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Course Objectives    

 

 The objective of this course is to familiarize the prospective engineers with techniques 

in Linear Algebra, Transform calculus and Numerical methods.  

 The syllabus is designed to develop the use of Matrix algebra techniques which is 

needed by Engineers for practical applications. 

 It aims to equip the students in numerical methods to solve engineering problems, 

Fundamentals of numerical methods/algorithms to solve systems of different 

mathematical equations will be introduced. 

 To learn numerical methods to obtain approximate solutions to mathematical problem. 

 To learn Basic concepts of Laplace transforms. 

 

Course Outcomes 

The students will learn: 

1. To solve the problems in engineering using Matrix algebra Techniques. 

2. Derive numerical methods for various mathematical operations and tasks such as 

interpolation, differentiation and integration.  

3. To analyze and evaluate the accuracy of solution for ordinary differential equations. 

4. To implement numerical methods to solve Partial differential equations. 

5. To solve problems using Laplace Transforms. 

6. To improve facility in numerical manipulation. 

 

UNIT I - Matrices                            

Inverse and rank of a matrix, rank-nullity theorem; System of linear equations; 

Symmetric, skew-symmetric and orthogonal matrices; Determinants; Eigenvalues and 

eigenvectors; Diagonalization of matrices; Cayley-Hamilton Theorem, Orthogonal 

transformation. Simple Problems using Scilab. 

 

UNIT II - Numerical Methods         

Solution of polynomial and transcendental equations – Bisection method, Newton-

Raphson method and Regula-Falsi method. Finite differences, Interpolation using Newton’s 

forward and backward difference formulae. Central difference interpolation: Gauss’s forward 

and  backward formulae. Numerical integration: Trapezoidal rule and Simpson’s 1/3rd and 3/8 

rules. 

 

 



 

 

UNIT III -  Numerical Methods 

Ordinary differential equations:  Taylor’s series, Euler and modified Euler’s methods. 

RungeKutta method of fourth order for solving first and second order equations. Milne’s And 

Adam’s predicator-corrector methods. 

 

UNIT IV -Numerical Methods 

 Partial differential equations: Finite difference solution two Dimensional Laplace 

equation and Poisson equation, Implicit and explicit methods for one Dimensional heat 

equation(Bender-Schmidt and Crank-Nicholson methods), Finite difference Explicit method for 

wave equation. 

 

UNIT V - Transform Calculus             

Laplace Transform, Properties of Laplace Transform, Laplace transform of periodic 

functions. Finding inverse Laplace transform by different methods, convolution theorem. 

Evaluation of Integrals by Laplace transform, solving ODEs and PDEs by Laplace Transform 

method. 
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5. Hemamalini. P.T, (2014), Engineering Mathematics, McGraw Hill Education (India) 
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UNIT – I 

Matrices  

Inverse and rank of a matrix 1 

Rank-nullity theorem 1 

System of linear equations 1 

Symmetric, skew-symmetric and orthogonal matrices 1 

Determinants 1 

Eigenvalues and eigenvectors 1 

Tutorial. 1: Symmetric, skew-symmetric and orthogonal matrices, Eigenvalues and 

eigenvectors 

1 

Diagonalization of matrices 1 

Diagonalization of matrices 1 

Cayley-Hamilton Theorem 1 

Orthogonal transformation. 

 

1 

Orthogonal transformation. 

 

1 

Simple Problems using Scilab 1 

Tutorial 2: Problems based on Diagonalization, Cayley-Hamilton Theorem, Orthogonal 

transformation 

1 

TOTAL 14 

 

 

 

 

 

 

 

 

UNIT – II 

Numerical Methods  

Solution of polynomial and transcendental equations 1 

Introduction and Problems for Bisection method 1 

Introduction and Problems for Newton-Raphson method 1 

Introduction and Problems for Regula-Falsi method 1 

Introduction and Problems for Finite differences 1 

Interpolation using Newton’s forward difference formulae 1 

Tutorial 3: Problems based on types of numerical methods 1 

Interpolation using Newton’s backward difference formulae 1 

Introduction and Problems for Central difference interpolation 1 

Introduction for Gauss’s forward and backward formulae 1 

Problems based on Gauss’s forward and backward formulae 1 

Numerical integration: Trapezoidal rule 1 

Numerical integration: Simpson’s 1/3rd and 3/8 rules. 1 

Tutorial 4: Problems based on types of numerical methods 1 

TOTAL 14 

 

 

 

 

UNIT – III 

Numerical Methods  

Introduction to using numerical methods in ordinary differential equations 1 

Introduction to Taylor’s series 1 

Problems based on Taylor’s series 1 

Problems based on Taylor’s series 1 

Introduction to Euler and modified Euler’s methods. 1 

Problems based on Euler and modified Euler’s methods. 1 

Problems based on Euler and modified Euler’s methods. 1 

Tutorial 5: Problems based on types numerical methods in ODE’s 1 

Introduction to Runge-Kutta method 1 



Problems based on RungeKutta method 1 

Introduction to Milne’s And Adam’s predicator-corrector methods 1 

Problems based on Milne’s And Adam’s predicator-corrector methods 1 

Problems based on Milne’s And Adam’s predicator-corrector methods 1 

Tutorial 6: Problems based on types numerical methods ODE’s 1 

TOTAL 14 

 

 

 

 

 

 

UNIT – IV 

Numerical Methods  

Introduction to using numerical methods in partial differential equations 1 

Introduction to Finite difference scheme 1 

Solution of 2-D Laplace equation using Finite difference scheme 1 

Solution of 2-D Laplace equation using Finite difference scheme 1 

Solution of 2-D Poisson equation using Finite difference scheme 1 

Implicit and explicit methods for one Dimensional heat equation: Bender-Schmidt method 

and Crank-Nicholson methods 

1 

Introduction to Bender-Schmidt method. 1 

Problems based on Bender-Schmidt method 1 

Tutorial 7: Problems based on numerical methods in PDE’s 1 

Introduction to Crank-Nicholson methods 1 

Problems based on Crank-Nicholson methods 1 

Introduction to Finite difference Explicit method for wave equation. 

 

1 

Problems based on Finite difference Explicit method for wave equation. 

 

1 

Tutorial 8: Problems based on numerical methods in PDE’s 1 

TOTAL 14 

 

 

 

 

 

 

 

 

UNIT – V 

 

 

 

 

 

 

Transform Calculus              

Introduction of Laplace Transform 1 

Properties of Laplace Transform 1 

Laplace transform of periodic functions 1 

Laplace transform of periodic functions 1 

Finding inverse Laplace transform by different methods 1 

Finding inverse Laplace transform by different methods 1 

convolution theorem 1 

Tutorial 9: Problems based on Laplace Transform and convolution theorem 1 

Evaluation of Integrals by Laplace transform 1 

Evaluation of Integrals by Laplace transform 1 

Solving ODEs and PDEs by Laplace Transform method. 

 

1 

Solving ODEs and PDEs by Laplace Transform method. 

 

1 

Tutorial 10: Problems based on Solving ODEs and PDEs by Laplace Transform method. 1 

Discussion of previous years ESE Questions 1 

TOTAL 14 

TOTAL NO. OF HOURS 70 
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Questions opt1 opt2 opt3 opt4 Answer

The sum of the main diagonal elements of a matrix is 
called------

trace of a 
matrix 

quadrati
c form

eigen 
value 

 
canonic
al form

trace of 
a matrix 

The orthogonal transformation used to diagonalise 
the symmetric matrix A is---- NT AN   NT A NAN-1        NA NT AN   

If λ1, λ2, λ3,……… λ n  are the eigen values of A ,then 
kλ1 ,kλ2, kλ3,……… ,kλ n  are the eigen values of ------
--------

kA  kA2         kA-1        A-1 kA

Diagonalisation of a matrix by orthogonal reduction 
is true only for a ----- matrix. diagonal triangula

r
real 
symmetric scalar

real 
symmet
ric

If atleast one of the eigen values of A is zero, then 
det A = ----- 0 1 10 5 0

det (A- λI ) represents------
characterist
ic 
polynomial

characte
ristic 
equation

quadratic 
form

canonic
al form

characte
ristic 
polyno
mial

 If   λ_1, λ_2, λ_3,……… λ_n   are the eigen values 
of A ,then  1/λ_1,1/ λ_2, 1/λ_3,……… 1/λ_n    are 
the eigen values of --------

 A^-1  A         A^n 2A  A^-1

 If λ_1, λ_2, λ_3,……… λ_n  are the eigen values of 
A ,then λ_1^p, λ_2^p, λ_3^p,……… λ_n^p  are the 
eigen values of 

 A^-1  A^2         A^-p            A^p           A^p           

The eigen values of a ---------------------- matrix are its 
diagonal elements diagonal

 
symmetr
ic

skew-
matrix

triangul
ar

triangul
ar

In an orthogonal transformation NT AN = D , D 
refers to a ---------- matrix.

diagonal orthogo
nal symmetric

skew- 
symmetr
ic

diagona
l

In a modal matrix, the columns are the eigen vectors 
of----------  A-1 A2         A         adj A A         

If the eigen values of  8x1
2 + 7 x2

2 +3 x3
2 –12 x1 x2 – 

8 x2 x3 +4 x3x1 are 0,3 & 15, then its nature is-----------
positive 
definite

positive 
semidefi
nite

indefinite negative 
definite

positive 
semidef
inite

The elements of the matrix of the quadratic form x1
2 

+ 3 x2
2 + 4 x1 x2 are ------------

a11 = 1,a12 

=2 , a 21 = 
2 , a 22 = 3

a11 = -1, 
a12 = -2 , 
a 21 = 2 , 
a 22 = 3

a11 = 1, a12 

= 4 , a 21 = 
4 , a 22 = 3

a11 = 1, 
a12 = 4 , 
a 21 = 3 , 
a 22 = 1

a11 = 
1,a12 =2 
, a 21 = 2 
, a 22 = 3

If the sum of two eigen values and trace of a 3x3 
matrix A are equal, then det A = ---------

 λ_1 λ_2 
λ_3

0 1 2 0

If 1,5 are the eigen values of a matrix A, then det A = 
------- 5 0 25 6 5

If the canonical form of a quadratic form is  5y1
2 + 6 

y2
2 , then the rank is --------

4 0 2 1 2

The eigen vector is also known as------- latent value latent 
vector

column 
value

 
orthogo
nal 
value

latent 
vector

If 1,3,7 are the eigen values of A, then the eigen 
values of 2A are ------------ 1,3,7 1,9,21 2,6,14 1,9,49 2,6,14



If the eigen values of 2A are 2, 6, 8 then eigen values 
of A are _________ 1,3,4 2,6,8 1,9,16 12,4,3 1,3,4

The number of positive terms in the canonical form is 
called the ________ of the quadratic form. rank index Signature indefinit

e index

If all the eigenvalues of A are positive then it is 
called as_______

 Positive 
definite

Negativ
e 
definite

Positive 
semidefini
te

 
Negativ
e 
semidefi
nite

 
Positive 
definite

If all the eigenvalues of A are negative then it is 
called as_______

Positive 
definite

Negativ
e 
definite

Positive 
semidefini
te

Negativ
e 
semidefi
nite

Negativ
e 
definite

A homogeneous polynomial of the second degree in 
any number of variables is called the ______

characterist
ic 
polynomial

characte
ristic 
equation

quadratic 
form

canonic
al form

quadrati
c form

The Set of all eigen values of the matrix A is called 
the ___________ of A rank index Signature spectru

m
spectru
m

A Square matrix A and its transpose have _______ 
eigen values. different  Same Inverse Transpo

se  Same

The sum of the __________ of a matrix A is equal to 
the sum of the principal diagonal elements of A.

characterist
ic 
polynomial

characte
ristic 
equation

eigen 
values 

eigen 
vectors

eigen 
values 

The product of the eigenvalues of a matrix A is equal 
to_________

 Sum of 
main 
diagonal

Determi
nant of 
A

Sum of 
minors of 
Main 
diagonal

Sum of 
the 
cofactor
s of A

Determi
nant of 
A

The eigenvectors of a real symmetric are _______  equal  unequal real symmetr
ic real

If the eigen values of 2A are 2, 6, 8, then eigen 
values of A are _________ 1,3,4 2,6,8 1,9,16 12,4,3 1,3,4 

The eigen values of a triangular matrix are --------
main 
diagonal 
elements

first row 
elements 

first 
column 
elements

last 
column 
element
s

main 
diagona
l 
elemen

The main diagonal elements of a triangular matrix  
are -----------

characterist
ic 
polynomial

characte
ristic 
equation

eigen 
values 

eigen 
vectors

eigen 
values 

The main diagonal elements are the eigen values 
of the -------matrix.

square symmetr
ic 

non 
symmetri
c

triangul
ar

triangul
ar

If atleast one of the eigen values of A is zero, then 
det A = ___ 0 1 10 5 0

 If the eigen values of A are 2, 3, 4 then the eigen 
values of A-1 is

 1/2 , 1/3, 
1/4 

2,3,4 -2,-3,-4 
(-1/2,-
1/3,-
1/4)

 1/2 , 
1/3, 1/4 

If the sum of two eigen values of  matrix A are equal 
to the trace of the matrix, then the  determinant of A 
is___________

1 2 0 3 0

Sum of the principal diagonal elements ________
product of 
eigen 
values

product 
of eigen 
vectors 

sum of 
eigen 
values

product 
of eigen 
values

sum of 
eigen 
values



If 1 and 2 are the eigen values of a matrix A, then the 
eigen values of A2 are ____

2,3 3,5 1,4 1,2 1,4

The eigen vector is also known as _____
latent 
square

column 
vector 

row 
vector 

latent 
vector    

latent 
vector    

If all the eigen values of a matrix are distinct, then 
the corresponding eigen vectors______

linearly 
dependent 

 unique 
not 
unique 

linearly 
indepen
dent 

linearly 
indepen
dent 

A matrix is called symmetric if and only if ---------- A=A^T A=A^-1 A=-A^T A=A A=A^T

