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COURSE OBJECTIVES:    
 

• To develop the use of matrix algebra techniques that is needed by engineers for practical applications.  

• To acquaint the student with the concepts of vector calculus needed for problems in all engineering 

disciplines.  

• To develop an understanding of the standard techniques of complex variable theory so as to enable the 

student to apply them with confidence, in application areas such as fluid dynamics and flow of the electric 

current. 

• To make the student appreciate the purpose of using transforms to create a new domain in which it is 

easier to handle the problem that is being investigated. 
 

INTENDED OUTCOMES: 
 

The students will learn: 

• To Evaluate complex integrals using the Cauchy integral formula and the residue Theorem  

• To Appreciate how complex methods can be used to prove some important theoretical results.  

• To Evaluate line, surface and volume integrals in simple coordinate systems  

• To Calculate grad, div and curl in Cartesian and other simple coordinate systems, and establish   

   identities connecting these quantities  

• To Use Gauss, Stokes and Greens theorems to simplify calculations of integrals and prove simple     

   results.  
 

UNIT I : MATRICES           12     

Eigen values and Eigenvectors of a real matrix,  Characteristic equation, Properties of eigenvalues and 

eigenvectors, Cayley-Hamilton theorem, Diagonalization of matrices , Reduction of a quadratic form to 

canonical form by orthogonal transformation, Nature of quadratic forms. Simple Problems using Scilab. 

UNIT II: VECTOR CALCULUS             12    

Gradient and directional derivative, Divergence and Curl, Irrotational and Solenoidal vector fields,  Line 

integral over a plane curve, Surface integral, Area of a curved surface, Volume integral, Green’s, Gauss 

divergence and Stoke’s theorems, Verification and application in evaluating line, surface and volume 

integrals.  

UNIT III :ANALYTIC FUNCTION        12    

 

Analytic functions, Necessary and sufficient conditions for analyticity, Properties, Harmonic conjugates,  

Construction of analytic function, Conformal mapping, Mapping by Functions w =z+c, cz, 1/z, z2 , 

Bilinear transformation.  

UNIT IV: COMPLEX INTEGRATION              12      

Line integral,  Cauchy’s integral theorem, Cauchy’s integral formula, Taylor’s and Laurent’s series, 

Singularities, Residues, Residue theorem, Application of residue theorem for evaluation of real integrals, 

Use of circular contour and semicircular contour with no pole on real axis. 

UNIT V: LAPLACE TRANSFORMS        12   

 Existence conditions, Transforms of elementary functions, Transform of unit step function and 



unit impulse function, Basic properties, Shifting theorems, Transforms of derivatives and integrals, Initial 

and final value theorems, Inverse transforms, Convolution theorem , Transform of periodic functions, 

Application to solution of linear ordinary differential equations with constant coefficients. 
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Unit No. List of Topics No. of Hours 

 

 

 

 

 

 

 

 

UNIT I 

MATRICES  

Introduction of Matrix Algebra 1 

Characteristic Equation  1 

Problems based on Characteristic Equation - Eigen values and 

Eigen vectors 

1 

Problems based on Characteristic Equation - Eigen values and 

Eigen vectors 

1 

Tutorial 1: Characteristic Equation - Eigen values and Eigen 

vectors 

1 

Properties of eigenvalues and eigenvectors 1 

Problems based on Properties 1 

Cayley – Hamilton theorem 1 

Problems based on Cayley – Hamilton theorem 1 

Diagonalization of matrices 1 

Reduction of a quadratic form to canonical form by orthogonal 

transformation 

1 

Reduction of a quadratic form to canonical form by orthogonal 

transformation 

1 

Nature of quadratic forms 1 

Tutorial 2: Cayley – Hamilton theorem  and Canonical form 

through orthogonal reduction 

1 

TOTAL 14 

 

 

 

 

 

 

 

 

UNIT – II 

VECTOR CALCULUS                                                                                                                            

Introduction –  Vector Calculus                                                                                                                           1 

Gradient and directional derivative 1 

Divergence and Curl 1 

Irrotational and Solenoidal vector fields 1 

Irrotational and Solenoidal  vector fields, scalar potential 1 

Vector Integration-,  Line integral over a plane curve 1 

Surface integral, Area of a curved surface 1 

Volume integral 1 

Tutorial 3 – Irrotational and solenoidal, Green’s theorem 1 

Gauss divergence theorem  - Statement , Problems 1 

Gauss divergence theorem  -  Problems 1 

Stoke’s theorem - Statement , Problems 1 

Stoke’s theorem - Problems 1 

Tutorial 4 – Gauss divergence and Stoke’ theorem,  1 

TOTAL 14 

 

 

 

 

 

 

 

ANALYTIC FUNCTION                                                                                                                        

Introduction – Analytic Function 1 

Necessary and Sufficient conditions for an analytic function- 

Cauchy-Riemann equations –Cartesian form 

1 

Necessary and Sufficient conditions for an analytic function- 

Cauchy-Riemann equations –Cartesian form 

1 

Cauchy-Riemann equations – Polar form 1 



 

 

 

Staff in charge                                                                                                                      HoD 

 

UNIT – III 

Harmonic functions and its conjugate 1 

Tutorial 5-Cauchy-Riemann equations Harmonic functions  1 

Properties of analytic functions 1 

Construction of  an Analytic Function Milne-Thomson method 1 

Construction of  an Analytic Function Milne-Thomson method 1 

Conformal mapping: The transformations w = z+a, az 1 

Conformal mapping: The transformations  w = 1/z, Z2 1 

Bilinear transformation 1 

Bilinear transformation 1 

Tutorial 6 - Conformal mapping, Bilinear transformation 1 

TOTAL 14 

 

 

 

 

 

 

UNIT – IV 

COMPLEX INTEGRATION  

Introduction - Complex Integration,  Line integral 1 

Problems solving using Cauchy’s integral theorem 1 

Problems solving using Cauchy’s integral formula 1 

Taylor’s  Series Problems 1 

Taylor’s  Series Problems  1 

Laurent  series problems 1 

Laurent  series problems  

Tutorial 7 -   Taylor’s and  Laurent’s  series problems  1 

Theory of Residues 1 

Cauchy’s residue theorem 1 

Applications of Residue theorem to evaluate real integrals. 1 

Applications of Residue theorem to evaluate real integrals. 1 

Use of circular contour and semicircular contour with no pole on 

real axis. 

1 

Tutorial 8 - Cauchy’s residue theorem, Applications 1 

TOTAL 14 

 

 

 

 

 

 

 

UNIT – V 

 

 

 

 

 

 

LAPLACE TRANSFORMS  

Introduction – Transforms, Existence conditions  1 

Transforms of elementary functions 1 

Transform of unit step function and unit impulse function 1 

Basic properties 1 

Transforms of derivatives and integrals 1 

Initial and final value theorems 1 

Tutorial 9 - Basic properties , Transforms of derivatives and 

integrals 

1 

Inverse Laplace transforms, Convolution theorem 1 

Inverse Laplace transforms, Convolution theorem 1 

Transform of periodic functions 1 

Transform of periodic functions-Problems 1 

Application to solution of linear ordinary differential equations 

with constant coefficients  using Laplace transforms 

1 

Application to solution of linear ordinary differential equations 

with constant coefficients  using Laplace transforms 

1 

Tutorial 10 - Solution of Ordinary Differential Equations, 

Transform of periodic functions 

1 

TOTAL  14 

 GRAND TOTAL  70 



Part I

Unit I Matrices

Characteristic equation; Eigen values and Eigen vectors of a real matrix; Properties; 
Cayley–Hamilton theorem (excluding proof); Orthogonal transformation of a 
symmetric matrix to diagonal form; Quadratic forms; Reduction to canonical form 
through orthogonal reduction.

Unit II Three-Dimensional Analytical Geometry

Direction ratios of the Line Joining two points; The plane; Plane through the 
intersection of two lines; The straight line; The plane and the straight line; Shortest 
distance between two skew lines; Equation of a sphere.  

Unit III Geometrical Applications of Differential Calculus

Curvature in Cartesian coordinates; Centre and radius of curvature; Circle of 
curvature; Evolutes; Envelopes; Evolutes as envelope of normals.

Unit IV Functions of Several Variables

Partial derivatives; Euler’s theorem for homogeneous functions; Total derivatives; 
Differentiation of implicit functions; Jacobians; Maxima and minima of functions 
of two or more variables; Method of Lagrangian multipliers.

Unit V Differential Equations

Equations of the first order and higher degree; Linear differential equations of 
second and higher order with constant coefficients; Euler’s homogeneous linear 
differential equations; Mathematica software demonstration.
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Unit I

Matrices

Chapter 1: Matrices

Chapter 2:  Eigen Values, Eigen Vectors and the Characteristic  
Equation

Chapter 3: Cayley–Hamilton Theorem

Chapter 4: Diagonalization of Square Matrices

Chapter 5: Quadratic Forms

EM_UnitI_01.indd   3 8/11/2017   4:56:52 PM



EM_UnitI_01.indd   4 8/11/2017   4:56:52 PM



1 Matrices

Chapter Outline

 ● Introduction
 ● Definition of a Matrix
 ● Special type of Matrices
 ● Properties of Matrix Addition and Scalar Multiplication
 ● Properties of Matrix Transposition
 ● Determinants
 ● Simultaneous Linear Equations

1.1 ❑ intRoDUCtion

Matrices were invented about a century ago in connection with the study of simple 
changes and movements of geometric figures in coordinate geometry.

J J Sylvester was the first to use the Latin word “matrix” in 1850 and later on in 
1858, Arthur Cayley developed the theory of matrices in a systematic way.

Matrices are powerful tools of modern mathematics and their study is becoming 
important day by day due to their wide applications in almost every branch of science 
and especially in physics (atomic) and engineering. These are used by sociologists in 
the study of dominance within a group, by demographers in the study of births and 
deaths, mobility and class structure, etc., by economists in the study of inter-industry 
economics, by statisticians in the study of ‘design of experiments’ and ‘multivariate 
analysis’, by engineers in the study of ‘network analysis’ used in electrical and 
communication engineering.

Matrix is an essential tool for engineers and scientists to solve a large number 
of problems in the branches of engineering such as in (i) electrical engineering, 
where the problems with electrical circuits are modelled with the help of matrix 
equations; (ii) structural engineering, where the problems are modelled in the form 
of matrix equations and then solved; (iii) a neural network, where a set of matrices 

EM_UnitI_01.indd   5 8/11/2017   4:56:53 PM



1.6	 Engineering Mathematics

represents a neural network and its activity can be explained with the help of matrix 
operations and also the knowledge gathered from a set of observations is stored in 
matrix form; (iv) image processing, where an image is considered as a big matrix 
and the templates for image processing operators like edge detection, thinning, 
filtering etc are basically matrices and the image-processing operations are directly 
or indirectly matrix operations; (v) graph theory, where a graph is represented by 
a matrix and the problem related to the graph can be solved using matrix algebra;  
(vi) control engineering, where the control problems are modelled using matrix 
or matrix differential equations; (vii) compiler design, where the grammar of a 
programming language may be expressed in terms of Boolean matrices and then the 
precedence of the operators used is the operator precedence grammar are computed; 
(viii) automata, where state transitions can be expressed using matrix theory.

Rectangular Array

Before we come to the formal definition of ‘matrices’ and to understand the same, let 
us consider the following example:

 In an inter-university debate, a student can speak either of the five languages: 
Hindi, English, Bangla, Marathi and Tamil. A certain university, say, A sent 25 students 
of which 7 offered to speak in Hindi, 8 in English, 2 in Bangla, 5 in Marathi and the 
rest in Tamil; another university, say B, sent 20 students of which 10 spoke in Hindi, 
7 in English and 3 in Marathi. Out of 25 students from the third university, say C,  
5 spoke in Hindi, 10 in English, 6 in Bangla and 4 in Tamil.

The information given in the above example can be put in a compact way if we 
present it in a tabular form as follows:

University  Number of speakers in
Hindi English Bangla Marathi Tamil

A 7 8 2 5 3
B 10 7 0 3 0
C 5 10 6 0 4

The numbers in the above arrangement form is known as a rectangular array. 
In this array, the lines down the page are called columns whereas those across the 
page are called rows. Any particular number in this arrangement is known as an 
entry or an element. Thus, in the above arrangement, we find that there are 3 rows 
and 5 columns and we observe that there are 5 elements in each row and so the total 
number of elements = 3 ¥ 5, i.e., 15.

If the data given in the above arrangement is written without lines enclosed by 

a pair of square brackets, i.e., in the form 
È ˘
Í ˙
Í ˙
Í ˙Î ˚

7 8 2 5 3
10 7 0 3 0
5 10 6 0 4

 then this is called a 
matrix.

1.2  ❑  Definition of a Matrix

A system of any mn numbers arranged in a rectangular array of m rows and n columns 
is called a matrix of order m ¥ n or an m ¥ n matrix (which is read as m by n matrix).

EM_UnitI_01.indd   6 8/11/2017   4:56:53 PM



 Matrices 1.7

 Ø Column

For example, 

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

11 12 1

21 22 2

1 2

. .

. .
. . . . .
. . . . .

. .

n

n

m m mn

a a a
a a a

a a a

 ¨ row is an m ¥ n matrix where the symbols 

aij represent any numbers (aij lies in the ith row and jth column) and 
È ˘
Í ˙-Î ˚

1 5 2
3 6 4  is a 

2 ¥ 3 matrix.

  note 

 (i) A matrix may be represented by the symbols [aij], (aij), ||aij||. Generally, the 
first system is adopted.

 (ii) Each of the mn numbers constituting an m ¥ n matrix is known as an 
element of the matrix.

  The elements of a matrix may be scalar or vector quantities.
 (iii) When m = n, the matrix is square, and is called a matrix of order n or an 

n – square matrix.
 (iv) The plural of ‘matrix’ is ‘matrices’.

1.3 ❑ SPeCiAl tYPeS of MAtRiCeS

Row Matrix

Any 1 ¥ n matrix which has only one row is called a row matrix or a row vector.
The matrix A = [a11, a12 % aln] is a row matrix.

Column Matrix

Any m ¥ 1 matrix which has only one column is called a column matrix or a column 
vector.

The matrix A =  

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

11

21

1

.

.

m

a
a

a

 is a column matrix.

null Matrix or Zero Matrix

If the elements of a matrix are all zero, it is called a null or zero matrix. A zero matrix 
of order m ¥ n is denoted by 0m,n or simply by 0. A zero matrix may be rectangular or 
square.

For example, 
È ˘
Í ˙
Î ˚

0 0
0 0

 and 
È ˘
Í ˙
Î ˚

0 0 0
0 0 0

 are null matrices which are square and 

rectangular respectively.

 (i) A matrix may be represented by the symbols [aij], (aij), ||aij||. Generally, the 
first system is adopted.

 (ii) Each of the mn numbers constituting an m ¥ n matrix is known as an 
element of the matrix.

  The elements of a matrix may be scalar or vector quantities.
 (iii) When m = n, the matrix is square, and is called a matrix of order n or an 

n – square matrix.
 (iv) The plural of ‘matrix’ is ‘matrices’.
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1.8	 Engineering Mathematics

Diagonal Matrix

A square matrix with all the elements equal to zero except those in the leading 
diagonal is called a diagonal matrix.

For example, 
È ˘
Í ˙
Í ˙
Í ˙Î ˚

1 0 0
0 3 0
0 0 5

 is a diagonal matrix.

Scalar Matrix

A diagonal matrix all of whose diagonal elements are equal is called a scalar matrix.

For example, 
È ˘
Í ˙
Í ˙
Í ˙Î ˚

5 0 0
0 5 0
0 0 5

 is a scalar matrix of order 3.

Unit Matrix

A square matrix of order n which has unity for all its elements in the leading diagonal 
and whose all other elements are zero is called the unit matrix or the identity matrix 
of order n and is denoted by In. In other words, if each diagonal element of a scalar 
matrix is unity, the matrix is called a unit matrix.

For example, 
È ˘
Í ˙
Î ˚

1 0
0 1

 and 
È ˘
Í ˙
Í ˙
Í ˙Î ˚

1 0 0
0 1 0
0 0 1

 are unit matrices of order 2 and 3 respectively.

Triangular Matrices (Echelon Form)

A square matrix in which all the elements below the leading diagonal are zero is 
called an upper triangular matrix. A square matrix in which all the elements above 
the leading diagonal are zero is called a lower triangular matrix.

For example, 

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

11

21 22

1 2

0 . . 0

0 . 0
. . . . .
. . . . .

. .n n nn

a

a a

a a a

 is lower triangular and 

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

11 12 1

22 2

. .
0 . .
. . . . .
. . . . .
0 0 . .

n

n

nn

a a a
a a

a

 

is upper triangular.

Transpose of a Matrix

The matrix got from any given matrix A by interchanging its rows and columns is 
called the transpose of A and is denoted by A¢ or AT.

For example, if A = 
È ˘-
Í ˙
Î ˚

1 1 3
2 5 6

 then A¢ = 
È ˘
Í ˙-Í ˙
Í ˙Î ˚

1 2
1 5

3 6
 clearly (A¢)¢ = A.
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 Matrices 1.9

Conjugate of a Matrix

If A is an m ¥ n matrix then the m ¥ n matrix obtained by replacing each element of 
A by its complex conjugate is called the conjugate matrix of A and is denoted by A—.

Thus, if A = [ aij ] then È ˘= Î ˚ijA a  where ija  is the complex conjugate of aij .

For example, if A = 
È ˘+ -
Í ˙+ -Í ˙
Í ˙+Î ˚

3 5 7
6 3 2

2 7 8 9

i i
i i

i
 then 

È ˘- +
Í ˙= - +Í ˙
Í ˙-Î ˚

3 5 7
6 3 2

2 7 8 9

i i
A i i

i

  note 

 (i) If the elements of A are over the field of real numbers then the conjugate of 
A coincides with A, i.e., A  = A.

 (ii) The conjugate of the conjugate of a matrix coincides with itself, i.e., ( )A  = A.

Symmetric Matrices

A square matrix A = [ aij ] is said to be symmetric if A = AT, i.e., aij = aji, and 
skew-symmetric if A = –AT, i.e., aij = –aji, where i and j vary from 1 to n.

The matrices 
È ˘
Í ˙
Í ˙
Í ˙Î ˚

a h g
h b f
g f c

 and 
È ˘
Í ˙-Í ˙
Í ˙- -Î ˚

0
0

0

h g
h f
g f

 are respectively symmetric and skew-

symmetric.

  note

In a symmetric matrix, all the elements placed symmetrically about the main 
diagonal are equal and in a skew-symmetric matrix, they differ by a multiple of 
–1.

Hermitian Matrices and Skew-Hermitian Matrices

A square matrix A = [aij] is said to be Hermitian if aij = jia  , i.e., the (i, j)th element is the 
conjugate complex of the (j, i)th element.

A square matrix A = [aij] is said to be skew-Hermitian if aij = – jia , i.e., (i, j)th element 
is the negative conjugate of the (j, i)th element.

For example, 
È ˘-
Í ˙+Î ˚

1 1 4
1 4 2

i
i  and 

È ˘+
Í ˙- +Î ˚

3 2
2

i i
i i  are respectively, Hermitian and 

skew-Hermitian matrices.

trace of a Square Matrix

The sum of the main diagonal elements of a square matrix A is called the trace of A 
and is denoted by tr A.

 (i) If the elements of A are over the field of real numbers then the conjugate of 
A coincides with A, i.e., A  = A.

 (ii) The conjugate of the conjugate of a matrix coincides with itself, i.e., ( )( )A( ) = A.

In a symmetric matrix, all the elements placed symmetrically about the main 
diagonal are equal and in a skew-symmetric matrix, they differ by a multiple of 
–1.
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1.10 Engineering Mathematics

If A = 

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

11 12 1

21 22 2

1 2

. .

. .
. . . . .
. . . . .

. .

n

n

n n nn

a a a
a a a

a a a

 then 

trace (A) = tr A = a11 + a22 + % + ann

  note

 (i) If A and B are of the same order then tr(A + B) = tr A + tr B
 (ii) If A be of order m ¥ n and B of order n ¥ m, then tr AB = tr BA.

1.4 ❑  PRoPeRtieS of MAtRix ADDition AnD SCAlAR 
MUltiPliCAtion

Property (i) A + B = B + A
Property (ii)  (A + B) + C = A + (B + C)
Property (iii)  a(A + B) = aA + aB
Property (iv)  (a + b)A = aA + bA
Property (v) (ab) A = a(bA)

Thus, the matrix addition is commutative [Property (i)] and associative [Property 
(ii)]; and the scalar multiplication of a matrix is distributive over matrix addition 
[Property (iii)].

1.5 ❑ PRoPeRtieS of MAtRix tRAnSPoSition

If A and B are two matrices, and ‘a ’ is a scalar then
Property (i) (AT)T = A
Property (ii) (A + B)T = AT + BT

Property (iii) (aA)T = aAT

Property (iv)  (AB)T = BTAT

1.6 ❑ DeteRMinAntS

With each square matrix A, we can associate a determinant which is denoted by the 
symbol |A| or det A or D. When A is a square matrix of order n, the corresponding 
determinant |A| is said to be a determinant of order n. A matrix is just an arrangement 
and has no numerical value. A determinant has numerical value. In fact, every square 
matrix has its determinant and while finding inverse, rank, etc., of a matrix or solving 
the linear equations by matrix method, we come across it.

Further, 
È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙
Î ˚ Î ˚ Î ˚

2 5 2 6 9 5
, ,

6 9 5 9 6 2
 and 

È ˘
Í ˙
Î ˚

9 6
5 2  are different matrices but the 

corresponding determinants have the same value (–12). In matrices, numbers are 
enclosed by brackets or parenthesis or double bars. In determinants, numbers are 
enclosed by a pair of vertical lines (bars).

 (i) If A and B are of the same order then tr(A + B) = tr A + tr B
 (ii) If A be of order m ¥ n and B of order n ¥ m, then tr AB = tr BA.
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	 Matrices	 1.11

Determinants were first introduced for solving linear systems and have important 
engineering applications in systems of differential equations, electrical networks, 
Eigen-value problems, and so on. Many complicated expressions occurring in 
electrical and mechanical systems can be simplified by expressing them in the form 
of determinants.

The differences between matrices and determinants are as follows:

Matrices Determinants
1. �Number of rows and number of col-

umns can be equal or unequal. 
1. �Number of rows and number of 

columns are equal.
2. �Elements are enclosed by brackets or 

parentheses or double bars.
2. �Elements are enclosed by a pair of 

vertical lines (bars).
3. �A matrix has no numerical value. 3. �A determinant has a numerical value.
4. �Matrices are arrangements. By 

interchanging rows and columns in a 
matrix, a new matrix is obtained.

4. �Even after interchanging rows and 
columns in a determinant, the value 
of the determinant is unaltered.

Properties of Determinants

The following properties can be used in evaluating determinants.
	 (i)	 A determinant is unaltered if the corresponding rows and columns are  

interchanged.
	 (ii)	 If each element of a row or column be multiplied by a constant, the value of the 

determinant is multiplied by the same constant.
	 (iii)	 If two rows (or columns) of a determinant are interchanged, the sign of the 

determinant is changed.
	 (iv)	 If two rows (or columns) are identical, the value of the determinant is zero.
	 (v)	 A determinant is unaltered if the elements of any row (or column) be multiplied 

by a constant and added to the corresponding element of any other row (or 
column).

	 (vi)	 The determinant of a diagonal matrix is equal to the product of the elements in 
the diagonal.

	(vii)	 The determinant of the product of two matrices is equal to the product of the 
determinants of the two matrices, 
i.e.,	 |AB| = |A| ◊ |B|

Minors of a Matrix

The determinant of every square submatrix of a given matrix A is called a minor of 
the matrix A.

For example, if A = 
È ˘
Í ˙-Í ˙
Í ˙Î ˚

5 2 10
1 3 7

6 4 6

Some of the minors are -
-

5 2 10
5 2 3 7

1 3 7 , ,
1 3 4 6

6 4 6
, 3, 6, etc.
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1.12	 Engineering Mathematics

Singular and Nonsingular Matrices

A square matrix A is said to be singular if its determinant is zero.
A square matrix A is said to be nonsingular if its determinant is not equal to zero.

For example, 

consider	 A = 
È ˘
Í ˙
Í ˙
Í ˙Î ˚

1 2 3
3 1 4
2 4 6

	 |A| = 1(6 – 16) – 2(18 – 8) + 3(12 – 2)
	  = –10 – 20 + 30
	  = 0

\ A is a singular matrix.

Consider	 B = 
È ˘
Í ˙
Í ˙
Í ˙Î ˚

2 1 3
2 3 1
1 1 2

	 |B| = 2(6 – 1) – 1(4 – 1) + 3(2 – 3)
	  = 10 – 3 – 3
	  = 4

Since |B| = 4 π 0, B is a nonsingular matrix.

Adjoint of a Square Matrix

Let A = 
È ˘
Í ˙
Í ˙
Í ˙Î ˚

11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

The adjoint of A is defined to be the transpose of the co-factor matrix of A and is 
denoted by adjA.

	 adjA = (Aij)T, where Aij  = 
È ˘
Í ˙
Í ˙
Í ˙Î ˚

11 12 13

21 22 23

31 32 33

A A A
A A A
A A A

\	 adjA  = (Aij)T = 
È ˘
Í ˙
Í ˙
Í ˙Î ˚

11 21 31

12 22 32

13 23 33

A A A
A A A
A A A

Reciprocal Matrix or Inverse of a Matrix

●● Definition

If A be any matrix then a matrix B, if it exists such that AB = BA = I, B is called the 
inverse of A; I being a unit matrix.

For the products AB, BA to be both defined and equal, it is necessary that A and B 
are both square matrices of the same order. Thus, nonsquare matrices cannot possess 
inverses. Also, we can at once show that the inverse of a matrix, in case it exists, must 
be unique.
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nonsingular and Singular Matrices

A square matrix A is said to be nonsingular or singular according as |A| π 0 or 
|A| = 0.

Thus, only nonsingular matrices possess inverses.

  note

 (i) If A, B be two nonsingular matrices of the same order then the product AB 
is nonsingular and (AB)–1 = B–1 A–1.

 (ii) If A be a nonsingular matrix and k a positive integer then A–k = (Ak)–1.
 (iii) The operations of transposing and inverting are commutative, 

i.e., (AT)–1 = (A–1)T

 (iv) The operations of conjugate transpose and inverse are commutative,
 i.e., (Aq)–1 = (A–1)q.

orthogonal Matrix

A square matrix A is said to be orthogonal if AAT = AT A = I
But we know that A ◊ A–1 = A–1 ◊ A = I
Hence, we note that AT = A–1.
Hence, an orthogonal matrix can also be defined as follows:
A square matrix A is said to be orthogonal if AT = A–1 

For example, if  A = 
q q
q q

È ˘-
Í ˙
Î ˚

cos sin
sin cos  

then  AT = 
q q
q q

È ˘
Í ˙-Î ˚

cos sin
sin cos

 AAT =
q q q q
q q q q

È ˘ È ˘-
Í ˙ Í ˙-Î ˚ Î ˚

cos sin cos sin
sin cos sin cos

  = 
q q q q q q

q q q q q q

È ˘+ -
Í ˙
Í ˙- +Î ˚

2 2

2 2

cos sin cos sin sin cos

sin cos cos sin sin cos

  = 
È ˘
Í ˙
Î ˚

1 0
0 1

= I

Hence, A is orthogonal.

Rank of a Matrix

A number r is defined as the rank of an m ¥ n matrix A provided, 
 (i) A has at least one minor of order r which does not vanish, and
 (ii) there is no minor of order (r + 1) which is not equal to zero.

  note

 (i) The rank of a matrix A is denoted by r(A) (or) simply R(A).
 (ii) The rank of a zero matrix by definition is 0 (i.e.) r(0) = 0.
 (iii) The rank of a matrix remains unaltered by the application of elementary row 

or column operations, i.e., all equivalent matrices  have the same rank.

 (i) If A, B be two nonsingular matrices of the same order then the product AB 
is nonsingular and (AB)–1 = B–1 A–1.

 (ii) If A be a nonsingular matrix and k a positive integer then k a positive integer then k A–k = (k = (k Ak)–1.
 (iii) The operations of transposing and inverting are commutative, 

i.e., (AT)–1 = (A–1)T

 (iv) The operations of conjugate transpose and inverse are commutative,
 i.e., (Aq)q)q –1 = (A–1)q.

 (i) The rank of a matrix A is denoted by r(A) (or) simply R(A).
 (ii) The rank of a zero matrix by definition is 0 (i.e.) r(0) = 0.
 (iii) The rank of a matrix remains unaltered by the application of elementary row 

or column operations, i.e., all equivalent matrices  have the same rank.
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1.14 Engineering Mathematics

 (iv) From the definition of rank of a matrix, we conclude that:
 (a) If a matrix A does not possess any minor of order (r + 1) then r(A) £ r.
  (b) If at least one minor of order r of the matrix A is not equal to zero then 

r(A) ≥  r.
 (v) If every minor of order p of a matrix A is zero then every minor of order 

higher than p is definitely zero.

idempotent Matrix 

A matrix such that A2 = A is called an idempotent matrix.

For example, if A= 
È ˘- -
Í ˙-Í ˙
Í ˙- -Î ˚

2 2 4
1 3 4

1 2 3
, 

A2 = 
È ˘ È ˘ È ˘- - - - - -
Í ˙ Í ˙ Í ˙- - = - =Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙- - - - - -Î ˚ Î ˚ Î ˚

2 2 4 2 2 4 2 2 4
1 3 4 1 3 4 1 3 4
1 2 3 1 2 3 1 2 3

A

Periodic Matrix

A matrix A will be called a periodic matrix if Ak + 1 = A, where k is a positive integer. If 
k is the least positive integer, for which Ak + 1 = A, then k is said to be the period of A. If 
we choose k = 1, we get A2 = A and we call it the idempotent matrix.

nilpotent Matrix

A matrix A will be called a nilpotent matrix if Ak = 0 (null matrix) where k is a positive 
integer; if however k is the least positive integer for which Ak = 0, then k is the index 
of the nilpotent matrix.

For example, if A = 
È ˘
Í ˙
Í ˙- -Î ˚

2

2

ab b

a ab
,

A2 = 
È ˘ È ˘ È ˘
Í ˙ Í ˙ = =Í ˙
Í ˙ Í ˙- - - - Î ˚Î ˚ Î ˚

2 2

2 2

0 0
0

0 0
ab b ab b

a ab a ab

Here, A is a nilpotent matrix whose index is 2.

involuntary Matrix

A matrix A will be called an involuntary matrix if A2 = I (unit matrix). Since I2 = I 
always, the unit matrix is involuntary.

equal Matrices

Two matrices are said to be equal if 
 (i) they are of the same order, and
 (ii) the elements in the corresponding positions are equal.

 (iv) From the definition of rank of a matrix, we conclude that:
 (a) If a matrix A does not possess any minor of order (r + 1) then r(A) £ r.
  (b) If at least one minor of order r of the matrix A is not equal to zero then 

r(A) ≥ r.
 (v) If every minor of order p of a matrix A is zero then every minor of order 

higher than p is definitely zero.
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		  Thus, if A = 
È ˘
Í ˙-Î ˚

2 1
3 4

, B = 
È ˘
Í ˙-Î ˚

2 1
3 4

		  Here, A = B.

1.7  ❑  Simultaneous Linear Equations

The concepts and operations in matrix algebra are extremely useful in solving 
simultaneous linear equations.

Let the equations be
a1x + a2y + a3z = d1 b1x + b2y +b3z = d2   c1x + c2y  + c3z = d3

fi	

È ˘ È ˘
Í ˙ Í ˙=Í ˙ Í ˙
Í ˙ Í ˙Î ˚Í ˙Î ˚

1 2 3 1

1 2 3 2

1 2 3 3

a x a y a z d
b x b y b z d
c x c y c z d

fi	

È ˘ È ˘È ˘
Í ˙ Í ˙Í ˙ =Í ˙ Í ˙Í ˙
Í ˙ Í ˙Í ˙Î ˚ Î ˚Í ˙Î ˚

1 2 3 1

1 2 3 2

1 2 3 3

a a a x d
b b b y d
c c c z d

\	 AX = B
	 A–1(AX) = A–1B
	 (A–1A)X = A–1B
	 IX = A–1B
	 X = A–1B

Hence, to solve linear equations, write down the coefficient matrix A and find its 
inverse A–1. Then find A–1B. This gives the value X which is the solution for the given 
linear equations.

Consistency of a System of Simultaneous Linear Equations

A system of simultaneous linear equations is AX = B in matrix form. Consider the 
coefficient matrix A. Augment A by writing the constants vector as the last column. 
The resulting matrix is called an augmented matrix and is denoted by (A : B) or 
(A o B) or simply [A, B].

A system of simultaneous linear equations is consistent if the ranks of the 
coefficient matrix and the augmented matrix are equal, 
i.e.,	 r(A) = r(A : B) (or) R[A] = R[A, B].

There are two possibilities:
	 (i)	 When r(A) = r(A : B) = n (the number of unknowns), the system has a unique 

solution.
	 (ii)	 When r(A) = r(A : B) < n (the number of unknowns), the system has infinite 

solutions. Let r(A) = r(A : B) = r < n ◊ (n – r) of the unknowns are to be assigned 
values arbitrarily and the remaining r unknowns can then be obtained in terms 
of those (n – r) values.

On the contrary, a system of simultaneous linear equations is inconsistent if the 
ranks of the coefficient matrix and the augmented matrix are not equal, i.e., r(A) π 
r(A : B)
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These different possibilities are presented in a chart as follows:

EM_UnitI_01.indd   16 8/11/2017   4:56:56 PM



2 Eigen Values, Eigen 
Vectors and the 
Characteristic Equation

Chapter Outline

 ● Introduction
 ● Characteristic Equation of a Matrix
 ● Important Properties of Eigen Values
 ● Linear Dependence and Independence of Vectors
 ● Properties of Eigen Vectors

2.1 ❑ IntroDuCtIon

In this chapter, we shall discuss mainly square matrices A and throughout the ensuing 
discussion, any new facts and developments will be based on the determination of a 
vector X (to be called characteristic vector or Eigen vector) and a scalar l (to be called 
characteristic value or Eigen value) such that AX = lX. Based on these concepts of 
Eigen values and Eigen vectors, we shall indicate the conditions on A under which a 
nonsingular matrix P can be selected such that P–1AP is diagonal, i.e., A is similar to 
a diagonal matrix.

2.2 ❑ CHArACtErIStIC EQuAtIon of A mAtrIx

Characteristic matrix

For a given matrix A, A – lI matrix is called the characteristic matrix, where l is a 
scalar and I is the unit matrix.

Let 
2 2 1
3 1 1
1 2 2

A
È ˘
Í ˙= Í ˙
Í ˙Î ˚
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2 2 1 1 0 0 2 2 1
3 1 1  – 0 1 0 3 1 1
1 2 2 0 0 1 1 2 2

A I
l

l l l
l

È ˘ È ˘ È ˘-
Í ˙ Í ˙ Í ˙- = = -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙-Î ˚ Î ˚ Î ˚

Characteristic Polynomial

The determinant |A – lI| when expanded will give a polynomial, which we call the 
characteristic polynomial of the matrix A.

For example,

	

l
l

l

-
-

-

2 2 1
3 1 1
1 2 2

	  = (2 – l)(l2 – 3l) – 2(–3l + 5) + 1(l + 5)
	  = –l3 + 5l2 + l – 5

Characteristic Equation

The equation |A – lI| = 0 is known as the characteristic equation of A and its roots are 
called the characteristic roots or latent roots or Eigen values or characteristic values 
or latent values or proper values of A.

Spectrum of A

The set of all Eigen values of the matrix A is called the spectrum of A.

Eigen-value Problem

The problem of finding the Eigen values of a matrix is known as an Eigen-value 
problem.

Characteristic Vector

Any nonzero vector X is said to be a characteristic vector of a matrix A if there exists a 
number l such that AX = lX, where l is a characteristic root of a matrix A.

2.3  ❑  Important Properties of Eigen Values

	 (i)	 Any square matrix A and its transpose AT have the same Eigen values.
	 (ii)	 The sum of the Eigen values of a matrix is equal to the trace of the matrix.
		  [Note: The sum of the elements on the principal diagonal of a matrix is called 

the trace of the matrix.]
	 (iii)	 The product of the Eigen values of a matrix A is equal to the determinant of A.
	 (iv)	 If l1, l2 … ln are the Eigen values of A then the Eigen values of
	 (a)	 KA are kl1, kl2 … kln

	 (b)	 Am are l l lm m m
n1 2, ...

	 (c)	 A–1 are 
l l l



n1 2

1 1 1, .
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	 (iv)	 The Eigen values of a real symmetric matrix (i.e. a symmetric matrix with real 
elements) are real.

2.4  ❑  Linear Dependence and Independence of Vectors

n-dimensional Vector or n-vector

An ordered set of n elements xi of a field F written as
	 A = [x1, x2 … xn]	 (2.1)
is called an n-dimensional vector or n-vector over F and the elements x1, x2 … xn are 
called the first, second … nth components of A.

We find it more convenient to write the components of a vector in a column as

	

È ˘
Í ˙
Í ˙
Í ˙
Í ˙

= = Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

T T
n

n

x
x
x

A x x x x

x

1

2

3

1 2 3 .[ , , ... ]
.
.

	 (2.2)

Equation (2.1) is called a row-vector and Eq. (2.2) is called a column-vector.

Linear Dependence and Independence of Vectors

The vectors A1 = [x11, x12, x13 … x1m], A2 = [x21, x22, x23 … x2m] … An = [xn1, xn2, xn3 … xnm] 
are called linearly dependent over F if there exists a set of n elements l1, l2 … ln of F, 
li’s being not all zero, such that l1A1 + l2A2 + … lnAn = 0.

Otherwise the n-vectors are called linearly independent over F.

2.5  ❑  Properties of Eigen Vectors

	 (i)	 The Eigen vector X of a matrix A is not unique.
	 (ii)	 If l1, l2 … ln be distinct Eigen values of an n ¥ n matrix then the corresponding 

Eigen vectors X1, X2 … Xn form a linearly independent set.
	 (iii)	 If two or more Eigen values are equal, it may or may not be possible to get 

linearly independent Eigen vectors corresponding to the equal roots.
	 (iv)	 Two Eigen vectors X1 and X2 are called orthogonal vectors if =TX X1 2 0
	 (v)	 Eigen vectors of a symmetric matrix corresponding to different Eigen values 

are orthogonal.

Applications

The Eigen-value and Eigen-vector method is useful in many fields because it can be 
used to solve homogeneous linear systems of differential equations with constant 
coefficients. Furthermore, in chemical engineering, many models are formed on the 
basis of systems of differential equations that are either linear or can be linearized 
and solved using the Eigen-value, Eigen-vector method. In general, most ordinary 
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differential equations can be linearized and, therefore, solved by this method. Initial-
value problems can also be solved by using the Eigen-value and Eigen-vector method.

Eigen-value analysis is also used in the designing of car stereo systems so that the 
sounds are directed appropriately for the listening pleasure of both the drivers and 
the passengers. Eigen-value analysis can indicate what needs to be changed to reduce 
the vibration of the car due to the music being played.

Oil companies frequently use Eigen-value analysis to explore land for oil. Oil, dirt 
and other substances give rise to linear systems which have different Eigen values, 
so Eigen-value analysis can give a good indication of where oil reserves are located.

Eigen values and Eigen vectors are used widely in science and engineering, 
particularly in physics. Rigid physical bodies have a preferred direction of rotation, 
about which they can rotate freely. For example, if someone were to throw a football, 
it would rotate around its axis while flying through the air. If someone were to hit 
the ball in the air, the ball would be likely to flop in a less simple way. Although this 
may seem like common sense, even rigid bodies with more complicated shapes will 
have preferred directions of rotation. These are called axes of inertia, and they are 
calculated by finding the Eigen vectors of a matrix called the inertia tensor. The Eigen 
values are also important and they are called moments of inertia.

Solved Examples

Example 1	 Find the characteristic roots of the matrix 
È ˘
Í ˙
Í ˙
Í ˙Î ˚

1 2 3
0 2 3
0 0 2

.

Solution

	
È ˘
Í ˙= Í ˙
Í ˙Î ˚

A
1 2 3
0 2 3
0 0 2

 and 
È ˘
Í ˙= Í ˙
Í ˙Î ˚

I
1 0 0
0 1 0
0 0 1

\	
l

l l
l

- - -
- = - - -

- - -
A I

1 2 0 3 0
| | 0 0 2 3 0

0 0 0 0 2

	 = 
l

l
l

-
-

-

1 2 3
0 2 3
0 0 2

	 = 
l

l
l

-
-

-
2 3

(1 )
0 2

	 = l l- - 2(1 )(2 )
\ the characteristic equation of the matrix A is (1 – l)(2 – l)2 = 0 and its roots are 
1, 2, 2.� Ans.
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Example 2	 Find the characteristic roots and corresponding characteristic vectors 

for the matrix 
È ˘-
Í ˙= - -Í ˙
Í ˙-Î ˚

8 6 2
6 7 4
2 4 3

A .

Solution  The characteristic equation is |A – lI| = 0,

i.e.,	
l

l
l

- -
- - - =

- -

8 6 2
6 7 4 0

2 4 3

fi	 (8 – l)[(7 – l)(3 – l) – 16] + 6[–6(3 – l) + 8] + 2[24 – 2(7 – l)] = 0
fi	 –l3 + 18l2 – 45l = 0
fi	 l(–l2 + 18l – 45) = 0
fi	 l = 0, 3, 15 are the characteristic roots of the matrix.
The characteristic vector X is obtained from (A – lI)X = 0.
Case (i) l = 0
If x, y, z are the components of a characteristic vector corresponding to the characteristic 
root 0, we have

	

8 6 2
( 0 ) 6 7 4 0

2 4 3

x
A I X y

z

È ˘ È ˘-
Í ˙ Í ˙- = - - =Í ˙ Í ˙
Í ˙ Í ˙-Î ˚ Î ˚

	 8x – 6y + 2z = 0
	 –6x + 7y – 4z = 0
	 2x – 4y + 3z = 0

\
	

-
= =

- - + -21 16 18 8 24 8
yx z

fi	

-
= =

-5 10 10
yx z

i.e., = =
1 2 2

yx z

\	
È ˘
Í ˙= Í ˙
Í ˙Î ˚

1

1
2
2

X

Case (ii) l = 3.

	

8 3 6 2
( 3 ) 0 6 7 3 4 0

2 4 3 3

x
A I X y

z

È ˘ È ˘- -
Í ˙ Í ˙- = fi - - - =Í ˙ Í ˙
Í ˙ Í ˙- -Î ˚ Î ˚

i.e.,	
5 6 2
6 4 4 0
2 4 0

x
y
z

È ˘ È ˘-
Í ˙ Í ˙- - =Í ˙ Í ˙
Í ˙ Í ˙-Î ˚ Î ˚

fi	 5x –6y + 2z = 0
	 –6x + 4y – 4z = 0
	 2x – 4y = 0
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\ 
-

= =
- + -0 16 0 8 24 8

yx z

fi -
= =

-16 8 16
yx z

fi = =
- -2 1 2

yx z

\ 
È ˘-
Í ˙= -Í ˙
Í ˙Î ˚

2

2
1
2

X

Case (iii) l = 15

 (A – 15I) X = 0 fi 
È ˘ È ˘- -
Í ˙ Í ˙- - -Í ˙ Í ˙
Í ˙ Í ˙- -Î ˚ Î ˚

8 15 6 2
6 7 15 4

2 4 3 15

x
y
z

 = 0

i.e., 
È ˘ È ˘- -
Í ˙ Í ˙- - -Í ˙ Í ˙
Í ˙ Í ˙- -Î ˚ Î ˚

7 6 2
6 8 4
2 4 12

x
y
z

 = 0

fi –7x – 6y + 2z = 0
 –6x – 8y –4z = 0
 2x – 4y – 12z = 0

\ 
-

= =
- + +96 16 72 8 24 16

yx z

fi -
= =

80 80 40
yx z

\ = =
-2 2 1
yx z

\ 3

2
2
1

X
È ˘
Í ˙= -Í ˙
Í ˙Î ˚

Hence, 
È ˘ È ˘ È ˘-
Í ˙ Í ˙ Í ˙= = - = -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

1 2 3

1 2 2
2 , 1 , 2
2 2 1

X X X  Ans.

  note

If 
È ˘
Í ˙= Í ˙
Í ˙Î ˚

11 12 13

21 22 23

31 32 33

a a a
A a a a

a a a
 then the characteristic equation is given by |A – lI| = 0

or l3 – D1l2 + D2l – D3 = 0 where D1 = a11 + a22 + a33 (sum of the diagonals of A (or) 
trace of a matrix A)

If 
È ˘
Í ˙
È ˘
Í ˙
È ˘

Í ˙
Í ˙
Í ˙
Í ˙

Í ˙
Í ˙
Í ˙
Í ˙
Î ˚Í ˙Î ˚Í ˙

È ˘11 12 13È ˘
Í ˙11 12 13Í ˙
È ˘
Í ˙
È ˘11 12 13È ˘
Í ˙
È ˘

Í ˙21 22 23Í ˙
Î ˚31 32 33Î ˚Í ˙Î ˚Í ˙

31 32 33
Í ˙Î ˚Í ˙

È ˘a a aÈ ˘È ˘
Í ˙
È ˘a a aÈ ˘
Í ˙
È ˘È ˘11 12 13È ˘a a aÈ ˘11 12 13È ˘È ˘
Í ˙
È ˘11 12 13È ˘
Í ˙
È ˘a a aÈ ˘
Í ˙
È ˘11 12 13È ˘
Í ˙
È ˘

A a a aÍ ˙A a a aÍ ˙=A a a a= Í ˙A a a aÍ ˙
Í ˙
Í ˙
Í ˙A a a aÍ ˙
Í ˙
Í ˙
Í ˙21 22 23Í ˙A a a aÍ ˙21 22 23Í ˙
Î ˚a a aÎ ˚Í ˙Î ˚Í ˙a a aÍ ˙Î ˚Í ˙Î ˚31 32 33Î ˚a a aÎ ˚31 32 33Î ˚Í ˙Î ˚Í ˙

31 32 33
Í ˙Î ˚Í ˙a a aÍ ˙Î ˚Í ˙

31 32 33
Í ˙Î ˚Í ˙

 then the characteristic equation is given by |A – lIlIl | = 0

or l3l3l  – D1l2l2l  + D2l – l – l D3 = 0 where D1 = a11 + a22 + a33 (sum of the diagonals of A (or) 
trace of a matrix A)
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= + +11 12 11 13 22 23
2

21 22 31 33 32 33

a a a a a a
D

a a a a a a

= sum of the second-order minors of A whose principal diagonals lie along the 
principal diagonal of A.
D3 = |A| = determinant of A.

Example 3 Find the characteristic roots and corresponding characteristic vectors 

of A = 
È ˘-
Í ˙- -Í ˙
Í ˙-Î ˚

6 2 2
2 3 1
2 1 3

. [KU Nov. 2010]

Solution The characteristic equation is l3 – D1l2 + D2l – D3 = 0
where  D1 = 6 + 3 + 3 = 12

 D2 = 
- -

+ +
- -

6 2 6 2 3 1
2 3 2 3 1 3

 = (18 – 4) + (18 – 4) + (9 – 1)
 = 14 +14 + 8
 = 36

 

-
= = - -

-
3

6 2 2
| | 2 3 1

2 1 3
D A

 = 6(9 – 1) + 2(–6 + 2) + 2(2 – 6)
 = 48 – 8 – 8
 = 32
\ the characteristic equation is l3 – 12l2 + 36l – 32 = 0 and the roots are 2, 2, 8.

Case (i) l = 2 (twice)

 

l
È ˘ È ˘- -
Í ˙ Í ˙- = fi - - - =Í ˙ Í ˙
Í ˙ Í ˙- - Î ˚Î ˚

6 2 2 2
( ) 0 2 3 2 1 0

2 1 3 2

x
A I X y

z

i.e., 
È ˘ È ˘-
Í ˙ Í ˙- - =Í ˙ Í ˙
Í ˙ Í ˙- Î ˚Î ˚

4 2 2
2 1 1 0
2 1 1

x
y
z

fi 4x – 2y + 2z = 0
 –2x + y – z = 0
 2x – y + z = 0
which are equivalent to a single equation . There is one equation in three unknowns.
\ taking two of the unknowns, say x = 1 and y = 0, we get z = –2 and taking x = 0 and 
y = 1, we get z = 1.

\ 1 2

1 0
0 , 1
2 1

X X
È ˘ È ˘
Í ˙ Í ˙= =Í ˙ Í ˙
Í ˙ Í ˙-Î ˚ Î ˚

= + += + += + += + += + +11 12 11 13 22 2311 12 11 13 22 2311 12 11 13 22 2311 12 11 13 22 2311 12 11 13 22 23= + +11 12 11 13 22 23= + += + +11 12 11 13 22 23= + += + +11 12 11 13 22 23= + += + +11 12 11 13 22 23= + +2
21 22 31 33 32 3321 22 31 33 32 3321 22 31 33 32 3321 22 31 33 32 3321 22 31 33 32 33

a a a a a aa a a a a aa a a a a aa a a a a aa a a a a a11 12 11 13 22 23a a a a a a11 12 11 13 22 2311 12 11 13 22 23a a a a a a11 12 11 13 22 2311 12 11 13 22 23a a a a a a11 12 11 13 22 2311 12 11 13 22 23a a a a a a11 12 11 13 22 2311 12 11 13 22 23a a a a a a11 12 11 13 22 23D
a a a a a aa a a a a aa a a a a aa a a a a aa a a a a a21 22 31 33 32 33a a a a a a21 22 31 33 32 3321 22 31 33 32 33a a a a a a21 22 31 33 32 3321 22 31 33 32 33a a a a a a21 22 31 33 32 3321 22 31 33 32 33a a a a a a21 22 31 33 32 3321 22 31 33 32 33a a a a a a21 22 31 33 32 33

= sum of the second-order minors of A whose principal diagonals lie along the 
principal diagonal of A.
D3 = |A| = determinant of A.
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Case (ii) l = 8

	

6 8 2 2
( 8 ) 0 2 3 8 1 0

2 1 3 8

x
A I X y

z

È ˘ È ˘- -
Í ˙ Í ˙- = fi - - - =Í ˙ Í ˙
Í ˙ Í ˙- -Î ˚ Î ˚

i.e.,	 –2x – 2y + 2z = 0
	 –2x – 5y – z = 0
	 2x – y – 5z = 0

\	
-

= =
- + +

= =
-

25 1 10 2 2 10

24 12 12

yx z

yx z

\	
È ˘
Í ˙= -Í ˙
Í ˙Î ˚

3

2
1
1

X

Hence, 
È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙= = = -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙-Î ˚ Î ˚ Î ˚

1 2 3

1 0 2
0 , 1 , 1
2 1 1

X X X � Ans.

Example 4	 The matrix A is defined as A = 
È ˘-
Í ˙
Í ˙
Í ˙-Î ˚

1 2 3
0 3 2
0 0 2

. Find the Eigen values of 

3A3 + 5A2 – 6A + 2I.

Solution  The characteristic equation is |A – lI| = 0

i.e.,	
l

l
l

- -
- =

- -

1 2 3
0 3 2 0
0 0 2

fi	 (1 – l)(3 – l)(–2 – l) = 0
i.e.,	 l = 1, 3, –2
	 Eigen values of A3 = 1, 27, –8
	 Eigen values of A2 = 1, 9, 4
	 Eigen values of A = 1, 3, –2
	 Eigen values of I = 1, 1, 1
\	 Eigen values of 3A3 + 5A2 – 6A + 2I
	 First Eigen value = 3(1)3 + 5(1)2 – 6(1) + 2 = 4
	 Second Eigen value = 3(27) + 5(9) – 6(3) + 2(1) = 110
	 Third Eigen value = 3( –8) + 5(4) – 6( –2) + 2(1) = 10
\	 Required Eigen values are 4, 110, 10.� Ans.

Example 5	 Find the Eigen values and Eigen vectors of the matrix 

È ˘-
Í ˙= Í ˙
Í ˙Î ˚

1 0 1
1 2 1
2 2 3

A .� [KU May 2010]
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Solution  The characteristic equation is given by |A – lI| = 0.

i.e.,	
l

l
l

- -
-

-

1 0 1
1 2 1
2 2 3

 = 0

i.e.,	 l3 – 6l2 + 11l – 6 = 0
fi	 (l – 1)(l2 – 5l + 6) = 0
	 (l – 1)(l – 2)(l – 3) = 0 fi l = 1, 2, 3
To find Eigen vectors for the corresponding Eigen values, we will consider the matrix 
equation (A – lI)X = 0.
Case (i) l = 1

	 (A – lI)X = 0 fi 
È ˘ È ˘- -
Í ˙ Í ˙-Í ˙ Í ˙
Í ˙ Í ˙-Î ˚ Î ˚

1 1 0 1
1 2 1 1
2 2 3 1

x
y
z

 = 0

fi	 –z = 0
fi	 x + y + z = 0
fi	 2x + 2y + 2z = 0
Let x = 1 fi y = –1

\

	

È ˘
Í ˙= -Í ˙
Í ˙Î ˚

1

1
1
0

X

Case (ii) l = 2

	 (A – lI)X = 0 fi 
È ˘ È ˘- -
Í ˙ Í ˙-Í ˙ Í ˙
Í ˙ Í ˙-Î ˚ Î ˚

1 2 0 1
1 2 2 1
2 2 3 2

x
y
z

 = 0

fi	 –x – z = 0
	 x + z = 0
	 2x + 2y + z = 0

\	
= =

-2 1 2
yx z

\	

È ˘-
Í ˙= Í ˙
Í ˙Î ˚

2

2
1
2

X

Case (iii) l = 3

	 (A – lI)X = 0 fi 
È ˘ È ˘- -
Í ˙ Í ˙-Í ˙ Í ˙
Í ˙ Í ˙-Î ˚ Î ˚

1 3 0 1
1 2 3 1
2 2 3 3

x
y
z

 = 0

fi	 –2x – z = 0
	 x – y + z = 0
	 2x + 2y = 0

\	 -
= =

- -2 2 4
yx z
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\	
È ˘-
Í ˙= Í ˙
Í ˙Î ˚

3

1
1
2

X

Hence, the Eigen vectors are 
È ˘
Í ˙= -Í ˙
Í ˙Î ˚

1

1
1
0

X , 
È ˘-
Í ˙= Í ˙
Í ˙Î ˚

2

2
1
2

X , 
È ˘-
Í ˙= Í ˙
Í ˙Î ˚

3

1
1
2

X � Ans.

Exercise

Part A

	 1.	 If 1, 5 are the Eigen values of a matrix A, find the value of det A.

	 2.	 Find the constants a and b such that the matrix 
È ˘
Í ˙
Î ˚

4
1
a

b
 has 3 and –2 as its Eigen 

values.
	 3.	 If the sum of two Eigen values and trace of a 3 ¥ 3 matrix A are equal, find |A|.
	 4.	 What do you understand by the characteristic equation of the matrix A?
	 5.	 What is Eigen-value problem?

	 6.	 Find latent vectors of the matrix 
È ˘
Í ˙
Í ˙
Í ˙Î ˚

0 0
0 0

a h g
b

c
.

	 7.	 Define linearly dependent and linearly independent set of vectors.
	 8.	 Show that the set of vectors X1 = [1, 2, 3], X2 = [1, 0, 1] and X3 = [0, 1, 0] are 

linearly independent.
	 9.	 Prove that the set of vectors X1 = [1, 2, 3], X2 = [1, 0, 1] and X3 = [0, 1, 0] are 

linearly independent.
	 10.	 Define spectrum of a matrix.
	 11.	 Prove that any square matrix A and its transpose AT have the same Eigen values.

	 12.	 Find the sum and product of the Eigen values of the matrix 
Í ˙
Í ˙= Í ˙
Í ˙Î ˚

2 2 1
3 1 1
1 2 2

A .

	 13.	 Given 
È ˘

= Í ˙
Î ˚

5 4
1 2

A , find the Eigen values of A2.

	 14.	 Find the sum of the squares of the Eigen values of 
È ˘
Í ˙= Í ˙
Í ˙Î ˚

3 1 4
0 2 6
0 0 5

A .

	 15.	 Find the sum of the Eigen values of the inverse 
È ˘
Í ˙= -Í ˙
Í ˙-Î ˚

1 0 0
0 3 1
0 1 3

A .

	 16.	 If A and B are 2 square matrices then what can you say about the characteristic 
roots of the matrices AB and BA?
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	 17.	 If two of the Eigen values of a 3 ¥ 3 matrix, whose determinant equals 4, are –1 
and +2, what will be the third Eigen value of the matrix?

	 18.	 The matrix A is defined as A = 
È ˘-
Í ˙-Í ˙
Í ˙Î ˚

1 0 0
2 3 0
1 4 2

. Find the Eigen values of A2.

	 19.	 If 
È ˘-
Í ˙= Í ˙
Í ˙-Î ˚

1 2 3
0 3 5
0 0 2

A , find the Eigen values of A3 + 5A = 8I.

	 20.	 The Eigen values of a matrix A are 1, – 2, 3. Find the Eigen values of 3I – 2A + A2.

Part B

	 1.	 Find the Eigen values of the matrix 
È ˘-
Í ˙
Í ˙
Í ˙- -Î ˚

2 3 1
3 1 3
5 2 4

.� (Ans. 0, 1, – 2)

	 2.	 The matrix A is defined as A = 
È ˘
Í ˙-Í ˙
Í ˙-Î ˚

1 2 3
0 2 6
0 0 3

. Find the Eigen values of 

3A3 + 5A2 + 6A + I.	�  (Ans. 15, –15, –53)

	 3.	 Find the Eigen values and the corresponding Eigen vectors of 
È ˘-
Í ˙-Í ˙
Í ˙-Î ˚

1 1 2
1 2 1
0 1 1

�

Ê ˆÈ ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙Á ˜- Í ˙ Í ˙ Í ˙Á ˜
Í ˙ Í ˙ Í ˙Á ˜Ë ¯Î ˚ Î ˚ Î ˚

1 3 1
1, 1, 2, 0 , 2 , 3

1 1 1
Ans.

	 4.	 Show that the vectors [1, 2, 0], [8, 13, 0] and [2, 3, 0] are linearly dependent.
	 5.	 Show the set of vectors [1, 1, 1], [1, 2, 3] and [2, 3, 8] are linearly independent.

	 6.	 Given that 
È ˘-
Í ˙= -Í ˙
Í ˙-Î ˚

15 4 3
10 12 6
20 4 2

A , verify that the sum and product of the Eigen 

values of A are equal to the trace of A and |A| respectively.

	 7.	 Find the Eigen values and Eigen vectors of (adjA), where 
È ˘-
Í ˙= - -Í ˙
Í ˙-Î ˚

2 1 1
1 2 1
1 1 2

A .

�

Ê ˆÈ ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙Á ˜- -Í ˙ Í ˙ Í ˙Á ˜
Í ˙ Í ˙ Í ˙Á ˜-Ë ¯Î ˚ Î ˚ Î ˚

1 2 1
1, 4, 4, 1 , 1 , 0

1 0 1
Ans.

.
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	 8.	 Verify that the Eigen vectors of the real symmetric matrix

		
È ˘-
Í ˙= - -Í ˙
Í ˙-Î ˚

3 1 1
1 5 1
1 1 3

A  are orthogonal in pairs. 

� (Hint: Prove that = = =1 2 2 3 3 1 0T T TX X X X X X )
	 9.	 Find the Eigen values and Eigen vectors of the following matrices:

	 (i)	
È ˘-
Í ˙
Í ˙
Í ˙-Î ˚

2 2 2
1 1 1
1 3 1

�

Ê ˆÈ ˘ È ˘-
Í ˙ Í ˙Á ˜-Í ˙ Í ˙Á ˜
Í ˙ Í ˙Á ˜Ë ¯Î ˚Î ˚

4 0
. – 2, 2, 2, 1 , 1

7 1
Ans

	 (ii)	
È ˘
Í ˙
Í ˙
Í ˙Î ˚

2 2 1
1 3 1
1 2 2

�

Ê ˆÈ ˘ È ˘
Í ˙ Í ˙Á ˜
Í ˙ Í ˙Á ˜
Í ˙ Í ˙Á ˜-Ë ¯Î ˚ Î ˚

1 1
. 1, 1, 5, 2 , 1

5 1
Ans

	 (iii)	
È ˘-
Í ˙-Í ˙
Í ˙-Î ˚

4 2 2
5 3 2
2 4 1

�

Ê ˆÈ ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙Á ˜
Í ˙ Í ˙ Í ˙Á ˜
Í ˙ Í ˙ Í ˙Á ˜Ë ¯Î ˚ Î ˚ Î ˚

2 1 0
. 1, 2, 5, 1 , 1 , 0

4 2 1
Ans

	 (iv)	
È ˘
Í ˙
Í ˙
Í ˙Î ˚

1 1 1
1 2 1
3 2 3

�

Ê ˆÈ ˘ È ˘ È ˘-
Í ˙ Í ˙ Í ˙Á ˜-Í ˙ Í ˙ Í ˙Á ˜
Í ˙ Í ˙ Í ˙Á ˜Ë ¯Î ˚ Î ˚ Î ˚

0 1 4
. 0, 1, 5, 1 , 0 , 5

1 1 11
Ans

	 (v)	
È ˘- -
Í ˙-Í ˙
Í ˙- -Î ˚

2 2 3
2 1 6
1 2 0

� [KU April 2012]

�

Ê ˆÈ ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙Á ˜-Í ˙ Í ˙ Í ˙Á ˜
Í ˙ Í ˙ Í ˙Á ˜-Ë ¯Î ˚ Î ˚ Î ˚

1 2 3
. 5, – 3, – 3, 2 , 1 , 0

1 0 1
Ans

	 10.	 Find the Eigen values and Eigen vectors of (adjA), given that the matrix 
È ˘-
Í ˙= Í ˙
Í ˙-Î ˚

2 0 1
0 2 0
1 0 2

A 	�  [KU May 2010]

�

Ê ˆÈ ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙Á ˜
Í ˙ Í ˙ Í ˙Á ˜
Í ˙ Í ˙ Í ˙Á ˜-Ë ¯Î ˚ Î ˚ Î ˚

1 0 1
. 1, 2, 3, 0 , 1 , 0

1 0 1
Ans
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3 Cayley–Hamilton 
Theorem

Chapter Outline

 ● Introduction
 ● Cayley–Hamilton Theorem

3.1 ❑ iNTrODUcTiON

This theorem provides an alternative method for finding the inverse of a matrix, and 
any positive integral power of A can be expressed as a linear combination of those of 
lower degree.

3.2 ❑ cAYLEY–HAMiLTON THEOrEM

Every square matrix satisfies its own characteristic equation.

Application

The Cayley–Hamilton theorem can be used to find
 ● The power of a matrix, and
 ● The inverse of an n ¥ n matrix A, by expressing these as polynomials in A of 

degree < n.

