19BEAE201/19BEME201 MATHEMATICS I 3104
(Calculus, Ordinary DifferentialEquations and Complex Variable for Mechanical and Automobile Engineering)

COURSE OBJECTIVES

The objective of this course is to familiarize the prospective engineers with techniques in

Multivariate integration, ordinary and partial differential equations and complex variables. It

aims to equip the students to deal with advanced level of mathematics and applications thatwould be essential for their
disciplines.

INTENDED OUTCOME

The students will learn:

» The mathematical tools needed in evaluating multiple integrals and their usage.

« The effective mathematical tools for the solutions of differential equations that model physical processes.

* The tools of differentiation and integration of functions of a complex variable that are used in various techniques dealing
engineering Problems.

UNIT I: Multivariable Calculus (Integration) 12

Multiple Integration: double and triple integrals (Cartesian and polar), change of order of integration in double integrals,
Applications: areas and volumes, Center of mass and Gravity (constant and variable densities). Theorems of Green, Gauss and
Stokes, Simple applications involving cubes and rectangular parallelepipeds.

UNIT II: First order ordinary differential equations 12
Exact, linear and Bernoulli’s equations, Euler’s equations, Equations not of first degree :equations solvable for p,
equations solvable for y, equations solvable for x and Clairaut’s type.

UNIT IlI: Ordinary differential equations of higher orders 12

Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler
equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties.
UNIT IV: Analytic Functions 12

Cauchy-Riemann equations, analytic functions, harmonic functions, finding harmonic conjugate; elementary analytic

functions (exponential, trigonometric, logarithm)and their properties; Conformal mappings, Mobius transformations.
UNIT V: Complex Integration 12

Contour integrals, Cauchy- Goursat theorem (without proof), Cauchy Integral formula(without proof), zeros of analytic
functions, singularities, Taylor’s series, Laurent’s series, Residues, Cauchy Residue theorem (without proof), Evaluation of

definite integral involving sine and cosine. Total: 60
TEXT/REFERENCE BOOKS
S. NO. AUTHOR(S) NAME TITLE OF THE BOOK PUBLISHER YEAROF
PUBLICATION
1 Hemamalini. P.T Engineering Mathematics McGraw Hill Education (India) 2014
Private Limited, New Delhi.
2 G.B. Thomas and R.L. Calculus and Analytic geometry, | Pearson 2002
Finney 9th Edition
3 Erwin kreyszig Advanced Engineering John Wiley & Sons 2006
Mathematics, 9th Edition
4 W. E. Boyce and R. C. Elementary Differential Wiley India 2009
DiPrima Equations and Boundary
Value Problems9th Edn.
5 S. L. Ross Differential Equations, 3rd Ed. Wiley India 1984
6 E. A. Coddington An Introduction to Ordinary Prentice Hall, India 1995
Differential Equations
7 E. L. Ince Ordinary Differential Equations Dover Publications 1958
8 J. W. Brown and R. V. Complex Variables and Mc-Graw Hill 2004
Churchill Applications, 7th Ed.
9 N.P. Bali and Manish A text book of Engineering Laxmi Publications 2008
Goyal Mathematics
10 B.S. Grewal Higher Engineering Khanna Publishers 2010
Mathematics, 36th Edition
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KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)
COIMBATORE-641 021

DEPARTMENT OF SCIENCE AND HUMANITIES

aARACAM FACULTY OF ENGINEERING
| B.E MECHANICAL / AUTOMOBILE ENGINEERING
LECTURE PLAN
Subject : MATHEMATICS - 11
(Calculus, Ordinary Differential Equations and Complex Variable)
Code : 1I9BEME201/19BEAE201
S.NO Topics covered No. of
hours
UNIT I First order ordinary differential equations
1 Introduction of Multiple Integration: double and triple integrals 1
2 Multiple Integration: double integral 1
3 Multiple Integration: double and triple integrals (Cartesian and polar), 1
4 Multiple Integration: Triple integrals 1
5 change of order of integration in double integrals 1
6 change of order of integration in double integrals 1
7 Tutorial 1 - Problems based on change of order of integration in double 1
integrals
8 Applications: areas and volumes 1
9 Applications: areas and volumes 1
10 | Center of mass and Gravity (constant and variable densities). 1
11 | Theorems of Green, Gauss and Stokes, Simple applications involving 1
cubes and rectangular parallelepipeds.
12 | Theorems of Green, Gauss and Stokes, Simple applications involving 1
cubes and rectangular parallelepipeds.
13 | Theorems of Green, Gauss and Stokes, Simple applications involving 1
cubes and rectangular parallelepipeds.
14 | Tutorial 2 - Problems based on Theorems of ~ Green, Gauss and 1
Stokes
TOTAL 14
UNIT 11 First order ordinary differential equations
15 Introduction of first order differential equations 1
16 Exact, linear and Bernoulli’s equations 1
17 Exact, linear and Bernoulli’s equations 1
18 Euler’s equations 1
19 Tutorial 3 - Problems based on Exact, linear and Bernoulli’s equations 1
20 Equations not of first degree:Equations solvable for p 1
21 Equations not of first degree:Equations solvable for p 1
22 Equations solvable for y 1
23 Equations solvable for y 1
24 | Equations solvable for x 1
25 Equations solvable for x 1
26 Clairaut’s type 1
27 Clairaut’s type 1
28 Tutorial 4 - Problems based on Clairaut’s type, Equations solving for x 1
andy, p




TOTAL 14
UNIT 111 Ordinary differential equations of higher orders
29 Introduction of ordinary differential equations 1
30 | Second order linear differential equations with variable coefficients 1
31 | Second order linear differential equations with variable coefficients 1
32 | Second order linear differential equations with variable coefficients 1
33 | Second order linear differential equations with variable coefficients 1
34 | Second order linear differential equations with variable coefficients 1
35 | Tutorial 5 - Problems based on second order differential equations with 1
variable coefficients
36 Method of variation of parameters 1
37 | Cauchy-Euler equation 1
38 Power series solutions; Legendre polynomials 1
39 Power series solutions; Legendre polynomials 1
40 Bessel functions of the first kind and their properties 1
41 Bessel functions of the first kind and their properties 1
42 | Tutorial 6 - Problems based on Bessel functions and Legendre 1
polynomials
TOTAL 14
UNIT IV: Analytic Functions
43 Introduction — Analytic Function 1
44 Necessary and Sufficient conditions for an analytic function- Cauchy- 1
Riemann equations —Cartesian form
45 Necessary and Sufficient conditions for an analytic function- Cauchy- 1
Riemann equations —Cartesian form
46 | Cauchy-Riemann equations — Polar form 1
47 Harmonic functions and its conjugate 1
48 | Tutorial 7-Cauchy-Riemann equations Harmonic functions 1
49 Properties of analytic functions 1
50 | Construction of an Analytic Function Milne-Thomson method 1
51 | Construction of an Analytic Function Milne-Thomson method 1
52 | Conformal mapping: The transformations w = z+a, az 1
53 | Conformal mapping: The transformations w = 1/z, Z2 1
54 Bilinear transformation 1
55 Mobius transformations 1
56 | Tutorial 8 - Conformal mapping, Mobius transformations 1
TOTAL 14
UNIT V Complex Integration
57 Introduction - Complex Integration, Line integral 1
58 Problems solving using Cauchy’s integral theorem 1
59 Problems solving using Cauchy’s integral formula 1
60 Taylor’s Series Problems 1
61 Taylor’s Series Problems 1
62 Laurent series problems 1
63 Laurent series problems 1
64 | Tutorial 9 - Taylor’s and Laurent’s series problems 1
65 | Theory of Residues 1
66 Cauchy Residue theorem (without proof) 1
67 | Cauchy Residue theorem- Problems 1
68 Evaluation of definite integral involving sine and cosine. 1




69 Evaluation of definite integral involving sine and cosine. 1
70 | Tutorial 10 - Cauchy’s residue theorem, Applications 1
TOTAL 14
GRAND TOTAL 70
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Unit VIII

Vector Integration

Chapter 20: Line Integral, Surface Integral and
Integral Theorems
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Line Integral, Surface
Integral and Integral
Theorems

fChapter Outline

Infroduction

Infegration of Vectors

Line Infegral

Circulation

Application of line Infegrals
Surfaces

Surface Infegrals

Volume Integrals

Integral Theorems

20.1 QO INTRODUCTION

In multiple integrals, we generalized integration from one variable to several
variables. Our goal in this chapter is to generalize integration still further to include
integration over curves or paths and surfaces. We will define integration not just of
functions but also of vector fields. Integrals of vector fields are particularly important
in applications involving the “field theories” of physics, such as the theory of
electromagnetism, heat transfer, fluid dynamics and aerodynamics.

In this chapter, we shall define line integrals and surface integrals. We shall see that
a line integral is a natural generalization of a define ¢
integral and a surface integral is a generalization of )
a double integral. Line integrals can be transformed
into double integrals or into surface integrals and
conversely. Triple integrals can be transformed into
surface integrals and vice versa. These transformations Y
are of great practical importance. Theorems of Green,
Gauss and Stokes serve as powerful tools in many  Fig.20.1
applications as well as in theoretical problems.
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20.4 Engineering Mathematics

In this chapter, we study the three main theorems of Vector Analysis: Green’s
Theorem, Stokes’ Theorem and the Divergence Theorem. This is a fitting conclusion to
the text because each of these theorems is a vector generalization of the Fundamental
Theorem of calculus. This chapter is thus the culmination of efforts to extend the
concepts and methods of single-variable calculus to the multivariable setting.
However, far from being a terminal point, vector analysis the gateway to the field
theories of mathematics physics and engineering. This includes, first and foremost, the
theory of electricity and magnetism as expressed by the famous Maxwell’s equations.
It also includes fluid dynamics, aerodynamics, analysis of continuous matter, and at
a more advanced level, fundamental physical theories such as general relativity and
the theory of elementary particles.

Curves

Curves in space are important in calculus and in physics (for instance, as paths of
moving bodies).

A curve C in space can be represented by a vector function

r() =[x(t), y(t), 2(1)] (20.1)
=x(t)i +y(t)] +2(t)k

where x, y, z are Cartesian coordinates. This is called a parametric representation of
the curve (Fig. 20.1), t is called the parameter of the representation. To each value f, of
t, there corresponds a point of C with position vector r(t,), that is with coordinates
x(to), y(to) and z(ty).

The parameter t may be time or something else. Equation (20.1) gives the
orientation of C, a direction of travelling along C, so that ¢ increasing is called the
positive sense on C given by (20.1) and that of decreasing ¢ is the negative sense.

o Examples

Straight line, ellipse, circle, etc.
The concept of a line integral is a simple and natural generalization of a definite

b
integral J‘ f(x)dx (20.2)

In (20.2), we integrate the integrand f(x) from x = a to x = b along the x-axis. In a
line integral, we integrate a given function, called the integrand, along a curve C in
space (or in the plane).

Hence, curve integral would be a better turn, but line integral is standard.

We represent a curve C by a parametric representation

F(t)=x(t)i +y(t)] +2(t)k, (a<t<b) B
We call C the path of integration, A:7(a) its initial ‘
point and B:7(b), its terminal point. The curve C is C

now oriented. The direction from A to B, in which ¢
increases, is called the positive direction on C. Wecan 4

indicate the direction by an arrow [Fig. 20.2(a)]. (a) (b)
The points A and B may coincide [Fig. 20.2(b)]. .
Then C is called a closed path. Fig. 20.2
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Line Integral, Surface Integral and Integral Theorems 20.5

> Note

(i) A plane curve is a curve that lies in a plane in space.
(if) A curve that is not plane is called a twisted curve.

20.2 0O INTEGRATION OF VECTORS
AG(t)

If two vector functions F(t) and é(t) be such that =F(#), then é(t) is called

an integral of F(t) with respect to the scalar variable t and we write | F (t)dt = é(t). If C
be an arbitrary constant vector, we have F t)= % = %[é(t) +C ], then
[F (t)dt = é(t) +C . This is called the indefinite integral of E(t) and its definite integral

b
is J.ﬁ(t)dt =[G(t)+Cl'=G(b) - G(a) .

20.3 QO LINE INTEGRAL

Any integral which is to be evaluated along a curve is
called a line integral. Consider a continuous vector

point function F(R) which is defined at each point
of the curve C in space. Divide C into n parts at the

points A=py, py ... iy, i --- P, =B
Let their position vectors be R, Rl...Ri_L R;..R,
Let v; be the position vector of any point on the
arc P, P;
1L — —
Now consider the sum § =2F(5i)"SRi where
SE:E_Ri—l : =

The limit of this sum as n — o in such a way that |5Ei| — 0, provided it exists,

is called the tangential line integral of ?(ﬁ) along C which is a scalar and is
symbolically written as

jﬁm)ﬁorﬁ.i_f.dt
C C

When the path of integration is a closed curve, this fact is denoted by using in
place of J.

If F(R)= flx,y, 2)i +¢(x, Y, z)} +y(x,y, z)lz and dR = dxi + dyf +dzk

then J' F(R)-dR = _[( fix+ ¢dy + ydz) .
C
C

Two other types of line integrals are J'lE xdR and J fdR which are both vectors.
C c
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20.6 Engineering Mathematics

20.4 Q CIRCULATION

In fluid dynamics, if F represents the velocity of a fluid particle then the line integral

Jﬁ .d7 is called the circulation of F around the curve. When the circulation of F

c
around every closed curve in a region E vanishes, F is said to be irrotational in E.

Conservative Vector
B

If the value of I? -dr does not depend on the curve C, but only on the terminal
A

points A and B, [ is called a conservative vector.

A force field F is said to be conservative if it is derivable from a potential function

¢, ie., F= grad ¢. Then curl (F) =curl (V¢) =0.
- if F is conservative then curl (F )=0 and there exists a scalar potential function ¢
such that F=Vg.

20.5 QO APPLICATIONS OF LINE INTEGRALS
Work Done by a Force
Let v (x,y,z) =v4(x, y, 2) i+ (X, Y, Z) ; +u3(x, Y, 2) k be a vector function defined and

continuous at every point on C. Then, the integral of the tangential component of v
along the curve C from a point P on to the point Q is given by

Q
J‘ﬁﬂz"‘?)-dr—J.vldx+vzdy+v3dz
P c o

where C is the part of C, whose initial and terminal points are P and Q.
Let v=F, variable force acting on a particle which moves along a curve C. Then

the work done W by the force F in displacing the particle from the point P to the
point Q along the curve C is given by

Q
W:IF-dF:jﬁ-dF
P C,

where C; is the part of C whose initial and terminal points are P and Q.

Suppose F is a conservative vector field; then F can be written as F = grad ¢,
where ¢ is a scalar potential.
Then, the work done

J.F dr—J-(gradq)

1

99 . . 99 -
E[[a dx +— % —dy+— dz} Id¢ [9(x,y, Z)]
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Line Integral, Surface Integral and Integral Theorems 20.7

.. work done depends only on the initial and terminal points of the curve C;, i.e., the
work done is independent of the path of integration. The units of work depend on the

units of IF| and on the units of distance.

> Note

(i) Condition for F to be conservative
If F isirrotational then VxEF=0.

It is possible only when F=V¢.which= F is conservative.
- if F is an irrotational vector, it is conservative.

(ii) If F is irrotational (and, hence, conservative) and C is a closed curve then

95? _#7=0. [~ (A) = ¢(B), as A and B coincide].
C

20.6 O SURFACES

A surface S may be represented by F(x, y, z) = 0.
The parametric representation of S is of the form
7(u, v) = x(u, V)i + y(u, v)} +z(u, v)k
and the continuous functions u = ¢(t) and v = ¢(t) of a real parameter t represent a
curve C on this surface S.

If S has a unique normal at each of its points whose direction depends continuously
on the points of S then the surface S is called a smooth surface. If S is not smooth
but can be divided into finitely many smooth portions then it is called a piecewise
smooth surface. For example, the surface of a sphere is smooth while the surface of a
cube is piecewise smooth.

