

(Deemed University Established Under Section 3 of UGC Act 1956) Coimbatore - 641021. (For the candidates admitted from 2016 onwards) DEPARTMENT OF COMMERCE

		Sen	iester	· – III	
160000212		L	Т	Р	С
10001312		-	-	4	2
	SPSS				

Course Objectives

- ✤ To educate students on purpose of applying various statistical tools
- To train students on method of carrying out statistical analysis with the help of SPSS

Learning Course

- ✤ Assists students to carry out statistical analysis for their project
- 1. Descriptive Statistics
- 2. Chi-square
- 3. Independent Sample 't' Test
- 4. Paired 't' Test
- 5. Analysis of Variance (ANOVA)
- 6. Karl Pearson Correlation
- 7. Spearman Rank Correlation
- 8. Regression
- 9. Factor Analysis
- 10. Kolmogorov and Smirnov test
- 11. Mann Whitney U Test
- 12. Wilcoxon Test
- 13. Friedman Rank Test
- 14. Kruskal Wallis H-Test
- 15. Garett Ranking

Descriptive Statistics

MOENY OF HIGHER

Enable | Enlighten | Enrich (Deemed to be University) (Under Section 3 of UGC Act 1956)

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act 1956) Coimbatore - 641021. (For the candidates admitted from 2016 onwards) DEPARTMENT OF COMMERCE

SUBJECT : SPSS SEMESTER : III SUBJECT CODE: 16CCP312

CLASS : II M.Com. (CA)

Ex.No.1

DESCRIPTIVE STATISTICS

Aim

To compute Mean, Median, Mode and Standard Deviation

Algorithm

Step 1:	Start the Process
Step 2:	Type the following Quantitative Data 320, 395, 342, 444, 551, 395, 425, 417,
	395, 401, 390, 400 in Column Variable 1 of Data view window
Step 3:	Select Descriptive Statistics option from Analyze Menu
Step 4:	Select Frequencies option from Descriptive Sub menu
Step 5:	Forward the Variable 1 data to Variables Window
Step 6:	Select Statistics Command button on Frequencies window
Step 7:	Select Mean, Median and Mode from Central Tendency Option and Standard
	Deviation from Dispersion option and click Continue command button
Step 8:	Click Ok button on Frequency Window
Step 9:	Stop the process

Result

The above statistical analysis has been verified by using SPSS Package.

Statistics						
VAR000	VAR00001					
N	12.00					
	0.00					
Mean	406.25					
Median	Median					
Mode	395.00					
Std. Dev	56.51					

	VAR00001									
	-	Frequency	Percent	Valid Percent	Cumulative Percent					
Valid	320	1	8.3	8.3	8.3					
	342	1	8.3	8.3	16.7					
	390	1	8.3	8.3	25.0					
	395	3	25.0	25.0	50.0					
	400	1	8.3	8.3	58.3					
	401	1	8.3	8.3	66.7					
	417	1	8.3	8.3	75.0					
	425	1	8.3	8.3	83.3					
	444	1	8.3	8.3	91.7					
	551	1	8.3	8.3	100.0					
	Total	12	100.0	100.0						

(Deemed University Established Under Section 3 of UGC Act 1956) Coimbatore - 641021. (For the candidates admitted from 2016 onwards) DEPARTMENT OF COMMERCE

SUBJECT: SPSSSEMESTER: IIISUBJECT CODE:16CCP312

CLASS : II M.Com. (CA)

Ex.No.2

Chi-square

Aim

To calculate Chi-square test to find association between two variables

Algorithm

Step 1:	Start the Process
Step 2:	Type two set of Qualitative data on Variable 1 and Variable 2 on Data View
	Window
Step 3:	Specify names for Variable 1 and Variable 2 on variable view window
Step 4:	Select Descriptive Statistics option from Analyze Menu
Step 5:	Select Crosstabs from Descriptive Sub menu
Step 6:	Forward Variable 1 to Row and Variable 2 to Column options
Step 7:	Click Statistics Command button on Crosstab window, from which select
	Chi-square option and press continue command button
Step 8:	Click Cell command button on Crosstab window, in which select row on
	percentage option and press continue command button
Step 9:	Click Ok button on Crosstab window
Step	Stop the process
10:	

Result

The Chi-square test result has been verified by using SPSS Package.

