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Course Objectives
This course enables the students to learn

e The manipulation skills in the use of Cauchy’s theorem.

e Fundamental concepts of complex variable theory.

e To develop the skill of contour integration to evaluate complicated real integrals via

residue calculus.
e The development of functions of one complex variable.

Course Outcomes (COs)
On successful completion of this course, students will be able to
1. Explain the role of the Cauchy-Riemann equations.
2. Evaluate complex contour integrals and some of their consequences.
3. Describe the convergence properties of a power series.
4. Determine the Taylor series or the Laurent series of an analytic function in a given
region.
5. Know the basic properties of singularities of analytic functions.

UNIT I

CONFORMALITY

Conformal mapping-Linear transformations- cross ratio- symmetry- Oriented circles-families
of circles-level curves.

UNIT 11

FUNDAMENTAL THEOREMS ON COMPLEX INTEGRATIONS

Complex integration-rectifiable Arcs- Cauchy’s theorem for Rectangle and disc-Cauchy’s
integral formula-higher derivatives.

UNIT 111
HARMONIC FUNCTIONS

Bachelor of Science, Mathematics, 2019, KAHE Page 1



COMPLEX ANALYSIS Syllabus | 2019-2021

Harmonic functions-mean value property-Poisson’s formula-Schwarz theorem, Reflection
principle-Weierstrass theorem- Taylor series and Laurent series.

UNIT IV

ENTIRE FUNCTIONS

Partial Fractions- Infinite products — Canonical products-The gamma function — Stirling’s
Formula — Entire functions — Jensen’s formula.

UNIT V

CONFORMAL MAPPINGS

Riemann Mapping Theorem — Boundary behaviour — Use of Reflection Principle — Analytical
arcs — Conformal mapping of polygons- The Schwartz - Christoffel formula.

SUGGESTED READINGS

1. LarsV .Ahlfors., (1979). Complex Analysis, Third edition, Mc-Graw
Hill Book Company, New Delhi.
2. Ponnusamy, S., (2005). Foundation of Complex Analysis, Second edition,

Narosapublishing house, New Delhi.

3. Choudhary, B., (2005). The Elements of Complex Analysis ,New Age International Pvt.
Ltd ,New Delhi.

4. Vasishtha, A. R., (2014). Complex Analysis, Krishna Prakashan Media Pvt. Ltd., Meerut.

5. Walter Rudin., (2017) .Real and Complex Analysis,3™ edition, McGraw Hill Book
Company, New York.
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Subject Name: Complex Analysis Sub.Code: 19MMP202
Semester: 11 Class: | M. Sc Mathematics
S.No Lecture Topics to be Covered Support Material/ Page Nos
Duration
Period
UNIT-I
1. 1 Conformal Mapping- Definition and S1:Chapter-3 Pg.No:-73-76
theorems
2. 1 Linear Transformation - Definition and S1:Chapter-3 Pg.No:-76-78
theorems
3. 1 Cross ratio- theorems S1:Chapter-3 Pg.No:-78-80
4. 1 Symmetry S3:Chapter-9 Pg.No:-139-142
5. 1 Oriented Circles- theorems S1:Chapter-3 Pg.No:-83-84
6. 1 Families of Circles- theorems S1:Chapter-2 Pg.N0:84-87
7. 1 Level Curves S1:Chapter-3 Pg.N0:-89-93
1 Recapitulation and Discussion of possible
questions

Total No of Hours Planned For Unit 1=8

1 1 Introduction to Complex Integration and S1:Chapter-4 Pg.No:-101-103
Definite integrals

2. 1 Rectifiable Arcs-Problems S1:Chapter-4 Pg.No:-104-109

3. 1 Cauchy theorem for Rectangle and Disc S1:Chapter-4 Pg.No:-109-110

4 1 Cauchy theorem for Disc S1:Chapter-4 Pg.No:-112-114

> ! Cauchy’s integral formula S1:Chapter-4 Pg.No:-114-117
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6. 1 Theorems for higher Derivatives S1:Chapter-4 Pg.No:-120-125
7. 1 Recapitulation and Discussion of possible
questions

Total No of Hours Planned For Unit I1=7

UNIT-II
1 1 Introduction to Harmonic function S1:Chapter-4 Pg.No:-162-165
2. 1 Geometric Interpretation and and Mean S1:Chapter-4 Pg.No:-165-166
value property
3. ! Poisson Formula S1:Chapter-4 Pg.No:-166-168
4 ! Schwarz theorem and Problems S1:Chapter-4 Pg.No:-168-171
> ! Geometric Interpretation of Poisson S1:Chapter-4 Pg.No:-172-174
Formula and Reflection Principle
6. ! Weierstrass theorem S1:Chapter-4 Pg.No:-174-179
7 1 Tayler Series and Laurent’s Series- S1:Chapter-4 Pg.No:-179-186
Problems
8. 1 Recapitulation and Discussion of possible
questions

Total No of Hours Planned For Unit 111=8

UNIT-IV
1 1 Theorems on Partial Fraction S1:Chapter-5 Pg.No:-187-190
2. 1 Infinite Product S5:Chapter-15 Pg.No:-298-299
3. 1 Problems of Canonical Product S1:Chapter-5 Pg.No0:-193-197
4 1 Gamma Functions and their products S1: chapter -5 Pg.N0:198-200
S 1 Stirling’s Formula S1:Chapter-5 Pg.N0:-201-206
6. ! Entire Function and Jensen’s Formula S1: chapter -5 Pg.N0:207-208
7. 1 Recapitulation and Discussion of possible
questions

Total No of Hours Planned For Unit V=7

UNIT-V
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Batch

L 1 Riemann Mapping theorem S2: chapter -11 Pg.N0:398-400
2. 1 Boundary behavior and Use of Reflection | S1:Chapter-6 Pg.No:232-234

Principle
3 1 Analytical Arcs and Conformal Mapping of | S1:Chapter-6 Pg.N0:234-235

Polygon
4 1 The Schwarz-Christoffel Formula S1: chapter -6 Pg.N0:-236-238
> ! Mapping on rectangle S1: chapter -6 Pg.N0:238-240
6. ! The triangle function of Schwarz S1:Chapter-6 Pg.N0:240-241
! ! Recapitulation and Discussion of possible

questions
8. ! Discuss on Previous ESE Question Papers
9. ! Discuss on Previous ESE Question Papers
10. 1 Discuss on Previous ESE Question Papers

Total No of Hours Planned for unit V=10
Total Planned Hours-40

SUGGESTED READINGS

1.

2.

Lars V .Ahlfors., (1979). Complex Analysis, Third edition, Mc-Graw Hill
Book Company, New Delhi.
Ponnusamy, S., (2005). Foundation of Complex Analysis, Second edition,

Narosapublishing house, New Delhi.
Choudhary, B., (2005). The Elements of Complex Analysis ,New Age International Pvt. Ltd ,

New Delhi.
Vasishtha, A. R., (2014). Complex Analysis, Krishna Prakashan Media Pvt. Ltd., Meerut.

Walter Rudin., (2017) .Real and Complex Analysis,3™ edition, McGraw Hill Book
Company, New York.
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UNIT I
SYLLABUS

Conformal mapping-Linear transformations- cross ratio- symmetry- Oriented circles-
families of circles-level curves.

Introduction:

A complex number is a number that can be expressed in the form a + bi, where aand b are real
numbers, and i is a solution of the equation x2= -1, which is called an imaginary number because
there is no real number that satisfies this equation. For the complex number a + bi, a is called

the real part, and b is called the imaginary part. Despite the historical nomenclature "imaginary”,
complex numbers are regarded in the mathematical sciences as just as "real" as the real numbers,
and are fundamental in many aspects of the scientific description of the natural world

PROPERTIES:
1. Commutative law for addition : -, + -, =2, + Z,.
2. Associative law for addition : Z, +(Z,+ I, )=(2,+ 2, )+ ;.
3. Additive identity : There is a complex number -' such that z+z,=z for all

complex number z . The number Z, is an ordered pair (0.0).

4. Additive inverse : For any complex number - there is a complex number —z such
that z+(—z)=(0.0). The number -z is (—x.—-v).

5. Commutative law for multiplication : -, =Z,Z,.

6. Associative law for multiplication : 7, (2= )=(52.) .

7. Multiplicative identity : There is a complex number z' such that zz'=:z for all

complex number - . The number ="' is an ordered pair (1.0).

8. Multiplicative inverse : For any non-zero complex number = there is a complex

X -y

'=(1.0). The number z7 is [

number =~ such that zz .
\ X+ 4y

0 .
-
/
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9. The distributive law : Z, (Z, + 2, )= 5,2, + 5,2,
If we write xfor the complex number (x.0). This mapping x —(x.0) defines a field
isomorphism of | into || so we may consider || as a subset of
Ifweput i=(0.1).then z=(x.¥)=(x.0)+(0.¥)=(x.0)+(0.1)(».0)=x+iv.
Let z=x+iv. x,yel .then x and y are called the real and imaginary parts of - and denote
thisby x=Rez. y=Imz.If x=0. the complex number = is called purely imaginary and if
v=0. then - is real. Note that zero is the only number which is at once real and purely

imaginary. Two complex numbers are equal iff they have the same real part and the same

imaginary part.
Timaginarj aixis
(0yY)  —————- * 7=(x y)=xtiy
[
1
]
|
. -
—_—
0 (x,0) real axis

Definition 2 Let z=x+iy, x,y <l then the complex number x—iy is called the conjugate

of - and is denoted by z.
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Following are the basic properties of conjugates.

1. Re:=_}' and Imz=——,

s .

| o]

.z isrealiff z=z.

3. z+z,=7; + Z,
4. z7z,=12 Z,
- o
5 L :: =L if __: =0
La ) Lo
6. I=:
Definition 3 Let Z=x+7v. x.yel then modulus or absolute value of = is a non-negative

1

and is given by |z|=(x"+37)? . The number |z| is the distance

real number denoted by

between the origin and the point (x.y).

Following are the basic properties of Modulus.

1. |:|:=:?

e e 1 =

3. 12 =|:_—|1'f_-:_=-ﬂ.
4 25,=772

6. |:|;|=|Re{:}|£|:| and |‘1'|=|h11{::]|£|:|.
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7. |+l =|a]+ =]
8. |:1—:3|2|:1|—|:3|.
9.Let z; =X, +1),. Z, =X, + 1y, then

il

|:1 —::| =|( X=X )+i(y—» )| =|(x,-x,) +(»—»,) > which is the distance between the

points (x,.1;).(x,.¥, ). Hence distance between the points z; and z, is given by | Z,=Z

L9

Polar representation of complex numbers
Consider the point z=x+jv in the complex plane [ . This point has polar co-
ordinates (7.6) where x=rcosf and y=7sinf.Thus z=x+iv=r(cosf+isind).

1
Clearly r= |:| = x* +v7)? which is magnitude of the complex number and & ( undefined if

- =0 ) is the angle between the positive real axis and the line segment from 0 to - and is

called the argument of - . denoted by f&=arg:-.

We note that the value of argument of = is not unique. If §=argz, then 8+27n.
where » is an integer is also arg . The value of arg = that lies in therange —7 < 8 < 7 is

called the principal value of arg:-.

If z,.z, are any two non-zero complex numbers then

1. argz, =—argz;

!u

argz, 7, =arg I +arg z, .

3. arg) =+ =argz —argz,.
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Timaginar]r aixis

(0.¥) ={x,y)=x+iy
=rcos@+irsin®
—_—
0 real axis

Conformal mapping

Let 5 be a domain in a plane in which x and v are faken as rectangular Cartesian co-ordinates.
Let us suppose that the functions w(x, v) and v(x ¥) are continuous and possess continuous
partial derivatives of the first order at each point of the domain 5. The equations
u=u(x.y). v="u(xy)

set up a correspondence between the points of S and the points of a set T in the (u, v) plane. The
set T is evidently a domain and is called a map of 5. Moreover, since the first order partial
derivatives of u and v are continuous, a curve in 5 which has a continuously tuming tangent is
mapped on a curve with the same property in T. The correspondence between the two domains
15 not, however, necessarily a one-one correspondence.

For example, if we take u = x°, v =y’ then the domain x* + ¥ < 1 is mapped on the triangle
bounded byu=10, v=0, u+ v=1, but there are four points of the circle corresponding to each
point of the triangle.

2.1 Definition : A mapping from S to T is said to be isogonal if it has a one-one transformation
which maps any two intersecting curves of S into two curves of T which cut at the same angle.
Thus in an 1sogonal mapping. only the magnitude of angle 1s preserved.

An isogonal transformation which also conserves the sense of rotation is called conformal
mapping. Thus in a conformal transformation, the sense of rotation as well as the
magnitude of the angle is preserved.

The following theorem provides the necessary condition of conformality which briefly
states that if f(z) is analytic, mapping is conformal.
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2.2. Theorem : Prove that at each point z of a domain D where f{z) 1s analytic and f '(z) = 0. the
mapping w = f(z) is conformal.

Proof. Let w = f(z) be an analytic function of z. regular and one valued in a region D of the
z-plane. Let z; be an interior point of D and let C; and C, be two continuous curves passing
through z; and having definite tangents at this point. making angles ;. o3, say. with the real
axis.
We have to discover what is the representation of this figure in the w-plane. Let z; and z; be
points on the curves C; and C; near to z;. We shall suppose that they are at the same distance r
from z;. s0 we can write _

z1 — 2 =1 7, — 75 = re'®.
Then asr — 0. §; — ;. 6, — o, The point z; corresponds to a point Wy in the w-plane and z;
and z, correspond to point w; and w, which describe curves C'y and C,". making angles §; and £,
with the real axis.

1

YA
YA
Let wi— wo=p; €® . Wy —wy=py e,
where pp.pr =0 = . 02— P1. P2
respectively.
MNow, by the definition of an analytic function,
LW, —W
lim———=2 =f'
. —— (za)

Since f '(zg) = 0, we may write it in the form Re' and thus

ple'*'
rel®

= h‘m% —R=[f'(z) |

lim

=Re” ie. ljm%e"“"ﬁ'” =Re”

and lim (g — B;) =L
ie. Lim g — lim 8= 14
ie. |31 — =LA == ﬁl =qp+ A

Similarly, By =00 + 1 .
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Hence the curves C') and C'; have definite tangents at wy making angles o; + & and oy = L

respectively with the real axis. The angle between C') and C'; 15
Pr—Pa=(m+2)—(m-A)=o1—-m

which is the same as the angle between C; and C;. Hence the curve C;" and C,' intersect at the

same angle as the curves Cp and C;. Also the angle between the curves has the same sense in the

two figures. So the mapping is conformal.

Special Case : When f '(z;) = 0. we suppose that f "(z) has a zero of order n at the point z;.
Then in the neighbourhood of this point (by Tayvlor's theoren)

fiz) = flzo) +a(z—z)" ' +.... where a =0

Hence Wy — Wy =a[’z—zﬂ“__1+

ie. v ,Eih =|a|]ﬂ_lel[‘5_m_l.]5']]+_"

where G=arga

Hence limfy=lm [d+{n+1)&]=5+{n+1)m 3 15 constant
Similarly limdgn =5+ (n+1)az

Thus the curves C'y and C'; still have definite tangent at wy, but the angel between the fangents is
lim(dn — d1) = (n+ 1) (o2 — o)
Thus, the angle is magnified by (n + 1).

Also the linear magnification, R=1lim 22 =0 v lim BL =R =|f'(z)=0
I I

Therefore, the conformal property does not hold at such points where f '(z) =10

A point zy at which £ (zy) =0 is called a critical point of the mapping. The following theorem is
the converse of the above theorem and is sufficient condition for the mapping to be conformal.

2.3. Theorem : If the mapping w = f(z) is conformal then show that f(z) is an analytic function
of z.

Proof. Letw=1{z) =u(x y) +1iv(x. V)

Here, u=nu(x. y) and v = v(x y) are continuously differentiable equations defining conformal
transformation from z-plane to w-plane. Let ds and dc be the length elements in z-plane and
w-plane respectively so that

ds’ =dx’ +dy’. dot=du’+dv’

Since u, v are functions of x and } therefore

cu _ev. eV .
du——dx+—}d} d‘l.—gxcbz 5?_d3

|C'|.- ﬂr':
oL

. c'l.r"- fn c‘l.r"
(@) (o e ()

dd = dvt = | LU
-:x

Prepared by:Y.Sangeetha,Assistant professor,Department of Mathematics, KAHE Page 7/26



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS
COURSE CODE:18MMP201 UNIT -1 BATCH:2018-2020

+7|cucu+c’v§‘ dv @)
xéy oxéy) TR
Since the mapping is given to be conformal. therefore the ratio do” - ds® is independent of
direction, so that from (1) and (2). comparmg the coefficients. we get

lcu _{ﬁ‘l- |Cul+:c:¥| C_uﬂ_ﬂﬂ
\ex) _\cy \€y) X2y oxcy
1 - 1 - 0
SRRl Toend
= |2:; 5] =|‘Z_—‘;_| —%' -0)
and Bape OV g @
cXcy cXcy
Equations (3) and (4) are satisfied if
LR S A1 o)
cX ¢y cX cy
ar o0 Bv.on _(6)
cX cy cX ¢y

Equation (6) reduces to (5) if we replace v by —v 1.e. by taking as image figure obtained by the
reflection in the real axis of the w-plane.

Thus the four partial derivatives u,. uy. Vy Vy xist. are continuous and they satisfy C-R equations
(5). Hence f{z) is analytic.

2.4. Remarks
(1) The mapping w = f{z) 15 conformal in a domain D if it is conformal at each point of the
domain.

(i)  The conformal mappings play an important role in the study of vanous physical
phenomena defined on domains and curves of arbitrary shapes. Smaller portions of these

domains and curves are conformally mapped by analytic function to well-known domains
and curves.

2.5. Example : Discuss the mappingw= Z.

Solution. We observe that the given mapping replaces every point by its reflection in the real
axis. Hence angles are conserved but their signs are changed and thus the mapping is isogonal
but not conformal. If the mapping w = Z is followed by a conformal transformation, then

resulting transformation of the form w = f{Z) is also 1sogonal but not conformal, where f(z) is
analytic function of z.
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2.6. Example : Discuss the nature of the mapping w = z° at the point z = 1 + i and examine its
effect on the lines Im z = Re z and Re z = 1 passing through that point.

Solution. We note that the argument of the derivative of f(z) = Zatz=1+iis
[arg 2z];=1-1=arg(2 + 21) = /4

Hence the tangent to each curve through z = 1 + 1 will be tumned by the angle 71/4. The

co-efficient of linear magnification is [f'(z)|atz=1+1.1e |2 = 2i|=2 J2 . The mapping is
1 1 2 - -
W=z =X -y +2Ixy=u(X. V) +1v(X, V)

We observe that mapping is conformal at the pm':ut z =1 + i, where the half lines v=xvz0
and x = 1(v = () miersect. We denote these half lines by C; and C,, with posifive sense upwards
and observe that the angle from C; to C; is /4 at their point of intersection. We have

u=x‘}'—jrj._ v=2xy

The half line C; 15 transformed into the curve C'; given by
u=0, v=2y(yz0)

Thus C'; 15 the upper half v = 0 of the v-axis.

The half line C; is transformed into the curve C'; represented by

u=1-v, v=2y (y20)
Hence C'1 is the upper half of the parabola v = —4(u - 1). We note that, in each case, the
positive sense of the image curve is upward.

For the image curve C';,
dv _ dv/dy

T g g

G Gudy -2y v
In particular % = -1 when v = 2. Consequently, the angle from the image curve C'; to the

image curve C'y at the point w=f{1 +1) = 21 1s 1, as required by the conformality of the

4
mapping there.
}r X W \:‘1
A #E:'_ o » A
5/ C‘%?-a.;: ;
1+
/2 G |52 C5
O 1 X o 1 u

Note. The angle of rotation and the scalar factor (linear magnification) can change from point to
point. We note that thev are 0 and 2 respectively, at the point z = 1, since £ (1) = 2, where the
curves Cz and C'; are the same as above and the non-negative x-axis (Cs) is transformed into the
non-negative u-axis (C's).
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2.7. Example. Discuss the mapping w=2z", where a is a positive real number.

