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Scope: On successful completion of course the learners gain about the behavior of polynomials and
operators.

Objectives: To enable the students to learn and gain knowledge about polynomial rings over
commutative rings, dual spaces, dual basis, double dual, minimal solutions to systems of linear equations,
normal and self-adjoint operators.

UNIT |

RINGS

Polynomial rings over commutative rings - Division algorithm and consequences - Principal idealdomains
- Factorization of polynomials - Reducibility tests - Irreducibility tests - Eisenstein criterion - Unique
factorization in Z[x].

UNIT 1

INTEGRAL DOMAINS

Divisibility in integral domains- Irreducibles — Primes - Unique factorization domains - Euclidean
domains.

UNIT 111

VECTOR SPACES

Dual spaces - Dual basis - Double dual - Transpose of a linear transformation and its matrix in thedual
basis - Annihilators - Eigen spaces of a linear operator - Diagonalizability - Invariant
subspacesandCayley-Hamilton theorem - The minimal polynomial for a linear operator.

UNIT IV

INNER PRODUCT SPACES

Inner product spaces and norms - Gram-Schmidt orthogonalisation process - Orthogonal
complements - Bessel’s inequality - The adjoint of a linear operator.

UNIT V

OPERATORS

Least Squares Approximation - Minimal solutions to systems of linear equations - Normal and self -
Adjoint operators - Orthogonal projections and Spectral theorem.
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TEXT BOOK
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ACADEMY OF HIGHER EDUCATION COImbatore _ 641 021

(Deemed to he University]
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LECTURE PLAN
DEPARTMENT OF MATHEMATICS

Staff name: U.R.Ramakrishnan

Subject Name: Ring Theory and Linear Algebra 11 Sub.Code:17MMUG01A
Semester: VI Class: 111 B. Sc Mathematics
S.No Lecture Topics to be Covered Support Material/ Page Nos
Duration
Period
UNIT-I

1. 1 Polynomial rings over commutative T1: chap-1V Pg.N0:198-209
rings

2. 1 Tutorial-1

3. 1 Division algorithm for polynomial T1: chap-1V Pg.N0:210-212
Ring.

4, 1 Principal ideal domains T1: chap-1X Pg.N0:391-393

5. 1 Tutorial-2

6. 1 Factorization of polynomials T1: chap-V Pg.No0:237-239

7. 1 Theorems on Factorization of T1: chap-V Pg.No0:242-243
Polynomials

8. 1 Reducibility tests T1: chap-1V Pg.N0:214-216

9. 1 Tutorial-3

10. 1 Irreducibility tests T1: chap-1V Pg.N0:216-218

11. 1 Theorems for Reducibility and T1: chap-1V Pg.N0:214-218
irreducibility

12. 1 Tutorial-4

13. 1 Eisenstein criterion T1: chap-1V Pg.No0:215-217

14, 1 Unique factorization in Z[X]. T1: chap-1V Pg.N0:217-218

15. 1 Recapitulation and Discussion of
possible questions

Total No of Hours Planned For Unit 1=15
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Lesson Plan

2017 -2020
Batch

UNIT-1
L Divisibility in integral domains T1: chap-1X Pg.N0:388-389
2 Prime and irreducible T1: chap-1X Pg.N0:389-390
3 Tutorial-1
4 Theorems on prime and irreducible. T1: chap-1X Pg.N0:390-391
> Examples of Prime and irreducible. T1: chap-1X Pg.N0:394-395
6. Principle 1deal Domain T1: chap-1X Pg.N0:391-393
7. Tutorial-2
8. Unique Factorization Domain T1: chap-1X Pg.N0:390-391
% Theorems on PID and UFD T1: chap-1X Pg.N0:391-398
10. Tutorial-3
1L Euclidean Domain definition with T1: chap-1X Pg.No:401
examples
12 Theorems on ED and PID T1: chap-1X Pg.N0:402-404
13 Tutorial-4
14. Corollary on ED and UFD T1: chap-IX Pg.No:404-406
15 Example of Gaussian/ integer T1: chap-1X Pg.N0:407-411
16. Recapitulation and Discussion of
possible questions
Total No of Hours Planned For Unit 11=16
UNIT-111
L Introduction to Dual Spaces R1: chap-2 Pg.No:119
2 Definition and concepts of Dual basis | R1: chap-2 Pg.No:119-120
3 dual basis, double dual R1: chap-2 Pg.N0:120-122
4.

Tutorial-1
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Lesson Plan

2017 -2020
Batch

> Transpose of a linear transformation | R1: chap-2 Pg.N0:123-125
and its matrix in the dual basis
6 Transpose of a linear transformation | R1: chap-2 Pg.No:125-127
and its matrix in the dual basis-
Problems
7 Tutorial-2
8 Annihilator- Definition and theorem | R1: chap-2 Pg.N0:127-128
S Eigen spaces of a linear operator R1: chap3 Pg.N0:173-176
10. Tutorial-3
11 Diagonalizability R1: chap-5 Pg.N0:261-263
12 Invariant subspaces R1: chap-5 Pg.N0:313-317
13. Tutorial-4
14. Cayley-Hamilton theorem R1: chap-5 Pg.No:-317-318
15 Minimal polynomial for a linear R1: chap-5 Pg.No0:-319-321
operator
16. Recapitulation and Discussion of
possible questions
Total No of Hours Planned For Unit 111=16
UNIT-1V
L Inner product spaces and Norm R1: chap-6 Pg.N0:329-330
2 Examples for Inner Product Spaces R1: chap-6 Pg.N0:330-333
3 Tutorial-1
4 Gram-Schmidt orthogonalization R1: chap-6 Pg.N0:341-342
process-theorem
> Continuation of the theorem on R1: chap-6 Pg.No:342-344
Gram-Schmidt orthogonalization
process
6.

Problems on Gram-Schmidt

R1:

chap-6 Pg.N0:345-346
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2017 -2020
Batch

orthogonalisation process

7 Tutorial-2

8 Orthogonal Complements R1: chap-6 Pg.N0:349-351

5 Bessel’s inequality R2: chap-17 Pg.N0:175-177

10. The adjoint of a linear operator R1: chap-6 Pg.N0:357-358

11 Tutorial-3

12 Theorems on the adjoint of a linear R1: chap-6 Pg.No:359
operator

13. Continuation of theorems on adjoint | R1: chap-6 Pg.N0:359-360
of a linear operator

14. Tutorial-4

15 Recapitulation and Discussion of
possible questions

Total No of Hours Planned For Unit IV=15
UNIT-V

L Least Squares Approximation R1: chap-6 Pg.N0:360-361

2 Theorem on Least Squares R1: chap-6 Pg.N0:361-362
Approximation

3 Problems on Least Squares R1: chap-6 Pg.N0:362-363
Approximation

4 Tutorial-1

> Systems of linear equations R1: chap-6 Pg.No:364

6 Minimal solutions to systems of R1: chap-6 Pg.N0:364-365
linear equations

7 Tutorial-2

8 Normaloperator-Problems R1: chap-6 Pg.No:369

9.

self-adjoint operators-Problems

R1:

chap-6 Pg.N0:370-373
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2017 -2020

Lesson Plan | 500

10. ! Tutorial-3
11 Orthogonal projections R1: chap-6 Pg.N0:398-400
12. ! Theorems on Orthogonal projections | R1: chap-6 Pg.N0:400-401
13 ! Spectral theorem R1: chap-6 Pg.No:401-403
14. ! Tutorial-4
15. 1 . . . .

Recapitulation and Discussion of

possible questions
16. 1 . . . .

Discussion on Previous ESE Question

Papers
17. 1 . . . .

Discussion on Previous ESE Question

Papers
18. 1 . . . .

Discussion on Previous ESE Question

Papers

Total No of Hours Planned for unit V=18
Total Planned Hours-80

SUGGESTED READINGS
TEXT BOOK

1. Fraleigh.J.B., (2004). A First Course in Abstract Algebra , Seventh Edition , Pearson
Education Ltd, Singapore.

REFERENCES

1. Stephen H. Friedberg., Arnold J. Insel., Lawrence E. Spence, (2004) . Linear Algebra,
Fourth Edition., Prentice- Hall of India Pvt. Ltd., New Delhi.

2. S. Lang, (2005). Introduction to Linear Algebra, Second Edition., Springer.
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc MATHEMATICS COURSE NAME: Ring Thory and Linear Algebra-II

COURSE CODE: 16MMU403 UNIT: 1 BATCH-2016-2019
UNIT-I
SYLLABUS

Polynomial rings over commutative rings, division algorithm and consequences, principal
idealdomains, factorization of polynomials, reducibility tests, irreducibility tests,
Eisenstein criterion, unique factorization in Z[x].
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RINGS OF POLYNOMIALS
Let R be a ring. A polynomial f(x) with coefficients in R is an infinite formal sum

o

Ln, =apbapx 4o Fapx"+ o,

=0

where a; € R and a; = 0 for all but a finite number of values of i. The a; are coefficients
of fix). If for some { > 0it is true that a; # 0, the largest such value of i is the degree
of f(x). If all ¢; = 0, then the degree of f(x)is undefined.! [

To simphify working with polynomials, let us agree that if f{x) =ap +ajx+---+
anx" 4+« has @; = 0 for i > i, then we may denote f(x) by ag +ayx + - -« 4 a,2",
Also, if R has unity 1 # 0, we will write a term 1x* in such a sum as x*. For example,
in Z[x], we will write the polynomial 2 + 1x as 2+ x, Finally, we shall agree that we
may omit altogether from the formal sum any term Ox', or ay ifag = O butnot all @, = 0,
Thus 0, 2, x, and 2 + x* are polynomials with coefficients in £. An element of R is a
constant polynomial,

Addition and multiplication of polynomials with coefficients in a ring R are defined
in a way familiar to us, If

fXi=ap+a@x = o yx -
and

glxy=by+bx +---F bx" 4.,
then for polynomial addition, we have

flx)+gizxl=cp+eix +---+cpx” + - where ¢, =iy + by,

' Theorem The set Rix) of all polynomials in an indeterminate x with coefficients in a ring R is a
ring under polynomial addition and multiplication, If R is commutative, then so1s Rix].
and if B has unity 1 £ 0, then 1 is also unity for Rlx).

Proof ‘That (R|x), +) is an abelian group is apparent. The associative law for mull.iplimluiun
anc the distributive laws are straightforward, but slightly cumbersome, computations,
We illustrate by proving the associative law.
Applying ring axioms to a;, #;, ¢x € R, we obtam
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b

(£)(E )£

The Evaluation Homomorphisms

Theorem (The Evaluation Homomorphisms for Field Theory) Let F be a subficld of a fizld
E. let @ be any element of E. and let x be an indeterminate. The map ¢, : Flx] — E
defined by

Pelap+ax + -+ apx") =ag+ajo + - + a.e”

for (ag + ajx 4+ + a,x") € F[x]is a homomorphism of F[x] into E. Also, ¢ (x) =
o, and ¢, maps F isomorphically by the identity map; that is, ¢, (a) = a fora € F. The
homomorphism ¢, is evaluation at o

Proof The subfield and mapping diagram in Fig. 22.5 may help us to visualize this situation.
The dashed lines indicate an element of the set. The theorem is really an immediate
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consequence of our definitions of addition and multiplication in F[x]. The map ¢, is
well defined, that is, independent of our representation of f(x) € F[x] as a finite sum

ag 4 agx + - + apx”,
since such a finite sum representing f(x) can be changed only by insertion or deletion
of terms Ox', which does not affect the value of ¢.( f{x)).
H fix)=ag+ax+---+ax", plx)=bg+byx +---+ bx™, and hix)=
flx)+glx)=co+e1x+ -+ ex", then
B flx) +ex) =gebx)=co+@g+ -+’
while
Gu( (X)) + Palg(x)) = (a0 + @y + -+ - + ana") + (b + byt + -+ 4 bya™),
Since by definition of polynomial addition we have ¢; = a; + b;, we see that
dal fx) + g(x)) = da(f(x)) + Palglx)).
Turning to muliplication, we see that if
filxdglx)=dp + dix + -+« + dex’,
then
o flxglx) =do +dix + -+ - + dya’,
while
[ FlN (gl = (an + ara + - + apa” )by + b + - - - + bua™).
Since by definition of polynomial multiplicationd; = 3;_, a;b;_;, we see that
Pul f(x)g(x)) = [@alfX)][Pa(2lx)]-

Thus é is a homomorphism.

The very definition of ¢, applied to a constant polynomial a € F[x], wherea £ F,
gives @.(a) = a. so ¢, maps F isomorphically by the identity map. Again by definiton
of .. we have g.(x) = dullx) = loa =a. *
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Fxample Let F be @ and E be R in Theorem 22.4, and consider the evaluation homomorphism

Example

Example

Example

¢ : Q[x] = K. Here
dolap+ayx +---+ax") =ap + @0+ --- +a,0" = ap.

Thus every polynomial is mapped onto its constant term. Y

Let E be (@ and E be B in Theorem 22.4 and consider the evaluation homomorphism
¢ : Plx] — K. Here

q‘.:;{ﬂ.;. +ax -+ +a,1.~."‘] =g +@2+ -+ a,2".
Note that
Sl +x—6)=224+2-6=0.
Thus x* + x — 6 is in the kernel N of ¢;. Of course,
P hr—6=(x=Dx+,

and the reason that ¢3(x* 4+ x — 6) =0isthat ¢glx = 2)=2-2=0. A

Let F be Q@ and E be C in Theorem 22.4 and consider the evaluation homomorphism
¢, : Qx] — C. Here

dilag + ayx + -+ - -'-u,,..r"]l =g+ ayf + -+ ayi”
and @i{x) = i. Note that
pixt+1)=i*+1=0,

50 x* 4+ | is in the kernel N of ¢;. A

Let F be @ and let E be B in Theorem 22.4 and consider the evaluation homomorphism
oy ; Qx] — E. Here

o lay + x4+ aux" ) =ap+aw + coedymt,

[t can be proved thatag + ar + - -+ + a, 7" = Oif andonly if a - Ofori =0, 1, Ly
Thus the kemnel of ¢y is {0}, and $, is & one-lo-one map. This shows that all formal

polynomials in 7 with rational coefficients form a ring isomorphic to {}[x] in a natural

way with g (x) = =. A
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\Definition Let F be a subficld of a field E, and let @ be an clement of E. Let fix)=ap+

Theorem

Proof

@i x +---+ ayx" be in F[x], and let ¢, : F[x] — E bethe evaluation homomorphism
of Theorem 22.4. Let fie) denote

ol flx)) =ap +ajee + -+ a.a".
If fice) = 0. then o is a zero of f(x). m

In terms of this definition, we can rephrase the classical problem of finding all real
numbers r such that r2 + ¢ — 6 = 0 by letting F = Q and E = R and finding all &« € 14
such that

Gu(x: +x-6)=0,
that is, finding all zeros of X ! &+ x = 6in K. Both problems have the same answer, since

la € R|dulx! +x—6) =0} =freR|r’ +r—-6=0}={2,-3].

The polynomial x* — 2 has no zeros in the rational numbers. Thus /2 is not a rational
number.

Suppose that m /n for m, n € Z is a rational number such that (m/n)* = 2. We assume
that we have canceled any factors common to m and », so that the fraction m/n is in
lowest terms with gedim. n) = 1. Then

where both m® and 2n? are integers. Since m* and 2n® are the same integer, and since
2 is a factor of 2n?, we see that 2 must be one of the factors of m>, Bul as a square.
m? has as factors the factors of m repeated twice. Thus m” must have two factors 2. Then
2n” must have two factors 2, so n® must have 2 as a faclor, and consequently n has 2
as a factor. We have deduced from m” = 2n” that both m and n must be divisible by 2,
contradicting the fact that the fraction m/n is in lowest terms. Thus we have 2 = (m /n)”
forany m,n € L *

Thus the Pythagoreans ran right into the question of a solution of a polvnomial equa-
tion, x> — 2 = (. We refer the student to Shanks [36, Chapier 3], for a hively and totally
delightful account of this Pythagorean dilemma and its significance in mathematics.

Factorizarion oF PoLyNomiaLs ovER A FIELD
The Division Algorithm in F[x]

The following theorem is the basic tool for our work in this section. Note the similarity
with the division algorithm for Z given in Theorem 6.3, the importance of which has
been amply demonstrated.
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Theorem (Division Algorithm for Flx]) Let
f(x)=a,x" +ay 1" e g
and
2(%) = Bpi™ 4 b X" o+ By
be two elements of F[x], with 4, and b,, both nonzero elements of F and m > 0. Then
there are unique polynomials ¢(x) and r{x) in F[x] such that f(x) = glx}g(x) + rix),
where cither r(x) = 0 or the degree of r{x) is less than the degree m of g(x).

Proof Considerthe set S = { f(x) — glx)six)|s(x) € Flx]}. If 0 € § then there exists an 5(x)
such that fix) — g{x)s{x) =0, s0 flx)= glx)s(x). Taking g(x) = s(x) and r(x) =0,
we are done. Otherwise, let rix) be an element of minimal degree in 5. Then

fix) = glx)glx) + rix)
for some g{x) € Flx]. We must show that the degree of r(x) is less than m. Suppose that

ﬂ'f_‘,[ )= If'rIr —]—f‘._l_rj_l i et I iy
withe; € Fande, 20,117 = m, then
Fix) — gix)glx) = (e, /b )x" "™ gix) = r(x) = (¢, /bu)x' ™" glx), i1

- and the latter is of the form
Fix) = (g;x" + terms of lower degree),

which is a polynomial of degree lower than 1, the degree of r(x). However, the polynomial
in Eq. (1) can be written in the form

f[_'[l - H[-I:I['[fl.x} + [{'Ir."lb_—_-._l.'l."r”w]:

s0 it is in §, contradicting the fact that r(x) was selected to have minimal degree in §.
Thus the degree of r(x) is less than the degree m of gix),
For uniqueness, if

fix) = gixlgx) 4+ rix)
and

fix) = glxigalx) + ralx),
then subtracting we have

g{x)gi(x) — galx)] = ralx) = ri{x).

Because either rs(x) = #y(x) = 0 or the degree of ra(x) = ry(x) is less than the degree
of g(x), this can hold only if g;(x) = ga(x) = 0 s0 gi(x) = ga(x). Then we must have
Fo{x)d = rilx) = 0 so ry(x) = rafx). *
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Example Let us work with polynomials in Zs[x] and divide

flx)=x"- W+ Fdr =1

by g(x) = x* = 2x + 310 find g{x) and r(x) of Theorem 23.1. The long division should
be casy to follow, but remember that we are in Zs[x], so, forexample, 4y — (=3v) = v,

]

=x=13

=243 x%t =33 2t - 4x = |

¥ = 217 4 3x?

x1 — x* 4 4x

—x! 2 =2
-3+ 20— 1
-3x*+ x -4
x+13

Thus
q{.t}:x‘j‘—.r—ﬁ, and rix)=x4+3. A

Corollary (Factor Theorem) Aneclementa € F isazeroof f{x) e Flx]ifand only if x — a is
a factor of fix)in F[x].

Proof Suppose that for a € F we have f(a)=0. By Theorem 23.1, there exist gix),
rix) € F[x] such that

flx) = (x —a)gixy+ rix),

where either rix) = 0 or the degree of r{x} is less than 1. Thus we must have rix) = ¢
forc e F,so

Jx)y=(x —a)glx)+c.

Applying our evaluation homomorphism, ¢, : Flx] — F of Theorem 22.4, we find
0= fia) = Ogia) + ¢,

so it must be that ¢ = 0. Then f{x) = (x — ajg{x), 50 x —a is a factor of fix).

