Semester — VI
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17MMUGO2A METRIC SPACES AND COMPLEX ANALYSIS 4 20 4

Scope: On successful completion of course the learners gain about Metric spaces, Continuous mappings
and Convergence of sequences and series.

Objectives: To enable the students to learn and gain knowledge about definite integrals of functions,
Contour integrals and its geometrical applications.

UNIT I
METRIC SPACES
Definition and examples - Sequences in metric spaces - Cauchy sequences.

Complete Metric Spaces - Open and closed balls — neighbourhood - open set - interior of a set. Limit
point of a set - closed set - Diameter of a set - Cantor’s theorem — Subspaces - dense sets — separable
spaces.

UNIT 11
CONTINUOUS MAPPINGS

Continuous mappings - sequential criterion and other characterizations of continuity — Uniform
Continuity — Homeomorphism - Contraction mappings - Banach Fixed point Theorem - Connectedness -
connected subsets of R.

UNIT 111
LIMITS

Limits - Limits involving the point at infinity - continuity. Properties of complex numbers — regions in
the complex plane - functions of complex variable - mappings. Derivatives, differentiation formulas -
Cauchy-Riemann equations, sufficient conditions for differentiability.

UNIT IV
ANALYTIC FUNCTIONS

Analytic functions - Examples of analytic functions - Exponential function - Logarithmic function -
Trigonometric function - Derivatives of functions - Definite integrals of functions.

Contours: Contour integrals and its examples - Upper bounds for moduli of contour integrals - Cauchy-
Goursat theorem - Cauchy integral formula.



UNIT V
CONVERGENCE

Liouville’s theorem and the fundamental theorem of algebra. Convergence of sequences and series-
Taylor series and its examples - Laurent series and its examples, absolute and uniform convergence of
power series.

SUGGESTED READINGS

TEXT BOOK

1. Satish Shirali., and Harikishan L. Vasudeva., (2006). Metric Spaces, Springer Verlag, London.

REFERENCES

1. Kumaresan S., (2011). Topology of Metric Spaces, Second Edition., Narosa Publishing House,
New Delhi.

2. Simmons G.F., (2004).Introduction to Topology and Modern Analysis, McGraw-Hill, New Delhi.

3. James Ward Brown., and Ruel V. Churchill., (2009). Complex Variables and Applications, Eighth
Edition., McGraw — Hill International Edition, New Delhi.

4. Joseph Bak., and Donald J. Newman., (2010). Complex Analysis, Second Edition., Undergraduate

Texts in Mathematics, Springer-Verlag New York.
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S. Lecture(Topics to be Covered Support
No )uration Material/Page Nos
Period
UNIT-I
1 1 Introduction on Metric and uniformT1: ch-1 P.No: 27-34

metric spaces: Definition and Examples R2: ch-2 P.No : 51-53

2 1 Sequence in metric spaces: ConvergencesT1: ch-1 P.No0:37-44
and Diverges, Theorm and Examples

3 1 Sequence in metric spaces: ConvergencesT1: ch-1 P.No0:37-44
and Diverges, Theorm and Examples

4 1 Cauchy sequences and complete metriciT1: ch-1 P.No: 44-57
spaces

5 1 Tuotorial 1

6 1 Open and Closed balls: Definition andT1: ch-2 P.N0:64-65
Examples R1: ch-1 P.No : 15-17

R2: ch-2 P.No :64-65

7 1 Theorem on neighborhood and InteriorT1: ch-2 P.N0:66-69
Point of a set

3 1 Tutorial 2

) 1 Limit Point of a set, closed set ,ExamplesT1: ch-2 P.No: 70-75
Proposition and Theorems

10 1 Diameter of a set, Cantor set, Cantor’s[T1: ch-2 P.No:75-80
theorem & Examples. Subspaces:
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Lemma & Theorem

11 1 Tutorial 3

12 1 Definition and examples of Dense &R1:ch-2 P.N0:86-88
Separable sets and theorems R2: ch-3 P.No: 96-97

13 1 Tutorial 4 Recapitulation & discussion of]
possible questions

Total No of Hours Planned For Unit 1=13

UNIT-1I

1 1 Introduction on Continuous Mapping:T1: ch-3 P.N0:103-108
Definition and Theorem & Lemmas and
Sequential criterion

2 1 Sequential  criterion  sequential T1:ch-3 P.N0:109-113
criterion and other
characterizations of continuity

3 1 Tutorial 5

4 1 Uniform continuity and [T1:ch-3 P.N0:114-122
Homeomorphism

5 1 Tutorial 6

6 1 Contraction mappings and Banach [T1:ch-3 P.N0:132-138
Fixed point Theorem

U 1 Linear Differential Equation and [T1:ch-3 P.N0:135-140
Picard’s Theorem

8 1 Tutorial 7

9 1 Connectedness: Inte:rmediate Value 1. «h.a P No: 156-160
Theorem & Continuous theorem,
Theorem on Connected component of [R1:ch-5 P.N0:106-107
point

10 1 connected subsets of R. T1: ch-4 P.No:160-163

11 Tutorial 8 Recapitulation & discussion
of possible questions
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Tutorial 12 Recapitulation & discussion

of possible questions

UNIT-1I

1 Introduction on Limits: Definition,R3: Ch-2 P.No: 45-55
Examples and Theorem on limit

2 Tutorial 9 R3: Ch-2 P.N0:50-55

3 Properties of Complex number andR3: Ch-1P.No0:24-26
complex plane R3: Ch-1 P.N0:31-32

4 Functions of a complex variables R3: Ch-2 P.N0:35-37

0 Tutorial 10

6 Mappings: Examples R3: Ch-2 P.N0:38-44

/ Derivatives, Differential formulaR3: Ch-2 P.N0:56-62
examples

8 Tutorial 11 R3: Ch-2 P.N0:60-62

9 Cauchy-Riemann Equation: Theorems &R3: Ch-2 P.N0:63-66
Examples R4: Ch-3 P.No: 35-38

10 Sufficient condition for DifferentiabilityR3: Ch-2 P.No: 66-67
theorem

11

Total No of Hours Planned For Unit 111=11 hrs

Banaches & Derivatives of Logarithmic

UNIT-1V

1 Introduction on Analytic function andR3: Ch-2 P.No:73-77
Examples

2 Exponential function and LogarithmicR3: Ch-3 P.N0:89-94
function Examples

3 Tutorial 13

4

R3: Ch-3 P.N0:95-99
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and Identities

0 1 Trigonometric function R3: Ch-3 P.N0:104-107

6 1 Tutorial 14

/ 1 Derivatives of functions and DefiniteR3: Ch-4 P.No: 117-120
integrals

8 1 Contours: Definitions and Examples R3: Ch-4 P.N0:122-132

0 1 Tutorial 15

10 1 Upper bounds for moduli of contourR3: Ch-4 P.N0:137-139
integrals

11 1 Cauchy-Goursat theorem and Cauchy-R3: Ch-4 P.N0:150-167
Integral Formula R4: Ch-5 P.No: 59

12 1 Tutorial 16 Recapitulation & discussion of]
possible questions

Total No of Hours Planned For Unit 1V=12 hrs
UNIT-V

R Lioville’s theorem & The FundamentalR3: Ch-4 P.N0:172-174
theorem of algebra R4: Ch-5 P.No: 59-61

2 1 Maximum modulus principle R3: Ch-4 P.N0:175-178

3 1 Tutorial 17

A 1 Convergence of sequence and series R3: Ch-5 P.N0:181-186

2 1 Corollary and Examples on convergenceR3: Ch-5 P.N0:186-187
of series
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6 Tutorial 18-
/ 1 Taylor series: Examples R3: Ch-5P.N0:189-195
8 1 Laurent series: Examples R3: Ch-5P.N0:197-205
0 Absolute & Uniform convergent ofR3: Ch-5P.No0:208-211
power series
10 Tutorial 19
11 1 Tutorial ~ 20-Recapitulation  and
discussion of possible questions
12 1 Discussion of previous ESE
question papers.
13 1 Discussion of previous ESE question
papers.
14 1 Discussion of previous ESE
question papers
Total No of Hours Planned for unit V=13hrs
Total Planned Hours 60 hrs
TEXT BOOK

1. Satish Shirali., and Harikishan L. Vasudeva., (2006). Metric Spaces, Springer Verlag, London.
REFERENCES
1. Kumaresan S., (2011). Topology of Metric Spaces, Second Edition., Narosa Publishing House,
New Delhi.
2. Simmons G.F., (2004).Introduction to Topology and Modern Analysis, McGraw-Hill,
New Delhi.
3.James Ward Brown., and Ruel V. Churchill., (2009). Complex Variables and
Applications, Eighth Edition., McGraw — Hill International Edition, New Delhi.
4. Joseph Bak., and Donald J. Newman., (2010). Complex Analysis, Second Edition.,
UndergraduateTexts in Mathematics, Springer-Verlag New York.
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: 11 BSC MATHEMATICS
COURSE NAME: MATRIC SPACES AND COMPLEX ANALYSIS
COURSE CODE: 16MMU402 UNIT: | BATCH-2016-2019

Metric spaces: definition and examples - Sequences in metric spaces —
Cauchy sequences. Complete Metric Spaces - Open and closed balls —
neighbourhood - open set - interior of a set. Limit point of a set - closed
set - diameter of a set - Cantor’s theorem — Subspaces - dense sets —
separable spaces.

1. Metric Spaces

The notion of function,“the concept .of limit and the related
concept of continuity play an important role. in the study of
mathematical analysis. The notion of limit can be formulated
entirely in.terms of distance. For example, a sequence {Xn}ns1 Of
real numbeérs coﬁverges tox.if and only if for-all e > 0 there exists
p-pgsitive integer no such that x, x <€ whenever n > no. A
discerning reader will note that.the above definition of
convergence depends only on the properties of the distance ab
between pairs a, b of real numbers, and that the algebraic
properties of real numbers have.no bearing on it, except insofar as
they determine properties of the distance such as,

ja—Dbj>0whena6%b, ja— bj¥ jo — ajand ja— gj# ja— bjp jb
— g
There are many other sets of elements for which ‘distance
between pairs < of elements” can be defined, and doing so
provides a general setting in which the notions of convergence
and continuity can be studied. Such a setting is called a metric
space. The approach through metric spaces illuminates many of the

concepts of classical analysis and economises the intellectual effort
involved in learning them.
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We begin with the definition of a metric space.

Definition 1.2.1. A nonempty set X withamap¥d: X X - Riis
called a metric space if the map d has the following properties:
(MS1)d(x,y)>0 x,y€E X;
(MS2) d(x,y)=0 ifand only ifx
=v; (MS3) d(x, y) =d(y,x)

X,y 2X;
(MS4)d(x,y) <d(x,z) pd(z,y)x,y,z 2X.

The map d is called the metric on X or sometimes the distance
function on X. The phrase ‘X, d) is a metric space’ means thatd is a
metric on the set X. Property (MS4) is often called the triangle
inequality.

The four properties (MS1)—(MS4) are abstracted from the
familiar properties of distance between points in physical space. It
is customary to refer to elements of any metric space as points
and d(x, y) as the distance between the points x and y.

We shall often omit all ' mention of the metric d and write “the
metric space X'instead of “the metric space (X, dJ'. This abuse of
language is unlikely to cause any confusion. Different choices of
metrics on the same set X give rise‘to different metric spaces. In
such .a situation, careful "distinction between them must be
maintained.

Suppose that (X, d)is-a-metric space and Y is a nonempty subset
of X. The restriction dy of d to Y x Y will serve as a metric for Y,
as it clearly satisfies the metric space axioms (MS1)—(MS4); so (Y,
dy) isametric space. By abuse of language, we shall often write (Y,
d) instead of (Y ,dy). This metric space is called a subspace of X or
of (X, d) and the restriction dy is called the metric induced by d on
Y.

(i) The space of bounded functions. Let S be any nonempty set
and B(S) denote the set of all real- or complex-valued functions

Prepared by K.Aarthiya, Asst Prof, Department of Mathematics, KAHE Page 2/48



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: 11 BSC MATHEMATICS
COURSE NAME: MATRIC SPACES AND COMPLEX ANALYSIS

COURSE CODE: 16MMU402 UNIT: | BATCH-2016-2019

on S, each of which is bounded, i.e.,

Define If f and g belong to B(S), there exist M > 0 and N > 0 such that

sup jf(x)] < Mandsup jg (X)] <N:
x2S X2S

It follows that sup jf (X) — g (x)j < 1. Indeed,
x2S
100 — 9 ()i < jf (9ib jg (x)j= sup jf (x)ib sup jg (X)].

O<supjf(xX) —g(X)j<MpN

d(f,g) = sup jf (x) — g (x)j, f, g'belongs B(S):

Evidently, d(f,g) $0, df ,g) O if and only*f f (x) g (x)2for all
x S¥and d(f,g) d(g,f). It remains to verify the triangle
inequality for B(S). By the triangle inequality for R, we have

d(f,g)=d(f,h)pdh,g),

forall f, g B(S). The metric d is called the uniform metric
(or supremum metric).

(i) The space of continuous funetions. Let X be the set of all
continuous functions defined on [a,b], an interval in R. Forf, g 2
X, define

d(f, g)=supx2[a, b]i f (X) —g X)j:

The measure of distance between the functions f and g is the largest
vertical distance between their graphs Since the difference of two
continuous functions.~is continuous, the composition of two
continuous functions is continu- ous, and a continuous function
defined on the closed and bounded interval [a,b] is bounded, it
followsthat d(f,g) R forall f,g . It may be verified as in Example.

(viii) that d is a metric on X. The space X with metric d defined as
above is denoted by C[a,b]. All that we have said is valid whether
all complex-valued continuous functions are taken into
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consideration or only real-valued ones are. When it is necessary to

specify which, we write Cc[a, b] or Cr[a, b]. Note that C[a, b]

B[, b] and the metric described here is the one induced by the

metric in Example

(viii) and is also called the uniform metric (or supremum metric).
x) The setofall continuous functions on [a,b] can also be equipped

with the metric

Ob
df.g)=  if(x)—g)jdx:

f
f g
AN
7
Figure 1.1
g f
g
f
AN
V4
Figure 1.2

The measure of distance between the functions f and g represents the
area between their graphs, indicated by shading? in Figure
h2321f f,9 C[a b], then f g Cla, b], and the integral
defining d(f , g ) is finite. It may be easily verified that d is a metric
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on C[a, b]. We note that the continuity of the functions enters into
the verification of the ‘only if’ part of (MS2).

Figure 1.3

Analytically, the above representation is described by the formulae

Corresponding to the point at infinity, we have the point (0, 0, 1).
Also,

We definethe distance between the points of X by This is actually the
chordaldistance between thase points on the sphere correspond- ing to

the points Evidently, d(z, ) > 0 and d(z1,22)=0

Definition: Let X be a nonempty set. A pseudometric on X is a
mapping of X x X into R that satisfies the conditions:

(PMS1) d(x,¥)=0 x,y2X;

(PMS2) d(x, y)=0..ifx Yay;

(PMS3) d(x, y) =d(y,x) X, y 2X;
(PMS4)d(x,y) <d(x,z) pd(z,y)x,y,z 2 X.

Another example of a pseudometric space is the following:

1.3. Sequences in Metric Spaces
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As pointed out in Chapter 0, analysis is primarily concerned with
matters involving limit processes. It is no wonder that
mathematicians thinking about such matters studied and
generalised the concept of convergence of sequences of real
numbers and of continuous functions of a real variable. The
reader will note that the basic facts about convergence are just as
easily expressed in this setting.

Definition: Let (X,d) be a metric space.”/A sequence.of points in X
is a function f from N into X.

In other words, a sequence assignsto. each n 2 Na uniquely
determined element of X. If f (n) = xn, it is customary.to denote the
sequence by the symbol {x,}n¢ 1 Or
{xn} Or by X1, X2, ... , Xn, ....

Definition 1.3.2. Let d be a metric on.a set X and {x,}be a sequence
in the set X. An element x 2 X is said to be a limit of {xn} if, for every
e > 0, there exists a natural number no such that

d(Xn, X) <.e whenever n >ng:

In this case, we also say that {X»} converges to x, and write i? in
symbols as x, X. If thereds no such X, we say that the sequence
diverges. A sequence is said to be convergent if it converges to
some limit, and divergent otherwise.

Remark 1. ' By comparingthe above with the definition of
convergencéein R (orC), we find that x," x if and only if limmi 1
d(x,,x) 0, where d denotes the usual metric in R (or C).

Remark 2. In case there are two or more metrics on the set X, then it
IS necessary to“specify which metric is intended to be used in
applying the definition of convergence.
We next consider the notion of convergence in specific metric
space for all

Cauchy Sequences
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In real analysis (function theory), we have encountered
Cauchys principle of convergence. (Recall that a sequence {Xn}n s
1 of numbers is said to be Cauchy, or to satisfy the Cauchy
criterion, if and only if, for all e > 0, there exists an integer no(e)
such that x, xm < e whenever m $ no(e) and n $ no(e). The Cauchy
principle states that a sequence in R or C is convergent if and only
if it is Cauchy.) The principle enables us to prove.the convergence
of a sequence without prior knowledge of its limit.

The real sequence

1 3 d 15
is such that for m $ n the distance between the terms is given by
which tends to zero as m, n tend to infinity. In other words, the real
sequence
{Xn}ns1, where ¥4 —1 1=2", satisfies the Cauchy criterion and hence
converges by Cauchy's principle of convergence.

A similar situation arises with sequences of functions; in fact, it
comes up more often than with real or complex sequences. An
extension of the idea of Cauchy sequences to metric spaces turns
out to be useful.

Definition: Let d be ametric on a set X. A sequence {X,}ns1 inthe set
Xissaid to be a Cauchy sequence if, for every e > 0, there exists a
natural number no suchthat

d(Xa, Xm) < e whenever n > ng and m > no:

Remark 1. A sequence {Xn} in R or C is a Cauchy sequence in the sense
familiar from elementary analysis if and only if it is a Cauchy sequence
according to Definition

1.4.1 in the sense of the usual metric on R or C.

Remark 2. It is cumbersome to keep referring to a ‘sequence in a set X
with metric d’, especially if it is understood which metric is intended
and no symbol such as d has been introduced to denote it. We shall
therefore adopt the standard phrase “sequence in a metric space X.
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(i1) In C[0,1], the sequence fy, f2, f3, ... given by
nx

fa(X) %Tpx, x 210, 1]

is Cauchy in the uniform metric. For m $ n the function being
continuous on [0, 1], assumes its maximum at some point Xo 2

[0,1]. So,
d(fm, fn) Ya sup {jfm(x) — fa(¥)J: x 2 [0, 1]} for large m
and n. Moreover, the sequence {f.}n $ 1 converges to
some limit. For

f(X) Ya X,

Therefore, {fn}n s 1 converges to the limit f, where f (x) % x for.all x 2 [0,

1].

Proposition: A convergent sequence.in a metric.space is a Cauchy

sequence.

Proof. Let {xn} be a sequence in a set X with.metric d, and let x be an
element of X such “hat limmax, x. Given any e > 0, there
exists some natural number no such.that d(x», X) < e=2 whenever
n $ no. Consider any natural numbers n and m such that n $ no and
m $no. Then d(xn, X) < e=2 and d(Xm, X) < e=2. Therefore

d(Xn,Xm) <d(Xn,X)+d(Xm,X)<E &

Does the converse of Proposition 1.4.3 hold? If a sequence {Xn}n s 1
in a metric_space (X, d) fulfills the Cauchy condition of Definition
1.4.1, does it follow thatthe sequence converges?

Examples 1.4.4. (1) Let X denote the set of all rational numbers
with the usual metric, namely, d(x, y) ¥a jx —yj for x, y 2 X. It is
well known that the sequence

1:4, 1:41, 1:414, ...
converges td 2. It is therefore Cauchy. However, it does not converge
to a point of
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X. So, a Cauchy sequence need not converge to a point of the space.

(i) Another example of a Cauchy sequence that does not
converge to a point of the space is the following: Let X ¥ C[O, 1]
with metric d defined by

(72,1)

(1,1)

N

Figure 1.5

Suppose now that there is a continuous function f such*that
d(fn, T) 0.1t
will be shown that this leads to a contradiction. Since

j1 —f (x)jdx ¥4 0:
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Since f is continuous, we see that f(x) Y0

for 0 < x < 1=2 and f (x)=1 for 1=2 < x < 1, which isimpossible.
Thus, the metric spaces in which Cauchy sequences are guaranteed
to converge

are special and we need a name for them.

Definition: A metric space (X,d) is said to be complete if every
Cauchy sequence in X is convergent.

It follows from Cauchys principle of convergence that R, C
and R" equipped with their standard metricsy (y1,Y2,...,Yn)in
R™ arecomplete metric spaces. The metric space (X, d), where X
denotes the set of rationals and d(x, y) x y for x, y X, has been
observed to be an incomplete metric space (see Example 1.4.4(i)).
That the metric space (X, d) of rationals is incomplete also follows
on considering the sequence {xn}ns1, where

1 1 1

Xa/a1P gy oy b by

as this is a Cauchy sequence but it converges to the
irrational number e. In our next proposition, we need
the following definition.

Definition: Let {Xn}n s 1 be a given sequence in a metric space (X,d) and

let {nk}« s 1 be a sequence of positive integers such that ny <ny<nz <....

Then the sequence {Xxnk }« s 1 is called a subsequence of {Xn}n s 1. If

{xnk }« s 1 converges, its limit is called a subsequential limit of {xn}n>1
It is clear that a sequence {Xn}n $ 1 in X converges to x if and only

if every subsequence of it converges to x.

Proposition If a Cauchy sequence of points in a metric space
(X,d) contains a convergent subsequence, then the sequence
converges to the same limit as the subsequence.
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Proof. Let {Xn}n $ 1 be a Cauchy sequence in (X, d). Then for every
positive number e there exists an integer no(e) such that

d(Xm, xn) < e whenever m, n $ no(e):

Denote by {xnk } a convergent subsequence of {Xn}n s 1 and its limit by x.
It follows that
d(xrm , Xn) < € whenever m, n $ no(e),

since {ny} is a strictly increasing sequence of positive integers. Now,
d(x, xn) # d(X, Xom ) p d(Xnm , Xn) < d(X, Xom ) p € whenever m,
n $ no(e):
Letting m —»1, we have
d(x, xn) < e whenever n > no(e):
So, the sequence {Xn}ns1 CcONverges to x. &

We next show that the spaces (R", d;), B(S) and CJ[a, b] are
complete.

Proposition The space B(S) of all real- or complex-valued functions
fonS, each of which is bounded, with the uniform metric
d(f, g) % sup{jf (X)— g (X)j: x 2 S}, iscomplete.

Proof. Let {f,} be a Cauchy sequence in B(S). For each s2
S, we have jfn(s) —fm(s)j <d(fn, fm), so that the sequence {fn(s)}
in C is a Cauchy sequence and therefore convergent. Define f: S
¥ C by f(s) Yalimyra fi(s). We shall prove first that f 2 B(S) and
then prove that limpr 1 d(fo, f) % 0.

Since 1 > 0, therefore by the Cauchy property of {f,}, there
exists some ng such that

d(fn, fm) < 1 whenever n $ no and m $ no:
In particular, d(fn, fa0 ) < 1, and hence jfa(s) — a0 (S)j < 1 for all s

2 S, whenever n $ no. Since fo,g 2 B(S), there exists some M >0
such that jf.0 (s)j# M for all s 2 S. Therefore,

Prepared by K.Aarthiya, Asst Prof, Department of Mathematics, KAHE Page 11/48



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: 11 BSC MATHEMATICS
COURSE NAME: MATRIC SPACES AND COMPLEX ANALYSIS
COURSE CODE: 16MMU402 UNIT: | BATCH-2016-2019

Jfa(S)j #jfa(s) —fho (S)jp jfn0 (S)i#1p M  8s 2 S whenever n $
No:
Now consider any e > 0. By the Cauchy property of {f.}, there
exists some no
such that

d(fn, fm) <e  whenever n $ no and m $no:

Therefo

re, jfa(s) — fm(s)j< e 8s2 Swhenevern$nogand m$

No.
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It follows upon letting m — 1 that
jfn(s) —f(s)j<e whenevers2Sand n $no:

This says that limyy 1. d(f,, f) = 0. &

Proposition: Let X =€[a, b] and d(f, g% sup{ f (g (X) : a#x #b}
be the associated metric. Then (X,d) is a complete metric space.

Proof. Let {f.}n $ 1 be a Cauchy sequence in C[a,b]. Then for every
e > 0 there exists an integer no(e) such that m, n $ no(e) implies
d(fm, fn) ¥4 sup{jfm(X) — fa(X)j: a # x # b} < e. In particular, for
every x 2 [a, b], the sequence {fn(X)}n s 1 is a Cauchy sequence of
numbers. By Cauchys principle of convergence, fi(x) ¥ f (),
say,asn ¥ 1. We have thus defined a function f with domain [a,b].
It remains to show that f 2 C[a, b] and that limni 4 d(f,, f) = 0.

Since for every x 2 [a, b],
Jfm(x) —fa(x)j <e
provided that m, n $ no(e), it follows upon letting m ¥ 1 that
Jih(X) —f (X)j#e (1:18)

for all n $ no(e) and all x 2 [a, b].

To see why f is continuous, consider any Xo 2 [a, b] and any h >
0. According to what has been noted in the preceding paragraph,
there exists an integer ny(h) such that, for every x 2 [a, b], we
have jfn(x) — f (X)j < h=3 provided that n $ni(h). Select m $
n1(h). Then

h
JTn(X) —fm(X)j=< 3 for all x 2 [a, b]: (2:19)
Now use the continuity of f, to obtain d > 0 such that
h
jfm(X) — fm(X0)j < 3for X — Xoj < d: (1:20)

i
C(;n JE(}) —f (x0)) # Jf (X) — fm(x)JP Jm(X) — fm(x0)Jp Jfm(x0) —f (Xo)J,

it follows from (1.19) and (1.20) that jf (xX) — f (xo)j < h whenever jx —
Xoj < d.

Therefore, f 2 C[a, b]. Moreover, (1.18) says that limyr 4 d(fy, f)
¥ 0. As already noted, this completesthe proof.
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&

Examples: (i) Let X be any nonempty set and let d be defined by

i 1
d(X, y) B O |f X /4y y
Yo 1 if X 6Y4 y.

Then (X, d) is a complete metric space.

Indeed, if {xn}n $ 1 is a Cauchy sequence, then for 0 < e < 1 there
exists a positive integer no(e) such that d(xn, xm) < e forallm, n $
no(e). So for n $ no(e), we have x, ¥ xn0 . Thus, any Cauchy
sequence in (X,d) is of the form

(X1, X2, «oe y, Xn0 » XnQ 5 .- ),

which is clearly convergent to the limit xnQ .
(i) Let N denote the set of natural numbers. Define

1 1
d(m,n) %Tm;nj, m, n 2N:

Then (N, d) is an incomplete metric space.

That (N, d) is a metric space is clear. The sequence {n}n s 1 can be
shown to be Cauchy by arguing as follows. Let e > 0 and let no be the
least integer greater than 1=e. If m, n > no then Cauchy Sequences

suppose that it were to converge if possible to, say, p 2 N. Let
ni be any integer greater than 2p. Then n $n; implies that

This shows that the
sequence cannot converge
to p and therefore does not
converge at all.
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Then (X, d) is a complete metric space.

Let {z.}n $ 1 be a Cauchy sequence in (X,d). If the sequence
{zn}n $ 1 contains the point at infinity infinitely often, then it
contains a gonvergent subsequence, namely the subsequence each
of whose terms is . In this case, the sequence {z.}n s 1 converges to
by Proposition 1.4.7. On the other hand, if the point at infinity
appears only finitely many times in the sequence, then we may
assume without loss of generality that the sequence consists of
points of C only, as the deletion (or insertion) of finitely many
terms does not alter the convergence behaviour of a sequence.

Case I. If the sequence {jznj}n $ 1 is unbounded, then for every
natural number k there exists a term znk of the sequence such
that jznk j > k, where these terms can be chosen so that ngp: >
N, kK% 1,2,.... Now,We thus have limii1zk %41 in (X, d).
By Proposition 1.4.7, it follows that limyi1 z,% 1.

Case II. The sequence {jznj}ns1is bounded, say by M >0. Lete >0
be given. There exists no 2 N such that m, n $ng implies

Since jznj < M for all n, it follows that jz, — zmj < (1=2)e(1 p
M 2). This shows that
{z}n $ 1 is a Cauchy sequence in the usual metric in C, and hence
limpra jzo — zj % 0 for some z 2 C. Since d(zy, zn) # 2jzn — In]
always, it follows that d(zn, z2)<0 as n<1. Thus, (X, d) is a complete
metric space.

Completion of a Metric Space

Let (X, d) be a metric space that is not complete. It is always
possible to construct a larger space which is complete and contains
just enough points so that every Cauchy sequence in X has a limit
in the larger space. In fact, we need to adjoin new points to (X, d)
and extend d to all these new points in such a way that the
formerly nonconvergent Cauchy sequences find limits among
these new points and the new points are limits of sequences in
X.
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Definition: Let (X, d) be an arbitrary metric space. A complete
metric space (X", d") is said to be a completion of the metric space
(X, d) if

(i) X is a subspace of X ™;

(ii) every point of X ™ is the limit of some sequence in X.

For example, the space of all real numbers is the completion of
the space of rationals. Also, the closed interval [0,1] is the
completion of (0,1), [0,1), (0,1] and itself. In fact, any complete
metric space is its own completion. We note that the Weierstrass
approximation theorem (Proposition 0.8.4) shows that the metric
space Cg[a, b] of Example 1.2.2(ix) is the completion of its subset
consisting of polynomials.

Definition: Let (X,d) and (X', d") be two metric spaces. A mapping
f of X into X° is an isometry if

d'(f (x), T (v)) % d(x,y)

for all x2y X . The mapping f is also called an isometric
embedding of X into X' If, however, the mapping is onto, the
spaces X and X° themselves, between which there exists an isometric
mapping, are said to be isometric. It may be noted that an isometry is
always one-to-one.

Theorem: Every metric space has a completion and any two
completions are isometric to each other.

Proof. Let (X,d) be a metric space and let X denote the set of all
Cauchy sequepnces in X. We define two Cauchy sequences {xn}
and {yn} in X t0 be equivalent if limyr1 d(x,, y;) 0 and write this
in symbols as {xn} {yn}. We shall now show that this is an
equivalence relation in X , i.e., the relation is reflexive,
symmetric and transitive.

Reflexivity: {xn} ~ {xn}, since d(xn, xn) ¥ O for every n and so
limora d(Xn, Xn) ¥4 0. Symmetry: If {x.} ~ {y»}, then limyr1 d(x,,
o) ¥4 0; but d(Xn, yn) % d(yn, Xa) for every n, and, therefore,
limar 2 d(yn, X») % 0, so that
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{yn} = {x}. Transitivity: If {x.} ~ {yn} and {y»} ~ {z.}, then limm1 1
d(Xn, yn) ¥ 0 and limpra d(yn, z1) ¥ 0. We shall show that limyi 1
d (X, 2n) ¥ 0. Since

0< d(Xn, Zn) # d(Xn, yn) b d(Yn, Zn)

for all n, it follows that

0 < lim d(Xn, zn) < lim d(Xn, Yn) p lim d(yn, zn) =0,
n-1 n-1 n-1
ie.,
limn- 2L.d(Xn,z0)= 0.
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Thus, ~is an equivalence relation and X splits into equivalence

classes. Any two
members of the same equivalence class are equivalent, and no
member of an equivalence class is equivalent to a member of any
other equivalence class. Let X denote the set of all equivalence
classes; the elements of X will be denoted by %, ¥, etc. Observe that
if a Cauchy sequence {x,} has a limit x 2 X , and if {yn} is
equivalent to {x,}, then limyra y»  x. This follows immediately
from the follow- ing inequality:

d(yn, X) # d(yn, Xn) p d(Xn, X):

Moreover, if {x,} and {y.} are two nonequivalent sequences, then
limpy 2 Xn 6%
Iimn!lYn-

For, if limgy 1 Xa ¥a x ¥ limyy 1. yn, then the inequality

0 # d(Xn, Yn) # d(Xn, X) p d(X, yn)

leads to limyra d(x,, ¥4) O, contradicting the fact that {x,} and
{yn} are two nonequivalent sequences. The constant sequence (X,
X,..., X, ...) is evidently Cau- chy and has limit x.

