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UNIT-I

1. 1 Isomorphism of graphs and sub R1:Chap:2.1:Pg.No:14- 16
graphs

2. 1 Walks, Paths, Circuits R4:Chap:1.3:Pg.N0:6-9

3. 1 Connected , connectedness of R1:Chap:2.5:Pg.N0:19- 21
graphs and components of graphs

4. 1 Euler graphs and Euler graphs R1:Chap:2.6:Pg.No:21- 23
based on theorems

5. 1 Hamiltonian paths and circuits R3:Chap:4.5:Pg.N0:314- 316

6. 1 Theorems on some properties of R6:Chap:3:Pg.N0:39-41
trees and Distance and centers
in tree

7. 1 Rooted and binary trees and R1:Chap:3.5:Pg.No:45- 57
spanning trees, Fundamentals
Circuits

8. 1 Recapitulation and Discussion of
possible questions

Total No of Hours Planned For Unit 1=8
UNIT-II

1. 1 Spanning trees in a Weights Grap R8:Chap:3.10:Pg.N0:58- 61

2. 1 Theorems on some properties of R1:Chap:4.2:Pg.N0:68- 71
Cut Sets and all Cut Sets
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3. 1 Fundamental Circuits and Cut Sets | R1:Chap:4.5:Pg.No:73- 75

4. 1 Connectivity and separability R1:Chap:4.5:Pg.No:73- 75

5. 1 Network flows R3:Chap:11:Pg.N0:1377- 1380

6. 1 Theorems on some 1- Isomorphism | R1:Chap:4.7:Pg.N0:80- 82

7. 1 Theorems on some 2- Isomorphism | R1:Chap:4.5:Pg.N0:73- 75

8. 1 Combinational versus Geometric R1:Chap:5.1:Pg.N0:88- 89
Graphs

9. 1 Different Representation of a Planar | R1:Chap:5.4:Pg.N0:90-99
Graph

10. 1 Recapitulation and Discussion of possible questions

Total No of Hours Planned For Unit 11=10

UNIT-IHI

1. 1 Introduction and definition of a R1:Chap:7.1:Pg.N0:137- 139
incidence matrix

2. 1 Sub matrix and Circuits matrix R1:Chap:7.3:Pg.No:142- 146
based on problems

3. 1 Path matrix and adjacency matrix R1:Chap:7.8:Pg.No:156- 161
based on problems

4. 1 Chromatic Number theorems R5:Chap:1.12:Pg.N0:257 - 258

5. 1 Chromatic partitioning R5:Chap:16.14:Pg.No:25 8-

259

6. 1 Chromatic polynomial, Matching, | R1:Chap:8.5:Pg.N0:174- 190
covering

7. 1 Four color problem R5:Chap:2.1:Pg.No:31- 35

Prepared by M.Santhi,Department of Mathematics ,KAHE

2/4




Lesson Plan

2019 -2021
Batch

8.

1

Recapitulation and Discussion of possible questions

Total No of Hours Planned For Unit 111=8

UNIT-1V
1. 1 Introduction and definition of R9:Chap:3.1:Pg.N0:163-
Directed Graphs 165
2. 1 Some types of Directed Graphs R1:Chap:9.2:Pg.N0:197-
198
3. 1 Types of enumeration R1:Chap:10.1:Pg.N0:238 -
240
4. 1 Counting labeled trees R1:Chap:10.2:Pg.N0:240 -
241
5. 1 Counting unlabeled trees R1:Chap:10.3:Pg.No0:241 -
250
6. 1 Polya’s counting theorem R1:Chap:10.4:Pg.N0:250 -
260
7. 1 Graph enumeration with Polya’s R1:Chap:10.5:Pg.N0:260 -
theorem 264
8. 1 Recapitulation and Discussion of possible questions

Total No of Hours Planned For Unit 1VV=8

UNIT-V

1. 1 Introduction Terminology and R1:Chap:1.1:Pg.No:15- 16
concepts

2. 1 Applications of Domination in R7:Chap:5.1:Pg.N0:71-73
graphs

3. 1 Dominating set and Domination R2:Chap:1.2:Pg.No:16- 18
number

4. 1 Independent set and Independent R2:Chap:1.3:Pg.No:19- 20
number

5. 1 History of domination in graphs R2:Chap:1.13:Pg.No0:36- 37

6. 1 Recapitulation and Discussion of possible questions

7. 1 Discuss on Previous ESE Question
Papers

8. 1 Discuss on Previous ESE Question

Papers
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9. 1 Discuss on Previous ESE Question
Papers

Total No of Hours Planned for unit V=9

S1: Deo N, (2007). Graph Theory with Applications to Engineering and Computer Science,
Prentice Hall of India Pvt Ltd, New Delhi..

S2: Teresa W. Haynes, Stephen T. Hedetniemi and Peter J.Slater, (1998), Fundamentals of
Domination in Graphs, Marcel Dekker, New York.

S3: Flouds C. R., (2009). Graph Theory Applications, Narosa Publishing House. New

Delhi,India.

Total Planned Hours 40
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: TM.Sc MATHEMATICS COURSE NAME: GRAPH THEORY
AND ITS APPLICATIONS
COURSE CODE; 18MMP205A UNIT: I BATCH-2018-2020
UNIT-I
SYLLABUS

Graphs — Introduction — Isomorphism — Sub graphs — Walks, Paths, Circuits — Connectedness —
Components — Euler Graphs — Hamiltonian Paths and Circuits — Trees — Properties of trees —
Distance and Centers in Tree — Rooted and Binary Trees - Spanning trees — Fundamental
Circuits.
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INTRODUCTION

A lineart graph (or simply a graph) G = (V, E) consists of a set of objects
V ={v,, v,, ...} called vertices, and another set E = {e,, e,, ...}, whose
elements are called edges, such that each edge ¢, is identified with an unorder-
ed pair (v, ;) of vertices. The vertices v, v; associated with edge e, are called
the end vertices of e,. The most common representation of a graph is by means
of a diagram, in which the vertices are represented as points and each edge
as a line segment joining its end vertices. Often this diagram itself is referred to
as the graph. The object shown in Fig. 1-1, for instance, 1s a graph.

Observe that this definition permits an edge to be associated with a
vertex pair (v, »,). Such an edge having the same vertex as both its end ver-
tices is called a self~-loop (or simply a loop. The word loop, however, has a
different meaning in electrical network theory; we shall therefore use the term
self-loop to avoid confusion). Edge e, in Fig. 1-1 is a self-loop. Also note that

Fig. 1-1 Graph with five vertices and
vy €6 Uy seven edges.

the definition allows more than one edge associated with a given pair of
vertices, for example, edges e, and e, in Fig. 1-1. Such edges are referred to as
parallel edges.

A graph that has neither self-loops nor parallel edges is called a simple
graph. In some graph-theory literature, a graph is defined to be only a simple
graph, but in most engineering applications it is necessary that parallel edges
and self-loops be allowed; this is why our definition includes graphs with self-
loops and/or parallel edges. Some authors use the term general graph to
emphasize that parallel edges and self-loops are allowed.

It should also be noted that, in drawing a graph, it is immaterial whether
the lines are drawn straight or curved, long or short: what is important is the
incidence between the edges and vertices. For example, the two graphs drawn
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incidence between the edges and vertices. For example, the two graphs drawn
in Figs. 1-2(a) and (b) are the same, because incidence between edges and
vertices is the same in both cases.

|
|
2
4 2 4
3

3

(a) (b)

Fig. 1-2 Same graph drawn differently.

In a diagram of a graph, sometimes two edges may seem to intersect at
a point that does not represent a vertex, for example, edges e and f in Fig.
1-3. Such edges should be thought of as being in different planes and thus
having no common point. (Some authors break one of the two edges at such
a crossing to emphasize this fact.)

a
€
d h
! Fig.1-3 Edgeseand f have nocommon
C

point.
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A graph is also called a linear complex, a I-complex, or a one-dimensional
complex. A vertex is also referred to as a node, a junction, a point, 0-cell, or an
0-simplex. Other terms used for an edge are a branch, a line, an element, a
I-cell, an arc, and a [I-simplex. In this book we shall generally use the terms
graph, vertex, and edge.

ISOMORPHISM

In geometry two figures are thought of as equivalent (and called con-
gruent) if they have identical behavior in terms of geometric properties.
Likewise, two graphs are thought of as equivalent (and called isomorphic) if
they have identical behavior in terms of graph-theoretic properties. More
precisely: Two graphs G and G’ are said to be isomorphic (to each other) if
there is a one-to-one correspondence between their vertices and between
their edges such that the incidence relationship is preserved. In other words,
suppose that edge e is incident on vertices ¥, and v, in G ; then the correspond-
ing edge e’ in G" must be incident on the vertices ', and v, that correspond to

€3
e
t"z 94 [
€g
(a) (b)

Fig. 2-1 Isomorphic graphs.

v, and v,, respectively. For example, one can verify that the two graphs in
Fig. 2-1 are isomorphic. The correspondence between the two graphs is as
follows: The vertices a, b, ¢, d, and e correspond to v,,v,, v;, v,, and v,,
respectively. The edges 1, 2, 3, 4, 5, and 6 correspond to e, ¢,, e,, e,, e,, and
es, respectively.
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Except for the labels (i.e., names) of their vertices and edges, isomorphic
graphs are the same graph, perhaps drawn differently. As indicated in Chap-
ter 1, a given graph can be drawn in many different ways. For example, Fig.
2-2 shows two different ways of drawing the same graph.

Fig. 2-2 Isomorphic graphs.

It is not always an easy task to determine whether or not two given graphs
are isomorphic. For instance, the three graphs shown in Fig. 2-3 are all
isomorphic, but just by looking at them you cannot tell that. It is left as an
exercise for the reader to show, by redrawing and labeling the vertices and
edges, that the three graphs in Fig. 2-3 are isomorphic (see Problem 2-3).

It 1s immediately apparent by the definition of isomorphism that two

isomorphic graphs must have
1. The same number of vertices.

2. The same number of edges.

3. An equal number of vertices with a given degree.

e e

{a) (b) (c)
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X ¥
]
(a) (b)

However, these conditions are by no means sufficient. For instance, the two
graphs shown in Fig. 2-4 satisfy all three conditions, yet they are not isomor-
phic. That the graphs in Figs. 2-4(a) and (b) are not isomorphic can be shown
as follows: If the graph in Fig. 2-4(a) were to be isomorphic to the one in (b),
vertex x must correspond to y, because there are no other vertices of degree
three. Now in (b) there is only one pendant vertex, w, adjacent to y, while in
(a) there are two pendant vertices, ¥ and v, adjacent to x.

Finding a simple and efficient criterion for detection of isomorphism is
still actively pursued and is an important unsolved problem in graph theory.
In Chapter 11 we shall discuss various proposed algorithms and their pro-
grams for automatic detection of isomorphism by means of a computer.
For now, we move to a different topic.

SUBGRAPHS

A graph g is said to be a subgraph of a graph G if all the vertices and all
the edges of g are in G, and each edge of g has the same end vertices in g as
in G. For instance, the graph in Fig. 2-5(b) is a subgraph of the one in Fig.
2-5(a). (Obviously, when considering a subgraph, the original graph must
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not be altered by identifying two distinct vertices, or by adding new edges or
vertices.) The concept of subgraph is akin to the concept of subset in set
theory. A subgraph can be thought of as being contained in (or a part of)
another graph. The symbol from set theory, g — G, is used in stating “g 1s
a subgraph of G.”

The following observations can be made immediately:

1. Every graph is its own subgraph.
2. A subgraph of a subgraph of G is a subgraph of G.
3. A single vertex in a graph G is a subgraph of G.

4. A single edge in G, together with its end vertices, is also a subgraph of
G.

Edge- Disjoint Subgraphs: Two (or more) subgraphs g, and g, of a graph G
are said to be edge disjoint if g, and g, do not have any edges in common.
For example, the two graphs in Figs. 2-7(a) and (b) are edge-disjoint sub-
graphs of the graph in Fig. 2-6. Note that although edge-disjoint graphs do
not have any edge in common, they may have vertices in common. Sub-
graphs that do not even have vertices in common are said to be vertex dis-
joint. (Obviously, graphs that have no vertices in common cannot possibly
have edges in common.)

WALKS, PATHS, AND CIRCUITS

A walk is defined as a finite alternating sequence of vertices and edges,
beginning and ending with vertices, such that each edge 1s incident with the
vertices preceding and following it. No edge appears (is covered or traversed)
more than once in a walk. A vertex, however, may appear more than once.
In Fig. 2-8(a), for instance, v, av, b v, cv;dv, e v, fv, 1s a walk shown with
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(a) An Open Walk (b) A Path of Length Thres
Fig. 2-8 A walk and a path.

heavy lines. A walk is also referred to as an edge train or a chain. The set of
vertices and edges constituting a given walk in a graph G is clearly a subgraph
of G.

Vertices with which a walk begins and ends are called its rerminal vertices.
Vertices v, and v, are the terminal vertices of the walk shown in Fig. 2-8(a).
It is possible for a walk to begin and end at the same vertex. Such a walk is
called a closed walk. A walk that is not closed (i.e., the terminal vertices are
distinct) is called an open walk [Fig. 2-8(a)].

An open walk in which no vertex appears more than once is called a path
(or a simple path or an elementary path). In Fig. 2-8, v, av, bv,d v, is a path,
whereas v, @ v, b v; c v; d v, e v, f v, 1s not a path. In other words,
a path does not intersect itself. The number of edges in a path is called the
length of a path. It immediately follows, then, that an edge which is not a self-
loop is a path of length one. It should also be noted that a self-loop can be
included in a walk but not in a path (Fig. 2-8).

The terminal vertices of a path are of degree one, and the rest of the ver-
tices (called intermediate vertices) are of degree two. This degree, of course,
is counted only with respect to the edges included in the path and not the
entire graph in which the path may be contained.

A closed walk in which no vertex (except the initial and the final vertex)
appears more than once is called a circuit. That is, a circuit is a closed, non-
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~_ >

Fig. 2-9 Three different circuits.

intersecting walk. In Fig. 2-8(a), v, b v, d v, e v, is, for example, a circuit.
Three different circuits are shown in Fig. 2-9. Clearly, every vertex in a circuit
is of degree two; again, if the circuit 1s a subgraph of another graph, one must
count degrees contributed by the edges in the circuit only.

A circuit is also called a cycle, elementary cycle, circular path, and polygon.
In electrical engineering a circuit 18 sometimes referred to as a loop—not to
be confused with self-loop. (Every self-loop is a circuit, but not every circuit
1s a self-loop.)

The definitions in this section are summarized in Fig. 2-10. The arrows
are in the direction of increasing restriction.

You may have observed that although the concepts of a path and a cir-
cuit are very simple, the formal definition becomes involved.

SUhg,mph Any collection of edges in (¢
of i
Walk A non-edge-retracing sequence
in of edges of &
] 1
A non-imtersecting Pﬂlh Circuit | A non-intersecting
open walk i & n G indG closed walk in &

Fig. 2-10 Walks, paths, and circuits as subgraphs.
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CONNECTED GRAPHS, DISCONNECTED
GRAPHS, AND COMPONENTS

Intuitively, the concept of connect. dness is obvious. A graph i1s connected
if we can reach any vertex from any other vertex by traveling along the edges.
More formally:

A graph G is said to be connected if there is at least one path between every
pair of vertices in G. Otherwise, G is disconnected. For instance, the graph in
Fig. 2-8(a) is connected, but the one in Fig. 2-11 is disconnected. A null
graph of more than one vertex is disconnected (Fig. 1-12).

It is easy to see that a disconnected graph consists of two or more con-
nected graphs. Each of these connected subgraphs is called a component. The
graph in Fig. 2-11 consists of two components. Another way of looking at a
component is as follows: Consider a vertex v, in a disconnected graph G. By
definition, not all vertices of G are joined by paths to »,. Vertex v, and all the
vertices of G that have paths to v, together with all the edges incident on
them, form a component. Obviously, a component itself is a graph.

Fig. 2-11 A disconnected graph with
Y, two components.

THEOREM 2-1

A graph G is disconnected if and only if its vertex set V can be partitioned into
two nonempty, disjoint subsets ¥, and V, such that there exists no edge in G
whose one end vertex is in subset ¥, and the other in subset V.

Proof: Suppose that such a partitioning exists. Consider two arbitrary vertices
a and b of G, such that a € V¥, and b € V,. No path can exist between vertices
a and b; otherwise, there would be at least one edge whose one end vertex would
be in }/, and the other in V;. Hence, if a partition exists, GG is not connected.

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 37/37




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: TM.Sc MATHEMATICS COURSE NAME: GRAPH THEORY
AND ITS APPLICATIONS
COURSE CODE; 18MMP205A UNIT: I BATCH-2018-2020

Conversely, let G be a disconnected graph. Consider a vertex a in G. Let V,
be the set of all vertices that are joined by paths to a. Since G is disconnected,
V', does not include all vertices of . The remaining vertices will form a (nonempty)
set ;. No vertex in V, is joined to any in V, by an edge. Hence the partition. |}

Two interesting and useful results involving connectedness are:

THEOREM 2-2

If a graph (connected or disconnected) has exactiy two vertices of odd degree,
there must be a path joining these two vertices.

Proof: Let G be a graph with all even verticest except vertices », and »,, which
are odd. From Theorem [-1, which holds for every graph and therefore for every
component of a disconnected graph, no graph can have an odd number of odd
vertices. Therefore, in graph G, v, and », must belong to the same component,
and hence must have a path between them.

THEOREM 2-3

A simple graph (i.e., a graph without parallel edges or self-loops) with » vertices
and k components can have at most (n — k)n — k -1 1)/2 edges.

Proof: Let the number of vertices in each of the k components of a graph G
be n,, n4, ..., n.. Thus we have

Mty s o a=y
n = 1.
TFor brevity, a vertex with odd degree is called an odd verfex, and a vertex with even

degree an even vertex.
The proof of the theorem depends on an algebraic inequalityT

k
2, nf < n* — (k. — 1)¥2n — k). (2-1)
=1

Now the maximum number of edges in the ith component of G (which is a simple

connected graph) is jmif(n; — 1). (See Problem 1-12.) Therefore, the maximum
number of edges in G is

23 = =5 (5 nt) — & (2-2)

f=1 i=1
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<2l —(k — 2n — k)] — 2 from -1)
gl = KX — k1), W (2-3)

It may be noted that Theorem 2-3 is a generalization of the result in Problem
1-12. The solution to Problem 1-12 is given by (2-3), where k — 1.

EULER GRAPHS

As mentioned in Chapter 1, graph theory was born in 1736 with Euler’s
famous paper in which he solved the Konigsberg bridge problem. In the same
paper, Euler posed (and then solved) a more general problem: In what type
of graph G is it possible to find a closed walk running through every edge of
G exactly once ? Such a walk is now called an Euler line, and a graph that con-
sists of an Euler line is called an Euler graph. More formally:

If some closed walk in a graph contains all the edges of the graph, then the
walk is called an Euler line and the graph an Euler graph.

By its very definition a walk is always connected. Since the Euler line
(which is a walk) contains all the edges of the graph, an Euler graph is always
connected, except for any isolated vertices the graph may have. Since isolated
vertices do not contribute anything to the understanding of an Euler graph,
it is hereafter assumed that Euler graphs do not have any isolated vertices
and are therefore connected.

Now we shall state and prove an important theorem, which will enable us
to tell immediately whether or not a given graph is an Euler graph.

tProof: 3% | (m — 1) = n — k. Squaring both sides,

k 2
(Z(n, _ 1)) — n? 4 k2 — 2nk
i
or 2%, (n? — 2m;) + k + nonnegative cross terms = n? + k2 — 2nk because (n; — 1)=0,
for all i. Therefore, 3%, n2<<n? + k2 —2nk —k +2n=n> —(k — 1)Q2n — k). A

THEOREM 2-4

A given connected graph G is an Euler graph if and only if all vertices of G are
of even degree.
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Proof: Suppose that G is an Euler graph. It therefore contains an Euler line
(which is a closed walk). In tracing this walk we observe that every time the walk
meets a vertex v it goes through two “new™ edges incident on v—with one we
“entered” v and with the other “exited.” This is true not only of all intermediate
vertices of the walk but also of the terminal vertex, because we “exited” and
“entered” the same vertex at the beginning and end of the walk, respectively. Thus
if G is an Euler graph, the degree of every vertex is even.

To prove the sufficiency of the condition, assume that all vertices of G are of
even degree. Now we construct a walk starting at an arbitrary vertex v and going
through the edges of G such that no edge is traced more than once. We continue
tracing as far as possible. Since every vertex is of even degree, we can exit from
every vertex we enter; the tracing cannot stop at any vertex but ». And since v 1s
also of even degree, we shall eventually reach v when the tracing comes to an end.
If this closed walk # we just traced includes all the edges of G, G is an Euler graph.
If not, we remove from G all the edges in # and obtain a subgraph /" of G formed
by the remaining edges. Since both G and /# have all their vertices of even degree,
the degrees of the vertices of /4’ are also even. Moreover, 2" must touch h at least
at one vertex a, because G is connected. Starting from a, we can again construct
a new walk in graph A'. Since all the vertices of /" are of even degree, this walk in
h” must terminate at vertex a; but this walk in &’ can be combined with k to form
a new walk, which starts and ends at vertex » and has more edges than /4. This
process can be repeated until we obtain a closed walk that traverses all the edges
of G. Thus G i1s an Euler graph. [

Konigsberg Bridge Problemi: Now looking at the graph of the Konigsberg
bridges (Fig. 1-5), we find that not all its vertices are of even degree. Hence,
it is not an Euler graph. Thus it is not possible to walk over each of the seven
bridges exactly once and return to the starting point.

One often encounters Euler lines in various puzzles. The problem common
to these puzzles is to find how a given picture can be drawn in one continuous
line without retracing and without lifting the pencil from the paper. Two such
pictures are shown in Fig. 2-12. The drawing in Fig. 2-12(a) is called Moham-
med’s scimitars and is believed to have come from the Arabs. The one in Fig.
2-12(b) is, of course, the star of David. (Equal time!)
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In defining an Euler line some authors drop the requirement that the walk
beclosed. Forexample,thewalkal c2d3a4b5d6¢7 binFig. 2-13, which
includes all the edges of the graph and does not retrace any edge, is not closed.
The initial vertex 1s a and the final vertex 1s . We shall call such an open
walk that includes (or traces or covers) all edges of a graph without retracing
any edge a unicursal line or an open Euler line. A (connected) graph that has
a unicursal line will be called a unicursal graph.

= XN

(a) (h)

Fig. 2-12 Two Euler graphs.

B o

Fig. 2-13 Unicursal graph.

It is clear that by adding an edge between the initial and final vertices of
a unicursal line we shall get an Euler line. Thus a connected graph is unicursal
if and only if it has exactly two vertices of odd degree. This observation can
be generalized as follows:
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THEOREM 2-5

In a connected graph G with exactly 2k odd vertices, there exist k edge-disjoint
subgraphs such that they together contain all edges of G and that each is a unicursal
graph.

Proof: Let the odd vertices of the given graph G be named v, v, ..., vg;
Wi, Wa, ..., W, In any arbitrary order. Add k£ edges to G between the vertex pairs
(vy, wi), (ra, wa), ..., (1, wi) to form a new graph G'.

Since every vertex of G’ is of even degree, G’ consists of an Euler line p. Now
if we remove from p the k edges we just added (no two of these edges are incident
on the same vertex), p will be split into & walks, each of which is a unicursal line:
The first removal will leave a single unicursal line; the second removal will split
that into two unicursal lines; and each successive removal will split a unicursal
line into two unicursal lines, until there are & of them. Thus the theorem. |

THEOREM 2-6

A connected graph G is an Euler graph if and only if it can be decomposed
into circuits.

Proof: Suppose graph G can be decomposed into circuits; that is, G is a union
of edge-disjoint circuits. Since the degree of every vertex in a circuit is two, the
degree of every vertex in G is even. Hence G is an Euler graph.

Conversely, let & be an Euler graph. Consider a vertex »;. There are at least
two edges incident at »,. Let one of these edges be between », and v,. Since vertex
v, is also of even degree, it must have at least another edge, say between v, and
v3. Proceeding in this fashion, we eventually arrive at a vertex that has previously
been traversed, thus forming a circuit I'. Let us remove I from G. All vertices in
the remaining graph (not necessarily connected) must also be of even degree. From
the remaining graph remove another circuit in exactly the same way as we removed
I" from G. Continue this process until no edges are left. Hence the theorem. [

Arbitrarily Traceable Graphs: Consider the graph in Fig. 2-17, which is
an Euler graph. Suppose that we start from vertex a and trace the path a b c.
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a b

Fig. 2-17 Arbitrarily traceable graph
d €  frome.

Now at ¢ we have the choice of going to a, d, or e. If we took the first choice,
we would only trace the circuit @ b ¢ a, which is not an Euler line. Thus, start-
ing from a, we cannot trace the entire Euler line simply by moving along any
edge that has not already been traversed. This raises the following interesting
question:

HAMILTONIAN PATHS AND CIRCUITS

An Euler line of a connected graph was characterized by the property of
being a closed walk that traverses every edge of the graph (exactly once). A
Hamiltonian circuit in a connected graph is defined as a closed walk that
traverses every vertex of G exactly once, except of course the starting vertex,
at which the walk also terminates. For example, in the graph of Fig. 2-20(a)

(a) (b)

Fig. 2-20 Hamiltonian circuits.
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starting at vertex », If one traverses along the edges shown in heavy lines—
passing through each vertex exactly once—one gets a Hamiltonian circuit.
A Hamiltonian circuit for the graph in Fig. 2-20(b) is also shown by heavy
lines. More formally:

A circuit in a connected graph G is said to be Hamiltonian if it includes
every vertex of G. Hence a Hamiltonian circuit in a graph of n vertices consists
of exactly n edges.

Obviously, not every connected graph has a Hamiltonian circuit. For
example, neither of the graphs shown in Figs. 2-17 and 2-18 has a Hamil-
tonian circuit. This raises the question: What is a necessary and sufficient
condition for a connected graph G to have a Hamiltonian circuit?

Dodecahedron

P s

(a) (b)

Fig. 2-21 Dodecahedron and its graph shown with a Hamiltonian
circuit.

This problem, first posed by the famous Irish mathematician Sir William
Rowan Hamilton in 1859, is still unsolved. As was mentioned in Chapter [,
Hamilton made a regular dodecahedron of wood [see Fig. 2-21(a)], each of
whose 20 corners was marked with the name of a city. The puzzle was to
start from any city and find a route along the edge of the dodecahedron that
passes through every city exactly once and returns to the city of origin. The
graph of the dodecahedron is given in Fig. 2-21(b), and one of many such
routes (a Hamiltonian circuit) is shown by heavy lines.

The resemblance between the problem of an Euler line and that of a
Hamiltonian circuit is deceptive. The latter is infinitely more complex. Al-
though one can find Hamiltonian circuits in many specific graphs, such as
those shown in Figs. 2-20 and 2-21, there is no known criterion we can apply
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to determine the existence of a Hamiltonian circuit in general. There are,
however, certain types of graphs that always contain Hamiltonian circuits,-
as will be presently shown.

Hamiltonian Path: 1f we remove any one edge from a Hamiltonian circuit,
we are left with a path. This path is called a Hamiltonian path. Clearly, a
Hamiltonian path in a graph G traverses every vertex of G. Since a Hamil-
tonian path is a subgraph of a Hamiltonian circuit (which in turn is a sub-
graph of another graph), every graph that has a Hamiltonian circuit also has
a Hamiltonian path. There are, however, many graphs with Hamiltonian
paths that have no Hamiltonian circuits (Problem 2-23). The length of a
Hamiltonian path (if it exists) in a connected graph of n vertices is n — 1.

In considering the existence of a Hamiltonian circuit (or path), we need
only consider simple graphs. This is because a Hamiltonian circuit (or path)
traverses every vertex exactly once. Hence it cannot include a self-loop or
a set of parallel edges. Thus a general graph may be made simple by removing
parallel edges and self-loops before looking for a Hamiltonian circuit in it.

It 1s left as an exercise for the reader to show that neither of the two graphs

(a) (b)
Fig. 2-22 Graphs without Hamiltonian circuits.

shown in Fig. 2-22 has a Hamiltonian circuit (or Hamiltonian path). See
Problem 2-24.
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shown in Fig. 2-22 has a Hamiltonian circuit (or Hamiltonian path). See
Problem 2-24.

What general class of graphs is guaranteed to have a Hamiltonian circuit ?
Complete graphs of three or more vertices constitute one such class.

Complete Graph: A simple graph in which there exists an edge between
every pair of vertices is called a complete graph. Complete graphs of two,
three, four, and five vertices are shown in Fig. 2-23. A complete graph is

— A A KA

Fig. 2-23 Complete graphs of two, three, four, and five vertices.

sometimes also referred to as a universal graph or a cligue. Since every vertex
is joined with every other vertex through one edge, the degree of every vertex
is n — 1 in a complete graph G of n vertices. Also the total number of edges
in G is n(n — 1)/2. See Problem 1-12.

It is easy to construct a Hamiltonian circuit in a complete graph of »
vertices. Let the vertices be numbered »,, v,,..., v,. Since an edge exists
between any two vertices, we can start from v, and traverse to v,, and v,, and
so on to v,, and finally from v, to »,. This is a Hamiltonian circuit.

Number of Hamiltonian Circuits in a Graph: A given graph may contain
more than one Hamiltonian circuit. Of interest are all the edge-disjoint
Hamiltonian circuits in a graph. The determination of the exact number of
edge-disjoint Hamiltonian circuits (or paths) in a graph in general is also an
unsolved problem. However, the number of edge-disjoint Hamiltonian cir-
cuits in a complete graph with odd number of vertices is given by Theorem
2-8.

THEOREM 2-8

In a complete graph with n vertices there are (n — 1)/2 edge-disjoint Hamil-
tonian circuits, if »# is an odd number > 3.
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Proof: A complete graph G of n vertices has n(n — 1)/2 edges, and a Hamil-
tonian circuit in G consists of n edges. Therefore, the number of edge-disjoint
Hamiltonian circuits in G cannot exceed (n — 1)/2. That there are (n — 1)/2 edge-
disjoint Hamiltonian circuits, when » is odd, can be shown as follows:

The subgraph (of a complete graph of n vertices) in Fig. 2-24 is a Hamiltonian
circuit. Keeping the vertices fixed on a circle, rotate the polygonal pattern clockwise

5

r2
L
=

Fig. 2-24 Hamiltonian circuit; n Is
n—3 odd.
by 360/(n — 1),2-360/(n — 1),3-360/(n — 1),...,(n — 3)/2:360/(n — 1) degrees.
Observe that each rotation produces a Hamiltonian circuit that has no edge in
common with any of the previous ones. Thus we have (n — 3)/2 new Hamiltonian
circuits, all edge disjoint from the one in Fig. 2-24 and also edge disjoint among
themselves. Hence the theorem. |

This theorem enables us to solve the problem of the seating arrangement
at a round table, introduced in Chapter 1, as follows:

Representing a member x by a vertex and the possibility of his sitting next
to another member y by an edge between x and y, we construct a graph G.
Since every member is allowed to sit next to any other member, G is a com-
plete graph of nine vertices—nine being the number of people to be seated
around the table. Every seating arrangement around the table is clearly a
Hamiltonian circuit.

The first day of their meeting they can sit in any order, and it will be a
Hamiltoniancircuit H,. The second day, if they are to sit such that every mem-
ber must have different neighbors, we have to find another Hamiltonian cir-
cuit H, in G, with an entirely different set of edges from those in H,; that is,
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H, and H, are edge-disjoint Hamiltonian circuits. From Theorem 2-8 the
number of edge-disjoint Hamiltonian circuits in G is four; therefore, only
four such arrangements exist among nine people.

Another interesting result on the question of existence of Hamiltonian
circuits in a graph, obtained by G. A. Dirac, is:

THEOREM 2-9

A sufficient (but by no means necessary) condition for a simple graph G to
have a Hamiltonian circuit is that the degree of every vertex in G be at least n/2,
where n is the number of vertices in G.

Proof: For proof the reader is referred to the original paper by Dirac [2-3].

TREES

A tree 1s a connected graph without any circuits. The graph in Fig. 3-1,
for instance, is a tree. Trees with one, two, three, and four vertices are shown
in Fig. 3-2. As pointed out in Chapter 1, a graph must have at least one vertex,
and therefore so must a tree. Some authors allow the null tree, a tree without
any vertices. We have excluded such an entity from being a tree. Similarly,
as we are considering only finite graphs, our trees are also finite.

It follows immediately from the definition that a tree has to be a simple
graph, that is, having neither a self-loop nor parallel edges (because they both
form circuits).

Trees appear in numerous instances. The genealogy of a family is often

Fig. 3-1 Tree.
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SEIAVARVAR

Fig. 3-2 Trees with one, two, three, and four vertices.

Ny

N
Fig. 3-3 Decision tree.
represented by means of a tree (in fact the term tree comes from family tree).
A river with its tributaries and subtributaries can be represented by a tree.
The sorting of mail according to zip code and the sorting of punched cards
are done according to a tree (called decision tree or sorting tree).
Figure 3-3 might represent the flow of mail. All the mail arrives at some

local office, vertex N. The most significant digit in the zip code is read at N,
and the mail is divided into 10 piles N,, N, ..., Ng, and N,, depending on
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the most significant digit. Each pile is further divided into 10 piles according
to the second most significant digit, and so on, till the mail is subdivided into
10° possible piles, each representing a unique five-digit zip code.

In many sorting problems we have only two alternatives (instead of 10 as
in the preceding example) at each intermediate vertex, representing a dicho-
tomy, such as large or small, good or bad, 0 or 1. Such a decision tree with
two choices at each vertex occurs frequently in computer programming and
switching theory. We shall deal with such trees and their applications in Sec-
tion 3-5. Let us first obtain a few simple but important theorems on the gene-
ral properties of trees.

SOME PROPERTIES OF TREES
THEOREM 3-1

There is one and only one path between every pair of vertices in a tree, T.
Proof: Since T is a connected graph, there must exist at least one path between
every pair of vertices in T. Now suppose that between two vertices ¢ and b of T

there are two distinct paths. The union of these two paths will contain a circuit
and 7 cannot be a tree. I}

Conversely:

THEOREM 3-2

If in a graph G there is one and only one path between every pair of vertices,
G is a tree.

Proof: Existence of a path between every pair of vertices assures that G is
connected. A circuit in a graph (with two or more vertices) implies that there is
at least one pair of vertices a, b such that there are two distinct paths between a
and b. Since G has one and only one path between every pair of vertices, G can
have no circuit. Therefore, G is a tree.

THEOREM 3-3

A tree with n vertices has n — 1 edges.

Proof: The theorem will be proved by induction on the number of vertices.
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Fig. 3-4 Tree T with n vertices.

It is easy to see that the theorem is true for n = 1, 2, and 3 (see Fig. 3-2). Assume
that the theorem holds for all trees with fewer than n vertices.

Let us now consider a tree T with » vertices. In T let ¢, be an edge with end
vertices »; and v;. According to Theorem 3-1, there is no other path between w;
and v; except ;. Therefore, deletion of e, from T will disconnect the graph, as
shown in Fig. 3-4. Furthermore, T — e, consists of exactly two components, and
since there were no circuits in T to begin with, each of these components is a tree.
Both these trees, #, and ¢;, have fewer than n vertices each, and therefore, by the
induction hypothesis, each contains one less edge than the number of vertices in it.
Thus T — e, consists of # — 2 edges (and » vertices). Hence T has exactly n — 1

edges. B
THEOREM 3-4

Any connected graph with » vertices and n — 1 edges is a tree.

Proof: The proof of the theorem is left to the reader as an exercise (Problem
3-5).

You may have noticed another important feature of a tree: its vertices
are connected together with the minimum number of edges. A connected
graph is said to be minimally connected if removal of any one edge from it
disconnects the graph. A minimally connected graph cannot have a circuit;
otherwise, we could remove one of the edges in the circuit and still leave the
graph connected. Thus a minmimally connected graph is a tree. Conversely, if
a connected graph G is not minimally connected, there must exist an edge
e; in G such that G — e, is connected. Therefore, e, is in some circuit, which
implies that G is not a tree. Hence the following theorem:

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 37/37




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: TM.Sc MATHEMATICS COURSE NAME: GRAPH THEORY
AND ITS APPLICATIONS
COURSE CODE; 18MMP205A UNIT: I BATCH-2018-2020

THEOREM 3-5
A graph is a tree if and only if it is minimally connected.

The significance of Theorem 3-5 is obvious. Intuitively, one can see that
to interconnect n distinct points, the minimum number of line segments

needed is n — 1. It requires no background in electrical engineering to realize
=
Ui ¢ Vs
g £, Fig.3-5 EdgeeaddedtoG =g\ U ga.

that to short (electrically) n pins together, one needs at least n — 1 pieces of
wire. The resulting structure, according to Theorem 3-5, is a tree.

We showed that a connected graph with n vertices and without any cir-
cuits has n — 1 edges. We can also show that a graph with n vertices which
has no circuit and has n — 1 edges is always connected (i.e., it is a tree), in
the following theorem.

THEOREM 3-6

A graph G with n vertices, n — 1 edges, and no circuits is connected.