If a matrix A is equal to A^T then A is a -------- 
matrix. symmetric

non 
symmetr
ic

skew-
symmetric singular symmet

ric

A matrix is called skew-symmetric if and only if --------
-

A=A^T A=A^-1 A=-A^T A=A A=-A^T

If a matrix A is equal to -A^T then A is a -------- 
matrix. symmetric

non 
symmetr
ic

skew-
symmetric singular

skew-
symmet
ric

A matrix is called orthogonal if and only if ----- A^T=A^-1
A^T=-A^-
1

A^T=A^-2
A^T=-A^-
2

A^T=A^-
1

A matrix is called ------------if and only if A^T=A^-1. orthogonal square 
non 
symmetri
c

triangul
ar

orthogo
nal 

The equation det (A-λI) = 0 is used to find ----------
characterist
ic 
polynomial

characte
ristic 
equation

 eigen 
values 

 eigen 
vectors

characte
ristic 
equatio
n

If the characteristic equation of a matrix A is λ^2 – 2 
= 0, then the eigen values are ------- 2,2 (-2,-2) (2^(1/2),-

2^(1/2)) (2i,-2i)
(2^(1/2)
,-
2^(1/2))

 If 1,3,7 are the eigen values of A, then the eigen 
values of 2A are ------------ 1,3,7 1,9,21 2,6,14 1,9,49 2,6,14

If 1,5 are the eigen values of a matrix A, then det A = 
------- 5 0 25 6 5

Eigen value of the characteristic equation λ^2-4 = 0 
is 2, 4 2, -4 2, -2 2, 2 2,-2

Eigen value of the characteristic equation λ^3-
6λ^2+11λ-6 = 0 is 1,2,3 1, -2,3 1,2,-3 1,-2,-3 1,2,3

Largest Eigen value of the characteristic equation λ^3-
3λ^2+2λ = 0 is 1 0 2 4 2

Smallest Eigen value of the characteristic equation 
λ^3-7λ^2+36 = 0 is -3 3 -2 6 -2

Sum of the principal diagonal elements =
product of 
eigen 
values

product 
of eigen 
vectors

sum of 
eigen 
values

sum of 
eigen 
vectors

sum of 
eigen 
values

Product of the eigen values = (-|A|) 1/|A| (-1/|A|) |A| |A|
A Square matrix A and its transpose have _______ 
eigen values. different  Same Inverse Transpo

se  Same

If 1 and 2 are the eigen values of a 2X2 matrix A, 
then the eigen values of A^2 is 2, 4 3,4 5,6 1, 4 1, 4

If 1 and 2 are the eigen values of a 2X2 matrix A, 
then the eigen values of A^-1is 2,1/2 1,1/2 1,2 4,1/2 1,1/2

If a real symmetric matrix of order 2 has ---------then 
the matrix is a scalar matrix.

equal eigen 
vectors

different 
eigen 
vectors

equal 
eigen 
values

different 
eigen 
values

equal 
eigen 
values



If A and B are nxn matrices and B is a non singular 
matrix then A and B^-1AB have

same eigen 
vectors

different 
eigen 
vectors

same 
eigen 
values

different 
eigen 
values

same 
eigen 
values

Every square matrix satisfies its own ----------
characteris
tic 
polynomial        

characte
ristic 
equatio
n

orthogon
al 
transform
ation          

 
canonic
al form

charact
eristic 
equatio
n

In a modal matrix, the columns are the -----------
eigen 
vectors of 
A

eigen 
vectors 
of adj A

eigen 
vectors of 
inverse 
ofA

eigen 
values 
of A

eigen 
vectors 
of A

Cayley -Hamilton theorem is used to find ------------

inverse 
and higher 
powers of 
A  

eigen 
values 

eigen 
vectors

quadrati
c form

inverse 
and 
higher 
powers 
of A  

If the canonical form of a quadratic form is  5y12 - 6 
y22 , then the index is --------

4 0 2 1 1

The non –singular linear transformation used to 
transform the quadratic form to canonical form is ----
------

 X= NTY         X= NY          Y= NX         NXA  X= NY          

The eigen vector is also known as-------
latent 
value

latent 
vector

column 
value

 
orthogo
nal 
value

latent 
vector

The sum of the __________ of a matrix A is equal to 
the sum of the principal diagonal elements of A.

characteris
tic 
polynomial

characte
ristic 
equatio
n

eigen 
values 

eigen 
vectors

eigen 
values 

The product of the eigenvalues of a matrix A is equal 
to_________

 Sum of 
main 
diagonal

Determi
nant of 
A

Sum of 
minors of 
Main 
diagonal

Sum of 
the 
cofactor
s of A

Determi
nant of 
A

The eigenvectors of a real symmetric are _______  equal  unequal real
symmet
ric

real

When the quadratic form is reduced to the canonical 
form, it will contain only r terms, if the _____ of A is 
r.

rank index  Signature
spectru
m

rank

The excess of the number of positive terms over the 
number of negative terms in the canonical form is 
called the ___________ of the quadratic form.

 rank index  Signature
spectru
m

 
Signatu
re

If all the eigen values of A are less than zero and 
atleast one eigen value is zero then the quadratic 
form is said to be ___________

 Positive 
definite

Negativ
e 
definite

Positive 
semidefin
ite

 
Negativ
e 
semidefi
nite

 
Negativ
e 
semidef
inite

If all the eigen values of A are greater than zero and 
atleast one eigen value is zero then the quadratic 
form is said to be ___________

 Positive 
definite

Negativ
e 
definite

Positive 
semidefin
ite

 
Negativ
e 
semidefi
nite

Positive 
semidef
inite

If the quadratic form has both positive and negative 
terms then it is said to be ___________

Positive 
definite

Negativ
e 
definite

Positive 
semidefin
ite

 
indefinit
e

 
indefini
te



 

 

 

 

 

 

 



 

 

 

 



 

 

 

 



 



 

 

 

 

 

 



 

 

 



 

 



 

 



 

 

 



 

 

 

 



 



Unit-II                        Interpolation
Questions opt1 opt2 opt3 opt4 Answer
The process of computing the value of the function 
inside the given range is called ________

 
Interpolation

 
extrapolation 

reduction expansion  
Interpolatio
n

If the point lies inside the domain [x_0, x_n], then 
the estimation of f(y) is called _________ 

 
Interpolation

extrapolation reduction expansion  
Interpolatio
n

The process of computing the value of the function 
outside the given range is called ________

Interpolation extrapolation reduction expansion extrapolatio
n 

If the point lies outside the domain [x_0, x_n], then 
the estimation of f(y) is called _________ 

Interpolation extrapolation reduction expansion extrapolatio
n 

 Interpolation is the process of computing _______ 
values of a function from a given set of tabular values 
of a function       positive negative constant

 
intermedia
te 

 
intermediat
e 

The estimation of values between well-known 
discrete points are called ________.

Interpolation extrapolation reduction expansion Interpolatio
n

______ is the process of finding the most appropriate 
estimate for missing data.
For making the most probable estimate the changes in 
the series are must be ______ within a period.

uniform Normal Exponent
ially

periodic uniform

For making the most probable estimate the frequency 
distribution must be ______.

Normal uniform periodic Exponenti
ally

Normal

Lagrange’s interpolation formula can be used  when 
the values of independent variable x are ____   

equally – 
spaced  

unequally – 
spaced 

both 
equally 
andunequ
ally – 
spaced

positive both 
equally 
andunequall
y – spaced

 To find the unknown value of x for some y, which 
lies at the unequal 
intervals we use ------------------- formula.

 Newton’s 
forward 

 Newton’s 
backward 

Newtons 
divided 
differenc
e 

inverse 
interpolati
on

Newtons 
divided 
difference 

If the values of the variable y are given, then the 
method of finding the unknown 
variable x is called ----------------

 Newton’s 
forward 

 Newton’s 
backward 

interpolat
ion

inverse 
interpolati
on

inverse 
interpolatio
n

 In Newton’s backward difference formula, the value 
of n is calculated by -------.

 n = (x–x_n) 
/ h 

 n = (x_n–x) 
/ h

 n = 
(x–x0) / h  

 n = 
(x_0–x) / h

 n = 
(x–x_n) / h 

 In Newton’s forward difference formula, the value 
of n is calculated by -------.

 n = (x–x_n) 
/ h 

 n = (x_n–x) 
/ h

 n = 
(x–x0) / h  

 n = 
(x_0–x) / h

 n = (x–x0) 
/ h  

In the forward difference table y_0 is called 
___________ element.

leading ending middle positive    leading 

In the forward difference table forward symbol 
((y_0)), forward symbol(^2(y_0)) , ….. are called 
___________ difference.

leading ending middle positive    leading 

The difference of first forward difference is called 
________.

divided 
difference      

2nd forward 
difference          

3rd  
forward 
differenc
e 

4th 
forward 
difference  

2nd 
forward 
difference          

_________ Formula can be used for interpolating the 
value of f(x) near the 
end of the tabular values.

 Newton’s 
forward 

 Newton’s 
backward 

 
Lagrange

stirling  Newton’s 
backward 



Gregory Newton forward interpolation formula is 
also called as Gregory Newton 
forward_____________ formula.

Elimination iteration differenc
e

 distance   difference

Gregory Newton backward interpolation formula is 
also called as Gregory Newton 
backward_____________ formula

Elimination iteration differenc
e

 distance   difference

Gregory Newton backward interpolation formula is 
also called as Gregory Newton backward   
_____________ formula .

Elimination iteration differenc
e

 distance   difference

The divided differences are _________ in their 
arguments.

constant  symmetrical varies  singular  
symmetrical 

In Gregory Newton forward interpolation formula 1st  
two terms of this series give the result for the 
_________ interpolation.

Ordinary 
linear 

ordinary 
differential 

parabolic central   Ordinary 
linear 

Gregory Newton forward interpolation formula 1st  
three terms of this series give the result for the   
_________ interpolation.  

Ordinary 
linear 

ordinary 
differential 

parabolic central   parabolic 

Gregory Newton forward interpolation formula is 
mainly used for interpolating the values of y near  the 
_____________ of the set of tabular values.   

beginning  end centre side beginning

Gregory Newton backward interpolation formula is 
mainly used for interpolating the values of y near the 
_______of the set of tabular values.  

beginning  end centre side  end

From the definition of divided difference (u-u_0)/(x-
x_0) we have __________ =      

(y,y_0)  (x,y) (x_0, 
y_0)            

(x,x_0) (x_0, y_0)            

If f(x) =0, then the equation is called __________ Homogenou
s

non-
homogenous

first 
order

second 
order

Homogeno
us

  If the values x0 = 0, y0 = 0 and h = 1 are given for 
Newton’s forward method, then the value of x is ------
------.

0 1 n X n

 The n th order difference of a polynomial of n th  
degree is ------------.

constant zero  
polynomi
al in first 
degree

 
polynomia
l in n-1 
degree

constant

 What will be the first difference of a polynomial of 
degree four?

 Polynomial 
of 
degree one

 Polynomial 
of 
degree two

 
Polynomi
al of 
degree 
three

 
Polynomia
l of 
degree 
four

 
Polynomial 
of 
degree three

A function which satisfies the difference equation is 
a ________of the difference equation.

Solution general 
solution

complem
entary 
solution

particular 
solution

Solution

The degree of the difference equation is ________ The highest 
powers of 
y’s

The 
difference 
between the 
arguments 
of y

The 
differenc
e 
between 
the 
constant

The 
highest 
value of x

The 
highest 
powers of 
y’s

The degree of the difference equation is ________ 2 0 1 3 1

The difference between the highest and lowest 
subscripts of y are called ______ of the difference  
equation

degree order power value order 



E-1= backward 
difference 
operator

forward 
difference 
operator

µ δ forwarddiff
erence 
operator

Which of the following is the central difference 
operator?

E µ δ δ

1+(forward difference operator)= backward 
difference 
symbol

E µ δ E

µ is called the ______ operator Central average backward displacem
ent

average

The other name of shifting operator is  ______ 
operator

Central average backward displacem
ent

displaceme
nt

The difference of constant functions are___________ 0 1 2 3 0

The nth order divided difference of x_n will be a 
polynomial of degree ________.

0 1 2 3 2

The operator forward symbol is __________ homogenous heterogeneou
s 

linear a variable     linear



 

 

 

 

 

 

 

 



 

 

 

 

 



 

 

 

 



 

 

 



 



 



 



 

 



 

 



 



 



 



 



 



unit-III                                                                                            
   Numerical differentiation and Integration

Questions opt1 opt2 opt3 opt4 Answer
_________ Formula can be used for interpolating the 
value of f(x) near the 
end of the tabular values.

 Newton’s 
forward 

 
Newton
’s 
backwa

 Lagrange stirling  Newton’s 
backward 

_________ Formula can be used for interpolating the 
value of f(x) near the 
beginning of the tabular values.

 Newton’s 
forward 

 
Newton
’s 
backwa

 Lagrange stirling  Newton’s 
forward 

 In Numerical integration, the length of all intervals is 
in ----------- distances.

Greater 
than the 
other

 less 
than 
the 

equal not equal equal 

When the function is given in the form of table values 
instead of giving analytical expression we use 
___________.   

numerical 
differentiati
on

numeric
al 
eliminat
ion

approximati
on

addition numerical 
differentiat
ion

_________ is the process of computing the value of the 
definite integral from the set of numerical values  of 
the integrand.

numerical 
differentiati
on

numeric
al 
integrati
on

Simpsons 
rule

Trapezoi
dal rule

numerical 
integration

Numerical integration is the process of computing the 
value of a ________ from a set of   numerical  values 
of the integrand.       

indefinite 
integral 

definite 
integral 

expression equation definite 
integral 

Numerical evaluation of a definite integral is called -----
---

integration differen
tiation

interpolatio
n

triangula
risation

integration

What is the value of h if a=0,b=2 and n=2. 1 2 3 4 1

Integral (f(x) dx)=(h/2) [Sum of the first and last 
ordinates + 2(sum of the remaining ordinates)] is called 
_____

 Constant 
rule

Simpso
ns rule    

Trapezoidal 
 rule

Romberg
s rule 

Trapezoida
l rule

 If the given integral is approximated by the sum of ‘n’ 
trapezoids, then the rule
 is called as ----------------.

