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S.No Lecture 

Duration 
Period 

Topics to be Covered Support Material/Page Nos 

UNIT-I 

1. 1 Isomorphism of graphs and sub 

graphs 

R1:Chap:2.1:Pg.No:14- 16 

2. 1 Walks, Paths, Circuits R4:Chap:1.3:Pg.No:6-9 

3. 1 Connected , connectedness of 

graphs and components of graphs 

R1:Chap:2.5:Pg.No:19- 21 

4. 1 Euler graphs and Euler graphs 

based on theorems 

R1:Chap:2.6:Pg.No:21- 23 

5. 1 Hamiltonian paths and circuits R3:Chap:4.5:Pg.No:314- 316 

6. 1 Theorems on some properties of 

trees and Distance and centers 

in tree 

R6:Chap:3:Pg.No:39-41 

7. 1 Rooted and binary trees and 

spanning trees, Fundamentals 
Circuits 

R1:Chap:3.5:Pg.No:45- 57 

8. 1 Recapitulation and Discussion of 

possible questions 

 

Total No of Hours Planned For Unit I=8 

UNIT-II 

1. 1 Spanning trees in a Weights Grap R8:Chap:3.10:Pg.No:58- 61 

2. 1 Theorems on some properties of 

Cut Sets and all Cut Sets 

R1:Chap:4.2:Pg.No:68- 71 
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3. 1 Fundamental Circuits and Cut Sets R1:Chap:4.5:Pg.No:73- 75 

4. 1 Connectivity and separability R1:Chap:4.5:Pg.No:73- 75 

5. 1 Network flows R3:Chap:11:Pg.No:1377- 1380 

6. 1 Theorems on some 1- Isomorphism R1:Chap:4.7:Pg.No:80- 82 

7. 1 Theorems on some 2- Isomorphism R1:Chap:4.5:Pg.No:73- 75 

8. 1 Combinational versus Geometric 

Graphs  

R1:Chap:5.1:Pg.No:88- 89 

9. 1 Different Representation of a Planar 

Graph 

R1:Chap:5.4:Pg.No:90-99 

10. 1 Recapitulation and Discussion of possible questions 

 

Total No of Hours Planned For Unit II=10 

 

UNIT-III 

1. 1 Introduction and definition of a 

incidence matrix 

R1:Chap:7.1:Pg.No:137- 139 

2. 1 Sub matrix and Circuits matrix 

based on problems 

R1:Chap:7.3:Pg.No:142- 146 

3. 1 Path matrix and adjacency matrix 

based on problems 

R1:Chap:7.8:Pg.No:156- 161 

4. 1 Chromatic Number theorems R5:Chap:1.12:Pg.No:257 - 258 

5. 1 Chromatic partitioning R5:Chap:16.14:Pg.No:25 8- 
259 

6. 1 Chromatic polynomial, Matching, 

covering 

R1:Chap:8.5:Pg.No:174- 190 

7. 1 Four color problem R5:Chap:2.1:Pg.No:31- 35 
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8. 1 Recapitulation and Discussion of possible questions 

Total No of Hours Planned For Unit III=8 

 

UNIT-IV 

1. 1 Introduction and definition of 

Directed Graphs 

R9:Chap:3.1:Pg.No:163- 

165 

2. 1 Some types of Directed Graphs R1:Chap:9.2:Pg.No:197- 

198 

3. 1 Types of enumeration R1:Chap:10.1:Pg.No:238 - 
240 

4. 1 Counting labeled trees R1:Chap:10.2:Pg.No:240 - 

241 

5. 1 Counting unlabeled trees R1:Chap:10.3:Pg.No:241 - 

250 

6. 1 Polya’s counting theorem R1:Chap:10.4:Pg.No:250 - 

260 

7. 1 Graph enumeration with Polya’s 

theorem 

R1:Chap:10.5:Pg.No:260 - 

264 

8. 1 Recapitulation and Discussion of possible questions 

Total No of Hours Planned For Unit IV=8 

 

UNIT-V 

1. 1 Introduction Terminology and 

concepts 

R1:Chap:1.1:Pg.No:15- 16 

2. 1 Applications of Domination in 

graphs 

R7:Chap:5.1:Pg.No:71-73 

3. 1 Dominating set and Domination 

number 

R2:Chap:1.2:Pg.No:16- 18 

4. 1 Independent set and Independent 
number 

R2:Chap:1.3:Pg.No:19- 20 

5. 1 History of domination in graphs R2:Chap:1.13:Pg.No:36- 37 

6. 1 Recapitulation and Discussion of possible questions 

7. 1 Discuss on Previous ESE Question 

Papers 

 

8. 1 Discuss on Previous ESE Question 

Papers 
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9. 1 Discuss on Previous ESE Question 

Papers 

 

Total No of Hours Planned for unit V=9 

S1: Deo N, (2007). Graph Theory with Applications to Engineering and Computer Science, 

Prentice Hall of India Pvt Ltd, New Delhi.. 

S2: Teresa W. Haynes, Stephen T. Hedetniemi and Peter J.Slater, (1998), Fundamentals of 

Domination in Graphs, Marcel Dekker, New York. 

S3: Flouds C. R., (2009). Graph Theory Applications, Narosa Publishing House. New 

Delhi,India. 

Total Planned Hours 40 
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UNIT-I

SYLLABUS

Graphs – Introduction – Isomorphism – Sub graphs – Walks, Paths, Circuits – Connectedness –
Components – Euler Graphs – Hamiltonian Paths and Circuits – Trees – Properties of trees –
Distance and Centers in Tree – Rooted and Binary Trees - Spanning trees – Fundamental
Circuits.
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UNIT-II

SYLLABUS

SPANNING TREES
Spanning Trees in a Weighted Graph – Cut Sets – Properties of Cut Set – All Cut Sets – Fundamental Circuits
and Cut Sets – Connectivity and separability – Network flows – 1-Isomorphism – 2-Isomorphism –
Combinational versus Geometric Graphs – Planer Graphs – Different Representation of a Planer Graph.
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UNIT-III

SYLLABUS

Incidence matrix – Sub matrices – Circuit Matrix – Path Matrix – Adjacency Matrix – Chromatic Number –
Chromatic partitioning – Chromatic polynomial - Matching - Covering – Four Color Problem.



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 2/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 3/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 4/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 5/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 6/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 7/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 8/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 9/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 10/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 11/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 12/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 13/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 14/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 15/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 16/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 17/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 18/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 19/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 20/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 21/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 22/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 23/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 24/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 25/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 26/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 27/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 28/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 29/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 30/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 31/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 32/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 33/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 34/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 35/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 36/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 37/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 38/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 39/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 40/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 41/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 42/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 43/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 44/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 45/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 46/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: III BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 47/47



KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY

AND ITS APPLICATIONS
COURSE CODE: 18MMP205A UNIT: IV BATCH-2018-2020

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 1/30

UNIT-IV

SYLLABUS

Directed Graphs – Types of Directed Graphs - Types of enumeration, counting labeled trees,
counting unlabelled trees, Polya’s counting theorem, graph enumeration with Polya’s theorem.
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Domination in Graphs

Jennifer M. Tarr

ABSTRACT

Vizing conjectured in 1963 that the domination number of the Cartesian product of two graphs is

at least the product of their domination numbers; this remains one of the biggest open problems in

the study of domination in graphs. Several partial results have been proven, but the conjecture has

yet to be proven in general. The purpose of this thesis was to study Vizing’s conjecture, related

results, and open problems related to the conjecture. We give a survey ofclasses of graphs that are

known to satisfy the conjecture, and of Vizing-like inequalities and conjectures for different types

of domination and graph products. We also give an improvement of the Clark-Suen inequality [17].

Some partial results about fair domination are presented, and we summarize some open problems

related to Vizing’s conjecture.
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Chapter 1

Introduction

Mathematical study of domination in graphs began around 1960. The following is a brief history of

domination in graphs; in particular we discuss results related to Vizing’s conjecture. We then pro-

vide some basic definitions about graph theory in general, followed by a discussion of domination

in graphs.

1.1 History

Although mathematical study of domination in graphs began around 1960, there are some refer-

ences to domination-related problems about 100 years prior. In 1862, deJaenisch [21] attempted to

determine the minimum number of queens required to cover ann× n chess board. In 1892, W. W.

Rouse Ball [42] reported three basic types of problems that chess players studied during this time.

These include the following:

1. Covering: Determine the minimum number of chess pieces of a given type that are necessary

to cover (attack) every square of ann× n chess board.

2. Independent Covering:Determine the smallest number of mutually nonattacking chess pieces

of a given type that are necessary to dominate every square of ann× n board.

3. Independence:Determine the maximum number of chess pieces of a given type that can be

placed on ann× n chess board such that no two pieces attack each other. Note that if the chess

piece being considered is the queen, this type of problem is commonly known as the N-queens

Problem.

The study of domination in graphs was further developed in the late 1950’s and 1960’s, beginning

with Claude Berge [5] in 1958. Berge wrote a book on graph theory, in which he introduced the

1



“coefficient of external stability,” which is now known as the domination number of a graph. Oystein

Ore [39] introduced the terms “dominating set” and “domination number” in his book on graph

theory which was published in 1962. The problems described above werestudied in more detail

around 1964 by brothers Yaglom and Yaglom [48]. Their studies resulted in solutions to some of

these problems for rooks, knights, kings, and bishops. A decade later,Cockayne and Hedetniemi

[16] published a survey paper, in which the notation
(G) was first used for the domination number

of a graphG. Since this paper was published, domination in graphs has been studied extensively

and several additional research papers have been published on this topic.

Vizing’s conjecture is perhaps the biggest open problem in the field of domination theory in

graphs. Vizing [45] in 1963 first posed a question about the domination number of the Cartesian

product of two graphs, defined in section 1.2. Vizing stated his conjecturethat for any graphsG and

H, 
(G□H) ≥ 
(G)
(H) in 1968 [46].

This problem did not receive much immediate attention after being conjectured;however, since

the late 1970s, several results have been published. These results establish the truth of Vizing’s

conjecture for certain classes of graphs, and for graphs that meet certain criteria. Note that we say

a graphG satisfies Vizing’s conjecture if, for any graphH, the conjectured inequality holds. The

first major result related to Vizing’s conjecture was a theorem from Barcalkin and German [4] in

1979. They studied what is referred to as decomposable graphs and established a class of graphs

known as BG-graphs for which Vizing’s conjecture holds. A corollary of this result is that Vizing’s

conjecture holds for all graphs with domination number equal to 2, graphs with domination number

equal to 2-packing number, and trees. The result that Vizing’s conjecture is true for trees was also

proved separately by Faudree, Schelp and Shreve [22], and Chen,Piotrowski and Shreve [13].

Hartnell and Rall [27] in 1995 established Vizing’s conjecture for a larger class of graphs. They

found a new way of partitioning the vertices of a graph that is slightly different from the way

Barcalkin and German partitioned the vertices in decomposable graphs. TheTypeX class of graphs

that resulted from Hartnell and Rall’s work is an extension of the class of BG-graphs.

Another approach to Vizing’s conjecture is to find a constantc > 0 such that
(G□H) ≥

c
(G)
(H). In 2000, Clark and Suen [17] were able to prove this inequality forc = 1/2. They used

what is commonly referred to as the double projection method in their proof. Aswill be proven, this

result can be improved to
(G□H) ≥ 1
2
(G)
(H) + 1

2 min{
(G), 
(H)}.
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One of the most recent results related to Vizing’s conjecture deals with the new concept of fair

reception, which was first defined by Brešar and Rall [11] in 2009. They defined the fair domination

number of a graphG, denoted
F (G), and proved that
(G□H) ≥ max{
(G)
F (H), 
F (G)
(H)}.

