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Scope: On successful completion of course the learners gain about Metric spaces, Continuous mappings 

and Convergence of sequences and series. 

Objectives: To enable the students to learn and gain knowledge about definite integrals of functions, 

Contour integrals and its geometrical applications. 

UNIT I 

METRIC SPACES 

Definition and examples - Sequences in metric spaces - Cauchy sequences. 

Complete Metric Spaces - Open and closed balls – neighbourhood - open set - interior of a set. Limit 

point of a set - closed set -  Diameter of a set - Cantor’s theorem – Subspaces -  dense sets – separable 

spaces. 

UNIT II 

CONTINUOUS MAPPINGS 

Continuous mappings - sequential criterion and other characterizations of continuity – Uniform 

Continuity – Homeomorphism - Contraction mappings - Banach Fixed point Theorem -  Connectedness - 

connected subsets of R. 

UNIT III 

LIMITS 

Limits - Limits involving the point at infinity - continuity. Properties of complex numbers – regions in 

the complex plane - functions of complex variable - mappings. Derivatives, differentiation  formulas - 

Cauchy-Riemann equations, sufficient conditions for differentiability. 

UNIT IV 

ANALYTIC FUNCTIONS 

Analytic functions - Examples of analytic functions - Exponential function - Logarithmic function - 

Trigonometric function - Derivatives of functions - Definite integrals of functions.  

Contours: Contour integrals and its examples - Upper bounds for moduli of contour integrals - Cauchy- 

Goursat theorem - Cauchy integral formula. 

 



UNIT V 

CONVERGENCE 

Liouville’s theorem and the fundamental theorem of algebra. Convergence of sequences and series- 

Taylor series and its examples - Laurent series and its examples, absolute and uniform convergence of 

power series. 

SUGGESTED READINGS 

TEXT BOOK 

1. Satish Shirali., and Harikishan L. Vasudeva., (2006). Metric Spaces, Springer Verlag, London.  

REFERENCES 

1. Kumaresan S., (2011). Topology of Metric Spaces, Second Edition., Narosa Publishing House,    

    New Delhi.  

2. Simmons G.F., (2004).Introduction to Topology and Modern Analysis, McGraw-Hill, New Delhi.  

3. James Ward Brown., and Ruel V. Churchill., (2009). Complex Variables and Applications, Eighth 

    Edition., McGraw – Hill International Edition, New Delhi. 

4. Joseph Bak., and Donald J. Newman., (2010). Complex Analysis, Second  Edition., Undergraduate 

    Texts in Mathematics, Springer-Verlag New York.  
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S.

No 

Lecture 

Duration 

Period 

Topics to be Covered Support 

Material/Page Nos 

  UNIT-I  

1. 1 1 Introduction on Metric and uniform 

metric spaces: Definition and Examples 

T1: ch-1  P.No: 27-34 

R2: ch-2  P.No : 51-53 

2. 2 1 Sequence in metric spaces: Convergences 

and Diverges, Theorm and Examples 

T1: ch-1  P.No:37-44 

3. 3 1 Sequence in metric spaces: Convergences 

and Diverges, Theorm and Examples 

T1: ch-1  P.No:37-44 

4. 4 1 Cauchy sequences and complete metric 

spaces 

T1: ch-1  P.No: 44-57 

5. 5 1 Tuotorial 1  

6. 6 1 Open and Closed balls: Definition and 

Examples 

T1: ch-2  P.No:64-65 

R1: ch-1 P.No : 15-17 

R2: ch-2  P.No :64-65 

7. 7 1  Theorem on neighborhood and   Interior 

Point of a set 

T1: ch-2  P.No:66-69 

8. 8 1 Tutorial 2  

9. 9 1 Limit Point of a set, closed set ,Examples  

Proposition and Theorems 

T1: ch-2  P.No: 70-75 

10. 10 1 Diameter of a set, Cantor set, Cantor’s 

theorem & Examples.  Subspaces: 

T1: ch-2  P.No:75-80 
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Lemma & Theorem 

11. 11 1 Tutorial 3  

12. 12 1 Definition and examples of Dense & 

Separable sets and theorems 

R1: ch-2  P.No:86-88 

 R2: ch-3  P.No: 96-97 

13. 13 1 Tutorial 4 Recapitulation & discussion of 

possible questions 

 

 Total No of Hours Planned For Unit 1=13  

  UNIT-II  

1 1 
Introduction on Continuous Mapping: 

Definition and Theorem & Lemmas and 

Sequential criterion 

T1: ch-3  P.No:103-108 

2 1 Sequential criterion sequential 

criterion and other 

characterizations of continuity 

T1: ch-3  P.No:109-113 

3 1 Tutorial 5  

4 1 Uniform continuity and 

Homeomorphism 

T1: ch-3  P.No:114-122 

5 1 Tutorial 6  

6 1 Contraction mappings  and Banach 

Fixed point Theorem 

T1: ch-3  P.No:132-138 

7 1 Linear Differential Equation and 

Picard’s Theorem 
T1: ch-3  P.No:135-140 

8 1 Tutorial 7  

9 1 Connectedness: Intermediate Value 

Theorem & Continuous theorem, 

Theorem on Connected component of 

point  

T1: ch-4  P.No: 156-160 

R1: ch-5  P.No:106-107 

10 1 connected subsets of R. T1: ch-4  P.No:160-163 

11  Tutorial 8 Recapitulation & discussion 

of possible questions 
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Total No of Hours Planned For Unit II=11 hrs 

 

  UNIT-III  

1 1 
Introduction on Limits: Definition, 

Examples and Theorem on limit 

R3: Ch-2 P.No: 45-55 

2 1 
Tutorial 9 R3: Ch-2 P.No:50-55 

3 1 
Properties of Complex number and 

complex plane 

R3: Ch-1 P.No:24-26 

R3: Ch-1 P.No:31-32 

4 1 
Functions of a complex variables R3: Ch-2 P.No:35-37 

5 1 
Tutorial 10  

6 1 
Mappings: Examples R3: Ch-2 P.No:38-44 

7 1 
Derivatives, Differential formula 

examples 

R3: Ch-2 P.No:56-62 

8 1 
Tutorial 11 R3: Ch-2 P.No:60-62 

9 1 
Cauchy-Riemann Equation: Theorems & 

Examples 

R3: Ch-2 P.No:63-66 

R4: Ch-3 P.No: 35-38 

10 1 
Sufficient condition for Differentiability 

theorem 

R3: Ch-2 P.No: 66-67 

11 1 
Tutorial 12 Recapitulation & discussion 

of possible questions 

 

Total No of Hours Planned For Unit III=11 hrs 

  UNIT-IV  

1 1 
Introduction on Analytic function and 

Examples 

R3: Ch-2 P.No:73-77 

2 1 
Exponential function and Logarithmic 

function  Examples 

R3: Ch-3 P.No:89-94 

3 1 
Tutorial 13  

4 1 
Banaches & Derivatives of Logarithmic R3: Ch-3 P.No:95-99 
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and Identities 

5 1 
Trigonometric function R3: Ch-3 P.No:104-107 

6 1 
Tutorial 14  

7 1 
Derivatives of functions and Definite 

integrals 

R3: Ch-4 P.No: 117-120 

8 1 
Contours: Definitions and Examples R3: Ch-4 P.No:122-132 

9 1 
Tutorial 15  

10 1 
Upper bounds for moduli of contour 

integrals 

R3: Ch-4 P.No:137-139 

11 1 
Cauchy-Goursat theorem and Cauchy-

Integral Formula 

R3: Ch-4 P.No:150-167 

R4: Ch-5 P.No: 59 

12 1 
Tutorial 16 Recapitulation & discussion of 

possible questions 

 

Total No of Hours Planned For Unit IV=12 hrs 

  UNIT-V  

1. 1 1 
Lioville’s theorem & The Fundamental 

theorem of algebra 

R3: Ch-4 P.No:172-174 

R4: Ch-5 P.No: 59-61 

2. 2 1 
Maximum modulus principle R3: Ch-4 P.No:175-178 

3. 3 1 
Tutorial 17  

4. 4 1 
Convergence of sequence and series R3: Ch-5 P.No:181-186 

5. 5 1 
Corollary and Examples on convergence 

of series 

R3: Ch-5 P.No:186-187 
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6. 6  
Tutorial 18-  

7. 7 1 
Taylor series: Examples R3: Ch-5 P.No:189-195 

8. 8 1 
Laurent series: Examples R3: Ch-5 P.No:197-205 

9. 9  
Absolute  & Uniform convergent of 

power series 

R3: Ch-5 P.No:208-211 

10. 10  Tutorial 19  

11. 11 1 Tutorial 20-Recapitulation and 

discussion of possible questions  

 

12. 12 1 Discussion of previous ESE 

question papers. 

 

13. 13 1 Discussion of previous ESE question 

papers. 

 

14. 14 1 Discussion of previous ESE 

question papers 

 

 Total No of Hours Planned for unit V=13hrs  

  

 

Total   Planned   Hours 60 hrs 

 

 

TEXT BOOK 

1. Satish Shirali., and Harikishan L. Vasudeva., (2006). Metric Spaces, Springer Verlag, London.  

REFERENCES 

1. Kumaresan S., (2011). Topology of Metric Spaces, Second Edition., Narosa Publishing House,    

    New Delhi.  

2. Simmons G.F., (2004).Introduction to Topology and Modern Analysis, McGraw-Hill,  

     New Delhi.  

3.James Ward Brown., and Ruel V. Churchill., (2009). Complex Variables and  

   Applications, Eighth Edition., McGraw – Hill International Edition, New Delhi. 

4. Joseph Bak., and Donald J. Newman., (2010). Complex Analysis, Second  Edition.,  

    UndergraduateTexts in Mathematics, Springer-Verlag New York.  
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UNIT I 

Syllabus 

 

     Metric spaces: definition and examples - Sequences in metric spaces –  

     Cauchy sequences. Complete Metric Spaces - Open and closed balls –  

     neighbourhood - open set - interior of a set. Limit point of a set -  closed  

     set -  diameter of a set - Cantor’s theorem – Subspaces -  dense sets –  

     separable spaces. 

 

 

1. Metric Spaces 

The notion of function, the concept of limit and the related 

concept of continuity play an important role in the study of 

mathematical analysis. The notion of limit can be formulated 

entirely in terms of distance. For example, a sequence {xn}n $ 1 of 

real numbers converges to x if and only if for all e > 0 there exists 

a positive integer n0 such that  xn    x < e whenever n > n0. A 

discerning reader will note  that the above definition  of 

convergence depends only on the properties of the distance     a b 

between pairs a, b of real numbers, and that the algebraic 

properties of real numbers have no bearing on it, except insofar as 

they determine properties of the distance such as, 

ja — bj > 0 when a 6¼ b, ja — bj¼ jb — aj and ja — gj # ja — bjþ jb 

— gj: 

There  are  many  other  sets  of  elements  for  which  ‘‘distance  

between  pairs  of elements’’  can  be  defined,  and  doing  so  

provides  a  general  setting  in  which  the notions of convergence 

and continuity can be studied. Such a setting  is  called  a metric 

space. The approach through metric spaces illuminates many of the  

concepts  of classical analysis and economises the intellectual effort 

involved in learning them. 
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× ! 

We begin with the definition of a metric space. 

 

Definition 1.2.1. A nonempty set X with a map d : X     X → R is 

called a metric  space if the map d has the following properties: 

(MS1) d(x, y) > 0 x, y ∈ X ; 

(MS2) d(x, y) = 0 if and only if x 

= y; (MS3) d(x, y) = d(y, x)

 x, y 2 X; 

(MS4) d(x, y) ≤ d(x, z) þ d(z, y) x, y, z 2 X. 

The map d is called the metric on X or sometimes the distance 

function on X. The phrase ‘‘(X, d) is a metric space’’ means that d is a 

metric on the set X. Property (MS4) is often called the triangle 

inequality. 

The four properties (MS1)–(MS4) are abstracted from the 

familiar properties of distance between points in physical space. It 

is customary to refer to elements of any metric space as points 

and d(x, y) as the distance between the points x and y. 

We shall often omit all mention of the metric d and write ‘‘the 

metric space X ’’ instead of ‘‘the metric space (X, d)’’. This abuse of 

language is unlikely to cause any confusion. Different choices of 

metrics on the same set X give rise to different metric spaces. In 

such a situation, careful distinction between them must be 

maintained. 

Suppose that (X, d) is a metric space and Y is a nonempty subset 

of X. The restriction dY of d to Y × Y will serve as a metric for Y, 

as it clearly satisfies the metric space axioms (MS1)–(MS4); so (Y , 

dY ) is a metric space. By abuse of language, we shall often write (Y, 

d) instead of (Y , dY ). This metric space is called a subspace of X or 

of (X, d) and the restriction dY is called the metric induced by d on 

Y. 

 

(ii) The space of bounded functions. Let S be any nonempty set 

and B(S) denote the set of all real- or complex-valued functions 
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≤ 

¼ 

¼ ¼ 2 

 

2 

x2S 

on S, each of which is bounded, i.e., 

Define If f and g belong to B(S), there exist M > 0 and N > 0 such that 

sup j f (x)j ≤ M and sup jg (x)j ≤ N : 

x2S x2S 

It follows that sup jf (x) — g (x)j < 1. Indeed, 

jf (x) — g (x)j ≤ jf (x)jþ jg (x)j ≤ sup jf (x)jþ sup jg (x)j, 

 

 

0 ≤ sup jf (x) — g (x)j ≤ M þ N   

d(f , g ) = sup jf (x) — g (x)j, f , g belongs B(S): 

Evidently, d(f , g ) $ 0, d(f , g )  0 if and only  if  f (x)   g (x) for all 

x   S  and   d(f , g )  d(g , f ). It remains to verify the triangle 

inequality for B(S). By the triangle inequality for R, we have 

d( f , g ) ≤ d(f , h) þ d(h, g ), 

for all f , g , h B(S). The metric d is called the uniform metric 

(or supremum metric). 

(ii) The space of continuous functions. Let X be the set of all 

continuous functions defined on [a,b], an interval in R. For f , g 2 

X, define 

d( f , g ) = supx2[a, b]j f (x) — g (x)j: 

The measure of distance between the functions f and g is the largest 

vertical distance between their graphs Since the difference of two 

continuous functions is continuous, the composition of two 

continuous functions is continu- ous, and a continuous function 

defined on the closed and bounded interval [a,b] is bounded, it 

follows that d(f , g ) R for all f , g . It may be verified as in Example. 

 

(viii) that d is a metric on X. The space X with metric d defined as 

above is denoted by C[a,b]. All that we have said is valid whether 

all complex-valued continuous functions are taken into 
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j — j2  

2 

consideration or only real-valued ones are. When it is necessary to 

specify which,  we  write  CC[a, b] or CR[a, b].  Note  that  C[a, b] 

B[, b] and the metric described here is the one induced by the 

metric in Example 

(viii) and is also called the uniform metric (or supremum metric). 

(x) The set of all continuous functions on [a,b] can also be equipped 

with the metric 

ðb 

 

 

Figure 1.1 

 

 

Figure 1.2 

 

The measure of distance between the functions f and g represents the 

area between  their   graphs,   indicated   by   shading   in   Figure   

1.2.   If   f , g      C[a, b],   then    f          g     C[a, b], and the integral 

defining d(f , g ) is finite. It may be easily verified that d is a metric 

d(f , g ) = 
a 

jf (x) — g (x)jdx: 
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on C[a, b]. We note that the continuity of the functions enters into 

the verification of the ‘‘only if ’’ part of (MS2). 

 

 

Figure 1.3 

 

 

Analytically, the above representation is described by the formulae 

Corresponding to the point at infinity, we have the point (0, 0, 1). 

Also, 

We define the distance between the points of X by This is actually the 

chordal distance between those points on the sphere correspond- ing to 

the points Evidently, d(z1, z2) > 0 and d(z1,z2)=0 

 

Definition: Let X be a nonempty set. A pseudometric on X is a 

mapping of   X × X into R that satisfies the conditions: 

(PMS1) d(x, y) > 0 x, y 2 X; 

(PMS2) d(x, y) = 0  if x ¼ y; 

(PMS3) d(x, y) = d(y, x) x, y 2 X; 

(PMS4)d(x, y) ≤ d(x, z) þ d(z, y) x, y, z 2 X. 

Another example of a pseudometric space is the following: 

 

1.3. Sequences in Metric Spaces 
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As pointed out in Chapter 0, analysis is primarily concerned with 

matters involving limit processes. It is no wonder that 

mathematicians thinking about such matters studied and 

generalised the concept of convergence of sequences of real 

numbers and of continuous functions of a real variable. The 

reader will note that the basic facts about convergence are just as 

easily expressed in this setting. 

Definition: Let (X,d) be a metric space. A sequence of points in X 

is a function f from N into X. 

In other words, a sequence assigns to  each  n  2 N a uniquely 

determined element  of X. If f (n) = xn, it is customary to denote the 

sequence by the symbol {xn}n $ 1 or 

{xn} or by x1, x2, ... , xn, .... 

Definition 1.3.2. Let d be a metric on a set X and {xn} be a sequence 

in the set X. An element x 2 X is said to be a limit of {xn} if, for every 

e > 0, there exists a natural number n0 such that 

d(xn, x) < e whenever n > n0: 

In this case, we also say that {xn} converges to x, and write it in 

symbols as xn  x. If there is no such x, we say that the sequence 

diverges. A sequence is said to be convergent if it converges to 

some limit, and divergent otherwise. 

Remark 1. By comparing the above with the definition of 

convergence in R (or C), we find  that  xn    x  if  and  only  if  limn!1 

d(xn, x)     0,  where  d  denotes  the  usual metric in R (or C). 

Remark 2. In case there are two or more metrics on the set X, then it 

is necessary to specify which metric is intended to be used in 

applying the definition of convergence. 

We next consider the notion of convergence in specific metric 

space for all 

 Cauchy Sequences 
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In  real  analysis  (function  theory),  we  have  encountered  

Cauchy’s  principle  of convergence. (Recall that a sequence {xn}n $ 

1 of numbers is said to be Cauchy, or to satisfy the Cauchy 

criterion, if and only if, for all e > 0, there exists an integer n0(e) 

such that xn xm < e whenever m $ n0(e) and n $ n0(e). The Cauchy 

principle states that a sequence in R or C is convergent if and only 

if it is Cauchy.) The principle enables us to prove the convergence 

of a sequence without prior knowledge of its limit. 

The real sequence 

1 3 7 15 

is such that for m $ n the distance between the terms is given by 

which tends to zero as m, n tend to infinity. In other words, the real 

sequence 

{xn}n $ 1, where xn   1 1=2n, satisfies the Cauchy criterion and hence 

converges by Cauchy’s principle of convergence. 

A similar situation arises with sequences of functions; in fact, it 

comes up more often than with real or complex sequences. An 

extension of the idea of Cauchy sequences to metric spaces turns 

out to be useful. 

Definition: Let d be a metric on a set X. A sequence {xn}n $ 1 in the set 

X is said to be a Cauchy sequence if, for every e > 0, there exists a 

natural number n0 such that 

d(xn, xm) < e whenever n > n0 and m > n0: 

Remark 1. A sequence {xn} in R or C is a Cauchy sequence in the sense 

familiar from elementary analysis if and only if it is a Cauchy sequence 

according to Definition 

1.4.1 in the sense of the usual metric on R or C. 

Remark 2.   It is cumbersome to keep referring to a ‘‘sequence in a set X 

with metric d ’’, especially if it is understood which metric is intended 

and no symbol such as d has  been introduced to denote it. We shall 

therefore adopt the standard phrase ‘‘sequence in a metric space X ’’. 
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¼ 

ffiffi 

(ii) In C[0,1], the sequence f1, f2, f3, ... given by 

nx 

fn(x) ¼ 
n þ x 

, x 2 [0, 1] 

is Cauchy in the uniform metric. For m $ n the function being 

continuous on [0, 1], assumes its maximum at some point x0 2 

[0,1]. So, 

d(fm, fn) ¼ sup {jfm(x) — fn(x)j: x 2 [0, 1]} for large m 

and n. Moreover, the sequence {fn}n $ 1 converges to 

some limit. For 

f (x) ¼ x, 

Therefore, {fn}n $ 1 converges to the limit f, where f (x) ¼ x for all x 2 [0, 

1]. 

Proposition: A convergent sequence in a metric space is a Cauchy 

sequence. 

 

Proof. Let {xn} be a sequence in a set X with metric d, and let x be an 

element of X  such  that  limn!1 xn    x.  Given  any  e > 0,  there  

exists  some  natural  number n0 such that d(xn, x) < e=2 whenever 

n $ n0. Consider any  natural  numbers n  and m such that n $ n0 and 

m $ n0. Then d(xn, x) < e=2 and d(xm, x) < e=2. Therefore  

d(xn,xm) ≤d(xn,x)+d(xm,x)<∈ & 

Does the converse of Proposition 1.4.3 hold? If a sequence {xn}n $ 1 

in a metric  space (X, d) fulfills the Cauchy condition of Definition 

1.4.1, does it follow that the sequence converges? 

 

Examples 1.4.4. (i) Let X denote the set of all rational numbers 

with the usual metric, namely, d(x, y) ¼ jx — yj for x, y 2 X. It is 

well known that the sequence 

1:4,  1:41,  1:414, ...  

converges to 2. It is therefore Cauchy. However, it does not converge 

to a point of 
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! 

X. So, a Cauchy sequence need not converge to a point of the space. 

(ii) Another example of a Cauchy sequence that does not 

converge to a point of the space is the following: Let X ¼ C[0, 1] 

with metric d defined by 

 

 

Figure 1.5 

 

 

Suppose now that there is a continuous function f such that 

d(fn, f ) 0. It 

will be shown that this leads to a contradiction. Since 

j1 — f (x)jdx ¼ 0: 
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¼ ¼ 

  

 

Since  f  is  continuous,  we  see  that  f (x) 0 

for 0 ≤ x ≤ 1=2  and f (x)=1 for 1=2 < x ≤ 1, which is impossible. 

Thus, the metric spaces in which Cauchy sequences are guaranteed 

to converge 

are special and we need a name for them. 

 

Definition: A metric space (X,d) is said to be complete if every 

Cauchy sequence in X is convergent. 

It  follows  from  Cauchy’s principle  of  convergence  that  R,  C  

and  Rn equipped with  their  standard  metricsy (y1, y2, .. .  , yn) in 

Rn) arecomplete metric spaces. The metric space (X, d), where X 

denotes the set of rationals and d(x, y) x  y for x, y  X, has been 

observed to be an incomplete metric space (see Example 1.4.4(i)). 

That the metric space (X, d) of rationals is incomplete also follows 

on considering the sequence {xn}n $ 1, where 

1 1 1 

xn ¼ 1 þ 
1! 

þ 
2! 

þ ... þ 
n! 

, 

as this is a Cauchy sequence but it converges to the 

irrational number e. In our next proposition, we need 

the following definition. 

 

Definition: Let {xn}n $ 1 be a given sequence in a metric space (X,d) and 

let {nk}k $ 1 be a sequence of positive integers such that n1 < n2 < n3 < . . ..  

Then the sequence {xnk }k $ 1 is called a subsequence of {xn}n $ 1. If     

{xnk }k $ 1 converges,  its limit is called a subsequential limit of {xn}n>1 

It is clear that a sequence {xn}n $ 1 in X converges to x if and only 

if every subsequence of it converges to x. 

 

Proposition If a Cauchy sequence of points in a metric space 

(X,d) contains a convergent subsequence, then the sequence 

converges to the same limit as the subsequence. 
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Proof. Let {xn}n $ 1 be a Cauchy sequence in (X, d). Then for every 

positive number e there exists an integer n0(e) such that 

d(xm, xn) < e whenever m, n $ n0(e): 

Denote by {xnk } a convergent subsequence of {xn}n $ 1 and its limit by x. 

It follows that 

d(xnm , xn) < e whenever m, n $ n0(e), 

since {nk} is a strictly increasing sequence of positive integers. Now, 

d(x, xn) # d(x, xnm ) þ d(xnm , xn) < d(x, xnm ) þ e whenever m, 

n $ n0(e): 

Letting m →1, we have 

d(x, xn) ≤ e whenever n > n0(e): 

So, the sequence {xn}n $ 1 converges to x. & 

We next show that the spaces (Rn, dp), B(S) and C[a, b] are 

complete. 

 

Proposition The space B(S) of all real- or complex-valued functions 

f on S,  each  of  which   is   bounded,   with   the   uniform   metric   

d(f , g ) ¼  sup{jf (x)— g (x)j: x 2 S}, is complete. 

Proof. Let {fn} be a Cauchy sequence  in  B(S).  For  each  s 2 

S,  we  have jfn(s) — fm(s)j ≤ d(fn, fm), so that the sequence {fn(s)} 

in C is a Cauchy sequence and therefore convergent. Define f : S 

! C by f (s) ¼ limn!1 fn(s). We shall prove first that f  2 B(S) and 

then prove that limn!1 d(fn, f ) ¼ 0. 

Since 1 > 0, therefore by the Cauchy property of {fn}, there 

exists some n0 such that 

d(fn, fm) < 1 whenever n $ n0 and m $ n0: 

In particular, d(fn, fn0 ) < 1,  and  hence jfn(s) — fn0 (s)j < 1  for  all s 

2 S, whenever    n $ n0. Since fn0  2 B(S),  there  exists  some  M  > 0  

such  that  jfn0 (s)j # M  for  all s 2 S. Therefore, 
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jfn(s)j # jfn(s) — fn0 (s)jþ jfn0 (s)j # 1 þ M 8s 2 S whenever n $ 

n0: 

Now consider any e > 0. By the Cauchy property of {fn}, there 

exists some n0 

such that 

 

 

Therefo

re, 

d(fn, fm) < e whenever n $ n0 and m $ n0: 

 

 

jfn(s) — fm(s)j < e 8s 2 S whenever n $ n0 and m $ 

n0: 
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¼ ¼ j — j 

It follows upon letting m →1 that 

jfn(s) — f (s)j ≤ e whenever s 2 S and n $ n0: 

This says that limn!1 d(fn, f ) = 0. & 

Proposition: Let X =C[a, b] and d(f , g ) sup{ f (x) g (x) : a # x # b} 

be the associated metric. Then (X,d) is a complete metric space. 

 

Proof. Let {fn}n $ 1 be a Cauchy sequence in C[a,b]. Then for every 

e > 0 there exists an  integer  n0(e)  such  that  m, n $ n0(e)  implies  

d(fm, fn) ¼ sup{jfm(x) — fn(x)j:   a # x # b} < e. In particular, for 

every x 2 [a, b], the sequence {fn(x)}n $ 1 is a Cauchy  sequence  of  

numbers.  By  Cauchy’s  principle  of  convergence,  fn(x) ! f (x), 

say, as n ! 1. We have thus defined a function f with domain [a,b]. 

It remains to show that f  2 C[a, b] and that limn!1 d(fn, f ) = 0. 

Since for every x 2 [a, b], 

jfm(x) — fn(x)j < e 

provided that m, n $ n0(e), it follows upon letting m ! 1 that 

jfn(x) — f (x)j # e (1:18) 

for all n $ n0(e) and all x 2 [a, b]. 

To see why f is continuous, consider any x0 2 [a, b] and any h > 

0. According to what has been noted in the preceding paragraph, 

there exists an integer n1(h) such that, for every x 2 [a, b], we 

have jfn(x) — f (x)j < h=3 provided that n $ n1(h). Select m $ 

n1(h). Then 

h 

jfm(x) — fm(x)j < 
3 

for all x 2 [a, b]: (1:19) 

Now use the continuity of fm to obtain d > 0 such that 

h 

jfm(x) — fm(x0)j < 
3 

for jx — x0j < d: (1:20) 

Sin

ce 

 

jf (x) — f (x0)j # jf (x) — fm(x)jþ jfm(x) — fm(x0)jþ jfm(x0) — f (x0)j, 

it follows from (1.19) and (1.20) that jf (x) — f (x0)j < h whenever jx — 

x0j < d. 

Therefore, f  2 C[a, b]. Moreover, (1.18) says that limn!1 d(fn, f ) 

¼ 0. As already noted, this completes the proof.
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& 

 

Examples: (i) Let X be any nonempty set and let d be defined by 

d(x, y) 
0 if  x ¼ y , 

1 if x 6¼ y. 

 

Then (X, d) is a complete metric space. 

Indeed, if {xn}n $ 1 is a Cauchy sequence, then for 0 < e < 1 there 

exists a positive integer  n0(e) such that d(xn, xm) < e for all m, n $ 

n0(e). So for n $ n0(e), we have xn ¼ xn0 . Thus, any Cauchy 

sequence in (X,d) is of the form 

(x1, x2, ... , xn0 , xn0 , ... ), 

which is clearly convergent to the limit xn0 . 

(ii) Let N denote the set of natural numbers. Define 

1 1 

d(m, n) ¼ j 
m 

— 
n 

j, m, n 2 N: 

Then (N, d) is an incomplete metric space. 

That (N, d) is a metric space is clear. The sequence {n}n $ 1 can be 

shown to be Cauchy by arguing as follows. Let e > 0 and let n0 be the 

least integer greater than 1=e. If m, n > n0 then Cauchy Sequences

 suppose that it were to converge if possible to, say, p 2 N. Let 

n1 be any integer greater than 2p. Then   n $ n1 implies that 

This shows that the 

sequence cannot converge 

to p and therefore does not 

converge at all. 
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Then (X, d) is a complete metric space. 

Let {zn}n $ 1 be a Cauchy sequence in (X,d). If the sequence 

{zn}n $ 1 contains the point at infinity infinitely often, then it 

contains a convergent subsequence, namely the subsequence each 

of whose terms is . In this case, the sequence {zn}n $ 1 converges to 

by Proposition 1.4.7. On the other hand, if the point at infinity  

appears only finitely many times in the sequence, then we may 

assume without loss of generality that the sequence consists of 

points of C only, as the deletion (or insertion) of finitely many 

terms does not alter the convergence behaviour of a sequence. 

Case I. If the sequence {jznj}n $ 1 is unbounded, then for every 

natural number k there exists a term znk of the sequence such 

that jznk j > k, where these terms can be chosen so that nkþ1 > 

nk, k ¼ 1, 2, .. .  . Now,We  thus  have  limk!1 znk  ¼ 1  in  (X, d).  

By  Proposition  1.4.7,  it  follows  that limn!1 zn ¼ 1. 

Case II. The sequence {jznj}n $ 1 is bounded, say by M > 0. Let e > 0 

be given. There exists n0 2 N such that m, n $ n0 implies 

  

Since jznj < M for all n, it follows that jzn — zmj < (1=2)e(1 þ 

M 2). This shows that 

{zn}n $ 1 is a Cauchy sequence in the usual metric in C, and hence 

limn!1 jzn — zj ¼ 0 for some z 2 C. Since d(zn, zm) # 2jzn — zmj 

always, it follows that d(zn, z)<0 as n<1. Thus, (X, d) is a complete 

metric space.  

 Completion of a Metric Space 
 

Let (X, d) be a metric space that is not complete. It is always 

possible to construct a larger space which is complete and contains 

just enough points so that every Cauchy sequence in X has a limit 

in the larger space. In fact, we need to adjoin new points to (X, d) 

and extend d to all these new points in such a way that the 

formerly nonconvergent Cauchy sequences find limits among 

these  new  points  and the new points are limits of sequences in 

X. 
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Definition: Let (X, d) be an arbitrary metric space. A complete 

metric space (Xm, dm) is said to be a completion of the metric space 

(X, d) if 

(i) X is a subspace of X m; 

(ii) every point of X m is the limit of some sequence in X. 

For example, the space of all real numbers is the completion of 

the space of rationals. Also, the closed interval [0,1] is the 

completion of (0,1), [0,1), (0,1] and itself. In fact, any complete 

metric space is its own completion. We note that the Weierstrass 

approximation theorem (Proposition 0.8.4) shows that the  metric  

space CR[a, b] of Example 1.2.2(ix) is the completion of its subset 

consisting of polynomials. 

 

Definition: Let (X,d) and (X 0, d0) be two metric spaces. A mapping 

f of X into X0 is an isometry if 

d 0(f (x), f (y)) ¼ d(x, y) 

for all x, y     X . The mapping f is also called an isometric 

embedding of X into X 0. If, however, the mapping is onto, the 

spaces X and X0 themselves, between which there exists an isometric 

mapping, are said to be isometric. It may be noted that an isometry is 

always one-to-one. 

 

Theorem: Every metric space has a completion and any two 

completions are isometric to each other. 

 

Proof. Let (X,d) be a metric space and let X̂ denote the set of all 

Cauchy sequences in X. We define two Cauchy sequences {xn} 

and {yn} in X to be equivalent if limn!1 d(xn, yn)     0 and write this 

in symbols as {xn}     {yn}. We shall now show that this is an 

equivalence relation in X̂ , i.e., the relation     is reflexive, 

symmetric and transitive. 

Reflexivity: {xn} ~ {xn}, since d(xn, xn) ¼ 0 for every n and so 

limn!1 d(xn,  xn) ¼ 0.  Symmetry:  If  {xn} ~ {yn},  then  limn!1 d(xn, 

yn) ¼ 0;  but d(xn, yn) ¼ d(yn, xn)  for  every  n,  and,  therefore,  

limn!1 d(yn, xn) ¼ 0,  so  that 
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{yn} ~ {xn}. Transitivity: If {xn} ~ {yn} and {yn} ~ {zn}, then limn!1 

d(xn, yn) ¼ 0 and limn!1 d(yn, zn) ¼ 0. We shall show that limn!1 

d(xn, zn) ¼ 0. Since 

0 ≤ d(xn, zn) # d(xn, yn) þ d(yn, zn) 

 

for all n, it follows that 

0 ≤ lim d(xn, zn) ≤ lim d(xn, yn) þ lim d(yn, zn) = 0, 

                  n→1 

i.e., 

limn→1d(xn,zn)= 0.

  n→1 

 

 

^ 

            n→1 
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¼ 2 2 

Thus, is an equivalence relation and X splits into equivalence 

classes. Any two 

members of the same equivalence class are equivalent, and no 

member of an equivalence class is equivalent to a member of any 

other equivalence class. Let X~ denote the set of all equivalence 

classes; the elements of X~  will be denoted by x~, ~y, etc. Observe that 

if a Cauchy sequence {xn} has a limit x 2 X , and if {yn} is 

equivalent to {xn}, then limn!1 yn    x. This follows immediately 

from the follow- ing inequality: 

d(yn, x) # d(yn, xn) þ d(xn, x): 

Moreover,  if  {xn}  and  {yn}  are  two  nonequivalent  sequences,  then  

limn!1 xn 6¼ 

limn!1 yn. 

For, if limn!1 xn ¼ x ¼ limn!1 yn, then the inequality 

0 # d(xn, yn) # d(xn, x) þ d(x, yn) 

leads  to  limn!1 d(xn, yn)     0,  contradicting  the  fact  that  {xn}  and  

{yn}  are  two nonequivalent sequences. The constant sequence (x, 

x, ...  , x, ..  .) is evidently Cau- chy and has limit x. 

Define a mapping f : X       X~  as follows: f (x)     x~, where x~ 

denotes the equiva- lence class each of whose members 

converges to x. Thus the constant sequence (x, x, . . . , x, . . .) is a 

representative of x~. In view of the observations made above, the 

mapping f is one-to-one. We next define a metric r in X~ . For ~x, ~y 

2 X~, set 

r(x~, ~y) lim d(xn, yn),  where {xn} x~ and {yn} ~y: 

n!1 

Observe 

that 

 

jd(xn, yn) — d(xm, ym)j # d(xn, xm) þ d(ym, yn), 

where  {xn} 2 x~ and  {yn} 2 ~y  and  so  {d(xn, yn)}n $ 1 is  a  Cauchy  

sequence  of  real numbers. Hence, limn!1 d(xn, yn) exists, for R is a 

complete metric space. We first show that r is well defined. 

Indeed, if {xn
0 } ~ {xn} and {yn

0 } ~ {yn}, then 

 & 
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Remarks. (i) The proof explicitly assumes the completeness of R. 

Hence, the above method of completion cannot be employed for 

constructing the real number system from the rational number 

system. 

(ii) There exist other methods of completion of an incomplete 

space. One such method will be provided in Example. 17 of 

Chapter 3 (Section 3.8). 

 

 

Topology of a Metric Space 

The real number system has two types of properties. The first type 

are algebraic properties, dealing with addition, multiplication and 

so on. The other type, called topological properties, have to do 

with the notion of distance between numbers and with the concept 

of limit. In this chapter, we study topological properties in the 

framework of metric spaces. We begin by looking at the notions 

of open and closed sets, limit points, closure and interior of a set 

and some elementary results involving them. The concept of base 

of a metric topology and related ideas are also discussed. In the 

final section, we deal with the important concept of category due 

to Baire and its usefulness in existence proofs. Also included are 

some theorems due to Baire. 