		Case Pr	ocessing Sı	immary			
Cases							
	Valid Missing Total						
	Ν	Percent	Ν	Percent	Ν	Percent	
AOR * SQ	300	100.0%	0	.0%	300	100.0%	

AOR * SQ Crosstabulation

	-			SQ				
			1	2	3	Total		
AOR	1	Count	5	75	3	83		
		% within AOR	6.0%	90.4%	3.6%	100.0%		
	2	Count	29	94	8	131		
		% within AOR	22.1%	71.8%	6.1%	100.0%		
	3	Count	6	72	8	86		
		% within AOR	7.0%	83.7%	9.3%	100.0%		
Total		Count	40	241	19	300		
		% within AOR	13.3%	80.3%	6.3%	100.0%		

Chi-Square Tests

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	18.085 ^a	4	.001
Likelihood Ratio	18.256	4	.001
Linear-by-Linear Association	.545	1	.460
N of Valid Cases	300		

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 5.26.

(Deemed University Established Under Section 3 of UGC Act 1956) Coimbatore - 641021. (For the candidates admitted from 2016 onwards) DEPARTMENT OF COMMERCE

SUBJECT: SPSSSEMESTER: IIISUBJECT CODE:16CCP312

CLASS : II M.Com. (CA)

Ex.No.3

Independent Sample 't' Test

Aim

To calculate 't' test to find whether mean differs between two groups

Algorithm

Step 1:	Start the Process
Step 2:	Type Quantitative data on Variable 1
Step 3:	Group the Quantitative data in to two groups by assigning qualitative values
	(i.e.) 1,2
Step 4:	Select Compare Means from Analyze Menu
Step 5:	Select Independent Sample 't' Test from Compare Means menu
Step 6:	Forward Quantitative data to Test Variables Option and Qualitative data to
	Group Variables option
Step 7:	Click Define Groups command button and assign 1 and 2 at Group 1 and
	Group 2 and click continue command button
Step 8:	Click Ok button on Independent Sample 't' test window
Step 9:	Stop the process

Result

The above statistical analysis has been verified by using SPSS Package.

't' Test	2016-2018 Batch
	Daten

Group Statistics							
	VAR00 002	N	Mean	Std. Deviation	Std. Error Mean		
VAR00001	1	193	69.6732	13.58475	.97785		
	2	107	72.9753	11.50454	1.11219		

		Levene's Test Varia	for Equality of ances		t-test for Equality of Means						
						Sig (2-	Mean	Std Error	95% Cc Interv Diffe	onfidence al of the erence	
	ł	F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper	
VAR00001	Equal variances assumed	4.822	.029	-2.127	298	.034	-3.30211	1.55281	-6.35798	24625	
	Equal variances not assumed			-2.230	250.561	.027	-3.30211	1.48093	-6.21877	38546	

Independent Samples Test

(Deemed University Established Under Section 3 of UGC Act 1956) Coimbatore - 641021. (For the candidates admitted from 2016 onwards) DEPARTMENT OF COMMERCE

SUBJECT : SPSS SEMESTER : III SUBJECT CODE: 16CCP312

CLASS : II M.Com. (CA)

Ex.No.4

Paired 't' Test

Aim

To calculate paired 't' test to find whether student's performance differs before and after training programme

Algorithm

Step 1:	Start the Process
Step 2:	Type Quantitative data on Variable 1 and Variable 2
Step 3:	Select Compare Means from Analyze Menu
Step 4:	Select paired 't' Test from Compare Means menu
Step 5:	Forward Variable 1 and Variable 2 data set to Paired Variables window
Step 6:	Click Ok button on Independent Sample 't' test window
Step 7:	Stop the process

Result

The above statistical analysis has been verified by using SPSS Package.

Paired 't' Test 20 Bat

Paired Samples Correlations

		N	Correlation	Sig.
Pair 1	VAR00001 & VAR00002	9	.784	.012

Paired Samples Test

	-			Paired Difference	ces				
					95% Confidence Interval of the Difference				
		Mean	Std. Deviation	Std. Error Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	VAR00001 - VAR00002	-1.16667E1	6.72681	2.24227	-16.83735	-6.49598	-5.203	8	.001

Analysis of Variance (ANOVA) 2016-2018 Batch

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act 1956) Coimbatore - 641021. (For the candidates admitted from 2016 onwards) DEPARTMENT OF COMMERCE

SUBJECT : SPSS SEMESTER : III SUBJECT CODE: 16CCP312

CLASS : II M.Com. (CA)

