B.E Civil Engineering			2019-2020		
			Semester-II		
19BECE241 Mechanics and Me		d Mechanics of Solids	7H-5C		
(Theory &lab.)					
Instruction Hours/wee	ek: L:3 T:1 P:3	Marks: Internal:40 External:60 Total			
		End Semest	er Exam:3 Hours		

(i) Theory Course Objective:

This course is designed for science or engineering majors in related areas, The main goal of the course is to learn the fundamentals of this important topic.

Course Outcome:

The students will have the knowledge on how to use Newton's laws of motion to solve advanced problems involving the dynamic motion of classical mechanical systems.

Theory

Unit 1- Vector mechanics of a particle

Transformation of scalars and vectors under Rotation transformation; Forces in Nature; Newton's laws and its completeness in describing particle motion; Solving Newton's equations of motion in polar coordinates.Potential energy function; F = - Grad V, equipotential surfaces and meaning of gradient.

Unit 2- Planar rigid body mechanics

Definition and motion of a rigid body in the plane; Rotation in the plane; Kinematics in a coordinate system rotating and translating in the plane;Euler's laws of motion, their independence from Newton's laws, and their necessity in describing rigid body motion. Introduction to three-dimensional rigid body motion.

Unit 3 - Statics

Free body diagrams with examples on modelling of typical supports and joints; Condition for equilibrium in three- and two- dimensions; Friction: limiting and non-limiting cases; Force displacement relationship; Geometric compatibility for small deformations.

Unit 4 - Mechanics of solids

Concept of stress at a point; Planet stress: transformation of stresses at a point, principal stresses and Mohr's circle; Displacement field; Concept of strain at a point; Plane strain:transformation of strain at a point, principal strains and Mohr's circle; Concepts of elasticity, plasticity, strain hardening, failure (fracture / yielding); Idealization of one dimensional stress-strain curve.

Unit 5 - Stress and strain

Bending stress; Shear stress; Cases of combined stresses; Concept of strain energy; Yield criteria; Deflection due to bending; Integration of the moment-curvature relationship for simple boundary conditions; Method of superposition (without using singularity functions); Strain energy and complementary strain energy for simple structural elements.

SUGGESTED READINGS:

MK Harbola,(2015),Engineering Mechanics (2nd ed.), Oxford University Press. MK Verma, (2015),Introduction to Mechanics, GEMS Publisher, Coimbatore. D Kleppner& R Kolenkow,(2012), An Introduction to Mechanics, Dhanpat Rai Publications JL Synge & BA Griffiths,(2007), Principles of Mechanics, Milward Press

JL Meriam, (2012), Engineering Mechanics - Dynamics(7th ed), Wiley (7th Edition) JP Den Hartog, (1985), Mechanical Vibrations, Courier Corporation.

SH Crandall, NC Dahl & TJ Lardner,(1978), An Introduction to the Mechanics of Solids(2nd ed.), McGraw-Hill Publishing Company.

EP Popov, (1998), Engineering Mechanics of Solids, Pearson.

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established under Section 3 of UGC Act 1956) COIMBATORE – 641021 FACULTY OF ENGINEERING DEPARTMENT OF SCIENCE AND HUMANITIES LECTURE PLAN

Subject : MECHANICS AND MECHANICS OF SOLIDS Code : 19BECE241

Unit No.	List of Topics	No. of Hours						
	Vector mechanics of a particle	Hours						
Unit No. List of Topics Vector mechanics of a particle Transformation of scalars and vectors under Rotation transformation Forces in Nature Newton's laws and its completeness in describing particle motion Tutorial Solving Newton's equations of motion in polar coordinates Potential energy function F = - Grad V Equipotential surfaces and meaning ofgradient Tutorial Definition and motion of a rigid body in the plane Rotation in the plane Kinematics in a coordinate system rotating and translating in the plane Tutorial Euler's laws of motion , their independence from Newton's laws and their necessity in describing rigid body motion Introduction to three- dimensional rigid body motion Tutorial Euler's laws of motion , their independence from Newton's laws and their necessity in describing rigid body motion Tutorial Free body diagrams with examples on modelling of typical supports and joints Condition for equilibrium in three- and two- dimensions								
Unit No. List of Topics Vector mechanics of a particle Transformation of scalars and vectors under Rotation transformation Forces in Nature Newton's laws and its completeness in describing particle motion Tutorial Solving Newton's equations of motion in polar coordinates Potential energy function F = - Grad V Equipotential surfaces and meaning ofgradient Tutorial TotTAL Planar rigidbody mechanics Definition and motion of a rigid body in the plane Rotation in the plane Kinematics in a coordinate system rotating and translating in the plane Tutorial Euler's laws of motion , their independence from Newton's laws and their necessity in describing rigid body motion Introduction to three- dimensional rigid body motion Tutorial Euler's laws of motion in there- and two- dimensions Free body diagrams with examples on modelling of typical supports and joints Condition for equilibrium in three- and two- dimensions Friction : limiting and non-limiting cases Tutorial Force displacement relationship	1							
	Newton's laws and its completeness in describing particle motion	1						
UNIT I	Tutorial	1						
	Solving Newton's equations of motion in polar coordinates	2						
	Potential energy function	1						
	F = - Grad V	1						
	Equipotential surfaces and meaning of gradient	1						
	Tutorial	1						
	TOTAL	10						
	Planar rigidbody mechanics							
	Definition and motion of a rigid body in the plane	1						
	Rotation in the plane	1						
	Kinematics in a coordinate system rotating and translating in the plane	2						
	Tutorial	1						
	Euler's laws of motion, their independence from Newton's laws and their	2						
UNIT – II	necessity in describing rigid body motion							
	Introduction to three- dimensional rigid body motion	2						
	Tutorial	1						
Forces in Nature Newton's laws and its completeness in describing particle motion Tutorial Solving Newton's equations of motion in polar coordinates Potential energy function F = - Grad V Equipotential surfaces and meaning ofgradient Tutorial TotTAL Pefinition and motion of a rigid body in the plane Rotation in the plane Kinematics in a coordinate system rotating and translating in the plane Tutorial Euler's laws of motion , their independence from Newton's laws and their necessity in describing rigid body motion Introduction to three- dimensional rigid body motion Tutorial Free body diagrams with examples on modelling of typical supports and joints Condition for equilibrium in three- and two- dimensions Friction : limiting and non-limiting cases Tutorial Force displacement relationship Geometric compatibility for small deformations	10							
	Statics							
	Free body diagrams with examples on modelling of typical supports and joints	2						
	Condition for equilibrium in three- and two- dimensions	2						
	Friction : limiting and non-limiting cases	2						
	Tutorial	1						
	Force displacement relationship	1						
UNII – III	Geometric compatibility for small deformations	1						
	Tutorial	1						
UNIT - II Transformation of scalars and vectors under Rotation transformation Forces in Nature Newton's laws and its completeness in describing particle motion Tutorial Solving Newton's equations of motion in polar coordinates Potential energy function F = - Grad V Equipotential surfaces and meaning ofgradient Tutorial Tutorial TOTAL Potential energy function of a rigid body mechanics Definition and motion of a rigid body in the plane Rotation in the plane Rotation in the plane Kinematics in a coordinate system rotating and translating in the plane Tutorial Euler's laws of motion , their independence from Newton's laws and their necessity in describing rigid body motion Tutorial TOTAL TOTAL VINT - II Free body diagrams with examples on modelling of typical supports and joints Condition for equilibrium in three- and two- dimensions Friction : limiting and non-limiting cases Tutorial Force displacement relationship Geometric compatibility for small deformations Tutorial Tutorial	10							

	Mechanicsofsolids				
	Concept of stress at a point	1			
	Planet stress: transformation of stresses at a point, principal stresses and Mohr's	2			
UNIT – IV	circle				
	Displacement field	1			
	Concept of strain at a point	1			
	Tutorial	1			
	Plane strain:transformation of strain at a point, principal strains and Mohr's	1			
	circle				
	Concepts of elasticity, plasticity, strain hardening, failure (fracture / yielding)	1			
	Idealization of one dimensional stress-strain curve	1			
Tutorial					
	TOTAL	10			
	Stressand strain				
	Bending stress	1			
	Shear stress	1			
	Cases of combined stresses	1			
	Concept of strain energy	1			
	Tutorial	1			
UNIT – V	Yield criteria	1			
	Deflection due to bending; Integration of the moment-curvature relationship for	1			
	simple boundary conditions				
	Method of superposition (without using singularity functions)	1			
	Strain energy and complementary strain energy for simple structuralelements	1			
	Tutorial	1			
	TOTAL	10			
	TOTAL NO OF HOURS	50			

TEXT BOOK& REFERENCES:

S.NO	AUTHOR(S) NAME	TITLE OF THE	PUBLISHER	YEAR OF
		воок		PUBLICATION
1.	MK Harbola	Engineering Mechanics U	Oxford	2015
		(2 nd ed.)	niversity Press	
2.	MK Verma	Introduction to	GEMS	2015
		Mechanics	Publisher,	
			Coimbatore.	
3.	D Kleppner&	An Introduction to	DhanpatRai	2012
	R Kolenkow	Mechanics	Publications	
4.	JL Synge &	Principles of	Milward Press	2007
	BA Griffiths	Mechanics		
5.	JL Meriam	Engineering Mechanics -	Wiley (7 th	2012
		Dynamics(7 th ed)	Edition)	
6.	JP Den Hartog	MechanicalVibrations	Courier	1985
			Corporation	
7.	SH Crandall, NC Dahl	An Introduction to the	McGraw-Hill	1978
	& TJ Lardner	Mechanics of Solids	Publishing	
		(2nd ed.)	Company	
8.	EP Popov	Engineering Mechanics of	Pearson	1998
		Solids		

WEBSITES:

1.www.nptel.ac.in2.www.ocw.mit.edu

STAFF IN-CHARGE

HOD

Planas rigid body mechanics.

Rigid body A body is said to be sigid if it doesn't change size or shape under the action of forces. Rotational kinematics. kinematics in a coardinate system rotating and translating in the ph consider a point P on a body retaking in the xy-plane about the z-axis Passing through O. Let the angular position of the particle P with reference to the x-axis be indicated by the angle O in the my plane. 0 X By convention a counter-clockwise rotation is called Positive, that is 0 inveases, and a clockwise rotation is one in which O decreases.

Scanned by CamScanner

Scanned by CamScanner

so that each particle rotates with the same angular speed about the given axis.

Sf w, and w_2 are the angular speed at time E_1 and E_2 respectively, then the average acceleration $\overline{\alpha}$ of the particle P is defined as

In the translational motion, if we consider motion along a curve in three dimensions, then we have to deal with vector quantities r, v and a similarly, in the case of rotational motion in general we have to deal with vector quantities.

Rotation with constant Angular Acceleration

We shall now derive the fundamental kinematical formulae for rotational motion of a particle or riged body around a fixed axis under the assumption that the angular acceleration is constant.

