B.E Ci	vil Engineering			2019-2020
				Semester-II
19BEC		Mathematics –II (Differential Equation	4H-4C	
Instruc	tion Hours/week: L:3 T:1 P:	0 Marks: Internal:40 Ex	ternal:60 Total:100	
			End Seme	ster Exam:3 Hours
Course	Objectives:			
• • •	Solvable for p, x and y, Clai Solving differential equation kind and their properties. To introduce the basic conce To acquaint the student with To develop an understanding with confidence, to specify s application areas such as flui	ial equations including separable, hom raut's form. a of certain type and Power series solut pts of PDE for solving standard partial Fourier series techniques in solving he g of the standard techniques of comple ome difficult integration that appear in id dynamics and flow of the electric cu	tions of Legendre polynomials, l l differential equations eat flow problems used in variou x variable theory so as to enable applications can be solved by c	s situations the student to apply them
	Outcomes:			2.00-
The stu	udents will learn:			
1. 2.	Solve first order differential Apply various techniques in Bessel's and Legendre's diff	equations utilizing the standard technic solving differential equations and to ur erential equations.	jues for separable, exact, linear, inderstand the method of finding	Bernoulli cases. the series solution of

- 3. Understand how to solve the given standard partial differential equations.
- 4. Appreciate the physical significance of Fourier series techniques in solving one and two dimensional heat flow problems and one dimensional wave equations.
- To Evaluate complex integrals using the Cauchy integral formula and the residue Theorem and to appreciate how complex methods can be used to prove some important theoretical results.
- To understand the fundamentals and basic concepts in vector calculus, ODE, complex functions and problems related to engineering applications by using these techniques.

UNIT I - First order ordinary differential equations

Exact, linear and Bernoulli's equations, Euler's equations, Equations not of first degree: equations solvable for p, equations solvable for x, equations solvable for x and Clairaut's type.

UNIT II - Ordinary differential equations of higher orders

Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties.

UNIT III - Partial Differential Equations

First order partial differential equations, solutions of first order linear and non-linear PDEs- Solution to homogenous and non-homogenous linear partial differential equations second and higher order by complimentary function and particular integral method.

UNIT IV - Partial Differential Equations

Flows, vibrations and diffusions, second-order linear equations and their classification, Initial and boundary conditions (with an informal description of well posed problems), D'Alemberts solution of wave equation. Boundary-value problems: Solution of boundary-value problems for various linear PDEs in various geometries.

UNIT V - Complex Integration

Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy Integral formula (without proof), zeros of analytic functions, singularities, Taylor's series, Laurent's series, Residues, Cauchy Residue theorem (without proof), Evaluation of definite integral involving sine and cosine.

SUGGESTED READINGS

- 1. G.B. Thomas and R.L. Finney, (2002), Calculus and Analytic geometry, 9th Edition, Pearson.
- 2. Erwin kreyszig, (2006), Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons.
- 3. Hemamalini. P.T, (2014), Engineering Mathematics, McGraw Hill Education (India) Private Limited, New Delhi.

Karpagam Academy of Higher Education (Deemed to be University), Coimbatore - 641 021

119

- W. E. Boyce and R. C. DiPrima, (2009), Elementary Differential Equations and Boundary Value Problems, 9th Edition, Wiley India.
- 5. S. L. Ross, (1984), Differential Equations, 3rd Ed.,, Wiley India.

P. Uw Staff inche

- 6. Veerarajan T, (2008), Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.
- 7. E. A. Coddington, (1995), An Introduction to Ordinary Differential Equations, Prentice Hall India.
- 8. E. L. Ince, (1958), Ordinary Differential Equations, Dover Publications.
- 9. G.F. Simmons and S.G. Krantz, (2007), Differential Equations, Tata McGraw Hill.
- 10. S. J. Farlow, (1993), Partial Differential Equations for Scientists and Engineers, Dover Publications
- R. Haberman, (1998), Elementary Applied Partial Differential equations with Fourier Series and Boundary Value, Problem4th Ed., Prentice Hall.
- 12. Ian Sneddon,(1964), Elements of Partial Differential Equations, McGraw Hill
- 13. J. W. Brown and R. V. Churchill, (2004), Complex Variables and Applications, 7th Ed., McGraw Hill.

Karpagam Academy of Higher Education (Deemed to be University), Coimbatore - 641 021

120

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)

COIMBATORE-641 021 DEPARTMENT OF SCIENCE AND HUMANITIES FACULTY OF ENGINEERING I B.E CIVIL ENGINEERING <u>LECTURE PLAN</u> : MATHEMATICS – II

Subject

Code

(Differential Equations)

: 19BECE201

S.NO	Topics covered	No. of hours
	UNIT I First order ordinary differential equations	
1	Introduction of first order differential equations	1
2	Exact, linear and Bernoulli's equations	1
3	Exact, linear and Bernoulli's equations	1
4	Euler's equations	
5	Tutorial 1 - Problems based on Exact, linear and Bernoulli's equations	1
6	Equations not of first degree: Equations solvable for p	1
7	Equations not of first degree:Equations solvable for p	1
8	Equations solvable for y	1
9	Equations solvable for y	1
10	Equations solvable for x	1
11	Equations solvable for x	1
12	Clairaut's type	1
13	Clairaut's type	1
14	Tutorial 2 - Problems based on Clairaut's type, Equations solving for x	1
	and y, p	
	TOTAL	14
	UNIT II Ordinary differential equations of higher orders	
15	Introduction of ordinary differential equations	1
16	Second order linear differential equations with variable coefficients	1
17	Second order linear differential equations with variable coefficients	1
18	Second order linear differential equations with variable coefficients	1
19	Second order linear differential equations with variable coefficients	1
20	Second order linear differential equations with variable coefficients	
21	Tutorial 3- Problems based on second order differential equations with	1
	variable coefficients	
22	Method of variation of parameters	1
23	Cauchy-Euler equation	1
24	Power series solutions; Legendre polynomials	1
25	Power series solutions; Legendre polynomials	1
26	Bessel functions of the first kind and their properties	1
27	Bessel functions of the first kind and their properties	1
28	Tutorial 4 - Problems based on Bessel functions and Legendre	1
	polynomials TOTAL	14
	UNIT III Partial Differential Equations	
29	Introduction- of partial differential equations	1
30	First order partial differential equations	1
31	First order partial differential equations	1

32	solutions of first order linear and non-linear PDEs	1
33	solutions of first order linear and non-linear PDEs	
34	solutions of first order linear and non-linear PDEs	
35	Tutorial 5 - Problems based on solutions of first order linear and non-	
55	linear PDEs	1
36	Solution to homogenous and non-homogenous linear partial differential	1
50	equations second and higher order by complimentary function and	1
	particular integral method	
37	Solution of homogenous linear partial differential equations	1
38	Solution of homogenous linear partial differential equations	1
39	non-homogenous linear partial differential equations	1
40		1
40	non-homogenous linear partial differential equations	
41	Solution of non-homogenous linear partial differential equations second and higher order	1
42		1
42	Tutorial 6 - Problems based on homogenous and non-homogenous	1
	linear partial differential equations TOTAL	14
		14
12	UNIT IV: Partial Differential Equations	1
43	Introduction – Flows, vibrations and diffusions	1
44	second-order linear equations and their classification	1
45	second-order linear equations and their classification	1
46	Initial and boundary conditions (with an informal description of well	1
47	posed problems),	
47	Initial and boundary conditions (with an informal description of well	1
10	posed problems),	1
48	Tutorial 7- Initial and boundary conditions (with an informal	1
10	description of well posed problems)	4
49	D'Alemberts solution of wave equation	1
50	D'Alemberts solution of wave equation	1
51	Boundary-value problems	1
52	Boundary-value problems	1
53	Solution of boundary-value problems for various linear PDEs in various	1
	geometries.	
54	Solution of boundary-value problems for various linear PDEs in various	1
	geometries.	
55	Solution of boundary-value problems for various linear PDEs in various	1
	geometries.	
56	Tutorial 8 - Solution of boundary-value problems for various linear	1
	PDEs in various geometries.	
	TOTAL	14
	UNIT V Complex Integration	
57	Introduction - Complex Integration, Line integral	1
58	Problems solving using Cauchy's integral theorem	1
59	Problems solving using Cauchy's integral formula	1
60	Taylor's Series Problems	<u>1</u> 1
61	Taylor's Series Problems	
62	Laurent series problems	1
63	Laurent series problems	1
64	Tutorial 9 - Taylor's and Laurent's series problems	1
65	Theory of Residues	1
66	Cauchy's residue theorem	1
67	Applications of Residue theorem to evaluate real integrals.	1

68	Applications of Residue theorem to evaluate real integrals.	
69	Use of circular contour and semicircular contour with no pole on real	
	axis.	
70	Tutorial 10 - Cauchy's residue theorem, Applications	1
	TOTAL	14
GRAND TOTAL		70

Staff- Incharge

HoD

Mathematics - IT was and the [Differential equations] UNIT! [First order Ordinary differential Equations] be some fourtion a large Differential equation: * A differential equation is an equation which involves differential co-efficients Ordinory differential equations: (O.D.E). * An ordinory differential equation is that in which all the differential co- efficients has a but rop single independent variable 116 - 116 de truce ed at $\frac{dy}{dy} = 2\chi.$ Necessery conductor. differential equations: (P.D.E) Portial mutor ub - ybu + xh 14 tors trans * A Portial differential H Kno K de national is that in which there are two or more $\frac{\mathsf{H}\mathsf{b}}{\mathsf{x}\mathsf{b}} = \frac{\mathsf{H}\mathsf{b}}{\mathsf{p}\mathsf{b}} \cdots$ independent voriable. Mentiona rot notitionas $\frac{du}{dx} + \frac{du}{dy} = \frac{du}{dy}$ aditional tainifus in 9 7 when + xb1 with the 46

Exact differential equation: 11

* A differential equation of the form H(I)dx + N(I)dy = 0 is sold to be exact if its left hand number is the exact differential. of some function u(1,1y). du = H dx + N dy = 0: The solution is u(x,y) = cistration invitation differentiel Theorem : (10.0) without dather worth * The Neccessory and Sufficient condition for that differential equation Hdx + Ndy = 0 dollars in to be exact is $\frac{dM}{dy} = \frac{dN}{dx}$ to the exact is

Necessary condition:

* The equation Hda + Ndy = 0 will be exact if Mdx + Ndy = du. where 'u' is the some function of X and Y.

* : $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ which is the neuroscory aldobery instangebring

condition for exactness.

exact

Sufficient condition:

* If $\frac{\partial H}{\partial 4} = \frac{\partial N}{\partial x}$ then M dx + N dy = 015

Methods of solution: 1 4 1 + XI + XI + 1 3 4 * The equation Hdx + Ndy = 0 becomes d[u+ Jf(y) dy] = 0, Integrating]d[u+]f(y) dy]=0, : The solution u + j-f w) dy = 0. u=] Mdx y constant . fly) = terms of N not containing X. . The solution of Mdx+Ndy = 0 is] Hdx +] (turnof N) dy= Provided dy dy di di licou + (-+++) - H $e^{+1} = \frac{16}{2} \times \frac{1}{2} + \frac{1}$ huis -Example: 1 Solve $(y^2 e^{xy^2} + 4x^3) dx^5 + (axy e^{xy^2} - 3y^2) dy = 0$. N dy
N dy
N dy
N dy H dx brid noitaupa art $M = y^{2} e^{2y^{2}} + 4x^{2} ; N = a^{2}y e^{xy^{2}} - 3y^{2}$ Hore, $\frac{\partial M}{\partial x} = ay e^{xy^2} + y^2 \cdot e^{xy^2} \cdot axy = \frac{\partial N}{\partial x} = ay \left(\frac{e^{xy^2}}{e^{xy^2}} + x \cdot e^{xy^2} \cdot y^2 \right)$ = aye xy2 + 2xy3- exy2 = ay exy2 + 2xy3 exy2 1 54 42 4 + (Ho + 1 + 56) + dH = dN dy = zdx + [r gas + z] [] Thus the equation is exact and its solution is JMdx + J (terms of N not) dy = c containing x (y constant)

Scanned by CamScanner

$$\begin{aligned} \int (y^2 x^{4y^2} + y x^3) dx + \int (-3y^2) dy = c \\ \int y^2 x^{4y^2} dx + \int y^{4x^3} dx - \int 3y^2 dy = c \\ y^7 \frac{x^{4y^2}}{y^2} + \frac{y^4}{4t} \frac{x^4}{4t} - \frac{x^4y^3}{x} = c \\ \frac{x^{4y^2} + x^4 - y^3 = c}{y^2} \frac{x^{4y^2} + x^4 - y^3 = c}{y^4} \frac{x^4}{y^4} \frac{x^4}{y^4} \frac{x^4}{y^3} \frac{x^4}{y^3} \frac{x^4}{y^4} \frac{x^4}{y^$$

.

i

Scanned by CamScanner

solve
$$(1+2xy\cos x^2 - \partial xy) dx + (\sin x^2 - x^2) dy = 0$$
.
Hax
H = 1+ $\partial xy\cos x^2 - \partial xy$; N = $\sin x^2 - x^2$
 $\frac{\partial M}{\partial y} = \partial x\cos x^2 - \partial x$
 $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$; N = $\sin x^2 - \partial x$.
 $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$; N = $\sin x^2 - \partial x$.
 $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$; N = $\sin x^2 - \partial x$.
 $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$; N = $\sin x^2 - 2x$.
 $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$; N = $\sin x^2 - 2x$.
 $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$; N = $\sin x^2 - 2x$.
 $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$; N = $\sin x^2 - 2x$.
 $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$; N = $\sin x^2 - 2x$.
 $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$; N = $\sin x^2 - 2x$.
 $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$; N = $\sin x^2 - 2x$.
 $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$; N = $\sin x^2 - 2x$.
 $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$; N = $\sin x^2 - 2x$.
 $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial x}$; N = $\sin x^2 - 2x$.
 $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial x}$; N = $\sin x^2 - 2x$.
 $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial x}$; N = $\sin x^2 - 2x$.
 $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial x}$; N = $\sin x^2 + 2\sin x^2$; $\frac{\partial N}{\partial x} = \frac{\partial N}{\partial x}$; N = $\sin x + 2\cos y + x$.
 $\frac{(\sin x + x)\cos y + x}{\partial x} dx + (\sin x^2 + x)\cos y + x) dx = 0$.
H = x = $\sin x + \sin y + y$
 $M = y \cos x + \sin y + y$
 $M = y \cos x + \sin y + 1$
 $\frac{\partial N}{\partial x} = \cos x + \cos y + 1$

Scanned by CamScanner

1

$$\begin{aligned} solve & (x+1) \frac{dy}{dx} - y = e^{3x} (x+1)^{2}, & \text{if } e^{-x} \\ \text{the show } \\ subset \\$$

Scanned by CamScanner

Solve
$$\left(\frac{e^{-2I\overline{X}}}{J\overline{X}} - \frac{y}{J\overline{X}}\right) = \frac{dx}{dy} = 1$$
 which is trainingly is the equation

$$\frac{e^{-2I\overline{X}}}{J\overline{X}} - \frac{y}{J\overline{X}} = \frac{dy}{dx}$$
which is trainingly is the equation

$$\frac{dy}{dx} + \frac{y}{J\overline{X}} = \frac{e^{-2J\overline{X}}}{J\overline{X}}$$

$$P = \frac{1}{J\overline{X}} ; 0 = \frac{e^{-2J\overline{X}}}{J\overline{X}}$$

$$P = \frac{1}{J\overline{X}} ; 0 = \frac{e^{-2J\overline{X}}}{J\overline{X}}$$

$$I \cdot F = e^{\frac{1}{2}Pdx} = e^{\frac{1}{2}J\overline{X}} + e^{-\frac{1}{2}J\overline{X}}$$

$$y_{x} \int Pdx = \int 0 e^{\frac{1}{2}J\overline{X}} + e^{-\frac{1}{2}J\overline{X}}$$

$$= \int \frac{e^{-2I\overline{X}}}{J\overline{X}} + e^{\frac{1}{2}J\overline{X}} + e^{-\frac{1}{2}J\overline{X}}$$

$$= \int \frac{e^{-2I\overline{X}}}{J\overline{X}} + e^{-\frac{1}{2}J\overline{X}} + e^{-\frac{1}{2}J\overline{X}}$$

$$= \int \frac{e^{-2I\overline{X}}}{J\overline{X}} + e^{\frac{1}{2}J\overline{X}} + e^{-\frac{1}{2}J\overline{X}}$$

$$= \int \frac{dx}{J\overline{X}} + e^{-\frac{1}{2}J\overline{X}} + e^{-\frac{1}{2}J\overline{X}} + e^{-\frac{1}{2}J\overline{X}}$$

$$= \int \frac{dx}{J\overline{X}} + e^{-\frac{1}{2}J\overline{X}} + e^{-\frac{1}{2}J\overline{X}} + e^{-\frac{1}{2}J\overline{X}}$$

$$= \int \frac{dx}{J\overline{X}} + e^{-\frac{1}{2}J\overline{X}} + e^{-\frac{1}{2}J\overline{X}} + e^{-\frac{1}{2}J\overline{X}}$$

$$= \int \frac{dx}{J\overline{X}} + e^{-\frac{1}{2}J\overline{X}} + e^{-\frac{1}{2}J\overline{X}} + e^{-\frac{1}{2}J\overline{X}} + e^{-\frac{1}{2}J\overline{X}}$$

$$= \int \frac{dx}{J\overline{X}} + e^{-\frac{1}{2}J\overline{X}} + e^{-\frac{1}{2}J\overline{X}$$

Scanned by CamScanner

Solva (y log y) dx + (x - log y) dy = 0
solva (y log y) dx = -(x - log y) dy

$$\frac{dx}{dy} = \frac{\log y - x}{y \log y} = \frac{1}{y} \cdot \frac{(\log y - x)}{\log y}$$

$$= \frac{1}{y} \left[1 - \frac{x}{\log y} \right]$$

$$\frac{dx}{dy} + \frac{x}{y \log y} = \frac{1}{y}$$

$$\frac{dx}{dy} + px = 0$$

$$\frac{dx}{dy$$

Solve:
$$(1+y^2) dx = (\tan^{-1}y - x) dy$$
.
Soln:
 $(1+y^2) \frac{dx}{dy} = (\tan^{-1}y - x) = \tan^{-1}y = \frac{1}{x}$
 $\frac{dx}{dy} = \frac{\tan^{-1}y - x}{1+y^2} = \frac{\tan^{-1}y}{1+y^2} = \frac{x}{1+y^2}$
 $\frac{dx}{dy} + \frac{x}{1+y^2} = \frac{\tan^{-1}y}{1+y^2}$
 $\frac{dx}{dy} + px = 0$
 $p = \frac{1}{1+y^2}$; $0 = \tan^{-1}y$
 $x = \frac{1}{1+y^2}$; $0 = \tan^{-1}y$
 $x = \frac{1}{1+y^2}$; $0 = \tan^{-1}y$
 $x = \frac{1}{1+y^2}$, $\frac{1}{1+y^2}$, $\frac{1}{1+y^2}$
 $x = \frac{1}{1+y^2}$, $\frac{1}{1+y^2}$, $\frac{1}{1+y^2}$
 $x = \frac{1}{1+y^2}$, $\frac{1}{1+y^2}$, $\frac{1}{1+y^2}$, $\frac{1}{1+y^2}$
 $x = \frac{1}{1+y^2}$, $\frac{1}{1+y^2}$, $\frac{1}{1+y^2}$, $\frac{1}{1+y^2}$
 $x = \frac{1}{1+y^2}$, $\frac{1}{1+y^2}$

Bornoulli's Equation: $\frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}$ $\frac{dy}{dx} + Py = Qy^n \rightarrow 0$ To Solve O (+) both sides by yn $y^{-n} \frac{dy}{dx} + Py^{1-n} = Q_x - \frac{xb}{rb}$ which is half is his of Put y' = z $(1-n) y^{r-n-1} \frac{dy}{dx} = \frac{dz}{dx}$ $\frac{1}{1-n} \frac{dz}{dz} + Pz = Q$ $\frac{dz}{dz} + P(1-n) z = Q(1-n)$ which is heibnity's linear in Z & can be solved early. - gai - x == $x \frac{dy}{dx} + y = x^3 y^6$. This $x \frac{bq}{2} \cdot 2(= \frac{bq}{2}) \geq 5$ Solve 2 2 =]-51' . 1 - 41+6 Soln: $\frac{dy}{dx} + \frac{y}{x} = x^2 y^{6} + x b^{2} x (z - x)^{2} z$ = by

 $Put z = y^{-5}$

$$\frac{dz}{dx} = -5y^{-b} \frac{dy}{dx} = \frac{1}{3y^{b}} \frac{dy}{dx} = \frac{1}{-5} \frac{dz}{dx}$$

sub $\frac{dy}{dx}$ in O $\frac{dy}{dx} = \frac{1}{2} \int O \frac{dy}{dx} = \frac{1}{2} \int O \frac{dy}$

$$-\frac{1}{5} \frac{dz}{dx} + \frac{z}{x} = x^{2}$$

$$\frac{1}{5} \frac{dz}{dx} + \frac{z}{x} = x^{2}/\frac{1}{5}$$

$$\frac{1}{5} \frac{dz}{dx} + \frac{z/x}{-1/5} = x^{2}/\frac{1}{5} \frac{x^{2}}{-1/5}$$

$$\frac{dz}{dx} - \frac{5}{x} = -5x^{2}$$

$$\frac{dz}{dx} + pz = 0$$

$$p = -5/x ; \quad 0 = -5x^{2}.$$

$$T \cdot F = x^{1} \frac{pdx}{dx} = x^{1} - \frac{1}{5} \frac{dx}{dx} = -5 \frac{1}{5} \frac{dx}{dx}$$

$$= x^{1} \frac{pdx}{dx} = x^{2} - \frac{1}{5} \frac{dx}{dx} = -\frac{5}{5} \frac{1}{5} \frac{dx}{dx}$$

$$z x^{-5} = \int -5x^{2} \cdot x^{-5} dx + C$$

$$z x^{-5} = -5 \int x^{-3} dx + C$$

$$z x^{-5} = -5 \int x^{-3} dx + C$$

$$y^{-5} x^{-5} = \frac{5}{2} x^{-2} + C$$

$$\frac{1}{5} + \frac{1}{5} - \frac{5}{5} \frac{x^{-4}}{x^{-5}y^{-5}}$$

$$\frac{1}{5} + \frac{(\frac{5}{4} + Cx^{2})}{x^{2}y^{5}} \frac{x^{3}y^{5}}{y^{5}}$$

ĩ

Ś,

the state of the

Solve
$$xy (1+xy^2) \frac{dy}{dx} = 1$$

solve $xy (1+xy^2) \frac{dy}{dx} = \frac{dx}{dy}$
 $xy (1+xy^2) = \frac{dx}{dy}$
 $\frac{dy}{dy} - xy = x^2y^3$.
 $\div by x^2$
 $x^{-2} \frac{dx}{dy} - \frac{xy}{x^2} = \frac{x^2y^3}{x^2}$
 $\frac{x^{-2} \frac{dx}{dy} - \frac{xy}{x^2} = \frac{x^2y^3}{x^2}$
 $\frac{x^{-2} \frac{dx}{dy} - yx^{-1} = y^3 \rightarrow 0$
Put $x^{-1} = z$
 $-1x^{-1-1} \frac{dx}{dy} = \frac{dz}{dy}$
 $-x^{-2} \frac{dx}{dy} = \frac{dz}{dy}$
 $-x^{-2} \frac{dx}{dy} = \frac{dz}{dy}$
 $(1+x)^{-1} = \frac{dx}{dy}$
 $(1+x)^{-1} = \frac{dx}{dy} = \frac{dz}{dy}$
 $(1+x)^{-1} = \frac{dx}{dy} = \frac{dz}{dy}$
 $(1+x)^{-1} = \frac{dx}{dy} = \frac{dz}{dy}$
 $(1+x)^{-1} = \frac{dx}{dy}$
 $(1+x)^{-1} = \frac{dx}{dy}$
 $(1+x)^{-1} = \frac{dx}{dy}$
 $(1+x)^{-1}$

The solution is z (I;F) = je (I.F) dy + c ¥ 4 ` , ...

rß

Scanned by CamScanner

B

$$z e^{y^{3}/2} = \int (-y^{3}) e^{y^{2}/2} dy + c$$

$$= -\int y^{2} e^{y^{3}/2} y dy + c$$

$$= -\int y^{2} e^{y^{3}/2} y dy + c$$

$$= -\int 2 d e^{t} dt + c$$

$$= -2 \int 4 e^{t} dt + c$$

$$= -2 \int 4$$

which is Leibnithy's linear equation in Z
Put
$$P = 2x$$
; $R = x^3$
 $T \cdot F = x^{-1} = x^{-1} = x^{-1} = x^{-2}$
The solution is
 $Z(T \cdot F) = \int R(T \cdot F) dx + C$
 $z \cdot x^2 = \int x^3 \cdot x^2 dx + C$
 $z \cdot x^2 = \int x^2 \cdot x \cdot x^{-1} dx + C$
 $= \int R + x^{+} dt + C$
 $= \int R + x^{+} dt + C$
 $= \int R + x^{+} dt + C$
 $= \frac{1}{2} [t \cdot x^{+} -]x^{+}] + C$
 $= \frac{1}{2} [t \cdot x^{+} -]x^{+}] + C$
 $= \frac{1}{2} [t \cdot x^{+} -]x^{+}] + C$
 $= \frac{1}{2} [t \cdot x^{+} -]x^{-1}] + C$
 $= \frac{1}{2} [t^{-1}] x^{-1} + C$
 $=$

Scanned by CamScanner

 $I_{f} \frac{dy}{dx} = P$

 $p^{n}+f_{1}(x_{1y})p^{n-1}+f_{2}(x_{1y})p^{n-2}+\cdots+f_{n-1}(x_{1y})p+f_{n}(x_{1y})=0$

Sime equation () is the first order its general solution will contain only one orbitary constant To solve () is to be identified as on equation any one of the types 105 2 - y -* Solvable for P * solvable for y * solvable for x * solvable clairant's form. * A differential equation of the first order but of nth degree is of the form Pn+ fi(2,y) Pn-1+ f2 (2,y) Pn-2 + fn-1 (2,y) P+ fn (xiy) = 0 L.H.S of O can be repolved in a linear factors Mahor Tarit de Legitoup then D becomes (P-Fi)(P-F2)....(P-Fn) = 0 $P = F_{1}, P = F_{2}, P = F_{n}, has signal the part of the part$ =(+++) a $\phi_1(a_1, c) = 0; \phi_2 = (x_1, y_1c) = 0; \phi_3 = (a_1, y_1c) = 0; \phi_1(a_1, y_1$ The general solution is obtained.

$$p^{2} + p\left(\frac{y}{x} - \frac{x}{y}\right)^{-1} = 0$$

$$\left(P + \frac{y}{x}\right) \left(P - \frac{x}{y}\right) = 0$$

$$\left(P + \frac{y}{x}\right) \left(P - \frac{x}{y}\right) = 0$$

$$P + \frac{y}{x} = 0 \quad (ov) \quad P - \frac{x}{y} = 0$$

$$P = -\frac{y}{x} \quad (ov) \quad P = \frac{x}{y}$$

$$\frac{dy}{dx} = -\frac{y}{x} \quad (ov) \quad \frac{dy}{dx} = \frac{x}{y}$$

$$x \, dy = -y \, dx \quad (ov) \quad y \, dy = x \, dx$$

$$x \, dy = -y \, dx \quad (ov) \quad y \, dy = x \, dx$$

$$x \, dy = -y \, dx \quad (ov) \quad y \, dy = x \, dx$$

$$x \, dy = 0 \qquad x \, dx - y \, dy = 0$$
Integrating Integrating
$$\int d(x, y) = 0 \qquad \int (x \, dx - y \, dy) = 0$$

$$x \, y = C \qquad \frac{x^{2}}{2} - \frac{y^{2}}{2} = C$$

$$(x \, y - c) \quad (x^{2} - y^{2} - c) = 0$$

$$(x \, y - c) \quad (x^{2} - y^{2} - c) = 0$$

Solve
$$p^{2} + 3py (wt x = y^{2})$$

 $p^{2} + 3py (wt x - y^{2} = 0)$
 $p = -\frac{w^{4} \pm \sqrt{18^{2} + 4^{2}}}{2\pi}$
 $p = -\frac{2y (wt x \pm \sqrt{1(2y(wt x)^{2} - 4t)})(-y^{2})}{2(1)}$
 $p = \frac{-2y (wt x \pm \sqrt{4y^{2}})(wt^{2}x + 4y^{2})}{2}$
 $= \frac{-2y (wt x \pm \sqrt{4y^{2}})(wt^{2}x + 4y^{2})}{2}$
 $= \frac{-2y (wt x \pm \sqrt{4y^{2}})(wt^{2}x + 4y^{2})}{2}$
 $= -\frac{2y (wt x \pm \sqrt{4y^{2}})(wt^{2}x + 4y^{2})}{2}$
 $= -\frac{y (wt x \pm \sqrt{4y^{2}})(wt^{2}x + 4y^{2})}{2}$
 $= -y (wt x \pm \sqrt{4y^{2}})(wt^{2}x + 4y^{2})$
 $p = -y (wt x \pm \sqrt{4y^{2}})(wt^{2}x + 4y^{2})$
 $= -y (wt^{2}x \pm$

$$\frac{dy}{dx} = y \tan \frac{x}{2}$$

$$\int \sin ax \cos a$$

$$\frac{dy}{dx} = \tan \frac{x}{2}$$

$$\int \frac{dy}{y} = \tan \frac{x}{2} dx$$

$$\int \frac{dy}{y} = \tan \frac{x}{2} dx$$

$$\int \frac{dy}{y} = \int \tan \frac{x}{2} dx$$

$$\log y = \log \frac{dx}{2} dx$$

$$\log y = \log \frac{dx}{2} + \log C$$

$$= \log \frac{dx}{2} + \log C$$

Scanned by CamScanner

solve ydx-zdy=0 yda-ady -> O Han-Ndy =0 M=y; N=-x, $\frac{dM}{dY} = 1; \frac{\partial N}{\partial x} = -1$ $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$ Multiplying () by 1/12 yda-ady =0 $d\left(\frac{x}{y}\right) = 0$. which is exact $\mathbb{O} \times \frac{1}{x^2}, \frac{ydx - xdy}{x^2} = 0$ d(y|z) = 0Multiply () by 1/14, $\frac{yda - xdy}{xy} = 0$ $\frac{y \, da}{xy} - \frac{y \, dy}{xy} = 0$ $\int \frac{dx}{x} - \int \frac{dy}{y} = 0$ log 2 - log y = log L $\log(x-y) = \log (\log (x/y)) = \log c$ $\frac{\chi}{\gamma} = \zeta$ x = cyi y2 1 12 1 Jug one integrating factor of O

Scanned by CamScanner

Type 2 == * The Integrating factor of a homogeneous equation $(x^{2}y - axy^{2}) dx - (x^{3} - 3x^{2}y) dy = 0.$ solve - 24 (M dx + N dy = 0 $M = x^2 y - a x y^2$ $N = -(\chi^3 - 3\chi^2 y)$ This equation is homogeneous in 2 andy. Integrating factor = $\frac{1}{Mx + Ny} = \frac{1}{(x^2y - 2xy^2)x + (3x^2y - x^3)y}$ $y = \frac{1}{x^{3/2} - 2x^{2}y^{2} + 3x^{2}y^{2} - x^{3/2}}$ $I \cdot F = \frac{1}{\pi^2 4^2} \frac{1}{4^2} \frac{$ Hultiplying by 1 1242

 $\frac{1}{x^{2}y^{2}} \left[\left(\frac{x^{2}y}{x^{2}} - \frac{2xy^{2}}{x^{2}y^{2}} \right) dx - \frac{1}{x^{2}y^{2}} \left[\left(\frac{x^{3}}{y^{2}} - \frac{3x^{2}y}{y^{2}} \right) dy = 0 \right]$ $\left(\frac{1}{y} - \frac{2}{x} \right) dx - \left(\frac{x}{y^{2}} - \frac{3}{y} \right) dy = 0$ $H = \frac{1}{y} - \frac{2}{x} \quad N = \left(-\left(\frac{x}{y^{2}} - \frac{3}{y} \right) \right)$ $\frac{\partial H}{\partial y} = -\frac{1}{y^{2}} \left(\frac{3N}{y^{2}} - \frac{3}{y} \right)$ $\frac{\partial H}{\partial y} = -\frac{1}{y^{2}} \left(\frac{3N}{y^{2}} - \frac{3}{y^{2}} \right)$ $\frac{\partial H}{\partial y} = -\frac{1}{y^{2}} \left(\frac{3N}{y^{2}} - \frac{3}{y^{2}} \right)$ $\frac{\partial H}{\partial y} = -\frac{1}{y^{2}} \left(\frac{3N}{y^{2}} - \frac{3}{y^{2}} \right)$ $\frac{\partial H}{\partial y} = -\frac{1}{y^{2}} \left(\frac{3N}{y^{2}} - \frac{3}{y^{2}} \right)$ $\frac{\partial H}{\partial y} = -\frac{1}{y^{2}} \left(\frac{3N}{y^{2}} - \frac{3}{y^{2}} \right)$ $\frac{\partial H}{\partial y} = -\frac{1}{y^{2}} \left(\frac{3N}{y^{2}} - \frac{3}{y^{2}} \right)$ $\frac{\partial H}{\partial y} = -\frac{1}{y^{2}} \left(\frac{3N}{y^{2}} - \frac{3}{y^{2}} \right)$ $\frac{\partial H}{\partial y} = -\frac{1}{y^{2}} \left(\frac{3N}{y^{2}} - \frac{3}{y^{2}} \right)$ $\frac{\partial H}{\partial y} = -\frac{1}{y^{2}} \left(\frac{3N}{y^{2}} - \frac{3}{y^{2}} \right)$ $\frac{\partial H}{\partial y} = -\frac{1}{y^{2}} \left(\frac{3N}{y^{2}} - \frac{3}{y^{2}} \right)$

The solution is
$$\int Hdx + \int (term \notin N) dy = c$$

(gumtent) not containing x) $dy = c$

$$H = \frac{1}{y} - \frac{2}{x}; N = -\left(\frac{x}{y^2} - \frac{3}{y}\right)$$

$$\frac{\partial H}{\partial y} = -\frac{1}{y^2}; \frac{\partial N}{\partial x} = -\frac{1}{y^2}$$

$$\frac{\partial H}{\partial y} = \frac{\partial N}{\partial x}$$

$$\int \left(\frac{1}{y} - \frac{2}{x}\right) dx + \int \frac{3}{y} dy = c$$

$$\frac{1}{y} \int dx - 2 \int \frac{1}{x} dx + 3 \int \frac{1}{y} dy = c$$

$$\frac{x}{y} - 2 \log 1 + 3 \log 9 = c$$

$$-x - c$$
Type 3:
Type 3:
Type 3:
Type 4x + 12 (2y) x dy = 0.
Type the equation $\frac{1}{y} + 1 \exp(-\frac{1}{y}) + 1 \exp(-\frac{1}{y})$

$$J \cdot F = \frac{1}{1122 \cdot 10^{12}} = \frac{1}{(1+2y)} \frac{1}{92 - (1-2y)} \frac{1}{2y}$$

$$= \frac{1}{3y^{2} + x^{2}y^{2}}$$

$$= \frac{1}{3x^{2}y^{2}}$$

$$\lim \lim_{x \to y^{2}} \lim_{y \to y^{2}} \lim_{y \to y^{2}} \frac{1}{3x^{2}y^{2}}$$

$$= \frac{1}{3x^{2}y^{2}}$$

$$\lim_{x \to y^{2}} \frac{1}{3x^{2}y^{2}} \frac{(1+2y)}{y} \frac{y}{y^{2}} \frac{y}{y^{2}} + \frac{1}{2y} \frac{y}{y^{2}} \frac{1}{y^{2}} \frac{1}{2y^{2}} \frac{1}{y^{2}} \frac{1}{y^{2}}$$

a.