Proof: Suppose there exists a circuitless graph G with n vertices and n — 1 edges
which is disconnected. In that case G will consist of two or more circuitless com-
ponents. Without loss of generality, let G consist of two components, g, and g,.
Add an edge e between a vertex v, in g; and v, in g, (Fig. 3-5). Since there was no
path between v, and v, in G, adding e did not create a circuit. Thus G U e is a cir-
cuitless, connected graph (i.e., a tree) of n vertices and n edges, which is not possible,
because of Theorem 3-3. W

The results of the preceding six theorems can be summarized by saying
that the following are five different but equivalent definitions of a tree. That is,
a graph G with n vertices is called a tree if
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1. G is connected and is circuitless, or
G is connected and has n — 1 edges, or

G is circuitless and has n — 1 edges, or

& W N

There is exactly one path between every pair of vertices in G, or
5. G i1s a minimally connected graph.

PENDANT VERTICES IN A TREE

You must have observed that each of the trees shown in the figures has
several pendant vertices (a pendant vertex was defined as a vertex of degree
Start

(33 L @ @ @ . QW W

VOOOOOQAOOE®OMAAWLRE E® B W

ORORONORORORORORONONORORORORO

D (1) (1) D

Fig. 3-6 Tree of the monotonically increasing sequences in 4, 1,

13, 7,0, 2, 8, 11, 3.
one). The reason is that in a tree of n vertices we have n — | edges, and hence
2(n — 1) degrees to be divided among n vertices. Since no vertex can be of
zero degree, we must have at least two vertices of degree one in a tree. This
of course makes sense only if n > 2. More formally:
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THEOREM 3-7

In any tree (with two or more vertices), there are at least two pendant vertices.

An Application: The following problem is used in teaching computer
programming. Given a sequence of integers, no two of which are the same,
find the largest monotonically increasing subsequence in it. Suppose that the
sequence given tousis4, 1,13, 7,0, 2, 8, 11, 3; it can be represented by a tree
in which the vertices (except the start vertex) represent individual numbers
in the sequence, and the path from the start vertex to a particular vertex v
describes the monotonically increasing subsequence terminating in ». As
shown in Fig. 3-6, this sequence contains four longest monotonically increas-
ing subsequences, that is, (4, 7,8, 11), (1, 7, 8, 11), (1, 2, 8, 11), and (0, 2, 8,
11). Each is of length four. Such a tree used in representing data is referred
to as a data tree by computer programmers.

DISTANCE AND CENTERS IN A TREE

The tree in Fig. 3-7 has four vertices. Intuitively, it seems that vertex b is
located more “centrally” than any of the other three vertices. We shall ex-

¢ Fig. 3-7 Tree.

plore this idea further and see 1f 1n a tree there exists a “center” (or centers).
Inherent in the concept of a center is the idea of “distance,” so we must define
distance before we can talk of a center.

In a connected graph G, the distance d(v,, v;) between two of its vertices
v, and v, is the length of the shortest path (i.e., the number of edges in the
shortest path) between them.

The definition of distance between any two vertices is valid for any con-
nected graph (not necessarily a tree). In a graph that is not a tree, there are
generally several paths between a pair of vertices. We have to enumerate all
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these paths and find the length of the shortest one. (There may be several
shortest paths.)

For instance, some of the paths between vertices », and v, in Fig. 3-8 are
(a, e), (a,c,[), (b, c,e), (b, f), (b, g, h),and (b, g, i, k). There are two shortest
paths, (a, e) and (b, f), each of length two. Hence d(v,, v;) = 2.

In a tree, since there is exactly one path between any two vertices (Theorem
3-1), the determination of distance is much easier. For instance, in the tree of
Fig. 3-7, d(a, b) = 1, d(a, ¢) = 2, d(c, b) = 1, and so on.

A Metric: Before we can legitimately call a function f(x, y) of two vari-
ables a “distance” between them, this function must satisfy certain require-
ments. These are

Fig. 3-8 Distance between v; and v; is two.

[. Nonnegativity: f(x, y) = 0, and f(x, y) = 0if and only if x = y.
2. Symmetry: f(x, y) = f(y, x).
3. Trnangle inequality: f(x, y) < f(x, z) + f(z, y) for any z.

A function that satisfies these three conditions is called a metric. That the
distance d(v;, v;) between two vertices of a connected graph satisfies condi-
tions | and 2 is immediately evident. Since d(v,, v,) is the length of the short-
est path between vertices v, and v,, this path cannot be longer than another
path between v, and v;, which goes through a specified vertex »,. Hence d(v,,
v,) < d(v, v,) + d(v,, v,). Therefore,
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THEOREM 3-8

The distance between vertices of a connected graph is a metric.

Coming back to our original topic of relative location of different vertices
in a tree, let us define another term called eccentricity (also referred to as
associated number or separation) of a vertex in a graph.

The eccentricity E(v) of a vertex » in a graph G is the distance from v to
the vertex farthest from » in G; that is,

E(v) = max d(v, v,).
HmEeEG

A vertex with minimum eccentricity in graph G is called a center of G. The
eccentricities of the four vertices in Fig. 3-7 are E(a) = 2, E(b) = 1, E(c) = 2,
and E(d) = 2. Hence vertex b is the center of that tree. On the other hand,
consider the tree in Fig. 3-9. The eccentricity of each of its six vertices is shown
next to the vertex. This tree has two vertices having the same minimum
eccentricity. Hence this tree has two centers. Some authors refer to such cen-
ters as bicenters; we shall call them just centers, because there will be no
occasion for confusion.

The reader can easily verify that a graph, in general, has many centers.
For example, in a graph that consists of just a circuit (a polygon), every vertex
is a center. In the case of a tree, however, Konig [1-7] proved the following
theorem:

THEOREM 3-9

Every tree has either one or two centers.

3

t-2
bt

3 Fig 3-9 Eccentricities of the vertices of
3 atree.
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Fig. 3-10 Finding a center of a tree.

Proof: The maximum distance, max d(v, v;), from a given vertex v to any
other vertex v; occurs only when v; is a pendant vertex. With this observation, let
us start with a tree T having more than two vertices. Tree T must have two or
more pendant vertices (Theorem 3-7). Delete all the pendant vertices from 7. The
resulting graph 7" is still a tree. What about the eccentricities of the vertices in 7'?
A little deliberation will reveal that removal of all pendant vertices from T uniformly
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reduced the eccentricities of the remaining vertices (i.e., vertices in T') by one,
Therefore, all vertices that 7 had as centers will still remain centers in 7. From
T’ we can again remove all pendant vertices and get another tree T, We continue
this process (which is illustrated in Fig. 3-10) until there is left either a vertex
(which is the center of T) or an edge (whose end vertices are the two centers of T).
Thus the theorem. |}

COROLLARY

From the argument used in proving Theorem 3-9, we see that if a tree T has two
centers, the two centers must be adjacent.

A Sociological Application: Suppose that the communication among a
group of 14 persons in a society is represented by the graph in Fig. 3-10(a),
where the vertices represent the persons and an edge represents the communi-
cation link between its two end vertices. Since the graph is connected, we
know that all the members can be reached by any member, either directly
or through some other members. But it is also important to note that the
graph is a tree—minimally connected. The group cannot afford to lose any
of the communication links.

The eccentricity of each vertex, E(v), represents how close  is to the farth-
est member of the group. In Fig. 3-10(a), vertex ¢ should be the leader of the
group, if closeness of communication were the criterion for leadership.

Radius and Diameter: If a tree has a center (or two centers), does it have
a radius also? Yes. The eccentricity of a center (which is the distance from the
center of the tree to the farthest vertex) in a tree is defined as the radius of the
tree. For instance, the radius of the tree in Fig. 3-10(a) is three. The diameter
of a tree T, on the other hand, is defined as the length of the longest path in
T. It is left as an exercise for the reader (Problem 3-6) to show that a radius
in a tree is not necessarily half its diameter.

ROOTED AND BINARY TREES

A tree in which one vertex (called the root) is distinguished from all the
others is called a rooted tree. For instance, in Fig. 3-3 vertex N, from where
all the mail goes out, is distinguished from the rest of the vertices. Hence N
can be considered the root of the tree, and so the tree is rooted. Similarly, in
Fig. 3-6 the start vertex may be considered as the root of the tree shown. In
a diagram of a rooted tree, the root is generally marked distinctly. We will
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show the root enclosed in a small triangle. All rooted trees with four vertices
are shown in Fig. 3-11. Generally, the term free means trees without any root.
However, for emphasis they are sometimes called free trees (or nonrooted
trees) to differentiate them from the rooted kind.

A A

Fig. 3-11 Rooted trees with four vertices.

Binary Trees: A special class of rooted trees, called binary rooted trees, is
of particular interest, since they are extensively used in the study of computer
search methods, binary identification problems, and variable-length binary
codes. A binary tree is defined as a tree in which there is exactly one vertex of
degree two, and each of the remaining vertices is of degree one or three (Fig.
3-12). (Obviously, we are talking about trees with three or more vertices.)
Since the vertex of degree two is distinct from all other vertices, this vertex
serves as a root. Thus every binary tree is a rooted tree. Two properties of
binary trees follow directly from the definition:

1. The number of vertices n in a binary tree is always odd. This is because
there is exactly one vertex of even degree, and the remaining n — | vertices
are of odd degrees. Since from Theorem -1 the number of vertices of odd
degrees is even, n — | is even. Hence n is odd.

2. Let p be the number of pendant vertices in a binary tree 7. Then
n — p — 1 is the number of vertices of degree three. Therefore, the number
of edges in T equals

Sl +3—p— 1 +2d=n—1;

hence

g = o (3'1)
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A nonpendant vertex in a tree is called an internal vertex. It follows from
Eq. (3-1) that the number of internal vertices in a binary tree is one less than
the number of pendant vertices. In a binary tree a vertex v, is said to be at
level I, if v, is at a distance of /, from the root. Thus the root is at level 0. A
13-vertex, four-level binary tree i1s shown in Fig. 3-12. The number of vertices
at levels 1, 2, 3, and 4 are 2, 2, 4, and 4, respectively.

One of the most straightforward applications of binary trees is in search
procedures. Each vertex of a binary tree represents a test with two possible

Level 0

Level |

Level 3

Level 4

Fig. 3-12 A 13-vertex, 4-level binary tree.

outcomes. We start at the root, and the outcome of the test at the root sends
us to one of the two vertices at the next level, where further tests are made,
and so on. Reaching a specified pendant vertex (the goal of the search) termi-
nates the search. For such a search procedure it is often important to con-
struct a binary tree in which, for a given number of vertices n, the vertex
farthest from the root is as close to the root as possible. Clearly, there can be
only one vertex (the root) at level 0, at most two vertices at level 1, at most
four vertices at level 2, and so on. Therefore, the maximum number of vertices
possible in a k-level binary tree is

DO SN s TE Sy,

The maximum level, /_,,, of any vertex in a binary tree is called the height
of the tree. It is easy to see that the minimum possible height of an n-vertex
binary tree is
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The maximum level, /_,,, of any vertex in a binary tree is called the height
of the tree. It is easy to see that the minimum possible height of an n-vertex
binary tree is

min fnax = “{)gz (H + 1] — 11, (3'2)

where [n] denotes the smallest integer greater than or equal to n.

On the other hand, to construct a binary tree for a given n such that the
farthest vertex is as far as possible from the root, we must have exactly two
vertices at each level, except at the O level. Therefore,

n—1

max I, = 5 (3-3)
For n = 11, binary trees realizing both these extremes are shown in Fig.
3-13.
Level Level
0 0
|
|
2
3
2
4
3 5
. " o [l
min/ .. = (log, 12) = 1T max{ .. = e =5

(a) (h)

Fig. 3-13 Two 11-vertex binary trees.
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In analysis of algorithms we are generally interested in computing the sum
of the levels of all pendant vertices. This quantity, known as the path length
(or external path length) of a free, can be defined as the sum of the path
lengths from the root to all pendant vertices. The path length of the binary
tree in Fig. 3-12, for example, is

1 +3+34+4+4+4+4=23

The path lengths of trees in Figs. 3-13(a) and (b) are 16 and 20, respectively.
The importance of the path length of a tree lies in the fact that this quantity
is often directly related to the execution time of an algorithm.

It can be shown that the type of binary tree in Fig. 3-13(a) (i.e., a tree with
2'<=1 vertices at level /,,, — 1) yields the minimum path length for a given
n.

Weighted Path Length: In some applications, every pendant vertex v, of
a binary tree has associated with it a positive real number w,. Given w,,
W,, ..., w,_ the problem is to construct a binary tree (with m pendant ver-

tices) that minimizes

2 wil,

where [, is the level of pendant vertex v;, and the sum is taken over all pendant
vertices. Let us illustrate the significance of this problem with a simple exam-

ple.
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A Coke machine is to identify, by a sequence of tests, the coin that is put
into the machine. Only pennies, nickels, dimes, and quarters can go through
the slot. Let us assume that the probabilities of a coin being a penny, a nickel,
a dime, and a quarter are .05, .15, .5, and .30, respectively. Each test has the
effect of partitioning the four types of coins into two complementary sets and
asserting the unknown coin to be in one of the two sets. Thus for four coins
we have 2 — 1 such tests. If the time taken for each test is the same, what
sequence of tests will minimize the expected time taken by the Coke machine
to identify the coin?

The solution requires the construction of a binary tree with four pendant
vertices (and therefore three internal vertices) »,, v,, v,, and v, and corre-
sponding weights w, = .05, w, = .15, w; = .5, and w, = .3, such that the
quantity ¥ /,w, is minimized. The solution is given in Fig. 3-14(a), for which
the expected time is 1.7¢, where ¢ is the time taken for each test. Contrast this
with Fig. 3-14(b), for which the expected time is 2¢. An algorithm for con-
structing a binary tree with minimum weighted path length can be found in
[3-6].

A Coke machine is to identify, by a sequence of tests, the coin that is put
into the machine. Only pennies, nickels, dimes, and quarters can go through
the slot. Let us assume that the probabilities of a coin being a penny, a nickel,
a dime, and a quarter are .05, .15, .5, and .30, respectively. Each test has the
effect of partitioning the four types of coins into two complementary sets and
asserting the unknown coin to be in one of the two sets. Thus for four coins
we have 23 — 1 such tests. If the time taken for each test is the same, what
sequence of tests will minimize the expected time taken by the Coke machine
to identify the coin?

The solution requires the construction of a binary tree with four pendant
vertices (and therefore three internal vertices) »,, v,, v;, and v, and corre-
sponding weights w, = .05, w, = .15, w; = .5, and w, = .3, such that the
quantity Y Lw, is minimized. The solution is given in Fig. 3-14(a), for which
the expected time is 1.7¢, where ¢ is the time taken for each test. Contrast this
with Fig. 3-14(b), for which the expected time is 2¢. An algorithm for con-
structing a binary tree with minimum weighted path length can be found in
[3-6].
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A Coke machine is to identify, by a sequence of tests, the coin that is put
into the machine. Only pennies, nickels, dimes, and quarters can go through
the slot. Let us assume that the probabilities of a coin being a penny, a nickel,
a dime, and a quarter are .05, .15, .5, and .30, respectively. Each test has the
effect of partitioning the four types of coins into two complementary sets and
asserting the unknown coin to be in one of the two sets. Thus for four coins
we have 23 — 1 such tests. If the time taken for each test is the same, what
sequence of tests will minimize the expected time taken by the Coke machine
to identify the coin?

The solution requires the construction of a binary tree with four pendant
vertices (and therefore three internal vertices) v,, v,, v,, and v, and corre-
sponding weights w, = .05, w, = .15, w; = .5, and w, = .3, such that the
quantity 3 /,w, is minimized. The solution is given in Fig. 3-14(a), for which
the expected time is 1.7¢, where ¢ is the time taken for each test. Contrast this
with Fig. 3-14(b), for which the expected time is 2¢. An algorithm for con-
structing a binary tree with minimum weighted path length can be found in
[3-6].

In this problem of a Coke machine, many interesting variations are pos-
sible. For example, not all possible tests may be available, or they may not all
consume the same time.

Binary trees with minimum weighted path length have also been used in

Nickel
s penny quarter
0.5

Not

Quarter
quarter

Nickel

0.3 Penny Dime Quarter
Not
penny

0.05 0.15 0.05 0.5 0.15 0.3

Sw-l=17 Tw, 1 =2
(a) (b)

Fig. 3-14 Two binary trees with weighted pendant vertices.
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constructing variable-length binary codes, where the letters of the alphabet

(A, B,C, ..., 7Z)are represented by binary digits. Since different letters have
different frequencies of occurrence (frequencies are interpreted as weights
W,, W,, ..., Wy4), @ binary tree with minimum weighted path length corre-

sponds to a binary code of minimum cost; see [3-6]. For more on minimum-
path binary trees and their applications the reader is referred to [3-5] and
[3-7].

ON COUNTING TREES

In 1857, Arthur Cayley discovered trees while he was trying to count the
number of structural isomers of the saturated hydrocarbons (or paraffin
series) C,H,, .,. He used a connected graph to represent the C,H,, ,, mole-
cule. Corresponding to their chemical valencies, a carbon atom was repre-
sented by a vertex of degree four and a hydrogen atom by a vertex of degree
one (pendant vertices). The total number of vertices in such a graph is

n =3k -+ 2,

and the total number of edges is

e = %(sum of degrees) — %(4;’{ + 2k + 2)

= 3k + 1.
Since the graph is connected and the number of edges is one less than the
number of vertices, it is a tree. Thus the problem of counting structural

isomers of a given hydrocarbon becomes the problem of counting trees (with
certain qualifying properties, to be sure).

The first question Cayley asked was: what is the number of different trees
that one can construct with n distinct (or labeled) vertices? If n = 4, for
instance, we have 16 trees, as shown in Fig. 3-15. The reader can satisfy him-
self that there are no more trees of four vertices. (Of course, some of these
trees are isomorphic—to be discussed later.)

A graph in which each vertex is assigned a unique name or label (i.e., no
two vertices have the same label), as in Fig. 3-15, is called a labeled graph.
The distinction between a labeled and an unlabeled graph is very important
when we are counting the number of different graphs. For instance, the four
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graphs in the first row in Fig. 3-15 are counted as four different trees (even
though they are isomorphic) only because the vertices are labeled. If there
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Fig. 3-15 All 16 trees of four labeled vertices.
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were no distinction made between A, B, C, or D, these four trees would be
counted as one. A careful inspection of the graphs in Fig. 3-15 will reveal that
the number of unlabeled trees with four vertices (no distinction made between
A, B, C, and D) is only two. But first we shall continue with counting labeled
trees.

The following well-known theorem for counting trees was first stated and
proved by Cayley, and is therefore called Cayley’s theorem.

THEOREM 3-10

The number of labeled trees with » vertices (n = 2) is n" 2.

Proof: The result was first stated and proved by Cayley. Many different proofs
with various approaches (all somewhat involved) have been published since. An
excellent summary of 10 such proofs is given by Moon [3-9]. We will give one
proof in Chapter 10.

Unlabeled Trees: In the actual counting of isomers of C,H,, ,,, Theorem
3-10 is not enough. In addition to the constraints on the degree of the vertices,
two observations should be made:

I. Since the vertices representing hydrogen are pendant, they go with
carbon atoms only one way, and hence make no contribution to isomerism.
Therefore, we need not show any hydrogen vertices.

2. Thus the tree representing C,H,, ., reduces to one with k vertices,
each representing a carbon atom. In this tree no distinction can be made
between vertices, and therefore it is unlabeled.

Thus for butane, C,H,,, there are only two distinct trees (Fig. 3-16). As
every organic chemist knows, there are indeed exactly two different types of
butanes: n-butane and isobutane. It may be noted in passing that the four
trees in the first row of Fig. 3-15 are isomorphic to the one in Fig. 3-16(a);
and the other 12 are isomorphic to Fig. 3-16(b).
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(a) (b)

Fig. 3-16 All trees of four unlabeled vertices.

The problem of counting trees of different types will be taken up again
and discussed more thoroughly in Chapter 10.
SPANNING TREES

So far we have discussed the tree and its properties when it occurs as a
graph by itself. Now we shall study the tree as a subgraph of another graph.
A given graph has numerous subgraphs—from e edges, 2¢ distinct combina-
tions are possible. Obviously, some of these subgraphs will be trees. Out of
these trees we are particularly interested in certain types of trees, called
spanning trees—as defined next.

A tree T is said to be a spanning tree of a connected graph G if Tis a
subgraph of G and T contains all vertices of G. For instance, the subgraph in
heavy lines in Fig. 3-17 is a spanning tree of the graph shown.

Since the vertices of G are barely hanging together in a spanning tree, it is
a sort of skeleton of the original graph G. This is why a spanning tree i1s some-
times referred to as a skeleton or scaffolding of G. Since spanning trees are the
largest (with maximum number of edges) trees among all trees in G, it is also
quite appropriate to call a spanning tree a maximal tree subgraph or maximal
tree of G.

It is to be noted that a spanning tree is defined only for a connected graph,
because a tree is always connected, and in a disconnected graph of n vertices
we cannot find a connected subgraph with n vertices. Each component (which
by definition is connected) of a disconnected graph, however, does have a
spanning tree. Thus a disconnected graph with kK components has a spanning
forest consisting of k spanning trees. (A collection of trees is called a forest.)
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Finding a spanning tree of a connected graph G is simple. If G has no cir-
cuit, it is its own spanning tree. If G has a circuit, delete an edge from the
circuit. This will still leave the graph connected (Problem 2-10). If there are
more circuits, repeat the operation till an edge from the last circuit is delet-
ed—Ieaving a connected, circuit-free graph that contains all the vertices of G.
Thus we have

Fig. 3-17 Spanning tree.
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THEOREM 3-11

Every connected graph has at least one spanning tree.

Anedge in a spanning tree 7 is called a branch of T. An edge of G that is not
in a given spanning tree 7T is called a chord. In electrical engineering a chord is
sometimes referred to as a tie or a link. For instance, edges b,, b,, b,, b,, bs,
and b, are branches of the spanning tree shown in Fig. 3-17, while edges
€1y Cay €3, C4y Cs, Cg, €7, and ¢y are chords. It must be kept in mind that bran-
ches and chords are defined only with respect to a given spanning tree. An
edge that is a branch of one spanning tree T, (in a graph G) may be a chord
with respect to another spanning tree 7.

It is sometimes convenient to consider a connected graph G as a union of
two subgraphs, T and T that is,

TuT=0aG,

where T is a spanning tree, and T is the complement of T in G. Since the sub-
graph T is the collection of chords, it is quite appropriately referred to as the
chord set (or tie set or cotree) of T. From the definition, and from Theorem
3-3, the following theorem is evident.

THEOREM 3-12

With respect to any of its spanning trees, a connected graph of n vertices and
e edges has n — 1 tree branches and e — n 4+ 1 chords.

For example, the graph in Fig. 3-17 (with n = 7, e = 14), has six tree
branches and eight chords with respect to the spanning tree {b,, b,, b, b,, b,
bsl. Any other spanning tree will yield the same numbers.

If we have an electric network with e elements (edges) and » nodes (ver-
tices), what is the minimum number of elements we must remove to eliminate
all circuits in the network 7 The answer is e — n | 1. Similarly, if we have a
farm consisting of six walled plots of land, as shown in Fig. 3-18, and these
plots are full of water, how many walls will have to be broken so that all the
water can be drained out? Here n = 10 and e == 5. We shall have to select
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Fig. 3-18 Farm with walled plots of
land.

a set of six (15 — 10 4 1 = 6) walls such that the remaining nine constitute
a spanning tree. Breaking these six walls will drain the water out.

Rank and Nullity: When someone specifies a graph G, the first thing he is
most likely to mention is n, the number of vertices in G. Immediately follow-
ing comes e, the number of edges in G. Then k, the number of components G
has. If kK = 1, G is connected. How are these three numbers of a graph relat-
ed ? Since every component of a graph must have at least one vertex, n = k.
Moreoever, the number of edges in a component can be no less than the num-
ber of vertices in that component minus one. Therefore, ¢ = n — k. Apart
from the constraints n — k > 0 and e — n + k > 0, these three numbers
n, e, and k are independent, and they are fundamental numbers in graphs.
(Needless to mention, these numbers alone are not enough to specify a graph,
except for trivial cases.)

From these three numbers are derived two other important numbers
called rank and nullity, defined as

rank r=n—=k,

nullity u=e—n- k.

The rank of a connected graphis n — 1, and the nullity, e — n + 1. Although
the real significance of these numbers will be clear in Chapter 7, it may be
observed here that

rank of G = number of branches in any spanning
tree (or forest) of G,

nullity of G = number of chords in G,
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rank -+ nullity = number of edges in G.

The nullity of a graph is also referred to as its cyclomatic number, or first
Betti number.
FUNDAMENTAL CIRCUITS

THEOREM 3-13

A connected graph G is a tree if and only if adding an edge between any two
vertices in G creates exactly one circuit.

Let us now consider a spanning tree T in a connected graph G. Adding
any one chord to T will create exactly one circuit. Such a circuit, formed by
adding a chord to a spanning tree, is called a fundamental circuit.

How many fundamental circuits does a graph have? Exactly as many as
the number of chords, 4 (= e — n 4 k). How many circuits does a graph
have in all ? We know that one circuit is created by adding any one chord to a
tree. Suppose that we add one more chord. Will 1t create exactly one more
circuit? What happens if we add all the chords simultaneously to the tree?

Let us look at the tree {b,, b,, b,, b,, by, bs} in Fig. 3-17. Adding ¢, to it,
we get a subgraph {b,, b,, b,, by, bs, bg, ¢,}, which has one circuit (fundamen-
tal circuit), {,, b,, b, by, ¢,}. Had we added the chord ¢, (instead of ¢, ) to the
tree, we would have obtained a different fundamental circuit, {b,, b,, b, c,}.
Now suppose that we add both chords ¢, and ¢, to the tree. The subgraph
{b,, by, by, by, by, b, ¢, c,} has not only the fundamental circuits we just
mentioned, but it has also a third circuit, {b,, ¢, ¢,}, which is not a funda-
mental circuit. Although there are 75 circuits in Fig. 3-17 (enumerated by
computer), only eight are fundamental circuits, each formed by one chord
(together with the tree branches).

Two comments may be appropriate here. First, a circuit is a fundamental
circuit only with respect to a given spanning tree. A given circuit may be fun-
damental with respect to one spanning tree, but not with respect to a different
spanning tree of the same graph. Although the number of fundamental
circuits (as well as the total number of circuits) in a graph is fixed, the cir-
cuits that become fundamental change with the spanning trees.
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Second, in most applications we are not interested in all the circuits of
a graph, but only in a set of fundamental circuits, which fortuitously are
a lot easier to track. The concept of a fundamental circuit, introduced by
Kirchhoff, is of enormous significance in electrical network analysis. What
Kirchhoff showed, which now every sophomore in electrical engineering
knows, is that no matter how many circuits a network contains we need con-
sider only fundamental circuits with respect to any spanning tree. The rest
of the circuits (as we shall prove rigorously in Chapter 7) are combinations of
some fundamental circuits.
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FINDING ALL SPANNING TREES OF A GRAPH

Usually, in a given connected graph there are a large number of spanning
trees. In many applications we require all spanning trees. One reasonable
way to generate spanning trees of a graph is to start with a given spanning
tree, say tree T, (a b ¢ d in Fig. 3-19). Add a chord, say 4, to the tree T,. This
forms a fundamental circuit (b ¢ h d in Fig. 3-19). Removal of any branch,
say ¢, from the fundamental circuit b ¢ h d just formed will create a new

€ a a e
r/ N b b f
c d Y | £
h h h
T

! I I

Fig. 3-19 Graph and three of its spanning trees.

spanning tree T,. This generation of one spanning tree from another, through
addition of a chord and deletion of an appropriate branch, is called a cyclic
interchange or elementary tree transformation. (Such a transformation is a
standard operation in the iteration sequence for solving certain transporta-
tion problems.)

In the above procedure, instead of deleting branch ¢, we could have de-
leted d or b and thus would have obtained two additional spanning trees
ab c hand achd Moreover, after generating these three trees, each with
chord 4 1n it, we can restart with 7, and add a different chord (e, f, or g) and
repeat the process of obtaining a different spanning tree each time a branch
is deleted from the fundamental circuit formed. Thus we have a procedure
for generating spanning trees for any given graph,
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As we shall see in Chapter 13, the topological analysis of a linear elec-
trical network essentially reduces to the generation of trees in the correspond-
ing graph. Therefore, finding an efficient procedure for generating all trees
of a graph is a very important practical problem.

The procedure outlined above raises many questions. Can we start from
any spanning tree and get a desired spanning tree by a number of cyclic
exchanges? Can we get all spanning trees of a given graph in this fashion?
How long will we have to continue exchanging edges? Out of all possible
spanning trees that we can start with, is there a preferred one for starting?
Let us try to answer some of these questions; others will have to wait until
Chapters 7, 10, and 11.

The distance between two spanning trees T, and T, of a graph G is defined
as the number of edges of G present in one tree but not in the other. This
distance may be written as d(7, T,). For instance, in Fig. 3-19 d(T3, T3) = 3.

Let 7,® T, be the ring sum of two spanning trees 7, and T, of G (as
defined in Chapter 2, T, @ T, is the subgraph of G containing all edges of

G that are either in T, or in T, but not in both). Let N(g) denote the number
of edges in a graph g. Then, from definition,

d(T,, T) = 5 N(T,® T)).

It is not difficult to see that the number d(T,, T,) is the minimum number of
cyclic interchanges involved in going from T, to T,. The reader is encouraged
to prove the following two theorems.

THEOREM 3-14

The distance between the spanning trees of a graph is a metric. That is, it satisfies
d(T, T)=0 and d(T;,T)) =0ifand only if T, = T},

d(T;, T)) = d(T,;, T),
d(T;, T) < d(T;, T,) 4 d(Ty, T)).
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THEOREM 3-15

Starting from any spanning tree of a graph G, we can obtain every spanning
tree of G by successive cyclic exchanges.

Since in a connected graph G of rank r (i.e., of r | | vertices) a spanning
tree has r edges, we have the following results:
The maximum distance between any two spanning trees in G is

max d(T,, T,) = % max N(T, ® T))
<< r, the rank of G.

Also, if u is the nullity of G, we know that no more than u edges of a span-
ning tree 7, can be replaced to get another tree 7.

Hence max d(T,, T)) < u;
combining the two,
max d(T,, T,) < min(u, r),
where min(g, r) is the smaller of the two numbers g and r of the graph G.

Central Tree: For a spanning tree T, of a graph G, let max d(T,, T,)
F

denote the maximal distance between T, and any other spanning tree of G.
Then T, is called a central tree of G if

max d(T,, T;) < max d(T, T}) for every tree T of G.
i i
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The concept of a central tree is useful in enumerating all trees of a given
graph. A central tree in a graph 1s, in general, not unique. For more on cen-
tral trees the reader should see [3-1] and [3-4].

Tree Graph: The tree graph of a given graph G is defined as a graph in

which each vertex corresponds to a spanning tree of G, and each edge cor-
responds to a cyclic interchange between the spanning trees of G represented
by the two end vertices of the edge. From Theorem 3-15 we know that start-
ing from any spanning tree we can obtain all other spanning trees through
cyclic interchanges (or elementary tree transformations). Therefore, the tree

graph of any given (finite, connected) graph is connected. For additional
properties of tree graphs, the reader should see [3-3].

SPANNING TREES IN A WEIGHTED GRAPH

As discussed earlier in this chapter, a spanning tree in a graph G is a
minimal subgraph connecting all the vertices of G. If graph G is a weighted
graph (i.e., if there is a real number associated with each edge of G), then
the weight of a spanning tree T of G is defined as the sum of the weights of
all the branches in T. In general, different spanning trees of G will have
different weights. Among all the spanning trees of G, one with the smallest
weight is of practical significance. (There may be several spanning trees with
the smallest weight; for instance, in a graph of n vertices in which every edge
has unit weight, all spanning trees have a weight of n — 1 units.) A spanning
tree with the smallest weight in a weighted graph is called a shortest spanning
tree or shortest-distance spanning tree or minimal spanning tree.

One possible application of the shortest spanning tree is as follows: Sup-
pose that we are to connect n cities v, v, . . . , ¥, through a network of roads.
The cost ¢;; of building a direct road between v, and v, is given for all pairs of
cities where roads can be built. (There may be pairs of cities between which
no direct road can be built.) The problem is then to find the least expensive
network that connects all #n cities together. It is immediately evident that this
connected network must be a tree: otherwise, we can always remove some
edges and get a connected graph with smaller weight. Thus the problem of
connecting » cities with a least expensive network is the problem of finding
a shortest spanning tree in a connected weighted graph of n vertices. A neces-
sary and sufficient condition for a spanning tree to be shortest is given by
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THEOREM 3-16

A spanning tree T (of a given weighted connected graph G) is a shortest spanning
tree (of @) if and only if there exists no other spanning tree (of ) at a distance of
one from T whose weight is smaller than that of T.

Proof: The necessary or the “only if” condition is obvious; otherwise, we shall
get another tree shorter than 7 by a cyclic interchange. The fact that this condition
is also sufficient is remarkable and is not obvious. It can be proved as follows:

Let T, be a spanning tree in G satisfying the hypothesis of the theorem (i.e.,
there is no spanning tree at a distance of one from T, which is shorter than T;).
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The proof will be completed by showing that if T, is a shortest spanning tree (dif-
ferent from T,) in G, the weight of T, will also be equal to that of T,. Let T, be
a shortest spanning tree in G. Clearly, T, must also satisfy the hypothesis of the
theorem (otherwise there will be a spanning tree shorter than T, at a distance of
one from T, violating the assumption that 77 is shortest).

Consider an edge e in T, which is not in 7. Adding e to T; forms a fundamental
circuit with branches in T;. Some, but not all, of the branches in 7, that form the
fundamental circuit with e may also be in T,; each of these branches in 7', has
a weight smaller than or equal to that of e, because of the assumption on T,.
Amongst all those edges in this circuit which are not in T, at least one, say b;, must
form some fundamental circuit (with respect to T5,) containing e. Because of the
minimality assumption on T, weight of b; cannot be less than that of e. Therefore
b; must have the same weight as e. Hence the spanning tree 7; = (T, Ue — b;),
obtained from T, through one cycle exchange, has the same weight as T,. But
T, has one edge more in common with T, and it satisfies the condition of Theorem
3-16. This argument can be repeated, producing a series of trees of equal weight,

Ty, Ty, Ty, ..., each a unit distance closer to T, until we get T, itself.
This proves that if none of the spanning trees at a unit distance from T is shorter

than 7, no spanning tree shorter than T exists in the graph. [l

Algorithm for Shortest Spanning Tree: There are several methods available
for actually finding a shortest spanning tree in a given graph, both by hand
and by computer. One algorithm due to Kruskal [3-8] is as follows: List all
edges of the graph G in order of nondecreasing weight. Next, select a smallest
edge of G. Then for each successive step select (from all remaining edges of
G) another smallest edge that makes no circuit with the previously selected
edges. Continue until n — 1 edges have been selected, and these edges will
constitute the desired shortest spanning tree. The validity of the method
follows from Theorem 3-16.

Another algorithm, which does not require listing all edges in order of
nondecreasing weight or checking at each step if a newly selected edge forms
a circuit, is due to Prim [3-10). For Prim’s algorithm, draw n isolated vertices
and label them v,, v,, . .., v,. Tabulate the given weights of the edges of G
in an n by n table. (Note that the entries in the table are symmetric with re-
spect to the diagonal, and the diagonal is empty.) Set the weights of non-
existent edges (corresponding to those pairs of cities between which no direct
road can be built) as very large.
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Start from vertex v, and connect it to its nearest neighbor (i.e., to the
vertex which has the smallest entry in row 1 of the table), say v,. Now con-
sider v, and v, as one subgraph, and connect this subgraph to its closest
neighbor (i.e., to a vertex other than v, and v, that has the smallest entry
among all entries in rows 1 and k). Let this new vertex be v,. Next regard the
tree with vertices v»,, v,, and v, as one subgraph, and continue the process
until all n vertices have been connected by n — 1 edges. Let us now illustrate
this method of finding a shortest spanning tree.

%S 10 Y, Y - 10 16 11 10 17
9
’V by | 10 - 95 o = 195
) 4 10 vy 16 95 = 7 o0 12
' :
u Il oo 7 - 8 7
Uy 4
vs | 10 s oo 8 & 9
u | 17 195 12 7 9 -
19.5 - -

(a) (b)

Fig. 3-20 Shortest spanning tree in a weighted graph.

A connected weighted graph with 6 vertices and 12 edges is shown in Fig.
3-20(a). The weight of its edges is tabulated in Fig. 3-20(b). We start with v,
and pick the smallest entry in row I, which is either (v,, v,) or (v,, v,). Let us
pick (v,,v). [Had we picked (v,, v,) we would have obtained a different
shortest tree with the same weight.] The closest neighbor of subgraph (v,, v,)
1s v,, as can be seen by examining all the entries in rows | and 5. The three re-
maining edges selected following the above procedure turn out to be (v,, vy),
(v4, v4), and (v,, v,) in that sequence. The resulting tree—a shortest spanning
tree—is shown in Fig. 3-20(a) in heavy lines. The weight of this tree is 41.5
units.

Degree-Constrained Shortest Spanning Tree: In a shortest spanning tree
resulting from the preceding construction, a vertex v, can end up with any
degree; that is, | << d(v,) << n — 1. In some practical cases an upper limit on
the degree of every vertex (of the resulting spanning tree) has to be imposed.
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For instance, in an electrical wiring problem, one may be required to wire
together n pins (using as little wire as possible) with no more than three wires
wrapped around any individual pin. Thus, in this particular case,

d(v) <3 for every v,.

