18BEBME403

OBJECTIVES

- To provide the knowledge of basic concepts such as generalized instrumentation system, general properties of input transducers, static and dynamic characteristics of transducers and sensors.
- To provide a thorough understanding of principle and working of transducers and sensors used for displacement, motion, pressure and temperature measurement, biopotential electrodes, chemical sensors, biosensors, fiber optic sensors, and radiation sensors.
- To study the biomedical applications of the above transducers and sensors.
- To perform experiments based on some of the above transducers and sensors.

INTENDED OUTCOMES

After completion of the above course the students shall be competent in the following ways:

- They have a clear understanding of generalized medical instrumentation system, general properties of input transducers, static and dynamic characteristics of transducers and sensors.
- They have a thorough understanding of various transducers and sensors taught in the course.
- They are able to apply the transducers and sensors learnt in the course in suitable medical contexts.
- They have a working knowledge of some of the transducers and sensors that they have learnt in the course.

UNIT I INTRODUCTION TO TRANSDUCERS AND ITS CHARACTERISTICS (10)

Introduction: Generalized Instrumentation System, General Properties of Input Transducer Static Characteristics: Accuracy, Precision, Resolution, Reproducibility, Sensitivity, Drift, Hysteresis, Linearity, Input Impedance and Output Impedance. Dynamic Characteristics: First Order and Second Order Characteristics, Time Delay, Error Free Instrument, Transfer Functions. Design Criteria, Generalized Instrument Specifications.

UNIT II

MEASUREMENTS

(8)

Displacement, motion and Pressure Measurement: (with applications) Resistive: Potentiometers, Strain Gauges and Bridge Circuits. Inductive: Variable Inductance and LVDT Capacitive type, Piezoelectric Transducers. Types of Diaphragms, Bellows, Bourdon Tubes.

UNIT III THERMAL MEASUREMENTS

(6)

Temperature Measurement: Thermistor, Thermocouple, Resistive Temperature Detector, IC based Temperature Measurement, Radiation Sensors and Applications

UNIT IV **ELECTRODES** (10)

Biopotential Electrodes: Electrolyte Interface, Half-Cell Potential, Polarization, Polarizable and Non Polarizable, Electrodes, Calomel Electrode, Electrode Circuit Model, Electrode Skin-Interface and Motion Artifact. Body Surface Electrodes. Internal Electrodes: Needle and Wire Electrodes (Different Types). Microelectrodes: Metal, Supported Metal Micropipette (Metal Filled Glass And Glass Micropipette Electrodes)

UNIT V

(11)

BIOSENSORS

Chemical Sensors: Blood gas and Acid- Base Physiology Potentiometric Sensors, Ion Selective Electrodes, ISFETS. Amperometric Sensors, Clark Electrode with examples pH, pO2, pCO2 Electrodes, Transcutaneous Arterial Oxygen Tension, Carbon Dioxide measurements: capnostat. Fiber Optic Sensors: Design Principles in Fabrication of Fiber Optic Sensors - Temperature, Chemical, Pressure. Biosensor: **Classifications: Biological** phenomenon, Transduction Phenomenon i.e. Enzyme Sensor and Electrode based: Affinity Sensors (Catalytic Biosensors), Two examples of each Biosensors and Immunosensors.

Total : 45

S.NO.	Author(s) Name	Title of the book	Publisher	Year of publication
1	Richard S.C. Cobbold	Transducers for Biomedical Measurements: Principles and Applications	John Wiley & Sons	1974
2	Hermann K P. Neubert	Instrument Transducer – An Intro to their performance and	Hermann K P. Neubert	2000
3	Harry N, Norton.	Biomedical sensors – fundamentals and application	Harry N, Norton.	2001
4	Tatsuo Togawa, Toshiyo Tamma and P. Ake Öberg	Biomedical Transducers and Instruments	Tatsuo Togawa,	1994
5	Nandini K	Electronics in Medicine and Biomedical Instrumentation	Jog PHI Second Edition	2013

TEXT BOOKS:

REFERENCE BOOKS:

S.NO.	Author(s) Name	Title of the book	Publisher	Year of publication
-------	----------------	-------------------	-----------	---------------------

1	La Geddes and L.E. Baker	Principles of applied Biomedical Instrumentation	La Geddes and L.E. Baker	1997
2	Leslie Cromwell, Fred. J. Weibell and Pfeiffer	Biomedical instrumentation and measurement	Leslie Cromwell, Fred. J. Weibell and Pfeiffer	2002
3	Richard Aston	Principles of Biomedical Instrumentation and Measurement	Merril Publishing Co., Columbus	1990
4	Ernest O. Doeblin	Measurement Systems, Application and Design	McGraw-Hill	1985
5	Jacob Fraden	Handbook of Modern Sensors – Physics, Design and Application	AIP press	2000

KARPAGAM ACADEMY OF HIGHER EDUCATION COIMBATORE-21 Faculty of Engineering Department of Biomedical Engineering

LECTURE PLAN

Name of the staff	: Mr.T.S.Belliraj
Designation	: Assistant Professor.
Class	: II-B.E BME
Subject	: BIOSENSORS AND TRANSDUCERS
Subject code	: 18BEBME403

Sl.No.	Topics to be covered	Time Duration		
	UNIT I INTRODUCTION TO TRANSDUCERS AND	ITS		
CHARACTERISTICS				
1	Introduction	01		
2	Generalized Instrumentation System	01		
3	General Properties of Input Transducer Static	01		
	Characteristics: Accuracy, Precision, Resolution			
4	Sensitivity, Drift, Hysteresis, Linearity, Input Impedance	01		
	and Output Impedance			
5	Dynamic Characteristics: First Order and Second Order	02		
5	Characteristics			
6	Time Delay, Error Free Instrument	01		
7	Transfer Functions. Design Criteria	01		
8	Generalized Instrument Specifications	01		
	UNIT II MEASUREMENTS			
9	Displacement, motion	01		
10	Pressure Measurement: (with applications)	01		
11	Resistive: Potentiometers	01		
12	Strain Gauges and Bridge Circuits	01		
13	Inductive: Variable Inductance	01		
14	LVDT Capacitive type	01		
15	Piezoelectric Transducers	01		
16	Types of Diaphragms			
17	Bellows, Bourdon Tubes	01		
	UNIT III THERMAL MEASUREMENTS			
18	Temperature Measurement: Thermistor	02		
19	Thermocouple, Resistive Temperature Detector	02		
20	IC based Temperature Measurement	02		
21	Radiation Sensors and Applications	02		
UNIT IV ELECTRODES				
22	Biopotential Electrodes: Electrodes Electrolyte Interface	01		
23	Half-Cell Potential, Polarization	01		
24	Polarizable and Non Polarizable, Electrodes	01		
25	Calomel Electrode, Electrode Circuit Model	01		
26	Electrode Skin-Interface and Motion Artifact.	01		
27	Body Surface Electrodes. Internal Electrodes: Needle	01		
	and Wire Electrodes (Different Types).			
28	Microelectrodes: Metal	01		