Newton's 
method

Trapezo
idal rule

simpson's 
rule

none Trapezoida
l rule



What is the formula for finding the length interval h in 
trapezoidal tule?

h=(b-a)/n h=(b/a)/
n

h=(b*a)/n h=(b+a)/
n

h=(b-a)/n

 The accuracy of the result using the Trapezoidal rule 
can be improved by --------

 Increasing 
the 
interval h

 
Decreas
ing the 
length 

Increasing 
the 
number of 
iterations 

altering 
the 
given 
function

 
Decreasing 
 the length 
of the  The order of error in Trapezoidal rule is -------------. h h^2 h^3 h^4 h^2

 Simpson’s rule is exact for a ----------------- even 
though it was derived for a 
Quadratic.

cubic less 
than 
cubic  

linear quadratic linear

The order of error in Simpson’s rule is ---------- h h^2 h^3 h^4 h^4

For what type of functions, Simpsons rule and direct 
integration will give the same result?

parabola hyperb
ola 

ellipse cardiod parabola 

 Simpson’s rule gives exact result if the entire curve 
y=f(x) itself is a __________.

parabola hyperb
ola 

ellipse cardiod parabola 

To apply Simpsons one third rule the number of 
intervals must be_________.

odd even equally 
spaced 

unequal even 

The end point coordinates y_0 and y_n are included in 
the Simpsons 1/3 rule, so it is called _________   
formula. 

Newton’s open closed Gauss closed 

Simpson’s one-third rule on numerical integration is 
called a --------- formula.

closed open semi closed semi 
opened

closed

The order of error in Simpson’s formula is ________. 1 2 3 4 4

In two point Gaussian quadrature Formula n = 
________.

1 2 3 4 2

In Simpsons 1/3rd rule, the number of ordinates must 
be _________.

 odd even 0 3 odd

2c

M1 2 M1 2

1 2

M1 2 1 2 M M1 2



In three point Gaussian quadrature Formula n = 
________.

1 2 3 4 3

Two point Gaussian quadrature Formula requires only 
_______ functional evaluations and gives a good 
estimate of the value of the integral.   

1 2 3 4 2

_________ formula is based on the concept that the 
accuracy of numerical integration can be improved by 
choosing the sampling wisely , rather than on the basis 
of equal spacing.

Newtons eliminat
ion 

Gauss 
quadrature  

hermite Gauss 
quadrature  

Gauss Quadrature formula is also called as _________. Newton’s Gauss-
Legendr
e 

Gauss-
seidal 

Gauss-
Jordan 

Gauss-
Legendre 

The 2 point Gauss-quadrature is exact for the 
polynomial up to degree _________.

1 2 3 4 3

The 3 point Gauss-quadrature is exact for the 
polynomial up to degree _________.

1 5 3 4 5

Integrating f(x)=5x^4 in the interval [-1,1] using 
Gaussion two point formula gives______.

 1/2 9/5 10/9 5/9 10/9

The modified Eulers method is based on the 
___________ of points

sum multipli
cation 

average subratcti
on

average 

__________ prior values are required to predict the 
next value in Milne’s method

1 2 3 4 4

__________ prior values are required to predict the 
next value in Adams method

1 2 3 4 3

The Eulers method is used only when the slope at point 
____________ in computing is y(n+1)

(x(n), y ) (x, y(n)) (x(n), y(n))    (0, 0) (x(n), y(n))    

09 0 y 09 y 09 0 y 09 0 y09 0 y



The Runge Kutta method agrees with Taylor series 
solution upto the ________ terms      

h^2 h^3 h^4 h^r h^r

Runge Kutta method agree with ________ solution 
upto the terms  h^4

Taylor 
Series

Eulers Milnes Adams   Taylor 
Series

________   method is better than Taylor’s series 
method

Runge Kutta Milnes Adams Eulers Runge 
Kutta

Taylors series method belongs to   ____________     
method   

Single step   multi 
step    

step by step  liminatio
n 

Single step   

If all the n conditions are specified at the initial point 
only then it is called a ______   problem 

Initial value final 
value    

boundary 
value

semi 
defined  

Initial 
value

The problem dy/dx = f(x,y) with the initial condition 
y(x(0)) = y(0)is  ___________problem

initial value    final 
value     

boundary 
value

multistep initial 
value    

The solution of an ODE means finding an explicit 
expression for y, in terms of a ______ number of 
elementary functions of x.

finite infinite positive negative finite 

The solution of an ODE is known as ____________ 
solution

infinite open-
form

closed-form negative 
form

closed-
form

The differential equation of the 2nd order can be solved 
by reducing it to a ____ differential equation   

lower order     higher-
order       

partial  simultan
eous

lower 
order     

The Eulers method is used only when the slope at point 
(x(n), y(n)) in computing is ___________

y(n+1) y(n-1) (dy/dx)(n+1
)

(dy/dx)(n
-1)

y(n+1)

The Eulers method is used only when the slope at point 
____________ in computing is y(n+1)

(x(n),y) (x, y(n))         (x(n), y(n))    (0, 0) (x(n), y(n))    

The modified Eulers method is a ____________ 
method of predictor-corrector type

Self-
correcting

Self-
starting

Self-
evaluating

Self-
predictin
g

Self-
starting

The modified Eulers method has greater accuracy than 
________ method

Taylor’s Picard’s Euler’s Adam’s Taylor’s 

The formula y(n+1) = y(n) + hf(x(n), y(n)) is 
________formula

Euler’s modifie
d 
Euler’s

Picard’s  Taylor’s Euler’s 

Modified Eulers  method is the Runge-kutta method 
of________ order

1st 2nd 3rd  4th 2nd 

Modified Eulers method is same as the ________ 
method of 2nd order

Eulers Taylors Picards Runge 
Kutta 

Runge 
Kutta 



The process used in Eulers method is very slow and to 
obtain reasonable accuracy we   need to take a 
________   value of h  

Smaller Larger  negative Positive Smaller

The process used in Eulers method is very slow and to 
obtain reasonable accuracy we   need to take a smaller 
value of ________     

h h^2 h^3  h^4 h

The ________ formula is given by y(i+1) = y(i) +hf 
(x(i), y(i))

Taylors predicto
r

Corrector Eulers Eulers

The predictor formula and ________ formula are one 
and the same 

Taylors Eulers Modified 
Eulers

Eulers Eulers

The ________ formula is given by y(i+1) = y(i) +  
h/2[f(x(i), y(i)) + f(x(i+1), y(i+1))], i = 1,2,3…..

Taylors predicto
r

Corrector Picards Corrector

The ________ formula is used to predict the value 
y(i+1) of y at   x(i+1)

Predictor Correct
or

Corrector Picards Predictor

The ________ formula is used to improve the value of  
y(i+1)

Predictor Correct
or

Taylors Picards Corrector

In predictor corrector methods, ____ prior values of y 
are needed to evaluate the value of y at  x(i+1)       

1 2 3 4 4

In ________ methods, 4 prior values of y are needed to 
evaluate the value of y at  x(i+1)

Taylor’s predicto
r

Predictor-
corrector    

Euler’s Predictor-
corrector    

In predictor corrector methods 4 prior values of  
________  are needed to evaluate of values of are 
needed to evaluate of value of y at x(i+1)  

y y^2 y^3 y^4 y



   

 



   

 



   

 

 

 

 



   

 



   

 



   

 



   

 

 



   

 



   

 



   

 



   

 



   

 



   

 



   

 



   

 

 



   

 



   

 
 



Questions opt1 opt2 opt3 opt4 Answer

If B^2-4AC = 0, then the differential equation 
is said to be______. parabolic elliptic hyperbolic 

equally 
spaced parabolic

If B^2-4AC > 0, then the differential equation 
is said to be______. parabolic elliptic hyperbolic 

equally 
spaced 

hyperboli
c 

If B^2-4AC < 0, then the differential equation 
is said to be______. parabolic elliptic hyperbolic equally spaced elliptic 
The differential equation is said to be 
parabolic, if B^2-4AC

B^2-4AC > 
0

B^2-4AC 
< 0

B^2-
4AC =0 B^2-4AC

The differential equation is said to be elliptic, if B^2-4AC
B^2-4AC > 
0

B^2-4AC 
< 0

B^2-
4AC =0

B^2-4AC 
< 0

The differential equation is said to be 
hyperbolic, if B^2-4AC

B^2-4AC > 
0

B^2-4AC 
< 0

B^2-
4AC =0

B^2-4AC 
> 0

The differential equation is said to be 
____________ in a region R if B^2 - 4AC >0    
at all points of a region.  Parabolic elliptic hyperbolic rectangular hyperbolic hyperbolic
The differential equation is said to be 
____________ in a region R if B^2 - 4AC < 0    
at all points of a region.  Parabolic elliptic hyperbolic rectangular hyperbolic elliptic

The differential equation is said to be 
____________   in a region R if B^2- 4AC = 0   
at all points  of the region. Parabolic elliptic hyperbolic

rectang
ular 
hyperb
olic Parabolic

One dimensional heat equation is the 
example of _______ equation. Laplace Poisson Parabolic

Hyperb
olic Parabolic

One dimensional wave equation is the 
example of _______ equation. elliptic rectangular hyperbolic Parabolic

Hyperb
olic Hyperbolic

Two dimensional heat equation is the 
example of _______ equation. elliptic rectangular hyperbolic Parabolic

Hyperb
olic elliptic

Poisson equation is an example of ________equation.Parabolic elliptic hyperbolic
rectang
ular elliptic

_____________ equation is an example of 
parabalic equation. One dimensional heatOne dimensional wave Poisson Laplace

One 
dimensio
nal heat

__________equation is  an  example of 
hyperbolic equation. One dimensional heatOne dimensional wave Poisson Laplace

One 
dimensio
nal wave 

_________ equation is an example of elliptic equation.One dimensional heatOne dimensional wave Poisson Laplace Poisson
________ equation is the example of elliptic  
equation. One dimensional heatOne dimensional wave Poisson Laplace Laplace

(f(x+h)-f(x))/h  is known as the _________ difference quotientaverage derivative f(x)

differenc
e 
quotient

The  equation del^2(u) = 0  is   _______ 
equation.  Laplace Poisson Heat Wave Laplace



[x f(xx)+yf(yy)]=0 x>0, y>0 is ____ type of 
equation. elliptic Poisson Parabolic Hyperbolicelliptic
[f(xx)-2f(yy)]=0, x>0, y>0 is ____ type of 
equation. elliptic Poisson Parabolic

Hyperb
olic Hyperbolic

The equation del^ 2(u) = f(x, y) is known 
as_________ equation  Poisson Newtons Jacobis

Gaussia
n Poisson

____________ process is used to solve two 
dimensional heat equations Explicit

Bender-
Schmidt

Crank-
Nicolson

Liebma
nns 
iteratio
n 

Liebman
ns 
iteration 

One dimensional heat equation can be solved 
using  _______ method. Newtons

Crank-
Nicolson

eliminatio
n Liebmanns iteration 

Crank-
Nicolson

One dimensional heat equation can be solved 
using  _______ method. Newtons

Bender-
Schmidt

eliminatio
n

Liebma
nns 
iteratio
n 

Bender-
Schmidt

One dimensional wave equationcan be solved 
using  _______ method. Explicit Bender-SchmidtCrank-NicolsonLiebmanns iteration Explicit

Poisson equationcan be solved using  _______ method.Explicit Bender-SchmidtCrank-NicolsonLiebmanns iteration 

Liebman
ns 
iteration 

Liebmanns iteration process is used to solve ---
-------- equations. One dimensional waveOne dimensional heattwo dimensional heatParabolic

two 
dimensio
nal heat

____________ equation can be solved using  
Crank-Nicolson method. One dimensional wavetwo dimensional heatOne dimensional heatPoisson

One 
dimensio
nal heat

_________equation can be solved using 
Bender-Schmidt method. One dimensional wavetwo dimensional heatOne dimensional heat Poisson

One 
dimensio
nal heat 

__________ equation can be solved using 
Explicit method. two dimensional heatOne dimensional heatOne dimensional wavePoisson

One 
dimensio
nal wave

_________ equation can be solved using Liebmanns iteration method.Parabolic One dimensional heatPoisson One dimensional wavePoisson
Crank-Nicolson method is also called as ______ method.Explicit Implicit eliminationreductionImplicit
Bender-Schmidt  method is also called as ______ method. Explicit Implicit eliminationreductionExplicit

Liebmanns iteration process is used to solve ---
-------- equations. Parabolic elliptic hyperbolic

rectang
ular 
hyperb
olic elliptic

____________ equations can be solved using  
Crank-Nicolson method. Parabolic elliptic hyperbolic

rectang
ular 
hyperb
olic Parabolic



_________equations can be solved using 
Bender-Schmidt method. Parabolic elliptic hyperbolic

rectang
ular 
hyperb
olic Parabolic

__________ equatios can be solved using 
Explicit method. Parabolic elliptic hyperbolic

rectang
ular 
hyperb
olic 

hyperboli
c

Diagonal five point formula and standard five point formula are used for solving _____ equations.Parabolic elliptic hyperbolic

rectang
ular 
hyperb
olic elliptic

The number of conditions required to solve 
Laplace equation is_____. 4 3 2 1 4
The number of conditions required to solve 
Poisson equation is_____. 4 3 2 1 4

The number of conditions required to solve 
One dimensional heat equation is_____. 4 3 2 1 3

The number of conditions required to solve  
one dimensional wave  equation is_____. 4 3 2 1 4
The error in solving Poisson equation by 
____________ methods is of order h^2. Difference  iteration elimination interpolation Difference
The error in solving _________equation by 
difference method is of order h^2. Newton’s Jacobi’s Poisson Gaussian Poisson

The error in solving Poisson’s equation by 
difference methods is of order_______.       h  h^2    h^3       h^4  h^2

The ____________ formula is used to 
complete the improved value of u, Newtons elimination

Liebmann
s iteration 

reducti
on

Liebman
ns 
iteration 

The value of u can be improved by  
____________ process Newtons elimination

Liebmann
s iteration 

reducti
on

Liebman
ns 

The value of u is obtained at any 
____________ lattice points which is the 
arithmetic  mean of the values of u at 4 lattice 
points near to it  interior exterior positive  negative  interior

The value of ui,j in the difference equation are 
defined only at the  _________points  equal  unequal apex lattice lattice 

The points of intersection of these families of 
lines are called ________ points  equal  unequal apex lattice lattice If  (ka)/h < 1,  it is stable but the accuracy of 
the solution decrease with the increasing    
value of   ____________ k a (ka)/h k/h (ka)/h

h



If   (ka)/h < 1, it is stable but the accuracy of 
the solution decrease with the increasing 
value of   ____________ k a k/h (ka)/h (ka)/h
Schmidt method belongs to ____________ 
type explicit implicit elliptic hyperbolic explicit
The value of ui,j is the average of its value at 
the  ________ neighbouring diagonal mesh 
points           2 3 4 5 4
The value of u(i,j) is the  __________of its 
values at the four neighbouring diagonal 
mesh points  sum difference average product average
The value of u(i,j) is the average of its values 
at the four neighbouring ____________    
mesh points           Square rectangle diagonal column diagonal

The mesh points are also called ____________ grid point starting pointEnding pointbisection grid point
The points of intersection of the dividing lines 
are called ____________ bisection mesh points  vertex end point mesh points

h



hyperbolic

Hyperbolic



Hyperbolic



Difference



mesh points
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UNIT V 

 

LAPLACE TRANSFORMS 

 

 

1.1 Introduction 

The knowledge of Laplace transforms has in recent years become an 

essential part of mathematical background required of engineers and scientists. 