Such a spanning tree is called a degree-constrained shortest spanning tree.
In general, the problem may be stated as follows: Given a weighted con-
nected graph G, find a shortest spanning tree 7' in G such that

dwv) < k for every vertex v, in T.

If k = 2, this problem, in fact, reduces to the problem of finding the shortest
Hamiltonian path, as well as the traveling-salesman problem (without the

salesman returning to his home base), discussed at the end of Chapter 2. So
far, no efficient method of finding an arbitrarily degree-constrained shortest
spanning tree has been found.

CUT-SETS

In a connected graph G, a cur-set is a set of edgest whose removal from G
leaves G disconnected, provided removal of no proper subset of these edges
disconnects G. For instance, in Fig. 4-1 the set of edges {q, ¢, d, f}is a cut-set.
There are many other cut-sets, such as{a, b, g},{a, b, e, ], and {d, h, /}. Edge
{k} alone is also a cut-set. The set of edges {a, ¢, h, d}, on the other hand, is not
a cut-set, because one of its proper subsets, {a, ¢, h}, is a cut-set.

To emphasize the fact that no proper subset of a cut-set can be a cut-set,
some authors refer to a cut-set as a minimal cut-set, a proper cut-set, or a
simple cut-set. Sometimes a cut-set is also called a cocycle. We shall just use
the term cut-set.

A cut-set always “cuts” a graph into two. Therefore, a cut-set can also be
defined as a minimal set of edges in a connected graph whose removal reduces
the rank of the graph by one. The rank of the graph in Fig. 4.1(b), for in-

tSince a set of edges (together with their end vertices) constitutes a subgraph, a cut-
set in G is a subgraph of G.
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Fig. 4-1 Removal of a cut-set {a, ¢, d, f} from a graph “cuts” it

into two.
stance, is four, one less than that of the graph in Fig. 4.1(a). Another way of
looking at a cut-set is this: if we partition all the vertices of a connected graph
G into two mutually exclusive subsets, a cut-set is a minimal number of edges
whose removal from G destroys all paths between these two sets of vertices.
For example, in Fig. 4-1(a) cut-set {a, c, d, f} connects vertex set {v,, v,, ¥4}
with {v,, v,, v5}. (Note that one or both of these two subsets of vertices may
consist of just one vertex.) Since removal of any edge from a tree breaks the
tree into two parts, every edge of a tree is a cut-set.

Cut-sets are of great importance in studying properties of communication
and transportation networks. Suppose, for example, that the six vertices in
Fig. 4-1(a) represent six cities connected by telephone lines (edges). We wish
to find out if there are any weak spots in the network that need strengthening
by means of additional telephone lines. We look at all cut-sets of the graph,
and the one with the smallest number of edges is the most vulnerable. In Fig.
4-1(a), the city represented by vertex v, can be severed from the rest of the
network by the destruction of just one edge. After some additional study of
the properties of cut-sets, we shall return to their applications.
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SOME PROPERTIES OF A CUT-SET

Consider a spanning tree T in a connected graph G and an arbitrary cut-
set Sin G. Is it possible for S not to have any edge in common with 7?7 The
answer is no. Otherwise, removal of the cut-set S from G would not discon-

nect the graph. Therefore,
THEOREM 4-1

Every cut-set in a connected graph G must contain at least one branch of every
spanning tree of G.

Will the converse also be true? In other words, will any minimal set of
edges containing at least one branch of every spanning tree be a cut-set? The
answer is yes, by the following reasoning:

In a given connected graph G, let Q be a minimal set of edges containing
at least one branch of every spanning tree of G. Consider G — Q, the sub-
graph that remains after removing the edges in Q from G. Since the subgraph
G — Q contains no spanning tree of G, G — Q is disconnected (one compo-
nent of which may just consist of an isolated vertex). Also, since Q is a mini-
mal set of edges with this property, any edge e from Q returned to G — Q
will create at least one spanning tree. Thus the subgraph G — Q + e will be
a connected graph. Therefore, Q 1s a minimal set of edges whose removal
from G disconnects G. This, by definition, is a cut-set. Hence

THEOREM 4-2

In a connected graph G, any minimal set of edges containing at least one branch
of every spanning tree of G is a cut-set.

THEOREM 4-3

Every circuit has an even number of edges in common with any cut-set.

Proof: Consider a cut-set S in graph G (Fig. 4-2). Let the removal of § partition
the vertices of G into two (mutually exclusive or disjoint) subsets ¥, and V,. Con-
sider a circuit I' in G. If all the vertices in I are entirely within vertex set V; (or V3),
the number of edges common to S and I is zero; that is, N(S n I') = 0, an even

number.t
If, on the other hand, some vertices in I" are in ¥, and some in ¥, we traverse
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Circuit I shown in heavy lines, and is
traversed along the direction of the arrows

Fig. 4-2 Circuit and a cut-set in G.
back and forth between the sets V', and V; as we traverse the circuit (see Fig. 4-2).
Because of the closed nature of a circuit, the number of edges we traverse between
V, and V; must be even. And since very edge in § has one end in ¥, and the other
in V,, and no other edge in G has this property (of separating sets V, and V),
the number of edges common to S and I is even.

ALL CUT-SETS IN A GRAPH
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Fundamental Cut-Sets: Consider a spanning tree T of a connected graph
G. Take any branch b in T. Since {b} is a cut-set in T, {b} partitions all vertices
of T into two disjoint sets—one at each end of b. Consider the same partition
of vertices in G, and the cut set S in G that corresponds to this partition. Cut-
set S will contain only one branch b of T, and the rest (if any) of the edges in
S are chords with respect to T. Such a cut-set S containing exactly one branch
of a tree T is called a fundamental cut-set with respect to 7. Sometimes a
fundamental cut-set is also called a basic cut-set. In Fig. 4-3, a spanning tree

Fig. 4-3 Fundamental cut-sets of a graph.
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T (in heavy lines) and all five of the fundamental cut-sets with respect to T
are shown (broken lines “cutting” through each cut-set).

Just as every chord of a spanning tree defines a unique fundamental cir-
cuit, every branch of a spanning tree defines a unigue fundamental cut-set. It
must also be kept in mind that the term fundamental cut-set (like the term
fundamental circuit) has meaning only with respect to a given spanning tree.

Now we shall show how other cut-sets of a graph can be obtained from a
given set of cut-sets.

THEOREM 4-4

The ring sum of any two cut-sets in a graph is either a third cut-set or an edge-
disjoint union of cut-sets.

Outline of Proof: Let S, and S, be two cut-sets in a given connected graph
G. Let V, and ¥V, be the (unique and disjoint) partitioning of the vertex set
V of G corresponding to S,. Let V; and ¥V, be the partitioning corresponding
to S,. Clearly [see Figs. 4-4(a) and (b)],

VIUV2=V Ell'ld V|ﬂV2=g,
VJ,UV.‘:V and V]ﬂV.i:;Z}*
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Now let the subset (V, N V) U (V, m V,;) be called Vs, and this by
definition is the same as the ring sum V, @ V,. Similarly, let the subset
(V, N V3) U (V, N V,)becalled Vy, which is the same as V, & V,. See Fig.
4-4(c).

The ring sum of the two cut-sets S, (P S; can be seen to consist only of
edges that join vertices in ¥ to those in V. Also, there are no edges outside
S, & S, that join vertices in V5 to those in V5.

Thus the set of edges S, @ S, produces a partitioning of V into V5 and
V¢ such that

VSUV5=V and Vsﬁyﬁug.
Hence S, (B S, is a cut-set if the subgraphs containing V5 and ¥ each remain

connected after S, @ S, is removed from G. Otherwise, S, & S, is an edge-
disjoint union of cut-sets.

Example: In Fig. 4-3 let us consider ring sums of the following three pairs
of cut-sets.
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Example: In Fig. 4-3 let us consider ring sums of the following three pairs
of cut-sets.
{doe,f1®{f g h} ={d e g h}, another cut-set,
{a, b} Db, c,e,f} = {a,c, e, [} another cut-set,
{doegh®D{figkl=1{delfh k]
= {d, e, f} U {h, k}, an edge-disjoint

union of cut-sets.

(]

—
‘ - T

Fig. 4-4 Two cut-sets and their partitionings.
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So we have a method of generating additional cut-sets from a number of
given cut-sets. Obviously, we cannot start with any two cut-sets in a given
graph and hope to obtain all its cut-sets by this method. What then is a
minimal set of cut-sets from which we can obtain every cut-set of G by taking
ring sums ? The answer (to be proved in Chapter 6) is the set of all fundamen-
tal cut-sets with respect to a given spanning tree.

FUNDAMENTAL CIRCUITS AND CUT-SETS

Consider a spanning tree 7'in a given connected graph G. Let ¢; be a chord
with respect to 7', and let the fundamental circuit made by ¢, be called T, con-
sisting of k branches b, b,, . .., b, in addition to the chord ¢,; that is,

I ={c,b,b, ...,b} isa fundamental circuit with respect to 7.

Every branch of any spanning tree has a fundamental cut-set associated with

it. Let .S, be the fundamental cut-set associated with b,, consisting of ¢ chords
in addition to the branch b, ; that is,

Sy =1{b,,ci, €3 ..., ¢} 1safundamental cut-set with respect to 7.

Because of Theorem 4-3, there must be an even number of edges common
toI’ and S,. Edge b, is in both I" and §,, and there is only one other edge in
I" (which is ¢;) that can possibly also be in S,. Therefore, we must have two
edges b, and ¢, common to S, and I'. Thus the chord ¢, is one of the chords

s sl W -
Exactly the same argument holds for fundamental cut-sets associated with
b,, b, ..., and b,. Therefore, the chord c, is contained in every fundamental

cut-set associated with branches in T".

Is it possible for the chord ¢, to be in any other fundamental cut-set S’
(with respect to T, of course) besides those associated with b, b,, ... and b,?
The answer is no. Otherwise (since none of the branches in T are in S'), there
would be only one edge ¢, common to S" and I', a contradiction to Theorem
4-3. Thus we have an important result.

THEOREM 4-5

With respect to a given spanning tree 7, a chord ¢; that determines a fundamental
circuit I' occurs in every fundamental cut-set associated with the branches in I’
and in no other.
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As an example, consider the spanning tree {b, ¢, e, h, k}, shown in heavy
lines, in Fig. 4-3. The fundamental circuit made by chord fis

[f. e, h, k}.

The three fundamental cut-sets determined by the three branches e, A, and k
are

determined by branch e: {d, e, [},
determined by branch A: {f, g, A,
determined by branch k: [/, g, ki.

Chord f occurs in each of these three fundamental cut-sets, and there is no
other fundamental cut-set that contains f. The converse of Theorem 4-5 is
also true.

THEOREM 4-6

With respect to a given spanning tree 7, a branch b; that determines a funda-
mental cut-set S is contained in every fundamental circuit associated with the
chords in §, and in no others.

As an example, consider the spanning tree {b, ¢, e, h, k}, shown in heavy
lines, in Fig. 4-3. The fundamental circuit made by chord fis

{f.e h Kk}

The three fundamental cut-sets determined by the three branches e, 4, and &
are

determined by branch e: [d, e, [},
determined by branch A: {f, g, A},
determined by branch k: {/, g, k}.
Chord f occurs in each of these three fundamental cut-sets, and there is no

other fundamental cut-set that contains f. The converse of Theorem 4-5 is
also true.
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THEOREM 4-6

With respect to a given spanning tree 7, a branch b; that determines a funda-
mental cut-set S is contained in every fundamental circuit associated with the
chords in §, and in no others.

Proof: The proof consists of arguments similar to those that led to Theorem
4-5. Let the fundamental cut-set S determined by a branch b; be
S = {bfv C1, Cay e v oy C_{J}}
and let I'; be the fundamental circuit determined by chord ¢, :

Ty =l byaibay B

Since the number of edges common to S and I'; must be even, b; must be in I';.
The same is true for the fundamental circuits made by chords c,, ¢3, . . ., ¢,

On the other hand, suppose that b; occurs in a fundamental circuit I',, , made
by a chord other than c,, ¢z, ..., ¢,. Since none of the chords ¢, ¢2,..., ¢, is
in I',,,, there is only one edge A, common to a circuit I')., and the cut-set S,
which is not possible. Hence the theorem. [l

Turning again for illustration to the graph in Fig. 4-3, consider branch
e of spanning tree {b, ¢, e, h, k}. The fundamental cut-set determined by e is

{e,d, [}
The two fundamental circuits determined by chords 4 and f are

determined by chord d: {4, c, e},
determined by chord /= {f, e, h, k}.

Branch e is contained in both these fundamental circuits, and none of the
remaining three fundamental circuits contains branch e.

CONNECTIVITY AND SEPARABILITY

Edge Connectivity: Each cut-set of a connected graph G consists of a cer-
tain number of edges. The number of edges in the smallest cut-set (i.e., cut-
set with fewest number of edges) is defined as the edge connectivity of G.
Equivalently, the edge connectivity of a connected graphf can be defined as
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the minimum number of edges whose removal (i.e., deletion) reduces the
rank of the graph by one. The edge connectivity of a tree, for instance, is one.
The edge connectivities of the graphs in Figs. 4-1(a), 4-3, 4-5 are one, two,
and three, respectively.

Vertex Connectivity: On examining the graph in Fig. 4-5, we find that
although removal of no single edge (or even a pair of edges) disconnects the

Fig. 4-5 Separable graph.

graph, the removal of the single vertex v does.t Therefore, we define another
analogous term called vertex connectivity. The vertex connectivity (or simply
connectivity) of a connected graph G is defined as the minimum number of
vertices whose removal from G leaves the remaining graph disconnected.}
Again, the vertex connectivity of a tree is one. The vertex connectivities of the
graphs in Figs. 4-1(a), 4-3, and 4-5 are one, two, and one, respectively. Note
that from the way we have defined it vertex connectivity is meaningful only
for graphs that have three or more vertices and are not complete.

Separable Graph: A connected graph is said to be separable if its vertex
connectivity is one. All other connected graphs are called nonseparable. An
equivalent definition is that a connected graph G is said to be separable if
there exists a subgraph g in G such that g (the complement of g in G) and g
have only one vertex in common. That these two definitions are equivalent
can be easily seen (Problem 4-7). In a separable graph a vertex whose removal
disconnects the graph is called a cut-vertex, a cut-node, or an articulation point.
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For example, in Fig. 4-5 the vertex v is a cut-vertex, and in Fig. 4-1(a) vertex
v, Is a cut-vertex. It can be shown (Problem 4-18) that in a tree every vertex
with degree greater than one is a cut-vertex. Moreover:

THEOREM 4-7

A vertex v in a connected graph G is a cut-vertex if and only if there exist two
vertices x and y in G such that every path between x and y passes through .

The proof of the theorem is quite easy and is left as an exercise (Problem
4-17). The implication of the theorem is very significant. It states that v is a
crucial vertex in the sense that any communication between x and y (if G re-
presented a communication network) must “pass through” v.

Fig. 4-6 Graph with 8 vertices and 16
edges.

An Application: Suppose we are given n stations that are to be connected
by means of e lines (telephone lines, bridges, railroads, tunnels, or highways)
where e > n — 1. What is the best way of connecting? By “best” we mean
that the network should be as invulnerable to destruction of individual sta-
tions and individual lines as possible. In other words, construct a graph with
n vertices and e edges that has the maximum possible edge connectivity and
vertex connectivity.
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For example, the graph in Fig. 4-5 has n = 8, e = 16, and has vertex
connectivity of one and edge connectivity of three. Another graph with the
same number of vertices and edges (8 and 16, respectively) can be drawn as
shown in Fig. 4-6.

It can easily be seen that the edge connectivity as well as the vertex con-
nectivity of this graph is four. Consequently, even after any three stations are
bombed, or any three lines destroyed, the remaining stations can still con-

tinue to “communicate” with each other. Thus the network of Fig. 4-6 is
better connected than that of Fig. 4-5 (although both consist of the same
number of lines—16).

THEOREM 4-8

The edge connectivity of a graph G cannot exceed the degree of the vertex with
the smallest degree in G.

Proof: Let vertex v; be the vertex with the smallest degree in G. Let d(v;) be
the degree of »;. Vertex v; can be separated from G by removing the d(»;) edges
incident on vertex »,. Hence the theorem. [

THEOREM 4-9

The vertex connectivity of any graph G can never exceed the edge connectivity
of G.

Proof: Let o0 denote the edge connectivity of G. Therefore, there exists a cut-
set S in G with o edges. Let .S partition the vertices of G into subsets V, and V,.
By removing at most & vertices from V/, (or V;) on which the edges in § are incident,
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we can effect the removal of S (together with all other edges incident on these
vertices) from G. Hence the theorem. |

COROLLARY

Every cut-set in a nonseparable graph with more than two vertices contains at
least two edges.

THEOREM 4-10

The maximum vertex connectivity one can achieve with a graph G of n vertices
and e edges (¢ == n — 1) is the integral part of the number 2e/n; that is, | 2¢e/n .

Proof: Every edge in G contributes two degrees. The total (2e degrees) is divided
among n vertices. Therefore, there must be at least one vertex in G whose degree
is equal to or less than the number 2¢/n. The vertex connectivity of G cannot exceed
this number, in light of Theorems 4-8 and 4-9.

To show that this value can actually be achieved, one can first construct an
n-vertex regular graph of degree | 2¢/n | and then add the remaining e — (n/2)-| 2e/n |
edges arbitrarily. The completion of the proof is left as an exercise.

The results of Theorems 4-8, 4-9, and 4-10 can be summarized as follows:

vertex connectivity << edge connectivity = %,
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maximum vertex connectivity possible = {Z—EJ-

Thus, for a graph with 8 vertices and 16 edges (Figs. 4-5 and 4-6), for example,
we can achieve a vertex connectivity (and therefore edge connectivity) as
high as four (= 2-16/8).

A graph G is said to be k-connected if the vertex connectivity of G is k;
therefore, a I-connected graph is the same as a separable graph.

THEOREM 4-11

A connected graph G is k-connected if and only if every pair of vertices in G is
joined by k or more paths that do not intersect,t and at least one pair of vertices
is joined by exactly k nonintersecting paths.

THEOREM 4-12

The edge connectivity of a graph G is k if and only if every pair of vertices in
G is joined by k or more edge-disjoint paths (i.e., paths that may intersect, but have
no edges in common), and at least one pair of vertices is joined by exactly k edge-
disjoint paths.

The reader is referred to Chapter 5 of [1-5] for the proofs of Theorems
4-11 and 4-12. Note that our definition of k-connectedness is slightly differ-
ent from the one given in [1-5]. A special result of Theorem 4-11 is that a
graph G is nonseparable if and only if any pair of vertices in G can be placed
in a circuit (Problem 4-13).

The reader is encouraged to verify these theorems by enumerating all
edge-disjoint and vertex-disjoint paths between each of the 15 pairs of ver-
tices in Fig. 4-3.

NETWORK FLOWS

In a network of telephone lines, highways, railroads, pipelines of oil (or
gas or water), and so on, it is important to know the maximum rate of flow
that is possible from one station to another in the network. This type of net-
work is represented by a weighted connected graph in which the vertices
are the stations and the edges are lines through which the given commodity
(oil, gas, water, number of messages, number of cars, etc.) flows. The weight,
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a real positive number, associated with each edge represents the capacity of
the line, that is, the maximum amount of flow possible per unit of time. The
graph in Fig. 4-7, for example, represents a flow network consisting of 12
stations and 31 lines. The capacity of each of these lines is also indicated in
the figure.

It is assumed that at each intermediate vertex the total rate of commodity
entering i1s equal to the rate leaving. In other words, there is no accumulation
or generation of the commodity at any vertex along the way. Furthermore,
the flow through a vertex is limited only by the capacities of the edges inci-
dent on it. In other words, the vertex itself can handle as much flow as allowed
through the edges. Finally, the lines are lossless.

Fig. 4-7 Graph of a flow network.

In such a flow problem the questions to be answered are

1. What is the maximum flow possible through the network between a
specified pair of vertices—say, from B to M in Fig. 4-7?

2. How do we achieve this flow (i.e., determine the actual flow through
each edge when the maximum flow exists)?

Theorem 4-13, perhaps the most important result in the theory of trans-
port networks, answers the first question. The second question is answered
implicitly by a constructive proof of the theorem. To facilitate the statement
and proof of the theorem, let us define a few terms.
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A cut-set with respect to a pair of vertices a and b in a connected graph G
puts @ and b into two different components (i.e., separates vertices a and b).
For instance, in Fig. 4-3 cut-set {d, e, /'} is a cut-set with respect to v, and v;.
The set {f, g, h} is also a cut-set with respect to v, and v,. But the cut-set
{f, &, h} is not a cut-set with respect to v, and v,. The capacity of cut-set S in
a weighted connected graph G (in which the weight of each edge represents
its flow capacity) is defined as the sum of the weights of all the edges in S.

THEOREM 4-13

The maximum flow possible between two vertices @ and b in a network is equal
to the minimum of the capacities of all cut-sets with respect to a and b.

Proof: Consider any cut-set S with respect to vertices @ and b in G. In the sub-
graph G — S (the subgraph left after removing S from G) there is no path between
a and b. Therefore, every path in G between a and b must contain at least one edge
of §. Thus every flow from a to b (or from b to @) must pass through one or more
edges of S. Hence the total flow rate between these two vertices cannot exceed the
capacity of S. Since this holds for all cut-sets with respect to @ and b, the flow rate
cannot exceed the minimum of their capacities. [}

1-ISOMORPHISM
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A separable graph consists of two or more nonseparable subgraphs. Each
of the largest nonseparable subgraphs is called a block. (Some authors use the
term component, but to avoid confusion with components of a disconnected
graph, we shall use the term block.) The graph in Fig. 4-5 has two blocks. The
graph in Fig. 4-8 has five blocks (and three cut-vertices a, b, and c); each block

Fig. 4-8 Separable graph with three cut-vertices and five blocks.
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Fig. 4-9 Disconnected graph 1l-isomorphic to Fig. 4-8.

is shown enclosed by a broken line. Note that a nonseparable connected
graph consists of just one block.

Visually compare the disconnected graph in Fig. 4-9 with the one in Fig.
4-8. These two graphs are certainly not isomorphic (they do not have the same
number of vertices), but they are related by the fact that the blocks of the
graph in Fig. 4-8 are isomorphic to the components of the graph in Fig. 4-9.
Such graphs are said to be /-isomorphic. More formally:

Two graphs G, and G, are said to be I-isomorphic if they become isomor-
phic to each other under repeated application of the following operation.

Operation 1: *“Split” a cut-vertex into two vertices to produce two disjoint
subgraphs.

From this definition it is apparent that two nonseparable graphs are 1-
isomorphic if and only if they are isomorphic.

THEOREM 4-14

If &, and G, are two l-isomorphic graphs, the rank of G, equals the rank of
G and the nullity of G, equals the nullity of G,.

Proof: Under operation |, whenever a cut-vertex in a graph G is “split” into

two vertices, the number of components in G increases by one. Therefore, the rank
of G which is

number of vertices in ¢ — number of components in G

remains invariant under operation 1.
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Also, since no edges are destroyed or new edges created by operation 1, two
l1-isomorphic graphs have the same number of edges. Two graphs with equal rank
and with equal numbers of edges must have the same nullity, because

nullity — number of edges — rank. [

What if we join two components of Fig. 4-9 by “gluing” together two
vertices (say vertex x to y)? We obtain the graph shown in Fig. 4-10.

Clearly, the graph in Fig. 4-10 is 1-isomorphic to the graph in Fig. 4-9.
Since the blocks of the graph in Fig. 4-10 are isomorphic to the blocks of the
graph in Fig. 4-8, these two graphs are also l-isomorphic. Thus the three
graphs in Figs. 4-8, 4-9, and 4-10 are 1-isomorphic to one another.

3

Fig. 4-10 Graph 1-isomorphic to Figs. 4-8 and 4-9.

2-ISOMORPHISM

In Section 4-7 we generalized the concept of isomorphism by introducing
l-isomorphism. A graph G, was l-isomorphic to graph G, if the blocks of G,
were isomorphic to the blocks of G,. Since a nonseparable graph is just one
block, 1-isomorphism for nonseparable graphs is the same as isomorphism.
However, for separable graphs (i.e., graphs with vertex connectivity of one),
1-isomorphism is different from isomorphism. Graphs that are isomorphic
are also l-isomorphic, but l-isomorphic graphs may not be isomorphic. This
generalized isomorphism is very useful in the study of separable graphs.
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We can generalize this concept further to broaden its scope for 2-connect-
ed graphs (1.e., graphs with vertex connectivity of two), as follows:

In a 2-connected graph G let vertices x and y be a pair of vertices whose
removal from G will leave the remaining graph disconnected. In other words,
G consists of a subgraph g, and its complement g, such that g, and g, have
exactly two vertices, x and y, in common. Suppose that we perform the fol-
lowing operation 2 on G (after which, of course, G no longer remains the
original graph).

Operation 2: “Split” the vertex x into x, and x, and the vertex y into y,
and y, such that G is splitinto g, and g,. Let vertices x, and y, go with g, and
x, and y, with g,. Now rejoin the graphs g, and g, by merging x, with y, and
x, with y,. (Clearly, edges whose end vertices were x and y in G could have
gone with g, or g,, without affecting the final graph.)

Two graphs are said to be 2-isomorphic if they become isomorphic after
undergoing operation 1 (in Section 4-7) or operation 2, or both operations
any number of times. For example, Fig. 4-11 shows how the two graphs in
Figs. 4-11(a) and (d) are 2-isomorphic. Note that in (a) the degree of vertex
x 1s four, but in (d) no vertex is of degree four.

From the definition it follows immediately that isomorphic graphs are
always l-isomorphic, and 1-isomorphic graphs are always 2-isomorphic.
But 2-isomorphic graphs are not necessarily 1-isomorphic, and l-isomorphic

X xl Xz
L ]
g,
£
[
v Y W

(a) (b)
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Fig. 4-11 2-isomorphic graphs (a) and (d).

graphs are not necessarily isomorphic. However, for graphs with connectivity
three or more, isomorphism, l-isomorphism, and 2-isomorphism are syn-
onymous.

It is clear that no edges or vertices are created or destroyed under opera-
tion 2. Therefore, the rank and nullity of a graph remain unchanged under
operation 2. And as shown in Section 4-7, the rank or nullity of a graph does
not change under operation 1. Therefore, 2-isomorphic graphs are equal in
rank and equal in nullity. The fact that the rank r and nullity z are not enough
to specify a graph within 2-isomorphism can easily be shown by constructing
a counterexample (Problem 4-23).

Circuit Correspondence: Two graphs G, and G, are said to have a circuit
correspondence if they meet the following condition: There is a one-to-one
correspondence between the edges of G, and G, and a one-to-one correspond-
ence between the circuits of G, and G,, such that a circuit in G, formed by
certain edges of G, has a corresponding circuit in G, formed by the corre-
sponding edges of G,, and vice versa. Isomorphic graphs, obviously, have
circuit correspondence.

Since in a separable graph G every circuit is confined to a particular
block (Problem 4-15), every circuit in G retains its edges as G undergoes
operation I (in Section 4-7). Hence I-isomorphic graphs have circuit corre-
pondence.
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Similarly, let us consider what happens to a circuit in a graph G when it
undergoes operation 2, as defined in this section. A circuit ' in G will fall in
one of three categories:

I. T 1s made of edges all in g,, or
2. T 1s made of edges all in g,, or

3. T is made of edges from both g, and g,, and in that case I" must include
both vertices x and y.

In cases | and 2, I" is unaffected by operation 2. In case 3, I" still has the
original edges, except that the path between vertices x and y in g,, which
constituted a part of I', 1s “flipped around.” Thus every circuit in a graph
undergoing operation 2 retains its original edges. Therefore, 2-isomorphic
graphs also have circuit correspondence.

Theorem 4-15, which is considered the most important result for 2-isomor-
phic graphs, is due to H. Whitney.

THEOREM 4-15
Two graphs are 2-isomorphic if and only if they have circuit correspondence.
Proof: The “only if” part has already been shown in the argument preceding

the theorem. The *“if” part is more involved, and the reader is referred to Whitney's
original paper [4-7].

As we shall observe in subsequent chapters, the ideas of 2-isomorphism
and circuit correspondence play important roles in the theory of contact
networks, electrical networks, and in duality of graphs.

PLANAR GRAPHS

A graph G is said to be planar if there exists some geometric representation
of G which can be drawn on a plane such that no two of its edges intersect.f
A graph that cannot be drawn on a plane without a crossover between its
edges is called nonplanar.

A drawing of a geometric representation of a graph on any surface such
that no edges intersect is called embedding. Thus, to declare that a graph G is
nonplanar, we have to show that of all possible geometric representations of
G none can be embedded in a plane. Equivalently, a geometric graph G is
planar if there exists a graph isomorphic to G that is embedded in a plane.
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Otherwise, G is nonplanar. An embedding of a planar graph G on a plane is
called a plane representation of G.

For instance, consider the graph represented by Fig. 1-3. The geometric
representation shown in Fig. I-3 clearly 1s not embedded in a plane, because
the edges e and f are intersecting. But if we redraw edge f outside the quadri-
lateral, leaving the other edges unchanged, we have embedded the new
geometric graph in the plane, thus showing that the graph which is being
represented by Fig. 1-3 is planar. As another example, the two i1somorphic
diagrams in Fig. 2-2 are different geometric representations of one and the
same graph. One of the diagrams is a plane representation; the other one is
not. The graph, of course, is planar. On the other hand, you will not be able
to draw any of the three configurations in Fig. 2-3 on a plane without edges
intersecting. The reason is that the graph which these three different diagrams
in Fig. 2-3 represent is nonplanar.

A natural question now is: How can we tell if a graph G [which may be
given by an abstract notation G = (V, E,¥) or by one of its geometric
representations] is planar or nonplanar? To answer this question, let us first
discuss two specific nonplanar graphs which are of fundamental importance.
These are called Kuratowski’s graphs, after the Polish mathematician Kasimir
Kuratowski, who discovered their unique property.

KURATOWSKI'S TWO GRAPHS
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THEOREM 5-1

The complete graph of five vertices is nonplanar.

Proof: Let the five vertices in the complete graph be named v, v,, v3, v4, and
vs. A complete graph, as you may recall, is a simple graph in which every vertex

15 joined to every other vertex by means of an edge. This being the case, we must
Uy Lty

(a) (b)
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Fig. 5-1 Building up of the five-vertex complete graph.

have a circuit going from v, to v; to v; to vy to vs to »,—that is, a pentagon.
See Fig. 5-1(a). This pentagon must divide the plane of the paper into two regions,
one inside and the other outside (Jordan curve theorem).

Since vertex v, is to be connected to v; by means of an edge, this edge may be
drawn inside or outside the pentagon (without intersecting the five edges drawn
previously). Suppose that we choose to draw a line from v, to »; inside the pen-
tagon. See Fig. 5-1(b). (If we choose outside, we end up with the same argument.)

Now we have to draw an edge from v, to v, and another one from v, to vs. Since
neither of these edges can be drawn inside the pentagon without crossing over the
edge already drawn, we draw both these edges outside the pentagon. See Fig. 5-1(c).
The edge connecting »; and vs cannot be drawn outside the pentagon without
crossing the edge between v; and »,. Therefore, v; and »s have to be connected
with an edge inside the pentagon. See Fig. 5-1(d).
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Now we have yet to draw an edge between », and »,. This edge cannot be
placed inside or outside the pentagon without a crossover. Thus the graph cannot
be embedded in a plane. See Fig. 5-1(e). I}

Some readers may find this proof somewhat unsatisfactory because it
depends so heavily on visual intuition. Do not despair; we shall provide you
with an algebraic nonvisual proof in the next section.

A complete graph with five vertices is the first of the two graphs of
Kuratowski. The second graph of Kuratowski is a regularf connected graph
with six vertices and nine edges, shown in its two common geometric rep-
resentations in Figs. 5-2(a) and (b), where it is fairly easy to see that the
graphs are isomorphic.

Employing visual geometric arguments similar to those used in proving
Theorem 5-1, it can be shown that the second graph of Kuratowski is also
nonplanar. The proof of Theorem 5-2 is, therefore, left as an exercise
(Problem 5-1).

(a)
(b)
Fig. 5-2 Kuratowski's second graph.

THEOREM 5-2

Kuratowski's second graph is also nonplanar.

You may have noticed several properties common to the two graphs of
Kuratowski. These are

1. Both are regular graphs.
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2. Both are nonplanar.
3. Removal of one edge or a vertex makes each a planar graph.

4. Kuratowski’s first graph is the nonplanar graph with the smallest
number of vertices, and Kuratowski’s second graph is the nonplanar
graph with the smallest number of edges. Thus both are the simplest
nonplanar graphs.

In the literature, Kuratowski's first graph is usually denoted by K and the
second graph by K, ,—Iletter K being for Kuratowski.

DIFFERENT REPRESENTATIONS OF A
PLANAR GRAPH

THEOREM 5-3

Any simple planar graph can be embedded in a plane such that every edge is
drawn as a straight line segment.

Proof: The proof is involved and does not contribute much to the understanding
of planarity. The interested reader is, therefore, referred to pages 74-77 in [1-2]
or to the original paper of Fary [5-4]. As an illustration, the graph in Fig. 5-1(d)
can be redrawn using straight line segments to look like Fig. 5-3. In this theorem,
it is necessary for the graph to be simple because a self-loop or one of two parallel
edges cannot be drawn by a straight line segment. |}

Region: A plane representation of a graph divides the plane into regions
(also called windows, faces, or meshes), as shown in Fig. 5-4. A region is

by

Uy

Fig. 5-3 Straight-line representation of
Uy Us  the graph in Fig. 5-1(d).
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Fig.5-4 Plane representation (the num-
bers stand for regions).

characterized by the set of edges (or the set of vertices) forming its boundary.
Note that a region is not defined in a nonplanar graph or even in a planar
graph not embedded in a plane. For example, the geometric graph in Fig. 1-3
does not have regions. Thus a region is a property of the specific plane
representation of a graph and not of an abstract graph per se.

Infinite Region: The portion of the plane lying outside a graph embedded
in a plane, such as region 4 in Fig. 5-4, is infinite in its extent. Such a region is
called the infinite, unbounded, outer, or exierior region for that particular plane
representation. Like other regions, the infinite region is also characterized by
a set of edges (or vertices). Clearly, by changing the embedding of a given
planar graph, we can change the infinite region. For instance, Figs. 5-1(d) and
3-3 are two different embeddings of the same graph. The finite region v, v, v,
in Fig. 5-1(d) becomes the infinite region in Fig. 5-3. In fact, we shall shortly
show that any region can be made the infinite region by proper embedding.

Embedding on a Sphere: To eliminate the distinction between finite and
infinite regions, a planar graph is often embedded in the surface of a sphere.
It is accomplished by stereographic projection of a sphere on a plane. Put
the sphere on the plane and call the point of contact SP (south pole). At point
SP, draw a straight line perpendicular to the plane, and let the point where
this line intersects the surface of the sphere be called NP (north pole). See
Fig. 5-5.
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Now, corresponding to any point p on the plane, there exists a unique
point p' on the sphere and vice versa, where p’ is the point at which the
straight line from point p to point NP intersects the surface of the sphere.
Thus there i1s a one-to-one correspondence between the points of the sphere
and the finite points on the plane, and points at infinity in the plane corre-
spond to the point NP on the sphere.

From this construction, it is clear that any graph that can be embedded in

Fig. 5-5 Stereographic projection.

a plane (i.e., drawn on a plane such that its edges do not intersect) can also be
embedded in the surface of the sphere, and vice versa. Hence

THEOREM 5-4

A graph can be embedded in the surface of a sphere if and only if it can be
embedded in a plane.

A planar graph embedded in the surface of a sphere divides the surface
into different regions. Each region on the sphere is finite, the infinite region on
the plane having been mapped onto the region containing the point NP. Now
it is clear that by suitably rotating the sphere we can make any specified
region map onto the infinite region on the plane. From this we obtain

THEOREM 5-5

A planar graph may be embedded in a plane such that any specified region
(i.e., specified by the edges forming it) can be made the infinite region.
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Thinking in terms of the regions on the sphere, we see that there 1s no real
difference between the infinite region and the finite regions on the plane.
Therefore, when we talk of the regions in a plane regresentation of a graph,
we include the infinite region. Also, since there is no essential difference
between an embedding of a planar graph on a plane or on a sphere (a plane
may be regarded as the surface of a sphere of infinitely large radius), the term
“plane representation” of a graph is often used to include spherical as well as
planar embedding.

Euler’s Formula: Since a planar graph may have different plane represen-
tations, we may ask if the number of regions resulting from each embedding
is the same. The answer is yes. Theorem 5-6, known as Euler’s formula, gives
the number of regions in any planar graph.

THEOREM 5-6

A connected planar graph with n vertices and e edges has ¢ — n + 2 regions.

Proof: It will suffice to prove the theorem for a simple graph, because adding
a self-loop or a parallel edge simply adds one region to the graph and simultane-
ously increases the value of e by one. We can also disregard (i.e., remove) all edges
that do not form boundaries of any region. Three such edges are shown in Fig. 5-4.
Addition (or removal) of any such edge increases (or decreases) e by one and in-
creases (or decreases) n by one, keeping the quantity e — n unaltered.