Conversely, if x —a is a factor of fix)in F[x], where @ € F, then applying our
evaluation homomorpohism gy, 0 fix) = (x — a)gix), wehave fia) = Ogia) =0. &
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Example Working again in Zs[x ], note that | is a zero of
(x* + 32> + 2x + 4) € Zs[x].
Thus by Corollary 23.3, we should be able 1o factor vd 4+ 3x? 4 2x +4into(x — 1)glx)
in Zs[x]. Let us find the faclorization by long division.
244t +4x +1
=10 &+ 3t 4+ 2x + 4
R S x*
4x*
4x? — 4x°
4x + 2x
4x! — 4x
x+ 4
xr — 1
i
Thus x* + 3¢ + 2x + 4 = (x — Dix® +4x* + 4x + 1) in Zs[x]. Since 1 is seen to be
a zero of 1° + d4x? + 4x + 1 also, we can divide this polynomial by x — 1 and get
244
x —J 44 A+ 1
.l.j -— .".'1
0 - dx + 1
dx — 4
0
Since x2 + 4 still has 1 as a zero, we can divide again by x — 1 and get
x+1
x=1| x* +4
v —-x
x+4
x =1

Thus 3% + 37 4+ 2x +4 = (x = 1) (x + 1) in Zs|x].
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Corollary A nonzero polynomial f(x) € Flx] of degree n can have al most n zeros in a field F.

Proof The preceding corollary shows that if @) € F is a zero of f(x). then
fix) = (x — aqilx),

where, of course, the degree of gi(x) isn — 1. A zero a; € F of g;(x) then results in a
factorization

Jix) =(x —alix — az)gz(x).

Continuing this process, we arrive at

flx)={x—ay)- - (x = a)g.(x),

where g.(x) has no further zeros in F. Since the degree of f(x) 15 n, al most n factors
{x — a;) can appear on the right-hand side of the preceding equation, so r < n. Also, if
btafori=1,---,randb e F, then

fby=ib—ay)---(b—a)g (k) #0,

since F has no divisors of 0 and none of b — a; or g,{F) are } by construction. Hence
the a; fori = 1, -+, r = n are all the zeros in F of f{x). *

Corollary If G is a finite subgroup of the multiplicative group (F*, -} of a field F. then G is cyclic.
In particular, the multiplicative group of all nonzero elements of a finite field is cychc.

Proof By Theorem 11.12 as a finite abelian group, G is isomorphic 1o a direct product Zy, x
Zs, x -- % Zy, where each d; is a power of a prime. Let us think of each of the Z4 asa
cyclic group of order d; in multiplicative notation. Let m be the least common multiple
of allthe d, fori = 1,2, -+, r; note that m < dyds -+ d,. If a; € Zy,, then a* = 1,50
a,™ = | since d; divides m. Thus for all « € G, we bhave a™ = |, s0 every element of
G is zero of x™ — 1. But & has dyd; - - - d, elements, while ™ — | can have at most m
zeros in the field F by Corollary 23.5, so m = dyds - - -d,. Hence m = dyds -+ -d,, so
the primes involved in the prime powers ), ds, - - -, d, are distinct, and the group G is
isomorphic to the cyclic group Z,,. *
Irreducible Polynomials

Definition A nonconstant polynomial f{x) € F|x] isirreducible over F orisan irreducible poly-
nomial in F[x] if f(x) cannot be expressed as a product g(xhix) of two polynomials
glx) and h(x) in F[x] both of lower degree than the degree of fix). If fix) € Flx]
is a nonconstant polynomial that is not irreducible over F, then f(x) is reducible
over I, ]

\Example Theorem 22.11 shows that x? — 2 viewed in Q[x] has no zeros in Q. This shows that
2 = 2 is irreducible over {}, for a factonzabion 1 =2 =lax+bicx +d)fora, b, c,
d € Q would give rise 1o zeros of x* — 2 in Q. However, 5 — 2 viewed in R[x] is not
irreducible over R, because x* = 2 factors in B[x] into (x — J2ix + V2). r'Y
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Example Let us show that f(x) = x* + 3x + 2 viewed in Zs[x] is irreducible over Zs. If »¥ 4+
3y + 2 factored in Zs[x] into polynomials of lower degree then there would exist at
least one linear factor of f(x) of the form x — a for some a € Zs. But then f(a) would
be 0, by Corollary 23.3, However, f(0) =2, f(I)= 1, f(=1)= -2, f(2) =1, and
Ji=2) - —2. showing that f(x) has no zeros in Zs. Thus f(x) is irreducible over
Ts. This test for imeducibility by finding zeros works nicely for quadratic and cubic
polynomials over a finite field with a small number of elements. A

Theorem Let f{x) € F[x], and let f(x)be of degree 2 or 3. Then fix)is reducible over F if and
only if it has a zero in F.

Proof 1f f(x)isreducible so that f(x) = g(x)h(x), where the dcgrf:e :{f gix)and !h_c degree _ul'
h(x) are both less than the degree of f(x), then since f(x) is cither quadratic or uu!:u-.‘:.
either g(x) or h(x) is of degree 1. If, say, g(x) is of degree 1, then except for a possible
factor in F, g(x) is of the form x — a. Then g(a) = 0, which implies that f(a) =0, s0
f(x) has a zeroin F. _

Conversely, Corollary 23.3 shows that if f(a) =0fora € F,thenx —aisa factor
of fix), so fix)is reducible. >

Theorem Il fix) & Elx], then fx) factors into a product of two polvnomials of lower degrees
roand s in Q[x] if and only if it has sech a factorization with polvnomials of the same
degrees r and 5 in Z[x].

Proof The proof is omitied here. *

Corollary If f(x) = x" + @, x"~' + .-+ +as 18 in E(x] with ap # 0, and if f(x) has a zero in
{}, then it has a zero m in Z, and m must divide ag.

Proof 1If f(x)has a zeroa in @, then f(x) has a linear factor x — a in Q[x] by Corollary 23.3.
But then by Theorem 23.11, f(x) has a factorization with a lincar factor in Z[x], so for
some m € I we must have

F0) = (x —m)(x" 4 -+ — ag/m).
Thus ag,/m is in Z, so m divides ap. .

Theorem  (Eisenstein Criterion) Let p £ Z be a prime. Suppose that flx) = a,x" + .- +ag s
in Z[x], and a, % 0 (mod p), but @, = 0 (mod p) for all i < n, with ay % 0 (mod p?).
Then f{x) is irreducible over .
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Proof By Theorem 23.11 we need only show that f(x) does not factor into polynomials of
lower degree in Z[x]. If

flx) = (Bx" + -+ bo)(cyx" + -+ + c0)

is a factorization in Z[x], with b, # 0, ¢, # Oandr, s < n, thenag # 0(mod p*) implies
that by and ¢y are not both congruent to 0 modulo p. Suppose that by # () (mod p) and
o = 0 (mod p). Now a, 2 0(mod p) implies that b,, ¢; # 0 (mod p), since a; = b.c;.
Let m be the smallest value of k such that ¢; # 0 (mod p). Then

bucoifr = m,
am = bycy + byegm—1 +---+

brtp—r if ¥ < m.

The fact that neither by nor ¢, are congruent to 0 modulo p while ¢y, «+ -, ¢ are all
congruent to 0 modulo p implies that 4,, # 0modulo p, som = n. Consequently, s = n,
contradicting our assumption that s < n; that is, that our factorization was nontrivial.

*
Corollary The polynomial

xP

-ll—=.zf"'1 +aP x4

Dplx) =

is irreducible over Q for any pnime p.

Proof Again by Theorem 23.11, we need only consider factorizations in Z[x], We remarked
following Theorem 22.5 that its proof actually shows that evaluation homomorphims
can be used for commutative rings. Here we want to use the evaluation homomor-
phism @, : Q[x] — Qlx]. It is natural for us to denote ¢, (f(x)} by flx +1) for
fix) € Q[x]. Let

gpipey T (TJIP_] T
x+1-1 x :

gx)=Px + 1) =

The coefficient of x7°7 for ) < r < p is the binomial coefficient p!/[r!(p — r}!] which
is divisible by p because p divides p! but does not divide either r! or (p = r)! when
0 < r < p. Thus

gy =x""1 4 (’;)x""1+---+ﬂ

satisifies the Eisenstein criterion for the prime p and is thus irreducibls over B

@ ,(x) = hix)r(x) were a nontrivial factorization of ,(x}in Z[x]. ther

Dplx 1) =glx)=hix + Drix + 1)
would give a nontrivial factorization of g(x}in Z[x]. Thus & (x) must also be irreiooc e
over . *
Theorem Let p(x) be an irreducible polynomial in F[x]. If p(x) divides r(x)s(x) for rix). s{x) €
F[x], then either p(x) divides r(x) or p(x) divides s(x).

Corollary If p(x)isirreducible in Flx]and p(x)divides the productrifx) - - - ry{x) forr;(x) € Flx],
then p(x) divides r;(x) for at least one i.
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Theorem If F is a field, then every nonconstant polynomial f(x) € F[x] can be factored in F{x]
into a product of irreducible polynomials, the irreducible polynomials being umque
except for order and for unit (that is, nonzero constant) factors in F.

Proaf Let [(x) € F[x] be a nonconstant polynomial. If f(x) is not irreducible, then f{x) =
gix)hix), with the degree of g(x ) and the degree of h(x) both less than the degree of f(x).
If p{x) and h(x) are both irreducible, we stop here. If not, at least one of them factors
into polynomials of lower degree. Continuing this process, we arrive at a factorization

fixy= pilx)palx)-- - p(X),

where p;(x)1s imeducible fori = 1,2, -+, r.
[t remains for us to show uniqueness, Suppose that

flx)= pi(x)palx) - pelx) = g {x)galx) - gulx)

are two factorizations of f{x) into imeducible polynomials. Then by Corollary 23.19,
pi(x) divides some ¢;(x), let us assume ¢, (x). Since g, (x) is irreducible,

qilx) = wymix),

where uy % 0, but u; isin F and thus is a unit. Then substtuting g py(x) for gy(x) and
canceling, we get

Palx) - pelx) = wyqalx) - - gylx).
By a similar argument, say ¢:(x) = uapa(x), so0
palx) - plx) = uyuagalx)-- - g.(x).
Continuing in this manner, we eventually amve at
| = wguig e Bpgepr{x ) e gulx).

This is only possible if 5 = r, 5o that this equation is acmally 1 = wyu; - - - u,. Thus the
irreducible factors p;(x) and g;(x) were the same except possibly for order and unit
factors, *
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Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
A commutative ring with unity without zero divisors is called ------- integral domain zero identity commutative ring integral domain
A commutative ring with unity -- is called integral domain divisors with zero divisors  [zero identity without zero divisors
A commutative division ring is -- ring Field integral domain zero Field
Another name of division ring is------------- Field integral domain skew Field group Field
Every ------------—-- is a field integral domain domain domain ring finite integral domain
An element a of a ring R is said to be idempotent if ------- a=1 a1 a’a 2’0 a’a
An element a of aring R is said to be ------------- ifa’.a idempotent nilpotent identity none idempotent
An element a of aring R is said to be -------------- ifa’_0 idempotent nilpotent identity none nilpotent
A commutative ring is an ---------- if it has no zero divisors Division ring field integral domain Eucledian ring integral domain
A ring is said to be ------------------ if its nonzero elements form a group
under multiplication Division ring field integral domain Eucledian ring Division ring
A ring is said to be division ring if its nonzero elements form a ----------------
- under multiplication Division ring group integral domain Eucledian ring group
A commutative ring is an integral domain if it has --=----=-==-=-=--=-- Division ring field no zero divisiors zero divisiors no zero divisiors
A finite integral domain is @ ---------- Division ring field integral domain Eucledian ring field
Y — is a field- Division ring domain integral domain ring finite integral domain
A homomorphism of R into R is said to be an ---------- if it is a one-to one
mapping isomorphism automorphism homomorphism monomorphism isomorphism
A homomorphism of R into R is said to be an isomrphism if it is @ ------------
--mapping one-one onto into into & onto one-one
A homomorphism of R into R is said to be an isomrphism if and only if
one Zero two three Zero
ring is an integral domain if it has no zero divisors Division ring field commutative ring Eucledian ring commutative ring
- possesses a unit element Division ring field integral domain Eucledian ring Eucledian ring
A non-empty set I is called ------------ if it is both left and right ideal K one-sided ideal two-sided ideal field integral domain two-sided ideal
A non-empty set I is called two sided ideal if it is ---=---===-=-=-c-o-o- left ideal right ideal field ideal ideal
The polynomial is said to be --------- if the G.C.D is one primitive field integral domain Eucledian ring primitive
The polynomial is said to be primitive if the G.C.D i§ ------------- two one zero four one
A polynomial is said to be integer monic if all its coefficients are -------------- integers rational real complex integers
A polynomial is said to be -- --- if all its coefficients are integers integer monic rational monic real monic complex monic integer monic
A e — integral domain Euclidean ring Field skew field Euclidean ring
P —— is a Eucledian ring. F(i) J() M(i) A() J()
IfacRisan ------------o-o- and a/be, then a/b or a/c zero divisor primitive irreducible integers irreducible
is a commutative ring with unit element (R, +,) (Z,*,) (R, *,) (R, %) (R, +,)
(R, +,) isa with unit element field commutative ring _ |Eucledian ring ring commutative ring
Ifin a ring R there is an element 1 in R such that a.1=1.a=a then R is -------- element commutative ring  |zero none ring with unit element
If the multiplication of R such that a.b=b.a then R is -------- element commutative ring  |zero none commutative ring
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Divisibility in Intfegral Dormainms
Ireducibles, Primes

In the previous two chapters, we focused on factoring polynomials over the
integers or a field. Several of those results, unique factorization in Z[x] and the
division algorithm for F[x], for instance, are natural counterparts to theorems
about the integers. In this chapter and the next, we examine factoring in a more
abstract setting.

DEFINITION Associates, Irreducibles, Primes

Elements a and b of an integral domain D are called associates if a = ub
where u is a unit of D. A nonzero element a of an integral domain D is
called irreducible if a is not a unit and, whenever b, ¢ € D with a = be,
then b or c is a unit. A nonzero element a of an integral domain D is called
prime if a is not a unit and a | bc implies a | bor a | c.

Example 1 _We exhibit an irreducible in Z[V —3] that is not prime. Here
N(a + bV -3) = a* + 3b*. Consider 1 + V —3. Suppose we can factor
this as xy where neither x nor y is a unit. Then N(xy) = N(x)N(y) = N(1 +
V' —3) = 4, and it follows that N(x) = 2. But there are no integers a and b
satisfying @*> + 3b? = 2. Thus, xoryisaunitand | + V —3 is an irreducible.
To verify that it is not prime, we observe that (I + V=3)(1 — V' =3) =
4 =2-2sothat 1 + V —3 divides 2 - 2. On the other hand, for integers a
and btoexistsothat 2 = (1 + V-3)(a+ bV -3)=(a — 3b) + (a +
b)V —3, we must have a — 3b = 2 and @ + b = 0, which is impossible.[]

Theorem 20.1 Prime Implies Irreducible
In an integral domain, every prime is irreducible.

Proof. Suppose a is a prime in an integral domain and a = be. We must
show that b or c is a unit. By definition of prime, we know a | bora | c.
Say,at = b. Thenb -1 = b = at = (be)t = b(ct) and, by cancellation,
1 = ct. Thus, c is a unit. L]

Recall that a principal ideal domain is an integral domain in which every
ideal has the form (a). The next theorem reveals a circumstance in which primes
and irreducibles are equivalent.

Theorem 20.2 PID Implies Irreducible Equals Prime

In a principal ideal domain, an element is irreducible if and only if it is
prime.

Proof. Theorem 20.1 shows primes are irreducible. To prove the converse,

let a be an irreducible element of a principal ideal domain D and suppose
a | bc. We must show a | b or a | c. Consider the ideal I = {ax + by | x,
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y € D} and let {(d) = I. Since a € I, we can write a = dr, and because a
is irreducible, 4 is a unit or r is a unit. If 4 is a unit, then /] = D and we
may write 1 = ax + by. Then ¢ = acx + bcy, and since a divides both
terms on the right, a also divides c.

On the other hand, if r is a unit, then (@) = (d) = I, and because
b € I, there is an element ¢ in D such that at = b. Thus, a divides b. Il

Example 2 We show Z[x] is not a principal ideal domain. Consider the ideal
I = {ax + 2b|a, b € Z}. We claim I is not of the form (h(x)). If this were
so, there would be f(x) and g(x) in Z[x] such that 2 = h(x)f(x) and x = h(x)g(x),
since both 2 and x belong to /. By the degree rule (exercise 16 of Chapter 18),
0 = deg 2 = deg h(x) + deg f(x) so that h(x) is a constant polynomial. To
determine which constant, we observe 2 = h(1)f(1). Thus, h{(1) = =1or 2,
Since | is not in /, we must have h(x) = *2. But then x = =*2g(x), which

is nonsense. ]
Unique Factorization Domains
We now have the necessary terminology to formalize the idea of unique factor-
ization.

DEFINITION Unique Factorization Domain (UFD)
An integral domain D is a unique factorization domain if

1. every nonzero element of D that is not a unit can be written as a product
of irreducibles of D, and

2. the factorization into irreducibles is unique up to associates and the order
in which the factors appear.

Another way to formulate part 2 of this definition is the following. If
pi'pe . . . pfr and q7"g5? . . . ¢i" are two factorizations of some element as a
product of irreducibles, where none of the p,’s are associates and none of the
g;'s are associates, then r = s, and each p is an associate of one and only one
qu.
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Lemma Ascending Chain Condition for a PID
In a principal ideal domain, any strictly increasing chain of ideals I, C
I; C « « « must be finite in length.

Proof. LetI, C I, C - - - be a chain of strictly increasing ideals in an
integral domain D, and let / be the union of all the ideals in this chain. We
leave it as an exercise to verify that I is an ideal of D.

Then, since D is a principal ideal domain, there is an element a in D
such that I = (a). Because a € I and ] = U,[,, a belongs to some member
of the chain, say, a € I,. Clearly, then, for any member /; of the chain,
we have I, C | = {(a) C I, so that I, must be the last member of the
chain. |

Theorem 20.3 PID Implies UFD
Every principal ideal domain is a unique factorization domain.

Proof. Let D be a principal ideal domain. We first show that any nonzero
element of D that is not a unit is a product of irreducibles (the product could
consist of only one factor). To do this, let a; be a nonzero, nonunit that is
not irreducible. Then we may write a;, = b,a, where neither b, nor a, is a
unit. Now, if both b, and a, can be written as a product of irreducibles,
then so can a,. Thus, we may assume one of b, or a, cannot be written as
a product of irreducibles, say a,. Then, as before, we may write a; = b.a;
where neither b; nor a; is a unit. Continuing in this fashion, we obtain an
infinite sequence by, b;, . . . of elements that are not units in D and an
infinite sequence ag, a,, a;, . . . of nonzero elements of D, witha, = b, a4,
for each n. Since b,., is not a unit, we have (a,) C {a,.,) for each n (see
exercise 3). Hence, (a;) C (a;) C - - - is an infinite strictly increasing chain
of ideals. This contradicts the preceding lemma, so we conclude g, is,
indeed, a product of irreducibles.

It remains to show that the factorization is unique up to associates and
the order in which the factors appear. To do this, suppose some element a
of D can be written

a=ppr...Ppr=q1q2. .. 4s

where the p’'s and ¢'s are irreducible and repetition is permitted. We induct
onr. If r = 1, then a is irreducible and, clearly, s = 1 and p, = g,. So
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we may assume that any element that can be expressed as a product of fewer
than r irreducible factors can be done so in only one way (up to order and
associates). Since p, divides q,q. . . . g, it must divide some g, (see exercise
24), say, p, | q;. Then, g, = up,, where u is a unit of D. Thus,

ua = up\pz - - - pr = qi(uqa) . . . g,

and, by cancellation,

Pz...p-=(uqa) .. .q..