 

 Open and Closed Sets 

There are special types of sets that play a distinguished role in 

analysis; these are the open and closed sets. To expedite the 

discussion, it is helpful to have the notion of a neighbourhood in 

metric spaces. 

Definition: Let (X, d) be a metric space. The set 

S(x0, r) = {x 2 X : d(x0, x) < r}, where r > 0 and x0 

2 X, is called the open ball of radius r and centre x0. The 

set 

S̄(x0, r) = {x 2 X : d(x0, x) ≤ r}, where r > 0 and x0 2 X, 

is called the closed ball of radius r and 

centre x0. A few concrete examples 

are in order. 
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Examples (i) The open ball S(x0, r) on the real line is the bounded 

open interval (x0 r,  x0  r) with midpoint x0 and total length 2r. 

Conversely, it is clear that any bounded open interval on the real 

line is an open ball. So the open balls on the real line are precisely 

the bounded open intervals. The closed balls S̄(x0, r) on the real 

line are precisely the bounded closed intervals but containing 

more than one point. 

 

 

 

Figure 2.1 

 

(ii) The open ball S(x0, r) in R2 with metric d2 (see Example 

1.2.2(iii)) is the inside of the circle with centre x0 and radius r as 

in Fig. 2.1. Open balls of radius 1 and centre (0,0), when the 

metric is d1 or d1 (see Example 1.2.2(iv) for the latter) are 

illustrated in Figs. 2.2 and 2.3. 

(iii) If (X, d) denotes the discrete metric space (see Example 

1.2.2(v)),  then S(x, r) ¼ {x} for all x 2 X  and any positive r # 1, 

whereas S(x, r) ¼ X  for all  x 2 X and any r > 1. 

(iv) Consider the metric space CR[a, b] of Example 1.2.2(ix). 

The open ball  S(x0, r),  where  x0 2 CR[a, b]  and  r  > 0,  consists  

of  all  continuous  functions  x 2 CR[a, b] whose graphs lie within 

a band of vertical width 2r and is centred around the graph of x0. 

(See Fig. 2.4.) 

 



 

Prepared by K.Aarthiya, Asst Prof, Department of Mathematics,KAHE Page 21/48 

 
 

2 ≤ 

Figure 2.2 

 

Figure 2.3 

 

 

 

Figure 2.4 

 

Definition: Let (X, d) be a metric space. A neighbourhood of the 

point x0 2 X 

is any open ball in (X, d) with centre x0. 

 

Definition: A subset G of a metric space (X, d) is said to be open 

if given any point x G, there exists r > 0 such that S(x, r)  G, i.e., 

each point of G  is the  centre of some open ball contained in G. 

Equivalently, every point of the set has a neighbourhood 

contained in the set. 

 

Theorem: In any metric space (X, d), each open ball is an open 

set. 

 

Proof. First observe that S(x,r) is nonempty, since x 2 S(x, r). Let y 2 

S(x, r), so that d(y, x) < r, and let r0 = r — d(y, x) > 0. We shall show 

that S(y, r0) ≤ S(x, r), as illustrated in Fig. 2.5. Consider any z 2 S(y, 
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2 ¼ [ 

r0). Then we have 

d(z, x) ≤ d(z, y) þ d(y, x) < r 0 þ d(y, x) ¼ r, 

which   means   z 2 S(x, r).  Thus,  for  each  y 2 S(x, r),  there  is  an  

open   ball 

S(y, r 0) ≤ S(x, r). Therefore S(x, r) is an open subset of X. & 

Examples 2.1.6. (i) In R, any bounded open interval is an open 

subset because it is an open ball. It is easy to see that even an 

unbounded open interval is an open subset. 

 

Figure 2.5 

(ii) In a discrete metric space X, any subset G is open, because 

any x G is the centre of the open ball S(x, 1=2) which is nothing 

but {x}. 

The following are fundamental properties of open sets. 

 

Theorem: Let (X, d) be a metric space. Then 

(i) 1 and X are open sets in (X, d ); 

(ii) the union of any finite, countable or uncountable family of 

open sets is open; 

(iii) the intersection of any finite family of open sets is open. 

 

Proof. (i) As the empty set contains no points, the requirement that 

each point in 1 is the centre of an open ball contained in it is 

automatically satisfied. The whole space X is open, since every 

open ball centred at any of its points is contained in X. 

(ii) Let {Ga: a L} be an arbitrary family of open sets and H 

a2LGa. If H is empty, then it is open by part (i). So assume H  to be 

nonempty and consider any   x 2 H . Then x 2 Ga for some a 2 L. 

Since Ga is open, there exists an r > 0 such that S(x, r) ≤ Ga ≤ H . 

Thus, for each x 2 H there  exists  an  r > 0  such  that S(x, r) ≤ H . 
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i ¼ 1 

n 
¼ ≤ ¼ 

Consequently, H is open. 

(iii) Let {Gi: 1 # i # n} be a finite family of open sets in X and let G 

¼ \n    Gi. 

If G is empty, then it is open by part (i). Suppose  G  is nonempty 

and  let  x 2 G.  Then  x 2 Gj, j ¼ 1, . ..  , n.  Since  Gj  is  open,  there   

exists   rj > 0   such   that S(x, rj) ≤ Gj, j ¼ 1, .. .  , n. Let r ¼ min {r1, 

r2, . . . , rn}. Then r > 0 and S(x, r) ≤ S(x, rj), j ¼ 1, .. . , n. Therefore 

the ball S(x,r) centred at x satisfies 

\n 

 
  

 
  

This completes the proof. & 

 

 

Remark: The intersection of an infinite number of open sets need 

not be open.    To see why, let Sn  S(0, 1 )  C,  n  1,  2, . ..  .  Each  Sn is  

an  open  ball  in  the complex plane and hence an open set in C. 

However,which is not open, since there exists no open ball in the 

complex plane with centre 0 that is contained in {0}. 

The following theorem characterises open subsets in a metric 

space. 

 

Theorem: A subset G in a metric space (X, d) is open if and only 

if it is the union of all open balls contained in G. 

Proof. Suppose that G is open. If G is empty, then there are no 

open balls contained in it. Thus, the union of all open balls 

contained in G is a union of an empty class, which is empty and 

therefore equal to G. If G is nonempty, then since G is open, each 

of its points is the centre of an open ball contained entirely in G. 

So, G is the union of all open balls contained in it. The converse 

follows immediately from Theorem.  

 

Remark: The above Theorem 2.1.9 describes the structure of 

open sets in a metric space. This information is the best possible 

in an arbitrary metric space. For open subsets of R, Theorem 

2.1.9 can be improved. 

 

S(x, rj) ≤ G: 
j 
¼=1 

S(x, r) ≤ 

S(x, rj) ≤ G: 
j = 1 

S(x, r) ≤ 
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Theorem: Each nonempty open subset of R is the union of a 

countable family of disjoint open intervals. Moreover, the 

endpoints of any open interval in the family lie in the 

complement of the set and are no less than the infimum and no 

greater than the supremum of the set. 

 

Proof. Let G be a nonempty open subset of R and let x G. Since 

G is open, there exists a bounded open interval with centre x 

and contained in G. So there exists some y > x such that (x, y) 

≤ G and some z < x such that (z, x) ≤ G. Let 

a = inf {z : (z, x) ≤ G} and b ¼ sup {y: (x, y) ≤ G}: (1) 

Then a < x  < b and Ix ¼ (a, b) is an open interval containing x. We 

shall show that The argument that b     G  is similar. Now suppose w      

Ix we shall show  that w      G. If  w    x, then of course w    G. Let w     x, 

so that either a < w < x  or x < w < b.     We need consider only the 

former case: a < w < x. Since a < w, it follows from (1) that there exists 

some  z < w  such  that  (z, x) ≤ G. Since  w < x, this  implies  that w 2 

G.next show that any two intervals in the collection {Ix: x G} are 

disjoint. Let (a, b) and (c, d) be two intervals in this collection with a 

point in common. Then we must have c < b and a < d. Since c does 

not belong to G, it does not belong to (a, b)  and so c ≤ a. Since a 

does not belong to G, and hence also does not belong to (c, d), we 

also have a ≤ c. Therefore, c = a. Similarly, b = d, which shows that 

(a,b) and (c, d) are actually the same interval. Thus, {Ix : x G} is a 

collection of disjoint intervals. 

Now we establish that the collection is countable. Each 

nonempty open interval contains a rational number. Since disjoint 

intervals cannot contain the same  number and the rationals are 

countable, it follows that the collection {Ix : x    G}   is countable. 

Finally, we note that it follows from (1) that a $ inf G and b # sup 

G:  
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Definition:  Let  A  be  a  subset  of  a  metric  space  (X, d).  A  point  

x    X  is called an interior point of A  if  there  exists  an  open  ball  

with  centre  x  contained in A, i.e., 

x 2 S(x, r) ≤ A for some r > 0, 

or equivalently, if x has a neighbourhood contained in A. The set 

of all interior points of A is called the interior of A and is denoted 

either by Int(A) or A○. Thus 

Int(A) ¼ A○ ¼ {x 2 A: S(x, r) ≤ A for some r > 

0}: Observe that Int(A) ≤ A. 

Example : The interior of the subset [0,  1]   R can be shown to 

be (0,1). Let x    (0, 1). Since (0,1) is open, there exists r > 0 such 

that (x    r, x    r)    [0, 1]. So, x is an interior point of [0,1]. Also, 

0 is not an interior point of [0,1], because there exists no r > 0 

such that ( r, r) [0,  1]. Similarly, 1 is also not an interior point of 

[0, 1]. 

The next theorem relates interiors to open sets and provides a 

characterisation of open subsets in terms of interiors. 

 

Theorem: Let A be a subset of a metric space (X, d). Then 

(i) A○ is an open subset of A that contains every open subset of A; 

(ii) A is open if and only if A = A○. 

Proof. (i) Let x   A○ be arbitrary. Then, by definition, there exists 

an open ball   S(x, r) A. But S(x,r) being an open set (see 

Theorem 2.1.5), each point of it is the centre of some open ball 

contained in S(x,r) and consequently also contained in A. 

Therefore each point of S(x,r) is an interior point of A, i.e., S(x, r) 

A○. Thus, x is the centre of an open ball contained in A○. Since x 

A○ is arbitrary, it follows that each x A○ has the property of being 

the centre of an open ball contained in A○. Hence, A○ is open. 

It remains to show that A○ contains every open subset G ≤ A. Let 

x 2 G. Since G is open,  there exists  an open ball  S(x,  r) ≤ G ≤ 

A. So x 2 A○. This shows that  x 2 G ) x 2 A○. In other words, G 

≤ A○. 

(ii) is immediate from (i). & 

The following are basic properties of interiors. 
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Theorem: Let (X, d) be a metric space and A, B be subsets of X. 

Then 

(i) A ≤ B ) A8 ≤ B8; 

 (ii) (A \ B)8 = A8 \ B8; 

(iii) (A [ B)8 ≤ A8 [ B8. 

Proof. (i) Let x 2 A8. Then there exists an r > 0 such that S(x, r) ≤ 

A. Since A ≤ B, we have S(x, r) ≤ B, i.e., x 2 B8. 

(ii) A \ B ≤ A as well as A \ B ≤ B. It follows from (i) that (A \ B)8 

≤ A8 as well as (A \ B)8 ≤ B8, which implies that (A \ B)8 ≤ A8 \ 

B8. On the other hand, let x 2 A8 \ B8. Then x 2 A8 and x 2 B8. 

Therefore, there exist r1 > 0 and r2 > 0 such that S(x, r1) ≤ A and  

S(x, r2) ≤ B.  Let  r = min {r1, r2}.  Clearly,  r > 0  and S(x, r) ≤ A 

\ B, i.e., x 2 (A \ B)8. 

(ii) A ≤ A [ B as well as B ≤ A [ B. Now apply (i). & 

Remark: The following example shows that (A [ B)8 need not be 

the same as A8 [ B8.  Indeed,  if  A ¼ [0, 1]  and   B ¼ [1, 2],   then   

A [ B = [0, 2].  Since A8 ¼ (0, 1), B8 ¼ (1, 2) and (A [ B)8 ¼ (0, 2), 

we have (A [ B)8 6¼ A8 [ B8. 

Definition: Let X be a metric space and F a subset of X. A point x 

X is called a limit point of F if each open ball with centre x 

contains at least one point of F different from x, i.e., 

(S(x, r) — {x}) \ F 6= 1: 

The set of all limit points of F is denoted by F ’ and is called the 

derived set of F. 

 

Examples: (i) The subset F  {1,  1=2,  1=3, .. . } of the real line has 

0 as a   limit point; in fact, 0 is its only limit point. Thus the derived 

set of F is {0}, i.e., F 0   {0}. 

(ii) The subset Z of integers of the real line, consisting of all the 

integers, has no 

limit point. Its derived set Z’ is 1. 

(iii) Each real number is a limit point of the subset of rationals: Q0   

R. 
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(iv) If (X, d) is a discrete metric space (see Example 1.2.2(v)) and F

X, then F 

has no limit points, since every open ball of radius 1 consists only of 

the centre. 

(v) Consider the subset F  {(x, y)  C : x > 0, y > 0} of the 

complex plane.   Each point of the subset {(x, y)  C : x $ 0,  y $ 0} 

is a limit point of F.  In fact,  the latter set is precisely F ’. 

(vi) For an interval I ≤ R, the set I ’ consists of not only all the 

points of I but also any  endpoints  I  may  have,  even  if  they  

do  not  belong  to  I.  Thus  (0, 1)0 ¼ (0, 1]0 ¼ [0, 1)0 ¼ [0, 1]0 ¼ [0, 

1]. 

Proposition: Let (X, d) be a metric space and F ≤ X . If x0 is a limit 

point of 

F, then every open ball S(x0, r), r > 0, contains an infinite number 

of points of F. 

Proof. Suppose that the ball S(x0, r) contains only a finite number of 

points of F. Let 

y1, y2, ...  , yn denote the points of S(x0, r) \ F that are distinct from x0. 

Let 

d=¼ min {d(y1, x0), d(y2, x0), ... , d(yn, x0)}: 

Then the ball S(x0, d) contains no point of F distinct from x0, 

contradicting the assumption that x0 is a limit point of F.

 

& 

The following characterisation of the limit points of a set in a 

metric space is useful. 

Proposition: Let (X, d) be a metric space and F  X. Then a point 

x0 is a  limit point of F if and only if it is possible to select from 

the set F a sequence of distinct points x1, x2, .. .  , xn, ... such that 

limn d(xn, x0)=¼ 0. 

Proof. If limn d(xn, x0) ¼ 0, where x1, x2, . ..  , xn, . . .  is  a  sequence  

of  distinct points  of  F,  then  every  ball  S(x0, r)  with  centre  x0  

and  radius  r  contains  each of xn, where n $ n0 for some suitably 

chosen n0. As x1, x2, . . .  , xn, . . .  in F are distinct, it follows that S(x0, 

r) contains a point of F  different  from x0. So, x0 is  a limit point of 

F. 
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On the other hand, assume that x0 is a limit point of F. Choose a 

point x1 2 F in the open ball S(x0, 1) such that x1 is different from 

x0. Next, choose a point x2 2 F in the open ball S(x0, 1=2) different 

from x0 as well as from x1; this is possible by Proposition 2.1.19. 

Continuing this process in which, at the nth step of the process we 

choose a point xn 2 F in S(x0, 1=n) different from x1, x2, .. . , xn—1, 

we have a sequence {xn} of distinct points of the set F  

 

 

Such that limn d(xn, x0) ¼ 0.

 

Definition: A subset F of the metric space (X, d) is said to be 

closed if it contains each of its limit points, i.e., F0 ≤ F. 

Examples. (i) The set Z of integers is a closed subset of the real line. 

(ii) The set F {1, 1=2, 1=3, . . . , 1=n, . . . } is not closed in R. In 

fact, F 0   {0}, which is not contained in F. 

(iii) The set F {(x, y) C: x $ 0, y $ 0} is a closed subset of the 

complex plane 

C. In this case, the derived set is F 0   F. 

(iv) Each subset of a discrete metric space is closed. 

 

Proposition Let F be a subset of the metric space (X, d). The 

set of limit points of F, namely, F ’ is a closed subset of (X, d), i.e., 

(F0)0 ≤ F0. 

Proof. If  1 or (F 0)0   1, then there is nothing to prove. Let F 0   

1 and let    x0   (F 0)0. Choose an arbitrary open ball S(x0, r) with 

centre x0 and radius r. By the definition of limit point, there exists 

a point y F 0 such that y S(x0, r). If r 0   r     d(y, x0), then S(y, r 0) 

contains infinitely many points of F by Proposition 

But S(y, r 0)     S(x0, r) as in the proof of Theorem 2.1.5. So, 

infinitely many points of F lie in S(x0, r). Therefore, x0 is a limit 

point of F, i.e., x0   F 0. Thus, F ’ contains all its limit points and 

hence F is closed.  

 

Definition: Let F be a subset of a metric space (X, d). The set F

 F 0 is 

called the closure of F and is denoted by F̄ . 

Corollary: The closure F̄  of F ≤ X, where (X, d) is a metric space, 
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is closed. 

Proof. In fact, by Proposition 2.1.23 and Theorem 2.1.24(ii), 

(F̄)0 ¼ (F [ F 0)0 ¼ F 0 [ (F 0)0 ≤ F 0 [ F 0 ¼ F 0 ≤ F̄ : 

Corollary: (i) Let F be a subset of a metric space(X, d). Then F is 

closed if and only if F =  F̄. 

(i) If A ≤ B, then Ā ≤ B̄. 

(ii) If A ≤ F and F is closed, then Ā ≤ F. 

Proof. (i) If F F̄ , then it follows from Corollary 2.1.26 that F 

is closed. On the other hand, suppose that F is closed; then 

F̄ ¼ F [ F= ¼ F ≤ F̄ : 

It follows from the above relations that F F̄ . 

(ii) This is an immediate consequence of Theorem 2.1.24(i). 

(iii) This is an immediate consequence of (ii) above. & 

 

Proposition : Let  (X, d) be  a metric  space and F X . Then 

the following statements are equivalent: 

(i) x 2 F̄ ; 

(ii) S(x, e) \ F 6= 1 for every open ball S(x, e) centred at x ; 

(iii) there exists an infinite sequence {xn} of points (not necessarily 

distinct) of F 

such that xn ! x. 

Proof. (i))(ii). Let x 2 F̄. If x 2 F, then obviously S(x, e) \ F 6¼ 1. 

If x 2= F, then by the definition of closure, we have x 2 F 0. By 

definition of a limit point, 

(S(x,  e)\{x}) \ F 6¼ 1 

 

and, a 

fortiori, 

 

S(x, e) \ F 6¼ 1: 

(ii) (iii).  For  each  positive  integer  n,  choose  xn   S(x, 1=n)

 F. Then the sequence {xn} of points in F converges to x. In 

fact, upon choosing n0 > 1=e, 
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where e > 0 is arbitrary, we have d(xn, x) < 1=n < 1=n0 < e, i.e., xn 2 

S(x, e) whenever n $ n0. 

(iii))(i) If the sequence {xn}n$ 1 of points in F consists of 

finitely many distinct points, then there exists a subsequence {xnk 

} such that xnk ¼ x for all k. So, x 2 F. If however, {xn}n $ 1 

contains infinitely many distinct points, then there exists a 

subsequence {xnk } consisting of distinct points and limk d(xnk , x) 

¼ 0, for limn d(xn,  x) ¼ 0 by hypothesis. By Proposition 2.1.20, it 

follows that x 2 F 0 ≤ F̄ : & 

Condition (ii) of Definition 1.5.1 of a completion can be 

rephrased in view of condition (i) and Proposition 2.1.28 (iii) as 

saying that the closure of metric space X as a subset of its 

completion Xm must be the whole of Xm. 

The following proposition is an easy consequence of Theorem 

2.1.24. 

 

Proposition. Let F1, F2 be subsets of a metric space (X, 

d).  

(ii) (F1 \ F2) ≤ F̄1 \F̄2. 

Proof.  we have 

 

(F1 [ F2) ¼ (F1 [ F2) [ (F1 [ F2)
0 ¼ (F1 [ F2) [ (F1

0 [ F2
0 ) 

¼ (F1 [ F1
0 ) [ (F2 [ F2

0 ) ¼ F̄1 [ F̄2, 

which establishes (i). The proof of (ii) is equally simple. 

 

Remarks 2.1.30. (i) It is not necessarily the case that the closure 

of an arbitrary union is the union of the closures of the subsets in 

the union. If {Aa}a2L is an infinite family of subsets of (X, d), it 

follows from Corollary 2.1.27 (ii) that 

[ 
Āa ≤ 

[ 
Aa: 

Equality need not hold, as the following example shows: If An ¼ {rn}, n 

a2L a2A a2L a2A 
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6¼ 6¼ 

¼ ¼ 

2 62 2 

¼ 1, 2, ...  

Sand  r1, r2, . . . , rn, . . .  is San  enumeration  of  rationals,  then  An ¼ {rn} ¼ 

{rn}  and 

 

the set of rationals in R and F2 the set of irrationals in R, then (F1 \ F2) 

¼  1̄  ¼ 1 

but F̄1 ¼ F̄2 ¼ R. 

 

Proposition Let (X, d) be a metric space. The empty set 1 and 

the whole space X are closed sets. 

 

Proof. Since the empty set has no limit points, the requirement 

that a closed set contain all its limit points is automatically 

satisfied by the empty set. 

Since the whole space contains all points, it certainly contains 

all its limit points (if any), and is thus closed.  

The following is a useful characterisation of closed sets in terms of 

open sets. 

 

Theorem : Let (X, d) be a metric space and F be a subset of X. Then 

F is closed in X if and only if Fc is open in X. 

 

Proof.  Suppose  F   is  closed  in  X.  We   show  that  Fc  is  

open  in  X.  If   F 1(respectively, X), then Fc X (respectively, 

1) and it is open by Theorem 2.1.7(i); so we may suppose that 

F 1 Fc. Let x be a point in Fc. Since F is closed and x F, x 

cannot be a limit point of F. So there exists an r > 0 such that 

S(x, r) Fc. Thus, each point of Fc is contained in an open ball 

contained in Fc. This means Fc is open. 

For  the  converse,  suppose  Fc  is  open.  We   show  that  F   is  

closed.  Let     x X  be  a  limit  point  of  F.  Suppose,  if  possible,  

that  x  F.  Then  x  Fc, which is assumed to be open. Therefore, 

there exists r > 0 such that S(x, r) Fc, i.e., 

S(x, r) \ F ¼ 1: 

Thus, x cannot be a limit point of F, which is a contradiction. Hence, x 

belongs to F.  

(
¼

ii) In Proposition 2.1.29
¼

(ii), equality need not hold. For example, if F1 denotes 
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Theorem: Let (X, d) be a metric space. Then 

(i) 1 and X are closed; 

(ii) any intersection of closed sets is closed; 

(iii) a finite union of closed sets is closed. 

 

Proof. (i) This is a restatement of Proposition 2.1.31. 

Theorem : Let F be a nonempty bounded closed subset of R and let 

a ¼ inf F 

and b ¼ supF. Then a 2 F and b 2 F. 

Proof. We need only show that if a 62 F, then a is a limit point of 

F. By the definition of infimum, for any e > 0, there exists at least 

one member x 2 F such that a# x < a þ e. But a 62 F, whereas x 2 

F. So, 

a < x < a þ e: 

Thus, every neighbourhood of a contains at least one member 

x F which is different from a. Hence, a is a limit point of F.

 

& 

 

Definition 2.1.37. Let F be a nonempty bounded subset of R and 

let a    inf F    and b supF. The closed interval [a, b] is called the 

smallest closed interval containing F. 

 

Theorem: If [a, b] is the smallest closed interval containing F, 

where F is a nonempty bounded closed subset of R, then 

[a, b]\F ¼ (a, b) \ Fc 

 

and so is open in R. 

 

Proof. Let x0 2 [a, b]\F; this means that x0 2 [a, b], x0 62 F. If x0 62 F, 

then x0 6¼ a and x0 6¼ b, because  a and b do  belong  to F,  by 

Theorem 2.1.36. It follows that    x0 2 (a, b). Moreover, it is obvious 

that x0 2 Fc, so that 

[a, b]\F ≤ (a, b) \ Fc: 

The reverse inclusion is obvious. & 
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The following characterisation of closed subsets of R is a direct 

consequence of Theorems 2.1.11 and 2.1.38. 

 

Theorem 2.1.39. Let F be a nonempty bounded closed subset of 

R. Then F is either a closed interval or is obtained from some 

closed interval by removing a countable family of pairwise 

disjoint open intervals whose endpoints belong to F. 

 

Proof. Let [a, b] be the smallest closed interval containing F, where a 

¼ inf F and 

b ¼ supF. By Theorem 2.1.38, 

[a, b]\F ¼ (a, b) \ Fc 

is open and hence is a countable union of disjoint open intervals 

by Theorem 2.1.11. Moreover, the endpoints of the open 

intervals do not belong to [a, b]\F but do belong to [a, b]. So 

they belong to F. The set F thus has the desired property. & 

 

This seemingly simple looking process of writing a nonempty 

bounded closed subset of R leads to some very interesting and 

useful examples. The following example, which is of particular 

importance, is due to Cantor. 

 

Example  2.1.40.  (Cantor)  Divide the closed interval I  [0, 1] into 

three equal  parts by the points 1/3 and 2/3 and remove the open 

interval (1/3, 2/3) from I. Divide each of the remaining two closed 

intervals [0, 1/3] and [2/3, 1] into three equal parts by the points 

1/9, 2/9 and by 7/9, 8/9, respectively, and remove the open 

intervals (1/9, 2/9) and (7/9, 8/9). Now divide each of the 

remaining four intervals [0, 1/9], [2/9, 1/3], [2/3, 7/9] and [8/9, 1] 

into three equal parts and remove the middle third open intervals. 

Continue this process indefinitely. The open set G removed in this 

way from I ¼ [0, 1] is the union of disjoint open intervals 

G ¼ 

.
1 

, 
2
Σ 

[ 

.
1 

, 
2
Σ 

[ 

.
7 

, 
8
Σ 

[ . . . : 

The complement of G in [0,1], denoted by P, is called the Cantor 

set. Important properties of this set are listed in the Exercise 16 

and Section 6.4. 

The completeness of R can also be characterised in terms of 
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nested sequences of bounded closed intervals. An analogue of this 

result for metric spaces is proved in Theorem 2.1.44. We begin 

with some relevant definitions. 

 

 Definition. Let (X, d) be a metric space and let A be a nonempty subset 

of X. 

We say that A is bounded if there exists M > 0 such that 

d(x, y) # M x, y 2 A: 

If A is bounded, we define the diameter of A as 

diam(A) ¼ d(A) ¼ sup{d(x, y): x, y 2 A}: 

If A is not bounded, we write d(A) ¼ 1. 

We define the distance between the point x 2 X and the subset B of 

X by 

d(x, B) ¼ inf{d(x, y) : y 2 B}, 

 

and, in an analogous manner, we define the distance between two 

nonempty subsets 

B and C of X by 

d(B, C) ¼ inf{d(x, y) : x 2 B, y 2 C}: 

Examples. (i) Recall that a subset A of R (respectively, R2) is 

bounded if and only if A is contained in an interval (respectively, 

square) of finite length (respect- ively, whose edge has finite 

length). Thus, our definition of bounded set in an arbitrary metric 

space is consistent with the definition of bounded set of real 

numbers (respectively, bounded set of pairs of real numbers). 

(ii) The interval (0, ) is not a bounded subset of R. However, 

if R is equipped with the discrete metric, then every subset A of 

this discrete space (in particular, the set (0, )) is bounded, since 

d(x, y) # 1 for x, y A. Indeed, d(A) 1, provided A contains more 

than one point. Moreover, any subset of any discrete metric space 

has diameter 1 if it contains more than one point. 

(iii) If R is equipped with the nondiscrete metric d(x, y) ¼ jx — 

yj=[1 þ jx — yj], then every subset is bounded and d(R) ¼ 1. 

(iv) In the space (‘2, d) (see Example 1.2.2(vii)), consider the set 

Y ¼ {e1, e2, ... , en, ... }, 
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Theorem : (Cantor) Let (X, d) be a metric space. Then (X, d) is 

complete if and only if, for every nested sequence {Fn}n $ 1 of 

nonempty closed subsets of X, that is, 

(a) F1 ≤ F2 ≤T. . . ≤ Fn ≤ . . . such that (b) d(Fn) ! 0 as n ! 1, 

Proof. First suppose that (X, d) is complete. For each positive 

integer n, let xn be any point in Fn. Then by (a), 

xn, xnþ1, xnþ2, ...  

all lie in Fn. Given e > 0, there exists by (b) some integer n0 such that 

d(Fn0 ) < e. Now, xn0 , xn0þ1, xn0þ2, . . . all lie in Fn0 . For m, n $ n0, 

we then have d(xm, xn) # d(Fn0 ) < e. This shows that the sequence 

{xn}n $ 1 is a Cauchy sequence in the complete metric space X. So, it 

is convergent. Let x 2 X be such that limn!1 xn ¼ x. Now for any 

given n, we have the sequence xn, xnþ1, . . . ≤ Fn. In view of this, 

since Fn is closed. Hence, 

If e > 0, then there exists a natural number n0 such that d(Fn0 ) < e. 

But x Fn0 

and thus n $ n0 implies d(xn, x) < e. 

 & 

 

  Subspaces 

 
Let (X, d) be a metric space and Y a nonempty subset of X. If dY 

denotes the restriction of the function d to the set Y × Y , then dY is 

a metric for Y and (Y , dY ) is 

 

a metric space (see Section 1.2). If Z Y X , we may speak of Z 

being open (respectively, closed) relative to Y as well as open 

(respectively, closed) relative to X. It may happen that Z is an open 

(respectively, closed) subset of Y but not of X. For example, let X  

be R2 with metric d2 and Y  {(x, 0): x  R} with the induced   

metric. Then Y is a closed subset of X  (for Y c   {(x, y)    R2: y    

0} is open in  X). If Z {(x, 0): 0 < x < 1}, then Z considered as a 

subset of Y is open in Y. However, Z considered as a subset of X is 

not open in X. In fact, no point (x, 0) Z is an interior point of Z (Z 

considered as a subset of X) because any neighbourhood of (x,0) 
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in X  is the ball S( (x, 0), r), r > 0, which is not contained in Z. 

Thus,      Z    {(x, 0) : 0 < x < 1}  is  an  open  subset  of  Y    {(x, 

0) : x    R}  but  not  of X (R2, d2). 

The above examples illustrate that the property of a set being open 

(respectively 

closed) depends on the metric space of which it is regarded a 

subset. The following theorem characterises open (respectively 

closed) sets in a subspace Y in terms of open (respectively closed) 

subsets in the space X. First we shall need a lemma. 

 

Lemma 2.2.1. Let (X, d) be a metric space and Y a subspace of X. Let z Y 

and 

r > 0. Then 

SY (z, r) ¼ SX(z, r) \ Y , 

where SY (z, r) (respectively SX(z, r)) denotes the ball with centre z and 

radius r in Y (respectively X). 

 

Proof. We 

have 

 

SX(z, r) \ Y ¼ {x 2 X : d(x, z) < r} \ Y 

¼ {x 2 Y : d(x, z) < r} 

¼ SY (z, r)  since Y ≤ X: & 
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2 is the entire space Y. (See Figure 2.6.) 

[ 

≤ 

Let X ¼ R2 and Y ¼ {(x1, x2): 0 < x1 # 1, 0 # x2 < 1, x2 þ x2 $ 1}. Here, 

the 

open ball in Y with centre (1, 0) and radius 
pffiffiffi 1  2

 

 

 

 

Figure 2.6 

 

Theorem:  Let (X, d) be a metric space and Y a subspace of X. Let 

Z be a subset of Y. Then 

(i) Z is open in Y if and only if there exists an open set G ≤ X such 

that 

Z ¼ G \ Y ; 

(ii) Z is closed in Y if and only if there exists a closed set F ≤ X 

such that 

Z ¼ F \ Y . 

Proof. (i) Let Z be open in Y. Then if z is any point of Z, there 

exists an open ball SY (z, r) contained in Z. Observe that the radius 

r of the ball SY (z, r) depends on the point z 2 Z . We then have 

X(z, r) is open in X. 

On the other hand, suppose that Z ¼ G \ Y , where G is open in 

X. If z 2 Z , then z is a point of G and so there exists an open ball 

SX(z, r) such that SX(z, r) G. Hence, 

SY (z, r) ¼ SX(z, r) \ Y by Lemma 2:2:1 

≤ G \ Y ¼ Z , 

so that z is an interior point of the subset Z of Y. As z is an arbitrary 

point of Z, it follows that Z is open in Y. 
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\ (ii) Z is closed in Y if and only if (X\Z ) Y is open in Y. Hence, Z is 

closed in Y if and only if there exists an open set G in X such that 

(X\Z ) \ Y ¼ G \ Y using (i) 

above: On taking complements in X on both 

sides, we have 

Z [ (X\Y ) ¼ (X\G) [ (X\Y ): 

 

Hen

ce 

 

Z ¼ Z \ Y  ¼ ðZ [ (X\Y )Þ \ Y 

¼ ð(X\G) [ (X\Y )Þ \ Y : 

¼ (X \G) \ Y 

 

So, Z is the intersection of the closed set X\G and Y. 
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≤ ≤ 

 

where X\F is open in X. Hence (X \Z ) \ Y is open in Y, i.e., Z is 

closed in Y. & 

Proposition : Let Y be a subspace of a metric space (X, d). 

(i) Every subset of Y that is open in Y is also open in X if and only if Y 

is open in X. 

(ii) Every subset of Y that is closed in Y is also closed in X if and 

only if Y is closed in X. 

 

Proof. (i) Suppose every subset of Y open in Y is also open in  X. 

We  want to show that Y is open in X. Since Y is an open 

subset of Y, it must be open in 

X. Conversely, suppose Y is open in X. Let Z  be  an  open  subset  of  

Y.  By  Theorem 2.2.2(i), there exists an open subset G  of X such that 

Z     G     Y . Since     G and Y are both open subsets of X, their 

intersection must  be open  in  X, i.e., Z  must be open in X. 

(ii) The proof is equally easy and is, therefore, not included. & 

 

Proposition : Let (X, d) be a metric space and Z  Y  X. If clXZ  and 

clY Z   denote, respectively, the closures of Z in the metric spaces X 

and Y, then 

clY Z ¼ Y \ clXZ : 

Proof. Obviously, Z ≤ Y \ clXZ . Since Y \ clXZ is closed in Y 

(see Theorem 2.2.2(ii)), it follows that clY Z ≤ Y \ clXZ . On the 

other hand, by Theorem 2.2.2(ii), clY Z ¼ Y \ F, where F is a 

closed subset of X. But then 

Z ≤ clY Z ≤ 

F, and hence, by Corollary 2.1.27(ii), 

 

Therefo

re, 

clXZ  ≤ F: 

 

clY Z ¼ Y \ F ≤ Y \ 

clXZ : 
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This completes the proof. & 

 

In contrast to the relative properties discussed above, there 

are some properties that are intrinsic. In fact, the property of x 

being a limit point of F holds in any subspace containing x and 

F as soon as it holds in the whole space, and conversely. Another 

such property is that of being complete. The following 

propositions describe relations between closed sets and 

complete sets. 

 

Proposition : If Y is a nonempty subset of a metric space (X, d), 

and (Y , dY ) is complete, then Y is closed in X. 

 

Proof. Let x be any limit point of Y. Then x is the limit of a sequence 

{yn}n $ 1 in Y. In view of Proposition 1.4.3, the sequence {yn}n $ 

1 is Cauchy, and hence, by assump- tion, converges to a point y of 

Y. But by Remark 3 following Definition 1.3.2, y ¼ x. Therefore, x 

2 Y . This shows that Y is closed in X.  

Proposition: Let (X, d) be a complete metric space and Y a closed 

subset of X. Then (Y , dY ) is a complete space. 

 

Proof. Let {yn}n $ 1 be a Cauchy sequence in (Y , dY ). Then {yn}n $ 

1 is also a Cauchy sequence in (X, d); so there exists an x 2 X such 

that limn!1 yn ¼ x. If follows (see Proposition 2.1.28) that x 2 Ȳ , 

which is the same set as Y by Corollary 2.1.27(i).    & 

 

 Countability Axioms and Separability 

 

Definition:  Let  (X, d)  be  a  metric  space  and  x 2 X .  Let  

{Gl}l2L  be  a family of open sets, each containing x. The family 

{Gl}l2L is said to be a local base at x if, for every nonempty open 

set G containing x, there exists a set Gm in the family 

{Gl}l2L such that x 2 Gm ≤ G. 