If a surface S is smooth from any of its points P, we may choose a unit normal
vector 1 of S at P. The direction of 7 is then called the positive normal direction
of S at P. A surface S is said to be orientable or two-sided, if the positive normal
direction at any point P of S can be continued in a unique and continuous way to the
entire surface. If the positive direction

of the normal is reversed as we move A B
around a curve on S passing through P /

then the surface is non-orientable (i.e.,

one-sided) (Fig. 20.4). 3 / C/ y
o Example Fig. 20.4

A sufficiently small portion of a smooth
surface is always orientable (Fig. 20.5).
A Mobius strip is an example of a
non-orientable surface. A model of a
Mobius strip can be made by taking a
long rectangular piece of paper, making
a half-twist and sticking the shorter
sides together so that the two points A
and the two points B coincide; then the
surface generated is non-orientable. Fig. 20.5
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20.8 Engineering Mathematics

>

20.7 QO SURFACE INTEGRALS F A

Any integral which is to be evaluated over a surface \
is called a surface integral.

Let S be a two-sided surface, one side of which
is considered arbitrarily as the positive side.

Let F be a vector point function defined at all
points of S. Let ds be the typical elemental surface
area in S surrounding the point P(x, y, z). P(x,y,z)

ds

Let 11 be the unit vector normal to the surface S S
at P(x, y, z), drawn in the positive side (or outward

direction). ~ Fig. 20.6
Let O be the angle between F and 7.

-. the normal component of F=F-n=Fcosf.
The integral of this normal component through the elemental surface area ds over

the surface S is called the surface integral of F over S and denoted as IF cos 0 -ds
or jﬁ -nds .

5

If ds is a vector whose magnitude is ds and whose direction is that of 1, then
ds=i-ds. . Jﬁ -nds can also be written as Jﬁci—s

S S
> Note

(i) If S in a closed surface, the outer surface is usually chosen as the positive
side.

(if) J. ¢ds and J. Fxds where ¢ is a scalar point function are also surface
s s

integrals.
(iii) The surface integral J. F-ds is also denoted as J F-ds.
s

(iv) If F represents the velocity of a fluid particle then the total outward flux of

F across a closed surface S is the surface integral J.I—: -ds .
s

(v) When the flux of F across every closed surface S in a region E vanishes, F
is said to be a solenoidal vector point function in E.

(vi) It may be noted that F could equally well be taken as any other physical
quantity such as gravitational force, electric force, magnetic force, etc.

20.8 0O VOLUME INTEGRALS

Any integral which is to be evaluated over a volume is called a volume integral.

If V is a volume bounded by a surface S then the triple integrals JJJ(MU and
J.J Fdv are called volume integrals. The first of these is a scalar and the second isa

Vector
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Line Integral, Surface Integral and Integral Theorems 20.9

20.9 QO INTEGRAL THEOREMS

The following three theorems in vector calculus are of importance from theoretical
and practical considerations:

(i) Green’s theorem in a plane

(ii) Stokes’ theorem
(iii) Gauss’ divergence theorem

Green’s theorem provides a relationship between a double integral over a region
R and the line integral over the closed curve C bounding R. Green’s theorem is also
called the first fundamental theorem of integral vector calculus.

Stokes’ theorem transforms line integrals into surface integrals and conversely.
This theorem is a generalization of Green’s theorem. It involves the curl.

Gauss’ divergence theorem transforms surface integrals into a volume integral. It
is named Gauss’ divergence theorem because it involves the divergence of a vector
function.

We shall give the statements of the above theorems (without proof) and apply
them to solve problems.

Green’s Theorem in a Plane

If C is a simple closed curve enclosing a region R in the xy-plane and P(x, y),
Q(x, y) and its first-order partial derivatives are continuous in R then

q.)(de +Qdy) = J.J.(a—Q - B_P] dxdy where Cis described in the anticlockwise direction.

Stokes’ Theorem (Relation between Line Integral and Surface Integral)

Surface integral of the component of curl F along the normal to the surface S, taken
over the surface S bounded by curve C is equal to the line integral of the vector point

function F taken along the closed curve C.
Mathematically, @? -d7 = churl F-fi-ds
C
Gauss’ Divergence Theorem or Gauss’ Theorem of Divergence
(Relation between Surface Integral and Volume Integral)

The surface integral of the normal component of a vector function F taken around a

closed surface S is equal to the integral of the divergence of F taken over the volume
V enclosed by the surface S.

Mathematically, jjf ‘n-ds= ‘” divE dv.
s v

SOLVED EXAMPLES

Example 1 [RIWES 3xy1 -y ] evaluate J F-dr, where Cis the arc of the parabola
y=2x? from (0, 0) to (1, 2).
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20.10 Engineering Mathematics

Solution Tet x = t, then the parametric equations of the parabola y = 2x* are x = t,
y =2

At the point (0, 0), x=0and so = 0.

At the point (1, 2), x=1and so t =1

If 7 is the position vector of any pomt (x, y) in C, then

F=xi +y]
=t + 2> ]

Also in terms of t, F=3t(2t%)i — (2t2)2}
=6t —4tt]

JF dr = j(ﬁ —Jdt
- j(ét P-4ty (7 + 4]t

1
= j(6t3 —16t°)dt

1

4 6
={6t——16t—}
4 6l

_3.8_9-16_7 Ans.
23 6 6

Example 2 ERNVEIRELE -”A -fids where A=(x+ yz);' - 2xf + Zyzlz and S is the
s
surface of the plane 2x +y + 2z = 6 in the first octant. [KU May 2010]

Solution A vector normal to the surface S is given by
V(Qx+y+22)=2i +] +2k

‘. f1=a unit vector normal to the surface S

HA-&-dF”AﬂLiXdAy
Ik - nl
S R

where R is the projection of S

Now, (x+_1/)z—2x]+2yzk] (—z+;]+3k)
(x+ )—zx+4 z=— 2+é z
=3 y 3 ¥ y 3y
2 , 4 (6—2x—y)
=—y+—y| —
37 3N T2
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Line Integral, Surface Integral and Integral Theorems 20.11
. 6—2x—
(smce on the plane 2x + y +2z=6,z= Ty)

2
=3y +6-2x-y)

4
= — 3—
3)y( x)
Hence, J.J.A - ds-JJA A’dxdy
lk-nl

= J;J.gy(S -X) -%dxdy

3 6-2x

:J. }!. 2y(3 — x)dydx

0

3 5 6-2x
=jz(3—x)[y—] dx
0 2 0

3
= J(3 — x)(6 — 2x)*dx
0

3
=4|(3-x)%dx
!

3
A2
A-1) |,

=81 Ans.

Example 3 [RIGENpRal 3z)i — 2xy] —4xk then evaluate J.J.J.V -F-dV, where V
is bounded by the planes x =0, y=0,z=0and 2x + 2y +z=4.

Solution V.F= (2x2 -3z)+ i(—zxy) + i(—4x)
ay 0z

—-2x=2x

IJ V-F-dv= J.J. 2xdxdydz
v

9
ox
—4x

2 x4-2x-2y
2xdzdydx

2-x

0
J. 2x[z]8 7 M dydx
0

1]
|

8/23/2017 10:29:48 AM
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20.12 Engineering Mathematics

2-x 22-x

J 2x(4 - 2x - 2y)dydx = J j [4x(2 — x) — 4xy]dydx
0

o o'—"\)

J[4x(2 x)y - 2xy* [ - dx
= J[4x(2 —x) = 2x(2 — x)?)dx
2
= JZx(Z —x)2dx

2
= 2J(4x —4x®+ 2%y dx

3 a4
=2{2x2—4x—+x—} - [8—2 4}:§ Ans.
34 3 3

Evaluate JF -d7 where F=(x>+ yz)f - ny] and the curve C is the

c
rectangle in the xy-plane bounded by y =0, y=b, x=0, x =a.

Solution In the xy-plane, z=0

F=xi +yj,dr =dxi +dyj

f f (x +y )dx 2xydy 1)
Jﬁdr—JF dr+IF dr+JF dr+JF i @
AB BC cO
yl\
s
C(0. b) ) B(a,b)
x=0Y AXx=a
y=0 A@,0)
0(0, 0)

Fig. 20.7

Along OA, y=0; dy =0 and x varies from 0 to a
Along AB, x =a; dx =0 and y varies from 0 to b
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Line Integral, Surface Integral and Integral Theorems 20.13

Along BC, y =b; dy =0 and x varies from a to 0
Along CO, x =0; dx =0 and y varies from b to 0
Hence, from (1) and (2),

a

I b 0 0
JP-dr:Ixzdx— 2aydy+.[ (x2+b2)dx+j 0-dy
C y=0 x=a b

x=0
3\ 3 0
o T e e
3 0 3 a
3 3
a 2 a 2 2
=|——ab"———ab”° |=-2ab
(3 3 ] Ans.

Find the work done by the force F = (2xy + 2%)i + xzf +3xz%k when it
moves a particle from (1, -2, 1) to (3, 1, 4) along any path. [AU Dec. 2011]

Solution Since the equation of the path is not given, the work done by the force E
depends only on the terminal points.

i ik
Consider Vx F= i i i
ox dy oz

Qxy+z°) x* 3xz?

=i[0-0] - j[32% - 32°]+ k[2x - 2x] =0
= F is irrotational
Hence, [ is conservative
Since F is irrotational, we have F = Vo
It is easy to see that ¢ = x%y +xz°+ C

(3,1,4)
work done by F = j F-dF
1,-2,1)
(3,1,4) (3,1,4)
- j Vo.dr= J dé [as Vo- dr = do]
1,-2,1) 1,-2,1)
3,14
= [¢]21,_2,)1)
= [xzy +xzl+ C]g’l’}z‘%)l)
=(201+C) - (=1+C) =202 Ans.

IDEn (AW Find the circulation of F round the curve C, where F=e¢*sin y;'

+¢e* cos y}; and C is the rectangle whose vertices are (0, 0), (1, 0), (1, %ﬂ], (0, %ﬂ') .
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20.14 Engineering Mathematics
Solution YA
F=xi+yj = di =dxi +dyj
- Z] ) N Y C(0, m/2) < B(1, m'2)
F-dr=e'siny-dx+e cosy-dy h
Now along OA, y=0;dy=0 v 1
along AB, x=1;dx=0
along BC,y=%;dy=0 . A(1,0) -
along CO, x=0;dx =0 0(0, 0)
- circulation round the rectangle OABC is Fig. 20.7
j F-di = J.(ex sin ydx + e* cos ydy)
¢ c
= j o+ J e' cos ydy + J. exsin%dx + J. cos ydy
OA  AB BC co
z 0 0
=0+ Je cosy-dy+ je" sin%dx + Icos ydy
0 1 z
—[esinylZ +[e P +[sinyl=e+(1-¢)-1+0=0  Ans.
2

|penny (VAN Find the total work done in moving a particle in a force field given by
F= 3xy1—' - 52} +10xk along the curve x =*+ 1,y =2, z= from t =1 to t = 2.

Solution Total work done

- J E.di= _[ (3xyi — 52] +10xk) - (dx7 +dyj + dzk)
C C

[3xydx — 5zdy + 10xdz]

[3(F2 + D(22)d(t* + 1) — 583d(242) + 10(2 + 1)d(+)]

Te—n 5™

2

= j (62 (£ + 1)(2tdt) — 20¢4dt + 30£% (2 + 1)dt]
2

= f [12£° + 12¢° — 20* + 30t* + 30¢*]dt

2
= j [12£° + 10#* + 1242 + 30t dt

6 TP 572 4P 3P
:12H +10H mH +30H
6 1 54 4 5 34
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6 5 4 4 3 3

sl 2o 2Ll 2 g 2
6 6 5 5 4 4 3 3

=12- 63 —+10- —+12 E+30 —
6 5 4 3

=126 +62+45+70

=303

Ans.

Example 8 [ F =4xzi - yzf + yzlz , evaluate J F-fids where S is the surface of

S
the cube bounded by x=0,x=1,y=0,y=1,z=0,z=1. [AU Dec. 2009]
Solution The surface of the cube consists of the AZ 0
following six faces: r
(a) Face LMND L '
(b) Face TQPO
(c) Face QPNM
(d) Face TODL 0 P >y
(e) Face TQMI D N
(f) Face ODNP v
Now, for the face LMND:
. = Fig. 20.8
n=i,x=0D=1
Hence, jIF nds= jj (4xzi — ] + yzlz) . ;dydz
LMND
= J.J. dxzdydz=4 J. zdydz  (ox=1)
LMND LMND
1
4j '[ zdydz=4 [ ] (y)0 1)
z=0y=0
For the face TQPO: fi=—i,x=0
Hence, JJF f-ds= J (4xzi — y? ] + yzk) (- z)dydz
TQPO
= J (—4xz)dydz=0 (rx=0) (2)
TQPO
For the face OPNM: #1=],y=1
Hence, JJF nds= J. (4xzi — y? ] + yzk) ]dxdz
QPNM
= JI (—y dxdz)= '[ —dxdz (-y=1)
QPNM QPNM
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1 1
=- J' J' dxdz=—[x]y[z]y=-1 3)

z=0x=0
For the face TODL: fi=—],y=0

Hence, J-J.? -nds= J-J- (4xzi — %] + yzk) - (=] )dxdz
$

TODL

- j J (y2dxdz)=0 (v y=0) (4)

TODL

For the face TQML: i=k,z=1

Hence, J] F-nds= JJ (4xzi —y%] +yzk) - kdxdy .

TQML TQML
= J‘J‘ yzdxdy = ”. ydxdy (-z=1)
TQML TQML
11 5Tl .
- | ydxdy=[x]é[y7l:5 ©
y=0x=0

For the face ODNP: fi=—k,z=0

Hence, JJ F-nds= JJ (4xzi — y?] +yzk) - (—k) - dxdy
ODNP ODNP
= JJ (-yz)dxdy =0, (=z=0) (6)
ODNP
Adding (1), 2), 3), (4), (5) and (6), we get
J F-nds= 3 Ans.
: 2
Verify Stokes’ theorem for F = y—z+ 2)1—' +(yz +4) } —(xz) k over

the surface of acube x =0, y=0,z=0,x=2, y =2, z=2 above the XOY plane (open at
the bottom). [KU May 2010]

Solution Consider the surface of the cube as shown in the figure. Bounding path is
OABCO shown by arrows.

J'ﬁ 7 =j[(y—z+2)? T (yz +4)] — (x2)K] - (dxi +dyj +dzk)
C C
=J (y—z+2)dx + (yz +4)dy — xzdz
C

J.ﬁ-d?zJﬁ~d?+Jﬁ~d?+Iﬁ-d?+Iﬁ~d? (1)
¢ OA AB BC CcO
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Along OA,y=0,dy=0,2z=0,dz=0

2
Jﬁ.d?=jzdx=(2x)g=4

0A 0
Along AB, x=2,dx=0,z=0,dz=0

2
J?~d?:'[4dy:4(y)§:8

AB 0
llZ
F (Os 0’ 2)
E D
0 (Oa 2a O)
20,0 L4 ¢
A B
(2,2,0)
X

Fig. 20.9

Along BC,y=2,dy=0,z=0,dz=0

2
jid?:j(2—0+2)dx=(4x)3:—8
BC 0

Along CO,x=0,dx=0,z=0,dz=0
J'F-d?:J'(y—o+2)x0+(o+4)dy—o
CcO

—4[dy=ay)=-8
On putting the values of these integrals in (1), we get
[cE-di=4+8-8=—4

To obtain surface integral

i ik
vxE-| £ 2 2
ox dy oz

y—z+2 yz+4 -xz

=(0-y)i —(-z+1)j +(0-Dk=—vyi +(z—1)] -k
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Here, we have to integrate over the five surfaces, ABDE, OCGF, BCGD, OAEF, DEFG.
Over the surface ABDE: x =2, = i , ds =dydz

H(V x F)- fids = Lj[—yi F(z=1)] —K]-Tdydz

s
2 2 , TP
= .”.—ydydz =—J.ydyj.dz = —[%} [z]é: -4
s 0 0 0

Over the surface OCGF: x =0, n= —f, ds=dy dz

'U(V X F)-fids = J;J[—yi +(z-1)] —k]-(~1)dydz

2 2 >
- [[agte =y o[ ]
S 0 0

Over the surface BCGD: y =2, n= } ,ds=dx dz

2
=4
o

_[_[(VXF)MS:”[—W +(z=1)] - K] ] dxdz

= J;J(z —1)dxdz

2

2
= I[dxj(z -1)dz

0

) 2
=[xk {?}
0

=0

Over the surface OAEF: y =0, n= —] ,ds=dx dz

”(v X E)-fids = ”[—y?’ +(z=1)] — K] (-])dxdz

s 3
= _-[J(z —1)dxdz
2 2

= —J‘dx'(').(z —1)dz

EM_UnitVIIl_20.indd 18 @ 8/23/2017 10:29:50 AM



Line Integral, Surface Integral and Integral Theorems 20.19

Over the surface DEFG:z=2, nn= k , ds=dx dy

H(v x E)-fids = J.J.[—yf +(z-1)] - k]-Kdxdy

s
2 2
- -”dxdy - —dejdy
0 0
=[x [yl =—4
Total surface integral=—4+4+0+0-4=-4
Thus [ curl F-fds=].F-di =-4

which verifies Stokes’ theorem. Verified.