Ex.No.5

Analysis of Variance (ANOVA)

Aim

To calculate ANOVA test to find whether mean differs among more than two groups

Algorithm

Step 1:	Start the Process					
Step 2:	Type Quantitative data on Variable 1					
Step 3:	Group the Quantitative data in to more than two groups by assigning					
	qualitative values (i.e.) 1,2,3					
Step 4:	Select Compare Means from Analyze Menu					
Step 5:	Select One way ANOVA option from Compare Means menu					
Step 6:	Forward Quantitative data to Dependent list and Qualitative data to Factor					
Step 7:	Click Option Command button					
Step 8:	Click Description option on Statistics and click continue button					
Step 9:	Click Ok button on One way ANOVA window					
Step 10	Stop the process					

Result

The above statistical analysis has been verified by using SPSS Package.

Descriptives

					95% Confidence Interval for Mean			
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
1	83	65.7420	12.40484	1.36161	63.0334	68.4507	35.86	93.10
2	131	73.1511	12.02735	1.05083	71.0722	75.2301	35.86	91.72
3	86	72.2779	13.61429	1.46807	69.3590	75.1968	42.76	93.79
Total	300	70.8510	12.95901	.74819	69.3786	72.3233	35.86	93.79

ANOVA							
VAR00001							
	Sum of Squares	df	Mean Square	F	Sig.		
Between Groups	3034.594	2	1517.297	9.552	.000		
Within Groups	47178.261	297	158.849				
Total	50212.855	299					

(Deemed University Established Under Section 3 of UGC Act 1956) Coimbatore - 641021. (For the candidates admitted from 2016 onwards) DEPARTMENT OF COMMERCE

SUBJECT : SPSS SEMESTER : III SUBJECT CODE: 16CCP312

CLASS : II M.Com. (CA)

Ex.No.6

Correlation

Aim

To calculate Correlation to find nature of relation between dependent and independent variable

Algorithm

Step 1:	Start the Process
Step 2:	Type Dependent variables on Variable 1 and Independent variables from
	Variable 2, Variable 3
Step 3:	Select Correlate option from Analyze Menu
Step 4:	Select Bivariate command option from Correlate sub menu
Step 5:	Forward all the variables (Dependent and Independent variables) to variables
	window
Step 6:	Click Ok button on Bivariate Correlation window
Step 7	Stop the process

Result

The above statistical analysis has been verified by using SPSS Package.

		Corre	elations			
		Dividend	PYD	Depreciation	PAT	VAR00005
Dividend	Pearson Correlation	1	.307	531	.842**	020
	Sig. (2-tailed)		.459	.176	.009	.963
	Ν	8	8	8	8	8
PYD	Pearson Correlation	.307	1	083	.481	.732 [*]
	Sig. (2-tailed)	.459		.844	.228	.039
	Ν	8	8	8	8	8
Depreciation	Pearson Correlation	531	083	1	148	.247
	Sig. (2-tailed)	.176	.844		.726	.556
	Ν	8	8	8	8	8
PAT	Pearson Correlation	.842**	.481	148	1	.297
	Sig. (2-tailed)	.009	.228	.726		.475
	Ν	8	8	8	8	8
VAR00005	Pearson Correlation	020	.732*	.247	.297	1
	Sig. (2-tailed)	.963	.039	.556	.475	
	Ν	8	8	8	8	8

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

(Deemed University Established Under Section 3 of UGC Act 1956) Coimbatore - 641021. (For the candidates admitted from 2016 onwards) DEPARTMENT OF COMMERCE

SUBJECT: SPSSSEMESTER: IIISUBJECT CODE:16CCP312

CLASS : II M.Com. (CA)

Ex.No.7

Spearman Rank Correlation

Aim

To compute Spearman rank correlation to ascertain nature of relation that exists between two set of evaluators

Algorithm

Step 1:	Start the Process
Step 2:	Type students marks evaluated by two different faculty at Variable 1 and Variable 2
Step 3:	Select Correlate option from Analyze Menu
Step 4:	Select Bivariate command option from Correlate sub menu
Step 5:	Forward all the variables marks of students to variables window
Step 6:	Click Spearman option on Correlation Coefficient option
Step 7:	Click Ok button on Bivariate Correlation window
Step 8:	Stop the process

Result

Thus spearman rank test analysis has been verified by using SPSS Package.