SOLVED ExAMPLES

Example 1 Verify that the matrix A = 
2 1 2
1 2 1
1 1 2

È ˘-
Í ˙- -Í ˙
Í ˙-Î ˚

 satisfies its characteristic 

equation and, hence, find A4. [KU May 2010, AU Jan. 2010]
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Solution  The characteristic equation is |A – lI| = 0

i.e.,	
l

l
l

- -
- - -

- -

2 1 2
1 2 1

1 1 2
 = 0

i.e.,	 l3 – 6l2 + 8l – 3 = 0
According to Cayley–Hamilton theorem, to prove A3 – 6A2 + 8A – 3I = 0

	

2
2 1 2 2 1 2 7 6 9
1 2 1 1 2 1 5 6 6
1 1 2 1 1 2 5 5 7

A
È ˘ È ˘ È ˘- - -
Í ˙ Í ˙ Í ˙= - - - - = - -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙- - -Î ˚ Î ˚ Î ˚

	

A
È ˘ È ˘ È ˘- - -
Í ˙ Í ˙ Í ˙= - - - - = - -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙- - -Î ˚ Î ˚ Î ˚

3
7 6 9 2 1 2 29 28 38
5 6 6 1 2 1 22 23 28
5 5 7 1 1 2 22 22 29

Hence, A3 – 6A2 + 8A – 3I

	

È ˘ È ˘ È ˘ È ˘- - -
Í ˙ Í ˙ Í ˙ Í ˙= - - - - - + - - -Í ˙ Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙ Í ˙- - -Î ˚ Î ˚ Î ˚ Î ˚
È ˘
Í ˙= Í ˙
Í ˙Î ˚

29 28 38 42 36 54 16 8 16 3 0 0
22 23 28 30 36 36 8 16 8 0 3 0
22 22 29 30 30 42 8 8 16 0 0 3

0 0 0
0 0 0
0 0 0

Thus, the given matrix A satisfies its own characteristic equation, i.e., A3 – 6A2 + 8A 
– 3I = 0
Multiplying on both sides by A, we get
	 A4 – 6A3 + 8A2 – 3A = 0
	 A4 = 6A3 – 8A2 + 3A

	

4
196 168 252 90 45 90 18 0 0
140 168 168 45 90 45 0 18 0
140 140 196 45 45 90 0 0 18

A
È ˘ È ˘ È ˘- -
Í ˙ Í ˙ Í ˙= - - - - - +Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙- -Î ˚ Î ˚ Î ˚

	

4
124 123 162

95 96 123
95 95 124

A
È ˘-
Í ˙= - -Í ˙
Í ˙-Î ˚

	 Ans.

Example 2	 Verify Cayley–Hamilton theorem for the matrix A = 
1 2 2
2 1 2
2 2 1

È ˘
Í ˙
Í ˙
Í ˙Î ˚

 and, 

hence, find A–1 and A4.� [KU Nov. 2010]

Solution  The characteristic equation is |A – lI| = 0,

i.e.,	
1 2 2

2 1 2
2 2 1

l
l

l

-
-

-
 = 0
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i.e.,	 l3 – 3l2 – 9l – 5 = 0
To prove A3 – 3A2 – 9A – 5I = 0

	

2
1 2 2 1 2 2 9 8 8
2 1 2 2 1 2 8 9 8
2 2 1 2 2 1 8 8 9

A
È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙= =Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

	

3
9 8 8 1 2 2 41 42 42
8 9 8 2 1 2 42 41 42
8 8 9 2 2 1 42 42 41

A
È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙= =Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

\	 3 2
41 42 42 27 24 24 9 18 18 5 0 0

3 9 5 42 41 42 24 27 24 18 9 18 0 5 0
42 42 41 24 24 27 18 18 9 0 0 5

A A A I
È ˘ È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙ Í ˙- - - = - - -Í ˙ Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚ Î ˚

	

0 0 0
0 0 0
0 0 0

È ˘
Í ˙= Í ˙
Í ˙Î ˚

Hence, the Cayley–Hamilton theorem is verified.
	 A3 – 3A2 – 9A – 5I = 0	 (1)
To find A–1

∏ by A fi A2 – 3A – 9I – 5A–1 = 0
i.e.,	 –5A–1 = –A2 + 3A + 9I

	

1
9 8 8 3 6 6 9 0 0

5 8 9 8 6 3 6 9 0 9
8 8 9 6 6 3 0 0 9

A-
È ˘ È ˘ È ˘- - -
Í ˙ Í ˙ Í ˙- = - - - + +Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙- - -Î ˚ Î ˚ Î ˚

	

1
3 2 2

5 2 3 2
2 2 3

A-
È ˘- -
Í ˙- = - -Í ˙
Í ˙- -Î ˚

\	
1

3 2 2
1 2 3 2
5

2 2 3
A-

È ˘- -
Í ˙= - - -Í ˙
Í ˙- -Î ˚

To find A4, multiply (1) by A
	 A4 – 3A3 – 9A2 – 5A = 0
i.e.,	 A4 = 3A3 + 9A2 + 5A

	

123 126 126 81 72 72 5 10 10
126 123 126 72 81 72 10 5 10
126 126 123 72 72 81 10 10 5

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙= + +Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

	

4
209 208 208
208 209 208
208 208 209

A
È ˘
Í ˙= Í ˙
Í ˙Î ˚

	 Ans.
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Exercise

Part A

	 1.	 State Cayley–Hamilton theorem.
	 2.	 Give two uses of the Cayley–Hamilton theorem.

	 3.	 If 
1 0
0 5

È ˘
Í ˙
Î ˚

, write A2 in terms of A and I, using Cayley–Hamilton theorem.

	 4.	 Verify Cayley–Hamilton theorem for the matrix 
3 1
1 5

A
È ˘-

= Í ˙-Î ˚
.

	 5.	 Using Cayley–Hamilton theorem, find the inverse of 
1 4
2 3

È ˘
Í ˙
Î ˚

.

	 6.	 Verify Cayley–Hamilton theorem for 0 2
4 0

È ˘
Í ˙
Î ˚

.

	 7.	 Verify Cayley–Hamilton theorem for the matrix 
5 3
1 3

A
È ˘

= Í ˙
Î ˚

.

	 8.	 Using Cayley–Hamilton theorem, find the inverse of 
7 3
2 6

È ˘
Í ˙
Î ˚

	 9.	 The Cayley–Hamilton theorem is used to find ____________ 
	 (a)	 Eigen values	 (b)	 Eigen vectors
	 (c)	 inverse and higher powers of A	 (d)	 quadratic form

Part B

	 1.	 Using Cayley–Hamilton theorem, find A4 if 
1 0 3
2 1 1
1 1 1

A
È ˘
Í ˙= -Í ˙
Í ˙-Î ˚

�

7 30 42
. 18 13 46

6 14 17

Ê ˆÈ ˘-
Í ˙Á ˜-Í ˙Á ˜
Í ˙Á ˜- -Ë ¯Î ˚

Ans

	 2.	 Using Cayley–Hamilton theorem, find the inverse of the matrix 

		
1 0 3
8 1 7
3 0 8

A
È ˘-
Í ˙= -Í ˙
Í ˙-Î ˚

�
8 0 3

. 43 1 17
3 0 1

Ê ˆÈ ˘-
Í ˙Á ˜-Í ˙Á ˜
Í ˙Á ˜-Ë ¯Î ˚

Ans  
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	 3.	 Find the characteristic equation of the matrix 
1 3 7
4 2 3
1 2 1

A
È ˘
Í ˙= Í ˙
Í ˙Î ˚

. Show that the 

equation is satisfied by A and, hence, obtain the inverse of the given matrix.
� [KU April 2011]

�  

3 2 1
4 11 5

1. 4 20 35 0; 1 6 25
35

6 1 10
Al l l -

Ê ˆÈ ˘- -
Í ˙Á ˜- - - = = - -Í ˙Á ˜
Í ˙Á ˜-Ë ¯Î ˚

Ans

	 4.	 Find the characteristic equation of the matrix 
1 2 3
2 1 4
3 1 1

A
È ˘
Í ˙= -Í ˙
Í ˙-Î ˚

. Show that the 

equation is satisfied by A.� (Ans. l3 + l2 – 18l – 40 = 0)

	 5.	 Using Cayley–Hamilton theorem, find the inverse of (i) 
2 3
3 5

È ˘
Í ˙
Î ˚

 (ii) 
7 1 3
6 1 4
2 4 8

È ˘-
Í ˙
Í ˙
Í ˙Î ˚

�

8 20 7
5 3 1. (i) (ii) 40 50 10
3 2 50

22 30 13

Ê ˆÈ ˘- -
È ˘- Í ˙Á ˜- -Í ˙ Í ˙Á ˜-Î ˚ Í ˙Á ˜-Ë ¯Î ˚

Ans

	 6.	 Find the characteristic equation of the matrix 
3 1 1
1 5 1
1 1 3

A
È ˘
Í ˙= - -Í ˙
Í ˙-Î ˚

. Verify Cayley–

Hamilton theorem for this matrix. Hence, find A–1.

�

1
7 2 3

1. 1 4 1
20

2 2 8
A-

Ê ˆÈ ˘- -
Í ˙Á ˜= Í ˙Á ˜
Í ˙Á ˜-Ë ¯Î ˚

Ans

	 7.	 Use Cayley–Hamilton theorem to find the inverse of the matrix 

cos sin
sin cos

A
q q
q q

È ˘
= Í ˙-Î ˚ �

1 cos sin
.

sin cos
A

q q
q q

-Ê ˆÈ ˘-
= Í ˙Á ˜

Ë ¯Î ˚
Ans

	 8.	 Using Cayley–Hamilton theorem, find A–1 given that 
2 1 3
1 0 2
4 2 1

A
È ˘-
Í ˙= Í ˙
Í ˙-Î ˚

�

1
4 5 2

1. 7 10 1
5

2 0 1
A-

Ê ˆÈ ˘- -
Í ˙Á ˜= - - -Í ˙Á ˜
Í ˙Á ˜-Ë ¯Î ˚

Ans
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	 9.	 Using Cayley–Hamilton theorem, find the inverse of the matrix 

5 1 5
0 2 0
5 3 15

A
È ˘-
Í ˙= Í ˙
Í ˙- -Î ˚

.

�

1
3 0 1

1. 0 5 0
10

1 1 1
A-

Ê ˆÈ ˘
Í ˙Á ˜= Í ˙Á ˜
Í ˙Á ˜- -Ë ¯Î ˚

Ans

	 10.	 Find the characteristic equation of the matrix 
1 3 7
4 2 3
1 2 1

A
È ˘
Í ˙= Í ˙
Í ˙Î ˚

 and show that the 

equation is also satisfied by A.� (Ans. l3 – 4l2 – 20l – 35 = 0)
	 11.	 Verify Cayley–Hamilton theorem and hence find the inverse of the matrix  

1 0 1
3 4 5
0 6 7

A
È ˘-
Í ˙= Í ˙
Í ˙- -Î ˚

.�  

1 3 1
10 10 5
21 7 2.
10 20 5

9 3 1
10 10 5

Ê ˆÈ ˘
Í ˙Á ˜
Í ˙Á ˜

- -Í ˙Á ˜
Í ˙Á ˜
Í ˙Á ˜-Í ˙Á ˜

Á ˜Í ˙Ë ¯Î ˚

Ans
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4 Diagonalization of 
Square Matrices

Chapter Outline

 ● Introduction
 ● Diagonalization of Square Matrices
 ● Diagonalization by Orthogonal Transformation or Orthogonal 

Reduction

4.1 ❑ iNTrODUcTiON

Two square matrices A and B are said to be similar if there exists a nonsingular 
matrix C such that B = C–1AC. The transformation A to C–1AC is called similarity 
transformation. The determinant, rank and Eigen values are preserved under 
similarity transformation. A matrix is said to be diagonalizable if it is similar to a 
diagonal matrix. The determinant of a diagonal matrix is simply the product of the 
diagonal elements; the rank is the number of nonzero diagonal elements and the Eigen 
values are the diagonal elements. Hence, it is very easy to deal with diagonal matrices.

4.2 ❑ DiAGONALiZATiON OF SQUArE MATricES

The process of finding a matrix M such that M–1AM = D, where D is a diagonal matrix, 
is called diagonalization of the matrix A. As M–1 AM = D is a similarity transformation, 
the matrices A and D are similar and, hence, A and D have the same Eigen values. The 
Eigen values of D are its diagonal elements. Thus, if we find a matrix M such that M–1 
AM = D, D is a diagonal matrix whose diagonal elements are the Eigen values of A. 
A square matrix which is not diagonalizable is called defective.

Application

The direct application of diagonalization is that it gives us an easy way to compute 
large powers of a matrix A. The Eigen values of a system determine sometimes 
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whether the system is stable or not. This has all to do with diagonalizing matrices. In 
quantum mechanical and quantum chemical computations, matrix diagonalization is 
one of the most frequently applied numerical processes.

  Note

 (i) M is called the modal matrix of A whose elements are the Eigen vectors of 
A.

 (ii) For this diagonalization process, A need not necessarily have distinct Eigen 
values. Even if two or more Eigen values of A are equal, the process holds 
good provided the Eigen vectors of A are linearly independent.

4.3 ❑  DiAGONALiZATiON BY OrTHOGONAL TrANSFOrMATiON Or 
OrTHOGONAL rEDUcTiON

The process of finding a normalized modal matrix N such that N–1 AN = D where 
D is a diagonal matrix is called orthogonal transformation or orthogonal reduction. 
The elements of N are the normalized Eigen vectors of A and it can be proved that N 
is an orthogonal matrix (i.e. N–1 = NT). It is important to note that diagonalization by 
orthogonal transformation is possible only for a real symmetric matrix.

SOLVED ExAMPLES

Example 1 Reduce the matrix 
10 2 5

2 2 3
5 3 5

È ˘- -
Í ˙-Í ˙
Í ˙-Î ˚

 to diagonal form. [AU Jan. 2010]

Solution Let 
10 2 5

2 2 3
5 3 5

A
È ˘- -
Í ˙= -Í ˙
Í ˙-Î ˚

Here, D1 = 17, D2 = 42, D3 = 0.
\ the characteristic equation is l3 – 17l2 + 42l = 0.
i.e., 2( 17 42) 0

( 14)( 3) 0
l l l
l l l

- + =
- - =

fi l = 0, 14, 3
\ the Eigen values are 0, 14, 3.
To find the Eigen vectors, [A – lI]X = 0.

i.e., 
1

2

3

10 2 5
2 2 3 0
5 3 5

x
x
x

l
l

l

È ˘ È ˘- - -
Í ˙ Í ˙- - =Í ˙ Í ˙
Í ˙ Í ˙- -Î ˚ Î ˚

 

1 2 3

1 2 3

1 2 3

(10 ) 2 5 0
2 (2 ) 3 0
5 3 (5 ) 0

x x x
x x x
x x x

l
l

l

- - - =
- + - + =
- + + - =

 (i) M is called the modal matrix of A whose elements are the Eigen vectors of 
A.

 (ii) For this diagonalization process, A need not necessarily have distinct Eigen 
values. Even if two or more Eigen values of A are equal, the process holds 
good provided the Eigen vectors of A are linearly independent.
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l = 0 gives 10x1 – 2x2 – 5x3 = 0; –2x1 + 2x2 + 3x3 = 0; –5x1 + 3x2 + 5x3 = 0.
Consider first two equations, which gives x1 = 1, x2 = –5, x3 = 4.

\	 1

1
5
4

X
È ˘
Í ˙= -Í ˙
Í ˙Î ˚

l = 14 gives

	

1 2 3

1 2 3

1 2 3

4 2 5 0
2 12 3 0
5 3 9 0

x x x
x x x
x x x

- - - =
- - + =
- + - =

Considering first two equations gives x1 = –3, x2 = 1, x3 = 2.

\	 2

3
1
2

X
È ˘-
Í ˙= Í ˙
Í ˙Î ˚

l = 3 gives

	

1 2 3

1 2 3

1 2 3

7 2 5 0
2 3 0
5 3 2 0

x x x
x x x
x x x

- - =
- - + =
- + + =

fi x1 = 1, x2 = 1, x3 = 1

\	
3

1
1
1

X
È ˘
Í ˙= Í ˙
Í ˙Î ˚

\	
1 3 1
5 1 1
4 2 1

M
È ˘-
Í ˙= -Í ˙
Í ˙Î ˚

1 1 Adj
| |

M M
M

- =  provided |M| π 0

	 |M| = –42
To find AdjM,
Co-factor of 1 = –1, Co-factor of –3 = 9, Co-factor of 1 = –14, Co-factor of 1 = –14,  
Co-factor of 1 = –3, Co-factor of –5 = 5
Co-factor of 4 = –4, Co-factor of 2 = –6, Co-factor of 1 = –14

\	
1 5 4

Adj 9 3 6
14 14 14

M
È ˘- -
Í ˙= - -Í ˙
Í ˙- - -Î ˚

fi	 1
1 5 4

1 9 3 6
42

14 14 14
M-

È ˘- -
Í ˙= - - -Í ˙
Í ˙- - -Î ˚
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Consider 

	

1
1 5 4 10 2 5 1 3 1

1 9 3 6 2 2 3 5 1 1
42

14 14 14 5 3 5 4 2 1

1 5 4 0 42 3
1 9 3 6 0 14 3
42

14 14 14 0 28 3

0 0 0 0 0 0
1 0 588 0 0 14 0
42

0 0 126 0 0 3

M AM

D

-
È ˘ È ˘ È ˘- - - - -
Í ˙ Í ˙ Í ˙= - - - - -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙- - - -Î ˚ Î ˚ Î ˚
È ˘ È ˘- - -
Í ˙ Í ˙= - - -Í ˙ Í ˙
Í ˙ Í ˙- - -Î ˚ Î ˚
È ˘ È ˘
Í ˙ Í ˙= - - = =Í ˙ Í ˙
Í ˙ Í ˙-Î ˚ Î ˚

	Proved.

Example 2	 Diagonalize the matrix 
2 1 1
1 1 2
1 2 1

A
È ˘-
Í ˙= -Í ˙
Í ˙- -Î ˚

 by orthogonal transformation.

� [KU April 2011]

Solution  The characteristic equation is |A – lI| = 0

i.e.,	
2 1 1

1 1 2 0
1 2 1

l
l

l

- -
- - =

- - -

fi	 2(2 )( 2 3) ( 1) ( 1) 0l l l l l- - - - - - - - - =

fi	 3 24 4 0l l l- - + =

fi	 ( 1)( 1)( 4) 0l l l+ - - =

\ The Eigen values are –1, 1, 4.
The Eigen vectors are given by (A – lI)X = 0.
when l = –1

The Eigen vector is given by 
1

2

3

3 1 1
1 2 2 0
1 2 2

x
x
x

È ˘ È ˘-
Í ˙ Í ˙- =Í ˙ Í ˙
Í ˙ Í ˙- -Î ˚ Î ˚

fi	 1

0
1
1

X
È ˘
Í ˙= Í ˙
Í ˙Î ˚

When l = 1, the Eigen vector is given by 
1

2

3

1 1 1
1 0 2 0
1 2 0

x
x
x

È ˘ È ˘-
Í ˙ Í ˙- =Í ˙ Í ˙
Í ˙ Í ˙- -Î ˚ Î ˚

fi	 2

2
1
1

X
È ˘
Í ˙= -Í ˙
Í ˙Î ˚
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When l = 4, the Eigen vector is given by 
1

2

3

2 1 1
1 3 2 0
1 2 3

x
x
x

È ˘ È ˘- -
Í ˙ Í ˙- - =Í ˙ Í ˙
Í ˙ Í ˙- - -Î ˚ Î ˚

fi	 3

1
1
1

X
È ˘
Í ˙= Í ˙
Í ˙-Î ˚

Hence, the modal matrix 
0 2 1
1 1 1
1 1 1

M
È ˘
Í ˙= -Í ˙
Í ˙-Î ˚

\ normalized modal matrix is,

	

2 10
6 3

1 1 1
2 6 3

1 1 1
2 6 3

N

È ˘
Í ˙
Í ˙
Í ˙

= -Í ˙
Í ˙
Í ˙

-Í ˙
Î ˚

To prove N–1 AN = D, since N is an orthogonal matrix, it satisfies N–1 = NT.
\ it is enough to prove that N–1 AN = D.
Consider

	

1

2 11 1 00
6 32 2 2 1 1

2 1 1 1 1 1 1 1 2
6 6 6 2 6 31 2 1

1 1 1 1 1 1
3 3 3 2 6 3

2 41 1 00
6 32 2

2 1 1 1 1 4
6 6 6 2 6 3

1 1 1 1 1 4
3 3 3 2 6 3
1 0 0
0 1 0
0 0 4

N AN-

È ˘È ˘
Í ˙Í ˙
Í ˙Í ˙ È ˘-
Í ˙Í ˙ Í ˙= - - -Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙- -Î ˚ Í ˙Í ˙

- -Í ˙Í ˙
Í ˙ Í ˙Î ˚ Î ˚

È ˘È ˘
Í ˙Í ˙
Í ˙Í ˙
Í ˙Í ˙

= - - -Í ˙Í ˙
Í ˙Í ˙
Í ˙Í ˙

- - -Í ˙Í ˙
Í ˙ Í ˙Î ˚ Î ˚
-

= D
È ˘
Í ˙ =Í ˙
Í ˙Î ˚

� Proved.
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Exercise

Part A

	 1.	 When are two matrices said to be similar?
	 2.	 Define diagonalizing a matrix.
	 3.	 What is the difference between diagonalization of a matrix by similarity and 

orthogonal transformations?

	 4.	 Diagonalize the matrix 2 1
1 2

A
È ˘

= Í ˙
Î ˚

.

	 5.	 Is it possible to diagonalize the matrix 
0 1
0 0

È ˘
Í ˙
Î ˚

?

		  [Ans: The Eigen values l = 0, 0 but there is only one Eigen vector 
1
0

È ˘
Í ˙
Î ˚

. So the 
matrix cannot be diagonalized.]

	 6.	 What type of matrices can be diagonalized using (i) similarity transformation, 
and (ii) orthogonal transformation?

	 7.	 In the orthogonal transformation NT AN = D, D refers to a/an __________ 
matrix.

	 (i)	 diagonal			   (ii)	 orthogonal
	 (iii)	 symmetric			   (iv)	 skew-symmetric
	 8.	 In a modal matrix, the columns are the Eigen vectors of __________
	 (i)	 A–1	 (ii)	 A2	 (iii)	 A	 (iv)	 adj A
	 9.	 If 1 2 2 3 3 10, 0, 0,T T TX X X X X X= = =  the Eigen vectors are said to be __________
	 (i)	 dependent			   (ii)	 pairwise orthogonal
	 (iii)	 skew-symmetric			   (iv)	 independent
	 10.	 If A is an orthogonal matrix, show that A–1 is also orthogonal.

Part B

	 1.	 Find the modal matrix of the following matrices.

	 (i)	
8 8 2
4 3 2
3 4 1

È ˘- -
Í ˙- -Í ˙
Í ˙-Î ˚

	 (ii)	
1 0 0
0 3 1
0 1 3

È ˘
Í ˙-Í ˙
Í ˙-Î ˚

�

4 3 2 1 0 0
(i) 3 2 1 (ii) 0 1 1

2 1 1 0 1 1

È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙-Î ˚ Î ˚Î ˚

Ans.

	 2.	 If 
1 4
2 3

A
È ˘

= Í ˙
Î ˚

, express A5 – 4A4 – 7A3 + 11A2 – A – 10I in terms of A.
� (Ans. A + 5I)

	 3.	 Show that AT = A–1 for 
2 2 1

1 2 1 2
3

1 2 2
A

È ˘
Í ˙= -Í ˙
Í ˙-Î ˚

.
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	 4.	 Diagonalize the following matrices:

	 (i)	
8 6 2
6 7 4
2 4 3

È ˘-
Í ˙- -Í ˙
Í ˙-Î ˚

	 (ii)	
1 1 1
0 2 1
4 4 3

È ˘
Í ˙
Í ˙
Í ˙-Î ˚

	 (iii)	
3 1 1
1 5 1
1 1 3

È ˘-
Í ˙- -Í ˙
Í ˙-Î ˚

�

0 0 0 1 0 0 2 0 0
. (i) 0 3 0 (ii) 0 2 0 (iii) 0 3 0

0 0 15 0 0 0 0 0 6

È ˘È ˘ È ˘ È ˘
Í ˙Í ˙ Í ˙ Í ˙
Í ˙Í ˙ Í ˙ Í ˙
Í ˙Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚Î ˚

Ans

	 5.	 A square matrix A is defined by 
1 2 2
1 2 1
1 1 0

A
È ˘- -
Í ˙= Í ˙
Í ˙- -Î ˚

. Find the modal matrix M 

and the resulting diagonal matrix D of A.

�

1 0 01 1 5 1 5
0 1 1 , 0 5 0
1 1 1 0 0 5

M D

Ê ˆÈ ˘ È ˘- + -
Í ˙ Í ˙Á ˜

= - - =Í ˙ Í ˙Á ˜
Í ˙ Í ˙Á ˜-Î ˚ Í ˙Ë ¯Î ˚

Ans.

	 6.	 Let 
6 2 2
2 3 1
2 1 3

A
È ˘-
Í ˙= - -Í ˙
Í ˙-Î ˚

. Find a matrix M such that M–1 AM is a diagonal matrix.

�

0 1 2 2 0 0
. 1 3 1 , 0 2 0

1 1 1 0 0 8
M D

Ê ˆÈ ˘ È ˘
Í ˙ Í ˙Á ˜= - =Í ˙ Í ˙Á ˜
Í ˙ Í ˙Á ˜Ë ¯Î ˚ Î ˚

Ans

 
	 7.	 Obtain the modal matrix and diagonalize the following matrices:

	 (i)	

1 1 2
0 2 1
0 0 3

È ˘-
Í ˙-Í ˙
Í ˙-Î ˚

	 (ii)	
3 1 1
1 5 1
1 1 3

È ˘-
Í ˙- -Í ˙
Í ˙-Î ˚

�

1 1 1 1 0 0 1 1 1 2 0 0
. (i) 0 1 2 , 0 2 0 (ii) 0 1 2 , 0 3 0

0 0 2 0 0 3 1 1 1 0 0 6

È ˘È ˘ È ˘ È ˘ È ˘-
Í ˙Í ˙ Í ˙ Í ˙ Í ˙- - -Í ˙Í ˙ Í ˙ Í ˙ Í ˙
Í ˙Í ˙ Í ˙ Í ˙ Í ˙- - -Î ˚ Î ˚ Î ˚ Î ˚Î ˚

Ans

	 8.	 Diagonalize the matrix 
7 2 0
2 6 2
0 2 5

È ˘-
Í ˙- -Í ˙
Í ˙-Î ˚

.�
3 0 0

. 0 6 0
0 0 9

Ê ˆÈ ˘
Í ˙Á ˜
Í ˙Á ˜
Í ˙Á ˜Ë ¯Î ˚

Ans

	 9.	 Diagonalize 
2 2 3
2 1 6
1 2 0

È ˘- -
Í ˙-Í ˙
Í ˙- -Î ˚

 by similarity transformation.�
5 0 0

. 0 3 0
0 0 3

Ê ˆÈ ˘
Í ˙Á ˜-Í ˙Á ˜
Í ˙Á ˜-Ë ¯Î ˚

Ans

	 10.	 Diagonalize the matrix 
8 8 2
4 3 2
3 4 1

A
È ˘- -
Í ˙= - -Í ˙
Í ˙-Î ˚

.�

1 0 0
. 0 2 0

0 0 3

Ê ˆÈ ˘
Í ˙Á ˜
Í ˙Á ˜
Í ˙Á ˜Ë ¯Î ˚

Ans
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	 11.	 Diagonalize the following matrices by orthogonal transformation:

	 (i)	
3 1 0
1 2 1
0 1 3

È ˘-
Í ˙- -Í ˙
Í ˙-Î ˚

	 (ii)	
2 1 1
1 2 1
1 1 2

È ˘-
Í ˙- -Í ˙
Í ˙-Î ˚

�

1 0 0 4 0 0
. (i) 0 3 0 (ii) 0 1 0

0 0 4 0 0 1

È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙Î ˚ Î ˚Î ˚

Ans

	 12.	 Diagonalize the matrix 
2 0 4
0 6 0
4 0 2

A
È ˘
Í ˙= Í ˙
Í ˙Î ˚

 by means of an orthogonal trans-
formation.

�

2 0 0
0 6 0
0 0 6

Ê ˆÈ ˘-
Í ˙Á ˜
Í ˙Á ˜
Í ˙Á ˜Ë ¯Î ˚

Ans.

	 13.	 Diagonalize the matrix 
1 1
1 1

A
È ˘

= Í ˙
Î ˚

 by orthogonal transformation.

� 2 0
0 0

Ê ˆÈ ˘
Í ˙Á ˜

Ë ¯Î ˚
Ans.

	 14.	 Diagonalize 
3 1 1
1 3 1
1 1 3

A
È ˘
Í ˙= -Í ˙
Í ˙-Î ˚

 by orthogonal transformation.

�
1 0 0
0 4 0
0 0 4

Ê ˆÈ ˘
Í ˙Á ˜
Í ˙Á ˜
Í ˙Á ˜Ë ¯Î ˚

Ans.   [AU May 2011]
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5 Quadratic Forms

Chapter Outline

 ● Definition
 ● Quadratic Forms Expressed in Matrices
 ● Linear Transformation of Quadratic Form
 ● Canonical Form
 ● Index and Signature of the Quadratic Form
 ● Nature of Quadratic Forms
 ● Determination of the Nature of Quadratic Form (QF) 

without Reduction to Canonical Form

5.1 ❑ definiTion

A homogeneous polynomial of second degree in any number of variables is called a 
quadratic form.

For example,
 (i) ax2 + 2hxy + by2

 (ii) ax2 + by2 + cz2 + 2hxy + 2gyz + 2fzx
 (iii) ax2 + by2 + cz2 + dw2 + 2hxy + 2gyz + 2fzx + 2lxw + 2myw + 2nzw
are quadratic forms in two, three and four variables.

5.2 ❑ QuadraTic form expressed in maTrices

Quadratic form can be expressed as a product of matrices.
Quadratic form = XTAX.

where 
È ˘
Í ˙= Í ˙
Í ˙Î ˚

1

2

3

x
X x

x
 and 

È ˘
Í ˙= Í ˙
Í ˙Î ˚

11 12 13

21 22 23

31 32 33

a a a
A a a a

a a a
 (symmetric matrix)
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XT is the transpose of X.

È ˘ È ˘
Í ˙ Í ˙= Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚

È ˘
Í ˙= + + + + + + Í ˙
Í ˙Î ˚

= + + + + + + + +

11 12 13 1

1 2 3 21 22 23 2

31 32 33 3

1

11 1 21 2 31 3 12 1 22 2 32 3 13 1 23 2 33 3 2

3
2 2

11 1 21 1 2 31 1 3 12 1 2 22 2 32 2 3 13 1 3 23 2 3

[ ]

[ ]

T
a a a x

X AX x x x a a a x
a a a x

x
a x a x a x a x a x a x a x a x a x x

x

a x a x x a x x a x x a x a x x a x x a x x a

= + + + + + + + +

= + + + + +

2
33 3

2 2 2
11 1 22 2 33 3 12 21 1 2 23 32 2 3 31 13 1 3

2 2 2
11 1 22 2 33 3 12 1 2 23 2 3 13 1 3

( ) ( ) ( )

2 2 2

x

a x a x a x a a x x a a x x a a x x

a x a x a x a x x a x x a x x

(As a21 = a12, a32 = a23, a31 = a13 in a symmetric matrix, in general, aij = aji = 1
2

 coefficient 
of xij if i π j.)

5.3  ❑  Linear Transformation of Quadratic Form

Let the given quadratic form in n variables be XTAX where A is a symmetric matrix.
Consider the linear transformation X = PY.

Then	 XT = (PY)T = YTPT.
\	 XTAX = (YTPT)A(PY) = YT(PTAP)Y = YTBY
where	 B = PTAP.

Therefore, YTBY is also a quadratic form in n variables. Hence, it is a linear 
transformation of the quadratic form XTAX under the linear transformation X = PY 
and B = PTAP.

5.4  ❑  Canonical Form

If a real quadratic form be expressed as a sum or difference of the squares of new 
variables by means of any real nonsingular linear transformation then the latter 
quadratic expression is called a canonical form of the given quadratic form.

5.5  ❑  Index and Signature of The Quadratic Form

When the quadratic form XTAX is reduced to the canonical form, it will contain only 
r terms, if the rank of A is r. The terms in the canonical form may be positive, zero or 
negative.

The number (p) of positive terms in the canonical form is called the index of the 
quadratic form.

Number of positive terms – Number of negative terms, i.e., p – (r – p) = 2p – r is 
called signature of the quadratic form.
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 Quadratic Forms 5.3

5.6 ❑ naTure of QuadraTic forms

definite, semi-definite and indefinite real Quadratic forms

Let XTAX be a real quadratic form in n – variables x1, x2, … xn with rank r and index p.
Then we say that the quadratic form is

 (i) positive definite if r = n, p = r.
 (ii) negative definite if r = n, p = 0.
 (iii) positive semi-definite if r < n, p = r.
 (iv) negative semi-definite if r < n, p = 0.

If the canonical form has both positive and negative terms, the quadratic form is 
said to be indefinite.
Examples:

 (i) +2 2
1 2x x  is positive definite.

 (ii) - -2 2
1 2x x  is negative definite.

 (iii) (x1 – x2)2 is positive semi-definite.
 (iv) –(x1 – x2)2 is negative semi-definite.

  -2 2
1 2x x  is indefinite.

  note

If XTAX is positive definite then |A| > 0.

5.7 ❑  deTerminaTion of The naTure of QuadraTic form (Qf) 
WiThouT reducTion To canonicaL form

Consider the quadratic form

 

È ˘ È ˘
Í ˙ Í ˙= Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚

11 12 13 1

1 2 3 21 22 23 2

31 32 33 3

[ ]T
a a a x

X AX x x x a a a x
a a a x

Let = = 11 12
1 11 2

21 22
| |,

a a
D a D

a a  and =
11 12 13

3 21 22 23

31 32 33

a a a
D a a a

a a a

The QF is
 (i) positive definite if Di > 0 for i = 1, 2, 3;
 (ii) negative definite if D2 > 0 and D1 < 0, D3 < 0;
 (iii) positive semi-definite if Di > 0 and at least one Di = 0;
 (iv) negative semi-definite if some of the determinants are zero in case (ii); and
 (v) indefinite in all other cases.

If XTAXTAXT  is positive definite then |AX is positive definite then |AX A| > 0.
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5.4	 Engineering Mathematics

Criteria for the Nature of Quadratic Form (or Value Class) in Terms of 
Nature of Eigen Values

Value Class Nature of Eigen Values
Positive definite Positive Eigen values
Positive semi-definite Positive Eigen values and at least one is zero
Negative definite Negative Eigen values
Negative semi-definite Negative Eigen values and at least one is zero
Indefinite Positive as well as negative Eigen values

Solved Examples

Example 1	 Discuss the nature of the quadratic form 8x2 + 7y2 + 3z2 – 12xy + 4xz – 
8yz.� [KU April 2011]

Solution  The matrix of the quadratic form is 
È ˘-
Í ˙= - -Í ˙
Í ˙-Î ˚

8 6 2
6 7 4
2 4 3

A

-
-

= = > = = > = - - =
-

-
1 2 3

8 6 2
8 6

|8| 8 0, 20 0 and 6 7 4 0
6 7

2 4 3
D D D

\ the QF is positive semi-definite.� Ans.

Example 2	 Write down the matrix of the quadratic form + -2 2 2
1 2 32 7x x x  – 4x1x2 + 

8x1x2 + 5x2x3

Solution 
	 + - - + +2 2 2

1 2 3 1 2 1 3 2 32 7 4 8 5x x x x x x x x x 	 (1)

Coefficient of = =2
1 111 ,x a

Coefficient of 2
2 222x a= = ,

Coefficient of = - =2
3 337x a ,

1
2

 coefficient of = - = - =1 2 12
1 ( 4) 2
2

x x a

1
2

 coefficient of = = =1 3 13
1 (8) 4
2

x x a

1
2

 coefficient of = = =2 3 23
1 5(5)
2 2

x x a

\ Eq. (1) can be expressed as XTAX, where
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	 Quadratic Forms	 5.5

	

È ˘-È ˘ È ˘ Í ˙Í ˙ Í ˙ Í ˙= = = -Í ˙ Í ˙ Í ˙Í ˙ Í ˙ Í ˙Î ˚ Î ˚
Í ˙-
Î ˚

1 11 12 13

2 21 22 23

3 31 32 33

1 2 4
5, 2 2
2

54 7
2

x a a a
X x A a a a

x a a a

\ given quadratic form = 

È ˘- È ˘Í ˙ Í ˙Í ˙- Í ˙Í ˙ Í ˙Í ˙ Î ˚
Í ˙-
Î ˚

1

1 2 3 2

3

1 2 4
5[ ] 2 2
2

54 7
2

x
x x x x

x
� Ans.

Example 3	 Write down the quadratic form corresponding to the matrix 

È ˘
Í ˙= Í ˙
Í ˙Î ˚

1 2 5
2 0 3
5 3 4

A .

Solution  Quadratic form = XTAX

	

È ˘È ˘
Í ˙Í ˙= Í ˙Í ˙
Í ˙Í ˙Î ˚ Î ˚

È ˘
Í ˙= + + + + + Í ˙
Í ˙Î ˚

= + + + + + + +

= + + + +

1

1 2 3 2

3

1

1 2 3 1 3 1 2 3 2

3
2 2
1 1 2 3 1 1 2 2 3 1 3 2 3 3
2 2
1 3 1 2 1 3 2 3

1 2 5
[ ] 2 0 3

5 3 4

[ 2 5 2 3 5 3 4 ]

2 5 2 3 5 3 4

4 4 10 6 .

x
x x x x

x

x
x x x x x x x x x

x

x x x x x x x x x x x x x x

x x x x x x x x � Ans.

Example 4	 Reduce the quadratic forms + + + + +2 2 2
1 2 3 1 2 2 3 3 16 3 14 4 4 18x x x x x x x x x  

and + + +2 2
1 2 1 2 3 12 5 4 2x x x x x x  simultaneously to canonical forms by a real nonsingular 

transformation.� [KU May 2010]

Solution  The matrix of the first quadratic form is 
È ˘
Í ˙= Í ˙
Í ˙Î ˚

6 2 9
2 3 2
9 2 14

A

The matrix of the second quadratic form is 
È ˘
Í ˙= Í ˙
Í ˙Î ˚

2 2 1
2 5 0
1 0 0

B

The characteristic equation is |A – lB| = 0.

i.e.,	
l l l
l l
l

- - -
- - =
-

6 2 2 2 9
2 2 3 5 2 0
9 2 14
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fi	 5l3 – l2 – 5l + 1 = 0
i.e.,	 (l – 1)(5l – 1)(l + 1) = 0

fi	 11, , 1
5

l = -

When l = –1, (A – lB)X = 0, given the equations,
	 8x1 + 4x2 + 10x3 = 0; 4x1 + 8x2 + 2x3 = 0; 10x1 + 2x2 + 14x3 = 0

by solving, 
È ˘-
Í ˙= Í ˙
Í ˙Î ˚

1

3
1
2

X

When l = 1 ,
5

 (A – lB)X = 0 gives

	 28x1 + 8x2 + 44x3 = 0; 8x1 + 10x2 + 10x3 = 0; 44x1 + 10x2 + 70x3 = 0

by solving, 
È ˘-
Í ˙= Í ˙
Í ˙Î ˚

2

5
1
3

X

When l = 1, (A – lB)X = 0 gives
	 4x1 + 8x3 = 0; –2x2 + 2x3 = 0; 8x1 + 2x2 + 14x3 = 0

fi	
È ˘
Í ˙= -Í ˙
Í ˙-Î ˚

3

2
1
1

X

Since X1, X2, X3 are not pairwise orthogonal, consider the modal matrix P.

Now, 
È ˘- -
Í ˙= -Í ˙
Í ˙-Î ˚

3 5 2
1 1 1
2 3 1

P

	

È ˘ È ˘ È ˘- - -
Í ˙ Í ˙ Í ˙= - -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙- - -Î ˚ Î ˚ Î ˚
È ˘
Í ˙= Í ˙
Í ˙Î ˚

3 1 2 6 2 9 3 5 2
5 1 3 2 3 2 1 1 1
2 1 1 9 2 14 2 3 1

1 0 0
0 1 0
0 0 1

TP AP

Hence, the quadratic form XTAX is reduced to the canonical form + +2 2 2
1 2 3 .y y y

Now 	
È ˘ È ˘È ˘ - --
Í ˙ Í ˙Í ˙= -- Í ˙ Í ˙Í ˙
Í ˙ Í ˙Í ˙ -- - Î ˚ Î ˚Î ˚

È ˘-
Í ˙= Í ˙
Í ˙Î ˚

2 2 1 3 5 23 1 2
2 5 0 1 1 15 1 3
1 0 0 2 3 12 1 1

1 0 0
0 5 0
0 0 1

TP BP

Hence, the quadratic form XTBX is reduced to the canonical form + +2 2 2
1 2 35 .y y y �Ans.
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	 Quadratic Forms	 5.7

Example 5	 Reduce + + - - +2 2 2
1 2 3 1 2 2 3 3 16 3 3 4 2 4x x x x x x x x x  into canonical form. 

Find its nature, rank, index and signature.�
� [KU Nov. 2010, AU Jan. 2010, KU April 2012]

Solution  The matrix of the quadratic form is 
È ˘-
Í ˙= - -Í ˙
Í ˙-Î ˚

6 2 2
2 3 1
2 1 3

A

The characteristic roots are given by |A – lI| = 0

i.e.,	
l

l
l

- -
- - - =

- -

6 2 2
2 3 1 0

2 1 3

fi	 l3 – 12l2 + 36l – 32 = 0
\ the Eigen values are l = 8, 2, 2
The Eigen vectors are obtained by (A – lI)X = 0
When l = 8, (A – lI)X = 0 gives

	

È ˘È ˘- -
Í ˙Í ˙- - - =Í ˙Í ˙
Í ˙Í ˙- -Î ˚ Î ˚

1

2

3

2 2 2
2 5 1 0
2 1 5

x
x
x

fi	 –2x1 – 2x2 + 2x3 = 0; –2x1 – 5x2 – x3 = 0; 2x1 – x2 – 5x3 = 0

fi	
È ˘
Í ˙= -Í ˙
Í ˙Î ˚

1

2
1
1

X

When l = 2, (A – lI)X = 0 reduces to a single equation 2x1 – x2 + x3 = 0

Putting x1 = 0, we get 
È ˘
Í ˙= Í ˙
Í ˙Î ˚

2

0
1
1

X

Again, by putting x2 = 0, we get 
È ˘
Í ˙= Í ˙
Í ˙-Î ˚

3

1
0
2

X

Now 
È ˘ È ˘
Í ˙ Í ˙= - =Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚

1 2

2 0
1 , 1
1 1

X X  and 
È ˘
Í ˙= Í ˙
Í ˙-Î ˚

3

1
0
2

X

Here, X1, X2, X3 are not pairwise orthogonal.
(i.e., = π =1 2 2 3 3 10, 0, 0T T TX X X X X X )

X3 is orthogonal to X2, only when 
Ê ˆ
Á ˜= Á ˜
Á ˜-Ë ¯

3

1
1
1

X , so that = = =1 2 2 3 3 1 0T T TX X X X X X
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\ the normalized modal matrix is 

È ˘
Í ˙
Í ˙
Í ˙

= -Í ˙
Í ˙
Í ˙

-Í ˙
Í ˙Î ˚

2 10
6 3
1 1 1
6 2 3

1 1 1
6 2 3

P

Consider

	

È ˘È ˘
- Í ˙Í ˙

Í ˙Í ˙ È ˘-
Í ˙Í ˙ Í ˙= - - -Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙-Î ˚ Í ˙Í ˙

- -Í ˙Í ˙
Í ˙ Í ˙Î ˚ Î ˚
È ˘
Í ˙= Í ˙
Í ˙Î ˚

2 1 1 2 10
6 6 6 6 36 2 2

1 1 1 1 10 2 3 1
2 2 6 2 32 1 3

1 1 1 1 1 1
3 3 3 6 2 3

8 0 0
0 2 0
0 0 2

TP AP

Hence, the quadratic form XTAX is transformed to the canonical form + +2 2 2
1 2 38 2 2y y y

Here, rank of the quadratic form = 3, index = 3, signature = 3.
\ it is positive definite.� Ans.

Exercise

Part A

	 1.	 If the canonical form of a quadratic form is +2 2
1 25 6y y  then the rank is ______.

	 (i)	 5	 (ii)	 0	 (iii)	 2	 (iv)	 1
	 2.	 The nonsingular linear transformation used to transform the quadratic form to 

canonical form is ______
	 (i)	 X = NTY	 (ii)	 X = NY	 (iii)	 Y = NX	 (iv)	 Y = X

	 3.	 Write down the quadratic form corresponding to the matrix 
È ˘-
Í ˙-Í ˙
Í ˙- -Î ˚

2 1 2
1 2 2
2 2 3

.

	 4.	 Define a quadratic form and give an example in two and three variables.
	 5.	 What do you mean by canonical form of a quadratic form?
	 6.	 Define index and signature of a quadratic form.
	 7.	 Discuss the nature of the quadratic form 2x2 + 5y2 + 3z2 + 4xy.
	 8.	 Discuss the nature of the quadratic form 2xy + 2yz + 2zx.
	 9.	 Determine the nature of the following quadratic forms without reducing them 

to canonical forms:
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	 (i)	 + + + + +2 2 2
1 2 3 1 2 2 3 3 13 6 2 2 4x x x x x x x x x

	 (ii)	 + - + - -2 2 2
1 2 3 1 2 2 3 3 12 3 12 8 4x x x x x x x x x

	 10.	 Find the index and signature of the quadratic form, - +2 2 2
1 2 32 5 7 .x x x

	 11.	 State the conditions for a quadratic form to be positive definite and positive 
semi-definite.

	 12.	 Write down the matrices of the following quadratic forms:
	 (i)	 2x2 + 3y2 + 6xy
	 (ii)	 2x2 + 5y2 – 6z2 – 2xy – yz + 8zx

	 (iii)	 + - - + +2 2 2
1 2 3 1 2 1 3 2 32 7 4 8 5x x x x x x x x x

	 (iv)	 + + + + + - - + -2 2 2 2
1 2 3 4 1 2 1 3 1 4 2 3 2 4 3 42 3 4 2 4 6 4 8 12x x x x x x x x x x x x x x x x

	 13.	 Write down the quadratic forms corresponding to the following matrices.

	 (i)	
È ˘
Í ˙
Í ˙
Í ˙Î ˚

2 4 5
4 3 1
5 1 1

	 (ii)	
È ˘
Í ˙
Í ˙
Í ˙Î ˚

1 2 5
2 0 3
5 3 4

	 (iii)	

È ˘-
Í ˙-Í ˙
Í ˙- -
Í ˙

-Í ˙Î ˚

1 1 2 0
1 4 0 0
2 0 6 3
0 0 3 2

	 14.	 Write down the matrix of the QF

	
2 2 2
1 2 3 1 2 2 3 3 13 5 5 2 2 6x x x x x x x x x+ + - + +

	 15.	 Define pairwise orthogonal.

Part B

	 1.	 Reduce the QF + + - - +2 2 2
1 2 3 1 2 2 3 3 18 7 3 12 8 4x x x x x x x x x  to the canonical form 

through an orthogonal transformation and, hence, show that it is positive 
definite. Find also a nonzero set of values for x1, x2, x3 that will make the QF 
zero.

�

Ê ˆÈ ˘
Í ˙Á ˜
Í ˙Á ˜

-Í ˙Á ˜= = + = = =Í ˙Á ˜
Í ˙Á ˜-Í ˙Á ˜

Á ˜Í ˙Ë ¯Î ˚

2 2
2 3 1 2 3

1 2 2
3 3 3
2 1 2 ; 3 15 ; 1, 2, 2
3 3 3
2 2 1
3 3 3

P Q y y x x xAns.

	 2.	 Reduce the QF + + + - -2 2 2
1 2 3 2 3 3 1 1 210 2 5 6 10 4x x x x x x x x x  to a canonical form by 

orthogonal reduction. Find also a set of nonzero values of x1, x2, x3 which will 
make the QF zero.

�

Ê ˆÈ ˘-
Í ˙Á ˜
Í ˙Á ˜
Í ˙Á ˜-= = + = = - =Í ˙Á ˜
Í ˙Á ˜
Í ˙Á ˜
Í ˙Á ˜
Í ˙Ë ¯Î ˚

2 2
2 3 1 2 3

1 1 3
42 3 14
5 1 1 ; 3 14 ; 1, 5, 4

42 3 14
4 1 2
42 3 14

P Q y y x x xAns.
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	 3.	 Find the value of l so that the quadratic form
		  l + + + - +2 2 2

1 2 3 1 2 2 3 3 1( ) 2 2 2x x x x x x x x x  may be positive definite.� (Ans. l > 2)
	 4.	 Reduce the following quadratic forms to canonical forms or to sum of squares 

by orthogonal transformation. Write also rank, index and signature.
	 (i)	 3x2 + 5y2 + 3z2 – 2xy – 2yz + 2zx
	 (ii)	 2 2 2

1 2 3 1 2 1 3 2 32 2 2 2 2 2x x x x x x x x x+ + - + -
	 (iii)	 3x2 – 2x2 – z2 – 4xy + 8xz + 12yz
	 (iv)	 x2 + 3y2 + 3z2 – 2yz
� [Ans. (i) + +2 2 2

1 2 32 3 6 ;y y y  rank = 3, index = 3, signature = 3

� (ii) + +2 2 2
1 2 34 ;y y y  rank = 3, index = 3, signature = 3

� (iii) + -2 2 2
1 2 33 6 9 ;y y y  rank = 3, index = 2, signature = 1

� (iv) + +2 2 2
1 2 32 4 ;y y y  rank = 3, index = 3, signature = 3]

	 5.	 Reduce the QF 2x1x2 + 2x1x3 – 2x2x3 to the canonical form by an orthogonal 
transformation.� (Ans. + -2 2 2

1 2 32y y y )
	 6.	 Reduce the QF + + -2 2 2

1 2 3 2 33 3 2x x x x x  into the canonical by an orthogonal 
transformation.

� (Ans. + +2 2 2
1 2 32 4y y y )

	 7.	 Reduce the QF y2 + 2xy into the canonical form by an orthogonal reduction and 
state the nature of the QF.� (Ans. - + +2 2 2

1 2 3 ;y y y  indefinite)
	 8.	 Discuss the nature of the following quadratic forms:
	 (i)	 2x2 + 3z2 + 2xy
	 (ii)	 2

111x  + 14x1y1 + 14x1z1 + 8y1z1
	 (iii)	 x2 + 4xy + 6xz – y2 + 2yz + 4z2

� [Ans. (i) Positive definite (ii) Indefinite (iii) Positive semi-definite]
	 9.	 Reduce the following quadratic forms to canonical forms by orthogonal 

transformation. State the nature.
	 (i)	 - 2

1 2 316x x x

	 (ii)	 2 2 2
1 2 3 1 2 2 37 6 5 4 4x x x x x x x+ + - -

	 (iii)	 2 2 2
1 2 3 1 2 2 32 3 4 4x x x x x x x+ + + +

� [Ans. (i) - -2 2 2
1 3 38 8y y y ; indefinite (ii) + +2 2 2

1 2 39 6 3 ;y y y  positive definite 
(iii) + -2 2 2

1 2 35 2 ;y y y indefinite]
	 10.	 Find the nature of the following:
	 (i)	 3x2 – 2y2 – z2 – 4xy + 8xz + 12yz
	 (ii)	 + + - - +2 2 2

1 2 3 1 2 2 3 3 16 3 3 4 2 4x x x x x x x x x
	 (iii)	 5x2 + 26y2 + 10z2 + 4yz + 14xz + 6xy
� [Ans.(i) Indefinite (ii) Positive definite (iii) Positive semi-definite]
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15.1 ❑ introDuction

Vector calculus is a branch of mathematics concerned with multivariate real analysis, 
i.e., differentiation and integration of vectors in two or more dimensions. It consists 
of a suite of formula and problem-solving techniques very useful for physics and 
engineering, especially in the description of electromagnetic fields, gravitational 
fields and fluid flow.

In vector algebra, we mostly deal with constant vectors, i.e., vectors constant in 
magnitude and fixed in direction. In vector calculus, we deal with variable vectors, 
i.e., vectors varying in magnitude or direction or both. Vector calculus is used to 
model a vast range of engineering phenomena including electrostatic charges, 
electromagnetic fields, air flow around aircraft, cars and other solid objects, fluid 
flow around ships and heat flow in nuclear reactors. This chapter starts by explaining 
what is meant by operators, gradient, divergence and curl. These are used to carry out 
various differentiation operations in such fields.

15 Gradient, Divergence, 
Curl and Directional 
Derivative
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15.2	 Engineering Mathematics

15.2  ❑  Partial Differentiation of Vectors

Consider the vector field 1 2 3v v i v j v k= + +
 



 where each component v1, v2 and v3 is 
a function of x, y and z. We can partially differentiate the vector with respect to x as 
follows:

	
31 2 vv vv i j k

x x x x
∂∂ ∂∂ = + +

∂ ∂ ∂ ∂



 

This is a new vector with a magnitude and direction different from those of v


.
Partial differentiation with respect to y and z is defined in a similar way as the 

higher derivatives.
For example,

	
22 22

31 2
2 2 2 2

vv vv i j k
x x y z

∂∂ ∂∂ = + +
∂ ∂ ∂ ∂



 

15.3  ❑  Scalar and Vector Fields

A variable quantity whose value at any point in a region of space depends upon the 
position of the point is called a point function. There are two types of point functions.

Scalar Point Function

A function f(x, y, z) is called a scalar point function if it associates a scalar with every 
point in space. The temperature distribution in a heated body, density of a body and 
potential due to gravity, atmospheric pressure in space are the examples of a scalar 
point function.

●● Example

The temperature distribution in a medium or the distribution of atmospheric pressure 
in space are some examples of scalar point functions.

Vector Point Function

If a function v(x, y, z) defines a vector at every point of a region then v


(x, y, z) is called 
a vector point function.

●● Example

The velocity of a moving fluid at any instant or the gravitational force are some 
examples of vector point functions.

15.4  ❑  Gradient of a Scalar Field

Given a scalar function of x, y, z.
	 f = f(x, y, z)
we can differentiate it partially with respect to each of its independent variables to 

find ,
x y
f f∂ ∂

∂ ∂
 and 

z
f∂

∂
.
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Then the vector i j k
x y z
f f j∂ ∂ ∂+ +

∂ ∂ ∂

 

 turns out to be particularly important. We call 

this vector the gradient of f and denote it by —f or grad f.

An alternative form of writing —f is as three components , ,
x y z
f f fÊ ˆ∂ ∂ ∂

Á ˜∂ ∂ ∂Ë ¯
,

i.e.,	 —f = grad i j k
x y z
f f ff ∂ ∂ ∂= + +

∂ ∂ ∂

 

The process of forming a gradient applies only to a scalar field and the result is always 
a vector field.

It is often useful to write —f in the form , ,
x y z

f
Ê ˆ∂ ∂ ∂
Á ˜∂ ∂ ∂Ë ¯

.

where the quantity in brackets is called a vector operator and is regarded as operating 
on the scalar f.

Thus, the vector operator — is given by

	 i j k
x y z
∂ ∂ ∂— = + +
∂ ∂ ∂

 

  (read nabla or del)

Physical Interpretation of —f

Consider the scalar field f(x, y, z) as describing the temperature throughout a region. 
This temperature will vary from point to point. At a particular point, it can be shown 
that —f is a vector pointing in the direction in which the rate of temperature increase 
is greater. |—f| is the magnitude of the rate of increase in that direction. Similarly, the 
rate of temperature decreases greatly in the direction of –—f.

15.5  ❑  Properties of Gradient

	 (a)	 If f is a constant scalar point function then —f = 0 .
	 (b)	 If f1 and f2 are two scalar point functions then
	 (i)	 —(f1 ± f2) = —f1 ± —f2
	 (ii)	 —(c1f1 + c2f2) = c1—f1 + c2—f2, where c1, c2 are constants.
	 (iii)	 —(f1f2) = f1—f2 + f2—f1

	 (iv)	 1 2 1 1 2
22

2 2

, 0
f f f f f

f
f f

Ê ˆ — - —
— = πÁ ˜Ë ¯

15.6  ❑  Divergence of a Vector Field

Given a vector field ( , , )v v x y z=
 

)

If 1 2 3v v i v j v k= + +
 



 taking each component in turn and differentiate it partially 

with respect to x, y and z respectively, we get 31 2, ,
vv v

x y z
∂∂ ∂

∂ ∂ ∂
.

If we add the calculated quantities, the result turns out to be a very useful scalar 
quantity known as the divergence of v



,
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15.4	 Engineering Mathematics

i.e., divergence of v


 = div 
∂∂ ∂

= + +
∂ ∂ ∂

 31 2 .
vv v

v
x y z

Alternatively, the notation — ◊ v


 is often used.

\	

1 2 3

, , ( )

, , ( , , )

v v
x y z

v v v
x y z

Ê ˆ∂ ∂ ∂— ◊ = ◊Á ˜∂ ∂ ∂Ë ¯
Ê ˆ∂ ∂ ∂= ◊Á ˜∂ ∂ ∂Ë ¯

 

Interpreting the ◊ as a scalar product, we find

	

31 2 vv v
v

x y z
∂∂ ∂

— ◊ = + +
∂ ∂ ∂



We note that the process of finding the divergence is always performed on a vector 
field and the result is always a scalar field.

i.e.,	 div 31 2 vv v
v v

x y z
∂∂ ∂

= — ◊ = + +
∂ ∂ ∂

 

.

Physical Interpretation of — ◊ 


v

If the vector field v


 represents a fluid velocity field then simply speaking, the 
divergence of v



 evaluated at a point represents the rate at which fluid is flowing 
away from or towards that point. If the fluid is flowing away from a point then either 
the fluid density must be decreasing there or there must be some source providing a 
supply of new fluid.

If the divergence of a flow is zero at all points then outflow from any point must be 
matched by an equal in flow to balance this. Such a vector field is said to be solenoidal.

15.7  ❑  Curl of a Vector Field

A third differential operator is known as curl. It is defined rather like a vector product.

	 curl 

1 2 3

1 2 3

, , ( , , )

v v

v v v
x y z

i j k

x y z
v v v

= — ¥
Ê ˆ∂ ∂ ∂= ¥Á ˜∂ ∂ ∂Ë ¯

∂ ∂ ∂=
∂ ∂ ∂

 

 

This determinant is evaluated in the usual way except that we must regard ,
x y
∂ ∂
∂ ∂

 

and 
z
∂
∂

 as operators, not multipliers.

Thus, for example,

	

1 2

x y
v v

∂ ∂
∂ ∂

 means  2 1v v
x y

∂ ∂
-

∂ ∂
.
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Explicitly, we have 

 curl 3 32 1 2 1v vv v v v
v i j k

y z z x x y
Ê ˆ Ê ˆ Ê ˆ∂ ∂∂ ∂ ∂ ∂

= - + - + -Á ˜Á ˜ Á ˜Ë ¯∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯

 



  note

 (i) div v


 gives the rate of outflow per unit volume at a point of the fluid.
 (ii) If div 0v =



 everywhere in some region R of space then v


 is called the 
solenoidal vector point function.

 (iii) curl v


 is a vector which measures the extent to which individual particles 
of the fluid are spinning or rotating.

 (iv) If curl 0v =




 then v


 is said to be an irrotational vector. Otherwise, it is 
named a rotational vector.

15.8 ❑ ProPerties of DiVerGence anD curl

 (i) div F


 is a scalar function and curl F


 is a vector quantity.
 (ii) For a constant vector , div 0, curl 0a a a= =



  

 (iii) div ( ) div diva b a b+ = +
 

 

 or ( )a b a b— ◊ + = — ◊ + — ◊
 

 

 (iv) curl ( ) curl curla b a b+ = +
 

 

 or ( )a b a b— ¥ + = — ¥ + — ¥
 

 

 (v) If a


 is a vector function and f is a scalar function then
  div ( ) div (grad )a a af f f= + ◊

  

 or ( ) ( ) ( )a a af f f— ◊ = — ◊ + — ◊
  

 (vi) If a


 is a vector function and f is a scalar function then
  curl ( ) (grad ) curla a af f f= ¥ +

  

 or ( ) ( ) ( )a a af f f— ¥ = — ¥ + — ¥
  

 (vii) ( ) ( ) ( ) ( ) ( )a b a b b a a b b a— ◊ = ◊ — + ◊ — + ¥ — ¥ + ¥ — ¥
    

    

 (viii) ( ) ( ) ( )a b b a a b— ◊ ¥ = ◊ — ¥ - ◊ — ¥
  

  

 (ix) ( ) ( ) ( ) ( . ) ( )a b b a a b b a a b— ¥ ¥ = — ◊ - — ◊ + — - ◊ —
    

    

15.9 ❑ Directional DeriVatiVe of a scalar Point function

The component of —f in the direction of a vector d


 is equal to —f ◊ d


 and is called the 

directional derivative of f in the direction of d


.
Let P and Q be two neighbouring points whose position vectors with respect to the 

origin O be r


 and r r+ D




 respectively, so that PQ r= D
 

 and PQ = Dr.
Let f and f + Df be the values of a scalar point function f at the points P and Q 

respectively.

Then 
0r

d Lt
dr r
f f

D Æ

Ê ˆD= Á ˜Ë ¯D
 is called the directional derivative of f in the direction OP, 

i.e., d
dr
f  gives the rate of change of f with respect to the distance measured in the 

direction of r


.

 (i) div v


 gives the rate of outflow per unit volume at a point of the fluid.
 (ii) If div 0v =



 everywhere in some region R of space then v


 is called the 
solenoidal vector point function.

 (iii) curl v


 is a vector which measures the extent to which individual particles 
of the fluid are spinning or rotating.

 (iv) If curl 0v =




 then v


 is said to be an irrotational vector. Otherwise, it is 
named a rotational vector.
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15.6	 Engineering Mathematics

In particular, , ,
x y z
f f f∂ ∂ ∂

∂ ∂ ∂
 are the directional derivatives of f at P(x, y, z) in the 

directions of the coordinate axes.

Solved Examples

Example 1	 Find the divergence and curl of the vector v


 = (xyz) i


 + (3x2y) j


 + 

(xz2 – y2z) k


 at the point (2, –1, 1).

Solution

	  div

( )

2 2 2

2 2 2

2 2

(( ) (3 ) ( ) )

(3 ) ( )

3 2

v i j k x y z i x y j xz y z k
x y z

x y z x y xz y z
x y z

yz x xz y

Ê ˆ∂ ∂ ∂= + + ◊ + + -Á ˜∂ ∂ ∂Ë ¯
∂ ∂ ∂= + + -
∂ ∂ ∂

= + + -

    



\	 (div v


)(2, –1, 1) = –1 + 12 + 4 – 1 = 14

	  curl

2 2 2

2

3 ( )

( 2 0) ( ) (6 )

i j k

v
x y z

xyz x y xz y z

i yz j z xy k xy xz

∂ ∂ ∂=
∂ ∂ ∂

-

= - - - - + -

 



 

\	 (2, 1,1)(curl ) (2) (1 2) ( 12 2)

2 3 14

v i j k

i j k
- = - + + - -

= - -

 



 

�

Ans.