Scanned by CamScanner

Type 4: In the equation Hda+Ndy = 0 a) if $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ be a function of x only = f(x), then eff(a) dx is an I.F b) if $\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}$ be a function of y only = F(y) M then e JF(y)dy is an I.F. Solve $(\chi y^2 - \chi^{1/\chi^3}) dx - \chi^2 y dy = 0.$ $M = 2y^2 - e^{1/23}$; $N = -x^2y$ $\frac{\partial M}{\partial Y} = 2XY$; $\frac{\partial N}{\partial X} = -2XY$ $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} = \frac{\partial xy - (-\partial xy)}{-x^2 y} = \frac{4 \pi xy}{-x^2 y} = \frac{-4}{x}$ which is a function of I only. $J = 2 = 2 = 2 = 2 = 2 = 109 x^{-4} = x^{-4}$ Multiple by x-4 $a^{-4}(ay^2 - e^{1/x^3}) dx - a^{-4}(a^2y dy) = 0$ (x⁻³y²-x⁻⁴ 2¹¹x³) dx + x⁻² y dy = 0 $H = \chi^{-3}y^2 - \chi^{-4} e^{1/\chi^3} ; N = \chi^{-2}y$ $\frac{\partial M}{\partial Y} = 2YX^{-3}$; $\frac{\partial N}{\partial X} = 2X^{-3}Y$.

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$
which is exact
The solution is

$$\int Mdx + \int (torm of N not containing x) dy = c$$
(yumbant)

$$\int (x^{-3}y^{2} - x^{-4} x^{1/13}) dx + \int b = c$$

$$-y^{2} \frac{x^{-2}}{2} + \frac{1}{3} \int e^{-x^{3}} (-3x^{-4}) dx = c$$

$$\frac{1}{3} e^{-x^{3}} - \frac{1}{2} \frac{y^{2}}{x^{2}} + \frac{1}{2} \int e^{-x^{3}} (-3x^{-4}) dx = c$$

$$\frac{1}{3} e^{-x^{3}} - \frac{1}{2} \frac{y^{2}}{x^{2}} + \frac{1}{2} \int \frac{1}{2} e^{-x^{3}} + \frac{1}{2} \frac{y^{2}}{x^{2}} + \frac{1}{2} \frac{1}{x^{3}} + \frac{1}{x^{3}} + \frac{1}{2} \frac{1}{x^{3}} + \frac{1}{x^{3}} +$$

Scanned by CamScanner

$$H = xy^{k} + y^{2} \qquad N = 2x^{2}y^{3} + 2xy^{2}$$

$$\frac{\partial H}{\partial y} = 4y^{3}x + 2y \qquad \frac{\partial W}{\partial x} = 4xy^{3} + 2y,$$

$$\frac{\partial H}{\partial y} = \frac{\partial W}{\partial x}$$

$$which is exact:$$

$$The solution is$$

$$\int Hdx + \int (+wind y N not) dy = C$$

$$\int (xy^{k} + y^{2}) dx + \int 2y^{2} dy = C$$

$$\frac{x^{2}}{2}y^{k} + y^{2}x + \frac{yy^{k}}{8} = C$$

$$\frac{x^{2}y^{4}}{2} + xy^{2} + \frac{yy^{k}}{8} = C$$

$$\frac{x^{2}y^{4}}{2} + \frac{yy^{2}}{3} + \frac{y^{k}}{8} = C$$

$$\frac{x^{2}y^{4}}{2} + \frac{y^{2}}{3} + \frac{y^{k}}{8} = C$$

$$\frac{x^{2}y^{4}}{2} + \frac{y^{2}}{3} + \frac{y^{k}}{8} = C$$

$$\frac{x^{2}}{4} + \frac{y^{2}}{2} + \frac{y^{k}}{8} = C$$

$$\frac{x^{2}y^{4}}{2} + \frac{y^{2}}{3} + \frac{y^{k}}{3} = C$$

$$\frac{x^{2}}{2} + \frac{y^{k}}{3} + \frac{y^{k}}{3} = C$$

$$\frac{x^{2}}{4} + \frac{y^{k}}{3} + \frac{y^{k}}{3} = C$$

$$\frac{y^{k}}{4} + \frac{y^{k}}{3} + \frac{y^{k}}{3} = C$$

$$\frac{y^{k}}{4} + \frac{y^{k}}{3} = C$$

$$\frac{y^{k}}{4} + \frac{y^{k}}{3} + \frac{y^{k}}{3} = C$$

$$\frac{y^{k}}{4} + \frac{y^{k}}{3} + \frac{y^{k}}{3} = C$$

$$\frac{y^{k}}{4} + \frac{y^{k}}{3} + \frac{y^{k}}{3} = C$$

$$\frac{y^{k}}{4} + \frac{y^{k}}{4} + \frac{y^{k}}{3} + \frac{y^{k}}{3} = C$$

$$\frac{y^{k}}{4} + \frac{y^{k}}{4} + \frac{y^{k}}$$

Diff O with respect to I on both sides.

111

-

$$\frac{du}{dx} = a \left(\left(P \cdot 1 + \frac{dp}{dx} x \right) + \frac{1}{1 + (xp^{2})^{2}} \left(\left(x \cdot 2p \frac{dp}{dx} + p^{2} \right) \right)$$

$$P = 2\left(p + x \frac{dp}{dx} \right) + \frac{1}{1 + x^{2}p+1} \left(\frac{dpx}{dx} \frac{dp}{dx} + p^{2} \right)$$

$$P = \left(\left(\frac{p+2x}{2p+2x} \frac{dp}{dx} \right) + \frac{1}{1 + x^{2}p+1} \left(\frac{2x}{dx} \frac{dp}{dx} + p \right) \right]$$

$$P = \left(\left(p + 2x \frac{dp}{dx} \right) + \left(\frac{1}{1 + x^{2}p+1} \right) \left(\frac{p}{1 + x^{2}p+1} \right)$$

$$P = \left(\left(p + 2x \frac{dp}{dx} \right) \right) \left(\left(1 + \frac{1}{1 + x^{2}p+1} \right) \right) \left(\frac{p}{x} - \frac{p}{x^{2}} \right)$$

$$P = \left(\left(p + 2x \frac{dp}{dx} \right) \right) \left(\left(1 + \frac{1}{1 + x^{2}p+1} \right) \right) \left(\frac{p}{x} - \frac{p}{x^{2}} \right)$$

$$P = \left(\frac{p}{4x} \frac{dp}{dx} \right) \left(\left(1 + \frac{1}{x^{2}p^{4}} \right) = 0 \right)$$

$$P + 2x \frac{dp}{dx} = 0$$

$$P + 2x$$

$$P = \int f'_{x} \rightarrow (3)$$
Elimination P from $[0, q, q)$

$$y = 2 \int \frac{1}{x} x + 4\alpha n^{-1}c$$

$$= 2 \int \frac{1}{y} \frac{1}{y} x + 4\alpha n^{-1}c$$

$$y = 2 \int cx + 4\alpha n^{-1}c$$

$$= 2 \int cx + 4\alpha n^{-1}c$$

$$= 2p + 2x \frac{dp}{dx} - 2p \frac{dp}{dx}$$

$$P = 2p + 2x \frac{dp}{dx} - 2p \frac{dp}{dx}$$

$$P = 2p + 2x \frac{dp}{dx} - 2p \frac{dp}{dx}$$

$$P = 2p + 2x \frac{dp}{dx} - 2p \frac{dp}{dx}$$

$$P = 2p + 2x \frac{dp}{dx} - 2p \frac{dp}{dx}$$

$$P = 2p + 2x \frac{dp}{dx} - 2p \frac{dp}{dx}$$

$$P = 2p + 2x \frac{dp}{dx} - 2p \frac{dp}{dx}$$

$$P = 2p + 2x \frac{dp}{dx} - 2p \frac{dp}{dx}$$

$$P = 2p + 2x \frac{dp}{dx} - 2p \frac{dp}{dx}$$

$$P = 2p + 2x \frac{dp}{dx} - 2p \frac{dp}{dx}$$

$$P = 2p + 2x \frac{dp}{dx} - 2p \frac{dp}{dx}$$

$$P = -2(x-p) \frac{dp}{dx} = 0$$

$$P = -2(x-p) \frac{dp}{dx} = 0$$

$$P = -2(x-p) \frac{dp}{dx} = 2p$$

$$\frac{dx}{dp} + \frac{2x}{p} = \frac{2p}{p}$$

$$\frac{dx}{dp} + \frac{2x}{p} = 2p$$

$$I = 2 \int \frac{1}{p} \frac{dp}{dx} = 2p \frac{dp}{dx}$$

$$I = 2 \int \frac{1}{p} \frac{dp}{dx} = 2p \frac{dp}{dx}$$

$$I = 2 \int \frac{1}{p} \frac{dp}{dx} = 2p \frac{dp}{dx}$$

$$I = 2 \int \frac{1}{p} \frac{dp}{dx} = 2p \frac{dp}{dx}$$

Scanned by CamScanner

Scanned by CamScanner

Equation solvable of a solution of a

* The equation of this type $x = f(y, P) \longrightarrow 0$ Differentiating O with respect to y. dy =p $\chi = f(y, p) \rightarrow O$ Diff with respect to y, $\frac{dx}{dy} = \frac{1}{p} = F(y|p, \frac{dp}{dy}) \rightarrow 2$ @ is the differential equation of first order in trapice allow 41 P and y solution of () is $\phi(y_1P,L) = 0 \rightarrow 3$ Ap atto far. * Eliminate 7 from equation O & 3 gives A CAP required equation. - 96 5 ... 1 KH-45 the 2 V.Imp . 0 - Thtop = (9 x - - - X + - (9 x 2 - 1) 92 $y = 2 p x + y^2 p^3 - (y) (q^2 k - r)$ Solve $y - y^2 p^3 = 2p x$ (9° + 6 - 1) 20/10/ evit pribrasing 0 = qb x+qe $=) x = y - y^2 p^3$ $\frac{1}{2}b = \frac{1}{2}b = \frac{1}{2}b$ solving for α , $\alpha = \frac{1}{2} \left[\frac{y}{p} - y^2 p^2 \right] \rightarrow 0$ prince potential Diff O with suspect to gift regal and and goal Diff () with suspect to J, $\frac{dx}{dy} = \frac{1}{P} = \frac{1}{2} \left[\frac{1}{P} + \frac{y}{y} \left(\frac{-1}{P^2} \right) \frac{dP}{dy} + \frac{1}{y^2 2P} \frac{dP}{dy} \right]$ $\frac{1}{p} = \frac{1}{2} \begin{bmatrix} \frac{1}{p} - \frac{y}{p^2} & \frac{dp}{dy} - 2yp^2 - y^2 & 2p \frac{dp}{dy} \end{bmatrix}$

$$\frac{1}{P} = \frac{1}{2} \cdot \frac{1}{P} \left(1 - \frac{y}{P} \frac{dp}{dy} - 2p^{2}Py - y^{2} \frac{2p}{P} \frac{dp}{dy}\right)$$

$$2p = P \left(1 - \frac{y}{P} \frac{dp}{dy} - 2y \frac{p^{2}}{P} - \frac{y^{2}}{2p^{2}} \frac{2p}{dy}\right),$$

$$2p = P - \frac{y}{dy} \frac{dp}{dy} - 2\frac{y}{P} \frac{p^{4}}{P} - \frac{y^{2}}{2p^{2}} \frac{2p}{dy}$$

$$P + \frac{y}{dy} \frac{dp}{dy} + 2\frac{y}{P} \frac{p^{4}}{P} + \frac{2y^{2}}{P} \frac{p^{3}}{dy} = 0,$$

$$P \left(1 + 2y \frac{p^{3}}{P}\right) + \left(1 + 2y \frac{p^{3}}{P}\right) \frac{dp}{dy} = 0,$$

$$(1 + 2y \frac{p^{3}}{P}) + (1 + 2y \frac{p^{3}}{P}) \frac{dp}{dy} = 0,$$

$$(1 + 2y \frac{p^{3}}{P}) + (1 + 2y \frac{p^{3}}{P}) \frac{dp}{dy} = 0,$$

$$(1 + 2y \frac{p^{3}}{P}) + (1 + 2y \frac{p^{3}}{P}) \frac{dp}{dy} = 0,$$

$$(1 + 2y \frac{p^{3}}{P}) \left(P + \frac{y}{dp} \frac{dp}{dy}\right) = 0,$$

$$D \beta \text{ condung} + hc + factor (1 + 2y \frac{p^{3}}{P}), we \text{ yet}$$

$$P + \frac{y}{dp} \frac{dp}{dy} = -\frac{p^{1}}{P} + \frac{q}{2} \frac{dp}{P} = \frac{dy}{2},$$

$$\frac{dp}{dy} + \frac{dq}{dy} = 0,$$

$$\frac{dq}{dy} + \frac{dq}{dy} = 0,$$

$$\frac{dq}{dy} + \frac{dq}{dy} = 0,$$

$$\frac{dq}{dy} + \frac{dq}$$

Scanned by CamScanner

$$y = \frac{2}{y} + \frac{y^{2}}{y^{2}} \left(\frac{1}{y}\right)^{3}$$

$$y = \frac{2}{y} + \frac{y^{2}}{y^{2}} \left(\frac{1}{y}\right)^{3}$$

$$y = \frac{2}{y} \left(\frac{1}{y}\right)^{2} - \frac{1}{y^{2}} \left(\frac{1}{y}\right)^{2} + \frac{1}{y^{2}} \left(\frac{1}{y^{2}}\right)^{2} + \frac{1}{y^{$$

$$dy = \frac{2p}{(1+p^2)^2} dp$$
Integrating
$$\int dy = \int \frac{2p}{(1+p^2)^2} dp$$

$$= \int \frac{1}{t^2} dt$$

$$= \int t^{-2} dt$$

$$= \frac{1}{t}$$

$$y = \int \frac{1}{t^2} + c$$

$$\int x^{T} dx = \frac{x^{n+1}}{x+1}$$

$$= \frac{1}{t}$$

$$\int x^{T} dx = \frac{x^{n+1}}{x+1}$$

$$\int \frac{x^{n+1}}{x+1} dx$$

$$\int \frac{1}{x^{n+1}} dx = \frac{x^{n+1}}{x+1}$$

$$\int \frac{1}{x^{n+1}} dx$$

$$\int \frac{1}{x^{n+1}} dx = \frac{x^{n+1}}{x+1}$$

$$\int \frac{1}{x^{n+1}} dx$$

Integrate, P=C 96 19 19 19

Putting P=c in O y = cx + f(c)of Thus the solution elastaint's equation is obtain by weiting 2 dox p. (2) 2m Solue (y-Px) (P-1) = p The given equation is (y-px)(p-1) = py - px = Py = Px + PY = Px + f(P)which is elaisout's equation. Putting P= a twe get the solution is y= ca+ c : pottanpa syst 2'turn. * thus the solution dairant's requisition is obtain by worthing cforp Solve _e4x (P-1) + e2y p2 = 0. 1 struartini, these do participants fill The given equation is $e^{4\chi}(P-1) + e^{2y}P^2 = 0$ $y = p_x + f(b)$ Kl. my Clartoner 1 + 9 $X = e^{KX}$ $Y = e^{KY}$ a = ab [(g)'b + b]K > H.C.F of I am ... we put pour and

Putting
$$X = z^{2X}$$
 $Y = z^{2Y}$
 $dx = zz^{2X} dx$; $dy = zz^{2Y} dy$.
 $P = \frac{dy}{dx} = \frac{dy'/zz^{2Y}}{dx/zz^{2X}} = \frac{dy'}{xz^{2Y}} \times \frac{dz^{2X}}{dx}$
 $= \frac{x}{y} \frac{dy}{dx} = \frac{x}{y} P$.
 $\boxed{P = \frac{x}{y} P}$
The given equation is $(z = \frac{x}{y} - \frac{y}{y})^2 = 0$.
 $x^2 (\frac{xP-y}{y}) + \frac{y}{x^2} \frac{x^2 P^2}{y^2} = 0$
 $\frac{x^2}{y} [xP-y+P^2] = 0$
 $xP - y + P^2 = 0$
 $Px + P^2 = V$.
 $\boxed{y = Px + P^2}$
which is of idemant's equation
 $y = Cx + C^2$
 $T = (if T) \overline{x}$, $(r - qx) \overline{x}$.

Scanned by CamScanner

Solve
$$(Px-y) (Py+x) = 2p$$

with the given equivation is
 $(Px-y) (Py+x) = 2p \cdot - > 0$
Putting $x = x^2$; $Y = y^2$
 $dx = axdx$; $dY = 2ydy$
 $\frac{dx}{ax} = dx$; $\frac{dy}{2y} = dy$.
 $P = \frac{dy}{dx} = \frac{dy/ay}{dx/ay} = \frac{dY}{ay} \times \frac{dy}{dx}$
 $= \frac{x}{y} \frac{dy}{dx}$
 $= \frac{x}{y} \frac{dy}{dx}$
 $\frac{dy}{dx} = p$
 $\frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{ay}$
 $\frac{dy}{dx} = p$
 $\frac{x}{y} \frac{dy}{dx}$
 $\frac{x}{y} = \frac{x}{y} \frac{y}{dx}$
 $\frac{dy}{dx} = p$
 $\frac{x}{y} \frac{dy}{dx}$
 $\frac{dy}{dx} = p$
 $\frac{y}{y} \frac{dy}{dx}$
 $\frac{dy}{dx} = p$
 $\frac{y}{y} \frac{dy}{dx}$
 $\frac{dy}{dx} = p$
 $\frac{y}{y} \frac{dy}{dx}$
 $\frac{y}{dx} = \frac{y}{y}$
 $\frac{y}{dx} - \frac{y}{y} \frac{y}{dx}$
 $\frac{y}{y} \frac{dy}{dx}$
 $\frac{y}{dx} = \frac{y}{y}$
 $\frac{y}{y} \frac{dy}{dx}$
 $\frac{y}{dx} = \frac{y}{y}$
 $\frac{y}{y} \frac{dy}{dx}$
 $\frac{dy}{dx} = p$
 $\frac{y}{y} \frac{dy}{dx}$
 $\frac{dy}{dx} = p$
 $\frac{y}{y} \frac{dy}{dx}$
 $\frac{y}{y} \frac{dy}{dx}$
 $\frac{y}{y} \frac{dy}{dx}$
 $\frac{y}{y} \frac{dy}{dx}$
 $\frac{y}{y} \frac{dy}{dx}$
 $\frac{dy}{dx} = p$
 $\frac{y}{y} \frac{dy}{dx}$
 $\frac{y}{y} \frac{dy}{dx}$
 $\frac{y}{y} \frac{dy}{dx}$
 $\frac{y}{y} \frac{dy}{dx}$
 $\frac{dy}{dx} = p$
 $\frac{y}{y} \frac{dy}{dx}$
 $\frac{y}{y} \frac{dy}{dx}$
 $\frac{dy}{dx} = p$
 $\frac{y}{y} \frac{dy}{dx}$
 $\frac{y}{y} \frac{dy}{dx}$
 $\frac{dy}{dx} = p$
 $\frac{dy}{dy} \frac{dy}{dx}$
 $\frac{dy}{dx} \frac{dy}{dx}$
 $\frac{dy}{dx} = p$
 $\frac{dy}{dx} \frac{dy}{dx}$
 $\frac{dy}{dx} = p$
 $\frac{dy}{dx} \frac{dy}{dx}$
 $\frac{dy}{dx} = p$
 $\frac{dy}{dx} \frac{dy}{dx}$
 $\frac{dy}{dx} \frac{dy}{dx}$
 $\frac{dy}{dx} \frac{dy}{dx}$
 $\frac{dy}{dx} \frac{dy}{dx}$
 $\frac{dy}{dx} \frac{dy$

$$(xP-Y)(P+1)_{y} = 2 J = 2 J = 7$$

$$(xP-Y)(P+1)_{y} = 2 J = 2P$$

$$(Yx-Y)(P+1)_{x} = 2P$$

$$(Px-Y) = \frac{2P}{P+1}$$

$$Px - \frac{2P}{P+1} = \frac{2P}{P+1}$$

$$Y = Px - \frac{2P}{P+1} = \frac{2P}{P+1}$$

$$(Y = Px + \frac{1}{2} + \frac{1}{2})$$

$$(Y = \frac{1}{2} + \frac{1}{2})$$

$$(Y = \frac{1}{2} + \frac{1}{2})$$

$$(Px - y) (Py + x) = d^{2}P \rightarrow 0$$

$$Putting X = x^{2}$$

$$(Y = y)$$

$$($$

$$P = \frac{dy}{dx} = \frac{dy}{dx} \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx} \frac{dy}{dx} \frac{x}{dx} \frac{dy}{dx}$$

$$= \frac{x}{y} \frac{dy}{dx} = \frac{y}{y} \frac{dy}{dx}$$

$$= \frac{x}{y} \frac{dy}{dx} = \frac{y}{y} \frac{dy}{dx}$$

$$= \frac{x}{y} \frac{dy}{dx} = \frac{y}{y} \frac{dy}{dx}$$

$$P = \frac{fx}{fy} \frac{dy}{dx} = \frac{y}{y} \frac{dy}{fy} \frac{dy}{dx}$$

$$P = \frac{fx}{fy} \frac{dy}{dx} = \frac{y}{y} \frac{dy}{fy} \frac{dy}{dx}$$

$$P = \frac{fx}{fy} \frac{dy}{dx} = \frac{y}{fy}$$

$$P = \frac{fx}{fy} \frac{dy}{dx} = \frac{y}{fy} \frac{dy}{fy} \frac{dy}$$

Scanned by CamScanner

$$y = P \# x \# + f(P)$$
which is a a doinant's equation
By Putting $P = c$, we get the solution is
$$y = c \times - d^2 c$$

$$y^2 = c \times - d^2 c$$

UNIT 1 FIRST ORDER ODE

UNIT 1 FIRST ORDER ODE					
Questions	opt1	opt2	opt3	opt4	Answer
The necessary and sufficient condition for the					
differential equation to be exact is	$M_x = N_v$	$M_y = N_x$	$M_x = N_x$	$M_y = N_y$	$M_y = N_x$
	2	Bernoulli's			Bernoulli's
The energy is the same is $\frac{1}{2} + \frac{1}{2} $	Euler equatior	Equation	Legendre equation	Homogeneous	Equation
The equation is known is $dy/dx+Py=Q y^2$ The integrating factor of $dy/dx+y/x=x^2$	v	, V	logx	0	x
The integrating factor of $dy/dx+y/x-x^2$	x Infinite no	У	logx	0	Infinite no
	of	finite no of		one	of
	integrating	integrating		integrating	integrating
The solution of Mdx+Ndy=0 is posses an	factor	factor		factor	factor
A differential equation is said to be if the					
dependent variable and its derivative occur only in the				PDE	
first degree and are not multiplied together					
	Linear	nonlinear	quadratic		Linear
The order of $d^2y/dx^2+y=x^2-2$ is	0	1	2	3	2
The integrating factor of $dy/dx+ysinx = 0$ is	e^-cosx	ye^-cosx	logx	e^sinx	e^-cosx
The integrating factor of dy/dx -ycotx = sinx is	sinx	- sinx	COSX	- cosx	- sinx
	y = (x-a)c-	y = (x-			
The solution of $y=(x-a)p-p^2$	c^2	a)c+c^2	0	-1	y = (x-a)c-c^2
		Bernoulli's		Clairaut's	Clairaut's
An equation of the form $y=px+f(p)$ is known as	linear	Equation	exact	equation	equation
The order of $d^2y/dx^2+y=0$ is	2	1	0	-1	2
	y=cx+tan^-1	y=cx-tan^-1			y=cx-tan^-1
The clairaut's form of p=tan(px-y)	С	С	c=tan(cx-y)	c=tan(px+y)	C
An equation involving one dependent variable and its					
derivatives with respect to one independent variable is called	ODE	PDE	Partial	Total	ODE
	ODE	PDE	Partial	Total	PDE
The is differentiation of a function of two or more variables					
A differential equation is said to be linear if the					
dependent variable and its derivative occur only in the degree and are not multiplied together	first	second	third	irst and secon	first
			Power		
The highest derivative of the differential equation is		Degree	IUWCI	second degree	oradi
The power of the hightest derivative of the differential		_			D
equation is called	Order	Degree	Power	second degree	
The order of $y''-y'+7=x^2+4$ is	0	1	2	3	2
The order of $y''+xy'+7x=0$ is	0	1	2	3	3

The degree of the $(d^2y/dx^2)^2+(dy/dx)^3+3y=0$	0	1	2	3	2
The degree of the $(d^2y/dx^2)^3+(dy/dx)^3+7y=0$	0	1	2	3	3
The order and degree of $(d^3/dx^3)^2+dy/dx+9y=0$	3,2	2,3	1,2	2,1	3,2
The standard form of a linear equation of the first order	dy/dx+Py=Q	dy/dx+py=Q	dy/dx+Py=q	5dy/dx+Py=Q	dy/dx+Py=Q
The integrating factor of linear equation of the form $dx/dy+Px=Q$ is	e^integral Qdx	e^integral Pd	y^integral Qd:	e^Qdx	e^integral Pdy
The integrating factor of linear equation of the form dy/dx+Py=Q is	e^integral Qdy	e^integral Pdz	e^integral Qd	e^Qdx	e^integral Pdx
The integrating factor of dy/dx+ysinx=0 is	e^(-cosx)	e^(-cosx)y	logx	e^(sinx)	e^(-cosx)
The integrating factor of dy/dx-ycotx=0 is	cos x	(-cos x)	cosec x	sin x	cosec x
If the given equationMdx+Ndy=0 is homogenous and Mx+Ny≠0 then the integrating factor is	1/(Nx-My)	1/(Mx+Ny)	1/(Mx-Ny)	1/(Nx+My)	1/(Mx+Ny)
The solution of Mdx+Ndy is	l of terms of N not containing x	al of terms not containing	intergral y constant Ndx+integra l of terms not containing x dx	intergral y constant Mdx+integr al of terms not containing y dx	intergral y constant Mdx+integr al of terms of N not containing
The solution of Max (Tag is	dy	x dx	x dx	dx	x dy
If Mdx+Ndy=0 be a homogeneous equation in x and y, thenis an integrating factor(Mx+Ny≠0)	1/(Mx+Ny)	1/(Mx-Ny)	Mdy+Ndx	Mdy-Ndx	1/(Mx+Ny)

If Mdx+Ndy=0 be a homogeneous equation in x and y, then is an integrating factor(Mx-Ny \neq 0) 1/(Mx+Ny) 1/(Mx-Ny) Mdy+Ndx Mdy-Ndx 1/(Mx-Ny)

UNIT - 2.

Ordenony definiential equation of higher order. consider *, The general linear, definiential equation with constant co-efficient of the form

 $\frac{d^{n}y}{dx^{n}} + K_{1} \frac{d^{n-1}y}{dx^{n-1}} + K_{2} \frac{d^{n-2}y}{dx^{n-2}} + \dots + K_{n}y = x$

Replace

 $\frac{d}{dx} \rightarrow 3$

 $D^n y + k_1 D^{n-1}y + k_2 D^{n-2}y + \dots + k_n y = X$ $(D^n + k_1 D^{n-1} + k_2 D^{n-2} + \dots + k_n) y = X$ The general solution of the equation (D) is

y = UF+P.I

(.F -) complementary function.

P.I -> Portrubor integral.

Rules for binding C.F. $(\mathcal{D}^{n} + k_{1} \mathcal{D}^{n-1} + k_{2} \mathcal{D}^{n-2} + \cdots + k_{n})y x$ Awallony equation is replace I -> m By solving we get the roots

Scanned by CamScanner

complementary 3. Roots function ((.F) NO If two roots are 1y = A 2 + B 2 m2x real & distinct $m1 \pm m2$ If two roots are 2 $y = (Ax+B) a^{mx}$ Jack & equal $m_1 = m_2 = m$ If two roots are 3 y= 2 (ALOSBX+ real & imaginary BSINBX) (d±îβ) Rules for finding P.I =) f(D) y = x $P.I = \frac{1}{f(D)} \times$ For walker where a is the function of x produces R.H.S=0 There is only C.F. no. P.I Solve $(D^2 + 5D + 6)y = 0$ 2/11 - 114 (D2+50+6) y=0; lost is a litrar with Given Replace D->m Auxiliory equation is m2+5m+b=0 (m+2) (m+3) =0 m = -2, -3

The resolts are real & distinct.