Solution. Denoting z and w in polar as

z=1e°, w=pe", the mapping gives p=1". ¢ =a6b.
Thus the radi vectors are raised to the power a and the angles with vertices at the origin are
mmltiplied b the factor a. If a = 1, distinct lines through the onigin in the z-plane are not mapped
onfo distinct lines through the onigin in the w-plane, since, e.g. the straight line through the onigin

at an angle % to the real axis of the z-plane is mapped onto a line through the origin in the

w-plane at an angle 27 to the real axis i1.e. the positive real axis itself. Further o az*”,
which vanishes at the origin if a > 1 and has a singularity at the origin if a < 1. Hence the
mapping is conformal and the angles are therefore preserved. excepting at the origin Similarly
the mapping w = e” is conformal.

2.8. Example. Prove that the quadrant |z |<1. O <argz < } is mapped conformally onto a

domain in the w-plane by the transformation w =

(z+1)*’
Solution. If w=1(z) = ﬁ . then f ' (z) 1is finife and does not vanish in the given quadrant.
z+1)"

Hence the mapping w = f{z) is conformal and the quadrant is mapped onto a domain in the w-
plane provided w does not assume any value twice i.e. distinct points of the quadrant are mapped
to distinct points of the w-plane. We show that this indeed is true. If possible, let
4 -+

(z,+1)}  (z,+1)°
Then, since z; = z;. we have (z; - z3) (z; =22+ 2)=0

—=z1+z3+2=01e 2z =-2z;-2. Butsince z; belongs to the quadrant. —z; — 2 does not. which
confradicts the assumption that z; belongs to the quadrant. Hence w does not assume any value
twice.

LINEAR TRANSFORMATION:

, Where z; = z; and both z; and z; belong to the quadrant in the z-plane.

Bilinear Transformation. The transformation

aZ+b

Cz+d_ad—bc1—:{}

W=
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where a, b, ¢, d are complex constants, is called bilinear transformation or a linear fractional
transformation or Mébius transformation. We observe that the condifion ad — be = (0 i3 necessary
for (1) to be a bilinear transformation, since if

ad —bc =0, then E =% and we get

W= M:i 1.e. we get a constant function which is not
clz+d/c) ¢

linear.
Equation (1) can be written in the form

cwz+dw—-az—-b=0 2:(2)

Since (2) is linear in z and linear in w or bilinear in z and w, therefore (1) is termed as
bilinear transformation.

When ¢ = 0, the condition ad — bc # 0 becomes ad # 0 and we see that the transformation
reduces to general linear fransformation. When ¢ = 0, equation (1) can be written as

w= a(z+b/a) =3tl’b;"a—d-"cJ

c(z+d/c) ¢ z+d/c
a bc-ad 1
==t———= €
c c: z+d/c @
We note that (3) is a composition of the mappings
z;=z+2_ z:=i. z;=bc_,ad23
c zZ, ¢
and thus we get w= % +z3.
The above three auxiliary transformations are of the form
W=ZzZ+0 w=%. w=[z .4

Hence every bilinear transformation is the resultant of the transformations in (4).

But we have already discussed these transformations and thus we conclude that a bilinear
transformation always transforms circles and lines into circles and lines because the
transformations in (4) do so.
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From (1). we observe that if c =0, a. d = 0, each point in the w plane is the image of one and

only one point in the z-plane. The same is true if ¢ = 0, except when z = —% which makes the
denominator zero. Since we work in extended complex plane. so in case z = —%. w = o and

thus we may regard the point at infinity in the w-plane as corresponding to the point z = —% in

the z-plane.
Thus if we write
T@) =w= 20 ad—be = 0 6
cz+d
Then T(w)==, ifc=0
and T(x)=%, T|—-g—==‘x, ifc=0

Thus T is continuos on the extended z-plane. When the domain of definition is enlarged in this
way. the bilinear transformation (5) is one-one mapping of the extended z-plane onto the
extended w-plane.

Hence, associated with the transformation T. there is an inverse transformation T~' which is
defined on the extended w-plane as
T™!(w) =z if and only if T(z) = w.
Thus. when we solve equation (1) for z. then
i —BE+0.

e .ad—-bc=0 ...(6)
and thus
Tiw)=z=—"9*P 4 _be=0
cCWw—a

Evidently T is itself a bilinear transformation, where
Tlx)=x ifc=0

and T‘1|E.'|=x_. T_I{I)=—E__iftaﬁﬂ
c) c

From the above discussion, we conclude that inverse of a bilinear transformation is bilinear. The

points z =—% (w=xjandz=ox{w= %) are called critical points.
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a ‘_az+bub
Hez+d) ™ (aa+bc)z+(bd+ab)

W= eb) . (Ga+d,0z+(d,d+cD)
il I"dz
Lcz+d
Taking A=aa+bic. B=bid+aib.
C =cia+dic.c. D=did+cb. we get
W= Az+B
Cz+D
Also AD - BC = (aja+byc) (did + ¢;b) — (byd + a;b) (cja + dic)
= (a;ad;d + ajac;b + bycd;d + byee;b)
— (bidcia + bid dic = aibeia + arbdic)
= ajadid = bibcic — bidcia — aibdic
=ad(a;d; — byc;) — be(azd; — bicy)
= (ad —bc) (ard1 — bic1) =0
__Az+B o
Thus Wl—e—z—:ﬁ‘. AD-BC=0

Is a bilinear transformation.

This bilinear transformation is called the resultant (or product or composition) of the
bilinear transformations (1) and (2).

The above property is also expressed by saving that bilinear transformations form a
group.

1.2. Theorem. Composition (or resultant or product) of two bilinear transformations is a
bilinear transformation

Proof. We consider the bilinear transformations

_az+b

= a- ad-bc=0 (1)
r+b

and W1=a]“_ L, adi-bier =0 )
c,w+d,

Putting the value of w from (1) in (2), we get

1.3,  Definitions. (1) The points which coincide with their transforms under bilinear

transformation are called its fixed points. For the bilinear transformation w = :z::
az + b B _I:].}

cz+d

points are given by w=zie z=
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= (1-K)zz-(p-qK)z-3-3K)z=K'q3-pp

= ZE_:’p—qK" 7 p—ﬁK; o IR0 —K'\‘q?“ =0 -2
{ 1-K° ) 1-K- 1-K-

Equation (2) 1s of the form
ZZ+bz+bz+c=0 (c is being a real constant)

which always represents a circle.
Thus equation (2) represents a circle if K = 1.
If K =1. then it represents a straight line

lz-pl=|z—-q

Further. we observe that in the form (1). p and q are inverse points w.r.t. the circle. For this. 1f

the circle is |z — zp| = p and p and q are inverse points w.r.t. it, then
z-2zy =pe®, p—zy=qe*.

_ P i
q-z ="—¢"
Therefore.
|z—p| _ | pe® —ae® =i|pe‘6 —ae®
|z—q| pei® _ie'.z. plae‘e—pe”'|
a

Since (1) is a quadratic in z and has in general two different roots, therefore there are
generally two invariant points for a bilinear transformartion.
(it) If 2. 7. 73. 74 are any distinct points in the z-plane, then the ratio
(z, -2z, )(z5 —24)
(z, -z, )z, —2,)
15 called cross ratio of the four points z), z;, z;. 4. This ratio is invanant under a bilinear
transformation 1.e.
(w1, wa, W3, Ws) = (21, Z2. Z3. Z4)

(Z1. 23, 273, 24) =

1.4. Transformation of a Circle. First we show that if p and q are two given points and K 15 a
constant, then the equation

Z—p
= 1
h-K M
represents a circle. For this, we have

[z - pf =Kz~ g

(z-p) {E}=F{{z—q} (z—q)
= (z—pJ{E—EJ=K‘£z—qJ z-q
— ZZ-Pz —pZ+pP=K(zZ-qz-qZ+qq)
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_ |p[cos€a—isinﬁj—a{cos.h +isi.ﬂ.'-'_j| _a
|a(cost +isinB) —p(cosh +isinl)[ —  p

_ K|[pccrs'3 - acos.’-‘.)—i[psiﬂﬂ—asiﬂhﬂ
|[:1+:05Ea - pms.’-‘.)—i[asmﬁ—psmhﬂ

o

_x (pcosf—acosh)’ +(psinf—asini)’ o
(acosB—pcosh)® +(asinf - psini)’

=K where K =1, sincea=p

Thus, if p and ¢ are inverse points w.r.t. a circle, then its equation can be written as

%{ =K. EK=1. Kbeing a real constant.

1.5 Theorem. In a bilinear transformation, a circle transforms into a circle and inverse points
transform into inverse points. In the particular case in which the circle becomes a straight line,
inverse points become points symmetric about the line.

Proof : We know that E‘ = K represents a circle in the z-plane with p and g as inverse

points, where K =1. Let the bilinear transformation be

az+b <o that . dw-b

W=
cz+d —CW-+a

Then under this bilinear transformation, the circle transforms into

dw-b
—cw=a ? K — d“'—b—P':q—c“’H:K
dw —b _q dw—b—q{a—cwﬂ
—cw—+a
w_2p+b
|w(d +cp)—(ap +b) K o cp+d =K|+:q—d| )
|w(d+cq)—(ag+b) - w_2th lcp+d|
cg+d

The form of equation (1) shows that it represents a circle in the w-plane whose inverse points are
ap+b ag+Db

cp+d and cg+d’
inverse points transform into the inverse points.

Thus, a circle in the z-plane transforms into a circle in the w-plane and the

cg+d
cp+d
ap+b ag+b

of the points —— and
P cp+d cq+d
particular case, a circle in the z-plane transforms info a straight line in the w-plane and the

inverse points transform into points svmmetrical about the line

Alsoif K =1, then equation (1) represents a straight line bisecting at right angle the join

s0 that these points are symmetric about this line. Thus in a
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1.6. Example. Find all bilinear transformations of the half plane Im z = 0 into the unit circle
|w|£1.

Solution. We know that two points z. Z. symmetrical about the real z-axis(Im z = 0) correspond
to points w., % inverse w.r.t. the unit w-circle. (Nv‘ % =1). In particular. the origin and the /(Com L

point at infinity in the w-plane correspond to conjugate values of z.
Let

_az+b _ a_( z+b/a) @
cz+d ¢ (z+d/c)
be the required transformation.

w

Clearly ¢ = 0, otherwise points at c in the two planes would correspond.
Also, w = 0 and w = = are the inverse points wrt |w|=1 Smcem (1) w=0 w=x
correspond respectively to z = —%. z= —%. therefore these two values of z-plane must be

conjugate to each other. Hence we may write

2=a,—£=“&“ so that
a c

N

= 0)
Z—0

a
W = —
C

The point z = 0 on the boundary of the half plane Im z > 0 must correspond to a point on
the boundary of the circle | w | =1, so that

1=|w|=[3j0-g_p
cl|0-2| |[c
= %=e“' =  a=ce" where . is real.
Thus. we get
pf Z—0
w=e — ]
\z=% | 3)

Since z = o gives w = 0. o must be a point of the upper half plane ie. Im o > 0. With this
condition, (3) gives the required transformation. In (3). if z is real. obviously | w|=1 and if
Im z > 0, then z is nearer to « than to @ and so | w | < 1. Hence the general linear
transformation of the half plane Imz > 0 on the circle | w | £ 1 is

w=e"| % |. Ima>0.

1.7. Example. Find all bilinear transformations of the unit | z | £ 1 into the unif circle | w| 2 1.
OR
Find the general homographic transformations which leaves the unit circle invariant.

Solution. Let the required transformation be
i az—b_g(z—b,"a) 1
cz+d c(z+d/c)

w
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Here. w= 0 and w = x_ correspond to inverse points

Z=——_ Z=——, 50 We may write
a ¢
——11=a, —9-=: such that | o | < 1.
a c o
al z—ao |\ ad| z-a ) ;
So. w= —f - '——z ’ 2:(2)

The point z = 1 on the boundary of the unit circle in z-plane must correspond to a point on the
boundary of the unit circle in w-plane so that

1=|\v:= El—a = ac
c -1 C
ora®=c ei:", where A is real.
Hence (2) becomes,
. r -0 -
w=et | —— | la|=1 E)]
This 15 the required transformation for if z = e® o =1e* then
e —het
w |= tfj.:ﬂ_g,] _1 =

If z=1", wherer = 1, then
Z-af-|Tz-1P
=1 —21b cos(8 — f) + b* — {b’r* — 2br cos(6 - B) + 1}
= -11-b)=0

and so
[

ie. w1
Hence the result.

1.8. Example. Show that the general transformation of the circle | z | £ p into the circle
w| £p'1s

v«—ppe' ' [a|<p.
wz-p°
Solution. Let the transformation be
_a+ b a z+b/a | o

"~ cz+d clz=+d/c
The points w = 0 and w = . inverse points of | w | = p’ correspond to inverse point z = —b/a,
z=—d/c respectively of | z | = p. s0 we may write
5 g2

- =0, .._=p:_ |la|<p
a C o

o

Thus, from (1). we get
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a| z—a am| Z—o |
w= = - === -2
C P clTz—p )

Equation (2) satisfied the condition |z | £ pand | w | £ p". Hence for | z | = p. we must have
w | = p' so that (2) becomes

. dadl)| Z—1 = 2
=|w|= 4{ ZZ =p°
=l C||Tz—-ZZ| P
_ [aT|[1||z—o| _|aT|(l]jz—o
cl||Zl|Z—-T c||Z||lz -
aw|1
= |—]—, z—o|=|z-u|
clp
= pp’ = a9 = o =pp’er‘__ 7. being real.
c [
Thus, the required transformation becomes
- _—_
w=pp' e“‘! =} | o] <p.
wz—p- |

1.9. Example. Find the bilinear transformation which maps the point 2. 1. —2 onto the points 1.
i-1
Solution. Under the concept of cross-ratio, the required transformation is given by
(Ww-—w ) w,-w,;) (z-2,)(z,-2,)
(W; —w,)(W; —w) § (z,-2,)(z; -2)
Using the values of z; and w; . we get

or

or

(w-D@+1) s (z-2)1+2)
1-1)-1-w) @2-1)(-2-2)
w—1 = z-2 I 2+1 " 1-1)
w+l (z+2A2-if1+1)
w1 4-31z-2
w1 S z+2
or w-1l+w+1 _ (4-3i)(Ez-2)+5(z+2)
w-1l-(w+1) (4-3i)(z-2)-5(z+12)
or W = 31_'[3—1}_+ 21{3—1.} _ 3z+X
—1zZ(z-1)-06(3-1) —(iz+0)
of w=—3'_z+zi
iz+6

which is the required transformation.
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Cross-ratio

In geometry, the cross-ratio, also called double ratio and anharmonic ratio, is a number
associated with a list of four collinear points, particularly points on a projective line. Given four
points A, B, C and D on a line, their cross ratio is defined as.

(A,B,C,D): AC.BD

BC.AD

where an orientation of the line determines the sign of each distance and the distance is measured
as projected into Euclidean space. (If one of the four points is the line's point at infinity, then the two
distances involving that point are dropped from the formula.)

DEFINITION:

The cross-ratio of a 4-tuple of distinct points on the real line with coordinates zi, z,, z,, z,is given by
(Z3=21)(Z4=Z>)

(Z3—Z2)(Z4s—Z1)

(21,22;23,24)2

. Z+b . .. . .
A mapping of the form S(z)= a +ﬂ: 1s called bilinear or linear fractional
CZ+
Transformation a,b,c,de z
A bilinear transformation S(Z)=— ; with ad —bc#0 1s called Mdbius
cz+

map or Mobius transformation.

1) Mdbius transformation is one-one and onto.
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az+b .then 7 (w) = M

D If S(2)=
) ) cz+d cwW—a

3)If Sand T are Mobius transformations then ST is also Mdbius

transformation.

4) 5(z2) = z+a ( Translation )
S(z)=az ( Dilation/Magnification )

S(z)=¢"z (Rotation )

( Inversion ).

1
S(z)==

Theorem 22 If S is a Mobius transformation then S is composition of translation . dilation
and inversion.

az + . . .
with ad —be £ 0 be Mobius transformation.

Proof. Let S§(z)=
cZ +

Case 1. When ¢=0 then S(2) =‘

al ‘

d .III_ | d .JI
fa

Let 5,(2) =‘ =

[+
g

Then S, :-51{:)=5:|[51'[—']]:-5':‘ ‘ % E |:|I %

Thus §=35,¢85,.
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Case 2. When ¢=0

bc —ad a
. 55(0)= — . 5,(Z)=2+—.
C c

Let S/(2)= :+i. 5,(2) !
c z

Then §,05,28,05/(2)=5,25,25,(5,(2))

i Y
=5,08, 08, _‘+i '
4 3 2 ‘ c .II

_ -5-4 : 53 I' S: | . i -\,I -*.I

a
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Thus §=5,25,¢085,¢85,.
Theorem 23 Every Mdobius transformation can have at most two fixed points.

az + . s .
with ad —be = 0 be Mdbius transformation.

Proof. Let S5(z)=
cZ+

Let z be fixed point of S(z) then S(z)==

az+b

cc+d

¢z +(d-a)z-b=0
which is quadratic in z. Hence it can have at most two roots. Therefore every Mobius

transformation can have at most two fixed points otherwise S(z) =z for all z (Identity map ).

THEOREM:

The cross ratio (Z1,Z22,Z3,Z4) is real ,iff four points lies ona circle or a straight line.

Suppose  S(w)=real. then S(w)=S(w).

aw+b .

Let S(w)= - with ad —bc#0.
cw+d

Thus. aw+b _ aw+b

cw+d  cw+d

Therefore. (a; —ZC)M: + (aﬁ - Z_)c)u':— (bz —Ed)rr— (bﬁ —l_)d) =0 (1)

Case 1. When ac is real.
Therefore. ac = ac . then from (1) we have.
(ad —be)w+ (bc—ad)w+(bd —bd) =0 (2

Let o= 2((72—1_)0). b= i(bg—Ed) then (2) becomes.
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21‘.+Z;.+£ =0
2 2 i

i(:au‘+%)+2,b’=0

i.2i.Im(aw)+28=0

Im(aw)-£=0 ...(3)

Let a=p+ig. w=x+Iiy then aw=px—qv+i(g<+ pv).

Therefore. Im(aw)— B =(gx+ pyv)— S =0. Thus (3) represents a line y =1 - l.\‘ +[.
\ P )

That is. w lies on the line determined by (3) for fixed o and £. We know that straight line

may be regarded as circle with infinite radius. Therefore. w lies on the circle.

Case 2. When ac is not real.

Therefore, ac = ac ., then from (1) we have,.

€50, (a3

[+ 0
(ac—ac) (ac—ac) (ac—ac)
— (ad-bc) . (bd-bd)
Let ;/=‘ == |. ( =—|T;.
| ac—ac | \ ac—ac |
Therefore. M' + W+ ,:'1_1'— =0
WW+ W+ W+ Yy =8+7)
(w+ ’)(;—7) =0+ I'/;
o+ =0+77
|““— 4."/|: = ‘5+ ;‘/,:—/
Therefore. |w+y|= 4 .(d)
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where 4 =(5+ vy ]% _|ad=bel

ac—ac
Since y and A are independent of w. (4) represents a circle on which w lies.
Symmetry:

If a linear transformation T carries a real axis into a circle ¢ we shall say that the points
w=Tz ,w'=TZ are symmetric between w and w" and ¢ which does not depends for if s is
another transformation which carries the real axis in c then s(T) is a linear
transformation and hence s*(w) = s1(Tz) and s}(w")=s(TZ) are also
conjugate,symmetric with respect with respect to circle centre o(z,z") lie on same line
and multiple of oz—o0z"in R.(where R is radius).

