19MMU504/19CHU503

3 PHYSICS – II

4H - 4C

Instruction Hours / week: L: 4 T: 0 P: 0

Marks: Internal: 40

External: 60 Total: 100

End Semester Exam: 3 Hours

Course Objectives:

- To give the basic knowledge on material properties.
- To acquire knowledge on magnetism and digital electronics.
- To educate and motivate the students in the field of science.

Course Outcomes:

Students can able to

- Explain how physics applies to phenomena in the world around them.
- Recognize how and when physics methods and principles can help address problems in their major and then apply those methods and principles to solve problems.

UNIT – I

Electrostatics: Coulombs law – electric field – Gauss's law and its applications – potential – potential due to various charge distribution. Parallel plate capacitors – dielectrics- current – galvanometer – voltmeter – ammeter- potentiometric measurements.

UNIT - II

Magnetism: Magnetic field – Biot Savart's law – B due to a solenoid – Amperes law – Faradays law of induction – Lenz's law. Magnetic properties of matter –Dia, para and ferro - Cycle of magnetization – Hysteresis – B-H curve – Applications of B-H curve.

UNIT - III

Modern Physics: Einstein's Photoelectric effect-characteristics of photoelectron –laws of photoelectric emission-Einstein's photo electric equations- Compton effect-matter waves-De-Broglie Hypothesis. Heisenberg's uncertainty principle-Schrödinger's equation- particle in a box.

UNIT-IV

Atomic and Nuclear Physics: Atom Models : Sommerfield's and Vector atom Models – Pauli's exclusion Principle – Various quantum numbers and quantization of orbits. Xrays : Continuous and Characteristic X-rays – Mosley's Law and importance – Bragg's Law.

Nuclear forces –characteristics - nuclear structure by liquid drop model – Binding energy – mass defect – particle accelerators – cyclotron and betatron – nuclear Fission and nuclear Fusion.

UNIT - V

Digital Electronics: Decimal – binary – octal and hexadecimal numbers– their representation, inter-conversion, addition and subtraction, negative numbers. Sum of products – product of sums – their conversion – Simplification of Boolean expressions - K-Map – min terms – max terms - (2, 3 and 4 variables). Basic logic gates – AND, OR, NOT, NAND, NOR and EXOR gates – NAND and NOR as universal building gates – Boolean Algebra – Laws of Boolean Algebra – De Morgan's Theorems – Their verifications using truth tables.

SUGGESTED READINGS

1. Narayanamurthi, Electricity and Magnetism, The National Publishing Co, First edition, 1988.

2. J. B. Rajam, Atomic Physics., S. Chand & Company Limited, New Delhi, First edition, 1990.

3. B. N. Srivastava, Basic Nuclear Physic, Pragati Prakashan, Meerut, 2005.

4. Albert Paul Malvino, Digital principles and Applications, McGraw-Hill International Editions, New York, 2002.

5. Digital fundamentals – by Floyd 8th edition Pearson education 2006

6. R. S. Sedha, A text book of Digital Electronics, S. Chand & Co, New Delhi, First edition ,2004.

(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)

Pollachi Main Road, Eachanari Post, Coimbatore - 641 021, Tamilnadu, India. Phone : 0422 - 2980011 - 14, 6471113, 14 | Fax : 0422 - 2980022-23 | Email : info@karpagam.com

UNIT – I

Electrostatics: Coulombs law – electric field – Gauss's law and its applications – potential – potential due to various charge distribution. Parallel plate capacitors – dielectrics- current – galvanometer – voltmeter – ammeter- potentiometric measurements.

Electrostatics:

Coulomb's law

The force between two charged bodies was studied by Coulomb in 1785.Coulomb's law states that the force of attraction or repulsion between two point charges is directly proportional to the product of the charges and inversely proportional to the square of the distance between them. The direction of forces is alongthe line joining the two point charges.

One Coulomb is defined as the quantity of charge, which when placed at a distance of 1 metre in air or vacuum from an equal and similar charge, experiences a repulsive force of 9×10^9 N. The forces exerted by charges on each other are equal in magnitude and opposite in direction.

Electric Field

Electric field due to a charge is the space around the test charge in which it experiences a force. The presence of an electric field around a charge cannot be detected unless another charge is brought towards it.

When a test charge q_o is placed near a charge q, which is the source of electric field, an electrostatic force F will act on the test charge.

Gauss's law

The law relates the flux through any closed surface and the netcharge enclosed within the surface. The law states that the total flux

1

of the electric field E over any closed surface is equal to ε_{o} times the net charge enclosed by the surface.

q

(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)

Pollachi Main Road, Eachanari Post, Coimbatore - 641 021, Tamilnadu, India. Phone : 0422 - 2980011 - 14, 6471113, 14 | Fax : 0422 - 2980022-23 | Email : info@karpagam.com

$\varphi = \varepsilon_{o}$

This closed imaginary surface is called Gaussian surface. Gauss's law tells us that the flux of E through a closed surface S depends only on the value of net charge inside the surface and not on the location of the charges. Charges outside the surface will not contribute to flux.

Applications of Gauss's Law

i) Field due to an infinite long straight charged wire

Consider an uniformly charged wire of infinite length having a constant linear charge density λ (charge per unit ^E length). Let P be a point at a distance r from the wire (Fig. 1.17) and E be the electric field at the point P. A cylinder of length *l*, radius r, closed at each end by plane caps normal to the axis is chosen as Gaussian surface. Consider a very *Fig 1.17 Infinitely long* small

area *ds* on the Gaussian surface. *straight charged wire* By symmetry, the magnitude of the electric field will be the same at all points on the curved surface of the cylinder and directed radially

outward. $_E$ and ds are along the same direction.

The electric flux (φ) through curved surface = $\int E ds \cos \theta$

 $\varphi \qquad \bigcirc \Box \sqsubseteq \mathsf{E} \, \mathsf{ds} \qquad [\because \theta = 0; \cos \theta = 1] \\ = \mathsf{E} \, (2\pi r l)$

(: The surface area of the curved part is 2π rl)

Since $_E$ and ds are right angles to each other, the electric flux through the plane caps = 0

 \therefore Total flux through the Gaussian surface, $\varphi = E$. (2 π rl)

The net charge enclosed by Gaussian surface is, $q = \lambda I$

∴ By Gauss's law,

 λl _ λ _

 $E(2\pi rl) = \varepsilon o \text{ or } E = 2\pi\varepsilon o r$

The direction of electric field E is radially outward, if line charge is positive and inward, if the line charge is negative.

Electric field due to an infinite charged plane sheet

Consider an infinite plane sheet of charge with surface charge density σ . Let P be a point at a distance *r* from the sheet (Fig. 1.18) and E be the electric field at P. Consider a Gaussian surface in the form of cylinder of cross- sectional area A and length 2*r* perpendicular to the sheet of charge. *Fig* 1.18 *Infinite plane sheet* By symmetry, the electric field is at right angles to the end caps and away from the plane. Its magnitude is the same at P and at the other cap at P'. Therefore, the total flux through the closed surface is given by

 $\varphi = \iiint E \, ds. \qquad \exists P + \iiint E \, ds. \qquad \exists P + \iiint E \, E \, ds. \qquad \exists P + \iiint E \, E \, ds. \qquad \exists P + \iiint E \, E \, ds. \qquad \exists P + \iiint E \, E \, ds. \qquad \exists P + \iiint E \, E \, ds. \qquad \exists P + \iiint E \, E \, ds. \qquad \exists P + \iiint E \, ds. \qquad \exists P + \boxtimes E \, ds. \quad ds. \quad$

Using Gauss's law,

 $\sigma A \ 2 \ \mathbf{E} \ \mathbf{A} = \varepsilon o$

```
σ
```

$:: \mathbf{E} = {}_{2\varepsilon o}$

Capacitance of a conductor

When a charge q is given to an isolated conductor, its potential will change. The change in potential depends on the size and shape of the conductor. The potential of a

conductor changes by V, due to the charge q given to the conductor. $q\alpha$ V or q = CV

i.e. C = q/V

Here C is called as capacitance of the conductor.

The capacitance of a conductor is defined as the ratio of the charge given to the conductor to the potential developed in the conductor.

The unit of capacitance is farad. A conductor has a capacitance of one farad, if a charge of 1 coulomb given to it, rises its potential by 1 volt.

The practical units of capacitance are μF and pF.

Principle of a capacitor

Consider an insulated conductor (Plate A) with a positive charge 'q' having potential V (Fig 1.22a). The capacitance of A is C = q/V. When another insulated metal plate B is brought near A, negative charges are induced on the side of B near A. An equal amount of positive charge is induced on the other side of B (Fig 1.22b). The negative charge in B decreases the potential of A. The positive charge in B increases the potential of A. But the negative charge on B is nearer to A than the positive charge on B. So the net effect is that, the potential of A decreases. Thus the capacitance of A is increased.

	If the plate B is		earthed,			positive	charge	s get
I	neutralized (Fig	1.22c).	Then t	he		potential	of	А
l	decreases	further.	Thus t	he		capacitanc	e of	A is
l	considerably		increased.					
l	The capacitance	:	depends	on the		geometry	of	the
l	conductors and	nature	of t	he		medium.	A cap	pacitor
l	is a device for	storing				electriccha	rges.	
l	А		A				В	А
l	В	1		I	1 =			
	++ -++ -							
	++ -++ -							
	++ -++ -							
	++ -++ -							
	++ -++ -							
	++ -++ -							
	++ -++ -							
	++ -++ -							
	++ -++ -							

Fig 1.22 Principle of capacitor

Capacitance of a parallel plate capacitor

The parallel plate capacitor consists of two parallel metal plates X and Y each of area A, separated by a distance *d*, having a surface charge

density σ (fig. 1.23). The medium

-q

+q is given to the plate X. It induces

a charge -q on the upper surface of ^{*Fig 1.23 Parallel plate capacitor* earthed plate Y. When the plates are very close to each other, the field is confined to the region between them. The electric lines of force starting from plate X and ending at the plate Y are parallel to each other and perpendicular to the plates.}

By the application of Gauss's law, electric field at a point between the two plates is,

σ $E = \varepsilon o$ Potential difference between the plates X and Y is 0 0 σ σd $\frac{q}{V} = \frac{-\sigma A}{\sigma d/\epsilon_o} = \frac{-\epsilon_o A}{d} \quad \overline{\epsilon_o} dr = \epsilon_o$ V = [-E dr = -]d $\epsilon_o A$ (C) of the parallel plate capacitor The capacitance q $C = [since, \sigma =]$ A C = *:*.