Let wo be the angular speed at time t=0. For constant acceleration $\alpha = \overline{\alpha}$

$$\alpha' = \frac{\omega - \omega_{0}}{L}$$

$$\alpha t = \omega - \omega_{0}$$

$$\omega = \omega_{0} + \alpha t$$

$$\frac{d\theta}{dt} = \omega_{0} + \alpha t$$

$$\frac{d\theta}{dt} = \omega_{0} + \alpha t$$

$$d\theta = \omega_{0} dt + \alpha t dt$$
Subscripting the above equation
$$\theta = \omega_{0} t + \frac{\alpha t^{2}}{2} \qquad (3)$$
Also, the mean angular speed
$$\overline{\omega} = \frac{\omega_{0} + \omega}{2} = \frac{\theta}{t}$$

$$\theta = (\frac{\omega_{0} + \omega}{2}) t$$

$$\theta = (\frac{\omega_{0} + \omega}{2}) t$$

$$(4)$$
Rewriting equ (3)
$$\omega + \omega_{0} = \frac{2\theta}{t}$$
and rearranging equation
$$\omega$$
we get,
Scanned by CamScanner

$$u - u + v = a + t$$
multiplying out the last two equations and seawanging
$$u^{2} - u + v^{2} = 2 + a = 0$$
Euler's laws of motion
The equation of motion is given by
$$\frac{dJ}{dt} = 7 \quad is \text{ valid in an insteal reference frame.}$$
So order to transform the vector J from an insteal
frame to a solating frame we can write
$$\left(\frac{dJ}{dt}\right)_{f} = \left(\frac{dJ}{dt}\right)_{R} + w \times J = 0$$
where $f - fixed axes$

$$R - rotating axes$$

$$w - angular velocity of rotating frame
$$T = \left(\frac{dJ}{dt}\right) + w \times J = 0$$
for J as observed from the rotating frame.$$

Let the cartesian axes in the xotaling frame lie
along the principal axes
$$i, 2, 3$$
. Then the equations
can be written as
 $I, \frac{dw_1}{dt} + (T_3 - T_2) w_2 w_3 = T_1 - 0$
 $T_2 \frac{dw_2}{dt} + (T_1 - T_3) w_1 w_3 = T_2 - 0$
 $T_3 \frac{dw_3}{dt} + (T_2 - T_1) w_1 w_2 = T_3 - 0$
The set of above equations are called Euler's equation
Applications of Euler's Equations
Conservation of Energy
Let bargue $T = 0$. Then the Euler's Equations
become
 $I, w_1 + (I_3 - T_2) w_2 w_3 = 0 - 0$
 $T_2 w_2 + (T_1 - T_3) w_3 w_1 = 0 - 0$
 $T_3 w_3 + (I_2 - T_1) w_1 w_2 = 0 - 0$

multiplying
$$\textcircled{O}$$
 by w_1 , \textcircled{O} by w_2 and \textcircled{O} by w_3 and adding
I $w_1, w_1 + T_2 \dot{w_2} w_2 + T_3 \dot{w_3} w_3 = \frac{1}{2} \frac{d}{dt} (T_1 w_1^2 + T_2 w_2^2 + T_3 w_3^2) = 0$
But the quantity within parenthesis on the sight
hand side of \textcircled{O} is just twice the kinetic energy of
substion, subset to principal axes.
Hence \textcircled{O} may be written as
 $\frac{dk}{dt} = 0 - 0$.
 $k = \text{constant}$
Conservation of angular momentum
multiplying \textcircled{O} by $T_1 w_2$ and \textcircled{O} by
 $T_3 w_2$ and adding
 $T_1^2, w_1 w_1 + T_2^2, w_2 w_2 + T_3^2, w_3 w_3$
 $= \frac{1}{2} \frac{d}{dt} (T_1^2, w_1^2 + T_2^2, w_2^2 + T_3^2, w_3^2)$

the left of the second of the $= \frac{1}{2} \frac{d}{dt} (J^2) = JJ = 0 - 1$ Where we have used the fact that for principal axes $J = \underline{T}, \boldsymbol{\omega}, \tilde{\boldsymbol{k}} + \underline{T}_2 \boldsymbol{\omega}_2 \tilde{\boldsymbol{j}} + \underline{T}_3 \boldsymbol{\omega}_3 \tilde{\boldsymbol{k}}$ According to 12 either j=0J=0 since T=0 and So J remains constant in magnitude ; ie angular momentum is conserved. Introduction to three dimensional rigid body motion We shall be concerned with the motion of a rigid body in space which consists of translation of a fixed point of the body, for example the contre of mass, plus sotation about an axis through a fixed point which may not be restricted to one direction. Thus, this type of motion is more general than that either to considered

Hultiplying by
$$m_n$$
, summing over n and equaling
Hultiplying by m_n , summing over n and equaling
He coefficients of i, j and k to J_x , J_y , J_z
He coefficients $J = J_x i + J_y j + J_z k$) we obtain the
superlively (since $J = J_x i + J_y j + J_z k$) we obtain the
following velations.
 $J_x = \{\sum m_n (y_n^2 + z_n^2)\} w_x + \{\sum m_n x_n y_n \} w_y + \{\sum m_n z_n z_n\} \}$
 $= I_{xx} w_x + I_{xy} w_y + I_{xy} w_z$ (3)
 $J_y = \{\sum m_n x_n y_n\} w_x + \{\sum m_n (x_n^2 + z_n^2)\} w_y + \{\sum \sum m_n y_n z_n\} w_z$
 $= I_{xy} w_x + I_{yy} w_y + I_{yz} w_z$ (3)
 $J_z = \{\sum m_n x_n z_n\} w_z + \{\sum m_n y_n z_n\} w_y + i \sum m_n (x_n^2 + y_n^2)\} w_z$
 $= I_{xy} w_x + I_{yz} w_y + T_{zz} w_z$ (5)
Momente of invation:
 $J_n equ = 3, 4$, and 5, the quantities
 $I_{xz} = \sum m_n (y_n^2 + z_n^2), T_{xy} = \sum m_n (z_n^2 + x_n^2), T_{zz} = \sum m_n (x_n^2 - y_n^2)$

-

Scanned by CamScanner

-

are called the moments of inertia about the x, y and z axes respectively.

and the termine sent

The quantities

$$T_{xy} = -\Sigma m_n x_n y_n = T_{yx}$$

$$T_{yz} = -\Sigma m_n y_n z_n = T_{zy}$$

$$T_{zx} = -\Sigma m_n z_n x_n = T_{xz}$$

are called products of inertia.

Moment of inertia Matein

20

St can be written as

Each quantity is called an element of the matrix tensor.

Application Three dimensional analyses are needed to determine the forces and mements on the gimbals of gyroscopes, the joints of robotic welders and the supports of radio telescopes.

Unit - I Vector mechanics of a particle Transformation of Scalars and vectors under Rotation transformation. vectors and scalar A scalar is a quantity that has only magnitude EX: Distance, mass, temperature, time etc., A vector is a quantity that has both magnitude and direction Ex. Displacement, force, velocity etc., Rotational Motion Rotational motion plays an important role in physics. Here the simplest and most important case is uniform circular motion at constant speed. = r coswt Ix= risin wt wt ×

Now the particle moves clockwise around the circle starting from (r, o) at E=0. SE tranverses the circle in a time T such that $w = \frac{2\pi}{T}$ is called angular velocity of the motion.

The time required to execute one complete cycle is called the time period.

Then the velocity v is

Since

V. V = (r cos wet + r sin wet) (

 $\gamma \cdot \gamma = \gamma^2 \omega (-\cos \omega t \sin \omega t + \sin \omega t \cos \omega t)$ = $\gamma^2 \omega (0)$

Y.V = 0

$$\Delta A = A(L + \Delta L) - A(L)$$

using the angle $\Delta \theta$

$$|\Delta A| = 2A \sin \frac{\Delta \theta}{2}$$

$$[\Delta \theta <<1, \sin \frac{\Delta \theta}{2} \approx \frac{\Delta \theta}{2}]$$

$$[\Delta A| = 2A \cdot \frac{\Delta \theta}{2}$$

$$= A \Delta \theta$$

and

$$\left|\frac{\Delta A}{\Delta L}\right| = A \cdot \frac{\Delta \theta}{\Delta L}$$

$$\frac{dA}{dL} = A \cdot \frac{d\theta}{dL}$$

$$\frac{d\theta}{dL} = A \cdot \frac{d\theta}{dL}$$

$$\frac{d\theta}{dL} = a \text{ called the angular velocity of}$$

For finding the solating vector

$$\left|\frac{d\tau}{dL}\right| = \tau \frac{d}{dL} (\omega L) = \tau \omega$$

A

Let the scalar c and the vectors A and B be functions of Lime. the $\frac{d}{dt} (cA) = \frac{dc}{dt} \cdot A + c \cdot \frac{dA}{dt}$ $\frac{d}{dt} (A.B) = \frac{dA}{dt} \cdot B + A \frac{dB}{dt}$ $\frac{d}{dt} (A \times B) = \frac{dA}{dt} \times B + A \frac{dB}{dt}$ We see again that if $\frac{dA}{dt}$ is perpendicular to A, the magnitude of A is constant. then Forces in nature There are four types forces in nature. They are 1. Gravitational force 2. Electromagnetic face 3. strong Nuclear force 4. Weak Nuclear force.

Newton's lows and its completeness in describing patricle motion
ii) Newton's first low
She the absence of a soullant face a body keeps
moving with a uniform velocity
ii) Newton's second low
A body acted upon by a face equals to the
sate of change of momentum

$$F = ma$$

iii) Newton's Third low
To every action there is an equal and opposite
seaction
Mechanics of a particle
conservation of Linear momentum
For the case of a single particle of mass m,
Newton's second taw of motion is," Rate of change of
momentum is equal to the applied face."
 $\frac{dP}{dt} = F$

If no force is applied then,

$$d_{\pm}(m\bar{r}) = 0$$

where $m\bar{r} = P$; constant vector
Conservation Theorem for the linear momentum
Sf the total force F is zero, then P=0 and
the linear momentum is conserved.
Conservation of Angular momentum
We shall consider the applace angular momentum
We shall consider the applace angular momentum
of a particle. St is also called the moment of momentum
and is given by the vector product
 $J = r \times m\bar{r}$ $T = dJ$
 $J = aonstant vector; $T = Total$ Tarque
conservation Theorem for the Angular momentum
Sf the total tarque τ is zero, then $J = 0$
and the angular momentum J is conserved.$

Vector from 0 to C is R. Sine the three vectors
from a closed triangle.
$$r_i = R + r_{ci} - 0$$

multiplying both side by m_i
 $m_i r_i = m_i R + m_i r_{ci} - 0$
For the remaining particle similar equations can be united
by adding them all
 $\sum_{i=1}^{r} m_i r_i = (\sum_{i=1}^{r} m_i)R + \sum_{i=1}^{r} m_i r_{ci} - 0$
observe that the vector R is not being summed
since it is the same issupretive of the particle under
considerations.
If the second summation in the right side is
 z_{200} . Then argu s
 $\sum_{i=1}^{r} m_i r_{ci} = 0$
then the point c is defined as the centre of mear.

$$\sum_{i=1}^{n} m_i = M$$

the total mass of all particles:

$$R = \frac{1}{M} \sum_{i=1}^{N} m_i r_i$$

Where R is the position vector of the centre of mans from the origin O

$$F = MR$$

if $F = M\dot{R} = 0$, then $\ddot{R} = constant$, that is centre of mass moves with constant velocity.

Solving Newton's equations of motion in polar coordinates. Let us first consider the problem of motion in one dimension under the action of a force. According to Newton's Law

$$F = ma - O$$

Equ O is a differential equation for the position
function $x(t)$. St is a second order differential equation

We may define the potential energy associated with the
face F as follows

$$V(x) = -\int_{x_0}^{x} f(s) ds$$

where x_0 is a reference point.
The total mechanical energy of the mass during its
motion is given by the sum of its kinetic and potential
energies
 $E(t) = \frac{1}{2} mV(t)^2 + V(x(t))$
 $= \frac{1}{2} mV(t)^2 + mgx(t)$
Potential energy function
a force field $F: R^n \rightarrow R^n$ is conservative if
there exists a scalar valued potential function V
 $F = -NV$