29	Supported Metal Micropipette (Metal Filled Glass And	01
	Glass Micropipette Electrodes)	
	UNIT V BIOSENSORS	
30	Chemical Sensors: Blood gas and Acid- Base	01
	Physiology Potentiometric Sensors	
31	Ion Selective Electrodes, ISFETS. Amperometric	01
	Sensors	
32	Clark Electrode with examples - pH, pO2, pCO2	01
	Electrodes	
33	Transcutaneous Arterial Oxygen Tension	
34	Carbon Dioxide measurements: capnostat. Fiber	01
35	Optic Sensors: Design Principles in Fabrication of Fiber	01
	Optic Sensors	01
36	Temperature, Chemical, Pressure.	01
37	Biosensor: Classifications: Biological phenomenon	01
38	Transduction Phenomenon i.e. Enzyme Sensor	01
39	Electrode based: Affinity Sensors (Catalytic Biosensors)	01
40	Two examples of each Biosensors and Immunosensors.	01

TEXT BOOKS:

S.NO.	Author(s) Name	Title of the book	Publisher	Year of publication
1	Richard S.C. Cobbold	Transducers for Biomedical Measurements: Principles and Applications	John Wiley & Sons	1974
2	Hermann K P. Neubert	Instrument Transducer – An Intro to their performance and	Hermann K P. Neubert	2000
3	Harry N, Norton.	Biomedical sensors – fundamentals and application	Harry N, Norton.	2001
4	Tatsuo Togawa, Toshiyo Tamma and P. Ake Öberg	Biomedical Transducers and Instruments	Tatsuo Togawa,	1994
5	Nandini K	Electronics in Medicine and Biomedical Instrumentation	Jog PHI Second Edition	2013

REFERENCE BOOKS:

S.NO.	Author(s) Name	Title of the book	Publisher	Year of publication
1	La Geddes and L.E. Baker	Principles of applied Biomedical Instrumentation	La Geddes and L.E. Baker	1997
2	Leslie Cromwell, Fred. J. Weibell and Pfeiffer	Biomedical instrumentation and measurement	Leslie Cromwell, Fred. J. Weibell and Pfeiffer	2002

3	Richard Aston	Principles of Biomedical Instrumentation and Measurement	Merril Publishing Co., Columbus	1990
4	Ernest O. Doeblin	Measurement Systems, Application and Design	McGraw-Hill	1985
5	Jacob Fraden	Handbook of Modern Sensors – Physics, Design and Application	AIP press	2000

Staff In-Charge

HOD/ECE

TRANSDUCERS

An Introduction

TRANSDUCERS

- A transducer is a device that converts energy from one form to another
- Energy forms can be mechanical, visual, aural, electrical, thermal, chemical, etc. (examples to follow)
- Used to change information into a form that can be easily transferred, stored, processed, interpreted, etc.

• Electromagnetic - EM fields

Examples: Receiving Antennas

Transmitting Antennas

• Electrochemical - substance

Examples: pH Probe

Fuel Cell

• Electromechanical - movement

Examples:

Motor/Generator

Phonograph Cartridge

voltage

• Electroacoustic - vibration

Examples: Loudspeaker

Microphone

voltage

• Photoelectric - light voltage

Examples: Light Bulb

Photodiode

• Thermoelectric - temperature

Examples:

Hotplate

Thermistor

Principles of Energy Transformation Capacitive Transducers

Voltage between plates: Vab = Ed

$$C = \frac{Q}{V} = \frac{Q}{Ed} = \frac{\varepsilon A}{d}$$

where:

- Q = plate charge
- $\varepsilon = permittivity of dielectric$
- A = area of plates
- d = distance between plates

Principles of Energy Transformation Piezoelectric Transducers

Voltage on opposite sides of piezoelectric crystal is dependent on magnitude and direction of force applied to the crystal.

Type of Piezoelectric Materials:

- •Natural crystals (quartz, rochelle salts)
- •Synthetic crystals (lithium phosphate)
- •Ferroelectric ceramics (barium titanate)

Principles of Energy Transformation Electromechanical Transducers

•Some type of mechanical contact

•Convert physical change (movement, distance, etc.) to electrical signal (or *vice-versa*)

•Mouse - Movement of track ball causes electric signal

Principles of Energy Transformation Photovoltaic Transducers

•Light of proper wavelength ionizes atoms in silicon base.

•Charges are recombined by flowing through load, creating electrical current.

Terminology

- •Measurand that property being quantified or transformed.
- •Passive Transducer (Sensor) one which draws its operating power from the measurand.
- •Active Transducer one which requires external power.
- •Accuracy how close is the measurement to the actual value?
- •Resolution how fine of a measurement can we make?
- •Range what input (and output) values are possible?

Terminology

•Sensitivity - how much does a change in input affect the output? (also called the scale factor.)

- •Linearity does the output change uniformly with the input?
- •Repeatability output signal should be the same whenever the measurand value is the same.
- •Response Time how quickly does the transducer respond to changes in the measurand value?

Packaging and Integration

Considerations:

•Technology

•Environment

•End User

•Cost

Packaging and Integration Generally, size matters - <u>SMALLER IS BETTER!</u>

Packaging and Integration MEMS = <u>Micro Electro Mechanical Systems</u>

Summary

- •A *transducer converts energy* from one form to another
- •A passive transducer is called a sensor
- •Transducer *form* is often influenced by *function* (and *vice-versa*)
- •Trend is to have sensor *package as small as possible*
- •MEMS construction holds promise for sensor design and packaging

References

•Brindley, K. "Sensors and Transducers" Heinemann Newnes, 1988.

•Norton, H.N. "Handbook of Transducers" Prentice-Hall, 1989.

•Trietley, H.L. "Transducers in Mechanical and Electronic Design" Marcel Dekker, 1986.

•Ulaby, F.T. "Fundamentals of Applied Electromagnetics" Pearson Prentice Hall, 2004.

Transducer

- \triangleright A transducer is a device that converts one type of energy to another.
- \succ The input transducer is called the *sensor*.
- \succ The output transducer is called the *actuator*.