Theorem: Symmetric principle

If a liner transformation carries a circle ¢ into a circle ¢ then it transforms any pair of
symmetric points with respect to ¢ in to a pair of symmetric points with respect to ¢

Proof:

We can determine the transformation by requiring that 3 points Z,,Z,,Zsand c,go over
into 3 points wi,w2,ws on ¢.The transformation is (w,w1,W2,W3) = (Z,Z1,Z2,Z53).

But the transformation is also determined that a point z on C shall correspond to a point w on ¢’
and that a point Z, not ¢ shall be carried into a point w2 not on ¢ we know that Z ; the symmetric
point of z with respect to ¢ must correspond to w,* the symmetric of w, with respect to ¢.Hence
the transformation will be obtained from the relation ( w,w1,w2,w, )= (Z,Z1,Z2,Z,).

Oriented circle :

An orientation of circle ¢ is determined by an ordered tripule of points (Z1,Z2,Z3) on ¢ with
respect to this orientation a point z not on c is said to be lie to the right side of c.If
Im(Z,21,Z2,Z3)=0 and to the left of ¢ if Im(Z,Z1,Z2,Z35)<0

Note:
It is essential to show that there are only two different orientation.

Level curves:
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when a conformal mapping is defined by an analytic w=f(z).In more general cases the image of
curves in the line x=x0 and y=y0 .we write the transformation f(z)=u(x,y)+iV(x,y) , the image of
x=x0 is given the parametric equation u=u(x0,y) and v=v(x0,y).Also the image of y=y0 is
determined in the image of y=y0 is determinant in the same way the above curves form a
orthogonal net in w plane.similarly we may consider the curves u(x,y) =u0 and v(x,y)=vO0 is the z
plane,They are also orthogonal and are called the level curves of u and v.

FAMILY OF CIRCLE:

Consider the linear transformation of the form w =kz=. Here z=a corresponds to w=0 and z=b

z—b

to w=oo the straight line through the origin of w plane are image of circles through a and b.

The concentric circles when arg(k) varies the point to move along the circle c.The corresponding
flow circle depends a and b in different direction.

On the otherhand the concentric circles about the origin |w|=p corresponding to the circles with
equation |2=al;| =-p |k| these all the circles with anypoint A and B by there equation loci of points
.

whose distances from A and B have a constant ratio.

Denote by c1 the circles through A ,B and by c2 the circles in these the limit points A,B.These
circles c1 & c2 wii be refer to as the circles net the steiner circles alternate by A and B.There are
many interesting properties given below.

e There is exactly one cl and c2 through each points in the plane with the exception of on
limit point.

e Every cl meets every c2 under right angles.

e Reflection in c1 transforms every c2 into itself and every cl into another c1.Reflextion in
a c2 transforms every cl into itself and every c2 into another c2.

e The limit points of symmetric with respect to each c2 but not with respect to any other
circles.

e These properties are all trivial with limit points are 0 and o .That is when the c1 are lines

through the origin and the ¢2 concentric circles. since with properties are invariantunder
linear transformation in given general case. It can be written in the form w—a=kz=a_ It is

w—b z—b
clear that T transformation the circles c¢1 and c2 into circles c1' and c2with limit points A
B
Case (i):

We have c1!=c1 for all c,if k>0(if k<O these circles are orientation in this transforms is
said to be hyperbolic).
Case (ii):

In this case c2=c2 when |k|=1.This transformation with property are called elliptic.
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SIX MARKS QUESTIONS:

1.Show that any linear transformation which transforms a real axis into itself can be written with
real coefficient.

2.Show that the cross ratio (z1, z2, z3;z4) is real if and only if the four points lie on a circle or on
a straight line.

3.Show that a function f(z) be an analytic in the region Q of the z-plane. If £’(z) # 0 in Q then
the mapping w = f(z) conformal at all points of Q.
4. Show that the set of all linear transformation forms a group under the product of
transformation

5. Show that an analytic function in a region Q whose derivative vanishes identically must
reduce to a constant . The same is true if either the part, the imaginary part , the modulus the
argument is constant.

6.Find the linear transformation which carries 0, i, -i into 1, -1, 0.

7.Show that If ¢c=0 then inverse doesn’t exist the reflextion Z— Z is nota linear transformation.
8.Show that the set of all linear transformation forms a group under the product oftransformation
9. State and prove the symmetry principle

TEN MARKS:

1. Discuss about the Family of circles.
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[Questions [Choice 1 [Choice 2 [Choice 3 [Choice 4 | Answer
UNIT |
;I;he additive identity of complex number (1.1) (1,0) 0,0) (0,1) (0,0)
The muljtlpllcatlve identity of complex 0.1) (1,0) (0,0) (0.1) (1,0)
number is.......
The inverse of () under additionis | o (~0,-B) (a,B) (o-B) (-o,-B)
|Zi Zg=enes [EANEA EANEA EANEA |z ]+ 7| |2] [ 2]
The value of i%is........... 1 -1 0 i -1
If Z, and Z, are any two complex arg(Z,Z,) = arg(Z,Z,) = arg(Z,Z,) = arg(Z,Z,) = arg(Z,2,) =
numbers ,then........... arg(Zy)+arg(Z,)  |arg(Zy)-arg(Zy) arg(Zy)/arg(Z,) arg(Zy)*arg(Z,) arg(Z;)/arg(Z,)
;I;he Equation of the unit sphere x2+y2+22=1 2t y2+22=2 2 y2+22=1 Xz_yQ_ZQ: 2t y2+22: 1
. ... |Multiplicative I . Multiplicative
The element (1,0) is the ------- Additive identity identity identity unique identity
. ... |Multiplicative N . Additive

The element (0,0) is the ---------- Additive identi o identit unique . .

0.0) i identity Y da identity
_I_f |24 = |Z,| and arg(Z,)= arg(Z,) then --- 247, 2.2, 7.7, 702, 2.-2,
The Equaﬂon qf th unit circle whose Z=1 Z-a] =1 121 =0 Zi1 Iz| =1
centre is the origin is............
The complex plane containing all the infinite complex  [extended complex finite complex extended

finite complex numbers and infinity is
called the

plane

plane

complex plane

plane

complex plane

The inversion w = 1/z maps the region

< > = < >
| z| <1 into the region......... |W| ! |W| ! |w| ! |W|_1 |W| !
The square of real number is --------- Non negative Non positive Negative absolute value absolute value
The absolute value of z = x+iy is........... \x y Vx-y? VxP+y? \/X2+y2
If Z; and Z, are any two complex | Z,+Z,)> | Z Z,+Z,5<| 24

1 and £2 are any P 2z 22|12z 2| | 2 TR B 2z 2, iz a
numbers ,then........... [+|Z5] [+|Z,|

. . Linear . . . .
The mapping W=1/Zis called an .......... . Translation Inversion Rotation Inversion
transformation

The polar form of x+iy is ............ r(cos 0 +isin@) | r(cos 0 -isin® ) C0s 0 +isin® r(cos 0 - sind ) r(cos 6 +isin® )
If Z, and Z, are any two complex Z,-Z,)>|| Z, |- Zi-Z2| | Z1 |

1 and 2, are any two comp 12,29 2,002 |1 222 2 vl |2 FREE 2, 2 7, iy | | 22722 20
numbers ,then .......... 1Z,] | |Zz| |

The complex plane containing all the
finite complex numbers is called the.......

infinite complex
plane

extended complex
plane

complex plane

finite complex
plane

finite complex
plane

number, is called the.........

transformation

The conjugation of 5+i3 is........ 5 3 5+i3 5-i3 5-i3

If Z, and Z, are any two complex arg(Z1/22) = arg(Z,1Z,) = arg(Z,12,) = arg(Z,/12,) = arg(Z,/2,) =
numbers ,then ....... arg(Zy)+arg(Z,)  |arg(Zy)-arg(Z,)  |arg(Zy)/arg(Z,)  |arg(Zo)*arg(Z:)  |arg(Z)-arg(Z,)
The mapping W=2+b b is a complex L inear Translation Inversion Rotation Translation

All the complex numbers except infinity
are called......

Complex numbers

Complex plane

finite complex
numbers

infinite complex
numbers

finite complex
numbers

If x= rcos0 , y = rsin then for z we
get.....

7= rcos0+ r sinf

7= 1sin0 + ircos0

7= rcosO-+irsin0

7= rcos0-irsin0

7= rcosO+irsin0

The angle made by the vector

take infinite values

(x,y)measured in the anticlockwise mod of z norm of z argument of z 0 argument of z
direction is .......
Th T T — it ) ; o P i

© argument v 15 asitean unique not unique finite infinite not unique




From x= rcos® and y = rsind weget 0 =  [sin™ y/x cos yix tan™y/x coty/x tan'ly/x
agz ......... argz -argz arg(-z) arg 1/z -argz
The argument of the product of two
. The sum of the the argument of  |the argument of  |the product of the |the argument
complex numbers is---- of the complex A
arguments the sum the division arguments of the sum
number
arg (z1 . 22)=......... arg z,+ arg z, arg z, argz, argz,/argz, arg(z; +z,) arg z, argz,
@20 202 21-| (2023 202)( |@1-2)( 202 21- | (20-22)I( 21-22)( 2o (@r-z3)(2-
The cross ratio of the form..... VARGl N LR SRR AL LR ARAR TN M 24-2,)( 2
2,)(2525) 21-2,)(25°25) ;) Z3) JM(2:2(2,
Z3)
Ifz=-1+i,then z-1=........ 14 -1-i (-2 +ilr (-1)/2 - i1/2 -1-i
The stereographic projection of the
complex point 2~ (V2.1 is (N2, 172, 0) 0,V2,1) (1~N2,1/2,172) | (0,0) (1N2,1/2, 1/2)
The inversion w = 1/z maps the region
= <
| | >1 into the region |W|<1 |W|>1 |W| ! |W|S1 |W| !
Under the_transformatlon w = az there one WO 2610 o wo
are ------ fixed points
According to De Moivre’s theorem (cos n n . . ..
cos 0+ isin” O cosn 0+isinn 0 ncos 0+insin 0 1 cosn O+isinn 0

0 +isin 9)" =

The transformation w = az=b , where a, ) ) Rotation , ) Rotation ,
- Rotation and Translation and . Homothetic and .
b are complex constants ,is a . . Homothetic and - Homothetic
.. . Homothetic Rotation - Translation .
composition of ...... tranformations Translation and Translation
The equation zZ + @z + az+ ¢ =0, where c
is real and a is complex , is a equation of [Line Ray Ellipse circle circle

a
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UNIT NI

Complex integration-rectifiable Arcs- Cauchy’s theorem for Rectangle and
disc-Cauchy’s integral formula-higher derivatives.

INTRODUCTION:

In this section we shall study complex integration of complex functions and established
fundamental theorem of calculus for line integral.we show that an analytic function has a
power series expansion as a Taylor theorem .Form then we established cauchy’s estimate to
prove Cauchy theorem.

2. Complex Integration

Let [a, b] be a closed interval, where a, b are real numbers. Divide [a. b] into subintervals

[a=1o. ti]. [tr. 2] .. [te1. ta =] (1)
by mserting n—1 points ty, ta...., fp satisfying the inequalities
a=tp<th <t <t <t,=0b

Then the set P = {t. ty..... tp} is called the partition of the interval [a. b] and the greatest of the
mumbers t; tg, t3 — f1,..., Ty — -y 15 called the norm of the partition P. Thus the norm of the
partition P 15 the maximum length of the subintervals in (1).

We say that an arc 15 simple or Jordan arc if z(t1) = z(t2) only when t1 = t; i.e. the arc does not
intersect itself. If the points corresponding to the values a and b coincide, the arc i1s said to be a
closed arc (closed curve). An arc is said to be piecewise continuous m [a,b] if if is continuous in
every subinterval of [a, b].
2.1. Arcs and Curves in the Complex Plane. An arc (path) L in a region G < 7 is a
continuous function z(t) - [a, b] =G for t & [a. b] in B. The arc L. given by z(t) = x(t) + iv(t).
t £ [a, ©]. where x(f) and (t) are continuous functions of t, 1s therefore a set of all image points of
a closed interval under a continuous mapping. The arc L is said to be differentiable if z'(t) exists
for all t n [a, b]. In addition to the existence of z'(1), if Z'(t) : [a. b]— 7 1s continuous, then z(1)
1s a smooth arc. In such case. we may say that L is regular and smooth. Thus a regular arc is
characterized by the property that %(t) and +{t)exist and are continuous over the whole range of

values of t.

RECTIFIABLE ARCS

2.2, Rectifiable Arcs. Let z = x(t) + 1v(t) be the equation of the Jordan arc L, the range for the
parameter tbeing tp 2t = T,

Let zy. 7)...., Zp be the points of this arc comresponding to the values fg, t;...., t, of t, where tp < 1
<ty <. <ty =T Ewdently, the length of the polygonal arc obtained by joining successively z;
and zi, z1 and z: efc by st. line segments is given by
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Y= 5 |z-zol
Tel

= Z |{xr _i}rr) - [:Er—l + ij‘r—lj
Tl

=% |(%—x1) 1y — ve1)|
T=l

= 3 [0 - %)’ +omye) T

V)

Z
ZOK\/

If this sum ¥, tends to a unique limit /<2, as n—2c and the maximum of the differences t,—t,;
tends to zero, we say that the arc L defined by z = x(t) = 1y(t) is rectifiable and that its length is /.
In this connection. we have the following result.

“A regular arc z = x(t) + iy(t). to < t < T is rectifiable and its length is
I [R@OF +(3®)1 dr.

2.3. Contours. Let PQ and QR to be two rectifiable arcs with only Q as common point. then the
arc PR 1s evidently rectifiable and its length is the sum of lengths of PQ and QR. Thus 1t follows
that Jordan arc which consists of a finite number of regular arcs is rectifiable. its length being the
sum of lengths of regular arcs of which it is composed. Such an arc is called contour. Thus a
contour C is continuous chain of finite number of regular arcs. i.e. a contour is a piecewise
smooth arc.

By a closed contour we shall mean a simple closed Jordan arc consisting of a finite number of
regular arcs. Clearly. every closed contour is rectifiable. Circle rectangle, ellipse etc. are
examples of closed contour.

2.4. Simply Connected Region A region D is said to be simply connected if every simple closed
contour within it encloses only points of D. In such a region every closed curve can be shrunk
(contracted) to a point without passing out of the region(Fig.1). If the region is not simply
connected. then it is called multiply connected(Fig. 2).

Simply connected region Multiply connected regions
Fig 1 Fig. 2
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2.5. Riemann’s Definition of Complex Integration

First. we define the integral as the limit of a sum and later on, deduce it as the operation inverse
to that of differentiation.

Let us consider a function flz) of the complex variable z. We assume that f{z) has a definite
value at each point of a rectifiable arc L having equation

z(t)=x(t) +1y(t). tr St = T.
We divide this arc info n smaller arcs by points zg. ;. Zs..... Zy-). Zn ( = Z. say) which correspond
to the values

tg <t <ty..... <ty <ty (=T) of the parameter t and then form the sum

o
=3 A% &z-z)

1=l

where Z; is a point of L between z;_; and z,. If this sum I tends to a unique limit I as n—x and
the maximum of the differences t; — t,_; tends to zero. we say that f{z) is integrable from z; to Z
along the arc L. and we write

I=[ flz)dz
L

The direction of integration is from z; to Z, since the points on x(t) + 1y(t) describe the arc L in
this sense when t increases.

2.6. Remarks. (i) Some of the most obvious properties of real integrals extend at once to
complex integrals. for example,

| f2)+g@)]dz=| fiz)dz+ | gz)dz.
- | KAz)dz= I;I' flz) dz. IL(being constant
and . f' f(z)dz=—_1|'- flz) dz.
where L' denotes the arc IL, described inLopposite direction.
(11) In the above definition of the complex integral. although zp. Z play much the same

parts as the lower and upper limits in the definite integral of a function of a real variable. we do
not write

I= 2 flz)dz
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This is dictated essentially by the fact that the value of I depends, in general, not only on the
initial and final points of the arc L but also on its actual form.

In special circumstances, the integral may be independent of path from zo to Z as shown in the
following example.

2.7. Example. Using the definition of an integral as the limit of a sum, evaluate the infegrals
(1) | dz (i) | |dz] (i) | zdz
L L L
where L 15 a rectifiable arc joining the pointsz=o and z= .

Solution. We first observe that the integrals exist since the integrand is continuous on L in each

case.
(i) By definition we have.

[ dz=lim ¥ (z-2.)1

i_ n—m p_]

lim [z, -2 +2—21 +...+ Zn — Zp-1]
n—+x

lim (Zp — 2p) = p—ut

_ ] n
(i) | |dzl=1lim T |z;— 2z
]'_ O—*+mo ]-_\]

= lim [lZ'_ —Zp| + |22 —Z]l—...+ Zn — Zn_]_]
n—+x
= Arc length of L
= [ (zay)
(i) LetI=] zdz=lm ¥ (z-2z1)& (1
L D—m ]

where Zr is any point on the sub arc joining zr and z:.
Since % is arbitrary, we set 5=z, and % | = 7z, ; successively in (1) to find

. 1]
[=lm ¥ Z(Z—2)

L—@ ]

. L
[=lm ¥ z(z—2z.)
DL—som T=l
Adding these two results, we get
N=tim 3 (z+2z.)(Z-21)
L—x ]
—tim ¥ (z2-z2,)=lim (22 —-z})=* - o
nL—*om

B—=x ]

]. .l .
= — (" -

2(5 )

In particular, if L is closed, then = o and thus

_'- dz=10, _|. zdz=10.
L L
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2.8. Theorem (Integration along a regular arc). Let f{z) be confinuous on the regular arc L
whose equation is z(t) = x(f) + 1y(f). t £t £ T. Prove that f{Z) is integrable along L and that

[ fiz)ydz= [} F(t) [%(D)+i y(t)]dt.
L

where F(t) denotes the value of f{z) at the point of L corresponding to the parametric value t.
Proof. Let us consider the sum
n
=2 A% @-2z)
o

where & 1s a point of L between z,; and z,. If 1, is the value of the parameter t corresponding to
Z;. then T, lies between t;_; and t;, Writing F(t) = §(t) + 1w(t). where ¢ and v are real, we find that

I= é [® () + 1y ()] [ = Xe1) + iy = ye1)]

r=l

= % W) (Ke—Xp1) + ii Pt (¥e — Y1)

. &b i}
+1 ¥ w ':TI) ':3'*1' - Kz—lj -x U,l’[:'l'r} [:_T&"I - 1"'-1—1)
=] fo |
1+1E+1%; — 54 (say)
1— L3 +1(2a +13)

We consider these four sums separately.
By the mean value theorem of differenfial calculus, the first sum 1s

Ti= 3 (0 (% %)

r=l

=5 o) (%) ()

r=1
(la+h)—fMa)=h'(a+ch). 02621
X1 = X(ty) —X(tr-1)
= (tr—t1) X(%))
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where ;" his between t,_; and t,.

We first show that T, can be made to differ by less than an arbitrary positive number. however
small. from the sum

n
%= :1 b(t) X (t) (tr— te-1)
o=
by making the maximum of the differences t; — t,_jsufficiently small.

Now, by hypothesis, the functions {(t) and %(f) are continuous. As continuous functions are
necessarily bounded. there exist a positive number K such that the inequalities
) =K x| =K
hold fortg <t < T.
Moreover. the functions are also uniformly continuous. we can, therefore. preassign an arbitrary

positive number <. as small as we please. and then choose a positive number 5. depending on <.
such that

[b(t) — ¢t <<, |X() -X(t)| < =.

whenever |t —t]< 3§

Hence if the maximum of the differences t; — t,_; is less than 3, we have
()R (%) — o) X (1)
=] ¢(w) {X () =X+ () {d(w) — ¢t}
S ()| X () =X (1) HE t)L1d () — d(t))|
<2Ke
and therefore
-2

21—

1'1<2Ke (T -tp)
By the definition of the integral of a continuous function of a real variable, I," tends to the limit

:fm () % (Hdt [} fx)dx = mY fx) ox;
|

as n—c and the maximum of the differences t; — t,; tends to zero. Since |Z; — Z,'| can be made
as small as we please by taking & small enough, ¥; must also tend to the same limit.