This is because the transform methods provide an easy and effective means for 

the solution of many problems arising in engineering. 

     This subject originated from the operational methods applied by the 

English engineer Oliver Heaviside (1850-1925) to problems in electrical 

engineering. Unfortunately, Heaviside’s treatment was unsystematic and lacked 

rigour, which was placed on sound mathematical footing by Bromwich and 

Carson during 1916-17. It was found that Heaviside’s operational calculus is best 

introduced by means of a particular type of definite integrals called Laplace 

transforms(Pierre Simon Marquis De Laplace, French Mathematician (1749-

1827) used such transforms much earlier in 1799, while developing the theory of 

probability). 

Laplace transform is useful since 

(i) Particular solution is obtained without first determining the general 

solution. 

(ii) non homogeneous equation are solved without obtaining the 

complementary integral. 

(iii) Laplace transform is applicable not only to continuous functions 

but also to piecewise continuous functions, complicated periodic 

functions, step functions and impulse functions. 

Before the advent of  calculators and computers, logarithms were 

extensively used to replace multiplication (or division) of two large numbers by 

addition (or subtraction) of two numbers. The crucial idea which made the 

Laplace transform, a very powerful technique is that it replaces operations of 

calculus by operations of algebra. 

Laplace transformation when applied to the initial value problem 

consisting of a single or a system of linear, ordinary differential equations, 

converts it into a single or a system of linear, algebraic equations in terms of the 

Laplace transform of the dependent variable. This equation is called the 

subsidiary equation. The initial conditions are automatically absorbed during the 

derivation of this algebraic equation. The solution of this algebraic equation gives 

the expression for the Laplace transform of the dependent variable. Taking the 

inverse Laplace transformation, we find the solution of the original initial value 

problem. 

 In the case of partial differential equations in terms of two independent 

variables, the Laplace transformation is applied with respect to one of the 

variables, usually the variable t(time). The resulting ordinary differential equation 

in terms of the second variable is solved by the usual methods of solving ordinary 
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differential equations. The inverse laplace transform of this solution gives the 

solution of the given partial differential equation. 

 One of the important applications of Laplace transformation is the solution 

of the mathematical models of physical systems in which the right hand side of 

the differential equation, representing the driving force is discontinuous or acts for 

a short time only or is a periodic function (which is not necessarily a since or a 

cosine function). 

 

1.2 Laplace transform 

Let  tf  be a given function defined for all 0t . Laplace transform 

of  tf denoted by   tfL  or Simply  fL is defined as 

      sFdttfetfL st  




0
                                                                         (1) 

L  is known as Laplace transform operator. The original given function  tf  

known as determining function depends on ,t  while the new function to be 

determined  ,sF called as generating function, depends only on s  (because the 

improper integral on the R.H.S of (1) is integrated with respect to t ). 

        sF  in (1) is known as the Laplace transform of  tf . Equation (1) is known 

as direct transform, or simply transform in which  tf  is given and  sF  is to be 

determined. 

        Thus Laplce transform transforms one class of complicated functions  tf to 

produce another class of simpler functions  sF . 

 

1.3 Applications 

Laplace transform is very useful in obtaining solution of linear differential 

equations, both ordinary and partial, solution of system of simultaneous 

differential equations, solution of integral equations, solution of linear difference 

equations and in the evaluation of definite integrals. 

 

1.4 Sufficient conditions for the existence of Laplace transform of  tf  

The Laplace transform of  tf  exists, when the following sufficient conditions 

are satisfied. 

 

Piece-wise or sectional continuity 

A function  xf  is called 

sectionally continuous or piece-wise 

continuous in any interval  ba,  if it is 

continuous and has finite left and right 

hand limits in every subinterval  11,ba  

as shown in the graph of the 

function  xf . 

 

                                                                                            Fig. 1                                                                                                                                                                
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Functions of exponential order 

 A function  xf is said to be of exponential order ''a  as x  

if  


xfeLt ax

x
finite quantity. 

 

Example: 

(a) Since 
 tt e

t
Lt

3

2

finite,   2ttf   is of exponential order say3  . 

(b) Since 
 t

t

t e

e
Lt



2

not finite,  
2tetf  is not of exponential order. 

 

1.5 Laplace transforms of some elementary functions. 

1.    0,
1

1  s
s

L  

2.   ,
!
1


n

n

s

n
tL when ...........2,1,0n  

      or    
,

1
1




n

n

s

n
tL when ........2,1,0n  

3.    as
as

eL ta 


 ,
1

 

4.    0,sin
22




 s
as

a
atL  

5.    0,cos
22




 s
as

s
atL  

6.    as
as

a
hatL 


 ,sin

22
 

7.    as
as

s
hatL 


 ,cos

22
 

Proof 

1.     dttfetfL st





0

 

  




























0
00

11
11

st

st
st

ess

e
dteL  

                                      
ss

1
10

1
  

 Hence  
s

L
1

1   

In general   ,
s

K
kL  where 0s  and k  is a constant. 
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2.    dttfetL nstn





0

 

Putting xst  or
s

x
t   or 

s

dx
dt   

       Thus we have   













0 s

dx

s

x
etL

n

xn
 

   i.e.,   







0`1

1
dxxe

s
tL nx

n

n
 

   or  
`1

!



n

n

s

n
tL [since   




0
1 dxxen nx and   !1 nn  ] 

3.   dteeeL tatsat





0

 

                dte atts





0

 

           
 

 

 







 











0
0 as

e
dte

tas
tas

  

  
 



 











0

11
taseas

 

  
 

 
asas 





1

10
1

 

4.   dtateatL st sinsin
0


  

    

















0

22
cossin ataats

as

e st

 

              
22 as

a


  

(or) 

              






 




i

ee
LatL

atiati

2
sin .  (as 

i

ee
at

atiati

2
sin


 ) 

       atiati eeL
i


2

1
 

         atiati eLeL
i


2

1
 

     
2222

2

2

111

2

1

as

a

as

ia

iiasiasi 

























  

5.   



0

cos.cos dtateatL st  

     

















0

22
sincos ataats

as

e st
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     s
as





22

1
 

 
22

cos
as

s
atL


  

6.   



0

sinsin dthatehatL st  

     dt
ee

e
atat

st .
20













 
  

        





  







002

1
dtedte tastas  

     














asas

11

2

1
 

  
22

sin
as

a
hatL


  

7.   



0

coscos dthatehatL st  

      












 


0
.

2
dt

ee
e

atat
st  

`       




  







002

1
dteedtee atstatst  

         





  







002

1
dtedte tastas  

      
2222

2

2

111

2

1

as

s

as

s

asas 
























  

  
22

cos
as

s
hatL


 . 

 

1.6 Laplace transforms of some special functions 

 

Heaviside’s unit step function 

The function 

 









0,1

,0

awhereatif

atif
atu  

is called Heaviside’s unit step function and 

is denoted by  tua  or  atu  . 

In particular when ,0a  

 

                                                          Fig. 2 

 

 









01

00

tif

tif
tu
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Multiplying a given function  tf with the unit step function  ,atu  several 

effects can be produced as shown in the following figure. 

 

                                                           Fig. 3                                                 

  t4sintf                                    3tutf                                   3tu3tf   

Given function                Switching off and on             Shifted to the right by  3  

                                                                                                       units 

 

Unit impulse function (or Dirac’s Delta function) 

 When a large force acts for a short time, then the product of the force and 

the time is called impulse in Fluid Mechanics. 

Impulse of a forces  tf in the interval 

 aa,  

 dttf
a

a


 . 

Now define the function 

 






















atfor

atafor

atfor

atf

0

1

0

 

This can also be represented interms of 

two unit step functions as follows.                                      Fig. 4                                       

       


 atuatuatf
1

                                   

Note that 

   
 





 



a

a a

a

dtdtatf 10
1

0
00

 

Thus the Impulse I  is1 

Taking Laplace transform 

        


 atuatuLatfL
1
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            saas ee
s

 



1  

s

e
e

S
as







 1

 

Dirac delta function (or unit impulse function) denoted by  

 at  is defined as the limit of  atf 
as 0 .                                                 

i.e.,    atfLtat  
0

 . 

 

Laplace transform of unit step function 

    dttuetuL a

st

a 



0

 

    dttuedttue
a

a

st

a

st







 
0

 

 



0

dte st (by the definition of  tua ) 

,
s

e

s

e as

a

st 














 assuming that 0s  

In particular     1
1

0 L
s

tuL  . 

 

Laplace transform of Dirac delta function 

     atfLLtatL  
0

  

      
 

s

e
eLt

s
as











1

0
       

   aseatL   . 

 

1.7 Properties of Laplace transforms 

1. Linearity Property 

If cba ,, be any constants and hgf ,,  any functions of t , then 

               thLctgLbtfLathctbgtfaL   

 

L.H.S 

             dttchtbgtfaethctbgtfaL st




 
0

 

                dtthecdttgebdttfea ststst

 



 

 
00 0

 

                thLctgLbtfLa  . 

      This result can easily be generalized. 

      Because of the above property of ,L it is called a linear operator. 

 

2. First shifting property (or) (Translation on the s-axis or shifting on the  

s-axis) 

If     ,sFtfL  then     asFtfeL at  . 
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            L.H.S 

    dttfeetfeL atstat





0

 

                 



0

dttfe tas  

  i.e.,     asFtfeL at   (since    )sFtfL                                          

  similarly we can prove 

     ,asFtfeL at   

                                                                                                        Fig. 5 

                             Translation on the s -axis 

                                                                                        (first shifting theorem) 

                                                                                                       

3.    Second Shifting Property (or Translation on the t axis) 

        If     ,sFtfL  then       sFeatuatfL as ..   

        L.H.S 

          dtatuatfeatuatfL st .
0


   

             dtatfedtatfe
a

st
a

st .1.0
0 


   

       dtatfe
a

st




   

         



0

dxxfe axs . (by putting dxdtxat  , .       

                   when 0,  xat  when  xt , ) 

                                           dxxfee sxsa





0

 

                          dttfee stas





0

 by changing the dummy variable x  as t . 

        i.e.,       sFeatuatfL as . 

 

      4. Change of scale property 

      If     ,sFtfL  then    









a

s
F

a
atfL

1
 

      L.H.S 

         dtatfeatfL st .
0


  

      Put uat  then
a

du
dt   

            
a

du
ufe a

su


 


0

 

             duufe
a

duufe
a

u
a

s

asu .
1

.
1

0

.

0 
 

  









a

s
F

a

1
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Note 

Application of first shifting property leads to the following results: 

1)    
s

L
as

eL at 1
1,

1



   

2)  
 

 
11

!
,

!






n

n

n

nat

s

n
tL

as

n
teL   

3)  
 

 
2222

sin,sin
bs

b
btL

bas

b
bteL at





   

4)  
 

 
2222

cos,cos
bs

s
btL

bas

as
bteL at







   

5)  
 

 
2222

sinh,sinh
bs

b
btL

bas

b
bteL at





   

6)  
 

 
2222

cosh,cosh
bs

s
btL

bas

as
bteL at







   

where in each case as  . 

 

Periodic function 

 A function  tf  is said to be a periodic function of period 0T if 

       nTtfTtfTtftf  ............2 . 

Examples: tsin and tcos are periodic functions of period 2 . 

 Geometrically, this implies that the graph of the function  tfy  repeats 

itself after every interval of lengthT . 

The following are some examples of periodic functions. 

 

(i) Triangular wave 

      

















ata
a

ta

at
a

t

tf

2,
2

0,

. 

     tfatfTtf  2 . 

                                                                 Fig. 6 

                                                                    Triangular wave                                        

(ii)  Square wave 

     









atak

atk
tf

2,

0,
 

        tfatfTtf  2  

 

 

 

 

                                                                           Fig. 7  Square wave                                                            
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(iii)  Square wave 

   









ata

atk
tf

2,0

0,
 

       tfatfTtf  2  

 

 

 

 

 

                                                                        Fig. 8   Square Wave 

 

(iv) Sawtooth wave 

      atttf  0, . 

        tfatfTtf  . 

 

 

 

 

                           Fig. 9  Sawtooth wave 

 

1.8 Laplace transform of periodic function: 

If  tf  is a periodic function with period ,T  i.e.,    ,tfTtf   then 

    dttfe
e

tfL
T

O

st

ST 





1

1
.  

 

Proof  

We have     dttfetfL st





0

. 

           ...........
3

2

2

0
 

 dttfedttfedttfe
T

T

st
T

T

st
T

st
 

In the second integral put ,Tut   in the third integral put Tut 2  and so on. 

