854 

  similarly  x3 = x2 – 1
1

1

( )

( )

f x

f x
 

      f (x2) = e0.58854 sin (0.58854) – 1 = 0.0000181 

      f 1 (x2) = e0.58854 sin (0.58854) + e0.58854 cos (0.58854) 

       f (x2) = 2.4983 

 x3 = 0.58854 – 
0.0000181

2.4983
 

      x3 = 0.5885 

 x2 – x3 = 0.5885 

  0.5885 is the root of the equation ex sin x – 1 = 0 

 9.  Find a real root of the equation xex – cos x = 0 using Newton-Raphson method 
          [JNTU-2006] 

Solution 

  Given f (x) = ex – cos x = 0 

    f 1 (x) = xex + ex + sin x = (x + 1) ex + sin x 

   Take f (0) = 0 – cos 0 = –1 < 0 

    f (1) = e – cos 1 = 2.1779 > 0 

    The root lies between 0 and 1 

  Let x0 = 
0 1

2


 = 0.5 (average of 0 and 1) 

  Newton-Raphson method 

      xi + 1 = xi – 
1

( )

( )
i

i

f x

f x
 

      xi + 1 = x0 – 0
1

0

( )

( )

f x

f x
 = 0.5 – 

( 0.053221)

(1.715966)


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      x1 = 0.5310 

      f (x1) = 0.040734, f 1(x1) = 3.110063  

      x2 = x1 – 1
1

1

( )

( )

f x

f x
 = 0.5310 – 

0.040734

3.110064
 

 x2 = 0.5179 ; f(x2) = 0.0004339, f 1(x2) = 3.0428504 

     x3 = 0.5179 – 
(0.0004339)

3.0428504
 

     x3 = 0.5177 

      f (x3) = 0.000001106  

      f (x3) = 3.04214  

      x4 = x3 – 3

3

( )

( )

f x

f x
 = 0.5177 – 

0.000001106

3.04212
 

     x4 = 0.5177 

     x3 = x4 = 0.5177 

  The root of xex – cos x = 0 is 0.5177 

 10.  Find a root of the equation x4 – x – 10 = 0 using Bisection method correct to                       
2 decimal places.        [JNTU 2008] 

Solution 

 Let f(x) = x4 – x – 10 = 0 be the given equation. We observe that f(1) < 0, then f(2) >0. 
So one root lies between 1 and 2. 

  Let x0 = 1, x1 = 2; 

 Take x2 = 0 1

2

x + x
 = 1.5;   f (1.5) < 0; 

   The root lies between 1.5 and 2 

  Let us take x3 = 
1.5 2

2


 = 1.75; we find that f (1.75) < 0, 

  The root lies between 1.75 and 2 

So we take now x4 =  
1.75 1.875

2


 = 1.8125 = 1.81 can be taken as the root of the 

given equation. 
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 11.  Find a real root of equation x3 – x – 11 = 0 by Bisection method.    [JNTU-2007] 

Solution 

 Given equation is f (x) = x3 – x – 11 = 0  

We observe that f (2) = –5 < 0 and f (3) = 13 > 0. 

 A root of (1) lies between 2 and 3; take x0 = 2, x = 3; 

Let x2 = 0 1 2 3
2.5

2 2

x x 
  ;  Since f (2.5) > 0, the root lies between 2 and 2.5 

 Taking x3 = 
2 2.5

2.25
2


 , we note that f (2.25) < 0; 

  The root can be taken as lying between 2.25 and 2.5. 

   The root = 
2.25 2.5

2.375
2


  

 12. Find a real root of x3 – 5x + 3 = 0 using Bisection method.  [JNTU-2007] 

Solution 

  Let f (x) = x3 – 5x + 3 = 0 be the equation given 

  Since f (1) = –1 < 0 and f (2) = 1 > 0, a real root lies between 1 and 2. 

  i.e., x0 = 1, x1 = 2;  take x2 = 
1 2

1.5
2


 ; f (1.5) = –1.25 < 0   

   The root lies between 1.5 and 2; 

   Take x3 = 
1.5 2

1.75
2


  

  Now  f (1.75) = 
3

7 7
– 5 3

4 4
       
   

 = –ve;  

   The root lies between 1.75 and 2 

  Let   x4 = 
1.75 2

2


 = 1.875;  

  We find that f(1.875) = (1.875)3 – 5(1.875) + 3 > 0 

   The root of the given equation lies between 1.75 and 1.875 

   The root = 
1.75 1.875

2


 = 1.813 

  



Solution of Algebraic and Transcendental Equations  27

 13. Find a real root of the equation x3 – 6x – 4 = 0 by Bisection method      [JNTU-2006] 

Solution 

  Here f (x) = x3 – 6x – 4  

  Take x0 = 2, x1 = 3;    (  f (2) < 0, f (3) > 0) 

  x1 = 2.5; f(x1) < 0; take x3 = 
2.5 3

2


 = 2.75 

  f (2.75) > 0    x4 = 
2.5 2.75

2


 = 2.625 

  f (2.625) < 0    Root lies between 2.625 and 2.75  

   Approximately the root will be = 
2.625 2.75

2


 = 2.69  

Objective Type Questions 

I.  Choose correct answer: 

 1. An example of an algebraic equation is 

  (1)  tan x = ex (2)  x = log x (3) x3 – 5x + 3 = 0 (4) None           

[Ans: (3)] 

 2. An example of a transcendental equation is 

  (1) x3 – 2x – 10 = 0  (2) x3 ex = 5  

  (3) x2 + 11x – 1 = 0  (4) None 

[Ans: (2)] 

 3. In finding a real root of the equation x3 – x – 10 = 0 by bisection, if the root lies 
between x0 = 2 and x1 = 3, then, x2 = 

  (1) 2.5 (2) 2.75 (3) 2.60 (4) None         

[Ans: (1)] 

 4. If (a) and (b) are of opposite signs and the real root of the equation  (x) = 0 is 
found by false position method, the first approximation x1, of the root is 

  (1) 
   
   

  a b b a

b a

  
  

  (2) 
   
   

  a b b a

b a

   
  

   

  (3) 
   

   
  

–

ab a b

a b

 
 

  (4) 
   
   

 –  

–

a b b a

b a

 
 

        

[Ans: (4)] 
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 5. The two initial values of the roots of the equation x3 – x – 3 = 0 are  

  (1) (–1, 0) (2) 1, 2 (3) –2, 1 (4) (1, 0) 

[Ans: (2)] 

 6. The iteration method is said to have pth order convergence if for any finite constant             
K ≠ 0 

  (1) –1
P

n ne K e   (2) 1
P

n ne K e   

  (3) 01
P

ne K e    (4) None 

[Ans: (1)] 

 7. Newton-Raphson method formula to find (n + 1)th approximation  of root of f(x) = 0 is 

  (1) 1
'( )

–
( )

n
n n

n

f x
x x

f x    (2) 1
( )

'( )
n n

n
n

x f x
x

f x   

  (3) 1
( )

–
'( )

n
n n

n

f x
x x

f x    (4) None 

[Ans: (3)] 

 8. In the bisection method e0 is the initial error and en is the error in nth iteration 

  (1) 
1

2
 (2) 1 (3) 

1

2n
 (4)   None  

[Ans: (3)] 

 9. Which of the following methods has linear rate of convergence  

  (1) Regular flase   (2) Bisection  

  (3) Newton-Raphson  (4) None 

[Ans: (1)] 

 10. A non linear equation x3 + x2 – 1 = 0 is x = (x), then the choice of (x) for which the 
iteration scheme xn =  (xn–1) x0 = 1 converge is (x)= 

  (1) (1 – x2)1/3 (2) 
1

1 x
 (3) 31– x  (d) None  

[Ans: (2)] 
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required by several engineering departments. 

All web surfers are welcome to download these notes at 
http://www.math.ust.hk/~machas/numerical-methods.pdf 
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Chapter 1 

IEEE Arithmetic 
 Definitions 

Bit = 0 or 1 
Byte = 8 bits 
Word = Reals: 4 bytes (single precision) 

8 bytes (double precision) 
= Integers: 1, 2, 4, or 8 byte signed 

1, 2, 4, or 8 byte unsigned 

 
 Numbers with a decimal or binary point 

 
Decimal: 103 102 101 100 

Binary: 23 22 21 20 

 
 Examples of binary numbers 

 
Decimal Binary 

1 1 
2 10 
3 11 
4 100 

0.5 0.1 
1.5 1.1 

 
 Hex numbers 

{0, 1, 2, 3, . . . , 9, 10, 11, 12, 13, 14, 15} = {0, 1, 2, 3.......9, a,b,c,d,e,f} 

1.54-bit unsigned integers as hex numbers 
 

Decimal Binary Hex 
1 0001 1 
2 0010 2 

3 0011 3 

. . . 

10 1010 a 

. . . 
15 1111 f 

 
1 

10−1 10−2 10−3 10−4 

2−1 2−2 2−3 2−4 
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¸xs˛ ̧  xs ˛ ̧  xs  ̨

c × 

c c × 

− × 

· · · · ·· × 

· · · · ·· × 

  1.6. IEEE SINGLE PRECISION FORMAT: 

 

 IEEE single precision format: 
 

s e f 

Q
0 

Q
1 
Q
2 
Q
3 
Q
4 
Q
5 
Q
6 
Q
7 
Q
8  

Q
9   

· · · · · · · ·Q
31

 

# = (−1)s  × 2e−127  × 1.f 
 

where s = sign 
e = biased exponent 
p=e-127 = exponent 
1.f = significand (use binary point) 

 
 Special numbers 

Smallest exponent: e = 0000 0000, represents denormal numbers (1.f → 0.f) 
Largest exponent: e = 1111 1111, represents ±∞, if f = 0 

e = 1111 1111, represents NaN, if f ƒ= 0 

Number Range: e = 1111 1111 = 28  - 1 = 255 reserved 
e = 0000 0000 = 0 reserved 

so, p = e - 127 is 
1 - 127 ≤ p ≤ 254-127 
-126 ≤ p ≤ 127 

Smallest positive normal number 
= 1.0000 0000 0000 2−126 

1.2 10−38 

bin: 0000 0000 1000 0000 0000 0000 0000 0000 
hex: 00800000 
MATLAB: realmin(’single’) 

Largest positive number 
= 1.1111 1111 1111 2127 

= (1 + (1 2−23)) 2127 

2128 3.4 1038 

bin: 0111 1111 0111 1111 1111 1111 1111 1111 
hex: 7f7fffff 
MATLAB: realmax(’single’) 

Zero 

 

 
Subnormal numbers 

 

bin: 0000 0000 0000 0000 0000 0000 0000 0000 
hex: 00000000 

 

Allow 1.f → 0.f (in software) 
Smallest positive number = 0.0000 0000 · · · · · 0001 × 2 

= 2−23 × 2−126 c 1.4 × 10−45 

 
 
 

 
−126 
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− × × 

− × × 

− × × 

− 

− − − 

1.8. EXAMPLES OF COMPUTER NUMBERS  

 

 Examples of computer numbers 

What is 1.0, 2.0 & 1/2 in hex ? 

1.0 = (  1)0 2(127−127) 1.0 

Therefore, s = 0, e = 0111 1111, f = 0000 0000 0000 0000 0000 000 
bin: 0011 1111 1000 0000 0000 0000 0000 0000 
hex: 3f80 0000 

2.0 = (  1)0 2(128−127) 1.0 

Therefore, s = 0, e = 1000 0000, f = 0000 0000 0000 0000 0000 000 
bin: 0100 00000 1000 0000 0000 0000 0000 0000 
hex: 4000 0000 

1/2 = (  1)0 2(126−127) 1.0 

Therefore, s = 0, e = 0111 1110, f = 0000 0000 0000 0000 0000 000 
bin: 0011 1111 0000 0000 0000 0000 0000 0000 
hex: 3f00 0000 

 

 Inexact numbers 

Example: 
1 

= ( 1)0 
3 

1 
× 

4 
× 

1 
(1 + 

3 
), 

so that p = e    127 =    2 and e = 125 = 128     3, or in binary, e = 0111 1101. How is 
f = 1/3 represented in binary? To compute binary number, multiply successively 
by 2 as follows: 

 

0.333 . . .  0. 

0.666 . . .  0.0 

1.333 . . .  0.01 

0.666 . . .  0.010 

1.333 . . .  0.0101 

 etc.  

 
so that 1/3 exactly in binary is 0.010101 . . . . With only 23 bits to represent f , the 
number is inexact and we have 

 

f = 01010101010101010101011, 
 

where we have rounded to the nearest binary number (here, rounded up). The 
machine number 1/3 is then represented as 

 

00111110101010101010101010101011 
 

or in hex 

3eaaaaab. 
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4 

  1.10. MACHINE EPSILON 
 

1.9.1Find smallest positive integer that is not exact in single pre- 
cision 

Let N be the smallest positive integer that is not exact. Now, I claim that 

N − 2 = 223 × 1.11 . . . 1, 

and 

N − 1 = 224 × 1.00 . . . 0. 

The integer N would then require a one-bit in the 2−24 position, which is not avail- 
able. Therefore, the smallest positive integer that is not exact is 224 + 1 = 16 777 217. 
In MATLAB, single(224) has the same value as single(224 + 1). Since single(224 + 1) 
is exactly halfway between the two consecutive machine numbers 224 and 224 + 2, 
MATLAB rounds to the number with a final zero-bit in f, which is 224. 

 

 Machine epsilon 

Machine epsilon  (cmach) is the distance between 1 and the next largest number.  If  
0 ≤ δ < cmach/2, then 1 + δ = 1 in computer math. Also since 

x + y = x(1 + y/x), 

if 0 ≤ y/x < cmach/2, then x + y = x in computer math. 