Example 2	 If r xi y j zk= + +
 



, show that

	 (i)	 grad r = r
r



	 (ii)	 grad 3
1 r
r r

Ê ˆ
= -Á ˜Ë ¯



	 (iii)	 2nnr nr r-— =


	 (iv)	 ( ) ,a r a— ◊ =
  

 where a


 is a constant vector

Solution  r xi y j zk= + +
 



	
2 2 2 2 2 2 2| | orr r x y z r x y z= = + + = + +



Differentiating partially with respect to, x we get

	
2 2 orr r xr x

x x r
∂ ∂= =
∂ ∂

Similarly, yr
y r

∂ =
∂

 and r z
z r

∂ =
∂

.
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	 (i)	 grad r 
Ê ˆ∂ ∂ ∂

= — = + +Á ˜∂ ∂ ∂Ë ¯
Ê ˆ∂ ∂ ∂

= + +Á ˜∂ ∂ ∂Ë ¯
Ê ˆÊ ˆ Ê ˆ

= + +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

= + + =

 

 

 



 1[ ]

r i j k r
x y z

r r ri j k
x y z

yx zi j k
r r r

rxi yj zk
r r

	 (ii)	 grad Ê ˆ Ê ˆ Ê ˆ Ê ˆ∂ ∂ ∂
= — = + +Á ˜ Á ˜ Á ˜Á ˜Ë ¯ Ë ¯ Ë ¯∂ ∂ ∂Ë ¯

Ê ˆ Ê ˆ Ê ˆ∂ ∂ ∂
= + +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯∂ ∂ ∂

Ê ˆ Ê ˆ Ê ˆ∂ ∂ ∂
= - + - + -Á ˜ Á ˜Á ˜Ë ¯ Ë ¯∂ ∂ ∂Ë ¯

Ê ˆÊ ˆ Ê ˆ-
= - ◊ + ◊ + - ◊Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

= -

 

 

 

 



2 2 2

2 2 2

3

1 1 1

1 1 1

1 1 1

1 1 1

1 (

i j k
r r x y z r

i j k
x r y r z r

r r ri j k
x y zr r r

yx zi j k
r r rr r r

xi
r

+ + = -




3) ryj zk
r

	 (iii)	

1 1 1

1 1 1

2

2

[ ]

n n

n n n

n n n

n

n

r i j k r
x y z

r r ri nr j nr k nr
x y z

yx zi nr j nr k nr
r r r

nr xi yj zk

nr r

- - -

- - -

-

-

Ê ˆ∂ ∂ ∂— = + +Á ˜∂ ∂ ∂Ë ¯
Ê ˆ Ê ˆ Ê ˆ∂ ∂ ∂= + +Á ˜ Á ˜Á ˜Ë ¯ Ë ¯∂ ∂ ∂Ë ¯

Ê ˆÊ ˆ Ê ˆ
= + +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

= + +

=

 

 

 

 



	 (iv)	 Let 1 2 3a a i a j a k= + +
 



 where a1, a2, a3 are constants.

	 1 2 3a r a x a y a z◊ = + +
 

\			    1 2 3

1 2 3 1 2 3 1 2 3

1 2 3

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

a r i j k a x a y a z
x y z

i a x a y a z j a x a y a z k a x a y a z
x y z

i a j a k a
a

Ê ˆ∂ ∂ ∂— ◊ = + + + +Á ˜∂ ∂ ∂Ë ¯
∂ ∂ ∂= + + + + + + + +
∂ ∂ ∂

= + +
=

 

 

 

 



\	 ( )a r a— ◊ =
  

	 Proved.

Example 3	 Find the directional derivative of f(x, y, z) = xy2 + yz3 at the point 
(2, –1, 1) in the direction of the vector 2 2i j k+ +

 

.
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Solution  The directional derivative
	  = —f ◊ unit vector in the direction of 2 2i j k+ +

 

	

2 2 2

2 2

1 2 2

2 2
3

i j k

i j k

f

f

+ +
= — ◊

+ +

+ +
= — ◊





	   
2 3 2( ) (2 ) (3 )

i j k
x y z

i y j xy z k z y

f f ff ∂ ∂ ∂— = + +
∂ ∂ ∂

= + + +

 

 

Hence,  (2, 1,1)( ) 3 3i j kf -— = - -
 

\ the required directional derivative

	

2 2
( 3 3 )

3
11
3

i j k
i j k

+ +
= - - ◊

= -



 

	 Ans.

Example 4	 Find the directional derivative of f = xy2z3 at (1, 1, 1) along the normal 
surface x2 + xy + z3 = 3 at (1, 1, 1).� [KU Nov. 2010]

Solution  The equation of the surface x2 + xy + z3 = 3 is identified with y(x, y, z) = c.
\	 y(x, y, z) = x2 + xy + z3 and c = 3.
The direction of the normal to this surface is the same as that of —y.

Now, 2(2 ) ( ) (3 )i x y j x k zy— = + + +
 

.

\	 (1,1,1)
2 3

2 3 3 2 2

(1,1,1)

( ) 3 3 (say)

( ) (2 ) (3 )
( ) 2 3

i j k b

xy z

i y z j xyz k xy z
i j k

y

f

f

f

— = + + =

=

— = + +

— = + +

  

 

 

Directional derivative of f in the direction of ˆb bf= — ◊


	

ˆas , 0
| | | |

( 2 3 ) (3 3 ) 3 2 9 14 units
9 1 9 19 19

b bb b
b b

i j k i j k

f Ê ˆ— ◊
= = πÁ ˜

Ë ¯

+ + ◊ + + + +
= = =

+ +







 

    

	 Ans.

Example 5	 Find the values of the constants a, b, c so that F


 = (axy + bz3) i


 + (3x2 

– cz) j


 + (3xz2 – y) k


 may be irrotational. For these values of a, b, c, find also the scalar 
potential of F



.� [KU Nov. 2011]
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Solution  Given F


 irrotational.

\	

3 2 2

0

0

( ) (3 ) (3 )

F

i j k

F
x y z

axy bz x cz xz y

— ¥ =

∂ ∂ ∂— ¥ = =
∂ ∂ ∂

+ - -



 



i.e.,	 2 2 2 3

2 3

2 2

(3 ) (3 ) (3 ) ( )

(3 ) ( ) 0

( 1 ) (3 3 ) (6 ) 0

i xz y x cz j xz y axy bz
y z x z

k x cz axy bz
x y

i c j z bz k x ax

È ˘ È ˘∂ ∂ ∂ ∂- - - - - - + +Í ˙ Í ˙∂ ∂ ∂ ∂Î ˚Î ˚
È ˘∂ ∂- - + =Í ˙∂ ∂Î ˚

- + - - + - =

 



 

\ c – 1 = 0, 3z2 – 3bz2 = 0, 6x – ax = 0
fi a = 6, b = 1, c = 1
Using these values of a ,b, c,

	 3 2 2(6 ) (3 ) (3 )F xy z i x z j xz y k= + + - + -
 

	 (1)

Let f be the scalar potential of F


.

\	 F i j k
x y z
f f ff ∂ ∂ ∂= — = + +

∂ ∂ ∂

 

By comparing with (1) we get

	 3 2 26 , 3 , 3xy z x z xz y
x y z
f f f∂ ∂ ∂= + = - = -

∂ ∂ ∂

Integrating partially with respect to the concerned variables, we get
f = 3x2y + xz3 + a function independent of x� (2)
f = 3x2y – zy + a function independent of y� (3)
f = xz3 – yz + a function independent of z� (4)
From (2), (3) and (4), we get
	 f = 3x2y + xz3 – yz + c	 Ans.

Exercise

Part A

	 1.	 Define divergence and curl of a vector point function.
	 2.	 Evaluate 
	 (i)	 div 2 2 3(3 5 )x i xy j xyz k+ +

 

 at the point (1, 2, 3)

	 (ii)	 div 2 2[( sin ) ( sin ) ( sin ) ]xy z i y x j z xy k+ +
 

 at the point 0, ,
2 2
p pÊ ˆ

Á ˜Ë ¯
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	 3.	 If ( 1) ( ) ,F x y i j x y k= + + + - +
 

 show that F ◊


 curl 0F =


.
	 4.	 Find the divergence and curl of the vectors:

	 (i)	 2 2 2( ) 3 ( )v x y z i x y j xz y z k= + + -
 



	 (ii)	 2 2 2( ) ( ) ( )R x yz i y zx j z xy k= + + + + +
 

	 5.	 If 2 35P t i t j tk= + -
 

 and 2 sin cos 5 ,Q ti t j tk= - +
  

 find (i) ( )d P Q
dt

◊


, and 

(ii) ( )d P Q
dt

¥


.

	 6.	 A particle moves along a curve x = e–t, y = 2 cos 3t, z = 2 sin 3t where t is the 
time variable. Determine its velocity and acceleration vectors and also the 
magnitudes of velocity and acceleration at t = 0.

	 7.	 Find —f if f = log(x2 + y2 + z2).
	 8.	 Find a unit vector normal to the surface x3 + y3 + 3xyz = 3 at the point (1, 2, –1).
	 9.	 Evaluate div F



 and curl F


 at the point (1, 2, 3) given

	 (i)	 2 2 2F x yzi xy zj xyz k= + +
 

	 (ii)	 F


 = grad (x3y + y3z + z3x – x2y2z2)
	 10.	 Show that each of the following vectors are solenoidal:

	 (i)	 2 2( ) (4 ) (2 4 )x yz i y z x j xz z k- + + - + -
 

	 (ii)	 4 2 3 2 2 23 4 3y z i x z j x y k+ +
 

	 11.	 If A


 and B


 are irrotational, prove that A B¥
 

 is solenoidal.
	 12.	 Compute the gradient of the scalar function and evaluate it at the given point.
	 (i)	 x3 – 3x2y2 + y3, (1, 2)

	 (ii)	 sin( ) sin( ) sin( ), 0, , 1
4

x yz y xz z xy pÊ ˆ
+ + Á ˜Ë ¯

	 (iii)	 In (x2 + y2 + z2), (3, –4, 5)

	 (iv)	
1
22 2 2( ) , (1, 1, 1)x y z+ +

	 (v)	 3 3 2sin 4 , 1, , 1
3

x y y z pÊ ˆ
+ + Á ˜Ë ¯

	 13.	 Prove the following properties of gradient (f and g are scalar functions):

	 (i)	 —(fg) = f—g + g—f			   (ii)	 2 , 0
g f f gf g

g g
Ê ˆ — - —

— = πÁ ˜Ë ¯
 

	 14.	 Compute div ,v


 curl v


 and verify that div (curl ) 0v =


.

	 (i)	 2v xi yj zk= + +
 



	 (ii)	
3
22 2 2( ) ( )v x y z xi yj zk= + + + +

 



	 (iii)	 2 2 2( ) 4 ( )v x y i xyj x xy k= - + + -
 



	 (iv)	 22y yv xe i ze j xy k- -= + +
 



	 15.	 Compute grad f and verify that curl (grad f) = 0.
	 (i)	 f(x, y, z) = 16xy3z2

	 (ii)	 f(x, y, z) = ex + y + z

	 (iii)	 f(x, y, z) = x sin(x + y + z)
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	 16.	 Show that v


 ◊ curl 0v =


 if ( 2) 2 ( )v x y i j x y k= - + + - + +
 



.

	 17.	 If a


 is a constant vector and r xi yj zk= + +
 



, prove the following identities:

	 (i)	 div ( ) 0a r¥ =
 

	 (ii)	 curl ( ) 2a r a¥ =
  

	 (iii)	 ( ) ( ),a v a v v— ◊ ¥ = - ◊ — ¥
    

 is any vector

	 (iv)	 curl 0a r¥ =
 

	 (v)	 [( ) ] 2( )r r a r a— ◊ ◊ = ◊
   

	 18.	 If r xi yj zk= + +
 



 and | |,r r=


 show that div 3 0r
r

Ê ˆ
=Á ˜Ë ¯



.

	 19.	 Find the directional derivative of f(x, y, z) = xy2 + 4xyz + z2 at the point (1, 2, 3) in 
the direction of 3 4 5i j k+ -

 

.
	 20.	 Give the physical interpretation of v— ◊



.
	 21.	 Define solenoidal and irrotational vectors.
	 22.	 Prove that the vector F  = (3x + 2y + 4z) i



 + (2x + 5y + 4z) j


 + (4x + 4y – 8z) k


 is 
both solenoidal and irrotational.

	 23.	 If F  = (x2 – y2 + 2xz) i


 + (xz – xy + yz) j


 + (z2 + x2) k


, find grad (div F )
	 24.	 Find ‘a’ such that (3x – 2y + z) i



 + (4x + ay – z) j


 + (x – y + 2z) k


 is solenoidal.

	 25.	 If v


 = (x + 3y) i


 + (y – 2z) j


 + (x + lz) k


 is solenoidal, find l.

Part B

	 1.	 If 
2 2 2

,
xi yj zk

v
x y z

+ +
=

+ +

 



 show that 
2 2 2

2v
x y z

— ◊ =
+ +

 and 0v— ¥ =




.

	 2.	 If 2(3 ) ( ) ( 2 ) ,A xz i yz j x z k= - + +
 

 find curl (curl A


)
� [Ans. 6 (6 1)xi z k- + -



]

	 3.	 Show that the vector field V  = (sin y + z) i


 + (x cos y – z) j


 + (x – y) k


 is 
irrotational.

	 4.	 Find the constants a, b, c so that F


 = (x + 2y + az) i


 + (bx – 3y – z) j


 + (4x + cy + 
2z) k



 is irrotational.� (Ans. a = 4, b = 2, c = –1)

	 5.	 Show that 2
rE
r

=




 is irrotational.

	 6.	 If E


 and H


 are irrotational, prove that E H¥
 

 is solenoidal.

	 7.	 For a solenoidal vector ,F


 prove that curl curl curl curl 4F F= —
 

.
	 8.	 Find the directional derivative of — ◊ (—f) at the point (1, –2, 1) in the direction 

of the normal to the surface xy2z = 3x + z2, where f = 2x3y2z4.�
1724

21
Ê ˆ
Á ˜Ë ¯

Ans.

	 9.	 If du w u
dt

= ¥


 

 and ,dv w v
dt

= ¥


 

 prove that ( ) ( )d u v w u v
dt

¥ = ¥ ¥
    

.

	 10.	 Show that — ◊ (f—y – y—f) = f—2y – y—2f.

EM_UnitV_15.indd   11 8/22/2017   12:10:36 PM



15.12	 Engineering Mathematics

	 11.	 Calculate (i) curl (grad f), given f(x, y, z) = x2 + y2 – z, and (ii) curl (curl A


) given 
2 2 2A x yi y zj z yk= + +

 

.� [Ans. (i) 0 (ii) 2( ) 2x z j yk+ +


]

	 12.	 If u = x2yz, v = xy – 3z2, find (i) —(—u ◊ —v), and (ii) — ◊ (—u ◊ —v).

[Ans. (i) + - + + - + + -
 3 2 2 2 3 2 2 3 22( 3 6 ) 2(3 6 ) 2( 3 )y x y xy zi xy x x y z j xy x x y yk  (ii) 0]

	 13.	 Show that the vector field v


 is irrotational and find a scalar function f(x, y, z) 
such that v



 = —f.

	 (i)	 2 2( ) (2 1)y x y i x y j- + + +
 

�
3

2( )
3
xx y y c

È ˘
+ - +Í ˙

Î ˚
Ans.

	 (ii)	 ( ) 2xy ze yi xj e k+ +
 

� (Ans. exy + 2ez + c)

	 (iii)	 cos 2 2 2( )( )x y z xi yj zk+ + + +
 

� 2 2 21 sin( )
2

x y z c
È ˘

+ + +Í ˙Î ˚
Ans.

	 14.	 Let f(x, y, z) be a solution of the Laplace equation —2f = 0. Then show that —f is a 
vector which is both irrotational and solenoidal.

	 15.	 If f1 = x + y + z, f2 = x + y and f3 = –(2xz + 2yz + z2), show that —f1 ◊ (—f2 ¥ —f3) = 0.
	 16.	 Find the angle between the tangent planes to the surfaces x log z = y2 – 1 and x2y 

= 2 – z at the point (1, 1, 1).� 1 1cos
30

-È ˘Ê ˆ
Í ˙Á ˜Ë ¯Í ˙Î ˚
Ans.
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Chapter Outline

 ● Introduction
 ● Types of Vectors
 ● Components of a Vector
 ● Product of Two Vectors

14.1 ❑ INTrodUcTIoN

The development of the concept of vectors was influenced by the works of the 
German mathematician H G Grassmann (1809–1877) and the Irish mathematician 
W R Hamilton (1805–1865). It is interesting to note that both were linguists specialised 
in Sanskrit literature.

The best features of Quaternion calculus and Cartesian geometry were united 
largely through the efforts of the American mathematician J B Gibbs (1839–1903) 
and Q Heariside (1850–1925) of England and a new subject called vector algebra was 
created. The term vector was due to Hamilton and it was derived from the Latin word 
“to carry”. The theory of vectors was also based on Grassman’s theory of extension.

Vectors are the ideal tools for the fruitful study of many ideas in geometry and 
physics. Vector algebra is widely used in the study of certain types of problems in 
geometry, mechanics, engineering and other branches of applied mathematics.

The physical quantities may be divided into two groups: (i) scalars, and (ii) vectors.
Certain physical quantities are fully described by a single number: for example, 

the mass of a stone, the speed of a car, etc. Such quantities are called scalars.
A scalar quantity, or simply a scalar, has magnitude but is not related to any 

definite direction in space. Examples of such quantities are mass, volume, density, 
temperature, work, quantity of heat, electric charge and potential. To specify a scalar, 
we need a unit quantity of the same type and the ratio (m) which the given quantity 
bears to this unit so that it may be expressed as m times the unit. The number m is 
called the measure of the quantity in terms of the chosen unit. It is the measures 

14 Vector Differentiation
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14.4	 Engineering Mathematics

d, m, V, v, E of density, mass, volume, speed and energy respectively that enter into 
the equations of physics and mechanics.

On the other hand, some quantities are not fully described until a direction is 
specified in addition to the number.

For example, a velocity of 20 metres per second 
due east is different from a velocity of 20 metres 
per second due north. These quantities are called 
vectors. There are many engineering applications in 
which vector and scalar quantities play important 
roles.

A vector quantity, or simply a vector, has 
magnitude and is related to a definite direction in 
space; thus it is an arrow or directed line segment. 
For example, speed, potential, work and energy 
are scalars, while velocity, momentum, electric and 
magnetic forces, the position of a robot and the 
state-space representation of a system can all be 
described by vectors (Fig. 14.1).

A vector (arrow) has a tail called initial point and a tip 
called terminal point. We denote vectors by boldface letters a, 
b, v or ,a b





 and v


.
The line segment AB of 3-unit length in Fig. 14.2 can 

represent a vector in the direction shown by the arrow on AB. 
This vector is denoted by AB



. Note that AB BAπ
 

. The vector 
AB


 is directed from A to B, but BA


 is directed from B to A. 
AB


 is also denoted by a


.

Magnitude of a Vector

The modulus or magnitude of a vector a AB=




 is a positive number which is the 
measure of its length. The length (or magnitude) of a vector a



 (length of the arrow) is 
also called the norm (or Euclidean norm) of a



 and is denoted by | |a


.
Thus, | | ;| | ;| | , etc.,| | ;| | , etc.,a a b b c c AB AB CD CD= = = = =

 


 

14.2  ❑  Types of Vectors

Unit Vector

A vector whose modulus is unity is called a unit vector. The unit vector in the direction 
of a


 is denoted by â  (read as ‘a cap’). Thus, | â | = 1.
The unit vectors parallel to a



 are â± .

±± Note

ˆ| |a a a=
 

 [i.e., any vector = (its modulus ) ¥ (unit vector in that direction)

fi	 ˆ ; [ 0]
| |
aa a
a

= π








\ in general,
Unit vector in any direction = Vector in that direction/Modulus of the vector

Fig. 14.1 �

Fig. 14.2 �
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Equal Vectors

Equal vectors are those vectors which have equal magnitude, same direction (parallel) 
and same sense (arrow).

Like and Unlike Vectors

Like vectors are those vectors which have 
same direction (parallel) and same sense 
(arrow). The magnitude may be different.

Unlike vectors are those vectors which 
have same direction (parallel) and opposite 
sense (arrow). The magnitude may be 
different.

Zero Vector, or Null Vector

Zero vector, or null vector, or a void vector is that vector whose magnitude is zero. 
The zero vector is denoted by 0



.
Vectors other than the null vector are called proper vectors.

Co-initial Vectors

Vectors having the same initial point are called co-initial vectors.

●● Co-terminus Vectors

Vectors having the same terminal point are called co-terminus vectors.

Collinear Vectors, or Parallel Vectors

Vectors are said to be collinear or parallel if they have the same line of action or have 
the lines of action parallel to one another.

Coplanar Vectors

Vectors are said to be coplanar if they are parallel to the same plane or they lie in the 
same plane.

Negative Vector

The negative of vector is a vector whose magnitude is equal to that of the given vector 
with same direction (parallel) but opposite sense (arrow).

Thus, if AB a=




 then BA a= -




.

Reciprocal of a Vector

Let a


 be a nonzero vector. The vector which has the same direction as that of a


 but 
has magnitude reciprocal to that of a



 is called the reciprocal of a


 and is written as 
1 1|( ) |a

a
- =

 .

Fig. 14.3
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Free Vector and Localized Vector

When we are at liberty to choose the origin of the vector at any point then it is said to 
be a free vector. But when it is restricted to a certain specified point then the vector is 
said to be localized vector.

Equality of Vectors

Two vectors a


 and b


 are said to be equal, written as a b=




, if they have the same 
length and the same direction. In Fig. 14.4, vectors a



 and b


 are equal even though 
their locations differ. Hence, a vector can be arbitrarily translated, that is, its initial 
point can be chosen arbitrarily.

Fig. 14.4

14.3  ❑  Components of a Vector

Fig. 14.5

Choose the XYZ Cartesian coordinate system in space. If a given vector a


 has 
initial point P(x1, y1, z1) and terminal point Q(x2, y2, z2), the three numbers
	 a1 = x2 – x1, a2 = y2 – y1, a3 = z2 – z1

are called the components of the vector a


 with respect to that coordinate system. It is 
simply represented as a



 = [a1, a2, a3].
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Position Vector

Consider a Cartesian coordinate system. The 
position vector r



 of a point A(x, y, z) is the 
vector with the origin O(0, 0, 0) as the initial 
point, and A as the terminal point.

Thus, r


 = [x, y, z].

Addition of Vectors (Vector Addition)

The sum a b+




 of two vectors a


 = [a1, a2, a3] 
and b



 = [b1, b2, b3] is obtained by adding the 
corresponding components,

i.e.,	 a b+




 = [a1 + b1, a2 + b2, a3 + b3]

Geometrically, the vectors are placed as the initial point of b


 at the terminal point 
of a


. Then a b+




 is the vector drawn from the initial point of a


 to the terminal point 
of b


.

Fig. 14.7

●● Basic Properties of Vector Addition

	 (i)	 Commutative a b b a+ = +
 

 

	 (ii)	 Associative ( ) ( )a b c a b c+ + = + +
 

   

	 (iii)	 0 0a a a+ = + =
 

  

	 (iv)	 ( ) 0a a+ - =


 

, where a-


 denotes the vector having the length | |a


 and the 
direction opposite to that of a



.

Scalar Multiplication

The product c a


 of any vector a  = [a1, a2, a3] and any scalar c (real number) is the 
vector obtained by multiplying each component of a



 by c.
i.e.,	 c a



 = C[a1, a2, a3] = [ca1, ca2, ca3]

Fig. 14.8

Fig. 14.6 �
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±± Note

	 (i)	 If 0a π




 then c a


 with c > 0 has the direction of a


, and with c < 0 the direction 
is opposite to a



.
	 (ii)	 The length of c a



 is given by | | | || |c a c a=
 

 and c a


 = 0 if 0a =




 or c = 0 or both.

●● Basic Properties of Scalar Multiplication

For any scalars c and k and for any vectors a


 and b


:

	 (i)	 ( )c a b c a cb+ = +
 

 

	 (ii)	 ( )c k a c a k a+ = +
  

	 (iii)	 ( ) ( )c ka ck a cka= =
  

	 (iv)	 1. a a=
 

	 (v)	 0. 0a =




	 (vi)	 (–1) a a= -
 

Vector Subtraction

Subtraction of one vector from another is performed by adding the corresponding 
negative vector,

i.e., if we seek a b-




, we form ( )a b+ -




.

Orthogonal Vectors

If the angle between two vectors a


 and b


 is 90°, that is a


 and b


 are perpendicular, 
then a



 and b


 are said to be orthogonal.

●● Example

Position vectors provide a useful means of determining the position of a robot. There 
are many different types of robots but a common type uses a series of rigid links 
connected together by flexible joints. Usually, the mechanism is anchored at one point.

The anchor point is X and the tip of the robot is situated at Y. The final link is 
sometimes called the hand of the robot. The hand often has rotating and gripping 
facilities and its size, relative to the rest of the robot, is usually quite small. Each 
of the robot links can be represented by a vector. The vector d



 corresponds to the 
hand. A common requirement in robotics is to calculate the position of the tip of 
the hand to ensure that it does not collide with 
other objects. This can be achieved by defining 
a set of Cartesian coordinates with the origin at 
the anchor point of the robot X. Each of the link 
vectors can then be represented in terms of these 
coordinates.

For example, in Fig. 14.9,

	
1 2 3 1 2 3

1 2 3 1 2 3

, ,

,

a a i a j a k b b i b j b k

c c i c j c k d d i d j d k

= + + = + +

= + + = + +

     



     

 Fig. 14.9
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The position of the tip of the hand can be calculated by adding these vectors 
together.
\	

1 1 1 1 2 2 2 2 3 3 3 3( ) ( ) ( )
p a b c d

a b c d i a b c d j a b c d k
= + + +

= + + + + + + + + + + +

 

  

 

14.4  ❑  Product of Two Vectors

The product of two vectors results in two different ways: one, a number and the other, 
a vector. So there are two types of products of two vectors, namely, scalar product and 
vector product. They are written as a b◊  and a b¥ .

Inner Product (Dot Product or Scalar Product)

Now, we shall define a multiplication of two vectors that gives a scalar as the product.
The inner product or dot product a b◊





 (read “ a


 dot b


”) of two vectors a


 and b


 
is the product of their length times the cosine of their angle.

	
| || |cos if 0 , 0
0 if 0 or 0

a b a b a b
a b a b

g ¸◊ = π π Ô
˝

◊ = = = Ǫ̂

  

  

 

 

	 (14.1)

The angle g, 0 £ g  £ p between a


 and b


 is measured when the vectors have their 
initial points coinciding.
If	 a



 = [a1, a2, a3], b


 = [b1, b2, b3] then

	 a b◊




 = a1b1 + a2b2 + a3b3	 (14.2)

Since the cosine in (14.1) may be positive, zero or negative, so may be the inner 
product (Fig. 14.10).

Fig. 14.10 Angle between vectors and value of inner product

±± Note

	 (i)	 A vector a


 is said to be orthogonal to a vector b


 if a b◊




 = 0.
	 (ii)	 Zero vector is orthogonal to every vector.
	 (iii)	 For nonzero vectors, 0a b◊ =





 if and only if (iff) cos g = 0. Thus, g = p/2.

●● Example: Work Done by a Force as Dot Product

Consider a body on which a constant force p


 acts. Let the body be given a displacement 
d


. Then the work done by p


 in the displacement is defined as

	 | || |cos ,W p d p dg= = ◊
 

 
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14.10	 Engineering Mathematics

If g  < 90° then W > 0 (Fig. 11).
If p


 and d


 are orthogonal then the work(W) = 0.
If g  > 90° then W < 0 which means that in the displacement one 

has to do work against the force.

±± Note

	 (i)	 a b b a◊ = ◊
 

 

 (the scalar product is commutative)

	 (ii)	 ( ) ( )k a b ka b◊ = ◊
 

  , where k is a scalar.

	 (iii)	 ( ) ( ) ( )a b c a c b c+ ◊ = ◊ + ◊
 

    

 (distributive)
	 (iv)	 If a



 and b


 are parallel vectors then | || |a b a b◊ =
 

 

	 (v)	 If a


 and b


 are orthogonal vectors then a b◊




 = 0.
	 (vi)	 2a a a◊ =

 

	(vii)	 1, 1, 1
0
0
0

i i j j k k
i j j i
j k k j
k i i k

◊ = ◊ = ◊ =

◊ = ◊ =

◊ = ◊ =

◊ = ◊ =

    

   

  

  

	(viii)	 ( ) ( ) ( )ma b m a b a mb◊ = ◊ = ◊
  

  

	 (ix)	 The angle between two vectors a


 and b


 is 1cos
| || |

a b
a b

- Ê ˆ◊
Á ˜
Ë ¯









	 (x)	 a b◊




 = a1b1 + a2b2 + a3b3 where 1 2 3a a i a j a k= + +
 



 and 1 2 3b b i b j b k= + +
  

Vector Product (Cross Product)

The vector or cross product of two vectors a


 and b


 is 
defined to be a vector such that
	 (i)	 its magnitude is | || |a b





 sin q, where q is the angle 
between a



 and b


.
	 (ii)	 its direction is perpendicular to both vectors a



 
and b



	 (iii)	 it forms a right-handed system
Let n̂  be a unit vector perpendicular to both the 

vectors a


 and b


. ,a b




 and n̂  are forming a right-handed 
system, then ˆ| || |sina b a b nq¥ = ◊

 

 

 

±± Note

A Cartesian coordinate system is called right-handed if the corresponding unit 
vectors , ,i j k

 

 in the positive directions of the axes form a right-handed triple as 
in Fig. 14.13(a).

Fig. 14.11

Fig. 14.12
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	 Vector Differentiation	 14.11

Fig. 14.13

The system is called left-handed if the sense of k


 is reversed as in Fig. 14.13(b). In 
applications, we prefer right-handed systems.

	 (i)	 a b b a¥ = ¥
 

 

 (vector product is not commutative)
	 (ii)	 ( ) ( ) ( )a b c a b a c¥ + = ¥ + ¥

 

      (distributive)
	 (iii)	 ( ) ( ) ( )k a b ka b a kb¥ = ¥ = ¥

  

    where k is a scalar.

	 (iv)	 | |a b¥




 is the area of the parallelogram whose adjacent sides are a


 and b


.
	 (v)	 Two vectors are parallel if a b¥





 = 0. In particular, a a¥
 

 = 0.

	 (vi)	 0, 0 0i i j j k k
i j j i k
j k k j i
k i i k j

¥ = ¥ = ¥ =

¥ = - ¥ =

¥ = - ¥ =

¥ = - ¥ =

    

   

   

   

	(vii)	 ( ) ( ) ( )ma b a mb m a b¥ = ¥ = ¥
  

  

	(viii)	 If 1 2 3a a i a j a k= + +
 



, 1 2 3b b i b j b k= + +
  

 then

	
1 2 3

1 2 3

i j k
a b a a a

b b b
¥ =

 





Applications of Vector Products

	 (i)	 If A be any point on AB whose position vector with respect to O is r


 then r F¥




 
represents the moment or torque of F



 (acting along AB) about O.
	 (ii)	 If F



 represents a force and d


 is the displacement of its point of application, 
F d◊




 represents the work done by the force.
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Vector Integration

Chapter 20:  Line Integral, Surface Integral and 
Integral Theorems
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Chapter Outline

 ● Introduction
 ● Integration of Vectors
 ● Line Integral
 ● Circulation
 ● Application of Line Integrals
 ● Surfaces
 ● Surface Integrals
 ● Volume Integrals
 ● Integral Theorems

20.1 ❑ introDuCtion

In multiple integrals, we generalized integration from one variable to several 
variables. Our goal in this chapter is to generalize integration still further to include 
integration over curves or paths and surfaces. We will define integration not just of 
functions but also of vector fields. Integrals of vector fields are particularly important 
in applications involving the “field theories” of physics, such as the theory of 
electromagnetism, heat transfer, fluid dynamics and aerodynamics.

In this chapter, we shall define line integrals and surface integrals. We shall see that 
a line integral is a natural generalization of a define 
integral and a surface integral is a generalization of 
a double integral. Line integrals can be transformed 
into double integrals or into surface integrals and 
conversely. Triple integrals can be transformed into 
surface integrals and vice versa. These transformations 
are of great practical importance. Theorems of Green, 
Gauss and Stokes serve as powerful tools in many 
applications as well as in theoretical problems.

Fig. 20.1

20 Line Integral, Surface 
Integral and Integral 
Theorems
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In this chapter, we study the three main theorems of Vector Analysis: Green’s 
Theorem, Stokes’ Theorem and the Divergence Theorem. This is a fitting conclusion to 
the text because each of these theorems is a vector generalization of the Fundamental 
Theorem of calculus. This chapter is thus the culmination of efforts to extend the 
concepts and methods of single-variable calculus to the multivariable setting. 
However, far from being a terminal point, vector analysis the gateway to the field 
theories of mathematics physics and engineering. This includes, first and foremost, the 
theory of electricity and magnetism as expressed by the famous Maxwell’s equations. 
It also includes fluid dynamics, aerodynamics, analysis of continuous matter, and at 
a more advanced level, fundamental physical theories such as general relativity and 
the theory of elementary particles.

Curves

Curves in space are important in calculus and in physics (for instance, as paths of 
moving bodies).

A curve C in space can be represented by a vector function
	 ( ) [ ( ), ( ), ( )]

( ) ( ) ( )
r t x t y t z t

x t i y t j z t k
=

= + +



 

	 (20.1)

where x, y, z are Cartesian coordinates. This is called a parametric representation of 
the curve (Fig. 20.1), t is called the parameter of the representation. To each value t0 of 
t, there corresponds a point of C with position vector 0( ),r t



 that is with coordinates 
x(t0), y(t0) and z(t0).

The parameter t may be time or something else. Equation (20.1) gives the 
orientation of C, a direction of travelling along C, so that t increasing is called the 
positive sense on C given by (20.1) and that of decreasing t is the negative sense.

●● Examples

Straight line, ellipse, circle, etc.
The concept of a line integral is a simple and natural generalization of a definite 

integral ( )
b

a

f x dxÚ � (20.2)

In (20.2), we integrate the integrand f(x) from x = a to x = b along the x-axis. In a 
line integral, we integrate a given function, called the integrand, along a curve C in 
space (or in the plane).

Hence, curve integral would be a better turn, but line integral is standard.
We represent a curve C by a parametric representation

	 ( ) ( ) ( ) ( ) , ( )r t x t i y t j z t k a t b= + + £ £
 



We call C the path of integration, : ( )A r a


 its initial 
point and : ( )B r b



, its terminal point. The curve C is 
now oriented. The direction from A to B, in which t 
increases, is called the positive direction on C. We can 
indicate the direction by an arrow [Fig. 20.2(a)].

The points A and B may coincide [Fig. 20.2(b)]. 
Then C is called a closed path. Fig. 20.2
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 Line Integral, Surface Integral and Integral Theorems 20.5

  note

 (i) A plane curve is a curve that lies in a plane in space.
 (ii) A curve that is not plane is called a twisted curve.

20.2 ❑ intEgration of VECtors

If two vector functions ( )F t


 and ( )G t


 be such that ( ) ( ),dG t F t
dt

=




 then ( )G t


 is called 

an integral of ( )F t


 with respect to the scalar variable t and we write ( ) ( )F t dt G tÚ =


. If C


 

be an arbitrary constant vector, we have ( )( ) [ ( ) ]dG t dF t G t C
dt dt

= = +


 

, then 

( ) ( )F t dt G t CÚ = +
 

. This is called the indefinite integral of ( )F t


 and its definite integral 

is ( ) [ ( ) ] ( ) ( )
b

b
a

a

F t dt G t C G b G a= + = -Ú
   

.

20.3 ❑ linE intEgral

Any integral which is to be evaluated along a curve is 
called a line integral. Consider a continuous vector 
point function ( )F R



 which is defined at each point 
of the curve C in space. Divide C into n parts at the 
points A = p0, p1 … pi–1, pi … pn = B

Let their position vectors be 0 1 1,, ... ...i i nR R R R R-

    

Let iv


 be the position vector of any point on the 
arc Pi–1 Pi

Now consider the sum 
0

( )
n

i i
i

S F v Rd
=

= ◊Â  

  where 

1i i iR R Rd -= -
  

.

The limit of this sum as n – • in such a way that | | 0iRd Æ


, provided it exists, 
is called the tangential line integral of ( )F R

 

 along C which is a scalar and is 
symbolically written as

 
( ) or

C C

dRF R dR F dt
dt

◊ ◊ ◊Ú Ú



  

When the path of integration is a closed curve, this fact is denoted by using Ú  in 
place of Ú.

If  ( ) ( , , ) ( , , ) ( , , )F R f x y z i x y z j x y z kf y= + +
  

 and dR dxi dyj dzk= + +
 

then ( ) ( )
C

C

F R dR fdx dy dzf y◊ = + +Ú Ú
  

.

Two other types of line integrals are 
C

F dR¥Ú
 

 and 
C

fdRÚ


 which are both vectors.

 (i) A plane curve is a curve that lies in a plane in space.
 (ii) A curve that is not plane is called a twisted curve.

Fig. 20.3
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20.4  ❑  Circulation

In fluid dynamics, if F


 represents the velocity of a fluid particle then the line integral 

C

F dr◊Ú




 is called the circulation of F


 around the curve. When the circulation of F


 

around every closed curve in a region E vanishes, F


 is said to be irrotational in E.

Conservative Vector

If the value of 
B

A

F dr◊Ú




 does not depend on the curve C, but only on the terminal 

points A and B, F


 is called a conservative vector.

A force field F


 is said to be conservative if it is derivable from a potential function 
f, i.e., F =



 grad f. Then curl ( )F


 = curl (—f) = 0.
\ if F



 is conservative then curl ( ) 0F =


 and there exists a scalar potential function f 
such that F f= —



.

20.5  ❑  Applications of Line Integrals

Work Done by a Force

Let v


(x, y, z) = v1(x, y, z) i


 + v2(x, y, z) j


 + v3(x, y, z) k


 be a vector function defined and 
continuous at every point on C. Then, the integral of the tangential component of v



 
along the curve C from a point P on to the point Q is given by

	

1 1

1 2 3

Q

P C C

v dr v dr v dx v dy v dz◊ = ◊ = + +Ú Ú Ú


  

where C1 is the part of C, whose initial and terminal points are P and Q.
Let ,v F=





 variable force acting on a particle which moves along a curve C. Then 
the work done W by the force F



 in displacing the particle from the point P to the 
point Q along the curve C is given by

	 1

Q

P C

W F dr F dr= ◊ = ◊Ú Ú
 

 

where C1 is the part of C whose initial and terminal points are P and Q.
Suppose F



 is a conservative vector field; then F


 can be written as F


 = grad f, 
where f is a scalar potential.
Then, the work done

	

1 1

1

(grad )

( , , )

C C
Q

Q

P
C P

W F dr dr

dx dy dz d x y z
x y z

f

f f f f f

= ◊ = ◊

È ˘∂ ∂ ∂ È ˘= + + = =Í ˙ Î ˚∂ ∂ ∂Î ˚

Ú Ú

Ú Ú



 
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\ work done depends only on the initial and terminal points of the curve C1, i.e., the 
work done is independent of the path of integration. The units of work depend on the 
units of | |F



 and on the units of distance.

  note

 (i) Condition for 


F  to be conservative
  If F



 is irrotational then 0F— ¥ =


.

  It is possible only when F f= —


. which fi F


 is conservative.
  \ if F



 is an irrotational vector, it is conservative.
 (ii) If F



 is irrotational (and, hence, conservative) and C is a closed curve then 

0
C

F dr◊ =Ú






. [ f(A) = f(B), as A and B coincide].

20.6 ❑ surfaCEs

A surface S may be represented by F(x, y, z) = 0.
The parametric representation of S is of the form

 ( , ) ( , ) ( , ) ( , )r u v x u v i y u v j z u v k= + +
 



and the continuous functions u = f(t) and v = f(t) of a real parameter t represent a 
curve C on this surface S.

If S has a unique normal at each of its points whose direction depends continuously 
on the points of S then the surface S is called a smooth surface. If S is not smooth 
but can be divided into finitely many smooth portions then it is called a piecewise 
smooth surface. For example, the surface of a sphere is smooth while the surface of a 
cube is piecewise smooth.

If a surface S is smooth from any of its points P, we may choose a unit normal 
vector n



 of S at P. The direction of n


 is then called the positive normal direction 
of S at P. A surface S is said to be orientable or two-sided, if the positive normal 
direction at any point P of S can be continued in a unique and continuous way to the 
entire surface. If the positive direction 
of the normal is reversed as we move 
around a curve on S passing through P 
then the surface is non-orientable (i.e., 
one-sided) (Fig. 20.4).

 ● Example

A sufficiently small portion of a smooth 
surface is always orientable (Fig. 20.5).

A Mobius strip is an example of a 
non-orientable surface. A model of a 
Mobius strip can be made by taking a 
long rectangular piece of paper, making 
a half-twist and sticking the shorter 
sides together so that the two points A 
and the two points B coincide; then the 
surface generated is non-orientable.

 (i) Condition for 


F to be conservative
  If F



 is irrotational then 0— ¥ =F— ¥ =F


.

  It is possible only when F f= —


. which fi F


 is conservative.
  \ if F



 is an irrotational vector, it is conservative.
 (ii) If F



 is irrotational (and, hence, conservative) and C is a closed curve then 

0
C

F dr◊ =F dr◊ =F drÚ




F dr


F dr
ÚÚ . [ f(A) = f(B), as A and B coincide].

Fig. 20.4

Fig. 20.5

EM_UnitVIII_20.indd   7 8/23/2017   10:29:47 AM



20.8 Engineering Mathematics

20.7 ❑ surfaCE intEgrals

Any integral which is to be evaluated over a surface 
is called a surface integral.

Let S be a two-sided surface, one side of which 
is considered arbitrarily as the positive side.

Let F


 be a vector point function defined at all 
points of S. Let ds be the typical elemental surface 
area in S surrounding the point P(x, y, z).

Let n̂  be the unit vector normal to the surface S 
at P(x, y, z), drawn in the positive side (or outward 
direction).

Let q be the angle between F


 and n̂ .
\ the normal component of ˆ cosF F n F q= ◊ =

 

.
The integral of this normal component through the elemental surface area ds over 

the surface S is called the surface integral of F


 over S and denoted as cos
S

F dsq ◊Ú  

or ˆ
S

F nds◊Ú


.

If ds


 is a vector whose magnitude is ds and whose direction is that of n̂ , then 

ˆds n ds= ◊


. \ ˆ
S

F nds◊Ú


 can also be written as 
S

F ds◊Ú




.

  note

 (i) If S in a closed surface, the outer surface is usually chosen as the positive 
side.

 (ii) 
S

dsfÚ 

 and 
S

F ds¥Ú




 where f is a scalar point function are also surface 

integrals.

 (iii) The surface integral 
S

F ds◊Ú




 is also denoted as 
S

F ds◊ÚÚ




.

 (iv) If F


 represents the velocity of a fluid particle then the total outward flux of 

F


 across a closed surface S is the surface integral 
S

F ds◊Ú




.

 (v) When the flux of F


 across every closed surface S in a region E vanishes, F


 
is said to be a solenoidal vector point function in E.

 (vi) It may be noted that F


 could equally well be taken as any other physical 
quantity such as gravitational force, electric force, magnetic force, etc.

20.8 ❑ VolumE intEgrals

Any integral which is to be evaluated over a volume is called a volume integral.

If V is a volume bounded by a surface S then the triple integrals 
V

dvfÚÚÚ  and 

V

FdvÚÚÚ


 are called volume integrals. The first of these is a scalar and the second is a 

vector.

 (i) If S in a closed surface, the outer surface is usually chosen as the positive 
side.

 (ii) 
S

dsfÚSÚS



ds


ds  and 
S

F dsF ds¥F dsÚSÚS





F ds


F ds  where f is a scalar point function are also surface f is a scalar point function are also surface f

integrals.

 (iii) The surface integral 
S

F dsF ds◊F dsÚSÚS





F ds


F ds  is also denoted as 
S

F dsF ds◊F dsÚÚ




F ds


F ds .

 (iv) If F


 represents the velocity of a fluid particle then the total outward flux of 

F


 across a closed surface S is the surface integral 
S

F dsF ds◊F dsÚ




F ds


F ds .

 (v) When the flux of F


 across every closed surface S in a region E vanishes, F


is said to be a solenoidal vector point function in E.
 (vi) It may be noted that F



 could equally well be taken as any other physical 
quantity such as gravitational force, electric force, magnetic force, etc.

Fig. 20.6
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20.9  ❑  Integral Theorems

The following three theorems in vector calculus are of importance from theoretical 
and practical considerations:
	 (i)	 Green’s theorem in a plane
	 (ii)	 Stokes’ theorem
	 (iii)	 Gauss’ divergence theorem

Green’s theorem provides a relationship between a double integral over a region 
R and the line integral over the closed curve C bounding R. Green’s theorem is also 
called the first fundamental theorem of integral vector calculus.

Stokes’ theorem transforms line integrals into surface integrals and conversely. 
This theorem is a generalization of Green’s theorem. It involves the curl.

Gauss’ divergence theorem transforms surface integrals into a volume integral. It 
is named Gauss’ divergence theorem because it involves the divergence of a vector 
function.

We shall give the statements of the above theorems (without proof) and apply 
them to solve problems.

Green’s Theorem in a Plane

If C is a simple closed curve enclosing a region R in the xy-plane and P(x, y), 
Q(x, y) and its first-order partial derivatives are continuous in R then 

( )
C R

Q PPdx Qdy dxdy
x y

Ê ˆ∂ ∂+ = -Á ˜∂ ∂Ë ¯Ú ÚÚ

 where C is described in the anticlockwise direction.

Stokes’ Theorem (Relation between Line Integral and Surface Integral)

Surface integral of the component of curl F


 along the normal to the surface S, taken 
over the surface S bounded by curve C is equal to the line integral of the vector point 
function F



 taken along the closed curve C.

Mathematically, ˆcurl
C S

F dr F n ds◊ = ◊ ◊Ú ÚÚ
 





Gauss’ Divergence Theorem or Gauss’ Theorem of Divergence  
(Relation between Surface Integral and Volume Integral)

The surface integral of the normal component of a vector function F


 taken around a 
closed surface S is equal to the integral of the divergence of F



 taken over the volume 
V enclosed by the surface S.

Mathematically, ˆ div
S V

F n ds F dv◊ ◊ = ◊ÚÚ ÚÚÚ
 

.

Solved Examples

Example 1	 If 23 ,F xyi y j= -
 

, evaluate 
C

F dr◊Ú


, where C is the arc of the parabola 
y = 2x2 from (0, 0) to (1, 2).
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Solution  Let x = t, then the parametric equations of the parabola y = 2x2 are x = t, 
y = 2t2.
At the point (0, 0), x = 0 and so t = 0.
At the point (1, 2), x = 1 and so t = 1.
If r


 is the position vector of any point (x, y) in C, then
	

22

r xi yj

ti t j

= +

= +

 



 

Also in terms of t, 2 2 2

3 4

3 (2 ) (2 )

6 4

F t t i t j

t i t j

= -

= -

 

 

\	

1
3 4

0
1

3 5

0
14 6

0

(6 4 ) ( 4 )

(6 16 )

6 16
4 6

C C

drF dr F dt
dt

t i t j i tj dt

t t dt

t t

Ê ˆ
◊ = ◊Á ˜Ë ¯

= - ◊ +

= -

È ˘
= -Í ˙

Î ˚

Ú Ú

Ú

Ú



 



   

	  
9 163 8 7

2 3 6 6
- -= - = = 	 Ans.

Example 2	 Evaluate ˆ
S

A nds◊ÚÚ


 where 2( ) 2 2A x y i xj yz k= + - +
 

 and S is the 

surface of the plane 2x + y + 2z = 6 in the first octant.� [KU May 2010]

Solution  A vector normal to the surface S is given by

	 (2 2 ) 2 2x y z i j k— + + = + +
 

\ n̂ a=  unit vector normal to the surface S

	
2 2 2

2 2 2 1 2
3 3 32 1 2

i j k
i j k

+ +
= = + +

+ +

 

 

	 2 1 2 2ˆ
3 3 3 3

k n k i j k
Ê ˆ

◊ = ◊ + + =Á ˜Ë ¯
   

\	 ˆ ˆ
ˆ| |

S R

dxdyA n ds A n
k n

◊ ◊ = ◊ ◊
◊ÚÚ ÚÚ

 



where R is the projection of S

Now,     2

2 2

2

2 1 2ˆ [( ) 2 2 ]
3 3 3

2 2 4 2 4( )
3 3 3 3 3

6 22 4
3 3 2

A n x y i xj yzk i j k

x y x yz y yz

x y
y y

Ê ˆ
◊ = + - + ◊ + +Á ˜Ë ¯

= + - + = +

Ê ˆ- -
= + Á ˜Ë ¯

    
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Ê ˆ- -
+ + = =Á ˜Ë ¯

= + - -

= -

6 2
since on the plane 2 2 6,

2
2 ( 6 2 )
3
4 (3 )
3

x y
x y z z

y y x y

y x

Hence, ˆ ˆ
ˆ| |

S R

dxdyA n ds A n
k n

◊ ◊ = ◊ ◊
◊ÚÚ ÚÚ

 

 .

	

-

= - ◊

= -

ÚÚ

Ú Ú
6 23

0 0

4 3(3 )
3 2

2 (3 )

R
x

y x dxdy

y x dydx

	

-Ê ˆ
= - Á ˜Ë ¯

= - -

= -

È ˘-
= Í ˙

-Í ˙Î ˚

Ú

Ú

Ú

6 23 2

0
0
3

2

0
3

3

0
34

0

2(3 )
2

(3 )(6 2 )

4 (3 )

(3 )
4

4( 1)

x
yx dx

x x dx

x dx

x

	  = 81	 Ans.

Example 3	 If 2(2 3 ) 2 4F x z i xyj xk= - - -
 

 then evaluate — ◊ ◊Ú Ú Ú


,F dV  where V 

is bounded by the planes x = 0, y = 0, z = 0 and 2x + 2y + z = 4.

Solution	   2(2 3 ) ( 2 ) ( 4 )

4 2 2

F x z xy x
x y z
x x x

∂ ∂ ∂— ◊ = - + - + -
∂ ∂ ∂

= - =



\	

- - -

-
- -

— ◊ ◊ =

=

=

ÚÚÚ ÚÚÚ

Ú Ú Ú

Ú Ú

2 4 2 22

0 0 0
22

4 2 2
0

0 0

2

2

2 [ ]

V V
x x y

x
x y

F dv xdxdydz

xdzdydx

x z dydx
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- -

-

= - - = - -

= - - ◊

= - - -

= -

= - + ◊

Ú Ú Ú Ú

Ú

Ú

Ú

Ú

2 22 2

0 0 0 0
2

2 2
0

0
2

2 2

0
2

2

0
2

2 3

0

2 (4 2 2 ) [4 (2 ) 4 ]

[4 (2 ) 2 ]

[4 (2 ) 2 (2 ) ]

2 (2 )

2 (4 4 )

x x

x

x x y dydx x x xy dydx

x x y xy dx

x x x x dx

x x dx

x x x dx

	  
23 4

2

0

32 82 2 4 2 8 4
3 4 3 3
x xx

È ˘ È ˘
= - + = - + =Í ˙ Í ˙Î ˚ Î ˚

	 Ans.

Example 4	 Evaluate 
C

F dr◊Ú




 where 2 2( ) 2F x y i xyj= + -
 

 and the curve C is the 

rectangle in the xy-plane bounded by y = 0, y = b, x = 0, x = a.

Solution  In the xy-plane, z = 0

	 ,r xi yj dr dxi dyj= + = +
   

 

	 2 2( ) 2C CF dr x y dx xydyÚ ◊ = Ú + -




	 (1)

	
C

OA AB BC CO

F dr F dr F dr F dr F dr◊ = ◊ + ◊ + ◊ + ◊Ú Ú Ú Ú Ú
    

    

	 (2)

Fig. 20.7

Along OA, y = 0; dy = 0 and x varies from 0 to a
Along AB, x = a; dx = 0 and y varies from 0 to b
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Along BC, y = b; dy = 0 and x varies from a to 0
Along CO, x = 0; dx = 0 and y varies from b to 0
Hence, from (1) and (2),

	

0 0
2 2 2

0
0

03 3
2 2

0
0

3 3
2 2 2

2 ( ) 0

( ) 0
3 3

2
3 3

a b

C y x a b
x

a
b

a

F dr x dx aydy x b dx dy

x xay b x

a aab ab ab

= =
=

◊ = - + + + ◊

Ê ˆ Ê ˆ
= - + + +Á ˜ Á ˜Ë ¯ Ë ¯

Ê ˆ
= - - - = -Á ˜Ë ¯

Ú Ú Ú Ú Ú




	 Ans.

Example 5	 Find the work done by the force 3 2 2(2 ) 3F xy z i x j xz k= + + +
 

 when it 
moves a particle from (1, –2, 1) to (3, 1, 4) along any path.� [AU Dec. 2011]

Solution  Since the equation of the path is not given, the work done by the force F


 
depends only on the terminal points.

Consider 

3 2 2(2 ) 3

i j k

F
x y z

xy z x xz

∂ ∂ ∂— ¥ =
∂ ∂ ∂

+

 



	 2 2[0 0] [3 3 ] [2 2 ] 0i j z z k x x= - - - + - =
 

fi  F


 is irrotational
Hence, F



 is conservative
Since F



 is irrotational, we have F f= —


It is easy to see that f = x2y + xz3 + C

\ work done by 
(3,1,4)

(1, 2,1)

F F dr
-

= ◊Ú
 



	   

(3,1,4) (3,1,4)

(1, 2,1) (1, 2,1)
(3,1,4)
(1, 2,1)

(3,1,4)2 3
(1, 2,1)

[as ]

[ ]

[ ]

(201 ) ( 1 ) 202

dr d dr d

x y xz C

C C

f f f f

f

- -

-

-

= — ◊ = — ◊ =

=

= + +

= + - - + =

Ú Ú
 

	 Ans.

Example 6	 Find the circulation of F


 round the curve C, where =


sinxF e yi

+


cos ;xe yj  and C is the rectangle whose vertices are 1 1(0, 0), (1, 0), 1, , 0,
2 2

p p
Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯ .

EM_UnitVIII_20.indd   13 8/23/2017   10:29:49 AM



20.14	 Engineering Mathematics

Solution

\	 sin cosx x

r xi yj dr dxi dyj

F dr e y dx e y dy

= + fi = +

◊ = ◊ + ◊

   

 





Now along OA, y = 0; dy = 0
along AB, x = 1; dx = 0

along , ; 0
2

BC y dyp= =

along CO, x = 0; dx = 0
\ circulation round the rectangle OABC is

	
p

◊ = +

= + + +

Ú Ú

Ú Ú Ú Ú





1

( sin cos )

cos sin cos
2

x x

C
C

x

OA AB BC CO

F dr e ydx e ydy

o e ydy e dx ydy

	

p

p

p

p

p
= + ◊ + +

= + + = + - - + =

Ú Ú Ú
2

2

2

2

0 0

0 1

0 0
0 1

0 cos sin cos
2

[ sin ] [ ] [sin ] (1 ) 1 0 0

x

x

e y dy e dx ydy

e y e y e e 	 Ans.

Example 7	 Find the total work done in moving a particle in a force field given by 
3 5 10F xyi zj xk= - +

 

 along the curve x = t2 + 1, y = 2t2, z = t3 from t = 1 to t = 2.

Solution  Total work done

	 =

= ◊ = - + ◊ + +

= - +

= + + - + +

Ú Ú
Ú

Ú

    



2
2 2 2 3 2 2 3

1

(3 5 10 ) ( )

[3 5 10 ]

[3( 1)(2 ) ( 1) 5 (2 ) 10( 1) ( )]

C C

C

t

F dr xyi zj xk dxi dyj dzk

xydx zdy xdz

t t d t t d t t d t

	

=

=

=

= + - + +

= + - + +

= + + +

È ˘ È ˘ È ˘ È ˘
= + + +Í ˙ Í ˙ Í ˙ Í ˙

Î ˚Î ˚ Î ˚ Î ˚

Ú

Ú

Ú

2
2 2 4 2 2

1

2
5 3 4 4 2

1

2
5 4 3 2

1

2 2 2 26 5 4 3

11 1 1

[6 ( 1)(2 ) 20 30 ( 1) ]

[12 12 20 30 30 ]

[12 10 12 30 ]

12 10 12 30
6 5 4 3

t

t

t

t t tdt t dt t t dt

t t t t t dt

t t t t dt

t t t t

Fig. 20.7
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È ˘ È ˘ È ˘ È ˘
= - + - + - + -Í ˙ Í ˙ Í ˙ Í ˙

Î ˚Î ˚ Î ˚ Î ˚

= ◊ + ◊ + ◊ + ◊

= + + +

=

6 5 4 4 3 32 1 2 1 2 1 2 112 10 12 30
6 6 5 5 4 4 3 3
63 31 15 712 10 12 30
6 5 4 3

126 62 45 70

303 	 Ans.

Example 8	 If 24F xzi y j yzk= - +
 

, evaluate ˆ
S

F nds◊ÚÚ


 where S is the surface of 

the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.� [AU Dec. 2009]

Solution  The surface of the cube consists of the 
following six faces:
	 (a)	 Face LMND
	 (b)	 Face TQPO
	 (c)	 Face QPNM
	 (d)	 Face TODL
	 (e)	 Face TQMl
	 (f)	 Face ODNP
Now, for the face LMND:

	 ˆ , 1n i x OD= = =


Hence,   2ˆ (4 )

4 4 ( 1)
S LMND

LMND LMND

F nds xzi y j yzk i dydz

xzdydz zdydz x

◊ = - + ◊

= = =

ÚÚ ÚÚ
ÚÚ Ú

  



	
11 1 2

2
0

0
0 0

4 4 ( ) 2
2

z y

zzdydz y
= =

È ˘Ê ˆÍ ˙= = =Á ˜Ë ¯Í ˙Î ˚Ú Ú 	 (1)

For the face TQPO: ˆ , 0n i x= - =


Hence, 2ˆ (4 ) ( )
S TQPO

F n ds xzi y j yzk i dydz◊ ◊ = - + ◊ -ÚÚ ÚÚ
  

	 ( 4 ) 0 ( 0)
TQPO

xz dydz x= - = =ÚÚ  	 (2)

For the face OPNM: ˆ , 1n j y= =


Hence,    2

2

ˆ (4 )

( ) ( 1)

S QPNM

QPNM QPNM

F nds xzi y j yzk j dxdz

y dxdz dxdz y

◊ = - + ◊

= - = - =

ÚÚ ÚÚ

ÚÚ ÚÚ

  



Fig. 20.8
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1 1

1 1
0 0

0 0

[ ] [ ] 1
z x

dxdz x z
= =

= - = - = -Ú Ú 	 (3)

For the face TODL: ˆ , 0n j y= - =


Hence,    2ˆ (4 ) ( )
S TODL

F nds xzi y j yzk j dxdz◊ = - + ◊ -ÚÚ ÚÚ
  

	 2( ) 0 ( 0)
TODL

y dxdz y= = =ÚÚ  	 (4)

For the face TQML: ˆ , 1n k z= =


Hence, 2ˆ (4 )
TQML TQML

F nds xzi y j yzk k dxdy◊ = - + ◊ÚÚ ÚÚ
  

.

	   
11 1 2

1
0

0
0 0

( 1)

1[ ]
2 2

TQML TQML

y x

yzdxdy ydxdy z

yydxdy x
= =

= = =

È ˘
= = =Í ˙

Î ˚

ÚÚ ÚÚ

Ú Ú



	 (5)

For the face ODNP: ˆ , 0n k z= - =


Hence, 2ˆ (4 ) ( )
ODNP ODNP

F nds xzi y j yzk k dxdy◊ = - + ◊ - ◊ÚÚ ÚÚ
  

	    ( ) 0, ( 0)
ODNP

yz dxdy z= - = =ÚÚ  	 (6)

Adding (1), (2), (3), (4), (5) and (6), we get

	 3ˆ
2

S

F nds◊ =ÚÚ


	 Ans.

Example 9	 Verify Stokes’ theorem for F


 = (y – z + 2) i


 + (yz + 4) j


 – (xz) k


 over 
the surface of a cube x = 0, y = 0, z = 0, x = 2, y = 2, z = 2 above the XOY plane (open at 
the bottom).� [KU May 2010]

Solution  Consider the surface of the cube as shown in the figure. Bounding path is 
OABCO shown by arrows.

	

[( 2) ( 4) ( ) ] ( )

( 2) ( 4)
C C

C

C
OA AB BC CO

F dr y z i yz j xz k dxi dyj dzk

y z dx yz dy xzdz

F dr F dr F dr F dr F dr

◊ = - + + + - ◊ + +

= - + + + -

◊ = ◊ + ◊ + ◊ + ◊

Ú Ú
Ú

Ú Ú Ú Ú Ú

    



    

    

	 (1)
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Along OA, y = 0, dy = 0, z = 0, dz = 0

	

2
2
0

0

2 (2 ) 4
OA

F dr dx x◊ = = =Ú Ú




Along AB, x = 2, dx = 0, z = 0, dz = 0

	
2

2
0

0

4 4( ) 8
AB

F dr dy y◊ = = =Ú Ú




Fig. 20.9

Along BC, y = 2, dy = 0, z = 0, dz = 0

	 ◊ = - + = = -Ú Ú




2
0
2

0

(2 0 2) (4 ) 8
BC

F dr dx x

Along CO, x = 0, dx = 0, z = 0, dz = 0

	

0
2

( 0 2) 0 (0 4) 0

4 4( ) 8
CO

F dr y dy

dy y

◊ = - + ¥ + + -

= = = -

Ú Ú
Ú





On putting the values of these integrals in (1), we get

	 4 8 8 4C F drÚ ◊ = + - = -




To obtain surface integral

	

∂ ∂ ∂
— ¥ =

∂ ∂ ∂
- + + -

= - - - + + - = - + - -

 



    

2 4

(0 ) ( 1) (0 1) ( 1)

i j k

F
x y z

y z yz xz

y i z j k yi z j k
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Here, we have to integrate over the five surfaces, ABDE, OCGF, BCGD, OAEF, DEFG.
Over the surface ABDE: x = 2, n̂ i=



, ds = dydz

	

22 2 2
2
0

0
0 0

ˆ( ) [ ( 1) ]

[ ] 4
2

S S

S

F nds yi z j k i dydz

yydydz ydy dz z

— ¥ ◊ = - + - - ◊

È ˘
= - = - = - = -Í ˙

Î ˚

ÚÚ ÚÚ

ÚÚ Ú Ú

  

Over the surface OCGF: x = 0, ˆ ,n i= -


 ds = dy dz

	

22 2 2

0
0 0

ˆ( ) [ ( 1) ] ( )

4
2

S S

S

F nds yi z j k i dydz

yydydz ydy dz

— ¥ ◊ = - + - - ◊ -

È ˘
= = = =Í ˙

Î ˚

ÚÚ ÚÚ

ÚÚ Ú Ú

  

Over the surface BCGD: y = 2, n̂ j=


, ds = dx dz

	

2 2

0 0
22

2
0

0

ˆ( ) [ ( 1) ]

( 1)

( 1)

[ ]
2

0

S

S

F nds yi z j k j dxdz

z dxdz

dx z dz

zx z

— ¥ ◊ = - + - - ◊

= -

= -

È ˘
= -Í ˙

Î ˚
=

ÚÚ ÚÚ
ÚÚ

Ú Ú

  

Over the surface OAEF: y = 0, n̂ j= -


, ds = dx dz

	

2 2

0 0
22

2
0

0

ˆ( ) [ ( 1) ] ( )

( 1)

( 1)

[ ]
2

0

S S

S

F nds yi z j k j dxdz

z dxdz

dx z dz

zx z

— ¥ ◊ = - + - - ◊ -

= - -

= - -

È ˘
= - -Í ˙

Î ˚
=

ÚÚ ÚÚ
ÚÚ

Ú Ú

  
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Over the surface DEFG: z = 2, n̂ k=


, ds = dx dy

	

2 2

0 0
2 2
0 0

ˆ( ) [ ( 1) ]

[ ] [ ] 4

S

F nds yi z j k k dxdy

dxdy dx dy

x y

— ¥ ◊ = - + - - ◊

= - = -

= - = -

ÚÚ ÚÚ

ÚÚ Ú Ú

  

Total surface integral = –4 + 4 + 0 + 0 – 4 = –4

Thus ÚÚS curl ˆ 4CF nds F dr◊ = Ú ◊ = -
 



which verifies Stokes’ theorem.	 Verified.