Since any simple planar graph can have a plane representation such that each
edge is a straight line (Theorem 5-3), any planar graph can be drawn such that
each region is a polygon (a polygonal net). Let the polygonal net representing the
given graph consist of fregions or faces, and let k , be the number of p-sided regions.
Since each edge is on the boundary of exactly two regions,

Joks 4 deky Sk + 200 Aok =248, (5-1)

where k, is the number of polygons, with maximum edges.
Also,

k]‘i_k.;‘i‘ks‘j‘""]‘kr_—“ﬂ {5'2)
The sum of all angles subtended at each vertex in the polygonal net is

2nn. (5-3)
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Recalling that the sum of all interior angles of a p-sided polygon is (p — 2), and
the sum of the exterior angles is #(p + 2), let us compute the expression in (5-3)
as the grand sum of all interior angles of f — 1 finite regions plus the sum of the
exterior angles of the polygon defining the infinite region. This sum is

(3 — 2)ky + (4 —2)-ky + -+ -F(r — 2)k, + 4n
= 71(2e — 2f) + 4m. (5-4)
Equating (5-4) to (5-3), we get
2n(e — f) + 4w = 27n,
or e—f+2=n.
Therefore, the number of regions is

f=e—n+2 1B
COROLLARY

In any simple, connected planar graph with f regions, n vertices, and e edges
(e = 2), the following inequalities must hold:

e= 3, (5-5)

e < 3n— 6. (5-6)
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Proof: Since each region is bounded by at least three edges and each edge
belongs to exactly two regions,

2e = 3f

or e’?i‘-g—f-

Substituting for f from Euler’s formula in inequality (5-5),
e = %—(e —n -+ 2)
or e<3n—6. B

Inequality (5-6) is often useful in finding out if a graph is nonplanar. For
example, in the case of K,, the complete graph of five vertices [Fig. 5-1(e)],

I == e — 10, 3n—6 =9 <e.
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Thus the graph violates inequality (5-6), and hence it is not planar.

Incidentally, this is an alternative and independent proof of the non-
planarity of Kuratowski’s first graph, as promised in Section 5-3.

The reader must be warned that inequality (5-6) is only a necessary, but
not a sufficient, condition for the planarity of a graph. In other words,
although every simple planar graph must satisfy (5-6), the mere satisfaction
of this inequality does not guarantee the planarity of a graph. For example,
Kuratowski’s second graph, K, ;, satisfies (5-6), because

g
In—6=3.6—-6=12.

Yet the graph is nonplanar.

To prove the nonplanarity of Kuratowski’s second graph, we make use of
the additional fact that no region in this graph can be bounded with fewer
than four edges. Hence, if this graph were planar, we would have

2e = 4f,
and, substituting for f from Euler’s formula,

2e > 4(e — n + 2),
or 2:9 =409 — 6 1 2),

or 18 > 20, a contradiction.

Hence the graph cannot be planar.

Plane Representation and Connectivity: In a disconnected graph the
embedding of each component can be considered independently. Therefore,

it is clear that a disconnected graph is planar if and only if each of its com-
ponents is planar. Similarly, in a separable (or 1-connected) graph the
embedding of each block (i.e., maximal nonseparable subgraph) can be
considered independently. Hence a separable graph is planar if and only if
each of its blocks is planar.

Therefore, in questions of embedding or planarity, one need consider only
nonseparable graphs.
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THEOREM 5-7

The spherical embedding of every planar 3-connected graph is unique.

This theorem plays a very important role in determining if a graph is

{a) (b)

Fig. 5-6 Two distinct plane representations of the same graph.
planar or not. The theorem states that a 3-connected graph, if it can be
embedded at all, can be embedded in only one way.
DETECTION OF PLANARITY
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How to tell if a given graph G is planar or nonplanar is an important
problem, and *“find out by drawing it” is obviously not a good answer. We
must have some simple and efficient criterion. Toward that goal, we take the
following simplifying steps:

Elementary Reduction

Step 1: Since a disconnected graph is planar if and only if each of its
components is planar, we need consider only one component at a time. Also,
a separable graph is planar if and only if each of its blocks is planar. There-
fore, for the given arbitrary graph G, determine the set

G=1{G,,G,...,Gl

where each G, 1s a nonseparable block of G. Then we have to test each G, for
planarity.

Step 2: Since addition or removal of self-loops does not affect planarity,
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remove all self-loops.

Step 3: Since parallel edges also do not affect planarity, eliminate edges in
parallel by removing all but one edge between every pair of vertices.

Step 4: Elimination of a vertex of degree two by merging two edges in
seriest does not affect planarity. Therefore, eliminate all edges in series.

Repeated application of steps 3 and 4 will usually reduce a graph drasti-
cally. For example, Fig. 5-7 illustrates the series-parallel reduction of the
graph of Fig. 5-6(b).

Let the nonseparable connected graph G, be reduced to a new graph H,
after the repeated application of steps 3 and 4. What will graph H, look like?
Theorem 5-8 has the answer.

THEOREM 5-8
Graph H; is

1. A single edge, or
2. A complete graph of four vertices, or
3. A nonseparable, simple graph with n = 5and e == 7.

(I?s fé,:'
€ €37
: »
€4 € €y L)
(e; e3)
{a) Series Reduced {b) Parallel Reduced
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3
€3
(c) Series Reduced (d) Parallel Reduced

Fig. 5-7 Series-parallel reduction of the graph in Fig. 5-6(b).
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Proof: The theorem can be proved by considering all connected nonseparable
graphs of six edges or less. The proof is left as an exercise (Problem 5-9).

In Theorem 5-8, all H, falling in categories | or 2 are planar and need not
be checked further.

From now on, therefore, we need to investigate only simple, connected,
nonseparable graphs of at least five vertices and with every vertex of degree three
or more. Next, we can check to see if e << 3n — 6. If this inequality is not
satisfied, the graph H, is nonplanar. If the inequality is satisfied, we have to
test the graph further and, with this, we come to Kuratowski’s theorem
(Theorem 5-9), perhaps the most important result of this chapter.

Homeomorphic Graphs: Two graphs are said to be homeomorphic if one
graph can be obtained from the other by the creation of edges in series (i.e.,
by insertion of vertices of degree two) or by the merger of edges in series. The
three graphs in Fig. 5-8 are homeomorphic to each other, for instance. A
graph G is planar if and only if every graph that is homeomorphic to G is
planar. (This is a restatement of series reduction, step 4 in this section.)

THEOREM 5-9

A necessary and sufficient condition for a graph G to be planar is that G does
not contain either of Kuratowski’s two graphs or any graph homeomorphic to
either of them.

ANAAN

Fig. 5-8 Three graphs homeomorphic to each other,

Proof: The necessary condition is clear, because a graph G cannot be embedded
in a plane if G has a subgraph that cannot be embedded. That this condition is
also sufficient is surprising, and its proof is involved. Several different proofs of
the theorem have appeared since Kuratowski stated and proved it in 1930. For
a complete proof of the theorem, the reader is referred to Harary [1-5], pages 108—
112, Berge [1-1], pages 211-213, or Busacker and Saaty [1-2], pages 70-73.
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Note that it is nof necessary for a nonplanar graph to have either of the
Kuratowski graphs as a subgraph, as this theorem is sometimes misstated.
The nonplanar graph may have a subgraph homeomorphic to a Kuratowski
graph. For example, the graph in Fig. 5-9(a) is nonplanar, and yet it does not
have either of the Kuratowski graphs as a subgraph. However, if we remove

(a) (b)

(c)

Fig.5-9 Nonplanar graph with a subgraph homeomorphic to K3, 3.
edges (a, x) and (A4, C) from this graph, we get a subgraph, as shown in Fig.
5-9(b). This subgraph is homeomorphic (merge two series edges at vertex x) to
the one shown in Fig. 5-9(c). The graph of Fig. 5-9(c) clearly is isomorphic to
K, ;, Kuratowski’s second graph, and this demonstrates the nonplanarity of
the graph in Fig. 5-9(a).
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UNIT-II
SYLLABUS

Incidence matrix — Sub matrices — Circuit Matrix — Path Matrix — Adjacency Matrix — Chromatic Numb
Chromatic partitioning — Chromatic polynomial - Matching - Covering — Four Color Problem.
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INCIDENCE MATRIX

Let G be a graph with n vertices, e edges, and no self-loops. Define an n
by e matrix A = [a,;], whose n rows correspond to the n vertices and the e
columns correspond to the e edges, as follows:

The matrix element

a; =1, if jth edge e, is incident on ith vertex v,, and
S=0) otherwise.
Uy
Ug,
b
(a)

a b ¢ d ¢ I g h
v, 0 0 0 | 0 ! 0 0
Uy 0 0 0 0 1 | 1 |
Uy 0 0 0 0 0 0 0 |
Uy l I 1 0 | 0 0 )
v 0 0 1 | 0 0 | 0
Vg 1 1 0 0 0 0 0 0|

(b)

Fig. 7-1 Graph and its incidence matrix.
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Such a matrix A 1s called the vertex-edge incidence matrix, or simply incidence
matrix. Matrix A for a graph G is sometimes also written as A(G). A graph
and its incidence matrix are shown in Fig. 7-1.

The incidence matrix contains only two elements, 0 and 1. Such a matrix
is called a binary matrix or a (0, I)-matrix. Let us stipulate that these two
elements are from Galois field modulo 2.1 Given any geometric representa-
tion of a graph without self-loops, we can readily write its incidence matrix.

On the other hand, if we are given an incidence matrix A(G), we can construct
its geometric graph G without ambiguity. The incidence matrix and the
geometric graph contain the same informationt—they are simply two al-
ternative ways of representing the same (abstract) graph.

The following observations about the incidence matrix A can readily be

made:
1. Since every edge 1s incident on exactly two vertices, each column of
A has exactly two 1I’s.

2. The number of 1’s in each row equals the degree of the corresponding
vertex.

3. A row with all 0’s, therefore, represents an isolated vertex.

4. Parallel edges in a graph produce identical columns in its incidence
matrix, for example, columns | and 2 in Fig. 7-1.

5. If a graph G is disconnected and consists of two components g, and
g,, the incidence matrix A(G) of graph G can be written in a block-

diagonal form as
A(G) = P%g-’}--i-- : -9--], (7-1)

where A(g,) and A(g,) are the incidence matrices of components g,
and g,. This observation results from the fact that no edge in g, is
incident on vertices of g,, and vice versa. Obviously, this remark is
also true for a disconnected graph with any number of components.
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6. Permutation of any two rows or columns in an incidence matrix simply
corresponds to relabeling the vertices and edges of the same graph.
This observation leads us to Theorem 7-1.

THEOREM 7-1
Two graphs G, and G, are isomorphic if and only if their incidence matrices
A(G,) and A(G,) differ only by permutations of rows and columns.

Rank of the Incidence Matrix: Each row in an incidence matrix A(G) may
be regarded as a vector over GF(2) in the vector space of graph G. Let the

vector in the first row be called A,, in the second row A,, and so on. Thus

AG) =| "~ | (7-2)

-

Since there are exactly two 1’s in every column of A, the sum of all these
vectors is O (this being a modulo 2 sum of the corresponding entries). Thus
vectors A, A,, ..., A, are not linearly independent. Therefore, the rank of
A is less than n; that is, rank A << n — 1.

Now consider the sum of any m of these n vectors (m << n — 1). If the
graph is connected, A(G) cannot be partitioned, as in Eq. (7-1), such that
A(g,) is with m rows and A(g,) with n — m rows. In other words, no m by m
submatrix of A(G) can be found, for m << n — 1, such that the modulo 2 sum
of those m rows is equal to zero.

Since there are only two constants 0 and | in this field, the additions of all
vectors taken mat atimeform = 1, 2, ..., n — | exhausts all possible linear
combinations of n — 1 row vectors. Thus we have just shown that no linear
combination of m row vectors of A (for m << n — 1) can be equal to zero.
Therefore, the rank of A(G) must be at least n — 1.

Since the rank of A(G) is no more than n — I and is no less thann — 1, it
must be exactly equal to n — 1. Hence Theorem 7-2.

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 4/47




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: TM.Sc MATHEMATICS COURSE NAME: GRAPH THEORY
AND ITS APPLICATIONS
COURSE CODE; 18MMP205A UNIT; 111 BATCH-2018-2020

THEOREM 7-2

If A(G) is an incidence matrix of a connected graph G with » vertices, the rank
of A(G)isn — 1.

The argument leading to Theorem 7-2 can be extended to prove that the
rank of A(G) is n — k, if G is a disconnected graph with n vertices and k com-
ponents (Problem 7-3). This is the reason why the number n — k has been
called the rank of a graph with k components.

If we remove any one row from the incidence matrix of a connected
graph, the remaining (n — 1) by e submatrix is of rank n — 1 (Theorem 7-2).
In other words, the remaining n — 1 row vectors are linearly independent.
Thus we need only » — 1 rows of an incidence matrix to specify the corre-
sponding graph completely, for » — 1 rows contain the same amount of
information as the entire matrix. (This is obvious, since given n — 1 rows we
can easily reconstitute the missing row, because each column in the matrix
has exactly two 1's.)

Such an (n — 1) by e submatrix A, of A is called a reduced incidence
matrix. The vertex corresponding to the deleted row in A, is called the ref-
erence vertex. Clearly, any vertex of a connected graph can be made the
reference vertex.

Since a tree is a connected graph with n vertices and n — 1 edges, its
reduced incidence matrix is a square matrix of order and rank n — 1. In other
words,

COROLLARY

The reduced incidence matrix of a tree is nonsingular.

A graph with n vertices and n — 1 edges that is not a tree is disconnected.
The rank of the incidence matrix of such a graph will be less than n — 1.
Therefore, the (n — 1) by (n — 1) reduced incidence matrix of such a graph
will not be nonsingular. In other words, the reduced incidence matrix of a
graph is nonsingular if and only if the graph is a tree.
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SUBMATRICES OF A(G)

Let g be a subgraph of a graph G, and let A(g) and A(G) be the incidence
matrices of g and G, respectively. Clearly, A(g) is a submatrix of A(G) (pos-
sibly with rows or columns permuted). In fact, there is a one-to-one corre-
spondence between each » by k submatrix of A(G) and a subgraph of G with
k edges, k being any positive integer less than e and n being the number of
vertices in G.

Submatrices of A(G) corresponding to special types of subgraphs, such
as circuits, spanning trees, or cut-sets in G, will undoubtedly exhibit special
properties. Theorem 7-3 gives one such property.

THEOREM 7-3

Let A(G) be an incidence matrix of a connected graph G with n vertices. An
(n — 1) by (n — 1) submatrix of A(G) is nonsingular if and only if the n — 1
edges corresponding to the n — | columns of this matrix constitute a spanning tree
in G.

Proof: Every square submatrix of order n — 1 in A(G) i1s the reduced incidence
matrix of the same subgraph in G with # — 1 edges, and vice versa. From the
remarks following Theorem 7-2, it is clear that a square submatrix of A(G) is
nonsingular if and only if the corresponding subgraph is a tree. The tree in this
case 15 a spanning tree, because it contains n — 1 edges of the n-vertex graph.
Thus the theorem. [

CIRCUIT MATRIX

Let the number of different circuits in a graph G be g and the number of
edges in G be e. Then a circuit matrix B = [b,;]] of G is a g by e, (0, I)-matrix
defined as follows:

b= if ith circuit includes jth edge, and
il otherwise.

To emphasize the fact that B is a circuit matrix of graph G, the circuit matrix
may also be written as B(G).

The graph in Fig. 7-1(a) has four different circuits, {a, b}, {c, e, g}, {4, /,
gl,and {c, d, f, e}. Therefore, its circuit matrix is a 4 by 8, (0, 1)-matrix as
shown:
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a b ¢c d e f g h
L[ 1 0 0 0 07
2001 01 01O
B(G) = : %
©) 310 001 01 1 0 (7-3)
410 01 1 1 1 0 0O

The following observations can be made about a circuit matrix B(G) of
a graph G:

1. A column of all zeros corresponds to a noncircuit edge (i.e., an edge
that does not belong to any circuit).

2. Each row of B(G) is a circuit vector.

3. Unlike the incidence matrix, a circuit matrix is capable of representing
a self-loop—the corresponding row will have a single 1.

4. The number of 1's in a row is equal to the number of edges in the
corresponding circuit.

5. If graph G is separable (or disconnected) and consists of two blocks
(or components) g, and g,, the circuit matrix B(G) can be written in
a block-diagonal form as

where B(g,) and B(g,) are the circuit matrices of g, and g,. This ob-

servation results from the fact that circuits in g, have no edges belong-
g to g,, and vice versa (Problem 4-14).

6. Permutation of any two rows or columns in a circuit matrix simply
corresponds to relabeling the circuits and edges.

1. Two graphs G, and G, will have the same circuit matrix if and only 1f
G, and G, are 2-isomorphic (Theorem 4-15). In other words, (unlike
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an incidence matrix) the circutt matrix does not specify a graph com-
pletely. It only specifies the graph within 2-isomorphism. For instance,
it can be easily verified that the two graphs in Figs. 4-11(a) and (d)
have the same circuit matrix, vet the graphs are not isomorphic.

Animportant theorem relating the incidence matrix and the circuit matrix
of a self-loop-free graph G is
THEOREM 7-4

Let B and A be, respectively, the circuit matrix and the incidence matrix (of a
self-loop-free graph) whose columns are arranged using the same order of edges.
Then every row of B 1s orthogonal to every row A; that is,

A-BT =B-AT =10 (mod 2), (7-4)
where superscript T denotes the transposed matrix.

Proof: Consider a vertex » and a circuit I' in the graph . Either visin I or
it is not. If v is not in I', there is no edge in the circuit I' that is incident on v. On
the other hand, if » is in I', the number of those edges in the circuit I" that are
incident on v Is exactly two.

With this remark in mind, consider the ith row in A and the jth row in B.
Since the edges are arranged in the same order, the nonzero entries in the corre-
sponding positions occur only 1f the particular edge 1s incident on the ith vertex
and is also in the jth circuit.

If the ith vertex is not in the jth circuit, there is no such nonzero entry, and
the dot product of the two rows is zero. If the ith vertex is in the jth circuit, there
will be exactly two 1's in the sum of the products of individual entries. Since
I + 1 =0 (mod 2), the dot product of the two arbitrary rows—one from A and
the other from B—is zero. Hence the theorem. |

As an example, let us multiply the incidence matrix and transposed circuit
of the graph in Fig. 7-1(a), after making sure that the edges are in the same
order in both.
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10 0 0]
0 0 0 1 01 00] |1 000
000071 1 1 1[[01 01
00001 [00T1 1
o B B 8
1 1101000 |01 0 I
001100710 0011
11000000/ [0 110
0 0 0 0]
0 0 0 0]
00 0 0
000 0
- (mod 2).
000 0
00 0 0
- 0000

FUNDAMENTAL CIRCUIT MATRIX
AND RANK OF B

A submatrix (of a circuit matrix) in which all rows correspond to a set of
fundamental circuits is called a fundamental circuit matrix B,. A graph and
its fundamental circuit matrix with respect to a spanning tree (indicated by

heavy lines) are shown in Fig. 7-2.

As in matrices A and B, permutations of rows (and/or of columns) do not
affect B,. If n is the number of vertices and e the number of edges in a connect-
ed graph, then B, is an (e — n 4 1) by e matrix, because the number of
fundamental circuits is e — n -+ 1, each fundamental circuit being produced

by one chord.

Let us arrange the columns in B, such that all the e — n + | chords
correspond to the first e — n + 1 columns. Furthermore, let us rearrange
the rows such that the first row corresponds to the fundamental circuit made
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(a)

e €3 € € €4 €5 L
|

! 0 0 I | i 0 I

0 | 0 i| 0 r 0 |

0 0 | i 0 0 ! |

(b)

Fig. 7-2 Graph and its fundamental circuit matrix (with respect
to the spanning tree shown in heavy lines).

by the chord in the first column, the second row to the fundamental circuit
made by the second, and so on. This indeed is how the fundamental circuit
matrix is arranged in Fig. 7-2(b).

A matrix B, thus arranged can be written as

B, =[,B] (7-5)

where |, is an identity matrix of order 4 = e — n + 1, and B, is the remain-
ing u by (n — 1) submatrix, corresponding to the branches of the spanning
tree.

From Eq. (7-5) it is clear that the

rank of B, = gy =e —n+ 1.
Since B, is a submatrix of the circuit matrix B, the
rank of B = e — n + 1.

In fact, we can prove Theorem 7-5.
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THEOREM 7-5

If B is a circuit matrix of a connected graph G with e edges and n vertices,

rank of B =¢ — n + 1.

Proof: If A is an incidence matrix of G, from Eq. (7-4) we have
A-BT = 0 (mod 2).
Therefore, according to Sylvester's theorem (Appendix B),

rank of A - rank of B < ¢;

that is,

rank of B << ¢ — rank of A.
Since rank of A =n — 1
we have rankof B<<e —n + 1.
But rank of B > e — n + I.

Therefore, we must have
rankof B =e —n+1. B
An Alternative Proof: Theorem 7-5 can also be proved by considering the
circuit subspace Wr in the vector space W of a graph, as discussed in Chapter 6.
Every row in circuit matrix B is a vector in Wr, and since the rank of any

matrix is equal to the number of linearly independent rows (or columns) in the
matrix, we have.

rank of matrix B = number of linearly independent rows in B;

but the number of linearly independent rows in B =< number of linearly independent
vectors in Wy, and the number of linearly independent vectors in W = dimension
of Wr = u. Therefore, rank of B << e¢ — n - 1. Since we already showed that
rank of B = e — n + 1, Theorem 7-5 follows. |}

Note that in talking of spanning trees of a graph G it is necessary to as-
sume that G is connected. In the case of a disconnected graph, we would have
to consider a spanning forest and fundamental circuits with respect to this
forest. It 1s not difficult to show (considering component by component) that
if G is a disconnected graph with k components, e edges, and n vertices,
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rankof B=g=¢—n- k.

PATH MATRIX

Another (0, 1)-matrix often convenient to use in communication and
transportation networks is the path matrix. A path matrix is defined for a
specific pair of vertices in a graph, say (x, y), and is written as P(x, y). The
rows in P(x, y) correspond to different paths between vertices x and y, and
the columns correspond to the edges in G. That is, the path matrix for (x, y)
vertices 1s P(x, y) = [p;;], where

=1, if jth edge lies in ith path, and
= £ otherwise.
As an illustration, consider all paths between vertices v, and v, in Fig. 7-1(a).

There are three different paths; {4, e}, {h, g, ¢}, and {4, [, d, ¢}]. Let us number
them 1, 2, and 3, respectively. Then we get the 3 by 8 path matrix P(v;, v,):

a b ¢c d e f g h

10O O 0 O 1 0 O 1
P(v,,v,)=2|0 0 1 0 0 O 1 1
3/0 0 1 1 0 1 01

Some of the observations one can make at once about a path matrix
P(x, y) of a graph G are

1. A column of all 0’s corresponds to an edge that does not lie in any
path between x and y.

2. A column of all I's corresponds to an edge that lies in every path
between x and y.

3. There is no row with all 0's.

4. The ring sum of any two rows in P(x, y) corresponds to a circuit or an
edge-disjoint union of circuits.

THEOREM 7-7

If the edges of a connected graph are arranged in the same order for the columns
of the incidence matrix A and the path matrix P(x, y), then the product (mod 2)

A'FT{X? _J") o M:
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where the matrix M has 1's in two rows x and y, and the rest of the n — 2 rows
are all 0’s.

Proof: The proof is left as an exercise for the reader (Problem 7-14).

As an example, multiply the incidence matrix in Fig. 7-1 to the transposed
P(v,, v,), just discussed.

0 0 0
0 001 01 0 0] (O O O
0O 000 T 1 11 0o 1 1
1 I
R, ) 0O 00 0 0 0O 0 0
1 I 1 01 0 0 0 I 0 0
0O 01 1 0 01 0O 0 0 1
1 1 0 00 OO O |O 1O
18 1 A Vg
. 2 3
v, [0 0 O]
v, |0 O
v, | 1T 1
= (mod 2).
v, | 1 1
vs |O 0 O
v |0 0 0]

Other properties of the path matrix, such as the rank, are left for the
reader to investigate on his own. It should be noted that a path matrix con-
tains less information about the graph in general than any of the matrices
A, B, or C does.

ADJACENCY MATRIX

As an alternative to the incidence matrix, it is sometimes more convenient
to represent a graph by its adjacency matrix or connection matrix. The ad-
jacency matrix of a graph G with n vertices and no parallel edges is an n by n
symmetric binary matrix X = [x,,] defined over the ring of integers such that

x; =1, if there 1s an edge between ith and jth vertices, and

=0, if there is no edge between them.
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Us
U Uy U] Uy g Ug
y [0 | 0 0 | 1]
b, | | 0 0 I ! 0
X = U 0 0 0 1 0 0
vy | O | | 0 | I
v | 1 ! 0 I 0 o0
y | 1 0 0 | 0 0|

Fig. 7-7 Simple graph and its adjacency matrix.
A simple graph and its adjacency matrix are shown in Fig. 7-7.

Observations that can be made immediately about the adjacency matrix
X of a graph G are

1. The entries along the principal diagonal of X are all 0’s if and only if
the graph has no self-loops. A self-loop at the ith vertex corresponds to
x; = 1.

2. The defimition of adjacency matrix makes no provision for parallel

edges. This is why the adjacency matrix X was defined for graphs
without parallel edges.t
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3. If the graph has no self-loops (and no parallel edges, of course), the
degree of a vertex equals the number of 1’s in the corresponding row
or column of X.

4. Permutations of rows and of the corresponding columns imply reorder-
ing the vertices. It must be noted, however, that the rows and columns
must be arranged in the same order. Thus, if two rows are interchanged
in X, the corresponding columns must also be interchanged. Hence two
graphs G, and G, with no parallel edges are isomorphic if and only if
their adjacency matrices X(G,) and X(G,) are related:

X(G,) = R™'-X(G))-R,

where R 1s a permutation matrix.

5. A graph G is disconnected and is in two components g, and g, if and
only if its adjacency matrix X(G) can be partitioned as

X(G) = [?f(_f“{'_);_;'_,__?__}
0 | Xgy

where X(g,) is the adjacency matrix of the component g, and X(g,) is
that of the component g,.

This partitioning clearly implies that there exists no edge joining
any vertex in subgraph g, to any vertex in subgraph g,.

6. Given any square, symmetric, binary matrix Q of order », one can
always construct a graph G of n vertices (and no parallel edges) such
that Q is the adjacency matrix of G.

Powers of X: Let us multiply by itself the 6 by 6 adjacency matrix of the
simple graph in Fig. 7-7. The result, another 6 by 6 symmetric matrix X2, is
shown below (note that this is ordinary matrix multiplication in the ring of
integers and not mod 2 multiplication):
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31 0 3 1 0]
13 1 2 2
|01 1o
31041 0
12 149382
03 [ b 2 3]

The value of an off-diagonal entry in X2, that is, ijth entry (i 5 j) in X2,
= number of 1's in the dot product of ith row and jth column (or jth
row) of X.
— number of positions in which both ith and jth rows of X have 1’s.
— number of vertices that are adjacent to both ith and jth vertices.
—= number of different paths of length two between ith and jth vertices.

Similarly, the ith diagonal entry in X2 is the number of 1’s in the ith row
(or column) of matrix X. Thus the value of each diagonal entry in X? equals
the degree of the corresponding vertex, if the graph has no self-loops.

Since a matrix commutes with matrices that are its own power,

X X2 = X2 X = X3,

And since the product of two square symmetric matrices that commute is
also a symmetric matrix, X? is a symmetric matrix. (Again note that this is
an ordinary product and not mod 2.)

The matrix X3 for the graph of Fig. 7-7 is

273276
741852
wo |3 1041 0f
2 8 4 2 8 7
751 8 42
6 20 7 2 0

Let us now consider the ijth entry of X3.
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ifth entry of X* = dot product of ith row X2 and jth column (or row) of
X.

— 3" ikth entry of X2-kjth entry of X.
k=1

:ki number of all different edge sequencest of three
=1

edges from ith to jth vertex via kth vertex.

== number of different edge sequences of three edges
between ith and jth vertices.

For example, consider how the 1,5th entry on X? for the graph of Fig.
7-7 is formed. It is given by the dot product

row 1 of X2.row 5of X = (3,1,0,3, 1,0)-(1, 1,0, 1,0, 0)
=34+1+0+3+040=7.

These seven different edge sequences of three edges between v, and v, are

e, e el f{esier e} fesiep sl fes.eq 85},
{66181"1&5]’ {E‘:,E‘,.é’s}, feq, e4-€s)

Clearly this list includes all the paths of length three between », and v,, that s,
{es, €5, €5} and e, e,, e},

It 1s left as an exercise for the reader to show (Problem 7-19) that the iith
entry in X* equals twice the number of different circuits of length three (i.e.,
triangles) in the graph passing through the corresponding vertex v..

The general result that includes the properties of X, X2, and X3 discussed
so far is expressed in Theorem 7-8.

THEOREM 7-8

Let X be the adjacency matrix of a simple graph G. Then the ijth entry in X’
is the number of different edge sequences of r edges between vertices »; and v;.

Proof: The theorem holds for r = 1, and it has been proved for r = 2 and 3 also.
It can be proved for any positive integer r, by induction.

In other words, assume that it holds for r — 1, and then evaluate the /jth entry
in X, with the help of the relation
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X7 = Xr-1.X,

as was done for X3,
COROLLARY A

In a connected graph, the distance between two vertices v; and v; (for i # j)
15 k, if and only if k is the smallest integer for which the /, jth entry in x* is nonzero.

This 1s a useful result in determining the distances between different pairs
of vertices.

CoroLLARY B

If X is the adjacency matrix of a graph G with » vertices, and
Y=X4+X24+X34 ... F Xl (in the ring of integers),

then G is disconnected if and only if there exists at least one entry in matrix Y
that is zero.

Relationship Between A(G) and X(G): Recall that if a graph G has no
self-loops, its incidence matrix A(G) contains all the information about G.
Likewise, if G has no parallel edges, its adjacency matrix X(G) contains all the
information about G. Therefore, if a graph G has neither self-loops nor parallel
edges (i.e., G is a simple graph), both A(G) and X(G) contain the entire in-
formation. Thus it is natural to expect that either matrix can be obtained
directly from the other, in the case of a simple graph. This relationship is
given in Problem 7-23.

CHROMATIC NUMBER

Painting all the vertices of a graph with colors such that no two adjacent
vertices have the same color is called the proper coloring (or sometimes simply
coloring) of a graph. A graph in which every vertex has been assigned a color
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v, @ Red v Red v, Red
U Blue
Green Yellow Green Yellow Yellow Yellow
Us ¥ Red
{a) ib) (c)

Fig. 8-1 Proper colorings of a graph.
according to a proper coloring is called a properly colored graph. Usually a
given graph can be properly colored in many different ways. Figure 8-1 shows
three different proper colorings of a graph.

The proper coloring which is of interest to us is one that requires the
minimum number of colors. A graph G that requires x different colors for its
proper coloring, and no less, is called a x-chromatic graph, and the number
Kk 1s called the chromatic number of G. You can verify that the graph in Fig.
8-1 is 3-chromatic.

In coloring graphs there is no point in considering disconnected graphs.
How we color vertices in one component of a disconnected graph has no
effect on the coloring of the other components. Therefore, it is usual to in-
vestigate coloring of connected graphs only. All parallel edges between two
vertices can be replaced by a single edge without affecting adjacency of
vertices. Self-loops must be disregarded. Thus for coloring problems we need
to consider only simple, connected graphs.

Some observations that follow directly from the definitions just introduced
are

I. A graph consisting of only isolated vertices is I-chromatic.

2. A graph with one or more edges (not a self-loop, of course) is at least
2-chromatic (also called bichromatic).
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3. A complete graph of n vertices is n-chromatic, as all its vertices are
adjacent. Hence a graph containing a complete graph of r vertices is
at least r-chromatic. For instance, every graph having a triangle is at
least 3-chromatic.

4. A graph consisting of simply one circuit with » > 3 vertices is 2-

chromatic if # 1s even and 3-chromatic if » is odd. (This can be seen by
numbering vertices 1, 2, . . ., n in sequence and assigning one color to
odd vertices and another to even. If n is even, no adjacent vertices will
have the same color. If n 1s odd, the nth and first vertex will be adjacent
and will have the same color, thus requiring a third color for proper
coloring.)

Proper coloring of a given graph is simple enough, but a proper coloring
with the minimum number of colors is, in general, a difficult task. In fact,
there has not yet been found a simple way of characterizing a x-chromatic
graph. (The brute-force method of using all possible combinations can, of
course, always be applied, as in any combinatorial problem. But brute force
is highly unsatisfactory, because it gets out of hand as soon as the size of the
graph increases beyond a few vertices.) Chromatic numbers of some specific
types of graphs will be discussed 'in the rest of this section.

THEOREM 8-1

Every tree with two or more vertices is 2-chromatic.

Proof: Select any vertex v in the given tree T. Consider T as a rooted tree at
vertex ». Paint v with color 1. Paint all vertices adjacent to v with color 2. Next,
paint the vertices adjacent to these (those that just have been colored with 2)
using color 1. Continue this process till every vertex in T has been painted. (See
Fig. 8-2). Now in T we find that all vertices at odd distances from v have color 2,
while » and vertices at even distances from v have color 1.

Now along any path in 7 the vertices are of alternating colors. Since there is
one and only one path between any two vertices in a tree, no two adjacent vertices
have the same color. Thus T has been properly colored with two colors. One color
would not have been enough (observation 2 in this section). [l

Though a tree is 2-chromatic, not every 2-chromatic graph is a tree. (The
utilities graph, for instance, is not a tree.) What then is the characterization
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Fig. 8-2 Proper coloring of a tree.

of a 2-chromatic graph? Theorem 8-2 (due to Konig) characterizes all 2-
chromatic graphs.

THEOREM 8-2

A graph with at least one edge is 2-chromatic if and only if it has no circuits
of odd length.

Proof: Let G be a connected graph with circuits of only even lengths. Consider
a spanning tree T in G. Using the coloring procedure and the result of Theorem
8-1, let us properly color T with two colors. Now add the chords to T one by one.
Since G had no circuits of odd length, the end vertices of every chord being replaced
are differently colored in T. Thus G is colored with two colors, with no adjacent
vertices having the same color. That is, G is 2-chromatic.

Conversely, if G has a circuit of odd length, we would need at least three colors
just for that circuit (observation 4 in this section). Thus the theorem. |

An upper limit on the chromatic number of a graph is given by Theorem
8-3, whose proof is left as an exercise (Problem 8-1).

THEOREM 8-3

If d,qx is the maximum degree of the vertices in a graph G,

chromatic number of G << | | dp,y.

Brooks [8-1] showed that this upper bound can be improved by 1 if G has no
complete graph of d,.., -+ | vertices. In that case
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chromatic number of G < d,,,,.

A graph G is called bipartite if its vertex set V can be decomposed into
two disjoint subsets V', and V', such that every edge in G joins a vertex in V,
with a vertex in V,. Thus every tree is a bipartite graph. So are the graphs in
Figs. 8-6 and 8-8. Obviously, a bipartite graph can have no self-loop. A set of
parallel edges between a pair of vertices can all be replaced with one edge
without affecting bipartiteness of a graph.

Clearly, every 2-chromatic graph is bipartite because the coloring parti-
tions the vertex set into two subsets ¥/, and V, such that no two vertices in
V, (or V,) are adjacent. Similarly, every bipartite graph is 2-chromatic, with
one trivial exception; a graph of two or more isolated vertices and with no
edges is bipartite but is 1-chromatic.

In generalizing this concept, a graph G is called p-partite if its vertex set
can be decomposed into p disjoint subsets V', V,, ..., V,, such that no edge
in G joins the vertices in the same subset. Clearly, a x-chromatic graph is
p-partite if and only if

K< p.

With this qualification, the results of this section on x-chromatic graphs
are applicable to x-partite graphs also.

8-2. CHROMATIC PARTITIONING

A proper coloring of a graph naturally induces a partitioning of the ver-
tices into different subsets. For example, the coloring in Fig. 8-1(c) produces
the partitioning

{?’}]? 94}5 {?"21? and {93, ??5}.

No two vertices in any of these three subsets are adjacent. Such a subset
of vertices is called an independent set; more formally:

A set of vertices in a graph is said to be an independent set of vertices or
simply an independent set (or an internally stable set) if no two vertices in the
set are adjacent. For example, in Fig. 8-3, {a, ¢, d} is an independent set. A
single vertex in any graph constitutes an independent set.
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A maximal independent set (or maximal internally stable set) i1s an inde-
pendent set to which no other vertex can be added without destroying its
independence property. The set {a, ¢, d, f} in Fig. 83 is a maximal indepen-
dent set. The set {b, /'} is another maximal independent set. The set {b, g} is a
third one. From the preceding example, it is clear that a graph, in general,
has many maximal independent sets; and they may be of different sizes.
Among all maximal independent sets, one with the largest number of vertices
is often of particular interest.

Suppose that the graph in Fig. 8-3 describes the following problem. Each
of the seven vertices of the graph is a possible code word to be used in some
communication. Some words are so close (say, in sound) to others that they
might be confused for each other. Pairs of such words that may be mistaken
for one another are joined by edges. Find a largest set of code words for a
reliable communication. This is a problem of finding a maximal independent
set with largest number of vertices. In this simple example, {a, ¢, d, f} is an
answer.

ae

d
Fig. 8-3

The number of vertices in the largest independent set of a graph G is called
the independence number (or coefficient of internal stability), B(G).

Consider a x-chromatic graph G of n vertices properly colored with x
different colors. Since the largest number of vertices in G with the same color
cannot exceed the independence number [(G), we have the inequality

p(G) =

B
K
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Finding a Maximal Independent Set: A reasonable method of finding a
maximal independent set in a graph G will be to start with any vertex v of G
in the set. Add more vertices to the set, selecting at each stage a vertex that
is not adjacent to any of those already selected. This procedure will ultimately
produce a maximal independent set. This set, however, is not necessarily a
maximal independent set with.a largest number of vertices.