Find cmach 

The number 1 in the IEEE format is written as 

1 = 20 × 1.000 . . . 0, 

with 23 0’s following the binary point. The number just larger than 1 has a 1 in the 
23rd position after the decimal point. Therefore, 

cmach = 2−23 ≈ 1.192 × 10−7. 

What is the distance between 1 and the number just smaller than 1? Here, the 
number just smaller than one can be written as 

2−1 × 1.111 . . . 1 = 2−1(1 + (1 − 2−23)) = 1 − 2−24
 

Therefore, this distance is 2−24 = cmach/2. 
The spacing between numbers is uniform between powers of 2, with logarithmic 

spacing of the powers of 2. That is, the spacing of numbers between 1 and 2 is 2−23, 
between 2 and 4 is 2−22, between 4 and 8 is 2−21, etc. This spacing changes for 
denormal numbers, where the spacing is uniform all the way down to zero. 

 
Find the machine number just greater than 5 

A rough estimate would be 5(1 + cmach) = 5 + 5cmach, but this is not exact. The 
exact answer can be found by writing 

 

 
so that the next largest number is 

5 = 22(1 
1 

+ 
4 
), 

22(1 + 
1 

+ 2−23) = 5 + 2−21 = 5 + 4cmach. 
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¸xs˛ ̧  xs ˛ ̧  xs  ̨

.  Σ
  1
≈ b    

1+ − 1 

√  
2= −b + b

  1 + 1/b 

≈ × 

1.11. IEEE DOUBLE PRECISION FORMAT  

 

 IEEE double precision format 

Most computations take place in double precision, where round-off error is re- 
duced, and all of the above calculations in single precision can be repeated for 
double precision. The format is 

 

s e f 

Q
0 

Q
1 
Q
2 
Q
3 
Q
4 
Q
5 
Q
6 
Q
7 
Q
8 
Q
9 
Q
10

Q
11 

Q
12  

· · · · · · · ·Q
63

 

# = (−1)s  × 2e−1023  × 1.f 
 

where s = sign 
e = biased exponent 
p=e-1023 = exponent 
1.f = significand (use binary point) 

 
 Roundoff error example 

Consider solving the quadratic equation 

x2 + 2bx − 1 = 0, 

where b is a parameter. The quadratic formula yields the two solutions 

x± = −b ± 
√

b2 + 1. 

Consider the solution with b > 0 and x > 0 (the x+ solution) given by 

x = −b + 
√

b2 + 1. (1.1) 

As b → ∞, 

x = −b + 
√

b2 + 1 
 

  

= b(
√

1 + 1/b2 − 1) 

2b2 

1 
= 

2b 
. 

Now in double precision, realmin 2.2 10−308 and we would like x to be accurate to 
this value before it goes to 0 via denormal numbers. Therefore, x should be 

computed accurately to b ≈ 1/(2 × realmin) ≈ 2 × 10307. What happens if we 
compute  (1.1)  directly? √Then  x  = 0  when  b2  + 1  = b2,  or  1 + 1/b2   = 1.   That  is 

 

1/b2  = cmach/2, or b = 2/
√
cmach ≈ 108. 
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  1.12. ROUNDOFF ERROR EXAMPLE 

 

For a subroutine written to compute the solution of a quadratic for a general 
user, this is not good enough. The way for a software designer to solve this problem 
is to compute the solution for x as 

1 

x = 
b + 

√
b2 + 1 

.
 

In this form, if b2 + 1 = b2, then x = 1/2b which is the correct asymptotic form. 



 

2 

− 

−n1 

 

 

Chapter 2 

Root Finding 
Solve f (x) = 0 for x, when an explicit analytical solution is impossible. 

 

 Bisection Method 

The bisection method is the easiest to numerically implement and almost always 
works. The main disadvantage is that convergence is slow. If the bisection method 
results in a computer program that runs too slow, then other faster methods may  
be chosen; otherwise it is a good choice of method. 

We want to construct a sequence x0, x1, x2, . . . that converges to the root x = r 
that solves f (x) = 0. We choose x0 and x1  such that x0  < r  < x1.  We  say that x0 
and x1 bracket the root. With f (r) = 0, we want f (x0) and f (x1) to be of opposite 
sign, so that f (x0) f (x1) < 0. We then assign x2 to be the midpoint of x0 and x1, 
that is x2 = (x0 + x1)/2, or 

x2 = x0 + 
x1 − x0 

. 

The sign of f (x2) can then be determined. The value of x3 is then chosen as either 
the midpoint of x0 and x2  or as the midpoint of x2  and x1, depending on whether  
x0 and x2 bracket the root, or x2 and  x1  bracket  the  root.  The  root,  therefore, 
stays bracketed at all times. The algorithm proceeds in this fashion and is typically 

stopped when the increment to the left side of the bracket (above, given by (x1 
x0)/2) is smaller than some required precision. 

 

 Newton’s Method 

This is the fastest method, but requires analytical computation of the derivative of 

f (x). Also, the method may not always converge to the desired root. 
We can derive Newton’s Method graphically, or by a Taylor series. We again 

want to construct a sequence x0, x1, x2, . . . that converges to the root x = r. Consider 

the xn+1 member of this sequence, and Taylor series expand f (xn+1) about the point 
xn. We have 

f (xn+1) = f (xn) + (xn+1 − xn) f j(xn) + . . . . 

To determine xn+1, we drop the higher-order terms in the Taylor series, and assume 

f (xn+1) = 0. Solving for xn+1, we have 

 

xn+ = x 
f (xn) 

.
 

f j(xn) 

Starting Newton’s Method requires a guess for x0, hopefully close to the root x = r. 

 

 Secant Method 

The Secant Method is second best to Newton’s Method, and is used when a faster 
convergence than Bisection is desired, but it is too difficult or impossible to take an 

 
7 
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− 

≈n 

n 

− 122 
3 

− 

  2.3. SECANT METHOD 

 

analytical derivative of the function f (x). We write in place of f j(xn), 

f j(x ) 
f (xn) − f (xn−1) 

.
 

xn − xn−1 

Starting the Secant Method requires a guess for both x0 and x1. 

2.3.1Estimate 
√

2 = 1.41421356 using Newton’s Method 

The 
√

2 is the zero of the function  f (x) = x2 2. To implement Newton’s Method, 
we use f j(x) = 2x. Therefore, Newton’s Method is the iteration 

 

xn+1 = xn − 
x2 − 2 

.
 

2xn 

We take as our initial guess x0 = 1. Then 

x1 = 1 − 
−1 

= 
3 

= 1.5, 
2 2 

x 
3 9 − 2 17 

  

 

2  = 
2 

− 4  

3 
= 

12 
= 1.416667, 

x   = 
17 

12 

172 
2 

17 
= 

6 

577 

408 
= 1.41426. 

 

2.3.2Example of fractals using Newton’s Method 

Consider the complex roots of the equation  f (z) = 0, where 

f (z) = z3 − 1. 

These roots are the three cubic roots of unity. With 

ei2πn  = 1, n = 0, 1, 2, . . . 

the three unique cubic roots of unity are given by 

1, ei2π/3, ei4π/3. 

With  
eiθ = cos θ + i sin θ, 

and cos (2π/3) = −1/2, sin (2π/3) = 
√

3/2, the three cubic roots of unity are 

1 
√

3 1 
√

3 

r1 = 1, r2 = − 
2 

+ 
2  

i, r3 = − 
2 

− 
2 

i. 

The interesting idea here is to determine which initial values of z0 in the complex 
plane converge to which of the three cubic roots of unity. 

Newton’s method is 

z z 
z3 − 1 

.
 

 

n+1  =  n −   n   
2 

3zn 

If the iteration converges to r1, we color z0 red;  r2, blue;  r3, green.  The result will 
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be shown in lecture. 
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−n1 

−   n1 

2 

2 

2 n 

 

 Order of convergence 

Let r be the root and xn be the nth approximation to the root. Define the error as 

cn = r − xn. 

If for large n we have the approximate relationship 

|cn+1| = k|cn|
p, 

with k a positive constant, then we say the root-finding numerical method is of 
order p. Larger values of p correspond to faster convergence to the root. The order 
of convergence of bisection is one: the error is reduced by approximately a factor of 
2 with each iteration so that 

1 
|cn+1| = 

2 
|cn|. 

We now find the order of convergence for Newton’s Method and for the Secant 
Method. 

 

 Newton’s Method 

We start with Newton’s Method 

 
xn+ 

 
 

= x 
f (xn) 

.
 

f j(xn) 

Subtracting both sides from r, we have 
 

r − xn+ 

or 

= r x +
 f (xn) 

,
 

f j(xn) 

 
 f (xn) 

cn+1 = cn + 
f j(xn ) 

. (2.1) 

We use Taylor series to expand the functions f (xn) and f j(xn) about the root r,  
using f (r) = 0. We have 

f (xn) = f (r) + (xn − r) f j(r) + 
1 

(xn − r)2 f jj(r) + . . . , 

= −cn f j(r) + 
1 

c2 f jj(r) + . . . ; 
2  n 

(2.2) 

f j(xn) = f j(r) + (xn − r) f jj(r) + 
1 

(xn − r)2 f jjj(r) + . . . , 

= f j(r) − cn f jj(r) + 
1 

c2 f jjj(r) + . . . . 
 

To make further progress, we will make use of the following standard Taylor series: 

   1  
= 1 + c + c2 + . . . , (2.3) 

1 − c 
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f j (r) 

. . 

−n1 

2 n 

2 
n f j(r) f j(r) 

= cn + 

.

−cn + c2 

. 
1  f jj(r) 

−  
f jj(r) 

Σ 

+ . . . 

Σ

 

2 n 

 

which converges for |c| < 1. Substituting (2.2) into (2.1), and using (2.3) yields 

 f (xn) 
cn+1 = cn + 

f j(xn )
 

−cn f j(r) + 1 c2 f jj(r) + . . . 
 

= cn + 2 n 

f j(r) − cn f jj(r) + 1 c2 f jjj(r) + . . . 
−cn + 1 c2 f 

jj (r) 
+ . . . 

 

= cn + 2 n f j (r) 

1 − cn f 
jj (r) 

+ . . . 

= cn + 

.

−cn + 
1 

c2 
f jj(r) 

+ . . . 

Σ .

1 + cn 
f jj(r) 

+ . . . 

Σ

 

 

n 

= − 
1 f jj(r) 

c2 + . . . 
 

  

 
  

2 f j(r) 

 
  

f j(r) 

2 f j(r) n 

Therefore, we have shown that  
|cn+1| = k|cn|

2
 

as n → ∞, with 
1 . f jj(r) . 

 
  

k = , 
2 f j(r) 

provided f j(r) ƒ= 0. Newton’s method is thus of order 2 at simple roots. 

 Secant Method 

Determining the order of the Secant Method proceeds in a similar fashion. We start 
with 

xn+ = x 
(xn − xn−1) f (xn) 

.
 

f (xn) − f (xn−1) 

We subtract both sides from r and make use of 

xn − xn−1 = (r − xn−1) − (r − xn) 

= cn−1 − cn, 

and the Taylor series 

1 
f (xn) = −cn f j(r) + c2 f jj(r) + . . . , 

f (xn−1) = −cn−1 f j(r) + 
1 

c2 f jj(r) + . . . , 

 
so that 

2 n−1 

 

1 f (xn) − f (xn−1) = (cn−1 − cn) f j(r c2 − c2 

 
 
 

) f jj(r) + . . . 
) + 

2 
( n n−1 
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2 
= (cn−1 − cn) 

. 

f j(r) − 
1 

(cn−1 + cn) f jj(r) + . . . 

Σ 

. 
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2 jf (r) 

jj1 f (r) 

= . . c 

k   = . . , 

2 f j (r) 

2 f j(r) 2 f j(r) 

− 
2 

 

We therefore have 

−cn f j(r) + 1 c2 f jj(r) + . . . 
 

cn+1  = cn + 1 
2 n

 

  

f j(r) − 2 (cn−1 + cn) f jj(r) + . . . 
1 − 1 cn f 

jj (r) 
+ . . . 

   

 

= cn − cn 2 f j (r)    
 

1 − 1 (cn−1 + cn) f 
jj (r) 

+ . . . 

= cn − cn 

.

1 − 
1 

cn 
f jj(r) 

+ . . . 

Σ .

1 + 
1 

(cn−1 + cn) 
f jj(r) 

+ . . . 

Σ

 

= − 
1 f jj(r) 

cn−1cn + . . . , 

or to leading order 

. (2.4) 
|cn+1| = 

2 . f j(r) . 
|cn−1||cn| 

The order of convergence is not yet obvious from this equation, and to determine 
the scaling law we look for a solution of the form 

|cn+1| = k|cn|
p. 

From this ansatz, we also have 

 

 
and therefore 

|cn 

Substitution into (2.4) results in 

 
|cn| = k|cn−1|

p, 

+1| = kp+1|cn 1|
p . 

kp+1|cn
 p2 k f jj(r) 

−1| 
2 . f j(r) . 

| n
 

−1|
p+1. 

Equating the coefficient and the power of cn−1 results in 

p 1   f jj(r) 

2 . f j(r) . 

and  
p2 = p + 1. 

The order of convergence of the Secant Method, given by p, therefore is determined 

to be the positive root of the quadratic equation p2 − p − 1 = 0, or 

1 + 
√

5 

p = 
2 

≈ 1.618, 

which coincidentally is a famous irrational number that is called The Golden Ra- 
tio, and goes by the symbol Φ. We see that the Secant Method has an order of 
convergence lying between the Bisection Method and Newton’s Method. 
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

 





 

A = 
a21 a22 · · · a2n  

, x = 
x2  

, b = 
b2  

. 