The induction hypothesis now tells us that these two factorizations are
identical up to associates and the order in which the factors appear. Hence,
the same is true about the two factorizations of a. |

Corollary F(x] Is a UFD
Let F be a field. Then Flx] is a unique factorization domain.

Proof. By Theorem 18.3, F[x] is a principal ideal domain. So, F[x] is a

unique factorization domain, as well. [ |
Example 3 Let
flix) = ax" + a,_x"' + -+ - + a4 € ZLx],

and suppose p is prime such that

PA By oo o Bl

and p° ¥ a,. We will prove that f(x) is irreducible over Q. If f(x) is reducible
over 0, we know there exist elements g(x) and h(x) in Z[x] such that f{x) = g(x)h(x)
and 1 = deg g(x), deg h(x) < n. Let f(x), g(x), and h(x) be the polynomials
in Z,[x] obtained from f(x), g(x), and h(x) by reducing all coefficients modulo
p. Then, since p divides all the coefficients of f(x) except a,, we have a,x" =

F(x) = g(x)h(x). Since Z, is a field, Z,[x] is a unique factorization domain.
Thus, x | g(x) and x | h(x). So, g(0) = h(0) = 0 and, therefore, p | g(0) and
p | h(0). But, then, p* | g(0)h(0) = fi0) = ay, a contradiction. O
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Euclidean Domains

Another important kind of integral domain is a Euclidean domain.

DEFINITION Euclidean Domain
An integral domain D is called a Euclidean domain if there is a function d
from the nonzero elements of D to the nonnegative integers such that

1. d(a) = d (ab) for all nonzero a, b in I}, and
2. ifa, b €D, b # 0, then there exist elements ¢ and r in D such that
a = bg + rwhere r = 0ord(r) <db).

Example 4 The ring Z is a Euclidean domain with d(a) = |a| (the absolute
value of a). L

Example 5 Let F be a field. Then F[x] is a Euclidean domain with d(f(x)) =
deg f(x) (see Theorem 18.2). O

Example 6 The ring of Gaussian integers
Zli) = {a + bi|a, b E Z}

is a Euclidean domain with d(a + bi) = @* + b°. Unlike the previous two
examples, the function d does not obviously satisfy the necessary conditions.
That d(x) = d(xy) for x, y € Z|i] follows directly from the fact that d(xy) =
d(x)d(y) (exercise 5). If x, y € Z[i] and y # O then xy' € Q[i], the field of
quotients of Z[i] (exercise 41 of Chapter 17). Say, xy™' = 5 + ti wheres, t € Q.
Now let m be the integer nearest s, and let n be the integer nearest r. (These
integers may not be uniquely determined but that does not matter.) Thus,
m — 5| <% and |n — | < 4. Then

xy '=s5s+ti=(m-—m+s)+(n—n+ i

=(m+ ni) + [(s — m) + (t — n)il.

So,
x=(m+ ni)y + [(s — m) + (t — n)ily.

Theorem 20.4 ED (Euclidean Domain) Implies PID
Every Euclidean domain is a principal ideal domain.

Proof. Let D be a Euclidean domain and / a nonzero ideal of D. Among
all the elements of I, let a be such that d(a) is minimum. Then [ = (a).
For, if b € I, there are elements g and r suchthatb = aq + rwherer = 0
ord(r) <d(a). But r = b — aq € I, so d(r) cannot be less than d(a).
Thus, r = 0 and b € (a). =
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Corollary ED Implies UFD
Every Euclidean domain is a unique factorization domain.

We may summarize our theorems and remarks as follows:

ED = PID = UFD
UFD 2 PID 2 ED

Theorem 20.5 D a UFD Implies D[x) a UFD
If D is a unique factorization domain, then D[x] is a unique factorization.

We conclude this chapter with an example of an integral domain that is not
a unique factorization domain.

Example 7 The ring Z[V —5] = {a + bV —=5|a, b € 2} is an integral
domain but not a unique factorization domain. It is straightforward that
Z[V —5] is an integral domain (see exercise 9 of Chapter 15). To verify that
unique factorization does not hold, we mimic the method used in Example 1
with N(@ + bV =5) = a* + 5B Since N(xy) = N(x)N(y) and N(x) = 1
if and only if x is a unit (see exercise 14), it follows that the only units of

Z[V —5] are *1.

Now consider the following factorizations:

46 = 2 - 23,
46 = (1 + 3V=35)(1 - 3V=3).

We claim that each of these four factors is irreducible over Z[V — 5]. Suppose,
say, 2 = xy where x, y € Z[V —35] and neither 15 a unit. Then 4 = N(2) =
N(x)N(vy) and, therefore, N(x) = N(y) = 2, which is impossible. Likewise, if
23 = xy were a nontrivial factorization, then N(x) = 23. Thus, there would be
integers a and b such that @ + 5b* = 23. Clearly, no such integers exist. The
same argument applies to 1 + 3V =5, O
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Linear Functionals

IF 1I_r iEI- a yootor :1}311.::{: 4T t-hﬂ :FIE-II'.]I F, Fi ].il'lﬂll.l' ‘l'.I'I.'I.l'lI.'v.rlil'l"I'I'.I.I':I.'.-i.ullIjIJ fr{rm 1:".
into the zealar field F iz also called a linear functional on V. If we start
from serateh, this means that f is a funetion from V into F such that

flea + 8) = fla) + f(B)

for all vectors @ and § in V and all sealars ¢ in F. The concept of linegar
funetional 15 important in the study of Anite-dimensional spaces because

it helps to organize and clarify the diseussion of subspaces, linear equations,
and eoordinates.

ExaMpPLE
Let F be a field and let ay, . . . , @, bescalarsin F. Define

a funetion f on F* by
flzy, ooy Za) = @y 4 -+ F dals

Then f is a linear functional on F*, It is the linear funetional which is
reprezented by the matrix [a, -+« a,] relative to the standard orderad

basis for F* and the basis {1} for F:

ﬂ.1=.r[f:]'s j= 1:---:-“-
Every linear functional on F» is of this form, for some scalars a;, . . ., 8.
That is immediate from the definition of linear funetional because we define
a; = fle;) and use the linearity

. flzy, ..., 2a) = f (E :cm)
I
= 3 zifle)
i
- L @,X;.
ExampPLE

Here is an important example of a linear funetional.
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Let n be a positive integer and F a field. If A is an n X n matrix with
entries in ¥, the trace of A is the scalar

trA =An+ A+ - + Apn.

The trace function is a linear functional on the matrix space F™* because

tr(eA + B) = Eﬂ (cAi + Bi)
i=1

n n
= Eiglfiﬁ‘f' .22.11 Bii
=ctr A + tr B.

EXAMPLE

Let V be the space of all polynomial funetions from the

field F nto itself. Let ¢ be an eleﬁlent of F. lf v;fe define
L;(jﬂ) = ?J(i)

then L, is a linear functional on V. One usually describes this by saying
that, for each ¢, ‘evaluation at # i1s a linear functional on the space of
polynomial funections. Perhaps we should remark that the fact that the
functions are polynomials plays no role in this example. Evaluation at ¢
13 a linear functional on the space of all functions from F into F.

ExXAMPLE

This may be the most important linear functional in
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mathematies. Let [a, ] be a closed interval on the real line and let C'([a, b])
be the space of continuous real-valued functions on [a, b]. Then

Lig) = [} o(t) at

defines a linear funetional I on C'([a, b]).

If V 1s a vector space, the collection of all linear functionals on V
forms a vector space in a natural way. It is the space L(V, F). We denote
this space by V* and call it the dual space of V:

V* = L(V, F).
If V is finite-dimensional, we can obtain a rather explicit deseription

of the dual space V* From Theorem 5 we know something about the
space V*, namely that

dim V* = dim V.

Let & = {oy,...,a, be a basis for V. According to Theorem 1, there
is (for each 7) a unique linear functional f; on V such that
(3-11) filey) = ;.
In this way we obtain from ® a set of n distinet linear functionalsfy, . . ., fa
on V. These functionals are also linearly independent. For, suppose
n
(3-12) f= 2 ¢f
i=1
Then

fla;) = él cifi(a;)

n
= T €bi;
t=1
= CJ_
In particular, if f is the zero functional, f(a;) = 0 for each j and hence
the scalars ¢; are all 0. Now fi, ..., f. are n linearly independent func-

tionals, and since we know that V* has dimension n, it must be that
®* = {f1,...,fny 18 a basis for V* This basis is called the dual basis
of ®.

Theorem
Let V be a finite-dimenstonal vector space over the field I,
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and let ® = {as, ..., an} be a basis for V. Then there 1s a unique dual
basis ®* = {f,, ..., fu} for V* such that fi(a;) = 8. For each linear func-
tional f on V we have
n
(3-13) f= 3 flafs
i=1

and for each vector a in V we have

n
(3-14) a = '21 fi(a)a;.
i=
Proof. We have shown above that there is a unique basis which is
‘dual’ to ®. If f is a linear functional on V, then fis some linear combination
(3-12) of the f;, and as we observed after (3-12) the scalars ¢; must be given
by ¢; = f(;). Similarly, if
o = é Tiog

i=1

is a vector in V, then
file) = 2 zifi(es)
= % 05
i=1

so that the unique expression for « as a linear combination of the a; 1s
n
a = _El fil@)as |

Equation (3-14) provides us with a nice way of describing what the
dual basis is. It says, if ® = {a1, ..., @} is an ordered basis for V and
®* = {fy,...,f.} is the dual basis, then f; is precisely the function
which assigns to each vector « in ¥ the 7th coordinate of « relative to the
ordered basis @. Thus we may also call the f; the coordinate functions for
®. The formula (3-13), when combined with (3-14) tells us the following:
If fisin V* and we let f(a;) = a;, then when
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a =T+ - + Toan
we have
(3-15) fle) = ey + -+ + apTa.
In other words, if we choose an ordered basis ® for V and describe each
vector in V' by its n-tuple of coordinates (zy, . .., z,) relative to ®, then

every linear functional on V has the form (3-15). This is the natural
generalization of Example 18, which is the special case V = F* and ® =

{0y e

ExamrLe 22. Let V be the vector space of all polynomial functions
from R into R which have degree less than or equal to 2. Let i, t,, and ¢
be any three distinct real numbers, and let

Li(p) = p(t).
Then L, L, and L3 are linear functionals on V. These functionals are
linearly independent; for, suppose
L = aLy + ¢:Ls + ¢3Ls.

If L = 0,1e.,1f L(p) = 0foreach pin V, then applying L to the particular
polynomial ‘functions’ 1, x, 2%, we obtain

ate+e=0
biey + boco + tacs = 0
t?ﬁl + thz + tgca =0

From this it follows that ¢, = ¢; = ¢; = 0, because (as a short computation
shows) the matrix

1 1 1
i o U
2 & 8

is invertible when ¢, #,, and {3 are distinct. Now the L; are independent,
and since V' has dimension 3, these functionals form a basis for V*. What
is the basis for V, of which this is the dual? Such a basis {p,, ps, ps} for V
must satisfy

Li(ps) = b
or

pi(t:) = dij.

These polynomial functions are rather easily seen to be
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T —t)(x —t
pe) = e

(th — to)(tn — &)
_ @ — )@ —t)
P2} = (s — t)(t2 — ts)

et —h)

The basis {pi, ps, ps} for V is interesting, because according to (3-14) we
have for each p in V

p = plt)pr + plta)p: + pts)ps.

Thus, if ¢1, ¢s, and ¢; are any real numbers, there is exactly one polynomial
function p over R which has degree at most 2 and satisfies p(t;) = ¢;, 7 =
1, 2, 3. This polynomial function is p = aip1 -+ ¢ape -+ csps.

Now let us discuss the relationship between linear functionals and
subspaces. If f is a non-zero linear funetional, then the rank of f is 1 because
the range of f is a non-zero subspace of the scalar field and must (therefore)
be the scalar field. If the underlying space V is finite-dimensional, the rank
plus nullity theorem (Theorem 2) tells us that the null space N, has
dimension

dim N; = dim V — 1.

In a vector space of dimension n, a subspace of dimension n — 1 is called
a hyperspace. Such spaces are sometimes called hyperplanes or subspaces
of codimension 1. Is every hyperspace the null space of a linear functional?
The answer is easily seen to be yes. It is not much more difficult to show
that each d-dimensional subspace of an n-dimensional space is the inter-
section of the null spaces of (n — d) linear functionals (Theorem 16 below).

Prepared by A. Henna Shenofer, Asst Prof, Department of Mathematics, KAHE Page 7/7




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc MATHEMATICS COURSE NAME: Ring Theory and Linear Algebra II
COURSE CODE: 16MMU403 UNIT: II1 BATCH-2016-2019

Definition. If V is a vector space over the field ¥ and S is a subset of V,
the annihilator of S s the set 8" of linear functionals f on V such that
f(a) = 0 for every a in 8.

It should be clear to the reader that S° is a subspace of V*, whether
S 1s a subspace of V or not. If § is the set consisting of the zero vector
alone, then S = V* If § = V, then S° is the zero subspace of V*. (This is
easy to see when V is finite-dimensional.)

Theorem 16. Let V be a finite-dimensional vector space over the field I,
and let W be a subspace of V. Then

dim W +4- dim W? = dim V.

Proof. Let k be the dimension of W and {ay, . . ., ax} a basis for
W. Choose vectors ez, - . ., a, I V such that {a, ..., as} 1s a basis for
V. Let {fi,...,f.} be the basis for V* which is dual to this basis for V.
The claim 1s that {fis1, . . ., f} 18 a basis for the annihilator W?°, Certainly
fi belongs to W* for ¢« > k& + 1, because

file;) = 8;;
and é;; = 0if¢ > k + 1 andj < k; from this it follows that, forz > k£ 4+ 1,
fi(a) = 0 whenever « is a linear combination of ay, . . ., a;. The funetionals
fe+1y -+ ., fn are independent, so all we must show is that they span W0,

Suppose f 1s In V*. Now

J= 2 fle)f:
so that if fis in W° we have f(a:) = 0 forz < k and

f= S flaf
i=k+1

We have shown that if dim W = k and dim V = »n then dim W? —
n—k §

Corollary. If W is a k-dimensional subspace of an n-dimensional vector
space V, then W 1is the intersection of (n — k) hyperspaces in V.

Proof. This is a corollary of the proof of Theorem 16 rather than
its statement. In the notation of the proof, W is exactly the set of vectors a
such that fi(e) =0, =k +1,...,n Incase k = n — 1, W is the null
space of f,. |}
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Corollary. If W, and W, are subspaces of a fintte-dimensional vector
space, then W, = W, if and only if WY = Wb,

Proof. If W, = W,, then of course WY = W5, If W, # W,, then
one of the two subspaces contains a vector which is not in the other.
Suppose there is a vector @ which 1s in W, but not in W,. By the previous
corollaries (or the proof of Theorem 16) there is a linear functional f such
that f(8) = 0 for all 8 in W, but f(a) # 0. Then f is in WY{ but not in W3
and Wi = W3 |

In the next section we shall give different proofs for these two corol-
laries. The first corollary says that, if we select some ordered basis for the
space, each k-dimensional subspace can be described by specifying (n — k)
homogeneous linear conditions on the coordinates relative to that basis.

Let us look briefly at systems of homogeneous linear equations from
the point of view of linear functionals. Suppose we have a system of linear
equations,

Apvy + -+ Az =0

Aw‘.;lxl + --- + Am.nxn =0
for which we wish to find the solutions. If we let f;, ¢ = 1, ..., m, be the
linear functional on F* defined by

fi@y, .o, 20) = Aatr + - -+ + A2
then we are seeking the subspace of I'* of all « such that
Jil =0, i=1,...,m

In other words, we are seeking the subspace annihilated by fi, ..., fa
Row-reduction of the coeflicient matrix provides us with a systematic
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method of finding this subspace. The n-tuple (A, ..., A;) gives the

coordinates of the linear functional f; relative to the basis which is dual
to the standard basis for F'*. The row space of the coefficient matrix may
thus be regarded as the space of linear functionals spanned by fi, . . ., fm.
The solution space is the subspace annihilated by this space of functionals.

Now one may look at the system of equations from the ‘dual’ point
of view. That is, suppose that we are given m vectors in F»

; = (A‘t:]j s owy A-iﬂ)

and we wish to find the annihilator of the subspace spanned by these
vectors. Since a typical linear functional on F» has the form

f@y .o, %a) = e+ -+ -+ Cala
the condition that f be in this annihilator is that
EA{;’G;':O, 'i=1’-.-,m
j=1

that is, that (e, . . ., ¢.) be a solution of the system AX = 0. From this
point of view, row-reduction gives us a systematic method of finding the
annihilator of the subspace spanned by a given finite set of vectors in F».

ExAMPLE Here are three linear functionals on R4:

fl(xl, Tq, T3, 314) = + 22 + 225 + a4
fn(xh Ty, T3, 1174) = 2x2 + T4
fa(.’l:l, T2, T3, 374) = —2.‘.!?1 — 4x; + 3$4.

The subspace which they annihilate may be found explicitly by finding the
row-reduced echelon form of the matrix

1 2 21
A= 0 2 0 14
-2 0 —4 3
A short calculation, or a peek at Example 21 of Chapter 2, shows that

1 0 20
01 0 0y
0 0 01

R

I
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Therefore, the linear functionals

gu(1, T2, T3, 24) = Ty + 223
g2 (1, X2, T3, 1134) = X3
g3(T1, X2y T3, Ty) = Ty

span the same subspace of (B4)* and annihilate the same subspace of R*
as do fi, fa, fo. The subspace annihilated consists of the vectors with

r = —2.’1’,'3
Ty =24 = 0.
ExaMpPLE Let W be the subspace of R® which is spanned by the

vectors
a = (21 _2} 3! 4} _1)} a3 = (U: OJ _1: _2: 3)
az = ('_1: 1, 21 D, 2)1 ay = (]-p _1: 2: 3: 0)

How does one describe W?, the annihilator of W? Let us form the 4 X 5
matrix A with row vectors ai, o, as, as, and find the row-reduced echelon
matrix B which is row-equivalent to 4:

2 -2 3 4 -1 1 =1 0 —1 0
-1 1 2 5 2 o 01 20

A4=1 9 o -1 -2 3[~E=|g 00 o 1]
1 -1 2 3 0 0 00 00

If f is a linear functional on R®:

5
f@y ..., 25) = ,El CiT;
i=
then f is in WO if and only if f(a;) = 0,7 = 1, 2, 3, 4, i.e,, if and only if
5
2z Ay =0, 1 <7< 4.

i=1

This is equivalent to
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5
3 Ry =0, 1<i<3

i=1
or
g —c—c¢ =0
e+ 2¢, =0
(,'5=0'.

We obtain all such linear funectionals f by assigning arbitrary values to
¢ and ¢s, say ¢s = a and ¢, = b, and then finding the corresponding ¢, =
a-+b, e = —2b, ¢; = 0. So W° consists of all linear funetionals f of the
form

flxy, 22y x5, 24, 25) = (@ + b)xy + ax; — 2bxs + bxy.

The dimension of W° is 2 and a basis {f}, fo} for W? ecan be found by first
takinga = 1, b = 0 and thena = 0, b = 1:

fl(xb e !x5) = I —|—I2
fo@y . .oy @) = 11 — 203 + 24

The above general f in W°is f = af) + bfo.

The Double Dual

One question about dual bases which we did not answer in the last
section was whether every basis for V* is the dual of some basis for V. One
way to answer that question is to consider V**, the dual space of V*.

If « is a vector in V, then « induces a linear functional L, on V*

defined b
S L(f) = f@), f in V%

The fact that L, is linear is just a reformulation of the definition of linear
operations in V*:

La(cf + g) = (¢f + g){(a)
= (¢f)(a) + g(a)
= ¢f(a) + g(a)
= cLo(f) + La(g).