Nonparametric Correlations

		Correlations		
	-	-	VAR00001	VAR00002
Spearman's rho	VAR00001	Correlation Coefficient	1.000	359
		Sig. (2-tailed)		.382
		Ν	8	8
	VAR00002	Correlation Coefficient	359	1.000
		Sig. (2-tailed)	.382	
		Ν	8	8

(Deemed University Established Under Section 3 of UGC Act 1956) Coimbatore - 641021. (For the candidates admitted from 2016 onwards) DEPARTMENT OF COMMERCE

SUBJECT: SPSSSEMESTER: IIISUBJECT CODE:16CCP312

CLASS : II M.Com. (CA)

Ex.No.8

Regression

Aim

To ascertain the combined influence of select independent variables over dependent variable, regression test is employed

Algorithm

Step 1:	Start the Process
Step 2:	Type Dependent variables data on variable 1 and independent variables data on variable 2, variable 3 etc.,
Step 3:	Select Regression option from Analyze Menu
Step 4:	Select linear command option from regression sub menu
Step 5:	Forward Dependent variable to Dependent option and Independent variables
Stop 6:	Click Ok button on Linear Pagression window
Step 0.	Click OK button on Linear Regression window
Ster 7.	
Step /:	Stop the process

Result

Thus regression test has been verified by using SPSS Package.

Variables Entered/Removed ^b						
	Variables	Variables				
Model	Entered	Removed	Method			
1	Sales,					
Depreciation,			Enter			
	PAT, PYD ^a					

a. All requested variables entered.

b. Dependent Variable: Dividend

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.951 ^a	.904	.776	.24474

a. Predictors: (Constant), Sales, Depreciation, PAT, PYD

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.695	4	.424	7.074	.070 ^a
	Residual	.180	3	.060		
	Total	1.875	7			

a. Predictors: (Constant), Sales, Depreciation, PAT, PYD

b. Dependent Variable: Dividend

Coefficients^a

		Unstandardize	ed Coefficients	Standardized Coefficients		
Model		B Std. Error Beta	t	Sig.		
1	(Constant)	.067	.324		.207	.849
	PYD	.014	.305	.014	.045	.967
	Depreciation	-1.236	.696	359	-1.776	.174
	PAT	.883	.217	.838	4.078	.027
	Sales	007	.011	190	647	.564

a. Dependent Variable: Dividend

(Deemed University Established Under Section 3 of UGC Act 1956) Coimbatore - 641021. (For the candidates admitted from 2016 onwards) DEPARTMENT OF COMMERCE

SUBJECT: SPSSSEMESTER: IIISUBJECT CODE:16CCP312

CLASS : II M.Com. (CA)

Ex.No.8

Regression

Aim

To ascertain the combined influence of select independent variables over dependent variable, regression test is employed

Algorithm

Step 1:	Start the Process
Step 2:	Type Dependent variables data on variable 1 and independent variables data on variable 2, variable 3 etc.,
Step 3:	Select Regression option from Analyze Menu
Step 4:	Select linear command option from regression sub menu
Step 5:	Forward Dependent variable to Dependent option and Independent variables
Stop 6:	Click Ok button on Linear Pagression window
Step 0.	Click OK button on Linear Regression window
Ster 7.	
Step /:	Stop the process

Result

Thus regression test has been verified by using SPSS Package.

Variables Entered/Removed ^b						
	Variables	Variables				
Model	Entered	Removed	Method			
1	Sales,					
Depreciation,			Enter			
	PAT, PYD ^a					

a. All requested variables entered.

b. Dependent Variable: Dividend

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.951 ^a	.904	.776	.24474

a. Predictors: (Constant), Sales, Depreciation, PAT, PYD

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.695	4	.424	7.074	.070 ^a
	Residual	.180	3	.060		
	Total	1.875	7			

a. Predictors: (Constant), Sales, Depreciation, PAT, PYD

b. Dependent Variable: Dividend

Coefficients^a

		Unstandardize	ed Coefficients	Standardized Coefficients		
Model		B Std. Error Beta	t	Sig.		
1	(Constant)	.067	.324		.207	.849
	PYD	.014	.305	.014	.045	.967
	Depreciation	-1.236	.696	359	-1.776	.174
	PAT	.883	.217	.838	4.078	.027
	Sales	007	.011	190	647	.564

a. Dependent Variable: Dividend

(Deemed University Established Under Section 3 of UGC Act 1956) Coimbatore - 641021. (For the candidates admitted from 2016 onwards) DEPARTMENT OF COMMERCE

