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COURSE OBJECTIVES:

o To develop the use of matrix algebra techniques that is needed by engineers for practical applications.

¢ To acquaint the student with the concepts of vector calculus needed for problems in all engineering
disciplines.

¢ To develop an understanding of the standard techniques of complex variable theory so as to enable the
student to apply them with confidence, in application areas such as fluid dynamics and flow of the electric
current.

o To make the student appreciate the purpose of using transforms to create a new domain in which it is
easier to handle the problem that is being investigated.

INTENDED OUTCOMES:

The students will learn:

¢ To Evaluate complex integrals using the Cauchy integral formula and the residue Theorem

o To Appreciate how complex methods can be used to prove some important theoretical results.

¢ To Evaluate line, surface and volume integrals in simple coordinate systems

e To Calculate grad, div and curl in Cartesian and other simple coordinate systems, and establish
identities connecting these quantities

e To Use Gauss, Stokes and Greens theorems to simplify calculations of integrals and prove simple
results.

UNIT I : MATRICES 12

Eigen values and Eigenvectors of a real matrix, Characteristic equation, Properties of eigenvalues and
eigenvectors, Cayley-Hamilton theorem, Diagonalization of matrices , Reduction of a quadratic form to
canonical form by orthogonal transformation, Nature of quadratic forms. Simple Problems using Scilab.

UNIT Il: VECTOR CALCULUS 12

Gradient and directional derivative, Divergence and Curl, Irrotational and Solenoidal vector fields, Line
integral over a plane curve, Surface integral, Area of a curved surface, Volume integral, Green’s, Gauss
divergence and Stoke’s theorems, Verification and application in evaluating line, surface and volume
integrals.

UNIT 111 :ANALYTIC FUNCTION 12

Analytic functions, Necessary and sufficient conditions for analyticity, Properties, Harmonic conjugates,
Construction of analytic function, Conformal mapping, Mapping by Functions w =z+c, ¢z, 1/z, 2% ,
Bilinear transformation.

UNIT IV: COMPLEX INTEGRATION 12

Line integral, Cauchy’s integral theorem, Cauchy’s integral formula, Taylor’s and Laurent’s series,
Singularities, Residues, Residue theorem, Application of residue theorem for evaluation of real integrals,
Use of circular contour and semicircular contour with no pole on real axis.

UNIT V: LAPLACE TRANSFORMS 12
Existence conditions, Transforms of elementary functions, Transform of unit step function and




unit impulse function, Basic properties, Shifting theorems, Transforms of derivatives and integrals, Initial
and final value theorems, Inverse transforms, Convolution theorem , Transform of periodic functions,
Application to solution of linear ordinary differential equations with constant coefficients.
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Unit No.

List of Topics

No. of Hours

UNIT |

MATRICES

Introduction of Matrix Algebra

Characteristic Equation

[

Problems based on Characteristic Equation - Eigen values and
Eigen vectors

Problems based on Characteristic Equation - Eigen values and
Eigen vectors

Tutorial 1: Characteristic Equation - Eigen values and Eigen
vectors

Properties of eigenvalues and eigenvectors

Problems based on Properties

Cayley — Hamilton theorem

Problems based on Cayley — Hamilton theorem

Diagonalization of matrices

Reduction of a quadratic form to canonical form by orthogonal
transformation

Reduction of a quadratic form to canonical form by orthogonal
transformation

Nature of guadratic forms

Tutorial 2: Cayley — Hamilton theorem and Canonical form
through orthogonal reduction

TOTAL

UNIT — 11

VECTOR CALCULUS

Introduction — Vector Calculus

Gradient and directional derivative

Divergence and Curl

Irrotational and Solenoidal vector fields

Irrotational and Solenoidal vector fields, scalar potential

Vector Integration-, Line integral over a plane curve

Surface integral, Area of a curved surface

Volume integral

Tutorial 3 — Irrotational and solenoidal, Green’s theorem

Gauss divergence theorem - Statement , Problems

Gauss divergence theorem - Problems

Stoke’s theorem - Statement , Problems

Stoke’s theorem - Problems

Tutorial 4 — Gauss divergence and Stoke’ theorem,
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TOTAL

[N
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ANALYTIC FUNCTION

Introduction — Analytic Function

=

Necessary and Sufficient conditions for an analytic function-
Cauchy-Riemann equations —Cartesian form

=

Necessary and Sufficient conditions for an analytic function-
Cauchy-Riemann equations —Cartesian form

Cauchy-Riemann equations — Polar form




Harmonic functions and its conjugate

UNIT — 111

Tutorial 5-Cauchy-Riemann equations Harmonic functions

Properties of analytic functions

Construction of an Analytic Function Milne-Thomson method

Construction of an Analytic Function Milne-Thomson method

Conformal mapping: The transformations w = z+a, az

Conformal mapping: The transformations w = 1/z, Z?

Bilinear transformation

Bilinear transformation

Tutorial 6 - Conformal mapping, Bilinear transformation

A R I

TOTAL

[EEN
N

COMPLEX INTEGRATION

Introduction - Complex Integration, Line integral

Problems solving using Cauchy’s integral theorem

Problems solving using Cauchy’s integral formula

Taylor’s Series Problems

Taylor’s Series Problems

UNIT - IV

Laurent series problems

I

Laurent series problems

Tutorial 7 - Taylor’s and Laurent’s series problems

Theory of Residues

Cauchy’s residue theorem

Applications of Residue theorem to evaluate real integrals.

Applications of Residue theorem to evaluate real integrals.

Use of circular contour and semicircular contour with no pole on
real axis.

A G

Tutorial 8 - Cauchy’s residue theorem, Applications

TOTAL

LAPLACE TRANSFORMS

Introduction — Transforms, Existence conditions

Transforms of elementary functions

Transform of unit step function and unit impulse function

Basic properties

Transforms of derivatives and integrals

Initial and final value theorems

UNIT -V

Tutorial 9 - Basic properties , Transforms of derivatives and
integrals

A R

Inverse Laplace transforms, Convolution theorem

Inverse Laplace transforms, Convolution theorem

Transform of periodic functions

Transform of periodic functions-Problems

Application to solution of linear ordinary differential equations
with constant coefficients using Laplace transforms

A

Application to solution of linear ordinary differential equations
with constant coefficients using Laplace transforms

Tutorial 10 - Solution of Ordinary Differential Equations,
Transform of periodic functions

TOTAL

14
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70

Staff in charge

HoD




Part |

Unit | Matrices

Characteristic equation; Eigen values and Eigen vectors of a real matrix; Properties;
Cayley-Hamilion theorem (excluding proof]; Orthogonal  fransformation of a
symmetric matrix to diagonal form; Quadratic forms; Reduction to canonical form
through orthogoenal reduction.

Unit Il Three-Dimensional Analytical Geometry

Direction ratios of the Line Joining two points; The plane; Plane through the
intersection of two lines; The straight line; The plane and the straight line; Shortest
distance between two skew lines; Equation of a sphere.

Unit il Geometrical Applications of Differential Calculus
Curvature in Cartesian coordinates; Centre and radius of curvature; Circle of
curvature; Evolutes; Envelopes; Evolutes as envelope of normals.

Unit IV  Functions of Several Variables

Partial derivatives; Euler’s theorem for homogeneous functions; Total derivatives;
Differentiation of implicit functions; Jacobians; Maxima and minima of functions
of two or more variables; Method of Lagrangian multipliers.

Unit V Differential Equations

Equations of the first order and higher degree; Linear differential equations of
second and higher order with constant coefficients; Euler's homogeneous linear
differential equations; Mathematica software demonstration.
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Unit |

Matrices

Chapter 1: Matrices

Chapter 2: Eigen Values, Eigen Vectors and the Characteristic
Equation

Chapter 3: Cayley-Hamilton Theorem
Chapter 4: Diagonalization of Square Matrices

Chapter 5: Quadratic Forms
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Matrices

fChapter Outline

Infroduction

Definition of a Matrix

Special type of Matrices

Properties of Matrix Addition and Scalar Multiplication
Properties of Matrix Transposition

Detferminants

Simultaneous Linear Equations

1.1 O INTRODUCTION

Matrices were invented about a century ago in connection with the study of simple
changes and movements of geometric figures in coordinate geometry.

J J Sylvester was the first to use the Latin word “matrix” in 1850 and later on in
1858, Arthur Cayley developed the theory of matrices in a systematic way.

Matrices are powerful tools of modern mathematics and their study is becoming
important day by day due to their wide applications in almost every branch of science
and especially in physics (atomic) and engineering. These are used by sociologists in
the study of dominance within a group, by demographers in the study of births and
deaths, mobility and class structure, etc., by economists in the study of inter-industry
economics, by statisticians in the study of ‘design of experiments” and ‘multivariate
analysis’, by engineers in the study of ‘network analysis” used in electrical and
communication engineering.

Matrix is an essential tool for engineers and scientists to solve a large number
of problems in the branches of engineering such as in (i) electrical engineering,
where the problems with electrical circuits are modelled with the help of matrix
equations; (ii) structural engineering, where the problems are modelled in the form
of matrix equations and then solved; (iii) a neural network, where a set of matrices
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1.6 Engineering Mathematics

represents a neural network and its activity can be explained with the help of matrix
operations and also the knowledge gathered from a set of observations is stored in
matrix form; (iv) image processing, where an image is considered as a big matrix
and the templates for image processing operators like edge detection, thinning,
filtering etc are basically matrices and the image-processing operations are directly
or indirectly matrix operations; (v) graph theory, where a graph is represented by
a matrix and the problem related to the graph can be solved using matrix algebra;
(vi) control engineering, where the control problems are modelled using matrix
or matrix differential equations; (vii) compiler design, where the grammar of a
programming language may be expressed in terms of Boolean matrices and then the
precedence of the operators used is the operator precedence grammar are computed;
(viii) automata, where state transitions can be expressed using matrix theory.

Rectangular Array

Before we come to the formal definition of “‘matrices” and to understand the same, let
us consider the following example:

In an inter-university debate, a student can speak either of the five languages:
Hindji, English, Bangla, Marathi and Tamil. A certain university, say, A sent 25 students
of which 7 offered to speak in Hindi, 8 in English, 2 in Bangla, 5 in Marathi and the
rest in Tamil; another university, say B, sent 20 students of which 10 spoke in Hindji,
7 in English and 3 in Marathi. Out of 25 students from the third university, say C,
5 spoke in Hindji, 10 in English, 6 in Bangla and 4 in Tamil.

The information given in the above example can be put in a compact way if we
present it in a tabular form as follows:

University Number of speakers in
Hindi English Bangla Marathi Tamil
A 7 8 2 5 3
B 10 7 0 3 0
C 5 10 6 0 4

The numbers in the above arrangement form is known as a rectangular array.
In this array, the lines down the page are called columns whereas those across the
page are called rows. Any particular number in this arrangement is known as an
entry or an element. Thus, in the above arrangement, we find that there are 3 rows
and 5 columns and we observe that there are 5 elements in each row and so the total
number of elements =3 x 5, i.e., 15.

If the data given in the above arrangement is written without lines enclosed by

7 8 2 5 3
a pair of square brackets, i.e,, in the form |10 7 0 3 0| then this is called a
matrix. 5 10 6 0 4

1.2 O DEFINITION OF A MATRIX

A system of any mn numbers arranged in a rectangular array of m rows and n columns
is called a matrix of order m x n or an m X n matrix (which is read as m by n matrix).
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Matrices 1.7
J Column
by Ay My
Ay Ay Ay
For example, | - * " | ¢« row is an m X n matrix where the symbols
a a a

ml m2 mn 1 5 2
a;; represent any numbers (4; lies in the ith row and jth column) and {3 6 4} isa
2 x 3 matrix.

> Note

(i) Amatrix may be represented by the symbols [a;], (a;), |la;!1. Generally, the

first system is adopted.

(ii) Each of the mn numbers constituting an m x n matrix is known as an
element of the matrix.
The elements of a matrix may be scalar or vector quantities.

(iii) When m = n, the matrix is square, and is called a matrix of order n or an
n — square matrix.

(iv) The plural of ‘matrix” is ‘matrices’.

1.3 QO SPECIAL TYPES OF MATRICES

Row Matrix

Any 1 x n matrix which has only one row is called a row matrix or a row vector.
The matrix A = [ayy, 4y, ... a3,,] is a row matrix.

Column Matrix

Any m x 1 matrix which has only one column is called a column matrix or a column

vector.
G
Ay
The matrix A = - | is a column matrix.
aml

Null Matrix or Zero Matrix

If the elements of a matrix are all zero, it is called a null or zero matrix. A zero matrix
of order m x n is denoted by 0,, , or simply by 0. A zero matrix may be rectangular or
square.

00
For example, and
00

rectangular respectively.

mn

00

0
0 0 0} are null matrices which are square and
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1.8 Engineering Mathematics

Diagonal Matrix

A square matrix with all the elements equal to zero except those in the leading
diagonal is called a diagonal matrix.

100
Forexample, |9 3 (| is a diagonal matrix.

005

Scalar Matrix

A diagonal matrix all of whose diagonal elements are equal is called a scalar matrix.
500
Forexample, |0 5 0| is a scalar matrix of order 3.
005

Unit Matrix

A square matrix of order n which has unity for all its elements in the leading diagonal
and whose all other elements are zero is called the unit matrix or the identity matrix
of order n and is denoted by I,,. In other words, if each diagonal element of a scalar
matrix is unity, the matrix is called a unit matrix.
100
For example, {O } and |0 1 O] areunitmatrices of order 2 and 3 respectively.

0 01

Triangular Matrices (Echelon Form)

A square matrix in which all the elements below the leading diagonal are zero is
called an upper triangular matrix. A square matrix in which all the elements above
the leading diagonal are zero is called a lower triangular matrix.

a,; 0 ... 0 ay Ay . . a4,

ay a4y 0 . 0 0 ay . . a4y,
For example, | . .. . . | islower triangular and

A B - - Ay 0 0 co Ay

is upper triangular.

Transpose of a Matrix

The matrix got from any given matrix A by interchanging its rows and columns is
called the transpose of A and is denoted by A’ or A”.

3 1 2
6] then A”= | -1 5| clearly (A") = A.
3 6

-1

1
For example, if A = |:
2 5
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Matrices 1.9

Conjugate of a Matrix

If A is an m X n matrix then the m x n matrix obtained by replacing each element of
A by its complex conjugate is called the conjugate matrix of A and is denoted by A .

Thus, if A =[a;] then A= [Z] where a; is the complex conjugate of a;;.

3+i 5-1 7 3—i 5+i 7
For example,if A=| 6 34i 2—i|then A=| 6 3-i 2+i
2+71 8 9 2-7i 8 9

> Note

(i) If the elements of A are over the field of real numbers then the conjugate of
A coincides with A, i.e., A = A.

(ii) The conjugate of the conjugate of a matrix coincides with itself, i.e., (A) = A.

Symmeltric Matrices

A square matrix A = [al-]-] is said to be symmetric if A = AT e, a; = aj and
skew-symmetric if A = AT e, ;= —aj; where i and j vary from 1 to n.
a h g 0 h g
The matrices | b f|and |-h 0 f| arerespectively symmetric and skew-
symmetric. 8§ f ¢ s ~f 0

> Note

In a symmetric matrix, all the elements placed symmetrically about the main
diagonal are equal and in a skew-symmetric matrix, they differ by a multiple of
-1.

Hermitian Matrices and Skew-Hermitian Matrices

A square matrix A = [a;] is said to be Hermitian if ;= “_]1 i.e,, the (i, j)th element is the
conjugate complex of the (j, 7)th element.

A square matrix A = [a] is said to be skew-Hermitian if 7;;= —a_ﬁ, i.e, (i, j)th element
is the negative conjugate of the (j, i)th element.

. |l 3 2w el Hermitian and
or example, 14 4i > an o4 i are respectlve Yy ermitian an

skew-Hermitian matrices.

Trace of a Square Matrix

The sum of the main diagonal elements of a square matrix A is called the trace of A
and is denoted by tr A.
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1.10 Engineering Mathematics
by A - - Ay
Ay Ay Ay
IfA=| - - - - - | then
anl anZ ann

trace (A)=trA=a;; tan+..+a,,

> Note

(i) If A and B are of the same order then tr(A+B)=tr A+tr B
(ii) If A be of order m x n and B of order n x m, then tr AB = tr BA.

1.4 O PROPERTIES OF MATRIX ADDITION AND SCALAR
MULTIPLICATION

Property (i) A+B=B+A
Property (ii) (A+B)+C=A+B+0)
Property (iii) oA+ B)= oA+ aB
Property (iv)  (o+ B)A=aA+BA
Property (v) (af) A= a(BA)
Thus, the matrix addition is commutative [Property (i)] and associative [Property
(ii)l; and the scalar multiplication of a matrix is distributive over matrix addition
[Property (iii)].

1.5 O PROPERTIES OF MATRIX TRANSPOSITION

If A and B are two matrices, and ‘o is a scalar then
Property (i) (AHT=A

Property (i)  (A+B)T=AT+BT

Property (iii)  (0A)T = AT

Property (iv)  (AB)T = BTAT

1.6 0O DETERMINANTS

With each square matrix A, we can associate a determinant which is denoted by the
symbol Al or det A or A. When A is a square matrix of order , the corresponding
determinant | Al is said to be a determinant of order n. Amatrix is just an arrangement
and has no numerical value. A determinant has numerical value. In fact, every square
matrix has its determinant and while finding inverse, rank, etc., of a matrix or solving
the linear equations by matrix method, we come across it.

2 5|12 6|9 5 9 6 . .
Further, , , and are different matrices but the
6 9|5 9|6 2 5 2

corresponding determinants have the same value (-12). In matrices, numbers are
enclosed by brackets or parenthesis or double bars. In determinants, numbers are
enclosed by a pair of vertical lines (bars).
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Matrices 1.11

Determinants were first introduced for solving linear systems and have important
engineering applications in systems of differential equations, electrical networks,
Eigen-value problems, and so on. Many complicated expressions occurring in
electrical and mechanical systems can be simplified by expressing them in the form
of determinants.

The differences between matrices and determinants are as follows:

Matrices Determinants

1. Number of rows and number of col- 1. Number of rows and number of

umns can be equal or unequal. columns are equal.

2. Elements are enclosed by brackets or 2. Elements are enclosed by a pair of
parentheses or double bars. vertical lines (bars).

3. A matrix has no numerical value. 3. A determinant has a numerical value.

4. Matrices are arrangements. By 4. Even after interchanging rows and
interchanging rows and columns in a columns in a determinant, the value
matrix, a new matrix is obtained. of the determinant is unaltered.

Properties of Determinants

The following properties can be used in evaluating determinants.
(i) A determinant is unaltered if the corresponding rows and columns are
interchanged.

(i) If each element of a row or column be multiplied by a constant, the value of the
determinant is multiplied by the same constant.

(iif) If two rows (or columns) of a determinant are interchanged, the sign of the
determinant is changed.
(iv) If two rows (or columns) are identical, the value of the determinant is zero.

(v) A determinant is unaltered if the elements of any row (or column) be multiplied
by a constant and added to the corresponding element of any other row (or
column).

(vi) The determinant of a diagonal matrix is equal to the product of the elements in
the diagonal.

(vii) The determinant of the product of two matrices is equal to the product of the
determinants of the two matrices,

ie, |AB| = 1Al - IBI

Minors of a Matrix

The determinant of every square submatrix of a given matrix A is called a minor of
the matrix A.

5 2 10
For example, if A=|-1 3 7
6 4 6
5 2 10
. 5 2[13 7
Some of the minorsare -1 3 7|, , , 3,6, etc.
6 1 6 -1 3|'|4 6
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1.12 Engineering Mathematics

Singular and Nonsingular Matrices

A square matrix A is said to be singular if its determinant is zero.
A square matrix A is said to be nonsingular if its determinant is not equal to zero.
For example,

1 2 3
consider A=|3 1 4
2 4 6
[Al =1(6 -16) —2(18 = 8) + 3(12 - 2)
=-10-20+30
=0
. Ais a singular matrix.
21 3
Consider B=|2 3 1
11 2
IBI =2(6-1)-1(4-1)+3(2-3)
=10-3-3
=4

Since |Bl =4 #0, B is a nonsingular matrix.

Adjoint of a Square Matrix

Ay dpp i3
LetA=|a, a,, ay
A3 O3 Az

The adjoint of A is defined to be the transpose of the co-factor matrix of A and is

denoted by adjA.
All A12 A13
adjA = (A;)", where A; = | Ay A, Ay
A3l A32 A33
All A21 A31
adjA =(A)"=|Ap Ay Ay
Ay Ay A

13 23

Reciprocal Matrix or Inverse of a Mafrix

o Definition

If A be any matrix then a matrix B, if it exists such that AB = BA =1, B is called the
inverse of A; I being a unit matrix.

For the products AB, BA to be both defined and equal, it is necessary that A and B
are both square matrices of the same order. Thus, nonsquare matrices cannot possess
inverses. Also, we can at once show that the inverse of a matrix, in case it exists, must
be unique.
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Matrices 1.13

Nonsingular and Singular Matrices

A square matrix A is said to be nonsingular or singular according as Al # 0 or
Al =0.
Thus, only nonsingular matrices possess inverses.

> Note

(i) If A, B be two nonsingular matrices of the same order then the product AB
is nonsingular and (AB) ! =B AL
(ii) If A be a nonsingular matrix and k a positive integer then A™ = (A%
(iii) The operations of transposing and inverting are commutative,
ie, (ADT=@ADT
(iv) The operations of conjugate transpose and inverse are commutative,
ie., (A9 =41

Orthogonal Matrix

A square matrix A is said to be orthogonal if AAT=ATA=1
But we know that A- A=A - A=1]
Hence, we note that AT= AL,
Hence, an orthogonal matrix can also be defined as follows:
A square matrix A is said to be orthogonal if AT= A
|:COS 6 —sind|
For example, if A=

sin@ cos@

, |:C059 sin@ ]
then A =

—sinf cos@

AAT [Cose —sine}_cose sin@}

sin@ cos@ ||—sinf cos6

sinf cosf — cosH sin O sin® 6 + cos? 0

o 1)

I: cos’ 6 +sin’ 6 cos 6 sinf —sin O cos 9:|

Hence, A is orthogonal.

Rank of a Matrix

A number r is defined as the rank of an m x n matrix A provided,
(i) A has at least one minor of order r which does not vanish, and
(ii) there is no minor of order (r + 1) which is not equal to zero.

> Note

(i) The rank of a matrix A is denoted by p(A) (or) simply R(A).
(if) The rank of a zero matrix by definition is 0 (i.e.) p(0) = 0.
(iif) The rank of a matrix remains unaltered by the application of elementary row
or column operations, i.e., all equivalent matrices have the same rank.
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1.14 Engineering Mathematics

(iv) From the definition of rank of a matrix, we conclude that:
(a) If a matrix A does not possess any minor of order (r + 1) then p(A) <r.
(b) If at least one minor of order r of the matrix A is not equal to zero then
p(A) = 7.
(v) If every minor of order p of a matrix A is zero then every minor of order
higher than p is definitely zero.

Idempotent Matrix

A matrix such that A? = A is called an idempotent matrix.

2 2 -4
For example, if A= -1 3 4|,
1 -2 -3

2 -2 4| 2 2 4 2 -2 -4
A’=|-1 3 4||-1 3 4|=|-1 3 4|=A
1 2 3|1 -2 3 1 2 -3
Periodic Matrix

A matrix A will be called a periodic matrix if A**!= A, where k is a positive integer. If
k is the least positive integer, for which A¥*! = A, then k is said to be the period of A. If
we choose k =1, we get A” = A and we call it the idempotent matrix.

Nilpotent Matrix

A matrix A will be called a nilpotent matrix if A*= 0 (null matrix) where k is a positive
integer; if however k is the least positive integer for which A¥ =0, then k is the index
of the nilpotent matrix.

o ab  b?
F if A= ,
or examp e, 1 —a2 —Ilb

2 2
A2 = ab b ab b:00:0
—a* —ab||-a® -ab 00
Here, A is a nilpotent matrix whose index is 2.

Involuntary Matrix

A matrix A will be called an involuntary matrix if A% = I (unit matrix). Since I = I
always, the unit matrix is involuntary.
Equal Matrices

Two matrices are said to be equal if
(i) they are of the same order, and
(ii) the elements in the corresponding positions are equal.
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Th 'fA21B21
us, i 15 4Bz 4

Here, A =B.

1.7 QO SIMULTANEOUS LINEAR EQUATIONS

The concepts and operations in matrix algebra are extremely useful in solving
simultaneous linear equations.
Let the equations be
amx+ay+azz=d; bix+by+byz=d, cix+cy +cgz=d;
[ax ay az | |4,
= bjx by byz|=|d,
X Gy 3z | |d,

a4, aylfx| [4

= by b, bylly|=|d,
;6 ¢z d,
AX =B
AN AX)=A"'B
(ATA)X=A"'B
IX=A"B
X=A"B

Hence, to solve linear equations, write down the coefficient matrix A and find its
inverse AL, Then find A™!B. This gives the value X which is the solution for the given
linear equations.

Consistency of a System of Simultaneous Linear Equations

A system of simultaneous linear equations is AX = B in matrix form. Consider the
coefficient matrix A. Augment A by writing the constants vector as the last column.
The resulting matrix is called an augmented matrix and is denoted by (A : B) or
(A:B)orsimply [A, B].

A system of simultaneous linear equations is consistent if the ranks of the
coefficient matrix and the augmented matrix are equal,
ie, p(A)=p(A : B) (or) R[A] = R[A, B].

There are two possibilities:

(i) When p(A) = p(A : B) = n (the number of unknowns), the system has a unique

solution.

(if) When p(A) = p(A : B) < n (the number of unknowns), the system has infinite
solutions. Let p(A) = p(A : B) =r <n - (n —r) of the unknowns are to be assigned
values arbitrarily and the remaining » unknowns can then be obtained in terms
of those (n —r) values.

On the contrary, a system of simultaneous linear equations is inconsistent if the
ranks of the coefficient matrix and the augmented matrix are not equal, i.e., p(A) #
p(A:B)
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These different possibilities are presented in a chart as follows:

EM_Unitl_01.indd 16

Consistent system
p(A) = p(A:B)

Inconsistent system

p(A) # p(A:B)

Unique solution
plA)=n

Infinite number of solutions

pd)<n
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Eigen Values, Eigen
Vectors and the
Characteristic Equation

fChapter Outline

Infroduction

Characteristic Equation of a Matrix

Important Properties of Eigen Values

linear Dependence and Independence of Vectors
Properties of Eigen Vectors

2.1 O INTRODUCTION

In this chapter, we shall discuss mainly square matrices A and throughout the ensuing
discussion, any new facts and developments will be based on the determination of a
vector X (to be called characteristic vector or Eigen vector) and a scalar A (to be called
characteristic value or Eigen value) such that AX = AX. Based on these concepts of
Eigen values and Eigen vectors, we shall indicate the conditions on A under which a
nonsingular matrix P can be selected such that PlAP is diagonal, i.e., A is similar to
a diagonal matrix.

2.2 0O CHARACTERISTIC EQUATION OF A MATRIX

Characteristic Matrix

For a given matrix A, A — Al matrix is called the characteristic matrix, where 1 is a
scalar and I is the unit matrix.

Let A=

=W N
N = DN
N = =
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Characteristic Polynomial

The determinant |A — AIl when expanded will give a polynomial, which we call the
characteristic polynomial of the matrix A.
For example,

2-42 2 1
1-12 1
1 2 2-2

= (2= (A2 =32) —2(=3A+5) + 1(A+5)
=-2+52+1-5

Characteristic Equation

The equation | A — Al =01is known as the characteristic equation of A and its roots are
called the characteristic roots or latent roots or Eigen values or characteristic values
or latent values or proper values of A.

Spectrum of A

The set of all Eigen values of the matrix A is called the spectrum of A.

Eigen-value Problem

The problem of finding the Eigen values of a matrix is known as an Eigen-value
problem.

Characteristic Vector

Any nonzero vector X is said to be a characteristic vector of a matrix A if there exists a
number A such that AX = AX, where 1 is a characteristic root of a matrix A.

2.3 O IMPORTANT PROPERTIES OF EIGEN VALUES

(i) Any square matrix A and its transpose AT have the same Eigen values.

(if) The sum of the Eigen values of a matrix is equal to the trace of the matrix.
[Note: The sum of the elements on the principal diagonal of a matrix is called
the trace of the matrix.]

(iii) The product of the Eigen values of a matrix A is equal to the determinant of A.

(iv) If A, A, ... 4, are the Eigen values of A then the Eigen values of
(a) KA arekAy, kA, ... kA,

(b)y A™are A", Ay .. A
1

(c) Alare i,i—
Moy A

n
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Eigen Values, Eigen Vectors and the Characteristic Equation 2.3

(iv) The Eigen values of a real symmetric matrix (i.e. a symmetric matrix with real
elements) are real.

2.4 O LINEAR DEPENDENCE AND INDEPENDENCE OF VECTORS

n-dimensional Vector or n-vector

An ordered set of 1 elements x; of a field F written as
A=[xy, %5 ...x,] (2.1)
is called an n-dimensional vector or n-vector over F and the elements xy, x, ... x,, are

called the first, second ... nth components of A.
We find it more convenient to write the components of a vector in a column as

AT =[x, %y, x5x, 1T =] . (2.2)

Xy

Equation (2.1) is called a row-vector and Eq. (2.2) is called a column-vector.

Linear Dependence and Independence of Vectors

The vectors A; =[x11, X1 X153 -+ X1y, Ao = [Xo1, X0, X3 - X ] oo Ay =[X,0 X Xz - Xy
are called linearly dependent over F if there exists a set of n elements 4;, 4, ... 4, of F,
A/'s being not all zero, such that L;A; + LA, +... 1,A,=0.

Otherwise the n-vectors are called linearly independent over F.

2.5 O PROPERTIES OF EIGEN VECTORS

(i) The Eigen vector X of a matrix A is not unique.
(if) If Ay, 4, ... 4, be distinct Eigen values of an 1 X n matrix then the corresponding
Eigen vectors X;, X, ... X,, form a linearly independent set.
(iii) If two or more Eigen values are equal, it may or may not be possible to get
linearly independent Eigen vectors corresponding to the equal roots.

(iv) Two Eigen vectors X; and X, are called orthogonal vectors if XIT X,=0
(v) Eigen vectors of a symmetric matrix corresponding to different Eigen values
are orthogonal.

Applications

The Eigen-value and Eigen-vector method is useful in many fields because it can be
used to solve homogeneous linear systems of differential equations with constant
coefficients. Furthermore, in chemical engineering, many models are formed on the
basis of systems of differential equations that are either linear or can be linearized
and solved using the Eigen-value, Eigen-vector method. In general, most ordinary
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differential equations can be linearized and, therefore, solved by this method. Initial-
value problems can also be solved by using the Eigen-value and Eigen-vector method.

Eigen-value analysis is also used in the designing of car stereo systems so that the
sounds are directed appropriately for the listening pleasure of both the drivers and
the passengers. Eigen-value analysis can indicate what needs to be changed to reduce
the vibration of the car due to the music being played.

Oil companies frequently use Eigen-value analysis to explore land for oil. Oil, dirt
and other substances give rise to linear systems which have different Eigen values,
so Eigen-value analysis can give a good indication of where oil reserves are located.

Eigen values and Eigen vectors are used widely in science and engineering,
particularly in physics. Rigid physical bodies have a preferred direction of rotation,
about which they can rotate freely. For example, if someone were to throw a football,
it would rotate around its axis while flying through the air. If someone were to hit
the ball in the air, the ball would be likely to flop in a less simple way. Although this
may seem like common sense, even rigid bodies with more complicated shapes will
have preferred directions of rotation. These are called axes of inertia, and they are
calculated by finding the Eigen vectors of a matrix called the inertia tensor. The Eigen
values are also important and they are called moments of inertia.

SOLVED EXAMPLES

123
Example 1 Find the characteristic roots of the matrix |0 2 3
Solution 002
12 3 100
A=l0 2 3land I=|0 1 O
00 2 0 01
1-4 2-0 3-0
IA-AIl=|0-0 2-4 3-0
0-0 0-0 2-2
1-A 2 3
=0 2-A 3
0 0o 2-2
2-1 3
=(1-2
( ) 0o 2- /’t‘
= (1-1)2-2)7
<. the characteristic equation of the matrix A is (1 — A)(2 — A)* = 0 and its roots are
1,2 2. Ans.
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|PEy I (PAN  Find the characteristic roots and corresponding characteristic vectors

8 -6 2
for the matrix A={-6 7 —4].
2 -4 3

Solution The characteristic equationis |A - All =0,
8—-1 -6 2
ie., -6 7-41 -4|=0
2 -4 3-1

B-V[T-HB-1)-16]+6[-6(3-A) +8] +2[24-2(7-A)] =0
-2+ 1827 -452=0

M-2*+181-45)=0

A=0, 3, 15 are the characteristic roots of the matrix.

The characteristic vector X is obtained from (A — A)X = 0.

Case (i) =0

If x, y, z are the components of a characteristic vector corresponding to the characteristic
root 0, we have

L4l

8 -6 2|«
(A-0DX=|-6 7 —-4|y|=0
2 -4 3|z
8x—6y+2z=0
—6x+7y—4z=0
2x -4y +3z=0
x -y z

21-16 —18+8 24-8

X _ -y _z
- 5 -10 10
je, X_Y_Z
1 2 2 .
X, =2
2

Case (ii) 1 =3.
8-3 -6 2 |lx
(A-3)X=0=| -6 7-3 -4 ||y|=0
2 -4 3-3|z

5 -6 2|«
ie, -6 4 —4|y|=0
2 -4 0|z
= 5x -6y +2z=0
-6x +4y—-4z=0
2x -4y =0
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x -y oz
0-16 0+8 24-8

X -y oz
16 8 16
X _y _z
2 -1 2
-2
X,=| -1
2

Case (iii) A =15

8-15 -6 2 [«
(A-15)X=0=| 6 7-15 —4 |y|=0

2 -4 3-15|z
-7 -6 2 x
ie., -6 -8 —4(y|=0
2 -4 12|z
= -7x—-6y+2z=0
—6x -8y —4z=0
2x -4y -12z=0
x -y oz
9%6-16 72+8 24+16
= x_y_Z
80 80 40
X_y_z
2 21
2
Xy=|-2
1
1 -2 2
Hence, X, =2, X, =|-1|, X;=|-2 Ans.
2 2 1
> Note

g
If A=|a, 4, 4a,;| then the characteristic equation is givenby |A - AIl =0
L1 P30 g3
or A>— D;2% + D,A — Dy =0 where D; = a;; + ay, + a5, (sum of the diagonals of A (or)
trace of a matrix A)
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a;, a a;, 4a a, 4a

D2 —|[H 12 e 11 13 o 22 23
Ay G| |31 A33| [P 33

= sum of the second-order minors of A whose principal diagonals lie along the
principal diagonal of A.
D, = | Al = determinant of A.

|PEiny (A Find the characteristic roots and corresponding characteristic vectors

6 -2 2
ofA=|-2 3 -1|. [KU Nov. 2010]
2 -1 3
Solution The characteristic equation is A* -~ D;A* + D,A— D3 =0
where D;=6+3+3=12
b 6 —2+6 2+ 3 -1
22 3 |2 3 |1 3
=(18-4)+(18-4)+(9-1)
=14+14+38
=36
6 2 2
D,=lAl=|-2 3 -1
2 -1 3
=6(9-1)+2(-6+2)+2(2-06)
=48-8-8
=32

.. the characteristic equation is A3 —122% + 361 - 32 =0 and the roots are 2, 2, 8.
Case (i) A =2 (twice)
6-2 =2 2 X
(A—ADX=0=| -2 3-2 -1 |ly|=0

2 -1 3-2|z
4 -2 2|«x
ie., -2 1 -1jjy|=0
2 -1 1|z
= 4x -2y +2z=0
2x+y-z=0
2x-y+z=0

which are equivalent to a single equation . There is one equation in three unknowns.
.. taking two of the unknowns, say x =1 and y = 0, we get z =-2 and taking x =0 and
y=1, wegetz=1.
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2.8 Engineering Mathematics
Case (ii) 1=8

(A-8)X=0=| -2 3-8 -1 |y|=0
2 -1 3-8z

ie., 2x-2y+2z=0
—2x-5y-z=0
2x-y-5z=0
x -y oz
25-1 10+2 2+10
X y z

24 -12 12
2
X,=[-1
1
1 0 2
Hence, X;=| 0|, X,=|1|,X;=|-1 Ans.
-2 1 1
1 2 -3
Example 4 The matrix A is defined as A= |0 3 2|.Find the Eigen values of
00 -2

3A%3+5A% - 6A +2I.

Solution The characteristic equation is |A - AIl =0
1-2 2 -3
ie., 0 3-14 2 |=0
0 0 -2-2

1-HB-H(-2-1)=0
ie., A=1,3,-2
Eigen values of A%=1,27,-8
Eigen values of A%=1,9,4
Eigen valuesof A=1, 3, -2
Eigen valuesof I=1,1, 1
Eigen values of 34% + 5A% - 6A + 2]
First Eigen value = 3(1)° + 5(1)* - 6(1) + 2 =4
Second Eigen value = 3(27) + 5(9) — 6(3) + 2(1) = 110
Third Eigen value = 3( -8) + 5(4) — 6( -2) + 2(1) =10
Required Eigen values are 4, 110, 10. Ans.

|DEnny (I Find the Eigen values and Eigen vectors of the matrix

10 -1
A=|1 2 1] [KU May 2010]
2 2 3
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Solution The characteristic equation is given by 1A — AIl =0.

1-4 0 -1
ie., 1 2-2 1 |=0
2 2 3-1
ie., B-6A2+111-6=0
= (A-1)(A*-51+6)=0

A-1)(A-2)(A-3)=0 = A1=1,2,3
To find Eigen vectors for the corresponding Eigen values, we will consider the matrix
equation (A - AX =0.

Case (i) A=1
1-1 0 -1 |[x
(A-ADX=0 = 1 2-1 1 ||y|=0
2 2 3-1|z
= —=z=0
= x+y+z=0
= 2x+2y+2z=0
Letx=1 = y=-1
1
X;=/-1
0

Case (ii)) A =2

(A-ADX=0 = | 1 2-2 1 |y|=0

= —-x-z=0
x+z=0
2x+2y+z=0
x_y_z
-2 1 2
-2
X,= 1
2

Case (iii) 1 =3
1-3 0 -1 ||«
(A-ADX=0 = 1 2-3 1 ||ly|=0
2 2 3-3|z
= 2x-z=0
x-y+z=0
2x+2y=0
X -y _z
2 2 4

EM_Unitl_02.indd 9 @ 8/16/2017 2:50:36 PM



2.10 Engineering Mathematics
-1
X,=| 1
2
1 -2 -1
Hence, the Eigen vectors are X =|-1{, X,=| 1|, X3=| 1 Ans.
0

EXERCISE

1. If 1, 5 are the Eigen values of a matrix A, find the value of det A.

a 4

2. Find the constants 2 and b such that the matrix has 3 and -2 as its Eigen

1 10
values.

If the sum of two Eigen values and trace of a 3 x 3 matrix A are equal, find |Al.

What do you understand by the characteristic equation of the matrix A?

5. What is Eigen-value problem?

Ll

a h
6. Find latent vectors of the matrix |0 b
00
7. Define linearly dependent and linearly independent set of vectors.
8. Show that the set of vectors X; =[1, 2, 3], X, =[1, 0, 1] and X; = [0, 1, 0] are
linearly independent.
9. Prove that the set of vectors X; =[1, 2, 3], X, =[1, 0, 1] and X5 = [0, 1, 0] are
linearly independent.
10. Define spectrum of a matrix.
11. Prove that any square matrix A and its transpose AT have the same Eigen values.

8
0].
c

2 21
12. Find the sum and product of the Eigen values of the matrix A={3 1 1].
1 2 2

5 4
13. Given A= |:1 2] , find the Eigen values of A2

14. Find the sum of the squares of the Eigen values of A=

o O W

1
2
0

4]
6
5]
15. Find the sum of the Eigen values of the inverse A=|0 ]

16. If A and B are 2 square matrices then what can you say about the characteristic
roots of the matrices AB and BA?
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17.

18.

19.

20.

Eigen Values, Eigen Vectors and the Characteristic Equation 211

If two of the Eigen values of a 3 x 3 matrix, whose determinant equals 4, are -1
and +2, what will be the third Eigen value of the matrix?

-1 00
The matrix A is defined as A= | 2 -3 0. Find the Eigen values of A%
1 4 2
-1 2 3
If A= 0 3 5], find the Eigen values of A3 +5A =8I

00 -2

The Eigen values of a matrix A are 1, - 2, 3. Find the Eigen values of 3] - 2A + A2

L

EM_Unitl_02.indd 11

2 -3 1
Find the Eigen values of the matrix | 3 1 3. (Ans.0,1,-2)
-5 2 —4
2
The matrix A is defined as A = |0 -2 6. Find the Eigen values of
0 0 -3
3A3+5A%+6A+ 1. (Ans. 15, 15, -53)
11 -2
Find the Eigen values and the corresponding Eigen vectors of | -1 2 1
01 -1
11131
Ans.—-1,1,2,{0(,|21,/3
11111

Show that the vectors [1, 2, 0], [8, 13, 0] and [2, 3, 0] are linearly dependent.
Show the set of vectors [1, 1, 1], [1, 2, 3] and [2, 3, 8] are linearly independent.

-15 4 3
Given that A=| 10 -12 6|, verify that the sum and product of the Eigen
20 -4 2
values of A are equal to the trace of A and | Al respectively.
[2 -1 1
Find the Eigen values and Eigen vectors of (adjA), where A=|-1 2 -1]|.
|1 -1 2
[ 1] 2
Ans.1,4,4,|-1(,|-1|,| O
| 1] 0f |1
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8. Verify that the Eigen vectors of the real symmetric matrix

3 -1 1
A=|-1 5 -1] are orthogonal in pairs.
1 -1 3

(Hint: Prove that X/ X,=X] X,=X; X,=0)
9. Find the Eigen values and Eigen vectors of the following matrices:

2 2 2 -4
@1 1 1 Ans.-2,2,2,| -1],|1
1 3 -1 7] (1]
(2 2 1 1
Gi |1 3 1 Ans.1,1,5,| 2|1
122 -5 1]
(4 2 -2 21 1] [0]
(i) [-5 3 2 Ans.1,2,5,(1(,|1],|0
2 4 1 4] 2] 1]
(1 1 1 ol [-1][4]
(v) |1 2 1 Ans.0,1,5,|-1|,| ol,| 5
323 1] | 1] [11]
(-2 2 -3
v | 2 1 -6 [KU April 2012]
-1 2 0
1] 2
Ans.5,-3,-3,| 21,|-11,{0
-1{| of |1

10. Find the Eigen values and Eigen vectors of (adjA), given that the matrix

2 0 -1
A=[ 0 2 0 [KU May 2010]
10 2
1] o] 1
Ans.1,2,3,[0(,|1],| 0
1] |o]|-1
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Cayley-Hamilton
Theorem

Chapter Outline

® Infroduction
® Cayley-Hamilton Theorem

3.1 O INTRODUCTION

This theorem provides an alternative method for finding the inverse of a matrix, and
any positive integral power of A can be expressed as a linear combination of those of
lower degree.

3.2 O CAYLEY-HAMILTON THEOREM

Every square matrix satisfies its own characteristic equation.