Thus, for any graphG having
(G) = 
F (G), Vizing’s conjecture holds. Brešar and Rall showed

that the class of such graphs is an extension of the BG-graphs distinct from TypeX graphs.

1.2 Graph-Theoretic Definitions

The study of domination in graphs came about partially as a result of the studyof games and recre-

ational mathematics. In particular, mathematicians studied how chess pieces of aparticular type

could be placed on a chessboard in such a way that they would attack, or dominate, every square

on the board. With this in mind, graph theoretical definitions will be related to the game of chess

where applicable.

A graphG = (V,E) consists of a setV of vertices and a setE of edges. We shall only consider

simple graphs, which contain no loops and no repeated edges. That is,E is a set of unordered

pairs{u, v} of distinct elements fromV . The order of G is ∣V (G)∣ = n, and thesize of G is

∣E(G)∣ = m. If e = {vi, vj} ∈ E(G), thenvi andvj areadjacent. Vertexvi and edgee are said to

be incident.

Envision a standard8× 8 chessboard, as can be seen in Figure 1. Each square can be represented

by a vertex in a graphG. Consider placing several queens on the board. A queen may move any

number of spaces vertically, horizontally, or diagonally. Any square (orvertex) to which a queen

is able to move is adjacent to the square containing the queen. Therefore, there is an edge between

those two squares, or vertices of the graphG. Since the chessboard is8 × 8, with each square

reprented by a vertex of the graphG, the order ofG is 64. The size ofG depends on the number,

type, and placement of chess pieces on the board.

We call the set of vertices adjacent to a vertexv in a graphG the open neighborhoodN(v)

of v. The open neighborhood of a set of verticesS ⊂ V (G) is N(S) =
∪

v∈S
N(v). Theclosed

neighborhoodN [v] of v isN(v)∪{v}, and the closed neighborhood of a set of verticesS ⊂ V (G)

isN [S] = N(S) ∪ S.

Thedegreeof a vertexv, denoteddeg(v) is the number of edges incident withv. Alternatively,

we can definedeg(v) = ∣N(v)∣. The minimum and maximum degrees of vertices inV (G) are

3



Figure 1.: The first image depicts a standard8 × 8 chessboard. The second image has a queen

placed in the upper right corner. If we represent every square on the board by a vertex in a graph,

then we would draw an edge from the queen to every vertex representingone of the shaded squares.

denoted by�(G) andΔ(G), respectively. If�(G) = Δ(G) = r, then the graphG is regular of

degree r, orr-regular.

Consider, once again, placing several queens on a chessboard. Assume the space occupied by one

of the queens is denoted by vertexv. Then the number of possible moves for the queen occupying

that space, including those occupied by other queens, is equal todeg(v). If we count the number

of possible spaces to which the queen in Figure 1 can move, we see that it has 21 possible moves.

Thus, if we represent that chessboard by a graph and denote the space containing the queen as vertex

v, we havedeg(v) = 21.

A walk of lengthk is a sequencew = v0, v1, v2, . . . , vk of vertices wherevi is adjacent tovi+1

for i = 0, 1, . . . , k − 1. A walk consisting ofk + 1 distinct verticesv0, v1, ..., vk is apath, and if

vo = vk then these vertices form acycle. A graphG is connectedif for every pair of verticesv and

x in V (G), there is av-x path. Otherwise,G is disconnected. A componentof G is a connected

subgraph ofG which is not properly contained in any other connected subgraph.

If there is at least onev-x walk in the graphG then thedistanced(v, x) is the minumum length

of av-x walk. If no v-x walk exists, we say thatd(v, x) = ∞.

We now consider a few different types of graphs. ThecycleCn of ordern ≥ 3 has sizem = n,

is connected and 2-regular. See Figure 2 for the graphsC4 andC5. A tree T is a connected graph

4



Figure 2.: CyclesC4 andC5

with no cycles. Every treeT with n vertices hasm = n− 1 edges. Thestar K1,n−1 has one vertex

of degreen−1 andn−1 vertices of degree 1. Observe that a star is a type of tree. Refer to Figure 3

for examples of a tree and a star.

Figure 3.: A treeT and the starK1,4

In any graph a vertex of degree one is anendvertex. An edge incident with an endvertex is a

pendant edge. We can see that the graphsT andK1,4 in Figure 3 each have four pendant edges and

four endvertices. Specifically, inT , the endvertices arev1, v2, v5, andv6, and pendant edges are

{v1, v3}, {v2, v3}, {v4, v5}, and{v4, v6}.

Figure 4.: Complete graphsK4 andK5

Thecomplete graphKn has the maximum possible edgesn(n−1)/2. See Figure 4 for the graphs

of K4 andK5. Thecomplement̄G of a graphG hasV (Ḡ) = V (G) and{u, v} ∈ E(G) if and only

if {u, v} /∈ E(Ḡ). Thus, the complement of a complete graph is the empty graph.
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A bipartite graphis one that can be partitioned asV = V1 ∪ V2 with no two adjacent vertices in

the sameVi. We define thechromatic numberof a graphG to be the minimumk such thatV (G)

can be partitioned into setsS1, S2, . . . , Sk and eachSi is independent. That is, for eachi, no two

vertices inSi are adjacent. Denote the chromatic number ofG by �(G). If �(G) = k, thenG is

k-colorable which means we can color the vertices ofG with k colors in such a way that no two

adjacent vertices are the same color. Observe that a graph is 2-colorable if and only if it is a bipartite

graph.

The graphH is a subgraphof G if V (H) ⊆ V (G) andE(H) ⊆ E(G). If H satisfies the

property that for every pair of verticesu andv in V (H), the edge{u, v} is in E(H) if and only if

{u, v} ∈ E(G) thenH is aninduced subgraphof G. The induced subgraphH with S = V (H) is

called thesubgraph induced by S. This is denoted byG[S].

There are several different products of graphsG andH; we shall define the Cartesian product,

strong direct product, and categorical product. All three of these products have vertex setV (G) ×

V (H). TheCartesian productof G andH, denoted byG□H, has edge set

E(G□H) = {{(u1, v1), (u2, v2)} ∣ u1 = u2 and{v1, v2} ∈ E(H);

or {u1, u2} ∈ E(G) andv1 = v2}.

Thestrong direct productof G andH has edge set

E(G□H) ∪ {{(u1, v1), (u2, v2)} ∣ {u1, u2} ∈ E(G) and{v1, v2} ∈ E(H)}

and is denoted byG⊠H. Thecategorical product, denoted byG×H, has edge set

E(G×H) = {{(u1, v1), (u2, v2)} ∣ {u1, u2} ∈ E(G) and{v1, v2} ∈ E(H)}.

1.3 Domination in Graphs

We now introduce the concept of dominating sets in graphs. A setS ⊆ V of vertices in a graph

G = (V,E) is adominating setif every vertexv ∈ V is an element ofS or adjacent to an element

of S. Alternatively, we can say thatS ⊆ V is a dominating set ofG if N [S] = V (G). A dominating

setS is aminimal dominating setif no proper subsetS′ ⊂ S is a dominating set. Thedomination

number
(G) of a graphG is the minimum cardinality of a dominating set ofG. We call such a set

a
-set ofG.

6



For a graphG = (V,E) andS ⊆ V a vertexv ∈ S is anenclaveof S if N [v] ⊆ S. ForS ⊆ V

a vertexv ∈ S is anisolateof S if N(v) ⊆ V − S. We say that a set isenclavelessif it does not

contain any enclaves. Note thatS is a dominating set of a graphG = (V,E) if and only if V − S

is enclaveless.

Theorem 1.1 [39] A dominating setS of a graphG is a minimal dominating set if and only if for

anyu ∈ S,

1. u is an isolate ofS, or

2. There isv ∈ V − S for whichN [v] ∩ S = {u}.

Proof. [39] LetS be a
-set ofG. Then for every vertexu ∈ S, S−{u} is not a dominating set of

G. Thus, there is a vertexv ∈ (V −S)∪ {u} that is not dominated by any vertex inS −{u}. Now,

eitherv = u, which impliesu is an isolate ofS; or v ∈ V − S, in which casev is not dominated by

S − {u}, and is dominated byS. This shows thatN [v] ∩ S = {u}.

In order to prove the converse, we assumeS is a dominating set and for allu ∈ S, eitheru is an

isolate ofS or there isv ∈ V − S for whichN [v] ∩ S = {u}. We assume to the contrary thatS is

not a
-set ofG. Thus, there is a vertexu ∈ S such thatS − {u} is a dominating set ofG. Hence,

u is adjacent to at least one vertex inS − {u}, so condition (1) does not hold. Also, ifS − {u} is a

dominating set, then every vertex inV −S is adjacent to at least one vertex inS−{u}, so condition

(2) does not hold foru. Therefore, neither (1) nor (2) holds, contradicting our assumption. □

Theorem 1.2 [39] Let G be a graph with no isolated vertices. IfD is a
-set ofG, thenV (G)−D

is also a dominating set.

Proof. [39] Let D be a
-set of the graphG and assumeV (G)−D is not a dominating set ofG.

This means that for some vertexv ∈ D, there is no edge fromv to any vertex inV (G) − D. But

then the setD− v would be a dominating set, contradicting the minimality ofD. We conclude that

V (G)−D is a dominating set ofG. □

Theorem 1.3 [39] If a graphG has no isolated vertices, then
(G) ≤ n
2 .
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Proof. LetG be a graph with no isolated vertices and letD be a
-set ofG. Assume to the contrary

that
(G) > n
2 . By Theorem 1.2,V (G) −D is a dominating set ofG. But ∣V (G) −D∣ < n − n

2 ,

contradicting the minimality of
(G). We conclude that
(G) ≤ n
2 . □

Theorem 1.4 [36] For any graphG,


(G) + 
(Ḡ) ≤ n+ 1 (1.1)


(G)
(Ḡ) ≤ n (1.2)

Proof. [36] We show (1.1) first. If the graphsG andḠ have no isolated vertices, then Theorem 1.3

implies
(G)+
(Ḡ) ≤ n. If G has an isolated vertex, then
(G) ≤ n and
(Ḡ) = 1. Then we have


(G) + 
(Ḡ) ≤ n + 1. Similarly, if Ḡ has an isolated vertex, we have
(Ḡ) ≤ n and
(G) = 1,

which implies
(G) + 
(Ḡ) ≤ n+ 1.

Now we prove (1.2). Define forX ⊆ V (G) the following sets:

D0(X) = {u ∈ V (G)−X ∣ {u, v} ∈ E(G) for all v ∈ X},

and

D1(X) = {u ∈ X ∣ {u, v} ∈ E(G) for all v ∈ X}.

Now, letD = {v1, v2, ..., v
(G)} be a
-set ofG and partition the vertices ofV (G) into setsΠi

such thatvi ∈ Πi for eachi = 1, 2, ..., 
(G) and ifv ∈ Πi thenv = vi or {v, vi} ∈ E(G). Choose

this partition in such a way that

(G)
∑

i=1
∣D1(Πi)∣ is a maximum.

Suppose∣D0(Πj)∣ ≥ 1 for somej. Then there is a vertexv ∈ Πk, for k ∕= j, such that

{u, v} ∈ E(G) for all u ∈ Πj .

If v ∈ D0(Πk) then(D − {vj , vk}) ∪ {v} is a dominating set ofG with cardinality smaller than


(G), a contradiction. Thus,v /∈ D0(Πk).