Finding All Maximal Independent Sets: A reasonable (but not very effici-
ent for large graphs) method for obtaining all maximal independent sets in
any graph can be developed using Boolean arithmetic on the vertices. Let
each vertex in the graph be treated as a Boolean variable. Let the logical (or
Boolean) sum a - b denote the operation of including vertex a or b or both;
let the logical multiplication ab denote the operation of including both ver-
tices @ and b, and let the Boolean complement a’ denote that vertex a is not

included.
For a given graph G we must find a maximal subset of vertices that does

not include the two end vertices of any edge in G. Let us express an edge (x, y)
as a Boolean product, xy, of its end vertices x and y, and let us sum all such
products in G to get a Boolean expression

¢ =X xy for all (x, y) in G.

Let us further take the Boolean complement ¢’ of this expression, and express
it as a sum of Boolean products:

o =S Lt

A vertex set is a maximal independent set if and only if ¢ = 0 (logically false),
which is possible if and only if ¢" = | (true), which is possible if and only if at
least one f; = 1, which is possible if and only if each vertex appearing in f,
(in complemented form) is excluded from the vertex set of G. Thus each f;
will yield a maximal independent set, and every maximal independent set will
be produced by this method. This procedure can be best explained by an
example. For the graph G in Fig. 8-3,
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¢ = ab + bc + bd + be + ce + de + ef + eg + fg,
@n’ — {a! —|— bl)(b! _{_‘ C!}{b! _._ d!)(bl‘ |_' er‘)(ff {_' EJ‘)(df F‘ e’}
(et N+ +.8)
Multiplying these out and employing the usual identities of Boolean arith-
metic, such as

da=:a,
a1+ a = a,
a-+ ab = a,

we get
';DJ' - b'efff _-}_ bfei'gr _Ir_ afcrdrgr-fF _1_ alcrdrelgl + bifrd'f’g',

Now if we exclude from the vertex set of G vertices appearing in any one of
these five terms, we get a maximal independent set. The five maximal inde-
pendent sets are

acdf, acdg, bg, bf, and ae.

These are all the maximal independent sets of the graph.

Finding Independence and Chromatic Numbers: Once all the maximal
independent sets of G have been obtained, we find the size of the one with
the largest number of vertices to get the independence number f(G). The
independence number of the graph in Fig. 8-3 is four.

To find the chromatic number of G, we must find the minimum number
of these (maximal independent) sets, which collectively include all the ver-
tices of G. For the graph in Fig. 8-3, sets {a, ¢,d, [}, {b, g}, and {a, e}, for
example, satisfy this condition. Thus the graph is 3-chromatic.

Chromatic Partitioning: Given a simple, connected graph G, partition all
vertices of G into the smallest possible number of disjoint, independent sets.
This problem, known as the chromatic partitioning of graphs, is perhaps the

most important problem in partitioning of graphs.
By enumerating all maximal independent sets and then selecting the

smallest number of sets that include all vertices of the graph, we just solved
this problem. The following four are some chromatic partitions of the graph
in Fig. 8-3, for example.
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{(a, c,d, [), (b, g), (&)},
{(a, c. d, g), (b, f). ()},
{(c,d,[), (b, g), (a,e),
{(c.d.g). (b.f). (a,e).

Us Fig. 8-4 A 3-chromatic graph.

This method of chromatic partitioning (requiring enumeration of all
maximal independent sets) is inefficient and needs prohibitively large
amounts of computer memory. A more efficient method for computer imple-
mentation is proposed in [8-6].

Uniguely Colorable Graphs: A graph that has only one chromatic partition
is called a uniquely colorable graph. The graph in Fig. 8-3 is not a uniquely
colorable graph, but the one in Fig. 8-4 is (Problem 8-2). For some interesting
properties of uniquely colorable graphs, the reader is referred to Chapter 12
of [1-5].

A concept related to that of the independent set and chromatic partition-
ing is the dominating set, to be discussed next.

Dominating Sets: A dominating set (or an externally stable set) in a graph
G is a set of vertices that dominates every vertex v in G in the following sense:
Either v is included in the dominating set or is adjacent to one or more ver-
tices included in the dominating set. For instance, the vertex set {b, g} is a
dominating set in Fig. 8-3. So is the set {a, b, ¢, d, f}] a dominating set. A
dominating set need not be independent. For example, the set of all its ver-
tices is trivially a dominating set in every graph.

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 26/47




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: TM.Sc MATHEMATICS COURSE NAME: GRAPH THEORY
AND ITS APPLICATIONS
COURSE CODE; 18MMP205A UNIT; 111 BATCH-2018-2020

In many applications one is interested in finding minimal dominating sets
defined as follows:

A minimal dominating set 1s a dominating set from which no vertex can be
removed without destroying its dominance property. For example, in Fig.
8-3, {b, e} is a minimal dominating set. And so is {a, ¢, d, f}. Observations
that follow from these definitions are

l.

2;
3.

Any one vertex in a complete graph constitutes a minimal dominating
set.

Every dominating set contains at least one minimal dominating set.

A graph may have many minimal dominating sets, and of different

sizes. [The number of vertices in the smallest minimal dominating set
of a graph G is called the domination number, o(G).]

. A minimal dominating set may or may not be independent.

5. Every maximal independent set 1s a dominating set. For if an inde-

pendent set does not dominate the graph, there is at least one vertex
that is neither in the set nor adjacent to any vertex in the set. Such a
vertex can be added to the independent set without destroying its in-
dependence. But then the independent set could not have been max-
imal.

An independent set has the dominance property only if it is a maximal
independent set. Thus an independent dominating set is the same as a
maximal independent set.

In any graph G,
a(G) < B(G).

Finding Minimal Dominating Sets: A method for obtaining all minimal
dominating sets in a graph will now be developed. The method, like the one
for finding all maximal independent sets, also uses Boolean arithmetic.

To dominate a vertex v, we must either include v, or any of the vertices
adjacent to v,. A minimum set satisfying this condition for every vertex v, 1s
a desired set. Therefore, for every vertex v, in G let us form a Boolean product
of sums (v, + v, + v, 4----+ v,), where v,,v,,...,v, are the vertices
adjacent to v, and d is the degree of v,:
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6 =1l +uv, +v, 4+ wv,) for all », in G.

When @ is expressed as a sum of products, each term in it will represent a
minimal dominating set. Let us illustrate this algorithm using the graph of
Fig. 8-3:

Consider the following expression @ for Fig. 8-3:

0=(@a+b)b+tct+diteta)ect+ b+ e)d+ bt e)
e+ +d + 14 gk Fetglg F eF)

Since in Boolean arithmetic (x -+ y)x = x,

= (a+b){bt+ct+e)b+d+ele+ f+g)
= ae - be -+ bf + bg + acdf + acdg.

Each of the six terms in the preceding expression represents a minimal
dominating set. Clearly, a(G) = 2, for this example.
CHROMATIC POLYNOMIAL

In general, a given graph G of n vertices can be properly colored in many
different ways using a sufficiently large number of colors. This property of a
graph is expressed elegantly by means of a polynomial. This polynomial is
called the chromatic polynomial of G and is defined as follows:

The value of the chromatic polynomial P,(1) of a graph with n vertices
gives the number of ways of properly coloring the graph, using A or fewer
colors.

Let ¢, be the different ways of properly coloring G using exactly i different
colors. Since i colors can be chosen out of 4 colors in

A
( ) different ways,
i
[
out of 4 colors.

Since i can be any positive integer from | to # (it is not possible to use more

than n colors on n vertices), the chromatic polynomial is a sum of these terms;
that is,

there are c,.( ) different ways of properly coloring G using exactly i colors
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As an illustration, let us find the chromatic polynomial of the graph given
in Fig. 8-4,
AMA— 1A —2)

O

4 C,‘Mil - l](»l‘(!- (4 —3) Cs.lfl — DA — 25}!'.'3- i),

Since the graph in Fig. 8-4 has a triangle, it will require at least three
different colors for proper coloring. Therefore,

c; = —U and ¢ = 5l

Moreover, to evaluate c,, suppose that we have three colors x, y, and z.
These three colors can be assigned properly to vertices v,,v,, and v, in 3! = 6
different ways. Having done that, we have no more choices left, because
vertex v5 must have the same color as v,, and v, must have the same color as
v,. Therefore,

C3:6-

Similarly, with four colors, »,, v,, and v, can be properly colored in 4.6 =
24 different ways. The fourth color can be assigned to », or v, thus providing
two choices. The fifth vertex provides no additional choice. Therefore,

c, = 24.2 = 48.
Substituting these coefficients in P,(4), we get, for the graph in Fig. §8-4,

PA) = A4 — DA — 2) + 244 — 1)(A — 2)(A — 3)
o S0 = D=L~ DG~}
= — TR 51 Tk

The presence of factors A — | and A — 2 indicates that G is at least 3-

chromatic.
Chromatic polynomials have been studied in great detail in the literature.

The interested reader 1s referred to [8-3] for a more thorough discussion of
their properties. Theorems 8-4, 8-5, and 8-6 should provide a glimpse into the
colorful world of chromatic polynomials.
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THEOREM 8-4

A graph of n vertices is a complete graph if and only if its chromatic polynomial
is

PAA=A—-—1DA—-2)...(A—n+ 1.

Proof: With A colors, there are 4 different ways of coloring any selected vertex
of a graph. A second vertex can be colored properly in exactly A — 1 ways, the
third in 4 — 2 ways, the fourth in A — 3 ways, ..., and the nth in A — n + 1

ways if and only if every vertex is adjacent to every other. That is, if and only if
the graph is complete. [l

THEOREM 8-5

An n-vertex graph is a tree if and only if its chromatic polynomial

P(l) = A4 — 1)1,

Proof: That the theorem holds for n = 1, 2 is immediately evident. It is left
as an exercise to prove the theorem by induction (Problem 8-9).

THEOREM 8-6

Let @ and b be two nonadjacent vertices in a graph G. Let G’ be a graph obtained
by adding an edge between ¢ and b. Let G be a simple graph obtained from G

by fusing the vertices a and b together and replacing sets of parallel edges with
single edges. Then

P(A)of G = P,(1) of G’ + P,_,(A) of G".

Proof: The number of ways of properly coloring G can be grouped into two
cases, one such that vertices a and b are of the same color and the other such that
a and b are of different colors. Since the number of ways of properly coloring G
such that @ and b have different colors = number of ways of properly coloring G’,
and

number of ways of properly coloring G such that a and b have the same color
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MM DA 20— 3) (A --4) AMA-1DI{A=20{A—3) Ar =1V (A= 2)(a - 3) MA - 1V(A— D)

FEMof G=MA—DA-2)+2MA-1)(A—-2)(A—3)
+tARAR-DA-DA-IHA—-4
EAA-DA-2)A-5+7)
Fig. 8-5 Evaluation of a chromatic polynomial.
= number of ways of properly coloring G”,

P(A)of G =Pl of G + P,_(A)of G'. W

Theorem 8-6 is often used in evaluating the chromatic polynomial of a
graph. For example, Fig. 8-5 illustrates how the chromatic polynomial of a
graph G is expressed as a sum of the chromatic polynomials of four complete
graphs. The pair of nonadjacent vertices shown enclosed in circles is the one
used for reduction at that stage.
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et

In the last three sections we have been concerned with proper coloring of
the vertices in a graph. Suppose that we are interested in coloring the edges
rather than the vertices. It is reasonable to call two edges adjacent if they have
one end vertex in common (but are not parallel). A proper coloring of edges
then requires that adjacent edges should be of different colors. Some results
on proper coloring of edges, similar to the results given in Sections 8-1 and
8-2, can be derived (Problem 8-19).

Moreover, a set of edges in which no two are adjacent is similar to an
independent set of vertices. Such a set of edges is called a matching, the sub-
ject of the next section.

MATCHINGS

Suppose that four applicants a,, a,, a,, and a, are available to fill six
vacant positions p,, p,, ps, P4, Ps, and p,. Applicant a, is qualified to fill posi-
tion p, or ps. Applicant a, can fill p, or p,. Applicant a, is qualified for p,, p,,
D3> Ps» OT pg. Applicant a, can fill jobs p, or p. This situation is represented by
the graph in Fig. 8-6. The vacant positions and applicants are represented by
vertices. The edges represent the qualifications of each applicant for filling

Applicants Positions

Fig. 8-6 Bipartite graph.
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(a) (b)

Fig. 8-7 Graph and two of its maximal matchings.

different positions. The graph clearly is bipartite, the vertices falling into two
sets V', = {a,, a5, a5, a,} and V, = {p,, p,, s, P Ps, Ps}-

The questions one is most likely to ask in this situation are: Is it possible
to hire all the applicants and assign each a position for which he is suitable?
If the answer is no, what is the maximum number of positions that can be
filled from the given set of applicants?

This is a problem of matching (or assignment) of one set of vertices into
another. More formally, a matching in a graph is a subset of edges in which
no two edges are adjacent. A single edge in a graph is obviously a matching.

A maximal matching is a matching to which no edge in the graph can be
added. For example, in a complete graph of three vertices (i.e., a triangle)
any single edge is a maximal matching. The edges shown by heavy lines in
Fig. 8-7 are two maximal matchings. Clearly, a graph may have many differ-
ent maximal matchings, and of different sizes. Among these, the maximal

matchings. In Fig. 8-7(b), a largest maximal matching is shown in heavy lines.
The number of edges in a largest maximal matching i1s called the matching
number of the graph.

Although matching is defined for any graph, it is mostly studied in the
context of bipartite graphs, as suggested by the introduction to this section
In a bipartite graph having a vertex partition V', and V,, a complete matching
of vertices in set V', into those in V/, is a matching in which there is one edge
incident with every vertex in V. In other words, every vertex in V', is matchec
against some vertex in V,. Clearly, a complete matching (if it exists) is a larg-
est maximal matching, whereas the converse is not necessarily true.
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For the existence of a complete matching of set V, into set V,, first we
must have at least as many vertices in V/, as there are in V. In other words,
there must be at least as many vacant positions as the number of applicants if
all the applicants are to be hired. This condition, however, is not sufficient.
For example, in Fig. 8-6, although there are six positions and four applicants,
a complete matching does not exist. Of the three applicants a,, a,, and a,,
each qualifies for the same two positions p, and p,, and therefore one of the
three applicants cannot be matched.

This leads us to another necessary condition for a complete matching:
Every subset of r vertices in V', must collectively be adjacent to at least r
vertices in V,, for all values of r = 1,2,...,|V,|. This condition is not

satisfied in Fig. 8-6. The subset {a,, a,, a,} of three vertices has only two ver-
tices p, and p, adjacent to them. That this condition is also sufficient for
existence of a complete matching is indeed surprising. Theorem 8-7 is a for-
mal statement and proof of this result.

THEOREM 8-7

A complete matching of ¥, into ¥V, in a bipartite graph exists if and only if
every subset of r vertices in V, is collectively adjacent to r or more vertices in V,
for all values of r.

Proof: The “only if” part (i.e., the necessity of a subset of r applicants collec-
tively qualifying for at least r jobs) is immediate and has already been pointed out.
The sufficiency (i.e., the “if” part) can be proved by induction on r, as the theorem
trivially holds for » = 1. For a complete proof, the student is referred to Theorem
11-1 in [8-3], Theorem 5-19 in [4-5], or Chapter 4 in [1-9].

Problem of Distinct Representatives: Five senators s, s,, §,, §,, and s are
members of three committees, ¢,, ¢,, and ¢,. The membership is shown in
Fig. 8-8. One member from each committee is to be represented in a super-
committee. Is it possible to send one distinct representative from each of the
committeest?

This problem is one of finding a complete matching of a set V, into set
V', in a bipartite graph. Let us use Theorem 8-7 and check if r vertices from
V', are collectively adjacent to at least r vertices from V,, for all values of r.
The result is shown in Table 8-1 (ignore the last column for the time being).

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 34/47




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: TM.Sc MATHEMATICS COURSE NAME: GRAPH THEORY
AND ITS APPLICATIONS
COURSE CODE; 18MMP205A UNIT; 111 BATCH-2018-2020

Thus for this example the condition for the existence of a complete match-
ing is satisfied as stated in Theorem &-7. Hence it is possible to form the super-
committee with one distinct representative from each committee.

The problem of distinct representatives just solved was a small one. A

_—— ——
- - .
-~ ™~ -~ ~

2 ® ’ N
i ™ ya — 51 *,
! f'! *l=_'__\1_______ // ¥
\
3 | ’ —8 52 \
i
|
| E'] 33 ‘
\ [
Y 54 /
\ & /
N\ 3
R // \x —8 55 //
L - T P
Committees Senators
Fig. 8-8 Membership of committees.
Vi Va r—gq
r=1 ferl {51,952} —1
{c2) 515354} -2
{es) {53, 54, 55] -2
f’=2 [FIEFZI {Slr52153354} —2
{c2, €3} {81,835, Fay85) —2
{c3, 1] {51,52,53,54,5s] =3
r=3 {cr1,c2,€3]  {s1,52,53, 54,55} -2

Table 8-1

larger problem would have become unwieldy. If there are M vertices in V,,
Theorem 8-7 requires that we take all 2 — 1 nonempty subsets of V, and
find the number of vertices of V, adjacent collectively to each of these. In
most cases, however, the following simplified version of Theorem 8-7 will
suffice for detection of a complete matching in any large graph.

THEOREM 8-8

In a bipartite graph a complete matching of V, into V; exists if (but not only
if) there is a positive integer m for which the following condition is satisfied:
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degree of every vertex in V', == m == degree of every vertex in V.

Proof: Consider a subset of r vertices in V,. These r vertices have at least
m-r edges incident on them. Each m-r edge is incident to some vertex in V,.
Since the degree of every vertex in set V/; is no greater than m, these m-r edges
are incident on at least (m-#)/m = r vertices in V.

Thus any subset of r vertices in V; is collectively adjacent to r or more vertices
in V,. Therefore, according to Theorem 8-7, there exists a complete matching of
Viinto V;. IR

In the bipartite graph of Fig. 8-8,
degree of every vertex in 7, = 2 = degree of every vertex in V,.

Therefore, there exists a complete matching.

In the bipartite graph of Fig. 8-6 no such number is found, because the
degree of p, = 4 > degree of a,.

It must be emphasized that the condition of Theorem 8-8 is a sufficient
condition and not necessary for the existence of a complete matching. It will
be instructive for the reader to sketch a bipartite graph that does not satisfy
Theorem 8-8 and yet has a complete matching (Problem 8-15).

The matching problem or the problem of distinct representatives is also
called the marriage problem (whose solution, unfortunately, is of little use to
those with real marital problems!) See Problem 8-16.

If one fails to find a complete matching, he is most likely to be interested
in finding a maximal matching, that is, to pair off as many vertices of V', with
those in V, as possible. For this purpose, let us define a new term called
deficiency, 8(G), of a bipartite graph G.

A set of r vertices in V, is collectively incident on, say, g vertices of V,.
Then the maximum value of the number r — g taken over all values of r = 1,
2, ... and all subsets of V/, is called the deficiency §(G) of the bipartite graph
G.

Theorem 8-7, expressed in terms of the deficiency, states that a complete
matching in a bipartite graph G exists if and only if

3(G) < 0.
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For example, the deficiency of the bipartite graph in Fig. 8-7 is —1 (the
largest number in the last column of Table 8-1). It is suggested that you
prepare a table for the graph of Fig. 8-6, similar to Table 8-1, and verify that

the deficiency i1s -1 for this graph (Problem 8-17).

Theorem 8-9 gives the size of the maximal matching for a bipartite graph

with a positive deficiency.

THEOREM 8-9

The maximal number of vertices in set V, that can be matched into V, is equal to

number of vertices in V, — d(G).

The proof of Theorem 8-9 can be found in [8-3], page 288. The size of a
maximal matching in Fig. 8-6, using Theorem 8-9, is obtained as follows:

number of vertices in ¥, — 6(G) =4 — | = 3.

Matching and Adjacency Matrix: Consider a bipartite graph G with non-
adjacent sets of vertices ¥, and V,, having number of vertices n, and n,,
respectively, and let n, << n,, n, + n, = n, the number of vertices in G. The

adjacency matrix X(G) of G can be written in the form

0 ; x:z
X(G) = [T 5---0--}

where the submatrix X, is the #, by n,, (0, 1)-matrix containing the informa-
tion as to which of the n, vertices of V, are connected to which of the n, ver-

tices of V,. Matrix X7, is the transpose of X,,.

Clearly, all the information about the bipartite graph G is contained in

its X,, matrix.

A matching V, into V, corresponds to a selection of the 1’s in the matrix
X,, such that no line (i.e., a row or a column) has more than one 1.

The matching is complete if the n, by #n, matrix made of selected 1’s has

exactly one | in every row. For example, the X, matrix for Fig. 8-8 is
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&y 85 By Sy S
c, [ 1T 0 0 O
Xe=|4% 8 1 1 0
c, |0 0 1 1 1
n,=3 ny=23, n==8, and n < n,,
Fa =3ciiciicsh

V, = {511 82083, 54 353‘*
A complete matching of V, into V, is given by

g1 By ¥y S S
¢c,TO 1 0 0 0

M=c, |1 0 0 0 0f-
¢, [0 0 0 0 1

A maximal matching corresponds to the selection of a largest possible
number of I’s from X, , such that no row in it has more than one 1. Therefore,
according to Theorem 8-9, in matrix X,, the largest number of I's, no two
of which are in one row, is equal to

number of vertices in V', — (G).

Matching problems in bipartite graphs can also be formulated in terms of
the flow problem (see Section 14-5). All edges are assumed to be of unit
capacity, and the problem of finding a maximal matching is reduced to the
problem of maximizing flow from the source to the sink (also see [8-3]).

COVERINGS

In a graph G, a set g of edges is said to cover G if every vertex in G is in-
cident on at least one edge in g. A set of edges that covers a graph G is said to
be an edge covering, a covering subgraph, or simply a covering of G. For
example, a graph G is trivially its own covering. A spanning tree in a con-
nected graph (or a spanning forest in an unconnected graph) is another
covering. A Hamiltonian circuit (if it exists) in a graph is also a covering.
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Just any covering is too general to be of much interest. We have already
dealt with some coverings with specific properties, such as spanning trees and

(a) (b)

Fig. 89 Graph and two of its minimal coverings.

Hamiltonian circuits. In this section we shall investigate the minimal cover-
ing—a covering from which no edge can be removed without destroying its
ability to cover the graph. In Fig. 8-9 a graph and two of its minimal cover-
ings are shown in heavy lines.

The following observations should be made:

1. A covering exists for a graph if and only if the graph has no isolated
vertex.

2. A covering of an n-vertex graph will have at least [n/2] edges. ([x] de-
notes the smallest integer not less than x.)
3. Every pendant edge in a graph is included in every covering of the
graph.

4. Every covering contains a minimal covering.

5. If we denote the remaining edges of a graph by (G — g), the set of
edges g is a covering if and only if, for every vertex v, the degree of
vertex in (G — g) <= (degree of vertex » in G) — 1.

6. No minimal covering can contain a circuit, for we can always remove
an edge from a circuit without leaving any of the vertices in the circuit
uncovered. Therefore, a minimal covering of an n-vertex graph can
contain no more than n — 1 edges.
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7. A graph, in general, has many minimal coverings, and they may be of
different sizes (i.e., consisting of different numbers of edges). The
number of edges in a minimal covering of the smallest size is called the
covering number of the graph.

THEOREM 8-10

A covering g of a graph is minimal if and only if g contains no paths of length

three or more,
Y |
{c) (d)

(a) (b)

Fig. 8-10 Star graphs of one, two, three, and four edges.
Proof: Suppose that a covering g contains a path of length three, and it is
V€ U€21 €91y,

Edge e, can be removed without leaving its end vertices v, and »; uncovered.
Therefore, g is not a minimal covering.

Conversely, if a covering g contains no path of length three or more, all its
components must be star graphs (i.e., graphs in the shape of stars; see Fig. 8-10).
From a star graph no edge can be removed without leaving a vertex uncovered.
That is, g must be a minimal covering. W

Suppose that the graph in Fig. 8-9 represents the street map of a part of a
city. Each of the vertices is a potential trouble spot and must be kept under
the surveillance of a patrol car. How will you assign a minimum number of
patrol cars to keep every vertex covered?

The answer is a smallest minimal covering. The covering shown in Fig.
8-9(a) 1s an answer, and it requires six patrol cars. Clearly, since there are 11
vertices and no edge can cover more than two, less than six edges cannot cover
the graph.
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Minimization of Switching Functionst: An important step in the logical
design of a digital machine is to minimize Boolean functions before imple-
menting them. Suppose we are interested in building a logical circuit that
gives the following function F of four Boolean variables w, x, y, and z.

F = WXy + wiyi + wipi + wxyz + wxyz + wxyz + wxyz,

where -+ denotes logical OR, xy denotes x AND y, and x denotes NOT x.

Let us represent each of the seven terms in F by a vertex, and join every
pair of vertices that differ only in one variable. Such a graph is shown in Fig.
8-11.

An edge between two vertices represents a term with three variables.

A minimal cover of this graph will represent a simplified form of F, per-
forming the same function as F, but with less logic hardware.

The pendant edges | and 7 must be included in every covering of the

Fig. 8-11 Graph representation of a Boolean function.
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wyz
wyz
Fig. 8-12

graph. Therefore, the terms

yz and xyz are essential.

Two additional edges 3 and 6 (or 4 and 5 or 3 and 5) will cover the remainder.
Thus a simplified version of Fis

F=Xxpz+ xyz + wyz + wyz.

This expression can again be represented by a graph of four vertices, as shown
in Fig. 8-12.

The essential terms xyz and xyz cannot be covered by any edge, and hence
cannot be minimized further. One edge will cover the remaining two vertices
in Fig. 8-12. Thus the minimized Boolean expression is

F = xyz + xyz + wy.

Dimer Problem: In crystal physics, a crystal is represented by a three-
dimensional lattice. Each vertex in the lattice represents an atom, and an
edge between vertices represents the bond between the two atoms. In the
study of the surface properties of crystals, one is interested in two-dimen-
sional lattices, such as the two shown in Fig. 1-10.

To obtain an analytic expression for certain surface properties of crystals
consisting of diatomic molecules (also called dimers), one is required to find
the number of ways in which all atoms on a two-dimensional lattice can be
paired off as molecules (each consisting of two atoms). The problem is equiv-
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alent to finding all different coverings of a given graph such that every vertex
in the covering is of degree one. Such a covering in which every vertex is of

degree one is called a dimer covering or a I-factor. A dimer covering is obvi-
ously a matching because no two edges in it are adjacent. Moreover, a dimer
covering is a maximal matching. This is why a dimer covering is often referred
to as a perfect matching.

Two different dimer coverings are shown in heavy lines in the graph in
Fig. 8-13.

Clearly, a graph must have an even number of vertices to have a dimer
covering. This condition, however, is not enough (Problem 8-21).

99— —

® Fig. 8-13 Two dimer coverings of a
(b) graph.

FOUR-COLOR PROBLEM
So far we have considered proper coloring of vertices and proper coloring

of edges. Let us briefly consider the proper coloring of regions in a planar
graph (embedded on a plane or sphere). Just as in coloring of vertices and
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edges, the regions of a planar graph are said to be properly colored if no two
contiguous or adjacent regions have the same color. (Two regions are said to
be adjacent if they have a common edge between them. Note that one or more
vertices in common does not make two regions adjacent.) The proper coloring
of regions is also called map coloring, referring to the fact that in an atlas
different countries are colored such that countries with common boundaries
are shown in different colors.

Once again we are not interested in just properly coloring the regions of
a given graph. We are interested in a coloring that uses the minimum number
of colors. This leads us to the most famous conjecture in graph theory. The
conjecture is that every map (i.e., a planar graph) can be properly colored
with four colors. The four-color conjecture, already referred to in Chapter 1,
has been worked on by many famous mathematicians for the past 100 years.
No one has yet been able to either prove the theorem or come up with a map
(in a plane) that requires more than four colors.

That at least four colors are necessary to properly color a graph is im-
mediate from Fig. 8-14, and that five colors will suffice for any planar graph
will be shown shortly.

Two remarks may be made here in passing. Paradoxically, for surfaces
more complicated than the plane (or sphere) corresponding theorems have
been proved. For example, it has been proved that seven colors are necessary
and sufficient for properly coloring maps on the surface of a torus.t Second,
it has been proved that all maps containing less than 40 regions can be proper-
ly colored with four colors. Therefore, if in general the four-color conjecture
is false, the counterexample has to be a very complicated and large one.

Vertex Coloring Versus Region Coloring: From Chapter 5 we know that
a graph has a dual if and only if it is planar. Therefore, coloring the regions
of a planar graph G is equivalent to coloring the vertices of its dual G*, and

Color 1

Color 4

Fig. 8-14 Necessity of four colors.
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vice versa. Thus the four-color conjecture can be restated as follows: Every
planar graph has a chromatic number of four or less.

Five-Color Theorem: We shall now show that every planar map can be
properly colored with five colors:

THEOREM 8-11

The vertices of every planar graph can be properly colored with five colors.

Proof: The theorem will be proved by induction. Since the vertices of all graphs
(self-loop-free, of courset) with 1, 2, 3, 4, or 5 vertices can be properly colored with
five colors, let us assume that vertices of every planar graph with » — 1 vertices
can be properly colored with five colors. Then, if we prove that any planar graph G
with n vertices will require no more than five colors, we shall have proved the
theorem.

Consider the planar graph G with n vertices. Since G is planar, it must have
at least one vertex with degree five or less (Problem 5-4). Let this vertex be v.

Let G’ be a graph (of n — 1 vertices) obtained from G by deleting vertex » (i.e.,
v and all edges incident on v). Graph G’ requires no more than five colors, according
to the induction hypothesis. Suppose that the vertices in G’ have been properly
colored, and now we add to it v and all edges incident on v. If the degree of » is
1, 2, 3, or 4, we have no difficulty in assigning a proper color to ».

1, 2, 3, or 4, we have no difficulty in assigning a proper color to ».

This leaves only the case in which the degree of v is five, and all the five colors
have been used in coloring the vertices adjacent to v, as shown in Fig. 8-15(a).
(Note that Fig. 8-15 is part of a planar representation of graph G'.)

Suppose that there is a path in G" between vertices a and ¢ colored alternately
with colors 1 and 3, as shown in Fig. 8-15(b). Then a similar path between b and
d, colored alternately with colors 2 and 4, cannot exist; otherwise, these two paths

Color 1 Color 1

Color 2 Color 5

Color 4 3 1

(a) (b)Y

Fig. 8-15 Reassigning of colors.
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will intersect and cause G to be nonplanar. (This is a consequence of the Jordan
curve theorem, used in Section 5-3, also.)

If there is no path between b and d colored alternately with colors 2 and 4,
starting from vertex b we can interchange colors 2 and 4 of all vertices connected
to b through vertices of alternating colors 2 and 4. This interchange will paint
vertex b with color 4 and yet keep G’ properly colored. Since vertex d is still with
color 4, we have color 2 left over with which to paint vertex v.

Had we assumed that there was no path between a and ¢ of vertices painted
alternately with colors 1 and 3, we would have released color 1 or 3 instead of
color 2. And thus the theorem.

Regularization of a Planar Graph: Removing every vertex of degree one
(together with the pendant edge) from the graph G does not affect the regions
of a planar graph. Nor does the elimination of every vertex of degree two, by
merging the two edges in series (Fig. 5-6), have any effect on the regions of a
planar graph.

Now consider a typical vertex v of degree four or more in a planar graph.
Let us replace vertex v by a small circle with as many vertices as there were
incidences on ». This results in a number of vertices each of degree three
(see Fig. 8-16).

Performing this transformation on every vertex of degree four or more in
a planar graph G will produce another planar graph H in which every vertex
is of degree three. When the regions of H have been properly colored, a proper
coloring of the regions of G can be obtained simply by shrinking each of the
new regions back to the original vertex.

Such a transformation may be called regularization of a planar graph,
because it converts a planar graph G into a regular planar graph H of degree
three. Clearly, if H can be colored with four colors, so can G. Thus, for map-
coloring problems, it is sufficient to confine oneself to (connected) planar,
regular graphs of degree three. And the four-color conjecture may be restated

as follows:

in "
(a) (b)

Fig. 8-16 Regularization of a graph.
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The regions of every planar, regular graph of degree three can be colored
properly with four colors.

If, in a planar graph G, every vertex is of degree three, its dual G* is a
planar graph in which every region is bounded by three edges; that is, G* is
a triangular graph. Thus the four-color conjecture may again be restated as
follows: The chromatic number of every triangular, planar graph is four or
less.
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UNIT-IV
SYLLABUS

Directed Graphs — Types of Directed Graphs - Types of enumeration, counting labeled trees,
counting unlabelled trees, Polya’s counting theorem, graph enumeration with Polya’s theorem.
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DIRECTED GRAPH

A directed graph (or a digraph for short) G consists of a set of vertices
V ={v,,v,, ...}, aset of edges E = {e,, e,, . . .}, and a mapping ¥ that maps

e €10

- > Fig, 9-1 Directed graph with 5 vertices
€ 2 and 10 edges.

Uy

every edge onto some ordered pair of vertices (v, v,). As in the case of
undirected graphs, a vertex Is represented by a point and an edge by a line
segment between v, and v, with an arrow directed from v, to v,. For example,
Fig. 9-1 shows a digraph with five vertices and ten edges. A digraph is also
referred to as an oriented graph.t

In a digraph an edge is not only incident on a vertex, but is also incident
out of a vertex and incident into a vertex. The vertex v, which edge ¢, is
incident out of, is called the initial vertex of e,. The vertex v,, which e, is
incident into, is called the terminal vertex of e,. In Fig. 9-1, v, is the initial
vertex and v, is the terminal vertex of edge e,. An edge for which the initial
and terminal vertices are the same forms a self-loop, such as e;. (Some
authors reserve the term arc for an oriented or directed edge. We use the
term edge to mean either an undirected or a directed edge. Whenever there is
a possibility of confusion, we shall explicitly state directed or undirected edge.)

The number of edges incident out of a vertex v, is called the out-degree (or
out-valence or outward demidegree) of v, and is written d*(v,). The number of
edges incident into v, is called the in-degree (or in-valence or inward demi-
degree) of v, and is written as d (v,). In Fig. 9-1, for example,
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d+{vl) = 3, d_(vl) = 1,
difp,) = 1, d(v,) = 2,
d*(vs) = 4, d-(vs) = 0.

It is not difficult to prove (Problem 9-1) that in any digraph G the sum of
all in-degrees is equal to the sum of all out-degrees, each sum being equal to

the number of edges in G; that is,
2 d+(vi) — fgl d_{ﬂr)*

An isolated vertex is a vertex in which the in-degree and the out-degree
are both equal to zero. A vertex v in a digraph is called pendant if it is of
degree one, that is, if

d*(v) + d~(v) = 1.

Two directed edges are said to be parallel if they are mapped onto the
same ordered pair of vertices. That is, in addition to being parallel in
the sense of undirected edges, parallel directed edges must also agree in the
direction of their arrows. In Fig. 9-1, edges ey, ey, and e,, are parallel,
whereas edges ¢, and e, are not.

Since many properties of directed graphs are the same as those of
undirected ones, it is often convenient to disregard the orientations of edges
in a digraph. Such an undirected graph obtained from a directed graph G will
be called the undirected graph corresponding to G.

On the other hand, given an undirected graph H, we can assign each edge

of H some arbitrary direction. The resulting digraph, designated by H is
called an orientation of H (or a digraph associated with H). Note that while a
given digraph has a unique (within isomorphism) undirected graph corre-
sponding to it, a given undirected graph may have “different orientations
possible. This 1s why we say the undirected graph corresponding to a digraph,
but an orientation of a graph.

Isomorphic Digraphs: Isomorphic graphs were defined such that they have
identical behavior in terms of graph properties. In other words, if their labels
are removed, two isomorphic graphs are indistinguishable. For two digraphs
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{a) (b)

Fig. 9-2 Two nonisomorphic digraphs.

to be isomorphic not only must their corresponding undirected graphs be
1Isomorphic, but the directions of the corresponding edges must also agree.
For example, Fig. 9-2 shows two digraphs that are not isomorphic, although
they are orientations of the same undirected graph.

Figure 9-2 immediately suggests a problem. What i1s the number of
distinct (i.e., nonisomorphic) orientations of a given undirected graph? The
problem was solved by F. Harary and E. M. Palmer in 1966. Some specific
cases are left as an exercise (Problem 9-3).

SOME TYPES OF DIGRAPHS

Like their undirected sisters, digraphs come in many varieties. In fact, due
to the choice of assigning a direction to each edge, directed graphs have more
varieties than undirected ones.

Simple Digraphs: A digraph that has no self-loop or parallel edges 1s
called a simple digraph (Figs. 9-2 and 9-3, for example).

Asymmetric Digraphs: Digraphs that have at most one directed edge
between a pair of vertices, but are allowed to have self-loops, are called
asymmelric or antisymmelric.

Symmetric Digraphs: Digraphs in which for every edge (a, b) (i.e., from
vertex a to b) there is also an edge (b, a).