The capacitance is directly proportional to the area (A) of the plates and inversely proportional to their distance of separation (d).

Dielectrics and polarization

Dielectrics

A dielectric is an insulating material in which all the electrons are tightly bound to the nucleus of the atom. There are no free electrons to carry current. Ebonite, mica and oil are few examples of dielectrics. The electrons are not free to move under the influence of an external field.

(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)

Pollachi Main Road, Eachanari Post, Coimbatore - 641 021, Tamilnadu, India. Phone : 0422 - 2980011 - 14, 6471113, 14 | Fax : 0422 - 2980022-23 | Email : info@karpagam.com

UNIT – II

Magnetism: Magnetic field – Biot Savart's law – B due to a solenoid – Amperes law – Faradays law of induction – Lenz's law. Magnetic properties of matter –Dia, para and ferro - Cycle of magnetization – Hysteresis – B-H curve – Applications of B-H curve.

MAGNETISM

Magnetic field

A vector field in the neighbourhood of a magnet, electric current, or changing electric field, in which magnetic forces are observable. Magnetic fields such as that of Earth cause magnetic compass needles and other permanent magnets to line up in the direction of the field. Magnetic fields force moving electrically charged particles in a circular or helical path. This force—exerted on electric currents in wires in a magnetic field—underlies the operation of electric motors.

The Biot Savart Law states that it is a mathematical expression which illustrates the magnetic field produced by a stable electric current in the particular electromagnetism of physics. It tells the magnetic field toward the magnitude, length, direction, as well as closeness of the electric current. This law is basic to magnetostatics and plays an essential role related to the Coulomb's law in electrostatics. Whenever magneto statics do not apply, then this law must be changed by the equation of Jefimenko's. This law is applicable in the magnetostatic estimate, & is reliable by both Gauss's (magnetism) and Ampere's (circuital) law. The two physicists from French namely "Jean Baptiste Biot" & "Felix Savart" implemented an exact expression intended for magnetic flux density at a position close to a current carrying conductor in the year 1820. Screening a magnetic compass needle deflection, the two scientists completed that every current component estimates a magnetic field in the space (S).

What is Biot Savart Law?

A conductor which carries current (I) with the length (dl), is a basic magnetic field source. The power on one more related conductor can be expressed easily in terms of the magnetic field (dB)

direction of the length dl & on distance 'r' was primarily estimated by Biot & Savart.

Once from end to end observations as well as calculations they derived an expression, that includes the density of magnetic flux (dB), is directly proportional to the element length (dl), the flow of current (I), the sine of the angle θ among the flow of current direction and the vector combining a given position of the field, with the current component is inversely proportional to the square of the distance (r) of the specified point from the current element. This is the Biot Savart law statement.

Magnetic Field Element

Thus, dB is proportional to I dl $\sin\theta/r^2$ or, it can be written as dB = k Idl $\sin\theta/r^2$

 $dH = \mu 0 \mu r / 4\pi x \text{ Idl Sin } \theta / r^2$ dH = k x Idl Sin θ / r² (Where k= $\mu 0 \mu r/4\pi$) dH is proportional to Idl Sin θ/r^2 Here, k is a constant, thus the final Biot-Savart law expression is $dB = \mu 0 \mu r/4\pi x IdI \sin \theta / r^2$

Solenoids and Magnetic Fields

A solenoid is a long coil of wire wrapped in many turns. When a current passes through it, it creates a nearly uniform magnetic field inside.

Solenoids can convert electric current to mechanical action, and so are very commonly used as switches.

The magnetic field within a solenoid depends upon the current and density of turns.

In order to estimate roughly the force with which a solenoid pulls on ferromagnetic rods placed near it, one can use the change in magnetic field energy as the rod is inserted into the solenoid. The force is roughly

The energy density of the magnetic field depends on the strength of the field, squared, and also upon the magnetic permeability of the material it fills. Iron has a much, much larger permeability than a vacuum.

Even small solenoids can exert forces of a few newtons.

Ampere's Law

The magnetic field in space around an electric current is proportional to the electric current which serves as its source, just as the electric field in space is proportional to the charge which serves as its source. Ampere's Law states that for any closed loop path, the sum of the length elements times the magnetic field in the direction of the length element is equal to the permeability times the electric current enclosed in the loop.

Faraday's law of induction

In physics, a quantitative relationship between a changing magnetic field and the electric field created by the change, developed on the basis of experimental observations made in 1831 by the English scientist Michael Faraday.

The phenomenon called electromagnetic induction was first noticed and investigated by Faraday; the law of induction is its quantitative expression. Faraday discovered that, whenever the magnetic field about an electromagnet was made to grow and collapse by closing and opening the electric circuit of which it was a part, an electric current could be detected in a separate conductor nearby. Moving a permanent magnet into and out of a coil of wire also induced a current in the wire while the magnet was in motion. Moving a conductor near a stationary permanent magnet caused a current to flow in the wire, too, as long as it was moving. Faraday visualized a magnetic field as composed of many lines of induction, along which a small magnetic compass would point. The aggregate of the lines intersecting a given area is called the magnetic flux. The electrical effects were thus attributed by Faraday to a changing magnetic flux. Some years later the Scottish physicist James Clerk Maxwell proposed that the fundamental effect of changing magnetic flux was the production of an electric field, not only in a conductor (where it could drive an electric charge) but also in space even in the absence of electric charges. Maxwell formulated the mathematical expression relating the change in magnetic flux to the induced electromotive force (E, or emf). This relationship, known as Faraday's law of induction (to distinguish it from his laws of electrolysis), states that the magnitude of the emf induced in a circuit is proportional to the rate of change of the magnetic flux that cuts across the circuit. If the rate of change of magnetic flux is expressed in units of webers per second, the induced emf has units of volts. Faraday's law is one of the four Maxwell equations that define electromagnetic theory.

Lenz's law states that when an EMF is generated by a change in magnetic flux according to Faraday's Law, the polarity of the induced EMF is such, that it produces an induced current whose magnetic field opposes the initial changing magnetic field which produced it

The negative sign used in Faraday's law of electromagnetic induction, indicates that the induced EMF (ϵ) and the change in magnetic flux ($\delta \Phi_B$) have opposite signs. The formula for Lenz's law is shown below:

$$\epsilon = - \ N \frac{\partial \Phi_B}{\partial t}$$

(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)

Pollachi Main Road, Eachanari Post, Coimbatore - 641 021, Tamilnadu, India. Phone : 0422 - 2980011 - 14, 6471113, 14 | Fax : 0422 - 2980022-23 | Email : info@karpagam.com

Where: $\epsilon = \text{Induced emf}$ $\delta \Phi_B = \text{change in magnetic flux}$ N = No of turns in coil

Magnetic Properties Of Matter

All matter exhibits magnetic properties when placed in an external magnetic field. Even substances like copper and aluminum that are not normally thought of as having magnetic properties are affected by the presence of a magnetic field such as that produced by either pole of a bar magnet. Depending on whether there is an attraction or repulsion by the pole of a magnet, matter is classified as being **either paramagnetic or diamagnetic**, respectively. A few materials, notably iron, show a very large attraction toward the pole of a permanent bar magnet; materials of this kind are called **ferromagnetic**.

In 1845 Faraday became the first to classify substances as either diamagnetic or paramagnetic. He based this classification on his observation of the force exerted on substances in an inhomogeneous magnetic field. At moderate field strengths, the magnetization M of a substance is linearly proportional to the strength of the applied field H. The magnetization is specified by the magnetic susceptibility χ (previously labeled χm), defined by the relation $M = \chi H$. A sample of volume V placed in a field H directed in the x-direction and increasing in that direction at a rate dH/dx will experience a force in the x-direction of $F = \chi \mu_0 VH (dH/dx)$. If the magnetic susceptibility χ is positive, the force is in the direction of increasing field strength, whereas if χ is negative, it is in the direction of decreasing field strength. Measurement of the force F in a known field H with a known gradient dH/dx is the basis of a number of accurate methods of determining χ .

Substances for which the magnetic susceptibility is negative (e.g., copper and silver) are classified as diamagnetic. The susceptibility is small, on the order of -10^{-5} for solids and liquids and -10^{-8} for gases. A characteristic feature of diamagnetism is that the magnetic moment per unit mass in a given field is virtually constant for a given substance over a very wide range of temperatures. It changes little between solid, liquid, and gas; the variation in the susceptibility between solid or liquid and gas is almost entirely due to the change in the number of molecules per unit volume. This indicates that the magnetic moment induced in each molecule by a given field is primarily a property characteristic of the molecule.

Substances for which the magnetic susceptibility is positive are classed as paramagnetic. In a few cases (including most metals), the susceptibility is independent of temperature, but in most compounds it is strongly temperature dependent, increasing as the temperature is lowered. Measurements by the French physicist Pierre Curie in 1895 showed that for many substances the susceptibility is inversely proportional to the absolute temperature T; that is, $\chi = C/T$. This approximate relationship is known as Curie's law and the constant C as the Curie constant. A more accurate equation is obtained in many cases by modifying the above equation to $\chi = C/(T - \theta)$, where θ is a constant. This equation is called the Curie–Weiss law (after Curie and Pierre-Ernest Weiss, another French physicist). From the form of this last equation, it is clear that at the temperature $T = \theta$, the value of the susceptibility becomes infinite. Below this temperature, the material exhibits spontaneous magnetization—i.e., it becomes ferromagnetic. Its magnetic properties are then very different from those in the paramagnetic or high-temperature phase. In particular, although its magnetic moment can be changed by the application of a magnetic field, the value of the moment attained in a given field is not always the same; it depends on the previous magnetic, thermal, and mechanical treatment of the sample.

Hysteresis

The B-H curve is the curve characteristic of the magnetic properties of a material or element or alloy. It tells you how the material responds to an external magnetic field, and is a critical piece of information when designing magnetic circuits. In the plots below, for a vacuum an H of 800 At/m creates a B of 1 mT. With a sheet steel core, an H of 800 At/m creates a B of 1.2 T. A huge increase in B for the same H! The hysteresis comes into play when the material has been magnetized. The B within the material does not go back to what it was before, but is dependent on the history of its magnetization.

B-H for various materials

c. The slope of the curve - **Permeability**

The slope of the B-H curve at some location on its curve is its incremental permeability at that location. However, sometimes the permeability is measured from the origin to the location of interest, and that slope is called its apparent permeability, μ .