Scanned by CamScanner

$$m_{1}=-2; m_{2}=-3$$

$$m_{1}\neq m_{2}.$$

$$\therefore c \cdot F \text{ is } y = Ae^{m_{1}\chi} + Be^{m_{2}\chi}$$

$$y = Ae^{-2\chi} + Be^{-3\chi}$$

solve

$$\frac{d^2y}{dx^2} + \frac{b}{dx}\frac{dy}{dx} + 9y = 0$$

soln:

$$D^{2}y + bDy + 9y = 0$$

$$(D^{2} + bD + 9)y = 0$$
Replace $D \rightarrow m$
Auxiliary equation is $m^{2} + bm + 9 = 0$

$$(m+3)(m+3) = 0$$

$$m = -3, -3$$

$$M = -3, -3$$

$$M = m_{2}$$

The mosts are real & equation

$$m_1 = m_2 = m$$

$$(Ax + B) e^{mx}$$

$$(F + B) = (Ax + B) e^{-3x}$$

Scanned by CamScanner

¢.

solve $(\mathfrak{D}^2 + \mathfrak{D} + \mathfrak{O}) \mathfrak{Y} = \mathfrak{O}$ Replace: $\mathfrak{D} \to \mathfrak{m}$ Auxiliary equation $\mathfrak{A} \mathfrak{m}^2 + \mathfrak{m} + 1 = \mathfrak{O}$ $\mathfrak{q} = 1; \mathfrak{b} = 1, \mathfrak{c} = 1.$ $\mathfrak{m} = -\mathfrak{b} \pm \sqrt{\mathfrak{b}^2 + \mathfrak{q}}\mathfrak{c}$ $= -\mathfrak{l} \pm \sqrt{\mathfrak{b}^2 + \mathfrak{q}}\mathfrak{c}$ $= -\mathfrak{l} \pm \mathfrak{c} + \mathfrak$

> $y = e^{dx} (A \cos \beta x + B \sin \beta x)$ $d = -\frac{1}{2}; \beta = \frac{\sqrt{3}}{2}$ $\therefore C = \frac{1}{2} y = e^{-\frac{1}{2}x} (A \cos \frac{\sqrt{3}}{2}x + B \sin \frac{\sqrt{3}}{2}x)$

> > ×--

Solve
$$(D^{2} + D + 1) = x^{2}$$
.
Solve $(D^{2} + D + 1) = x^{2}$.
Austiliary squation is $m^{2} + m + 1 = 0$
 $a = 1; b = 1; c = 1$
 $m = -b \pm \sqrt{b^{2} + 4ac}$
 $a = -1 \pm \sqrt{1^{2} + 4ac}$
 $= -1$

$$= \chi^{2} \cdot D^{2}(\chi^{2}) - D(\chi^{2}) + D^{2}(\chi^{2})$$

$$= \chi^{2} \cdot \chi^{2} - \chi + \chi^{2} - \chi^{2} + \chi^{2} - \chi^{2} + \chi^{2} - \chi^{2} + \chi^{2} - \chi^{2} - \chi^{2} + \chi^{2} - \chi^{$$

-

2

i

3

Scanned by CamScanner

$$= \frac{1}{6} \left[\left[x^{2} - \frac{1}{6} + \left[(2 + 10x) + \frac{2x}{18} \right] \right]$$

$$= \frac{1}{6} \left[\left[x^{2} - \frac{1}{3} - \frac{5x}{3} + \frac{2x}{18} \right] \right]$$

$$= \frac{1}{6} \left[\left[x^{2} - \frac{1}{3} - \frac{5x}{3} + \frac{2x}{18} \right]$$

$$= \frac{1}{6} \left[\left[x^{2} - \frac{5x}{3} + \frac{10}{18} \right] \right]$$

$$\frac{3x}{18} + \frac{1}{6} = \frac{1}{18}$$

$$\frac{3x}{13} + \frac{2x}{16} = \frac{1}{18}$$

$$\frac{3x}{16} = \frac{1}{18}$$

$$\frac{$$

Scanned by CamScanner

$$c F = e^{2X} \left(A \cos \beta X + B \sin \beta X \right)$$

$$c F = e^{-X} \left(A \cos \beta X + B \sin \beta X \right)$$

$$To find P \cdot I$$

$$P \cdot I = \frac{1}{D^2 + 2D + 5} e^{X} \sin \beta X$$

$$e_{D}$$

$$P \cdot I = \frac{1}{D^2 + 2D + 5} e^{X} \sin \beta X$$

$$e_{D}$$

$$To \int \partial D \rightarrow D + \alpha = D + 1$$

$$= \frac{1}{(D + 1)^2 + 2(D + 1) + 5} e^{X} \sin \beta X$$

$$= e^{X} \frac{1}{D^2 + 2D + 1 + 2D + 2 + 5}$$

$$= e^{X} \frac{1}{D^2 + 4D + 8} \sin \beta X$$

$$Replace D^2 \rightarrow -\alpha^2 = -4$$

$$= e^{X} \frac{1}{-4 + 4D + 8}$$

$$= e^{X} \frac{1}{-4 + 4D + 8} \sin \beta X$$

$$= e^{X} \frac{1}{-4 + 4D + 8} \sin \beta X$$

$$= e^{X} \frac{1}{-4 + 4D + 8} \sin \beta X$$

$$= e^{X} \frac{1}{-4 + 4D + 8} \sin \beta X$$

$$= e^{X} \frac{1}{-4 + 4D + 8} \sin \beta X$$

$$= e^{X} \frac{1}{-4 + 4D + 8} \sin \beta X$$

$$= e^{X} \frac{1}{-4 + 4D + 8} \sin \beta X$$

$$= e^{X} \frac{1}{-4 + 4D + 8} \sin \beta X$$

$$= e^{X} \frac{1}{-4 + 4D + 8} \sin \beta X$$

$$= e^{X} \frac{1}{-4 + 4D + 8} \sin \beta X$$

$$= e^{X} \frac{1}{-4 + 4D + 8} \sin \beta X$$

$$= e^{X} \frac{1}{-4 + 4D + 8} \sin \beta X$$

$$= e^{X} \frac{1}{-4 + 4D + 8} \sin \beta X$$

$$= e^{X} \frac{1}{-4 + 4D + 8} \sin \beta X$$

$$= e^{X} \frac{1}{-4 + 4D + 8} \sin \beta X$$

$$= e^{X} \frac{1}{-4 + 4D + 8} \sin \beta X$$

$$= e^{X} \frac{1}{-4 + 4D + 8} \sin \beta X$$

$$= e^{X} \frac{1}{-4 + 4D + 8} \sin \beta X$$

$$= e^{X} \frac{1}{-4 + 4D + 8} \sin \beta X$$

$$= e^{X} \frac{1}{-4 + 4D + 8} \sin \beta X$$

$$= e^{X} \frac{1}{-4 + 4D + 8} \sin \beta X$$

11

1,

$$= \frac{a^{3}}{4} \left(\frac{D}{2} \frac{\sin 2x - \sin 2x}{-4} \right)^{2} 2^{2} \Rightarrow -a^{2} = -4$$

$$= \frac{a^{3}}{4} \left(2 \cos 2x - \sin 2x \right)^{2}$$

$$P \cdot I = \frac{a^{3}}{-20} \left(2 \cos 2x - \sin 2x \right)^{2}$$

$$= -x - \frac{1}{-20}$$

$$Solva \left(D^{2} + H D + 3 \right) y = \frac{3^{2}}{2}$$

$$= -x - \frac{1}{-2}$$

$$Solva \left(D^{2} + H D + 3 \right) y = \frac{3^{2}}{2}$$

$$= 2^{3x} \frac{1}{2}$$

$$Solva = 2^{3x}$$

$$P \cdot I = \frac{1}{-2^{2} + 4^{2} + 3^{2}}$$

$$Raplou = D \rightarrow D + \alpha = D + 3$$

$$= 2^{3x} \frac{1}{(D^{2} + q + b^{2} + q^{2} + b^{2} + 3)}$$

$$= 2^{3x} \frac{1}{(D^{2} + q + b^{2} + q^{2} + b^{2} + 4^{2})^{2} + \frac{1}{2} + \frac{3}{2}$$

$$= 2^{3x} \frac{1}{(D^{2} + q + b^{2} + q^{2} + b^{2} + q^{2} + b^{2} + q^{2} + \frac{3}{2} + \frac{1}{2} + \frac{3}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{3}{2} + \frac{1}{2} + \frac{1}$$

$$= \frac{a^{3\chi}}{a_{4\chi}} \left[\chi - \frac{1}{a_{4\chi}} \left[D^{2}(\chi) + 10 D(\chi) \right] \right] (\text{longueting})$$

$$= \frac{a^{3\chi}}{a_{4\chi}} \left[\chi - \frac{1}{a_{4\chi}} \left[10(1)^{-1} \right] \right] \Rightarrow \frac{a^{3\chi}}{a_{4\chi}} \left[\chi - \frac{1}{a_{4\chi}} \right]$$

$$= \frac{a^{3\chi}}{a_{4\chi}} \left[\chi - \frac{1}{a_{4\chi}} \left[10(1)^{-1} \right] \right] \Rightarrow \frac{a^{3\chi}}{a_{4\chi}} \left[\chi - \frac{1}{a_{4\chi}} \right]$$

$$= \frac{a^{3\chi}}{a_{4\chi}} \left[\chi - \frac{1}{a_{4\chi}} \left[10(1)^{-1} \right] \right] \Rightarrow \frac{a^{3\chi}}{a_{4\chi}} \left[\chi - \frac{1}{a_{4\chi}} \right]$$

$$= \frac{a^{3\chi}}{a_{4\chi}} \left[\chi - \frac{1}{a_{4\chi}} \left[10(1)^{-1} \right] \right] \Rightarrow \frac{a^{3\chi}}{a_{4\chi}} \left[\chi - \frac{1}{a_{4\chi}} \right]$$

$$= \frac{a^{3\chi}}{a_{4\chi}} \left[\chi - \frac{5}{a_{4\chi}} \right]$$

$$= \frac{a^{3\chi}}{a_{4\chi}} \left[\chi - \frac{1}{a_{4\chi}} \right]$$

$$= \frac{a^{3$$

Scanned by CamScanner

$$\begin{aligned} F = \frac{1}{(p^{2} - 2p + i)} \quad & x \leq in x \\ & = \text{Imaginary Fout of } \frac{1}{(p^{2} - 2p + i)} = \frac{1}{2} x \\ & = \text{Imaginary Fout of } \frac{1}{(p + i)^{2} - 2(p + i) + i} \\ & = \text{Imaginary Fout of } \frac{1}{2} \frac{1}{(p + i)^{2} - 2(p + i) + i} \\ & = \text{Imaginary Fout of } \frac{1}{2} \frac{1}{(p + i)^{2} - 2(p + i) + i} \\ & = \text{Imaginary Fout of } \frac{1}{2} \frac{1}{p^{2} + i^{2} + 2i p - 2p - 2i + i} \\ & = \text{Imaginary Fout of } \frac{1}{2} \frac{1}{p^{2} + i^{2} - 2p - 2i + i} \\ & = \text{Imaginary Fout of } \frac{1}{2} \frac{1}{p^{2} + i^{2} - 2p - 2i + i} \\ & = \text{Imaginary Fout of } \frac{1}{2} \frac{1}{p^{2} + i^{2} - 2p - 2i + i} \\ & = \text{Imaginary Fout of } \frac{1}{2} \frac{1}{p^{2} + i^{2} - 2p - 2i + i} \\ & = \text{Imaginary Fout of } \frac{1}{2} \frac{1}{p^{2} + i^{2} - 2p - 2i + i} \\ & = \text{Imaginary Fout of } \frac{1}{2} \frac{1}{p^{2} + i^{2} - 2p - 2i + i} \\ & = \text{Imaginary Fout of } \frac{1}{2} \frac{1}{p^{2} + i^{2} - 2p - 2i + i} \\ & = \text{Imaginary Fout of } \frac{1}{2} \frac{1}{p^{2} + i^{2} - 2p - 2i + i} \\ & = \text{Imaginary Fout of } \frac{1}{2} \frac{1}{p^{2} + i^{2} - 2p - 2i + i} \\ & = \text{Imaginary Point of } \frac{1}{2} \frac{1}{p^{2} + 2i - 2p - 2p - 2i + i} \\ & = \text{Imaginary Point of } \frac{1}{2} \frac{1}{p^{2} + 2i - 2p - 2p - 2i + i} \\ & = \text{Imaginary Point of } \frac{1}{2} \frac{1}{p^{2} + 2i - 2p - 2p - 2i + i} \\ & = \text{Imaginary Point of } \frac{1}{2} \frac{1}{p^{2} + 2i - 2p - 2p - 2i + i} \\ & = \text{Imaginary Point of } \frac{1}{2} \frac{1}{p^{2} + 2i - 2p - 2p - 2i + i} \\ & = \text{Imaginary Point of } \frac{1}{2} \frac{1}{p^{2} + 2i - 2p - 2p - 2i + i} \\ & = \text{Imaginary Point of } \frac{1}{2} \frac{1}{p^{2} + 2i - 2p - 2p - 2i + i} \\ & = \text{Imaginary Point of } \frac{1}{2} \frac{1}{p^{2} + 2i - 2p - 2p - 2i + i} \\ & = \text{Imaginary Point of } \frac{1}{2} \frac{1}{2i} \left[1 + \left(\frac{p^{2} + 2i - 2p - 2p - 2i + i}{2i} \right] x \\ & = \text{Imaginary Point of } \frac{1}{2i} \left[x + \left(\frac{p^{2} + 2i - 2p - 2p - 2i + i}{2i} \right] \right] \\ & = \text{Imaginary Point of } \frac{1}{2i} \left[x + \left(\frac{p^{2} + 2i - 2p - 2p - 2i + i}{2i} \right] \\ & = \text{Imaginary Point of } \frac{1}{2i} \left[x + \left(\frac{p^{2} + 2i - 2p - 2p - 2i + i}{2i} \right] \right] \\ & = \text{Imaginary Point of } \frac{1}{2i} \left[x + \left(\frac{p^{2} + 2i - 2p - 2p - 2i + i}{$$

$$= I \cdot P \cdot b - \frac{a^{iX}}{a^{i}} + \frac{i(x+i)^{-i}}{i}$$

$$= I \cdot P \cdot b - \frac{a^{iX}}{a} = \frac{i(x+i)^{-i}}{-i}$$

$$= I \cdot P \cdot b - \frac{a^{iX}}{a} = \frac{i(x+i)^{-i}}{-i}$$

$$= I \cdot P \cdot b - \frac{1}{a} = \frac{i(x+i)^{-i}}{a}$$

$$= \frac{1}{a} = \frac{1}{$$

Scanned by CamScanner

 $= \frac{1}{12 - 12} e^{-2x}$ $= \frac{\chi}{2D+b} e^{-2\chi}$ $= \frac{\chi}{2(-2)+b} e^{-2\pi}$ Replace D -> -2 $\left(\begin{array}{c} x = \frac{1}{-4+b} e^{-2x} \\ e^{-2x} \end{array}\right)$ $P \cdot II = \frac{\chi}{2} e^{-2\chi}$ To-fired P.I2 $P_{12} = \frac{1}{D^{2}+bD+8} + \frac{1}{D^{2}+bD+8} = \frac{$ $\frac{1}{1} = \frac{1}{1} = \frac{1}$ = 1 1 1-4+6D+8 = _1 LOS2X $= \frac{1}{(6D+4)} \times \frac{(6D-4)}{(6D-4)} \cos 2x$ = (bD-4) Losza 0= (1+10) 160)242 $= \frac{(6D-4)}{(36D^2-16)}$ a=2 Replace D2 - a2 = -4.

1

ί

$$\frac{2 \cdot F = A + (BX + C) e^{-X}}{P \cdot I_{1}}$$

$$\frac{P \cdot I_{1}}{P \cdot I_{2}} = \frac{1}{D^{3} + 2D^{2} + D}$$

$$R_{xplax} \quad D \rightarrow 0 = 2$$

$$= \frac{1}{d^{3} + 2(a)^{2} + 2}$$

$$= \frac{1}{d^{3} + 2(a)^{2} + 2}$$

$$= \frac{1}{B} e^{2X}$$

$$= \frac{1}{B} e^{2X}$$

$$\frac{P \cdot I_{2}}{B}$$

$$\frac{P \cdot I_{2}}{B} = \frac{1}{D^{3} + 2D^{2} + D}$$

$$\frac{P \cdot I_{2}}{P \cdot I_{2}} = \frac{1}{D^{3} + 2D^{2} + D}$$

$$\frac{P \cdot I_{2}}{B} = \frac{1}{D^{3} + 2D^{2} + D}$$

$$\frac{P \cdot I_{2}}{B} = \frac{1}{D \cdot D^{2} + 2D^{2} + D}$$

$$\frac{1}{B} e^{2X} = \frac{1}{D \cdot D^{2} + 2D^{2} + D}$$

$$\frac{1}{D \cdot D^{2} + 2D^{2} + D}$$

$$\frac{1}{D \cdot D^{2} + 2D^{2} + D}$$

$$\frac{1}{D \cdot (-1) + a(-1) + D}$$

$$\frac{1}{D \cdot D^{2} - 2 + p}$$

$$\frac{1}{D \cdot I_{2}} = \frac{1}{Sin X}$$

Scanned by CamScanner

The genual solution
$$\mathcal{L} y = c \cdot F + P \cdot I_1 + P \cdot I_2$$

 $y \neq A \neq^{H/X}$
 $y = A + (BX + i) \cdot e^{-X} + \frac{e^{-2X}}{18} + (\frac{5in X}{-2})$
 $y = A + (BX + i) \cdot e^{-X} + \frac{e^{-2X}}{18} - \frac{5in X}{2}$
 $(y^2 - 2D + i) \cdot y = (x^2 + i)^{2+1}$
 $(y^2 - 2D + i) \cdot y = (x^2 + i) \cdot y^2$
 $(y^2 - 2D + i) \cdot y = (x^2 + i) \cdot y^2$
 $(y^2 - 2D + i) \cdot y = (x^{2+1} + i) \cdot y^2$
 $A = i \cdot m^2 - 2m + i = 0$
 $(m-i) \cdot (m-i) = 0$
 $m = 1, i$
 $The proofs one gread & aqual;$
 $c \cdot F = (AT + B) \cdot e^{AT}$
 $C \cdot F = (AT + B) \cdot e^{AT}$
 $To find P \cdot I_1$
 $P \cdot I_1 = \frac{1}{2} \cdot e^{AT}$
 $= \frac{1}{2} \cdot e^{AT}$

•

Scanned by CamScanner

To find
$$\underline{P} \cdot \underline{r}_{2}$$

 $P \cdot \underline{r}_{2} = \frac{1}{D^{2} \cdot 2D^{+1}} = \frac{1}{D^{2}$

Solve:
$$(D^2 + D + 3) y = \sin 34 \cos 2x$$

The Auxiliary equation d
 $m^2 - 4m + 3 = 0$
 $(m-3) (m-1) =$
 $m = 3, 1$.
The scots are such q distinct
 $\boxed{(F = A x^{3X} + B x^2)}$
The scots are such q distinct
 $\boxed{(F = A x^{3X} + B x^2)}$
The scots are such q distinct
 $\boxed{(F = A x^{3X} + B x^2)}$
The find $P =$
 $P = \frac{Y}{(\frac{D^2}{2+9} + 3^2)}$
Refer $r = \sin 3x \cos 4x$
 $r = \frac{1}{2} [\sin (3x + 2x) + 5\sin (\cdot3x - 3x)]$
 $r = \frac{1}{2} [\sin 5x + 5\sin x]$
 $r = \frac{1}{2} [\sin 5x + 5\sin x]$
 $P = \frac{1}{2} [\sin 5x + \sin x]$
 $P = \frac{1}{2} [\frac{1}{2^{2}+2^{2}+3} + \frac{1}{2^{2}} [\sin 5x + \sin x]$
 $r = \frac{1}{2} [\frac{1}{2^{2}+2^{2}+3} + \frac{1}{2^{2}} [\sin 5x + \frac{1}{2^{2}+2^{2}+3}]$
Refer $D^2 \to 0^2$
 $r = -1^2$
 $r = \frac{1}{2} [\frac{1}{2^{2}-4^{2}+3} + \frac{1}{2^{2}+2^{2}+3} + \frac{1}{2^{2}+2^{2}+3}]$
 $r = \frac{1}{2} [\frac{1}{2^{2}-4^{2}+3} + \frac{1}{2^{2}+2^{2}+3} + \frac{1}{2^{2}+2^{2}+3}]$

11-

Scanned by CamScanner

$$= \frac{1}{2} \left[\frac{-4 \cdot 2 + 22}{(-4 \cdot 2 - 22)} \frac{(\sin 5x)}{(-4 \cdot 2 - 22)} + \frac{1}{(-4 \cdot 2 + 22)} \frac{(4 \cdot 2 - 2)}{(4 \cdot 2 - 22)} \sin 2 \right]$$

$$= \frac{1}{2} \left[\frac{-4 \cdot 2}{(-4 \cdot 2 - 22)} \frac{(\sin 5x)}{(-4 \cdot 2 - 22)} + \frac{4 \cdot 23 \sin 2x}{(-4 \cdot 2 - 2)} \frac{(4 \cdot 2 - 2)}{(-4 \cdot 2 - 2)} \frac{(4 \cdot 2 - 2)}{(-4 \cdot 2 - 2)} \frac{(4 \cdot 2 - 2)}{(-4 \cdot 2 - 2)} \frac{(4 \cdot 2 - 2)}{(-4 \cdot 2 - 2)} \right]$$

$$= \frac{1}{2} \left[\frac{-20 \cdot \cos 5x + 22 \cdot 23 \sin 5x}{16 \cdot 2^2 - 4 \cdot 84} + \frac{4 \cdot \cos x}{16 \cdot 2^2 - 4 \cdot 4} \right]$$

$$= \frac{1}{2} \left[\frac{-20 \cdot \cos 5x + 22 \cdot 23 \sin 5x}{16 \cdot (-25) - 4 \cdot 84} + \frac{4 \cdot \cos x}{16 \cdot 2^2 - 4 \cdot 4} \right]$$

$$= \frac{1}{2} \left[\frac{-20 \cdot \cos 5x + 22 \cdot 23 \sin 5x}{16 \cdot (-25) - 4 \cdot 84} + \frac{4 \cdot \cos x}{16 \cdot 2^2 - 4 \cdot 4} \right]$$

$$= \frac{1}{2} \left[\frac{2 \left(\frac{-10 \cdot \cos 5x + 11 \sin 5x}{-844} + \frac{4 \cdot \cos x}{-25 \cdot 10^2 - 4} \right) \right]$$

$$= \frac{1}{2} \left[\frac{2 \left(\frac{-10 \cdot \cos 5x + 11 \sin 5x}{-444} + \frac{4 \cdot \cos x}{-54} \right) \right]$$

$$= \frac{1}{4} \frac{x}{2} \left[\frac{-10 \cdot \cos 5x + 11 \sin 5x}{-444} + \frac{2 \cos x - 5 \sin x}{-442} \right]$$

$$= \frac{1}{2} \frac{x}{2} \left[\frac{-10 \cdot \cos 5x + 11 \sin 5x}{-444} + \frac{2 \cos x - 5 \sin x}{-442} \right]$$

$$= \frac{1}{2} \frac{x}{2} \left[\frac{-10 \cdot \cos 5x + 11 \sin 5x}{-44} + \frac{2 \cos x - 5 \sin x}{-442} \right]$$

$$= \frac{1}{2} \left[\frac{-10 \cdot \cos 5x + 11 \sin 5x}{-444} + \frac{2 \cos x - 5 \sin x}{-442} \right]$$

$$= \frac{1}{2} \left[\frac{-10 \cdot \cos 5x + 11 \sin 5x}{-444} + \frac{2 \cos x - 5 \sin x}{-442} \right]$$

$$= \frac{1}{2} \left[\frac{-10 \cdot \cos 5x + 11 \sin 5x}{-44} + \frac{2 \cos x - 5 \sin x}{-442} \right]$$

$$= \frac{1}{2} \left[\frac{-10 \cdot \cos 5x + 11 \sin 5x}{-44} + \frac{2 \cos x - 5 \sin x}{-442} \right]$$

$$= \frac{1}{2} \left[\frac{-10 \cdot \cos 5x + 11 \sin 5x}{-44} + \frac{2 \cos x - 5 \sin x}{-442} \right]$$

$$= \frac{1}{2} \left[\frac{-10 \cdot \cos 5x + 11 \sin 5x}{-44} + \frac{2 \cos x - 5 \sin x}{-442} \right]$$

$$= \frac{1}{2} \left[\frac{-10 \cdot \cos 5x + 11 \sin 5x}{-42} + \frac{2 \cos 5x + 11 \sin 5x}{-442} \right]$$

Scanned by CamScanner

Mithod of Vorviation of Porameters
worlder
$$\frac{d^3y}{dt^2} + H^2y = x$$
.
 $C \cdot F = A \downarrow i + B \downarrow 2$
 $W = \downarrow_i \downarrow_2^2 - \downarrow_i^1 \downarrow_2$
 $A = \int_{-\frac{1}{4i}} \frac{-\frac{1}{42}x}{t^2 - t^2 + 2} dx$.
 $B = \int_{-\frac{1}{4i}} \frac{\frac{1}{4i}x}{t^2 - t^2 + 2} dx$.
 $B = \int_{-\frac{1}{4i}} \frac{\frac{1}{4i}x}{t^2 - t^2 + 2} dx$.
 $B = \int_{-\frac{1}{4i}} \frac{\frac{1}{4i}x}{t^2 - t^2 + 2} dx$.
 $B = \int_{-\frac{1}{4i}} \frac{\frac{1}{4i}x}{t^2 - t^2 + 2} dx$.
 $B = \int_{-\frac{1}{4i}} \frac{\frac{1}{4i}x}{t^2 - t^2 + 2} dx$.
 $B = \int_{-\frac{1}{4i}} \frac{\frac{1}{4i}x}{t^2 - t^2 + 2} dx$.
 $B = \int_{-\frac{1}{4i}} \frac{\frac{1}{4i}x}{t^2 - t^2 + 2} dx$.
 $B = \int_{-\frac{1}{4i}} \frac{\frac{1}{4i}x}{t^2 - t^2 + 2} dx$.
 $B = \int_{-\frac{1}{4i}} \frac{\frac{1}{4i}x}{t^2 - t^2 + 2} dx$.
 $B = \int_{-\frac{1}{4i}} \frac{\frac{1}{4i}x}{t^2 - t^2 + 2} dx$.
 $\frac{1}{3i} \frac{2^2}{t^2 + 1} \frac{1}{2} \frac{1}{t^2 - t^2 + 2} \frac{1}{t^2 - t^2 - t^2 - t^2 + 2} \frac{1}{t^2 - t^2 -$

5

Scanned by CamScanner

$$B = \int \frac{\frac{1}{W} \frac{1}{2}}{W} dx$$

$$= \int \frac{1}{W} \frac{1}{2} \frac{1}{W} dx$$

$$= \frac{1}{2} \int \frac{1}{W} \frac{1}{2} \frac{1}{W} \frac{1}{W$$

Scanned by CamScanner

$$(3x+2)^{2} D^{2} = 3\theta$$

$$(3x+2)^{2} D^{2} = 9\theta (\theta^{-1})$$

$$(3x+2)^{2} D^{2} = 9\theta (\theta^{-1})$$

$$(3x+2)^{2} D^{2} = 9\theta (\theta^{-1})$$

$$(3x+2)^{2} D^{2} = 4\theta (\theta^{-1})$$

$$(x+2)^{2} D^{2} = 4\theta (\theta^{-1})$$

$$(x+2$$

$$C.F = A \cdot e^{at} + B e^{-2t}$$

$$P.I = \frac{1}{\theta^{2} + \mu} \left[\frac{e^{at}}{2\pi} \right]$$

$$= \frac{1}{a\pi} \left[\frac{1}{\theta^{2} + \mu} \left[\frac{e^{at}}{2\pi} \right] \right]$$

$$= \frac{1}{a\pi} \left[\frac{1}{\theta^{2} + \mu} \left[\frac{e^{at}}{2\pi} \right] \right]$$

$$= \frac{1}{a\pi} \left[\frac{1}{\theta^{2} + \mu} \left[\frac{e^{at}}{2\pi} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{e^{at}}{2\pi} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{e^{at}}{2\pi} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{e^{at}}{2\pi} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{e^{at}}{2\pi} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{e^{at}}{2\pi} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{e^{at}}{2\pi} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{e^{at}}{2\pi} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{e^{at}}{2\pi} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{e^{at}}{2\pi} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{e^{at}}{2\pi} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{e^{at}}{2\pi} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{e^{at}}{2\pi} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{e^{at}}{2\pi} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{1}{2\pi} \left[\frac{e^{at}}{2\pi} \right] \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{1}{a^{2} + \mu} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{1}{a^{2} + \mu} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{1}{a^{2} + \mu} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{1}{a^{2} + \mu} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{1}{a^{2} + \mu} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{1}{a^{2} + \mu} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{1}{a^{2} + \mu} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{1}{a^{2} + \mu} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{1}{a^{2} + \mu} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{1}{a^{2} + \mu} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{1}{a^{2} + \mu} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{1}{a^{2} + \mu} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{1}{a^{2} + \mu} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{1}{a^{2} + \mu} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{1}{a^{2} + \mu} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{1}{a^{2} + \mu} \right] \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{a^{2} + \mu} \left[\frac{1}{$$

$$= \Lambda_{g}^{3} \log \left(3(1+2) + B_{g}^{2} + 2 \int \log \left(3(1+2) + \frac{1}{102} - \frac{1}{102} \log \left(3(1+2) + \frac{1}{102} + \frac{1}{102} - \frac{1}{102} \log \left(3(1+2) + \frac{1}{102} + \frac{1}{102} - \frac{1}{102} \log \left(3(1+2) + \frac{1}{102} + \frac{1}{102$$

$$P_{n}(x) = \frac{1}{a^{n} n \frac{1}{2}} \frac{d^{n}}{dx^{n}} (x^{2}-1)^{n} + \frac{1}{a^{n} n \frac{1}{2}} \frac{d^{n}}{dx^{n}} (x^{2}-1)^{n} + \frac{1}{2}$$

$$P_{0}(x) = L$$

$$P_{0}(x) = L$$

$$P_{1}(x) = \frac{1}{a} \frac{d}{dx} (x^{2}-1) = \frac{1}{2} (2x-p) = x.$$

$$P_{2}(x) = \frac{1}{a} \frac{d^{2}}{dx^{2}} (x^{2}-1)^{2}$$

$$= \frac{1}{a^{2}(2)} \frac{d^{2}}{dx^{2}} (x^{2}-1)^{2}$$

$$P_{2}(x) = \frac{1}{a} \frac{d^{2}}{dx^{2}} (x^{2}-1)^{2}$$

$$P_{2}(x) = \frac{1}{a} \frac{d^{2}}{dx^{2}} (x^{2}-1)^{2}$$

$$P_{2}(x) = \frac{1}{a} \frac{d^{2}}{dx^{2}} (x^{2}-1)^{2}$$

$$P_{3}(x) = \frac{1}{a^{2} 3!} \frac{d^{2}}{dx^{3}} (x^{2}-3x^{2}+1)$$

$$P_{3}(x) = \frac{1}{a^{2} 3!} \frac{d^{3}}{dx^{3}} (x^{2}-3x^{2}+3)$$

$$P_{4}(x) = \frac{1}{a} (35x^{4}-30x^{2}+3)$$

$$P_{5}(x) = \frac{1}{a} (x^{2}-5)^{2}$$

$$P_{5}(x) = \frac{1}{a} (x^{2}-1)^{2} x^{2} + 15x^{2}$$

$$P_{1}(x) = \frac{1}{a} (x^{2}-1)^{2} x^{2} + 15x^{2}$$

$$P_{2}(x) = \frac{1}{a} (x^{2}-1)^{2} x^{2} + 15x^{2}$$

$$P_{1}(x) = \frac{1}{a} (x^{2}-1)^{2} x^{2} + 15x^{2}$$

$$P_{1}(x) = \frac{1}{a} (x^{2}-1)^{2} x^{2} + 15x^{2}$$

$$P_{2}(x) = \frac{1}{a} (x^{2}-1)^{2} x^{2} + 15x^{2}$$

$$P_{1}(x) = \frac{1}{a} (x^{2}-1)^{2} x^{2} + 15x^{2}$$

$$P_{2}(x) = \frac{1}{a} (x^{2}-1)^{2} x^{2} + 15x^{2}$$

$$P_{2}(x) = \frac{1}{a} (x^{2}-1)^{2} x^{2} + 15x^{2}$$

$$P_{2}(x) = \frac{1}{a} (x^{2}-1)^{2} x^{2} + 15x^{2}$$

$$P_{1}(x) = \frac{1}{a} (x^{2}-1)^{2} x^{2} + 15x^{2}$$

$$P_{2}(x) = \frac{1}{a} (x^{2}-1)^{2} x^{2} + 15x^{2}$$

$$P_{2}(x) = \frac{1}{a} (x^{2}-1)^{2} x^{2} + 15x^{2}$$

$$P_{2}(x) = \frac{1}{2} (3x^{2}-1) \qquad \text{alternative intervals} \qquad \text{intervals} \qquad \text{int$$

1990

ji.