questions	opt1	opt2	opt3	opt4	opt5
If a body is subjected to plastic impact,	only kinetic energy is conserved	only momentum is conserved	only kinetic energy is conserved	one of the above	only momentum is conserved
The total momentum of a system, if no external impressed force acts on it.	increases	decreases	remains constant	none of the above	remains constant
According to the principle of conservation of energy, under the action of force, the sum of P.E and K.E of a particle					
remains constant.	conservative force	dissipative force	frictional force	air resistance force	conservative force
A stone undergoes projectile motion when thrown from top of the building. If it strikes the ground surface at a distance away from		•			
the building then its horizontal direction is	less than range	more than range	same as range	unpredictable	more than range
The radial component of velocity for a particle moving in circular path is	constant	radius itself	variable	zero	zero
If an elevator travels at constant velocity, the normal reaction R is given as	m (g +a)	m (g - a)	mg	ma	mg
A block sliding down an inclined plane has acceleration acceleration due to gravity.	less than	greater than	same as	none of the above	less than
When acceleration is, velocity of a particle is constant.	constant but non zero	maximum	zero	none of the above	zero
Which of the following statements is false about forces/couple?	Moment of couple is free vector	Resultant and equilibrant are equal in magnitude and direction	Resultant of a couple is always zero	Parallelogram law is to be proved experimentally	Resultant and equilibrant are equal in magnitude and direction
Which of the following statements is true for flat belts?	They are used for short distances between the pulleys	They have high efficiency	They are used in lathe machines	All of the above	They are used in lathe machines
Which of the following force(s) is a type of conservative force?	Frictional force	Gravity force	Both a and b	None of the above	Gravity force
Which of the following factors are related by work energy principle?	force, displacement and time	force, velocity, time and mass	force, velocity, displacement	displacement, time and mass	force, velocity, displacement
What are the limitations of string law?	Direction of motion cannot be specified	Valid only when more than three particles are connected by a single string	Both a. and b.	None of the above	Direction of motion cannot be specified
Which of the following conditions do not change the effect of couple?	Shifting of couple to a new position in its plane	Shifting of couple to a parallel plane	Rotation of couple in its plane	All of the above	All of the above
Frictional force depends on	surface area in contact	roughness of surface	both a, and b.	none of the above	roughness of surface
Which motion has magnitude of static frictional force directly proportional to normal reaction?	Actual motion	Impending motion	Both a. and b.	None of the above	Impending motion
If a body in equilibrium condition is acted by three forces at three points, then the line of action of these forces should be	always concurrent	always narallel	concurrent or narallel	none of the above	concurrent or parallel
Which of the following laws derive impulse moment principle?	Newton's 3 rd law	Newton's 2nd Janu	Newtork 1st law	All of the above	Newton's 2nd Isay
The force for which work done is independent of its called as concertative force	distance	noth	time	all of the above	nath
According to work energy principle a particle of mass myber subjected to unbalanced force system the work done during	distance	Para	une	an or the above	Putti
displacement by all forces is could to change in during displacement.	gravitational energy	kinetic energy	mechanical energy	potential energy	kinetic energy
Which of the following is processneed by the area under force-displacement diagram?	Impulse	Momentum	Power	Work done	Work done
In projectile motion, which of the following factors affecting the actual path of motion are neglected?	Curvature of earth	Rotation of earth	Wind resistance	All of the above	All of the above
When motion is the normal component of acceleration is zero	curvilinear	rotational	rectilinear	translation	rectilinear
According to which law, every action has an equal and opposite reaction?	Newton's first law	Newton's second law	Newton's third law	None of the above	Newton's third law
A particle moving with respect to fixed frame of reference is called as	absolute motion	relative motion	rectilinear motion	none of the above	absolute motion
During unidirectional motion, the displacement and distance traveled by a particle with uniform acceleration is	different	same	variable	none of the above	same
The rate of change of with respect to time is called as jerk	acceleration	density	displacement	volume	acceleration
If a material has no uniform density throughout the body, then the position of centroid and center of mass are	identical	not identical	independent upon the density	unpredictable	not identical
Which of the following laminas do not have centroid at its geometrical centre?	Circle	Equilateral triangle	Right angled triangle	None of the above	Right angled triangle
Couple is formed due to two	like, parallel and non-collinear forces of same magnitude	like, perpendicular and collinear forces of different magnitude	unlike, parallel and non-collinear forces of same magnitude	unlike, perpendicular and non-collinear forces of different magnitude	unlike, parallel and non-collinear forces of same magnitude
Varienon's theorem is used to find	direction of resultant force	location of resultant force	magnitude of resultant force	nature of resultant force	location of resultant force
Forces passing through a common point are known as	collinear forces	co-planer forces	concurrent forces	none of the above	concurrent forces
The resultant of two forces is the diagonal formed on two vectors of those forces.	parallelogram law	resolution	cosine law	triangle law	parallelogram law
The forces are in equilibrium only when equal in magnitude ,opposite in direction and collinear in action.	principle of transmissibility of a force	axioms of mechanics	characteristics of force	scalar and vector quantities	axioms of mechanics
Is a convenient corollary of the parallelogram law.	parallelogram law	resolution	cosine law	triangle law	triangle law
The determination of the resultant of 3 or more concurrent forces that are not collinear.	resultant of concurrent,coplanar	collinear forces system	parallel.coplanar	non concurrent, coplanar	resultant of concurrent,coplanar
It is defined as the time rate of change of velocity	displacement	speed	acceleration	none of the above	acceleration
The is a force that results from the attraction between the mass of the body and the mass of the earth.	weight	density	volume	none of the above.	weight
It is defined as, regardless of the forces acting on a fluid, the fluid continues to flow	Newtonian fluid	non-Newtonian fluid	Lagrangian fluid	non-Lagrangian fluid	Newtonian fluid

questions	optl	opt2	opt3	opt4	opt5
When a particle moves along a straight path, then the particle has	tangential acceleration only	centripetal acceleration only	both tangential and centripetal acceleration	none of the mentioned	tangential acceleration only
When a particle moves with a uniform velocity along a circular path then the particle has	tangential acceleration only	centrinetal acceleration only	both tangential and centrinetal acceleration	none of the mentioned	centrinetal acceleration only
When the motion of a body is confined to only one plane, the motion is said to be	plane motion	rectilinear motion	curvilinear Motion	none of the mentioned	plane motion
is the simplest type of motion and is along a straight line path.	plane motion	rectilinear motion	curvilinear Motion	none of the mentioned	rectilinear motion
is the motion along a curved path.	plane motion	rectilinear motion	curvilinear Motion	none of the mentioned	curvilinear Motion
Displacement of a body is a quantity	scalar	vector	scalar and vector	none of the mentioned	weter
It is defined as the science which considers the effects of forces on rigid bodies	Kinetics	Engineering Mechanics	Statics	Dynamics	Engineering Mechanics
It considers the effects is distribution of forces on rigid bodies which are and remain at rest	Dynamics	kinetics	statics	kinematics	statics
It is defined as a definite amount of matter the parts which are fixed in position relative to each other	kinematics	force system	rigid body	dynamics	rigid body
It is the branch of mechanics which deals with the study of bodies in motion	statics	dynamics	kinetics	none of the above.	dynamics
It is defined as a condition in which the resultant of a system of force is equal to zero	resultant	axes	Equilibrium	displacement	Equilibrium
The forces by which determine how the loads amplied to a structure are distributed throughout the structure	force system	analysis of structure	rigid body	none of the above	analysis of structure
In the members are subjected to bending action	forces	trusses	frames	structure	frames
In the internal force in a bar is directed along the axis of bars	frame	structure	forces	trusses	frusses
It must be defined as the contact resistance exerted by one body mon a second body.					
a may be defined as the contact contact of the body upon a second obdy	resistance	pressure	friction	motion	friction
The term is used when on the term to the center of an wightless					
The term is and which found to be set of gravity of a weighted	centroid	axis	area	base	centroid
ingue such as a title, an area of a volumes.	manufiel anio		malar moment of in artic	mana of the above	second means of second
The form is used to describe another mathematical approach	paratier axis	second moment of area	polar moment or mertia	none of the above	second moment of area
The term is used to describe instance managements	radius of gyration	centroidal axis	moments of inertia	mohr's circle	radius of gyration
The newfolues along the use developed ball	Dahart Maala	Hermon	G-Fil-	Anistatla	Manager
The personnets to constant	statia	hinemation	hinatia	Australia	himmenting
it is the geometry of motion.	Demoning	statian	kinetic kinematia	uynamics himatia	Dimension
a p ure statet of meetings the reaction to buy to its into and acceleration.	Dynames	June 1	Another C	Allocito.	L'y finities
The expresses the relation between the external forces applied to a system of particles and the effective force on each particle of the system.	Newtons Law of Motion	D'alemberts principle	Inertia force of particle	none of the above.	Newtons Law of Motion
It is defined as the motion of a rigid body in which a straight live passing through any two point of the body always remain parallel to its initial	Translation	and another	a secolometican	many of the above	Termitation
position.	Taisiation	velocity	acceleration	none of the above	Haisiadon
The motion of translating body moving in a straight line is called	rectilinear translation	curve linear translation	parallel axis	kinematic equation of motion	rectilinear translation
The path of the translating body is curved, the motion becomes	rectilinear translation	parallel axes	curve linear translation	none of the above.	curve linear translation
The area under a v-t curve represents the change in	displacement	velocity	113355	acceleration	displacement
The area under an a-t curve represents the change in	acceleration	displacement	velocity	none of the above.	acceleration
It is define as that motion of rigid body in which the particles move in a circular paths with their centers on a fixed straight line.	translation	rotation	acceleration	none of the above.	rotation
It is a motion which repeats itself after a define internal of time	frequency	vibration	precession	none of the above	none of the above
The maximum displacement of the body from its equilibrium position is known as the of the vibration.	frequency	acceleration	amplitude	force	amplitude
Each repetition of the motion is called a	period	vibrations	cycle	none of the above	period
The of the vibration is the reciprocal of the period and is measured in cycles per second.	amplitude	frequency	vibrations	none of the above	frequency
The time required to complete one oscillation backward and forward is called the of the motion.	cycle	vibrations	period	none of the above.	period
The condition existing when the impressed frequency is equal to the natural frequency is known as	resonance	displacement	cycle	amplitude	resonance
The speed of rotation at which resonance occurs is called	cycle	vibrations	critical speed	rotation	critical speed
is the time rate at which work is done on a body.	motion	cycle	power	resultant	power
It is the ratio of power output to power input.	amplitude	frequency	efficiency	none of the above.	efficiency
It is defined as that which changes, or tends to change, the state of motion of a body.	acceleration	force	speed	velocity	velocity
An axis passing through the centroid of an area is known as a	parallel axis	centroidal axis	radius	none of the above	centroidal axis
It is defined as the time rate of change of displacement.	speed	velocity	distance	none of the above	velocity
It is defined as the time rate of change of velocity	displacement	speed	acceleration	none of the above	acceleration
The is a force that results from the attraction between the mass of the body and the mass of the earth.	weight	density	volume	none of the above.	weight

Unit_11

Statics

Statics which concerns the equilibrium of il polymente around 四日 山口 山东 Free-body-diagram The free body diagram method is the key to the understanding of mechanics. station The diagram of such an isolated body with the représentation of all external forces acting on it is called a free-body diagram bellering System Isolation and the free - body Diagram A mechanical system is defined as a body or group of bodies which can be conceptually isolated all other bodies. A system may be a single body from a combination of connected bodies. The bodies may Ol be sigid or non-rigid. The system may also be an a fluid mass,

either liquid or gas, or combination of fluids and solids. In statics we primerily forces which act on regic

bodies at sest, although we also study forces acting on fluids en equilibrium

Before attempting to draw a free-body diagram we must secall the basic charateristics were described in Art. Forces Can be either internal or External to the system under consideration. Application of fore to the system under consideration. Application of fore is accompanied by reactive force, and both applied is accompanied by reactive force, and both applied and reactive force may be either concentrated or distributed.

Scanned by CamScanner

Scanned by CamScanner

Step 3: Identify all farces which act on the Isolated system as applied by the removed contacting and attracting bodies, and represent them in their proper positions on the diagram of the Isolated system. Make a systematic traverse of the entired boundary to identify all contact forces.

Represent all known farces by vector allows, each with its proper magnitude, direction, and sense indicated. Step 4:

Show the choice of coordinate axes directly on the diagram. pertinent dimensions may also be represented for convenience. However, that the free-bady diagram sorves the purpose of focusing attention on the action of the external forces, and therefore the diagram should not be cluttered with excessive extraneous information. clearly distinguish force arrows from arrows sepresenting quantities other than forces. For this purpose a colored pencil may be used.

Scanned by CamScanner

Equilibrium Conditions in Two Dimensions. We defined equilibrium as the condition in which the we defined equilibrium as the condition in which the resultant of all forces and moments acting on a body is zero. stated in another way, a body is in equilibrium is zero. stated in another way, a body is in equilibrium if all forces and moments applied to it are in balance.

The vector equations of equilibrium which in two dimensions may be written in scalar farm as

 $\Sigma F_x = 0$ $\Sigma F_y = 0$ $\Sigma M_0 = 0$

The above conditions are necessary because, if they are not satisfied, there can be no force or moment balance.

Categories of Equilibrium

category 1

Equilibrium of collinear forces, clearly requires only the one force condition equation in the direction of the forces (x-direction), since all other equations are automatically satisfied. Category 2'

Equilibrium of forces which lie is a plane (2-y plane) and are concurrent at a point 0, requires the two force equations only, since the moment sum about 0, that is about a z. axis through 0, is necessarily zero.

Category 3'.

Equilibrium of parallel forces in a plane, requires the one force equation in the direction of the forces (x-direction) and one moment equation about an axis (z-axis) normal to the plane of the forces.

category 4'.

Equilibrium of a general system of forces in a plane (x-y) requires the two force equations in the plane and one moment equation about an axis (z.axis) normal to the plane.

Independent Equations $\Sigma M_z = 0$ $\Sigma M_z = 0$ CATEGORIES OF EQUILIBRIUM IN TWO DIMENSIONS $\Sigma F_x = 0$ $\Sigma F_y = 0$ $\Sigma F_x = 0$ $\Sigma F_x = 0$ $\Sigma F_x = 0$ $\Sigma F_y = 0$ 8 8 8 8 3 Free-Body Diagram G E CO 2 H /____ 5 TF4 2 E 0 12 Ē H H E Force System 2. Concurrent at a point 1. Collinear 4. General 3. Parallel

Equilibrium Conditions in Three Dimensions.