SUBJECT: SPSSSEMESTER: IIISUBJECT CODE:16CCP312

CLASS : II M.Com. (CA)

Ex.No.9

Factor Analysis

Aim

To find out the multi collinearity exists between variables and to find out the important factors (or) variables among the various set of variables introduced

Algorithm

Step 1:	Start the Process
Step 2:	Type qualitative data on data view window
Step 3:	Select Data reduction option from Analyze Menu
Step 4:	Select factor analysis command option from data reduction sub menu
Step 5:	Forward all the variables introduced to variables option
Step 6:	Select Descriptive command window, and select KMO and Bartlett's test of
	Sphercity option and click continue command button
Step 7:	Select Rotation command button on Factor analysis window, and select
	varimax option and click continue command button
Step 8:	Click Ok button on Factor Analysis window
Step 9:	Stop the process

Result

Thus factor test has been verified by using SPSS Package.

КМО	and Bartlett's Test	
Kaiser-Meyer-Olkin Measure	of Sampling Adequacy.	.908
Bartlett's Test of Sphericity Approx. Chi-Square		3.947E3
	df	406
	Sig.	.000

		Component						
	1	2	3	4	5	6	7	
VAR00001	.585	.192	.452	.085	.235	.045	.307	
VAR00002	.325	052	.233	.512	.317	052	.185	
VAR00003	.131	.173	.124	.163	.140	.167	.752	
VAR00004	.121	.202	.598	160	.102	.038	.066	
VAR00005	.258	.233	137	.538	.168	.213	.226	
VAR00006	.105	.064	.750	.229	.063	.012	041	
VAR00007	.389	.263	.004	.392	.081	.257	.406	
VAR00008	.700	.254	.394	.074	.193	.052	.181	
VAR00009	.277	.062	.039	.315	.525	.129	.141	
VAR00010	.407	.219	.053	.136	.093	.043	.586	
VAR00011	040	.169	.569	238	107	.212	.328	
VAR00012	.344	.108	059	.690	.033	.253	.065	
VAR00013	.138	.328	.651	.136	.076	.072	.039	
VAR00014	.796	.106	.058	.259	.133	.213	.102	
VAR00015	.016	.134	.043	.267	.641	.012	.361	
VAR00016	.140	.642	.348	115	015	.148	.173	
VAR00017	.430	012	.102	.417	021	.425	.136	
VAR00018	.010	.580	.359	.283	.173	.191	.188	
VAR00019	.768	.096	016	.206	.171	.299	.068	
VAR00020	.185	.058	.171	106	.737	.084	.082	
VAR00021	.121	.655	.114	123	.176	099	.228	
VAR00022	.073	156	.204	.382	.196	.603	.234	
VAR00023	.213	.658	.191	.344	.036	.151	001	
VAR00024	.590	.092	.222	.233	.298	.309	.066	

Rotated Component Matrix^a

					Facto	r Analysis	2016-2018 Batch	}
VAR00025	.205	.323	051	.107	.582	.181	126	
VAR00026	.037	.477	.231	.124	.248	066	.439	
VAR00027	.248	.007	.082	.027	.061	.769	.069	
VAR00028	.083	.554	.162	.486	.168	098	.086	
VAR00029	.315	.351	.028	.088	.173	.639	017	

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 15 iterations.

(Deemed University Established Under Section 3 of UGC Act 1956) Coimbatore - 641021. (For the candidates admitted from 2016 onwards) DEPARTMENT OF COMMERCE

SUBJECT: SPSSSEMESTER: IIISUBJECT CODE:16CCP312

CLASS : II M.Com. (CA)

Ex.No.9

Factor Analysis

Aim

To find out the multi collinearity exists between variables and to find out the important factors (or) variables among the various set of variables introduced

Algorithm

Step 1:	Start the Process
Step 2:	Type qualitative data on data view window
Step 3:	Select Data reduction option from Analyze Menu
Step 4:	Select factor analysis command option from data reduction sub menu
Step 5:	Forward all the variables introduced to variables option
Step 6:	Select Descriptive command window, and select KMO and Bartlett's test of
	Sphercity option and click continue command button
Step 7:	Select Rotation command button on Factor analysis window, and select
	varimax option and click continue command button
Step 8:	Click Ok button on Factor Analysis window
Step 9:	Stop the process

Result

Thus factor test has been verified by using SPSS Package.