Application

The Cayley-Hamilton theorem can be used to find
e The power of a matrix, and
e The inverse of an n X n matrix A, by expressing these as polynomials in A of

degree <n.
SOLVED EXAMPLES
2 -1 2
| DEV NI Verify that the matrix A = [-1 2 -1| satisfies its characteristic
1 -1 2
equation and, hence, find A*. [KU May 2010, AU Jan. 2010]
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Solution The characteristic equation is |A - AIl =0
2-2 -1 2

ie, -1 2-4 -1|=0
1 -1 2-2
ie., B-622+81-3=0

According to Cayley-Hamilton theorem, to prove A® -~ 6A%+8A -31=0
[2 -1 22 -1 2] [7 -6 9
A’=|-1 2 -1||-1 2 -1|=|-5 6 —6
1 -1 2 1-1 2 5 5 7

7 -6 9|2 -1 2 29 28 38
A’=|-5 6 —6|-1 2 -1|=[-22 23 -28
5 5 7 1 -1 2 22 22 29

Hence, A - 6A% +8A - 31
29 28 38] [ 42 36 54| [16 -8 16] [3 0 0
22 23 -28|-|-30 36 -36|+|-8 16 —-8|-|0 3 0
| 22 22 29| | 30 30 42 8 -8 16|/ [0 0 3
0 0 0
000
000

Thus, the given matrix A satisfies its own characteristic equation, i.e., A3 —6A% + 8A
-31=0
Multiplying on both sides by A, we get

A*—6A3+8A%-3A=0

At=6A3-8A%+3A
[ 196 —168 252 2 -45 90 18 0 0
A*=|-140 168 -168|—-|-45 90 —45(+| 0 18 O

| 140 -140 196 45 —45 90 0 0 18

(124 —123 162

A*=-95 96 -123 Ans.
|95 95 124

1 2 2

Verify Cayley—Hamilton theorem for the matrix A= |2 1 2| and,
2 21

hence, find A™! and A*. [KU Nov. 2010]

Solution The characteristic equationis |A - AIl =0,

1-A 2 2
ie., 2 1-1 2 [ =0
2 2 1-1
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ie, 2-32%-91-5=0
To prove A®~3A2-9A -5[=0

1 2 2][1 2 2] [9 8 8
A%=[2 1 2{|2 1 2|=|8 9 8
2 2 1f[2 2 1] |8 8 9
(9 8 8][1 2 2] [41 42 42
AP=|8 9 8|2 1 2|=]42 41 42
8 8 9)[2 2 1| |42 42 4

41 42 42] [27 24 24 9 18 18] [5 0 ©
AS-3A%2-9A-5[=|42 41 42|-|24 27 24|-[18 9 18|-{0 5 0
42 42 41| |24 24 27| |18 18 9| |0 0 5

Il
o O O
o O O
o O O

Hence, the Cayley—Hamilton theorem is verified.
A®-3A2-9A-5[=0 (1)
To find A™
+by A= A?-3A-91-5A7"=0
ie., S5AT=_A%2+3A+9]
[0 -8 8] [3 6 6] [9 00
S5A=|-8 -9 -8|+|6 3 6[+|9 0 9
-8 -8 9| |6 6 3| |0 0 9

3 2 2
S5A=|2 3 2
|2 2 3]

3 2 2
Al=—Z|2 3 2
2 2 3

To find A%, multiply (1) by A

A*—3A%-9A?_5A=0
ie., A*=3A%+9A%+5A
(123 126 126 [81 72 72 5 10 10
=126 123 126|+|72 81 72|+|10 5 10
126 126 123| |72 72 81| |10 10 5

209 208 208
A*=|208 209 208 Ans.
208 208 209
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EXERCISE

State Cayley—Hamilton theorem.
2. Give two uses of the Cayley-Hamilton theorem.

—_

10
3. If [0 5] , write A% in terms of A and I, using Cayley—Hamilton theorem.

3 -1
4. Verify Cayley-Hamilton theorem for the matrix A =|: 1 5] .

1 4
5. Using Cayley-Hamilton theorem, find the inverse of {2 3] .

6. Verify Cayley—Hamilton theorem for B é]

5 3
7. Verify Cayley-Hamilton theorem for the matrix A= { 1 3:| .

7 3
8. Using Cayley-Hamilton theorem, find the inverse of |:2 6:|

9. The Cayley-Hamilton theorem is used to find
(a) Eigen values (b) Eigen vectors
(c) inverse and higher powers of A (d) quadratic form

1 0 3

1. Using Cayley-Hamilton theorem, find A*if A=2 1 -1

1 -1 1
7 30 42]
Ans.|18 -13 46
-6 -14 17_

2. Using Cayley-Hamilton theorem, find the inverse of the matrix

-1 0 3 8 0 -3
A=| 8 1 -7 Ans.|-43 1 17
-3 0 8 3 0 1]
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137
3. Find the characteristic equation of the matrix A=|4 2 3|. Show that the
1 21
equation is satisfied by A and, hence, obtain the inverse of the given matrix.
[KU April 2011]
) -4 11 -5
Ans. 2’ -4A*-202-35=0; A™' =51 6 B
| 6 1 -10
1 2 3]
4. Find the characteristic equation of the matrix A=|2 -1 4|. Show that the
3 1 -]
equation is satisfied by A. (Ans. 2% + 22 - 181 - 40 = 0)
- 7 -1 3]
5. Using Cayley-Hamilton theorem, find the inverse of (i) {3 5} |6 1 4
2 4 8]
-8 20 -7
IR 2 I |
Ans. (i) (i))—|-40 50 -10
-3 2 50
22 =30 13
31 1
6. Find the characteristic equation of the matrix A=|-1 5 -1|. Verify Cayley-
1 -1 3
Hamilton theorem for this matrix. Hence, find A™.
7 -2 -3
a1
Ans A7 =—| 1 4 1
20
-2 2

7. Use Cayley—Hamilton theorem to find the inverse of the matrix

A:[ cos@ sine} [Ans. A_lz[cose —sin6 |

—sin@ cos@ sinf  cosd |
2 -1 3
8. Using Cayley-Hamilton theorem, find A™ given that A=|1 0 2
4 21
. 4 -5 2
Ans. A™'= -5 7 -10 -1
-2 0 1
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9. Using Cayley-Hamilton theorem, find the inverse of the matrix

5 -1 5 30 1
A= 0 2 0] Ans.A_1=% 05 0
-5 3 -15 -1 1 -1
13 7
10. Find the characteristic equation of the matrix A=|4 2 3| and show that the
1 21
equation is also satisfied by A. (Ans. 2% - 42% - 20135 =0)
11. Verify Cayley—-Hamilton theorem and hence find the inverse of the matrix
1 3 1
10 10 5
A:;Z_;. Ans.g_—7_—2
10 20 5
0 -6 -7 9 3 1
10 10 5
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Diagonalization of
Square Matrices

fChapter Outline

® Infroduction
Diagonalization of Square Matrices

® Diagonalization by Orthogonal Transformation or Orthogonal
Reduction

4.1 QO INTRODUCTION

Two square matrices A and B are said to be similar if there exists a nonsingular
matrix C such that B = C'AC. The transformation A to C'AC is called similarity
transformation. The determinant, rank and Eigen values are preserved under
similarity transformation. A matrix is said to be diagonalizable if it is similar to a
diagonal matrix. The determinant of a diagonal matrix is simply the product of the
diagonal elements; the rank is the number of nonzero diagonal elements and the Eigen
values are the diagonal elements. Hence, it is very easy to deal with diagonal matrices.

4.2 1 DIAGONALIZATION OF SQUARE MATRICES

The process of finding a matrix M such that M~'AM = D, where D is a diagonal matrix,
is called diagonalization of the matrix A. As M™' AM = D is a similarity transformation,
the matrices A and D are similar and, hence, A and D have the same Eigen values. The
Eigen values of D are its diagonal elements. Thus, if we find a matrix M such that M1
AM =D, D is a diagonal matrix whose diagonal elements are the Eigen values of A.
A square matrix which is not diagonalizable is called defective.

Application

The direct application of diagonalization is that it gives us an easy way to compute
large powers of a matrix A. The Eigen values of a system determine sometimes
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4.2 Engineering Mathematics

whether the system is stable or not. This has all to do with diagonalizing matrices. In
quantum mechanical and quantum chemical computations, matrix diagonalization is
one of the most frequently applied numerical processes.

> Note

(i) M is called the modal matrix of A whose elements are the Eigen vectors of
A.

(if) For this diagonalization process, A need not necessarily have distinct Eigen
values. Even if two or more Eigen values of A are equal, the process holds
good provided the Eigen vectors of A are linearly independent.

4.3 O DIAGONALIZATION BY ORTHOGONAL TRANSFORMATION OR
ORTHOGONAL REDUCTION

The process of finding a normalized modal matrix N such that N' AN = D where
D is a diagonal matrix is called orthogonal transformation or orthogonal reduction.
The elements of N are the normalized Eigen vectors of A and it can be proved that N
is an orthogonal matrix (i.e. N = NT). It is important to note that diagonalization by
orthogonal transformation is possible only for a real symmetric matrix.

SOLVED EXAMPLES

10 -2 -5
Reduce the matrix |—-2 2 3| to diagonal form. [AU Jan. 2010]
-5 3 5

10 -2 -5
Solution Let A=-2 2 3
-5 3 5

Here, D, =17, D, =42, D, =0.
.. the characteristic equation is 1722 +421=0.

ie, MA? =174 +42)=0
MA—-14)(A-3)=0
= A=0,14,3

.. the Eigen values are 0, 14, 3.
To find the Eigen vectors, [A — AI]X =0.
10-14 =2 -5 || x
ie., -2 2-1 3 |x|=0
-5 3 5-4)x

(10 - A)x; = 2x, = 5x,=0
=2x;+ (2= A)x,+3x,=0
—5x,+3x,+(5-A)x;=0
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A=0 gives 10x; — 2x, — 5x3 = 0; —2x; + 2x, + 3x3 = 0; =5x; + 3x, + 5x5=0.
Consider first two equations, which gives x; =1, x, = -5, x3=4.

X,=|-5
4
A=14 gives
—4x,—2x,—5x;=0
—2x,—12x,+3x,=0
—=5x;+3x,—-9x,=0

Considering first two equations gives x; =-3, x, =1, x5 =2.

A=3 gives
7x,—2x,—5x,=0
—2x,—x,+3x;=0
=5x;+ 3x,+2x,=0

=x=1Lx=1x=1

1
X,=[1
1
1 31
M=|-5 1
4
M_lzﬁAde provided IM| #0
IMI| =-42
To find AdjM,

Co-factor of 1 = -1, Co-factor of -3 = 9, Co-factor of 1 = =14, Co-factor of 1 = -14,

Co-factor of 1 =-3, Co-factor of -5=5
Co-factor of 4 = -4, Co-factor of 2 = -6, Co-factor of 1 =-14

-1 5 -4

AdiM=| 9 3 -6

~14 -14 -14

-1 5 -4
a1

= - 3 -6
42

-14 -14 -14
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Consider

Example 2 Diagonalize thematrix A=| 1

Engineering Mathematics

1'—1 5 —4{10 -2 5| 1 -3 1
M*IAMZ_E 9 3 -6-2 2 3|5 1
|-14 -14 -14||-5 3 5[ 4 21
: [ -1 5 -4[o 42 3
=——| 9 -3 -6|l0 14 3
42
-14 -14 -14)0 28 3
. 0 0 o] o 0o o
:—E 0 -588 0|=|0 14 0|=D Proved.
0 0 -126| [0 0 3

2 1 -1
1 -2 | byorthogonal transformation.
-1 2 1

[KU April 2011]

Solution The characteristic equationis |A - AIl =0

=

2-2 1 -1
1 1-4 -21|=0
-1 -2 1-2

Q2-M)(A2=21-3)—(-A-1)—(-A-1)=0
A2—4A2-21+4=0
A+1)(A-1)(A-4)=0

.. The Eigen values are -1, 1, 4.
The Eigen vectors are given by (A - AI)X =0.

when A=-1
3 1 -1
The Eigen vector is givenby | 1 2 2|l x, =0
12 2x
0
= X,=[1
1
1 1 -]x

When 1 =1, the Eigen vector is givenby | 1 0 -2 x, [=0
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Diagonalization of Square Matrices

2 1 -1fx
When 2 =4, the Eigen vector is givenby | 1 -3 -2 x,|=0
-1 -2 3f|x
1
= X3=| 1
-1
0 2 1
Hence, the modal matrix M={1 -1 1
1 1 -]
. normalized modal matrix is,
- ) .
0 ~
NG
1 1 1
N=|—= —F— —
2 Y6 B
B
o

To prove N AN =D, since N is an orthogonal matrix, it satisfies N1=NT.

- it is enough to prove that N' AN =D.

Consider
o L L 0
2 JE \15 2 1
-1
A P S [ o
11 1 1
o L i, 2 4
V22 NN
2zt 1y 1 1 4
| U | 2 B
1 1 1g 1 4
V3 B Bl V2 Ve B
(-1 0 0
=l 0 1 0|=D
00 4
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EXERCISE

. When are two matrices said to be similar?

. Define diagonalizing a matrix.

3. What is the difference between diagonalization of a matrix by similarity and
orthogonal transformations?

N =

4. Diagonalize the matrix A= [i ;] .

01
5. Isit possible to diagonalize the matrix [ 0 0} ?

[Ans: The Eigen values A = 0, 0 but there is only one Eigen vector {1] . So the
matrix cannot be diagonalized.] 0

6. What type of matrices can be diagonalized using (i) similarity transformation,
and (ii) orthogonal transformation?

7. In the orthogonal transformation NT AN = D, D refers to a/an

matrix.
(i) diagonal (if) orthogonal
(iii) symmetric (iv) skew-symmetric
8. In a modal matrix, the columns are the Eigen vectors of
(G A7 (ii) A? (i) A (iv) adjA
9. If XlTX2 =0, XZTX3 =0, X3TX1 =0, the Eigen vectors are said to be
(i) dependent (ii) pairwise orthogonal
(iii) skew-symmetric (iv) independent

10. If A is an orthogonal matrix, show that A™ is also orthogonal.

1. Find the modal matrix of the following matrices.

8 -8 -2 1 0 0
G) |4 -3 -2 G [0 3 -1
3 -4 1 0 -1 3

4 32 10 0
Ans.(i)|3 2 1|Gi)|o 1 1
2 11 01 -1

1 4 5 4 3 2 :
2. If A= 2 3 , express A” —4A*-7A° + 11A° - A - 10I in terms of A.

(Ans. A +5I)
2
3. Show that AT=A"for A :% -2 1
1 -2 2
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4. Diagonalize the following matrices:

8 -6 2 111 3 -1 1
G |-6 7 -4| G| 0 2 1| i) |-1 5 -1
2 -4 3 -4 4 3 1 -1 3

00 0 100 200
Ans.(i)|0 3 0|Gi)|0 2 0]Gi)|0o 3 0
00 15 (000 00 6

-1 2 =2
5. A square matrix A is defined by A=| 1 2 1|. Find the modal matrix M
-1 -1 0
and the resulting diagonal matrix D of A.
-1 1+\/§ 1_\/§ 1 0 0
Ans.M=|0 -1 -1 |,D=l0 5 0
1 1 1 0 0 —5
6 -2 2
6. Let A=|-2 3 -1|.Find a matrix M such that M~' AM is a diagonal matrix.
2 -1 3 01 2 200
Ans.M=|1 3 -1|,D=|0 2 0
11 1 0 0 8
7. Obtain the modal matrix and diagonalize the following matrices:
-1 1 2 3 -1 1
@ |0 -2 1 @) |-1 5 -1
0 0 -3 1 -1 3
1 1 1][-1 o o 11 1][2 o 0]
Ans.(i)|0 -1 2|,/ 0 -2 0G| 0 1 -24,{0 0
0 0 -2 0 0 -3 -1 1 1]|0 0 6]
7 -2 0 (3 0 0]
8. Diagonalize the matrix | -2 6 -2]. Ans.|0 6 O
0 -2 5 10 0 9]
-2 2 -3 5 0 0]
9. Diagonalize | 2 1 -6/ by similarity transformation. | Ans.|0 -3 0
-1 -2 0 0 0 -3]
8 -8 -2 10 0]
10. Diagonalize the matrix A={4 -3 -2|. Ans.|0 2 0
3 -4 1 00 3]
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11. Diagonalize the following matrices by orthogonal transformation:

3 -1 0 2 -1 1
@ [-1 2 -1 G |-1 2 -1
0 -1 3 1 -1 2 100 4 00
Ans.(i)|0 3 0|@G)|0 1 0
0 0 4 001
2 0 4
12. Diagonalize the matrix A=|0 6 0| by means of an orthogonal trans-
formation. 4 0 2
-2 0 0]
Ans. 0
6

11
13. Diagonalize the matrix A= [1 1] by orthogonal transformation.

=la o)

31 1
14. Diagonalize A=|1 3 -1| by orthogonal transformation.
T3 100
Ans.|0 4 O [AU May 2011]
0 0 4
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Quadratic Forms

fChapter Outline
® Definition
® Quadratic Forms Expressed in Matrices
® Llinear Transformation of Quadratic Form
e Canonical Form
® Index and Signature of the Quadratic Form
® Nature of Quadratic Forms
® Determination of the Nature of Quadratic Form (QF)
without Reduction to Canonical Form

5.1 QO DEFINITION

A homogeneous polynomial of second degree in any number of variables is called a
quadratic form.
For example,
(i) ax?+2hxy + by?
(ii) ax?+by? +cz® + 2hxy + 2gyz + 2fzx
(iil) ax?+by* + cz* + dw* + 2hxy + 2gyz + 2fzx + 2lxw + 2myw + 2nzw
are quadratic forms in two, three and four variables.

5.2 1O QUADRATIC FORM EXPRESSED IN MATRICES

Quadratic form can be expressed as a product of matrices.
Quadratic form = XTAX.

X A1y A3
where X =|x, | and A=|ay a, 4, | (Symmetric matrix)

X5 A3 O3 A
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X" is the transpose of X.

Ay Ay 3 || X%
XTAX = vy % x3llay ay Ay x,
A3 Az Az || X3

Xy

=[ag02) + X, + a3y Xy A X Ay X, FA3pXy 13X+ AX, +a55X5]| Xy

X3

= 03] By Xy Xy 13y XX+ XX + (X5 F By Xy X 53, X F By Xy X+ 3305
= )5+ X + Ayg X5 (g F gy )Xy X+ (g 13) X, X+ (a3 + y5)3, X5

_ 2 2 2
= A X] F Ay X5 + Ay X5+ 20,,X, X, + 2053X, X5 + 20,5X, X4

(As ay; = a1y, A3, = dy3, A3 = 13 in @ symmetric matrix, in general, 2;;=a

;= 1 coefficient
of x; if i #1.) 2

5.3 O LINEAR TRANSFORMATION OF QUADRATIC FORM

Let the given quadratic form in 1 variables be X’AX where A is a symmetric matrix.
Consider the linear transformation X = PY.

Then XT=(Py)T=YTPT.
XTAX = (YTPHA(PY) = YI(PTAP)Y = YTBY
where B=PTAP.

Therefore, Y'BY is also a quadratic form in n variables. Hence, it is a linear
transformation of the quadratic form X'AX under the linear transformation X = PY
and B = PTAP.

5.4 O CANONICAL FORM

If a real quadratic form be expressed as a sum or difference of the squares of new
variables by means of any real nonsingular linear transformation then the latter
quadratic expression is called a canonical form of the given quadratic form.

5.5 0O INDEX AND SIGNATURE OF THE QUADRATIC FORM

When the quadratic form X”AX is reduced to the canonical form, it will contain only
r terms, if the rank of A is r. The terms in the canonical form may be positive, zero or
negative.

The number (p) of positive terms in the canonical form is called the index of the
quadratic form.

Number of positive terms — Number of negative terms, i.e., p — (r —p) =2p —r is
called signature of the quadratic form.
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5.6 0O NATURE OF QUADRATIC FORMS

Definite, Semi-definite and Indefinite Real Quadratic Forms

Let XTAX be a real quadratic form in 1 — variables x;, X,, ... x,, with rank r and index p.
Then we say that the quadratic form is
(i) positive definiteif r=n,p=r.
(if) negative definite if r=n, p=0.
(iii) positive semi-definite if r <, p=r.
(iv) negative semi-definite if r <n, p=0.
If the canonical form has both positive and negative terms, the quadratic form is
said to be indefinite.

Examples:
(i) xl2 + x% is positive definite.
(ii) —x]2 - x% is negative definite.

(i) (x; - x,)* is positive semi-definite.
(iv) —(x; — x,)* is negative semi-definite.

2_ 2. . .
X] —X; is indefinite.

> Note

If XTAX is positive definite then | Al > 0.

5.7 O DETERMINATION OF THE NATURE OF QUADRATIC FORM (QF)
WITHOUT REDUCTION TO CANONICAL FORM

Consider the quadratic form

Ay Gp Mz || X
T _
XTAX =[x, x, x]lay ay ay |l X,

31 3 A3 || X3
A1 G g
D,=la,l, D=1 12
Let Dy=lay;l, 2=, and Dy=|a,; ay, 1y
21 2
31 A3 f33
The QF is
(i) positive definite if D;>0fori=1, 2, 3;
(if) negative definite if D, >0 and D; <0, D;<0;
(iii) positive semi-definite if D;> 0 and at least one D, = 0;
(iv) negative semi-definite if some of the determinants are zero in case (ii); and
(v) indefinite in all other cases.
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Criteria for the Nature of Quadratic Form (or Value Class) in Terms of
Nature of Eigen Values

Value Class Nature of Eigen Values
Positive definite Positive Eigen values
Positive semi-definite Positive Eigen values and at least one is zero
Negative definite Negative Eigen values

Negative semi-definite ~ Negative Eigen values and at least one is zero

Indefinite Positive as well as negative Eigen values

SOLVED EXAMPLES

1NN Discuss the nature of the quadratic form 8x* + 7y? + 32> — 12xy + 4xz —

8yz. [KU April 2011]
8 -6 2
Solution The matrix of the quadratic formis A=|-6 7 —4
2 4 3
8 6 8§ 6 2
D,=181=8>0,D,= 6 7‘=20>OandD3=—6 7 —4(=0
2 4 3
.. the QF is positive semi-definite. Ans.

Example 2 Write down the matrix of the quadratic form x12 + 2x§ - 7x§ —4xx, +
8x1x5 + 5xpx3

Solution
X7+ 2x3 = 723 — 4x,%, + 82, %5 + 5X, X, (1)
Coefficient of X7 =1=a,,,
Coefficient of x3=2=a,,
Coefficient of x% =—7=a5,
1 .. 1
5 coefficient of Xx;x,= E(—4) =-2=a,

1 coefficient of x,x;= %(8) =4=a,

= N

— coefficient of x,x;= %(5) = ; =0y,

N

= Eq. (1) can be expressed as X"AX, where
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1 2 4
X Ay Gy Ay 5
X=|x,|,A=|ay a, a,|[=|-2 2 E
X3 A3 O3 Az 5
4 - -7
2
1 2 4
X
5
- given quadratic form = [x; x, x3]|-2 2 7| Ans.
X3
4 2
2

|Denny (B Write down the quadratic form corresponding to the matrix

1 25
A=|2 0 3|
5 3 4

Solution Quadratic form = X"AX

1 2 5||x
=[x, x, x%]|2 0 3||x,
5 3 4||x,;

X
=[x;+2x,+5x; 2x;+3x; 5x;+3x,+4x;5]| x,

X3
= xl2 + 2,2, + 552+ 220X, + 3X,X5 + 5xx5 + 3x,x5 + 4x§

— 42 2
=x; +4x5 +4x,x, + 10xx5 + 6X,X5. Ans.

1DENNIIF I Reduce the quadratic forms 6x] +3x; + 14x3 + 4x,x, + 4x,%, + 18%,x,

and 2x2 +5x3 + 4x,x, + 2x,x; simultaneously to canonical forms by a real nonsingular
transformation. [KU May 2010]

Solution The matrix of the first quadratic formis A=

O N O
N W N
—_

=~ N O

The matrix of the second quadratic formis B=

= NN
S N
S O =

The characteristic equation is | A — ABI =0.

6-21 2-24 9-A
ie., 2-22 3-54 2 |=0
9-1 2 14
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5.6 Engineering Mathematics
= 50 -2*-51+1=0
ie., A-1)5A-1)(A+1)=0
= A=-1, l, 1
5

When A1 =-1, (A - AB)X =0, given the equations,
8x; +4xy + 10x53 = 0; 4x; + 8xy + 2x3=0; 10x; + 2x, + 14x3=0
-3
by solving, X,=| 1
2

When A= %, (A-AB)X =0 gives
28x; + 8x, + 44x3 = 0; 8xy + 10x, + 10x5 = 0; 44x; + 10x, + 70x3=0
-5
by solving, x,=| 1
3

When 1=1, (A-AB)X =0 gives
4x, +8x53=0; —2x, + 2x3=0; 8x; + 2x, + 14x53=0

2
= Xy=|-1
-1
Since X, X,, X5 are not pairwise orthogonal, consider the modal matrix P.
-3 -5 2
Now, P=| 1 1 -1
2 3 -1
(3 1 2|6 2 9][-3 -5 2
P'AP=|-5 1 3|2 3 2| 1 1 -1
| 2 -1 -1]|9 2 14| 2 3 -1
(10 0
=0 1 0
0 01

Hence, the quadratic form X"AX is reduced to the canonical form y2+ y3 + yg.

(-3 1 2][2 2 1][-3 -5 2

Now P'BP=|-5 1 3|2 5 0/ 1 1 -1
2 -1 -1]|[1 0 0] 2 3 -1
-1 0 0
=050
00 1

Hence, the quadratic form X"BX is reduced to the canonical form yf + 5y§ + y§. Ans.
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Example 5 Reduce 6x12 + 3x§ + 3x§ — 4o xy — 2x,x5 + 4xyx, into canonical form.
Find its nature, rank, index and signature.

[KU Nov. 2010, AU Jan. 2010, KU April 2012]

6 2 2
Solution The matrix of the quadratic formis A=|-2 3 -1
2 -1 3
The characteristic roots are given by 1A - AIl =0
6-14 2 2
ie., -2 3-14 -1]|=0
2 -1 3-4
= A —122%+36A-32=0
. the Eigen values are =8, 2, 2
The Eigen vectors are obtained by (A — AI)X =0
When 1=8, (A-A)X =0 gives
2 2 2][x
-2 -5 -1}|x,[=0
2 -1 -5||x,
= —2x1 = 2xy + 2x3=0; 2x; = 5x, —x3=0; 2x; —x, - 5x3=0
2
= X, =|-1
1

When A=2, (A - Al)X =0 reduces to a single equation 2x; —x, +x3=0
0

Putting x, = 0, we get X,=|1
1

1
Again, by putting x, =0, we get X,=| 0
-2

1

2 0
Now X, =|-1|,X,=|1| and X;=| 0
1 1 -2

Here, X;, X,, X; are not pairwise orthogonal.
(e, X{ X,=0,X]X;#0, X3 X;=0)

1
Xj is orthogonal to X,, only when X,=| 1|, so that XlTX2 = XzT X, = X3TX1 =0
-1
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%l
G-t -

.. the normalized modal matrixis P =

&= &

T
L

Consider

- -
-t 5

(o)}

|

N

N
S-SIIN

S5l o

PTAP=

=
sl 5

&
&

- = &
&

Il
o O
S N O
N © O
=225 S

Hence, the quadratic form X?AX is transformed to the canonical form 8y12 + 2y§ + 2y§
Here, rank of the quadratic form = 3, index = 3, signature = 3.
.. it is positive definite. Ans.

EXERCISE

1. If the canonical form of a quadratic form is 5y2 +6y3 then the rank is
@i 5 (i) 0 (iil) 2 (iv) 1
2. The nonsingular linear transformation used to transform the quadratic form to
canonical form is

(i) X=NTy (i) X=NY (iii) Y=NX (iv) Y=X
2 1 2

3. Write down the quadratic form corresponding to the matrix | 1 2 -2].
-2 2 3

Define a quadratic form and give an example in two and three variables.
What do you mean by canonical form of a quadratic form?

Define index and signature of a quadratic form.

Discuss the nature of the quadratic form 2x* + 5y + 3z% + 4xy.

Discuss the nature of the quadratic form 2xy + 2yz + 2zx.

Determine the nature of the following quadratic forms without reducing them
to canonical forms:

O 0 NG
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(1) xl2 + 3x§ + 6x§ + 23,2, + 20,04 + 4x5%;
(i) 27 + x5 — 323 +12x,x, — 8x,%; — 4x,,
10. Find the index and signature of the quadratic form, 2x? - 5x3 +7x2.

11. State the conditions for a quadratic form to be positive definite and positive
semi-definite.
12. Write down the matrices of the following quadratic forms:
(i) 2x%+ 3y + 6xy
(ii) 2x*+5y* — 62* - 2xy — yz + 8zx
(ili) x7 +2x5 — 75 — 4x,%, + 8%,X5 + 5, %,

(iV) 2+ 203+ 323 + 4x7 + 22X, + 4x, x5 — 62X, — 4x,25 + 8x,x, — 122,37,

13. Write down the quadratic forms corresponding to the following matrices.

1 1 -2 0

. 2 4 5 ) 1 2 5 B 14 0 o0
i (4 3 1 (i) |2 0 3 (iii) 2 0 6 -3
51 1 5 3 4 0 0 -3 2

14. Write down the matrix of the QF
3x2 +5x3 + 5x§ = 27X, + 2X,X5 + 6X3%;

15. Define pairwise orthogonal.

1. Reduce the QF 83512 + 7x§ + 3x§ —12x,x, — 8x,x; +4x,x, to the canonical form
through an orthogonal transformation and, hence, show that it is positive
definite. Find also a nonzero set of values for x;, x,, x5 that will make the QF
Z€T0.

;Q=3y;+15y5; x,=1,x,=2,x,=2

WIN W[ W=
wl,l, W= W[
W= wl,'o w|N

2. Reduce the QF 10x7 +2x] + 5x3 + 6x,x, — 10x,x, — 4x,x, to a canonical form by
orthogonal reduction. Find also a set of nonzero values of x;, x,, x3 which will
make the QF zero.

Ans. P = ;Q:3y§+14y§;x1=1,x2=—5,x3=4

15l 8-
&= &= &=
sl £l 1
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3. Find the value of A so that the quadratic form
l(xlz + x; + xg) +2x,x, — 2X,%, + 2x,x, may be positive definite. (Ans. 1>2)
4. Reduce the following quadratic forms to canonical forms or to sum of squares
by orthogonal transformation. Write also rank, index and signature.
3x? + 5y% + 327 — 2xy — 2yz + 2zx

X2+ 3y +32% - 2z
[Ans. (i) 2y7 + 3y3 + 6y3; rank = 3, index = 3, signature = 3
(ii) 4yf + y% + y§ ; rank = 3, index = 3, signature =3
(iii) 3y12 + 6y§ - 9y§; rank = 3, index = 2, signature = 1
(iv) yi+2y; +4y3; rank =3, index = 3, signature = 3]
5. Reduce the QF 2x;x, + 2x;x3 — 2x,x3 to the canonical form by an orthogonal

transformation. (Ans. y12+ yg_ 2y§)
6. Reduce the QF x12+3x§+3xg—2x2x3 into the canonical by an orthogonal
transformation.

(Ans. 7 +2y;+4y3)
7. Reduce the QF y? + 2xy into the canonical form by an orthogonal reduction and

state the nature of the QF. (Ans. —ylz + y% + yg ; indefinite)
8. Discuss the nature of the following quadratic forms:
(i) 2x*+32%+2xy
(i) 11x} +1dxyy, + 14x,z; + 8y2,
(i) »®+ 4xy + 6x2 — y2 +2yz + 422
[Ans. (i) Positive definite (ii) Indefinite (iii) Positive semi-definite]
9. Reduce the following quadratic forms to canonical forms by orthogonal
transformation. State the nature.

(i) 16x,x, - x§
(ii) 73(12 + 6x§ + 5x§ —4x,x, —4x,%,
(i) %2+ 23 + 33 + v, + 4%,%,
[Ans. (i) 8Y1— y3— 83 ; indefinite (i) 9y; +6y3 +3y3; positive definite
(iii) 5y; +2y; — y3; indefinite]
10. Find the nature of the following:
(i) 3x%—2y?— 2% —dxy + 8xz + 12yz
(i) 6x7 + 325 + 327 — dx;x, — 20,%, + 45X,

(iil) 5x% +26y* + 10z% + 4yz + 14xz + 6xy
[Ans.(i) Indefinite (ii) Positive definite (iii) Positive semi-definite]
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Gradient, Divergence,
Curl and Directional
Derivative

fChapter Outline

Infroduction

Partial Differentiation of Vectors

Scalar and Vector Fields

Gradient of a Scalar Field

Properties of Gradient

Divergence of a Vector Field

Properties of Divergence and Curl

Directional Derivative of a Scalar Point Function

15.1 O INTRODUCTION

Vector calculus is a branch of mathematics concerned with multivariate real analysis,
i.e.,, differentiation and integration of vectors in two or more dimensions. It consists
of a suite of formula and problem-solving techniques very useful for physics and
engineering, especially in the description of electromagnetic fields, gravitational
fields and fluid flow.

In vector algebra, we mostly deal with constant vectors, i.e., vectors constant in
magnitude and fixed in direction. In vector calculus, we deal with variable vectors,
i.e., vectors varying in magnitude or direction or both. Vector calculus is used to
model a vast range of engineering phenomena including electrostatic charges,
electromagnetic fields, air flow around aircraft, cars and other solid objects, fluid
flow around ships and heat flow in nuclear reactors. This chapter starts by explaining
what is meant by operators, gradient, divergence and curl. These are used to carry out
various differentiation operations in such fields.
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15.2 Engineering Mathematics

15.2 0 PARTIAL DIFFERENTIATION OF VECTORS

Consider the vector field v=wv,i +v,j +v;k where each component v, v, and v; is

a function of x, y and z. We can partially differentiate the vector with respect to x as
follows:
00 dv; - du, =  Ovy -
Lt W Bt}
ox  ox ! ox
This is a new vector with a magnitude and direction different from those of v .
Partial differentiation with respect to y and z is defined in a similar way as the
higher derivatives.
For example,

- 2
820 822) - 8227 - 8 Uy
— =L+ 2y 23 k

n? o oy? oz

15.3 0 SCALAR AND VECTOR FIELDS

A variable quantity whose value at any point in a region of space depends upon the
position of the point is called a point function. There are two types of point functions.

Scalar Point Function

A function ¢(x, y, z) is called a scalar point function if it associates a scalar with every
point in space. The temperature distribution in a heated body, density of a body and
potential due to gravity, atmospheric pressure in space are the examples of a scalar
point function.

o Example

The temperature distribution in a medium or the distribution of atmospheric pressure
in space are some examples of scalar point functions.

Vector Point Function

If a function v(x, y, z) defines a vector at every point of a region then v (x, y, z) is called
a vector point function.

o Example

The velocity of a moving fluid at any instant or the gravitational force are some
examples of vector point functions.

15.4 O GRADIENT OF A SCALAR FIELD

Given a scalar function of x, y, z.

0=0(x,y, z)

we can differentiate it partially with respect to each of its independent variables to
find a—¢,a—¢ and a_(P
ox oy oz
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Gradient, Divergence, Curl and Directional Derivative 15.3
Then the vector a—¢1 + 8¢ } + a(p k turns out to be particularly important. We call
X Y

this vector the gradient of ¢ and denote it by V¢ or grad ¢.

An alternative form of writing V¢ is as three components (a(]) g(P g‘pj
- 0z
. 9= 09z 99¢
e., V¢=grad ¢ =— —k
ie ¢=grad ¢ ax ay —j+— .

The process of forming a gradient applies only to a scalar field and the result is always
a vector field.

aaaz

where the quantity in brackets is called a vector operator and is regarded as operating
on the scalar ¢.
Thus, the vector operator V is given by
d =z 0=

V= e —i +8_] +aik (read nabla or del)

It is often useful to write V¢ in the form [ 9 9 ](p

Physical Interpretation of Vg

Consider the scalar field ¢(x, y, z) as describing the temperature throughout a region.
This temperature will vary from point to point. At a particular point, it can be shown
that V¢ is a vector pointing in the direction in which the rate of temperature increase
is greater. | V@l is the magnitude of the rate of increase in that direction. Similarly, the
rate of temperature decreases greatly in the direction of -V ¢.

15.5 O PROPERTIES OF GRADIENT

(a) If ¢is a constant scalar point function then V¢ = 0.
(b) If ¢, and ¢, are two scalar point functions then

1) V(g 9)=Ve, £V,

(ii) V(e1¢y + c0,) =,V + ¢,V o, where ¢y, ¢, are constants.
(iii) V(¢10y) = 1V + 9,V
(iv) V(ﬁJ AL AL _2¢1V¢2 L0, %0
¢2 ¢2
15.6 O DIVERGENCE OF A VECTOR FIELD

Given a vector field 9=9(x,y, z))

If o= UlzT + ZJZ] + 71312 taking each component in turn and differentiate it partially
Jdv, dv, Jv
with respect to x, y and z respectively, we get —1 -2, 3.

If we add the calculated quantities, the result turns out to be a very useful scalar

quantity known as the divergence of v,
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15.4 Engineering Mathematics

0
i.e., divergence of v =div v = % + E)& + &.
ox dy oz

Alternatively, the notation V - v is often used.

- Jd o d -
V 0=\ =—r=— /= |’
¢ (ax dy az] ©
(20 0 o
ox’ dy’ oz s
Interpreting the - as a scalar product, we find
doy | 0v,  0vy
ox dy oz
We note that the process of finding the divergence is always performed on a vector
field and the result is always a scalar field.
Jo, v,  0vy

ie., div 9=V.-0= ox Ty o .

Physical Interpretation of V - v

If the vector field v represents a fluid velocity field then simply speaking, the
divergence of v evaluated at a point represents the rate at which fluid is flowing
away from or towards that point. If the fluid is flowing away from a point then either
the fluid density must be decreasing there or there must be some source providing a
supply of new fluid.

If the divergence of a flow is zero at all points then outflow from any point must be
matched by an equal in flow to balance this. Such a vector field is said to be solenoidal.

15.7 O CURL OF A VECTOR FIELD

A third differential operator is known as curl. It is defined rather like a vector product.

curl 9=Vx7

(22 9 ) o0, 0,
ox’ dy’ oz 1T
i ]k
B R A
ox dy 0z

vU, 0,
. . . . d 0
This determinant is evaluated in the usual way except that we must regard = 3
x oy

d -
and > as operators, not multipliers.
z

Thus, for example,

0 0 dv, Jy,

— —| means —2-——1.
ox dy ox  dy

v 0y
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Gradient, Divergence, Curl and Directional Derivative 15.5

Explicitly, we have
dv, dv, |- [(dv, 0v, |- (0dv, Jv, \-
| 5=| 2% _ 9% |; (_1__3J 90 _9v ¢
cur v [ay azj’+ oz ox ]+[8x ay]

(i) div o gives the rate of outflow per unit volume at a point of the fluid.

> Note

(if) If div v=0 everywhere in some region R of space then v is called the
solenoidal vector point function.

(iii) curl v is a vector which measures the extent to which individual particles
of the fluid are spinning or rotating.

(iv) If curl 5=0 then 7 is said to be an irrotational vector. Otherwise, it is
named a rotational vector.

15.8 0O PROPERTIES OF DIVERGENCE AND CURL

(i) div F is a scalar function and curl F is a vector quantity.

(ii) For a constant vector @, diva=0, curla=0

(ili) div(@+b)=divi+divb or V-(@+b)=V -a+V-b

(iv) curl(@+b)=curld+curlb or Vx(@+b)=Vxad+Vxb

(v) If a is a vector function and ¢ is a scalar function then
div(pa)=¢diva+(grad¢)-a or V-(pa)=¢(V-a)+(V¢)-a

(vi) If a is a vector function and ¢ is a scalar function then
curl (¢pa) =(grad ¢) xa+ ¢ curla or Vx(¢a)=(Vo)xa+¢(V xa)

(vii) V(d-b)y=(d-V)b+(b-V)i+ix(Vxb)+bx(Vxd)
(viii) V-(@xb)=b-(Vxa)—a-(Vxb)
(ix) Vx(@xb)=(V-b)i—(V-d)b+(b.V)a—(a-V)b

15.9 0O DIRECTIONAL DERIVATIVE OF A SCALAR POINT FUNCTION

The component of V¢ in the direction of a vector d is equaltoV¢- d and is called the

directional derivative of ¢ in the direction of d.
Let P and Q be two neighbouring points whose position vectors with respect to the

origin Obe 7 and 7 + Ar respectively, so that PQ=Ar and PQ = Ar.

Let ¢ and ¢ + A¢ be the values of a scalar point function ¢ at the points P and Q
respectively.

Then d—¢ = Lt (ﬂ) is called the directional derivative of ¢ in the direction OP,
dr  ar—o\ Ar
¢

ie., I gives the rate of change of ¢ with respect to the distance measured in the
r

direction of 7 .
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15.6 Engineering Mathematics

In particular, 8_¢ a—¢ 8_¢ are the directional derivatives of ¢ at P(x, y, z) in the

ox’ oy’ oz

directions of the coordinate axes.

SOLVED EXAMPLES

1€ NN Find the divergence and curl of the vector v = (xyz)zT + (3x2y); +
(xz* - y%2) k atthe point (2, -1, 1).

Solution
diviz| i L+ k2 ((xyz)i +(3x%y)] +(xz2 = y22)k)
oyt y )i y
ox

=yz+3x°+2xz -7

:i(xyz ) +%(3x2y) +aiz(xz2 - yzz)

(div )y =-1+12+4-1=14

1

U =Y

j
9 9 9
ox  dy oz

xyz 3x°y  (xz*—y’z)

curl o=

= 17(—2yz -0)- }(z2 —xy)+ Iz(6xy —xz)

(curl 6)y, ;1 =1(2)- j(1+2)+k(-12-2)
=2i —3] - 14k Ans.

et P If F=xi +yj +2zk, show that
r 1 r
i) gradr= — ii) grad | —|=——
@ g ; (i) g (,,) 3
(iii) Vr"=nr""?F (iv) V(a-7)=a, where a is a constant vector
Solution 7=xi+yj+ zk
r=lFl=x*+y*+2% or rP=x*+y’+22

Differentiating partially with respect to, x we get

Similarly, r_y and izi.
ay r oz r
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(i) gradr —Vr—[z%+] aay I;ai]

or =odr or
=li—+j—+k—
[ ox By azj

)

=l[xf + yf +2k]=
’

=9 =0 79
Vil=li—+j—+k—|"
(i) vr (1 ax+]ay+ az]r

= f(nr”’l g—;) + 7[7@”1 g—;j + E(nr”’l %)
= f(nr""lij + ;(nr”_l 1] + Iz(nr"_l Ej
r r r

= nr""z[x; + y] + zlz]

=nr"2F

(iv) Let a=a;i +a,j +ask where a,, a,, a; are constants.

a-f=qx+ay+a,z
V@@ -r)= i—+]—+kai](ulx+a2y+a3z)

= ;—(alx +ayy +a,z) +] (alx +ayy +a,z) + k (alx +ayy +a,z)

;(‘11)+](”2)+k(”3)

Il
EYERY

V(@a-7r) Proved.

1DENNI N Find the directional derivative of ¢(x, y, z) = xy* + yz° at the point
(2, -1, 1) in the direction of the vector i + 2] +2k .
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Solution The directional derivative

= V¢ - unit vector in the direction of i+ 2} +2k

_vp. T42j+2k
12+ 22422
T+27+2k

:V¢~+

=09 =0d¢  -0d¢
V=122 +k 22
0= ey T %

=i(y?)+]Qxy +2°) +k(32%y)
Hence, (V(p)(z,—l,l) =i- 3} —3k
.. the required directional derivative
T42]+2k

=(i - 37 -3k)-
(i-3j ) 3

11
=_ Ans.
3 ns

1HEN Y I Find the directional derivative of ¢=xy?z> at (1, 1, 1) along the normal
surface x* +xy +z° =3 at (1, 1, 1). [KU Novw. 2010]

Solution The equation of the surface x* + xy + z° = 3 is identified with y(x, y, z) = ¢
: w(x, y,z)=x*+xy+z°>and c = 3.
The direction of the normal to this surface is the same as that of Vy.

Now, Vy = i(2x+y)+j(x)+ k(3z ).
V¥)i,1,1)= 3i + ; +3k=b (say)

6= xyzz3
Vo= f(yzz3) + f(nyZS) + I;(Sxyzzz)
(VO)q1p=1+2] +3k

Directional derivative of ¢ in the direction of b= Vo- b

_Ve-b [asl;:i,l;;é(—)]

bl
(i +2j+3k)-(3i +j+3k) 3+2+9 14

= = it Ans.
Jor1+9 Jio g "

(De Find the values of the constants a, b, ¢ so that F = (axy +bz%) i + (3x°
—cz) ; + (3xz2 -v) k may be irrotational. For these values of 4, b, ¢, find also the scalar
potential of F . [KU Nov. 2011]
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Solution Given F irrotational.