1

$$= \frac{2}{5} P_{3}(x) - \frac{10}{3} P_{3}(x) + \frac{3}{5}x + \frac{1}{3}.$$

$$= \frac{2}{5} P_{3}(x) - \frac{10}{3} P_{2}(x) + \frac{3}{5} P_{1}(x) + \frac{1}{3} P_{0}x.$$
Since:... $P_{1}(x) = x$, $P_{0}(x) = 1$.
Since:... $P_{1}(x) = x$, $P_{0}(x) = 1$.
Since:... $P_{1}(x) = x$, $P_{0}(x) = 1$.
Subscience:... $P_{1}(x) = x$, $P_{0}(x) = 1$.
Subscience:... $P_{1}(x) = \frac{1}{2} [\frac{3}{35}x^{2} + 3x^{2} + 5x^{2} - 2.$ in terms of $\frac{1}{2} P_{2}(x) = \frac{1}{2} [\frac{3}{2}x^{2} - 1]$
Subscience:... $P_{0}(x) = \frac{1}{5} [\frac{3}{35}x^{4} - 30x^{2} + 3]$.
Subscience:... $P_{0}(x) = \frac{1}{5} [\frac{3}{5}x^{4} - 30x^{2} + 3]$.
Subscience:... $P_{0}(x) = \frac{1}{5} [\frac{3}{5}x^{4} - 30x^{2} + 3]$.
Subscience:... $P_{0}(x) + \frac{1}{3}0x^{2} - 3 = 35x^{4} + \frac{1}{5}$.
Subscience:... $\frac{1}{2} P_{1}(x) + 30x^{2} - 3 = 35x^{4} + \frac{1}{5}$.
Subscience:... $\frac{1}{2} P_{1}(x) + 30x^{2} - 3 = 35x^{4} + \frac{1}{5}$.
Subscience:... $\frac{1}{2} P_{1}(x) + \frac{1}{3}0x^{2} - 3] + 3x^{2} - x^{2} + 5x^{2} - 2$.
Subscience:... $\frac{1}{2} [\frac{1}{5} P_{1}(x) + \frac{3}{5}0x^{2} - 3] + 3x^{2} - x^{2} + 5x^{2} - 2$.
Subscience:... $\frac{1}{2} P_{1}(x) + \frac{3}{25} x^{2} - \frac{3}{25} + \frac{1}{5} P_{3}(x) + \frac{3}{5} x^{3}$.
Subscience:... $\frac{1}{2} P_{1}(x) + \frac{3}{5} P_{2}(x) + (\frac{3}{25} - 1)x^{2} + (\frac{3}{5} + 5)x^{2} - \frac{1}{2}$.
Subscience:... $\frac{1}{35} P_{1}(x) + \frac{5}{5} P_{3}(x) + (\frac{3}{25} - 1)x^{2} + (\frac{3}{5} + 5)x^{2} - \frac{1}{35}$.
Subscience:... $\frac{1}{35} P_{1}(x) + \frac{1}{5} P_{3}(x) - \frac{5}{35} (\frac{2}{3} P_{2}(x) + \frac{1}{3}) + \frac{3}{5} x - \frac{13}{55}$.
Subscience:... $\frac{3}{35} P_{1}(x) + \frac{1}{5} P_{3}(x) - \frac{5}{35} (\frac{2}{3} P_{2}(x) + \frac{1}{3}) + \frac{3}{5} x - \frac{13}{55}$.
Subscience:... $\frac{3}{35} P_{1}(x) + \frac{1}{5} P_{3}(x) - \frac{5}{35} (\frac{2}{3} P_{2}(x) + \frac{1}{3}) + \frac{3}{5} x - \frac{13}{55}$.
Subscience:... $\frac{3}{35} P_{1}(x) + \frac{1}{5} P_{3}(x) - \frac{5}{35} (\frac{2}{3} P_{2}(x) + \frac{1}{3}) + \frac{3}{5} x - \frac{13}{55}$.

$$= \frac{g}{35} P_{44}(x) + \frac{b}{5} P_{3}(x) - \frac{1}{-1} \left(\frac{2}{3}\right) P_{2}(x) - \frac{1}{-1} \frac{1}{3}$$

$$= \frac{g}{35} P_{4+}(x) + \frac{b}{5} P_{3}(x) + \frac{2}{21} P_{2}(x) + \frac{34}{5} P_{1}(x) - \frac{1}{35} \left(\frac{1}{21} + \frac{13}{35}\right) \cdot (1)$$

$$= \frac{g}{35} P_{4+}(x) + \frac{b}{5} P_{3}(x) - \frac{2}{21} P_{2}(x) + \frac{34}{5} P_{1}(x) - \frac{1}{15} \left(\frac{1}{21} + \frac{13}{35}\right) \cdot (1)$$

$$= \frac{g}{35} P_{4+}(x) + \frac{b}{5} P_{3}(x) - \frac{2}{21} P_{2}(x) + \frac{34}{5} P_{1}(x) - \frac{434}{5} P_{1}(x) - \frac{43$$

$$\begin{aligned} \mathcal{T}_{n}(x) &= \sum_{k=0}^{n} \frac{(-1)^{k}}{k! \left[\left(-n + k + 1 \right) \left[\left(\frac{x}{2} \right)^{-n+2k} \right] \right]} \\ \text{when } n \text{ B an integrap, two function } \mathcal{T}_{n}(x) \notin \mathcal{T}_{n}(x) \\ \mathcal{T}_{n}(x) &= (-1)^{n} \mathcal{T}_{n}(x). \\ \end{array}$$
Find $\mathcal{T}_{0}(x) \notin \mathcal{F}_{n}(x) = \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k! r (n+R+1)} \left(\frac{x}{2} \right)^{n+2k} \\ \mathcal{T}_{n}(x) &= \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k! r (n+R+1)} \left(\frac{x}{2} \right)^{2k} \\ = \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k! r (k+1)} \left(\frac{x}{2} \right)^{2k} \\ = \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k! r (k+1)} \left(\frac{x}{2} \right)^{2k} \\ = \frac{2}{2} \left(\frac{(-1)^{k}}{k! r (k+1)} \right)^{2k} \left(\frac{(-1)^{2k}}{2} \right)^{2k} \\ \mathcal{T}_{n}(x) &= \frac{2}{2} \left(\frac{(-1)^{k}}{k! r (k+1)} \right)^{2k} \left(\frac{(-1)^{2k}}{2} \right)^{2k} \\ \mathcal{T}_{n}(x) &= \frac{2}{2} \left(\frac{(-1)^{k}}{k! r (k+1)} \right)^{2k} \left(\frac{(-1)^{2k}}{2} \right)^{2k} \\ \mathcal{T}_{n}(x) &= \frac{2}{2} \left(\frac{(-1)^{k}}{k! r (k+1)} \right)^{2k} \left(\frac{(-1)^{2k}}{2} \right)^{2k} \\ \mathcal{T}_{n}(x) &= \frac{2}{2} \left(\frac{(-1)^{k}}{k! r (k+1)} \right)^{2k} \left(\frac{(-1)^{2k}}{2} \right)^{2k} \\ \mathcal{T}_{n}(x) &= \frac{2}{2} \left(\frac{(-1)^{k}}{k! r (k+1)} \right)^{2k} \left(\frac{(-1)^{2k}}{2} \right)^{2k} \\ \mathcal{T}_{n}(x) &= \frac{2}{k! r (k+1)} \left(\frac{(-1)^{k}}{2} \right)^{2k} \left(\frac{(-1)^{k}}{2} \right)^{2k} \\ \mathcal{T}_{n}(x) &= \frac{2}{k! r (k+1)} \left(\frac{(-1)^{k}}{2} \right)^{2k} \left(\frac{(-1)^{k}}{2} \right)^{2k} \\ \mathcal{T}_{n}(x) &= \frac{2}{k! r (k+1)} \left(\frac{(-1)^{k}}{2} \right)^{2k} \left(\frac{(-1)^{k}}{2} \right)^{2k} \\ \mathcal{T}_{n}(x) &= \frac{2}{k! r (k+1)} \left(\frac{(-1)^{k}}{2} \right)^{2k} \left(\frac{(-1)^{k}}{2} \right)^{2k} \\ \mathcal{T}_{n}(x) &= \frac{2}{k! r (k+1)} \left(\frac{(-1)^{k}}{2} \right)^{2k} \left(\frac{(-1)^{k}}{2} \right)^{2k} \\ \mathcal{T}_{n}(x) &= \frac{2}{k! r (k+1)} \left(\frac{(-1)^{k}}{2} \right)^{2k} \left(\frac{(-1)^{k}}{2} \right)^{2k} \left(\frac{(-1)^{k}}{2} \right)^{2k} \\ \mathcal{T}_{n}(x) &= \frac{2}{k! r (k+1)! r ($

$$= \frac{1}{1} \left(\frac{\pi}{2} - \frac{1}{(12)} \left(\frac{\pi}{2}\right)^{3} + \frac{(-1)^{2}}{2!(2+1)!} - \left(\frac{\pi}{2}\right)^{5} \right)$$

$$= \frac{\pi}{2} - \frac{\pi}{2!} \left(\frac{\pi}{2}\right)^{3} + \frac{1}{2!3!} \left(\frac{\pi}{2!}\right)^{5} \cdots$$

$$T_{1}(x) = \frac{\pi}{2} - \frac{\pi^{3}}{2!4!} + \frac{\pi^{5}}{2!4!5!}$$

$$T_{0}(0) = 1$$

$$T_{1}(x) = \frac{\pi}{2} - \frac{\pi^{3}}{2!4!} + \frac{\pi^{5}}{2!4!5!}$$

$$T_{0}(0) = 1$$

$$T_{1}(x) = \frac{\pi}{2} - \frac{(-1)^{K}}{k! \Gamma(n+k+1)!} \left(\frac{\pi}{2}\right)^{n+2K}$$

$$r_{1}(x) = \frac{\pi}{2} \left(\frac{\pi}{2!}\right)^{1} + \frac{\pi}{2!4!5!}$$

$$T_{1}(x) = \frac{\pi}{2} \left(\frac{\pi}{2!}\right)^{1} + \frac{\pi}{2!4!5!} \left(\frac{\pi}{2!}\right)^{1} + \frac{\pi}{2!4!5!}$$

$$= \frac{\pi}{2} \left(\frac{\pi}{2!}\right)^{1} + \frac{\pi}{2!5!} \left(\frac{\pi}{2!}\right)^{1} + \frac{\pi}{2!5!} \left(\frac{\pi}{2!5!}\right)^{1} + \frac{\pi}{2!5!} \left(\frac{\pi}{2!5!}\right)^{1$$

$$= \left(\frac{\tau}{2}\right)^{1/2} \left[\frac{1}{\frac{1}{2}} \frac{1}{\Gamma(1/2)} \frac{1}{k_{2}} \frac{1}{\frac{\pi}{2}} \frac{1}{2} \Gamma(1/2)} \left(\frac{\pi}{2}\right)^{k_{1}} \cdots \right]$$

$$= \frac{1\pi}{12\Gamma(1/2)} \left[\frac{2}{1!} - \frac{3\pi^{2}}{3!} + \frac{3\pi^{2}}{5!} \cdots \right] \left[\Gamma(1/2)\left(\frac{\pi}{2}\right)^{k_{1}} \cdots \right]$$

$$= \frac{1\pi}{12\Gamma(1/2)} \cdot \frac{2}{\pi} \left[\frac{\pi}{1!} - \frac{\pi^{3}}{3!} + \frac{\pi^{5}}{5!} \cdots \right] \left[\Gamma(1/2)\frac{\pi}{3!}\right]$$

$$= \frac{1\pi}{\sqrt{2}!} \cdot \frac{12 \cdot 17}{17} = \sqrt{\frac{2}{\pi\pi}} S(nx) \cdot \frac{\Gamma(n+1) - n\Gamma(n)}{\Gamma(\frac{3}{2})\Gamma(\frac{1}{2}) + 1} = \frac{1}{2} \cdot \frac{1}{2} \Gamma(\frac{1}{2})$$

$$= \frac{1}{\sqrt{2}!} \cdot \frac{1}{\pi} \cdot \frac{1}{\sqrt{2}!} = \sqrt{\frac{2}{\pi\pi}} S(nx) \cdot \frac{\Gamma(n+1) - n\Gamma(n)}{\Gamma(\frac{3}{2})\Gamma(\frac{1}{2}) = \frac{1}{2} \cdot \frac{1}{2} \Gamma(\frac{1}{2}) = \frac{1}{2} \cdot \frac{1}{2} \Gamma(\frac{1}{2}) = \frac{1}{2} \cdot \frac{1}{2} \Gamma(\frac{1}{2}) = \frac{1}{2} \cdot \frac{1}{2} \Gamma(\frac{1}{2})$$
Solve: $p = \tan\pi\pi = \frac{1}{2}$

$$= \sqrt{2} \cdot \frac{(-1)^{k}}{k! \Gamma(n+k+1)} \left(\frac{\pi}{2}\right)^{n+2k} \cdot \frac{\pi}{k!}$$

$$= \frac{\pi}{1} \cdot \frac{\pi}{k!} \cdot \frac{(-1)^{k}}{k! \Gamma(n+k+1)} \left(\frac{\pi}{2}\right)^{n+2k} \cdot \frac{\pi}{k!}$$

$$= \frac{\pi}{1} \cdot \frac{\pi}{k!} \cdot \frac{(-1)^{k}}{k! \Gamma(n+k+1)} \left(\frac{\pi}{2}\right)^{-1/2} + 2k$$

$$= \frac{\pi}{k! \pi} \cdot \frac{(-1)^{k}}{k! \Gamma(n+k+1)} \left(\frac{\pi}{2}\right)^{-1/2} + 2k$$

$$= \frac{\pi}{k! \pi} \cdot \frac{(-1)^{k}}{k! \Gamma(n+k+1)} \left(\frac{\pi}{2}\right)^{-1/2} + \frac{\pi}{k!}$$

$$= \frac{1}{\Gamma(1/2)} \left(\frac{\pi}{2}\right)^{-1/2} - \frac{1}{1! \pi} \cdot \frac{(\pi)^{3/2}}{2! \pi! (5/2)} \left(\frac{\pi}{2}\right)^{3/2} + \frac{1}{2! \Gamma(5/2)} \left(\frac{\pi}{2}\right)^{3/2} + \frac{1}{2! \Gamma(5/2)} \left(\frac{\pi}{2}\right)^{-1/2}$$

$$= \left(\frac{x}{2}\right)^{-1/2} \left[\frac{1}{r(1/a)} - \frac{1}{1/2} \left(\frac{x}{2}\right)^{2} + \frac{1}{2 \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot r(1/a)} \left(\frac{x}{2}\right)^{2} + \frac{1}{2 \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot r(1/a)} \right]$$

$$= \left(\frac{x}{2}\right)^{1/2} \left[1 - \frac{x^{2}}{\frac{1}{2} \cdot x} + \frac{1}{2 \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot y} + \frac{x}{\frac{1}{2} \cdot \frac{1}{2} - \frac{x}{2}} \right]$$

$$= \frac{\sqrt{a}}{\sqrt{x}} \left[1 - \frac{x^{2}}{2!} + \frac{x}{4!} \cdot \cdots \right] \left[\frac{r(n+1)}{r(3|a|} = r(\frac{1}{2}+1) - \frac{1}{2!} + \frac{r(1/a)}{4!} \right]$$

$$= \frac{\sqrt{a}}{\sqrt{x}} \left[\frac{1}{\sqrt{x}} + \frac$$

$$\frac{1}{\sqrt{11}} \begin{bmatrix} \alpha^{n} J_{n}(x) \end{bmatrix} = \sum_{k=0}^{\infty} (-1)^{k} (2n+2k) x^{2n+2k-1} \\ \frac{1}{\sqrt{2n+2k-1}} \begin{bmatrix} x^{2n} - x^{n} \end{bmatrix} \\ = \sum_{k=0}^{\infty} x^{n} \frac{(-1)^{k} g(n \neq k) x^{n+2k-1}}{g(n \neq k) x^{n+2k-1}} \\ = x^{n} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k! r(n+k)} \begin{bmatrix} \frac{1}{\sqrt{2}} \end{bmatrix}^{n+2k-1} \\ = x^{n} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k! r(n+k)} \begin{bmatrix} \frac{1}{\sqrt{2}} \end{bmatrix}^{n+2k-1} \\ = x^{n} \int_{n-1}^{\infty} \frac{(-1)^{k}}{k! r(n+k+1)} \begin{bmatrix} \frac{1}{\sqrt{2}} \end{bmatrix}^{n-1+2k} \\ = x^{n} \int_{n-1}^{\infty} (x) \\ \vdots \frac{1}{dx} \begin{bmatrix} x^{n} J_{n}(x) \end{bmatrix} = x^{n} J_{n-1}(x) \\ \vdots \vdots \vdots \vdots \vdots x^{n} J_{n-1}(x) \\ \vdots \vdots \vdots x^{n} J_{n}(x) \end{bmatrix} = x^{n} J_{n-1}(x) \\ \vdots \vdots \vdots \vdots x^{n} J_{n-1}(x) \\ \vdots \vdots \vdots x^{n} J_{n}(x) \end{bmatrix} = -x^{n} J_{n+1}(x)$$

Proove that

$$\frac{d}{dx} \left[x J_{n} (x) J_{n+1} (x) \right] = x \left[J_{n}^{2} (x) - J_{n+1}^{2} (x) \right]$$

Proof

LHS

$$\frac{d}{dx} \left[x J_{n} (x) J_{n+1} (x) \right] = \frac{d}{dx} \left[x^{n-n} x^{!} J_{n} (x) \cdot J_{n+1} (x) \right]$$

$$= \frac{d}{dx} \left[x^{-n} J_{n} (x) \cdot x^{n+1} J_{n+1} (x) \right]$$

$$= x^{-n} J_{n} (x) \frac{d}{dx} \left[x^{n+1} J_{n+1} (x) \right] + x^{n+1} J_{n+1} (x).$$

$$\frac{d}{dx} \left[x^{-n} J_{n} (x) \right] \rightarrow 0$$

Now, we know that

$$\frac{d}{dx} \left[x^{n} J_{n} (x) \right] = x^{n} J_{n-1} (x).$$

change n to n+1

$$\frac{d}{dx} \left[x^{n+1} J_{n+1} (x) \right] = x^{n+1} J_n (x)$$

1 - h

Also we know that

$$\frac{d}{dx} \left[x^{-n} J_n(x) \right] = -x^{-n} J_{n+1}(x)$$

: From O,

$$\frac{d}{dx} \left[\chi J_n(\chi) J_{n+1}(\chi) \right] = \chi^{-n} J_n(\chi) \chi^{n+1} J_n(\chi) + \chi^{n+1} J_{n+1}(\chi) \left[-\chi^{-n} J_{n+1}(\chi) \right]$$

Scanned by CamScanner

 $= x^{-n+n+1} J_n^2 (x) - x^{n+1-n} J_{n+1}^2 (x)$ $= \alpha J_n^2 (\alpha) - \alpha J_{n+1}^2 (\alpha)$ $= \chi \left[J_n^2(\chi) - J_{n+1}^2(\chi) \right].$ - y - in is hard of a mark

UNIT-2 ODE OF HIGHER ORDERS

UNIT-2 ODE OF HIGHER ORDERS					
Questions	opt1	opt2	opt3	opt4	Answer
An equation involving one dependent variable and its derivatives with respect to one independent variable is called	Ordinary Differential Equation	Partial Differential Equation	Difference Equation	Integral Equation	Ordinary Differential Equation
The roots of the Auxillary equation of Differential equation, (D^2-2D+1)y=0	(0 1)	(3 2)	(1 2)	(11)	(1 1)
are The order of the (D^2+D)y=0 is	2	1	0	-1	2
The roots of the Auxillary equation of Differential equation, (D^4-1)y=0 are	(1 1 1 1)	(1 1 -1 1)	(1 -1 1 -1)	(1 -1 i -i)	(1 -1 i -i)
he degree of the (D^2+2D+2) y=0 is	1	3	0	2	1
he particular integral of (D^2-2D+1)y=e^x is	((x^2)/2) e^x	(x/2) e^x	((x^2)/4) e^x	((x^3)/3) e^x	((x^2)/2) e^x
he roots of the Auxillary equation of Differential equation (D^2-4D+4)y=0 are	(2 1)	(2 2)	(2 -2)	(-2 2)	(2 2)
he P.I of the Differential equation (D^2 -3D+2)y=12 is	1 / 2	1 / 7	6	10	6
the roots of the auxilliary equation are real and distinct then the C.F is	Ae^(m1x)+Be^(m2x)	(A+Bx) e^ (m1x)	e^(αx) (Acosβx+Bsinβx)	(A+Bx) e^ (m2x)	Ae^(m1x)+Be^(m 2x)
the roots of the auxilliary equation are real and equal then the C.F is	Ae^(m1x)+Be^(m2x)	e^(αx) (Acosβx+Bsinβx)	(A+Bx) e^ (mx)	(A+Bx) e^ (-mx) e^(αx)	(A+Bx) e^ (mx)
the roots of the auxilliary equation are complex then the C.F is	Ae^(m1x)+Be^(m2x)	e^(-αx) (Acosβx+Bsinβx)	(A+Bx) e^ (mx)	(Acosβx+Bsinβx)	e^(αx) (Acosβx+Bsinβx)
f(D)=D^2 -2, (1/f(D))e^2x=	(1 / 2) e^x	(1 / 4) e^2x	(1 / 2) e^(-2x)	(1 / 2) e^2x	(1 / 2) e^2x
f(D)=D^2 +5, (1/f(D)) sin 2x =	sin x	cos x	sin 2x	-sin 2x	sin 2x
he particular integral of (D^2 +19D+60)y= e^x is	(-e^(-x))/80	(e^(-x))/80	(e^x)/80	(-e^x)/80	(e^x)/80
he particular integral of (D^2+25) y= cosx is	(cosx)/24	(cosx)/25	(-cosx)/24	(-cosx)/25	(cosx)/24
he particular integral of (D^2+25) y= sin4x is	(-sin4x)/9	(sin4x)/9	(sin4x)/41	(-sin4x)/41	(sin4x)/9
he particular integral of (D^2+1) y= sinx is	xcosx/2	(-xcosx)/2	(-xsinx)/2	xsinx/2	(-xcosx)/2
he particular integral of (D^2 -9D+20)y=e^(2x) is	e^(2x) /6	e^(2x) /(-6)	e^(2x) /12	e^(2x) /(-12)	e^(2x) /6
he particular integral of (D^2-1) y= sin2x is	(-sin2x)/5	sin2x/5	sin2x/3	(-sin2x)/3	(-sin2x)/5
he particular integral of (D^2+2) y= cosx is	(-cosx)	(-sinx)	cosx	sinx	cosx
he particular integral of (D^2- 7D-30)y= 5 is	(1/30)	(-1/30)	(1/6)	(-1/6)	(-1/6)
he particular integral of (D^2- 12D-45)y= -9 is	(-1/5)	(1/5)	(1/45)	(-1/45)	(1/5)
he particular integral of (D^2- 11D-42)y=21 is	(-1/42)	(1/42)	(1/2)	(-1/2)	(-1/2)
ne particular integral of (D^2+1) y= 2 is	1	2	-1	-2	2
olve (D^2+2D+1) y=0	y=(AX+B)e^(-1)x	y=(AX+B)e^(-2)x	y=(AX^2+B)e^(- 1)x	y=(AX-B)e^(-1)x	y=(AX+B)e^(-1)x
ne of a PDE is that of the highest order derivative occurring in it	degree	power	order	ratio	order
ne degree of the a PDE isof the higest order derivative	power	ratio	degree	order	power
F+P.I is called solution	singular	complete	general	particular	general
articular integral is the solution of	f(a,b)=F(x,y)	f(1,0)=0	[1/f(D,D')]F(x,y)	f(a,b)=F(u,v)	[1/f(D,D')]F(x,y)
/hich is independent varible in the equation z= 10x+5y	x&y	z	x,y,z	x alone	x&y
/hich is dependent varible in the equation z=2x+3y	x	z	У	x&y	z
(1/2) (x)=	sqrt(2/pi) cosx	sqrt(4/pi) cosx	sqrt(2/pi) sinx	sqrt(4/pi) sinx	sqrt(2/pi) cosx
_(1/2) (x)=	sqrt(2/pi) cosx	sqrt(4/pi) cosx	sqrt(2/pi) sinx	sqrt(4/pi) sinx	sqrt(2/pi) sinx
1-x^2)d^y/dx^2-2xdy/dx+n(n+1)y=0 is called	Legendre's Equation	Cauchy's equation	Partial Equation	Bessel's Equation	Legendre's Equation

-x -10 Fishyof UNIT-3 Portial Differentitional equation. (P.D.E) Application of P. D.E * P.D.E is an important nothernatical tool for solving engineering Problem in control system, Bio technology, chemical engineering, robotis Muran Tan etc. * A Portral Differential equation is one

which is involve Partial Dormatives. The order of the PDE is the order of the higher derivative

occurs en et.

Notation:

 $\frac{1}{2} = \frac{1}{2} = \frac{1}$

Scanned with CamScanner

a attached

Lineon Portful differential oquation

* A P. D. E said to be linewon if, it is one the first degree in the dependent vooriable and its Portial dorivatives.

* It does not contain the Product of dependent voriable and either of its Partial

derivatives ;

» It does not contain toranscendental

function. Ex: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{1}{2} \frac{(\pi)y}{\pi m}$

A PDE which is not linear EX: $\left(\frac{\partial f}{\partial x}\right)^3 + \frac{\partial f}{\partial t} = 0$

Solution of standoord types of First order P.D.E Type 1:

F(P,q) = 0

1. solve JP+Ja =1

Given JP+Jq =1 -> (1)

It is of the type F(P,q) = 0

Let
$$z = ax + by + c \rightarrow \textcircled{3}$$
 be the solution
 $d \bigcirc 0$
Diff $\textcircled{3}$ Postfieldy with maped to x
 $dz = a^{-1} (\Rightarrow) (p = a^{-1})$
 $dz = a^{-1} (a^{-1}) ($

.

Type 2:
Idainant's form
$$z = Px + qy + F(P_1q)$$

solve $z = Px + qy + P^2 - q^2 \rightarrow 0$.
this is to the form $z = Px + qy + F(q + F(P_1q))$
this is to the form $z = Px + qy + F(q + F(P_1q))$
that $z = ax + by + c \rightarrow 0$ is the file solution of the
let $z = ax + by + c \rightarrow 0$ is the solution of the
Diff @ Pontially with respect to x .
 $\frac{dz}{dx} = a = P = a$
 $\frac{dz}{dx} = b = q = b$
Sub $P = a$ and $q = b$ in 0 is the
 $z = ax + by + a^2 - b^2 \rightarrow 0$.
Thus is the complete solution.
To find the singular integral.
Diff ③ Pontially with respect to x .
 $\frac{dz}{dx} = a + by + a^2 - b^2 \rightarrow 0$.
Thus is the complete solution.
 $To find the singular integral.
Diff ③ Pontially with respect to a .
 $\frac{dz}{da} = a + b + aa$
 $\frac{dz}{da} = a + a$
 $\frac{dz}{da} = a + a$
 $\frac{dz}{da} = a + a$
 $\frac{dz}{da} = a + a$$

Diff (2) Portfieldly with ruped to b.

$$\frac{dz}{db} = 9 + 0 - 2b$$

$$\frac{dz}{db} = 0 \implies \#p \quad 9 - 2b = 0$$

$$y = 2b$$

$$\frac{dy}{db} = 0 \implies yp \quad 9 - 2b = 0$$

$$y = 2b$$

$$\frac{dy}{db} = 0 \implies b = \frac{dy}{db}$$
Sub a q b in (2)

$$Z = -\frac{x}{2} \cdot x + \frac{dy}{2} \quad y + \left(-\frac{x}{2}\right)^2 - \left(\frac{9}{2}\right)^2$$

$$Z = -\frac{x^2}{2} + \frac{y^2}{2} - \frac{x^2}{4} - \frac{-y^2}{4}$$

$$Z = \frac{d-yx^2 + 2y^2 + x^2 - y^2}{4}$$

$$Z = \frac{d-yx^2 + 2y^2 + x^2 - y^2}{4}$$

$$Z = -x^2 + \frac{y^2}{2} - \frac{x^2}{4} - \frac{y^2}{4}$$

$$Z = -x^2 + \frac{y^2}{2} - \frac{x^2}{4} - \frac{y^2}{4}$$

$$Z = -x^2 + \frac{y^2}{2} - \frac{x^2}{4} - \frac{y^2}{4}$$

$$Z = -x^2 + \frac{y^2}{2} - \frac{x^2}{4} - \frac{y^2}{4}$$

$$Z = -x^2 + \frac{y^2}{2} - \frac{x^2}{4} - \frac{y^2}{4}$$

$$Z = -x^2 + \frac{y^2}{2} - \frac{x^2}{4} - \frac{y^2}{4}$$

$$Z = -x^2 + \frac{y^2}{2} + \frac{x^2 + y^2}{4} - \frac{y^2}{4}$$

$$Z = -x^2 + \frac{y^2}{4} + \frac{y^2}{4} - \frac{y^2}{4}$$

$$Z = -x^2 + \frac{y^2}{4} + \frac{y^2}$$

$$\begin{aligned} \left\{ (z, p, q) = 0 \quad \rightarrow 0 \right\} \\ \text{Let } u = x + ay \quad \text{be the solution } e_{0} \\ \Rightarrow \quad u = x + ay \\ \quad \frac{\partial u}{\partial x} = 1 ; \quad \frac{\partial u}{\partial y} = a \\ \frac{\partial u}{\partial x} = \frac{dz}{\partial u} \cdot \frac{du}{\partial x} = \frac{\partial z}{\partial u} \cdot 1 \\ \varphi = \frac{dz}{\partial y} = \frac{dz}{du} \cdot \frac{du}{\partial y} = \frac{dz}{\partial u} \cdot a \\ \hline P = \frac{dz}{\partial y} = \frac{dz}{du} \cdot \frac{du}{\partial y} = \frac{dz}{\partial u} \cdot a \\ \hline P = \frac{dz}{\partial y} = \frac{dz}{du} \cdot \frac{du}{\partial y} = \frac{dz}{\partial u} \cdot a \\ \hline P = \frac{dz}{du} + \frac{du}{\partial y} = \frac{dz}{\partial u} \cdot a \\ \hline P = \frac{dz}{du} + \frac{du}{\partial y} = \frac{dz}{du} = \frac{dz}{du} \\ \hline P = \frac{dz}{du} + \frac{du}{dy} = \frac{dz}{du} = \frac{dz}{du} \\ \hline P = \frac{dz}{du} + \frac{du}{dy} = \frac{dz}{du} = \frac{dz}{du} \\ \hline P = \frac{dz}{du} + \frac{du}{dy} = \frac{dz}{du} \\ \hline P = \frac{dz}{du} + \frac{du}{dy} = \frac{dz}{du} \\ \hline P = \frac{dz}{du} + \frac{dz}{du} = \frac{dz}{du} \\ \hline P = \frac{dz}{du} + \frac{dz}{du} = \frac{dz}{du} \\ \hline P = \frac{dz}{du} = \frac{dz}{du} = \frac{dz}{du} \\ \hline P = \frac{dz}{du} = \frac{dz}{du} = \frac{dz}{du} \\ \hline P = \frac{dz}{du} = \frac{dz}{du} = \frac{dz}{du} \\ \hline P = \frac{dz}{du} = \frac{dz}{du} = \frac{dz}{du} \\ \hline P = \frac{dz}{du} = \frac{dz}{du} = \frac{dz}{du} \\ \hline P = \frac{dz}{du} = \frac{dz}{du} = \frac{dz}{du} \\ \hline P = \frac{dz}{du} = \frac{dz}{du} = \frac{dz}{du} \\ \hline P = \frac{dz}{du} = \frac{dz}{du} = \frac{dz}{du} \\ \hline P = \frac{dz}{du} = \frac{dz}{du} = \frac{dz}{du} \\ \hline P = \frac{dz}{du} \\ \hline P = \frac{dz}{du} = \frac{dz}{du} \\ \hline P = \frac{dz}{$$

$$a \frac{dz}{du} = az - 1$$

$$a \frac{dz}{dz} = du$$

$$a \frac{dz}{az - 1} = du$$

$$az - 1$$
Tutzgrading on both sides
$$\int du = \int \frac{a \frac{dz}{az - 1}}{az - 1}$$

$$u = (u \pm \log (az - 1) + \log c$$

$$x + ay = \log c (az - 1)$$

$$-x = 0$$

$$first ender from the first differential equations
are separable equation:
First ender from the (u + 1) = to (u + 1)$$

$$f_1(z_1 p) = f_2(y_1 q_1) + (u + 1)$$

$$f_2(z_1 k) = p + f_2(y_1 q_2) + (u + 1)$$

$$dz = \frac{dz}{dx} + \frac{dz}{dy}$$

$$dz = t_1(u(k)) du + t_2(y_1 k) dy$$

 $P-q = x^2 + y^2$ Solve: $p_{-} x^2 = q_{+} y^2$ It is of the form fi(x, P) = f2 (y, q). $P - x^2 = K$; $q + y^2 = K$ $P = K + \chi^2$; $q = K - y^2$ dz = Pdx + q dy $dz = (K + \alpha^2) d\alpha + (K - \gamma^2) dy$ Integrating on both sides. $\int dz = \int (k + x^{2}) dx + \int (k - y^{2}) dy$ $x_{1} = \frac{1}{2} + \frac{1}{2$ $z = K(x+y) + \frac{x^3-y^3}{3} + C \cdots$ Red 31 1311) = 1 - X - 1 = 1 Lagrange's linear equation * Pp+Qq = R. is known as Lagrange's equation where P, R, R are the functions of X, Y, Z. To solve this it is enough to solve the subsidiary equation.

$$\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$$

Auxiliary

of Methods of Birouping of Method of Multipliers.

Lethods of birouping

$$\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R} = \frac{dz}{R}$$

$$u(x,y) = a; \quad v(x,y) = b$$

$$\phi(u,v) = b.$$

Solve

$$P_{x+Qy}$$
 $P_{x+Qy} = z_{i} = (v, u) q$

soln:

$$P=\chi$$
; $Q=y$; $R=Z$

· risilgitleuts do chartlet

r

Subsidiony equation is

$$\frac{dx}{dx} = \frac{dy}{dy} = \frac{dz}{dz} = \frac{dy}{dz} = \frac{dz}{dz}$$

$$P = Q = R$$

$$\log x - \log y = \log c 1$$

$$\log (x/y) = c 1$$

$$\frac{\pi}{y} = 4$$

$$\left[u = \frac{\pi}{y}\right]$$

$$\left[u = \frac{\pi}{y}\right]$$

$$\int \frac{d\pi}{x} = \int \frac{dz}{z}$$

$$\log x = \log z + \log C_{2}$$

$$\log x = \log z + \log C_{2}$$

$$\log x - \log z = \log C_{2}$$

$$\log \left(\frac{\pi}{z}\right) = \log C_{2}$$

$$\left[\log \left(\frac{\pi}{z}\right) = \log C_{2}$$

$$\left[\frac{\pi}{z} = \frac{c_{2}}{c_{1}}\right]$$

$$\left[\frac{v = \pi}{z}\right]$$

constant of x, y, Z. May be

¥

* It is possible to choose I, min such that lp+mQ+nR=0 then outomatically denominator ldx+mdy+ndz, =0. The Multiplier. zero are lograngian Hultiplier Limin

$$\frac{1}{x} dx + \frac{1}{y} dy + \frac{1}{x^2} dz = 0.$$
Integrating

$$\int \frac{dx}{x} + \int \frac{dy}{y} + \int \frac{dz}{z} = 0$$

$$\log x + \log y + \log z = \log (2)$$

$$\log (x + y + z) = \log (2)$$

$$\log (x + y + z) = \log (2)$$

$$\frac{(x + y + z)}{(x + y + z)} = \log (2)$$

$$\frac{(x + y + z)}{(x + y + z)} = 0.$$

$$\int (2z + y + z) = 0.$$

$$\int (2z + z) = 0.$$

$$= x dx + \frac{y}{dy} + \frac{z}{dz}$$

 $x dx + y dy + z dz = 0.$
 $J(x dx + y dy + z dz) = 0$
 $\frac{\pi^2}{2} + \frac{y^2}{2} + \frac{z^2}{2} = \frac{c_1}{2}$
 $(hoose -\frac{1}{2} + \frac{y}{2} + \frac{1}{2}) = \frac{1}{2}$
 $(hoose -\frac{1}{2} + \frac{1}{2} + \frac{1}{2}) = \frac{1}{2}$
 $(hoose -\frac{1}{2} + \frac{1}{2} + \frac{1}{2}) = \frac{1}{2}$
 $(hoose -\frac{1}{2} + \frac{1}{2} + \frac{1}{2}) = \frac{1}{2}$
 $(hoose -\frac{1}{2} + \frac{1}{2}) + \frac{1}{2}$ as lagrangian Hultiplies.
 $\frac{1}{2} dx + \frac{1}{2} dy + \frac{1}{2} dz = \frac{1}{2} dx + \frac{1}{2} dy + \frac{1}{2} dz = \frac{1}{2} dx + \frac{1}{2} dy + \frac{1}{2} dz = \frac{1}{2} dx + \frac{1}{2} dy + \frac{1}{2} dz = 0.$
 $-\frac{1}{2} dx + \frac{1}{2} dy + \frac{1}{2} dz = 0.$
Tuttagraphing

$$\int \frac{dx}{x} + \int \frac{dy}{y} + \int \frac{dz}{z} = 0$$

$$\log x + \log y + \log z = \log c_2$$

$$\log (x, y, z) = \log c_2$$

$$\left[x + y, z = c_2\right]$$

The general solution is $\phi(u, v) = 0$
 $\phi(x^2 + y^2 + z^2, xyz) = 0$.