Define a mapping #: X X as fdAlows: f (x) %, where x
denotes the equiva- lence class each of whose members
converges to x. Thus the constant sequence (X, X, ..., X, .. .) is a
representative of x. In view of the observations made above, the
mapping f is one-to-one. We next define a metric r in X . For %, ¥
2 X, set

rx,y) lim dgx,, yn), where {x,} 2 xanddyn} ¥
nt a1

Observe : .
that jd(xn, yn) — d(Xm, ym)j # d(Xn, Xm) P d(ym, yn),

where {x.} 2 ¥ and {y,} 2 ¥ and so {d(x, yn)}ns1 is a Cauchy
sequence of real numbers. Hence, limyi 1 d (X, yn) exists, for R is a
complete metric space. We first show that r is well defined.

Indeed, if {x{} ~ {x.} and {y} ~ {ys}, then
&
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Remarks. (i) The proof explicitly assumes the completeness of R.
Hence, the above method of completion cannot be employed for
constructing the real number system from the rational number
system.

(i1) There exist other methods of completion of an incomplete
space. One such method will be provided in Example. 17 of
Chapter 3 (Section 3.8).

Topology of a Metric Space

The real number system has two types of properties. The first type
are algebraic properties, dealing with addition, multiplication and
so on. The other type, called topological properties, have to do
with the notion of distance between numbers and with the concept
of limit. In this chapter, we study topological properties in the
framework of metric spaces. We begin by looking at the notions
of open and closed sets, limit points, closure and interior of a set
and some elementary results involving them. The concept of base
of a metric topology and related ideas are also discussed. In the
final section, we deal with the important concept of category due
to Baire and its usefulness in existence proofs. Also included are
some theorems due to Baire.

Open and Closed Sets

There are special types of sets that play a distinguished role in
analysis; these are the open and closed sets. To expedite the
discussion, it is helpful to have the notion of a neighbourhood in
metric spaces.

Definition: Let (X, d) be a metric space. The set

S(xo, 1) ={x 2 X :d(xo,x) <r}, where r >0 and xo
2 X, is called the open ball of radius r and centre Xo. The
set

S(xo, 1) ={x 2 X :d (X0, X) <r}, where r >0 and x 2 X,

is called the closed ball of radius r and
centre Xo. A few concrete examples
are in order.
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Prepared by K.Aarthiya, As

Examples (i) The open ball S(xo, r) on the real line is the bounded
open interval (8 r, xo r) with midpoint xo and total length 2r.
Conversely, it is clear that any bounded open interval on the real
line is an open ball. So the open balls on the real line are precisely
the bounded open intervals. The closed balls S(xo, r) on the real
line are precisely the bounded closed intervals but containing
more than one point.

T~
30!
'- \
Y0 7
-
Figure 2.1

(i) The open ball S(xo, r) in R? with metric dz (see Example
1.2.2(iii)) is the inside of the circle with centre xo and radius r as
in Fig. 2.1. Open balls of radius 1 and centre (0,0), when the
metric is di or di (see Example 1.2.2(iv) for the latter) are
illustrated in Figs. 2.2 and 2.3.

di If (X, d) denotes the discrete metric space (see Example
1.2.2(v)), then S(x, r) ¥ {x3} for all x 2 X and any positive r # 1,
whereas S(x, r) ¥a X forall x2 X and any r > 1.

(v) Consider the metric space Cr[a, b] of Example 1.2.2(ix).
The open ball S(xo, r), where Xo 2 Cr[a, b] and r >0, consists
of all continuous functions x 2 Cr[a, b] whose graphs lie within
a band of vertical width 2r and is centred around the graph of xo.
(See Fig. 2.4)
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Figure 2.2
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Figure 2.3
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Figure 2.4

Definition: Let (X, d) be a metric space. A neighbourhood of the
point xo 2 X
is any open ball in (X, d) with centre Xo.

Definition: A subset G of a metric space (X, d) is said to be open
if giveR any point x G, there exists r > &such that S(x, r) G, i.e.,
each point of G is the centre of some open ball contained in G.
Equivalently, every point of the set has a neighbourhood
contained in the set.

Theorem: In any metric space (X, d), each open ball is an open
set.

Proof. First observe that S(x,r) is nonempty, since x 2 S(x, r). Lety 2
S(x, r), so that d(y, x) <r, and let r' =r —d(y, xX) > 0. We shall show
that S(y, r') <S(x, r), as illustrated in Fig. 2.5. Consider any z 2 S(y,
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r'). Then we have
d(z,x)<d(z,y) pd(y,x) <r'pd(y,x) %r,

which means z 2 S(x, r). Thus, for each y 2 S(x, r), there is an
open ball
S(y, r") < S(x, r). Therefore S(x, r) is an open subset of X. &

Examples 2.1.6. (i) In R, any bounded open interval is an open
subset because it is an open ball. It is easy to see that even an
unbounded open interval is an open subset.

-
s

s e
g e N
s ™

S
; yeor &
I I
] '
1
] X e '
' ! !
) i 'l
N\ r: ’
. : ’
A Y i L4
“ H L4
S 'v'
""r--:-—'.
Figure 2.5

(i) In a discrete metric space X, any subset G is open, Because
any x G is the centre of the open ball S(x, 1=2) which is nothing
but {x}.

The following are fundamental properties of open sets.

Theorem: Let (X, d) be a metric space. Then

@ 1 and X are open sets in (X,d);
(i) the union of any finite, countable or uncountable family of
open sets is open;
(iii) the intersection of any finite family of open sets is open.

Proof. (i) As the empty set contains no points, the requirement that
each point in 1 is the centre of an open ball contained in it is
automatically satisfied. The whole space X is open, since every
open ball centred at any of its points is contained in X.

(i) Let {Ga2a L} be an arbitrary family of opéalsets and H
a2LGa. If H is empty, then it is open by part (i). So assume H to be
nonempty and consider any x 2 H . Then x 2 G, for some a 2 L.
Since Ga is open, there exists an r > 0 such that S(x, r) <Ga<H.
Thus, for each x 2 H there exists an r >0 such that S(x,r) <H.
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Consequently, H is open.

@iii) Let {Gi: 1 #i#n} be a finite family of open sets in X and,Jet G

uA\N G

If G is empty, then it is open by part (i). Suppose G is nonempty
and let x2G. Then x2G;j, j% 1, ... ,n. Since Gj is open, there
exists rj>0 such that S(x,r) <G;j,j%1,...,n. Let r % min{ry,
r2,...,rm}. Then r >0 and S(x,r) <S(x, rj), j %1, ... , n. Therefore
the ball S(x,r) centred at x satisfies

N

S(x,r) < S(x, rj) £ G:
j=1

S(x,r) < S(x, rj) < G:
j

This completesthe proof. &

Remark: The intersection of an infinite number of open sets need
not be open. Tdsee why;, let S7*S(0,1) C, n 1, 2,... . Each Snis
an open ball in the complex plane and hence an open set in C.
However,which is not open, since there exists no open ball in the
complex plane with centre O that is contained in {0}.
The following theorem characterises open subsets in a metric
space.

Theorem: A subset G in a metric space (X, d) is open if and only
if it is the union of all open balls contained in G.

Proof. Suppose that G is open. If G is empty, then there are no
open balls contained in it. Thus, the union of all open balls
contained in G is a union of an empty class, which is empty and
therefore equal to G. If G is nonempty, then since G is open, each
of its points is the centre of an open ball contained entirely in G.
So, G is the union of all open balls contained in it. The converse
follows immediately from Theorem.

Remark: The above Theorem 2.1.9 describes the structure of
open sets in a metric space. This information is the best possible
in an arbitrary metric space. For open subsets of R, Theorem
2.1.9 can be improved.
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Theorem: Each nonempty open subset of R is the union of a
countable family of disjoint open intervals. Moreover, the
endpoints of any open interval in the family lie in the
complement of the set and are no less than the infimum and no
greater than the supremum of the set.

Proof. Let G be a nonempty open subset of R and let x G. Since
G is open, there exists a bounded open interval with centre x
and contained in G. So there exists some y > x such that (X, y)
< G and some z < x such that (z, x) <G. Let

a=inf{z:(z,x) <G}and b ¥%sup {y: (x,y) <G} (1)

Then a<x <band Ix % (a, b) is an open interval containing x. We
shall show that The argument that b G is similar. Now suppose w
Ix we shall show thatw  G.If w X, thenofcoursew G. Letw X,
so that either a < w < x or x <w<Db.  We need consider only the
former case: a < w < x. Since a < w, it follows from (1) that there exists
some z <w such that (z, x) < G. Since w < x, this implies that w 2
G.next show that any two intervals in the collection {lx: x G} are
disjoint. Let (a, b) and (c, d) be two intervals in this collection with a
point in common. Then we must have ¢ < b and a < d. Since ¢ does
not belong to G, it does not belong to (a, b) and so ¢ <a. Since a
does not belong to G, and hence also does not belong to (c, d), we
also have a < c. Therefore, ¢ = a. Similarly, b = d, which shows that
(a,b) and (c, d) are actually the same irgerval. Thus, {Ix : x G} is a
collection of disjoint intervals.

Now we establish that the collection is countable. Each
nonempty open interval contains a rational number. Since disjoint
intervals cannot contain the same number and the rationalsZare
countable, it follows that the collection {Ix: x G} is countable.
Finally, we note that it follows from (1) that a$ inf G and b # sup
G:
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72 2. Topology of a Metric Space

Definition: Let A be a subset of a metric space (X, d). A pé&int
x X is called an interior point of A if there exists an open ball
with centre x contained in A, i.e.,

x 2 S(x, r) <A forsomer >0,

or equivalently, if x has a neighbourhood contained in A. The set
of all interior points of A is called the interior of A and is denoted
either by Int(A) or A°. Thus

Int(A) ¥4 A° Ya{x 2 A:S(x,r) <A for some r >
0}: Observe that Int(A) < A.

Example : The interior of the subset [ 1] R can be shown to
b&(0,1). Letx (0, 1). Since (0,1) is open, there existsi >8 such
that(x r,x r) [O,1].So, x<is an interior point of [0,1]. Also,
0 is not an interior point of [0;1], because there exists no r > 0
such that (r, r) [0, 1]. Similarly, 1 is also not an interior point of
[0, 1].
The next theorem relates interiors to open sets and provides a

characterisation of open subsets in terms of interiors.

Theorem: Let A be a subset of a metric space (X, d). Then

() A°is an open subset of A that contains every open subset of A;
(i) A is open if and only if A = A°.

Proof. (i) LetX A° be arbitrary. Then, by definition, there exists
an opén ball  S(x, r) A. But S(x,r) being an open set (see
Theorem 2.1.5), each point of it is the centre of some open ball
contained in S(x,r) and consequently, also contained in A.
Therefore each point of S(x,r) is an interior point of A, i.e., S(x, r)
A°. Thus, x is the centre of an open ball contained in A°. Since x
A° is arbitrary, it follows that each x A° has the property of being
the centre of an open ball contained in A°. Hence, A° is open.

It remains to show that A° contains every open subset G <A. Let
x 2 G. Since G is open, there exists an open ball S(x, r) <G <
A. So x 2 A°. This shows that x 2 G ) x 2 A°. In other words, G
<A°.

(if) isimmediate from (i). &

The following are basic properties of interiors.
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72 2. Topology of a Metric Space

Theorem: Let (X, d) be a metric space and A, B be subsets of X.
Then

(i) A<B ) A8 <BS;

(i) (A\ B)8 = A8\ BS;
Gii) (A [ B)8<A8 [ BS.

Proof. (i) Let x 2 A8. Then there exists an r > 0 such that S(x, r) <
A. Since A <B, we have S(x, r) <B, i.e., x 2B8.

(i) A\B <AaswellasA\ B <B. It follows from (i) that (A\ B)8
<A8aswell as (A\ B)8 <B8, which implies that (A\ B)8 <A8\
B8. On the other hand, let x 2 A8\ B8. Then x 2 A8 and x 2 B8.
Therefore, there exist r1 > 0 and r, > 0 such that S(x, r) < A and
S(x, r2) <B. Let r=min {rg, r2}. Clearly, r>0 and S(x,r) <A
\B,ie,x2(A\B)8.

(i) A<A[BaswellasB <A [ B. Now apply (i). &

Remark: The following example shows that (A [ B)8 need not be
the same as A8 [ B8. Indeed, if A% [0,1] and B¥%[1, 2], then
A [ B=][0,2]. Since A8% (0, 1), B8% (1, 2) and (A [ B)8 ¥ (0, 2),
we have (A [ B)8 6¥4 A8 [ BS.

Definition: Let X be a metric space and F a subset of X. A péint x
X is called a limit point of F if each open ball with centre x
contains at least one point of F different from x, i.e.,

(S, r) —{x}) \Fo6=1:

The set of all limit points of F is denoted by F * and is called the
derived set of F.

Examples: (i) The subset F §4, 1=2, 1=3, .. . } of the real line has
O asa limit point; in fact, O is its only limit point. Thus the derived
set’of F is {0}, i.e., F' {O}.

(ii) The subset Z of integers of the real line, consisting of all the
integers, has no
limit point. Its derived set Z’ is 1.

(iii) Each real number is a limit point of the subset of rationals: Q'

R.
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72 2. Topology of a Metric Space

aw) It (X, d) is a discrete metric space (see Example 1.222(v)) and F

X, then F
has no limit points, since every open ball of radius 1 consists only of
the centre.

(v) Consider the subsét F {&, y) C : x>0,y > 0} of the
complex plane. Each poir# of the subset {(x,y) C:x$0, y$0}
is a limit point of F. In fact, the latter set is precisely F .

(vi) For an interval I <R, the set | > consists of not only all the
points of | but also any endpoints | may have, even if they
do not belong to I. Thus (0,1)'% (0,1]'% [0, 1)'% [0, 1]'¥% [O,
1].

Proposition: Let (X, d) be a metric space and F < X . If xo is a limit
point of

F, then every open ball S(xo, r), r > 0, contains an infinite number
of points of F.

Proof. Suppose that the ball S(xo, r) contains only a finite number of
points of F. Let

Y1, Y2, ... , Yn denote the points of S(xo, r) \ F that are distinct from Xo.
Let

d=% min {d(y1, Xo), d(y2, Xo), ... , d(yn, X0)}:

Then the ball S(xo, d) contains no point of F distinct from Xo,
contradicting the assumption that xo is a limit point of F.

&

The following characterisation of the limit points of a set in a
metric space is useful.

Proposition: Let (X, d) be a metric space ang F X. Then a point
Xo is a limit point of F if and only if it is possible to select from
the set F a sequence of distinct points xi, X2, ... , Xn, ... such that
limn d(Xn, X0)=%4 0.

Proof. If limy d(Xn, Xo) ¥ 0, where x1, X2, ... , Xn, ... IS a sequence
of distinct points of F, then every ball S(xo, r) with centre Xo
and radius r contains each of xn, where n $ no for some suitably
chosen ng. As X1, X2, ... , Xn, ... In F are distinct, it follows that S(xo,
r) contains a point of F different from xo. So, Xo is a limit point of
F.
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72 2. Topology of a Metric Space

On the other hand, assume that xo is a limit point of F. Choose a
point x1 2 F in the open ball S(xo, 1) such that x; is different from
Xo. Next, choose a point x2 2F in the open ball S(xo, 1=2) different
from xo as well as from xi; this is possible by Proposition 2.1.19.
Continuing this process in which, at the nth step of the process we
choose a point x» 2 F in S(xo, 1=n) different from xz, Xo, ... , Xn—1,
we have a sequence {xn} of distinct points of the set F

Such that limn d(Xn, Xo) Ya 0.

Definition: A subset F of the metric space (X, d) is said to be
closed if it contains each of its limit points, i.e., FF <F.

Examples. (i) The set Z of integers is a closed subset of the real line.
(i) The set F+{1,1=2,1=3,...,1=n,...} is not closed in R. I
fact, F' {0}, which is not contained in F.
(iii) The set B {(x,yR C:x $0,y $0} is a closed subset of the
complex plane
C. In this case, the derived sétis F' F.
(iv) Each subset of a discrete metric space is closed.

Proposition Let F be a subset of the metric space (X, d). The
set of limit points of F, namely, F ’ is a closed subset of (X, d), i.e.,
(F)'<F.

Proof. If %1 or (F)% 1, then there is nothing to prdve. Let F'
1%nd let  x (F")". Choose an arbitrary open ball S(x, r) with
celﬂtr_e xo and radius r. By the definition of limit point, tifere exists
a point y F %such that y S(xo, r). If r' r  d(y, x), then S(y, r")
contains infinitely many points of F by Proposition

But S(y,r")  S(%, r) as in the proof of Theorem 2.1.5. So,
infinitely many points of F lie in S(xo, r). Therefore, x, B a limit
point of F, i.e., xo F' Thus, F’ contains all its limit points and
hence F is closed.

Definition: Let F be a subset of a metric space (X, d). The set F
Flis
called the closure of F and is denoted by F .

Corollary: The closure F of F < X, where (X, d) is a metric space,
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72 2. Topology of a Metric Space
is closed.

Proof. In fact, by Proposition 2.1.23 and Theorem 2.1.24(ii),
E)%FLFY%FLFE)Y<FLF%F<F:

Corollary: (i) Let F be a subset of a metric space(X, d). Then F is
closed ifand only if F = F.

() IfA<B, then A<B.

() If A<F and F is closed, then A <F.

Proof. (i) IfF F, then it follows from Corollary 2.1.26 that F
is closed. On the other hand, suppose that F is closed; then

FW“F[F=%F<F:

It follows from the above relation¥that F F.
i) This is an immediate consequence of Theorem 2.1.24(i).
@ii) This is an immediate consequence of (ii) above. &

Proposition : Let (X, d) be a metric spaceard F X . Then
the following statements are equivalent:
O X2F;
(i) S(x,e) \ F 6= 1 for every open ball S(x, €) centred at X ;
@ii) there exists an infinite sequence {x»} of points (not necessarily
distinct) of F
such that x, ¥ x.

Proof. (i) ) (ii). Let x 2 F. If x 2 F, then obviously S(x, ) \ F 6% 1.
If x 2 F, then by the definition of closure, we have x 2 F'. By
definition of a limit point,

(S(x, e)x}) \F 6% 1

and, a
fortiori, S(x,e)\ F6v%1:

G (iii). For each positive integer n, ch&se xn S(x,1=n)
F. Then the sequence {x»} of points in F converges to x. In
fact, upon choosing no > 1=e,
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2.2. Relativisation and Subspaces 79

where e > 0 is arbitrary, we have d(Xn, X) < 1=n<1=np<e,i.e., Xn 2
S(x, €) whenever n $ no.

(i) ) (i) If the sequence {x}n$ 1 of points in F consists of
finitely many distinct points, then there exists a subsequence {xnk
} such that xnk ¥ x for all k. So, x 2 F. If however, {Xn}n s 1
contains infinitely many distinct points, then there exists a
subsequence {xnk } consisting of distinct points and limk d(xnk , X)
Y4 0, for lim,d(x,, x) % 0 by hypothesis. By Proposition 2.1.20, it
follows thatx 2 F'<F: &

Condition (ii) of Definition 1.5.1 of a completion can be
rephrased in view of condition (i) and Proposition 2.1.28 (iii) as
saying that the closure of metric space X as a subset of its
completion X™ must be the whole of X™.

The following proposition is an easy consequence of Theorem

2.1.24.

Proposition. Let F1, F2 be subsets of a metric space (X,
d).
(i) (F1\ F2) <F1 \F2.

Proof. we have

(FILF) % (FLLF) C(F L)% (R LF) C(FY LFD)
v (FLLFP) LR LFJ) % F1 [F2,
which establishes (i). The proof of (ii) is equally simple.

Remarks 2.1.30. (i) It is not necessarily the case that the closure
of an arbitrary union is the union of the closures of the subsets in
the union. If {Aa}azL is an infinite family of subsets of (X, d), it
follows from Corollary 2.1.27 (ii) that

a2l a2A

L- L

Aa= —Au
Equality need not hold, as the following example shows: If Ay % {ra}. n
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2.2. Relativisation and Subspaces 79
1,2, ..
and ry, ..., M, ... is@n enumeration of rationals, then An% {r} %

i AnYa Q, whereas 34 AnYa Q¥4 R.
(11) In Proposition 2.1.29 (1), equality need not hold. For example, if Fi denotes

{r} and

the set of rationals in R and F; the set of irrationals in R, then (F:\ F,)
Vo 1 Yad
but F1 ¥4 F2 %4 R.

Proposition Let (X, d) be a metric space. The empty set 1 and
the whole space X are closed sets.

Proof. Since the empty set has no limit points, the requirement

that a closed set contain all its limit points is automatically

satisfied by the empty set.
Since the whole space contains all points, it certainly contains

all its limit points (if any), and is thus closed.
The following is a useful characterisation of closed sets in terms of
open sets.

Theorem : Let (X, d) be a metric space and F be a subset of X. Then
F is closed in X if and only if F® is open in X.

Proof. Suppose F is closed in X. We show that F° is
open in X. If F 1(respectively, X), then F¢ X (respectively,
1) and it &; open by Theoreih 2! [.7(i); so we may suppose that
F 1 E°. Let x be a point in F°. Since F is closed and x F, x
cannot be a limit point of F. So there exists an r > 0 such that
S(x, r) F°. Thus, each point of F° is contained in an open ball
contained in F°. This means F° is open.

For the converse, suppose F° is open. We show that F is
clsed. Let x X be a limit point of F. Suppo88, if possile,
that x F. Then x F¢ which is assumed to be open. Therefore,
there exists r > 0 such that S(x, r) F¢, i.e.,

S(X, r) \F¥ 1:

Thus, x cannot be a limit point of F, which isacontradiction. Hence, x
belongstoF.
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2.2. Relativisation and Subspaces 79

Theorem: Let (X, d) be a metric space. Then

() 1 and X are closed;
(i) any intersection of closed sets is closed;
@iii) a finite union of closed sets is closed.

Proof. (i) This is a restatement of Propositiap 2.1.31.

Theorem : Let F be a nonempty bounded closed subset of R and let
avinfF

and b YasupF. Thena2 Fand b 2 F.

Proof. We need only show that if a 62 F, then a is a limit point of
F. By the definition of infimum, for any e > 0, there exists at least
one member x 2 F such that a# x < a p e. But a 62 F, whereas x 2
F. So,

a<x<ape:

Thus, every neighbourhood of a contains at least on2 member
x F which is different from a. Hence, a is a limit point of F.

&

Definition 2.1.37. Let F be a nonempty bounded subset of R and
let a #inf F  and b supF. The closed interval [a, b] is called the
smallest closed interval containing F.

Theorem: If [a, b] is the smallest closed interval containing F,
where F is a nonempty bounded closed subset of R, then

[a, b]\F % (a, b) \ F°
and so is open in R.

Proof. Let Xo 2 [a, b]\F; this means that xo 2 [a, b], Xo 62 F. If X0 62 F,
then xo 6% a and Xxo 6% b, because a and b do belong to F, by
Theorem 2.1.36. It follows that  xo 2 (a, b). Moreover, it is obvious
that xo 2 F°, so that

[a, b]\F < (a, b) \ F©:

The reverse inclusion is obvious. &
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2.2. Relativisation and Subspaces 79
The following characterisation of closed subsets of R is a direct
consequence of Theorems 2.1.11 and 2.1.38.

Theorem 2.1.39. Let F be a nonempty bounded closed subset of
R. Then F is either a closed interval or is obtained from some
closed interval by removing a countable family of pairwise
disjoint open intervals whose endpoints belong to F.

Proof. Let [a, b] be the smallest closed interval containing F, where a
Y, inf F and
b ¥ supF. By Theorem 2.1.38,

[a, b]\F ¥ (a, b) \ F®

IS open and hence is a countable union of disjoint open intervals
by Theorem 2.1.11. Moreover, the endpoints of the open
intervals do not belong to [a, b]\F but do belong to [a, b]. So
they belong to F. The set F thus has the desired property. &

This seemingly simple looking process of writing a nonempty
bounded closed subset of R leads to some very interesting and
useful examples. The following example, which is of particular
importance, is due to Cantor.

Example 2.1.40. (Cantor) Divide the closed ¥aterval I [0, 1] into
three equal parts by the points 1/3 and 2/3 and remove the open
interval (1/3, 2/3) from 1. Divide each of the remaining two closed
intervals [0, 1/3] and [2/3, 1] into three equal parts by the points
1/9, 2/9 and by 7/9, 8/9, respectively, and remove the open
intervals (1/9, 2/9) and (7/9, 8/9). Now divide each of the
remaining four intervals [0, 1/9], [2/9, 1/3], [2/3, 7/9] and [8/9, 1]
into three equal parts and remove the middle third open intervals.
Continue this process indefinitely. The open set G removed in this
way from | ¥4 [0, 1] is the union of disjoint open intervals
- > . > . >
v 2 it

The complement of G in [0,1], denoted by P, is called the Cantor
set. Important properties of this set are listed in the Exercise 16
and Section 6.4.

The completeness of R can also be characterised in terms of
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2.2. Relativisation and Subspaces 79
nested sequences of bounded closed intervals. An analogue of this
result for metric spaces is proved in Theorem 2.1.44. We begin
with some relevant definitions.

Definition. Let (X, d) be a metric space and let A be a nonempty subset
of X.
We say that A is bounded if there exists M > 0 such that

dix,y)#M  x,y 2A:

If A is bounded, we define the diameter of A as
diam(A) Y4 d(A) Ya sup{d(x, y): X,y 2 A}:

If A is not bounded, we write d(A) % 1.
We define the distance between the point x 2 X and the subset B of
X by

d(x, B) ¥4 inf{d(x, y) : y 2 B},

and, in an analogous manner, we define the distance between two
nonempty subsets
B and C of X by

d(B, C) s inf{d(x,y) : x2B,y 2 C}:

Examples. (i) Recall that a subset A of R (respectively, R?) is
bounded if and only if A is contained in an interval (respectively,
square) of finite length (respect- ively, whose edge has finite
length). Thus, our definition of bounded set in an arbitrary metric
space is consistent with the definition of bounded set of real
numbers (respectively, bounded set of pairs of real numbers).

(i) The interval 10, ) is not a bounded subset of R. However,
if R is equipped with the discrete metric, then every subset A of
this dlscrete space (in particular, the Gt 0, )) is botfhded, since
d(x,y) #1 for x,y A. Indeed, d(A) 1, provided A contains more
than one point. Moreover, any subset of any discrete metric space
has diameter 1 if it contains more than one point.

@ii) If R is equipped with the nondiscrete metric d(X, y) ¥a jJx —
yj=[1 b jx —yj], then every subset is bounded and d(R) ¥ 1.

@v) In the space (“2, d) (see Example 1.2.2(vii)), consider the set

\&7 {el, €2, ..., €n, ... },
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2.2. Relativisation and Subspaces 79

Theorem : (Cantor) Let (X, d) be a metric space. Then (X, d) is

complete if and only if, for every nested sequence {Fn}n $ 1 of

nonempty closed subsets of X, that is,
@F<F<y.<F,<...suchthat (b) d(F,) ¥ Oasn ¥ 1,

|
Proof. First suppose that (X, d) is complete. For each positive
integer n, let x, be any point in Fn. Then by (a),
Xn, an]_, anz,

all lie in Fn. Given e > 0, there exists by (b) some integer no such that
d(Fn0 ) < e. Now, Xn0Q , Xa0p1, XnQp2, ... all lie in Fag . For m, n $ no,
we then have d(xm, Xn) # d(Fa0 ) < e. This shows that the sequence
{xn}n $ 1 is a Cauchy sequence in the complete metric space X. So, it
is convergent. Let x 2 X be such that limyra X, % x. Now for any
given n, we have the sequence Xn, Xnpt, ... < Fn. Inview of this,

since Fn is closed. Hence,

If e > 0, then there exists a natural number no such that d(Fng) < e.
But x Fn0

and thus n $no implies d(xn, X) <e.
&

Subspaces

Let (X, d) be a metric space and Y a nonempty subset of X. If dy
denotes the restriction of the function d tothe set Y x Y, then dy is
ametric for Yand (Y, dy) is

a metric space (see Section 1.%. 1£Z Y X , we may speak of Z
being open (respectively, closed) relative to Y as well as open
(respectively, closed) relative to X. It may happen that Z is an open
(respectively, closed) subset of Y but ng)} of X.For example, let X
be R? wyith metric d2 and Y {(x, 0): x R} with the induced
metric. Then Y is a closed subset of X (forY ¢ {(x,y) R2y
0} is open in X). If Z {(x, 0): 0 < x < 1}, then Z considered as a
subset of Y is open in Y. However, Z considered as a subset of X is
naf open in X. In fact, no point (x, 0) Z is &h interiof point of Z (Z
cofisidered as a subset of X) because any neighbourhood of (x,0)
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2.2. Relativisation and Subspaces 79
in X is the ball S( (x, 0), r), r > 0, which is not contained in Z.
Thus, Z {(x,0):0<x<1} is an open subset of Y {(X,
0):x R} but not of X (R?, dy).
The above examples illustrate that the property of a set being open
(respectively
closed) depends on the metric space of which it is regarded a
subset. The following theorem characterises open (respectively
closed) sets in a subspace Y in terms of open (respectively closed)
subsets in the space X. First we shall need a lemma.

Lemma 2.2.1. Let (X, d) be a metric space and Y a subspace ofX. Let z Y
and
r > 0. Then

Sy (z,r) ¥ Sx(z, r) \Y,

where Sy (z, r) (respectively Sx(z, r)) denotes the ball with centre z and
radius r in Y (respectively X).

Proof. We

have Sx(z, )\Y¥a{x2X:d(x,z) <r}\Y
Va{x2Y:d(x,z) <r}
Y4Sy (z, 1) since Y<X: &
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80 2. Topology of a Metric Space

Let X2 R?and Y ¥4 {(X1, X2): 0<x1 # 1, 0# x2 < 1, x* p x> $ 1}. Here,
the

. i 1 .
open ball in Y with centre (1, 0) and 93%1%191% space ¥ (See Figure 2.6

T
(A W—
V2
\
(1,00 4
Figure 2.6

Theorem: Let (X, d) be a metric space and Y a subspace of X. Let
Z be asubset of Y. Then

@ Zisopenin Y if and only if there exists an open set G < X such
that
ZY%G\Y;

(i) Z is closed in Y if and only if there exists a closed set F <X
such that
ZYF\Y.

Proof. (i) Let Z be open in Y. Then if z is any point of Z, there
exists an open ball Sy (z, r) contained in Z. Observe that the radius
r of the ball Sy (z, r) ?fepends on the point z 2 Z . We then have

x(z, r) is open in X.

On the other hand, suppose that Z %2 G \ 'Y, where G is open in
X.1fz 2 Z, then z is a point of G and so there exists an open Ball
Sx(z, r) such that Sx(z, r) G. Hence,

Sy(z,r) ¥aSx(z,r) \ Yby Lemma 2:2:1
<G\Y%Z,

so that z is an interior point of the subset Z of Y. As z is an arbitrary
point of Z, it follows that Z is open in Y.
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(i) Zisclosed in Y if and only if\X\Z) Y isopenin Y.Hence, Z is
closed inY if and only if there exists an open set G in X such that
X\Z)\Y %G \'Yusing (i)
above: On taking complements in X on both
sides, we have
Z [ OX\Y) % (X\G) [ (X\Y):

Hen

ce ZYaZ\Y Y%oZ [ (X\Y)P\Y
Yo d(X\G) L (X\Y)P\Y :
Ya (X\G)\Y

So, Z is the intersection of the closed set X\G and Y.
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2.2. Relativisation and Subspaces 81

where X\F is open in X. Hence (X\Z ) \ Y isopenin, i.e., Zis
closedinY. &

Proposition : Let Y be a subspace of a metric space (X, d).