Input and Output Transducers

Basic requirements of a transducers

The main function of a transducer is to respond only for the measurement under specified limits for which it is designed.

- RUGGEDNESS (Capability of withstanding overload)
- LINEARITY (input output characteristics should be linear)
- REPEATABILITY (should reproduce same output signal when the same input signal is applied again and again)
- HIGH OUTPUT SIGNAL QUALITY (quality of output signal should be good)
- ➢ HIGH RELIABILITY & STABILITY
- GOOD DYNAMIC RESPONSE (output should be faithful to input when taken as a function of time)
- > NO HYSTERESIS (should not give any hysteresis during measurement)
- RESIDUAL DEFORMATION (should be no deformation on removal of local after long period of application)

CLASSIFICATON OF TRANSDUCERS

(An inverse transducer is a device which that converts an electrical quantity into a nonelectrical quantity)

ACTIVE AND PASSIVE TRANSDUCERS

Active and Passive Transducers

- Active Transducers: The output energy of Active Transducers is supplied entirety or almost entirety by its input signal.
- Passive Transducers: Have an auxiliary source of power. This power source is necessary for the operation of passive transducers.

Mic (Passive Transducer)

Thermocouple (Active Transducer)

Primary Sensing Element

- sometimes called pickup, sensor, or transducer.
- It detects the physical variable to be measured, e.g. pressure, temperature, rate of flow, etc. and converts the signal into amore usable form.
- In practice the physical variable is usually transformed into a mechanical or an electrical signal.

Oxygen Sensor

Pressure Sensor

Temperature Measurement

The International Practical Temperature Scale (IPTS) defines six primary fixed points for reference temperatures in terms of:

- The triple point of equilibrium hydrogen 259.34°C
- The boiling point of oxygen 182.962°C
- ➤ The boiling point of water 100.0°C
- ➤ The freezing point of zinc 419.58°C
- ➤ The freezing point of silver 961.93°C
- ➤ The freezing point of gold 1064.43°C

(all at standard atmospheric pressure)

The freezing points of certain other metals are also used as *secondary fixed points to* provide additional reference points during calibration procedures.

Instruments to measure temperature can be divided into separate classes according to the physical principle on which they operate. The main principles used are:

- > The thermoelectric effect
- Resistance change
- Sensitivity of semiconductor device
- Radiative heat emission
- > Thermography
- ➤ Thermal expansion
- Resonant frequency change
- Sensitivity of fibre optic devices
- Acoustic thermometry
- Colour change
- ➤ Change of state of material.

Thermocouple

Thermocouple Connection

Current through Two Dissimilar Metals

Seebeck Effect Circuit

 $V = \alpha(T_h - T_c)$

BEE605 - Measurements and Instrumentation

Dept of EEE
Different Types of Thermocouples

Advantages and Disadvantages of Thermocouples

- Wide temperature range (-270°C to 2700°C \checkmark
- **Rugged Construction** \checkmark
- Bridge Circuits not required for temperature measurement. \checkmark
- Comparatively cheaper in cost
- Good reproducibility \checkmark
- Speed of response is high compared to thermometer systems. \checkmark
- Calibration checks can be easily performed \checkmark
- Using extension leads and compensating cables, long distance transmission for temperature measurement is possible.
- ✓ Good Accuracy
- Compensation circuits is essential for accurate measurements **
- They exhibit non-linearity in the emf versus temperature characteristics. **
- Many applications needs signal amplifications. **
- Proper separation of extension leads from thermocouple is required to avoid stray electrical signal pickup. BEE605 - Measurements and Instrumentation 13

Linear Variable Differential Transformer

Three Coil mutual inductance device (LVDT)

Rotary Variable Differential Transformer

A **RVDT** is a type of electrical transformer used for measuring Angular Displacement .

The RVDT construction is similar in construction to LVDT, except that a cam-shaped core replaces the core in the LVDT as shown below.

Capacitive Transducers

The principle of these type is that variations in capacitance are used to produce measurement of many physical phenomenon such as dynamic pressure, displacement, force, humidity, etc. 0.088KA(N-1) = 0.088KA(N-1)

An equation for capacitance is

$$C = \frac{0.088KA(N-1)}{d}$$
 Pico farads

Where $K = dielectric \ constant \ (for \ air \ K=1)$,

A= area of one side of one plate,

N= *Number of plates*,

d= *Separation of plate surfaces (cm)*

Capacitance is the ability of a body to hold an electrical charge.

Capacitance is also a measure of the amount of electric charge stored for a given electric potential. A common form of charge storage device is a two-plate capacitor. If the charges on the plates are +Q and -Q, and V gives the voltage between the plates, then the capacitance is given by C=(Q/V) The SI unit of capacitance is the farad; 1 farad = 1 coulomb per volt

Capacitive Transducer

The above fig. shows a device used for the measurement of liquid level in a container. The capacitance between the central electrode and the surrounding hollow tube varies with changing dielectric constant brought about by changing liquid level. Thus the capacitance between the electrodes is a direct indication of the liquid level. Variation in dielectric constant can also be utilized for measurements of thickness, density, etc.

Capacitance changes depending on the change in effective area. This principle is used in the secondary transducing element of a *Torque meter*. This device uses a sleeve with serrations cut axially and a matching internal member with similar serrations as shown in the above fig.

Torque carried by an elastic member causes a shift in the relative positions of the serrations, thereby changing the effective area. The resulting capacitance change may be calibrated to read the torque directly.

Capacitive Transducer (Capacitive Type Pressure Transducer)

The capacitance varies inversely as the distance between the plates. The fig shows a capacitive type pressure transducer where the pressure applied to the diaphragms changes the distance between the diaphragm & the fixed electrode which can be taken as a measure of pressure.

Advantages of Capacitive Transducers

- (1) Requires extremely small forces to operate and are highly sensitive
- (2) They have good frequency response and hence useful for dynamic measurements.
- (3) High resolution can be obtained.
- (4) They have high input impedance & hence loading effects are minimum.
- (5) These transducers can be used for applications where stray magnetic fields render the inductive transducers useless.

Disadvantages of Capacitive Transducers

- (1) Metallic parts must be properly insulated and the frames must be earthed.
- (2) They show nonlinear behaviour due to edge effects and guard rings must be used to eliminate this effect.
- (3) They are sensitive to temperature affecting their performance.
- (4) The instrumentation circuitry used with these transducers are complex.
- (5) Capacitance of these transducers may change with presence of dust particles & moisture.