Homogeneous linear equipation.

12

* The linear PDE with constant co-efficient in which all the derivatives are of same order is called Homogeneous per othonwise it is called non-Homogeneous * A homogeneous linear PDE of nthe order with constant co-efficient is of the form a. $\frac{\partial^n z}{\partial x^n} + \frac{\partial^n z}{\partial x^{n-1}} + \frac{\partial^n z}{\partial y} = F(x,y)$ twhere a's are constant + 10 + +16 + f(D,D') z = F(x,y) The solution of f(D,D') z = 0 (is called) complementary functions + 10 - + 16 1 To Find P.I porta ractel $P.I = \frac{1}{f(D,D')} + F(D, N').$ z = LIF + P.I. is the tomplete E) Gal = (Sign () pad Solution . 11.0, 2 212 cose (i) the proots one real & distinct (mi = m2) $Z = \frac{1}{2} \left(\frac{y}{y} + \frac{m}{2} \right) + \frac{1}{2} \left(\frac{y}{y} + \frac{m}{2} \right)$ care (ii) The groots are neal & equal (mi=m2="

$$Z = \frac{1}{1} \left[\frac{1}{2} + m_{12} \right] + \frac{1}{2} \left[\frac{1}{2} + m_{22} \right] + \frac{1}{2} \left[\frac{1}{2} + m_{32} \right]$$

$$z = \frac{1}{1} \left[\frac{1}{2} + \frac{1}{2} \frac{1}{2} \right]^{2} = 0.$$

$$m^{2} - \frac{1}{1} + \frac{1}{3} = 0$$

$$m^{2} + \frac{1}{1} + \frac{1}{2} \left[\frac{1}{2} + m_{22} \right]$$

$$Z = \frac{1}{1} \left[\frac{1}{2} + m_{12} \right] + \frac{1}{2} \left[\frac{1}{2} + m_{22} \right]$$

$$Z = \frac{1}{1} \left[\frac{1}{2} + m_{12} \right] + \frac{1}{2} \left[\frac{1}{2} + 3x \right].$$

$$\frac{1}{2} = \frac{1}{1} \left[\frac{1}{2} + m_{12} \right] + \frac{1}{2} \left[\frac{1}{2} + 3x \right].$$

$$\frac{1}{2} = \frac{1}{1} \left[\frac{1}{2} + m_{12} \right] + \frac{1}{2} \left[\frac{1}{2} + 3x \right].$$

$$\frac{1}{2} = \frac{1}{1} \left[\frac{1}{2} + m_{12} \right] + \frac{1}{2} \left[\frac{1}{2} + m_{22} \right].$$

$$\frac{1}{2} = \frac{1}{1} \left[\frac{1}{2} + m_{12} \right] + \frac{1}{2} \left[\frac{1}{2} - 2x \right].$$

$$\frac{1}{2} = \frac{1}{1} \left[\frac{1}{2} + m_{12} \right] + \frac{1}{2} \left[\frac{1}{2} - 2x \right].$$

$$\frac{1}{2} = \frac{1}{1} \left[\frac{1}{2} + m_{12} \right] + \frac{1}{2} \left[\frac{1}{2} - 2x \right].$$

-

Solve
$$(\mathfrak{D}^{3} - \mathfrak{D}^{2}\mathfrak{D}^{\prime} + \mathfrak{D}\mathfrak{D}^{\prime 2} - \mathfrak{D}^{\prime 3}) z = 0$$
.
The calculation is $m^{3} - m^{2} + m = 1 = 0$,
 $m^{3} - m^{2} + m = 1 = 0$,
 $m = 1, m^{2} + 0m + 1 = 0$,
 $m^{2} - 1$,
 $m = 1, \overline{1, -1}$.
The proofs one gread ς distinct
 $z = 4i (y + m_{1}x) + 4i (y + m_{2}x) + 4i (y + m_{3}x)$,
 $z = 4i (y + m_{1}x) + 4i (y + m_{2}x) + 4i (y + m_{3}x)$,
 $z = 4i (y + m_{1}x) + 4i (y + m_{2}x) + 4i (y + m_{3}x)$,
 $z = 4i (y + m_{1}x) + 4i (y + m_{2}x) + 4i (y + m_{3}x)$,
 $z = 4i (y + m_{1}x) + 4i (y + m_{2}x) + 4i (y + m_{3}x)$,
 $z = 4i (y + m_{1}x) + 4i (y + m_{2}x) + 4i (y + m_{3}x)$,
 $z = 4i (y + m_{1}x) + 4i (y + m_{2}x) + 4i (y + m_{3}x)$,
 $z = 4i (y + m_{1}x) + 4i (y + m_{2}x) + 4i (y + m_{3}x)$,
 $-x - \cdot$.
Type 2:
R.H.S = $2ax + by$
Replove $\mathfrak{D} \rightarrow a + \mathfrak{D} \rightarrow b$,
 $p.x = \frac{1}{4(p, m)}$, $ax + by$,
 $p.x = \frac{1}{4(p, m)}$, $ax + by$,
 $p.x = \frac{1}{4(p, m)}$, $ax + by$,
 $p.x = \frac{1}{4(p, m)}$, $ax + by$,
 $p.x = \frac{1}{2x^{2}} - \frac{5}{2x^{2}} + \frac{1}{2x^{2}} + \frac{1}{2x^{2}} = x^{2} + \frac{1}{2x}$,
 $3i \rightarrow 3i hy$,
The austiliary equation m .

$$m^{2} - 5m + b = 0$$

$$(m-2) (m-3) = 0$$

$$m = 2, 3$$

$$The mosts one neal & distinct$$

$$C - F = \frac{1}{2} (y + mx) + \frac{1}{2} (y + mx)$$

$$C - F = \frac{1}{2} ((y + \partial x) + \frac{1}{2} (y + 3x))$$

The compute solution is
$$z = cF+P\cdot I$$

 $P \cdot I = \frac{1}{D^2 - 5DD' + 6D'^2}$
 $P \cdot I = \frac{1}{D^2 - 5DD' + 6D'^2}$
 $P \cdot I = \frac{1}{2} \cdot x^{T+Y}$
 $P \cdot I = \frac{x^{T+Y}}{2}$

Find P.I of
$$(D^2 + 4DD^1) = e^2$$
.

soln:

$$P.I = \frac{1}{D^2 + 4} DD'$$

$$D \rightarrow a = 1 ; D \rightarrow b = 0;$$
$$= \frac{1}{1^2 + 0} e^{\chi}$$

solve :

$$\frac{\partial^{2}z}{\partial x^{2}} - \frac{\partial^{2}z}{\partial x^{3}y} + \frac{\partial^{2}z}{\partial y^{2}} = x^{3x-y}$$

$$D^{2}z - + DD^{1}z + 4D^{12}z = x^{3x-y}$$

$$(D^{2} - + DD^{1} + + D^{12})z = x^{3x-y}$$

$$(D^{2} - + DD^{1} + + D^{12})z = x^{3x-y}$$
The outiliary equation is

$$D \rightarrow m \qquad m^{2} - \mu m + \mu = 0 \qquad f^{4}$$

$$D^{1} \rightarrow 1 \qquad (m-2) (m-2) = 0 \qquad f^{2}$$

$$m = 2,2$$
The proofs one proof & equal.

$$c \cdot F = \frac{1}{9}i(9 + mix) + x \frac{1}{9}2(9 + mix)$$

$$c \cdot F = \frac{1}{9}i(9 + ax) + x \frac{1}{9}2(9 + mix)$$
To find P.T

$$P \cdot T' = \frac{1}{D^{2} - 4 DD' + 4 + D^{12}} e^{2x-y}$$

$$Replace \quad D \rightarrow a = 2, \quad D' \rightarrow b = -1.$$

$$= \frac{1}{2^{2} - 4(2)(-1) + 4(1)^{2}} e^{2x-y}$$

$$= -\frac{1}{4 + 8 + 4}$$

$$P \cdot T = \frac{2^{3x-y}}{16}$$

The complete Solution
$$A = (F + PT)$$

$$z = \frac{1}{2} (y + ax) + \frac{1}{2} \frac{1}{2} (y + ax) + \frac{a}{2} \frac{ax - y}{16}$$

$$P \cdot I = \frac{1}{4} (x, 3) + \frac{1}{2} (y + ax) + \frac{a}{16} \frac{ax - y}{16}$$

$$P \cdot I = \frac{1}{4} (x, 3) + \frac{1}{16} + \frac{1}{16} (y, 3) + \frac{1}{16} + \frac{1}{16}$$

$$= \frac{1}{D^{2} \left[(1 - \left(\frac{TD}{D} + \frac{b}{D^{2}}\right)^{2} \right]_{1}^{1}} \left[(1 - \left(\frac{TD}{D} + \frac{b}{D^{2}}\right)^{2} \right]_{1}^{1}} \left[(1 - \left(\frac{TD}{D} + \frac{b}{D^{2}}\right)^{2} \right]_{1}^{1}} \left[(1 - x)^{2} + \left(\frac{TD}{D} + \frac{b}{D^{2}}\right)^{2} \right]_{1}^{1}} \left[(1 - x)^{2} + \left(\frac{TD}{D} + \frac{b}{D^{2}}\right)^{2} \right]_{1}^{1}} \left[(1 - x)^{2} + \left(\frac{TD}{D} + \frac{b}{D^{2}}\right)^{2} \right]_{1}^{1}} \left[(1 - x)^{2} + \left(\frac{TD}{D} + \frac{b}{D^{2}}\right)^{2} \right]_{1}^{1}} \left[(1 - x)^{2} + \left(\frac{TD}{D} + \frac{b}{D^{2}}\right)^{2} \right]_{1}^{1}} \left[(1 - x)^{2} + \left(\frac{TD}{D} + \frac{b}{D^{2}}\right)^{2} \right]_{1}^{1}} \left[(1 - x)^{2} + \left(\frac{TD}{D} + \frac{b}{D^{2}}\right)^{2} \right]_{1}^{1}} \left[(1 - x)^{2} + \left(\frac{TD}{D} + \frac{b}{D^{2}}\right)^{2} \right]_{1}^{1}} \left[(1 - x)^{2} + \frac{b}{D^{2}} + \frac{b}{D^{2}} \right]_{1}^{1}} \left[(1 - x)^{2} + \frac{b}{D^{2}} + \frac{b}{D^{2}} \right]_{1}^{1}} \left[(1 - x)^{2} + \frac{b}{D^{2}} + \frac{b}{D^{2}} + \frac{b}{D^{2}} \right]_{1}^{1}} \left[(1 - x)^{2} + \frac{b}{D^{2}} + \frac{b}{D^{2}} + \frac{b}{D^{2}} \right]_{1}^{1}} \left[(1 - x)^{2} + \frac{b}{D^{2}} + \frac{b}{D^{2}} + \frac{b}{D^{2}} + \frac{b}{D^{2}} \right]_{1}^{1}} \left[(1 - x)^{2} + \frac{b}{D^{2}} \right]_{1}^{1}} \left[(1 - x)^{2} + \frac{b}{D^{2}} + \frac$$

$$= \frac{4 + x^{3} y - 7x^{4}}{24}$$

$$P \cdot I = \frac{x^{3}}{24} [4y - 7x]$$

$$\therefore The complete solution is $z = c \cdot F + P \cdot I$

$$(z = \frac{1}{24} \cdot (\frac{1}{2} + x) + \frac{1}{2} \cdot (\frac{1}{2} + \frac{5}{2}) + \frac{1}{2} \frac{x^{3}}{24} (\frac{1}{2} + \frac{5}{2}) + \frac{1}{2} \frac{x^{2}}{24} + \frac{1}{2} \frac{x^{2}}{24$$$$

$$= \frac{1}{D^{2}} \left[1 - \left(\frac{D}{D} + \frac{b}{D} \frac{D^{2}}{D^{2}} \right) \right] X^{2} y$$

$$= \frac{1}{D^{2}} \left[X^{2} y - \left(\frac{D}{D} + \frac{b}{D} \frac{D^{2}}{D^{2}} \right) \right] X^{2} y$$

$$= \frac{1}{D^{2}} \left[X^{2} y - \left(\frac{D}{D} + \frac{a}{2} + 0 \right) \right]$$

$$= \frac{1}{D^{2}} \left[X^{2} y - \left(\frac{D}{D} + \frac{a}{2} + 0 \right) \right]$$

$$= \frac{1}{D^{2}} \left[X^{2} y - \frac{x^{3}}{3} \right] = \frac{1}{0 + 2} \left[x^{2} y - \frac{x^{3}}{3} \right]$$

$$= \frac{1}{D^{2}} \left[\frac{x^{2} y}{x^{2}} - \frac{x^{4}}{3} \right]$$

$$= \frac{1}{D^{2}} \left[\frac{x^{2} y}{x^{2}} - \frac{x^{5}}{3} \right]$$

$$= \frac{1}{D^{2}} \left[\frac{x^{4} y}{x^{3}} - \frac{x^{4}}{3} \right]$$

$$= \left[\frac{x^{4}}{3^{4} + \frac{y}{x^{2}}} - \frac{x^{5}}{3^{4} + \frac{y}{x^{5}}} \right]$$

$$P \cdot I_{1} = \left[\frac{x^{4}}{12} + \frac{y}{3} + \frac{x^{5}}{3^{4} + \frac{y}{3}} \right]$$

$$P \cdot I_{2} = \frac{1}{D^{2} - \frac{x^{5}}{2} + \frac{y^{5}}{3^{4} + \frac{y}{3}}} = \frac{x^{3} + \frac{y}{3}}{D^{2} - \frac{x^{5}}{2} + \frac{y^{5}}{3^{4} + \frac{y}{3}}}$$

$$P \cdot I_{2} = \frac{1}{D^{2} - \frac{y^{5}}{2} + \frac{y^{5}}{2}$$

$$= \frac{1}{9 \cdot 9} e^{3t+y}$$

$$= \frac{1}{2D \cdot D^{1}} e^{3x+y}$$

$$= \frac{1}{2D \cdot D^{1}} e^{3x+y}$$

$$P \cdot I_{2} = \frac{x}{2} e^{3x+y}.$$
The complete solution is $Z = C \cdot F + P \cdot I \cdot I + P \cdot I_{2}$

$$Z = \frac{1}{2} \left[(y+3x) + \frac{1}{2} \left((y-2x) + \frac{1+y}{12} - \frac{x^{5}}{6} + \frac{x}{5} + \frac{x}{$$

$$\mathbb{D}^{2} \rightarrow -\alpha^{2}, \quad \mathbb{D}\mathbb{D}^{1} \rightarrow -\alpha b \quad ; \quad \mathbb{D}^{1^{2}} \rightarrow -b^{2}$$

solve:

$$\begin{bmatrix} D^2 - 2DD' + 2D'^2 \end{bmatrix} Z = sin(z-y).$$

Auxiliary equation is

$$m^{2}-2m+2=0$$

 $m=-b\pm \sqrt{b^{2}-4ac}$
 $=-(-2)\pm \sqrt{2^{2}-4(1)}(2)$
 $a=1$
 $b=-2$
 $(=2)$

$$= \frac{1}{2} \pm \overline{J_{4-8}} = \frac{1}{2} \pm \overline{J_{-4}}$$

$$= \frac{1}{2} \pm \frac{1}{2} = \frac{1}{2} (1\pm i)$$

$$m = 1\pm i$$

$$m = 1\pm i ; 1-i$$
The stoods one such q , distinct.

$$(F = \frac{1}{2}i(y + mix) + \frac{1}{2}i(y + mix))$$

$$(F = \frac{1}{2}i(y + (1\pm i)x) + \frac{1}{2}i(y + (1\pm i)x)$$

$$To \frac{1}{2}ind P \cdot T$$

$$P \cdot T = \frac{1}{D^{2}(2\pi 0)^{1} + 2D^{1/2}} \sin((3-y)$$

$$D^{2} - 3 - a^{2} = -(3)^{2} = -1; \quad DD^{1} - 3 - ab = -(11)(-1) = 1$$

$$D^{1/2} - 3 - b^{2} = -(-1)^{2} = -1.$$

$$(1 \pm \frac{1}{-1-2-2}) \sin((3-y) - ab = -(11)(-1) = 1$$

$$D^{1/2} - 3 - b^{2} = -(-1)^{2} = -1.$$

$$P \cdot T = \frac{1}{-1-2-2} \sin((3-y) - ab = -(1)(-1)^{2} = -1.$$

$$P \cdot T = \frac{1}{-1-2-2} \sin((3-y) - ab = -(1)(-1)^{2} = -1.$$

$$P \cdot T = \frac{1}{-1-2-2} \sin((3-y) - ab = -(1)(-1)^{2} = -1.$$

$$P \cdot T = \frac{1}{-1-2-2} \sin((3-y) - ab = -(1)(-1)^{2} = -1.$$

$$P \cdot T = \frac{1}{-1-2-2} \sin((3-y) - ab = -(1)(-1)^{2} = -1.$$

$$P \cdot T = \frac{1}{-1-2-2} \sin((3-y) - ab = -(1)(-1)^{2} = -1.$$

$$P \cdot T = \frac{1}{-1-2-2} \sin((3-y) - ab = -(1)(-1)^{2} = -1.$$

$$P \cdot T = \frac{1}{-1-2-2} \sin((3-y) - ab = -(1)(-1)^{2} = -1.$$

$$P \cdot T = \frac{1}{-1-2-2} \sin((3-y) - ab = -(1)(-1)^{2} = -1.$$

$$P \cdot T = \frac{1}{-1-2-2} \sin((3-y) - ab = -(1)(-1)^{2} = -1.$$

$$P \cdot T = \frac{1}{-1-2-2} \sin((3-y) - ab = -(1)(-1)^{2} = -1.$$

$$P \cdot T = \frac{1}{-1-2-2} \sin((3-y) - ab = -(1)(-1)^{2} = -1.$$

$$P \cdot T = \frac{1}{-1-2-2} \sin((3-y) - ab = -(1)(-1)^{2} = -1.$$

$$P \cdot T = \frac{1}{-1-2-2} \sin((3-y) - ab = -(1)(-1)^{2} = -1.$$

$$P \cdot T = \frac{1}{-1-2-2} \sin((3-y) - ab = -(1)(-1)^{2} = -1.$$

$$P \cdot T = \frac{1}{-1-2-2} \sin((3-y) - ab = -(1)(-1)^{2} = -1.$$

$$P \cdot T = \frac{1}{-1-2-2} \sin((3-y) - ab = -(1)(-1)^{2} = -1.$$

$$P \cdot T = \frac{1}{-1-2-2} \sin((3-y) - ab = -(1)^{2} = -1.$$

$$P \cdot T = \frac{1}{-1-2-2} \sin((3-y) - ab = -1.$$

$$P \cdot T = \frac{1}{-1-2-2} \sin((3-y) - ab = -1.$$

$$P \cdot T = \frac{1}{-1-2-2} \sin((3-y) - ab = -1.$$

$$P \cdot T = \frac{1}{-1-2-2} \sin((3-y) - ab = -1.$$

$$P \cdot T = \frac{1}{-1-2-2} \sin((3-y) - ab = -1.$$

$$P \cdot T = \frac{1}{-1-2-2} \sin((3-y) - ab = -1.$$

$$P \cdot T = \frac{1}{-1-2-2} \sin((3-y) - ab = -1.$$

$$\begin{bmatrix} 3^{2}-233^{1}+3^{12} \end{bmatrix} z = id(x-3y)$$
The auxiliary squarton is

$$m^{2}-2m+1=0$$

$$(m-1)(m-1)=0$$

$$m=1,1$$
The roots are 'roual & squal :

$$c\cdot F = \frac{1}{2}i(y+m(x)+x\frac{1}{2}(y+m(x)))$$

$$c\cdot F = \frac{1}{2}i(y+x)+x\frac{1}{2}(y+m(x))$$

$$p\cdot \frac{1}{2} = \frac{1}{2}i(y+x)+x\frac{1}{2}i(y+x),$$
Replace $a=1$, $b=-3$. 1 (1)
 $3^{2}-3$, $-a^{2}=-1i)^{2}=-1$; $ab(x-3y)$,
 $3^{2}-3$, $-a^{2}=-1i)^{2}=-1$; $ab(x-3y)$,
 $p\cdot \frac{1}{2} = -b^{2}=-(3)^{2} = -9$,
 $= \frac{1}{2}i(y+x)+x\frac{1}{2}i(x-3y)$,
 $p\cdot \frac{1}{2} = -\frac{1}{2}i(y+x)+\frac{1}{2}i(x-3y)$,
 $p\cdot \frac{1}{2} = -\frac{1}{2}i(y+x)+\frac{1}{2}i(x-3y)$,
 $p\cdot \frac{1}{2} = -\frac{1}{2}i(y+x)+x\frac{1}{2}i(y+x)+\frac{1}{2}i(x-3y)$,
 $p\cdot \frac{1}{2} = \frac{1}{2}i(y+x)+x\frac{1}{2}i(y+x)+\frac{1}{2}i(x-3y)$

$$\begin{bmatrix} y^{1} \mu y^{2} & 1 \\ y^{2} & 0 \\ z^{2} & 0 \\ z^{2}$$

$$P \cdot I_{1} = \frac{x}{9} \cdot e^{52+4y}$$

$$P \cdot I_{2} = \frac{1}{9} \cdot e^{52+4y}$$

$$D^{2} - DD^{1} - 20D^{1/2} \cdot DD^{1/2} - ab = -(4)^{1/2}$$

$$D^{2} - b^{2} = -(4)^{2} = -1b \cdot DD^{1/2} - ab = -(4)^{1/2}$$

$$D^{1/2} - b^{2} = -(-1)^{2} = -1$$

$$= \frac{1}{-1b - 4 - 20(-1)} \cdot Sin(4x - y)$$

$$= \frac{1}{-1b - 4 - 20(-1)} \cdot Sin(4x - y)$$

$$= \frac{x}{2D - D^{1}} \cdot Sin(4x - y)$$

$$= \frac{x}{2D - D^{1}} \cdot \frac{(2D + D^{1/2})}{(2D + D^{1/2})} \cdot Sin(4x - y)$$

$$= \frac{x}{(2D + D^{1/2})} \cdot Sin(4x - y)$$

$$= x \left[2 \cos (4x - y) \cdot 4 + \cos (4x - y) (-1) \right]$$

$$= x \left[8 \cos (4x - y) - \cos (4x - y) \right]$$

$$= x \left[8 \cos (4x - y) (8 - 1) \right]$$

$$= \frac{1}{2} x \cos (4x - y) (8 - 1)$$

$$= \frac{1}{2} x \cos (4x - y) (8 - 1)$$

$$= \frac{1}{2} x \cos (4x - y) (8 - 1)$$

$$= \frac{1}{2} x \cos (4x - y) (8 - 1)$$

$$= \frac{1}{2} x \cos (4x - y) (8 - 1)$$

The complete (solution is

$$z = c \cdot F + P \cdot I = c + \frac{1}{2} \cos (4x - y)$$

$$= \frac{1}{2} x \cos (4x - y) + \frac{1}{2} x e^{5x + y}$$

$$= \frac{1}{2} x \cos (4x - y) + \frac{1}{2} x e^{5x + y}$$

$$= \frac{1}{2} x \cos (4x - y) + \frac{1}{2} x e^{5x + y}$$

$$= \frac{1}{2} x \cos (4x - y) + \frac{1}{2} x e^{5x + y}$$

$$= \frac{1}{2} x \cos (4x - y) + \frac{1}{2} x e^{5x + y}$$

$$= \frac{1}{2} x \cos (4x - y) + \frac{1}{2} x e^{5x + y}$$

$$= \frac{1}{2} x \cos (4x - y) + \frac{1}{2} x e^{5x + y}$$

$$= \frac{1}{2} x \cos (4x - y) + \frac{1}{2} x e^{5x + y}$$

$$= \frac{1}{2} x \cos (4x - y) + \frac{1}{2} x e^{5x + y}$$

$$= \frac{1}{2} x e^{5x + 1} + \frac{1}{2} x e^{5x + y}$$

$$= \frac{1}{2} x e^{5x + 1} + \frac{1}{2} x e^{5x + y}$$

$$= \frac{1}{2} x e^{5x + 1} + \frac{1}{2} x e^{5x + y}$$

$$= \frac{1}{2} x e^{5x + 1} + \frac{1}{2} x e^{5x + y}$$

$$= \frac{1}{2} x e^{5x + 1} + \frac{1}{2} x e^{5x + y}$$

$$= \frac{1}{2} x e^{5x + 1} + \frac{1}{2} x e^{5x + y}$$

$$= \frac{1}{2} x e^{5x + 1} + \frac{1}{2} x e^{5x + y}$$

$$= \frac{1}{2} x e^{5x + 1} + \frac{1}{2} x e^{5x + y}$$

$$= \frac{1}{2} x e^{5x + 1} + \frac{1}{2} x e^{5x + y}$$

$$= \frac{1}{2} x e^{5x + 1} + \frac{1}{2} x e^{5x + y}$$

$$= \frac{1}{2} x e^{5x + 1} + \frac{1}{2} x e^{5x + y}$$

$$= \frac{1}{2} x e^{5x + 1} + \frac{1}{2} x e^{5x + y}$$

$$= \frac{1}{2} x e^{5x + 1} + \frac{1}{2} x e^{5x + 1} + \frac{1}{2} x e^{5x + y}$$

$$= \frac{1}{2} x e^{5x + 1} + \frac{$$

$$(D+3D'+4)^{2} z = 0$$

$$[D-(-3)D'-(-4)]^{2} z = 0$$

$$(D-mD'(a)^{2}$$

$$m=-3, a = -4$$

$$T_{4} (D-mD'-a)^{2} + twn z = e^{ax} f_{1}(y+m1) + y^{2}(y+m2)$$

$$(z = e^{-4x} f_{1}(y-3x) + xe^{4x} f_{2}(y-3x)$$

$$(z = e^{-4x} f_{1}(y-3x) + e^{-4x} f_{2}(y-3x)$$

$$(z = e^{-4x} f_{1}(y-3x) + e^{-4x} f_{2}(x-2y)$$

$$(z = e^{-4x} f_{1}(x+0y) + e^{-4x} f_{2}(x-2y)$$

$$P \cdot I = \frac{1}{2DD' - D'^2 - 3D'} - 3 \cos(3\pi - 2y)$$

= $3 \cos(3\pi - 2y)$

UNIT III PDE					
Questions	opt1	opt2	opt3	opt4	Answer
In a PDE, there will be one dependent variable and				infinite	
independent variables	only one	two or more	no	number of	two or more
The of a PDE is that of the highest order derivative					
occurring in it	degree	power	order	ratio	order
The degree of the a PDE is of the higest order derivative	power	ratio	degree	order	power

Afirst order PDE is obtained if In the form of PDE, $f(x,y,z,a,b)=0$. What is the order? What is form of the $z=ax+by+ab$ by eliminating the arbitrary	Number of arbitrary constants is equal Number of independent variables 1	Number of arbitrary constants is lessthan Number of independent variables 2	Number of arbitrary constants is greater than Number of independent variables 3	t variables 4	Number of arbitrary constants= Number of independent variables 1
constants?	z=qx+py+pq	z=px+qy+pq	z=px+qy+p	z-py+qy+q	z=px+qy+pq
General solution of PDE F(x,y,z,p,q)=0 is any arbitray function					
F of specific functions u,v issatisfying given PDE	F(u,v)=0	F(x,y,z)=0	F(x,y)=0	F(p,q)=0	F(u,v)=0
The PDE of the first order can be written as	F(x,y,s,t)	F(x,y,z,p,q)=0	F(x,y,z,1,3,2)=0	F(x,y)=0	F(x,y,z,p,q)=0
The complete solution of clairaut's equation is	z=bx+ay+f(a,b)	• • • •	z=ax+by	z=f(a,b)	z=ax+by+f(a,b)
The Clairaut's equation can be written in the form	z=px+qy+f(p,q)	z=(p- 1)x+qy+f(x,y)	z=Pp+Qq	Pq+Qp=r	z=px+qy+f(p,q)
Which of the following is the type $f(z,p,q)=0$?	p(1+q)=qx	p(1+q)=qz	p(1+q)=qy	f(y+2x)	p(1+q)=qz

The equation $(D^2 z+2xy(Dz)^2+D=5 \text{ is of order } \and$					
degree	2 and 2	2 and 1	1 and 1 $f(a_1, a_2)$	0 and 1 (-1)	2 and 1
The complementry function of $(D^2 - 4DD' + 4D'^2)z = x+y$ is	f(y+2x)+xg(y+2 x)	f(y+x)+xg(y+2x)	f(y+x)+xg(y+ x)	f(y+4x)+xg $(y+4x)$ $f(x/y)$	f(y+2x)+xg(y+2x)
The solution of xp+yq=z is	f(x^2,y^2)=0	f(xy,yz)	f(x,y)=0	,y/z)=0	f(x/y,y/z)=0
A solution which contains the maximum possible number of arbitrary functions is calledintegral.	singular	complete	general	particular	general
The lagrange's linear equation can be written in the form	Pq+Qp=r	Pq+Qp=R	Pp+Qq=R	F(x,y)=0	Pp+Qq=R
The complete solution of the PDE pq=1 is	z=ax+(1/a)y+b	z=ax+y+b	z=ax+ay/b+c	z=ax+b	z=ax+(1/a)y+b
The solution got by giving particular values to the arbitrary constants in a complete integral is called a	general	singular	particular	complete	particular
The general solution of Lagrange's equation is denoted as	f(u,v)=0	ZX	f (x,y)	$\begin{array}{l} F(x,y,s,t) = \\ 0 \end{array}$	f(u,v)=0
The subsidiary equations are px+qy=z is	dx/y=dy/z=dz/ x	dx/x=dy/y=dz/z	xdx=ydy=zd z	dz/z=dx/y =dy/x	dx/x=dy/y=dz/z
The general solution of equation p+q=1 is	f(xyz,0)	f(x-y,y-z)	f(x-y,y+z)	F(x,y,s,t)=0	f(x-y,y-z)
The separable equation of the first order PDE can be written in the form of	f(x,y)=g(x,y)	f(a,b)=g(x,y)	f(x,p)=g(y,q)		f(x,p)=g(y,q)
Complementary function is the solution of	f(a,b)	f(1,0)=0	f(D,D')z=0	f(a,b)=F(x, y)	f(D,D')z=0
C.F+P.I is called solution	singular	complete	general	particular	general
Particular integral is the solution of	f(a,b)=F(x,y)	f(1,0)=0	[1/f(D,D')]F(x,y)	f(a,b)=F(u, v)	[1/f(D,D')]F(x,y)
Which is independent varible in the equation $z=10x+5y$	x&y	Z	x,y,z	x alone	x&y
Which is dependent varible in the equation $z=2x+3y$	Х	Z	у	x&y	Z

Which of the following is the type $f(z,p,q)=0$	p(1+q)=qx	p(1+q)=qz	p(1+q)=qy	p=2xf'(x^ 2)-(y^2))
Which is complete integral of $z=px+qy+(p^2)(q^2)$	z=ax+by+(a^2) (b^2)	z=a+b+ab	z=ax+by+ab	z=a+f(a)x
The complete integral of PDE of the form F(p,q)=0 is	z=ax+f(a)y+c	z=ax+f(a)+b	z=a+f(a)x	z=ax+f(a)
The relation between the independent and the dependent variables which satisfies the PDE is called	solution	complet solution	general solution	singular solution
A solution which contains the maximum possible number of arbitrary constant is called	general	complete	solution	singular
The equations which do not contain x & y explicitly can be written in the form	f(z,p,q)=0	f(p,q)=0	(p,q)=0	f(x,p,q)=0
The subsidiary equations of the lagranges equation $2y(z-3)p + (2x-z)q = y(2x-3)$	dx/2y(z-3) = dy/(2x-z) = dz/y(2x-3)	dx/(2x-z) = $dy/2y(z-3)$ = $dz/y(2x-3)$	dx/2y=dz/(z- 3)	dx/2y=dz/(z- 3)=dy/2x
A PDE ., the partial derivatives occuring in which are of the first degree is said to be	linear	non-linear	order	degree
A PDE., the partial derivatives occuring in which are of the 2 or more than 2 degree is said to be	linear	non-linear	order	degree
If $z=(x^2+a)(y^2+b)$ then differentiating z partially with respect to x is	2x	3x(y^2+b)	2x(y^2+b)	3x+y
If z=ax+by+ab then differentiating z partially with respect to y is	a	a+b	0	b
The solution of differentiating z partially with respect to x twice gives	ax	ax+by+c	ax+b	ax=p
The auxiliary equation of $(D^2-4DD^2+4D^2)z=0$ is	m^2-4m+4=0	m^2+4m+4=0	m^2-4m-4=0	m^2+4m- 4=0
The auxiliary equation of $(D^3-7DD'^2-6D'^3)z=0$ is	m^3+7m+6=0	m^3-7m-6=0	m^3- 7m+6=0	m^3+7m- 6=0
The auxiliary equation of $(D^2-4DD^2+4D^2)z=e^x$ is	m^2+4m+4=0	m^2-4m-4=0	m^2+4m- 4=0	none

	p(1+q)=qy	p=2xf'(x^ 2)-(y^2))	p(1+q)=qz
	z=ax+by+ab	z=a+f(a)x	z=ax+by+(a^2)(b^2)
	z=a+f(a)x	z=ax+f(a)	z=ax+f(a)y+c
on	general solution	singular solution	solution
	solution	singular	complete
	(p,q)=0	f(x,p,q)=0	f(z,p,q)=0
	dx/2y=dz/(z- 3)	dx/2y=dz/(z- 3)=dy/2x	dx/2y(z-3) = dy/(2x-z) = $dz/y(2x-3)$
	order	degree	linear
	order	degree	non-linear
	2x(y^2+b)	3x+y	2x(y^2+b)
	0	b	b
	ax+b	ax=p	ax+b
	m^2-4m-4=0	m^2+4m- 4=0	m^2-4m+4=0
	m^3-	m^3+7m-	m^3-7m-6=0
	7m+6=0	6=0	
	7m+6=0 m^2+4m- 4=0	6=0 none	none

The roots of the partial differential equation (D^2-	2.1	1 1	22	22	2.2
4DD'+4 D'^2)z=0 are	2,1	2,2	2,-2	2,-2	2,2
The roots of the partial differential equation (D^2-	0.1	; 1	1.2	11	1 1
$2DD'+D'^2$)z=0 are	0,1	1,-1	1,2	1,1	1,1

UNIT - II Application of partial
differential equation
PART-A
State the three possible solutions of
the One-dimensional Wave equation
EN/D 2015
Ans:
The solution of One dimensional
Wave equation are
(i) y(x,1E) = (Ae^{-px} + Be^{Px}) (Ce^{-Pat} + De^{Pot})
(i) y(x,1E) = (Ae^{-px} + Be^{Px}) (Ce^{-Pat} + De^{Pot})
(i) y(x,1E) = (Ax+B) (Ce1+D)
State the assumptions in deriving
One-dimensional Wave equation
One-dimensional Wave equation
(NID 2015
Ass: To derive the One dimensional wave
equation
$$\frac{2^2y}{2^2x^2} = c^2 \frac{2^2y}{2^2x^2}$$
, we make the following
assumptions:
(i) The steing is homogeneous and perfectly
elastic so that it does not offer seristance
to be fore fixing it at the ends is solverge
that the action of the gavitational fore
on the steing can be reglected

(iii) The steing performs small transverse motion in a Vertical plane so that the deflection y and the slope dy are small in absolute Value. Hence their higher powers can be neglected. Classify the partial differential equation [MIJ2016] Uxx + Uyy = f(xiy) Solna: Given: Unix + Uyy = f (x19) $\Rightarrow \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{1}{2} (x_1 y) \rightarrow 0$ But the general form of second-Order partial differential equation in two independent Variables rand y => $A(x_1y) = \frac{\partial^2 u}{\partial x^2} + B(x_1y) = \frac{\partial^2 u}{\partial x \partial y} + C(x_1y) = \frac{\partial^2 u}{\partial y^2}$ + + (x1y, u1 du , du)=0 Comparing () d @ ⇒ A=1, B=0, C=1 $B^2 - 4AC \Rightarrow 0 - 4x1x1 = -4 < 0$... The given equation represent elliptic

Write all possible solutions of two dimensional heat equation. [N]D 2015] Am: (i) U(x,y) = (Aws Xx + Bsin Xx) (Ce²x + De^{-1y}) (ii) U(x,y) = (Ae^{Xx} + Be^{-1x}) (Cws Xy + Dsin Xy) (iii) U(x,y) = (Ae^{Xx} + Be^{-1x}) (Cws Xy + Dsin Xy) (iii) U(x,y) = (Ax+B) (Cy+D) where A, B, C, D are arbitrary constants.