(i) Every subset of Y that is open in Y is also open in X if and only if Y
isopen in X.

(i) Every subset of Y that is closed in Y is also closed in X if and
only if Yis closed in X.

Proof. (i) Suppose every subset of Y open in Y is also open in X.
We want to show that Y is open in X. Since Y is an open
subset of Y, it must be open in
X. Conversely, suppose Y is open in X. Let Z be an open subset of
Y. By Theorem 2.2.2(i), there exists an open subset G df'X duch that
VA G Y . Since G and Y are both open subsets of X, their
intersection must be open in X, i.e., Z must be open in X.

(i) The proof is equally easy and is, therefore, not included. &

Proposition : Let (X, d) be a metric space ang Z<Y X. If clxZ and
cly Z denote, respectively, the closures of Z in the metric spaces X
and Y, then

clyZ¥2 Y \clxZ :

Proof. Obviously, Z <Y \ cIxZ . Since Y \ clxZ is closed in Y
(see Theorem 2.2.2(ii)), it follows that clyZ < Y \ cIxZ. On the
other hand, by Theorem 2.2.2(ii), cly Z ¥a Y \ F, where F is a
closed subset of X. But then

Z<clyZ<
F, and hence, by Corollary 2.1.27(ii),
clxz <F:
Therefo
re, cZ%Y\NF<Y\
cIxZ:
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This completes the proof. &

In contrast to the relative properties discussed above, there
are some properties that are intrinsic. In fact, the property of x
being a limit point of F holds in any subspace containing x and
F as soon as it holds in the whole space, and conversely. Another
such property is that of being complete. The following
propositions describe relations between closed sets and
complete sets.

Proposition : IfY is a nonempty subset of a metric space (X, d),
and (Y, dv) is complete, then Y is closed in X.

Proof. Let x be any limit point of Y. Then x is the limit of a sequence
{ynIn $1inY.In view of Proposition 1.4.3, the sequence {yn}n $
1 is Cauchy, and hence, by assump- tion, converges to a point y of

Y. But by Remark 3 following Definition 1.3.2, y ¥% x. Therefore, x
2 Y. This shows that Y is closed in X.

Proposition: Let (X, d) be a complete metric space and Y a closed
subset of X. Then (Y, dy) is a complete space.

Proof. Let {yn}n $ 1 be a Cauchy sequence in (Y, dy). Then {yn}n $
1 is also a Cauchy sequence in (X, d); so there exists an x 2 X such

that limpra ya % x. If follows (see Proposition 2.1.28) that x 2 Y,
which isthe same setas Y by Corollary 2.1.27(i). &

Countability Axioms and Separability

Definition: Let (X,d) be a metric space and x 2 X. Let
{Gi}12L be a family of open sets, each containing x. The family

{Gi}12L is said to be a local base at x if, for every nonempty open
set G containing X, there exists a set G in the family

{Gi}12L such that x 2 G, < G.

Examples 2.3.2. (i) In the metric space R? with the Euclidean metric,
let G| Y

S(x, 1), where x ¥(x1,X2) 2 R?and 0 < 12 R. The family {G;:0 < 12
R}Ya
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{S(x, N:0<12R} is a family of balls and is a local base at x.
Note that S(x, 1), where x ¥(x1,xz), can also’be described as {(y}.y2)2
R 1 (y1—X1) p (y2—x2) <1 }. (ii) Let'x ¥ (x4, Xz) 2R and G¥%
{(y1,y2)) 2R :(yi—x1) P2(y2—x2) <1}, where 0 <1 2R. Then the
family {Gi: 0 < I 2 R} is a local base at x. To see why, consider any
open set G < R such that x 2 G. Since G is open, there exists r >0
such that S(X,r) <G. Row S(x,r) ¥a{(ys,¥2) 2R :(y1—x1) p (y2—
x2) <r }.Let 1%r? Theny 2Gi) (y1i—x1)2p2(y2—x2)?< 1) (ya
—Xx1)?p (y2—x2)?
<I1) (y1—x1)p (y2—x) < r2 ) y2S(x r), sothat G < S(x, r) <
G. In this example, the sets G, are ellipses.

(i) Let ® R. Consider the family of all open intervals (r,s)
containing x and having rational endpoints r and s. This family is
a local base at x. It consists of open balls, not necessarily centred
at x. Moreover, the family is countable and thus constitutes what
is called a countable base at x.

Proposition: In any metric space, there is a countable base at each
point.

Proof. Let (X, d) be a metric space and x X. The family of open
balls centred at x

and having rational radii, i.e., {S(x, r): r rational and positive} is a
countable base at

X. In fact, if G is an open seand x G, then by the definition of an
open set, there exists an e > 0 (e depersling orFx) such that x S(x,
e) G. Let r be a positive rational number less than e. Then

X2S(x,r)<S(x,e)<G:

Definition: A family {Gi}12L of nonempty open sets is called a
base for the open sets of (X, d) if every open subset of X is a
union of a subfamily of the family

{Gi}i2L.

The condition of the above definition can be expressed in the
following equiva- lent form: If G is an arbitrary nonempty open
set and x 2 G, then there exists a set Gn in the family such that x
2 Gn <G.

Proposition: The collection {S(x, ef x X, e > 0} of all open balls
in X isa base for the open sets of X.
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Proof. Let G be a nonempty open subset of Xand let xG. By the
definition of an open subset, there exists a positive e(x)
(depending upon x) such that

X 2 S(x, e(x)) <G:
This completes the proof. &

Generally speaking, an open base is useful if its sets are simple in
form. A space that has a countable base for the open sets has
pleasant properties and goes by the name of ‘second countable’.

Definition: A metric space is said to be second countable (or
satisfy the second axiom of countability) if it has a countable
base for its open sets.

The reason for the name second countable is that the
property of having a countable base at each point, as in
Proposition 2.3.3, is usually called first countability.

Examples: (i) Let (R,d) be the real line with the usual metric. The
collection

{(x,y) : x, y rational} of all open intervals with rational endpoints
form a countable base for the open sets of R.

(i) The collection

{S(X,r):% (X1,X2,...,%n), X rationals, 1#i#n, and r positive
rational} of all r-balls with rational centres and rational radii is a
countable base for the open sets of the metric space (R", d),
where d may be any of the metrics on R" described in Example
1.2.2(iii).

(iii) Let X have the discrete metric. Then any set {x} containing a
single point x is also the open ball S(x, 1/2) and therefore must
be a union of nonempty sets of any base. So any base has to
contain each set {x} as one of the sets in it. If X is
nondenumerable, then the sets {x} are also nondenumerable,
forcing every base to be nondenumerable as well. Consequently,
X does not satisfy the second axiom of countability when it is
nondenumerable.

It is easy to see that any subspace of a second countable space is
also a second countable space. In fact, the class of all intersections
with the subspace of the sets of a base form a base for the open
sets of the subspace.
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Definition: Let (X, d) be a metric space and G be a collection of
open sets t X. If for each x Xathere is a mgmber G G such that x
G, then G is called an open cover (or open covering) of X. A
subcollection of G which is itself an open cover of X is called a
subcover (or subcovering).

Examples 2.3.9. (i) The union of the family-{ ..—, ( 3 1), 2,
0), ( 1,1), (0,2),...} of open intervals is R. The family is
therefore an open covering of R. However;"the family of open
intervals { ..., (2, 1),( 1,0),(0,1),(1,2),...} is not an open
covering, because the intervals’ union does not contain the
integers. The aforementioned cover contains no subcovering
besides itself, because, if we delete any interval from the family,
the midpoint of the deleted interval will not belong to the union of
the remaining intervals.

(i) Let X be the discrete metric space consisting of the five
elements a, b, c, d, e. The union of the family of subsets {{a}, {b,
c}, {c, d}, {a, d, e}} is X and all subsets are open. Therefore the
family is an open cover. The family {{b, c}, {c, d}, {a, d, e}} isa
proper subcover.

(iii) Consider the set Z of all integers with the discrete metric. As
in any discrete metric space, all subsets are open. Consider the
family consisting of the three subsets

{3n:n2zZ} {3npl:n2Z}yand{3np2:n2Z}:

Since every integer must be of the forrpp 3n, 3npl or 3n 2, the
above three subsets form an open cover of Z. There is no proper
subcover.

@(v) The family of intervals {(—n, n): n 2 N} is an open cover of
R and the family consisting of the open balls {z 2 C : jz p 17] <
n®2,n 2 N} is an open cover of C. If we extract a subfamily by
restricting n to be greater than some integer no, the subfamily is
also an open cover. Indeed, if we delete a finite number of sets in
the family, the remaining subfamily is an open cover. Thus, there
are infinitely many open subcovers.

Definition: A metric space is said to be Lindelof if each open
covering of X contains a countable subcovering.
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Proposition: Let (X, d) be a metric space. If X satisfies the second
axiom of countability, then every open covering {Ua}a2L of X
contains a countable subcover- ing. In other words, a second
countable metric space is Lindel6f.

Proof. Let {Gi:i% 1, 2, ... } be a countable base of open sets for X.

Since each U is a union of sets Gi, it follows that a subfamily {Gij : j

Ya 1,2, ..} of the base

{Gi:i%1,2,.. }isacovering of X. Choose Uij < Gij for each j. Then
{Uij :j ¥1,2,... } is the required countable subcovering. &

Definition: A subset Xo of a metric space (X, d) is said to be
everywhere dense or simply dense if Xo ¥4 X, i.e., if every point of
X is either a point or a limit

point of Xo. This means that, given any point x of X, there exists a
sequence of points of X, that converges to x.

It follows easily from this definition and the definition of interior

that a subset of Xo is dense if and only if X® has empty interior.

It may be noted that X is always a dense subset of itself; interest
centres around what proper subsets of a metric space are dense.

Examples: (i) The set of rationals is a dense subset of R (usual
metric) and so is the set of irrationals. Note that the former is
countable whereas the latter is not.

(i) Consider the metric space (R", d) with any of the metrics
described in Example 1.2.2(iii). Within any neighbourhood of
any point in R", there is a point with rational coordinates. Thus,

Q"Y%QxQx..xQ
is dense in R".
(i) In the space C[0, 1] of Example 1.2.2(ix), we consider the set
Co consisting of all polynomials with rational coefficients. We
shall cReck that Co is dense in C[0, 1]. Let x(t) C[O, 1]. By

Weierstrass’ theorem (Theorem 0.8.4), there exists a polyno- mial
P(t) such that
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Definition: The metric space X is said to be separable if there
exists a countable, everywhere dense set in X. In other words, X is
said to be separable if there exists in X a sequence

{X1,X2,...} (2:1)

such that for every x 2 X, some sequence in the range of (2.1)
converges to x.

Examples: In Examples 2.3.13(i)—(iii) and (v), we saw dense sets
that are countable. Therefore, the spaces concerned are separable.
In (iv) however, the space is separable if and only if the set X is
countable.
There are metric spaces other than the discrete metric space
mentioned above
which fail to satisfy the separability criterion. The next example is
one such case. Let
X denote the set of all bounded sequences of real numbers with
metric

dix,y) Yasup{jxi—vVvij:1%1,2,3,... }

as in Example 1.2.2(vi). We shall show that X is inseparable.

First we consider the set A of elemé&nts x (x1, X2, ... ) of X for which
each x; is either 0 or 1 and show that it is uncountable. If E is any
countable subset of A, then the elements of E can be arranged in a
sequence si, Sz, ... . We construct a sequence s as follows. If the m™
element of sy is 1, then the m™ element of s is 0, and vice versa. Then
the element s of X differs from each sn in the m™ place and is
therefore equal
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to none of them. &, s E although s A. This shows that any
countable subset of A must be a proper subset of A. It follows that
A is uncountable, for if it were to be countable, then it would have
to be a proper subset of itself, which is absurd. We proceed to use
the uncountability of the subset A to argue that X must be
inseparable.

The distance between two distinct elements x ¥4 (X1, X2, ... ) and y
Ya (y1, Yo, ... of Aisd(k, ¥y sup{ xiyi**i 1, 2,3, ... } 1. Suppose, if
possible, that Eo is a countable, everywhere dense subset of X.
Consider the balls of radii 1/3 whose centres are the points of Eo.
Their union is the entire space X, because Eo is everywhere dense,
and in particular contains A. Since the balls are countable in number
while A is not, in at least one ball there must be two distinct
elements x and y of A. Let xo denote the centre of such a ball. Then

which is, however, impossible. Consequently, (X, d) cannot be
separable.

Proposition: Let (X, d) be a metric space and Y X. If X is
separable, then Y with the induced metric is separable, too.

Proof. Let’e {xi%d 1,2,...}beacountable dense subset of X. IfE
is contained in Y, then there is nothing to prove. Otherwise, we
construct a countable dense subset of Y whose points are
arbitrarily close to those of E. For positive integers n and m, let
Sn,m ¥4 S(Xn, 1=m) and choose yn,m 2 Sn,m \'Y whenever this set is
nonempty. We show that the countable set {y,, m: n and m positive
integers} of YisdenseinY.
For this purpose, lety 2 Y and e > 0. Let m be so large that 1=m < e=2
and find
Xn 2 S(y, 1=m). Theny 2 Sp,, m \Y and
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n n

Thus, ya, m 2 S(y, €). Since y 2 Y and e > 0 are arbitrary, the assertion is proved. &

The main result of this section is the following.

Theorem: Let (X, d) be a metric space. The following statements are equiva- lent:

@ (X, d) is separable;
(1) (X, d) satisfies the second axiom of countability;
@ii) (X, d) is Lindel6f.

Proof. (i) ) (ii). LetE % {xi:1% 1, 2,...} be a countable, dense subset of X and let
{ri:j¥% 1, 2, ... } be an enumeration of positive rationals. Consider the countable
collection of balls with centres at x;, i ¥4 1, 2, ... and radii rj, j %4 1, 2, ... ; i.e.,

{S(xi, r):xi2Efori¥1,2,..andrj isrational j¥% 1, 2, ... }:

Possible questions

2 MARK QUESTION:
Define Open set.

Define Pesudometric.
Define Cauchy Sequence.
Define Metric space
Define Closed set.

agrwpdpE

8 MARK QUESTION:
1. Prove that A convergent sequence in a metric space is a Cauchy
sequence.

2. Let (X,d) be a metric space and A, B be subsets of X. Then

i) ASB implies A° € B®

ii) (AnB)°=A°n B

iii) A°U B°c (AU B)°.
3. Let (X,d) be a metric space.

N ; _ _dxy)
Defined: Xx X - Rbyd(x,y) = Triy)

Then d is a metric on X.

4. Let (X,d) be a metric space and F1, F> be subsets of X. Then
i) IfF1 S Fy, then Fi € Fy"
ii) (F1 V) Fz), = Fl, V) Fz’;
iiy(FiNnF) CFH NF .
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5. Let {x} be a sequence in L p space such that lim x” = x« as n tends to
infinity for each k, where x={xx} is an element of Lp. Suppose also that
for every €>0 there exists an integer mo(€) such that

1/p
(Z,‘j;m+1|x,£”)|) < € for m=mo(€) and for all
Then lim d(x™,x)=0 as n tends to co.

6. Let (X,d) be a metric space and A € X.If X, is a limit point of A, then
every open ball S(xo,r), r>0, contains an infinite number of points of A.

7. Let (X,d) be a metric space, Then prove that
i) @ and X are open sets in (X,d):
i) the union of any finite family of open sets is open:
iii) the intersection of any finite family of open sets is open.

8. Let (X,d) be a metric space and F be a subset of X. Then prove that F is
closed in X if and only of F® is open in X.

9. Prove that in any metric space (X,d), each open ball is an open set.

10. Let (X,d) be a metric space, Then prove that
i) @ and X are closed sets in (X,d);
ii) any intersection of closed sets is closed;
iii) a finite union of closed sets is open.
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Question

The property d(x,y) is less then or equal to d(x,z) + d(z,y) is
called .

Let (X,d) be a metric space. If d(x,y) = 0 then

Let d(x,y) = 0 if x=y and d(x,y)= 1 if x not equal toy. This
metric is called

The second property of pseudometric is
A Convergent sequence in a metric space is called

A metric space (X,d) is complete if every Cauchy sequence in
Xis called

A mapping f of X into X is an isometry if d’(f(x),f(y))=

Let (X,d) be a metric space.The set s(xo,r) is called the open
ball if x belonges to X such that d(x,X) is

Let (X,d) be a metric space. The intersection of any finite
family of open sets is

Let A be a subset of a metric space (X,d).Then A is open iff

Let (X.d) be a metric space and A, B be subsets of X.Then
(AUB)° is containing in

Let (X,d) be a metric space. Then any intersection of closed
sets is

Let (X,d) be a metric space. Then Space (X,d) is Lindelof it
is equivalent to (X,d) is

Let (X,d) be a metric space and F be a subset of X.Then F is
Closed in X iff F° is in X

A subset F of the metric space (X,d) is said to be if
it contains each of its limit points

Let A be the subset of metric space ,Int(A)={ x belongs to A
such that contained in A for some r>0}.

Which property is difference between metric spaces and
pseudometric .

The spaces (R",dy), B(s) are
The space of the real numbers is the of the space
of the rational.

If A is bounded then sup{d(x,y): X,y belongs to A} is
called .

If a subsequence is converges, its limit is called a
limit of {xn}.

S(x,r) is denoted by

S(x,r) is open ball where x is

Each open ball is an set.

Each closed ball is an set.

UNIT I
OPTION 1
Cauchy-Schwarz
inequality
X<y
Euclidean Metric
d(x,y)=0 if x=y
Bounded
sequence
Incomplete
d(xy)
less then r
closed
A<A®
B°UA’
open set
separable
subset
subset
s(X)

First
complete
complete
supermom
subsequential
open ball
limit point
null

null

OPTION 2
Minkowski’s
Inequality

x>y

Discrete Metric

x=y if d(x,y)=0 d(x,y)=0 iff x=y d(x,y)=d(y,x)

OPTION 3

Triangle
inequality

X=y

Standard Metric Distance Metric

Cauchy sequence Convergent

Bounded

f(x)

sequence

Divergent

f(y)

less then or equal grater then r

tor

open

0

A> A

A'up®

empty set

inseparable

closed set

closed

s(r)

Second

incomplete

isometry

distance

upper

closed ball

centre point

empty

empty

bounded

:A0

AUB

singleton

not countability

open set

open

s(r,x)

Third

limit

completion

diameter

lower

null ball

arbitrary point

closed

closed

OPTION 4

Cauchy
inequality

x=0

Divergent
sequence

Convergent

o

equal tor

unbounded

0,

A-A'=1

A=B

closed set

countability

cantor set

limit

s(x,r)

Fourth

completion

equivalent

radious

equal

unit ball

interior point

open

open

Answer

Triangle

inequality

X=y

Discrete Metric

d(x,y)=0 if x=y

Cauchy sequence

Convergent

d(x.y)

less then r

open

A=A°

A'uB®

closed set

separable

open set

closed

s(x,)

Second

complete

completion

diameter

subsequential

open ball

centre point

open

closed



The intersection of an infinite number of open sets is not open open not closed closed not open

Let F be a subset of X. F is equal to closure of F if F is null empty closed open closed
The union of a set F and derived set of F is open closed derived closure closure
called
(FLUR)'=_ . FIUFR! FR Fil+ R FIUF! FIUFR!
S(x,r) intersect with F is not equal to . null empty closed open empty
Let alpha = inf F and beta = sup F then the interval higest open higest closed smallest open smallest closed  smallest closed
[alpha,beta] is called the interval containing F.
S(x,r) is open ball where r is . diameter radious center point radious
Let (X,d) be a metric space. Then Space (X,d) is separable it  countability inseparable not countable Lindelof Lindelof
is equivalent to (X,d) is
Z is open in Y iff if there exists an open set G contained in X Z G Y GUY z
such that G intersection Y=
Zis cloesd in Y iff if there exists an closed set F contained in F intersection Y F union'Y F interesction X F union X F intersection Y
X such that Z=
The distance between the point and subset B of X is denoted  d(x,y) d(x,B) d(B,C) d(B,X) d(x,B)
by
d(A) is denoted by . supermom distance diameter radious diameter
The distance between two nonempty subsets B and C d(x,y) d(x,B) d(B,C) d(B,X) d(B,C)
by
The finite union of closed set is . open closed not open not closed closed
If A'is contained in F and F is closed then closure of A equal to F not equal to F contained in F containing F contained in F
is -
If A'is contained in B then closure of A is equal to B notequalto B contained in B containing B contained in B
Every open ball contains an points. one two finite infinte infinite
Two Cauchy sequences {x,} and {y,} in X to be equivalent if 0 1 2 3 0
the limit d(x,,yn)= as n tends to infinity.
The space of all real number is the of the space complete in complete limite completion completion
of rationals

The property of Triangle inequality d(x,y) is less then or equal d(x,z) + d(z,y) d(x,z) -d(z,y)  d(z,y)+d(x,z) d(z,y)-d(x,z) d(x,z) +d(z,y)
to

Let (X,d) be a metric space. If x=y then d(x,y) <0 dix,y) >0 d(x,y) =0 dix,y) =1 dix,y)=0
A sequence in a metric space is called Cauchy  Bounded Cauchy sequence Convergent Divergent Convergent
sequence sequence sequence sequence sequence
A metric space (X,d) is if every Cauchy sequence  complete Bounded Divergent Convergent complete

in X is called Convergent.

A subset F of the metric space (X,d) is said to be closed if it  subset closed open limit limit
contains each of its .
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UNIT I
SYLLABUS

Continuous mappings - sequential criterion and other characterizations of
continuity — Uniform Continuity — Homeomorphism - Contraction
mappings - Banach Fixed point Theorem - Connectedness - connected
subsets of R.

Continuous Mappings

For a real-valued function f with domain A R, a rough and rather
inaccurate description of continuity at a point a A is the
statement f(x) is close to f(a) when x is close to a. The measure of
closeness” of two numbers, or distance between them, is the
absolute value of the difference of the numbers. In terms of the
standard metric d on R, continuity involves a relationship between
d(x, a) and d(f(x),f(a) ). This observation makes it possible to
extend the concept of continuity to functions with domain and
range in metric spaces.

Definition: Let (X, dx) and (Y, dv) be metric spaces and Abelong X.
A function f : A into Y issaid to be continuous at a belongs
A, if for every e >0, there exists some d > 0 such that

dy (f (x), f (a)) < e wheneverx 2 A and dx(x, a) < d:

If f is continuous at every point of A, then it is said to be continuous
on A.

Remark (i) If one positive number d satisfies this condition, then
every positive number di1 < d also satisfies it. This is obvious
because whenever x 2 A and dx(x, @) <dg, it is also true that x A
and dx(x, a) < d. Therefore, such a number d is far from being
unique.

(i1) In the definition of continuity, we have placed no restriction
whatever on the nature of the domain A of the function. It may
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happen that a is an isolated point of A, i.e., there is a
neighbourhood of a that contains no point of A other than a. In
this case, the function f is continuous at a irrespective of how it is
defined at other points of the set A. However, if a is a limit point of
A and {xn} is a sequence of points of A such that x, a, it follows
from the continuity of f at a that f (x,) f (a). In fact, we have the
following theorem:

Theorem: Let (X, dx) and (Y , dv ) be metric spaces and A < X .
A function f : A into Y is continuous at a 2 A if and only if
whenever a sequence {Xn} in A converges to a, the sequence

{f (xn)} converges to f(a).

Proof. First suppose the functio® f : A'Y is continuclis at a A and let
{xn} be a sequence in A converging to a. We shall show that {f (xn)}
converges to f(a). Let e be any positive real number. By continuity of
f at a, there exists some d > 0 such that x 2 A and dx(x, a) < delta
dy (f (x), f (a)) <e. Since limpra X% a, there exists some no such
that n > ng implies dx(xn, @) < d. Therefore n > no dv (f (xn), f (2))
<e. Thus, limyaf(x)) % f (a).

Now suppose that every sequence {x} in A converging to a has the
property that“lim,r 1 f (x,)=f (a). We shall show that f is continuous
at a. Suppose, if possible, that f is not continuous at a. There must
exist e > 0 for which no positive d can satisfy the requirement that x
2 A and dx(x, @) < d implies dy (f (x), f (a)) < e. This means that
for every d > 0, there exists x 2 A such that dx(x, a) <d but
dv (f (x), f (a)) $ e. For every n 2 N, the number 1=n is positive and
therefore there exists xn 2 A such that dx(xn, @) < 1=n but dy (f (xn), f
(a)) $ e. The sequence
{x»} then converges to a but the sequence {f (xn)} does not
converge to f(a). This contradicts the assumption that every
sequence {x»} in A converging to a has the property that limyiq f
(xn) %2 f (2). Therefore, the supposition that f is not con- tinuous
at a must be false.

Definition:Let (X, dx) and (Y, dv ) be metric spaces and A < X. Let f
1
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- Ainto Y and a be a limit point of A. We write limysa f (X) b,
where b Y, if for every e > 0 there exists d > 0 such that
dy (f (x), b) < e whenever x 2 A and 0 < dx(x, a) < d:

Remark. In the definition of limit, the point a in X need only be a
limit point of A and does not have to belong to A. In addition, if a
2 A, we may have limys o f (x) 6% f ().

Proposition :Let (X, dx), (Y, dv), A, fand a be as in the
definition above. Then

if and only if

limf(x) b Y,
x¥a

lim f(xn) b s
nt 1

for every sequence {x,} in A such that x, 6% a and limyr1 X, % a.

Proof. The argument is similar to that of Theorem 3.1.3 and is
therefore not included.

Lemma : Letf: X Y be an arbitrary function and let A contained in
X and B contained in Y .Then f (A) contained in B if and only if A
contained in f—1(B).
The next characterisation of continuity follows immediately from
Definitions

Proposition: Let (X,dx) and (Y,dy) be metric spaces and A
= X. Let f : A intoY and a be a limit point of A. Then f is
continuou$'at a if and only if limesaf (x) f(a). If ais an isolated
point of A, the function f is continuous at a irrespective of how it
is defined at other points of A.

The following reformulation of the definition of continuity at
apoint a in terms of neighbourhoods is useful.

Proposition: A mapping f of a metric space (X, dx) into a metric
2
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space (Y, dy) is continuous at a point a X if and only if for every e
> 0, there exists d > 0 such that

S(a, d) <f *(S(f (a), €)),
where S(x, r) denotes the open ball of radius r with centre x.

Proof. The mapping f: X intoY is continuous at a belongs X if and
only if for every e > 0 there exists d > 0 such that

dy(f (x),f (a)) <e forall x satisfying dx(x, a) <d,

x belongs S(a, d) implies f (x) belongsS(f (a), e)
f (S(a, d)) <S(f (a), e):

This is equivalent to the condition
S(a, d) < f —1(S(f (a), e)):

Theorem A mapping f : X Y is continuous on X if and only if f —
1(G) is open in X for all open subsets G of Y.

Proof. Suppose f is continuous on X and let G be an open subset of Y.
We have to show f—1(G) is open in X. Since 1 and X are
open, we may suppose that f—1(G) 1 and f1G) X.Let x f
—1G). Then f(x) G. Since G is open, there exists e > 0 such that
S(f (x), e) contained in G. Since f is continuous at X, by Proposition
3.1.8, for this e there exists d > 0 such that

S(x, d) < f —1(S(f (x), e)) < f ~1(G):

Thus, every point x of f ~1(G) is an interior point, and so f —}(G) is
open in X.
Suppose, conversely, that f —1(G) is open in X for all open subsets
& of Y. Let x belongs X. For each e >0, the set S(f (x), e) is
open and so f —(S(f (x), e)) is open in X. Since
x2S (x), ©)),
it follows that there exists d > 0 such that

S(x, d) < f —1(S(f (x), e)):
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it follows that f is continuous at X.

Theorem. A mapping f : X Yis continuous on X if and only if f —
Y(F) is closed in X for all closed subsets F of Y.

Proof. Let F be a closed subset of Y. Then Y \F is open in Y so that
f (Y \F) is open in X by Theorem 3.1.9. But

So f—1(F) is closed in X.Suppose, conversely, that f —(F) is closed in X
for all closed subsets F of Y. Then, by Theorem 2.1.31, X \f —*(F) is open
in X and so

f1Y \F) = X\ —Y(F)

is open in X. Since every open subset of Y is a set of the type Y \F,
where F is a suitable closed set, it follows by using Theorem 3.1.9
that f is continuous.

The characterisation of continuity in terms of open sets leads to
an elegant and brief proof of the fact that a composition of
continuous maps is continuous.

Theorem Let (X, dx), (Y, dy)and (Z, dz) be metric spaces and
letf :X Yand g:Y Z be continuous. Then the composition g o f is
a continuous map of X into Z.

Proof. Let G be an open subset of Z. By Theorem 3.1.9, g —1(G) is
an open subset of Y, and another application of the same theorem
shows that f —1(g —(G)) is an open subset of X. Since (g o f)—
YG) vu f —1(g —}G)), it follows from the same theorem again that
g of is continuous.

Theorem: Let (X, dx) and (Y, dy ) be metric spaces and
let f: X Y . Then the following statements are equivalent:

() fis continuous on X;

i) f —1(B) < f ~*(B) for all subsets B of Y;
Gi) f (A) < f(A) for all subsets A of X.
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Proof. (i) implies(ii). Let B be a subset of Y. Since Bisa closed
subset of Y, f !(B) is closed in X. Moreover, f}(B) f!(B),
and so f—1(B) fI(B). (Recall that f—1(B) is the smallest
closed set containing f —%(B).)
(i1) Implies (iii). Let A be a subset of X. Then, if B ¥%=f (A), we
have A <f~'(B) and
A<f—1(B) <f'(B). Thusf(A) <f(f (B)) =B %f (A).
(ii) implies (i) Let F be a closed set in Y and set f *(F) = Fi it is
sufficient to show that F1 is closed in X, that is, F1 % F1. Now,
f(F1)<f(f—L(F))<F=F,
F1<f(f(F))<f(F)=F
() — W <[f ) —F WL k=1,2,...,n,
G If (X, d) is a discrete metric space, then every function f : X
¥ Y, where Y is any metric space, is continuous. Let a 2 X and S(
f (), e) be an open ball centred at f (a) with radius e. Choose d <
1. Then S(a, d) ¥ {a} and so f (S(a, d)) Y4
{f (@)} <S(f (a), e).

SEQUENTIAL CRITERION AND OTHER CHARACTERIZATIONS OF

CONTINUITY
Consider the function f: (0, 1) ¥ R defined by f (x) % 1=x.
There is no continu- ous function g defined on [0, 1) that
agrees with f . In other words, f has no continuous ‘extension
to [0, 1). The term ‘extension’ is formally defined below.

Definition Let X and Y be abstract sets and let A be a proper
subset of X. If f is a mapping of A into Y, then a mapping g : X
Y is called an extension of f ifg(x) f(x)foreachx A, the
function f is then called the restriction of gto A.

If X and Y are metric spaces, A X and f : A Y is continous, then
we might ask whether there exists a continuous extension g of f.
Extension problems abound in analysis and have attracted the
attention of many celebrated mathematicians. Below, we deal with
some simple extension techniques.
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Theorem Let (X, dx) and (Y, dy) be metric spaces and let f : X, g:
X ¥ Y be continuous maps. Then the set {x 2 X:f(x) ¥ag(x)} is a
closed subset of X.

Proof. Let F ¥ {x 2 X: f (X) ¥4 g (X)}. Then X\F % {x 2 X: f (x) 6% ¢
(x)}. We shall show that X\F is open. If X\F ¥ 1, then there is
nothing to prove. So let X \F 6% 1 and let a 2 X\F. Then f (a) 6% g
(a). Let r > 0 be the distance dy (f (a), g (a)). For e ¥ r=3, there
exists a d > 0 such that

dx(x, @) < d implies dy (f (x), f (@)) <r=3 and dv (g (X), g (2)) <
r=3:
By the triangle inequality, we have
dv(f (a), g (a)) #dv(f (), f (x)) b dv (f (x), g (x)) b dv (g
(x), g (a)), which implies
dv (f (x), 9 (x)) $ dv (f (), 9 (a)) — %Y (f (@), f(x)) —dv (9 (x), g (a))
> r=
for all x satisfying dx(x, a) < d. Thus, for each x 2 S(a, d), dv (f (X), 9
(x))>0,i.e.,
f (x) 6%29 (x). So,
S(a, d) < X \F:

Hence, X\F is open and thus F is closed. &
Corollary Let (X, dx) and (Y , dy ) be metric spaces and let f : X

T Y, g:X ¥ Ybecontinuousmaps. IfF¥{x2X:f(x)%g
(X)} isdense in X, thenf¥%g.
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Proof. By Theorem 3.2.2, F is closed. Since F is assumed dense
in X, we have X ¥4 F¥% F, i.e., f(x) Yag(x) forall x 2 X.