For non-magnetic materials that do not saturate, the curve has a fixed slope approximately equal to μ_0

i. Diamagnetic materials have a slightly smaller slope

ii. Paramagnetic materials have a slightly greater slope

d. Critical points on the curve

For ferromagnetic materials that are non-linear, they have a μ_r that is much greater than 1, but when they saturate their μ_r approaches 1.

(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)

Pollachi Main Road, Eachanari Post, Coimbatore - 641 021, Tamilnadu, India.

Phone : 0422 - 2980011 - 14, 6471113, 14 | Fax : 0422 - 2980022-23 | Email : info@karpagam.com

i. The residual magnetism, Br, or remanence (or retentivity), is the flux density that is left within the material after it has been magnetized.

ii. A material with a high Br is desired for permanent magnets.

http://en.wikipedia.org/wiki/Remanence

iii. The coercivity, Hc, is the magnetic field intensity that is required to demagnetize the material after it has been magnetized.

iv. A material with a high Hc is desired for permanent magnets to prevent them from being easily demagnetized.

v. Rare earth magnets have a much higher Hc than Alnico magnets.

http://en.wikipedia.org/wiki/Coercivity

vi. The saturation effect of the material occurs when all of the magnetic domains within the material have become aligned with the external magnetic field that surrounds it.

e. Characteristics of soft magnetic material

i. A material with a very low Br and Hc

ii. It does not retain a strong magnetic field (does not make a good permanent magnet), and is easy to demagnetize

iii. The area enclosed by the B-H curve is small, so it has low hysteresis losses or core losses

iv. This material is desired for use in transformers, motors and electromagnets where the magnetic field is always changing.

v. Electrical steels, which contain about 1-2% Si, is a soft magnetic material.

- e. Characteristics of hard magnetic material
- i. A material with a very high Br and Hc

ii. It retains a strong magnetic field (makes a good permanent magnet), and is difficult to demagnetize

iii. The area enclosed by the B-H curve is large, so it has high hysteresis losses or core losses

iv. This material is desired for use in permanent magnets.

v. Alloys such as AlNiCo and NdFeB are hard magnetic materials.

(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)

Pollachi Main Road, Eachanari Post, Coimbatore - 641 021, Tamilnadu, India.

Phone : 0422 - 2980011 - 14, 6471113, 14 | Fax : 0422 - 2980022-23 | Email : info@karpagam.com

UNIT – III

Modern Physics: Einstein's Photoelectric effect-characteristics of photoelectron –laws of photoelectric emission-Einstein's photo electric equations- Compton effect-matter waves-De-Broglie Hypothesis. Heisenberg's uncertainty principle-Schrödinger's equation- particle in a box.

Modern Physics

Einstein's Photoelectric effect

The photoelectric effect is a phenomenon where electrons are emitted from the metal surface when the light of sufficient frequency is incident upon. The concept of photoelectric effect was first documented in 1887 by Heinrich Hertz and later by Lenard in 1902. But both the observations of the photoelectric effect could not be explained by Maxwell's electromagnetic wave theory of light. Hertz (who had proved the wave theory) himself did not pursue the matter as he felt sure that it could be explained by the wave theory. It, however, failed on the following accounts:

According to the wave theory, energy is uniformly distributed across the wavefront and is dependent only on the intensity of the beam. This implies that the kinetic energy of electrons increases with light intensity. However, the kinetic energy was independent of light intensity. Wave theory says that light of any frequency should be capable of ejecting electrons. But

electron emission occurred only for frequencies larger than a threshold frequency (v0). Since energy is dependent on intensity according to wave theory, the low-intensity light should emit electrons after some time so that the electrons can acquire sufficient energy to get emitted. However, electron emission was spontaneous no matter how small the intensity of light.

Following is the table with link of other experiment related to photoelectric effect:

Einstein's explanation of Photoelectric effect

Einstein resolved this problem using Planck's revolutionary idea that light was a particle. The energy carried by each particle of light (called quanta or photon) is dependent on the light's frequency (v) as shown:

$\mathbf{E} = \mathbf{h}\mathbf{v}$

Where h = Planck's constant = $6.6261 \times 10-34$ Js.

Since light is bundled up into photons, Einstein theorized that when a photon falls on the surface of a metal, the entire photon's energy is transferred to the electron.

A part of this energy is used to remove the electron from the metal atom's grasp and the rest is given to the ejected electron as kinetic energy. Electrons emitted from underneath the metal surface lose some of the kinetic energy during the collision. But the surface electrons carry all the kinetic energy imparted by the photon and have the maximum kinetic energy. We can write this mathematically as:

Energy of photon = energy required to eject electron (work function) + Maximum kinetic energy of the electron E = W + KEhv = W + KEKE = hv - w

At the threshold frequency v0 electrons are just ejected and do not have any kinetic energy. Below this frequency there is no electron emission. Thus, the energy of a photon with this frequency must be the work function of the metal.

 $\mathbf{w} = hv_0$ Thus, Maximum kinetic energy equation becomes: $\mathbf{KE} = 12mv2max=hv-hv_0$ $12mv2max=h(v-v_0)$

Vmax is the maximum kinetic energy of the electron. It is calculated experimentally using the stopping potential. Please read our article on Lenard's observations to understand this part.

Stopping potential = $ev_0 = 12mv2max$

Thus, Einstein explained the Photoelectric effect by using the particle nature of light. Stay tuned with BYJU'S to learn more about the photoelectric effect along with engaging video lectures.

Compton effect, increase in wavelength of X-rays and other energetic electromagnetic radiations that have been elastically scattered by electrons; it is a principal way in which radiant energy is absorbed in matter. The effect has proved to be one of the cornerstones of quantum mechanics, which accounts for both wave and particle properties of radiation as well as of matter.

Matter waves

It is **the wave** formed by **matter**, or in another word, particles. Precisely speaking, every **matter** formed by particles, or just particles like electrons, have **wave**-like **property**,

(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)

Pollachi Main Road, Eachanari Post, Coimbatore - 641 021, Tamilnadu, India. Phone : 0422 - 2980011 - 14, 6471113, 14 | Fax : 0422 - 2980022-23 | Email : info@karpagam.com

which means they can behave both like particles and **waves**. It is only when particles move that they have **wave**-like **property**

De Broglie's Thesis

In his 1923 (or 1924, depending on the source) doctoral dissertation, the French physicist Louis de Broglie made a bold assertion. Considering Einstein's relationship of wavelength *lambda* to momentum p, de Broglie proposed that this relationship would determine the wavelength of any matter, in the relationship:

lambda = h / p

recall that *h* is Planck's constant

This wavelength is called the *de Broglie wavelength*. The reason he chose the momentum equation over the energy equation is that it was unclear, with matter, whether *E* should be total energy, kinetic energy, or total relativistic energy. For photons, they are all the same, but not so for matter.

Assuming the momentum relationship, however, allowed the derivation of a similar de Broglie relationship for frequency f using the kinetic energy E_k :

 $f = E_k / h$

Alternate Formulations

De Broglie's relationships are sometimes expressed in terms of Dirac's constant, h-bar = h / (2pi), and the angular frequency w and wavenumber k:

 $p = h - bar * kE_k$ = h - bar * w

Experimental Confirmation

In 1927, physicists Clinton Davisson and Lester Germer, of Bell Labs, performed an experiment where they fired electrons at a crystalline nickel target. The resulting diffraction pattern matched the predictions of the de Broglie wavelength. De Broglie received the 1929 Nobel Prize for his theory (the first time it was ever awarded for a Ph.D. thesis) and Davisson/Germer jointly won it in 1937 for the experimental discovery of electron diffraction (and thus the proving of de Broglie's hypothesis).

Further experiments have held de Broglie's hypothesis to be true, including the quantum variants of the double slit experiment. Diffraction experiments in 1999 confirmed the de Broglie wavelength for the behavior of molecules as large as buckyballs, which are complex molecules made up of 60 or more carbon atoms.

Significance of the de Broglie Hypothesis

The de Broglie hypothesis showed that wave-particle duality was not merely an aberrant behavior of light, but rather was a fundamental principle exhibited by both radiation and matter. As such, it becomes possible to use wave equations to describe material behavior, so long as one

(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)

Pollachi Main Road, Eachanari Post, Coimbatore - 641 021, Tamilnadu, India. Phone : 0422 - 2980011 - 14, 6471113, 14 | Fax : 0422 - 2980022-23 | Email : info@karpagam.com

properly applies the de Broglie wavelength. This would prove crucial to the development of quantum mechanics. It is now an integral part of the theory of atomic structure and particle physics.

Macroscopic Objects and Wavelength

Though de Broglie's hypothesis predicts wavelengths for matter of any size, there are realistic limits on when it's useful. A baseball thrown at a pitcher has a de Broglie wavelength that is smaller than the diameter of a proton by about 20 orders of magnitude.

The Heisenberg uncertainty principle states that it is impossible to know simultaneously the exact position and momentum of a particle. That is, the more exactly the position is determined, the less known the momentum, and vice versa. This principle is not a statement about the limits of technology, but a fundamental limit on what can be known about a particle at any given moment. This uncertainty arises because the act of measuring affects the object being measured. The only way to measure the position of something is using light, but, on the sub-atomic scale, the interaction of the light with the object inevitably changes the object's position and its direction of travel.

The Schrödinger Equation and a Particle in a Box

The particle in a box model (also known as the infinite potential well or the infinite square well) describes a particle free to move in a small space surrounded by impenetrable barriers. The model is mainly used as a hypothetical example to illustrate the differences between classical and quantum systems. In classical systems, for example a ball trapped inside a large box, the particle can move at any speed within the box and it is no more likely to be found at one position than another. However, when the well becomes very narrow (on the scale of a few nanometers), quantum effects become important. The particle may only occupy certain positive energy levels. The particle in a box model provides one of the very few problems in quantum mechanics which can be solved analytically, without approximations. This means that the observable properties of the particle (such as its energy and position) are related to the mass of the particle and the width of the well by simple mathematical expressions. Due to its simplicity, the model allows insight into quantum effects without the need for complicated mathematics. It is one of the first quantum mechanics problems taught in undergraduate physics courses, and it is commonly used as an approximation for more complicated quantum systems.

A particle in a 1-dimensional box is a fundamental quantum mechanical approximation describing the translational motion of a single particle confined inside an infinitely deep well from which it *cannot* escape.