VxF=0
i j k
vxB=| L 2 2 oo
ox ay oz
(axy + bz%) (B3x*—cz) (Bxz®-— Y)

ie., i i(3ch2 -y)- i(33(2 -cz) |- ]|:i(3xz2 -y)- i(axy + bzs)} +
ay oz ox oz

k i(3x2 -cz)- i(axy +bz2°%)|=0
ox ady
i(~14c)— j (322 = 3bz?) + k(6x — ax) =0
o c=1=0,322-3b2=0, 6x —ax =0
=a=6,b=1,c=1
Using these values of a,b, ¢,
F=(6xy+2%)i +(3x*—2)] +(3xz2 - y)k 1)
Let ¢ be the scalar potential of F.

Fovp=i22,720 ;90
ox " dy 0z

By comparing with (1) we get
9¢ ¢ 9¢

—=6xy+z3,—=3x2—z,—:3x22—y

ox dy oz

Integrating partially with respect to the concerned variables, we get

¢ =3x%y + xz° + a function independent of x 2)
¢ =3x%y - zy + a function independent of y 3)
¢=xz° - yz + a function independent of z 4)
From (2), (3) and (4), we get

0=3x%y+xz°—yz+c Ans.

EXERCISE

1. Define divergence and curl of a vector point function.
2. Evaluate

(i) div (3x% +5xy?] +xyz°k) at the point (1, 2, 3)

(if) div [(xy sin z)z7 + (y2 sin x); +(z%sin xy)l?] at the point (0, %, %j
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15.10 Engineering Mathematics

3. If ﬁ:(x+y+1)f+f—(x+y)lz, show that F-curl F=0.
4. Find the divergence and curl of the vectors:

(i) o= (xyz);' + 3x2yf +(xz%— yzz)l;

(i) R=(x+yz)i +(y2+2x)] + (22 +xy)k
5. If P=5¢t%+ t3f —tk and Q=2sinti —cos t} +5tk, find @) %(13 . Q) , and

d - =
ii) —(PxQ).
(i) Q)

6. A particle moves along a curve x = e y =2 cos 3t, z =2 sin 3t where ¢ is the
time variable. Determine its velocity and acceleration vectors and also the
magnitudes of velocity and acceleration at t = 0.

7. Find Vo if ¢ =log(x? + y* + 22).

. Find a unit vector normal to the surface x* + 1/ + 3xyz = 3 at the point (1, 2, -1).

9. Evaluate div F and curl F at the point (1, 2, 3) given

o]

() F=xyzi +xy’zj +xyz%k (i) F =grad (y+ 1’z +2°x — x%%2)

10. Show that each of the following vectors are solenoidal:
(i) (~x%+yz)i +(4y - 2%%)] +(2xz — 42)k
(i) 3y*z%i +4x32%] +3x%y%k

11. If A and B are irrotational, prove that Ax B is solenoidal.
12. Compute the gradient of the scalar function and evaluate it at the given point.

(i) ®-3%2+y°(1,2)

(if) xsin(yz)+ y sin(xz) + z sin(xy), [O, %, lj
(iii) In (x> +1y*+2?), (3,4, 5)
(v) (2+12+2%),(1,1,1)

(V) o+ y3 sin 4y + Z2, (1, %, 1)

13. Prove the following properties of gradient (fand g are scalar functions):
. .. Vi - fV
(i) V(fg)=fVg+gVf (i) V(é} = gfg#, g#0

14. Compute div o, curl v and verify that div (curl v)=0.
(i) z7:x17+2yf+zlz
(i) 5=(2+y2+22)2 (a0 +yf +2K)
(iii) ©=(x2—y?)i +4xyj + (% - xy)k
(iv) =xeVi+2ze7] +xy%k
15. Compute grad f and verify that curl (grad f) = 0.
(i) fix, y, z) = 16xy°2

(i) fix,y,z)=€"¥""
(iii) flx, y, z)=xsin(x +y +z)
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16. Show that v - curl v=0 if z7=—(x+y+2)17—2;+(x+y)lz.

17. If @ is a constant vector and 7 = xi + y} +7k, prove the following identities:
(i) div (axr)=0

curl (ax7)=2a

V.- (axv)=—-a-(VX0),0 is any vector

)
)

(iv) axcurl7=0
)

18. If ¥ =xi +yj +zk and r=I7l, show that div (

J-o.

19. Find the directional derivative of f(x, y, z) = xy* + 4xyz + z* at the point (1, 2, 3) in
the direction of 37 + 4} ~5k .
20. Give the physical interpretation of V-9 .

-
wlﬁl

21. Define solenoidal and irrotational vectors.
22. Prove that the vector F = (3x + 2y+4z)i +(2x+5y+4z)j +(4x+4y-8z)k is
both solenoidal and irrotational.

23 If F = (-2 +2xz)i +(xz—xy+yz)j + (@ +x)k, find grad (div F)
24. Find ‘a’ such that (3x — 2y + z) i+ (4x +ay —z) ; +(x-y+22) k is solenoidal.
25. If o =(x+ Sy); +(y- 22)}‘ +(x + Az) k is solenoidal, find A.

x17+yf+zlz _ 2 - _A
— showthat V.y=———— and Vx0v=0.
Jx2 P+ 2t JXr i 2’

2. If A=(3xz2)i —(yz)j +(x+22)k, find curl (curl A)

1. If o=

[Ans. —6xi +(6z — 1)k |

3. Show that the vector field V = (siny +z)i + (x cosy —z)] + (x — y)k is

irrotational.
4. Find the constants a, b, c so that F = (x +2y +az)i + (bx-3y—-2z)j +(4x+cy+
2z) k is irrotational. (Ans.a=4,b=2,c=-1)

5. Show that E =L2 is irrotational.
r

6. If E and H are irrotational, prove that ExH is solenoidal.

7. For a solenoidal vector F, prove that curl curl curl curl F=V*F.
8. Find the directional derivative of V - (V¢) at the point (1, -2, 1) in the direction

2 2 3,24 1724
of the normal to the surface xy~z = 3x + z°, where ¢ = 2x"y"z". Ans. ﬁ
9. 1 Y _ G xii and = x5, prove that <= (ii x 3) = @ x (i X 3) .
dt dt dt

10. Show that V - (¢Vy— yV¢) = oV2y — yV2¢.
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11. Calculate (i) curl (grad f), given f(x, y, z) = x>+ y* - z, and (ii) curl (curl A) given
A=x%yi + vz + 2%k . [Ans. (i) 0 (i) 2(x+2z)] +2yk ]

12. Tf u=x%yz, v =xy - 32% find (i) V(Vu - Vo), and (ii) V - (Vu - Vo).
[Ans. (i) 2(]/3 + 3x2y - 6xy2)zf + 2(3xy2 +x%— 6x2y)zf + 2(xy2 +x°— 3x2y)ylz (ii) 0]

13. Show that the vector field o is irrotational and find a scalar function f(x, y, z)
such that v = Vf.

- - 3
() (P—-22+y)i +x2y+1)j [Ans. Xy +y) - % + c}
(ii) exy(y; + x]’) +26°k (Ans. e + 2¢* +¢)
(iii) cos (x*+ yz + zz)(xz—' + y} + zlz) [Ans. %sin(x2 + y2 +2%)+ c}

14. Let f(x, y, z) be a solution of the Laplace equation V3f=0. Then show that Vfis a
vector which is both irrotational and solenoidal.

15. If ¢y =x+y+z, ¢, =x+yand ¢ =—(2xz +2yz + z%), show that V¢, - (Vé, x V¢,) =0.

16. Find the angle between the tangent planes to the surfaces x log z=y* -1 and x%y

1
=2 -zatthe point (1, 1, 1). [Ans. cos! [TH
30
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Vector Differentiation

fChapter Outline

Infroduction

Types of Vectors
Components of a Vector
Product of Two Vectors

14.1 O INTRODUCTION

The development of the concept of vectors was influenced by the works of the
German mathematician H G Grassmann (1809-1877) and the Irish mathematician
W R Hamilton (1805-1865). It is interesting to note that both were linguists specialised
in Sanskrit literature.

The best features of Quaternion calculus and Cartesian geometry were united
largely through the efforts of the American mathematician ] B Gibbs (1839-1903)
and Q Heariside (1850-1925) of England and a new subject called vector algebra was
created. The term vector was due to Hamilton and it was derived from the Latin word
“to carry”. The theory of vectors was also based on Grassman'’s theory of extension.

Vectors are the ideal tools for the fruitful study of many ideas in geometry and
physics. Vector algebra is widely used in the study of certain types of problems in
geometry, mechanics, engineering and other branches of applied mathematics.

The physical quantities may be divided into two groups: (i) scalars, and (ii) vectors.

Certain physical quantities are fully described by a single number: for example,
the mass of a stone, the speed of a car, etc. Such quantities are called scalars.

A scalar quantity, or simply a scalar, has magnitude but is not related to any
definite direction in space. Examples of such quantities are mass, volume, density,
temperature, work, quantity of heat, electric charge and potential. To specify a scalar,
we need a unit quantity of the same type and the ratio (1) which the given quantity
bears to this unit so that it may be expressed as m times the unit. The number m is
called the measure of the quantity in terms of the chosen unit. It is the measures
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14.4 Engineering Mathematics

d, m, V, v, E of density, mass, volume, speed and energy respectively that enter into
the equations of physics and mechanics.

On the other hand, some quantities are not fully described until a direction is
specified in addition to the number.

For example, a velocity of 20 metres per second Velocity
due east is different from a velocity of 20 metres
per second due north. These quantities are called \
vectors. There are many engineering applications in [ Earth
which vector and scalar quantities play important .-~ PN
roles. ~ /S L
A vector quantity, or simply a vector, has /f Force

magnitude and is related to a definite direction in v
space; thus it is an arrow or directed line segment.

For example, speed, potential, work and energy

are scalars, while velocity, momentum, electric and

magnetic forces, the position of a robot and the

state-space representation of a system can all be Fig.14.1
described by vectors (Fig. 14.1).

A vector (arrow) has a tail called initial point and a tip B
called terminal point. We denote vectors by boldface letters a,
b,vor d,b and 7.

The line segment AB of 3-unit length in Fig. 14.2 can
represent a vector in the direction shown by the arrow on AB.

This vector is denoted by AB . Note that AB+ BA . The vector
AB is directed from A to B, but BA is directed from B to A.
AB is also denoted by 4.

Sun

Y|

4
Fig. 14.2

Magnitude of a Vector

The modulus or magnitude of a vector 4= AB is a positive number which is the
measure of its length. The length (or magnitude) of a vector 4 (length of the arrow) is
also called the norm (or Euclidean norm) of a and is denoted by lal.

Thus, |dl=a;1bl=b;I¢|=c, etc., |ABl= AB;|CDI=CD, etc.,

14.2 QO TYPES OF VECTORS

Unit Vector

Avector whose modulus is unity is called a unit vector. The unit vector in the direction
of 4 is denoted by a (read as ‘a cap’). Thus, | 4 | =1.
The unit vectors parallel to 4 are +a.

> Note
a=lidla [i.e. any vector = (its modulus ) X (unit vector in that direction)
A4 =
a=—; [a#0
= P

.. in general,
Unit vector in any direction = Vector in that direction/Modulus of the vector
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Equal Vectors

Equal vectors are those vectors which have equal magnitude, same direction (parallel)
and same sense (arrow).

Like and Unlike Vectors
Like vectors are those vectors which have

same direction (parallel) and same sense ¢
(arrow). The magnitude may be different. . ~
Unlike vectors are those vectors which @ b d

have same direction (parallel) and opposite
sense (arrow). The magnitude may be
different. Fig.14.3

Like vectors Unlike vectors

Zero Vector, or Null Vector

Zero vector, or null vector, or a void vector is that vector whose magnitude is zero.
The zero vector is denoted by 0.
Vectors other than the null vector are called proper vectors.

Co-initial Vectors

Vectors having the same initial point are called co-initial vectors.

o Co-terminus Vectors

Vectors having the same terminal point are called co-terminus vectors.

Collinear Vectors, or Parallel Vectors

Vectors are said to be collinear or parallel if they have the same line of action or have
the lines of action parallel to one another.

Coplanar Vectors

Vectors are said to be coplanar if they are parallel to the same plane or they lie in the
same plane.

Negative Vector

The negative of vector is a vector whose magnitude is equal to that of the given vector
with same direction (parallel) but opposite sense (arrow).

Thus, if AB=i then BA=—i .

Reciprocal of a Vector

Let @ be a nonzero vector. The vector which has the same direction as that of a4 but
has magnitude reciprocal to that of a is called the reciprocal of @ and is written as

@y =1
a

EM_Unitv_14.indd 5 @ 8/22/2017 12:08:53 PM
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Free Vector and Localized Vector

When we are at liberty to choose the origin of the vector at any point then it is said to
be a free vector. But when it is restricted to a certain specified point then the vector is
said to be localized vector.

Equality of Vectors

Two vectors a4 and b are said to be equal, written as a= l:; , if they have the same
length and the same direction. In Fig. 14.4, vectors 4 and b are equal even though
their locations differ. Hence, a vector can be arbitrarily translated, that is, its initial
point can be chosen arbitrarily.

4 i
b .
b
Equal vectors Vectors having the Vectors having the Vectors having
same length but same direction but different lengths and
different directions different lengths different directions
Fig.14.4

14.3 O COMPONENTS OF A VECTOR

VA

Cartesian coordinate system Components of a vector
Fig. 14.5
Choose the XYZ Cartesian coordinate system in space. If a given vector a has
initial point P(x;, y;, z;) and terminal point Q(x,, v,, z,), the three numbers
M =Xp=Xy, BH=Yr—Y1, B3=2—Z

are called the components of the vector 4 with respect to that coordinate system. It is
simply represented as a = [a, a,, a3].
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Position Vector

Consider a Cartesian coordinate system. The
position vector 7 of a point A(x, y, z) is the
vector with the origin O(0, 0, 0) as the initial
point, and A as the terminal point.

Thus, 7 =[x, y, z].

Addition of Vectors (Vector Addition)

The sum a+b of two vectors a = [ay, a,, a;]

and § = [by, by by] is obtained by adding the ~**
corresponding components, Fig. 14.6
ie, A+b =[a,+by, ay+by as+ by

Geometrically, the vectors are placed as the initial point of b at the terminal point
of d.Then a+b is the vector drawn from the initial point of 4 to the terminal point
of b.

a

> Y

Fig. 14.7

o Basic Properties of Vector Addition

(i) Commutative G+b=>b+a

(ii) Associative (d+b)+c=d+(b+7C)

(i) a+0=0+d=a

(iv) @+(-d)=0, where —i denotes the vector having the length lal and the
direction opposite to that of 4.

Scalar Multiplication

The product ca of any vector a = [ay, a,, a3] and any scalar ¢ (real number) is the
vector obtained by multiplying each component of a by c.

ie., ca = Clay, a,, as] = [cay, ca,, cas)

Fig. 14.8
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> Note

(i) If a#0 then cd with c>0 has the direction of i, and with ¢ <0 the direction
is opposite to 4.
(ii) The length of ci is given by Icil=Iclldl and cd =0if =0 or c =0 or both.

o Basic Properties of Scalar Multiplication
For any scalars ¢ and k and for any vectors 4 and b:

(i) c(ﬁ+l;):cﬁ+cl;

(ii) (c+k)a=ca+ka
(iii) c(kd) = (ck)d = cka
(iv) 1. d=a

(v) 0.d=0
(vi) (-1) d=—a

Vector Subtraction

Subtraction of one vector from another is performed by adding the corresponding
negative vector,

ie., if we seek 4 — b , we form 4+ (—E) .

Orthogonal Vectors

If the angle between two vectors 4 and b is 90° thatis @ and b are perpendicular,
then @ and b are said to be orthogonal.

o Example

Position vectors provide a useful means of determining the position of a robot. There
are many different types of robots but a common type uses a series of rigid links
connected together by flexible joints. Usually, the mechanism is anchored at one point.

The anchor point is X and the tip of the robot is situated at Y. The final link is
sometimes called the hand of the robot. The hand often has rotating and gripping
facilities and its size, relative to the rest of the robot, is usually quite small. Each
of the robot links can be represented by a vector. The vector d corresponds to the
hand. A common requirement in robotics is to calculate the position of the tip of
the hand to ensure that it does not collide with
other objects. This can be achieved by defining
a set of Cartesian coordinates with the origin at
the anchor point of the robot X. Each of the link
vectors can then be represented in terms of these
coordinates.

For example, in Fig. 14.9,

d=ayi +a,] +ak,b=bi +b,j +bsk, X
E=ci +¢,] +csk, d=dyi +dyj +d;k Fig. 14.9
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Vector Differentiation 14.9

The position of the tip of the hand can be calculated by adding these vectors
together.

p=d+b+c+d
=(u1+bl+c1+dl)f+(a2+b2+c2+d2)f+(u3+b3+c3+d3)lz

14.4 O PRODUCT OF TWO VECTORS

The product of two vectors results in two different ways: one, a number and the other,
a vector. So there are two types of products of two vectors, namely, scalar product and
vector product. They are writtenas @-b and axb .

Inner Product (Dot Product or Scalar Product)

Now, we shall define a multiplication of two vectors that gives a scalar as the product.
The inner product or dot product a-b (read “a dot b ”) of two vectors a and b
is the product of their length times the cosine of their angle.

-E:mumcosyﬁa¢o,5¢o}

[ QY

- - (14.1)
-b=0ifa=00rb=0

The angle %, 0 < y < wbetween 4 and b is measured when the vectors have their
initial points coinciding.
If i =[ay, ay as], b =[by, by, by] then
i-b =ayby +ayby + ash, (14.2)

Since the cosine in (14.1) may be positive, zero or negative, so may be the inner
product (Fig. 14.10).

S

b b
a.b>0 a.b=0 a.b<0

Fig. 14.10 Angle between vectors and value of inner product

> Note

(i) Avector  is said to be orthogonal to a vector b if d-b =0.
(if) Zero vector is orthogonal to every vector.
(iii) For nonzero vectors, a-b =0 if and only if (iff) cos y=0. Thus, y= /2.

o Example: Work Done by a Force as Dot Product

Consider abody on which a constant force P acts. Let thebody be given a displacement

d . Then the work done by P in the displacement is defined as
W=Iplldicosy =p-d,
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14.10 Engineering Mathematics

If y <90° then W> 0 (Fig. 11).

If p and d are orthogonal then the work(W) = 0. D
If ¥y >90° then W <0 which means that in the displacement one y
has to do work against the force. 3
Fig. 14.11

> Note

() @-b=b-d (the scalar product is commutative)

(i) k(a-b)=(ki-b), where ks a scalar.

(iif)
(iv)
(v)
(vi)

(vii)

(viii)

(@+b)-¢=(d-¢)+(b-¢) (distributive)
If @ and b are parallel vectors then a-b =1allbl

If @ and b are orthogonal vectors then i-b=0.

I
ESY
)

]

I
="
<
- e
.
I
—_
<
bault
P
I
=

I
~ e e

(O R I !
Il

1] 1l

o o <

b B R Y

= \.-l

(md)-b=m(d-b)=a-(mb)

S

= = o -1| 4
The angle between two vectors 4 and b is cos 1[” EI]
a

(i)

x) db= aiby + ayb, + azb; where a = ulf + uJ + a3E and b= blf + bzf + b3lz

Vector Product (Cross Product)

The vector or cross product of two vectors 4 and b is
defined to be a vector such that

(i)

its magnitude is |a bl sin 6, where 6 is the angle

between 4 and b . ; i \
(ii) its direction is perpendicular to both vectors a
and b 0 >
(iii) it forms a right-handed system a "
Let n be a unit vector perpendicular to both the Fig. 14.12

vectors 4 and b . d,b and 7 are forming a right-handed

system, then ixb=1illblsin -7

> Note

A Cartesian coordinate system is called right-handed if the corresponding unit
vectors i, ],k in the positive directions of the axes form a right-handed triple as
in Fig. 14.13(a).
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(a) Right-handed (b) Left-handed

Fig. 14.13

The system is called left-handed if the sense of k is reversed as in Fig. 14.13(b). In
applications, we prefer right-handed systems.

(i) ax b=bxa (vector product is not commutative)
(il) ax(b+¢)=(dxb)+(@xc) (distributive)
(iil)  k(a x E) = (ki) x b=7ix (k};) where k is a scalar.
(iv) 1dxb! is the area of the parallelogram whose adjacent sides are @ and b .

(v) Two vectors are parallel if xb =0. In particular, @xd =0.

(vi) ixi=0,jxj=0kxk=0
ixj=—jxi=k
jxk=—kxj=i
kxi=—ixk=]

(vil) (mad)xb=adx (mb)=m(dxb)
(viil) If a= 1111—' + aJ + a3E , b= bll—' + bJ + b3lz then
i ]k
ixb= a, a, da,
bl b2 b3

Applications of Vector Products

(i) If Abe any point on AB whose position vector with respect to Ois 7 then 7 x F
represents the moment or torque of F (acting along AB) about O.
(ii) If F represents a force and d is the displacement of its point of application,

F-d represents the work done by the force.
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Unit VIII

Vector Integration

Chapter 20: Line Integral, Surface Integral and
Integral Theorems
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Line Integral, Surface
Integral and Integral
Theorems

fChapter Outline

Infroduction

Infegration of Vectors

Line Infegral

Circulation

Application of line Infegrals
Surfaces

Surface Infegrals

Volume Infegrals

Integral Theorems

20.1 QO INTRODUCTION

In multiple integrals, we generalized integration from one variable to several
variables. Our goal in this chapter is to generalize integration still further to include
integration over curves or paths and surfaces. We will define integration not just of
functions but also of vector fields. Integrals of vector fields are particularly important
in applications involving the “field theories” of physics, such as the theory of
electromagnetism, heat transfer, fluid dynamics and aerodynamics.

In this chapter, we shall define line integrals and surface integrals. We shall see that
a line integral is a natural generalization of a define ¢
integral and a surface integral is a generalization of )
a double integral. Line integrals can be transformed
into double integrals or into surface integrals and
conversely. Triple integrals can be transformed into
surface integrals and vice versa. These transformations Y
are of great practical importance. Theorems of Green,
Gauss and Stokes serve as powerful tools in many  Fig.20.1
applications as well as in theoretical problems.
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In this chapter, we study the three main theorems of Vector Analysis: Green’s
Theorem, Stokes’ Theorem and the Divergence Theorem. This is a fitting conclusion to
the text because each of these theorems is a vector generalization of the Fundamental
Theorem of calculus. This chapter is thus the culmination of efforts to extend the
concepts and methods of single-variable calculus to the multivariable setting.
However, far from being a terminal point, vector analysis the gateway to the field
theories of mathematics physics and engineering. This includes, first and foremost, the
theory of electricity and magnetism as expressed by the famous Maxwell’s equations.
It also includes fluid dynamics, aerodynamics, analysis of continuous matter, and at
a more advanced level, fundamental physical theories such as general relativity and
the theory of elementary particles.

Curves

Curves in space are important in calculus and in physics (for instance, as paths of
moving bodies).

A curve C in space can be represented by a vector function

r() =[x(t), y(t), 2(1)] (20.1)
=x(t)i +y(t)] +2(t)k

where x, y, z are Cartesian coordinates. This is called a parametric representation of
the curve (Fig. 20.1), t is called the parameter of the representation. To each value f, of
t, there corresponds a point of C with position vector r(t,), that is with coordinates
x(to), y(to) and z(ty).

The parameter t may be time or something else. Equation (20.1) gives the
orientation of C, a direction of travelling along C, so that ¢ increasing is called the
positive sense on C given by (20.1) and that of decreasing ¢ is the negative sense.

o Examples

Straight line, ellipse, circle, etc.
The concept of a line integral is a simple and natural generalization of a definite

b
integral J‘ f(x)dx (20.2)

In (20.2), we integrate the integrand f(x) from x = a to x = b along the x-axis. In a
line integral, we integrate a given function, called the integrand, along a curve C in
space (or in the plane).

Hence, curve integral would be a better turn, but line integral is standard.

We represent a curve C by a parametric representation

F(t)=x(t)i +y(t)] +2(t)k, (a<t<b) B
We call C the path of integration, A:7(a) its initial ‘
point and B:7(b), its terminal point. The curve C is C

now oriented. The direction from A to B, in which ¢
increases, is called the positive direction on C. Wecan 4

indicate the direction by an arrow [Fig. 20.2(a)]. (a) (b)
The points A and B may coincide [Fig. 20.2(b)]. .
Then C is called a closed path. Fig. 20.2
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> Note

(i) A plane curve is a curve that lies in a plane in space.
(if) A curve that is not plane is called a twisted curve.

20.2 0O INTEGRATION OF VECTORS
dG(t)

If two vector functions F(t) and é(t) be such that =F(t), then é(t) is called

an integral of F(t) with respect to the scalar variable t and we write | F (t)dt = é(t). If C
be an arbitrary constant vector, we have F t)= % = %[é(t) +C ], then
[F (t)dt = é(t) +C . This is called the indefinite integral of E(t) and its definite integral

b
is J.ﬁ(t)dt =[G(t)+Cl=G(b) - G(a) .

20.3 QO LINE INTEGRAL

Any integral which is to be evaluated along a curve is
called a line integral. Consider a continuous vector

point function F(R) which is defined at each point
of the curve C in space. Divide C into n parts at the

points A=py, py ... iy, i --- P, =B
Let their position vectors be R, Rl...Ri_L R;..R,
Let v; be the position vector of any point on the
arc P, P;
1L — —
Now consider the sum § =2F(5i)'5Ri where
SE:E_Ri—l : =

The limit of this sum as n — o in such a way that |5Ei| — 0, provided it exists,

is called the tangential line integral of ?(ﬁ) along C which is a scalar and is
symbolically written as

jﬁm)ﬁorﬁ.i_f.dt
C C

When the path of integration is a closed curve, this fact is denoted by using in
place of I.

If F(R)= flx,y, 2)i +¢(x, Y, z)} +y(x,y, z)lz and dR = dxi + dy] +dzk

then J' F(R)-dR = _[( fix+ ¢dy + ydz) .
C
C

Two other types of line integrals are J'lE xdR and J fdR which are both vectors.
C C
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20.4 Q CIRCULATION

In fluid dynamics, if F represents the velocity of a fluid particle then the line integral

Jﬁ .d7 is called the circulation of F around the curve. When the circulation of F

C
around every closed curve in a region E vanishes, F is said to be irrotational in E.

Conservative Vector
B

If the value of I? -dr does not depend on the curve C, but only on the terminal
A

points A and B, [ is called a conservative vector.

A force field F is said to be conservative if it is derivable from a potential function

¢, ie., F= grad ¢. Then curl (F) =curl (V¢) =0.
- if F is conservative then curl (F )=0 and there exists a scalar potential function ¢
such that F=V¢.

20.5 QO APPLICATIONS OF LINE INTEGRALS
Work Done by a Force
Let v (x, y,z) =v4(x, y, 2) i+ (X, Y, 2) ; +v3(x, Y, 2) k be a vector function defined and

continuous at every point on C. Then, the integral of the tangential component of v
along the curve C from a point P on to the point Q is given by

Q
J‘ﬁﬂz"‘?)-dr—J.vldx+vzdy+v3dz
P c, o

where C; is the part of C, whose initial and terminal points are P and Q.
Let v=F, variable force acting on a particle which moves along a curve C. Then

the work done W by the force F in displacing the particle from the point P to the
point Q along the curve C is given by

Q
W:IF-dF:jﬁ-dF
P C,

where C; is the part of C whose initial and terminal points are P and Q.

Suppose F is a conservative vector field; then F can be written as F = grad ¢,
where ¢ is a scalar potential.
Then, the work done

J.F dr—J-(gradq)

1

99 . . 99 -
E[[a dx +— % —dy+— dz} Id¢ [9(x,y, Z)]
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.. work done depends only on the initial and terminal points of the curve C;, i.e., the
work done is independent of the path of integration. The units of work depend on the

units of |F| and on the units of distance.

> Note

(i) Condition for F to be conservative
If F isirrotational then VxEF=0.

It is possible only when F=V¢.which= F is conservative.
- if F is an irrotational vector, it is conservative.

(ii) If F is irrotational (and, hence, conservative) and C is a closed curve then

95? 47 =0. [~ A) = §(B), as A and B coincide].
C

20.6 O SURFACES

A surface S may be represented by F(x, y, z) = 0.
The parametric representation of S is of the form
F(u, v) = x(u, V)i + y(u, v)} +2z(u, v)k
and the continuous functions u = ¢(t) and v = ¢(t) of a real parameter t represent a
curve C on this surface S.

If S has a unique normal at each of its points whose direction depends continuously
on the points of S then the surface S is called a smooth surface. If S is not smooth
but can be divided into finitely many smooth portions then it is called a piecewise
smooth surface. For example, the surface of a sphere is smooth while the surface of a
cube is piecewise smooth.

If a surface S is smooth from any of its points P, we may choose a unit normal
vector 1 of S at P. The direction of 7 is then called the positive normal direction
of S at P. A surface S is said to be orientable or two-sided, if the positive normal
direction at any point P of S can be continued in a unique and continuous way to the
entire surface. If the positive direction

of the normal is reversed as we move A B
around a curve on S passing through P /

then the surface is non-orientable (i.e.,

one-sided) (Fig. 20.4). 3 / C/ y
o Example Fig. 20.4

A sufficiently small portion of a smooth
surface is always orientable (Fig. 20.5).
A Mobius strip is an example of a
non-orientable surface. A model of a
Mobius strip can be made by taking a
long rectangular piece of paper, making
a half-twist and sticking the shorter
sides together so that the two points A
and the two points B coincide; then the
surface generated is non-orientable. Fig. 20.5
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>

20.7 QO SURFACE INTEGRALS F A

Any integral which is to be evaluated over a surface \
is called a surface integral.

Let S be a two-sided surface, one side of which
is considered arbitrarily as the positive side.

Let F be a vector point function defined at all
points of S. Let ds be the typical elemental surface
area in S surrounding the point P(x, y, z). P(x,y,z)

ds

Let 11 be the unit vector normal to the surface S S
at P(x, y, z), drawn in the positive side (or outward

direction). ~ Fig. 20.6
Let O be the angle between F and 7.

.. the normal component of F=F-n=Fcosf.
The integral of this normal component through the elemental surface area ds over

the surface S is called the surface integral of F over S and denoted as IF cos B -ds
or jﬁ -nds .

5

If ds is a vector whose magnitude is ds and whose direction is that of 1, then
ds=i-ds. .. Jﬁ -nds can also be written as Jﬁci—s

S S
> Note

(i) If S in a closed surface, the outer surface is usually chosen as the positive
side.

(if) J. ¢ds and J. Fxds where ¢ is a scalar point function are also surface
s s

integrals.
(iii) The surface integral J. F-ds is also denoted as J F-ds.
s

(iv) If F represents the velocity of a fluid particle then the total outward flux of

F across a closed surface S is the surface integral J.I—: -ds .
s

(v) When the flux of F across every closed surface S in a region E vanishes, F
is said to be a solenoidal vector point function in E.

(vi) It may be noted that F could equally well be taken as any other physical
quantity such as gravitational force, electric force, magnetic force, etc.

20.8 0O VOLUME INTEGRALS

Any integral which is to be evaluated over a volume is called a volume integral.

If V is a volume bounded by a surface S then the triple integrals JJJ(MU and
J.J Fdv are called volume integrals. The first of these is a scalar and the second isa

Vector
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20.9 QO INTEGRAL THEOREMS

The following three theorems in vector calculus are of importance from theoretical
and practical considerations:

(i) Green’s theorem in a plane

(ii) Stokes’ theorem
(iif) Gauss’ divergence theorem

Green’s theorem provides a relationship between a double integral over a region
R and the line integral over the closed curve C bounding R. Green’s theorem is also
called the first fundamental theorem of integral vector calculus.

Stokes’ theorem transforms line integrals into surface integrals and conversely.
This theorem is a generalization of Green’s theorem. It involves the curl.

Gauss’ divergence theorem transforms surface integrals into a volume integral. It
is named Gauss’ divergence theorem because it involves the divergence of a vector
function.

We shall give the statements of the above theorems (without proof) and apply
them to solve problems.

Green’s Theorem in a Plane

If C is a simple closed curve enclosing a region R in the xy-plane and P(x, y),
Q(x, y) and its first-order partial derivatives are continuous in R then

q.)(de +Qdy) = J.J.(a—Q - B_P] dxdy where Cis described in the anticlockwise direction.

Stokes’ Theorem (Relation between Line Integral and Surface Integral)

Surface integral of the component of curl F along the normal to the surface S, taken
over the surface S bounded by curve C is equal to the line integral of the vector point

function F taken along the closed curve C.
Mathematically, @? -d7 = churl F-fi-ds
C
Gauss’ Divergence Theorem or Gauss’ Theorem of Divergence
(Relation between Surface Integral and Volume Integral)

The surface integral of the normal component of a vector function F taken around a

closed surface S is equal to the integral of the divergence of F taken over the volume
V enclosed by the surface S.

Mathematically, jjf ‘n-ds= ‘” divE dv.
s v

SOLVED EXAMPLES

Example 1 [RIWES 3xy1 -y ] evaluate J F-dr, where Cis the arc of the parabola
y=2x? from (0, 0) to (1, 2).
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20.10 Engineering Mathematics

Solution et x = t, then the parametric equations of the parabola y = 2x* are x = t,
y =2t

At the point (0, 0), x=0and so = 0.

At the point (1, 2), x=1and so t =1

If 7 is the position vector of any pomt (x, y) in C, then

F=xi +y]
=t + 2> ]

Also in terms of t, F=3t(2t%)i — (2t2)2}
=6t —4tt]

JF dr = j(ﬁ —Jdt
- j(ét P-4ty (7 + 4]t

1
= j(6t3 —16t°)dt

1

4 6
={6t——16t—}
4 6l

_3.8_9-16_7 Ans.
23 6 6

Example 2 ERNVEIRELE -”;1 -fids where A=(x+ yz);' - 2xf + 2yzlz and S is the
s
surface of the plane 2x +y + 2z = 6 in the first octant. [KU May 2010]

Solution A vector normal to the surface S is given by
V(Q2x+y+22)=2i +] +2k

‘. f1=a unit vector normal to the surface S

HA-&-dF”AﬂLiXdAy
Ik - nl
S R

where R is the projection of S

Now, (x+_1/)z—2x]+2yzk] (—z+;]+3k)
(x+ )—zx+4 z=— 2+é z
=3 y 3 ¥ y 3y
2 , 4 (6—2x—y)
=—y+—y| —=
37 3N T2
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. 6—2x—
(smce on the plane 2x + y +2z=6,z= Ty)

2
=3y +6-2x-y)

4
= — 3—
3)y( x)
Hence, J.J.A - ds-JJA A’dxdy
lk-nl

= J;J.gy(S -X) -%dxdy

3 6-2x

:J. }!. 2y(3 — x)dydx

0

3 5 6—-2x
=jz(3—x)[y—] dx
0 2 0

3
= J(3 — x)(6 — 2x)*dx
0

3
=4|(3-x)%dx
!

3
2
A-1 |

=81 Ans.

Example 3 [RIGENpral 3z)i — 2xy] —4xk then evaluate J.J.J.V -F-dV, where V
is bounded by the planes x =0, y=0,z=0and 2x +2y +z=4.

Solution V.-F= (2x2 -3z)+ i(—zxy) + i(—4x)
ay 0z

—-2x=2x

ff V-F-dv= J.J. 2xdxdydz
v

9
ox
—4x

2 x4-2x-2y
2xdzdydx

2-x

0
J. 2x[z]8 7 M dydx
0

0]
|

8/23/2017 10:29:48 AM
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2-x 22-x

J 2x(4 - 2x - 2y)dydx = J j [4x(2 — x) — 4xy]dydx
0

o o'—"\)

J[4x(2 x)y — 2xy* [ - dx
= J[4x(2 — %)= 2x(2 — x)?)dx
2
= JZx(Z —x)2dx

2
= 2J(4x —4x®+ 2%y dx

2
3 4
=2{2x2—4x—+x—} - [8—2 4}:§ Ans.

34, 3 3

Evaluate JF -d7 where F=(x>+ yz)f - ny} and the curve C is the

c
rectangle in the xy-plane bounded by y =0, y=b, x=0, x =a.

Solution In the xy-plane, z=0

F=xi +yj,dr =dxi +dyj

f f (x +y )dx 2xydy 1)
Jﬁdr—JF dr+IF dr+JF dr+JF i @
AB BC CcO
yl\
s
C(0. b) ) Bla,b)
x=0Y AXx=a
y=0 A@,0)
0(0, 0)

Fig. 20.7

Along OA, y=0; dy =0 and x varies from 0 to a
Along AB, x =a; dx =0 and y varies from 0 to b
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Line Integral, Surface Integral and Integral Theorems 20.13

Along BC, y =b; dy =0 and x varies from a to 0
Along CO, x =0; dx =0 and y varies from b to 0
Hence, from (1) and (2),

a

I b 0 0
JP-dr:Ixzdx— 2aydy+.[ (x2+b2)dx+j 0-dy
C y=0 x=a b

x=0
3\ 3 0
o T e e
3 0 3 a
3 3
a 2 a 2 2
=|——ab"———ab”° |=-2ab
(3 3 ] Ans.

Find the work done by the force F = (2xy + 2°)i + xzf +3xz%k when it
moves a particle from (1, -2, 1) to (3, 1, 4) along any path. [AU Dec. 2011]

Solution Since the equation of the path is not given, the work done by the force [
depends only on the terminal points.

i ik
Consider Vx F= i i i
ox dy 0z

Qxy+z°) x* 3xz?

=i[0—0]- j[32% - 32°]+ k[2x - 2x] =0
= F isirrotational
Hence, [ is conservative
Since F is irrotational, we have F = Vo
It is easy to see that ¢ = x%y +xz° + C

(3,1,4)
work done by F = j F-dF
1,-2,1)
(3,1,4) (3,1,4)
- j Vo.dr= J dé [as Vo- dr = do]
1,-2,1) 1,-2,1)
3,14
= [¢]21,_2,)1)
= [xzy +xzl+ C]g’l’}z‘%)l)
=(201+C) - (=1+C) =202 Ans.

IDEn A Find the circulation of F round the curve C, where F=e¢*sin y;'

+¢e* cos y}; and C is the rectangle whose vertices are (0, 0), (1, 0), (1, %ﬂ], (0, %ﬂ') .
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20.14 Engineering Mathematics
Solution YA
F=xi+yj = di =dxi +dyj
- Z] ) N Y C(0, m/2) < B(1, m'2)
F-dr=e"siny-dx+e cosy-dy h
Now along OA, y=0;dy =0 v 1
along AB, x=1;dx=0
along BC,y=%;dy=0 g A(1,0) -
along CO, x=0;dx =0 0(0, 0)
- circulation round the rectangle OABC is Fig. 20.7
j F-di = J.(ex sin ydx + e* cos ydy)
¢ c
= j o+ J e' cos ydy + J. exsin%dx + J. cos ydy
OA  AB BC co
z 0 0
=0+ Je cosy-dy+ Je" sin%dx + Icos ydy
0 1 z
—[esinylZ +[e P +[sinyl=e+(1-¢)-1+0=0  Ans.
2

|penny (VAN Find the total work done in moving a particle in a force field given by
F= 3xy1—' - 52} +10xk along the curve x =*+ 1,y =2, z= from t =1 to t = 2.

Solution Total work done

- J F.di= _[ (3xyi — 52] +10xk) - (dx7 +dyj + dzk)
C C

[3xydx — 5zdy + 10xdz]

[3(F2 + D(22)d(t* + 1) — 582d(242) + 10(2 + Dd(+3)]

Te—n 5™

2

= j (62 (£ + 1)(2tdt) — 2084 dt + 30£% (2 + 1)dt]
2

= f [12£° + 12¢% — 20* + 30t* + 30¢*]dt

2
= j [12£° + 10#* + 1242 + 30¢2]dt

6 TP 572 4P 3P
:12H +10H mH +30H
6 1 54 4 5 34

EM_UnitVIIl_20.indd 14 @ 8/23/2017 10:29:49 AM



Line Integral, Surface Integral and Integral Theorems 20.15

6 5 4 4 3 3

s 2o 2Ll 2 g 2
6 6 5 5 4 4 3 3

=12- 63 —+10- —+12 E+30 —
6 5 4 3

=126 +62+45+70

=303

Ans.

Example 8 [ F =4xzi - yzf + yzlz , evaluate J F-fids where S is the surface of

S
the cube bounded by x=0,x=1,y=0,y=1,z=0,z=1. [AU Dec. 2009]
Solution The surface of the cube consists of the AZ 0
following six faces: r
(a) Face LMND L I
(b) Face TQPO
(c) Face QPNM
(d) Face TODL 0 P >Y
(e) Face TQMI D N
(f) Face ODNP .5
Now, for the face LMND:
. = Fig. 20.8
n=i,x=0D=1
Hence, jIF nds= jj (4xzi — ] + yzlz) . ;dydz
LMND
= J.J. dxzdydz=4 J. zdydz  (ox=1)
LMND LMND
1
4j '[ zdydz=4 [ ] (y)0 1)
z=0y=0
For the face TQPO: fi=—i,x=0
Hence, JJF n-ds= J (4xzi — y? ] + yzk) (- z)dydz
TQPO
= J (—4xz)dydz=0 (rx=0) (2)
TQPO
For the face OPNM: 7=,y =1
Hence, JJF nds= J. (4xzi — y? ] + yzk) ]dxdz
QPNM
= JI (—y dxdz)= '[ —dxdz (-y=1)
QPNM QPNM
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1 1
=- J' J' dxdz=—[x]y[z]y=-1 3)

z=0x=0
For the face TODL: fi=—],y=0

Hence, J-J.? nds= J-J- (4xzi — %] + yzk) - (=] )dxdz
$

TODL

- j J (y2dxdz)=0 (v y=0) (4)

TODL

For the face TQML: i=k,z=1

Hence, J] F-nds= JJ (4xzi —y%] +yzk) - kdxdy .

TQML TQML
= J‘J‘ yzdxdy = ”. ydxdy (-z=1)
TQML TQML
11 5Tl .
- | ydxdy=[x]é[y7l:5 ©
y=0x=0

For the face ODNP: fi=—k,z=0

Hence, JJ F-nds= JJ (4xzi —y%] + yzk) - (k) - dxdy
ODNP ODNP
= JJ (-yz)dxdy =0, (=z=0) (6)
ODNP
Adding (1), 2), (3), (4), (5) and (6), we get
J F-nds= 3 Ans.
: 2
Verify Stokes’ theorem for F = y—z+ 2)1—' +(yz +4) } —(xz) k over

the surface of acube x =0, y=0,z=0,x=2, y =2, z=2 above the XOY plane (open at
the bottom). [KU May 2010]

Solution Consider the surface of the cube as shown in the figure. Bounding path is
OABCO shown by arrows.