If V is finite-dimensional and « # 0, then L, # 0; in other words, there
exists a linear functional f such that f(a) #¢ 0. The proof is very simple
and was given in Section 3.5: Choose an ordered basis 8 = {ay, . .., as}
for V such that ey = a and let f be the linear funetional which assigns to
each vector in V its first coordinate in the ordered basis ®.
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Theorem

Let V be a finite-dimensional vector space over the field F.

For each vector a in V define
L.(f) = f(a), f m V*
The mapping a = 1., is then an isomorphism of V onto V**.

Proof. We showed that for each « the function L, is linear.
Suppose « and g are in ¥ and ¢ is in F, and let ¥ = ca + 8. Then for each f

in V*
Ly(f) = f(v)
= flca + B)
= ¢f(a) + f(8)
= cL.(f) + Ls(f)
and so
Ly = cLa + Lg.

This shows that the mapping « = L, is a linear transformation from V
into V**. This transformation is non-singular; for, acecording to the
remarks above L, = 0 if and only if a = 0. Now a = L, is a non-singular
linear transformation from V into V*¥*, and since

dim V** = dim V* = dim V

Theorem 9 tells us that this transformation is invertible, and is therefore
an isomorphism of V onto V**. |
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Corollary. Let V be a finite-dimensional vector space over the field F.
If L 13 a linear functional on the dual space V* of V, then there is a unique
vector a in V such that

L(f) = f(a)
for every f in V*.

Corollary. Let V be a finite-dimensional vector space over the field V.
Each basts for V* 1s the dual of some basis for V.

Proof. Let ®* = {f,, . . ., f.} be a basis for V*. By Theorem 15,
there is a basis {L,, ..., L.} for V** such that
Li(f;) = oy

Using the corollary above, for each ¢ there is a vector «; in V such that

Li(f) = flas)
for every f in V*, ie., such that L; = L,,. It follows immediately that
{a, . . ., a,} i8 a basis for V and that ®&* is the dual of this basis. ||
Theorem

If S 1s any subset of a finite-dvmensional vector space V,
then (S°)° 7s the subspace spanned by S.

Proof. Let W be the subspace spanned by S. Clearly W° = 89,
Therefore, what we are to prove is that W = W%, We have given one
proof. Here is another. By Theorem 16

dim W + dim W° = dim V
dim W?° +4 dim W = dim V*

and since dim V = dim V* we have
dim W = dim W,
Since W is a subspace of W, we see that W = W, |

The results of this section hold for arbitrary vector spaces; however,
the proofs require the use of the so-called Axiom of Choice. We want to
avoid becoming embroiled in a lengthy diseussion of that axiom, so we shall
not tackle annihilators for general vector spaces. But, there are two results
about linear functionals on arbitrary vector spaces which are so fundamen-
tal that we should include them.
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Definition. If V is a vector space, a hyperspace in V is a maximal
proper subspace of V.

Theorem

If f is a non-zero linear functional on the vector space V,
then the null space of f is a hyperspace in V. Conversely, every hyperspace in V

18 the null space of a (not unique) non-zero linear functional on V.

Proof. Let f be a non-zero linear functional on V and Ny its null
space. Let a be a vector in V which is not in Ny, ie., a vector such that
f(a) # 0. We shall show that every vector in V is in the subspace spanned
by N, and «. That subspace consists of all vectors

v + ca, vin Ny, cin F.
Tet 8 be in V. Define

which makes sense because f(a) # 0. Then the vectory = 8 — ca is in N;
since
f(v) = f(B — ca)
= {)(B) ~ cf(a)

So 8 is in the subspace spanned by N; and a.

Now let N be a hyperspace in V. Fix some vector a which is not in N.
Since N is a maximal proper subspace, the subspace spanned by N and «
is the entire space V. Therefore each vector g in V has the form

B =7+ ca, yinN,cin F.
The vector vy and the scalar ¢ are uniquely determined by 8. If we have also
8=+ ca v inN, ¢ inF.
then
(¢ —c)a=v—4%"
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If ¢/ — ¢ # 0, then « would be in N; hence, ¢’ = ¢ and v’ = y. Another
way to phrase our conclusion is this: If 8 is in V, there is a unique scalar ¢
such that 8 — ca 1s in V. Call that scalar g(8). 1t 1s easy to see that g is a
linear functional on V and that N is the null space of g. ||

Lemma. If f and g are linear functionals on a vector space V, then g
15 a scalar multiple of f if and only f the null space of g contains the null space
of f, that s, if and only if f(a) = 0 tmplies gla) = 0.

Proof. If f = 0 then g = 0 as well and ¢ 1s trivially a scalar
multiple of f. Suppose f # 0 so that the null space N, is a hyperspace in V.
Choose some vector « in V with f(a) # 0 and let

g(a)

c - —  —

f(a)
The linear functional A = ¢ — ¢f is 0 on N, sinee both f and g are 0 there,
and h(a) = g(a) — ¢f(e) = 0. Thus h is 0 on the subspace spanned by N,
and a—and that subspace is V. We conclude that & = 0, i.e., that g =

o. |

Theorem Let g, 1, ..., f; be linear funclionals on a veclor spuce ¥

with respective null spaces N, Ny, . . ., N. Then g 1s a linear combinalion of
fi, ..., I if and only if N conlains the intersection Ny (M) --+ (0 N..

Proof. If g = eifi + -+ + ¢fr and fi(a) = 0 for each 7, then
clearly g(a) = 0. Therefore, N contains Ny () --+ (" N..

We shall prove the converse (the ‘if’ half of the theorem) by induetion
on the number r. The preceding lemma handles the case r = 1. Suppose we
know the result forr = &£ — 1, and let /3, . . . , fi be linear functionals with
null spaces Ny, . .., Ni such that Ny M --- M Ny is contained in N, the
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null space of g. Let ¢', f1, . . ., fi—1 be the restrietions of g, fi, ..., fi_: to
the subspace Ny Then ¢', fi, . . ., fi—1 are linear functionals on the vector

space Ni. Furthermore, if « is a vector in Ny and fi(la) =0, i =1,. ..,
E— 1, then « is in Ny -+ M Ni and s0 g'(a) = 0. By the induction
hypothesis (the case r = k — 1), there are scalars ¢; such that

g' = ﬂl_ﬁ + -0+ Gk—lff: 1.
Now let

E—1
(3-16) h=g— 2 ef.
i=1

Then h is a linear functional on V and (3-16) tells us that h(e) = 0 for
every o in N;. By the preceding lemma, & i1s a sealar multiple of fi.. If h =
ifx, then

k
g = _EJ-‘:J o |
The Transpose of a Linear
Transformation

Suppose that we have two vector spaces over the field F, V, and W,
and a linear transformation T from V into W. Then T induces a linear
transformation from W* into V* as follows. Suppose g is a linear funetional

on W, and let

(3-17) fla) = g(Ta)

for each « in V. Then (3-17) defines a function f from V¥ into F, namely,
the composition of T', a function from V into W, with g, a function from
W into F. Since both T and g are linear, Theorem 6 tells us that f is also
linear, i.c., f is a linear funetional on V. Thus T provides us with a rule 7
which associates with each linear functional g on W a linear functional
f =T on V, defined by (3-17). Notc also that T is actually a linear
transformation from W* into V*; for, if ¢; and ¢, are in W* and ¢ is a scalar

[T(cgr + g2)](@) = (eg1 + g2) (T'ax)
= cgi(Ta) + g:(Ta)
= c(T'g)(e) + (T'g:) ()
Theorem Let V and W be vector spaces over the field ¥, and let T
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be a linear transformation from V into W. The null space of T* 1s the annihi-
lator of the range of T. If V and W are finite-dimensional, then

(i) rank (TY) = rank (T)
(i) the range of T* is the annihilator of the null space of T.

Proof. If g 1s in W*, then by definition

(T'g)(a) = 9(Te)

for each e in V. The statement that ¢ is in the null space of T'* means that
g(Ta) = 0 for every a in V. Thus the null space of T is precisely the
annihilator of the range of 7.
Suppose that V and W are finite-dimensional, say dim V = n and

dim W = m. For (i): Let r be the rank of T, i.e., the dimension of the range
of T. By Theorem 16, the annihilator of the range of T then has dimension
(m — r). By the first statement of this thcorem, the nullity of T must be
(m — r). But then since 7 is a linear transformation on an m-dimensional
space, the rank of T*ism — (m — r) = r, and so T and T"* have the same
rank. For (ii): Let N be the null space of T. Every functional in the range
of T"is in the annihilator of N; for, suppose f = 7"g for some g in W¥*; then,
faisin N

fla) = (T%g)(a) = g(Ta) = ¢(0) = 0.
Now the range of T is a subspace of the space N°, and

dim N = n — dim N = rank (T) = rank (T")

so that the range of T" must be exactly N° ||
Theorem
Let V and W be finite-dimensional vector spaces over the
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field F. Let ® be an ordered basis for V with dual basis ®*, and let ®' be an
ordered basis for W with dual basis ®'*. Let T be a linear transformation
from V anto W ; let A be the maivixz of T relative to ®, ®' and let B be the matriz
of Tt relative to ®'*, ®*. Then By; = Aj;.

Proof. Let

[B:{ah"-:aﬂ}r mfz{ﬁl}*'-}ﬁm}’
(E* {fh+ . '3fn}p (B;* = {[?1, M -,gm}.

By definition,
m
Ta; = Z AyB,, i=1...,n

i=1
Tig; = _EI Bi;fs, i=1...,m.
On the other hand,
(T'g;) (i) = g;(Texs)

i ( E Akiﬁk)

k=1

= E Ah’ﬂj’(ﬁk}
k=1

For any linear funectional f on V

f= 3 flafe

If we apply this formula to the functional f = T"g; and use the fact that
(T'g;)(@:) = Ay, we have

Tig; = El Ajif

from which it immediately follows that B;; = A;;. |}
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Definition. If A s an m X n malriz over the field F, the transpose of
A is the n X m matriz At defined by Alj = Ajs.

Theorem 23 thus states that if T is a linear transformation from V
into W, the matrix of which in some pair of bases is 4, then the transpose

transformation T is represented in the dual pair of bases by the transpose
matrix A’

Theorem 24. Let A be any m X n malriz over the field ¥. Then the
row rank of A is equal to the column rank of A.

Proof. Let ® be the standard ordered basis for F* and ®' the
standard ordered basis for F™. Let T be the linear transformation from Fr=
into F'™ such that the matrix of T relative to the pair ®, ®' is 4, i.e.,

T(xiy...y20) = W1, 0 v vy Ym)
where
yi = I Ay,
j=1
The column rank of 4 is the rank of the transformation T, because the
range of T consists of all m-tuples which are linear combinations of the

column vectors of A.
Relative to the dual bases ®* and ®*, the transpose mapping T'* is

represented by the matrix A'. Sinee the columns of A are the rows of A,
we see by the same reasoning that the row rank of A (the column rank of A*)
is equal to the rank of T*. By Theorem 22, T and T* have the same rank,
and hence the row rank of A is equal to the column rank of A. |

Now we see that if A is an m X n matrix over F and T is the linear
transformation from F* into F™ defined above, then
rank (7) = row rank (4) = column rank (A4)

and we shall call this number simply the rank of A.
ExAMPLE Let V be an n-dimensional vector space over the
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field ¥, and let 7' be a linear operator on V. Suppose B = {ay, ..., as}
is an ordered basis for V. The matrix of T in the ordered basis @ is defined
to be the n X n matrix A such that

Tﬂf; = E Aijﬂ-"l.'
i=1
in other words, A4,; is the 1th coordinate of the vector T'a; in the ordered
basis ®. If {f,, ..., f.} is the dual basis of ®, this can be stated simply

Ay = fiTay).

Let us see what happens when we change hasis. Suppose
® = {at,...,an}

is another ordered basis for V, with dual basis {f1,...,fa. If B is the
matrix of T in the ordered basis ®’, then

B;j = fi(Ta:;}
Let U be the invertible linear operator such that Ue; = ). Then the

transpose of U is given by U'f; = f.. It is easy to verify that since U is
invertible, so is Ut and (U*)~! = (U~")% Thusf; = (UY)Y,1=1,..., n.

Therefore,
Bij = [(U)Y:](Taj)
= fi(U'Taj)
= fil(U'TUa).
Now what does this say? Well, f;(U—T'Us;) is the 4, j entry of the matrix
of U-1TU in the ordered basis @. OQur computation above shows that this
scalar is also the 7, 7 entry of the matrix of 7" in the ordered basis @'. In

other words
[Tl = [U'TU]g

= [U"a[T]elUls
= [Ula'[T]elUls

and this is precisely the change-of-basis formula which we derived earlier.

Eigen space of a Linear operator:

Characteristic Values
Definition. Lel V be a vector space over the field T and let T be a linear
operator on V. A characteristic value of T is a scalar ¢ in T such that

there is a non-zero vector a in V with Ta — ca. If ¢ is a characteristic value of
T, then
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(a) any a such that Ta = ca is called a characteristic vector of T
associated with the characteristic value c;

(b) the collection of all « such that T = ca is called the characteristic
space assoctated with c.

Characteristic values are often called characteristic roots, latent roots,
eigenvalues, proper values, or speetral values. In this book we shall use
only the name ‘characteristic values.’

If T is any linear operator and ¢ is any scalar, the set of vectors « such
that Ta = ca is a subspace of V. It is the null space of the linear trans-

formation (T — cI). We call ¢ a characteristic value of T if this subspace
is different from the zero subspace, i.e., if (T — cI) fails to be 1:1. If the
underlying space V is finite-dimensional, (T' — ¢I') fails to be 1:1 precisely
when its determinant is different. from (). T.et us summarize.

Theorem Let T be a linear operator on a finile-dimenstonal space V
and let e be a scalar. The follmping are equivalent.

(1) e 1s a characteristic value of T.
(11) The operator (T — c¢l) 1s singular (not invertible).
(ii1) det (T — cl) = 0.

The determinant eriterion (iii) is very important because it tells us
where to look for the characteristic values of T. Since det (T — ¢f) is a
polynomial of degree n in the variable ¢, we will find the characteristic
values as the roots of that polynomial. Let us explain carefully.

If ® is any ordered basis for V and A = [T]g, then (" — ¢I) is in-
vertible if and only if the matrix (4 — ¢I) is invertible. Accordingly, we
make the following definition.

Definition. If A is an n X n matriz over the field ¥, a characteristic
value of A in F is a scalar ¢ in ¥ such that the matriz (A — cl) is singular
(not invertible).

Since ¢ is a characteristic value of A if and only if det (4 — ¢f) = 0,
or equivalently if and only if det (¢ — A) =0, we form the matrix
(xI — A) with polynomial entries, and consider the polynomial f =
det (xI — A). Clearly the characteristic values of A in F are just the
scalars ¢ in F such that f(c) = 0. For this reason f is called the charac-
teristic polynomial of A. It is important to note that f is a monic poly-
nomial which has degree exactly n. This ig easily seen from the formula
for the determinant of a matrix in terms of its entries.
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Lemma. Similar malrices have the same characteristic polynomaal.
Proof. If B = P-'AP, then

det (zI — B) = det (2l — P1AP)
= det (P-'(zI — A)P)

= det P! - det (xf — A) - det P
= det (zI — 4). |

This lemma enables us to define sensibly the characteristic polynomial
f the operator 7T as the characteristic polynomial of any n X n matrix
vhich represents T' in some ordered basis for V. Just as for matrices, the
haracteristic values of 7" will be the roots of the characteristic polynomial
or T. In particular, this shows us that T cannot have more than »n distinet
characteristic values. It is important to point out that 7' may not have any
characteristic values.
ExampLE Let T be the linear operator on R? which 1s represented

in the standard ordered basis by the matrix

0 —17
4= [1 0]
The characteristic polynomial for T (or for 4) is
— = z 1 — 2
det (xf A)—_l x-:-: + 1.

Since this polynomial has no real roots, T has no characteristic values.
If U is the linear operator on C'* which is represented by A in the standard
ordered basis, then U has two characteristic values, i and —i. Here we
see a subtle point. In discussing the characteristic values of a matrix
A, we must be careful to stipulate the field involved. The matrix 4 above
has no characteristic values in R, but has the two characteristic values
tand —¢in C.
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ExampLE Let A be the (real) 3 X 3 matrix

3 1 —1
2 2 -1}
2 2 0

Then the characteristic polynomial for A is
r—3 -1 1
-2 -2 1
—2 -2

=28 =5+ 8 —4=(z— 1z —2)~

Thus the characteristic values of A are 1 and 2.

Suppose that 1" 1s the linear operator on £* which 1s represented by A
in the standard basis. Let us find the characteristic vectors of 7" associated
with the characteristic values, 1 and 2. Now

2 1 -1
A-TI=|21 -1}
2 2 -1

It is obvious at a glance that A4 — I has rank equal to 2 (and hence T — I
has nullity equal to 1). So the space of characteristic vectors associated
with the characteristic value 1 is one-dimensional. The vector &y = (1, 0, 2)
spans the null space of T — I. Thus Ta = « if and only if « is a sealar
multiple of a;. Now consider

11 -1
A=-2I=12 0 -1}
2 2 -2
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Evidently A — 27 also has rank 2, so that the space of characteristic
vectors associated with the characteristic value 2 has dimension 1. Evi-
dently Ta = 2a if and only if « is a scalar multiple of ax = (1, 1, 2).

Definition. Let T be a linear operafor on the finite-dimensional space .
V. We say that T 1s diagonalizable if there is a basis for V each vector
of which is a characteristic veetor of T.

The reason for the name should be apparent; for, if there is an ordered
hasis ® = {ay, . . ., a.} for V in which each a; is a characteristic veetor of
T, then the matrix of T in the ordered basis ® is diagonal. If Ta; = ¢ia,
then

e 0 -2 0
0 cee 0

[Tle = . fﬂ :
HE

We certainly do not require that the scalars ¢, . . ., ¢, be distinet; indeed,
they may all be the same scalar (when 7" 18 a scalar multiple of the identity
operator).

One could also define T to be diagonalizable when the characteristic
vectors of T span V. This is only superficially different from our definition,
since we can select a basis out of any spanning set of vectors.

Lemma. Let T be a linear operator on the finite~-dimensional space V.
Let ¢y, . . ., cx be the distinct characteristic values of T and let W; be the space
of characleristic vectors assoctated with the characteristic value c;. If W =
Wyt oo 4+ Wy, then

dim W = dim W, + --- + dim Wh.

In faet, if ®; iz an ordered basis for Wy, then ® = (®,, . . ., ®g) 15 an ordered
bastis for W.

Proof. The space W = W; + --- 4+ Wi is the subspace spanned
by all of the charaecteristic vectors of T. Usually when one forms the sum
W of subspaces W, one expects that dim W < dim W, 4+ .-+ + dim W,
beecause of linear relations which may exist between veetors in the various
spaces. This lemma states that the characteristic spaces associated with
different characteristic values are independent of one another.
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Suppose that (for cach #) we have a vector 8, in W,, and assume that
Bi+ -+ + B = 0. We shall show that 8; = 0 for each 7. Let f be any
polynomial. Since 78; = ¢8;, the preceding lemma tells us that

0=7T0=fT)B+ --- +(T)B
= fle)Br + -+ + flee)Br.

Choose polynomials fy, . . ., fi such that
_ . _J1, 1=
.f'l(ﬂj) - atj = {0, 'B‘?‘—cj
Then
0 = fi(T)0 = 3 8:8;
7
= ﬁ:‘
Now, let ®; be an ordered basis for W;, and let ® be the sequence
® = (By, ..., ®). Then ® spans the subspace W = W; + --- + W;.