Now we can re-partition the vertices ofG so thatΠ′
l = Πl for l ∕= j andl ∕= k, Π′

j = Πj ∪ {v}

andΠ′
k = Πk − {v}. But then∣D1(Π

′
l)∣ = ∣D1(Πl)∣, ∣D1(Π

′
j)∣ = ∣D1(Πj)∣ + 1, and∣D1(Π

′
k)∣ ≥

∣D1(Πk)∣. This contradicts the choice of our original partition ofG.
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We conclude that∣D0(Πi)∣ = 0 for all i = 1, 2, . . . , 
(G). As any setX with ∣D0(X)∣ = 0

dominatesḠ, each setΠi dominatesḠ and so
(Ḡ) ≤ ∣Πi∣. Therefore, we have

n =


(G)
∑

i=1

∣Πi∣ ≥ 
(G)
(Ḡ).

□

We define the coronaG of graphsG1 andG2 as follows. ThecoronaG = G1 ∘G2 is the graph

formed from one copy ofG1 and ∣V (G1)∣ copies ofG2 where theith vertex ofG1 is adjacent to

every vertex in theith copy ofG2. Refer to Figure 5 for an example of a corona of two graphs. We

take the original graphG and, as∣V (G)∣ = 4, we have four copies ofH. Both vertices in theith

copy ofH are adjacent to theith vertex inG for eachi = 1, ..., 4.

Figure 5.: GraphsG andH, and the coronaG ∘H

The following theorem, which was proved independently by Payan and Xuong and by Fink, Ja-

cobson, Kinch and Roberts, tells us which graphs have domination number equal ton
2 . Thus, we can

use this result to find extremal examples of graphs which achieve the upperbound in Theorem 1.3.

Theorem 1.5 [23] [40] For a graph G with even ordern and no isolated vertices,
(G) = n
2 if

and only if the components ofG are the cycleC4 or the coronaH ∘K1 for any connected graphH.

Proof. [40] It can easily be verified that if the components of a graphG areC4 or the corona

H ∘K1 for a connected graphH, then
(G) = n
2 .

Now we assume that
(G) = n
2 . We may assume thatG is connected. LetC = {S1, S2, . . . , Sp}

be a minimal set of stars which cover all vertices ofG. Since
(G) = n
2 , C must be a maximal

matching ofp = n
2 edges. For eachSi ∈ C, letSi = {xi, yi}. We consider two cases.

If p ≥ 3 then for everyi, eitherxi or yi has degree 1. If not, there isi such thatdeg(xi) ≥ 2 and

deg(yi) ≥ 2. But then we can find a dominating set ofG with cardinality less thann2 . This implies

G is a coronaH ∘K1 for some connected graphH.
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Figure 6.: CoronasK1 ∘K1 andK2 ∘K1 and cycleC4.

If p ≤ 2 thenG is isomorphic to one of the graphs in Figure 6. Note that the first two graphs are

coronas and the third is the cycleC4.

We conclude that
(G) = n
2 if and only if the components ofG are the cycleC4 or the corona

H ∘K1 whereH is a connected graph. □

Figure 7.: FamilyA

Figure 8.: Familyℬ

We now characterize connected graphs with
(G) = ⌊n2 ⌋ by defining the following six classes of

graphs. These results were proved independently by Cockayne, Haynes and Hedetniemi [15] and

by Randerath and Volkmann [41].

1. G1 = {C4} ∪ {G ∣ G = H ∘K1 whereH is connected}.

2. G2 = A ∪ ℬ whereA andℬ are the families of graphs depicted in Figure 7 and Figure 8.

3. G3 =
∪

H

S(H) whereS(H) denotes the set of connected graphs, each of which can be formed

fromH ∘K1 by adding a new vertexx and edges joiningx to at least one vertex inH.
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4. G4 = {Θ(G) ∣ G ∈ G3} wherey ∈ V (C4) and forG ∈ G3, Θ(G) is obtained by joiningG to

C4 with the single edge{x, y}, wherex is the new vertex added in formingG.

5. G5 =
∪

H

P(H) whereu, v, w is a vertex sequence of a pathP3. For any graphH, P(H) is the

set of connected graphs which may be formed fromH ∘K1 by joining each ofu andw to one

or more vertices ofH.

6. G6 =
∪

H,X

ℛ(H,X) whereH is a graph,X ∈ ℬ, andℛ(H,X) is the set of connected graphs

obtained fromH ∘K1 by joining each vertex ofU ⊆ V (X) to one or more vertices ofH such

that no set with fewer than
(X) vertices ofX dominatesV (X)− U .

Theorem 1.6 [15] [41] A connected graphG satisfies
(G) = ⌊n2 ⌋ if and only ifG ∈ G =
6
∪

i=1
Gi.

As a result of Theorem 1.5 and Theorem 1.6, we can completely classify graphs with domination

number
(G) = ⌊n2 ⌋.

We now define several additional types of domination in graphs. We shall show Vizing-like

inequalities and conjectures for these types of domination in Section 2.2.

Let f : V (G) → [0, 1] be a function defined on the vertices of a graphG; this is afractional-

dominating functionif the sum of the values off over any closed neighborhood inG is at least 1.

The fractional domination numberof a graphG is denoted
f (G) and is the minimum weight of

a fractional-dominating function, where the weight of the function is the sum over all vertices of

its values. A similar type of domination is integer domination. Letk ≥ 1 and letf : V (G) →

{0, 1, . . . , k} be a function defined on the vertices of a graphG. This is a{k}-dominating function

if the sum of the function values over any closed neighborhood ofG is at leastk. As with fractional

domination, the weight of a{k}-dominating function is the sum of its function values over all ver-

tices. We define the{k}-domination numberof G to be the minimum weight of a{k}-dominating

function ofG. This is denoted by
{k}(G).

The maximum cardinality of a minimal dominating set of a graphG is called theupper domina-

tion numberand is denoted byΓ(G). We say that a setS ⊂ V (G) is independentif for all u and

v in S, {u, v} /∈ E(G). The maximum cardinality of a maximal independent set inG is theinde-

pendence number�(G), and the minimum cardinality of a maximal independent set is thelower

independence numberi(G). Note that the lower independence number is also often referred to as

the independent domination number.
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Figure 9.: Independent domination in non-claw-free and claw-free graphs

Observe that claw-free graphs, or graphs that do not contain a copyof K1,3 as an induced sub-

graph, have
(G) = i(G). This result was proved by Allan and Laskar in 1978 [3]. Refer to

Figure 9. It can easily be verified that the graphsG andH both have domination number equal to 2.

The graphG is not claw-free andi(G) = 3; an example of a minimal independent dominating set of

G is indicated by the blue vertices. The graphH, on the other hand, is claw-free and hasi(H) = 2.

We can see that the blue vertices inH form an independent dominating set.

A setS ⊆ V (G) is a total dominating setof G if N(S) = V . The total domination number


t(G) is the minimum cardinality of a total dominating set. Note that a dominating setS is a total

dominating set ifG[S], the subgraph induced byS has no isolated vertices. Theupper total domi-

nation numberof G, denoted byΓt(G), is the maximum cardinality of a minimal total dominating

set of a graphG. The functionf : V (G) → {0, 1, . . . , k} is a total {k}-dominating functionif

the sum of its function values over any open neighborhood is at leastk. Thetotal {k}-domination

number
{k}t of a graphG is the minimum weight of a total{k}-dominating function ofG.

The above defined parameters of a graphG are related by the following lemma.

Lemma 1.1 [38] For any graphG, 
f (G) ≤ 
(G) ≤ i(G) ≤ �(G) ≤ Γ(G). If G has no isolated

vertices, then
(G) ≤ 
t(G) ≤ 2
(G).

For any graphG, a matching is a set of independent edges inG, and a perfect matching ofG

is one which matches every vertex inG. The setD ⊆ V (G) is a paired dominating setof G if

D dominatesG and the induced subgraphG[D] has a perfect matching. We denote thepaired

domination number, or the minimum cardinality of a paired dominating set, by
pr(G).

Theindependence domination numberof a graphG, denoted by
i(G), is the maximum, over all

independent setsI in G, of the minimum number of vertices required to dominateI. Note that this

is different from the independent domination number.
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There are several other types of domination, defined below, for which we will not present further

Vizing-like results.

Let G = (V,E) be a bipartite graph, with partite setsV1 andV2. If a set of verticesS ⊆ V1

dominatesV2, we say thatS is abipartite dominating setof G.

A connected dominating setis a dominating set that induces a connected subgraph of the graphG.

We denote by
c(G) theconnected domination number, or the minimum cardinality of a dominating

setS such thatG[S] is connected. Clearly,
(G) ≤ 
c(G).

Observe that when
(G) = 1, 
(G) = 
c(G) = i(G) = 1. This implies that ifG is a complete

graph or a star, the domination number, connected domination number, and independent domination

number all equal 1. Also, since a connected dominating set ofG is also a total dominating set of

G, we have
(G) ≤ 
t(G) ≤ 
c(G). An example of the sharpness of this bound can be seen in

the complete bipartite graphKr,s, in which 
(Kr,s) = 
t(Kr,s) = 
c(Kr,s) = 2. See Figure 10,

which depicts the graphK2,3. The blue vertices form both a minimal dominating set and a total

dominating set.

Figure 10.: An example of equality in domination and total domination

If D is a dominating set ofG andG[D] is complete, then we callD a dominating clique. The

minimum cardinality of a dominating clique is theclique domination number, denoted
cl(G). Not

every graph has a dominating clique; for example, any cycleCn wheren ≥ 5 does not contain a

dominating clique. Clearly, if
(G) = 1, then
(G) = 
c(G) = 
cl(G) = 1. If G has a dominating

clique and
(G) ≥ 2 then
(G) ≤ 
t(G) ≤ 
c(G) ≤ 
cl(G). An example of the sharpness of these

bounds can be seen in the coronaKp ∘K1, which has
(Kp ∘K1) = 
t(Kp ∘K1) = 
c(Kp ∘K1) =


cl(Kp∘K1) = p. The blue vertices in the graph of the coronaK3∘K1 in Figure 11 form a minimal

dominating set which is also a total dominating set, connected dominating set, and adominating

clique.

A cycle dominating setis a dominating set ofG whose vertices form a cycle.
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Figure 11.: An example of equality in domination, total domination, connected domination, and

clique domination
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Chapter 2

Vizing’s Conjecture

Since Vizing’s conjecture was first stated in the 1960s, several results have been published which

establish the truth of the conjecture for classes of graphs satisfying certain criteria. As the problem

has not yet been solved in general, researchers have also studied similar problems for different

types of graph products and for other types of domination. Some of these similar problems also

remain conjectures, while others have been proven. Here, we describethe classes of graphs which

are known to satisfy Vizing’s conjecture and provide a brief discussion of the similar Vizing-like

conjectures which have also been studied. Another common approach to solving the conjecture is

to find a constantc such that for any graphsG andH, 
(G□H) ≥ c
(G)
(H). As Clark and Suen

[17] proved in 2000, this is true forc = 1
2 . We provide a slight improvement of this lower bound by

tightening their arguments.

2.1 Classes of Graphs Satisfying Vizing’s Conjecture

Vizing’s conjecture is that for any two graphs, the domination number of the Cartesian product

graph ofG andH is greater than or equal to the product of the domination numbers ofG andH.

The conjecture is stated as follows:

Conjecture 2.1 [46] For any graphsG andH, 
(G□H) ≥ 
(G)
(H).