DENNI BN Verify Green's theorem in the plane for [[(x* — xy )dx + (y* — 2xy)dy]
where C is a square with vertices (0, 0), (2, 0), (2, 2), (0, 2).

Solution Given integrand is of the form Mdx + Ndy, where M = x> — x>, N = /> - 2xy.
Now to verify Green’s theorem, we have to verify that

_|‘[(x2 = xy)dx + (i = 2xy)dy] = “ (-2y + 3xy*)dx dy (1)
C R

Consider J.[(xz — xy)dx + (y* - 2xy)dy] where the curve C is divided into four parts,
c

hence the line integral along C is nothing but the sum of four line integrals along four

lines OA, AB, BC and CO.

Along OA : y=0, dy =0 and x varies from 0 to 2.

2 32
Hence, J. [(x* = xy®)dx + (y* - 2xy)dy] = j Pdx= [%j =%
0
OA x=0

Along AB : x =2, dx =0, and y varies from 0 to 2.

Hence, j [(x% = xy®)dx + (y* - 2xy)dy] AY
AB ,
2 y= B(2,2)
2 3 2 C(0,2) < )
= | P-4y = (y— - 4y—J
_[0 (" —4y)dy =| =45 ;
(8) 3 16 x=0y Ax=2
3) 7 3
> > X
Along BC: y =2, dy =0 and x varies from 2 to 0. y=0 A2, 0)
0(0, 0)
Hence, J. [(x?- xy?’)dx + (y2 — 2xy)dy]
e Fig. 20.10

0 3 R\
= | (x*-8x)dx= (x_ - SX—J
s 3 2 )y

x=

=0—0—§+16=£
3 3
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Along CO : x =0, dx =0 and y varies from 2 to 0

Hence, J [(6® = xy)dx + (y* = 2xy)dy]

CcO
0 30 8
_ zd:y_j:__
.[yy (32 3
y=2

16 40 8
_[[(xz—xya)dxﬂy 2xy)dy]———3+?—§=8 )
C

Now consider

2 2
'[ (2y + 3xy*)dydx = J. J (—2y + 3xy*)dy dx
R x=0y=0

2

2 2 3
= J.[—Zy—+3xy—j dx
! 2 3 o

2

= J. [—4 + 3x(§):|dx = (—436 + 8%)2

x=0
=-8+16+0=8 ©)

From (2) and (3), we observe that the relation (1) is true.
Hence, Green’s theorem is verified. Ans.

[NV IREN Verify divergence theorem for F = (x* - yz) i+ (y* - zx) } + (22— xy) k
taken over the rectangular parallelepiped 0<x <a,0<y <b, 0 <z <c.[KU Now. 2010]

Solution For verification of the divergence theorem, we shall evaluate the volume
and surface integrals separately and show that they are equal.

Now div F=V-F :aix(x2 -yz) +%(y2 —zx) +a—az(z2 - xy)

=2(x+y+2z)
- AZ
JI div Fdv TA
C Al
I J. J- 2(x+y+z)dxdydz B!
I J. l(—+yx+zxﬂ dydz
0 i 0 i >y

c az B
= J‘JZ[T +ya+ zadedz A C!

0o . . ) X
_ J‘ 2“%]/ + % +azyﬂ iz Fig. 20.11
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ab? ab_ ab? abz? |
—2J —+—+abz dz=2|—z+——z+
2 2 2 1,
= a%bc + ab’c + abc* = abc(a + b + ¢) 1)

To evaluate the surface integral, divide the closed surface S of the rectangular
parallelepiped into 6 parts.

S, : Face OAC'B
S, : Face CB’PA’
S3:Face OBA’C
S, :Face AC'PB’
S5 : Face OCB’A
Se : Face BA” PC’

Also, J:[F I’ZdS—J.J.F nds+J.J.F nds+J.J.F nds
J'J'F nds+HF nds+_[ F.fds @

On S, :z=0, ﬁ:—E,ds=dxdy
so that F-ni=(x% +y%j - xyk) - (=k) = xy

a a
== [yay=-= ®

OnS,:z=c, n=k,ds=dxdy, F =(x®—cy)i +(@P-cx)] +(@-xy)k.
so that F-7 =[(x2— cy);' + (yz— (x)}) +(c2— xy)lZ] k=c2- Xy .

- ba b >
JJF~flds=JJ(CZ—xy)dxdyzj(cza—%yjdy
S, 00 0

22
b
—abr -2 4
abc 1 (4)
OnS;:x=0, i=—i,F=—yzi +y%j + 2%, dz = dydz
so that F-fi=(-yzi + y2] +2%k)-(=i) = yz, ds = dy dz
- cb < .5 20
JJF~ﬁds=JJyzdydz=Jb?zdz:ch 5)
Sy 00 0

OnS,:x=a, n=i, =(u —yz)1+(y —uz)]+(z —ay)k
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sothat F-n=[(a®-yz)i +(y*—az)j + (22— ay)k]-i
=a®-yz, ds=dydz

HF nds—J J (% - yz)dydz = '[( Zb——zjdz

22
=a’bc - ch )

OnSs:y=0, i=—j,F=x% —zxj + 2%k, ds = dxdz

sothat F-n=(x% - fo +2%k)- (—j) =zx

a2 22
jJ.F nds—J. J zxdzdx = I C—xdx—u: (7)

OnSs:y=b, ﬁ:],F:(xz—bz)i +(b? - 2x)] + (22 - bx)k

ds = dxdz
sothat F-ni=[(x2—bz)i +(b*— zx)] + (2> - bx)k]- ]
=b*—zx.
- apc
J F~ﬁ:.[ J (b* - zx)dzdx
[ [
3
6
a 2 2.2
='[ (b%—%x}dxzabzc—% (8)
[

By using (3), (4), (5), (6), (7) and (8), in (2), we get

_ 2,2 22 122 22 22 22
JJF~ﬁds=ab +abc2—ab L +a2bc—b—c+&+abzc—&
4 4 4 4 4 4

=abc(a+Db+c) )
The equalities (1) and (9) verify the divergence theorem. Ans.

Verify Green’s theorem in the plane for [(3x? — 8y%)dx + (4y — 6xy)dy
where C is the boundary of the region defined by (i) y = Jx, y=x*and (i) x=0,y =0,
x+y=1 [AU July 2010, June 2012 ; KU Now. 2011, KU April 2013]

Solution
(i y= \/; ,i.e., y*=x and y = x? are two parabolas intersecting at 0(0, 0) and A(1, 1).
Here, P =3x - 8% Q = 4y — 6xy

aP aQ
=-16y, —~=-6

ay o y

aQ odpP

—=-—=10

ox dy Y
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AY
V=Y
2 =x
C
_A7ALD
RA C,
> X
0,0)0

Fig. 20.12

If R is the region bounded by C then

.“‘[?9_8 - 3—5}1}( dy
R

:5|:l_lj|:5|:ij|:§ (1)
2 5 10] 2
Also, J. de+Qdy=J. (de+Qdy)+I (Pdx +Qdy)

C C G,

Along C;, x¥*=y. .. 2x dx = dy and the limits of x are from 0 to 1.

'[ (Pdx +Qdy)
o

1
= J. (3x? = 8y?)dx + (4y — 6xy)dy
0
1
= J.o (3x2 = 8x1)dx + (4x* — 6x - x%) - 2xdx (since x2 = Y)

1

:I (3x2 + 8x> — 20x*) dx
0

=[x+ 2x% - 4x5]3)=—1

Along C,, yz =x. .. 2y dy = dx and the limits of y are from 1 to 0.
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J (Pdx +Qdy)
C2
0 4 2 2
=L (By"—8y")2ydy +(4y -6y y) - dy

0 3 5 o 11 4 60 5
=L (4y —22y"+6y”)dy =| 2y B A =2

2
J.(de+Qdy)——1+§=§ @)
C 2 2
The equalities of (1) and (2) verify Green'’s theorem in the plane. Ans.

(ii) Here, JJ[ Q aPJ dy Y

B(0, 1)
1-x
=JJ 10y dy dx
070 x=0 x+y=1
1
=J S5ly* 1y " dx
0
1 3
1 3 = >
:5I (1_x)2dx:5{u} 00,00  y=0 A(1,0) x
0 I Fig. 20.13
-5 5
=—(0-1=— 1
5 0-D=7 1)

Along OA, y=0 .. dy =0 and the limits of x are from 0 to 1.
1
J' Pdx+Qdy =J 3t =[x =1
0
Along AB, y=1-x. .. dy =—dx and the limits of x are from 1 to 0.

0
I Pdx + Qdy = L [3x% - 8(1 — x)*]dx + [4(1 — x) — 6x(1 — x)](—dx)

0

=J (3x2— 8 +16x — 8x*— 4 + 4x + 6x — 6x)dx
1
0

=J (12 + 26x — 11x?) - dx
1

0
=|:—12x+13x2—ﬂx3] = [ 12+13—£}=§
37, 3] 3

Along BO, x =0. ... dx =0 and the limits of y are from 1 to 0
0
[ pax+Qay=[ aydy=r2°f=-
BO 1

~. line integral along C (i.e., along OABO) =1+ % -2 =§
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. 5
ie., J- (Pdx+Qdy)=— (2)
c 3
The equality of (1) and (2) verifies Green’s theorem in the plane. Verified.

|BEVIOENEN Evaluate |- (e*dx +2ydy —dz) by using Stokes’ theorem, where C is
the curve x> + y2 =4,z=2. [AU May 2010]

Solution
Jo(e¥dx +2ydy - dz)
= (e¥T +2yj — k) - (dxi +dyj +dzk)
:ch-awhereﬁzexz?+2y}—lz

=i(0-0)—j(0—0)+k(0-0)
=07 +0j +0k=0

.. by Stokes’ theorem, J F-dr= jjcurl F-n-ds
¢ S
=0 (since curl F =0) Ans.

1PNV I RN Find the work done by the force F= zi + x} + yE, when it moves a

particle along the arc of the curve 7 = cos ti +sin tf +tk from t=0tot=2n.
[AU Dec. 2007]

Solution From the vector equation of the curve C, we get the parametric equations
of the curve as x =cos t, y=sint, z=t.

Work done by the force F=] c F-dr
=J. (zf+xf+yl€)-(dx17+dyf+dzlz)
c
:f (zdx + xdy + ydz)
c

2r
= f [t(—sin t) + cos® t + sin ]dt
0

2

_ 1( sin2t) T
=|tcost—sint+—|t+ —cost

2 2 o

=Q2r+r-1)—-(-1)
=3 Ans.
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[NV IREN Verify Stokes’ theorem for F= xyf - Zyz} —zxk where S is the open
surface of the rectangular parallelepiped formed by the planes x=0,x=1,y=0,y =2
and z = 3 above the XOY-plane. [AU Dec. 2007]
Solution Stokes’ theorem is given by

fcﬁazﬂscurll—lﬁds

ik
Here, curl E= i i i

ox dy oz

xy -2yz -zx

=2yf+zf+xlz .'.J(xydx—2yzdy—zxdz)—JJ(ny+z;+xlz)-ﬁds 1)
c
s

The open cuboid S is made up of the five facesx=0,x=1,y=0,y=2 and z=3 and is
bounded by the rectangle OAC’B lying on the XOY plane. LHS of (1) is

= J (xydx — 2yzdy — zxdz)

OAC'B 47
C A
= J xydx
OAC’B B o’
(since the boundary C lies on the XOY plane, z =0)

o >
= nydx+ J xydx + nydx+ nydx §B Y
04 AC’ C'B BO / fod
Along OA,y=0,dy=0

X
Along AC’, x=1,dx=0 )
Along C'B,y=2,dy=0 Fig. 20.14
Along BO, x=0,dx=0

0
J- xydx=0+0+J. xydx+0=ijdx
OAC’B v 1

(as along C’B, x varies from 1 to 0).
=-1 @)
RHS of (1) is

J.[(2yz—' +2j +xk) - ds = J:[ (2yi +zj + xk) - nds + J‘J‘ (2yi +zj + xk) - ids
S o'C'AB A’BOC
+ J.J. (2yi +zj + xk) - hids + J.J. (2yi +zj + xk) - hds
ABCOY COAB’
+ J-J- (2yi + 2] + xk) - ds
AOBC
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302 302 103
=J. J Zydydz—J- J. Zydydz—J- I zdzdx
0Jo 0Jo 0Jo
1p3 2 01
—J. I zdzdx—J. I xdxdy
0Jo 0Jo

O

From (2) and (3), Stokes’ theorem is verified. Verified.

|DEININ  Verify the divergence theorem for F=x%+ z} + yzl; over the cube
formed by x =+1, y =+1, z= 1. [AU Dec. 2007, KU Nov. 2011]

Solution Gauss’ divergence theorem is

Hﬁ -fids = ” (div F)do (1)

s v
LHSof (1)= J‘[xz ds + J-[;xz ds + ;“J;zds + yIL—zds + J.‘[yz ds + ZJ.L—yzds =0 (2
Risof ()= [[[wivF)-ao

v

= L[ 2x+y)dxdydz

161 01
=J J. J 2x +y)dxdydz
-14-1d-1

1 61
=J J- 2ydydz=0 (3)
-1d

From (2) and (3), Gauss’ divergence theorem is verified. Verified.

RNV Use Stokes’ theorem to evaluate [~ F-dr, where F = (sinx— y)z—' —cos xf

2 2
[KU Novw. 2011]

and C is the boundary of the triangle whose vertices are (0, 0), [E, Oj and (1, 1) .

Solution By Stokes’ theorem, we have | c F-dr= I s curl E-n-ds.

|~
QO =
QU =

1F= - =
e ox dy oz
sinx—y —cosx 0
=(sin x + 1)k

.. the given line integral
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. oy
= Jj(l + sin x)dxdy (71 )
B|3,1
R 2
13 y=-x
=J. I(1+sin x)dxdy T
0 x==
2y 2
2
1 z
= .[ [x — cos x]iy dy
0 2
I'n my ny} Z > X
=| |Z-"L+cos=2|d 0(0, 0) y=0
J [ 272 2 Y 4 (g , o)
1
= {Ey oy _sinﬂ] Fig. 20.15
2 4 T o
T 2
=—4—
4 r
J Far=2+ 2 Ans.
C 4 r
EXERCISE
1. State Green’s theorem in a plane.
2. Give the relation between a line integral and a surface integral.
3. State Gauss’ divergence theorem.
4. Deduce Green’s theorem in a plane from Stokes’ theorem.
5. In Gauss’ divergence theorem, surface integral is equal to integral.
6

10.

11.

12.

EM_UnitVIIl_20.indd

CIf F =5xy1~'+2y}, evaluate jCﬁE where C is the part of the curve y = x

. The integral of E.d7 is

(i) line integral (ii) zero
(iii) surface integral (iv) one

. Using Green’s theorem, prove that the area enclosed by a simple closed curve C

is %J(xdy —ydx) .
3

between x =1 and x = 2.

CIf F=x% +xy} , evaluate |- F.dr along the straight line y = x from (0, 0) to

1, 1).

If C is a simple closed curve and 7 =xi + yj + zk , prove that [o7 dr=0.

Evaluate @ (yzdx + zxdy + xydz) where C is the circle given by x* + y? + 22 =1
c

and z=0.
Use the integral theorems to prove V- (V x F)=0.
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13. Evaluate J.(xdy - ydx), where Cis the circle x* + y* = a*.