Examples 2.3.2. (i) In the metric space R2 with the Euclidean metric, 

let Gl ¼ 

S(x, l), where x ¼(x1,x2) 2 R2 and 0 < l 2 R. The family {Gl:0 < l 2 

R}¼ 
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2 

{S(x, l):0 < l 2 R} is a family of balls and is a local base at x. 

Note that S(x, l), where x ¼(x1,x2), can also be described as {(y1,y2) 2 

R : (y1 — x1) þ (y2 — x2) < l }. (ii)  Let  x ¼ (x1, x2) 2 R   and  Gl ¼ 

{(y1, y2) 2 R : (y1 — x1)  þ 2(y2 — x2)  < l}, where 0 < l 2 R. Then the 

family {Gl: 0 < l 2 R} is a local base at x. To see why, consider any 

open set G ≤ R such that x 2 G. Since G  is open,  there exists  r  > 0 

such  that S(x, r) ≤ G. Now S(x, r) ¼ {(y1, y2) 2 R : (y1 — x1) þ (y2 — 

x2) < r }. Let l ¼ r2. Then y 2 Gl ) (y1 — x1)
2 þ 2(y2 — x2)

2 < l ) (y1 

— x1)
2 þ (y2 — x2)

2 

< l ) (y1 — x1) þ (y2 — x2) < r2 ) y 2 S(x, r), so that Gl ≤ S(x, r) ≤ 

G. In this example, the sets Gl are ellipses. 

(iii) Let x R. Consider the family of all open intervals (r,s) 

containing x and having rational endpoints r and s. This family is 

a local base at x. It consists of open balls, not necessarily centred 

at x. Moreover, the family is countable and thus constitutes what 

is called a countable base at x. 

Proposition: In any metric space, there is a countable base at each 

point. 

Proof. Let (X, d) be a metric space and x X. The family of open 

balls centred at x 

and having rational radii, i.e., {S(x, r): r rational and positive} is a 

countable base at 

x. In fact, if G is an open set and x G, then by the definition of an 

open set, there exists an e > 0 (e depending on x) such that x S(x, 

e) G. Let r be a positive rational number less than e. Then 

x 2 S(x, r) ≤ S(x, e) ≤ G: 

Definition: A family {Gl}l2L of nonempty open sets is called a 

base for the open sets of (X, d) if every open subset of X is a 

union of a subfamily of the family 

{Gl}l2L. 

The condition of the above definition can be expressed in the 

following equiva- lent form: If G is an arbitrary nonempty open 

set and x 2 G, then there exists a set Gm in the family such that x 

2 Gm ≤ G. 

Proposition: The collection {S(x, e): x X , e > 0} of all open balls 

in X is a base for the open sets of X. 
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Proof. Let G be a nonempty open subset of X and let x G. By the 

definition of an open subset, there exists a positive e(x) 

(depending upon x) such that 

x 2 S(x, e(x)) ≤ G: 

This completes the proof. & 

 

Generally speaking, an open base is useful if its sets are simple in 

form.  A space  that has a countable base for the open sets has 

pleasant properties and goes by the name of ‘‘second countable’’. 

 

Definition: A metric space is said to be second countable (or 

satisfy the second axiom of countability) if it has a countable 

base for its open sets. 

The reason  for  the  name  second  countable  is  that  the  

property  of  having  a countable base at each point, as in 

Proposition 2.3.3, is usually called first countability. 

 

Examples: (i) Let (R,d) be the real line with the usual metric. The 

collection 

{(x, y) : x, y rational} of all open intervals with rational endpoints 

form a countable base for the open sets of R. 

(ii) The collection 

{S(x, r): x   (x1, x2, .. . , xn), xi rationals,  1 # i # n,  and  r  positive  

rational} of all r-balls with rational centres and rational radii is a 

countable base for the  open sets of the metric space (Rn, d), 

where d may be any of the metrics on Rn described in Example 

1.2.2(iii). 

(iii) Let X have the discrete metric. Then any set {x} containing a 

single point x is also the open ball S(x, 1/2) and therefore must 

be a union of nonempty sets of any base. So any base has to 

contain each set {x} as one of the sets in it. If X is 

nondenumerable, then the sets {x} are also nondenumerable, 

forcing every base to be nondenumerable as well. Consequently, 

X does not satisfy the second axiom of countability when it is 

nondenumerable. 

It is easy to see that any subspace of a second countable space is 

also a second countable space. In fact, the class of all intersections 

with the subspace of the sets of a base form a base for the open 

sets of the subspace. 
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Definition: Let (X, d) be a metric space and G be a collection of 

open sets in X. If for each x X there is a member G G such that x 

G, then G is called an open cover (or open covering) of X. A 

subcollection of G which is itself an open cover of X is called a 

subcover (or subcovering). 

 

Examples 2.3.9. (i) The union of the family { .. . , (   3,   1),  (   2, 

0), (   1, 1),    (0, 2), .. . } of open intervals is R. The family is 

therefore an open covering of R. However, the family of open 

intervals { .. . , ( 2,  1), (  1, 0), (0, 1), (1, 2), .. . } is not an open 

covering, because the intervals’ union does not contain the 

integers. The aforementioned cover contains no subcovering 

besides itself, because, if we delete any interval from the family, 

the midpoint of the deleted interval will not belong to the union of 

the remaining intervals. 

(ii) Let X be the discrete metric space consisting of the five 

elements a, b, c, d, e. The union of the family of subsets {{a}, {b, 

c}, {c, d}, {a, d, e}} is X and all subsets are open. Therefore the 

family is an open cover. The family {{b, c}, {c, d}, {a, d, e}} is a 

proper subcover. 

(iii) Consider the set Z of all integers with the discrete metric. As 

in any discrete metric space, all subsets are open. Consider the 

family consisting of the three subsets 

{3n : n 2 Z}, {3n þ 1 : n 2 Z} and {3n þ 2 : n 2 Z}: 

Since every integer must be of the form 3n, 3n 1 or 3n  2,  the  

above  three  subsets form an open cover of Z. There is no proper 

subcover. 

(iv) The family of intervals {(— n, n): n 2 N} is an open cover of 

R and the family consisting of the open balls {z 2 C : jz þ 17j < 

n3=2, n 2 N} is an open cover of C. If we extract a subfamily by 

restricting n to be greater than some integer n0, the subfamily is 

also an open cover. Indeed, if we delete a finite number of sets in 

the family, the remaining subfamily is an open cover. Thus, there 

are infinitely many open subcovers. 

 

Definition: A metric space is said to be Lindelöf if each open 

covering of X contains a countable subcovering. 
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Proposition: Let (X, d) be a metric space. If X satisfies the second 

axiom of countability, then every open covering {Ua}a2L of X 

contains a countable subcover- ing. In other words, a second 

countable metric space is Lindelöf. 

 

Proof. Let {Gi : i ¼ 1, 2, ... } be a countable base of open sets for X. 

Since each Ua is a union of sets Gi, it follows that a subfamily {Gij : j 

¼ 1, 2, ... } of the base 

{Gi : i ¼ 1, 2, ... } is a covering of X. Choose Uij ≤ Gij for each j. Then 

{Uij : j ¼ 1, 2, ... } is the required countable subcovering. & 

Definition: A subset X0 of a metric space (X, d) is  said  to  be  

everywhere dense or simply dense if X0 ¼ X, i.e., if every point of 

X is either a point or a limit 

 

point of X0. This means that, given any point x of X, there exists a 

sequence of points of X0 that converges to x. 

It follows easily from this definition and the definition of interior  

that a subset of X0 is dense if and only if Xc has empty interior. 

It may be noted that X is always a dense subset of itself; interest 

centres around what proper subsets of a metric space are dense. 

 

Examples: (i) The set of rationals is a dense subset of R (usual 

metric) and so is the set of irrationals. Note that the former is 

countable whereas the latter is not. 

(ii) Consider the metric space (Rn, d) with any of the metrics 

described in Example 1.2.2(iii). Within any neighbourhood of 

any point in Rn, there is a point with rational coordinates. Thus, 

 

Qn ¼ Q × Q × ... × Q 

is dense in Rn. 

(iii) In the space C[0, 1] of Example 1.2.2(ix), we consider the set 

C0 consisting of all polynomials with rational coefficients. We 

shall check that C0 is dense in C[0, 1]. Let x(t ) C[0, 1]. By 

Weierstrass’ theorem (Theorem 0.8.4), there exists a polyno- mial 

P(t) such that 

e 
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Definition: The metric space X is said to be separable if there 

exists a countable, everywhere dense set in X. In other words, X is 

said to be separable if there exists in X a sequence 

{x1, x2, .. . } (2:1) 

such that for every x 2 X, some sequence in the range of (2.1) 

converges to x. 

Examples:  In Examples 2.3.13(i)–(iii) and (v), we saw dense sets 

that are countable. Therefore, the spaces concerned are separable. 

In (iv) however, the space is separable if and only if the set X is 

countable. 

There are metric spaces other than the discrete metric space 

mentioned above 

which fail to satisfy the separability criterion. The next example is 

one such case. Let 

X denote the set of all bounded sequences of real numbers with 

metric 

d(x, y) ¼ sup{jxi — yij : i ¼ 1, 2, 3, ... }, 

as in Example 1.2.2(vi). We shall show that X is inseparable. 

First we consider the set A of elements x (x1, x2, .. . ) of X for which 

each xi is either 0 or 1 and show that it is uncountable. If E is any 

countable subset of A, then  the elements of E can be arranged in a 

sequence s1, s2, . . . . We construct a sequence s as follows. If the mth 

element of sm is 1, then the mth element of s is 0, and vice versa. Then 

the element s of X differs from each sm in the mth place and is 

therefore equal 
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¼ j   —   j ¼ ¼ 

≤ 

¼ ¼ 

 

to none of them. So, s   E although s   A. This shows that any 

countable subset of  A must be a proper subset of A. It follows that 

A is uncountable, for if it were to be countable, then it would have 

to be a proper subset of itself, which is absurd. We proceed to use 

the uncountability of the subset A to argue that X must be 

inseparable. 

The distance between two distinct elements x ¼ (x1, x2, . . . ) and y 

¼ (y1, y2, .. .  ) of A is d(x, y) sup{ xi yi : i 1, 2, 3, .. .  }  1. Suppose, if 

possible, that E0 is a countable, everywhere dense subset of X. 

Consider the balls of radii  1/3  whose  centres are the points of E0. 

Their union is the entire space X, because E0  is  everywhere dense, 

and in particular contains A. Since the balls are countable  in number  

while A  is not, in at least one ball there must be two distinct 

elements  x and  y of A. Let x0 denote the centre of such a ball. Then 

      which is, however, impossible. Consequently, (X, d) cannot be  

     separable. 

 

Proposition:  Let (X, d) be a metric space and Y X. If X is 

separable, then Y with the induced metric is separable, too. 

 

Proof. Let E  {xi : i   1, 2, .. . } be a countable dense subset of X. If E 

is contained in Y, then there is nothing to prove. Otherwise, we 

construct a countable dense subset of Y whose points are 

arbitrarily close to those of E. For positive integers n and m, let 

Sn, m ¼ S(xn, 1=m) and choose yn, m 2 Sn, m \ Y whenever this set is 

nonempty. We show that the countable set {yn, m: n and m positive 

integers} of Y is dense in Y. 

For this purpose, let y 2 Y and e > 0. Let m be so large that 1=m < e=2 

and find 

xn 2 S(y, 1=m). Then y 2 Sn, m \ Y and 
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Thus, yn, m 2 S(y, e). Since y 2 Y and e > 0 are arbitrary, the assertion is proved. & 

The main result of this section is the following. 

Theorem: Let (X, d) be a metric space. The following statements are equiva- lent: 

(i) (X, d) is separable; 

(ii) (X, d) satisfies the second axiom of countability; 

(iii) (X, d) is Lindelöf. 

 

Proof. (i))(ii). Let E ¼ {xi : i ¼ 1, 2, . . . } be a countable, dense subset of X and let 

{rj: j ¼ 1, 2, ... } be an enumeration of positive rationals. Consider the countable 

collection of balls with centres at xi, i ¼ 1, 2, ... and radii rj, j ¼ 1, 2, ... ; i.e., 

{S(xi, rj): xi 2 E for i ¼ 1, 2, ... and rj, is rational j ¼ 1, 2, .. . }: 

 

 

Possible questions 

2 MARK QUESTION: 

1.  Define Open set. 

2. Define Pesudometric. 

3. Define Cauchy Sequence. 

4. Define Metric space 

5. Define Closed set. 

 

8 MARK QUESTION: 

1. Prove that A convergent sequence in a metric space is a Cauchy  

    sequence. 

 

2. Let (X,d) be a metric space and A, B be subsets of X. Then 

i) A⊆B implies Ao ⊆ Bo; 

ii) (A ∩ B)o = Ao ∩ Bo; 

iii) Ao ∪ Bo ⊆ (A ∪ B)o. 

 

3.  Let (X,d) be a metric space. 

Define d’: X x X → R by d’(x,y) = 
𝑑(𝑥,𝑦)

1+𝑑(𝑥,𝑦)
. 

    Then d’ is a metric on X. 

 

 4. Let (X,d) be a metric space and F1, F2 be subsets of X. Then 

i) If F1 ⊆ F2, then F1
’ ⊆ F2

’; 

ii) (F1 ∪ F2)
’ = F1

’ ∪ F2
’; 

iii) (F1 ∩ F2)
’ ⊆ F1

’ ∩ F2
’ . 
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5. Let {x(n)} be a sequence in L p space such that lim xk
(n) = xk  as n tends to  

    infinity for each k, where x={xk} is an element of Lp. Suppose also that  

    for every ∈>0 there exists an integer  mo(∈) such that 

                          (∑ |𝑥𝑘
(𝑛)

|∞
𝑘=𝑚+1 )

1/𝑝

 < ∈ for m≥mo(∈) and for all  

     Then lim d(x(n),x)=0 as n tends to ∞. 

 

6. Let (X,d) be a metric space and A ⊆ X.If xo is a limit point of A, then   

     every open ball S(xo,r), r>0 , contains an infinite number of points of A. 

 

7. Let (X,d) be a metric space, Then prove that 

i) ∅ and X are open sets in (X,d): 

ii) the union of any finite family of open sets is open: 

iii) the intersection of any finite family of open sets is open. 

 

8. Let (X,d) be a metric space and F be a subset of X. Then prove that F is   

   closed in X if and only of Fc is open in X. 

 

9. Prove that in any metric space (X,d), each open ball is an open set. 

 

10.  Let (X,d) be a metric space, Then prove that 

i) ∅ and X are closed sets in (X,d); 

ii) any intersection of closed sets is closed; 

iii) a finite union of closed sets is open. 

 



Question OPTION 1 OPTION 2 OPTION  3 OPTION 4 Answer

The property d(x,y) is less then or equal to d(x,z) + d(z,y) is 

called_____.

Cauchy-Schwarz 

inequality         

 Minkowski’s 

Inequality

Triangle 

inequality

Cauchy 

inequality

Triangle 

inequality

Let (X,d) be a metric space. If d(x,y) = 0 then_____ x<y x>y x=y x=0 x=y

Let d(x,y) = 0 if x=y and d(x,y)= 1 if  x not equal to y. This 

metric is called_____

Euclidean Metric                         Discrete Metric Standard Metric Distance Metric Discrete Metric

The second property of pseudometric  is_____ d(x,y)=0  if  x=y x=y  if  d(x,y)=0 d(x,y)=0  iff  x=y d(x,y)=d(y,x) d(x,y)=0  if  x=y

A Convergent sequence in a metric space is called______ Bounded 

sequence 

Cauchy sequence Convergent 

sequence 

Divergent 

sequence

Cauchy sequence

A metric space (X,d) is complete if every Cauchy sequence in 

X is called_____

Incomplete Bounded Divergent Convergent Convergent

A mapping f of X into X’ is an isometry if d’(f(x),f(y))=____ d(x,y) f(x)  f(y) 0 d(x,y)

Let (X,d) be a metric space.The set s(x0,r) is called the open 

ball if x belonges to X such that d(x0,x) is________.

less then r less then or equal 

to r

grater then r equal to r less then r

Let (X,d) be a metric space. The intersection of any finite 

family of open sets is ____

closed open bounded unbounded open

Let A be a subset of a metric space (X,d).Then A is open iff A< A 
0

A> A 
0

A= A 
0

A-A
0
=1 A= A 

0

 Let (X.d) be a metric space and A , B be subsets of  X.Then 

(AUB)
0 
  is containing in

B
0  

U A
0   

A
0
 U B

0 AUB A=B A
0
 U B

0

 Let (X,d) be a metric space. Then any intersection of closed 

sets is____________.

open set empty set singleton closed set closed set

Let (X,d) be a metric space. Then Space (X,d) is  Lindelof  it 

is equivalent to (X,d) is_________.

separable inseparable not countability countability separable

Let (X,d) be a metric space  and F be a subset of X.Then F is 

Closed in X iff  F
c
  is________ in X

subset closed set open set cantor set open set

 A subset F of the metric space (X,d) is said to be ________ if 

it contains each of its limit points

subset closed open limit closed 

 Let A be the subset of metric space ,Int(A)={ x belongs to A 

such that contained in A for some r>0}.

s(x) s(r) s(r,x) s(x,r) s(x,r)

 Which  property is difference between metric spaces and 

pseudometric .

First Second Third Fourth Second

 The spaces (R
n
,dp), B(s) are __________. complete incomplete limit completion complete

 The space of the real numbers is the  _________of the space 

of the rational.

complete isometry completion  equivalent completion  

  If A is bounded then sup{d(x,y): x,y belongs to A} is 

called____________.

supermom distance diameter radious diameter

 If a subsequence is converges, its limit is called a 

____________limit of {xn}.

subsequential upper lower equal subsequential

S(x,r) is denoted by__________. open ball closed ball null ball unit ball open ball

S(x,r) is open ball where x is _______. limit point centre point arbitrary point interior point centre point

  Each open ball is an ___________set. null  empty closed open open

 Each closed ball is an ___________set. null  empty closed open closed
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The intersection of an infinite number of open sets is 

_____________.

not open open not closed closed not open

Let F be a subset of X. F is equal to closure of F if F is 

_____________.

null  empty closed open closed

The union of a set F and derived set of F is 

called_____________.

open closed derived closure closure

 (F1 U F2)
1
 =___________. F1

1 
U F2

1
F1

1
 F2

1
F1

1 
+ F2

1
F2

1 
U F1

1
F1

1 
U F2

1

  S(x,r) intersect with F is not equal to____________. null  empty closed open empty

Let alpha = inf F and beta = sup F then the interval 

[alpha,beta] is called the __________interval  containing F.

higest open higest closed smallest open smallest closed smallest closed

S(x,r) is open ball where r is _______. diameter radious center point radious

Let (X,d) be a metric space. Then Space (X,d) is separable it 

is equivalent to (X,d) is_________.

countability inseparable not countable Lindelof Lindelof 

Z is open in Y iff if there exists an open set G contained in X 

such that G intersection Y=________.

Z G Y GUY Z

 Z is cloesd in Y iff  if there exists an closed set F contained in 

X such that Z=______.

F intersection Y F union Y F interesction X F union X F intersection Y

The distance between the point and subset B of X is denoted 

by____________.

d(x,y) d(x,B) d(B,C) d(B,X) d(x,B)

d(A) is denoted by___________. supermom distance diameter radious diameter

 The distance between two nonempty subsets B and C 

by_________.

d(x,y) d(x,B) d(B,C) d(B,X) d(B,C)

   The finite union of closed set is__________. open closed not open not closed closed

 If A is contained in F and  F is closed then closure of A 

is____________-.

equal to F not equal to F contained in F containing F contained in F

If A is contained in B then closure of A is 

________________.

equal to B not equal to B contained in B containing B contained in B

 Every open ball contains an ____________ points. one two finite infinte infinite

Two Cauchy sequences {xn} and {yn} in X to be equivalent if  

the limit  d(xn,yn)=______ as n tends to infinity.

0 1 2 3 0

The space of all real number is the ___________ of the space 

of rationals

complete in complete limite completion completion

The property of Triangle inequality d(x,y) is less then or equal 

to_________. 

d(x,z) + d(z,y) d(x,z) - d(z,y) d(z,y)+d(x,z) d(z,y)-d(x,z) d(x,z) + d(z,y)

Let (X,d) be a metric space. If x=y then_____ d(x,y) < 0 d(x,y) > 0 d(x,y) = 0 d(x,y) = 1 d(x,y) = 0

A___________ sequence in a metric space is called Cauchy 

sequence

Bounded 

sequence 

Cauchy sequence Convergent 

sequence 

Divergent 

sequence

Convergent 

sequence 

 A metric space (X,d) is________ if every Cauchy sequence 

in X is called Convergent.

complete Bounded Divergent Convergent complete

A subset F of the metric space (X,d) is said to be closed if it 

contains each of its ____.

subset closed open limit limit
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UNIT II 

SYLLABUS 

 

 

Continuous mappings - sequential criterion and other characterizations of 

continuity – Uniform Continuity – Homeomorphism - Contraction 

mappings -  Banach Fixed point Theorem -  Connectedness - connected 

subsets of R. 

 

 Continuous Mappings 

 

For a real-valued function f with domain A R, a rough and rather 

inaccurate description of continuity at a point a     A is the 

statement ‘‘f(x) is close to f(a) when x is close to a’’. The measure of 

‘‘closeness’’ of two numbers, or distance between them, is the 

absolute value of the difference of the numbers. In terms of the 

standard metric d on R, continuity involves a relationship between 

d(x, a) and d(f(x),f(a) ). This observation makes it possible to 

extend the concept of continuity to functions with domain and 

range in metric spaces. 

 

Definition: Let (X, dX) and (Y , dY ) be metric spaces and Abelong X. 

A function   f  : A    into  Y  is said to  be continuous at  a   belongs  

A, if for every  e > 0,  there exists  some  d > 0 such that 

dY (f (x), f (a)) < e wheneverx 2 A and dX(x, a) < d: 

If f is continuous at every point of A, then it is said to be continuous 

on A. 

 

Remark (i) If one positive number d satisfies this condition, then  

every  positive number d1 < d also satisfies it. This is obvious 

because whenever x 2 A and dX(x, a)  < d1, it is also true that x      A 

and dX(x, a)  < d. Therefore, such a number  d is far from being 

unique. 

(ii) In the definition of continuity, we have placed no restriction 

whatever on the nature of the domain A of the function. It may 
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happen that a is an isolated point of A, i.e., there is a 

neighbourhood of a that contains no point of A other than a. In 

this case, the function f is continuous at a irrespective of how it is 

defined at other points of the set A. However, if a is a limit point of 

A and {xn} is a sequence of points of A such that xn   a, it follows 

from the continuity of f at a that f (xn)   f (a). In fact, we have the 

following theorem: 

 

Theorem: Let (X, dX) and (Y , dY ) be metric spaces and A ≤ X . 

A function f : A into Y is continuous at a 2 A if and only if 

whenever a sequence {xn} in A converges to a, the sequence 

 {f (xn)} converges to f(a). 

 

Proof. First suppose the function f : A Y is continuous at a A and let 

{xn} be a sequence in A converging to a. We shall show that {f (xn)} 

converges to f(a). Let e be any positive real number. By continuity of 

f at a, there exists some d > 0 such that x 2 A  and  dX(x, a) < delta 

 dY (f (x), f (a)) < e.  Since  limn!1 xn ¼ a,  there  exists some n0 such 

that n > n0 implies dX(xn, a) < d. Therefore n > n0  dY (f (xn), f (a)) 

< e. Thus, limn!1 f (xn) ¼ f (a). 

Now suppose that every sequence {xn} in A converging to a has the 

property that limn!1 f (xn)=f (a). We shall show that f is continuous 

at a. Suppose, if possible, that f is not continuous at a. There must 

exist e > 0 for which no  positive  d can satisfy the requirement that x 

2 A and dX(x, a) < d implies dY (f (x), f (a)) < e. This means   that  

for  every  d > 0,   there  exists  x 2 A   such   that  dX(x, a) < d  but   

dY (f (x), f (a)) $ e. For every n 2 N, the number  1=n  is  positive  and  

therefore there exists xn 2 A such that dX(xn, a) < 1=n but dY (f (xn), f 

(a)) $ e. The sequence 

{xn} then converges to a but the sequence {f (xn)} does not 

converge to f(a). This contradicts the assumption that every 

sequence {xn} in A converging to a has the property  that limn!1 f 

(xn) ¼ f (a). Therefore, the supposition  that  f  is not con- tinuous 

at a must be false. 

 

Definition:Let (X, dX) and (Y , dY ) be metric spaces and A ≤ X. Let f 
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: A into Y and a be a limit point of A. We write limx!a f (x)     b, 

where b     Y , if for every e > 0 there exists d > 0 such that 

dY (f (x), b) < e whenever x 2 A and 0 < dX(x, a) < d: 

Remark. In the definition of limit, the point a in X need only be a 

limit point of A and does not have to belong to A. In addition, if a 

2 A, we may have limx!a f (x) 6¼ f (a). 

Proposition :Let (X , dX), (Y , dY ), A, f and a be as in the 

definition above. Then 

if and only if 

lim f (x) b 

x!a 

 

lim f (xn) b 

n!1 

for every sequence {xn} in A such that xn 6¼ a and limn!1 xn ¼ a. 

Proof. The argument is similar to that of Theorem 3.1.3 and is 

therefore not included. 

 

Lemma : Let f : X    Y  be an arbitrary function and let A contained in   

X  and B contained in Y .Then  f (A) contained in B if and only if A 

contained in  f —1(B). 

The next characterisation of continuity follows immediately from 

Definitions 

 

Proposition: Let (X, dX) and  (Y , dY ) be metric  spaces and  A 

≤ X . Let f : A intoY and a be a limit point of A. Then f is 

continuous at a if and only if limx!a f (x)     f (a). If a is an isolated 

point of A, the function f is continuous at a irrespective of how it 

is defined at other points of A. 

The following reformulation of the definition of continuity at 

a point a in terms of neighbourhoods is useful. 

 

Proposition: A mapping f of a metric space (X, dX) into a metric 
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space (Y , dY ) is continuous at a point a X if and only if for every e 

> 0, there exists d > 0 such that 

S(a, d) ≤ f —1(S(f (a), e)), 

where S(x, r) denotes the open ball of radius r with centre x. 

 

Proof. The mapping f : X intoY  is continuous at a belongs X if and 

only if for every e > 0 there exists d > 0 such that 

dY (f (x), f (a)) < e for all x satisfying dX(x, a) < d, 

 

       x belongs S(a, d) implies f (x) belongsS(f (a), e) 

f (S(a, d)) ≤ S(f (a), e): 

This is equivalent to the condition 

S(a, d) ≤ f —1(S(f (a), e)): 

 

Theorem A mapping f : X Y is continuous on X if and only if f —

1(G) is open in X for all open subsets G of Y. 

 

Proof. Suppose f is continuous on X and let G be an open subset of Y. 

We  have to  show  f —1(G)  is  open  in  X.  Since  1  and  X  are  

open,  we  may  suppose  that    f —1(G)   1 and  f —1(G)   X. Let  x   f 
—1(G).  Then  f (x)   G. Since  G  is  open, there exists e > 0 such that  

S(f (x), e) contained in  G. Since f  is continuous at  x, by Proposition 

3.1.8, for this e there exists d > 0 such that 

S(x, d) ≤ f —1(S(f (x), e)) ≤ f —1(G): 

Thus, every point x of f —1(G) is an interior point, and so f —1(G) is 

open in X. 

Suppose, conversely, that f —1(G) is open in X for all open subsets  

G of Y.  Let x belongs X.  For  each  e > 0,  the  set  S(f (x), e)  is  

open  and  so f —1(S(f (x), e)) is open in X. Since 

x 2 f —1(S(f (x), e)), 

it follows that there exists d > 0 such that 

S(x, d) ≤ f —1(S(f (x), e)): 
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 it follows that f is continuous at x.  

 

Theorem. A mapping f : X Y is continuous on X  if and only  if f —

1(F) is  closed in X for all closed subsets F of Y. 

 

Proof. Let F be a closed subset of Y. Then Y \F is open in Y so that  

f —1(Y \F) is open in X by Theorem 3.1.9. But 

So f —1(F) is closed in X.Suppose, conversely, that f —1(F) is closed in X 

for all closed subsets F of Y. Then, by Theorem 2.1.31, X \f —1(F) is open 

in X and so 

f —1(Y \F) = X\f —1(F) 

is open in X. Since every open subset of Y is a set of the type Y \F, 

where F is a suitable closed set, it follows by using Theorem 3.1.9 

that f is continuous.  

The characterisation of continuity in terms of open sets leads to 

an elegant and brief proof of the fact that a composition of 

continuous maps is continuous. 

 

 

Theorem Let (X , dX), (Y , dY ) and (Z , dZ) be metric spaces and 

 let f : X Y and g : Y Z be continuous. Then the composition g o f is 

a continuous map of X into Z. 

 

Proof. Let G be an open subset of Z. By Theorem 3.1.9, g —1(G) is 

an open subset of Y, and another application of the same theorem 

shows that f —1(g —1(G)) is an open subset of X. Since (g o f )—

1(G) ¼ f —1(g —1(G)), it follows from the same theorem again that 

g o f  is continuous. 

 

Theorem: Let (X, dX) and (Y , dY ) be metric spaces and  

let f : X Y . Then the following statements are equivalent: 

(i) f is continuous on X; 

(ii) f —1(B) ≤ f —1(B) for all subsets B of Y; 

(iii) f (A) ≤ f (A) for all subsets A of X. 
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Proof. ( i)  imp lies(ii). Let B be a subset of Y. Since B̄ is a closed 

subset of Y , f —1(B̄) is closed  in  X.  Moreover,  f —1(B)     f —1(B̄),  

and  so  f —1(B)     f —1(B̄).  (Recall  that   f —1(B) is the smallest 

closed set containing f —1(B).) 

(ii) Implies (iii). Let A be a subset of X. Then, if B ¼=f (A), we 

have A ≤ f —1(B) and 

Ā ≤ f —1(B) ≤ f —1(B̄). Thus f (Ā) ≤ f (f —1(B̄)) = B̄ ¼ f (A). 

(ii) implies (i) Let F be a closed set in Y and set f —1(F) = F1 it is 

sufficient to show that F1 is closed in X, that is, F1 ¼ F1. Now, 

f (F̄1) ≤ f (f —1(F)) ≤ F̄ = F, 

F  ̄ 1 ≤ f —1(f (F 1)) ≤ f —1(F) = F1  

|fk(x) — fk(y)| <|f (x) — f (y)|, k = 1, 2, .. . , n, 

(ii) If (X, d) is a discrete metric space, then every function f : X 

! Y , where Y is any metric space, is continuous. Let a 2 X and S( 

f (a), e) be an open ball centred at f (a) with radius e. Choose d < 

1. Then S(a, d) ¼ {a} and so f (S(a, d)) ¼ 

{f (a)} ≤ S(f (a), e). 

 

SEQUENTIAL CRITERION AND OTHER CHARACTERIZATIONS OF 

CONTINUITY 

Consider the function f : (0, 1) ! R defined by f (x) ¼ 1=x. 

There is no continu- ous function g defined on [0, 1) that 

agrees with f . In other words, f has no continuous ‘‘extension’’ 

to [0, 1). The term ‘‘extension’’ is formally defined below. 

Definition Let X and Y be abstract sets and let A be a proper 

subset of X. If f  is a mapping of A into Y,  then a mapping g : X    

Y  is called an extension    of f  if g (x)    f (x) for each x     A; the 

function f is then called the restriction of   g to A. 

If X and Y are metric spaces, A X and f : A Y is continous, then 

we might ask whether there exists a continuous extension g of f. 

Extension problems abound in analysis and have attracted the 

attention of many celebrated mathematicians. Below, we deal with 

some simple extension techniques. 
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Theorem Let (X, dX) and (Y , dY ) be metric spaces and let f : X , g : 

X ! Y be continuous maps. Then the set {x 2 X: f (x) ¼ g (x)} is a 

closed subset of X. 

Proof. Let F ¼ {x 2 X: f (x) ¼ g (x)}. Then X\F ¼ {x 2 X: f (x) 6¼ g 

(x)}. We shall show that X\F is open. If X\F ¼ 1, then there is 

nothing to prove. So let X \F 6¼ 1 and let a 2 X\F. Then f (a) 6¼ g 

(a). Let r > 0 be the distance dY (f (a), g (a)). For      e ¼ r=3, there 

exists a d > 0 such that 

dX(x, a) < d implies dY (f (x), f (a)) < r=3 and dY (g (x), g (a)) < 

r=3: 

By the triangle inequality, we have 

dY (f (a), g (a)) # dY (f (a), f (x)) þ dY (f (x), g (x)) þ dY (g 

(x), g (a)), which implies 

dY (f (x), g (x)) $ dY (f (a), g (a)) — dY (f (a), f (x)) — dY (g (x), g (a)) 

> r=3 

for all x satisfying dX(x, a) < d. Thus, for each x 2 S(a, d), dY (f (x), g 

(x)) > 0, i.e., 

f (x) 6¼ g (x). So, 

S(a, d) ≤ X \F: 

Hence, X \F is open and thus F is closed. & 

 

Corollary Let (X, dX) and (Y , dY ) be metric spaces and let f : X 

! Y ,     g : X ! Y be continuous maps. If F ¼ {x 2 X : f (x) ¼ g 

(x)} is dense in X, then f ¼ g . 
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Proof.  By  Theorem  3.2.2,  F  is  closed.  Since  F  is  assumed  dense  

in  X,  we have X ¼ F ¼ F, i.e., f (x) ¼ g (x) for all x 2 X . 

Theorem. Let (X , dX) and (Y , dY ) be metric spaces, A a dense 

subset of X and f a map from A to Y. Then f has a continuous 

extension g : X ! Y if and only if for every x 2 X that is a limit 

point of A, the limit limy!x f (y) not only exists in Y but also equals 

f(x) in case x 2 A. When the extension exists, it is unique. (Note 

that the stipulation limy!x f (y) ¼ f (x) when x 2 A says that f is 

continuous on A.) 

Proof. Suppose that f has a continuous extension g, and consider 

any x X that is a limit point of X. Since A is dense, x must be a 

limit point of A as well, as we now argue. Any ball S(x, e) contains 

a point y     X, y      x. There exists S(y, e0)     S(x, e) such that x     S(y, 

e0). Since A is dense, S(y, e0) contains a point a     A. Thus, S(x, e) 

contains the point a A and a x. 

Now 

g (x) lim g (y) (g is continuous) 

y!x 

lim g (y) with y A (x is a limit point of A) 

y!x 

lim f (y) (g is an extension of f ): 

y!x 

Thus, limy!x f (y) exists and equals g(x). 

Conversely, suppose that for every limit point x 2 X, limy!x f (y) 

exists and that it equals f (x) when x 2 A. Define g(x) by 

g (x) ¼ 
f (x) if x A , 

lim f (y) if  x A but x A0: 

y!x 

¼ 

( 
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Since A is dense in X, the function g is defined on the whole of X. 

We need to show that g is continuous. By the definition of a limit, 

for every positive number e, there exists a positive number d > 0 

such that 

Consider   any   z 2 S(x, d).   In   case   z    is   an   isolated   point   

of   X,   then g (z) 2 S(g (x), e=2), in view of the observation 

above. If z is not an isolated point of X, then g(z) is the limit of 

f(y) as y ! z in S(x, d) \ A. Therefore, 

g (z) 2 f (A \ S(x, d)) ≤ S(g (x), e=2) ≤ S(g (x), e), 

so that g is continuous at x. Hence, g is continuous on X. By 

Corollary 3.2.3, it follows that g is the unique continuous 

extension of f.  

 

Examples  (i) Let f (x) ¼ sin (1=x), x 2 R\{0}. We shall show that 

limx!0 sin (1=x)  does  not  exist.  Hence,  the  function  f  cannot  

be  extended  to  a continuous function on R. 