Recall that the Cartesian product of graphsG andH has vertex set

V (G□H) = V (G)× V (H) = {(x, y) ∣ x ∈ V (G) andy ∈ V (H)}

and it has edge set

E(G□H) = {{(x1, y1), (x2, y2)} ∣ x1 = x2 and{y1, y2} ∈ E(H);
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or {x1, x2} ∈ E(G) andy1 = y2}.

Define a2-packingof G as a setX ⊂ V (G) of vertices such thatN [x] ∩ N [y] = ∅ for each

pair of distinct verticesx, y ∈ X. Alternatively, we can define a 2-packing as a setX of vertices

in G such that for any pair of verticesx andy in X, d(x, y) > 2. The maximum cardinality of a

2-packing ofG is called the2-packing number ofG and is denoted by�2(G).

Observe that for any graphG, �2(G) ≤ 
(G). Let S be a maximal 2-packing ofG. Then, as

d(u, v) > 2 for every pair of verticesu andv in S, we need at least one vertex inV (G) to dominate

each vertex inS. Hence, the cardinality of a minimal dominating set is greater than or equal to the

cardinality of a maximal 2-packing.

Note that we say a graphG satisfies Vizing’s conjecture if, for any graphH, the conjectured

inequality holds. Several results establish the truth of Vizing’s conjecture for graphs satisfying

certain criteria. The case where
(G) = 1 is trivial. A corollary of Barcalkin and German’s [4]

proof that Vizing’s conjecture holds for decomposable graphs is that Vizing’s conjecture is true for

any graphG with 
(G) ≤ 2. In 2004, Sun [44] verified Vizing’s conjecture holds for any graphG

with 
(G) ≤ 3.

We now consider classes of graphs that are proven to satisfy Vizing’s conjecture.

Lemma 2.1 [26] If G satisfies Vizing’s conjecture andK is a spanning subgraph ofG such that


(G) = 
(K), thenK satisfies Vizing’s conjecture.

Proof. Let K be a spanning subgraph ofG obtained by a finite sequence of edge removals which

does not change the domination number. SinceK is a subgraph ofG,K□H is a subgraph ofG□H.

Thus we have
(K□H) ≥ 
(G□H) ≥ 
(G)
(H) by assumption onG. By assumption onK, we

have
(G)
(H) = 
(K)
(H). We conclude thatK satisfies Vizing’s conjecture. □

Theorem 2.1 [28] Let G be a graph and letx ∈ V (G) such that
(G − x) < 
(G). Then ifG

satisfies Vizing’s conjecture, the graphG− x satisfies Vizing’s conjecture.

Proof. [28] Let G be a graph which satisfies Vizing’s conjecture, and assume
(G − x) < 
(G)

for somex ∈ V (G). Then
(G − x) = 
(G) − 1. Now assume there is a graphH such that


((G − x)□H) < 
(G − x)
(H). Let A be a
-set of (G − x)□H and letB be a
-set of

H. DefineD = A ∪ {(x, b) ∣ b ∈ B}. ClearlyD is a dominating set ofG□H of cardinality
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∣A∣ + ∣B∣ < 
(G − x)
(H) + 
(H) = (
(G − x) + 1)
(H) = 
(G)
(H). This contradicts our

assumption thatG satisfies Vizing’s conjecture, and so we conclude thatG − x satisfies Vizing’s

conjecture. □

Note that, if the converse of this theorem does not hold, we would have a counterexample to

Vizing’s conjecture. Consider a graphK that satisfies Vizing’s conjecture, and letS ⊆ V (K) be a

set of vertices such that no vertex ofS belongs to any
-set ofK and such that
(K − S) = 
(K).

We can form a graphG fromK by adding a new vertexv and all edges{u, v} whereu is inS. If the

resulting graphG does not satisfy Vizing’s conjecture then obviously we have a counterexample. If,

on the other hand, we can prove that the graphG satisfies Vizing’s conjecture, then this result would

contribute to an attempt to prove Vizing’s conjecture by using a finite sequenceof constructive

operations. The idea is to begin with a classC of graphs for which we know Vizing’s conjecture is

true and find a collection of operations to apply to graphs fromC, each of which results in a graph

which satisfies Vizing’s conjecture. At this point, the goal would be to show that any graph can be

obtained from a seed graph inC by applying a finite set of these operations. This type of approach

has obviously not yet been successful, but Hartnell and Rall [28] define several operations which

could potentially lead to a proof of Vizing’s conjecture using a constructivemethod.

Lemma 2.2 [20] For any graphsG andH, 
(G□H) ≥ min{∣V (G)∣, ∣V (H)∣}.

Proof. [20] Let D be a
-set of the product graphG□H, and assume to the contrary that∣D∣ <

min{∣V (G)∣, ∣V (H)∣}. Then there is a column of verticesHu = {u}×V (H) and a row of vertices

Gv = V (G) × {v} such thatD ∩ Hu = D ∩ Gv = ∅. But then(u, v) /∈ N [D], a contradiction.

Therefore,
(G□H) ≥ min{∣V (G)∣, ∣V (H)∣}. □

The following result providing a lower bound for
(G□H) was proved by Jacobson and Kinch

[34]. Their proof considers a dominating set for the product graphG□H and counts the way the

dominating set intersects each set of verticesV (G)× {v}, wherev ∈ V (H).

Theorem 2.2 [34] For any graphsG andH, 
(G□H) ≥ ∣H∣
Δ(H)+1
(G).

Observe that this theorem implies Vizing’s conjecture holds for cycles of length3k. Consider the

cycleC3k, for k ≥ 1 an integer. We haveΔ(C3k) = 2 and
(C3k) = k, so therefore ∣C3k∣
Δ(C3k)+1 =

3k
3 = k = 
(C3k).
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Theorem 2.3 [45] For any graphsG andH, 
(G□H) ≤ min{
(G)∣V (H)∣, ∣V (G)∣
(H)}.

Proof. Let A be a
-set ofG. Now letD = {A × {v} ∣ v ∈ V (H)}. ThenD is a dominating

set ofG□H of cardinality
(G)∣V (H)∣. Similarly, we can letB be a
-set ofH and defineD =

{{u} ×B ∣ u ∈ V (G)}. Thus, we have
(G□H) ≤ min{
(G)∣V (H)∣, ∣V (G)∣
(H)}. □

Theorem 2.4 [35] For any graphsG andH,


(G□H) ≥ max{
(G)�2(H), �2(G)
(H)}.

Notice that this result from Jacobson and Kinch can be improved by the following theorem from

Chen, Piotrowski and Shreve.

Theorem 2.5 [13] For any graphsG andH,


(G□H) ≥ 
(G)�2(H) + �2(G)(
(H)− �2(H)).

The earliest significant result related to the domination number of a Cartesianproduct was pro-

duced by Barcalkin and German [4] in 1979. Barcalkin and German studiedgraphsG which have

domination number equal to the chromatic number ofḠ. Recall that the chromatic number�(G) of

a graphG is the smallest number of colors needed to color the vertices ofG in such a way that no

two adjacent vertices are the same color. Observe that any proper coloring of Ḡ is a partition of the

vertices ofG into cliques, or complete subgraphs ofG. A single vertex may be chosen from each

clique to form a dominating set ofG and, therefore, it is always true that
(G) ≤ �(Ḡ).

Barcalkin and German defineddecomposable graphsas follows. LetG be a graph with
(G) =

k, and assumeV (G) can be partitioned intok setsC1, C2, ..., Ck such that each induced subgraph

G[Ci] is a complete subgraph ofG. If G satisfies these conditions, then it is a decomposable

graph. They also define theA-class, which consists of all graphsG′ that are spanning subgraphs

of a decomposable graphG, where
(G′) = 
(G). The result of Barcalkin and German’s 1979

paper established Vizing’s conjecture for any graph which belongs to theA-class. Note that we now

commonly refer to this class of graphs as BG-graphs.

Theorem 2.6 [4] Let G be a decomposable graph and letK be a spanning subgraph ofG with


(G) = 
(K). ThenK satisfies Vizing’s conjecture.
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Proof. [28] We assume thatG is a decomposable graph with
(G) = k. Let {Ci ∣ G[Ci] is

a complete subgraph ofG, 1 ≤ i ≤ k} be a partition ofV (G). We now consider the partition

{Ci × V (H) ∣ i = 1, . . . , k} of V (G□H) for H an arbitrary graph. LetD be a
-set ofG□H.

Denote byDj the set of vertices inD that are also inCj × V (H). That is,

Dj = D ∩ (Cj × V (H)) for j = 1, . . . , k.

Let uj ∈ Cj and denote byPj the projection of vertices inCj × V (H) onto{uj} × V (H).

LetLj be the set of all verticesv such that(uj , v) is not dominated byPj(Dj). That is,

Lj = {v ∣ (uj , v) /∈ N [Pj(Dj)]}.

We observe that ifv ∈ Li, then the verticesCj × {v} are dominated “horizontally”. Obviously, if

Pj(Dj) dominatesuj × V (H), ∣Lj ∣ = 0. However, if∣Dj ∣ = 
(H)−m then we have

∣Dj ∣+ ∣Lj ∣ ≥ ∣Pj(Dj)∣+ ∣Lj ∣ ≥ 
(H).

This implies that∣Lj ∣ ≥ m.

We now considerv ∈ V (H) such thatv ∈ Li for at least onei = 1, . . . , k. Define the sets

Dv, Sv, andAv as follows. We letSv = {Ci ∣ v ∈ Li andi = 1, . . . , k}. DefineAv to be the

set of cliquesCj such that there is at least one edge from a vertex inCj to a member ofSv and

D ∩ (Cj × {v}) ∕= ∅. Finally, we letDv = {u ∈ V (G) ∣ (u, v) ∈ D andu ∈ Cj ∈ Av}.

We observe that∣Dv∣ ≥ ∣Sv∣+ ∣Av∣, for otherwise we would have

D̂v = Dv ∪ {(uj , v)∣Cj /∈ Sv ∪Av}

is a dominating set ofV (G)× {v} of cardinality less thank.

Also observe that for eachi = 1, . . . , k either ∣Di∣ ≥ 
(H), in which case summing overi

gives the desired inequality; or∣Di∣ = 
(H) − m. In the latter case, we have shown that∣Dv∣ ≥

∣Sv∣+ ∣Av∣. From this, we have

∣Sv∣ ≤
∑

u∈Dv

(∣D ∩ (Cj × {u})∣ − 1). (2.1)

Thus, we have sufficient extra vertices inD in neighboring cliques so that we still have an average

of 
(H) for each∣Dj ∣. We conclude that
(G□H) = ∣D∣ ≥ 
(G)
(H).

If K is a spanning subgraph of a decomposable graphG satisfying
(G) = 
(K), then we apply

Lemma 2.1 to prove thatK also satisfies Vizing’s conjecture. □

19



Corollary 2.1 [4] Let G be a graph satisfying
(G) = 2 or �2(G) = 
(G). ThenG satisfies

Vizing’s conjecture.

This corollary follows from the previous theorem. Any graphG with 
(G) = 2 is a subgraph

of a decomposable graph. To establish the second part of the corollary,we assumeG is a graph

satisfying
(G) = �2(G). LetS = {v1, v2, . . . , vk} be a 2-packing ofG. Then we can add edges to

G to makeN [v1], N [v2], . . . , N [vk−1] andV (G)− (N [v1] ∪N [v2] ∪ . . . ∪N [vk−1]) into cliques.

The resulting graph is decomposable and still hask pairwise disjoint closed neighborhoods. Hence,

it follows from Theorem 2.6 that any graph with
(G) = �2(G) satisfies Vizing’s conjecture. An

example of this can be seen in Figure 12. The labeled verticesv1, v2, andv3 in G form a 2-packing

of the graph. We can add edges as described above to get the decomposable graphH.