Thank You

Tadeusz Stepinski, Signaler och system

* INTRODUCTION

- ► Course presentation
- Classification of transducers
- ► Transducer descriptions
- Transducer parameters, definitions and terminology
- ► Transducer effects in silicon and other materials

- * Course presentation
 - Classification and descriptions of transducers
 - Survey of possible energy conversions
 - ⇒ Optical, mechanical, thermal, magnetic and chemical
 - ► Sensor characteristics
 - ► Sensor compensation

SENSORS convert energy information

One energy form must be converted into the same or another energy form with exactly the same information content as the originating energy form

Example:

SENSORS use some form of energy to get the information

Example: Ultrasonic distance measurement

One form of energy can be used for measuring different quantities

Example: Applications of inductive sensors

TRANSDUCER - latin tranducere - 'to convert'

Input transducer - sensor

Output transducer - actuator

Classification of transducers

* Types of energy form

Classification of transducers

- * Modulating and self-generating transducers
 - Modulating transducer requires an auxiliary energy source
 - ⇒ Strain gauge, thermal resistor, liquid-crystal-display
 - Self-generating transducer requires no auxiliary energy source
 - ⇒ Solar cell, thermocouple, piezoelectric element

Z-axis modulating energy domain

Classification of transducers

* Miller index - three dimensional vector

 $[x y z] \Rightarrow [input energy, output energy, modulating energy]$

Transducer	Miller index	Type description	
	[^ y 2]		
Transistor	[el, el, el]	Modulating shape transducer	
Thermocouple	[th, el, 00]	Self-generating input transducer	
pH meter	[ch, el, 00]	Self-generating input transducer	
LED display	[el, ra, 00]	Self-generating output transducer	
LCD display	[ra, ra, el]	Modulating output transducer	
Coil	[ma, el, 00]	Self-generating output transducer	
Magnetoresistor	[ma, el, el]	Modulating input transducer	
Photoconductor	[ra, el, el]	Modulating input transducer	

State description of transducers

The steady state description - reveals characteristics of transducers
Note! No transducer is sensitive to one physical energy only

Consider a small volume dV in which transducer is placed

The energy content dW in this volume contains the summation of all possible energies

$$dW = \sum I_i e_i = \sigma \cdot dl + P \frac{\partial \rho}{\rho} + V \cdot dq + E \cdot dD + H \cdot dB + T \cdot dS + w_r$$

 I_i - intensive quantity (can carry power, e.g., force, pressure, voltage)

e_i - extensive quantity (cannot curry power, e.g., displacement, resistance)

- $\sigma\,$ mechanical force
- P pressure
- V voltage
- E electrical field
- H magnetic field
- T absolute temperature

- dl displacement
- $d\rho$ volume density of mass
- dq- volume density of charge
- dD- charge per unit surface
- dB magnetic induction
- dS entropy per unit volume
- w_r radiation per unit volume

Static Characteristics

* Systematic Characteristics

- Range min and max values of input or output variables
 - Example: input range 100 -250°C or output range 4 to 20 mA
- Span maximum variation of input or output
 - ✤ Example: 150 °C or 16 mA

Dynamic Characteristics

- * Transfer functions
 - First order elements
 - Example: Temperature sensor is described by heat balance equation

$$\tau \frac{dT}{dt} + T = T_F \implies G(s) = \frac{1}{1 + \tau s}$$

- τ time constant
- T- sensor temperature
- T_F- ambient temperature

Dynamic Characteristics

* Transfer functions

- Second order elements
 - Example: Mass-spring-damper (accelerometer)

$$\frac{1}{\omega_n} \frac{d^2 x}{dt^2} + \frac{2\xi}{\omega_n} \frac{dx}{dt} + x = \frac{1}{k} F \implies G(s) = \frac{1}{\frac{1}{\omega_n^2} s^2 + \frac{2\xi}{\omega_n} s + 1}$$

where:

Transducer parameters

* The state description - Example

Parameter	Unit	Description
Settling (response) time	S	Time for signal to respond to step input signal within a rated accuracy
Rise time	S	Time for signal to change from 10% to 90% of its p-p value
Excitation	V or A	Power supply voltage/current required for normal operation
Sensitivity	dV/dx _i	The rate of change at the output at the change at the input
Hysteresis	any	Permanent deviation from zero for zero input
Offset voltage	mV	Output voltage obtained for zero (reference) input conditions
Temperature coefficient	ppm K⁻¹	The rate of change of reading as a function of temperature
Repeatability	%	Measure of agreement between successive measurement (same conditions)
Reproducibility	%	Measure of agreement between successive measurement (changed conditions)
Temperature range	T(K)	Operating span for specified accuracy

Static errors - error reducing techniques

Compensating non-linear element

High gain negative feedback

Dynamic errors - Compensating techniques

* Open-loop dynamic compensation

$$V_{out}(\omega) = G_u(\omega)G_c(\omega)F_{in}(\omega)$$

Dynamic errors - Compensating techniques

Definitions and terminology

- * **Biophotonics** application of photonic technology in medical or biotechnology products
- * **Biosensor** sensor for the measurements of ion concentrations in living systems or in organic compounds
- * **Mechatronics** discipline that combines mechanical and electronic components into al larger functional unit
- * **Micromechanics** the design, the development and the production of extremely small mechanical devices
- * **Optoelectronics** discipline combining optics or photonics and electronics on one device
- * **Smart sensor** single-chip functional unit combining sensing and processing functions

Transducer effects in silicon and other compatible materials

* Transducer effects in silicon - electrons are the information carrier

I/Out					
Energy domain	Self-generating	Resistor, inductance, capacitive	Diode	Transistor	Examples of smart transducers
Radiation	Volta effect, solar cell	Photoconductor	Photodiode	Phototransistor	Photo-IC CCD
Mechanical	Not known	Piezoresistivity	Piezojunction	Piezotransistor	Accelerometer Piezo IC
Thermal	Seebeck effect, thermocouple	R = f(T)	Reverse biased I _{rev} = f(T)	Forward biased U _{BE} = f(T)	Temeperature IC
Electrical	Thermal energy, resistance	Electric field MOSFET	Electric field FET	Dual gate MOSFET	All types of IC
Magnetic	Maxwell diffused coil	Magnetoresistor	Magnetic diode	Hall effect	Hall IC
Chemical	Galvanic	Ion concentration	Not known	ISFET	Smart nose

Review Questions

- > Describe difference between modulating and self-generating transducers
- ► Define type and Miller index for
 - termistor
 - TV screen
 - Loudspeaker
- ► Give an example of self-generating sensor for thermal energy
- ► Give an example of modulating sensor for magnetic energy
- Derive transfer function for a temperature sensor
- > Derive transfer function for a mass-spring-damper
- Describe the principle of compensation using open-loop correction
- > Describe the principle of compensation using high gain negative feedback for
 - ⇒ static characteristics
 - ⇒ dynamic characteristics

Chapter 5. Biopotential Electrodes

Dr. Kurtuluş Erinç Akdoğan kurtuluserinc@cankaya.edu.tr

Biopotential Electrodes

- Interface between the body and the electronic measuring apparatus to measure and record potentials.
- Biopotential electrodes conduct current across the interface between the body and the electronic measuring circuit, as other potential measurement devidces do.
- Electrode carries out a transducing function, because current is carried in the body by ions, whereas it is carried in the electrode and its lead wire by electrons.
- Electrode serve as a transducer to change an ionic current into an electronic current.
- Electrodes have electrical characteristics and can be modelled with equvialent circuits based on this characteristics.