A digraph that is both simple and symmetric is called a simple symmetric
digraph. Similarly, a digraph that is both simple and asymmetric is simple
asymmetric. The reason for the terms symmetric and asymmetric will be
apparent in the context of binary relations in Section 9-3.
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Complete Digraphs: A complete undirected graph was defined as a simple
graph in which every vertex 1s joined to every other vertex exactly by one edge.
For digraphs we have two types of complete graphs. A complete symmetric
digraph 1s a simple digraph in which there is exactly one edge directed from
every vertex to every other vertex (Fig. 9-3), and a complete asymmetric
digraph is an asymmetric digraph in which there is exactly one edge between
every pair of vertices (Fig. 9-2).

A complete asymmetric digraph of »n vertices contains n(n — 1)/2 edges,
but a complete symmetric digraph of n vertices contains n(n — 1) edges. A
complete asymmetric digraph is also called a rournament or a complete
tournament (the reason for this term will be made clear in Section 9-10).

A digraph is said to be balanced if for every vertex », the in-degree equals
the out-degree; that is, d*(v,) = d~(v,). (A balanced digraph is also referred
to as a pseudosymmetric digraph, or an isograph.) A balanced digraph is said
to be regular if every vertex has the same in-degree and out-degreec as every
other vertex.

Fig. 9-3 Complete symmetric digraph
of four vertices.

DIGRAPHS AND BINARY RELATIONS
The theory of graphs and the calculus of binary relations are closely
related (so much so that some people often mistakenly come to regard graph
theory as a branch of the theory of relations).
In a set of objects, X, where

X =%, Xy vxshi
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a binary relation R between pairs (x;, x;) may exist. In which case, we write
x;Rx;

and say that x, has relation R to x,.

Relation R may for instance be “is parallel to,” “is orthogonal to,” or
“is congruent to” in geometry. It may be “is greater than,” “is a factor of,”
“is equal to,” and so on, in the case when X consists of numbers. On the other
hand, if the set X is composed of people, the relation R may be “is son of,”
“is spouse of,” “is friend of,” and so forth. Each of these relations is defined
only on pairs of numbers of the set, and this is why the name binary relation.
Although there are relations other than binary (x; “is a product of ™ x; and
x,, for example, will be a tertiary relation), binary relations are the most
important in mathematics, and the word “relation” implies a binary relation.

A digraph is the most natural way of representing a binary relation on a
set X. Each x; € Xis represented by a vertex x,. If x, has the specified relation
R to x,, a directed edge i1s drawn from vertex x; to x;, for every pair (x,, x,).
For example, the digraph in Fig. 9-4 represents the relation “is greater than”
on a set consisting of five numbers {3, 4, 7, 5, 8].

Clearly, every binary relation on a finite set can be represented by a
digraph without parallel edges. Conversely, every digraph without parallel
edges defines a binary relation on the set of its vertices.

4

Fig. 9-4 Digraph of a binary relation.
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x| X2
X3 X4
(a) (b}

Fig. 9-5 Graphs of symmetric binary relation.

Reflexive Relation: For some relation R it may happen that every element
is in relation R to itself. For example, a number is always equal to itself, or a
line 1s always parallel to itself. Such a relation R on set X that satisfies

x; X,
for every x; € X is called a reflexive relation. The digraph of a reflexive
relation will have a self-loop at every vertex. Such a digraph representing a

reflexive binary relation on its vertex set may be called a reflexive digraph. A
digraph in which no vertex has a self-loop is called an irreflexive digraph.

Symmetric Relation: For some relation R it may happen that for all x, and
X if

x;Rx; holds, then x;Rx, also holds.

Such a relation is called a symmetric relation. “Is spouse of” is a symmetric
but irreflexive relation. “Is equal to” is both symmetric and reflexive.

The digraph of a symmetric relation is a symmetric digraph because for
every directed edge from vertex x, to x, there is a directed edge from x, to x,.
Figure 9-5(a) shows the graph of an irreflexive, symmetric binary relation on
a set of four elements. The same relation can also be represented by drawing
just one undirected edge between every pair of vertices that are related, as in
Fig. 9-5(b). Thus every undirected graph is a representation of some sym-
metric binary relation (on the set of its vertices). Furthermore, every
undirected graph with e edges can be thought of as a symmetric digraph with
2e directed edges. (A two-way street is equivalent to two one-way streets
pointed in opposite directions.)
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Transitive Relation: A relation R is said to be transitive if for any three
elements x;, x,;, and x, in the set,

x;,Rx; and x;Rx,
always imply
x,Rx,.

The binary relation *is greater than,” for example, is a transitive relation. If
x, = x; and x; > x,, clearly x, > x,. “Is descendent of” is another example
of a transitive relation.

The digraph of a transitive (but irreflexive and asymmetric) binary relation
is shown in Fig. 9-4. Note the triangular subgraphs. A digraph representing a
transitive relation (on its vertex set) i1s called a transitive directed graph.

Equivalence Relation: A binary relation is called an equivalence relation if
it is reflexive, symmetric, and transitive. Some examples of equivalence

" &L*

relations are “is parallel to,” “is equal to,
modulo m,” and “is isomorphic to.”

The graph representing an equivalence relation may be called an equiva-
lence graph. What does an equivalence graph look like? Let us look at an
example, consisting of the equivalence relation “is congruent to modulo 37
defined on the set of 11 integers, 10 through 20. The graph is shown in Fig.
9-6. (Recall that each undirected edge in Fig. 9-6 represents two parallel but
oppositely directed edges.)

In Fig. 9-6 we see that the vertex set of the graph is divided into three
disjoint classes, each in a separate component. Each component is an
undirected subgraph (due to symmetry) with a self-loop at each vertex (due to
reflexivity). Furthermore, in each component every vertex is related to (i.e.,
joined by an edge to) every other vertex.

¥ ELr L LN ¥ B

is congruent to,” “is equal to

=1 (mod 3) =2 (mod 3) =0 (mod 3)

Fig. 9-6 Equivalence graph.
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In general, an equivalence relation on a set partitions the elements of the
set into classes (called equivalence classes) such that two elements are in the
same class if and only if they are related. Symmetry ensures that there is no
ambiguity regarding membership in the equivalence class; otherwise, x, may
have been related to x, but not vice versa. Transitivity ensures that in each
component every vertex is joined to every other vertex, because if a is related
to b and b is related to ¢, a is also related to ¢. Transitivity also guarantees
that no element can be in more than one class. Reflexivity allows an element
to be in a class by itself, if it is not related to any other element in the set.

Relation Matrices: A binary relation R on a set can also be represented by
a matrix, called a relation matrix. It is a (0, 1), n by n matrix, where n is the
number of elements in the set. The i, jth entry in the matrix is 1 if x,Rx, is
true, and is 0, otherwise. For example, the relation matrix of the relation “is
greater than™ on the set of integers {3, 4, 7, 5, 8} is

347 5 8
370 0 0 0 0]
411 0 0 0 0
7{1 1 01 0
5111 0 00
o4 4 4 o

We shall see in Section 9-8 that this is precisely the adjacency matrix of the
digraph representing the binary relation.
DIRECTED PATHS AND CONNECTEDNESS

Walks, paths, and circuits in a directed graph, in addition to being what
they are in the corresponding undirected graph, have the added consideration
of orientation. For example, in Fig. 9-1, the sequence of vertices and edges
Vg €5V, €., €0, 18 a path “directed” from v, tov,, whereas v, e, v, e, v, €, v,
(although a path in the corresponding undirected graph) has no such consis-
tent direction from v, to v,. A distinction must be made between these two
types of paths. It is natural to call the first one a directed path from v, to v,,
and the second one a semipath. The word “path™ in a digraph could mean

either a directed path or a semipath, and similarly for walks, circuits, and
cutsets. More precisely:
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A directed walk from a vertex v, to v, is an alternating sequence of vertices
and edges, beginning with v, and ending with v;, such that each edge is
oriented from the vertex preceding it to the vertex following it. Of course, no
edge in a directed walk appears more than once, but a vertex may appear
more than once, just as in the case of undirected graphs. A semiwalk in a
directed graph is a walk in the corresponding undirected graph, but is not
a directed walk. A walk in a digraph can mean either a directed walk or a
semiwalk.

The definitions of circuit, semicircuit, and directed circuit can be written
similarly. Let us turn to Fig. 9-1 once more. The set of edges {e,, es, e;} is a
directed circuit. But {e,, ¢4, ¢,} 1s a semicircuit. Both of them are circuits.

Connected Digraphs: In Chapter 2 a graph (i.e., undirected graph) was
defined as connected if there was at least one path between every pair of
vertices. In a digraph there are two different types of paths. Consequently, we
have two different types of connectedness in digraphs. A digraph G is said to
be strongly connected if there is at least one directed path from every vertex
to every other vertex. A digraph G is said to be weakly connected if its corre-
sponding undirected graph 1s connected but G is not strongly connected. In
Fig. 9-2 one of the digraphs is strongly connected, and the other one is weakly
connected. The statement that a digraph G is connected simply means that its
corresponding undirected graph is connected; and thus G may be strongly or
weakly connected. A directed graph that is not connected is dubbed as
disconnected.

Since there are two types of connectedness in a digraph, we can define two
types of components also. Each maximal connected (weakly or strongly)
subgraph of a digraph G will still be called a component of G. But within each
component of G the maximal strongly connected subgraphs will be called the
fragments (or strongly connected fragments) of G.

For example, the digraph in Fig. 9-7 consists of two components. The
component g, contains three fragments {e,, e,}, {es, ey, €4, €5}, and {e,,}.
Observe that e, e,, and e, do not appear in any fragment of g,.
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8

Fig. 9-7 Disconnected digraph with two components,

e

ffl,E'z) ./ﬁ/".

(e11.€3,€3)

(831 €4 ]

(es'| Eﬁv e'll's ea]

(eg) Fig. 9-8 Condensation of Fig. 9-7.
Condensation: The condensation G, of a digraph G is a digraph in which
each strongly connected fragment is replaced by a vertex, and all directed
edges from one strongly connected component to another are replaced by a
single directed edge. The condensation of the digraph G in Fig. 9-7 is shown
in Fig. 9-8.
Two observations can be made from the definition:
1. The condensation of a strongly connected digraph is simply a vertex.

2. The condensation of a digraph has no directed circuit.
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Accessibility: In a digraph a vertex b is said to be accessible (or reachable)
from vertex a if there is a directed path from a to b. Clearly, a digraph G is
strongly connected if and only if every vertex in G is accessible from every
other vertex.

TYPES OF ENUMERATION
All graph-enumeration problems fall into two categories:

I. Counting the number of different graphs (or digraphs) of a particular

kind, for example, all connected, simple graphs with eight vertices and
two circuits.

2. Counting the number of subgraphs of a particular type in a given graph
G, such as the number of edge-disjoint paths of length k between
vertices @ and b in G.

The second type of problem usually involves a matrix representation of
graph G and manipulations of this matrix. Such problems, although often
encountered in practical applications, are not as varied and interesting as
those in the first category. We shall not consider such problems in this
chapter.

In problems of type | the word “different” is of utmost importance and
must be clearly understood. If the graphs are labeled (i.e., each vertex is
assigned a name distinct from all others), all graphs are counted. On the other
hand, in the case of unlabeled graphs the word “different” means non-
isomorphic, and each set of isomorphic graphs is counted as one,

As an example, let us consider the problem of constructing all simple
graphs with » vertices and e edges. There are n(n — 1)/2 unordered pairs of
vertices. If we regard the vertices as distinguishable from one another (i.e.,
labeled graphs), there are

nin — 1)
2 (10-1)
€

ways of selecting e edges to form the graph. Thus expression (10-1) gives the
number of simple labeled graphs with n vertices and e edges.
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Many of these graphs, however, are isomorphic (that is, they are the same
except for the labels of their vertices). Hence the number of simple, unlabeled
graphs of n vertices and e edges is much smaller than that given by (10-1).

Among a collection of graphs, isomorphism is an equivalence relation
(Problem 10-1). The number of different unlabeled graphs (of a certain type)
equals the number of equivalence classes, under isomorphism, of the labeled
graphs. For example, we have 16 different labeled trees of four vertices (Fig.
3-15), and these trees fall into two equivalence classes, under isomorphism. In
Fig. 3-15 the 4 trees in the top row fall into one equivalence class, and the
remaining |2 into another. Thus we have only two different unlabeled trees of
four vertices (Fig. 3-16).

Let us now proceed with counting certain specific types of graphs.

THEOREM 10-1

The number of simple, labeled graphs of n vertices is
Inln-1)/2. (10-2)

Proof: The numbers of simple graphs of » vertices and 0, 1, 2, ..., n(n — 1)/2
edges are obtained by substituting 0, 1, 2, .. ., n(n — 1)/2 for e in expression (10-1).
The sum of all such numbers is the number of all simple graphs with » vertices.
Then the use of the following identity proves the theorem:

@)+ +G@++(E)+(E) -2 m
COUNTING LABELED TREES
THEOREM 3-10

There are n"~2 labeled trees with n vertices (n = 2).

Proof of Theorem 3-10: Let the n vertices of a tree T be labeled 1,2,3, ..., n.
Remove the pendant vertex (and the edge incident on it) having the smallest label,
which is, say, a,. Suppose that b, was the vertex adjacent to a,. Among the remain-
ing n — | vertices let a, be the pendant vertex with the smallest label, and /, be
the vertex adjacent to a;. Remove the edge (a;, b;). This operation is repeated on
the remaining n — 2 vertices, and then on n — 3 vertices, and so on. The process
is terminated after n — 2 steps, when only two vertices are left. The tree T defines
the sequence
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(b1, b2y ...y byz) (10-3)

uniquely. For example, for the tree in Fig. 10-1 the sequence is (1,1, 3, 5, 5, 5, 9).
Note that a vertex i/ appears in sequence (10-3) if and only if it is not pendant (see
Problem 10-2).

Conversely, given a sequence (10-3) of n — 2 labels, an s-vertex tree can be

Fig. 10-1 Nine-vertex labeled tree,
I which yields sequence(1, 1, 3, 5, 5, 5, 9).

constructed uniquely, as follows: Determine the first number in the sequence
1:0.8, svapn (10-4)

that does not appear in sequence (10-3). This number clearly is a;. And thus the
edge (a,, b,) is defined. Remove b, from sequence (10-3) and a, from (10-4). In
the remaining sequence of (10-4) find the first number that does not appear in the
remainder of (10-3). This would be a,, and thus the edge (a,, b,) is defined. The
construction is continued till the sequence (10-3) has no element left. Finally,
the last two vertices remaining in (10-4) are joined. For example, given a sequence

(4,4,3,1,1),
we can construct a seven-vertex tree as follows: (2, 4) is the first edge. The second
is (5, 4). Next, (4, 3). Then (3, 1), (6, 1), and finally (7, 1), as shown in Fig. 10-2.
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7

Fig. 10-2 Tree constructed from se-
quence (4, 4, 3, 1, 1).

For each of the n — 2 elements in sequence (10-3) we can choose any one of
n numbers, thus forming

nn-2 (10-5)

(n — 2)-tuples, each defining a distinct labeled tree of n vertices. And since each tree
defines one of these sequences uniquely, there is a one-to-one correspondence
between the trees and the n"~2? sequences. Hence the theorem. [}

Rooted Labeled Trees: In a rooted graph one vertex is marked as the root.
For each of the n"~2 labeled trees we have n rooted labeled trees, because any
of the n vertices can be made a root. Therefore,

THEOREM 10-2

The number of different rooted, labeled trees with n vertices is
n-l, (10-6)

All rooted trees for n = 1, 2, and 3 are given in Fig. 10-3.
COUNTING UNLABFELED TREES

The problem of enumeration of unlabeled trees is more involved and
requires familiarity with the concepts of generating functions and partitions.

H Labeled free trees Labeled rooted trees
1K Vv

2 | 2
2

1 2 I
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4 2 2 3
s, 3
I 1 |
3 3 2 1 3 1 3
3
? | 3 3 |
5 2
| 2 | 2
2 ] 1 2
I 2
3 3 3

Fig. 10-3 Rooted labeled trees of one, two, and three vertices.
Centroid

In a tree T, at any vertex v of degree d, there are d subtrees with only
vertex v in common. The weight of each subtree at v is defined as the number of
branches in the subtree. Then the weight of the vertex v is defined as the
weight of the heaviest of the subtrees at v. A vertex with the smallest weight
in the entire tree T is called a centroid of T.

Just as in the case of centers of a tree (Section 3-4), it can be shown that
every tree has either one centroid or two centroids. It can also be shown that
if a tree has two centroids, the centroids are adjacent. In Fig. 10-6 a tree with
a centroid (called a centroidal tree) and a tree with two centroids (called a
bicentroidal tree) are shown. The centroids are shown enclosed in circles, and
the numbers next to the vertices are the weights.

Free Unlabeled Trees

Let t'(x) be the counting series for centroidal trees, and t”'(x) be the
counting series for bicentroidal trees. Then 7(x), the counting series for all
(unlabeled, free) trees, is the sum of the two. That is,

1(x) = t'(x) + 1"(x). (10-22)
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To obtain t"'(x), observe that an n-vertex bicentroidal tree can be regarded
as consisting of two rooted trees each with n/2 = m vertices, and joined at
their roots by an edge. (A bicentroidal tree will always have an even number of
vertices; why ?) Thus the number of bicentroidal trees with n = 2m vertices is

§ 7 .
) b i"‘\ .
& & 5 e/
6O G 7

{a) Centroidal Tree (b)Y Bicentroidal Tree

given by
% (um e 1) Cou(u, + 1)
Iy = =—mem
2 2
and therefore

t"'(x) = gl —u"‘{“'"2+ D yam

£y

5 upxt™ + 3 3 (ax")? (10-23)

m=]

u(x) + 5 3 (U™

R — | —

The number of vertices, n, in a centroidal tree can be odd or even. If n is
odd, the maximum weight the centroid could have is 4(n — 1). This maximum
is achieved only when the tree consists of a path of n — 1 edges. On the other
hand, if n is even and the tree is centroidal, the maximum weight the centroid
could possibly have is 4(n — 2). This maximum is achieved when the degree
of the centroid is three, and one of the subtrees consists of just one edge.

Thus, regardless whether n is odd or even, it is clear that an n-vertex (free)
centroidal tree can be regarded as composed of several rooted trees, rooted at
the centroid, and none of these rooted trees can have more than | (n — 1)/2 |
edges, where | x | denotes the largest integer no greater than x. In view of
this observation, an involved manipulation of Eq. (10-21) leads to the fol-
lowing (for missing steps see [10-3]):
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£(x) = ulx) — 5 ut(x) — 5 3 (px") (10-24)
me 1

Adding (10-23) and (10-24), we get the desired counting series:
_ I (2 2
1x) = u(x) — T(H (x) — u(x ))- (10-25)

This relation, which gives the tree-counting series in terms of the rooted-tree
counting series, was first obtained by Richard Otter in 1948 and is known
as Otter’s formula. The first 10 terms of (10-25) are

Hx)=x+ x* + x* 4 2x* + 3x% + 6x5 + 11x7
+ 23x% 4 47x° 4 106x'° + - ..,

The reader is encouraged to extend it by another 10 terms. The first 26 terms
of both u(x) and #(x) are given in Riordan’s book [3-11], page 138.

By now you must have the impression that enumeration of graphs is an
involved subject. And indeed it is. So far we have enumerated only four types
of graphs—rooted and free trees, both labeled and unlabeled varieties. It is

difficult to proceed further without some additional enumerative tool. This is
provided by a general counting theorem due to Pdlya. We shall first state
and discuss Pdlya’s theorem and then show how it can be applied for count-
ing graphs.

POLYA'S COUNTING THEOREM

Permutation

On a finite set 4 of some objects, a permutation 7z is a one-to-one mapping
from A onto itself. For example, consider a set {q, b, ¢, d}. A permutation

__fabcd
T =\bdca
takes a into b, b into d, ¢ into ¢, and d into a. Alternatively, we could write

nl{a) — b'}
Hl(b) - d!
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n,(c) =c,
n,(d) = a.

The number of elements in the object set on which a permutation acts is
called the degree of the permutation. The degree of z, in the above example is

four.
A permutation can also be represented by a digraph, in which each vertex

represents an element of the object set and the directed edges represent the

mapping. For example, the permutation n, = (gggg) is represented dia-

grammatically by Fig. 10-7.

b

d Fig. 10-7 Digraph of a permutation.

Observe that the in-degree and the out-degree of every vertex in the
digraph of a permutation is one. Such a digraph must decompose into one or
more vertex-disjoint directed circuits (why ?). This suggests yet another way of

representing a permutation—as a collection of the vertex-disjoint, directed

circuits (called the cycles of the permutation). Permutation (g zg i) can thus

be written as (@ b d)(c). This compact and popular representation is called the
cyclic representation of a permutation. The number of edges in a permuta-
tion cycle is called the length of the cycle in the permutation.

Often the only information of interest about a permutation is the number
of cycles of various lengths. A permutation & of degree k is said to be of type
(,,0,, ...,0.)ifmhasg cycles of lengthifori=1,2,..., k. Forexample,
permutation (a b d)(c) 1s of type (1, 0, 1, 0) and permutation (a b f)(c)(d e h)(g)
is of type (2,0, 2,0, 0, 0, 0, 0). Clearly,
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]JI +202+3J3 + L —]—kﬂ'k :k. (10'26]

Another useful method for indicating the type of a permutation i1s to
introduce & dummy variables, say, y,, y,,...,»,, and then show the type
of permutation by the expression

POy Y (10-27)

Expression (10-27) is called the cycle structure of m. For example, the cycle
structure of the eight-degree permutation (a b f)(c)(d e h)(g) is

VVIviviysysyiyi = yiyi.
Note that the dummy variable y, has no significance except as a symbol to
which subscripts (indicating the lengths) and exponents (indicating the num-
ber of cycles) are attached. Two distinct permutations (acting on the same
object set) may have the same cycle structure (page 149 in [10-1]).

So far we have discussed only the representation and properties of a
permutation individually. Let us now examine a set of permutations col-
lectively.

On a set A with k objects, we have a total of k! possible permutations—
including the identity permutation, which takes every element into itself. For

example, the following are the six permutations on a set of three elements
{a, b, c}:

(@)(®)c), (ab)(c), (ac)b), (a)bc), (abe), (ach).

Their cycle structures, respectively, are

Yh ViV Yo ViYw» Vi Vs (10-28)
Composition of Permutations

Consider the two permutations m, and z, on an object set {1, 2, 3, 4, 5}:

.. {123
"l_(214

[, i =N
tad Ly
S—
1
=
(=5
=
¥
i
—
Lo e
b
[
[ =N
n Ln
——”
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A composition of these two permutations m,m, is another permutation
obtained by first applying 7, and then applying z, on the resultant. That is,

m,(1) = m,(2) = 4,
:ni(2) =m(l) =3,
n,n,(3) = m,(4) = 2,
w7 (4) = m,y(5) = 5,
2, 7,03 = n.(3) = L
Thus n,m, = (é%%g?)

Thus among a collection of permutations on the same object set, composition
is a binary operation.

Permutation Group
A collection of m permutations P = {n,, ®,, ..., m,} acting on a set

A={a,ay...,4]

forms a group under composition, if the four postulatest of a group, that is,
closure, associativity, identity, and inverse (see Section 6-1), are satisfied.
Such a group is called a permutation group. For example, it can be easily
verified that the set of four permutations

{(@)b)(c)d), (ac)bd), (abcd), (adcbh)} (10-29)

acting on the object set {a, b, ¢, d} forms a permutation group.

The number of permutations m in a permutation group is called its order,
and the number of elements in the object set on which the permutations are
acting is called the degree of the permutation group. In the example just cited,
both the degree and order of the permutation group is four. It can be shown
that the set of all k! permutations on a set A of k elements forms a permuta-
tion group. Such a group, of order k! and degree k, is called the full symmetric
group, S,.
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Pdélya’s Counting Theorem

Let us consider two finite sets, domain D and range R, together with a
permutation group P on D. To each element p € R let us assign a quantity
w(p] and call it the content (or weight) of the element p. The weight w[p] can
be a symbol or a real number. A mapping f from D to R can be described by
a sequence of | D| elements of set R such that the ith element in the sequence
is the image of the ith element of set D under f. Therefore the content W( ) of
a mapping f can be defined as the product of the contents of all its images.
That i1s,

W(f) = II i/ @)

Clearly, all functions belonging to the same equivalence class defined by
(10-33) have identical weights. Therefore, we define the weight of an entire
equivalence class (of functions from domain D to range R) to be the (com-
mon) weight of the functions in this class. Our problem is to count the num-
ber of equivalence classes with various weights, given D, R, permutation
group P on D, and weights w[p] for each p € R. This is exactly what Polya’s
counting theorem gives.

In Polya’s terminology, elements p of set R are called figures, and func-
tions f from D to R are called configurations. Often the weights of the ele-
ments of R can be expressed as powers of some common quantity x. In that
case the weight assignment to elements of set R can be neatly described by
means of a counting series A(x)

A(x) = f& a X, (10-34)
-
where a, 1s the number of elements in set R with weight x9.f Likewise, the

number of configurations can be expressed in terms of another series, called
configuration counting series B(x), such that

B(x) = )ju b,x™, (10-35)

where b is the number of different configurations having weight x™. Now we
can state the following powerful result known as Polya’s counting theorem.
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THEOREM 10-3

The configuration-counting series B(x) is obtained by substituting the figure-
counting series A(x") for each y; in the cycle index Z(P; y,, ¥2,-.., V) of the
permutation group P. That is,

B(x) = Z(P; 3 a,x9, 3, agx29, 3, ax, ..., 3, a,xk9). (10-36)

The proof of Polya’s theorem, although not complicated, is not particularly
illuminating and is therefore left out. The reader can find it in [10-1], page 157.
Our interest is mainly in the application of the theorem; let us illustrate it with
some examples.

Example 1: Suppose that we are given a cube and four (identical) balls. In
how many ways can the balls be arranged on the corners of the cube? Two
arrangements are considered the same if by any rotation of the cube they can
be transformed into each other.

The answer is seven, as can be seen by inspection in Fig. 10-9. In Pdlya’s
terms the domain D is the set of the eight corners of the cube, and the range

Fig. 10-9 Attaching four balls to corners of a cube.

R consists of two elements (i.e., figures), “presence of a ball” or “absence of a
ball,” with contents x' and x°, respectively. The figure-counting series is

A(x) = i; ax? = a,x° + a,x' = 1 + x, (10-37)
2

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 23/30




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: TM.Sc MATHEMATICS COURSE NAME: GRAPH THEORY
AND ITS APPLICATIONS
COURSE CODE: 18SMMP205A UNIT: IV BATCH-2018-2020

since a,, the number of figures with content 0, is one, and a,, the number of
figures with content 1, is also one. The configurations are 28 = 256 different
mappings that assign balls to the corners of the cube. The permutation
group P on D is the set of all those permutations that can be produced by
rotations of the cube. These permutations with their cycle structures are

I. One identity permutation. Its cycle structure is y3.

2. Three 180° rotations around lines connecting the centers of opposite
faces. Its cycle structure is y3.

3. Six 90° rotations (clockwise and counterclockwise) around lines con-
necting the centers of opposite faces. The cycle structure is y2.

4. Six 180° rotations around lines connecting the midpoints of opposite
edges. The corresponding cycle structure is 3.

5. Eight 120° rotations around lines connecting opposite corners in the
cube. The cycle structure of the corresponding permutation 1s y{y3.

The cycle index of this group consisting of.these 24 permutations is,
therefore,

Z(P) = 2'—4( ¥t 9y% -+ 6yi + 8yiyd). (10-38)

Using Polya’s theorem, we now substitute the figure-counting series, that is
1 4+ xfory, | + x*fory,, | 4 x3 for y;, and | 4- x* for y,. This yields the
configuration-counting series.

B(x) =1+ x+3x3+ 3+ Ix* 4 It + 35 7+ 2% (1039

The coefficient of x* in B(x) gives the number of P-inequivalent configurations
of content x* (i.e., with four balls). This verifies the answer obtained by
exhaustive inspection in Fig. 10-9.

The total number of P-inequivalent configurations (with contents
x% x', x%, ..., x%) 1s obtained by adding all coefficients in (10-39), which is
23. It may be observed that this is the number of distinct ways of painting
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the eight vertices of a cube with two colors (one color corresponds to the
“presence of a ball” and the other with the “absence of a ball”).

Example 2: In example 1 we were given four identical balls. Now suppose
that we are given two red balls and two blue balls, and are again asked to find
the number of distinct arrangements on the corners of the cube. Clearly, D,
P, and Z(P) will remain the same as they were in example 1. Only the range R
and the figure-counting series A(x) will change. The range will contain three
elements: (1) presence of no ball, (2) presence of a red ball, and (3) presence
of a blue ball. Choosing x to indicate the presence of a red ball and x’ to
indicate the presence of a blue ball, the three elements in the range mentioned
above will have the contents x%x’%, x'x'%, and x%x"', respectively. Therefore
the figure-counting series is

Alx, x') = x°x° 4+ x!x"° 4+ x%x"t =1 + x 4+ x".

Substituting this figure-counting series in (10-38), we get the configuration-
counting series

B(x, x') = 2—14[(] + x4+ x)% 4+ 9(1 + x% + x"2)* + 6(1 + x* + x'4)?

+ 8(1 + x + x"*(1 + x* 4+ x'?)?]

=14 x4+ x" + 3x% + 3x'2 4+ 3xx" + 3x® 4 3x3
+ Tx3x" + Txx'2 + Tx* + Tx'* + 13x3x" + 13xx"3
+ 22x%x'% 4+ 3x% 4 3x"% + 13x*x" + 13xx"*
+ 24x3x"2 4 24x%x'3 4+ 3x% + 3x"° + Tx5x’
+ Txx'5 + 22x*x'2 + 22x2x"4 + 24x3x"? 4 x7 4+ x'7
+ 3x5x" 4 3xx'® + Tx’x'® + Tx2x"5 4 13x3x"* 4 13x*x'3
+ x4+ x4+ x7x" 4 xx"7 + 3x5x"2 + 3x2x"¢ + 3x%x"3
+ 3x3x'5 + Txtx's.

The coefficient of x"x’* in (10-40) is the number of distinct arrangements with
r red balls, b blue balls and 8 — r — b corners with no balls. The number of
arrangements with two red and two blue balls is, therefore, 22.

(10-40)
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For some other non-graph-theoretic examples of the applications of
Polya’s theorem, the reader should work out Problems 10-10, 10-11, 10-14,
and 10-15. Let us now return to the counting of graphs.

GRAPH ENUMERATION WITH POLYA'S
THEOREM

Enumeration of Simple Graphs: Let us consider the problem of counting
all unlabeled, simple graphs of n vertices. Any such graph G can be regarded
as a mapping (i.e., configuration) of the set D of all Jn(n — 1) unordered
pairs of vertices (for digraphs n(n — 1) pairs of vertices). Range R consists of
two elements s and ¢, with contents x! and x°, respectively. If a vertex pair
1s Joined by an edge in G, the vertex pair maps into s, an element with content
x'; otherwise, into 7, an element with content x° = 1. Thus the figure-count-
ing series is

AX) = Y ax® =1+ x.

The relevant permutation group in this case is R, the group of permuta-
tions on the pairs of vertices induced by S, (the full symmetric group on the n
vertices of the graph).t Therefore, the configuration-counting series is
obtained by substituting | 4 x for y,, | + x2for y,, 1 4+ x* for y,, and so on
in Z(R,). Some specific cases are

(1) For n = 3,

l
Z(Ry) = =yt + 3y, + 2yy).
Therefore, the configuration-counting series is

B(x) = %[(1 + %)% 4- 31 4~ xX!1 + x?) + 2(1 4+ x3)]

= L 4 eemdx%
The coefficient of x’in B(x) is the number of configurations with content x.
The content of a configuration here is the number of edges in the correspond-
ing graph. Thus the number of nonisomorphic simple graphs of three vertices

with 0, 1, 2, and 3 edges is each one. This is how it should be, as shown in Fig.
10-10.
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(2) For n = 4, the cycle index Z(R,) is given in (10-32). Substituting
I + x' for y, in (10-32), we get

B(x) = sgl(1 + x)° + 9(1 + x)(1 + x3)* + &(1 + x?)?
+ 61+ x2)(1 + x*)] (10-41)

=1 -2 2x* 4 3x¥ | 2x* + x> 4 x,

In (10-41) the coefficient of x" gives the number of simple graphs with four
vertices and r edges. The validity of series (10-41) is verified in Fig. 10-11.

[ ] /
* < 4 Fig. 10-10 Simple unlabeled graphs of
® L ] three vertices.
[ ] I
] s o * o ® :/I I I I I I
L [ ] [ ] L ] *—9
1IN

Fig. 10-11 Simple unlabeled graphs of four vertices.

(3) For n = 5, the cycle index Z(R;) is given in Problem 10-9. Substituting
1 4+ x for y, in Z(R,), we get the counting series B(x) for simple graphs of
five vertices, as follows:

B(x) = 1170[(1 4 x)10 4 1001 + x)*(1 + x2)° + 20(1 + xX1 + x3)3

+ 131 4+ x)*(1 4+ x?)* + 30(1 + xi‘-)(l + x4)?

+ 20(1 + x)1 + x3)(1 + x5) + 24(1 + x°)*] (10-42)
=1+ x + 2x* + 4x? + 6x* + 6x° + 6x° 4 4x7 + 2x*

+ x* 4 x!'°,

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 27/30




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: TM.Sc MATHEMATICS COURSE NAME: GRAPH THEORY
AND ITS APPLICATIONS
COURSE CODE: 18SMMP205A UNIT: IV BATCH-2018-2020

Again, for each r the coefficient of x” in (10-42) gives the number of simple
graphs of five vertices and r edges.

The number of simple, unlabeled graphs with n vertices for any n can be
counted similarly.

Enumeration of Multigraphs: Suppose that we are interested in counting
multigraphs of n vertices, in which at most two edges are allowed between a
pair of vertices.

In this case the domain and the permutation group are the same as they
were for simple graphs. The range, however, is different. A pair of vertices
may be joined by (1) no edge, (2) one edge, or (3) two edges. Thus range R
contains three elements, say, s, ¢, u, with contents x°, x', and x2, respectively;
that 1s, x’ indicates the presence of / edges between a vertex pair, for i =
0, 1, 2. Threfore, the figure-counting series becomes

1 + x 4 x2. (10-43)

Substitution of 1 + x” 4 x?7 for y, in Z(R,) will yield the desired configura-
tion-counting series. For n = 4, using the cycle index from (10-32), we get

sgl(l + x + x5 4+ 9(1 + x + x(L + x* + x9? + 8(1 + x? + x9)?

+ 6(1 + x2 + x*)1 + x* 4 x*)] (10-44)
=14 x4+ 3x% 4+ 5x3 + 8x* + 9x° 4+ 12x° 4- 9x7 4+ 8x®
+ 5x? 4 3x10 4 x!! 4 xt2,

The coefficient of x' in (10-44) is the number of distinct, unlabeled,
multigraphs of four vertices and i edges (such that there are at most two
parallel edges between any vertex pair). For example. the coefficient of x3 is
5, and these five multigraphs are shown in Fig. 10-12.

Instead of allowing at most two parallel edges between a pair of vertices,

Voot TN

Fig. 10-12 Unlabeled multigraphs of four vertices, three edges, and
at most two parallel edges.
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had we allowed any number of parallel edges the figure-counting series
would be the infinite series

|
1 — x

Ax) =14+ x4+ x2+x¥ 4 .- = (10-45)

Enumeration of Digraphs: For enumerating digraphs we have to consider
all n(n — 1) ordered pairs of vertices as constituting the domain. The relevant
permutation group will consist of permutations induced on all ordered pairs
of vertices by S.. The cycle index of this permutation group, M,, can be
obtained in the same fashion as was done in the case of R,. For example, for
n = 4, Table 10-4 gives the terms in Z(M,) induced by each term in Z(S,).

Term in Z(S54) Induced Term in Z(M)
»t ) b
ytya yiri
»1y3 »%
2 »$
Y4 yi
Table 10-4

Therefore, the cycle index is
Z(M,) = 5z(n* + 6y1y: + 8y5 + 3yz + 6p9). (10-46)

For a simple digraph the figure-counting series A(x) = 1 4 x is applicable,
because a given ordered pair of vertices (a, b) either does or does not have an
edge (directed) from a to b. On substituting 1 + x’ for every y, in (10-46), we
get the following configuration-counting series for four-vertex, simple
digraphs.

B(x) = %4[(! + x)'2 + 601 + x)2(1 + x*)* 4+ 8(1 + x3)*
+ 31 + x2)° + 6(1 + x*)°]
=14 x4+ 5x% 4 13x3 + 27x* 4 38x° + 48x*®
+4- 38x7 + 27x®* + 13x® } S5xi° -} x1t -} xl12,

(10-47)
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DU SO SDNE B S

Fig. 10-13 Simple unlabeled digraphs of four vertices and two edges.

The coefficient of x/ in (10-47) is the number of simple digraphs with four
vertices and j edges. For example, the five digraphs of two edges are shown in
Fig. 10-13.

The general expression for the cycle index, Z(M,), of the permutation
group on n(n — 1) ordered pairs induced by S, is given in [1-5], page 180.
Digraphs with parallel edges can be enumerated by substituting the appro-
priate figure-counting series, say (10-43), in Z(M,).
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Domination in Graphs
Jennifer M. Tarr

ABSTRACT

Vizing conjectured in 1963 that the domination number of the Cartesian grofltwo graphs is
at least the product of their domination numbers; this remains one of thesbigigen problems in
the study of domination in graphs. Several partial results have beearpriout the conjecture has
yet to be proven in general. The purpose of this thesis was to study \4ztogjecture, related
results, and open problems related to the conjecture. We give a surgkassés of graphs that are
known to satisfy the conjecture, and of Vizing-like inequalities and conjestfor different types
of domination and graph products. We also give an improvement of the-Glagk inequality [17].
Some patrtial results about fair domination are presented, and we sumnarigeopen problems

related to Vizing’s conjecture.