Figure 12.: A graphG with 
(G) = �2(G) and a decomposable graphH formed by adding edges

toG.

Observe that this corollary implies Vizing’s conjecture is true for any tree. We also have the

following result from Hartnell and Rall as a corollary of Theorem 2.6 andCorollary 2.1.

Corollary 2.2 [28] Let G be a graph such that̄G is 3-colorable. ThenG satisfies Vizing’s conjec-

ture.

Proof. We consider three cases based on the chromatic number ofḠ.

∙ Case 1:�(Ḡ) = 1. ThenG is a complete graph and the result holds.

∙ Case 2:�(Ḡ) = 2. ThenG belongs to the A-class and Vizing’s conjecture holds.
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∙ Case 3:�(Ḡ) = 3. If 
(G) = 3 thenG is decomposable and result holds by Theorem 2.6.

Otherwise
(G) ≤ 2 and result holds by Corollary 2.1.

□

We now define TypeX graphs, as introduced by Hartnell and Rall [27] in 1995. This class of

graphs contains the BG-graphs as a proper subset and, hence, is animprovement of Barcalkin and

German’s [4] 1979 result. Hartnell and Rall, in defining TypeX graphs, took an approach similar

to that of Barcalkin and German in that they considered a particular way of partitioning a graphG.

The difference is that not every set in the partition of a TypeX graph induces a complete subgraph.

TypeX graphs are defined as follows. Letk, t, r be nonnegative integers, not all zero. LetG be

a graph with
(G) = k+ t+ r+ 1 whose vertices can be partitioned asS ∪ SC ∪BC ∪C, where

S, SC,BC, andC satisfy the following.

∙ LetBC = B1 ∪B2 ∪ . . . ∪Bt. EachBi for i = 1, . . . , t is referred to as abuffer clique.

∙ LetC = C1 ∪ C2 ∪ . . . ∪ Cr.

∙ Each ofSC,B1, . . . , Bk, C1, . . . , Cr induces a clique.

∙ Everyv ∈ SC has at least one neighbor outside ofSC. The setSC is called aspecial clique.

∙ EachBi, for i = 1 . . . , k has at least one vertex which has no neighbors outside ofBi.

∙ Let S = S1 ∪ S2 ∪ . . . ∪ Sk where eachSi is star-like. That is, eachSi has a vertexvi which is

adjacent to allv ∈ Si − vi. The vertexvi has no neighbors other than those inSi. Note thatSi

does not induce a clique, and no edges may be added toSi without decreasing the domination

number ofG.

∙ There are no edges between vertices inS and vertices inC.

Observe that not every graph that is TypeX has a special clique. We can also havet, r, or k equal

to zero. The example in Figure 13, is a TypeX graph with a special clique. In this graph, the blue

vertices represent the setS, the red vertices represent the buffer cliqueB, and the green vertices

represent the special cliqueSC. One can easily verify that this graph satisfies the definition of Type

X graphs above.
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Figure 13.: Example of a TypeX graph with a special clique

Theorem 2.7 [27] Let G be a TypeX graph. Then for any graphH, 
(G□H) ≥ 
(G)
(H).

The proof of Hartnell and Rall’s theorem is similar to the proof that Vizing’s conjecture is true

for BG-graphs. We partition the vertices ofG as indicated by the definition of a TypeX graph and

consider any dominating setD of G□H. Hartnell and Rall used the idea that some vertices in the

product graph must be dominated “horizontally” and found
(G) disjoint sets inD, each of which

have cardinality at least
(H), thus implying that Vizing’s conjecture holds for any TypeX graph.

Theorem 2.8 [27] Let G be a TypeX graph and letK be a spanning subgraph ofG such that


(G) = 
(K). Then Vizing’s conjecture is true forK.

This theorem can be proved in the same way we showed that any spanning subgraphK of a

decomposable graphG with 
(G) = 
(K) satisfies Vizing’s conjecture.

Hartnell and Rall were also able to show that any graph with domination numberone more than

its 2-packing number is a TypeX graph and, hence, we have the following result.

Corollary 2.3 [27] Let G be a graph satisfying
(G) = �2(G) + 1. Then Vizing’s conjecture is

true forG.

Brěsar and Rall [11] recently discovered a new class of graphs which satisfy Vizing’s conjecture.

They defined fair domination and proved that any graph with fair domination number equal to its

domination number satisfies the conjecture. Furthermore, they proved that this class of graphs is an

extension of the BG-graphs distinct from TypeX graphs. Their results are presented in Chapter 3.

2.2 Vizing-Like Conjectures for Other Domination Types

As Vizing’s conjecture has not yet been proven in general, researchers such as Fisher, Ryan, Domke

and Majumdar [25]; Nowakowski and Rall [38]; Brešar [7]; and Dorbec, Henning and Rall [19]
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have studied variations of the original problem. These similar problems deal with other types of

graph products and different graph parameters. As we will see, several of these variations remain

open conjectures, while others have been proven.

Fractional Domination

One of the first Vizing-like results was proved for the fractional dominationnumber. Recall that

the fractional domination number of a graphG is the minimum weight of a fractional-dominating

function, where the weight of the function is the sum over all vertices of its values. We note that for

any graphG, 
f (G) ≤ 
(G). Fisher, Ryan, Domke, and Majumdar proved the following result in

their 1994 paper.

Theorem 2.9 [25] For any pair of graphsG andH, 
f (G□H) ≥ 
f (G)
f (H).

This theorem can be proved by first showing that
f (G⊠H) = 
f (G)
f (H). Recall thatG⊠H

denotes the strong direct product ofG andH, which has vertex setV (G) × V (H) and edge set

E(G□H) ∪ {{(u1, v1), (u2, v2)} ∣ {u1, u2} ∈ E(G) and{v1, v2} ∈ E(H)}. SinceG□H is a

subgraph ofG⊠H, we have
f (G□H) ≥ 
f (G⊠H).

Fisher [24] also proved the following similar theorem in 1994; an improved proof was given by

Brěsar [6] in 2001.

Theorem 2.10 [24] For any pair of graphsG andH, 
(G□H) ≥ 
f (G)
(H).

An obvious corollary of this theorem is that Vizing’s conjecture is true for any graph with frac-

tional domination number equal to domination number.

Integer Domination

A related concept to fractional domination is integer domination, which was studied first by

Domke, Hedetniemi, Laskar, and Fricke [18]. We recall that the weight ofa {k}-dominating func-

tion is the sum of its function values over all vertices, and the{k}-domination number ofG, 
{k}(G)

is the minimum weight of a{k}-dominating function ofG. Domke, et. al. proved the following

theorem relating fractional domination to integer domination.

Theorem 2.11 [18] For any graphG, 
f (G) = mink∈ℕ

{k}(G)

k
.
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The following Vizing-like conjecture for integer domination is from Hou and Lu[33].

Conjecture 2.2 [33] For any pair of graphsG andH and any integerk ≥ 1, 
{k}(G□H) ≥

1
k

{k}(G)
{k}(H).

This conjecture remains open, but Brešar, Henning and Klav̌zar [9] prove several related results

in their 2006 paper. Note that if this conjecture is true for allk, in particulark = 1, then Vizing’s

conjecture is true.

Upper Domination

Nowakowski and Rall’s [38] 1996 paper gives results and conjectures on several associative graph

products, two of which are the Cartesian product and the categorical product, as previously defined

in Section 1.2.

Recall that the upper domination numberΓ(G) of a graphG is the maximum cardinality of a

minimal dominating set ofG. Also recall that the minimum cardinality of a maximal independent

set is the independent domination numberi(G).

Nowakowski and Rall [38] made the following conjectures in their 1996 paper.

∙ i(G×H) ≥ i(G)i(H)

∙ Γ(G×H) ≥ Γ(G)Γ(H)

∙ Γ(G□H) ≥ Γ(G)Γ(H)

The last of these conjectures was proved by Brešar [7] in 2005. In fact, he provided a slight

improvement of the conjectured lower bound.

Theorem 2.12 [7] For any nontrivial graphsG andH,

Γ(G□H) ≥ Γ(G)Γ(H) + 1.

The proof Brěsar provided for this theorem is constructive in nature. He begins with arbitrary

graphsG andH and creates a minimal dominating setD of the product graphG□H which contains

at leastΓ(G)Γ(H) + 1 vertices.
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Total Domination

Henning and Rall’s [30] 2005 paper was the first to introduce results on total domination in

Cartesian products of graphs. Recall that a setD ⊂ V (G) is a total dominating set ifN(D) =

V (G). The total domination number is the minimum cardinality of a total dominating set ofG

and is denoted by
t(G). Henning and Rall conjectured that2
t(G□H) ≥ 
t(G)
t(H) and they

proved this inequality holds for certain classes of graphsG with no isolated vertices and any graph

H without isolated vertices. This conjecture was proved for graphs withoutisolated vertices by Ho.

Theorem 2.13 [32] Let G andH be graphs without isolated vertices. Then

2
t(G□H) ≥ 
t(G)
t(H).

Recall that the total{k}-domination number
{k}t (G) is defined as the minimum cardinality of a

total k-dominating setD of a graph. In 2008, Li and Hou [37] proved that for any graphsG and

H without isolated vertices,
{k}t (G)

{k}
t (H) ≤ k(k + 1)


{k}
t (G□H). Note that Theorem 2.13 is

easily proved using this inequality.

Upper Total Domination

Recall that we define the upper total domination number ofG, denoted byΓt(G), to be the

maximum cardinality of a minimal total dominating set of a graphG. Dorbec, Henning and Rall

[19] published results in 2008 on a Vizing-like inequality for the upper total domination number.

They achieved the following two results.

Theorem 2.14 [19] If G andH are connected graphs of order at least 3 andΓt(G) ≥ Γt(H),

then

2Γt(G□H) ≥ Γt(G)(Γt(H) + 1)

and this bound is sharp.

In order to prove this theorem we must first define the setsepn(S, v), ipn(v, S), andpn(v, S). Let

S ⊂ V (G) and letv ∈ S. The setepn(v, S) of external private neighbors ofv is epn(v, S) = {u ∈

V (G)− S ∣ N(u) ∩ S = {v}}. The set of internal private neighbors ofv ∈ S is ipn(v, S) = {u ∈

S ∣ N(u) ∩ S = {v}}. We denote the set of all private neighbors ofv ∈ S by pn(v, S). This is the

union of all external and internal private neighbors ofv. That is,pn(v, S) = epn(v, S)∪ ipn(v, S).

Cockayne, et. al. make the following observation.
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Observation 2.1 [14] Let S be a total dominating set in a graphG with no isolated vertices. Then

S is a minimal total dominating set if and only if for allv ∈ S,

1. epn(v, S) ∕= ∅, or

2. pn(v, S) = ipn(v, S) ∕= ∅.

We will also need the following lemma.

Lemma 2.3 [19] Let G be a graph. EveryΓt(G)-set contains as a subset a
-setD such that

∣D∣ ≥ 1
2Γt(G) and for allv ∈ D, ∣epn(v,D)∣ ≥ 1.

We will now prove Theorem 2.14.

Proof. [19] We assumeG andH are connected graphs with order at least 3, whereΓt(G) ≥ Γt(H).

By the above lemma, there is a
-setS ofGwith ∣S∣ ≥ 1
2Γt(G) and for eachv ∈ S, ∣epn(v, S)∣ ≥ 1.

For eachu ∈ V (G), denoteHu = {u}×V (H). Similarly, forw ∈ V (H), letGw = V (G)×{w}.