Example 10	 Verify Green’s theorem in the plane for ÚC[(x2 – xy3)dx + (y2 – 2xy)dy] 
where C is a square with vertices (0, 0), (2, 0), (2, 2), (0, 2).

Solution  Given integrand is of the form Mdx + Ndy, where M = x2 – xy3, N = y2 – 2xy.
Now to verify Green’s theorem, we have to verify that

	 Ú
C

[(x2 – xy3)dx + (y2 – 2xy)dy] = 
R
ÚÚ (–2y + 3xy2)dx dy	 (1)

Consider 
C
Ú [(x2 – xy3)dx + (y2 – 2xy)dy] where the curve C is divided into four parts, 

hence the line integral along C is nothing but the sum of four line integrals along four 
lines OA, AB, BC and CO.
Along OA : y = 0, dy = 0 and x varies from 0 to 2.

Hence, 
22 3

2 3 2 2

0
0

8[( ) ( 2 ) ]
3 3

OA x

xx xy dx y xy dy x dx
=

Ê ˆ
- + - = = =Á ˜Ë ¯Ú Ú

Along AB : x = 2, dx = 0, and y varies from 0 to 2.

Hence, 2 3 2

23 22
2

0 0

[( ) ( 2 ) ]

( 4 ) 4
3 2

8 168
3 3

AB

x xy dx y xy dy

y yy y dy

- + -

Ê ˆ
= - = -Á ˜Ë ¯

Ê ˆ
= - = -Á ˜Ë ¯

Ú

Ú

Along BC: y = 2, dy = 0 and x varies from 2 to 0.

Hence, 2 3 2

00 3 2
2

2
2

[( ) ( 2 ) ]

( 8 ) 8
3 2

8 400 0 16
3 3

BC

x

x xy dx y xy dy

x xx x dx
=

- + -

Ê ˆ
= - = -Á ˜Ë ¯

= - - + =

Ú

Ú

Fig. 20.10
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Along CO : x = 0, dx = 0 and y varies from 2 to 0

Hence, 
CO
Ú [(x2 – xy3)dx + (y2 – 2xy)dy]

	
00 3

2

2
2

8
3 3

y

yy dy
=

Ê ˆ
= = = -Á ˜Ë ¯Ú

\	 2 3 2 8 16 40 8[( ) ( 2 ) ] 8
3 3 3 3

C

x xy dx y xy dy- + - = - + - =Ú 	 (2)

Now consider

	

= =

=

- + = - +

Ê ˆ
= - +Á ˜Ë ¯

ÚÚ Ú Ú

Ú

2 2
2 2

0 0
22 2 3

0
0

( 2 3 ) ( 2 3 )

2 3
2 3

R x y

x

y xy dydx y xy dydx

y yx dx

	
=

Ê ˆÈ ˘Ê ˆ
= - + = - +Í ˙ Á ˜Á ˜ Ë ¯Ë ¯Î ˚

= - + + =

Ú
22 2

0
0

84 3 4 8
3 2

8 16 0 8
x

xx dx x

	 (3)

From (2) and (3), we observe that the relation (1) is true.
Hence, Green’s theorem is verified.	 Ans.

Example 11	 Verify divergence theorem for F


 = (x2 – yz) i


 + (y2 – zx) j


 + (z2 – xy) k


 
taken over the rectangular parallelepiped 0 £ x £ a, 0 £ y £ b, 0 £ z £ c.�[KU Nov. 2010]

Solution  For verification of the divergence theorem, we shall evaluate the volume 
and surface integrals separately and show that they are equal.

Now div 2 2 2( ) ( ) ( )

2( )

F F x yz y zx z xy
x y z

x y z

∂ ∂ ∂= — ◊ = - + - + -
∂ ∂ ∂

= + +

 

\	 div
V

FdvÚÚÚ


	

= + +

È ˘Ê ˆ
Í ˙= + +Á ˜Ë ¯Í ˙Î ˚

Ê ˆ
= + +Á ˜Ë ¯

È ˘Ê ˆ
Í ˙= + +Á ˜Ë ¯Í ˙Î ˚

Ú Ú Ú
Ú Ú

ÚÚ

Ú

2

0
2

0

22

2( )

2
2

2
2

2
2 2

c b a

o o o
a

c b

o o

c b

o
b

c

o
o

x y z dxdydz

x yx zx dydz

a ya za dydz

y aa y azy dz Fig. 20.11
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Ê ˆ È ˘
= + + = + +Í ˙Á ˜Ë ¯ Î ˚Ú

2 2 2 2 2
2 2

2 2 2 2 2

c
c

o o

a b ab a b ab abzabz dz z z

	  = a2bc + ab2c + abc2 = abc(a + b + c)	 (1)
To evaluate the surface integral, divide the closed surface S of the rectangular 
parallelepiped into 6 parts.
S1 : Face OAC¢B
S2 : Face CB¢PA¢
S3 : Face OBA¢C
S4 : Face AC¢PB¢
S5 : Face OCB¢A
S6 : Face BA¢ PC¢

Also,	 ◊ = ◊ + ◊ + ◊

+ ◊ + ◊ + ◊

ÚÚ ÚÚ ÚÚ ÚÚ

ÚÚ ÚÚ ÚÚ

   

  

1 2 3

4 5

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

S
S S S

S S S

F nds F nds F nds F nds

F nds F nds F nds 	 (2)

On S1 : z = 0, n̂ k= -


, ds = dx dy

so that 2 2ˆ ( ) ( )F n x i y j xyk k xy◊ = + - ◊ - =
  

\	

1

2
ˆ

2

ab a b

o
S o o o

xF nds xydxdy y dy
Ê ˆ

◊ = = Á ˜Ë ¯ÚÚ Ú Ú Ú


	
2 2 2

2 4

b

o

a a bydy= =Ú 	 (3)

On S2 : z = c, n̂ k=


, ds = dx dy, F


 = (x2 – cy) i


 + (y2 – cx) j


 + (c2 – xy) k


.

so that 2 2 2 2ˆ [( ) ( ( ) ) ( ) ]F n x cy i y x j c xy k k c xy◊ = - + - + - ◊ = -
  

.

\	

2

2
2 2ˆ ( )

2

b a b

S o o o

aF nds c xy dxdy c a y dy
Ê ˆ

◊ = - = -Á ˜Ë ¯ÚÚ Ú Ú Ú


	  
2 2

2

4
a babc= - 	 (4)

On S3 : x = 0, 2 2ˆ , ,n i F yzi y j z k dz dydz= - = - + + =
  

so that 2 2ˆ ( ) ( ) ,F n yzi y j z k i yz ds dydz◊ = - + + ◊ - = =
  

\	

3

2 2 2
ˆ

2 4

c b c

S o o o

b b cF nds yzdydz zdz◊ = = =ÚÚ Ú Ú Ú


	 (5)

On S4 : x = a, 2 2 2ˆ , ( ) ( ) ( )n i F a yz i y az j z ay k= = - + - + -
  
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so that 2 2 2ˆ [( ) ( ) ( ) ]F n a yz i y az j z ay k i◊ = - + - + - ◊
  

	  = a2 – yz, ds = dy dz

\	

4

2
2 2ˆ ( )

2

cc b

o o
S o

bF nds a yz dydz a b z dz
Ê ˆ

◊ = - = -Á ˜Ë ¯ÚÚ Ú Ú Ú


	  
2 2

2

4
b ca bc= - 	 (6)

On S5 : y = 0, 2 2ˆ , ,n j F x i zxj z k ds dxdz= - = - + =
  

so that 2 2ˆ ( ) ( )F n x i zxj z k j zx◊ = - + ◊ - =
  

\	

5

2 2 2
ˆ

2 4

a c a

o o o
S

c a cF nds zxdzdx xdx◊ = = =Ú Ú Ú Ú Ú


	 (7)

On S6 : y = b, 2 2 2ˆ , ( ) ( ) ( )n j F x bz i b zx j z bx k= = - + - + -
  

	 ds = dxdz

so that 2 2 2ˆ [( ) ( ) ( ) ]F n x bz i b zx j z bx k j◊ = - + - + - ◊
  

	 = b2 – zx.

\	

6

2ˆ ( )
a c

o o
S

F n b zx dzdx◊ = -ÚÚ Ú Ú


	    
2 2 2

2 2

2 4

a

o

c a cb c x dx ab c
Ê ˆ

= - ◊ = -Á ˜Ë ¯Ú 	 (8)

By using (3), (4), (5), (6), (7) and (8), in (2), we get

	

2 2 2 2 2 2 2 2 2 2 2 2
2 2 2ˆ

4 4 4 4 4 4
S

a b a b b c b c a c a cF nds abc a bc ab c◊ = + - + + - + + -ÚÚ


	  = abc(a + b + c)	 (9)
The equalities (1) and (9) verify the divergence theorem.	 Ans.

Example 12	 Verify Green’s theorem in the plane for ÚC(3x2 – 8y2)dx + (4y – 6xy)dy 

where C is the boundary of the region defined by (i) y = x , y = x2 and (ii) x = 0, y = 0, 
x + y = 1.� [AU July 2010, June 2012 ; KU Nov. 2011, KU April 2013]

Solution

	 (i)	 y x= , i.e., y2 = x and y = x2 are two parabolas intersecting at 0(0, 0) and A(1, 1).
		  Here, P = 3x2 – 8y2, Q = 4y – 6xy

	 16 , 6P Qy y
y x

∂ ∂= - = -
∂ ∂

\	 10Q P y
x y

∂ ∂- =
∂ ∂
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Fig. 20.12

		  If R is the region bounded by C then

	

2 2

21 1

0 0
11 2 5

4

0
0

10 10
2

5 ( ) 5
2 5

1 1 3 35 5
2 5 10 2

R
x

x

x x

Q P dxdy
x y

yydydx dx

x xx x dx

Ê ˆ∂ ∂
-Á ˜∂ ∂Ë ¯

Ê ˆ
= = Á ˜Ë ¯

È ˘
= - = -Í ˙

Î ˚

È ˘ È ˘
= - = =Í ˙ Í ˙Î ˚ Î ˚

ÚÚ

Ú Ú Ú

Ú
	 (1)

		  Also, 
1 2

( ) ( )
C C C

Pdx Qdy Pdx Qdy Pdx Qdy+ = + + +Ú Ú Ú
		  Along C1, x2 = y. \ 2x dx = dy and the limits of x are from 0 to 1.

\	
1

( )
C

Pdx Qdy+Ú

	

1
2 2

0
1

2 4 2 2 2

0
1

2 3 4

0
3 4 5 1

0

(3 8 ) (4 6 )

(3 8 ) (4 6 ) 2 (since )

(3 8 20 )

[ 2 4 ] 1

x y dx y xy dy

x x dx x x x xdx x y

x x x dx

x x x

= - + -

= - + - ◊ ◊ =

= + -

= + - = -

Ú
Ú
Ú

		  Along C2, y2 = x. \ 2y dy = dx and the limits of y are from 1 to 0.
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\	

2

0
4 2 2

1
00

3 5 2 4 6

1 1

( )

(3 8 )2 (4 6 )

11 5(4 22 6 ) 2
2 2

C
Pdx Qdy

y y ydy y y y dy

y y y dy y y y

+

= - + - ◊ ◊

È ˘
= - + = - + =Í ˙Î ˚

Ú
Ú
Ú

\	 5 3( ) 1
2 2C

Pdx Qdy+ = - + =Ú 	 (2)

		  The equalities of (1) and (2) verify Green’s theorem in the plane.� Ans.

	 (ii)	 Here, 
R

Q P dxdy
x y

Ê ˆ∂ ∂-Á ˜∂ ∂Ë ¯ÚÚ

	

1 1

0 0
1

2 1
0

0
131

2

0 0

10

5[ ]

(1 )
5 (1 ) 5

3

x

x

ydydx

y dx

x
x dx

-

-

=

=

È ˘-
= - = Í ˙

-Î ˚

Ú Ú
Ú

Ú
	 5 5(0 1)

3 3
-= - = 	 (1)

		  Along OA, y = 0 \ dy = 0 and the limits of x are from 0 to 1.

\	
1

2 3 1
0

0
3 [ ] 1

OA

Pdx Qdy x dx x+ = = =Ú Ú
		  Along AB, y = 1 – x. \ dy = –dx and the limits of x are from 1 to 0.

\	 + = - - + - - - -

= - + - - + + -

Ú Ú

Ú

0
2 2

1

0
2 2 2

1

[3 8(1 ) ] [4(1 ) 6 (1 )]( )

(3 8 16 8 4 4 6 6 )

AB

Pdx Qdy x x dx x x x dx

x x x x x x dx

	

= - + - ◊

È ˘ È ˘
= - + - = - - + - =Í ˙ Í ˙Î ˚ Î ˚

Ú
0

2

1
0

2 3

1

( 12 26 11 )

11 11 812 13 12 13
3 3 3

x x dx

x x x

		  Along BO, x = 0. \ dx = 0 and the limits of y are from 1 to 0

\	
0

2 0
1

1
4 [2 ] 2

BO
Pdx Qdy ydy y+ = = = -Ú Ú

		  \	 line integral along C (i.e., along OABO) 8 51 2
3 3

= + - =

Fig. 20.13
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i.e.,	 5( )
3C

Pdx Qdy+ =Ú 	 (2)

		  The equality of (1) and (2) verifies Green’s theorem in the plane.� Verified.

Example 13	 Evaluate ( 2 )x
C e dx ydy dzÚ + -  by using Stokes’ theorem, where C is 

the curve x2 + y2 = 4, z = 2.� [AU May 2010]

Solution

	

( 2 )

( 2 ) ( )

where 2

x
C

x
C

x
C

e dx ydy dz

e i yj k dxi dyj dzk

F dr F e i yj k

Ú + -

= Ú + - ◊ + +

= Ú ◊ = + -

    


  

	

curl

2 1

(0 0) (0 0) (0 0)
0 0 0 0

x

i j k

F
x y z

e y

i j k
i j k

∂ ∂ ∂=
∂ ∂ ∂

-

= - - - + -

= + + =

 



 

 

\ by Stokes’ theorem, ˆcurl
C

S

F dr F n ds◊ = ◊ ◊Ú ÚÚ


 

	 = 0 (since curl F


 = 0)	 Ans.

Example 14	 Find the work done by the force ,F zi xj yk= + +
 

 when it moves a 
particle along the arc of the curve cos sinr ti tj tk= + +

 



 from t = 0 to t = 2n.
� [AU Dec. 2007]

Solution  From the vector equation of the curve C, we get the parametric equations 
of the curve as x = cos t, y = sin t, z = t.

Work done by the force CF F dr= Ú ◊


 

	

2
2

0
2

0

( ) ( )

( )

[ ( sin ) cos sin ]

sin 21cos sin cos
2 2

(2 1) ( 1)
3

C

C

zi xj yk dxi dyj dzk

zdx xdy ydz

t t t t dt

t
t t t t t

p

p

p p
p

= + + ◊ + +

= + +

= - + +

È ˘Ê ˆ
= - + + -Í ˙Á ˜Ë ¯Î ˚
= + - - -
=

Ú
Ú
Ú

    

	 Ans.

EM_UnitVIII_20.indd   25 8/23/2017   10:29:53 AM



20.26	 Engineering Mathematics

Example 15	 Verify Stokes’ theorem for 2F xyi yzj zxk= - -
 

 where S is the open 
surface of the rectangular parallelepiped formed by the planes x = 0, x = 1, y = 0, y = 2 
and z = 3 above the XOY-plane.� [AU Dec. 2007]

Solution  Stokes’ theorem is given by

	 ˆcurlC SF dr F ndsÚ ◊ = ÚÚ ◊


 

Here, curl 

2

i j k

F
x y z

xy yz zx

∂ ∂ ∂=
∂ ∂ ∂

- -

 



	   ˆ2 ( 2 ) (2 )
C

S

yi zj xk xydx yzdy zxdz yi zj xk nds= + + \ - - - + + ◊Ú ÚÚ
    

	 (1)

The open cuboid S is made up of the five faces x = 0, x = 1, y = 0, y = 2 and z = 3 and is 
bounded by the rectangle OAC¢B lying on the XOY plane. LHS of (1) is

	

( 2 )
OAC B

xydx yzdy zxdz
¢

= - -Ú

	 OAC B

xydx
¢

= Ú
(since the boundary C lies on the XOY plane, z = 0)

	 OA AC C B BO

xydx xydx xydx xydx
¢ ¢

= + + +Ú Ú Ú Ú
Along OA, y = 0, dy = 0
Along AC¢, x = 1, dx = 0
Along C¢B, y = 2, dy = 0
Along BO, x = 0, dx = 0

\	
0

1

0 0 0 2
C B

OAC B

xydx xydx xdx
¢

¢

= + + + =Ú Ú Ú
� (as along C ¢B, x varies from 1 to 0).
	  = –1	 (2)
RHS of (1) is

	

¢ ¢ ¢ ¢

¢ ¢ ¢ ¢

¢ ¢ ¢

+ + ◊ = + + ◊ + + + ◊

+ + + ◊ + + + ◊

+ + + ◊

ÚÚ ÚÚ ÚÚ
ÚÚ ÚÚ
ÚÚ

       

    

 

ˆ ˆ ˆ(2 ) (2 ) (2 )

ˆ ˆ(2 ) (2 )

ˆ(2 )

S O C AB A BOC

A BC O COAB

A O B C

yi zj xk nds yi zj xk nds yi zj xk nds

yi zj xk nds yi zj xk nds

yi zj xk nds

Fig. 20.14
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= - -

- -

Ê ˆ
= - = - = -Á ˜Ë ¯

Ú Ú Ú Ú Ú Ú
Ú Ú Ú Ú

Ú Ú Ú

3 2 3 2 1 3

0 0 0 0 0 0
1 3 2 1

0 0 0 0
122 1 2

0 0 0 0

2 2

1
2

ydydz ydydz zdzdx

zdzdx xdxdy

xxdxdy dy 	 (3)

From (2) and (3), Stokes’ theorem is verified.� Verified.

Example 16	 Verify the divergence theorem for 2F x i zj yzk= + +
 

 over the cube 
formed by x = ±1, y = ±1, z = ±1.� [AU Dec. 2007, KU Nov. 2011]

Solution  Gauss’ divergence theorem is

	 ˆ (div )
S V

F nds F dv◊ =ÚÚ ÚÚÚ
 

	 (1)

LHS of  2 2

1 1 1 1 1 1

(1) 0
x x y y z z

x ds x ds zds zds yzds yzds
= = - = = - = = -

= + - + + - + + - =ÚÚ ÚÚ ÚÚ ÚÚ ÚÚ ÚÚ 	 (2)

RHS of  (1) (div )
V

F dv= ◊ÚÚÚ


	  

1 1 1

1 1 1
1 1

1 1

(2 )

(2 )

2 0

V

x y dxdydz

x y dxdydz

ydydz

- - -

- -

= +

= +

= =

ÚÚÚ

Ú Ú Ú
Ú Ú 	 (3)

From (2) and (3), Gauss’ divergence theorem is verified.	 Verified.

Example 17	 Use Stokes’ theorem to evaluate C F drÚ ◊




, where (sin ) cosF x y i xj= - -
 

 

and C is the boundary of the triangle whose vertices are (0, 0), , 0
2
pÊ ˆ

Á ˜Ë ¯  and , 1
2
pÊ ˆ

Á ˜Ë ¯ .

� [KU Nov. 2011]

Solution  By Stokes’ theorem, we have C SF drÚ ◊ = ÚÚ




 curl ˆF n ds◊ ◊


.

	

curl

sin cos 0

(sin 1)

i j k

F
x y z

x y x

x k

∂ ∂ ∂=
∂ ∂ ∂

- -

= +

 





\ the given line integral
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p

p

p

p

p pp

= +

= +

È ˘= -Î ˚

È ˘
= - +Í ˙Î ˚

ÚÚ

Ú Ú

Ú
Ú

2

2

2

2

1

0

1

0
1

0

(1 sin )

(1 sin )

cos

cos
2 2 2

y

y

R

x dxdy

x dxdy

x x dy

y y dy

	

p pp
p

p
p

È ˘
= - +Í ˙

Î ˚

= +

12

0

2 sin
2 4 2

2
4

y yy

\	 2
4C

F dr p
p

◊ = +Ú




	 Ans.

Exercise

Part A

	 1.	 State Green’s theorem in a plane.
	 2.	 Give the relation between a line integral and a surface integral.
	 3.	 State Gauss’ divergence theorem.
	 4.	 Deduce Green’s theorem in a plane from Stokes’ theorem.
	 5.	 In Gauss’ divergence theorem, surface integral is equal to _______ integral.
	 6.	 The integral of F dr◊





 is
	 (i)	 line integral			   (ii)	 zero
	 (iii)	 surface integral			   (iv)	 one
	 7.	 Using Green’s theorem, prove that the area enclosed by a simple closed curve C 

is 1 ( )
2

xdy ydx-Ú .

	 8.	 If 5 2 ,F xyi yj= +
 

 evaluate C F drÚ ◊




 where C is the part of the curve y = x3 
between x = 1 and x = 2.

	 9.	 If 2F x i xyj= +
 

, evaluate C F drÚ ◊




 along the straight line y = x from (0, 0) to 
(1, 1).

	 10.	 If C is a simple closed curve and r xi yj zk= + +
 



, prove that 0C r drÚ ◊ =




.

	 11.	 Evaluate ( )
C

yzdx zxdy xydz+ +Ú  where C is the circle given by x2 + y2 + z2 = 1 

and z = 0.
	 12.	 Use the integral theorems to prove ( ) 0F— ◊ — ¥ =



.

Fig. 20.15
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	 13.	 Evaluate ( ),C xdy ydxÚ -  where C is the circle x2 + y2 = a2.

	 14.	 Evaluate C F drÚ ◊




 where F xyi yzj zxk= + +
 

 and C is the curve 2 3 ,r ti t j t k t= + +
 



 
varying from –1 to 1.

Part B

	 1.	 If a force 22 3F x yi xyj= +
 

 displaces a particle in the xy plane from (0, 0) to 

(1, 4) along a curve y = 4x2, find the work done.� 104
5

Ê ˆ
Á ˜Ë ¯Ans.

	 2.	 Find the work done when a force 2 2( ) (2 )F x y x i xy y j= - + - +
 

 moves a particle 

from the origin to (1, 1) along a parabola y2 = x.� 2
3

Ê ˆ
Á ˜Ë ¯Ans.

	 3.	 Verify Green’s theorem in a plane with respect to 2( ),C x dx xydyÚ +  where C is 
the boundary of the square formed by x = 0, y = 0, x = a, y = a.� [AU Dec. 2009]

�
3

2
aÊ ˆ

Á ˜Ë ¯Ans.

	 4.	 Use Green’s theorem to evaluate 2 2 2( ) ( )C x xy dx x y dyÚ + + +  where C is the 
square formed by the lines y = ±1, x = ±1.� (Ans. 0)

	 5.	 Use divergence theorem to evaluate 2 2 2 ˆ( 2 )
S

yz i zx j z k nds+ + ◊ÚÚ
 

 where S is the 

closed surface bounded by the XOY-plane and the upper half of the sphere x2 + 
y2 + z2 = a2 above this plane.� (Ans. pa4)

	 6.	 Verify Stokes’ theorem for 2 2( 4) 3 (2 )F x y i xyj xz z k= + - + + +
 

 over the surface 
of hemisphere x2 + y2 + z2 = 16 above the XOY plane.� (Ans. –16p)

	 7.	 Use the divergence theorem to evaluate S A dsÚ ◊




 where 3 3 3A x i y j z k= + +
 

 and 

S is the surface of the sphere x2 = y2 + z2 = a2.�
512

5
apÊ ˆ

Á ˜Ë ¯Ans.

	 8.	 Use the divergence theorem to evaluate 3 2 2

S

x dydz x ydzdx x zdxdy+ +ÚÚ  where 

S is the surface of the region bounded by the closed cylinder x2 + y2 = a2, (0 £ z 

£ b) z = 0 and z = b.�
45

4
a bpÊ ˆ

Á ˜Ë ¯Ans.

	 9.	 Using Green’s theorem, evaluate [( sin ) cos ]C y x dx xdyÚ - +  where C is the 

triangle bounded by 20, ,
2

xy x yp
p

= = = .�
2 8
4

p
p

È ˘Ê ˆ+Í ˙- Á ˜Ë ¯Í ˙Î ˚
Ans.

	 10.	 Evaluate 2 2[( ) 2 ]C x y dx xydyÚ + -  where C is the rectangle bounded by y = 0, 
x = 0, y = b, x = a using Green’s theorem.� (Ans. –2ab2)

	 11.	 Verify Stokes’ theorem for F yi zj xk= + +
 

, where S is the upper half surface of 
the sphere x2 + y2 + z2 = 1 and C is its boundary.� (Ans. –p)

	 12.	 Verify Stokes’ theorem for 22 3F yi xj z k= + -
 

 where S is the upper half of the 
sphere x2 + y2 + z2 = 9 and C is the boundary.� (Ans. 9p)
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20.30	 Engineering Mathematics

	 13.	 Find the area of 2/3 2/3 2/3x y a+ =  using Green’s theorem.�
23

8
apÊ ˆ

Á ˜Ë ¯Ans.

	 14.	 Using Stokes’ theorem, evaluate 2( )C xydx xy dyÚ +  taking C to be a square with 

vertices (1, 1), (–1, 1), (–1, –1) and (1, –1).� 4
3

Ê ˆ
Á ˜Ë ¯Ans.

	 15.	 Verify Gauss’ divergence theorem for 3F yi xj z k= + +
 

 over the cylindrical 
region x2 + y2 = 9, z = 0, z = 6.� (Ans. 1944p)
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21 Complex Numbers

Chapter Outline

 ● Introduction
 ● Complex Numbers
 ● Complex Function
 ● Limit of a Function
 ● Derivative
 ● Analytic Function
 ● Cauchy–Riemann Equations
 ● Harmonic Function
 ● Properties of Analytic Functions
 ●  Construction of Analytic Function (Milne–Thomson Method)

21.1 ❑ iNtroduCtioN

Quite often, it is believed that complex numbers arose from the need to solve 
quadratic equations. In fact, contrary to this belief, these numbers arose from the 
need to solve cubic equations. In the sixteenth century, Cardano was possibly the 
first to introduce + - ,a b  a complex number, in algebra. Later, in the eighteenth 
century, Euler introduced the notation i for -1  and visualized complex numbers as 
points with rectangular coordinates, but he did not give a satisfactory foundation for 
complex numbers. However, Euler defined the complex exponential and proved the 
identity eij = (cos j + i sin j), thereby establishing connection between trigonometric 
and exponential functions through complex analysis.

We know that there is no square root of negative numbers among real numbers.
However, algebra itself and its applications require such an extension of the 

concept of a number for which the extraction of the square root of a negative number 
would be possible.
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21.4	 Engineering Mathematics

We have repeatedly encountered the notion of extension of a number. Fractional 
numbers are introduced to make it possible to divide one integral number by another, 
negative numbers are introduced to make it possible to subtract a large number from 
a smaller one and irrational numbers become necessary in order to describe the 
result of measurement of the length of a segment in the case when the segment is 
incommensurable with the chosen unit of length.

The square root of the number –1 is usually denoted by the letter i and numbers of 
the form a + ib where a and b are ordinary real numbers known as complex numbers.

The necessity of considering complex numbers first arose in the sixteenth century 
when several Italian mathematicians discovered the possibility of algebraic solutions 
of third-degree equations.

The theoretical and applied values of complex numbers are far beyond the scope 
of algebra. The theory of functions of a complex variable, which was much advanced 
in the nineteenth century, proved to be a very valuable apparatus for the investigation 
of almost all the divisions of theoretical physics, such, for instance, as the theory of 
oscillations, hydrodynamics, the divisions of the theory of elementary particles, etc.

Many engineering problems may be treated and solved by methods involving 
complex numbers and complex functions. There are two kinds of such problems. 
The first of them consists of elementary problems for which some acquaintances 
with complex numbers are sufficient. This includes many applications to electric 
circuits or mechanical vibrating systems. The second kind consists of more advanced 
problems for which we must be familiar with the theory of complex analytic functions. 
Interesting problems in heat conduction, fluid flow and electrostatics belong to this 
category.

21.2  ❑  Complex Numbers

A number of the form x + iy, where x and y are real numbers and 1i = -  (i is 
pronounced as iota) is called a complex number. x is called the real part of x + iy and 
is written as Re(x + iy) and y is called the imaginary part and is written as Im(x + iy).

A pair of complex numbers x + iy and x – iy are said to be conjugates of each other.

Properties

	 (i)	 If x1 + iy1 = x2 + iy2 then x1 – iy1 = x2 – iy2
	 (ii)	 Two complex numbers x1 + iy1 and x2 + iy2 are said to be equal when Re(x1 + iy1) 

= Re(x2 + iy2), i.e., x1 = x2 and Im(x1 + iy1) = Im(x2 + iy2) i.e., y1 = y2
	 (iii)	 Algebra of Complex Numbers
		  The arithmetic operations on complex numbers follow the usual rules of 

elementary algebra of real numbers with the definition i2 = –1. If z1 = x1 + iy 
and z2 = x2 + iy2 are any two complex numbers then we define the following 
arithmetic operations.

		  Addition

	 1 2 1 1 2 2 1 2 1 2( ) ( ) ( ) ( )z z x iy x iy x x i y y+ = + + + = + + +

		  Subtraction

	 1 2 1 1 2 2 1 2 1 2( ) ( ) ( ) ( )z z x iy x iy x x i y y- = + - + = - + -

		  Multiplication

	 1 2 1 1 2 2 1 2 1 2 1 2 1 2( )( ) ( ) ( )z z x iy x iy x x y y i x y y x= + + = - + +
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 Complex Numbers 21.5

  Division Let z2 π 0. Then

 

1 1 1 1 1 2 2 1 2 1 2 2 1 1 2
2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

( )( )
( )( )

z x iy x iy x iy x x y y x y x y
i

z x iy x iy x iy x y x y
È ˘ È ˘+ + - + -

= = = +Í ˙ Í ˙+ + - + +Í ˙ Í ˙Î ˚ Î ˚
  i.e., sum, difference, product and quotient of any two complex numbers is itself 

a complex number.
 (iv) Every complex number x + iy can always be expressed in the form r(cos q + 

i sin q).
  i.e., reiq (Exponential	form).

  Note

 (i) The number 2 2r x y= + +  is called the module of x + iy and is written as 
mod (x + iy) or |x + iy|. The angle q is called the amplitude or argument of 
x + iy and is written as amp (x + iy) or arg(x + iy). Evidently, the amplitude q 
has an infinite number of values. The value of q which lies between –p and 
p is called the principal value of the amplitude.

 (ii) cos q + i sin q is briefly written as cis q (pronounced as ‘sis q’)
 (iii) If the conjugate of z = x + iy be z  then

 (a) 1 1Re( ) ( ), Im( ) ( )
2 2

z z z z z z
i

= + = -

 (b) 2 2| | (Re( )) (Im( )) | |z z z z= + =

 (c) 2| |zz z=

 (d) 1 2 1 2z z z z+ = +

 (e) 1 2 1 2z z z z= ◊

 (f) 1 2 1 2 2( / ) / , 0z z z z z= π

 (iv) De Moivre’s Theorem
 (cos q + i sin q)n = cos nq + i sin nq

21.3 ❑ Complex fuNCtioN

Recall from calculus that a real function f defined on a set S of real numbers is a rule 
that assigns to every x in S a real number f(x), called the value of f at x. Now in the 
complex region, S is a set of complex numbers. A function f defined on S is a rule that 
assigns to every z in S a complex number w, called the value of f at z.

We write w = f(z). Here, z varies in S and is called a complex variable. The set S is 
called the domain of f.

If to each value of z, there corresponds one and only one value of w then w is 
said to be a single-valued function of z; otherwise, it is a multi-valued function. For 

example, 1w
z

=  is a single-valued function and w z=  is a multi-valued function 

of z. The former is defined at all points of the z-plane except at z = 0 and the latter 
assumes two values for each value of z except at z = 0.

 (i) The number 2 2r x yr x y2 2r x y2 2= + += + +2 2= + +2 2r x y= + +r x yr x y= + +r x yr x y= + +r x y2 2r x y2 2= + +2 2r x y2 2  is called the module of x + iy and is written as 
mod (x + iy) or |x + iy|. The angle q is called the q is called the q amplitude or argument of 
x + iy and is written as amp (x + iy) or arg(x + iy). Evidently, the amplitude q
has an infinite number of values. The value of q which lies between –q which lies between –q p and p and p
p is called the p is called the p principal value of the amplitude.

 (ii) cos q + q + q i sin q is briefly written as cis q is briefly written as cis q q (pronounced as ‘sis q (pronounced as ‘sis q q’)q’)q
 (iii) If the conjugate of z = x + iy be z  then

 (a) 1 1Re( ) ( ), Im( ) ( )Re( ) ( ), Im( ) ( )1 1Re( ) ( ), Im( ) ( )1 11 1Re( ) ( ), Im( ) ( )1 1
2 2

Re( ) ( ), Im( ) ( )
2 2

Re( ) ( ), Im( ) ( )Re( ) ( ), Im( ) ( )z z z z z zRe( ) ( ), Im( ) ( )
i

Re( ) ( ), Im( ) ( )
i

Re( ) ( ), Im( ) ( )Re( ) ( ), Im( ) ( )= + = -Re( ) ( ), Im( ) ( )Re( ) ( ), Im( ) ( )z z z z z zRe( ) ( ), Im( ) ( )= + = -Re( ) ( ), Im( ) ( )z z z z z zRe( ) ( ), Im( ) ( )Re( ) ( ), Im( ) ( )z z z z z zRe( ) ( ), Im( ) ( )= + = -Re( ) ( ), Im( ) ( )z z z z z zRe( ) ( ), Im( ) ( )Re( ) ( ), Im( ) ( )z z z z z zRe( ) ( ), Im( ) ( )= + = -Re( ) ( ), Im( ) ( )z z z z z zRe( ) ( ), Im( ) ( )

 (b) 2 2| | (Re( )) (Im( )) | || | (Re( )) (Im( )) | || | (Re( )) (Im( )) | |2 2| | (Re( )) (Im( )) | |2 2| | (Re( )) (Im( )) | |z z z z| | (Re( )) (Im( )) | || | (Re( )) (Im( )) | |z z z z| | (Re( )) (Im( )) | || | (Re( )) (Im( )) | |= + =| | (Re( )) (Im( )) | || | (Re( )) (Im( )) | |= + =| | (Re( )) (Im( )) | |2 2| | (Re( )) (Im( )) | |2 2= + =2 2| | (Re( )) (Im( )) | |2 2| | (Re( )) (Im( )) | |z z z z| | (Re( )) (Im( )) | |= + =| | (Re( )) (Im( )) | |z z z z| | (Re( )) (Im( )) | || | (Re( )) (Im( )) | |z z z z| | (Re( )) (Im( )) | |= + =| | (Re( )) (Im( )) | |z z z z| | (Re( )) (Im( )) | || | (Re( )) (Im( )) | |z z z z| | (Re( )) (Im( )) | |= + =| | (Re( )) (Im( )) | |z z z z| | (Re( )) (Im( )) | |2 2| | (Re( )) (Im( )) | |2 2z z z z2 2| | (Re( )) (Im( )) | |2 2= + =2 2| | (Re( )) (Im( )) | |2 2z z z z2 2| | (Re( )) (Im( )) | |2 2

 (c) 2| |zz z| |zz z| |zz z=zz z

 (d) 1 2 1 2z z z z1 2 1 2z z z z1 2 1 2+ = +z z z z+ = +z z z z1 2 1 2z z z z1 2 1 2+ = +1 2 1 2z z z z1 2 1 2

 (e) 1 2 1 2z z z z1 2 1 2z z z z1 2 1 2z z z z= ◊z z z z1 2 1 2z z z z1 2 1 2= ◊1 2 1 2z z z z1 2 1 2

 (f) 1 2 1 2 2( / ) / , 01 2 1 2 2( / ) / , 01 2 1 2 2( / ) / , 0z z z z z( / ) / , 01 2 1 2 2( / ) / , 01 2 1 2 2z z z z z1 2 1 2 2( / ) / , 01 2 1 2 2( / ) / , 0= π( / ) / , 01 2 1 2 2( / ) / , 01 2 1 2 2= π1 2 1 2 2( / ) / , 01 2 1 2 2( / ) / , 0z z z z z( / ) / , 0= π( / ) / , 0z z z z z( / ) / , 01 2 1 2 2( / ) / , 01 2 1 2 2z z z z z1 2 1 2 2( / ) / , 01 2 1 2 2= π1 2 1 2 2( / ) / , 01 2 1 2 2z z z z z1 2 1 2 2( / ) / , 01 2 1 2 2

 (iv) De Moivre’s Theorem
 (cos q + q + q i sin q)q)q n = cos nq + q + q i sin nq
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  Note

 (i) If z = x + iy then f(z) = u + iv (a complex number).
 (ii) Since eiy = cos y + i sin y, e–iy = cos y – i sin y, the circular functions are 

sin , cos
2 2

iy iy iy iye e e e
y y

i

- -- +
= = , and so on

  \ circular functions of the complex variable z are given by 
--

=sin ,
2

iz ize e
z

i
 

-+
= =

sin
cos , tan

2 cos

iz ize e z
z z

z
 with cosec z, sec z and cot z as their respective 

reciprocals.
 (iii) Euler’s Theorem
 eiz = cos z + i sin z
 (iv) Hyperbolic Functions

  If x be real or complex, sin
2

x xe e
hx

--
=  (named hyperbolic sine of x) 

cos
2

x xe e
hx

-+
=  (named hyperbolic cosine of x)

  Also, we define,

 

sin
tan

cos

1cot
tan

1 2sec
cos

1 2cosec
sin

x x

x x

x x

x x

x x

x x

hx e e
hx

hx e e

e e
hx

hx e e

hx
hx e e

hx
hx e e

-

-

-

-

-

-

-
= =

+

+
= =

-

= =
+

= =
-

 (v) Relations between Hyperbolic and Circular Functions
 sin ix = i sin hx
 cos ix = cos hx
 tan ix = i tan hx
 (vi) cos h2x – sin h2x = 1, sec h2x + tan h2x = 1
  cot h2x – cosec h2x = 1
 (vii) sin h(x ± y) = sin hx cos hy ± cos hx sin hy
  cos h(x ± y) = cos hx cos hy ± sinh x sinh y

 

±
± =

+
tan tan

tan ( )
1 tan tan

hx hy
h x y

hx hy

 (viii) 
2 2 2 2

2

sin 2 2 sin cosh

cos 2 cos sin 2 cos 1 1 2 sin
2 tan

tan 2
1 tan

h x hx x

h x h x h x h x h x
hx

h x
h x

=

= + = - = +

=
+

 (i) If z = x + iy then f(f(f z) = u + iv (a complex number).
 (ii) Since eiy = cos y + i sin y, e–iy = cos y – i sin y, the circular functions are 

sin , cos
2 2

iy iy iy iye e e e
sin , cos

e e e e
sin , cos

iy iy iy iye e e eiy iy iy iy
y ysin , cosy ysin , cos

2 2
y y

2 2
sin , cos

2 2
sin , cosy ysin , cos

2 2
sin , cos

i2 2i2 2
sin , cosy ysin , cos

i
sin , cosy ysin , cos

2 2
y y

2 2i2 2
y y

2 2
sin , cos

2 2
sin , cosy ysin , cos

2 2
sin , cos

i
sin , cos

2 2
sin , cosy ysin , cos

2 2
sin , cos

iy iy iy iy- -iy iy iy iyiy iy iy iy- +iy iy iy iye e e e- +e e e e
sin , cos

e e e e
sin , cos

- +
sin , cos

e e e e
sin , cos

iy iy iy iye e e eiy iy iy iy- +iy iy iy iye e e eiy iy iy iy
= =y y= =y ysin , cosy ysin , cos= =sin , cosy ysin , cossin , cosy ysin , cos= =sin , cosy ysin , cos , and so on

  \ circular functions of the complex variable z are given by sin ,sin ,=sin ,=
2

sin ,
2

sin ,
iz iz-iz iz-e e-e e-

sin ,
e e

sin ,
iz ize eiz iz

sin ,zsin ,
i

sin ,
i

sin ,

= =
sin

cos , tan
2 cos

cos , tan
2 cos

cos , tan
iz iz-iz iz-+iz iz+e e z+e e z+ sine e zsiniz ize e ziz iz+iz iz+e e z+iz iz+

z z= =z z= =cos , tanz zcos , tan= =cos , tan= =z z= =cos , tan= == =cos , tan= =z z= =cos , tan= =
z

with cosec z, sec z and cot z as their respective 

reciprocals.
 (iii) Euler’s Theorem

eiz = cos z + i sin z
 (iv) Hyperbolic Functions

  If x be real or complex, sin
2

x xe ex xe ex x
hx

x x-x xe e-e e
=  (named hyperbolic sine of x) 

cos
2

x xe ex xe ex x
hx

x x-x xx x+x xe e+e ex xe ex x+x xe ex x
=  (named hyperbolic cosine of x)

  Also, we define,

sin
tan

cos

1cot
tan

1 2sec
cos

1 2cosec
sin

x x

x x

x x

x x

x x

x x

hx e ex xhx e ex x
hx

hx e ex xe ex x

e ex xe ex x
hx

hx e ex xe ex x

hx
hx e ex xe ex x

hx
hx e ex xe ex x

x x-x x

x x-x x

x x-x x

x x-x x

x x-x x

x x-x x

hx e e-hx e e
= == = x x+x xe e+e ex xe ex x+x xe ex x

x x+x xe e+e ex xe ex x+x xe ex x
= == =

e e-e e

= == = x x+x xe e+e ex xe ex x+x xe ex x

= == =
e e-e e

 (v) Relations between Hyperbolic and Circular Functions
 sin ix = i sin hx
 cos ix = cos hx
 tan ix = i tan hx
 (vi) cos h2x – sin h2x = 1, sec h2x + tan h2x = 1
  cot h2x – cosec h2x = 1
 (vii) sin h(x ± y) = sin hx cos hy ± cos hx sin hy
  cos h(x ± y) = cos hx cos hy ± sinh x sinh y

± =
tan tan

tan ( )± =tan ( )± =
1 tan tan+1 tan tan+

hx hy±hx hy±tan tanhx hytan tan±tan tan±hx hy±tan tan±
h x ytan ( )h x ytan ( )± =tan ( )± =h x y± =tan ( )± =

hx hy1 tan tanhx hy1 tan tan

 (viii) 
2 2 2 2

2

sin 2 2 sin cosh

cos 2 cos sin 2 cos 1 1 2 sin
2 tan

tan 2
1 tan

h x hx xsin 2 2 sin coshh x hx xsin 2 2 sin cosh

h x h x h x h x h x2 2 2 2h x h x h x h x h x2 2 2 2cos 2 cos sin 2 cos 1 1 2 sinh x h x h x h x h xcos 2 cos sin 2 cos 1 1 2 sin2 2 2 2cos 2 cos sin 2 cos 1 1 2 sin2 2 2 2h x h x h x h x h x2 2 2 2cos 2 cos sin 2 cos 1 1 2 sin2 2 2 2

hx
h xtan 2h xtan 2

h x2h x2

sin 2 2 sin coshh x hx xsin 2 2 sin cosh=sin 2 2 sin coshh x hx xsin 2 2 sin cosh

cos 2 cos sin 2 cos 1 1 2 sinh x h x h x h x h xcos 2 cos sin 2 cos 1 1 2 sin= + = - = +cos 2 cos sin 2 cos 1 1 2 sinh x h x h x h x h xcos 2 cos sin 2 cos 1 1 2 sin2 2 2 2cos 2 cos sin 2 cos 1 1 2 sin2 2 2 2h x h x h x h x h x2 2 2 2cos 2 cos sin 2 cos 1 1 2 sin2 2 2 2= + = - = +2 2 2 2cos 2 cos sin 2 cos 1 1 2 sin2 2 2 2h x h x h x h x h x2 2 2 2cos 2 cos sin 2 cos 1 1 2 sin2 2 2 2

=
1 tan+1 tan
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 (ix) 3

3

3

2

sin 3 3 sin 4 sin

cos 3 4 cos 3 cos

3 tan tan
tan 3

1 3 tan

h x hx h x

h x h x hx

hx h x
h x

h x

= +

= -

+
=

+

 (x) 

+ -
+ =

+ -
- =

+ -
+ =

+ -
- =

sin sin 2 sin cos
2 2

sin sin 2 cos sin
2 2

cos cos 2 cos cos
2 2

cos cos 2 sin sin
2 2

x y x y
hx hy h h

x y x y
hx hy h h

x y x y
hx hy h h

x y x y
hx hy h h

 (xi) cos h2x – sin h2x = 1
 (xii) Complex trigonometric functions satisfy the same identities as real 

trigonometric functions.

 

- = - - =

+ =
± = ±
± =

= = -

=



2 2

1 2 1 2 1 2

1 2 1 2 1 2
2 2

sin( ) sin and cos( ) cos

sin cos 1
sin( ) sin cos cos sin
cos( ) cos cos sin sin

sin 2 2 sin cos and cos 2 cos sin

sin sin

z z z z

z z
z z z z z z
z z z z z z

z z z z z z

z z

 sin(z + 2np) = sin z, n is any integer
 cos(z + 2np) = cos z, n is any integer
 (xiii) Inverse Trigonometric and Hyperbolic Functions
  Complex inverse trigonometric functions are defined by the following:

 

1 2

1 2

1

2
1 1

2
1 1

1 1

cos log( 1)

sin log( 1 )

1
tan log log ,

2 1 2

1 11cosec sin log , 0

1 11sec cos log , 0

1cot tan log
2

z i z z

z i iz z

iz i zi iz z i
iz i z

z
z i z

z z

z
z i z

z z
iz

z

-

-

-

- -

- -

- -

= - + +

= - + -

Ê ˆ+ +
= - = π ±Á ˜- -Ë ¯

Ê ˆ+ -Ê ˆ Á ˜= = - πÁ ˜Ë ¯ Ë ¯
Ê ˆ+ -Ê ˆ Á ˜= = - πÁ ˜Ë ¯ Ë ¯

Ê ˆ -
= =Á ˜Ë ¯ ,

z i
z i

z i
Ê ˆ+

π ±Á ˜-Ë ¯
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  Complex inverse hyperbolic functions are defined by the following:

 

- -

-

- -

= + - = + +

Ê ˆ+
= π ±Á ˜-Ë ¯

Ê ˆ+ +Ê ˆ Á ˜= = πÁ ˜Ë ¯ Ë ¯

1 2 1 2

1

2
1 1

cosh log( 1), sinh log( 1)

11tanh log , 1
2 1

1 11cosech sinh log , 0

z z z z z z

z
z z

z

z
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21.4 ❑ limit of A fuNCtioN

A function f(z) is said to have the limit ‘b’ as z approaches a point ‘a’, written 
lim ( )
z a

f z b
Æ

= , if f is defined in a neighborhood of ‘a’ (except perhaps at ‘a’ itself) and if 

the values of f are close to ‘b’ for all z close to ‘a’, i.e., the number b is called the limit 
of the function f(z) as z Æ a, if the absolute value of the difference f(z) – b remains 
less than any preassigned positive number Œ every time the absolute value of the 
difference z – a for z π a, is less than some positive number d (dependent on Œ).

More briefly, the number b is the limit of the function f(z) as z Æ a, if the absolute 
value |f(z) – b| is arbitrarily small when |z – a| is sufficiently small.

21.5 ❑ derivAtive

A function f(z) is said to be differentiable at a point z = z0 if the limit 

0 0
0

( ) ( )
lim
z

f z z f z
zD Æ

+ D -
D

 exists. This limit is then called the derivative of f(z) at the 

point z = z0 and is denoted by f ¢(z0).
If we write z = z0 + Dz then

 0

0
0

0

( ) ( )
( ) lim

z z

f z f z
f z

z zÆ

-
=¢

-

21.6 ❑ ANAlytiC fuNCtioNs

A function defined at a point z0 is said to be analytic at z0, if it has a derivative at z0 
and at every point in some neighborhood of z0. It is said to be analytic in a region R, if 
it is analytic at every point of R. Analytic functions are otherwise named holomorphic 
or regular functions.

A point at which a function f(z) is not analytic is called a singular point or 
singularity of f(z).

  Complex inverse hyperbolic functions are defined by the following:
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Ê ˆ

= = π
Ê ˆ
Á ˜
Ê ˆ

= = π
Ê ˆ

sech cosh log , 0
Ê ˆ

= = π
Ê ˆ
Á ˜
Ê ˆ

= = π
Ê ˆ

z z
Ê ˆ

= = π
Ê ˆ
Á ˜
Ê ˆ

= = π
Ê ˆ

sech cosh log , 0
Ê ˆ

= = π
Ê ˆ
Á ˜
Ê ˆ

= = π
Ê ˆ

= = πË ¯ Ë ¯= = πsech cosh log , 0= = πË ¯ Ë ¯= = πz z= = πË ¯ Ë ¯= = πsech cosh log , 0= = πË ¯ Ë ¯= = πÁ ˜= = πÁ ˜
Ë ¯ Ë ¯

Á ˜= = πÁ ˜sech cosh log , 0Á ˜= = πÁ ˜
Ë ¯ Ë ¯

Á ˜= = πÁ ˜z zÁ ˜= = πÁ ˜
Ë ¯ Ë ¯

Á ˜= = πÁ ˜sech cosh log , 0Á ˜= = πÁ ˜
Ë ¯ Ë ¯

Á ˜= = πÁ ˜Á ˜= = πÁ ˜
Ë ¯ Ë ¯

Á ˜= = πÁ ˜sech cosh log , 0Á ˜= = πÁ ˜
Ë ¯ Ë ¯

Á ˜= = πÁ ˜z zÁ ˜= = πÁ ˜
Ë ¯ Ë ¯

Á ˜= = πÁ ˜sech cosh log , 0Á ˜= = πÁ ˜
Ë ¯ Ë ¯

Á ˜= = πÁ ˜= = πÁ ˜= = πË ¯ Ë ¯= = πÁ ˜= = πsech cosh log , 0= = πÁ ˜= = πË ¯ Ë ¯= = πÁ ˜= = πz z= = πÁ ˜= = πË ¯ Ë ¯= = πÁ ˜= = πsech cosh log , 0= = πÁ ˜= = πË ¯ Ë ¯= = πÁ ˜= = π= = πÁ ˜= = πË ¯ Ë ¯= = πÁ ˜= = πsech cosh log , 0= = πÁ ˜= = πË ¯ Ë ¯= = πÁ ˜= = πz z= = πÁ ˜= = πË ¯ Ë ¯= = πÁ ˜= = πsech cosh log , 0= = πÁ ˜= = πË ¯ Ë ¯= = πÁ ˜= = π1 1sech cosh log , 01 1z z1 1sech cosh log , 01 1= = π1 1= = πsech cosh log , 0= = π1 1= = πz z= = π1 1= = πsech cosh log , 0= = π1 1= = πË ¯ Ë ¯z zË ¯ Ë ¯
Ê ˆzÊ ˆÊ ˆ

coth tanh log , 1
Ê ˆzÊ ˆ

coth tanh log , 1
Ê ˆ

coth tanh log , 1z zcoth tanh log , 1= = π ±coth tanh log , 1= = π ±z z= = π ±coth tanh log , 1= = π ±= = π ±coth tanh log , 1= = π ±z z= = π ±coth tanh log , 1= = π ±= = π ±coth tanh log , 1= = π ±z z= = π ±coth tanh log , 1= = π ±= = π ±Á ˜= = π ±coth tanh log , 1= = π ±Á ˜= = π ±z z= = π ±Á ˜= = π ±coth tanh log , 1= = π ±Á ˜= = π ±
Ê ˆ

= = π ±
Ê ˆ
Á ˜
Ê ˆ

= = π ±
Ê ˆ

coth tanh log , 1
Ê ˆ

= = π ±
Ê ˆ
Á ˜
Ê ˆ

= = π ±
Ê ˆ

z z
Ê ˆ

= = π ±
Ê ˆ
Á ˜
Ê ˆ

= = π ±
Ê ˆ

coth tanh log , 1
Ê ˆ

= = π ±
Ê ˆ
Á ˜
Ê ˆ

= = π ±
Ê ˆ

= = π ±Á ˜= = π ±coth tanh log , 1= = π ±Á ˜= = π ±z z= = π ±Á ˜= = π ±coth tanh log , 1= = π ±Á ˜= = π ±= = π ±Á ˜= = π ±coth tanh log , 1= = π ±Á ˜= = π ±z z= = π ±Á ˜= = π ±coth tanh log , 1= = π ±Á ˜= = π ±
Ê ˆ

= = π ±
Ê ˆ
Á ˜
Ê ˆ

= = π ±
Ê ˆ

coth tanh log , 1
Ê ˆ

= = π ±
Ê ˆ
Á ˜
Ê ˆ

= = π ±
Ê ˆ

z z
Ê ˆ

= = π ±
Ê ˆ
Á ˜
Ê ˆ

= = π ±
Ê ˆ

coth tanh log , 1
Ê ˆ

= = π ±
Ê ˆ
Á ˜
Ê ˆ

= = π ±
Ê ˆ

= = π ±Á ˜= = π ±Ë ¯= = π ±Á ˜= = π ±coth tanh log , 1= = π ±Á ˜= = π ±Ë ¯= = π ±Á ˜= = π ±z z= = π ±Á ˜= = π ±Ë ¯= = π ±Á ˜= = π ±coth tanh log , 1= = π ±Á ˜= = π ±Ë ¯= = π ±Á ˜= = π ±= = π ±Á ˜= = π ±Ë ¯= = π ±Á ˜= = π ±coth tanh log , 1= = π ±Á ˜= = π ±Ë ¯= = π ±Á ˜= = π ±z z= = π ±Á ˜= = π ±Ë ¯= = π ±Á ˜= = π ±coth tanh log , 1= = π ±Á ˜= = π ±Ë ¯= = π ±Á ˜= = π ±= = π ±Á ˜= = π ±
Ë ¯

= = π ±Á ˜= = π ±coth tanh log , 1= = π ±Á ˜= = π ±
Ë ¯

= = π ±Á ˜= = π ±z z= = π ±Á ˜= = π ±
Ë ¯

= = π ±Á ˜= = π ±coth tanh log , 1= = π ±Á ˜= = π ±
Ë ¯

= = π ±Á ˜= = π ±1 1coth tanh log , 11 1z z1 1coth tanh log , 11 1= = π ±1 1= = π ±coth tanh log , 1= = π ±1 1= = π ±z z= = π ±1 1= = π ±coth tanh log , 1= = π ±1 1= = π ±
z zË ¯z zË ¯ Ë ¯z zË ¯2 1z z2 1Ë ¯2 1Ë ¯z zË ¯2 1Ë ¯Á ˜Ë ¯Á ˜2 1Á ˜Ë ¯Á ˜z zÁ ˜Ë ¯Á ˜2 1Á ˜Ë ¯Á ˜
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 Complex Numbers 21.9

21.7 ❑ CAuChy–riemANN eQuAtioNs

The necessary condition for the function f(z) = u(x, y) + iv(x, y) to be analytic at the 

point z = x + iy of a domain R is that the partial derivatives , ,u u v
x y x

∂ ∂ ∂
∂ ∂ ∂

 and v
y

∂
∂

 must 
exist and satisfy the Cauchy–Riemann equations, namely,

 
andu v u v

x y y x
∂ ∂ ∂ ∂= = -
∂ ∂ ∂ ∂

The sufficient condition for the function f(z) = u(x, y) + iv(x, y) to be analytic at the 
point z = x + iy of a domain R is that the four partial derivatives ux, uy, vx and vy exist, 
are continuous and satisfy the Cauchy–Riemann equations ux = vy and uy = –vx at each 
point of R.

  Note

 (i) The two partial differential equations u v
x y

∂ ∂=
∂ ∂

 and u v
y x

∂ ∂= -
∂ ∂

 are called 

the Cauchy–Riemann equations and they may be written as ux = vy and uy 
= –vx

 (ii) The Cauchy–Riemann equations are referred as C-R equations

 (iii) C-R equations in polar form are 1u v
r r q

∂ ∂=
∂ ∂

 and 1v u
r r q

∂ ∂= -
∂ ∂

.

21.8 ❑ hArmoNiC fuNCtioN

A real function of two variables x and y that possesses continuous second-order 
partial derivatives and satisfies the Laplace equation is called a harmonic function.

If u and v are harmonic functions such that u + iv is analytic then each is called the 
conjugate harmonic function of the other.

  Note

 (i) 
2 2

2 2x y
∂ ∂+
∂ ∂

 is called the Laplacian operator and is denoted by —2.

 (ii) 
2 2

2 2 0
x y
∂ ∂+ =
∂ ∂

 is known as Laplace equation in two dimensions.

21.9 ❑ properties of ANAlytiC fuNCtioNs

property 1

The real and imaginary parts of an analytic function f(z) = u + iv satisfy the Laplace 
equation in two dimensions.

 ● proof

Since f(z) = u + iv is an analytic function, it satisfies C-R equations,

i.e., u v
x y

∂ ∂=
∂ ∂

 and (21.1)

 (i) The two partial differential equations u v
x y

∂ ∂u v∂ ∂u v=
∂ ∂x y∂ ∂x y

 and u v
y x

∂ ∂u v∂ ∂u v= -
∂ ∂y x∂ ∂y x

 are called 

the Cauchy–Riemann equations and they may be written as ux = vy and uy
= –vx

 (ii) The Cauchy–Riemann equations are referred as C-R equations

 (iii) C-R equations in polar form are u v
q

∂ ∂1∂ ∂1u v∂ ∂u v1u v1∂ ∂1u v1=
∂ ∂r r∂ ∂r r

 and v u
q

∂ ∂1∂ ∂1v u∂ ∂v u1v u1∂ ∂1v u1= -
∂ ∂r r∂ ∂r r

.

 (i) 
2 2

2 2x y2 2x y2 2
∂ ∂2 2∂ ∂2 2

+2 2+2 2∂ ∂2 2∂ ∂2 2x y∂ ∂x y2 2x y2 2∂ ∂2 2x y2 2  is called the Laplacian operator and is denoted by —2.

 (ii) 
2 2

2 2 0
x y2 2x y2 2
∂ ∂2 2∂ ∂2 2

+ =+ =2 2+ =2 2∂ ∂2 2∂ ∂2 2x y∂ ∂x y2 2x y2 2∂ ∂2 2x y2 2  is known as Laplace equation in two dimensions.
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21.10 Engineering Mathematics

 u v
y x

∂ ∂= -
∂ ∂

 (21.2)

Differentiating both sides of (21.1) partially with respect to x, we get

 
2 2

2
u v

x yx
∂ ∂=

∂ ∂∂
 (21.3)

Differentiating both sides of (21.2) partially with respect to y, we get

 
22

2
vu

y xy
-∂∂ =
∂ ∂∂

 (21.4)

By adding (21.3) and (21.4), we get

 
2 2

2 2 0u u
x y

∂ ∂+ =
∂ ∂

 (since 
2 2

,v v
x y y x
∂ ∂=

∂ ∂ ∂ ∂
 when they are continuous)

fi u satisfies Laplace equation.
Now differentiating both sides of (21.1) partially with respect to y, we get

 
2 2

2
u v

x y y
∂ ∂=

∂ ∂ ∂
 (21.5)

Differentiating both sides of (21.2) partially with respect to x we get

 
2 2

2
u v

y x x
∂ ∂= -

∂ ∂ ∂
 (21.6)

Subtracting (21.5) and (21.6),

i.e., 

2 2 2 2

2 2

2 2

2 2 0

u u v v
x y y x y x

v v
x y

∂ ∂ ∂ ∂- = +
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂+ =
∂ ∂

\ v satisfies Laplace equation.
Hence, if f(z) is analytic then both real and imaginary parts satisfy Laplace’s equation.

  Note

If f(z) = u + iv is analytic then u and v are harmonic. Conversely, when u and v are 
any two harmonic functions then f(z) = u + iv need not be analytic.

property 2

If f(z) = u + iv is an analytic function then the curves of the family u(x, y) = C1 cut 
orthogonally the curves of the family v(x, y) = C2 where C1 and C2 are constants.

 ● proof

Given u(x, y) = C1
Taking differentials on both sides, we get
 du = 0

i.e., 0u udx dy
x y

∂ ∂+ =
∂ ∂

If f(f(f z) = u + iv is analytic then u and v are harmonic. Conversely, when u and v are 
any two harmonic functions then f(f(f z) = u + iv need not be analytic.
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\ 1

u
dy x m
dx u

y

Ê ˆ∂
Á ˜Ë ¯∂= - =
Ê ˆ∂
Á ˜∂Ë ¯

 (say), where m1 is the slope of the curve u(x, y) = C1 at (x, y)

From the second curve v(x, y) = C2, we get 2 ,

v
dy x m
dx v

y

Ê ˆ∂
Á ˜Ë ¯∂= - =
Ê ˆ∂
Á ˜∂Ë ¯

 where m2 is the slope 
of the curve v(x, y) = C2 at (x, y).

Now,	 1 2

u v
x xm m
u v
y y

Ê ˆ Ê ˆ∂ ∂
Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂= ◊
Ê ˆ Ê ˆ∂ ∂
Á ˜ Á ˜∂ ∂Ë ¯ Ë ¯

	     

v v
y x
v v
x y

Ê ˆ∂ Ê ˆ∂
Á ˜ Á ˜∂Ë ¯ Ë ¯∂= ◊
Ê ˆ Ê ˆ∂ ∂-Á ˜ Á ˜Ë ¯∂ ∂Ë ¯

	 (as f(z) is analytic, it satisfies C-R equation)

fi m1m2 = –1
Hence, the curves cut each other orthogonally.
Here, the two families are said to be orthogonal trajectories of each other.

21.10  ❑  �Construction of Analytic Functions 
(Milne–Thomson Method)

To find f(z) when u is given

We know that ( ) u vf z i
x x

∂ ∂= +¢
∂ ∂

.

i.e.,	 ( ) u uf z i
x y

∂ ∂= -¢
∂ ∂

  (By C-R equations)	 (21.7)

Let	 1
( , )

( , )
u x y

x y
x

f
∂

=
∂

 and then calculate f1(z, 0)	 (21.8)

and	 2
( , )

( , )
u x y

x y
y

f
∂

=
∂

 and then calculate f2(z, 0)	 (21.9)

Substituting (21.8) and (21.9) in (21.7), we get
	 f ¢(z) = f1(z, 0) – if2(z, 0)
Integrating, we get Úf 1(z)dz = Úf1(z, 0)dz – i Úf2(z, 0)dz
i.e.,	 f(z) = Úf1(z, 0)dz – iÚf2(z, 0)dz.