Sinmularly the other terms of T tend to limits. Combining these results we find that ¥ tends to the
limit

I [B®) £ —wit) 3] at

+i o () £+ 6(t) (O] dt

= [, EO[®+1ym]dt
and so jTz) is infegrable along the regular arc L.
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2.12. Cauchy Theorem (Elementary Form). First we consider the elementary form of Cauchy
theorem which requires the additional assumption that the derivative of f{z) is continuous. This
form of Cauchy theorem is also known as Cauchy fundamental theorem. which has the following
statement.
If flz) is analytic function whose derivative f '(z) exists and is continuous at each point within
and on a closed contour C. then

| fiz)dz=0

c

Proof. Let D denotes the closed region which consists of all points within and on C. If we write
z=xX+1y. f{z) =u + iv. then we have

| fimdz= [ (u+1iv) (dx+idy)

C C

=[ (Wdx—vdy)+i [ (vdx+udy) (1
c c

Now, we use the Green’s theorem for a plane which states that if P(x. v). Q(x. y). C—fﬁ are
cy cX

continuous functions within a domain D and if C is any closed contour in D. then
- - [(cQ P
| @ax+Qay= ] | 2-2 |axay ®
C D \X ¥
By hypothesis f'(z) exists and is continuous in D. so u and v and their partial derivatives uy, Vs,

Uy, Vy are confinuous functions of x and v in D. Thus the conditions of Green’s theorem are
satisfied. Hence applying this theorem in (1). we obtain

2 : v cu 2 (o :ov)
| foydz= [ | -2 faxdy +if] | S-= |axay
C ¢x oy p lex ¢y
= |- ey +i [ | -2 laxy
D\cy ¢y D \CX cX)
(using C-R equations)
=0+10=0

Hence the result.

Extension of Cauchv’s Theorem to Contours Defining Multiply Connected Regions.

By adopting a suitable convention as to the sense of integration. Cauchy’s theorem can be
extended to the case of contours which are made up of several distinct closed contours.
Consider. for example, a function f{z) which is analytic in the multiply connected region R
bounded by the closed contour C and the two interior contours C;. C; as well as on these
contours themselves. The complete contour C* which is the boundary of the region R is made
up of the three contours C, C; and C; and we adopt the convention that C* is described in the
positive sense if the region R is on the LH.S. w.r.t. this sense of describing it. Then by Cauchy’s
theorem
e fll)dz=0
where the integral is taken round the complete contour C* in the positive sense.
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Practically, we deal with this case by drawing transversals like ab, cd and by applying Cauchy’s
theorem for a simple closed contour abobafdeyedda. It is found convenient in applications to
express the same result in the form

o f@di=], f@&+]|. f@d

where all the three integrals are now taken in the same (positive) sense.

An exactly similar result holds in case there are any finite number of closed contours C), C,,...,
Cy, inside a closed contour C and f{z) 15 analytic in the nmltiply connected region bounded by
them as well as on them. We then have

e f@dz=]g f@dz+[, f@dz+ .+, f(Dd.

where all the contours are described in positive sense.

Theorem. (Cauchy’s Integral Formula). Let f{z) be analytic inside and on a closed
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contour C and let zp be :m-y point inside C. Then

L ; z
Azo)= —Ic /@) dz
2 z-z,
Proof. We consider the function 'Z(—ZZ)This function is analytic throughout the region bounded
29

by C except atz=2zy.
Then, by 2.15. we have
l‘ f(Z) dz = ' f(Z) dz
C z-2, oz-z,
where 7 1s any closed contour inside C including the point z; as an interior point.

Let us choose ¥ to be the circle with centre zp and radius p. Since f{z) is continuous. we can take
o so small that on 7.

@) -flz) | < =
where = is any preassigned positive number.
Now,
1@ 4 U@-1@)+1@),
Y oz-z X z-2;
flz) | —Zdz+] BT
“T.Z—2g =T Z-Z

For any point z on 7. _
z-zp=pe® —=dz=pie®ds

- dz 2 pe®df  om

J, z—zo—‘|° pe—"-.'

1d8 =2m
s

rim (z)- if;
= S z)pti{zmpfame‘
= |15 7@~ f(zo)1ide)|

<2 _|'E" do=2ne

- J@-1(z) dz‘=
¥ z_

I
) -

Hence from (1), we get

T@ 4 _3mif(z,)

Z—-Zp

Ie <2Ine
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Since = is arbitrarily small and LH.S. is independent of =, it follows that
@dz— 2mif(z,) =10
Z—Zp

ie. flzs)= %ﬁj‘c %dz.
= —&n

't

which proves the result.

Cor. (Extension of Cauchy’s Integral Formula to Multiply Connected Regions): Ifflz)

is analytic in a ring shaped region bounded by two closed contours C; and C; and z; is a point in
the region between C; and C,, then

1, /@, 1. [
Szo) 2mi C2 z—-zodz 240 1 z—zodz'

where C, is the outer contour.

Proof. Describe a circle y of radius p about the point z; such that the circle lies in the ring shaped

/(2

region. The function ——is analytic in the region bounded by three close contours C;, C;
Z-1Z SRR R

and y. ( \
N "
l

() |

\ c.

G
Thus by 2.15. we have.
f(z) - f(z) - f(z2)
J C Z z dz = .'C dz ¥ J' dZ
2 £y 4 B ZO r Z-— ZO

where the integral along each contour is taken in positive sense. Now. using Cauchy’s integral
formula, we find.

f(z) . f(z) :
dz= ———dz +2mif
J‘-': z-2; "CA z-12, "if(2o)
or
o S b S
f(ZO)_eri'lcz z-zodz 2mi €1 z—z,gdz'

Theorem (The derivative of an analyric funcrion). Let fz) be analytic within and on a

closed contour C and let z; be any pomt inside C, then
: 1 f(z)
f'(z,)=—|. ———dz
(#) j.‘[i‘l-" (z—2z4)°

Proof. Let z; + h be a pomt in the nighbourhood of z; and nside C, (Az = h). Then Cauchy’s
Integral formmla at these two points, gives
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1. @
=—]. —Fdz.
7o) 27 ¢ z-z,
1., @
d N=—--l. —— _dz
- Iz +h) 2ni ¢ z-z,-h
Subtracting the first result from second. we get
h 2ni - (z—-zg)(z-z5—-h)

We observe in (1) that as h—0. the required result follows. We have thus only to show that we
can proceed to the limit under the integral sign. We consider the difference

f@o+h)-fG)_ 1, _f@

h 2°C (z-zp)>
- L[ f(2) —LI' _ﬂidz
-lc -1C 2
2m (z-zy)(z-zy-h) 2mi " (z-z,)"
h f(z)dz

== @

2mi © (z-2p)* (z-2y-h)

Since fz) 1s analytic on C so f1z) is bounded on C. Thus [{z)| = M on C, M being an absolute
positive constant. Let us denote the distance of zo from the points nearest to it on C by & and the
length of Cby [ Then if [h|=35.
f(z)dz - Mih
" (z-7) (z-z,-h)| &%(3-|h)
which is bounded and tends to zero as [h/—0. Thus, faking limit as [b|—0, it follows from (2)
that

(3)

fimd @D -fE) 1 f@)

B0 h 2w (z-zq)
Hence flz) is differentiable at z; and
1.

i C (z-1z,)°

which is Cauchy’s integral formula for /'(z) at points within C.

Cauchyv’'s Inequality (Cauchy’s Estimate). If f{z) is analytic within and on a circle C
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given by |z — zg| = R and if [{z)| £ M for every z on C. then

- _Mn

@)l = R
Proof. Since f{z) is analytic inside C. we have by Cauchy’s integral formula for nth derivative of
an analytic function

: S A €2
(z)= =

7 2mic (z-2;)
Since on the circle [z —zo|=R.

z-z=Re® dz=Re*id§
and the length of the circle is 27R. therefore

n+l .

o B[, Sf(2)dz

(@) |===|]
2 /@l
T 2nc |zzo [
_|n 5 M|Re®id8| |n 5, M
"% TREPT m R
M, M
T amRE T R®

: _ Mn

Hence (zo)| = Rjn_

Liouville’s Theorem. A function which is analytic in all finite regions of the complex

plane. and is bounded, is identically equal to a constant.
or

If an integral function f{z) is bounded for all values of z. then it is constant
or

The only bounded entire functions are the constant functions.

Proof. Let z;. z; be arbifrary distinct points in z-plane and let C be a large circle with centre at
origin and radius R such that C encloses z; and z; 1.e. |z;) <R, [zz| <R.

Since f{z) is bounded, there exists a positive number M such that [{z)| =M 7 z.

By Cauchy’s integral formula.
1 . z)dz
flzy= L L@
me z-7
1 . Z)dz
ﬂzi} = q_ . L
dmic z-z,

Az) - flz) = i i J@E@-7) 4

mig (z-23)(z—-271)
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Thus
) -zl < 2n ¢ lz-z)|z-2,|
- M|z,-z ( | dz |

2n c lz—z||z-2z, |

. Miz-z] |dz|
I ¢ (zl-15 Dz[-[z, D

|'.'z—21 2z|-|z

Now, on the circle C, z=FR. eja_: z|=R,
dz =Re" id#f

Therefore,
_ M|z, -7 2 Re™ idf
fz2) - flz))] = TR (R-1z, D(R-[z, )

I"r'i z,—I R 7

— 2745 In

2 (R-|z|(R-]|z, )

__ Miz-zn| 1
(1-1al)_ [z} R
o RN R

which tends to zero as R—ax.

Hence f{z;) - flz) = 0 1e. flz)) =flzy)

But z;, z; are arbifrary. this holds for all couples of points z;. z; in the z-plane. therefore
flz) = constant.

The Fundamental Theorem of Algebra. Any polvnomial

P(zy=ay+ayz+. .+ 2,7 a; = 0. n > 1 has at least one point z = z; such
that P{zy) = 0 1.e. P(z) has at least one zero.

Proof. We establish the proof by contradiction.

If P(z) does not vanish, then the function flz) = %ia analytic in the finite z-plane. Also when
z

z|—x, P(z)—x and hence flz) is bounded in enfire complex plane. including infinity.

Licuville’s theorem then implies that f{z) and hence P(z) 15 a constant which violates n = 1 and

thus contradicts the assumption that P(z) does not vanish. Hence it is concluded that Piz)

vanishes at some point z =z;

2.32. Remark. The above form of fundamental theorem of algebra does not tell about the
number of zeros of P(z). Anocther form which tells that P(z) has exactly o zeros, will be
discussed later on. Of course, here we can prove this result by using the process of algebra as
follows :
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By the fundamental theorem of algebra. proved above, P(z) has at least one zero say z = zo such
that P(z0) =0
Then,
P(2)-Pz)=ap+az+ 0z +. . +2,2
~@runtrnz .. 20n)
=2 (z-z)+u@ -2) .+ 2 (-2"
=(z-2) Q(2)

where Q(z) 1s a polynomial of degree (n—1). Applying the fundamental theorem of algebra
again. we note that Q(z) has at least one zero. say z; (which may be equal to zp) and so
P(z) = (z-zp) (z—z1) R(z). where R(z) 1s a polynomial of degree (n—2). Continuing in this manner.
we see that P(z) has exactly n zeros.

2.1. Cauchy’s theorem for a rectangle. We now see the simplest version of Cauchy’s The-
orem, in the case of a rectangle R={z=a2+iy: a< 2 <b e<y<d}. Wedenote by 9R
the boundary of R, oriented counter-clockwise.

Theorem 2.5. Let 2 be a domain containing R. For any f holomorphic on ) we have

/ fdz=0.
dR

Proof. For a rectangle R’ C ) we write

We divide the rectangle R into 4 rectangles R\, ..., R™ by bisecting each side into two equal
segments.

Since the line integrals over the common sides cancel out, we obtain that

n(R) = n(RM) +--- +n(RY).
At least one rectangle R®) k=1,..., 4 must satisfy
m(R¥)] = |in(R)|-
We call this rectangle R;. By repeating this construction we obtain a sequence of rectangles
Ri. Rs. ... such that:
(i) RDRiDR2D -+
(ii; 0(Ra)| = 4n(Ra-1)]. so that [n(Ry)| = 47" [n(R);

(iii) if pn and d, denote the perimeter and the diameter of Ry, respectively, and p, d the ones
of R. then Pn = 2_"1) and dn =92 14,

Prepared by: Y.Sangeetha,Assistant professor,Department of Mathematics,KAHE Page 14/20




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS
COURSE CODE:18MMP201 UNIT Il BATCH 2018-2020

By the Bolzano-Weierstrass theorem, N, R, is non-empty, and since d, — 0, Ny R, cannot
contain two distinct points. Therefore, there exists € R such that N, R, = {(}.
Given ¢ > 0, there exists 4 > 0 such that D((,d) C € and, since the function f is holomorphic
in €2, such that
|£(2) — F(¢) — =)' (©)| <elz—¢|
for z € D((,9).
Recall that, from Cor. 2.4 we know that

/ d::/ (2z—¢)dz=0.
AR, JaR,

Now, there exists ng such that for n > ng R, is contained in D((,d), and then, if z € OR,,,
[z — (| < dn. Therefore, by (ii) and (iii) above,

Bl =] [ (1) = 1) = (= Or' )

/ 12 — ¢ |dz]
aR

n

< edppn
< e4 "dp.

IA

It then follows that
In(R)| < 4" |n(Rn)| < edp.

Since £ > () was arbritary, the theorem is proven.

Theorem 2.6. Let Q and R be as in Thm. 2.5. Let f be holomorphic in the domain € obtained
removing from ) a finite number of points (;. 7 =1,..., n. lying in the interior of R. and assume
that

lim (z — ;) f(2) =0

z—(;

/ fdz=0.
aR

Proof. We first argue that it suffices to consider the case of a single exceptional point ¢. In
fact, we can divide the rectangle R as finite union of rectangles R;, each containing a single
exceptional point (;, 7 =1...., n. and observe again that

fdz = z fdz.

R 9R;

for =L ccq5 n. Then
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So, let us assume that we have a single exceptional point ( inside R. We divide R as union
of nine rectangles, in such a way that the central one is a square Ry centered at ( and has side
lengths to be fixed. Then,

8
fdz = fdz + fdz
./aR ARy Z

‘=1 JoR;
== fdz
ARo
by applying Thm. 2.5 to the integrals [, fdz, j=1,..., 8
by At

Given £ > 0 we fix the side lengths of Ry to be small enough so that
|z =(||f(z)| <€

for 2 € ORy. We then have

‘ fdz| = |
aR

fdz| < / |f(2)]|dz|
aRg Jar,
1
— |d=z
./UR.;. |z —¢| &

| A\
™

IA
oo

since Ry is a square, as an elementary argument shows. This proves the theorem.

2.2. Cauchy’s theorem in a disk. We denote by D = D(zy,7) the open disk having center
zp and radius r > 0; that is,

D(z0,7)={2€C: |z— 2| < r}.

Theorem 2.7. Let f be holomorphic in an open disk D. Then

/f(.:‘) dz =10

for all closed curves v contained in D.
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Proof. We are going to use Thm. 2.5. For any 2 = x + iy € D, let ¢ = ¢, be the curve in
D consisting of the horizontal segment from (zg,yp) to (z,yp) followed by the vertical segment
from (z,yo) to (z,y). Define
F(z) =/ fidz:
o=

Then F' is well defined and we can easily compute that
8,F(z) =1f(z)-

By Thm. 2.5, since f is holomorphic on D, we have that

F(:):/a:fd::/r:fd:

where 7, is the curve consisting of the vertical segment from (zg,yp) to (zg,y) followed by
the horizontal segment from (zg.y) to (z.y). Computing the partial derivatives in x of F' we
obtain that 9.F(z) = f(z). Since the partial derivatives of F' are continuous and satisfy the
CR-equation, F' is holomorphic in D, and its derivative is f.

Therefore, f(z)dz is an exact differential and

Af(:)d: =0

Theorem 2.9. Let f be holomorphic in D' obtained removing from an open disk D a finite
number of points (;, j=1,..., n, and assume that

lim (2~ ) f(2) =0

[fd::ﬂ

Proof. This proof now follows from the previous arguments. First we can reduce to the case of
a single ecceptional point (. Then we only need to make sure that the curve v does not pass
through (. Having fixed 2 € D', given z € D', if the the rectangle with oppositive vertices in zy
and z passes through ¢, we can still easily define the indefinite integral F of f on D’. We leave

forj=1,...,n. Then

for every closed curve vy contained in D'.

the simple detail to the reader
Cauchy’s formula. We begin with the notion of index of a point with respect to a curve.

Let v be a closed curve and let zp be a point not lying on v. Then the integral

dz
v & —ZD
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is an integral multiple of 2mi.

Proof. Let 7 : [a,b] — C and define
t !
YAT
h(t) = / ) g
Ja ’7(7-) — 20
We wish to show that there exists an integer k such that

/ i — h(b) = 2rik .

y Z— 20

The function h is defined and continuous on [a,b], h(a) = 0 and

V()

on the interval [a,b] taken away a finite number of points where «(t) is not differentiable. It
follows that

a7, _ N :
7€ 0(8) — 20)) = MO (=H (B ((t) — 20) + V(1)
=0
except at those points #y,..., t, where 4(t) is not differentiable. Therefore, e ! (y(t) — 2g)
is constant on each connected component of [a,b] \ {f,..., tn}. Since e " (~(t) — zp) is also

continuous, it follows that it is constant on [a, b]; that is,
—h(t : 5
e " (y(t) — 20) = c.
Since h(a) =0, ¢ = vy(a) — zp, so that
y(t) — =z
Gh(z_) _ y(t) 0

y(a) — 20"

h(b)

Now, using the fact that y(b) = y(a) we have ¢"'?) =1, so that

h(b) = 2rwik

(Morera) Let f be continuous on a domain 2. Suppose that

fﬂo«:o

for all closed curves v in ). Then, f is holomorphic in €.
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Recall that for a power series expansion f(2) =Y~ :‘” an(z—20)" we have that ™ (z9) = nlan.
Then, we just have obtained the formula

)y = i _f_(_g_J_ ¢
F#0) = omi | €=zt %

valid when v = dD(zp,r) C 2. More generally we have

Definition :

If f=wu+ivis a continuous complex-valued function defined on an interval [a,b] on the real

b b b
/ f(t)dt = / u(t) dt +1 / v(t)dt.
Ja a Ja
Then the mapping f ]ab f(t)dt is complex linear.

line, we set

Theorem:

Let f € C([a.b]). Then

b b
1/ ft)yde| < [ |f(t) dt.

Proof. The proof is simple. If fab f(t)dt = 0 we have nothing to prove.
Otherwise, let @ € C, |a| = 1. Then

b b b
Re (n/ f(t]dt) = / R.c((tf(t))(llg/ \Re (af(t))|dt

b b
/lnf(t)|dt: |f(t)|dt.

A
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SIX MARKS

1. Prove that If f(z) is analytic in an open disk A, then fyf(z)dz = 0 for every closed curve y in
A.

2.State and prove fundamental theorem of algebra.

3.Prove that f(z) be analytic on the set R obtained from the rectangle R by omitting a finite
number of interior points ;. If it is true that limC'(Z — (j)f(z) = 0 for all j,
Z— ()

then faRf(Z) dz = 0.
4. Show that an analytic function f(z) has derivative of all ordered which are analytic can be

represented by these formulazL{ C(c—(% d¢ where c is a circle about a point ‘z’ and z
e

belongs to an arbitrary region in Q.

5. State and Prove Cauchy’s theorem for rectangle.
6.State and prove Morera’s theorem.
7.State and prove Fundamental theorem of algebra.

8. Show that the line fyp dx + qdy, defined in Q depends only on the end points of y iff there

exist a function u(x, y) in Q with the partial derivative glez D, aaiyz q.