Theorem. Let (X, dx) and (Y, dv ) be metric spaces, A a dense
subset of X and f a map from A to Y. Then f has a continuous
extension g : X ¥ Y if and only if for every x 2 X that is a limit
point of A, the limit limy s« f (y) not only exists in Y but also equals
f(x) in case x 2 A. When the extension exists, it is unique. (Note
that the stipulation limysy f (y) % f (x) when x 2 A says that f is
continuous on A.)

Proof. Suppose that f has a continuous extension g, and consider
any x X that is a limit point of X. Since A is dense, x must be a
limit point of A as well, as we now argue. Any ball S(x, ¢) contains
apointy X,y x. Thereexists S(y,e’)  S(x,e) suchthatx  S(y,

el). Since A is dense, S(y, e!) contains a pointa  A. Thus, S(x, €)
contains the point a A and a x.

Now
g(xXys limg(y) (g is continuous)
y ¥x
v lim g (y) withyA  (x is a limit point of A)
y ¥x
v limf (y) (g is an extension of f):
y ¥x

Thus, limy s f (y) exists and equals g(x).
Conversely, suppose that for every limit point x 2 X, limyx f (y)
exists and that it equa&s f (x) when x 2 A. Define g(x) by
. f(x) ifx2A,
9007 it if x 62A but 2 A"
y Xx
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Since A is dense in X, the function g is defined on the whole of X.
We need to show that g is continuous. By the definition of a limit,
for every positive number e, there exists a positive number d > 0
such that

Consider any z2S(x,d). In case z 1is an isolated point
of X, theng (2) 2 S(g (X), e=2), in view of the observation
above. If z is not an isolated point of X, then g(z) is the limit of
f(y)asy ¥ zin S(x, d) \ A. Therefore,

g (2) 2ZT(A\S(x, d)) = S(g (x), e=2) < S(g (x), e),

so that g is continuous at X. Hence, g is continuous on X. By
Corollary 3.2.3, it follows that g is the unique continuous
extension of f.

Examples (i) Let f (x) Y2 sin (1=x), x 2 R\{0}. We shall show that
limcxo sin (1=x) does not exist. Hence, the function f cannot
be extended to a continuous function on R.

Definition. Let X be a nonempty set. Given mappings f and g of X
into C and
a 2 C, we define the mappings f p g, af , fg and jf j into C as follows:

(fpog)t)¥f()pg(t)
(af )(t) ¥ af (t)
(fg)(t) Yaf(t)g (t)

i) Ya gt (t))

for all t 2 X. Further, if f (t) 6% 0 for all t 2 X, we define the mapping 1/f
Cby
of X into
1

(a=f)(t) 17§ forall t 2 X:

(t)

The proofs of the assertions in the following theorem are direct
generalisations of the familiar proofs in the case where X is the

Prepared by K.Aarthiya, Asst Prof, Department of Mathematics, KAHE Page 9



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: Il - BSC MATHEMATICS
COURSE NAME: MATRIC SPACES AND COMPLEX ANALYSIS
COURSE CODE: 16MMU402 UNIT: Il  BATCH-2016-2019

real line.

Theorem Let f and g be continuous mappings of a metric space
(X, dx) into C and let a C. Then the mappingsf g, af, fgand f
are continuous on X, and so is the mapping 1/f, if it is defined.

Examples (i) Letf: R ¥ C be defined by
f () % x p ix%:

We shall argue that f is continuous at 2 2 R. Consider any e > 0.
Upon using the fact that the functionsg: R ¥ Randh:R ¥ R
defined by g (x) ¥% x and h(x) ¥4 x* are continuous at 2, it follows
that there exist di > 0 and dz > 0 such that

(i) Let X ¥ C[0,1] with the uniform metric. Definef: X ¥ C
by f (x) Y2 x(0) whenever x 2 X. We shall show that f is continuous
on X. Let {xn}n$1 be a sequence in X, i.e., in C[0,1] such that limj
Xn X. Since uniform convergence implies pointwise convergence,
we have

Iimnf (Xn) Ya Iirnn Xn(0) ¥a x(0) ¥4 f (X):

Thus, f is continuous on X % CJ[0, 1].
(iii) Let X ¥4 C[0,1] with the uniform metric. Definef: X ¥ C by

Uniform Continuity

Let (X, dx) and (Y , dvy ) be two metric spaces and let f be a
function continuous at each point xo of X. In the definition of
continuity, when xo and e are specified, we make a definite choice
of d so that

dy (f (x),f (x0)) <e whenever dx(X, Xo) < d:

This describes d as dependent upon xo and esay d d(xo, €). If d(xo,
e) can be chosen in such a way that its values have a lower positive
bound when e is kept fixed and xo is allowed to vary over X, and if
this happens for each positive e, then we have the notion of
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'uniform continuity. More precisely, we have the following
definition:

Definition Let (X, dx) and (Y, dy) be two metric spaces. A
funclion f: X Y is said to be uniformly continuous on X if, for
every e > 0, there exists ad >0 (depending on e alone) such that

dy (f (x2), f (x2)) < e whenever dx(x1, X2) < d

for all x1, x2 X.

Every function f¥ X Y which is uniformly continuous on X is
necessarily continuous on X. However, the converse may not be true.
We shall see later (see Theorem 5.4.10) that these two concepts agree
on certain kinds of metric spaces called ‘compact.

(ii) Let A be a subset of the metric space (X, d). Define
f(X) Yad(x, A) Yainf {d(x,y):y 2 A}, X 2X:

We shall prove that f is uniformly continuous over X. Fory A
and x, z belongs X, the triangle inequality gives

d(x, y) #d(x, z) p d(z, y):
On taking the infimum as y varies over A, we get
d(x,A)—d(z,A)#d(x,z), Xx,z2X:
Interchanging x and z and observing that d(x, z) ¥ d(z, x), we get
d(z, A)—d(x,A)#d(x,2), Xx,z2X:
Hence,

JF(X)—T(2)j 1/4jd(x,A)—d(z,A)j#d(x,z)/ X,Z2X:
The uniform continuity of f results on chbosing d .

Proposition. Let (X, d) be a metric space and let x 2 X and A <
X benon- empty. Then x 2A if and only if d(x, A) ¥ 0.

Proof. Suppose d(x, A) 0. There are two possibilities: x A or x A. If X

A, then x  A. We shall next show that if x A, then x is a limit
point of A. Let e > 0 be given. By the definition of d(x, A), there
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existsay A such that d(x, y) <e, i.e.,, y S(x, e). Thus, every ball
with centre x and radius e contains a point of A distinct from x; so x

A. Conversely, suppose x A. If x A, then obviously d(x,A) 0.
We shall next show that if x is a limit point of A, then d(x, A) 0. By
the definition of limit point, every ball S(x, e) with centre x and
radius e > 0 contains a point y 2 A distinct from x.
Consequenly, d(x, A) <e, i.e., d(x, A) % 0.

Theorem Let A and B be disjoint closed subsets of a metric space
(X, d). Then there is a continuous real-valued function f on X
such that f (x) % 0 for all x 2 A, f(x) ¥ 1 forall x 2B and 0 #f
(xX)#1 for all x 2 X.

Proof. From Example (ii) above, it follows that the mappings x
T d(x, A)and x ¥ d(x, B) are continuous on X. Since A and
B are closed and A\ B % 1, Proposition 3.4.3 shows that d(x,
A) b d(x, B) > 0 for all x 2 X. Indeed, if d(x,A) p d(x,B) % 0 for
some x 2 X, then d(x,A) %2 d(x,B) ¥4 0; so x 2A% Aand x 2B %
B, and hence x 2 A\ B, a contradiction.

Now define a mapping f: X ¥ R by

d(x, A)

% a0 A pax B’

X2 X:

Corollary Let (X, d) be ametric space and A, B be disjoint closed
subsets of X. Then there exist open sets G, H such that A< G, B
<Hand G\ H ¥1.

Proof. Letf: X ¥ [0, 1] be any function guaranteed by Theorem
3.4.4, and let

Then G ¥ f—1([0, 1=2)) and H ¥4 f—1((1=2, 1]) are open subsets of
X, beinginverse images of open subsets of [0,1]. Moreover, A <
G,B<HandG\ H¥%1. &
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A composition of uniformly continuous mappings is again a
uniformly continu- ous mapping. More precisely, we have the
following theorem:

Theorem If f and g are two uniformly continuous mappings of
metric spaces (X, dx) to (Y , dy ), and (Y , dv ) to (Z , d2),
respectively, then g o f is a uniformly continuous mapping of (X, dx)
to (Z,dz).

Proof. Since g is uniformly continuous, for each e > 0, there exists a
d > 0 such that

dv (f (x), f (y)) <dimplies dz( (g o f)(x), (g o f)(y)) <e
forallf (x),f(g) VY.
As f is uniformly continuous, corresponding to d > 0, there
exists an h > 0 such that
dx(x, y) <himplies dvy (f (x), f (y)) <d

forall x,y 2 X.
Thus, for each e > 0, there exists an h > 0 such that

dx(x,y) < himpliesdz( (g o f)(x), (g o f)(y)) <e
forall x,y 2 X and so g o f is uniformly continuous on X. &

A continuous function may not map a Cauchy sequence into a
Cauchy sequence as the following example shows:

Example Let X ¥ (0, 1) with the induced usual metric of the
reals and Y be the reals with the usual metric. The function f : X
¥ Y defined by

1
f(x)1/4;,x2X,

is continuous on X. Now {1=n}n $ 1 is a Cauchy sequence in X
(because it is convergent in R). But {f (1=n)}n $ 1 {n}n $ 1 is not
a Cauchy sequence in Y. Indeed, the absolute difference of any
two distinct terms is at least as large as 1.
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However, Cauchy sequences are mapped into Cauchy sequences
by uniformly continuous functions.

Theorem . Let (X, dx) and (Y, dv ) be two metric spaces and f : X
¥ Y be uniformly continuous. If {x,}n $1 is a Cauchy sequence

in X, thenso is {f (xn)}n$1inY.

Proof. Since f is uniformly continuous, for every e > 0, there
exists a d > 0 such that

dv (f (x), f (y)) <e whenever dx(x, y)<d (3:4)

forall x,y 2 X.
Because the sequence {xn}n $ 1 is Cauchy, corresponding to d > 0,
there exists no

such that

n,m$no implies dx(Xn, Xm) < d: (3:5)
From (3.4) and (3.5), we conclude that
dy (f (xn), f (xm)) <e for n,m$n,

and so {f (xn)}n $1 isa Cauchy sequencein .

Theorem Let f be a uniformly continuous mapping of a set A,
dense in the metric space (X, dx), into a complete metric space (Y
, dy ). Then there exists a unique continuous mapping g : X Y
such that g (x) f (X) when x A; more- over, g is uniformly
continuous.

Proof. Since f is uniformly continuous, a fortiori, continuous,
therefore, for every x A that is a limit point of X, the limit
limy sy f (y) not only exists in Y but also equals f(x). Therefore,
by Theorem 3.2.4, in order to prove the existence and
uniqueness of such a continuous mapping g : X Y, it is
sufficient to show for every x X\A that f (y) tends to a limit
as y x. (It is understood that y A, because the domain of f is
A)
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Let x 2 X be arbitrary. Since A is dense in X, there exists a
sequence {Xn}ns1 in A such that limyr 4 dx(Xs, X) % 0. Since {X:}n $ 1
is convergent, it is a fortiori Cauchy; so by Theorem 3.4.8, it
follows that {f (xn)}n $ 1 is a Cauchy sequence in the complete
metric space (Y, dy) and hence converges to a limit, which we shall

denote by b. Now consider any sequence {xrq st in A with x,q

6% x for each n and limpa xrq x. It follows from uniform
continuity of f that, for e > 0, there exists ad > 0 such that

dy(f (2),f (y)) <e whenever dx(z, y)<d: (3:6)

Since Iimn!lxn1/4x1/4limn!1xrq, there exists an integer n
such that

dx (Xn, er) < d whenever n $n:. Therefore by (3.6)
dv(F (%), F (1)) <e  whenever n$n;:

Remark The condition that the metric space (Y , dy ) is complete in
Theorem

3.4.9 cannot be omitted. In fact/det X R with the usual retric and

Y Q,theset of rationals with the metric”induced from R. Let A Q.
Observe that A is a denfe subset of X. “The functiorf : A Y
defined by f (x) x for every x A isuni- formly continuous but it
possesses Nno continuous extension to X, as the only continuous
rational-valued functions on X ¥% R are constant functions.

Homeomorphism

Definition 3.5.1. Let (X, dx) and (Y, dy) be any two metric
spacls. A functionf:X Y which is both one-to-one and onto
is said to be a homeomorphism if and only if the mappings f and f
—1 are continuous on X and Y, respectively. Two metric spaces X and
Y are said to be homeomorphic if and only if there exists a
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homeomorphism of X onto Y, and in this case, Y is called a
homeomorphic image  of X.

If X and Y are homeomorphic, the homeomorphism puts their

points in one-to- one correspondence in such a way that their open

sets also correspond to one another.

For metric spaces X and~Y, let X Y mean that X and Y are

homeomorphic. It is easily verified that the relation is reflexive,

symmetric and transitive.

Suppose that whenever a metric space (X, d) has the property 7,
every metric space homeomorphic to (X, d) also has the property;
then we say that the property is ‘preserved under homeomorphism.
There are a large number of properties that are not preserved under
homeomorphism, as the following example shows:

Example Let X NandY {1=n:n N}, each equipped with the
usual absolute value metric. The function f : X Y defined by f (X)
1=x is a home- omorphism of X onto Y. Observe that X is a closed
subset of R and since R is complete, it follows that X is complete. On
the other hand, {1=n}, s 1 is a Cauchy sequence in Y that does not
converge; so Y is not complete. Besides, the space X is not bounded,
whereas Y is bounded.

Recall from Definition 1.5.2 that a mapping f of X into Y is an

isometry if

dy (f (x), f (¥)) ¥a dx(x, y)

for all x, ¥ X . It is obvious that an isometry is one-to-one and
uniformly continuous. Recall also that X and Y are said to be
isometric if there exists an isometry between them that is onto. An
isometry is necessarily a homeomorphism, but the converse is not
true, as is evident from Examples 3.5.2 (i) and (ii) above.

By definition, it follows that isometric spaces possess the same
metric properties. For metric spaces X and Y, let X Y mean that X
and Y are isometric. It is easily verified that this relation between
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metric spaces is reflexive, symmetric and transitive.

Definition. Let di and d> be metrics on a nonempty set X such
that, for every sequence {Xn}n $ 1 in Xand x 2 X,

lim di(xn, X) Y0 if and only if lim d2(xn, X) ¥4 0,
nt 1 nt a1

I.e., a sequence converges to x in (X, di1) if and only if it converges
tox in (X, dz). We then say that di and d. are equivalent metrics on
X and that (X, d1) and (X, d2) are equivalent metric spaces.

Remark In view of Theorem 3.1.3, two metrics d: and d> on a
nonempty set X are equivalent if and only if the identity maps
id: (X, dy) @ (X,d2) and id: (X, d2) ¥ (X, di) are both
continuous, i.e., if and only if the identity mapping from (X, di) to
(X', d2) is a homeomorphism (as Definition in 3.5.1 above). Note
that this amounts to saying that the families of open sets are the
same in (X, d1) and (X, d2).

The following is a sufficient condition for two metrics on a set to
be equivalent.

fa(x) Yatan—! (nx), x $ 0,

is uniformly convergent on [a, 1) when a > 0, but is not
uniformly convergent on [0, 1). Tge pointwise limit function is

p .
f(X) Y lim fa(X) ¥ 2 if x>0,
nt1 0 ifx¥O.

We shall show that f, ¥ f uniformly on [a, 1) when a > 0. For x >

01
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i) —f (X)j % “tan (nx) — 2 vacot* (nx),

as we shall now prove. Since 0 < tan—! u < p=2 for any u > 0,
therefore when
x>0, we have 0 < tan~—! (nx) < p=2 and hence

0<P tant(nxy<P: (3:10)
2 2
Also,

Now, it follows from (3.10) and (3.11)-that p=2 ¥%tan—(nx)
cot—t (nx). It also follows ~ from the ifirst —— 1%
Tinequality in  (3.1d)  that _tan*%“(nx) p=2p=2 tan !
(nx) for x > 0. Thus, tan—*(nx) p=2  cot ! (nx).

Let e > O be arbitrary. When x $ a, the inequality n > ( cot e)=a
implies that n > ( cot e)=x, so that nx > cot e and hence cot—! nx
< e in view of the fact that cot—! is a decreasing function. It
follows that if no is an integer greater than or equal to ( cot e)=a,
then fo(x) f(x) tan~t(nx) p=2 cot!nx<ewhenevern
$no and x $a. However, (cote)=x as x 0, so that no integer no
exists for which fa(x) f(x) <eforalln$noandall x [0, ).
Actually this proves that the convergence fails to be uniform even
on the smaller set (0, ).

The following basic result about transmission of the property of
being continu- ous will be needed in the sequel.

Theorem Let (X, dx) and (Y , dy ) be metric spaces, {fi}ns1a
sequence of functions, each defined on X with values in Y, and let
f:X @ Y.Suppose that f, funiformly over X and that each f, is
continuous over X. Then f is continuous over X. Briefly put, a
uniform limit of continuous functions is continuous.

Proof. Let xo 2 X be arbitrary and let e > 0 be given. Since f, ¥ f
uniformly over
X, there exists no (depending on e only) such that for each x 2 X,

dv (Fax), f(x)) <& forn$no: (3:12)
3
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Since fyQ is continuous at Xo, we can choose d > 0 such that x 2 S(xo, d) ¥4
{x 2 X: dx(x, xo) < d} implies

Proposition (Cauchy Criterion) Let {fi}n $ 1 a sequence of
functions defined on a metric space (X, dx) with values in a
complete metric space (Y, dv). Then there exists a functionf: X ¥
Y such that

fn @ funiformly on X

if and only if the following condition is satisfied: For every e > 0,
there exists an integer no such that
m,n$no  implies dv (fm(x), fa(X)) <e
for every x 2
X.

Contraction Mappings and Applications

The concept of completeness of metric spaces has interesting and
important applications in classical analysis. In this section, we
show how various existence and unique- ness theorems in the
theory of differential and integral equations follow from very
simple facts about mappings in a complete metric space. The
simple fact alluded to above is called the contraction mapping
principle, which we now consider.

Definition Let (X, d) be a metric space. A mapping T of X into
itself is said to be a contraction (or contraction mapping) if
there exists a real number a,0 <a<1, such that

d(Tx, Ty) # ad(x, y)
forall x,y 2
X.
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It is obvious that a contraction mapping is uniformly
continuous (see Definition 3.4.1).

Theorem (Contraction Mapping Principle) LetfT : X X be a
contraction of the complete metric space (X, d). Then T has a
unique fixed point.

Proof. Let xo 2 X and let {xn}n $ 1 be the sequence defined
iteratively by Xnp1 %2 Txn for n ¥ 0, 1, 2, .... We shall prove that
{Xn}n $1 is a Cauchy sequence. Forp%1,2,...,we have

d(Xpp1, Xp) Yad(TXp, TXp—1)#ad(Xp, Xp—1),
(3:1
6) where 0 < a < 1issuch that
forall x,y 2 X.
d(Tx, Ty) = ad(x, y)
Repeated application of the inequality (3.16) gives

d(Xpp1, Xp) = ad(Xp, Xp—1)
= a%d(Xp—1, Xp—2) # ... # aPd(X1, Xo):

Now, let m, n be positive integers with m > n. By the triangle
inequality,

d(Xm, Xn) = d(Xm, Xm—1) P d(Xm—1, Xm—2) p ... p d(anl, Xn)
=@"*pa™?p..pa"d(xy, xo)
- a‘n(am—n—l b am—n—2 b b 1)d(X1, XO)
an

=1_ 2 d(x1, Xo):
But limpiaa"%0. It follows that {x,} is a Cauchy sequence in
(X, d), which is complete. Let y % limyra X. Since T is a
contraction, it is continuous. It follows that Ty % T (limpr 1 X,) %
limny 2 T Yalimar 2 Xop1 % y. Thus, y is a fixed point of T. Moreover,
it can be shown to be unique: Ify 6¥4z are such that Ty ¥4y and Tz Y4z,
then d(y, z) ¥ d(Ty, Tz) #ad(y, z) <d(y, z). This implies d(y, z) %0,
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I.e.,yYaz.
Connected Spaces

Definition 4.1.1. A metric space (X, d) is said to be disconnected
if there exist two nonempty subsets A and B of X such that
OX%“ALB,

()A\B%Y 1 and A\B% 1.

That is, the subsets must be nonempty, together they must
constitute the whole space and neither may contain a point of
the closure of the other. If no such subsets exist, then (X, d) is
said to be connected; this means that if we do split X into two
nonempty parts A and B having no points in common, then at
least one of the subsets contains a limit point of the other.

A nonempty subset Y of a metric space (X, d ) is said to be
connected if the subspace (Y , djy ) with the metric induced from
X is connected.

Theorem 4.1.3. Let (X, d) be a metric space. Then the following
statements are equivalent:

@ (X, d) isdisconnected,;

(ii) there exist two nonempty disjoint subsets A and B, both open in
X, such that
X¥A[L B;

(iii) there exist two nonempty disjoint subsets A and B, both closed in
X, such that
X¥A[B;

(iv) there exists a proper subset of X that is both open and closed in
X.

Proof. (1)) (ii). Let X% A|[B, where A and B are
nonempty and

A\B%:1, A\B % 1. Then A% X\B. In fact, A< X\B < X\B ¥ A.

SoAis
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open in X. Similarly, B is open in X. Since A and B are disjoint, a fortiori,
A and B
are disjoint, which proves (ii).

That (ii) and (iii) are equivalent is trivial.

(iiip (iv) Since ’AX\B, A is open. Thus A is both a closed and
open proper subset of X, and so (iv) is proved.

(iv)D) (i) Let A be a proper subset of X that is both open and
closed in X and let B % X\A. Then X %2A [ B,A\B % 1. Since A
Y4 A (A being closed), it follows that A\ B ¥4 1. Similarly, A\ B
Y4 1. This completes the proof.

Theorem Let (R, d) be the space of real numbers with the usual
metric. A subset | R is connected if and only if | is an interval,
i.e., | is of one of the following forms:

(a, b), [a, b)! (a1 b]1 [a1 b]1 (— 11 b)! (— 1! b]! (a! 1)1 [a’ 1)’
(—1, 1):

Proof. Let | be a connected subset of real numbers and suppose,
if possible, that I is not an interval. Then there exist real numbers
X,¥,Zwithx <z <yandx,y 2| but z62 1. Then | may expressed
as | ¥ A [ B, where

AY(—1,2)\1 and B¥(z,1)\1:
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Since x A and y B, therefore, A and B are nonempty; also, they
are cledrly disjdint and open in I. Thus, 1 is disconnected.

To prove the converse, suppose | is an interval but is not
connected. Then there are nonempty subsets A and B such that

I"%2AL[B, A\B¥%1, A\BY1:

Pick x 2 Aandy 2 B and assume (without loss of generality) that
x <y. Observe that [x,y] <1, for I is an interval. Define

z%sup (AN\[x, yD:

The supremum exists since A \ [x, y] is bounded above by y and it is

nonempty, as x is in it. Then z 2 A. (We shall show that if z 6 A,
then z is a limit point of A. Let e > 0 be arbitrary. By the definition
of supremum, there exists some element a2 Asuchthatz—e <a<
z, i.e., every neighbourhood of z contains a point of A.) Hence, z 62 B,
for A\ B¥% 14;in particular,x <z <y.

Ifz62 A, thenx <z<yandz62 . This contradicts the fact that [X, y]

<I.

If z2A, then z62B, for AAB% 1. So there exists a d>0
such that (z—d, zp d) \ B % 1. This implies that there exists z;
62 B satisfying the inequal- ityz < z1 < y. Thenx<z< z1 <y and
21621, for z; being greater than sup (A \ [x,y]) isnotin A. This
contradicts the fact that [x, y] < .

Remark. It follows as a special case of Theorem 4.1.4 that the
entire real line R is a connected set. It now follows from Theorem
4.1.3(iv) that the only subsets of R that are both open and closed
are the empty set and R itself.

Let X% {0, 1} and let do denote the discrete metric on Xo. We
shall call (Xo, do) the discrete two point space. Definition 4.1.1
can be reformulated in the following handier fashion:

Theorem Let (X, d ) be a metric space. Then the following
statements are equivalent:

@ (X, d) is disconnected;
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(i) there exists a continuous mapping of (X, d ) onto the discrete
two elementspace (Xo, do).

Proof. (i))(ii). Let X % A [ B, where A and B are disjoint
nonempty open subsets (see Theorem 4.1.3(ii)). Define a mapping f
X ¥ Xoby

1 if x2B;

the mapping f is clearly onto. It remains to show that f is
continuous from (X, d ) to (Xo, do). The open subsets of the
discrete metric space are precisely 1, {0}, {1} and

{0,1}. Observe that f (1) 4, f%{0,1}) X and the subsets
1, X are open in (X, d ). Moreover, f —}({0}) A, f 1({1}) B,
which are open subsets of (X, d ). Hence, f is continuous and thus
(i1) is proved.

(i) implies (i) Let f: (X, d)  (Xo, do) be continuous and onto.
L& A f 1({0}) and Bf *({1}). Then A and B are nonempty
disjoint subsets of X, both open and such that X A B. It follows
upon using Theorem 4.1.3(ii) that X is disconnected.

Theorem Let (X, dx) be a connected metric space and f : ¥X , dx)
(Y, dy ) be a continuous mapping. Then the space f (X) with the
metric induced from Y is connected.

Proof. The map ¥ : X f (X) is continuous. If f (X) were not
connected, then there would be, by Theorem 4.1.6, a continuous
mapping, g say, of f (X) onto the discrete

two element space (Xo, do). Then!g f: X Xo would also be a
continuous map- ping of X onto Xo, contradicting the
connectedness of X.

The intermediate value theorem of real analysis (see Proposition
0.5.3) is a special case of Theorem 4.1.8.
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Theorem (Intermediate Value Theorem) If f : [a, b] ¥ R is
continuous over [a, b], then for every y such that f (a) <y < f (b)
or f (b) <y <f(a)thereexists x 2 [a, b] for which f (x) Yay.

Proof. We need consider only the case when f (a) y f (b). Lety be
any real number such that f (a) <y < f (b). By Theorem 4.1.4, [a,
b] is a connected subset of R. Hence, f([a, b]) is an interval by
Theorems 4.1.8 and 4.1.4. Therefore, there exists an x [a, b] such
that f (X) y. The case where f (b) <y < f (a) is dealt with in a
similar way.

The following converse of the intermediate value theorem also
holds.

Theorem  Let (X, dx) be a metric space. If every continuous
function f: (X, dx) ¥ (R, d) has the intermediate value property
(i.e., ify;, y2 2 f (X) and y is a real number between y; and y», then
there exists an x 2 X such that f (x) ¥2y), then (X, dx) is a connected
metric space.

Proof. Suppose, if possible, (X, dx) is not connected. Then, by
Theorem4.1.6, there exists a continuous map g¢:(X,dx) ¥ (X,
do) that is onto. Define a map h:(X,,do) ¥ (R,d) by h(0)%0
and h(1)¥%1. Then h is continuous. Consider the map h og
(X,dx) ¥ (R,d). Clearly, h og is continuous,
beingthecompositionofcontinuous maps h and g. Besides,
{0,1}<h og (X). However, there exists no x 2X such that h og
(x)¥%.1=2. In fact, (hog)*({1=2})%g toh}({1=2}) % g (1) % 1.

An interesting application of the Weierstrass intermediate value
theorem is the following ‘fixed point theorem”

Theorem. Letl % [—1, 1]and letf:1 ¥ | be continuous. Then
there exists a point ¢ 2 | such that f (c) % c.

Proof. If f (— 1) ¥4 —1 or f (1) ¥% 1, the required conclusion
follows; hence, we can assume that f (— 1) > —1 and f (1) < 1.
Define
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g(X)¥af(x) —x,x21:

Note that g is continuous, being the difference of continuous
functions, and that it satisfies the inequalities g (—1) %f(—1) p
1>0andg(1) Yaf (1) — 1 < 0. Hence, by the Weierstrass
intermediate value theorem, there exists ¢ 2 (—1, 1) such that g
(c) ¥4 0, thatis, f(c) =c.

Maps(1,1) into itself and yet has no fixed point. Indeed, f (t) t
impliest 1. In the latter case, f (t) t 1, 1#t< ,is
continuous, maps [ 1, ) into itself and yet has no fixed
point, for f (t) timplies 1 0.
(i) The foregoing theorem is possibly the simplest case of the
famous fixed point
theorem of L.E.J. Brouwer, according to which every continuous
mapping of the closed unit ball in the Euclidean space R" into
itself has a fixed point. The proofs for the cases n $ 2 are not easy
and are beyond the scope of the present text.

Theorem If Y is a connected set in a metric space (X, d) then any
setZsuch that Y <Z <Y is connected.

Proof. Suppose A and B are two nonempty open sets ihZ such
thit% B Z and AB 1MasYisMenseinZ,Y AandY B are
nonempty open sets in Y and we have

Y% (YNA)L(M\B),Y\NAN(Y\B)“ZY\(A\B)%1,
acontradiction. &

Remark .Since Y Y Y, it follows that Y is connected if Y is
connected in (X, d).

Example Since Y {(x, y): y sin (1=x), 0 < x # 1} R?is a
continuous image of (0,1], it follows that Y Y {(0,y): 1#vy# 1}
is connected. Observe that with the omission of any subset of {(0,
y): 1 #y #1}, the resulting set is still connected.
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Definition The union C(x) of all connected subsets containing the
point x is called the connected component of x in (X, d ).
Clearly, C(x) is a maximal connected subset of X.

Examples (i) Let Q be the set of rationals in (R, d ). The
component of each x Q is the set consisting of x alone. In other
words, any subset A of Q containing more than one point is
disconnected. Indeed, if x, y A, x<y, then( , a) A
and (a, ) A provide a disconnection of A, whenx <a<y and
aisirrational.

(i) Let¥ R? be the subspace consisting of the segments
joining the origin & the points {(1, 1=n): n N} together with the
segment (1/2, 1]. The line joining (0,0) and (1, 1/n) is the image
of ‘the connected set [0,1] under the continuous map y x=n and,
therefore, connected. If Z denotes the union of these lines, then Z
is connected since the origin is common to all the line segments.
Finally, Y is such that

ZcY cZ,

where 2:Z [ (0,1], and so Y is connected, by Theorem 4.1.13 and
Theorem

(See Figure 4.3.) However, Y \{(0; 0)} is not connected. In Y \{(0;
0)}, the component of each point is the segment containing it.

Theorem . Let (X,d ) be a metric space. Then

(i) each connected subset of (X,d) is contained in exactly one
component;
(ii) each nonempty connected subset of (X,d) that is both open and
closed in (X, d) is a component of (X,d);
(iii) each component of (X,d ) is closed.
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Proof. (i) Observe that iNC(x) 6%C(x)) 1, Ehen C(x) C(x) is
connected (see Theorem 4.1.16). This contradicts” the
maximality of C(x) unless C(x)  C(x"). Thus, any two distinct
connected components are disjoint. Now, let A be a connected
subset of X containing x. By the maximality of C(x), it
follows that A C(x). Since any two distinct components are
disjoint, the statement
(@) follows.
(ii) Let A be a connected subset of (X, d ) that is both open and
closed in (X, d). Let x A, so that A C(x). Then A is both open
and closed in (C(x), d C(x)) by Theorem 222 and
consequently, A C(x) (see Theorem 4.1.3(d)).
(i) Since C(x) is connected, so also is C(x) (see Theorem
4.1.13); but the maximality of C(x) implies C(x) < C(x). Hence,
C(x) is closed.