Definition. Let X be a nonempty set. Given mappings f and g of X 

into C and 

a 2 C, we define the mappings f þ g , af , fg and jf j into C as follows: 

(f þ g )(t ) ¼ f (t ) þ g (t ) 

(af )(t ) ¼ af (t ) 

(fg )(t ) ¼ f (t )g (t ) 

jf j(t ) ¼ jf (t )j 

for all t 2 X. Further, if f (t ) 6¼ 0 for all t 2 X, we define the mapping 1/f 

of X into 

1 

(1=f )(t ) ¼ 
f (t ) 

for all t 2 X: 

The proofs of the assertions in the following theorem are direct 

generalisations of the familiar proofs in the case where X is the 

C by 
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n n 

¼ 

real line. 

 

Theorem  Let f and g be continuous mappings of a metric space  

(X, dX) into C and let a   C. Then the mappings f   g , af , fg and  f  

are continuous on X, and so is the mapping 1/f, if it is defined. 

 

Examples (i) Let f : R ! C be defined by 

f (x) ¼ x þ ix2: 

We shall argue that f is  continuous  at 2 2 R. Consider any e > 0.  

Upon using  the  fact that the functions g : R ! R and h: R ! R 

defined by g (x) ¼ x and h(x) ¼ x2 are continuous at 2, it follows 

that there exist d1 > 0 and d2 > 0 such that 

 

(ii) Let X ¼ C[0,1] with the uniform metric. Define f : X ! C 

by f (x) ¼ x(0) whenever x 2 X. We shall show that f is continuous 

on X. Let {xn}n $ 1 be a sequence in X, i.e., in C[0,1] such that limn 

xn x. Since uniform convergence implies pointwise convergence, 

we have 

lim f (xn) ¼ lim xn(0) ¼ x(0) ¼ f (x): 

 

Thus, f is continuous on X ¼ C[0, 1]. 

(iii) Let X ¼ C[0,1] with the uniform metric. Define f : X ! C by 

 Uniform Continuity 

 

Let (X, dX) and (Y , dY ) be two metric spaces and let f be a 

function continuous at each point x0 of X. In the definition of 

continuity, when x0 and e are specified, we make a definite choice 

of d so that 

dY (f (x), f (x0)) < e whenever dX(x, x0) < d: 

This describes d as dependent upon x0 and e, say d  d(x0, e).  If d(x0, 

e) can be  chosen in such a way that its values have a lower positive 

bound when e is kept fixed and x0 is allowed to vary over X, and if 

this happens for each positive e, then we have  the  notion  of  
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¼ 

‘‘uniform  continuity’’.  More  precisely,  we  have  the  following 

definition: 

 

Definition   Let  (X, dX)  and  (Y , dY )  be  two  metric  spaces.  A  

function     f : X       Y  is said to be uniformly continuous on X  if, for 

every e > 0,  there exists    a d > 0 (depending on e alone) such that 

dY (f (x1), f (x2)) < e whenever dX(x1, x2) < d 

for all x1, x2 X. 

Every function f : X Y which is uniformly continuous on X is  

necessarily continuous on X. However, the converse may not be true. 

We shall see later (see Theorem 5.4.10) that these two concepts agree 

on certain kinds of metric spaces called ‘‘compact’’. 

 

(ii) Let A be a subset of the metric space (X, d). Define 

f (x) ¼ d(x, A) ¼ inf {d(x, y): y 2 A}, x 2 X: 

We shall prove that f is uniformly continuous over X. For y A 

and x, z belongs X, the triangle inequality gives 

d(x, y) # d(x, z) þ d(z, y): 

On taking the infimum as y varies over A, we get 

d(x, A) — d(z, A) # d(x, z), x, z 2 X: 

Interchanging x and z and observing that d(x, z) ¼ d(z, x), we get 

d(z, A) — d(x, A) # d(x, z), x, z 2 X: 

Hence, 

 

jf (x) — f (z)j ¼ jd(x, A) — d(z, A)j # d(x, z), x, z 2 X : 

The uniform continuity of f results on  choosing d e. 

Proposition. Let (X, d) be a metric space and let x 2 X and A ≤ 

X be non- empty. Then x 2 Ā if and only if d(x, A) ¼ 0. 

Proof. Suppose d(x, A) 0. There are two possibilities: x A or x A. If x 

A, then x    Ā. We shall next show that if x     A, then x is a limit 

point of A. Let e > 0 be given. By the definition of d(x, A), there 
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exists a y     A such that d(x, y) < e, i.e., y S(x, e). Thus, every ball 

with centre x and radius e contains a point of A distinct from x; so x    

Ā. Conversely, suppose x    Ā. If x     A, then obviously d(x, A)     0. 

We  shall next show that if x is a limit point of A, then d(x, A)   0. By 

the definition   of limit point, every ball S(x, e) with  centre x  and 

radius  e > 0 contains  a point      y  2 A distinct from x. 

Consequenly, d(x, A) < e, i.e., d(x, A) ¼ 0.  

 

Theorem Let A and B be disjoint closed subsets of a metric space 

(X, d). Then there is a  continuous  real-valued  function  f  on  X  

such  that  f (x) ¼ 0  for  all x 2 A, f (x) ¼ 1 for all x 2 B and 0 # f 

(x) # 1 for all x 2 X. 

Proof. From Example (ii) above, it follows that the mappings x 

! d(x, A) and x ! d(x, B) are continuous on X. Since A and 

B are closed and A \ B ¼ 1, Proposition 3.4.3 shows that d(x, 

A) þ d(x, B) > 0 for all x 2 X. Indeed, if d(x, A) þ d(x, B) ¼ 0  for  

some  x 2 X,  then  d(x, A) ¼ d(x, B) ¼ 0;  so  x 2 Ā ¼ A and x 2 B̄ ¼ 

B, and hence x 2 A \ B, a contradiction. 

Now define a mapping f : X ! R by 

d(x, A) 

f (x) ¼ 
d(x, A) þ d(x, B) 

, x 2 X :
 

 

Corollary Let (X, d) be a metric space and A, B be disjoint closed 

subsets of X. Then there exist open sets G, H such that A ≤ G, B 

≤ H and G \ H ¼ 1. 

Proof. Let f : X ! [0, 1] be any function guaranteed by Theorem 

3.4.4, and let 

 

Then G ¼ f —1([0, 1=2)) and H ¼ f —1( (1=2, 1]) are open subsets of 

X, being inverse images of open subsets of [0,1]. Moreover, A ≤ 

G, B ≤ H and G \ H ¼ 1. & 
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A composition of uniformly continuous mappings is again a 

uniformly continu- ous mapping. More precisely, we have the 

following theorem: 

 

Theorem  If f and g  are two uniformly continuous  mappings of 

metric spaces  (X, dX) to (Y , dY ), and (Y , dY ) to (Z , dZ), 

respectively, then g ○ f is a uniformly continuous mapping of (X, dX) 

to (Z , dZ). 

 

Proof. Since g is uniformly continuous, for each e > 0, there exists a 

d > 0 such that 

dY (f (x), f (y)) < d implies dZ( (g ○ f )(x), (g ○ f )(y)) < e 

for all f (x), f (y) Y . 

As f is uniformly continuous, corresponding to d > 0, there 

exists an h > 0 such that 

dX(x, y) < h implies dY (f (x), f (y)) < d 

for all x, y 2 X. 

Thus, for each e > 0, there exists an h > 0 such that 

dX(x, y) < h implies dZ( (g ○ f )(x), (g ○ f )(y)) < e 

for all x, y 2 X and so g ○ f is uniformly continuous on X. & 

A continuous function may not map a Cauchy sequence into a 

Cauchy sequence as the following example shows: 

 

Example Let X ¼ (0, 1) with the induced usual metric of the 

reals and Y be the reals with the usual metric. The function f : X 

! Y defined by 

1 

f (x) ¼ 
x 

, x 2 X, 

is continuous on X. Now {1=n}n $ 1 is a Cauchy sequence in X 

(because it is convergent in R). But {f (1=n)}n $ 1 {n}n $ 1 is not 

a Cauchy sequence in Y. Indeed, the absolute difference of any 

two distinct terms is at least as large as 1. 
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2 

However, Cauchy sequences are mapped into Cauchy sequences 

by uniformly continuous functions. 

 

Theorem . Let (X, dX) and (Y , dY ) be two metric spaces and f : X 

! Y be uniformly continuous. If {xn}n $ 1 is a Cauchy sequence 

in X, then so is {f (xn)}n $ 1 in Y. 

 

Proof. Since f is uniformly continuous, for every e > 0, there 

exists a d > 0 such that 

dY (f (x), f (y)) < e    whenever dX(x, y) < d (3:4) 

for all x, y 2 X. 

Because the sequence {xn}n $ 1 is Cauchy, corresponding to d > 0, 

there exists n0 

such that 

n, m $ n0  implies dX(xn, xm) < d: (3:5) 

From (3.4) and (3.5), we conclude that 

dY (f (xn), f (xm)) < e for n, m $ n0, 

and so {f (xn)}n $ 1 is a Cauchy sequence in Y. 

 

Theorem  Let f be a uniformly continuous mapping of a set A, 

dense in the metric space (X , dX), into a complete metric space (Y 

, dY ). Then there exists a unique continuous mapping g : X   Y  

such that g (x)   f (x) when x   A; more- over, g is uniformly 

continuous. 

 

Proof. Since f is uniformly continuous, a fortiori, continuous, 

therefore, for every x     A that is a limit point of X, the limit 

limy!x f (y) not only exists in Y but also equals f (x). Therefore, 

by Theorem 3.2.4, in order to prove the existence and 

uniqueness of such a continuous mapping g : X Y , it is 

sufficient to show for every x X\A that f (y) tends to a limit 

as y x. (It is understood that y A, because the domain of f is 

A.) 
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¼ 

! ¼ 2 

¼ 

¼ ¼ 

! 

Let x 2 X be arbitrary. Since A is dense in X, there exists a 

sequence {xn}n $ 1 in A such that limn!1 dX(xn, x) ¼ 0. Since {xn}n $ 1 

is convergent, it is a fortiori Cauchy; so by Theorem 3.4.8, it 

follows that {f (xn)}n $ 1 is a Cauchy sequence in the complete 

metric space (Y , dY ) and hence converges to a limit, which we shall 

denote by  b.  Now  consider  any  sequence  {xn
0 }n $ 1  in  A  with  xn

0  

6¼ x  for  each  n  and limn!1 xn
0     x. It follows from uniform 

continuity of f that, for e > 0, there exists  a d > 0 such that 

dY (f (z), f (y)) < e whenever dX(z, y) < d: (3:6) 

Since   limn!1 xn ¼ x ¼ limn!1 xn
0 ,    there   exists    an    integer    n1   

such    that 

dX(xn, xn
0 ) < d whenever n $ n1. Therefore by (3.6) 

dY (f (xn), f (xn
0 )) < e    whenever n $ n1:  

 

Remark  The condition that the metric space (Y , dY ) is complete in 

Theorem 

3.4.9 cannot be omitted. In fact, let X     R with the usual metric and 

Y      Q, the set   of rationals with the metric induced from R. Let A Q. 

Observe that  A  is a dense  subset  of X.  The function f : A  Y  

defined  by f (x)  x  for every x   A  is uni-   formly continuous but it 

possesses no continuous extension to X, as the only  continuous 

rational-valued functions on X ¼ R are constant functions. 

 

 Homeomorphism 
 

Definition 3.5.1.  Let  (X, dX) and  (Y , dY )  be  any  two  metric  

spaces.  A  function f : X       Y   which  is  both  one-to-one  and  onto  

is  said  to  be  a  homeomorphism if and only if the mappings f and f 
—1 are continuous on X and Y, respectively. Two metric spaces X and 

Y are said to be homeomorphic if and only if there exists a 
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2 

= 

homeomorphism of X  onto Y,  and in this case, Y is called a 

homeomorphic image     of X. 

If X and Y are homeomorphic, the homeomorphism puts their 

points in one-to- one correspondence in such a way that their open 

sets also correspond to one another. 

For metric spaces X and Y, let X Y mean that X and Y are 

homeomorphic. It is easily verified that the relation is reflexive, 

symmetric and transitive. 

 

Suppose that whenever a metric space (X, d) has the property ‘‘P’’, 

every metric space homeomorphic to (X, d) also has the property; 

then we say that the property is ‘‘preserved under homeomorphism’’. 

There are a large number of properties that are not preserved under 

homeomorphism, as the following example shows: 

 

Example  Let X   N and Y   {1=n: n   N}, each equipped  with the 

usual   absolute value metric. The function f : X Y defined by f (x) 

1=x  is a home-  omorphism of X onto Y. Observe that X is a closed 

subset of R and since R is complete, it follows that X is complete. On 

the other hand, {1=n}n $ 1 is a Cauchy sequence in Y that does not 

converge; so Y is not complete. Besides, the space X  is  not bounded, 

whereas Y is bounded. 

Recall from Definition 1.5.2 that a mapping f of X into Y is an 

isometry if 

dY (f (x), f (y)) ¼ dX(x, y) 

for all x, y X . It is obvious that an isometry is one-to-one and 

uniformly continuous. Recall also that X and Y are said to be 

isometric if there exists an isometry between them that is onto. An 

isometry is necessarily a homeomorphism, but the converse is not 

true, as is evident from Examples 3.5.2 (i) and (ii) above. 

By definition, it follows that isometric spaces possess the same 

metric properties.  For metric spaces X and  Y,  let  X  Y  mean  that  X  

and  Y are  isometric.  It  is  easily verified that this relation between 
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( 

metric spaces is reflexive, symmetric and transitive. 

 

Definition. Let d1 and d2 be metrics on a nonempty set X such 

that, for every sequence {xn}n $ 1 in X and x 2 X, 

lim d1(xn, x) ¼ 0 if  and only if lim d2(xn, x) ¼ 0, 

n!1 n!1 

i.e., a sequence converges to x in (X, d1) if and only if it converges 

to x in (X, d2). We then say that d1 and d2 are equivalent metrics on 

X and that (X, d1) and (X, d2) are equivalent metric spaces. 

 

Remark  In view of Theorem 3.1.3, two metrics d1 and d2 on a 

nonempty set X are equivalent if and only if  the  identity  maps  

id:  (X, d1) ! (X , d2)  and  id: (X, d2) ! (X, d1) are both 

continuous, i.e., if and only if the identity mapping from (X, d1) to 

(X , d2) is a homeomorphism (as Definition in 3.5.1 above). Note 

that this amounts to saying that the families of open sets are the 

same in (X, d1) and (X, d2). 

 

The following is a sufficient condition for two metrics on a set to 

be equivalent. 

 

fn(x) ¼ tan—1 (nx), x $ 0, 

is uniformly convergent on [a, 1) when a > 0, but is not 

uniformly convergent on [0, 1). The pointwise limit function is 

p 

f (x) ¼  lim fn(x) ¼ 2 

 

if x > 0, 

n!1 0 if x ¼ 0. 

We shall show that fn ! f uniformly on [a, 1) when a > 0. For x > 

0, 
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— j — j ¼  

j — j¼  
— ¼ 

! 

n 

 

jf (x) — f (x)j ¼ 
.
.
.tan—1 (nx) — 

p.
. 
¼ cot—1 (nx), 

 

as we shall now prove. Since 0 < tan—1 u < p=2 for any u > 0, 

therefore when 

x > 0, we have 0 < tan—1 (nx) < p=2 and hence 

0 < 
p 

— tan—1 (nx) < 
p 

: (3:10) 

2 2 

Also, 

Now, it follows from (3.10) and (3.11) that p=2  tan—1 (nx)

  cot—1 (nx). It also follows from the first

 inequality in (3.10) that tan—1 (nx) p=2 p=2 tan—1 

(nx) for x > 0. Thus, tan—1 (nx) p=2  cot—1 (nx). 

Let e > 0 be arbitrary. When x $ a, the inequality n > ( cot e)=a 

implies that  n > ( cot e)=x, so that nx > cot e and hence cot—1 nx 

< e in view of the fact that cot—1 is a decreasing function. It 

follows that if n0 is an integer greater than or equal to  ( cot e)=a,  

then   fn(x)    f (x)    tan—1 (nx)    p=2     cot—1 nx < e whenever n 

$ n0 and x $ a. However, ( cot e)=x as x   0, so that no integer n0 

exists for which  fn(x)   f (x)  < e for all n $ n0 and all x   [0,   ). 

Actually this proves that the convergence fails to be uniform even 

on the smaller set (0, ). 

The following basic result about transmission of the property of 

being continu- ous will be needed in the sequel. 

 

Theorem  Let (X, dX) and (Y , dY ) be metric spaces, {fn}n $ 1 a 

sequence of functions, each defined on X with values in Y,  and let 

f : X ! Y . Suppose that  fn f uniformly over X and that each fn is 

continuous over X. Then f is continuous over X. Briefly put, a 

uniform limit of continuous functions is continuous. 

 

Proof. Let x0 2 X be arbitrary and let e > 0 be given. Since fn ! f 

uniformly over 

X, there exists n0 (depending on e only) such that for each x 2 X, 

dY ( fn(x), f (x)) < 
e
 

3 

for n $ n0: (3:12) 
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Since fn0 is continuous at x0, we can choose d > 0 such that x 2 S(x0, d) ¼ 

{x 2 X: dX(x, x0) < d} implies 

 

Proposition  (Cauchy Criterion) Let {fn}n $ 1 a sequence of 

functions defined on a metric space (X, dX) with values in a 

complete metric space (Y , dY ). Then there exists a function f : X ! 

Y such that 

fn ! f uniformly on X 

if and only if the following condition is satisfied: For every e > 0, 

there exists an integer n0 such that 

 

for every x 2 

X. 

m, n $ n0 implies dY ( fm(x), fn(x)) < e 

 Contraction Mappings and Applications 

The concept of completeness of metric spaces has interesting and 

important applications in classical analysis. In this section, we 

show how various existence and unique- ness theorems in the 

theory of differential and integral equations follow from very 

simple facts about mappings in a complete metric space. The 

simple fact alluded to above is called the contraction mapping 

principle, which we now consider. 

 

Definition Let (X, d) be a metric space. A mapping T of X into 

itself is said to be  a  contraction  (or  contraction  mapping)  if  

there  exists   a  real  number   a,0 < a < 1, such that 

 

for all x, y 2 

X. 

d(Tx, Ty) # ad(x, y) 
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! 

 

It is obvious that a contraction mapping is uniformly 

continuous (see Definition 3.4.1). 

 

Theorem  (Contraction Mapping Principle) Let T : X X be a 

contraction of the complete metric space (X, d). Then T has a 

unique fixed point. 

 

Proof. Let x0 2 X and let {xn}n $ 1 be the sequence defined 

iteratively by xnþ1 ¼ Txn for  n ¼ 0, 1, 2, ... . We  shall  prove  that  

{xn}n $ 1  is  a  Cauchy  sequence.  For p ¼ 1, 2, ...  , we have 

d(xpþ1, xp) ¼ d(Txp, Txp—1) # ad(xp, xp—1),

 (3:1

6) where 0 < a < 1 is such that 

for all x, y 2 X. 

d(Tx, Ty) = ad(x, y) 

Repeated application of the inequality (3.16) gives 

 

d(xpþ1, xp) = ad(xp, xp—1) 

= a2d(xp—1, xp—2) # ... # apd(x1, x0): 

Now, let m, n be positive integers with m > n. By the triangle 

inequality, 

d(xm, xn) = d(xm, xm—1) þ d(xm—1, xm—2) þ ... þ d(xnþ1, xn) 

=(am—1 þ am—2 þ ... þ an)d(x1, x0) 

= an(am—n—1 þ am—n—2 þ ... þ 1)d(x1, x0) 

an 

= 
1 — a 

d(x1, x0): 

But  limn!1 an ¼ 0.  It  follows  that  {xn}  is  a  Cauchy  sequence  in  

(X, d),  which  is complete. Let y ¼ limn!1 xn. Since T is a 

contraction, it is continuous. It follows that Ty ¼ T (limn!1 xn) ¼ 

limn!1 Txn ¼ limn!1 xnþ1 ¼ y. Thus, y is a fixed point of T. Moreover, 

it can be shown to be unique: If y 6¼ z are such that Ty ¼ y and Tz ¼ z, 

then d(y, z) ¼ d(Ty, Tz) #ad(y, z) < d(y, z). This implies d(y, z) ¼ 0, 
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¼ [ 

¼ [ 

i.e., y ¼ z.  

 

Connected Spaces 
 

Definition 4.1.1. A metric space (X, d) is said to be disconnected 

if there exist two nonempty subsets A and B of X such that 

(i) X ¼ A [ B;             

(ii) A \ B ¼ 1 and A \ B ¼ 1. 

 

That is, the subsets must be nonempty, together they must 

constitute the whole space and neither may contain a point of 

the closure of the other. If no such subsets exist, then (X, d ) is 

said to be connected; this means that if we do split X into two 

nonempty parts A and B having no points in common, then at 

least one of the subsets contains a limit point of the other. 

A nonempty subset Y of a metric space (X, d ) is said to be 

connected if the subspace (Y , djY ) with the metric induced from 

X is connected. 

Theorem 4.1.3. Let (X, d) be a metric space. Then the following 

statements are equivalent: 

(i) (X, d) is disconnected; 

(ii) there exist two nonempty disjoint subsets A and B, both open in 

X, such that 

X A B; 

(iii) there exist two nonempty disjoint subsets A and B, both closed in 

X, such that 

X A B; 

(iv) there exists a proper subset of X that is both open and closed in 

X. 

 

Proof.    (i))(ii).    Let    X ¼ A [ B,    where    A    and    B    are    

nonempty    and 

A \ B ¼ 1, A \ B ¼ 1. Then A ¼ X\B. In fact, A ≤ X\B ≤ X\B ¼ A. 

So A is 
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) ¼ 

 

Figure 4.1 

 

Figure 4.2 

  
open in X. Similarly, B is open in X. Since A and B are disjoint, a fortiori, 

A and B 

are disjoint, which proves (ii). 

That (ii) and (iii) are equivalent is trivial. 

(iii) (iv) Since A X\B, A is open. Thus A is both a closed and 

open proper subset of X, and so (iv) is proved. 

(iv))(i) Let A be a proper subset of X that is both open and 

closed in X and let B ¼ X\A. Then X ¼ A [ B, A \ B ¼ 1. Since A 

¼ A (A being closed), it follows that A \ B ¼ 1. Similarly, A \ B 

¼ 1. This completes the proof.  

  

Theorem  Let (R, d) be the space of real numbers with the usual 

metric. A subset I R is connected if and only if I is an interval, 

i.e., I is of one of the following forms: 

(a, b), [a, b), (a, b], [a, b], (— 1, b), (— 1, b], (a, 1), [a, 1), 

(— 1, 1): 

Proof. Let I be a connected subset of real numbers and suppose, 

if possible, that I is not an interval. Then there exist real numbers 

x, y, z with x < z < y and x, y 2 I but z 62 I . Then I may expressed 

as I ¼ A [ B, where 

A ¼ (— 1, z) \ I and B ¼ (z, 1) \ I : 
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2 2 

¼ 

Since x A and y B, therefore, A and B  are nonempty; also, they 

are clearly  disjoint and open in I. Thus, I is disconnected. 

To prove the converse, suppose I is an interval but is not 

connected. Then there are nonempty subsets A and B such that 

I ¼ A [ B, A \ B ¼ 1, A \ B ¼ 1: 

Pick x 2 A and y 2 B and assume (without loss of generality) that 

x < y. Observe that [x, y] ≤ I , for I is an interval. Define 

z ¼ sup (A \ [x, y]): 

The supremum exists since A \ [x, y] is bounded above by y and it is 

nonempty, as x is in it. Then z 2 Ā. (We shall show that if z 62 A, 

then z is a limit point of A. Let e > 0 be arbitrary. By the definition 

of supremum, there exists some element a 2 A such that z — e < a ≤ 

z, i.e., every neighbourhood of z contains a point of A.) Hence, z 62 B, 

for Ā \ B ¼ 1; in particular, x ≤ z < y. 

If z 62 A, then x < z < y and z 62 I . This contradicts the fact that [x, y] 

≤ I . 

If  z 2 A,  then  z 62 B̄,  for  A \ B̄ ¼ 1.  So  there  exists  a  d > 0  

such  that (z — d, z þ d) \ B ¼ 1. This implies that there exists z1 

62 B satisfying the inequal- ity z < z1 < y. Then x ≤ z < z1 < y  and  

z1 62 I ,  for  z1  being  greater  than  sup (A \ [x, y]) is not in A. This 

contradicts the fact that [x, y] ≤  I . 

Remark. It follows as a special case of Theorem 4.1.4 that the 

entire real line R is a connected set. It now follows from Theorem 

4.1.3(iv) that the only subsets of R that are both open and closed 

are the empty set and R itself. 

Let X0 {0, 1} and let d0 denote the discrete metric on X0. We 

shall call (X0, d0) the discrete two point space. Definition 4.1.1 

can be reformulated in the following handier fashion: 

 

Theorem Let (X, d ) be a metric space. Then the following 

statements are equivalent: 

(i) (X, d ) is disconnected; 
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.

¼

 

¼ 

! 

! 

○ ! 

(ii) there exists a continuous mapping of (X, d ) onto the discrete 

two element space (X0, d0). 

 

Proof. (i))(ii). Let X ¼ A [ B, where A and B are disjoint 

nonempty open subsets (see Theorem 4.1.3(ii)). Define a mapping f 

: X ! X0 by 

f (x) 0 if x 2 A, 

1 if  x 2 B; 

the mapping f is clearly onto. It remains to show that f is 

continuous from (X, d ) to (X0, d0). The open subsets of the 

discrete metric space are precisely 1, {0}, {1} and 

{0,1}. Observe that f —1(1)     1,  f —1({0, 1})     X and the subsets 

1, X are open in (X, d ). Moreover, f —1({0}) A, f —1({1}) B, 

which are open subsets of (X, d ). Hence, f is continuous and thus 

(ii) is proved. 

(ii)  implies (i) Let f : (X, d)    (X0, d0) be continuous and onto. 

Let A    f —1({0}) and B f —1({1}). Then  A  and  B  are  nonempty 

disjoint  subsets  of  X,  both  open and such that X A B. It follows 

upon using Theorem 4.1.3(ii) that X is disconnected.  

 

Theorem  Let (X, dX) be a connected metric space and f : (X , dX) 

(Y , dY ) be a continuous mapping. Then the space f (X) with the 

metric induced from Y is connected. 

 

Proof. The map f : X f (X) is continuous. If f (X) were not 

connected, then there would be, by Theorem 4.1.6, a continuous 

mapping, g say, of f (X) onto the discrete 

two element space (X0, d0). Then g  f : X   X0 would also be a 

continuous map- ping of X onto X0, contradicting the 

connectedness of X. 

The intermediate value theorem of real analysis (see Proposition 

0.5.3) is a special case of Theorem 4.1.8. 
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Theorem  (Intermediate Value Theorem) If f : [a, b] ! R is 

continuous over [a, b], then for every y such that f (a) ≤ y ≤ f (b) 

or f (b) ≤ y ≤ f (a) there exists    x 2 [a, b] for which f (x) ¼ y. 

Proof. We need consider only the case when f (a) y  f (b). Let y  be 

any real  number such that f (a) < y < f (b). By Theorem 4.1.4, [a, 

b] is a connected subset of R. Hence, f ([a, b]) is an interval by  

Theorems 4.1.8 and 4.1.4. Therefore, there exists an x [a, b] such 

that f (x) y. The case where f (b) < y < f (a) is dealt with in a 

similar way. 

The following converse of the intermediate value theorem also 

holds. 

 

Theorem     Let  (X , dX)  be  a  metric   space.  If  every  continuous  

function   f : (X, dX) ! (R, d) has  the intermediate value property 

(i.e., if y1, y2 2 f (X) and y is a real number between y1 and y2, then 

there exists an x 2 X such that f (x) ¼ y), then (X, dX) is a connected 

metric space. 

 

Proof. Suppose, if possible, (X , dX) is not connected. Then, by 

Theorem 4.1.6, there exists   a   continuous   map   g :(X , dX)!(X0, 

d0)   that   is   onto.   Define   a   map h:(X0,d0)!(R,d) by h(0)¼ 0 

and h(1)¼1. Then h is continuous. Consider the map h ○g 

:(X,dX)!(R,d). Clearly, h ○g is continuous, 

beingthecompositionofcontinuous maps h and g. Besides, 

{0,1}≤h ○g (X). However, there exists no x 2X such that h ○g 

(x)¼1=2. In fact, (h ○g )—1({1=2})¼ g —1oh—1({1=2})¼ g —1(1)¼1.  

An interesting application of the Weierstrass intermediate value 

theorem is the following ‘‘fixed point theorem’’: 

Theorem. Let I ¼ [— 1, 1] and let f : I ! I be continuous. Then 

there exists a point c 2 I such that f (c) ¼ c. 

Proof. If f (— 1) ¼ —1 or f (1) ¼ 1, the required conclusion 

follows; hence, we can assume that f (— 1) > —1 and f (1) < 1. 

Define 
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\ ¼ \ \ 

[ ¼ 

— 

g (x) ¼ f (x) — x, x 2 I : 

Note that g is continuous, being the difference of continuous 

functions, and that it satisfies the inequalities g (— 1) ¼ f (— 1) þ 

1 > 0 and g (1) ¼ f (1) — 1 < 0. Hence, by the Weierstrass 

intermediate value theorem, there exists c 2 (— 1, 1) such that g 

(c) ¼ 0, that is, f (c) = c. 

Maps(1,1) into itself and yet has no fixed point. Indeed, f (t ) t 

implies t  1. In the latter case, f (t )   t   1,   1 # t <    , is 

continuous, maps [   1,    ) into    itself and yet has no fixed 

point, for f (t ) t implies 1 0. 

(ii) The foregoing theorem is possibly the simplest case of the 

famous fixed point 

theorem of L.E.J. Brouwer, according to which every continuous 

mapping of the closed unit ball in the Euclidean space Rn into 

itself has a fixed point. The proofs for the cases n $ 2 are not easy 

and are beyond the scope of the present text. 

 

Theorem If Y is a connected set in a metric space (X, d ) then any 

set Z such that Y ≤ Z ≤ Ȳ  is connected. 

Proof. Suppose A and B are two nonempty open sets in Z such 

that A   B   Z  and A B 1; as Y is dense in Z , Y  A and Y  B are 

nonempty open sets in Y and we have 

Y ¼ (Y \ A) [ (Y \ B), (Y \ A) \ (Y \ B) ¼ Y \ (A \ B) ¼ 1, 

a contradiction. & 

 

Remark .Since Y     Ȳ     Ȳ , it follows that Ȳ  is connected if Y is 

connected in (X, d ). 

 

Example Since Y {(x, y): y  sin (1=x), 0 < x # 1}  R2 is a 

continuous image of (0,1], it follows that Ȳ  Y  {(0, y):   1 # y # 1} 

is connected. Observe that with the omission of any subset of {(0, 

y): 1 # y # 1}, the resulting set is still connected. 
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2 

≤ 

¼ 

¼ [ 

Definition  The union C(x) of all connected subsets containing the 

point x is called the connected component of x in (X, d ). 

Clearly, C(x) is a maximal connected subset of X. 

 

Examples  (i) Let Q be the set of rationals in (R, d ). The  

component of each x Q is the set consisting of x alone. In other  

words, any subset A of Q containing more   than   one   point   is   

disconnected.   Indeed,   if   x,  y    A,  x < y,   then (     ,  a)    A 

and (a,     )    A provide a disconnection of A, when x < a < y  and 

a is irrational. 

(ii) Let Y   R2 be the subspace consisting of the segments 

joining the origin to  the points {(1, 1=n): n N} together with the 

segment (1/2, 1]. The line joining  (0,0) and (1, 1/n) is the image 

of the connected set [0,1] under the continuous map y x=n and, 

therefore, connected. If Z denotes the union of these lines, then Z 

is connected since the origin is common to all the line segments. 

Finally, Y is such that 

Z c Y  c Z̄ , 

where Z̄  Z (0, 1],  and  so  Y  is  connected,  by  Theorem  4.1.13  and  

Theorem 

(See Figure 4.3.) However, Y \{(0; 0)} is not connected. In Y \{(0; 

0)}, the component of each point is the segment containing it. 

 

Theorem . Let (X,d ) be a metric space. Then 

(i) each connected subset of (X,d ) is contained in exactly one 

component; 

(ii) each nonempty connected subset of (X,d ) that is both open and 

closed in (X, d) is a component of (X,d ); 

(iii) each component of (X,d ) is closed. 
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¼ 

≤ 

\ 6¼ [ 

 

Figure 4.3 

Proof. (i) Observe that if C(x)    C(x 0)     1, then C(x)    C(x 0) is 

connected (see Theorem  4.1.16).  This  contradicts  the  

maximality  of  C(x)  unless  C(x)     C(x 0). Thus, any two distinct 

connected components are disjoint. Now, let A be a connected 

subset of X containing  x.  By  the  maximality  of  C(x),  it  

follows  that A C(x). Since any two distinct components are 

disjoint, the statement 

(i) follows. 

(ii) Let A be a connected subset of (X, d ) that is both open and  

closed in (X, d ). Let x A, so that A C(x). Then A is both open 

and closed in (C(x), d C(x)) by Theorem 2.2.2 and 

consequently, A C(x) (see Theorem 4.1.3(d)). 

(iii) Since C(x) is connected, so also is C(x) (see Theorem 

4.1.13); but the maximality of C(x) implies C(x) ≤ C(x). Hence, 

C(x) is closed. 

 

Compact Spaces 
 

One of the distinguishing properties of a bounded closed interval 

[a, b] is that every sequence in it has a subsequence converging to 

a limit in the interval. This need not happen with an unbounded 

interval such as [0, 1) or a bounded nonclosed interval such as 

(0,1]; the former contains the sequence {n}n $ 1, which has no 
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convergent subsequence, and the latter contains the sequence 

{1=n}n $ 1, which has no subse- quence converging to a limit 

belonging to the interval. In fact, it is true of any bounded closed 

subset of R that any sequence in it has a subsequence converging 

to a limit belonging to the subset. To see why, we first note that 

any sequence in a 

bounded subset must, by the Bolzano-Weierstrass theorem 

(Proposition 0.4.2), have a convergent subsequence with limit in 

R; this limit must then be in the closed subset by the definition of 

a closed subset. 

 

Definition A collection F of sets in X is said to have the finite 

intersection property if every finite subcollection of F has a 

nonempty intersection. 

The following proposition now holds. 

 

Proposition Let (X, d ) be a metric space. The following 

statements are equivalent: 

(i) (X, d ) is compact; 

(ii) every collection of closed sets in (X, d ) with empty 

intersection has a finite subcollection with empty intersection; 

(iii) every collection of closed sets in (X, d) with the finite 

intersection property has nonempty intersection. 

 

Proof. That (i) is equivalent to (ii) has been proved in the 

paragraph preceding Example 5.1.2. The statements (ii) and (iii) 

are equivalent; in fact, each is the contrapositive of the other.  

 

The reader will have noticed that the set considered in Example 

5.1.2 (i) was not closedandtheoneconsideredin(ii) 

wasnotbounded. Thisisnotacoincidence. Infact, if a subset Yof a 

metric space (X, d ) is compact, then it is both closed and bounded. 

 

Definition  The metric space (X, d ) is said to be totally bounded 

if, for any   e > 0, there exists a finite e-net for (X, d ). A 
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2 1 

n n 

n 

nonempty subset Y of X is said to be totally bounded if the 

subspace Y is totally bounded. 

 

Proposition A totally bounded metric space is bounded. 

 

Proof. Let (X, d ) be totally bounded and suppose e > 0 has been 

given. Then there exists a finite e-net for X, say A. Since A is a finite 

set of points, d(A) ¼ sup{d(y, z): y, z    A} <     . Now, let x1 and x2 be 

any two points of X. There exist points y and z in A such that 

d(x1, y) < e and d(x2, z) < e: 

It follows, using the triangle inequality, that 

d(x1, x2) # d(x1, y) þ d(y, z) þ d(z, x2) 

# d(A) þ 2e: 

d(X) ¼ sup{d(x1, x2) : x1, x2 2 X} # d(A) þ 2e 

and, hence, X is bounded. & 

 

Theorem Let Y be a subset of the metric space (X, d ). Then Y is 

totally bounded if and only if every sequence in Y contains a 

Cauchy subsequence. 