Electrode-Electrolyte interface

- To understand the passage of electric current from the body to an electrode, electrode-electrolyte interface is examined.
- A net current, *I*, that crosses the interface, passing from the electrode to the electrolyte, consists of
- (1) electrons moving in a direction opposite to that of the current <u>in</u> ← e⁻ <u>the electrode</u>,
- (2) cations (denoted by C⁺) moving in the same direction as the current, and
- (3) anions (denoted by A⁻) moving in a direction opposite to that of the current <u>in the electrolyte</u>.

The faradaic current is the current generated by the reduction or oxidation of some chemical substance at an electrode.

 For charge to cross the interface—there are no free electrons in the electrolyte and no free cations or anions in the electrode—

 $C \rightleftharpoons C^{n+} + ne^{-}$

where *n* is the valence of *C*.

Assumption:

- The electrode is made up of some atoms of the same material as the cations and that this material in the electrode at the interface can become oxidized to form a cation and one or more free electrons
- The cation is discharged into the electrolyte; the electron remains as a charge carrier in the electrode.

$A^{m-} \rightleftharpoons A + me^{-}$

and *m* is the valence of *A*

 an anion coming to the electrode-electrolyte interface can be oxidized to a neutral atom, giving off one or more free electrons to the electrode.

Electrode-Electrolyte interface

www.vyssotski.ch/BasicsOfInstrumentation/Electrodes.ppt

Electrode-electrolyte Interface problem

metal cation leaving into the electrolyte

No current

What's going on?

metal cation

leaving into the electrolyte

No current

One atom M out of the metal is oxidized to form one cation M⁺ and giving off one free electron e⁻ to the metal.

metal cation

joining the metal

No current

What's going on?

metal cation

joining the metal

No current

One cation M⁺ out of the electrolyte becomes one neutral atom M taking off one free electron from the metal.

- As reactions reach equilibrium, no current flows between the electrode and the electrolyte. so the rates of oxidation and reduction at the interface are equal.
- Under these conditions, a characteristic potential difference called equilibrium half-cell potential is established by the electrode and its surrounding electrolyte which depends on the metal, concentration of ions in solution and temperature (and some second order factors).

- Equilibrium half-cell potential results from the distribution of ionic concentration in the vicinity of the electrode–electrolyte interface.
- Oxidation or reduction reactions at the electrode-electrolyte interface lead to a double-charge layer, similar to that which exists along electrically active biological cell membranes.
- The electrolyte surronding the metal is at a different electric potential from the rest of the solution.

Electrode double layer

No current

Half-cell voltage

- Half-cell potential cannot be measured without a second electrode. It is physically
 impossible to measure the potential of a single electrode: only the difference between
 the potentials of two electrodes can be measured.
- The half-cell potential of the standard hydrogen electrode has been arbitrarily set to zero. Other half cell potentials are expressed as a potential difference with this electrode.
 No current, 1M salt concentration, T = 25°C

Measuring Half Cell Potential

Note: Electrode material is metal + salt or polymer selective membrane

Half Cell potential

- The standard hydrogen electrode (SHE) is universally used for reference and is assigned a standard potential of 0V.
- The [H⁺] in solution is in equilibrium with H₂ gas at a pressure of 1 atm at the Ptsolution interface.
- One especially attractive feature of the SHE is that the Pt metal electrode is not consumed during the reaction.

Half Cell potential

In figure there is SHE in one beaker and a Zn strip in another beaker containing a solution of Zn^{2+} ions. When the circuit is closed, the voltmeter indicates a potential of 0.76 V. The zinc electrode begins to dissolve to form Zn^{2+} , and H⁺ ions are reduced to H₂ in the other compartment. Thus the hydrogen electrode is the cathode, and the zinc electrode is the anode.

http://chemwiki.ucdavis.edu/Analytical_Chemistry/Electrochemistry/Standard_Potentials

Table 5.1	Half-cell Potentials for Common Electrode	
	Materials at 25 °C	
	The metal underseine the resetion shown has	

The metal undergoing the reaction shown has the sign and potential E^0 when referenced to the hydrogen electrode

	Metal and Reaction	Potential E ^o (V)
	$Al \rightarrow Al^{3+} + 3e^{-}$	-1.706
	$Zn \rightarrow Zn^{2+} + 2e^{-}$	-0.763
	$Cr \rightarrow Cr^{3+} + 3e^{-}$	-0.744
	$Fe \rightarrow Fe^{2+} + 2e^{-}$	-0.409
	$Cd \rightarrow Cd^{2+} + 2e^{-}$	-0.401
Standard	$Ni \rightarrow Ni^{2+} + 2e^{-}$	-0.230
Hydrogen	$Pb \rightarrow Pb^{2+} + 2e^{-}$	-0.126
electrode -	$H_2 \rightarrow 2H^+ + 2e^-$	0.000 by definition
	$Ag + Cl^{-} \rightarrow AgCl + e^{-}$	+0.223
	$2Hg + 2Cl^- \rightarrow Hg_2Cl_2 + 2e^-$	+0.268
	$Cu \rightarrow Cu^{2+} + 2e^{-}$	+0.340
	$Cu \rightarrow Cu^+ + e^-$	+0.522
	$Ag \rightarrow Ag^+ + e^-$	+0.799
	$Au \rightarrow Au^{3+} + 3e^{-}$	+1.420
	$Au \rightarrow Au^+ + e^-$	+1.680

SOURCE: Data from Handbook of Chemistry and Physics, 55th ed., Cleveland, OH: CRC Press, 1974–1975, with permission.