14. Evaluate Jc F.dr where F = xyI-' + yz}' + zxk and Cisthe curve 7 =t + tzf +1%k, ¢
varying from -1 to 1.

1. If a force F= 2x2y17 + 3xy} displaces a particle in the xy plane from (0, 0) to

(1, 4) along a curve y = 4x?, find the work done. (Ans. %J

2. Find the work done when a force F=(x>— ¥+ xX)i — (2xy + y)} moves a particle

from the origin to (1, 1) along a parabola y = x. [Ans. %)

3. Verify Green'’s theorem in a plane with respect to c (x*dx + xydy), where C is
the boundary of the square formed by x=0, y=0,x=a,y=a. [AU Dec. 2009]

3
(Ans. a_]
2

4. Use Green’s theorem to evaluate | ¢ (x> + xy)dx + (x> + yz)dy where C is the
square formed by the lines y = +1, x = +1. (Ans. 0)

5. Use divergence theorem to evaluate J.J.(yzzz7 + zxzf +22%k) - ids where S is the
closed surface bounded by the XOY—pfane and the upper half of the sphere x> +
y? +z* = a* above this plane. (Ans. ma*)

6. Verify Stokes’ theorem for F=(x*+y - 4)i + 3xy} +(2xz +z2)k over the surface
of hemisphere x* + > + z2 = 16 above the XOY plane. (Ans. -167)

7. Use the divergence theorem to evaluate |, A-ds where A=x% + y3f +2°%k and

5
S is the surface of the sphere x* = y* + 22 = 2%, [Ans. 1275m )

8. Use the divergence theorem to evaluate II dydz + x*ydzdx + x*zdxdy where
s

S is the surface of the region bounded by the closed cylinder x* + y* = a? (0 < z

4
<b)z=0and z=bh. (AnS.SEZb)

9. Using Green’s theorem, evaluate IC[(y—sin x)dx +cos xdy] where C is the

2
triangle bounded by y =0, x = %, y= 2 . {Ans. - ( 7r4+ 8 J]
b2 77

10. Evaluate | C[(xz+ y?)dx — 2xydy] where C is the rectangle bounded by y = 0,
x=0,y=0b, x=a using Green’s theorem. (Ans. —2ab?)
11. Verify Stokes” theorem for F= y1—' + z} +xk , where § is the upper half surface of
the sphere x> + > + z = 1 and C is its boundary. (Ans. -m)

12. Verify Stokes’ theorem for F= ny + 3x} — 2% where S is the upper half of the
sphere x? + > + 22 =9 and C is the boundary. (Ans. 9m)
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20.30 Engineering Mathematics

2
13. Find the area of x*+y*?=4*? using Green’s theorem. (Ans. 37:: j
14. Using Stokes’ theorem, evaluate [ (xydx + xy*dy) taking C to be a square with
vertices (1, 1), (-1, 1), (-1, -1) and (1, -1). (Ans. %)

15. Verify Gauss’ divergence theorem for F= yz—' + x} +2°k over the cylindrical
region 2+ y2 =9,z=0,z=6. (Ans. 1944m)
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Objective type questions
Thetriple integral [1f dv gives the over the region v

‘The value of §] dx dy , inner integral limt varies from 1t0 2 and the
outer integral limit varies from 0 to 1

111 dx dy dz, the inner integral limit varies from 0 to 3, the central
integral limit varies from 0 to 2 and outer integral limit varies from 0
o1

When the limits are not given, the integral is named as
The Double integral f{ dx dy gives of the region R

The value of Jf (x+y) d dy , inner integral limt varies from 0 to 1 and
the outer integral limit varies from 0 to 1

Thevalue of [Jf x"2 y2 dx dy dz, the inner integral limit varies from 1
t02, the central integral limit varios from 0 to 2 and outer integral
limitvarious from 0 to 1

EVaIUaTe J) 4XY OX Y, te Inner INtegral HMITVaries 1Tom U t© 1 ana
outer integral limit varies from 0 to 2

Thevalueof ] dxiy s, heimner intgral it aris from 010 band
the outer limitvaries from 0

e S 37 gven . he \egra  men e ntegra 15 name

Thevalue o [xv23y%2) dy . the fnner integral imitvaries from 0

t0 1, the outer integral limit varies from 0 to

central integral limit varies from 0 to 2 and outer integral limit varies
Oto1

Hthelimits arenotgiven n th ntegrl e h ntegrl s ame

ThevaTeof [1024y72)dy b theinner iegal imituarie from 0
tox, the outer integral limit varies from 0

Trevatusof oy e e s el i vrious om0 the
outer integral limit varies from-a to

The Double ntegral JJ dx dy gives of the region R

Central integral limit varies from O to @ and the outer ntegral limit
varies from 0t

The value of [f{x#y) dx dy , the inner integral limit varies from 0 to 1
and the outer integral limit varies from 0 to

‘The concept of ine integral as a generalization of the concept of

integral
‘The extension of double integral is nothing but integral
The concept of integral as a generalization of the concept of

double integral
Evaluate [x2/2 dx, the limit varies from 0 to 1

Evaluate [42y dy, the limit varies from 0 to 10

‘The value of ]2 xy dy dx, the inner integral limit varies from 0 to x and
the outer integral limit varies from 1

‘The value of []dy dx, the inner integral limit varies from 2 to 4 the
outer integral limit varies from 1

‘The value of fJxy dy dx, the inner integral limit varies from 0 to 3, the
outer integral limit varies from 0 to 4

‘The value of [Jdy dx, the inner integral limit varies from 0102 the
outer integral limit varies from 0 to

‘The value of [Jdx dy, the inner integral limit varies from yt02, the
outer integral limit varies from 0 to 1

‘The value of fJdx dy, the inner integral limit varies from 2 to 4 , the
outer integral limit varies from 1

When a function f(x) is integrated with respect to x between the limits a

and b, we get
In thexand y axes

quadrants
in thexy and yz and 2x planes divide

into parts called octants
Evaluate [(2x+3) dx, the integral limitvaries from 0 to 2.
ides a relationship between a double integral over a
Fesion Rand thelineintegral over theclosed curve  bounding
o atled the st fandarmental ineoremof imegeal vector
.
transforms line integrals into surface integrals.
transforms surface integrals into a volume integrals.
is stated as surface integral of the component of curl F along
the normal to the surface S, taken over the surface S bounded by curve

Cis eoualto he ine intearalof the vector oolnt function  taken alone
tated a5 the surface integral of the normal component of a

vecto Tancion  taken around  closed surface. s aaual o he

opt1

2

Definite integral

Definite integral
10
6

Definite integral

1
2
Definite integral
1

3
10

Cauchy's Theorem

Cauchy's Theorem
Cauchy's Theorem
Cauchy's Theorem

Cauchy's Theorem

Cauchy's Theorem

opt2 opt3 opt4 Answer
volume Direction weight volume
1 2 3 1
4 6 8 6
modulus Direction weight
1 2 3 1
13 23 3 7”3
4 5 1 4
1 ab loga logb loga logb
Definite integral
15 12 30 12
1 16 12 6
v 2 n s
1 2 3 o
modulus Direction weight area
a3 an an a3
1 2 3 1
Double change of order Triple. Double
Line volume ntegral Triple. Triple
Surface Line Triple Line
34 6
2100 2000 100 2100
n n a3 154
2 4 5 8
36 1 4 12
1 n 4 2
1 n 4 n
6 3 1 2
Definite integral
2 3 4 2
2 4 8
a2 51 1 10

Green's Theorem

Green's Theorem
Green's Theorem
Green's Theorem

Green's Theorem

Green's Theorem

Stoke's Theorem

Stoke's Theorem
Stoke's Theorem
Stoke's Theorem

Stoke's Theorem

Stoke's Theorem

Gauss Theorem

Gauss Theorem
Gauss Theorem
Gauss Theorem

Gauss Theorem

Gauss Theorem

Stoke's Theorem

Green's Theorem
Green's Theorem
Gauss Theorem

Stoke's Theorem

Gauss Theorem
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Objective type questions

The necessary and sufficient condition for the differential equation to be exact is
The equation is known is dy/dx+Py=Q y"2

The integrating factor of dy/dx+y/x=x"2

The solution of Mdx+Ndy=0 is posses an

A differential equation is said to be if the dependent variable and its
derivative occur only i the first degree and are not multiplied together

The order of d"2y/dx\2+y=x"2-2 is

The integrating factor of dy/dx+ysinx=0 is

The integrating factor of dy/dx-ycotx = sinx is
The solution of y=(x-a)p-p"2
An equation of the form y=px+f(p) is known as

The order of d"2y/dx"2+y=0 is
The clairaut’s form of p=tan(px-y)

An equation involving one dependent variable and its derivatives with respect to one
i ariable is called

The is differentiation of a function of two or more variables

A differential equation is said to be linear if the dependent variable and its derivative
occur only in the degree and are not multiplied together
The highest derivative of the differential equation s

The powerof the hightest derivative of the differential equation is called___
The order of +7=x"2+4 is

The order of y"+xy'+7x=01s

The degree of the (d"2y/dx"2)"2+(dy/dx)A3+3y=0

The degree of the (d"2y/dx"2)"3+(dy/dx)A3+7y=0

The order and degree of (d"3/dx"3)A2 +dy/dx+9y=0

The standard form of a linear equation of the first order

The integrating factor of linear equation of the form dx/dy+Px=Q is

The integrating factor of linear equation of the form dy/dx+Py=Q is

The integrating factor of dy/dxysinx=
The integrating factor of dy/dx-ycotx=0is

If the given equationMdx+Ndy=0 is homogenous and Mx+Ny#0 then the integrating
factor is

is.

The solution of Mdx+Ndy is

If M+Ndy=0 be a homogeneous equation in x and y, then
factor(Mx+Ny=0)

If Mh+Ndy=0 be a homogeneous equation in x and y, then
factor(Mx-Ny=#0)

s an integrating

is an integrating

opt1

M -
Euler equation

x
Infinite no of integrating
factor

Linear

0
en-cosx
sinx
y = (x-a)e-ch2
linear
2
y=cx+tani-1 ¢

ODE

ODE

first
Order
Order
0
0
0
0
32
dy/dx+Py=Q
enintegral Qdx
enintegral Qdy
en(-cosx)
cosx
1/(Nx-My)

intergral y constant

opt2

=N_x

Bernoulli's Equation

y

finite no of integrating factor

nonlinear

1
yer-cosx
- sinx
y = (x-a)c+ch2
Bernoull's Equation
1
y=cx-tani-1 ¢

PDE

PDE

second

Degree

Degree
1

1

1

1

23
dy/dx+py=Q
enintegral Pdy
enintegral Pdx

en(-cosx)y
(cos x)

1/(Mx+Ny)

intergral y constant

Mdxintegral of terms of N Mdx+integral of terms not

not containing x dy
1/(Mx+Ny)

1/(Mx+Ny)

containing x dx
1/(Mx-Ny)

1/(Mx-Ny)

opt3

M_x=N_x
Legendre equation

logx

none of these

quadratic

2
logx
cosx

0

exact

0
c=tan(cx-y)

Partial

Partial

third
Power
Power
2
2
2
2
12
dy/dx+Py=q
enintegral Qdx
enintegral Qdx
logx
cosec x
1/(Mx-Ny)
intergral y constant
Ndxe+integral of

terms not containing
x dx

Mdy+Ndx

Mdy+Ndx

optd

M_y=N_y
Homogeneous

0
one integrating factor

PDE

3
ensin
- cosx
-1
Clairaut's equation
-1
c=tan(pxty)

Total

Total

first and second

second degree

second degree
3

3
3
3
21
Sdy/dx+Py=Q
enQdx
erQdx
en(sinx)
sinx
1/(Nx+My)
intergral y constant

Mdxintegral of terms
not containing y dx

Mdy-Ndlx

Mdy-Ndlx

Answer

M_y=N_x
Bernoulli's Equation

Infinite no of integrating factor

Linear

2
en-cosx
-sinx
v = (ca)ech2
Clairaut's equation
2
y=ox-tanA-1 ¢

ODE

PDE

first

Order

Degree
2

3
2
3
32
dy/dx+Py=Q
etintegral Pdy
enintegral Pdx

er(cosx)
cosecx

1/(Mx+Ny)

intergral y constant Mdxintegral of terms
of N not containing x dy

1/(Mx+Ny)

1/(Mx-Ny)
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If (D2 +4)y=0 is a linear differential equation then
general solution is

If (DA2 - 6D+13) y = O iis a linear differential equation
then G.S. is -

The solution of the differential equation (D2 -
4D+43)y=0 s

The solution of the differential equation (DA2
+3D+2)y=0 is.
The particular integral of (D72 +3D+2)y= 2 eA(x)
is...

The particular integral of (DA2+4) y= eA(x) is
If the roots of the auxilliary equation are real and
distinct then the C.Fis...

If the roots of the auxilliary equation are real and
equal then the C.Fis...

If the roots of the auxilliary equation are complex
then the C.Fis...

The particular integral of (DA2 +10D+24)y= eA(-x)
is... -

The particular integral of (DA2+9) y= cos2x is ....

The particular integral of (DA2+9) y= cos3x is ....
The particular integral of (D2 +12D+27)y= e/(-x)

The solution of the differential equation (DA2
+19D+60)y=0 is.. -

The solution of the differential equation (DA2
+13D+40)y=0 is.. -

The solution of the differential equation (D2 -
9D+20)y=0is.
The solution of the differential equation (D2 +D-
72)y=0is.
The solution of the differential equation (DA2- 11D-
42)y=0is.
The solution of the differential equation (DA2- 12D-
45)y=01s.
The solution of the differential equation (D2- 7D-
30)y=0 is. .

The particular in
is...

tegral of (D2 +19D+60)y= e”x

The particular integral of (DA2+25) y= cosx s ....

The particular integral of (DA2+1) y= sinx is ...
The particular integral of (DA2 -9D+20)y=e(2x)
is..

The particular integral of (D2-1) y=sin2x is

The particular integral of (DA2- 7D-30)y= 5 is.. .
The solution of the differential equation (DA2- 11D-
42)y=21s......

Which one is Bessel's Equation of order n

In this equation xA2dAy/dxA2-+xdy/dx+(xA2-nA2)y=0 is
called

Bessel's Equation is xA2dy/dx/2+xdy/dx+(x"2-
nA2)y=0 of order

Which one is Bessel's Equation of order 0

Bessel's Equation is xd"y/dx"2+dy/dx+xy=0 of order

d/dx[x*n J_n(x)] is equal to,
d/dx[x*(-n) J_n(x) ]is equal to,

J_n(x)=

XA-n J_n+1(x)=
Jon (x)=
T_(n)x)=
J_n+1 (x)=

1.-(1/2) (x)=
1_(1/2) (x)=

optl
Aen(-2x)+Ben (-
3x)

(A+Bx) e” (3x)

(A+Bx) e” (3x)

. (1/5)

(A+Bx) A (-x)
0.5 en (2x)

(x cos2x)/2

A cos2x+ B sindx
e7(3x) (A cos2x+ B
sin2x)
Aen(x)+Be”(3x)
Aen(x)+Ben(2x)

er(x)/3

. 1/5% eMx)

AeA(mix)+Ber(m2x
AeN(m1x)+Ber(m2x

AeN(m1x)+Ber(m2x

)

(1/35) eA(-x)
cos2x/13

X cos3x/2

(1/16) en (x)
Aen (15x)+ B en
(4x)

Aen (5x)+ B en (8x)
Aen (-5x)+ B er
(4x)

Aen (-8x)+Ben (-

9%)

Aen (14x)+Ben (-
3x)

Aen (15x)+ B en
(3x)

Aen (-10x)+ B e (-
3x)

(-e"(-x))/80
(cosx)/24
Xcosx/2
eM2x) /6
(-sin2x)/5
(1/30)

(-1/42)
xA2dny/dxn2-
xdy/dx+{xA2-
nA2)y=0
Legendre's
Equation

n+l

xdA2y/dxA2+dy/dx
+xy=0

XAn J_n+1(x)
XAn J_n+1(x)
(x/2n)[_n+1
(x)+)_n+1 (x)]
_d/dx[x*(-n) J_n(x)]

(1/2)U_(n+1)(x)-
J_(n+1)(x)]
(n/x)U_(n)(x)-
J_(n+1)(x)]
(n/x)U_(n)(x)-
J_(n+1)(x)]
sqrt(2/pi) cosx
sqrt(2/pi) cosx

opt2

Aen (2x)+ B en (3x)
(A+Bx) e” (x)
(A+Bx) e” (-2x)
(1/6)

(A+Bx) e (x)
0.5 e (2x)

(sin2x)/2

Acos2x+Bsin2x
e7(3x) (A cosdx+ B
sindx)

Aeh (x)+ B e (3x)
Aeh (x)+ B en (2x)
(-er(x))/3

1/5* en(-x)