9.State and prove Cauchy’s estimate theorem.
10.State and prove Liouville’s theorem.

11.State and Prove Cauchy’s theorem for disk.

TEN MARKS

1. State and Prove Cauchy theorem for Rectangle.

2.Write about Properties of complex integral.
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Questions Choice 1 Choice 2 Choice 3 Choice 4 Answer
The functions of the form, P,(2)= ) . ) . .

A geae o 0; polynomial of | polynomial of |polynomial of |polynomial of | polynomial
QT A ZFaZ T anZ’, 8,0 1s degree n degree 5 degree 2n degree n-1 of degree n
called a....

If f (z) and g(z) are continuous at z, | Continuous at |[differentiable at ) differentiable | Continuous
. Continuous at z
then f(z).g(2) is......... Zg Zg atz at z,
-2
f(2) -z 154 valued single multi double many double
function.
If f(z) of f has only one value it is . . .
called] et valued function. single multi double many single
If | fi <Mforall zi h . .
| f(z) l orallzins ,then . itivalued  |continuous bounded analytic bounded
f(z) is said tQ -------------- inS.
The limit of a function is ----------—- unique does not exist  |different multivalued unique
If |f(z) —f(zy)| <eforallzin Swith |z . . ) .
) bounded continuous unique does not exist |continuous
25| <6 thenf(z) is .....
If f (z) and g(z) are continuous at z, | Continuous at |[differentiable at ) differentiable | Continuous
. Continuous at z
then f(z) tg(z) is .......... Zy Zy atz at z,
If f (z) and g(z) are continuous at z, | Continuous at |differentiable at ) differentiable | Continuous
. Continuous at z
then f(z ) /g(z) is ........ Zy Zy atz at z,
In a compact set every continuous . uniformly . . .
function is...... bounded in s continuous in s _|Unidue does not exist |bounded in s
If [f(zy) =f(z,)| < eforallzy z, S with bounded i uniformly . g ¢ exist unni[(?rmly .
ounded in's . . unique
|z, =2z, | <& then f(z) is....... continuous in s q oes notexist ) CONLINUOUS 1N
S
If a function is differentiable at all
points in some neighbourhood of a b . . . .
ounded analytic differentiable  [compact analytic
point, then the function is said to be n P yt
---- at that point.
A function which is analytic
everywhere in the finite plane is single multi entire continuous entire
called an --------------——-- function.
f(z) is a function differentiable at z0, | Continuous at . differentiable | Continuous
. compact at z Continuous at z
then f(z) is Zy atz at z,
A ---- point of a function is a point at
which the function ceases to be non singular  [Singular entire continuous Singular
analytic
TP R P R —— . . _ ) )
analytic not analytic continuous exist not analytic
everywhere
d/dz{cf(2)} e fi(z) f'(2) fi(z)+c f'(z) /c cf'(2)
The quotient of two polynomials is | Exponential logarithmic Continuous rational rational
called a function function function function function
If f(z) and g(z) are continuous at z, | Continuous at |differentiable at . differentiable at | Continuous
. Continuous at z
then f(z)/g(z), g(2)#0 is Zy Zy z at z,

If f(1/2) is analytic at O then f(z) is

Analytic at oo

Continuous at

Differentiable at

Differentiable at

Analytic at oo

oo 0 0
The cartesian coordinates of C-R U=V, and u,= -|u=v, and u,= - | u,=v, and u,=-| u,=1 and u,= - |U,=V, and
equations are Vy Vy Vy Vy Uy= -V
A function of complex variable is complex . complex complex

- - variable . constant .
sometimes called a variable function function
If the product of the slopes is -1, . - .
then the curves cut each other — - diagonally orthogonally |at the origin atthe point 1 |orthogonally
The function that is multiple valued fz) =2 f(z) = ¢ f(2) = 1/ f(z) =22 f(2) = 7172




logz is a ------------- valued function |single multi double three multi
Iff(z) = 1/2° then .......... 0 2 -1
If f(zy) = o, the function f(z) is . . . . not
= il [2) = continuous not continuous [differentiable [bounded .
............... atz =z, continuous
The function f(z) =Re 7/ | z |, not
when z #0 ; f(z) = 0 when f(z) = 0 is [continuous not continuous |differentiable |bounded .
continuous
The function |Z |2is ................ : : : :
. continuous analytic not analytic bounded not analytic
at that point.
If f(z) = u +iv is analytic , then u(x,y)
and v(X,y) are ................. harmonic analytic continuous bounded harmonic
Functions
The function f(z) = log z,then u(r,8) log 6, log r . log 0 logr, 0 10 logr, 0
=...... v(r,0) =
If f(z) = 1/z then oo -1 0 1 0
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SYLLABUS

Harmonic functions-mean value property-Poisson’s formula-Schwarz
theorem, Reflection principle-Weierstrass theorem- Taylor series and
Laurent series.

HARMONIC FUNCTIONS

In this section we return to one aspect of the theory that concerns the analysis of harmonic
funetions, subject often called potential theory.

Recall that a C? function u on an open set A C R? is said to be harmonic on A if Au =0
on A, where A = :");:’ - L);} is the Laplacian. The next lemma collects the first elementary but
fundamental facts about the relation between harmonic and holomorphic functions.

Theorem:
If f = u + iv 1s holomorphic on an open set A C C then its real and imaginary

parts w and v are harmonic on A.

If u 1s a real harmonie function on a simply connected open set D, then there exisis a real
harmonic function v on D such that u+ iv is holomorphic on D. In this case, we will say that
v ts the harmonic conjugate of u on D.

Proof. The first part follows from Subsection 1.2 .
Suppose now « is a real harmonic function on a simply connected open set D. We wish to
12 1y . . —¢ . - .
v € C=(D) satisfying the CR-equations on D, that is, such that
dv = (—0yu)dzr + (Oru)dy .
The one on the right hand side is a closed differential since u is harmonic. Since D is simply
connected, it is an exact differential, so such a v exists. It immediately follows that u + iv is

holomorphic.

We remark that the hypothesis of D being simply connected cannot be relaxed. As an
example, consider A = C \ {0} and u(z,y) = 1 log(22 + 4?). Then u is real and harmonic. On
An{x+iy:x > 0} is the real part of log z, that cannot be extended to all of A. Hence, there
exists no funetion holomorphic on A whose real part is wu.

Maximum principle. We now prove the maximum principle for (real ) harmonic functions,
Theorem:

Let @ € C = R? be a domain (connected open set). u: Q — R be harmonic. If
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there exists zy € 0 and rg > 0 such that D{zg,rg) € Q and u(zp) = sup{u(z) : 2 € D(zp,70)},
then u is constant on 1.

Proof. Let
' = {2z € Q: there exists r, > 0 such that for w € D(z,7:), u(w) = u(z0)} .

We wish to show that €' is open. closed in 2 and non-empty, thus showing that Q' = €.

On D(z0,70) we can find h holomorphic such that Reh = u. Take f = e". Since |f| = eRe? =
e", |f| attains its maximum at 23. Hence f is constant on D(2y.7g), so is uw. Thus, Q' # 0.
Moreover, £ is open by construction.

Finally, let 2z € . Let D(z, r.) C Q. Since z € €V, there exists some open disk on which u
is constant. Let h. be the holomorphic function on D(z.r.) whose real part is «. Then, h, is
constant on an open disk, hence on all of D(z,r.), so is u. Thus, 2z € ', @ is closed, that is,

Q' = 0.

Theorem:

(The Poisson formula for the disk) Let A € C be open, D(0.R) C A, u be

harmonic on A. Then for every z € D(0, R) we have

w27 ) | 2

& i A :.l
u(z) u(Re') - ~[ de .

(i) The function

defined for 2 € D(0, R) and ¢ € dD(0, R) is called the Poisson kernel for the disk D(0, R)
polar coordinates it has the expression

if 1 R2 — 2

Pr(.:’r;(R‘f ):ﬁ-m’
1 R?2 —¢? {
T 97 R2_92Rr cos( —n) +1r?’
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(ii) The Poisson kernel P,.,(Re) is a positive kernel, that is,
P,.n(Re¥) >0
forall0 <r< R, 1.0 € [0,2n].
(iii) If { = Re and z = re', then

o I ... C+2 1 Re? + re
. ‘10 e — - —_— —_— _—
P,..in(Re™) = QITRCC_: %Re i

This follows at once from (7.1). since

[

(+z_ C(+z {—z [KP—|o*+(2—¢?)
(—2 ¢—% &=8 I¢ — 22

(iv) Finally, since the constant function u(z) = 1 is harmonic, from the reproducing property
in Thm. 7.6 we see that
v ¥
1 [“" R*—|z

—I—/QFP,(RE‘”)(i()=—— ___'_
2r Jo ’ 27 Jo |Re? — z|

Proof of Thm. 7.6. Let s > R and h be the holomorphic function on D(0, s) such that u = Re h.
For z € D(0, R). by Cauchy’s formula, letting v(#) = Re™. with # € [0, 2x], we have

‘ 1 [ k()
hiz) =—=— d(
4z) P 5
1 /2” 0, Re?
= — h(Re")———d@ .
27 Jg (‘ "Rel? —
Moreover, if we set w = R?/z, we observe that w = ,E:-* where z = re', and that the function
h(¢)
iy
(—w
is holomorphic on D(0, R), since |w| = 'lﬁ > R. Therefore,
1 h(¢
g / (VY
2t Jy (—w
1 2 ; RE,‘iU
= - ]l(RE'Eg)ﬁ dé
2r A "Ret? — I
1 > 5 z
= — h(Re")——— dé.
o /0 ( }.':‘ — Re™ 10
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By passing to real and imaginary parts we obtain

T, R

; R
u(z) = 2?1; 'lt(Rt,-'w) e T R I,

The Weierstrass factorization theorem.

Definition

We define the Weierstrass elementary factors as E(z,0) = 1 — 2z and for
n=1,2,..., E(fi,'n):(1—3‘)(::+:1;i""'+:,:‘

Theorem

Let {z;} C C, {p;} C N be chosen as above. Then the Weierstrass product

HE Zis pj

converges uniformly on every set {|z| < r}, r > 0, to a holomorphic entire function F. The
zeros of F' are precisely the points {z;} counted with the corresponding multiplicity.

Proof. Let r > 0 be fixed. Let jp be such that |z;| > r for j > jp. Thus,

i pj‘—[ S (-,_-)pjf] .
%7 |24

|E(2/25,p;) — 1| <

By the hypothesis on the p;’s,

A 3 Ry r \pjtl
Z|E(:/?jpj)—1|SZ(m) < +0C.
i=jo j=jo '

Weierstrass's M-test implies that Z |E‘ /Zip5) — 1| converges uniformly on {|z| < r}, for

any r > 0. Thm. 8.6 now implies that

+oc Jo—1
HE(z,’/‘:j-Pj) = H E(z/2.p;) H E(z/2,p5)
Jj=1 Jj=1

J=jo
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converges uniformly on compact subsets of C to an entire funetion F' whose zeros are precisely
the zeros of the E(z/zj.p;)’s. O

Corollary

Let {z;} be a sequence such that |z;| — +oo. Then there erists an entire

function F' whose zeros are precisely the {z;}, counting multiplicity
Proof. We may assume that 2; =..- =2, =0, and 2; #0 for j > k. Let p; = j — 1.
Let r» > 0 be fixed. Let N = N(r) be such that |z;| > 2r for j > N. Then
) Z 5 < +00.

+0C

2 (]

j=N ‘J]
Thus, by Thm. 8.9, the function
+00
F(z)=2* H E(2/2,7—1)

jik’?‘]

(Weierstrass’ Factorization Theorem) Let f be an entire function. Sup-
pose that f vanishes of order k at the origin. Let {2;} be the other zeros of f, counting multi-

plicity. Then there erists an entire function g such that

f(z) = ka()HE ~J]—1

Proof. By the Cor. 8.10, the function h(z) = 2* H i E(2/2;.7 — 1) is entire and has the same
zeros as f. Hence, the function f/h can be e\tended to an entire function, with no zero. Since

C is simply connected, log(f/h) = g is well defined and entire.
Hence, €? = f/h, that is.

f(2) = h(z)e9?) = 2kedC )HE z;,j—1). O

We now apply this result to describe an ldCIlt]t-y that describes the factorization of sin 2

Page 5/16
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We have

sinwz = w2 E(z/n.1)

n#0
~ o 2
=72 (1—;)0‘ "—W:H(l—;—)
n#0 n n=1 n

In order to prove the above identity we need a preliminary result.

Lemma
COSTZ2 1 1 1
(i) weotmz = m— :_+§ +_);
Sin 72 z “\z—n N,
n#l
(i) w2 1
11 5 — z 5
sin” w2 ”eZ[ )

Proof. (i) The function

f1(z) :%+Z(.:111 _'L%)

n#0

is meromorphic in C and having simple poles at the integers. with residues all equal to 1. The
function
< COS T2
falz) = m—

sin w2
is also meromorphic in C and having simple poles at the integers, with residues all equal to 1.

Hence, h(z) = fi(2) — fo(z) is entire. It is immediate to check that

2

e

)
S~ 7Tz
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is periodic of period 1 (and it would not be so obvious that h is periodic of period 1).

We wish to prove that h(z) = 0. We begin by showing that &’ is constant, and equal to 0.
In order to show that h' is constant, we show that i’ is bounded and then invoke Liouville’s
theorem. Being periodic of period 1. &' is bounded if and only if it is bounded in the strip
{z=2+iy: 0 <z < 1}. But, on the compact set {z =2z +iy: 0 <z < L|y| <1} /' is
certainly bounded. For |y| > 1 and 0 < z < 1, the sum

neZ
‘o 1 1 X 1 1
is finite. Moreover. since Tl S 7l < ”n , for n < 0, while FwT— < 1= 1) for
n > 2, we can apply Lebegue’'s dominated convergence theorem to obtain that
1
E =0 as |y| — +oo.
o — 1|2
— |z + iy — n|
nez
The same is true for the funetion W Recall that
iz —i7z 7yl —iyl
. e —e el — e ‘ . .
|sinmz| = | 5 | > 5 = sinh7ly| — +00

as |y| — +oo. Then, ‘?’—‘Oas |yl — +oc intheset {z =a+iy: 0<o <1, |y > 1}
This proves that i’ is bounded, hence constant. But, since h’ tends to 0 as |y| — +o0, the
constant must be 0. This proves (ii).
Thus, 7 is constant, and it is 0, since i vanishes at the integers. This proves (i), and we are

done. O

Proof of Prop. 8.12. Notice that the last equality in (8.4) follows at once.
For n € Z. let z; = n. By Thm. 8.9 the function

f(3)=rr:-H(1 _;) p2/n

n#0

is entire, having simple zeros at the integers. Let zp € C\ Z = €. Since f(zg) # 0, there exists
a disk D(zp.7r9) C © on which log f(z) is well defined and holomorphic. On such disk,

). ilogf(:) = (—l[logTrz + Z(Iog(l —z/n) +r;z)]

f(z) dz dz e
1 1 1
=t Rl )
n#0
=Tcotwz,

by the previous lemma. On the same disk D(2q,7g) logsinmz is well defined and its derivative
equals wcotwz. Then, there exists a constant €' such that log f(z) = logsinmz + C, that is,
f(z) _- 1

sinwz

f(2) = Cysinwz on D(zg,79): hence on Q and therefore on all of C. Since lim, g

'y = 1 and we are done.
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3.2 Taylor Series

We begin with the Taylor’s theorem.

Theorem 3.2.1.

Suppose that a function f is analytic throughout a disk |z — zy| < Ry, centered
at zp and with radius Ry. Then f(z) has the power series representation
S\ N0 i . \n (1= ? f[n)(_-l’()) 3 . :
f(z) =X 18a(z — 29) (|z — zo0| < Ro), where a,, = 1 (n=0;1.2...).

Vi
// oW ~
/ i >
Z \
I/ \
II R9 ‘l
! Zy
\ ; !
\ /
A /
[2] N P X

i.e., Yoo an(2—29)" converges to f(z) when z lies in the open disk |z — 2| < Ry.
(This expansion of f(z) is called the Taylor series of f(z) about the point z.)

Since f19(z9) = f(z0) and 0! = 1, the Taylor series of f(z) about the point zy can

f’(:u)(_b i )_J_f"(zu)
] VR

92

24 ..., (lz—=| < Ry).

be written as f(z) = f(z) + (z— 20)

Remark.

(n) 0
A Taylor’s series about the point z = 0, f(z) = Ej};o’f _n'( )::" (|z]| < Ro)

is called a Maclaurin series.

Any function which is analytic at a point z; must have a Taylor series about
zg. For, if f is analytic at z,, it is analytic throughout some neighborhood
|z — zp| < £ of zy. Therefore by Taylor’s theorem, f(z) have a Taylor series about
zp valid in |z — 2| < £. Also, if f is entire, Ry can be chosen arbitrarily large,

< oo and the Taylor series then

and the condition of validity becomes |z — z;
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converges to f(z) at each point z in the finite plane. If f is analytic everywhere
inside a circle centered at zg. then the Taylor series of f(z) about z; converges
to f(z) for each point z within that circle and in fact, according to Taylor’s

theorem, the series converges to f(z) within the circle about z; whose radius is
the distance from z; to the nearest point z; at which f fails to be analytic.

Example 7.

Comnsider the function f(z) = ¢*. Since f(z) = € is an entire function, it
has a Maclaurin series representation which is valid for all z. Here, f("(z) = ¢

(=012 . )=f0)=1,[m=0,12..)

Therefore, e = 32, ”’: (]z] < o0).
Example 8.

Let f(z) = l% Then, the derivatives of the function f(z) = 1%
which fails to be analytic at z = 1, are f"(z) = ﬁ (1:=0:12.:):
= M) = n! (n =0,1,2,...).. Therefore, f(z) = E 14z L2ty

1—z
- (|2] <1).

3.3 Laurent Series

If a function f fails to be analytic at a point zg, but it is analytic throughout
an annular domain R; < |z — z| < Ry , centered at z,. then the power series
representation for f(z) involves both positive and negative powers of z — z;. Such

a series representation for f(z) is called a Laurent’s series.
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THEOREM ON LAURENT SERIES

Suppose that a function f is analytic throughout an annular domain Ry <
|z — 29| < Ry , centered at zy , and let C' denote any positively oriented simple
closed contour around zy and lying in that domain. Then, at each point in the

domain, f(z) has the series representation

by,
J(2) = B qa:(z — 20)" + Sff;lﬁ (Ry < |z — 20| < Ry),
o

where

1 f(z)dz y

= o /( (z — zo)"H n )
and
I o z)dz
b” — / L(—‘T (p=1.2:..).
2m Jo (2 — z0)"" '

Remark.

Replacing n by —n in the second series in the above Laurent’s series enables

us to write that series as

where

o o
=
|
[e—
—
i
~~
p——
I
—
=
—_
=
-~
|
I
R
|
b
~—

Thus. we have

f(-) — Sy_i— _~.b—-n(: - 3())” -+ E;?;[(l'rz(-3‘ B ZU_)" (Rl

A\

|.'.' — .30| < R_g)

Prepared by:Y.Sangeetha ,Assistant professor,Department of Mathematics,KAHE Page 10/16




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: | M.SC (MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS
COURSE CODE:18MMP201 UNIT -1l BATCH -2018-2020

Or, we can write

f(.- =N Cn(: T ':())“ (Rl < i“- i 3()'1 < R‘.Z)r

n=—og

where

z)dz
B == : /( 1z =012 ._J.
&

27t Jo (2 — z0)™H?

When the annular domain is specified. it can be proved that a Laurent’s
series for a given function is unique. This fact helps us to found the coefficients
in a Laurent’s series by means other than appealing directly to their integral

representations. We illustrate this through the following examples.
Absolute and Uniform Convergence of Power

Series

We will now discuss basic properties of power series.