 $H_2 \rightleftharpoons 2H \rightleftharpoons 2H^+ + 2e^-$

reduction reaction	E^{o} $\left(V ight)$	
$Al^{3+} + 3e^- \rightarrow Al$	- 1.662	
$Zn^{2+} + 2e^- \rightarrow Zn$	-0.762	
$Cr^{3+} + 3e^- \rightarrow Cr$	-0.744	Some half cell notentials
$Fe^{2+} + 2e^- \rightarrow Fe$	-0.447	<u>Bome nan een potentials</u>
$Cd^{2+} + 2e^- \rightarrow Cd$	-0.403	
$Ni^{2+} + 2e^- \rightarrow Ni$	-0.257	
$Pb^{2+} + 2e^- \rightarrow Pb$	-0.126	
An and the second		
$2H^+ + 2e^- \rightarrow H_2$	0.000	 Standard Hydrogen
$2H^{+} + 2e^{-} \rightarrow H_{2}$ $AgCl + e^{-} \rightarrow Ag + Cl^{-}$	0.000 + 0.222	 Standard Hydrogen electrode
$2H^{+} + 2e^{-} \rightarrow H_{2}$ $AgCl + e^{-} \rightarrow Ag + Cl^{-}$ $Hg_{2}Cl_{2} + 2e^{-} \rightarrow 2Hg + 2Cl^{-}$	0.000 + 0.222 + 0.268	 Standard Hydrogen electrode Note: Ag-AgCl has low junction
$2H^{+} + 2e^{-} \rightarrow H_{2}$ $AgCl + e^{-} \rightarrow Ag + Cl^{-}$ $Hg_{2}Cl_{2} + 2e^{-} \rightarrow 2Hg + 2Cl^{-}$ $Cu^{2+} + 2e^{-} \rightarrow Cu$	0.000 + 0.222 + 0.268 + 0.342	 Standard Hydrogen electrode Note: Ag-AgCl has low junction potential & it is also very stable
$2H^{+} + 2e^{-} \rightarrow H_{2}$ $AgCl + e^{-} \rightarrow Ag + Cl^{-}$ $Hg_{2}Cl_{2} + 2e^{-} \rightarrow 2Hg + 2Cl^{-}$ $Cu^{2+} + 2e^{-} \rightarrow Cu$ $Cu^{+} + e^{-} \rightarrow Cu$	0.000 + 0.222 + 0.268 + 0.342 + 0.521	 Standard Hydrogen electrode Note: Ag-AgCl has low junction potential & it is also very stable hence used in ECG electrodes!
$2H^{+} + 2e^{-} \rightarrow H_{2}$ $AgCl + e^{-} \rightarrow Ag + Cl^{-}$ $Hg_{2}Cl_{2} + 2e^{-} \rightarrow 2Hg + 2Cl^{-}$ $Cu^{2+} + 2e^{-} \rightarrow Cu$ $Cu^{+} + e^{-} \rightarrow Cu$ $Ag^{+} + e^{-} \rightarrow Ag$	0.000 + 0.222 + 0.268 + 0.342 + 0.521 + 0.780	 Standard Hydrogen electrode Note: Ag-AgCl has low junction potential & it is also very stable hence used in ECG electrodes!
$2H^{+} + 2e^{-} \rightarrow H_{2}$ $AgCl + e^{-} \rightarrow Ag + Cl^{-}$ $Hg_{2}Cl_{2} + 2e^{-} \rightarrow 2Hg + 2Cl^{-}$ $Cu^{2+} + 2e^{-} \rightarrow Cu$ $Cu^{+} + e^{-} \rightarrow Cu$ $Ag^{+} + e^{-} \rightarrow Ag$ $Au^{3+} + 3e^{-} \rightarrow Au$	0.000 + 0.222 + 0.268 + 0.342 + 0.521 + 0.780 + 1.498	 Standard Hydrogen electrode Note: Ag-AgCl has low junction potential & it is also very stable -> hence used in ECG electrodes!

Polarization

If there is a current between the electrode and electrolyte, the observed half cell potential is often altered due to polarization. The difference is due to polarization of the electrode.

$$V_p = V_R + V_C + V_A + E_0$$

Note: Polarization and impedance of the electrode are two of the most important electrode properties to consider.

Ohmic Overpotential

• Direct result of the resistance of the electrolyte.

 When a current passes between two electrodes immersed in an electrolyte, there is a voltage drop along the path of the current in the electrolyte as a result of its resistance.

• This drop in voltage is proportional to the current and the resistivity of the electrolyte.

Concentration Overpotential

- Results from changes in the distribution of ions in the electrolyte in the vicinity of the electrode-electrolyte interface.
- When a current is established, the rates of oxidation and reduction at the interface are no longer equal.
- Thus it is reasonable to expect the concentration of ions to change.

• This change results in a different half-cell potential at the electrode. The difference between this and the equilibrium half-cell potential is the concentration overpotential.

Nernst Equation

- When two aqueous ionic solutions of different concentration are separated by an ion-selective semipermeable membrane, an electric potential exists across this membrane.
- Nernst equation

$$E = -\frac{RT}{nF}\ln\frac{a_1}{a_2}$$

where a_1 and a_2 are the activities of the ions on each side of the membrane.

Half Cell potential

- When the electrode–electrolyte system no longer maintains this standard condition, half-cell potentials different from the standard half-cell potential are observed.
- The differences in potential are determined primarily by temperature
- and ionic activity in the electrolyte

$$E = E^0 + \frac{RT}{nF} \ln(a_{c^{n+}})$$

E = half-cell potential E^0 = standard half-cell potential n = valence of electrode material a_c^{n+} = activity of cation C^{n+} (generally same as concentration)

General Nernst Equation

• The more general form of this equation can be written for a general oxidation-reduction reaction as

 $\alpha A + \beta B \rightleftharpoons \gamma C + \delta D + ne^{-}$

where *n* electrons are transferred.

The general Nernst equation for this situation is

$$E = E^{0} = \frac{RT}{nF} \ln \frac{a_{C}^{\gamma} a_{D}^{\delta}}{a_{A}^{\alpha} a_{B}^{\beta}}$$

where the *a*'s represent the activities of the various constituents of the reaction.