6 −6 7 −7 
3 −4 4 −6 

 

 

Chapter 3 

Systems of equations 
Consider the system of n linear equations and n unknowns, given by 

a11x1 + a12x2 + · · · + a1nxn = b1, 

a21x1 + a22x2 + · · · + a2nxn = b2, 

. . 

an1x1 + an2x2 + · · · + annxn = bn. 

We can write this system as the matrix equation 

Ax = b, 

with 


a11 a12 · · · a1n 


 

 


x1 

 

 

 


b1 

 

 

. . 
 . . 

. . .
 

.  


 

 .  



 
 . 




 

an1 an2 · · · ann xn bn 

 Gaussian Elimination 
 

The standard numerical algorithm to solve a system of linear equations is called 
Gaussian Elimination. We can illustrate this algorithm by example. 

Consider the system of equations 

−3x1 + 2x2 − x3 = −1, 

6x1 − 6x2 + 7x3 = −7, 

3x1 − 4x2 + 4x3 = −6. 

To perform Gaussian elimination, we form an Augmented Matrix by combining the 
matrix A with the column vector b: 




−3 2 −1 −1




 

 

 
Row reduction is then performed on this matrix. Allowed operations are (1) mul- 
tiply any row by a constant, (2) add multiple of one row to another row, (3) inter- 
change the order of any rows. The goal is to convert the original matrix into an 
upper-triangular matrix. 

We start with the first row of the matrix and work our way down as follows. 
First we multiply the first row by 2 and add it to the second row, and add the first 
row to the third row: 

−3 2 −1 −1 
0 −2 5 −9 . 
0 −2 3 −7 

13 

. . . 

. 
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− 



 





 

 



 





 

 





 

      

− − − 

− − 



 





 

 





 

0 1 0 
0 −1 1 

0 −2 5 
0 −2 3 

= 0 −2 5 
0 0 −2 

  3.2. LU DECOMPOSITION 

 
We  then go to the second row.  We  multiply this row by 1 and add it to the third 
row: 

−3 2 −1 −1 
0 −2 5 −9 . 
0 0 −2 2 

The resulting equations can be determined from the matrix and are given by 

−3x1 + 2x2 − x3 = −1 

−2x2 + 5x3  = −9 

−2x3 = 2. 

These equations can be solved by backward substitution, starting from the last equa- 
tion and working backwards. We have 

−2x3 = 2 → x3 = −1 

−2x2 = −9 − 5x3 = −4 → x2 = 2, 

−3x1 = −1 − 2x2 + x3 = −6 → x1 = 2. 

Therefore, 
x1

  
2
 

x2 =    2 . 
 

 LU decomposition 

The process of Gaussian Elimination also results in the factoring of the matrix A to 

A = LU, 

where L is a lower triangular matrix and U is an upper triangular matrix. Using the 
same matrix A as in the last section, we show how this factorization is realized. We 
have 

 

 
where 

−3 2 −1 
6 −6 7 → 

3 −4 4 

−3 2 −1 
0 −2 5 
0 −2 3 

= M1A, 


1     0    0

 
−3 2 −1

 
−3 2 −1


 

M1A = 2    1   0 
1    0   1 

6 −6 7 = 
3 −4 4 

0 −2 5 . 
0 −2 3 

Note that the matrix M1 performs row elimination on the first column. Two times 
the first row is added to the second row  and one times the first row  is added to  

the third row.   The entries of the column of M1  come from 2  =    (6/     3) and        

1 = (3/ 3) as required for row elimination. The number 3 is called the pivot. 
The next step is 

 
 

 
where 

−3 2 −1 
0 −2 5 → 

0 −2 3 

−3 2 −1 
0 −2 5 
0 0 −2 

 
= M2(M1A), 



   
1 0 0



 




−3 2 −1



 




−3 2 −1




 

x3 

M2(M1A) = . 

−1 
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− 

− − − − 

− 

− 

  

6 −6 7 
3 −4 4 

= −2 1 0 
−1 1 1 

0 −2 5 
0 0 −2 

 LU DECOMPOSITION  

 
Here, M2  multiplies the second row by 1 = (  2/ 2) and adds it to the third 
row.  The pivot is 2. 

We now have 

M2M1A = U 

or 

A = M1
−1M2

−1U. 

The inverse matrices are easy to find. The matrix M1 multiples the first row by 2 
and adds it to the second row, and multiplies the first row by 1 and adds it to the 
third row. To invert these operations, we need to multiply the first row by  2 and 
add it to the second row, and multiply the first row by  1 and add it to the third  
row. To check, with 

 
we have 

M1M1
−1  = I, 



   
1 0 0



 



   
1 0 0

 
1    0    0


 

2 1 0 −2 1 0 = 0 1 0 . 

 
Similarly, 

1 0 1 −1 0 1 0 0 1 

−1 


1   0   0


 

 

Therefore, 

is given by 

M2     = 0    1   0 
0    1   1 

 
L = M1

−1M2
−1 



   
1 0 0

 
1    0    0

    
1 0 0


 

 

L = −2 1 0 0     1     0 = −2 1 0 , 

 

which is lower triangular.  The off-diagonal elements of M1
−1  and M2

−1  are simply 
combined to form L. Our LU decomposition is therefore 




−3 2 −1



 



   
1 0 0



 




−3 2 −1




 

 
 

Another nice feature of the LU decomposition is that it can be done by overwriting 
A, therefore saving memory if the matrix A is very large. 

The LU decomposition is useful when one needs to solve Ax = b for  x  when  
A is fixed and there are many different b’s. First one determines L and U using 
Gaussian elimination. Then one writes 

(LU)x = L(Ux) = b. 

We let 

 
and first solve 

y = Ux, 

Ly = b 

for y by forward substitution. We then solve 

−1 0 1 0 1 1 −1 1 1 

. 
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Ux = y 
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 

−2 1 0 y2 = −7 . 

0 −2 5 x2 = −9 . 

  3.3. PARTIAL PIVOTING 

 

for x by backward substitution. When we count operations, we will see that solving 

(LU)x = b is significantly faster once L and U are in hand than solving Ax = b 
directly by Gaussian elimination. 

We now illustrate the solution of LUx = b using our previous example, where 


   
1 0 0




 




−3 2 −1


 


−1

 

L = −2 1 0 , U = 0 −2 5 , b = −7 . 
−1 1 1 

With y = Ux, we first solve Ly = b, that is 

0 0 −2 −6 



   
1 0 0

 
y1

 
−1


 

−1 1 1 y3 −6 

Using forward substitution 

 
 
 
 

We now solve Ux = y, that is 

y1 = −1, 

y2 = −7 + 2y1 = −9, 

y3 = −6 + y1 − y2 = 2. 




−3 2 −1

 
x1

 
−1


 

0 0 −2 x3 2 

Using backward substitution, 

−2x3 = 2 → x3 = −1, 

−2x2 = −9 − 5x3 = −4 → x2 = 2, 

−3x1 = −1 − 2x2 + x3 = −6 → x1 = 2, 

and we have once again determined 


x1

  
2
 

 

 
 Partial pivoting 

x2 =    2 . 

 

When performing Gaussian elimination, the diagonal element that one uses during 
the elimination procedure is called the pivot. To obtain the correct multiple, one 
uses the pivot as the divisor to the elements below the pivot. Gaussian elimination 
in this form will fail if the pivot is zero. In this situation, a row  interchange must  
be performed. 

Even if the pivot is not identically zero, a small value can result in big round- 
off errors. For very large matrices, one can easily lose all accuracy in the solution. 
To avoid these round-off errors arising from small pivots, row interchanges are 
made,  and this technique is called partial pivoting (partial pivoting is in contrast  
to complete pivoting, where both rows and columns are interchanged). We will 
illustrate by example the LU decomposition using partial pivoting. 

x3 −1 
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

 





 



 





 

 1    0    0P

 =12 

  

12 



 
−
 



 





 





 

− 

− 



 





 

 





 

 





 

− 

0 0 4/3 

 

 PARTIAL PIVOTING  

 

Consider 
−2 2 −1 

A = 6 −6 7 . 
3 −8 4 

We interchange rows to place the largest element (in absolute value) in the pivot, or 
a11, position. That is, 

 
 
 

where 

6 −6 7 
A → −2 2 −1 

3 −8 4 
= P12A, 

0    1   0 
 

0    0   1 

is a permutation matrix that when multiplied on the left interchanges the first and 

second rows of a matrix. Note that P−1 = P12. The elimination step is then 

 
 
 

where 

 
P12A → 

6 6 7 

 

0 −5 1/2 

 
= M1P12A, 

M1 = 

1 0 0 
1/3   1   0 . 
−1/2 0 1 

The final step requires one more row interchange: 
 

M1P12A → 

6 6 7 
0 5    1/2 
0 0    4/3 

 

= P23M1P12A = U. 

Since the permutation matrices given by P are their own inverses, we can write our 
result as 

(P23M1P23)P23P12A = U. 

Multiplication of M on the left by P interchanges rows while multiplication on the 
right by P interchanges columns. That is, 

 

 
P23 

1 0   0 
1/3    1    0 

−1/2    0   1 

 

P23 = 

1 0   0 
1/2    0    1 
1/3    1    0 

 

P23 = 

1 0 0 
1/2   1   0 . 
1/3 0 1 

The net result on M1  is an interchange of the nondiagonal elements 1/3 and 1/2. 

We can then multiply by the inverse of (P23M1P23) to obtain 

P23P12A = (P23M1P23)−1U, 

which we write as 

PA = LU. 

Instead of L, MATLAB will write this as 

A = (P−1L)U. 

− − 
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× 

\ 

\ 

− − − − 

− 

− 

− 

× 

× 

− − 

  3.4. OPERATION COUNTS 
 

For convenience, we will just denote (P−1L) by L, but by L here we mean a permu- 
tated lower triangular matrix. 

For example, in MATLAB, to solve Ax = b for x using Gaussian elimination, 
one types 

x = A \ b; 

where solves for x using the most efficient algorithm available, depending on the 
form of A. If A is a general n n matrix, then first the LU decomposition of A is 
found using partial pivoting, and then x is determined from permuted forward and 
backward substitution. If A is upper or lower triangular, then forward or backward 
substitution (or their permuted version) is used directly. 

If there are many different right-hand-sides, one would first directly find the 
LU decomposition of A using a function call, and then solve using . That is, one 
would iterate for different b’s the following expressions: 

[LU] = lu(A); 

y = L \ b; 

x = U \ y; 

where the second and third lines can be shortened to 

x = U \ (L \ b); 

where the parenthesis are required. In lecture, I will demonstrate these solutions in 

MATLAB  using the matrix A  = [   2, 2,   1; 6,   6, 7; 3,   8, 4]; which is the example 
in the notes. 

 

 Operation counts 

To estimate how much computational time is required for an algorithm, one can 
count the number of operations required (multiplications, divisions, additions and 
subtractions). Usually, what is of interest is how the algorithm scales with the size 
of the problem. For example, suppose one wants to multiply two full n n matrices. 
The calculation of each element requires n multiplications and n  1 additions, or  
say 2n 1 operations. There are n2 elements to compute so that the total operation 

count is  n2(2n   1).   If  n  is large,  we  might want to know what will happen to   
the computational time if n is doubled. What matters most is the fastest-growing, 
leading-order term in the operation count. In this matrix multiplication example, 

the operation count is  n2(2n   1) = 2n3    n2,  and the leading-order term is 2n3.    
The factor of 2 is unimportant for the scaling, and we say that the algorithm scales 

like O(n3), which is read as “big Oh of n cubed.” When using the big-Oh notation, 
we will drop both lower-order terms and constant multipliers. 

The big-Oh notation tells us how the computational time of an algorithm scales. 
For example, suppose that the multiplication of two large n n matrices took a 
computational time of Tn seconds. With the known operation count going like 

O(n3), we can write 

Tn  = kn3
 

for some unknown constant k. To determine how long multiplication of two 2n × 2n 
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× 

× 

− 

− − 

− − 

∑ 

− 
2

 

∑ 

 OPERATION COUNTS  

 

matrices will take, we write  
T2n = k(2n)3 

= 8kn3
 

= 8Tn, 

so that doubling the size of the matrix is expected to increase the computational 

time by a factor of 23 = 8. 
Running MATLAB on my computer, the multiplication of two 2048 2048 ma- 

trices took about 0.75 sec. The multiplication of two 4096  4096 matrices took about 
6 sec, which is 8 times longer. Timing of code in MATLAB can be found using the 
built-in stopwatch functions tic and toc. 

What is the operation count and therefore the scaling of Gaussian elimination? 
Consider an elimination step with the pivot in the ith row and ith column. There 
are both n i rows below the pivot and n i columns to the right of the pivot. To 
perform elimination of one row, each matrix element to the right of the pivot must 
be multiplied by a factor and added to the row underneath. This must be done for 

all the rows.  There are therefore (n  i)(n   i) multiplication-additions to be done   for 
this pivot. Since we are interested in only the scaling of the algorithm, I will just 
count a multiplication-addition as one operation. 

To find the total operation count, we need to perform elimination using n 1 
pivots, so that 

op. counts = 
n−1

(n 

i=1 

− i)2 

= (n − 1)2 + (n − 2)2 + . . . (1)2 
n   1 

=  ∑ i . 
i=1 

Three summation formulas will come in handy. They are 

n 

∑ 1 = n, 
i=1 

n 

∑ i 
i=1 

1 
= 

2 
n(n + 1), 

n 

∑ i2 

i=1 

1 
= 

6 
n(2n + 1)(n + 1), 

which can be proved by mathematical induction, or derived by some tricks. 
The operation count for Gaussian elimination is therefore 

op. counts = 
n−1 

i2 

i=1 
1 

= 
6 

(n − 1)(2n − 1)(n). 