Now, letD = S × V (H), and observe thatD dominatesG□H sinceS dominates V(G). Also,

for eachu ∈ S, the verticesV (Hu) are totally dominated “vertically”; thus,D is a total dominating

set ofG□H. We claim thatD is a minimal total dominating set ofG□H.

Let (u,w) ∈ D and consider(u′, w), whereu′ ∈ epn(u, S) in G. Then(u′, w) ∈ epn((u,w), D)

in G□H. Thus, for all(u,w) ∈ D, ∣epn((u,w), D)∣ ≥ 1. Then, by Observation 2.1,D is a minimal

total dominating set ofG□H and soΓt(G□H) ≥ ∣D∣. Note that sinceH is a connected graph with

order at least 3,∣V (H)∣ ≥ Γt(H) + 1. Therefore,

Γt(G□H) ≥ ∣D∣ = ∣S∣ × ∣V (H)∣ ≥
1

2
Γt(G)(Γt(H) + 1).

Equality holds when bothG andH aredaisieswith k ≥ 2 petals. That is, we begin withk copies

of K3 and identify one vertex from each copy to form a single vertex. The resulting graph is a daisy.

Figure 14 shows the daisy with 3 petals. □

The following theorem is easily proved using Theorem 2.14 and the fact that for a graphG with

no isolated vertices,Γt(G)Γt(K2) ≤ 2Γt(G□K2). Equality holds if and only ifG is a disjoint

union of copies ofK2. Let u ∈ V (K2). ThenV (G) × {u} is a minimal total dominating set of

G□K2, giving that

Γt(G□K2) ≥ ∣V (G)∣ ≥ Γt(G) =
1

2
Γt(G)Γt(K2).
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Figure 14.: The daisy with 3 petals

In order for equality to hold, we must haveΓt(G) = ∣V (G)∣, and soG must be a disjoint union of

copies ofK2.

Theorem 2.15 [19] If G andH have no isolated vertices, then

2Γt(G□H) ≥ Γt(G)Γt(H)

with equality if and only if bothG andH are disjoint unions of copies ofK2.

Paired Domination

Brěsar, Henning and Rall [10] published results in 2007 about Vizing-like inequalities for paired

domination. Recall that a setD ⊆ V (G) is a paired dominating set ofG if D dominatesG and the

induced subgraphG[D] has a perfect matching. Note that in every graph without isolated vertices,

a maximal matching forms a paired dominating set. The paired domination number
pr(G) is the

minimum cardinality of a paired dominating set.

The inequalities established by Brešar, Henning and Rall relate the paired domination number of

the Cartesian product ofG andH to the3-packing number ofG. Recall that a 2-packing of a graph

G is a set of verticesS ⊂ V (G) such that for any verticesu andv in S, d(u, v) > 2. We define a

3-packing similarly. That is, a 3-packing of the graphG is a setS of vertices such that the distance

between any pair of vertices inS is greater than 3. The 3-packing number ofG, denoted�3(G), is

the maximum cardinality of a 3-packing inG.

Theorem 2.16 [10] If G andH are graphs without isolated vertices, then


pr(G□H) ≥ max{
pr(G)�3(H), 
pr(H)�3(G)}.

Brěsar, Henning and Rall were also able to show that
pr(T ) = 2�3(T ) in any nontrivial treeT .

Thus, the following result follows from Theorem 2.16.
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Theorem 2.17 [10] Let T be a nontrivial tree. Then for any graphH without isolated vertices,


pr(T□H) ≥ 1
2
pr(T )
pr(H), and this bound is sharp.

The final major result from Brěsar, Henning and Rall in 2007 is the following theorem relating

paired domination in the Cartesian product ofG andH to the 3-packing numbers ofG andH.

Theorem 2.18 [10] If G andH have no isolated vertices, then
pr(G□H) ≥ 2�3(G)�3(H).

Independence Domination

Aharoni and Szab́o [2] in 2009 provided a Vizing-like result for the independence domination

number. Recall that this is different from the independent domination number; we let the inde-

pendence domination number
i(G) denote the maximum, over all independent setsI in G, of the

minimum number of vertices required to dominateI. It was proven by Aharoni, Berger and Ziv [1]

that
(G) = 
i(G) for any chordal graphG, where a graph is chordal if any cycle of more than four

vertices contains at least one chord, or edge connecting vertices that are not adjacent in the cycle.

Aharoni and Szab́o proved the following theorem.

Theorem 2.19 [2] For arbitrary graphsG andH, 
(G□H) ≥ 
i(G)
(H).

Proof. [2] Let G andH be graphs. We may assume thatG has no isolated vertices, for if it did

have an isolated vertexv then the validity of the theorem forG− v implies the validity forG.

AssumeI ⊂ V (G) is an independent set which requires at least
i(G) vertices to dominate it.

We will show that
(I□H) ≥ 
i(G)
(H) by showing that∣D∣ ≥ 
i(G)
(H), whereD is a set

that dominatesI × V (H).

Let {v1, v2, . . . , v
(H)} be a
-set ofH. Use these vertices to partitionV (H) into sets{Πi ∣ vi ∈

Πi andv ∈ Πi if and only if v = vi or {v, vi} ∈ E(H)}. Note that, for everyJ ⊆ {1, 2, . . . , 
(H)},

we have


(
∪

j∈J

Πj) ≥ ∣J ∣ (2.2)

LetSu = {i ∣ {u}×Πi is dominated vertically by some vertices(u, v) ∈ D}, and letSi = {u ∈

I ∣ {u} ×Πi is dominated vertically by some vertices(u, v) ∈ D}. SummingSu andSi, we have

S =
∑

u∈I

Su =


(H)
∑

i=1

Si

28



By (2.2), for eachu ∈ I we have

∣D ∩ ({u} × V (H))∣ ≥ ∣Su∣.

Sum overv ∈ I to get

∣D ∩ (I × V (H))∣ ≥ ∣S∣. (2.3)

Now considerk ≤ 
(H); each set of vertices{u} × Πk which is not inS contains at least one

vertex (u, v) which is not dominated by any vertex in{u} × V (H). Thus,(u, v) is dominated

“horizontally” by some vertex(w, v) wherew = w(v). Note thatw /∈ I sinceI is independent and

so the set{w(v) ∣ {v} × Πk /∈ S} dominates∣I∣ − ∣Sj ∣ vertices inI and has cardinality at least


i(G)− ∣Sj ∣. Sum overk to get

∣D ∩ ((V (G)− I)× V (H))∣ ≥ 
i(G)
(H)− ∣S∣. (2.4)

Combine equations (2.3) and (2.4) to get


(G□H) ≥ 
i(G)
(H).

□

Combining this result with that of Aharoni, Berger and Ziv [1], an obviouscorollary is that

Vizing’s conjecture holds for chordal graphs.

Independent Domination

Brěsar, et. al. [8] provide a few open conjectures in their survey paper, including the following.

Conjecture 2.3 [8] For any graphsG andH, 
(G□H) ≥ min{i(G)
(H), 
(G)i(H)}.

The truth of this conjecture would immediately imply Vizing’s conjecture holds for any pair of

graphsG andH, as
(G) ≤ i(G) by Lemma 1.1. We also have the following conjecture, which is

implied by Vizing’s conjecture. Brěsar, et. al. suggest that perhaps this could be established without

first proving Vizing’s conjecture.

Conjecture 2.4 [8] For any graphsG andH, i(G□H) ≥ 
(G)
(H).

In addition, the survey paper makes the following partition conjecture, whichwould also imply

the truth of Vizing’s conjecture.
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Conjecture 2.5 [8] Let G andH be arbitrary graphs. There is a partition ofV (G) into 
(G) sets

Π1, . . . ,Π
(G) such that there is a minimal dominating setD of G□H such that the projection of

D ∩ (Πi × V (H)) ontoH dominatesH for all i = 1, . . . , 
(G).

2.3 Clark-Suen Inequality and Improvement

We have given several results establishing the truth of Vizing’s conjecture for classes of graphs

satisfying certain properties. Another approach to proving Vizing’s conjecture is to find a constant

c such that for any graphsG andH, 
(G□H) ≥ c
(G)
(H). Clark and Suen [17] in 2000 proved

that this inequality is true forc = 1
2 . Here, we present an improvement of this result.

Theorem 2.20 For any graphsG andH, 
(G□H) ≥ 1
2
(G)
(H) + 1

2 min{
(G), 
(H)}.

Proof. Let G andH be arbitrary graphs, and letD be a
-set of the Cartesian productG□H.

Let {u1, u2, ..., u
(G)} be a
-set ofG. PartitionV (G) into 
(G) setsΠ1▪,Π2▪, ...,Π
(G)▪, where

ui ∈ Πi▪ for all i = 1, 2, ..., 
(G) and ifu ∈ Πi▪ thenu = ui or {u, ui} ∈ E(G).

Let Pi▪ denote the projection of(Πi▪ × V (H)) ∩D ontoH. That is,

Pi▪ = {v ∈ V (H) ∣ (u, v) ∈ D for someu ∈ Πi▪}.

DefineCi▪ = V (H) − NH [Pi▪] as the complement ofNH [Pi▪], whereNH [X] is the set of closed

neighbors ofX in graphH. AsPi ∪ Ci is a dominating set ofH, we have

∣Pi▪∣+ ∣Ci▪∣ ≥ 
(H), i = 1, 2, . . . , 
(G). (2.5)

Forv ∈ V (H), let

D▪v = {u ∣ (u, v) ∈ D} and S▪v = {i ∣ v ∈ Ci▪}.

Observe that ifi ∈ S▪v then the vertices inΠi▪ × {v} are dominated “horizontally” by vertices in

D▪v × {v}. Let SH be the number of pairs(i, v) wherei = 1, 2, . . . , 
(G) andv ∈ Ci▪. Then

obviously

SH =
∑

v∈V (H)

∣S▪v∣ =


(G)
∑

i=1

∣Ci▪∣.

SinceD▪v ∪ {ui ∣ i /∈ S▪v} is a dominating set ofG, we have

∣D▪v∣+ (
(G)− ∣S▪v∣) ≥ 
(G),
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giving that

∣S▪v∣ ≤ ∣D▪v∣. (2.6)

Summing overv ∈ V (H), we have

SH ≤ ∣D∣. (2.7)

We now consider two cases based on (2.5).

Case 1 Assume∣Pi▪∣+ ∣Ci▪∣ > 
(H) for all i = 1, ..., 
(G). Then as∣(Πi▪ × V (H)) ∩D∣ ≥ ∣Pi▪∣,

we have

(G)
∑

i=1

(∣Ci▪∣+ ∣(Πi▪ × V (H)) ∩D∣) ≥


(G)
∑

i=1

(
(H) + 1),

which implies that

SH + ∣D∣ ≥ 
(G)
(H) + 
(G). (2.8)

Combining(2.7)and (2.8)gives that


(G□H) = ∣D∣ ≥
1

2

(G)
(H) +

1

2

(G). (2.9)

Case 2 Assume∣Pi▪∣+ ∣Ci▪∣ = 
(H) for somei = 1, ..., 
(G). Note thatPi▪ ∪ Ci▪ is a
-set ofH.