A natural question is to determine the set of complex numbers z for which a

given power series converges. We have the following theorem.
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THEOREM:
If a power series ¥2° jan(z — z9)" converges when z = z; (21 # 20), then it

is absolutely convergent at each point z in the open disk |z — z| < R, where

}A

Ry = |21 — 2.
! /ll
I 5 .
! 4 s} /l
% /
\\ ’//
OI X

Analogous to the concept of an interval of convergence in real calculus, a
complex power series ¥>° jan(z — z0)" has a circle of convergence defined by

|z — zg| = R for some R > 0.

The above theorem implies that the set of all points inside some circle centered
at zp is a region of convergence for the above power series X2 ja,(z — z)",

n=

provided it converges at some point other than z.

The greatest circle centered at zg such that series X7° jan(z — z0)™ converges
at each point inside is called the eircle of convergence of the series.

The series cannot converge at any point 2o outside that circle. according to

the theorem ; for if it did, it would converge everywhere inside the circle centered

at zp and passing through z3. The first circle could not, then, be the circle of

convergence.
The power series converges absolutely for all z satisfying |z — zo| < R and
diverges for |z — zp| > R. Here R is called the radius of convergence of the power
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series. The radius R of convergence can be (a) zero (in which case ¢ a, (z—z)"
converges only at z = z), (b) a finite number (in which case the given power
series converges at all interior points of the circle |z — z| = R), (¢) oo (in which
case the given power series converges for all z).

A power series may converge at some, all, or none of the points on the actual

circle of convergence.
Suppose that the power series X7 gan(z — 20)" has circle of convergence |z —

zn| = R, and let S(z) and Sy(z) represent the sum and partial sums, respectively,

of that series:

.« - s N—1 . L
S(z) = Xoigan(z— 20)", Sn(z) =X, —gan(z—20)" (|z— 20| < R).

Then, the remainder function py(z) is given by py(z) = S(z) — Sy(2)
(|z— zy| < R). Since the power series converges for any fixed value of z when
|z — zp| < R, we know that the remainder py(z) approaches zero for any such z

as N tends to infinity.

This means that corresponding to each positive number ¢, there is a positive

integer N, such that |py(z)| < £ whenever N > N._.

When the choice of N. depends only on the value of ¢ and is independent
of the point 2 taken in a specified region within the circle of convergence, the

convergence is said to be uniform in that region.

It can be shown that if z; is a point inside the circle of convergence |z—z| = R
of a power series ¥>° ja,(z — 25)", then that series must be uniformly convergent

in the closed disk |z — zg| < Ry, where R; = |21 — 2

Note that a power series X7° ja,(z — zp)" represents a continuous function

Page 13/16




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: | M.SC (MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS
COURSE CODE:18MMP201 UNIT -1l BATCH -2018-2020

S(z) at each point inside its circle of convergence |z — zp| = R. Furthermore,
the sum S(z) of the power series £ ja,(2z — zp)" is actually analytic within the

circle of convergence.
Theorem

Let C' denote any contour interior to the circle of convergence of the power
series X0 san(z — zp)", and let g(z) be any function that 1s continuous on C.
The series formed by multiplying each term of the power series by g(z) can be

integrated term by term over C; i.e., f(.g(:)S(.:-)d: =2 50n f(._.g(.:)(_;_- —zp)"dz.

If a series X2° ja,(z — z)" converges to f(z) at all points interior to some
n=0"7 / = J
circle |z — zp| = R, then it is the Taylor series expansion for f in powers of z — z.
o L In i
If g series X2 . cq(z—20)" = X2 qanlz —20)™ + 12, Z— ) converges to

f(z) at all points in some annular domain about zj, then it is the Laurent series

expansion for f in powers of z — z for that domain.

An important result in real calculus states that, within a power series’s radius
of convergence, a power series is differentiable, and its derivative can be obtained
by differentiating the individual terms of the power series term-by-term. The

same holds true for complex power series:
Schwarz’s Theorem:

Suppose f is holomorphic in
the open unit disc D := {z € C: |z| < 1} such that
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fl0)=0 and f(z)eD VzelD.

Then |f(2)| < |z| for all z € D. Strict inequality follows unless f is
of the form f(z) = Az for some A € C,

Proof. By the assumptions on f, we have

where ¢ is holomorphic on D and g(0) = f’(0). Since f(z)| < 1, we

have
¢ : :
g(2)| < |_ = — whenever |[2|=r < 1.
z| r
By maximum modulus principle,
, 1 .
lg(z)| € — whenever |[z|<r<]1.
-

Now, let 2 € D, and 0 < r < 1 such that |z|] < r. By the above

arguments,
_]
lg(2)| < -
Letting r — 1, we obtain [g(2)] < 1. Thus, |f(2)| < |z| for all
ze D,
SIX MARKS:

1.Show the function Py(z) = U(6o) provided that U is continuous at 6.

2. State and prove Weierstrass theorem.

3.Show that the real part and imaginary part of an analytic function are harmonic.
4.State and prove Schwartz’ theorem.

5. Show that u(z) is harmonic for | z | <R and continuous for | z | <R, thenu(a)=1 =

R%—|a?|

S ier ey U(2) A6 al<R.

6. State and prove poisson’s formula.
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7.State and prove Harwitz’s theorem.

8.State and prove Laurent’s theorem.

9. If urand u are harmonic I a region Q then [ u1"duz— u2"du; = 0, for every cycle 9 which
homologous to zero in Q.

TEN MARKS:

1.State and prove Weierstrass theorem.
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Questions Choice 1 Choice 2 Choice 3 Choice 4 Answer
The power series with .......... Coefficients . .
. . two unit zero three unit
are called geometric series.
The power series of the form a0 +al(z—a) +
a2(z —a)2 +... converges absolutely in the | z-a | =R | z-a | >R | zZ-a | <R | z-a | =0 | Z-a | <R
open disc
The power series of the form ay+ a,(z —a) +
az(zfa)z-h...is said to be a series about z=0 z =-a z=2a z=00 z=a
- 2
+ + +..
The power series a, .alz arZ . |Z|=R |Z|>R |Z|<R |Z|=0 |Z|<R
converges absolutely in the open disc ........
The circle of the convergence of the series a,
2 |z|>R |z|<R |z] =0 |z|=R |z|=R
taZ +az +......
The circle of the convergence of the series a,
2 |z-a|>R |z-a|<R |z-a|:0 |z-a|:R |z-a|:R
+ayz-a) +ayz-a) “t......
A power series ... in the exterior of its circle |absolutely . uniformly .
converges diverges diverges
of convergence convergent convergent
If R =0 the series is divergent in th
0 the series is divergent in the 720 — 7= o — 720
extended plane except at
The sequence {z,} is bounded if there exists a
auence {z0} PV I PR VR TP SV [ PA ES VIR I PA
constant M such that ------ forall n.
For all finite z= h + ik, |e*| =...... etk ghtik e" e e"
X . X H y \/ X ..
. i e’(cosy +isin [e'(siny+ e’ (cosx + e’(sinx + e’(cosy + isin
Euler’s relation ¢* Y= (cosy . (siny . ( . ( (cosy
y) icosy) isinx) iCoSX) y)
The polar form r (cos 0 + i sinf) of a complex | 4 o " o o
numbers in exponential form as re € re Lre re
e” is not defined at z=0 z=0 z=1 z=-1 z=
The inverse function of the exponential Trignometric |hyberbolic harmonic Logarithmic  |Logarithmic
function is the ...... functions functions functions functions functions
Logarithamic function 10g z = -===---==---===----- logr+i0 + el el . logr+i0 +
ogarithamic function log ogr+if log 1{r+|e + |log FHiet+ | ori0 4 n2n| /98T i0
--n=0,=1, £2 n(2mi) n (2mi) n(2mi) n(2mi)
siniz=...... sinz sinhz isinz isinhz isinhz
cosiz=........ cosz icosz icoshz coshz coshz
tanz and secz are analytic in a bounded region . .
X . n g tanz#0 secz#0 sinzz0 cosz#0 sinz#0
in which
cot z and cosecz are analytic in a bounded .
L . n cotzz0 cosecz #0 sinzz0 cosz 20 cosz 20
region in which
cosh’z — sinh’z = 0 1 -1 oo 1
singular points of logz are z=0andz= 2 =1and z =0 z=0andz=- |z=landz= |z=0andz=
0 1 oo 0
Principle value of logz is obtained whenn= |0 -1 1 2 0
The logarithmic function is a ------ valued . . .
. single multiple two zero multiple
function
In a complex fieldz=x+iythen0=.......... sin’ (y/x) cos'l(y/x) tan'l(y/x) cot'l(y/x) tan'l(y/x)
The sum f(z) of a powerseries is analytic in
(2)ofap yt |z|>R |z| <R Iz sR ||z]|=R |z|<R




A power series ............... is the interior of . uniformly converges converges
. converges diverges
the circle of convergence converges absolutely absolutely
The radius of convergence of the series )’
e 2 0 oo 1 2
(2+in)/2" 2" ............
If u+iv is analytic.then v+iu is............ analytic not analytic continuous conjugate not analytic
Q%S @ v, valued function single double multiple triple multiple
The function az - ezloga eIoga ealogz e-zloga ezloga
The radius of convergence of the series )’ n’ 1 0 2 1
2 "
€0Sz; €COSZ, - |c0sz; sinz, - |cosz; cosz, + |sinz, cosz, - |cosz, cosz, -
Cos (Zl + Zz) = . . . . . . . .
sinz;sinz, sinz,cosz, sinz;sinz, €0SZ,5iNnz, sinz;sinz,
The radius of convergence of the series Y n"
g 2y 0 2 n 0
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UNIT-1V
SYLLABUS

Partial fraction- Infinite products — Canonical products--The gamma function — Stirling’s
Formula — Entire functions — Jensen’s formula.

PARTIAL FRACTION:

The method for computing partial fraction decompositions applies to all rational functions
with one qualification:

The degree of the numerator must be less than the degree of the denomi-
nator.

One can always arrange this by using polynomial long division. as we shall see in the
examples.

Looking at the example above (in Equation 1). the denominator of the right side is
¥ — 322 +x —3 = (xr — 3)(x? + 1). Factoring the denominator of a rational function is
the first step in computing its partial fraction decomposition. Note. the factoring must be
complete (over the real numbers). In particular this means that each individual factor must
either be linear (of the form ax + b) or irreducible quadratic (of the form ax? + ba + ¢).

When is a quadratic polynomial irreducible? If a quadratic polynomial factors. such as
r? — 2 —6 = (x — 3)(x +2). then it has at least one root. Similarly. if it has a root r. then
it must have a factor of 2 — r. Thus. a quadratic polynomial is irreducible iff it has no real
roots. This is easy to determine using the quadratic formula: the roots of ax? + br + ¢ are

e —b+ b — dac

241

and these are real numbers iff b — 4a¢ > 0. Thus. this quadratic polynomial is irreducible
iff its diseriminant & — 4ac < 0.

Computing the coefficients

Once we have determined the right form for the partial fraction decomposition of a rational
function. we need to compute the unknown coefficients A. B. C'.... . There are basically
two methods to choose from for this purpose. We will now look at both methods for the
decomposition of
2z —1
(x+2)%(z—3)°

By the rules above. its partial fraction decomposition takes the form
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A 5 B 4 C
r+2  (r+2)?% -3

Setting these equal and multiplying by the common denominator gives
20 —1=A(x+2)(z—3)+ B(xz—3) +C'(z+2)° (2)

Our first method is to substitute different values for # into Equation 2 and deduce the
values of A, B. and (. It helps to start with values of x which are roots of the original
denominator since they will make some of the terms on the right side vanish.

e Usingr =3 gives2(3) — 1 =0+ 0+ - 5% Thus. ' =1/5.
¢ Fromx = —2, we learn that —5 =0 + B(—5) + 0. and so B = 1.

e We have run out of roots of the denominator. and so we pick a simple value of x to
finish off. From # = 0 we find —1 = —6A — 3B + 4. Using our values for B and
(", this becomes —1 = —6A4 —3(1) + 4(1/5) and so A= —1/5.

Therefore.
2r—1 =1/5 1 1/5
=t
(z4+2)%(zx—3) z4+2 (z+2)2 z-3

PROBLEMS: 1.Evaluate

[ v3 dx

(2 —1)(x+5)

Solution: Factoring the denominator completely yields (x — 1)(z + 1)(z + 5). and so
Tr+3 r+3 A B C

@ D45 @—De+)@+5) z2-1 z+1 745

Clearing denominators gives the equation:

r+3=A(z+ D)z +5) + Bz —1)(z+5)+Clz—1)(z+1)

Since the denominator has distinct roots, the quickest way to find A, B. and (" will be to
plug in the roots of the original denominator:

¢ r=1givesd =124 — A=1/3
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o r=—lgives2 =S8 — B=-1/4
¢ r=—bHgives—2=-2UC = C=1/I2

Putting it all together, we find

x+3 _ /a3 14 112
f(r2_1)LI+J) - [.:‘—1+J'—I—1+;r—|-5d"r

_ dx dx _|_1_ dx
- 3 r—1 41 12 ri+ 5

= —1n|nr—1|——1n|nr—|-1|+—11||..r—|-5|—|-f-'

Note, we use (' here for the constant of integration even though (' has occured earlier in
the problem as a coefficient. However. it 1s unlikely that confusion will arise by re-using ('
in this way.

Problems:Evaluate

3.;‘44-31":‘ + 12222 + 219z + 159
4 Op2 L 2Ty 427

dr

Solution: The first thing we should notice is that the degree of the numerator is not less
than the degree of the denominator. Appl} ing polynomial long division. we learn that the
quotient is 3z + 4 and that remainder is 52% 4 30z + 51. Thus.

3z* + 3122 + 1222% + 219z + 159 —ar4dd 5a2 + 30x + 51
3 4+ 9x2 4+ 27z 4+ 27 o>+ 95227z + 27
We now find the partial fraction decomposition of the last term. The denominator factors
as (x+3)”. and so
B2 +30z+51 A B &
B34+922 42Tz +27T =43 I (x+3)2  (z+3)°
Clearing denominators leads to

5l +30e + 51l = A(z +3)° + Bz +3) +C (4)
We can quickly determine (' by evaluating at 2 = —3. which leads to 5(—3)% + 30(—3) +

51 = . and so ' = 6. We now pick two simple values of x to obtain relations between A
and B. From r = —2. we find

11=A1)2 |1 B1)I6 = 5=A|B
and from » = —4. we find
11=A(-1)*+B(-1)+6 == 5=A-DB
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Adding these equations together. we find that 10 = 24 and so A = 5. Substituting this
back into 11 = A+ B yields B = 0. Thus

3zt + 3l + 12222 + 219z + 159
¥ +91° + 27z + 27

dr

_ : 5a? + 30 + 51 :
:/.}J, +4+ PN oV B R dx

5 6
/1: +4dr + / 4D — @137 dx

(4 1 .
+4J+)1ﬂ|1+3|+ +—3)2 ('
3

2
1.r )TI|I | 3)

[\le-'-l (vl .

Infinite products.
Let a; be complex numbers, j = 1.2 . We want to give a meaning

to the convergence of the 111f1111te product ]_[ 7 Q.

Definition
We say that the infinite product] [, a; converges if

(i) there exist at most finitely many a; = 0, say a; # 0 for j = jn:
ii) for any Ny = jn. the limit
A 71

N
lim I I a; = Bng
N-P%too : : 7 No
J=Ng

exists finite and # 0.

Notice that, if condition (ii) is verified, we may compute the logarithm of 3y,. Let 3 = Gy,
ay = ]"I;.\r:‘\,u a;, and let D(/3.¢) not contain the origing and let N. be such that ay € D(3.¢)
for N > N..

We may assume that /3 is not on the negative real axis and let log denote the principal branch

of the logarithm (otherwise, chose a different branch cut for the determination of the logarithm.)
Then, we have
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( N N
log By, =log ( lim aj) = lim log o
N—+o0 jgg ) N—+o00 jgn
N
= “Y]_i.r_lg)C 2\: log(;y a; .
J=iv0

where log;, denotes some branch of the logarithm. Since the limit on the right hand side exists
finite, log;ya; — 0 as j — +oc. Hence, in particular the branch of the logarithm must be
the principal one, and a; — 1. This is a necessary condition for the convergence of the infinite
product.

Although the next result is not strictly necessary for what that follows, we state it for the
sake of clarity.

Lemma
Let a; be non-zero complex numbers. Then H:; a; converges if and only if

+oo AT oi: ShEve ’ 2 K neinipis o

j=1 log avj converges, where log denotes the principal branch.

’ -a ” 0, Eprane e; : oo o b 1 +00 X S i
Proof. The previous argument shows that if | ] ; ar; converges then also ) =1 log «x; converges.

~N N
Y L logag; N +00

“5=1 ; = . als ' ;

j = ] | o also ||j:l xj con-

. +x - N

Conversely, if 3 loga; converges, then, since e
verges. [

For simplicity of notation, we are going to write a; = 1 + a;.

Lemma

Let aj € C be such that |a;| < 1. Let Qn = H\:l(l + |aj|). Then

N ~N

1 ' :
(f§' .j=1 |Clj: S Q‘,\. S (;"'\-_1'=1 |l <

Proof. Since 1+ |a;} < e'%!,

: ~N 1
(1 +]a1)--- (1 + |an|) < e2=t 1%l

On the other hand, since e” < 1+4+2rfor0 <z <1,
1 N

e225=1 15 < (1+2(|a1|/2)) -+~ (1 +2(jan]/2))

N
= H(l +la;]). O
i=1
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Proposition
i i a ayradai e TOC | A | = == i +oc : )
If the infinite product l_[j:l(l + laj|) converges, then also I—[J.:](l + a;)
y > Q@ - 0 q 5 ePTIL T30 .‘ MNEeINILC 3 T0oo 3 3, 12TNIPQ
converges. Hence, if the series ijl la;| converges, also Hj:l(l + a;) converges.

Proof. Since the product [T;2(1 + |a;|) converges, then [a;| — 0, so that 1 +a; # 0
We may assume jp = 1. Let

N N
Py = H(l +a;). and Qy = H(l + laj]) -

Jj=1 J=1

Notice that, for a suitable choice of indices ji.

N n
Py =14 I ti-
n=1k=1
Then,
N n
[Py —1] = | 3" T] x|
n=1k=1 ‘
N n
<Y ] lexl = @n - 1.
n=1 k=1
Then, for NM >1,. N > M,
N M
[Py — Pur| = | [T+ ;) - [T +a5)|
i=1 j=1
M 7 N
= | (1—1@-)%-[1— H (lfaj)i
=1 j=M+1 |
N
<Qu( I (+lah-1)
i=M+1
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| oo

iy
~N |
TT 1+ Jas) < S lesl < -
j=M
for M = jo, and N > M. Then, arguing as in (8.1) we see that

N N
- 11 1+a,] H1+|aj|)—1g
j=M

1

12|

for M > jp, and N > M. Hence.
o 1
} | | 1+a;) ’ £

so that
M N

{TT 2 l \
= lllu ‘;Hn,lfa.jf-!HH%»aj)’

N —+oc
=1 =M

—

lim |Py
N—+oc

Jo

'H (1+a; \l

We apply these results to the infinite product of functions.

|\.c'

7. Canonical Product

We recall the Weierstrass factorization theorem for enfire functions. Let flz) be an entire
function with a zero of multiplicity m = 0 at z = 0. Let {z;} be the non-zero zeros of f{z),
arranged so that a zero of multiplicity K is repeated 1n this sequence K times. Also suppose that

[z1| £ za| £..... . If {pn} is a sequence of integers such that
Pp+l
iE < x, for every R > 0, then

x
>
o znl‘

P(2)= 11 E, (2/7,) M

converges uniformly on compact subsets of the plane. where by definition of primary factors. we
have

2 2
E,(z) = (1-z)exp ZJT#,A-% ®
forp > 1and Ey(z) =
Then the Weierstrass ﬂjemem savs that
flz) =2 P(z) 3)

where g(z) is an entire function.
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We are interested in the case in which g(z) and P(z) have certain characteristics which result in
properties of /{z) and conversely. A convenient assumption for P(z) is that all the integers pn are
equal. Then we see that this 1s to assume that there is an integer p = 1 such that
i ‘ Zn g‘@va;; - (4)
n-l
i.e. it is an assumption on the growth rate of the zeros of f{z). Further. if we assume that p is the
smallest integer for which the series (4) converges, then the product

P(z>=§1 E,(z/2,) )

is called the canonical product associated with the sequence {z,} of zeros of f{z) and the infeger
p is called the genus of the canonical product. The restriction on g(z). we impose, is that it is a
polynomial. Such an assumption must impose a growth condition on e¥®. When g(z) is a
polynomial. then we say that f{z) is of finite genus and we define the genus of f{z) to be the
degree of this polynomial or to be the genus of the canonical product whichever is greater.