The leading-order term is therefore n3/3, and we say that Gaussian elimination 

scales like O(n3). Since LU decomposition with partial pivoting is essentially Gaus- 

sian elimination, that algorithm also scales like O(n3). 
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.

i

 

− 

− 

  

 

However, once the LU decomposition of a matrix A is known, the solution of  

Ax = b can proceed by a forward and backward substitution. How does a back- 
ward substitution, say, scale? For backward substitution, the matrix equation to be 
solved is of the form 




a1,1 a1,2 · · · a1,n−1  a1,n 

 
   

  
x1 

  
b1 

 

  
 

  
0 a2,2 · · · a2,n−1 a2,n  

 

   

   
 

  
. . . . . 

. 
 

. 

.   . . 
.     .  

 
 

  0 0 · · · an−1,n−1 an−1,n 


 


xn−1


 


bn−1


 

 

The solution for xi is found after solving for xj with j > i. The explicit solution for 
xi is given by 

x  =
  1 

b 
ai,i 

n 

∑ 
j=i+1 

 
ai,j 

xj

Σ 

. 

The solution for  xi requires n i + 1 multiplication-additions, and since this must 
be done for n such ijs, we have 

n 

op. counts = ∑ n i + 1 
i=1 

= n + (n − 1) + · · · + 1 

= ∑ i 
i=1 
1 

= 
2 

n(n + 1). 

The leading-order term is n2/2 and the scaling of backward substitution is O(n2). 
After the LU decomposition of a matrix A is found, only a single forward and back- 

ward substitution is required to solve Ax = b, and the scaling of the algorithm to 

solve this matrix equation is therefore still O(n2). For large n, one should expect 
that solving Ax = b by a forward and backward substitution should be substan- 
tially faster than a direct solution using Gaussian elimination. 

 
 System of nonlinear equations 

A system of nonlinear equations can be solved using a version of Newton’s Method. 
We illustrate this method for a system of two equations and two unknowns. Sup- 
pose that we want to solve 

f (x, y) = 0, g(x, y) = 0, 

for the unknowns  x  and y.  We  want to construct two  simultaneous sequences   
x0, x1, x2, . . . and y0, y1, y2, . . . that converge to the roots. To construct these se- 

quences, we Taylor series expand f (xn+1, yn+1) and g(xn+1, yn+1) about  the  point (xn, 

yn). Using the partial derivatives fx = ∂ f /∂x, fy = ∂ f /∂y, etc., the two- 

. = . . . 

. = 

b2 x2 

. . . 

xn bn 

n 

0 0 · · · 0 an,n 

i − 
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dimensional Taylor series expansions, displaying only the linear terms, are given 
by 

 

f (xn+1, yn+1) = f (xn, yn) + (xn+1 − xn) fx(xn, yn) 

+ (yn+1 − yn ) fy (xn, yn ) + . . .
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 SYSTEM OF NONLINEAR EQUATIONS  

 
g(xn+1, yn+1) = g(xn, yn) + (xn+1 − xn)gx(xn, yn) 

+ (yn+1 − yn)gy(xn, yn) + . . . . 

To obtain Newton’s method, we take f (xn+1, yn+1) = 0, g(xn+1, yn+1) = 0 and drop 
higher-order terms above linear. Although one can then find a system of linear 

equations for xn+1 and yn+1, it is more convenient to define the variables 

∆xn  = xn+1 − xn, ∆yn = yn+1 − yn. 

The iteration equations will then be given by 

xn+1 = xn + ∆xn, yn+1 = yn + ∆yn; 

and the linear equations to be solved for ∆xn and ∆yn are given by 

. 
fx fy 

Σ .
∆xn 

Σ 

= 

.
− f 

Σ 

,

 

gx gy ∆yn −g 

where f , g, fx, fy, gx, and gy are all evaluated at the point (xn, yn). The two- 
dimensional case is easily generalized to n dimensions. The matrix of partial deriva- 
tives is called the Jacobian Matrix. 

We illustrate Newton’s Method by finding the steady state solution of the Lorenz 
equations, given by 

σ(y − x) = 0, 

rx − y − xz = 0, 

xy − bz = 0, 

where x, y, and z are the unknown variables and σ, r, and b are the known param- 

eters. Here, we have  a three-dimensional homogeneous system  f  = 0,  g  = 0, and 
h = 0, with 

f (x, y, z) = σ(y − x), 

g(x, y, z) = rx − y − xz, 

h(x, y, z) = xy − bz. 

The partial derivatives can be computed to be 

fx = −σ, fy = σ, fz = 0, 

gx = r − z, gy = −1, gz  = −x, 

hx = y, hy = x, hz  = −b. 

 
The iteration equation is therefore 



r 
−σ σ  0 

 
∆xn 

 

rx 
σ(yn − xn) 


 

−
y 

zn −
x 

1 −xn ∆yn = −    n − yn − xnzn , 

 
with 

n n −b ∆zn 

 

xn+1 = xn + ∆xn, 

yn+1 = yn + ∆yn, 

zn+1 = zn + ∆zn. 

xnyn − bzn 

The MATLAB program that solves this system is contained in newton_system.m. 
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i 

.            

Σ
−
 

i 

∂ρ 
= ∑ 2(−xi)

.
yi − (αxi + β)

Σ 
= 0, 

∂β 
i=1 

 

 

Chapter 4 

Least-squares approximation 
The method of least-squares is commonly used to fit a parameterized curve to 

experimental data. In general, the fitting curve is not expected to pass through the 
data points, making this problem substantially different from the one of interpola- 
tion. 

We consider here only the simplest case of the same experimental error for all 

the data points. Let the data to be fitted be given by (xi, yi), with i = 1 to n. 

 

 Fitting a straight line 

Suppose the fitting curve is a line. We write for the fitting curve 

y(x) = αx + β. 

The distance ri from the data point (xi, yi) and the fitting curve is given by 

ri = yi − y(xi) 

= yi − (αxi + β). 

A least-squares fit minimizes the sum of the squares of the ri’s. This minimum can 
be shown to result in the most probable values of α and β. 

We define 
n 

ρ = ∑ r2
 

i=1 
n 

= ∑ yi (αxi + β) 
2
. 

i=1 

To minimize ρ with respect to α and β, we solve 

∂ρ 
= 0, 

∂ρ  
= 0. 

∂α ∂β 

Taking the partial derivatives, we have 

n 

∂α 
i=1 

n 

∂ρ 
= ∑ 2(−1)

.
yi − (αxi + β)

Σ 
= 0. 

 

These equations form a system of two linear equations in the two unknowns α and 
β, which is evident when rewritten in the form 

n n n 

α ∑ x2 + β ∑ xi = ∑ xiyi, 
i=1 

n 
i=1 i=1 

n 

α ∑ xi + βn = ∑ yi. 
i=1 i=1 
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.
∑

 
x 

.
∑

 


 



 

 



c

 



 





 

i 

y = 
  

, c = 
  

, 

. . . . . .   
  

 

These equations can be solved either analytically, or numerically in MATLAB, where 
the matrix form is 

n 2 
i=1 i 

 

 

n 
i=1 xi 

Σ .
α
Σ 

=

 n 
i=

n
1 xiyi

Σ 

.
 

∑n xi n β ∑i=1 yi 

A proper statistical treatment of this problem should also consider an estimate of 
the errors in α and β as well as an estimate of the goodness-of-fit of the data to the 
model. We leave these further considerations to a statistics class. 

 
 Fitting to a linear combination of functions 

Consider the general fitting function 

m 

y(x) = ∑ cj fj(x), 
j=1 

 

where we assume m functions fj(x). For example, if we want to fit a cubic poly- 

nomial to the data, then we would have m = 4 and take  f1  = 1,  f2  = x,  f3  = x2  

and f4 = x3. Typically, the number of functions fj is less than the number of data 
points; that is, m < n, so that a direct attempt to solve for the cj’s such that the fit- 
ting function exactly passes through the n data points would result in n equations 
and m unknowns. This would be an over-determined linear system that in general 
has no solution. 

We now define the vectors 


y1 
  

c1 
 

 

. . 

. . 
yn m 

and the n-by-m matrix 

f1(x1) f2(x1) · · · fm(x1) 

A = 
f1(x2) f2(x2) · · · fm(x2) 

. (4.1)
 

. . . 

f1(xn) f2(xn) · · · fm(xn) 

With m < n, the equation Ac = y is over-determined. We let 

r = y − Ac 

be the residual vector, and let  
n 

ρ = ∑ r2. 
i=1 

The method of least squares minimizes ρ with respect to the components of c. Now, 
using T to signify the transpose of a matrix, we have 

ρ = rT r 

= (y − Ac)T (y − Ac) 

y2 c2 

i=1 

∑ 



 

 

= yT y − cT AT y − yT Ac + cT AT Ac. 
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ik 

ik 

jk 

jk 

jk 

jk 

4.2. FITTING TO A LINEAR COMBINATION OF FUNCTIONS  

 

Since ρ is a scalar, each term in the above expression must be a scalar, and since the 
transpose of a scalar is equal to the scalar, we have 

cT AT y = 
.
cT AT y

ΣT 
= yT Ac. 

Therefore, 

ρ = yT y − 2yT Ac + cT AT Ac. 

To find the minimum of ρ, we will need to solve ∂ρ/∂cj = 0 for j  = 1, . . . , m.  
To take the derivative of ρ, we switch to a tensor notation, using the Einstein sum- 
mation convention, where repeated indices are summed over their allowable range. 
We can write 

ρ = yiyi − 2yiAikck + ciAT Akl cl. 

Taking the partial derivative, we have 

 ∂ρ = −2yiAik 
∂ck  + 

∂ci 
AT Akl cl + ciAT Akl 

∂cl . 
 

   

 
Now, 

∂cj ∂cj ∂cj 
ik ik ∂cj

 

∂ci  
= 

.
1,    if i = j; 

 
Therefore, 

∂cj 0, otherwise. 

 ∂ρ = −2yiAij + AT Akl cl + ciAT Akj. 

 
Now, 

 
 
 
 

 
Therefore, 

∂cj  
 
 
 
 
 
 
 

 ∂ρ 

∂cj 

jk ik 

 

 

ciA
T Akj  = ciAkiAkj 

= AkjAki ci 

= AT Akici 

= AT Akl cl. 

 
= −2yiAij + 2AT Akl cl. 

With the partials set equal to zero, we have 

AT Akl cl  = yiAij, 

or 
AT Akl cl = AT yi, 

jk ji 

In vector notation, we have 

AT Ac = AT y. (4.2) 

Equation (4.2) is the so-called normal equation, and can be solved for c by Gaus- 
sian elimination using the MATLAB backslash operator. After constructing the 
matrix A given by (4.1), and the vector y from the data, one can code in MATLAB 

c = (Aj A)\(Ajy); 

But in fact the MATLAB back slash operator will automatically solve the normal 
equations when the matrix A is not square, so that the MATLAB code 

c = A\y; 

yields the same result. 
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≤ 

≤ 


x
 

x 
0 

1 

     

y1 

0 0 

n n 

0 
x − 

n 

 

 

Chapter 5 

Interpolation 
Consider the following problem: Given the values of a known function y = f (x) 

at a sequence of ordered points x0, x1, . . . , xn, find f (x) for arbitrary x. When x0 
x xn, the problem is called interpolation. When x < x0 or x > xn the problem is 
called extrapolation. 

With yi = f (xi), the problem of interpolation is basically one of drawing a 

smooth curve through the known points (x0, y0), (x1, y1), . . . , (xn, yn). This is not the 
same problem as drawing a smooth curve that approximates a set of data points that 
have experimental error. This latter problem is called least-squares approximation. 

Here, we will consider three interpolation algorithms: (1) polynomial interpola- 
tion; (2) piecewise linear interpolation, and; (3) cubic spline interpolation. 

 
 Polynomial interpolation 

The n + 1 points (x0, y0), (x1, y1), . . . , (xn, yn) can be interpolated by a unique poly- 

nomial of degree n. When n = 1, the polynomial is a linear function; when n = 2, 
the polynomial is a quadratic function. There are three standard algorithms that 
can be used to construct this unique interpolating polynomial, and we will present 
all three here, not so much because they are all useful, but because it is interesting 
to learn how these three algorithms are constructed. 

When discussing each algorithm, we define Pn(x) to be the unique nth degree 
polynomial that passes through the given n + 1 data points. 

 

 Vandermonde polynomial 

This Vandermonde polynomial is the most straightforward construction of the in- 

terpolating polynomial Pn(x). We simply write 

Pn(x) = c0xn + c1xn−1 + · · · + cn. 

Then we can immediately form n + 1 linear equations for the n + 1 unknown coef- 
ficients c0, c1, . . . , cn using the n + 1 known points: 

y0 = c0xn + c1xn−1 + · · · + cn−1x0 + cn 
y2 = c0xn + c1xn−1 + · · · + cn−1x1 + cn 

1 1 

. . . 

yn = c0xn + c1xn−1 + · · · + cn−1xn + cn. 

The system of equations in matrix form is 

n xn−1 

n n   1 
 1 

 
 

· · · x0 1 c0 

· · · x1 1 c1  
=

 

  


y0 

 

 
.  
 

.
 


 .

 

 

. . . . 
. 

 

 


 


 . 



 
 .  




 

n xn−1 · · · xn 1 cn yn 

27 
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ƒ 

− 

· · · 

  5.1. POLYNOMIAL INTERPOLATION 

 

The matrix is called the Vandermonde matrix, and can be constructed using the 
MATLAB function vander.m. The system of linear equations can be solved in MAT- 
LAB using the \ operator, and the MATLAB function polyval.m can used to inter- 
polate using the c coefficients. I will illustrate this in class and place the code on  
the website. 