We now extend our principles and methods developed for two-dimensional equilibrium to the case of threedimensional equilibrium. The general conditions for the equilibrium of a body require that the resultant force and resultant couple on a body in equilibrium be zero. These two vector equations of equilibrium and their scalar components may be written as

$$\Sigma F = 0 \qquad (or) \qquad \left\{ \begin{array}{l} \Sigma f_x = 0 \\ \Sigma f_y = 0 \\ \Xi f_z = 0 \end{array} \right. \qquad \text{for the standard standa$$

$$\Sigma M = 0 \quad (or) \begin{cases} \Sigma M x = 0 \\ \Sigma M y = 0 \end{cases} for a upped o \\ \Sigma M z = 0 \end{cases}$$

The first three scalar equations state that there is no resultant force acting on a body in equilibrium in any of the three coordinate directions. The second three scalar equations express the further equilibrium requirement that there be no resultant moment acting on the bady about any of the coordinate axes or about axes parallel to the coordinate axes. These six about axes parallel to the coordinate axes. These six equations are both necessary and sufficient conditions for complete equilibrium.

The six scalar relationships are independent conditions because any of them can be valid without the others. In applying the vector form of the above equation we first express each of the forces in terms of the coordinate unit vectors i, j, and k. For the first equation, $\Sigma F = 0$, the vector sum will be zero only if the coefficients of i, j, and k in the expression are, respectively, zero. categories of Equilibrium

Category 1:

Equilibrium of forces all concussent at point O, requires all three force equations, but no moment equations because the moment of the forces about any axis through O

is zoro.

Category 2,

Equilibrium of forces which are concurrent with a line, requires all equations except the moment equation about that line, which is automatically satisfied.

Category 3.

Equilibrium of parallel forces, requires only one force equation. the one in the direction of the forces (x direction) and two moment equations about the axes (y and z) which are normal Limiting frietion to the direction of the forces. when a bedy just stude to

Day Pachar

category 4

of another are the factorial first Equilibrium of a general system of forces, requires all three force equations and all three moment equations.

avidint padint for sur Friekion. The physical point point of milande of the the opporte of the motion of the body

the norgenburge of the firstion face

Friction

Friction is the force that opposes the relative motion of tendency of such motion of two boolies surfaces in contact. It is not, however, a fundamental force, as it originates from the electromagnetic forces and exchange force between atoms. bidg Lond Types of Friction

moment oquation abuilt the

i) Day Friction ii) Fluid Friction iii) Internal Friction

Limiting Friction

p midding when a body just starts to slide over the Surface of another one, the frictional force is developed between the surfaces. The maximum value of that frictional force is known as the limiting friction or, static friction. Laws of Limiting Friction

Sect-

* The direction of limiting friction force is always the opposite of the motion of the body.

* The magnitude of the friction force is equal to the force that tends to move the body

* The magnitude of the limiting friction always have a constant eatio with the normal reaction force which acts between the two surfaces.

* Limiting friction farce depends on the raughness of the surface. * Area between the surfaces is not responsible for the magnitude of the frictional force.

a body A' is resting on a surface B. Now force P is applied to the body. It will not move untill the force P is equal to the limiting friction force F.

Here $F = \mu W = \mu \cdot R_n$ (Here Rn is the normal reaction force).

No relative motion will take place if P is the equals to F. And the force F will work opposite to the force P. Scanned by CamScanner In the case of limiting force will be in equilibrium under the actions of three forces, is weight of the body w and Reaction for, applied force, and Reaction force herebourg and so for the equilibrium condition the reaction R will be equal to the weight W. P will be inclined at an angle \$ to the reaction force Rn. Here \$ is called the limiting angle of friction.

The mathematical relation between the angle and force is $\tan \phi = \frac{F}{R_N} = \frac{\mu \cdot R_N}{R_N} = \mu$

Non-limiting Friction When a body is in the static condition before it reaches an impending state, the frictional force developed is called non-limiting friction.

professional longer et la Route Route Landon ford

An salative mation will belo place if the set grade to the follow the follow

Compatibility of small deformations.

The displacements can be determined from the strains through integration, to within a sigid body motion. In the two-dimensional case, there are three strain-displacement relations but only two displacement components. This emplies that the strains are not independent but are related in some way. The relations between the strains are called compatibility conditions.

The compatibility Relations.

 $\frac{\partial^2 \mathcal{E}_{aa}}{\partial y^2} + \frac{\partial^2 \mathcal{E}_{yy}}{\partial x^2} = 2 \frac{\partial^2 \mathcal{E}_{ay}}{\partial a \partial y} \rightarrow 2 - D \quad \text{compatibility equation}$

This compatibility condition is an aquation which must be satisfied by the strains at all material particles. Physical Meaning of the compatibility condition The following fig influstrates possible deformations

and sigid body motions for three line elements in a material Manual integration to within a sig the kind when S. the deformed - compatibility ensured the lines strate days and dia phalancia Labaraphi dia as not independent but deformed undeformed haller Alivia A forme way. The set - compatibility not satisfied The compatibility Relations 0°Ean 1°Ean 2°Ean - 2°Ean anna tha sguela 3 8 6 - 116 8 11 - 116 This computibility a condition is an ALLIN -CRUS THESE the strains of all material president be satisfed by Physical Marriell of the compacibility enablism specificanties addressed estimated of privately addressed

questions	opt1	opt2	opt3	opt4	opt5
A physical quantity that is completely described by a real number is called	scalar	vector	tensor	none of the above	scalar
A convenient means of representing physical quantities that have magnitude and direction.	scalars	vectors	tensors	none of the above	vectors
The product of a scalar and a vector is a	scalar	vector	tensor	none of the above	vectors
It is simply a vector whose magnitude is 1	moment vector	tensor	unit vector	vector unity	unit vector
It is sometimes called the scalar product.	dot product	vector product	cross product	unit scalar	dot product
To calculate for the force exerted on a charged particle by a magnetic field, is used.	vector product	scalar product	dot product	vector sum	vector product
It is sometimes called the vector product.	dot product	cross product	tensor product	unit vector	cross product
Which of the following statements is false?	The cross product is commutative.	The cross product is associative with respect to scalar	The cross product is distributive with respect to	The angle between two identical vectors placed tail to	The cross product is commutative.
When a force is represented by a vector, the straight line collinear with the vector is called the	line of apsides	line of reaction	line of vector	line of action	line of action
A system of forces is if the lines of action of the forces intersect at a point.	parallel	coplanar	concurrent	two-dimensional	concurrent
Force acting on an object is called a if its acts on the volume of the object.	internal force	external force	body force	surface force	body force
If each point on the object has the same constant velocity, this is referred to as	continuum translation	discrete translation	finite translation	steady translation	steady translation
The moment of a force about a point P is equal to the sum of the moments of its components about P.	Cavalieri's Theorem	Pascal's Theorem	Varignon's Theorem	Torricelli's Theorem	Varignon's Theorem
It is the measure of the tendency of a force to cause rotation about a line or axis.	moment	momentum	impulse	torsion	moment
A couple is composed of two forces that are	equal	equal and opposite	equal and different lines of action	equal, opposite and different lines of action	equal, opposite and different lines of action
Which of the following statements is true about a couple?	A couple does not tend to cause a rotation of an object.	The vector sum of the force couple always has a value.	A couple tends to cause a rotation of an object.	The moment it exerts is not the same about any point.	A couple tends to cause a rotation of an object.
A type of force acting on a body due to the acceleration of gravity.	load	shear	bear	mass	load
A type of force acting on a body caused by the friction between the body and the ground.	load	shear	bear	mass	shear
When a body is in contact with the ground, the force that is reflected back to the body is called	ground reflected force	gravity reflected force	ground reaction force	gravity reaction force	ground reaction force
The ground reaction force on a body can be represented by a single force acting on a point called	center of force	center of reaction	center of reflection	center of pressure	center of pressure
The tuning effect on a body is dependent on which of the following?	mass of the load	acceleration of gravity	moment arm	all of the above	all of the above
If the force is moved in the direction parallel to the direction of the force, the moment exerted by the force	increases	decreases	is unchanged	becomes zero	is unchanged
The moment of force is zero when	the applied force is zero.	the force is applied at the moment axis.	the line of action of the force is parallel to the axis.	all of the above	all of the above
is finding a single force which shall be equal to two or more given forces when acting in given directions.	resolution of forces	integration of forces	composition of forces	quantization of forces	composition of forces
He is the father of the modern engineering mechanics	Gilbert Lewis	Stephen Timoshenko	J. Gordon	A. Cotrell	Stephen Timoshenko
It is a method of applying mechanics that assumes all objects are continuous.	Discrete Mechanics	Finite Element Method	Continuum Mechanics	Contact Mechanics	Continuum Mechanics
Which of the following is an example of contact force?	gravitational force	magnetic force	air resistance force	electric force	air resistance force
It occurs when an object is moving across a surface.	dynamic friction	static friction	kinetic friction	sliding friction	sliding friction
"Observed from an internal reference frame, the net force on a particle is proportional to the time rate of change of its linear	Zaroth Law	First Law	Second I aw	Third I aw	Second I aw
momentum". This is known as Newton's of motion.	Zeloui Law	T list Eaw	Second Law	Third Law	Second Eaw
It is also known as quantity of motion.	momentum	force	mass	acceleration	momentum
This concept assumes that the substance of the body is distributed throughout and completely fills the space it occupies.	Finite Element	Contact	Discrete	Continuum	Continuum
In fluids, is used to assess to what extent the approximation of continuity can be made.	Brayton Number	Knudsen Number	Reynolds Number	Prandtl Number	Knudsen Number
Material derivative is also known as	substantial derivative	commoving derivative	convective derivative	all of the above	all of the above
The vector connecting the positions of a particle in the undeformed and deformed configuration is called the	displacement vector	position vector	displacement field	position field	displacement vector
A is a vector field of all displacement vectors for all particles in the body.	position field	action field	displacement field	path field	displacement field
is the study of the physics of continuous solids with a defined rest shape.	Continuum Mechanics	Solid Mechanics	Fluid Mechanics	Discrete Mechanics	Solid Mechanics
It is an experimental method for visualizing and analyzing fluid flow.	Particle Image Velocimetry	Particle Image Accelerometry	Particle Image Flowmeter	Particle Image Viscosimetry	Particle Image Velocimetry
A fluid at rest has no	longitudinal stress	shear stress	tensile stress	compressive stress	shear stress
A property of fluids which is the force generated by a fluid in response to a velocity gradient.	compressibility	plasticity	elasticity	viscosity	viscosity
These equations state that changes in momentum of fluid particles depend only on the external pressure and internal viscous	Naviar Stokas Equations	Torricalli Equations	Reymolds Equations	Lagrangian Equations	
forces acting on the fluid.	wavier - Stokes Equations	romeen Equations	recynolus Equations	Lagrangian Equations	Navier – Stokes Equations
It is defined as, regardless of the forces acting on a fluid, the fluid continues to flow	Newtonian fluid	non-Newtonian fluid	Lagrangian fluid	non-Lagrangian fluid	Newtonian fluid

UNIT-IV Mechanics of Solids.

Stress

stress is defined as the restaring force per unit area which brings back the body to its original state from the deformed state. As long as no permanent change is produced in the body, the restaring force is equal to the force applied. Unit of stress is N/m^2 .

Types of stress for which in which is the stress !

when the force is applied perpendicular to the surface of the body, then the stress applied is called as normal stress.

(ii) Tangential stress

when the swafpace is applied along the surface of the body, then the stress applied is called tangential stress. It is also called shearing stress. Hooke's law

stress is directly proportional to the strain produced, within the elastic limit.

stress α strain stress = E x strain $E = \frac{stress}{strain}$

E is called as modulus of Elasticity. I and

Stress-strain Diagram And Its uses Let us consider a body which is subjected to an uniformly inveasing stress. Due to the applieation of the stress, the change in dimension of the body takes place. If we plot a graph between stress and strain, we get a curve, and is called as stress-strain diagram.

bomolek

applie 8

V. Frienn the diagram it is four

- 1. From the diagram, it is found that the body obeys Hooke's law upto the region on called as elastic range.
- 2. As soon as the maximum elastic limit (i.e.) yield spoint 'B' is crossed, the strain increases rapidly than the stress.
- 3. At this stage, the body remains partly elastic and partly plastic which is represented by the curve BC.

4. Now, even if a small external force is applied, the body will take a new path CD and remains as plastic called as plastic range, where D is called as ultimate strength.

5 After this, the body will not come to its original state and the body acquires a permanent residual strain and it breaks down at a point called as breaking stress, indicated by dotten line EF.