Activation Overpotential

- The charge-transfer processes involved in the oxidation-reduction reaction are not entirely reversible.
- In order for metal atoms to be oxidized to metal ions that are capable of going into solution, the atoms must overcome an energy barrier which governs the kinetics of the reaction.
- The reverse reaction—in which a cation is reduced, thereby plating out an atom of the metal on the electrode—also involves an activation energy, but it does not necessarily have to be the same as that required for the oxidation reaction.
- When there is a current between the electrode and the electrolyte, either oxidation or reduction predominates, and hence the height of the energy barrier depends on the direction of the current.
- This difference in energy appears as a difference in voltage between the electrode and the electrolyte, which is known as the *activation overpotential.*

- Note: for a metal electrode, 2 processes can occur at the electrolyte interfaces:
- A capacitive process resulting from the redistribution of charged and polar particles with nocharge-transfer between the solution and the electrode

 A component resulting from the electron exchange between the electrode and a redox species in the solution termed *faradaic process.*

Polarizable and Non-Polarizable Electrodes

Perfectly Polarizable Electrodes

Use for recording

These are electrodes in which **no crosses the electrode-electrolyte interface** when a current is applied. The current across the interface is a **displacement current** and the electrode behaves like a capacitor. *Example: Platinum Electrode (Noble metal)*

Perfectly Non-Polarizable Electrode

Use for stimulation

These are electrodes where **current passes freely across the electrode-electrolyte interface**, requiring no energy to make the transition. These electrodes see **no overpotentials**. *Example : Ag/AgCl electrode*

Example: Ag-AgCl is used in recording while Pt is use in stimulation

Polarizable and Non-Polarizable Electrodes

No electrode is perfectly polarizable or non-polarizable.

Platinum electrodes are a reasonable approximation of perfectly polarizable electrodes.

- They exhibit Vp that primarily results from Vc and Va.
- Used for stimulation and for higher frequency biopotential measurements.

Ag/AgCl electrodes behave reasonably closely to **perfectly non-polarizable electrodes.**

- They exhibit Vp that primarily results from Vr only.
- Used for biopotential recordings that range from high frequency to very low frequency.

Motion artifact

- If a pair of electrodes is in an electrolyte and one moves with respect to the other, a potential difference appears across the electrodes known as the *motion artifact*. This is a source of noise and interference in bio-potential measurements.
- When the electrode moves with respect to the electrolyte, the distribution of the double layer of charge on polarizable electrode interface changes. This changes the half-cell potential temporarily.
- **Note:** Motion artifact is minimal for non-polarizable electrodes (Measurement electrodes AgCl).

silver/silver chloride electrodes

- Ag/AgCl is a practical electrode that approaches the characteristics of a perfectly nonpolarizable electrode
- Can be easily fabricated in the laboratory.

- Consists of a metal coated with a layer of a slightly soluble ionic compound of that metal with a suitable anion.
- Whole structure is immersed in an electrolyte containing the anion in relatively high concentrations.

Electrolytic process - Ag/AgCl electrode fabrication

 An electrochemical cell with the Ag electrode on which the AgCI layer is to be deposited serves as anode and another piece of Ag—having a surface area much greater than that of the anode—serves as cathode.

- The reactions begin to occur as soon as the battery is connected, and the current jumps to its maximal value.
- As the thickness of the deposited AgCI layer increases, the rate of reaction decreases and the current drops.
- This situation continues, and the current approaches zero asymptotically.

faculty.ksu.edu.sa/ElBrawany/Courses/Med201Files/W7.ppt

Electrode behavior and circuit model

- Current–voltage characteristics of the electrode–electrolyte interface are found to be nonlinear,
- Nonlinear elements are required for modeling electrode behavior.
- Characteristics of an electrode are sensitive to the current passing through the electrode,
- Electrode characteristics at relatively high current densities can be considerably different from those at low current densities.
- Characteristics of electrodes are also waveform-dependent.
- When sinusoidal currents are used to measure the electrode's circuit behavior, the characteristics are also frequency-dependent.

Electrode behavior and circuit model

*Rel=R*s is the series resistance associated with interface effects and due to resistance in the electrolyte.

equivalent circuit

electrode-electrolyte

 Circuit values determined by the electrode material and its geometry, and—to a lesser extent—by the material of the electrolyte and its concentration.

Electrode impedance is frequency-dependent

- At high frequencies, where 1/wC << R_d, the impedance is constant at R_s.
- At low frequencies, where $1/wC >> R_d$, the impedance is again constant but its value is larger, being $R_s + R_d$.
- At frequencies between these extremes, the electrode impedance is frequency-dependent.
 Frequency Response

- For 1 cm² at 10 Hz, a nickel- and carbon-loaded silicone rubber electrode has an impedance of approximately 30 k Ω ,
- Whereas Ag/AgCI has an impedance of less than 10Ω .

- A metallic silver electrode having a surface area of 0.25 cm² had the impedance characteristic shown by curve A.
- Numbers attached to curves indicate number mA.s for each deposit.
- At a frequency of 10 Hz, the magnitude of its impedance was almost three times the value at 300 Hz.
- This indicates a strong capacitive component to the equivalent circuit.

- Electrolytically depositing 2.5 mA·s of AgCI greatly reduced the low-frequency impedance, as reflected in curve B.
- Depositing thicker AgCI layers had minimal effects until the charge deposited exceeded approximately 100 mA·s.
- The curves were then seen to shift to higher impedances in a parallel fashion as the amount of AgCI deposited increased.

(From L. A. Geddes, L. E. Baker, and A. G. Moore, "Optimum Electrolytic Chloriding of Silver Electrodes," *Medical and Biological Engineering*, 1969, 7, pp. 49–56.)

Electrode-skin interface

- Interface between the electrode—electrolyte and the skin needs to be considered to understand the behavior of the electrodes.
- In coupling an electrode to the skin, we generally use transparent electrolyte gel containing Cl⁻ as the principal anion to maintain good contact.
- The interface between this gel and the electrode is an electrodeelectrolyte interface.
- However, the interface between the electrolyte and the skin is different.

Electrode Skin Interface

Body-surface electrode is placed against skin, showing the total electrical equivalent circuit

The series resistance $R_{\rm s}$ is now the effective resistance associated with interface effects of the gel between the electrode and the skin.

- Considering stratum corneum, as a membrane that is semipermeable to ions,
- so if there is a difference in ionic concentration across this membrane,
 - there is a potential difference E_{se} , which is given by the Nernst equation.
- Epidermal layer has an electric impedance that behaves as a parallel *RC* circuit.
- For 1 cm², skin impedance reduces from approximately 200 kΩ at 1 Hz to 200 Ω at 1 MHz.
- The dermis and the subcutaneous layer under it behave in general as pure resistances. They generate negligible dc potentials.
Reducing the effect of stratum corneum

- Minimize the effect of the stratum corneum by removing it, or at least a part of it, from under the electrode.
- Various ways:
 - vigorous rubbing with a pad soaked in acetone
 - abrading the stratum corneum with sandpaper to puncture it.
- This process tends to short out E_{se} , C_{e} , and R_{e}
- Improve stability of the signal,
 - but the stratum corneum can regenerate in as short a time as 24 h.