 

 
 Lagrange polynomial 

 
The Lagrange polynomial is the most clever construction of the interpolating poly- 

nomial Pn(x), and leads directly to an analytical formula. The Lagrange polynomial 

is the sum of n + 1 terms and each term is itself a polynomial of degree n. The full 
polynomial is therefore of degree n. Counting from 0, the ith term of the Lagrange 

polynomial is constructed by requiring it to be zero at xj with j = i, and equal to yi 

when j = i. The polynomial can be written as 

 
Pn (x) =

 (x − x1)(x − x2) · · · (x − xn)y0 
+

 (x − x0)(x − x2) · · · (x − xn)y1  

(x0 − x1)(x0 − x2) · · · (x0 − xn) (x1 − x0)(x1 − x2) · · · (x1 − xn) 

+ +
 (x − x0)(x − x1) · · · (x − xn−1)yn 

.
 

(xn − x0)(xn − x1) · · · (xn − xn−1) 

It can be clearly seen that the first term is equal to zero when x = x1, x2, . . . , xn and 
equal to y0 when x = x0; the second term is equal to zero when x = x0, x2, . . . xn and 
equal to y1 when x = x1; and the last term is equal to zero when x = x0, x1, . . . xn 1 
and equal to yn when x = xn. The uniqueness of the interpolating polynomial 
implies that the Lagrange polynomial must be the interpolating polynomial. 

 

 
 Newton polynomial 

The Newton polynomial is somewhat more clever than the Vandermonde polyno- 
mial because it results in a system of linear equations that is lower triangular, and 
therefore can be solved by forward substitution. The interpolating polynomial is 
written in the form 

 

Pn(x) = c0 + c1(x − x0) + c2(x − x0)(x − x1) + · · · + cn(x − x0) · · · (x − xn−1), 

which is clearly a polynomial of degree n. The n + 1 unknown coefficients given by 
the c’s can be found by substituting the points (xi, yi) for i = 0, . . . , n: 

 

y0 = c0, 

y1 = c0 + c1(x1 − x0), 

y2 = c0 + c1(x2 − x0) + c2(x2 − x0)(x2 − x1), 

. . . 

yn = c0 + c1(xn − x0) + c2(xn − x0)(xn − x1) + · · · + cn(xn − x0) · · · (xn − xn−1). 
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



 

c1 

y1 

. 

 PIECEWISE LINEAR INTERPOLATION  

 

This system of linear equations is lower triangular as can be seen from the matrix 
form 

1 0 0 · · · 0 
1 (x1 − x0) 0 · · · 0  

 

 

 
c0 

 

   

 

. . 
 . . 

. . . .
 

. 

 


 . 




 

1 (xn − x0) (xn − x0)(xn − x1) · · · (xn − x0) · · · (xn − xn−1) cn 


y0 
 

= 
 .  


 
, 

 

 
 

and so theoretically can be solved faster than the Vandermonde polynomial. In 
practice, however, there is little difference because polynomial interpolation is only 
useful when the number of points to be interpolated is small. 

 

 Piecewise linear interpolation 

Instead of constructing a single global polynomial that goes through all the points, 
one can construct local polynomials that are then connected together. In the the 
section following this one, we will discuss how this may be done using cubic poly- 
nomials. Here, we discuss the simpler case of linear polynomials. This is the default 
interpolation typically used when plotting data. 

Suppose the interpolating function is  y  = g(x),  and as previously,  there are     
n + 1 points to interpolate. We construct the function g(x) out of n local linear 
polynomials. We write 

 

g(x) = gi(x), for xi ≤ x ≤ xi+1, 

where 

gi(x) = ai(x − xi) + bi, 

and i = 0, 1, . . . , n − 1. 

We now require y = gi(x) to pass through the endpoints (xi, yi) and (xi+1, yi+1). 
We have 

 

yi  = bi, 

yi+1 = ai(xi+1 − xi) + bi. 

Therefore, the coefficients of gi(x) are determined to be 

ai = 
yi+1 −  yi 

, bi  = yi. 
xi+1 − xi 

Although piecewise linear interpolation is widely used, particularly in plotting rou- 
tines, it suffers from a discontinuity in the derivative at each point. This results in a 

yn 

yn 

. 
. 
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function which may not look smooth if the points are too widely spaced. We next 
consider a more challenging algorithm that uses cubic polynomials. 
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− 

− − − 

 

 Cubic spline interpolation 

The n + 1 points to be interpolated are again 

(x0, y0), (x1, y1), . . . (xn, yn). 

Here, we use n piecewise cubic polynomials for interpolation, 

gi(x) = ai(x − xi)3 + bi(x − xi)2 + ci(x − xi) + di, i = 0, 1, . . . , n − 1, 

with the global interpolation function written as 

g(x) = gi(x), for xi ≤ x ≤ xi+1. 

To achieve a smooth interpolation we impose that g(x) and its first and second 
derivatives are continuous. The requirement that g(x) is continuous (and goes 
through all n + 1 points) results in the two constraints 

gi(xi) = yi, i = 0 to n − 1, (5.1) 

gi(xi+1) = yi+1, i  = 0 to n − 1. (5.2) 

The requirement that gj(x) is continuous results in 

gi
j(xi+1) = gi

j
+1(xi+1), i = 0 to n − 2. (5.3) 

And the requirement that gjj(x) is continuous results in 

gi
jj(xi+1) = gi

j
+
j  

1(xi+1), i = 0 to n − 2. (5.4) 

There are n cubic polynomials gi(x) and each cubic polynomial has four free co- 
efficients; there are therefore a total of 4n unknown coefficients. The number of 

constraining equations from (5.1)-(5.4) is 2n + 2(n 1) = 4n 2. With  4n  2 con- 
straints and 4n unknowns, two more conditions are required for a unique solution. 

These are usually chosen to be extra conditions on the first g0(x) and last gn 1(x) 
polynomials. We will discuss these extra conditions later. 

We now proceed to determine equations for the unknown coefficients of the 
cubic polynomials. The polynomials and their first two derivatives are given by 

gi(x) = ai(x − xi)3 + bi(x − xi)2 + ci(x − xi) + di, (5.5) 

gi
j(x) = 3ai(x − xi)2 + 2bi(x − xi) + ci, (5.6) 

gi
jj(x) = 6ai(x − xi) + 2bi. (5.7) 

We will consider the four conditions (5.1)-(5.4) in turn. From (5.1) and (5.5), we 
have 

di = yi, i  = 0 to n − 1, (5.8) 

which directly solves for all of the d-coefficients. 
To satisfy (5.2), we first define 

 

 
and 

hi  = xi+1 − xi, 

 
fi = yi+1 − yi. 
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i 

3hi + 

+ 

+ + 

− − 

i i 

hi i i 

hi 3hi 
i i 

3 

.
 1 

(bi 1 − bi)

Σ 

h2 + 2bihi + 

.
 fi 

− 
1 

hi(bi 1 + 2bi)

Σ

 

+ 

 CUBIC SPLINE INTERPOLATION  

 

Now, from (5.2) and (5.5), using (5.8), we obtain the n equations 
 

aih3 + bih2 + cihi = fi, i  = 0 to n − 1. (5.9) 
 

From (5.3) and (5.6) we obtain the n − 1 equations 

3aih2 + 2bihi + ci = ci+1, i  = 0 to n − 2. (5.10) 

From (5.4) and (5.7) we obtain the n − 1 equations 

3aihi + bi = bi+1 i  = 0 to n − 2. (5.11) 

It is will be useful to include a definition of the coefficient bn, which is now missing. 
(The index of the cubic polynomial coefficients only go up to n − 1.) We simply 

extend (5.11) up to i = n − 1 and so write 

3an−1hn−1 + bn−1 = bn, (5.12) 

which can be viewed as a definition of bn. 

We now proceed to eliminate the sets of a- and c-coefficients (with the d-coefficients 
already eliminated in (5.8)) to find a system of linear equations for the b-coefficients. 
From (5.11) and (5.12), we can solve for the n a-coefficients to find 

ai = 
  1   

(bi   1 − bi) , i = 0 to n − 1. (5.13) 

From (5.9), we can solve for the n c-coefficients as follows: 

ci =
 1 . 

fi − aih3 − bih2
Σ

 

=
 1 

. 

fi −
 1 

(bi 1 − bi) h3 − bih2

Σ

 

= 
 fi  

− 
1 

hi (bi  1 + 2bi) , i = 0 to n − 1. (5.14) 

hi 3 

We can now find an equation for the b-coefficients by substituting (5.8), (5.13) 
and (5.14) into (5.10): 

3hi i hi 3 

= 

.
 fi+1 

− 
1 

hi 1(bi 2 + 2bi 1)

Σ 

, 

which simplifies to 

1 
h b 

2 

hi+1 

1 

3 

 fi+1  fi 

3 i i 
+ 

3 
(hi + hi+1)bi+1 + 

3 
hi+1bi+2 = 

hi 1
 − 

hi 
, (5.15) 

an equation that is valid for i  = 0  to n 2.  Therefore, (5.15) represent n 1 equa- 
tions for the n + 1 unknown b-coefficients. Accordingly, we write the matrix equa- 

+ 

+ + + 
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− 

≤ ≤ 

 −− 

n 

− − − 

  

 

tion for the b-coefficients, leaving the first and last row absent, as 

 
. . . . . . . . . . . . missing . . . . . . 

 

   

  
b0 

 
 

 
1 h0 2 (h0 + h1) 1 h1 . . . 0 0 0  

 

    
 

   

. . .  
. . . 

. 
 

 

. . . 

. .   .  
 

 0 0 0 . . . 1 hn−2 
2 (hn−2 + hn−1) 

1 hn−1 

 


bn−1




 

. . . . . . . . . . . . missing . . . . . . bn 
 

missing 


 
 f1 

h1 
= . 

 f0 

h0 
. 

 fn−1 
. 

 fn−2 
 

hn 1 
− hn 2 

missing 

Once the missing first and last equations are specified, the matrix equation for the 
b-coefficients can be solved by Gaussian elimination. And once the b-coefficients are 
determined, the a- and c-coefficients can also be determined from (5.13) and (5.14), 
with the d-coefficients already known from (5.8). The piecewise cubic polynomials, 

then, are known and  g(x) can be used for interpolation to any value  x  satisfying  
x0 x xn. 

The missing first and last equations can be specified in several ways, and here 
we show the two ways that are allowed by the MATLAB function spline.m. The  

first way should be used when the derivative gj(x) is known at the endpoints x0 
and xn; that is, suppose we know the values of α and β such that 

g0
j (x0) = α, gn

j 
−1(xn) = β. 

From the known value of α, and using (5.6) and (5.14), we have 

α = c0 

=
 f0  

− 
1 

h0(b1 + 2b0). 

h0 3 

Therefore, the missing first equation is determined to be 

2 
h0b0 + 

1 
h0b1 = 

 f0 
− α. (5.16) 

3 3 h0 

From the known value of β, and using (5.6), (5.13), and (5.14), we have 

β = 3an−1 h
2 

−1 + 2bn−1 hn−1 + cn−1 

= 3 

.
  1 

(bn − bn  1)

Σ 

h2 + 2bn 1hn 1 + 

.
 fn−1 

− 
1 

hn 1(bn + 2bn 1)

Σ 

, 

  
3hn−1 

which simplifies to 

n−1 hn−1 3 

1 
hn   1bn  1 + 

2 
hn   1bn = β −

 fn−1 
, (5.17) 

− − − − − 

3 

. . . . 

b1 3 3 3 

3 3 3 

3 3 
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3 3 hn−1 

to be used as the missing last equation. 
The second way of specifying the missing first and last equations is called the 

not-a-knot condition, which assumes that 

g0(x) = g1(x), gn−2(x) = gn−1(x). 
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− 
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 MULTIDIMENSIONAL    INTERPOLATION  

 

Considering the first of these equations, from (5.5) we  have 
 

a0(x − x0)3 + b0(x − x0)2 + c0(x − x0) + d0 

= a1(x − x1)3 + b1(x − x1)2 + c1(x − x1) + d1. 

Now two cubic polynomials can be proven  to be identical if at some value of  x,  
the polynomials and their first three derivatives are identical. Our conditions of 

continuity at x = x1 already require that at this value of x these two polynomials 
and their first two derivatives are identical. The polynomials themselves will be 

identical, then, if their third derivatives are also identical at x = x1, or if 

a0  = a1. 

From (5.13), we have 
1 1 

3h0 
(b1 − b0) = 

3h1 
(b2 − b1), 

or after simplification 

h1b0 − (h0 + h1)b1 + h0b2 = 0, (5.18) 

which provides us our missing first equation.  A similar argument at x = xn 1 
also provides us with our last equation, 

hn−1bn−2 − (hn−2 + hn−1)bn−1 + hn−2bn = 0. (5.19) 

The MATLAB subroutines spline.m and ppval.m can be used for cubic spline 
interpolation (see also interp1.m). I will illustrate these routines in class and post 
sample code on the course web site. 

 
 Multidimensional interpolation 

Suppose we are interpolating the value of a function of two variables, 

z = f (x, y). 

The known values are given by 
 
 

zij = f (xi, yj), 

with i = 0, 1, . . . , n and j = 0, 1, . . . , n. Note that the (x, y) points at which f (x, y) 
are known lie on a grid in the x y plane. 

Let z = g(x, y) be the interpolating function, satisfying zij = g(xi, yj). A two- 
dimensional interpolation to find the value of g at the point (x, y) may be done by 
first performing n + 1 one-dimensional interpolations in y to find the value of g at 
the n + 1 points (x0, y), (x1, y), . . . , (xn, y), followed by a single one-dimensional 
interpolation in x to find the value of g at (x, y). 