The particle in a box problem is a common application of a quantum mechanical model to a simplified system consisting of a particle moving horizontally within an infinitely deep well from which it cannot escape. The solutions to the problem give possible values of E and $\psi\psi$ that

(Deemed to be University)

(Established Under Section 3 of UGC Act. 1956)

Pollachi Main Road, Eachanari Post, Coimbatore - 641 021, Tamilnadu, India. Phone : 0422 - 2980011 - 14, 6471113, 14 | Fax : 0422 - 2980022-23 | Email : info@karpagam.com

(Established Under Section 3 of UGC Act, 1956)

the particle can possess. E represents allowed energy values and $\psi(x)\psi(x)$ is a wavefunction, which when squared gives us the probability of locating the particle at a certain position within the box at a given energy level.

To solve the problem for a particle in a 1-dimensional box, we must follow our **Big**, **Big recipe** for Quantum Mechanics:

Define the Potential Energy, V Solve the Schrödinger Equation Define the wavefunction Define the allowed energies Step 1: Define the Potential Energy V 00 ŝ V4 0 ×

A particle in a 1D infinite potential well of dimension LL.

The potential energy is 0 inside the box (V=0 for 0<x<L) and goes to infinity at the walls of the box (V= ∞ for x<0 or x>L). We assume the walls have infinite potential energy to ensure that the particle has zero probability of being at the walls or outside the box. Doing so significantly simplifies our later mathematical calculations as we employ these boundary conditions when solving the Schrödinger Equation.

Step 2: Solve the Schrödinger Equation

The time-independent Schrödinger equation for a particle of mass *m* moving in one direction with energy E is

 $-\hbar 22 \text{md} 2\psi(x) dx 2 + V(x)\psi(x) = E\psi(x)(1)(1) - \hbar 22 \text{md} 2\psi(x) dx 2 + V(x)\psi(x) = E\psi(x)$

with

 $\hbar\hbar$ is the reduced Planck Constant where $\hbar=h2\pi\hbar=h2\pi$ m is the mass of the particle $\psi(x)\psi(x)$ is the stationary time-independent wavefunction V(x) is the potential energy as a function of position EE is the energy, a real number

0

This equation can be modified for a particle of mass m free to move parallel to the x-axis with zero potential energy (V = 0 everywhere) resulting in the quantum mechanical description of free motion in one dimension:

 $-\hbar 22 \text{md} 2\psi(x) dx 2 = E\psi(x)(2)(2) - \hbar 22 \text{md} 2\psi(x) dx 2 = E\psi(x)$

This equation has been well studied and gives a general solution of:

 $\psi(x) = Asin(kx) + Bcos(kx)(3)(3)\psi(x) = Asin[10](kx) + Bcos[10](kx)$

where A, B, and k are constants.

Step 3: Define the wavefunction

The solution to the Schrödinger equation we found above is the general solution for a 1dimensional system. We now need to apply our **boundary conditions** to find the solution to our particular system. According to our boundary conditions, the probability of finding the particle at x=0 or x=L is zero. When x=0x=0, sin(0)=0sin(0)=0, and cos(0)=1cos(0)=1; therefore, *B must equal 0* to fulfill this boundary condition giving: $\psi(x)=Asin(kx)(4)(4)\psi(x)=Asin(0)kx)$

We can now solve for our constants (A and k) systematically to define the wavefunction.

Solving for k

Differentiate the wavefunction with respect to x:

 $d\psi dx = kA\cos(kx)(5)(5)d\psi dx = kA\cos(kx)$ $d2\psi dx = -k2A\sin(kx)(6)(6)d2\psi dx = -k2A\sin(kx)$ Since $\psi(x) = A\sin(kx)\psi(x) = A\sin(kx)$, then

 $d2\psi dx2 = -k2\psi(7)(7)d2\psi dx2 = -k2\psi$

If we then solve for k by comparing with the Schrödinger equation above, we find:

k=(8π2mEh2)1/2(8)(8)k=(8π2mEh2)1/2

Now we plug k into our wavefunction:

 $\psi = Asin(8\pi 2mEh2)1/2x(9)(9)\psi = Asin^{10}(8\pi 2mEh2)1/2x$

(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)

Pollachi Main Road, Eachanari Post, Coimbatore - 641 021, Tamilnadu, India. Phone : 0422 - 2980011 - 14, 6471113, 14 | Fax : 0422 - 2980022-23 | Email : info@karpagam.com

Solving for A

To determine A, we have to apply the boundary conditions again. Recall that the *probability of finding a particle at* x = 0 or x = L is zero.

When x=Lx=L:

 $0=Asin(8\pi 2mEh2)1/2L(10)(10)0=Asin[10](8\pi 2mEh2)1/2L$ This is only true when $(8\pi 2mEh2)1/2L=n\pi(11)(11)(8\pi 2mEh2)1/2L=n\pi$ where n = 1,2,3...

Plugging this back in gives us:

 ψ =Asinn π Lx(12)(12) ψ =Asin^[10]n π Lx To determine AA, recall that the total probability of finding the particle inside the box is 1, meaning there is no probability of it being outside the box. When we find the probability and set it equal to 1, we are *normalizing* the wavefunction. $\int L0\psi 2dx = 1(13)(13)\int 0L\psi 2dx = 1$

For our system, the normalization looks like:

A2 $\int L0\sin^2(n\pi xL)dx = 1(14)(14)A2 \int 0L\sin^2(n\pi xL)dx = 1$ Using the solution for this integral from an integral table, we find our normalization constant, AA: A=2L-- $\sqrt{(15)(15)A=2L}$

Which results in the normalized wavefunction for a particle in a 1-dimensional box:

 $\psi=2L--\sqrt{\sin \pi Lx(16)(16)\psi}=2L\sin \frac{\pi Lx}{16}$ Step 4: Determine the Allowed Energies

Solving for E results in the allowed energies for a particle in a box:

En=n2h28mL2(17)(17)En=n2h28mL2 This is an important result that tells us:

The energy of a particle is quantized and

The lowest possible energy of a particle is **NOT** zero. This is called the **zero-point energy** and means the particle can **never be at rest** because it always has some kinetic energy.

This is also consistent with the Heisenberg Uncertainty Principle: if the particle had zero energy, we would know where it was in both space and time.

The wavefunction for a particle in a box at the n=1n=1 and n=2n=2 energy levels look like this:

The probability of finding a particle a certain spot in the box is determined by squaring $\psi\psi$. The probability distribution for a particle in a box at the n=1n=1 and n=2n=2 energy levels looks like this:

Notice that the number of **nodes** (places where the particle has zero probability of being located) increases with increasing energy n. Also note that as the energy of the particle becomes greater, the quantum mechanical model breaks down as the energy levels get closer together and overlap, forming a continuum. This continuum means the particle is free and can have any energy value. At such high energies, the classical mechanical model is applied as the particle behaves more like a continuous wave. Therefore, the particle in a box problem is an example of Wave-Particle Duality.

(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)

Pollachi Main Road, Eachanari Post, Coimbatore - 641 021, Tamilnadu, India.

Phone : 0422 - 2980011 - 14, 6471113, 14 | Fax : 0422 - 2980022-23 | Email : info@karpagam.com

IMPORTANT FACTS TO LEARN FROM THE PARTICLE IN THE BOX

- The energy of a particle is quantized. This means it can only take on discrete energy values.
- The lowest possible energy for a particle is **NOT** zero (even at 0 K). This means the particle *always* has some kinetic energy.
- The square of the wavefunction is related to the probability of finding the particle in a specific position for a given energy level.
- The probability changes with increasing energy of the particle and depends on the position in the box you are attempting to define the energy for.
- In classical physics, the probability of finding the particle is independent of the energy and the same at all points in the box.

[19MMU203] KARPAGAM ACADEMY OF HIGHER EDUCATION, COIMBATORE - 641 021 (Under Section 3 of UGC Act 1956) (For the candidates admitted from 2019 onwards)

B. Sc., DEGREE EXAMINATIONS, APRIL - 2020 Second Semester DEPARTMENT OF MATHEMATICS PHYSICS - II

QUESTIONS	OPTION 1	OPTION 2	OPTION 3	OPTION 4	ANSWER
UNIT-I					
If the distance between two charge is doubled the electrostatic force between the charge will be	fourtime more	four time less	will increase into two times	will decrease into two times	four time less
The field due to a wire of uniform charge density at a perpendicular distance y from it	increases with increase in y	decrease with increaase in y	remains constant	depends upon the length of the wire	decrease with increaase in y
Field due to a uniformly charged ring at an axial point at distance very large as compared to the radius of the ring	independent of x	directly proportional to x	directly proportional to x^2	inversely proportional to x^2	inversely proportional to x^2
Electric charge enclosed by Gaussian surface is	0	1	min	max	0
For gauss's law point charges in closed surface must be distributed	arbitrarily	sequentially	rational	in line	arbitrarily
Electric field intensity outside two charged parallel plate is	$\sigma/2\epsilon_0$	σ / ϵ_0	infinity	0	0
The total electric flux over any closed surface is	ε ₀	$\sigma \ / \epsilon_0$	$\epsilon_0\!/\;\sigma$	$q/\;\epsilon_0$	q/ϵ_0
Electric flux lines due to an infinite sheet of charge is	converging	radial	uniform and perpendicular to the sheet	uniform and parallel to the sheet	uniform and perpendicular to the sheet
One electron volt is	1.6 x 10 ⁻¹⁹ joule	1.6 x 10-19volt	1.6 x 10-19joule	1.6 x 10 -21joule	1.6 x 10 ⁻¹⁹ joule
law establishes a relationship between the electric flux and the electrostatic charge.	Lenz's	Keplers	Faraday	Gauss's	Gauss's
The ratio $\epsilon/\epsilon 0$ is a dimensionless quantity known as	relative permeability	relative permittivity	absolute permittivity	permeability	relative permittivity
The electric field lines begin at the charge and terminate at the charge.	positive, negative	negative, positive	both positive	both negative	positive, negative
Total electric flux emanating from a charge q coulomb placed in air is	q/ϵ_0	$\epsilon_0 q$	q	4πq	q/ϵ_0
Gauss's law due to different charge distribution is used to calculate	electric field	electric charge	electric intensity	electric field lines.	electric intensity