Also, ® is a linearly independent sequence of veetors, for the following
reason. Any linear relation between the vectors in ® will have the form
B1+ -+ + B = 0, where §; is some linear combination of the veetors in
®;. From what we just did, we know that 8; = 0 for each 7. Since each ®;

is linearly independent, we see that we have only the trivial linear relation
between the vectors in ®. |

Theorem Let T be a linear operator on a finite-dimensional space V.

Let ¢y, . . ., ck be the distinct characleristic values of T and let W; be the null
space of (T — eil). The following are equivalent.
(i) T s diagonalizable.
(ii) The characteristic polynomial for T 1s
f=&x—c)b- (x— ek
and dim W; =d;,i=1,... k
(ii1) dim Wy + « -+ + dim Wy = dim V.

Proof. We have observed that (1) implies (ii). If the characteristic
polynomial f 1s the produet of linear factors, as in (ii), then dy 4+ -+ +
di = dim V. For, the sum of the d;’s is the degree of the characteristic
polynomial, and that degree is dim V. Therefore (ii) implies (iii). Suppose
(iii) holds. By the lemma, we must have V = W, + .- + W, Le., the
characteristic vectors of 7' span V. |}
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The matrix analogue of Theorem 2 may be formulated as follows. Let
A be an n X n matrix with entries in a field F, and let ¢y, . . ., cx be the
distinet characteristic values of A in F. For each 1, let W, be the space of
column matrices X (with entries in F') such that

(A —al)X =0,

and let ®; be an ordered basis for W The bases @, . . . , ®; collectively
string together to form the sequence of columns of a matrix P:

P = [Pl,Pg,...:[ = ({Bl,...,{Bk).
The matrix A is similar over F to a diagonal matrix if and only if P is a
square matrix. When P is square, P is invertible and P~1AP is diagonal.

Exampri 3. Let T be the linear operator on B?* which is represented in
the standard ordered basis by the matrix

5 —6 —
A=|-1 4 2|
3 -6 —

Let us indicate how one might compute the characteristic polynomial,
using various row and column operations:

r—5 6 6 r—2>5 0 6
1 r—4 =2 = 1 r—2 -2
-3 6 T+ 4 -3 22—z -+ 4
r—25 0 6
-3 -1 z+ 4
zt—5 0 6
—~2 0 z+2
z — 5 ]
= =2, x+2|
= (z — 2)(z* — 3z + 2)
= (x — 2)¥z — 1).
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What are the dimensions of the spaces of characteristic vectors associated
with the two characteristic values? We have

4 —6 —6

A-I=|-1 3 2
| 3 -6 —5
-3 —6 —6

A-21=|-1 2 2}
| 3 —6 —6

We know that 4 — [ is singular and obviously rank (4 — I) > 2. There-
fore, rank (A — I) = 2. It is evident that rank (4 — 2I) = 1.

Let W,, W, be the spaces of characteristic vectors associated with the
characteristic values 1, 2. We know that dim W, = 1 and dim W, = 2. By
Theorem 2, T is diagonalizable. It is easy to exhibit a hasis for 2 in which
T is represented by a diagonal matrix. The null space of (T' — I) is spanned

by the vector ey = (3, —1, 3) and s0 {e,} is a basis for W;. The null space
of T — 2I (i.e., the space W) consists of the vectors (x;, T3, T3) with z; =
2xy + 2x5. Thus, one example of a basis for W is

oz = (23 1, U)
g = (2:' {]! 1}'

If ® = {a, o, a3}, then [T]g is the diagonal matrix

1 0 0
D=0 2 0
0 0 2

The faet that T is diagonalizable means that the original matrix A is
similar (over R) to the diagonal matrix D, The matrix P which enables us
to change coordinates from the basis ® to the standard basis is (of course)
the matrix which has the transposes of ai, as, a3 as its column vectors:

3 2 2
P=]1—-1 1 0}
3 01
Furthermore, AP = PD, so that
P-14AP = D,
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Definition. Lel T be a linear operator on a finite-dimensional vector
space V over the field ¥. The minimal polynomial for T 7s the (unique)
monic generator of the ideal of polynomials over ¥ which annihilate 'T.

The name ‘minimal polynomial’ stems from the fact that the generator
of a polynomial ideal is characterized by being the monic polynomial of
minimum degree in the ideal. That means that the minimal polynomial p
for the hnear operator T is uniquely determined by these three properties:

(1) p is a monic polynomial over the sealar field F.

(2) p(T) = 0.

(3) No polynomial over F which annihilates 7" has smaller degree than
p has.

If A is an n X n matrix over F, we define the minimal polynomial
for A in an analogous way, as the unique monic generator of the ideal of all
polynomials over Ff which annihilate A. If the operator T is represented in
some ordered basis by the matrix A, then T and A have the same minimal
polynomial. That is because f(T') is represented in the basis by the matrix
f(A), so that f(T) = 0if and only if f(4) = 0.

From the last remark about operators and matrices it follows that
similar matrices have the same minimal polynomial. That faet ig also elear
from the definitions because

fIP'AP) = PIf(A)P
for every polynomial f.

Theorem Let T be a linear operator on an n-dimensional vector
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space V [or, let A be an n X n matrix]. The characteristic and minimal
polynomaials for T [for A] have the same roots, except for multiplicities.

Proof. Let p be the minimal polynomial for 7. Let ¢ be a scalar.
What we want to show is that p(c) = 0 if and only if ¢ is a characteristic
value of 7.
First, suppose p(¢) = 0. Then

p=(z—clg
where g 1s a polynomial. Since deg ¢ < deg p, the definition of the minimal

polynomial p tells us that g(T) # 0. Choose a vector 8 such that g(7)8 = 0.
Let @ = ¢(1")8. Then

0 =p(T)8
= (T — cl)g(T)B
= (T = ¢De

and thus, ¢ is a characteristic value of T.
Now, suppose that ¢ is a characteristic value of 7', say, Ta = ca with
a # 0. As we noted in a previous lemma,
p(T)a = p(c)e.

Since p(7') = 0 and a # 0, we have p(c) = 0. |
Let T be a diagonalizable linear operator and let ¢, . . ., ¢ be the
distinet characteristic values of T. Then it is easy to see that the minimal

polynomial for T is the polynomial
p=(@—a) (@)

If & is a characteristic vector, then one of the operators T' — al, . . .,
T — eI sends « into 0. Therefore

(T —ed) - (T'=al)a=0

for every characteristic veetor a. There is a basis for the underlying space
which consists of characteristic vectors of T'; hence

p(T) =T —cl) - (T —al) =0.

What we have concluded is this. If T is a diagonalizable linear operator,
then the minimal polynomial for T is a product of distinct linear factors.
As we shall soon see, that property characterizes diagonalizable operators.
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ExampLE Let’s try to find the minimal polynomials for the operators
in Examples 1, 2, and 3. We shall discuss them in reverse order. The vper-
ator in Example 3 was found to be diagonalizable with characteristic
polynomial

J=@&-=1—2)°>~

From the preceding paragraph, we know that the minimal polynomial for
T is

p=(x—1)(z—2).
The reader might find it reassuring to verify directly that

(A —IA —2I) =0.

In IExample 2, the operator 7" also had the characteristic polynomial
f=(z — 1)(z — 2)2 But, this T is not diagonalizable, so we don’t know
that the minimal polynomial is (z — 1) (z — 2). What do we know about
the minimal polynomial in this case? From Theorem 3 we know that its
roots are 1 and 2, with some multiplicities allowed. Thus we search for p
among polynomials of the form (x — 1)*(x — 2),k > 1,1 > L. Try (z — 1)
(x — 2):

2 1 =171 1 -1
A—-—DMA-2D=|2 1 —=1||l2 0 -1
(2 2 —-1]|2 2 -2

2 0 —17

=[(2 0 =1}

4 0 —2]
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Thus, the minimal polynomial has degree at least 3. So, next we should try
either (z — 1)*(z — 2) or (z — 1)(z — 2)% The second, being the charac-
teristic polynomial, would seem a less random choice. One can readily
compute that (A — I)(A — 2I')? = 0. Thus the minimal polynomial for T
Is its characteristic polynomial.

In Example 1 we discussed the linear operator 7' on R? which is
reprezented in the standard basis by the matrix

0 -1
4=} o)
The characteristic polynomial is x? 4+ 1, which has no real roots. To
determine the minimal polynomial, forget about T and concentrate on A.
As a complex 2 X 2 matrix, A has the characteristic values 7 and —z.
Both roots must appear in the minimal polynomial. Thus the minimal

polynomial is divisible by z* + 1. It is trivial to verify that A2+ I = 0.
So the minimal polynomial is 2? + 1.

Theorem 4 (Cayley-Hamilton). Let T be a linear operalor on a
finite dimensional vector space V. If { is the characteristic polynomial for T,
then f(T) = 0; in other words, the minimal polynomial divides the charac-
teristic polynomial for T.

Proof. Later on we shall give two proofs of this result independent
of the one to be given here. The present proof, although short, may be
difficult to understand. Aside from brevity, it has the virtue of providing
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an 1luminating and tar trom trivial application ot the general theory ot
determinants developed in Chapter 5.

Let K be the commutative ring with identity consisting of all poly-
nomials in 7', Of eourse, K 1z actually a commutative algebra with identity
over the scalar field. Choose an ordered basis {ai, . . ., as} for V, and let 4
be the matrix which represents 7' in the given basis. Then

'Tnf,- = E A,‘fa’,‘, 1 5 'I-‘_: n.
i=1
These equations may be written in the equivalent form

i (85T — Azl )e; = 0, 1<i<n

J=1
Let B denote the element of K™ with entries
.Bc,' = &;T — A,‘J.
When n = 2
B = [T — Anl —Agl ]
— AT T — Asal
and
det B = (T - Anf)(T - AEEI) - A].EAEII
= T (/111 + Az:)T + (Aquz - Aqul)I
= f(T)

where f is the characteristic polynomial:
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f = x* — (trace A)z + det 4.
For the case n > 2, it is also clear that
det B = f(T)

since f is the determinant of the matrix I — A whose entries are the
polynomials

[.?‘JI _ A)ij = ﬁ;,‘.l' - A,‘;‘.

We wish to show that f(T) = 0. In order that f(T') be the zero operator,
it is necessary and sufficient that (det B)ay = 0 fork = 1, ..., n. By the
definition of B, the vectors ey, . . . , ay, satisfy the equations

(6-6) S Bija; =0, 1<i<n.
i=1
When n = 2, it is suggestive to write (6-6) in the form
[T —_ AHI —AHI [al] — —U:I'
—'_('112.{ T - Aggf g _'U

In this case, the classical adjoint, adj B is the matrix

B - [T — Al And ]
- A].EI T A“.I_

_[detB 0
BB = [0 det B]'

)= @m [ %]

-5(fz)
[}

In the general case, let B = adj B. Then by (6-6)

and

Henee, we have

(det B) [

i EHBiJﬂj = 0

i=1
for each pair &, ¢, and summing on %, we have
n

0= 2 f} ByiBi;a;

i=1j5=1

% El Eh’B ij) @xj.
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Now BB = (det B)I, so that

i} EuBi;‘ = &; det B.
Therefore

8i;(det B)a;

7

= (et B)as, 1<k<n |

=
Il
itas

The Cayley-Hamilton theorem is useful to us at this point primarily
because it narrows down the search for the minimal polynomials of various
operators. Tf we know the matrix A which represents T in some ordered
basis, then we can compute the characteristic polynomial f. We know that
the minimal polynomial p divides f and that the two polynomials have the
same roots. There is no method for computing precisely the roots of a
polynomial (unless its degree is small); however, if f factors

(6-7) f=(x—ec)® - (x — cx)B, ey - . ., G distinet, d; > 1
then
(6-8) p=@@—c)" - (z—ca)y, 1<r;<4d;

That is all we can say in general. If f is the polynomial (6-7) and has
degree n, then for every polynomial p as in (6-8) we can find an n X n
matrix which has f as its characteristic polynomial and p as its minimal
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polynomial. We shall not prove this now. But, we want to emphasize the
fact that the knowledge that the characteristic polynomial has the form
(6-7) tells us that the minimal polynomial has the form (6-8), and it tells us
nothing else about p.

Examrie 5. Let A be the 4 X 4 (rational) matrix

01 01
1 0 1 0
4=10 1 01
1 010
The powers of A are easy to compute:
(2 0 2 07
0 2 0 2
2 =
=12 0 2 0
0 2 0 2
0 4 0 47
4 0 4 0
i = .
4 0 4 0 4
4 0 4 0]

Thus A% = 44, ie., if p = 2? — 42 = z(z + 2)(z — 2), then p(4) = 0.
The minimal polynomial for 4 must divide p. That minimal polynomial is
obviously not of degree 1, since that would mean that A was a scalar
multiple of the identity. Hence, the candidates for the minimal polynomial
are: p, x(x + 2), 2(x — 2), 2® — 4. The three quadratic polynomials can be
eliminated because it is obvious at a glance that A2 = —24, A? = 24,
A* 7 4], Therefore p is the minimal polynomial for A. In particular 0, 2,
and —2 are the characteristic values of A. One of the factors z, z — 2,
x 4+ 2 must be repeated twice in the characteristic polynomial. Evidently,
rank (A) = 2. Consequently there is a two-dimensional space of charac-
teristic vectors associated with the characteristic value 0. From Theorem
2, 1t should now be clear that the characteristic polynomial is z*(z* — 4)
and that 4 1s similar over the field of rational numbers to the matrix

000 O
000 O
002 of
000 —2
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Invariant Subspaces

Definition. Let V be a vector space and T a linear operator on V. If
W iz a subspace of V, we say that W is invariant under T if for each vector
a in W the vector Ta 15 in W, d.e., if T(W) is contained in W.

ExampLE 6. If T is any linear operator on V, then V is invariant
under 7', as is the zero subspace. The range of 7' and the null space of T
are also invariant under T.

ExamrLE 7. Let F be a field and let D be the differentiation operator
on the space F[z] of polynomials over F. Let n be a positive integer and
let W be the subspace of polynomials of degree not greater than n. Then W
is invariant under D. This is just another way of saying that D is ‘degree

decreasing.’
space V. Let W be the subspace spanned by all of the characteristic vectors

ExamMPLE Let T be anv linear operator on a finite-dimensional

space V. Let W be the subspace spanned by all of the characteristic vectors

of T. Let ¢, . . ., ez be the distinet characteristic values of T. For each ¢,
let W; be the space of characteristic vectors associated with the charac-
teristic value ¢;, and let ®; be an ordered basis for W,, The lemma before
Theorem 2 tells us that ®' = (®;, . . ., @) 15 an ordered basis for W. In
particular,

dim W = dim W, 4+ -+ 4+ dim W,.

Let ® = {ay, ..., e so that the first few o’s form the basis ®,, the next
few ®,, and so on. Then

Tﬁ!;=£§a‘¢, ’!:=1,...,?‘

where (fy,...,6) = (e, e, ..., C, .o vy Chy €y . .., ) With ¢; repeated
dim W; times.
Now W is invariant under T, since for each « in W we have

¥ =ﬂ’,'1(11+ e +$ﬂ’-
TCI = 51231011 "J- v + t;“rray.

Choose any other vectors a1, . . ., @, i V such that @ = {ay, ..., a.}
is a basis for V. The matrix of T relative to ® has the block form (6-10), and
the matrix of the restriction operator T'w relative to the basis ®' is
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hH 0 - 0
p=|% b 0
0o 0 ---

The characteristic polynomial of B (i.e., of Ty) is

g={(x—e) - (& — )

where e¢; = dim W,. Furthermore, g divides f, the characteristic polynomial
for T. Therefore, the multiplicity of ¢; as a root of f is at least dim W,.

All of this should make Theorem 2 transparent. It merely says that 7'
is diagonalizable if and only if r = n, if and only if e, + --- + & = n. It
does not help us too much with the non-diagonalizable case, since we don’t
know the matrices C and D of (6-10).

Definition. Let W be an invariant subspace for T and let « be a vector
in V. The T-conductor of a into W is the set Sy(a; W), which consists of
all polynomials g (over the scalar field) such that g(T)a s in W.

Sinee the operator T will be fixed throughout most discussions, we
shall usually drop the subseript 7" and write S{a; W). The authors usually
call that collection of polynomials the ‘stuffer’ (das einstopfende Ideal).
‘Conductor’ is the more standard term, preferred by those who envision
a less aggressive operator g(T), gently leading the vector « into W. In the
special case W = {0} the conductor is called the T-annihilator of «.

Lemma. If W is an invariant subspace for T, then W is invariant
under every polynomial in 'T. Thus, for each a tn V, the conductor S(a; W) s
an tdeal in the polynomial algebra F[x].

Proof. If 8is in W, then T8 is in W. Consequently, T(T8) = T3
is in W. By induction, T%3 is in W for each k. Take linear combinations to
see that f(7)8 is in W for every polynomial f.

The defimition of S{a; W) makes sense if W is any subset of V. If W is
a subspace, then S(a; W) is a subspace of F[z], because

(¢f +g)(T) = of(T) + g(T).

If W is also invariant under 7', let ¢ be a polynomial in S(a; W), ie., let
g(T)e bein W. If f is any polynomial, then f(T)[¢g(T)a] will be in W. Since

(fo)(T) = f(T)g(T)

fg is in S(a; W). Thus the conductor absorbs multiplication by any poly-
nomial. ||
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The unique monic generator of the ideal S{a; W) is also called the
T-conductor of « into W (the T-annihilator in case W = {0}). The
T-conductor of « into W is the monic polynomial g of least degree such that
g(T)e is in W. A polynomial fis in S(e; W) if and only if ¢ divides f. Note
that the conductor S(a; W) always contains the minimal polynomial for 7';
hence, every T-conductor divides the minimal polynomial for T,

As the first 1llustration of how to use the conductor S(e; W), we shall
characterize triangulable operators. The linear operator 7' is called tri-
angulable 1f there is an ordered basis in which T is represented by a
triangular matrix.

Lemma. Let V be a finile-dimensional vector space over the field T.
Let T be a linear operator on V such that the minimal polynomaial for T is a
product of linear factors

p=(x—c)" - (X—oe  cinF,

Let W be a proper (W #= V) subspace of V which is invariant under T. There
exists a vector o in V such that

(a) aisnotin W;
(b) (T — cl)a is in W, for some characteristic value ¢ of the operator T.

Proof. What (a) and (b) say is that the T-conductor of « into W
is a linear polynomial. Let 8 be any vector in V which is not in W, Let g be
the T-conductor of g into W. Then g divides p, the minimal polynomial
for T Since § is not in W, the polynomial ¢ is not constant. Therefore,

g=(x =) (x — e)%
where at least one of the integers e; is positive. Choose j so that ¢; > 0.
Then (z — ¢;) divides g:

g = (& — cph.

By the definition of g, the vector @ = h(T)3 cannot be in W. But

(T — ¢il)a = (T — ¢;1)R(T)B

= g(T)8

isin W. |

Theorem Let V be a finile-dimensional vector space over the field T
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and let T be a linear operator on V. Then T is triangulable if and only if the
minimal polynomial for T is a product of linear polynomials over F.

Proof. Suppose that the minimal polynomial factors
p = (J_; — ﬂl)ﬂ ‘e (1: — ck)ri_

By repeated application of the lemma above, we shall arrive at an ordered

basis ® = {a, ..., a, in which the matrix representing T is upper-
triangular:

(A @ Gy @y |

0 gz Oy --- (O

(6-11) [Tlg =10 0 apy -+ ag, |

_ﬂ D D e a'n.r:._
Now (6-11) merely says that
{6-12) Tﬂ',' = ayoy + - - + 00 1<j<n
that is, T'a; is in the subspace spanned by a, . .., a;. To find @, . . ., as,

we start by applying the lemma to the subspace W = {0}, to obtain the
vector ay. Then apply the lemma to W), the space spanned by ay, and we

obtain as. Next apply the lemma to W, the space spanned by o) and as.
Continue in that way. One point deserves comment. After ay, . . ., a; have
been found, it is the triangular-type relations (6-12) for j=1,...,1
which ensure that the subspace spanned by ay, . . ., a; is invariant under
T.