(A+Bx) en (m1x)
enax)
(Acospx+Bsinpx)
en(-ax)
(Acospx+Bsinpx)

(-1/35)en(-x)
(-cos2x)/13
(-x cos3x)/2
(-1/16) e” (-x)

Aen (-15x)+ B en
(4x)

A e” (5x)+ B e” (-8x)
A en (5x)+ B e (-4x)
A en (-8x)+ B e (9x)
Aer (-14x)+ B en (-
3x)

Aen (-15x)+ B en
(3x)

Aer (10x)+ B en (-
3x)

(e”(-x))/80
(cosx)/25

( -xcosx)/2
eN(2x) /(-6)
sin2x/5
(-1/30)

(1/42)

XA2d7y/dxA2+xdy/d
X+(xA2-n"2)y=0

Cauchy's equation

n-1
xdA2y/dxA2+dy/dx-
xy=0

1

xAn-1J_n-1(x)
x*n-1J_n-1(x)
(x/2n)[)_n-1
(x)+)_n+1 (x)]
_d/dx[x*(n) J_n(x)]
(1/2)U_(n-1)(x)-)_(n-
1)(x)]
(n/xA2)[)_(n)(x)-
J_(n+1)(x)]
(n/xA2)[)_(n)(x)-
J_(n+1)(x)]
sqrt(4/pi) cosx
sqrt(4/pi) cosx

opt3
Aeh (-2x)+ B er
(3x)

(A+Bx) e (-2x)
(A+Bx) e (-3x)
(1/4)

(A+Bx) e (-2x)
0.5 e (-2x)

(sin2x)/2

Asin2x+Bcos4x
e7(3x) (A cos2x+ B
sin2x)

Aer (x)+B e (3x)
Aer (x)+B e (x)
eNx)/6

1/6* enx)
enax)
(Acospx+Bsinpx)

(A+Bx) e” (mx)
(A+Bx) e” (mx)
(-1/25)en(-x)
(-cos2x)/5
(xcos3x)/6

(1/16) e (x)

Aen (15x)+Ben (-
4x)

Aen (-5x)+Ben (-
8x)

Aen (5x)+ B en (4x)
Aen (8x)+ B en (9x)
Aen (-14x)+ B en
(3x)

Aen (15x)+Ben (-

3x)
Aen (10x)+ B en
(3x)

(e"x)/80
(-cosx)/24
( -xsinx)/2
eM2x) /12
sin2x/3
(1/6)

(1/2)

XA2dAy/dxA2+xdy/
dx+(xA2-n"2)y=0

Partial Equation

n
xdA2y/dxh2-
dy/dx+xy=0
2

x*n J_n-1(x)

x*n J_n-1(x)
(x/2n)[_n-1 (x}+)_n-
1(x)]

d/dx[xA(-n) J_n(x)]
(1/2)U_(n-1)(x)-
J_(n+1)(x)]
(n/x)U_(n)(x)-)_(n-
1)(x)]
(n/x)U_(n)(x)-)_(n-
1)(x)]

sqrt(2/pi) sinx
sqrt(2/pi) sinx

opt4

Aen (2x)+ B en (-3x)
(A+Bx) e” (-3x)
(A+Bx) e” (2x)

(1/3)

(A+Bx) e (2x)
0.5 en (3x)

(x sin2x)/4
Asin4x+Bsindx
en(2x) (A cos2x+ B
sin2x)

Aen (2x)+ B en (-3x)
Aen (x)+Ben(-2x)
(-enx))/6

1/6* en(x)

(A+Bx) e (m2x)
(A+Bx) e” (-mx)
enax)
(AcosPx+Bsinpx)
(1/25)eM(x)
cos2x/5

(-xcos3x)/6

(-1/16) e” (x)

Aen (-15x)+ B en (-
4x)

A eh (-5x)+ B e” (8x)

A eh (-5x)+ B e” (-4x)

A eh (8x)+ B e (-9x)

Aen (14x)+ B e (3x)
Aen (-15x)+ B en (-
3x)

Aen (-10x)+ B en
(3x)

(-e"x)/80
(-cosx)/25
xsinx/2
eN(2x) /(-12)
(-sin2x)/3
(-1/6)

(-1/2)

XA2dAy/dxA2+xdy/d
X+(xA2+n"2)y=0

Bessel's Equation

2n-1
xA2dn2y/dxA2+dy/d
x+xy=0

3

_x-n J_n+1(x)
_x-n J_n+1(x)
(x/2n)[_n-1 (x)-
1_n+1 ()]
_d/dx[x*(-n) J_(-
n)(x)]
(1/4)0_(n-1)(x)-
1_(n+1)(x)]
(2n/x)0)_(n) (x)-)_(n-
1) (x)]

sqrt(4/pi) sinx
sqrt(4/pi) sinx

Answer

Aen (-2x)+ B e (-3x)
(A+Bx) e” (-3x)
(A+Bx) e” (2x)

(1/6)

(A+Bx) e (x)
0.5 en (2x)

(x sin2x)/4
Acos2x+Bsin2x
e7(3x) (A cos2x+ B
sin2x)

Aen (x)+Be”(3x)
Aen (x)+Ben(-2x)
er(x)/3

1/5* en(-x)
Ae’(m1x)+Be”(m2x)
(A+Bx) e” (mx)
en(ax) (AcosBx+BsinBx)
(1/25)eM(x)

cos2x/5

(xcos3x)/6

(1/16) e (-x)

A en (-15x)+ B e (-4x)
A en (-5x)+ B e” (-8x)
A e” (5x)+ B e (4x)
Aen (8x)+ B e (-9x)
A eh (14x)+ B e” (-3x)
A eh (15x)+ B e” (-3x)
A eh (10x)+ B e” (-3x)
(e"x)/80

cosx/24

( -xcosx)/2

e”(2x) /6

(-sin2x)/5

(-1/6)

Aen (14x)+ B en (-3x)
xA2dAy/dxA2+xdy/dx+(x
A2-nA2)y=0

Bessel's Equation

n

xdA2y/dxA2+dy/dx+xy=
0

0

x*n J_n-1(x)

_xAen J_n+1(x)
(x/2n)[_n-1 (x}+)_n+1
(x)]

_d/dx[x*(-n) J_n(x)]
(1/2)U_(n-1)(x)-
J_(n+1)(x)]
(n/x)U_(n)(x)-)_(n+1)(x)]
(2n/x)l1_(n) (x)-1_(n-1)
(x)]

sqrt(2/pi) cosx
sqrt(2/pi) sinx
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Complex Numbers

fChapter Outline

Infroduction

Complex Numbers

Complex Function

Limit of a Function

Derivative

Analytic Function

Cauchy—Riemann Equations

Harmonic Function

Properties of Analytic Functions

Construction of Analytic Function [Milne=Thomson Method)

21.1 O INTRODUCTION

Quite often, it is believed that complex numbers arose from the need to solve
quadratic equations. In fact, contrary to this belief, these numbers arose from the
need to solve cubic equations. In the sixteenth century, Cardano was possibly the

first to introduce a++/-b, a complex number, in algebra. Later, in the eighteenth

century, Euler introduced the notation i for J-1 and visualized complex numbers as
points with rectangular coordinates, but he did not give a satisfactory foundation for
complex numbers. However, Euler defined the complex exponential and proved the
identity €' = (cos ¢+ i sin ), thereby establishing connection between trigonometric
and exponential functions through complex analysis.

We know that there is no square root of negative numbers among real numbers.

However, algebra itself and its applications require such an extension of the
concept of a number for which the extraction of the square root of a negative number
would be possible.
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21.4 Engineering Mathematics

We have repeatedly encountered the notion of extension of a number. Fractional
numbers are introduced to make it possible to divide one integral number by another,
negative numbers are introduced to make it possible to subtract a large number from
a smaller one and irrational numbers become necessary in order to describe the
result of measurement of the length of a segment in the case when the segment is
incommensurable with the chosen unit of length.

The square root of the number 1 is usually denoted by the letter i and numbers of
the form a + ib where 2 and b are ordinary real numbers known as complex numbers.

The necessity of considering complex numbers first arose in the sixteenth century
when several Italian mathematicians discovered the possibility of algebraic solutions
of third-degree equations.

The theoretical and applied values of complex numbers are far beyond the scope
of algebra. The theory of functions of a complex variable, which was much advanced
in the nineteenth century, proved to be a very valuable apparatus for the investigation
of almost all the divisions of theoretical physics, such, for instance, as the theory of
oscillations, hydrodynamics, the divisions of the theory of elementary particles, etc.

Many engineering problems may be treated and solved by methods involving
complex numbers and complex functions. There are two kinds of such problems.
The first of them consists of elementary problems for which some acquaintances
with complex numbers are sufficient. This includes many applications to electric
circuits or mechanical vibrating systems. The second kind consists of more advanced
problems for which we must be familiar with the theory of complex analytic functions.
Interesting problems in heat conduction, fluid flow and electrostatics belong to this
category.

21.2 O COMPLEX NUMBERS

A number of the form x + iy, where x and y are real numbers and i= \/j (iis
pronounced as iota) is called a complex number. x is called the real part of x + iy and
is written as Re(x + iy) and y is called the imaginary part and is written as Im(x + iy).

A pair of complex numbers x + iy and x — iy are said to be conjugates of each other.

Properties

(i) If xg + iy, = x, + iy, then x; — iy, = x, — iy,

(if) Two complex numbers x; +iy; and x, + iy, are said to be equal when Re(x; + iy;)
=Re(x, +iy,), i.e, x; = x, and Im(x; + iy;) = Im(x, + iy,) i.e, y; =y,

(iii) Algebra of Complex Numbers
The arithmetic operations on complex numbers follow the usual rules of
elementary algebra of real numbers with the definition i* = —1. If z; = x; + iy
and z, = x, + iy, are any two complex numbers then we define the following
arithmetic operations.

Addition

zy+ 2, = (X +iyp) +(x, +1y,) = (X, + x,) +i(y; + )
Subtraction

2= 2y = (¥ +iyy) = (X +1y,) = (X = X,) + (Y, — )
Multiplication

212, = (2 + 1y ) (% + 1Y) = (X120 = Y1,) + (XY, + Y1)
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Complex Numbers 21.5

Division Let z, # 0. Then

z iy ()G -i,) | vy, il TNy,
Zy,  Xy+iy, (X iy, ) (X, —iy,) x§+y§ x§+y§

i.e., sum, difference, product and quotient of any two complex numbers is itself
a complex number.

(iv) Every complex number x + iy can always be expressed in the form r(cos 6 +
i sin 0).
ie, re® (Exponential form).

> Note

(i) The number r=+/x*+y? is called the module of x + iy and is written as

mod (x +iy) or |x +iyl. The angle @is called the amplitude or argument of
x + iy and is written as amp (x + iy) or arg(x + iy). Evidently, the amplitude 6
has an infinite number of values. The value of 6 which lies between —7 and
mis called the principal value of the amplitude.

(if) cos 6+ i sin O1is briefly written as cis 8 (pronounced as “sis 6')

(iii) If the conjugate of z=x +iy be z then

(@) Re(z)= %(z +7),Im(z) = %(z )

(b) Izl=+/(Re(2))>+ (Im(z))> =IZ|

(c) zz=IzP

d) z,+z,=2z,+z
i| 2 = 25 50 2y

@) ziz,=2, 2,

) (2/2,)=2/2,,2,#0

(iv) De Moivre’s Theorem
(cos B+ i sin 0)" = cos n6+i sin nO

21.3 O COMPLEX FUNCTION

Recall from calculus that a real function f defined on a set S of real numbers is a rule
that assigns to every x in S a real number f(x), called the value of f at x. Now in the
complex region, S is a set of complex numbers. A function f defined on S is a rule that
assigns to every z in S a complex number w, called the value of f at z.

We write w = f(z). Here, z varies in S and is called a complex variable. The set S is
called the domain of f.

If to each value of z, there corresponds one and only one value of w then w is
said to be a single-valued function of z; otherwise, it is a multi-valued function. For

1. . . . . .
example, w=— is a single-valued function and w = \/; is a multi-valued function
z

of z. The former is defined at all points of the z-plane except at z = 0 and the latter
assumes two values for each value of z except at z=0.
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21.6 Engineering Mathematics

> Note

(i) If z=x+1iy then f(z) = u + iv (a complex number).
(if) Since e¥ = cos y + i sin y, e = cos y — i sin y, the circular functions are
. eV —eV eV +e
sin :T,cosy=7, and so on

e
.. circular functions of the complex variable z are given by sin z = —
i

iz —iz :
+ sinz . . .
cosz=———,tanz = with cosecz, secz and cot z as their respective
oS z

reciprocals.
(iii) Euler’s Theorem
e”=cosz+isinz
(iv) Hyperbolic Functions

X —X

If x be real or complex, % =sin hx (named hyperbolic sine of x)
ef+e ™ . .
———=cos hx (named hyperbolic cosine of x)

Also, we define,

sinhx e‘'—e”

tan hx = =
coshx e*+¢™
1 eX+e™
cot hx = =
tan hx e¥—¢*
1 2
sec hx = =
coshx ¥+~
1 2
cosec hx =

sinhx ¢*—¢7*

(v) Relations between Hyperbolic and Circular Functions
sin ix = i sin hx
cos ix = cos hx
tan ix = i tan hx
(vi) cos h*x —sin h*x =1, sec hx + tan h>x = 1
cot h’x — cosec h*x =1
(vii) sinh(x + y) = sin hx cos hy + cos hx sin hy
cos h(x + y) = cos hx cos hy + sinh x sinh y
tan hx £ tan hy

tan h(x £ y)= ———
anh(x+y) 1+ tan hx tan hy

(viii) sin h2x =2 sin hx cosh x
cos h2x = cos h2x + sin h?x =2 cos i2x —1=1+ 2 sin h®x
2 tan hx

tan 112x=—2
1+tan h*x
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Complex Numbers 21.7

(ix) sin h3x =3 sin hx + 4 sin h3x
cos h3x =4 cos hi®x — 3 cos hx

3 tan hx + tan h°x

tan h3x = >
1+3tanhx
sinhx+sinhy=Zsinhx+ycoshx_—y
) 2
sinhx—sinhy=2coshx+ysinh%
COth+COShy=2COth+yCOSh%
coshx—coshy=2sinhx;ysinh%

(xi) cos hx —sin h?x =1
(xii) Complex trigonometric functions satisfy the same identities as real
trigonometric functions.

sin(-z)=-sinz and cos(-z)=cosz
sin’z+cos’z=1

sin(z, £ z,) = sin z, cos z, * cos z, sin z,
cos(z; £ z,) = COS z, COS z, F Sin z, sin z,

sin2z=2sinzcosz and cos2z=cos’z—sin’z

sinz =sin z
sin(z + 2nm) = sin z, n is any integer
cos(z + 2nm) = cos z, n is any integer
(xiii) Inverse Trigonometric and Hyperbolic Functions
Complex inverse trigonometric functions are defined by the following:

1

cos™' z=—ilog(z ++/z°+1)

1

sin” z=—1log(iz + 1-2?%)

tan"'z= —%log(l il 12] :ilog l tz

1-iz

1

sec 'z=cos ! (l) =—ilog| ———
z z

1
cot'z=tan! (—

EM_UnitiX_21.indd 7 @ 8/23/2017 4:13:40 PM



21.8 Engineering Mathematics

Complex inverse hyperbolic functions are defined by the following:
cosh™ z=log(z +/z° - 1), sinh ' z = log(z + 2> +1)

1
tanh™ z =llog[i) z#+l1
2 1-z

i T
cosech 'z = sinh ™ [—j =log
z

21.4 O LIMIT OF A FUNCTION

A function f(z) is said to have the limit ‘0" as z approaches a point ‘a’, written
lim f(z)=b, if fis defined in a neighborhood of “a’ (except perhaps at ‘a” itself) and if
z—a

the values of f are close to ‘b’ for all z close to ‘a’, i.e., the number b is called the limit
of the function f(z) as z — a4, if the absolute value of the difference f(z) — b remains
less than any preassigned positive number € every time the absolute value of the
difference z — a for z # g, is less than some positive number 6 (dependent on €).

More briefly, the number b is the limit of the function f(z) as z — g, if the absolute
value |f(z) - bl is arbitrarily small when |z - al is sufficiently small.