- uses of strew-strain Diagram 1. It is used to calagorize the materials into ductile (or, Brittle (or, plastic in nature.
- 2. For ductile malerial the portion of cuave between c to E will be very large.
 - Ex: brass, aluminium etc.,
- 3. For a brittle material, the yield point coincides with the breaking point.
 - EX: Gilaus, cast inon, brick, stone etc.
- 4. For a plastic material the stress strain diagram runs parallel to the strain axis beyond the yield point.

Principal stress and Mohr's circle Analysis of stress and strain

As we kearned in the previous When a structural element is subjected to several types of loads acting simultaneously, say bending and Earsion, principal stresses occur. These stresses act on principal planes where the shear stresses are zero. In addition, many engineering problems, such as axial bass, beam in bending and circular members in Lorsion, are examples of a state of stress called plane stress (Oz = Tzx = Tzy = 0) · C Procedure for determining principal stresses. for a state of plane stress : (20.20) 1. Determine the point on the body is which the principal stresses are to be determined. 2. Treating the load cases independently and calculated the stresses for the point chosen. When applicable

combine the stresses to determine the state of stress

at the point.

Choose a set of x-y reference axes and draw 3. square element centered on the axes. a

4. Identify the stresses σ_x , σ_y and $\tau_{xy} = \tau_{yx}$ and list them with the proper direction. 5. calculate the principal stresses, the maximum shear 5. calculate the principal sure. Stress and the principal plane if required. Inquining M HERRICH Principal stresses (shear stress =0) principal mod

a sale of

in delauning the State of Stram

 $\sigma_{1} = \frac{\sigma_{x} + \sigma_{y}}{2} + \sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}}$

19. Jacobs Inspiring Summercelais $\sigma_2 = \frac{\sigma_{x} + \sigma_y}{2} - \left(\frac{\sigma_{x} - \sigma_y}{2}\right)^2 + \tau_{xy}^2$ in Jacks of glad 22 VV i internation of anti-

Maximum sheer stressedon ad al assessed haloudo bie $T_{max} = \sqrt{\frac{\sigma_x - \sigma_y}{2}} + \tau_{xy} = public for the second of the sec$

Scanned by CamScanner

the shreeset for

 $T_{max} = \frac{\sigma_1 - \sigma_2}{1 + 2}$ id himb Principal Planess and the gos oncig layoung an le logaran plane of maximum shear stress 101 20 p = ban 2 2 the internet for plane shew can and sof inclosing $\frac{\sigma_{x}^{(1)} \sigma_{y}}{\sigma_{x}^{(1)}} = \frac{\sigma_{x}^{(1)} \sigma_{x}}{\sigma_{x}^{(1)}} = \frac{\sigma_{x}^{($ Average stress ErdoH and principation in the of notification with strexess athin spidencialing Important observations à la course bonition mainer no Important 1. Principal Stresses occur on mutually perpendicular planes 2. Shear Stresses are zero on principal axes planes. 3. Planes of maximum shear stress occur at 45° to the principal planes. 4. The maximum shear stress is equal to one half the difference the principal stresses. of

Scanned by CamScanner

St should be noted that the equation for principal planes, 20p, yields two angles between O° and 360. This can be determined by substituting ore of the values into the stress transformation equation

for normal stress. marie municom je savig

Mohr's circle for plane stress The transformation equations for plane stress can be represented in a graphical format known as Mohr's circle.

This representation is useful in visualizing the relationships between normal and shear stresses acting on various indired planes at a point in a stressed body. Staffalls occur of mulually perpendicular Prinupod -> Tyx principal 2(D Scarts .200x AD at Txy Jyz **Manda** loginiro oqual to one Vicit Sheak? A. The messimeum Gy

Jy JP2 (H (Jy, Tym) TP Tya 2.00 C Int Zny DX D ful has apr V (On Tony) pe T plisholat a 5,+54 B 07-09 Alias Ja On A. tu S. Draw For constructing Mohr's cerde there that Several rules are aparard direction. Choose on appropriate Scale apply. each axis

adjuste als stress component plot adjuste als stresses + for Tension + for Tension - the double of Azis) + for Compression - the double of Azis - the double of the

construct Mohr's circle as follows. all sales hay onstruct Mohr's circle as follows. all sales hay I. Determine the point on the body is in powhich the principal stresses are to be determined its work of V doing it share all to share all most will all p

2. Treating the load cases independently and calculated the stresses for the point chosen. 3. Choose a set of X-Y septence axes and deaw a square element centered on the axes. A Identify the stresses σ_x , σ_y and $\tau_{xy} = \tau_{yx}$ and first then with the proper sign.

5. Draw a set of σ_{-7} coordinate axes with σ being positive to the eight and τ being positive in the upward direction. Choose an appropriate scale for the upward axis.

dell

6. using the sules on the previous page, plot the stresses on the × face of the element in this coordinate system (point V). Repeat the process for the Y face (point H). 7. Deaw a line between the two point V and H. The point where this line crosses the or axis establishes the conter of the circle. 8. Draw the complete circle

identifies the axis or reforence axis for angle measurements. 2 Principal strains and Mohr's circle General state of strain when a body is subjected to stress, it undergoes deformation. when deformation happens, the points in the body are subjected to displacement. such displacements include deformation, Evanslation and rotation. Normal stress causes deformation. shear stress can cause both solation and translation. while Considering normal strain, we ignore rotation and translation. state of strains on a body - normal and shear $\frac{1}{10000} \times \frac{1}{74} = \frac{1}{7$ - Inite X Brate & brue regulation the Eside 1-2 has a prese

Scanned by CamScanner

consider a small elemental plane of a solid subjected to elastic deformation. The sides of the element undergo distortion as shown by dotted lines. The side 1-2 gets translated and sheared to 1'-2'. Let's égnore the rotation of the elements. The displacements of various points is the element is assumed to be linearly propotional to their distance. Farther points in the element will undargo mare displacement. This assumption is valid for small displacements and elastic bodies.

Point I has a displacement of u along x axis and v along × axis.

Neglecting rotation, the side 1-2 has a linear

strain = $\frac{\partial u}{\partial x}$

Because, strain on 1-2 = [(1-6) - (1-2)]/1-2Similidarly the side 1-5 has a strain $= \frac{\partial V}{\partial y}$

Now consider the angular strain (shear strain) on 1.4 & 1.5
shear strain on 1.4
$$\mu \neq \frac{\partial v}{\partial x}$$

ghear strain on 1.5 = $\frac{\partial v}{\partial x}$
11 by shear strain on 1.5 = $\frac{\partial v}{\partial y}$
Total shear strain = $y_{xy} = \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)$
Now consider the solation of 1.6 and 1.5
we can write the lotal solation $w_{xy} = \frac{1}{2}\left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x}\right)$
Here we consider anticlochaise solation as positive.
Strain transformations:
Lat's assume plane strain condition
we can write the strain transformations similar to
stress transformations using direction cosines.
 $E_{x}' = L_{x}'x E_{x} + L_{x}'y E_{y} + L_{x}'x L_{x}'y^{2}yy$
Sindarly
NAME of the strain transformations to the strain transformation to the strain transformation to the strain the strain transformation to the strain to the strain transformation to the strain transfo

Here

$$l_{2'2} = \cos\theta$$
 and $l_{x'y} = \sin\theta$
strain transformation equations for plane drain
condition can be written as
 $E_{x_1} = \frac{E_x + E_y}{2} + \frac{E_x - E_y}{2} \cos 2\theta + \frac{2\pi y}{2} \sin 2\theta$
 $\frac{2\pi \cdot y}{2} = \frac{E_x - E_y}{2} \sin 2\theta + \frac{2\pi y}{2} \cos 2\theta$
Mohr's circle for strain:
Mohr's circle for strain is similar to that
for stress and and and and a day
 $E_x = \frac{E_x + E_y}{2} + \frac{E_x - E_y}{2} \sin 2\theta + \frac{2\pi y}{2} \cos 2\theta$
 $\frac{2\pi \cdot y}{2} = \frac{2\pi - E_y}{2} \sin 2\theta + \frac{2\pi y}{2} \cos 2\theta$
 $\frac{2\pi \cdot y}{2} = \frac{2\pi - E_y}{2} \sin 2\theta + \frac{2\pi y}{2} \cos 2\theta$
 $\frac{2\pi \cdot y}{2} = \frac{2\pi - E_y}{2} \sin 2\theta + \frac{2\pi y}{2} \cos 2\theta$
 $\frac{2\pi \cdot y}{2} = \frac{2\pi - E_y}{2} \sin 2\theta + \frac{2\pi y}{2} \cos 2\theta$
 $\frac{2\pi \cdot y}{2} = \frac{2\pi - E_y}{2} \sin 2\theta + \frac{2\pi y}{2} \cos 2\theta$
 $\frac{2\pi \cdot y}{2} = \frac{2\pi - E_y}{2} \sin 2\theta + \frac{2\pi y}{2} \cos 2\theta$
 $\frac{2\pi \cdot y}{2} = \frac{2\pi - E_y}{2} \sin 2\theta + \frac{2\pi \cdot y}{2} \cos 2\theta$
 $\frac{2\pi \cdot y}{2} = \frac{2\pi - E_y}{2} \sin 2\theta + \frac{2\pi \cdot y}{2} \cos 2\theta$
 $\frac{2\pi \cdot y}{2} = \frac{2\pi - E_y}{2} \sin 2\theta + \frac{2\pi \cdot y}{2} \cos 2\theta$
 $\frac{2\pi \cdot y}{2} = \frac{2\pi - E_y}{2} \sin 2\theta + \frac{2\pi \cdot y}{2} \cos 2\theta$
 $\frac{2\pi \cdot y}{2} = \frac{2\pi - E_y}{2} \sin 2\theta + \frac{2\pi \cdot y}{2} \cos 2\theta$
 $\frac{2\pi \cdot y}{2} = \frac{2\pi - E_y}{2} \sin 2\theta + \frac{2\pi \cdot y}{2} \cos 2\theta$
 $\frac{2\pi \cdot y}{2} = \frac{2\pi - E_y}{2} \sin 2\theta + \frac{2\pi \cdot y}{2} \cos 2\theta + \frac{2\pi \cdot y}{2} \sin 2\theta$
 $\frac{2\pi \cdot y}{2} = \frac{2\pi - E_y}{2} \sin 2\theta + \frac{2\pi \cdot y}{2} \cos 2\theta + \frac{2\pi \cdot y}{2} \sin 2\theta$
 $\frac{2\pi \cdot y}{2} = \frac{2\pi \cdot y}{2} \cos 2\theta + \frac{2\pi \cdot y}{2} \sin 2\theta + \frac{2\pi \cdot y}{2$

Scanned by CamScanner

Here

The principal normal and principal shear stresses as well as strains are oriented at an angle of 45° with respect to each other.

Equation of equilibrium forces:

We can consider a plane of side dx and plane. Lequining to anest in the moltastigade about plane. The of the strange is and strange is simply equal the The strange is a strange is the strange is a strange is the strange is a strange Effective strain is quan ge (9 The equilibrium équations are now written for biaxial stress as: Along X direction, the force balance gives : prove that the aute strains 20x + 27yn Jonel 3

Along
$$\vee$$
 direction

$$\frac{\partial \sigma_{3}}{\partial y} + \frac{\partial T_{yn}}{\partial x} = 0$$
Effective strew is given as

$$\overline{\sigma} = \frac{1}{3} \left[(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2} \right]$$
This equation u in terms of principal strews.
The equation u in terms of principal strews.
The equative strew for uniazial strew u simply equal
to the yield strength.
Effective strain is given as

$$\overline{\epsilon} = \frac{f_{2}}{3} \left[(\varepsilon_{1} - \varepsilon_{2})^{2} + (\varepsilon_{2} - \varepsilon_{3})^{2} + (\varepsilon_{3} - \varepsilon_{1})^{2} \right]$$
In uniazial strew, we can prove that the
equative strain
 $\overline{\epsilon} = \log i u dirad - strain.$

Elasticity hellos is wounded silvely it mounded

Elasticity is the ability of a bady to resist a distorting influence and to return to its original size and shape when that influence or force is removed. This elastic behaviour can be quite different for different materials.

Plasticity

plasticity describes the deformation of a material undergoing non-seversible changes of shape in sesponse to applied farces. For example, a solid piece of metal being bent or pounded into a new shape displays plasticity as permanent changes occur within the material itself.

In onginaering, the transition from elastic

Scanned by CamScanner

behaviour to plastic behaviour is called yield.

Plastic deformation is observed in most material posticularly metals, soiels, rocks, concrete, foams, a distasting influence and I bone and skin.