КМО	KMO and Bartlett's Test			
Kaiser-Meyer-Olkin Measure	of Sampling Adequacy.	.908		
Bartlett's Test of Sphericity	Approx. Chi-Square	3.947E3		
	df	406		
	Sig.	.000		

		Component						
	1	2	3	4	5	6	7	
VAR00001	.585	.192	.452	.085	.235	.045	.307	
VAR00002	.325	052	.233	.512	.317	052	.185	
VAR00003	.131	.173	.124	.163	.140	.167	.752	
VAR00004	.121	.202	.598	160	.102	.038	.066	
VAR00005	.258	.233	137	.538	.168	.213	.226	
VAR00006	.105	.064	.750	.229	.063	.012	041	
VAR00007	.389	.263	.004	.392	.081	.257	.406	
VAR00008	.700	.254	.394	.074	.193	.052	.181	
VAR00009	.277	.062	.039	.315	.525	.129	.141	
VAR00010	.407	.219	.053	.136	.093	.043	.586	
VAR00011	040	.169	.569	238	107	.212	.328	
VAR00012	.344	.108	059	.690	.033	.253	.065	
VAR00013	.138	.328	.651	.136	.076	.072	.039	
VAR00014	.796	.106	.058	.259	.133	.213	.102	
VAR00015	.016	.134	.043	.267	.641	.012	.361	
VAR00016	.140	.642	.348	115	015	.148	.173	
VAR00017	.430	012	.102	.417	021	.425	.136	
VAR00018	.010	.580	.359	.283	.173	.191	.188	
VAR00019	.768	.096	016	.206	.171	.299	.068	
VAR00020	.185	.058	.171	106	.737	.084	.082	
VAR00021	.121	.655	.114	123	.176	099	.228	
VAR00022	.073	156	.204	.382	.196	.603	.234	
VAR00023	.213	.658	.191	.344	.036	.151	001	
VAR00024	.590	.092	.222	.233	.298	.309	.066	

Rotated Component Matrix^a

					Facto	r Analysis	2016-2018 Batch	}
VAR00025	.205	.323	051	.107	.582	.181	126	
VAR00026	.037	.477	.231	.124	.248	066	.439	
VAR00027	.248	.007	.082	.027	.061	.769	.069	
VAR00028	.083	.554	.162	.486	.168	098	.086	
VAR00029	.315	.351	.028	.088	.173	.639	017	

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 15 iterations.

Kolmogorov and Smirnov Test 2016-2018 Batch

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act 1956) Coimbatore - 641021. (For the candidates admitted from 2016 onwards) DEPARTMENT OF COMMERCE

SUBJECT: SPSSSEMESTER: IIISUBJECT CODE:16CCP312

CLASS : II M.Com. (CA)

Ex.No.10

Kolmogorov and Smirnov Test

Aim

To test whether the data is normally distributed or uniformly distributed

Algorithm

Step 1:	Start the Process
Step 2:	Type qualitative data on data view window
Step 3:	Select Non Parametric Test Option from Analyze Menu
Step 4:	Select 1 Sample KS command option from Non Parametric Test sub menu
Step 5:	Forward all the variables to Test variables list window
Step 6:	Click poisson option at Test distribution
Step 7:	Click Ok button on One Sample Kolmogorov Smirnov test window
Step 8:	Stop the process

Result

Thus Kolmogorov Smirnov analysis has been verified by using SPSS Package.

	One-Sample Konnogorov-Simmov Test				
		VAR00001	VAR00002	VAR00003	VAR00004
N	-	30	30	30	30
Normal Parameters ^a	Mean	1.1333	3.2000	3.8000	1.8667
	Std. Deviation	.34575	.40684	.40684	.34575
Most Extreme Differences	Absolute	.517	.488	.488	.517
	Positive	.517	.488	.312	.350
	Negative	350	312	488	517
Kolmogorov-Smirnov Z		2.831	2.676	2.676	2.831
Asymp. Sig. (2-tailed)		.000	.000	.000	.000
a. Test distribution is Norma	l				

One-Sample Kolmogorov-Smirnov Test

One-Sample Kolmogorov-Smirnov Test 2

		VAR00001	VAR00002	VAR00003	VAR00004
N		30	30	30	30
Poisson Parameter ^a	Mean	1.1333	3.2000	3.8000	1.8667
Most Extreme Differences	Absolute	.322	.380	.332	.310
	Positive	.180	.219	.332	.287
	Negative	322	380	273	310
Kolmogorov-Smirnov Z		1.763	2.081	1.819	1.698
Asymp. Sig. (2-tailed)		.004	.000	.003	.006
a. Test distribution is Poisson.					