The total flux across a closed surface enclosing charge is independent of	shape of the closed surface		volume of the enclosure	argument of charges within the surface	all
The unit of Electric flux is	Gauss's	Weber	$Nm^{-2}c^{-1}$	Nc ⁻¹	$Nm^{-2}c^{-1}$
.Mechanical pressure on the surface of a charged conductor having surface charge density σ is	$\varepsilon_0\sigma^2$	σ^2/ϵ_0	$\sigma^2/2\varepsilon_0$	$\sigma/2\epsilon_0$	$\sigma^2/2\varepsilon_0$
If the separation between two charges is increased the electric potential energy	always decreases	always increases	remains the same	may increase or decrease	may increase or decrease
Electric intensity due to an infinitely long plane sheet of a conductor at appoint close to its surface is	independent of r	proportional to $1/r^2$	proportional to r	inversely proportional to 1/r	independent of r
The total electric flux through a closed surface depends on	location of the charge only	the shape of the closed surface only	the value of the net charge only	both charge and shape	the value of the net charge only
Electric field intensity due to an infinite plane sheet of charge is	σ/ϵ_0	$q/2\epsilon_0$	$\sigma/2\epsilon_0$	q/ϵ_0	$\sigma/2\epsilon_0$
Law stated as flux is $^{1}\!/_{\text{Eo}}$ times total charge is	ohms law	newton's law	gauss's law	coulombs law.	gauss's law
A Gaussian sphere closes an electric dipole within it. Then the total flux through the sphere is	half due to a single charge	double due to a single charge	zero	dependent on the position of the dipole	zero
The Flux of electric field is	scalar	vector	zero	infinity	scalar
Flux density is measured in	Tesla	Weber	Ampere- turn	Maxwell	Tesla
Which of the following quantities are scalar?	dipole moment	electric force	electric field	electric potential	electric potential
A dipole is placed in a uniform electric field with its axis parallel to the field. It experiences	only a net force	only a torque	both a net force and torque	neither a net force nor a torque	neither a net force nor a torque
Electric potential energy U of two point charges is	$q_1 q_2 / 4 \epsilon_0 \pi r^2$	$q_1 q_2 / 4 \epsilon_0 \pi r$	pEsinθ	pEcosθ	$q_1 q_2 / 4 \epsilon_0 \pi r$
If a point lies at a distance x from the midpoint of the dipole, the electric potential at the point is proportional to	1/x ²	1/x ³	1/x ⁴	1/x ^{3/2}	1/x ²
The law that governs the force between electric charge is called	Amperes	Coulomb law	Faraday	Ohms	Coulomb law
The minimum value of the charge in any object cannot be less than	1.6 x 10 ^{-19coulomb}	3.2 x 10 ^{-19 Coulomb}	4.8 x 10 ^{-19Coulomb}	1 coulomb	1.6 x 10 ^{-19coulomb}
An electric field can deflect	X rays	neutrons varies directly as the distance from	alpha particle varies inversely as the distance	gamma rays values inversely as the square of the distance from	alpha particle
Inside the noniow spherical conductor, the potential The intensity at a point due to a charge is inversely proportional to	amount of the charge	size of the charge	distance of the point	une centre square of the distance from the charge	is constant square of the distance from the charge

The distance between two charge is douled then the force between them would become	half	one-fourth	doubled	four times	one-fourth
A surface enclosed an electric dipole, the flux through the surface is	infinite	positive	negative	zero	zero
Electric potential is a	vector quantity	scalar quantity	neither vector nor scalar	fictitious quantity	scalar quantity
The potential at any point inside a charged sphere is	zero	same as potential on the surface	smaller than the potential on the surface	greater than the potential on the surface	same as potential on the surface
Two smallspheres eaach carrying a charge q are placed r metre apart, one of the spheres is taken around the other one in a circular path, the work done will be equal to	force between them x r	force between them x 2r	force between them / 2nr	zero	zero
State which of the following is correct?	J=Coulomb x volt	J=Coulomb / volt	J= volt/ ampere	J= volt x ampere	J=Coulomb x volt
A positively charged glass rod attracts an object. The object must be	negatively charged	either negative charged or neutral	neutral	positively charged	either negative charged or neutral
A charge q islocated at the centre of a hypothetical cube. The electric flux through any face of the cube is	q/є0	q/2€0	q/4є0	q/4є0	q/4€0
The force between two electrons seperated by a distance r varies as	r^2	relative permittivity	r^-1	r^-2	r^-2
The energy stored per unit volume of the medium of relative permittivity is	$\varepsilon_r\varepsilon_0 E^2/2$	$\epsilon_0 E^2/2$	$\epsilon_r \epsilon_0 E/2$	$\epsilon_0 E/2$	$\varepsilon_r\varepsilon_0 E^2/2$
All magnetic moments within a domain will point in the direction.	Different	Same	Positive	Negative	Same
The electrical energy consumed by a coil is stored in the form of:	magnetic field	force field	electrostatic field	electrical field	magnetic field
Electricity may be generated by a wire:	carrying current	wrapped as a coil	passing through a flux field	that has neutral domains	passing through a flux field
A magnetic field has:	lines of reluctance	polar fields	lines of force	magnetomotive force	lines of force
The polarity of induced voltage while a field is collapsing is	opposite to the force creating it	independent of the force creating it	identical to the force creating the field	present only if the force is stationary	opposite to the force creating it
What is magnetic flux?	the number of lines of force in webers	the number of lines of force in maxwells	the number of lines of force in flux density	the number of lines of force in teslas	the number of lines of force in webers
The energy stored in the charged capacitor is	1/2 CV ²	1/2qV	v/q	qV	1/2 CV ²
The arrangement in which one conductor is charged and other is earthed is named as	capacitor	condenser	capacitor/ condneser	comparator	capacitor/ condneser
device is useful to reduce voltage fluctuations in electric power supplies.	capacitor	condenser	converter	comparator	capacitor
The capacitance of a capacitor C is	q/v	qv	v/q	v/q	q/v

capacitors can bewidely used in the tuning circuits of radio receivers.	mica	electrolytic	paper	variable air	variable air
capacitors are used widely in a radia-set as a smoothing capacitors	electrolytic	mica	both mica and electrolytic	variable	both mica and electrolytic
capacitor is used in a.c bridges	electrolytic	variable air capacitor	both mica and electrolytic	mica	variable air capacitor
device is used to measure electrostatic potentials A dielectric slab is introduced between the plates of an isolated charged parallel plate air capacitor. Which of the following quantities will remain	electrometers charge on the	magnetometers p.d across the	potentiometer energy of the	galvanometer electric field inside the	electrometers charge on the
unchanged? The p.d across a capacitor is kept constant.If a dielectric slab of dielectric constant K is introduced between the plates,the stored energy will be	capacitor decreases by a factor K	capacitor increases by a factor K	capacitor remains constant	capacitor increases of decreases depending on the nature of the	capacitor increases by a factor K
Capacitance has the dimension	$M^{-1}L^{-2}T^{4}I^{2}$	$ML^{2}T^{-4}I^{-2}$	ML T -3 I-1	$M^{-1}L^{-1}T^3I$	$M^{-1}L^{-2}T^{4}I^{2}$
In gauss's law the electric flux E through a closed surface (s) depends on the value of net charge	Inside the surface	outside the surface	on the surface	in the surface	Inside the surface
The unit of capacitance is	Farad	coulomb/volt	Farad and Coulomb/Volt	ohm	Farad and Coulomb/Volt
device is used to generate and detect electromagnetic oscillation of high frequency.	capacitor	voltmeter	Resistor	galvanometer	capacitor
The normal component of D are across the boundary by the surface charge density	continuous	Discontinuous	Random	Discrete	Discontinuous
The tangential component of the electric field is across the boundary.	continuous	Discontinuous	Random	Discrete	continuous
The potential difference between the conductors is proportional to the on the capacitor.	charge	voltage	current	time	charge
The coaxial cable used in communication system is a common example for which type of capacitor	spherical	cylindrical	Air capacitor	Parallel plate capacitor	Parallel plate capacitor
Variable air capacitor is used in	A.c bridges	D.c bridges	both a and b	tuning circuits	A.c bridges
capacitors can be used only in unidirectional power supplies.	mica	Electrolytic	paper	variable	Electrolytic
An electron- volt (eV) is a unit of	Energy	Potential difference	Charge	Momentum	Energy
Farad is the unit of	capacitance	self inductance	mutual inductance	conductance of an electrolyte	capacitance
In a charged capacitor the energy is stored in	the field between the plates	positive chaarge	negative charge	neutral	the field between the plates
No current flows between two charged bodies connected together when they have the same	charge	potential	capacitance	resistance	potential

Dielectric materials are	insulating materials	semiconducting materials	magnetic materials	ferroelectric materials	insulating materials
Dielectric constant of vacuum is	infinity	100	one	zero permitivity	one
For making a capacitor it is better to select a dielectic having	low permittivity	high permitivitty	permitivity same as that of air	slightly more thanair	high permitivitty
A dielectric material must be a	resistor	insulator	good conductor	semi conductor	insulator
Which of the following material has highest value of dielectric constant	glass	vacuum	ceramics	oil	ceramics
When a dielectric slab is introduced in a parallel plate capacitor, the potential difference between the plates will	remain unchanged	decrease	increases	becomes zero	decrease
A capacitor consists of	two insulators seperated by a condenser	two conductors seperated by an insulator	2 insulator	2 conductor	two conductors seperated by an insulator

Unit-II

Which of the following material requires least magnetizing field to magnetize it?	Gold	Silver	Tungsten	Cobalt	Cobalt
Basic source of magnetism	Charged particles alone	Movement of charged particles	Magnetic dipoles	Magnetic domains	Movement of charged particles
Units for magnetic flux density	Wb / m^2	Wb / A.m	A / m	Tesla / m	Wb / m^2
Magnetic permeability has units as	Wb / m^2	Wb / A.m	A / m	Tesla / m	Wb / A.m
Magnetic field strength's units are	Wb / m^2	Wb / A.m	A / m	Tesla / m	A / m
Example for dia-magnetic materials	super conductors	alkali metals	transition metals	Ferrites	super conductors
Example for ferro-magnetic materials	super conductors	alkali metals	transition metals	Ferrites	alkali metals
Example for anti-ferro-magnetic materials	salts of transition elements	rare earth elements	transition metals	Ferrites	rare earth elements
Example for ferri-magnetic materials	salts of transition elements	rare earth elements	transition metals	Ferrites	transition metals
Magnetic susceptibility para-magnetic materials is	0.00001	-10^-5	10^5	10^-5 to 10^-2	0.00001
Magnetic susceptibility diamagnetic materials is	0.00001	-10^-5	10^5	10^-5 to 10^-2	10^-5 to 10^-2