21.5 O DERIVATIVE

A function f(z) is said to be differentiable at a point z = z, if the limit
lim fzo+A2) - f(2))
Az—0 Az

point z = z, and is denoted by f”(z).
If we write z =z + Az then

exists. This limit is then called the derivative of f(z) at the

f’(zo) — hm f(Z)_f(ZO)

z>2z, Z=2z,

21.6 O ANALYTIC FUNCTIONS

A function defined at a point z; is said to be analytic at z, if it has a derivative at z,
and at every point in some neighborhood of z. It is said to be analytic in a region R, if
itis analytic at every point of R. Analytic functions are otherwise named holomorphic
or regular functions.

A point at which a function f(z) is not analytic is called a singular point or
singularity of f(z).
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Complex Numbers 21.9

21.7 O CAUCHY-RIEMANN EQUATIONS

The necessary condition for the function f(z) = u(x, y) + iv(x, y) to be analytic at the

ou Jdu dv v
point z =x + iy of a domain R is that the partial derivatives — and — must

ox 8 "ox dy
exist and satisfy the Cauchy-Riemann equations, namely,

qu _ av Ju_ dv
ox ay ay Cox
The sufficient condition for the function f(z) = u(x, y) + iv(x, y) to be analytic at the

point z =x + iy of a domain R is that the four partial derivatives u,, u,, v, and v, exist,
are continuous and satisfy the Cauchy-Riemann equations u, =v, and u, =-v, at each

point of R.
> Note
(i) The two partial differential equations du_dv and Ju__ % are called
Jox dy dy  ox
the Cauchy-Riemann equations and they may be written as u, = v, and u,
= _vx
(ii) The Cauchy—Riemann equations are referred as C-R equations
ou _19dv dv _ 1du
iii) C-R tions i lar f —=——and —=——.
(iii) equations in polar form are > 7938 an > pEY:

21.8 O HARMONIC FUNCTION

A real function of two variables x and y that possesses continuous second-order
partial derivatives and satisfies the Laplace equation is called a harmonic function.

If u and v are harmonic functions such that u + iv is analytic then each is called the
conjugate harmonic function of the other.

> Note
? 9
(i) FY EE = is called the Laplacian operator and is denoted by V2.
bt Yy
7 o
(if) PY +— =0 is known as Laplace equation in two dimensions.
X~ dy

21.9 O PROPERTIES OF ANALYTIC FUNCTIONS

Property 1

The real and imaginary parts of an analytic function f(z) = u + iv satisfy the Laplace
equation in two dimensions.

e Proof
Since f(z) = u + iv is an analytic function, it satisfies C-R equations,
du _dv

ie., —=— and 21.1
ie ox oy an (21.1)
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21.10 Engineering Mathematics
du__ov (21.2)
dy  ox
Differentiating both sides of (21.1) partially with respect to x, we get
u _ 9%v
— = 21.3
x> Oxdy (21.3)
Differentiating both sides of (21.2) partially with respect to y, we get
2. 32
Ju_dv (21.4)
dy dyox
By adding (21.3) and (21.4), we get
2 2 2 2
8_121 + a_u =0 (since v = a—v, when they are continuous)
ox* oy’ dxdy  Jdyox

= u satisfies Laplace equation.
Now differentiating both sides of (21.1) partially with respect to y, we get

2 2
ou _9Jw (21.5)
oxdy  Jy?
Differentiating both sides of (21.2) partially with respect to x we get
o’u o*v
=—— 21.6
dyox x> (21.6)

Subtracting (21.5) and (21.6),

Pu_ du_oo o

oxdy dyox gy’  ox’
P v _
o oy’

.. v satisfies Laplace equation.

Hence, if f(z) is analytic then both real and imaginary parts satisfy Laplace’s equation.

0

ie.,

> Note

If f(z) = u + iv is analytic then u and v are harmonic. Conversely, when u and v are
any two harmonic functions then f(z) = u + iv need not be analytic.

Property 2

If f(z) = u + iv is an analytic function then the curves of the family u(x, y) = C; cut
orthogonally the curves of the family v(x, y) = C, where C; and C, are constants.

e Proof

Given u(x, y) =C,
Taking differentials on both sides, we get

du=0

ou Jou
ie., —dx+—dy=0
ie o X oy y
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5]
Cdy_ \ox
“dx (ou

%)

From the second curve v(x, y) = C,, we get dy =—

=m, (say), where m, is the slope of the curve u(x, y) = C; at (x, y)

(o)

=m,, where m, is the slope

of the curve v(x, y) = C, at (x, y). x (gvj
Y
5) (5]
NOVV, mlmz = a_x . ax
EANED
dy ) \ 9y

] ()

= _(al) . 5
ox/) | dy
= mym, =-1

Hence, the curves cut each other orthogonally.
Here, the two families are said to be orthogonal trajectories of each other.

(as f(z) is analytic, it satisfies C-R equation)

21.10 O CONSTRUCTION OF ANALYTIC FUNCTIONS
(MILNE-THOMSON METHOD)

To find f(z) when u is given

Ju .dv
We k that f'(z)=—+i—.
e know that f’(z) o +1ax
ie F)=2%_i% By CR equations) (21.7)
o ox  dy Y 1 ’
du(x, y)
Let oy =¢,(x, y) and then calculate ¢;(z, 0) (21.8)
ou(x, y)
and 3y =¢,(x, y) and then calculate ¢,(z, 0) (21.9)

Substituting (21.8) and (21.9) in (21.7), we get

f'(2) = ¢1(z, 0) - igs(z, 0)
Integrating, we get [f1(z)dz = [¢,(z, 0)dz — i [$,(z, 0)dz
ie., f(z) =10,(z, 0)dz — il (2, 0)dz.

To find f(z) when v is given

We know that f'(z) = g_u + ia—
X X
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ov .dv
=—4+i— 21.10
ay o ox ( )
Let W& Y) _ 4 (2, 0) @1.11)
Jy
and Bv(ax, Y _ (2,0 (21.12)
x

Substituting (21.11) and (21.12) in (21.10), we get

f'(2) = ¢1(z, 0) +igy(z, 0)
Integrating, we get [f"(z)dz = |¢,(z, 0)dz + i[¢,(z, 0)dz

ie., f(2) =10,(z, 0)dz + il (2, 0)dz

21.11 QO APPLICATIONS

Irrotational Flows

A flow in which the fluid particles do not rotate about their own axes while flowing
is said to be irrotational.
Let there be an irrotational motion so that the velocity potential ¢ exists such that

-3¢ —0¢
299 ,_9¢ 21.13
T ay ( )

In two-dimensional flow, the stream function y always exists such that

-y oy
W Y 21.14
! dy O o ( )
From (21.13) and (21.14), we have
99 _oy 499 _—oy (21.15)

ox 9y dy  ox

which are the well-known Cauchy-Riemann equations. Hence, ¢ + iy is an analytic
function of z = x + iyy. Moreover, ¢ and y are known as conjugate functions.
On multiplying and rewriting, (21.15) gives

99y 99 dy _, (21.16)
ox dx dy 9y
showing that the families of curves given by ¢ = constant and y = constant intersect
orthogonally. Thus, the curves of equi-velocity potential and the stream lines intersect

orthogonally.
Differentiating the equation given in (21.15) with respect to x and y respectively, we

%y 4 3’9 -y

90 99 _ , 21.17
8 a2 oxdy an oy*>  Ixdy ( )
Since Iy :82_1// (21.17) gives
oxdy odyox 8
2 2
99,99 (21.18)

ox* oy’ -
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Again differentiating Eq. (21.15) with respect to y and x respectively, we get

2 2 2 2
979 =B_l/land 0°¢ =—a|//
dyox oy’ oxdy  ox?

2 2
Subtracting these, v + v =0 (21.19)
8 o ay?

Equations (21.18) and (21.19) show that ¢ and y satisfy Laplace’s equation when a
two-dimensional irrotational motion is considered.
Complex Potential

Let w = ¢ + iy be taken as a function of x + iy
Thus, suppose that w = f(z)

ie. o+ iy=fix=iy) (21.20)
Differentiating (21.20) with respect to x and y respectively, we get
90 iV _ ity
ox  ox (21.21)
and 90 i i e tiy)
dy 9y
or 9 ;0 _ i(a—"’ + ’a—"’] by (21.22)
ady  dy ox  ox

Equating real and imaginary parts, we get

99 _ OV a0 _ 0V
ox 9y dy  ox

which are C-R equations. Then w is an analytic function of z and w is known as the
complex potential.

Conversely, if w is an analytic function of z then its real part is the velocity potential
and imaginary part is the stream function of an irrotational two-dimensional motion.
The curves ¢(x, y) = a and y(x, y) = b are called equipotential lines and stream lines
respectively.

In the study of electrostatics and gravitational fields, the curves ¢(x, y) = a and
y(x, y) = b are respectively called equipotential lines and lines of force.

In heat-flow problems, the curves ¢(x, y) =a and y(x, y) = b are respectively called
isothermals and heat-flow lines.

SOLVED EXAMPLES

1ENI NI Prove that the function f(z) = |z12 is differentiable only at the origin.

Solution Given f(z) = 1z12

ie., u+iv=lx+iy? =[Jx*+y* P (asz=x+1iy and f(z) = u + iv)

:x2+y2
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= u=x>+1y?

B_M =2x, 8_14 =2y

ox dy

v=0

w0y,

ox dy
If f(z) is differentiable then

u_d

ox dy
= 2x=0 = x=0
Also, ou = %

dy  ox
= 2y=0 = y=0
. C-R equations are satisfied only whenx =0, y=0
Hence, f(z) = |z1? is differentiable only at the origin (0, 0). Proved.

IDeiny (WA Prove that the function f(z) = zz is not analytic except at z=0.

Solution Given f(z) = zz

ie., u+iv=(x+iy)(x —iy)
u+iv=x>+y

Equating real and imaginary parts.

u=x*+1?
ou Ju
S, Z o2
- ox xay 4
v=0
v v
= —=0,—=0
ox ay

a—uia—vanda—u;t %
dx  dy dy  ox

= C-R equations are not satisfied
. flz) = zz is not analytic except at z=0. Proved.

|DEiy (M Show that (i) an analytic function with a constant real part is a
constant, and (ii) an analytic function with a constant modulus is also a constant.
[KU Nov. 2010, April 2012; AU Nov. 2010, Nov. 2011]

Solution Let f(z) = u + iv be an analytic function.
(i) Letu =C; (a constant)

u ou
Then —=u_=0 and —=u_=0.
ox gy Y
Since f(z) is an analytic function, by C-R equations u, = v, and u, = -0,
= v,=0and v, =0.
Aswv,=0and v, =0, v must be independent of x and y and must be a constant C,.

-~ flz) =u+iv=_C; +iC, which is a constant.
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(if) Let f{z) = u + iv be an analytic function.

Given | f(z)l=+/u*+v* =k (a constant)

Differentiating partially with respect to x and y, we get
ou v

2u—+2v—=0
”ax+ Uax

and 2ua—u+2vﬁ=0
dy  dy

Since f(z) is an analytic function, it satisfies C-R equations.
.. the above two equations may be written as,

Ju ou

90

P ay
and va—u + ua—u =0

ox  dy
. Ju ou
By solving, we get = =u,=0 and @ =u,= 0.
By C-R equations, it implies that B_v =v.=0 and B_v_ v =0
y q 4 p ax X ay Y :

Thus, f(z) = u + iv is a constant. Proved.

2 2

IDen (W [ff(z)isaregularfunctionofz, provethat [aa_z + :—z]l fz)P=41f"(2)*.
x Yy
[AU May 2006, KU Now. 2011, KU April 2013]

Solution Let f(z) = u(x, y) + iv(x, y)
Then If(z)1?=u?+v*and If’(z)1% = u§+v§

To prove i+i (u? +0?) = 4@ + v%)
p axZ ayZ X X
2
Now, %(u2)=2uux and ;?(u2)=%(2uux)

=2[uny +u ] =2un,, + ui ]
2

Similarly, ;7012) = 2[uuw + u;]

? P
—5 = ()= 2ufu 1+ 2]+ 0]

ox* oy’
=20’ + u;] (since u,, + u,, =0) 1)
2
Again, a—z(vz) =2[vo,, + vi]
ox
’ 5 2
and a—yz(v )=2[vvw+vy]
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9 9’ 2 2, .2
[y +W (v°)=20(v,, + ‘UW) +2(v; + vy)

=2(v3 + U;) (since v,, +0,, =0) )
Adding (1) and (2), we get

? 9
+— (u2+vz)=2[u§+u§+vz+v§]

oy
=20 + 0+ 02 + ] (by using C-R equations) = 4[u; +v2].
Hence i + 9 I f(z)P=41f"(z)” Proved
’ ox* oy’ i
9
IDEH N Show that if f(z) is a regular function of z then W + 37 loglf(z)!
x Yy
=0. [AU May 2012]

Solution Loglf(z)l= %log If(z)l2 = % log (12 +0?)

9 1
gloglf(z)l—ali

2uu, +20-0, _ Ul + 00,
u*+v? w?+ 02

(* + 02)(uuxx + ui + 00, + vi) = (uu, +vv,)(2uu, +20v,)

aZ
yloglf(z)lz

W*+0%)?
_ 1! 00, 4124 0]~ (uu+ 00, 1
_u2+vz[uux v, Fu;+0o;] (u2+v2)2(uux vv,) (1)
Similarly,
0* 1 2, 2 2 2
Wloglf(z)l= B [uuw+vvyy+uy+vy]—m(uuy+vvy) (2)

2 2

Adding (1) and (2), we get — 8_2+8_2 loglf(z)l
ox~  dy

_2
(u2 + 02)2

2

1
= 1y [u(u,, + uW) +0(v,,+ v

2, 2, 2, 2
W)+ux+vx+uy+z;y]

[(uu, +vv,)* + (uu, + vvy)z]
= ﬁ[z(%ﬁ + U,Zc)] - ﬁ[(uux +vo, )2+ (~uv, + vux)z]
_2wi+0d)

u?+ 02 W +v

2,2, .2 2,2, 2
2)2 [u(u + ) + 07 (u; + ;)]
_20p+0y) 2P+ 0%+ 0p)

u? + v? (u2 + 02)2

=0 Proved.
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|DEy I Show that the function u= 1 log(x* +
its conjugate. Also find f(z). 2

Solution Given u= % log(x? + )

21.17

?) is harmonic and determine
[KU May 2010, KU April 2013]

Qu__x . ou__y
o x2+y? oy KP4yt
82_u (Pry?)-22r AP 82 (x +y) -2y -y’
0w (PP @rP (PP @y
82_u+82_u_ Y222 . 2P _yz—x +x2 -y o
axz ayZ (x2+y2)2 (x2+y2)2 (x2+y2)2
Hence, u satisfies Laplace’s equation.
. u is harmonic.
To find conjugate of u
9 a9
We know that do=""dx —Udy
ox dy
—ou ou
=——dx+—d
y Y
—y x
= dx + d
e e y
_xdy-ydx  xdy-ydx 1
T2 2 2
( y9) 1+ (1)
x
1 Yy
)
1+ (1)
x
J‘d _J‘ d(y/x)
1+ (y/x)?
ie., v=tan™ (1)
x
.. the required analytic function is f(z) = u + iv
=%log (*+y*)+itan™ (%)
ie, flz)=log z Ans.

If u(x, y) = e"(x cos y — y sin y), find f(z) so that f(z) is analytic.

Solution Given u =¢*(x cos y —y sin y)

d
hlxy)=5-

¢,(z,0)=ze* +¢*

EM_UnitIX_21.indd 17
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21.18 Engineering Mathematics

0,(x, ) =B_u= —xe*sin y —e*(sin y + y cos y)

$,(2,0)= 0 )
By Milne-Thomson method,
f'(2) = ¢:1(z, 0) = igy(z, 0)
=zef+e"+0
=eé¥(z+1)
f(z) =le*(z + 1)dz
=ze—e*+e"+C
ie., flz)=ze*+C Ans.

sin 2x

Example 8 Find the analytic function f(z) =u + iv given that u + v = ——————.
cosh 2y — cos 2x

[AU May 2006]
Solution Given u +iv=£(z) 1)
iu—-v=1if(z) 2)

Addmg (1) and (2), we get

(u—v) +i(u+0)=(1+0f(z)
Letu—-v=1U,
u+v=V and F(z)=(1+1i)f(z)
dV _ (cos h2y—cos2x)2 cos2x —sin 2x -2 sin 2x

ox (cosh 2y — cos 2x)>

0,00, ) = 2

_ 2cos 2x cosh 2y — 2(cos? 2x + sin” 2x)

(cos h2y — cos 2x)?
_ 2cos2xcosh2y -2

(COS h2y — cos 2x)*

—sin 2x(2sin h2
b (x,y)= 2= S 2X2In12))
9y (cosh2y —cos2x)
_ —2sinh 2y sin 2x

(cos h2y — cos 2x)?
By Milne-Thomson method, we have

F'(z)= ¢1(Zr 0)+ i¢2(zr 0)

2(cos2z-1
¢,(z,0) =(—2)
(1-cos 2z)
¢,(z,0)=0
and F(z)= 2(cos 2z-1)
(1 cos 2z)
B -2 iy -1
" 1-cos2z 1-cos2z
2
=i __2 =—i cosec’z
sin”z
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f(2)= —#jcoseczz dz
i

i+ 1
ie., f(2)= chot z+C Ans.