If T is triangulable, it is evident that the eharacteristic polynomial for
T has the form

f=(@—ca) - (x— )b c;in P,

Just look at the triangular matrix (6-11). The diagonal entries ay, . . ., @1,
are the characteristic values, with ¢; repeated d; times. But, if f can be so
factored, so can the minimal polynomial p, because it divides f. ||

Corollary. Lel ¥ be an algebraically closed field, e.g., the complex num-
ber field. Every n X n mairiz over ¥ is similar over F to a triangular matriz.

Theorem Let V be a fintte-dimensional vector space over the field F
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and let T be a linear operator m_if V. Then T is diaganaﬁizc;ble if and tmli; if the
mintmal polynomaal for T has the form

p=(x—e)- - x—ck
where ey, . . ., ¢y are distinet elements of F.

Proof. We have noted earlier that, if T' 1s diagonalizable, its
minimal polynomial is a produet of distinet linear factors (see the discussion
prior to Example 4). To prove the converse, let W be the subspace spanned
by all of the characteristic vectors of T, and suppose W V. By the lemma
used in the proof of Theorem 5, there iz a vector a not in W and a charac-
teristic value ¢; of 7 such that the vector

B = (T — ¢ila
lies in W. Since 8 is in W,
B=Ff+ 1B
where T8; = ¢i8;, 1 < ¢ < k, and therefore the vector
MT)B = h(e))fr + - -+ + hlce)Be
is in W, for every polynomial k.
Now p = (z — ¢;)q, for some polynomial g. Also

g — q(c;) = (@ — ¢cjh.
We have
¢(Tha — gle;)a = W(TYHT — e;a = (1A

But A(7)8 is in W and, since
0 = p(Ta = (T — ¢;1)g(Tex

the vector g(T)e is in W. Therefore, g(¢;)e is in W. Since « is not in W, we
have g(¢;) = 0. That contradicts the fact that p has distinet roots. ||
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Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

Every ..ocoovvevneenn. transformation is a linear transformation. matrix row column unit matrix
Every matrix transformation is a. ..transformation. linear non linear homogeneous non homogeneous linear
.................. transformation preserve the operations of vector addition and scalar
multiplication. linear non linear matrix row linear
Linear transformation preserve the ............... of vector addition and scalar multiplication. addition functions operations values operations
Linear transformation preserve the operations of .................... and scalar multiplication. vector addition vector subtraction vector multiplication  [vector division vector addition

Linear transformation preserve the operations of vector addition and .................

vector multiplication

scalar multiplication

matrix multiplication

vector division

scalar multiplication

If T is a linear transformation , then T(0)=.............

0

1

2

3

0

T(cutdv)=......ccocuennns T(cu)+T(dv) cT(u)-dT(v) T()+T(v) cT(u)+dT(v) cT(u)+dT(v)
Let T be a linear transformation then there exists a unique matrix A such that
TX)=eeeaaennnne for all xinR 0 Ax X 1 Ax
Let T be a linear transformation then there exists a .................. matrix A such that T(x)=Ax
for all xinR zero unique identity diagonal unique
An nxn matrix B such that BA=Iis calleda .................... of A zero left inverse right inverse identity left inverse
An .. mxm nxn mxn nxm nxn

zero left inverse right inverse identity right inverse
An matrix B such that AB=I is called a right inverse of A mxm nxn mxn nxm nxn
If AB=B then B is called a ..inverse of A. two sided left inverse right inverse identity two sided
If AB=BA=.. then B is called a two sided inverse of A. 0 1 I -1 I
A two sided inverse of Aand Ais said to be . invertible inverse identity vertible invertible
If A is invertible,so is A~ 'and (A~ ') " Al A 0 c A
If Ads ooooieviiiinnn.. ,s0is A "and (A" ') '=A invertible inverse identity vertible invertible
If both A and B are invertible ,so is AB,and (AB)” '=............... B! A ! BA B A" B A"
If both A and B are ........,50 is AB,and (AB)” '=B" 'A" ! invertible inverse identity vertible invertible
A ... of invertible matrices is invertible addition subtraction product division product
A product of invertible ................ is invertible matrices functions vectors equations matrices
A product of invertible matrices is .................. invertible inverse identity vertible invertible
AN matrix is invertible. null identity elementary singular elementary
An elementary matrix is.................... invertible inverse identity vertible invertible
A of V is a subset W of V which is itself a vectorspace over F with the
operations of vector addition and scalar multiplication on V. subspace space vector function subspace
A subspace of V is a subset W of V which is itself a vectorspace over F with the
..................... of vector addition and scalar multiplication on V. functions operations scalar vector operations

A subspace of V is a subset W of V which is itself a vectorspace over F with the operations
..and scalar multiplication on V.

of

vector addition

vector subtraction

vector multiplication

vector division

vector addition

A subspace of V is a subset W of V which is itself a vectorspace over F with the operations
vector addition and .................. on V.

of

vector multiplication

scalar multiplication

matrix multiplication

vector division

scalar multiplication

The ..oooveiiiii consisting of the zero vector alone is a subspace of V, called zero

subspace of V. subset set space subspace subset

The subset consisting of the................. vector alone is a subspace of V, called zero

subspace of V. zero unit finite infinite zero

The subset consisting of the zero vector alone is a subspace of V, called ....................... of

V. zero subspace Zero space zero subset zero set zero subspace

An .. matrix A over the field F is symmetric if Aij=Aji for each iand j. mxm nxn mxn nxm nxn

An nxn matrix A over the .. F is symmetric if Aij=Aji for eachiand j. field scalar vector matrix field

An nxn matrix A over the field F i ....if Aij=Aji for each i and j. symmetric non symmetric singular non singular symmetric

An nxn matrix A over the field F is symmetric if for each i and j. Aij<Aji Aij>Aji Aij=Aji Aij£Aji Aij=Aji

Any set which contains a lineary dependent set is .. linearly dependent linearly independent linear non linear linearly dependent
Any subset of a lineary independent set is ................... linearly dependent linearly independent linear non linear linearly independent
Any set which contains the . vector is linearly dependent. 0 unit inverse complex 0

Any set which contains the 0 vector is........ linearly dependent linearly independent |linear non linear linearly dependent
Aset S of vectors is ......o.veiiunnnn. iff each finite subset of S is linearly independent. linearly dependent linearly independent |linear non linear linearly independent
A set S of vectors is linearly independent iff each .............. subset of S is linearly

independent. one finite infinite null finite
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Inner Product Spaces

Definition. Let ¥ be the field of real numbers or the field of complex
numbers, and V a veclor space over F. An inner product on V is a function
which assigns to each ordered pair of vectors a, 8 in V a scalar (alf) in F in
such a way that for all «, 8, v in V and all scalars ¢

(a) (a+B8lv) = (alv) + Bl7);

(b) (cal8) = c(alB);

(e) (Bla) = (a[B), the bar denoting complex conjugation;

(d) (ala) > 01if a # 0.

It should be observed that conditions (a), (b), and (¢) imply that
(e) (aleg + v) = E(alB) + (afy).

One other poinl should be made. When F is the field I of real numbers,
the complex conjugates appearing in (¢) and (e) are superfluous; however,
in the complex case they are necessary for the consistency of the condi-
tions. Without these complex conjugates, we would have the contradiction:

(ele) >0 and (ialie) = —1(ala) > 0.

In the examples that follow and throughout the chapter, F is either
the field of real numbers or the field of complex numbers.

ExamprLe On F* there is an inner product which we call the

standard inner product. It is defined on a = (@1,...,%,) and g =
(W1, - -5 9n) bY
(8-1) (aB) = ?%ﬂi-

When F' = R, this may also be written
(«B) = E;xj%'-

In the real case, the standard inner product is often called the dot or
sealar product and denoted by « - 8.

ExampLE For a = (z1, 22) and 8 = (41, y2) in R?, let
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(e|B) = 2aph — Xt — Tay2 + 420y

Since (afe) = (21 — 22) + 33, it follows that (ala) > 0 if « # 0. Condi-
tions (a), (b), and (¢) of the definition are easily verified.

ExampLE 3. Let V be F»*», the space of all n X n matrices over F.
Then V is isomorphic to F»* in a natural way. It therefore follows from
Example 1 that the equation

(A|B) = -2;: A ;B
:l

defines an inner product on V. Furthermore, if we introduce the conjugate
transpose matrix B*, where B}, = Bj, we may express this inner product
on F»*» in terms of the trace function:

(A[B) = tr (AB*) = tr (B*4).
For
tr (AB*) = Z (AB*);;

= 2 2 AqbBk
ik

= 3 3 A;Bj.
F

ExamvpLE Let F#<! be the space of n )X 1 (ecolumn) matrices over
F, and let @ be an n X n invertible matrix over F. For X, Y in FX! get

(X|Y) = Y*Q*QX.
We are identifying the 1 X 1 matrix on the right with its single entry.

When () is the identity matrix, this inner product is essentially the same
as that in Example 1; we call 1t the standard inner product on F*x1,
The reader should note that the terminology ‘standard inner produect’ is
used in two special contexts. For a general finite-dimensional vector space
over F, there is no obvious inner product that one may call standard.

ExampLE 5. Let V be the vector space of all continuous complex-
valued functions on the unit interval, 0 < ¢ < 1. Let

(lo) = [ F@yg®) a.

The reader is probably more familiar with the space of real-valued con-
tinuous functions on the unit interval, and for this space the complex
conjugate on ¢ may be omitted.
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Inner Product Spaces

Definition. An inner product space s a real or complex vector space,
together with a specified inner product on that space.

A finite-dimensional real inner product space is often called a Euclid-
ean space. A complex inner product space is often referred to as a unitary
space.

Theorem

If V is an tnner product space, then for any vecltors a, 3
in V and any scalar c

@ leal = le] {lal;

(i) {le|| > 0 for a = 0;
(i) [(al8)] < |le| 18]}
(iv) |le 4+ 8l < {lafl + 8]

Proof. Statements (i) and (ii) follow almost immediately from

the various definitions involved. The inequality in (iii) is clearly valid
when a = 0. If a 7 0, put

Yy=8- -ﬁﬁla

|al|?
Then (y|a) = 0 and
0 <l = (5= s - 5 a)
— glp) ~ ﬁ‘)ﬁ’;l £)
= |lg)): — e
Hence |(«|B8)]? < ||a/{2]|8]|2. Now using (¢) we find that
llee + BI|* = ||a]|* + (@lB) + (8la) + [|8]]?
)| + 2 Re (a[8) + |82
e|* + 2 (][ [|8]] + [18]]%
(el + 118112

Thus, [le + 8| < |lal| + 118]]. |

A
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The inequality in (iii) is called the Cauchy-Schwarz inequality.
It has a wide variety of applications. The proof shows that if (for example)

« is non-zero, then |(a|8)| < ||| ||8]] unless

_ @l
A= T ™

Thus, equality occurs in (iii) if and only if « and g are linearly dependent.

ExXAMPLE
inner products given in Examples 1, 2, 3, and 5, we obtain the following:
(a) [Z | < (2 [z )2 [yul2)
(b) |z — Zayy — Tays + sy
< ((m1 — 2)? + 323)V2((y1 — y2)? + 3y3)17
(e) |tr (AB*)| < (tr (AA*))Y*(tr (BB*))"/2

@ [ @@ ae| < (f) 1@ dz)” ([ @) de)

Definitions. Let o and 8 be veclors in an inner product space V. Then «
18 orthogonal to 8 if (a|8) = 0; since this implies B is orthogonal to «,
we often simply say that « and B are orthogonal. If S is a set of vectors in V,
S is called an orthogonal set provided all pairs of distinct vectors in S are
orthogonal. An orthonormal set is an orthogonal set S with the additional

property that ||a|| = 1 for every a in S.

EXAMPLE
The wector (ma %) in R? is orthogonal to (—y, x) with

respect to the standard inner product, for
((z, P|(—y,2)) = —zy + yz = 0.
However, if R? is equipped with the inner product of Example 2, then
(z, y¥) and (—y, z) are orthogonal if and only if
y=31(—-3+ V13

ExXAMPLE
I.et ¥V be the space of continuous complex-valued (or
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real-valued) functions on the interval 0 < 2 < 1 with the inner product
1 -
(flo) = [ £()3@) da.

Suppose f.(z) = V2 cos2mnz and that ga(z) = V2 sin 2rnz. Then
{1, fi, g1, foy @2, . . .} 18 an infinite orthonormal set. In the complex case,
we may also form the linear combinations

1 .
75(.{“"'7’914): n=1;21

In this way we get a new orthonormal set S which consists of all functions
of the form
ha(x) = e2min=, n==+1,42 ...

The set S’ obtained from S by adjoining the constant function 1 is also
orthonormal. We assume here that the reader is familiar with the caleula-
tion of the integrals in question.

Theorem . . .
An orthogonal set of mon-zero wvectors is linearly inde-
pendent.

Proof. Let S be a finite or infinite orthogonal set of non-zero
vectors in a given inner product space. Suppose ay, @, . . . , an are distinct
vectors in S and that

B = o + ceas + -+ + Cultm.
Then
(Blew) = (;ﬁr cjejlat)

= Z ci(ajleu)
= Ck(aklak)-

Sinee (ax|ar) = 0, it follows that

Cp = -('Bl—ak)) 1 S k S m.
el |2

Thus when 8 = 0, each ¢; = 0; so S is an independent set. |}
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Corollary. If a vector B is a linear combination of an orthogonal
sequence of non-zero veclors o, . . ., o, then B is the particular linear
combination
m (Blow)
8-8 = 2 0.
&) A= 2 Tl

'T'his corollary follows from the proof of the theorem. There 1s another
corollary which although obvious, should be mentioned. If {ai,. .., am}
is an orthogonal set of non-zero vectors in a finite-dimensional inner
product space V, then m < dim V. This says that the number of mutually
orthogonal directions in V cannot exceed the algebraically defined dimen-
sion of V. The maximum number of mutually orthogonal directions in V
is what one would intuitively regard as the geometric dimension of V,
and we have just seen that this is not greater than the algebraic dimension.
The fact that these two dimensions are equal is a particular corollary of
the next result.

Theorem
Let V be an inner product space and let B:, . .., Bn be
any tndependent vectors in V. Then one may construct orthogonal veciors

ai, . ..,y in V such that for each k = 1,2,...,n the set

{ag, . . ., ax}
18 a basis for the subspace spanned by B, . . . , Px.
Proof. The vectors ay, . .., a, will be obtained by means of a

construction known as the Gram-Schmidt orthogonalization process.

First let au = B1. The other vectors are then given inductively as follows:

Suppose aj, . . ., an (1 < m < n) have been chosen so that for every k
{oa, . . ., au}, 1<k<m

is an orthogonal basis for the subspace of V that is spanned by 8, . . ., B
To construct the next vector a1, let

(8"9) Dm+l = ﬁm+l - kE=1 (igl?r_;jﬁk) 278
Then an. # 0. For otherwise 8,4 is a linear combination of ay, . . ., o
and hence a linear combination of 8, . . . , Bm. Furthermore, if 1 < 5 < m,
then

2 (B )

(%4-1]5‘;‘) = (ﬁm-1|05:') - 2 (ak|ﬂ':‘)

k=1 ||o[?

= (Butrloy) — (Bmia|ey)
= 0.
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Therefore {ey, ..., a.u1) 18 an orthogonal set consisting of m + 1 non-
zero vectors in the subspace spanned by 8y, ..., Bnu. By Theorem 2,
it is a basis for this subspace. Thus the veetors ay, . . ., o, may be con-
structed one after the other in accordance with (8-9). In particular, when
n = 4, we have

o =B
= o
Y men e
om o ol o~ o B

Corollary. Every finite-dimensional tnner product space has an ortho-
normal basts.

Proof. Let V be a finite-dimensional inner product space and

{81, ..., B} a basis for V. Apply the Gram-Schmidt process to construct
an orthogonal basis {ay, ..., a,}. Then to obtain an orthonormal basis,
simply replace each vector o by ax/|loul|.
ExXAMPLE
Consider the vectors
B = (32 01 4:)
B = (=1,0,7)
B = (2,9, 11)

in R? equipped with the standard inner product. Applying the Gram-
Schmidt process to 8, Bz, 8s, we obtain the following vectors.

ar = (3,0,4)
(—1,0,7)3,0,4))

_ _
Qe = ( 1, 0, 7) 25 (3,- OJ 4)
= (_1: 0,7) — (3,0,4)
= (_4: Or 3)
w = (2,0,11) - (B HIDG09) (5 o 4
(2,9, 11)[(—4, 0, 3))
- 25 (_41 0; 3)
= (2,9 11) — 2(3,0,4) — —4,0, 3)
= (0, 9, 0).
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These vectors are evidently non-zero and mutually orthogonal. Hence

{ou, az, a3} 18 an orthogonal basis for R3 To express an arbitrary vector
(&1, X2, x3) In ? as a linear combination of a), ay, a3 it is nol necessary to
solve any linear equations. For it suffices to use (8-8). Thus

3z + 4z —4z Ax T
(581,332, T3) = ITQOH +$Cﬁz + ggﬂfa

as is readily verified. In particular,

To put this point in another way, what we have shown is the following:

The basis {fi, f2, f3} of (R3)* which is dual to the basis {ai, as, as} is defined
explicitly by the equations

3z 4x
fi(@, @, 73) = S + 4

25
Flan any ) = 2L 3
Js(@, 20, 73) = %

and these equations may be written more generally in the form

_ ((zy, 2y, 3?3)[05:').
fj(xlj T2, x3) = ”aj”2

Finally, note that from a), as, as we get the orthonormal basis

1'1? (31 01 4)1 Tli' (_4’ 0& 3): (0! 11 0)°

EXAMPLE

Let A = I:g 3] where a, b, ¢, and d are complex num-
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bers. Set 8 = (a, b), B: = (¢, d), and suppose that 8, = 0. If we apply
the orthogonalization process to fi, B, using the standard inner product
in C'%, we obtain the following vectors:

a; = (ﬂ-, b)
_ ((c, d)|(a, b))

ar = (¢, d) — “aE+ o (a, b)
_ _ (e + db)
- (CJ d) !alg + IbJE (G, b)

_ (cbﬁ — dba dda — cdb)
la[? + [b]* |al* + [b]?
det A roo
=l + [oF (—b, a).
Now the general theory tells us that a; = 0 if and only if 81, 8, are linearly
independent. On the other hand, the formula for a; shows that this is the

case if and only if det A # 0.

Theorem
Let W be a subspace of an inner product space V and

let 8 be a vector in V.

(i) The vector o in W is a best approximation to B by vectors in W f
and only if B — a 18 orthogonal to every vector in W.
(1) If a best approximation to 8 by vectors in W exists, it is unique.
(i) If W 1s finite-dimensional and {a, ..., as} 1s any orthonormal
basis for W, then the vector

18 the (unique) best approximation to 8 by vectors in W.

Proof. Tirst note that if v is any vector in V, then g — v =
B —a) + (@ — v), and

18 = ][> = [I8 — al]* + 2Re (8 — ala — ) + [|a — 7lI%

Now suppose 8 — « is orthogonal to every vector in W, that v is in W
and that v # «. Then, since « — yi1s in W, it follows that

18 = ~ll* =118 = | + [la — +I]*
> |18~ o
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Conversely, suppose that |[8 — v|| = [|8 — | for every v in W.
Then from the first equation above it follows that

2Re (B — ale — ) + [la —7|[*=0

for all ¥ in W. Since every vector in W may be expressed in the form
a — v with v in W, we see that

2Re (8 —alr) + |l7|[* 20

for every = in W. In particular, if v is in W and v # «, we may take

__(6 - C"‘l"'.": - 'Y) (C!
e — |2

T = — 7).