Compact Spaces

One of the distinguishing properties of a bounded closed interval
[a, b] is that every sequence in it has a subsequence converging to
a limit in the interval. This need not happen with an unbounded
interval such as [0, 1) or a bounded nonclosed interval such as
(0,1]; the former contains the sequence {n}n $ 1, which has no
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convergent subsequence, and the latter contains the sequence
{1=n}» s 1, which has no subse- quence converging to a limit
belonging to the interval. In fact, it is true of any bounded closed
subset of R that any sequence in it has a subsequence converging
to a limit belonging to the subset. To see why, we first note that
any sequence in a

bounded subset must, by the Bolzano-Weierstrass theorem
(Proposition 0.4.2), have a convergent subsequence with limit in
R; this limit must then be in the closed subset by the definition of
a closed subset.

Definition A collection F of sets in X is said to have the finite
intersection property if every finite subcollection of F has a
nonempty intersection.

The following proposition now holds.

Proposition Let (X, d ) be a metric space. The following
statements are equivalent:

@ (X, d) is compact;
(ii) every collection of closed sets in (X, d ) with empty
intersection has a finite subcollection with empty intersection;
(iii) every collection of closed sets in (X, d) with the finite
intersection property has nonempty intersection.

Proof. That (i) is equivalent to (ii) has been proved in the
paragraph preceding Example 5.1.2. The statements (ii) and (iii)
are equivalent; in fact, each is the contrapositive of the other.

The reader will have noticed that the set considered in Example
512 () was not closedandtheoneconsideredin(ii)
wasnotbounded. Thisisnotacoincidence. Infact, if a subset Yof a
metric space (X, d) is compact, then it is both closed and bounded.

Definition The metric space (X, d ) is said to be totally bounded
if, for any e > 0, there exists a finite e-net for (X, d ). A
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nonempty subset Y of X is said to be totally bounded if the
subspace Y is totally bounded.

Proposition A totally bounded metric space is bounded.

Proof. Let (X, d ) be totally bounded and suppose e > 0 has been
given. Then there exists a finite e-net for X, say A. Since A is a finite
set 6f poini's, d(A) Yasup{d(y, 2):y,z A} < . Now, let x; and x, be
any two points of X. There exist points y and z in A such that

d(x1, y) <eand d(xz, z) <e:
It follows, using the triangle inequality, that
d(x1, X2) # d(x1, y) b d(y, 2) b d(z, x2)

#d(A) p 2e:
d(X) Ya sup{d(xz, X2) : X1, X2 2 X} # d(A) p 2e
and, hence, X is bounded. &

Theorem Let Y be a subset of the metric space (X, d ). Then Y is
totally bounded if and only if every sequence in Y contains a
Cauchy subsequence.

Proof. Suppose Y is totally bounded. Let {yn}n $ 1 be a sequence
in Y whose range may be assumed to be infinite. Choose a finite
1/2-net in Y. Then one of the balls of radius 1/2 with centre in the
net contains infinitely many elements of the range of the
sequence. We shall denote the subsequence formed by these
elements by {y®W}n s 1. Choose a finite 1/4-net in Y. Then one of the
balls of radius 1/4 with ~ centre in the finite 1/4-net contains
infinitely many elements of the range of {y®}n s 1. We shall
denote the subsequence formed as {y®}n s 1. Proceeding in this way,
we obtain a sequence of sequences, each a subsequence of the
preceding one, so that at the kth stage, the terms {y®}n ¢ 1 lie in
the ball of radius 1=2% with centre in the 1=2%-net. Now {y™}n $

1 is a subsequence of {yn}n $ 1. Let e > 0 be given. Choose np so
large that 1=2"0—2 < e. Then, for m > n > ny, we have
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Conversely, suppose that every sequence in Y has a Cauchy
subsequence. We shall show that Y is totally bounded. Let e be a
positive real number and let y1 2 Y . If Y \S(y1, €) ¥ 1, we have
found an e-net, namely, the set {y:}. Otherwise choose y, 2 Y
\S(y1, €). If Y\[S(y1, ) [ S(y2, e)] ¥ 1, we have found an e-net,
namely, the set {yi, y2}4 It is enough to show that this process
terminates after a finite number of steps. If it does not terminate,
we shall obtain an infinite sequence {yn}n s 1 With the property that
d(yn,ym) $e, n  m. Consequently, the sequence {yn}»s1 would have
no Cauchy subsequence, contrary to hypothesis.

Proposition Let (X, d ) be a compact metric space.Then (X, d) is
totally bounded.

Proof. For any given e > 0, the collection of all balls S(&, e) for x X
is an open cover of X. The compactness of X implies that this open
cover contains a finite subcover. Hence, for e > 0, X is covered by a
finite number of open balls of radius e, i.e., the centres of the balls in
the finite subcover form a finite e-net for X. So, X is totally bounded.

Theorem Let (X, d ) be a totally bounded and complete metric
space. Then (X, d) is compact.

Proof. Suppose, if possible, that (X, d ) is totally bounded and
complete but is not compact. Then there exists an open covering
{Gi}12L of X that does not admit a finite subcovering.

Since (X, d) is totally bounded, it is bounded; hence, for some real
numberr >0 and some Xo X, we have X S(xo, r). Observe
that X  S(xo, r) implies X S(xo, r). Let ey r=2".

We know that X, being totally bounded, can be covered by
finitely many balls of radius e:. By our hypothesis, at least one of
these balls, say S(xi, e1), cannot be covered by a finite number of
sets G (for if each had a finite subcovering, the same would be
true for X). Because S(xi, e1) is itself totally bounded (any
nonempty subset of a totally bounded set is totally bounded, as
shown above), we can find an x2 2 S(xi1, e1) such that S(xz, e2)
cannot be covered by a finite number of sets G;.

Prepared by K.Aarthiya, Asst Prof, Department of Mathematics, KAHE Page 31/33



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: Il - BSC MATHEMATICS

COURSE NAME: MATRIC SPACES AND COMPLEX ANALYSIS
COURSE CODE: 16MMU402 UNIT: Il  BATCH-2016-2019

Prepared by K.Aarthiya, Asst Prof, Department of Mathematics, KAHE

In this way, a sequence {xn}n s 1 may be defined with the property that

for each n, S(xn, en) cannot be covered by a finite number of
sets Gi(5.2) and Xnp1 2 S(Xn, €n).

We next show that the sequence {xn}n s 1 IS convergent. Since Xnp1
2 S(n, €n), it follows that d(xn, Xnp1) < €n and hence,

d(Xn, Xnpp) # d(Xn, Xnp1) P d(Xnp1, Xnp2) P ... P d(Xnpp—1, Xnbp)
<enpempip..pempp
< I

on—1

So {xn}n s 1 is @ Cauchy sequence in X, and since X is complete, it
convergestoy 2 X, say. Sincey 2 X, there exists Iy 2 L such thaty 2
Gi0 . Because G is open, it contains S(y, d) for some d > 0.
Choose n so large that d(xn, y) < d=2 and e, < d=2. Then, for any
X 2 X such that d(x, Xn) < en, it follows that

d(x, y) # d(x, xn) p d(Xn, y)
1 1

<, dp,d%d,

so that S(xn, en) < S(y, d). Therefore, S(xn, €n) admits a finite
subcovering, namely by the set G,g . Since this contradicts (5.2),
the proof is complete.

POSSIBLE QUESTION

2 MARK QUESTION:

Define Homeomorphism.

Define fixed point.

Define Uniform Continuous

State Contraction Mapping Principle.
Define Continuous.
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8 MARK QUESTION:

=

ok~

o

10.

Let (X,dx) and (,dy) be two metric spaces and f: X — Y be uniformly
continuous. If {xn} is a Cauchy sequence in X, then so is {f(xn)} in Y.
Let (X,dx) be a connected metric space and f: (X,dx) into (Y,dy) be a
continuous mapping. Then the space f(X) with the metric induced from
Y is connected.

Let (X,d) be a metric space and let x € X and A € X be non empty.
Then x € A if and only if d(x,A) = 0.

State and Prove Contraction Mapping Principle.

Prove that a mapping f: X—Y is continuous on X if and only if f 1(F) is

closed in X for all closed subsets F of Y.

State and prove Intermediate value theorem.

If f and g are two uniform continuous mapping of (X,dx) to (Y,dy) and
(Y,dy) to (Z,d;) ,respectively, then prove that gof is uniform continuous
mapping of (X,dy) to (Z,d;) .

Let (X,d) be a metric space. Then prove that the following statements
are equivalent:

i)(X,d) is Disconnected:;

ii) there exist two nonempty disjoint subsets A and B, both open in X,

such that X= A U B;
iii) there exist two nonempty disjoint subsets A and B, both closed in
X, such that X= A U B;

iv) there exists a proper subset of X that is both open and closed in X.
Prove that a mapping f: X=Y is continuous on X if and only if f 1(G) is
open in X for all open subsets G of Y.

Let (X,d) be a metric space. Then prove that the following statements
are equivalent:
1)(X,d) is Disconnected,;
i) there exist a continuous mapping of (X,d) onto the discrete two
element space (Xo,do).
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OPTION 1

If ffrom A into Y is continuous at every point of A thenitis Y
continuous on

Let ffrom X into Y be a function & A contained in X and B Containing B
contained in Y then f(A) .

Let f from X into Y and g from Y into Z be continuous then ~ Convergent
gof is .

Let f from X into Y then f is on X. Continuous
Let f from X into Y then f(closure of A) contained in f(X)

for all subsets A of X.

dy ( f(x1), f(x2) )< epsilon whenever dx(x1,x2) < delta is Continuous
d(x,A) - d(z,A)less then or equal to . d(AA)

The function f from (0,1) into R defined by f(x) =1/x is Continuous

Let (X,d) be a metric space then x belonges to closure of Aif 1
d(x,A)=

Let A and B be disjoint closed subsets of X then f(x)= 1
for all x belonges to A and 0<f(x)<1.
Let A and B be disjoint closed subsets of X then f(x)= 1

for all x belonges to B and 0<f(x)<1

Let A and B be disjoint closed subsets of X then there exists ~Empty
open sets G,H such that A contained in G, B contained in H

and G interect with H=

If f and g are two uniform continuous mapping of (X,dx) into Continuous
(Y,dy) and (,dy) into (Z,dz) then gof is mapping

of (X,dx) into (Z,dz) .

A function f is homeomorphism if the mapping f and inverse  Continuous
of fare

A continuous function f which is both one to one and onto is  Isomorphism
said to be

The metric space X and Y are homeomorphism the Y is Homeomorphism
image of X.

A sequence convergent to x in (X,d1) if it convergentto x in  Different
(x,d2) then d1 and d2 are metric on X

The metrics d1 and d2 are equivalent if the identity maps id : ~ Continuous
(X,d1) into (X,d2) and id:(X,d2) into (X,d1) are

both

The metrics d1 and d2 are equivalent if there exits a constant ~ 1/k [d2(x,y)]
k such that d1(x,y) less then or equal to

A mapping T from X into X is a contraction mapping if there d(x,y)
exists alpha , O<aplpha <1 such that d(Tx,Ty) less then or

equal to

A point x is fixed point of the mapping T from X into X if  t

Tx=

A mapping T is a contraction of the complete metric space.  finite
Then T has a fixed point.

A metric space space (X,d) is disconnected if there exist two A
non empty subsets A and B of X such that A U B=

A metric space space (X,d) is disconnected if there exist two A
non empty subsets A and B of X such that A interect with

clouser of B= .

A metric space space (X,d) is disconnected if there exist two A
non empty subsets A and B of X such that clouser of A

interect with B=

OPTION 2

X

Contained in B

Divergent

Convergent

closure of f(X)

Discontinuous

d(x.A)

Discontinuous

infinity

infinity

infinity

Non Empty

Discontinuous

Discontinuous
Homeomorphism
Non
Homeomorphism

Equivalent

Discontinuous

d(x.y)

alpha d(x,y)

infinity

OPTION 3

A

Containing A
Continuous
Divergent
f(A)

Uniform
continuous
d(z,a)
Uniform

continuous

0

Finite

Uniform
continuous

Uniform
continuous
surjective
Homeomorphic

Not equivalent

Uniform
continuous

k d2(x,y)

alpha (y,x)

empty

empty

empty

OPTION 4

Contained in A
Discontinuous
Discontinuous
closure of f(A)
Not uniform
continuous
d(x,z)

Not uniform
continuous
finite

finite

finite

Infinite

Not uniform
continuous

Not uniform
continuous
injective

Non
Homeomorphic

sundet

Not uniform
continuous

d2(y,x)

alpha (x,y)

X

unique

X

ANSWER

A

Contained in B
Continuous
Continuous
closure of f(A)
Uniform
continuous
d(x,2)

Not uniform

continuous

0

Empty

Uniform
continuous

Continuous

Homeomorphism

Homeomorphic

Equivalent

Continuous

k d2(x,y)

alpha d(x,y)

unique

X

empty

empty



A metric space space (X,d) is if there exist two
non empty subsets A and B of X such that A interect with
clouser of B=empty
If ffrom Alinto Y is
continuous on A

at every point of A then it is

Let ffrom X into Y be a function & A contained in
and B contained in then f(A) contained in B

Let f from X into Y and g from Y into Z be then gof
is continuous

Let f from X into Y then f(closure of A) contained in closure

of f(A) for all subsets of X

d(x,z) greater then or equal to

The function f from (0,1) into R defined by f(x) = is
not uniform

Let (X,d) be a metric space then x belonges to if
d(x,A)=0

Let A and B be

subsets of X then f(x)= 0 for all x
belonges to A and 0<f(x)<1

Let A and B be

subsets of X then f(x)= 1 for all x
belonges to B and 0<f(x)<1

Let A and B be disjoint closed subsets of X then f(x)=0 for all
x belonges to and 0<f(x)<1

Let A and B be disjoint closed subsets of X then f(x)=1 for all
x belonges to and 0<f(x)<1

Let A and B be disjoint closed subsets of X then there exists
sets G,H such that A contained in G, B contained in

H and G interect with H=empty

If fand g are two mapping of (X,dx) into (Y,dy)

and (Y,dy) into (Z,dz) then gof is uniform continuous

mapping of (X,dx) into (Z,dz) .

A function fis if the mapping f and inverse of f are

continuous.

The metric space X and Y are the Y is

Homeomorphic image of X.

A sequence to x in (X,d1) if it toxin

(x,d2) then d1 and d2 are equaivalent metric on X

The metrics d1 and d2 are if the identity maps id :
(X,d1) into (X,d2) and id:(X,d2) into (X,d1) are both
continuous.

A mapping T from X into X is a mapping if
there exists alpha , O<aplpha <1 such that d(Tx, Ty) less then
or equal to alpha d(x,y)

Amapping Tisa of the complete metric space.
Then T has a unique fixed point.

A metric space space (X,d) is
non empty subsets A and B of X such that A U B=X.

A metric space space (X,d) is if there exist two
non empty subsets A and B of X such that clouser of A
interect with B=empty

If ffrom A into Y is continuous at point of A then it
is continuous on A

Let f from X into Y and g from Y into Z be continuous then
gof is continuous from X into .

Continuous

Continuous

XY

Convergent

X

d(x,A) +d(z,A)

open

open

A

A

open

Continuous

Homeomorphism

Homeomorphism

Convergent

Different

Onto

Onto

if there exist two Connected

Connected

One

X

Discontinuous

Discontinuous

Y. X

Divergent

d(x,A) - d(z,A)

2/x

closure of A

closed

closed

closed

Discontinuous

Non

Homeomorphism

Non

Homeomorphism

Divergent

Equivalent

One to one

One to one

Disconnected

Disconnected

Two

connected

connected

B.A

Continuous

A

d(x.A) d(z.A)

2X

interior of A

disjoint open

disjoint open

A union B

A union B

disjoint open

Uniform
continuous

Homeomorphic

Homeomorphic

Continuous

Not equivalent

Bijective

Bijective

Continuous

Continuous

Limit

disconnected

disconnected

f(A).f(B)

Discontinuous

Y

d(z.A)-d(x,A)

1/x

A

disjoint closed

disjoint closed

A intersection B

A intersection B

disjoint closed

Not uniform
continuous

Non
Homeomorphic

Non
Homeomorphic
Non continuous

Subset

Contraction

Contraction

Discontinuous

Discontinuous

Every

2X

disconnected

Continuous

XY

Continuous

closure of A

disjoint closed

disjoint closed

A

open

Uniform
continuous

homeomorphism

homeomorphism

Convergent

Equivalent

Contraction

Contraction

Disconnected

Disconnected

Every
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UNIT — 1
SYLLABUS

Limits - Limits involving the point at infinity - continuity. Properties of
complex numbers — regions in the complex plane - functions of complex
variable - mappings. Derivatives, differentiation formulas - Cauchy-
Riemann equations, sufficient conditions for differentiability.

PROPERTIES OF COMPLEX NUMBERS

Consider now a pointz ~ re? , lying on a circle centered at the origin
with radius  r (Fig. 1). As @ is increased, z moves around the circle in
the counterclockwise direction. In particular, when @ is increased by
2m, we arrive at the original point; and the same is true when 6 is
decreased by 2. It is, therefore, evident from Fig. 10 that two nonzero

complex numbers

7 =re’l and 7, = rpeif2

7= f-‘:;frﬁ

FIGURE 1

{;}re equalifandonly  r, =y, and 61 = 6, + 2kx,
[
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where k is some integer (k = 0, =1, £2,...).

This observation, together with the expression z" = r"e”? in Sec. 7 for integral
powers of complex numbers z = re” , is useful in finding the nth roots of any
nonzero complex number zo = roe’®0 , where n has one of the valuesn = 2, 3,.. ..
The method starts with the fact that an nth root of zo is a nonzero number z = re’” such

that z" = zo, or

According to the statement in italics just above, then,

M =ro and nf = Oy + 2k,
Consequently, the complex numbers are the nth roots of zo. We are able

to see immediately from this exponential form of the roots that they all

lie on the circle z ro about the origin and are equal

spaced every 2z/n radians, starting with argument 6o/n. Evidently, then,
all of the distinct roots are obtained when k 0,4, 2,...,n 1, and no
further roots arise with other valges of k. Weletcc (k 0,1, 2,...,n 1)
denote these distinct roots.

The number is the length of each of the radius vectors representing the positive
real number ro, the symbol rg denotes the entire set of roots; and the symbol in
expression (1) is reserved for one positive root. When the value of 6q that is used in
expression (1) is the principal value of arg zo ( # < 6o =),the number co is referred to
as the principal root. Thus when z is a positive real number rq, its principal root
isObserve that if we write expression (1) for the roots of zo. It follows from property of
e’ that

w* = exp i2k”(k=0,1,2,...,n—1)

and hence that

ck = cowX (k=0,1,2,...,m — 1).

The number co here can, of course, be replaced by any particular nth root of zo,
since wn represents a counterclockwise rotation through 2z/n radians.
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Finally, a convenient way to remember expression (1) is to write zo in its most
general exponential form (compare with Example 2 in Sec. 6)

20 = roe/@0+2k7) (k=0,+1, +2,..)

and to formally apply laws of fractional exponents-involving real numbers,
keéping in mind that there are precisely nroots.

The examples in the next section serve to illustrate this method for finding roots of
complex numbers.

EXAMPLES

In each of the examples here, we start with expression (5), Sec. 9, and proceed in
the manner described just after it.

EXAMPLE 1. Let us find all values of (—8i)', or the three cube

roots of the number —8i. One need only write.
They lie at the vertices of an equilateral triangle, inscribed in the circle are
equally spaced around thatcircle every 2z/3 radians, starting with the equation.

Without any further calculations, it is then evident that ¢, = 2i; and, since
C2 is symmetric to co with respect to the imaginary axis, we know that

C2=—3—1.
Note how it follows from expressions that these roots can be written

--—277,'
Co, Coms, Cod> Wherews = exp B~ .
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FIGURE 12

REGIONS IN THE COMPLEX PLANE

In this section, we are concerned with sets of complex numbers, or points in the
z plane, and their closeness to one another. Our basic tool is the concept of
an ¢ neighborhood

@ |z — 20l <e

of a given point zo. It consists of all points z lying inside but not on a circle
centered at zo and with a specified positive radius ¢ (Fig. 2). When the value of ¢
is understood or is immaterial in the discussion, the set (1) is often referred to as
just a neighborhood. Occasionally, it is convenient to speak of a deleted
neighborhood, or punctured disk,

(2) 0<|z— 2| <e

consisting of all points z in an & neighborhood of zo except for the point zo itself.

0 X FIGURE 2

A point zo is said to be an interior point of a set S whenever there is some
neighborhood of zo that contains only points of S; it is called an exterior point of
S when there exists a neighborhood of it containing no points of S. If zo is neither
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of these, it is a boundary point of S. A boundary point is, therefore, a point all of
whose neighborhoods contain at least one point in S and at least one point not in S.
The totality of all boundary points is called the boundary of S. The circle z 1,
for instance, is the boundary of each of the sets

lz] <1 and lz] < 1.

A set is open if it contains none of its boundary points. It is left as an exercise
to show that a set is open if and only if each of its points is an interior point. A set
is closed if it contains all of its boundary points, and the closure of a set S is the
closed set consisting of all points in S together with the boundary of S. Note that
the first of the sets (3) is open and that the second is its closure.

Some sets are, of course, neither open nor closed. For a set to be not open,
there must be a boundary point that is contained in the set; and if a set is not closed,
there exists a boundary point not contained in the set. Observe that the punctured
disk 0 </ 7= 1 is neither open nor closed. The set of all complex numbers is, on
the other hand, both open and closed since it has no boundary points.

An open set S is connected if each pair of points z1 and z; in it can be joined
by a polygonal line, consisting of a finite number of line segments joined end to
end, that lies entirely in S. The dpen set z < 1 is connected. The annulus 1 < z <
2 is, of course, open and it is also connected (see Fig. 3). A nonempty open
set that is connected is called a domain. Note that any neighborhood is a domain.
A domain together with some, none, or all of its boundary points is referred to as a
region.

FIGURE 3
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A set S is bounded if every point of S lies inside some=circle z  R; otherwise,
it is unbounded. Both of the sets (3) are bounded regions, and the hal&plane Re z
0 is unbounded.

A point zo is said to be an accumulation point of a set S if each deleted
neighborhood of zo contains at least one point of S. It follows that if a set S is
closed, then it contains each of its accumulation points. For if an accumulation
point zo were not in S, it would be a boundary point of S; but this contradicts the
fact that a closed set contains all of its boundary points. It is left as an exercise to
show that the converse is, in fact, true. Thus a set is closed if and only if it contains
all of its accumulation points.

Evidently, a point zo is not an accumulation point of a set S whenever there
exists some deleted neighborhood of zo that does not contain at least one point of S.

Note that the origin is the only accumulation point of the set z, = i/n (n = 1, 2,..
).
FUNCTIONS OF A COMPLEX VARIABLE
Let S be a set of complex numbers. A function f definedonSisa
rule that assigns to each z in S a complex number w. The number w
is called the value of T atZ and is denoted by f (z); that is, w T (2).
The set S is called the domain of definition

of £ .*

It must be emphasized that both a domain of definition and a rule
are needed in order for a function to be well defined. When the
domain of definition is not mentioned, we agree that the largest possible
set is to be taken. Also, it is not always convenient to use notation
that distinguishes between a given function and its values.

EXAMPLE 1. If f is defined on the set z 0 by means of
theequation w 1/z, it may be referred to enly as the function
w 1/z, or simply the func- tion 1/z.

Suppose that w = u + iv is the value of a function f at z = x + iy, so that

u+iv="~fx+iy).
Each of the real numbers u and v depends on the real variables x and
y, and it follows that f (z) can be expressed in terms of a pair of
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real-valued functions of the real variables x and y:

(D (2 = ux,y) +iv(x,y).
If the polar coordinates r and @, instead of x and y, are used, then

u+ iv=f(re)
wherew = u + ivand z = re’ . In that case, we may write
2) () = u(r,0) + iv(r, 9).

EXAMPLE 2. If f (2) =22 the
f(x+1iy) = (X +1y) = X — y + i2xy.
Hence

u(x,y) = x> —y? and v(x, y) = 2xy.
When polar coordinates are used,
f(re?) = (re’)? = r?e'?? = r? cos 20 + ir? sin 26.
Consequely,
u(r, 6) = r?cos 20 and  v(r, 8) = rsin26.
If, in either of equations (1) and (2), the function v always has

value zero, then the value of T is always real. That is, f is a real-
valued function of a complex variable.

EXAMPLE 3. A real-valued function that is used to illustrate some
important concepts later in this chapter is

f(2) = 1|2 = X2 + yZ + i0.

If n is zero or a positive integer and if ao, a1, az,.. ., an are
complex constants, where a, /= 0, the function
P@=ao+ aiz+ az®+- - - + an?"

is a polynomial of degree n. Note that the sum here has a finite
number of terms and that the domain of definition is the entire z
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plane. Quotients P (z)/Q(z) of

polynomials are called rational functions and are defined at each
point’=z where Q(z) 0. Polynomials and rational functions constitute
elementary, but important, classes of functions of a complex variable.

A generalization of the concept of function is a rule that assigns
more than one value to a point z in the domain of definition. These
multiple-valued func- tions occur in the theory of functions of a
complex variable, just asthey do in the case of a real variable. When
multiple-valued functions are studied, usually just one of the possible
values assigned to each point is taken, in a systematic manner, and a
(single-valued) function is constructed from the multiple-valued
function.

EXAMPLE 4. Let z denote any nonzero complex number. We
know from Sec. 9 that z*/? has the two values

where r = |z and © (-7 <© < 7)) is the principal value of argz.

. - 2 .
But, if we-choose only the positive value of + r and write

3 f(z)=r_exp-E© (r>0,-7 <© < n),

the (single-valued) function (3) is well defined on the set of nonzero
numbers in the z plane. Since zero is the only square root of zero,
we also write T (0) 0. The function T is then well defined on the
entire plane.

MAPPINGS

Properties of a real-valued function of a real variable are often
exhibited by the graph of the fenction. But when w f (z), where z
and w are complex, no such convenient graphical representation of
the function T is available because each of the numbers z and w is
located_in a plane rather than on a line. One can, however, display
some information about the function by indicating pairs of
corresponding pointsz (X, y) and w(u, v). To do this, itis
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generally simpler to draw the z and w planes separately.

When a function T is thought of in this way, it is often referred to
as amapping, or transformation. The image of a point z in the
domain of definition S is the point w T (z), and the set of images of
all points in a set T that is contained in S is called the image of T .
The image of the entire domain of definition S is called the range of
T . The inverse image of a point w is the set of all points z in the
domain of definition of f that have w as their image. The inverse
image of a point may contain just one point, many points, or none at
all. The last case occurs, of course, when w is not in the range of T .

Terms such as translation, rotation, and reflection are used to
convey domi- nant geometric characteristics of certain mappings. In
such cases, it is sometimes convenient to consider the z and w planes
to be the same. For example, the mapping

w=z+1=X+1) +1y,

where 7= x + iy, can be thought of as a translation of each point z

one unit to the right. Since i = e™?, where z re? | rotates the radius
vector for each nonzero point z through a right angle about the origin
in the counterclockwise direction; and the mapping

W=2z=x—iy

transforms each poirt z+ x iy into its reflection in the real axis.

More information is usually exhibited by sketching images of
curves and regions than by simply indicating images of individual
points. In the following three examples, we illustrate this with the
transformation w z2. We begin by finding the images of some curves
in the z plane.

EXAMPLE 1. According to Example 2 in Sec. 12, the =
mapping w 72 can be thought of as the transformation

(1) u=x%—y2 v=2xy

from the xy plane into the uv plane. This form of the mapping is
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especially useful in finding the images of certain hyperbolas.
It is easy to show, for instance, that each branch of a hyperbola

() ¥ —y*=c1 (c1>0)

IS mapped in a one to one manner onto the vertical #ne u c1. We start
by noting from the first of equatiens (1) that u c1 when (x, y) is a
point lying on either branch. When, in particular, it lies on the right-
hand branch, the second of equations

(1) tells us that v 2y y2 c1. Thus the image of the right-hand branch
can be expressed parametrically as

U=Cy, V=2y y2 + ¢ (—o0 <y< 00);

and it is evident that the image of a point (x, y) on that branch moves
upward along the entire line as (X, y) traces out the branch in the
upward direction .

Likewise, since the pair of equations

U=Cy, V= —2y y2 +¢1 (—00 <y < )

furnishes a parametric representation for the image of the left-hand
branch of the hyperbola, the image of a point going downward along

the entire left-hand branch is seen to move up the entire line u = c.
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u=c1>0

\ \ / v=c,>0
----- “s\‘o X O u
%

\
A
1
1
1

2
On the other hand, each branch of a hyperbola

2Xy = C2 (c2>0)

EXAMPLE 2. The domain x > 0,y > 0, xy < 1 consists of all
points lying on the upper branches of hyperbolas from the family
2xy ¢, where 0 <c <2 (Fig. 18). We know from Example 1 that as
a point travels downward along the entirety of such a branch, its
image under the transformation w z2 moves to the right along the
entire line v c. Since, for all values of ¢ between 0 and 2, these upper
branches fill out the domain x >0,y > 0, xy < 1, that domain is
mapped onto the horizontal strip 0 < v < 2.

> <
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In view of equations (1), the image of a point (0, y) in the z
plane is (y?, 0). Hence as (0, y) travels downward to the origin
along the y axis, its image moves to the right along the negative u
axis and reaches the origin in the w plane. Then, since the image of
a point (x, 0) is (x2, 0), that image moves to the right from the
origin along the u axis as (x, 0) moves to the right from the origin along

the x axis. The image of the upper branch of the hyperbola xy = 1 is, of
course, the horizontal line v = 2. Evidently, then, the closed region x >

0,y > 0,xy < 1ismappedonto the closed strip 0 <v < 2, as
indicated in Fig. 18.

Our last example here illustrates how polar coordinates can be
useful in ana- lyzing certain mappings.

EXAMPLE 3. The mapping w = z? becomes
Bw = r2ei20
when z = re’? . Evidently, then, the image w = pe’? of any nonzero
point z is found by squaring the modulus r = |z| and doubling the
value 6 of arg z that is used:

(5) p =r? and ¢ =20.

Observe that points z = roe” on a circle r = roare transformed into points

w = p%e'?’ on the circle p = r?. As a point on the first circle moves counterclock-
wise from the positive real axis to the positive imaginary axis, its image

on the second circle moves counterclockwise from the positive real

axis to the negative real axis (see Fig. 19). So, as all possible positive

values of ro are chosen, the

corresponding arcs in the z and w planes fill out the first quadrant

and the upper half plane, respectively. The transformation w = 72 is,
then, a one to one map- ping of the first quadrantr > 0,0 < 0 <
7/2 in the z plane onto the upper half p > 0,0 < ¢ < 7w ofthew
plane, as indicated in Fig. 19. The point z = 0 is, of course, mapped
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onto the pointw = 0.

y v
.\‘ FIGURE 19
0 rp X 0 rau
wW=12

The transfarmation w.  z? also maps the upper half plane r <0, 0
< @ < onto the entire w plane. However, in this case, the
transformation is not one to one since both the positive and negative
real axes in the z plane are mapped onto the positive real axis in the w
plane. When n is a positive integer greater than 2, various mapping
properties of the transformation w Z", orw e’  are
similar to those of w z2. Such a transformation maps the entire
z plane onto the entire w plane, where each nonzero point in the w
plane is the image of n distinct points in the z plane. The circle

I = ro is mapped onto the circle p = r"; and the sectorr < rp, 0 < 0 <

27/n 1S mapped onto theodisk p < r", but not in a one to one manner.
Other, but somewhat more involved, mappings by w  z2 appear
in Example 1, Sec. 97, and Exercises 1 through 4 ef that section.