To find f(z) when v is given

We know that ( ) u vf z i
x x

∂ ∂= +¢
∂ ∂
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	     v vi
y x

∂ ∂= +
∂ ∂

	 (21.10)

Let	 1
( , )

( , 0)
v x y

z
y

f
∂

=
∂

	 (21.11)

and	 2
( , )

( , 0)
v x y

z
x

f
∂

=
∂

	 (21.12)

Substituting (21.11) and (21.12) in (21.10), we get
	 f ¢(z) = f1(z, 0) + if2(z, 0)
Integrating, we get Úf ¢(z)dz = Úf1(z, 0)dz + iÚf2(z, 0)dz
i.e.,	 f(z) = Úf1(z, 0)dz + iÚf2(z, 0)dz

21.11  ❑  Applications

Irrotational Flows

A flow in which the fluid particles do not rotate about their own axes while flowing 
is said to be irrotational.
Let there be an irrotational motion so that the velocity potential f exists such that

	 ,u v
x y
f f-∂ -∂= =

∂ ∂
	 (21.13)

In two-dimensional flow, the stream function y always exists such that

	 ,u v
y x
y y-∂ ∂= =

∂ ∂
	 (21.14)

From (21.13) and (21.14), we have

	 and
x y y x

yf y f -∂∂ ∂ ∂= =
∂ ∂ ∂ ∂

	 (21.15)

which are the well-known Cauchy–Riemann equations. Hence, f + iy is an analytic 
function of z = x + iy. Moreover, f and y are known as conjugate functions.
On multiplying and rewriting, (21.15) gives

	 0
x x y y
f y f y∂ ∂ ∂ ∂+ ◊ =

∂ ∂ ∂ ∂
	 (21.16)

showing that the families of curves given by f = constant and y = constant intersect 
orthogonally. Thus, the curves of equi-velocity potential and the stream lines intersect 
orthogonally.
Differentiating the equation given in (21.15) with respect to x and y respectively, we 

get 
2 2

2 x yx
f y∂ ∂=

∂ ∂∂
 and 

22

2 x yy
yf -∂∂ =

∂ ∂∂
.	 (21.17)

Since 
2 2

x y y x
y y∂ ∂=

∂ ∂ ∂ ∂
, (21.17) gives

	
2 2

2 2 0
x y
f f∂ ∂+ =

∂ ∂
	 (21.18)
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Again differentiating Eq. (21.15) with respect to y and x respectively, we get

	
2 2 2 2

2 2and
y x x yy x

f y f y∂ ∂ ∂ -∂= =
∂ ∂ ∂ ∂∂ ∂

Subtracting these, 
2 2

2 2 0
x y
y y∂ ∂+ =

∂ ∂
	 (21.19)

Equations (21.18) and (21.19) show that f and y satisfy Laplace’s equation when a 
two-dimensional irrotational motion is considered.

Complex Potential

Let w = f + iy be taken as a function of x + iy
Thus, suppose that w = f(z)
i.e.,	 f + iy = f(x = iy)	 (21.20)
Differentiating (21.20) with respect to x and y respectively, we get

	
( )i f x iy

x x
f y∂ ∂+ = +¢

∂ ∂ 	 (21.21)

and	 ( )i i f x iy
y y
f y∂ ∂+ = +¢

∂ ∂

or	
i

i i
y y x x

yf y fÊ ˆ∂∂ ∂ ∂+ = +Á ˜Ë ¯∂ ∂ ∂ ∂
 by	 (21.22)

Equating real and imaginary parts, we get

	
and

x y y x
yf y f -∂∂ ∂ ∂= =

∂ ∂ ∂ ∂

which are C-R equations. Then w is an analytic function of z and w is known as the 
complex potential.

Conversely, if w is an analytic function of z then its real part is the velocity potential 
and imaginary part is the stream function of an irrotational two-dimensional motion. 
The curves f(x, y) = a and y(x, y) = b are called equipotential lines and stream lines 
respectively.

In the study of electrostatics and gravitational fields, the curves f(x, y) = a and 
y(x, y) = b are respectively called equipotential lines and lines of force.

In heat-flow problems, the curves f(x, y) = a and y(x, y) = b are respectively called 
isothermals and heat-flow lines.

Solved Examples

Example 1	 Prove that the function f(z) = |z|2 is differentiable only at the origin.

Solution  Given f(z) = |z|2

i.e.,	 + = + = +

= +

2 2 2 2

2 2

| | [ ]u iv x iy x y

x y

  (as z = x + iy and f(z) = u + iv)
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fi	  u = x2 + y2

	

∂ ∂
= =

∂ ∂
=

2 , 2

0

u ux y
x y
v

	

∂ ∂
= =

∂ ∂
0, 0v v

x y

If f(z) is differentiable then

	

u v
x y

∂ ∂=
∂ ∂

fi	 2x = 0 fi x = 0

Also,	 u v
y x

∂ ∂= -
∂ ∂

fi	 2y = 0 fi y = 0
\ C-R equations are satisfied only when x = 0, y = 0
Hence, f(z) = |z|2 is differentiable only at the origin (0, 0).	 Proved.

Example 2	 Prove that the function f(z) = zz  is not analytic except at z = 0.

Solution  Given f(z) = zz
i.e.,	 u + iv = (x + iy)(x – iy)
	 u + iv = x2 + y2

Equating real and imaginary parts.
	 u = x2 + y2

fi	 2 , 2u ux y
x y

∂ ∂= =
∂ ∂

	 v = 0

fi	 0, 0

and

v v
x y
u v u v
x y y x

∂ ∂= =
∂ ∂
∂ ∂ ∂ ∂π π -
∂ ∂ ∂ ∂

fi C-R equations are not satisfied
\ f(z) = zz  is not analytic except at z = 0.	 Proved.

Example 3	 Show that (i) an analytic function with a constant real part is a 
constant, and (ii) an analytic function with a constant modulus is also a constant.

� [KU Nov. 2010, April 2012; AU Nov. 2010, Nov. 2011]

Solution  Let f(z) = u + iv be an analytic function.
	 (i)	 Let u = C1 (a constant)

		  Then 0x
u u
x

∂ = =
∂

 and 0y
u u
y

∂ = =
∂

.

		  Since f(z) is an analytic function, by C-R equations ux = vy and uy = –vx
fi	 vy = 0 and vx = 0.

		  As vx = 0 and vy = 0, v must be independent of x and y and must be a constant C2.
		  \	 f(z) = u + iv = C1 + iC2 which is a constant.
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	 (ii)	 Let f(z) = u + iv be an analytic function.

		  Given 2 2| ( )|f z u v k= + =  (a constant)
		  Differentiating partially with respect to x and y, we get

	 2 2 0u vu v
x x

∂ ∂+ =
∂ ∂

and	 2 2 0u vu v
y y

∂ ∂+ =
∂ ∂

		  Since f(z) is an analytic function, it satisfies C-R equations.
		  \ the above two equations may be written as,

	 0u uu v
x y

∂ ∂- =
∂ ∂

and	 0u uv u
x y

∂ ∂+ =
∂ ∂

		  By solving, we get 0x
u u
x

∂ = =
∂

 and 0y
u u
y

∂ = =
∂

.

		  By C-R equations, it implies that 0x
v v
x

∂ = =
∂

 and 0y
v v
y

∂ = =
∂

.

		  Thus, f(z) = u + iv is a constant.� Proved.

Example 4	 If f(z) is a regular function of z, prove that 
2 2

2 2
2 2 | ( )| 4| ( )|f z f z

x y

Ê ˆ∂ ∂+ = ¢Á ˜∂ ∂Ë ¯
.

� [AU May 2006, KU Nov. 2011, KU April 2013]

Solution  Let f(z) = u(x, y) + iv(x, y)
Then |f(z)|2 = u2 + v2 and |f ¢(z)|2 = 2 2

x xu v+

To prove 
2 2

2 2 2 2
2 2 ( ) 4( )x xu v u v

x y

Ê ˆ∂ ∂+ + = +Á ˜∂ ∂Ë ¯

Now, 2( ) 2 xu uu
x
∂ =
∂

 and 
2

2
2 ( ) (2 )xu uu

xx
∂ ∂=

∂∂

	 = 2[uuxx + uxux] = 2uuxx + 2
xu ]

Similarly, 
2

2 2
2 ( ) 2[ ]yy yu uu u

y
∂ = +
∂

\	
2 2

2 2 2
2 2 ( ) 2 [ ] 2[ ]xx yy x yu u u u u u

x y

Ê ˆ∂ ∂+ = + + +Á ˜∂ ∂Ë ¯

	 2 22[ ]x yu u= +   (since uxx + uyy = 0)	 (1)

Again,	 ∂ = +
∂

2
2 2

2 ( ) 2[ ]xx xv vv v
x

and	
2

2 2
2 ( ) 2[ ]yy yv vv v

y
∂ = +
∂
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\	
2 2

2 2 2
2 2 ( ) 2 ( ) 2( )xx yy x yv v v v v v

x y

Ê ˆ∂ ∂+ = + + +Á ˜∂ ∂Ë ¯

	 2 22( )x yv v= +   (since vzz + vyy = 0)� (2)
Adding (1) and (2), we get

	
2 2

2 2 2 2 2 2
2 2 ( ) 2[ ]x y x yu v u u v v

x y

Ê ˆ∂ ∂+ + = + + +Á ˜∂ ∂Ë ¯

	 2 2 2 22[ ]x x x xu v v u= + + + 	 (by using C-R equations) 2 24[ ]x xu v= + .

Hence,	
2

2 2
2 2 | ( )| 4| ( )|f z f z

x y

Ê ˆ∂ ∂+ = ¢Á ˜∂ ∂Ë ¯
	 Proved.

Example 5	 Show that if f(z) is a regular function of z then 
2 2

2 2x y

Ê ˆ∂ ∂+Á ˜∂ ∂Ë ¯
 log|f(z)| 

= 0.� [AU May 2012]

Solution  2 2 21 1Log| ( )| log| ( )| log ( )
2 2

f z f z u v= = +

\	
2 2 2 2

2 2 2 22

2 2 2 2

2 21log| ( )|
2

( )( ) ( )(2 2 )
log| ( )|

( )

x x x x

xx x xx x x x x x

uu v v uu vv
f z

x u v u v

u v uu u vv v uu vv uu vv
f z

x u v

È ˘+ ◊ +∂ = =Í ˙∂ + +Í ˙Î ˚
+ + + + - + +∂ =

∂ +

	   2 2 2
2 2 2 2 2

1 2[ ] ( )
( )x xx x x x xuu vv u v uu vv

u v u v
= + + + - +

+ +
	 (1)

Similarly,

	
2

2 2 2
2 2 2 2 2 2

1 2log| ( )| [ ] ( )
( )yy yy y y y yf z uu vv u v uu vv

y u v u v
∂ = + + + - +
∂ + +

	 (2)

Adding (1) and (2), we get –
2 2

2 2x y

Ê ˆ∂ ∂+Á ˜∂ ∂Ë ¯
 log|f(z)|

	

= + + + + + + + -
+ +

+ + +

= + - + + - +
+ +

+
= - + + +

+ +

2 2 2 2
2 2 2 2 2

2 2

2 2 2 2
2 2 2 2 2

2 2
2 2 2 2 2 2

2 2 2 2 2

1 2[ ( ) ( ) ]
( )

[( ) ( ) ]

1 2[2( )] [( ) ( ) ]
( ) ( )

2( ) 2 [ ( ) ( )]
( )

xx yy xx yy x x y y

x x y y

x x x x x x

x x
x x x x

u u u v v v u v u v
u v u v

uu vv uu vv

u v uu vv uv vu
u v u v

u v
u u v v u v

u v u v

	

+ + +
= -

+ +
=

2 2 2 2 2 2

2 2 2 2 2
2( ) 2( )( )

( )
0

x x x xu v u v u v
u v u v

	 Proved.
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Example 6	 Show that the function 1
2

u = log(x2 + y2) is harmonic and determine 
its conjugate. Also find f(z).� [KU May 2010, KU April 2013]

Solution  Given 1
2

u = log(x2 + y2)

\	

2 2 2 2

2 2 2 2 2 2 2 2 2 22 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 22 2

2 2 2 2 2 2 2 2 2 2 2

;

( ) 2 ( ) 2
;

( ) ( ) ( ) ( )

0
( ) ( ) ( )

yu x u
x yx y x y

x y x y x x y y x yu u
x x y x y y x y x y

y x x y y x x yu u
x y x y x y x y

∂ ∂= =
∂ ∂+ +

+ - - + - -∂ ∂= = = =
∂ + + ∂ + +

- - - + -∂ ∂+ = + = =
∂ ∂ + + +

Hence, u satisfies Laplace’s equation.
\ u is harmonic.
To find conjugate of u

We know that	  
v vdv dx dy
x y

∂ ∂= +
∂ ∂

	

-∂ ∂
= +

∂ ∂
-

= +
+ +

- -
= =

+ Ê ˆ
+ Á ˜Ë ¯

2 2 2 2

2 2 2 2
1

( )
1

u udx dy
y x

y xdx dy
x y x y
xdy ydx xdy ydx

x y x y
x

	

Ê ˆ
= Á ˜Ë ¯Ê ˆ

+ Á ˜Ë ¯

=
+Ú Ú

2

2

1

1

( / )
1 ( / )

yd
xy

x
d y x

dv
y x

i.e.,	 1tan yv
x

- Ê ˆ
= Á ˜Ë ¯

\ the required analytic function is f(z) = u + iv

	 2 2 11 log ( ) tan
2

yx y i
x

- Ê ˆ
= + + Á ˜Ë ¯

i.e.,	 f(z) = log z� Ans.

Example 7	 If u(x, y) = ex(x cos y – y sin y), find f(z) so that f(z) is analytic.

Solution  Given u = ex(x cos y – y sin y)

\	

1

1

( , ) cos ( ) sin

( , 0)

x x x

z z

ux y y xe e y ye
x

z ze e

f

f

∂= = + -
∂

= + 	 (1)
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\	

2

2

( , ) sin (sin cos )

( , 0) 0

x xux y xe y e y y y
y

z

f

f

∂= = - - +
∂

= 	 (2)
By Milne–Thomson method,
	 f ¢(z) = f1(z, 0) – if2(z, 0)
	 = zez + ez + 0
	 = ez(z + 1)
\	 f(z) = Úez(z + 1)dz
	 = zez – ez + ez + C
i.e.,	 f(z) = zez + C	 Ans.

Example 8	 Find the analytic function f(z) = u + iv given that 
sin 2

cosh 2 cos 2
x

u v
y x

+ =
-

.

� [AU May 2006]

Solution  Given	 u + iv = f(z)� (1)
\	 iu – v = i f(z)	 (2)
Adding (1) and (2), we get
	 (u – v) + i(u + v) = (1 + i)f(z)
Let u – v = U,
	 u + v = V and F(z) = (1 + i) f(z)

	

2

2

2 2

2

2

1 2

(cos 2 cos 2 )2 cos 2 sin 2 2 sin 2
(cosh 2 cos 2 )

( , )

2 cos 2 cosh 2 2(cos 2 sin 2 )
(cos 2 cos 2 )

2 cos 2 cosh 2 2
(cos 2 cos 2 )

sin 2 (2 sin 2 )
( , )

(cos 2 cos 2 )
2 sinh 2 sin 2

(co

h y x x x xV
x y x

Vx y
x

x y x x
h y x

x y
h y x

x h yVx y
y h y x

y x

f

f

- - ◊∂ =
∂ -

∂=
∂

- +
=

-
-

=
-

-∂= =
∂ -
-

= 2s 2 cos 2 )h y x-
By Milne–Thomson method, we have

	

1 2

2 2

1

( ) ( , 0) ( , 0)
2(cos 2 1)

( , 0)
(1 cos 2 )

( , 0) 0

F z z i z
z

z
z

z

f f

f

f

= +¢
-

=
-

=

and	 2

2
2

2(cos 2 1)
( )

(1 cos 2 )
2 1

1 cos 21 cos 2
2

1 cosec
sin

z
F z i

z

i i
zz

i i z
z

-
=¢

-
- -= =

--

-= = -
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\	 2( ) cosec
1

if z zdz
i

= -
+ Ú

i.e.,	
1

( ) cot
2

i
f z z C

+
= + 	 Ans.

Example 9	 Find the analytic function f(z) = u + iv if 2 2
xu v

x y
+ =

+
 and f(1) = 1.

� [AU Nov. 2010]

Solution  Given u + iv = f(z)� (1)
	 iu – v = if(z)	 (2)
Adding (1) and (2), we get
	 (u – v) + i(u + v) = (1 + i)f(z)
i.e.,	 U + iV = F(z)	 (3)

where	 U = u – v, V = u + v = 2 2
x

x y+
, F(z) = (1 + i) f(z)	 (4)

	
=

+2 2
xV

x y

\	

f

f

-∂
= =

∂ +
=

1 2 2 2

1

2( , )
( )

( , 0) 0

xyVx y
y x y

z 	 (5)

\	

2 2

2 2 2 2

2

2 4 2

( , )
( )

1( , 0)

y xVx y
x x y

zz
z z

f

f

-∂= =
∂ +

-= = -
	 (6)

By Milne’s method, we have

	

1 1 2

2

( ) ( 0) ( , 0)
10

F z z i z

i
z

f f= +¢

= -

\	

2
1( )

1

F z i dz
z

i C
z

= -

Ê ˆ
= - - +Á ˜Ë ¯

Ú

	 ( ) iF z C
z

= + 	 (7)

But F(z) = (1 + i) f(z) [from (4) and (8)]
From (7) and (8), we get

	

1 1

1

(1 ) ( )

( )
(1 ) 1

(1 )
, where

(1 )(1 ) 1
1

( )
2

ii f z C
z

i Cf z
z i i

i i CC C
i i z i

i
f z C

z

+ = +

= +
+ +

-
= + =

+ - +
+

= +
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Given f(1) = 1

i.e.,	 1
1

(1) 1
2

i
f C

+
= + =

fi	 1
(1 )

1
2

1
2

i
C

i

+
= -

-
=

\	
1 1

( )
2 2

i i
f z

z
+ -

= + 	 Ans.

Example 10	 Show that 
2 2 2

2 2 4
z zx y

Ê ˆ∂ ∂ ∂+ =Á ˜ ∂ ∂∂ ∂Ë ¯
.� [AU Nov. 2010]

Solution
Let	 z = x + iy	 (1)
\	 z  = x – iy	 (2)
From (1) and (2), we get

	 , ( )
2 2 2

z z z z ix y z z
i

+ - -= = = -

Now,	 1 1,
2 2

,
2 2

x x
z z
y yi i
z z

∂ ∂= =
∂ ∂
∂ ∂-= =
∂ ∂

Now,	 yx
z x z y z

∂∂ ∂ ∂ ∂= + ◊
∂ ∂ ∂ ∂ ∂

	 (3)

	    

1
2

i
x y

Ê ˆ∂ ∂= -Á ˜∂ ∂Ë ¯

	

yx
z x z y z

∂∂ ∂ ∂ ∂= ◊ +
∂ ∂ ∂ ∂ ∂ 	 (4)

	    

1
2

i
x y

Ê ˆ∂ ∂= +Á ˜∂ ∂Ë ¯

\	
2 2 2

2 2
1
4z z x y

Ê ˆ∂ ∂ ∂= +Á ˜∂ ∂ ∂ ∂Ë ¯

fi	
2 2 2

2 2 4
z zx y

Ê ˆ∂ ∂ ∂+ =Á ˜ ∂ ∂∂ ∂Ë ¯
	 Proved.

Example 11	 If f(z) = u + iv is analytic, prove that 
2 2

2 2x y

Ê ˆ∂ ∂+Á ˜∂ ∂Ë ¯
log|f ¢(z)| = 0.

� [AU Nov. 2010]

Solution  We know that 
2 2

2 2 4
z zx y

Ê ˆ∂ ∂ ∂+ =Á ˜ ∂ ∂∂ ∂Ë ¯

EM_UnitIX_21.indd   20 8/23/2017   4:13:44 PM



	 Complex Numbers	 21.21

\	
2 2 2

2 2

2
2

2

2

log| ( )| 4 log| ( )|

14 log| ( )|
2

2 log[ ( ) ( )]

2 [log ( ) log ( )]

f z f z
z zx y

f z
z z

f z f z
z z

f z f z
z z

Ê ˆ∂ ∂ ∂
+ =¢ ¢Á ˜ ∂ ∂∂ ∂Ë ¯

∂
= ◊ ¢

∂ ∂
∂

= ¢ ¢
∂ ∂
∂

= +¢ ¢
∂ ∂

	  

( )2 0
( )

f z
z f z

È ˘¢¢∂= =Í ˙∂ ¢Î ˚ 	 Proved.

Example 12	 If u = x2 – y2 and 2 2
yv

x y
= -

+
, prove that both u and v satisfy Laplace’s 

equation but that u + iv is not a regular function of z.� [KU Nov. 2011]

Solution  Given u = x2 – y2

Then	
2 2

2 22 ; 2; 2 ; 2x xx y yy
u u u uu x u u y u
x yx y

∂ ∂ ∂ ∂= = = = = = - = = -
∂ ∂∂ ∂

\	
2 2

2 2 0u u
x y

∂ ∂+ =
∂ ∂

i.e., u satisfies Laplace’s equation.

	
2 2

yv
x y

= -
+

Then	
2 2 2 2

2 2 2 2 2 4

2 2

2 2 3

2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2 22

2 2 2 4

2 2

2 2

( ) 2( ) 22 ; 2
( ) ( )

2 ( 3 )
( )

( ) 1 2
( ) ( )

( ) 2 ( )2( )2
( )

2 (3 )
( )

x xx

y

yy

x y x x y xxyv v v y
x x y x y

y y x
x y

x y y y xv v
y x y x y

x y y y x x y yv v
y x y

y x y
x y

È ˘+ ◊ - ◊ + ◊∂ = = = Í ˙
∂ + +Í ˙Î ˚

-
=

+
È ˘+ ◊ - -∂ = = - =Í ˙

∂ + +Í ˙Î ˚
+ - - +∂ = =

∂ +

-
=

+ 3

\	
2 2

2 2 0v v
x y

∂ ∂+ =
∂ ∂

i.e., v satisfies Laplace’s equation.
Now, ux π vy and uy π –vx
i.e., C-R equations are not satisfied by u and v.
Hence, u + iv is not an analytic (regular) function of z.	 Ans.
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Example 13	 Show that the function u(x, y) = 3x2y + x2 – y3 – y2 is a harmonic 
function. Find a function v(x, y) such that u + iv is an analytic function.
� [AU June 2010]

Solution  Let f(z) = u + iv be an analytic function with u(x, y) = 3x2y + x2 – y3 – y2

Then	
∂ ∂

= = + = = +
∂ ∂
∂ ∂

= = - - = = - -
∂ ∂

2

2

2
2 2

2

6 2 ; 6 2;

3 3 2 ; 6 2

x xx

y yy

u uu xy x u y
x x
u uu x y y u y
y y

\ 
2 2

2 2 0u u
x y

∂ ∂+ =
∂ ∂

, hence, u(x, y) is a harmonic function.

	
y x

uv v udv dx dy dx dy u dx u dy
x y y x

-∂∂ ∂ ∂= ◊ + ◊ = + = - +
∂ ∂ ∂ ∂

\ dv = (–3x2 + 2y + 3y2)dx + (6xy + 2x)dy where the RHS is a perfect differential equation.

	
2 2(3 3 2 ) (6 2 )

u udv dx dy
y x
x y y dx xy x dy

∂ ∂= - +
∂ ∂

= - Ú - - + Ú +

Ú Ú

\	 v = (3xy2 + 2xy – x3) + C
\	 f(z) = u + iv = 3x2y + x2 – y3 – y2 + i(3xy2 + 2xy – x3 + C)
	 = –i[x3 + 3x2(iy) + 3xi2y2 + i3y3] + [x2 + 2xiy + i2y2] + iC
	 = –i[x + iy]3 + [x + iy]2 + iC
\	 f(z) = iz3 + z2 + iC	 Ans.

Exercise

Part A

	 1.	 Define analytic function of a complex variable.
	 2.	 State any two properties of an analytic function.
	 3.	 Define a harmonic function with an example.
	 4.	 Verify whether the function f(x, y) = ex sin y is harmonic or not.
	 5.	 Find the constant ‘a’ so that u(x, y) = ax2 – y2 + xy is harmonic.
	 6.	 Is f(z) = z3 analytic? Justify.
	 7.	 What do you mean by a conjugate harmonic function? Find the conjugate 

harmonic of x.
	 8.	 Show that an analytic function with a constant real part is constant.
	 9.	 Write down the necessary condition for w = f(z) = f(reiq) to be analytic.

	 10.	 Show that the function 1tan yu
x

- Ê ˆ
= Á ˜Ë ¯  is harmonic.

	 11.	 Show that xy2 cannot be the real part of an analytic function.
	 12.	 f(z) = u + iv is such that u and v are harmonic. Is f(z) analytic always? Justify.
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	 13.	 State C-R equations in Cartesian coordinates.
	 14.	 Prove that u = 3x2y + 2x2 – y3 – 2y2 is a harmonic function.
	 15.	 Show that the function f(z) = (x3 – 3xy2) + i(3x2y – y3) satisfies Cauchy–Riemann 

equations.
	 16.	 Show that the real part u of an analytic function satisfies the equation —2u = 0.

	 17.	 Check whether the function 1
z

 is analytic or not.

	 18.	 Test the analyticity of the function 2xy + i(x2 – y2).
	 19.	 State the basic difference between the limit of a function of a real variable and 

that of a complex variable.
	 20.	 Find the analytic function f(z) = u + iv, given that (i) u = y2 – x2, (ii) v = sin hx sin y, 

and (iii) 2 2
xu

x y
=

+
.

Part B

	 1.	 Prove that the following functions are not differentiable (and, hence, not 
analytic) at the origin.

	 (i)	

3

6 2
( )

, 0
( )

0, 0

x y y ix
z

f z x y
z

Ï -
πÔ

= +Ì
Ô =Ó

	 (ii)	

2

2 2
( )

, 0
( )

0, 0

xy x iy
z

f z x y
z

Ï +
πÔ

= +Ì
Ô =Ó

	 2.	 Prove that for the following function, C-R equations are satisfied at the origin 
but f(z) is not analytic there.

	

3 3

2 2
(1 ) (1 )

, 0
( )

0, 0

x i y i
z

f z x y
z

Ï + - -
πÔ

= +Ì
Ô =Ó

	 3.	 Show that f(z) = sin z  is not an analytic function of z.
	 4.	 Find whether the Cauchy–Riemann equations are satisfied for the following 

functions where w = f(z).
	 (i)	 w = 2xy + i(x2 – y2)� (Ans. No)

	 (ii)	 2 2
x iy

w
x y

-
=

+
� (Ans. No)

	 (iii)	 w = x2 – y2 – 2xy + i(x2 – y2 + 2xy)� (Ans. Yes)
	 (iv)	 w = cos x sin hy� (Ans. Yes)
	 (v)	 w = z3 – 2z2� (Ans. Yes)
	 5.	 Show that an analytic function with a constant imaginary part is constant.

	 6.	 Show that ,
x iy

u iv
x iy a

-
+ =

- +
 where a π 0, is not an analytic function of z = x + iy 

whereas u – iv is such a function.
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	 7.	 Find an analytic function w = u + iv whose real part is given by
	 (i)	 u = e–x{(x2 – y2) cos y + 2xy sin y}� [Ans. e–x(x – iy)2 (cos y – i sin y]

	 (ii)	 2 2
xu

x y
=

+
� 1 C

z
Ê ˆ

+Á ˜Ë ¯Ans.

	 (iii)	 u = ex(x cos y – y sin y)� (Ans. zez + C)
	 (iv)	 u = x4 – 6x2y2 + y4� (Ans. z4 + C)
	 (v)	 u = –sin x sin hy� (Ans. –i cos z + iC)
	 8.	 Find an analytic function w = u + iv whose imaginary part is given by
	 (i)	 v = ex(x cos y + y sin y)� (Ans. ize–z + C)
	 (ii)	 v = –2 sin x(ey – e–y)� (Ans. log z + C)

	 (iii)	
sin sin

cos 2 cos 2
x hy

v
x h y

=
+

� 1 sec
2

zÊ ˆ+
Á ˜Ë ¯Ans.

	 (iv)	 v = x2 – y2 + 2xy – 3x – 2y� [Ans. z2 – 2z + i(z2 – 3z)]
	 (v)	 v = x3 – 3x2y + 2x + 1 + y3 – 3xy2� [Ans. (i – 1)z3 + 2z + C]
	 9.	 Show that the following functions are harmonic and find their harmonic 

conjugates.
	 (i)	 u = cos x cos hy� (Ans. –sin x sin hy + C)
	 (ii)	 u = ex(cos y – sin y)� (Ans. Not harmonic)
	 (iii)	 u = e–x(y cos y – x sin y)� (Ans. ex(x cos y + y sin y) + C)
	 (iv)	 u = ex cos y� (Ans. ex sin y + C)
	 (v)	 u = 2xy + 3xy2 – 2y3� (Ans. Not harmonic)

	 10.	 Find f(z) = u + iv, if 
cos sin

,
cos cos

ye x x
u v

hy x
- +

- =
-

 given that 
3

2 2
i

f pÊ ˆ -
=Á ˜Ë ¯ .

�

1
( ) cot

2 2
izf z

È ˘Ê ˆÊ ˆ -
= +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

Ans.

	 11.	 Find f(z) = u + iv if 2u – 3v = 3y2 – 2xy – 3x2 + 3y – x and f(0) = 0.
� (Ans. f(z) = iz2 – z)

	 12.	 If f(z) = u + iv is a regular function of z, then show that 
Ê ˆ∂ ∂

+ =Á ˜
∂ ∂Ë ¯

2 2

2 2 | ( )|pf z
x y

- ¢22 2| ( )| | ( )|pp f z f z .

	 13.	 If 2 2
2 sin 2

,
2 cos 2y y
x

u
e e x-=

+ -
 find f(z) such that f(z) is analytic.

� (Ans. f(z) = cot z + C)

	 14.	 Show that 2 2
2 2

xx y
x y

f = - +
+

 can represent the velocity potential in an 

incompressible fluid flow. Also find the corresponding stream function and 

complex potential.� 2
2 2

12 ; ( )yxy C f z z iC
zx y

y
È ˘

= - + = + +Í ˙+Í ˙Î ˚
Ans.
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22 Conformal Mapping

Chapter Outline

 ● Introduction
 ● Conformal Transformation
 ● Conformal Mapping by Elementary Transformations
 ● Some Standard Transformations
 ● Bilinear Transformation

22.1 ❑ introdUCtion

Many physical problems involving ideal fluid flow, steady-state heat flow, 
electrostatics, magnetism, current flow etc., can be solved using conformal mapping 
techniques. These problems generally involve Laplacian in three-dimensional 
coordinates and also divergence and are of three-dimensional vector functions.

geometrical representation

To draw the curve of a complex variable (x, iy), we take two axes, i.e., the first one is 
the real axis and the other is the imaginary axis. A number of points (x, y) are plotted 
on the z-plane, by taking different values of z (different values of x and y). The curve 
C is drawn by joining the plotted points. The diagram obtained is called an Argand 
diagram.
Let w = f(z) = f(x + iy) = u + iv.

To draw a curve of w, we take the u-axis and v-axis. By plotting different points 
(u, v) on the w-plane and joining them, we get a curve C on the w-plane.

transformation

For every point (x, y) in the z-plane, the relation w = f(z) defines a corresponding 
point (u, v) in the w-plane. We call this transformation or mapping of z-plane into 
w-plane. If a point z0 maps into the point w0, w0 is also known as the image of z0.
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22.2 Engineering Mathematics

If the point P(x, y) moves along the curve C in the z-plane, the point P¢(u, v) will 
move along a corresponding curve C1 in the w-plane. We then say that a curve C in 
the z-plane is mapped into the corresponding curve C1 in the w-plane by the relation 
w = f(z).

Fig. 22.1

22.2 ❑ Conformal transformation (or Conformal mapping)

A mapping w = f(z) is said to be conformal if the angle between any two smooth 
curves C1, C2 in the z-plane intersecting at the point z0 is equal in magnitude and sense 
to the angle between their images * *

1 2,C C  in the w-plane at the point w0 = f(z0).
Thus, conformal mapping preserves angles both in magnitude and sense (which 

is also known as conformal mapping of the first kind). If only the magnitude of the 
angle is preserved, then the mapping is known as isogonal mapping (or conformal 
mapping of the second kind).

Conformal mapping is used to map complicated regions conformally onto 
simpler, standard regions such as circular disks, half-planes and strips for which the 
boundary-value problems are easier.

Given two mutually orthogonal one-parameter family of curves, say f(x, y) = 
C1 and f(x, y) = C2. Their image curves in the w-plane f(u, v) = C3 and f(u, v) = C4 
under a conformal mapping are also mutually orthogonal. Thus, conformal mapping 
preserves the property of mutual orthogonality of a system of curves in the plane.

 ➢ note

 (i) Critical point of a function w = f(z) is a point z0, where f ¢(z0) π 0.
 (ii) A mapping w = f(z) is conformal at each point z0 where f(z) is analytic and 

f ¢(z0) π 0
 (iii) An analytic function f(z) is conformal everywhere except at its critical points 

where f ¢(z) π 0.
 (iv) Solutions of Laplace’s equation are invariant under conformal 

transformation.
 (v) Conjugate functions remain conjugate functions after conformal 

transformation. This is the main reason for the great importance of 
conformal transformations in applications.

 (i) Critical point of a function w = f(f(f z) is a point z0, where f ¢(z0) π 0.
 (ii) A mapping w = f(f(f z) is conformal at each point z0 where f(f(f z) is analytic and 

f ¢(z0) π 0
 (iii) An analytic function f(f(f z) is conformal everywhere except at its critical points 

where f ¢(z) π 0.
 (iv) Solutions of Laplace’s equation are invariant under conformal 

transformation.
 (v) Conjugate functions remain conjugate functions after conformal 

transformation. This is the main reason for the great importance of 
conformal transformations in applications.
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22.3  ❑  Conformal Mapping by Elementary Transformations

General linear transformation, or simply transformation, is defined by the function
	 w = f(z) = az + b	 (22.1)
where a π 0 and b are arbitrary complex constants. The function maps conformally the 
extended complex z-plane onto the extended w-plane, since this function is analytic 
and f ¢(z) = a π 0 for any z. If a = 0 (22.1) reduces to a constant function.

22.4  ❑  Some Standard Transformations

Translation 

The transformation w = z + c, where c is a complex constant, represents a translation.
Consider the transformation w = z + c, where c = a + ib.
i.e.,	 u + iv = (x + iy) + (a + ib)
fi	 u = x + a and v = y + b
i.e.,	 x = u – a and y = v – b
On substituting the values of x and y in the equation of the curve to be transformed, 
we get the equation of the image in the w-plane.

The point P(x, y) in the z-plane is mapped onto the point P¢(x + a, y + b) in the 
w-plane. Similarly, other points of the z-plane are mapped onto the w-plane. Thus, if 
the w-plane is superposed on the z-plane, the figure of the w-plane is shifted through 
a vector c.

In other words, the transformation is a mere translation of the axes.

Fig. 22.2

Magnification and Rotation

Consider the transformation w = cz� (22.2)
where c, z, w are all complex numbers.
Let z = reiq, w = Reif, c = aeia

Substituting these values in (22.2), we have
	 Reif = (aeiµ)(reiq) = ar ei(q + a)

i.e.,	 R = ar and f = q + a
Thus, we see that the transformation w = cz corresponds to a rotation together with 
magnification.
Algebraically,	 w = cz or u + iv = (a + ib)(x + iy)
	 u + iv = ax – by + i(ay + bx)
fi	 u = ax – by and v = ay + bx.
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22.4	 Engineering Mathematics

On solving these equations, we can get the values of x and y.

i.e.,	 2 2 2 2;
au bv bu av

x y
a b a b

+ - +
= =

+ +

Fig. 22.3

On putting the values of x and y in the equation of the curve to be transformed, we 
get the equation of the image.

Inversion and Reflection� [KU April 2012]

Consider the transformation 1w
z

= � (22.3)

	 z = reiq and w = Reif

Substituting these values in (22.3), we get

	 1 1Rei i
i e

rre
f q

q
-= =

fi	 1R
r

=  and f = –q

Thus, the point P(r, q) in the z-plane is 

mapped onto the point 1 ,P
r

q
Ê ˆ

-¢Á ˜Ë ¯  in the 

w-plane. Hence, the transformation is an 
inversion of z followed by reflection into 
the real axis. The points inside the unit 
circle |z| = 1 map onto points outside 
it, and points outside the unit circle into 
points inside it.

Now consider the transformation 1 1orw z
z w

= = .

i.e.,	

2 2

1

( )( )

x iy
u iv

u iv u iv
x iy

u iv u iv u v

+ =
+

- -
+ = =

+ - +

Fig. 22.4
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\	 2 2 2 2,u vx y
u v u v

-= =
+ +

Let the circle a(x2 + y2) + bx + cy + d = 0	 (22.4)
be in the z-plane.
If a π 0, (22.4) represents a circle and if a = 0, it represents a straight line.
On substituting the values of x and y in (22.4), we get

	 2 2 2 2 2 2 0a bu cv d
u v u v u v

+ - + =
+ + +

fi	 d(u2 + v2) + bu – cv + a = 0	 (22.5)
If d π 0 Eq. (22.5) represents a circle and if d = 0 it represents a straight line.
The various cases are discussed as follows:

●  When a π 0, d π 0

The transformation 1w
z

=  transforms circles not passing through the origin into 

circles not passing through the origin.

●  When a π 0, d = 0

The transformation 1w
z

=  transforms circles passing through the origin in the z-plane 

and maps into the straight lines not passing through the origin in the w-plane.

●  When a = 0, d π 0

The transformation 1w
z

=  transforms straight lines in the z-plane not passing through 

the origin into circles through the origin in the w-plane.

●  When a = 0, d = 0

The transformation 1w
z

=  transforms straight lines through the origin in the z-plane 

into straight lines through the origin in the w-plane.

22.5  ❑  �Bilinear Transformation (or Möbius 
Transformation)

The transformation ( )
az b

w f z
cz d

+
= =

+
� (22.8)

where a, b, c, d are complex or real constants subject to ad – bc π 0 is known as bilinear 
transformation.
Differentiating (22.8), we get

	

2

2

( ) ( )
( )

( )

cz d a az b cdw
dz cz d

ad bc
cz d

+ - +
=

+
-

=
+
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If ad – bc π 0 then 0dw
dz

π  for any z and, therefore, bilinear transformation is conformal 

for all z, i.e., it maps the z-plane conformally onto the w-plane

If ad – bc = 0 then 0dw
dz

=  for any z. Then every point of the z-plane is critical and 

the function is not conformal.
From (22.8), we get w(cz + d) = az + b,
i.e., cwz + dw – az – b = 0 (22.9)
Equation (22.9) is linear in z and linear in w or bilinear in z and w. Bilinear transformation 
is also known as linear fractional transformation or Mobius transformation.

For a choice of the constants a, b, c, d, we get special cases of bilinear transformation 
as
 (i) w = z + b (Translation)
 (ii) w = az (Rotation)
 (iii) w = az + b (Linear transformation)

 (iv) 1w
z

=  (Inversion in the unit circle)

Thus, bilinear transformation can be considered as a combination of these 
transformations.

fixed points (or invariant points)

Fixed (or invariant) points of a function w = f(z) are points which are mapped onto 
themselves, i.e., w = f(z) = z.

 ● Example

 w = z has every point as a fixed point.
 w = z  infinitely many.

   1w
z

=  has two.

 w = z + b has no fixed point.

The fixed points of the bilinear transformation 
az b

w
cz d

+
=

+
 are given by 

az b
z

cz d
+

=
+

.

As this is quadratic in z, we will get two fixed points for the bilinear transformation.

Cross-ratio

The cross-ratio, or anharmonic ratio, of four numbers z1, z2, z3, z4 is the linear function 

given by 1 2 3 4

1 4 3 2

( )( )
( )( )
z z z z
z z z z

- -
- -

.

 ➢ note

 (i) The cross-ratio of four points is invariant under a bilinear transformation, 
i.e., if w1, w2, w3, w4 are the images of z1, z2, z3, z4 respectively under a bilinear 

transformation, then 1 2 3 4 1 2 3 4

2 3 1 4 2 3 1 4

( )( ) ( )( )
( )( ) ( )( )
w w w w z z z z
w w w w z z z z

- - - -
=

- - - -
.

 (i) The cross-ratio of four points is invariant under a bilinear transformation, 
i.e., if w1, w2, w3, w4 are the images of z1, z2, z3, z4 respectively under a bilinear 

transformation, then 1 2 3 4 1 2 3 4

2 3 1 4 2 3 1 4

( )( ) ( )( )1 2 3 4 1 2 3 4( )( ) ( )( )1 2 3 4 1 2 3 4
( )( ) ( )( )2 3 1 4 2 3 1 4( )( ) ( )( )2 3 1 4 2 3 1 4

( )( ) ( )( )w w w w z z z z( )( ) ( )( )1 2 3 4 1 2 3 4( )( ) ( )( )1 2 3 4 1 2 3 4w w w w z z z z1 2 3 4 1 2 3 4( )( ) ( )( )1 2 3 4 1 2 3 4
( )( ) ( )( )w w w w z z z z( )( ) ( )( )2 3 1 4 2 3 1 4( )( ) ( )( )2 3 1 4 2 3 1 4w w w w z z z z2 3 1 4 2 3 1 4( )( ) ( )( )2 3 1 4 2 3 1 4

( )( ) ( )( )w w w w z z z z( )( ) ( )( )- - - -( )( ) ( )( )w w w w z z z z( )( ) ( )( )
=1 2 3 4 1 2 3 4=1 2 3 4 1 2 3 4

( )( ) ( )( )w w w w z z z z( )( ) ( )( )- - - -( )( ) ( )( )w w w w z z z z( )( ) ( )( )
.
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 Conformal Mapping 22.7

 (ii) The bilinear transformation that maps three 
given points z2, z3, z4 onto three given points 
w2, w3, w4 is given by

1 2 3 1 2 3

1 2 3 1 2 3

( )( ) ( )( )
( )( ) ( )( )
w w w w z z z z
w w w w z z z z

- - - -
=

- - - -

solVEd ExamplEs

Example 1 Find the image of the circle |z| = 2 by the transformation w = z + 3 + 2i.

solution Let z = x + iy; w = u + iv
Given w = z + 3 + 2i
i.e., u + iv = (x + iy) + (3 + 2i)
fi u = x + 3; v = y + 2
Given the circle |z| = 2
i.e., x2 + y2 = 4
i.e., (u – 3)2 + (v – 2)2 = 4
Hence, the circle x2 + y2 = 4 maps into (u – 3)2 + (v – 2)2 = 4 in the w-plane which is also 
a circle with centre at (3, 2) and radius of 2 units. Ans.

Example 2 Find the image of the triangular region in the z-plane bounded by the 
lines x = 0, y = 0 and x + y = 1 under the transformation w = 2z. [KU May 2010]

solution Given w = 2z. i.e., u + iv = 2(x + iy)
\ u = 2x and v = 2y
When x = 0, u = 0, the line x = 0 is transformed into the line u = 0 in the w-plane.
When y = 0, v = 0, the line y = 0 is transformed into the line v = 0 in the w-plane.
When x + y = 1, we get

 1
2 2
u v+ =

fi u + v = 2
\ the line x + y = 1 is transformed into the line u + v = 2 in the w-plane.

Fig. 22.6

 (ii) The bilinear transformation that maps three 
given points z2, z3, z4 onto three given points 
w2, w3, w4 is given by

1 2 3 1 2 3

1 2 3 1 2 3

( )( ) ( )( )1 2 3 1 2 3( )( ) ( )( )1 2 3 1 2 3
( )( ) ( )( )1 2 3 1 2 3( )( ) ( )( )1 2 3 1 2 3

( )( ) ( )( )w w w w z z z z( )( ) ( )( )1 2 3 1 2 3( )( ) ( )( )1 2 3 1 2 3w w w w z z z z1 2 3 1 2 3( )( ) ( )( )1 2 3 1 2 3
( )( ) ( )( )w w w w z z z z( )( ) ( )( )1 2 3 1 2 3( )( ) ( )( )1 2 3 1 2 3w w w w z z z z1 2 3 1 2 3( )( ) ( )( )1 2 3 1 2 3

( )( ) ( )( )w w w w z z z z( )( ) ( )( )- - - -( )( ) ( )( )w w w w z z z z( )( ) ( )( )
=1 2 3 1 2 3=1 2 3 1 2 3

( )( ) ( )( )w w w w z z z z( )( ) ( )( )- - - -( )( ) ( )( )w w w w z z z z( )( ) ( )( ) Fig. 22.5
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Example 3	 Find the image of the circle |z – 1| = 1 in the complex plane under the 

mapping 1w
z

= .

Solution  The given transformation is 1w
z

=

i.e.,	 1z
w

=

The equation of the circle is |z – 1| = 1
i.e.,	 |x + iy – 1| = 1
	 (x – 1)2 + y2 = 1 fi x2 – 2x + y2 = 0	 (1)
Now, w = u + iv

\	
2 2

2 2

1 1 u iv
z

w u iv u v
u iv

x iy
u v

-
= = =

+ +
-

+ =
+

\	 2 2
ux

u v
=

+
	 (2)

and	 2 2
vy

u v
-=
+

	 (3)

Substituting (2) and (3) in (1), we get

	

2 2

2 2 2 2 2 22 0u u v
u v u v u v

Ê ˆ Ê ˆ Ê ˆ-- + =Á ˜ Á ˜ Á ˜+ + +Ë ¯ Ë ¯ Ë ¯

i.e.,	 u2 – 2u(u2 + v2) + v2 = 0
	 (u2 + v2)(1 – 2u) = 0
fi	 1 – 2u = 0  (since u2 + v2 π 0)
i.e., 2u – 1 = 0 which is a straight line in the w-plane. Hence, the circle |z – 1| = 1 is 

mapped into a straight line under the transformation 1w
z

= .	 Ans.

Example 4	 Find the image of the infinite strips (i) 1 1 ;
4 2

y< <  and (ii) 10
2

y< <  

under the transformation 1w
z

= .� [KU April 2013]

Solution  Let w = u + iv, z = x + iy.

Given	 1w
z

=

i.e.,	 2 2
1 x iy

u iv
x iy x y

-
+ = =

+ +

i.e.,	 2 2
xu

x y
=

+
	 (1)

	 2 2
yv

x y
-

=
+

	 (2)
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Now, u x
v y

-= .

i.e.,	 uyx
v

-
= 	 (3)

Substituting (3) in (2), we get

or	

2

2 2 2 2
2

2

2 2

( )
y vv

u y u v yy
v

vy
u v

- -= =
+ ◊+

-=
+

	 (4)

	 (i)	 Consider a strip 1 1
4 2

y< < .

		  When 1 ,
4

y =

		  From (4), 2 2
1
4

v
u v

-=
+

		  i.e.,	 u2 + v2 + 4v = 0 or u2 + (v + 2)2 = 4.
		  which is a circle whose centre is at (0, –2) in the w-plane and radius is 2 units.

		  When 1 ,
2

y =

		  From (4), 2 2
1
2

v
u v

- =
+

		  i.e.,	 u2 + (v + 1)2 = 1.
		  which is a circle whose centre is at (0, –1) in the w-plane and the radius is 1 unit.

		  Hence, the infinite strip 1 1
4 2

y< <  is transformed into the region common to 

the circles u2 + (v + 1)2 = 1 and u2 + (v + 2)2 = 4 in the w-plane.

	 (ii)	 Consider a strip 10
2

y< < .
		  When y = 0,
		  from (4), we get v = 0.

		  When 1
2

y = ,

		  from (4), we get 2 2
1
2

v
u v

-=
+

.

		  i.e.,	 u2 + v2 + 2v = 0
		  i.e.,	 u2 + (v + 1)2 – 1 = 0
		  which is a circle whose centre is at (0, –1) in the w-plane and radius is 1 unit.

		  \ the infinite strip 10
2

y< <  is mapped into the region outside the circle u2 + 

(v + 1)2 = 1 in the lower half-plane.� Ans.
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Example 5	 Find the invariant points of the transformation
2 4

1
z i

w
iz

+
= -

+
.

Solution  The invariant points of the transformation are given by 
2 4

1
z i

z
iz

+
= -

+
fi	 iz2 + 3z + 4i = 0
i.e.,	 z2 – 3iz + 4 = 0
i.e.,	 (z – 4i)(z + i) = 0
i.e., z = 4i, – i are the invariant points.	 Ans.

Example 6	 Find the image of |z + 2i| = 2 under the transformation 1w
z

= .

� [AU May 2010]

Solution  The given transformation is 1w
z

=

i.e.,	 1z
w

=

Given	 |z + 2i| = 2
	 |x + iy + 2i| = 2
i.e.,	 |x + i(y + 2)| = 2
fi	 x2 + (y + 2)2 = 4
i.e.,	 x2 + y2 + 4y = 0	 (1)
Now, w = u + iv

	 2 2
1 1 u iv

z
w u iv u v

-
= = =

+ +

i.e.,	 2 2
u iv

x iy
u v

-
+ =

+

fi	 2 2 ,ux
u v

=
+

	 (2)

and	 2 2
vy

u v
-=
+

	 (3)

Substituting (2) and (3) in (1), we get

	
2 2

2 2 2 2 2 2

2 2 2 2

2 2

4 0

4 ( ) 0

( )(1 4 ) 0

u v v
u v u v u v

u v v u v

u v v

Ê ˆ Ê ˆ Ê ˆ- -+ + =Á ˜ Á ˜ Á ˜+ + +Ë ¯ Ë ¯ Ë ¯

+ - + =

+ - =

fi	 1 – 4v = 0  (as u2 + v2 π 0)
which is a straight line in the w-plane.	 Ans.

Example 7	 Find the bilinear transformation that maps the points z1 = –i, z2 = 0, 
z3 = i into the points w1 = –1, w2 = i, w3 = 1 respectively.	[AU Oct. 2009, KU Nov. 2010]
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Solution  Let the bilinear transformation be

	 1 2 3 1 2 3

1 2 3 1 2 3

( )( ) ( )( )
( )( ) ( )( )
w w w w z z z z
w w w w z z z z

- - - -
=

- - - -
	 (1)

Given z1 = –i, z2 = 0, z3 = 0; w1 = –1, w2 = i, w3 = 1	 (2)
Substituting (2) in (1), we get

i.e.,	

+ - + -
=

- - - - - -

+ - - - +
=

- + - -

( 1)( 1) ( )(0 )
( 1 )(1 ) ( 0)( )

( 1) ( 1)( 1) ( )
( 1) ( 1)( 1) ( )

w i z i i
i w i i z

w i i z i
w i i z i

i.e.,	 1 ( )2
1 2 ( )

1 ( )
1

w z ii
w z i

w i z i
w z i

+ - +-◊ =
- - -

+ +
=

- -

By componendo and dividendo,

	

+ + - + + -
=

+ - - + - -
+ - +

=
- - -

+ -
=

- +

( 1) ( 1) ( ) ( )
( 1) ( 1) ( ) ( )

(1 ) (1 )2
2 ( 1) (1 )

(1 )( 1)
( 1)( 1)

w w i z i z i
w w i z i z i

z i iw
z i i

i z
w

i z

fi	

+ - - -
= ◊

- - - +
Ê ˆ-

= -Á ˜+Ë ¯

(1 )( 1) ( 1)
( 1)( 1) ( 1)

1
1

i i z
i i z

z
w

z
	 Ans.

Example 8	 Find the bilinear transformation which maps the points z1 = –1, z2 = 0, 
z3 = 1 into the points w1 = 0, w2 = i, w3 = 3i respectively.

� [AU Nov. 2010, KU April 2012]

Solution  Let the bilinear translation be

	 1 2 3 1 2 3

1 2 3 1 2 3

( )( ) ( )( )
( )( ) ( )( )
w w w w z z z z
w w w w z z z z

- - - -
=

- - - -
	 (1)

Given z1 = –1, z2 = 0, z3 = 1; w1 = 0, w2 = i, w3 = 3i	 (2)
Substituting (2) in (1), we get

	

- - + -
=

- - - - -

+-
=

- - -

Ê ˆ+-
= -Á ˜- -Ë ¯

( 0)( 3 ) ( 1)(0 1)
(0 )(3 ) ( 1 0)(1 )

( 1)( 2 )
(3 ) 1

12
( 3 ) 1

w i i z
i i w z

zw i
i i w z

ziw
w i i z
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i.e.,	
12

3 1
2 ( 1) ( 1)( 3 )

3 3

zw
w i z

w z z w i
zw iz w i

+
=

- -
- = + -

= - + -
fi	 w[2(z – 1) – (z + 1)] = –3i(z + 1)

or	
( 1)

3
3

z
w i

z
+

= -
-

	 Ans.

Example 9	 Show that under the mapping ,
i z

w
i z

-
=

+
 the image of the circle 

x2 = y2 < 1 is the entire half of the w-plane to the right of the imaginary axis.
� [AU Nov. 2011]

Solution  Given 
i z

w
i z

-
=

+

i.e.,	 (i + z)w = i – z
	 iw + zw = i –z
i.e.,	 z(w + 1) = i(1 – w)

fi	
(1 )
1

i w
z

w
-

=
+

Also given x2 + y2 < 1

i.e.,	 |z| < 1, i.e., 
(1 )

1
1

i w
w

-
<

+

i.e.,	 |i| |1 – w| < |1 + w|, i.e., |1 – u – iv| < |1 + u + iv|  [as |i| = 1]
i.e.,	 (1 – u)2 + v2 < (1 + u)2 + v2

i.e.,	 1 + u2 – 2u + v2 < 1 + u2 + 2u + v2

fi	 4u > 0
or	 u > 0
Hence, the circle x2 + y2 < 1, i.e., |z| < 1 is mapped into the entire half of the w-plane 
to the right of the imaginary axis.

When |z| = 1 i.e., x2 + y2 = 1 which is the unit circle, we get u = 0 which is the 
imaginary axis of the w-plane.� Proved.

Exercise

Part A

	 1.	 Define conformal mapping.
	 2.	 When is a transformation said to be isogonal? Prove that the mapping w z=  is 

isogonal.
	 3.	 Define critical point of a transformation.
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	 Conformal Mapping	 22.13

	 4.	 Find the images of the circle |z| = a under the transformations (i) w = z + 2 + 3i, 
and (ii) w = 2z.

	 5.	 Under the transformation w = iz + i, show that the half-plane x > 0 maps into the 
half-plane w > 1.

	 6.	 Find the invariant point of the bilinear transformation 
1
1

z
w

z
+

=
-

.

	 7.	 Find the fixed points of 
3 4

1
z

w
z

-
=

-
.

	 8.	 Define Mobius transformation. 

	 9.	 Find the invariant point of the transformation 1
2

w
z i

=
-

.

	 10.	 Find the image of x2 + y2 = 4 under the transformation w = 3z.
	 11.	 Find the image of the circle |z – a| = r by the mapping w = z + c where c is a 

constant.

	 12.	 Find the fixed points of the transformation 1
2

w
z i

=
+

.

	 13.	 Find the invariant points of the transformation 
1
1

z
w

z
+

=
-

.

	 14.	 Find the image of the circle |z| = 3 under the transformation w = 2z.
	 15.	 Find the image of the circle |z| = 2 by the transformation w = z + 3 + 2i.

	 16.	 Find the image of the real axis of the z-plane by the transformation 1w
z i

=
+

.
	 17.	 Define cross-ratio of four points in a complex plane.
	 18.	 Prove that a bilinear transformation has at most two fixed points.

Part B

	 1.	 For the mapping 
1 ,w
z

=  find the image of the family of circles x2 + y2 = ax, 

where a is real.� 1 , is a straight lineu
a

Ê ˆ
=Á ˜Ë ¯Ans.

	 2.	 Determine the region of the w-plane into which the region bounded by x = 1, 
y = 1, x + y = 1 is mapped by the transformation w = z2.

� (Ans. 4u + v2 = 4, 4u – v2 = –4, u2 = 2, v2 = 1)

	 3.	 Determine the images of the regions under 1w
z

= . (i) x > 1, y > 0 (ii) 10
2

y
c

< < .

�
2 2 21 1(i) (ii) ( )

2 2
w u v c c

È ˘
- < + + >Í ˙

Î ˚
Ans.

	 4.	 Find an analytic function w = f(z) which maps the half-plane x ≥ 0 onto the 
region u ≥ 2 such that z = 0 corresponds to w = 2 + i.

� (Hint: w1 = z, w2 = w1 + 2, w = w2 + i)
� (Ans. w = z + 2 + i)
	 5.	 Determine and plot the images of the regions under the transformation w = z2.

	 (i)	 |z| = 2	 (ii)	 |arg |
2

z p£ 	 (iii)	 1 | | 2, Re 0
2

z z< < ≥

� 1(i) 1 4 (ii)|arg | (iii) | | 4,
4

w w wp p f p
È ˘

> £ < < - £ £Í ˙Î ˚
Ans.
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	 6.	 Find the invariant (fixed) points of the transformation:

	 (i)	
1
1

z
w

z
-

=
+

	 (ii)	 w = z2	 (iii)	
2 5

4
z

w
z

-
=

+
	 (iv)	 w = (z – i)2

�
(1 2 ) 1 4

(i) (ii) 0, 1 (iii) 1 2 (iv)
2

i i
z i z z i z

È ˘+ ± +
Í ˙= ± = = - + =
Î ˚
Ans.

	 7.	 Find the bilinear transformation that maps z1, z2, z3 onto w1, w2, w3 respectively.
	 (i)	 z = –1, 0, 1 onto w = 0, i, 3i
	 (ii)	 z = 0, –i, –1 onto w = i, 1, 0
	 (iii)	 z = 1, i, –1 onto w = 2, i, –2
	 (iv)	 z = •, i, 0 onto w = 0, i, •
	 (v)	 z = 1, 0, –1 onto w = i, 1, •

�

3 ( 1) 1 6 2
(i) , (ii) (iii)

3 1 3
( 1 2 ) 11(iv) (v)

1

i z z z i
w w i w

z z iz
i z

w w
z z

È ˘Ê ˆ- + + - +
= = - =Í ˙Á ˜- - -Ë ¯Í ˙

Í ˙- + +Í ˙= - =
+Í ˙Î ˚

Ans.

	 8.	 Verify that the equation 
1
1

iz
w

z
+

=
+

 maps the exterior of the circle |z| = 1 into 
the upper half-plane v > 0.

	 9.	 Find the bilinear transformation which maps 1, i, –1 to 2, i, –2 respectively. Find 
the fixed and critical points of the transformation.� (Ans. i, 2i)

	 10.	 Show that the transformation 
(1 )
1

i z
w

z
-

=
+

 maps the circle |z| = 1 into the real 

axis of the w-plane and the interior of the circle |z| < 1 into the upper half of the 
w-plane.

	 11.	 Show that the transformation 
2 3

4
z

w
z

+
=

-
 maps the circle x2 + y2 – 4x = 0 onto the 

straight line 4u + 3 = 0.

	 12.	 Show that transformation 
i z

w
i z

-
=

+
 maps the circle |z| = 1 onto the imaginary 

axis of the w-plane. Find also the images of the interior and exterior of this 
circle.
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Chapter Outline

 ● Introduction
 ● Line Integral in a Complex Plane
 ● Line Integral
 ● Basic Properties of Line Integrals
 ● Simply Connected Region and Multiply Connected Region
 ● Evaluation of Complex Integrals
 ● Cauchy’s Integral Theorem
 ● Extension of Cauchy’s Integral Theorem to Multiply Connected 

Regions
 ● Cauchy’s Integral Formula
 ● Cauchy’s Integral Formula for the Derivation of an Analytic 

Function

23.1 ❑ introDuCtion

Integration of functions of a complex variable plays a very important role in many 
areas of science and engineering. The advantage of complex integration is that certain 
complicated real integrals can be evaluated and properties of analytical functions can 
be established. Using integration, we shall prove a very important result in the theory 
of analytic functions:

If a function f(z) is analytic in a domain D then it possesses derivatives of all 
orders in D, that is f ¢(z), f ≤(z) … are all analytic functions in D.

Such a result does not exist in the real-variable theory. Also, the complex-integration 
approach can be used to evaluate many improper integrals of a real variable, which 
cannot be evaluated using real integral calculus. The concept of definite integral for 
functions of a real variable does not directly extend to the case of complex variables. 

23 Complex Integration
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23.4	 Engineering Mathematics

In the case of a real variable, the path of integration in the definite integral ( )
b

a
f x dxÚ  

is along a straight line. In complex integration, the path could be along any curve 
from z = a to z = b.

23.2  ❑  Line Integral in Complex Plane

●● Continuous Arc

The set of points (x, y) defined by x = f(t), y = y(t), with parameter t in the interval 
(a, b), defines a continuous arc provided f and y are continuous functions.

●● Smooth Arc

If f and y are differentiable, the arc is said to be smooth.

●● Simple Curve

It is a curve having no self-intersections, i.e., no two distinct values of t correspond to 
the same point (x, y).

●● Closed Curve

It is one in which end points coincide, i.e., f(a) = f(b) and y(a) = y(b).

●● Simple Closed Curve

It is a curve having no self-intersections and with coincident end points.

●● Contour

It is a continuous chain of a finite number of smooth arcs.

●● Closed Contour

It is a piecewise smooth closed curve without points of self-intersection.

23.3  ❑  Line Integral

Definite integral or complex line integral or simply line integral of a complex function 
f(z) from z1 to z2 along a curve C is defined as

	

( ) ( )( )
( ) ( )

C C

C C

f z dz u iv dx idy
udx vdy i vdx udy

Ú = Ú + +
= Ú - + Ú +

Here, C is known as path of integration. If it is a closed curve, the line integral is 
denoted by 

CÚ .

When the direction is in positive sense, it is indicated as ÚC+ or simply, ÚC while 
negative direction is denoted by ÚC. Counter integral is an integral along a closed 
contour.
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 Complex Integration 23.5

23.4 ❑ BaSiC propertieS oF Line integraLS

 (i) Linearity: 1 2 1 2( ( ) ( )) ( ) ( )C C Ck f z k g z dz k f z dz k g z dzÚ + = Ú + Ú

 (ii) Sense reversal: ( ) ( )
b a

a b
f z dz f z dz= -Ú Ú

 (iii) Partitioning of path: 
1 2

( ) ( ) ( )C C Cf z dz f z dz f z dzÚ = Ú + Ú
  where the curve C consists of the curves C1 and C2.

  note

Although real definite integrals are interpreted as area, no such interpretation is 
possible for complex definite integrals.

23.5 ❑  SimpLy ConneCteD region anD muLtipLy 
ConneCteD region

A simply connected region R is a domain such that every simple closed path in R 
contains only points of R.

 ● example

Interior of a circle, rectangle, triangle, ellipse, etc.
A multiply connected region is one that is not simply connected.

 ● example

Annulus region, region with holes.