[2EI A Find the analytic function fz) =u + v if u+v=— al > and f(1)=1.
X +y

[AU Nov. 2010]

Solution Given u + iv = f(z) (1)
iu—-v=if(z) 2
Adding (1) and (2), we get
(u—0)+i(u+v)=(1+i)f(z)

ie., U+iV=F(z) 3)
where U=u—v,V=u+v=%,F(z)=(1+i)f(z) 4)
X4y

x
V=
2+
_oV _ 2wy
¢ (x, y)= y (x2+y2)2
¢I(Z/ O):O (5)
_a_v_ yZ_XZ
¢, (x, y) = x (x2+y2)2
—z? 1
/0 =0 ="
N (6)

By Milne’s method, we have
F'(z)=¢,(z,0) +i¢,(z,0)

Co-id
z

F(z)z—ijzizdz

e

F(z)= é +C @)

But F(z) = (1 +1) f(z) [from (4) and (8)]
From (7) and (8), we get

(1+i)f(z)=§+C

i C
f@=Can 1+
=&+Cl,wherecl=i,
A+)(1-i)z 1+
1+i
=—+C
f(2) 22 1
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Givenf(1)=1

ie., f(1)=%+C1=1
= Clzl_w
2
1-i
)
e Ans.
z
? 0*
Show that | ~—+—— [=4=—. [AU Nov. 2010]
ax°  dy 020z
Solution
Let z=x+1iy 1)
zZ =x-1iy )
From (1) and (2), we get
x_z+E —Z_E—_—i(z—f)
"2 VT T
ox 1 ox 1
N 7 — =T, ===
o dz 2 09z 2
y _-ioy i
9z 20z 2
d ddx 0 9y
Now, =t 3
ow oz axaz+ay oz ©)
_1fo ;9
2{ox oy
9 _0 ox 9ddy
dz dx dz dydz @)
2{ox dy
o __1@ &
8285_4 I ayz
2 2 2
= 8_2+8_2 =4 8_ Proved.
ox ay 020z

2 2
If f(z) = u + iv is analytic, prove that [;—2 + aa—z] loglf’(z)1 =0.
x
Y [AU Nov. 2010]

. 9° 0 9?
Solution We know that | —+— |=4——
ox? ayz 0z0z
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g 020z

9 0?
[ +$Jlog|f’(z)|=4 3 log | f'(2)!

91 .
=4 = -Elog L f ()l
92 , ,—
= Zazaz log[ f'(2) f'(2)]
09? _
=2-"—[log f'(2) +log f'2)]
oz f2) Proved.

Example 12 [RIFTESSRSVEE Y RIS 5 Y >, prove that both u and v satisfy Laplace’s
x

ty
equation but that u + iv is not a regular function of z. [KU Nov. 2011]
Solution Given u = x> —
u o%u du o%u
Then gzux:Zx;87:uxx=2;$=uy=—2y;a—2=uw=—2
ox* oy’
i.e., u satisfies Laplace’s equation.
Yy
v=-—
P
2, 2N o pea 2 2y
Then 8_020: 2xy P (X" +y7) —x-2(x"+y°)-2x
PRI 2+
_2y(y* - 3x%)
(*+y%)°
a_v_v _ (x2+y2).1_2y2 _ yz_xz
G (@ +y*) (@ +y?)?
9% (@ +y")* 2y - (y? - x")2(x* + y*)2y
52 Yy 2 2\
%y (+y7)
_ 2y’ -y
(o +y?)>
2 2
9_2 N B_Z 0
ox~  dy
i.e., v satisfies Laplace’s equation.
Now, u, # v, and u, # -0,
i.e,, C-R equations are not satisfied by u and .
Hence, u + iv is not an analytic (regular) function of z. Ans.
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PEVNIENEN Show that the function u(x, y) = 3x% + x* — y° — * is a harmonic
function. Find a function v(x, y) such that u + v is an analytic function.

[AU June 2010]

Solution Let f(z) = u + iv be an analytic function with u(x, y) = 3x*y + x> — > — 2

B_M %u

Then o =ux=6xy+2x;§=um=6y+2;
ou 2 2 . azu
$:”y23x -3y —Zy,ay—zzuw:—6y—2
2 2
. 8_1; + 8_124 =0, hence, u(x, y) is a harmonic function.
ox~  dy
dv v —ou du
dv=$~dx+$~dy:$dx+gdy=—uydx+uxdy
- dv=(=3x>+2y +3y?)dx + (6xy + 2x)dy where the RHS is a perfect differential equation.
u ou
dv=—|—dx+ | —d
¢ dy Tl

=—[(8x% - 3y* - 2y)dx + [ (6xy + 2x)dy

v=CBxy*+2xy - x>+ C
flz)=u +iv=3x2y+x2—y3—y2+i(3xy2+2xy—x3+C)
= —i[x® + 3x%(iy) + Bxi*y? + Py°] + [ + 2xiy + iPy*] + iC
=[x +iy]® + [x + iy]* + iC
flz) =iz + 22 +iC Ans.

EXERCISE

. Define analytic function of a complex variable.

. State any two properties of an analytic function.

Define a harmonic function with an example.

. Verify whether the function ¢(x, y) = ¢* sin y is harmonic or not.

. Find the constant ‘a’ so that u(x, y) = ax> — y* + xy is harmonic.

Is f(z) = z° analytic? Justify.

What do you mean by a conjugate harmonic function? Find the conjugate
harmonic of x.

. Show that an analytic function with a constant real part is constant.

9. Write down the necessary condition for w = f(z) = f(re'%) to be analytic.

N OO W=

[og)

10. Show that the function u =tan™! (l) is harmonic.
X

11. Show that xy* cannot be the real part of an analytic function.
12. f(z) = u +iv is such that u and v are harmonic. Is f(z) analytic always? Justify.
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13.
14.
15.

16.
17.

18.
19.

20.

Complex Numbers 21.23

State C-R equations in Cartesian coordinates.

Prove that u = 3x%y + 2x* — > — 2* is a harmonic function.

Show that the function f(z) = (x* — 3xy?) + i(3x%y — °) satisfies Cauchy-Riemann
equations.

Show that the real part u of an analytic function satisfies the equation V2u = 0.

N .
Check whether the function — is analytic or not.
z

Test the analyticity of the function 2xy + i(x* - y?).

State the basic difference between the limit of a function of a real variable and

that of a complex variable.

Find the analytic function f(z) = u + iv, given that (i) u = > — x%, (ii) v = sin hx sin y,
X

Pyt

and (iii) u=

1.

W

Prove that the following functions are not differentiable (and, hence, not
analytic) at the origin.

Yyy-i)
Q) =1 O+y?

0, z=0

xyz(x+iy) 2 %0
(i) f(2)=9 x*+y> '

0, z=0

Prove that for the following function, C-R equations are satisfied at the origin
but f(z) is not analytic there.

3 N3
1A+ -y’ (1 1){27&

0
fz)= Pyt
0, z=0
. Show that f(z) =sin z is not an analytic function of z.
. Find whether the Cauchy-Riemann equations are satisfied for the following
functions where w = f(z).
(i) w=2xy+i(x*-y?) (Ans. No)
(i) w= J;_ lyz (Ans. No)
x“+y
(iil) w=x*—y*-2xy +i(x* - y* + 2xy) (Ans. Yes)
(iv) w=cos x sin hy (Ans. Yes)
(v) w=2z%-27? (Ans. Yes)
. Show that an analytic function with a constant imaginary part is constant.
. Show that u+iv= xf—zy, where a #0, is not an analytic function of z = x + iy
x—iy+a

whereas u — iv is such a function.
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7. Find an analytic function w = u + iv whose real part is given by

() u=e{(x*—y? cosy +2xy sin y} [Ans. e™(x — iy)* (cos y — i sin y]
(i) u=—— (Ans.l+C)
X +y z
(i) u=e*(x cosy—ysiny) (Ans. z¢* + C)
(iv) u=x*-6x%>+y* (Ans. z*+ Q)
(v) u=-sinx sin hy (Ans. —i cos z +iC)
8. Find an analytic function w = u + iv whose imaginary part is given by
(i) v=e€*(x cosy+ysiny) (Ans. ize* + C)
(if) v=-2sinx(e¥-e7) (Ans.log z+C)
_ sinxsinhy 1+secz
(i o= cos 2x + cos h2y (Ans. T
(iv) v=x?—y*+2xy-3x -2y [Ans. 2% - 2z + i(z% - 32)]
(v) v=x>=3x%+2x+1+y°-3x° [Ans. (i—1)z° + 2z + C]
9. Show that the following functions are harmonic and find their harmonic
conjugates.
(i) u=cosx coshy (Ans. —sin x sin iy + C)
(if) u=e"(cosy—siny) (Ans. Not harmonic)
(iii) u=e>(y cosy—xsiny) (Ans. ¢*(x cos y +y sin y) + C)
(iv) u=e‘cosy (Ans. ¢*siny + C)
(v) u=2xy+3xy*-2y° (Ans. Not harmonic)
v . .
10. Find flz)=u+1v,if u—v =M, given that f(ﬁ) _3°1 .
cos hy —cos x 2 2

{AnS- = cor( 2+ (%ﬂ

11. Find f(z) = u + iv if 2u — 3v = 3y* - 2xy — 3x* + 3y — x and f(0) = 0.
(Ans. f(z) = iz* ~ 2)

82 82
12. If f(z) = u + iv is a regular function of z, then show that (a—z'*‘a—zj'f(z)'p:
x Y
PRI @)P.

13 If u 2sin 2x

T 2y , find f(z) such that f(z) is analytic.
¢ire-2cosax (Ans. f(z)=cotz + ()

X
2 2

X"ty

incompressible fluid flow. Also find the corresponding stream function and

14. Show that ¢=x"—y*+ can represent the velocity potential in an

1 .
complex potential. Ans.y =2xy— xzfyz +C; f(2)= 22+ ;+ iC
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S.No

W —

[N

20

21
22

23

24

25
26
27
28
29

Questions
An example of single valued function of z is
An example of multiple valued function of z is
The distance between two points z and z, is
Acircle of radius 1 with centre at origin can be represented by
If f(2) is differentiable at z, then f(z) is atzg
A function is said to be at a point if its derivative exists not only at point but
also in some neighborhood of that point.
A function which is analytic everywhere in the finite plane is called
The necessary condition for f(z) to be analytic is
A real function of two variables x and y that possesses continuous second order partial
derivatives and that satisfies Laplace equation is called .
If uand v are harmonic functions such that u+iv is analytic then each is called the
of the other.
A transformation that preserves angles between every pair of curves through a point,

opt1
w =22
w=2zA2

|z-2|

|z]>1
discontinuous

entire function
analytic function

u_=v_yandv_,

analytic function

conjugate harmonic

bothin  magnitude and sense, is called at that point. Conformal
Atransformation under which angles between every pair of curves through a point are
preserved in magnitude, but altered in sense is said to be at that point. Conformal
A mapping w = f(z) is said to be conformal at z = z, if . f(z5) =0
The point at which the mapping w = f(z) is not conformal, that is, f'(z) = 0 is called

of the mapping. common
A point of a mapping w = f(2) are points that are mapped onto themselves,
are kept fixed under the mapping. common
The transformation w = a+z where a is a complex constant, a
The transformation where a is a complex constant represents a translation.  w =az
The transformation where a i a real constant represents magnification. w=atz
The transformation w = az where a is a real constant represents translation

In general linear transformation, w = az+b where a and b are complex constants
represents

The transformation w=(az+b)/(cz+d), where a, b, c, d are complex numbers is called a

A bilinear transformation is also called a

The value of i=
represents the interior of the circle excluding its circumference.
represents the interior of the circle including its circumference.
represents the exterior of the circle.

Cauchy-Riemann equations are necessary conditions for a function w = f(z) to be an

Cauchy-Riemann equations are

The real and imaginary parts of an analytic function (z) = u+iv satisfies the
equation in two dimensions.

An analytic function with a constant real part is

An analytic function with a constant modulus is

A fixed point is also called as

The fixed point of w=(5z+4)/(z+5) is

The critical point of z=(2z+1)/(z+2) is

Solutions of Laplace's equation are under conformal transformation
If f(2) is analytic, and f'(z)=0 everywhere, then f(z)is _____

An analytic function with a constant imaginary part is

If u+iv is analytic, then v-iu is

has every point as a point

/z has fixed points

w=z+b has fixed points

magnification
Linear transformation

linear transformation
SQRT(-1)

|2-20| > delta
|2-2o| > delta
|2-20| > delta

entire function

U =v_and v,

Cauchy-Riemann
avariable
avariable
invariant points
21

1,1

common
avariable
avariable
entire function
fixed

opt2
w=27(1/2)
w=2(1/2)
|z+20]
lz] <1
continuous

integral function
holomorphic function

u_=-v_yandv_.=

regular function
analytic
isogonal
isogonal

Flzo) = f(2)
fixed

fixed
magnification
w = az+b
w=1/z
magnification
rotation
bilinear transformation
inversion
SQRT(1)

|z =2 < delta

|z-2| <delta
|2-2| < delta

integral function
v_,andv_,

u,

Homogeneous
a constant

a constant
critical points
1,1

1,-1

fixed

a constant

a constant
integral function
critical

opt3
W=SQRT(z)
W=SQRT(z)
z

lz]=1
regular

analytic
regular function

u_=v_yandv_=u_,
holomorphic function
entire function
entire function
entire function

f'(z) #0

invariant

critical

rotation

w=atz

w = az+h

reflection

translation

fractional transformation

fractional transformation

|z-2,| 2 delta
|2-2,| = delta
|z-2,| 2 delta

analytic function
U =v_andv_=u_,

Laplace
an analytic function
an analytic function
common point
2,2

1,2

invariant

an analytic function
an analytic function
analytic

invariant

-1

opta
w=zA-1
w=zA-1
20

Izl =0
irregular

continuous
entire function

u_=-v_,andv_, =
harmonic function
not analytic
unconformal
unconformal

'(z0) # f(2)

critical

variant

reflection

w=1/z

w=az
inversion

magnification, rotation
and translation

translation
linear fractional
transformation

|z-2z,| <delta
|2-12,| < delta
|z-2z,| <delta

continuous function
andv_, =

Uy=-Vy

Euler

an entire function
an entire function
origin

0,1

0,1

critical

an entire function
an entire function
continuous
common

Answer

w =22
w=2(1/2)
|z-2|

Jz] =1
continuous

analytic
entire function

u_=v_yandv_,

harmonic function
conjugate harmonic
Conformal

isogonal

f(z0) 20

critical

fixed

translation

w=atz

w=az
magnification

magnification, rotation
and translation

bilinear transformation
linear fractional
transformation

1 SQRT(-1)
|2=2o| <delta
|z-12,| < delta
|2=2o| > delta

analytic function
U =v_yandv_,

Laplace
a constant

a constant
invariant points
2,2

1,-1

invariant

a constant

a constant
analytic

fixed
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Complex Integration

fChapter Outline

Infroduction

line Integral in @ Complex Plane

Line Infegral

Basic Properties of Line Integrals

Simply Connected Region and Multiply Connected Region
Evaluation of Complex Infegrals

Cauchy’s Infegral Theorem

Extension of Cauchy's Integral Theorem to Multiply Connected
Regions

Cauchy’s Infegral Formula

Cauchy’s Infegral Formula for the Derivation of an Analytic
Function

23.1 QO INTRODUCTION

Integration of functions of a complex variable plays a very important role in many
areas of science and engineering. The advantage of complex integration is that certain
complicated real integrals can be evaluated and properties of analytical functions can
be established. Using integration, we shall prove a very important result in the theory
of analytic functions:

If a function f(z) is analytic in a domain D then it possesses derivatives of all
orders in D, that is f'(z), f”(z) ... are all analytic functions in D.