J'ﬁ 7 =j[(y—z+2)? T (yz +4)] — (x2)K] - (dxT +dyj +dzk)
C C
=J (y—z+2)dx + (yz +4)dy — xzdz
C

J.ﬁ-d?zJﬁ~d?+Jﬁ~d?+Iﬁ-d?+Iﬁ~d? (1)
¢ OA AB BC CcO
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Line Integral, Surface Integral and Integral Theorems 20.17

Along OA,y=0,dy=0,2z=0,dz=0

2
Jﬁ.d?=jzdx=(2x)g=4

0A 0
Along AB, x=2,dx=0,z=0,dz=0

2
J?~d?:'[4dy:4(y)é:8

AB 0
llZ
F (Os 0’ 2)
E D
0 (Oa 2a O)
20,0 LA | ¢
A B
(2,2,0)
X

Fig. 20.9

Along BC,y=2,dy=0,z=0,dz=0

2
jid?:j(2—0+2)dx=(4x)3:—8
BC 0

Along CO,x=0,dx=0,z=0,dz=0
J'F-d?:J'(y—o+2)x0+(o+4)dy—o
CO

—4[dy=ayi=-s
On putting the values of these integrals in (1), we get
[cE-di=4+8-8=—4

To obtain surface integral

i ik
vxE-| £ 2 2
ox dy oz

y—z+2 yz+4 -xz

=(0-y)i —(-z+1)j +(O0-Dk=—vyi +(z—1)] -k
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Here, we have to integrate over the five surfaces, ABDE, OCGF, BCGD, OAEF, DEFG.
Over the surface ABDE: x =2, = i , ds = dydz

H(V x E)- fids = Lj[—yi t(z=1)] —K]-Tdydz

s
2 2 , TP
= .”.—ydydz =—J.ydyj.dz = —[%} [z]é: -4
s 0 0 0

Over the surface OCGF: x =0, n= —f, ds=dy dz

H(V x F)-fids = J;J[—yi +(z=1)j —k]- (-1 )dydz

S
2 2 >
- [t~y o[ £
S 0 0

Over the surface BCGD: y =2, n= } ,ds=dx dz

2
=4
o

”(v x F) - fids = ”[—y?’ +(z—=1)j —k]-jdxdz

s
= J;J(z —1)dxdz
2 2

= I[dxj(z -1)dz

0

5 2
=[xk {?}
0

=0

Over the surface OAEF: y =0, n= —] ,ds=dx dz

J;J(V X F)-fids = _”[—yi +(z—=1)j —k]-(~])dxdz

3
= _-[J(z —1)dxdz

2

2
= —J‘dx'(').(z —1)dz
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Over the surface DEFG:z=2, = k , ds=dx dy

H(v x E)-fids = J.J.[—yf +(z-1)] - k]-Kdxdy

s
2 2
- -”dxdy - —dejdy
0 0
=[x [yl =—4
Total surface integral=—4+4+0+0-4=-4
Thus [ curl F-fds=].F-di =-4

which verifies Stokes’ theorem. Verified.

ENNI BN Verify Green’s theorem in the plane for [[(x* — xy )dx + (y* — 2xy)dy]
where C is a square with vertices (0, 0), (2, 0), (2, 2), (0, 2).

Solution Given integrand is of the form Mdx + Ndy, where M = x> — x>, N = /> - 2xy.
Now to verify Green’s theorem, we have to verify that

_[[(x2 = xy)dx + (i = 2xy)dy] = “ (-2 + 3xy*)dx dy (1)
C R

Consider J.[(xz — xy)dx + (y* - 2xy)dy] where the curve C is divided into four parts,
c

hence the line integral along C is nothing but the sum of four line integrals along four

lines OA, AB, BC and CO.

Along OA : y =0, dy =0 and x varies from 0 to 2.

2 32
Hence, J. [(x* = xy®)dx + (y* - 2xy)dy] = j Pdx= [%j =%
0
OA x=0

Along AB : x =2, dx =0, and y varies from 0 to 2.

Hence, j [(x% = xy®)dx + (y* - 2xy)dy] AY
AB ,
2 y= B(2,2)
2 3 2 C(0,2) < )
= | P-4y = (y— - 4y—J
_[0 L ;
(8) 3 16 x=0y Ax=2
3) 7 3
> > X
Along BC: y =2, dy =0 and x varies from 2 to 0. y=0 A2, 0)
0(0, 0)
Hence, J. [(x?- xy?’)dx + (y2 — 2xy)dy]
Sc Fig. 20.10

0 5 R\
= | (x*-8x)dx= (x_ - SX—J
s 3 2 )y

x=

=0—0—§+16=£
3 3
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Along CO : x =0, dx =0 and y varies from 2 to 0

Hence, J [(® = xy®)dx + (y* = 2xy)dy]

CcO
0 3O 8
2 Y
= d:— = ——
a5 ) -
y=2
16 40 8

_[[(xz— xy*)dx + (y° - 2xy)dy] ———3+?—§=8 @)
C

Now consider
2 2
'[ (2y + 3xy*)dy dx = J. J (—2y + 3xy*)dy dx
R

x=0y=0
2

2 2 3
= J.[—Zy—+3xy—j dx
! 2 3 o

2

= J. [—4 + 3x(§):|dx = (—436 + 8%)2

x=0
=-8+16+0=8 )

From (2) and (3), we observe that the relation (1) is true.
Hence, Green’s theorem is verified. Ans.

[NV ILREN Verify divergence theorem for F = (x* - yz) i+ (y* - zx) } + (22— xy) k
taken over the rectangular parallelepiped 0<x <4, 0<y <b, 0<z < c.[KU Now. 2010]

Solution For verification of the divergence theorem, we shall evaluate the volume
and surface integrals separately and show that they are equal.

Now div F=V-F :aix(x2 -yz) +%(y2 —zx) +a—az(z2 - xy)

=2(x+y+2z)
- AZ
JI div Fdv TA
C Al
I J. J- 2(x+y+z)dxdydz B!
I J. l(—+yx+zxﬂ dydz
0 l} 0 i >y

c az B
= J‘JZ[T +ya+ zadedz A C!

0o . . ) X
_ J‘ 2“%]/ + % +azyﬂ iz Fig. 20.11
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ab® ab_ ab? abz? |
—2J —+—+abz dz=2|—z+——z+
2 2 2
= a%bc + ab’c + abc* = abc(a + b + ¢) 1)

To evaluate the surface integral, divide the closed surface S of the rectangular
parallelepiped into 6 parts.

S, : Face OAC'B
S, : Face CB’PA’
S3: Face OBA'C
S, :Face AC'PB’
S5 : Face OCB’A
Se : Face BA” PC’

Also, J:[F I’ZdS—J.J.F nds+J.J.F nds+J.J.F nds
J'J'F nds+HF nds+_[ E.fds @

On S, :z=0, ﬁ:—E,ds=dxdy
so that F-n=(x% +y?j - xyk) - (=k) = xy

a a
== [yay=-= ®

OnS,:z=c, n=k,ds=dxdy, F =(®—cy)i +(@P-cx)] +(@-xy)k.
so that F-7 =[(x2— cy);' + (yz— (x)}) +(c2— xy)lZ] k=c2- Xy .

- ba b 5
J:[F~flds=JJ(CZ—xy)dxdyzj(cza—%yjdy
S, 00 0

22
b
—abct 2 4
abc 1 (4)
OnSy:x=0, i=—i,F=—yzi +y%j + 2%, dz = dydz
so that F-fi=(-yzi + y2] +2%k)-(=i) = yz, ds = dy dz
- cb < .5 20
JJF~ﬁds=JJyzdydz=Jb?zdz:ch 5)
Sy 00 0

OnS,:x=a, n=i, =(u —yz)1+(y —uz)]+(z —ay)k
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sothat F-n=[(a®-yz)i +(y*—az)j + (22— ay)k]-i
=a®-yz, ds=dydz

HF nds—J J (% - yz)dydz = '[( Zb——zjdz

22
=a’he - ch )

OnSs:y=0, i=—j,F=x% —zxj + 2%k, ds = dxdz

sothat F-n=(x% - fo +2%k) - (—j) =zx

a2 22
jJ.F nds—J. J zxdzdx = I C—xdx—u: (7)

OnSs:y=b, ﬁ:],F:(xz—bz)i +(b? - zx)] + (22 - bx)k

ds = dxdz
sothat F-n=[(x2—bz)i +(b*— zx)] + (2> - bx)k]- ]
=b*—zx.
- apc
J F~ﬁ:.[ J (b* - zx)dzdx
[ [
3
6
a 2 2.2
='[ (b%—%x}dxzabzc—% (8)
[

By using (3), (4), (5), (6), (7) and (8), in (2), we get

~ 2,2 22 122 22 22 22
JJF~ﬁds=ab +abc2—ab L +a2bc—b—c+&+abzc—&
4 4 4 4 4 4

=abc(a+Db+c) )
The equalities (1) and (9) verify the divergence theorem. Ans.

Verify Green’s theorem in the plane for [(3x? — 8y%)dx + (4y — 6xy)dy
where C is the boundary of the region defined by (i) y = Jx, y=x*and (i) x=0,y =0,
x+y=1 [AU July 2010, June 2012 ; KU Now. 2011, KU April 2013]

Solution
(i y= \/; ,i.e., y*=x and y = x* are two parabolas intersecting at 0(0, 0) and A(1, 1).
Here, P =3x> - 8% Q = 4y — 6xy

aP aQ
=-16y, —~=-6

ay o y

aQ odpP

—=-—=10

ox dy Y
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AY
V=Y
2 =x
C
AL
RA C,
> X
0,0)0

Fig. 20.12

If R is the region bounded by C then

.“‘[?9_8 - 3—5}1}( dy
R

:5|:l_lj|:5|:ij|:§ (1)
2 5 10] 2
Also, J. de+Qdy=J. (de+Qdy)+I (Pdx +Qdy)

C C G,

Along C;, x¥*=y. .. 2x dx = dy and the limits of x are from 0 to 1.

'[ (Pdx +Qdy)
o

1
= J. (3x? = 8y?)dx + (4y — 6xy)dy
0
1
= J.o (3x2 = 8x1)dx + (4x% — 6x - x%) - 2xdx (since x2 = Y)

1

:I (3x2 + 8x> — 20x*) dx
0

=[x+ 2x% - 4x5]3)=—1

Along C,, yz =x. .. 2y dy = dx and the limits of y are from 1 to 0.

EM_UnitVIIl_20.indd 23 @ 8/23/2017 10:29:52 AM



20.24 Engineering Mathematics

J (Pdx +Qdy)
C2
0 4 2 2
=L (By"—8y")2ydy +(4y -6y y) - dy

0 3 5 o 11 4 60 5
=L (4y —22y"+6y”)dy =| 2y B A =2

2
J.(de+Qdy)——1+§=§ @)
C 2 2
The equalities of (1) and (2) verify Green’s theorem in the plane. Ans.

(ii) Here, JJ[ Q aP] dy Y

B0, 1)
1-x
=JJ 10y dy dx
070 x=0 x+y=1
1
=J Sly* 1y " dx
0
1 3>
1 Y = >
:5I (1_x)2dx:5{u} 00,00  y=0 A(1,0) x
0 I Fig. 20.13
-5 5
=—(0-1D=— 1
5 0-D=7 1)

Along OA, y=0 .. dy =0 and the limits of x are from 0 to 1.
1
J' Pdx+Qdy =J st =[x =1
0
Along AB, y=1-x. .. dy =—dx and the limits of x are from 1 to 0.

0
I Pdx + Qdy = L [3x% - 8(1 — x)*]dx + [4(1 — x) — 6x(1 — x)](—dx)

0

=J (3x2— 8 +16x — 8x*— 4 + 4x + 6x — 6x)dx
1
0

=J (12 + 26x — 11x?) - dx
1

0
=|:—12x+13x2—ﬂx3] = [ 12+13—£}=§
37, 3] 3

Along BO, x =0. ... dx =0 and the limits of y are from 1 to 0
0
[ pax+Qay=[ aydy=r2°f=-
BO 1

~. line integral along C (i.e., along OABO) =1+ % -2 =§
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. 5
ie., J- (Pdx+Qdy)=— (2)
c 3
The equality of (1) and (2) verifies Green’s theorem in the plane. Verified.

|BEVNOENEN Evaluate |- (e*dx +2ydy —dz) by using Stokes’ theorem, where C is
the curve x> + y2 =4,z=2. [AU May 2010]

Solution
Jo(e¥dx +2ydy - dz)
= (e¥T +2yj — k) - (dxi +dyj +dzk)
:ch-tﬂwhereﬁzexz?+2y}—lz

=i(0-0)—j(0—0)+k(0-0)
=07 +0j +0k=0

.. by Stokes’ theorem, J F-dr= jjcurl F-n-ds
¢ S
=0 (since curl F =0) Ans.

1PNV I RN Find the work done by the force F= zi + x} + yE, when it moves a

particle along the arc of the curve 7 = cos ti +sin tf +tk from t=0tot=2n.
[AU Dec. 2007]

Solution From the vector equation of the curve C, we get the parametric equations
of the curve as x =cos t, y=sint, z="t.

Work done by the force F=] c F-dr
=J. (zf+xf+yl€)-(dx17+dyf+dzlz)
c
:f (zdx + xdy + ydz)
c

2r
= f [t(—sin t) + cos® t + sin ]dt
0

2

_ 1( sin2t) T
=|tcost—sint+—|t+ —cost

2 2 o

=Q2r+r-1)—-(-1)
=3 Ans.
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20.26 Engineering Mathematics

[NV IREN Verify Stokes’ theorem for F= xyf - Zyz} —zxk where S is the open
surface of the rectangular parallelepiped formed by the planes x=0,x=1,y=0,y =2
and z = 3 above the XOY-plane. [AU Dec. 2007]
Solution Stokes’ theorem is given by

fcﬁazﬂscurll—lﬁds

ik
Here, curl E= i i i

ox dy oz

xy -2yz -zx

=2yf+zf+xlz .'.J(xydx—2yzdy—zxdz)—JJ(ny+z;+xlz)-ﬁds 1)
c
s

The open cuboid S is made up of the five facesx=0,x=1,y=0,y=2and z=3 and is
bounded by the rectangle OAC’'B lying on the XOY plane. LHS of (1) is

= J (xydx — 2yzdy — zxdz)

OAC'B 47
C A
= J xydx
OAC’B B o’
(since the boundary C lies on the XOY plane, z =0)

o >
= nydx+ J xydx + nydx+ nydx §B Y
04 AC’ C'B BO / fod
Along OA,y=0,dy=0

X
Along AC’, x=1,dx=0 )
Along C'B,y=2,dy=0 Fig. 20.14
Along BO, x=0,dx=0

0
J- xydx=0+0+J. xydx+0=ijdx
OAC’B v 1

(as along C’B, x varies from 1 to 0).
=-1 @)
RHS of (1) is

J.[(2yz—' +2j +xk) - ids = J:[ (2yi +zj + xk) - nds + J‘J‘ (2yi +zj + xk) - ids
S o'C'AB A’BOC
+ J.J. (2yi +zj + xk) - hids + J.J. (2yi +zj + xk) - hds
ABCOY COAB’
+ J-J- (2yi + 2] + xk) - ds
AOBC
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302 302 103
=J. J Zydydz—J. J. Zydydz—J- I zdzdx
0Jo 0Jo 0Jo
1p3 2 p1
—J. I zdzdx—J. I xdxdy
0Jo 0Jo

O

From (2) and (3), Stokes’ theorem is verified. Verified.

|DEI NN Verify the divergence theorem for F=x%+ z} + yzl; over the cube
formed by x =+1, y =+1, z= 1. [AU Dec. 2007, KU Nov. 2011]

Solution Gauss’ divergence theorem is

Hﬁ fids = ” (div F)do 1)

s v
LHSof (1)= J‘[xz ds + J-[;xz ds + ;“J;zds + yIL—zds + J.‘[yzds + ZJ.L—yzds =0 (2)
Rsof ()= [[[wivF)-do

v

= L[ 2x+y)dxdydz

161 p1
=J J. J 2x+y)dxdydz
-14-1d-1

1 61
=J J- 2ydydz=0 3)
-1Jd

From (2) and (3), Gauss’ divergence theorem is verified. Verified.

1NV Use Stokes’ theorem to evaluate [~ F-dr, where F = (sinx— y)z—' —cos xf

2 2
[KU Novw. 2011]

and C is the boundary of the triangle whose vertices are (0, 0), [E, Oj and (1, 1) .

Solution By Stokes’ theorem, we have | c F-dr= I s curl E-n-ds.

|~
QO =
QU =

1F= - =
e ox dy oz
sinx—y -—cosx 0
=(sin x + 1)k

.. the given line integral
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. oy
= Jj(l + sin x)dxdy (71 )
B|3,1
R 2
13 y=-x
=J. I(1+sin x)dxdy T
0 x==
2y 2
2
1 z
= .[ [x — cos x]iy dy
0 2
I'm my ny} Z > X
=| |Z-"L+cos=2|d 0(0, 0) y=0
J [ 272 2 Y 4 (g , o)
1
= {Ey v _sinﬂ] Fig. 20.15
2 4 T o
T 2
=—4—
4 r
J Far=2+ 2 Ans.
c 4 r
EXERCISE
1. State Green’s theorem in a plane.
2. Give the relation between a line integral and a surface integral.
3. State Gauss’ divergence theorem.
4. Deduce Green’s theorem in a plane from Stokes” theorem.
5. In Gauss’ divergence theorem, surface integral is equal to integral.
6

10.

11.

12.

EM_UnitVIIl_20.indd

CIf F =5xy1~'+2y}, evaluate jCﬁE where C is the part of the curve y = x

. The integral of E.d7 is

(i) line integral (ii) zero
(iii) surface integral (iv) one

. Using Green’s theorem, prove that the area enclosed by a simple closed curve C

is %J(xdy —ydx) .
3

between x =1 and x = 2.

CIf F=x% +xy} , evaluate |- F.dr along the straight line y = x from (0, 0) to

1, 1).

If C is a simple closed curve and 7 =xi + yj + zk , prove that [o7 dr=0.

Evaluate @ (yzdx + zxdy + xydz) where C is the circle given by x* + y? + 22 =1
c

and z=0.
Use the integral theorems to prove V- (V x F)=0.
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Line Integral, Surface Integral and Integral Theorems 20.29

13. Evaluate J.(xdy - ydx), where Cis the circle x* + y* = a*

14. Evaluate Jc F.dr where F = xyI-' + yz}' + zxk and Cisthe curve 7 =t + tzf +1%k,
varying from -1 to 1.

1. If a force F= 2x2y17 + 3xy} displaces a particle in the xy plane from (0, 0) to

(1, 4) along a curve y = 4x?, find the work done. (Ans. %J

2. Find the work done when a force F=(x>— ¥+ xX)i - (2xy + y)} moves a particle

from the origin to (1, 1) along a parabola y* = x. [Ans. %)

3. Verify Green'’s theorem in a plane with respect to c (x*dx + xydy), where C is
the boundary of the square formed by x=0, y=0,x=a,y=a. [AU Dec. 2009]

3
(Ans. a_]
2

4. Use Green’s theorem to evaluate | c (x> + xy)dx + (x> + yz)dy where C is the
square formed by the lines y = +1, x = +1. (Ans. 0)

5. Use divergence theorem to evaluate J.J.(yzzz7 + zxzf +22%k) - ids where S is the
closed surface bounded by the XOY—pfane and the upper half of the sphere x> +
y? + 2> = a* above this plane. (Ans. ma*)

6. Verify Stokes’ theorem for F=(x*+y - 4)i + 3xy} +(2xz +z2)k over the surface
of hemisphere x* + > + z2 = 16 above the XOY plane. (Ans. -167)

7. Use the divergence theorem to evaluate |, A-ds where A=x% + y3f +2°% and

5
S is the surface of the sphere x* = y* + 22 = 2%, [Ans. 1275m )

8. Use the divergence theorem to evaluate IJ. dydz + x*ydzdx + x*zdxdy where
s

S is the surface of the region bounded by the closed cylinder x* + y* = a?, (0 < z

4
<b)z=0andz=bh. (AnS.SEZb)

9. Using Green’s theorem, evaluate fc[(y—sin x)dx +cos xdy] where C is the

2
triangle bounded by y =0, x = %, y= 2 . {Ans. - ( 7r4+ 8 J]
b2 72

10. Evaluate | C[(xz+ y?)dx — 2xydy] where C is the rectangle bounded by y = 0,
x =0,y =0, x=a using Green’s theorem. (Ans. —2ab?)
11. Verify Stokes” theorem for F= y1—' + z} +xk , where S is the upper half surface of
the sphere x* + > + z = 1 and C is its boundary. (Ans. -m)

12. Verify Stokes’ theorem for F= ny + 3x} —z% where S is the upper half of the
sphere x* + > + 22 =9 and C is the boundary. (Ans. 9m)
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2
13. Find the area of x*+y*?=4*? using Green’s theorem. (Ans. 37:: j
14. Using Stokes’ theorem, evaluate [ (xydx + xy*dy) taking C to be a square with
vertices (1, 1), (-1, 1), (-1, -1) and (1, -1). (Ans. %)

15. Verify Gauss’ divergence theorem for F= yz—' + x} +2°k over the cylindrical
region 2+ y2 =9,z=0,z=6. (Ans. 1944m)
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Unit IX

Analytic Functions

Chapter 21: Complex Numbers
Chapter 22: Conformal Mapping
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Complex Numbers

fChapter Outline

Infroduction

Complex Numbers

Complex Function

Limit of a Function

Derivative

Analytic Function

Cauchy—Riemann Equations

Harmonic Function

Properties of Analytic Functions

Construction of Analytic Function [Milne=Thomson Method)

21.1 O INTRODUCTION

Quite often, it is believed that complex numbers arose from the need to solve
quadratic equations. In fact, contrary to this belief, these numbers arose from the
need to solve cubic equations. In the sixteenth century, Cardano was possibly the

first to introduce a++/-b, a complex number, in algebra. Later, in the eighteenth

century, Euler introduced the notation i for J-1 and visualized complex numbers as
points with rectangular coordinates, but he did not give a satisfactory foundation for
complex numbers. However, Euler defined the complex exponential and proved the
identity €' = (cos ¢ + i sin ), thereby establishing connection between trigonometric
and exponential functions through complex analysis.

We know that there is no square root of negative numbers among real numbers.

However, algebra itself and its applications require such an extension of the
concept of a number for which the extraction of the square root of a negative number
would be possible.
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21.4 Engineering Mathematics

We have repeatedly encountered the notion of extension of a number. Fractional
numbers are introduced to make it possible to divide one integral number by another,
negative numbers are introduced to make it possible to subtract a large number from
a smaller one and irrational numbers become necessary in order to describe the
result of measurement of the length of a segment in the case when the segment is
incommensurable with the chosen unit of length.

The square root of the number -1 is usually denoted by the letter i and numbers of
the form a + ib where 2 and b are ordinary real numbers known as complex numbers.

The necessity of considering complex numbers first arose in the sixteenth century
when several Italian mathematicians discovered the possibility of algebraic solutions
of third-degree equations.

The theoretical and applied values of complex numbers are far beyond the scope
of algebra. The theory of functions of a complex variable, which was much advanced
in the nineteenth century, proved to be a very valuable apparatus for the investigation
of almost all the divisions of theoretical physics, such, for instance, as the theory of
oscillations, hydrodynamics, the divisions of the theory of elementary particles, etc.

Many engineering problems may be treated and solved by methods involving
complex numbers and complex functions. There are two kinds of such problems.
The first of them consists of elementary problems for which some acquaintances
with complex numbers are sufficient. This includes many applications to electric
circuits or mechanical vibrating systems. The second kind consists of more advanced
problems for which we must be familiar with the theory of complex analytic functions.
Interesting problems in heat conduction, fluid flow and electrostatics belong to this
category.

21.2 O COMPLEX NUMBERS

A number of the form x + iy, where x and y are real numbers and i= \/j (iis
pronounced as iota) is called a complex number. x is called the real part of x + iy and
is written as Re(x + iy) and y is called the imaginary part and is written as Im(x + iy).

A pair of complex numbers x + iy and x — iy are said to be conjugates of each other.

Properties

(i) If xg + iy, = x, + iy, then x; — iy, = x, — iy,

(if) Two complex numbers x; +iy; and x, + iy, are said to be equal when Re(x; + iy;)
=Re(x, +iy,), i.e, x; = x, and Im(x; + 1y;) = Im(x, + iy,) i.e, y; =y,

(iii) Algebra of Complex Numbers
The arithmetic operations on complex numbers follow the usual rules of
elementary algebra of real numbers with the definition i = ~1. If z; = x; + iy
and z, = x, + iy, are any two complex numbers then we define the following
arithmetic operations.

Addition

Zy+ 2, = (X +iyp) + (X, +1y,) = (X, + x,) +i(y; + )
Subtraction

2= 2y = (¥ + i) = (X +iy,) = (X = X,) + (Y, — )
Multiplication

212, = (2 + 1y ) (% + 1Y) = (X120 = Y1,) + (XY, + Y1)
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Division Let z, # 0. Then

z iy (i) (G- i) | vty +i| TNy,
Zy,  Xy+iy, (Xt iy, ) (X, —iy,) x§+y§ x§+y§

i.e., sum, difference, product and quotient of any two complex numbers is itself
a complex number.

(iv) Every complex number x + iy can always be expressed in the form r(cos 6 +
i sin 0).
ie, re® (Exponential form).

> Note

(i) The number r=-+/x*+y? is called the module of x + iy and is written as

mod (x +iy) or |x +iyl. The angle @is called the amplitude or argument of
x + iy and is written as amp (x + iy) or arg(x + iy). Evidently, the amplitude 6
has an infinite number of values. The value of 6 which lies between - and
mis called the principal value of the amplitude.

(if) cos 6+ i sin O1is briefly written as cis 8 (pronounced as “sis 6')

(iii) If the conjugate of z=x +iy be z then

(@) Re(z)= %(z +7),Im(z) = %(z )

(b) Izl=+/(Re(2))>+ (Im(z))> =IZ|

(c) zz=IzP

d) z,+z,=z,+z
i| 2 = 25 50 2y

@) ziz,=2, 2,

) (2/2,)=2/2,,2,#0

(iv) De Moivre’s Theorem
(cos B+ i sin H)" = cos n6+i sin nO

21.3 O COMPLEX FUNCTION

Recall from calculus that a real function f defined on a set S of real numbers is a rule
that assigns to every x in S a real number f(x), called the value of f at x. Now in the
complex region, S is a set of complex numbers. A function f defined on S is a rule that
assigns to every z in S a complex number w, called the value of f at z.

We write w = f(z). Here, z varies in S and is called a complex variable. The set S is
called the domain of f.

If to each value of z, there corresponds one and only one value of w then w is
said to be a single-valued function of z; otherwise, it is a multi-valued function. For

1. . . . . .
example, w=— is a single-valued function and w = \/; is a multi-valued function
z

of z. The former is defined at all points of the z-plane except at z = 0 and the latter
assumes two values for each value of z except at z=0.
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21.6 Engineering Mathematics

> Note

(i) If z=x+1iy then f(z) = u + iv (a complex number).
(if) Since e¥ = cos y + i sin y, e = cos y — i sin y, the circular functions are
. eV —eV eV +e ¥
sin :T,cosy=7, and so on

e
.. circular functions of the complex variable z are given by sin z = —
i

iz —iz :
+ sinz . . .
cosz=———,tanz = with cosecz, secz and cot z as their respective
oS z

reciprocals.
(iii) Euler’s Theorem
e?=cosz+isinz
(iv) Hyperbolic Functions

X —X

If x be real or complex, % =sin hx (named hyperbolic sine of x)
ef+e ™ . .
————=cos hx (named hyperbolic cosine of x)

Also, we define,

sinhx e‘'—e”

tan hx = =
coshx e*+e¢™
1 ef+e ™
cot hx = =
tan hx e¥—e*
1 2
sec hx = =
coshx ¥+~
1 2
cosec hx =

sinhx ¢*—¢7*

(v) Relations between Hyperbolic and Circular Functions
sin ix =i sin hx
cos ix = cos hx
tan ix = i tan hx
(vi) cos h*x —sin h*x =1, sec h’x + tan h>x = 1
cot h?x — cosec h*x =1
(vii) sinh(x + y) = sin hx cos hy + cos hx sin hy
cos h(x + y) = cos hx cos hy + sinh x sinh y
tan hx £ tan hy

tan h(x £ y)= ———
anh(x+y) 1+ tan hx tan hy

(viii) sin h2x =2 sin hx cosh x
cos h2x = cos h2x + sin h®x =2 cos i2x —1=1+ 2 sin h®x
2 tan hx

tan 112x=—2
1+tan h°x
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(ix) sin h3x =3 sin hx + 4 sin h3x
cos h3x =4 cos hi®x — 3 cos hx

3 tan hx + tan h°x

tan h3x = >
1+3tanhx
sinhx+sinhy=Zsinhx+ycoshx_—y
) 2
sinhx—sinhy=2coshx+ysinh%
COth+COShy=2COth+yCOSh%
coshx—coshy=2sinhx;ysinh%

(xi) cos hx —sin h?x =1
(xii) Complex trigonometric functions satisfy the same identities as real
trigonometric functions.

sin(-z)=-sinz and cos(-z)=cosz
sin’z+cos’z=1

sin(z, + z,) = sin z, cos z, * cos z, sin z,
cos(z; £ z,) = COS z, COS z, F Sin z, sin z,

sin2z=2sinzcosz and cos2z=cos’z—sin’z

sinz =sin z
sin(z + 2nm) = sin z, n is any integer
cos(z + 2nm) = cos z, n is any integer
(xiii) Inverse Trigonometric and Hyperbolic Functions
Complex inverse trigonometric functions are defined by the following:

1

cos™' z=—ilog(z ++/z>+1)

1

sin~ z=—1log(iz + 1-2?%)

tan'z= —%log(l il 12] :ilog l tz

1-iz

1

sec 'z=cos™! (l) =—ilog| ———
z z

1
cot'z=tan! (—
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Complex inverse hyperbolic functions are defined by the following:
cosh™ z=log(z +/z° - 1), sinh ' z = log(z + 2> + 1)

1
tanh™ z =llog[i) z#+1
2 1-z

1 T
cosech 'z = sinh ™! [—j =log
z

21.4 O LIMIT OF A FUNCTION

A function f(z) is said to have the limit ‘0" as z approaches a point ‘a’, written
lim f(z)=b, if fis defined in a neighborhood of “a’ (except perhaps at ‘a” itself) and if
z—a

the values of f are close to ‘b’ for all z close to ‘a’, i.e., the number b is called the limit
of the function f(z) as z — 4, if the absolute value of the difference f(z) — b remains
less than any preassigned positive number € every time the absolute value of the
difference z — a for z # g, is less than some positive number 6 (dependent on €).

More briefly, the number b is the limit of the function f(z) as z — g, if the absolute
value If(z) - bl is arbitrarily small when |z - al is sufficiently small.

21.5 O DERIVATIVE

A function f(z) is said to be differentiable at a point z = z, if the limit
lim fzo+A2) - f(2))
Az—0 Az

point z = z, and is denoted by f”(z).
If we write z =z, + Az then

exists. This limit is then called the derivative of f(z) at the

f’(zo) — hm f(Z)_f(ZO)

z>2z, Z=2z,

21.6 O ANALYTIC FUNCTIONS

A function defined at a point z; is said to be analytic at z, if it has a derivative at z,
and at every point in some neighborhood of z. It is said to be analytic in a region R, if
itis analytic at every point of R. Analytic functions are otherwise named holomorphic
or regular functions.

A point at which a function f(z) is not analytic is called a singular point or
singularity of f(z).
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21.7 O CAUCHY-RIEMANN EQUATIONS

The necessary condition for the function f(z) = u(x, y) + iv(x, y) to be analytic at the

ou du dv v
point z =x + iy of a domain R is that the partial derivatives — and — must

ox 8 "ox dy
exist and satisfy the Cauchy-Riemann equations, namely,

qu _ av Ju_ dv
ox ay ay Cox
The sufficient condition for the function f(z) = u(x, y) + iv(x, y) to be analytic at the

point z = x + iy of a domain R is that the four partial derivatives u,, u,, v, and v, exist,
are continuous and satisfy the Cauchy-Riemann equations u, =v, and u, =-v, at each

point of R.
> Note
(i) The two partial differential equations du_dv and Ju__ % are called
ox dy dy  ox
the Cauchy-Riemann equations and they may be written as u, = v, and u,
= _vx
(ii) The Cauchy—Riemann equations are referred as C-R equations
ou _19dv dv _ 1du
iii) C-R tions i lar f —=——and —=——.
(iii) equations in polar form are > 7938 an > pEY:

21.8 O HARMONIC FUNCTION

A real function of two variables x and y that possesses continuous second-order
partial derivatives and satisfies the Laplace equation is called a harmonic function.

If u and v are harmonic functions such that u + iv is analytic then each is called the
conjugate harmonic function of the other.

> Note
? 9
(i) FY EE 7 is called the Laplacian operator and is denoted by V2.
bt Yy
>
(if) pY +— =0 is known as Laplace equation in two dimensions.
X~ dy

21.9 O PROPERTIES OF ANALYTIC FUNCTIONS

Property 1

The real and imaginary parts of an analytic function f(z) = u + iv satisfy the Laplace
equation in two dimensions.

e Proof
Since f(z) = u + iv is an analytic function, it satisfies C-R equations,
du _dv

ie., —=— and 21.1
ie ox oy an (21.1)
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21.10 Engineering Mathematics
du__ov (21.2)
dy  ox
Differentiating both sides of (21.1) partially with respect to x, we get
u _ 9%v
— = 21.3
x> Oxdy (21.3)
Differentiating both sides of (21.2) partially with respect to y, we get
2. 32
Ju_9v (21.4)
dy dyox
By adding (21.3) and (21.4), we get
2 2 2 2
8_121 + a_u =0 (since Jv = a—v, when they are continuous)
ox* oy’ dxdy  Jdyox

= u satisfies Laplace equation.
Now differentiating both sides of (21.1) partially with respect to y, we get

2 2
ou _9Jw (21.5)
oxdy  Jy?
Differentiating both sides of (21.2) partially with respect to x we get
o’u 0%
=—— 21.6
dyox x> (21.6)

Subtracting (21.5) and (21.6),

Fu_ Pu_d o

oxdy dyox Jy* ox>
P v _
o oy’

.. v satisfies Laplace equation.

Hence, if f(z) is analytic then both real and imaginary parts satisfy Laplace’s equation.

0

ie.,

> Note

If f(z) = u + iv is analytic then u and v are harmonic. Conversely, when u and v are
any two harmonic functions then f(z) = u + iv need not be analytic.

Property 2

If f(z) = u + iv is an analytic function then the curves of the family u(x, y) = C; cut
orthogonally the curves of the family v(x, y) = C, where C; and C, are constants.

e Proof

Given u(x, y) =C,
Taking differentials on both sides, we get

du=0

Jou ou
ie., —dx+—dy=0
ie o X oy y
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(5]
Cdy_ \ox
“dx (ou

o)

From the second curve v(x, y) = C,, we get dy =—

=m, (say), where m, is the slope of the curve u(x, y) = C; at (x, y)

(o)

=m,, where m, is the slope

of the curve v(x, y) = C, at (x, y). x (gvj
Y
(5) (&)
NOVV, mlmz = a_x . ax
EANED
dy ) \ 9y

&) ()

= _(al) . 5
ox/) | dy
= mym, =-1

Hence, the curves cut each other orthogonally.
Here, the two families are said to be orthogonal trajectories of each other.

(as f(z) is analytic, it satisfies C-R equation)

21.10 O CONSTRUCTION OF ANALYTIC FUNCTIONS
(MILNE-THOMSON METHOD)

To find f(z) when u is given

ou .ov
We k that f'(z)=—+i—.
e know that f’(z) o +1ax
ie F=2%_i% By CR equations) (21.7)
o ox  dy Y 91 ’
au(x, y)
Let oy =¢,(x, y) and then calculate ¢,(z, 0) (21.8)
du(x, y)
and 3y =¢,(x, y) and then calculate ¢,(z, 0) (21.9)

Substituting (21.8) and (21.9) in (21.7), we get

f'(2) = ¢1(z, 0) - igs(z, 0)
Integrating, we get [f1(z)dz = [¢,(z, 0)dz — i [¢,(z, 0)dz
ie., f(z) =19,(z, 0)dz — il p(z, 0)dz.

To find f(z) when v is given

We know that f'(z) = g_u + ia—
X X
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21.12 Engineering Mathematics
ov .dv
=—4+i— 21.10
ay o ox ( )
Let W& Y) _ 4 (2, 0) @1.11)
dy
and Bv(ax, Y _ (2,0 (21.12)
x

Substituting (21.11) and (21.12) in (21.10), we get

f'(2) = ¢1(z, 0) +igy(z, 0)
Integrating, we get [f"(z)dz = |¢,(z, 0)dz + i[,(z, 0)dz

ie., f(2) =19,(z, 0)dz + il p(z, 0)dz

21.11 QO APPLICATIONS

Irrotational Flows

A flow in which the fluid particles do not rotate about their own axes while flowing
is said to be irrotational.
Let there be an irrotational motion so that the velocity potential ¢ exists such that

-3¢ —0¢
299 ,_9¢ 21.13
T ay ( )

In two-dimensional flow, the stream function y always exists such that

-y oy
W Y 21.14
! dy O o ( )
From (21.13) and (21.14), we have
99 _oy 499 _—oy (21.15)

ox 9y dy  ox

which are the well-known Cauchy-Riemann equations. Hence, ¢ + iy is an analytic
function of z = x + iyy. Moreover, ¢ and y are known as conjugate functions.
On multiplying and rewriting, (21.15) gives

99y 99 dy _, (21.16)
ox dx dy 9y
showing that the families of curves given by ¢ = constant and y = constant intersect
orthogonally. Thus, the curves of equi-velocity potential and the stream lines intersect

orthogonally.
Differentiating the equation given in (21.15) with respect to x and y respectively, we

% Dy 4 3’9 -y

90 99 _ , 21.17
8 a2 oxdy o dy*>  dxdy ( )
Since Iy :82_1// (21.17) gives
oxdy odyox 8
2 2
99,99 (21.18)

ox* oy’ -
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Again differentiating Eq. (21.15) with respect to y and x respectively, we get

2 2 2 2
9°¢ =B_l/land 0°¢ =—a|//
dyox oy’ oxdy  ox?

2 2
Subtracting these, v + v =0 (21.19)
8 an?  oy?

Equations (21.18) and (21.19) show that ¢ and y satisfy Laplace’s equation when a
two-dimensional irrotational motion is considered.
Complex Potential

Let w = ¢ + iy be taken as a function of x + iy
Thus, suppose that w = f(z)

ie. o+ iy=fix=iy) (21.20)
Differentiating (21.20) with respect to x and y respectively, we get
90 iV _ pxriy)
ox  ox (21.21)
and 90 i i e tiy)
dy 9y
or 9 9V _ i(a—"’ + ’a—"’] by (21.22)
ay  dy ox  ox

Equating real and imaginary parts, we get

99 _ Y a0 0V
ox 9y dy  ox

which are C-R equations. Then w is an analytic function of z and w is known as the
complex potential.

Conversely, if w is an analytic function of z then its real part is the velocity potential
and imaginary part is the stream function of an irrotational two-dimensional motion.
The curves ¢(x, y) = a and y(x, y) = b are called equipotential lines and stream lines
respectively.

In the study of electrostatics and gravitational fields, the curves ¢(x, y) = a and
W(x, y) = b are respectively called equipotential lines and lines of force.

In heat-flow problems, the curves ¢(x, y) =a and y(x, y) = b are respectively called
isothermals and heat-flow lines.

SOLVED EXAMPLES

1ENNIENI  Prove that the function f(z) = |z1? is differentiable only at the origin.

Solution Given f(z) = 1z12

ie., u+iv=Ilx+iy? =[Jx*+y* P (asz=x+1iy and f(z) = u + iv)

:x2+y2
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21.14 Engineering Mathematics
= u=x>+1y?

B_M =2x, 8_14 =2y

ox dy

v=0

w0y,

ox ay
If f(z) is differentiable then

u_d

ox dy
= 2x=0 = x=0
Also, ou = %

dy  ox
= 2y=0 = y=0
. C-R equations are satisfied only whenx =0, y=0
Hence, f(z) = |z1? is differentiable only at the origin (0, 0). Proved.

iDely (WA Prove that the function f(z) = zz is not analytic except at z=0.

Solution Given f(z) = zz

ie., u+iv=(x+iy)(x —iy)
u+iv=x>+y

Equating real and imaginary parts.

u=x*+1?
ou Ju
Lo, Z o2
- ox xay 4
v=0
v dv
= —=0,—=0
ox ay

a—uia—vanda—u;t %
dx  dy dy  ox

= C-R equations are not satisfied
. flz) = zz is not analytic except at z=0. Proved.

|DEy (M Show that (i) an analytic function with a constant real part is a
constant, and (ii) an analytic function with a constant modulus is also a constant.
[KU Nov. 2010, April 2012; AU Nov. 2010, Nov. 2011]

Solution Let f(z) = u + iv be an analytic function.
(i) Letu =C; (a constant)

u ou
Then —=u_=0 and —=u,=0.
ox gy Y
Since f(z) is an analytic function, by C-R equations u, = v, and u, = -0,
= v,=0and v, =0.
Aswv,=0and v, =0, v must be independent of x and y and must be a constant C,.

-~ flz) =u+iv=_C; +iC, which is a constant.
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(if) Let f{z) = u + iv be an analytic function.

Given | f(z)l=+/u*+v* =k (a constant)

Differentiating partially with respect to x and y, we get
au v

2u—+20v—=0
”ax+ Uax

and 2ua—u+2vﬁ=0
dy  dy

Since f(z) is an analytic function, it satisfies C-R equations.
.. the above two equations may be written as,

Ju ou

90

P ay
and va—u + ua—u =0

ox  dy
. Ju ou
By solving, we get = =u,=0 and @ =u,= 0.
By C-R equations, it implies that B_v =v.=0 and B_v_ v =0
y q 4 p ax X ay Y :

Thus, f(z) = u + iv is a constant. Proved.

2 2

IDeny (W [ff(z)isaregularfunctionofz, provethat [aa_z + :—z]l fz)P=41f"(2)*.
x Yy
[AU May 2006, KU Now. 2011, KU April 2013]

Solution Let f(z) = u(x, y) + iv(x, y)
Then If(z)1?=u?+v*and If’(z)1% = u§+v§

To prove i+i (u? +0?) = 4@ + v%)
p axZ ayZ X x
2
Now, %(u2)=2uux and aa?(uz)zi(Zuux)

=2[uny, +u ] =2un,, + ui ]
2

Similarly, ;7012) = 2[uuw + u;]

? P
—5 = ()= 2ufu 1+ 2]+ ur ]

ox* oy’
=20’ + u;] (since u,, + u,, =0) 1)
2
Again, a—z(vz) =2[vo,, + vi]
ox
’ 5 2
and a—yz(v )=2[vvw+vy]
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21.16 Engineering Mathematics
9 9’ 2 2, .2
[y +W (v°)=20(v,, + ‘UW) +2(v; + vy)

=20} + U;) (since v,, +0,, =0) )
Adding (1) and (2), we get

? 9
+— (u2+vz)=2[u§+u§+vz+v§]

oy
=20 + 0+ 02 + ] (by using C-R equations) = 4[u; +v2].
Hence i + 9 L f(z)P=41f"(z)1 Proved
’ ox* oy’ i
? 9
IDEH TN Show that if f(z) is a regular function of z then W + 37 loglf(z)!
x Yy
=0. [AU May 2012]

Solution Loglf(z)l= %log If(z)l2 = % log (U2 +0?)

9 1
gloglf(z)l—ali

2uu, +20-0, _ Ul + 00,
u?+v? w?+ 02

(* + 02)(uuxx + ui + 00, + vi) = (uu, +vv,)(2uu, +20v,)

aZ
yloglf(z)lz

u*+0%)?
1! 00, 4124 0]~ (un+ 00, 1
_u2+vz[uux v, Fu;+0;] (u2+v2)2(uux vv,) (1)
Similarly,
0* 1 2, 2 2 2
Wloglf(z)l= B [uuw+vvyy+uy+vy]—m(uuy+vvy) (2)

2 2

Adding (1) and (2), we get — 8_2+8_2 loglfiz)l
ox~  dy

_2
(u2 + 02)2

2

1
= 1y [u(u,, + uW) +0(v,, + v

2,2, 2, .2
W)+ux+vx+uy+z;y]

[(uu, +vv,)* + (uu, + vvy)z]
= ﬁ[z(%ﬁ + U,Zc)] - ﬁ[(uux +oo, )2+ (~uv, + vux)z]
_2wi+0d)

u?+v° W +v

2,2, .2 2,2, .2
2)2 [u(u+vy) + 07 (u; +v;)]
_20p+0y) 203 +0%) (g +0p)

u? + v? (u2 + 02)2

=0 Proved.
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|DEy I Show that the function u= 1 log(x* +
its conjugate. Also find f(z). 2

Solution Given u= % log(x + %)

21.17

?) is harmonic and determine
[KU May 2010, KU April 2013]

Qu__x ou__y
o x2+y? oy KP4yt
82_u (Pry?)-22r PP 82 (x +y) -2y -y’
0w (PP @rP (PP Py
82_u+82_u_ Y222 . 2P _yz—x +x2 -y o
axz ayZ (x2+y2)2 (x2+y2)2 (x2+y2)2
Hence, u satisfies Laplace’s equation.
. u is harmonic.
To find conjugate of u
9 ad
We know that do=""dx —Udy
ox dy
—ou ou
=——dx+—d
ay e
—y x
= dx + d
e e y
_xdy-ydx  xdy-ydx 1
N 2 2
( y9) 1+ (1)
x
1 Y
)
1+ (1)
x
J‘d _J‘ d(y/x)
1+ (y/x)?
ie., v=tan™ (1)
x
.. the required analytic function is f(z) = u + iv
=%log (*+y*)+itan™ (%)
ie., flz)=log z Ans.