This elastic behavious can be different malerialis. Elasticity Act

Plasticky

Plasticity deviber the advantion of material andergoing non-seversible charges of shape in sesponse la applied forier. En example: a prece of metal being built in pointed white a new

shape displays plasticity as promed charges accus within the material itself.

and more from from alastic

questions	opt1	opt2	opt3	opt4	opt5
It is the science which deals with bodies in motion or at rest with specific attention being directed primarily to the	statics	thermodynamics	kinetics	mechanics	mechanics
external effects of a force or a system.					
Deals with the conditions of equilibrium of rigid bodies acted upon by a balanced systems of forces. Deals with bodies being acted upon by an unbalanced system of forces the resultant of which causes the body to be	statics	thermodynamics	kinetics	mechanics	statics
accelerated.	statics	kinematics	dynamics	kinetics	dynamics
Deals with the geometry of motion.	statics	kinematics	dynamics	kinetics	kinematics
Deals with the forces required to produced motion.	statics	kinematics	dynamics	kinetics	kinetics
A specific amount of matter all particles of which remain at fixed distance to each other.	mass	force	rigid body	static body	rigid body
Results when a body is acted upon by the force.	bending	deformation	scattering	compression	deformation
A fixed body property of a body which determines its resistance to change in motion.	mass	force	rigid body	static body	mass
The action of one body on another body which changes or tends to change the motion of the body acted on	mass	force	rigid body	static body	force
It is the intensity of the force.	magnitude	direction	mass	force	magnitude
Sense and slone of angles with respect to reference axes.	magnitude	direction	mass	force	direction
The resultant of two forces which is the diagonal formed on the vectors of this force.	parallelogram law	equilibrium law	superposition law	action and reaction	parallelogram law
Any pressure on the support causes an equal and opposite pressure from the support	parallelogram law	equilibrium law	superposition law	action and reaction	action and reaction
Two forces on a rivid hold will in no way to be changed if we added or subtract from them another system of forces	paranerogram ian	equinorium nuo	superposition into	abiton and reaction	denon and reaction
I wo lotes on a fight body with in to way to be changed if we added of subfact from them another system of fores	parallelogram law	equilibrium law	superposition law	action and reaction	superposition law
In equilibrium.	tensors	vector quantities	system of forces	scalar quantities	scalar quantities
Quantities having both magnitude.	tansors	vector quantities	system of forces	scalar quantities	vector quantities
Quantities which posses manifuld but require two or more directional senects	tensors	vector quantities	system of forces	scalar quantities	tensors
When satural fores act in a given situation	tansors	vector quantities	system of forces	scalar quantities	sustam of forces
when several hores and in a given situation.	concurrent conlanar	collinear forces system	parallel conlanar	non concurrent conlanar	collinear forces system
The action lines of all the former are in the same plane and intersect a common point	concurrent coplanar	collinear forces system	parallel coplanar	non concurrent conlanar	concurrent conlanar
The action lines of all the forces are in the same plane and merseer a common plane.	concurrent,copianar	collinear foreas gustom	parallel comlener	non concurrent,copianar	nonclini,copianai
The action lines of all the forces of the system are paramet and ne in the same plane.	concurrent,copianai	connical forces system	paranei,copianai	non concurrent,coptanai	paranei,copianai
The action miles of an ule forces of the system are in the same plane, but they are not paranet and don't intersect in a	concurrent,coplanar	collinear forces system	parallel,coplanar	non concurrent,coplanar	collinear forces system
Control point.	consument non conloner	collineer forees quotem	nonallal non conlanon	non congressit non conferen non nonellal	condument non conlener
The action lines of all the forces of the system are parallel and not all lie in the same plane	concurrent non coplanar	collinear forces system	parallel non coplanar	non concurrent non coplanar non parallel	concurrent, non copianar
The action lines of all the forces of the system are paramet and not an nen un stand plant.	concurrent, non copianai	connical forces system	paranei,non copianai	non concurrent,non copianar,non paraner	paranei,non copianai
The action miles of an the forces of the system are an not in the same plane, but they are an not plannel and do not	concurrent,non coplanar	collinear forces system	parallel,non coplanar	non concurrent,non coplanar,non parallel	collinear forces system
all intersect in a common point.	2011	nomitent	composition	aranhiaal	rogultont
A pair of parallel forces bystem that can reprace the original system without changing its external effect.	couple	resultant	composition	graphical	course
A pair of paranet forces having same magnitude out opposite senses.	couple	resultant	composition	graphical	couple
A niciol propresentation in onlying a suprame	couple	resultant	composition	graphical	composition
A pictorial representation in solving a system		resultant	composition	graphical	graphical
is used to obtain the magnitude and direction of the resultant of any two concurrent forces.	paranelogram law	resolution	cosine law	triangle law	triangle law
An analytical method of minding the resultant of concurrent forces.	paranelogram iaw	resolution	cosine iaw	u langle law	resolution
Means that either one of two coplanar forces naving the given force as resultant.	components	polygon method	moment of force	couple	components
is used to check the results obtained from the resolution and composition method.	components	polygon method	moment of force	couple	polygon method
is a vector quantity that is represented as a vector along the moment axis.	components	polygon method	moment of force	couple	moment of force
The algebraic sum of the moment of its forces about any axis perpendicular to the plane of the couple.	the magnitude of the couple	the slope of the plane of the couple.	the sense of rotation of the couple.	the moment of the couple.	the moment of the couple.
The force of autraction of the earth on a body.	mass	density	weight	direction	weight
I neorem used in locating the centroit of the semicircle arc.	pythagorean theorem	newton s theorem	pappus theorem	none of the above	pappus theorem
A system of forces acting on a body which has no resultant.	Iree body diagram	equilibrium	coplanar	Iorce	equilibrium
is a sketch of a body completely isolated of free from all other bodies.	Iree body diagram	equilibrium	coplanar	Iorce	Iree body diagram
is a definite amount of matter the parts of which are fixed in position relative to one another.	mass	force	rigid body	static body	rigid body
is the action exerted by one body upon another.	mass	Iorce	rigid body	static body	Iorce
A unit of force	meter squared	pascai	pounds	newton	newton
The external effect of a force in a rigid body is the same for all points along its line of action.	principle of transmissibility of a force	axioms of mechanics	characteristics of force	scalar and vector quantities	principle of transmissibility of a force
The resultant of two forces is the diagonal formed on two vectors of those forces.	parallelogram law	resolution	cosine law	triangle law	parallelogram law
I he forces are in equilibrium only when equal in magnitude ,opposite in direction and collinear in action.	principle of transmissibility of a force	axioms of mechanics	characteristics of force	scalar and vector quantities	axioms of mechanics
is a convenient coronary of the parallelogram law.	paraneogram law	resolution	cosine law	triangle law	triangle law
The determination of the resultant of 3 or more concurrent forces that are not collinear.	resultant of concurrent, coplanar	collinear forces system	parallel,coplanar	non concurrent,coplanar	resultant of concurrent, coplanar

Relationship between Three modulii of Elasticity.

classification of Elastic Modulus.

Depending on the three types of strain, there are three types of Elastic modulus.

- (i) Young's modulus (Y)
- (ii) Bulk modulus (K)
- (iii) Rigidilig modulus (n)
- (i) Young's modulus (Y)

Defenition It is defined as the ratio between the longitudinal stress to the longitudinal strain, within the elastic limits. Young's Modulus (X) = $\frac{\text{Longitudinal stress}}{\text{Longitudinal strain}} \text{ Nm}^2$ (or) Pascals

Explanation !

Let us consider a wire of length 'L' with an area of cross section 'A'. Let one end of the wire be fixed

and subset the ending in the

and the other end is loaded

Let 'l' be change in length due to the action of force, then

The longitudinal stress = F/A

The longitudinal strain = 1/

. Young's modulus y = longitudinal stress

longitudinal strain

$$Y = \frac{F/A}{l/l}$$

Y = FL Al Nm² (or) Pascals

(ii) Balk modulus (K)

Defenition: It is defined as the ratio between the volume stress (or) bulk stress to the volume strain or, bulk strain within the elastic limits.

Bulk Modulus (K) = Bulk strain Nm⁻² or pascals

Explanation

Let us consider a body of volume 'V' with an area of cross section 'A'. Let three equal forces act on the body in mutually perpendicular directions. Let 'V' be the change in Volume, due to the action of forces.

The Volume stress 101, bulk stress = PA

The volume strain (or) bulk strain = $\frac{V}{V}$

(iii) Rigidity modulus (n) Defenition It is defined as the ratio between the tangential Stress to the shearing strain, within the elastic limits.

Tangential stress Nm² (Or) Pascals Rigidity modulus (n) = shearing strain D Explanation Let us consider a solid cube ABCDEFGH, whose lower face CDHG is fixed. A Langential force F' is applied over the upper face ABEF. The result is the cube gets déformed into a rhombus Shape A'B'ODÉFI that (ie) The times joining the two faces are shifted to an angle \$. If 'L' is the original length and 'I' is the

relative displacement of the upper face of the cube

with respect to the lower fixed face, then Langential Stress = F/ . Rigidity modulus (n) = Tangential stress shearing strain $D = \frac{F}{A\phi}$ Nm⁻² con Pascals. Relationship between three modulii of Elasticity There are many relations connecting the lateral Strain (B), longitudinal strain (x), Poisson's ratio (5) and the three elastic modulii. Some of the relations are given (1) Relation between α and Young's modulus $\alpha = \frac{1}{\gamma}$ Us shape but not ii) Relation between α and β with k is $\alpha - 2\beta = \frac{1}{3k}$ Prignals will have each and B with n is $\alpha + \beta = \frac{1}{2n}$ and by W. Relation between α and β with n is $\alpha + \beta = \frac{1}{2n}$ is such all as a goods all have the γ and k is $\gamma = \frac{9kn}{2k}$ all in N. Relation, between γ , n and k is $\gamma = \frac{9kn}{2k}$ all all γ includes v) Relation between n, k and σ is = $\frac{3k-2n}{5k+2n}$
Vi) Relation between Y, n and σ is $\sigma = \frac{\gamma}{2n} - 1$

Relations Between the Elastic Constants

Through any point of the body there will be three directions which are mutually perpendicedar before and after straining. These are called the axes of the strain and the wresponding magnitudes are called the principal strains. For isobopic substances these are will be the directions of the normal stresses, and thus, the complete stress. Strain relations will be given by the ratios of the principal stresses and their corresponding shains.

The elastic constants Y, n, k and o are interdependent since a body when deformed, its new size and shape may be obtained by first changing the shape but not like size as in the case of shear and then changing like size but not the shape as in the case of volume strain. Actually only two out of the four constants are independent.

Consider a cube of the given material with r,y, and z axes parallel to the edges of the cube. Lot the cube be subjected to stresses P, O2, R along these three directions.

If the body is isotropic its elastic properties are uniform in all direction, it will be unaltered in shape. stress in a given direction produces extension in that direction but contraction in directions perpendicular that direction but contraction is being considered, the to it. since elastic region is being considered, the extension and contraction are expected to be proportional extension and contraction are expected to be proportional to the relevant stresses. If or represents the: constant of to the relevant stresses. If or represents the: constant of we have the following relations for the extension in the three directions.

$$e = \alpha P + \beta (\alpha + R) \longrightarrow 0$$

$$f = \alpha \alpha - \beta (R + P) \longrightarrow 0$$

$$g = \alpha R - \beta (P + \alpha) \longrightarrow 3$$

For young's modulus use need to consider only one stress say P directed parallel to one of the stress say P directed parallel to one of the edge of the cube. The other two stresses Q = R = 0 and such and grain happing there is significated by public and the ai huillens is e= xp, noiseals lle ne mojnus 20 a noimples weather l'e Frank is noup one words . signite For Bulk modulus, since stresses are identical in Salt . all directions, $P = \dot{Q} = R$. estension and contraction and encoded to be papertion Nence de la 2/3) Prode Juie di di s Brat for chibactho If the side of the original cube is 1 wit then the original volume V=1, and the new the share directions volume is $V' = (1+e)^3 \simeq (1+3e)$ where we have reglected the terms 3e² and e³ as e^k small

Scanned by CamScanner

change in volume
$$\Delta v = v' - v$$
.
 $= (1+32) - 1$
 $= 32$
Volume strain $= \Delta V/v$
 $= 32 / 1 = 32$
Bulk modulus $K = \frac{Valume strew}{Valume strain} = \frac{P}{32} = \frac{P}{3P(\alpha - 2\beta)}$
 $K = \frac{1}{3(\alpha - 2\beta)}$.
Finally we consider signility modulus
By defenition, the signility modulus
 $n = \frac{P}{\theta} = \frac{2}{2(\alpha + \beta)} = \frac{1}{2(\alpha + \beta)}$
Poisson's satio is obtained by setting
 $Q = R = 0$ in (1) and (2)
 $\sigma = -\frac{f}{2} = \frac{P}{3K}$ (3) for $M = \frac{1}{2}$

$$2 \alpha + 2\beta = \frac{1}{n} \qquad \textcircled{0}$$
Adding (a) and (b)
$$3\alpha = \frac{1}{3\kappa} + \frac{1}{n} \qquad \textcircled{0}$$

$$Y = \frac{q_n k}{(3\kappa + n)} \qquad \textcircled{0}$$
Deviding (b) by α

$$2 \left(\frac{1+\beta}{\alpha}\right) = \frac{1}{n\alpha} \qquad \textcircled{0}$$

$$\therefore Y = 2n (1+\sigma) \qquad \textcircled{0}$$
Dividing (b) by α

$$I - \frac{2\beta}{\alpha} = \frac{1}{3\kappa\alpha} \qquad \textcircled{0}$$

$$\therefore Y = 3\kappa (1-2\sigma) \qquad \textcircled{0}$$
Combining (b), (b), and (c)
$$Y = \frac{q_n k}{3\kappa + n} = 2n (1+\sigma) = 3k (1-2\sigma)$$

.