Chapter 1

Introduction

Mathematical study of domination in graphs began around 1960. The folidg/im brief history of
domination in graphs; in particular we discuss results related to Vizing’s ciomge We then pro-
vide some basic definitions about graph theory in general, followed bycagdiin of domination

in graphs.

1.1 History

Although mathematical study of domination in graphs began around 196@, dhersome refer-
ences to domination-related problems about 100 years prior. In 1882edésch [21] attempted to
determine the minimum number of queens required to cover am chess board. In 1892, W. W.
Rouse Ball [42] reported three basic types of problems that chessptyelied during this time.

These include the following:

1. Covering: Determine the minimum number of chess pieces of a given type that are aigcess

to cover (attack) every square of ank n chess board.

2. Independent Covering: Determine the smallest number of mutually nonattacking chess pieces

of a given type that are necessary to dominate every squarerokamboard.

3. Independence: Determine the maximum number of chess pieces of a given type that can be

placed on am x n chess board such that no two pieces attack each other. Note that if #s che

piece being considered is the queen, this type of problem is commonly kreotlhie &l-queens

Problem.

The study of domination in graphs was further developed in the late 195@'$360’s, beginning
with Claude Berge [5] in 1958. Berge wrote a book on graph theory, iiclwhe introduced the



“coefficient of external stability,” which is now known as the domination nandj a graph. Oystein
Ore [39] introduced the terms “dominating set” and “domination number” in hisklmn graph
theory which was published in 1962. The problems described abovesieted in more detail
around 1964 by brothers Yaglom and Yaglom [48]. Their studies rakinteolutions to some of
these problems for rooks, knights, kings, and bishops. A decade Catekayne and Hedetniemi
[16] published a survey paper, in which the notatidr) was first used for the domination number
of a graphG. Since this paper was published, domination in graphs has been studiadiwetie

and several additional research papers have been published orptbis to

Vizing’s conjecture is perhaps the biggest open problem in the field of ddimmtheory in
graphs. Vizing [45] in 1963 first posed a question about the dominatiatbeu of the Cartesian
product of two graphs, defined in section 1.2. Vizing stated his conjetttatéor any graphé/ and
H,~(GOH) > ~v(G)~(H) in 1968 [46].

This problem did not receive much immediate attention after being conjectuoed:ver, since
the late 1970s, several results have been published. These resuitsledtae truth of Vizing's
conjecture for certain classes of graphs, and for graphs that né&inogriteria. Note that we say
a graphG satisfies Vizing’s conjecture if, for any gragh, the conjectured inequality holds. The
first major result related to Vizing's conjecture was a theorem from Bdrcand German [4] in
1979. They studied what is referred to as decomposable graphs tabtist®d a class of graphs
known as BG-graphs for which Vizing’s conjecture holds. A corollarihés result is that Vizing's
conjecture holds for all graphs with domination number equal to 2, grajgthslemination number
equal to 2-packing number, and trees. The result that Vizing's comgistirue for trees was also

proved separately by Faudree, Schelp and Shreve [22], and Biogrowski and Shreve [13].

Hartnell and Rall [27] in 1995 established Vizing’s conjecture for a laoigss of graphs. They
found a new way of partitioning the vertices of a graph that is slightly diffefeom the way
Barcalkin and German partitioned the vertices in decomposable graph3ypég’ class of graphs

that resulted from Hartnell and Rall’'s work is an extension of the classfBaphs.

Another approach to Vizing's conjecture is to find a constant 0 such thaty(GOH) >
cy(G)v(H). In 2000, Clark and Suen [17] were able to prove this inequality ferl /2. They used
what is commonly referred to as the double projection method in their prookilAlse proven, this

result can be improved o GOH) > 1~(G)y(H) + 5 min{y(G),v(H)}.

2



One of the most recent results related to Vizing’s conjecture deals with theomcept of fair
reception, which was first defined by Ber and Rall [11] in 2009. They defined the fair domination
number of a graphy, denotedyr(G), and proved that(GOH) > max{y(G)yr(H),vr(G)y(H)}.
Thus, for any grapltz having~(G) = vr(G), Vizing's conjecture holds. BEar and Rall showed
that the class of such graphs is an extension of the BG-graphs distinciirpeX’ graphs.

1.2 Graph-Theoretic Definitions

The study of domination in graphs came about partially as a result of the stgdynes and recre-
ational mathematics. In particular, mathematicians studied how chess piecgmuicalar type
could be placed on a chessboard in such a way that they would attackmimate, every square
on the board. With this in mind, graph theoretical definitions will be related to d@ingegof chess
where applicable.

A graphG = (V, E) consists of a sélt’ of vertices and a sdf of edges. We shall only consider
simple graphs, which contain no loops and no repeated edges. THatigsa set of unordered
pairs {u, v} of distinct elements from’. Theorder of G is |V (G)| = n, and thesize of G is
|E(G)| = m. If e = {v;,v;} € E(GQ), thenv; andv; areadjacent Vertexv; and edge: are said to
beincident

Envision a standar@l x 8 chessboard, as can be seen in Figure 1. Each square can bemggates
by a vertex in a grapli. Consider placing several queens on the board. A queen may move any
number of spaces vertically, horizontally, or diagonally. Any square/€oiex) to which a queen
is able to move is adjacent to the square containing the queen. Therefoeeigtlan edge between
those two squares, or vertices of the gr&ph Since the chessboard &sx 8, with each square
reprented by a vertex of the graph the order ofG is 64. The size ofG depends on the number,
type, and placement of chess pieces on the board.

We call the set of vertices adjacent to a vertein a graphG the open neighborhoodV (v)
of v. The open neighborhood of a set of vertices— V(G) is N(S) = | N(v). Theclosed
neighborhoodV [v] of v is N (v) U {v}, and the closed neighborhood of avggt of vertiges V(G)
isN[S]=N(S)uS.

Thedegreeof a vertexv, denoteddeg(v) is the number of edges incident with Alternatively,

we can defineleg(v) = |N(v)|. The minimum and maximum degrees of verticed/i7) are

3
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Figure 1.: The first image depicts a standa8dk 8 chessboard. The second image has a queen

placed in the upper right corner. If we represent every squareeohdard by a vertex in a graph,

then we would draw an edge from the queen to every vertex represeningf the shaded squares.

denoted by (G) and A(G), respectively. If6(G) = A(G) = r, then the grapl@ is regular of
degree r, or-regular.

Consider, once again, placing several queens on a chessboaum@the space occupied by one
of the queens is denoted by vertexThen the number of possible moves for the queen occupying
that space, including those occupied by other queens, is eqdag(o). If we count the number
of possible spaces to which the queen in Figure 1 can move, we see thaPit passible moves.
Thus, if we represent that chessboard by a graph and denote teecgpdiaining the queen as vertex
v, we havedeg(v) = 21.

A walk of lengthk is a sequence = vy, v1,v2,.. ., v Of vertices where; is adjacent ta; 41
fori =0,1,...,k — 1. A walk consisting oft + 1 distinct verticesvg, v1, ..., vy is apath, and if
v, = vy, then these vertices formaycle A graphG is connectedf for every pair of vertices) and
z in V(GQ), there is av-x path. Otherwise(F is disconnected A componenbdf G is a connected
subgraph of7 which is not properly contained in any other connected subgraph.

If there is at least one-z walk in the graphG? then thedistanced(v, x) is the minumum length
of av-z walk. If no v-x walk exists, we say that(v, z) = co.

We now consider a few different types of graphs. tlyeleC,, of ordern > 3 has sizen = n,

is connected and 2-regular. See Figure 2 for the gréahhendCs. A tree T is a connected graph

4
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Figure 2.: CyclesCy andCjs

with no cycles. Every tre& with n vertices hasn = n — 1 edges. Thatar K ,,—1 has one vertex
of degreen — 1 andn — 1 vertices of degree 1. Observe that a star is a type of tree. Refer teRgur

for examples of a tree and a star.

Figure 3.. AtreeT and the sta¥k 4

In any graph a vertex of degree one isamdvertex An edge incident with an endvertex is a
pendant edgeWe can see that the graphsand K 4 in Figure 3 each have four pendant edges and

four endvertices. Specifically, i, the endvertices are,, v2, v5, andvg, and pendant edges are

{vi,v3},{v2, v3}, {va,v5}, and{va, vs }.

Figure 4.: Complete graph&’, and K5

Thecomplete graphi’,, has the maximum possible edgg$: — 1) /2. See Figure 4 for the graphs
of K, andK5. Thecomplemen& of a graphG hasV (G) = V(G) and{u, v} € E(G) if and only
if {u,v} ¢ E(G). Thus, the complement of a complete graph is the empty graph.
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A bipartite graphis one that can be partitioned &s= V7 U V5 with no two adjacent vertices in
the samé/;. We define theehromatic numbenf a graphG to be the minimunk such thatV’ (G)
can be partitioned into sets, Ss, . .., S; and eachs; is independent. That is, for ea¢hno two
vertices inS; are adjacent. Denote the chromatic numbe&dly x (G). If x(G) = k, thenG is
k-colorable which means we can color the verticeg;ofvith £ colors in such a way that no two
adjacent vertices are the same color. Observe that a graph is 2-¢elibeaid only if it is a bipartite
graph.

The graphH is asubgraphof G if V(H) C V(G) andE(H) C E(G). If H satisfies the
property that for every pair of verticesandv in V(H), the edge{u, v} is in E(H) if and only if
{u,v} € E(G) thenH is aninduced subgraplof G. The induced subgrapH with S = V(H) is
called thesubgraph induced by. Shis is denoted by[S].

There are several different products of graghand H; we shall define the Cartesian product,
strong direct product, and categorical product. All three of theséyats have vertex séf(G) x
V(H). TheCartesian producbf G and H, denoted byGIH, has edge set

E(GOH) = {{(u1,v1), (u2,v2)} | u1 = ug and{vy,v2} € E(H);
or{uy,us} € E(G) andv; = va}.
Thestrong direct producof G and H has edge set
E(GOH) U {{(u1,v1), (ug,v2)} | {u1,us2} € E(G) and{vy,v2} € E(H)}
and is denoted by X H. Thecategorical productdenoted byG x H, has edge set

E(G X H) = {{(ul,vl), (UQ,’UQ)} | {ul,uQ} (S E(G) and{’l)l,’l)g} S E(H)}

1.3 Domination in Graphs

We now introduce the concept of dominating sets in graphs. A'set V' of vertices in a graph
G = (V, E) is adominating seif every vertexv € V is an element of or adjacent to an element
of S. Alternatively, we can say that C V' is a dominating set off if N[S] = V(G). A dominating
setS is aminimal dominating seif no proper subse$’ C S is a dominating set. Théomination
numbery(G) of a graphG is the minimum cardinality of a dominating set@f We call such a set

a~v-set ofG.



Foragraphz = (V, E) andS C V a vertexv € S is anenclaveof S if N[v] C S. ForS C V
avertexv € S is anisolateof S if N(v) C V — S. We say that a set isnclaveless it does not
contain any enclaves. Note thsitis a dominating set of a graghi = (V, E) ifand only if V' — S

is enclaveless.

Theorem 1.1 [39] A dominating setS of a graphG is a minimal dominating set if and only if for

anyu € S,
1. wis an isolate of9, or

2. Thereisv € V — S for whichN[v] N S = {u}.

Proof. [39] Let S be ay-set ofG. Then for every vertex € S, S — {u} is not a dominating set of
G. Thus, there is a vertexe (V — S) U {u} that is not dominated by any vertex$h— {u}. Now,
eitherv = u, which impliesu is an isolate of5; orv € V' — S, in which casey is not dominated by
S —{u}, and is dominated by. This shows thatV[v] N S = {u}.

In order to prove the converse, we assushis a dominating set and for all € S, eitheru is an
isolate ofS or there isv € V' — S for which N[v] NS = {u}. We assume to the contrary thais
not a-y-set of G. Thus, there is a vertex € S such thatS — {u} is a dominating set off. Hence,
u is adjacent to at least one vertexdn- {u}, so condition (1) does not hold. Also,$f— {u} is a
dominating set, then every vertexlin— S is adjacent to at least one vertexdn- {u}, so condition

(2) does not hold for.. Therefore, neither (1) nor (2) holds, contradicting our assumption. O

Theorem 1.2 [39] Let G be a graph with no isolated vertices.ifis a~y-set ofG, thenV (G) — D

is also a dominating set.

Proof. [39] Let D be ay-set of the grapltz and assum& (G) — D is not a dominating set af.
This means that for some vertexc D, there is no edge from to any vertex inV’(G) — D. But
then the seD — v would be a dominating set, contradicting the minimality’af We conclude that

V(G) — D is a dominating set of;. O

Theorem 1.3 [39] If a graph G has no isolated vertices, therG) < 3.
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Proof. LetG be a graph with no isolated vertices andilebe ay-set of G. Assume to the contrary

thaty(G) > 5. By Theorem 1.2}/ (G) — D is a dominating set of/. But |V (G) — D| < n — 3,

contradicting the minimality of/(G). We conclude that(G) < 3. O

Theorem 1.4 [36] For any graphG,
1G) +9(G) <n+1 (1.1)
Y(G)y(G) < n (1.2)

Proof. [36] We show (1.1) first. If the graphs andG have no isolated vertices, then Theorem 1.3

impliesy(G) +~(G) < n. If G has an isolated vertex, theiG) < n andvy(G) = 1. Then we have

Y(G) +~(G) < n+ 1. Similarly, if G has an isolated vertex, we hayéG) < n andy(G) = 1,

which impliesy(G) + v(G) < n + 1.
Now we prove (1.2). Define foaK C V(G) the following sets:

Do(X)={ueV(G) - X |{u,v} € E(G)forallv e X},

and

Di(X)={ue X |{u,v} € E(G)forallve X}.

Now, let D = {vy, v, ..., vy } be ay-set of G and partition the vertices df (G) into setsll;
such thaw; € II, for eachi = 1,2, ..., v(G) and ifv € II; thenv = v; or {v,v;} € E(G). Choose
this partition in such a way th;‘g) | Dy (I1;)| is @ maximum.

SupposeDy(I1;)| > 1 for é?)lmej. Then there is a vertex € Il, for k& # j, such that
{u,v} € E(G) for all u € II;.

If v € Dy(Il) then(D — {v;, v }) U {v} is a dominating set off with cardinality smaller than
v(G), a contradiction. Thus; ¢ Dy (I1y).

Now we can re-partition the vertices 6f so thatll; = II; for [ # j andl # &, H;. = 1II; U {v}
andIl} = Il — {v}. Butthen|Di(I})| = [D1(IL)], [D1(I1})[| = |D1(IL;)| + 1, and| D1 (IT} )| >

| D1 (I1x)|. This contradicts the choice of our original partition@f



We conclude thatDy(I1;)| = 0 foralli = 1,2,...,v(G). As any setX with |Do(X)| = 0

dominates, each sefl; dominates5 and soy(G) < |II;|. Therefore, we have

7(G) -
n=Y_ || >y(G)(G).
i=1
O

We define the coron& of graphsGG; andGs as follows. ThecoronaG = G o GG is the graph
formed from one copy ofs; and|V (G1)| copies ofG, where theith vertex ofG; is adjacent to
every vertex in theth copy ofG,. Refer to Figure 5 for an example of a corona of two graphs. We
take the original graplé and, asV (G)| = 4, we have four copies off. Both vertices in théth

copy of H are adjacent to thah vertex inG for eachi = 1, ..., 4.

I

G H GeH

Figure 5.: GraphsGG andH, and the coron& o H

The following theorem, which was proved independently by Payan andgaad by Fink, Ja-
cobson, Kinch and Roberts, tells us which graphs have domination nuqmne%. Thus, we can

use this result to find extremal examples of graphs which achieve the bpped in Theorem 1.3.

Theorem 1.5 [23] [40] For a graph G with even ordem and no isolated vertices(G) = 7 if

and only if the components 6f are the cycle”, or the coronaH o K for any connected grapH .

Proof. [40] It can easily be verified that if the components of a gréphre C, or the corona
H o K for a connected grapH, theny(G) = 3.
Now we assume that(G) = 5. We may assume thét is connected. Let’ = {51, Sa,..., S}
be a minimal set of stars which cover all verticestaf Since(G) = 4, C must be a maximal

matching ofp = % edges. For each; ¢ C, letS; = {x;,y;}. We consider two cases.
If p > 3 then for every, eitherz; or y; has degree 1. If not, theredsuch thatleg(x;) > 2 and
deg(y;) > 2. But then we can find a dominating set@fwith cardinality less tha@. This implies

G is a coronaH o K; for some connected grapt.

9
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Figure 6.: CoronasK; o K1 andK5 o K7 and cycleC}.

If p < 2thenG is isomorphic to one of the graphs in Figure 6. Note that the first two graghs a
coronas and the third is the cyal§.
We conclude that/(G) = 7 if and only if the components af are the cycleCy or the corona

H o K, whereH is a connected graph. O

[ >IT >[X>
[IX> OO X

Figure 7.: Family A

ANAOA R

Figure 8.: Family B

We now characterize connected graphs witty') = | | by defining the following six classes of
graphs. These results were proved independently by Cockaynegklayd Hedetniemi [15] and
by Randerath and Volkmann [41].

1. G1 ={C4} U{G | G = H o Ky whereH is connectegl.
2. Go = AU B whereA andB are the families of graphs depicted in Figure 7 and Figure 8.

3. G3 = |J S(H) whereS(H) denotes the set of connected graphs, each of which can be formed
H

from H o K7 by adding a new vertex and edges joining to at least one vertex if.
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4. G4 ={O(G) | G € G3} wherey € V(Cy) and forG € G3, ©(G) is obtained by joining~ to

C, with the single edgéz, y}, wherez is the new vertex added in formingg.

5. G5 = |JP(H) whereu, v, w is a vertex sequence of a path. For any graphd, P(H) is the
H
set of connected graphs which may be formed fildm K by joining each ofx andw to one

or more vertices of{.

6. G¢ = |J R(H,X) whereH is agraphX € B, andR(H, X) is the set of connected graphs
HX
obtained fromH o K by joining each vertex o/ C V(X)) to one or more vertices dff such

that no set with fewer thaf(X) vertices ofX dominates/ (X) — U.
6
Theorem 1.6 [15] [41] A connected grapltr satisfiesy(G) = | 5] ifand only ifG € G = | Gi.
i=1

As a result of Theorem 1.5 and Theorem 1.6, we can completely clasafiygmwith domination
numbery(G) = [ 5].

We now define several additional types of domination in graphs. We dhalW ¥izing-like
inequalities and conjectures for these types of domination in Section 2.2.

Let f : V(G) — [0,1] be a function defined on the vertices of a graphthis is afractional-
dominating functionf the sum of the values of over any closed neighborhood énis at least 1.
The fractional domination numbeof a graphG is denotedy;(G) and is the minimum weight of
a fractional-dominating function, where the weight of the function is the suen all vertices of
its values. A similar type of domination is integer domination. ket 1 and letf : V(G) —
{0,1,...,k} be a function defined on the vertices of a gré&phThis is a{k}-dominating function
if the sum of the function values over any closed neighborhoda# isfat least:. As with fractional
domination, the weight of & }-dominating function is the sum of its function values over all ver-
tices. We define th¢k }-domination numbeof G to be the minimum weight of & }-dominating
function of G. This is denoted by, (G).

The maximum cardinality of a minimal dominating set of a grépls called theupper domina-
tion numberand is denoted by (G). We say that a se§ C V(G) is independenif for all » and
vin S, {u,v} ¢ E(G). The maximum cardinality of a maximal independent setiis theinde-
pendence numbet(G), and the minimum cardinality of a maximal independent set iddher
independence numbe(G). Note that the lower independence number is also often referred to as

theindependent domination number

11



Figure 9.: Independent domination in non-claw-free and claw-free graphs

Observe that claw-free graphs, or graphs that do not contain aafafdy 3 as an induced sub-
graph, havey(G) = i(G). This result was proved by Allan and Laskar in 1978 [3]. Refer to
Figure 9. It can easily be verified that the graghand 4 both have domination number equal to 2.
The graphG is not claw-free and(G) = 3; an example of a minimal independent dominating set of
G is indicated by the blue vertices. The grafihon the other hand, is claw-free and &) = 2.

We can see that the blue verticesHnform an independent dominating set.

A setS C V(G) is atotal dominating sebf G if N(S) = V. Thetotal domination number
v(G) is the minimum cardinality of a total dominating set. Note that a dominating et total
dominating set ifG[S], the subgraph induced by has no isolated vertices. Thper total domi-
nation numbeof GG, denoted by, (G), is the maximum cardinality of a minimal total dominating
set of a graphG. The functionf : V(G) — {0,1,...,k} is atotal {k}-dominating functiorif
the sum of its function values over any open neighborhood is atled&tetotal { % }-domination
numbemt{k} of a graphG is the minimum weight of a totglk }-dominating function of7.

The above defined parameters of a gréphre related by the following lemma.

Lemma 1.1 [38] Forany graphG, v¢(G) < v(G) < i(G) < a(G) < I'(G). If G has noisolated

vertices, then/(G) < 1(G) < 2v(G).

For any graph, a matching is a set of independent edges&/irand a perfect matching @
is one which matches every vertex@ The setD C V(@) is apaired dominating setf G if
D dominatesG and the induced subgragh[D] has a perfect matching. We denote fhedred
domination numberor the minimum cardinality of a paired dominating set by(G).

Theindependence domination numhmra graphG, denoted byy’(G), is the maximum, over all
independent setsin G, of the minimum number of vertices required to dominat&lote that this

is different from the independent domination number.
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There are several other types of domination, defined below, for whickilWnot present further
Vizing-like results.

Let G = (V, E) be a bipartite graph, with partite séts andV,. If a set of verticesS C V;
dominated/;, we say thaiS is abipartite dominating setf G.

A connected dominating sista dominating set that induces a connected subgraph of the Graph
We denote byy.(G) theconnected domination number the minimum cardinality of a dominating
setS such that7[S] is connected. Clearly(G) < 7.(G).

Observe that when(G) = 1, v(G) = 7.(G) = i(G) = 1. This implies that ifG is a complete
graph or a star, the domination number, connected domination number, apeirttknt domination
number all equal 1. Also, since a connected dominating sét isfalso a total dominating set of
G, we havey(G) < %(G) < 7.(G). An example of the sharpness of this bound can be seen in
the complete bipartite grapi, 5, in whichy(K, ) = (K, s) = 7.(K,s) = 2. See Figure 10,
which depicts the graplXs 3. The blue vertices form both a minimal dominating set and a total

dominating set.

23

Figure 10.. An example of equality in domination and total domination

If D is a dominating set off andG[D] is complete, then we calD a dominating clique The
minimum cardinality of a dominating clique is tliéque domination numbedenotedy.;(G). Not
every graph has a dominating clique; for example, any cgtlevheren > 5 does not contain a
dominating clique. Clearly, if(G) = 1, theny(G) = 7.(G) = v4(G) = 1. If G has a dominating
clique andy(G) > 2theny(G) < %(G) < 7.(G) < v4(G). An example of the sharpness of these
bounds can be seen in the cordiigo K, which hasy(K,o K1) = v(Kpo K1) = v.(Kpo K1) =
v (Kpo K1) = p. The blue vertices in the graph of the cordiigo K in Figure 11 form a minimal
dominating set which is also a total dominating set, connected dominating set,damdirzating
clique.

A cycle dominating ses a dominating set off whose vertices form a cycle.
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Figure 11. An example of equality in domination, total domination, connected domination, and

cliqgue domination
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Chapter 2

Vizing’s Conjecture

Since Vizing's conjecture was first stated in the 1960s, several resaueslieen published which
establish the truth of the conjecture for classes of graphs satisfyingncenitaria. As the problem
has not yet been solved in general, researchers have also studied piolillems for different
types of graph products and for other types of domination. Some of tiragarsproblems also
remain conjectures, while others have been proven. Here, we dedwiblsses of graphs which
are known to satisfy Vizing's conjecture and provide a brief discussidgheosimilar Vizing-like
conjectures which have also been studied. Another common approadiitmdbe conjecture is
to find a constant such that for any graphs andH, v(GOH) > ¢y(G)y(H). As Clark and Suen
[17] proved in 2000, this is true far= % We provide a slight improvement of this lower bound by

tightening their arguments.

2.1 Classes of Graphs Satisfying Vizing's Conjecture

Vizing's conjecture is that for any two graphs, the domination number of #me€ian product
graph ofG and H is greater than or equal to the product of the domination numbetsanid H.

The conjecture is stated as follows:
Conjecture 2.1 [46] For any graphsG and H, v(GOH) > v(G)v(H).
Recall that the Cartesian product of grajghand H has vertex set
V(GOH)=V(G)x V(H) ={(z,y) | x € V(G)andy € V(H)}
and it has edge set

E(GOH) = {{(z1,y1), (z2,y2)} | 21 = x2 and{y1, y2} € E(H);
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or{z1,z2} € E(G) andy; = ya}.

Define a2-packingof G as a setX C V(G) of vertices such thalV[z] N N[y] = () for each
pair of distinct vertices,y € X. Alternatively, we can define a 2-packing as a Xetf vertices
in G such that for any pair of verticesandy in X, d(x,y) > 2. The maximum cardinality of a
2-packing ofG is called the2-packing number off and is denoted bys(G).

Observe that for any grapfi, p2(G) < +(G). Let S be a maximal 2-packing af?. Then, as
d(u,v) > 2 for every pair of vertices andv in S, we need at least one vertex¥f(G) to dominate
each vertex ir. Hence, the cardinality of a minimal dominating set is greater than or equal to the
cardinality of a maximal 2-packing.

Note that we say a grapf¥ satisfies Vizing’s conjecture if, for any grapghi, the conjectured
inequality holds. Several results establish the truth of Vizing’s conjecturgriaphs satisfying
certain criteria. The case whet€¢G) = 1 is trivial. A corollary of Barcalkin and German’s [4]
proof that Vizing’s conjecture holds for decomposable graphs is thatg/&conjecture is true for
any graphG with v(G) < 2. In 2004, Sun [44] verified Vizing's conjecture holds for any gr&ph
with v(G) < 3.

We now consider classes of graphs that are proven to satisfy Vizingjsatare.

Lemma 2.1 [26] If G satisfies Vizing’s conjecture arfd is a spanning subgraph @¥ such that

~v(G) = v(K), thenK satisfies Vizing’s conjecture.

Proof. Let K be a spanning subgraph Gfobtained by a finite sequence of edge removals which
does not change the domination number. Silids a subgraph off, KOH is a subgraph ofzCJH .
Thus we have/(KOH) > v(GOH) > v(G)y(H) by assumption od:. By assumption o, we
havey(G)y(H) = v(K)y(H). We conclude thal satisfies Vizing’s conjecture. O

Theorem 2.1 [28] Let G be a graph and let € V(G) such thaty(G — z) < v(G). Then ifG

satisfies Vizing’s conjecture, the graph— x satisfies Vizing’s conjecture.

Proof. [28] LetG be a graph which satisfies Vizing’s conjecture, and assufte— =) < v(G)

for somex € V(G). Theny(G — x) = v(G) — 1. Now assume there is a graph such that
7(G —z)0H) < v(G — z)vy(H). Let A be ay-set of (G — x)H and letB be a~y-set of
H. DefineD = AU {(z,b) | b € B}. Clearly D is a dominating set ofsCJH of cardinality
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|A| + |B| < v(G —x)y(H) +v(H) = (v(G — ) + 1)y(H) = v(G)~(H). This contradicts our
assumption tha€? satisfies Vizing's conjecture, and so we conclude that x satisfies Vizing’s

conjecture. O

Note that, if the converse of this theorem does not hold, we would haveirsterexample to
Vizing's conjecture. Consider a gragt that satisfies Vizing’s conjecture, and £tC V' (K) be a
set of vertices such that no vertex®belongs to any-set of K’ and such thay (K — S) = v(K).
We can form a graptiy from K by adding a new vertexand all edgegu, v} whereuisin S. If the
resulting grapl; does not satisfy Vizing’s conjecture then obviously we have a courgergte. If,
on the other hand, we can prove that the gré&@atisfies Vizing's conjecture, then this result would
contribute to an attempt to prove Vizing's conjecture by using a finite sequancenstructive
operations. The idea is to begin with a classf graphs for which we know Vizing’s conjecture is
true and find a collection of operations to apply to graphs fdneach of which results in a graph
which satisfies Vizing's conjecture. At this point, the goal would be to shawahy graph can be
obtained from a seed graphd@hby applying a finite set of these operations. This type of approach
has obviously not yet been successful, but Hartnell and Rall [2Bjelseveral operations which

could potentially lead to a proof of Vizing’s conjecture using a constructieéhod.
Lemma 2.2 [20] For any graphsG and H, v(GOH) > min{|V(G)|, |V (H)|}.

Proof. [20] Let D be ay-set of the product grapfCJH, and assume to the contrary that| <
min{|V (G)|, |V (H)|}. Then there is a column of verticés, = {u} x V(H) and a row of vertices
Gy = V(G) x {v} such thatb N H, = DN G, = (. But then(u,v) ¢ N[D], a contradiction.
Therefore;y(GOH) > min{|V(G)|, |V (H)|}. O

The following result providing a lower bound fe GH ) was proved by Jacobson and Kinch
[34]. Their proof considers a dominating set for the product gi@phH and counts the way the

dominating set intersects each set of vertic€&) x {v}, wherev € V(H).

Theorem 2.2 [34] For any graphsG and H, v(GOH) > 7A(|5)|+17(G)_

Observe that this theorem implies Vizing’s conjecture holds for cycles gtietk. Consider the
cycleCsy, for k > 1 an integer. We hava (Csi,) = 2 andy(Cs,) = k, SO thereforeA(lcc‘g#:)|

1~
B =k =~(Ca).
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Theorem 2.3 [45] For any graphsG and H, v(GOH) < min{~(G)|V(H)|,|V(G)|y(H)}.

Proof. Let A be ay-set ofG. Now letD = {A x {v} | v € V(H)}. ThenD is a dominating
set of GO H of cardinalityy(G)|V (H)|. Similarly, we can letB be avy-set of H and defineD =
{{u} x B|u € V(G)}. Thus, we have(GOH) < min{v(G)|V(H)|, |V(G)|y(H)}. O

Theorem 2.4 [35] For any graphsG and H,
V(GOH) = max{y(G)p2(H), p2(G)v(H)}.

Notice that this result from Jacobson and Kinch can be improved by thevialidheorem from

Chen, Piotrowski and Shreve.
Theorem 2.5 [13] For any graphsG and H,
VGOH) = v(G)p2(H) + p2(G)(v(H) — p2(H)).

The earliest significant result related to the domination number of a Carfgsidact was pro-
duced by Barcalkin and German [4] in 1979. Barcalkin and German stgdéshsG which have
domination number equal to the chromatic numbeoRecall that the chromatic numbg(G) of
a graphG is the smallest number of colors needed to color the verticésiafsuch a way that no
two adjacent vertices are the same color. Observe that any propeingadry is a partition of the
vertices ofGG into cliques, or complete subgraphs@®f A single vertex may be chosen from each
clique to form a dominating set &f and, therefore, it is always true thatG) < x(G).

Barcalkin and German definettcomposable graples follows. LetG be a graph withy(G) =
k, and assum& () can be partitioned inté setsC, Cs, ..., Cj, such that each induced subgraph
G[C;] is a complete subgraph @f. If G satisfies these conditions, then it is a decomposable
graph. They also define th&-class which consists of all graphg’ that are spanning subgraphs
of a decomposable grapgh, wherev(G’) = v(G). The result of Barcalkin and German’s 1979

paper established Vizing's conjecture for any graph which belongs t#-thass. Note that we now

commonly refer to this class of graphs as BG-graphs.

Theorem 2.6 [4] Let G be a decomposable graph and KEtbe a spanning subgraph ¢f with
~v(G) = v(K). ThenK satisfies Vizing’s conjecture.
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Proof. [28] We assume thaf is a decomposable graph withG) = k. Let {C; | G[C,] is

a complete subgraph @f,1 < i < k} be a partition ofV’(G). We now consider the partition

{CixV(H)|i=1,...,k} of V(GOH) for H an arbitrary graph. Leb be ay-set of GO H.
Denote byD; the set of vertices i that are also irC’; x V(H). That s,

Dj:Dﬁ(CjXV(H))fijzl,...,k.

Letu; € C; and denote byP; the projection of vertices if; x V(H) onto{u;} x V(H).

Let L; be the set of all vertices such thaf(u;, v) is not dominated by?;(D;). That is,

Lj=A{v|(uj,v) & N[P;(Dj)}.
We observe that it € L;, then the vertice§’; x {v} are dominated “horizontally”. Obviously, if

P;(D;) dominates:; x V(H), |L;| = 0. However, if|D;| = v(H) — m then we have
1 Djl + Ll = [P (Dj)] + | Ly = ~(H).

This implies thatL;| > m.

We now considew € V(H) such thatv € L; for at least one = 1,..., k. Define the sets
D,, Sy, and A, as follows. We letS, = {C; | v € L; andi = 1,...,k}. Define A, to be the
set of cliquesC; such that there is at least one edge from a verteXjino a member ofS, and
DN (C; x {v}) # 0. Finally, we letD,, = {u € V(G) | (u,v) € D andu € C; € A,}.

We observe thatD,| > |S,| + |A,|, for otherwise we would have
Dy = Dy U{(uj,v)|C; ¢ Sy U Ay}

is a dominating set o (G) x {v} of cardinality less tha.

Also observe that for each= 1,...,k either|D;| > ~(H), in which case summing over
gives the desired inequality; ¢D;| = v(H) — m. In the latter case, we have shown that,| >
|Sy| + | Ay|. From this, we have

[Sol < D (IDN (G x {u})| = 1). (2.1)

UEDU

Thus, we have sufficient extra verticeslinin neighboring cliques so that we still have an average
of v(H) for each|D;|. We conclude thay(GOH) = |D| > v(G)~(H).
If K is a spanning subgraph of a decomposable géaphtisfyingy(G) = v(K), then we apply

Lemma 2.1 to prove that™ also satisfies Vizing’s conjecture. O
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Corollary 2.1 [4] Let G be a graph satisfying/(G) = 2 or p2(G) = ~v(G). ThenG satisfies

Vizing'’s conjecture.

This corollary follows from the previous theorem. Any gra@hwith v(G) = 2 is a subgraph
of a decomposable graph. To establish the second part of the corelassume= is a graph
satisfyingy(G) = p2(G). LetS = {v1, v2, ..., v} be a2-packing of7. Then we can add edges to
G to makeN|[vi], N[va], ..., N[vg—1] andV(G) — (N[vi] U Nvg] U ... U N[vg_1]) into cliques.
The resulting graph is decomposable and still hagsirwise disjoint closed neighborhoods. Hence,
it follows from Theorem 2.6 that any graph witfG) = p2(G) satisfies Vizing’s conjecture. An
example of this can be seen in Figure 12. The labeled vertices, andwvs in G form a 2-packing

of the graph. We can add edges as described above to get the deablegyaphH .

Figure 12.: A graphG with v(G) = p2(G) and a decomposable graphformed by adding edges
to G.

Observe that this corollary implies Vizing’s conjecture is true for any tree al§o have the

following result from Hartnell and Rall as a corollary of Theorem 2.6 @odollary 2.1.

Corollary 2.2 [28] Let G be a graph such thaf' is 3-colorable. Theid satisfies Vizing’s conjec-

ture.

Proof. We consider three cases based on the chromatic numiéér of
e Case 1:x(G) = 1. Thend is a complete graph and the result holds.

e Case 2:x(G) = 2. ThenG belongs to the A-class and Vizing's conjecture holds.
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e Case 3:x(G) = 3. If v(G) = 3 thenG is decomposable and result holds by Theorem 2.6.
Otherwisey(G) < 2 and result holds by Corollary 2.1.

0

We now define Typet graphs, as introduced by Hartnell and Rall [27] in 1995. This class of
graphs contains the BG-graphs as a proper subset and, hencénisramement of Barcalkin and
German’s [4] 1979 result. Hartnell and Rall, in defining Tygegraphs, took an approach similar
to that of Barcalkin and German in that they considered a particular wagrtfipning a graphG.

The difference is that not every set in the partition of a Tgpgraph induces a complete subgraph.
Type X graphs are defined as follows. Lett, » be nonnegative integers, not all zero. &be

a graph withy(G) = k + t + r + 1 whose vertices can be partitioned®s SC U BC U C, where

S, SC, BC, andC satisfy the following.

e LetBC =By UByU...UB;. EachB; fori =1,...,tis referred to as buffer clique

o LetC=C1UCU...UC,.

e EachofSC, By,...,By,C1,...,C,induces a clique.

e Everyv € SC has at least one neighbor outsidesdf. The setSC is called aspecial clique
e EachB;, fori =1...,k has at least one vertex which has no neighbors outsidg.of

e LetS =S5, US,U...US, where eaclp; is star-like. That is, each; has a vertex; which is
adjacent to alb € S; — v;. The vertexy; has no neighbors other than thosesin Note thatS;
does not induce a clique, and no edges may be addégdwithout decreasing the domination

number ofG.
e There are no edges between verticeS iand vertices irC.