If u(x, y) = e"(x cos y — y sin y), find f(z) so that f(z) is analytic.

Solution Given u =¢*(x cos y —y sin y)

d
e =52

¢,(z,0)=ze* +¢*

EM_UnitIX_21.indd 17
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21.18 Engineering Mathematics

0,(x, ) =B_u= —xe*sin y —e*(sin y + y cos y)

$,(z,0)= 0 2
By Milne-Thomson method,
f(2) = ¢:1(z, 0) = igy(z, 0)
=zef+e"+0
=eé¥(z+1)
f(z) = le*(z + 1)dz
=ze—e*+e"+C
ie., flz)=ze*+C Ans.

sin 2x

Example 8 Find the analytic function f(z) =u + iv given that u + v = ———————.
cosh 2y — cos 2x

[AU May 2006]
Solution Given u +iv=£(z) 1)
iu—-v=1if(z) 2)

Addmg (1) and (2), we get

(u—v) +i(u+0)=(1+0f(z)
Letu—-v=1U,
u+v=V and F(z)=(1+1i)f(z)
dV _ (cos h2y—cos2x)2 cos2x —sin 2x -2 sin 2x

ox (cosh 2y — cos 2x)?

000, 9) = 2

_ 2cos 2x cosh 2y — 2(cos? 2x + sin” 2x)

(cos h2y — cos 2x)?
_ 2cos2xcosh2y—2

(COS h2y — cos 2x)*

—sin 2x(2sin h2
b(x,y)= 2= N 2X2In12))
9y (cosh2y —cos2x)
_ —2sinh 2y sin 2x

(cos h2y — cos 2x)?
By Milne-Thomson method, we have

F'(z)= ¢1(Zr 0)+ i¢2(zr 0)

2(cos2z-1
¢,(z,0) =(—2)
(1-cos 2z)
¢,(z,0)=0
and F(z)= 2(cos 2z-1)
(1 cos 2z)
B -2 iy -1
" 1-cos2z 1-cos2z
2
=i __2 =—i cosec’z
sin”z
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f(2)= —#jcoseczz dz
i

i+ 1
ie., f(2)= chot z+C Ans.

(eI Find the analytic function fz) =u + v if u+v=— al > and f(1)=1.
X +y

[AU Now. 2010]

Solution Given u +iv = f(z) (1)
iu—v=if(z) 2
Adding (1) and (2), we get
(u—v)+i(u+v)=(1+i)f(z)

ie., U+iV=F(z) 3)
where U=u—v,V=u+v=%,F(z)=(1+i)f(z) 4)
X4y

x
V=
2+
_oV _ 2wy
¢ (x, y)= y (x2+y2)2
¢I(Z/ O):O (5)
_a_v_ yZ_XZ
¢, (x, y) = x (x2+y2)2
—z? 1
/0 =0 =7
N (6)

By Milne’s method, we have
F'(z)=¢,(z,0) +i¢,(z,0)

Co-id
z

F(z)z—ijzizdz

{3

F(z)= é +C @)

But F(z) = (1 +1i) f(z) [from (4) and (8)]
From (7) and (8), we get

(1+i)f(z)=§+C

i C
f@=Tan 1+
=&+Cl,wherecl=i,
A+)(1-i)z 1+
1+i
=—+C
f(2) 22 1
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21.20 Engineering Mathematics

Givenf(1)=1

ie., f(1)=%+C1=1
= Clzl_w
2
1-i
)
O Ans.
z
? 0*
Show that | ~—+—— [=4=—. [AU Nov. 2010]
ax°  dy 020z
Solution
Let z=x+1iy 1)
zZ =x-1iy )
From (1) and (2), we get
x_z+E —Z_E—_—i(z—f)
"2 VT T
ox 1 ox 1
N 7 — =T, ===
o dz 2 09z 2
y _-ioy i
oz 20z 2
d ddx 9 9y
Now, =t 3
ow oz axaz+ay oz ©)
_1f9 ;9
2{ox oy
9 _0 ox 9ddy
dz dx dz dydz @)
2{ox 9y
o __1@ &
8285_4 I ayz
2 2 2
= 8_2+8_2 =4 8_ Proved.
ox ay 020z

2 2
If f(z) = u + iv is analytic, prove that [;—2 + aa—z] loglf’(z)1 =0.
x
Y [AU Nov. 2010]

. 9° 0 9?
Solution We know that | —+— |=4——
o2 ayz 0z0z
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g 020z

* 0?
[ +$Jlog|f’(z)|=4 5 log | f'(2)!

91 .
=4 = -Elog [ f(2)!
92 , ,—
= Zazaz log[f'(2) f'(2)]
9° _
=2-"—[log f'(2) +log f'2)]
oz f(2) Proved.

Example 12 [RIGTESSRSVEE Y RIS 5 Y 5, prove that both u and v satisfy Laplace’s
x

ty
equation but that u + iv is not a regular function of z. [KU Nov. 2011]
Solution Given u = x> — 1/
u o%u du o%u
Then gzux:Zx;87:uxx=2;$=uy=—2y;a—2=uw=—2
ox* oy’
i.e., u satisfies Laplace’s equation.
Yy
v=-—
x4+ y?
2, 02N o pea 2 2y
Then 8_020: 2xy o = (X" +y7) —x-2(x"+y°)-2x
PRI 2+
_2y(y* - 3x%)
(*+y%)°
a_v_v _ (x2+y2)'1_2y2 _ yz_xz
G @ +y") (@ +y?)?
9% (@ +y")* 2y - (y? - x")2(x* + y*)2y
52 Yy 2 2\
%y (+y7)
_ 2y’ -y
(+y?)>°
2 2
9_2 N B_Z 0
ox~  dy
i.e., v satisfies Laplace’s equation.
Now, u, # v, and u, # -0,
i.e,, C-R equations are not satisfied by u and .
Hence, u + iv is not an analytic (regular) function of z. Ans.
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PEVNIENEN Show that the function u(x, y) = 3x% + x* — y° — * is a harmonic
function. Find a function v(x, y) such that u + v is an analytic function.

[AU June 2010]

Solution Let f(z) = u + iv be an analytic function with u(x, y) = 3x*y + x> — > — 2

B_M %u

Then o =ux=6xy+2x;§=um=6y+2;
ou 2 2 . azu
$:”y23x -3y —Zy,ay—zzuw:—6y—2
2 2
. 8_1; + 8_124 =0, hence, u(x, y) is a harmonic function.
ox~  dy
v v —ou Ju
dv=$~dx+$~dy:$dx+gdy=—uydx+uxdy
- dv=(=3x>+2y +3y?)dx + (6xy + 2x)dy where the RHS is a perfect differential equation.
u ou
dv=—|—dx+ | —d
¢ dy Tl

=—[(8x* - 3y* - 2y)dx + [ (6xy + 2x)dy

v=CBxy*+2xy - x>+ C
flz)=u +iv=3x2y+x2—y3—y2+i(3xy2+2xy—x3+C)
= —i[x® + 3x%(iy) + 3xi*y? + Py°] + [ + 2xiy + iPy*] + iC
=—i[x +iy]® + [x + iy]* + iC
fiz) =iz + 22 +iC Ans.

EXERCISE

. Define analytic function of a complex variable.

. State any two properties of an analytic function.

Define a harmonic function with an example.

. Verify whether the function ¢(x, y) = ¢* sin y is harmonic or not.

. Find the constant ‘a’ so that u(x, y) = ax> — y* + xy is harmonic.

Is f(z) = 2% analytic? Justify.

What do you mean by a conjugate harmonic function? Find the conjugate
harmonic of x.

. Show that an analytic function with a constant real part is constant.

9. Write down the necessary condition for w = f(z) = f(re'%) to be analytic.

NONU W=

o

10. Show that the function u =tan™! (l) is harmonic.
X

11. Show that xy* cannot be the real part of an analytic function.
12. f(z) = u +iv is such that u and v are harmonic. Is f(z) analytic always? Justify.
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13.
14.
15.

16.
17.

18.
19.

20.

Complex Numbers 21.23

State C-R equations in Cartesian coordinates.

Prove that u = 3x%y + 2x* — > — 2* is a harmonic function.

Show that the function f(z) = (x> — 3xy?) + i(3x%y — °) satisfies Cauchy-Riemann
equations.

Show that the real part u of an analytic function satisfies the equation V2u = 0.

N .
Check whether the function — is analytic or not.
z

Test the analyticity of the function 2xy + i(x* — y?).

State the basic difference between the limit of a function of a real variable and

that of a complex variable.

Find the analytic function f(z) = u + iv, given that (i) u = y* — x%, (ii) v = sin hx sin y,
X

Pyt

and (iii) u=

1.

W

Prove that the following functions are not differentiable (and, hence, not
analytic) at the origin.

FPyy-i)
Q) f=1 +y?

0, z=0

xyz(x+iy) 2%0
(i) f(2)=3 x*+y> '

0, z=0

Prove that for the following function, C-R equations are satisfied at the origin
but f(z) is not analytic there.

3 N3
1+ -y’ (1 1){27&

0
fz)= Pyt
0, z=0
. Show that f(z) =sin z is not an analytic function of z.
. Find whether the Cauchy-Riemann equations are satisfied for the following
functions where w = f(z).
(i) w=2xy+i(x*-y?) (Ans. No)
(i) w= J;_ lyz (Ans. No)
x“+y
(iil) w=x*—y*-2xy +i(x* - y* + 2xy) (Ans. Yes)
(iv) w=cos x sin hy (Ans. Yes)
(v) w=2z%-27? (Ans. Yes)
. Show that an analytic function with a constant imaginary part is constant.
. Show that u+iv= xf—zy, where a #0, is not an analytic function of z = x + iy
x—iy+a

whereas u — iv is such a function.
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7. Find an analytic function w = u + iv whose real part is given by

() u=e{(x*>—-y? cosy +2xy sin y} [Ans. e™(x — iy)* (cos y — i sin y]
(i) u=—— (Ans.l+C)
X +y z
(iii) u=e*(x cosy—ysiny) (Ans. ze* + C)
(iv) u=x*-6x2y>+y* (Ans. z*+ Q)
(v) u=-sinx sin hy (Ans. —i cos z +iC)
8. Find an analytic function w = u + iv whose imaginary part is given by
(i) v=e€*(x cosy+ysiny) (Ans. ize* + C)
(ii) v=-2sinx(e¥-e7) (Ans.log z+C)
_ sinxsinhy 1+secz
() o= cos 2x + cos h2y (Ans. T
(iv) v=x?—y*+2xy-3x -2y [Ans. 2% - 2z + i(z% - 32)]
(v) v=x"=3x%+2x+1+y°-3x° [Ans. (i—1)z° + 2z + C]
9. Show that the following functions are harmonic and find their harmonic
conjugates.
(i) u=cosx coshy (Ans. —sin x sin iy + C)
(if) u=e"(cosy—siny) (Ans. Not harmonic)
(ifi) u=e>(ycosy—xsiny) (Ans. ¢*(x cos y +y sin y) + C)
(iv) u=e‘cosy (Ans. ¢*siny + C)
(v) u=2xy+3xy*-2y° (Ans. Not harmonic)
v . .
10. Find flz)=u+1v,if u—v =M, given that f(ﬁ) _3°1 .
cos hy —cos x 2 2

{AnS- e =cor( 2+ (%ﬂ

11. Find f(z) = u + iv if 2u — 3v = 3y* - 2xy — 3x* + 3y — x and f(0) = 0.
(Ans. f(z) = iz* ~ 2)

82 82
12. If f(z) = u + iv is a regular function of z, then show that (a—z'*‘a—zj'f(z)'p:
x Y
P @)P.

13 If u 2sin 2x

T 2y , find f(z) such that f(z) is analytic.
¢ire-2cosax (Ans. f(z)=cotz + ()

X
2 2

X"ty

incompressible fluid flow. Also find the corresponding stream function and

14. Show that ¢=x"-y*+ can represent the velocity potential in an

1 .
complex potential. Ans.y =2xy— xzfyz +C; f(2)= 22+ ;+ iC
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Conformal Transformation

Conformal Mapping by Elementary Transformations
Some Standard Transformations

Bilinear Transformation

22.1 QO INTRODUCTION

Many physical problems involving ideal fluid flow, steady-state heat flow,
electrostatics, magnetism, current flow etc., can be solved using conformal mapping
techniques. These problems generally involve Laplacian in three-dimensional
coordinates and also divergence and are of three-dimensional vector functions.

Geometrical Representation

To draw the curve of a complex variable (x, iy), we take two axes, i.e., the first one is
the real axis and the other is the imaginary axis. A number of points (x, y) are plotted
on the z-plane, by taking different values of z (different values of x and y). The curve
C is drawn by joining the plotted points. The diagram obtained is called an Argand
diagram.
Letw=f(z) =f(x +iy)=u +iv.

To draw a curve of w, we take the u-axis and v-axis. By plotting different points
(1, v) on the w-plane and joining them, we get a curve C on the w-plane.

Transformation

For every point (x, y) in the z-plane, the relation w = f(z) defines a corresponding
point (1, v) in the w-plane. We call this transformation or mapping of z-plane into
w-plane. If a point z; maps into the point w,, w, is also known as the image of z,.
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If the point P(x, y) moves along the curve C in the z-plane, the point P’(u, v) will
move along a corresponding curve C; in the w-plane. We then say that a curve C in
the z-plane is mapped into the corresponding curve C; in the w-plane by the relation

w =f(z).
YA VA
C2 C2*
14 Y *
o G Wo ¢
> X > 1y
z-plane w-plane

Fig. 22.1

22.2 O CONFORMAL TRANSFORMATION (OR CONFORMAL MAPPING)

A mapping w = f(z) is said to be conformal if the angle between any two smooth
curves C;, G, in the z-plane intersecting at the point z; is equal in magnitude and sense

to the angle between their images CI , C; in the w-plane at the point w, = f(z).

Thus, conformal mapping preserves angles both in magnitude and sense (which
is also known as conformal mapping of the first kind). If only the magnitude of the
angle is preserved, then the mapping is known as isogonal mapping (or conformal
mapping of the second kind).

Conformal mapping is used to map complicated regions conformally onto
simpler, standard regions such as circular disks, half-planes and strips for which the
boundary-value problems are easier.

Given two mutually orthogonal one-parameter family of curves, say ¢(x, y) =
C; and ¢(x, y) = C,. Their image curves in the w-plane ¢(u, v) = C5 and @(u, v) = C,
under a conformal mapping are also mutually orthogonal. Thus, conformal mapping
preserves the property of mutual orthogonality of a system of curves in the plane.

> Note

(i) Critical point of a function w = f(z) is a point z,, where f’(z;) # 0.
(if) A mapping w = f(z) is conformal at each point z, where f(z) is analytic and

f(z9)#0

(iif) An analytic function f(z) is conformal everywhere except at its critical points
where f’(z) #0.

(iv) Solutions of Laplace’s equation are invariant under conformal
transformation.

(v) Conjugate functions remain conjugate functions after conformal
transformation. This is the main reason for the great importance of
conformal transformations in applications.
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22.3 O CONFORMAL MAPPING BY ELEMENTARY TRANSFORMATIONS

General linear transformation, or simply transformation, is defined by the function

w=fz)=az+b (22.1)
where a#0 and b are arbitrary complex constants. The function maps conformally the
extended complex z-plane onto the extended w-plane, since this function is analytic
and f’(z) =a #0 for any z. If 1 =0 (22.1) reduces to a constant function.

22.4 O SOME STANDARD TRANSFORMATIONS

Translation

The transformation w = z + ¢, where c is a complex constant, represents a translation.
Consider the transformation w = z + ¢, where ¢ = a + ib.

ie., u+iv=(x+iy)+ (a+ib)
= u=x+a and v=y+b
ie., x=u-a and y=v-0b

On substituting the values of x and y in the equation of the curve to be transformed,
we get the equation of the image in the w-plane.

The point P(x, y) in the z-plane is mapped onto the point P'(x + a, y + b) in the
w-plane. Similarly, other points of the z-plane are mapped onto the w-plane. Thus, if
the w-plane is superposed on the z-plane, the figure of the w-plane is shifted through

a vector c.
In other words, the transformation is a mere translation of the axes.
YA VA
D’ C’
D C D C
i i VE B
A B A B
> X > U
(0] (0]
z-plane w-plane
Fig. 22.2
Magnification and Rotation
Consider the transformation w = cz (22.2)
where ¢, z, w are all complex numbers.
Let z = re'®, w=Re', ¢ = ae'®
Substituting these values in (22.2), we have
Re™ = (ae™)(re'® = ar 0+ @
ie., R=ar and ¢=0+«
Thus, we see that the transformation w = cz corresponds to a rotation together with
magnification.

Algebraically, w=cz or u+iv=(a+ib)(x+iy)
u+iv=ax — by + i(ay + bx)
= u=ax-by and v=ay+bx.
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On solving these equations, we can get the values of x and y.

e x_au+bvl _ —bu+av
o u2+b21y >+ b2
YA
D C
A B
> X
(0]
z-plane
Fig. 22.3

VA

D/

A C
Dr""'.C
I
A B

> u
0
w-plane

On putting the values of x and y in the equation of the curve to be transformed, we

get the equation of the image.

Inversion and Reflection

. . 1
Consider the transformation w=—
z

z=re and w=Re?
Substituting these values in (22.3), we get

i 1 1

i _ T
Re =—0=—¢
re r

0

= R=1 and ¢=-6
r

Thus, the point P(r, ) in the z-plane is
mapped onto the point P'(l, —6] in the
r

w-plane. Hence, the transformation is an
inversion of z followed by reflection into
the real axis. The points inside the unit
circle IzI = 1 map onto points outside
it, and points outside the unit circle into
points inside it.

. . 1
Now consider the transformation w=—orz=—.

Z

ie. x+iy= -
’ u+iv

u—1iv

[KU April 2012]

(22.3)

Fig.22.4

1
w

u—iv

+1iy

Cwtin)u-iv)  u+0?

~N =

Y
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oM Y= -0
W02 w4 0P
Let the circle a(x* +y*) +bx +cy +d =0 (22.4)

be in the z-plane.
If a # 0, (22.4) represents a circle and if a = 0, it represents a straight line.
On substituting the values of x and y in (22.4), we get
a bu cv
+ - +d=0
ot ot P+ o?
= dw?+v*) +bu—-co+a=0 (22.5)
If d # 0 Eq. (22.5) represents a circle and if d = 0 it represents a straight line.
The various cases are discussed as follows:

® Whena=0,d=0

. 1 . . L
The transformation w=— transforms circles not passing through the origin into
z

circles not passing through the origin.

® Whena=0,d=0

. 1 . . L.
The transformation w =— transforms circles passing through the origin in the z-plane
z

and maps into the straight lines not passing through the origin in the w-plane.

® When a=0,d-0

. 1 . o .
The transformation w =— transforms straight lines in the z-plane not passing through
z

the origin into circles through the origin in the w-plane.
e When a=0,d=0

. 1 . . L.
The transformation w =— transforms straight lines through the origin in the z-plane

z
into straight lines through the origin in the w-plane.

22.5 0O BILINEAR TRANSFORMATION (OR MOBIUS

TRANSFORMATION)
. az+b
The transformation w = f(z)=—— (22.8)
cz+d
where g, b, ¢, d are complex or real constants subject to ad — bc # 0 is known as bilinear
transformation.

Differentiating (22.8), we get
dw _(cz+d)a—(az+Db)c

dz (cz +d)?
_ad-bc
(cz+d)*
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If ad — bc #0 then lZl_w #0 for any z and, therefore, bilinear transformation is conformal
Z

for all z, i.e., it maps the z-plane conformally onto the w-plane

If ad — bc = 0 then lz—w =0 for any z. Then every point of the z-plane is critical and
z

the function is not conformal.
From (22.8), we get w(cz+d)=az +b,
ie., cwz+dw—-az-b=0 (22.9)
Equation (22.9)islinearinzand linearin w or bilinear in zand w. Bilinear transformation
is also known as linear fractional transformation or Mobius transformation.
For a choice of the constants 4, b, ¢, d, we get special cases of bilinear transformation
as
(i) w=z+b (Translation)
(i) w = az (Rotation)
(iii) w =az + b (Linear transformation)

. 1 L o
(iv) w=— (Inversion in the unit circle)
z

Thus, bilinear transformation can be considered as a combination of these
transformations.

Fixed Points (or Invariant Points)

Fixed (or invariant) points of a function w = f(z) are points which are mapped onto
themselves, i.e., w=f(z) = z.

o Example
w = z has every point as a fixed point.
w =z infinitely many.
1
w =— has two.
z

w =z + b has no fixed point.
az+b

=z
cz+d

. . s . az+b .
The fixed points of the bilinear transformation w = 7 are given by
cz+

As this is quadratic in z, we will get two fixed points for the bilinear transformation.

Cross-ratio

The cross-ratio, or anharmonic ratio, of four numbers z;, z,, z3, z, is the linear function
. z,— 2,2, — 2

given by (E=5)(z5-2)

(21— 24)(23— 2,)

> Note

(i) The cross-ratio of four points is invariant under a bilinear transformation,
i.e., if w;, w,, w;, w, are the images of z;, z,, z3, z, respectively under a bilinear

W, — W, )(Wa— W Z,— 2.2, — 2
transformation, then (@, — w,)(w, 4)=( 1= %)z 4).

(w, —wy)(wy—w,)  (2,—23)(2,— 24)
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(if) The bilinear transformation that maps three =~ —>—_ —
given points z,, z;, z, onto three given points Wi Wy, W3 Wy
w,, W3, W, is given by

~—
(w—w, Y w,—w;)  (z— 2,02, — 23) \_y/

(w0, — w, )(w —w,) N (21— 2,)(z — 23) Fig.22.5

SOLVED EXAMPLES

1DEH NI Find the image of the circle |z| =2 by the transformation w =2z + 3 + 2i.

Solution Letz=x+iy,w=u+iv

Given w=z+3+2i

ie., u+iv=(x+iy)+ (3 +2i)

= u=x+3;v=y+2

Given the circle 1z| =2

ie., X+ y2 =4

ie., (u-32%+@w-2)>%=4

Hence, the circle x* + 1> = 4 maps into (1 — 3)* + (v — 2)* = 4 in the w-plane which is also
a circle with centre at (3, 2) and radius of 2 units. Ans.

|Peny (AN Find the image of the triangular region in the z-plane bounded by the
lines x =0, y =0 and x + y = 1 under the transformation w = 2z. [KU May 2010]

Solution Given w =2z.1i.e., u +iv=2(x + iy)
u=2x and v=2
When x =0, u =0, the line x =0 is transformed into the line # =0 in the w-plane.
When y =0, v =0, the line y = 0 is transformed into the line v = 0 in the w-plane.
When x +y=1, we get
E + 2 — ]_
2 2
= u+tov=2
- the line x + y =1 is transformed into the line u + v =2 in the w-plane.

y Y
0,1 0,2)
xt+y=1 utv=2
x=0 u=0
> X > U
o y=0 (1,0 o v=0 (2,0)
z Plane w Plane

Fig. 22.6
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|PEy I Find the image of the circle 1z— 11 =1 in the complex plane under the

mapping w = l .
z

. . .. 1
Solution The given transformation is w=—
z

. 1
ie., z=—
w
The equation of the circleis l1z-11 =1
ie., lx+iy—11=1
x-1%+12=1 = x¥*-2x+1*=0 1)
Now, w=u+iv
1 1 u-iv
w o u+iv yr+o?
X+i —i
YR
u
x= 2)
u?+0?
-0
and = 3)
SR
Substituting (2) and (3) in (1), we get
u Y u v Y
-2 + =0
[u2+v2j (u2+sz [u2+vz]
ie., u? = 2u(u®+ %) +v*=0
W2 +0?)(1-2u)=0
= 1-2u=0 (since u* + v # 0)
i.e., 2u — 1 =0 which is a straight line in the w-plane. Hence, the circle 1z — 11 =1 is
mapped into a straight line under the transformation w = 1 . Ans.
z

IDEn XM Find the image of the infinite strips (i) i< y< % ; and (ii) O<y <%

under the transformation w = 1 . [KU April 2013]
z

Solution Letw=u+iv, z=x+iy.

Given w=l
z
ie., u+iv= — = J;_lyz
x+iy x*+y
. x
ie., U=—-—: 1)
Xty
v= 2_y 2 @)
Xty
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Now, u_-x .
y
ie., =" 3)
v
Substituting (3) in (2), we get
2
- -0
T @y
2 Y
v
-0
or = (4)
Y
. . .1 1
(i) Consider astrip —<y<—.
4 2
When y= 1
Y=y
1 -0
From (4), —=
@ 4 uPvo?
ie., W+ +4v=0 or u’+(v+2)>=4.
which is a circle whose centre is at (0, —2) in the w-plane and radius is 2 units.
1
When y=—,
4 2
-0 1
From (4), =—
@ W+t 2
ie., W+ @w+1)%=1.

which is a circle whose centre is at (0, —1) in the w-plane and the radius is 1 unit.
o .1 1. . .

Hence, the infinite strip Z< y <E is transformed into the region common to

the circles u? + (v + 1)> = 1 and u? + (v + 2)* = 4 in the w-plane.

(ii) Consider a strip 0<y <% .

When y =0,
from (4), we get v=0.

1
When y—E,
from (4), we get l: .
2 40P
ie., W+ +20=0
ie., W+ @+1)*-1=0

which is a circle whose centre is at (0, 1) in the w-plane and radius is 1 unit.
- the infinite strip 0<y < 3 is mapped into the region outside the circle u? +

(v +1)* =1 in the lower half-plane. Ans.
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. . . . . 2z +4i
|DEy I Find the invariant points of the transformation w = —— T
iz +
. . . . . . 2z +4i
Solution The invariant points of the transformation are given by z=—-— 1
iz +

= iz’ +3z+4i=0
ie., z*-3iz+4=0
ie., (z—4i)(z+1i)=0
i.e., z=4i, -1 are the invariant points. Ans.

|Deny )M Find the image of 1z +2il =2 under the transformation w = 1 .

b4
[AU May 2010]
. . Lo 1
Solution The given transformation is w=—
z
. 1
ie., z=—
w
Given lz+2il =2
lx +iy +2il =2
ie., lx +i(y +2)1 =2
= X+ (y+2)7=4
ie., PP +4y=0 (1)
Now, w=u+iv
1 1 u-i
w o u+iv y+o?
ie Xty = i0
o Y u* +v*
u
= xX= , 2)
u?+0?
-0
and = 3)
YT
Substituting (2) and (3) in (1), we get
u YV v Y -0
+ +4 =0
[u2+v2] (u2+v2J [u2+vzj
u?+ 02—4U(u2+ v*)=0
(12 +02)(1-40)=0
= 1-4v=0 (as u® +v* #0)
which is a straight line in the w-plane. Ans.

15E VAN Find the bilinear transformation that maps the points z; = —i, z, = 0,
zy =i into the points w; = -1, w, =i, w3 = 1 respectively. [AU Oct. 2009, KU Nov. 2010]
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Solution Let the bilinear transformation be

(w—wl)(wz—wS):(z—zl)(zz—ZS) )
(wy—wywy—w) (2, 2,)(2z3—2)
Givenz;=-1,2,=0,z3=0, w; =-1, wy, =1, w3 =1 )

Substituting (2) in (1), we get
(w+)(i-1) (z+i)(0-1i)
(-1-i)(1-w) B (-i-0)i-z2)
(w+1) (-1(E-1) —(z+17)
(w-1)((+1)i-1) (z—1i)
w+1.—_2i_—(z+i)
w-1 =2 (z—i)

w+1l  i(z+1)

w-1 z-i

ie.,

ie.,

By componendo and dividendo,
W+ D)+ w-1)  i(z+i)+(z—i)
(w+l)—(w-1) i(z+i)—(z—1)
2w _ z(1+i)—(1+i)
2 zZ(i-1)—(1-i)
C(1+i)(z-1)
S (i-1)(z+1)
_(+i(=i-1) (z-1)
T G-1)(-i-1) (z+1)

-1
= w:—(z J Ans.
z+1

|PE A Find the bilinear transformation which maps the points z; =-1, z, =0,
z5 =1 into the points w; =0, w, =i, w; = 3i respectively.
[AU Now. 2010, KU April 2012]

Solution Let the bilinear translation be

(w —wy)(w, - w,) _ (z—2)(zy— 25) )
(w,—wywy—w) (2, 2,)(23—2)
Givenz,=-1,2,=0,2z3=1, w; =0, w, =1, w3 =3i )

Substituting (2) in (1), we get
(w-0)(i—3i) (z+1)(0-1)
(0-1)Bi-w) (-1-0)(1-2)
w(=2i) (z+1)
—i(Bi-w) 1-z

—2iw _ z+1
(w-3i)i |z-1
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. 2w z+1

ie., -=
w-3i z-1

2w(z —1)=(z + 1)(w — 3i)

=zw—3iz+w - 3i

= w[2(z-1) - (z+1)]=-3i(z+1)
or w=—3iM Ans.
z-3

|DEiy (A Show that under the mapping w= l,_—z, the image of the circle
i+z
x* = y? < 1 is the entire half of the w-plane to the right of the imaginary axis.
[AU Novw. 2011]

Solution Given w= l,_ z
i+z

ie., ((+z)yw=i-z

iw+zw=i-z

ie., z(w+1)=i(1l —w)
i(1-

N L ld-w)

1+w

Also given X2+ y2 <1

ie., Izl <1,1ie., i(1-w) <1
+w
ie., lil 11 -wl <11+wl,ie, 1 1-u—-ivl <|1+u+ivl [as il =1]
ie., (1-u)?+0*< (1 +u)+0?
ie., 1+ -2u+v*<1+u?+2u+v?
= 4u>0
or u>0

Hence, the circle x¥* +y* < 1, i.e., |z <1is mapped into the entire half of the w-plane
to the right of the imaginary axis.

When Izl =1 ie., x> + _1/2 =1 which is the unit circle, we get u = 0 which is the
imaginary axis of the w-plane. Proved.

EXERCISE

Define conformal mapping.

2. When is a transformation said to be isogonal? Prove that the mapping w=z is
isogonal.

3. Define critical point of a transformation.

—_
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4. Find the images of the circle |z| =4 under the transformations (i) w=z +2 + 3i,
and (ii) w = 2z.

5. Under the transformation w = iz + i, show that the half-plane x > 0 maps into the
half-plane w > 1.

6. Find the invariant point of the bilinear transformation w = L i .
7. Find the fixed points of w = 3;__14 .
8. Define Mobius transformation.
9. Find the invariant point of the transformation w = e
10. Find the image of x* + y* = 4 under the transformation w = 3z.
11. Find the image of the circle |z — | = v by the mapping w =z + ¢ where cis a

constant.

12. Find the fixed points of the transformation w =

z+2i°

1+z
13. Find the invariant points of the transformation w =

— Z :
14. Find the image of the circle |z| =3 under the transformation w = 2z.
15. Find the image of the circle |z| =2 by the transformation w =z + 3 + 2i.

1
16. Find the image of the real axis of the z-plane by the transformation w=——.
17. Define cross-ratio of four points in a complex plane. z+i
18. Prove that a bilinear transformation has at most two fixed points.

1
1. For the mapping w =7 find the image of the family of circles x* + > = ax,
where a is real. (Ans. u= l, is a straight linej
a
2. Determine the region of the w-plane into which the region bounded by x =1,
y=1,x+y=11is mapped by the transformation w = 22,
(Ans. 4u+v* =4, 4u —v*=—4,u*=2,0°=1)

3. Determine the images of the regions under w = 1 .({)x>1L,y>0(i) O<y< ZL .
z c

w——

[Ans. @) 1 <1(ii) u2+(v+c)2>cz]
2] 2
4. Find an analytic function w = f(z) which maps the half-plane x > 0 onto the
region u > 2 such that z = 0 corresponds to w =2 +1.
(Hint: wy =z, wy=w, +2, w=w, +1)
(Ans. w=z+2+1)

5. Determine and plot the images of the regions under the transformation w = z°.

) Izl =2 (i) |argz|s% (iif) %<Iz|<2,RezZO

[Ans. (i) 1w >4 (ii) larg wl< (iii)i< lwl<4,-n<¢< 7'E:|
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6. Find the invariant (fixed) points of the transformation:

. _z-1 .. _.2 _2z-5 . .
(i) w=—— (i) w=z (iil) w= — (iv) w=(z—i)
[Ans'(i)zzii (i) z=0,1 (iii) z=-1+2i (iv)zzw}

7. Find the bilinear transformation that maps z;, z,, z; onto w,, w,, w; respectively.
(i) z=-1,0,1ontow=0, i, 31
(ii)) z=0,-,-1lontow=1,1,0
(iii) z=1,i,-1ontow=2,1i, -2
(iv) z=eo,i,0ontow =0, i, =
(v) z=1,0,-1lontow=1i,1, e

Ans. (i) w=—2ED iy — i 25 iy o = 2022
z-3 z-1 iz—3

_(-1+2))z+1

- z+1

@{iv) w =—1(V) w
z

1+
8. Verify that the equation w = 1 =

maps the exterior of the circle |zI =1 into
+z

the upper half-plane v > 0.
9. Find the bilinear transformation which maps 1, 7, -1 to 2, i, -2 respectively. Find
the fixed and critical points of the transformation. (Ans. i, 21)
i(1-2)
+z
axis of the w-plane and the interior of the circle [z| <1 into the upper half of the
w-plane.

10. Show that the transformation w = maps the circle |z| =1 into the real

2z+3
11. Show that the transformation w =~ maps the circle x* + y* — 4x =0 onto the
straight line 4u + 3 =0. z-4
12. Show that transformation w = t—z maps the circle 1z| =1 onto the imaginary
i+z

axis of the w-plane. Find also the images of the interior and exterior of this
circle.
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Complex Integration

fChapter Outline

Infroduction

line Integral in @ Complex Plane

Line Infegral

Basic Properties of Line Integrals

Simply Connected Region and Multiply Connected Region
Evaluation of Complex Infegrals

Cauchy’s Infegral Theorem

Extension of Cauchy's Integral Theorem to Multiply Connected
Regions

Cauchy’s Infegral Formula

Cauchy’s Infegral Formula for the Derivation of an Analytic
Function

23.1 O INTRODUCTION

Integration of functions of a complex variable plays a very important role in many
areas of science and engineering. The advantage of complex integration is that certain
complicated real integrals can be evaluated and properties of analytical functions can
be established. Using integration, we shall prove a very important result in the theory
of analytic functions:

If a function f(z) is analytic in a domain D then it possesses derivatives of all
orders in D, that is f'(z), f”(z) ... are all analytic functions in D.

Such aresult does not exist in the real-variable theory. Also, the complex-integration
approach can be used to evaluate many improper integrals of a real variable, which
cannot be evaluated using real integral calculus. The concept of definite integral for
functions of a real variable does not directly extend to the case of complex variables.
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b
In the case of a real variable, the path of integration in the definite integralJ. f(x)dx
a

is along a straight line. In complex integration, the path could be along any curve
fromz=atoz=0.

23.2 O LINE INTEGRAL IN COMPLEX PLANE

o Continuous Arc

The set of points (x, y) defined by x = ¢(t), y = y(t), with parameter ¢ in the interval
(a, b), defines a continuous arc provided ¢ and y are continuous functions.

o Smooth Arc

If ¢ and y are differentiable, the arc is said to be smooth.

o Simple Curve

It is a curve having no self-intersections, i.e., no two distinct values of t correspond to
the same point (x, v).

o Closed Curve
It is one in which end points coincide, i.e., ¢(a) = ¢(b) and y(a) = y(b).

o Simple Closed Curve

It is a curve having no self-intersections and with coincident end points.

e Contour

It is a continuous chain of a finite number of smooth arcs.

o Closed Contour

It is a piecewise smooth closed curve without points of self-intersection.

23.3 O LINE INTEGRAL

Definite integral or complex line integral or simply line integral of a complex function
f(z) from z, to z, along a curve C is defined as

[ f(z)dz =] (u+iv)(dx +idy)
=] (udx —vdy) +i ] (vdx +udy)
Here, C is known as path of integration. If it is a closed curve, the line integral is

denoted by Cﬁ .
c
When the direction is in positive sense, it is indicated as [, or simply, |- while
negative direction is denoted by J.. Counter integral is an integral along a closed
contour.
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23.4 QO BASIC PROPERTIES OF LINE INTEGRALS

B
(i) Linearity: [ (k f(z)+k,8(2))dz =k, [ f(z)dz + k, | g(z)dz
b a C G
(ii) Sense reversal: L f(z)dz= —J‘b f(z)dz
(iii) Partitioning of path: fc f(z)dz=JC] f(z)dz+fCZ f(z)dz “
where the curve C consists of the curves C; and C,.
Fig. 23.1

> Note

Although real definite integrals are interpreted as area, no such interpretation is
possible for complex definite integrals.

23.5 O SIMPLY CONNECTED REGION AND MULTIPLY
CONNECTED REGION

A simply connected region R is a domain such that every simple closed path in R
contains only points of R.

o Example

Interior of a circle, rectangle, triangle, ellipse, etc.
A multiply connected region is one that is not simply connected.

o Example

Annulus region, region with holes.

@ © D

Simply Doubly Triply Simply connected region (or)
connected connected connected Multiply connected region
region region region converted into simply

connected region by cross-cuts.

Fig. 23.2

23.6 O EVALUATION OF A COMPLEX INTEGRAL

To evaluate the integral |- f(z)dz, we have to express it in terms of real variables.

Let flz)=u+ivwherez=x+iy, dz=dx + idy
Jc flz)dz = [(u + iv)dz
= Jc(u +iv)(dx + idy)

= | c(udx — vdy) + il (vdx + udy)
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23.6 Engineering Mathematics
23.7 O CAUCHY’S INTEGRAL THEOREM OR CAUCHY’S
FUNDAMENTAL THEOREM

If a function f(z) is analytic and its derivative f’(z) is continuous at all points inside and
on a simple closed curve C then | f(z)dz = 0.

o Proof
Let the region enclosed by a curve C be R and let

f(2)=u+iv,z=x+iy,dz=dx +idy
'[ f(z)dz=J. (u+iv)(dx+idy):'[ (udx—vdy)+ij. (vdx + udy)
o

_”[_% - a_qu xdy _”(—u - —] dxdy (by Green's theorem)

Replacing —g— by gu d?by o , we get
ou
o _ O ged ”(———)d d
[ e “
—0+10—0

or J-fiz)dz=0

> Note

(i) Cauchy’s integral theorem is also known as Cauchy’s theorem.
(if) Cauchy’s theorem without the assumption that f* is continuous is known as
the Cauchy-Goursat theorem.
(iii) Simple connectedness is essential.

23.8 O EXTENSION OF CAUCHY’S INTEGRAL THEOREM TO MULTIPLY
CONNECTED REGIONS

If f(z) is analytic in the region R between two simple closed curves C; and C, then

) ¢ f(2)dz= I ¢, f(2)dz

e Proof G

By Cauchy’s integral theorem, we know that

I fiz)dz = 0 where the path of integration is along

AB and the curve C, in clockwise direction, and Fig. 23.3
BA and along C; in anticlockwise direction,

ie., [ g f(2)dz+] ¢, f(2)dz+ Joq f(2)dz+] ¢, f(2)dz=0
or ICz f(z)dz + fcl f(z)dz=0(since [ ,, f(z)dz=~,, f(z)dz)
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Complex Integration 23.7

Reversing the direction of the integral around C,, we get
e, f(2)dz=], f(z)dz
> Note

By introducing as many cross-cuts as the number of inner boundaries, we can
give the proof in a similar manner for the extension of Cauchy’s integral theorem.

23.9 0O CAUCHY’S INTEGRAL FORMULA

If f(z) is analytic within and on a closed curve C and if a
A (=,

is any point within C then f(a)= p
widcz— u

o Proof o, ¢

f(2)

z—a

Consider the function

, which is analytic at all

points within C except z =a.
With a point a as centre and radius 7, draw a small

f()

—a

Fig. 23.4

circle C; lying entirely within C. Now,
in the region between C and C;;

is analytic

Hence, by Cauchy’s integral theorem for a multiply connected region, we have

[ 12, J @) 4 [ f@-f@+f@
cz—a C

z—a zZ—a

f(z) f( )dz+f( )J (23.1)

G

For any point on C;

Now,

T i0
) fe)- [, [ Sla )0

[as z—a=re!® and dz = ire'® d6)

2r .
= j [f(a+ re'?) - f(a)]id6=0 (where r tends to zero]
0
27 ;510 2
J dz =J e ,59 :f id0 = {07 = 27t
cz—a Jo re 0

Putting the values of the integrals of RHS in (23.1), we have

_[ SE 42— 0+ fay2miy
cz—a

or L f@ .

27rz
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23.10 O CAUCHY’S INTEGRAL FORMULA FOR THE DERIVATIVE OF
AN ANALYTIC FUNCTION

If a function f{z) is analytic in a region R then its derivative at any point z =4 of R is
also analytic in R and is given by

27:1 C (z a)

where C is any closed curve in R surrounding the point z =a.

e Proof
By Cauchy’s integral formula,

J f2) T (23.2)

Differentiating (23.2) with respect to a, we get

Fo=5] f()aa[z a]
e[ SO

2miJc (z —a)?

27rz

w200 f(2)
10 = )

=22 L@

2! Jc (Z _ a)n+1

Similarly,

SOLVED EXAMPLES

1DEH NN Use Cauchy’s integral formula to

. 2 2
evaluate dez, where C is the
c (z=2)(z-3)

Y

circle Iz =
[AU June 2009, April 2011; KU Now. 2011]

Solution

1 11
(z-2)(z-3) (z-3) (z-2)

Fig. 23.5
given integral &

sin 7z° + cos wz2 sin 722 + cos 22
= I dz — J dz
c z-3 c z—2
[ SO o[ SO "
c(z-3) c(z-2)
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Complex Integration 23.9
f(z) = sin 7z* + cos 7z is analytic on and inside C.
The points z =2 and z = 3 lie inside C.
.. by Cauchy’s integral formula, from (1), we get,
J‘ sin 7z% + cos z*
c (z=-2)(z-9)
= 2mi(sin 71z” + cos 7rzz)Z:3 —27i(sin 7wz* + cos 7r22)Z:2
=2mi(sin 97 + cos 97) — 2mi(sin 47 + cos 47)
=-2mi—2mi = —4mi Ans.
zdz . . 1 .
Example 2 Evaluate '[ T — where C is the circle |z—-2l=—, using
c(z-1)(z-2) 2

Cauchy’s integral formula.