Magnetic susceptibility ferro-magnetic materials is	0.00001	-10^-5	10^5	10^-5 to 10^-2	10^-5 to 10^-2
Typical size of magnetic domains (mm)	1 to 10	0.1-1	0.05	0.001	0.001
Example for magnetic material used in data storage devices	45 Permalloy	CrO2	Cunife	Alnico	CrO2
Susceptibility of a magnetic material is defined as the ratio of induced in material to magnetic field intensity (H)	Intensity of magnetization	magnetizing field	magntic induction	Conductivity	Intensity of magnetization
Those substances which are weakly magnetized in the direction opposite to that of the external magnetic field are called as	ferromagnetic substances	diamagnetic	paramagnet	anti ferro	diamagnetic
The magnetic field that exists in vacuum and induces magnetism is called	magnetic intensity	magnetizing field	magnetic field intensity	magnetization	magnetizing field
The temperature at which the domain structure gets destroyed and ferromagnetic substance is converted into paramagnetic substance is called as	zeropoint temp.	high temperature	curie temperature	domain thoery	curie temperature
The ability of magnetizing field to magnetize a material medium is called	magnetic intensity	magnetic field	magnetic field intensity	magnetization	magnetic field intensity
Relative Magnetic Permeability (μr) =	1+χ	1/χ	1+χ	1+H	1+χ
Those substances which are strongly magnetized in the direction of the external magnetic field are called as	paramagnet	anti ferro	diamagnetic	ferromagnetic substances	ferromagnetic substances
Magnetic fields do no interact with	Moving permanent magnets	Stationary permanent magnets	Moving electric charges	Stationary electric charges	Stationary electric charges
The magnetic permeability of a material is defined as ratio of magnetic induction (B) to	susceptibility	magnetic intensity	magnetic field intensity	magnetic field	magnetic intensity
Above Curie temperature, Ferromagnetic substances become	magnet	anti ferro	diamagnetic	paramgnetic	paramgnetic
is defined as pole strength per unit area of cross section of material	susceptibility	magnetizing field	magnetic field intensity	intensity of magnetization	intensity of magnetization
The Curie Temperature (°K) for Nickel is °K	136	316	613	631	631
The degree or extent to which magnetic field can penetrate or permeate a material is called	magnetic permeability	susceptibility	magntic induction	intensity	magnetic permeability
Total number of magnetic lines of force crossing per unit area normally through a material is called	magnetic permeability	susceptibility	magntic induction	intensity	magntic induction
The magnetic energy stored in an inductor is current	Directly proportional to	Inversely proportional to	Directly proportional to the square of	Inversely proportional to the square of	Directly proportional to the square of
The ratio of the permeability of material to the permiability of air or vacuum.	Relative permeability	Relative permittivity	Relative conductivity	Relative reluctivity	Relative permeability
The property of magnetic materials of retaining magnetism after withdrawal of the magnetizing force is known as	Retentivity	Reluctivity	Resistivity	Conductivity	Retentivity

The force between two magnetic poles varies with the distance between them. The variation is to the square of that distance.	Equal The conductivity of the material for magnetic	Greater than magnetization test in the	Directly proportional the strength of an	Inversely proportional The strength of the permanent	Inversely proportional me conductivity of the material for magnetic
Permeability means	lines of force	material after	electromagnet	magnet	lines of force
The magnetic field inside a solenoid	is constant	is uniform	increases with distance from the axis	decreases with distance from the axis	is uniform
Paramagnetic substance has a relative permeability of	Slightly less than one	Equal to one	Slightly greater than one	Very much greater than one	Slightly greater than one
For which of the following substance, the magnetic susceptibility is independent of temperature	Dia	Para	Ferro	ferri	Dia
Electromagnets are made of soft iron because soft iron has	high susceptibility and low retentivity	high susceptibility and high retentivity	low susceptibility and low retentivity	low susceptibility and high retentivity	high susceptibility and low retentivity
Magnetic field is always	solenoidal	Irrotational	harmonic in character	rotational	solenoidal
Magnetic flux has the dimension	$ML ^2T^2\Gamma^1$	$MLT^{-2}\Gamma^{-1}$	ML ² TT ¹	ML ² T ² I	$ML^{2}T^{2}\Gamma^{1}$
The permeability of free space is WbA-1m-1.	$\mu_0 = 4\pi$	μ ₀ =4πx107	$\mu_0=4\pi x 10^{-7}$	μ ₀ =4πx10 -8	$\mu_0=4\pi x 10^{-7}$
The intrinsic magnetic moment of the atoms of a material is not zero. The material	must be paramagnetic	must be diamagnetic	must be ferromagnetic	may be paramagnetic or ferromagnetic	may be paramagnetic or ferromagnetic
The relative permeability of a material is 0.98. The material must be	paramagnetic	diamagnetic	ferromagnetic	ferrimagnetic	diamagnetic
Hysteresis refers to the between flux density of the material and the magnetizing force applied.	Leading effect	Ratio	Equality	Lagging effect	Lagging effect
Hydrogen is an example of a material.	Paramagnetic	Diamagnetic	Ferromagnetic	Non- magnetic	Paramagnetic
Cobalt is an example of a material	Paramagnetic	Diamagnetic	Ferromagnetic	Non- magnetic	Ferromagnetic
Magnetic intensity is a	Phasor quantity	Physical quantity	Scalar quantity	Vector quantity	Vector quantity
The core of a magnetic equipment uses a magnetic material with	Least permeability	Low permeability	Moderate permeability	High permeability	High permeability
Which of the following is a paramagnetic material?	Carbon	Copper	Bismuth	Oxygen	Oxygen
crystals are frequently used in computers memory cells.	Ferroelectric	Diamagnetic	Paramagnetic	Ferrielectric	Ferroelectric
Platinum exhibits the property of	diamagnet	ferromagnet	paramagnet	none	paramagnet
Diamagnetic substance are attracted by magnetic field. The attraction is	very strong	weak	zero	negative	weak

A moving charge produces	electric field only	magnetic field only	both electric and magnetic fields	neither electric nor magnetic	both electric and magnetic fields
Differential form of Ampere's law for a steady current is	$\Delta x H=J+\partial D/\partial t$	$\Delta x B{=}\mu_0 J$	Δ.B=0	∫B.dl=µ0I	$\Delta x B{=}\mu_0 J$
The phenomenon by which a magnetic substance becomes a magnet when it is place near a magnet	Magnetic effect	Magnetic phenomenon	Magnetic induction	Electromagnetic induction	Electromagnetic induction
Which of the following materials has permeability slightly less than that of free space?	Paramagnetic	Non- magnetic	Ferromagnetic	Diamagnetic	Diamagnetic
The property of a material which opposes the creation of magnetic flux in it	Resistance	Reluctance	Permeance	Conductance	Reluctance
The susceptibility of a paramagnetic gas varies as the absolute temperature.	directly	inversely	Similarily	opposite	inversely
If the relative permeability is less than 1, then the material will be	dia	para	ferro	ferri	dia
If the relative permeability is greater than 1, then the material will be	dia	para	ferro	ferri	para
If the relative permeability is very much greater than 1, then the material will be	dia	para	ferro	ferri	ferro
Lenz's law is a consequence of the law of conservation of	energy	momentum	mass conservation of	charge	energy
Lenz's law does not violate the principle of	conservation of charge	conservation of energy	mass conservation of momentum		conservation of energy
The direction of the induced emf during electromagnetic induction is determined by	Lenz's law	Amperes law	Maxwell law	Faaradays law	Lenz's law
Alternative current generator is basically based upon	amperes law	Lenz's law	faradays law	coulombs law	faradays law
Moving a coil in and out of magnetic field induces	force	potential difference	emf	voltage	emf
Which two values are plotted on a B-H curve graph?	reluctance and flux density	permeability and reluctance	magnetizing force and permeability	flux density and magnetizing force	flux density and magnetizing force
Faraday's law states that the:	induced voltage produces an opposition	emf is related to the direction of the current	emf depends on the rate of cutting flux	induced current produces an aiding effect	emf depends on the rate of cutting flux
What does Faraday's law concern?	a magnetic field in a coil	a magnetic field cutting a conductor	a magnetic field in a conductor	a magnetic field hystersis	a magnetic field cutting a conductor
What is hysteresis?	lead between voltage and current	lag between cause and effect	lag between voltage and current	lead between cause and effect	lag between cause and effect
What type of device consists of a coil with a moveable iron core?	solenoid	armature	read switch	relay	solenoid