Now we drive Jensen’s formula which says that there is a relation between the growth

rate of the zeros of f{z) and the growth of M(r) = sup {lf(reie') :0 £6 = 2x} as r increases. For
this, we shall use Gauss-Mean Value Theorem which states that if fz) is analytic in a domain D

which contains the disc [z — z| £ p. then
1 2 )
fa)= -l ¥ flzg +pe’®) s

If u is the real part of f{z), the above result gives Gauss-mean value theorem for harmonic
function, as

u(zo) = ql—nu " ufzo +pe®) d6

7.1. Jensen’s Formula. Let f{z) be analytic in the closed disc z| < R and let f{0) = 0. fiz) = 0 on
izl =R If z1, z»...., z» are zeros of f{z) in the open disc z < R repeated according to their
multiplicity. then

log [{0)| =~ % log —— |+ log| Re")d.
il |zy}) 2n

Proof. Consider the function
» R*-7Zz
F(z2) =1z e 1

@=fD 11 355 M
We observe that F(z) is analytic in any domain in which f{z) is analytic and further F(z) = 0 for
izl £ R. Hence F(z) is analytic and never vanish on an open disc |z| < p for some p > R.
Also F(2)|=2) (€3]
on |z| =R. since

n 1_ = n 1 = i :
I R -Zz|_ |R’ “lec |_.z=Re“'
i1 R(z-z;)| ia |R'e —Rzi|
_ 2| RR-zZe*)
=11 | 2o _lA -1
i1 | Re®(R—-ze™)
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e R—Zew 19,
= ==l &’ =1
R-ze

1=l

=1

Since F(z) is analytic and non-zero in |z| < p. log F(z) is analytic in z| < p and consequently its
real part log [F(z)| is harmonic there. Hence using Gauss-Mean value theorem for log [F(z)|. we
get

tog [F(O)| = 512" 1og FRe*)di 6)
Now. from (1). )
FO=A0) T [ =X |

i=l i

so that F(0)| = R0) 15[ B

il 'Zi
and thus

; L R
log [F(0)| =log [{0)| + X log—

il IZ; |

Also by (2). [F(Re*)| = fiRe*) on |z|=R.
Therefore (3) becomes

log J10)] + 5 log——=—— > log {fRe*)id¢
=1 |z;| 2m0

or

log f0)[=-%

Lel Li

log——-+-L[3* log [TRe")dd
i |

7.2. Poisson-Jensen Formula. Let f{z) be analytic i the closed disc z| £ R and let fz) = 0 on |z|

=R. If z;. z;..... z, are the zeros of f{z) in the open disc z| < R repeated according to their
multiplicity and z =re”, 0Zr<R, then

= R’ -7z

log fiz)|=-3 log|l———

g fz) 2 8382

L 1 R2-r)log| fRe))

27'0 R*—2Rrcos(®-¢)+1’

dé.

Proof. Consider the function

n R2-zZz
F(z)=flz) T ——— 1
@=ADTT 3= (1)

Clearly F(z) is analytic in any domain in which f{z) is analytic and F(z) = 0 for |z] £ R. Hence
F(z) 1s analytic and never vanish on an open disc |z| < p for some p = R. Also

F(z)|=fz)lonlz=R
Since ¥(z) is analytic and non-zero in |z| < p, log F(z) is analytic in |z| < p and consequently
its real part log [F(z) is harmonic there. Hence using Poisson integral formula (unit-I) for
log [E(z)|. we get
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@)

1 2= (R®-1")log|F(Re*
tog F(@)| = 5= o g e Loe FEE )
dm<% R —2Rrcos(B—d)+r1
Now. log [F(Re")| = log [filRe") on [z =R.

_ o RE—EiZ
Also log [F(z)| = log |lz) E ‘R{z—zl)
n R'-Zz
=log [fiz)| + % log | ———
2 [fz)| Zlog Rz—z)
Therefore (2) becomes
o R'-Zz
log flz)l=-F log | &———
g fz) 2 log Rz—z,)
1. (RY—p2 i
L L R -r)loglfReM)|

2n°% R?_2Rrcos(B-4)+1?
ENTIRE FUNCTIONS

To begin our study of holomorphic functions in the entire plane. we diskuss the notion of
convergence for infinite products.

The gamma function. The subject of this and of the next section is to introduce probably

the two most famous and studied non-elementary functions: the Euler gamma function I'(z) and
the Riemann zeta function ((s).

DEFINITION:

For Rez > 0 we set
I(z) = / 2te Rt
Jo

We first state a general result about the holomorphicity of functions defined by integrals. For
its proof we refer to [L].
THEOREM:

The function I'(z) is holomorphic for Rez > 0. Moreover, it can be analytically
continued in the domain 2 = C\ {0,—-1,-2,...}. At the non-positive integers = = —n, with
n=0,1,2,.... the function I'(z) has simple poles with residues (—1)"/n!.

Proof. 1t follows from the previous proposition that I'(z) is holomorphic for Rez > 0, since for
t > 0, |t*| = t* so that the integral defining I'(z) converges absolutely.
Next we notice that, integrating by parts we have
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+o0 b
f 2 let g — lim f 2 le tdt
0 a— 0% b—+oo Jg

b1 b
—+ —f fd(:'_tdt
a Z a

. 1. _
— lim “tFet
a—0t b—+oc 2

too
1 f t2e tdt.
= Jo

Notice that we have obtained the identity

2T(2)=T(z+1),

valid when Rez > 0.

The expression %fo'"" t>e~ ' dt on the right hand side above defines a function holomorphic
on {Rez > —1} \ {z = 0} that coincides with I'(z) on the set {Re 2 > 0}. Hence, the function
I’ can be analytically continued on the set {Rez > —1} \ {z = 0}.

Assume by induction that, for n > 2,

1 b it
ptn—let gt
:(;+1)---(;+n—1).£ o

for z € {Rez > —n}\ {0,—-1,..., —n+1}.
Arguing as before, integrating by parts again we obtain

[(z) =

1 L ;
I(2) = . t* e " dt
(2) .:(.:+1)--'(2+n—1)(:+n)/0 %
n 1
= (H— ,)F(:-l—n-%—l).
j=0 2t
for Rez>-n—1and z #0,—1,..., —n.

This shows that, I'(z) is holomorphic for 2 € C\{0,—1,—2,... }. Moreover, in the non-positive
integers [ has simple poles with residues given by

lim (z+n)l'(2) = lim (2 +n) H %/ et g
Z——n Z——n z l)

3=0....; n
+00
= H 1 / e tdt
3=0,....n J—nJo
(_1)11
n!

In the next proposition we collect a few facts that emerged from the previous proof.
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Proposition
Let 2 = C\{0.—1,—2....}. The gamma function I'(2) satisfies the following

pro p-(-_'rf 1€e8:
(i) 2'(z) =T(2+1) forall z € Q;
(ii) F'(n+1) =n!;
(iii) I'(1/2) = /7.

Proof.

Since I'(1) = 1, (ii) follows from (i) inductively.
Condition (iii) follows from the well-known identity Ij: e t"/2dt = /7 and the change of

variables = = /1.

Corollary

For all z € Q) we have

['(z)[(1—2z)=——.
sin w2
Proof. It follows from the Thm. that
B - A R .7 +00 e
AT — ) — s Z/n = _ A -z/n
D(2)T(—2) = — Hl(un) in. 1(1 “) €
JliSs 22\ -1
-—=1(-%)
~  Zsinme
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Possible Questions:
Part-B:

1. A necessary and sufficient condition for the absolutely convergence of the product [[*(1 + ax) is the
convergence of the series ), _; |ax| . Find the product representation for sin 1z

2. State and prove Legendre’s duplication formula

2

3.Find the power series for the function

sin?nz

1 2
4.Prove that mcotmz=_+),* ’

z n=1,2_u,2

5. Show that {bs} be a sequence of complex numbers with lim by=22 and let ps(J) bepolynomials

99—

without constant term then there are functions which are meromorphic in the whole plane with poles at
the points by, and the corresponding singular parts ps ( ) Moreover, the most general

meromorphic function of this kind can be written inthe form, fz) =2 p ( ) +p (z) ]+9(2)

z—by v

where py (z) are suitably chosen polynomials and g(z) is analytic in the whole plane.

6 Prove that 'z = 1/z " [ (1 +z/n)™ €™ using the relations I'(z) = 1/zH(z) and H(z) = ¢'®
G(z).where G(2) is the simplest function with negative integers for zero is given by the (a) Find the
product representation for sinmz.

7. If f(z) is analytic in |z| < p and has zeros at a;,az, ......... anin |z| < p. Then prove that
. s 210g(P€‘9)d9 + Z" log (=% )corresponding canonical product.

p =1 p(z-aj)

Part-C:

1.State and prove Poisson-jensen’s formula.
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Questions Choice 1 Choice 2 Choice 3 Choice 4 Answer
The polar coordinates of C-R u=1/rv, and |u=v, andu,= |u=1/rv, and U=-rv u=1/r v, and
equations are...... U= -T V, v U= TV, o Uy=-T V,
Two harmonic functions are said to be Coniugate
....... Functions if they satisfies the C- JUOa harmonic functions analytic analytic
. harmonic
R equations.
The Laplace equation of the form U, +U,,=0 U,-U,,=0 Vi +U,,=0 Vi tVx,=0 U,+U,,=0
If U=x’-y? then Uyy = ? 3 1 0 2 2
If u(x,y)=e*cosy then find u,=? e*cosx g*cosy cosy e~ e“cosy
The second order partial derivatives
exist, continuous and satisfies the Analytic Continuous differentiable | harmonic harmonic
laplace equation is called functions
If U=x’-y” then U,, = ? 3 2 0 1 2
The fixed point’s transformation is
also known as ...... points mobius invariant constant bilinear constant
transformation
The blllﬂear transformation of the az+blcz+d az+blotd az+b az+blc az+blcz+d
form W=
A function which is .......... in region
which is not close may or may not be |Analytic differentiable  |continuous bounded Analytic
bounded in it.
The function 1/(1+z) is analytic at . .
s . . . ifferentiabl . .
infinity because the function 1/(1+1/z)|Analyticat0 |continuous at O g erentiable at analytic at 1 Analytic at 0
is
If a function is d|ffergnt|zf1ble _at a analytic at that |continuous at  |differentiabe at npt . differentiabe at
points then the function is said to be - . . differentiable at .
point that point that point . that point
that point
The Laplace equation of the format UytU,,=0 Uyx-U,,=0 VU, =0 ViV, =0 U, +U,,=0
The bilinear transformation is also . . . . .
. non mobius linear mobius non linear mobius
known as ......... transformation
The equations u,=vy and u,=-v,are |Polar equation |Euler equation |C - R equation |coordinates C - R equation
If u or v is not harmonic, then u+iv is . . conjugate . . .
analytic not analytic . diffrentiable not analytic
......... harmonic
_ b . I . .
If f(z)_ u(_x,y) v(xy) is analytic in harmonic conjugatce differentiable |continuous conjugaFe
domain d iff u(x,y) and v(x,y) are harmonic harmonic
In a two dimensional flow the stream
function is tan™'y/x then the velocity  |1/2log(x* +y?) [Sin™ y/x log(x* +v*)  |cos™ y/x 1/2log(x* +y?)
potential is
By Milne — Thomson method if u ) 2
> 2 2x+2y X+y z Z
(xy) =x"—y" then f(z) =
- _ 12 .
The functlon.f(z) =208 single multi double triple double
Valued function
The transformation w = z° maps the -- parabola hyperbola ellipse rectangular rectangular
----------- onto the straight lines hyperbola hyperbola
If f(z) = u+iv is an analytic function . . . .
then -if(z) = u-iv V+iu u+v v+i(-u) v+i(-u)
2
—x“+
;Fhe value of m s1.101.1 that 2x — x” + my 1 5 0 3 1
may be harmonic is ----
e - -
ITf(z) = utivis an analytic function (u+v)+i(v-u) (u+v)-i(v-u) (u-v)+i(v-u) (u+v)+i(v+u) (u+v)+i(v-u)

then(1 -i)f(z) =




If f(z) = u+iv is an analytic function
then(1+i)f(z) =

(u+v)+i(v-u)

(u+v)-i(v-u)

(u-v)+i(u+v)

(u+v)+i(v+u)

(u-v)+i(u+v)

Harmonic functions in polar

U, + Uru, +1/°

U, +ru, +1/r°

U, + Ur u, +1/°

U, + Uru, +1/°

2

. +
coordinates are Ugo Ugo Une +1/1" gy Ugo Uge
The function ----------- is called )

. + +

zhukosky's function 1/z 2+1/2 z sinz 2+1/2
If w = u+iv under w = z+1/z then u = .

u=(r+ l/r)cosB|u=(r - 1/r)cosd [u=(r+ 1/r)sind [u= r cos6 u=(r+ l/r)cosb
If w = u+iv under w = z+1/z then v = . . .

v =(r+ 1/r)cosO |V = rsinO v=(r- 1/r)sin® |v= rcosO v=(r - 1/r)sin6
A circle whose centre is origin goes
ontoan...... whose centre is the arabola hvoerbola ellinse rectangular ollipse
origin under the zhukosky's P vp P hyperbola P
transformation.
A ray emanating from the origin goes

. L. . rectangular

onto a ..... Whose centre is the origin |parabola hyperbola ellipse hvoerbola hyperbola
under the zhukosky's transformation P
The principle value of log z are .... logr logr+io logl/r logr-i@ logr+i6
. The partial derivatives are all ----- in . . . . .

h analytic not analytic does not exists [continuous analytic
domain D S n n
W=C0SZisa-----—- function. analytic continuous not analytic limit analytic

. . . analytic - .
f(2) =xy +iy is -------- analytic continuous limit continuous
(@) =xy+ly n anywhere

. The function f(z) = || is on imaginary i . i
differentiable - on real part part at the origin atthe point2 |at the origin
If f(z) has the derivative only at the analytic not analytic analytic continuous not analytic
origin, it is ------ everywhere nowhere nowhere nowhere nowhere
f(z)=1/zisa ------ function. differentiable  |continuous analytic not analytic analytic
An analytic function with constant real L .
part is yt constant real imaginary not analytic constant
An analytic function with constant L .
L n . constant real imaginary not analytic constant
imaginary part is ------
An analytic function with constant L .

. constant real imaginary not analytic constant
modulus part is ------
Both real part and imaginary part of . olynomial laplace's laplace's

P Imaginary p wave equation POIYM del operator plac plac

any analytic function satisfies ------ equation equation equation
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UNIT -V

SYLLABUS

Riemann Mapping Theorem — Boundary behaviour — Use of Reflection Principle —
Analytical arcs— Conformal mapping of polygons- The Schwartz - Christoffel formula.

Definition. A meftric space is a pair (X, d) where X is a set and d is a function from X x

X into R. called the distance function or metric, which satisfy the following conditions for x,
v, zeX
® dEx.y)=20
(i) dx.y)=0ifx=y
(i) d(x,y)=d(y,x)
(iv) d(x.z)<d(xy)+d(y.2)
Conditions (iii) and (iv) are called ‘symmetry’ and ‘triangle inequality’ respectively. A
mefric space (X, d) is said to be bounded if there exists a positive number K such that
d(x,v)<K forallx.ye X.

The metric space (X, d). in short, is also denoted by X, the metric being understood. If x
and r > 0 are fixed then let us define

Bxin={xeX:dx,y)<r}

Bx:r)={reX:dxy)<r)
B(x: r) and B(x: r) are called open and closed balls (spheres) respectively, with centre x
and radius r. B(x: €) is also referred to as the e-neighbourhood of x.

Let X =R or V and define d(z. w) = |z—w| . This makes both (R.d) and (V. d) metric
spaces. (¥, d) is the case of principal interest for us. In (V. d), open and closed balls are
termed as open and closed discs respectively.

A metric space (X, d) is said to be complete if every sequence in X converges to a point of X,
R and V are examples of complete metric spaces.

If G is an open set in V and (X, d) is complete metric space then the set of all continuous
functions from G to X is denoted by C(G, X).

The set C(G, X) is always non empty as it contains the constant functions. However it is
possible that C(G, X) contains only the constant functions. For example, suppose that G is
connected and X=N={1,2, 3, 4..}. If f € C(G, X) then {f(G) must be connected in X and
hence, must be singleton as the only connected subsets of N are singleton sets.
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3.12. Riemann mapping theorem. Let G be a simply connected region which is not the whole
plane and let a = G. Then there is a unigque analyiic function £ : G — 7 having the properties :
(a) fla)=0andf"(a)=0

(b) fisone one

c) HGi={z:|z|=1}

Proof : First we show £ is unique.

Let g be another analytic function on ¥ such that gia) = 0, g'(a) = 0 g is one one and
g(G)= dz:lz|=1}=D.

Then fig : D — D is analytic, one one and onto

Also f,g7'(0)=1f{a)=0. Sothere is a constant ¢ with |c |=1

and fygl(z)=cz forallz. [Applving theorem (2) with a = 0]

But then fiz)=cg(z) givesthatl ={'(a)=cg'(a).

Since g'(a) = 0, it follows that ¢ =1. Hence f = ¢ and so f is unique.

Now let @ = {f e H((Z) : {is one one, f(a)=0,{"(a) = 0, {(G) c D}
We first show & = ¢
Since G=7 sothereexists be ¥ suchthatb g G

Also G is simply connected so there exists an analytic function g on G such that [g{z}]l =z-h.
Then g is one-one

For this let z;. 2, £ G such thajt g(z;) = g{z;)

Then [2(z0]™= [g(z2)]

v i — b= I— b

) =1I1

g 15 one-one.
0 by open mapping theorem there is a positive number 1 such that
B(g(a):1) cg(G) ..(1)

Let z be a point in G such that g(z) = B(—g(a) ; 1)
Then g(z)+2@) <1
= —2(@)—-g@) I=r
= —g(z) = Blg(a) : 1)
= —g(2) = g(G) [using (1)]
So 3 some w = & such that
—gZ)=g(Ww)
= [2(z)]"= [g(w)]"
= Z-b=w-0h
= I=W

o

-g(z) = g(z)
g(z)=0
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But then z-b= [g(z)]2 =0 implies b=z = G. a confradiction.

Hence g(G) " B(-g(da):n)=¢

Let U =B(-g(a) : r). There is a Mobius transformation T such that
T(C.-TU) =D

Let g; = Tpg then g; is analytic and g;(G) = D.

. g,(2)-a

Consider 2(2) = ==—— where o =g;(a).

2@ = T ) 2a)

Then g isanalytic, g2(G) =D and gx(a)=0
Choose a complex number c, | ¢ | = 1, such that

2:(2) =c 2a(2) and  gi'(a)=0
Now g;=Phenced =4

Next we assume that ® =& U {0} .-.(2)
Since f(G) c D, sup {{ f(z) : z € G} £1 for fin ®. So by Montel’s theorem, ¢ is normal.

This gives @ is compact.

Consider the function ¢ : H(G) = C
as oH=1'(a)

Then ¢ is continuous function. Since @ is compact, there is an fin & such that f ‘@zg'(a)
forallgs®.