1
Solution [z-2|= 5 is the circle with centre at z=2 and

The point z = 2 lies inside the circle |z - 2| :%

. . . A
The given integral can be rewritten as
z

L(Z‘J

(z-2)*
is analytic on and inside C and the

_[_f®
dz = -[c G2y dz (say)

zZ

fo=—

z—

[AU May 2012]

1
radius equal to 5

AV

point z =2 lies inside C.
.. by Cauchy’s integral formula,

z 2mi

——dz=—+f'(2
.[c(z—l)(z—z)2 1! f
=2mi af_z
dz\z-1
z=2
=2mi]— 3 =-2ri Ans.
(z-1)
z=2
z+4 . . . .
Example 3 EESAEIIEL '[ —————4dz, where C is the circle Iz + 1 + il = 2 using
cz°+2z+5

Solution

Consider

Cauchy’s integral formula. [AU Novw. 2011] (-1,20) pY
N
Iz + 1+ il =2 is the circle whose centre is
-1 —i and radius is 2 units. 0 N
z+4 z+4 ) X
22+2z+5 (z+1+2i)(z+1-2i) g
- the integral is not analytic at z =-1 — 2i and -1 + 2i.
The point z =-1 - 2i lies inside C. L
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23.10 Engineering Mathematics

We rewrite the given integral as

[ z+4 ]
z+l-2i) £2)
Jc Z+1+2i dz_jcz—(—l—zi)dz(saw

f(z) is analytic on and inside C and the point (-1, -2i) lies inside C.
.. by Cauchy’s integral formula,

z+4
——————dz=2mi f(~i—2i
-[cz2+2z+5 U )
o -1 —‘21+4 ‘
—1-2i+1-2i

= %(3 —2i) Ans.

EXERCISE

1. The value of the integral

3 where C is the circle |1z — 2| =1, traversed

cz -2z
in the counter-clockwise sense is
() -mi (i) 27 (iti) i (iv) 0
2 p—
2. The value of the integral f z—7:1+1dz, where C is the circle |zl =% is
cC zZ-
() 0 (i) (iti) i (iv) -27i

3. What is the value of [ e dzif c: 1z] =1?
4. State Cauchy’s integral formula.

5. Evaluate'[ dz where C is the square with vertices (0, 0), (1, 0), (1, 1) and (0, 1).

cCzZ—

2

6. Evaluate J. wdz where C: |z| =2.

c (z-93)

dz . . 1

7. Evaluate J - where C is the circle |z -1l=—.

cz"-5z+6 2

5

State Cauchy’s formula for the first derivative of an analytic function.
9. State Cauchy’s fundamental theorem.

10. Evaluate I z where C: IzI =1.

cz—

11. Evaluate J. 2 dzwhere C: |z| =2.
c(z+3)

12. Evaluate J 1
c2z—

dzwhere C: 1z| =1.
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Complex Integration 23.11

2
13. Evaluate L Z+5

- dz where Cis |z| =4 using Cauchy’s integral formula.
midc z-3

14. Evaluate J Lz where C: |zl =1.
c(z-3)

15. State the Cauchy-Goursat theorem.

1. Evaluate J Zz—_ldz where Cis |z -il =2. (Ans. —Zm)
c(z+1)*(z-2) 9
4
2. Evaluate I —3zdz using Cauchy’s integral formula. where C is the
cz(z=1)(z-2)
circle Izl =% . (Ans. 27i)
2
3. Find the value of | 2224z, (Ans. 37)
c 2% -1

4. Evaluate the following;:

J (;j—z4)z,whereCis lz—il=2
c(z"+

3

1

(if) J Z2+—Z+dz where C is the ellipse 4x* + 9y* =1
Cz"=7z+6

3
z7+1 b4 2w

iii dz where Cis IzI =1. I:Ans. i)—, (ii) 0, (iii ——}

i) [ ()7 (i) 0, (i)~

. 2 2
5. Evaluate I SIMAZ TCOSTZ 4, where Cis z] = 3. (Ans. —47i)
c (z+1)(z+2)

2
6. If f(a)zj wdz where C is |z| =2, find the values of f(1), f(i), f'(-1)
c z-—a

and f”(-i). (Ans. 207; 27(i — 1); —147i; 167i)
7. Evaluate |- 1z1? dz around the square with vertices at (0, 0), (1, 0), (1, 1), (0, 1).
(Ans. -1 +1)
2241
8. Evaluate J- 3 ldz where (i) C: lz—=11=1,(1i)C: lz+1l=1,and (iii) C: |z -l
cz" -
- 1. [Ans. (i) 27 (ii) 27 (iii) 0]
in2
9. Evaluate I L‘szz where C is the rectangle with vertices at 3 + i,
c(z+3)(z+1) 4 eos2 4 sin2
24, -2-i,3-i [Ans.m’—( cos 2+ = )]
4 a2
10. Evaluate j #dz where C: 1zI| =2. (Ans. —187i)
c (z+1)
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Taylor and Laurent Series
Expansions

Chapter Outline

® |Introduction
® Taylor's Series
® |aurent’s Series

24.1 Q INTRODUCTION

Power Series

A power series in powers of (z — z;) is a series of the form
zan(z—zo)”:a0+a1(z—zo)+a2(z—zO)+-~- (24.1)
n=0

Here, ay, a4, a, ... are complex (or real) constants known as coefficients of the series. z

is a complex variable and z is called the centre of the series. Equation (24.1) is also

known as the power series about the point z,.

Power series in powers of z is

Zanz” =ay+ 0,z +a,z0 +
n=0
obtained as a particular case with z;, = 0 in (24.1). The region of convergence of a
series is the set of all points z for which the series converges.
Three distinct possibilities exist regarding the region of convergence of a power
series (24.1).
(i) The series converges only at the point z = z,.
(ii) The series converges everywhere inside a circular disk |z —z,| <R and diverges
everywhere outside the disk |z — z;| > R. Here, R is known as the radius of
convergence and the circle |z - z)| = R as the circle of convergence.

EM_UnitX_24.indd 1 @ 8/24/2017 3:30:54 PM



24.2 Engineering Mathematics

> Note

(i) Theseries may converge or diverge at the points on the circle of convergence.

oo

(if) Geometric Series: ZZ"’ =1+2z+2z”+--- converges absolutely when |z| <1
m=0

and diverges when [z| > 1. (i.e, R=1)

> n
. z .
(iii) Power series: E — converges for all z. (i.e., R = )
n!
n=0

Power series play an important role in complex analysis, since they represent
analytic functions and conversely every analytic function has a power series
representation called Taylor series similar to Taylor series in real calculus.

Analytic functions can also be represented by another type of series called Laurent
series, which consist of positive and negative integral powers of the independent
variable. They are useful for evaluating complex and real integrals.

24.2 0 TAYLOR’S SERIES (TAYLOR’S THEOREM)

If a function f{(z) is analytic at all points inside a circle C with its centre at the point a
and radius R then at each point z inside C,

f@=f@+ f@e-a+ L0 apes LG gy

e Proof
Take any point z inside C. Draw a circle C; with centre g, enclosing the point z. Let w
be a point on the circle C;.
1 1 _ 1
w-z w-a+a-z w—a—(z—a)
1 1
z

(w—a) |_Z-4a
w—a w

1 1 [z—a] [z—a]z [z—a]n 1
= 1+ + 4.4 + ..
w—z w-—a w—a w-—a w-—a

_ _ 2 o\
__1 z az (z a)3+m+ (z a)+1+m (24.2)
w-—a (w-a) (w-—a) (w—a)"
Aslz—al <lw-al or IZ_u|<1,
lw — al

so the series converges uniformly. Hence, the series is integrable.
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Multiplying (24.2) by f(w)
f@) @) oy SO gp S g S

w—-z w-a (w —a)? (w - a)® (W—fl)n+1

On integrating with respect to w, we get

L fw) f S0 o u)j f@)

w—z (w— a)
fw)

+(z-a)" T

W+ (24.3)
We know that

J. flw )dz 2mi f(z) J. fw )dw 27i f(a)
¢ (w=2)

@) 4oy = 21i f(a), and so on.
G (w - El)

Substituting these values in (24.3), we get

f@=f@+ F@e-a+ L0 e s LG gy

21

> Note

(i) Puttinga=0in the Taylor’s series, we get f(z)= f(0) +—— f (0) f 2(‘0) 22+
This series is called the McLaurin’s series of f(z).

(ii) Standard McLaurin’s Series

2 3
(a) =T+t 2y for Izl <o
1 20 3!
3 5
(b) Sinz=z———+——- for |zl <eo
3! 5!
2 4
(o) cosz=1-2—+2-.. for |zl <eo
21 4!
3 .5

(d) Sinhz=z+——+—— 4. for |z] <oo
3! 5!

2 4

(e) coshz= 1+2+ 2 4. for Izl <eo
2! 4!

() A-z2)t=1+z+22+22+for Izl <1
(g) (I+2)t=1-z+22-2%+-for |zl <1
(h) 1-2)2=1+2z+322+ for Izl <1
(iii) Expansion of a function f(z) about a singular point z = & means, expansion
of f(z) in powers of (z - h).
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24.3 O LAURENT’S SERIES (LAURENT’S THEOREM)

If f(z) is analytic on C; and C, and the annular region bounded by the two concentric
circles C; and C, of radii r; and r,(r, < r;) and with centre at a then for all in R,

bl +b—2+...
(z—a) (z-a)

f(2)=ay+a,(z—a)+a,(z—a)*+---+

where unzL‘J. f(—w)ldw,n=0,1,2,3...
2mi C, (w—g)n+
”=L'I ﬂdw,nzl,z,&..
27i Cz(w_a)—nﬂ
o Proof

By introducing a cross-cut AB, the multiply connected
region R is converted to a simply connected region. Now,

f(z) is analytic in this region. P
Now by Cauchy’s integral formula, Py AN
a
B e (C)
2ridc, w—z 2mi
C
[ )y L[ Sy, L[ Sy, 1
ABW — Z 2midc, w -z 2niJpaw -z Fig,. 24.2
Integral along c, is clockwise, so it is negative.
fy=— [ L@ gy L[ L@ g, (24.4)

2nidc,w—z 2ridc, w—z

For the first integral, can be expended exactly as in Taylor’s series since w

w—2z
lies on C;,
lz—al<lw—alor |z—a|S1
lw — al
L, de:L. f(w)dw+(z—71) f(w) dw
2rid w—z 2nidc, w—a 2mi Cl(w—a)2

LE-a’ o fw)

- S dw+ -
2ri Je, (w—a)

:a0+al(z—a)+a2(z—a)2+--- (24.5)

-1 f(w)
[as a,= i J.c] oy dw]

In the second integral, w lies on C,

lw-al <lz-al or |w—a|<1
|z —al
So here, 1 = 1 = 1 = -1 1
w—-z w-a+a—-z (w-a)—(z—a) (z—a) w-—a
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Multiplying by #, we get
T

1 f@) _ 1 f@, 1 (w-a) 1 (w-
2miw—z 27 z—a Zm' (z—a)’ flw)+ 27i (z - 3 f( )+
_ 1 —f( 1 1 f(w) N 1 1 f(w)
27mi u)2 2mi (w - a)71 (z—a)3 2mi (w—a)72
Integrating, we have
1 f@) 4 1 f(w)
2ridc,w—z (z a)Zm.[ flw)dw + (z—a)? Zni.’.c (w—a)™ rdw
1 1 f(w)
e Rt
by b, bs

= -2 + (z—a)2 + @ —a)3 + (24.6)

L f(w)
[as b,= i J.cz o a)’”” dw}

Substituting the values of both integrals from (24.5) and (24.6) in (24.4), we get

f(z)=ay+ay(z—a)+a,(z—a)* +by(z—a) " +by(z—a) >+

or f2)- 2 ey

n= 1(2 )”

> Note

(i) If f(z) is analytic at all points inside C; (i.e., no singular points inside C,)
then by Cauchy’s theorem, b, =0 for all n — 1 > 0. Hence, the Laurent series
reduces to Taylor series. Thus, Laurent’s series expansion about an analytic
point a is Taylor series expansion about a.

(if) The region of convergence of Laurent’s series is the annulus region R; < |z
—al <R,.

(iii) If f(z) has more than one singular point then several (more than one)
Laurent series expansions can be obtained about the same singular point
by appropriately considering analytic regions about (centred) at a.

(iv) The part Za (z—a)" consisting of positive integral powers of (z — a)
n=0
is called the analytic part of the Laurent’s series, while Zb (z—a)™
n=1
consisting of negative integral powers of (z — a) is called the principal part
of the Laurent’s series.
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SOLVED EXAMPLES

|DEy WM  Obtain Taylor’s series expansion to represent the function

2_
== in the region Iz| <2. [KU Novw. 2010]
(z+2)(z+3)
2
-1
Solution Let f(z)=z—
(z+2)(z+3)
—5z-7
=l @
(z+2)(z+3)
Consider Dz-7 _ A B
(z+2)(z+3) z+2 z+3
-5z-7=A(z+3)+B(z+2)
Put z=-3 = B=-8
Put z=-2 = A=3
=5z-7 3 8
(z+2)(z+3) z+2 z+3
3 8
1) = 1+
M fz)= z+2 z+3
Iz] Iz]
Given Izl <2, i.e.,%<1, so clearly %<1
ie., ‘ <1 and |4 <l
2
fz)=1+
£ 4
2 3
-1
=1+§(1+£j ( +£j
2 2 3
By using binomial theorem,
2 3
f(z):1+§|:1__+___+...:|_§|:1_£+Z__Z_+...:|
2 3 3 9 27
3N (= 1) (D"
YT
=0 nO
3 8
=1+ Z(—l)” [ o 3,7} z" Ans.
n=0

Example 2 ESNeENlel _ in Laurent’s series valid for Iz| <1and 1< Izl
(z—-1)(z-2)
<2. [AU Nov. 2010]
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1 _ 11
(z-1)(z-2) z-2 z-1

Solution Let f(z)=

Iz
(i) Given |zl <1 obviously %<1,i.e., E<1
111
(z=-1(z-2) z-2 z-1
1 1
=—+

f-3)

-1
1—%) +1-z)"

1+—+—+---i|+[1+z+zz+---]

2 4
. 1 3z 7,
ie., Z)=—+—+—
f(2) >t 23
(ii) Givenl1<lzl <2
1<zl = i<l, ie., |[—|<1
Izl z
IzI<2 = E<1, ie., E<1
2 2
1 1
z)= -
f@) z-2 z-1

oo n oo 1

=-3

n=0 ZWJrl n=0z

Ans.

n+1

z
If0<lz-1I <2, express f(z)=————— in a series of positive
p press f(z) Z-D-3) P
and negative powers of z - 1. [AU April 2011]
Solution Letz-1=u
s 0<lz-11<2becomesO< lul <2
z A B
= +
(z-1)(z-3) z-1 z-3
z=A(z-3)+B(z-1)

Now,
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1
Put z=1, = A=——
2
Put z=3, = B= g
2
L3
z -2, 2
(z-1D)(z-3) z-1 z-3
+1
(or) u = L —— (asz-1=u=>z=u+1)
u(u—2) 2u  2(u-2)
So instead of expanding WZ(S) in powers of (z — 1), it is enough to expand
z—1)(z—

u+1
u(u—2)

in powers of u.

u+1 __i_'_ 3
u(u—2) 2u  2(u-2)

Since lul <2, we have %<1.i.e.,%<1.
u+1l _—_1_ 3
wu—2) 2u 4(1_9

=
2u 4 2
-1 3 u (u )2
=———|14+—=+|=| +
2u 4 2 \2
_1.3 (z]
u  44\2
=3 n
z __ 1 _32(_2_1) Ans.
(z-1(z-3) 2(z-1) 44\ 2
IDen (XM Obtain the Laurent’s expansion for (2-2)z+2) which are valid in
(z+1)(z+4)
(i) 1< Izl <4, and (ii) 1z > 4. [AU Nov. 2011]
Solution Let f(z)= (272)(z+2)
(z+1)(z+4)
—5z-8
= f2)=1+—2 (1)
(z+1)(z+4)
(since the degrees of z in both numerator and in denominator are equal, divide it)
Consider 28 A B

ZrD)(z+4) (z+1)  (z+4)
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Taylor and Laurent Series Expansions 24.9

—5z-8=A(z+4)+B(z+1)
Put z=-1 = A=-1
Put z=—4 = B=-4

5z-8 -1 -4
(z+1)(z+4) (z+1) (z+4)
Substituting (2) in (1), we get

f(e)=1-

(i) Givenl<lzl <4

@)

1 4

(z+1) (z+4)

1<lzl = i<1, ie., |- <1
[z]
Iz]
lzl<d = <1, ie, |F<1
f@) =1 - 4
z(1+fj 4(1+5)
z 4

n=1 z n=1
oo n
SysEsey
n=1 Zn 4
(ii) Given Izl >4
i<1,i.e.,—<1
[zl z
1 4
z)=1- -
f@ 1+z z+4
1 1 4

z(1+lj z(1+éj
z z
-1 -1

:1_1(1+1] _é(Hé)

zZ zZ z z

2

:1_1[1_1+L2_...]_é[1_é+(é) ]

z zZ z z z z
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24.10 Engineering Mathematics

2 St t5e)

n=0
0 n n+1
1 (4

:1—2(—1) L”T% ) ]

n=0
L N e
_1+z (14

n=0
:1+2(—1)"(1+4”).in Ans.

ya
n=1

Example 5 Find the Laurent’s series of f(z)= (11 ) valid in the region
z(1-z
() lz+11 <1, (i) 1< 1z+11 <2, and (iii) Iz + 11 >2. [KU May 2010, Nov. 2011]
Solution Letz+1l=uorz=u-1

1 1 11
&= iy T wone—w a1 2-u

@™

(i) Given lz+11<1 = lul<1

f(z):_—1+;

=
2

-1
PR Y
=—(1-u) +2(1 2)

2
=—[1+u+u2+---]+l{1+(£)+(ﬂj +]
2 2 2

n=0 n=0
N 1
=2 _1+2n+1 un
n=0
ie., f(z)=2(—1+%j(z+1)”
n=0
(i) Givenl1<lz+1l<2.ie,1<lul<2
1 .
1<lul = —<1, ie, |—|<1
lul u
lul
lul<2 = i<1i.e., Z<1
2 2
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Taylor and Laurent Series Expansions

1 1
Consider (1), =+
onsider (1), f(z) 13 5

=
—

[

|
= =
N

N
—

—_

|

| =

S

R|m R

ie., f(z)=

(i) lz+11>2,ie, lul>2=

_1(1_%]_1(1_3
u u u u
:l|:1+l+i2+...i|_
u u u
w1 12"
- 1
=20-2=
n=0
or f@=Y a-2—1
+1
~ (z+1)"

EM_UnitX_24.indd 11 @
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24.12 Engineering Mathematics

EXERCISE

Define radius and circle of convergence of power series.

State Taylor’s theorem and Laurent’s theorem.

State McLaurin’s series.

Give some standard McLaurin’s series.

What do you mean by analytic part and principal part of Laurent’s series of a
function of z?

G @

6. Expand = as Laurent’s series about z = 0 in the annulus 0 < z| <1.
z(z—
2z

7. Find the Laurent’s series expansion of f(z)= 3 aboutz=1.
8. Expand f(z) = ¢* in a Taylor’s series about z = 0.

T .
9. Expand coszat z= n in a Taylor’s series.

10. In the power series ay + a;(z — zy) + a5(z — 2p)* + ..., zg is called the of the
series.
Part B
1. Find the Taylor’s series expansion of f(z)= — %  aboutz=i
z(z+1)(z+2)

State also the region of convergence of the series.

)21 e
Ans. Z(_l) {(2_,’_ i)n+1 (1+ l-)n+l }(Z l)

n=0
z2 -
2. Find the Laurent’s series expansion of f(z)=—; valid in the region
z°+5z+6
(i) 1z1 <2, (1) 2< IzI <3, and (iii) IzI >3 [KU April 2013]
Ans. (1 1 + Z( ) {2n+1 3n+1} 3n+1
(i) 1+ 2(—1)"{3.2" ~83")1/2"
3. Find the Laurent’s series expansion of f(z)= ﬁ, valid in the region
z=1)(z -

(i) lz+21 <3, (ii) 3< Iz +2] <4, and (iii) |1z + 2] > 4.

; o (z+2)" 3"
Ans. I)Z{ ot M}(Hz) (ii) - . gg(zu)"”

nO

2.4"-3".
(i) Z( (z+ 2)z"+1
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Taylor and Laurent Series Expansions 24.13
2
-6z-1
4. Expand z 6z in3<lz+2]<5.
(z=1)(z+2)(z-23)
2 +2 (z+2)* (z+2)°
Ans. 2 + 3 >+ 3 3+---+l{1+Z +(Z 2) +(Z 3) + e
z+2  (z+42)° (z+2) 5 5 5 5

about z = 1. Find the region of

5. Find Laurent’s series of f(z)=
z(1-z)

convergence.

Ans. f(z)= %{—ﬁ_%(z -1) +%(z _ 1)2+ }

Region of convergenceislz —1l<1

6. Obtain the Laurent’s series expansion for f(z)= ( ! D for i) 0< Izl <1, and
z(z—
y L1 | 2 |
(i)0<lz=11<1. |Ans.(i)——(1+z+z"+--)(ii) 1(1—(z—1)+(z—1) )
z z—
2z
7. Find Laurent’s series about the indicated singularity. (i) W’ZZI
y—
z
i) ————,z=-2 (iii) -———,2=3
(i (z+1)(z+2) (1) Z*(z-3)*
[ 2 2 2 2 2 1
Ans. (i) —— +—2¢ —+ 2 A g
(z-1° (z-1> (z-1) 3 3
(ii) 2 +14+(z+2)+(z+2)%+-
2+z
4(z-3
(iii) ! >~ 2 +i— ( )+
9Yz-3)* 27(z-3) 27 243 |
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Theory of Residues

fChapter Outline

Infroduction

Classification of Singularities

Residues

Cauchy’s Residue Theorem

Evaluation of Real Definite Integrals by Contour Integration

25.1 QO INTRODUCTION

The residue theorem is a very powerful and elegant theorem in complex integration.
Using the residue theorem, many complicated real integrals can be evaluated. It is also
used to sum a real convergent series and to find the inverse of a Laplace transform.

25.2 0O CLASSIFICATION OF SINGULARITIES

A point at which a function f(z) is not analytic is known as a singular point or
singularity of the function.

o Example
The function f(z)= LS has a singular pointatz—-5=0orz=>5.
z—

If z = a is a singularity of f(z) and if there is no other singularity within a small
circle surrounding the point z = a then z = a is said to be an isolated singularity of the
function f(z). Otherwise, it is called non-isolated.
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25.2 Engineering Mathematics
o Example
1
(i) The function m has two isolated singular points, namely, z =2 and
z—2)(z~

z=7[since (z-2)(z-7)=0o0rz=2,7].

. . . . T .
is not analytic at the points where sin—=0, i.e., at the
z

(ii) The function p-
sin—
z

. T
points —=nrm .
z
. . 1
ie., at the points z=—(n=1,2,3...).
n

11
Thus, z=1, 23 z=0 are the points of singularity. But z =0 is the non-isolated

singularity of the function

because in the neighbourhood z = 0, there are
sin—
z

infinite number of other singularities z=—, where n is very large.
n

Let a function f(z) have an isolated singular point z = a. f{(z) can be expanded in a
Laurent’s series expansion around z =a as

b b
z)=ay+a,(z—a)+ay(z —a) +- +——+ —2—
F(@)=ay+ ay(z—a) + ay(z — a) -
b b

o+ m +m—+11
z-a)" (z-a)""

In some cases, it may happen that the coefficients b,,.; = b,,,, = ... =0,
Then the series reduces to

b b b,

f(z):ao+gl(z—a)+u2(z—a)2+...+(Z_a)+(z_a)2 +.“+(Z—‘Z)m

Then z = a is said to be a pole of order m of the function f(z).
When m = 1, the pole is said to be a simple pole.
b
(z-a)
If the number of terms of negative powers in the above expansion are infinite then
z=a is called an essential singular point of f(z).
If a single-valued function f(z) is not defined at z =4, but £1ir; f(z) exists thenz=a

In this case, f(z) = ay + a,(z — a) + ay(z — a)* + -+ +

is called a removable singularity.

o Example

z = 0 is a removable singularity of f(z):ﬁ, since f(0) is not defined, but
z

lim(smzjzl.
z—0 z
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Theory of Residues 25.3

25.3 QO RESIDUES

Residue of an analytic function f(z) at an isolated singular point z = a is the coefficient
say b; of (z—a)™ in the Laurent’s series expansion of f(z) about a. Residue of f(z) at a is

denoted by Res f(z). From Laurent’s series, we know that the coefficient b, is given
z=a

by by=g | flai

Thus, the residue of f(z)atz=a,=Res f(z)=b =—J. f(z)dz.

z=a

where C is any closed contour enclosing a (and such that fis analytic on and within C).

Calculation of Residue at Simple Pole

(i) If f(z) has a simple pole at z =g, then Res f(z) = hm (z—a)f(z).

z=a

(if) Suppose f(z)= QE )) has a simple pole at a such that P(a) #

Then Res f(z) = R P@) P’(a)
220 =1 Q'(z) Q'(a)

Calculation of Residue at a Multiple Pole

If f(z) has a pole of order n at z =4, then

1 ) dn71 ;
Res f(z) = =D ?E; = [(z—=a)" f(2)]

z=a

25.4 0O CAUCHY’S RESIDUE THEOREM

If f(z) is analytic within and on a simple closed curve C except at a finite number of
poles within C then ¢ f(z)dz=2mi (sum of residues at the poles within C).

c
Proof Let C;, C,, C; ... C, be the non-intersecting circles
with centre at a,, 4, ... a, respectively and radii so small
that they lie entirely within the closed curve C. Then f(z)

is analytic in the multiply connected legion lying between
the curves Cand C;, G, ... C,. Applying Cauchy’s theorem,

(ﬁc f(z)dz= q.)q f(z)dz + q.)cz f()dz+-+ ¢C,, f(z)dz
=2miRes f(z) +2miRes f(z) -~ + 27i Res f(z)

= 27ri[R_es f(z)+Res f(z)-++Res f(z)}

Fig. 25.1

. q.) f(2)dz=2mi (sum of residues at the poles within C)
C

EM_UnitX_25.indd 3 @ 8/24/2017 3:31:42 PM



25.4 Engineering Mathematics

25.5 0O EVALUATION OF REAL DEFINITE INTEGRALS BY CONTOUR
INTEGRATION

Alarge number of real definite integrals, whose evaluation by usual methods become
sometimes very tedious, can be easily evaluated using Cauchy’s theorem of residues.
For finding the integrals, we take a closed curve C, find the poles of the function f(z)
and calculate residues at those poles only which lie within the curve C.

Then using Cauchy’s theorem of residues, we have fcf(z)dz = 27 (sum of the
residues of f(z) at the poles within C)

We call the curve a contour and the process of integration along a contour as
contour integration.

Iype 1

2z

Integrals of the form f(cos 8, sin 8)d6é where f is a rational function of cos 6
0
and sin 6

In this type of integrals, put z = ¢’
Differentiating with respect to 6, we get,

dz=ie" d6,i.e.,do = ﬁ
iz
0, -io
We know that cos 6 = ¢ +ze
ie., cos 0= l(z + l)
2 z
and sin9=l,(z—lj
i z

z+l z—l
z - |dz

2 "2 iz

2
f(cos 0, sin 0)d6 = J. f[
0 C

where C is the unit circle Iz| =1

1 1 1)1 1)|dz
-1 [5(‘)?(‘]}—
= [ otz say)

Clearly, ¢(z) is a rational function of z.
Hence, by the residue theorem, |-¢(z)dz = 27i (sum of the residues of f(z) at its poles
inside C).

7

Type 2

Consider the integral [-¢(z)dz, where C is the positively r
oriented semicircle ', |z| = R, Im z > 0 together with the

line segment L : [-R, R]. Such integrals can be evaluated by

integrating f(z) round a contour C consisting of a semicircle g Ol R X
I' of radius R large enough to include all the poles of f(z)
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Theory of Residues 25.5

and the part of the real axis from x = —R to x = R. Here, the only singularities of f(z) in
the upper half-plane are poles.
R
When ¢(z) has singularities on the real axis then J. #(z)dz= J. o(x)dx + J- o(z)dz .
c -R r

By the residue theorem, we have [¢(z)dz = 27 (sum of the residues of the function
¢(2) at its poles in the upper half-plane).

R
ie., J. o(x)dx +I #(z)dz=2mi (sum of the residues of the function ¢(z) at its poles
-R r
within C).
Putting R — <o we get, J. ¢(x)dx, provided [r¢(z)dz — 0.

ype 3

Integrals of the form J. (sin ax) f(x)dx or J. (cos ax) f(x)dx.a>0 where f(z) is such

that f(z) — 0 as z — oo and it does not have a pole on the real axis.

SOLVED EXAMPLES

Find the residue of f(z)= ﬁ about each singularity.
z°+

1 1
Soluti Gi = =
olution - Given f&) = T Tl b s F

~ 1
C(z-i)X(z +i)>

Here, z =1, —i are poles of order 2.

Now, [Res f(2)],_;= Ltlli[(z - i)2 f(2)]
z—i 1l dz

=Lt i[(z —i)* (;:I

2oidz z—i)(z+i)

1
z-idz (z+1)

B -2 2 1
- t. w3 .3_4-
z=i(z4+1)°  (20) 1

-1

4
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25.6 Engineering Mathematics

[Res f(2)].__,= Lt ~L[(z+if f(2)]

z—-i1l dz

= Lt i|:(z+i)2 ;}

ioidz 2Pz +i)

= Lt i 1 5
z-idz (z—i)

-2 -2 i
= Lt =—=— Ans.
zo-i(z — ,‘)3 8 4

-1
|penny (VAN Evaluate J — 2 4z where Cis the circle |z —il =2.

c(z+1*(z-2)

[AU June 2009, May 2012]
. z-1
Solution Letf(z)= —————
(z+1)(z-2)
Here, z=-1is a pole of order 2.

And z =2 is a simple pole.
Clearly, z =2 lies outside the circle 1z -il =2

[Res o). =0
Now, [Res f(2)]._y= Lt 1oz +1) f2)

z—>

Lt i|:(z +1)% &]

214z (z+1)*(z-2)

L 422t
z—-1dz| z-2

- Lt [w}

z-1 (z—2)

-2+1 1
zEt—ll:(Z -2)? } B zl—?t—1|:_ (z— z)z:l

-1 _l

T(1-27 9

- by Cauchy’s residue theorem,

J Z—_ldz =2mi [sum of the residues]
o

(z+1)%*(z-2)
= Zni(—l) = —27i Ans.
9 9

Example 3 ERNVEIRELS J

C c(z2 + 9)3 ’
theorem. [KU Now. 2011]
1
Solution Let f(z)=———
us) 22 +9)°

where Cis |z—il =3 by using Cauchy’s residue
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The singularities of f(z) are

= z =+3i, of which z = 3i lies inside the circle |z —il =3

z=3iis a triple pole of f(z).

[Res f(z)],_5;=

Y
2! (z+3i)°

Theory of Residues

obtained by 22 +9 =0

R N
2! dz? (z +3i)°

:|z—31'
i|z—3i
6 1

65 1296i

12

By Cauchy’s residue theorem,

dz

3

J
el XA Show that

Solution Letz=¢"

=

=27
(z2+9)°

i X L
12961 648

a6 2w

JZR
0

a+bcos@=\/a2_b2

25.7
2Y
\ > X
1z=-3i
Fig. 25.3
Ans.
,a>b>0.

[KU May 2010; AU Nov. 2010, Nov. 2011, April 2013]

do-L
iz

a0 iz

J-2n
0

a+bcost9: c 1 ( 1)
a+—blz+—
2 z

dz

_lj_
ide [
z

dz

2z

de 2 dz

a+lb(z+
2

_1J'
i Cz 2az+bzz+b}

JDZIL'
0

u+bcos(9:7.|‘cbzz+2uz+b

2
= T.[c f(z)dz

where Cislzl=1

)

@™

The poles of f(z) are given by the roots of bz* + 2az +b=0

—2a
z=

+./4a? — 4b>

2b

B —at.ja*- b’

EM_UnitX_25.indd 7
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25.8 Engineering Mathematics
. —a+«/a2—b2 —a—\/az—bz
e, z= ’
b b
—a+ja*-b? —a—ja*-b*
Let o= b ; ﬁ = b

Sincea>b>0, 18l >1
But the modulus of the product of the roots | o8| =1 (since if az> + b + ¢ =0, product

of the roots Iaﬁlzg).
a

Since 1Bl >1 and loffil =1, we get lal <1 so that z = o is the only simple pole

inside C.
Since z = orand z = B are the roots of bz? + 2az + b = 0, we can write bz? + 21z + b =
b(z - a)(z-P)
1
Hence, )=
/ b(z-a)(z - B)
Now, [Res f(2)],_,= Lt (z—)- f(z)
zZ—>o
1
=Ltiz-o¢)—————
Ty
—ab(z—B)  bla-P)
_ 1
b (—u+ a?—b? J [—a— a?—b? J
b b
_ 1
b 2./112 —v?
b
1

From (1), since 18I >1,
B lies outside the circle 1z =1

[Res f(z)],- =0

2 do 2
Honce, = [ oy
ence, (1) o a+bcos@® i Cf(z)z

= 2 [27i X (sum of the residues)]
i

NP RS S
i 2,/a*-b?
J‘Z” do 2=
o a+bcos@ \/aZ_bZ

Ans.
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Theory of Residues 25.9

T adf
IE AN Evaluate J -5 4>0. [KU Nov. 2010]

.2’
0 a“+sin“ 6

V1
Solution Let I= - ad6 5
0 a“+sin” 60

_J'” add
0 5 (1—c0529]

a+|—
2
J"‘ 2ad6

0 2a%+1-cos 26

Put20=¢ = 2d0=d¢
When 6=0, ¢=0and when 0=7, ¢ =271

2 Za(dﬁ)
= —\2J)
0 2a%+1-cos (]

_ J.z;z ad

0 2a2+1—cos¢

)

Put z =¢%, then d¢ = E
iz

1 1
cosp=—|z+—
¢ 2( zj

dz
a-—

Then H=1I= J- Lz
C 2 1 1

{211 +1- —[z +ﬂ
2 z

where C is the unit circle Iz| =1

_EJ' dz
ide[ 2 1_
2a2+1—;(z * j

z
_EJ‘ dz

i C_4azz+22—zz—l}

2z

_Q dz
Cide@r+2)-2-1
2 d:

i Jez?—(4a*+2)z +1

. dz
=2a1j#
Ccz:—(4a"+2)z+1

2ai

sI= ,fcf(z)dz, where f(Z) = m
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25.10 Engineering Mathematics

The poles of f(z) are the solutions of
22— (4a*+2)z+1=0
22— (4a®+2)z+1=0

(42 +2) +.)(4a* +2)>— 4
z=

2

2(2a* +1) + 4aya® + 1

2

=(2a2+1)£2a/a>+1
= z2=(2a%+1)+2a\a® +1 or 2a° + 1) - 2ayJa® +1
Let o =2a+1) +2ayJa’ +1 and B = (2a>+1) — 2a\Ja*+ 1

Since o, Bare the roots of z2 — (4a® + 2)z + 1 = 0, the product of the roots o/f =1
Since a >0, ov>1 also, f< 1.
.. out of the two poles crand S, z = f lies within the unit circle |z| =1 (since | Bl <1)

Now, [Res f(2)],_p5= thﬁ(z =B f(2)
2ai
R Ty
_ 2ai
5 a
_ 2ai
Q@ +1-2a\Ja +1) - (247 +1-2a,/a’ +1)
_ 2ai _ —i
—4a\/u2 +1 2\/512 +1
1=]Afz)dz

=2mi [sum of the residues of f(z) at its poles]

2.a%+1

T g  m A
= ns.
0 a“+sin“ 6@ \/a2+1

2

= X
Bvaluate | ——*— —ix,a>0,6>0.
i o (P4 aH)(+1?)

[KU May 2010, Nov. 2011]

Z2

Solution Let Icq)(z)dz = J.Cmdz

where C consists of the semicircle I' and the bounding diameter [-R, R].

Now, -[c O(z)dz = J._RR O(x)dx + L &(z)dz 1)
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2
z

Z2

Tz +ia)z—ia)(z + ib)(z — ib)

Here, the poles are z = ia, —ia, ib, —ib

Here, z = ia and z = ib lie in the upper half-plane while z = iz and z = —ib lie in the
lower half-plane.

We have to find the residues of ¢(z) at each of its poles which lies in the upper
half-plane.

Now, o(z)=

[Res f(z)],_;,,= Lt (z—1ia)- ¢(z)

2

Lt (2 — ia)—— e :
z—>ia (z +ia)(z — ia)(z + ib)(z — i)

Lz
z—in (2 — ia) (2° + b?)
B )
zia (ig + ia) ((ia)* + b%)

_az
 2ia(—a? + )
_ a
 2i(@® - 1Y)

[Res f(2)],_;,= Lt (2= 0)9(2)

ZZ

Lt (z—ib
S (2% +a?)(z + ib)(z — ib)

ZZ
= (2% +a*)(z + ib)
_ (ib)*
(i) + a?][ib + ib]
R
C(@-b)2ib  2i(a® - 1Y)

In (1), making R — oo, we get
J-Cd)(z)dz = J.m(b(x)dx + J.r¢(z)dz
When R — e, |z — o0 and ¢(z) — 0

'[ #(z)dz= r ¢(x)dx [from (1)]
C —oco

J“’" x2 dx B J"” 22dx
co (P a?) (P + D) e (2P a®) (2P H D)

=27
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25.12 Engineering Mathematics

[sum of the residues of ¢(z) at each pole in the upper half-plane]

=2mi a - b
2i(a®-b*)  2i(a*-1b?)

—omi|l — 2 |=omi L
2i(a® - b*) 2i(a—b)(a+D)

J‘“’ x2dx T

= Ans.
e (P +a’)(F*+b%) a+b

|peiny (VAN Evaluate J. :i_x [KU Nov. 2010]

0 x +1

)

Solution Consider J

0o x*+1
J“” dx _J“” dx
0o x*+1 0 z¥+1
ie., 2 fx =J f"
0 x*+1 —z 41

The poles are the roots of Z4+1=0

ie., =1

.

= z=(-1)

= [Cos(Zn + 1)%+ i sin(2n + 1)%} where n=0,1,2,3

When n =0, z=cos£+isin£=e%=i+il
4 4 \/E \/E
Whenn=1, z= coss—”+ i sin3—ﬂ: et
4 4
Whenn=2, z= CosS—”+ i sin5—ﬂ= e
4 4
Whenn=3, z= cos%+ i sin%: eWTﬂ

G
=

iSm
4

i i7r
Hence, the poles are z=e*,e * ,e * ,e*

Out of these poles, z= e%, ¢+ lies in the upper half-plane.

in
z—et

[Res¢(z)] .= Lt —
z=cd Tz +1
z—e

1 . , T
= Lt; —= - (applying L'Hospital's rule)

i

N
!
«
IS
>
—_—
S
|

EM_UnitX_25.indd 12 @ 8/24/2017 3:31:44 PM



Theory of Residues 25.13

i3n

_p 4
[Resd(z)] se= Lt —°
e b He%" z°+1
~ 1 1
- i37t_3 i3 3
zse 4 4(337)
1
107

) J‘"“ dx J‘“’ dz
o x*+1 Jewzt41
=2mi [sum of the residues at each pole in the upper
half-plane]

SlE R
I: dx _1(~ dz 1=

=— = Ans.
A1 2)aztv1 242

EXERCISE

1. Define essential singularity with an example.

Define removable singularity with an example.

3. Define simple pole and multiple pole of a function f(z). Give one example for
each.

4. Define the residue of a function at an isolated singularity.

State the formula for finding the residue of a function at a multiple pole.

6. Find the residues at the isolated singularities of each of the following:

N

a1

z ze® . zsinz

® (z+1)(z-2) ) (z—-1) (u) (z—m)°

7. Evaluate the following integrals using Cauchy’s residue theorem:

(i) J- z+1 dz where C: |zl =2
cz(z—-1)
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25.14

—Z
(ii) '[ 62 dz where C: Izl =1
Ccz

a rational function.

Engineering Mathematics

2
Explain how to convert J. f(sin 8, cos 8)dO into a contour integral, where fis
0

9. Obtain the poles of — 2t .
z°+2z+5
-2
10. By using residue theorem, find the value of J- z 1 dz where Cis |zl =2.
czZ—
22

11. Find the residue of f(z)=————— atz=-2.

(z=1)(z+2)

4
12. Find the singularities of f(z) =2L.
z°+2z+2

13. Find the residue of f(z)= 2z aboutz=1.

z°+1
14. Find the residue of f(z)=——— atz=ai

(z°+a”)
15. Find the residue of the function f(z)= S at a simple pole.

23(z-2)
16. Find the poles of f(z) =;1 .
sin
z—a
17. Find the singularities of the function f(z)= (COt 71')23 .
z—a
18. Give the forms of the definite integrals which can be evaluated using the
infinite semicircular contour above the real axis.

19. Define Cauchy’s residue theorem.
20. Find the residue of atz=1.

3

(2°-1)

1. Evaluate the following using Cauchy’s residue theorem:

. 1-2z ) _é
(1) J;de,C.lZl— 2
.. 2z—-1 o
@ [ gyt A

e 4
(iii) J—Zdz,Czlzlzl
o

y4
™ |

12z -7

mdz,&lz+il:\/§
z— y4

[Ans. (i) 3 (ii) % (iii) —27i (iv) 47r1}
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Theory of Residues 25.15
2
2. Evaluate J d—e (Ans. Ej
o 13+5sin6 6
2
3. Evaluate J d—9 [Ans 2—”)
o 17—-8cos6 15
= dx T
4. Evaluate J . Ans.
o xt+at [ P2 j
o 2
5. Evaluate J %dx. (Ans. E)
0 (X" +1)(x°+4) 6
6. Evaluate I % (Ans 3,u>0]
0 (x“+a%)
7. Evaluate I %dx. (Ans.lne’“j
0 x“+a 2
8. Evaluate I cos x2 dx . (Ans.ﬁe’”]
—e X"t a a
9. Prove thatJ. %:3—7?
—=(x+1)° 8
o 2
10. Evaluate I %dx. (Ans. Ej
0 (x*+1)(x°+4) 6
o .2
11. Evaluate the integral J f 1dx using contour integration.
0 X"+
12. Evaluate I ﬂdx. (Ans. l)
0 (1+x%)? 2e
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UNIT V
LAPLACE TRANSFORMS
CHAPTER |

1.1 Introduction

The knowledge of Laplace transforms has in recent years become an
essential part of mathematical background required of engineers and scientists.
This is because the transform methods provide an easy and effective means for
the solution of many problems arising in engineering.

This subject originated from the operational methods applied by the
English engineer Oliver Heaviside (1850-1925) to problems in electrical
engineering. Unfortunately, Heaviside’s treatment was unsystematic and lacked
rigour, which was placed on sound mathematical footing by Bromwich and
Carson during 1916-17. It was found that Heaviside’s operational calculus is best
introduced by means of a particular type of definite integrals called Laplace
transforms(Pierre Simon Marquis De Laplace, French Mathematician (1749-
1827) used such transforms much earlier in 1799, while developing the theory of
probability).

Laplace transform is useful since

(1) Particular solution is obtained without first determining the general
solution.

(i)  non homogeneous equation are solved without obtaining the
complementary integral.

(i) Laplace transform is applicable not only to continuous functions
but also to piecewise continuous functions, complicated periodic
functions, step functions and impulse functions.

Before the advent of calculators and computers, logarithms were
extensively used to replace multiplication (or division) of two large numbers by
addition (or subtraction) of two numbers. The crucial idea which made the
Laplace transform, a very powerful technique is that it replaces operations of
calculus by operations of algebra.

Laplace transformation when applied to the initial value problem
consisting of a single or a system of linear, ordinary differential equations,
converts it into a single or a system of linear, algebraic equations in terms of the
Laplace transform of the dependent variable. This equation is called the
subsidiary equation. The initial conditions are automatically absorbed during the
derivation of this algebraic equation. The solution of this algebraic equation gives
the expression for the Laplace transform of the dependent variable. Taking the
inverse Laplace transformation, we find the solution of the original initial value
problem.

In the case of partial differential equations in terms of two independent
variables, the Laplace transformation is applied with respect to one of the
variables, usually the variable t(time). The resulting ordinary differential equation
in terms of the second variable is solved by the usual methods of solving ordinary
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differential equations. The inverse laplace transform of this solution gives the
solution of the given partial differential equation.