Classify the partial differential equation (1-x2) Zxx - 2xy Zxy + (1-y2) Zyy + x Zx + 3x2 yzy-2Z=0 Solution: NID 2014 Solution : Given: (1-x2) Zxx- 2xy Zxy + (1-y2) Zyy + x Zx + 3x2yzy -2z=0 $A(x_1y) \frac{\partial^2 z}{\partial x^2} + B(x_1y) \frac{\partial^2 z}{\partial x_0 y} + C(x_1y) \frac{\partial^2 z}{\partial y^2}$ + F($\pi_1 y_1 z_1 \frac{\partial \mathbf{z}}{\partial x}, \frac{\partial z}{\partial y} = 0$ A = co-efficient of $\frac{\partial^2 z}{\partial \chi^2} = 1 - \chi^2$ B = Co-efficient of drz = 1-42 B = co-efficient of <u>arm</u> = - axy axay

 $B^2 - 4AC = (-2xy)^2 - 4(1-x^2)(1-y^2)$ $= A x^2 y^2 - 4 \int 1 - y^2 - x^2 + x^2 y^2 y^2$ = 4x242 - ++442++++2-42242 $= A \left(x^2 + q^2 - 1 \right)$ If x24y2<1 then B2-4Acco . The equation represent elliptic if x2+y2>1 then B2-+AC>0 ... The equation represent hyporbolic if 22+42=1 then B2-4AC=0 .: The equation represent parabolic A rod 30 cm long has its ends A and B Kept 20c and 80c respectively until steady state condition prevails. Find the steady state temperature in the end. [A/M 2015] D1=Doc 02=80 02 = 80C An: The steady state temperature at anytime t' A 30cm $U(x) = \underbrace{\Theta_2 \cdot \Theta_1}_{R} x_1 + \Theta_1 = \underbrace{\frac{80 - 20}{30}}_{R} x + 20$ = 2×+20

Write down all the passible solution of
One dimensional heat equation [MIJ2016]
All One dimensional heat equation
$$\sum_{x_{11}}^{x_{11}} 2017$$

All $\sum_{at} = x^2 \frac{\partial^2 u}{\partial x^2}$
The possible solution are
(i) $U(x_{11}t) = (A\cos x t + Bxin)x)e^{-x^2x^2t}$
(ii) $U(x_{11}t) = (Ae^{Ax} + Be^{-Ax})e^{-x^2x^2t}$
(iii) $U(x_{11}t) = (Ae^{Ax} + Be^{-Ax})e^{-x^2x^2t}$
(iii) $U(x_{11}t) = Ax + B$
Nothere A, B are arbitrary constants,
 λ is also constants.
Solve $3x \frac{\partial u}{\partial x} - 2y \frac{\partial u}{\partial y} = 0$; by method
of separation of Variables. [NID 2015]
Solve: Griven: $3x \frac{\partial u}{\partial x} - 2y \frac{\partial u}{\partial y} = 0$
 $3x \frac{\partial u}{\partial x} = 2y \frac{\partial u}{\partial y}$
 $\Rightarrow 3x x_{1}^{-} = 2y \frac{\partial u}{\partial y} = 0$

 $\Rightarrow \int \frac{1}{2y} \partial y = \int \frac{1}{3x} dx = \frac{1}{2} \log y = \frac{1}{3} \log x + \log c$ $\Rightarrow \log y^{1/2} = \log x^{1/3} + \log c \Rightarrow \log c = \log y^{1/2} \log x^{1/3}$ $\Rightarrow \log (C = y^{1/2} x^{1/3}) = \log (c = \log |y|^{1/2})$

UNIT-I Application of portial PART-B differential equation Template - 2 [with No velocity] The one diamonsional wave equation is $\frac{\partial^2 y}{\partial u} = \alpha^2 \frac{\partial^2 y}{\partial x^2}$ The boundary conditions are (i) ylot) = 0 ... 017 418,47 =0 . (iii) <u>dy (x10)</u> = 0 (iv) y(x, 0) = f(x) The soluction of the Wave equation is. YMITH = [creaspates sin pa] [cscospattes sin par] 10 Apply is in equ () yloit) = [ci] [cs cospatt ca sinpat]=0 CIED and Cs cospat + CA sin pat = 0 sub ciso in equil YINGO = [C2 sinpa][C3 cospatted sinpat] -> @ Apply (ii) in equation @ yilit) = [cosinpl] [coscopatt casinpat] = 0 cesinpl =0 either c2 =0 (or) sinpl=0 It case the get trivial solution

a

sin pl=0 Pl= sin1(0)=nx plent P= (四下) sub p value in eque @ YTALK) = [C2 Sin (MEX)] [Cs cos (Mat) + C4 Sin (Mat)] 43 Diff kl.r.t t" By (nit) = [cosin (nπx)] [-cs (nπg) sin (nπat) + Bt = [cosin (nπx)] [-cs (nπg) son (nπat)] →@ Apply (iv) in eque @ · (기이)= [C2Sin (자자)] [C4 (자전)]=0 C2 = 0, sin (1) = 0, (n) = 0, [2=0] sub caso in equ 3 $y(x_1t) = c_2 c_3 \sin\left(\frac{n\pi x}{d}\right)\cos\left(\frac{n\pi at}{d}\right)$ ylait) = Sensin (mra) cos (mrat) - 5

President Propriet St. P.

(1) A staining is stratched and fastened to points at a distance l'apart. Motion is started by displacing the string in the form y= asin (xx), oxxx1 from which it is released at time too. Find the displacement at any time t [M/J 2014]

(2)

soluction. The one diamonsional wave equation is.

$$\frac{\partial^2 Y}{\partial t^2} = \alpha^2 \frac{\partial^2 Y}{\partial x^2}$$

The boundary conditions are

(1) 4(0, 1) = 0 cito yldito = 0 (iii) <u>By(x10)</u> = 0

 $(iv) \quad \forall (x_{10}) = \alpha \ sin\left(\frac{xx}{x}\right)$

The solution of the blave equation is. ylace) = [creaspat c2sinpa] [cscoepart casinpat] 10

kinite Templeate 1

 $y(a_1b) = \sum_{n=1}^{\infty} c_n sin \left(\frac{n\pi \alpha}{T}\right) cos \left(\frac{n\pi \alpha}{T}\right) \longrightarrow O$ Apply (iv) in equ ($y(n(0) = \sum_{n=1}^{\infty} c_n sin(\frac{n\pi \alpha}{\alpha}) = a sin(\frac{\pi \alpha}{\alpha})$ =asin (Im)

sub c, value in equ) $\Psi(x_{1}+) = a \sin\left(\frac{\pi \alpha}{4}\right) \cos\left(\frac{\pi a t}{4}\right).$ (A uniform String is Stretched and fastened t two points & apart. Motion is started by displacing the string into the form of the curve y= Kx(1-x) and then released from this position at time t=0. Drive the expression for the displacement of any point of the string at a distance x from one end at time t [N/D DOIS][A/M DOIS] solution. The one diamonional wave equation is $\frac{\partial^2 y}{\partial t^2} = \alpha^2 \frac{\partial^2 y}{\partial x^2}$ the boundary conditions are (i) y(0, F) = 0 (i) 9(1,1) = 0 (111) <u>84 (210)</u>=0 (iv) y(x10)= Kx(1-x) Flue solution of the equation is y (21+)= [C100sport c2 sinpar] [C300sport c4 sinpar] write templeat 1 $y(a_{1b}) = \sum_{n \in I} c_n sin \left(\frac{n\pi a_n}{n}\right) cos \left(\frac{n\pi a_n}{n}\right) \longrightarrow O$

Apply in in equi

 $\Psi(xw) = \sum ensin \left(\frac{m\pi x}{a}\right) = ka(d-a)$

$$f(x) = kx(d-x)$$
, $e_n = b_n = \frac{2}{d} \int f(x) \sin\left(\frac{n\pi x}{d}\right) dn$

$$\begin{aligned} &= \frac{2k}{\lambda} \int (k_{R} - \kappa^{2}) S^{n} \left(\frac{m\pi \kappa}{\lambda} \right) d\kappa \\ &= \frac{2k}{\lambda} \int (k_{R} - \kappa^{2}) \int -\cos \left(\frac{m\pi \kappa}{\lambda} \right) \int 0 \\ &= \frac{2k}{\lambda} \int \left[(4n - \kappa^{2}) \int -\cos \left(\frac{m\pi \kappa}{\lambda} \right) \right] \\ &= \frac{2k}{\lambda} \int \left[(4n - \kappa^{2}) \int -\sin \left(\frac{m\pi \kappa}{\lambda} \right) \right] \\ &= \frac{2k}{\lambda} \int \left[(4n - \kappa^{2}) \int -\sin \left(\frac{m\pi \kappa}{\lambda} \right) \right] \\ &= \frac{2k}{\lambda} \int \left[(-2n) \left(\frac{mn}{\lambda} \right)^{n} \right] \\ &= \frac{2k}{\lambda} \int \left[(-2n) \left(\frac{mn}{\lambda} \right)^{n} \right] \\ &= \frac{2k}{\lambda} \times \frac{(-2)}{(\frac{m\pi}{\lambda})^{n}} \int \left[(-n)^{n} - 1 \right] \\ &= \frac{2k}{\lambda} \times \frac{(-2)}{(\frac{m\pi}{\lambda})^{n}} \int \left[(-n)^{n} - 1 \right] \\ &= \frac{2k}{\lambda} \times \frac{(-2)}{n^{3}\pi^{3}} \int \left[(-n)^{n} - 1 \right] \\ &= \frac{4k}{n^{3}\pi^{3}} \int 0 \quad \text{if } n = 0 \text{ son } \\ &Cn = bn = \begin{cases} \frac{8k\lambda^{2}}{n^{3}\pi^{3}} \quad \text{if } n = 0 \text{ son } \\ \frac{8k\lambda^{2}}{n^{3}\pi^{3}} \quad \text{if } n = 0 \text{ son } \\ \\ ⋐ \quad Cn = bn \quad \text{value } \text{in } equ \\ ⋐ \quad Cn = bn \quad \text{value } \text{in } equ \\ &= \sum_{n=det}^{\infty} \left[\frac{8k\lambda^{2}}{n^{3}\pi^{3}} \right] S^{n} \left(\frac{m\pi \kappa}{\lambda} \right) \cos \left(\frac{m\pi \kappa}{\lambda} \right) \\ &= \frac{2k}{n^{3}\pi^{3}} \int \frac{8k\lambda^{2}}{n^{3}\pi^{3}} \int \frac{8n}{n^{3}\pi^{3}} \int \frac{m\pi \kappa}{\lambda} \right] \\ &= \frac{2k}{n^{3}\pi^{3}} \int \frac{8n}{n^{3}\pi^{3}} \int \frac{8n}{n^{3}\pi^{3}} \int \frac{8n}{n^{3}\pi^{3}} \int \frac{m\pi \kappa}{\lambda} \right] \\ &= \frac{2k}{n^{3}\pi^{3}} \int \frac{8k\lambda^{2}}{n^{3}\pi^{3}} \int \frac{8n}{n^{3}\pi^{3}} \int \frac{8n}{n^{3}\pi^{3}}$$

Template - 3 [With volocity]
Free where equation
$$P_{2} = \frac{\beta^{2} 4}{\beta t^{2}} = a^{2} \frac{\beta^{2} 4}{\beta t^{2}}$$

Free boundary conditions are.
(5) $\frac{1}{9} \frac{1}{10(t)} = 0$
(i) $\frac{9}{9} \frac{1}{10(t)} = 0$
(ii) $\frac{9}{9} \frac{1}{10(t)} = \frac{1}{2} \frac{1}{10(t)} \frac{1}{9} \frac{1}{10(t)} = \frac{1}{10(t)} \frac{1}{9} \frac{1}{10(t)} = \frac{1}{10(t)} \frac{1}{9} \frac{1}{10(t)} = \frac{1}{10(t)} \frac{1}{10(t)} \frac{1}{10(t)} = \frac{1}{10(t)} \frac{1}{10(t)$

iz

apila

(A)

$$\begin{aligned} \text{ Lube } C_{S} = 0 \quad \text{ in } cqui \quad (3) \\ \text{ y(x_{1}+)} = \left[C_{2} C_{4} S^{n} \left(\frac{hT_{x}}{T}\right) S^{n} \left(\frac{hT_{x}}{T}\right)\right] \\ \text{ y(x_{1}+)} = \sum_{n \geq 1}^{\infty} C_{n} S^{n} \left(\frac{hT_{x}}{T}\right) S^{n} \left(\frac{hT_{x}}{T}\right) \xrightarrow{(n)} \right] \\ \text{ y(x_{1}+)} = \sum_{n \geq 1}^{\infty} C_{n} S^{n} \left(\frac{hT_{x}}{T}\right) Cos \left(\frac{hT_{x}}{T}\right) \left(\frac{hT_{x}}{T}\right) \xrightarrow{(n)} \right] \\ \text{ of } \frac{\partial y(x_{1}+)}{\partial t} = \sum_{n \geq 1}^{\infty} c_{n} S^{n} \left(\frac{hT_{x}}{T}\right) Cos \left(\frac{hT_{x}}{T}\right) \left(\frac{hT_{x}}{T}\right) \xrightarrow{(n)} \right] \\ \text{ A tightly stretched string of longalth l initially at reat in its equilibrium partition and each of its points is green the volocity $\left(\frac{\partial V}{\partial t}\right)_{t=0} = No S^{n} \left(\frac{\pi T}{T}\right) \cdot \text{ Find the displacement y(with)} \quad [\pi/D, 201n] \\ \text{ soluction: } Volocity (\pi T) = 0 \\ \text{ (i) y(h)} = 0 \\ \text{ (i) y(h)} = 0 \\ \text{ (i) y(h)} = 0 \\ \text{ (ii) y(h)} = 0 \\ \text{ (iii) y(h)} = 1 \text{ for } S^{n}(\frac{\pi T}{T}). \\ \text{ Flue soluction of the equation is. } \\ \text{ y(a)} = \sum_{h=1}^{\infty} Cos^{n} S^{n}(\frac{\pi T}{T}) \\ \text{ box} = \sum_{h=1}^{\infty} Cos^{n} \left(\frac{hT_{h}}{T}\right) \cos\left(\frac{hT_{h}}{T}\right) \left(\frac{hT_{h}}{T}\right) \xrightarrow{(n)} \\ \text{ white template 3} \\ \frac{\partial y(x_{1}t)}{\partial t} = \sum_{h=1}^{\infty} Cos^{n} \left(\frac{hT_{h}}{T}\right) \cos\left(\frac{hT_{h}}{T}\right) \left(\frac{hT_{h}}{T}\right) \xrightarrow{(n)} \\ \text{ Apply (xiv) in cquare)} \end{aligned}$$$

Appig civi

sinse = 1/4 [3spha-sinse] $\sum_{n=1}^{\infty} \left(\frac{n\pi n}{\lambda} \right) e_n sin \left(\frac{n\pi n}{\lambda} \right) = Vo sen^s \left(\frac{\pi n}{\lambda} \right)$ = $\frac{v_0}{2} \left[ssin(\frac{rx}{2}) - sin(\frac{srx}{2}) \right]$ Equating co-efficient's $\frac{\pi q}{l} c_1 = \frac{3V_0}{A} \Rightarrow c_1 = \frac{3lv_0}{4T_0} \Rightarrow \boxed{c_2 = 0}$ $\frac{3\pi\alpha}{l} c_3 = \frac{-\gamma_0}{l} \Rightarrow c_3 = \frac{-\gamma_0 l}{10\pi\alpha}.$ CA = C5 = - - sub ci, cs value in eque 3 $g(n(t) = \left(\frac{g(n)}{\Delta \pi q}\right) \sin\left(\frac{\pi \pi}{\lambda}\right) \sin\left(\frac{\pi at}{\lambda}\right)$ + (-vol) sion (3TX) sin (3Tat). () A tightly stratched string barwar the fined and points a = and m=1 is initially. at rest in its equilibrium parition. If each of its points is given a velocity Kall-x) Find the displacement. [M/J 2013] soluction. The wave equation is $\frac{\partial^2 y}{\partial t_2} = \alpha^2 \frac{\partial^2 y}{\partial x_2}$ The boundary conditions one (i) y(o, b) = 0 (11) YILIE) = 0 (111) 8 4(210) =0 (iv) By (x10) = Kx(1-a)

ast -

The soluction of the equation is. 5 g(ait) = [ci cospat essinpa] [cs cospatt easin pat] Minite template - 2. $\frac{\partial y(n(t))}{\partial t} = \sum_{n=1}^{\infty} Cnsin\left(\frac{n\pi x}{t}\right) \cos\left(\frac{n\pi at}{t}\right) \left(\frac{n\pi a}{t}\right) \rightarrow O$ Flie half Parge sine sous is. Ztorson (may = top) - AD Apply (iv) in equ ($\frac{\partial y (x(0))}{\partial t} = \sum_{n=1}^{\infty} c_n \left(\frac{n\pi q}{L}\right) sin\left(\frac{n\pi x}{L}\right) cos\left(\frac{n\pi q}{L}\right)$ $\sum_{n=1}^{\infty} bn si^n \left(\frac{n\pi^n}{t}\right) = f(n) \longrightarrow$ $cn\left(\frac{n\pi q}{2}\right) = bn = \frac{2}{l} \int f(x) \sin\left(\frac{n\pi x}{l}\right) dn$ = 2 JKa(2-21) sin (man) da $C_n\left(\frac{n\pi q}{T}\right) = 6n = \begin{cases} 0 & \text{if } n = 0 \text{ out} \\ \frac{8Kf^2}{n^3 \pi^3} & \text{if } n = 0 \text{ odd} \end{cases}$ $Cn = \left(\frac{8kl^2}{n^3\pi^3}\right) \left(\frac{l}{n\pi q}\right) = \frac{8kl^3}{n^4\pi^4 q}, \text{ if neadd}$ sub en value in eque @ $\Psi(n(t)) = \sum_{n=0}^{\infty} \left[\frac{8kl^3}{mn^4n} \int sin(\frac{n\pi x}{l}) \cos(\frac{n\pi at}{l}) \right]$

3 A tightly stretched string of longth 10 with fined and points is initially at rest in its equilibrium position. If it is set vibrating by giving each point a Velocity Vosin (37x) cos (17x), orard 100 100 100 Find the displacement of string [N/D 20167 solution. The Marre equation is. $\frac{\partial^2 \Psi}{\partial k^2} = \alpha^2 \frac{\partial^2 \Psi}{\partial k^2}$ The boundary conditions are Cir yloit) =0 (1) YIX(E) =0 (iv) $\frac{\partial y(x_{10})}{\partial L} = V_0 Sin\left(\frac{3T^{\alpha}}{\Lambda}\right) \cos\left(\frac{T^{\alpha}}{\Lambda}\right)$ (iii) y(xto)=0 UNITS = Ecicospet co singer [co cospatt co sinpat] ainite template à $\frac{\partial y(x(t))}{\partial x} = \sum_{n=1}^{\infty} c_n \left(\frac{n\pi q}{\lambda}\right) \sin \left(\frac{n\pi q}{\lambda}\right) \cos \left(\frac{n\pi q}{\lambda}\right) \rightarrow \mathbb{C}$ ar Apply (12) in equi $\frac{\partial y(x_{10})}{\partial y} = \sum_{n=1}^{\infty} c_n \left(\frac{n\pi q}{2}\right) s_n^n \left(\frac{n\pi x}{2}\right) = V_0 s_n^n \left(\frac{s\pi x}{2}\right) c_0 s \left(\frac{\pi x}{2}\right)$ $\sum_{n=1}^{\infty} C_n \left(\frac{n\pi q}{T}\right) s_n^{on} \left(\frac{n\pi x}{T}\right) = \frac{V_0}{2} \left[s_n^{on} \left(\frac{n\pi x}{T}\right) + s_n^{on} \left[\frac{2\pi q}{T}\right]\right]$ AL Equiting co-efficients. 259 Ca = No at Car Yol $\frac{ATA}{I}C_A = \frac{V_0}{2} \implies C_A = \frac{V_0 l}{8T0}$ CI = C3 = C5 = C6 = - . . = 0

$$y(a_{1}+1) = \frac{y_{0}t_{ATA}}{ATA} \sin\left(\frac{2\pi x}{A}\right) \sin\left(\frac{2\pi a}{A}\right)$$

$$+ \frac{1}{ATA} \sin\left(\frac{4\pi x}{A}\right) \sin\left(\frac{4\pi a}{A}\right)$$

$$+ \frac{1}{8\pi a} \sin\left(\frac{4\pi x}{A}\right) \sin\left(\frac{4\pi a}{A}\right)$$

$$\Rightarrow \sin\left(\frac{4\pi a}{A}\right) \sin\left(\frac{4\pi a}{A}\right) \sin\left(\frac{4\pi a}{A}\right) \sin\left(\frac{4\pi a}{A}\right)$$

$$\Rightarrow \sin\left(\frac{4\pi a}{A}\right) \sin\left(\frac{4\pi a}{A}\right) \sin\left(\frac{4\pi a}{A}\right) \sin\left(\frac{4\pi a}{A}\right)$$

$$\Rightarrow \sin\left(\frac{4\pi a}{A}\right) \sin$$

Flu half flange time seur Ms. (4)

$$\sum_{n=1}^{\infty} bn stin \binom{n\pi n}{4\pi} = f(x) \longrightarrow f(anter x)$$

$$cn \left(\frac{n\pi n}{4\pi}\right) = bn = \frac{2}{2\pi} \int f(x) sin \left(\frac{n\pi n}{4\pi}\right) dx$$

$$= \frac{4}{\pi} \begin{cases} \frac{1}{2} \int (x) sin \left(\frac{n\pi n}{4\pi}\right) dx + \int (2d-x) sin \left(\frac{n\pi n}{4\pi}\right) dx \end{cases}$$

$$= \frac{4}{\pi} \left[\left(n \right) \left(-\frac{cus \left(\frac{n\pi n}{2\pi}\right)}{\left(\frac{n\pi}{2\pi}\right)} \right) - (1) \left(-\frac{sin \left(\frac{n\pi n}{2\pi}\right)}{\left(\frac{n\pi}{2\pi}\right)} \right) \right]$$

$$+ \left[(2d-x) \left(-\frac{cus \left(\frac{n\pi n}{2\pi}\right)}{\left(\frac{n\pi}{2\pi}\right)} \right) - (1) \left(-\frac{sin \left(\frac{n\pi n}{2\pi}\right)}{\left(\frac{n\pi n}{2\pi}\right)} \right) \right]$$

$$= \frac{4}{\pi^2} \left[\left((n - x) \left(-\frac{cus \left(\frac{n\pi n}{2\pi}\right)}{\left(\frac{n\pi}{2\pi}\right)} \right) - (1) \left(-\frac{sin \left(\frac{n\pi n}{2\pi}\right)}{\left(\frac{n\pi n}{2\pi}\right)} \right) \right]$$

$$= \frac{4}{\pi^2} \left[\left((n - x) \left(-\frac{cus \left(\frac{n\pi n}{2\pi}\right)}{\left(\frac{n\pi n}{2\pi}\right)} \right) - (1) \left(-\frac{sin \left(\frac{n\pi n}{2\pi}\right)}{\left(\frac{n\pi n}{2\pi}\right)} \right) \right]$$

$$= \frac{4}{\pi^2} \left[\left((n - x) \left(-\frac{cus \left(\frac{n\pi n}{2\pi}\right)}{\left(\frac{n\pi n}{2\pi}\right)} \right) - (1) \left(-\frac{sin \left(\frac{n\pi n}{2\pi}\right)}{\left(\frac{n\pi n}{2\pi}\right)} \right) \right]$$

$$= \frac{4}{\pi^2} \left[\left((n - x) \left(-\frac{cus \left(\frac{n\pi n}{2\pi}\right)}{\left(\frac{n\pi n}{2\pi}\right)} \right) - (1) \left(-\frac{sin \left(\frac{n\pi n}{2\pi}\right)}{\left(\frac{n\pi n}{2\pi}\right)} \right) \right]$$

$$= \frac{4}{\pi^2} \left[(n - x) \left(-\frac{cus \left(\frac{n\pi n}{2\pi}\right)}{\left(\frac{n\pi n}{2\pi}\right)} \right) - (1) \left(-\frac{sin \left(\frac{n\pi n}{2\pi}\right)}{\left(\frac{n\pi n}{2\pi}\right)} \right) \right]$$

$$= \frac{4}{\pi^2} \left[(n - x) \left(-\frac{cus \left(\frac{n\pi n}{2\pi}\right)}{\left(\frac{n\pi n}{2}\right)} - (1) \left(-\frac{sin \left(\frac{n\pi n}{2\pi}\right)}{\left(\frac{n\pi n}{2\pi}\right)} \right) \right]$$

$$= \frac{4}{\pi^2} \left[(n - x) \left(-\frac{cus \left(\frac{n\pi n}{2\pi}\right)}{\left(\frac{n\pi n}{2\pi}\right)} - (1) \left(-\frac{sin \left(\frac{n\pi n}{2\pi}\right)}{\left(\frac{n\pi n}{2\pi}\right)} \right) \right]$$

$$= \frac{4}{\pi^2} \left[(n - x) \left(-\frac{cus \left(\frac{n\pi n}{2\pi}\right)}{\left(\frac{n\pi n}{2\pi}\right)} - (1) \left(-\frac{sin \left(\frac{n\pi n}{2\pi}\right)}{\left(\frac{n\pi n}{2\pi}\right)} \right) \right]$$

$$= \frac{4}{\pi^2} \left[(n - x) \left(-\frac{cus \left(\frac{n\pi n}{2\pi}\right)}{\left(\frac{n\pi n}{2\pi}\right)} - (1) \left(-\frac{sin \left(\frac{n\pi n}{2\pi}\right)}{\left(\frac{n\pi n}{2\pi}\right)} \right) \right]$$

$$= \frac{4}{\pi^2} \left[(n - x) \left(-\frac{cus \left(\frac{n\pi n}{2\pi}\right)}{\left(\frac{n\pi n}{2\pi}\right)} - (1) \left(\frac{n\pi n}{2\pi}\right) \right]$$

$$= \frac{4}{\pi^2} \left[(n - x) \left(\frac{n\pi n}{2\pi}\right) - (1) \left(\frac{n\pi n}{2\pi}\right)} - (1) \left(\frac{n\pi n}{2\pi}\right)$$

$$= \frac{4}{\pi^2} \left[(n - x) \left(\frac{n\pi n}{2\pi}\right) - (1) \left(\frac{n\pi n}{2\pi}\right)$$

$$= \frac{4}{\pi^2} \left[(n - x) \left(\frac{n\pi n}{2\pi}\right) - (1) \left(\frac{n\pi n}{2\pi}\right) - (1) \left(\frac{n\pi n}{2\pi}\right)$$

$$= \frac{4}{\pi^2$$

One diamentional theat equation with
Roth and are change to zero temperature
Find the solution to the equation:

$$\frac{\partial N}{\partial t} = \alpha^{2} \frac{\partial^{2} n}{\partial y^{2}} \quad \text{ther extractive the conditions.}$$

$$\frac{\partial N}{\partial t} = \alpha^{2} \frac{\partial^{2} n}{\partial y^{2}} \quad \text{ther extractive the conditions.}$$

$$\frac{\partial N}{\partial t} = \alpha^{2} \frac{\partial^{2} n}{\partial y^{2}} \quad \text{ther extractive and}$$

$$\frac{\partial N}{\partial t} = \alpha^{2} \frac{\partial^{2} n}{\partial y^{2}} \quad \text{the one diamentional has flow equation is.}$$

$$\frac{\partial U}{\partial t} = \alpha^{2} \frac{\partial^{2} n}{\partial x^{2}}$$
The boundary conditions are

$$\frac{\partial U}{\partial t} = \alpha^{2} \frac{\partial^{2} n}{\partial x^{2}}$$
The boundary conditions are

$$\frac{\partial U}{\partial t} = \alpha^{2} \frac{\partial^{2} n}{\partial x^{2}}$$
The boundary conditions are

$$\frac{\partial U}{\partial t} = \alpha^{2} \frac{\partial^{2} n}{\partial x^{2}}$$
The boundary conditions are

$$\frac{\partial U}{\partial t} = \alpha^{2} \frac{\partial^{2} n}{\partial x^{2}}$$
The boundary conditions are

$$\frac{\partial U}{\partial t} = \alpha^{2} \frac{\partial^{2} n}{\partial x^{2}}$$
The countion of the equation is.

$$\frac{\partial U}{\partial t} = \alpha^{2} \frac{\partial^{2} n}{\partial t^{2}} = \frac{1}{2} \frac{\partial^{2} n}{\partial t^{2}} = \frac$$