[Q. 2. 2)

An expression for σ can be obtained by eliminating y between (1) and (1) $\sigma = \frac{3k - 2n}{6k + 2n}$ does not state of

Elastic Fatigue marte à monte

2

Each time a piece of material is subjected to stress, its internal structure undergoes change in the course of time. The continuous process over long time intervals causes time. The continuous process over long time intervals causes certain segions of the material to be weakend, resulting in loss of strength called fatigue.

Poisson's Ratio numicom all in baniph i se poisson's Ratio defined as the strain of Lateral strain it is defined as the strain of Lateral strain promote it works Longitudinal postain per unit stress.

aloueton⁼ Lateral Strain Longitudinal strain Longitudinal monte and ubio

land to fractions.

Hooke's Low Ste states that stress is directly propotional to the strain within the elastic limit.

to a tenudo

stress à strain apider sidents

porde al land stren Exstrain to stren all me = <u>Stren</u> append would don't don't produce strain production of <u>elasticity</u> to moisse and mill production of <u>elasticity</u> to moisse a pose is to pose is a pose

SE is defined as the maximum stress a material marker can withstrand without a permanent elongation con set remaining after the stress is removed. Fracture

under the extreme stress conditions materials tond to fracture.

questions	opt1	opt2	opt3	opt4	opt5
Stress is	External force	Internal resistive force	Axial force	Radial force	Internal resistive force
Following are the basic types of stress except	Tensile stress	Compressive stress	Shear stress	Volumetric stress	Volumetric stress
Which of the following is not a basic type of strain?	Compressive strain	Shear strain	Area strain	Volume strain	Area strain
Hooke's law is applicable within	Elastic limit	Plastic limit	Fracture point	Ultimate strength	Elastic limit
The deformation per unit length is called	Strain	Stress	Elasticity	None of these	Strain
The ability of the material to deform without breaking is called	Elasticity	Plasticity	Creep	None of these	Plasticity
Which of the following material is more elastic?	Rubber	Glass	Steel	Wood	Steel
The percentage elongation and the percentage reduction in area depends upon	Tensile strength of the material	Ductility of the material	Toughness of the material	None of these	Ductility of the material
The property of a material by which it can be beaten or rolled into thin sheets, is called	Elasticity	Plasticity	Ductility	Malleability	Malleability
The property of a material by which it can be drawn to a smaller section by applying a tensile load is called	Elasticity	Plasticity	Ductility	Malleability	Ductility
If a material has identical properties in all directions, it is called	Elastic	Plastic	Isotropic	Homogeneous	Isotropic
The stress at which extension of a material takes place more quickly as compared to increase in load, is called	No elastic zone	Plastic point	Yield point	Breaking point	Yield point
A brittle material has	No elastic zone	No plastic zone	Large plastic zone	None of these	No plastic zone
Every material obeys the Hooke's law within	Elastic limit	Plastic limit	Limit of proportionality	None of these	Elastic limit
The ratio of lateral strain to linear strain is called	Modulus of Elasticity	Modulus of Rigidity	Bulk Modulus	Poisson's Ratio	Poisson's Ratio
A perfectly elastic body	Can move freely	Has perfectly smooth surface	Is not deformed by any external surface	Recovers its original size and shape	Recovers its original size and shape
The value of Poison's ratio depends upon	Nature of load, tensile or compressive	Magnitude of load	Material of the test specimen	Dimensions of the test specimen	Material of the test specimen
Which of the following is a dimensionless quantity?	Shear stress	Poison's ratio	Strain	Poison's ratio and Strain	Poison's ratio and Strain
Percentage elongation during tensile test is indication of	Ductility	Malleability	Creep	Rigidity	Ductility
Brittleness is opposite to	Toughness	Plasticity	Malleability	None of these	Plasticity
The statement : stress is proportional to strain, i.e. the Hooke's law holds good upto	Elastic Limit	Proportional Limit	Plastic Limit	Yield point	Proportional Limit
			and the second		
The limit beyond which the material does not behave elastically is known as	Proportional limit	Elastic limit	Plastic limit	Yield Point	Elastic limit
The limit beyond which the material does not behave elastically is known as When mild steel is subjected to a tensile load, its fracture will conform to	Proportional limit Star shape	Elastic limit Granular shape	Plastic limit Cup and cone shape	Yield Point Fibrous shape	Elastic limit Cup and cone shape
The limit beyond which the material does not behave elastically is known as When mild steel is subjected to a tensile load, its fracture will conform to When a wire is stretched to double in length, the longitudinal strain produced in it is	Proportional limit Star shape 0.5	Elastic limit Granular shape 1	Plastic limit Cup and cone shape 1.5	Yield Point Fibrous shape 2	Elastic limit Cup and cone shape 1
The limit beyond which the material does not behave elastically is known as When mild steel is subjected to a tensile load, its fracture will conform to When a wire is stretched to double in length, the longitudinal strain produced in it is When a bar is subjected to a change of temperature and its longitudinal deformation is prevented, the stress induced	Proportional limit Star shape 0.5	Elastic limit Granular shape 1	Plastic limit Cup and cone shape 1.5	Yield Point Fibrous shape 2	Elastic limit Cup and cone shape 1
The limit beyond which the material does not behave elastically is known as When mild steel is subjected to a tensile load, is fracture will conform to When a wire is stretched to double in length, the longitudinal strain produced in it is When a bar is subjected to a change of temperature and its longitudinal deformation is prevented, the stress induced in the bar is	Proportional limit Star shape 0.5 Tensile	Elastic limit Granular shape 1 Compressive	Plastic limit Cup and cone shape 1.5 Shear	Yield Point Fibrous shape 2 Temperature	Elastic limit Cup and cone shape 1 Temperature
The limit beyond which the material does not behave elastically is known as When mild steel is subjected to a tensile load, its fracture will conform to When a wire is stretched to double in length, the longitudinal strain produced in it is When a bar is subjected to a change of temperature and its longitudinal deformation is prevented, the stress induced in the bar is When a bar is subjected to increase in temperature and its deformation is prevented, the stress induced when a bar is subjected to increase in temperature and its deformation is prevented, the stress induced in the bar is	Proportional limit Star shape 0.5 Tensile Tensile	Elastic limit Granular shape 1 Compressive Compressive	Plastic limit Cup and cone shape 1.5 Shear Shear	Yield Point Fibrous shape 2 Temperature None of the above	Elastic limit Cup and cone shape 1 Temperature Compressive
The limit beyond which the material does not behave elastically is known as When mild steel is subjected to a tensile load, its fracture will conform to When a wire is stretched to double in length, the longitudinal strain produced in it is When a bar is subjected to a change of temperature and its longitudinal deformation is prevented, the stress induced in the bar is When a bar is subjected to increase in temperature and its deformation is prevented, the stress induced in the bar is In a composite body, consisting of two different materialswill be same in both materials.	Proportional limit Star shape 0.5 Tensile Tensile Stress	Elastic limit Granular shape 1 Compressive Compressive Strain	Plastic limit Cup and cone shape 1.5 Shear Shear Both stress and strain	Yield Point Fibrous shape 2 Temperature None of the above None of these	Elastic limit Cup and cone shape 1 Temperature Compressive Strain
The limit beyond which the material does not behave elastically is known as When mild steel is subjected to a tensile load, its fracture will conform to When a wire is stretched to double in length, the longitudinal strain produced in it is When a bar is subjected to a change of temperature and its longitudinal deformation is prevented, the stress induced in the bar is When a bar is subjected to increase in temperature and its deformation is prevented, the stress induced in the bar is In a composite body, consisting of two different materialsin will be same in both materials. The external effect of a force in a rigid body is the same for all points along its line of action.	Proportional limit Star shape 0.5 Tensile Tensile Stress	Elastic limit Granular shape 1 Compressive Compressive Strain	Plastic limit Cup and cone shape 1.5 Shear Both stress and strain	Yield Point Fibrous shape 2 Temperature None of the above None of these	Elastic limit Cup and cone shape 1 Temperature Compressive Strain principle of transmissibility of a
The limit beyond which the material does not behave elastically is known as When mild steel is subjected to a tensile load, its fracture will conform to When a wire is stretched to double in length, the longitudinal strain produced in it is When a bar is subjected to a change of temperature and its longitudinal deformation is prevented, the stress induced in the bar is When a bar is subjected to increase in temperature and its deformation is prevented, the stress induced in the bar is In a composite body, consisting of two different materialswill be same in both materials. The external effect of a force in a rigid body is the same for all points along its line of action.	Proportional limit Star shape 0.5 Tensile Tensile Stress principle of transmissibility of a force	Elastic limit Granular shape 1 Compressive Compressive Strain axioms of mechanics	Plastic limit Cup and cone shape 1.5 Shear Both stress and strain characteristics of force	Yield Point Fibrous shape 2 Temperature None of the above None of these scalar and vector quantities	Elastic limit Cup and cone shape 1 Temperature Compressive Strain principle of transmissibility of a force
The limit beyond which the material does not behave elastically is known as When mild steel is subjected to a tensile load, its fracture will conform to When a wire is stretched to double in length, the longitudinal strain produced in it is When a bar is subjected to a change of temperature and its longitudinal deformation is prevented, the stress induced in the bar is When a bar is subjected to increase in temperature and its deformation is prevented, the stress induced in the bar is In a composite body, consisting of two different materialswill be same in both materials. The external effect of a force in a rigid body is the same for all points along its line of action. The resultant of two forces is the diagonal formed on two vectors of those forces.	Proportional limit Star shape 0.5 Tensile Tensile Stress principle of transmissibility of a force parallelogram law	Elastic limit Granular shape 1 Compressive Compressive Strain axioms of mechanics resolution	Plastic limit Cup and cone shape 1.5 Shear Both stress and strain characteristics of force cosine law	Yield Point Fibrous shape 2 Temperature None of the above None of these scalar and vector quantities triangle law	Elastic limit Cup and cone shape 1 Temperature Compressive Strain principle of transmissibility of a force parallelogram law
The limit beyond which the material does not behave elastically is known as When mild steel is subjected to a tensile load, its fracture will conform to When a wire is stretched to double in length, the longitudinal strain produced in it is When a bar is subjected to a change of temperature and its longitudinal deformation is prevented, the stress induced in the bar is When a bar is subjected to increase in temperature and its deformation is prevented, the stress induced in the bar is In a composite body, consisting of two different materialswill be same in both materials. The external effect of a force in a rigid body is the same for all points along its line of action. The resultant of two forces is the diagonal formed on two vectors of those forces. The forces are in equilibrium only when equal in magnitude, opposite in direction and collinear in action.	Proportional limit Star shape 0.5 Tensile Tensile Stress principle of transmissibility of a force parallelogram law principle of transmissibility of a force	Elastic limit Granular shape 1 Compressive Compressive Strain axioms of mechanics resolution axioms of mechanics	Plastic limit Cup and cone shape 1.5 Shear Both stress and strain characteristics of force cosine law characteristics of force	Yield Point Fibrous shape 2 Temperature None of the above None of these scalar and vector quantities triangle law scalar and vector quantities	Elastic limit Cup and cone shape 1 Temperature Compressive Strain principle of transmissibility of a force parallelogram law axioms of mechanics
The limit beyond which the material does not behave elastically is known as When mild steel is subjected to a tensile load, its fracture will conform to When a wire is stretched to double in length, the longitudinal strain produced in it is When a bar is subjected to a change of temperature and its longitudinal deformation is prevented, the stress induced in the bar is When a bar is subjected to increase in temperature and its deformation is prevented, the stress induced in the bar is In a composite body, consisting of two different materialswill be same in both materials. The external effect of a force in a rigid body is the same for all points along its line of action. The resultant of two forces is the diagonal formed on two vectors of those forces. The forces are in equilibrium only when equal in magnitude ,opposite in direction and collinear in action. Is a convenient corollary of the parallelogram law.	Proportional limit Star shape 0.5 Tensile Tensile Stress principle of transmissibility of a force parallelogram law principle of transmissibility of a force parallelogram law	Elastic limit Granular shape 1 Compressive Compressive Strain axioms of mechanics resolution axioms of mechanics resolution	Plastic limit Cup and cone shape 1.5 Shear Both stress and strain characteristics of force cosine law characteristics of force cosine law	Yield Point Fibrous shape 2 Temperature None of the above None of these scalar and vector quantities triangle law scalar and vector quantities triangle law	Elastic limit Cup and cone shape 1 Temperature Compressive Strain principle of transmissibility of a force parallelogram law axioms of mechanics triangle law