Mann Whitney U Test 2016-2018 Batch

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act 1956) Coimbatore - 641021. (For the candidates admitted from 2016 onwards) DEPARTMENT OF COMMERCE

SUBJECT : SPSS SEMESTER : III SUBJECT CODE: 16CCP312

CLASS : II M.Com. (CA)

Ex.No.11

Mann Whitney U Test

Aim

To test whether two independent samples are drawn from the same population or not

Algorithm

Step 1:	Start the Process
Step 2:	Type Quantitative data on variable 1 and qualitative data on variable 2 for grouping of data
Step 3:	Select Non Parametric Test Option from Analyze Menu
Step 4:	Select 2 Independent Sample option from Non Parametric Test sub menu
Step 5:	Forward variable 1 to Test Variable list
Step 6:	Forward variable 2 to Grouping variables
Step 7:	Click Define group command button and type qualitative data entered in
	Group 1 and Group 2 and click command button
Step 8:	Click Ok button on 2 Independent Sample test window
Step 9:	Stop the process

Result

Thus Mann Whitney U Test has been verified by using SPSS Package.

		Ranl	KS	
	VAR00			
	002	Ν	Mean Rank	Sum of Ranks
VAR00001	1	15	12.90	193.50
	2	12	15.38	184.50
	Total	27		

Test Statistics^b

	VAR00001
Mann-Whitney U	73.500
Wilcoxon W	193.500
z	806
Asymp. Sig. (2-tailed)	.420
Exact Sig. [2*(1-tailed Sig.)]	.427 ^a

a. Not corrected for ties.

b. Grouping Variable: VAR00002

(Deemed University Established Under Section 3 of UGC Act 1956) Coimbatore - 641021. (For the candidates admitted from 2016 onwards) DEPARTMENT OF COMMERCE

SUBJECT : SPSS SEMESTER : III SUBJECT CODE: 16CCP312

CLASS : II M.Com. (CA)

Ex.No.12

Wilcoxon Test

Aim

To test whether ranks given by two faculties are similar

Algorithm

Step 1:	Start the Process
Step 2:	Type Quantitative data on variable 1 and variable 2
Step 3:	Select Non Parametric Test Option from Analyze Menu
Step 4:	Select Two Related Sample option from Non Parametric Test sub menu
Step 5:	Forward variable 1 and variable 2 to Test Pair window
Step 6:	Click Ok button on 2 Independent Sample test window
Step 7:	Stop the process

Result

Thus Wilcoxon Test has been verified by using SPSS Package.

	Ran	iks		
		Ν	Mean Rank	Sum of Ranks
VAR00002 - VAR00001	Negative Ranks	11 ^a	9.23	101.50
	Positive Ranks	4 ^b	4.62	18.50
	Ties	1 ^c		
	Total	16		

a. VAR00002 < VAR00001

b. VAR00002 > VAR00001

c. VAR00002 = VAR00001

Wilcoxon Signed Ranks Test

Test Statistics^b

	VAR00002 -
	VAR00001
z	-2.358 ^a
Asymp. Sig. (2-tailed)	.018

a. Based on positive ranks.

b. Wilcoxon Signed Ranks Test

Friedman Rank Test 2016-2018 Batch

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act 1956) Coimbatore - 641021. (For the candidates admitted from 2016 onwards) DEPARTMENT OF COMMERCE

SUBJECT : SPSS SEMESTER : III SUBJECT CODE: 16CCP312

CLASS : II M.Com. (CA)

Ex.No.13

Friedman Rank Test

Aim

To identify significant factors among set of factors introduced

Algorithm

Step 1:	Start the Process
Step 2:	Type Quantitative data on variable 1, variable 2 etc.,
Step 3:	Select Non Parametric Test Option from Analyze Menu
Step 4:	Select K Related Sample option from Non Parametric Test sub menu
Step 5:	Forward all the variables to Test variables window
Step 6:	Click Ok button on Test for Several related samples window
Step 7:	Stop the process

Result

Thus Friedman Test has been verified by using SPSS Package.