9 If BEO We get brivial solution. Simpleo pl= sin1(0) = hr $P = \left(\frac{nT}{\lambda}\right)$ Sub p value in equi $(\frac{m\pi}{2})^2 t$ $u(m(t)) = \begin{bmatrix} a \sin(\frac{m\pi\pi}{2}) \end{bmatrix} e^{-a^2(\frac{m\pi}{2})^2 t}$ $u(m(t)) = \sum_{n=1}^{\infty} Bn sign(\frac{m\pi\pi}{2}) e^{-a^2(\frac{m\pi}{2})^2 t}$ A pply till) in equi (9) $u(x_{10}) = \sum_{i=1}^{\infty} \operatorname{Pain}\left(\frac{n\pi x}{4}\right) = f(x) = \begin{cases} x_{i}, & 0 \leq x \leq d_{12} \\ d_{12} \leq x \leq d_{12} \end{cases}$ The half Range line sous is $\sum_{n=1}^{\infty} bnsin\left(\frac{n+n}{2}\right) = f(n).$ Bn= bn= 2 [f(n)sin[mrn])dn = = { [(x) sin [= () chi+ [(1-x) sin [= 2) chi] $=\frac{2}{2} \begin{cases} \left[(\pi) \left(\frac{-\cos\left(\frac{n\pi\pi}{2}\right)}{(n\pi)} \right) - (1) \left(\frac{-\sin\left(\frac{n\pi\pi}{2}\right)}{(\frac{n\pi}{2})} \right) \right]_{0} \end{cases}$ + [11-2) (- cos (1) - (-1) (-sin (1) + x)],] $=\frac{2}{\lambda}\left\{\frac{\left[(h_{2})\left(-\frac{\cos\left(10\pi y_{2}\right)}{10\pi y_{1}}\right)+\left(\frac{\sin\left(1\pi y_{2}\right)}{(4\pi y_{2})}\right)\right]-\left[\cos\left(\frac{1}{2}\right)\right]\right\}$ + { [0] - [1/2] - (1/2)) - (2/2)]] $=\frac{2}{\lambda}\times\frac{\lambda^{2}}{n^{2}\pi^{2}}\operatorname{Sen}\left(\frac{n\pi}{2}\right)=\frac{2\lambda}{n^{2}\pi^{2}}\operatorname{Sen}\left(\frac{n\pi}{2}\right)$ sub by value in equ @ $\operatorname{cularities} = \sum_{h=1}^{\infty} \left[\frac{1}{n^2 \pi^2} \operatorname{sin} \left(\frac{n\pi}{2} \right)^2 \operatorname{sin} \left(\frac{n\pi \pi}{2} \right) = x^2 \left(\frac{n\pi}{2} \right)^2 \operatorname{til}$

A tightly streched string of length at is fastened at neo and n= pl. The mid point of A the string is taken to hight b transversely and then related from rest in these position. Find the lateral displacement of the string Solution Let ALEL the wave equation $\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial t^2}$ (42,67. toro 0 4/2 L=RL The equation PS Stable $PS = \frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$ The equation of OA [0(0,0) , A (1,2,6)] $\frac{y_{-0}}{b_{-0}} = \frac{x_{-0}}{\frac{L_{2}-0}{b_{-0}}} \Rightarrow \frac{y_{-0}}{b_{-0}} \Rightarrow \frac{y_{-0}}{L} \Rightarrow y = \frac{2bx}{L}, 0 \le x \le L$ The equation of AB[A(43,b) B(1,0)] x1 y, x2 y2 $\frac{y-b}{0-b} = \frac{x-1/2}{1-1/2} \Rightarrow -\frac{y}{b} + 1 = \frac{x-1/2}{1/2}$ $\frac{-\frac{y}{b}}{b} + 1 = \frac{(2\pi - L)}{L} \neq \frac{-\frac{y}{b}}{b} = \frac{2\pi - L}{L} - 1$ $-\frac{4}{b} = \frac{2\pi - aL}{L} \Rightarrow \frac{4 - 2b(L - \pi)}{L} \Rightarrow \frac{4}{2} = \frac{2b(L - \pi)}{L}$ The solution is the quetion is. $Y[n(t) = [Acospatesina] [cscospattasinpat] \rightarrow 0$ kinite tomplate - 1 $\Psi(x_1 t) = \sum_{n=1}^{\infty} c_n \sin\left(\frac{n\pi \alpha}{n}\right) \cos\left(\frac{n\pi \alpha t}{n}\right) \longrightarrow$

The boundary conditions are
(i)
$$\forall |n| > = 0$$

(ii) $\frac{\partial \psi}{\partial L} = 0$
(iii) $\frac{\partial \psi}{\partial L} = 0$
(iv) $\psi(n) > in$ equation (C)
 $\frac{\partial \psi}{\partial L} = \frac{\partial \psi}{\partial L}$
 $\psi(np) = \sum_{n=1}^{\infty} Cn \sin\left(\frac{n\pi n}{d}\right) = \frac{1}{2}(n) = \left(\frac{ab(L+n)}{L}, \frac{b}{d_{L}} \le n \le L/2\right)$
 $\psi(np) = \sum_{n=1}^{\infty} Cn \sin\left(\frac{n\pi n}{d}\right) = \frac{1}{2}(n) = \left(\frac{ab(L+n)}{L}, \frac{b}{d_{L}} \le n \le L/2\right)$
 $\psi(np) = \sum_{n=1}^{\infty} Cn \sin\left(\frac{n\pi n}{d}\right) = \frac{1}{2}(n) \longrightarrow (C)$
 $\frac{\partial \psi}{\partial L} = bn \sin\left(\frac{n\pi n}{L}\right) = \frac{1}{2}(n) \longrightarrow (C)$
 $\frac{\partial \psi}{\partial L} = bn \sin\left(\frac{n\pi n}{L}\right) = \frac{1}{2}(n) \longrightarrow (C)$
 $\int_{n=1}^{\infty} bn \sin\left(\frac{n\pi n}{L}\right) = \frac{1}{2}(n) - \frac{1}{2}(n) \longrightarrow (C)$
 $\int_{n=1}^{\infty} bn \sin\left(\frac{n\pi n}{L}\right) = \frac{1}{2}(n) - \frac{1}{2}(n) \longrightarrow (C)$
 $\int_{n=1}^{\infty} bn \sin\left(\frac{n\pi n}{L}\right) = (1) \left(-\frac{1}{(\frac{n\pi n}{L})}\right) = \frac{1}{2}(n) - \frac{1}{2}(n) + \frac{1}{(\frac{n\pi n}{L})}\right) = (1) \left(-\frac{1}{(\frac{n\pi n}{L})}\right) = \frac{1}{2}(n) - \frac{1}{(\frac{n\pi n}{L})}\right) = \frac{1}{2}(n) - \frac{1}{(\frac{n\pi n}{L})}\right) = \frac{1}{2}(n) - \frac{1}{(\frac{n\pi n}{L})}\right) = (1) \left(-\frac{1}{(\frac{n\pi n}{L})}\right) = \frac{1}{2}(n) - \frac{1}{(\frac{n\pi n}{L})}\right) = \frac{1}{2}(n) - \frac{1}{(\frac{n\pi n}{L})}\right) = \frac{1}{2}(n) - \frac{1}{(\frac{n\pi n}{L})}\right) = (1) \left(-\frac{1}{(\frac{n\pi n}{L})}\right) = \frac{1}{2}(n) - \frac{1}{(\frac{n\pi n}{L})}\right) = \frac{1}{(\frac{n\pi n}{L})}\right) = \frac{1}{(\frac{n\pi n}{L})}\right) = \frac{1}{(\frac{n\pi n}{L})}\right) = \frac{1}{(\frac{n\pi n}{L})}}$
Sub bn = Cn value in cquarion (C)
 $\psi(n) + \frac{1}{(\frac{n\pi n}{L})} = \frac{1}{(\frac{$

one Dimensional Heat Equation with Both ends and
change to Mon-zono temperature
O A bar of 10 cm long with inpulated sides has its ends A and B maintained at temperatures soc and 100°C reep until stoody state conditions premi The temperature at A is suddenly raised to good and at is lowered to bo°C. Find The temperature distribution in the bar thereafter
solution.
The study state temperature distribution on the red is $u(x) = (b-a)x + a \longrightarrow 0$
where as temperature at the end H=0 b= Temperature at the end H=1 l= length of the rod A=50, be 100 Sub in @
u(x) = 50x + 50 Which is temperature distribution of the rod Which is temperature at A is raised to 90°C NOW the temperature at A is raised to 90°C and at B is lowered to 60°C is the study state and at B is lowered to 60°C is the study state
is changed distribution is $u(x) = \frac{5011}{2} + 50$ temperature 1
uloitizes uloitizes the boundary conditions are the boundary conditions are is uloitized, city ulditize bo (iii) ulas) = <u>sor</u> + so le cannot find ulaitize for the non-zone boundary we cannot find ulaitized for the non-zone boundary eonalitions .: We split the solution ulaitized two parts
$u(n_1 +) = u_s(n_2) + u_t(n_1 +) \longrightarrow (B)$

Where using is a solution of $\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}$ (\mathfrak{D}) in volving a only and satisfies the boundary conditions (i) and (ii) u) us(o)= go and us(2)= 60 ci) USIAT PS 9 Steady State solution 4E (NEED is a transient solution satisfies (B) which decreases at t Preveases. To find us (21) under the steady state condition >(0) alson 2= a'act la' a) also => yelos= otb' => b'= 90 sub condition us(1) = 60 Pn ($U_{s}(\lambda) = a'l+b' \Rightarrow 60 = a'l+90 \Rightarrow a' = -\frac{3e}{7}$ sub in (he get usin) = $-\frac{30x}{2} + 90$ To find us (x16) $(B) \Rightarrow \Psi_{L}(\pi_{LE}) = U(\pi_{LE}) - U_{L}(\pi) \longrightarrow (D)$ We have to find the boundary condition for allants Put n=0 in (1) $U_{E}(o(F) = U(o(F) - U_{E}(o)) = 90 - 90 = 0$ put a= 1 in () Utilit)= uldit 1 - usid) = bo-bo=0 put to in O $utilities = u(x_{10}) - us(x) = \frac{80^{x}}{L} - 40$ The new boundary conditions and $u_{101t} = 0$ (i) UE (oit) = 0 Uii) ULLAIL) =0 $(iii) U + (nio) = \frac{80x}{p} - 40$

Fine so hundrin of them. Video intervention is.

$$u_{1}(x_{1+1}) = [A \cos px + B \sin px] e^{-a^{2}p^{2}t} \longrightarrow (P)$$

$$u_{1}(x_{1}) = [A] e^{-a^{2}p^{2}t} = 0$$

$$e^{-a^{2}p^{2}t} + 0, [A = 0]$$
Sub $A = 0$ in equ (P)

$$u_{1}(x_{1+1}) = [B \sin px] e^{-a^{2}p^{2}t} \longrightarrow (P)$$

$$u_{1}(x_{1+1}) = [B \sin px] e^{-a^{2}p^{2}t} = 0$$

$$B \sin pd = 0 \text{ either } B = 0 \text{ (or) } \sin pd = 0$$

$$I + B = 0 \text{ whe get Erivial solution } .$$

$$sinpd = 0 \Rightarrow pd = sin^{2}(n) = n\pi \Rightarrow p = [\frac{n\pi}{4}]$$

$$u_{1}(x_{1+1}) = [B \sin(n + \frac{\pi\pi}{4})] e^{-(\frac{n\pi}{4})^{2}t} \longrightarrow (P)$$

$$u_{2}(x_{1+1}) = [B \sin(n + \frac{\pi\pi\pi}{4})] e^{-(\frac{n\pi\pi}{4})^{2}t} \longrightarrow (P)$$

$$u_{2}(x_{1+1}) = [B \sin(n + \frac{\pi\pi\pi}{4})] e^{-(\frac{n\pi\pi\pi}{4})^{2}t} \longrightarrow (P)$$

$$u_{2}(x_{1+1}) = \sum_{n=1}^{\infty} Bn \sin(n + \frac{\pi\pi\pi}{4}) = \frac{80x}{t} + 40$$

$$u_{3}(x_{1}, 0) = \sum_{n=1}^{\infty} Bn \sin(n + \frac{\pi\pi\pi}{4}) = \frac{4(n)}{t}$$

$$u_{3}(x_{1}) = \frac{1}{t} Bn \sin(n + \frac{\pi\pi\pi}{4}) = \frac{1}{t} Bn$$

$$Bn = bn = \frac{1}{t} \int_{0}^{t} f(x) \sin(\frac{n\pi\pi\pi}{4}) dn$$

$$= \frac{3}{t} \int_{0}^{t} [\frac{80\pi}{4} + a0] \sin(\frac{n\pi\pi\pi}{4}) dn$$

Ð

$$=\frac{4}{4}\left[\left(\frac{90^{X}}{4}-4^{0}\right)\left(\frac{-\cos\left(\frac{n\pi\pi}{4}\right)}{\left(\frac{n\pi}{4}\right)}\right)-\left(\frac{90}{4}\right)\left(\frac{-\sin\left(\frac{n\pi\pi}{4}\right)}{\left(\frac{n\pi}{4}\right)^{2}}\right)^{-1}\right]_{c}^{d}$$

$$=\frac{4}{4}\left\{\left[\frac{-40^{A}(4)^{h}}{n\pi}\right]-\left[\frac{40^{A}}{n\pi}\right]_{c}^{2}\right]$$

$$=\frac{-\frac{80}{nh}\left[(+1)^{h}+1\right]}{\left[\frac{n}{n\pi}\right]^{2}}\right]$$

$$=\frac{-\frac{80}{nh}\left[(+1)^{h}+1\right]}{\left[\frac{n}{n\pi}\right]^{2}}$$

$$=\frac{-\frac{80}{nh}\left[(+1)^{h}+1\right]}{\left(\frac{n}{n\pi}\right)^{2}}$$

$$=\frac{-\frac{80}{nh}\left[(+1)^{h}+1\right]}{\left(\frac{n}{n\pi}\right)^{2}}$$

$$=\frac{-\frac{80}{nh}\left[(+1)^{h}+1\right]}{\left(\frac{n}{n\pi}\right)^{2}}$$

$$=\frac{-\frac{80}{nh}\left[(+1)^{h}+1\right]}{\left(\frac{n}{n\pi}\right)^{2}}$$

$$=\frac{-\frac{80}{nh}\left[(+1)^{h}+1\right]}{\left(\frac{n}{n\pi}\right)^{2}}$$

$$=\frac{-\frac{80}{nh}\left[(+1)^{h}+1\right]}{\left(\frac{n}{n\pi}\right)^{2}}$$

$$=\frac{-\frac{80}{nh}\left[(+1)^{h}+1\right]}{\left(\frac{n}{n\pi}\right)^{2}}$$

$$=\frac{-\frac{80}{nh}\left[(+1)^{h}+1\right]}{\left(\frac{n}{n\pi}\right)^{2}}$$

$$=\frac{-\frac{80}{nh}\left[(-\frac{160}{n\pi}\right]^{2}\right] + \frac{2}{n}$$

$$=\frac{-\frac{80}{nh}\left[(-\frac{160}{n\pi}\right)^{2}\right]}{\left(\frac{n}{n}\right)^{2}}$$

$$=\frac{-\frac{80}{n}\left[(-\frac{160}{n\pi}\right)^{2}\right] + \frac{2}{n}$$

$$=\frac{-\frac{80}{n}\left[(-\frac{160}{n\pi}\right)^{2}\right]}{\left(\frac{n}{n}\right)^{2}}$$

$$=\frac{-\frac{80}{n}\left[(-\frac{160}{n\pi}\right)^{2}\right] + \frac{2}{n}$$

$$=\frac{-\frac{80}{n}\left[(-\frac{160}{n\pi}\right)^{2}\right]}{\left(\frac{n}{n}\right)^{2}}$$

$$=\frac{-\frac{80}{n}\left[(-\frac{160}{n\pi}\right)^{2}\right] + \frac{2}{n}$$

$$=\frac{-\frac{80}{n}\left[(-\frac{160}{n\pi}\right)^{2}\right]}{\left(\frac{n}{n}\right)^{2}}$$

$$=\frac{-\frac{80}{n}\left[(-\frac{160}{n\pi}\right)^{2}\right] + \frac{2}{n}$$

$$=\frac{1}{n}$$

1 (4mp D' Alembert's Solution of wave equation $\frac{\partial^2 y}{\partial t^2} = L^2 \frac{\partial^2 y}{\partial t^2} \longrightarrow O$ (1) Let us introduce the new indepent vorial. 4=21+it, v= 1-it so that y becomes a function 15 u and V $\frac{\partial y}{\partial x} = \frac{\partial y}{\partial u} + \frac{\partial y}{\partial u}$ $\frac{\partial^2 y}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial y}{\partial x} \right).$ $= \frac{\partial}{\partial x} \left(\frac{\partial y}{\partial u} + \frac{\partial y}{\partial u} \right)$ $= \frac{\partial}{\partial u} \left(\frac{\partial y}{\partial u} + \frac{\partial y}{\partial u} \right) + \frac{\partial}{\partial v} \left(\frac{\partial y}{\partial u} + \frac{\partial y}{\partial v} \right)$ $= \frac{\partial^2 y}{\partial u^2} + \frac{\partial^2 y}{\partial u \partial v} + \frac{\partial^2 y}{\partial v \partial u} + \frac{\partial^2 y}{\partial u^2}$ $\frac{\partial^2 y}{\partial x^2} = \frac{\partial^2 y}{\partial u^2} + \frac{\partial^2 y}{\partial u dv} + \frac{\partial^2 y}{\partial v^2} \longrightarrow (2)$ Similarly $\frac{\partial^2 y}{\partial t^2} = C^2 \left(\frac{\partial^2 y}{\partial u^2} - 2 \frac{\partial^2 y}{\partial u \partial v} + \frac{\partial^2 y}{\partial u \partial v} \right) \rightarrow (3)$ Sub @ & 3 in 1

$$C^{2} \left(\frac{\partial^{2} \eta}{\partial u^{2}} - \frac{2}{2} \frac{\partial^{2} \eta}{\partial u \partial v} + \frac{\partial^{2} \mu}{\partial v^{2}} \right) = C^{2} \left(\frac{\partial^{2} \eta}{\partial u^{2}} + \frac{\partial^{2} \mu}{\partial u \partial v} + \frac{\partial^{2} \mu}{\partial v^{2}} \right)$$

$$= C^{2} \left(\frac{\partial^{2} \eta}{\partial u^{2}} - \frac{2}{\partial u \partial v} + \frac{\partial^{2} \mu}{\partial v^{2}} - \frac{\partial^{2} \mu}{\partial u^{2}} - \frac{2}{\partial u \partial v} - \frac{\partial^{2} \mu}{\partial v^{2}} \right)$$

$$= C^{2} \left(\frac{\partial^{2} \eta}{\partial u^{2}} - \frac{\partial^{2} \mu}{\partial u \partial v} + \frac{\partial^{2} \mu}{\partial v^{2}} - \frac{\partial^{2} \mu}{\partial u \partial v} - \frac{\partial^{2} \mu}{\partial u^{2}} \right)$$

$$= C^{2} \left(\frac{\partial^{2} \mu}{\partial u \partial v} - \frac{\partial^{2} \mu}{\partial v^{2}} + \frac{\partial^{2} \mu}{\partial u \partial v} - \frac{\partial^{2} \mu}{\partial v^{2}} + \frac{\partial^{2} \mu}{\partial u \partial v} - \frac{\partial^{2} \mu}{\partial v^{2}} \right)$$

$$= C^{2} \left(\frac{\partial^{2} \mu}{\partial u \partial v} - \frac{\partial^{2} \mu}{\partial v^{2}} + \frac{\partial^{2} \mu}{\partial u \partial v} - \frac{\partial^{2} \mu}{\partial v^{2}} + \frac{\partial^{2} \mu}{\partial u \partial v} - \frac{\partial^{2} \mu}{\partial v^{2}} + \frac{\partial^{2} \mu}{\partial u \partial v} - \frac{\partial^{2} \mu}{\partial v^{2}} \right)$$

$$= C^{2} \left(\frac{\partial^{2} \mu}{\partial u \partial v} - \frac{\partial^{2} \mu}{\partial v^{2}} + \frac{\partial^{2} \mu}{\partial u \partial v} - \frac{\partial^{2} \mu}{\partial v^{2}} + \frac{\partial^{2} \mu}{\partial u \partial v} - \frac{\partial^{2} \mu}{\partial v^{2}} \right)$$

$$= C^{2} \left(\frac{\partial^{2} \mu}{\partial u \partial v} - \frac{\partial^{2} \mu}{\partial v^{2}} + \frac{\partial^{2} \mu}{\partial u \partial v} - \frac{\partial^{2} \mu}{\partial v^{2}} + \frac{\partial^{2} \mu}{\partial u \partial v} - \frac{\partial^{2} \mu}{\partial v^{2}} + \frac{\partial^{2} \mu}{\partial u \partial v} - \frac{\partial^{2} \mu}{\partial v^{2}} \right)$$

$$= C^{2} \left(\frac{\partial^{2} \mu}{\partial u \partial v} - \frac{\partial^{2} \mu}{\partial v^{2}} + \frac{\partial^{2} \mu}{\partial u \partial v} - \frac{\partial^{2} \mu}{\partial v^{2}} + \frac{\partial^{2} \mu}{\partial u \partial v} - \frac{\partial^{2} \mu}{\partial v^{2}} \right)$$

$$= C^{2} \left(\frac{\partial^{2} \mu}{\partial u \partial v} - \frac{\partial^{2} \mu}{\partial u \partial v} - \frac{\partial^{2} \mu}{\partial u \partial v} - \frac{\partial^{2} \mu}{\partial v} \right)$$

$$= C^{2} \left(\frac{\partial^{2} \mu}{\partial u \partial v} - \frac{\partial^{2} \mu}{\partial u \partial v} + \frac{\partial^{2} \mu}{\partial u} - \frac{\partial^{2} \mu}{\partial u} - \frac{\partial^{2} \mu}{\partial v} \right)$$

$$= C^{2} \left(\frac{\partial^{2} \mu}{\partial u \partial v} - \frac{\partial^{2} \mu}{\partial u \partial v} + \frac{\partial^{2} \mu}{\partial u} - \frac{\partial^{2} \mu}{\partial v} \right)$$

$$= C^{2} \left(\frac{\partial^{2} \mu}{\partial u \partial v} - \frac{\partial^{2} \mu}{\partial u} + \frac{\partial^{2} \mu}{\partial u} + \frac{\partial^{2} \mu}{\partial u} - \frac{\partial^{2} \mu}{\partial v} \right)$$

$$= C^{2} \left(\frac{\partial^{2} \mu}{\partial u \partial v} - \frac{\partial^{2} \mu}{\partial u} + \frac{\partial^{2} \mu}{\partial u} - \frac{\partial^{2} \mu}{\partial u} + \frac{\partial^{2} \mu}{\partial u} - \frac{\partial^{2} \mu}{\partial u} + \frac{\partial^{2} \mu}{\partial u} \right)$$

$$= C^{2} \left(\frac{\partial^{2} \mu}{\partial u} - \frac{\partial^{2} \mu}{\partial u} + \frac{\partial^{2} \mu}{\partial u} - \frac{\partial^{2} \mu}{\partial u} + \frac{\partial^{2} \mu}{\partial u} - \frac{\partial^{2} \mu}{\partial u} + \frac{\partial^{2} \mu}{\partial u} + \frac{\partial^{2} \mu}{\partial u} + \frac{\partial^{2} \mu}{\partial u} + \frac{\partial^{2} \mu}{\partial u} - \frac{\partial^{2} \mu}{\partial u} + \frac{\partial^{2} \mu}{\partial u} - \frac{\partial^{2} \mu}{\partial u} + \frac{\partial$$

$$y(x,t) = \phi(x+t) + \psi(x-t) \rightarrow 0$$

$$(x,t) = \phi(x+t) + \psi(x-t) \rightarrow 0$$

$$(x,t) = \psi(x,t) = t(x) \text{ and } \frac{\partial y}{\partial t} = (x, 0) = 0$$

$$y(x,t) = \psi(x,t) = t(x) \text{ and } \frac{\partial y}{\partial t} = (x, 0) = 0$$

$$\frac{\partial y(x,t)}{\partial t} = (x+t+) + \psi(x-t+) + \psi(x-t+) + (x, 0) = 0$$

$$\frac{\partial y(x,t)}{\partial t} = c \phi'(x+t+) - c \psi'(x-t+)$$

$$\frac{\partial y(x,t)}{\partial t} = c \phi'(x) - c \psi'(x)$$

$$\frac{\partial y(x,t)}{\partial t} = c \phi'(x) - c \psi'(x)$$

$$\frac{\partial y(x,t)}{\partial t} = c \phi'(x) - c \psi'(x)$$

$$\frac{\partial y(x,t)}{\partial t} = \psi'(x) + \psi(x-t+) = 0$$

$$\frac{\partial y(x,t)}{\partial t} = \psi'(x) + \psi(x) + \psi(x)$$

$$\frac{\partial y(x,t)}{\partial t} = \psi'(x) + \psi(x) = 0$$

$$\frac{\partial y(x,t)}{\partial t} = \psi(x) + \psi(x) = \frac{\partial y(x)}{\partial t} + \frac{\partial y(x)}{\partial t} = \frac{\partial y(x)}{\partial t} = \frac{\partial y(x)}{\partial t} + \frac{\partial y(x)}{\partial t} = \frac{\partial y(x)}{\partial t} = \frac{\partial y(x)}{\partial t} = \frac{\partial y(x)}{\partial t} = \frac{\partial y(x)}{\partial t} + \frac{\partial y(x)}{\partial t} = \frac{\partial y(x)}{\partial$$

() milligrading,
(a) becomes,
$$\psi(x) + \kappa + \psi(x) = \psi(x)$$

sub $\phi(x)$ in (b),
 $2 \psi(x) = \frac{1}{2} (\psi(x) - \kappa)$
 $\psi(x) = \frac{1}{2} (\psi(x) - \kappa)$
 $\psi(x) = \frac{1}{2} (\psi(x) - \kappa)$
 $\psi(x) = \frac{1}{2} (\psi(x) - \kappa)$
 $\phi(x) + \phi(x) - \kappa = \frac{1}{2} (\chi)$
 $2 \phi(x) - \kappa = \frac{1}{2} (\chi)$
 $2 \phi(x) - \kappa = \frac{1}{2} (\chi) + \kappa$
 $\psi(x) = \frac{1}{2} (\chi) + \kappa$
Hence the solution of (b) is
 $\psi(x,t) = \phi(x+tt) + \psi(x-tt)$
 $= \frac{1}{2} [\frac{1}{2} (x+tt) + \kappa] + \frac{1}{2} [\frac{1}{2} (x-tt) - \kappa]$
 $= \frac{1}{2} [\frac{1}{2} (x+tt) + \kappa] + \frac{1}{2} [\frac{1}{2} (x-tt) - \kappa]$
 $i = \frac{1}{2} [\frac{1}{2} (x+tt) + \kappa] + \frac{1}{2} [\frac{1}{2} (x-tt) - \kappa]$
Which is the d'Alumbert's solution of would equation (b)

UNIT -IV

PARTIAL DIFFERENTIAL EQUATIONS

Questions	opt 1	opt 2	opt 3	opt 4	Answer
Partial differential equation of second order is said to Elliptic at a point	B^2-4AC<0	B^2-4AC=0	B^2-4AC>0	B^2=4AC	B^2-4AC<0
(x,y) in the plane if Partial differential equation of second order is said to Parabolic at a point (x,y) in the plane if	B^2-4AC<0	B^2-4AC=0	B^2-4AC>0	B^2=4AC	B^2-4AC=0
Partial differential equation of second order is said to Hyperbolic at a point (x,y) in the plane if	B^2-4AC<0	B^2-4AC=0	B^2-4AC>0	B^2=4AC	B^2-4AC>0
Two dimensional Laplace Equation is	u_xx+u_yy=1	u_xx+u_yy=0	u_x=u_y	u_x+u_y=0	u_xx+u_yy=0
One dimensional heat Equation is	u_xx=(1/a^2)u_t	u_xx=[(1/α^2)u_t]+ 10	u_xx=u_tt	u_xx+u_tt=0	u_xx=(1/a^2)u_t
One dimensional wave Equation is	$u_xx=(1/\alpha^2)u_t$	u_xx+u_yy=0	$u_xx=(1/\alpha^2)u_t^2$	u_xx=u_t	u_xx=(1/α^2)u_t^ 2
The D'Alembert's solution of the One dimensional wave Equation is	$-y(x,t)=\phi(x-\alpha t)+\psi(x+\alpha t)$	y(x,t)=0	$u_xx=(1/\alpha^2)u_t$	$u_xx=(1/\alpha^2)u_t^2$	$y(x,t)=\phi(x-\alpha t)+\psi(x+\alpha t)$
The Possion equation is of the form	$y(x,t)=\phi(x-\alpha t)+\psi(x+\alpha t)$	$u_xx=(1/\alpha^2)u_t$	$u_xx=(1/\alpha^2)u_tt$	u_xx+u_yy=f(x,y)	u_xx+u_yy=f(x,y)
The steady state temperature of a rod of length l whose ends are kept at 30 and 40 is	u(x) = 10x/l + 30	u(x)=40x/l	u(x)= 30x/l	None	u(x) = 10x/l + 30
The temperature distribution of the plate in the steady state is	u_xx=(1/a^2)u_t	u_xx+u_yy=0	$u_xx=(1/\alpha^2)u_t^2$	u_xx=u_t	u_xx+u_yy=0
Two dimensional heat Equation is known asequation.	partial	Radio	laplace	Poisson	laplace
In one dimensional heat flow equation ,if the temperature function u is independent of time, then the solution is	u(x)=ax+b	u(x,t)=a(x,t)	$\mathbf{u}(t) = \mathbf{a}t + \mathbf{b}$	u(t) = at - b	u(x)=ax+b
f_xx+2f_xy+4f_yy=0 is a	Elliptic	Hyperbolic	Parabolic	circle	Elliptic
f_xx=2f_yy is a	Elliptic	Hyperbolic	Parabolic	circle	Hyperbolic
f_xx-2f_xy+f_yy=0 is a	Hyperbolic	Elliptic	Parabolic	circle	Parabolic
The diffusivity of substance is	k/pc	pc	k	pc/k	k/pc
Heat flows from a temperature	higher to lower	lower to higher	normal	high	higher to lower
The Amount of heat required to produce a given temperature change in a bodies propostional to the of the body and to the temperature change.	temperature	heat	mass	wave	mass
The rate at which heat flows through an area is to the area and to the temperature gradient normal to the area.	equal	not equal	lessthan	proportional	proportional
In steady state conditions the temperature at any particular point does not vary with	Time	temperature	mass	none	Time
The wave equation is a linear and equation	non homogeneous	homogeneous	quadratic	none	homogeneous
In method of separation of variables we assume the solution in the form of	u(x,y)=X(x)	u(x,t)=X(x)T(t)	u(x,0)=u(x,y)	u(x,y)=X(y)Y(x)	u(x,t)=X(x)T(t)
u(x,t)=(Acos λ x+Bsin λ x)Ce^(-(α ^2))(λ ^2)t) is the possible solution of equation	heat	wave	laplace	none	heat

y=(Ax+B)(Ct+D) is the possible solution of equation	heat	wave	laplace	none	wave
If the heat flow is one dimensional ,then the is a function x and only	t heat	light	temperature	wave	temperature
The stream lines are parallel to the X-axis ,then the rate of change of the temperature in the direction of the Y-axis will be	one	two	zero	five	zero
To solve $y_tt=(\alpha^2)yxx$, we need boundary conditions.	y(0,t)=0 if t>=0; y(l,t)=0 if t>=0	y(x,t)=0 if t>0; y(t)=0 if t=0	y(x,t)=0 if t>0	none	y(0,t)=0 if t>=0; y(l,t)=0 if t>=0
The boundary condition with non zero value on the R.H.S of the wave equation should be taken as the boundary condition.	First	Second	Last	none	Last
In one dimensional heat equation $u_t = (\alpha^2)u_xx$, What does α^2 stands for?	k/pc	рс	k	pc/k	k/pc
The possible solution of wave equation is	y=(Ax+B)(Ct+D)	$u(x,t)=(Acos\lambda x+Bsin n\lambda x)(Ce^{(\lambda y)}+De^{(x-\lambda y)})$	$\Pi X \Pi = A COS X X + B$	u(x,t)=Acosλx- Bsinλx	y=(Ax+B)(Ct+D)
The possible solution of heat equation is	u(x,t)=(Acos λ x+Bsin λ x)Ce^(-(α ^2))(λ ^2)t)	$u(x,t)=(A\cos\lambda x+Bsin \lambda x)(Ce^{(\lambda y)}+De^{(\lambda y)})$		u(x,t)=Acosλx- Bsinλx	$u(x,t)=(A\cos\lambda x+B)$ $sin\lambda x)Ce^{-(-(\alpha^{2}))(\lambda^{2})t)}$
If $B^2-4AC = 0$, then the differential equation is said to be	parabolic	elliptic	hyperbolic	equally spaced	parabolic
If $B^2-4AC > 0$, then the differential equation is said to be	parabolic	elliptic	hyperbolic	equally spaced	hyperbolic
If $B^2-4AC < 0$, then the differential equation is said to be	parabolic	elliptic	hyperbolic	equally spaced	elliptic
The laplace equation in the polar coordinates is of the form The flow is two dimensional the temperature at any point of the plane is	u_r+u_θ=0	u_xx=(1/a^2)u_t^2	u_xx=(1/α^2)u_t	$(r^2)u_rr+ru_r+u_\theta$ $\theta\theta=0$	$(r^2)u_rr+ru_r+u_\theta=0$
of Z-coordinates.	linear	independent	dependent	none	independent
$u(x,y)=(Acos\lambda x+Bsin\lambda x)(Ce^{\lambda y})De^{-\lambda y})$ is the possible solution of theequation.	heat	wave	laplace	none	laplace
$U(r,\theta)=(A \log r+B)(C\theta+D)$ is the possible solution of equation	heat	wave	laplace	none	laplace