UNIT - III

	Newtons		Maxwell's	Planck's	Planck's
	corpuscular	Huygen's wave	electromagnetic	quantum theory	quantum theory
Einstein's theory of photoelectric effect is based on	theory of light	theory of light	theory of light	of light	of light
The equation $E = hv$ was deduced by:	Heisenberg	de Broglie	Einstein	Planck	Einstein
De Broglie wavelength $\left(\lambda\right)$ associated with moving particles, mass, m, and		,	,	,	
velocity v is	h/mv	h/√2mEk	h/√2mqV	h/√2mkT	h/mv
Based on quantum theory of light, the bundles of energy =	hv	hλ	h/v	h/λ	hv
De Broglie wavelength (λ) associated with moving particles of K.E is	h/mv	h/√2mEk	h/√2mqV	h/√2mkT	h/mv
Wave nature is not observed in daily life because we are using	Microscopic	macroscopic			macroscopic
·	particles	particles	molecules	atoms	particles
	1021	1022	1022	1025	1022
year de Brogne proposed that the idea of dual nature.	1921	1922	1925	1925	1925
de Brogne wavelength (λ) associated with charge q and potential difference of V volte is	la /maxi	h/a/2m Elr	h/a/2m aV	h/2mlrT	h /max
difference of v voits is	11/111V	II/ VZIIIEK	n/ v2mq v	II/ V2IIIK I	11/111V
The photoelectric offect was explained by Albert Firstein by assuming			babayas as a	habayaa aa a	
that:	light is a waya	light is a partiala	bellaves as a	porticle	light is a particla
ulat.	Special Theory	light is a particle.	wave. Thomson model	Light is a	Light is a particle
The Compton Effect supports which of the following theories?	of Pelativity	Light is a wave	of the atom	narticle	narticle
Which one of the following objects, moving at the same speed, has the	of Relativity.	Light is a wave.	of the atom.	particle.	particle.
areatest de Broglie wavelength?	Neutron	Flectron	Tennis ball	Bowling ball	electron
Which of the following formulas can be used to determine the de Broglie	reation	Liceuon	Tennis ban	bowning ban	ciccuon
wavelength?	$\lambda = hmv$	$\lambda = h/mv$	$\lambda = mv/h$	$\lambda = hm/c$	$\lambda = h/mv$
The idea of dual nature of light was proposed by	Plank	De Broglie	Finstein	Maxwell	De Broglie
The field of dual hattire of light was proposed by	moving particles	moving particles	radiation	neither to	moving particles
	but not to	as well as to	(photon) but not	moving particles	as well as to
According to the de Broglie's hypothesis of matter wayes, the concepts of	radiation	radiation	to moving	nor to radiation	radiation
energy momentum and wavelength are applicable to	(photon)	(nhoton)	narticles	(photon)	(photon)
energy, momentum and wavelengur are appreade to	Finstein"s	Davisson and	particles	(photon).	Davisson and
	Photoelectric	Germer	Compton"s		Germer
Experimental verification of de Broglie's matter waves was obtained in	experiment	Experiment	Experiment	Plank	Experiment
Experimental vermeation of de Brogne's matter waves was obtained in	experiment	Experiment	Experiment	Davisson and	Davisson and
The first experimental evidence for matter waves was given by	Finstein	de Broglie	Plancks	Germer	Germer
The de Broglie wavelength wave length of a moving electron subjected to	Liniotom	de Brogne	1 millions	Germer	ounier
a notential V is	1.26/V1/2	12.26/V1/2	12.26/V	2.26/V1/2	12.26/V1/2
Compute the de Broglie wavelength of an electron that has been	1120/ 11/2	12120/ 172	12120/ 1	2120/11/2	12120/ 11/2
accelerated through a potential difference of 9.0 kV. Ignore relativists					
effects.	1.3 x 10-11 m	1.7 x 10 ⁻²² m	1.2 x 10 ⁻²⁶ m	1.7 x 10 3 m	1.7 x 10 ⁻²² m
Heisenberg's uncertainty principle states for the energy and time is	$\Delta E \Delta t = h$	$\Delta E \Delta t = h/2\pi$	$\Delta E \Delta t = 2\pi h$	$\Delta E \Delta t = 2 \pi / h$	$\Delta E \Delta t = h/2\pi$
, , , , , , , , , , , , , , , , , , ,			Triply ionized	Doubly ionized	
In which of the following is the radius of the first orbit minimum?	hydrogen atom	A tritium atom	beryllium	helium	hydrogen atom
The Kinetic energy of electron of mass (m) is given by (T)	n/2m	$n^2/2m$	2mn	$2mn^2$	$n^2/2m$
Heisenberg's uncertainty principle states for the angular momentum and	P/ =	P / 200	2p	2p	P / 200
angle is	$\Delta I \Delta \Theta = h$	$\Delta I \Delta \Theta = h/2\pi$	$\Delta I \Delta \Theta = 2\pi h$	$\Delta I \Delta \Theta = 2 \pi / h$	$\Delta I \Delta \Theta = h/2\pi$
The radius of the nucleus of any atom is of the order of m	10-8 m	10 - 14 cm	10-14m	10-10 m	10-14m
Heisenberg's uncertainty principle states for the position and momentum	10.0 m	10 Trem	10 1 111	10 10 11	10 1 111
is	$\Delta n \Delta a = h$	$\Delta n \Delta a = h/2\pi$	$\Delta n \Delta a = 2\pi h$	$\Delta n \Delta a = 2 \pi / h$	$\Delta n \Delta a = h/2\pi$
The uncertainty in the total energy (ΔE) is	$\Delta T + \Delta V$	$\Delta T - \Delta V$		AV	$\Delta T + \Delta V$
Based on the uncertainty principle, the minimum momentum (Pmin) =	h/I	ħ	ħl	1/ ħ	ħ
Who proposed the uncertainty principle?	Bohr	De Broglie	Heisenberg	Schroedinger	Heisenberg
The kinetic energy of electron in the atoms is	4 Mev	6 Mev	8 MeV	97 Mev	97 Mev
	imperfection in	imperfection in			imperfection in
According to Heisenberg's Uncertainty principle, Indeterminism in the	measuring	measurement	the interminisin	n inherent in the	measuring
measurement of canonically conjugate variables is due to	instruments	methods	auantum v	vorld itself	instruments
				1 0555 x 10 ⁻³⁴	
The value of h is	6.625 x 10 ⁻³⁴ nm	$5 \times 10^{-34} \text{ nm}$	$1.055 \times 10^{34} nm$	nm	$1.055 \times 10^{34} \text{nm}$
The mass of an electron is	$9 \times 10^{-34} \text{ nm}$	$9 \times 10^{-31} m$	$6 \times 10^{-34} \text{ nm}$	$6.625 \times 10^{-30} \text{ nm}$	$9 \times 10^{-31} m$
If we measure the position of a particle accurately then the uncertainty in	9 x 10 1111	9x 10 III	0 x 10 1111	0.023 x 10 IIII	9x 10 III
measurement of momentum at the same instant becomes	0	Infinity	1	constant	Infinity
If we measure the energy of a particle accurately then the uncertainty in	0	minity	1	constant	minuty
measurement of the time becomes	0	Infinity	1	constant	Infinity
measurement of the time becomes	macroscopic	microscopic	1	constant	microscopic
Uncertainty principle is applicable to	particles	particles	gases	liquids	particles
Principie to applicable to	Particles	Paraletes	Bases	photoelectric	Particles
Uncertainty principle can be easily understandable with help of	Dalton's effect	Compton's effect	electron effect	effect	Compton's effect
Heisenberg gave his concept in	1923	1927	1957	1933	1927

standing $h^2/2ml^2$ $h^2/2ml^2$ $h^2/2ml^2$ $h^2/2ml^2$ $h^2/2ml^2$ $h^2/2ml^2$ $h^2/2ml^2$ $h^2/2ml^2$ $h^2/2ml^2$ $h^2/2ml^2$ $h^2/2ml^2$
$position$ frequency $H\psi = E\psi$ $j^*\psi_j d\tau = 1$ standing h/i $h^2/2ml^2$ $H\psi = E\psi$
frequency $H\psi = E\psi$ $_{j}^{*}\psi_{j}d\tau = 1$ standing h/i $h^{2}/2ml^{2}$ $H\psi = E\psi$
$\begin{split} H \psi &= E \psi \\ {}_{j}^{*} \psi_{j} d\tau &= 1 \\ standing \\ h/i \\ h^{2}/2ml^{2} \\ H \psi &= E \psi \end{split}$
$\begin{split} H \psi &= E \psi \\ {}^{\prime}{}^{*} \psi_{j} d\tau &= 1 \\ standing \\ {}^{h/i} \\ {}^{h^{2}/2ml^{2}} \\ H \psi &= E \psi \end{split}$
$r_j^* \psi_j d\tau = 1$ standing \hbar/i $\hbar^2/2ml^2$ $H\psi = E\psi$
$r_{j}^{*}\psi_{j}d\tau = 1$ standing h/i $h^{2}/2ml^{2}$ $H\psi = E\psi$
$\psi_j^* \psi_j d\tau = 1$ standing \hbar/i $\hbar^2/2ml^2$ $H\psi = E\psi$
standing \hbar/i $\hbar^2/2ml^2$ $H\psi = E\psi$
standing \hbar/i $\hbar^2/2ml^2$ $H\psi = E\psi$
$\hbar^2/2ml^2$ $H\psi = E\psi$
h/2mI $H\psi = E\psi$
$\Pi \psi = E \psi$
3
$\Delta^2 \psi +$
$(\hbar^2)(E)w = 0$
Н
al quantity
ψ
arca dancity
A ²
A A ² /hu
A /IIV
A 2
Ψ
ehavior of
atter" waves
psi
leisenberg
ange of space
•
oulombic
Coulombic mass of the
Coulombic mass of the nucleus
Coulombic mass of the nucleus A^1/3
Coulombic mass of the nucleus A^1/3
Coulombic mass of the nucleus $A^{1/3}$ ost the same
Coulombic mass of the nucleus A^1/3 ost the same ong nuclear force
Coulombic mass of the nucleus A^1/3 ost the same ong nuclear force
Coulombic mass of the nucleus A^1/3 ost the same ong nuclear force nsor force
Coulombic mass of the nucleus A^1/3 ost the same ong nuclear force nsor force cchange of
Coulombic mass of the nucleus A^1/3 ost the same ong nuclear force ensor force cchange of mesons
Coulombic mass of the nucleus A^1/3 ost the same ong nuclear force ensor force cchange of mesons positively
Coulombic mass of the nucleus A^1/3 ost the same ong nuclear force ensor force cchange of mesons positively charged
Coulombic mass of the nucleus A^1/3 ost the same ong nuclear force mosor force cchange of mesons positively charged 7 times of an
Coulombic mass of the nucleus A^1/3 ost the same ong nuclear force msor force cchange of mesons positively charged 7 times of an electron 9 times of an
Coulombic mass of the nucleus A^1/3 ost the same ong nuclear force msor force cchange of mesons positively charged 7 times of an electron
Coulombic mass of the nucleus $A^1/3$ ost the same ong nuclear force msor force cchange of mesons positively charged 7 times of an electron θ times of an electron
Coulombic mass of the nucleus $A^{1/3}$ ost the same ong nuclear force ensor force (change of mesons positively charged 7 times of an electron 9 times of an electron usss defect
Coulombic mass of the nucleus $A^{1/3}$ ost the same ong nuclear force ensor force cchange of mesons positively charged 7 times of an electron 9 times of an electron usss defect
Coulombic mass of the nucleus A^1/3 ost the same ong nuclear force ensor force that force that force that forc
Coulombic mass of the nucleus A^1/3 ost the same ong nuclear force mosor force cchange of mesons positively charged 7 times of an electron 9 times of an electron isass defect less than Mass
Coulombic mass of the nucleus A^1/3 ost the same ong nuclear force mosor force exchange of mesons positively charged 7 times of an electron 9 times of an electron iass defect less than Mass ectrograph
Coulombic mass of the nucleus A^1/3 ost the same ong nuclear force ensor force exchange of mesons positively charged 7 times of an electron 9 times of an electron iass defect less than Mass ectrograph quid drop odel of the