Then 

             ..........2
0

2

00
 

 duTufeduTufedttfetfL
T

Tus
T

Tus
T

st . 

                           ..........
0

2

00
 

 duufeeduufeedttfe
T

stST
T

stST
T

st  

                                                          (since       ................2TufTufuf  ) 

                ..........
0

2

00
 

 dttfeedttfeedttfe
T

suST
T

stST
T

st  

             dttfeee
T

stSTST


 

0

2 .........1  

    dttfe
e

tfL
T

st

ST 





01

1
. 
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1.9 Laplace Transform of Derivatives 

 If     ,sFtfL  then       0' fssFtfL  . 

 

Proof  

    dttfetfL st .''
0


  

                   dttfestfe stst




 
0

0
. (using integration by parts) 

Now assuming  tf to be such that   0


tfeLt st

t
 

Thus       dttfesftfL st





0

0'  

i.e.,       0' fsFstfL   

Similarly,         0'0'' 2 fsfsFstfL   

            0........0''0'0 1321   nnnnnn ffsfsfstfLstfL . 

 

1.10 Laplace Transform of  tft
n . (Multiplication by

n
t ) 

If     ,sFtfL  then        ,1 sF
ds

d
tftL

n

n
nn  where ...........2,1n  

 

Proof 

      dttfesFtfL st





0

                                                                         (1)                                                                                        

Differentiating (1) with respect to ,s we get 

        dttfe
s

dttfe
ds

d
sF

ds

d stst 




 










00
 

           





 
00

.dttftedttfte stst  

    tftL   or        sF
ds

d
tftL

1
1.   

Similarly        sF
ds

d
tftL

2

2
22 .1  

       sF
ds

d
tftL

3

3
33 .1  

………………………………. 

……... …………..................... 

………………………………. 

       sF
ds

d
tftL

n

n
nn .1.  . 
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1.11 Laplace Transform of  tf
t

1
 (Division by t ) 

If     sFtfL   then    










s

dssFtf
t

L ,.
1

provided  









tf

t
Lt
t

1

0
exists. 

 

Proof 

      dttfesFtfL st





0

 

Integrating on both sides with respect to ,s we get, 

  dtdstfedssF
s

st .)(
00  

 








   

                   dtdsetf st

s


 

 
0

. (changing the order of integration) 

        dtdsetf
s

st .
0 



 






 

       
   




















 









t

tf
Ldt

t

tf
edt

t

e
tf st

s

st

00
 

Hence    dssFtf
t

L
s

.
1












. 

 

 In many problems of electrical engineering, we encounter integro-

differential equations. Consider a series electric circuit. Using the kirchoff’s 

second law, we obtain that the flow of current satisfies the integro-differential 

equation. 

   tEdi
c

Ri
dt

di
L

t

 cos
1

0
0

   

Many other integro-differential equations arise in the theory of electrical circuits. 

If Laplace transform method is to be applied, we need the formula for the Laplace 

transform of an integral. Such a formula is presented as follows. 

 

 

 

 

 

 

 

 

 

 

 

                                           Fig. 10   Series electric circuit 

          C : Capacitance, E : impressed voltage 

                                         L : inductance, R : resistance 
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1.12 Laplace Transform of integrals 

If     ,sFtfL   then    sF
s

dttfL
t 1

0







 . 

 

Proof 

Let    
t

dttft
0

 then    tft ' and   00    

We know that 

       0'   tLstL  

    tLs   (since   00  ) 

or       tL
s

tL '
1

   

subsisting the values of  t and  ,' t  we get 

    tfL
s

dttfL
t 1

0






  

i.e.,    sF
s

dttfL
t 1

0






 . 

 

Example 1 

Find the Laplace transform of btat ee  . 

 

Solution 

     btatbtat eLeLeeL   

       
  bsas

ba

bsas 










11
.                                                       Ans. 

 

Example 2 

Find the Laplace transform of ttett t 2cos35sin2423 334   . 

 

Solution 

 ttettL t 2cos35sin2423 334    

          tLtLeLtLtL t 2cos35sin2423 334    

 
222245 2

.3
5

5
.2

3

1
.4

!3
.2

!4
.3










s

s

ssss
.                                  Ans. 

 

Example 3 

Find the Laplace transform of   tt ettett 2545 4cos46sin3423   . 

 

Solution 

 ttettL t 4cos46sin3423 545  
 

          tLtLeLtLtL t 4cos46sin3423 545  
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16

.4
36

6
.3

5

1
.4

!4
.2

!5
.3

2256 








s

s

ssss
 

Applying first shifting theorem, 

  tt ettettL 2545 4cos46sin3423    

 
16

4

36

18

5

448360
2256 








s

s

ssss
 with s replaced by 2s  

 
       

 
  162

24

362

18

3

4

2

48

2

360
2256

















s

s

ssss
.                Ans. 

 

Example 4 

Find the Laplace transform of   (i)  tte t 5sin35cos23   (ii) te t 22 cos                   

(iii) tte t cos2sin4 . 

 

Solution 

(i)       teLteLtteL ttt 5sin35cos25sin35cos2 333    

           
    346

92

53

5
.3

53

3
.2

22222 












ss

s

ss

s
 

(ii) Since    











4

1

2

1
2cos1

2

1
cos

2

2

s

s

s
tLtL  

     By shifting property, we get 

   
  
















42

2

2

1

2

1
cos

2

22

s

s

s
teL t  

(iii) Since    ttLttL sin3sin
2

1
cos2sin   

           














2222 1

1

3

3

2

1

ss
 

    By shifting property, we obtain 

   
    














14

1

94

3

2

1
cos2sin

22

4

ss
tteL t .                               Ans. 

 

Example 5 

Find the Laplace transform of 

 
















2,0

21,

10,1

t

tt

t

tf  

 

Solution 

    dtedttedtetfL ststst .0..1.
2

2

1

1

0 
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2

1

2

1

0

. 

























s

e

s

e
t

s

e ststst

 

 



































22

2221

s

e

s

e

s

e

s

e

s

e sssss

 

 
2

2

2

221

s

e

s

e

s

e

s

sss 

 .                                                                       Ans. 

 

Example 6 

Find the Laplce transform of att cos2 . 

 

Solution 

 
22

cos
as

s
atL


  

    











222

2
22 1cos

as

s

ds

d
attL  

       
   

    

































222

22

222

22 21.

as

sa

ds

d

as

ssas

ds

d
 

       
        

 422

2222222 22.2

as

sassasas




  

       
 322

3223 4422

as

ssasas




  

       
 
 322

32 32

as

ass




 .                                                                                 Ans. 

 

Example 7 

Obtain the Laplce transform of tet t 4sin.2 . 

 

Solution 

   
  161

4
4sin.,

16

4
4sin

22






s

teL
s

tL t
 

 
 172

4
4sin

2 




ssds

d
tetL t

 

  
 

 22 172

224






ss

s
 

 
 22

2

172

22
44sin






ss

s

ds

d
tetL t
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 42

222

172

221722222.172
4






ss

ssssss
 

           
 

 32

22

172

81683442
4






ss

ssss
 

           
 
 

 
 32

2

32

2

172

13638

172

26126
4











ss

ss

ss

ss
.                               Ans. 

 

Example 8 

Find the Laplace transform of
t

t2sin
. 

 

Solution 

Here 








 t

t
Lt
t

2sin

0
exists. 

 
4

2
2sin

2 


s
tL      

























 

s
s

s
ds

st

t
L

2
tan

2

1
.2.

4

22sin 1

2
 

         
2

cot
2

tan
22

tantan 1111 sss  










.                             Ans. 

 

Example 9 

Find the Laplace transform of  32 tut . 

 

Solution 

        393633.
22  tutttut  

                      393.3633
2

 tututtut  

            393363.33.
22  tuLtutLtutLtutL  

         







 

sss
e s 962

23

3
.                                                                      Ans. 

 

Example 10 

Evaluate   (i) 









 dt

t

t
eL

t
t

0

sin
 

(ii)  











dt
t

te
tL

t
t

0

sin
 

(iii)      
t t t

dtdtdtttL
0 0 0

sin . 
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Solution 

We know that  
1

1
sin

2 


s
tL  




 












0

11

2
cottan

21

1sin
ssds

st

t
L


 

s
s

dt
t

t
L

t
1

0
cot

1sin 








   

Thus by shifting property,  1cot
1

1sin 1

0




















 

 s
s

dt
t

t
eL

t
t . 

(ii)  Since s
t

t
L 1cot

sin 







 

      1cot
sin 1 








  s

t

t
eL t

 

     and  1cot
1sin 1

0








 

 s
s

dt
t

t
eL

t
t

 

     Hence 
 







 













 s

s

ds

d
dt

t

t
etL

t
t 1cotsin

.
1

0
 

    
 

 

2

1

2
1cot

11

1

s

s
s

s 
















 

    
   

 22

1cot22
22

12








sss

ssss
. 

(iii)  Since  
1

1
sin

2 


s
tL  

        
 222

1

2

1

1
sin







s

s

sds

d
ttL  

Thus     
t t t

dtdtdtttL
0 0 0

.sin . 

  
   2222233

1

2

1

2
.

1
sin

1







sss

s

s
ttL

s
.                                          Ans. 

 

Example 11 

Find 






 

t

te
L

at 6cos
 and  tetL t sin.  .  [AU APR 2011, AU NOV 2011]. 

 

Solution 

Consider 






 

 t

te
L

at

t

6cos

0
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Since the limit exists, we can find 






 

t

te
L

at 6cos
 

 dsteL
t

te
L

s

at
at

.6cos
6cos











 
  

        ds
s

s
ds

as
.

36
.

1

0 20 






  

           












s

sas 36log
2

1
log 2  

        
 




















s
s

as
212 36

log  

        













































s
s

s

a

21

2

36
1

1

log  

         
  




















 


212 36
log1log

s

s

s

as
 

         
 




















as

s
212 36

log . 

(ii)  To find  tetL t sin.   

       We know that  
1

1
sin

2 


s
tL  

         
  11

1
sin

2


 

s
teL t

 

         









 

22

1
sin.

2 ssds

d
tetL t

 

        
 

 
 

   3422 1

2

1

12

22

22


























ss

s

ss

s
.                          Ans. 

 

Example 12 

Find 






  

t

ee
L

btat

   [AU MAY 2012]. 

 

Solution 

 
bsas

eeL btat





  11
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Now ds
bsast

ee
L

s

btat



























  11
 

                sbsas loglog  

           























































s
s

b

s

a

bs

as

1

1

loglog  

  











 

as

bs
eeL btat log .                                                                           Ans. 

 

Example 13 

Evaluate 




0

2 cos dttte t . [AU MAY 2012] 

 

Solution 

 dtttedttet tt







 
0

2

0

2 coscos  

     ttL cos  and here 2s  

       tL
ds

d
cos1  

                 











1
1

2s

s

ds

d
 

    
 

    

































22

2

22

2

1

1

1

21

s

s

s

sss
 

    
 22

2

1

1






s

s
.                                                                               Ans. 

 

Example 14 

Find the Laplace transform of tte t 2sin2  (or)  tteL t 2sin2
.  [KU NOV 2011] 

 

Solution 

We know that  
4

2
2sin

2 


s
tL  

 
  84

2

42

2
2sin

22

2





 

sss
teL t

 

Then   











84

2
2sin

2

2

ssds

d
tetL t
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22 84

422

ss

s
 

          
 

 22 84

24






ss

s
.                                                                 Ans. 

 

Example 15 

Find the Laplace transform of the function (Half wave rectifier) 

 





























2
0

0sin

tfor

tfort

tf . 

 

Solution 

Since  tf  is a periodic function with 

period ,2   we have 

     dttfe

e

tfL st

s 






 







2

02

1

1

  




 



  




 







0

2

2
0sin

1

1
dtedtte

e

stst

s
             Fig. 11 

dtte

e

st

s







sin

1

1

02 






  

 








0

222
cotcossin

1

1


















ts
s

e

e

st

s
       




























222

1

1



 





 s

e

e

s

s
                                                     

  




































s

s

es

e

2

22 1

1

                                                             

  


















s

es 122

.                                                               Ans. 
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Example 16 

Find the transform of the function defined by(triangular wave function) 

 









atata

att
tf

22

0
 

where    tfatf  2   [AU OCT 2009,  

AU DEC 2009, APR 2011, KU NOV 2011]. 

 

Solution 

The given function is periodic of period a2 .  

    dttfe
e

tfL
T

st

ST 





01

1
 

   dttfe
e

a
st

as 





2

021

1
 

   




 


 




dttaedtte

e

a

a

st
a

st

as
.2.

1

1 2

02
                 Fig. 12 

   











































a

a

stst
a

stst

as s

e

s

e
ta

s

e

s

e
t

e

2

2

0

22
2.

1

1
 

  










 



asasasasas

as
e

s
e

s

a
e

ss
e

s
e

s

a

e 2

2

2222

1111

1

1
                            

             asas

as
ee

es

2

22
21

1

1
.

1 





  

  
 

  
 
 as

as

asas

as

e

e

see

e

s 

















1

11

11

11
2

2

2
 

Multiply and divide by 2

as

e  

   


















2
tan

11
2

22

22

2

as
h

s
ee

ee

s
tfL

asas

asas

.                                                       Ans. 

 

Example 17 

Find the Laplace transform of the rectangular wave given by 

 









btb

bt
tf

2,1

0,1
 with    tfbtf  2 . [AU NOV 2010, AU 

NOV 2011] 

 

Solution 

The given function is periodic of period b2  

Now     dttfe
e

tfL
T

st

ST 





01

1
 

 dttfe
e

b
st

bs 





2

021

1
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b

b

st
b

st

bs
dtedte

e

2

02
11

1

1
                      










































b

b

st
b

st

bs s

e

s

e

e

2

0

2
1

1

1
                  

   










 



bsbsbs

bs
ee

s
e

se

2

2

1
1

1

1

1
                          

 12
1

1

1 2

2



 



bsbs

bs
ee

se
                                                             

 
  bsbs

bs

ees

e









11

1
2

                                                       Fig. 13              

                    
 
 bs

bs

e

e

s 








1

11
 

Multiply and divide by 2

bs

e  

Then    


















2
tan

11

22

22 bs
h

s
ee

ee

s
tfL

bsbs

bsbs

.                                                     Ans. 