Proof. Suppose Y is totally bounded. Let {yn}n $ 1 be a sequence 

in Y whose range may be assumed to be infinite. Choose a finite 

1/2-net in Y. Then one of the balls of radius 1/2 with centre in the 

net contains infinitely many elements of the range of the  

sequence.  We   shall  denote  the  subsequence  formed  by  these  

elements by {y(1)}n $ 1. Choose a finite 1/4-net in Y.  Then one of the 

balls of radius 1/4 with    centre  in  the  finite  1/4-net  contains  

infinitely  many  elements  of  the  range  of {y(1)}n $ 1. We shall 

denote the subsequence formed as {y(2)}n $ 1. Proceeding in this way, 

we obtain a sequence of sequences, each a subsequence of the 

preceding one, so that at the kth stage, the terms {y(k)}n $ 1 lie in 

the ball of radius 1=2k with centre in the 1=2k-net. Now {y(n)}n $ 

1 is a subsequence of {yn}n $ 1. Let e > 0 be given. Choose n0 so 

large that 1=2n0—2 < e. Then, for m > n > n0, we have 
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6¼ 

2 

Conversely, suppose that every sequence in Y has a Cauchy 

subsequence. We shall show that Y is totally bounded. Let e be a 

positive real number and let y1 2 Y . If  Y \S(y1, e) ¼ 1, we have 

found an e-net, namely, the set {y1}. Otherwise choose y2 2 Y 

\S(y1, e). If Y \[S(y1, e) [ S(y2, e)] ¼ 1, we have found an e-net, 

namely, the set {y1, y2}. It is enough to show that this process 

terminates after a finite number of steps. If it does not terminate, 

we shall obtain an infinite sequence {yn}n $ 1 with the property that 

d(yn, ym) $ e, n   m. Consequently, the sequence {yn}n $ 1 would have 

no Cauchy subsequence, contrary to hypothesis.  

 

Proposition Let (X, d ) be a compact metric space.Then (X, d ) is 

totally bounded. 

 

Proof. For any given e > 0, the collection of all balls S(x, e) for x  X  

is an open  cover of X. The compactness of X implies that this open 

cover contains a finite subcover. Hence, for e > 0, X is covered by a 

finite number of open balls of radius e, i.e., the centres of the balls in 

the finite subcover form a finite e-net for X. So, X is totally bounded.

  

Theorem Let (X, d ) be a totally bounded and complete metric 

space. Then (X, d ) is compact. 

Proof. Suppose, if possible, that (X, d ) is totally bounded and 

complete but is not compact. Then there exists an open covering 

{Gl}l2L of X that does not admit a finite subcovering. 

Since (X, d) is totally bounded, it is bounded; hence, for some real 

number r > 0  and   some   x0   X ,   we   have   X    S(x0, r).  Observe   

that   X     S(x0, r)  implies X S(x0, r). Let en r=2n. 

We know that X, being totally bounded, can be covered by 

finitely many balls of radius e1. By our hypothesis, at least one of 

these balls, say S(x1, e1), cannot be covered by a finite number of 

sets Gl (for if each had a finite subcovering, the same would be 

true for X). Because S(x1, e1) is itself totally bounded (any 

nonempty subset of a totally bounded set is totally bounded, as 

shown above), we can find an x2 2 S(x1, e1) such that S(x2, e2) 

cannot be covered by a finite number of sets Gl. 
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In this way, a sequence {xn}n $ 1 may be defined with the property that 

for each n, S(xn, en) cannot be covered by a  finite  number of  

sets  Gl (5.2)  and xnþ1 2 S(xn, en). 

We next show that the sequence {xn}n $ 1 is convergent. Since xnþ1 

2 S(xn, en), it follows that d(xn, xnþ1) < en and hence, 

d(xn, xnþp) # d(xn, xnþ1) þ d(xnþ1, xnþ2) þ ... þ d(xnþp—1, xnþp) 

< en þ enþ1 þ ... þ enþp—1 

<   
r   : 

2n—1 

So {xn}n $ 1 is a Cauchy sequence in X, and since X is complete, it 

converges to y 2 X, say. Since y 2 X, there exists l0 2 L such that y 2 

Gl0 . Because Gl0 is open,  it contains S(y, d)  for  some  d > 0.  

Choose  n  so  large  that  d(xn, y) < d=2  and en < d=2. Then, for any 

x 2 X such that d(x, xn) < en, it follows that 

d(x, y) # d(x, xn) þ d(xn, y) 

1 1 

< 
2 

d þ 
2 

d ¼ d, 

so that S(xn, en) ≤ S(y, d). Therefore, S(xn, en) admits a finite 

subcovering, namely by the set Gl0 . Since this contradicts (5.2), 

the proof  is complete. 

POSSIBLE QUESTION 

2 MARK QUESTION: 

1.  Define Homeomorphism. 

2. Define fixed point. 

3. Define Uniform Continuous 

4. State Contraction Mapping Principle. 

5. Define Continuous. 
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8 MARK QUESTION: 

 

1.  Let (X,dx) and (Y,dy) be two metric spaces and f : X → Y be uniformly 

continuous. If {xn} is a Cauchy sequence in X, then so is {f(xn)} in Y. 

2. Let (X,dx) be a connected metric space and f : (X,dx) into (Y,dy) be a 

continuous mapping. Then the space f(X) with the metric induced from 

Y is connected. 

 

3. Let (X,d) be a metric space and let  x ∈ X and A ⊆  X be non empty. 

Then x ∈ 𝐴̅ if and only if d(x,A) = 0. 

4. State and Prove Contraction Mapping Principle. 

5. Prove that a mapping f: X→Y is continuous on X if and only if f -1(F) is 

closed in X for all closed subsets F of Y. 

6. State and prove Intermediate value theorem. 

7. If f and g are two uniform continuous mapping of (X,dx) to (Y,dy) and 

(Y,dy) to (Z,dz) ,respectively, then prove that gof is uniform continuous 

mapping of (X,dx) to  (Z,dz) . 

8. Let (X,d) be a metric space. Then prove that the following statements 

are equivalent: 

i)(X,d)  is Disconnected; 

ii) there exist two nonempty disjoint subsets A and B, both open in X,    

     such that X= A U B; 

iii) there exist two nonempty disjoint subsets A and B, both closed in  

     X, such that X= A U B; 

iv) there exists a proper subset of X that is both open and closed in X. 

9. Prove that a mapping f: X→Y is continuous on X if and only if f -1(G) is 

open in X for all open subsets G of Y. 

10. Let (X,d) be a metric space. Then prove that the following statements 

are equivalent: 

i)(X,d)  is Disconnected; 

  ii) there exist a continuous mapping of (X,d) onto the discrete two     

       element space (Xo,do). 

 

  



OPTION 1 OPTION 2 OPTION 3 OPTION 4 ANSWER

If  f from A into Y is continuous at every point of A then it is 

continuous on _______.

Y X A N A

Let  f from X into Y be a function & A contained in X and B 

contained in Y then f(A)______.

Containing B Contained in B Containing A Contained in A Contained in B

Let f from X into Y and g from Y into Z be continuous then 

gof is_______.

Convergent Divergent Continuous Discontinuous Continuous

Let f from X into Y then f is ______ on X. Continuous Convergent Divergent Discontinuous Continuous

Let f from X into Y then f(closure of A) contained in _______ 

for all subsets A of X.

f(X) closure of f(X) f(A) closure of f(A) closure of f(A)

dy ( f(x1) , f(x2) )< epsilon whenever dx(x1,x2) < delta is 

_________.

Continuous Discontinuous Uniform 

continuous 

Not uniform 

continuous

Uniform 

continuous 

d(x,A) - d(z,A)less then or equal to________. d(A,A) d(x.A) d(z,a) d(x,z) d(x,z)

The function f from (0,1) into R defined by f(x) =1/x is 

________.

Continuous Discontinuous Uniform 

continuous 

Not uniform 

continuous

Not uniform 

continuous

Let (X,d) be a metric space then x belonges to closure of A if 

d(x,A)=___________.

1 infinity 0 finite 0

Let A and B be disjoint closed subsets of X then f(x)=_____ 

for all x belonges to A and 0<f(x)<1.

1 infinity 0 finite 0

Let A and B be disjoint closed subsets of X then f(x)=_____ 

for all x belonges to B and 0<f(x)<1

1 infinity 0 finite 1

Let A and B be disjoint closed subsets of X then there exists 

open sets G,H such that A contained in G, B contained in H 

and G interect with H=________

Empty Non Empty Finite Infinite Empty

If f and g are two uniform continuous mapping of (X,dx) into 

(Y,dy) and (Y,dy) into (Z,dz) then gof is _________ mapping 

of (X,dx) into  (Z,dz) .

Continuous Discontinuous Uniform 

continuous 

Not uniform 

continuous

Uniform 

continuous 

A function f is homeomorphism if the mapping f and inverse 

of f are _________.

Continuous Discontinuous Uniform 

continuous 

Not uniform 

continuous

Continuous

A continuous function f which is both one to one and onto is 

said to be ________.

Isomorphism Homeomorphism surjective injective Homeomorphism

The metric space X and Y are homeomorphism the Y is 

_______ image of X.

Homeomorphism Non 

Homeomorphism

Homeomorphic Non 

Homeomorphic

Homeomorphic

A sequence convergent to x in (X,d1) if it convergent to x in 

(x,d2) then d1 and d2 are_____ metric on X

Different Equivalent Not equivalent sundet Equivalent

The metrics d1 and d2 are equivalent if the identity maps id : 

(X,d1) into (X,d2) and id:(X,d2) into (X,d1) are 

both________.

Continuous Discontinuous Uniform 

continuous 

Not uniform 

continuous

Continuous

The metrics d1 and d2 are equivalent if there exits a constant 

k such that d1(x,y) less then or equal to ___________.

1/k [d2(x,y)] d(x,y) k d2(x,y) d2(y,x) k d2(x,y)

A mapping T from X into X is a contraction mapping if there 

exists alpha , 0<aplpha <1 such that d(Tx,Ty) less then or 

equal to______.

d(x,y) alpha d(x,y) alpha (y,x) alpha (x,y) alpha d(x,y)

A point x is fixed point of the mapping  T from X into X if 

Tx=__________.

t x T X x

A mapping T is a contraction  of the complete metric space. 

Then T has a _______ fixed point.

finite infinity 0 unique unique

A metric space space (X,d) is disconnected if there exist two 

non empty subsets A and B of X such that A U B=______.

A B empty X X

A metric space space (X,d) is disconnected if there exist two 

non empty subsets A and B of X such that A interect with 

clouser of B=______.

A B empty X empty

A metric space space (X,d) is disconnected if there exist two 

non empty subsets A and B of X such that clouser of A 

interect with  B=______.

A B empty X empty
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A metric space space (X,d) is _________ if there exist two 

non empty subsets A and B of X such that A interect with 

clouser of B=empty

Continuous Discontinuous connected disconnected disconnected

If  f from A into Y is _________ at every point of A then it is 

continuous on A

Continuous Discontinuous connected disconnected Continuous

Let  f from X into Y be a function & A contained in _______ 

and B contained in_____ then f(A) contained in B

X,Y Y,X B,A f(A),f(B) X,Y

Let f from X into Y and g from Y into Z be______  then gof 

is continuous

Convergent Divergent Continuous Discontinuous Continuous

Let f from X into Y then f(closure of A) contained in closure 

of f(A) for all subsets ________ of X

X B A Y A

d(x,z) greater then or equal to d(x,A) +d(z,A) d(x,A) - d(z,A) d(x,A) d(z,A) d(z,A)-d(x,A) d(x,A) - d(z,A)

The function f from (0,1) into R defined by f(x) =________ is 

not uniform

x 2/x 2x 1/x 1/x

Let (X,d) be a metric space then x belonges to __________ if 

d(x,A)=0

A closure of A interior of A A' closure of A

Let A and B be _________ subsets of X then f(x)= 0 for all x 

belonges to A and 0<f(x)<1

open closed disjoint open disjoint closed disjoint closed

Let A and B be _________ subsets of X then f(x)= 1 for all x 

belonges to B and 0<f(x)<1

open closed disjoint open disjoint closed disjoint closed

Let A and B be disjoint closed subsets of X then f(x)=0 for all 

x belonges to _____ and 0<f(x)<1

A B A union B A intersection B A

Let A and B be disjoint closed subsets of X then f(x)=1 for all 

x belonges to _____ and 0<f(x)<1

A B A union B A intersection B B

Let A and B be disjoint closed subsets of X then there exists 

________ sets G,H such that A contained in G, B contained in 

H and G interect with H=empty

open closed disjoint open disjoint closed open

If f and g are two __________ mapping of (X,dx) into (Y,dy) 

and (Y,dy) into (Z,dz) then gof is uniform continuous 

mapping of (X,dx) into  (Z,dz) .

Continuous Discontinuous Uniform 

continuous 

Not uniform 

continuous

Uniform 

continuous 

A function f is ________ if the mapping f and inverse of f are 

continuous.

Homeomorphism Non 

Homeomorphism

Homeomorphic Non 

Homeomorphic

homeomorphism

The metric space X and Y are _________ the Y is 

Homeomorphic image of X.

Homeomorphism Non 

Homeomorphism

Homeomorphic Non 

Homeomorphic

homeomorphism

A sequence ________ to x in (X,d1) if it _________ to x in 

(x,d2) then d1 and d2 are equaivalent metric on X

Convergent Divergent Continuous Non continuous Convergent

The metrics d1 and d2 are _________ if the identity maps id : 

(X,d1) into (X,d2) and id:(X,d2) into (X,d1) are both 

continuous.

Different Equivalent Not equivalent Subset Equivalent

A mapping T from X into X is a __________ mapping if 

there exists alpha , 0<aplpha <1 such that d(Tx,Ty) less then 

or equal to alpha d(x,y)

Onto One to one Bijective Contraction Contraction

A mapping T is a ________  of the complete metric space. 

Then T has a unique fixed point.

Onto One to one Bijective Contraction Contraction

A metric space space (X,d) is ____________ if there exist two 

non empty subsets A and B of X such that A U B=X.

Connected Disconnected Continuous Discontinuous Disconnected

A metric space space (X,d) is __________ if there exist two 

non empty subsets A and B of X such that clouser of A 

interect with  B=empty

Connected Disconnected Continuous Discontinuous Disconnected

If  f from A into Y is continuous at ______ point of A then it 

is continuous on A

One Two Limit Every Every

Let f from X into Y and g from Y into Z be continuous then 

gof is continuous from X into _____.

X Y Z 2X Z
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= 

UNIT – I  

SYLLABUS  

 

                      Limits - Limits involving the point at infinity - continuity. Properties of   

                      complex numbers – regions in the complex plane - functions of complex  

                      variable -  mappings. Derivatives, differentiation  formulas - Cauchy- 

                      Riemann equations, sufficient conditions for differentiability. 

 

PROPERTIES OF COMPLEX NUMBERS 

Consider now a point z      reiθ , lying on a circle centered at the origin 

with radius      r (Fig. 1). As θ is increased, z moves around the circle in 

the counterclockwise direction. In particular, when θ  is increased by 

2π, we arrive at the original point;  and the same is true when θ is 

decreased by 2π. It is, therefore, evident from Fig. 10 that two nonzero 

complex numbers 

z1 = r1e
iθ1    and z2 = r2e

iθ2 

 

 

 

 

 

 

 

 

FIGURE 1 

are equal if and only 

if 

 

r1 = r2   and θ1 = θ2 + 2kπ, 

y 

r 

O x 
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= − 
= − 

   

√ 

−  

n 

where k is some integer (k = 0, ±1, ±2,...). 

This observation, together with the expression zn = rneinθ in Sec. 7 for integral 

powers of complex numbers z = reiθ , is useful in finding the nth roots of  any 

nonzero complex number z0 = r0e
iθ0 , where n has one of the values n = 2, 3,.. . .  

The method starts with the fact that an nth root of z0 is a nonzero number z = reiθ such 

that zn = z0, or 

rneinθ = r0eiθ0 . 

According to the statement in italics just above, then, 

rn = r0   and nθ = θ0 + 2kπ, 

                             Consequently, the complex numbers are the nth roots of z0. We are able 

                       to see immediately from this exponential form of the roots that they all             

                       lie on the circle  z       r0 about the origin and are equal 

                      spaced every 2π/n radians, starting with argument θ0/n. Evidently, then,                 

                      all of the distinct roots are obtained when k  0, 1, 2 , . . . ,n  1, and no 

                      further roots arise  with other values of k. We let ck (k  0, 1, 2 , . . . ,n  1)  

                      denote these distinct roots. 

The  number is  the  length  of  each  of  the  radius  vectors  representing  the positive 

real number r0, the symbol r0 denotes the entire  set  of  roots;  and  the symbol   in 

expression (1) is reserved for one positive  root. When the  value  of θ0 that is used in 

expression (1) is the principal value of arg z0 ( π < θ0 π),the number c0 is referred to 

as the principal root. Thus when z0 is a positive real number r0, its principal root 

isObserve that if we write expression (1) for the roots of z0. It follows from property  of 

eiθ that 

ωk = exp

.

i 
2kπ

 

(k = 0, 1, 2, . . . , n − 1) 

 

and hence that 

 

ck = c0ω
k (k = 0, 1, 2 , . . . ,n − 1). 

The number c0 here can, of course, be replaced by any  particular  nth  root of  z0, 

since ωn represents a counterclockwise rotation through 2π/n radians. 
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0 
   

 

 

3 3 

   

 

Finally, a convenient way to remember expression (1) is to write z0 in its most 

general exponential form (compare with Example 2 in Sec. 6) 

z0 = r0 e
i(θ0+2kπ) (k = 0, ±1, ±2,.. .) 

and to formally apply laws of fractional exponents involving  real numbers, 

keeping  in mind that there are precisely n roots. 

 

 

 

The examples in the next section serve to illustrate this method for finding roots of 

complex numbers. 

 

EXAMPLES 

In each of the  examples here, we start with  expression (5), Sec. 9,  and proceed in  

the manner described just after it. 

 

EXAMPLE 1. Let us find all values of (−8i)1/3, or the three cube 

roots of the number −8i. One need only write. 

They lie  at the  vertices of an equilateral triangle, inscribed in the  circle are 

equally spaced around that circle every 2π/3 radians, starting with the equation. 

Without any further calculations, it is then evident that c1 = 2i; and, since 

c2  is   s√ymmetric   to   c0  with   respect   to   the   imaginary   axis,   we   know   that 

 

c2 =− 3 − i. 
Note how it follows from expressions that these roots can  be written 

c0, c0ω3, c0ω2   where ω3 = exp

.

i 
2π 

 

. 
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| |=  

 

 

 

FIGURE 12 

 
 

 

 REGIONS IN THE COMPLEX PLANE 

In this section, we are concerned with sets of complex numbers, or points in the          

z plane, and  their  closeness  to  one  another.  Our  basic  tool  is  the  concept  of 

an ε neighborhood 

(1) |z − z0| < ε 

of a given point z0. It consists of all points z lying inside  but  not  on  a  circle 

centered at z0 and with a specified positive  radius ε  (Fig. 2). When the value of ε    

is understood or is immaterial in the discussion, the set (1) is often referred to as 

just  a neighborhood. Occasionally, it is convenient to speak of a deleted 

neighborhood,   or punctured disk, 

(2) 0 < |z − z0| < ε 

consisting of all points z in an ε neighborhood of z0 except for the point z0 itself. 

 

 

 

 

 

 

 

 

 

FIGURE 2 

 

 

A point z0 is said to be an interior point of a set S whenever there is some 

neighborhood of z0 that contains only points of S; it is called an exterior point  of       

S when there exists a neighborhood  of it containing  no  points  of S. If z0 is neither  

y 

c1 

2 x 

c2 c0 

y 

|z – z0| 

z 


z0 

O x 
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| |≤  

| | | | 

of these, it is a boundary point of S. A boundary point is, therefore, a point all of 

whose neighborhoods contain at least one point in S and at least one point not in S. 

The totality of all boundary points is called the boundary  of S. The circle   z    1,     

for instance, is the boundary of each of the sets 

|z| < 1 and |z|≤ 1. 

 

A set is open  if it contains none of its  boundary points. It is left as an exercise  

to show that a set is open if and only if each of its points is an interior point.  A set     

is closed if it contains all of its boundary points, and the closure of a set S is the  

closed set consisting of all points in  S  together with  the boundary  of S. Note that  

the first of the sets (3) is open and that the second is its closure. 

Some  sets are, of course, neither open nor closed.  For a set to be  not open,  

there must be a boundary point that is contained in the set; and if a set is not closed, 

there exists a boundary point not contained in the set. Observe that the  punctured  

disk 0 <  z     1 is neither open nor closed. The set of all complex numbers is, on      

the other hand, both open and closed since it has no boundary points. 

An open set S  is connected  if each pair of points z1 and z2 in it can be joined    

by a polygonal line, consisting of a finite number of line segments joined end to 

end, that lies entirely in S. The open set   z  < 1 is connected. The annulus 1 <  z  < 

2       is,  of  course, open and it is also connected (see Fig.  3). A nonempty  open 

set    that is connected is called a domain. Note that any neighborhood is a domain. 

A domain together with some, none, or all of its boundary points is referred to as a 

region. 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3 

 

y 

z2 

z1 
O 1 2 x 
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≥ 
| |=  

= 

= = 
/= 

 

A set S is bounded  if every point of S lies inside some circle  z      R; otherwise, 

it is unbounded. Both of the sets (3) are bounded regions, and the half plane Re z    

0 is unbounded. 

A point z0 is said to be an accumulation point of a set S if each deleted 

neighborhood of z0 contains at least one point of S. It follows that if  a  set  S  is 

closed, then it contains each of its accumulation points.  For  if  an  accumulation 

point z0 were not in S, it would be  a boundary point of  S; but this  contradicts the  

fact that a closed set contains all of its boundary points. It is left as an exercise to 

show that the converse is, in fact, true. Thus a set is closed if and only if it contains  

all of its accumulation points. 

Evidently, a point z0 is not an accumulation point of a set S  whenever there 

exists some deleted neighborhood of z0 that does not contain at least one point of S. 

Note that the origin is the only accumulation point of the set zn = i/n (n = 1, 2,.. 

.). 

 FUNCTIONS OF A COMPLEX VARIABLE 

Let S be a set of complex numbers. A function f defined on S is a 

rule that assigns to each z in S a complex number w. The number w 

is called the value of f at z and is denoted by f (z); that is, w f (z). 

The set S is called the domain of definition 

of f .∗ 
It must  be emphasized that both a domain of definition and a  rule 

are needed    in order for a function to be well defined. When the 

domain of definition is not mentioned, we agree that the largest possible 

set is to be taken.  Also,  it  is  not always convenient to use notation 

that distinguishes between a given function and    its values. 

 

EXAMPLE 1.      If f is defined on the set z   0 by means of 

the equation   w     1/z, it may be referred to only  as  the function 

w  1/z, or simply the func-  tion 1/z. 

 

Suppose that w = u + iv is the value of a function f at z = x + iy, so that 

                                      u + iv = f (x + iy). 

Each of the real numbers u and v depends on the real variables x and 

y, and it follows that f (z) can be expressed in terms of a pair of 
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real-valued functions of the real variables x and y: 

(1) f (z) = u(x, y) + iv(x, y). 

If the polar coordinates r and θ , instead of x and y, are used, then 

                                             u + iv = f (reiθ ) 

where w = u + iv and z = reiθ . In that case, we may write 

(2) f (z) = u(r, θ) + iv(r, θ ). 

 

EXAMPLE 2. If f (z) = z2, the 

f (x + iy) = (x + iy) = x − y + i2xy. 

              Hence 

u(x, y) = x2 − y2  and v(x, y) = 2xy. 

When polar coordinates are used, 

f (reiθ ) = (reiθ )2 = r2ei2θ = r2 cos 2θ + ir2 sin 2θ. 

                    Consequely, 

                            u(r, θ) = r2 cos 2θ and v(r, θ) = r2 sin 2θ. 

 

If, in either of equations (1) and (2), the function v always has 

value zero, then the value of f is always real. That is, f is a real-

valued function of a complex variable. 

 

EXAMPLE 3. A real-valued function that is used to illustrate some 

important concepts later in this chapter is 

                      f (z) = |z|2 = x2 + y2 + i0. 

 

If n is zero or a positive integer and if a0, a1, a2,.. . , an are 

complex constants, where an /= 0, the function 

P (z) = a0 + a1z + a2z
2 +· · · + anz

n 

is a polynomial  of degree n. Note that the  sum here has a finite 

number of terms    and that the domain of definition is the entire z 
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/= 

2 

2 

= 

= 

= = 

plane. Quotients P (z)/Q(z) of 

 

polynomials are called rational functions and are defined  at  each  

point  z  where Q(z) 0. Polynomials and rational functions constitute 

elementary, but important, classes of functions of a complex variable. 

A generalization of the concept of function is a  rule  that  assigns  

more  than one value to a point z in the  domain  of  definition.  These  

multiple-valued  func- tions  occur in  the  theory of  functions of  a  

complex variable, just  as they do  in  the case of a real variable.  When  

multiple-valued  functions  are  studied,  usually just one of the possible 

values assigned to each point is taken, in  a  systematic manner, and a 

(single-valued) function is constructed from the multiple-valued 

function. 

 

EXAMPLE 4. Let z denote any nonzero  complex  number.  We  

know  from Sec. 9 that z1/2 has the two values 

                  where  r = |z| and  ©  (−π  < © ≤ π√)  is  the  principal  value  of  arg z.  

                     But,  if  we choose only the positive value of ± r and write 

(3) f (z) = r exp

.

i 
© 

 

(r > 0, −π  < © ≤ π), 

 

the (single-valued) function (3) is well defined on the set of nonzero 

numbers in the z plane. Since zero is the only square root of zero, 

we also write f (0) 0. The function f is then well defined on the 

entire plane. 

 

MAPPINGS 

Properties of a real-valued function of a real variable are often 

exhibited by the graph of the function. But when w f  (z), where z 

and w are complex, no such convenient graphical representation of 

the function f is available because each of the numbers z and w is 

located in a plane rather than on a line. One can, however, display 

some information about the function by indicating pairs of 

corresponding points z     (x, y) and w(u, v). To  do this, it is 
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= 

= + 

= 

generally simpler to draw the z    and w planes separately. 

When a function f is thought of in this way, it is often referred to 

as a mapping, or transformation. The image of a point z in the 

domain of definition S is the point w f (z), and the set of images of 

all points in a set T that is contained in S  is  called the image of T . 

The image of the entire domain of definition S is called the range of 

f . The inverse image of a point w is the set of all points z in the 

domain of definition of f that have w as their image. The inverse 

image of a point may contain just one point, many points, or none at 

all. The last case occurs, of course, when w is not in the range of f . 

 

Terms such as translation, rotation, and reflection are used to  

convey  domi- nant geometric characteristics of certain mappings. In 

such cases, it is sometimes convenient to consider the z and w planes 

to be the same. For example, the mapping 

w = z + 1 = (x + 1) + iy, 

where z = x + iy, can be thought of as a translation of each point z 

one unit to the right. Since i = eiπ/2, where z reiθ , rotates the radius 

vector for each nonzero point z through a right angle about the origin 

in the counterclockwise direction; and the mapping 

w = z = x − iy 

transforms each point z x iy into its reflection in the real axis. 

More information is usually exhibited by sketching images of 

curves  and  regions than by simply indicating images of individual  

points.  In  the  following three examples, we illustrate this with the  

transformation  w  z2.  We  begin  by finding the images of some curves 

in the z plane. 

 

EXAMPLE 1. According to Example 2 in Sec. 12, the 

mapping w z2 can be thought of as the transformation 

(1) u = x2 − y2, v = 2xy 

from the xy  plane into the uv  plane. This form of the mapping is 
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,
=  + 

= 
= 

, 

, 

especially useful    in finding the images of certain hyperbolas. 

It is easy to show, for instance, that each branch of a hyperbola 

(2) x2 − y2 = c1 (c1 > 0) 

is mapped in a one to one manner onto the vertical line u   c1. We  start 

by noting   from the first of equations (1) that u c1 when (x, y) is  a  

point  lying  on  either branch. When, in particular, it lies on the right-

hand branch, the second of equations 

 

 

 

(1) tells us that v  2y  y2  c1. Thus the image of the right-hand branch 

can be   expressed parametrically as 

 

 

u = c1, v = 2y   y2 + c1 (−∞ < y < ∞); 

and it is evident that the image of a point (x, y) on that branch moves 

upward along the entire line as (x, y) traces out the branch in the 

upward direction . 

Likewise, since the pair of equations 

 

u = c1, v = −2y  y2 + c1 (−∞ < y < ∞) 

furnishes a parametric representation for the image of the left-hand 

branch of the hyperbola, the image of a point going downward  along 

the entire left-hand branch    is seen to move up the entire line u = c1. 
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D 2i E

2 

= 

= 
= 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the other hand, each branch of a hyperbola 

2xy = c2 (c2 > 0) 

 

w = z2.

 

EXAMPLE 2. The domain x > 0,y > 0, xy < 1 consists of all 

points lying on the upper branches of hyperbolas from the  family 

2xy  c, where 0 < c < 2  (Fig. 18). We know from Example 1 that as 

a point travels downward along the entirety of such a branch, its 

image under the transformation w z2 moves to the right along the 

entire line v c. Since, for all values of c between 0 and 2, these upper 

branches fill out the domain x > 0,y > 0, xy < 1, that domain is 

mapped onto the horizontal strip 0 < v < 2. 

 
 

y 

A 

 

 

 

 

B C x 

 

A B  C  u 

 

 

w = z2. 

y 

O x 

v 
u = c1 > 0 

v = c2 > 0 

O u 
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− 

0 0 

 

In view of equations (1), the image of a point (0, y) in the z 

plane is ( y2, 0). Hence as (0, y) travels downward to the origin 

along the y axis, its image moves to the right along the negative u 

axis and reaches the origin in the w plane. Then, since the image of 

a point (x, 0) is (x2, 0), that image moves to the right from the 

origin along the u axis as (x, 0) moves to the right from the origin along 

the x axis. The image of the upper branch of the hyperbola xy = 1 is, of 

course, the horizontal line v = 2. Evidently, then, the closed region x ≥ 

0,y ≥ 0, xy  ≤ 1 is mapped onto  the closed strip 0 ≤ v ≤ 2, as 

indicated in Fig. 18. 

Our last example here illustrates how polar coordinates can be 

useful in ana- lyzing certain mappings. 

 

EXAMPLE 3. The mapping w = z2 becomes 

                           (4)w = r2ei2θ 

when z = reiθ . Evidently, then, the image w = ρeiφ of any nonzero 

point z is found by squaring the modulus r = |z| and doubling the 

value θ of arg z that is used: 

(5) ρ  = r2  and φ = 2θ. 

Observe  that  points  z = r0e
iθ  on  a  circle  r = r0 are  transformed  into points 

w = r2ei2θ on the circle ρ = r2. As a point on the first circle moves counterclock- 

wise from the positive real axis to the positive imaginary axis, its image 

on the  second circle moves counterclockwise from the positive real 

axis to  the negative    real axis (see Fig. 19). So, as all possible positive 

values of r0 are chosen, the 

corresponding arcs in the z and w planes fill out the first quadrant 

and the upper half plane, respectively. The transformation w = z2 is, 

then, a one to one map- ping of the first quadrant r ≥ 0, 0 ≤ θ ≤ 

π/2 in the z plane onto the upper half     ρ ≥ 0, 0 ≤ φ ≤ π of the w 

plane, as indicated in Fig. 19. The point z = 0 is, of course, mapped 
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0 

0 

= 

= = = 

= 

onto the point w = 0. 

 

 

 

 

 

 

 

w = z . 

The transformation w     z2 also maps the upper half plane r  < 0, 0 

< θ  < π  onto the entire w plane. However, in this case, the 

transformation is not one to one since both the positive and negative 

real axes in the z plane are mapped onto the positive real axis in the w 

plane. When n is a positive  integer greater than 2, various mapping 

properties of   the transformation w zn, or w rneinθ , are 

similar  to those of w z2. Such a transformation maps the entire 

z plane onto the entire w plane, where each nonzero point in the w 

plane is the image of n distinct points in the z plane. The circle 

r = r0 is mapped onto the circle ρ = rn; and the sector r ≤ r0, 0 ≤ θ ≤ 

2π/n is mapped onto the disk ρ ≤ rn, but not in a one to one manner. 

Other, but somewhat more involved, mappings by w z2 appear 

in Example 1, Sec. 97, and Exercises 1 through 4 of that section. 

 

LIMITS 

Let a function f be defined at all points z in some deleted 

neighborhood of z0. The statement that the limit of f (z) as z 

approaches z0 is a number w0, or that 

 

                           (1) lim f (z) w0, 

z→z0 

FIGURE 19 

v 

O r2 u 
0 

y 

O r0 x 
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= 

|  − | 
| − | 

| − | 
|  − | 

means that the point w         f (z) can be made arbitrarily close to w0 

if we choose    the point z close enough to z0 but distinct from it. We 

now express the definition  of limit in a precise and usable form. 

Statement (1) means that for each positive number ε, there is a positive number 

δ such that 

 

(2) |f (z) − w0| < ε whenever 0 < |z − z0| < δ. 

Geometrically,  this  definition  says  that  for  each  ε  neighborhood  w  

w0  < ε  of w0, there is a deleted δ neighborhood 0 <      z  z0 < δ of 

z0 such that every point z in it has an image w  lying in the ε  

neighborhood. Note that even though   all points in the deleted 

neighborhood 0 < z  z0  < δ  are to be  considered, their images need not 

fill up the entire neighborhood  w  w0  < ε. If f has the constant  value 

w0, for instance, the image of z is always the center of that 

neighborhood.    Note, too, that once a δ has been found, it can be 

replaced by any smaller positive number, such as δ/2. 

 

 

 

 

 

 

 

 

It is easy to show that when a limit of a function f (z) exists at a 

point z0, it is unique. To do this, we suppose that 

                                         lim f (z) = w0  and       lim f (z) = w1. 

                                             z→z0                        z→z0 

                        Then, for each positive number ε, there are positive numbers δ0 and δ1 such that 

|f (z) − w0| < ε whenever 0 < |z − z0| < δ0

y 

z0 z 

O x 

v 

w 

w0 

O u 
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| − | 

∞ 

|f (z) − w1| < ε whenever 0 < |z − z0| < δ1. 

|w1 − w0| = |[f (z) − w0] − [f (z) − w1]| ≤ |f (z) − w0|+ |f (z) − w1| < ε + ε = 2ε. 

But w1 w0 is  a  nonnegative  constant,  and  ε  can  be  chosen  

arbitrarily  small. Hence 

w1 − w0 = 0, or w1 = w0. 

Definition (2) requires that f be defined at all points in some 

deleted neigh- borhood of z0. Such a deleted neighborhood, of course, 

always exists  when z0 is       an interior point of a region on which f is 

defined. We can extend the definition of limit  to the case in which z0 is 

a boundary point of the region by agreeing that the  first of inequalities 

(2) need be satisfied by only those points z that lie in both the region 

and the deleted neighborhood. 

 

 

LIMITS INVOLVING THE POINT AT INFINITY 

It is sometimes convenient to include with the complex plane the point 

at infinity, denoted by ,     and to use limits involving it.  The complex 

plane together with this  point is called the extended complex plane. To 

visualize the point at infinity, one can think of the complex plane as 

passing through the equator of a unit sphere centered    at the origin  To 

each point z in the plane there corresponds exactly one  point P  on the 

surface of the sphere. The point P  is the point where the line through  z 

and the north pole N intersects the sphere. In like manner, to each point 

P on the surface of the sphere, other than the north pole N , there 

corresponds exactly one 

 

 

 

 

 

 

 

 

 

N 

P 

O 
z 
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= 

∞ 

| | ∞ 
| |=  

point z in the  plane. By letting  the  point  N  of  the  sphere correspond 

to the  point  at infinity, we obtain a one to one correspondence between 

the points of the sphere and the points of the extended complex plane. 

The sphere is known as the Riemann sphere, and the correspondence is 

called a stereographic projection. 

Observe that the exterior of the unit circle centered at the origin in 

the complex plane corresponds to the upper hemisphere with the 

equator and the point N deleted. Moreover, for each small positive 

number ε, those points in the complex plane exterior to the circle   z    

1/ε  correspond to points  on the sphere close to N . We    thus call the 

set z > 1/ε an ε neighborhood, or neighborhood, of . 

Let us agree that in referring to a point z, we mean a point in the 

finite plane. Hereafter, when the point at infinity is to be considered, it 

will be specifically mentioned. 

A meaning is now readily given to the statement 

 

lim f (z) w0 

z→z0 

when either z0 or  w0, or possibly  each of  these numbers, is  replaced 

by  the point    at infinity. In the definition of limit in Sec. 15, we 

simply replace the appropriate neighborhoods of z0 and w0 by 

neighborhoods of . The proof of  the  following theorem illustrates how 

this is done. 

 

                 Theorem. If zo and wo are points in the z and w planes, respectively, 

                        then prove that 

                         i) lim f (z)=∞ as z→zo if and only if lim 1/f (z)  = 0  as z→zo and 

                        ii)lim f (z) = wo as z→∞ if and only if lim f(
1

𝑧
) = wo  as z→0 

                         Moreover,lim f (z)=∞ as z→∞ if and only if lim
1

f(z)
 = 0 as z→0. 