In other words, two-dimensional interpolation on a grid of dimension (n + 1)  

(n + 1) is done by first performing n + 1 one-dimensional interpolations to the 
value y followed by a single one-dimensional interpolation to the value x. Two- 
dimensional interpolation can be generalized to higher dimensions. The MATLAB 
functions to perform two- and three-dimensional interpolation are interp2.m and 
interp3.m. 
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Chapter 6 

Integration 
We want to construct numerical algorithms that can perform definite integrals 

of the form 

I = 
b  

f (x)dx. (6.1) 
a 

Calculating these definite integrals numerically is called numerical integration, nu- 
merical quadrature, or more simply quadrature. 

 

 Elementary formulas 

We first consider integration from 0 to h, with h small, to serve as the building blocks 
for integration over larger domains. We here define Ih as the following integral: 

I   = 

∫  h 
f (x)dx. (6.2) 

To perform this integral, we consider a Taylor series expansion of f (x) about the 
value x = h/2: 

 

f (x) = 

 

f (h/2 

 

) + (x − h/2) 

 

f j( 

 

h/2) + 
(x − h/2)2 

f jj
 

2 

 

(h/2) 

 
 

 Midpoint rule 

(x − h/2)3 
f
 

6 
jjj 

(h/2) + 
(x − h/2)4 

f
 

24 
jjjj 

(h/2) + . . . 

The midpoint rule makes use of only the first term in the Taylor series expansion. 
Here, we will determine the error in this approximation. Integrating, 

 
I h f 

 
h/2 

∫ h 
. 

x

  
h/2 

 
f j h/2 

(x − h/2)2 
f jj

 
 
h/2 

(x − h/2)3 
f
 

6 

 
jjj 

 

(h/2) + 
(x − h/2)4 

f
 

24 

 
jjjj 

 

(h/2) + . . . 

Σ 

dx. 

Changing variables by letting y = x h/2 and dy = dx, and simplifying the integral 
depending on whether the integrand is even or odd, we have 

Ih = h f (h/2) 

h/2 

+ 
−h/2 

y f j(h/2) + 
y2 

f
 

2 
jj(h/2) + 

y3 

f
 

6 
jjj y4 

(h/2) + 
24 

f 
jjjj 

(h/2) + . . . 

Σ 

dy 

= h f (h/2) + 
∫  h/2 

.

y2
 
f jj 

y4 

(h/2) + 
12 

f 
jjjj 

(h/2) + . . . 

Σ 

dy. 

The integrals that we need here are 
∫  h     

2 
3 ∫ h     

4
 5 

2 
y dy = 

h 
, 

0 24 
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2 
y dy =

 h 
. 

0 160 

( ) + − ) ) + ( ) 

+ 

+ 
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− 

h 

. Σ 
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  6.2. COMPOSITE RULES 

 

Therefore,  
Ih = 

 
h f ( 

 
h/2 

 
h3 

) + 
24 

f 

 
(h/2 

 
h5 

) + 
1920 

 
f jjjj 

 

(h/2) + 

 
. . . . (6.3) 

 

 Trapezoidal rule 

From the Taylor series expansion of f (x) about x = h/2, we have 

 
f 

 

and 

 

(0) = 

 

f (h/2 ) 
h 

f j 
2 

 

(h/2) + 
h2 

f jj 
8 

 

(h/2 
h3 

) − 
48 

f 

 

(h/2 
h4 

) + 
384 

 

f jjjj 
 

(h/2) + 

 

. . . , 

 

f (h) = 

 

f (h/2 ) + 
h 

f j 
2 

 

(h/2) + 
h2 

f jj 
8 

 

(h/2 
h3 

) + 
48 

f 

 

(h/2 
h4 

) + 
384 

f jjjj 
 

(h/2) + 

 

. . . . 

Adding and multiplying by h/2 we obtain 
h h3 h5 

2 

. 
f (0) + f (h)

Σ 
= h f (h/2) + 

8 
f jj(h/2) + 

384 
f jjjj(h/2) + . . . . 

We now substitute for the first term on the right-hand-side using the midpoint rule 
formula: 

2 

. 
f
 
 

(0) + f (h)
Σ 

= 
h3 

Ih − 
24 

f 

 

(h/2 
h5 

) − 
1920 

 
f jjjj (h/2)

Σ

 

 

 
and solving for Ih, we find 

h3 
jj 

  

8 

h5 

(h/2) + 
384 

f 
jjjj 

(h/2) + . . . , 

h h3 h5 

Ih = 
2 

. 
f (0) + f (h)

Σ 
− 

12 
f jj(h/2) − 

480 
f jjjj(h/2) + . . . . (6.4) 

 Simpson’s rule 

To obtain Simpson’s rule, we combine the midpoint and trapezoidal rule to elimi- 
nate the error term proportional to h3. Multiplying (6.3) by two and adding to (6.4), 
we obtain 

3Ih = h 

.

2 f (h/2) + 
1 

( f (0) + f (h))

Σ 

+ h5 

. 
   2    

− 
  1   

Σ 

f jjjj(h/2) + . . . , 

2 1920 

or 
h h5 

480 

Ih = 
6 

f (0) + 4 f (h/2) + f (h) − 
2880 

f jjjj(h/2) + . . . . 

Usually, Simpson’s rule is written by considering the three consecutive points 0, h 
and 2h. Substituting h → 2h, we obtain the standard result 

h h5 

I2h = 
3 

. 
f (0) + 4 f (h) + f (2h)

Σ 
− 

90 
f jjjj(h) + . . . . (6.5) 

6.2Composite rules 

We now use our elementary formulas obtained for (6.2) to perform the integral 
given by (6.1). 

jj 

jjj 

jjj 

jj 

. 

+ 
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= ∑ f 

= ∑ 

− 

2 

a 
) = ∑ 

i=0 
2 

( i + 

a 
) = ∑ ( i + 

i=0 

 COMPOSITE RULES  
 

 Trapezoidal rule 

We suppose that the function f (x) is known at the n + 1 points labeled as x0, x1, . . . , xn, 
with the endpoints given by x0 = a and xn = b. Define 

fi  = f (xi), hi  = xi+1 − xi. 

Then the integral of (6.1) may be decomposed as 

∫ b 
f
  
(x)dx 

n−1 ∫ xi+1 
 
(x)dx 

a i=0 xi 

n−1 ∫ hi 

f (xi + s)ds, 

i=0    0 

where the last equality arises from the change-of-variables s = x xi. Applying the 
trapezoidal rule to the integral, we have 

∫ b 
f
  

x dx 
n−1 hi    

f f
  

. (6.6) 

 

If the points are not evenly spaced, say because the data are experimental values, 
then the hi may differ for each value of i and (6.6) is to be used directly. 

However, if the points are evenly spaced, say because f (x) can be computed, we 
have hi = h, independent of i. We can then define 

xi  = a + ih, i = 0, 1, . . . , n; 

and since the end point b satisfies b = a + nh, we have 

h = 
b − a 

.
 

n 

The composite trapezoidal rule for evenly space points then becomes 

∫ b 
f
  

x dx 
h n−1   

f f
 

 

h 
= 

2 
( f0 + 2 f1 + · · · + 2 fn−1 + fn) . (6.7) 

The first and last terms have a multiple of one; all other terms have a multiple of 
two; and the entire sum is multiplied by h/2. 

 
 Simpson’s rule 

We here consider the composite Simpson’s rule for evenly space points. We apply 
Simpson’s rule over intervals of 2h, starting from a and ending at b: 

 
∫ b 

f (x)dx = 
h 

( f 
 
+ 4 f h + f ) + ( f 

 
+ 4 f 

 
+ f ) + . . . 

a 3 0 1 2 3 2 3 4  
h 

+ 
3 

( fn−2 + 4 fn−1 + fn) . 

( i+1) 

( i+1) 
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h 

≤ ≤ 

− 
12 

− ∑
12 

. 

. Σ .  Σ(  −  
ξi

 

a 3 
n 

a 
) = 

2 
( 0 + n−1 + n ) ∑ 

i=0 

(ξi) 

  6.3. LOCAL VERSUS GLOBAL ERROR 

 

Note that n must be even for this scheme to work. Combining terms, we have 

∫ b 
f (x)dx = 

h 
( f 

 
+ 4 f 

 
+ 2 f 

 
+ 4 f 

 
+ 2 f + · · · + 4 f 

 
+ f ) . 

 

The first and last terms have a multiple of one; the even indexed terms have a 
multiple of 2; the odd indexed terms have a multiple of 4; and the entire sum is 
multiplied by h/3. 

 
 Local versus global error 

Consider the elementary formula (6.4) for the trapezoidal rule, written in the form 
 

h 

f (x)dx 
0 

= 
2 

. 
f 

 

(0) + f (h)
Σ
 

h3 

− 
12 

f 

 

(ξ), 

where ξ is some value satisfying 0  ξ   h,  and we  have  used Taylor’s theorem   
with the mean-value form of the remainder. We can also represent the remainder  
as 

h3 

− 
12 

f jj(ξ) = O(h3), 

where O(h3) signifies that when h is small, halving of the grid spacing h decreases 
the error in the elementary trapezoidal rule by a factor of eight. We call the terms 

represented by O(h3) the Local Error. 
More important is the Global Error which is obtained from the composite formula 

(6.7) for the trapezoidal rule. Putting in the remainder terms, we have 
 

∫ b 
f
 

x dx 
h   

f 2 f 

 
2 f f 

h3  n−1 

f jj ,
 

 

where ξi are values satisfying xi ≤ ξi ≤ xi+1. The remainder can be rewritten as 
 

h3 n−1 

f 
i=0 

nh3 
jj(ξi) = − 

12
 

 

f jj (ξi)
Σ

, 

where 
. 

f jj(ξi)
Σ 

is the average value of all the f jj(ξi)’s. Now, 

n = 
b − a 

,
 

h 

so that the error term becomes 

nh3 

− 
12 

f jj(ξi) = − 

 

b a)h2 
f jj( ) 

12 

= O(h2). 

Therefore, the global error is O(h2). That is, a halving of the grid spacing only 
decreases the global error by a factor of four. 

Similarly, Simpson’s rule has a local error of O(h5) and a global error of O(h4). 

∫ 
jj 

0 1 2 3 4 n−1 

( 1 + · · · + 
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h 
jjjjf (ξr) 

≤ ≤ ≤ ≤ 

h 

h 

6.4. ADAPTIVE INTEGRATION  
 
 
 
 

a d c e b 

 
 

Figure 6.1: Adaptive Simpson quadrature: Level 1. 

 
 Adaptive integration 

The useful MATLAB function quad.m performs numerical integration using adap- 
tive Simpson quadrature. The idea is to let the computation itself decide on the grid 
size required to achieve a certain level of accuracy. Moreover, the grid size need not 
be the same over the entire region of integration. 

We begin the adaptive integration at what is called Level 1. The uniformly 

spaced points at which the function f (x) is to be evaluated are shown in Fig.6.1. 
The distance between the points a and b is taken to be 2h, so that 

 

h = 
b − a 

.
 

2 

Integration using Simpson’s rule (6.5) with grid size h yields 
 

h h5 

I = 
3 

. 
f (a) + 4 f (c) + f (b)

Σ 
− 

90 
f jjjj(ξ), 

where ξ is some value satisfying a ξ b. 

Integration using Simpson’s rule twice with grid size h/2 yields 
 

I = 
6 

. 
f (a) + 4 f (d) + 2 f (c) + 4 f (e) + f (b)

Σ 
− 

(h/2)5 

90 
(ξl ) − 

(h/2)5 
f jjjj , 

90 

with ξl  and ξr some values satisfying a ξl c and c ξr b. 
We now define 

S1 = 
3 

. 
f (a) + 4 f (c) + f (b)

Σ
, 

S2 = 
6 

. 
f (a) + 4 f (d) + 2 f (c) + 4 f (e) + f (b)

Σ
, 

E 
h5 

f jjjj , 

1  = − 
90 

(ξ) 
h5 

E2 = − 
25 · 90 

. 
f jjjj(ξl ) + f jjjj(ξr)

Σ
. 

Now we ask whether S2 is accurate enough, or must we further refine the calcula- 
tion and go to Level 2? To answer this question, we make the simplifying approxi- 

mation that all of the fourth-order derivatives of f (x) in the error terms are equal; 
that is, 

f jjjj(ξ) = f jjjj(ξl ) = f jjjj(ξr) = C. 
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. 2 − 1 . 

15 
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Then  

E 
h5 

 
  

1 = − 
90 

C, 

E 
h5 1  

 

Then since 

and 

2 = − 
24 · 90 

C = 
16 

E1. 

S1 + E1 = S2 + E2, 

E1 = 16E2, 

we have for our estimate for the error term E2, 

E2 =
 1 

(S2 − S1). 

Therefore, given some specific value of the tolerance tol, if 

 
 1 

(S S ) < tol, 
15 

then we can accept S2 as I. If the tolerance is not achieved for I, then we proceed to 
Level 2. 

The computation at Level 2 further divides the integration interval from a to b 
into the two integration intervals a to c and c to b, and proceeds with the above  
procedure independently on both halves. Integration can be stopped on either half 
provided the tolerance is less than tol/2 (since the sum of both errors must be less 
than tol). Otherwise, either half can proceed to Level 3, and so on. 

As a side note, the two values of I given above (for integration with step size h 
and h/2) can be combined to give a more accurate value for I given by 

I = 
16S2 − S1  

+ O(h7), 
15 

where the error terms of O(h5) approximately cancel. This free lunch, so to speak, 
is called Richardson’s extrapolation. 
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Chapter 7 

Ordinary differential equations 
We now discuss the numerical solution of ordinary differential equations. These 

include the initial value problem, the boundary value problem, and the eigenvalue 
problem. Before proceeding to the development of numerical methods, we review 
the analytical solution of some classic equations. 