Observe that not every graph that is Tyjgdnas a special clique. We can also have or k equal

to zero. The example in Figure 13, is a Tyfiegraph with a special clique. In this graph, the blue

vertices represent the s6t the red vertices represent the buffer cligheand the green vertices

represent the special cliq®’. One can easily verify that this graph satisfies the definition of Type

X graphs above.
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Figure 13 Example of a Typet graph with a special clique

Theorem 2.7 [27] Let G be a Typet graph. Then for any grapl/, v(GOH) > ~(G)~(H).

The proof of Hartnell and Rall's theorem is similar to the proof that Vizingisjecture is true
for BG-graphs. We patrtition the vertices Gfas indicated by the definition of a Type graph and
consider any dominating sé& of GLJH. Hartnell and Rall used the idea that some vertices in the
product graph must be dominated “horizontally” and fourid") disjoint sets inD, each of which

have cardinality at least(H ), thus implying that Vizing’s conjecture holds for any Tyfegraph.

Theorem 2.8 [27] Let G be a TypeX graph and letK be a spanning subgraph ¢t such that
~v(G) = v(K). Then Vizing's conjecture is true fdf.

This theorem can be proved in the same way we showed that any spanbigigshi of a
decomposable grapgh with v(G) = v(K) satisfies Vizing’s conjecture.
Hartnell and Rall were also able to show that any graph with domination nuomgemore than

its 2-packing number is a Typ& graph and, hence, we have the following result.

Corollary 2.3 [27] Let G be a graph satisfying(G) = p2(G) + 1. Then Vizing's conjecture is

true forG.

Bresar and Rall [11] recently discovered a new class of graphs whiclfysélisng’s conjecture.
They defined fair domination and proved that any graph with fair dominationber equal to its
domination number satisfies the conjecture. Furthermore, they proveditheleds of graphs is an

extension of the BG-graphs distinct from Typegraphs. Their results are presented in Chapter 3.

2.2 Vizing-Like Conjectures for Other Domination Types

As Vizing's conjecture has not yet been proven in general, rese@shich as Fisher, Ryan, Domke

and Majumdar [25]; Nowakowski and Rall [38]; Byar [7]; and Dorbec, Henning and Rall [19]
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have studied variations of the original problem. These similar problems démbther types of
graph products and different graph parameters. As we will seeradefehese variations remain

open conjectures, while others have been proven.

Fractional Domination

One of the first Vizing-like results was proved for the fractional dominatiomber. Recall that
the fractional domination number of a graghis the minimum weight of a fractional-dominating
function, where the weight of the function is the sum over all vertices ofiises. We note that for
any graphG, v¢(G) < «(G). Fisher, Ryan, Domke, and Majumdar proved the following result in
their 1994 paper.

Theorem 2.9 [25] For any pair of graphsG and H, v;(GOH) > v¢(G)y¢(H).

This theorem can be proved by first showing thatG' X H) = ~;(G)v¢(H). Recall thalG X H
denotes the strong direct product@fand H, which has vertex sét'(G) x V(H) and edge set
E(GOH) U {{(u1,v1), (u2,v2)} | {u1,ue} € E(G) and{vi,v2} € E(H)}. SinceGOH is a
subgraph ofy X H, we havey;(GOH) > v¢(GX H).

Fisher [24] also proved the following similar theorem in 1994; an improvedforas given by

BreSar [6] in 2001.
Theorem 2.10[24] For any pair of graphsG: and H, v(GOH) > v¢(G)yH).

An obvious corollary of this theorem is that Vizing’s conjecture is true for graph with frac-

tional domination number equal to domination number.

Integer Domination

A related concept to fractional domination is integer domination, which wagestdist by
Domke, Hedetniemi, Laskar, and Fricke [18]. We recall that the weight{éf}-dominating func-
tion is the sum of its function values over all vertices, and{thpdomination number of7, ;3 (G)
is the minimum weight of g k£ }-dominating function ofz. Domke, et. al. proved the following
theorem relating fractional domination to integer domination.

. G
Theorem 2.11[18] For any graphG, v¢(G) = mingen 7{%()
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The following Vizing-like conjecture for integer domination is from Hou and[88].

Conjecture 2.2 [33] For any pair of graphsG and H and any integek > 1, v, (GOH) >
1k (G vy (H)-

This conjecture remains open, but Bag, Henning and Klaar [9] prove several related results
in their 2006 paper. Note that if this conjecture is true forkalin particulark = 1, then Vizing’s

conjecture is true.

Upper Domination

Nowakowski and Rall's [38] 1996 paper gives results and conjestumeseveral associative graph
products, two of which are the Cartesian product and the categormdlig; as previously defined
in Section 1.2.

Recall that the upper domination numBde&iG) of a graphG is the maximum cardinality of a
minimal dominating set ofs. Also recall that the minimum cardinality of a maximal independent
set is the independent domination numb&r).

Nowakowski and Rall [38] made the following conjectures in their 199&pap

o (G x H) > i(G)i(H)
o (G x H) > T(G)T'(H)
o [(GOH) > I(G)I(H)

The last of these conjectures was proved by3Brg7] in 2005. In fact, he provided a slight

improvement of the conjectured lower bound.

Theorem 2.12[7] For any nontrivial graphsG and H,
I'GOH) >T(G)I'(H) 4 1.

The proof Br&ar provided for this theorem is constructive in nature. He begins wittramp
graphsz andH and creates a minimal dominating €ebf the product grapliC] H which contains

atleast'(G)I'(H) + 1 vertices.
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Total Domination

Henning and Rall's [30] 2005 paper was the first to introduce results tah domination in
Cartesian products of graphs. Recall that al3et V(G) is a total dominating set iN(D) =
V(G). The total domination number is the minimum cardinality of a total dominating sét of
and is denoted by, (G). Henning and Rall conjectured th2d,(GOH) > v.(G)v:(H) and they
proved this inequality holds for certain classes of graghsgith no isolated vertices and any graph
H without isolated vertices. This conjecture was proved for graphs wiikolated vertices by Ho.

Theorem 2.13[32] Let G and H be graphs without isolated vertices. Then
2v(GUH) > v(G)w(H).

Recall that the tota{k }-domination numbewt{k}(G) is defined as the minimum cardinality of a
total k-dominating setD of a graph. In 2008, Li and Hou [37] proved that for any graghand
H without isolated verticeSyt{k}(G)yfk}(H) < k(k+ 1)7§k}(GDH). Note that Theorem 2.13 is

easily proved using this inequality.

Upper Total Domination

Recall that we define the upper total domination numbeéopfdenoted byl's(G), to be the
maximum cardinality of a minimal total dominating set of a graphDorbec, Henning and Rall
[19] published results in 2008 on a Vizing-like inequality for the upper totahithation number.
They achieved the following two results.

Theorem 2.14[19] If G and H are connected graphs of order at least 3 andG) > I',(H),
then

2I(GOH) > Ty(G)(T'y(H) + 1)

and this bound is sharp.

In order to prove this theorem we must first define theget$S, v), ipn(v, S), andpn(v, S). Let
S Cc V(G) andletv € S. The sekpn(v, S) of external private neighbors ofis epn(v, S) = {u €
V(G)— S| N(u)nS = {v}}. The set of internal private neighborswot S isipn(v,S) = {u €
S| N(u)nS = {v}}. We denote the set of all private neighborsaf S by pn(v,.S). This is the
union of all external and internal private neighborsofhat is,pn(v, S) = epn(v, S) Uipn(v, S).

Cockayne, et. al. make the following observation.
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Observation 2.1 [14] Let .S be a total dominating set in a graph with no isolated vertices. Then

S is a minimal total dominating set if and only if for alle .S,
1. epn(v, S) # 0, or
2. pn(v, S) = ipn(v, S) # 0.
We will also need the following lemma.

Lemma 2.3 [19] Let G be a graph. Every';(G)-set contains as a subsetaset D such that
|D| > iT4(G) and for allv € D, |epn(v, D)| > 1.

We will now prove Theorem 2.14.

Proof. [19] We assumé& andH are connected graphs with order at least 3, whet€') > T',(H).
By the above lemma, there isasetS of G with | S| > 1I',(G) and foreach € S, |epn(v, S)| > 1.
For eachu € V(G), denoteH,, = {u} x V(H). Similarly, forw € V(H), letG,, = V(G) x {w}.

Now, letD = S x V(H), and observe thad dominatesZ[JH sinceS dominates V(G). Also,
for eachu € S, the verticed/ (H,,) are totally dominated “vertically”; thud) is a total dominating
set of GLJH. We claim thatD is a minimal total dominating set ¢f(JH .

Let (u, w) € D and considefu’, w), whereu’ € epn(u, S)in G. Then(v', w) € epn((u,w), D)
in GOH. Thus, for all(u, w) € D, |epn((u,w), D)| > 1. Then, by Observation 2.1} is a minimal
total dominating set offCJH and sd',(GLJH) > |D|. Note that sincéd is a connected graph with
order atleast 3V (H)| > I';(H) + 1. Therefore,

DU(GOH) > |D| = || x [V(H)| > STu(@)(T(H) + 1).

Equality holds when botty and H aredaisieswith k > 2 petals That is, we begin witlk copies
of K5 and identify one vertex from each copy to form a single vertex. Thdtieggraph is a daisy.

Figure 14 shows the daisy with 3 petals. d

The following theorem is easily proved using Theorem 2.14 and the faciatha graphG with
no isolated vertices';(G)I';(K»2) < 2T'(GOK3). Equality holds if and only ifG is a disjoint
union of copies ofKy. Letu € V(K3). ThenV(G) x {u} is a minimal total dominating set of

GUOK,, giving that
1
I'V(GOKy) > |V(G)| > Ty(G) = 5Ft(G)I‘t(KQ).
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Figure 14.: The daisy with 3 petals

In order for equality to hold, we must haVg(G) = |V (G)|, and soG must be a disjoint union of

copies ofK5s.
Theorem 2.15[19] If G and H have no isolated vertices, then
2Ty (GOH) > Ty(G)Ty(H)

with equality if and only if botli7 and H are disjoint unions of copies df,.

Paired Domination

Bresar, Henning and Rall [10] published results in 2007 about Vizing-likguaéties for paired
domination. Recall that a sé C V(G) is a paired dominating set ¢f if D dominates= and the
induced subgrapt¥[D] has a perfect matching. Note that in every graph without isolated vertices,
a maximal matching forms a paired dominating set. The paired domination numiér) is the
minimum cardinality of a paired dominating set.

The inequalities established by Beg, Henning and Rall relate the paired domination number of
the Cartesian product ¢f and H to the3-packing number ofy. Recall that a 2-packing of a graph
G is a set of vertice$' C V(G) such that for any verticeg andv in S, d(u,v) > 2. We define a
3-packing similarly. That is, a 3-packing of the gra@lis a setS of vertices such that the distance
between any pair of vertices is\is greater than 3. The 3-packing numbeKifdenotedps(G), is
the maximum cardinality of a 3-packing @.

Theorem 2.16 [10] If G and H are graphs without isolated vertices, then

'7pr(GDH) > maX{Vpr(G)pii(H)a Ypr (H)/O?;(G)}

BreSar, Henning and Rall were also able to show thatT") = 2p3(7") in any nontrivial tre€l’.

Thus, the following result follows from Theorem 2.16.
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Theorem 2.17[10] Let T be a nontrivial tree. Then for any grapl without isolated vertices,

Yor(TOH) > 17, (T)7,r(H), and this bound is sharp.

The final major result from B&ar, Henning and Rall in 2007 is the following theorem relating

paired domination in the Cartesian product®and H to the 3-packing numbers ¢t and H.

Theorem 2.18[10] If G and H have no isolated vertices, thep,(GOH) > 2p3(G)p3(H).

Independence Domination

Aharoni and Szah [2] in 2009 provided a Vizing-like result for the independence domination
number. Recall that this is different from the independent domination numelet the inde-
pendence domination numbgi(G) denote the maximum, over all independent deits G, of the
minimum number of vertices required to dominatdt was proven by Aharoni, Berger and Ziv [1]
thaty(G) = v*(G) for any chordal grapks, where a graph is chordal if any cycle of more than four
vertices contains at least one chord, or edge connecting verticesehabteadjacent in the cycle.
Aharoni and Szab proved the following theorem.

Theorem 2.19[2] For arbitrary graphs G and H, v(GOH) > +*(G)~(H).

Proof. [2] Let G andH be graphs. We may assume tliatas no isolated vertices, for if it did
have an isolated vertaxthen the validity of the theorem fa¥ — v implies the validity forG.

Assumel C V(G) is an independent set which requires at ledéty) vertices to dominate it.
We will show thaty(ICJH) > ~*(G)vy(H) by showing that D| > ~*(G)~(H), whereD is a set
that dominateg x V(H).

Let{v1,v2,...,vym)} be ay-set of H. Use these vertices to partitidn( /) into sets{Il; | v; €
I1; andv € II; if and only if v = v; or {v,v;} € E(H)}. Note that, forevery C {1,2,...,~v(H)},
we have

Y J1y) = 1| (2.2)

jeJ
Let S, = {i | {u} x II; is dominated vertically by some verticés, v) € D}, and letS; = {u €
I'| {u} x II; is dominated vertically by some verticés, v) € D}. SummingS,, and.S;, we have

~(H)
S = ZS = Z S;
=1

uel
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By (2.2), for eachu € I we have
D0 ({u} x V(H))| = [Sul.

Sum overw € I to get

DN (I x V(H))| = |8]. (2.3)

Now considerk < ~(H); each set of verticeu} x II; which is not inS contains at least one
vertex (u, v) which is not dominated by any vertex fu} x V(H). Thus, (u,v) is dominated
“horizontally” by some verteXw, v) wherew = w(v). Note thatw ¢ I sincel is independent and
so the sef{w(v) | {v} x II}, ¢ S} dominateg!| — |S;| vertices inI and has cardinality at least

7(G) — |S;|. Sum overk to get
IDO((V(G) = 1) x V(H))| 27" (G)y(H) — [S]. (2.4)
Combine equations (2.3) and (2.4) to get
YGOH) > +*(G)y(H).
O

Combining this result with that of Aharoni, Berger and Ziv [1], an obviagsollary is that

Vizing’s conjecture holds for chordal graphs.

Independent Domination

Bresar, et. al. [8] provide a few open conjectures in their survey papeudmg the following.

Conjecture 2.3 [8] For any graphsG and H, v(GOH) > min{i(G)y(H),v(G)i(H)}.

The truth of this conjecture would immediately imply Vizing’s conjecture holds for @air of
graphsG andH, asy(G) < i(G) by Lemma 1.1. We also have the following conjecture, which is
implied by Vizing's conjecture. Bi&ar, et. al. suggest that perhaps this could be established without

first proving Vizing’s conjecture.
Conjecture 2.4 [8] For any graphsG and H, i(GOH) > ~(G)y(H).

In addition, the survey paper makes the following partition conjecture, wikaziid also imply

the truth of Vizing’s conjecture.

29



Conjecture 2.5 [8] Let G and H be arbitrary graphs. There is a partition & (G) into v(G) sets
Iy, ..., I, () such that there is a minimal dominating setof GL1H such that the projection of

Dn(II; x V(H)) ontoH dominatesH forall i = 1,...,v(G).

2.3 Clark-Suen Inequality and Improvement

We have given several results establishing the truth of Vizing’s congdturclasses of graphs
satisfying certain properties. Another approach to proving Vizing'estare is to find a constant
¢ such that for any graphs andH, v(GOH) > ¢y(G)vy(H). Clark and Suen [17] in 2000 proved

that this inequality is true for = % Here, we present an improvement of this result.
Theorem 2.20 For any graphsi and H, v(GOH) > 3~(G)y(H) + § min{y(G),v(H)}.

Proof. Let G and H be arbitrary graphs, and lé? be a~-set of the Cartesian produGH.
Let {u1,uz, ..., uy ()} be ay-set of G. PartitionV (G) into v(G) setslly,, Iz, ..., I1(q)., where
u; € IL;, foralli = 1,2, ...,v(G) and ifu € II;, thenu = u; or {u,u;} € E(G).

Let P,. denote the projection dfil;, x V(H)) N D onto H. That s,

P, ={veV(H)| (u,v) € D forsomeu € II, }.

DefineC;, = V(H) — Ng[P,] as the complement oV [P,.], where N [X] is the set of closed
neighbors ofX in graphH. As P, U C; is a dominating set off, we have

[Pl +[Cil 2v(H),  1=1,2,...,9(G). (2.5)
Forv e V(H), let
D,={u|(u,v)e D} and S,={i|veC.}.

Observe that if € S,, then the vertices ifhl;, x {v} are dominated “horizontally” by vertices in
D, x {v}. Let Sy be the number of pair§,v) wherei = 1,2,...,~4(G) andv € C;.. Then
obviously

7(G)
Sp= Y IS =Y _ICil
=1

veV (H)
SinceD,, U {u; | i ¢ S.,} is a dominating set aof/, we have

Dol + (1(G) = [Sa]) 2 (G),
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giving that
[Sw| < [Dal. (2.6)

Summing ovew € V(H), we have

Sy < |D|. (2.7)

We now consider two cases based on (2.5).

Case 1 AssumeP; | + |C;.| > v(H) forall i = 1,...,v(G). Thenag(Il;, x V(H)) N D| > |P,.],

we have
(@) 7(G)
S (1G] + (I, x V(H) N D)) > ™ (v(H) +1),
i=1 i=1
which implies that
Su +|D| 2 v(G)y(H) +7(G). (2.8)

Combining(2.7)and (2.8) gives that

Y(GOH) = |D| > SA(@n(H) + 11(C). (2.9)

Case 2 AssumeéP; | + |Ci.| = v(H) for somei = 1,...,v(G). Note thatP;, U C;, is a~y-set ofH.
We now use this-set of H to partition V' (H) in the same way aB (G) is partitioned above. That
is, label the vertices ith;, U C;, asvy, va, ..., vy, and let{II; | 1 < j < ~(H)} be a partition of
H suchthatforallj =1,...,v(H), v; € II; and ifv € I ;, eitherv = v; or {v,v;} € E(H). We
next define the sef3;, C.;, S,.. and D,,, in the same way’;,, C;,, S., and D,,, are defined above. To

be specific, foll < j < ~(H), let
P;={ueV(G)| (u,v) € Dforsomev € II;}, and C,;=V(G)— Ng[P,l,
and foru € V(G), let
D, ={v|(u,v) e D} and S, ={j|ueC;}.

Similarly, we have
y(H

)
Sae= > ISul=)Cy
ueV(G) j=1
Foru € V(G), let D, = {v; | (u,v;) € Dy.,1 < j <~(H)}. We claim that
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This is becaus®,,. U {v; | j ¢ S..} is a dominating set off, with

Du. N {Uj ‘ ] ¢ Su} = ﬁu.a
and the argument for provin{R.10)follows in the same way g2.6) is proved. To make use of
the claim, we note that when we partition the verticegiofwe have at leas(H) vertices inD
that are of the form(u, v;). Indeed, for eaclk = 1,2,...,v(H), eitherv, € P,., which implies
(u,vg) € D for someu € II;, or v, € C;,, which implies that the vertices ii;, x {v;} are
dominated “horizontally” by some verticds/, v;,) € D. It therefore follows that

> [Du| = ~(H),

ueV(G)
and hence summming both sideg®f10)

ueV(G) ueV(G)
gives that

Sa < |D| —~(H). (2.11)
To complete the proof, we note that similar(#5), we have
[Pil+1C51=22(G),  j=12,...,7(H),
and summing ovef gives that
|D[ + Sa > v(G)y(H). (2.12)
Combining(2.11)and (2.12), we obtain

AGYY(H) + 2A(H). (2.13)

A(GOH) > :

N =

As either (2.9) or (2.13) holds, it follows that

G (H) + = min{~(G), 7(H)}.

v(GOH) = 5

N | —

O

This approach may also be used to prove a similar inequality involving the indepee number
of a graph, wheré&; is a claw-free graph. Recall that the independence number of a grépthe
maximum cardinality of a maximal independent setinand is denoted by (G). Also recall that
a graph is claw-free if it does not contain a copyfof 3 as an induced subgraph. Beg, et. al. [8]

proved the following.
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Figure 15.. PartitionsIl;, and the setd,,, S.,, andC;,; and partitiondI,; and the setd,,., S,,.,
andC,;

Theorem 2.21[8] Let G be a claw-free graph and lelf be a graph without isolated vertices.
Then

V(GUH) = Sa(G)(v(H) +1).

N =

Observe that (G) < o(G) for every graph, so we have the following corollary.

Corollary 2.4 [8] Let G be a claw-free graph and Ief be a graph without isolated vertices.
Then
1
Y(GUH) 2 57(G)(v(H) +1).
From this corollary we can conclude that any claw-free graph satistyiig = 2(G) satisfies

Vizing’s conjecture.
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Chapter 3

Fair Domination

A recent development in attempts to prove Vizing’s conjecture iS&rand Rall’s [11] idea of fair
domination. Their 2009 paper defines this concept and establishes theftki#ing’s conjecture
for graphs with fair domination number equal to domination number. Furthesrtieey verify that
the class of such graphs contains the BG-graphs and is distinct fronypleeXTgraphs defined by
Hartnell and Rall. We will define fair reception and fair domination, provigeaof that Vizing's

conjecture holds for the class of graphs with fair domination number equiainonation number,
examine fair domination in edge-critical graphs, and summarize some opstioggaelated to fair

domination.

3.1 Definition and General Results

A recent paper by B&ar and Rall [11] published in 2009 introduces the concept of fair ddinma
of a graph. Bréar and Rall were able to verify that Vizing’s conjecture holds for aaply¢ with
a fair reception of size(G).

In order to define fair domination, we must first define external dominatila.say that a set
X C V(G) externally dominatesetU C V(G) if U N X = () and for each: € U there isz € X
such thaf{u, z} € E(G).

Let G be a graph and Iy, ..., S, be pair-wise disjoint sets of vertices of G. L&t= 51 U Sy U
..USiandletZ = V(G) — S. The setsSy, ..., S form afair reception of size K for eachi € Z,

1 <1 < k, and any choice of setssS;,, ..., S;, the following holds: if D externally dominates
Si, U...US;, then

DNZl+ > (S;nDl-1)>1.
j,SjﬂD?éQ)
Notice that on the left-hand side of the above inequality, we count all theeefD that are not

in S. For vertices ofD that are in somé;, we count all but one fron® N S;. The largesk such

34



that there exists a fair reception of sizén graphd is called thefair domination numbeof G and

is denoted byyr(G).
Proposition 3.1 [11] For any graphG, p2(G) < vr(G) < v(G).

Proof. LetT be a 2-packing of G. Let each; consist of exactly one vertex € T'. This gives
us a fair reception of sizg'|. Thus,p2(G) < vr(G). Now assume there exists a graghwith
r =v(G) < vr(G) = k. Let D be ay-set of G and letSy, ..., S, form a fair reception of sizé
in G. Sincer < k, D must be disjoint from at least ort. We assumé N S; = forl <i <t
andD N S; # Ofort +1 < j < k. ThenD externally dominates; U Sz U ... U S, and so by the
definition of fair reception, we have

k
t<|Dnzl+ > (1S,nD|-1)=|DNZ|+ Y [S;ND|—(k—t)=|D|—k+t.
3,8;ND#(D j=t+1

Thenk < |D| and we have a contradiction. Therefope(G) < vr(G) < 7(G). O

Theorem 3.1 [11] For any graphsG and H,
V(GUH) > max{yr(G)v(H),v(G)yr(H)} 3.1)

Proof. Let G andH be arbitrary graphs. LeD be ay-set of GCJH and let the set$, So, ..., Sk
form a fair reception of H, wherer(H) = k. As in the definition of fair reception, we |t =
6 S;andZ =V (H) - S.
ZZlLet D, be the set of vertices ifw} x V(H) that are also irD and letP,, denote the projection
of D,, ontoH. Thatis,D,, = ({u} xV(H))nD andP,, = {ve V(H) | {u,v} € {u} xV(H)}.

Let D,; be the set of vertices i (G) x S, that are also irD and letP,; denote the projection of
D, ontoG. Thatis,D,; = (V(G) x S;)Nn D andP; = {u € V(G) | {u,v} € V(G) x S;}.

Let Dy; = ({u} x S;) N D.

LetD.z = (V(G) x Z)n D and letD, 7 = ({u} x Z) N D.

Now defined,; as follows.

p |Dyi| —1 if Dy # 0
m 0 otherwise

Observe thatl,,; counts the vertices ifv,,; that are not uniquely projected onta
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Now we definel’; = {u € V(G) | u ¢ N[P;]}. Observe thaf; U P, is a dominating set off

and, thus,
Tl + |Pal = +(G) (3.2)

LetT,. = {i|ueT,;i=1,2,...,k}. By definition ofT,; andT,,., the following holds

MoTil= > [T (3.3)

i=1 uweV(G)
Observe that ifi € T, the vertices{u} x S; are not dominated by,;, and soP,, externally

dominatesS; for all i € T,,.. Therefore, by definition of fair reception, we have

k

1Duz| + Y dui > |T] (3.4)
=1

Now, we have:

|D| = Z\D|+|DZ| Z(\P.iH(\D.iI—IP.Z-D)JFID.z!

k

i=1 ucV(Q) weV(Q) =1

k

Z|P\+ Y T (3.5)
=1 ueV(G)
k
>

(1Pl + [T]) (3.6)

v
oyl

=

a
|

Y(G)vr(H). (3.7)

Note, (3.5) holds by (3.4), (3.6) holds by (3.3), and (3.7) holds by (3.2)

Similarly, we define a fair reception of G and repeat the proof with the rdigs and H re-
versed to conclude that(GOH) > ~p(G)y(H). Therefore, we conclude that GOH) >
max{yp(G)y(H),y(G)yr(H)}. O

Corollary 3.1 LetG be a graph withy(G) = vr(G). ThenG satisfies Vizing’s conjecture.

There are some known examples of graph®r whichvr(G) # v(G). One such example can
be seen in Figure 16. It can be easily verified that this g@gtasy(G) = 3. Bresar, et. al. [8]
verified by computer thair(G) = 2.
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Figure 16: Example of a graph with(G) = v¢(G) + 1

BreSar and Rall observe that the class of graphs satisfy(idg) = v#(G) is an extension of
the class of BG-graphs which is distinct from Tygégraphs. An open question regarding fair
domination is whether a lower bound may be found{e(G) in terms ofy(G). If, for example,
one could find a constant > 3 such thatyr(G) > ¢y(G), that would improve the Clark-Suen

inequality.

3.2 Edge Critical Graphs

There are two classes of graphs that are critical with respect to the dooninamber:edge-critical
graphsandvertex-critical graphsin an edge-critical graph, the domination number decreases if an
edge is added; in vertex-critical graphs, the domination number desréaseertex is deleted.
Here, we concentrate on the class of edge-critical graphs.

A graphG is k-edge-domination-criticalor simply k-edge-critical ify(G) = k and for every
pair of nonadjacent vertices v € V(G), v(G + {u,v}) = k — 1. In other words, the domination
number decreases if any missing edge is added to the g¥aph

Note that a grapld- is 1-edge-critical if and only it¥ is a complete graph. It is also straightfor-

ward to characterize 2-edge-critical graphs, using the following theore

3 t
Theorem 3.2 [43] A graphG is 2-edge-critical if and only ity = | J K ,, for somet > 1.
=1

1=

In other words, the only 2-edge-critical graphs are complements of simbatars. Although
Vizing's Conjecture has already been established for gré@phgth v(G) = 2, we can provide
a different method of proof for 2-edge-critical graphs. We will shoat tthe domination number
equals the fair domination number in a 2-edge-critical graph and, theref@ can apply B&ar

and Rall's [11] result to show that Vizing’s conjecture holds.
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Theorem 3.3 For any 2-edge-critical grapldr, v(G) = v¢(G).

Proof.  Let G be a 2-edge-critical graph. By Theorem 3.2, every 2-edge-critigglyis the
complement of a union of stars. Considdr = K ,,—1 U Kip,—1 U ... U Ky ,,1, Where
|V(Kin,—1)] = n; andt > 1. Letw; be the vertex of maximum degree i ,,,—; for i =
1,2,...,t. NowletG = H. LetS; = {v; | i=1,2,...,t} and letSy = V(G) — S.

We need to show that; and S, form a fair reception of7. Consider the sef;. In order to
externally dominate this set, we need at least 2 vertices FpnTakev € K ,,—1 Wherev # v;.
Thenwv externally dominates; for all j # . Thus we must choose at least one more vertex from
S, to externally dominate;. This implies|D N Ss| —1 > 1 for all sets of verticed that externally
dominates;.

Now considerSs. Choosev; € S1. Thenw; externally dominates all vertices 6% except those
that were in the staK ,,,_; in H. Thus, we must choose an additional vertex# v; to externally
dominate those vertices. We hav@n S;| — 1 > 1.

Therefore, for any 2-edge-critical gragh v7(G) > 2. Butyr(G) < ~v(G) by Proposition 3.1
and sincey(G) = 2, we haveyr(G) = v(G) = 2. O

Since we know that Vizing’s conjecture holds for any grépthat hasy(G) = vr(G), this result
implies Vizing’s conjecture holds for all 2-edge-critical graphs.

Unfortunately, 3-edge-critical graphs are not easily charactergédand 2-edge-critical graphs
are. We provide a few examples of 3-edge-critical graphs.

Figure 17 provides seven examples of 3-edge-critical graphs. @b#eat we can find a fair
reception of size 3 in five of these graphs, as shown in Figure 18; lewwievs difficult to tell if
there is a fair reception of size 3 in the remaining two graphs in Figure 17.0Wawk the following

result which may help in finding fair reception of siz&7) in an edge-critical graptv.

Theorem 3.4 LetG bek-edge-critical withy(G) = vr(G) = k. Then ifSy, S, ..., S, form a

fair reception ofG, eachS; for: = 1,2, ..., k is a complete subgraph ¢f.

Proof. AssumeG is k-edge-critical and that(G) = vr(G) = k. Let Sy, Ss, ..., S, form a fair
reception ofG. Without loss of generality, assunsg does not form a complete subgraphtafFor

u,v € Sy suchthafu,v} ¢ E(G), draw the edgéu, v}. Then we still have a fair reception of size
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Figure 17. Examples of 3-edge-critical graphs
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A

(iii) (iv)

Figure 18. Fair domination in 3-edge-critical graphs: In each graphSiet the vertices that are
blue, S = set of green vertices, arif} = red vertices. These sets form a fair reception of each graph

of size 3.
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k. But adding{u, v} decreases(G), so now we haver(G) > v(G), a contradiction. Therefore,

foreachi = 1,2, ..., k, S; forms a complete subgraph 6f O

We define theline graph of the complete graph of%| as follows: let[k] denote thek-set
{1,2,...,k} and consider the set of 2-subsets[bf. Let these(},) 2-subsets be the vertices
UL U2, V(R of the line graphGG,. There is an edgév,, v2} between vertices,, v, € V(G)
if and only if v; Nwy # (. For the line graptGy, v(Gk) = (%1. If k£ is even then ay-set
of Gy is {1,2},{3,4},...,{k — 1,k}, andy(G) = (%1. If & is odd then ay-set of G}, is
{1,2},{3,4},...,{k — 2,k — 1}, andy(G) = %52

Lemma 3.1 |If k is even, then the line grapH;, is edge-critical.

Proof. Let D be a dominating set fo&,, wherek is even. Without loss of generality, 1é =
{{1,2},{3,4},...,{k — 1,k}}. Now add an edge between two verticedinsay{{1, 2}, {3,4}}
to form the graphG). ThenD’ = {{1,2},{5,6},...,{k — 1,k}} is a dominating set of/,. and
|D’'| = |D| — 1. Hence G}, is edge-critical whelk is even. O

Consequently, if there is a fair reception@f of size[%}, then each sef;, i =1,2,..., %
is a complete subgraph 6f;.

Note that for anyk, we can find a fair reception aF;, of size L%J. Consider partitioning the
set[k] into 3-subsets; without loss of generality, say we héve2, 3},{4,5,6}, and so on. Then
the vertices generated by each set form the Setso, . .. ,S%J. So we have, for example; =
{{1,2},{1, 3}, {2, 3}}. By forming our setsS; in this way, we ensure that no vertexip dominates
a vertex inS; for i # j. We also require at least two vertices frdi{Gy) — S to dominate
eachS; and so these sets satisfy the criteria to be a fair receptiony(&%) = [%52] we have

vr(Gr) > L%J > 24(Gy). Now, observe that we have a lower boundgn(Gy.¢) in terms of

vr(Gr).
Lemma 3.2 Foranyk, vr(Gri6) > vr(Gi) + 2.

Proof. LetSy, Sy, ..., S,,(q,) formafairreception of/(G). Now add the 6 point§1, 2,3, 4,5,6}

P YF
to [k] and considelG, 6. We can form a fair reception of this graph by addifig, ,)+1 =
{{1, 2}, {1, 3}, {2, 3}} and S’YF(Gk)+2 = {{4, 5}, {4, 6}, {5, 6}} to 51,59,..., S"/F(Gk)' Thus,
VP (Gr6) = vr(Gr) + 2. O
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Note that finding a good upper bound fgf (G}, ) is much more difficult. We know thatz (Gj) <
~v(Gg). It remains an open problem whether we can improve this upper bound.
We observe that the line graghy, is claw-free, and so we can apply Corollary 2.4, which states

that for a claw-free graph and any grafihwithout isolated vertices,

Y(GROH) > -v(G)(v(H) + 1).

1
2

Note, also, that we can apply Theorem 3.1 toge&,0H) > vr(Gi)v(H) > 27(Gr)v(H).
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Chapter 4

Conclusion

Vizing’s conjecture, as stated in 1963, is that the domination number of thtediar product of
two graphs is at least the product of their domination numbers. The first nesjolt related to the
conjecture was from Barcalkin and German [4] in 1979 when they defieedmposable graphs
and proved Vizing's conjecture holds for the so-called A-class, nawngonly called BG-graphs.
Hartnell and Rall's [27] 1995 breakthrough established the truth of Vizingnjecture for what
they called TypeX graphs; this class of graphs is an extension of the BG-graphSaBaad Rall
[11] in 2009 defined fair reception and fair domination. They proved\imng’s conjecture holds
for graphs with domination number equal to fair domination number. The cfemsch graphs is
an extension of the BG-graphs which is distinct from Typgraphs. We also know that Vizing's
conjecture is true for any graph with domination number less than 4; this wasdgin 2004 by
Sun [44].

Another approach to proving Vizing’s conjecture is to find a constant0 so thaty(GOH) >
cy(G)~(H), with the hope that eventually this constant will improve to 1. Clark and Sugmjére
able to do this in 2000 for = % and we were able to tighten their arguments to prove a slightly
improved inequality.

As Vizing’s conjecture is not yet proved for all graphs, severadaeshers have studied Vizing-
like conjectures for other graph products and other types of dominatienpré¥ided a summary
of some Vizing-like results for fractional domination, integer domination, uppenination, upper
total domination, paired domination, and independence domination. In additeostated a few
conjectures which remain open problems and would contribute to effort®te Mizing’s conjec-
ture. Two of these conjectures involve independent domination, and &news as the projection
conjecture (Conjecture 2.5). A proof of any of these three conjectuoesd imply the truth of

Vizing’s conjecture.
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We also defined fair reception and fair domination, as introduced §aBend Rall, and included
a proof of their Vizing-like inequality relating the domination number of the Cateproduct of
graphsG and H to the fair domination numbers ¢ and H. It remains an open question whether
we can find a constamt > % so thatyr(G) > ¢y(G) for any graphGG. We do know that there are
graphs for whichyr(G) = v(G) — 1, and we believe the line graghy, could have fair domination
number much smaller than domination number; however it remains difficult to fiotex bound
on the fair domination number of a graph in terms of the domination number.

Finally, we considered fair domination in edge critical graphs. We foundaHair reception
of an edge-critical graplir of sizey(G) must have each sé&}; induce a complete subgraph Gt
We also provided a proof that Vizing’s conjecture is true for 2-edgéeal graphs. This result, of
course, was already known since we know Vizing’s conjecture holdsfp graph with domination
number less than 4; however, it is an example of how we might use the idaa dbfmination to
prove that Vizing's conjecture is true for certain graphs.

Note that a common method of proof in most of the Vizing-like results is to partiticomartat-
ing setD of GCJH and project the vertices dp onto GG or H. It is unclear whether this particular
method will be useful to prove Vizing’s conjecture. As long as Vizing'sjeoture remains unre-
solved, possible next steps in attempt to prove it are to continue studyingyMikenconjectures,
particularly those relating domination and independent domination. One migtdtatdy fair dom-
ination further, with hopes of finding a lower bound on the fair domination raerroba graph. We
also note that the BG-graphs, Tygé graphs, and graphs with fair domination number equal to
domination number are all defined by a partition of the vertex set of a gtapbuld be useful to
find a new way of partitioning the vertices of a graph in such a way that westablish the truth

of Vizing’s conjecture for an even larger class of graphs.
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Table 1: Symbols

Symbol  Description

v(Q) Domination number

vr(G)  Fair domination number

(@) Minimum vertex degree

A(G) Maximum vertex degree

x(G) Chromatic number

i(G) Independent domination number
Y (G) Total domination number

7e(G) Connected domination number
v(G)  Cligue domination number
p2(G) 2-packing number

¢ (G) Fractional domination number
Yk (G)  {k}-domination number

a(Q) Independence number

I'G) Upper domination number
Vt{k}(G) Total { £ }-domination number
I'(G) Upper total domination number
Ypr(G)  Paired domination number
(@) Independence domination number
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