                          CONTINUITY 

A function f is continuous at a point z0 if all three of the following 

conditions are satisfied: 
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= 

|  − | 
= 

= 
= |  − | 

lim f (z) exists, 

z→z0                              (1) 

 

f (z0) exists,                  (2) 

 

lim f (z) f (z0).            (3) 

z→z0 

Observe that statement (3) actually contains statements (1) and (2), 

since the exis- tence of the quantity on each side of the equation there is  

needed. Statement  (3)  says, of course, that for each positive number ε, 

there is a positive  number δ  such  that 

(4) |f (z) − f (z0)| < ε whenever |z − z0| < δ. 

A function of a complex variable is said to be continuous in a region R if it is 

continuous at each point in R. 

If two functions are continuous at a point, their sum and product are 

also contin- uous at that point; their quotient is continuous at any such 

point if the denominator    is not zero there. These observations are 

direct consequences of Theorem 2, Sec. 

16. Note, too, that a polynomial is continuous in the entire plane because of limit  

(11) in Sec. 16. 

We turn now to two expected properties of continuous functions 

whose veri- fications are not so immediate. Our proofs depend on 

definition (4) of continuity,    and we present the results as theorems. 

 

Theorem . A composition of continuous functions is itself continuous. 

 

A precise statement of this theorem is contained in the proof to 

follow. We let w f (z) be a function that is defined for all z in a 

neighborhood  z  z0    δ of a point z0 , and we let W g(w) be a 

function whose domain of definition contains  the image  of that 

neighborhood under f . The composition  W  g[f (z)] is, then, 

defined for all z  in  the  neighborhood   z    z0  < δ. Suppose  now 

that f is continuous at z0 and that g is continuous at the point f (z0) 

in the w plane. In view of the continuity of g at f (z0), there is, for 
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|  − | 

| | 

2 

|  − | = 

2 

each positive number ε, a positive number γ such that 

|g[f (z)] − g[f (z0)]| < ε whenever |f (z) − f (z0)| < γ. 

But the continuity of f at z0 ensures that the neighborhood  z   z0 < δ 

can be made small enough that the second of these inequalities holds. 

The continuity of the composition g[f (z)] is, therefore, established. 

 

 

 

Theorem . If a function f (z) is continuous and nonzero at a point z0 , then 

f (z) /= 0 throughout some neighborhood of that point. 

Assuming that f (z) is, in fact, continuous and nonzero at z0, we 

can prove Theorem 2 by assigning the positive value f (z0) /2 to the 

number ε in statement (4). This tells us that there is a positive 

number δ such that 

                                 |f (z) − f (z0)|<   
|f (z0)|

 
whenever |z − z0| < δ. 

So if there is a point z in the nighbourhood at which f (z) =0, 

we have the contradiction 

 

 

 

 

|f (z0)| <  
|f (z0)| 

; 

The continuity of a function 

(5) f (z) = u(x, y) + iv(x, y) 

y 

z z0 

 

O x 

v 

f (z0) 

O 
f (z) 

u 

V 


g[ f(z)] 
 

g[ f(z0)] 

O U 
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= 

, 

|  − | 

 

is closely related to the continuity of its component functions u(x, y) 

and v(x, y). We note, for instance, how it follows from Theorem 1 in 

Sec. 16 that the function 

 

 

 

 

(5) is continuous at a point z0 (x0, y0) if and only if its component 

functions are continuous there. Our proof of the next theorem illustrates 

the use  of  this  state- ment. The theorem is extremely important and 

will be used often in later chapters, especially in applications. Before 

stating the theorem, we recall from Sec. 11 that a region R  is closed  if 

it contains all of its boundary points and that it is bounded  if     it lies 

inside some circle centered at the origin. 

 

Theorem 3. If a function f is continuous throughout a region R 

that is both closed and bounded, there exists a nonnegative real 

number M such that 

(6) |f (z)| ≤ M for all points z inR, 

where equality holds for at least one such z. 

To prove this, we assume that the function f in equation (5) is continuous and note how it 

follows that the function 

 

[u(x, y)]2 + [v(x, y)]2 

is continuous throughout R and thus reaches a maximum value M somewhere in 

R.∗ Inequality (6) thus holds, and we say that f is bounded on R. 

 

DERIVATIVES 

Let f be a function whose domain of definition contains a neighborhood z z0 < ε 

of a point z0. The derivative of f at z0 is the limit 

 

                   (1) 

 

f  ‘(z0)= lim 

z→z0 

f (z) − f 

(z0)
, 

z − z0 
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= 

and the function f is said to be differentiable at z0 when f j(z0) exists. 

By expressing the variable z in definition (1) in terms of the new complex 

variable 

Because f is defined throughout a neighborhood of z0, the number 

f (z0 + Oz) is always defined for |Oz| sufficiently small. 

 

 

 

 

 

 

 

 

 

 

 

 

 

When taking form (2) of the definition of derivative, we often drop 

the subscript on z0 and introduce the number 

Ow = f (z + Oz) − f (z), 

                    which denotes the change in the value w   f (z) of f corresponding to a change 

                   Oz in the point at which f is evaluated. 

 

 

DIFFERENTIATION FORMULAS 

The definition of derivative in Sec. 19 is identical in form to that of the 

derivative     of a real-valued function of a real variable. In fact, the 

basic differentiation formulas given below can be derived from the 

definition in Sec. 19 by essentially the same steps as the ones used in 

calculus. In these formulas, the derivative of a function f   at a point z 

is denoted by either depending on which notation is more convenient. 

 

 

y 



O x 
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/= 

Oz Oz Oz 

 

Let c be a complex constant, and let f be a function whose 

derivative exists at a point z. It is easy to show that 

(1)                     , 
d 

[cf (z)] = cf j(z). 

 

Also, if n is a positive 

 

dz dz 

                  This formula remains valid when n is a negative integer, provided that z 

         If the derivatives of two functions f and g exist at a point z, then 

 

 

                    Let us derive formula (4). To do this, we write the following expression for the                          

                  change in the product w = f (z)g(z): 

Ow = f (z + Oz)g(z + Oz) − f (z)g(z) 

= f (z)[g(z + Oz) − g(z)] + [f (z + Oz) − f (z)]g(z + Oz). 

Ow 
= f (z) 

g(z + Oz) − g(z) 
+ 

f (z + Oz) − f (z) 
g(z + Oz) ;

 

 
and, letting  Oz  tend to zero, we arrive at the desired formula for the 

derivative   of f (z)g(z). Here we have used the fact that g is 

continuous at the point z.
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= 

 

CAUCHY–RIEMANN EQUATIONS 

In this section, we obtain  a pair of equations  that the first-order 

partial derivatives   of the component functions u and v of a function 

 

(1) f (z) = u(x, y) + iv(x, y) 

must satisfy at a point z0 (x0, y0) when the derivative of f exists 

there. We also show how to express f j(z0) in terms of those partial 

derivatives. 

We start by writing 

z0 = x0 + iy0, Oz = Ox + iOy, 

and 

Ow = f (z0 + Oz) − f (z0) 

= [u(x0 + Ox, y0 + Oy) − u(x0, y0)] + i[v(x0 + Ox, y0 + Oy) − v(x0, y0)]. 

Assuming that the derivative 

Now it is important to keep in mind that expression (3) is valid 

as (Ox, Oy) tends to (0, 0) in any manner that we may choose. In 

particular, we let (Ox, Oy) tend to (0, 0) horizontally through the 

points (Ox, 0), as indicated in Fig. 29 (Sec. 19). Inasmuch as Oy = 
0, the quotient Ow/Oz becomes 

derivatives with respect to x of the functions u and v, respectively, at 

(x0, y0). Substitution of these limits into expression (3) tells us that 

Equation not only give f j(z0) in terms of partial derivatives of 

the component functions u and v, but they also provide necessary 

conditions for the existence of f j(z0). To obtain those conditions, we 

need only equate the real parts and then the imaginary parts on the 

right-hand sides of equations (4) and (5) to see that the existence of 

f j(z0) requires that 
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= + 

= 

(6) ux(x0, y0) = vy(x0, y0) and uy(x0, y0) = −vx(x0, y0). 

Equations (6) are the Cauchy–Riemann equations, so named in honor of 

the French mathematician A. L. Cauchy  (1789–1857),  who  

discovered  and  used  them,  and  in honor of the German 

mathematician G. F. B. Riemann (1826–1866), who made them 

fundamental in his development of the theory of functions of a complex 

variable. 

We summarize the above results as follows. 

 

Theorem. Suppose that 

f (z) = u(x, y) + iv(x, y) 

and that f j(z) exists at a point z0  x0   iy0. Then the first-order partial 

derivatives of u and v must exist at (x0, y0), and they must satisfy the 

Cauchy–Riemann equations 

 

(7) ux = vy, uy = −vx 

there. Also, f j(z0) can be written 

(8) f j(z0) = ux + ivx, 

where these partial derivatives are to be evaluated at (x0, y0). 

 

EXAMPLE 1.we showed that the function 

f (z) = z2 = x2 − y2 + i2xy 

                 is differentiable everywhere and that f j(z) 2z. To verify that the Cauchy–   

                 Riemann equations are satisfied everywhere, write 

u(x, y) = x2 − y2  and v(x, y) = 2xy. 

                          Thus 
 

ux = 2x = vy, uy = −2y = −vx. 
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= 

= + 

Moreover, according to equation (8), 

f j(z) = 2x + i2y = 2(x + iy) = 2z. 

 

Since the Cauchy–Riemann equations are necessary conditions 

for the existence of the derivative of a function f at a point z0, they 

can often be used to locate points at which f does not have a 

derivative. 

 

 

SUFFICIENT CONDITIONS FOR DIFFERENTIABILITY 

Satisfaction of the Cauchy–Riemann equations at a point  z0  (x0, y0) is  

not  suffi- cient to ensure the existence of the derivative of a function f 

(z) at that point. (See Exercise 6, Sec. 23.) But, with certain continuity 

conditions, we have the following useful theorem. 

 

Theorem. Let the function 

f (z) = u(x, y) + iv(x, y) 

be defined throughout some  ε neighborhood of a point  z0  x0  iy0, 

and suppose that 

(a) the first-order partial derivatives of the functions u and v with respect to x and 

y exist everywhere in the neighborhood; 

(b) those partial derivatives are continuous at (x0, y0) and satisfy the 

Cauchy– Riemann equations 

 

 

at(x0,y0). 

ux = vy, uy = −vx 

Then f j(z0) exists, its value being 

f j(z0) = ux + ivx 

where the right-hand side is to be evaluated at (x0, y0). 

 

To prove the theorem, we assume that conditions (a) and (b) in 

its hypothesis are satisfied and write Oz = Ox + iOy, where 0 < 

|Oz| < ε, as well as 
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Ow = f (z0 + Oz) − f (z0). 

 

 

 

The assumption that the first-order partial derivatives of u and v  are 

continuous at   the point (x0, y0) enables us to write∗ 

 

(2) 

 

and 

(3) 

Ou = ux(x0, y0)Ox + uy(x0, y0)Oy + ε1Ox + ε2Oy 

 

Ov = vx(x0, y0)Ox + vy(x0, y0)Oy + ε3Ox + ε4Oy, 

where ε1, ε2, ε3, and ε4 tend to zero as (Ox, Oy) approaches (0, 0) in 

the Oz plane. Substitution of expressions (2) and (3) into equation 

(1) now tells us that 

 

                        (4) Ow = ux(x0, y0)Ox + uy(x0, y0)Oy + ε1Ox + ε2Oy 

+ i[vx(x0, y0)Ox + vy(x0, y0)Oy + ε3Ox + ε4Oy]. 

Because the Cauchy–Riemann equations are assumed to be satisfied at (x0, y0), 

one can replace uy(x0, y0) by −vx(x0, y0) and vy(x0, y0) by ux(x0, y0) in equation 

(4) and then divide through by the quantity Oz = Ox + iOy. 
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2  MARK QUESTIONS 

  

  1. Write the C-R Equation. 

2. State sufficient condition for differentiability. 

3. State the Cauchy Riemann Equation 

4. Define Derivate. 

5. Definition of Limit. 

8  MARK QUESTIONS 

 

  1. State and Prove the sufficient conditions for differentiability. 

2. Prove that a composition of continuous functions is itself continuous. 

3. Let the functionf (z) = u(x, y) + iv(x, y)be defined throughout some ε  

    eighborhood of a point zo= xo+ iyo, and supposethat 

      i) the first-order partial derivatives of the functions u and v  

        with respect to x andy exist everywhere in the neighborhood; 

                           ii) those partial derivatives are continuous at (x0, y0) and satisfy 

                              the C–R equations ux= vy, uy= −vxat (xo, yo). 

    4. Prove that Cauchy Riemann equation. 

5. If a function f (z) is continuous and nonzero at a point zo , then prove thatf (z) ≠0     

     throughout some neighborhood of that point. 

    6. Let the functionf(z) = u(x, y) + iv(x, y)be defined throughout some ε  

        neighborhood of apoint zo= xo+ iyo, and Then prove that f ‘(zo) exists, its value being    

        f ‘(zo) = ux+ ivx where the right-hand side is to be evaluated at (xo, yo). 

 7.Prove that if a function f is continuous throughout a region R that is both closed  

                and bounded, then there exists a nonnegative real number M such that 

               |f (z)| ≤ M for all points z in R,where equality holds for at least one such z. 

8. f f (z) = z, thenprove that 
∆w

∆𝑧
=

∆𝑧̅̅̅̅

∆𝑧
. 

9.  If zo and wo are points in the z and w planes, respectively, then prove that 

      i)limf (z)=∞ as z→zoif and only if lim 1/f (z)= 0 as z→zoand 

                              ii)limf (z) = wo as z→∞ if and only if lim f(
1

𝑧
)= wo  as z→0       

                              Moreover,limf (z)=∞ as z→∞ if and only if lim
1

f(z)
= 0 as z→0. 

           10. Suppose thatf (z) = u(x, y) + iv(x, y)and that f ‘(z) exists at a point zo= xo+ iyo.  

                             Then prove that the first-order partial derivativesof u and v must exist at (x0, y0),  

                              and they mustsatisfy the Cauchy–Riemann equationsux= vy, uy= −vx.

  



OPTION 1 OPTION 2 OPTION 3 OPTION 4 ANSWER

For each positive integer epsilon, there exits a delta such that |f(z)-w|<epsilon whenever |z-zo|< delta is called__________ . Limit Continuous Convergent Divergent Limit

If zo and wo are points in the z and w planes, then lim f(z)= infinity as z tends to zo if lim 1/f(z)=_______ as z tends to zo.0 1 wo Infinity 0

If zo and wo are points in the z and w planes, then lim f(z)= wo as z tends to infinity if lim f(1/z)=_________ as z tends to 0.0 1 wo Infinity wo

If zo and wo are points in the z and w planes, then lim f(z)= infinity as z tends to infinity if lim 1/[1/f(z)]=______ z tends to 0.0 1 wo Infinity 0

If zo and wo are points in the z and w planes, then lim f(z)= _______ as z tends to zo if lim 1/f(z)=0 as z tends to zo.0 1 wo Infinity infinity

If zo and wo are points in the z and w planes, then lim f(z)= ______ as z tends to infinity if lim f(1/z)=wo as z tends to 0.0 1 wo Infinity wo

If zo and wo are points in the z and w planes, then lim f(z)= _______ as z tends to infinity if lim 1/[1/f(z)]=0 z tends to 0.0 1 wo Infinity infinity

lim (iz+3)/(z+1)=________ as z tends to -1. 0 1 z Infinity infinity

lim  (z+1)/(iz+3)=_______ as z tends to -1. 0 1 z Infinity 0

lim (2+iz)/(1+z)=________ as z tends to 0. 0 1 2 Infinity 2

lim (z+2z)/(2-z)=________ as z tends to 0. 0 1 2 Infinity 0

lim (z+2z)/(2-z)=________ as z tends to infinity. 0 1 z Infinity infinity

A function of a complex variable is _______ in a region R if it is continuous at each point in R.Limit Continuous Convergent Divergent Continuous

A function of a complex variable is continuous in a region R if it is ___________ at each point in R.Limit Continuous Convergent Divergent Continuous

A composition of continuous function is itself ____________. Limit Continuous Convergent Divergent Continuous

If a function f(z) is continuous and non zero at a point zo, then f(z) not equal to_______ throughout some neighborhood of that point.0 1 2 Infinity 0

If a function f(z) is ________ and non zero at a point zo, then f(z) not equal to 0 throughout some neighborhood of that point.Limit Continuous Convergent Divergent Continuous

If a function f is continuous throughout a region R that is Bounded and ________, there exists a non negative real number M such that |f(z)| less than or equal to M for all points z in R.Closed Bounded Continuous Convergent Closed

A set is _________ if it cointains none of its boundary points. Open Not open Closed Not cloed Open

A set is open if each of its points is an________. Arbitray Interior Closure Limit Interior

A set is closed if it cointains ______ of its boundary points. One Two Finite All All

A set is ______ if every point of S lies inside some cirle |z| = R.Open Bounded Continuous Closed Bounded

A point zo is _________ point of a set S if each deleted nieghborhood of zo contains at least one point of S.Arbitray Interior Closure Accumulation Accumulation

One to One function is called________ Injective Surjective Bijective Into Injective

Onto function is called______. Injective Surjective Bijective Into Surjective
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One to one and onto function is called ________. Injective Surjective Bijective Into Bijective

The derivative of f at zo is denoted by__________. f(z) f '(z) f "(z) f '(zo) f'(zo)

lim [f(z)-f(zo)]/[z-zo ]=_______ as z tends to zo. f(z) f '(z) f "(z) f '(zo) f'(zo)

lim [f(z)-f(zo)]/[z-zo]= f'(zo) as z tends to zo . Then the finction f is called_______Differentiable at zDifferentiable at zoConvergent at zConvergent at zoDifferentiable at zo

d/dz[f(z)] is denoted by________ f(z) f '(z) f "(z) f'(zo) f'(z)

d/dz(c ) = _____ 0 1 2 Infinity 0

d/dz(z ) = _____ 0 1 2 Infinity 1

d/dz[cf(z)] cf(z) cf '(z) f "(z) f '(z) cf '(z)

d/dz[f(z) + g(z)] = ___________. f ' (z) + g ' (z) f ' (z) - g ' (z) f ' (z)  g ' (z) f ' (z) / g ' (z) f ' (z) + g ' (z)

d/dz[f(z) g(z)] = ___________. f(z)g ' (z) f '(z)g(z)f(z)g ' (z) - f '(z)g(z)f(z)g ' (z) / f '(z)g(z)f(z)g ' (z) + f '(z)g(z)f(z)g ' (z) + f '(z)g(z)

d/dz[f(z) /g(z)] = ___________. [f '(z)g(z)-f(z)g ' (z)]/[g(z)][f '(z)g(z)-f(z)g ' (z)]/[g(z)]^2[f '(z)g(z)-f(z)g ' (z)]/[g(z)]^3[f '(z)g(z)-f(z)g ' (z)]/[g(z)]^4[f '(z)g(z)-f(z)g ' (z)]/[g(z)]^2

d/dz[z^2]=________. 2z 3z z z^3 2z

u(x,y) + iv(x,y) is _________ in  C-R equation u v f(z) f'(z) f(z)

e^(x+iy)=_______ e^x e^y e^(x+y) e^z e^z

f(z)=e cos y + e sin y here u is _____ cos y sin y e cos y e sin y e cos y

f(z)=e cos y + e sin y here v is _____ cos y sin y e cos y e sin y e sin y

x+ iy is _________ in C-R equation f(z) z x y z

ux=vy the another C-R equation is__________ uy=vx uy= -vx uy+vx uy-vx uy= -vx

uy= -vx the another C-R equation is__________ ux=vy uy= -vx uy+vx uy-vx ux=vy

ux=vy and uy= -vy is __________. R equation C equation C-R equation R-C equation C-R equation

lim (3+iz)/(1+z)=________ as z tends to 0. 1 2 3 0 3

lim (5+iz)/(1+z)=________ as z tends to 0. 1 3 5 0 5
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UNIT IV 

SYLLABUS 

 

 
Analytic functions, examples of analytic functions, exponential function, 

 Logarithmic function, trigonometric function, derivatives of functions, 

 definite integrals of functions. Contours: Contour integrals and its examples 

 - upper bounds for moduli of contour integrals - Cauchy- Goursat theorem,  

Cauchy integral formula. 

 
ANALYTIC FUNCTIONS 

We are now ready to introduce the concept of an analytic function. 
A function f of the complex variable z is analytic at a point z0 if it 

has a derivative at each point in some neighborhood of z0.∗ It follows 
that if f  is analytic at a point z0, it must be analytic at each point in 
some neighborhood of z0. A function f is analytic in 

an open set if it has a derivative everywhere in that set. If we should 

speak of a function f that is analytic in a set S  which is not open, it 

is to be understood that  f is analytic in an open set containing S. 

Note that the function f (z)  1/z is analytic at each 

nonzero point in the finite plane. But the  function f (z) z 2 is not 

analytic at any point since its derivative exists only at z 0 and 

not throughout any neighborhood. (See Example 3, Sec. 19.) An 

entire function is a function that is analytic at each point in the entire 

finite plane. Since the derivative of a polynomial exists everywhere, 

it follows that every 

polynomial is an entire function. 

If a function f fails to be analytic at a point z0 but is analytic at 

some point   in every neighborhood of z0, then z0 is called a singular 

point, or singularity, of    f . The point z 0 is evidently a singular 

point of the function f (z) 1/z. The function f (z) z 2, on the other 

hand, has no singular points since it is nowhere analytic. 

A necessary, but by no means sufficient, condition for a function 

f to be analytic in a domain D  is clearly the continuity of f 
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throughout D. Satisfaction  of the Cauchy–Riemann equations is 

also necessary, but not sufficient. Sufficient conditions for 

analyticity in D are provided by the theorems in Secs. 22 and 23. 

Other useful sufficient conditions are obtained from the 

differentiation formulas in Sec. 20. The derivatives of the sum and 

product of two functions exist wherever 

 

∗The terms regular and holomorphic are also used in the literature to denote 

analyticity. 
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the functions themselves have derivatives. Thus, if two functions are 

analytic in   a domain D, their sum and their product are both 

analytic in D. Similarly, their quotient is analytic in D provided the 

function in the denominator does not vanish at any point in D. In 

particular, the quotient P (z)/Q(z) of two polynomials is analytic in 

any domain throughout which Q(z) 0. 

From the chain rule for the derivative of a composite  function,  

we find that a composition of two analytic functions is analytic. 

More precisely, suppose that a function f (z) is analytic in a domain 

D and that the image (Sec. 13) of D under the transformation w f (z) 

is contained in the domain of definition of a function g(w). Then the 

composition g[f (z)] is analytic in D, with derivative 

 
d  

g[f (z)] gj[f (z)]f j(z). dz 

The following property of analytic functions is especially useful, in 

addition to being expected. 

 
Theorem. If f j(z)= 0 everywhere in a domain D, then f (z) 

must be constant throughout D. 

 
We  start  the  proof  by  writing  f (z) = u(x, y) + iv(x, y).  

Assuming  that  f j(z) = 0 in D, we note that ux + ivx = 0 ; and, in 
view of the Cauchy–Riemann equations, vy − iuy = 0. Consequently, 

ux = uy = 0 and vx = vy = 0 

at each point in D. 

Next, we show that u(x, y) is constant along any line segment L 
extending from a point P to a point P j and lying entirely in D. We 
let s denote the distance along L from the point P and let U denote 
the unit vector along L in the direction of increasing s (see Fig. 30). 
We know from calculus that the directional derivative 

du/ds can be written as the dot product 

 

(1) 
du 

ds 
= (grad u) · U, 
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FIGURE 30 

where grad u is the gradient vector 

(2) grad u = uxi + uy j. 

Because ux and uy are zero everywhere in D, grad u is evidently the  

zero vector  at all points on L. Hence it follows from equation (1) 

that the derivative du/ds is zero along L; and this means that u is 

constant on L. 

Finally, since there is always a finite number of such line 

segments, joined end to end, connecting any two points P and Q in 

D (Sec. 11), the values of u at P and Q must be the same. We may 

conclude, then, that there is a real constant a such that u(x, y)    a  

throughout D. Similarly, v(x, y)    b ; and we find that f (z)     a     bi 

at each point in D. 

 

EXAMPLES 

As pointed out in Sec. 24, it is often possible  to determine where a 

given function     is analytic by simply recalling various differentiation 

formulas in Sec. 20. 

 

EXAMPLE 1. The quotient 

z3 + 4 

f (z) = 
(z2 − 3)(z2 + 1) 

When a function is given in terms of its component functions  

y 

L s P
U D 

P 
Q 

O x 
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u(x, y) and  v(x, y), its analyticity can be demonstrated by direct 

application of the Cauchy– Riemann equations. 

 

EXAMPLE 2. If 

f (z) = cosh x cos y + i sinh x sin y, 

the component functions are 

u(x, y) = cosh x cos y and v(x, y) = sinh x sin y. 
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     Because 

ux = sinh x cos y = vy  and uy = − cosh x sin y = −vx 

 

everywhere, it is clear from the theorem in Sec. 22 that f is entire. 

 

Finally, we illustrate how the theorem in Sec. 24 can be used to 

obtain other properties of analytic functions. 

 

EXAMPLE 3. Suppose that a function 

f (z) = u(x, y) + iv(x, y) 

and its 

conjugate 

 

f (z) = u(x, y) − iv(x, y) 

are both analytic in a given domain D. It is now easy to show that f 

(z) must be constant throughout D. 

To do this, we write f (z) as 

f (z) = U(x, y) + iV (x, y)

U(x, y) = u(x, y) and V (x, y) = −v(x, y).
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Because of the analyticity of f (z), the Cauchy–Riemann 

equations 

(1) ux = vy, uy = −vx 

 

hold in D; and the analyticity of f (z) in D tells us that 

(2) Ux = Vy, Uy = −Vx. 

In view of relations (1), equations (3) can also be written 

(3) ux = −vy, uy = vx. 

By adding corresponding sides of the first of equations (2) 

and (4), we find that 

ux 0 in D. Similarly, subtraction involving 

corresponding sides of the second of equations 

(2)  and (4) reveals that  vx  0.  According to 

expression (8)  in Sec. 21,  then, 

f j(z) = ux + ivx = 0 + i0 = 0 ; 

and it follows from the theorem in Sec. 24 that f (z) is constant 

throughout D. 

 

EXAMPLE 4. As in Example 3, we 

consider a function f that is analytic 

throughout a given domain D. Assuming 

further that the modulus f (z) is constant 

throughout D, one can prove that f (z) must 

be constant there too. This result is needed 

to obtain an important result later on in 

Chap. 4 (Sec. 54). 

The proof is accomplished by writing 

(4) |f (z)| = c for all z in D, 

where c is a real constant. If c = 0, it 

follows that f (z) = 0 everywhere in D. 

If 

c /= 0, the fact that (see Sec. 5) 
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= 

√ 
= = 

= 
= 

= 

f (z)f (z) = c2 

tells us that f (z) is never zero in D. Hence 

c2 

f (z) = 
f (z) 

for all z in D, 

 

and it follows from this that f (z) is analytic 

everywhere in D. The main result in Example 

3 just above thus ensures that f (z) is constant 

throughout D. 

 

THE EXPONENTIAL FUNCTION 

As anticipated earlier (Sec. 14), we define here the exponential function 

ez by writing 

(1) ez = exeiy (z = x + iy), 

where Euler’s formula (see Sec. 6) 

(2) eiy = cos y + i sin y 

is used and y  is to be taken in radians. We  see from this definition that 

ez reduces      to the usual exponential function in calculus when y 0 ; 

and, following the con- vention used in calculus, we often write exp z 

for ez. 

Note that since the positive  nth root  n e  of e  is assigned to ex 

when x   1/n  (n   2, 3,.. .), expression (1) tells us that the complex 

exponential function ez is also n e when z 1/n (n 2, 3,. . .). This is an 

exception to the convention (Sec. 9) that would ordinarily require us 

to interpret e1/n as the set of nth roots of e. 

 
According   to   definition (1),  exeiy ex+iy; and, as already 

pointed out  in  Sec. 14, the definition is suggested by the additive 
property 

ex1 ex2  = ex1+x2 
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= = 

of ex in calculus. That property’s extension, 

(3) ez1 ez2 = ez1+z2 , 

to complex analysis is easy to verify. To do this, we write 

z1 = x1 + iy1   and z2 = x2 + iy2. 

The

n 

 

ez1 ez2 = (ex1 eiy1 )(ex2 eiy2 ) = (ex1 ex2 )(eiy1 eiy2 ). 

But x1 and x2 are both real, and we know from Sec. 7 that 

eiy1 eiy2  = ei(y1+y2). 

and, 

since 

ez1 ez2 = e(x1+x2)ei(y1+y2); 

 

(x1 + x2) + i(y1 + y2) = (x1 + iy1) + (x2 + iy2) = z1 + 

z2, 

the right-hand side of this last equation becomes ez1+z2 . Property (3) 

is now estab- lished. 

Observe how property (3) enables us to write ez1−z2 ez2 = ez1 , or 

 (4) ez
1 

  

z −z 

ez2 
= e 1 2 . 

From  this  and the fact that e0 1,  it  follows that 1/ez e−z. 
There are a number of other important properties of ez that are expected. 

According to Example 1 in 
dz
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z x z 

| | 

everywhere in the z plane. Note that the differentiability of ez for all z tells 

us that 

ez is entire (Sec. 24). It is also true that 

(5) ez /= 0 for any complex number z. 

This is evident upon writing definition (1) in the form 

ez = ρeiφ  where ρ = ex and φ = y, 

which tells us that 

 

(7) |e |=  e and arg(e ) = y + 2nπ (n = 0, ±1, ±2,...). 

Statement (6) then follows from the observation that ez is always 

positive. 

Some properties of ez are, however, not expected. For example, since 

ez+2πi  = eze2πi    and e2πi = 1, 

we find that ez is periodic, with a pure imaginary period of 2πi: 

 

(8) ez+2πi  = ez. 

For another property of ez that ex does not have, we note that while ex 

is 
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always positive, ez can be negative. We  recall (Sec. 6), for instance, that 

eiπ       1.    In fact, 

ei(2n+1)π = ei2nπ+iπ = ei2nπeiπ = (1)(−1) = −1 (n = 0, ±1, ±2,...). 

There are, moreover, values of z such that ez is any given nonzero 

complex number. This is shown in the next section, where the 

logarithmic function is developed, and    is illustrated in the following 

example. 

 

30. THE LOGARITHMIC FUNCTION 

Our motivation for the definition of the logarithmic function is based on 

solving the equation 

(1) ew = z 

for w, where z is any nonzero complex number. To do this, we note 
that when z 

and w are written z = rei© (−π < © ≤ π) and w = u + iv, equation (1) 

becomes 

eueiv = rei©. 

According to the statement in italics at the beginning of Sec. 9 about 

the equality      of two complex numbers expressed in exponential 

form, this tells us that 

eu = r and v = © + 2nπ 

where n is any integer. Since the equation eu r  is the 

same as u ln r, it follows that equation 

(1) is satisfied if and only if w has one of the values 

w = ln r + i(© + 2nπ) (n = 0, ±1, ±2,...). 

Thus, if we write 

 

(2) log z = ln r + i(© + 2nπ) (n = 0, ±1, ±2,...), 
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3 

equation (1) tells us 

that (3) 

 

elog z = z (z /= 0), 

which serves to motivate expression (2) as the definition of the (multiple-
valued) logarithmic function of a nonzero complex variable z = rei©. 

EXAMPLE 1. If z = −1 − 
√

3i, then r = 2 and © = −2π/3. 

Hence 

log(−1 − 
√

3i) = ln 2 + 

i

.

 

2
π 

− 
3 

+ 

2nπ

Σ

= ln 2 + 2

.

n − 
1 

Σ 

πi  

(n = 0, ±1, ±2,...). 
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z x z 

= 

94 Elementary Functions chap. 3 

 

It  should  be  emphasized that  it  is  not  true that  the  left-hand side  of 

equation 

(3) with the order of the exponential and logarithmic functions 

reversed reduces to just z. More precisely, since expression (2) can 

be written 

log z = ln |z|+ i arg z 

and since (Sec. 29) 

|e |=  e and arg(e ) = y + 2nπ (n = 0, ±1, ±2,.. .) 

when z = x + iy, we know that 

log(ez) = ln |ez|+ i arg(ez) = ln(ex) + i(y + 2nπ) = (x + iy) + 2nπi 

(n = 0, ±1, ±2,...). 

That 

is, (4) 

 

log(ez) = z + 2nπi (n = 0, ±1, ±2,.. .). 

The principal value  of log z is the value obtained from equation (2)  

when n

 

0 there and is denoted by Log z. Thus 

(5) Log z = ln r + i©. 

Note that Log z is well defined and single-valued when z /= 0 and that 

(6) log z = Log z + 2nπi (n = 0, ±1, ±2,.. .). 

It reduces to the usual logarithm in calculus when z is a positive real 
number z = r.  To see this, one need only  write  z = rei0,  in  which  
case  equation  (5)  becomes Log z = ln r. That is, Log r = ln r. 

EXAMPLE 2. From expression (2), we find that 

log 1 = ln 1 + i(0 + 2nπ) = 2nπi (n = 0, ±1, ±2,...). 

As anticipated, Log 1 = 0. 
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Our final example here reminds us that although we were unable 

to find loga- rithms of negative real numbers in calculus, we can now 

o so. 

 

EXAMPLE 3. Observe that 

log(−1) = ln 1 + i(π + 2nπ) = (2n + 1)πi (n = 0, ±1, ±2,...) 

and that Log (−1) = πi. 



  
KARPAGAM ACADEMY OF HIGHER EDUCATION 

 

CLASS: II BSC MATHEMATICS       

 COURSE NAME: MATRIC SPACES AND COMPLEX ANALYSIS  

COURSE CODE: 16MMU402               UNIT: IV                BATCH-2016-2019 
 

  

Prepared by K.Aarthiya, Asst Prof, Department of Mathematics,KAHE      Page 
15/51 
 

= 

sec. 31 Branches and Derivatives of 

Logarithms 95 

 

31. BRANCHES AND DERIVATIVES OF LOGARITHMS 

If z = reiθ is a nonzero complex number, the argument θ has any one of 

the values 

θ = © + 2nπ (n = 0, ±1, ±2,...), where © = Arg z. Hence the definition 

log z = ln r + i(© + 2nπ) (n = 0, ±1, ±2,. . .) 

of the multiple-valued logarithmic function in Sec. 30 can be written 

 

(1) log z = ln r + iθ. 

If we let α denote any real number and restrict the value of θ in 

expression (1) 

so that α < θ < α + 2π, the function 

(2) 

 

with 

components 

(3) 

log z = ln r + iθ (r > 0, α < θ < α + 

2π), 

 

u(r, θ) = ln r and v(r, θ) = θ,  

is single-valued and continuous in the stated domain (Fig. 35). Note 

that if the function (2) were to be defined on the ray θ  α, it  would not  
be continuous  there.  For if z is a point on that ray, there are points 

arbitrarily close to z  at which  the  values of v are near α and also 

points such that the values of v are near α + 2π. 
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+ 

r 
r reiθ 

 

 

 

FIGURE 35 

 

 

The function (2) is not only continuous but also analytic throughout 

the domain  r > 0, α < θ < α 2π since the first-order partial derivatives 

of u and v are con-  tinuous there and satisfy the polar form (Sec. 23) 

rur = vθ , uθ = −rvr 

of the Cauchy–Riemann equations. Furthermore, according to Sec. 23, 

log z = e−iθ 

(u 
+ iv ) = e−iθ 

. 
1 

+ i0

Σ 

= 
1 

; 

y 

O x 

dz 
r 

d 
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96 Elementary Functions chap. 3 

 

that is, 

(4) 

In 

particular, 

(5) 

 
d 

log z 
1

 
dz z 

 

 
d  

Log z

 
1
 

dz
 
z 

 

(|z| > 0,α < arg z < α + 

2π). 

 

(|z| > 0, −π < Arg z < 

π). 



  
KARPAGAM ACADEMY OF HIGHER EDUCATION 

 

CLASS: II BSC MATHEMATICS       

 COURSE NAME: MATRIC SPACES AND COMPLEX ANALYSIS  

COURSE CODE: 16MMU402               UNIT: IV                BATCH-2016-2019 
 

  

Prepared by K.Aarthiya, Asst Prof, Department of Mathematics,KAHE      Page 
18/51 
 

= 

= 

A branch of a multiple-valued function f is any single-valued 
function F that 

is analytic in some domain at each point z of which the value F (z) is 

one of the values of f . The requirement of analyticity, of course, 

prevents F from taking on a random selection of the values of f . 