One of the important applications of Laplace transformation is the solution
of the mathematical models of physical systems in which the right hand side of
the differential equation, representing the driving force is discontinuous or acts for
a short time only or is a periodic function (which is not necessarily a since or a
cosine function).

1.2 Laplace transform
Let f(t) be a given function defined for allt>0. Laplace transform

of f (t)denoted by L(f (t)) or Simply L(f)is defined as
L(f(t)=[ e f(t)dt=F(s) 1)

L is known as Laplace transform operator. The original given function f(t)
known as determining function depends on t, while the new function to be
determined F(s), called as generating function, depends only ons (because the
improper integral on the R.H.S of (1) is integrated with respect tot).

F(s) in (1) is known as the Laplace transform of f (t). Equation (1) is known
as direct transform, or simply transform in which f (t) is given and F(s) is to be
determined.

Thus Laplce transform transforms one class of complicated functions f (t)to
produce another class of simpler functions F(s).

1.3 Applications

Laplace transform is very useful in obtaining solution of linear differential
equations, both ordinary and partial, solution of system of simultaneous
differential equations, solution of integral equations, solution of linear difference
equations and in the evaluation of definite integrals.

1.4 Sufficient conditions for the existence of Laplace transform of f(t)
The Laplace transform of f (t) exists, when the following sufficient conditions
are satisfied.

Foa

Piece-wise or sectional continuity

A function f(x) is called
sectionally continuous or piece-wise b= 70 \4
continuous in any interval [a,b] if it is
continuous and has finite left and right
hand limits in every subinterval [a,,b, | >
as shown in the graph of the '
function f(x).

Fig. 1
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Functions of exponential order
A function f(x)is said to be of exponential order 'a’ as X —o

if Lt e f(x)=finite quantity.

Example:
2
(a) Sincetkgoe% = finite, f (t)=1t? is of exponential order say3 .
t2

(b) Since Lt eTt = not finite, f(t)=e" is not of exponential order.
—>®0 e

1.5 Laplace transforms of some elementary functions.

1 L(l)z%,(s>0)

2. L(t”):s?—il, whenn=0,12...........

or L(t”): F(snnzl), whenn=0,12........
3 L(eat):a,(s>a)
4. L(sin at)=szia2,(s>0)
5. L(cosat)= sziaz (s >0)
6. L(sin hat)= = faz (s>a])
7. L(coshat)= = > = (s>1a])

Hence L(1)=

In general L(k) = K wheres >0 andk is a constant.
s
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2. L Je[ et ot
dx

Putting st = x ort ~Xordgt==
s s

n © 4 X " dx
Thus we have L(t ): jo e [;j e
Lo L)L [ e e

n+1
S

s?*!l‘ [since(n+1)= I:e’xx”dx and(n+1)=n!]

3. L(eat ) = J.Ooe’St e?'dt

or L(tn ):

o0

0

(or)
eiat _e—iat eiat _ e—iat
L (sin at)= L(Z—J (as sinat=———)
[

2i
Ll e
Ll )- e ]

_i{l_l}_i 2ia ] a
2i|s—ia s+ia 2i| s?+a? s?+a?

5. L(cosat)= .[OOO e™'.cosatdt

0

e—St ]
=| —— (- scosat —asin at)
s?+a )
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)

S"+a
S

s?+a’

. L(cosat) =

6. L(sin hat)= _roe’“ sin hat dt

= —5‘( e e’ }dt

_ = © _—(s-alt _ © _—(s+alt
_2[-[0 e dt _[O e dt}
_E[L_L}

2]s—-a s+a

. L(sin hat) =

s?—a?

7. L(coshat)= J:O e~ cos hat dt

at —at
e (%Jdt

I e e atdt+j e e” atdt]

J'e 54 dt+'[ g (srak dt]

I\)II—‘ r\JII—‘ I\)IH

L(coshat) =

S"—a

1.6 Laplace transforms of some special functions

Heaviside’s unit step function
The function

u _a):{o, .if t<a

1, if t>a where a>0 )

‘1+1}_1{ 2s }_ s
s—a s+a| 2|s*-a?| s’-a’

u(r— .:z)

—
is called Heaviside’s unit step function and '
is denoted by u, (t) oru(t —a).
In particular whena =0, ! .
u(t):{o !f t<0 Fig. 2

1 if t>0
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Multiplying a given function f(t)with the unit step functionu(t—a),several
effects can be produced as shown in the following figure.

\ £l

st

s

L 2

° T 2 o

4/\ /\ f 4r\ [ , 7
\/

Fig. 3
f(t)=4sint f(t) u(t-3) f(t—3)u(t—3)
Given function Switching off and on Shifted to the right by 3

units

Unit impulse function (or Dirac’s Delta function)

When a large force acts for a short time, then the product of the force and
the time is called impulse in Fluid Mechanics.
Impulse of a forces f(t)in the interval

(a,a+€)

= [ f ()t

Now define the function
0 for t<a

—

/—} Area =1

2 a+e f

f(t-a)= 1 for ast<a+e
S

0 for t>a

This can also be represented interms of
two unit step functions as follows. Fig. 4

f(t-a)=2[ult-a)-u(t—(a+ )]
(S
Note that
00 a a+e]_ 00
[ ft-a)dt=[ 0+ [ =dt+[ 0=1

[= a+e

F—— mil—

L J

Thus the Impulse | _ isl
Taking Laplace transform

L. (t-a)] =S Lfu(t-a)-ut—(a+ <)
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_a-sS
:i[e—as _e—(a+e)s ] —ga (1 € )
€s €S
Dirac delta function (or unit impulse function) denoted by
5(t —a)is defined as the limit of f_(t —a)ase— 0.

ie, st-a)= Lt f_(t-a).
Laplace transform of unit step function
L(u,(0)=[ e u, (t)dt

= J:e‘S‘ ua(t)dt+J'je‘St u, (t)dt

= j:efst dt (by the definition ofu, (t))

e_st *© g3

= = ,assuming thats >0

-S
a

s
In particular L(u,(t)) :% =L(Q).

Laplace transform of Dirac delta function
L(s(t-a))= Lt L[f_(t-a)]

=Lte™ b-e=)
-0 €S

. L(ot-a))=e.

1.7 Properties of Laplace transforms
1. Linearity Property

If a,b,cbe any constants and f, g, h any functions oft, then

Lla f (t)+bg(t)—ch(t)]=aL(f (1) +b L(g(t)-cL(h(t)

LH.S
L[a f(t)+bg(t)-ch(t)] = ["e[a f (t)+ by(t) - ch(t)]dt

=aj0w e f(t)dt + bj: e g(t)dt - CI: e~'h(t)dt

=al(f(t))+bL(g(t))-cL(h()).

This result can easily be generalized.

Because of the above property of L, it is called a linear operator.

2. First shifting property (or) (Translation on the s-axis or shifting on the

lea)lji(sf)(t)) = F(s) thenL(e* f (t))= F(s—a).
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L.H.S
eatf J' e—st at ¢

:L e s a o
e, Le® f(t)=F(s —a) (since L f(t)= F(s))
similarly we can prove
Lle f(t))= F(s+a),

Fig. 5
Translation on the s -axis
(first shifting theorem)

3. Second Shifting Property (or Translation on thet —axis)
If L(f(t))=F(s)thenL[f(t—a)u(t—a)]=e*.F(s)

L.H.S
L[f(t—a)u(t—a)]=fe’“[f(t—a)u(t—a)]dt
:_[an’St f(t—a)O0dt+ .[:e’St f(t—a)ldt
= re‘“ f( t—a)dt

—I g stxa) x)dx. (by putting t—a = x,dt = dx.
whent_a,x=0 when t = oo, X =00)

=e ™ j:e‘sx f (x)dx
=e® j:e’s‘ f(t)dt by changing the dummy variable x ast .

e, L[f(t-aj(t-a)l=e™F(s).

4. Change of scale property

L1 (0) = F(5) then (1 at) = - F@
L.H.S
L(f(at))= J.:e‘st f (at)dt

Putat =uthendt = —

591



Note
Application of first shifting property leads to the following results:

1) Le*)= é, L(1)=%

2) Lle"t")= (S_nﬁ o Lt)= S?L

3) Lle" sinbt)- - a; — Lsin bt)=— _t:bz

4) L(e* cos bt):(s—s:a);zibz’ »+ L(cos bt):ﬁ
5) L(e sinh bt)= m .+ L(sinh bt) = = Ebz
6) L(e* coshbt)= ﬁ, »+ L(coshbt) = ﬁ

where in each cases >a.

Periodic function
A function f (t) is said to be a periodic function of period T > 0 if

ft)=ft+T)=f(t+2T)=rorre. f(t+nT).
Examples: sin tand cost are periodic functions of period 27 .
Geometrically, this implies that the graph of the functiony = f(t)repeats

itself after every interval of lengthT .
The following are some examples of periodic functions.

fies
(i) Triangular wave
t , O<t<a !
f(t)=42
() 2a—t
, ast<2a .
a < clz la 3a da :’
ft+T)=f(t+2a)= f(t).
Fig. 6
Triangular wave

(i) Square wave P

k , O<t<a

f()- )
-k a<t<2a *

ft+T)=f(t+2a)= f(t)

Fig. 7 Square wave
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(i)  Square wave
k O<t<a
£(t)= )
0 : a<t<?a

ft+T)=f(t+2a)= f(t)

(iv)  Sawtooth wave
f(t)=t, O<t<a.
flt+T)=f(t+a)= f(t).

 —

|
|
|
i
i
i
i
i
i
i
i
!
a

L J

1a

la 4a f

Fig. 8 Square Wave

o 2 da 3o b3

Fig. 9 Sawtooth wave

1.8 Laplace transform of periodic function:
If f(t) is a periodic function with periodT, i.e., f(t+T)= f(t), then

L(f (0):& [le= ft)at.

Proof
We have L(f (t))= J:e‘St f(t)dt.

T 2T 3T
= [ e fO)dt+[ e ft)dt+[ e Ft)dt+.......

In the second integral putt =u +T, in the third integral putt =u+2T and so on.

Then

T T T
L(f (t)):J.O e f (t)dt +IO e U T (U+T)du+ IO e U2 £ (U+2T )du+.......... :
_ T s —sT [T st —2sT [T st
=[ e f(t)dt+e [ e f(u)du+e [ e fu)dut .

(since f(u)=f(u+T)=f

T st —sT [T st —2sT [T —su
=[ e f(t)dt+e T [ e f(t)dt+e ™ [ e f(t)dt+ .

—(L+e S 4o
1 s
L(1H0)= e [e f (0o
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1.9 Laplace Transform of Derivatives

If L(f(t))=F(s),then L(f'(t))=sF(s)- f(0).
Proof
L(f'(t)=[ e f*(thot
et - J': (—s)e™ f(t)dt. (using integration by parts)
Now assuming f (t)to be such that Lt e~ f(t)=0
Thus L(f'(t))=—f(0)+s[ e f(t)dt

i.e, L(f'(t)=sF(s)-f(0)
Similarly, L(f"(t))=s* F(s)—sf (0)— f'(0)
L(f"(t)=s"L f(t)—s"*£(0)—s"2£'(0)=5"*f"(0)........— F"*(0).

1.10 Laplace Transform of t"f(t). (Multiplication byt")

If L(f (1)) = F(s) then L{t" f(t))=(~1) %(F(s)),where =12

Proof

L(f(t))=F(s)= j:e‘“ f(t)dt

Differentiating (1) with respect to s, we get

SFE)= ] [e fa] - 2t t)er
=[(te=) f()dt = [ e (-t £ (1))
“L-t (D) or L F©)= 1) S (FG)

ooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooo
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1.11 Laplace Transform of%f(t) (Division byt)
If L(f(t))= F(s) then LE f (t)} = J':O F(s)ds, provided tLtOE f (t)} exists.

Proof
L(F(t)=F(s)=[ e~ f(t)dt

Integrating on both sides with respect to s, we get,

[[F@E)ds=[" U et £ (1) ds}dt

=J' I f(t)e dsdt . (changing the order of integration)

:I )U e ds] dt

Ll e e

Hence L[% f (t)} = J':c F(s)ds.

In many problems of electrical engineering, we encounter integro-
differential equations. Consider a series electric circuit. Using the kirchoff’s
second law, we obtain that the flow of current satisfies the integro-differential

equation.

Ldy Ri+1ridr= E, cos wt
dt c’o

Many other integro-differential equations arise in the theory of electrical circuits.
If Laplace transform method is to be applied, we need the formula for the Laplace

transform of an integral. Such a formula is presented as follows.

i
=td

Fig. 10 Series electric circuit
C : Capacitance, E : impressed voltage
L : inductance, R : resistance
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1.12 Laplace Transform of integrals

If L(f(t))= F(s), then L[ J! f(t)dt] _ % F(s).

Proof
Let(t)= [ (t)dtthen ()= f (t)and 4(0)=0
We know that

L(# (t))=sL(4(t) - 4(0)
=sL(g(t)) (since 4(0)=0)

or L(p(t)= L ()

subsisting the values of #(t)and ¢'(t), we get
{ﬁfaqugLua»
La,{ﬁfaquép@)

Example 1
Find the Laplace transform ofe® —e".

Solution
L[eat _ebt]: L(eat)_ L(ebt)
1 1 a-b
= — = . Ans.
s—a s-b (s—a)(s-b) "
Example 2
Find the Laplace transform of 3t* — 2t® + 4e™* — 2sin 5t + 3cos 2t .
Solution
L[3t* — 23 + 4e* — 2sin 5t +3cos 2t
—3L(t*)-2L(t*)+4L(e™)-2L(sin 5t)+3L(cos 2t)
4l 3 1 5 S
=3.—-2.—+4. —2. 3. . Ans.
5 T Ts43 T a5 sty "

Example 3
Find the Laplace transform of [3t® — 2t* + 4e™ —3sin 6t + 4cos 4t e

Solution
L[3t® —2t* + 4e ™™ —3sin 6t + 4cos 4t

—3L(t°)—2L(t*)+ 4L(e ™ )-3L(sin 6t)+ 4L(cos 4t)
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I
YL Yo N S SO S
s® s° S+5 s +36 s° +16
Applying first shifting theorem,

L{{3t° —2t* + e —3sin 6t + 4cos 4t |

ﬁ:)_d'_?Jr 4 218 + 245 with s replaced by s — 2
S S s+5 s“+36 s°+16
360 48 4 18 4(s-2)
- — + — + . Ans.

(s-2)° (s—2f (s+3) (s—2Y+36 (s—2) +16

Example 4
Find the Laplace transform of (i) e™(2cos5t—3sin5t) (ii) e* cos®t

(iii) e* sin 2t cost .

Solution
()  L{e™*(2cos5t —3sin 5t)j= 2L (e cos5t)-3 L( ' sin 5t)
s+3 _3 S 25 -9
(s+3) +5% 2452 s?+65+34

=

s+3)° +
(i)  Since L(coszt):%L (1+cos2t) {

. By shifting property, we get

1 1 5—-2
Lle* cos®t)== +
( ) 2{8—2 (5—2)2+4}

(i)  Since L(sin 2tcost) :%L(sin 3t +sin t)

1f 3 1
2s?+3% 2412

. By shifting property, we obtain

] 1 3 1
Lle* sin 2tcost )= = + . Ans.
( ) 2{(5—4)2+9 (s—4)2+1}

Example 5
Find the Laplace transform of

1, 0<t<1
ft)=4t, 1<t<2
0, t>2

Solution
L(F(t)=[ e 1dt+[ e tdt+] e (0)at
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l_efs 2e728 e72$ e—s e—s
= —+ —_ —_ —_ —_
S S s? -s g2

B 1 26—25 . e—s e—25

S S e Ans.
Example 6
Find the Laplce transform of t* cosat.
Solution
L t)=
(cosat) Y
d? S
L(t? cosat )=(-1)° —
( cosat)=(-2F S| |
_d (32+a2)1—s(23) _d| a*-¢’
ds| (s2+a?f ds| (s> +a?f
(s?+a?) (-2s)—(a% —s?)2(s? +a%)2s)
(32 +a2)4
_—2s®—2a’s—4a’s+4s°
(32 +a2)3
_ 25(s* —3a°) Ans
(32 +a2)3
Example 7
Obtain the Laplce transform oft? e'.sin 4t .
Solution
. _ 4
L(sin 4t)= Lle'sindt)= ————
(sin 4) s’ +16 | ) (s—1)* +16

. —d 4
. L{te'sin 4t)= ds 57 —2s+17)

4(2s-2)
(s? 25 +17)
. d 2s -2
L(t? etsin 4t)=—4—— "% _
tretsn ) ds (s2 — 25 +17)

598



__ls?—2s+17) 2—(25-2)2(s* ~ 25 +17) (25 -2)
(s* 25 +17)'
__[2s?—4s+34-85* +165-8)
(s —2s+17)
__ |67 +125+26) _8(3s* —65-13)

= . Ans.
(s> —25+17) (s> —25+17)
Example 8
sin 2t
Find the Laplace transform of
Solution
Here Lt (MJ exists.
t—0 t
L(sin 2t) =—
L(Sin—Zt): ) 22 .ds=2.£[tanl§}
t s s°+4 2 2],
:[tan o0 —tan } Y Ans.
2 2
Example 9
Find the Laplace transform oftu(t - 3).
Solutlon
t2u(t-3 )=[ —3)* +6(t— 3)+9Jut—
=(t-3) ( ~3)+6(t —3)u(t-3)+9u(t -3)
L(t? u(t - 3))=L(t - 3)?.u(t —3)+ 6L(t — 3)u(t —3)+ 9 L u(t - 3)
:e35[%+%+g}. Ans.
s s° s
Example 10

Evaluate (i) L{ ‘tj wdt}

(ii) L{t j;e f'” t dt}

(iii) L{[;j;j;(tsint)dtdtdt}.
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Solution

We know that L(sin t) = 21
s°+1
L sint :Iw 21 ds =% _tants=cotls
t 0s°+1 2

{J‘tw dt} Zcotts

Thus by shifting property, L{e‘t[ t%dt)} = icot‘l(s +1).
0t s+1

(i) Since L(ST tj =cot™s
" L[et S’I:—tj =cot (s +1)

and L{J‘t g SNt dt} = Ecot‘l(s +1)

s
=]
Hence L{ Ie B SIr]tdt} = _dg {COt §S+1)}
N—— —cot (s +1)
1+ (s +1)
— X

s+(s? +25+2)—cot (s +1)
s2(s? +25+2)

(iii) SinceL(sint)=

s?+1

_ : d 1 23
. Ltsint)= S T (sz+1)2

Thus L{f;j;j;(tsin t).dtdtdt}.

:%L(tsint) :%. 28 = 2 ~. Ans.
S s (s2+1f  s%(s?+1)
Example 11
at
Find L{e—“’sﬂ and Lftesint]. [AU APR 2011, AU NOV 2011].
Solution

at
Consider tLo{e—COS&}
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Since the limit exists, we can find L{

{ —cos6t}j (6™ — cosét)d

et —cosGt}

1 S
0 52 +36

-5
[Iog s—a) ——Iog(s +36)}

ds

0

S

(ii) To find L|te*sint]

We know that L(sin t) =

s +1

o 1
" L(e tS'n t):m

o d 1
L[te tSln t]:—E{m}

_ | —(2s+2) :2(s+1): 2
(s?+2s+2f | (s+1)° (s+1f
Example 12

e—at _ e—bt
Find L{f} [AU MAY 2012].

Solution
L(efat _e—bt): 1 _ 1
s+a s+b
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oo
S

=[log(s +a)—log(s +b)]

(1+a)
s+a S
=Iog{—}:log

s+b

(1+ 2) S
; L(e’at - e’b‘) = log {ﬂ} .

S+a

Example 13
Evaluate j:te-2t costdt. [AU MAY 2012]

Solution
J‘ooote*2t costdt = fe’” (tcost)dt

=L(tcost) and here s = 2
d

~(-1)Z L (cost

)4 Lost)

:(_1)%(3211)
:_{32 +1—s(23)} _ _l: —-s’+1
(52 +1)2
s? -1
(52 +1)2 .

Example 14

Ans.

AnS.

Find the Laplace transform of et sin 2t (or) L(e’Ztt sin 2t). [KU NOV 2011]

Solution
We know that L(sin 2t) =

s’ +4
B 2
(s+2)°+4 s°+4s+8

Then Lte* sin 2t)= —i{#}
ds|s® +4s+8

. L{e®sin 2t)=
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__{ —2(2s+4)}
B (s? +4s+8f

4s+2)

=, Ans.
(s +4s+8)
Example 15
Find the Laplace transform of the function (Half wave rectifier)
sinwt~ for 0<t<”
f(t)= ‘é’ :
0 for Z <t< —ﬂ- '
o o £t
Solution
Since f(t) is a periodic function with
period 277/, we have N
2z
L(FE)=—2 [ e Ft)ct N O X
- o S
W
__ 1 — Uoﬁ/we“ sinwtdt+ [ e (0)dt Fig. 11
l-e @ i
__ 1 — 'foﬁ/we’St sin wtdt
l1-e @
1 [ e : ’
= —| —— (- ssin @t — wcoscot)
lg @ ST tw o
1 |we?+ow
) AP
l-e » |
a){1+ e‘”}
- T
(s? +?) 1-e © }
= @ Ans.

(s? + ) 1—e7;5}
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Example 16
Find the transform of the function defined by(triangular wave function)

t
f(t):{t O<t<a
2a—-t a<t<?a

where f (t+2a)= f(t) [AU OCT 2009,
AU DEC 2009, APR 2011, KU NOV 2011].

s

Solution
The given function is periodic of period 2a.

L(F(t) = 1_2_ST [le= ()
- [Te

e
1 an‘s‘.t dt+J':ae‘S‘(2a—t).dt_ Fig. 12

1 e—st e—st a e—St e—St 2a
1-e2 { -s s° l {( )—s s? L
1 1 1 a
= e 5 -

=

e

=
Lex
=)
=
=
[
=
=

Sz'l_e—Zas
1 fe®f 1 f-e®
s (l—e‘as)(1+e‘as) s? [l+e™

as

2 _ 2
L L(f()= %l = iztan h(ﬁj . Ans.
¢ = 2 g 2
e’ +e ?
Example 17
Find the Laplace transform of the rectangular wave given by
1 , O<t<b .
f(t)= with f(t+2b)= f(t). [AU NOV 2010, AU
-1 b<t<2b
NOV 2011]
Solution

The given function is periodic of period 2b
1 T
Now L(f (t)) = ﬁj‘o e t f (t)dt

1 2b
zl_e—’ZbSJ.O e tf(t)dt
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=Ij§gﬂ%“®m+f%“FDm}

0

1 i e—S'[ b e—St 2b 78
T1-e?|(-s ) (-5, :

€

1 1, s 1( -2bs _ bs
A= )}

1

e

- —2bs

1-—

1 —2bs -bs -1 4
g[e2 — 26 +1]

ety

Csll-e™)i+e™)
_1{1-e™
Ts(tee™

bs
Multiply and divide bye 2
bs bs
2 _a 2
ThenL(f(t))= e —e "l h(b—;J . Ans.
S S

bs bs

Fig. 13

e +e 2

Example 18
Find the Laplace transform of the periodic function defined by the sawtooth wave.

ft)=t,0<t<a, f(t+a)=f(t).

Solution
1 T s
L(f(t)= —— [ e f(t)dt
1 a, .
= [[tedt. (since f(t+a)=f(t))

(S
1 a __as 1 -as
= ew| 5° +S—(1—e )}

1
i ae—as

= - ,§>0. Ans.
52 sfl—e™)

1.13 Inverse Laplace transform
If L(f(t))=F(s)then f(t) is known as the inverse Laplace transform or

inverse transform or simply inverse of F(s) and is denoted by L™(F(s)).
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Thus f(t)=L*(F(s)). (1)
L™ is known as the inverse laplace transform operator and is such that
Ll =L"'L=1.

In, (1), F(s) is given (known) and f(t) is to be determined.

Note
Inverse laplace transform of F(s) need not exist for all F(s).

Some important formulae

1. Ll[l) =1
S

n-1
2. Ll(i):t—l',nzl,ZB ...........

4, L T =coshat

5 L 21 . :Esin hat
s’ —a a

6. L 21 . :lsinat
s’ +a a

7. LT > —=cosat
s?+a?

8. L'F(s—a)=e* f(t)

9. L% + =leatsin bt
(s—a)’+b?) b

10. L % = e cosht
(s—a)’+b

11. L ;22 :leEit sinh bt
(s—a)’-b?) b

12. Lt % = e® cosh bt
(s—a)’ —b

13. L* L = |= 13(sin at —at cosat)
(52+a2) 2a

14. L ;2 :itsin at
(s?+a’f ) 2a
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2 2

ﬁ} =tcosat

SZ

(s? +a’)
-4 F(s)j:t £(0)

18. Linearity property
L (aF(s)+bG(s))=aL™(F(s))+bL™(G (s))
19. Multiplication by s

LA sF(E)= 5 10+ 1(0) 5()
20. Division by s
4f Fls to t
] (Q] [LEE)d = 1)t
21. First shifting property
IfL(F(s)) = f(t)thenL™*(F(s+a))=e* L™ (F(s))
22. Second shifting property

L*e™ F(s))= f(t—a)u(t—a)

23. Inverse Laplace transform of integrals
L‘l[ [’ F(s).ds} = @: % L (F(s))
(or)
L(F(s)) =t L‘l[ j“p(s).ds] .

15. L

16. L™ } :i[sin at + at cos at|
2a

LN

17. L

S

Example 1

o ol

Solution

Let f(t)= L{'OQ ((j__;)lzﬂ

= L(f(t)=log(s? +1)-log(s —1)?
Then L(t.f(t))= —%[Iog (s? +1)~log(s —1)2]

:_{ 25 2(5—1)} _ 2,8

$?+1 (s—1fF | (s-1) “s?+1
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L tf(t)= LlLi_J—Z LleerJ

=2g"' —2cost
g f(t):%[e‘ — cost]. Ans.
Example 2
Find the inverse Laplace transforms of the following
2
(i) log [S—”j (i) log| =1 | i) cotl(ij (iv) tan 1(%} [KU NOV 2011]
s—1 s(s+1) 2 S

Solution

Qi) I ft)=L" |og(s—+ﬂ

We know thatt. f (t) = L‘l{— % F(s)}

Lotf(t)= Ll{— % log (z—tﬂ} = —Ll{% log (s +1)} + Ll{% log(s —l)}

=— Ll[il)+ Ll(il): —e ' +e' =2sinht
S+ S—

Thus f(t)= %Zsin ht.

t.f(t)= L‘l{_dg Iog[ss(zs :j)j}
=Lt {% log (s2 +1)} +L7 {% log s} +L7 {% log(s + 1)}

el ()
s +1 S s+1

=—2cost+1+e"

Thus f(t)= %(1+ e —2cost).
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Gii) If f(t)=L" cotl[%J

t.f(t)=L" icotl(iJ
ds 2
=Ll( S Zzzj =sin 2t
s? +

Thus f(t) = %sin 2t

(iv) Iff(t)= L‘l(tan -+ %j

S
d 2 4s
t.f(t)=L-——tan!| = |} =L*
© { ds (szj} {s4+4}

4 4s _a 4s
-+ {(s2 +2)2 —(25)2} =t {(52 +2+2s)(s? +2—25)}

_1{ 11 } . 11
s?-25+2 % +25+2 (s-1+1 (s+1)°+1

=e'sint—e'sint =2sin htsint. Ans.
Example 3
Obtain inverse Laplace transform of
3
® 9523: 25 ) 6352_+220 (i) 233i9 ) ﬁ V) jsz%)
(vi) ﬁ (vii) m (viii) 932+63+1 (ix) (:+ 35 ® (se+1)3 .
Solution

. 2s-5 I 2s 5
| L_l = L_l _
® {952 —25} 1 9s2-25 9s? —25}

{=-3) {=-5)
g 9
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2 2
9| s? —(Sj 9 s? —(SJ
3 3
5
~Zcosh2t- Lt %
9 3 3 ) (5)
S — J—
i 3
:gcosh§t—lsing.
9 3 3 3
.. s—2 S 2
i) L™ =L" -L*
(i {652+20} {632”0} {63”20}
=1|_—1 S _l -1 1
6 2 E 3 2+E
3
10
_Ecos E.t—1 E.L’l 3
6 37 3V10 . 10
+7
3
_ECOS Et_ism Et
6 V3~ Jao V3
9
(iii) L-l{—?’ } 3 —19 3o
28+9] 2 | 9] 2
2
L 3s _éi eigt +§ef%(0)
25+9 2 dt 2
11, 3
__2T s
4
(iv) L‘{—l }ze""“
s+a
AT e
s(s+a)| Yo (s+a
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e 1 1 B
- +E :E[l—e t].

V) L s?+3 4| s?+9-6 R 6
sisz+9i sisz+9i s si32+9i
=1- ZI;sin 3tdt

— t -1 6
_1_IO|_ (serngs

=1+ 2.%(cos3t)g

=1+3cos3t—E
3 3

2 cos3t4t :l[2c033t+1].
3 3 3

N . &
(vi) L L—S}=Z

4
then L™ 1 = | = e .t—
(s+2) 4l

(vii)

2-2 S+2
s? +4s+13 (s+2) +32 (s+2)* +32 (s+2

2 3
e S —e Lt E
{52+32} 3{52+32

2 )
—e % cos3t —ge’Zt sin 3t .

o 1 a1
o V) {(3“1)2}

9 s? 9
(i) L‘{—l 3} —e™
S+
l|:e 3:| — e—S(tfﬂ)u(t ﬂ')
S+

611




S 1) t?
L H?

S e
- {(sﬂ)S} 2

s 2
then Ll{( ¢ 1)3} :e(”).%u(t—l). Ans.
S+ !

Example 4

Find the inverse Laplace transform of 3t 42 :
s(s—1)(s* +4

Solution

Let us first resolve into partial fractions

s(s—1)(s* +4

s+4 A B GCs+D
s(s-1)(s’ +4)_§+s_—1Jr s’ +4
s+4=A(s—1)(s? +4)+ Bs(s? +4)+(Cs+D)s(s—1) (1)
Putting s=0, = A=-1
Putting s=1, = B=1
Equating the coefficients of s* on both sides of (1) we get
0=A+B+C = C=0
Equating the coefficients of s on both sides of (1), we get
1=4A+4B-D = D=-1
On putting the values of A,B,C, D, we get

s+4 1 1 1
s(s—1)(s?+4) s "1 s2+4

_ 1.1 1

Lt s+4 L‘l[——+—— }
s(s—1)(s? +4) s s-1 s?+4

SEOREAEREEN
s s—-1) 2 s? 422

=—1+¢' —%sin 2t. Ans.

Example 5
2s* —6s+5

s —6s2+11s—6

Find the inverse transform of
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Solution

2s*-6s+5  2s°-6s+5 A B = C
53—632+1ls—6_(s—l)(s—2)(s—3)_s—1+s—2+s—3
25? —65+5=A(s—2)(s—3)+B(s-1)(s-3)+C(s-1)(s - 2)

= A_1 B= 1C_5
2
' 25 —65+5 1 1L_1( 1 }g _1( 1 j
s®—6s?+11s—6 2 s—-2) 2 s-3
_1 t—e2‘+§e3t. Ans.
2
Example 6
Find L* 21 )
(s+2)(s?+2s+2)
Solution
1 A Bs +C

(s+2)s?+2s5+2) s+2 sP42542
1= A(s? +25+2)+(Bs +C)(s+2)

PUts=-2, = A=%

Equating the coefficients of s* on both sides,

0=A+B = B=—A=—%

Equating the coefficients of s on both sides,
0=2A+2B+C = C=-2A-2B=0
1 1

1 2 2
N =
W (s+2)(s?+2s+2) s+2 st12s12

B 1 EL{ 1 j—lLl s+1-1
(s+2)(s? 2 \s+2) 2 ((s+1/+1
1, 1.4 s+1 ] 1. [ 1
_lem | S*L Gyl 2
2 2 {(S+1)2+J 2 {(s+1)2+1}

1 1 ;
e —Ze'cost+=e'sint
2 2
e

+25+2)}

1
2
1
2

= —%e“ (cost —sint). Ans.
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Example 7

: S

FindL*'| ————|.
L“ +s° +J

Solution
S S S

s i+l (32 +1)2 _s? (s -s+1)(s? +s+1)

Sl )

Lfl S —1'_71 1 _EL{L l
is4+sz+1i 2 isz—s+1i 2 isz+s+1i

:lL—l 1 _EL—l 1
2 1V (V3Y | 2 1V (V3
S—— — S+=| +| —
2 2 2 2
12 .3 2 -2 . 3
=—| —=e?sin —.t——e ?sin —t
2| /3 2 B 2
= isin ﬁ.tsin h(l]. Ans.
3 2 2
EXERCISE
PART A
1. Define Laplace transform.
2. State the conditions for the existence of Laplace transform of a function.

3. State change of scale property, first shifting property, second shifting
property in Laplace transformation.

Find the Laplace transform of unit step function.

Find the Laplace transform of unit impulse function.

_ _ sint for O<t<xz
6. Find L(F (1)) |ff(t):{t o

7. State the formula for the Laplace transform of a periodic function.
State the relation between the Laplace transforms of f (t)andt. f (t).

9. Find the relation between the inverse Laplace transform of F(s)and its
integral.

ok~

o

10. Find the inverse Laplace transform of log (LJ
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11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.
23.

24,

25.

26.

27.

28.

29.

30.

31.
32.

. 1-cosat
Find the laplace transform of " .

IFL(F(t))= ﬁfind f(0) and f ().

Find L(cos4tsin 2t).

. . 1
Find the inverse Laplace transform OfT_)

S\S

Find L[ [le® dt}

T
Find L L/s+—2}
IFL(f (t)) = ——— find £(0).

s(s+a)

State the sufficient conditions for the existence of Laplace transform of

f(t).

2+a?)

1

If L(f(t))=F(s) provethat L(f(at))==F (ij :

a

Find L(e ' sin bt).

. 1
Find L* .
el

Find L(sin 2 t).

Find L-l(zsij.
s“+4s+8

t
Find L(l_te J

a

Define periodic function with an example.

FindLY ——> |,
[(s+2)2 +J

Find L(e’2t sin 3t)

IFL(f (t))= F(s), then find L( f (%D

: S
Find L™ :
((s +3)2J
Find the inverse Laplace transform of
S

Find the Laplace transform of e (1 +1)’
IFL(f (t))= F(s), what is L(e * f (t)).

2
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33. Write a function for which laplace transformation does not exist. Explain
why laplace transform does not exist.
34. Find L(tsin 2t).

sin 2t

35. Find the Laplace transform of

PART B
1. Find the Laplace transform of the following
(i) sin®2t (i) e'cos’t (iii) sin 2t cos3t (iv) sin h’t
t?  O<t<2
(v) flt)=4t-1 2<t<3
7 t>3
. 48 1 s+1 o 2(s2-5)
Ans. (I + i
(Ans. () ( 2 4)(32+36) () 2s+2 2s*+4s+10 () (s2 +1)(s? +25)
-2 —35
2+3s+3s 5s-1
T = )+ (Bs-1).
2. Find the Laplace transform of the following.

(i) tcost (i) t3sint (iii) te*sinat  (iv) J.;e*Z‘.tsin3t.dt

(v) t>e™ cost.

s? -1 2(33 -1 2a(s —a)
(Ans. (I) +1)? (i +1)° (i) (s? —2as+2a?)?
. 3(s+2) 1 1 2(s® +10s? + 255 + 22)
iv — Vv
) [(s+2)2+9]2 [(s+2)2+1]2} (s +4s+5)° )

3. Find the Laplace transform of the following (i) %(cos at —cosbt)

(ii) S|n 2t (iii) - (e sin t) (iv)sintu(u—4) (v) e'u(t-1).

s’+a 2

T (iii) cot™(s +1)

(Ans. (i) ——Iog( J (ii) %Iog S
—4s ~(s-1)

. e .
v cos 4+ssin4 \Y}
iv) ) V)=

).

4. Find the Laplace transform of the following.
(i) ft)=t>, 0<t<2, f(t+2)="f(t)

. _Jeosat ,  O<t<z/w
(")f(t)_{o ,  nlo<t<2r/o
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, O<tx<1l
f
(i) £t {o , 1<t<2,  f(t+2)=f(t)
2 : 0<t<T
) £(t)=1{7 .
ST-t) ,  —<t<T , ft+T)=1(t)
T 2
E . OStSI
V) (t)= .
-E ., ostsT ft+T)= f(t)
2s - 2,25 -s
(Ans. (i) 2= s§zs_ee25)4se (ii) S (i) 15_2?1_(:;1))
(s> +w?)(l-e v)
(iv) _I_Siztanh%—; W) ;tanh( STy
s(e? +1)
5. Find the inverse Laplace transform of the following.
.. S (iii) (iv) S+2
-9 s?+9 (s+ )—4 (s+2)° -25

(v) (Ans (i) —S|n h3t  (ii) cos3t (iii) %e“ sin h2t  (iv)

e xcosh5t (V) EeE )

. Find the inverse Laplace transform of the following.

. 3(32—2)2 ... 55-10 ... 28 s +4

) i iii iv

® 2s° ()952—16 ( )33+6 { ) 9
1 3 1 ... b 4 5.

v C(Ans. (i) ==3t2+=t* (ii) =cosh—t—sin h—t

()(5—3)2( 03 gt (W geoshgt-gonhy

(iii) %(— 2¢72 +1) (iv) —gsin g+l (v) e™t)
. Find the inverse Laplace transform of the following

s
() (—3) ()sls +al (i s°(s? +1) (s+3)* +4

s—4 L1 e 1- cosat 12
(V) m (Ans. (i) E{?_ } (i) (|||)E+cost—1

(iv) es{cos 2t—gsin ZtJ (V) %e“ oS 2t—%e3t sin 2t).
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8. Obtain inverse Laplace transform of the following.

W )= i) |og(1+i2j (iv)
s2+1 S (

(s+2) s? +6s +13)2
1 s? +b?
(V) Elog{—(s_a)2 }

(Ans. (i) e -2 %u(t ~2) (i) —sintu(t—7) (iii)%(l—cos ot)

s+1

-3t

(iv) e?[Ztsin 2t+2tcos2t —sin 2t] (V) %(e‘at —cosht)).

2
9. Find the inverse Laplace transform of (i) w (ii)ZS;2
S s°—4s+13

11s2 —2s+5 ) 16 1

(i) 2s° —3s% —35+2 V) (52+25+5)2 ) (s—2)(s? +1

t

(Ans. (i) 1+ 2t +3t> (i) e* cos3t+ge2t sin3t  (iii)2e™ +5e* —gez

(iv) e(sin2t—2tcos2t) (V) %e” —%cost —%sin t).
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CHAPTER II

CONVOLUTION THEOREM, APPLICATIONS OF LAPLACE
TRANSFORM

2.1 Introduction

Convolution is used to find inverse Laplace transforms in solving
differential equations and integral equations.

Suppose two Laplace transforms F(s)andG(s)are given.  Let

f(t)andg(t)be their inverse Laplace transforms respectively. i.e.,
f(t)=L"(F(s))and g(t)=L"(G(s)). Then the inverseh(t)of the product of
transforms H(s) = F(s)G(s) can be calculated from the known inverse f (t)and

a(t).

Convolution
The convolution or convolution integral of two functions f(t)and g(t)t>0is

defined as the integral J'; f(u)g(t—u)du.

e, (frg)t)=ft)*g(t)=| f(u)glt—u)du.

f = gis called the convolution or faltung of f and g and can be regarded as a
“generalized product” of these functions.

2.2 Convolution Theorem
If f(t)and g(t)are two functions oftand L(f (t))= F(s)and

L(g(t))=G(s)fort > Othen
L[f(t)*gt)]= F(s)G(s) (on L' [F(s)G(s)]= f(t)*glt).

u.ll

Proof
By definition

=[, e (f)* gt)at

I e‘““ g(t- u)du}dt

by the definition of convolution,
_j j e f(u u)dudt (1) Fig. 14

The region of integration for the double integral (1)|s bounded by the lines
u=0,u=t,t=0and t=co. Changing the order of integration in(l), we get

j j e f(u u)dt du )

In the inner mtegral in(2 ) on puttingt —u = v, we get
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J‘ J’ e~ v)dvdu
:Ioe . UOG g )dv}du
=["e.f(u)du ["e g(v)av
=["e~f(t)dt. [ e g(t)dt.

(on changing the dummy variablesu andv)
e, L[f(t)+g(t)]= L(f(©)L(a(t).

2.3 Initial value theorem
If the Laplace transforms of f(t)and f'(t)exist and L(f(t))= F(s), then

L4(10)= Lt 6F ().

t—0

Proof
We know that L(f'(t))=sF(s)- f(0)

sF(s)=L(f'(t)+ f(0)

=["e f(t)dt+ (0
Lt(sF(s) Ltj e f )dt+f(0)
IO Sw( )dt+ f(0)
ie., SISEO(S F(s))= f(0) =tgto(f(t))
s L(f(t) = Lt(sF(s))

2.4 Final value theorem
If the Laplace transforms of f(t)and f'(t) exist and L(f(t))=F(s) then

Lt(f(t)= Lt(s.F(s)).

Proof
We know that L(f'(t))=sF(s)- f(0)

» sF(s)=L(F'(t)+(0)

_je‘f t)dt+ f(0
s Lt(sF(s) Ltj e f(t )dt+f(0)
= [ Ltle )dt+f(o)

= [ f(®)dt+ (0

[()]o"'f()
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=Lt f(t)- f(0)+ f(0)

t—oowo

L Lt(f(1) = Lt(sF(s).

t—ow s—0
Example 1

Apply convolution theorem to Evaluate L™ ;2 :
(s2 + az)
[AU JUNE 2010, AU MAY 2012]

Solution

LetF(s)= 755 = L‘l(F(s)):f(t)zisinat

S"+a a

G(s)= sziaz - L(G(s))=g(t) = cosat

Now by convolution theorem,

L*(F(s)G(s))= J.ut:o f(u)g(t—u)du

1t .
:gjuzosm aucosal(t —u)du

= 2_1a utzo [sin (au + at — au))+ sin (au — at + au)]du

:2_1a ::o [sin at +sin a(2u —t)]du
t

=i{u sin at — icosa(2u —t)}
2a 2a

u=0

a 2a 2a
tsin at
2a

:Zi{tsin at —icos at —0+icosat}

Example 2

Apply convolution theorem to evaluate L{

L
(s+3)(s-1)

Solution
1
F(s)=— LY(F = f(t)=e
Let (S) 513 = LY (S)) (t) e

6(s)-—= = L*(G(s)-gl)=¢'

By convolution theorem
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u=0 u=0
—4u\!
= etjt_o e™.du = e{e j
= - u=0

=1e‘(1—e“”). Ans.
Example 3
Evaluate L™ — L . by convolution theorem. [KU NOV 2011]

s“+1)\s°+4

Solution

L‘l( 1 jzsint;L‘l( 1 ]:S'”Zt
s°+1 s°+4 2

. By convolution theorem, we get

Ll[ L ! }:Itsinu.ww

s?+1s2+4] Jo

:%'[;[cos(3u —2t)—cos(2t —u)]du

1 {sin (Bu-2t) sin(2t- u)}t

"6 3 -1

:%E (sin t —sin 2t)+ (sin t —sin 2t)}

1 fsin t.—fsin 2t
63 3
2. .
:§(S|n t —sin 2t). Ans.

Example 4

By using convolution theorem, find the inverse laplace transform of ————.
(s+1)s+2)

Solution
L—l 1 — e—t . L—l 1 — e—2'[
s+1 ' S+2

. By convolution theorem, we get

L‘l{—l o }:J'te‘” &2 gy
s+1s+2 0

t
=e™ Ioe”.du —e (et —1)=et —e ™, Ans.
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2.5 Application to Differential Equations

The Laplace transform method of solving differential equations yields
particular solutions with out the necessity of first finding the general solution and
then evaluating the arbitrary constants. This method is, in general, shorter method
and is especially useful for solving linear differential equations with constant
coefficients and a few integral and intergo-differential equations.