Fig. 23.2

23.6 ❑ evaLuation oF a CompLex integraL

To evaluate the integral ÚC f(z)dz, we have to express it in terms of real variables.
Let f(z) = u + iv where z = x + iy, dz = dx + idy
\ ÚC f(z)dz = ÚC(u + iv)dz
 = ÚC(u + iv)(dx + idy)
 = ÚC(udx – vdy) + iÚC(vdx + udy)

Although real definite integrals are interpreted as area, no such interpretation is 
possible for complex definite integrals.

Fig. 23.1
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23.7 ❑  CauChy’S integraL theorem or CauChy’S 
FunDamentaL theorem

If a function f(z) is analytic and its derivative f ¢(z) is continuous at all points inside and 
on a simple closed curve C then ÚC f(z)dz = 0.

 ● proof

Let the region enclosed by a curve C be R and let

( ) , ,

( ) ( )( ) ( ) ( )

(by Green's theorem)

C C C C

R R

f z u iv z x iy dz dx idy

f z dz u iv dx idy udx vdy i vdx udy

v u u vdxdy i dxdy
x y x y

= + = + = +

= + + = - + +

Ê ˆ Ê ˆ∂ ∂ ∂ ∂
= - - + -Á ˜ Á ˜∂ ∂ ∂ ∂Ë ¯ Ë ¯

Ú Ú Ú Ú
ÚÚ ÚÚ

Replacing by and byv u v u
x y y x

∂ ∂ ∂ ∂-
∂ ∂ ∂ ∂

, we get

 0 0 0
R R

u u u udxdy i dxdy
y y x x

i

Ê ˆ Ê ˆ∂ ∂ ∂ ∂= - + -Á ˜Á ˜ Ë ¯∂ ∂ ∂ ∂Ë ¯

= + =

ÚÚ ÚÚ

or ÚC f(z)dz = 0

  note

 (i) Cauchy’s integral theorem is also known as Cauchy’s theorem.
 (ii) Cauchy’s theorem without the assumption that f ¢ is continuous is known as 

the Cauchy–Goursat theorem.
 (iii) Simple connectedness is essential.

23.8 ❑  extenSion oF CauChy’S integraL theorem to muLtipLy 
ConneCteD regionS

If f(z) is analytic in the region R between two simple closed curves C1 and C2 then

 1 2
( ) ( )C Cf z dz f z dzÚ = Ú

 ● proof

By Cauchy’s integral theorem, we know that 
ÚC f(z)dz = 0 where the path of integration is along 
AB and the curve C2 in clockwise direction, and 
BA and along C1 in anticlockwise direction,

i.e.,  
2 1

( ) ( ) ( ) ( ) 0AB C BA Cf z dz f z dz f z dz f z dzÚ + Ú + Ú + Ú =

or 
2 1

( ) ( ) 0 (since ( ) ( ) )C C AB BAf z dz f z dz f z dz f z dzÚ + Ú = Ú = - Ú

 (i) Cauchy’s integral theorem is also known as Cauchy’s theorem.
 (ii) Cauchy’s theorem without the assumption that f ¢f ¢f  is continuous is known as 

the Cauchy–Goursat theorem.
 (iii) Simple connectedness is essential.

Fig. 23.3
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 Complex Integration 23.7

Reversing the direction of the integral around C2, we get

 
1 2

( ) ( )C Cf z dz f z dzÚ = Ú

  note

By introducing as many cross-cuts as the number of inner boundaries, we can 
give the proof in a similar manner for the extension of Cauchy’s integral theorem.

23.9 ❑ CauChy’S integraL FormuLa

If f(z) is analytic within and on a closed curve C and if a 

is any point within C then ( )1( )
2 C

f zf a dz
i z ap

=
-Ú .

 ● proof

Consider the function ( ) ,f z
z a-

which is analytic at all 

points within C except z = a.
With a point a as centre and radius r, draw a small 

circle C1 lying entirely within C. Now, ( )f z
z a-

 is analytic 
in the region between C and C1;

Hence, by Cauchy’s integral theorem for a multiply connected region, we have

 

1 1

1 1

( ) ( ) ( )( ) ( )

( ) ( )
( )

C C C

C C

f z f a f af z f zdz dz dz
z a z a z a

f z f a dzdz f a
z a z a

- +
= =

- - -
-

= +
- -

Ú Ú Ú
Ú Ú  (23.1)

For any point on C1

Now, 
1

2

0

( ) ( ) ( ) ( )i
i

iC

f z f a f a re f a
dz ire d

z a re

qp
q

q q
- + -

=
-Ú Ú

 [as z – a = reiq and dz = ireiq dq]

 
2

0
[ ( ) ( )] 0if a re f a id

p
q q= + - =Ú  (where r tends to zero]

 1

2 2
2
0

0 0
[0] 2

i
i

iC

dz ire d id i i
z a re

qp p
p

q
q q p= = = =

-Ú Ú Ú
Putting the values of the integrals of RHS in (23.1), we have

 

( ) 0 ( )(2 )
C

f z dz f a i
z a

p= +
-Ú

or ( )1( )
2 C

f zf a dz
i z ap

=
-Ú

By introducing as many cross-cuts as the number of inner boundaries, we can 
give the proof in a similar manner for the extension of Cauchy’s integral theorem.

Fig. 23.4
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23.10  ❑  �Cauchy’s Integral Formula for The Derivative of 
An Analytic Function

If a function f(z) is analytic in a region R then its derivative at any point z = a of R is 
also analytic in R and is given by

	
2

( )1( )
2 ( )C

f zf a dz
i z ap

=¢
-Ú

where C is any closed curve in R surrounding the point z = a.

●● Proof

By Cauchy’s integral formula,

	 ( )1( )
2 C

f zf a dz
i z ap

=
-Ú 	 (23.2)

Differentiating (23.2) with respect to a, we get

	  
2

1 1( ) ( )
2

( )1( )
2 ( )

C

C

f a f z dz
i a z a

f zf a dz
i z a

p

p

Ê ˆ∂= ◊¢ Á ˜∂ -Ë ¯

=¢
-

Ú
Ú

Similarly,	 3

1

( )2!( )
2 ( )

( )!( )
2 ! ( )

C

n
nC

f zf a dz
i z a

f znf a dz
z a

p

p +

=¢¢
-

=
-

Ú
Ú

Solved Examples

Example 1	 Use Cauchy’s integral formula to 

evaluate 
2 2sin cos

,
( 2)( 3)C

z z
dz

z z
p p+
- -Ú  where C is the 

circle |z| = 4.
� [AU June 2009, April 2011; KU Nov. 2011]

Solution

	

1 1 1
( 2)( 3) ( 3) ( 2)z z z z

= -
- - - -

\ given integral

	
2 2 2 2sin cos sin cos

3 2C C

z z z z
dz dz

z z
p p p p+ +

= -
- -Ú Ú

	 ( ) ( )
( 3) ( 2)C C

f z f zdz dz
z z

= -
- -Ú Ú 	 (1)

Fig. 23.5
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f(z) = sin pz2 + cos pz2 is analytic on and inside C.
The points z = 2 and z = 3 lie inside C.

\ by Cauchy’s integral formula, from (1), we get,

	

2 2

2 2 2 2
3 2

sin cos
( 2)( 3)

2 (sin cos ) 2 (sin cos )

2 (sin 9 cos 9 ) 2 (sin 4 cos 4 )

C

z z

z z
dz

z z

i z z i z z

i i

p p

p p p p p p

p p p p p p
= =

+
- -

= + - +

= + - +

Ú

	     = –2pi – 2pi = –4pi	 Ans.

Example 2	 Evaluate 2 ,
( 1)( 2)C

zdz
z z- -Ú  where C is the circle 1| 2| ,

2
z - =  using 

Cauchy’s integral formula.� [AU May 2012]

Solution 
1| 2|
2

z - =  is the circle with centre at z = 2 and radius equal to 1
2

.

The point z = 2 lies inside the circle 1| 2|
2

z - =

The given integral can be rewritten as

	 2

1
( 2)C

z
z

dz
z

Ê ˆ
Á ˜-Ë ¯

-Ú  2
( )

( 2)C

f z dz
z

=
-Ú  (say)

( )
1

zf z
z

=
-

 is analytic on and inside C and the 

point z = 2 lies inside C.
\ by Cauchy’s integral formula,

	

p

p

p p

=

=

= ¢
- -

Ï ¸Ê ˆÔ Ô= Ì ˝Á ˜-Ë ¯Ô ÔÓ ˛
Ï ¸-Ô Ô= = -Ì ˝-Ô ÔÓ ˛

Ú 2

2

2
2

2
(2)

1!( 1)( 2)

2
1

12 2
( 1)

C

z

z

iz dz f
z z

d zi
dz z

i i
z

	 Ans.

Example 3	 Evaluate 2
4

,
2 5C

z
dz

z z
+

+ +Ú  where C is the circle |z + 1 + i| = 2 using 

Cauchy’s integral formula.� [AU Nov. 2011]

Solution  |z + 1 + i| = 2 is the circle whose centre is 
–1 – i and radius is 2 units.

Consider 2
4 4

( 1 2 )( 1 2 )2 5
z z

z i z iz z
+ +

=
+ + + -+ +

\ the integral is not analytic at z = –1 – 2i and –1 + 2i. 
The point z = –1 – 2i lies inside C.

Fig. 23.6

Fig. 23.7
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We rewrite the given integral as

	

4
1 2 ( ) (say)
1 2 ( 1 2 )C C

z
z i f zdz dz
z i z i

Ê ˆ+
Á ˜+ -Ë ¯

=
+ + - - -Ú Ú

f(z) is analytic on and inside C and the point (–1, –2i) lies inside C.
\ by Cauchy’s integral formula,

	

2
4

2 ( 2 )
2 5

1 2 4
2

1 2 1 2

(3 2 )
2

C

z
dz i f i i

z z
i

i
i i

i

p

p

p

+
= - -

+ +
Ï ¸- - +Ô Ô= Ì ˝- - + -Ô ÔÓ ˛

-= -

Ú

	 Ans.

Exercise

Part A

	 1.	 The value of the integral 2 2C

dz
z z-Ú  where C is the circle |z – 2| = 1, traversed 

in the counter-clockwise sense is
	 (i)	 –pi	 (ii)	 2pi	 (iii)	 pi	 (iv)	 0

	 2.	 The value of the integral 
2 1

,
1C

z z
dz

z
- +

-Ú  where C is the circle 1| |
2

z =  is

	 (i)	 0	 (ii)	 pi	 (iii)	 –pi	 (iv)	 –2pi
	 3.	 What is the value of ÚC ez dz if c : |z| = 1?
	 4.	 State Cauchy’s integral formula.

	 5.	 Evaluate 
2C

dz
z -Ú  where C is the square with vertices (0, 0), (1, 0), (1, 1) and (0, 1).

	 6.	 Evaluate 
23 7 1
( 3)C

z z
dz

z
+ +

-Ú where C : |z| = 2.

	 7.	 Evaluate 2 5 6C

dz
z z- +Ú  where C is the circle 1| 1|

2
z - = .

	 8.	 State Cauchy’s formula for the first derivative of an analytic function.
	 9.	 State Cauchy’s fundamental theorem.

	 10.	 Evaluate 
2C

zdz
z -Ú  where C : |z| = 1.

	 11.	 Evaluate 2
( 3)C

dz
z +Ú where C : |z| = 2.

	 12.	 Evaluate 1
2 3C

dz
z -Ú where C : |z| = 1.
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	 Complex Integration	 23.11

	 13.	 Evaluate 
2 51

2 3C

z
dz

i zp
+
-Ú where C is |z| = 4 using Cauchy’s integral formula.

	 14.	 Evaluate 2( 3)C

dz
z -Ú  where C : |z| = 1.

	 15.	 State the Cauchy–Goursat theorem.

Part B

	 1.	 Evaluate 2
1

( 1) ( 2)C

z
dz

z z
-

+ -Ú where C is |z – i| = 2.� 2
9

ipÊ ˆ-
Á ˜Ë ¯Ans.

	 2.	 Evaluate 
4 3

( 1)( 2)C

z
dz

z z z
-

- -Ú using Cauchy’s integral formula. where C is the 

circle 3| |
2

z = .� (Ans. 2pi)

	 3.	 Find the value of 
2

2
2

1C

z z
dz

z
+
-Ú .� (Ans. 3pi)

	 4.	 Evaluate the following:

	 (i)	 2 2 ,
( 4)C

dz
z +Ú where C is |z – i| = 2

	 (ii)	
3

2
1

7 6C

z z
dz

z z
+ +

- +Ú where C is the ellipse 4x2 + 9y2 = 1

	 (iii)	
3

2
1

3C

z
dz

z iz
+

-Ú where C is |z| = 1.� 2(i) , (ii) 0, (iii)
16 3
p pÈ ˘

-Í ˙Î ˚
Ans.

	 5.	 Evaluate 
2 2sin cos

( 1)( 2)C

z z
dz

z z
p p+

+ +Ú  where C is |z| = 3.� (Ans. –4pi)

	 6.	 If 
24 5

( )
C

z z
f a dz

z a
+ +

=
-Ú where C is |z| = 2, find the values of f(1), f(i), f ¢(–1) 

and f ≤(–i).� (Ans. 20pi; 2p(i – 1); –14pi; 16pi)
	 7.	 Evaluate ÚC |z|2 dz around the square with vertices at (0, 0), (1, 0), (1, 1), (0, 1).

� (Ans. –1 + i)

	 8.	 Evaluate 
2

2
1
1C

z
dz

z
+
-Ú  where (i) C : |z – 1| = 1, (ii) C : |z + 1| = 1, and (iii) C : |z – i| 

= 1.� [Ans. (i) 2pi (ii) –2pi (iii) 0]

	 9.	 Evaluate 2
sin 2

( 3)( 1)C

z
dz

z z+ +Ú  where C is the rectangle with vertices at 3 + i, 

–2 + i, –2 – i, 3 – i.�
(4 cos 2 sin 2)

2
ip

È ˘+
Í ˙Î ˚
Ans.

	 10.	 Evaluate 
4 2

3
3 6

( )C

z z
dz

z i
- +

+Ú  where C : |z| = 2.� (Ans. –18pi)
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Chapter Outline

 ● Introduction
 ● Taylor’s Series
 ● Laurent’s Series

24.1 ❑ introduction

Power series

A power series in powers of (z – z0) is a series of the form

 0 0 1 0 2 0
0

( ) ( ) ( )n
n

n

a z z a a z z a z z
•

=

- = + - + - +Â   (24.1)

Here, a0, a1, a2 ... are complex (or real) constants known as coefficients of the series. z 
is a complex variable and z0 is called the centre of the series. Equation (24.1) is also 
known as the power series about the point z0.

Power series in powers of z is

 

2
0 1 2

0

n
n

n

a z a a z a z
•

=

= + + +Â 

obtained as a particular case with z0 = 0 in (24.1). The region of convergence of a 
series is the set of all points z for which the series converges.

Three distinct possibilities exist regarding the region of convergence of a power 
series (24.1).
 (i) The series converges only at the point z = z0.
 (ii) The series converges everywhere inside a circular disk |z – z0| < R and diverges 

everywhere outside the disk |z – z0| > R. Here, R is known as the radius of 
convergence and the circle |z – z0| = R as the circle of convergence.

24 Taylor and Laurent Series 
Expansions
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24.2 Engineering Mathematics

  note

 (i) The series may converge or diverge at the points on the circle of convergence.

 (ii) Geometric Series: 2

0

1m

m

z z z
•

=

= + + +Â  converges absolutely when |z| < 1 

and diverges when |z| > 1. (i.e., R = 1)

 (iii) Power series: 
0

!

n

n

z
n

•

=
Â  converges for all z. (i.e., R = •)

Power series play an important role in complex analysis, since they represent 
analytic functions and conversely every analytic function has a power series 
representation called Taylor series similar to Taylor series in real calculus.

Analytic functions can also be represented by another type of series called Laurent 
series, which consist of positive and negative integral powers of the independent 
variable. They are useful for evaluating complex and real integrals.

24.2 ❑ taYLor’s series (taYLor’s theorem)

If a function f(z) is analytic at all points inside a circle C with its centre at the point a 
and radius R then at each point z inside C,

2( ) ( )( ) ( ) ( )( ) ( ) ( )
2! !

n
nf a f af z f a f a z a z a z a

n
¢¢

= + - + - + + - +¢  

 ● Proof

Take any point z inside C. Draw a circle C1 with centre a, enclosing the point z. Let w 
be a point on the circle C1.

 

-

= =
- - + - - - -

=
- Ê ˆ-

-Á ˜-Ë ¯

È ˘-
= -Í ˙- -Î ˚

1

1 1 1
( )

1 1
( )

1

1 1

w z w a a z w a z a

w a z a
w a

z a
w a w a

Applying the binomial theorem,

 +

È ˘Ê ˆ Ê ˆ Ê ˆ- - -Í ˙= + + + + +Á ˜ Á ˜ Á ˜Í ˙- - - - -Ë ¯ Ë ¯ Ë ¯Î ˚
- - -

= + + + + +
- - - -

 

 

2

2

2 3 1

1 1 1

( ) ( )1
( ) ( ) ( )

n

n

n

z a z a z a
w z w a w a w a w a

z a z a z a
w a w a w a w a

 (24.2)

As |z – a| < |w – a| or 
-

<
-

| |
1,

| |
z a
w a

so the series converges uniformly. Hence, the series is integrable.

 (i) The series may converge or diverge at the points on the circle of convergence.

(ii) Geometric Series: 2

0

1m

m

z z z1z z z1mz z zm
•

=

= + + +2= + + +21= + + +1z z z= + + +z z z1z z z1= + + +1z z z1Â  converges absolutely when |z| < 1 

and diverges when |z| > 1. (i.e., R = 1)

(iii) Power series: 
0

!

n

n

z
n

•

=
Â converges for all z. (i.e., R = •)

Fig. 24.1
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 Taylor and Laurent Series Expansions 24.3

Multiplying (24.2) by f(w),

+= + - + - + + - +
- - - - -

 

2
2 3 1

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )

n
n

f w f w f w f w f wz a z a z a
w z w a w a w a w a

On integrating with respect to w, we get

 +

= + - +
- - -

+ - +
-

Ú Ú Ú
Ú





1 1 1

1

2

1

( ) ( ) ( )( )
( )

( )( )
( )

C C C

n
nC

f w f w f wdw dw z a dw
w z w a w a

f wz a dw
w a

 (24.3)

We know that

 
p p= =

- -Ú Ú
1 1

( ) ( )2 ( ), 2 ( )
( )C C

f w f wdz i f z dw i f a
w z w a

 p= ¢
-Ú

1
2

( ) 2 ( )
( )C

f w dw i f a
w a

, and so on.

Substituting these values in (24.3), we get

 
2( ) ( )( ) ( ) ( )( ) ( ) ( )

2! !

n
nf a f af z f a f a z a z a z a

n
¢¢

= + - + - + + - +¢  

  note

 (i) Putting a = 0 in the Taylor’s series, we get 2(0) (0)( ) (0)
1! 2!

f ff z f z z¢ ¢¢
= + + +

  This series is called the McLaurin’s series of f(z).
 (ii) Standard McLaurin’s Series

 (a) 
2 3

1
1! 2! 3!

z z z ze = + + + +  for |z| < •

 (b) 
3 5

sin
3! 5!
z zz z= - + -  for |z| < •

 (c) 
2 4

cos 1
2! 4!
z zz = - +   for |z| < •

 (d) 
3 5

sin
3! 5!
z zhz z= + + +  for |z| < •

 (e) 
2 4

cos 1
2! 4!
z zhz = + + +  for |z| < •

 (f) (1 – z)–1 = 1 + z + z2 + z3 + ... for |z| < 1
 (g) (1 + z)–1 = 1 – z + z2 – z3 + ... for |z| < 1
 (h) (1 – z)–2 = 1 + 2z + 3z2 + ... for |z| < 1
 (iii) Expansion of a function f(z) about a singular point z = h means, expansion 

of f(z) in powers of (z – h).

 (i) Putting a = 0 in the Taylor’s series, we get 2(0) (0)
1! 2!

f f(0) (0)f f(0) (0)f z f z z(0) (0)f z f z z(0) (0)( ) (0)f z f z z( ) (0)
1! 2!

f z f z z
1! 2!

f ff z f z zf f(0) (0)f f(0) (0)f z f z z(0) (0)f f(0) (0)¢ ¢¢(0) (0)¢ ¢¢(0) (0)f f¢ ¢¢f f(0) (0)f f(0) (0)¢ ¢¢(0) (0)f f(0) (0)
= + + +2= + + +2f z f z z= + + +f z f z zf z f z z= + + +f z f z zf z f z z= + + +f z f z z(0) (0)f z f z z(0) (0)
= + + +

(0) (0)f z f z z(0) (0)( ) (0)f z f z z( ) (0)= + + +( ) (0)f z f z z( ) (0) f ff z f z zf f
= + + +

f ff z f z zf f(0) (0)f f(0) (0)f z f z z(0) (0)f f(0) (0)
= + + +

(0) (0)f f(0) (0)f z f z z(0) (0)f f(0) (0)


  This series is called the McLaurin’s series of f(f(f z).
 (ii) Standard McLaurin’s Series

(a) 
2 3

1
1! 2! 3!

z z z z2 3z z z2 3
e = + + + += + + + += + + + += + + + +1= + + + +1   for |z| < •

 (b) 
3 5

sin
3! 5!
z z3 5z z3 5

z z= - + -= - + -= - + -z z= - + -z z   for |z| < •

 (c) 
2 4

cos 1
2! 4!
z z2 4z z2 4

cos 1zcos 1= - += - +cos 1= - +cos 1   for |z| < •

 (d) 
3 5

sin
3! 5!
z z3 5z z3 5

hz z= + + += + + += + + +hz z= + + +hz z   for |z| < •

 (e) 
2 4

cos 1
2! 4!
z z2 4z z2 4

hzcos 1hzcos 1= + + += + + += + + +cos 1= + + +cos 1   for |z| < •

 (f) (1 – z)–1 = 1 + z + z2 + z3 + ... for |z| < 1
 (g) (1 + z)–1 = 1 – z + z2 – z3 + ... for |z| < 1
 (h) (1 – z)–2 = 1 + 2z + 3z2 + ... for |z| < 1
 (iii) Expansion of a function f(f(f z) about a singular point z = h means, expansion 

of f(f(f z) in powers of (z – h).
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24.4	 Engineering Mathematics

24.3  ❑  Laurent’s Series (Laurent’s Theorem)

If f(z) is analytic on C1 and C2 and the annular region bounded by the two concentric 
circles C1 and C2 of radii r1 and r2(r2 < r1) and with centre at a then for all in R,

	

2 1 2
0 1 2 2( ) ( ) ( )

( ) ( )
b b

f z a a z a a z a
z a z a

= + - + - + + + +
- -

 

where	
1

2

1

1

( )1 , 0, 1, 2, 3...
2 ( )

( )1 , 1, 2, 3...
2 ( )

n nC

n nC

f wa dw n
i w a

f wb dw n
i w a

p

p

+

- +

= =
-

= =
-

Ú
Ú

●● Proof

By introducing a cross-cut AB, the multiply connected 
region R is converted to a simply connected region. Now, 
f(z) is analytic in this region.

Now by Cauchy’s integral formula,

1

2

( )1 1( )
2 2

( ) ( ) ( )1 1
2 2

C

AB C BA

f wf z dw
i w z i

f w f w f wdw dw dw
w z i w z i w z

p p

p p

= +
-

- +
- - -

Ú
Ú Ú Ú

Integral along c2 is clockwise, so it is negative.

\	
1 2

( ) ( )1 1( )
2 2C C

f w f wf z dw dw
i w z i w zp p

= -
- -Ú Ú 	 (24.4)

For the first integral, 
( )f w

w z-
 can be expended exactly as in Taylor’s series since w 

lies on C1, 

	

1 1
1

1

2

2

3

2
0 1 2

| |
| | | |or 1

| |
( )( ) ( ) ( )1 1

2 2 2 ( )

( ) ( )
2 ( )

( ) ( )

C C
C

C

z a
z a w a

w a
z af w f w f wdw dw dw

i w z i w a i w a

z a f w dw
i w a

a a z a a z a

p p p

p

-
- £ - £

-
-

= +
- - -

-
+ +

-

= + - + - +

Ú Ú Ú

Ú 

 	 (24.5)

	 1
1

( )1as
2 ( )n nC

f wa dw
i w ap +

È ˘
=Í ˙

-Í ˙Î ˚
Ú

In the second integral, w lies on C2

\	 |w – a| < |z – a| or 
| |

1
| |
w a
z a

-
<

-

So here,	 1 1 1 1 1
( ) ( ) ( ) 1 w aw z w a a z w a z a z a

z a

-= = = ◊
-- - + - - - - - -
-

Fig. 24.2
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 Taylor and Laurent Series Expansions 24.5

 

1

2 1

1 1

1 1
n

w a
z a z a

w a w a w a
z a z a z a z a

-

+

È ˘-
= - -Í ˙- -Î ˚

È ˘Ê ˆ Ê ˆ- - -Í ˙= - + + + + +Á ˜ Á ˜Í ˙- - - -Ë ¯ Ë ¯Î ˚
 

Multiplying by ( ) ,
2
f w

ip
-  we get

2

2 3

2 1 3 2

( ) ( )( ) ( )1 1 1 1( ) ( )
2 2 2 2( ) ( )

( ) ( )1 1 1 1 1 1( )
2 2 2( ) ( ) ( ) ( )

w a w af w f w f w f w
i w z i z a i iz a z a

f w f wf w
z a i i iz a w a z a w a

p p p p

p p p- -

- -
- = + + +

- - - -
Ê ˆ

= + + +Á ˜-Ë ¯ - - - -





Integrating, we have

 

2 2 2

2

2 1

3 2

31 2
2 3

( ) ( )1 1 1 1 1( )
2 ( ) 2 2( ) ( )

( )1 1
2( ) ( )

( ) ( ) ( )

C C C

C

f w f wdw f w dw dw
i w z z a i iz a w a

f w dw
iz a w a

bb b
z a z a z a

p p p

p

-

-

- = +
- - - -

+ +
- -

= + + +
- - -

Ú Ú Ú
Ú 

  (24.6)

   2
1

( )1as
2 ( )n nC

f wb dw
i w ap - +

È ˘
=Í ˙

-Í ˙Î ˚
Ú

Substituting the values of both integrals from (24.5) and (24.6) in (24.4), we get

 
2 1 2

0 1 2 1 2( ) ( ) ( ) ( ) ( )f z a a z a a z a b z a b z a- -= + - + - + - + - +

or 
0 1

( ) ( )
( )

n n
n n

n n

b
f z a z a

z a

• •

= =

= - +
-Â Â

  note

 (i) If f(z) is analytic at all points inside C1 (i.e., no singular points inside C2) 
then by Cauchy’s theorem, bn = 0 for all n – 1 ≥ 0. Hence, the Laurent series 
reduces to Taylor series. Thus, Laurent’s series expansion about an analytic 
point a is Taylor series expansion about a.

 (ii) The region of convergence of Laurent’s series is the annulus region R1 < |z 
– a| < R2.

 (iii) If f(z) has more than one singular point then several (more than one) 
Laurent series expansions can be obtained about the same singular point 
by appropriately considering analytic regions about (centred) at a.

 (iv) The part 
0

( )n
n

n

a z a
•

=

-Â  consisting of positive integral powers of (z – a) 

is called the analytic part of the Laurent’s series, while 
1

( ) n
n

n

b z a
•

-

=

-Â  

consisting of negative integral powers of (z – a) is called the principal part 
of the Laurent’s series.

 (i) If f(f(f z) is analytic at all points inside C1 (i.e., no singular points inside C2) 
then by Cauchy’s theorem, bn = 0 for all n – 1 ≥ 0. Hence, the Laurent series 
reduces to Taylor series. Thus, Laurent’s series expansion about an analytic 
point a is Taylor series expansion about a.

 (ii) The region of convergence of Laurent’s series is the annulus region R1 < |z
– a| < R2.

 (iii) If f(f(f z) has more than one singular point then several (more than one) 
Laurent series expansions can be obtained about the same singular point 
by appropriately considering analytic regions about (centred) at a.

 (iv) The part 
0

( )n
n

n

a z a( )a z a( )na z an

•

=

( )a z a( )-( )a z a( )Â  consisting of positive integral powers of (z – a) 

is called the analytic part of the Laurent’s series, while 
1

( ) n
n

n

b z a( )b z a( )nb z an

•
-

=

( )b z a( )-( )b z a( )Â
consisting of negative integral powers of (z – a) is called the principal part 
of the Laurent’s series.
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Solved Examples

Example 1	 Obtain Taylor’s series expansion to represent the function 
2 1

( 2)( 3)
z

z z
-

+ +
 in the region |z| < 2.� [KU Nov. 2010]

Solution  Let 
2 1

( )
( 2)( 3)

z
f z

z z
-

=
+ +

	
5 7

1
( 2)( 3)

z
z z

- -
= +

+ +
	 (1)

Consider	
5 7

( 2)( 3) 2 3
z A B

z z z z
- -

= +
+ + + +

	 –5z – 7 = A(z + 3) + B(z + 2)
Put	 z = –3 fi B = –8
Put	 z = –2 fi A = 3

\	
5 7 3 8

( 2)( 3) 2 3
z

z z z z
- -

= -
+ + + +

\	 3 8(1) ( ) 1
2 3

f z
z z

fi = + -
+ +

Given |z| < 2, i.e., 
| |

1,
2
z

<  so clearly 
| |

1
3
z

<

i.e.,	 1
2
z <  and 1

3
z <

\	

1 1

3 8( ) 1
2 1 3 1

2 3

3 81 1 1
2 2 3 3

f z
z z

z z
- -

= + -
Ê ˆ Ê ˆ

+ +Á ˜ Á ˜Ë ¯ Ë ¯

Ê ˆ Ê ˆ
= + + - +Á ˜ Á ˜Ë ¯ Ë ¯

By using binomial theorem,

	 1

2 3 2 3

0 0

1
0

3 8( ) 1 1 1
2 2 4 8 3 3 9 27

( 1)3 8 ( 1)1
2 32 3

3 81 ( 1)
2 3

n

n n n n

n n
n n

n n
n

n

z z z z z zf z

z z

z+

• •

= =

•

+
=

È ˘ È ˘
= + - + - + - - + - +Í ˙ Í ˙

Î ˚ Î ˚

- -= + -

È ˘
= + - -Í ˙

Î ˚

Â Â

Â

 

	 Ans.

Example 2	 Expand 1
( 1)( 2)z z- -

 in Laurent’s series valid for |z| < 1 and 1 < |z| 

< 2.� [AU Nov. 2010]
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	 Taylor and Laurent Series Expansions	 24.7

Solution  Let 1 1 1( )
( 1)( 2) 2 1

f z
z z z z

= = -
- - - -

	 (i)	 Given |z| < 1 obviously 
| |

1
2
z

< , i.e., 1
2
z <

		  \	

1
1

2
2

1 1 1
( 1)( 2) 2 1

1 1
12 1

2

1 1 (1 )
2 2
1 1 [1 ]
2 2 4

z z z z

zz

z z

z z z z

-
-

= -
- - - -

= - +
-Ê ˆ

-Á ˜Ë ¯

Ê ˆ
= - - + -Á ˜Ë ¯

È ˘
= - + + + + + + +Í ˙

Î ˚
 

		  i.e.,	                21 3 7( )
2 4 8

zf z z= + + +

	 (ii)	 Given 1 < |z| < 2

	

1 11 | | 1, i.e., 1
| |
| |

| | 2 1, i.e., 1
2 2

z
z z
z zz

< fi < <

< fi < <

		  \	

1 1

2

2

0 0

1 1( )
2 1

1 1 11 1
2 2

1 1 1 11 1
2 2 2

1 1 1
2 2

nn

n n

f z
z z

z
z z

z z
z z z

z
z z

- -

• •

= =

= -
- -

Ê ˆ Ê ˆ-= - - -Á ˜ Á ˜Ë ¯ Ë ¯
È ˘Ê ˆ È ˘Í ˙= - + + + - + + +Á ˜ Í ˙Ë ¯Í ˙Î ˚ Î ˚

Ê ˆ Ê ˆ
= - -Á ˜ Á ˜Ë ¯ Ë ¯Â Â

 

	 1 10 0

1
2

n

n nn n

z
z

• •

+ += =
= - Â - Â 	 Ans.

Example 3	 If 0 < |z – 1| < 2, express ( )
( 1)( 3)

zf z
z z

=
- -

 in a series of positive 

and negative powers of z – 1.� [AU April 2011]

Solution  Let z – 1 = u
\ 0 < |z – 1| < 2 becomes 0 < |u| < 2

Now,	
( 1)( 3) 1 3

( 3) ( 1)

z A B
z z z z

z A z B z

= +
- - - -

= - + -
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24.8	 Engineering Mathematics

Put	 11,
2

z A= fi = -

Put	 33,
2

z B= fi =

\	

1 3
2 2

( 1)( 3) 1 3
z

z z z z

-
= +

- - - -

(or)	
1 1 3

( 2) 2 2( 2)
u

u u u u
+

= - +
- -

 (as z – 1 = u fi z = u + 1)

So instead of expanding 
( 1)( 3)

z
z z- -

 in powers of (z – 1), it is enough to expand 

1
( 2)
u

u u
+
-

 in powers of u.

	

1 1 3
( 2) 2 2( 2)
u

u u u u
+

= - +
- -

Since |u| < 2, we have 
| |

1
2
u

< . i.e., 1
2
u < .

\	

1

2

0

1 1 3
( 2) 2 4 1

2

1 3 1
2 4 2

1 3 1
2 4 2 2

1 3
2 4 2

n

n

u
u u u u

u
u

u u
u

u
u

-

•

=

+ -
= -

- Ê ˆ
-Á ˜Ë ¯

Ê ˆ-
= - -Á ˜Ë ¯

È ˘Ê ˆ- Í ˙= - + + +Á ˜Ë ¯Í ˙Î ˚

Ê ˆ-
= - Á ˜Ë ¯Â



\	
0

11 3
( 1)( 3) 2( 1) 4 2

n

n

zz
z z z

•

=

Ê ˆ--= - Á ˜Ë ¯- - - Â 	 Ans.

Example 4	 Obtain the Laurent’s expansion for 
( 2)( 2)
( 1)( 4)
z z
z z

- +
+ +

 which are valid in 

(i) 1 < |z| < 4, and (ii) |z| > 4.� [AU Nov. 2011]

Solution  Let 
( 2)( 2)

( )
( 1)( 4)
z z

f z
z z

- +
=

+ +

fi	
5 8

( ) 1
( 1)( 4)

z
f z

z z
- -

= +
+ +

	 (1)

(since the degrees of z in both numerator and in denominator are equal, divide it)

Consider	
5 8

( 1)( 4) ( 1) ( 4)
z A B

z z z z
- -

= +
+ + + +
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	 Taylor and Laurent Series Expansions	 24.9

	 –5z – 8 = A(z + 4) + B(z + 1)
Put	 z = –1 fi A = –1
Put	 z = –4 fi B = –4

\	
5 8 41

( 1)( 4) ( 1) ( 4)
z

z z z z
- - --= -
+ + + +

	 (2)

Substituting (2) in (1), we get

	

1 4( ) 1
( 1) ( 4)

f z
z z

= - -
+ +

	 (i)	 Given 1 < |z| < 4

	

1 11 | | 1, i.e., 1
| |
| |

| | 4 1, i.e., 1
4 4

z
z z
z zz

< fi < <

< fi < <

		  \	

1 1

2

2 3

2

2 3

1 1

1 1( ) 1 4
11 4 1

4

1 11 1 1
4

1 1 1 11 1 1
4 4

1 1 1
4 4

1( 1) ( 1)
4

( 1)

n
n n

n
n n

n

n

f z
zz

z

z
z z

z z
z z z z

z z
z z z

z
z

- -

• •

= =

=

= - -
Ê ˆ Ê ˆ

+ +Á ˜Á ˜ Ë ¯Ë ¯

Ê ˆ Ê ˆ
= - + - +Á ˜Á ˜ Ë ¯Ë ¯

È ˘È ˘ Ê ˆÍ ˙= - - + - + - - + -Á ˜Í ˙ Ë ¯Í ˙Î ˚Î ˚
È ˘È ˘ Ê ˆÍ ˙= - + - + - - + -Á ˜Í ˙ Ë ¯Í ˙Î ˚Î ˚

Ê ˆ
= - - - ◊ Á ˜Ë ¯

= -

Â Â

 

 

1

1
4

n

n
z

z

• È ˘Ê ˆÍ ˙- Á ˜Ë ¯Í ˙Î ˚Â
	 (ii)	 Given |z| > 4

	

4 41, i.e., 1
| |z z

< <

		  \	

- -

= - -
+ +

= - -
Ê ˆ Ê ˆ

+ +Á ˜ Á ˜Ë ¯ Ë ¯

Ê ˆ Ê ˆ
= - + - +Á ˜ Á ˜Ë ¯ Ë ¯

È ˘È ˘ Ê ˆÍ ˙= - - + - - - + -Á ˜Í ˙ Ë ¯Í ˙Î ˚Î ˚
 

1 1

2

2

1 4( ) 1
1 4

1 41
1 41 1

1 1 4 41 1 1

1 1 1 4 4 41 1 1

f z
z z

z z
z z

z z z z

z z z z zz
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• •

= =

+•

+
=

• +
+

+
=

Ê ˆ
= - - - - Á ˜Ë ¯

È ˘Ê ˆÍ ˙= - - + Á ˜Ë ¯Í ˙Î ˚

-
= + +

Â Â

Â

Â

0 0

1

1
0

1
1

1
0

1 1 4 41 ( 1) ( 1)

1 41 ( 1)

( 1)1 (1 4 )

n
n n

n
n n

n n

n
n

n
n

n
n

z z zz

zz

z

	
1

11 ( 1) (1 4 )n n
n

n z

•

=

= + - + ◊Â 	 Ans.

Example 5	 Find the Laurent’s series of 1( )
(1 )

f z
z z

=
-

 valid in the region 

(i) |z + 1| < 1, (ii) 1 < |z + 1| < 2, and (iii) |z + 1| > 2.� [KU May 2010, Nov. 2011]

Solution  Let z + 1 = u or z = u – 1

\	 1 1 1 1( )
(1 ) ( 1)(2 ) 1 2

f z
z z u u u u

= = = +
- - - - -

	 (1)

	 (i)	 Given |z + 1| < 1 fi |u| < 1

		  \	

1
1

2
2

0 0

1
0

1 1( )
1 2 1

2

1(1 ) 1
2 2

1[1 ] 1
2 2 2

1
2 2

11
2

n
n

n
n n

n
n

n

f z
u u

uu

u uu u

uu

u

-
-

• •

= =

•

+
=

-= +
- Ê ˆ

-Á ˜Ë ¯

Ê ˆ
= - - + -Á ˜Ë ¯

È ˘Ê ˆ Ê ˆÍ ˙= - + + + + + + +Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

= - +

Ê ˆ
= - +Á ˜Ë ¯

Â Â

Â

 

		  i.e.,	 1
0

1( ) 1 ( 1)
2

n
n

n

f z z
•

+
=

Ê ˆ
= - + +Á ˜Ë ¯Â

	 (ii)	 Given 1 < |z + 1| < 2. i.e., 1 < |u| < 2

	

1 11 | | 1, i.e., 1
| |
| |

| | 2 1 i.e., 1
2 2

u
u u
u uu

< fi < <

< fi < <
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	 Taylor and Laurent Series Expansions	 24.11

		  Consider (1), 1 1( )
1 2

f z
u u

= +
- -

	

1 1

1 1
11 2 1

2

1 1 11 1
2 2

uu
u

u
u u

- -

= +
Ê ˆ Ê ˆ

- -Á ˜Á ˜ Ë ¯Ë ¯

Ê ˆ Ê ˆ
= - + -Á ˜Á ˜ Ë ¯Ë ¯

	

2

2

0 0

1 1
0 0

1 1 1 11 1
2 2 2

1 1 1
2 2

1
2

n

n n
n n

n

n n
n n

u u
u u u

u
u u

u
u

• •

= =

• •

+ +
= =

È ˘È ˘ Ê ˆ Ê ˆÍ ˙= + + + + + + +Á ˜ Á ˜Í ˙ Ë ¯ Ë ¯Í ˙Î ˚Î ˚

= +

= +

Â Â

Â Â

 

		  i.e.,	 1 1
0 0

1 1( ) ( 1)
( 1) 2

n
n n

n n

f z z
z

• •

+ +
= =

= + +
+Â Â

	 (iii)	 |z + 1| > 2, i.e., |u| > 2 fi 2 1
u

<

		  \	

1 1

2

2

0 0

1
0

1 1( )
1 21 1

1 1 1 21 1

1 1 1 1 2 21 1

1 1 1 2

1(1 2 )

n

n n
n n

n
n

n

f z
u u

u u

u u u u

u u u u uu

u uu u

u

- -

• •

= =

•

+
=

= -
Ê ˆ Ê ˆ

- -Á ˜ Á ˜Ë ¯ Ë ¯

Ê ˆ Ê ˆ
= - - -Á ˜ Á ˜Ë ¯ Ë ¯

È ˘È ˘ Ê ˆÍ ˙= + + + - + + +Á ˜Í ˙ Ë ¯Í ˙Î ˚Î ˚

= -

= -

Â Â

Â

 

		  or	 1
0

1( ) (1 2 )
( 1)

n
n

n

f z
z

•

+
=

= -
+Â � Ans.
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Exercise

Part A

	 1.	 Define radius and circle of convergence of power series.
	 2.	 State Taylor’s theorem and Laurent’s theorem.
	 3.	 State McLaurin’s series.
	 4.	 Give some standard McLaurin’s series.
	 5.	 What do you mean by analytic part and principal part of Laurent’s series of a 

function of z?

	 6.	 Expand 1
( 1)z z -

 as Laurent’s series about z = 0 in the annulus 0 < |z| < 1.

	 7.	 Find the Laurent’s series expansion of 
2

3( )
( 1)

zef z
z

=
-

 about z = 1.

	 8.	 Expand f(z) = ez in a Taylor’s series about z = 0.

	 9.	 Expand cos z at 
4

z p=  in a Taylor’s series.

	 10.	 In the power series a0 + a1(z – z0) + a2(z – z0)2 + …, z0 is called the ______ of the 
series.

Part B

	 1.	 Find the Taylor’s series expansion of ( )
( 1)( 2)

zf z
z z z

=
+ +

 about z = i.

		  State also the region of convergence of the series.

�
1 1

0

2 1( 1) ( )
(2 ) (1 )

n n
n n

n

z i
i i

•

+ +
=

È ˘Ï ¸Ô ÔÍ ˙- - -Ì ˝Í ˙+ +Ô ÔÓ ˛Î ˚
ÂAns.

	 2.	 Find the Laurent’s series expansion of 
2

2
1

( )
5 6

z
f z

z z
-

=
+ +

 valid in the region 

(i) |z| < 2, (ii) 2 < |z| < 3, and (iii) |z| > 3� [KU April 2013]

�

1 1 1 1
0

1

3 8 2(i) 1 ( 1) (ii) 1 3 ( 1) 8 ( 1)
2 3 3

(iii) 1 ( 1) {3.2 8.3 }1/

n nnn n n
n n n n

n

n n n n

zz
z

z

•

+ + + +
=

+

È ˘Ï ¸Í ˙+ - - + - - -Ì ˝
Í ˙Ó ˛
Í ˙
Í ˙+ - -Î ˚

Â Â Â
Â

Ans.

	 3.	 Find the Laurent’s series expansion of ( ) ,
( 1)( 2)

zf z
z z

=
- -

 valid in the region 

(i) |z + 2| < 3, (ii) 3 < |z +2| < 4, and (iii) |z + 2| > 4.

�

1 1
0 0 0

1
0

( 2)1 1 1 3(i) ( 2) (ii)
22.4 3 4 ( 2)

1(iii) (2.4 3 )
( 2)

n n
n

n n n n
n n n

n n
n

n

z
z

z

z z

• • •

+ +
= = =

•

+
=

È ˘È ˘ +Í ˙- + + - -Í ˙Í ˙+Î ˚
Í ˙
Í ˙
Í ˙- ◊
Í ˙+Î ˚

Â Â Â

Â

Ans.

EM_UnitX_24.indd   12 8/24/2017   3:30:57 PM



	 Taylor and Laurent Series Expansions	 24.13

	 4.	 Expand 
2 6 1

( 1)( 2)( 3)
z z

z z z
- -

- + -
 in 3 < |z + 2| < 5.

�

2 32

2 3 2 3
2 ( 2) ( 2)2 3 3 1 1

2 5 5( 2) ( 2) 5 5
z z z

z z z

È ˘È ˘+ + +Í ˙+ + + + + + + +Í ˙
+Í ˙+ + Î ˚Î ˚

Ans.  

	 5.	 Find Laurent’s series of ( )
(1 )

zef z
z z

=
-

 about z = 1. Find the region of 
convergence.�

�

21 1 3 1( ) ( 1) ( 1)
1 2 3

Region of convergence is| 1| 1 

f z z z
e z

z

È ˘È ˘
= - - - + - +Í ˙Í ˙-Í ˙Î ˚

Í ˙- <Î ˚

Ans. 

	 6.	 Obtain the Laurent’s series expansion for 1( )
( 1)

f z
z z

=
-

 for (i) 0 < |z| < 1, and 

(ii) 0 < |z – 1| < 1.� 2 21 1(i) (1 ) (ii) (1 ( 1) ( 1) ...)
1

z z z z
z z

È ˘
- + + + - - + -Í ˙-Î ˚

Ans. 

	 7.	 Find Laurent’s series about the indicated singularity. (i) 
2

3 , 1
( 1)

ze z
z

=
-

 

(ii) , 2
( 1)( 2)

z z
z z

= -
+ +

 (iii) 2 2
1 , 3

( 3)
z

z z
=

-
�

�

( )

2 2 2 2 2

3 2

2

2

2 2 4 2(i) ( 1)
( 1) 3 3( 1) ( 1)

2(ii) 1 ( 2) ( 2)
2

4 31 2 1(iii)
27( 3) 27 2439( 3)

e e e e e z
zz z

z z
z

z
zz

È ˘
+ + + + - +Í ˙

-- -Í ˙
Í ˙
Í ˙+ + + + + +
Í + ˙
Í ˙

-Í ˙- + - +Í ˙--Î ˚

Ans. 




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Chapter Outline

 ● Introduction
 ● Classification of Singularities
 ● Residues
 ● Cauchy’s Residue Theorem
 ● Evaluation of Real Definite Integrals by Contour Integration

25.1 ❑ inTRoduCTion

The residue theorem is a very powerful and elegant theorem in complex integration. 
Using the residue theorem, many complicated real integrals can be evaluated. It is also 
used to sum a real convergent series and to find the inverse of a Laplace transform.

25.2 ❑ ClassifiCaTion of singulaRiTiEs

A point at which a function f(z) is not analytic is known as a singular point or 
singularity of the function.

 ● Example

The function =
-
1( )

5
f z

z
 has a singular point at z – 5 = 0 or z = 5.

If z = a is a singularity of f(z) and if there is no other singularity within a small 
circle surrounding the point z = a then z = a is said to be an isolated singularity of the 
function f(z). Otherwise, it is called non-isolated.

25 Theory of Residues
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25.2	 Engineering Mathematics

●● Example

	 (i)	 The function 
- -

1
( 2)( 7)z z

 has two isolated singular points, namely, z = 2 and 

z = 7 [since (z – 2)(z – 7) = 0 or z = 2, 7].

	 (ii)	 The function 
p

1

sin
z

 is not analytic at the points where p =sin 0,
z

 i.e., at the 

points p p= n
z

.�

		  i.e., at the points = = º1 ( 1, 2, 3 )z n
n

.

Thus, = º =1 11, , , 0
2 3

z z  are the points of singularity. But z = 0 is the non-isolated 

singularity of the function 
p

1

sin
z

 because in the neighbourhood z = 0, there are 

infinite number of other singularities = 1 ,z
n

 where n is very large.

Let a function f(z) have an isolated singular point z = a. f(z) can be expanded in a 
Laurent’s series expansion around z = a as

	

2 1 2
0 1 2 2

1
1

( ) ( ) ( )
( )

( ) ( )
m m

m m

b b
f z a a z a a z a

z a z a
b b

z a z a
+

+

= + - + - + + +
- -

+ + + +
- -



 

In some cases, it may happen that the coefficients bm+1 = bm+2 = … = 0,
Then the series reduces to

= + - + - + º + + + º +
- - -

2 1 2
0 1 2 2( ) ( ) ( )

( ) ( ) ( )
m

m
bb b

f z a a z a a z a
z a z a z a

Then z = a is said to be a pole of order m of the function f(z).
When m = 1, the pole is said to be a simple pole.

In this case, f(z) = a0 + a1(z – a) + a2(z – a)2 + … + 
-
1

( )
b

z a
.

If the number of terms of negative powers in the above expansion are infinite then 
z = a is called an essential singular point of f(z).

If a single-valued function f(z) is not defined at z = a, but 
Æ

lim ( )
z a

f z  exists then z = a 
is called a removable singularity.�

●● Example

z = 0 is a removable singularity of =
sin

( ) ,
z

f z
z

 since f(0) is not defined, but 

Æ

Ê ˆ
=Á ˜Ë ¯0

sin
lim 1
z

z
z

.�
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	 Theory of Residues	 25.3

25.3  ❑  Residues

Residue of an analytic function f(z) at an isolated singular point z = a is the coefficient 
say b1 of (z – a)–1 in the Laurent’s series expansion of f(z) about a. Residue of f(z) at a is 
denoted by 

=
Re ( )

z a
s f z . From Laurent’s series, we know that the coefficient b1 is given 

by 
p

= Ú1
1 ( )

2 C
b f z dz

i
.�

Thus, the residue of 
p=

= = = = Ú1
1( ) at , Res ( ) ( ) .

2 Cz a
f z z a f z b f z dz

i
where C is any closed contour enclosing a (and such that f is analytic on and within C).

Calculation of Residue at Simple Pole

	 (i)	 If f(z) has a simple pole at z = a, then 
Æ=

= -Res ( ) lim( ) ( )
z az a

f z z a f z .

	 (ii)	 Suppose = ( )( )
( )

P zf z
Q z

 has a simple pole at a such that P(a) π 0.

		  Then 
==

= =
¢ ¢
( ) ( )Res ( ) Res
( ) ( )z az a

P z P af z
Q z Q a

Calculation of Residue at a Multiple Pole

If f(z) has a pole of order n at z = a, then

	

-

-Æ=

Ï ¸Ô Ô
= -Ì ˝

- Ô ÔÓ ˛

1

1
1Res ( ) lim [( ) ( )]

( 1)!

n
n

nz az a

df z z a f z
n dz

25.4  ❑  Cauchy’s Residue Theorem

If f(z) is analytic within and on a simple closed curve C except at a finite number of 

poles within C then ( ) 2
C

f z dz ip=Ú  (sum of residues at the poles within C).

Proof Let C1, C2, C3 … Cn be the non-intersecting circles 
with centre at a1, a2 … an respectively and radii so small 
that they lie entirely within the closed curve C. Then f(z) 
is analytic in the multiply connected legion lying between 
the curves C and C1, C2 … Cn. Applying Cauchy’s theorem,

1 2

1 2

1 2

( ) ( ) ( ) ( )

2 Re ( ) 2 Re ( ) 2 Re ( )

2 Re ( ) Re ( ) Re ( )

n

n

n

C C C C

z a z a z a

z a z a z a

f z dz f z dz f z dz f z dz

i s f z i s f z i s f z

i s f z s f z s f z

p p p

p
= = =

= = =

= + + +

= + +

È ˘= + +
Í ˙Î ˚

Ú Ú Ú Ú





   

\ ( ) 2
c

f z dz ip=Ú  (sum of residues at the poles within C)

Fig. 25.1
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25.5  ❑  �Evaluation of Real Definite Integrals by Contour 
Integration

A large number of real definite integrals, whose evaluation by usual methods become 
sometimes very tedious, can be easily evaluated using Cauchy’s theorem of residues. 
For finding the integrals, we take a closed curve C, find the poles of the function f(z) 
and calculate residues at those poles only which lie within the curve C.

Then using Cauchy’s theorem of residues, we have ÚCf(z)dz = 2pi (sum of the 
residues of f(z) at the poles within C)

We call the curve a contour and the process of integration along a contour as 
contour integration.

Type 1

Integrals of the form Ú
2

0
(cos , sin )

p
q q qf d  where f is a rational function of cos q 

and sin q
In this type of integrals, put z = eiq

Differentiating with respect to q, we get,

	
q q q= =, i.e.,i dzdz ie d d

iz

We know that cos
2

i ie eq q
q

-+
=

i.e.,	 1 1cos
2

z
z

q
Ê ˆ

= +Á ˜Ë ¯

and	 1 1sin
2

z
i z

q
Ê ˆ

= -Á ˜Ë ¯

\	
2

0

1 1

(cos , sin ) ,
2 2C

z z dzz zf d f
i iz

p
q q q

Ê ˆ
+ -Á ˜

= Á ˜Ë ¯Ú Ú
where C is the unit circle |z| = 1

	

1 1 1 1 1,
2 2

( ) (say)

C

C

dzf z z
i z i z z

z dzf

È ˘Ê ˆ Ê ˆ
= + -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

=

Ú
Ú

Clearly, f(z) is a rational function of z.
Hence, by the residue theorem, ÚCf(z)dz = 2pi (sum of the residues of f(z) at its poles 

inside C).

Type 2

Consider the integral ÚCf(z)dz, where C is the positively 
oriented semicircle G, |z| = R, Im z ≥ 0 together with the 
line segment L : [–R, R]. Such integrals can be evaluated by 
integrating f(z) round a contour C consisting of a semicircle 
G of radius R large enough to include all the poles of f(z) 

Fig. 25.2
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and the part of the real axis from x = –R to x = R. Here, the only singularities of f(z) in 
the upper half-plane are poles.

When f(z) has singularities on the real axis then ( ) ( ) ( )
R

C R
z dz x dx z dzf f f

- G
= +Ú Ú Ú .

By the residue theorem, we have ÚCf(z)dz = 2pi (sum of the residues of the function 
f(z) at its poles in the upper half-plane).

i.e., ( ) ( ) 2
R

R
x dx z dz if f p

- G
+ =Ú Ú  (sum of the residues of the function f(z) at its poles 

within C).�

Putting R Æ • we get, ( ) ,x dxf
•

-•Ú  provided ÚGf(z)dz Æ 0.

Type 3

Integrals of the form (sin ) ( )ax f x dx
•

-•Ú  or (cos ) ( )ax f x dx
•

-•Ú . a > 0 where f(z) is such 

that f(z) Æ 0 as z Æ • and it does not have a pole on the real axis.

Solved Examples

Example 1	 Find the residue of 2 2
1( )

( 1)
f z

z
=

+
 about each singularity.

Solution  Given 
2 2 2

2 2

1 1( )
( 1) [( )( )]

1
( ) ( )

f z
z z i z i

z i z i

= =
+ - +

=
- +

Here, z = i, –i are poles of order 2.

Now,	 = Æ

Æ

= -

È ˘
= - ◊Í ˙- +Í ˙Î ˚

2

2
2 2

1[Res ( )] Lt [( ) ( )]
1!

1Lt ( )
( ) ( )

z i z i

z i

df z z i f z
dz

d z i
dz z i z i

	

2

3 3

1Lt
( )
2 2 1Lt

4( ) (2 )

4

z i

z i

d
dz z i

iz i i
i

Æ

Æ

È ˘
= Í ˙+Í ˙Î ˚

- -
= = =

+
-

=
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= - Æ -

Æ -

Æ -

Æ -

= +

È ˘
= + ◊Í ˙- +Í ˙Î ˚

È ˘
= Í ˙-Í ˙Î ˚

- -
= = =

-

2

2
2 2

2

3

1[Res ( )] Lt [( ) ( )]
1!

1Lt ( )
( ) ( )

1Lt
( )
2 2Lt

8 4( )

z i z i

z i

z i

z i

df z z i f z
dz

d z i
dz z i z i

d
dz z i

i
iz i

	 Ans.

Example 2	 Evaluate 2
1

( 1) ( 2)C

z
dz

z z
-

+ -Ú  where C is the circle |z – i| = 2.�

� [AU June 2009, May 2012]

Solution  Let f(z) = 2
1

( 1) ( 2)
z

z z
-

+ -
�

Here, z = –1 is a pole of order 2.
And z = 2 is a simple pole.
Clearly, z = 2 lies outside the circle |z – i| = 2
\	 [Res f(z)]z = 2 = 0

Now,	 = - Æ -

Æ -

Æ -

Æ -

Æ - Æ -

= +

È ˘-
= + ◊Í ˙

+ -Í ˙Î ˚
È ˘-

= Í ˙-Î ˚
È ˘- - -

= Í ˙
-Í ˙Î ˚

È ˘ È ˘- +
= = -Í ˙ Í ˙- -Í ˙ Í ˙Î ˚ Î ˚

-
= = -

- -

2
1 1

2
21

1

21

2 21 1

2

1[Res ( )] Lt [( 1) ( )]
1!

( 1)
Lt ( 1)

( 1) ( 2)

1
Lt

2

( 2) ( 1)
Lt

( 2)

2 1 1Lt Lt
( 2) ( 2)

1 1
9( 1 2)

z z

z

z

z

z z

df z z f z
dz

zd z
dz z z

zd
dz z

z z
z

z z

\ by Cauchy’s residue theorem,

	 2
1

2
( 1) ( 2)C

z
dz i

z z
p

-
=

+ -Ú  [sum of the residues]

	 1 22
9 9

ii pp
Ê ˆ -= - =Á ˜Ë ¯ 	 Ans.

Example 3	 Evaluate 2 3 ,
( 9)C

dz
c z +Ú  where C is |z – i| = 3 by using Cauchy’s residue 

theorem.� [KU Nov. 2011]

Solution  Let 2 3
1( )

( 9)
f z

z
=

+
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	 Theory of Residues	 25.7

The singularities of f(z) are obtained by z2 + 9 = 0
fi z = ±3i, of which z = 3i lies inside the circle |z – i| = 3 
z = 3i is a triple pole of f(z).

\	 =
=

=

È ˘
= Í ˙

+Í ˙Î ˚

È ˘
= Í ˙+Í ˙Î ˚

= =

2

3 2 3
3

5
3

5 5

1 1[Res ( )]
2! ( 3 )

1 12
2! ( 3 )

6 1
12966

z i
z i

z i

df z
dz z i

z i

ii
By Cauchy’s residue theorem,

	 2 3
12

1296 648( 9)C

dz i
iz

pp= ¥ =
+Ú 	 Ans.

Example 4	 Show that 
2

2 20

2 , 0
cos

d a b
a b a b

p q p
q

= > >
+ -Ú .

� [KU May 2010; AU Nov. 2010, Nov. 2011, April 2013]

Solution  Let z = eiq

fi	

1 1cos
2

dzd
iz

z
z

q

q

=

Ê ˆ
= +Á ˜Ë ¯

\	
2

0

2

where is| |= 1
cos 1 1

2
1

1 1
2

1
2

2

C

C

C

dz
d iz C z

a b a b z
z

dz
i

z a b z
z

dz
i az bz bz

z

p q
q

=
+ Ê ˆ

+ +Á ˜Ë ¯

=
È ˘Ê ˆ

+ +Í ˙Á ˜Ë ¯Î ˚

=
È ˘+ +
Í ˙
Î ˚

Ú Ú

Ú

Ú

 

i.e.,	
2

20

2
cos 2C

d dz
a b i bz az b

p q
q

=
+ + +Ú Ú

	 2 ( )
C

f z dz
i

= Ú 	 (1)

The poles of f(z) are given by the roots of bz2 + 2az + b = 0

\	
2 2

2 2

2 4 4
2

a a b
z

b
a a b

b

- ± -
=

- ± -
=

Fig. 25.3
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i.e.,	
2 2 2 2

,
a a b a a b

z
b b

- + - - - -
=

Let	
2 2 2 2

;
a a b a a b

b b
a b

- + - - - -
= =

Since a > b > 0, |b| > 1
But the modulus of the product of the roots |ab| = 1 (since if az2 + b + c = 0, product 

of the roots | | c
a

a b = ).

Since |b| > 1 and |ab| = 1, we get |a| < 1 so that z = a is the only simple pole 
inside C.

Since z = a and z = b are the roots of bz2 + 2az + b = 0, we can write bz2 + 2az + b = 
b(z – a)(z – b)

Hence,	 1( )
( )( )

f z
b z za b

=
- -

Now,	 a a

a

a

a

a
a b

b a b

= Æ

Æ

Æ

= - ◊

= -
- -

= =
- -

=
È ˘Ê ˆ Ê ˆ- + - - - -Í ˙Á ˜ Á ˜-Í ˙Ë ¯ Ë ¯Î ˚

=
-

=
-

2 2 2 2

2 2

2 2

[Res ( )] Lt ( ) ( )

1Lt ( )
( )( )

1 1Lt
( ) ( )

1

1

2

1

2

z z

z

z

f z z f z

z
b z z

b z b

a a b a a b
b

b b

a b
b

b

a b

From (1), since |b| > 1,
b lies outside the circle |z| = 1
\	 [Res f(z)]z = b = 0

Hence, (1) fi	
2

0

2 ( )
cos C

d f z dz
a b i

p q
q

=
+Ú Ú

	 2
i

= [2pi ¥ (sum of the residues)]

	
2 2

2 12
2

i
i a b

p
È ˘

= ◊ Í ˙
-Í ˙Î ˚

\	
2

2 20

2
cos

d
a b a b

p q p
q

=
+ -Ú 	 Ans.
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	 Theory of Residues	 25.9

Example 5	 Evaluate 2 20
, 0

sin
ad a

a

p q
q

>
+Ú .� [KU Nov. 2010]

Solution  Let	 2 20

0 2

20

sin

1 cos 2
2

2
2 1 cos 2

adI
a

ad

a

ad
a

p

p

p

q
q
q

q

q
q

=
+

=
Ê ˆ-

+ Á ˜Ë ¯

=
+ -

Ú
Ú

Ú
Put 2q = f fi 2dq = df
When q = 0, f = 0 and when q = p, f = 2p

\	
2

20

2
2

2 1 cos

da
I

a

p
f

f

Ê ˆ
Á ˜Ë ¯

=
+ -Ú

	
2

20 2 1 cos
ad

a

p f
f

=
+ -Ú 	 (1)

Put z = eif, then dzd
iz

f =

	    

1 1cos
2

z
z

f
Ê ˆ

= +Á ˜Ë ¯

Then	
2

(1)
1 12 1
2

C

dza
izI

a z
z

◊
fi =

È ˘Ê ˆ
+ - +Í ˙Á ˜Ë ¯Î ˚

Ú

where C is the unit circle |z| = 1

	

2
2

2 2

2 2

2 2

2 2

112 1
2

4 2 1
2

2
(4 2) 1

2
(4 2) 1

2
(4 2) 1

C

C

C

C

C

a dz
i z

a
z

a dz
i a z z z

z
a dz
i a z

a dz
i z a z

dzai
z a z

=
È ˘Ê ˆ+Í ˙+ - Á ˜Ë ¯Í ˙Î ˚

=
È ˘+ - -
Í ˙
Î ˚

=
+ - -

= -
- + +

=
- + +

Ú

Ú

Ú
Ú

Ú
\ I = ÚCf(z)dz, where	 2 2

2( )
(4 2) 1

aif z
z a z

=
- + +
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The poles of f(z) are the solutions of
	 z2 – (4a2 + 2)z + 1 = 0
	 z2 – (4a2 + 2)z + 1 = 0

\	
2 2 2

2 2

2 2

(4 2) (4 2) 4
2

2(2 1) 4 1
2

(2 1) 2 1

a a
z

a a a

a a a

+ ± + -
=

+ ± +
=

= + ± +

fi	 2 2 2 2(2 1) 2 1 or (2 1) 2 1z a a a a a a= + + + + - +

Let	 2 2 2 2(2 1) 2 1 and (2 1) 2 1a a a a a aa b= + + + = + - +

Since a, b are the roots of z2 – (4a2 + 2)z + 1 = 0, the product of the roots ab = 1
Since a > 0, a > 1 also, b < 1.