Observe that for each fixed α, the single-valued function (2) is a 

branch of the multiple-valued function (1). The function 

(6) Log z = ln r + i© (r > 0, −π < © < π) 

is called the principal branch. 

A branch cut  is a portion of a line or curve that is introduced in 

order to define   a branch F of a multiple-valued function f . Points on 

the branch cut for F are singular points (Sec. 24) of F , and any point 

that is common to all branch cuts of f  is  called a branch point.  The 

origin  and the ray θ  α  make up  the branch cut for   the branch (2) of 

the logarithmic function. The branch cut for the principal branch 

(6) consists of the origin and the ray © π. The origin is evidently a 

branch point for branches of the multiple-valued logarithmic function. 

Special care must be taken in using branches of the logarithmic 

function, espe- cially since expected identities involving logarithms do 

not always carry over from calculus. 

 

 

32. SOME IDENTITIES INVOLVING LOGARITHMS 

If z1 and z2 denote any two nonzero complex numbers, it is 

straightforward to show that 

 

(1) log(z1z2) = log z1 + log z2. 

This statement, involving a multiple-valued function, is to be 

interpreted in the same way that the statement 

 

(2) arg(z1z2) = arg z1 + arg z2 

was in Sec. 8. That is, if values of two of the three logarithms are 
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| | =  | || | 

= = − 

= − 

specified, then  there is a value of the third such that equation (1) 

holds. 

The verification of statement (1) can be based on statement (2) in 

the following way.  Since   z1z2    z1  z2   and  since  these  moduli  are  

all  positive  real  numbers, we know from experience with logarithms 

of such numbers in calculus that 

ln |z1z2|= ln |z1|+ ln |z2|. 

So it follows from this and equation (2) that 

 

(3) ln |z1z2|+ i arg(z1z2) = (ln |z1|+ i arg z1) + (ln |z2 |+ i arg z2). 

Finally, because of the way in which equations (1) and (2) are to be 

interpreted, equation (3) is the same as equation (1). 

 

EXAMPLE. To  illustrate statement (1),  write z1 z2 1 and 

recall from Examples 2 and 3 in Sec. 30 that 

log 1 = 2nπi and log(−1) = (2n + 1)πi, 

where n = 0, ±1, ±2,. .. . Noting that z1z2 = 1 and using the values 

log(z1z2) = 0 and log z1 = πi, 

we find that equations (1) is satisfied when the value log z2 πi is 

chosen. 

If, on the other hand, the principal values 

Log 1 = 0 and Log(−1) = πi  

are 

used, 

 

Log(z1z2) = 0 and Log z1 + log z2 = 2πi  

for the same numbers z1 and z2. Thus statement (1), which is  

sometimes  true when log  is replaced by Log  (see Exercise 1), is not 

always true when principal values    are used in all three of its terms. 

 

Verification of the  statement 
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z2 

= 
= 

n 

= 

= − 

n n n 

(4) log

. 
z1 

Σ 

= log z1 − log z2, 

 

which is to be interpreted in the same way as statement (1), is left to  

the exercises.  We include here two other properties of log z that 

will be of special interest in 

Sec. 33. If z is a nonzero complex number, then 

(5) zn = en log z (n = 0 ± 1, ±2,.. .) 

for any value of log z that is taken. When n   1, this reduces, of course, 

to relation    (3), Sec. 30. Equation  (5)  is  readily  verified by  writing  

z  reiθ and  noting  that each side becomes rneinθ . 

It is also true that when z /= 0, 

(6) z1/n = exp

. 
1 

log z

Σ 

(n = 1, 2, . . .). 

 

That is, the term on the right here has n distinct values, and those values 

are the nth roots of z. To  prove this, we write z      r exp(i©), where © 

is the principal value       of arg z. Then, in view of definition (2), Sec. 

30, of log z, 

exp

. 
1 

log z

Σ 

= exp

Σ 
1 

ln r + 
i(© + 2kπ) 

Σ

 
n n n 

where k = 0, ±1, ±2,... . Thus 

(7) exp

. 
1 

log z

Σ 

= 
√n r exp

Σ

i

. 
© 

+ 
2kπ 

ΣΣ 

(k = 0, ±1, ±2, . . 

.). 

 

Because exp(i2kπ/n) has distinct values only when k  0, 1 , . . . ,n  1, 

the right- hand side of equation (7) has only n values. That right-

hand side is, in fact, an expression for the nth roots of z (Sec. 9), and 

so it can be written z1/n. This establishes property (6), which is 

actually valid when n is a negative integer too  
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34. TRIGONOMETRIC FUNCTIONS 

Euler’s formula (Sec. 6) tells us that 

eix = cos x + i sin x and e−ix = cos x − i sin x 

for every real number x. Hence 

eix − e−ix = 2i sin x and eix + e−ix = 2 cos x. 
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− + 

= 

= 

That is, 

It is, therefore, natural to define the sine and cosine functions of a 

complex variable 

z as follows: 

 

(1) sin z 

= 

eiz e−iz 

2i 
and cos z 

= 

eiz e−iz 

2 
. 

These functions are entire since they are linear combinations 
(Exercise 3, Sec. 25)    of the entire functions eiz and e−iz. Knowing 
the derivatives 

 
d  

eiz ieiz  and  
d
 

dz 
 dz 

e−iz = −ie−iz 

of those exponential functions, we find from equations (1) that 

 

(2) 

 
d  

sin z cos z and  
d
 

dz  
 dz 

cos z = − sin z. 

It is easy to see from definitions (1) that the sine and cosine 

functions remain  odd and even, respectively: 

 

(3) 

 

(4) 

sin(−z) = − sin z, cos(−z) = cos z. 

 

eiz = cos z + i sin z. 

This is, of course, Euler’s formula (Sec. 6) when z is real. 

A variety of identities carry over from trigonometry. For instance 

(see Exercises 2 and 3), 

(5) 

(5) 

sin(z1 + z2) = sin z1 cos z2 + cos z1 sin z2, 

cos(z1 + z2) = cos z1 cos z2 − sin z1 sin z2. 

From these, it follows readily that 

(6) (7) 
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si
n 

2z = 2 sin z cos z, cos 2z = cos2 z − sin2 z, 

sin 
.
z + 

π Σ 
= cos z, sin 

.
z − 

π Σ 
= − cos z,   

and [Exercise 

4(a)] (9) 

2 2 
 

sin2 z + cos2 z = 1. 

The periodic character of sin z and cos z is also evident: 

(10) sin(z + 2π) = sin z, sin(z + π) = − sin z, 

(11) cos(z + 2π) = cos z, cos(z + π) = − cos z. 
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106 Elementary Functions chap. 3 

 

When y is any real number, definitions (1) and the hyperbolic 

functions 

sinhy = ey − 

e−y 
 

2 

and coshy 

= 

ey + 

e−y 
 

2 

from calculus can be used to write 

 

(12) sin(iy) = i sinhy and cos(iy) = coshy. 

Also, the real and imaginary components of sin  z  and cos z  can be 

displayed in  terms of those hyperbolic functions: 

(13) 

(14) 

sin z = sin x cosh y + i cos x sinh y, 

cos z = cos x cosh y − i sin x sinh y, 
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2 2 2 

2 2 2 

= 

= 
= = ± ± 

where z = x + iy. To obtain expressions (13) and (14), we write 

z1 = x and z2 = iy 

in identities (5) and (6) and then refer to relations (12). Observe that 

once expres-  sion (13) is obtained, relation (14) also follows from the 

fact (Sec. 21) that if the derivative of a function 

 

f (z) = u(x, y) + iv(x, y) 

exists at a point z = (x, y), then 

f j(z) = ux(x, y) + ivx(x, y). 

Expressions (13) and (14) can be used (Exercise 7) to show that 

(15) | sin z| = sin x + sinh y, 

(16) | cos z| = cos x + sinh y. 

Inasmuch as sinh y tends to infinity as y tends to infinity, it is clear from 

these two equations that sin z and cos z are not bounded on the complex 

plane, whereas the absolute values of sin x and cos x are less than or 

equal to unity for all values of x. (See the definition of a bounded 

function at the end of Sec. 18.) 

A zero of a given function f (z) is a number z0 such that f (z0) 

0. Since sin z becomes the usual sine function in calculus when z is 

real, we know that the real numbers z   nπ  (n    0,    1,    2,.. .) are 

all zeros of sin z. To  show that there are no other zeros, we assume 

that sin z 0 and note how it follows from equation (15) that 

sin2 x + sinh2 y = 0. 

This sum of two squares reveals that 

sin x = 0 and sinh y = 0. 

Evidently, then, x = nπ (n = 0, ±1, ±2,...) and y = 0 ; that is, 

(17) 
 

 

Sinc

e 

sin z = 0 if and only if z = nπ (n = 0, ±1, 

±2,...). 



  
KARPAGAM ACADEMY OF HIGHER EDUCATION 

 

CLASS: II BSC MATHEMATICS       

 COURSE NAME: MATRIC SPACES AND COMPLEX ANALYSIS  

COURSE CODE: 16MMU402               UNIT: IV                BATCH-2016-2019 
 

  

Prepared by K.Aarthiya, Asst Prof, Department of Mathematics,KAHE      Page 
26/51 
 

2 

= 

= 

= 

c

o

s

 z = − sin
.
z − 

π Σ
, 

 

according to the second of identities (8), 

 

(18) cos z = 0 if and only if z 

= 

π 

2 
+ nπ (n = 0, ±1, ±2,...). 

So, as was the case with sin z, the zeros of cos z are all real. 

The other four trigonometric functions are defined in terms of 

the sine and  cosine functions by the expected relations: 

sin z cos z 
(19) tan z = , cot z = ,   

 

(20) 

cos z 

sec z
 1

 
cos z 

sin 
z 
1 

, csc z = 
sin z

. 

Observe that the quotients tan z and sec z are analytic everywhere 

except at the singularities (Sec. 24) 

π 

z = 
2 

+ nπ (n = 0, ±1, ±2,...), 

which are the zeros of cos z. Likewise, cot z and csc z have 

singularities at the zeros of sin z, namely 

z = nπ (n = 0, ±1, ±2,...). 

By differentiating the right-hand sides of equations (19) and (20), we 

obtain the anticipated differentiation formulas 

 

(21) 

 

(22)  

d  
tan z sec2 z, 

d
 

dz
 d
z 
d  

sec z sec z tan z,  
d
 

dz 
 dz 

cot z = − csc2 z, 

csc z = − csc z cot z. 
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dt 

The periodicity of each of the trigonometric functions defined by 

equations (19) and 

(20) follows readily from equations (10) and (11). For example, 

 

(23) tan(z + π) = tan z. 

Mapping properties of the transformation w = sin z are especially 

important 

in the applications later on. A reader who wishes at  this  time  to  learn  

some of those properties is sufficiently prepared to read Sec. 96 (Chap. 

8), where they are discussed. 

 

36. DERIVATIVES OF FUNCTIONS w (t ) 

In order to introduce integrals of f (z) in a fairly simple way, we 

need to first consider derivatives of complex-valued functions w of a 

real variable t . We write 

(1) w(t) = u(t) + iv(t), 

where the functions u and v are real-valued functions of t . The 

derivative 

wj(t),  or   
d 

w(t), 
dt 

of the function (1) at a point t is defined as 

(2) wj(t) = uj(t) + ivj(t), 

provided each of the  derivatives uj and  vj exists  at t . 

From definition (2), it follows that for every complex constant z0 = 

x0 + iy0, 

d 
[z0w(t)] = [(x0 + iy0)(u + iv)]j = [(x0u − y0v) + i(y0u + x0v)]j 

= (x0u − y0v)j + i(y0u + x0v)j = (x0u
j − y0v

j) + i(y0u
j + x0v

j)

But 

 

and 

so (3) 
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= 

 

(x0u
j 

− 

y0v
j) 

+ i(y0u
j + x0v

j) = (x0 + iy0)(u
j + ivj) = z0w

j(t), 

 
d 

[z0w(t)]
 z0w

j(t)
. dt 

 

 
Another expected rule that we shall often use is 
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= + 

dt 

= + 

≤ ≤ 

= 

where z0 = x0 + iy0. To verify this, we write 

ez0t = ex0teiy0t = ex0t cos y0t + iex0t sin y0t 

and refer to definition (2) to see that 

 
d 

ez0t (ex0t  cos y0t)
j   i(ex0t  sin 

y0t)j. dt 

Familiar rules from calculus and some simple algebra then lead us to the 

expression 

d 
ez0t = (x0 + iy0)(e

x0t cos y0t + iex0t sin y0t), 

or 
d 

ez0t (x0   
iy0)e

x0teiy0t. dt 

This is, of course, the same as equation (4). 

Various other rules learned in calculus, such as the  ones  for  

differentiating  sums and products, apply just as they do for real-valued 

functions of t . As was the case with property (3) and formula (4), 

verifications may be based on corresponding rules in calculus. It should 

be pointed out, however, that not every such rule carries over to 

functions of type (1). The following example illustrates this. 

 
EXAMPLE.   Suppose that w(t) is continuous on an interval a    

t    b; that  is, its component functions u(t) and v(t) are continuous 
there. Even if wj(t) exists when a < t < b, the mean value theorem 
for derivatives no longer applies. To be precise, it is not necessarily 
true that there is a number c in the interval a < t < b 

such that 

wj(c) 
w(b) − w(a)

.
 

b − a 

To see this, consider the function w(t) = eit on the interval 0 ≤ t ≤ 2π. 
When that function is used, |wj(t)|= |ieit |=  1; and this means that the 
derivative wj(t) is never zero, while w(2π) − w(0) = 0. 
 

39. CONTOURS 
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≤ ≤ 

= 
/= /= 

.
z = 

Integrals of  complex-valued functions of  a complex  variable are 

defined on curves  in the complex plane, rather than on just intervals of 

the real line. Classes of curves that are adequate for the study of such 

integrals are introduced in this section. 

A set of points z = (x, y) in the complex plane is said to be an arc if 

(1) x = x(t), y = y(t) (a ≤ t ≤ b), 

where x(t) and y(t) are continuous functions of the real parameter t . 

This definition establishes a continuous mapping of the interval a    t    

b into the xy, or z, plane;     and the image points are ordered according 

to increasing values of t . It is convenient to describe the points of C 

by means of the equation 

 

(2) 

 

wher 

z = z(t) (a ≤ t ≤ b), 

 

z(t) = x(t) + iy(t). 

The arc C  is a simple arc,  or a Jordan arc,∗ if it does not cross 
itself ; that is,     C  is simple  if z(t1)    z(t2) when t1    t2. When the arc C  
is simple  except for the     fact that z(b) z(a), we  say  that  C  is  a  
simple closed curve,  or  a  Jordan  curve. Such a curve is positively 
oriented when it is in the counterclockwise direction. 

The geometric nature of a particular arc often suggests  different 

notation  for   the parameter t in equation (2). This is, in fact, the case in 

the following examples. 

 

 

tion

s 

(4) 

EXAMPLE 1. The polygonal line (Sec. 11) defined by means of the 

equa- 

 

x + ix when 0 ≤ x ≤ 
1, x + i when 1 ≤ x ≤ 

2 

and consisting  of a line  segment from 0  to  1 + i  followed by one 
from 1 + i  to     2 + i (Fig. 36) is a simple arc. 
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FIGURE 36 

 

∗Named for C. Jordan (1838–1922), pronounced jor-donj. 

y 

1 
1 + i 2 + i 

O 1 2 x 
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EXAMPLE 2. The unit circle 

(5) z = eiθ (0 ≤ θ ≤ 2π)  

about the origin is a simple closed curve, oriented in the 

counterclockwise direction. So is the circle 

(6) z = z0 + Reiθ (0 ≤ θ ≤ 2π), 

centered at the point z0 and with radius R (see 

Sec. 6). The same set of points can make 

up different arcs. 

EXAMPLE 3. The arc 

(7) z = e−iθ (0 ≤ θ ≤ 2π)  

is not the same as the arc described by equation (5). The set of 

points is the same,    but now the circle is traversed in the 

clockwise direction. 

 

EXAMPLE 4. The points on the arc 

(8) z = ei2θ (0 ≤ θ ≤ 2π)  

are the same as those making up the arcs (5) and (7). The arc here 

differs, however, from each of those arcs since the circle is traversed 

twice in the counterclockwise direction. 

 

The parametric representation used for any given arc C is, of 

course, not unique. It is, in fact, possible to change the interval over 

which the parameter ranges to any other interval. To be specific, 

suppose that 

(9) t = φ(τ) (α ≤ τ ≤ β), 

where φ is a real-valued function mapping an interval α ≤ τ  ≤ β  onto 
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≤ ≤ 

, 

the interval 

a  ≤ t  ≤ b  in representation (2). (See Fig. 37.) We  assume that φ  is 

continuous with 
 

 

 

 

 

 

 

 

FIGURE 37 

t  = φ (τ) 

 

 

a continuous derivative. We also assume that φj(τ ) > 0 for each τ ; this 

ensures that 
t increases with τ . Representation (2) is then transformed by equation (9) into 

(10) 

wher

e 

(11) 

z = Z(τ) (α ≤ τ ≤ β), 

 

Z(τ) = z[φ(τ)]. 

This is illustrated in Exercise 3. 

Suppose now that the components xj(t) and yj(t) of the derivative (Sec. 

37) 

(12) zj(t) = xj(t) + iyj(t) 

of the function (3), used to represent C, are continuous on the entire 

interval a t

 b. 

The arc is then called a differentiable arc, and the real-valued function 

 

t 

 
b ( , b) 

a 
( , a) 

O 
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∫ 

∫ 

= 

/= 

|z [φ(τ)]|φ (τ ) dτ. 

= 

|zj(t)|= [xj(t)]2 + [yj(t)]2 

is integrable over the interval a t b. In fact, according to the 

definition of arc length in calculus, the length of C is the number 

b 
(13) L |zj(t)| dt. 

 

The value of  L  is  invariant  under  certain  changes  in  the  

representation  for C that is used, as one would expect. More precisely, 

with the change of variable indicated in equation (9), expression (13) 

takes the form [see Exercise 1(b)] 

∫ β 
j j 

So, if representation (10) is used for C, the derivative (Exercise 4) 

(14) Zj(τ ) = zj[φ(τ)]φj(τ ) 

enables us to write expression 

(13) as 

β 
L 

α 

 

|Zj(τ )| dτ. 

Thus the same length of C would be obtained if representation (10) were to be 
used. 
If equation (2) represents a differentiable arc and if zj(t) 0 

anywhere in the interval a < t < b, then the unit tangent vector 

T 
zj(t) 

|zj(t)| 

is well defined for all t in that open interval, with angle of inclination 
arg zj(t). Also, when T turns, it does so continuously as the parameter t 
varies over the entire interval 

a 

α α 

= 

L = 
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= = 

∫ ∫ 

sec. 39 Exercises 125 

 
a < t < b. This expression for T is the one learned in calculus when 
z(t) is interpreted as a radius vector. Such an arc is said to be 
smooth. In referring to a smooth arc z z(t) (a t b), then, we agree that 
the derivative zj(t) is continuous on the closed interval a t b and 
nonzero throughout the open interval a < t < b. 

A contour, or piecewise smooth arc, is an arc consisting of a finite 
number of smooth arcs joined end to end. Hence if equation (2) 
represents a contour, z(t) is continuous, whereas its derivative zj(t) is 
piecewise continuous. The polygonal line 
(4) is,  for  example,  a  contour.  When  only  the  initial  and final  
values  of  z(t) are 
the same, a contour C is called a simple closed contour. Examples are the 

circles 

(5) and (6), as well as the boundary of a triangle or a rectangle taken in 

a specific direction. The length of a contour or a simple closed contour 

is the sum of the   lengths of the smooth arcs that make up the 

contour. 

The points on any simple closed curve or simple closed contour C 

are boundary points of two distinct domains,  one of which is the 

interior of C  and is bounded.   The other, which is the exterior of C, is 

unbounded. It will be convenient to accept 

this statement, known as the Jordan curve theorem, as geometrically 

evident; the proof is not easy.∗ 

 

40. CONTOUR INTEGRALS 

We turn now to integrals of complex-valued functions f of the 

complex variable z. Such an integral is defined in terms of the 

values f (z) along a given contour C, extending from a point z   z1 to 

a point z   z2 in the complex plane. It is, therefore, a line integral ; 

and its value depends, in general, on the contour C as well as on the 

function f . It is written 

 

 
f (z) dz or 

C 

z2 
f (z) dz, 

z1 
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≤ ≤ 
= = 

∫ 

≤ ≤ 

the latter notation often being used when the value of the integral is 

independent       of the choice of the contour taken between two fixed 

end points. While the integral may be defined directly as the limit of a 

sum, we choose to define it in terms of a definite integral of the type 

introduced in Sec. 38. 

Suppose that the equation 

 

(1) z = z(t) (a ≤ t ≤ b) 

 

represents a contour C, extending from a point z1 z(a) to a point z2 

z(b). We assume that f [z(t )] is piecewise continuous (Sec. 38) on 

the interval a t b and refer to the function f (z) as being piecewise 

continuous on C. We then define the line integral, or contour 

integral, of f along C in terms of the parameter t : 

 

(2) 

∫ 

f (z) dz 

= 
 

 
b 
f [z(t)]zj(t) dt. 

a 

 
Note that since  C  is a  contour, zj(t) is also piecewise continuous on a
 t b; 
and so the existence of integral (2) is ensured. 

The value of a contour integral is invariant under a change in the 

representation of its contour when the change is of the type (11), Sec. 

39. This can be seen by following the same general procedure that was 

used in Sec. 39 to show the invariance of arc length. 

C 
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It follows immediately from definition (2) and properties of 

integrals of complex-valued functions w(t) mentioned in Sec. 38 that 

(3) 

∫   

z0f (z) dz = z0 

∫   

f (z) dz, 
 
 

for any complex constant z0, and 

 

(4

) 

∫   
Σ
f (z) + g(z)

Σ 
dz 

= 

∫

 
 

f (z) dz + 

∫

 
 

 

g(z) dz. 

C 

C 

C C 
C C 
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− 

− 

. a 

   

Associated with the contour C  used in integral (2) is the contour  

C, consisting of the same set of points but with the order reversed so  

that  the  new  contour  extends from the point z2 to the point z1 (Fig. 

39). The contour C has parametric representation 

z = z(−t) (−b ≤ t ≤ −a). 
 

 

 

 

 

 

 

 

 

 

FIGURE 39 

 

 

43. UPPER BOUNDS FOR MODULI OF CONTOUR 

INTEGRALS 

We turn now to an inequality involving contour integrals that is 

extremely important in various applications. We present the result as a 

theorem but preface it with a  needed lemma involving functions w(t) 

of the type encountered in Secs. 37 and 38. 

 
Lemma. If w(t) is a piecewise continuous complex-valued 

function  defined  on an interval a ≤ t ≤ b, then 

 

This inequality clearly holds when the value of the integral on the 

left is zero. Thus, in the verification we may assume that its value is a 

nonzero complex number and write 

Now the left-hand side of this equation is a real number, and so the 

right-hand side    is too. Thus, using the fact that the real part of a real 

number is the number itself,     we find that 

C C C 

y 

C 
z2 

– C 

z1 

O x 

∫ 
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r0 = Re 

or 

b 
e−iθ0 w(t) dt, 

a 

Re[e−iθ0 w(t)] ≤ |e−iθ0 w(t)|= |e−iθ0 | |w(t)|= |w(t)|, 

and it follows from equation (3) that 

Because r0 is, in fact, the left-hand side of inequality (1), the 

verification of the  lemma is complete. 

∫ 
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= ≤ ≤ 

∫ 

∫ ∫ 
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46. CAUCHY–GOURSAT THEOREM 

In Sec. 44, we saw that when a continuous function f has an 

antiderivative in a domain D, the integral of f (z) around any given 

closed contour C lying entirely in D has value zero. In this section, 

we present a theorem giving other conditions on a function f which 

ensure that the value of the integral of f (z) around a simple closed 

contour (Sec. 39) is zero. The theorem is central to the theory of 

functions of a complex variable; and some modifications of it, 

involving certain special types of domains, will be given in Secs. 48 

and 49. 

We let C denote a simple closed contour z z(t) (a t b), described 

in the positive sense (counterclockwise), and we assume that f is 

analytic at each point interior to and on C. According to Sec. 40, 

 

(1) 

 

and 

if 

∫ 

f (z) dz 

= 
 

 
b 
f [z(t)]zj(t) dt 

a 

f (z) = u(x, y) + iv(x, y) and z(t) = x(t) + iy(t), 

the integrand f [z(t)]zj(t) in expression (1) is the product of the 

functions 

u[x(t), y(t)] + iv[x(t), y(t)], xj(t) + iyj(t) 

of the real variable t . Thus 

 

(2

) 

∫ 

f (z) dz 

= 
 

b 
(ux
j 

a 

− vyj)dt + 

i 

b 
(vx
j 

a 

+ uyj)dt. 

In terms of line integrals of real-valued functions of two real variables, then, 

 

(3

) ∫ 

f (z) dz = 

∫

 
  C C 

C 

C 

; 
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u 

dx 

− v 

dy 

+ i 
∫

 

v dx + u dy. 

   

Observe that expression (3) can be obtained formally by replacing f 

(z) and dz on the left with the binomials 

u + iv and dx + i dy, 

respectively, and expanding their product. Expression (3) is, of 

course, also valid when C is any contour, not necessarily a simple 

closed one, and when f [z(t)] is only piecewise continuous on it. 

We next recall a result from calculus that enables us to express the 

line inte-  grals on the right in equation (3) as double integrals. Suppose 

that two real-valued functions P (x, y) and Q(x, y), together with their 

first-order partial derivatives, are continuous throughout the closed 

region R  consisting  of all points  interior to and    on the simple closed 

contour C. According to Green’s theorem, 
∫ 

Pdx + Qdy = 

∫  ∫ 

(Qx − Py)dA. 
  
  R C 

R C 

C C C 
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Now f is continuous in  R, since it is analytic there. Hence the 

functions  u and   v are also continuous  in R. Likewise,  if the  
derivative f j of f is  continuous  in R, so are the first-order partial 
derivatives of u and v. Green’s theorem then enables       us to rewrite 
equation (3) as 

(3) 

∫ 

f (z) dz = 

∫  ∫ 

(−vx − uy)dA + i 

∫  ∫ 

(ux − vy)dA. 
   
   

But, in view of the Cauchy–Riemann equations 

ux = vy, uy = −vx, 

the integrands of these two double integrals are zero throughout R. So 
when f is analytic in R and f j is continuous there, 

(5) 

∫ 

f (z) dz = 0. 
 
 

This result was obtained by Cauchy in the early part of the nineteenth 

century. 

Note that once it has been established that the value of this integral 

is zero,       the orientation of C  is immaterial. That is, statement (5) is  

also true if  C  is taken    in the clockwise direction, since then 

 

f (z) dz = − f (z) dz = 0. 
C −C 

 

EXAMPLE. If C is any simple closed contour, in either direction, 

then 

∫  

exp(z3) dz = 0. 
 

This is because the composite function f (z) = exp(z3) is analytic 
everywhere and its derivative f j(z) = 3z2 exp(z3) is continuous 
everywhere. 

C 

C 
C 

R R C 
R R C 
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Goursat∗ was the first to prove that the condition of continuity on f 
j can be omitted. Its removal is important and will allow us to show, for 
example, that the derivative f j of an analytic function f is analytic 
without having to assume the continuity of f j, which follows as a 
consequence. We  now state the revised form     of Cauchy’s result, 
known as the Cauchy–Goursat theorem. 

 

Theorem. If a function f is analytic at all points interior to and 

on a simple closed contour C, then ∫ 

f (z) dz = 0. 
 
 

  
∗E. Goursat (1858–1936), pronounced gour-sahj. 

C 
C 
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The proof is presented in the  next section, where, to be specific, we 

assume    that C is positively oriented. The reader who wishes to accept 

this theorem without proof may pass directly to Sec. 48. 

 

47. PROOF OF THE THEOREM 

We preface the proof of the Cauchy–Goursat theorem with a lemma. We 

start by forming subsets of the region R which consists of the points on 

a positively oriented simple closed contour C together with the points 

interior to C. To do this, we draw equally spaced lines parallel to the 

real and imaginary axes such that the distance between adjacent vertical 

lines is the same as that between adjacent horizontal lines. We thus form 

a finite number of closed square subregions, where each point of R lies 

in at least one such subregion and each subregion contains points of R. 

We refer to these square subregions simply as squares, always keeping 

in mind that by a square we mean a boundary together with the points 

interior to it. If a particular square contains points that are not in R, we 

remove those points and call what remains a partial square. We thus 

cover the region R with a finite number of squares and partial squares 

(Fig. 55), and our proof of the following lemma starts with this 

covering. 

 

Lemma. Let f be analytic throughout a closed region R 

consisting of the points interior to a positively oriented simple 

closed contour C together with the points on C itself. For any 

positive number ε, the region R can be covered with a finite number 

of squares and partial squares, indexed by j  1, 2,.. ., n, such that in 

each one there is a fixed point zj for which the inequality 

 
(1) 

.
.
. f (z) − f (zj) 

− f j(z )

.
.
. < ε 

 

  
. z − zj 

j . 

 

is satisfied by all points other than zj in that square or partial square. 
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FIGURE 55 

is satisfied by all points other than zj in that square or partial square. 

y 

C 

O x 
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= 
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To start the proof, we consider the possibility that in the covering 

constructed  just prior to the statement of the lemma, there is some 

square or partial square in which no point zj exists such that inequality 

(1) holds for all other points z in it.          If that subregion is a square, 

we construct four smaller squares by drawing line segments joining the 

midpoints  of its opposite sides (Fig. 55). If the subregion is        a 

partial square, we treat the whole square in the same manner and then 

let the portions that lie outside of R  be discarded. If in any one of these 

smaller  subre-  gions, no point zj exists such that inequality (1) holds 

for all other points z in it, we construct still smaller squares and partial 

squares, etc. When this is done to each of  the original subregions that 

requires it,  we find  that  after a finite  number of steps, the region R 

can be covered with  a finite  number  of  squares and partial squares  

such that the lemma is true. 

To verify this, we suppose that the needed points zj do not exist 

after subdivid- ing one of the original subregions a finite number of 

times and reach a contradiction. We let σ0 denote that subregion if it is a 

square; if it is a partial square, we  let σ0 denote the entire square of 

which it is a part. After we subdivide  σ0, at least one of  the four 

smaller squares, denoted by σ1, must contain points of R but no 

appropriate point zj. We then subdivide σ1 and continue in this 

manner. It may be that after a 
square σk−1 (k 1, 2,.. .) has been subdivided, more than one of the four 
smaller squares constructed from it can be chosen. To make a 
specific choice, we take σk 

to be the one lowest and then furthest to the left. 

In view of the manner in which the nested infinite sequence 

(2) σ0, σ1, σ2,.. . , σk−1, σk,...  

of squares is constructed, it is easily shown (Exercise 9, Sec. 49) that 

there is a point z0 common to each σk; also, each of these squares 

contains points of R other than possibly z0. Recall how the sizes of the 

squares in the sequence are decreasing, and note that any δ 
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|  − | 

.

.

. f (z) − f (z0) 
− f j(z0)

.

.

. < ε 
 

neighborhood z z0 < δ of z0 contains such squares when their  diagonals 

have lengths less than δ. Every δ neighborhood z  z0  < δ therefore con- 

tains points of R distinct from z0, and this means that z0 is an 

accumulation point of 

R. Since the region R is a closed set, it follows that z0 is a point in R. 

(See Sec. 11.) Now the function f is analytic throughout R and, in 

particular, at z0. Conse- 
quently, f j(z0) exists, According to the definition of derivative (Sec. 
19), there is, for each positive number ε, a δ neighborhood |z − z0| < 
δ such that the inequality 

 

. z − z0 . 

is satisfied by all points distinct from z0 in that neighborhood. But the 

neighborhood   z      z0  < δ  contains a square σK when the integer K  is 

large enough that the length  of a diagonal of that square is less than δ 

(Fig. 56). Consequently, z0 serves as the point zj in inequality (1)  for  

the  subregion  consisting  of  the  square  σK or  a  part of σK. Contrary 

to the way in which the sequence (2) was formed, then, it is not 

necessary to subdivide σK. We thus arrive at a contradiction, and the 

proof of the lemma is complete. 



  
KARPAGAM ACADEMY OF HIGHER EDUCATION 

 

CLASS: II BSC MATHEMATICS       

 COURSE NAME: MATRIC SPACES AND COMPLEX ANALYSIS  

COURSE CODE: 16MMU402               UNIT: IV                BATCH-2016-2019 
 

  

Prepared by K.Aarthiya, Asst Prof, Department of Mathematics,KAHE      Page 48/51 
 

154 Integrals chap. 4 

 

 

 

 

 

 

 

 

 

 

FIGURE 56 

 

Continuing with a function f which is analytic throughout a 

region R consisting of a positively oriented simple closed contour C 

and points interior to it, we are now ready to prove the Cauchy–

Goursat theorem, namely that 

(3) 

∫ 

f (z) dz = 0. 
 

Given an arbitrary positive number ε, we consider the covering of R in 

the 
statement of the lemma. We then define on the j th square or partial 
square a function 

δj(z) whose values are δj(zj) = 0, where zj is the fixed point in 

inequality (1), and 

f (z) − f (zj) (4) δ (z) = − f j(z ) when z /= z . 
j 

 

According to inequality 

(1), (5) 

z − 

zj 

j j 
 

 

 

 

|δj(z)| < ε  

C 

y 

z0 

O x 
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0 

= − 

− 
|  − |=  

z − (−i) 
dz = 2πi  

= 
5 

. 

= 
2πi 

∫

 

∫ 

z − z 
=

 

at all points z in the subregion on which δj(z) is defined. Also, the function 

δj(z) 

is continuous throughout the subregion since f (z) is continuous there 

and 

50. CAUCHY INTEGRAL FORMULA 

Another fundamental result will now be established. 

Theorem. Let f be analytic everywhere inside and on a simple closed 

contour 

C, taken in the positive sense. If z0 is any point interior to C, then 

 

(1

) 

1 
f (z0) 

C 

f (z) dz 
. 

z − z0 

 

Formula (1) is called the Cauchy integral formula. It tells us that 

if a function f is to be analytic within and on a simple closed 

contour C, then the values of f interior to C are completely 

determined by the values of f on C. 

When the Cauchy integral formula is written as 

 

(2

) 

f (z) dz 
2πif (z0), 

C 

it can be used to evaluate certain integrals along simple closed contours. 

 

EXAMPLE. Let C be the positively oriented circle |z|= 2. Since the func- 
tio
n 

z 

f (z) = 
9 − z2 

is analytic within and on C and since the point z0 i is interior to C, 

formula 

(2) tells us that 

We begin the proof of the theorem by letting Cρ denote a 

positively oriented circle  z  z0  ρ, where ρ  is small enough that Cρ is 

interior to C  (see Fig. 66). Since the  quotient  f (z)/(z  z0) is 

analytic between and on the  contours  Cρ and C, it follows from the 

principle of deformation of paths (Sec. 49) that 
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FIGURE 66 

Now the fact that f is analytic, and therefore continuous, at z0 

ensures that corresponding to each positive number ε, however 

small, there is a positive number δ such that 

 

(5) |f (z) − f (z0)| < ε whenever |z − z0| < δ. 

Let the radius ρ  of the circle Cρ be smaller than the number δ  in the 

second of     these  inequalities.  Since   z   z0   ρ < δ  when z  is  on  Cρ, 

it  follows  that  the  first of inequalities (5) holds when z is such a 

point; and the theorem in Sec. 43, giving upper bounds for the moduli 

of contour integrals. 

 

POSSIBLE QUESTION 

2 MARK QUESTION 

 

1. State the Cauchy Integral Formula. 

2. Write the equation of logarithmic function. 

3. Write the equation of Cauchy–Goursat theorem 

4. Write the Cauchy integral formula. 

      5. State Cauchy–Goursat theorem. 

 

 

y 

C C 

 
z0 

O x 
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8 MARK QUESTION 

1. Give any two examples of analytic function. 

2. Let f be analytic everywhere inside and on a simple closed contour C, taken 

in the positive sense. If zo is any point interior to C, then prove that f (zo) = 

1 /2πi(∫
𝑓(𝑧)𝑑𝑧

𝑧−𝑧𝑜
). 