Working procedure
1. Take the Laplace transform on both sides of the differential equation.
Apply the formula and the given initial conditions.
2. Transpose the terms with minus signs to the right.

3. Divide by the coefficient of y , getting y as a known function of s .

4. Resolve this function ofsinto partial fractions and take the inverse
transform on both sides. This gives y as a function oft which is the desired

solution satisfying the given conditions.

Note
0  LyE)=y(s
Gi)y  L(y"(t)=s"
Example 1
Solve the Differential equation (D2 +4D + 3)y =e . Given y= 1,d— =lat t=0
using Laplace transforms. [AU NOV 2011]

Solution

Given differential equation is y"+4y'+3y =e™, where y'= pr
Taking Laplace transform on both sides,

s3(s)-5y(0)-y 0)+ 45 y(s)- yO)]+ 3y(s) -

— 1
24+45+3 -s(1)-1-4=——
= (s +4s+ )y(s) s(1) 1
— 1
2 45 +3)y(s)=s+5+——
= (s2+4s+3)y(s)=5s+ 1
S ()= s°+65+6 _ s°+65+6
(s+1)(s? +4s+3) (s+1)(s+1)(s+3)
- s®+65+6
= S)=—-——— 1
y(s) (s+1)* (s +3) @)
2
Consider S“+65+6 A B C

= +—
(s+1)(s+3) s+3 s+1 (s+1)
= $°+65+6+A(s+1)° +B(s+3)(s+1)+C(s+3)
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Put s=-1 = c:%

Put s=-3 = A= 3
4
Equating the coefficients of s?,
1=A+B = B =1—A=1+(%)=
W)= y(s)= —(3/4)+(7/4)+ (L2
s+3 s+l (s+1
Taking inverse transform on both sides,

) vo-L Tl e “Ls . 1)2}

4

)
)2

P S Ans.
4
Example 2
Solve the equation (D2 +4D +13)y =e'sint,y=0andDy =0 at t=0, where

D= % [AU JUNE 2009]

Solution
Given differential equation is y"'+4y'+13y =e'sint .
Taking Laplace transforms and using the given initial conditions, we get

ie., (s2+4s+13Jy(s)=

S?4+25+2
- Y(s)= -
y (s2 +25+2)(s? + 45 +13)
As+B  Cs+D

Cs%+2s+2 s?+4s+13

1[ —2s+7 25s-3 }
=— +

85 s?+2s+2 s®+4s+13
1[-2(s+1)+9 2(s+2)-7
=— +

85| (s+1°+1 (s+2)+9

g, y(t):% e (~2cost +9sin t)+ eZt(Zcos3t—%sin 3tﬂ Ans.

Example 3
Using Laplace transform, find the solution of the initial value problem

y"'+9y =9u(t - 3), y(0)= y'(0) = 0, whereu(t - 3) is the unit step function.
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Solution
Given y'+9y =9u(t - 3)
Taking Laplace transform on both sides,

Y(5)-5(0)-y(0)+9y(s) = 2 ®
Putting the values of y(0)=0and y'(0)=0 in(L), we get
y(s)+0y(s)= 2
(52 +9)y(s)- ge:s
- 9e %

RRFERE)

)= L{si?seisg J

[ } =sin 3t

and 3 L{T—)} = BI;sin 3tdt =—(cos 3t); =1-cos3t
-l g o

y(t)— [1 cos3(t—3)u(t—3). Ans.

Example 4
A resistance R in series with inductance Lis connected with e.m.fE(t). The

currenti is given by L%+ Ri = E(t).

If the switch is connected att=0and disconnected att=a,find the
currenti interms oft.

Solution
Conditions under which currenti flows are i =0 at t =0,

E , O<t<a
0 ={
0 , t>a
Given equation is L% +Ri = E(t) (1)
Taking Laplace transform of (L), we get.
Llsi—i(0)]+ Ri = e E(t)dt
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L(si)+Ri=["e“Eft)dt. (sincei(0)=0)

(Ls+R)i = re‘“ Edt = Iae‘St Edt + J:oe‘st (0)dt

_ { } 0 —Efev] —E_Egu
S s s
i_ Ee—as
s(Ls +R) s(Ls+R)
On inversion, we obtain
- | —Ee @)
s(Ls+R) s(Ls+R)
Consider L*l
Ls + R
G E e
s(Ls+R L
N (Resolving into partial fractions)
L R s R
S+ —
L
R
:E{l_e_L't}
R
-as R a
and LY —E8— |_Efq_g@® u(t—a). (By second shifting theorem)
s(Ls+R)| R

On substituting the values of the inverse transform in (2) we get.

e R e

R
Hencei :%{1—e1t} for 0<t<a,fu(t—a)=0]

R R
izg[l_e Lt}_%{l—e a )} [fort>a,u(t—a)=1

R R R Ra
i:EeL(t )—e N :Ee LteL—l. Ans.
R R
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Example 5
Using Laplace transforms solve y"+5y'+6y =2,y'(0)=0, y(0)=0. [KU NOV
2010]

Solution
Given y'"+5y'+6y =2
Taking Laplace transforms on both sides

L(y"(t)+5L(y (t)+6L(y(t)) = L(2).

s2y(s)— s y(0)~ y'(0)+ 5[s y(s)— y(0)] + 6(s) = §

Given y(0)=0and y'(0)=0
s2y(s)+5sy(s)+6y(s)=

w N

(s? +55+6)y(s)=

T 2
- ¥l)= s(s? +55+6)

.= 2
a6

~ ylt)= L[m}

By using partial fraction,

2 A B C
s(s+2)(s+3) s Ts+2 s+3
2=A(s+2)(s+3)+Bs(s+3)+Cs(s +2)
Puts=-2 = B=-1

w N

Puts=-3 = C=

Puts=0 = A=

Wik WM

L 1

| | RO IR
3s s+2| 3 S+3

e %, Ans.

ie, y(t)= % e +

w N

Example 6
Solve y"-3y'+2y =4t, y(0)=1 y'(0)=—-1 using Laplace transforms. [KU NOV
2011]
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Solution

Given y"-3y'+2y = 4t

Taking Laplace transforms on both sides, we get
L(y")-3L(y)+2L(y)=4L(t)

s2y(s)-s y(0)- y'(0)-3s y (s)- y(0)]+ 2(s) = ;iz
529<s>—s+1—3[s9<s)—1]+29<s>=Siz
(s —3s+2)y(s s+1+3_s4
(62 ~35+2)y(s) - (s-4)=
(57 ~3s+2)y(s Si2+(s_4)
s—4

= )

5%(s? —3s+2)+(s2 ~35+2)

4 s—4
t)=L" L ———
) {32152—35+2J+ {32—35+2}
:L{16s+18+ (—5s+19))}r|_1{—_2+i}

9s?  9s? —3s+2 s-2 s-1

Bt e e el B o e
9 s) 9 s2) 9 s2-3s+2) 9 s2 —3s+2
+ L‘l(—_z )+3.L‘1(ij
s—2 s-1
E RERTEY kO ER RS PO
9 9 s—2 s-1 9 s—2 s-1

16t —S[Ze2t —et]+g[e2t —et]+%[e2‘ —e‘]— 2e* +3¢!

:E+Zt+et J10, 19 50, §_Q+3
9 9 9 9 9

g y(t)=%+2t— e” %e Ans.

EXERCISE

PART A

=

State the initial value theorem in Laplace transforms.
State the final value theorem in Laplace transforms.

3. Define the convolution product of two functions and prove that it is
commutative.

N
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4. State convolution theorem in Laplace transforms.
5. Verify initial value theorem for f (t)=1+ e (sin t + cost).

PART B

2

s
(s? +a’)
10
(ii) & +1)3 (iii) 7—) (iv) & +4)(s +9) (v) (5+1)s’+4
SZ

. 1
(vi) 32(3 )(vu)( T )2 (viii) s(sz )( X) ( az) X) 47—

1. Obtain the inverse Laplace transform by convolution. (i)

S —a

(Ans. (i) 1tcosat+2isin at (ii) g(?,—tz)sint _3tcost

(iii)a%[— at+sin hat] (iv) = [cosZt—cos5t] (v) 2e™" +sin 2t — 2cos 2t
e, 1, o1

(vi) 7[t +4t+6]+t—3 (vii) Z(sm 2t +2tcos2t)  (viii) Z(l—cosZt)

(ix) %(coshat—l) (x) 2—1a(sin hat +sin at)).

2. Solve the following differential equations by Laplace transform.
2
(i) d y+y 0, wherey = 1OIy latx=0.
dx? dx

i L 9 oY 5y —0 where y=2,Y = 4atx=0.
dx? dx dx
.. d® _d% dy . dy . d%
i —+2 ——=-2y=0given y=—=0, =6atx=0.
(i) dx? dx? dx y="24 Y dx dx?

(iv) d” ay, dy —2y=1-2x giveny = 0dy 4atx=0.
dx? dx dx

d? d7y ,dy
v -3—
V) dx2 " dx
(Ans. (i) y = sin X+ cos X (i) y =e™(2cos2x —sin 2x)
(iily=e*—3e " +2e (iv) y=e*—e > +x

+2y =4x+e* Whereyzl,%:—latx=0.
X

(v) y=3+ 2x+%e3x — 28 —%ex)
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UNIT |

Questions optl opt2 opt3 optd Answer
The sum of the main diagonal elements of a matrix |trace of a |quadrati [eigen canonic trace of a
is called------ matrix c form |value matrix
al form
The orthogonal transformation used to diagonalise T T 1 T
. o NA
the symmetric matrix A is---- N"AN N"A  INAN N"AN
If A, Apy Agyennnnnn A, are the eigen values of A
Jthen kA KAy, Khg,..... ... J , are the eigen values [KA KA? kA Al KA
0]
Diagonalisation of a matrix by orthogonal reduction | .. triangul e . real
. . diagonal symmetri |scalar .
is true only for a ----- matrix. ar - symmetric
If atleast one of the eigen values of A is zero, then
g 0 1 10 5 0
det A = -----
. . |characte .
characterist| . . . . _|characteris
) ristic  [quadratic |canonic |,.
det (A- Al ) represents------ ic . tic
.. |equatio |form al form .
polynomial N polynomial
If X 1L,A2,03,......... A_n are the eigen values of A
gthen 1/A 1,1/ 2, 1/A 3,......... I/A_n aretheeigen |AM-1 A A™n 2A AN-1
values of --------
IfA 1,A 2,40 3,......... A_n are the eigen values of A
ghen A 17p, A 2%p, A 37p,......... A n"p arethe eigen | AM-1 AN2 AM-p A"p A™p
values of
The eigen values of a matrix are i skew- triangul |, .
o diagonal  |symmet . triangular
its diagonal elements ric matrix ar
| th I transformation NTAN =D . D orthogo |symmetri [S<EW-
n an orthogonal transformation =D, diagonal go sy symmet |diagonal
refers to a ---------- matrix. nal c e




In a modal matrix, the columns are the eigen vectors

-1 2 :

Of e A A A adjA |A

If the eigen values of 8%,” + 7 X,> +3 X3* —12 x; Xp— ositive [POSitive negativ |positive

8 X, X3 +4 X3X, are 0,3 & 15, then its nature is positt semidef |indefinite |e semidefinit

definite . -

- inite definite |e

a=-1,]a;=1, J|ap=1,
) _ > lag=1ap, 11 11 11 a;, = 1,3
The elements of the matrix of the quadratic form x; = .= a;,=-2,lap,=4,alap=4, = 4.
+3X," + 4 Xy Xp Are —-nmeemme- a,_z:lg an=2,n=4,a a21=3:2 ;1 213
l 22— ’ 22~

a2n=3 (=3 ap=1

If the sum of two eigen values and trace of a 3x3 matrix

A are equal, then det A = --------- A 1X 22310 1 2 0

E‘_l_,fire the eigen values of a matrix A, then det A 5 0 o5 6 5

If the canonical form of a quadratic form is 5y12 +6 4 0 5 1 5

v, , then the rank is --------

The eigen vector is also known as------- latent value latent jcolumn jorthogo |latent
vector |value nal vector

value

If 1,3,7 are the eigen values of A, then the eigen 137 1921 |2.6.14 1949 |2.614

values of 2A are ------------

If the eigen values of 2A are 2, 6, 8 then eigen 134 26,8 19.16 1243 |1.34

values of A are

The number of positive terms in the canonical form rank index  |Sianature indefini index

is called the of the quadratic form. g te




If all the eigenvalues of A are positive then it is Positive Negativ POS'.t 'Ve, Negativ Positive
called as definite semidefin e definite
definite [ite semidef
inite
. - Negativ
If all the eigenvalues of A are negative then it is Positive Negativ POS'.t ve Negative
. semidefin . -
called as definite | semidef |definite
definite |ite .
inite
characterist characte
A homogeneous polynomial of the second degree in ic ristic  [quadratic |canonic |quadratic
any number of variables is called the . . |equatio |form al form |form
polynomial 0
The Set of all eigen values of the matrix A is called . . spectru
rank index |Signature spectrum
the of A m
A Square matrix A and its transpose have different same  linverse Transpo Same
eigen values. se
characterist characte
The sum of the of a matrix A is equal i ristic  |eigen eigen |eigen
to the sum of the principal diagonal elements of A. .. |equatio |values vectors |values
polynomial 0
Sum of Determi Sum of |Sum of
The product of the eigenvalues of a matrix A is . minors of [the Determina
main nant of .
equal to diaconal A Main cofactor |nt of A
g diagonal |sof A
The eigenvectors of a real symmetric are equal unequal |real ?i):;mmet real
If the eigen values of 2A are 2, 6, 8, then eigen 134 268 1916 1243|134
values of A are




first row

first

last

main main
The eigen values of a triangular matrix are -------- diagonal element [column [column |diagonal
elements |s elements |element [elements
. |characte
. . . characterist | . . . . .
The main diagonal elements of a triangular matrix ic ristic  |eigen eigen [eigen
are ----------- . . |equatio |values vectors |values
polynomial 0
The main diagonal elements are the eigen values symmet |non triangul |, .
. square ; ) triangular
of the ------- matrix. ric symmetric |ar
If atleast one of the eigen values of A is zero, then
g ' 0 1 10 5 0
det A=
If the eigen values of A are 2, 3, 4 then the eigen 1/2,1/3, 534 534 (-1/2,- |[1/2,1/3,
values of A is 1/4 " T 1/3,-1/4)(1/4
If the sum of two eigen values of matrix A are equal
to the trace of the matrix, then the determinant of A 1 2 0 3 0
is
roduct [sum of roduct
L . product of P . . P . sum of
Sum of the principal diagonal elements . of eigen |eigen of eigen | .
eigen values eigen values
vectors |values values
If 1 and 2 are the eigen values of a matrix A, then
. 2 2,3 3,5 1,4 1,2 1,4
the eigen values of A” are
. . latent column latent latent
The eigen vector is also known as row vector
square vector vector |vector
linearly [linearl
If all the eigen values of a matrix are distinct, then the linearly . . . Y . Y
) . unique |not unique |indepen |independen
corresponding eigen vectors dependent
dent t
A matrix is called symmetric if and only if ---------- A=A"T A=AN-1 (A=-AT A=A A=ANT




non

If a matrix A is equal to AT then Ais a -------- matrix.  [symmetric  [symmetri skew- . |singular |symmetric
c symmetric

A matrix is called skew-symmetric if and only if --------- A=ANT A=AN-1 [A=-ANT A=A A=-A"T
non skew- skew-

If a matrix A is equal to -A”T then A is a -------- matrix. |Symmetric |symmetri . [singular .
c symmetric symmetric

. , _ ANT=-AN- ANT=-AN-
A matrix is called orthogonal if and only if ----- AAT=AN-1 1 ANT=AN-2 5 AAT=AN-1
A matrix is called ------------ if and only if AAT=AN-1. orthogonal [square non . triangul orthogonal
symmetric |ar
characteristi Character eigen eigen |characteristi
The equation det (A-AI) = 0 is used to find ---------- . |istic g g .
¢ polynomial . |values vectors |c equation

equation

If the characteristic equation of a matrix A is A"2 -2 =0, 59 (-2-2) 2MN1/2),- (2i.-2i) (2™N1/2),-

then the eigen values are ------- ’ ’ 2N1/2)) ’ 2\(1/2))

If 1,3,7 are the eigen values of A, then the eigen values 137 1021 |2.6.14 1949 |2614

of 2A are ------------

!f 1,5 are the eigen values of a matrix A, then det A = 5 0 25 6 5

Eigen value of the characteristic equation A*2-4 =0 is 2,4 2, -4 2,-2 2,2 2,-2

- — P YEYTYCIRETY

Elgen_value of the characteristic equation A*3-6A"2+11 123 123 |12.3 123 |123

6=0is

Largest Eigen value of the characteristic equation A3- 1 0 ’ 4 )

32420 =0 is

Smallest Eigen value of the characteristic equation A"3- 3 3 2 5 2

TAN2+36=01is




product |sum of sum of
. . _ product of . . . sum of
Sum of the principal diagonal elements = . of eigen |eigen eigen .
eigen values eigen values
vectors [values vectors
Product of the eigen values = (-|A]) 1A (-1A]) |A| |A|
A Sqguare matrix A and its transpose have . Transpo
. a P different Same |Inverse P Same
eigen values. se
If 1 and 2 are the eigen values of a 2X2 matrix A, then
) gen v 2,4 3,4 5,6 1,4 (1,4
the eigen values of A2 is
If 1 and 2 are the eigen val f a 2X2 matrix A, then
and 2 are the eigen values of a atrix A, then 15 11 112 |12 412 |11
the eigen values of A”-1is
. . . different |equal different .
If a real symmetric matrix of order 2 has --------- then the [equal eigen | . q . equal eigen
. . eigen eigen eigen
matrix is a scalar matrix. vectors values
vectors [values values
. . . . different . different .
If A and B are nxn matrices and B is a non singular same eigen cicen same eigen cicen same eigen
matrix then A and B~-1AB have vectors g values g values
vectors values
. . |characte [orthogonal .
. e characteristi | | . |characteristi
Every square matrix satisfies its own ---------- — |ristic transforma(canonica )
¢ polynomial . . c equation
equation |tion | form
. eigen .
. eigen eigen .
. eigen vectors of eigen
In a modal matrix, the columns are the ----------- vectors |. values of
vectors of A . inverse vectors of A
of adj A A
ofA
inverse and cicen cicen uadrati inverse and
Cayley -Hamilton theorem is used to find ------------ higher & & q higher
values |vectors c form
powers of A powers of A
If th ical f f dratic f is 5y12 -6y22,
e canonical form of a quadratic form is 5y y 4 0 5 1 1

then the index is




The non —singular linear transformation used to

. . . X=NTY X=NY [Y=NX NXA X=NY
transform the quadratic form to canonical form is
. . latent column latent
The eigen vector is also known as------- latent value orthogo
vector [value vector
nal value
s . . |characte | . .
The sum of the of a matrix A is equal to the [characteristi |, eigen eigen .
I - . |ristic eigen values
sum of the principal diagonal elements of A. ¢ polynomial . |values vectors
equation
Sum of Sum of
. o Sum of . .
The product of the eigenvalues of a matrix A is equal main Determi [minors of [the Determinan
to ) nant of A[Main cofactor |t of A
diagonal .
diagonal [sof A
. . symmetr
The eigenvectors of a real symmetric are equal unequal |real ic real
When the quadratic form is reduced to the canonical . . spectru
T . ) . rank index Signature rank
form, it will contain only r terms, if the of Aisr.
The excess of the number of positive terms over the
. . . . . . spectru .
number of negative terms in the canonical form is called | rank index Signature Signature
the of the quadratic form.
If all the eigen values of A are less than zero and atleast . . |Positive . Negative
. . . . Positive Negative . .. . |Negative .
one eigen value is zero then the quadratic form is said to . > semidefini .. .. |semidefinit
be definite definite te semidefi

nite




If all the eigen values of A are greater than zero and . . |Positive . |Positive

. . . . | Positive Negative .. .. . |Negative e
atleast one eigen value is zero then the quadratic form is . 0. semidefini . .. |semidefinit

. definite definite semidefi
said to be te .
nite

. . . L . Positive

If the quadratic form has both positive and negative Positive Negative o N .
o . a semidefini |indefinit | indefinite
terms then it is said to be definite definite ;
e e




UNIT II

Questions optl opt2 opt3 optd Answer
If V.F=0 then Fis irrotational [solenoidal [rotational |curl solenoidal
If VxF=0 then F is irrotational [solenoidal [rotational |curl irrotational
Any motion in which the curl of the velocity vector is |. . . . . .
L irrotational [solenoidal |rotational |curl irrotational
zero is said to be
S e . ) vector
A function is said to be if it associates a Scalar Vector Point . .
. o . . . point Scalar function
scalar with every point in space. function  [function |function ,
function
A variable quantity whose value at any pointin a . vector
. . Scalar Vector Point . . .
region of space depends upon the position of the : . . point Point function
>on function  [function [function .
point is called a function
S e . . ) vector
A function is said to be if it associates with |Scalar Vector Point . .
. L . . . point Vector function
vector in every point in space. function  [function |function ,
function
If the divergence of a flow is zero at all points . irrotation . . |conservat .
S rotational solenoidal |. solenoidal
then it is said to be al ive
ives the rate of outflow per unit volume i . .
- g . P curl v divVv curl V=0 |divV=0 [divV
at a point of the fluid.
If div V=0 everywhere in some region R of . .

. . . irrotation . conservat .
space then V is called the vector point rotational al solenoidal ive solenoidal
function.

is a vector which measures the extent

to which individual particles of the fluid are curlv  [divV curl V=0 |divVv=0 |curlV

spnning or rotating.

divFisa function. point vector  |scalar rotational |scalar
L . irrotation . conservat |. .

If curl V=0 then V is said to be an . |rotational al solenoidal ive irrotational

If r=x1+yJ+zK then div r= 0 1 2 3

If r=x1+yJ+zK then curl r= 0 1 2 3




div (curl V)= 0|div V curl V V
curl (grad ¢)= 0|divV curl vV )
Two surfaces are said to cut orthogonally at a .

. . o ; perpendic .
point of intersection, if the respective normals at [parallel ular equal Zero perpendicular
that point are
A sufficiently small portion of a smooth surface plane smooth  |twisted orientabl orientable
is always e
A curve that is not plane is call ) . .

curve that is not plane is called a plane point twisted |[closed |twisted
curve.

Any integral which is to be evaluated over a Line Volume |surface |closed .
. . . . . surface integral
surfaceiscalleda integral |integral [integral |integral
When the circulation of F around every closed ) .
. . . e . irrotation . . |conservat |. .
curve in a region vanishes, then F is said to be  [rotational al solenoidal ive irrotational
in that region.
A force field Fissaidtobe _ifit i rotation conservat
is derivable from a potential function ¢ such that |rotational al solenoidal ive conservative
F =grad ¢.

. . irrotation . nserv. .
IfFis____ thencur F=0. rotational al otatio solenoidal ?\?e servat conservative
If S has a unique normal at each of its points
whose direction depends continuously on the Orientabl smooth lane wwisted  lsmooth
point of S then the surface S is called a e P
surface.

provides a relationship between a , . . .
— . X Cauchy's |Green's |Stoke's Gauss Green's
double integral over a region R and the line
. . Theorem [Theorem |Theorem [Theorem |Theorem
integral over the closed curve C bounding R.
is also called the first fundamental Cauchy's |Green's |Stoke's Gauss Green's
theorem of integral vector calculus. Theorem [Theorem |Theorem |Theorem |Theorem




transforms line integrals into surface [Cauchy's |Green's [Stoke's Gauss Stoke's
integrals. Theorem [Theorem |Theorem |Theorem |Theorem
transforms surface integrals into a Cauchy's [Green's |Stoke's [Gauss
: Gauss Theorem
volume integrals. Theorem [Theorem |Theorem |Theorem
is stated as surface integral of the
component of curl F along the normal to the Cauchy’s |Green's |Stoke's Gauss Stoke's
surface S, taken over the surface S bounded by
. S Theorem [Theorem |Theorem [Theorem |Theorem
curve C is equal to the line integral of the vector
point function F taken along the closed curve C.
is stated as the surface integral of the
normal component of a vec':tor function F_ taken Cauchy’s |Green's |Stoke's Gauss
around a closed surface S is equal to the integral Gauss Theorem
. Theorem [Theorem |Theorem |Theorem
of the divergence of F taken over the volume V
enclosed by the surface S.
If V¢ is solenoidal, then V/2(¢)= [0 1 0 -1 0
If (3x-_2y+z)I+(4x+ay-z)J+(x-y-22)K is 0 1 1 5 1
solenoidal then a=
If $=x+y+z-8 then grad ¢ is 1+J+K  [1+J-K  |I-J+K O[1+J+K
+43+ +4J-
If p=x"2+y"2+z"2-8 then grad ¢ at(2,2,2) is f'(l 4J+d j:( 4 41-4J+4K 0]41+4J+4K
—y N\ N\ N)_ 1
If ¢ =x"2+y"2+z"2-8 then grad ¢ at(2,0,2) is A+aK  |a3eak |a1+a3 olar+ak
rotatonal, then the values of aband care (2% b [z ) fea b, o=
’ ’ b=4, c=-1|b=2, c=4 |c=1 1_ S |
If F=xyl-yzJ-zxK then curl F = >|(<I+yJ+z xl-yJ-zK [yl+zJ+xK|yl+zJ-xK|yl+zJ-xK
If F=xyl-yzJ-zxK then div F = XI+yJ+z xl-yJ-zK [yl-z2J-xK |yl+zJ-xK|yl-zJ-xK

K




If F= xyl-yzJ-zxK then at (1,1,1), div F = 1+J+K  [I-J+K 1-J-K 1+J-K 1-J-K
. 21+4J+1 |21- 21+43-
If F= x"2-y"2+2z72 then at (1,2,3), div F = 21-4J-6K 21-4J+12K
y (1.2.3) 2K 43+12K 12K
divFisa function. point vector  |scalar rotational |scalar
- . irrotation . conservat |. .
If curl V=0 then V is said to be an . |rotational al solenoidal e irrotational
If F=x"2+y"2+2z"2 then grad F at (2,0,2)is----- 4i+4k 4j+4k Ai+4j 0|4i+4k
. . . - . irrotation . conservat .
If F is an irrotational vector, it is rotational al solenoidal e conservative
A _curve that lies in a plane in space. plane point twisted |[closed |plane
If F is conservative then cur F=0 and there exists . irrotation .. |conservat
. . rotational solenoidal |. F =grad ¢.
a scalar potential function ¢ such that al ive
Any integral which is to be evaluated along a curve is |Line Volume |surface closed .
. . . . Line integral
called a integral integral integral integral
Any integral which is to be evaluated over a volume [Line Volume |surface closed .
. . . . . Volume integral
is called a integral  [integral |integral integral
If F is conservative then cur F=0 and there exists a . irrotationa . conservati
. . rotational solenoidal F=gradf.
scalar potential function f such that | ve
. . line surface -
The integral of vector F.dr is ----- . . zero . one line integral
integral integral
The integral of vector F.dr is is conservative if the
. 8 . Coinside |split different |deviate Coinside
terminal points A and B
second first third fourth
Greens theorem is called the theorem of .
. I fundamen [fundamen |fundament |fundamen [first fundamental
integral vector calculus.
tal tal al tal
conservati non
If del x F then vector F is ve conservati |curl solenoidal |conservative
ve




If a force moves a particle from one place to another

conservativ

displacem

place in any curve then integral of vector F.dris work done|rest taken ) work done
en
called ---------- by that force.
If a force-------- a particle from one place to another
place in any curve then integral of vector F.dris moves still constant |idle moves
called work done by that force.
If S is not smooth but can be divided into finitely . . . .
) . . piecewise . piecewise
many smooth portions then it is called a Orientable |smooth twisted
smooth smooth
surface.
. . . . . irrotationa . conservati .
If F is an irrotational vector, it is rotational | solenoidal ve conservative
A force field F is said to be if itis . . .
i T . ) irrotationa ) conservati )
derivable from a potential function f such that F = rotational solenoidal o conservative
v

grad f.
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UNIT 1l

Questions Opt 1 Opt 2 Opt 3 Opt4 Answer

An example of single valued function of w=

Zis . w=z"2 [z27(1/2) w=SQRT(z) [w=z"-1 |w=2"2

An example of multiple valued function w= w=

of zis w=z"2 [z27(1/2) w=SQRT(z) [w=z"-1 [z(1/2)

The distance between two points z and

2y is |2-z| [z+2,| z Zy |2-2o|

A circle of radius 1 with centre at origin

can be represented by lz]>1 |z <1 |z|=1 [z2[=0 |zZ|=1

If f(z) is differentiable at zythen f(z) is  [discontinu continuou

at zg, ous continuous |regular irregular |s

A function is said to be ata

point if its derivative exists not only at

point but also in some neighborhood  |entire integral continuou

of that point. function  |function |analytic S analytic

A function which is analytic everywhere

in the finite plane is called analytic holomorph [regular entire entire
function _|ic function |function function |function
U=V |ux=-v_y U, =- U=V

The necessary condition for f(z) tobe  |andv_,=-Jandv_,= |u_ =V_y v_yand fandv_, =

analytic is uy uy and v_, = U_y [V, =-Uu_y |-u_y

A real function of two variables x and y

that possesses continuous second order

partial  derivatives and that satisfies analytic regular holomorphic [harmonic |harmonic

Laplace equation is called function  |function |function function |function

If u and v are harmonic functions such

that u+iv is analytic then each is called [conjugate entire not conjugate

the of the other. harmonic |analytic  [function analytic  [harmonic
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A transformation that preserves angles
between every pair of curves through a

point, both in  magnitude and sense, entire unconfor |Conforma
is called at that point. Conformal |isogonal  |function mal |
A transformation under which angles
between every pair of curves through a
point are preserved in magnitude, but
altered in sense is said to be entire unconfor
at that point. Conformal |isogonal [function mal isogonal
A mapping w = f(z) is said to be £(z0) = £(z0) #
conformal at z = z if f(z)=0 |[f(2) £(z0) #0 f(z) (z0) # 0
The point at which the mapping w =
f(z) is not conformal, that is, f'(z) = 0 is
called of the mapping. common |fixed invariant critical critical
A point of a mapping w =
f(z) are points that are mapped onto
themselves, are kept fixed under the
mapping. common |fixed critical variant  |fixed
The transformation w = a+z where a is
a complex constant, represents a magnificat translatio
. translation |ion rotation reflection |n
The transformation where a
is a complex constant represents a
translation. W = az w=az+h |w=a+z w=1/z |w=a+tz
The transformation where a
is a real constant represents
magnification. w=atz |w=1/z w = az+bh w=az W =az
The transformation w = az where a is a magnificat magnificat
real constant represents translation |ion reflection inversion |ion
magnificat
magnificat|ion,
ion, rotation
In general linear transformation, w = rotation |and
az+b where a and b are complex magnificati and translatio
constants represents on rotation  [translation translation |n
The transformation w=(az+b)/(cz+d), Linear bilinear  |fractional bilinear
where a, b, ¢, d are complex numbers is transforma |transforma |transformatio transform
called a tion tion n translation [ation
linear linear
linear fractional fractional |fractional
A bilinear transformation is also called a |transforma transformatio |transform |transform
. tion inversion [n ation ation
The value of i= SQRT(-1) |SQRT(1) -1 1|SQRT(-1)
represents the interior of the [z —zo| > [z —zo| < [z-zo|< |lz—120| <
circle excluding its circumference. delta delta |z — 79| > delta [delta delta
represents the interior of the ||z —zo| > ||z — 2| < [z—2z0| < |lz—2| <
circle including its circumference. delta delta |z — 7| > delta [delta delta
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39

40

41

44

45
46

represents the exterior of [z—-20|> |lz—2z< [z—2z0| < |z — 20| >

the circle. delta delta |z — 7o > delta |delta delta

Cauchy-Riemann equations are

necessary conditions for a function w = |entire integral analytic continuou |analytic

f(z) to be an function  |function |function s function |function
U=V |uy=-v_y U =- U=V
andv_,=-|andv_,= |u_=V_y v_yand fandv_, =

Cauchy-Riemann equations are u, uy and v_,=u_y |V, =-u_,|-u_

The real and imaginary parts of an

analytic function f(z) = u+iv satisfies Cauchy-  |Homogene

the equation in two dimensions. |[Riemann |ous Laplace Euler Laplace

An analytic function with a constant an analytic  [an entire

real part is . a variable |a constant |function function |a constant

An analytic function with a constant an analytic  [an entire

modulus is . a variable |a constant [function function |a constant

A fixed point is also called as invariant  critical common invariant

. points points point origin points

The fixed point of w=(5z+4)/(z+5) is 2,1 1-1 -2,2 0,1 -2,2

The critical point of z=(2z+1)/(z+2) is |1, 1 1-1 12 0,1 1,-1

Solutions of Laplace's equation are

under conformal

transformation common |fixed invariant critical invariant

If f(z) is analytic, and '(z)=0 everywhere, an analytic  |an entire

thenf(z)is a variable |a constant |function function |a constant

An analytic function with a constant an analytic  |an entire

imaginary part is a variable |a constant |function function |a constant
entire integral continuou

If u+iv is analytic, then v-iu is function  |function |analytic S analytic

w=z has every point as a point fixed critical invariant common [fixed

w=1/z has fixed points 1 2 3 4 2

w=z+b has fixed points 0 1 2 3 0




UNIT IV

Questions optl opt2 opt3 opt4d Answer
A curveis called a if it does not Simple multiple simply multiple |Simple
. . closed connected [connected |closed
intersect itself curve . .
curve region region curve
A curve is called if it is not a simple connected [multiple simply multiple multiple
) connected [connected
closed curve region curve . . curve
region region
If f(2) is analytic in a simply connected domain D
and C is any simple closed path then J(from ¢)f(z)dz |1 2mi 0 i 0
If f(z) is analytic inside on a simple closed curve C
and a be any point inside C then [(from o)f(z)dz /(z-|2ni f(a) 2mi 0 7o 2mi f(a)
a)=
A\
The value of I(from_c) [(32°2+7z+1)/(z+1)] dz omi i | o i
where Cis |z| = 1/2is
The value of J(from ¢) (cos nz/z-1) dz if C is |z| =2 |2mi 2mi |m mi/3 2w
The value of [(from c) (1/z-1) dz if C is |7] =2 2mi 3mi i mi/4 2mi
The value of [(from ¢) (1/z-3) dz if C is |z| =1 3mi 71 mi/4 0 0
The value of J(from c) (1/(z-3)"3)dzif Cis|z| =2 |3mi i mi/5 0 0
The Taylor's series of f(_z) about the point z=0 is Maclaurin Laurent's |Geometric |Arithmetic Maclaurin
called series S S
The value of [(from c) (1/z+4) dz if C is |z] =3 3mi i mi/4 0 0
In Laurent's series of f(z) about z=a, the terms
containing the positive powers is called the regular principal [real imaginary |regular
part
In Laurent's series of f(z) about z=a, the terms
containing the negative powers is called the regular principal |[real imaginary |principal
part
'Zl'fle poles of the function f(z) = z/((z-1)(z-2)) are at 1,2 23 11 34 1,2
The poles of cotz are 2nm nn 3nm dnm nmn
The poles of the function f(z) = cos z/((z+3)(z-4)) 3.4 23 11 34 3.4
areatz=
The isolated singular point of f(z) = z/((z-4)(z-5)) |1,2 2,3 0,2 4,5 4,5
The isolated singular point of f(z) = z/((z(z-3)) 1,3 2,4 0,3 4,5 0,3
A simple pole is a pole of order 1 2 3 4 1
The order of the pole z= 2 for (z) = z/((z+1)(z- 1 p 3 4 p
2)"2)
Residue of (cosz/z)atz=01s 0 1 2 4 1




The residue at z = 0 of ((1 + e"z) / (zcosz+sinz)) is |0 1 2 4 1
The residue of f(z) =cotzatz=0is 0 1 2 4 1
The singularity of f(z) =z / ((z-3)"3) is 0 1 2 3 3
A point z=a is said to be a point of f(z), if Sinaular isolated removable essential Sinaular
f(z) is not analytic at z=a g singular singular g
A point z=a is said to be a point of f(z), if Sinaular isolated removable essential [isolated
f(z) is analytic except at z=a g singular singular  [singular
In Laurent's series of f(z) about z=a, the terms . . .

. . . . isolated |removable [essential |essential
containing the negative powers is called the Singular | . . .

point singular [singular [singular |singular
In Laurent's series of f(z) about z=a, the terms . .

. e . . isolated |removable [essential |removable
containing the positive powers is called the Singular | ; . .

point singular  [singular |singular [singular

N N i N _ N
In contour integration, cos 6= (282+1)/2 |(@"2+1)/2i (z72-1)/2z (z 2. (282+1)/2
z z 1)/2iz z
. . _— (z°2+1)12 |(2r2+1)12i |, (z~2- (z~2-

In contour integration, sin 6= ; ; (z72-1)/2z 1)12iz 1)/2iz




Unit Vv

Questions optl opt2 opt3 optd Answer
The operator L that transforms f(t) into F(s) is Laplace Laplace
called the -------- operator. Fourier Hankel |operator [Z operator
The Laplace transform is said to exist if the integral
is -----m--- for some value of s; otherwise it does not |[discontinuou converge
exist. S divergent |closed nt convergent
and is of exponentialorder 'a’ for t>0, then the piecewise
Laplace transform of f(t) exists for all s>a, ie F(s) |unifromly  [continuou [convergen piecewise
exists for every s>a. continuous  |s t divergent [continuous
is of exponentialorder 'a’ for t>0, then the Laplace Half open [infinite  [finite finite
transform of f(t) exists for all s>a, ie F(s) exists for |closed interval [interval [interval |interval in
every s>a. interval [0,1] ([0,1) in (0,00) |in (0,00) [(0,0)
If f(t) is piecewise continuous on every finite
interval in (0,00) and is of ------- 'a' for >0, then the
Laplace transform of f(t) exists for all s>a, ie F(s) |exponential [quadratic [cubic exponential
exists for every s>a. order order order n th order |order
If f(t) is piecewise continuous on every finite both
interval in (0,00) and is ofexponentialorder'a’ for necessary
t>0, then the Laplace transform of f(t) exists for all non and
s>a, ie F(s) exists for every s>a. This condition is  |necessary sufficient |Sufficient |sufficient |Sufficient
L[1] = n!/sMn+l) |l/s,s>0 |L/(t+1) [1/(s-a) |1/s,s>0
L[t*n] = 2/(s-1) n! shn+l) |sM(n+l) [n!/sN(n+1)
L[enat)] = 1/ (s-a) 1/s,s>0 [sN(n+l) [a/(s-a) 1/ (s-a)
s"2 F(s)-s nt/
L[eM(-at)] = F(s-a) f(0)- f'(0) |1/ (s+a) |s"(n+1) [1/(s+a)
1/(s"2 (s"2 a/(s"3+a”
L[sinat]= al(s"\2 +an2) [+an2) +a’2) 3) al(s"2 +a™2)
s/(s"2
L[cosat]= n!/s"(n+l) |sh(n+l) [tN(n+1l) ([+a™2) s/(s"2 +a2)
= S
L[coshat]= s/(s"2 -an2) [an3) +a’2) 1/a F(s/a) |s/(s"2 -a"2)




aF(s)- bF(s)- bF(s) *
L[af(t) + bg(t)]= aF(s)+bG(s) [bG(s) aG(s) aG(s) aF(s)+bG(s)
homogen
L[af(t) + bg(t)]= aF(s)+bG(s) is called ------ property |quasi linear |non-linear |Linearity |ous Linearity
L[af(t) + L[af(t) +
L[af(t) + bg(t)]= bg()]=  [L[af(t) +
bg(t)]= aF(s) |aF(s)+bG( aF(s)- bg(t)]=
Lineraity property is *bG(s) S) 1/a F(s/a) [bG(s) aF(s)+bG(s)
If L[f(t)]=F(s) then L[enat f(t)]= aF(s)+bG(s) [F(s+a) 1-s F(s-a) F(s-a)
L[enat L[f(at)]= [s"2 F(s)-s L[enat
First Shifting property is if L[f(t)] = F(s) then ------ f(t)]=F(s-a) [l/a F(s/a) [f(0)- f'(0) [s"(n+1) |f(t)]=F(s-a)
First non First
If L[f(t)]=F(s) then L[eMat f(t)]=F(s-a) is called ---- convoluti |shifting [homogen |shifting
property linear on property |ous property
First non
If L[f(t)]= F(s) then L[f(at)]=1/a F(s/a) is called Change of  [convoluti |shifting |homogen [Change of
property. scale on property |ous scale
If L[f(t)]= F(s) then L[f(at)]= F(s/a) l/a F(s/a) [F(s-a) aF(s/a) |l/aF(s/a)
L[f(at)]= L[enat
("3 - [L[f(at)]= [f()]=F(s- |L[f(at)]=
is called the change of scale property L[f(at)]=t-1 |a"3) 1/a F(s/a) [a) 1/a F(s/a)
L[f(at)]= 1/a |L[f(at)]= [L[f(at)]= [L[f(at)]= |L[f(at)]=
Change of scale property is ----- F(s/a) F(s/a) F(a/s) aF(s/a) |1l/aF(s/a)
s F(s)-
If L[f(t)]= F(s) then L[f' ()] = F(s)-f(0) +(0) s F(s)-f(0) |F(s)+f(0) [s F(s)-f(0)




"2

s"2 F(s)-s |F(s)+s
"2 F(s)-s  [s"2 F(s)-s [f(0)+ f fO)+f [s72 F(s)-s
If L[f(t)]= F(s) then L[f" ()] = f(0) f(0)- £'(0) |'(0) '(0) f(0)- f'(0)
L[5 (t"3)] = 1 1/s,s>0 [3/(s"4) [30/ (s™4) |30/ (s"4)
L[6t] = 6 6/(s"2) |6/s 6-s 6/(s"2)
L[2en(-61)] = 2/(s+6) 2 2/(s-6) 2/s 2/(s+6)
L[7] = /s 1/s,s>0 [(-7/s) 7 /s
20/(s"2+
L[10 sin2t]= 20/(s"2-4)  |2/(s"2+4) |12/(s"2-4) |4) 20/(s"2+4)
7s/(s"2+9
L[7 cosh3t]= 7s/(s"2-9)  [7/(s"2-9) [s/(s"2-9) |) 7s/(s"2-9)
The inverse laplace transform of 1/s is = 0 -1 s+a 1 1
The inverse laplace transform of 1/(s-a) is = e’\(-at) l/eMat) [en(at) 1/e(-at) |en(at)
The inverse laplace transform of 1/(s+a) is = e/\(-at) l/enat) [1/en(-at) [en(at) e/\(-at)
If L[f(t)]=F(s) then f(t) is called -------- laplace quasi
transform of F(s) Linear non-linear inverse  [linear inverse
If L is linear then -------- is Linear. L+1 LA(-1) 1/L (-1/L) LA(-1)
quasi
If L is linear then L inverse is -------- non-linear  |Linear divergent |linear Linear
(Fa)(O=I |(Fa)O=T |(t*e)O=I |(Fre)(t)=]
(F*g)(t)=J (from0 [fromOto [ (fromO |(fromOto
(fromOtot) |tot)f(u) |[tf(u)g(t- [tot) g(t- |t) f(u) g(t-
The convolution of f*g of f(t) and g(t) is defined as |f(u) g(t+u) du|du u) du u) du u) du
(Prg)(t)=] fromOtot
fromOtot [(Fg)()=1 |(F*g)(t)=e |(F*g)(t)= (f(u) g(t-u)
is called the convolution theorem. f(u) g(t-u) du |-t \(-at) LA(-1)(2) |du
A function f(t) is said to be -----with period T>0 if
f(t+T)=f(t) for all t even projection (odd peroidic |periodic
L[K] = k/s kis,s>0 [(-1/s) k kis




1U(s"3-  |al(s™2
L[sinhat]= a/(s"2 -a"2) |a"3) +a’\2) 1/a F(s/a) |a/(s"2 -a"2)
nt/
L[en@8t)] = 1/ (s-8) 1/s,s>0 [s"(n+l) [8/(s-8) |1/(s-8)