LIMITS

Let a function T be defined at all points z in some deleted
neighborhood of zo. The statement that the limit of ¥ (z) as z
approaches zo is a number wo, or that

(¢D) lim £ (z). wo,
z—z0
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means that the pointw T (z) can be made arbitrarily close to wo
if we choose the point z close enough to zo but distinct from it. We
now express the definition of limit in a precise and usable form.
Statement (1) means that for each positive number &, there is a positive number
o such that

(2) IF(z) —wo <e¢ whenever 0<|z— 2z <6.

Geometrically, this definition says that for each ¢ neighborhood w
Wo < e of wo, there is a deleted § neighborhood 0 < z 2o < ¢ of
Zo such that every point z in it has an image w lying in the ¢
neighborhood. Note that even though all péints in the deleted
neighborhood 0 <z zo < ¢ areto be corllsid_ereéi, their images need not
fill up the entire neighborhood w wo <e. If T has the constant value
Wo, for instance, the image of z is always the center of that
neighborhood. Note, too, that once a ¢ has been found, it can be
replaced by any smaller positive number, such as /2.

It is easy to show that when a limit of a function f (z) exists at a
point zo, it is unique. To do this, we suppose that

lim f(z2) =wo and limf (z) =wa.
Z—20 z—120

Then, for each positive number ¢, there are positive numbers do and J1 such that

() —wo| <¢ whenever 0<|z— 2] <o
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() —wi| <e whenever 0<|z— 2] <.
w1 —wo| = [[F(2) —wo] — [F(2) —wWi]| < [F(2) —wWol + [F(2) —wWi| <&+ & = 2e.

But w1 wo is| a nonnegative constant, and ¢ can be chosen
arbitrarily small. Hence

w1 —Wo = 0, or wi = Wo.

Definition (2) requires that T be defined at all points in some
deleted neigh- borhood of zo. Such a deleted neighborhood, of course,
always exists when zpis  an interior point of a region on which T is
defined. We can extend the definition of limit to the case in which zo is
a boundary point of the region by agreeing that the first of inequalities
(2) need be satisfied by only those points z that lie in both the region
and the deleted neighborhood.

LIMITS INVOLVING THE POINT AT INFINITY

It is sometimes convenient to include with the complex plane the point
at infinity, denoted by,  and to use limits involving it. The complex
plane together with this point is called the extended complex plane. To
visualize the point at infinity, one can think of the complex plane as
passing through the equator of a unit sphere centered at the origin To
each point z in the plane there corresponds exactly one point P on the
surface of the sphere. The point P is the point where the line through z
and the north pole N intersects the sphere. In like manner, to each point
P on the surface of the sphere, other than the north pole N, there
corresponds exactly one
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point z in the plane. By letting the point N of the sphere correspond
to the point at infinity, we obtain a one to one correspondence between
the points of the sphere and the points of the extended complex plane.
The sphere is known as the Riemann sphere, and the correspondence is
called a stereographic projection.

Observe that the exterior of the unit circle centered at the origin in
the complex plane corresponds to the upper hemisphere with the
equator and the point N deleted. Moreover, for each small positive
number ¢, thos po'irh% in the complex plane exterior to the circle z
1/e correspon {o points on the sphere close to N . We thus call the
set z > 1/¢ an ¢ neighborhood, or neighborhood, of .

Let us agree that in referring to a point z, we mean a point in the
finite plane. Hereafter, when the point at infinity is to be considered, it
will be specifically mentioned.

A meaning is now readily given to the statement

lim £ (2> wo

z—120
when either zo or wo, or possibly each of these numbers, is replaced
by the point at infinity. In the definition of limit in Sec. 15, we
simply replace the appropriate neighborhood$of zo and wo by

neighborhoods of . The proof of the following theorem illustrates how
this is done.

Theorem. If zo and w, are points in the z and w planes, respectively,
then prove that
1) lim f (zZ)=c0 as z—z, if and only if lim 1/f (z) =0 as z—z, and

ii)lim f (z) = wo as z—oo if and only if lim f(i) =W, as z—0
Moreover,lim f (z)=w as z—oo if and only if Iim% =0as z—0.
CONTINUITY

A function T is continuous at a point zo if all three of the following
conditions are satisfied:
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lim f (z) exists,

220 (1)
T (z0) exists, (2)
lim f(2) f(z20). 3)
z2—70 B

Observe that statement (3) actually contains statements (1) and (2),
since the exis- tence of the quantity on each side of the equation there is
needed. Statement (3) says, of course, that for each positive number ¢,
there is a positive number ¢ such that

@) F(z) —F(20)| <e¢ whenever |z — zg| < 4.

A function of a complex variable is said to be continuous in a region R if it is
continuous at each point in R.
If two functions are continuous at a point, their sum and product are
also contin- uous at that point; their quotient is continuous at any such
point if the denominator is not zero there. These observations are
direct consequences of Theorem 2, Sec.
16. Note, too, that a polynomial is continuous in the entire plane because of limit
(12) in Sec. 16.
We turn now to two expected properties of continuous functions
whose veri- fications are not so immediate. Our proofs depend on
definition (4) of continuity, and we present the results as theorems.

Theorem . A composition of continuous functions is itself continuous.

A precise statement of this theorem is contained in the proof to
foHow. We let w () be a function that is defined for all z in'a
neighborhood z zo =¢ of a point zo , and we let W g(w) be a
function whose domain of definition contains the image of that
neighborhood under f . The composition W b[f (2)] is, then,
defined for all z in the neighborhood z 2o < d. Suppose now
that  is continuous at zo and that g is continuous at the point f (zo)
in the w plane. In view of the continuity of g at T (z0), there is, for
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each positive number ¢, a positive number y such that

9[f )] — olf )]l <& whenever [ (z) — F(z0)| <.

But the continuity of T at zo ensures that the neighborhood |z-zo|< ¢
can be made small enough that the second of these inequalities holds.
The continuity of the composition g[f (z)] is, therefore, established.

y v v
L y _ | ot
ZZO / {\.f(ZO) \\. olf@)] |
o x Of: u 9 U
of(2)

Theorem . If a function f () is continuous and nonzero at a point zo , then
T (2) /= 0 throughout some neighborhood of that point.

Assuming that T (z) is, in fact, continuous and nonzero at zg, we
can prove Theorem 2 by assigning the positive value f (zo) /2 to the

number ¢ in statement (4). This tells us that there is a positive
number ¢ such that

f(2) = F ()< ‘ffz_ozl whenever |z — z| <0.

So if there is a point z in the nighbourhood at which f (z) =0,
we have the contradiction

The continuity of a function

(5) f(2) = u(x,y) +iv(x,y)
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is closely related to the continuity of its component functions u(x, y)
and v(x, y). We note, for instance, how it follows from Theorem 1 in
Sec. 16 that the function

(5) is continuous at a point 2o (Xo, Yo) if and only if its component
functions are continuous there. Our proof of the next theorem illustrates
the use of this state- ment. The theorem is extremely important and
will be used often in later chapters, especially in applications. Before
stating the theorem, we recall from Sec. 11 that a region R is closed if
it contains all of its boundary points and that it is bounded if it lies
inside some circle centered at the origin.

Theorem 3. If a function T is continuous throughout a region R
that is both closed and bounded, there exists a nonnegative real
number M such that

(6) If(2)| <M for all points z inR,

where equality holds for at least one such z.
To prove this, we assume that the function f in equation (5) is continuous and note how it
follows that the function

[u(x, Y12 + [v(x, )12
is continuous throughout R and thus reaches a maximum value M somewhere in
R.* Inequality (6) thus holds, and we say that f is bounded on R.

DERIVATIVES
Letf beafunctionwhose domainofdefinition containsane¢ighborhood zzp < ¢
of a point zo. The derivative of f at zo is the limit
f(z) — f

(1) f (zo)=  lim @ 7 20

z—2z0
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and the function f is said to be differentiable at zo when fi(zo) exists.

By expressing the variable z in definition (1) in terms of the new complex
variable

Because T is defined throughout a neighborhood of zo, the number
T (zo + Oz) is always defined for |Oz| sufficiently small.

When taking form (2) of the definition of derivative, we often drop
the subscript on zo and introduce the number

Ow = f(z + Oz) — f(2),

which denotesthe change inthe valuew f(z) of f correspondingtoachange
Oz in the point at which f is evaluated.

DIFFERENTIATION FORMULAS

The definition of derivative in Sec. 19 is identical in form to that of the
derivative  of a real-valued function of a real variable. In fact, the
basic differentiation formulas given below can be derived from the
definition in Sec. 19 by essentially the same steps as the ones used in
calculus. In these formulas, the derivative of a function ¥ at a point z
is denoted by either depending on which notation is more convenient.
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Let ¢ be a complex constant, and let T be a function whose
derivative exists at a point z. It is easy to show that

(1) - et (2] = o).
dz dz

Also, if n is a positive —

This formula remains valid when n is a negative integer, provided that z
I the derivatives of two functions f and g exist at a point z, then

Let us derive formula (4). To do this, we write the following expression for the
change in the product w = f (2)g(2):
Ow = f(z + Oz)g(z + Oz) — T(2)9(2)
= T@)[g(z + Oz) — g(2)] + [f(z + Oz) — T(2)]g(z + O2).
Ow _ () g(z + Oz) — g(2) 4 f(z + Oz)
0oz Oz Oz
and, letting Oz tend to zero, we arrive at the desired formula for the

derivative of f(2)g(z). Here we have used the fact that g is
continuous at the point z.

-T@ g(z + 0z2) ;
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CAUCHY-RIEMANN EQUATIONS

In this section, we obtain a pair of equations that the first-order
partial derivatives of the component functions u and v of a function

(1) f(2) = ux,y) +iv(x,y)
must satisfy at a pointzo (Xo, Yo) when the derivative of T exists

there. We also show how to express T i(zo) in terms of those partial
derivatives.
We start by writing

Zo =Xo + Iyo, Oz = OXx + 10y,

and

Ow = f(z0 + Oz) — f(20)
= [u(Xo + OX, Yo + QOy) — u(Xo, Yo)] + i[v(Xo + OX, yo + Oy) — Vv(Xo, Yo)].

Assuming that the derivative

Now it is important to keep in mind that expression (3) is valid
as (Ox, Oy) tends to (0, 0) in any manner that we may choose. In
particular, we let (Ox, Oy) tend to (0, 0) horizontally through the

points (Ox, 0), as indicated in Fig. 29 (Sec. 19). Inasmuch as Oy =
0, the quotient Ow/Oz becomes

derivatives with respect to x of the functions u and v, respectively, at
(Xo, Yo). Substitution of these limits into expression (3) tells us that

Equation not only give fi(zo) in terms of partial derivatives of
the component functions u and v, but they also provide necessary

conditions for the existence of f i(zo). To obtain those conditions, we
need only equate the real parts and then the imaginary parts on the
right-hand sides of equations (4) and (5) to see that the existence of

T i(z0) requires that
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(6) Ux(Xo, Yo) = Vy(Xo, Yo)and uy(Xo, Yo) = —Vx(Xo,Yo).

Equations (6) are the Cauchy—Riemann equations, so named in honor of
the French mathematician A. L. Cauchy (1789-1857), who
discovered and used them, and in honor of the German
mathematician G. F. B. Riemann (1826-1866), who made them
fundamental in his development of the theory of functions of a complex
variable.

We summarize the above results as follows.

Theorem. Suppose that
(2 =uxy) +iv(x,y)
and that f (z) exists at a point zq Xo iyo. Then the first-order partial
derivatives of u and v must exist at (xo, Yo), and they must satisfy the
Cauchy—Riemann equations
U] Ux = Vy, Uy = —Vx
there. Also, fi(zo) can be written
8) Ti(z0) = ux + ivy,
where these partial derivatives are to be evaluated at (Xo, Yo).
EXAMPLE 1.we showed that the function

f(2) = 22 = x> — y? + i2xy

is differentiable everywhere and that fi(z)~ 2z. To verify that the Cauchy—
Riemann equations are satisfied everywhere, write

ux,y) = x> —y? and v(x, y) = 2xy.

Thus
Ux = 2X = Vy, Uy = —2y = —Vy.
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Moreover, according to equation (8),
fi(z) = 2x + i2y = 2(x + iy) = 2z

Since the Cauchy—Riemann equations are necessary conditions
for the existence of the derivative of a function T at a point zo, they
can often be used to locate points at which T does not have a
derivative.

SUFFICIENT CONDITIONS FOR DIFFERENTIABILITY

Satisfaction of the Cauchy—Riemann equations at a peint zo (Xo, Yo) IS
not suffi- cient to ensure the existence of the derivative of a function f
(2) at that point. (See Exercise 6, Sec. 23.) But, with certain continuity
conditions, we have the following useful theorem.

Theorem. Let the function

F(2) = u(x, y) + iv(x,y)
be defined throughout some & neighborhood of a point zo Xo 1Yo,
and suppose that y

(a) the first-order partial derivatives of the functions u and v with respect to x and
y exist everywhere in the neighborhood;

(b) those partial derivatives are continuous at (o, yo) and satisfy the
Cauchy— Riemann equations

Ux = Vy, Uy = —Vx

at(xo,Yo).
Then T i(zo) exists, its value being

fi(zo) = ux + vk
where the right-hand side is to be evaluated at (xo, o).

To prove the theorem, we assume that conditions (a) and (b) in
its hypothesis are satisfied and write Oz = Ox + 10y, where 0 <
|O0z| < ¢, as well as

Prepared by K.Aarthiya, Asst Prof, Department of Mathematics,KAHE Page 24/26



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS
COURSE NAME: MATRIC SPACES AND COMPLEX ANALYSIS
COURSE CODE: 16MMU402 UNIT: III BATCH-2016-2019

Ow = f(zo + Oz) — T (20).

The assumption that the first-order partial derivatives of u and v are
continuous at the point (xo, yo) enables us to write™*

(2) Ou = ux(Xo, Yo)OX + Uy(Xo, Yo)OY + £10X + &0y

d
?g) Ov = vx(Xo, Y0)OX + Vy(Xo, Yo)OY + &30x + &40y,

where 1, &2, &3, and ¢4 tend to zero as (Ox, Oy) approaches (0, 0) in
the Oz plane. Substitution of expressions (2) and (3) into equation
(1) now tells us that

4 OW = Ux(Xo, Yo)OX + Uy(Xo, Yo)Oy + &10x + &0y
+ 1[vx(Xo, Yo)OX + Vvy(Xo, Yo)Oy + &30x + &40y].
Because the Cauchy—Riemann equations are assumed to be satisfied at (Xo, Yo),
one can replace uy(Xo, Yo) by —Vx(Xo, Yo) and vy(Xo, Yo) by ux(Xo, Yo) in equation
(4) and then divide through by the quantity Oz = Ox + iOy.
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2 MARK QUESTIONS

. Write the C-R Equation.

. State sufficient condition for differentiability.
. State the Cauchy Riemann Equation

. Define Derivate.

. Definition of Limit.

gk~ owN -

8 MARK QUESTIONS

1. State and Prove the sufficient conditions for differentiability.
. Prove that a composition of continuous functions is itself continuous.
3. Let the functionf (z) = u(x, y) + iv(X, y)be defined throughout some ¢

eighborhood of a point zo= X0+ 1yo, and supposethat

i) the first-order partial derivatives of the functions u and v
with respect to x andy exist everywhere in the neighborhood,;
ii) those partial derivatives are continuous at (x0, y0) and satisfy
the C—R equations ux= vy, Uy=—Vxat (Xo, Yo).
4. Prove that Cauchy Riemann equation.
. If a function f (z) is continuous and nonzero at a point z, , then prove thatf (z) #0
throughout some neighborhood of that point.

6. Let the functionf(z) = u(x, y) + iv(X, y)be defined throughout some ¢

neighborhood of apoint zo= Xo+ 1Yo, and Then prove that f *(zo) exists, its value being

f¢(zo) = ux+ ivxwhere the right-hand side is to be evaluated at (Xo, o).
7.Prove that if a function f is continuous throughout a region R that is both closed

and bounded, then there exists a nonnegative real number M such that

If (z)] < M for all points z in R,where equality holds for at least one such z.
8. f f (2) = z, thenprove that AA—VZV = %‘
9. If zo and wo are points in the z and w planes, respectively, then prove that
i limf (z)=c0 as z—z.if and only if lim 1/f (z)= 0 as z—z.and

N

(621

i) imf (2) = o as z—0 if and only if lim (2)= wo as 20
Moreover limf (z)=o00 as z—oo if and only if Iim%= 0 as z—0.

10. Suppose thatf (z) = u(x, y) + iv(X, y)and that f ¢(z) exists at a point zo= Xo+ iYo.
Then prove that the first-order partial derivativesof u and v must exist at (x0, y0),
and they mustsatisfy the Cauchy—Riemann equationsux= vy, Uy= —Vx
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For each positive integer epsilon, there exits a delta such that |f Limit

If zo and wo are points in the z and w planes, then lim f(z)=int0

If zo and wo are points in the z and w planes, then lim f(z)= wc0
If zo and wo are points in the z and w planes, then lim f(z)=int0
If zo and wo are points in the z and w planes, then lim f(z)= __ 0

If zo and wo are points in the z and w planes, then lim f(z)= __ 0

If zo and wo are points in the z and w planes, then lim f(z)= __ 0

lim (iz+3)/(z+1)=

lim (z+1)/(iz+3)=

lim (2+iz)/(1+2)=

lim (z+22)/(2-z)=

lim (z+22)/(2-z)=

A function of a complex variable is

as z tends to -1.

as z tends to -1.

as z tends to 0.

as z tends to 0.

as z tends to infinity.

0

in a region R if it Limit

A function of a complex variable is continuous in a region R if Limit

A composition of continuous function is itself

. Limit

If a function f(z) is continuous and non zero at a point zo, then 0
and non zero at a point zo, then f Limit
If a function f is continuous throughout a region R that is Boun Closed

If a function f(z) is

Asetis

A set is open if each of its points is an

A set is closed if it cointains

if it cointains none of its boundary points. Open

Arbitray

of its boundary points.  One

Asetis if every point of S lies inside some cirle |z = R Open

A point zo is

One to One function is called

Onto function is called

point of a set S if each deleted nieghb Arbitray

Injective

Injective

Continuous

1

Continuous

Continuous

Continuous

1
Continuous
Bounded
Not open

Interior

Two

Bounded

Interior

Surjective

Surjective

Convergent

WO

WO
WO
WO

WO

WO

z

Convergent

Convergent

Convergent

2
Convergent
Continuous
Closed

Closure

Finite

Continuous

Closure

Bijective

Bijective

ANSWER
Divergent Limit
Infinity 0
Infinity wo
Infinity 0
Infinity infinity
Infinity wo
Infinity infinity
Infinity infinity
Infinity 0
Infinity 2
Infinity 0
Infinity infinity
Divergent Continuous
Divergent Continuous
Divergent Continuous
Infinity 0
Divergent Continuous
Convergent  Closed
Not cloed Open
Limit Interior
All All
Closed Bounded

Accumulation Accumulation

Into Injective

Into Surjective



One to one and onto function is called . Injective Surjective Bijective Into Bijective
The derivative of f at zo is denoted by . f(2) f'(2) f"(2) f'(z0) f'(zo)
lim [f(2)-f(z0)]/[z-z0 ]= as z tends to zo. f(2) f'(2) f"(2) f'(z0) f'(zo)

lim [f(2)-f(z0)]/[z-z0]= f'(z0) as z tends to zo . Then the finctio Differentiable Differentiable Convergent at Convergent at Differentiable

d/dz[f(z)] is denoted by f(2) f'(2) f"(2) f'(zo) f(2)
dldz(c)=__ 0 1 2 Infinity 0
dldz(z)=__ 0 1 2 Infinity 1

d/dz[cf(2)] cf(2) cf'(2) f"(2) f'(2) cf'(2)
didz[f(z) +9()1=___ . f@+9'@fF"@-9'@ '@ 9'@ F'@/9'@ '@)+9' (@)
didz[fz) 91 = . f(2)9' @) ' @129 (@) -F'(f2)9" @) 1 T'(f2)g" (2) +F"f(2)g" (2) +
didz[fz) l9(x)1= . [f'(2)9(2)-f(2) [f '(2)9(2)-f(2) [F'(2)9(2)-F(2) [f '(2)9(2)-f(2) [F'(2)9(2)-F(2)¢
d/dz[z"2]= . 2z 3z z "3 2z

u(x,y) +iv(x,y) is in C-R equation u Y f(z) f(2) f(2)
enMx+iy)=__ enx ety eN(x+y) ez ez
f(z)=ecosy+esinyhereuis__ cosy siny ecosy esiny ecosy
f(z)=ecosy+esinyherevis___ cosy siny ecosy esiny esiny

X+ iy is in C-R equation f(z) z X y z

Ux=Vvy the another C-R equation is Uy=Vx Uy= -Vx Uy+Vx Uy-Vx Uy= -Vx

Uy= -Vx the another C-R equation is Ux=Vy Uy= -Vx Uy+Vx Uy-Vx Ux=Vy

Ux=Vy and uy= -y is . R equation  Cequation  C-R equation R-C equation C-R equation
lim (3+iz)/(1+2)= as z tends to 0. 1 2 3 0 3

lim (5+iz)/(1+2)= as z tends to 0. 1 3 5 0 5
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UNIT IV
SYLLABUS

Analytic functions, examples of analytic functions, exponential function,
Logarithmic function, trigonometric function, derivatives of functions,
definite integrals of functions. Contours: Contour integrals and its examples
- upper bounds for moduli of contour integrals - Cauchy- Goursat theorem,

Cauchy integral formula.

ANALYTIC FUNCTIONS

We are now ready to introduce the concept of an analytic function.
A function f of the complex variable z is analytic at a point zo if it

has a derivative at each point in some neighborhood of zo.* It follows
that if £ is analytic at a point zo, it must be analytic at each point in
some neighborhood of zo. A function T is analytic in
an open set if it has a derivative everywhere in that set. If we should
speak of a function f that is analytic in a set S which is not open, it
is to be understood that f is analytic in an open set containing S.
Note that the function T (2) 1/z is analytic at each
nonzero point inthefinite plane. But the function f(z)z 2 is not
analytic at any point since its derivative exists only at z Oand
not throughout any neighborhood. (See Example 3, Sec. 19.) An
entire function is a function that is analytic at each point in the entire
finite plane. Since the derivative of a polynomial exists everywhere,
it follows that every
polynomial is an entire function.

If a function T fails to be analytic at a point zo but is analytic at
some point in every neighborhood of zo, then zo is called a singular
point, or singularity, of  f . The point z 0 is evidently asingular
point of the_furl}ction f (2) 1/z. The function f () z 2, on the other
hand, has no singular points since it is nowhere analytic.

A necessary, but by no means sufficient, condition for a function
f to be analytic in a domain D is clearly the continuity of f
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throughout D. Satisfaction of the Cauchy—Riemann equations is
also necessary, but not sufficient. Sufficient conditions for
analyticity in D are provided by the theorems in Secs. 22 and 23.

Other useful sufficient conditions are obtained from the
differentiation formulas in Sec. 20. The derivatives of the sum and
product of two functions exist wherever

*The terms regular and holomorphic are also used in the literature to denote
analyticity.
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the functions themselves have derivatives. Thus, if two functions are
analytic in  a domain D, their sum and their product are both
analytic in D. Similarly, their quotient is analytic in D provided the
function in the denominator does not vanish at any point in D. In
particular, the quotient P (z)/Q(z) of two polynomials is analytic in
any domain throughout which Q(z) 0.

From the chain rule for the derivative of a composite function,
we find that a composition of two analytic functions is analytic.
More precisely, suppose that a function f (z) is analytic in a domain
D and that the image (Sec. 13) of D under the transformation w f (z)
is contained in the domain of definition of a function g(w). Then the
composition g[f (z)] is analytic in D, with derivative

GO dIF @IF

The following property of analytic functions is especially useful, in
addition to being expected.

Theorem. If fi(z)= 0 everywhere in a domain D, then f (2)
must be constant throughout D.

We start the, roof by writing f (2) = u(x y) + |v(x y).
Assumln% that f = 0in D, we note that ux + ivx = 0 ; and,’in
view of the Cauchy— iemann equatlons vy — iuy = 0. Consequently,

Ux=Uy=0 and ww=v,=0

at each point in D.

Next, we show that u(X, y) is constant along any line segment L
extending from a point P to a point P ! and lying entirely in D. We
let s denote the distance along L from the point P and let U denote
the unit vector along L in the direction of increasing s (see Fig. 30).
We know from calculus that the directional derivative

du/ds can be written as the dot product
M du
ds - (grad u) - U,
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© *FIGURE 30
where grad u is the gradient vector

2 grad u = uxi + uyj.

Because ux and uy are zero everywhere in D, grad u is evidently the
zero vector at all points on L. Hence it follows from equation (1)
that the derivative du/ds is zero along L; and this means that u is
constant on L.

Finally, since there is always a finite number of such line
segments, joined end to end, connecting any two points P and Q in
D (Sec. 11), the values of u at P and Q must be the same. We may
conclude, then, that there is a real constant a such that u(x, y) " a
throughout D. Similarly, v(x,y) b;andwe findthatf (z) a bi
at each point in D.

EXAMPLES

As pointed out in Sec. 24, it is often possible to determine where a
given function is analytic by simply recalling various differentiation
formulas in Sec. 20.

EXAMPLE 1. The quotient
2+4

D=2 _3y2+1)
When a function is given in terms of its component functions
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u(x, y) and v(x, y), its analyticity can be demonstrated by direct
application of the Cauchy— Riemann equations.
EXAMPLE 2. If
T (z) =cosh xcosy +isinh xsiny,
the component functions are

u(x,y) =coshxcosy and v(x,y) =sinhxsiny.
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Because
Ux =sinhxcosy =vy, and uy=-—coshxsiny =—vx

everywhere, it is clear from the theorem in Sec. 22 that T is entire.

Finally, we illustrate how the theorem in Sec. 24 can be used to
obtain other properties of analytic functions.

EXAMPLE 3. Suppose that a function
f(2) =u(x,y) +iv(x,y)

f@ =ulxy) —iv(x,y)

are both analytic in a given domain D. It is now easy to show that f
(z) must be constant throughout D.
To do this, we write T (2) as

F@=UXYy) +iVxy)
Ux,y) =u(x,y) and  V(xy) =—-v(X,y).

and its
conjugate
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Because of the analyticity of f(z), the Cauchy—Riemann
equations

(1) Ux = Vy, Uy = —Vx

hold in D; and the analyticity of f (z) in D tells us that
@) Ux=Vy, Uy=-Vi

In view of relations (1), equations (3) can also be written
©) Ux=—Vy, Uy=Vx

By adding corresponding sides of the first of equations (2)
and (4), we find that
= ux 0 in D. Similarly, subtraction involving
corresponding sides f the second of equations
(2) and (4) reveals that vx 0. According to
expression (8) in Sec. 21, then,
fi@)=ux+ivx=0+i0=0;

and it follows from the theorem in Sec. 24 that f (z) is constant
throughout D.

EXAMPLE 4. As in Example 3, we
consider a function f that is analytic |
throughout a given domain D. Assuming
further that the modulus f (z) is constant
throughout D, one can prove that f (z) must
be constant there too. This result is needed
to obtain an important result later on in
Chap. 4 (Sec. 54).

The proof is accomplished by writing

4 If(2)|=c forall zin D,

where c is a real constant. If c =0, it
follows that f (z) = 0 everywhere in D.
If

¢ /= 0, the fact that (see Sec. 5)
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f(Dfz) =c?
tells us that T (z) is never zero in D. Hence
2
— C

f (2 :fg forall zin D,

and it follows from this that T (z) is analytic
everywhere in D. The main result in Example
3 just above thus ensures that T (z) is constant
throughout D.

THE EXPONENTIAL FUNCTION

As anticipated earlier (Sec. 14), we define here the exponential function
e’ by writing

@) e?=e%  (z=x+iy),
where Euler’s formula (see Sec. 6)
@) e =cosy +isiny

is used and y is to be taken in radians. We see from this definition that
e’ reduces to the usual exponential function in calculus when y 0 ;
and, following the con- vention used in calculus, we often write exp z
for e’

Note that since the positive nthroot Ne ofe is assignedo e*
when x  1/n (n _2,3,...), expression (1) tells us that the complex

exponential function e?is also " e when z 1/n (n 2, 3,. . .). Thisis an
exception to the convention (Sec. 9) that would ordinarily require us
to interpret e’ as the set of nth roots of e.

According to definition (1), €€V  e“*V;and, as already
pointed out in Sec. 14, the definition is suggested by the additive
property

eXl eX2 = eX1+X2
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of e*in calculus. That property’s extension,

@3) eZl g22 = g21+72

to complex analysis is easy to verify. To do this, we write
Z1=Xy1+iy1 and 22 =Xz +iya.

The

0 el 2 = (¥l vl ) (@2 M2 ) = (e¥1 X2 )(e¥1 eM2).

But x; and x» are both real, and we know from Sec. 7 that
elyl gly2 = oi(yl+y2)

and, .
eZl 22 = e(X1+X2)e|(y1+y2);

since  (xy+ x2) +i(yr +y2) = (Xa +iy1) + (Xe +iy2) =21 +
23,

the right-hand side of this last equation becomes e?1t22 _ Property (3)
IS now estab- lished.
Observe how property (3) enables us to write e?1722 ¢?22 = ¢?1  or

©) g 277

~=zel?2
o722 e+e.

From this and the fact that e° =1, it followsthat 1/e* e 2
There are a number of other important properties of e’ that are expected.

Q\ccording to Example1in  __
z
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everywhere in the z plane. Note that the differentiability of e for all z tells
us that
e’ is entire (Sec. 24). It is also true that

(5) e*/=0 for any complex number z.
This is evident upon writing definition (1) in the form
e’ =pe'” where p =e*and ¢ =y,
which tells us that
(7 le?/|=e* and arg(é)=y+2nzr (n=0,£1,%2,...).

Statement (6) then follows from the observation|that e* is always
positive.
Some properties of e* are, however, not expected. For example, since

we find that e’ is periodic, with a pure imaginary period of 27i:

®) eZt2mi — oZ
For another property of e’ that e* does not have, we note that while e*
is
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always positive, e* can be negative. We recall (Sec. 6), for instances that
e 1. In fact,

ei(2n+1)7r — ei2n7r+i7r - ei2nnein - (1)(_1) =—1 (n = 01 i]_, 12’)

There are, moreover, values of z such that e’ is any given nonzero
complex number. This is shown in the next section, where the
logarithmic function is developed, and s illustrated in the following
example.

30. THE LOGARITHMICFUNCTION

Our motivation for the definition of the logarithmic function is based on
solving the equation

Q) eV=z
for w, where z is any nonzero complex number. To do this, we note
that when z
and w are written z = re'® (—zr < © < ) and w = u + iv, equation (1)
becomes

gle" = re'®,

According to the statement in italics at the beginning of Sec. 9 about
the equality  of two complex numbers expressed in exponential
form, this tells us that

eg'=r and v=0© +2nx

where n is any integer. Since the equation e" =r isthe
sameas u In r, it follows that equation
(2) is satisfied if and only if w has one of the values

w=Inr+i(©+2nz) (n=0,%1,%£2,...).

Thus, if we write

(2) logz=Inr+i(©+2nzr) (n=0,%1,+£2,...),
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equation (1) tells us e92=7  (2/=0)
that (3)

which serves to motivate expression (2) as the definition of the (multiple-
valued) logarithmic function of a nonzero complex variable z = re'®.

EXAMPLE 1. Ifz=-1- \/3i, thenr =2 and © = —2x/3.