 

Example 18 

Find the Laplace transform of the periodic function defined by the sawtooth wave. 

     tfatfatttf  ,0, . 

 

Solution 

    dttfe
e

tfL
T

st

sT 





01

1
 

 dtet
e

a
st

as 





01

1
.  (since    tfatf  ) 

 

a

st

as
e

ss

t

e
0

2

1

1

1



















 


 

 



















 

 22

11

1

1

s
e

ss

a

e

as

as
 

  










 



asas

as
e

s
e

s

a

e
1

1

1

1
2

 

 
 

0,
1

1
2









s
es

ae

s as

as

.                                                                         Ans. 

 

1.13 Inverse Laplace transform 

 If     sFtfL  then  tf  is known as the inverse Laplace transform or 

inverse transform or simply inverse of  sF  and is denoted by   sFL 1 . 
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Thus     sFLtf 1 .                                                                                          (1) 
1L  is known as the inverse laplace transform operator and is such that 

111   LLLL . 

In,    sF,1  is given (known) and  tf  is to be determined. 

 

Note 

Inverse laplace transform of  sF  need not exist for all  sF . 

 

Some important formulae 

1. 1
11 








s
L  

2. 
 

...........3,2,1,
!1

1 1
1 













 n
n

t

s
L

n

n
 

3. ate
as

L 










 11
 

4. hat
as

s
L cos

22

1 











 

5. hat
aas

L sin
11

22

1 











 

6. at
aas

L sin
11

22

1 











 

7. at
as

s
L cos

22

1 











 

8.    tfeasFL at1  

9. 
 

bte
bbas

L at sin
11

22

1 















  

10. 
 

bte
bas

as
L at cos

22

1 















  

11. 
 

bte
bbas

L at sinh
11

22

1 















  

12. 
 

bte
bas

as
L at cosh

22

1 















  

13. 
 

 atatat
aas

L cossin
2

11
3222

1 
















  

14. 
 

att
aas

s
L sin

2

1
222

1 
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15. 
 

att
as

as
L cos

222

22
1 

















  

16. 
 

 atatat
aas

s
L cossin

2

1
222

2
1 

















  

17.    tftsF
ds

d
L 








1

 

18. Linearity property 

                     sGLbsFaLsGbsaFL 111    

      19. Multiplication by s  

              tftf
dt

d
sFsL 0.1 

 

20. Division by s  

       
 

    dttfdtsFL
s

sF
L

tt

 






 

00

11 .  

21. First shifting property 

 If     ,1 tfsFL  then      sFLeasFL at 11    

22. Second shifting property 

       atuatfsFeL as 1  

23. Inverse Laplace transform of integrals 

  
 

  sFL
tt

tf
dssFL

s

11 1
. 


 






  

                  (or) 

    




 


 dssFLtsFL

s
.11 . 

 

Example 1 

Find
  






























2

2
1

1

1
log

s

s
L . 

 

Solution 

Let  
  





























 

2

2
1

1

1
log

s

s
Ltf  

      22 1log1log  sstfL  

Then        22 1log1log.  ss
ds

d
tftL  

  
 

    1
2

1

2

1

12

1

2
222 





















s

s

ss

s

s

s
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1
2

1

2
2

11

s

s
L

s
Ltft  

    tet cos2.2   

   te
t

tf t cos
2

 .                                                                                       Ans. 

 

Example 2 

Find the inverse Laplace transforms of the following 

(i) 












1

1
log

s

s
  (ii) 

 













1

1
log

2

ss

s
 (iii) 









2
cot 1 s

  (iv) 








2

1 2
tan

s
. [KU NOV 2011] 

 

Solution 

(i) If   











 

1

1
log1

s

s
Ltf  

                       We know that    







  sF

ds

d
Ltft 1.  

                       

     






































  1log1log

1

1
log. 111 s

ds

d
Ls

ds

d
L

s

s

ds

d
Ltft  

                                  

htee
s

L
s

L tt sin2
1

1

1

1 11 




















 

 

                       Thus   ht
t

tf sin2
1

 . 

(ii) If  
 













 

1

1
log

2
1

ss

s
Ltf  

            
  




















 

1

1
log.

2
1

ss

s

ds

d
Ltft  

            


























  1loglog1log 1121 s
ds

d
Ls

ds

d
Ls

ds

d
L  

         





























 

1

11

1

2 11

2

1

s
L

s
L

s

s
L  

         
tet  1cos2  

             Thus    te
t

tf t cos21
1

 
. 
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(iii) If   







 

2
cot 11 s

Ltf  

   
















 

2
cot. 11 s

ds

d
Ltft  

            t
s

L 2sin
2

2
22

1 









 

 

              Thus   t
t

tf 2sin
1

 . 

(iv) If   







 

2

11 2
tan

s
Ltf  

   



























 

4

42
tan.

4

1

2

11

s

s
L

sds

d
Ltft               

                       
      
























 

ssss

s
L

ss

s
L

2222

4

22

4
22

1

222

1  

             

    

























 

11

1

11

1

22

1

22

1
22

1

22

1

ss
L

ssss
L

thttete tt sinsin2sinsin   .                                                          Ans. 

 

Example 3 

Obtain  inverse Laplace transform of 

(i) 
259

52
2 



s

s
     (ii) 

206

2
2 



s

s
       (iii) 

92

3

s

s
      (iv) 

 ass 

1
        (v) 

 9

3
2

3





ss

s
          

(vi) 
 5

2

1

s
    (vii) 

1342  ss

s
    (viii) 

169

1
2  ss

   (ix) 
 3



s

e s

   (x) 
 31



s

e s

. 

 

Solution 

(i) 
























 

259

5

259

2

259

52
22

1

2

1

ss

s
L

s

s
L  

             









































 

9

25
9

5

9

25
9

2

22

1

ss

s
L  
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2

2

2

2

1

3

5
9

5

3

5
9

2

ss

s
L  

           































 

2

2

1

3

5

3

5

3

1

3

5
cos

9

2

s

Lth  

           
3

5
sin

3

1

3

5
cos

9

2 t
th  . 

(ii)  
































 

206

2

206206

2
2

1

2

1

2

1

s
L

s

s
L

s

s
L  

       











































 

3

10

1

3

1

3

106

1

2

1

2

1

s

L

s

s
L  

       





















 

3

10

3

10

.
10

3

3

1
.

3

10
cos

6

1

2

1

s

Lt  

       tt .
3

10
sin

30

1
.

3

10
cos

6

1
 . 

(iii)  
t

e

s

L
s

L 2

9

11

2

3

2

9

1

2

3

92

3 
 































 

       
 0

2

9

2

9

1

2

3

2

3

92

3 
 

























ee

dt

d

s

s
L

t

 

     2

3

2

11

4

27 


t

e . 

(iv)   
ate

as
L  











11
 

         
 

dt
as

L
ass

L
t

 























0

11 11
 

      














t
t

at
at

a

e
dte

0
0
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         at
at

e
aaa

e 





 1
11

. 

(v) 
     

































 

9

61

9

69

9

3
2

1

2

2
1

2

2
1

sss
L

ss

s
L

ss

s
L  

        
t

dtt
0

3sin21  

        ds
s

L
t

 









 

0 2

1

9

6
1  

         tt
0

3cos
3

1
.21  

        
3

2
3cos

3

2
1  t  

         13cos2
3

1

3

1
3cos

3

2
 tt . 

(vi) 
!4

1 4

5

1 t

s
L 







  

       then 
  !4

.
2

1 4
2

5

1 t
e

s
L t 










 

(vii)

     


















































22

1

22

1

22

1

2

1

32

2

32

2

32

22

134 s
L

s

s
L

s

s
L

ss

s
L  

              




















 

22

12

22

12

3

3

3

2
.

3
.

s
Le

s

s
Le tt

 

     tete tt 3sin
3

2
3cos 22   . 

(viii) 
 

























2

1

2

1

13

1

169

1

s
L

ss
L   

                 































 

2

1

3

1

1

9

1

s

L  

        







 



2

13
1

9

1

s
Le

t

  
9

.
9

1 3
3

t
t

te
te




 . 

(ix) 
te

s
L 31

3

1  









 

          












 


 tue

s

e
L t

s
31

3
. 
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(x)  
!2

1 2

3

1 t

s
L 







  

       
  !2

.
1

1 2

3

1 t
e

s
L t 










  

        then  
 

   
 1

!2

1
.

1

2

1

3

1 
















 tu
t

e
s

e
L t

s

.                                              Ans. 

 

Example 4 

Find the inverse Laplace transform of
  41

4
2 



sss

s
. 

 

Solution 

Let us first resolve
  41

4
2 



sss

s
into partial fractions 

   4141

4
22 











s

DCs

s

B

s

A

sss

s
 

        14414 22  ssDCssBsssAs                                          (1) 

Putting 1,0  As  

Putting 1,1  Bs  

Equating the coefficients of 3s  on both sides of  ,1  we get 

00  CCBA  

Equating the coefficients of s  on both sides of  ,1  we get 

1441  DDBA  

On putting the values of DCBA ,,, , we get 

   4

1

1

11

41

4
22 









ssssss

s
 

   

























 

4

1

1

11

41

4
2

1

2

1

sss
L

sss

s
L  

      





























 

22

111

2

2

2

1

1

11

s
L

s
L

s
L  

      te t 2sin
2

1
1  .                                                    Ans. 

Example 5 

Find the inverse transform of  
6116

562
23

2





sss

ss
. 
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Solution 

    321321

562

6116

562 2

23

2



















s

C

s

B

s

A

sss

ss

sss

ss
 

        213132562 2  ssCssBssAss  

2

5
,1,

2

1
 CBA  














































 

3

1

2

5

2

1
1

1

1

2

1

6116

562 111

23

2
1

s
L

s
L

s
L

sss

ss
L  

          ttt eee 32

2

5

2

1
 .                                                 Ans. 

 

Example 6 

Find 
  











222

1
2

1

sss
L . 

 

Solution 

   222222

1
22 







 ss

CBs

s

A

sss
 

    2221 2  sCBsssA  

Put 
2

1
,2  As  

Equating the coefficients of 2s on both sides, 

2

1
0  ABBA  

Equating the coefficients of s on both sides,  

022220  BACCBA  

Now 
   22

2

1

2

2

1

222

1
22 







 ss

s

ssss
 

     






































 

11

11

2

1

2

1

2

1

222

1
2

11

2

1

s

s
L

s
L

sss
L  

              
   
























 

11

1

2

1

11

1

2

1

2

1
2

1

2

12

s
L

s

s
Le t  

                                                tetee ttt sin
2

1
cos

2

1

2

1 2    

                ttee tt sincos
2

1

2

1 2  
.                              Ans. 
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Example 7 

Find 












124

1

ss

s
L . 

 

Solution 

    1111 2222224 





 ssss

s

ss

s

ss

s
 

       
   













1

1

1

1

2

1
22 ssss

 

     

































1

1

2

1

1

1

2

1

1 2

1

2

1

24

1

ss
L

ss
L

ss

s
L  

        



























































































 

22

1

22

1

2

3

2

1

1

2

1

2

3

2

1

1

2

1

s

L

s

L  

        











tete

tt

2

3
sin

3

2
.

2

3
sin

3

2

2

1
22  

        









2
sin.

2

3
sin

3

2 t
ht .                                                      Ans. 

 

 

EXERCISE 

 

PART A 

1. Define Laplace transform. 

2. State the conditions for the existence of Laplace transform of a function. 

3. State change of scale property, first shifting property, second shifting 

property in Laplace transformation. 

4. Find the Laplace transform of unit step function. 

5. Find the Laplace transform of unit impulse function. 

6. Find   ,tfL if  













tfort

tfort
tf

0sin
 

7. State the formula for the Laplace transform of a periodic function. 

8. State the relation between the Laplace transforms of  tf and  tft. . 

9. Find the relation between the inverse Laplace transform of  sF and its 

integral. 

10. Find the inverse Laplace transform of 








1
log

s

s
. 
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11. Find the laplace transform of
t

atcos1
. 

12. If   
 1

1




ss
tfL find  0f  and  f . 

13. Find  ttL 2sin4cos . 

14. Find the inverse Laplace transform of
 22

1

ass 
. 

15. Find








t

t dteL
0

 

16. Find 












2

11

s
L . 

17. If   
 

,
1

ass
tfL


 find  0f . 

18. State the sufficient conditions for the existence of Laplace transform of 

 tf . 

19. If     ,sFtfL  prove that    









a

s
F

a
atfL

1
. 

20. Find  bteL ta sin . 

21. Find
 














3

1

2

1

s
L . 

22. Find  tL 2sin . 

23. Find 












84

2
2

1

ss

s
L . 

24. Find 






 

t

e
L

t1
. 

25. Define periodic function with an example. 

26. Find
 














12
2

1

s

s
L . 

27. Find  teL t 3sin2 . 

28. If     ,sFtfL  then find 
















2

t
fL . 

29. Find
  


















2

1

3s

s
L . 

30. Find the inverse Laplace transform of
22

2
2 



ss

s
. 

31. Find the Laplace transform of  22 1 te t 
 

32. If     ,sFtfL  what is   tfeL at . 
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33. Write a function for which laplace transformation does not exist. Explain 

why laplace transform does not exist. 

34. Find  ttL 2sin . 

35. Find the Laplace transform of
t

t2sin
. 

 

PART B 

 

1. Find the Laplace transform of the following                                                                         

(i) t2sin 3      (ii) te t 2cos      (iii) tt 3cos2sin       (iv) th3sin                                      

(v)  
















37

321

202

t

tt

tt

tf                                                                                                                    

(Ans. (i) 
  364

48
22  ss

  (ii) 
1042

1

22

1
2 




 ss

s

s
   (iii) 

 
  251

52
22

2





ss

s
                      

                 (iv) 
  91

6
22  ss

    (v)    15332
2

2

3
2

3

2

3




s
s

e
ss

s

e

s

ss

). 