 

 Examples of analytical solutions 

 Initial value problem 

One classic initial value problem is the RC circuit. With R the resistor and C the 
capacitor, the differential equation for the charge q on the capacitor is given by 

R 
dq 

+
 q = 0. (7.1) 

dt C 

If we consider the physical problem of a charged capacitor connected in a closed 

circuit to a resistor, then the initial condition is q(0) = q0, where q0 is the initial 
charge on the capacitor. 

The differential equation (7.1) is separable, and separating and integrating from 
time t = 0 to t yields 

∫ q  dq  
= −

  1   
∫ t 

dt, 

which can be integrated and solved for q = q(t): 

q(t) = q0e−t/RC . 

The classic second-order initial value problem is the RLC circuit, with differen- 
tial equation 

L 
d2q dq q 

dt2 + R 
dt 

+ 
C 

= 0. 

Here, a charged capacitor is connected to a closed circuit, and the initial conditions 
satisfy 

q(0) = q , 
dq 

(0) = 0. 
dt 

The solution is obtained for the second-order equation by the ansatz 

q(t) = ert, 

which results in the following so-called characteristic equation for r: 

Lr2 + Rr + 
1

 
C 

= 0. 

If the two solutions for r are distinct and real, then the two found exponential 
solutions can be multiplied by constants and added to form a general solution. The 
constants can then be determined by requiring the general solution to satisfy the 
two initial conditions. If the roots of the characteristic equation are complex or 
degenerate, a general solution to the differential equation can also be found. 

 
41 
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≤ ≤ 

∫ 

−

 

.∫ 

− − 

12 6 

  7.1. EXAMPLES OF ANALYTICAL SOLUTIONS 
 

 Boundary value problems 

The dimensionless equation for the temperature y = y(x) along a linear heat- 
conducting rod of length unity,  and with an applied external heat source  f (x),      
is given by the differential equation 

d2y 
− 

dx2  = f (x), (7.2) 

with 0    x    1.  Boundary conditions are usually prescribed at the end points of    
the rod, and here we assume that the temperature at both ends are maintained at 
zero so that 

y(0) = 0, y(1) = 0. 

The assignment of boundary conditions at two separate points is called a two- 
point boundary value problem, in contrast to the initial value problem where the 
boundary conditions are prescribed at only a single point. Two-point boundary 
value problems typically require a more sophisticated algorithm for a numerical 
solution than initial value problems. 

Here, the solution of (7.2) can proceed by integration once f (x) is specified. We 
assume that 

f (x) = x(1 − x), 

so that the maximum of the heat source occurs in the center of the rod, and goes to 
zero at the ends. 

The differential equation can then be written as 

d2y 

dx2  = −x(1 − x). 

The first integration results in  
 

dy 
= (x2 x)dx 

dx 

x3 

= 
3 

− 
x2 

2 
+ c1, 

where c1 is the first integration constant. Integrating again, 
 

y(x) = 
x3 x2 

3 
− 

2 
+ c1

Σ 

dx 

x4 

= 
12 

− 
x3 

6 
+ c1x + c2, 

where c2 is the second integration constant. The two integration constants are de- 

termined by the boundary conditions. At x = 0, we have 

0 = c2, 

and at x = 1, we have 

0 =
 1 

− 
1 

+ c1, 

so that c1 = 1/12. Our solution is therefore 

y 
x4 

 
  

x3 x  
 

  

(x) = 
12 

− 6 
+ 

12 

=
 1 

x(1 x)(1 + x x2). 
12 
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The temperature of the rod is maximum at x = 1/2 and goes smoothly to zero at 
the ends. 

 
 Eigenvalue problem 

The classic eigenvalue problem obtained by solving the wave equation by separation 
of variables is given by 

d2y 2 

dx2  + λ y = 0, 

with the two-point boundary conditions y(0)  =  0  and  y(1)  =  0.  Notice  that 
y(x) = 0 satisfies both the differential equation and the boundary conditions. Other 
nonzero solutions for y = y(x) are possible only for certain discrete values of λ. 
These values of λ are called the eigenvalues of the differential equation. 

We proceed by first finding the general solution to the differential equation. It  
is easy to see that this solution is 

y(x) = A cos λx + B sin λx. 

Imposing the first boundary condition at x = 0, we obtain 

A = 0. 

The second boundary condition at x = 1 results in 

B sin λ = 0. 

Since we are searching for a solution where y = y(x) is not identically zero, we 
must have 

λ = π, 2π, 3π, . . . . 

The corresponding negative values of λ are also solutions, but their inclusion only 
changes the corresponding values of the unknown B constant. A linear superposi- 
tion of all the solutions results in the general solution 

 

∞ 

y(x) = ∑ Bn sin nπx. 
n=1 

 

For each eigenvalue nπ, we say there is a corresponding eigenfunction sin nπx. 
When the differential equation can not be solved analytically, a numerical method 
should be able to solve for both the eigenvalues and eigenfunctions. 

 
 Numerical methods: initial value problem 

We begin with the simple Euler method, then discuss the more sophisticated Runge- 
Kutta methods, and conclude with the Runge-Kutta-Fehlberg method, as imple- 

mented in the MATLAB  function ode45.m.  Our differential equations are  for  x  = 
x(t), where the time t is the independent variable, and we will make use of the 

notation x˙ = dx/dt. This notation is still widely used by physicists and descends 
directly from the notation originally used by Newton. 
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1 

n+1 

2 

2 

 

 Euler method 

The Euler method is the most straightforward method to integrate a differential 
equation. Consider the first-order differential equation 

ẋ    = f (t, x), (7.3) 

with the initial condition x(0) = x0. Define tn = n∆t  and  xn  = x(tn).  A  Taylor 
series expansion of xn+1 results in 

xn+1 = x(tn + ∆t) 

= x(tn) + ∆tx˙(tn) + O(∆t2) 

= x(tn) + ∆t f (tn, xn) + O(∆t2). 

The Euler Method is therefore written as 

xn+1 = x(tn) + ∆t f (tn, xn). 

We say that the Euler method steps forward in time using a time-step ∆t, starting 

from the initial value x0 = x(0). The  local error  of  the Euler  Method  is O(∆t2). The 
global error, however, incurred when integrating to a time T, is a factor of 1/∆t 

larger and is given by O(∆t). It is therefore customary to call the Euler Method a 
first-order method. 

 
 Modified Euler method 

This method is of a type that is called a predictor-corrector method. It is also the 
first of what are Runge-Kutta methods. As before, we want to solve (7.3). The idea 
is to average the value of x˙ at the beginning and end of the time step. That is, we 
would like to modify the Euler method and write 

xn+1 = xn + 
2 

∆t
. 

f (tn, xn) + f (tn + ∆t, xn+1)
Σ

. 

The obvious problem with this formula is that the unknown value  xn+1  appears  
on the right-hand-side. We can, however, estimate this value, in what is called the 
predictor step. For the predictor step, we use the Euler method to find 

 
p 

n+1 

The corrector step then becomes 
1 

= xn + ∆t f (tn, xn). 

xn+1 = xn +   ∆t
. 

f (tn, xn) + f (tn + ∆t, xp )
Σ

. 
 

The Modified Euler Method can be rewritten in the following form that we will 
later identify as a Runge-Kutta method: 

k1 = ∆t f (tn, xn), 

k2 = ∆t f (tn + ∆t, xn + k1), 

xn+1 = xn + 
1 

(k1 + k2). 

(7.4) 

x 
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 Second-order Runge-Kutta methods 

We now derive all second-order Runge-Kutta methods. Higher-order methods can 
be similarly derived, but require substantially more algebra. 

We consider the differential equation given by (7.3). A general second-order 
Runge-Kutta method may be written in the form 

k1 = ∆t f (tn, xn), 

k2 = ∆t f (tn + α∆t, xn + βk1), 

xn+1 = xn + ak1 + bk2, 

(7.5) 

with α, β, a and b constants that define the particular second-order Runge-Kutta 
method. These constants are to be constrained by setting the local error of the 

second-order Runge-Kutta method to be O(∆t3). Intuitively, we might guess that 

two of the constraints will be a + b = 1 and α = β. 
We compute the Taylor series of xn+1 directly, and from the Runge-Kutta method, 

and require them to be the same to order ∆t2. First, we compute the Taylor series 

of xn+1. We have 

 
 
 

Now, 

xn+1 = x(tn + ∆t) 

= x(tn) + ∆tẋ(tn) + 
1 
(∆t)2 ẍ(tn) + O(∆t3). 

 
x˙(tn) = f (tn, xn). 

The second derivative is more complicated and requires partial derivatives. We 
have 

 

x¨(t ) =
 d 

f (t, x(t)) 
dt 

 
 

t=tn 

 
 

Therefore, 

= ft(tn, xn) + x˙(tn) fx(tn, xn) 

= ft(tn, xn) + f (tn, xn) fx(tn, xn). 

 
1 

xn+1 = xn + ∆t f (tn, xn) + (∆t)2 
. 

ft(tn, xn) + f (tn, xn) fx(tn, xn)
Σ

. (7.6) 
 

Second, we compute xn+1 from the Runge-Kutta method given by (7.5). Substi- 
tuting in k1 and k2, we have 

xn+1 = xn + a∆t f (tn, xn) + b∆t f tn + α∆t, xn + β∆t f (tn, xn) . 

We Taylor series expand using 

f tn + α∆t, xn + β∆t f (tn, xn) 

= f (tn, xn) + α∆t ft(tn, xn) + β∆t f (tn, xn) fx(tn, xn) + O(∆t2). 

The Runge-Kutta formula is therefore 

xn+1 = xn + (a + b)∆t f (tn, xn) 

+ (∆t)2
.
αb ft(tn, xn) + βb f (tn, xn) fx(tn, xn)

Σ 
+ O(∆t3). (7.7) 
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Comparing (7.6) and (7.7), we find 

a + b = 1, 

αb = 1/2, 

βb = 1/2. 

There are three equations for four parameters, and there exists a family of second- 
order Runge-Kutta methods. 

The Modified Euler Method given by (7.4) corresponds to  α = β = 1 and  a  =  
b = 1/2. Another second-order Runge-Kutta method, called the Midpoint Method, 
corresponds to α = β = 1/2, a = 0 and b = 1. This method is written as 

k1 = ∆t f (tn, xn), 

k2 = ∆t f 

.

tn + 
1 

∆t, xn + 
1 

k1

Σ 

, 

2 2 

xn+1 = xn + k2. 
 

 Higher-order Runge-Kutta methods 

The general second-order Runge-Kutta method was given by (7.5). The general 
form of the third-order method is given by 

k1 = ∆t f (tn, xn), 

k2 = ∆t f (tn + α∆t, xn + βk1), 

k3 = ∆t f (tn + γ∆t, xn + δk1 + ck2), 

xn+1 = xn + ak1 + bk2 + ck3. 

The following constraints on the constants can be guessed: α = β, γ = δ + c, and 

a + b + c = 1. Remaining constraints need to be derived. 
The fourth-order method has a k1, k2, k3 and k4. The fifth-order method requires 

up to k6. The table below gives the order of the method and the number of stages 
required. 

 

order 2 3 4 5 6 7 8 
minimum # stages 2 3 4 6 7 9 11 

 
  

Because of the jump in the number of stages required between the fourth-order 
and fifth-order method, the fourth-order Runge-Kutta method has some appeal. 
The general fourth-order method starts with 13 constants, and one then finds 11 
constraints. A particularly simple fourth-order method that has been widely used 
is given by 

k1 = ∆t f (tn, xn), 

k2 = ∆t f 

.

tn + 
1 

∆t, xn + 
1 

k1

Σ 

, 

k3 = ∆t f 

.

tn + 
1 

∆t, xn + 
1 

k2

Σ 

, 

k4 = ∆t f (tn + ∆t, xn + k3) , 

xn+1 = xn + 
1 

(k1 + 2k2 + 2k3 + k4) . 
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 Adaptive Runge-Kutta Methods 

As in adaptive integration, it is useful to devise an ode integrator that automatically 
finds the appropriate  ∆t.   The Dormand-Prince Method,  which is implemented   
in MATLAB’s ode45.m,  finds the appropriate step size by  comparing the results  
of a fifth-order and fourth-order method. It requires six function evaluations per 
time step, and constructs both a fifth-order and a fourth-order method from these 
function evaluations. 

Suppose the fifth-order method finds xn+1 with local error O(∆t6), and the 
fourth-order  method  finds  xn

j 
+1  with  local  error  O(∆t5).   Let  ε be  the  desired  er- 

ror tolerance of the method, and let e be the actual error. We can estimate e from 
the difference between the fifth- and fourth-order methods; that is, 

e = |xn+1 − xn
j 
+1|. 

Now e is of O(∆t5), where ∆t is the step size taken. Let  ∆τ be the estimated step  
size required to get the desired error ε. Then we have 

e/ε = (∆t)5/(∆τ)5, 

or solving for ∆τ, 

∆τ = ∆t 
. ε Σ1/5 

. 

On the one hand, if e < ε,  then we  accept  xn+1  and do the next time step using  
the larger value of ∆τ. On the other hand, if e > ε, then we reject the integration 
step and redo the time step using the smaller value of ∆τ. In practice, one usually 
increases the time step slightly less and decreases the time step slightly more to 
prevent the waste of too many failed time steps. 

 
 System of differential equations 

Our numerical methods can be easily adapted to solve higher-order differential 
equations, or equivalently, a system of differential equations.  First,  we  show how 
a second-order differential equation can be reduced to two first-order equations. 
Consider 

x¨    = f (t, x, x˙). 

This second-order equation can be rewritten as two first-order equations by defining 

u = x˙. We then have the system 

x˙ = u, 

u˙ = f (t, x, u). 