Hence

N z - 12
log(-1—- 3i)=In2+ 2nr =1In2+2 n—é i

- -+

LS

w

i (N=0, £1, +2,..).
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94 Elementary Functions chap. 3

It should be emphasized that it is not true that the left-hand side of
equation

(3) with the order of the exponential and logarithmic functions

reversed reduces to just z. More precisely, since expression (2) can

be written

logz=In|z|+iargz
and since (Sec. 29)
lef=e *and arg(e) =y +2nx (n=0,£1,%2,...)
when z = x + iy, we know that

log(e?) = In |e*|+ i arg(e?) = In(e¥) + i(y + 2nx) = (X + iy) + 2n7xi
(n=0, £1, £2,..).

That log(e*) =z+2nmi (N=0,%1,£2,...).

is, (4)

The principal value of log z is the value obtained from equation &)
when n

0 there and is denoted by Log z. Thus

(5) Logz=Inr +i®.

Note that Log z is well defined and single-valued when z /= 0 and that
(6) logz=Logz+2nzi (N=0,%1,+2,...).

It reduces to the usual logarithm in calculus when z is a posmve real

number z = r. To see this, one need onI}I/_ write z = re'’®. in which
case equation (5) becomes Logz=Inr. Thatis, Logr= Inr.

EXAMPLE 2. From expression (2), we find that
logl=In1+i(0+2nx) =2nzi (n=0,£1,£2,...).
As anticipated, Log1= 0
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Our final example here reminds us that although we were unable
to find loga- rithms of negative real numbers in calculus, we can now
0 sO.

EXAMPLE 3. Observe that

log(-1)=Inl+i(x +2nn) =(2n+L)xi (n=0, £1,%£2,...)
and that Log (—1) = 7.
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Logarithms 95

31. BRANCHES AND DERIVATIVES OF LOGARITHMS

If z = re’ is a nonzero complex number, the argument & has any one of
the values
0=0+2nr(n=0, 1, £2,...), where © = Arg z. Hence the definition

logz=Inr+i(© +2nx) (N=0,%1,%2,...)

of the multiple-valued logarithmic function in Sec. 30 can be written

Q) logz=Inr +i6.

If we let o denote any real number and restrict the value of 4 in
expression (1)
so that a < 0 < a + 2z, the function

(2) logz=Inr+i0 (>0 a<f<a+
2m),
with
u(r,8) =Inr and v(r, 8) =6,
components
(©)

is single-valued and continuous in the stated domain (Fig. 35). Note
that if the function (2) were to be defired on the ray 8 «, it would not
be continuous there. For if z is a point on that ray, there are points
arbitrarily close to z at which the values of v are near o and also
points such that the values of v are near o +27.
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of X FIGURE 35

The function (2) is not only continuous but also analytic throughout
the domain r >0, o < 8 < a 2z since the first-order partial derivatives
of u and v are con- tinuous there and satisfy the polar form (Sec. 23)

rur =Vg, Up=-—TIVyr

of the Cauchy—Riemann equations. Furthermore, according to Sec. 23,

- >
d y |
S logz=e Y i) =g F1+i0 :%;
z (u rei
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96 Elementary Functions chap. 3
that is, d 1
“logz_ " Izl >0a<argz<a+
In (|z|> 0,—r<Argz<
— Logz _ ).
particular, 1
dz
(5)
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A branch of a multiple-valued function f is any single-valued
function F that

is analytic in some domain at each point z of which the value F (z) is
one of the values of . The requirement of analyticity, of course,
prevents F from taking on a random selection of the values of T .
Observe that for each fixed a, the single-valued function (2) is a
branch of the multiple-valued function (1). The function

(6) Logz=Inr+i© (r>0,—7<©<x)

is called the principal branch.

A branch cut is a portion of a line or curve that is introduced in
order to define a branch F of a multiple-valued function f . Points on
the branch cut for F are singular points (Sec. 24) of F , and any point
that is common to all branch cuts of  is called a branch point. The
origin and the ray & o make up the branch cut for the branch (2) of
the logarithmic function. The branch cut for the principal branch
(6) consists of the origin and the ray ©  z. The origin is evidently a
branch point for branches of the multiple-valued logarithmic function.

Special care must be taken in using branches of the logarithmic
function, espe- cially since expected identities involving logarithms do
not always carry over from calculus.

32. SOME IDENTITIES INVOLVING LOGARITHMS
If z1 and z> denote any two nonzero complex numbers, it is

straightforward to show that

(1) log(z122) = log z1 + log z2.

This statement, involving a multiple-valued function, is to be
interpreted in the same way that the statement

2) arg(z1z2) =argzi +arg 22

was in Sec. 8. That is, if values of two of the three logarithms are
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specified, then there is a value of the third such that equation (1)
holds.

The verification of statement (1) can be based on statement (2) in
the following way! [Since z1z2  z1 z and since these moduli are
all positive real numbers, we know from experience with logarithms
of such numbers in calculus that

In |z1z2|= In |z1|+ In |z2].

So it follows from this and equation (2) that

3) In|z1z2|+ 1 arg(z1z2) = (In|z1|+ i arg z1) + (In|z2|+ i arg z2).

Finally, because of the way in which equations (1) and (2) are to be
interpreted, equation (3) is the same as equation (1).

EXAMPLE.To illustrate statement (1), write z:= —2> 1 and
recall from Examples 2 and 3 in Sec. 30 that

log 1=2nzi and log(—1) = (2n +1)xi,
where n =0, 1, £2,. .. . Noting that z1z, = 1 and using the values

log(z1z2) =0 and log z; =i,
we find that equations (1) is satisfied when the valee-og z> 7i is
chosen.
If, on the other hand, the principal values

Log1=0 and Log(-1) =xi

are

used, Log(z1z2) =0 and Logz:+logz; =27

for the same numbers z; and z>. Thus statement (1), which is
sometimes true when log is replaced by Log (see Exercise 1), is not
always true when principal values are used in all three of its terms.

Verification of the statement
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.2
4) log 2 log z1 — log z,
Z2

which is to be interpreted in the same way as statement (1), is left to
the exercises. We include here two other properties of logz that
will be of special interest in

Sec. 33. If z is a nonzero complex number, then

(5) "=eM9z  (n=0%1,%2,...)

for any value of log z that is taken. When n 1, this reduces, of course,
to relation  (3), Sec. 30. Equation (5) is readily werified by writing
z re’’ and noting that each side becomes r"e™?

It is also true that when z /=0,

(6) zY" = exp 1 logz (n=1,2,...).
n
That is, the term on the right here has n distinct values, and those values

are the nth roots of z. To prove this, we write z  r exp(i©), where ©
is the principal value of argz. Then, in view of definition (2), Sec.

30, of log z,
"1 Z_ 21 i(©+2k7r)z
exp “logz =exp “Inr+
n n n
where k =0, +1, iiz : ThusZ 5
(7) exp 1 logz = ﬁ rexp -+ ©_+_2k7r (k=0,#1, £2,..
n n n

).

Because exp(i2kz/n) has distinct values only=when k 0-1,...,n 1,
the right- hand side of equation (7) has only n values. That right-
hand side is, in fact, an expression for the nth roots of z (Sec. 9), and
so it can be written z¥". This establishes property (6), which is
actually valid when n is a negative integer too
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34. TRIGONOMETRIC FUNCTIONS

Euler’s formula (Sec. 6) tells us that
eX =cosx +isinx and e ™ =cos x —i sin x
for every real number x. Hence

eX—e®=2isinx and e*+e*=2cosx.
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That is,
It is, therefore, natural to define the sine and cosine functions of a
complex variable
z as follows:
) elZ g—iz elZp—iz
Q) sinz ——— - =
_ oi and cos z 5

These functions are entire since they are linear combinations
(Exercise 3, Sec. 25) of the entire functions e and e . Knowing
the derivatives

g eiz= ieiz and Q e_iz = —ie_iz
dz
dz
of those exponential functions, we find from equations (1) that

(2 d sinz cosz and d cosz=—sinz.
= dz o

It is easy to see from definitions (1) that the sine and cosine
functions remain odd and even, respectively:

(3) sin(—z) = —sinz, cos(-z) = cosz.
(4) e?=cosz+isinz.

This is, of course, Euler’s formula (Sec. 6) when z is real.
A variety of identities carry over from trigopnometry. For instance
(see Exercises 2 and 3),

(5) sin(zy + z2) = sin z; €OS 22 + COS z1 SiN 2,
5) c0S(z1 + Z2) = €OS 71 COS Z2 — sin Z1 Sin Z».

From these, it follows readily that
(6) (7)
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Si 22 = 2sinzcosz, cgs?z:%%zz—sinzz,
n sin z+" =coszsin z—" =-cosz,
2 2

and [Exercise
4(a)] (9)

The periodic character of sin z and cos z is also evident:

sinz+cos?z=1.

(10) sin(z +2xz) =sinz,sin(z + ) =—sinz,
(11) cos(z +2x) =cosz,cos(z + ) =—COSzZ.
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When vy is any real number, definitions (1) and the hyperbolic
functions
sinhy= &~ and coshy &7
e Y = ey
2 2
from calculus can be used to write
(12) sin(iy) = i sinhyand cos(iy) = coshy.

Also, the real and imaginary components of sin z and cos z can be
displayed in terms of those hyperbolic functions:

(13) sinz =sinx coshy +icos xsinhy,

(14) €cos z =cos x coshy —isinxsinhy,
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where z = x + 1y. To obtain expressions (13) and (14), we write
z17=x and z2=1y

in identities (5) and (6) and then refer to relations (12). Observe that
once expres- sion (13) is obtained, relation (14) also follows from the
fact (Sec. 21) that if the derivative of a function

f(2) =u(x,y) +iv(x,y)
exists at a point z = (x, y), then
i) = ux(x, y) + ivk(X, y).

Expressions (13) and (14) can be used (Exercise 7) to show that
(15) | sin 7} = sin® + sinh?y,
(16) | cos 7 = cos’x + sink?y.
Inasmuch as sinh y tends to infinity as y tends to infinity, it is clear from
these two equations that sin z and cos z are not bounded on the complex
plane, whereas the absolute values of sin x and cos x are less than or
equal to unity for all values of x. (See the definition of a bounded
function at the end of Sec. 18.)

A zero of a given function f (z) is a number zo such that f (z0)
0. Since sin z becomes the usual sine function in calculus when z is
real, we Know that thé real numbersz nz (n 0, 1, 2,..)are
all zeros of sin z. To show that there are no other zeros, we assume
that sin z 0 and note how it follows from equation (15) that

sin? x + sinh? y = 0.

This sum of two squares reveals that

sinx=0 and sinhy=0.
Evidently, then, x = nz (n =0, £1, £2,...) and y = 0 ; that is,

(17) sinz=0 ifand only if =nmw(n=0, %1,

Sinc *2,.)

e
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Cc S o 71_2
0 Z=-—sinzZ— ,
2

according to the second of identities (8),

(18) cosz=0 ifand only if z i

> +nr(n=0, %1, £2,...).

So, as was the case with sin z, the zeros of cos z are all real.
The other four trigonometric functions are defined in terms of
the sine and cosine functions by the expected relations:

(19) tanz=""% cotz=""%2
COS z SN
(20) secz_ f
COS z -
, CSCz= . .
Sinz

Observe that the quotients tan z and sec z are analytic everywhere
except at the singularities (Sec. 24)
T

Z:5+n7z' (n=0,%1,%2,..)),

which are the zeros of cos z. Likewise, cotz and cscz have
singularities at the zeros of sin z, namely
=nzr (N=0,%1,%2,...).

By differentiating the right-hand sides of equations (19) and (20), we
obtain the anticipated differentiation formulas

d
2
(21) & tanz_sec”z, — cotz=—csc? z,
d
(22) z CSC z=—csc z cot z.

d d
— seczsecztanz, —
dz

dz
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But

and

The periodicity of each of the trigonometric functions defined by
equations (19) and
(20) follows readily from equations (10) and (11). For example,

(23) tan(z +z) =tanz.

Mapping properties of the transformation w = sin z are especially
Important
in the applications later on. A reader who wishes at this time to learn
some of those properties is sufficiently prepared to read Sec. 96 (Chap.
8), where they are discussed.

36. DERIVATIVES OF FUNCTIONS w (t)

In order to introduce integrals of T (z) in a fairly simple way, we
need to first consider derivatives of complex-valued functions w of a
real variable t . We write

(1) w(t) = u(t) +iv(D),

where the functions u and v are real-valued functions of t . The

derivative

i d
wi(t), or i w(t),

of the function (1) at a point t is defined as
) wi(t) = W(t) +iVi(Y),
provided each of the derivatives ul and V! exists att.
From definition (2), it follows that for every complex constant zo =
Xo + iyo,
%[ZoW(t)] = [(xo + iyo)(u + V)]’ = [(xou — yov) + i(you + Xov)]
= (XoU — YoV)! + i(you + Xov) = (XoU! — yod) + i(you! + XoV)
so (3)
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+ i(yoU + XoV) = (Xo + iyo) (U + iVl) = Zow!(t),
(XoW q
- = [zow(t -
yovl) O i
Another expected rule that we shall often use is
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where zo = Xo + iyo. To verify this, we write
e?0t = @0lehOt = g0t gog ygt + jeXO sin yot

and refer to definition (2) to see that

1. dt

Familiar rules from calculus and some simple algebra then lead us to the
expression

d 0t (ot i (@Ot
yot? (V" cosyot)y i(e*" sin

d %Ltot = (%o + iy0) (€0 cos yot + ie*0t sin yot),
or
d e’ 0L (xo +
iyo)e*OtevOL gt

This is, of course, the same as equation (4).

Various other rules learned in calculus, such as the ones for
differentiating sums and products, apply just as they do for real-valued
functions of t . As was the case with property (3) and formula (4),
verifications may be based on corresponding rules in calculus. It should
be pointed out, however, that not every such rule carries over to
functions of type (1). The following example illustrates this.

EXAMPLE. Suppose that w(t) is continuous on andnterval a
t b; that is, its component functions u(t) and v(t) are continuous
there. Even if w!/(t) exists when a <t < b, the mean value theorem
for derivatives no longer applies. To be precise, it is not necessarily
true that there is a number c in the intervala<t <b
such that

wley- W),

To see this, consider the function w(t) = e'* on the interval 0 <t < 2.
When that function is used, |WJ(t_?|: [ie' |= 1; and this means that the
derivative w(t) is never zero, while w(2z) — w(0) = 0.

39. CONTOURS
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Integrals of complex-valued functions of a complex variable are
defined on curves in the complex plane, rather than on just intervals of
the real line. Classes of curves that are adequate for the study of such
integrals are introduced in this section.

A set of points z = (X, y) in the complex plane is said to be an arc if

(1) x=x(), y=yt) (@a<st<hb),

where x(t) and y(t) are continuous functions of the real parameter t .
This definition establishes a continuous mappig of the interval a t
b into the xy, or z, plane;  and the image points are ordered according
to increasing values of t . It is convenient to describe the points of C
by means of the equation

2 z=2z(t) (a<st<h),

wher z(t) = x(t) +iy(t).

The arc C is a simple arc, or a Jordan arc,™ if it does not cross
itself ; that is, C-issimple ifz(t1)) z(t2) whent: t2. Whenthe arc C
is simple except for the  fact that z(b) z(a), we say that C is a
simple closed curve, or a Jordan curve. Such a curve is positively
oriented when it is in the counterclockwise direction.

The geometric nature of a particular arc often suggests different
notation for the parameter t in equation (2). This is, in fact, the case in

the following examples.

EXAMPLE 1.The polygonal line (Sec. 11) defined by means of the

tionequa-
S . .

,— X+ix when0<x<
(@) I, x+1whenl<x<

and consisting of a line segment from0 to 1+ i followed by one
froml1+ito 2+i(Fig. 36) isasimple arc.
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y
1+i 2+
1,
° 1 2 " EIGURE 36

*Named for C. Jordan (1838-1922), pronounced jor-donj.
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EXAMPLE 2.  The unitcircle
(5) z=¢?  (0<0<2m

about the origin is a simple closed curve, oriented in the
counterclockwise direction. So is the circle

(6) z=2+Re’ (0<60<2n),

centered at the point zo and with radius R (see
Sec. 6). The same set of points can make
up different arcs.

EXAMPLE 3. The arc
(7 z=e¢"  (0<6<2m)

is not the same as the arc described by equation (5). The set of
points is the same, but now the circle is traversed in the
clockwise direction.

EXAMPLE 4. The points on thearc
(8) z=¢€%  (0<0<2n)

are the same as those making up the arcs (5) and (7). The arc here
differs, however, from each of those arcs since the circle is traversed
twice in the counterclockwise direction.

The parametric representation used for any given arc C is, of
course, not unique. It is, in fact, possible to change the interval over
which the parameter ranges to any other interval. To be specific,
suppose that

9) t=p(®) (ast=p),

where ¢ is a real-valued function mapping an interval o <z </ onto
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the interval
a <t <b inrepresentation (2). (See Fig. 37.) We assume that ¢ is
continuous with

b (Bb)

(© @)

5 FIGURE 37
« Lot t=e

a continuous derivative. We also assume that ¢/(z ) > 0 for each  ; this

ensures that
t increases with z . Representation (2) is then transformed by equation (9) into

(10) z2=Z(tr) (a=t=p),
wher Z(t) = 2[p(v)].

e

(11)

This is illustrated in Exercise 3. _ _
Suppose now that the components X!(t) and y!(t) of the derivative (Sec.

37)
(12) 2(t) = ¥(t) +iy)(1)
of the function (3), used to represent C, are continuous on the entire <
interval a t

? b.
The arc is then called a differentiable arc, and the real-valued function
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2= D12 + )12
is integrable over the interval a t b. In fact, according to the
definition of arc length in calculus, the length of C is the number
Ib
(13) L= |Z(t)|dt.

The value of L is invariant under certain changes in the
representation for C that is used, as one would expect. More precisely,
with the change of variable indicated in equation (9), expression (13)
takes the form [see Exercise 1(b)]

S . ,
L= 13lp@lld @) de

o

So, if representation (10) is used for C, the derivative (Exercise 4)

(14) Z(z) =2[p@]¢(x)
enables us to write expression

(13) ab

B
L -
o

Thus thg same length of C would be obtained if representation (10) were to be
used.
If equation (2) represents a differentiable arc and-if Z(t) 0

anywhere in the interval a <t < b, then the unit tangent vector

T Z(t)
j2)(0)]
is well defined for all t in that open interval, with angle of inclination
arg Z(t). Also, when T turns, it does so continuously as the parameter t
varies over the entire interval

|Z(z )| dr.
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sec. 39 Exercises 125

a <t <Db. This expression for T is the one learned in calculus when
z(t) is interpreted as a radius vector. Such an arc is said to be
smooth. In referring to a smooth arc z z(t) (a t b), then, we agree that
the derivative Z\(t) is continuous on the closed interval a t b and
nonzero throughout the open interval a <t <b.

A contour, or piecewise smooth arc, is an arc consisting of a finite
number of smooth arcs joined end to end. Hence if equation (2)
represents a contour, z(t) is continuous, whereas its derivative Z(t) is

piecewise continuous. The polygonal line o _
(4) is, for example, a contour. When only the initial and final
values of z(t) are

the same, a contour C is called a simple closed contour. Examples are the
circles

(5) and (6), as well as the boundary of a triangle or a rectangle taken in
a specific direction. The length of a contour or a simple closed contour
is the sum of the lengths of the smooth arcs that make up the
contour.

The points on any simple closed curve or simple closed contour C
are boundary points of two distinct domains, one of which is the
interior of C and is bounded. The other, which is the exterior of C, is
unbounded. It will be convenient to accept
this statement, known as the Jordan curve theorem, as geometrically

evident; the proof is not easy.*

40. CONTOUR INTEGRALS

We turn now to integrals of complex-valued functions f of the
complex variable z. Such an integral is defined in terms of the
values f (z) along a given contour T, extending from a pointz z; to
a point z z, in the complex plane. It is, therefore, a line integral ;
and its value depends, in general, on the contour C as well as on the
function T . It is written

) )22
f(2) dz or f(z) dz,
C @) z1
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the latter notation often being used when the value of the integral is
independent of the choice of the contour taken between two fixed
end points. While the integral may be defined directly as the limit of a
sum, we choose to define it in terms of a definite integral of the type
introduced in Sec. 38.

Suppose that the equation

(@) z=z(t) (a<t<hb)

represents a contour C, extending from a=point z; z(a) to apoint z»
z(b). We assume that T [z(t )] is piecewise continuous (Se€.38) on
the interval a t b and refer to the function f (z) as being piecewise
continuous on C. We then define the line integral, or contour
integral, of f along C in terms of the parameter t :

] I'b
) ~ f(2) dz . f[z()]Z(t) dt.

c

Note that since C isa contour, Z(t) is also piecewise continuous (t))n
t b
and so the existence of integral (2) is ensured.

The value of a contour integral is invariant under a change in the
representation of its contour when the change is of the type (11), Sec.
39. This can be seen by following the same general procedure that was
used in Sec. 39 to show the invariance of arc length.
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128 Integrals chap. 4

It follows immediately from definition (2) and properties of
integrals of complex-valued functions w(t) mentioned in Sec. 38 that

J J
3 . zof(2)dz = zoC T(2)dz,

for any complex constant zo, and

5 f(z)dz +
(4 f(2)+g9(2)"dz | 9(2) dz.
) ¥ c
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C C C

Associated with the contour C used in integral (2) is-the contour

C, consisting of the same set of points but with the order reversed so

that the new contour extends from the point z; to the point z: (Fig.
39). The contour C has parametric representation
z=z(-t) (-b<st<—a).

21

o X FIGURE 39

43. UPPER BOUNDS FOR MODULI OF CONTOUR
INTEGRALS

We turn now to an inequality involving contour integrals that is
extremely important in various applications. We present the result as a
theorem but preface it with a needed lemma involving functions w(t)
of the type encountered in Secs. 37 and 38.

Lemma. If w(t) is a piecewise continuous complex-valued
function defined on an interval a <t <b, then

This inequality clearly holds when the value of the integral on the
left is zero. Thus, in the verification we may assume that its value is a
nonzero complex number and write

Now the left-hand side of this equation is a real number, and so the
right-hand side is too. Thus, using the fact that the real part of a real
number is the number itself, we find that
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Jb
ro=Re . e 0 w(t) dt,

or
Re[e "0 w(t)] < |0 w(t)|= [e ™ | [w(t)|= [w(D)],

and it follows from equation (3) that

Because ro is, in fact, the left-hand side of inequality (1), the
verification of the lemma is complete.

Prepared by K.Aarthiya, Asst Prof, Department of Mathematics,KAHE

Page 39/51



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: 11 BSC MATHEMATICS
COURSE NAME: MATRIC SPACES AND COMPLEX ANALYSIS
COURSE CODE: 16MMU402 UNIT: IV BATCH-2016-2019

138 Integrals chap. 4

46. CAUCHY-GOURSAT THEOREM

In Sec. 44, we saw that when a continuous function f has an
antiderivative in a domain D, the integral of T (z) around any given
closed contour C lying entirely in D has value zero. In this section,
we present a theorem giving other conditions on a function ¥ which
ensure that the value of the integral of ¥ (z) around a simple closed
contour (Sec. 39) is zero. The theorem is central to the theory of
functions of a complex variable; and some modifications of it,
involving certain special types of domains, will be given in Secs. 48
and 49.

We let C denote a simple closed coatour z ztx(a t b), described
in the positive sense (counterclockwise), and we assume that f is
analytic at each point interior to and on C. According to Sec. 40,

J

)b
(1) _T@dz | Flz®1Z®):dt

and ¢
if
f(2)=u(xy) +iv(x,y) and z(t) =x(t) +iy(t),
the integrand T [z(t)]Z(t) in expression (1) is the product of the
functions
ulx(t), y(O1 +ivIx(t), y(1, X(t) +iy'(t)
of the real variable t . Thus

Jb _ Jb _
2 f(@)dz  (ux-vy)dt+ (vx +uy)dt
i i j

) — a a

C
In terms of line integrals of rea}-valued functio?s of two real variables, then,

)
3 f(@dz=

C C
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u v dx + u dy.

dx

-V

dy

+i

]

c c c

Observe that expression (3) can be obtained formally by replacing £
(2) and dz on the left with the binomials

u+iv and dx + idy,

respectively, and expanding their product. Expression (3) is, of
course, also valid when C is any contour, not necessarily a simple
closed one, and when T [z(t)] is only piecewise continuous on it.

We next recall a result from calculus that enables us to express the
line inte- grals on the right in equation (3) as double integrals. Suppose
that two real-valued functions P (x, y) and Q(X, y), together with their
first-order partial derivatives, are continuous throughout the closed
region R consisting of all points interior to and on the simple closed
contour C. Accordjing to Green's theereJm,

C R
C R
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sec. 46 Cauchy—Goursat Theorem
151

Now f is continuous in R, since it is analytic there. Hence the
functions u and v are also continuous in R. Likewise, if the
derivative T ) of f is continuous in R, so are the first-order partial

derivatives of u and v. Green’s theorem then enables us to rewrite
equation (3) as
I I
®3) f(2)dz= (—vx—uy)dA +i (ux —vy)dA.
C R R
C R R

But, in view of the Cauchy—Riemann equations
Ux =Vy, Uy ="V,

the integrands of these two double integrals are zero throughout R. So
when f is analytic in R and f_! is continuous there,

J
(5) f (z)dz =0.
c
This result was obtained by Cauchy in the early part of the nineteenth
century.
Note that once it has been established that the value of this integral
is zero, the orientation of C is immaterial. That is, statement (5) is
also true if C is takep in the clocywise direction, since then

Cf(z) dz=— Cf(z) dz =0.

EXAMPLE.If C is any simple closed contour, in either direction,
then
J

exp(z®) dz =0.
C

This is because the composite function f (z) =exp(z®) is analytic
everywhere and its derivative f)(z) = 3z%2exp(z°®) Is continuous
everywhere.
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- Goursat™ was the first to prove that the condition of continuity on f
) can be omitted. Its removal is important and will allow us to show, for
example, that the derivative T ! of an analytic function T is analytic
without having to assume the continuity of f !, which follows as a
consequence. We now state the revised form of Cauchy’s result,
known as the Cauchy—Goursat theorem.

Theorem. If a function T is analytic at all points interior to and
on a simple closed contourfC, then

f (z)dz=0.
C

C

*E. Goursat (1858-1936), pronounced gour-sahl.
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152 Integrals chap. 4

The proof is presented in the next section, where, to be specific, we
assume that C is positively oriented. The reader who wishes to accept
this theorem without proof may pass directly to Sec. 48.

47. PROOF OF THE THEOREM

We preface the proof of the Cauchy—Goursat theorem with a lemma. We
start by forming subsets of the region R which consists of the points on
a positively oriented simple closed contour C together with the points
interior to C. To do this, we draw equally spaced lines parallel to the
real and imaginary axes such that the distance between adjacent vertical
lines is the same as that between adjacent horizontal lines. We thus form
a finite number of closed square subregions, where each point of R lies
in at least one such subregion and each subregion contains points of R.
We refer to these square subregions simply as squares, always keeping
in mind that by a square we mean a boundary together with the points
interior to it. If a particular square contains points that are not in R, we
remove those points and call what remains a partial square. We thus
cover the region R with a finite number of squares and partial squares
(Fig. 55), and our proof of the following lemma starts with this
covering.

Lemma. Let f be analytic throughout a closed region R
consisting of the points interior to a positively oriented simple
closed contour C together with the points on C itself. For any
positive number ¢, the region R can be covered with a finite number

of squares and partial squares, indexed by j 1, 2,..., n, such that in
each one there is a fixed point z; for which the inequality
51 .'_f 2 —1(@=) _ fj(z )< e

Z—1Zj J '

is satisfied by all points other than z; in that square or partial square.
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is satisfied by all points other than z; in that square or partial square.

a, S

C/' #

T
\

0 X FIGURE 55
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sec. 47 Proof of the Theorem
153

To start the proof, we consider the possibility that in the covering
constructed just prior to the statement of the lemma, there is some
square or partial square in which no point z; exists such that inequality
(1) holds for all other points z in it. If that subregion is a square,
we construct four smaller squares by drawing line segments joining the
midpoints of its opposite sides (Fig. 55). If the subregion is a
partial square, we treat the whole square in the same manner and then
let the portions that lie outside of R be discarded. If in any one of these
smaller subre- gions, no point z; exists such that inequality (1) holds
for all other points z in it, we construct still smaller squares and partial
squares, etc. When this is done to each of the original subregions that
requires it, we find that after a finite number of steps, the region R
can be covered with a finite number of squares and partial squares
such that the lemma is true.

To verify this, we suppose that the needed points z; do not exist
after subdivid- ing one of the original subregions a finite number of
times and reach a contradiction. We let oo denote that subregion if it is a
square; if it is a partial square, we let oo denote the entire square of
which it is a part. After we subdivide oo, at least one of the four
smaller squares, denoted by o1, must contain points of R but no
appropriate point z. We then subdivide o1 and continue in this

manner. It may be that after a

square ok-1 (k= 1, 2,.. .) has been subdivided, more than one of the four
smaller squares constructed from it can be chosen. To make a
specific choice, we take ox

to be the one lowest and then furthest to the left.
In view of the manner in which the nested infinite sequence

(2) 00,01,02,.. ., Ok—1, Ok, ...

of squares is constructed, it is easily shown (Exercise 9, Sec. 49) that
there is a point zo common to each ox; also, each of these squares
contains points of R other than Rossibly Zo. Recall how the sizes of the
squares in the sequencé ‘are' decreasing, ar|1d_ nqte that any o
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neighborhood z zo < ¢ of zo contains such squares when their diagonals
have lengths less than 6. Every ¢ neighborhood z zo < ¢ therefore con-
tains points of R distinct from zo, and this means that zo is an
accumulation point of
R. Since the region R is a closed set, it follows that zo is a point in R.
(See Sec. 11.) Now the function f is analytic throughout R and, in
particular, at zo. Conse-
quently, f J(Zt) exists, According to the definition of derivative (Sec.
0

19 there is, for each positive number ¢, a 6 neighborhood |z — zo| <
0 such that the inequality _
@) - T@) _ fl(z)) <e
Z—70 '

is satisfied by all points distinct from zo in that neighborhood. But the
heighborhood z 2o < & contains a square ox when the integer K is
large enough that the length of a diagonal of that square is less than
(Fig. 56). Consequently, zo serves as the point z; in inequality (1) for
the subregion consisting of the square ok or a part of ok. Contrary
to the way in which the sequence (2) was formed, then, it is not
necessary to subdivide ox. We thus arrive at a contradiction, and the
proof of the lemma is complete.
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y
R
<

0 X FIGURE 56

Continuing with a function ¥ which is analytic throughout a
region R consisting of a positively oriented simple closed contour C
and points interior to it, we are now ready to prove the Cauchy-—
Goursat theorem, namely that

(€)) T (2) dz =0.
C
Given an arbitrary positive number &, we consider the covering of R in
the

statement of the lemma. We then define on the j th square or partial
square a function

0j(z) whose values are dj(zj) = 0, where z;j is the fixed point in
inequality (1), and

(4) 0.) =F @ ~T(@) fiz) whenz/=z .
] — j j
Z

According to inequality

1), (5
0O 19i(2)| < &
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at all points z in the subregion on which 6j(z) is defined. Also, the function
3j(2)

Is continuous throughout the subregion since T (z) is continuous there
and

50. CAUCHY INTEGRAL FORMULA

Another fundamental result will now be established.

Theorem.Let T be analytic everywhere inside and on a simple closed

contour
C, taken in the positive sense. If zo is any point interior to C, then
J
£ (5 1 T(2) dz
Z ) . .
(1 (0) ZMCZ—ZO

)

Formula (1) is called the Cauchy integral formula. It tells us that
if a function f is to be analytic within and on a simple closed
contour C, then the values of f interior to C are completely
determined by the values of ¥ on C.

When the Cauchy integral formula is written as

f(z)dz .
(2 —5— _ 27if (z0),
) c 7

it can be used to evaluate certain integrals along simple closed contours.