 

3. Explain about Exponential Function. 

4. Give an example of Contour Integrals. 

5. Describe the logarithmic function. 

6. State and Prove the Laurent series. 

7. Explain the Trigonometric Function. 

8.  State  and Prove Cauchy–Goursat theorem. 

9. Discribe the Derivatives of Functions w(t). 

10. If a function f is analytic at all points interior to and on a simple closed 

contour C,then prove that ∫  f (z) dz = 0. 

 

 

 

 

 

 

 

 



OPTION 1 OPTION 2 OPTION 3 OPTION 4 ANSWER

A function f is __________ in an open set if it has a derivative 

everywhere in that set.

Analytic Derivative Differentiati

on

Not analytic Analytic

A function f(z)= 1/z is _________ at each non zero point in 

the finite plane

Derivative Differentiati

on

Not analytic Analytic Analytic

A function f(z)= |z|^2 is _________ at each non zero point in 

the finite plane

Derivative Differentiati

on

Not analytic Analytic Not analytic

If two function are analytic in a domain D then their sum is 

__________ in D

Derivative Differentiati

on

Not analytic Analytic Analytic

If two function are analytic in a domain D then their product is 

__________ in D

Derivative Differentiati

on

Not analytic Analytic Analytic

The quotient P(z)/Q(z) of two polynomials is analytic in any 

domain throughout which Q(z) is________.

Equal to 0 Not equal to 

0

Equal to 1 Not equal to 

1

Not equal to 

0

d/dz{g[f(z)]}=_____ g '[f(z)] f '(z) g '[f(z)] f(z) f '(z) g ' f '(z) g '[f(z)] f '(z)

If f ' (z) = 0 everywhere in a domain D, then f(z) must to be 

__________ throughout D.

Analytic Derivative Differentiati

on

Constant Constant

If f ' (z) = ___________ everywhere in a domain D, then f(z) 

must to be constant throughout D.

0 1 z infiity 0

The conjugate of u+iv is_______ u v u-iv v-iu u-iv

The conjugate of u-iv is_______ u v u+iv v+iu u+iv

The conjugate of C-R equation is _________. Ux=-

Vy,Uy=Vx

Ux=Vy,Uy=-

Vx

Ux=Vy,Uy=

Vx

Ux=-

Vy,Uy=-Vx

Ux=Vy,Uy=-

Vx

The exponential function is writing by____________. e e^x e^y e^z e^z

d/dz[e^z]=______ 0 1 e^z infinity e^z

The value of e^z  is ______ for any complex number z. Equal to 0 Not equal to 

0

Equal to 1 Not equal to 

1

Not equal to 

0

|e^z|=_____ e e^x e^y e^z e^x

e^ix=________. cos x + isin 

x

cos x - isin x cos x + sin x cos x / isin x cos x + isin x

2i sin x=______ (e^ix )- (e^-

ix)

(e^ix )+( e^-

ix)

(e^ix )- 

(e^ix)

(e^x )- (e^-

x)

(e^ix )- (e^-

ix)

2i cos x=______ (e^ix )- (e^-

ix)

(e^ix )+( e^-

ix)

(e^ix )- 

(e^ix)

(e^x )- (e^-

x)

(e^ix )+ (e^-

ix)

d/dz[e^iz]=______ e^iz ie^z ie^iz e^z ie^iz

d/dz[sin z]=_______. sin z cos z  -sin z  -cos z cos z

UNIT IV

Karpagam Academy of Higher Eduacation
Coimbatore - 21.

Department of Mathematics 

Metric Spaces and Complex Analysis (17MMU602 A) 



d/dz[cos z]=_______. sin z cos z  -sin z  -cos z  -sin z

sin^2 [z] + cos ^2 [z] =_______. 0 1 sin z + cos z sin z - cos z 1

sin (iy)=_______. sinhy i sinhy coshy i coshy i sinhy

cos (iy)=______. sinhy i sinhy coshy i coshy coshy

d/dz[sec z]=______. sec z tan z sec z tan z sec^2 z sec z tan z

The derivative of complex valued function w of a real 

varriable t is written as w(t)=___________.

u(t)+v(t) u(t)+iv(t) u(t)-v(t) u(t)-iv(t) u(t)+iv(t)

The derivative of the function w '(t) is defined as__________. u '(t)+v '(t) u '(t)+iv '(t) u '(t)-v '(t) u '(t)-iv '(t) u '(t)+iv '(t)

d/dz[tan z]=_____. sec z sec^2 z cot z cot ^2z sec^2 z

cos z/sin z=________. tan z cot z sec z csc z cot z

sin z/cos z=________. tan z cot z sec z csc z tan z

1/cos z =_______. tan z cot z sec z csc z sec z

1/sin z=________. tan z cot z sec z csc z csc z

 If z=n(22/7) where n=…-2,-1,0,1,2…. Then sin z=______. 0 1 -1 2 0

An arc consisting of a finite number of smooth arcs joined ene 

to end is called _________.

Smooth arc Arcs Curve Contour Contour 

An arc consisting of a finite number of __________ joined 

ene to end is called  contour

Smooth arc Arcs Curve Contour Smooth arc

If the equation z=z(t) is represent a contour, z(t) is ________. Continuous Discontinuou

s

Derivative Arc Continuous

If the equation z=z(t) is represent a __________, z(t) is 

continuous

Smooth arc Arcs Curve Contour Contour 

When only the initial and final values of z(t) are the_______, 

a contour C is called a simple closed contour.

Same Diffeent 0 1 Same

When only the initial and final values of z(t) are the same, a 

contour C is called a __________ contour.

Open Simple open Closed Simple 

closed

Simple 

closed

(e^ix) - (e^-ix)=________. 2i sin x sin x 2i cos x cos x 2i sin x

(e^ix) + (e^-ix)=________. 2i sin x sin x 2i cos x cos x cos x

sin(iy)=__________. i sinhy sinhy i coshy coshy i sinhy

cos(iy)=_________. i sinhy sinhy i coshy coshy coshy

A function f is analytic in an open set if it has a ________ 

everywhere in that set.

Analytic Derivative Differentiati

on

Not analytic Derivative



The quotient P(z)/Q(z) of two polynomials is _______ in any 

domain throughout which Q(z) is not equal to 0.

Analytic Derivative Differentiati

on

Not analytic Analytic
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= 

 

UNIT V 

SYLLABUS 

 

Liouville’s theorem and the fundamental theorem of algebra. Convergence of 

sequences and series, Taylor series and its examples - Laurent series and its 

examples, absolute and uniform convergence of power series. 

 

LIOUVILLE’S THEOREM AND THE FUNDAMENTAL 

THEOREM OF ALGEBRA 

Cauchy’s inequality can be used to show that no entire function except 

a constant is bounded in the complex plane. Our first theorem 

here,which is known as Liouville’s theorem, states this result in  a 

somewhat different  way. 

 

Theorem 1. If a function f is entire and bounded in the 

complex plane, then 

f (z) is constant througout the plane. 

 
To start the proof, we assume that f is as stated and note that 

since f is entire, Theorem 3 in Sec. 52 can be applied with any 
choice of z0 and R. In particular, Cauchy’s inequality (2) in that 
theorem tells us that when n = 1, 

MR 
(1) |f 

j
(z0)| ≤ . 

Moreover, the boundedness condition on f tells us that a 

nonnegative constant M 

exists  such  that f (z) M  for all z ; and, because the constant MR in  

inequality 

(1) is always less than or equal to M, it follows that 

(2) 
.
.f 

j
(z0).

. 
≤ 

M 
, 

where R can be arbitrarily large. Now the number M in inequality (2) 
is independent of the value of R that is taken. Hence that inequality 
holds for arbitrarily large values of R only if f 

j
(z0) 0. Since the 

choice of z0 was arbitrary, this means that 
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2 

n n 
2 

f 
j
(z) 0 everywhere in the complex plane. Consequently, f is a 

constant function, 
according to the theorem in Sec. 24. 

The following theorem, called the fundamental theorem of 

algebra, follows readily from Liouville’s theorem. 

 

Theorem 2. Any polynomial 

P (z) = a0 + a1z + a2z
2
 + · · ·  + anz

n
 (an /= 0) 

of degree n (n ≥ 1) has at least one zero. That is, there exists at least one 
point z0 

such that P (z0) = 0. 

The proof here is by contradiction. Suppose that P (z) is not zero 

for any value  of z. Then the reciprocal 
 

      is clearly entire, and it is also bounded in the complex plane. 

To show that its is bounded, we first write 

Next, we observe that a sufficiently large positive  number  R  can   

                be  found  such that the modulus of each of the quotients in                               

                expression (3) is less than the number     an /(2n) when z > R. The    

                generalized  triangle  inequality  (10),  Sec.  4,  which applies to n  

             complex numbers, thus shows that 

 

 

 

Consequent

ly, 

|w| < 
|an|

 whenever |z| > R. 

|a + w|≥ ||a |− |w|| > 
|an|

 whenever |z| > R. 
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≥ 

| |≤  

= 

− 

− 

 

This inequality and expression (4) enable us to write 

(5) |P (z)|= |a  + w||z|n > 
|an| 

|z|n > 
|an| 

R
n
  whenever |z| > R. 

n n 
2 2 

Evidently, then, 

 

 

 

 

So f is bounded in the region exterior to the disk z R. But f is 

continuous in that closed disk, and this means that f is bounded 

there too (Sec. 18). Hence f is bounded in the entire plane. 

It now follows from Liouville’s theorem that f (z), and consequently 
P (z), is constant. But P (z) is not constant, and we have reached a 
contradiction. 

The fundamental theorem tells us that any polynomial P (z) of 

degree n (n) can be expressed as a product of linear factors: 

(6) P (z) = c(z − z1)(z − z2) ·· · (z − zn), 

where c and zk (k 1, 2,..., n) are complex constants. More precisely, 

the theorem ensures that P (z) has a zero z1. Then, according to 

Exercise 9, Sec. 54, 

P (z) = (z − z1)Q1(z), 

where Q1(z) is a polynomial of degree n 1. The same argument, 

applied to Q1(z), reveals that there is a number z2 such that 

P (z) = (z − z1)(z − z2)Q2(z), 

where Q2(z) is a polynomial of degree n 2. Continuing in this way, we 

arrive at expression (6). Some of the constants zk in expression (6) may, 

of course, appear  more than once, and it is clear that P (z) can have no 

more than n distinct zeros. 

 175 
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|  − | 
| | ≤  | | 

|  − |=  

iθ 

MAXIMUM MODULUS PRINCIPLE 

In this section, we derive an important result involving maximum 

values of  the moduli of analytic functions. We begin with a needed 

lemma. 

 

Lemma.  Suppose that    f (z)  f (z0) at each point z in some 

neighborhood z z0 < ε in which f is analytic. Then f (z) has the 

constant value f (z0) through- out that neighborhood. 

 

To prove this, we assume that f satisfies the stated conditions and 

let z1 be any point other than z0 in the given neighborhood. We then let 

ρ  be the distance between z1 and  z0.  If  Cρ  denotes  the  positively  

oriented  circle  z   z0   ρ,  centered  at  z0 and passing through z1 (Fig. 

70), the Cauchy integral formula tells us that 

 

the parametric representation 

z = z0 + ρe
iθ

 (0 ≤ θ ≤ 2π)  

for Cρ enables us to write equation (1) as we note from expression (2) 

that when a function is analytic within and on a given circle, its value at 

the center is the arithmetic mean of its values on the circle. This result is 

called Gauss’s mean value theorem. 

 

 

 

 

 

 

 

 

FIGURE 70 

 

From equation  we obtain the inequality 

 

(4) |f (z0 + ρe   )| ≤ |f (z0)| (0 ≤ θ  ≤ 2π), 

y 

z1 

z0 

O x 
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| | 

This lemma can be used to prove the  following  theorem, which is  

known  as the maximum modulus principle. 

 
Theorem. If a function f is analytic and not constant in a given 

domain D, then |f (z)| has no maximum value in D. That is, there is 
no point z0 in the domain such that |f (z)| ≤ |f (z0)| for all points z in 
it. 

Given that f is analytic in D, we shall prove the theorem by 

assuming that f (z) does have a maximum value at some point z0 

in D and then showing that f (z) must be constant throughout D. 

The general approach here is similar to that taken in the proof of 

the lemma in Sec. 27. We draw a polygonal line L lying in D and 

extending from z0 to any other point P in D. Also, d represents the 

shortest distance from points on L to the boundary of D. When D is 

the entire plane,  d  may have any positive  value. Next,  we observe 

that there is a finite sequence of points 

z0, z1, z2,...,  zn−1, zn 

along L such that zn coincides with the point P  and 

|zk − zk−1| < d (k = 1, 2,. .. ,  n). 

In forming a finite sequence of neighborhoods (Fig. 71) 

N0, N1, N2,..., Nn−1, Nn 

where each Nk has center zk and radius d, we see that f is analytic 
in  each of  these neighborhoods, which are all contained in D, and 
that the center of each neighborhood Nk (k = 1, 2,. .. , n) lies in the 
neighborhood Nk−1. 

 

 

 

 

 

 

FIGURE 71 

 

N 0 
N1 N2 L Nn – 1 

z0 z1 2 z 

Nn 

 
zn – 1 

P 
zn 
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| | 

| | ≤  | | 
= 

= 

= 

| | 

= | |≤  | | 

| | /= 
| |=   

| | 

Since f (z) was assumed to have a maximum value in D at 

z0, it also has a maximum value in N0 at that point. Hence, 

according to the preceding lemma, f (z) has the constant value f 

(z0) throughout N0. In particular, f (z1) f (z0). This means that f 

(z) f (z1) for each point z in N1 ; and the lemma can be applied 

again, this time telling us that 

 

f (z) = f (z1) = f (z0) 

when z is in N1. Since z2 is in N1, then, f (z2) f (z0). 

Hence f (z) f (z2) 

when z is in N2 ; and the lemma is once again applicable, showing that 

f (z) = f (z2) = f (z0) 

when z is in N2. Continuing in this manner, we eventually reach the 

neighborhood 

Nn and arrive at the fact that f (zn) f (z0). 

Recalling that zn coincides with the point P , which is any point 

other than z0 in D, we may conclude that f (z) f (z0) for every point 

z in D. Inasmuch as f (z) has now been shown to be constant 

throughout D, the theorem is proved. 

If a function f that is analytic at each point in the interior of a 

closed bounded region R is also continuous throughout R, then the 

modulus f (z) has a maximum value somewhere in R (Sec. 18). That 
is, there exists a nonnegative constant M such that |f (z)| ≤ M  for all 

points z in R, and equality holds for at least one such point. 

If f is a constant function, then f (z) M for all z in R. If, 

however, f (z) is not constant, then, according to the theorem 

just proved, f (z) M for any point z in the interior of R. We thus 

arrive at an important corollary. 

 

Corollary. Suppose that a function f is continuous on a closed 

bounded region R and that it is analytic and not constant in the 

interior of R. Then the maximum value of f (z) in R, which is 

always reached, occurs somewhere on the boundary of R and never 

in the interior. 
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= 
≤ ≤ ≤ ≤ 

= + 

| |=  
= 

EXAMPLE. Let R denote the rectangular region 0 x π, 0 y 1. 

The corollary tells us that the modulus of the entire function f (z) 

sin z has a maximum value in R that occurs somewhere on the 

boundary of R and not in its interior. This can be verified directly 

by writing  

|f (z)| = 
,

sin
2
 x + sinh

2
 y 

and noting that the term sin
2
 x is greatest when x = π/2 and that the 

increasing function  sinh
2
 y  is  greatest  when  y = 1.  Thus  the  

maximum  value  of  |f (z)| in  R occurs at the boundary point z = 
(π/2, 1) and at no other point in R (Fig. 72). 

 

 

 

 

 

 

 

FIGURE 72 

When the function f in the corollary is written f (z) u(x, y) 

iv(x, y), the component function u(x, y) also has a maximum value 

in R which is assumed on the boundary of R and never in the 

interior, where it is harmonic (Sec. 26). This is because the 

composite function g(z) exp[f (z)] is continuous in R  and analytic  

and not constant in the interior. Hence its modulus g(z) exp[u(x, y)], 

which is continuous in R, must assume its maximum value in R on 

the boundary. In view of the increasing nature of the exponential 

function, it follows that the maximum value of u(x, y) also occurs 

on the boundary. 

Properties of minimum values of |f (z)| and u(x, y) are treated in the 

exercises. 

 

 

 

 

 

y 
 

1 

O x 
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CONVERGENCE OF SEQUENCES 

An infinite sequence 

(1) z1, z2,...,  zn,...  

of complex numbers has a limit z if, for each positive number ε, there 

exists a positive integer n0 such that 

(2) |zn − z| < ε whenever n > n0. 

Geometrically, this means that for sufficiently large values of n, the 

points zn lie in any given ε neighborhood of z (Fig. 73). Since we can 

choose ε as small as we please, 

 

it follows that the points zn become arbitrarily close to  z  as  their  

subscripts  increase. Note that the value of n0 that is needed will, in  

general, depend  on  the value of ε. 

The sequence (1) can have at most one limit. That is, a limit z is 

unique if it exists (Exercise 5, Sec. 56). When that limit exists, the 

sequence is said to converge  to z ; and we write 

 lim zn z. 
n→∞ 

If the sequence has no limit, it diverges. 

 

Theorem. Suppose that zn = xn + iyn (n = 1, 2,.. .) and z = x + iy. 

Then 

(4) 

 

if and only 

if 

(5) 

lim zn z 
n→∞ 

 
lim  xn = x   and lim yn = y. 

n→∞ n→∞ 
 

To prove this theorem, we first assume that conditions (5) hold and 

obtain condition (4) from it. According to conditions (5), there exist, for 

each positive number ε, positive integers n1 and n2 such that 



       KARPAGAM ACADEMY OF HIGHER EDUCATION 

 

CLASS: II BSC MATHEMATICS       

 COURSE NAME: MATRIC SPACES AND COMPLEX ANALYSIS 

COURSE CODE: 16MMU402               UNIT: V               BATCH-2016-2019 
 

Prepared by K.Aarthiya, Asst Prof, Department of Mathematics,KAHE      Page 10/20 
 

. 

. 

Hence if n0 is the larger of the two integers n1 and n2, 
ε ε 

 

Sinc

e 

|xn − x| < 
2 

and |yn − y| < 
2 

whenever n > n0. 

 

|(xn + iyn) − (x + iy)|= |(xn − x) + i(yn − y)|≤ |xn − x|+ |yn − y|, 

 
|xn − x|≤ |(xn − x) + i(yn − y)|= |(xn + iyn) − (x + iy)| 

 

|yn − y|≤ |(xn − x) + i(yn − y)|= |(xn + iyn) − (x + iy)|; 

and this means that 

|xn − x| < ε and |yn − y| < ε whenever n > n0. 

then, 
ε ε

 

Conversely, if we start with condition (4), we know that for each  

positive number ε, there exists a positive integer n0 such that 

|(xn + iyn) − (x + iy)| < ε whenever n > n0.

That is, conditions (5) are satisfied. 

Note how the theorem enables us to write 

lim (xn + iyn) = lim xn + i lim yn 
n→∞ n→∞ n→∞ 

whenever we know that both limits  on the right exist or that the one 

on the left   exists. 

 

CONVERGENCE OF SERIES 

An infinite series 

 

(1) 
∞ 

zn = z1 + z2 +· · · + zn +· · · 
n=1 

of complex numbers converges to the sum S if the sequence 

 

 

(2) 
N 

SN = zn = z1 + z2 +· · · + zN (N = 1, 2,. . .) 
n=1 
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. 

. 

= 

of partial sums converges to S; we then write 

∞ 

zn = S. 
n=1 

Note that since a sequence can have at most  one limit,  a series can 

have at most    one sum. When a series does not converge, we say 

that it diverges. 

 

Theorem. Suppose that zn = xn + iyn (n = 1, 2,.. .) and S = X + iY. 

Then 

This theorem tells us, of course, that one can write 
 

whenever it is known that the two series on the  right converge or 

that the  one on    the left does. 

To prove the theorem, we first write the partial sums (2) as 

 

(5) 

 
 

SN = XN + iYN, 

 

(6) lim 
N 
→
∞ 

SN = S ; 

and, in view of relation (5) and the theorem on sequences in Sec. 55, 

limit (6) holds   if and only if 

 

(7) lim 
N 
→
∞ 

XN X and
 lim 

N →∞ 

YN = Y.  
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. 

. 

Limits (7) therefore imply statement (3), and conversely. Since XN 

and YN are the partial sums of the series (4), the theorem here is 

proved. 

This theorem can be  useful in  showing  that a  number  of  familiar 

properties  of series in calculus carry over to series whose terms are 

complex numbers. To illustrate how this is done, we include here two 

such properties and present them       as corollaries. 

 

Corollary  1.  If a series of complex numbers converges, the nth 

term converges to zero as n tends to infinity. 

 

Assuming that series (1) converges, we know from the theorem that 

if 

zn = xn + iyn (n = 1, 2,.. .), 

then each of the series (8) 

converges. We know, moreover, from calculus that the nth term of  a  

convergent series of real numbers approaches zero as n tends to infinity.  

 

lim zn = lim xn + i lim yn = 0 + 0 · i = 0 ; 
n→∞ n→

∞ 
n→∞ 
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| |≤  

= + | −  |= | − | 

n n n n 

and the proof of Corollary 1 is complete. 

It follows from this corollary that the terms of convergent series are 

bounded. That is, when series  (1)  converges,  there  exists  a  positive  

constant  M  such  that zn M for each positive integer n. (See Exercise 

9.) 

For another important property of series of complex numbers that 

follows from   a corresponding property in calculus, series (1) is said to 

be absolutely convergent     if the series 

 

 

Corollary 2. The absolute convergence of a series of complex 

numbers implies the convergence of that series. 

 

To prove Corollary 2, we assume that series (1) converges absolutely. 

Since 

|xn| ≤ 
,

x2 + y2    and |yn| ≤ 
,

x2 + y2, 

 

we know from the comparison test in calculus that the two series 

 

must converge. Moreover, since the absolute convergence of a series of 

real numbers implies the convergence of the series itself, it follows that 

the series (8) both converge. In view of the theorem in this section, 

then, series (1) converges. This finishes the proof of Corollary 2. 

In establishing the fact that the sum of a series is a given number S, it 

is often convenient to define the remainder ρN after N terms, using the 

partial sums (2) : 

 

(9) ρN = S − SN . 

Thus S SN    ρN ; and, since SN   S ρN  0 , we see that a series 
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. 
n 2 n 

|  − | 

. n 

converges to a number S if and only if the sequence of remainders 

tends to zero. 

 

make considerable use of this  observation in our treatment of  power 

series. They   are series of the form 

∞ 

an(z − z0) = a0 + a1(z − z0) + a2(z − z0) +· · · + an(z − z0) + ··· , 
n=0 

where z0 and the coefficients an are complex constants and z may be 

any point in a stated region containing z0. In such series, involving a 

variable z, we shall denote sums, partial sums, and remainders by 

S(z), SN (z), and ρN(z), respectively. 

 

TAYLOR SERIES 

We turn now to Taylor’s theorem, which is one of the most important 

results of the chapter. 

Theorem. Suppose that a function f is analytic throughout a disk 

z z0 < R0 , centered at z0 and with radius R0 (Fig. 74). Then f (z) has 

the power series represen- tation 

 

(1) 

 

wher

e 

 (2) 

∞ 

f (z) = an(z − z0) (|z − z0| < R0), 
n=0 

 
f 

(n)
(z0)  
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| | 
= 

 

 

 

 

 

 

 

 

FIGURE 74 

 

 

This is the expansion of f (z) into a Taylor series about the 

point z0. It is the familiar Taylor series from calculus, adapted to 

functions of a complex variable. With the agreement that 

f 
(0)

(z0) = f (z0) and

 0! = 1, 

series (1) can, of course, be written 

When it is known that f is analytic everywhere inside a circle 

centered at    z0, convergence of its Taylor series about z0 to f (z) 

for each point z within that circle is ensured; no test for the 

convergence of the series is even required. In fact, according to 

Taylor’s theorem, the series converges to f (z) within the circle 

about z0 whose radius is the distance from z0 to the nearest point z1 

at which f fails to  be analytic. In Sec. 65, we shall find that this is 

actually the largest circle centered at z0 such that the series 

converges to f (z) for all z interior to it. 

In the following section, we shall first prove Taylor’s theorem 

when z0 0, in which case f is assumed to be analytic throughout a 

disk z < R0 and series (1) becomes a Maclaurin series: 

 

The proof when z0 is arbitrary will follow as an immediate 

consequence. A reader  who wishes to accept the proof of Taylor’s 

theorem can easily skip to  the examples  in Sec. 59. 

 

y 

z 

R0 

z0 

O x 
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| |=  
| |=  

 

 PROOF OF TAYLOR’S THEOREM 

To  begin  the  derivation  of  representation (4), Sec. 57,  we  write  

z   r  and let C0 denote and positively oriented circle z r0, where r < 

r0 < R0 (see Fig. 75). Since f is analytic inside and on the circle C0 

and since the point z is interior to 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 75 

C0, the Cauchy integral formula 

To  accomplish  this,  we recall that  z r and that C0 has radius r0, 

where r0 > r. Then, if s is a point on C0, we can see that 

|s − z|≥ ||s|− |z|| = r0 − r. 

Consequently, if M  denotes the maximum value of |f (s)| on C0, 

Inasmuch as (r/r0) < 1, limit (7) clearly holds. 

To verify the theorem when the disk of radius R0 is centered at an 
arbitrary point z0, we suppose that f is analytic when |z − z0| < R0 
and note that the composite function f (z + z0) must be analytic 
when |(z + z0) − z0| < R0. This last inequality is, of course, just |z| < 
R0 ; and, if we write g(z) = f (z + z0), the analyticity of g in the disk 
|z| < R0 ensures the existence of a Maclaurin series representation: 
 (z0)

z
n
 (|z| < R0). 

y 

z 
s 

r r0 

O R0 
x 

C0 
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− 

− 

|  − | 

After  replacing  z by z z0 in this equation and its condition of 

validity,  we have  the desired Taylor series expansion (1) in Sec. 57. 

 

EXAMPLES 
 

for all points z interior to some circle centered at z0, then the power 

series here must be the Taylor series for f about z0, regardless of 

how those constants arise. This observation often allows us to find the 

coefficients an in Taylor series in more efficient ways than by 

appealing directly to the formula anf 
(n)

(z0)/n! in Taylor’s theorem. 

In the following examples, we use  the  formula  in  Taylor’s  

theorem  to  find the Maclaurin series expansions of some fairly simple 

functions, and we emphasize the use of those expansions in finding 

other representations. In our examples, we   shall freely use expected 

properties of convergent series, such as those verified in Exercises 7 

and 8, Sec. 56. 

 
EXAMPLE 1. Since the function f (z) = e

z
 is entire, it has a 

Maclaurin series representation which is valid for all z. Here f 
(n)

(z) = e
z
 (n = 0, 1, 2,.. .) ; 

 

LAURENT SERIES 

If a function f fails to be analytic at a point z0, one cannot apply 

Taylor’s theorem at that point. It is often possible, however, to find 

a series representation for f (z) involving both positive and negative 

powers of z  z0. (See Example 5, Sec. 59,  and also Exercises 11, 12, 

and 13 for that section.) We now present the theory of uch 

representations, and we begin with Laurent’s theorem. 

Theorem. Suppose that a function f is analytic throughout an 

annular domain R1 < z z0 < R2 , centered at z0 , and let C denote any 

positively oriented simple closed contour around z0 and lying in that 

domain (Fig. 76). Then, at each point in the domain, f (z) has the 

series representation 

 

 

 



       KARPAGAM ACADEMY OF HIGHER EDUCATION 

 

CLASS: II BSC MATHEMATICS       

 COURSE NAME: MATRIC SPACES AND COMPLEX ANALYSIS 

COURSE CODE: 16MMU402               UNIT: V               BATCH-2016-2019 
 

Prepared by K.Aarthiya, Asst Prof, Department of Mathematics,KAHE      Page 18/20 
 

− 

− 

= 

|  − | ∞ 
|  − | ∞ 

|  − |=  
|  − | 

|  − | 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 76 

 

Note how replacing  n by n in the second series in 

representation (1) enables us to write that series as In either one of the 

forms (1) and (4), the representation of f (z) is called a Laurent 

series. 
Observe that the integrand in expression (3) can be written f 

(z)(zz0)
n−1

. Thus it is clear that when f is actually analytic throughout 
the disk z-z0 < R2, this integrand is too. Hence all of the coefficients bn 
are zero; and, because 

If, however, f fails to be analytic at z0 but is otherwise analytic 

in the disk     z  z0  < R2, the radius R1 can be chosen arbitrarily 

small. Representation (1) is  then valid in the punctured disk 0 < z z0 

< R2. Similarly, if f is analytic at each point in the finite plane 

exterior to the circle  z    z0    R1, the condition of validity is R1 <  z   

z0  <   . Note that if f is analytic everywhere in the finite plane 

except at z0, series (1) is valid at each point of analyticity, or when 

0 < z z0 < . 

We shall prove Laurent’s theorem first when z0 0,  which  means  

that  the annulus is centered at the origin. The verification of the 

theorem when z0 is arbitrary will follow readily; and, as was the case 

with Taylor’s theorem, a reader can skip     the entire proof without 

difficulty. 

 

PROOF OF LAURENT’S THEOREM 

y 

z 

R1 

z0 
R2 

C 

O x 
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≤ | |≤  

We start the proof by forming a closed annular region r1 ≤ |z|≤ r2 that is 
contained in the domain R1 < |z| < R2 and whose interior contains both 
the point z and the contour C (Fig. 77). We let C1 and C2 denote the 
circles |z|= r1 and |z|= r2, 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 77 
 

respectively, and we assign them a positive orientation. Observe that 

f is analytic on C1 and C2, as well as in the annular domain between 

them. 

Next, we construct a positively oriented circle γ with center at z and 

small  enough to  be contained in the  interior  of the  annular  region  r1     

z     r2, as shown in Fig. 77. It then follows from the adaptation of the 

Cauchy–Goursat theorem to integrals of analytic functions around 

oriented boundaries of multiply connected domains (Sec. 49) that 

But, according to the Cauchy integral formula, the value of the 

third integral here is 2πif (z). Hence 

 

ABSOLUTE AND UNIFORM CONVERGENCE OF 

POWER SERIES 

This section and the three following it are devoted mainly to various 

properties of power series. A reader who wishes to simply accept the 

theorems and the corollary in these sections can easily skip the proofs 

in order to reach  more quickly.We recall from  that a  series of complex 

numbers  converges absolutely  if the series of absolute values of those 

y 

z 

r r1 

s s 

r2 

C1 
O R1 R2 x 

C2 

C 
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numbers converges. The following theorem concerns the absolute 

convergence of power series.                                                           .    

POSSIBLE QUESTIONS 

2 MARK QUESTIONS 

1. State the Liouville’s theorem. 

2. State the absolute convergence of power series. 

      3. State the Laurent series. 

      4. Write the any two equations of Exponential Function. 

5. Write the equation of Taylor series. 

 

8 MARK QUESTIONS 
1.  If a function f is entire and bounded in the complex plane, then prove that f 

(z) is constant throughout the plane. 

2. State and Prove the absolute convergence of power series. 

3. If a series of complex numbers converges, then n th term converges to zero 

as n tends to infinity. 

4. State and prove the Liouville’s theorem. 

5. Prove that any polynomial P(z) = a0 + a1 z + a2 z2 +· · ·+an zn (an ≠0) of 

degree n (n ≥ 1) has at least one zero. That is, there exists at least one point 

z0 such that P(zo) = 0. 

6. State and Prove the Taylor series. 

7. Suppose that zn = xn + iyn (n = 1, 2, . . .) and z = x + iy. Then lim zn = z as 

n→∞ if and only if lim xn = x  as n→∞ and lim yn = y as n→∞. 

8. Suppose that a function f is analytic throughout a disk |z – zo| < Ro,centered 

at zo and with radius Ro. Then prove that f (z) has the power series 

representation 

                          f (z) =  𝑎𝑛(𝑧 − 𝑧0)𝑛∞
𝑛=0       (|z – z0| < R0), 

      where an = f (n)(z0)/n! (n = 0, 1, 2, . . .).That is, the series is converges to f    

       (z) when z lies in the stated open disk. 

9. Suppose that zn = xn + iyn (n = 1, 2, . . .) and S = X + iY. Then prove that   

 𝑧𝑛 = 𝑆∞
𝑛=1  if and only if  𝑥𝑛 = 𝑥∞

𝑛=1  and  𝑦𝑛 = 𝑦∞
𝑛=1   

10. Prove that the absolute convergence of a series of complex numbers 

implies the convergence of  that series. 

    



OPTION 1 OPTION 2 OPTION 3 OPTION 4 ANSWER

If a function f is entire and bounded in the complex plan, then 

f(z) is ___________ throughtout the plan

Constant Continuous Derivative Convergent Constant

If a function f is entire and __________ in the complex plan, 

then f(z)  is constant throughtout the plan

Closed Open Bounded Convergent Bounded

Any polynimial P(z) of degree n has at least _______ zero 1 2 Finite Infinit 1

For each positive number epsilon , therre exists a positive 

integer m such that |zn-z|< epsilon whenever n>m. Here z is 

called_______ point

Limit Arbitrary Fixed Interior Limit

When that limit exists, the sequence is called_______. Convergent Diverrgent Continuous Discontinuous Convergent 

If the seqence has no limit, its called________. Convergent Diverrgent Continuous Discontinuous Diverrgent

If the seqence has ______ limit, its called divergent One Two Finite No No

If the seqence has ______ limit, its called Convergent One Two Finite No One

The _______ of the seqence is called series Sum Product Subration Divition Sum

If the n th trem of the serise is convergent to zero as n tends to 

infinity then the total series is ____________.

Convergent Diverrgent Continuous Discontinuous Convergent 

The absolute convergent of a series of complex numbers 

implies the ____________ of the serries.

Convergent Diverrgent Continuous Discontinuous Convergent 

Suppose that zn = xn + I yn  and S=X + iY. Then 

z1+z2+z3+…..=_______ if x1+x2+x3+….=X and 

y1+y2+y3+….=Y

0 X S Y S

 A sequence of points in X is a function f from_____  into X. R N X Z N

Suppose that zn = xn + I yn  and S=X + iY. Then 

z1+z2+z3+…..=S if x1+x2+x3+….=_________ and 

y1+y2+y3+….=Y

0 X S Y X

Suppose that zn = xn + I yn  and S=X + iY. Then 

z1+z2+z3+…..=S if x1+x2+x3+….= X and 

y1+y2+y3+….=_______

0 X S Y Y

The ___________ convergent of a series of complex numbers 

implies the convergent of the serries.

Absolute Uniform Non Uniform Finite Absolute

If a function f is entire and bounded in the complex plan, then 

f(z) is constant throughtout the plan is called__________

Taylor Liouville's Laurent Absolute Liouville's

Replaceing z by 1/z in e^z we have ________ series. Taylor Liouville's Laurent Absolute Laurent

z1,z2,z3,z4,z5,…… is called________ Sequence Series Elements Points Sequence

z1+z2+z3+z4+…. Is called_________. Sequence Series Elements Points Series

lim  (z+5)/(iz+3)=_______ as z tends to -5. 0 1 z Infinity 0

UNIT V
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If a function f is continuous throughout a region R that is 

closed and ________, there exists a non negative real number 

M such that |f(z)| less than or equal to M for all points z in R.

Open Bounded Continuous Convergent Bounded

lim f(z)=f(zo) as z tends to zo is called_______. Discontinuou Continuous Limit Function Continuous

A set is _________ if it cointains all of its boundary points. Open Not open Closed Not cloed Closed

A point x is ______ of the mapping  T from X into X if Tx=x Fixed point Arbitary point Interior point Limit point Fixed point

|conjugates of z|=_______. z Conjugate of 

z

|z| |x| |z|

(z+conjugate of z)/2 =_________. Re z Im z z 2z Re z

(z -conjugate of z)/2i =_________. Re z Im z z 2z Im z

The conjugate of x+iy is ________. x y x+y x-iy x-iy

The conjugate of x-iy is ________. x y x+y x+iy x+iy

The conjugate of 2+i5 is _______ 2 5 i5 2-iy 2-iy

The conjugate of 2-i5 is _______ 2 5 i5 2+iy 2+iy

The conjugate of -4-i5 is _______ -4 5 9 -4+i5 -4+i5

The conjugate of -4+i5 is _______ -4 5 9 -4-i5 -4-i5

The conjugate of iz is ________. i -i conjugate z -iz iz -i conjugate z
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