Such aresult does not exist in the real-variable theory. Also, the complex-integration
approach can be used to evaluate many improper integrals of a real variable, which
cannot be evaluated using real integral calculus. The concept of definite integral for
functions of a real variable does not directly extend to the case of complex variables.
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23.4 Engineering Mathematics

b
In the case of a real variable, the path of integration in the definite integralJ. f(x)dx
a

is along a straight line. In complex integration, the path could be along any curve
fromz=atoz=0.

23.2 O LINE INTEGRAL IN COMPLEX PLANE

o Continuous Arc

The set of points (x, y) defined by x = ¢(t), y = y(t), with parameter t in the interval
(a, b), defines a continuous arc provided ¢ and y are continuous functions.

o Smooth Arc

If ¢ and y are differentiable, the arc is said to be smooth.

o Simple Curve

It is a curve having no self-intersections, i.e., no two distinct values of t correspond to
the same point (x, v).

o Closed Curve
It is one in which end points coincide, i.e., ¢(a) = ¢(b) and y(a) = y(b).

o Simple Closed Curve

It is a curve having no self-intersections and with coincident end points.

e Contour

It is a continuous chain of a finite number of smooth arcs.

o Closed Contour

It is a piecewise smooth closed curve without points of self-intersection.

23.3 O LINE INTEGRAL

Definite integral or complex line integral or simply line integral of a complex function
f(z) from z, to z, along a curve C is defined as

[ f(z)dz =] (u+iv)(dx +idy)
=] (udx —vdy) +i ] (vdx +udy)
Here, C is known as path of integration. If it is a closed curve, the line integral is

denoted by Cﬁ .
c
When the direction is in positive sense, it is indicated as [, or simply, |- while
negative direction is denoted by J.. Counter integral is an integral along a closed
contour.
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Complex Integration 23.5

23.4 0O BASIC PROPERTIES OF LINE INTEGRALS

B
(i) Linearity: [ (k, f(z)+k,8(2))dz =k, [ f(z)dz + k, | g(z)dz
b a C G
(ii) Sense reversal: L f(z)dz= —J‘b f(z)dz
(iii) Partitioning of path: fc f(z)dz=JC] f(z)dz+fCZ f(z)dz “
where the curve C consists of the curves C; and C,.
Fig. 23.1

> Note

Although real definite integrals are interpreted as area, no such interpretation is
possible for complex definite integrals.

23.5 O SIMPLY CONNECTED REGION AND MULTIPLY
CONNECTED REGION

A simply connected region R is a domain such that every simple closed path in R
contains only points of R.

o Example

Interior of a circle, rectangle, triangle, ellipse, etc.
A multiply connected region is one that is not simply connected.

o Example

Annulus region, region with holes.

@ © D

Simply Doubly Triply Simply connected region (or)
connected connected connected Multiply connected region
region region region converted into simply

connected region by cross-cuts.

Fig. 23.2

23.6 O EVALUATION OF A COMPLEX INTEGRAL

To evaluate the integral |- f(z)dz, we have to express it in terms of real variables.

Let flz)=u+ivwherez=x+iy, dz=dx + idy
Jc flz)dz = [(u + iv)dz
= Jc(u +iv)(dx + idy)

= | c(udx — vdy) + i (vdx + udy)
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23.6 Engineering Mathematics
23.7 O CAUCHY’S INTEGRAL THEOREM OR CAUCHY’S
FUNDAMENTAL THEOREM

If a function f(z) is analytic and its derivative f’(z) is continuous at all points inside and
on a simple closed curve C then | f(z)dz = 0.

o Proof
Let the region enclosed by a curve C be R and let

f(2)=u+iv,z=x+iy,dz=dx +idy
'[ f(z)dz=J. (u+iv)(dx+idy):'[ (udx—vdy)+ij. (vdx + udy)
o

_”[_% - a_qu xdy _”(—u - —] dxdy (by Green's theorem)

Replacing —g— by gu d?by > , we get
ou
o _ O g ”(———)d d
[ e “
—0+10—0

or J-f(z)dz=0

> Note

(i) Cauchy’s integral theorem is also known as Cauchy’s theorem.
(if) Cauchy’s theorem without the assumption that f* is continuous is known as
the Cauchy-Goursat theorem.
(iii) Simple connectedness is essential.

23.8 O EXTENSION OF CAUCHY’S INTEGRAL THEOREM TO MULTIPLY
CONNECTED REGIONS

If f(z) is analytic in the region R between two simple closed curves C; and C, then

) ¢ f(z)dz= I ¢, f(2)dz

e Proof G

By Cauchy’s integral theorem, we know that

I fiz)dz = 0 where the path of integration is along

AB and the curve C, in clockwise direction, and Fig. 23.3
BA and along C; in anticlockwise direction,

ie., [ g f(2)dz+] ¢, f(2)dz + Joq f(2)dz+] ¢, f(2)dz=0
or ICz f(z)dz + fcl f(z)dz=0(since | ,, f(z)dz=~,, f(z)dz)
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Complex Integration 23.7

Reversing the direction of the integral around C,, we get
e, f(2)dz=]c, f(z)dz
> Note

By introducing as many cross-cuts as the number of inner boundaries, we can
give the proof in a similar manner for the extension of Cauchy’s integral theorem.

23.9 0O CAUCHY’S INTEGRAL FORMULA

If f(z) is analytic within and on a closed curve C and if a
A (=,

is any point within C then f(a)= Sl
widcz— u

o Proof o, ¢

f(2)

z—a

Consider the function

, which is analytic at all

points within C except z =a.
With a point a as centre and radius 7, draw a small

f()

—a

Fig. 23.4

circle C; lying entirely within C. Now,
in the region between C and C;;

is analytic

Hence, by Cauchy’s integral theorem for a multiply connected region, we have

[ L2, J @, I f@)= f@+ f@)
cz—a G zZ—a zZ—a

f(z) f( )dz+f( )J (23.1)

G

For any point on C;

Now,

T i0
) fe) [, [ Sla ) S0

[as z—a=re'® and dz = ire'® d6)

2r .
:j [f(a+7e)— f(a)]ido=0 (where r tends to zero]
0
27 510 2
J‘ dz :J‘ ire ,dezj. id6 = i[0 ]2,“_27“
cz—a Jo  re 0

Putting the values of the integrals of RHS in (23.1), we have

_[ SE 42— 0+ fay2miy
cz—a

or L f@ .

27rz
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23.8 Engineering Mathematics

23.10 O CAUCHY’S INTEGRAL FORMULA FOR THE DERIVATIVE OF
AN ANALYTIC FUNCTION

If a function f{z) is analytic in a region R then its derivative at any point z =4 of R is
also analytic in R and is given by

27:1 C (z a)

where C is any closed curve in R surrounding the point z =a.

e Proof
By Cauchy’s integral formula,

J f2) T (23.2)

Differentiating (23.2) with respect to a, we get

F=5] f()aa[z a]
e[ SO

2miJc (z—a)?

27rz

w200 f(2)
£ = )

=22 L@

2! Jc (Z _ a)n+1

Similarly,

SOLVED EXAMPLES

1DEH NI Use Cauchy’s integral formula to

. 2 2
evaluate dez, where C is the
c (z-2)(z-3)

Y

circle Iz =
[AU June 2009, April 2011; KU Now. 2011]

Solution

1 11
(z-2)(z-3) (z-3) (z-2)

Fig. 23.5
given integral &

sin 7z° + cos wz2 sin 722 + cos z2
= I dz — J dz
c z-3 c z—2
[ SO o[ SO "
c(z-3) c(z-2)
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Complex Integration 23.9

f(z) = sin 7z* + cos 7z is analytic on and inside C.
The points z=2 and z = 3 lie inside C.
.. by Cauchy’s integral formula, from (1), we get,

J‘ sin 71z + cos 7z*
c (z=-2)(z-3)
= 2mi(sin 71z” + cos 7rzz)Z:3 —27i(sin 7wz% + cos 7r22)Z:2

=2mi(sin 97 + cos 97) — 2wi(sin 47 + cos 47)

=27 —2mi=-4mi Ans.
zdz . . 1 .
Example 2 Evaluate '[ T — where C is the circle |z—-2l=—, using
c(z—-1)(z-2) 2
Cauchy’s integral formula. [AU May 2012]

1 1
Solution [z-2|= 5 is the circle with centre at z =2 and radius equal to 5

The point z =2 lies inside the circle |z - 2| =%

. . . AY
The given integral can be rewritten as

Jc (z-2)*

_[_f®
dz = -[c G2y dz (say)

zZ

fo=—

point z =2 lies inside C.
.. by Cauchy’s integral formula,

is analytic on and inside C and the

z 2mi
——dz=——f'(2
.[c(z—l)(z—z)2 1! f
=27i af =z
dz\ z-1
z=2
-1 .
=2ri 3 =-27i Ans.
(z=-1)
z=2
z+4 . . . .
Example 3 EESAEIIEL '[ —————4dz, where C is the circle Iz + 1 + il = 2 using
cz°+2z+5
Cauchy’s integral formula. [AU Novw. 2011] (-1,20) pY
[
Solution |z + 1 + il =2 is the circle whose centre is
-1 —iand radius is 2 units. 0 R
X
Consider —— 4 ztd )

Y

2412245 (z+1+20)(z+1-2)

- the integral is not analytic at z = -1 — 2i and -1 + 2i.
The point z =-1 - 2i lies inside C. ]
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23.10 Engineering Mathematics

We rewrite the given integral as

[ z+4 ]
zel-2i) £2)
Jc Z+1+2i dz_jcz—(—l—zi)dz(saw

f(z) is analytic on and inside C and the point (-1, -2i) lies inside C.
.. by Cauchy’s integral formula,

z+4
—————dz=2mi f(—-i—2i
-[cz2+2z+5 U )
o -1 —‘21+4 ‘
—1-2i+1-2i

= %(3 —2i) Ans.

EXERCISE

1. The value of the integral

3 where C is the circle |1z — 2| =1, traversed

cz -2z
in the counter-clockwise sense is
() -mi (i) 27 (iti) i (iv) 0
2 p—
2. The value of the integral f z—zfldz, where C is the circle |zl =% is
cC zZ-
@) 0 (i) 7 (iti) i (iv) —27i

3. What is the value of [o e dzif c: 1z] =1?
4. State Cauchy’s integral formula.

5. Evaluate'[ iz where C is the square with vertices (0, 0), (1, 0), (1, 1) and (0, 1).

czZ—

2

6. Evaluate J. mdz where C: |zl =2.

c (z-93)

dz . . 1

7. Evaluate J - where C is the circle |z -1l=—.

cz"-5z+6 2

5

State Cauchy’s formula for the first derivative of an analytic function.
9. State Cauchy’s fundamental theorem.

10. Evaluate I z where C: Iz| =1.

cz—

11. Evaluate J. 2 dzwhere C: |zl =2.
c(z+3)

12. Evaluate J 1
c2z—

dzwhere C: 1z| =1.
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Complex Integration 23.11

2
13. Evaluate L 25

- dz where C is |z| =4 using Cauchy’s integral formula.
midc z-3

14. Evaluate J Lz where C: |zl =1.
c(z-3)

15. State the Cauchy-Goursat theorem.

1. Evaluate J Zz—_ldz where Cis lz—il =2. (Ans. —Zm)
c(z+1)*(z-2) 9
4
2. Evaluate I —3zdz using Cauchy’s integral formula. where C is the
cz(z=1)(z-2)
circle Izl =% . (Ans. 27i)
2
3. Find the value of | 2224z, (Ans. 37)
c 2% -1

4. Evaluate the following;:

J (;j—z4)z,whereCis lz—il =2
c(z"+

3

1

(if) J Z2+—Z+dz where C is the ellipse 4x* + 9> =1
Cz"=7z+6

3
z7+1 b4 2w

iii dz where Cis IzI =1. I:Ans. i)—, (ii) 0, (iii ——}

i) [ ()7 (i) 0, (i)~

. 2 2
5. Evaluate I SIMAZ TCOSTZ 4, where Cis Iz] = 3. (Ans. —4i)
c (z+1)(z+2)

2
6. If f(a)zj wdz where C is |z| =2, find the values of f(1), f(i), f'(-1)
c z-—a

and f”(-i). (Ans. 207; 27(i — 1); —147i; 167i)
7. Evaluate | 1z1? dz around the square with vertices at (0, 0), (1, 0), (1, 1), (0, 1).
(Ans. -1 +1)
2241
8. Evaluate J- 3 ldz where (i) C: lz—=11=1,(1i)C: lz+1l=1,and (iii) C: |z—il
cz"—
- 1. [Ans. (i) 27 (ii) 27 (iii) 0]
in2
9. Evaluate I L‘szz where C is the rectangle with vertices at 3 + i,
c(z+3)(z+1) 4 eos2 4 sin2
24, -2-i,3-i [Ans.m’—( cos 2+ = )]
4 a2
10. Evaluate j #dz where C: 1z| =2. (Ans. —187i)
c (z+1)
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Questions

A curve is called a if it does not intersect
itself

A curve is called if it is not a simple closed
curve

If f(z) is analytic in a simply connected domain D and C is
any simple closed path then [(from ¢)f{z)dz =

If f(z) is analytic inside on a simple closed curve C and a

be any point inside Cthen [(from ¢)f(z)dz /(z-a)=

The value of [(from ¢) [(3z"2+7z+1)/(z+1)] dz where C is

[zZl=1/2 is

The value of [(from ¢) (cos nz/z-1) dz if C is |z] =2

The value of [(from ¢) (1/z-1) dz if C is [z =2

The value of [(from c) (1/2-3) dz if C is 2] =1

The value of [(from ¢) (1/(z-3)"3) dz if C is |z =2

The Taylor's series of f(z) about the point z=0 is called
series

The value of [(from c) (1/z+4) dz if C is |z =3

In Laurent's series of f(z) about z=a, the terms containing
the positive powers is called the part

In Laurent's series of f(z) about z=a, the terms containing
the negative powers is called the part

The poles of the function f(z) = z/((z-1)(z-2)) are at z =

The poles of cotz are

The poles of the function f(z) = cos z/((z+3)(z-4)) are at z

The isolated singular point of f(z) = z/((z-4)(z-5))

The isolated singular point of f(z) = z/((z(z-3))

A simple pole is a pole of order

The order of the pole z= 2 for f(z) = z/((z+1)(z-2)"2)
Residue of (cosz/z) atz=01is

The residue at z= 0 of ((1 + e"z) / (zcosz+sinz)) is

The residue of f(z) =cotzatz=0is

The singularity of f(z) =z / ((z-3)"3) is

A point z=a is said to be a point of f(z), if f(z) is
not analytic at z=a

A point z=a is said to be a point of f(z), if f(z) is
analytic except at z=a

In Laurent's series of f(z) about z=a, the terms containing
the negative powers is called the  point

In Laurent's series of f(z) about z=a, the terms containing
the positive powers is called the point

In contour integration, cos 0=
In contour integration, sin 6=

optl

Simple closed
curve

connected region

2 f(a)

2mi

2mi
2mi
3mi
3mi

Maclaurin's

3mi

regular

regular

1,2

2nmt

23,4

1,2

w

S O OO = ==

Singular

Singular

Singular

Singular

(2"2+1)/2z
(27"2+1)/2z

opt2

multiple curve

multiple curve

2mi

2mi

-6mi

2mi
3mi
i

ot
Laurent's

i

principal

principal

2,3

nmw

isolated singular

isolated singular

isolated singular

isolated singular

(z"2+1)/2iz
(z"2+1)/2iz

opt3

simply connected
region

simply connected
region

i

i
i
mi/4
/S

Geometric

mi/4

real

real

1,-1

3nn

1,-1

NN DN W WO

removable
removable

removable
singular
removable
singular
(2"2-1)/2z
(2"2-1)/2z

optd

multiple
connected region

multiple
connected region

i

i

mi/2

mi/3
mi/4
0
0

Arithmetic
0

imaginary

imaginary

34

4nm

essential singular

essential singular

essential singular
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