This trick also works for higher-order equation. For another example, the third- 
order equation 

...
 

x = f (t, x, x˙, x¨), 

can be written as  
 

x˙ = u, 

u˙ = v, 

v˙ = f (t, x, u, v). 
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Now, we show how to generalize Runge-Kutta methods to a system of differen- 
tial equations. As an example, consider the following system of two odes, 

x˙   = f (t, x, y), 

y˙   = g(t, x, y), 

with the initial conditions x(0) = x0 and y(0) = y0. The generalization of the 
commonly used fourth-order Runge-Kutta method would be 

k1 = ∆t f (tn, xn, yn), 

l1 = ∆tg(tn, xn, yn), 

k2 = ∆t f 

.

tn + 
1 

∆t, xn + 
1 

k1, yn + 
1 

l1

Σ 

, 

l2 = ∆tg 

.

tn + 
1 

∆t, xn + 
1 

k1, yn + 
1 

l1

Σ 

, 

 

k3 = ∆t f 

.

tn + 
1 

∆t, xn + 
1 

k2, yn + 
1 

l2

Σ 

, 

l3 = ∆tg 

.

tn + 
1 

∆t, xn + 
1 

k2, yn + 
1 

l2

Σ 

, 

k4 = ∆t f (tn + ∆t, xn + k3, yn + l3) , 

l4 = ∆tg (tn + ∆t, xn + k3, yn + l3) , 

 

xn+1 = xn + 
1 

(k1 + 2k2 + 2k3 + k4) , 

yn+1 = yn + 
1 

(l1 + 2l2 + 2l3 + l4) . 

 Numerical methods: boundary value problem 

 Finite difference method 

We consider first the differential equation 

d2y 
− 

dx2  = f (x), 0 ≤ x ≤ 1, (7.8) 

with two-point boundary conditions 

y(0) = A, y(1) = B. 

Equation (7.8) can be solved by quadrature, but here we will demonstrate a numer- 
ical solution using a finite difference method. 

We begin by discussing how to numerically approximate derivatives. Consider 

the Taylor series approximation for y(x + h) and y(x − h), given by 

y(x + h) = y(x) + hyj(x) + 
1 

h2yjj(x) + 
1 

h3yjjj(x) +
 1 

h4yjjjj(x) + . . . , 
2 6 24 

y(x − h) = y(x) − hyj(x) + 
1 

h2yjj(x) − 
1 

h3yjjj(x) +
 1 

h4yjjjj(x) + . . . . 
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The standard definitions of the derivatives give the first-order approximations 

yj(x) = 
y(x + h) − y(x) 

+ O(h),
 

h 

yj(x) = 
y(x) − y(x − h) 

+ O(h).
 

h 

The more widely-used second-order approximation is called the central difference 
approximation and is given by 

yj(x) = 
y(x + h) − y(x − h) 

+ O(h2).
 

2h 

The finite difference approximation to the second derivative can be found from 
considering 

y(x + h) + y(x h) = 2y(x) + h2yjj(x) +
 1 

h4yjjjj(x) + . . . , 
12 

from which we find 

yjj(x) = 
y(x + h) − 2y(x) + y(x − h) 

+ O(h2).
 

h2 

Sometimes a second-order method is required for x on the boundaries of the do- 
main. For a boundary point on the left, a second-order forward difference method 
requires the additional Taylor series 

y(x + 2h) = y(x) + 2hyj(x) + 2h2yjj(x) + 
4 

h3yjjj(x) + . . . . 
3 

We combine the Taylor series for y(x + h) and y(x + 2h) to eliminate the term pro- 
portional to h2: 

 
 

Therefore, 

y(x + 2h) − 4y(x + h) = −3y(x) − 2hyj(x) + O(h3). 

yj(x) = 
−3y(x) + 4y(x + h) − y(x + 2h) 

+ O(h2).
 

2h 
For a boundary point on the right, we send h → −h to find 

yj(x) = 
3y(x) − 4y(x − h) + y(x − 2h) 

+ O(h2).
 

2h 

We now write a finite difference scheme to solve (7.8). We discretize x by defin- 

ing xi = ih, i = 0, 1, . . . , n + 1. Since xn+1 = 1, we have h = 1/(n + 1). The functions 

y(x) and f (x) are discretized as yi = y(xi) and fi = f (xi). The second-order differ- 
ential equation (7.8) then becomes for the interior points of the domain 

−yi−1 + 2yi − yi+1 = h2 fi, i = 1, 2, . . . n, 

with the boundary conditions y0 = A and yn+1 = B. We therefore have a linear 
system of equations to solve. The first and nth equation contain the boundary 
conditions and are given by 

2y1 − y2 = h2 f1 + A, 

−yn−1 + 2yn = h2 fn + B. 
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2 

× 

  

 

The second and third equations, etc., are 

−y1 + 2y2 − y3 = h2 f2, 

−y2 + 2y3 − y4 = h2 f3, 

. . . 
 

In matrix form, we have 

  
2 −1 0 0 . . . 0 0 0

  
y1 

 
h2 f1 + A


 


−1 2 −1 0 . . . 0 0 0  y2  

 
 

h  f2 2 
 

  
0 −1 2 −1 . . . 0 0 0  y3 

 

      

 
= 

 h f3  

. . . .  . . . 
. . . . . 

.   .     .  
 
 

   0 0 0 0 . . . −1 2 −1

 


yn−1

 

  


  

h2 fn−1   




 

 

The matrix is tridiagonal, and a numerical solution by Guassian elimination can be 
done quickly. The matrix itself is easily constructed using the MATLAB function 
diag.m and ones.m. As excerpted from the MATLAB help page, the function call 
ones(m,n) returns an m-by-n matrix of ones, and the function call diag(v,k), when  
v is a vector with n components, is a square matrix of order n+abs(k) with the el- 

ements of v on the k-th diagonal:  k = 0 is the main diagonal, k > 0 is above the 
main diagonal and  k  < 0 is below the main diagonal.  The n n  matrix above can 
be constructed by the MATLAB code 

 

M=diag(-ones(n-1,1),-1)+diag(2*ones(n,1),0)+diag(-ones(n-1,1),1); . 
 

The right-hand-side,  provided f is a given n-by-1 vector,  can be constructed by  
the MATLAB code 

 

b=hˆ2*f; b(1)=b(1)+A; b(n)=b(n)+B; 
 

and the solution for u is given by the MATLAB code 

y=M\b; 

 
 

 Shooting method 

The finite difference method can solve linear odes. For a general ode of the form 

d2y 

dx2  = f (x, y, dy/dx), 

yn 0 0 0 0 . . . 0 −1 2 

. . . . . . 

. . . . . . 
. 

yn h2 fn + B 
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with y(0) = A and y(1) = B, we use a shooting method. First,  we  formulate the  
ode as an initial value problem. We have 

dy 

dx  
= z, 

dz 

dx 
= f (x, y, z). 
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b = b   − F(b ) .n

   nn 1 

≤ ≤ 

 

The initial condition y(0) = A is known, but the second initial condition z(0) = b 

is unknown. Our goal is to determine b such that y(1) = B. 
In fact, this is a root-finding problem for an appropriately defined function. We 

define the function F = F(b) such that 

F(b) = y(1) − B. 

In other words, F(b) is the difference between the value of y(1) obtained from 
integrating the differential equations using the initial condition z(0) = b, and B. 
Our root-finding routine will want to solve F(b) = 0. (The method is called shooting 
because the slope of the solution curve for y = y(x) at x = 0 is given by b, and the 
solution hits the value y(1) at x = 1. This looks like pointing a gun and trying to 
shoot the target, which is B.) 

To determine the value of b that solves F(b) = 0, we iterate using the Secant 
method, given by 

  bn − bn−1  
+ 

F(bn) − F(bn−1) 

We need to start with two initial guesses for b, solving the ode for the two 

corresponding values of y(1). Then the Secant Method will give us the next value  

of b to try, and we iterate until y(1) B  < tol, where tol is some specified tolerance 
for the error. 

 
 Numerical methods: eigenvalue problem 

For illustrative purposes, we develop our numerical methods for what is perhaps 

the simplest eigenvalue ode.  With y = y(x) and 0    x    1, this simple ode is given 
by 

yjj + λ2y = 0. (7.9) 

To solve (7.9) numerically, we will develop both a finite difference method and a 
shooting method. Furthermore, we will show how to solve (7.9) with homogeneous 
boundary conditions on either the function y or its derivative yj. 

 
 Finite difference method 

We first consider solving (7.9) with the homogeneous boundary conditions y(0) = 
y(1) = 0. In this case, we have already shown that the eigenvalues of (7.9) are given 
by λ = π, 2π, 3π, . . . . 

With n interior points, we have xi = ih for i = 0, . . . , n + 1, and h = 1/(n + 1). 
Using the centered-finite-difference approximation for the second derivative, (7.9) 
becomes 

yi−1 − 2yi + yi+1 = −h2λ2yi. (7.10) 

Applying the boundary conditions y0 = yn+1 = 0, the first equation with i = 1, and 
the last equation with i = n, are given by 

−2y1  + y2  = −h2λ2y1, 

yn−1 − 2yn = −h2λ2yn. 

The remaining n − 2 equations are given by (7.10) for i = 2, . . . , n − 1. 
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It is of interest to see how the solution develops with increasing n. The smallest 

possible value is n = 1, corresponding to a single interior point, and since h = 1/2 
we have 

−2y1 = − 
1 

λ2y1, 

so that λ2 = 8, or λ = 2
√

2 = 2.8284. This is to be compared to the first eigenvalue 
which is λ = π. When n = 2, we have h = 1/3, and the resulting two equations 
written in matrix form are given by 

.
−2 1

Σ .
y1

Σ 

= − 
1 
λ2 

.
y1

Σ 

.

 

1 −2 y2 9 y2 

This is a matrix eigenvalue problem with the eigenvalue given by µ = λ2/9. The 
solution for µ is arrived at by solving 

−2 − µ 1 
1 −2 − µ 

Σ 

= 0, 

with resulting quadratic equation 

(2 + µ)2 − 1 = 0. 

The solutions are µ = 1, 3, and since λ = 3
√  

µ, we  have  λ = 3, 3
√

3 = 5.1962.  
These two eigenvalues serve as rough approximations to the first two eigenvalues 
π and 2π. 

With A an n-by-n matrix, the MATLAB variable mu=eig(A) is a vector containing 
the n eigenvalues of the matrix A. The built-in function eig.m can therefore be used 
to find the eigenvalues. With n grid points, the smaller eigenvalues will converge 
more rapidly than the larger ones. 

We can also consider boundary conditions on the derivative, or mixed boundary 
conditions. For example, consider the mixed boundary conditions given by y(0) = 0 
and  yj(1) = 0.  The eigenvalues of (7.9) can then be determined analytically to be   
λi = (i 1/2)π, with i a natural number. 

The difficulty we now face is how to implement a boundary condition on the 
derivative. Our computation of yjj uses a second-order method,  and we  would  
like the computation of the first derivative to also be second order. The condition 

yj(1) = 0 occurs on the right-most boundary, and we can make use of the second- 
order backward-difference approximation to the derivative that we have previously 

derived. This finite-difference approximation for yj(1) can be written as 

yj
n+1 

= 
3yn+1 − 4yn  + yn−1 

. (7.11) 
2h 

Now, the nth finite-difference equation was given by 

yn−1 − 2yn + yn+1 = −h2yn, 

and we now replace the value yn+1 using (7.11); that is, 

yn+1 = 
3 

.
2hyj

n+1  + 4yn − yn−1

Σ 
. 

Implementing the boundary condition yj
n+1   = 0, we have 

yn+1 = 
4 

yn − 
1 

yn−1. 

.

det 
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Therefore, the nth finite-difference equation becomes 

2 
yn−1 − 

2 
yn = −h2λ2yn. 

 

For example, when n = 2, the finite difference equations become 

.
−2 1

Σ .
y1

Σ 

= − 
1 
λ2 

.
y1

Σ 

.

 

   

 

The eigenvalues of the matrix are now the solution of 

(µ + 2) 

.

µ + 
2 

Σ 

− 
2 

= 0, 

3 3 

or 

3µ2 + 8µ + 2 = 0. 

Therefore, µ = ( 4 
√

10)/3, and we find λ = 1.5853, 4.6354, which are approxi- 
mations to π/2 and 3π/2. 

 
 Shooting method 

We apply the shooting method to solve (7.9) with boundary conditions y(0) = 

y(1) = 0. The initial value problem to solve is 

yj  = z, 

zj  = −λ2y, 

with known boundary condition y(0) = 0 and an unknown boundary condition   
on yj(0). In fact, any nonzero boundary condition on yj(0) can be chosen: the 
differential equation is linear and the boundary conditions are homogeneous, so 
that if y(x) is an eigenfunction then so is Ay(x). What we need to find here is the 

value of λ such that y(1) = 0. In other words, choosing yj(0) = 1, we solve 

F(λ) = 0, (7.12) 

where F(λ) = y(1), obtained by solving the initial value problem. Again, an itera- 

tion for the roots of F(λ) can be done using the Secant Method. For the eigenvalue 
problem, there are an infinite number of roots, and the choice of the two initial 
guesses for λ will then determine to which root the iteration will converge. 

For this simple problem, it is possible to write explicitly the equation F(λ) = 0. 
The general solution to (7.9) is given by 

y(x) = A cos (λx) + B sin (λx). 

The initial condition y(0) = 0 yields A = 0. The initial condition yj(0) = 1 yields 

B = 1/λ. 

Therefore, the solution to the initial value problem is 

y(x) = 
sin (λx) 

.
 

λ 
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The function F(λ) = y(1) is therefore given by 

F(λ) = 
sin λ 

, 
λ 

and the roots occur when λ = π, 2π, . . . . 

If the boundary conditions were y(0) = 0 and yj(1) = 0, for example, then we 
would simply redefine F(λ) = yj(1). We would then have 

F(λ) = 
cos λ 

, 
λ 

and the roots occur when λ = π/2, 3π/2, . . . . 
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