\ out of the two poles a and b, z = b lies within the unit circle |z| = 1 (since |b| < 1)

Now,	

2 2 2 2

2 2

[Re ( )] Lt ( ) ( )

2Lt ( )
( )( )

2

2

(2 1 2 1) (2 1 2 1)
2

4 1 2 1

z z

z

s f z z f z

aiz
z z

ai

ai

a a a a a a
ai i

a a a

b b

b

b

b
a b

b a

= Æ

Æ

= - ◊

= - ◊
- -

=
-

=
+ - + - + - +

-= =
- + +

\	 I = ÚCf(z)dz
	 = 2pi [sum of the residues of f(z) at its poles]

	
2

2
2 1

ii
a

p
È ˘-= Í ˙

+Í ˙Î ˚

\	 2 2 20 sin 1

ad
a a

p q p
q

=
+ +Ú 	 Ans.

Example 6	 Evaluate 
2

2 2 2 2 , 0, 0
( )( )

x dx a b
x a x b

•

-•
> >

+ +Ú .

� [KU May 2010, Nov. 2011]

Solution  Let 
2

2 2 2 2( )
( )( )C C

zz dz dz
z a z b

f =
+ +Ú Ú

where C consists of the semicircle G and the bounding diameter [–R, R].

Now,	 ( ) ( ) ( )
R

C R
z dz x dx z dzf f f

- G
= +Ú Ú Ú 	 (1)
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	 Theory of Residues	 25.11

Now,	
2

2 2 2 2

2

( )
( )( )

( )( )( )( )

zz
z a z b

z
z ia z ia z ib z ib

f =
+ +

=
+ - + -

Here, the poles are z = ia, –ia, ib, –ib
Here, z = ia and z = ib lie in the upper half-plane while z = –ia and z = –ib lie in the 

lower half-plane.
We have to find the residues of f(z) at each of its poles which lies in the upper 

half-plane.
\	

2

2

2 2

2

2 2

2

2 2

2 2

[Re ( )] Lt ( ) ( )

Lt ( )
( )( )( )( )

Lt
( )( )

( )Lt
( )(( ) )

2 ( )

2 ( )

z ia z ia

z ia

z ia

z ia

s f z z ia z

zz ia
z ia z ia z ib z ib

z
z ia z b

ia
ia ia ia b

a
ia a b

a
i a b

f= Æ

Æ

Æ

Æ

= - ◊

= -
+ - + -

=
- +

=
+ +

-
=

- +

=
-

	

2

2 2

2

2 2

2

2 2

2

2 2 2 2

[Re ( )] Lt ( ) ( )

Lt ( )
( )( )( )

Lt
( )( )

( )
[( ) ][ ]

( )2 2 ( )

z ib z ib

z ib

z ib

s f z z ib z

zz ib
z a z ib z ib

z
z a z ib

ib
ib a ib ib

b b
a b ib i a b

f= Æ

Æ

Æ

= -

= -
+ + -

=
+ +

=
+ +

- -
= =

- -

In (1), making R Æ •, we get

	
( ) ( ) ( )

C
z dz x dx z dzf f f

•

-• G
= +Ú Ú Ú

When R Æ •, |z| Æ • and f(z) Æ 0

\	 ( ) ( )
C

z dz x dxf f
•

-•
=Ú Ú  [from (1)]

\	
2 2

2 2 2 2 2 2 2 2( )( ) ( )( )
2

x dx z dx
x a x b z a z b

ip

• •

-• -•
=

+ + + +
=

Ú Ú
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[sum of the residues of f(z) at each pole in the upper half-plane]

	

2 2 2 2

2 2

2
2 ( ) 2 ( )

2 2
2 ( )( )2 ( )

a bi
i a b i a b

a bai i
i a b a bi a b

p

p p

È ˘
= -Í ˙- -Í ˙Î ˚

È ˘È ˘ -
= = Í ˙Í ˙ - +-Í ˙ Î ˚Î ˚

fi	
2

2 2 2 2( )( )
x dx

a bx a x b
p•

-•
=

++ +Ú 	 Ans.

Example 7	 Evaluate 40 1
dx

x

•

+Ú .� [KU Nov. 2010]

Solution  Consider 
40

4 40 0

1

1 1

dx
x

dx dx
x z

•

• •

+

=
+ +

Ú
Ú Ú

i.e.,	 4 40
2

1 1
dx dx

x z

• •

-•
=

+ +Ú Ú
The poles are the roots of z4 + 1 = 0
i.e.,	 z4 = –1

fi	
1
4( 1)z = -

	 cos(2 1) sin(2 1)
4 4

n i np pÈ ˘
= + + +Í ˙Î ˚

 where n = 0, 1, 2, 3

When n = 0,  4
1 1cos sin

4 4 2 2

i
z i e i

pp p= + = = +

When n = 1, 
3
4

3 3cos sin
4 4

i
z i e

pp p= + =

When n = 2, 
5
4

5 5cos sin
4 4

i
z i e

pp p= + =

When n = 3, 
7
4

7 7cos sin
4 4

i
z i e

pp p= + =

Hence, the poles are 
3 5 7

4 4 4 4, , ,
i i i i

z e e e e
p p p p

= .

Out of these poles, 
3

4 4,
i i

z e e
p p

=  lies in the upper half-plane.

\	

( )

p

p
p

p p

f

p

= Æ

Æ

-
=

+

= =

=

4

4
4

4 4

4

3 3

[Res ( )] Lt
1

1 1Lt (applying L'Hospital's rule)
4 4

1
34
4

i

i
i

i i

z e z e

z e

z e
z

z

z e

ie
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( )

p

p
p

p p

p

f
= Æ

Æ

-
=

+

= =

=

3
4

3
3

4
4

3 3
4 4

9
4

4

3 3

[Res ( )] Lt
1

1 1Lt
4 4

1

4

i

i
i

i i

z e z e

z e

i

z e
z

z

z e

e

\	 4 40
2

1 1
dx dz

x z

• •

-•
=

+ +Ú Ú
	 = �2pi [sum of the residues at each pole in the upper 

half-plane]

	

3 9
4 4

93
4 4

1 12
4 4

2
3 3 9 9cos sin cos sin

2 4 4 4 4
1 1 2

2 22 2 2 2 2 2

i i

ii

i
e e

i e e

i i i

i i i i i

p p

pp

p

p

p p p p p

p p p

- -

È ˘
= +Í ˙

Î ˚
È ˘= +Í ˙Î ˚

È ˘Ê ˆ Ê ˆ
= - + -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

È ˘ È ˘-
= - - + - = =Í ˙ Í ˙

Î ˚ Î ˚

\	 4 40

1 1
2 21 1 2

dx dz
x z

p• •

-•
= =

+ +Ú Ú 	 Ans.

Exercise

Part A

	 1.	 Define essential singularity with an example.
	 2.	 Define removable singularity with an example.
	 3.	 Define simple pole and multiple pole of a function f(z). Give one example for 

each.
	 4.	 Define the residue of a function at an isolated singularity.
	 5.	 State the formula for finding the residue of a function at a multiple pole.
	 6.	 Find the residues at the isolated singularities of each of the following:

	 (i)	
( 1)( 2)

z
z z+ -

	 (ii)	 2( 1)

zze
z -

	 (iii)	 3
sin

( )
z z
z p-

	 7.	 Evaluate the following integrals using Cauchy’s residue theorem:

	 (i)	
1

( 1)C

z
dz

z z
+
-Ú  where C : |z| = 2
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	 (ii)	 2

z

C

e dz
z

-

Ú  where C : |z| = 1

	 8.	 Explain how to convert 
2

0
(sin , cos )f d

p
q q qÚ  into a contour integral, where f is 

a rational function.�

	 9.	 Obtain the poles of 2
4

2 5
z

z z
+

+ +
.

	 10.	 By using residue theorem, find the value of 
2
1C

z
dz

z
-
-Ú  where C is |z| = 2.

	 11.	 Find the residue of 
2

2( )
( 1) ( 2)

zf z
z z

=
- +

 at z = –2.

	 12.	 Find the singularities of 2
4

( )
2 2

z
f z

z z
+

=
+ +

.

	 13.	 Find the residue of 2( )
1

zf z
z

=
+

 about z = i.

	 14.	 Find the residue of 2 2 2
1( )

( )
f z

z a
=

+
 at z = ai

	 15.	 Find the residue of the function 3
4( )

( 2)
f z

z z
=

-
 at a simple pole.

	 16.	 Find the poles of 1( )
1sin

f z

z a

=

-

.

	 17.	 Find the singularities of the function 3
cot

( )
( )

z
f z

z a
p

=
-

.

	 18.	 Give the forms of the definite integrals which can be evaluated using  the 
infinite semicircular contour above the real axis.

	 19.	 Define Cauchy’s residue theorem.

	 20.	 Find the residue of 3 2
1

( 1)z -
 at z = 1.

Part B

	 1.	 Evaluate the following using Cauchy’s residue theorem:

	 (i)	
1 2 3, :| |

( 1)( 2) 2C

z
dz C z

z z z
-

=
- -Ú

	 (ii)	
2 1

, :| | 1
( 2)(2 1)C

z
dz C z

z z z
-

=
+ +Ú

	 (iii)	 2 , :| | 1
z

C

e dz C z
z

-
=Ú

	 (iv)	 2
12 7

, :| | 3
( 1) (2 3)C

z
dz C z i

z z
-

+ =
- +Ú

�

5(i) 3 (ii) (iii) 2 (iv) 4
3

ii i ipp p p
È ˘

-Í ˙Î ˚
Ans.
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	 2.	 Evaluate 
2

0 13 5 sin
dp q

q+Ú .�
6
pÊ ˆ

Á ˜Ë ¯Ans.

	 3.	 Evaluate 
2

0 17 8 cos
dp q

q-Ú .� 2
15
pÊ ˆ

Á ˜Ë ¯Ans.

	 4.	 Evaluate 4 40

dx
x a

•

+Ú .� 3 2a
pÊ ˆ

Á ˜◊Ë ¯
Ans.

	 5.	 Evaluate 
2

2 20 ( 1)( 4)
x dx

x x

•

+ +Ú .�
6
pÊ ˆ

Á ˜Ë ¯Ans.

	 6.	 Evaluate 2 2 20 ( )
dx

x a

•

+Ú .� 3 , 0
4

a
a
pÊ ˆ

>Á ˜Ë ¯
Ans.

	 7.	 Evaluate 2 20

sinx x
dx

x a

•

+Ú .� 1
2

aep -Ê ˆ
Á ˜Ë ¯Ans.

	 8.	 Evaluate 2 2
cos x

dx
x a

•

-• +Ú .� ae
a
p -Ê ˆ

Á ˜Ë ¯Ans.

	 9.	 Prove that 2 3
3
8( 1)

dx
x

p•

-•
=

+Ú .

	 10.	 Evaluate 
2

2 20 ( 1)( 4)
x dx

x x

•

+ +Ú .�
6
pÊ ˆ

Á ˜Ë ¯Ans.

	 11.	 Evaluate the integral 
2

40 1
x dx

x

•

+Ú  using contour integration.

	 12.	 Evaluate 2 20

cos
(1 )

x
dx

x

•

+Ú .�
2e
pÊ ˆ

Á ˜Ë ¯Ans.
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UNIT V 

 

LAPLACE TRANSFORMS 

 

CHAPTER I 

 

1.1 Introduction 

The knowledge of Laplace transforms has in recent years become an 

essential part of mathematical background required of engineers and scientists. 

This is because the transform methods provide an easy and effective means for 

the solution of many problems arising in engineering. 

     This subject originated from the operational methods applied by the 

English engineer Oliver Heaviside (1850-1925) to problems in electrical 

engineering. Unfortunately, Heaviside’s treatment was unsystematic and lacked 

rigour, which was placed on sound mathematical footing by Bromwich and 

Carson during 1916-17. It was found that Heaviside’s operational calculus is best 

introduced by means of a particular type of definite integrals called Laplace 

transforms(Pierre Simon Marquis De Laplace, French Mathematician (1749-

1827) used such transforms much earlier in 1799, while developing the theory of 

probability). 

Laplace transform is useful since 

(i) Particular solution is obtained without first determining the general 

solution. 

(ii) non homogeneous equation are solved without obtaining the 

complementary integral. 

(iii) Laplace transform is applicable not only to continuous functions 

but also to piecewise continuous functions, complicated periodic 

functions, step functions and impulse functions. 

Before the advent of  calculators and computers, logarithms were 

extensively used to replace multiplication (or division) of two large numbers by 

addition (or subtraction) of two numbers. The crucial idea which made the 

Laplace transform, a very powerful technique is that it replaces operations of 

calculus by operations of algebra. 

Laplace transformation when applied to the initial value problem 

consisting of a single or a system of linear, ordinary differential equations, 

converts it into a single or a system of linear, algebraic equations in terms of the 

Laplace transform of the dependent variable. This equation is called the 

subsidiary equation. The initial conditions are automatically absorbed during the 

derivation of this algebraic equation. The solution of this algebraic equation gives 

the expression for the Laplace transform of the dependent variable. Taking the 

inverse Laplace transformation, we find the solution of the original initial value 

problem. 

 In the case of partial differential equations in terms of two independent 

variables, the Laplace transformation is applied with respect to one of the 

variables, usually the variable t(time). The resulting ordinary differential equation 

in terms of the second variable is solved by the usual methods of solving ordinary 
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differential equations. The inverse laplace transform of this solution gives the 

solution of the given partial differential equation. 

 One of the important applications of Laplace transformation is the solution 

of the mathematical models of physical systems in which the right hand side of 

the differential equation, representing the driving force is discontinuous or acts for 

a short time only or is a periodic function (which is not necessarily a since or a 

cosine function). 

 

1.2 Laplace transform 

Let ( )tf  be a given function defined for all 0t . Laplace transform 

of ( )tf denoted by ( )( )tfL  or Simply ( )fL is defined as 

( )( ) ( ) ( )sFdttfetfL st == 


−

0
                                                                         (1) 

L  is known as Laplace transform operator. The original given function ( )tf  

known as determining function depends on ,t  while the new function to be 

determined ( ),sF called as generating function, depends only on s  (because the 

improper integral on the R.H.S of (1) is integrated with respect to t ). 

       ( )sF  in (1) is known as the Laplace transform of ( )tf . Equation (1) is known 

as direct transform, or simply transform in which ( )tf  is given and ( )sF  is to be 

determined. 

        Thus Laplce transform transforms one class of complicated functions ( )tf to 

produce another class of simpler functions ( )sF . 

 

1.3 Applications 

Laplace transform is very useful in obtaining solution of linear differential 

equations, both ordinary and partial, solution of system of simultaneous 

differential equations, solution of integral equations, solution of linear difference 

equations and in the evaluation of definite integrals. 

 

1.4 Sufficient conditions for the existence of Laplace transform of ( )tf  

The Laplace transform of ( )tf  exists, when the following sufficient conditions 

are satisfied. 

 

Piece-wise or sectional continuity 

A function ( )xf  is called 

sectionally continuous or piece-wise 

continuous in any interval  ba,  if it is 

continuous and has finite left and right 

hand limits in every subinterval  11,ba  

as shown in the graph of the 

function ( )xf . 

 

                                                                                            Fig. 1                                                                                                                                                                
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Functions of exponential order 

 A function ( )xf is said to be of exponential order ''a  as →x  

if ( )=−

→
xfeLt ax

x
finite quantity. 

 

Example: 

(a) Since =
→ tt e

t
Lt

3

2

finite, ( ) 2ttf =  is of exponential order say3  . 

(b) Since =
→ t

t

t e

e
Lt



2

not finite, ( )
2tetf = is not of exponential order. 

 

1.5 Laplace transforms of some elementary functions. 

1. ( ) ( )0,
1

1 = s
s

L  

2. ( ) ,
!
1+

=
n

n

s

n
tL when ...........2,1,0=n  

      or ( ) ( )
,

1
1+

+
=

n

n

s

n
tL when ........2,1,0=n  

3. ( ) ( )as
as

eL ta 
−

= ,
1

 

4. ( ) ( )0,sin
22


+

= s
as

a
atL  

5. ( ) ( )0,cos
22


+

= s
as

s
atL  

6. ( ) ( )as
as

a
hatL 

−
= ,sin

22
 

7. ( ) ( )as
as

s
hatL 

−
= ,cos

22
 

Proof 

1. ( )  ( )dttfetfL st




−=
0

 

( ) 



−

−









−=









−
==

0
00

11
11

st

st
st

ess

e
dteL  

                                      
ss

1
10

1
=−−=  

 Hence ( )
s

L
1

1 =  

In general ( ) ,
s

K
kL = where 0s  and k  is a constant. 
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2.   ( )dttfetL nstn




−=
0

 

Putting xst = or
s

x
t =  or 

s

dx
dt =  

       Thus we have ( ) 


−








=

0 s

dx

s

x
etL

n

xn
 

   i.e., ( ) 


−

+
=

0`1

1
dxxe

s
tL nx

n

n
 

   or ( )
`1

!
+

=
n

n

s

n
tL [since ( ) 


−=+

0
1 dxxen nx and ( ) !1 nn =+ ] 

3. ( ) dteeeL tatsat




−=
0

 

                dte atts




+−=
0

 

           
( )

( )

( )




−−
−−

 








−−
==

0
0 as

e
dte

tas
tas

  

  
( )



− 








−
−=

0

11
taseas

 

  
( )

( )
asas −

=−
−

−=
1

10
1

 

4. ( ) dtateatL st sinsin
0


−=  

   ( )


−









−−

+
=

0

22
cossin ataats

as

e st

 

              
22 as

a

+
=  

(or) 

            ( ) 






 −
=

−

i

ee
LatL

atiati

2
sin .  (as 

i

ee
at

atiati

2
sin

−−
= ) 

     ( ) atiati eeL
i

−−=
2

1
 

     ( ) ( ) atiati eLeL
i

−−=
2

1
 

     
2222

2

2

111

2

1

as

a

as

ia

iiasiasi +
=









+
=









+
−

−
=  

5. ( ) 


−=
0

cos.cos dtateatL st  

    ( )


−









−−

+
=

0

22
sincos ataats

as

e st
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    ( )s
as

−
+

−=
22

1
 

( )
22

cos
as

s
atL

+
=  

6. ( ) 


−=
0

sinsin dthatehatL st  

     dt
ee

e
atat

st .
20


−

−








 −
=  

     ( ) ( )





 −= 


+−


−−

002

1
dtedte tastas  

     








+
−

−
=

asas

11

2

1
 

 ( )
22

sin
as

a
hatL

−
=  

7. ( ) 


−=
0

coscos dthatehatL st  

      


−
−








 +
=

0
.

2
dt

ee
e

atat
st  

`       




 += 


−−


−

002

1
dteedtee atstatst

 

      
( ) ( )





 += 


+−


−−

002

1
dtedte tastas

 

      
2222

2

2

111

2

1

as

s

as

s

asas −
=








−
=









+
+

−
=  

 ( )
22

cos
as

s
hatL

−
= . 

 

1.6 Laplace transforms of some special functions 

 

Heaviside’s unit step function 

The function 

( )







=−

0,1

,0

awhereatif

atif
atu  

is called Heaviside’s unit step function and 

is denoted by ( )tua  or ( )atu − . 

In particular when ,0=a  

 

                                                          Fig. 2 

 

( )







=

01

00

tif

tif
tu
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Multiplying a given function ( )tf with the unit step function ( ),atu − several 

effects can be produced as shown in the following figure. 

 

                                                           Fig. 3                                                 

( ) t4sintf =                                ( ) ( )3tutf −                               ( ) ( )3tu3tf −−  

Given function                Switching off and on             Shifted to the right by  3  

                                                                                                       units 

 

Unit impulse function (or Dirac’s Delta function) 

 When a large force acts for a short time, then the product of the force and 

the time is called impulse in Fluid Mechanics. 

Impulse of a forces ( )tf in the interval 

( )+aa,  

( )dttf
a

a
+

= . 

Now define the function 

( )















+




=−

atfor

atafor

atfor

atf

0

1

0

 

This can also be represented interms of 

two unit step functions as follows.                                      Fig. 4                                       

( ) ( ) ( )( ) +−−−


=− atuatuatf
1

                                   

Note that 

( )  
+ 

+



 =+


+=−
a

a a

a

dtdtatf 10
1

0
00

 

Thus the Impulse I  is1 

Taking Laplace transform 

( )  ( ) ( )( ) +−−−


=− atuatuLatfL
1
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          ( ) saas ee
s

+−− −


=
1 ( )

s

e
e

S
as



−
=

−
− 1

 

Dirac delta function (or unit impulse function) denoted by  

( )at − is defined as the limit of ( )atf −
as 0→ .                                                 

i.e., ( ) ( )atfLtat −=− 
→0

 . 

 

Laplace transform of unit step function 

( )( ) ( )dttuetuL a

st

a 


−=
0

 

 ( ) ( )dttuedttue
a

a

st

a

st




−


− +=
0

 

 


−=
0

dte st (by the definition of ( )tua ) 

,
s

e

s

e as

a

st −


−

=








−
= assuming that 0s  

In particular ( )( ) ( )1
1

0 L
s

tuL == . 

 

Laplace transform of Dirac delta function 

( )( ) ( ) atfLLtatL −=− 
→0

  

      
( )

s

e
eLt

s
as



−
=

−
−

→

1

0
       

( )( ) aseatL −=−  . 

 

1.7 Properties of Laplace transforms 

1. Linearity Property 

If cba ,, be any constants and hgf ,,  any functions of t , then 

( ) ( ) ( )  ( )( ) ( )( ) ( )( )thLctgLbtfLathctbgtfaL −+=−+  

 

L.H.S 

( ) ( ) ( )  ( ) ( ) ( ) dttchtbgtfaethctbgtfaL st




− −+=−+
0

 

           ( ) ( ) ( )dtthecdttgebdttfea ststst

 


−
 

−− −+=
00 0

 

        ( )( ) ( )( ) ( )( )thLctgLbtfLa −+= . 

      This result can easily be generalized. 

      Because of the above property of ,L it is called a linear operator. 

 

2. First shifting property (or) (Translation on the s-axis or shifting on the  

s-axis) 

If ( )( ) ( ),sFtfL = then ( )( ) ( )asFtfeL at −= . 
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            L.H.S 

( )( ) ( )dttfeetfeL atstat




−=
0

 

              ( ) ( )


−−=
0

dttfe tas  

  i.e., ( )( ) ( )asFtfeL at −=  (since ( ) ( ))sFtfL =                                         

  similarly we can prove 

 ( )( ) ( ),asFtfeL at +=−  

                                                                                                        Fig. 5 

                             Translation on the s -axis 

                                                                                        (first shifting theorem) 

                                                                                                       

3.    Second Shifting Property (or Translation on the −t axis) 

        If ( )( ) ( ),sFtfL = then ( ) ( )  ( )sFeatuatfL as .. −=−−  

        L.H.S 

 ( ) ( )  ( ) ( ) dtatuatfeatuatfL st .
0


− −−=−−  

         ( ) ( ) dtatfedtatfe
a

st
a

st .1.0
0 


−− −+−=  

      ( )dtatfe
a

st




− −=  

      ( ) ( )


+−=
0

dxxfe axs . (by putting dxdtxat ==− , .       

                   when 0, == xat  when == xt , ) 

                                          ( )dxxfee sxsa




−−=
0

 

                         ( )dttfee stas




−−=
0

 by changing the dummy variable x  as t . 

        i.e., ( ) ( )  ( )sFeatuatfL as−=−− . 

 

      4. Change of scale property 

      If ( )( ) ( ),sFtfL = then ( )( ) 







=

a

s
F

a
atfL

1
 

      L.H.S 

     ( )( ) ( )dtatfeatfL st .
0


−=  

      Put uat = then
a

du
dt =  

           ( )
a

du
ufe a

su


 −

=
0

 

          ( ) ( )duufe
a

duufe
a

u
a

s

asu .
1

.
1

0

.

0 
 −

− == 







=

a

s
F

a

1
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Note 

Application of first shifting property leads to the following results: 

1) ( ) ( )
s

L
as

eL at 1
1,

1
=

−
=   

2) ( )
( )

( )
11

!
,

!
++

=
−

=
n

n

n

nat

s

n
tL

as

n
teL   

3) ( )
( )

( )
2222

sin,sin
bs

b
btL

bas

b
bteL at

+
=

+−
=   

4) ( )
( )

( )
2222

cos,cos
bs

s
btL

bas

as
bteL at

+
=

+−

−
=   

5) ( )
( )

( )
2222

sinh,sinh
bs

b
btL

bas

b
bteL at

−
=

+−
=   

6) ( )
( )

( )
2222

cosh,cosh
bs

s
btL

bas

as
bteL at

−
=

−−

−
=   

where in each case as  . 

 

Periodic function 

 A function ( )tf  is said to be a periodic function of period 0T if 

( ) ( ) ( ) ( )nTtfTtfTtftf +=+=+= ............2 . 

Examples: tsin and tcos are periodic functions of period 2 . 

 Geometrically, this implies that the graph of the function ( )tfy = repeats 

itself after every interval of lengthT . 

The following are some examples of periodic functions. 

 

(i) Triangular wave 

     ( )











−



=

ata
a

ta

at
a

t

tf

2,
2

0,

. 

( ) ( ) ( )tfatfTtf =+=+ 2 . 

                                                                 Fig. 6 

                                                                    Triangular wave                                        

(ii)  Square wave 

    ( )




−


=

atak

atk
tf

2,

0,
 

   ( ) ( ) ( )tfatfTtf =+=+ 2  

 

 

 

 

                                                                           Fig. 7  Square wave                                                            
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(iii)  Square wave 

  ( )







=

ata

atk
tf

2,0

0,
 

  ( ) ( ) ( )tfatfTtf =+=+ 2  

 

 

 

 

 

                                                                        Fig. 8   Square Wave 

 

(iv) Sawtooth wave 

    ( ) atttf = 0, . 

   ( ) ( ) ( )tfatfTtf =+=+ . 

 

 

 

 

                           Fig. 9  Sawtooth wave 

 

1.8 Laplace transform of periodic function: 

If ( )tf  is a periodic function with period ,T  i.e., ( ) ( ),tfTtf =+  then 

( )( ) ( )dttfe
e

tfL
T

O

st

ST 
−

−−
=

1

1
.  

 

Proof  

We have ( )( ) ( )dttfetfL st




−=
0

. 

     ( ) ( ) ( ) ...........
3

2

2

0
+++= 

−−− dttfedttfedttfe
T

T

st
T

T

st
T

st
 

In the second integral put ,Tut +=  in the third integral put Tut 2+=  and so on. 

Then 

( )( ) ( ) ( ) ( ) ( ) ( ) ..........2
0

2

00
+++++= 

+−+−− duTufeduTufedttfetfL
T

Tus
T

Tus
T

st . 

                     ( ) ( ) ( ) ..........
0

2

00
+++= 

−−−−− duufeeduufeedttfe
T

stST
T

stST
T

st
 

                                                          (since ( ) ( ) ( ) ................2TufTufuf +=+= ) 

          ( ) ( ) ( ) ..........
0

2

00
+++= 

−−−−− dttfeedttfeedttfe
T

suST
T

stST
T

st  

          ( ) ( )dttfeee
T

stSTST


−−− +++=

0

2 .........1  

( )( ) ( )dttfe
e

tfL
T

st

ST 
−

−−
=

01

1
. 
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1.9 Laplace Transform of Derivatives 

 If ( )( ) ( ),sFtfL = then ( )( ) ( ) ( )0' fssFtfL −= . 

 

Proof  

( )( ) ( )dttfetfL st .''
0


−=  

             ( )  ( ) ( )dttfestfe stst




−− −−=
0

0
. (using integration by parts) 

Now assuming ( )tf to be such that ( ) 0=−

→
tfeLt st

t
 

Thus ( )( ) ( ) ( )dttfesftfL st




−+−=
0

0'  

i.e., ( )( ) ( ) ( )0' fsFstfL −=  

Similarly, ( )( ) ( ) ( ) ( )0'0'' 2 fsfsFstfL −−=  

( )( ) ( ) ( ) ( ) ( ) ( )0........0''0'0 1321 −−−− −−−−= nnnnnn ffsfsfstfLstfL . 

 

1.10 Laplace Transform of ( )tft
n . (Multiplication by

n
t ) 

If ( )( ) ( ),sFtfL = then ( )( ) ( ) ( )( ),1 sF
ds

d
tftL

n

n
nn −= where ...........2,1=n  

 

Proof 

( )( ) ( ) ( )dttfesFtfL st




−==
0

                                                                         (1)                                                                                        

Differentiating (1) with respect to ,s we get 

( )( ) ( ) ( ) ( )dttfe
s

dttfe
ds

d
sF

ds

d stst −


−

 


=





=

00
 

     ( ) ( ) ( )( )


−


− −=−=
00

.dttftedttfte stst  

  ( )( )tftL −=  or ( )( ) ( ) ( )( )sF
ds

d
tftL

1
1. −=  

Similarly ( )( ) ( ) ( )( )sF
ds

d
tftL

2

2
22 .1−=  

( )( ) ( ) ( )( )sF
ds

d
tftL

3

3
33 .1−=  

………………………………. 

……... …………..................... 

………………………………. 

( )( ) ( ) ( )( )sF
ds

d
tftL

n

n
nn .1. −= . 
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1.11 Laplace Transform of ( )tf
t

1
 (Division by t ) 

If ( )( ) ( )sFtfL =  then ( ) ( )


=







s

dssFtf
t

L ,.
1

provided ( )








→
tf

t
Lt
t

1

0
exists. 

 

Proof 

( )( ) ( ) ( )dttfesFtfL st




−==
0

 

Integrating on both sides with respect to ,s we get, 

( ) dtdstfedssF
s

st .)(
00  

 
−







=   

                 ( ) dtdsetf st

s

−
 

 =
0

. (changing the order of integration) 

      ( ) dtdsetf
s

st .
0 



= 


−



 

      ( )
( ) ( )









==









−
= 


−


−



t

tf
Ldt

t

tf
edt

t

e
tf st

s

st

00
 

Hence ( ) ( )dssFtf
t

L
s

.
1




=







. 

 

 In many problems of electrical engineering, we encounter integro-

differential equations. Consider a series electric circuit. Using the kirchoff’s 

second law, we obtain that the flow of current satisfies the integro-differential 

equation. 

   tEdi
c

Ri
dt

di
L

t

 cos
1

0
0

=++   

Many other integro-differential equations arise in the theory of electrical circuits. 

If Laplace transform method is to be applied, we need the formula for the Laplace 

transform of an integral. Such a formula is presented as follows. 

 

 

 

 

 

 

 

 

 

 

 

                                           Fig. 10   Series electric circuit 

          C : Capacitance, E : impressed voltage 

                                         L : inductance, R : resistance 
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1.12 Laplace Transform of integrals 

If ( )( ) ( ),sFtfL =  then ( ) ( )sF
s

dttfL
t 1

0
=






 . 

 

Proof 

Let ( ) ( )=
t

dttft
0

 then ( ) ( )tft =' and ( ) 00 =   

We know that 

( )( ) ( )( ) ( )0'  −= tLstL  

  ( )( )tLs =  (since ( ) 00 = ) 

or  ( )( ) ( )( )tL
s

tL '
1

 =  

subsisting the values of ( )t and ( ),' t  we get 

( ) ( )( )tfL
s

dttfL
t 1

0
=





  

i.e., ( ) ( )sF
s

dttfL
t 1

0
=






 . 

 

Example 1 

Find the Laplace transform of
btat ee − . 

 

Solution 

  ( ) ( )btatbtat eLeLeeL −=−  

       
( )( )bsas

ba

bsas −−

−
=

−
−

−
=

11
.                                                       Ans. 

 

Example 2 

Find the Laplace transform of ttett t 2cos35sin2423 334 +−+− −
. 

 

Solution 

 ttettL t 2cos35sin2423 334 +−+− −  

 ( ) ( ) ( ) ( ) ( )tLtLeLtLtL t 2cos35sin2423 334 +−+−= −  

 
222245 2

.3
5

5
.2

3

1
.4

!3
.2

!4
.3

+
+

+
−

+
+−=

s

s

ssss
.                                  Ans. 

 

Example 3 

Find the Laplace transform of   tt ettett 2545 4cos46sin3423 +−+− − . 

 

Solution 

 ttettL t 4cos46sin3423 545 +−+− −
 

 ( ) ( ) ( ) ( ) ( )tLtLeLtLtL t 4cos46sin3423 545 +−+−= −
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16

.4
36

6
.3

5

1
.4

!4
.2

!5
.3

2256 +
+

+
−

+
+−=

s

s

ssss
 

Applying first shifting theorem, 

  tt ettettL 2545 4cos46sin3423 +−+− −  

 
16

4

36

18

5

448360
2256 +

+
+

−
+

+−=
s

s

ssss
 with s replaced by 2−s  

 
( ) ( ) ( ) ( )

( )

( ) 162

24

362

18

3

4

2

48

2

360
2256
+−

−
+

+−
−

+
+

−
−

−
=

s

s

ssss
.                Ans. 

 

Example 4 

Find the Laplace transform of   (i) ( )tte t 5sin35cos23 −−  (ii) te t 22 cos                   

(iii) tte t cos2sin4 . 

 

Solution 

(i) ( )  ( ) ( )teLteLtteL ttt 5sin35cos25sin35cos2 333 −−− −=−  

           
( ) ( ) 346

92

53

5
.3

53

3
.2

22222 ++

−
=

++
−

++

+
=

ss

s

ss

s
 

(ii) Since ( ) ( )








+
+=+=

4

1

2

1
2cos1

2

1
cos

2

2

s

s

s
tLtL  

     By shifting property, we get 

  ( )
( ) 








+−

−
+

−
=

42

2

2

1

2

1
cos

2

22

s

s

s
teL t  

(iii) Since ( ) ( )ttLttL sin3sin
2

1
cos2sin +=  

           








+
+

+
=

2222 1

1

3

3

2

1

ss
 

    By shifting property, we obtain 

  ( )
( ) ( ) 








+−
+

+−
=

14

1

94

3

2

1
cos2sin

22

4

ss
tteL t .                               Ans. 

 

Example 5 

Find the Laplace transform of 

( )














=

2,0

21,

10,1

t

tt

t

tf  

 

Solution 

( )( ) ( )dtedttedtetfL ststst .0..1.
2

2

1

1

0 


−−− ++=  
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2

1

2

1

0

. 







−

−
+









−
=

−−−

s

e

s

e
t

s

e ststst

 

 
















−

−
−








−−+

−
=

−−−−−

22

2221

s

e

s

e

s

e

s

e

s

e sssss

 

 
2

2

2

221

s

e

s

e

s

e

s

sss −−−

−+−= .                                                                       Ans. 

 

Example 6 

Find the Laplce transform of att cos2 . 

 

Solution 

( )
22

cos
as

s
atL

+
=  

( ) ( ) 








+
−=

222

2
22 1cos

as

s

ds

d
attL  

       
( ) ( )

( ) ( ) 











+

−
=













+

−+
=

222

22

222

22 21.

as

sa

ds

d

as

ssas

ds

d
 

       
( ) ( ) ( ) ( )( )

( )422

2222222 22.2

as

sassasas

+

+−−−+
=  

       
( )322

3223 4422

as

ssasas

+

+−−−
=  

       
( )
( )322

32 32

as

ass

+

−
= .                                                                                 Ans. 

 

Example 7 

Obtain the Laplce transform of tet t 4sin.2 . 

 

Solution 

( ) ( )
( ) 161

4
4sin.,

16

4
4sin

22
+−

=
+

=
s

teL
s

tL t
 

( )
( )172

4
4sin

2 +−

−
=

ssds

d
tetL t

 

  
( )

( )22 172

224

+−

−
=

ss

s
 

( )
( )22

2

172

22
44sin

+−

−
−=

ss

s

ds

d
tetL t
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( ) ( ) ( ) ( )

( )42

222

172

221722222.172
4

+−

−+−−−+−
−=

ss

ssssss
 

           
( )

( )32

22

172

81683442
4

+−

−+−+−
−=

ss

ssss
 

           
( )
( )

( )
( )32

2

32

2

172

13638

172

26126
4

+−

−−
=

+−

++−
−=

ss

ss

ss

ss
.                               Ans. 

 

Example 8 

Find the Laplace transform of
t

t2sin
. 

 

Solution 

Here 








→ t

t
Lt
t

2sin

0
exists. 

( )
4

2
2sin

2 +
=

s
tL      



−










=

+
=







 

s
s

s
ds

st

t
L

2
tan

2

1
.2.

4

22sin 1

2
 

         
2

cot
2

tan
22

tantan 1111 sss −−−− =−=







−=


.                             Ans. 

 

Example 9 

Find the Laplace transform of ( )32 −tut . 

 

Solution 

( ) ( ) ( )  ( )393633.
22 −+−+−=− tutttut  

             ( ) ( ) ( ) ( ) ( )393.3633
2

−+−−+−−= tututtut  

( )( ) ( ) ( ) ( ) ( ) ( )393363.33.
22 −+−−+−−=− tuLtutLtutLtutL  

         







++= −

sss
e s 962

23

3 .                                                                      Ans. 

 

Example 10 

Evaluate   (i) 









− dt

t

t
eL

t
t

0

sin
 

(ii)  









−

dt
t

te
tL

t
t

0

sin
 

(iii)  ( )   
t t t

dtdtdtttL
0 0 0

sin . 
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Solution 

We know that ( )
1

1
sin

2 +
=

s
tL  




−− =−=
+

=









0

11

2
cottan

21

1sin
ssds

st

t
L


 

s
s

dt
t

t
L

t
1

0
cot

1sin −=








   

Thus by shifting property, ( )1cot
1

1sin 1

0
+

+
=
















 −−

 s
s

dt
t

t
eL

t
t . 

(ii)  Since s
t

t
L 1cot

sin −=







 

     ( )1cot
sin 1 +=








 −− s

t

t
eL t  

     and ( )1cot
1sin 1

0
+=







 −−

 s
s

dt
t

t
eL

t
t  

     Hence 
( )







 +−

=








−
−

 s

s

ds

d
dt

t

t
etL

t
t 1cotsin

.
1

0
 

    
( )

( )

2

1

2
1cot

11

1

s

s
s

s +−








++

−

−=

−

 

    
( ) ( )

( )22

1cot22
22

12

++

+−+++
=

−

sss

ssss
. 

(iii)  Since ( )
1

1
sin

2 +
=

s
tL  

       ( )
( )222

1

2

1

1
sin

+
=

+
−=

s

s

sds

d
ttL  

Thus ( )   
t t t

dtdtdtttL
0 0 0

.sin . 

 ( )
( ) ( )2222233

1

2

1

2
.

1
sin

1

+
=

+
==

sss

s

s
ttL

s
.                                          Ans. 

 

Example 11 

Find 






 −

t

te
L

at 6cos
 and  tetL t sin. − .  [AU APR 2011, AU NOV 2011]. 

 

Solution 

Consider 






 −

→ t

te
L

at

t

6cos

0
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Since the limit exists, we can find 






 −

t

te
L

at 6cos
 

( )dsteL
t

te
L

s

at
at

.6cos
6cos




−=






 −
  

        ds
s

s
ds

as
.

36
.

1

0 20 


+
−

−
=  

        ( ) ( )










+−−=

s

sas 36log
2

1
log 2  

        
( )















+

−
=

s
s

as
212 36

log  

        































+









−

=

s
s

s

a

21

2

36
1

1

log  

        ( )
( ) 












+







 −
−=

212 36
log1log

s

s

s

as
 

         
( )















−

+
=

as

s
212 36

log . 

(ii)  To find  tetL t sin. −  

       We know that ( )
1

1
sin

2 +
=

s
tL  

        ( )
( ) 11

1
sin

2
++

= −

s
teL t

 

         








++
−= −

22

1
sin.

2 ssds

d
tetL t

 

        
( )

( )
( )

( ) ( )3422 1

2

1

12

22

22

+
=

+

+
=













++

+−
−=

ss

s

ss

s
.                          Ans. 

 

Example 12 

Find 






 − −−

t

ee
L

btat

   [AU MAY 2012]. 

 

Solution 

( )
bsas

eeL btat

+
−

+
=− −− 11
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Now ds
bsast

ee
L

s

btat




−−










+
−

+
=







 − 11
 

           ( ) ( ) +−+= sbsas loglog  

           





























+









+

=








+

+
=

s
s

b

s

a

bs

as

1

1

loglog  

( ) 








+

+
=− −−

as

bs
eeL btat log .                                                                           Ans. 

 

Example 13 

Evaluate 


−

0

2 cos dttte t . [AU MAY 2012] 

 

Solution 

( )dtttedttet tt




−


− =
0

2

0

2 coscos  

    ( )ttL cos=  and here 2=s  

    ( ) ( )tL
ds

d
cos1−=  

               ( ) 








+
−=

1
1

2s

s

ds

d
 

    
( )

( ) ( ) 











+

+−
−=













+

−+
−=

22

2

22

2

1

1

1

21

s

s

s

sss
 

    
( )22

2

1

1

+

−
=

s

s
.                                                                               Ans. 

 

Example 14 

Find the Laplace transform of tte t 2sin2−  (or) ( )tteL t 2sin2− .  [KU NOV 2011] 

 

Solution 

We know that ( )
4

2
2sin

2 +
=

s
tL  

( )
( ) 84

2

42

2
2sin

22

2

++
=

++
= −

sss
teL t

 

Then ( ) 








++
−=−

84

2
2sin

2

2

ssds

d
tetL t
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( )

( ) 











++

+−
−=

22 84

422

ss

s
 

          
( )

( )22 84

24

++

+
=

ss

s
.                                                                 Ans. 

 

Example 15 

Find the Laplace transform of the function (Half wave rectifier) 

( )














=














2
0

0sin

tfor

tfort

tf . 

 

Solution 

Since ( )tf  is a periodic function with 

period ,2   we have 

 ( )( ) ( )dttfe

e

tfL st

s 
−

−

−

= 







2

02

1

1

 ( )




 +

−

=  
−−

−

 







0

2

2
0sin

1

1
dtedtte

e

stst

s
             Fig. 11 

dtte

e

st

s







sin

1

1

02 
−

−

−

=  

( )








0

222
cotcossin

1

1








−−

+
−

=
−

−

ts
s

e

e

st

s
       

















+

+

−

=

−

−
222

1

1



 





 s

e

e

s

s
                                                     

( ) 







−+









+

=
−

−













s

s

es

e

2

22 1

1

                                                             

( ) 







−+

=
−







s

es 122

.                                                               Ans. 
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Example 16 

Find the transform of the function defined by(triangular wave function) 

( )




−


=

atata

att
tf

22

0
 

where ( ) ( )tfatf =+ 2   [AU OCT 2009,  

AU DEC 2009, APR 2011, KU NOV 2011]. 

 

Solution 

The given function is periodic of period a2 .  

( )( ) ( )dttfe
e

tfL
T

st

ST 
−

−−
=

01

1
 

  ( )dttfe
e

a
st

as 
−

−−
=

2

021

1
 

  ( )




 −+

−
= 

−−

−
dttaedtte

e

a

a

st
a

st

as
.2.

1

1 2

02
                 Fig. 12 

  ( )






















−

−
−+








−

−−
=

−−−−

−

a

a

stst
a

stst

as s

e

s

e
ta

s

e

s

e
t

e

2

2

0

22
2.

1

1
 

  







−+++−−

−
= −−−−−

−

asasasasas

as
e

s
e

s

a
e

ss
e

s
e

s

a

e 2

2

2222

1111

1

1
                            

             asas

as
ee

es

2

22
21

1

1
.

1 −−

−
+−

−
=  

  
( )

( )( )
( )
( )as

as

asas

as

e

e

see

e

s −

−

−−

−

+

−
=

+−

−
=

1

11

11

11
2

2

2
 

Multiply and divide by 2

as

e  

( )( ) 







=

+

−
=

−

−

2
tan

11
2

22

22

2

as
h

s
ee

ee

s
tfL

asas

asas

.                                                       Ans. 

 

Example 17 

Find the Laplace transform of the rectangular wave given by 

( )




−


=

btb

bt
tf

2,1

0,1
 with ( ) ( )tfbtf =+ 2 . [AU NOV 2010, AU 

NOV 2011] 

 

Solution 

The given function is periodic of period b2  

Now ( )( ) ( )dttfe
e

tfL
T

st

ST 
−

−−
=

01

1
 

( )dttfe
e

b
st

bs 
−

−−
=

2

021

1
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( ) ( )




 −+

−
= 

−−

−

b

b

st
b

st

bs
dtedte

e

2

02
11

1

1
                      
























−
−









−−
=

−−

−

b

b

st
b

st

bs s

e

s

e

e

2

0

2
1

1

1
                  

( ) ( )







−+−−

−
= −−−

−

bsbsbs

bs
ee

s
e

se

2

2

1
1

1

1

1
                          

 12
1

1

1 2

2
+−

−
= −−

−

bsbs

bs
ee

se
                                                             

( )
( )( )bsbs

bs

ees

e
−−

−

+−

−
=

11

1
2

                                                       Fig. 13              

                    
( )
( )bs

bs

e

e

s −

−

+

−
=

1

11
 

Multiply and divide by 2

bs

e  

Then ( )( ) 







=

+

−
=

−

−

2
tan

11

22

22 bs
h

s
ee

ee

s
tfL

bsbs

bsbs

.                                                     Ans. 

 

Example 18 

Find the Laplace transform of the periodic function defined by the sawtooth wave. 

( ) ( ) ( )tfatfatttf =+= ,0, . 

 

Solution 

( )( ) ( )dttfe
e

tfL
T

st

sT 
−

−−
=

01

1
 

 dtet
e

a
st

as 
−

−−
=

01

1
.  (since ( ) ( )tfatf =+ ) 

 

a

st

as
e

ss

t

e
0

2

1

1

1
















+−

−
= −

−
 

 







+








+−

−
= −

− 22

11

1

1

s
e

ss

a

e

as

as
 

 ( )







−+−

−
= −−

−

asas

as
e

s
e

s

a

e
1

1

1

1
2

 

 
( )

0,
1

1
2


−

−=
−

−

s
es

ae

s as

as

.                                                                         Ans. 

 

1.13 Inverse Laplace transform 

 If ( )( ) ( )sFtfL = then ( )tf  is known as the inverse Laplace transform or 

inverse transform or simply inverse of ( )sF  and is denoted by ( )( )sFL 1− . 
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Thus ( ) ( )( )sFLtf 1−= .                                                                                          (1) 
1−L  is known as the inverse laplace transform operator and is such that 

111 == −− LLLL . 

In, ( ) ( )sF,1  is given (known) and ( )tf  is to be determined. 

 

Note 

Inverse laplace transform of ( )sF  need not exist for all ( )sF . 

 

Some important formulae 

1. 1
11 =






−

s
L  

2. 
( )

...........3,2,1,
!1

1 1
1 =

−
=








−

− n
n

t

s
L

n

n
 

3. ate
as

L =








−

− 11  

4. hat
as

s
L cos

22

1 =








−

−  

5. hat
aas

L sin
11

22

1 =








−

−  

6. at
aas

L sin
11

22

1 =








+

−  

7. at
as

s
L cos

22

1 =








+

−  

8. ( ) ( )tfeasFL at=−−1  

9. 
( )

bte
bbas

L at sin
11

22

1 =













+−

−  

10. 
( )

bte
bas

as
L at cos

22

1 =













+−

−−  

11. 
( )

bte
bbas

L at sinh
11

22

1 =













−−

−  

12. 
( )

bte
bas

as
L at cosh

22

1 =













−−

−−  

13. 
( )

( )atatat
aas

L cossin
2

11
3222

1 −=














+

−  

14. 
( )

att
aas

s
L sin

2

1
222

1 =














+

−  
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15. 
( )

att
as

as
L cos

222

22
1 =















+

−−  

16. 
( )

 atatat
aas

s
L cossin

2

1
222

2
1 +=















+

−  

17. ( ) ( )tftsF
ds

d
L =








−−1  

18. Linearity property 

           ( ) ( )( ) ( )( ) ( )( )sGLbsFaLsGbsaFL 111 −−− +=+  

      19. Multiplication by s  

      ( )( ) ( ) ( ) ( )tftf
dt

d
sFsL 0.1 +=−

 

20. Division by s  

       
( )

( )( ) ( )dttfdtsFL
s

sF
L

tt

 ==






 −−

00

11 .  

21. First shifting property 

 If ( )( ) ( ),1 tfsFL =− then ( )( ) ( )( )sFLeasFL at 11 −−− =+  

22. Second shifting property 

 ( )( ) ( ) ( )atuatfsFeL as −−=−−1  

23. Inverse Laplace transform of integrals 

 ( )
( )

( )( )sFL
tt

tf
dssFL

s

11 1
. −


− ==






  

                  (or) 

( )( ) ( )




= 


−− dssFLtsFL

s
.11 . 

 

Example 1 

Find
( ) 


























−

+−

2

2
1

1

1
log

s

s
L . 

 

Solution 

Let ( )
( ) 


























−

+
= −

2

2
1

1

1
log

s

s
Ltf  

( )( ) ( ) ( )22 1log1log −−+= sstfL  

Then ( )( ) ( ) ( ) 22 1log1log. −−+−= ss
ds

d
tftL  

  
( )

( ) ( ) 1
2

1

2

1

12

1

2
222 +

−
−

=








−

−
−

+
−=

s

s

ss

s

s

s
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( ) 








+
−









−
= −−

1
2

1

2
2

11

s

s
L

s
Ltft  

    te t cos2.2 −=  

( )  te
t

tf t cos
2

−= .                                                                                       Ans. 

 

Example 2 

Find the inverse Laplace transforms of the following 

(i) 








−

+

1

1
log

s

s
  (ii) 

( )









+

+

1

1
log

2

ss

s
 (iii) 







−

2
cot 1 s

  (iv) 






−

2

1 2
tan

s
. [KU NOV 2011] 

 

Solution 

(i) If ( ) 








−

+
= −

1

1
log1

s

s
Ltf  

                       We know that ( ) ( )







−= − sF

ds

d
Ltft 1.  

                       

( ) ( ) ( )








−+








+−=

















−

+
−= −−− 1log1log

1

1
log. 111 s

ds

d
Ls

ds

d
L

s

s

ds

d
Ltft  

                                  

htee
s

L
s

L tt sin2
1

1

1

1 11 =+−=








−
+









+
−= −−−  

                       Thus ( ) ht
t

tf sin2
1

= . 

(ii) If ( )
( )










+

+
= −

1

1
log

2
1

ss

s
Ltf  

           ( )
( ) 

















+

+−
= −

1

1
log.

2
1

ss

s

ds

d
Ltft  

         ( ) ( )








++








+








+−= −−− 1loglog1log 1121 s
ds

d
Ls

ds

d
Ls

ds

d
L  

         








+
+








+









+
−= −−−

1

11

1

2 11

2

1

s
L

s
L

s

s
L  

         
tet −++−= 1cos2  

             Thus ( ) ( )te
t

tf t cos21
1

−+= −
. 
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(iii) If ( ) 







= −−

2
cot 11 s

Ltf  

  ( )















−
= −−

2
cot. 11 s

ds

d
Ltft  

            t
s

L 2sin
2

2
22

1 =








+
= −  

              Thus ( ) t
t

tf 2sin
1

= . 

(iv) If ( ) 







= −−

2

11 2
tan

s
Ltf  

  ( )








+
=

















−= −−−

4

42
tan.

4

1

2

11

s

s
L

sds

d
Ltft               

                       
( ) ( ) ( )( )








−+++
=













−+
= −−

ssss

s
L

ss

s
L

2222

4

22

4
22

1

222

1  

             

( ) ( ) 







++
−

+−
=









++
−

+−
= −−

11

1

11

1

22

1

22

1
22

1

22

1

ss
L

ssss
L

thttete tt sinsin2sinsin =−= − .                                                          Ans. 

 

Example 3 

Obtain  inverse Laplace transform of 

(i) 
259

52
2 −

−

s

s
     (ii) 

206

2
2 +

−

s

s
       (iii) 

92

3

+s

s
      (iv) 

( )ass +

1
        (v) 

( )9

3
2

3

+

+

ss

s
          

(vi) 
( )5

2

1

+s
    (vii) 

1342 ++ ss

s
    (viii) 

169

1
2 ++ ss

   (ix) 
( )3+

−

s

e s

   (x) 
( )31+

−

s

e s

. 

 

Solution 

(i) 








−
−

−
=









−

− =−

259

5

259

2

259

52
22

1

2

1

ss

s
L

s

s
L  

             



























−

−









−

= =

9

25
9

5

9

25
9

2

22

1

ss

s
L  
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






































−

−




















−

= −

2

2

2

2

1

3

5
9

5

3

5
9

2

ss

s
L  

           





























−

−= −

2

2

1

3

5

3

5

3

1

3

5
cos

9

2

s

Lth  

           
3

5
sin

3

1

3

5
cos

9

2 t
th −= . 

(ii)  








+
−









+
=









+

− −−−

206

2

206206

2
2

1

2

1

2

1

s
L

s

s
L

s

s
L  

       



















+

−



















+

= −−

3

10

1

3

1

3

106

1

2

1

2

1

s

L

s

s
L  

       



















+

−= −

3

10

3

10

.
10

3

3

1
.

3

10
cos

6

1

2

1

s

Lt  

       tt .
3

10
sin

30

1
.

3

10
cos

6

1
−= . 

(iii)  
t

e

s

L
s

L 2

9

11

2

3

2

9

1

2

3

92

3 −
−− =



















+

=








+
 

       
( )0

2

9

2

9

1

2

3

2

3

92

3 −−
− +














=









+
ee

dt

d

s

s
L

t

 

     2

3

2

11

4

27 +−

−=
t

e . 

(iv)   ate
as

L −− =








+

11  

         
( )

dt
as

L
ass

L
t

 








+
=









+

−−

0

11 11
 

      








−
==

−
−

t
t

at
at

a

e
dte

0
0
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         at
at

e
aaa

e −
−

−=+
−

= 1
11

. 

(v) 
( ) ( ) ( )







+
−=









+

−+
=









+

+ −−−

9

61

9

69

9

3
2

1

2

2
1

2

2
1

sss
L

ss

s
L

ss

s
L  

        −=
t

dtt
0

3sin21  

        ds
s

L
t

 








+
−= −

0 2

1

9

6
1  

        ( )tt
0

3cos
3

1
.21+=  

        
3

2
3cos

3

2
1 −+= t  

         13cos2
3

1

3

1
3cos

3

2
+=+= tt . 

(vi) 
!4

1 4

5

1 t

s
L =







−  

       then 
( ) !4

.
2

1 4
2

5

1 t
e

s
L t−− =









+
 

(vii)

( ) ( ) ( )









++
−









++

+
=









++

−+
=









++

−−−−

22

1

22

1

22

1

2

1

32

2

32

2

32

22

134 s
L

s

s
L

s

s
L

ss

s
L  

              








+
−









+
= −−−−

22

12

22

12

3

3

3

2
.

3
.

s
Le

s

s
Le tt  

     tete tt 3sin
3

2
3cos 22 −− −= . 

(viii) 
( )










+
=









++

−−

2

1

2

1

13

1

169

1

s
L

ss
L   

                 





























+

= −

2

1

3

1

1

9

1

s

L  

        







= −

−

2

13
1

9

1

s
Le

t

  
9

.
9

1 3
3

t
t

te
te

−
−

== . 

(ix) 
te

s
L 31

3

1 −− =








+
 

       ( ) ( )


−=








+
 −−

−
− tue

s

e
L t

s
31

3
. 
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(x)  
!2

1 2

3

1 t

s
L =







−  

       
( ) !2

.
1

1 2

3

1 t
e

s
L t−− =









+
  

        then  
( )

( ) ( )
( )1

!2

1
.

1

2

1

3

1 −
−

=








+

−−
−

− tu
t

e
s

e
L t

s

.                                              Ans. 

 

Example 4 

Find the inverse Laplace transform of
( )( )41

4
2 +−

+

sss

s
. 

 

Solution 

Let us first resolve
( )( )41

4
2 +−

+

sss

s
into partial fractions 

( )( ) 4141

4
22 +

+
+

−
+=

+−

+

s

DCs

s

B

s

A

sss

s
 

( )( ) ( ) ( ) ( )14414 22 −+++++−=+ ssDCssBsssAs                                          (1) 

Putting 1,0 −== As  

Putting 1,1 == Bs  

Equating the coefficients of 
3s  on both sides of ( ),1  we get 

00 =++= CCBA  

Equating the coefficients of s  on both sides of ( ),1  we get 

1441 −=−+= DDBA  

On putting the values of DCBA ,,, , we get 

( )( ) 4

1

1

11

41

4
22 +

−
−

+−=
+−

+

ssssss

s
 

( )( ) 








+
−

−
+−=









+−

+
 −−

4

1

1

11

41

4
2

1

2

1

sss
L

sss

s
L  

      








+
−









−
+








−= −−−

22

111

2

2

2

1

1

11

s
L

s
L

s
L  

      te t 2sin
2

1
1 −+−= .                                                    Ans. 

Example 5 

Find the inverse transform of  
6116

562
23

2

−+−

+−

sss

ss
. 
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Solution 

( )( )( ) 321321

562

6116

562 2

23

2

−
+

−
+

−
=

−−−

+−
=

−+−

+−

s

C

s

B

s

A

sss

ss

sss

ss
 

( )( ) ( )( ) ( )( )213132562 2 −−+−−+−−=+− ssCssBssAss  

2

5
,1,

2

1
=−== CBA  










−
+









−
−









−
=









−+−

+−
 −−−−

3

1

2

5

2

1
1

1

1

2

1

6116

562 111

23

2
1

s
L

s
L

s
L

sss

ss
L  

          ttt eee 32

2

5

2

1
+−= .                                                 Ans. 

 

Example 6 

Find 
( )( )







+++

−

222

1
2

1

sss
L . 

 

Solution 

( )( ) 222222

1
22 ++

+
+

+
=

+++ ss

CBs

s

A

sss
 

( ) ( )( )2221 2 +++++= sCBsssA  

Put 
2

1
,2 =−= As  

Equating the coefficients of
2s on both sides, 

2

1
0 −=−=+= ABBA  

Equating the coefficients of s on both sides,  

022220 =−−=++= BACCBA  

Now 
( )( ) 22

2

1

2

2

1

222

1
22 ++

−

+
+

=
+++ ss

s

ssss
 

( )( ) ( ) 













++

−+
−









+
=









+++
 −−−

11

11

2

1

2

1

2

1

222

1
2

11

2

1

s

s
L

s
L

sss
L  

              
( ) ( )










++
+









++

+
−= −−−

11

1

2

1

11

1

2

1

2

1
2

1

2

12

s
L

s

s
Le t  

                                                tetee ttt sin
2

1
cos

2

1

2

1 2 −−− +−=  

               ( )ttee tt sincos
2

1

2

1 2 −−= −−
.                              Ans. 
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Example 7 

Find 








++

−

124

1

ss

s
L . 

 

Solution 

( ) ( )( )1111 2222224 +++−
=

−+
=

++ ssss

s

ss

s

ss

s
 

       
( ) ( )







++
−

+−
=

1

1

1

1

2

1
22 ssss

 

( ) ( ) ( )







++
−









+−
=









++

−−−

1

1

2

1

1

1

2

1

1 2

1

2

1

24

1

ss
L

ss
L

ss

s
L  

        


































+








+

−


































+








−

= −−

22

1

22

1

2

3

2

1

1

2

1

2

3

2

1

1

2

1

s

L

s

L  

        







−=

−

tete

tt

2

3
sin

3

2
.

2

3
sin

3

2

2

1
22  

        







=

2
sin.

2

3
sin

3

2 t
ht .                                                      Ans. 

 

 

EXERCISE 

 

PART A 

1. Define Laplace transform. 

2. State the conditions for the existence of Laplace transform of a function. 

3. State change of scale property, first shifting property, second shifting 

property in Laplace transformation. 

4. Find the Laplace transform of unit step function. 

5. Find the Laplace transform of unit impulse function. 

6. Find ( )( ),tfL if ( )







=





tfort

tfort
tf

0sin
 

7. State the formula for the Laplace transform of a periodic function. 

8. State the relation between the Laplace transforms of ( )tf and ( )tft. . 

9. Find the relation between the inverse Laplace transform of ( )sF and its 

integral. 

10. Find the inverse Laplace transform of 








−1
log

s

s
. 
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11. Find the laplace transform of
t

atcos1−
. 

12. If ( )( )
( )1

1

+
=

ss
tfL find ( )0f  and ( )f . 

13. Find ( )ttL 2sin4cos . 

14. Find the inverse Laplace transform of
( )22

1

ass +
. 

15. Find







−
t

t dteL
0

 

16. Find 








+

−

2

11

s
L . 

17. If ( )( )
( )

,
1

ass
tfL

+
= find ( )0f . 

18. State the sufficient conditions for the existence of Laplace transform of 

( )tf . 

19. If ( )( ) ( ),sFtfL = prove that ( )( ) 







=

a

s
F

a
atfL

1
. 

20. Find ( )bteL ta sin− . 

21. Find
( )










+

−

3

1

2

1

s
L . 

22. Find ( )tL 2sin . 

23. Find 








++

+−

84

2
2

1

ss

s
L . 

24. Find 






 −

t

e
L

t1
. 

25. Define periodic function with an example. 

26. Find
( )










++

−

12
2

1

s

s
L . 

27. Find ( )teL t 3sin2− . 

28. If ( )( ) ( ),sFtfL = then find 
















2

t
fL . 

29. Find
( ) 














+

−

2

1

3s

s
L . 

30. Find the inverse Laplace transform of
22

2
2 ++

+

ss

s
. 

31. Find the Laplace transform of ( )22 1 te t +−
 

32. If ( )( ) ( ),sFtfL = what is ( )( )tfeL at− . 
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33. Write a function for which laplace transformation does not exist. Explain 

why laplace transform does not exist. 

34. Find ( )ttL 2sin . 

35. Find the Laplace transform of
t

t2sin
. 

 

PART B 

 

1. Find the Laplace transform of the following                                                                         

(i) t2sin 3      (ii) te t 2cos−      (iii) tt 3cos2sin       (iv) th3sin                                      

(v) ( )










−



=

37

321

202

t

tt

tt

tf                                                                                                                    

(Ans. (i) 
( )( )364

48
22 ++ ss

  (ii) 
1042

1

22

1
2 ++

+
+

+ ss

s

s
   (iii) 

( )
( )( )251

52
22

2

++

−

ss

s
                      

                 (iv) 
( )( )91

6
22 −− ss

    (v) ( ) ( )15332
2

2

3
2

3

2

3
−+++−

−−

s
s

e
ss

s

e

s

ss

). 

2. Find the Laplace transform of the following.                                                                            

(i) tt cos  (ii) tt sin2  (iii) atteat sin   (iv) 
−

t
t dttte

0

32 .sin.                                  