Friedman Rank Test	2016-2018 Batch
--------------------	--------------------

Friedman Test

Ranks Mean Rank VAR00001 7.24 VAR00002 3.62 VAR00003 3.42 VAR00004 3.46 VAR00005 5.05 VAR00006 6.17 VAR00007 7.25 VAR00008 7.54 VAR00009 7.99 VAR00010 8.15 VAR00011 8.60 VAR00012 9.52

Test Statistics^a

N	1000
Chi-Square	3.838E3
df	11
Asymp. Sig.	.000

a. Friedman Test

Kruskal Wallis H-Test 2016-2018 Batch

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act 1956) Coimbatore - 641021. (For the candidates admitted from 2016 onwards) DEPARTMENT OF COMMERCE

SUBJECT: SPSSSEMESTER: IIISUBJECT CODE:16CCP312

CLASS : II M.Com. (CA)

Ex.No.14

Kruskal Wallis H-Test

Aim

To identify whether mean differs among various group of respondents

Algorithm

Step 1:	Start the Process
Step 2:	Type Quantitative data on variable 1
Step 3:	Type Qualitative data on variable 2 for grouping of data
Step 4:	Select Non Parametric Test Option from Analyze Menu
Step 5:	Select K Independent Sample option from Non Parametric Test sub menu
Step 6:	Forward Quantitative variable to Test Variable List
Step 7:	Forward Qualitative variable to Grouping Variable
Step 8:	Type Minimum and Maximum variables on Grouping Window and click
	continue button
Step 9:	Click Ok button
Step 10	Stop the process

Result

Thus Kruskal Wallis Test has been verified by using SPSS Package.

Kruskal-Wallis Test

Ranks							
	VAR00						
	002	Ν	Mean Rank				
VAR00001	1	83	118.46				
	2	131	165.15				
	3	86	159.10				
	Total	300					

Test Statistics^{a,b}

	VAR00001
Chi-Square	15.921
df	2
Asymp. Sig.	.000

a. Kruskal Wallis Test

b. Grouping Variable:

VAR00002

Garrett Ranking Test 2016-2018 Batch

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act 1956) Coimbatore - 641021. (For the candidates admitted from 2016 onwards) DEPARTMENT OF COMMERCE

SUBJECT : SPSS SEMESTER : III SUBJECT CODE: 16CCP312

CLASS : II M.Com. (CA)

Ex.No.15

Garrett Ranking

Aim

To rank the variables or factors on the basis of order of importance Garett Ranking test is employed.

Algorithm

Step 1:	Start the Process
Step 2:	Type 'n' number of numbers according to number of variables considered for
	the study
Step 3:	Subtract the 'n' number with 0.5
Step 4:	Result obtained from subtraction are to be multiplied by 100
Step 5:	Divide the multiplied values with 'n' numbers
Step 6:	By ascertaining Garett ranking table, weightage may be assigned for 'n' numbers
Step 7:	Calculate simple frequency for the variables
Step 8:	Multiply simple frequency values with weightage, obtained from Garett ranking table
Step 9:	Add all the multiplied values and divide the same from 'n' numbers
Step 10	Resultant output may be ranked in descending order
Step 11:	Stop the process

Result

Thus Garett ranking test has been computed

Garrett Ranking Test 2016-2018 Batch

Decemintion	Ι	II	III	IV	V	VI	VII	Total	Total	Mean	Rank
Description	(79)	(66)	(57)	(50)	(43)	(34)	(21)		Score	Score	
Security	17	30	33	33	18	24	45	200	9389	46.95	7
	1343	1980	1881	1650	774	816	945				
Reliability	23	10	29	40	42	31	25	200	9515	47.58	6
	1817	660	1653	2000	1806	1054	525				
Easy to use	48	27	19	31	27	29	19	200	10753	53.77	2
	3792	1782	1083	1550	1161	986	399				
Convenience	27	35	29	20	24	33	32	200	9922	49.61	3
	2133	2310	1653	1000	1032	1122	672				
Responsiveness	23	34	29	16	27	36	35	200	9634	48.17	5
	1817	2244	1653	800	1161	1224	735				
Speed	35	41	32	37	19	14	22	200	10900	54.50	1
	2765	2706	1824	1850	817	476	462				
Cost Effective	27	22	28	24	44	33	22	200	9857	49.29	4
	2133	1452	1596	1200	1892	1122	462				

Level of Influence – Garett Ranking