We now use this
-set ofH to partitionV (H) in the same way asV (G) is partitioned above. That

is, label the vertices inPi▪ ∪Ci▪ asv1, v2, ..., v
(H), and let{Π▪j ∣ 1 ≤ j ≤ 
(H)} be a partition of

H such that for allj = 1, ..., 
(H), vj ∈ Π▪j and ifv ∈ Π▪j , eitherv = vj or {v, vj} ∈ E(H). We

next define the setsP▪j , C▪j , Su▪ andDu▪ in the same wayPi▪, Ci▪, S▪v andD▪v are defined above. To

be specific, for1 ≤ j ≤ 
(H), let

P▪j = {u ∈ V (G) ∣ (u, v) ∈ D for somev ∈ Π▪j}, and C▪j = V (G)−NG[P▪j ],

and foru ∈ V (G), let

Du▪ = {v ∣ (u, v) ∈ D} and Su▪ = {j ∣ u ∈ C▪j}.

Similarly, we have

SG =
∑

u∈V (G)

∣Su▪∣ =


(H)
∑

j=1

C▪j .

For u ∈ V (G), let D̂u▪ = {vj ∣ (u, vj) ∈ Du▪, 1 ≤ j ≤ 
(H)}. We claim that

∣Su▪∣ ≤ ∣Du▪∣ − ∣D̂u▪∣. (2.10)
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This is becauseDu▪ ∪ {vj ∣ j /∈ Su▪} is a dominating set ofH, with

Du▪ ∩ {vj ∣ j /∈ Su▪} = D̂u▪,

and the argument for proving(2.10) follows in the same way as(2.6) is proved. To make use of

the claim, we note that when we partition the vertices ofH, we have at least
(H) vertices inD

that are of the form(u, vk). Indeed, for eachk = 1, 2, . . . , 
(H), eithervk ∈ Pi▪, which implies

(u, vk) ∈ D for someu ∈ Πi▪, or vk ∈ Ci▪, which implies that the vertices inΠi▪ × {vk} are

dominated “horizontally” by some vertices(u′, vk) ∈ D. It therefore follows that

∑

u∈V (G)

∣D̂u▪∣ ≥ 
(H),

and hence summming both sides of(2.10)

∑

u∈V (G)

∣Su▪∣ ≤
∑

u∈V (G)

(∣Du▪∣ − ∣D̂u▪∣)

gives that

SG ≤ ∣D∣ − 
(H). (2.11)

To complete the proof, we note that similar to(2.5), we have

∣P▪j ∣+ ∣C▪j ∣ ≥ 
(G), j = 1, 2, . . . , 
(H),

and summing overj gives that

∣D∣+ SG ≥ 
(G)
(H). (2.12)

Combining(2.11)and (2.12), we obtain


(G□H) ≥
1

2

(G)
(H) +

1

2

(H). (2.13)

As either (2.9) or (2.13) holds, it follows that


(G□H) ≥
1

2

(G)
(H) +

1

2
min{
(G), 
(H)}.

□

This approach may also be used to prove a similar inequality involving the independence number

of a graph, whereG is a claw-free graph. Recall that the independence number of a graphG is the

maximum cardinality of a maximal independent set inG, and is denoted by�(G). Also recall that

a graph is claw-free if it does not contain a copy ofK1,3 as an induced subgraph. Bres̆ar, et. al. [8]

proved the following.
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Figure 15.: PartitionsΠi▪ and the setsD▪v, S▪v, andCi▪; and partitionsΠ▪j and the setsDu▪, Su▪,

andC▪j

Theorem 2.21 [8] Let G be a claw-free graph and letH be a graph without isolated vertices.

Then


(G□H) ≥
1

2
�(G)(
(H) + 1).

Observe that
(G) ≤ �(G) for every graphG, so we have the following corollary.

Corollary 2.4 [8] Let G be a claw-free graph and letH be a graph without isolated vertices.

Then


(G□H) ≥
1

2

(G)(
(H) + 1).

From this corollary we can conclude that any claw-free graph satisfying�(G) = 2
(G) satisfies

Vizing’s conjecture.
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Chapter 3

Fair Domination

A recent development in attempts to prove Vizing’s conjecture is Brešar and Rall’s [11] idea of fair

domination. Their 2009 paper defines this concept and establishes the truthof Vizing’s conjecture

for graphs with fair domination number equal to domination number. Furthermore, they verify that

the class of such graphs contains the BG-graphs and is distinct from the TypeX graphs defined by

Hartnell and Rall. We will define fair reception and fair domination, provide aproof that Vizing’s

conjecture holds for the class of graphs with fair domination number equal todomination number,

examine fair domination in edge-critical graphs, and summarize some open questions related to fair

domination.

3.1 Definition and General Results

A recent paper by Brěsar and Rall [11] published in 2009 introduces the concept of fair domination

of a graph. Brěsar and Rall were able to verify that Vizing’s conjecture holds for any graphG with

a fair reception of size
(G).

In order to define fair domination, we must first define external domination.We say that a set

X ⊂ V (G) externally dominatessetU ⊂ V (G) if U ∩X = ∅ and for eachu ∈ U there isx ∈ X

such that{u, x} ∈ E(G).

Let G be a graph and letS1, ..., Sk be pair-wise disjoint sets of vertices of G. LetS = S1 ∪ S2 ∪

... ∪ Sk and letZ = V (G)− S. The setsS1, ..., Sk form afair reception of size kif for eachl ∈ ℤ,

1 ≤ l ≤ k, and any choice ofl setsSi1 , ..., Sil the following holds: ifD externally dominates

Si1 ∪ ... ∪ Sil then

∣D ∩ Z∣+
∑

j,Sj∩D ∕=∅

(∣Sj ∩D∣ − 1) ≥ l.

Notice that on the left-hand side of the above inequality, we count all the vertices ofD that are not

in S. For vertices ofD that are in someSj , we count all but one fromD ∩ Sj . The largestk such
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that there exists a fair reception of sizek in graphG is called thefair domination numberof G and

is denoted by
F (G).

Proposition 3.1 [11] For any graphG, �2(G) ≤ 
F (G) ≤ 
(G).

Proof. Let T be a 2-packing of G. Let eachSi consist of exactly one vertexv ∈ T . This gives

us a fair reception of size∣T ∣. Thus,�2(G) ≤ 
F (G). Now assume there exists a graphG with

r = 
(G) < 
F (G) = k. Let D be a
-set ofG and letS1, ..., Sk form a fair reception of sizek

in G. Sincer < k, D must be disjoint from at least oneSi. We assumeD ∩ Si = ∅ for 1 ≤ i ≤ t

andD ∩ Sj ∕= ∅ for t+ 1 ≤ j ≤ k. ThenD externally dominatesS1 ∪ S2 ∪ ... ∪ St, and so by the

definition of fair reception, we have

t ≤ ∣D ∩ Z∣+
∑

j,Sj∩D ∕=∅

(∣Sj ∩D∣ − 1) = ∣D ∩ Z∣+
k

∑

j=t+1

∣Sj ∩D∣ − (k − t) = ∣D∣ − k + t.

Thenk ≤ ∣D∣ and we have a contradiction. Therefore,�2(G) ≤ 
F (G) ≤ 
(G). □

Theorem 3.1 [11] For any graphsG andH,


(G□H) ≥ max{
F (G)
(H), 
(G)
F (H)} (3.1)

Proof. Let G andH be arbitrary graphs. LetD be a
-set ofG□H and let the setsS1, S2, ..., Sk

form a fair reception of H, where
F (H) = k. As in the definition of fair reception, we letS =
k
∪

i=1
Si andZ = V (H)− S.

LetDu▪ be the set of vertices in{u} × V (H) that are also inD and letPu▪ denote the projection

of Du▪ ontoH. That is,Du▪ = ({u}×V (H))∩D andPu▪ = {v ∈ V (H) ∣ {u, v} ∈ {u}×V (H)}.

Let D▪i be the set of vertices inV (G)× Si that are also inD and letP▪i denote the projection of

D▪i ontoG. That is,D▪i = (V (G)× Si) ∩D andP▪i = {u ∈ V (G) ∣ {u, v} ∈ V (G)× Si}.

LetDui = ({u} × Si) ∩D.

LetD▪Z = (V (G)× Z) ∩D and letDuZ = ({u} × Z) ∩D.

Now definedui as follows.

dui =

⎧

⎨

⎩

∣Dui∣ − 1 if Dui ∕= ∅

0 otherwise

Observe thatdui counts the vertices inDui that are not uniquely projected ontoG.
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Now we defineT▪i = {u ∈ V (G) ∣ u /∈ N [P▪i]}. Observe thatT▪i ∪ P▪i is a dominating set ofG

and, thus,

∣T▪i∣+ ∣P▪i∣ ≥ 
(G) (3.2)

Let Tu▪ = {i ∣ u ∈ T▪i, i = 1, 2, . . . , k}. By definition ofT▪i andTu▪, the following holds

k
∑

i=1

∣T▪i∣ =
∑

u∈V (G)

∣Tu▪∣ (3.3)

Observe that ifi ∈ Tu▪ the vertices{u} × Si are not dominated byD▪i, and soPu▪ externally

dominatesSi for all i ∈ Tu▪. Therefore, by definition of fair reception, we have

∣DuZ ∣+
k

∑

i=1

dui ≥ ∣Tu▪∣ (3.4)

Now, we have:

∣D∣ =
k

∑

i=1

∣D▪i∣+ ∣D▪Z ∣ =
k

∑

i=1

(∣P▪i∣+ (∣D▪i∣ − ∣P▪i∣)) + ∣D▪Z ∣

=
k

∑

i=1

∣P▪i∣+
k

∑

i=1

∑

u∈V (G)

dui + ∣D▪Z ∣ =
k

∑

i=1

∣P▪i∣+
∑

u∈V (G)

(
k

∑

i=1

dui + ∣DuZ ∣)

≥
k

∑

i=1

∣P▪i∣+
∑

u∈V (G)

∣Tu▪∣ (3.5)

=
k

∑

i=1

(∣P▪i∣+ ∣T▪i∣) (3.6)

≥ k
(G) = 
(G)
F (H). (3.7)

Note, (3.5) holds by (3.4), (3.6) holds by (3.3), and (3.7) holds by (3.2).

Similarly, we define a fair reception of G and repeat the proof with the roles of G and H re-

versed to conclude that
(G□H) ≥ 
F (G)
(H). Therefore, we conclude that
(G□H) ≥

max{
F (G)
(H), 
(G)
F (H)}. □

Corollary 3.1 LetG be a graph with
(G) = 
F (G). ThenG satisfies Vizing’s conjecture.

There are some known examples of graphsG for which
F (G) ∕= 
(G). One such example can

be seen in Figure 16. It can be easily verified that this graphG has
(G) = 3. Brěsar, et. al. [8]

verified by computer that
F (G) = 2.
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Figure 16.: Example of a graph with
(G) = 
F (G) + 1

Brěsar and Rall observe that the class of graphs satisfying
(G) = 
F (G) is an extension of

the class of BG-graphs which is distinct from TypeX graphs. An open question regarding fair

domination is whether a lower bound may be found for
F (G) in terms of
(G). If, for example,

one could find a constantc > 1
2 such that
F (G) ≥ c
(G), that would improve the Clark-Suen

inequality.

3.2 Edge Critical Graphs

There are two classes of graphs that are critical with respect to the domination number:edge-critical

graphsandvertex-critical graphs. In an edge-critical graph, the domination number decreases if an

edge is added; in vertex-critical graphs, the domination number decreases if a vertex is deleted.

Here, we concentrate on the class of edge-critical graphs.

A graphG is k-edge-domination-critical, or simplyk-edge-critical if
(G) = k and for every

pair of nonadjacent verticesu, v ∈ V (G), 
(G+ {u, v}) = k − 1. In other words, the domination

number decreases if any missing edge is added to the graphG.

Note that a graphG is 1-edge-critical if and only ifG is a complete graph. It is also straightfor-

ward to characterize 2-edge-critical graphs, using the following theorem.