(v) tet t cos22 − .  

                               (Ans. (i) 
22

2

)1(

1

+

−

s

s
   (ii) 

32

2

)1(

)13(2

+

−

s

s
   (iii) 

222 )22(

)(2

aass

asa

+−

−
   

            (iv) 
    














++
−

++

+
2222 1)2(

1

9)2(

1

2

)2(3

sss

s
 (v) 

32

23

)54(

)222510(2

++

+++

ss

sss
) 

3. Find the Laplace transform of the following (i) ( )btat
t

coscos
1

−   

      (ii) t
t

2sin
1

 (iii) ( )te
t

t sin
1 −

 (iv) ( )4sin −utu     (v) ( )1. −tue t . 

                   (Ans. (i) 








+

+
−

22

22

log
2

1

bs

as
         (ii) 

2

2 4
log

4

1

s

s +
       (iii) ( )1cot 1 +− s                                                      

                                                         (iv)   ( )4sin4cos
12

4

s
s

e s

+
+

−

     (v) 
( )

1

1

−

−−

s

e s

). 

 

4. Find the Laplace transform of the following.                                                                           

(i) ( ) ( ) ( )tftftttf =+= 2,20,2                                                                                 

(ii) ( )







=





2,0

0,cos

t

tt
tf                                                                              
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(iii) ( )
( ) ( )




=+


=

tftft

tt
tf

2,21,0

10,
                                                                                        

(iv) ( )
( ) ( ) ( )










=+−



=

tfTtfTt
T

tT
T

T
t

T

t

tf

,
2

,
2

2
0,

2

                                           

(v) ( )
( ) ( )










=+−



=

tfTtfTt
T

E

T
tE

tf

,
2

,

2
0,

 

(Ans. (i) 
)1(

442
23

2222

s

sss

es

essee
−

−−−

−

−−−
  (ii) 

)1)(( 22 w

s

ews

s


−

−+

 (iii) 
)1(

)1(1
22 s

s

es

se
−

−

−

+−
 

                                                  (iv)  

)1(

1

4
tanh

2

2

2

+

−
sT

es

sT

Ts
  (v) )

4
tanh(

Ts

s

E
) 

5. Find the inverse Laplace transform of the following.                                                              

(i) 
9

1
2 −s

      (ii) 
92 +s

s
        (iii) 

( ) 43

1
2
−+s

          (iv) 
( ) 252

2
2
−+

+

s

s
         

(v) 
72

1

−s
. (Ans. (i) th3sin

3

1
     (ii) t3cos        (iii) the t 2sin

2

1 3−
     (iv) 

the t 5cos2 −     (v) 
t

e 2

7

2

1
) 

6. Find the inverse Laplace transform of the following.                                                                  

(i) 
( )

5

22

2

23

s

s −
       (ii) 

169

105
2 −

−

s

s
        (iii) 

63

2

+s

s
         (iv) 

9

4
2

2

+

+

s

s
            

      (v) 
( )2

3

1

−s
. (Ans. (i) 

42

2

1
3

2

3
tt +−    (ii) thth

3

4
sin

6

5

3

4
cos

9

5
−      

                                                  (iii) ( )12
3

2 2 +− − te  (iv) 13sin
3

5
+− t    (v) te t .3

) 

7. Find the inverse Laplace transform of the following.                                                                 

(i) 
( )32

1

−ss
     (ii) 

( )22

1

ass +
    (iii) 

( )1

1
23 +ss

    (iv) 
( ) 43

2
++s

s
                 

(v) 
( ) 1634

4
2
+−

−

s

s
. (Ans. (i) 








−1

32

1 3te
  (ii) 

2

cos1

a

at−
     (iii) 1cos

2

2

−+ t
t

                                                        

                              (iv) 







−− tte t 2sin

2

3
2cos3

      (v) tete tt 2sin
8

1
2cos

4

1 33 − ). 
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8. Obtain inverse Laplace transform of the following. 

      (i) 
( )32+

−

s

e s

       (ii) 
12 +

−

s

e s

         (iii) 







+

2

1
1log

s
       (iv) 

( )22 136

1

++

+

ss

s
                                         

      (v)    
( ) 








−

+
2

22

log
2

1

as

bs
.                                                                                                                      

      (Ans. (i) 
( ) ( )

( )2
2

2
2

2 −
−−− tu

t
e t

      (ii) ( )−− tutsin        (iii) ( )t
t

cos1
2

−                               

                (iv)  ttttt
e t

2sin2cos22sin2
8

3

−+
−

       (v) ( )bte
t

at cos
1

−−
). 

9. Find the inverse Laplace transform of     (i) 
3

2 62

s

ss ++
       (ii)

134

2
2 +−

+

ss

s
                                          

    (iii) 
2332

5211
23

2

+−−

+−

sss

ss
    (iv) 

( )22 52

16

++ ss
       (v) 

( )( )12

1
2 +− ss

                                                                                                    

           (Ans. (i) 
2321 tt ++       (ii) tete tt 3sin

3

4
3cos 22 +      (iii) 22

2

3
52

t

tt eee −+−
       

                                             (iv)  ( )ttte t 2cos22sin −−    (v) tte t sin
5

2
cos

5

1

5

1 2 −− ). 
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CHAPTER II 

 

CONVOLUTION THEOREM, APPLICATIONS OF LAPLACE 

TRANSFORM 

 

2.1 Introduction 

 Convolution is used to find inverse Laplace transforms in solving 

differential equations and integral equations. 

 Suppose two Laplace transforms ( )sF and ( )sG are given. Let 

( )tf and ( )tg be their inverse Laplace transforms respectively. i.e., 

( ) ( )( )sFLtf 1−= and ( ) ( )( )sGLtg 1−= . Then the inverse ( )th of the product of 

transforms ( ) ( ) ( )sGsFsH .=  can be calculated from the known inverse ( )tf and 

( )tg . 

 

Convolution 

The convolution or convolution integral of two functions ( )tf and ( ) 0, ttg is 

defined as the integral ( ) ( )duutguf
t

−0
. 

i.e., ( )( ) ( ) ( ) ( ) ( )duutguftgtftgf
t

−== 0
. 

gf  is called the convolution or faltung of f and g and can be regarded as a 

“generalized product” of these functions. 

 

2.2 Convolution Theorem 

 If ( )tf and ( )tg are two functions of t and ( )( ) ( )sFtfL = and 

( )( ) ( )sGtgL = for 0t then 

( ) ( )  ( ) ( )sGsFtgtfL .=    (or) ( ) ( )  ( ) ( )tgtfsGsFL =− .1
. 

 

Proof 

By definition 

( ) ( )  ( ) ( )( )dttgtfetgtfL st .
0


− =  

           

( ) ( ) dtduutgufe
t

st .
0 0 


−





 −=  

by the definition of convolution, 

   ( ) ( ) dtduutgufe
t

st

 


− −=
0 0

  (1)      Fig. 14 

The region of integration for the double integral ( )1 is bounded by the lines 

0,,0 === ttuu  and  =t . Changing the order of integration in ( )1 , we get                                              

( ) ( )  ( ) ( ) dudtutgufetgtfL
u

st −=  
 

−

0
                                                    (2)                                              

In the inner integral in ( )2 , on putting vut =− , we get 
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( ) ( )  ( ) ( ) ( ) dudvvgufetgtfL vus

 
 

+−=
0 0

 

          ( ) ( ) dudvvgeufe svsu





= 


−


−

00
.  

                     ( ) ( )dvvgeduufe svsu




−


−=
00

.  

          ( ) ( )dttgedttfe stst




−


−=
00

.. .   

                                                               (on changing the dummy variablesu andv ) 

i.e., ( ) ( )  ( )( ) ( )( )tgLtfLtgtfL .= . 

 

2.3 Initial value theorem 

 If the Laplace transforms of ( )tf and ( )tf ' exist and ( )( ) ( ),sFtfL = then 

( )( ) ( )( )sFsLttfLt
st →→

=
0

.                                              

 

Proof 

We know that ( )( ) ( ) ( )0' fsFstfL −=  

( ) ( )( ) ( )0' ftfLsFs +=  

        ( ) ( )0'
0

fdttfe st += 


−  

( )( ) ( ) ( )0'
0

fdttfeLtsFsLt st

ss
+= 


−

→→
 

     ( )( ) ( )0'
0

fdttfeLt st

s
+= −



→  

i.e., ( )( ) ( ) ( )( )tfLtfsFsLt
ts 0

0
→→

==  

( )( ) ( )( )sFsLttfLt
st

.
0 →→

=  

 

2.4 Final value theorem 

 If the Laplace transforms of ( )tf and ( )tf '  exist and ( )( ) ( )sFtfL =  then  

( )( ) ( )( )sFsLttfLt
st

.
0→→

= .  

 

Proof 

We know that ( )( ) ( ) ( )0' fsFstfL −=  

( ) ( )( ) ( )0' ftfLsFs +=  

       ( ) ( )0.'
0

fdttfe st += 


−  

( )( ) ( ) ( )0'.
000

fdttfeLtsFsLt st

ss
+= 


−

→→
 

             ( )( ) ( )


−

→
+=

0 0
0' fdttfeLt st

s
 

  ( ) ( )0'
0

fdttf += 


 

  ( )  ( )00 ftf +=

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  ( ) ( ) ( )00 fftfLt
t

+−=
→

 

( )( ) ( )( )sFsLttfLt
st

.
0→→

= . 

 

Example 1 

Apply convolution theorem to Evaluate
( ) 














+

−

222

1

as

s
L .  

[AU JUNE 2010, AU MAY 2012] 

 

Solution 

Let ( )
( )

( )( ) ( ) at
a

tfsFL
as

sF sin
11 1

22
==

+
= −  

( )
( )

( )( ) ( ) attgsGL
as

s
sG cos1

22
==

+
= −  

Now by convolution theorem, 

( ) ( )( ) ( ) ( )duutgufsGsFL
t

u
..

0

1 −=  =

−  

  ( )duutaau
a

t

u
.cossin

1

0 =
−=  

  ( ) ( ) duauatauauatau
a

t

u =
+−+−+=

0
sinsin

2

1
 

  ( ) dutuaat
a

t

u =
−+=

0
2sinsin

2

1
 

                        ( )
t

u

tua
a

atu
a 0

2cos
2

1
sin

2

1

=








−−=  

  







+−−= at

a
at

a
att

a
cos

2

1
0cos

2

1
sin

2

1
 

             
a

att

2

sin
= .                                                                                    Ans. 

 

Example 2 

Apply convolution theorem to evaluate
( )( )







−+

−

13

11

ss
L  [AU APR 2011]. 

 

Solution 

Let ( ) ( )( ) ( ) tetfsFL
s

sF 31

3

1 −− ==
+

=  

( ) ( )( ) ( ) tetgsGL
s

sG ==
−

= −1

1

1
 

By convolution theorem 
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( )( )
( ) dueeeduee

ss
L u

t

u

ut
t

u

utu ..
13

1

0

3

0

31 −

=

−

=

−−−

 ==








−+
      

                             

t

u

u
t

t

u

ut e
eduee

0

4

0

4

4
.

=

−

=

−










−
==   

      ( )tt ee 41
4

1 −−= .                                                                      Ans. 

 

Example 3 

Evaluate
( )( )







++

−

41

1
22

1

ss
L by convolution theorem. [KU NOV 2011] 

 

Solution 

2

2sin

4

1
;sin

1

1
2

1

2

1 t

s
Lt

s
L =









+
=









+

−−
 

   By convolution theorem, we get 

( )
du

ut
u

ss
L

t


−

=








++

−

022

1

2

2sin
.sin

4

1
.

1

1
 

         ( ) ( ) duuttu
t

 −−−=
0

2cos23cos
6

1
 

         
( ) ( ) t

uttu

01

2sin

3

23sin

6

1









−

−
−

−
=  

         ( ) ( )







−+−= tttt 2sinsin2sinsin

3

1

6

1
 

  







−= tt 2sin

3

4
.sin

3

4

6

1
 

  ( )tt 2sinsin
9

2
−= .                                                                      Ans. 

 

Example 4 

By using convolution theorem, find the inverse laplace transform of
( )( )21

1

++ ss
.                        

Solution 

tt e
s

Le
s

L 211

2

1
;

1

1 −−−− =








+
=









+
 

   By convolution theorem, we get 

( ) duee
ss

L
t

utu ..
2

1
.

1

1

0

21


−−−− =









++
 

     ( ) −== −−
t

ttut eeduee
0

22 1. tt ee 2−− −= .                                   Ans. 
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2.5 Application to Differential Equations 

 The Laplace transform method of solving differential equations yields 

particular solutions with out the necessity of first finding the general solution and 

then evaluating the arbitrary constants. This method is, in general, shorter method 

and is especially useful for solving linear differential equations with constant 

coefficients and a few integral and intergo-differential equations. 

 

Working procedure 

1. Take the Laplace transform on both sides of the differential equation. 

Apply the formula and the given initial conditions. 

2. Transpose the terms with minus signs to the right. 

3. Divide by the coefficient of y , getting y  as a known function of s . 

4. Resolve this function of s into partial fractions and take the inverse 

transform on both sides. This gives y as a function of t which is the desired 

solution satisfying the given conditions. 

 

Note  

(i) ( )( ) ( )sytyL =  

(ii) ( )( ) ( ) ( ) ( ) ( )0...............00 121 −−− −−−= nnnnn yysyssystyL . 

 

Example 1  

Solve the Differential equation ( ) teyDD −=++ 342 . Given 1,1 ==
dt

dy
y  at  0=t  

using Laplace transforms. [AU NOV 2011] 

 

Solution 

Given differential equation is ,3'4'' teyyy −=++ where
dt

dy
y ='  

Taking Laplace transform on both sides, 

( ) ( ) ( ) ( ) ( )  ( )
1

1
3040'02

+
=+−+−−

s
syysysyyssys  

( ) ( ) ( )
1

1
411342

+
=−−−++

s
ssyss  

( ) ( )
1

1
5342

+
++=++

s
ssyss  

( )
( )( ) ( )( )( )311

66

341

66 2

2

2

+++

++
=

+++

++
=

sss

ss

sss

ss
sy  

( )
( ) ( )31

66
2

2

++

++
=

ss

ss
sy                                                                                  (1) 

Consider 
( ) ( ) ( )22

2

11331

66

+
+

+
+

+
=

++

++

s

C

s

B

s

A

ss

ss
 

( ) ( )( ) ( )313166
22 +++++++++ sCssBsAss  
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Put   
2

1
1 =−= cs  

Put  
4

3
3 −=−= As  

Equating the coefficients of ,2s  

4

7

4

3
111 =








+=−=+= ABBA  

( ) ( )
( ) ( ) ( )

( )2
1

21

1

47

3

43
1

+
+

+
+

+

−
=

sss
sy  

Taking inverse transform on both sides, 

( )( ) ( )
( )

( )









+
+









+
+









+

−
== −−−−

2

1111

1

1

2

1

1

1

4

7

3

43

s
L

s
L

s
LtysyL  

   
ttt etee −−− ++−=

2

1

4

7

4

3 3
.                                                                   Ans. 

 

Example 2 

Solve the equation ( ) 0,sin1342 ==++ − yteyDD t and 0=Dy  at ,0=t  where 

dt

d
D = .   [AU JUNE 2009] 

 

Solution 

Given differential equation is teyyy t sin13'4'' −=++  . 

Taking Laplace transforms and using the given initial conditions, we get 

i.e., ( ) ( )
22

1
134

2

2

++
=++

ss
syss  

( )
( )( )13422

1
22 ++++

=
ssss

sy  

  
13422 22 ++

+
=

++

+
=

ss

DCs

ss

BAs
 

  








++

−
+

++

+−
=

134

32

22

72

85

1
22 ss

s

ss

s
 

  
( )

( )

( )

( )









++

−+
+

++

++−
=

92

722

11

912

85

1
22

s

s

s

s
 

( ) ( ) 















−++−= −− ttettety tt 3sin

3

7
3cos2sin9cos2

85

1 2 .                         Ans. 

 

Example 3 

Using Laplace transform, find the solution of the initial value problem   

( ) ( ) ( ) 00'0,399'' ==−=+ yytuyy , where ( )3−tu  is the unit step function.  
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Solution 

Given ( )399'' −=+ tuyy  

Taking Laplace transform on both sides, 

( ) ( ) ( ) ( )
s

e
syyyssys

s3
2 9

90'0
−

=+−−                                                                  (1) 

Putting the values of ( ) 00 =y and ( ) 00' =y  in ( )1 , we get 

( ) ( )
s

e
sysys

s3
2 9

9
−

=+  

( ) ( )
s

e
sys

s3
2 9

9
−

=+  

( )
( )9

9
2

3

+
=

−

ss

e
sy

s

 

( )
( )







+
=

−
−

9

9
2

3
1

ss

e
Lty

s

 

t
s

L 3sin
9

3
2

1 =








+

−  

and   
( )

( ) ttdtt
ss

L
tt

3cos13cos3sin3
9

3
3

002

1 −=−==








+ 
−  

( )
( )







+
=

−
−

9

9
2

3
1

ss

e
Lty

s

   gives 

( ) ( )  ( )333cos1 −−−= tutty .                                                                           Ans. 

 

Example 4 

A resistance R  in series with inductance L is connected with e.m.f ( )tE . The 

current i is given by ( )tERi
dt

di
L =+ . 

If the switch is connected at 0=t and disconnected at ,at = find the 

current i interms of t . 

 

Solution 

Conditions under which current i flows are 0=i  at ,0=t  

( )







=

at

atE
tE

,0

0,
 

Given equation is ( )tERi
dt

di
L =+                                                                         (1) 

Taking Laplace transform of ( ),1 we get. 

( )  ( )dttEeiRiisL st




−=+−
0

0  
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( ) ( )dttEeiRisL st




−=+
0

.    (since ( ) 00 =i ) 

( ) ( )dteEdtedtEeiRLs
a

a

ststst 0.
0 0  
 

−−− +==+  

         asas

a
st

e
s

E

s

E
e

s

E

s

e
E −−

−

−=−=+








−
= 10

0

 

( ) ( )RLss

eE

RLss

E
i

as

+
−

+
=

−

 

On inversion, we obtain 

( ) ( )







+
−









+
=

−
−−

RLss

eE
L

RLss

E
Li

as
11                                                                      (2) 

Consider
( )







+

−

RLss

E
L 1  

( )


























+

=








+

−−

L

R
ss

L
L

E

RLss

E
L

111  

   



















+

−= −

L

R
s

s
L

R

L

L

E 11
.. 1    (Resolving into partial fractions) 

   







−=

− t
L

R

e
R

E .

1  

and 
( )

( )atue
R

E

RLss

eE
L

at
L

Ras

−







−=









+

−−
−

−
)(

1 1 .  (By second shifting theorem) 

On substituting the values of the inverse transform in ( ),2 we get. 

( )
( )atue

R

E
e

R

E
i

at
L

R
t

L

R

−







−−








−=

−−−

11  

Hence 







−=

− t
L

R

e
R

E
i 1  for ( ) 0,0 =− atuat  

( )









−−








−=

−−− at
L

R
t

L

R

e
R

E
e

R

E
i 11   [for ( ) 1, =− atuat  

( )









−=








−=

−−−−

1L

Ra
t

L

R
t

L

R
at

L

R

ee
R

E
ee

R

E
i .                                               Ans. 
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Example 5 

Using Laplace transforms solve ( ) ( ) 00,00',26'5'' ===++ yyyyy . [KU NOV 

2010] 

 

Solution 

Given 26'5'' =++ yyy  

Taking Laplace transforms on both sides 

( )( ) ( )( ) ( )( ) ( )26'5'' LtyLtyLtyL =++ . 

( ) ( ) ( ) ( ) ( )  ( )
s

syysysyyssys
2

6050'02 =+−+−−  

Given ( ) 00 =y and ( ) 00' =y  

( ) ( ) ( )
s

sysyssys
2

652 =++  

( ) ( )
s

syss
2

652 =++  

( )
( )65

2
2 ++

=
sss

sy  

i.e.,  ( )
( )( )32

2

++
=

sss
sy  

( )
( )( )







++
= −

32

21

sss
Lty  

By using partial fraction, 

( )( ) 3232

2

+
+

+
+=

++ s

C

s

B

s

A

sss
 

( )( ) ( ) ( )23322 ++++++= sCssBsssA  

Put 12 −=−= Bs  

Put 
3

2
3 =−= Cs  

Put 
3

1
0 == As  

( )( ) 








+
+









+
−








=









++
 −−−−

3

1

3

2

2

1

3

1

32

2 1111

s
L

s
L

s
L

sss
L  

i.e.,  ( ) tt eety 32

3

2

3

1 −− +−= .                                                                               Ans. 

 

Example 6 

Solve ( ) ( ) 10',10,42'3'' −===+− yytyyy  using Laplace transforms. [KU NOV 

2011] 
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Solution 

Given tyyy 42'3'' =+−  

Taking Laplace transforms on both sides, we get 

( ) ( ) ( ) ( )tLyLyLyL 42'3'' =+−  

( ) ( ) ( ) ( ) ( )  ( )
2

2 4
2030'0

s
syysysyyssys =+−−−−  

( ) ( )  ( )
2

2 4
2131

s
sysysssys =+−−+−  

( ) ( )
2

2 4
3123

s
ssyss =++−+−  

( ) ( ) ( )
2

2 4
423

s
ssyss =−−+−  

( ) ( ) ( )4
4

23
2

2 −+=+− s
s

syss  

( )
( ) ( )23

4

23

4
222 +−

−
+

+−
=

ss

s

sss
sy  

( )
( ) 









+−

−
+









+−
= −−

23

4

23

4
2

1

22

1

ss

s
L

sss
Lty  

  
( )
( ) 









−
+

−

−
+









+−

+−
+

+
= −−

1

3

2

2

239

195

9

1816 1

22

1

ss
L

ss

s

s

s
L  










+−
+









+−
−








+








= −−−−

23

1

9

19

239

51

9

181

9

16
2

1

2

1

2

11

ss
L

ss
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EXERCISE 

 

PART A 

 

1. State the initial value theorem in Laplace transforms. 

2. State the final value theorem in Laplace transforms. 

3. Define the convolution product of two functions and prove that it is 

commutative. 
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4. State convolution theorem in Laplace transforms. 

5. Verify initial value theorem for ( ) ( )ttetf t cossin1 ++= − . 

 

PART B 

 

1. Obtain the inverse Laplace transform by convolution. (i) 
( )222

2

as

s

+
     

 (ii) 
( )32 1

1

+s
     (iii) 

( )222

1

ass −
    (iv) 

( )( )94 22 ++ ss

s
    (v) 

( )( )41

10
2 ++ ss

     

(vi) 
( )32 1

1

+ss
(vii) 

( )22

2

4+s

s
(viii) 

( )4

1
2 +ss

 (ix)
( )22

1

ass −
   (x) 

44

2

as

s

−
.                                               

                                 (Ans. (i) at
a

att sin
2

1
cos

2

1
+  (ii) ( ) tttt cos3sin3

8

1 2 −−    

     (iii)  hatat
a

sin
1

3
+−     (iv)  tt 5cos2cos

5

1
−      (v) tte t 2cos22sin2 −+−

 

       (vi)   364
2

2 −+++
−

ttt
e t

 (vii) ( )ttt 2cos22sin
4

1
+      (viii) ( )t2cos1

4

1
−                  

                                                 (ix) ( )1cos
1

2
−ath

a
   (x) ( )atath

a
sinsin

2

1
+ ). 

       2.   Solve the following differential equations by Laplace transform. 

(i) ,0
2

2

=+ y
dx

yd
 where 1,1 ==

dx

dy
y at 0=x . 

(ii) 052
2

2

=++ y
dx

dy

dx

yd
 where 4,2 −==

dx

dy
y at 0=x . 

(iii) 022
2

2

3

3

=−−+ y
dx

dy

dx

yd

dx

yd
given 6,0

2

2

===
dx

yd

dx

dy
y at 0=x . 

(iv) xy
dx

dy

dx

yd
212

2

2

−=−+  given 4,0 ==
dx

dy
y at 0=x . 

(v) xexy
dx

dy

dx

yd 2

2

2

423 +=+−  where 1,1 −==
dx

dy
y at 0=x . 

                                 (Ans. (i) xxy cossin +=           (ii) ( )xxey x 2sin2cos2 −= −   

                                         (iii) xxx eeey 223 −− +−=    (iv) xeey xx +−= −2     

                                                                          (v) 
xxx eeexy

2

1
2

2

1
23 23 −−++= ) 



UNIT I

Questions opt1 opt2 opt3 opt4 Answer

The sum of the main diagonal elements of a matrix 

is called------

trace of a 

matrix 

quadrati

c form

eigen 

value 

 

canonic

al form

trace of a 

matrix 

The orthogonal transformation used to diagonalise 

the symmetric matrix A is----
N

T
 AN   N

T
 A NAN

-1        NA N
T
 AN   

If λ1, λ2, λ3,……… λ n  are the eigen values of A 

,then kλ1 ,kλ2, kλ3,……… ,kλ n  are the eigen values 

of --------------

kA  kA
2         

kA
-1       

 A
-1 kA

Diagonalisation of a matrix by orthogonal reduction 

is true only for a ----- matrix.
diagonal

triangul

ar

real 

symmetri

c

scalar
real 

symmetric

If atleast one of the eigen values of A is zero, then 

det A = -----
0 1 10 5 0

det (A- λI ) represents------

characterist

ic 

polynomial

characte

ristic 

equatio

n

quadratic 

form

canonic

al form

characteris

tic 

polynomial

 If   λ_1, λ_2, λ_3,……… λ_n   are the eigen values of A 

,then  1/λ_1,1/ λ_2, 1/λ_3,……… 1/λ_n    are the eigen 

values of --------

 A^-1  A         A^n 2A  A^-1

 If λ_1, λ_2, λ_3,……… λ_n  are the eigen values of A 

,then λ_1^p, λ_2^p, λ_3^p,……… λ_n^p  are the eigen 

values of 

 A^-1  A^2         A^-p            A^p           A^p           

The eigen values of a ---------------------- matrix are 

its diagonal elements
diagonal

 

symmet

ric

skew-

matrix

triangul

ar
triangular

In an orthogonal transformation N
T
 AN = D , D 

refers to a ---------- matrix.
diagonal

orthogo

nal

symmetri

c

skew- 

symmet

ric

diagonal



In a modal matrix, the columns are the eigen vectors 

of----------
 A

-1
A

2         A         adj A A         

If the eigen values of  8x1
2
 + 7 x2

2
 +3 x3

2
 –12 x1 x2 – 

8 x2 x3 +4 x3x1 are 0,3 & 15, then its nature is----------

-

positive 

definite

positive 

semidef

inite

indefinite

negativ

e 

definite

positive 

semidefinit

e

The elements of the matrix of the quadratic form x1
2 

+ 3 x2
2
 + 4 x1 x2 are ------------

a11 = 1,a12 

=2 , a 21 = 2 

, a 22 = 3

a11 = -1, 

a12 = -2 , 

a 21 = 2 , 

a 22 = 3

a11 = 1, 

a12 = 4 , a 

21 = 4 , a 

22 = 3

a11 = 1, 

a12 = 4 , 

a 21 = 3 , 

a 22 = 1

a11 = 1,a12 

=2 , a 21 = 

2 , a 22 = 3

If the sum of two eigen values and trace of a 3x3 matrix 

A are equal, then det A = ---------
 λ_1 λ_2 λ_3 0 1 2 0

If 1,5 are the eigen values of a matrix A, then det A 

= -------
5 0 25 6 5

If the canonical form of a quadratic form is  5y1
2
 + 6 

y2
2
 , then the rank is --------

4 0 2 1 2

The eigen vector is also known as------- latent value
latent 

vector

column 

value

 

orthogo

nal 

value

latent 

vector

If 1,3,7 are the eigen values of A, then the eigen 

values of 2A are ------------
1,3,7 1,9,21 2,6,14 1,9,49 2,6,14

If the eigen values of 2A are 2, 6, 8 then eigen 

values of A are _________
1,3,4 2,6,8 1,9,16 12,4,3 1,3,4

The number of positive terms in the canonical form 

is called the ________ of the quadratic form.
rank index Signature

indefini

te
index



If all the eigenvalues of A are positive then it is 

called as_______

 Positive 

definite

Negativ

e 

definite

Positive 

semidefin

ite

 

Negativ

e 

semidef

inite

 Positive 

definite

If all the eigenvalues of A are negative then it is 

called as_______

Positive 

definite

Negativ

e 

definite

Positive 

semidefin

ite

Negativ

e 

semidef

inite

Negative 

definite

A homogeneous polynomial of the second degree in 

any number of variables is called the ______

characterist

ic 

polynomial

characte

ristic 

equatio

n

quadratic 

form

canonic

al form

quadratic 

form

The Set of all eigen values of the matrix A is called 

the ___________ of A
rank index Signature

spectru

m
spectrum

A Square matrix A and its transpose have _______ 

eigen values.
different  Same Inverse

Transpo

se
 Same

The sum of the __________ of a matrix A is equal 

to the sum of the principal diagonal elements of A.

characterist

ic 

polynomial

characte

ristic 

equatio

n

eigen 

values 

eigen 

vectors

eigen 

values 

The product of the eigenvalues of a matrix A is 

equal to_________

 Sum of 

main 

diagonal

Determi

nant of 

A

Sum of 

minors of 

Main 

diagonal

Sum of 

the 

cofactor

s of A

Determina

nt of A

The eigenvectors of a real symmetric are _______  equal  unequal real
symmet

ric
real

If the eigen values of 2A are 2, 6, 8, then eigen 

values of A are _________
1,3,4 2,6,8 1,9,16 12,4,3 1,3,4 



The eigen values of a triangular matrix are --------

main 

diagonal 

elements

first row 

element

s 

first 

column 

elements

last 

column 

element

main 

diagonal 

elements

The main diagonal elements of a triangular matrix  

are -----------

characterist

ic 

polynomial

characte

ristic 

equatio

n

eigen 

values 

eigen 

vectors

eigen 

values 

The main diagonal elements are the eigen values 

of the -------matrix.
square 

symmet

ric 

non 

symmetric

triangul

ar
triangular

If atleast one of the eigen values of A is zero, then 

det A = ___
0 1 10 5 0

 If the eigen values of A are 2, 3, 4 then the eigen 

values of A
-1

 is

 1/2 , 1/3, 

1/4 
2,3,4 -2,-3,-4 

(-1/2,-

1/3,-1/4)

 1/2 , 1/3, 

1/4 

If the sum of two eigen values of  matrix A are equal 

to the trace of the matrix, then the  determinant of A 

is___________

1 2 0 3 0

Sum of the principal diagonal elements ________
product of 

eigen values

product 

of eigen 

vectors 

sum of 

eigen 

values

product 

of eigen 

values

sum of 

eigen values

If 1 and 2 are the eigen values of a matrix A, then 

the eigen values of A
2
 are ____

2,3 3,5 1,4 1,2 1,4

The eigen vector is also known as _____
latent 

square

column 

vector 
row vector 

latent 

vector    

latent 

vector    

If all the eigen values of a matrix are distinct, then the 

corresponding eigen vectors______

linearly 

dependent 
 unique not unique 

linearly 

indepen

dent 

linearly 

independen

t 

A matrix is called symmetric if and only if ---------- A=A^T A=A^-1 A=-A^T A=A A=A^T



If a matrix A is equal to A^T then A is a -------- matrix. symmetric

non 

symmetri

c

skew-

symmetric
singular symmetric

A matrix is called skew-symmetric if and only if --------- A=A^T A=A^-1 A=-A^T A=A A=-A^T

If a matrix A is equal to -A^T then A is a -------- matrix. symmetric

non 

symmetri

c

skew-

symmetric
singular

skew-

symmetric

A matrix is called orthogonal if and only if ----- A^T=A^-1
A^T=-A^-

1
A^T=A^-2

A^T=-A^-

2
A^T=A^-1

A matrix is called ------------if and only if A^T=A^-1. orthogonal square 
non 

symmetric

triangul

ar
orthogonal 

The equation det (A-λI) = 0 is used to find ----------
characteristi

c polynomial

character

istic 

equation

 eigen 

values 

 eigen 

vectors

characteristi

c equation

If the characteristic equation of a matrix A is λ^2 – 2 = 0, 

then the eigen values are -------
2,2 (-2,-2)

(2^(1/2),-

2^(1/2))
(2i,-2i)

(2^(1/2),-

2^(1/2))

 If 1,3,7 are the eigen values of A, then the eigen values 

of 2A are ------------
1,3,7 1,9,21 2,6,14 1,9,49 2,6,14

If 1,5 are the eigen values of a matrix A, then det A = ------

-
5 0 25 6 5

Eigen value of the characteristic equation λ^2-4 = 0 is 2, 4 2, -4 2, -2 2, 2 2,-2

Eigen value of the characteristic equation λ^3-6λ^2+11λ-

6 = 0 is
1,2,3 1, -2,3 1,2,-3 1,-2,-3 1,2,3

Largest Eigen value of the characteristic equation λ^3-

3λ^2+2λ = 0 is
1 0 2 4 2

Smallest Eigen value of the characteristic equation λ^3-

7λ^2+36 = 0 is
-3 3 -2 6 -2



Sum of the principal diagonal elements =
product of 

eigen values

product 

of eigen 

vectors

sum of 

eigen 

values

sum of 

eigen 

vectors

sum of 

eigen values

Product of the eigen values = (-|A|) 1/|A| (-1/|A|) |A| |A|

A Square matrix A and its transpose have _______ 

eigen values.
different  Same Inverse

Transpo

se
 Same

If 1 and 2 are the eigen values of a 2X2 matrix A, then 

the eigen values of A^2 is
2, 4 3,4 5,6 1, 4 1, 4

If 1 and 2 are the eigen values of a 2X2 matrix A, then 

the eigen values of A^-1is
2,1/2 1,1/2 1,2 4,1/2 1,1/2

If a real symmetric matrix of order 2 has ---------then the 

matrix is a scalar matrix.

equal eigen 

vectors

different 

eigen 

vectors

equal 

eigen 

values

different 

eigen 

values

equal eigen 

values

If A and B are nxn matrices and B is a non singular 

matrix then A and B^-1AB have

same eigen 

vectors

different 

eigen 

vectors

same eigen 

values

different 

eigen 

values

same eigen 

values

Every square matrix satisfies its own ----------
characteristi

c polynomial        

characte

ristic 

equation

orthogonal 

transforma

tion          

 

canonica

l form

characteristi

c equation

In a modal matrix, the columns are the -----------
eigen 

vectors of A

eigen 

vectors 

of adj A

eigen 

vectors of 

inverse 

ofA

eigen 

values of 

A

eigen 

vectors of A

Cayley -Hamilton theorem is used to find ------------

inverse and 

higher 

powers of A  

eigen 

values 

eigen 

vectors

quadrati

c form

inverse and 

higher 

powers of A  

If the canonical form of a quadratic form is  5y12 - 6 y22 , 

then the index is --------
4 0 2 1 1



The non –singular linear transformation used to 

transform the quadratic form to canonical form is ----------
 X= NTY         X= NY          Y= NX         NXA  X= NY          

The eigen vector is also known as------- latent value
latent 

vector

column 

value

 

orthogo

nal value

latent 

vector

The sum of the __________ of a matrix A is equal to the 

sum of the principal diagonal elements of A.

characteristi

c polynomial

characte

ristic 

equation

eigen 

values 

eigen 

vectors
eigen values 

The product of the eigenvalues of a matrix A is equal 

to_________

 Sum of 

main 

diagonal

Determi

nant of A

Sum of 

minors of 

Main 

diagonal

Sum of 

the 

cofactor

s of A

Determinan

t of A

The eigenvectors of a real symmetric are _______  equal  unequal real
symmetr

ic
real

When the quadratic form is reduced to the canonical 

form, it will contain only r terms, if the _____ of A is r.
rank index  Signature

spectru

m
rank

The excess of the number of positive terms over the 

number of negative terms in the canonical form is called 

the ___________ of the quadratic form.

 rank index  Signature
spectru

m
 Signature

If all the eigen values of A are less than zero and atleast 

one eigen value is zero then the quadratic form is said to 

be ___________

 Positive 

definite

Negative 

definite

Positive 

semidefini

te

 

Negative 

semidefi

nite

 Negative 

semidefinit

e



If all the eigen values of A are greater than zero and 

atleast one eigen value is zero then the quadratic form is 

said to be ___________

 Positive 

definite

Negative 

definite

Positive 

semidefini

te

 

Negative 

semidefi

nite

Positive 

semidefinit

e

If the quadratic form has both positive and negative 

terms then it is said to be ___________

Positive 

definite

Negative 

definite

Positive 

semidefini

te

 

indefinit

e

 indefinite



UNIT II

Questions opt1 opt2 opt3 opt4 Answer

If .F=0 then F is irrotational solenoidal rotational curl solenoidal

If ×F=0 then F is irrotational solenoidal rotational curl irrotational

Any motion in which the curl of the velocity vector is 

zero is said to be ___
irrotational solenoidal rotational curl irrotational

A function is said to be _______ if it associates a 

scalar with every point in space.

Scalar 

function

Vector 

function

Point 

function

vector 

point 

function

Scalar function

A variable quantity whose value at any point in a 

region of space depends upon the position of the 

point is called a ___

Scalar 

function

Vector 

function

Point 

function

vector 

point 

function

Point function

A function is said to be _______ if it associates  with 

vector in every point in space.

Scalar 

function

Vector 

function

Point 

function

vector 

point 

function

Vector function

If the divergence of a flow is zero at all points 

then it is said to be _______
rotational

irrotation

al
solenoidal

conservat

ive
solenoidal

______ gives the rate of outflow per unit volume 

at a point of the fluid.
curl V div V curl V=0 div V=0 div V

If div V=0 everywhere in some region R of 

space then V is called the _____ vector point 

function.

rotational
irrotation

al
solenoidal

conservat

ive
solenoidal

_______ is a vector which measures the extent 

to which individual particles of the fluid are 

spnning or rotating.

curl V div V curl V=0 div V=0 curl V

div F is a ________ function. point vector scalar rotational scalar

If curl V=0 then V is said to be an ___________. rotational
irrotation

al
solenoidal

conservat

ive
irrotational

If r=xI+yJ+zK then div r=________ 0 1 2 3 3

If r=xI+yJ+zK then curl r=________ 0 1 2 3 0



div (curl V)= 0 div V curl V V 0

curl (grad f)= 0 div V curl V f 0

Two surfaces are said to cut orthogonally at a 

point of intersection, if the respective normals at 

that point are ______.

parallel
perpendic

ular
equal zero perpendicular

A sufficiently small portion of a smooth surface 

is always _______
plane smooth twisted

orientabl

e
orientable

A curve that is not plane is called a _______ 

curve.
plane point twisted closed twisted

Any integral which is to be evaluated over a 

surface is called a ___

Line 

integral

Volume 

integral

surface 

integral

closed 

integral
surface integral

When the circulation of F around every closed 

curve in a region vanishes, then F is said to be 

_______ in that region.

rotational
irrotation

al
solenoidal

conservat

ive
irrotational

A force field F is said to be ____________ if it 

is derivable from a potential function f such that  

F = grad f.

rotational
irrotation

al
solenoidal

conservat

ive
conservative

If F is ______ then cur F=0. rotational
irrotation

al
solenoidal

conservat

ive
conservative

If S has a unique normal at each of its points 

whose direction depends continuously on the 

point of S then the surface S is called a ______ 

surface.

Orientabl

e
smooth plane twisted smooth

_________ provides a relationship between a 

double integral over a region R and the line 

integral over the closed curve C bounding R.

Cauchy's 

Theorem

Green's 

Theorem

Stoke's 

Theorem

Gauss 

Theorem

Green's 

Theorem

________ is also called the first fundamental 

theorem of integral vector calculus.

Cauchy's 

Theorem

Green's 

Theorem

Stoke's 

Theorem

Gauss 

Theorem

Green's 

Theorem



_________ transforms line integrals into surface 

integrals.

Cauchy's 

Theorem

Green's 

Theorem

Stoke's 

Theorem

Gauss 

Theorem

Stoke's 

Theorem

_______ transforms surface integrals into a 

volume integrals.

Cauchy's 

Theorem

Green's 

Theorem

Stoke's 

Theorem

Gauss 

Theorem
Gauss Theorem

_________ is stated as surface integral of the 

component of curl F along the normal to the 

surface S, taken over the surface S bounded by 

curve C is equal to the line integral of the vector 

point function F taken along the closed curve C.

Cauchy's 

Theorem

Green's 

Theorem

Stoke's 

Theorem

Gauss 

Theorem

Stoke's 

Theorem

________ is stated as the surface integral of the 

normal component of a vector function F taken 

around a closed surface S is equal to the integral 

of the divergence of F taken over the volume V 

enclosed by the surface S.

Cauchy's 

Theorem

Green's 

Theorem

Stoke's 

Theorem

Gauss 

Theorem
Gauss Theorem

If f is solenoidal, then ^2(f)= f 1 0 -1 0

If (3x-2y+z)I+(4x+ay-z)J+(x-y-2z)K is 

solenoidal then a=
0 1 -1 2 -1

If f=x+y+z-8 then grad f is ____ I+J+K I+J-K I-J+K 0 I+J+K

If f=x^2+y^2+z^2-8 then grad f at(2,2,2) is ____
4I+4J+4

K

4I+4J-

4K
4I-4J+4K 0 4I+4J+4K

If f =x^2+y^2+z^2-8 then grad f at(2,0,2) is 

____
4I+4K 4J+4K 4I+4J 0 4I+4K

If F = (x+2y+az)I+(bx-3y-z)J+(4x+cy+2z)K is 

irrotational, then the values of a,b and c are 

_______

a=2, 

b=4, c=-1

a=-1, 

b=2, c=4

a=4, b=2, 

c=1

a=4, 

b=2,  c=-

1

a=4, b=2,    c=-

1

If F= xyI-yzJ-zxK then curl F =
xI+yJ+z

K
xI-yJ-zK yI+zJ+xK yI+zJ-xK yI+zJ-xK

If F= xyI-yzJ-zxK then div F =
xI+yJ+z

K
xI-yJ-zK yI-zJ-xK yI+zJ-xK yI-zJ-xK



If F= xyI-yzJ-zxK then at (1,1,1), div F = I+J+K I-J+K I-J-K I+J-K I-J-K

If F= x^2-y^2+2z^2 then at (1,2,3), div F =
2I+4J+1

2K

2I-

4J+12K
2I-4J-6K

2I+4J-

12K
2I-4J+12K

div F is a ________ function. point vector scalar rotational scalar

If curl V=0 then V is said to be an ___________. rotational
irrotation

al
solenoidal

conservat

ive
irrotational

If F= x^2+y^2+2z^2 then grad F at (2,0,2)is----- 4i+4k 4j+4k 4i+4j 0 4i+4k

If F is an irrotational vector, it is ______ rotational
irrotation

al
solenoidal

conservat

ive
conservative

A ______ _curve that lies in a plane in space. plane point twisted closed plane

If F is conservative then cur F=0 and there exists 

a scalar potential function f such that ____ 
rotational

irrotation

al
solenoidal

conservat

ive
F = grad f.

Any integral which is to be evaluated along a curve is 

called a ___

Line 

integral

Volume 

integral

surface 

integral

closed 

integral
Line integral

Any integral which is to be evaluated over a volume 

is called a ___

Line 

integral

Volume 

integral

surface 

integral

closed 

integral
Volume integral

If F is conservative then cur F=0 and there exists a 

scalar potential function f such that ____ 
rotational

irrotationa

l
solenoidal

conservati

ve
F = grad f.

The integral of vector F.dr is -----.
line 

integral
 zero 

surface 

integral  
 one line integral

The integral of vector F.dr is is conservative if the 

terminal points A and B ______
Coinside   split     different  deviate Coinside   

Greens theorem is called the _____theorem of 

integral vector calculus.

second 

fundamen

tal

first 

fundamen

tal 

third 

fundament

al

 fourth 

fundamen

tal

first fundamental 

If del x F  then vector F is _______
conservati

ve 

non 

conservati

ve

curl solenoidal conservative 



If a force moves a particle from one place to another 

place in any curve then integral  of vector F.dr is 

called ---------- by that force.

work done rest taken
conservativ

e 

displacem

ent
work done

If a force--------a particle from one place to another 

place in any curve then integral  of vector F.dr is 

called work done by that force.

moves still constant idle moves 

If S is not smooth but can be divided into finitely 

many smooth portions then it is  called a ______ 

surface.

Orientable smooth
piecewise 

smooth
twisted

piecewise 

smooth

If F is an irrotational vector, it is ______ rotational
irrotationa

l
solenoidal

conservati

ve
conservative

A force field F is said to be ____________ if it is 

derivable from a potential function f such that F = 

grad f.

rotational
irrotationa

l
solenoidal

conservati

ve
conservative



UNIT III

S.No Questions Opt 1 Opt 2 Opt 3 Opt 4 Answer

1

An example of single valued function of 

z is ________. w = z^2

w = 

z^(1/2)  w=SQRT(z) w=z^-1 w = z^2

2

An example of multiple valued function 

of z is _______. w = z^2

w = 

z^(1/2)  w=SQRT(z) w=z^-1

w = 

z^(1/2)  

3

The distance between two points z and 

z0 is |z-z0| |z+z0|          z z0 |z-z0|

4

A circle of radius 1 with centre at origin 

can be represented by _______. |z|>1        |z| < 1         |z|=1     |z| = 0 |z| = 1

7

If  f(z) is differentiable at z0 then f(z) is 

________  at z0.

discontinu

ous         continuous          regular irregular

continuou

s          

8

A function is said to be _________ at a 

point if its derivative exists not only at 

point but   also in some neighborhood 

of that point. 

entire 

function       

integral 

function      analytic       

continuou

s analytic       

9

A function which is analytic everywhere 

in the finite plane is called 

___________.

analytic 

function       

holomorph

ic function     

regular 

function   

entire 

function

entire 

function

11

The necessary condition for f(z) to be 

analytic is_________

u_x = v_y  

and v_x = -

u_y

u_x = -v_y  

and v_x = 

u_y                

u_x = v_y  

and v_x = u_y                   

u_x = -

v_y and 

v_x = -u_y     

u_x = v_y  

and v_x = 

-u_y

12

A real function of two variables x and y 

that possesses continuous second order 

partial    derivatives and that satisfies 

Laplace equation is called __________.

analytic 

function

regular 

function           

holomorphic 

function       

harmonic 

function

harmonic 

function

13

If u and v are harmonic functions such 

that u+iv is analytic then each is called 

the _________        of the other.

conjugate 

harmonic       analytic

entire 

function       

not 

analytic

conjugate 

harmonic       



14

A transformation that preserves angles 

between every pair of curves through a 

point, both in      magnitude and sense, 

is called _______ at that point. Conformal           isogonal           

entire 

function           

unconfor

mal

Conforma

l           

15

A transformation under which angles 

between every pair of curves through a 

point are  preserved in magnitude, but 

altered in sense is said to be 

__________ at that point.   Conformal           isogonal           

entire 

function           

unconfor

mal isogonal           

16

A mapping w = f(z) is said to be 

conformal at z = z0 if __________. f’(z0) = 0          

f’(z0) = 

f(z)        f’(z0) ≠ 0      

f’(z0) ≠ 

f(z)  f’(z0) ≠ 0      

17

The point at which the mapping w = 

f(z) is not conformal, that is, f’(z) = 0 is 

called     ________ of the mapping. common          fixed            invariant          critical critical

18

A _________  point of a mapping w = 

f(z) are points that are mapped onto 

themselves, are   kept fixed under the 

mapping. common          fixed           critical            variant fixed           

19

The transformation w = a+z where a is 

a complex constant, represents a 

__________. translation        

magnificat

ion            rotation            reflection  

translatio

n        

20

The transformation _________ where a 

is a complex constant represents a 

translation. w = az w = az+b        w = a+z        w = 1/z       w = a+z        

21

The transformation _________ where a 

is a real constant represents 

magnification. w = a+z        w = 1/z       w = az+b        w = az w = az

22

The transformation w = az where a is a 

real constant represents __________. translation      

magnificat

ion        reflection        inversion

magnificat

ion        

23

In general linear transformation, w = 

az+b where a and b are complex 

constants represents    _______.

magnificati

on      rotation      translation    

magnificat

ion, 

rotation 

and 

translation

magnificat

ion, 

rotation 

and 

translatio

n

24

The transformation w=(az+b)/(cz+d), 

where a, b, c, d are complex numbers is 

called a    ______.

Linear 

transforma

tion          

bilinear 

transforma

tion       

fractional 

transformatio

n                          translation

bilinear 

transform

ation       

25

A bilinear transformation is also called a 

_______.

linear 

transforma

tion           inversion           

fractional 

transformatio

n                   

linear 

fractional 

transform

ation

linear 

fractional 

transform

ation

26 The value of  i = SQRT(-1)                  SQRT(1)                   -1 1 SQRT(-1)                  

27

_________ represents the interior of the 

circle excluding its circumference.

|z – z0| > 

delta              

|z – z0| < 

delta           |z – z0| ≥ delta               

|z – z0| ≤ 

delta         

|z – z0| < 

delta           

28

_________ represents the interior of the 

circle including its circumference.

|z – z0| > 

delta              

|z – z0| < 

delta           |z – z0| ≥ delta               

|z – z0| ≤ 

delta         

|z – z0| ≤ 

delta         



29

_________ represents the exterior of 

the circle.

|z – z0| > 

delta              

|z – z0| < 

delta           |z – z0| ≥ delta               

|z – z0| ≤ 

delta         

|z – z0| > 

delta              

30

Cauchy-Riemann equations are 

necessary conditions for a function w = 

f(z) to be an _____.

entire 

function      

integral 

function     

analytic 

function    

continuou

s function

analytic 

function    

31 Cauchy-Riemann equations are

u_x = v_y  

and v_x = -

u_y

u_x = -v_y  

and v_x = 

u_y                

u_x = v_y  

and v_x = u_y                   

u_x = -

v_y and 

v_x = -u_y     

u_x = v_y  

and v_x = 

-u_y

32

The real and imaginary parts of an 

analytic function f(z) = u+iv satisfies 

the ______ equation in two dimensions. 

Cauchy-

Riemann

Homogene

ous      Laplace       Euler   Laplace       

33

An analytic function with a constant 

real part is __________. a variable       a constant      

an analytic 

function     

an entire 

function a constant      

34

An analytic function with a constant 

modulus is __________. a variable       a constant      

an analytic 

function     

an entire 

function a constant      

35

A fixed point is also called as 

_________.

invariant 

points      

critical 

points    

common 

point     origin

invariant 

points      

36 The fixed point of w=(5z+4)/(z+5) is 2,1    1,-1   -2, 2 0, 1 -2, 2

37 The critical point of z=(2z+1)/(z+2) is 1, 1    1, -1    1,2 0,1 1, -1    

38

Solutions of Laplace's equation are 

________ under conformal 

transformation common          fixed            invariant          critical invariant          

39

If f(z) is analytic, and f'(z)=0 everywhere,  

then f(z) is _____ a variable       a constant      

an analytic 

function     

an entire 

function a constant      

40

An analytic function with a constant 

imaginary part is __________. a variable       a constant      

an analytic 

function     

an entire 

function a constant      

41 If u+iv is analytic, then v-iu is _______

entire 

function       

integral 

function      analytic       

continuou

s analytic       

44 w=z has every point as a _______ point fixed critical invariant          common          fixed 

45 w=1/z has _______ fixed points 1 2 3 4 2

46 w=z+b has ________ fixed points 0 1 2 3 0



UNIT IV

Questions opt1 opt2 opt3 opt4 Answer

A curve is called a____________ if it does not 

intersect itself

Simple 

closed 

curve

multiple 

curve

simply 

connected 

region

multiple 

connected 

region

Simple 

closed 

curve

A curve is called ________ if it is not a simple 

closed curve

connected 

region

multiple 

curve

simply 

connected 

region

multiple 

connected 

region

multiple 

curve

If f(z) is analytic in a simply connected domain D 

and C is any simple closed path then ∫(from c)f(z)dz 

=

1 2πi 0 πi 0

If f(z) is analytic inside on a  simple closed curve C 

and  a be any point inside C  then ∫(from c)f(z)dz /(z-

a)=

2πi f(a) 2πi 0 πi 2πi f(a)

The value of ∫(from c) [(3z^2+7z+1)/(z+1)] dz 

where C is |z| = 1/2 is
2πi          -6πi πi πi/2          -6πi

The value of  ∫(from c) (cos πz/z-1) dz if C is |z| =2 2πi          -2πi πi πi/3          -2πi

The value of  ∫(from c) (1/z-1) dz if C is |z| =2 2πi 3πi πi πi/4 2πi

The value of  ∫(from c) (1/z-3) dz if C is |z| =1 3πi πi πi/4 0 0

The value of  ∫(from c) (1/(z-3)^3) dz if C is |z| =2 3πi πi πi/5 0 0

The Taylor's series of f(z) about the point z=0 is 

called ___________series

Maclaurin'

s
Laurent's Geometric Arithmetic

Maclaurin'

s

The value of  ∫(from c) (1/z+4) dz if C is |z| =3 3πi πi πi/4 0 0

In Laurent's series of f(z) about z=a, the terms 

containing the positive powers is called the ____ 

part

regular principal real imaginary regular 

In Laurent's series of f(z) about z=a, the terms 

containing the negative powers is called the ____ 

part

regular principal real imaginary principal 

The poles of the function f(z) = z/((z-1)(z-2)) are at 

z = ______
1, 2 2,3 1,-1 3,4 1, 2 

The poles of cotz are______ 2nπ  nπ 3nπ 4nπ nπ

The poles of the function f(z) = cos z/((z+3)(z-4)) 

are at z = _____
 - 3, 4 2,3 1,-1 3,4  - 3, 4

The isolated singular point of f(z) = z/((z-4)(z-5)) 1,2 2,3 0,2 4,5 4,5

The isolated singular point of f(z) = z/((z(z-3)) 1,3 2,4 0,3 4,5 0,3

A simple pole is a pole of order ______ 1 2 3 4 1

The order of the pole z= 2 for  f(z) = z/((z+1)(z-

2)^2)
1 2 3 4 2

Residue of (cosz / z) at z = 0 is 0 1 2 4 1



The residue at z = 0 of ((1 + e^z) / (zcosz+sinz)) is 0 1 2 4 1

The residue of f(z) = cot z at z= 0 is_____ 0 1 2 4 1

The singularity of f(z) = z / ((z-3)^3) is______ 0 1 2 3 3

A point z=a is said to be a _______point of f(z), if 

f(z) is not analytic at z=a
Singular

isolated 

singular
removable

essential 

singular
Singular

A point z=a is said to be a _______point of f(z), if 

f(z) is  analytic except at z=a
Singular

isolated 

singular
removable

essential 

singular

isolated 

singular

In Laurent's series of f(z) about z=a, the terms 

containing the negative powers is called the 

____point

Singular
isolated 

singular

removable 

singular

essential 

singular

essential 

singular

In Laurent's series of f(z) about z=a, the terms 

containing the positive powers is called the 

____point

Singular
isolated 

singular

removable 

singular

essential 

singular

removable 

singular

In contour integration, cos θ=_______
(z^2+1)/2

z

(z^2+1)/2i

z
(z^2-1)/2z

(z^2-

1)/2iz

(z^2+1)/2

z

In contour integration,  sin θ=_______
(z^2+1)/2

z

(z^2+1)/2i

z
(z^2-1)/2z

(z^2-

1)/2iz

(z^2-

1)/2iz



Unit V

Questions opt1 opt2 opt3 opt4 Answer

The operator L that transforms f(t) into F(s) is 

called the -------- operator. Fourier Hankel

Laplace 

operator Z 

Laplace 

operator

The Laplace transform is said to exist if the integral 

is --------- for some value of s; otherwise it does not 

exist.

discontinuou

s divergent closed 

converge

nt convergentIf f(t) is ---------  on every finite interval in (0,∞) 

and is of exponentialorder 'a' for t>0, then the 

Laplace transform of f(t) exists for all s>a, ie F(s) 

exists for every s>a.

unifromly 

continuous

piecewise 

continuou

s 

convergen

t divergent

piecewise 

continuous If f(t) is piecewise continuous  on every -------- and 

is of exponentialorder 'a' for t>0, then the Laplace 

transform of f(t) exists for all s>a, ie F(s) exists for 

every s>a.

closed 

interval [0,1]

Half open 

interval 

[0,1)

infinite 

interval 

in (0,∞)

finite 

interval 

in (0,∞)

finite 

interval in 

(0,∞)

If f(t) is piecewise continuous  on every finite 

interval in (0,∞) and is of ------- 'a' for t>0, then the 

Laplace transform of f(t) exists for all s>a, ie F(s) 

exists for every s>a.

exponential 

order

quadratic 

order

cubic 

order n th order

exponential 

order

If f(t) is piecewise continuous  on every finite 

interval in (0,∞) and is ofexponentialorder'a' for 

t>0, then the Laplace transform of f(t) exists for all 

s>a, ie F(s) exists for every s>a. This condition is necessary

non 

sufficient Sufficient

both 

necessary 

 and 

sufficient Sufficient

L[1] = n! / s^(n+1) 1/s , s > 0 1/(t+1) 1/ (s-a) 1/s , s > 0

L[t^n] = 2/(s-1) n!

 1/ 

s^(n+1)

n! / 

s^(n+1) n! / s^(n+1)

L[e^(at)] = 1/ (s-a) 1/s , s > 0

n! / 

s^(n+1) a/(s-a) 1/ (s-a)

L[e^(-at)] = F(s-a)

s^2 F(s)-s 

f(0)- f '(0) 1/ (s+a)

n! / 

s^(n+1) 1/ (s+a)

L[sinat]= a/(s^2 +a^2)

1/(s^2 

+a^2)

(s^2 

+a^2)

a/(s^3+a^

3) a/(s^2 +a^2)

L[cosat]= n! / s^(n+1) s^(n+1) t^(n+1)

s/(s^2 

+a^2) s/(s^2 +a^2)

L[coshat]= s/(s^2 -a^2)

1/(s^3 -

a^3)

s/(s^2 

+a^2) 1/a F(s/a) s/(s^2 -a^2)



L[af(t) + bg(t)]= aF(s)+bG(s)

aF(s)-

bG(s)

bF(s)-

aG(s)

bF(s) * 

aG(s) aF(s)+bG(s)

L[af(t) + bg(t)]= aF(s)+bG(s) is called ------property quasi linear non-linear Linearity

homogen

ous Linearity

Lineraity property is

L[af(t) + 

bg(t)]= aF(s) 

* bG(s)

L[af(t) + 

bg(t)]= 

aF(s)+bG(

s) 1/a F(s/a)

L[af(t) + 

bg(t)]= 

aF(s)-

bG(s)

L[af(t) + 

bg(t)]= 

aF(s)+bG(s)

If L[f(t)]=F(s) then L[e^at  f(t)]= aF(s)+bG(s) F(s+a) 1-s F(s-a) F(s-a)

First Shifting property is if L[f(t)] = F(s) then ------

 L[e^at  

f(t)]=F(s-a)

L[f(at)]= 

1/a F(s/a)

s^2 F(s)-s 

f(0)- f '(0) s^(n+1)

 L[e^at  

f(t)]=F(s-a)

If L[f(t)]=F(s) then L[e^at  f(t)]=F(s-a) is called ----

property linear

convoluti

on

First 

shifting 

property

non 

homogen

ous

First 

shifting 

property

If L[f(t)]= F(s) then L[f(at)]=1/a F(s/a) is called 

_______ property.

Change of 

scale 

convoluti

on

First 

shifting 

property

non 

homogen

ous

Change of 

scale 

If L[f(t)]= F(s) then L[f(at)]=   F(s/a) 1/a F(s/a) F(s-a) a F(s/a) 1/a F(s/a)

 _____is called the change of scale property L[f(at)]= t-1

L[f(at)]= 

1/(s^3 -

a^3)

L[f(at)]= 

1/a F(s/a)

 L[e^at  

f(t)]=F(s-

a)

L[f(at)]= 

1/a F(s/a)

Change of scale property is -----

L[f(at)]= 1/a 

F(s/a)

L[f(at)]=  

F(s/a)

L[f(at)]=  

F(a/s)

L[f(at)]= 

a F(s/a)

L[f(at)]= 

1/a F(s/a)

If L[f(t)]= F(s) then L[f ' (t)] = F(s)-f(0)

s F(s)-

+(0) s F(s)-f(0) F(s)+f(0) s F(s)-f(0)



If L[f(t)]= F(s) then   L[f '' (t)] = 

s^2 F(s)-s 

f(0)

s^2 F(s)-s 

f(0)- f '(0)

s^2 F(s)-s 

f(0)+ f 

'(0)

s^2 

F(s)+s 

f(0)+ f 

'(0)

s^2 F(s)-s 

f(0)- f '(0)

L[5 (t^3)] = 1 1/s , s > 0 3/ (s^4) 30/ (s^4) 30/ (s^4)

L[6 t] = 6 6/(s^2) 6/s 6-s 6/(s^2)

L[2 e ^ (-6 t)] = 2/(s+6) 2 2/(s-6) 2/s 2/(s+6)

L[7] = 7/s 1/s , s > 0 (-7/s) 7 7/s

L[10 sin2t]= 20/(s^2-4) 2/(s^2+4) 2/(s^2-4)

20/(s^2+

4) 20/(s^2+4)

L[7 cosh3t]= 7s/(s^2-9) 7/(s^2-9) s/(s^2-9)

7s/(s^2+9

) 7s/(s^2-9)

The inverse laplace transform of 1/s is = 0 -1 s+a 1 1

The inverse laplace transform of 1/(s-a) is = e^(-at) 1/e^(at) e^(at) 1/e^(-at) e^(at)

The inverse laplace transform of 1/(s+a) is = e^(-at) 1/e^(at) 1/e^(-at) e^(at) e^(-at)

If L[f(t)]=F(s) then f(t) is called  --------  laplace 

transform of F(s) Linear non-linear inverse

quasi 

linear inverse

If L is linear then -------- is Linear. L+1 L^(-1) 1/L (-1/L) L^(-1)

If L is linear then L inverse is -------- non-linear Linear divergent

quasi 

linear Linear

The convolution of f*g of f(t) and g(t) is defined as

(f*g)(t)=∫ 

(from 0 to t) 

f(u) g(t+u) du

(f*g)(t)=∫ 

(from 0 

to t) f(u)  

du

(f*g)(t)=∫ 

from 0 to 

t f(u) g(t-

u) du

(f*g)(t)=∫ 

 (from 0 

to t)  g(t-

u) du

(f*g)(t)=∫ 

(from 0 to 

t) f(u) g(t-

u) du

_______is called the convolution theorem.

(f*g)(t)=∫ 

from 0 to t 

f(u) g(t-u) du

(f*g)(t)=1

-t

(f*g)(t)=e

^(-at)

(f*g)(t)=

L^(-1)(1)

(f*g)(t)=∫ 

from 0 to t 

f(u) g(t-u) 

du

A function f(t) is said to be -----with period T>0 if 

f(t+T)=f(t) for all t even projection odd peroidic periodic

L[k] = k/s k/s , s > 0 (-1/s) k k/s



L[sinhat]= a/(s^2 -a^2)

1/(s^3 -

a^3)

a/(s^2 

+a^2) 1/a F(s/a) a/(s^2 -a^2)

L[e^(8t)] = 1/ (s-8) 1/s , s > 0

n! / 

s^(n+1) 8/(s-8) 1/ (s-8)