2. Find the Laplace transform of the following.                                                                            

(i) tt cos  (ii) tt sin2  (iii) atteat sin   (iv) 


t
t dttte

0

32 .sin.                                  

(v) tet t cos22  .  

                               (Ans. (i) 
22

2

)1(

1





s

s
   (ii) 

32

2

)1(

)13(2





s

s
   (iii) 

222 )22(

)(2

aass

asa




   

            (iv) 
    




















2222 1)2(

1

9)2(

1

2

)2(3

sss

s
 (v) 

32

23

)54(

)222510(2





ss

sss
) 

3. Find the Laplace transform of the following (i)  btat
t

coscos
1

   

      (ii) t
t

2sin
1

 (iii)  te
t

t sin
1 

 (iv)  4sin utu     (v)  1. tue t . 

                   (Ans. (i) 













22

22

log
2

1

bs

as
         (ii) 

2

2 4
log

4

1

s

s 
       (iii)  1cot 1  s                                                      

                                                         (iv)    4sin4cos
12

4

s
s

e s






     (v) 
 

1

1





s

e s

). 

 

4. Find the Laplace transform of the following.                                                                           

(i)      tftftttf  2,20,2                                                                                 

(ii)  













2,0

0,cos

t

tt
tf                                                                              
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(iii)  
   









tftft

tt
tf

2,21,0

10,
                                                                                        

(iv)  
     
















tfTtfTt
T

tT
T

T
t

T

t

tf

,
2

,
2

2
0,

2

                                           

(v)  
   
















tfTtfTt
T

E

T
tE

tf

,
2

,

2
0,

 

(Ans. (i) 
)1(

442
23

2222

s

sss

es

essee







  (ii) 

)1)(( 22 w

s

ews

s






 (iii) 
)1(

)1(1
22 s

s

es

se







 

                                                  (iv)  

)1(

1

4
tanh

2

2

2




sT

es

sT

Ts
  (v) )

4
tanh(

Ts

s

E
) 

5. Find the inverse Laplace transform of the following.                                                              

(i) 
9

1
2 s

      (ii) 
92 s

s
        (iii) 

  43

1
2
s

          (iv) 
  252

2
2




s

s
         

(v) 
72

1

s
. (Ans. (i) th3sin

3

1
     (ii) t3cos        (iii) the t 2sin

2

1 3
     (iv) 

the t 5cos2      (v) 
t

e 2

7

2

1
) 

6. Find the inverse Laplace transform of the following.                                                                  

(i) 
 

5

22

2

23

s

s 
       (ii) 

169

105
2 



s

s
        (iii) 

63

2

s

s
         (iv) 

9

4
2

2





s

s
            

      (v) 
 2

3

1

s
. (Ans. (i) 

42

2

1
3

2

3
tt     (ii) thth

3

4
sin

6

5

3

4
cos

9

5
      

                                                  (iii)  12
3

2 2   te  (iv) 13sin
3

5
 t    (v) te t .3

) 

7. Find the inverse Laplace transform of the following.                                                                 

(i) 
 32

1

ss
     (ii) 

 22

1

ass 
    (iii) 

 1

1
23 ss

    (iv) 
  43

2
s

s
                 

(v) 
  1634

4
2




s

s
. (Ans. (i) 








1

32

1 3te
  (ii) 

2

cos1

a

at
     (iii) 1cos

2

2

 t
t

                                                        

                              (iv) 







 tte t 2sin

2

3
2cos3

      (v) tete tt 2sin
8

1
2cos

4

1 33  ). 
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8. Obtain inverse Laplace transform of the following. 

      (i) 
 32



s

e s

       (ii) 
12 



s

e s

         (iii) 









2

1
1log

s
       (iv) 

 22 136

1





ss

s
                                         

      (v)    
  











2

22

log
2

1

as

bs
.                                                                                                                      

      (Ans. (i) 
   

 2
2

2
2

2 
 tu

t
e t

      (ii)   tutsin        (iii)  t
t

cos1
2

                               

                (iv)  ttttt
e t

2sin2cos22sin2
8

3




       (v)  bte
t

at cos
1


). 

9. Find the inverse Laplace transform of     (i) 
3

2 62

s

ss 
       (ii)

134

2
2 



ss

s
                                          

    (iii) 
2332

5211
23

2





sss

ss
    (iv) 

 22 52

16

 ss
       (v) 

  12

1
2  ss

                                                                                                    

           (Ans. (i) 2321 tt        (ii) tete tt 3sin
3

4
3cos 22       (iii) 22

2

3
52

t

tt eee 
       

                                             (iv)   ttte t 2cos22sin     (v) tte t sin
5

2
cos

5

1

5

1 2  ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 619 

CHAPTER II 

 

CONVOLUTION THEOREM, APPLICATIONS OF LAPLACE 

TRANSFORM 

 

2.1 Introduction 

 Convolution is used to find inverse Laplace transforms in solving 

differential equations and integral equations. 

 Suppose two Laplace transforms  sF and  sG are given. Let 

 tf and  tg be their inverse Laplace transforms respectively. i.e., 

    sFLtf 1 and     sGLtg 1 . Then the inverse  th of the product of 

transforms      sGsFsH .  can be calculated from the known inverse  tf and 

 tg . 

 

Convolution 

The convolution or convolution integral of two functions  tf and   0, ttg is 

defined as the integral    duutguf
t

0
. 

i.e.,           duutguftgtftgf
t

 0
. 

gf  is called the convolution or faltung of f and g and can be regarded as a 

“generalized product” of these functions. 

 

2.2 Convolution Theorem 

 If  tf and  tg are two functions of t and     sFtfL  and 

    sGtgL  for 0t then 

        sGsFtgtfL .    (or)         tgtfsGsFL  .1
. 

 

Proof 

By definition 

         dttgtfetgtfL st .
0


   

           

    dtduutgufe
t

st .
0 0 








   

by the definition of convolution, 

       dtduutgufe
t

st

 


 
0 0

  (1)      Fig. 14 

The region of integration for the double integral  1 is bounded by the lines 

0,,0  ttuu  and  t . Changing the order of integration in  1 , we get                                              

         dudtutgufetgtfL
u

st   
 



0
                                                    (2)                                              

In the inner integral in  2 , on putting vut  , we get 



 620 

           dudvvgufetgtfL vus

 
 


0 0

 

              dudvvgeufe svsu





 







00
.  

                        dvvgeduufe svsu








00

.  

             dttgedttfe stst








00

.. .   

                                                               (on changing the dummy variablesu and v ) 

i.e.,           tgLtfLtgtfL . . 

 

2.3 Initial value theorem 

 If the Laplace transforms of  tf and  tf ' exist and     ,sFtfL  then 

     sFsLttfLt
st 


0

.                                              

 

Proof 

We know that       0' fsFstfL   

      0' ftfLsFs   

           0'
0

fdttfe st 


  

      0'
0

fdttfeLtsFsLt st

ss
 





 

         0'
0

fdttfeLt st

s
 



  

i.e.,        tfLtfsFsLt
ts 0

0


  

     sFsLttfLt
st

.
0 

  

 

2.4 Final value theorem 

 If the Laplace transforms of  tf and  tf '  exist and     sFtfL   then  

     sFsLttfLt
st

.
0

 .  

 

Proof 

We know that       0' fsFstfL   

      0' ftfLsFs   

          0.'
0

fdttfe st  


  

      0'.
000

fdttfeLtsFsLt st

ss
 





 

                 







0 0
0' fdttfeLt st

s
 

     0'
0

fdttf  


 

      00 ftf 
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       00 fftfLt
t




 

     sFsLttfLt
st

.
0

 . 

 

Example 1 

Apply convolution theorem to Evaluate
  


















222

1

as

s
L .  

[AU JUNE 2010, AU MAY 2012] 

 

Solution 

Let  
 

     at
a

tfsFL
as

sF sin
11 1

22



   

 
 

     attgsGL
as

s
sG cos1

22



   

Now by convolution theorem, 

        duutgufsGsFL
t

u
..

0

1   


 

   duutaau
a

t

u
.cossin

1

0 
  

      duauatauauatau
a

t

u 


0
sinsin

2

1
 

    dutuaat
a

t

u 


0
2sinsin

2

1
 

                         
t

u

tua
a

atu
a 0

2cos
2

1
sin

2

1










  

  







 at

a
at

a
att

a
cos

2

1
0cos

2

1
sin

2

1
 

             
a

att

2

sin
 .                                                                                    Ans. 

 

Example 2 

Apply convolution theorem to evaluate
  











13

11

ss
L  [AU APR 2011]. 

 

Solution 

Let        tetfsFL
s

sF 31

3

1  


  

       tetgsGL
s

sG 


 1

1

1
 

By convolution theorem 
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  dueeeduee

ss
L u

t

u

ut
t

u

utu ..
13

1

0

3

0

31 









 









      

                             

t

u

u
t

t

u

ut e
eduee

0

4

0

4

4
.



















   

       tt ee 41
4

1  .                                                                      Ans. 

 

Example 3 

Evaluate
  











41

1
22

1

ss
L by convolution theorem. [KU NOV 2011] 

 

Solution 

2

2sin

4

1
;sin

1

1
2

1

2

1 t

s
Lt

s
L 























 

   By convolution theorem, we get 

 
du

ut
u

ss
L

t

















022

1

2

2sin
.sin

4

1
.

1

1
 

             duuttu
t

 
0

2cos23cos
6

1
 

         
    t

uttu

01

2sin

3

23sin

6

1















  

            







 tttt 2sinsin2sinsin

3

1

6

1
 

  







 tt 2sin

3

4
.sin

3

4

6

1
 

   tt 2sinsin
9

2
 .                                                                      Ans. 

 

Example 4 

By using convolution theorem, find the inverse laplace transform of
  21

1

 ss
.                        

Solution 

tt e
s

Le
s

L 211

2

1
;

1

1  




















 

   By convolution theorem, we get 

  duee
ss

L
t

utu ..
2

1
.

1

1

0

21


 










 

        
t

ttut eeduee
0

22 1. tt ee 2  .                                   Ans. 
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2.5 Application to Differential Equations 

 The Laplace transform method of solving differential equations yields 

particular solutions with out the necessity of first finding the general solution and 

then evaluating the arbitrary constants. This method is, in general, shorter method 

and is especially useful for solving linear differential equations with constant 

coefficients and a few integral and intergo-differential equations. 

 

Working procedure 

1. Take the Laplace transform on both sides of the differential equation. 

Apply the formula and the given initial conditions. 

2. Transpose the terms with minus signs to the right. 

3. Divide by the coefficient of y , getting y  as a known function of s . 

4. Resolve this function of s into partial fractions and take the inverse 

transform on both sides. This gives y as a function of t which is the desired 

solution satisfying the given conditions. 

 

Note  

(i)     sytyL   

(ii)           0...............00 121   nnnnn yysyssystyL . 

 

Example 1  

Solve the Differential equation   teyDD  342 . Given 1,1 
dt

dy
y  at  0t  

using Laplace transforms. [AU NOV 2011] 

 

Solution 

Given differential equation is ,3'4'' teyyy  where
dt

dy
y '  

Taking Laplace transform on both sides, 

            
1

1
3040'02




s
syysysyyssys  

     
1

1
411342




s
ssyss  

   
1

1
5342




s
ssyss  

 
      311

66

341

66 2

2

2











sss

ss

sss

ss
sy  

 
   31

66
2

2






ss

ss
sy                                                                                  (1) 

Consider 
     22

2

11331

66














s

C

s

B

s

A

ss

ss
 

      313166
22  sCssBsAss  
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Put   
2

1
1  cs  

Put  
4

3
3  As  

Equating the coefficients of ,2s  

4

7

4

3
111 








 ABBA  

   
     

 2
1

21

1

47

3

43
1












sss
sy  

Taking inverse transform on both sides, 

    
 

 


































 

2

1111

1

1

2

1

1

1

4

7

3

43

s
L

s
L

s
LtysyL  

   ttt etee  
2

1

4

7

4

3 3 .                                                                   Ans. 

 

Example 2 

Solve the equation   0,sin1342   yteyDD t and 0Dy  at ,0t  where 

dt

d
D  .   [AU JUNE 2009] 

 

Solution 

Given differential equation is teyyy t sin13'4''   . 

Taking Laplace transforms and using the given initial conditions, we get 

i.e.,    
22

1
134

2

2




ss
syss  

 
  13422

1
22 


ssss

sy  

  
13422 22 









ss

DCs

ss

BAs
 

  


















134

32

22

72

85

1
22 ss

s

ss

s
 

  
 

 

 

 



















92

722

11

912

85

1
22

s

s

s

s
 

    















  ttettety tt 3sin

3

7
3cos2sin9cos2

85

1 2 .                         Ans. 

 

Example 3 

Using Laplace transform, find the solution of the initial value problem   

      00'0,399''  yytuyy , where  3tu  is the unit step function.  
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Solution 

Given  399''  tuyy  

Taking Laplace transform on both sides, 

       
s

e
syyyssys

s3
2 9

90'0


                                                                  (1) 

Putting the values of   00 y and   00' y  in  1 , we get 

   
s

e
sysys

s3
2 9

9


  

   
s

e
sys

s3
2 9

9


  

 
 9

9
2

3






ss

e
sy

s

 

 
 













9

9
2

3
1

ss

e
Lty

s

 

t
s

L 3sin
9

3
2

1 











 

and   
 

  ttdtt
ss

L
tt

3cos13cos3sin3
9

3
3

002

1 








 
  

 
 













9

9
2

3
1

ss

e
Lty

s

   gives 

      333cos1  tutty .                                                                           Ans. 

 

Example 4 

A resistance R  in series with inductance L is connected with e.m.f  tE . The 

current i is given by  tERi
dt

di
L  . 

If the switch is connected at 0t and disconnected at ,at  find the 

current i interms of t . 