The constant binding energy per nucleon supports	shell model	collective model	liquid drop model	unified model	liquid drop model
In the liquid drop model, the restoring force after deformation is supplied	internal fores	gravitational	anteres tension	nonvision	autors tansion
Dy The surface energy is proportional to where A is the mass number			surface tension	repuision	surface tension
The surface chergy is proportional to where <i>I</i> is the mass humber	71	11 1/5	11 2/5	low lying	low lying
	surface vibration	surface energy of		discrete energy	discrete energy
The liquid drop model could not explain satisfactorily	of the nuclei	the nuclei	all the above	levels of nuclei	levels of nuclei
	a sphere of	poly-atomic		poly-atomic	poly-atomic
	individual	molecule of	alpha and beta	molecule of beta	molecule of
According to alpha particle model, a nucleus can be considered as	nucleons	alpha particles	particles	particles	alpha particles
	nuclei other than				nuclei other than
	even-even	even-even	even-odd	odd-even	even-even
Alpha particle model could not describe the ground and excited states of	nuclides	nuclides	nuclides	nuclides	nuclides
It is seen that nuclei with nucleons are most stable, where $n=1,2,3,$	2n-1	4n-2	4n	2n	4n
The nuclei with $Z = \dots$ and \dots are found to be more than usually stable	50.20	50.40	20.40	30.40	50.20
The nuclei with $2 =$ and $$ are found to be more than usually stable. The resemblance of the nucleus with a drop of liquid led to the suggestion	50, 20	50,40	liquid drop	50,40	liquid drop
of model.	Fermi gas model	collective model	model	Shell model	model
	0	liquid drop			liquid drop
The nuclear fission can be best explained using	shell model	model	Fermi gas model	collective model	model
As per liquid drop model, if the energy of the incident neutron is less than			gamma ray		
the critical energy, takes place.	radiative capture	fusion	emission	fission	radiative capture
				Super-	
With an electric descention of liquid days and shall are del	Collections and del	II: C. J J. 1		conductivity	Collection and del
Nuclei with N or Z near the end of a shell are found in Distinct	Collective model	Unified model	optical model	model	Collective model
groups, known as islands of isomerism	three	two	seven	four	four
groups, mown as islands of isomerism	outside the	inside the	from the external	Total	inside the
Alpha particle is emitted from	nucleus	nucleus	orbits	inside a proton	nucleus
The spin of an alpha particle is	1	1-Feb	3-Feb	0	0
Alpha particle is of parity	no parity	odd	even	odd or even	even
The penetrating power of alpha particle is	large	small	medium	zero	small
There are types of beta emission The arin of the beta partials is	2 1 Eab	l 2 Esh	3	4	3 1 Eab
What is the most penetrating radiation?	1-Feb gamma	3-reb alpha	l beta	nositron	1-reb
what is the most penetrating radiation.	gamma	aipila	beta	they are equally	gamma
Which types of radiation is the most dangerous?	gamma	alpha	beta	dangerous	gamma
A particle striking on the target nucleus, is absorbed by it and a new particle	photo disintegration	radiative capture	elastic scattering	disintegration	disintegration
Emission of alpha and beta rays is an example of	photo disintegration	radiative capture	spontaneous decay	spallation reaction	spontaneous decay
The strong nuclear force is	charge dependent	both charge and s	charge indendent	size dependent	charge indendent
UNIT-V					
Which number system is not a positional notation system?	ROMAN	Binary	decimal	Hexadecimal	ROMAN
The 10's complement of the octal number 715 is	63	539	285	395	539
The 9's complement of 381 is	372	508	618	390	618
The 1's complement of the binary number 1101101 is	10	100010	10011	1101110	100010
The 2's complement of the binary number 010111.1100 is	101001.11	101000.01	10111.0011	101000.0011	101000.01
Which system has a base or radix of 10:	Binary digit	Hexadecimal digi	Decimal digit	Octal digit	Decimal digit
In which counting, single digit are used for none and one.	Decimal	Octal	Hexadecimal	Binary Counting	Binary
In which digit the value increases in power of two starting with 0 to left of t	Hexadecimal	Decimal	Rinary	Octal	Binary
Which system is used in digital computers because all electrical and electro	Hexadecimal num	Binary number	Octal number	Decimal number	Binary number
Which number is formed from a binary number by grouping bits in groups	Binary	Octal	Decimal	Hexadecimal	Hexadecimal
Which number system has a base of 16 :	Binary number sy	Octal number syst	Decimal number s	Hexadecimal num	Hexadecimal num
. Counting in hex, each digit can be increment from:	0 to F	0 to G	0 to H	0 to J	0 to F
Which number can be converted into binary numbers by converted each he	Binary number	Decimal number	Octal number	Hexadecimal num	Hexadecimal num
. How many system of arithmetic, which are often used in digital system	15	6	3	4	4
Which are the system of arithmetic, which are often used in digital system:	Binary digit	Decimal digit	Hexadecimal digit	All of these	All of these
A number system that uses only two digits, 0 and 1 is called the	AND	ыnary number sy	Decimal number s	Hexadecimal num	Decimal number s
An inverter is also called as	NOT	OR		NAND .	AND
Which gate has two or more input signals in which all input must be high to	OR	NAND	AND	NOR	AND
A NOR gate has a high output only when the input high are	low	high	some low some hi	None of the above	low
A NOR gate is logically equivalent to an OR gate followed by an	AND	NĂND	XOR	INVERTER	INVERTER
Boolean expression for NOR gate with two inputs x and y can be written as	(x+y)'	х.у	x+y	xy' + x'y	(x+y)'
Boolean expression for NAND gate with two inputs x and y can be written	xy	x+y	x'+y'	None of the above	x+y
NAND gates can be used as which type gates?	NOT	OR	AND	All of the above	All of the above
An OR gate can be imagined as	switches connecte	switches connect	MOS transistors c	None of the above	switches connected

Which gate is known as Universal gate?	NOT	AND	NAND	OR	NAND
Any Boolean expression can be implemented using	only NOR gates	only NAND gates	only AND gates	only XOR gates	only NAND gates
Which digits are used to represent high & low level in digital circuits?	10	01	00	11	10
Complement of a Variable is represented by over the Letter.	slash	bar	dot	hyphen	bar
What is the value for 1+1 in Boolean Addition?	2	10	1	0	1
Multiplication in Boolean algebra is the same as the function	AND	OR	NOT	NOR	AND
The operation of an inverter is	Complement Inpu	add +1 to input va	add -1 to input va	minus input varial	Complement Inpu
is same as Inversion.	complementation	exclusive	AND	OR	complementation
The output of an AND gate is 1(High) only when both inputs are	10	0 0	11	0 1	11
The output of an OR gate is 1(High) only when any one or more of the inpu	high	low	medium	high	high
NAND is a complement of	NOT	AND	OR	NOR	AND
NOR is a complement of	NOT	AND	OR	NAND	OR
Commutative Law of Addition of 2 variables is written as	A+B=B+A	B+A=B+A	A+B=A+B	AB=AB	A+B=B+A
Commutative Law of Multiplication of 2 variables is written as	AB=BA	BA=BA	AB=AB	AB=A+B	AB=BA
Associative law of addition is stated as	$\mathbf{A} + (\mathbf{B} + \mathbf{C}) = (\mathbf{A} - \mathbf{C})$	(A + B) + C = (A + B)	(A+B) C = A (B+	AB+C = A+BC	A + (B + C) = (A +
Associative law of multiplication is stated as	A (BC)=(AB) C	ABC=ACB	AB = BA	ABC=CAB	A (BC)=(AB) C
Distributive Law is stated as	A (B+C) = AB + A	AB + AC = ABC	AB + C = AC + B	(AB) + C = AB +	A (B+C) = AB + I
In Boolean algebra $A + 0 = ?$	А	0	-A	1	A
In Boolean algebra $A + 1 = ?$	А	0	-A	1	1
In Boolean algebra A .0 =?	А	0	-A	1	0
In Boolean algebra A .1 =?	А	0	-A	1	А
In Boolean algebra A +A =?	А	0	-A	1	A
In Boolean algebra $A + \overline{A} = ?$	А	0	-A	1	1
In Boolean algebra A .A =?	А	0	-A	1	А
In Boolean algebra A. Ā =?	А	0	-A	1	0
In Boolean algebra A + AB =?	А	0	-A	1	А
In Boolean algebra A + ĀB =?	A	0	В	A + B	A + B
In Boolean algebra $(A + B)(A + C) = ?$	A	0	В	A+BC	A +BC
The Complement of a Sum =	Sum of the Comp	Product of the Co	Complement of th	Sum	Sum of the Compl
Sum of Product expression is	two or more AND	two or more OR f	two or more AND	two or more OR f	two or more AND
Product of Sum expression is	AND of two or r	OR of two or mo	AND of two or m	OR of two or mos	AND of two or n
Boolean expression can be simplified using	Associative law	rules and laws of	Distributive law	None of the above	rules and laws of I
Sum of products expression is implemented with	AND-OR logic	OR-AND logic	NAND logic	NOR logic	AND-OR logic
The output of an exclusive - OR gate is HIGH when inputs have	Same state	Opposite State	Complement State	Alternate State	Opposite State
The output of an exclusive - NOR gate is HIGH when inputs have	Same state	Opposite State	Complement State	Alternate State	Same state
Any Logic Expression can be implemented using	NAND / NOR	AND / OR	X-OR / OR	NAND / AND	NAND / NOR
What are the common internal gate failures?	open input or outp	open input or outp	open input or outp	open input or outp	open input or outp
The interconnecting paths represent a common electrical point is known as	Cell	Node	Point	Junction	Junction
The coincidence circuit is otherwise called as	Exclusive-NOR	Exclusive - OR	Exclusive - AND	Exclusive - NAN	Exclusive - OR
NAND & NOR gates are called as	Universal Gates	Functional gates	Logical Gates	Combinational ga	Universal Gates
Sum of products can be done using	demorgan's theore	algebric theorem	demorgan's postul	algebric postulate	demorgan's theore
Two variables will be represented by	eight minterms	six minterms	five minterms	four minterms	four minterms
The output of AND gates in SOP is connected to	NOT gates	OR gates	AND gates	XOR gates	OR gates
The minterms in a karnaugh map are marked with a	У	х	0	1	1
Small circle in a NAND circuit represents	input	bits	output	complement	complement
Tabulation method is adopted for giving simplified function in	subtraction of sun	sum of products	product of sums	subtraction of pro-	product of sums
Each square in a karnaugh map represents a	points	values	minterm	maxterm	minterm
Sum of products can be done using	demorgan's theore	algebric theorem	demorgan's postul	algebric postulate	demorgan's theore