The limit beyond which the material does not behave elastically is known as When mild steel is subjected to a tensile load, is fracture will conform to When a wire is stretched to double in length, the longitudinal strain produced in it is When a bar is subjected to a change of temperature and its longitudinal deformation is prevented, the stress induced in the bar is When a bar is subjected to increase in temperature and its deformation is prevented, the stress induced in the bar is In a composite body, consisting of two different materials	Proportional limit Star shape 0.5 Tensile Tensile Stress principle of transmissibility of a force parallelogram law principle of transmissibility of a force parallelogram law	Elastic limit Granular shape 1 Compressive Compressive Strain axioms of mechanics resolution axioms of mechanics resolution collinear forces system	Plastic limit Cup and cone shape 1.5 Shear Both stress and strain characteristics of force cosine law characteristics of force cosine law parallel.coplanar	Yield Point Fibrous shape 2 Temperature None of the above None of these scalar and vector quantities triangle law scalar and vector quantities triangle law	Elastic limit Cup and cone shape 1 Temperature Compressive Strain principle of transmissibility of a force parallelogram law axioms of mechanics triangle law resultant of concurrent,coplanar
The limit beyond which the material does not behave elastically is known as When mild steel is subjected to a tensile load, its fracture will conform to When a bar is subjected to a change of temperature and its longitudinal deformation is prevented, the stress induced in the bar is When a bar is subjected to increase in temperature and its deformation is prevented, the stress induced in the bar is In a composite body, consisting of two different materialswill be same in both materials. The external effect of a force in a rigid body is the same for all points along its line of action. The resultant of two forces is the diagonal formed on two vectors of those forces. The forces are in equilibrium only when equal in magnitude ,opposite in direction and collinear in action. Is a convenient corollary of the parallelogram law. The determination of the resultant of 3 or more concurrent forces that are not collinear.	Proportional limit Star shape 0.5 Tensile Tensile Stress principle of transmissibility of a force parallelogram law principle of transmissibility of a force parallelogram law resultant of concurrent,coplanar External force	Elastic limit Granular shape 1 Compressive Compressive Strain axioms of mechanics resolution axioms of mechanics resolution collinear forces system Internal resistive force	Plastic limit Cup and cone shape 1.5 Shear Both stress and strain characteristics of force cosine law characteristics of force cosine law parallel,coplanar Axial force	Yield Point Fibrous shape 2 Temperature None of the above None of these scalar and vector quantities triangle law scalar and vector quantities triangle law non concurrent,coplanar Radial force	Elastic limit Cup and cone shape 1 Temperature Compressive Strain principle of transmissibility of a force parallelogram law axioms of mechanics triangle law resultant of concurrent,coplanar Internal resistive force
The limit beyond which the material does not behave elastically is known as When mild steel is subjected to a tensile load, its fracture will conform to When a wire is stretched to double in length, the longitudinal strain produced in it is When a bar is subjected to a change of temperature and its longitudinal deformation is prevented, the stress induced in the bar is When a bar is subjected to increase in temperature and its deformation is prevented, the stress induced in the bar is when a bar is subjected to increase in temperature and its deformation is prevented, the stress induced in the bar is In a composite body, consisting of two different materialswill be same in both materials. The external effect of a force in a rigid body is the same for all points along its line of action. The resultant of two forces is the diagonal formed on two vectors of those forces. The forces are in equilibrium only when equal in magnitude ,opposite in direction and collinear in action. Is a convenient corollary of the parallelogram law. The determination of the resultant of 3 or more concurrent forces that are not collinear. Stress is Following are the basic types of stress except	Proportional limit Star shape 0.5 Tensile Tensile Stress principle of transmissibility of a force parallelogram law principle of transmissibility of a force parallelogram law resultant of concurrent,coplanar External force Tensile stress	Elastic limit Granular shape 1 Compressive Compressive Strain axioms of mechanics resolution axioms of mechanics resolution collinear forces system Internal resistive force Compressive stress	Plastic limit Cup and cone shape 1.5 Shear Both stress and strain characteristics of force cosine law characteristics of force cosine law parallel.coplanar Axial force Shear stress	Yield Point Fibrous shape 2 Temperature None of the above None of these scalar and vector quantities triangle law scalar and vector quantities triangle law non concurrent,coplanar Radial force Volumetric stress	Elastic limit Cup and cone shape 1 Temperature Compressive Strain principle of transmissibility of a force parallelogram law axioms of mechanics triangle law resultant of concurrent,coplanar Internal resistive force Volumetric stress
The limit beyond which the material does not behave elastically is known as When mild steel is subjected to a tensile load, its fracture will conform to When a bar is subjected to a change of temperature and its longitudinal deformation is prevented, the stress induced in the bar is When a bar is subjected to increase in temperature and its deformation is prevented, the stress induced in the bar is In a composite body, consisting of two different materials	Proportional limit Star shape 0.5 Tensile Tensile Stress principle of transmissibility of a force parallelogram law principle of transmissibility of a force parallelogram law resultant of concurrent,coplanar External force Tensile stress Compressive strain	Elastic limit Granular shape 1 Compressive Strain axioms of mechanics resolution axioms of mechanics resolution collinear forces system Internal resistive force Compressive stress Shear strain	Plastic limit Cup and cone shape 1.5 Shear Both stress and strain characteristics of force cosine law characteristics of force cosine law parallel.coplanar Axial force Shear stress Area strain	Yield Point Fibrous shape 2 Temperature None of the above None of these scalar and vector quantities triangle law scalar and vector quantities triangle law non concurrent,coplanar Radial force Volumetrie stress Volumetria	Elastic limit Cup and cone shape 1 Temperature Compressive Strain principle of transmissibility of a force parallelogram law axioms of mechanics triangle law resultant of concurrent, coplanar Internal resistive force Volumetric stress Area strain
The limit beyond which the material does not behave elastically is known as When mild steel is subjected to a tensile load, its fracture will conform to When a wire is stretched to double in length, the longitudinal strain produced in it is When a bar is subjected to a change of temperature and its longitudinal deformation is prevented, the stress induced in the bar is When a bar is subjected to increase in temperature and its deformation is prevented, the stress induced in the bar is In a composite body, consisting of two different materialswill be same in both materials. The external effect of a force in a rigid body is the same for all points along its line of action. The resultant of two forces is the diagonal formed on two vectors of those forces. The forces are in equilibrium only when equal in magnitude ,opposite in direction and collinear in action. Is a convenient corollary of the parallelogram law. The determination of the resultant of 3 or more concurrent forces that are not collinear. Stress is Following are the basic types of stress except Which of the following is not a basic type of strain? Tensile Strain is	Proportional limit Star shape 0.5 Tensile Tensile Stress principle of transmissibility of a force parallelogram law principle of transmissibility of a force parallelogram law resultant of concurrent,coplanar External force Tensile stress Compressive strain Increase in length per original length	Elastic limit Granular shape 1 Compressive Strain axioms of mechanics resolution axioms of mechanics resolution collinear forces system Internal resistive force Compressive stress Shear strain Decrease in length per original length	Plastic limit Cup and cone shape 1.5 Shear Both stress and strain characteristics of force cosine law characteristics of force cosine law parallel,coplanar Axial force Shear stress Area strain Change in volume per original volume	Yield Point Fibrous shape 2 Temperature None of the above None of these scalar and vector quantities triangle law scalar and vector quantities triangle law non concurrent,coplanar Radial force Volumetric stress Volume strain All of the above	Elastic limit Cup and cone shape 1 Temperature Compressive Strain principle of transmissibility of a force parallelogram law axioms of meechanics triangle law resultant of concurrent,coplanar Internal resistive force Volumetric stress Area strain Increase in length per original length
The limit beyond which the material does not behave elastically is known as When mild steel is subjected to a tensile load, its fracture will conform to When a vire is stretched to double in length, the longitudinal strain produced in it is When a bar is subjected to a change of temperature and its longitudinal deformation is prevented, the stress induced in the bar is When a bar is subjected to increase in temperature and its deformation is prevented, the stress induced in the bar is In a composite body, consisting of two different materialswill be same in both materials. The external effect of a force in a rigid body is the same for all points along its line of action. The resultant of two forces is the diagonal formed on two vectors of those forces. The forces are in equilibrium only when equal in magnitude ,opposite in direction and collinear in action. Is a convenient corollary of the parallelogram law. The determination of the resultant of 3 or more concurrent forces that are not collinear. Stress is Following are the basic types of stress except Which of the following is not a basic type of strain? Tensile Strain is Compressive Strain is	Proportional limit Star shape 0.5 Tensile Tensile Stress principle of transmissibility of a force parallelogram law principle of transmissibility of a force parallelogram law resultant of concurrent,coplanar External force Tensile stress Compressive strain Increase in length per original length	Elastic limit Granular shape 1 Compressive Compressive Strain axioms of mechanics resolution axioms of mechanics resolution collinear forces system Internal resistive force Compressive stress Shear strain Decrease in length per original length Decrease in length per original length	Plastic limit Cup and cone shape 1.5 Shear Both stress and strain characteristics of force cosine law characteristics of force cosine law parallel,coplanar Axial force Shear stress Area strain Change in volume per original volume	Yield Point Fibrous shape 2 Temperature None of the above None of these scalar and vector quantities triangle law scalar and vector quantities triangle law non concurrent,coplanar Radial force Volumetric stress Volume strain All of the above	Elastic limit Cup and cone shape 1 Temperature Compressive Strain principle of transmissibility of a force parallelogram law axioms of mechanics triangle law resultant of concurrent,coplanar Internal resistive force Volumetric stress Area strain Increase in length per original length
The limit beyond which the material does not behave elastically is known as When mild steel is subjected to a tensile load, its fracture will conform to When a wire is stretched to double in length, the longitudinal strain produced in it is When a bar is subjected to a change of temperature and its longitudinal deformation is prevented, the stress induced in the bar is When a bar is subjected to increase in temperature and its deformation is prevented, the stress induced in the bar is When a bar is subjected to increase in temperature and its deformation is prevented, the stress induced in the bar is In a composite body, consisting of two different materialswill be same in both materials. The external effect of a force in a rigid body is the same for all points along its line of action. The resultant of two forces is the diagonal formed on two vectors of those forces. The forces are in equilibrium only when equal in magnitude ,opposite in direction and collinear in action. Is a convenient corollary of the parallelogram law. The determination of the resultant of 3 or more concurrent forces that are not collinear. Stress is Following are the basic types of stress except Which of the following is not a basic type of strain? Tensile Strain is Compressive Strain is Hooke's law is applicable within	Proportional limit Star shape 0.5 Tensile Tensile Stress principle of transmissibility of a force parallelogram law principle of transmissibility of a force parallelogram law resultant of concurrent, coplanar External force Tensile stress Compressive strain Increase in length per original length Increase in length per original length Elastic limit	Elastic limit Granular shape 1 Compressive Strain axioms of mechanics resolution axioms of mechanics resolution collinear forces system Internal resistive force Compressive stress Shear strain Decrease in length per original length Plastic limit	Plastic limit Cup and cone shape 1.5 Shear Both stress and strain characteristics of force cosine law characteristics of force cosine law parallel.coplanar Axial force Shear stress Area strain Change in volume per original volume Fracture point	Yield Point Fibrous shape 2 Temperature None of the above None of these scalar and vector quantities triangle law scalar and vector quantities triangle law non concurrent, coplanar Radial force Volumetric stress Volume strain All of the above All of the above Ultimate strength	Elastic limit Cup and cone shape 1 Temperature Compressive Strain principle of transmissibility of a force parallelogram law axioms of mechanics triangle law resultant of concurrent, coplanar Internal resistive force Volumetric stress Area strain Increase in length per original length Decrease in length per original length