Then the inequality reduces to the statement

_o B = ale — ¥)P2 I (OB St > 0.
|l = ~[* e — lf?
This holds if and only if (8 — ala — ) = 0. Therefore, 8 — « is orthog-
onal to every vector in W. This completes the proof of the equivalence
of the two conditions on « given in (i). The orthogonality condition is
evidently satisfied by at most one vector in W, which proves (ii).

Now suppose that W is a tinite-dimensional subspace of V. T'hen we
know, as a corollary of Theorem 3, that W has an orthogonal basis. Let
{a, . . ., @} be any orthogonal basis for W and define « by (8-11). Then,
by the computation in the proof of Theorem 3, § — « is orthogonal to
each of the vectors a; (8 — o 1s the vector obtained at the last stage when

the orthogonalization process is applied to a;, .. ., ax, B). Thus 8 — a is
orthogonal to every linear combination of «y, . . ., a,, i.e., to every vector
in W. If yisin W and v # «, it follows that ||8 — v|| > ||8 — al|. There-
fore, a is the best approximation to 8 that lies in W. |
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Definition. Let V be an inner product space and S any set of vectors
i V. The orthogonal complement of S s the set S* of all vectors in V
which are orthogonal to every vector in S.

The orthogonal complement of V is the zero subspace, and conversely
{0}*+ = V. If S is any subset of V, its orthogonal complement S* (S perp)
is always a subspace of V. For S is non-empty, since it contains 0; and
whenever « and g are in St and ¢ is any scalar,

(ca 4 Bly) = claly) + (Bly)
c0+0
=0

for every «v in S, thus ca + 8 also lies in 8. In Theorem 4 the character-
istic property of the vector « is that it is the only vector in W such that
B — a belongs to W+,

Definition. Whenever the vector o in Theorem 4 exists it 1s called the
orthogonal projection of 8 on W. If every vector in V has an orthogonal
projection on W, the mapping that assigns to each vector in V its orthogonal
projection on W 1s called the orthogonal projection of V on W.

By Theorem 4, the orthogonal projection of an inner product space
on a finite-dimensional subspace always exists. But Theorem 4 also implies
the following result.

Corollary. Let V be an inner product space, W a finite-dimensional
subspace, and E the orthogonal projection of V on W. Then the mapping

B~ 3 — EB
18 the orthogonal projection of V on W+,

Proof. Let 8 be an arbitrary vector in V. Then g — EB is in W+,
and for any v in W*, g — vy = Eg + (8 — EB — 7). Since Eg is in W
and 8 — EB — v is in W+, it follows that

1B — 2 = ||EBI|* + {|8 — EB — ~]i®
> |8 — (B — EB)||?

with strict inequality when v #= 8 — EB. Therefore, 8 — EB is the best
approximation to g8 by vectors in W+, |}

ExaMpLE
Give R3 the standard inner product. Then the orthog-
onal projection of (—10,2,8) on the subspace W that is spanned by
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(3, 12, —1) is the vector

. ((_101 21 8)'(3! 12)
a = .

—1)) _
9+ 144 + 1 3,12, —1)

14 .
= T51 312, —D).

The orthogonal projection of R® on W is the linear transformation ¥
defined by

3 122 —
(Il, X, .‘.1’.'3:1 - ( a2 + 15:2 Ia) (3, 12, —1)

The rank of £ is clearly 1; hence its nullity is 2. On the other hand,
E(xl: La, 373) = (0: 0: 0)

if and only if 3z; + 122, — x3 = 0. This is the case if and only if (&1, zo, 3)
1s in W+, Therefore, W+ is the null space of F, and dim (W*) = 2.
Computing

3 122, —
(Il, L2, 373) - ( %t 15;;2 :1:3) (3; 12, *'1)

we see that the orthogonal projection of B® on W* is the linear transforma-
tion I — E that maps the vector (z1, a2, 3) onto the vector

1
154

Theorem .
Let W be a finitte-dimensional subspace of an inner product

space V and let  be the orthogonal projection of V. on W. Then E is an tdem-
potent linear transformation of V onfo W, W+ 25 the null space of E, and

V=WoDW-L

Proof. Let 8 be an arbitrary vector in V. Then 3 is the best
approximation to 8 that lies in W. In particular, £8 = 8 when 8 is in W.
Therefore, F(EB) = EB for every 8in V; that is, £ is idempotent: £? = F.
To prove that F 1s a linear transformation, let « and 8 be any vectors in
V and ¢ an arbitrary scalar. Then, by Theorem 4, « — Ea and 8 — EB
are each orthogonal to every vector in W. Hence the vector

cla — Fa) + (B — EB) = (ca + B) — (cEa + Ef)
also belongs to W*. Since cFa + EB is a vector in W, it follows from
Theorem 4 that

(145;1}1 - 36.’.82 + 3&5’3, —361131 + 10&5’2 -‘|‘ 12:!33, 3321 + 12:1’:2 + 15323).

E(ca + B) = cBa + EB.
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Of course, one may also prove the linearity of £ by using (8-11). Again
let 8 be any vector in V. Then EB is the unique vector in W such that
8 — EBis in W, Thus ES = 0 when 8 is in W+, Conversely, 8 is in W+
when B = 0. Thus W+ is the null space of E. The equation
B=EB+pB— EB

shows that V = W 4+ W*; moreover, W N\ W* = {0}. Tor if a is a
vector in W M W+, then (a)a) = 0. Therefore, @ = 0, and V is the direct
sum of W and Wt. |

Corollary. Under the conditions of the theorem, 1 — E is the orthogonal

projection of V on W, It is an idempotent linear transformation of V onto
WL with null space W.

Proof. We have already seen that the mapping 8= 8 — EB is
the orthogonal projection of ¥V on W+. Since £ is a linear transformation,
this projection on Wt is the linear transformation 7 — E. From its geo-
metric properties one sees that / — K is an idempotent transformation
of V onto W. This also follows from the computation

I—E{I —E =I1—E—E+E*
=1 —E.

Moreover, (I — E)8 = 0 if and only if 8 = EB, and this is the case if and
only if 8 is in W. Therefore W is the null space of I — E. |I

The Gram-Schmidt process may now be deseribed geometrically in

the following way. Given an inner product space V and vectors 8y, . . ., Ba
in V, let P (k> 1) be the orthogonal projection of ¥V on the orthogonal
complement of the subspace spanned by By, ..., B, and set Py = I.
Then the vectors one obtains by applying the orthogonalization process
to By, . . ., Bn are defined by the equations
(8-12) o = Py, 1<k<nmn
Theorem 5 implies another result known as Bessel’s inequality.
Corollary. Let {a, ..., a,} be an orthogonal set of mon-zero vectors
in an inner product space V. If B is any vector in V, then

2 OleL < i
ko]
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and equality holds if and only if

_ < (Blox)
b= 2 e

k
Proof. Let ~ = %: [(Blew)/]]|ck||?] @x. Then B =+ 4 & where

(v|8) = 0. Hence
118112 = [Ivl[* + 1[8][2

It now suffices to prove that

(Blaw)|?,

-
Il = 25

This is straightforward computation in which one uses the fact that
(ajlar) = 0forj = k. |

In the special case in which {e,..., @} is an orthonormal set,
Bessel’s inequality says that

2 |(Blew)|* < [18][*.

The corollary also tells us in this case that 8 is in the subspace spanned by
ey .. ., oy if and only if

=2 (3]“.&) X
k

or if and only if Bessel’s inequality is actually an equality. Of course, in
the event that V is finite dimensional and {ey, ..., a,} is an orthogonal
basis for V, the above formula holds for every vector g8 in V. In other
words, if {a;, ..., a,} is an orthonormal basis for V, the kth coordinate
of 8 in the ordered basis {ay, . . ., an} is (8]ax).

ExamMpPLE
We shall apply the last corollary to the orthogonal

sets described in Example i1. We find that

[ 1oea < [Miola

n

(a) »

k=—n
z ckegﬂ'”ﬂl

® bLE,

© [ (V2cos2m 4+ Vasindat)rdi=1+1=2
Linear Functionals and Adjoints

n

2
dt = > [Ckl“’

=—n
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Theorem . ) . )
Let V be a finite-dimenstonal inner product space, and f a

linear functional on V. Then there exists a unique vector 8 in V such that
fla) = (a|B) forall «in V.

Proof. Let {a1, as, . . ., an} be an orthonormal basis for V. Put
(8-13) 8= 3 flaye
and let fs be the linear functional defined by
fola) = («|8).

Then L
Jolaw) = (ouf ?f{ﬂj)a.f) = f(ax).

Since this is true for each ay, it follows that f = fs. Now suppose ¥ is a
vector in V such that («|8) = (a|y) for all a. Then (8 — |8 —v) =0
and 8 = v. Thus there is exactly one vector 8 determining the linear func-
tional f in the stated manner. |

The proof of this theorem can be reworded slightly, in terms of the
representation of linear functionals in a basis. If we choose an ortho-
normal basis {a, ..., a,} for V, the inner product of & = x4 + -+ +
Tnay and 8 = iy + - -+ + yaa, will be

(a|8) = ;s + -+ - + ZuTa
If f is any linear functional on V, then f has the form
fle) = axs + -+ + CaZn

for some fixed scalars ¢, ..., ¢, determined by the basis. Of course
¢; = f(a;). If we wish to find a vector 8 in V such that («|8) = f(a) for all

then clearly the coordinates y; of 8 must satisfy 4, = ¢; or y; = fley).
Accordingly,

B = fladar + - -+ + flan)an
is the desired vector.

Some further comments are in order. The proof of Theorem 6 that
we have given is admirably brief, but it fails to emphasize the essential
geometric fact that 8 lies in the orthogonal complement of the null space
of f. Let W be the null space of f. Then V = W + W+, and f is completely
determined by its values on W<, In fact, if P is the orthogonal projection
of Von W', then

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc MATHEMATICS COURSE NAME: Ring Theory and Linear Algebra-II
COURSE CODE: 17MMUG601A UNIT: IV BATCH-2017-2020

fl@) = f(Pa)

for all « in V. Suppose f # 0. Then f is of rank 1 and dim (W+*) = 1. If 4
is any non-zero vector in W+, it follows that

(aly
Pa = ¥
|[v]]?
for all « in V. Thus

o) = (aly) - 12

[[v]I?
for all @, and 8 = [F(v)/||v]|*] 7.

ExampPLE

We should give one example showing that Theorem 6
is not true without the assumption that V is finite dimensional. Let V be
the vector space of polynomials over the field of complex numbers, with
the inner product

1, ———

(flg) = [} ryg® a
This inner produect can also be defined algebraically. If f = 2 aiz* and
g = Z b, then

C&J‘bk.

1
(flg) = Em

Let z be a fixed complex number, and let L be the linear functional
‘evaluation at 2’:

L(f) = f(2).

Is there a polynomial ¢ such that (flg) = L(f) for every f? The answer is
no; for suppose we have

i@ = [ f05® dt

for every f. Let h = & — 2, so that for any f we have (hf)(z) = 0. Then

0= fol ooy’
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for all f. In particular this holds when f = hg so that

[ Im@elg@ae = 0

and so hg = 0. Since h # 0, it must be that ¢ = 0. But L is not the zero
functional; hence, no such ¢ exists.

One can generalize the example somewhat, to the case where L is a
linear combination of point evaluations. Suppose we select fixed complex
numbers z, . . ., 2z, and scalars ¢y, . . ., ¢, and let

L(f) = af(z) + - -+ + caf(zn).
Then L is a linear functional on V, but there is no g with L(f) = (flg),

unless ¢y = ¢, = -+ = ¢, = 0. Just repeat the above argument with
h=(@—2z) - (x—z)
Theorem

For any linear operator T on a finite-dimensional inner
product space V, there exists a unique linear operator T* on V such that
(8-14) (Ta|) = («|T*8)
forall &, B in V.

Proof. Let B be any vector in V. Then a = (T«|8) is a linear
functional on V. By Theorem 6 there is a unique vector 8’ in V such that
(Ta|8) = («|p’) for every a in V. Let T* denote the mapping 3 = 8':

g = T*8.

We have (8-14), but we must verify that 7* is a linear operator. Let 3, v
be in V and let ¢ be a scalar. Then for any «,

(| T*(eB + 7)) = (TaleB + )
= (Te|cB) + (Taly)
= ¢(Ta|8) + (Taly)

= ¢(a|T*8) + (o T*y)
= (a|cT*B) + (a|T*y)
= (a|eT*8 4 T*y).
Thus T*(e8 + v) = ¢I™*8 + T*y and T* is linear.
The uniqueness of T* is clear. For any 8 in V, the vector T*8 is
uniquely determined as the vector g’ such that (Ta|8) = («/8") for
every a. |}

Theorem
Let V be a fintte-dimensional inner product space and let
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® = {ay, ..., @, be an (ordered) orthonormal basis for V. Let T be a

linear operator on V and let A be the matrix of 'I' in the ordered basis ®. Then
Akj = (Tﬂj[ﬂ.&).

Proof. Since ® is an orthonormal basis, we have

The matrix A is defined by

and since

we have Ah‘ = (T{]’.J'Iag). I

Corollary. Let V be a finite-dimensional inner product space, and let
T be a linear operator on V. I'n any orthonormal basis for V, the matriz of T*
18 the conjugate transpose of the matriz of T.

Proof. Let ® = {ai, ..., a,} be an orthonormal basis for V, let
A = [T]g and B = [T%*]g. According to Theorem 8,
Ay; = (Tojlou)
Bi; = (T*alau).
By the definition of 7* we then have
By = (T*a;|on)
= (| T*;)

= iTm, Crij)
.
ExaMpPLE

Let. V be a finite~-dimensional inner product space and
F the orthogonal projection of V on a subspace W. Then for any vectors

aand in V.
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(Ea|f) = (EalEB + (1 — E)B)
= (Ea|EB)
= (Ea + (1 — E)o|EB)
= (a]EB).

From the uniqueness of the operator E* it follows that E* = E. Now
consider the projection E described in Example 14. Then

[ 9 36 -3
A=| 36 144 —12
154 -3 —12 1

is the matrix of E in the standard orthonormal basis. Since £ = E*, 4 is
also the matrix of E*, and because 4 = A¥*, this does not contradict the
preceding corollary. On the other hand, suppose

a = (154, 0, 0)

ay = (145, —36, 3)

oz = (—36, 10, 12).

Then {ay, o, s} is a basis, and

Eay = (9, 36, —3)
Eoy, = (0,0,0)
Eay = (0,0, 0).

Sinece (9, 36, —3) = —(154,0,0) — (145, —36, 3), the matrix B of E in
the basis {ai, a, a3} is defined by the equation

-1 0 0
B=|—-1 0 0}
0 00

In this case B > B* and B* is not the matrix of E* = E in the basis
{ay, as, az}. Applying the corollary, we conclude that {ey, as, a5} is not
an orthonormal basis. Of course this is quite obvious anyway.

Definition. Let T be a linear operator on an inner product space V.
Then we say that T has an adjoint on V if there exists a linear operator T*
on V such that (TalB) = («|T*B) for all e and B in V.
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By Theorem 7 every linear operator on a finite-dimensional inner
product space V has an adjoint on V. In the infinite-dimensional case this
is not always true. But in any case there is at most one such operator T*;
when it exists, we call it the adjoint of 7.

Two comments should be made about the finite-dimensional case.

1. The adjoint of T depends not only on 7 but on the inner product
as well.

/1

= (g|fh)
= (g|M5(h))
and so (Mj)* = M.
Theorem
Let V be a finite-dimensional inner product space. If T
and U are linear operators on V and c 1s a scalar,

(L) (T+U)*=1T*+U%
(i) (cT)* = cT*;
(i) (TU)* = U*T*;

(iv) (T*)* = T.

Proof. To prove (i), let « and 8 be any vectors in V.
Then
(T + U)alf) = (Ta + Ualp)
= (Ta|8) + (Ualg)
= (a|T*) + (alU*B)
(] T*8 + U*B)
= (af(T* + U%)B).

It
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From the uniqueness of the adjoint we have (T + U)* = T* 4 U*. We
leave the proof of (i1) to the reader. We obtain (iii) and (iv) from the
relations

(TUda|B) = (Ua|T*B) = (a U*T*B)
(T*a)8) = (B[T*a) = (TBla) = (|78). |

Theorem 9 is often phrased as follows: The mapping T'— T* is a
conjugate-linear anti-isomorphism of period 2. The analogy with complex
conjugation which we mentioned above is, of course, based upon the
observation that complex conjugation has the properties (21 + 22) =

%1+ %, (z123) = 2%, 2 = z. One must be careful to observe the reversal
of order in a product, which the adjoint operation imposes: (UT)* =
T*U*. We shall mention extensions of this analogy as we continue our
study of linear operators on an inner product space. We might mention
something along these lines now. A complex number 2 is real if and only
if z = Z. One might expect that the linear operators T such that T' = T*
behave in some way like the real numbers. This is in fact the case. For
example, if 7 is a linear operator on a finite-dimensional complexr inner
product space, then

(8-15) T = Uy + iU,

where U; = Ut and U, = U$. Thus, in some sense, 7" has a ‘real part’ and
an ‘imaginary part.” The operators U, and U, satisfying U; = Ui, and
U, = Uj, and (8-15) are unique, and are given by

U

1

5 (T + T%)
Us = L (7 — %)
2"—21: -

A linear operator T such that T = 7* is called self-adjoint (or
Hermitian). If ® is an orthonormal basis for V, then

[T*]e = [T&
and so 7' 18 sclf-adjoint if and only if its matrix in every orthonormal basis
is a self-adjoint matrix. Self-adjoint operators are important, not simply
because they provide us with some sort of real and imaginary part for the
general linear operator, but for the following reasons: (1) Self-adjoint
operators have many special properties. For example, for such an operator
there is an orthonormal basis of characteristic vectors. (2) Many operators

which arise in practice are self-adjoint. We shall consider the special
properties of self-adjoint operators later.
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Possible Questions

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
Hom(V,V) is the set of all vector space-homomorphisms of V into itself |V into V Vinto W W into W W into V Vinto V
A linear transformation on V,over F is an element of ----------- Ax(W) By(V) Ag(V) Wi(V) Ag(V)
A linear transformation on ------------ is an element of Ay(V) W over F V over V F over F V over F V over F
An element TeA(V) is called -------------- if there exists an Se A(V) such
that TS =1 both invertible right-invertible left-invertible invertible right-invertible
An element ----------- is called right-invertible if there exists an Se A(V)
such that TS =1 VeAV) TeA(T) TeAV) TeA(T) TeAV)
An element TeA(V) is called right-invertible if there exists an Se A(V)
such that ---------- TS =1 TS=0 ST =1 TS =2 TS =1
The ---------- T eA(V) is said to be unitary if (uT,vT)=(u,v) for all u,veV [normal transformation [linear transformation |unitary Nilpotent transformation |linear transformation
The linear transformation T e A(V) is said to be------------- if
(uTyT)=(u,v) for allu,veV normal transformation _[linear transformation |unitary Nilpotent transformation |unitary
The linear transformation T eA(V) is said to be unitary if (uT,vT)= for all
uveV (u,v) uv uT vT (u,v)
The - - Ton V is unitary if and only if it takes an orthonormal
basis of V into an orthonormal basis of V normal transformation [linear transformation |unitary Nilpotent transformation |linear transformation
The linear transformation Ton V is unitary if and only if it takes an--
---- of V into an orthonormal basis of V basis orthogonal basis orthonormal basis |normal basis orthonormal basis