As @ = ¢, (2) implies that f ¢ @ We show that f{G) =D. Suppose w = D such that w £ f{G).
Then the function
f(z)-w
1-wi(z)
is analytic in G and never vanishes. Since G is simply connected. there is an analytic function
h: G — 7 such that
f(z)-w

)] = I—WiE) ---(3)
Since the Mobius transformation T, = —:__—_W maps D onto D.
we have h(G) cD. -
Define g:G—>7as
o= 2@ 1@ -b@

@) "1-h(ah(z)
Then g(G)<D. g(a)=0 and g is one-one.
_|h@| v@[-|h@)]] _ |h@)|

- 5® h'@) [1-h@[F  1-|h@)[
But | h(a) ]3= ﬁ:%—rf-(‘:) =|-w|=|w| [~ fa)=0]

Differentiating (3), we get .
2h(a) h'(a) =£'(@) [1 - | w ]
f'@)i-|wl’) _f'@i-|w/’)
2h(a) 2iw)

= h'(a)=
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g f@OIWE) 1 _f@ds(w).
2fiwl  a-lw) 2w

Thus g £ ®. A contradiction to the choice of f.

- ()

Hence we must have f(G)=D.

Next we prove ® =& u {0}.

Suppose {f;} 1s a sequence in ® and f;, — fin H(G).

Then fla) = hf.n fi(a)=0 Alsofy'(a)—=f'(a)sof’'(a)=0

Let z; be an arbitrary element of G and let w=f(z;). Let wy=1y(z;). Letzz € G.z2=z1and K
be a closed disk centred at z; such that z; = K

Then f,(z) — w, never vanishes on K since f is one one But f;(z) — w, converges uniformly to f{z)
— won K as K is compact. So Hurwitz’s theorem gives that f{z) — w never vanishes on K or

f(z)=w.

If f(z) = w on K then f is constant function throughout G and since f(a) = 0, we have

f(z) = 0. Otherwise we have fis one. So f’ can never vanish. This gives
f'(a)=0 [ f"a)z0]
and so fed.
3.6, Hurwitz's Theorem. Let G be a region and suppose the sequence {f;} in H(G) converges
tof Iff=0, B {a:R) = Gandfiz) = 0 for |z — a| = K then there is an infeger IV such that
forn = W, fand f; have the same number of zeros in B(a ; R).

Proof: Let 3=inf {{fiz)|: |z—a|=R}
Sincef(z) =0 for [z— a| =R, we have 5= 0.

Now f; — funiformly on {z : |z — a| = R} so there is an integer N such that if o = N and
|z—a=F then

lf(z) = fu(2)| = 5 < [f(2)]
Hence by Rouche’s theorem fand fr have the same number of zeros in B(a; R).

Cor : If {fi} — H(G) converges to fin H((G) and each fi never vanishes on G then either f=0 or
f never vanishes.

wa | o

3.2. Theorem : If G is open in 7 then there is a sequence {K;} of compact subsets of G such

that G= UKn . Moreover. the sets K; can be chosen to satisfy the following conditions :

Dl
(@) KocmtKe:
(b) K = GandK compact implied K — K, for some n.
Now we define a metric on C(G. X).

Since G is open set in 7, we have G = UKxI where each K, is compact and K;, — int K,-;. For
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n = N, we define
Pe (£ g) = sup {d(f(z). g(z)) : z = Ka}
for all functions f and g in C(G, X).

Also if we define
=(1)_pu(fg)
fo=> s —————— forallf g = C(G.
fED=2\3) it o g X)
then (C(G, X), p) is a metric space. In fact (C(G, X), p) is a complete metric space.

3.3. Definitions : A set © — C(G. X) 15 normal if each sequence in € has a subsequence which
converges to a function fin C(G. X).

A set & — C(G. X) is normal iff its closure is compact.

A et & = C(G. X) is called equicontinuous at a point z; in G iff for every = > O thereisa 6 =0
such that for [z — zg| < 3,

d(f(z). flz)) = =

Schwarz’s Reflection Principle

We observe that some elementary functions fz) possess the property that fZ)= f(z) for all
points 7 in some domain. In other words, if w = f{z), then it mav happen that W= f(Z)ie. the
reflection of z in the real axis comresponds to one reflection of w in the real asxus. For example,
the functions

7.2+ 1, €% sin z etc
have the above said property, since, when z i1s replaced by its conjugate, the value of each
function changes to the cord}jugate_ of its original value. On the other hand, the functions

iz, z"+1, €% (1 +1)sin z etc
do not have the said property.

Theorem (Schwarz’s Reflection Principle). Let G be a region such that G = G* if

f: G- Go— 7 is a continuous function which is analytic on G- and f{x)'is real for x in Go then
there is an analytic function g : G— 7 s.t. g(z) =f(z) for all zin G- U Gy.

Proof. For z in G_, define g(z) = f(Z) and for z in G- U Gy, define g(z) =fz).

Then g : G— 7 is continuous. We will show that g is analytic. Clearly g is analytic on G- w G_.

To show g is analytic on Gy, let X be a fixed point in Gy and let R = 0 be such that
Bx:R)cG

It is sufficient to show that g is analytic on B(x; ; B) We shall apply Morera’s theorem.

Let T =[a. b. c. a] be a triangle in B(xp ; B). Assume that T — G- Gpand [a. b] = Gy Let A

represent T together with its mside. Then g(z)=flz) forall zin A [+ T < Gs v Gy By

hvpothesis fis continuous on G. o Gy, 50 fis uniformly continuous on A, 5o given = = (), there

1sad=0st z z' A implies

[lz)— Az = = whenever z—2'| < &.

Choose o and [ on the line segments [c, a] and [b, c] respectively so that |« — a < & and

P-b|l=<3& LetTy=[a,p.c.a]and Q=[a,b, B, . a]. Then | f=[ f+] f
T i | Q
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G.
o 5
a b @
But T, and its inside are contained in G- and fis analytic there.
So [ F=0
T
[ r=17r1
T Q

Byif0 £t =1, then

[tE+(l-t)a]-[tb+(1-t)a]| =3
so that

JUBE+(1-Da)—ftb+(l-ta)| ==
Let M=max {1 fz)|:z = A} and { be the perimeter of T then

[ f+ [ fl=Ib-a) j5 Atb+(1-ta)dt— (B—o) [; B +(1 —t)er) dt |

k]  [B]
<1b-al[} [Atb+1-tha) - ftf + (1-t)x)] dt
+ b-a) = (B-o)| [ [y fit f+(1-t)oy) dt
Zeb-al+M|b-E)+{u-2a)
< =1+ 2MB3.
Also [ flEMa-o/<Mé
[=.a]
and [ f|=Ma.
[=.6]
([ fl=| [ £+ [ £+ [ £+ [£]=| [ £+ [ £|+| [ £]+] | |
T [a.b]  [B=] [wma]  [0E] [ak]  [Bw] [=.2] [b.2]

< el+4M3

Choosing 3= 0s.t. &< <. Then
[ [ F| = e(l+4M). Since < is arbitrary it follows that | f=0. Hence f
T T

nmst be analytic.

Prepared by:Y.Sangeetha , Assistant Professor,Department of Mathematics, KAHE Page 6/14




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS
COURSE CODE :18MMP201 UNIT-V BATCH:2018 -2020

s Schwarz-Christoffel Transformation

We've seen that the transformation w= f(z) with

df n-1 »1
—=AT (z-x; ™ with p,=2- Di. 0<p;<l1
e j=l( J) n Z J i

=1
maps the real axis onto a convex polygon of the positive sense.
df
Thus, d_ # 0 for finite z.
If all the branch cuts are oriented toward the lower plane, the mapping will be analytic & hence conformal in the finite upper
half plane y > 0 except for the branch points z = x;.
Let us denote the region of analyticity for f by R .

T dfe
—  f(2)= f(z0) + fds = Yz zpeR
;ﬂ 5
2 1
= B+4 |dsT (s—x; B= f(z0)
=1

2
w= f(z) 1s known as the Schwarz-Christoffel Transformation (SCT).

Some properties of the SCT will be studied in some detail in the following:

s Existence
An implicit assumption 1s that the integral in the SCT exist.
. df
Since | —| — |4 |z[Z>
dz T—400
a necessary condition is therefore:

n—1
Z Pi=2-pp>1
j=1
which 1s automatically satisfied since all p;, meluding p,. obeys cnitenion p; < 1.

s fis continuousatz= Xj

Near each x; , we can write

df
— =z - )P (z)
e Il
where ¢{z]:AI | I[z—Jc_,.-)_‘w'I
Jk
1s analytic at x.
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- @=) -
mo M !
= ) + (z - xi) Yr(2)
® @™ (xg)
where if(z)= Z (z— xz)™ !
wy m!
1s analytic at x;.
df .
— = (z—xi) P lxx) + (z — xx) P (2)
dz
f(@)= flzg) + f ds{(s—xp) P plxg) + (s — xp) ' Pryg(z) |
1

where for our purpose here, z, zp= x.

Now: |pi| <1 — l1—pe>0

f ds s — xp)! P ()
Ty

1s analytic & therefore continuous at x; as a functionof z.

g 1
Next fds (s-xp)P=-—{ (z—x)" - (20— xp)' 7|
Pr
o

1s analytic & therefore continuous at x; as a functionof z.
Thus, f(z} 1s the sum of 2 continuous functions so that it's continuous at x; too.

Polygons:

Suppose that the vertices of the polygon P are given by wy. ..., wy. in the anticlockwise direction. Let
us follow the edges of the polygon P. At vertex wj, suppose that we make a right turn of angle #;7
where —1 < #; < 1, with the convention that #; < 0 denotes a left turn.
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strong Markov property and reflection principle. These are

concepts that you can use to compute probabilities for Brownian mo-
tion.

Theorem:
Suppose that X, is Brownian motion. Ift > T, T a
reflection principle. Suppose X, is Brownian motion with zero
stopping time, then X; — X is independent of Fr.
An example of a stopping time is the first time that X, reaches 1.
drift (g = 0). Then we want to calculate the probability that, starting
at Xg =0, it will reach X. =1 at some time 0 < 5 < 1.
P(X.=1for some 0 < s <t|Xg=0)=7

Let T = first time that X4 = 1. Then X, reaches 1 for s < £ if T < 1.
So, this is the same as

P(T < )

The strong Markov property implies that X, — X4 is independent of
Fp. We also know that X, — X4 18 normal:

X, — Xr ~ N(0,c*(t —T))

(assuming that ¢ > T'). Since the mean is zero, it is positive half the
time and negative half the time (and the probability of being exactly
zero is 0):

1

P[_X_{ - JYT = {]';l = §

P(X, ~ Xy <0) = 7
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reflectior

1 A
v

| |
| | >

T i

Half the time X will reach 1 and go up, half the time it will reach 1
and go down. So,

P(T <t)=2P(T <tand X, > Xy =1)

But X is continuous. So, the intermediate value theorem (IMT) tells
us that the second condition implies the first: If X; > 1 and Xy =0
then 0 < 35 < 1 so that X, = 1. 5o,

P(T < t|Xo = 0) = 2P(X, > 1| X, = 0)

This is given by an integral
= -
=2 / filx)dz
J1

where f; is the density function for X, — X.

SCHWARZ-CHRISTOFFEL TRANSFORMATIONS

Given a polygonal curve I', its interior P is a simply connected domain. Thus, by the Riemann
Mapping Theorem. there exists a function S that conformally maps the upper half plane onto
P. The Schwarz-Christoffel theorem provides a concrete description of such maps.

Here is a typical textbook statement of the theorem:
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Theorem: Let P be the interior of a polygon I' having vertices wy, ... w, and
interior angles aym ... a,m in counterclockwise order. Let S be any conformal,

one-to-one map from the upper half plane H onto P satisfying S(oc) = w,. Then
S can be written in the form:

> n—1

S(z)=A+C | JJ(—z)>"d (1)

0 k=1

where A and C are complex constants, and zp < 21 < -+ < 2,1 are real numbers

satisfying S(zx) = wy fork =1, ... n— 1.

Functions of the form in Equation (1) are called Schwarz-Christoffel candidates'. Fur-
thermore, a Schwarz-Christoffel candidate is a Schwarz-Christoffel Transformation if it
does indeed conformally map the upper half plane H onto the interior of a polygon.

To make total sense of this theorem. several issues have to be addressed. First, and
most fundamentally, the map S from Equation (1) refers to values of S on the extended
real axis, but this set is not part of the upper half plane. Therefore, to be able to discuss

Szt )ss a5 S(o0), it is important to extend the definition of S to the closure of H.

Secondly, notice that Equation (1) involves improper contour integrals. We need to specify
which contours joining z; to 2, are admissible, show that the resulting integrals converge,
and are in fact independent of the particular contour is chosen.

Also. the theorem mandates that S(oc) = w,. We shall discuss the seriousness of this
stipulation, as well as how much freedom we are allowed with the parameters A, C, 2. ...

Zn—1 in the map S.
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After these issues have been addressed, we can then formally prove the theorem.

We start the paper with a careful setup of notations and terms in chapter 2. We begin
chapter 3 by proving the theorem for prototypical cases when P is a half or quarter plane.
This will then motivate us to construct a Schwarz-Christoffel candidate f for the general
case. In Chapter 4, we show that f is indeed a Schwarz-Christoffel Transformation if and

only if its image curve does not cross itself.

Schwarz’s Reflection Principle: Let () be a symmetric region, and set (2% :
QM H and ¢ := QN R. Suppose that v is continuous on 0% U o, harmonic in
(2. and zero on . Then v has a harmonic extension to {1 which satisfies the
symmetry relation ©(Z) = —wv(z). In the same situation, if v is the imaginary

part of an analytic function f in 07, then f can be extended to an analytic

function on all of 2 by the formula f(Z) = f(z).

BounDary PROPERTIES OF POLYGONS

Notice that the interior of any polygon P is an open set. Thus, we are guaranteed a conformal
S from the upper half plane H onto P.

Furthermore, as we will discuss later, this function S has a continuous extension that
maps the real axis to the boundary of the polygon. Thus, for each of the vertices wy., there

exists a unique prevertex z; so that f(z;) = wy.
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SIX MARK QUESTIONS:

1. Show that © be a bounded simply connected region whose boundary is a closed polygonal line with
self-intersection. Let the consecutive vertices be z1,25,z3,....... znin the positive cyclic order. The angle zx
is given by ow an.

2.1f any simply connected region Q which is not the whole plane and the point Zge Q then there exista

unique analytic function f(z) in Qnormalized by the conditions, f(Zg) = 0,f *(Z¢)=0, such that f(2)
defines a one-one mapping of Q, onto the disk | ® | <1

3.Show that any simply connected region Q which is not the whole plane and the point Zge Q thenthere
exist a unique analytic function f(z) in Q normalized by the conditions, f(Zg) = 0,

f (Z)=0, such that f(z) defines a one-one mapping of , onto the disk | ® | <.

4. Show that the boundary of a simply connected region Q contains a line segment y as a one sided free
boundary arc. Then the function f(z) which maps Q onto the unit disk can be extended to a function
which is analytic and one to one on Q v y. The image of vy is an arc y’ on the unit circleShow that the
function z = F(w) which map |w| <1 conformaily onto polygons with angles owr (k= 1,2,3...... n) are of

the form F(w) = ¢ fj)/ My (w-w)® dw + ¢’ where Bk= 1- ax, the wiare points on the unit circle
and ¢ ,¢’ are complex constants.

5.Suppose that the boundary of a simply connected region € contains a line segment y as a one sided free
boundary arc. Then the function f(z) which maps Q onto the unit disk can be extended to a function
which is analytic and one to one on Q U y. The image of vy is an arc y* on the unitcircle.

6.Show that an analytic function in a region Q whose derivative vanishes identically must
reduce to a constant . The same is true if either the part, the imaginary part , the modulus the
argument is constant.

7.Show that f be a topological mapping of a region Q onto a region Q’. If {zn} or z(t) tends to the
boundary of Q then the sequence of {f(Zn)} or f(Z(t)) tends to the boundary ofQ’.

8. Show that f be a topological mapping of a region Q2 onto a region Q’. If {z,} or z(t) tends to the
boundary of Q then the sequence of {z,} or z(t) tends to the boundary of Q.
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TEN MARKS

1.State and prove Schwarz’s christoffel formula
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Questions Choice 1 Choice 2 Choice 3 Choice 4 Answer
The set of complex points is called .... arc simple arc closed arc open arc simple arc
!f a t?urve Intersects itself at a point then the point single multiple points double valued trile multiple points
issaidtobea......
The equation z = cost+isint, 0<t<m represents a . .
arc simple arc closed arc curve simple arc
Lo . ositively oriented |negatively oriented | . - ositively oriented
The unit circle z=cost+isint, 0<t<2IT are ..... P y o y circle unit circle P 4
circle circle circle
The unit circle z= -t) +isin(-t), 0<t<2 ositively oriented |negatively oriented | . o negatively oriented
e unit circle z = cos(-t) +isin(-t), 0<t<2m are p y eg y circle unit circle eg y
........ circle circle circle
It the region lies to the left of a person when he . . . . . .
. postively oriented  [negatively oriented . postively oriented
travels along C, then the curve C is called a - - open curve simple closed curve |,
simple closed curve |simple closed curve simple closed curve
The simple closed rectifible curve is abbreviated
as curve SCr curve scro curve arc scr curve
In cauchy’s fundamental theorem, | f(z) dz=... 1 2 0 4 0
The simple closed rectifiable positively oriented
. . curve SCr curve scro curve arc Scro curve
curve is abbreviated as .....
The simple arc is also known as .... multiple Jordan double multiple Jordan
The derivative of an analytic function is also ... |analytic continuous derivative bounded continuous
The integral | f(z) dz=F(b)-F(a) is called a..... integral indefinite definite derivative derivative
The poles of an analytic function are ...... essential removable pole isolated isolated
:jfz(_: is a positively oriented circle then | 1/(z-a) o1 o ol o
When the order of the pole is 2,the pole is said to . ) . ’
double simple multiple triple multiple
be...... pole.
The limit point of zero’s of an analytic function is| . . .
. . singular nonsingular poles zeros singular
a...... point of the function
A region which has only one hole is an .....region | origin set annular moment annular
A region which is not simply conn is call . .
eglo ch is not simply connected is called connected compact multiply- connected |region. compact
The integrals along scr curves are called.... complex integrals |integrals contour integrals  |partial integrals contour integrals
If f(z) is a continuous function defined on a [ (u dx- vdy) + [ (u dx- vdy) - [ (u dx- vdy) +(udy-|[ (u dx+ vdy) + [ (u dx- vdy) +
simple rectifiable curve then [f(z) dz=............ il(udy-vdx) if(udy-vdx) vdx) if(udy+vdx) if(udy-vdx)

[ [f@) +fx(2)ldzon Cis...........

[ fi(z)dz + [fy(2)dz

[ fi(z)dz - [fy(2)dz

[ fi(z)dz . Ify(2)dz

[ fi(z)dz / [fy(z)dz

[ fi(z)dz + [fy(2)dz

If f(z) is analytic in a simply connected domain,
then the values of the integrals of f(z) along all

. o . ) one two three multiple two
paths in the region joining ------ fixed points are
the same.

interior and
The bounded region of Cis called ............... interior exterior interior nor exterior ! R I_ interior
exterior
A region D is said to be ............... for ever . . s .
g . L X X ¥ connected simply - connected |disconnected disjoint simply - connected
closed curve in D, Ciis contained in D
When A is fixed and B(z) moves in D, the ) . .
. @ single - valued double -valued multi - valued zero single valued
integral .....
............ of an analytic function are isolated zeros poles residues points zeros
Iff(z) = (z—a)"m [ag , a;(z-a)......... ,a9 70 ,
(1) = (2~ )" m [a, 2s(z0)........] g . , ol

then z =a is a zero of order .....
If Cisanarcin D, joining a fixed point zyand

; D+ Joining point zo 0 1|f(2) c (2)
the arbitrary point z then d/dz.........
A function analyticin D has .............. of all N ) ——

. derivatives points curves zeros derivatives
ordersin D
A curve is said to be piece-wise smooth if C is - e -

finite infinite zero one finite

not smooth at a ........ number of points in it.
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