 

Solution 

Conditions under which current i flows are 0i  at ,0t  

 









at

atE
tE

,0

0,
 

Given equation is  tERi
dt

di
L                                                                          (1) 

Taking Laplace transform of  ,1 we get. 

    dttEeiRiisL st





0

0  
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   dttEeiRisL st





0

.    (since   00 i ) 

   dteEdtedtEeiRLs
a

a

ststst 0.
0 0  
 

   

         asas

a
st

e
s

E

s

E
e

s

E

s

e
E 













 10

0

 

   RLss

eE

RLss

E
i

as









 

On inversion, we obtain 

   
























RLss

eE
L

RLss

E
Li

as
11                                                                      (2) 

Consider
 











RLss

E
L 1  

 









































L

R
ss

L
L

E

RLss

E
L

111
 

   





















 

L

R
s

s
L

R

L

L

E 11
.. 1    (Resolving into partial fractions) 

   









 t
L

R

e
R

E .

1  

and 
 

 atue
R

E

RLss

eE
L

at
L

Ras

























)(

1 1 .  (By second shifting theorem) 

On substituting the values of the inverse transform in  ,2 we get. 

 
 atue

R

E
e

R

E
i

at
L

R
t

L

R






















11  

Hence 









 t
L

R

e
R

E
i 1  for   0,0  atuat  

 




















 at
L

R
t

L

R

e
R

E
e

R

E
i 11   [for   1,  atuat  

 






















1L

Ra
t

L

R
t

L

R
at

L

R

ee
R

E
ee

R

E
i .                                               Ans. 
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Example 5 

Using Laplace transforms solve     00,00',26'5''  yyyyy . [KU NOV 

2010] 

 

Solution 

Given 26'5''  yyy  

Taking Laplace transforms on both sides 

          26'5'' LtyLtyLtyL  . 

            
s

syysysyyssys
2

6050'02   

Given   00 y and   00' y  

     
s

sysyssys
2

652   

   
s

syss
2

652   

 
 65

2
2 


sss

sy  

i.e.,   
  32

2




sss
sy  

 
  








 

32

21

sss
Lty  

By using partial fraction, 

   3232

2







 s

C

s

B

s

A

sss
 

      23322  sCssBsssA  

Put 12  Bs  

Put 
3

2
3  Cs  

Put 
3

1
0  As  

   








































 

3

1

3

2

2

1

3

1

32

2 1111

s
L

s
L

s
L

sss
L  

i.e.,    tt eety 32

3

2

3

1   .                                                                               Ans. 

 

Example 6 

Solve     10',10,42'3''  yytyyy  using Laplace transforms. [KU NOV 

2011] 
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Solution 

Given tyyy 42'3''   

Taking Laplace transforms on both sides, we get 

       tLyLyLyL 42'3''   

            
2

2 4
2030'0

s
syysysyyssys   

      
2

2 4
2131

s
sysysssys   

   
2

2 4
3123

s
ssyss   

     
2

2 4
423

s
ssyss   

     4
4

23
2

2  s
s

syss  

 
   23

4

23

4
222 







ss

s

sss
sy  

 
  























 

23

4

23

4
2

1

22

1

ss

s
L

sss
Lty  

  
 
  































 

1

3

2

2

239

195

9

1816 1

22

1

ss
L

ss

s

s

s
L  








































 

23

1

9

19

239

51

9

181

9

16
2

1

2

1

2

11

ss
L

ss

s
L

s
L

s
L  

                                                                                           






















 

1

1
.3

2

2 11

s
L

s
L  

tt ee
s

L
s

L
s

L
s

Lt 32
1

1

2

1

9

19

1

1

2

2

9

5
2

9

16 21111 


























































   

      tttttttt eeeeeeeet 32
9

19

9

19
2

9

5
2

9

16 2222   


















 3

9

19

9

5
2

9

19

9

10
2

9

16 2 tt eet  

  tt eetty
9

13
2

9

16 2  .                                                                           Ans. 

 

EXERCISE 

 

PART A 

 

1. State the initial value theorem in Laplace transforms. 

2. State the final value theorem in Laplace transforms. 

3. Define the convolution product of two functions and prove that it is 

commutative. 
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4. State convolution theorem in Laplace transforms. 

5. Verify initial value theorem for    ttetf t cossin1   . 

 

PART B 

 

1. Obtain the inverse Laplace transform by convolution. (i) 
 222

2

as

s


     

 (ii) 
 32 1

1

s
     (iii) 

 222

1

ass 
    (iv) 

  94 22  ss

s
    (v) 

  41

10
2  ss

     

(vi) 
 32 1

1

ss
(vii) 

 22

2

4s

s
(viii) 

 4

1
2 ss

 (ix)
 22

1

ass 
   (x) 

44

2

as

s


.                                               

                                 (Ans. (i) at
a

att sin
2

1
cos

2

1
  (ii)   tttt cos3sin3

8

1 2     

     (iii)  hatat
a

sin
1

3
     (iv)  tt 5cos2cos

5

1
      (v) tte t 2cos22sin2   

       (vi)   364
2

2 


ttt
e t

 (vii)  ttt 2cos22sin
4

1
      (viii)  t2cos1

4

1
                  

                                                 (ix)  1cos
1

2
ath

a
   (x)  atath

a
sinsin

2

1
 ). 

       2.   Solve the following differential equations by Laplace transform. 

(i) ,0
2

2

 y
dx

yd
 where 1,1 

dx

dy
y at 0x . 

(ii) 052
2

2

 y
dx

dy

dx

yd
 where 4,2 

dx

dy
y at 0x . 

(iii) 022
2

2

3

3

 y
dx

dy

dx

yd

dx

yd
given 6,0

2

2


dx

yd

dx

dy
y at 0x . 

(iv) xy
dx

dy

dx

yd
212

2

2

  given 4,0 
dx

dy
y at 0x . 

(v) xexy
dx

dy

dx

yd 2

2

2

423   where 1,1 
dx

dy
y at 0x . 

                                 (Ans. (i) xxy cossin            (ii)  xxey x 2sin2cos2     

                                         (iii) xxx eeey 223      (iv) xeey xx  2     

                                                                          (v) 
xxx eeexy

2

1
2

2

1
23 23  ) 



Unit 5            Laplace Transforms
Questions opt1 opt2 opt3 opt4 Answer
The operator L that transforms f(t) into F(s) is called the -------- 
operator. Fourier Hankel

Laplace 
operator Z 

Laplace 
operator

The Laplace transform is said to exist if the integral is --------- for 
some value of s; otherwise it does not exist.

discontinu
ous

divergen
t closed 

converge
nt

convergen
t

If f(t) is ---------  on every finite interval in (0,∞) and is of 
exponentialorder 'a' for t>0, then the Laplace transform of f(t) 
exists for all s>a, ie F(s) exists for every s>a.

unifromly 
continuou
s

piecewis
e 
continuo
us 

converge
nt divergent

piecewise 
continuou
s 

If f(t) is piecewise continuous  on every -------- and is of 
exponentialorder 'a' for t>0, then the Laplace transform of f(t) 
exists for all s>a, ie F(s) exists for every s>a.

closed 
interval 
[0,1]

Half 
open 
interval 
[0,1)

infinite 
interval 
in (0,∞)

finite 
interval 
in (0,∞)

finite 
interval 
in (0,∞)

If f(t) is piecewise continuous  on every finite interval in (0,∞) and is 
of ------- 'a' for t>0, then the Laplace transform of f(t) exists for all 
s>a, ie F(s) exists for every s>a.

exponenti
al order

quadrati
c order

cubic 
order

n th 
order

exponenti
al order

If f(t) is piecewise continuous  on every finite interval in (0,∞) and is 
ofexponentialorder'a' for t>0, then the Laplace transform of f(t) 
exists for all s>a, ie F(s) exists for every s>a. This condition is necessary

non 
sufficien
t Sufficient

both 
necessar
y and 
sufficient Sufficient

L[1] = 
n! / 
s^(n+1)

1/s , s > 
0 1/(t+1) 1/ (s-a) 1/s , s > 0

L[t^n] = 2/(s-1) n!
 1/ 
s^(n+1)

n! / 
s^(n+1)

n! / 
s^(n+1)

L[e^(at)] = 1/ (s-a)
1/s , s > 
0

n! / 
s^(n+1) a/(s-a) 1/ (s-a)

L[e^(-at)] = F(s-a)

s^2 F(s)-
s f(0)- f 
'(0) 1/ (s+a)

n! / 
s^(n+1) 1/ (s+a)

L[sinat]=
a/(s^2 
+a^2)

1/(s^2 
+a^2)

(s^2 
+a^2)

a/(s^3+a
^3)

a/(s^2 
+a^2)

L[cosat]=
n! / 
s^(n+1) s^(n+1) t^(n+1)

s/(s^2 
+a^2)

s/(s^2 
+a^2)

L[coshat]=
s/(s^2 -
a^2)

1/(s^3 -
a^3)

s/(s^2 
+a^2) 1/a F(s/a)

s/(s^2 -
a^2)

L[af(t) + bg(t)]=
aF(s)+bG(s
)

aF(s)-
bG(s)

bF(s)-
aG(s)

bF(s) * 
aG(s)

aF(s)+bG(s
)

L[af(t) + bg(t)]= aF(s)+bG(s) is called ------property
quasi 
linear

non-
linear Linearity

homogen
ous Linearity



Lineraity property is

L[af(t) + 
bg(t)]= 
aF(s) * 
bG(s)

L[af(t) + 
bg(t)]= 
aF(s)+bG
(s) 1/a F(s/a)

L[af(t) + 
bg(t)]= 
aF(s)-
bG(s)

L[af(t) + 
bg(t)]= 
aF(s)+bG(s
)

If L[f(t)]=F(s) then L[e^at  f(t)]=
aF(s)+bG(s
) F(s+a) 1-s F(s-a) F(s-a)

First Shifting property is if L[f(t)] = F(s) then ------
 L[e^at  
f(t)]=F(s-a)

L[f(at)]= 
1/a 
F(s/a)

s^2 F(s)-s 
f(0)- f '(0) s^(n+1)

 L[e^at  
f(t)]=F(s-a)

If L[f(t)]=F(s) then L[e^at  f(t)]=F(s-a) is called ----property linear
convolut
ion

First 
shifting 
property

non 
homogen
ous

First 
shifting 
property

If L[f(t)]= F(s) then L[f(at)]=1/a F(s/a) is called _______ property.
Change of 
scale 

convolut
ion

First 
shifting 
property

non 
homogen
ous

Change 
of scale 

If L[f(t)]= F(s) then L[f(at)]=   F(s/a)
1/a 
F(s/a) F(s-a) a F(s/a) 1/a F(s/a)

 _____is called the change of scale property
L[f(at)]= t-
1

L[f(at)]= 
1/(s^3 -
a^3)

L[f(at)]= 
1/a F(s/a)

 L[e^at  
f(t)]=F(s-
a)

L[f(at)]= 
1/a F(s/a)

Change of scale property is -----
L[f(at)]= 
1/a F(s/a)

L[f(at)]=  
F(s/a)

L[f(at)]=  
F(a/s)

L[f(at)]= 
a F(s/a)

L[f(at)]= 
1/a F(s/a)

If L[f(t)]= F(s) then L[f ' (t)] = F(s)-f(0)
s F(s)-
+(0) s F(s)-f(0) F(s)+f(0) s F(s)-f(0)

If L[f(t)]= F(s) then   L[f '' (t)] = 
s^2 F(s)-s 
f(0)

s^2 F(s)-
s f(0)- f 
'(0)

s^2 F(s)-s 
f(0)+ f '(0)

s^2 
F(s)+s 
f(0)+ f 
'(0)

s^2 F(s)-s 
f(0)- f '(0)

L[5 (t^3)] = 1
1/s , s > 
0 3/ (s^4) 30/ (s^4) 30/ (s^4)

L[6 t] = 6 6/(s^2) 6/s 6-s 6/(s^2)
L[2 e ^ (-6 t)] = 2/(s+6) 2 2/(s-6) 2/s 2/(s+6)

L[7] = 7/s
1/s , s > 
0 (-7/s) 7 7/s

L[10 sin2t]= 20/(s^2-4)
2/(s^2+4
) 2/(s^2-4)

20/(s^2+
4)

20/(s^2+4
)

L[7 cosh3t]= 7s/(s^2-9) 7/(s^2-9) s/(s^2-9)
7s/(s^2+9
) 7s/(s^2-9)



The inverse laplace transform of 1/s is = 0 -1 s+a 1 1
The inverse laplace transform of 1/(s-a) is = e^(-at) 1/e^(at) e^(at) 1/e^(-at) e^(at)
The inverse laplace transform of 1/(s+a) is = e^(-at) 1/e^(at) 1/e^(-at) e^(at) e^(-at)

If L[f(t)]=F(s) then f(t) is called  --------  laplace transform of F(s) Linear
non-
linear inverse

quasi 
linear inverse

If L is linear then -------- is Linear. L+1 L^(-1) 1/L (-1/L) L^(-1)

If L is linear then L inverse is -------- non-linear Linear divergent
quasi 
linear Linear

The convolution of f*g of f(t) and g(t) is defined as

(f*g)(t)=∫ 
(from 0 to 
t) f(u) 
g(t+u) du

(f*g)(t)=∫ 
 (from 0 
to t) f(u)  
 du

(f*g)(t)=∫ 
from 0 to 
t f(u) g(t-
u) du

(f*g)(t)=∫ 
(from 0 
to t)  g(t-
u) du

(f*g)(t)=∫ 
(from 0 
to t) f(u) 
g(t-u) du

_______is called the convolution theorem.

(f*g)(t)=∫ 
from 0 to 
t f(u) g(t-
u) du

(f*g)(t)=
1-t

(f*g)(t)=e
^(-at)

(f*g)(t)=L
^(-1)(1)

(f*g)(t)=∫ 
from 0 to 
t f(u) g(t-
u) du

A function f(t) is said to be -----with period T>0 if f(t+T)=f(t) for all t even
projectio
n odd peroidic periodic

L[k] = k/s
k/s , s > 
0 (-1/s) k k/s

L[sinhat]=
a/(s^2 -
a^2)

1/(s^3 -
a^3)

a/(s^2 
+a^2) 1/a F(s/a)

a/(s^2 -
a^2)

L[e^(8t)] = 1/ (s-8)
1/s , s > 
0

n! / 
s^(n+1) 8/(s-8) 1/ (s-8)
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