The linear transformation Ton V is unitary if and only if it takes an

orthonormal basis of V into an - -- of V basis orthogonal basis orthonormal basis |normal basis orthonormal basis

If V is finite dimensional and -- there is an Se A(V) such that

E=TS #0 is an idempotent >0 T=0 T=0 T<0

If V is finite dimensional and T=0 there is an Se A(V) such that E=--------

is an idempotent >0 TS#0 T=0 TS=0

If'V is finite dimensional and T#0 there is an Se A(V) such that E=TS =0 is

FE e —— regular idempotent grounded nilpotent

The ------------- W of V is invariant under Te A(V) if WTcW subspace space field sub field

The subspace W of V is invariant under TeA(V) if----------- W over F Wc TV WTcT W=TV

The element A e F is a characteristic root of T e A(V) if and only if for

SOme ------- in V, vI=\v 2=0 A#0 v=0 v#0

The element A e F is a characteristic root of T e A(V) if and only if for

some v#0 in V,----emmemv vI=T vI=\v vI=v Tv=T
linear

If T €A(V) is nilpotent then k is called the -----=-=------ of Tk=0 but T*! #0 |index of nilpotence nilpotence transformation idempotent
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SYLLABUS
OPERATORS

Least Squares Approximation - Minimal solutions to systems of linear equations - Normal
and self - Adjoint operators - Orthogonal projections and Spectral theorem.
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UNIT-V

Bessel’s inequality

Theorem 5. Let W be a finite-dimensional subspace of an inner product
space V and let K be the orthogonal projection of V .on W. Then E is an idem-
potent linear transformation of V onto W, W 4s the null space of E, and

V=WDW-

Proof. Let g be an arbitrary vector in V. Then £8 is the best
approximation to 8 that lies in W. In particular, £8 = 8 when g isin W.
Therefore, H(EB) = EB for every 81in V; that is, F is idempotent: £E? = E.
To prove that E is a linear transformation, let & and 8 be any vectors in
V and ¢ an arbitrary scalar. Then, by Theorem 4, @ — Fa and 8 — EB
are each orthogonal to every vector in W. Hence the vector

cle — Ea) + (8 — EB) = (ca + ) — (cEa + EB)
also belongs to W*. Since cka + EB is a vector in W, it follows from
Theorem 4 that

' Elca + 8) = cFa + EB.
Of course, one may also prove the linearity of E by using (8-11). Again
let 8 be any vector in V. Then &8 is the unique vector in W such that
8 — EBis in W+ Thus ES = 0 when 8 is in W*+. Conversely, 8 18 in W+
when E8 = 0. Thus W+ is the null space of £. The equation
B=EB+pB— EB

shows that V = W + W*; moreover, W N\ W* = {0}. For if a is a

vector in W M W+, then (a|a) = 0. Therefore, @ = 0, and V is the direct
sum of W and Wt. ||

Theorem 5 implies another result known as Bessel’s inequality.
Corollary. Let {ay, ..., an} be an orthogonal set of non-zero veciors
in an inner product space V. If B is any vector in 'V, then

) I(ﬁlﬂfk)l2 < “BHE

ke —
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and equality holds if and only if
g3z o)

X ead|2
Proof. Let ~ = % [(Blow)/||ex||?] ex. Then B =+ + & where
(v|8) = 0. Hence

18112 = llvlz + [la][2.
It now suffices to prove that
1(8lece) 2
(el [*

This is straightforward computation in which one uses the fact that
(ajlaz) = 0forj = k. |

2 —
Il =

Theorem 9 (Spectral Theorem). Let T be a normal operator on a
findte-dimensional complex inner product space V or a self-adjoint operator on
a fintte-dimenstonal real inner product space V. Let ¢y, . . ., cx be the distinct
characteristic values of T. Let W; be the characteristic space associated with ¢;
ard E; the orthogonal projection of V on W;. Then W; is orthogonal to W;
when 1 7% ], V is the direct sum of Wy, . .., Wy, and

(8-11) T = ¢ By + -+ + ¢xFy.

Proof. Let a be a vector in W;, 8 a vector in W, and suppose
i # j. Then ¢i(e|B) = (Ta|p) = (a|T*8) = (a|2:8). Hence (¢; — ci)(al8) =
0, and since ¢; — ¢; # 0, it follows that («|3) = 0. Thus W; is orthogonal
to W, when ¢ # j. From the fact that V has an orthonormal basis consisting
of characteristic vectors (cf. Theorems 18 and 22 of Chapter 8), it fol-
lows that V= W+ --- + W, If «; belongs to V; (1 <j7<Fk) and
a4+ -+ + ap = 0, then

0= (a2 ;) = ) (ailary)
J

= ||al|?
for every %, so that V is the direct sum of Wy, ..., Wi Therefore E; +
veor 4 B =T and
T=TE + --- + TE:
ally + -+ + all. I
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Corollary. If ¢, = I ("‘ - ‘“), then B; = oy(T) for 1 <j < k.

i=g \Cj — Cj
Proof. Since F;E; = 0 when 7  j, it follows that

T =By + -+ + GIs
and by an easy induetion argument that

T = il + - -+ + cili
for every integer n > 0. For an arbitrary polynomial

r
f= 2 ez
n=0

we have

fT) = T a,T

n=0

T k
Z e T GE;

n=0 ij=1
& T
z (E anC) ) E;
j=1 \n=0
k ol
= 3 fle)E;.
i=1

Since e;(cn) = 8m, it follows that ¢;(T) = E;. |

I
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Theorem 10. LetT be a diagonalizable normal operator with spectrum S
on a fintte-dvmenstonal tnner product space V. Suppose f ts a funclion whose
domain contains S that has values tn the field of scalars. Then f(T) is a
dragonalizable normal operator with spectrum £(S). If U is a unitary map of
Voonlo V' and T" = UTU, then S is the spectrum of T' and

f(T") = UI(T)U-~
Proof. The normality of f(T) follows by a simple computation
from (9-12) and the fact that
(> = :‘ﬁ?‘ﬁE‘,
Moreover, it is clear that for every « in £;(V)

f(T)a = f(cj)e

Thus, the set f(S) of all f(¢) with ¢ in S is contained in the spectrum of f(T").
Conversely, suppose a # 0 and that

f(T)a = b,
Then o = 2 E,x and
" f(T)a = SHT)Ese

= 2f(e)Bie
- 2B

Hence, ’

||}Z (fe)) — b)Ejali* = 4:3 1f(ei) — 0| Ejel|?
= 0.

Therefore, f(c;) = b or E;a = 0. By assumption, o = 0, so there exists an
index ¢ such that F.e # 0. It follows that f(¢;) = b and hence that f(S) is
the spectrum of f(T'). Suppose, in fact, that

f(S) = {bl:° . °)br}

where b,, # b, when m # n. Let X,, be the set of indices ¢ such that
1 <14 <kand f(c;) = bn. Let P, = T E;, the sum being extended over
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the indices ¢ in X,. Then P, is the orthogonal projection of V on the

subspace of characteristic vectors belonging to the characteristic value b,
of f(1), and

T) = % buPn

m=1

is the speetral resoclution of f(T).

Now suppose U is a unitary transformation of V onto V' and that
T’ = UTU, Then the equation

Ta = ca
holds if and only if
T'Ua = ¢Ua.

Thus S is the spectrum of 77, and U maps each characteristie subspace for
T onto the corresponding subspace for 7”. In faet, using (9-12), we see that

T' =3B, E;= UEU~
I

18 the spectral resolution of 7". Hence

(1) = j"}f(c:-)Efr

Z fe))UE;U
= U Z flepk;) U

- Uf(mU-. |

Definition. Let V be a finile-dimensional tnner product space and T a
linear operator on Y. We say that T is normal ¢f it commutes with its adjoint
1.e., TT* = T*T,
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Theorem 15. Let V be an inner product space and T a self-adjoint
linear operator on V. Then each characteristic value of T is real, and char-
acteristic wectors of T assoctated with distinel characteristic values are
orthogonal.

Proof. Suppose ¢ is a characteristic value of T, i.e., that Te = ca
for some non-zero vector «. Then

claja) = (cala)
(Ta|e)
(a|Ta)
= (aleca)
= ¢(a|a).

Since (ala) # 0, we must have ¢ = 2. Suppose we also have T8 = df with
8 # 0. Then
c(«|B8) = (T|8)

= (a|TB)

= (aldB)

= d(a|B)

= d(a|B).
If ¢ = d, then («|8) = 0. |

Theorem 16. On a finite-dimensional inner produet space of positive
dimension, every self-adjoint operator has a (non-zero) characlerisiic vector.

Proof. Let V be an inner product space of dimension n, where
n > 0, and let T be a self-adjoint operator on V. Choose an orthonormal
basis & for V and let 4 = [T, Siuce T = T%, we have 4 = 4% Now
let W be the space of n X 1 matrices over C, with inner produet (X|Y) =
Y*X. Then U(X) = AX defines a self-adjoint linear operator U/ on W.
The characteristic polynomial, det (z{ — 4), is a polynomial of degree n
over the complex numbers; every polynomial over €' of positive degree
has a root. Thus, there i3 a complex number ¢ such that det (ef — A) = (.
This means that 4 — el is singular, or that there exists a non-zero X
such that AX = ¢X. Since the operator [7 {multiplication by A4) 1s self-
adjoint, 1t follows from Theorem 15 that ¢ 1s real. If V 1s a real vector
space, we may choose X to have real entries. I'or then A and A — ¢l have
real entries, and sinee A — ¢f is singular, the system (4 — ¢l)X = 0 has
a non-zero real solution X. It follows that there is a non-zero vector « in
V such that Ta = ca. |
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Theorem 17. Let V be a finite-dimensional inner product space, and
let T be any linear operator on V. Suppose W 1s a subspace of V which s
invariant under T. Then the orthogonal complement of W s wnvariant
under T*.

Proof. We recall that the fact that W is invariant under 7' does
not mean that each vector in W is left fixed by T; it means that if « is in
W then Ta is in W. Let 8 be in W*. We must show that T*8 is in W+,
that is, that («|T*8) = 0 for every o in W. If « is in W, then T« is in W,
so (Tal8) = 0. But (Ta(8) = («|T*8). |

Theorem 22. Let V be a finite-dimensional eomplex inner product
space and T a normal operator on V. Then V has an orthonormal basts con-
sisting of characlervstic vectors for T.

Again there is a matrix interpretation.

Theorem 18, Let V be a finite-dimensional tnner product space, and
let T be a self-adjoint linear operator on V. Then there is an orthonormal basts
for V, each vector of which is a characleristic vector for T,

Proof. We are assuming dim V > 0. By Theorem 16, T has a
characteristic vector a. Let a; = a/||a|[ so that e, is also a characteristie
vector for T and ||ey|| = 1. If dim ¥V = 1, we are done. Now we proceed
by induetion on the dimension of ¥. Suppose the theorem is true for inner
product spaces of dimension less than dim V. Let W be the one-dimensional
subspace spanned by the vector an. The statement that o 1s a characteristic
vector for T simply means that W is invariant under 7. By Theorem 17,
the orthogonal complement W+ is invariant under T* = T. Now W+,
with the inner product from V, is an inner produect space of dimension
one less than the dimension of V. Let U be the linear operator induced
on W+ by T, that is, the restriction of 7' to W*. Then U is self-adjoint,
and by the induction hypothesis, W' has an orthonormal basis {as, . . ., an}
consisting of characteristic vectors for 7. Now each of these vectors is
also a characteristic vector for T, and since V = W @ W+, we conclude
that {o, . . ., aq} is the desired basis for V. |
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Theorem 19. Let V be a finile-dimensional inner product space and
T a normal operator on V. Suppose « is a vector tn V. Then « is a charac-
teristic vector for T with characteristic value ¢ if and only if « is a charac-
teristic vector for 'T* wilh characteristic value €.

Proof. Suppose U is any normal operator on V. Then ||Ua|| =
||U*a||. For using the eondition UUU* = U*U one sees that
[|[Ual|? = (Ua|Ua) = («]U*Ua)
= (a|UU*) = (U*a|U*a) = ||U*a||
If ¢ i3 any scalar, the operator UV = T - ¢l is normal. For (T — el}* =
T* — @I, and 1t 18 easy to check that UU* = U*U. Thus
T — eDall = [[(T* — el)all

so that (T — ¢l)a = 0 if and only if (T* — ¢)a = 0. ||

Definition. A complex n X n matrizr A is called normal if AA* =
A*AL
Theorem 20. Let V be a finite-dimensional inner product space, T a
linear operator on V, and ®& an orthonormal basis for V. Suppose that the
malriz A of T in the basis ® 1s upper triangular. Then T is normal if and
only if A 1s a diagonal malriz.
Proof. Sinee & is an orthonormal basis, 4* is the matrix of T*
in ®@. If A is diagonal, then AA* = A*A, and this implies TT* = T*T".
Conversely, suppose T is normal, and let ® = {ay, . . ., a,}. Then, since
A is upper-triangular, Te, = A;00. By Theorem 19 this implies, T¥q; =
Ayyoq. On the other hand,

Therefore, 4,; = 0 for every j > 1. In particular, Az = 0, and since 4
is upper-triangular, it follows that

Tﬂz = ."1221‘;!2.
Thus T*a, = Ase; and As; = 0 for all 7 # 2. Continuing in this fashion,
we find that A is diagonal. ||
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Theorem 21. Let V be a finite-dimensional complex inner product
space and let T be any linear operator on V. Then there is an orthonormal
basis for V in which the matriz of T is upper triangular.

Proof. Let n be the dimension of V. The theorem is true when
n = 1, and we proceed by induetion on n, assuming the result is true for
linear operators on complex inner product spaces of dimension n — 1.
Sinee V is a finite-dimensional complex inner product space, there is a
unit vector « in V and a sealar ¢ such that

T*x = co.

Let W be the orthogonal complement of the subspace spanned by « and
let. § be the restriction of T to W. By Theorem 17, W is invariant under 7'.
Thus S is a linear operator on W. Since W has dimension n — 1, our
induective assumption implies the existence of an orthonormal basis
{ay, ..., a.a} for W in which the matrix of S is upper-triangular; let
a, = @ Then {a, ..., .} is an orthonormal basis for V' in which the
matrix of 7' is upper-triangular. ||

Corollary. For every complex n X n matriz A there is a unitary matriz
U such that U=AT] is upper-triangulor.

Theorem 12. Let T be a diagonalizable normal operator on a finite-
dimensional inner product space V. Then T is self-adjoint, non-negative, or

wunitary according as each charactervstic value of T is real, non-negative, or of
absolute value 1.

Proof. Suppose T has the spectral resolution T = ¢;F; + --- +
celiy, then T* = ¢ ldy + - -+ + &Fi. To say T is self-adjoint is to say
T = T* or

(v —C)E + -+ + (e — T)Ex = 0.

Using the fact that E.E; = 0 for ¢ # j, and the fact that no E; is the zero
operator, we see that T is self-adjoint if and only if ¢; = 7,7 =1,...,k
To distinguish the normal operators which are non-negative, let us look at

k k
( = ch,aI E E,'at)
i=1 i=1
= Z Z ¢;(Ea|lEw)
i

(Tela)

= ZcliFyall”
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We have used the fact that (E;e|E«) = 0 for ¢ # j. From this it is clear
that the condition (Tala) > 0 is satisfied if and only if ¢; > 0 for each j.
To distinguish the unitary operators, observe that

TT* = ey + - - - + aeEs
= |Gl‘2.El Jr ot ‘I— |Ck|2.Hk.

It TT* = I, then I = |ai|?F1 + - -+ + |e|*EL, and operating with F;
E; = [ej|*E;.

Sinece F; # 0, we have [¢;/? = 1 or lej = 1. Conversely, if (¢]? = 1 for
each j, it is clear that TT* = 1. |
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Possible Questions

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
The -------- of a matrix A is the sum of the elements on the main diagonal of
A transpose inverse trase conjucate trase
The trace of a matrix A is the --------------- of the elements on the main
diagonal of A sum inverse product subtract sum
The trace of a matrix A is the sum of the elements on the --------- of A diagonal main diagonal clements all elements main diagonal
The matrix A i if A=A symmetric matrix singular matrix nonsingular matrix _[skew- symmetric matrix [symmetric matrix
The matrix A is said to be a symmetric matrix if A'=A A=A’ A<A' A>A' A'=A A=A
The matrix A is s if A'=-A symmetric matrix singular matrix nonsingular matrix _ |skew- symmetric matrix [skew- symmetric matrix
The matrix A is said to be a skew- symmetric matrix if -------- A=A’ A<A' =- A A'=A '=-A
A and B are symmetric matrices,AB is iff AB=BA symmetric matrix singular matrix nonsingular matrix [skew- symmetric matrix [symmetric matrix
A and B are symmetric matrices,AB is symmetric iff - - A=B AB=BA A#B AB#BA AB=BA
The determinant of a triangular matrix is the - of its entries on the
main diogonal sum inverse product subtract product
The determinant of a triangular matrix is the product of its entries on the------
-------- diagonal main diagonal clements all elements main diagonal
The of a triangular matrix is the product of its entries on the main diogonal _|transpose inverse trase determinant determinant
Interchanging two rows of A changing the sign of its ----------- transpose inverse trase determinant determinant
Interchanging two rows of A changing the---------- of its determinant value sign sign and value transpose sign
Interchanging two columns of A changing the sign of its ------------ transpose inverse trase determinant determinant
Interchanging two columns of A changing the ------- of its determinant value sign sign and value transpose sign
The characteristic roots of A are the roots with the correct multiplicity of the
secular equation , ------- of A det (x-A) det(x-a) dm (x-a) dim(x+A) det (x-A)
The ----------- of A are the roots with the correct multiplicity of the secular
cquation ,det (x-A) of A root multiple root characteristic roots _|product roots characteristic roots
The characteristic roots of A are the roots with the correct multiplicity of
the---------- , det(x-A) of A linear equation secular equation non linear equation |non-secular equation |secular equation
A polynomial with coefficients which are -------------] has all its roots in the
complex field real number complex numbers  |rational number irrational number complex numbers
A polynomial with coefficients which are complex numbers has all its------ in
the complex field root multiple root characteristic roots _|product roots root
A polynomial with coefficients which are complex numbers has all its roots in
the --- real field rational field complex field irrational field complex field
TeA(V) is unitary if and only if----------- TT*=1 TT*>1 TT*<l TT*<1 TT*=1
TeA(V) is if and only if TT* =1 transformation transformation unitary transformation unitary
TeA(V) is called harmitian if T*=T transformation harmition unitary transformation harmition
TeA(V) is called harmitian if --=--------- T=T* T=1 T=T* TT*=1 T=T*
If T eA(V) isHermitian then all its --------- are real root multiple root characteristic roots _|product roots characteristic roots
If T eA(V) isHermitian then all its characteristic roots are real complex rational irrational real
IfT eA(V) is -------- then all its characteristic roots are real transformation harmition unitary transformation harmition
IfT eA(V) is --m--mem- if TT*=T*T normal harmition unitary Nilpotent normal
IfT eA(V) is normal if ------------ T=T* T=1 T=T* TT*=1 T=T*
The Hermitian ---- normal linear Nilpotent
roots are non negative transformation transformation unitary transformation linear transformation
The Hermitian linear transformation T is non negative if and only if its---------
---_are non negative root multiple root characteristic roots _|product roots characteristic roots
The Hermitian linear transformation T is non negative if and only if its
characterstic roots are - - non negative negative rational irrational non negative
The Hermitian linear transformation T is ---------- if and only if its
characterstic roots are non-negative non negative negative rational irrational non negative
If N is normal and if vN*=0then---------- vN=0 vN=1 k=1 vk=0 vN=0
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