EXAMPLE. Let C be the positively oriented circle |z|= 2. Since the func-

tio Z

n =

o =9 22 .

is analytic within and on C and since the peint zo i is interior to C,
formula dz = 2zi

(2) tells us that 2= D)

We begin the proof of the theorem by letting C, denote a
positivety driented circle z zo p, where p is small enough that C, is
interior to C (see Fig. 66). Since the quotient T (2)/(z zo) is
analytic between and on the contours C, and C, it follows from the
principle of deformation of paths (Sec. 49) that
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0 ¥ FIGURE 66

Now the fact that f is analytic, and therefore continuous, at zo
ensures that corresponding to each positive number &, however
small, there is a positive number 6 such that

(5) If (2) — T (20)] < & whenever |z — zo| < 4.

Let the radius p of the circle C, be smaller than the number ¢ in the
second of these ineéqualities. Since z zo p <6 whenz is on C,,
it follows that the first of inequalities (5) holds when z is such a
point; and the theorem in Sec. 43, giving upper bounds for the moduli
of contour integrals.

POSSIBLE QUESTION
2 MARK QUESTION

1. State the Cauchy Integral Formula.
2. Write the equation of logarithmic function.

3. Write the equation of Cauchy—Goursat theorem
4. Write the Cauchy integral formula.
5. State Cauchy—Goursat theorem.
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8 MARK QUESTION

1.
2.

PO®NO OIS W

Give any two examples of analytic function.

Let f be analytic everywhere inside and on a simple closed contour C, taken
in the positive sense. If z, is any point interior to C, then prove that f (zo) =

1 /2ni( L (Z)dz).

zZ—2z,

Explain about Exponential Function.

Give an example of Contour Integrals.
Describe the logarithmic function.

State and Prove the Laurent series.

Explain the Trigonometric Function.

State and Prove Cauchy—Goursat theorem.
Discribe the Derivatives of Functions w(t).

. If a function f is analytic at all points interior to and on a simple closed

contour C,then prove that [ f(z) dz = 0.

Prepared by K.Aarthiya, Asst Prof, Department of Mathematics, KAHE = Page 51/51



Karpagam Academy of Higher Eduacation
Coimbatore - 21.

Department of Mathematics
Metric Spaces and Complex Analysis (17TMMUG02 A)

A function fis
everywhere in that set.

A function f(z)=1/z is
the finite plane

at each non zero point in

A function f(z)=[z|*2 is
the finite plane

at each non zero point in

If two function are analytic in a domain D then their sum is
inD

UNIT IV

OPTION1 OPTION2 OPTION3

in an open set if it has a derivative Analytic

Derivative

Derivative

Derivative

If two function are analytic in a domain D then their product is Derivative

inD
The quotient P(z)/Q(z) of two polynomials is analytic in any
domain throughout which Q(z) is
didz{g[f(2)]}=_____
If f' (z) = 0 everywhere in a domain D, then f(z) must to be
throughout D.

Iff'(z) = everywhere in a domain D, then f(z)
must to be constant throughout D.

The conjugate of u+iv is

The conjugate of u-iv is

The conjugate of C-R equation is

The exponential function is writing by

dldz[erz]=___
The value of e*z is___ for any complex number z.
lerzl=_____

enix=

2isinx=___

2icosx=___

d/dz[eriz]=

d/dz[sin z]=

Equal to O

Derivative

Differentiati
on

Differentiati
on

Differentiati
on

Differentiati
on

Not equal to
0

9 Tf@11'@) 9]

Analytic

0

Equal to 0

Cos X + isin
X

(enix)- (en-
iX)
(enix )- (en-
ix)

eNiz

sinz

Derivative

Ux=Vy,Uy=-
VX

enx

Not equal to
0

enx

COS X - isin X

(enix )+( en-
iX)
(enix )+( en-
iX)

e’z

COS z

Differentiati
on

Not analytic
Not analytic
Not analytic
Not analytic
Equal to 1
f2)f'(2)
Differentiati
on

z

u-iv

u+iv
Ux=Vy,Uy=
VX

eny

enz

Equal to 1
ery

€os X + sin x
(eMix )-

(e"ix)

(i )-
("ix)

iehiz

-sinz

OPTION 4

Not analytic

Analytic

Analytic

Analytic

Analytic

Not equal to
1

9'f'(2)
Constant
infiity

V-iu

v+iu

Ux=-
Vy,Uy=-Vx
ez

infinity

Not equal to
1

enz

cos x / isin X
(e"x)- (e"-
X)

(e)- (e
X)

enz

-C0S z

ANSWER

Analytic

Analytic

Not analytic

Analytic

Analytic

Not equal to
0

9 Tf@] f'(2)

Constant

u-iv

u+iv

Ux=Vy,Uy=-
VX

ez

enz

Not equal to
0

enx

COS X + isin X

(enix)- (en-
iX)
(enix )+ (en-
ix)

ieNiz

COS Z



d/dz[cos z]= .

sin®2 [z] + cos 2 [z] =

sin (iy)= .

cos (iy)= .

d/dz[sec z]= .

The derivative of complex valued function w of a real

varriable t is written as w(t)=

The derivative of the function w'(t) is defined as

d/dz[tan z]= .

cos z/sin z=

sin z/cos z=

1/cosz =

1/sin z=

If z=n(22/7) where n=...-2,-1,0,1,2.... Then sin z=

An arc consisting of a finite number of smooth arcs joined ene

to end is called

An arc consisting of a finite number of joined
ene to end is called contour

If the equation z=z(t) is represent a contour, z(t) is

If the equation z=z(t) is represent a , Z(t) is
continuous

When only the initial and final values of z(t) are the ,
a contour C is called a simple closed contour.

When only the initial and final values of z(t) are the same, a
contour C is called a contour.

(eMix) - (eM-ix)=

(erix) + (eM-ix)=

sin(iy)=

cos(iy)=

A function f is analytic in an open set if it has a
everywhere in that set.

sinz

sinhy

sinhy

Sec z

u(t)+v(t)

UV ()

sec z

tan z

tan z

tan z

tanz

Smooth arc

Smooth arc

Continuous

Smooth arc

Same

Open

2i sin x

2i sin x

i sinhy

i sinhy

Analytic

COS z

i sinhy

i sinhy

tan z

u(t)+iv(t)

u()+Hv ()

sec2 z

cotz

cotz

cotz

cotz

Arcs

Arcs

Discontinuou

S

Arcs

Diffeent
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sin X

sin x

sinhy

sinhy

Derivative

-sinz

sinz+cosz sinz-cosz

coshy

coshy

secztanz

u(t)-v(t)

u'(t)-v'(t)

cotz
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sec z
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sec z

-1

Curve

Curve
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i coshy
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i coshy

sec2z
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coshy
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The quotient P(z)/Q(z) of two polynomials is inany Analytic Derivative  Differentiati Not analytic Analytic
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Liouville’s theorem and the fundamental theorem of algebra. Convergence of
sequences and series, Taylor series and its examples - Laurent series and its
examples, absolute and uniform convergence of power. series.

LIOUVILLE’S THEOREM AND THE FUNDAMENTAL
THEOREM OF ALGEBRA

Cauchy’s inequality can be used to show that no entire function except
a constant is bounded in the complex plane. Our first theorem
here,which is known as Liouville’s theorem, states this result in a
somewhat different way.

Theorem 1. If a function T is entire and bounded in the
complex plane, then
T (z) is constant througout the plane.

To start the proof, we assume. that ¥ is as stated and note that
since~F is entire, Thearem 3 in Sec. 52 can be applied with any
choice of zo and R. In particular,Cauchy’s inequality (2) in that
theorem tells us that when.n =1,

. Mg
(1) [F(z0) <
Moreover; the boundedness condition on T tells us thata
nonnegative constantM
exists such that.£/(z) M for all z ; and, because the constant Mg in
inequality
(1) is always less than or equal to M, it follows that

©) i) <,

where R can be arbitrarily large. Now the number M in inequality (2)
is independent of the value of R that is taken. Hence that inequality
holds for arbitrarily large values of R only if ¥ !(zy) 0. Since the
choice of zo was arbitrary, this means that
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fiz) 0 everywhere inthe complex plane. Consequently, fisa
constant function, ]
according to the theorem in Sec. 24.

The following theorem, called the fundamental theorem of
algebra, follows readily from Liouville’s theorem.

Theorem 2. Any polynomial
P(z) =ag+aiz +az° +-+ +anz" 4.(an /= 0)
of degree n (n > 1) has at least one zero. That is, there exists at least one

point zg
such that P (zp) = 0.

The proof here is by contradiction. Suppose that P (z) is not zero
for any value of z. Then the reciprocal

is clearly entire, and it'is alse bounded'in the complex plane.

To show that its is bounded; we first write

Next, we observe that a sufficiently large positive" number R can
be found such that the modulus of each of the quotients in
expression (3) is less than the number - a,/(2n) when z > R. The
generalized triangle inequality (10), Sec. 4, which applies to n
complex numbers, thus.shows that

|an

lw| <™ whenever|z| > R.

Consequent
ly,

lantwi= [l - wl >

|an|7 whenever|z| > R.
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This inequality and expression (4) enable us to write

5) [P (2)I=la_+wlz|" > IanlIZIn > anlgn whenever | > R.
n n — —
2 2

Evidently, then,

So T is bounded in the region exterior to the disk z R. But f is
continuous in that closed disk, and this means that £ is bounded
there too (Sec. 18). Hence T is’bounded in the entire plane:

It now follows from Liouville’s theorem'that ¥ (z), and consequently
P (2), is constant. But P (z) is not constant, and we have reached a
contradiction.

The fundamental theorem tells us that any polynomial P (z) of>
degree n(n) can be expressed as a product of linear factors:

(6) P@)=¢cz-21)0(z-2) - (z—zy),

where ¢ and z,=k 1, 2,..., n).are complex constants. More precisely,
the theorem ensures that P (z) has a zero z;. Then, according to
Exercise 9, Sec. 54,

P (z) =(z — 21)Qu(2),

where Qi(z) 1s.a polynomial of -degree n 1. The same argument,
applied to Q1(z), reveals that there is a number z, such that

P (2) = (z — z1)(z — 22)Q2(2),

where Q(z) is a polynomial of degree n 2. Continuing in this way, we
arrive at expression (6). Some of the constants zy in expression (6) may,
of course, appear more than once, and it is clear that P (z) can have no
more than n distinct zeros.

175
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MAXIMUM MODULUS PRINCIPLE

In this section, we derive an important result involving maximum
values of the moduli of analytic functions. We begin with a needed
lemma.

Lemma. Supposethat < F(z)| f(zo) ateach pointzinsome
heighborhood z zg < £ in which F is analytic. Then f () has the
constant value T (zo) through- out that neighberhood.

To prove this, we assume that F satisfies the stated conditions and
let z; be any point other than z, in the given neighboerhood. We then let
p be the distance between z; and” Zg. If C, denotés” the positively
oriented circle z zp p, centered at zo and passing through z; (Fig.
70), the Cauchy integral formula tells usthat

the parametric representation
z=2zp+pe? (0<0<2m)

for C, enables us to write equation (1) as we note from expression (2)
that when a function is analytic within and on a given circle, its value at
the center is the arithmetic mean of its values on the circle. This result is
called Gauss’s mean value theorem.

0 X FIGURE 70

From equation we obtain the inequality

(4) [F(zo+p€ )<[F(z0)] (0<6 <2m),
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This lemma can be used to prove the following theorem, which is
known as the maximum modulus principle.

Theorem. If a function f is analytic and not constant in a given
domain D, then [F (z)| has no maximum value in D. That is, there is
no point z, in the domain such that [¥ (z)| < [F (zo)| for all points z in
it.

Given that T is analytic in D, we shall prove the theorem by
assuming that ¥ (z) does have a maximum value at some point zg
in D and then showing that ¥ (z) must be‘constant throughout D.

The general approach here is similar'to that taken in the proof of
the lemma in Sec. 27. We draw a pelygonal line L lying in D ‘and
extending from z, to any other point P in D. Also, d represents the
shortest distance from points on L to the boundary of D. When D is
the entire plane, d may have any positive wvalue. Next, we observe
that there is a finite sequence of points

Z0, Z1, Z2, -2y Zn—1, Zn
along L such that z, coincides with the point P and
|zZk =z | <d o (k=1,2,...,n).
In forming a finite sequence of neighborhoods (Fig. 71)
No, N1, Na,..., N1, Nj

where each Ny has center zx and radius d, we see that T is analytic
in each of these neighborhoods, which are all contained in D, and
that the center of each neighborhood Ni (k = 1, 2,..., n) lies in the
neighborhood Ny-;.

N " FIGURE 71
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Sinci f(F) was assumed to have a maximum value in D at
Zo, it also has a maximum value in Ng at that point. Hence,
according to the preceding lemma, T (z) has the constant value
(zo) througholut No. In particular, T(z1) F(zo). This means that
(z) T (zy) for each point z in N7 ; and the lemma can be applied
again, this time telling us that

f(2) =T (z1) = T(20)

when z is in Nj. Since z; is in N1, then=F (z) | | <% (20).
Hence f(2) T (22)
when z is in N3 ; and the lemma is once again applicable, showing that

f(2) =T (22) =T (20)

when z is in N,. Continuing in this manner, we eventually.reach the
neighborhood
N, and arrive at the fact that ¥ (z,) T (z0).

Recalling that z, coincides with the point P, which is any point
other than z, in D, we.may conclude that  (z) ¥ (zo) for every point
z in D. Inasmuch as ¥ (z) has now been’shown to be constant
throughout D, the theerem is proved.

If a function F that is.analytic at-each point in the interior of a
closed bounded region R is also continuous throughout R, then the
modulus f (z) has a maximum value somewhere in R (Sec. 18). That
1S, there exists a nonnegative constant M such that [f (z)| <M for all
points z in.R, and equality holds for at least one such point.

If £ is a constant function, (then f (z) M for all z in R. If,
however, f (2).is not constant, then, ac¢ordifg to the theorem
just proved, f(z) M forany pointzin the interior of R. We thus
arrive at an important corollary.

Corollary. Suppose that a function f is continuous on a closed
bounded region R and that it is analytic and not constant in the
interior! of R. Then the maximum value of (2) in R, which is
always reached, occurs somewhere on the boundary of R and never
in the interior.
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EXAMPLE. Let R denote the rectangularsegion 0 x <0y 1.
The corollary tells us that the modulus of the erttire function f (z)
sin z has a maximum value in R that occurs somewhere on the
boundary of R and not in its interior. This can be verified directly
by writing

F(2)|=  sin’x +sinh’y

and noting that the term §in2 X is greatest whenx = 7/2 and that the
increasing function sinh®y is greatest when y = 1. Thus the
maximum value of |F (Z)Yln_ R occurs at'the boundary point z =
(m/2, 1) and at no other point in R (Fig. 72).

(/2.1

0 T * FIGURE 72

When the function £ in the corollary is wsitten £+(z) u(x, y)
iv(X, y), the component function u(X, y).also has a maximum value
in R which is assumed onthe boundary of R and never in the
interiof, where it is harmonic (Sec. 26). his is because the
composite function g(z) exp[f(z)].is continuous in R and analytic
and not constant in the interior. Hence its modulus g(z) exp[u(X, y)],
which is continuous in R, must assume its maximum value in R on
the boundary. In view of the increasing nature of the exponential
function, it follows. that the maximum value of u(x, y) also occurs
on the boundary.

Properties of minimum values of |¥ (z)| and u(X, y) are treated in the

exercises.
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CONVERGENCE OF SEQUENCES
An infinite sequence

(D Z1, 22,120y

of complex numbers has a limit z if, for each positive number g, there
exists a positive integer ng such that

(2) |zn — z|< & whenevern >nq.

Geometrically, this means that for sufficiently large values of n, the
points z, lie in any given € neighborhood of z (Fig. 73). Since we can
choose ¢ as small as we please,

it follows that the points z, become arbitrarily close to. z as their
subscripts increase. Note that the value of ng that is needed will, in
general, depend on the value ofe.

The sequence (1) can have at most one limit. That is, a limit z is
unique if it exists (Exercise 5, Sec. 56). When that limit exists, the
sequence is said to converge to z ; and we write

lim z,_ z.
n—oo

If the sequence has no limit; it diverges.

Theorem. Suppose that z, =X, +iy, (N =1,2,...) and z =X +1y.
Then
@ g o2
!;and only lim X,=x and limy,=y.
[
()
n—oo n—oo

To prove this theorem, we first assume that conditions (5) hold and
obtain condition (4) from it. According to conditions (5), there exist, for
each positive number &, positive integers n; and n, such that
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Hence if ng is the larger of the two integers n; and n,,
€ €

IXn —X| < 2_ and |y,—y|< 2‘ whenevern > n.

Sinc . . .
e |Xatiyn) = (X +iy)[=]|(Xa = X) +i(Yn —y)I< [Xa = X[+ [yn Y],

[Xn = X|< [(Xn = X) +i(yn = ¥)[= [(Xn iYn) — (X + 1y)

Vo = YIS [(Xn = X) +i(yn — Y)FAEn + iyn) = (x +iy)];
and this means that

IXn —X|<e and |y, —¥y|<e whenevern > n.

then

’ : € € .

Conversely, if we start with.condition (4), we know that for each
positive number ¢, there exists a positive integer ng.such that

|(Xn +1yn) — (X +1y)| < & whenevern > np.

That is, conditions (5).are satisfied.
Note how the theorem enables us to write

lim (Xp +1yp)=lim X, # i lim y,
n—>ao0 n—>aoco n—>oo

whenever we know that both limits onthe right exist or that the one
on the left exists.

CONVERGENCE OF SERIES

An infinite series
©

(1) Zn=721+Zp+ -+ Zpyte
n=1

of complex numbers converges to the sum S if the sequence
N

(2) Sy = In=21t%2Z2o+:--+2ZN (N:1,2,)
n=1
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of partial sums converges to S; we then write

z,=S.
n=1
Note that since a sequence can have at most one limit, a series can
have at most one sum. When a series does not converge, we say
that it diverges.

Theorem.  Suppose that z, =x, +iy, (n=1,2,.. .)and S = X +iY.
Then

This theorem tells us, of course,that one can write
whenever it is known that the two series on the right converge.or

that the one on the left does.
To prove the theorem, we first writethe partial sums (2) as

(5) Sn=XnHiYy,
(6) AmSy =S ;
—
0.8)

and, in view of relation (5) and the theorem on sequences in Sec. 55,
limit (6) holds if and only if

lim Xn X and Yy =V.
(7) N lim ™

N
— N — oo
o0
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Limits (7) therefore imply statement (3), and conversely. Since Xy
and Yy are the partial sums of the series (4), the theorem here is
proved.

This theorem can be useful in showing thata number of familiar
properties of series in calculus carry over to series whose terms are
complex numbers. To illustrate how this is done, we include here two
such properties and present them  as corollaries.

Corollary 1. If a series of complex:numbers_converges, the nth
term converges to zero as n tends to infinity.

Assuming that series (1) converges, we know from the theorem that
if
Zn=Xp+ iyp (n=1, 2,.. .),
then each of the series (8)

converges. We know, moreover, from calculus that the nth term of a
convergent series of real'numbers approaches zero as n tends to infinity.

limz,=limxy+ilimy,=0+0-1=0;
n—oo n— n—oo
o0
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and the proof of Corollary 1 is complete.

It follows from this corollary that the terms of convergent series are
bounded. That is, when series (1) converges, there exists a positive
todstant M such that z, M for each positive integer n. (See Exercise
9)

For another important property of series of complex numbers that
follows from a corresponding property in calculus, series (1) is said to
be absolutely convergent if the series

Corollary 2. The absolute convergence of a series of complex
numbers implies the convergence of that. series.

To prove Corollary 2, weassume that series.(1) converges absolutely.
Since

Mol < xZ w2 andlyds X2 +y2,
we-know. from the comparison test in calculus that the two series

must converge. Moreover, since the absolute convergence of a series of
real numbers implies the convergence of the series itself, it follows that
the series (8) both converge. In view of the theorem in this section,
then, series (1) converges. This finishes the proof of Corollary 2.

In establishing the fact that the sum of a series is a given number S, it
is often convenient to define the remainder py after N terms, using the
partial sums (2) :

(9) PN = S — SN .
Thus S= Sy + pn ; and, singe Sy | S |pn 01, we see that a series
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converges to a number S if and only if the sequence of remainders
tends to zero.

make considerable use of this observation in our treatment of power
series. They are series of the form

e0]

an(z — 7o) = ap + a1z — z0) + Ax(z — Zo) +.- - + an(z — z0) + -,
n=0
where z, and the coefficients a, are complex constants and z may be
any point in a stated region containing zp. In such series, involving a
variable z, we shall denote sums, <partial sums, .and remainders by
S(2), Sn(2), and pn(z), respectively.

TAYLOR SERIES

We turn now to Taylor’s theorem, which is one of the most important
results of the chapter.

Theorem. Suppose that.a function ¥ isanalytic througheouta disk
Z 2o < Rg, centered at zo and with radius'Ro (Fig. 74). Then T (z) has
the power series represen-_ tation

) f(2)= az—20) (Iz—zl<Ro),
n=0

\évher f(n)(ZO)

(2)
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M FIGURE 74

This is the expansion of T (z) into a Taylor series about the
point zo. It is the familiar Taylor series from calculus, adapted to
functions of a complex variable. With the agreement that

fO(z0)=F (z0) ~ and
0r=1,
series (1) can, of course, be written

When it is known that ¥ is analytic everywhere inside a circle
centered at < zo, convergence of its Taylor series about z; to T (2)
for each point z within that circle Is ensured; no test for the
convergence of the series IS even required. In fact, according to
Taylor’s theorem, the series converges to T (z) within the circle
about zg whose radius is the distance from z, to the nearest point z;
at which ¥ fails to besanalytic. In Sec. 65, we shall find that this is
actually the largest circle centered at z, such that the series
converges to T(z) for all z interior to it.

In the following section, we shall first prove Taylor’s theerem
when zo 0, in which case f is assumed to be analytic throughout a
disk z < Rp and series (1) becomes-a Maclaurin series:

The proof when 1z, is arbitrary will follow as an immediate
consequence. A reader who wishes to accept the proof of Taylor’s
theorem can easily skip to the examples in Sec. 59.
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PROOF OF TAYLOR’S THEOREM

To begin the derivation of representation (4), Sec. 57,|=we write
z r and let Cy denote and positiveéty oriented circle z ro, where r <
ro < Ro (see Fig. 75). Since T is analytic inside and on the circle Cy
and since the point z is interior to

FIGURE 75

Co, the Cauchy integral formula
To accomplish this, we recall that. z r and that C, has radius ro,
where ro > r.Then, if s is a point.on Cg; we Tan see that

s = zI=ls|- [zll = o 1.

Consequently, if M denotes the maximum value of [F (s)| on C,,

Inasmuch as (r/ro) <1, limit (7) clearly holds.

To verify the theorem when the disk of radius Ry is centered at an
arbitrary point zp, we suppose that  is analytic when |z — zg| < Ry
and note that the composite function T (z + zp) must be analytic
when |(z + zo) — zg['< Rq. This last inequality is, of course, just |z| <
Ro ; and, if we write g(z) = T (z + zp), the analyticity of g in the disk
|z& < Ry ensures the existence of a Maclaurin series representation:

2001 (12| <Ry).
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After replacing z by z Zo in this equation and its condition of
validity, we have the desired Taylor series expansion (1) in Sec. 57.

EXAMPLES

for all points z interior to some circle centered at zo, then the power
series here must be the Taylor series for ¥ about z,, regardless of
how those constants arise. This observation oftenallows us to find the
coefficients a,in Taylor series in more efficient ways than by
appealing directly to the formula a,f ™(zg)/n! in Taylor’s theorem.
In the following examples, we use< the formula< in“ Taylor’s
theorem to find the Maclaurin series.expansions of some fairly simple
functions, and we emphasize the use of these expansions in finding
other representations. In our examples, we shall freely use expected
properties of convergent series, such as those verified in Exercises 7
and 8, Sec. 56.

EXAMPLE 1. Since the function F(z) = e* is entire, it has a
l\/laclaurm series representatlon which is valid for all z. Here f
)(z)=e*(n=0,1,2,.

LAURENT SERIES

If a function F fails to be analytic at a point zo, one cannot apply
Taylor’s theorem at that peint. It is often possible, however, to find
a series representation for ¥ (z) involving both positive and negative
powers of z zg. (See Example 5, Sec. 59, and also Exercises 11, 12,
and 13" for that section.) We now present the theory of uch
representations, and we begin with Laurent’s theorem.

Theorem. Suppose that a function f is analytic throughout an
annulardomain R; < z zo < R, , centered at zo , and let C denote any
positively oriented simple closed contour around zp and lying in that
domain (Fig. 76). Then, at each point in the domain, ¥ (z) has the
series representation
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S ____FIGURE 76

Note how replacing n-by n in the second series in
representation (1) enables us to write that series as In either one of the
forms (1) and (4), the representation of £(z) is called.a Laurent

series.
Observe that the integrand in expression (3) can be written f
(2)(zzo)" . Thus it is clearthat when F is actually analytic throughout
the disk z-zp < Ry, this integrand is too. Hence all of the coefficients b,
are zerojand, because

If, however, T fails to be analytic at zo but is otherwise analytic
insthel disk z 7o <Ry, the radius Ry can be chosen arbitrarily
small. Representation (1) is then vdlrd in tr]e punctured disk 0 < z zg
< Rz, Similarly, if £ is analytic at each' point in the finite plane
exterior to the circle .z .zo Ry, the condition of validity ig Rys< Z
Zo < . Note that if ¥ is analytic everywhere in the finite plane
except at zp, series (1) is valid at each point of analyticity, or when
0<zz9<.

We shall prove Laurent’s theorem first when zg 0, which means
that the annulus is centered at the origin. The verification of the
theorem when z is arbitrary will follow readily; and, as was the case
with Taylor’s theorem, a reader can skip the entire proof without
difficulty.

PROOF OF LAURENT’S THEOREM
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We start the proof by forming a closed annular region ry < |z|< 1, that is
contained in the domain R; < |ZJ < R, and whose interior contains both
the point z and the contour C (Fig. 77). We let C; and C, denote the
circles |z|= ry and |z|= 12,

FIGURE 77

respectively, and we assign.them a positive orientation. Observe that
T is analytic on C; and Cy, as well as in the annular domain between
them.

Next, we construct a positively oriented circle y with center at z and
small enough to be contained in the interior of the anhlifar region r;
Z ry.as shown in Fig. 77. It'then follows from the adaptation of the
Cauchy—Goursat theorem to integrals of analytic functions around
oriented boundaries of multiply.connected domains (Sec. 49) that

But, according to the Cauchy integral formula, the value of the
third integral hereis 2mif (z). Hence

ABSOLUTE AND UNIFORM CONVERGENCE OF
POWER SERIES

This section and the three following it are devoted mainly to various
properties of power series. A reader who wishes to simply accept the
theorems and the corollary in these sections can easily skip the proofs
in order to reach more quickly.We recall from thata series of complex
numbers converges absolutely if the series of absolute values of those
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numbers converges. The following theorem concerns the absolute
convergence of power series.

POSSIBLE QUESTIONS

2 MARK QUESTIONS

no

>

10.

1. State the Liouville’s theorem.

2. State the absolute convergence of power series.

3. State the Laurent series.

4. Write the any two equations of Exponential Function.
5. Write the equation of Taylor series.

8 MARK QUESTIONS
If a function f is entire and bounded‘in the complex plane, then prove that f
(2) is constant throughout the plane.
State and Prove the absolute convergence of power series.
If a series of complex numbers converges, then n th term converges to zero

as n tends to infinity.

State and prove the Liouville’s theorem.
Prove that any polynomial P(z) = ap + a; z + &, z, +* -+a, z, (&, #0) of
degree n (n > 1) has at least one zero. That is, there exists at least one point
Zosuch that P(z,) = 0.
State andProve the Taylor series.
Suppose that z, =x, +iy, (n=1,2,...)and z=x+1iy. Thenlimz, =z as
n—co if and only if lim x, =X as n—oo and lim y, =y as n—oo.
Suppose that a function f is analytic throughout a disk |z — z,| < R,,centered
at z, and with radius R,. Then prove that f (z) has the power series
representation

T(2)=Yr=0a,(z—20)" (z- 2 <Ry),
where a, =f (n)(z0)/n! (=0, 1, 2, ...).That is, the series is converges to f
(z) when z lies in the stated open disk.
Suppose that z, =x, +iy,(n=1, 2,...)and S= X +iY. Then prove that
Yme1Zy, = Sifandonlyif Y01 x, =xand YoV, =Y
Prove that the absolute convergence of a series of complex numbers
implies the convergence of that series.
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UNIT V

OPTION 1

If a function f is entire and bounded in the complex plan, then Constant

f(z) is throughtout the plan

If a function f is entire and in the complex plan, Closed
then f(z) is constant throughtout the plan

Any polynimial P(z) of degree n has at least zero 1

For each positive number epsilon , therre exists a positive Limit
integer m such that |zn-z|< epsilon whenever n>m. Here z is

Anllad B ratiatd

When that limit exists, the sequence is called Convergent
If the segence has no limit, its called Convergent
If the segence has limit, its called divergent One

If the segence has limit, its called Convergent One

The of the seqgence is called series Sum

If the n th trem of the serise is convergent to zero as n tends to  Convergent
infinity then the total series is

The absolute convergent of a series of complex numbers Convergent
implies the of the serries.

Suppose that zn= xn + | yn and S=X +iY. Then 0
z1+22+723+....= if x1+x2+x3+....=X and

yl+y2+y3+...=Y

A sequence of points in X is a function f from into X. R

Suppose that zn=Xn + | yn and S=X +iY. Then 0
z1+72+23+.... =S if x1+x2+x3+...= and

yl+y2+y3+...=Y

Suppose that zn=xn + | yn and S=X +iY. Then 0
z1+z2+23+....=S if x1+x2+x3+....= X and

The - convergent of a series of complex numbers Absolute
implies the convergent of the serries.

If a function f is entire and bounded in the complex plan, then Taylor

f(z) is constant throughtout the plan is called

Replaceing z by 1/z in e”z we have series. Taylor
z1,22,23,74,75,...... is called Sequence
z1+72+723+z4+.... Is called Sequence
lim (z+5)/(iz+3)= as z tends to -5. 0

OPTION 2

Continuous

Open

Avrbitrary

Diverrgent

Diverrgent

Two

Two

Product

Diverrgent

Diverrgent

X

X

Uniform

Liouville's

Liouville's

Series

Series

OPTION 3

Derivative

Bounded

Finite

Fixed

Continuous

Continuous

Finite

Finite

Subration

Continuous

Continuous

Non Uniform

Laurent

Laurent

Elements

Elements

OPTION4  ANSWER
Convergent  Constant
Convergent  Bounded
Infinit 1
Interior Limit
Discontinuous Convergent

Discontinuous Diverrgent

No No
No One
Divition Sum

Discontinuous Convergent

Discontinuous Convergent

Y S

z N

Y X

Y Y

Finite Absolute
Absolute Liouville's
Absolute Laurent
Points Sequence
Points Series
Infinity 0



If a function f is continuous throughout a region R that is
closed and , there exists a non negative real number
M such that [f(z)| less than or equal to M for all points z in R.

lim f(z)=f(zo) as z tends to zo is called

Asetis if it cointains all of its boundary points.

A point x is of the mapping T from X into X if Tx=x

|conjugates of z|=

(z+conjugate of z)/2 =

(z -conjugate of 2)/2i =

The conjugate of x+iy is

The conjugate of x-iy is

The conjugate of 2+i5 is

The conjugate of 2-i5 is

The conjugate of -4-i5 is

The conjugate of -4+i5 is

The conjugate of iz is

Open

Discontinuou

Open

Fixed point

Rez

Rez

-4

Bounded Continuous

Continuous  Limit

Not open Closed

Arbitary point  Interior point

Conjugate of |z

z

Imz z
Imz z

y Xty
y Xty
5 i5

5 i5
5 9

5 9

-i conjugate z  -iz

Convergent

Function

Not cloed

Limit point

X

2z

2z

X-iy

X+iy

2-iy

2+iy

-4+i5

-4-i5

Bounded

Continuous

Closed

Fixed point

4

Rez

Imz

X-ly

X+iy

2-iy

2+iy

-4+i5

-4-i5

-i conjugate z
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