Theorem 3.2 [43] A graphG is 2-edge-critical if and only if̄G =
t
∪

i=1
K1,pi for somet ≥ 1.

In other words, the only 2-edge-critical graphs are complements of unions of stars. Although

Vizing’s Conjecture has already been established for graphsG with 
(G) = 2, we can provide

a different method of proof for 2-edge-critical graphs. We will show that the domination number

equals the fair domination number in a 2-edge-critical graph and, therefore, we can apply Brěsar

and Rall’s [11] result to show that Vizing’s conjecture holds.

37



Theorem 3.3 For any 2-edge-critical graphG, 
(G) = 
F (G).

Proof. Let G be a 2-edge-critical graph. By Theorem 3.2, every 2-edge-critical graph is the

complement of a union of stars. ConsiderH = K1,n1−1 ∪ K1,n2−1 ∪ . . . ∪ K1,nt−1, where

∣V (K1,ni−1)∣ = ni and t ≥ 1. Let vi be the vertex of maximum degree inK1,ni−1 for i =

1, 2, . . . , t. Now letG = H̄. LetS1 = {vi ∣ i = 1, 2, . . . , t} and letS2 = V (G)− S1.

We need to show thatS1 andS2 form a fair reception ofG. Consider the setS1. In order to

externally dominate this set, we need at least 2 vertices fromS2. Takev ∈ K1,ni−1 wherev ∕= vi.

Thenv externally dominatesvj for all j ∕= i. Thus we must choose at least one more vertex from

S2 to externally dominatevi. This implies∣D∩S2∣− 1 ≥ 1 for all sets of verticesD that externally

dominateS1.

Now considerS2. Choosevi ∈ S1. Thenvi externally dominates all vertices ofS2 except those

that were in the starK1,ni−1 in H. Thus, we must choose an additional vertexvj ∕= vi to externally

dominate those vertices. We have∣D ∩ S1∣ − 1 ≥ 1.

Therefore, for any 2-edge-critical graphG, 
F (G) ≥ 2. But 
F (G) ≤ 
(G) by Proposition 3.1

and since
(G) = 2, we have
F (G) = 
(G) = 2. □

Since we know that Vizing’s conjecture holds for any graphG that has
(G) = 
F (G), this result

implies Vizing’s conjecture holds for all 2-edge-critical graphs.

Unfortunately, 3-edge-critical graphs are not easily characterized as 1- and 2-edge-critical graphs

are. We provide a few examples of 3-edge-critical graphs.

Figure 17 provides seven examples of 3-edge-critical graphs. Observe that we can find a fair

reception of size 3 in five of these graphs, as shown in Figure 18; however, it is difficult to tell if

there is a fair reception of size 3 in the remaining two graphs in Figure 17. We do have the following

result which may help in finding fair reception of size
(G) in an edge-critical graphG.

Theorem 3.4 LetG bek-edge-critical with
(G) = 
F (G) = k. Then ifS1, S2, . . . , Sk form a

fair reception ofG, eachSi for i = 1, 2, . . . , k is a complete subgraph ofG.

Proof. AssumeG is k-edge-critical and that
(G) = 
F (G) = k. Let S1, S2, ..., Sk form a fair

reception ofG. Without loss of generality, assumeS1 does not form a complete subgraph ofG. For

u, v ∈ S1 such that{u, v} /∈ E(G), draw the edge{u, v}. Then we still have a fair reception of size
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Figure 17.: Examples of 3-edge-critical graphs
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Figure 18.: Fair domination in 3-edge-critical graphs: In each graph, letS1 = the vertices that are

blue,S2 = set of green vertices, andS3 = red vertices. These sets form a fair reception of each graph

of size 3.
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k. But adding{u, v} decreases
(G), so now we have
F (G) > 
(G), a contradiction. Therefore,

for eachi = 1, 2, ..., k, Si forms a complete subgraph ofG. □

We define theline graph of the complete graph on[k] as follows: let [k] denote thek-set

{1, 2, . . . , k} and consider the set of 2-subsets of[k]. Let these
(

n
2

)

2-subsets be the vertices

v1, v2, . . . , v(k
2
) of the line graphGk. There is an edge{v1, v2} between verticesv1, v2 ∈ V (G)

if and only if v1 ∩ v2 ∕= ∅. For the line graphGk, 
(Gk) = ⌈k−1
2 ⌉. If k is even then a
-set

of Gk is {1, 2}, {3, 4}, . . . , {k − 1, k}, and
(G) = ⌈k−1
2 ⌉. If k is odd then a
-set ofGk is

{1, 2}, {3, 4}, . . . , {k − 2, k − 1}, and
(G) = k−1
2 .

Lemma 3.1 If k is even, then the line graphGk is edge-critical.

Proof. Let D be a dominating set forGk, wherek is even. Without loss of generality, letD =

{{1, 2}, {3, 4}, . . . , {k − 1, k}}. Now add an edge between two vertices inD, say{{1, 2}, {3, 4}}

to form the graphG′
k. ThenD′ = {{1, 2}, {5, 6}, . . . , {k − 1, k}} is a dominating set ofG′

k and

∣D′∣ = ∣D∣ − 1. Hence,Gk is edge-critical whenk is even. □

Consequently, if there is a fair reception ofGk of size⌈k−1
2 ⌉, then each setSi, i = 1, 2, . . . , k−1

2

is a complete subgraph ofGk.

Note that for anyk, we can find a fair reception ofGk of size⌊k3⌋. Consider partitioning the

set[k] into 3-subsets; without loss of generality, say we have{1, 2, 3}, {4, 5, 6}, and so on. Then

the vertices generated by each set form the setsS1, S2, . . . , S⌊ k
3
⌋. So we have, for example,S1 =

{{1, 2}, {1, 3}, {2, 3}}. By forming our setsSi in this way, we ensure that no vertex inSj dominates

a vertex inSi for i ∕= j. We also require at least two vertices fromV (Gk) − S to dominate

eachSi and so these sets satisfy the criteria to be a fair reception. As
(Gk) = ⌈k−1
2 ⌉ we have


F (Gk) ≥ ⌊k3⌋ ≥ 2
3
(Gk). Now, observe that we have a lower bound on
F (Gk+6) in terms of


F (Gk).

Lemma 3.2 For anyk, 
F (Gk+6) ≥ 
F (Gk) + 2.

Proof. LetS1, S2, . . . , S
F (Gk) form a fair reception of
(Gk). Now add the 6 points{1, 2, 3, 4, 5, 6}

to [k] and considerGk+6. We can form a fair reception of this graph by addingS
F (Gk)+1 =

{{1, 2}, {1, 3}, {2, 3}} andS
F (Gk)+2 = {{4, 5}, {4, 6}, {5, 6}} to S1, S2, . . . , S
F (Gk). Thus,


F (Gk+6) ≥ 
F (Gk) + 2. □

41



Note that finding a good upper bound for
F (Gk) is much more difficult. We know that
F (Gk) ≤


(Gk). It remains an open problem whether we can improve this upper bound.

We observe that the line graphGk is claw-free, and so we can apply Corollary 2.4, which states

that for a claw-free graph and any graphH without isolated vertices,


(Gk□H) ≥
1

2

(Gk)(
(H) + 1).

Note, also, that we can apply Theorem 3.1 to get
(Gk□H) ≥ 
F (Gk)
(H) ≥ 2
3
(Gk)
(H).
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Chapter 4

Conclusion

Vizing’s conjecture, as stated in 1963, is that the domination number of the Cartesian product of

two graphs is at least the product of their domination numbers. The first major result related to the

conjecture was from Barcalkin and German [4] in 1979 when they defineddecomposable graphs

and proved Vizing’s conjecture holds for the so-called A-class, now commonly called BG-graphs.

Hartnell and Rall’s [27] 1995 breakthrough established the truth of Vizing’s conjecture for what

they called TypeX graphs; this class of graphs is an extension of the BG-graphs. Brešar and Rall

[11] in 2009 defined fair reception and fair domination. They proved thatVizing’s conjecture holds

for graphs with domination number equal to fair domination number. The class of such graphs is

an extension of the BG-graphs which is distinct from TypeX graphs. We also know that Vizing’s

conjecture is true for any graph with domination number less than 4; this was proved in 2004 by

Sun [44].

Another approach to proving Vizing’s conjecture is to find a constantc > 0 so that
(G□H) ≥

c
(G)
(H), with the hope that eventually this constant will improve to 1. Clark and Suen [17] were

able to do this in 2000 forc = 1
2 , and we were able to tighten their arguments to prove a slightly

improved inequality.

As Vizing’s conjecture is not yet proved for all graphs, several researchers have studied Vizing-

like conjectures for other graph products and other types of domination. We provided a summary

of some Vizing-like results for fractional domination, integer domination, upper domination, upper

total domination, paired domination, and independence domination. In addition,we stated a few

conjectures which remain open problems and would contribute to efforts to prove Vizing’s conjec-

ture. Two of these conjectures involve independent domination, and one isknown as the projection

conjecture (Conjecture 2.5). A proof of any of these three conjectureswould imply the truth of

Vizing’s conjecture.
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We also defined fair reception and fair domination, as introduced by Brešar and Rall, and included

a proof of their Vizing-like inequality relating the domination number of the Cartesian product of

graphsG andH to the fair domination numbers ofG andH. It remains an open question whether

we can find a constantc > 1
2 so that
F (G) ≥ c
(G) for any graphG. We do know that there are

graphs for which
F (G) = 
(G)− 1, and we believe the line graphGk could have fair domination

number much smaller than domination number; however it remains difficult to find alower bound

on the fair domination number of a graph in terms of the domination number.

Finally, we considered fair domination in edge critical graphs. We found that a fair reception

of an edge-critical graphG of size
(G) must have each setSi induce a complete subgraph ofG.

We also provided a proof that Vizing’s conjecture is true for 2-edge-critical graphs. This result, of

course, was already known since we know Vizing’s conjecture holds for any graph with domination

number less than 4; however, it is an example of how we might use the idea of fair domination to

prove that Vizing’s conjecture is true for certain graphs.

Note that a common method of proof in most of the Vizing-like results is to partition a dominat-

ing setD of G□H and project the vertices ofD ontoG or H. It is unclear whether this particular

method will be useful to prove Vizing’s conjecture. As long as Vizing’s conjecture remains unre-

solved, possible next steps in attempt to prove it are to continue studying Vizing-like conjectures,

particularly those relating domination and independent domination. One might also study fair dom-

ination further, with hopes of finding a lower bound on the fair domination number of a graph. We

also note that the BG-graphs, TypeX graphs, and graphs with fair domination number equal to

domination number are all defined by a partition of the vertex set of a graph.It could be useful to

find a new way of partitioning the vertices of a graph in such a way that we can establish the truth

of Vizing’s conjecture for an even larger class of graphs.
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Table 1: Symbols

Symbol Description


(G) Domination number


F (G) Fair domination number

�(G) Minimum vertex degree

Δ(G) Maximum vertex degree

�(G) Chromatic number

i(G) Independent domination number


t(G) Total domination number


c(G) Connected domination number


cl(G) Clique domination number

�2(G) 2-packing number


f (G) Fractional domination number


{k}(G) {k}-domination number

�(G) Independence number

Γ(G) Upper domination number



{k}
t (G) Total{k}-domination number

Γt(G) Upper total domination number


pr(G) Paired domination number


i(G) Independence domination number
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[8] Boštjan Brěsar, Paul Dorbec, Wayne Goddard, Bert L. Hartnell, Michael A. Henning, Sandi
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