UNIT- A Complex Integration. Elenn (+ ODE Represent) cauchy's Integral theorem or lauchy's purdamental theorems-If a function of f(x) is analytic and Its doutrative f(x) is continuous at all points inside and on a simple closed curve C, then $\int f(x) dx = 0$. Extension of cauchy is integral theorem to nultiply connected regions :-If f(x) is analytic in the region R hetween two simple closed curves C, and C2 then $\int_{C_1} f(x) dx = \int_{C_2} f(x) dx$. lauchy is Integral formula:-If f(x) is analytic, within and on a closed curve, c and if a is any point within C, then $f(a) = \frac{1}{2\pi c} \sqrt{\frac{f(x)}{x-a}} dx$. ion to sela and

$$(auchy's thtegral formula for the
dissuative of an analytic function
If a function $f(x)$ is analytic is suggive.
R, then its derivatives at any paint
 $x=a$, of R, is also analytic is R
and is given by $f'(a) = \frac{1}{2\pi i}\int \frac{f(x)}{(x-a)^2}dx$.
Similarly, $f'(a) = \frac{21}{2\pi i}\int \frac{f(x)}{(x-a)^2}dx$.
 $f'''(a) = \frac{31}{2\pi i}\int \frac{f(x)}{(x-a)^2}dx$.
Use sauchy's integral formula, evaluat
 $\int \frac{din \pi x^2 + \cos \pi x^2}{(\pi - a)(\pi - a)^2}dx$, where C, is
the wheele $|x| = A$.
 $f(x) = \frac{1}{|x|^2} = \frac{A^2}{x-3}$.
 $f(x) = \frac{A^2}{x-3} + \frac{B}{x-3}$.$$

$$\begin{aligned} z=2 \quad i \quad \theta = -1 \\ z=3 \quad i \quad \theta = 1 \\ \hline z=3 \quad i \quad \theta = 1 \\ \hline (z-2)(z-3) = \frac{-1}{(z-2)} + \frac{1}{z-3} \\ \exists he poles are \quad z=2 \quad and \quad z=3 \\ Both the poles $z=2 \quad and \quad z=3 \\ Both the poles $z=2 \quad and \quad z=3 \\ Both the poles $z=2 \quad and \quad z=3 \\ \hline den \ \pi \ z^2 + \cos \pi \ z^2} = -\int \frac{den \ \pi \ z^2 + \cos \pi \ z^2}{z_{77}} dz \quad \pi^{-0} \\ \frac{den \ \pi \ z^2 + \cos \pi \ z^2}{(z-2)(z-3)} = -\int \frac{den \ \pi \ z^2 + \cos \pi \ z^2}{z_{77}} dz \quad \pi^{-0} \\ f = \int \frac{den \ \pi \ z^2 + \cos \pi \ z^2}{z_{77}} dz \quad \pi^{-0} \\ By - cauchy \quad Integral \quad theorem, \\ f = (a) = \int \frac{1 - \int \frac{1}{z_{77}} \frac{1}{z_{77}} dz \\ = \int \frac{1 - \int \frac{1}{z_{77}} \frac{1}{z_{77}} dz \\ = \int \frac{1 - \int \frac{1}{z_{77}} \frac{1}{z_{77}} dz \\ = \int \frac{1}{z_{77}} \frac{1}{z_{77}}$$$$$

2 cualitate
$$\int \frac{\pi}{2} \frac{dx}{(x-1)(x-2)}$$
 where (c, δ) the
 $c c((x-1)(x-2)$ where (c, δ) the
 $cualitate | \pi - 2| = 1/2$ $\frac{1}{(x-1)(x-2)}$
The point $\pi = 2$ lies inside the
 $cualitate | \pi - 2| = 1/2$ and $\pi = 1$ the outside
the segion $|\pi - 2| = 1/2$
 $\int \frac{\pi}{2} \frac{dx}{dx} = \int \frac{((\frac{\pi}{2} - 1)dx}{x-2}$
 $\int \frac{\pi}{2} \frac{dx}{(1+x-1)(x-2)} = \frac{1}{2} \int \frac{(\frac{\pi}{2} - 1)dx}{x-2}$
 $\int \frac{\pi}{2} \frac{dx}{dx} = \int \frac{((\frac{\pi}{2} - 1)dx}{x-2}$
 $\int \frac{\pi}{2} \frac{dx}{dx} = \int \frac{((\frac{\pi}{2} - 1)dx}{x-2}$
 $\int \frac{\pi}{2} \frac{dx}{dx} = \frac{1}{2} \int \frac{(1+x-1)}{x-2} \frac{dx}{dx}$
 $\int \frac{\pi}{2} \frac{dx}{dx} = \frac{1}{2} \int \frac{dx}{dx} + \frac$

$$\begin{aligned} z = -1 - i \\ z^{2} + az + 5 \\ -\frac{b^{2}}{b^{2}} + \frac{b^{2}}{b^{2}} + \frac{b^{2}}{b^{2$$

$$\int \frac{e^{RZ}}{(R-1)(R-2)} dx \quad (vhowe \ C \cdot A \ the$$

Usicle $|x|=3$

$$x = \pm 1, \pm 2$$
 die, uhside $|x|=3$

$$f(\alpha) = \frac{1}{R} \quad \int \frac{f(\alpha)}{r} dx$$

$$g \pi i \quad C \quad (x-\alpha) \quad dx$$

$$g \pi i \quad x \quad f(\alpha) = \int \frac{f(\alpha)}{r} dx$$

$$g \pi i \quad x \quad f(\alpha) = \int \frac{f(\alpha)}{r} dx$$

$$g \pi i \quad x \quad f(\alpha) = \int \frac{f(\alpha)}{r} dx$$

$$g \pi i \quad x \quad f(\alpha) = \int \frac{f(\alpha)}{r} dx$$

$$f(\alpha) = \frac{1}{r} - \int \frac{f(\alpha)}{r} dx$$

$$I = \frac{f(\alpha - 2)}{r} + \frac{f(\alpha - 1)}{r}$$

$$I = \frac{f(\alpha - 2)}{r} + \frac{f(\alpha - 1)}{r}$$

$$I = \frac{f(\alpha - 2)}{r} + \frac{f(\alpha - 1)}{r}$$

$$I = \frac{f(\alpha - 2)}{r} + \frac{f(\alpha - 1)}{r}$$

$$I = \frac{f(\alpha - 2)}{r} + \frac{f(\alpha - 1)}{r}$$

$$I = \frac{f(\alpha - 2)}{r} + \frac{f(\alpha - 1)}{r}$$

$$I = \frac{f(\alpha - 2)}{r} + \frac{f(\alpha - 1)}{r}$$

$$I = -\frac{1}{r} + \frac{1}{r}$$

$$I = -\frac{1}{r}$$

$$\int \frac{e^{2x}}{(1x-1)(1x-2)} dx = \int \frac{e^{2x}}{x-1} dx + \int \frac{e^{2x}}{(1x-1)(1x-2)} dx$$
By lawhy integral theorem,

$$f(a) = \frac{1}{2\pi i} \int \frac{f(x)}{x-a} dx$$

$$\partial \pi i + (a) = \int \frac{f(x)}{x-a} dx$$

$$\int \frac{e^{2x}}{(1x-1)(1x-2)} dx = \partial \pi i f(x) + \partial \pi i f(x)$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

$$= \partial \pi i (e^{2x}) + \partial \pi i (e^{2x})$$

Scanned by CamScanner

-calculation quesidue at a simple pole :
If
$$f(x)$$
 has a simple pole at $x=a$
then Res $f(x) = Lt$
 $x = a$ $f(x) = has a pole of order n at$
 $x = a$ $f(x) = has a pole of order n at$
 $x = a$ $f(x) = \frac{2x}{(x-1)(x-2)^2(x-3)^3}$
 $f(x) = \frac{2x}{(x-1)(x-2)^2(x-3)^3}$
poles of $f(x) = \frac{2x}{(x-1)(x-2)^2(x-3)^3}$
 $poles of $f(x) = \frac{1}{(x-1)(x-2)^2(x-3)^3}$
 $poles of f(x) = \frac{1}{(x-1)(x-2)^2(x-3)^3}$
 $poles of f(x)$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$$\frac{2}{\sqrt{2}} \quad \text{the set due of } f(x) = \frac{x^3}{(x-2)(x-3)^2}$$

$$\frac{1}{\sqrt{2}} = 2 \cdot \frac{3}{\sqrt{2}} \text{ a solve ple pole} \\ x = 3 \cdot \frac{3}{\sqrt{2}} \text{ a pole of order } 2.$$

$$\frac{1}{\sqrt{2}} = 3 \cdot \frac{3}{\sqrt{2}} \text{ a pole of order } 2.$$

$$\frac{1}{\sqrt{2}} = 3 \cdot \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} (\frac{1}{\sqrt{2}} - 2) + \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$$

$$= \frac{2}{\sqrt{2}} \frac{1}{\sqrt{2}} (\frac{1}{\sqrt{2}} - 2) + \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$$

$$= \frac{14}{x_{3}-1} \quad \frac{d}{dx} \quad \int_{x_{3}} \frac{\overline{x}_{-1}}{\overline{x}_{-2}}$$

$$= \frac{14}{x_{3}+1} \quad \int_{x_{3}} \frac{(x_{2})(1) - (x_{3})(1)}{(x_{2}-2)^{2}}$$

$$= \frac{14}{x_{3}+1} \quad \int_{x_{3}} \frac{-1}{(x_{3}-2)^{2}}$$

$$= \frac{14}{x_{3}+1} \quad \int_{x_{3}} \frac{-1}{(x_{3}-2)^{2}}$$

$$= \frac{14}{x_{3}+1} \quad \int_{x_{3}} \frac{-1}{(x_{3}-2)^{2}}$$

$$= \frac{14}{x_{3}+1} \quad \int_{x_{3}} \frac{-1}{(x_{3}-1)^{2}} \quad \int_{x_{3}} \frac{1}{(x_{3}-1)^{2}} \quad \int$$

$$|z_{-1}| = 3$$

$$f(z) = \frac{1}{(z^{2}+\eta)^{3}}$$

$$z^{2}+\eta = 0$$

$$(z = \pm 3^{2} =) + \frac{1}{3^{2}}, -\frac{x}{3^{2}}$$

$$z = +3 \quad \text{Miss finside } c \quad \text{and } z = -3 \quad \text{Use outside } c$$

$$z = 3^{1} = \frac{1}{(3-1)!}, \frac{14}{z = 3^{2}} \int \frac{d^{2}}{dx^{2}} (z-3^{2})^{2}$$

$$f(z) = \frac{1}{(z+3^{2})^{2}} (z-3^{2})^{3}$$

$$f(z) = \frac{1}{(z+3^{2})^{3}} (z-3^{2})^{3}$$

$$(\frac{d}{dx} = \frac{d}{(z+3^{2})^{3}} (z+3^{2})^{3}$$

$$= -3(z+3^{2})^{-3-1}(1)$$

$$\frac{d}{dx} = -3(z+3^{2})^{-4}$$

$$(1+3^{2})^{-3}$$

$$= 12(x+3i)^{-5} (i)$$

$$= 12(x+3i)^{-5} (i)$$

$$= \frac{1}{2(x+3i)^{-5}} (i)$$

$$= \frac{1}{(x+3i)^{-5}} (\frac{12}{(x+3i)^{-5}})$$

$$= \frac{1}{(x+3i)} (\frac{12}{(x+3i)^{-5}})$$

$$= \frac{1}{2} (\frac{12}{(b(-x))} (\frac{12}{(b(-x))^{-5}})$$

$$= \frac{1}{2} (\frac{12}{(b(-x))^{-5}} (\frac{12}{(b(-x))^{-5}})$$

Show that $\int \frac{2\pi}{\int \frac{do}{0}} = \frac{2\pi}{\sqrt{a^2-b^2}}$, a > b > 0Let z= eio $\frac{dx}{do} = ie^{io}$ $do = \frac{dx}{le_{i}^{i}} = \frac{dx}{iz}$ $\cos \phi' = \frac{1}{2} \left(\frac{2}{2} + 1 \right)$ $\int_{0}^{2\pi} \frac{d\alpha}{\alpha + b\cos \alpha} = \int \frac{dz(iz)}{\alpha + b(\frac{1}{2}(\frac{z+1}{z}))}$ (XID) = / < (2/2 /12/010 000) Now out Com $aax + bx^2 + b$ $\lambda = \lambda prime$ at 121x (< 13|8| - 1-1981 byp $\frac{dx}{it} \times \frac{2t}{it}$ draperské la stann dr. (Jar ()) (R X) (> Y) d C R 2 az + 6 z + 6 m Consider aaz+bz2+b=01 () x = 1 - 2a ± Jua=2462

Let f(x) = 1 b(x-a)(x-b)consider $\int_{C} f(x)dx$ = 2TT i × dum of Residues Res $f(x) = ht [(x-\alpha) f(x)]$ $z = \alpha$ $z \to \alpha$ $[(x-\alpha) f(x)]$ =) $Ut \int (\overline{\alpha} - \alpha) \frac{1}{b(\overline{\alpha} - \alpha)(\overline{\alpha} - \beta)}$ E proved . (= b (a-B) $= \frac{1}{b} \left[\frac{1}{-a! + \sqrt{a^2 + b^2}} + \frac{a! + \sqrt{a^2 + b^2}}{b} \right]$ = 2 hills $= \frac{1}{b} \int \frac{1}{\sqrt{a^2 - b^2}} \int$ $= \frac{b}{b} \left(\frac{b}{\partial \sqrt{a^2 - b^2}} \right)$ $f(x) = \frac{1}{2\sqrt{a^2-b^2}}$ Res

$$\int_{C} f(x) dx = p \pi i \sqrt{\frac{1}{p^2 \sqrt{a^2 - b^2}}}$$

$$= \frac{\pi i}{\sqrt{a^2 - b^2}}$$

$$\frac{do}{\sqrt{a^2 - b^2}}$$

$$\int_{0}^{\pi} \frac{do}{a + b \cos o} = \frac{2}{\sqrt{c}} \times \frac{\pi \sqrt{c}}{\sqrt{a^2 - b^2}}$$

$$\frac{2\pi}{\sqrt{a^2 - b^2}}$$
Hence proved.
Hence proved.

$$\int_{0}^{\pi} \frac{do}{13 + 5 s f n o}$$

$$\int_{0}^{\pi} \frac{dx}{10} = \frac{dx}{12} \left(\frac{x + 1}{x}\right)$$

$$\frac{dx}{do} = \frac{dx}{10} = \frac{dx}{12} \left(\frac{x + 1}{x}\right)$$

$$\int_{0}^{\pi} \frac{do}{13 + 5 s \sin o} = \int_{0}^{\pi} \frac{dx}{15 + 5} \left(\frac{1}{2} \left(\frac{x^2 + 1}{x}\right)\right)$$

 $= \int \frac{dx/ix}{13+5(\frac{2^{2}+1}{2^{2}})} = \int \frac{dx/ix}{13+\frac{5x^{2}}{2^{2}}}$ 1 ELINY (AB 1) $= \int \frac{dx}{2bx+5x^2+5}$ $= \int \frac{dx}{ix} \times \frac{2x}{5x^2 + 2bx}$ $=\frac{a}{i}\int \frac{dx}{5x^2+2bx+5}$ Unsider $5z^2 + 2bz = 0$, a = 5b = 2b $z = -b \pm \sqrt{b^2 - 4ac}$ c = 5 $= -26 \pm \sqrt{(2b)^2 - 4(5)(5)}$ $6 = 10/x = -20 \pm \sqrt{(26)^2 + 100}$ = -26 ± 1676+100 5 (x (9) 6 (d - 19) 10 = -26 ± 1776 26 24⁽²⁾ 10, 15 When address 10 HF -1120/#124 -211/11# #21012107

Scanned by CamScanner

$$\int_{X=4}^{X=-\frac{13+12}{5}} (aO = x = -\frac{13-12}{5}$$

$$\int_{X=2}^{X=1} \frac{1}{5} = \frac{1}{5} (a = \beta)$$

$$\int_{X=2}^{X=2} \frac{1}{5} \frac{1}{5} = \frac{1}{5} \int_{X=2}^{X=2} \frac{1}{5} \frac{1}{5} = \frac{1}{5} \int_{X=2}^{X=2} \frac{1}{5} \int_$$

 $=\frac{1}{9}\left(-\frac{1}{2b}\right)$ Res f(x) = -1 $\chi = \lambda f(x) = -1$ Grad Marit & Balland $\int f(x) dx = \beta(\pi i \times - \frac{1}{\frac{26}{13}})$ $= \frac{1}{\frac{1}{13}}$ $\int_{B} \frac{do}{13 + 5aine} = \frac{2}{12} \times \frac{\pi 2}{13}$ $\int_{B} \frac{do}{13 + 5aine} = \frac{2}{13} \times \frac{\pi 2}{13}$ $\int_{B} \frac{do}{13 + 5aine} = \frac{2}{133}$ $\int_{-\infty}^{\infty} \frac{x^{2}}{(x^{2}+a^{2})(x^{2}+b^{2})} dx, a + b + 0.$ $\int_{-\infty}^{\infty} \frac{(x^{2}+a^{2})(x^{2}+b^{2})}{(x^{2}+b^{2})(x^{2}+b^{2})} dx = \int_{-\infty}^{\infty} \frac{x^{2}}{(x^{2}+a^{2})(x^{2}+b^{2})} dx$ where c consists the semiliacle Mound the bounding diameter $\int_{C} \phi(x) dx = \int_{P} \phi(x) dx + \int_{P} \phi(x) dx$

$$\begin{aligned} \psi(x) &= \frac{\pi^2}{(x^2 + a^2)(x^2 + b^2)} \\
&= \frac{\pi^2}{(x + ia)(x - ia)(x + ib)(a - ib)} \\
&= \pm ia , \pi = \pm ib au the poles \\
&= \pm ia , \pi = \pm ib uis unside c.
\end{aligned}$$
Res
$$\begin{aligned} &= \pm ia , \pi = \pm ib uis unside c.
\end{aligned}$$
Res
$$\begin{aligned} &= \frac{4a^2}{(ia+ia)(ia+ib)(ia - ib)} \\
&= \frac{4a^2}{5ia(a^2 + b^2)} = \frac{a^2}{ai(a^2 - b^2)} \\
&= \frac{1}{(ib)^2} \\
\end{aligned}$$
Res
$$\begin{aligned} &= \frac{1}{(ib)^2} \\
&= \frac{1}{(ib)^2} \\$$

In O let $R \rightarrow \infty$, $|x| \rightarrow \infty$, $\phi(x) = 0$ $\int_{C} \psi(x) dx = \int_{-\infty}^{\infty} \phi(x) dx$ machine All I is unale j flada = atti x oburn of Residue (CRI) $\int_{C} \varphi(x) dx = \int_{-\infty}^{\infty} \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} dx$ $\int \frac{1}{2} \left(\frac{1}{2} + \frac$ = $\pi \left[a(a^2-b^2) + b(a^2-b^2) \right]$ (a) $= T(\frac{(a^2-b^2)(a-b)}{(a^2-b^2)(a^2-b^2)}$ and a sign and the solution of the $= \pi (a-6)$ = (a+6)(a+6)J plaida. That atb Water and the transfer of the state of the

3/3/19 Taylor's and lawaente services :-Taylor's ouries; 4 a punction p(x) is aualytic at all points inside à coucle c'unêth its centre at the point a and radius re then at each point & inside C, $f(z) = f(a) + f'(a) (z - a) + t''(a)(z - a)^{2} \dots \pm f_{(a)k}^{(n)}$ The taylor's series at the point a= D is given by $f(x) = f(0) + f'(0) \frac{x}{1!} + f''(0) \frac{x^2}{2!} + f''(0) \frac{x^3}{3!} + \dots$ This services is called monor M clawcin's cours. laurent's œuies : If p(x) is analytic on C, and C2 and the annular's region bounded by the two concentric ciecles C, and C2 of sadii r, and r2 (r2 Lr,) and with Center at a then for all is R, $f(x) = a_0 + q_1(x-a) + q_2(x-a)^2 + \dots + q_n(x-a)^n$

Scanned by CamScanner

Where
$$a_n = \frac{1}{\sqrt{2\pi}i} \int \frac{1}{e} \frac{1}{(w-a)^{n+1}} dw$$
, $n = 0, 1, 2, 3$.
 $b_n = \frac{1}{\sqrt{2\pi}i} \int_{C_2} \frac{1}{(w-a)^{n+1}} dw$, $n = 1, 2, 3, \cdots$.
 $b_n = \frac{1}{\sqrt{2\pi}i} \int_{C_2} \frac{1}{(w-a)^{n+1}} dw$, $n = 1, 2, 3, \cdots$.
 $b_n = \frac{1}{\sqrt{2\pi}i} \int_{C_2} \frac{1}{(w-a)^{n+1}} dw$, $n = 1, 2, 3, \cdots$.
 $f = \frac{1}{\sqrt{2\pi}i} \int_{C_2} \frac{1}{(w-a)^{n+1}} dw$, $n = 1, 2, 3, \cdots$.
 $f = \frac{1}{\sqrt{2\pi}i} \int_{C_2} \frac{1}{(w-a)^{n+1}} dw$, $n = 1, 2, 3, \cdots$.
 $f = \frac{1}{\sqrt{2\pi}i} \int_{C_2} \frac{1}{(w-a)^{n+1}} dw$, $n = 1, 2, 3, \cdots$.
 $f = \frac{1}{\sqrt{2\pi}i} \int_{C_2} \frac{1}{(w-a)^{n+1}} dw$, $n = 1, 2, 3, \cdots$.
 $f = \frac{1}{\sqrt{2\pi}i} \int_{C_2} \frac{1}{(w-a)^{n+1}} dw$, $n = 1, 2, 3, \cdots$.
 $f = \frac{1}{\sqrt{2\pi}i} \int_{C_2} \frac{1}{(w-a)^{n+1}} dw$, $n = 1, 2, 3, \cdots$.
 $f = \frac{1}{\sqrt{2\pi}i} \int_{C_2} \frac{1}{(w-a)^{n+1}} dw$, $n = 1, 2, 3, \cdots$.
 $f = \frac{1}{\sqrt{2\pi}i} \int_{C_2} \frac{1}{(w-a)^{n+1}} dw$, $n = 1, 2, 3, \cdots$.
 $f = \frac{1}{\sqrt{2\pi}i} \int_{C_2} \frac{1}{(w-a)^{n+1}} dw$, $n = 1, 2, 3, \cdots$.
 $f = \frac{1}{\sqrt{2\pi}i} \int_{C_2} \frac{1}{(w-a)^{n+1}} dw$, $n = 1, 2, 3, \cdots$.
 $f = \frac{1}{\sqrt{2\pi}i} \int_{C_2} \frac{1}{(w-a)^{n+1}} dw$, $n = 1, 2, 3, \cdots$.
 $f = \frac{1}{\sqrt{2\pi}i} \int_{C_2} \frac{1}{(w-a)^{n+1}} dw$, $n = 1, 2, 3, \cdots$.
 $f = \frac{1}{\sqrt{2\pi}i} \int_{C_2} \frac{1}{(w-a)^{n+1}} dw$, $n = 1, 2, 3, \cdots$.
 $f = \frac{1}{\sqrt{2\pi}i} \int_{C_2} \frac{1}{(w-a)^{n+1}} dw$, $n = 1, 2, 3, \cdots$.
 $f = \frac{1}{\sqrt{2\pi}i} \int_{C_2} \frac{1}{\sqrt{2\pi}i} dw$, $n = 1, 2, 3, \cdots$.
 $f = \frac{1}{\sqrt{2\pi}i} \int_{C_2} \frac{1}{\sqrt{2\pi}i} dw$, $n = 1, 2, 3, \infty$.
 $f = 1, -\frac{1}{\sqrt{2\pi}i} \int_{C_2} \frac{1}{\sqrt{2\pi}i} dw$, $n = 1, 2, 3, \infty$.
 $f = 1, -\frac{1}{\sqrt{2\pi}i} \int_{C_2} \frac{1}{\sqrt{2\pi}i} dw$.

$$\begin{array}{c} \Rightarrow 1 + \frac{3}{2} \left(1 + \frac{1}{2} \right)^{-1} - \frac{9}{3} \left(1 + \frac{7}{2} \right)^{-1} \\ \Rightarrow 1 + \frac{3}{2} \int 1 - \frac{\pi}{2} + \frac{\pi^{2}}{2^{2}} - \frac{\pi^{3}}{2^{3}} + \cdots \right) \\ \Rightarrow 1 + \frac{3}{2} \int 1 - \frac{\pi}{2} + \frac{\pi^{2}}{3^{2}} - \frac{\pi^{3}}{3^{3}} + \cdots \right) \\ \Rightarrow 1 + \frac{3}{2} \sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{n}}{2^{n}} - \frac{9}{3} \sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{n}}{3^{n}} \\ \Rightarrow 1 + \frac{3}{2} \sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{n}}{2^{n}} - \frac{9}{3} \sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{n}}{3^{n}} \\ \Rightarrow 1 + \frac{3}{2} \sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{n}}{2^{n}} - \frac{9}{3} \sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{n}}{3^{n}} \\ \Rightarrow 1 + \frac{3}{2} \sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{n}}{2^{n}} + \frac{9}{3} \sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{n}}{3^{n}} \\ \Rightarrow 1 + \frac{3}{2} \sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{n}}{2^{n}} + \frac{9}{3} \sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{n}}{3^{n}} \\ \Rightarrow \frac{1}{(\pi^{-1})(\pi^{-2})} \sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{-2}}{(\pi^{-1})(\pi^{-2})} \\ \Rightarrow \frac{1}{(\pi^{-1})(\pi^{-2})} \sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{n}}{(\pi^{-1})(\pi^{-2})} \\ \Rightarrow \frac{-1}{(\pi^{-1})} + \frac{(1)}{(\pi^{-2})} \\ \Rightarrow \frac{-1}{(\pi^{-1})} + \frac{(1)}{(\pi^{-2})} \\ \Rightarrow \frac{-1}{(\pi^{-1})} + \frac{(1)}{(\pi^{-2})} \\ \end{array}$$

$$\frac{1}{(x-3)(x-1)} = \frac{-1}{(x-1)} + \frac{1}{(x-2)}$$

$$= \frac{1}{1-x} + \frac{1}{x-2}$$

$$= \frac{1}{1-x} + \frac{1}{x-2}$$

$$= \frac{1}{1-x} + \frac{1}{x-2}$$

$$= (1-x)^{-1} + \frac{1}{2}(x|_{2}-1)^{-1}$$

$$= (1-x)^{-1} + \frac{1}{2}(x|_{2}-1)^{-1}$$

$$= (1-x)^{-1} + \frac{1}{2}(x|_{2}-1)^{-1}$$

$$= (1-x)^{-1} + \frac{1}{2}(x|_{2}-1)^{-1}$$

$$= (1-x)^{-1} + \frac{1}{2}(1-x)^{-1}$$

$$= (1+x+x^{2}+x^{3}+1.5) = (1-x)^{-1}$$

$$= (1+x)^{-1} + \frac{1}{x} + \frac{1}{x^{2}} + \frac{1}{x^{2}} + \frac{1}{x^{2}} + \frac{1}{x^{3}}$$

$$= (1+x)^{-1} + \frac{1}{x^{2}} + \frac{1}{x^{2}} + \frac{1}{x^{2}} + \frac{1}{x^{2}} + \frac{1}{x^{3}} + \frac{1}{x$$

$$= \frac{1}{2} (1-1/2)^{-1} - \frac{1}{2(1-2/2)}$$

$$= \frac{1}{2} (1-1/2)^{-1} - \frac{1}{2(1-2/2)} (1-2/2)^{-1}$$

$$= \frac{1}{2} (1-1/2)^{-1} - \frac{1}{2} (1-2/2)^{-1}$$

$$= \frac{1}{2} (1+\frac{1}{2} + \frac{1}{2} + \frac{1}{2$$

$$= \frac{A[u,1](u,3) + B(A(u,3) + C(U)(u,1)}{U(u,3)}$$

$$U = 1$$

$$U = 1$$

$$U = 1$$

$$U = 1$$

$$U = A(1-1)(1-3) + B(1)(1-3) + C(1)(1-1)$$

$$-2 = 0 + B(-2) + C(10)$$

$$-2 = B$$

$$-2$$

$$U = 3$$

$$-2$$

$$U = 3$$

$$-1(C_1 + 1)$$

$$-1(C_1 + 1)$$

$$-2(C_1 + 1)$$

$$-2(C_1$$

.

pill (a) $= \frac{-3}{u} + \frac{1}{u-1} + \frac{2}{u-3}$ |u| < 3 $= -\frac{3}{4} + \frac{1}{4} + \frac{1}{4} + \frac{2}{3} + \frac{2}{3} + \frac{1}{3} + \frac{1}{3} + \frac{2}{3} + \frac{1}{3} + \frac$ $= \frac{-3}{n} + \frac{1}{n} \left(1 + \frac{1}{n} - \frac{1}{n^2} + \frac{1}{n^3} + \frac{1}{n^3} + \frac{1}{n^2} + \frac{1}{n^3} + \frac{$ (11) i henring fortaning and this was not god 11 i) Price and the Part Section of some in why. ii) Hundary of orpenetal ... - Facolona Dijda, fo superta d he side with a report of a the are but tog for any the Figure is any president of the land A + A ENTRA (1) - C A' BUT . + 6 Scanned by CamScanner

UNIT 5 COMPLEX INTEGRATION

Questions	opt1	opt2	opt3 simply	opt4	Answer
A curve is called a if it does not intersect itself	closed curve	losed curve co		multiple connected region	Simple closed curve
A curve is called if it is not a simple closed curve	connected region	multiple curve	region simply connected region	multiple connected region	multiple curve
If $f(z)$ is analytic in a simply connected domain D and C is any simple closed path then $\int (\text{from } c)f(z)dz =$	1	2πi	0	πi	0
If $f(z)$ is analytic inside on a simple closed curve C and a be any point inside C then $\int (\text{from c})f(z)dz / (z-a) =$	2πi f(a)	2πi	0 πi		2πi f(a)
The value of $\int (\text{from c}) [(3z^2+7z+1)/(z+1)] dz$ where C is $ z = 1/2$ is	2πi	-6πi	πi	πi/2	-6πі
The value of $\int (\text{from c}) (\cos \pi z/z-1) dz$ if C is $ z = 2$	2πi	-2πi	πi	πi/3	-2πi
The value of $\int (\text{from c}) (1/z-1) dz$ if C is $ z = 2$	2πi	3πi	πi	$\pi i/4$	2πi
The value of $\int (\text{from c}) (1/z-3) dz$ if C is $ z = 1$	3πi	πi	πi/4	0	0
The value of $\int (\text{from c}) (1/(z-3)^3) dz$ if C is $ z = 2$	3πi	πi	πi/5	0	0
The Taylor's series of f(z) about the point z=0 is called series	Maclaurin's	s Laurent's	Geometric	Arithmetic	Maclaurin's
The value of $\int (\text{from c}) (1/z+4) dz \text{ if C is } z = 3$	3πi	πi	πi/4	0	0
In Laurent's series of $f(z)$ about $z=a$, the terms containing the positive powers is called the part	regular	principal	real	imaginary	regular
In Laurent's series of $f(z)$ about $z=a$, the terms containing the negative powers is called the part	regular	principal	real	imaginary	principal
The poles of the function $f(z) = z/((z-1)(z-2))$ are at $z =$	1, 2	2,3	1,-1	3,4	1,2
The poles of cotz are	2nπ	nπ	3nπ	4nπ	nπ
The poles of the function $f(z) = \cos z/((z+3)(z-4))$ are at $z = _$	- 3, 4	2,3	1,-1	3,4	- 3, 4
The isolated singular point of $f(z) = z/((z-4)(z-5))$	1,2	2,3	0,2	4,5	4,5
The isolated singular point of $f(z) = z/((z(z-3)))$	1,3	2,4	0,3	4,5	0,3
A simple pole is a pole of order	1	2	3	4	1
The order of the pole $z=2$ for $f(z) = z/((z+1)(z-2)^2)$	1	2	3	4	2
Residue of $(\cos z / z)$ at $z = 0$ is	0	1	2	4	1
The residue at $z = 0$ of $((1 + e^z) / (z \cos z + \sin z))$ is	0	1	2	4	1
The residue of $f(z) = \cot z$ at $z=0$ is	0	1	2	4	1
The singularity of $f(z) = z / ((z-3)^3)$ is	0	1	2	3	3
A point z=a is said to be a point of $f(z)$, if $f(z)$ is		isolated	_	essential	
not analytic at $z=a$	Singular	singular	removable	singular	Singular
A point z=a is said to be apoint of f(z), if f(z) is analytic except at z=a	Singular	isolated singular	removable	essential singular	isolated singular

In Laurent's series of $f(z)$ about $z=a$, the terms containing the negative powers is called thepoint	Singular	isolated singular	removable singular	essential singular	essential singular
In Laurent's series of $f(z)$ about $z=a$, the terms containing the positive powers is called thepoint	Singular	isolated singular	removable singular	essential singular	removable singular
In contour integration, $\cos \theta =$	(z^2+1)/2z	(z^2+1)/2iz	(z^2-1)/2z	(z^2-1)/2iz	(z^2+1)/2z
In contour integration, $\sin \theta =$	(z^2+1)/2z	(z^2+1)/2iz	(z^2-1)/2z	(z^2-1)/2iz	(z^2-1)/2iz