Psychogenic electrodermal responses or galvanic skin reflex (GSR)

- Contribution of the sweat glands and sweat ducts.
- The fluid secreted by sweat glands contains Na⁺, K⁺, and Cl⁻ ions, the concentrations of which differ from those in the extracellular fluid.
- There is a potential difference between the lumen of the sweat duct and the dermis and subcutaneous layers.

• There also is a parallel $R_p C_p$ combination in series with this potential that represents the wall of the sweat gland and duct, as shown by the broken lines.

- These components are considered when the electrodes are used to measure the electrodermal response or GSR
- These components are often neglected when we consider biopotential electrodes

What happens when the gel dries?

- Electrolyte gel is used for good contact between electrode and skin during ECG (biopotential) measurements.
- What is the equivalent circuit when the gel is fresh?
- For prolong ambulatory recording, the gel can dry. How would be equivalent circuit change?
- How would be equivalent circuit change if the gel completely dries?
- And how would this affect the ECG recording?

Motion Artifact

- In addition to the half-cell potential E_{hc} , the electrolyte gel-skin potential E_{se} can also cause motion artifact if it varies with movement of the electrode.
- Variations of this potential indeed do represent a major source of motion artifact in Ag/AgCI skin electrodes
- This artifact can be significantly reduced when the stratum corneum is removed by mechanical abrasion with a fine abrasive paper.
- This method also helps to reduce the epidermal component of the skin impedance.
- However, that removal of the body's outer protective barrier makes that region of skin more susceptible to irritation from the electrolyte gel.
- Stretching the skin changes this skin potential by 5 to 10 mV, and this change appears as motion artifact

Body Surface Electrodes

- The earliest bioelectric potential measurements relied on immersion electrodes that were simply buckets of saline solution into which the patient placed a hand and a foot, as shown in Figure.
- Plate electrodes, first introduced in 1917, were a great improvement on immersion electrodes. They were originally separated from the skin by cotton pads soaked in saline to emulate the immersion electrode mechanism.
- Later, an electrolytic paste was used in place of the pad with the metal in contact with the skin.
- Electrodes that can be placed on the body surface for recording bioelectric signals.
- The integrity of the skin is not compromised.
- Can be used for short or long duration applications

- 1. Metal Plate Electrodes
- 2. Suction Electrodes
- 3. Floating Electrodes
- 4. Flexible Electrodes

Metal-plate electrode used for application to limbs, traditionally made from German-silver (nickel-silver alloy)

Metal-disk electrode applied with surgical tape.

- Lead wire soldered or welded on the back surface.
- For ECG application made form disk of Ag with electrolytic deposition of AgCI
- For surface EMG applications made of stainless steel, platinum or gold plated disks to minimize electrolyte chemical reaction.
- Acts as polarizable electrode, and prone to motion artifacts

Disposable foam-pad electrodes, often used with ECG monitoring apparatus

- Relatively large disk of plastic foam with silver-plated disk serving as electrode, coated with AgCI
- Layer of electrolyte gel covers the disk
- Electrode side of foam covered with adhesive material
- They are preffered in hospitals due to being easy to apply and disposable.

Metallic suction electrode

- A metallic suction electrode is often used as a precordial (chest) electrode on clinical electrocardiographs.
- It requires no straps or adhesives for holding it in place.
- Electrolyte gel is placed on the contacting surface of electrode.
- This electrode can be used only for short periods of time.

Floating Electrodes

- Mechanical technique to reduce noise. Isolates the electrode-electrolyte interface from motion artifacts.
- Metal disk (actual electrode) is recessed.
- Floating in the electrolyte gel.
- Not directly contact with the skin.
- Reduces motion artifacts.

Flexible body-surface electrodes (a) Carbonfilled silicone rubber electrode

- Solid electrodes cannot conform to bodysurface topology resulting additional motion artifacts.
- Carbon particles filled in the silicone rubber compound (conductive) in the form of a thin strip or disk is used as the active element of an electrode.
- A pin connector is pushed into the lead connector hole and electrode is usd like a metal plate electrode.
- Applications monitoring premature infants (2500gr) who are not suitable for using standard electrodes.

Flexible thin-film neonatal electrode (after Neuman, 1973). (c) Cross-sectional view of the thin-film electrode in (b)

Lead

wire

adhesive

(c)

- The basic electrode consists of 13 µm-thick Mylar ٠ film with Ag/AgCl film deposition.
- Lead wire is sticked to this film with an adhesive. ۲
- Have the advantage of being flexible and ۲ conforming to the shape of newborn's chest.
- No need to be removed as they are X-ray ٠ transparent
- Monitoring new-born infants ۲
- Drawback High electric impeda ۲

Internal Electrodes – detect biopotential within body

- *Percutaneous electrodes -* electrode itself or the lead wire crosses the skin,
- Entirely *internal electrodes -* connection is to an implanted electronic circuit such as a radiotelemetry transmitter.
- No limitation due to electrolyte-skin interface
- Electrode behaves in the way dictated entirely by the electrode– electrolyte interface.
- No electrolyte gel is required to maintain this interface, because extracellular fluid is present.

(a) Insulated needle electrode, (b) Coaxial needle electrode

(c) Multiple electrodes in a single needle - Bipolar coaxial electrode,

Chronic recordings using percutaneous wire electrodes -(d) Fine-wire electrode connected to hypodermic needle, before being inserted, (e) Cross-sectional view of skin and muscle, showing fine-wire electrode in place, (f) Crosssectional view of skin and muscle, showing coiled finewire electrode in place.

Electrodes for detecting fetal electrocardiogram during labor, by means of intracutaneous needles (a) Suction electrode, (b) Crosssectional view of suction electrode in place, showing penetration of probe through epidermis,

(c) Helical electrode, that is attached to fetal skin by corkscrew-type action.

Insulated multistranded stainless steel or platinum wire wire-loop electrode for implantable wireless transmission electrodes for detecting biopotentials

(b) platinum-sphere corticalsurface potential electrode

(c) Multielement depth electrode for deep cortical potential measurement from multiple points.

Electrode Arrays

- Implantable electrode arrays can be fabricated one at a time using clusters of fine insulated wires, this technique is both timeconsuming and expensive.
- When such clusters are made individually, each one will be somewhat different from the other.
- To minimize these problems is to utilize microfabrication technology to fabricate identical 2- and 3-D electrode arrays.

Examples of microfabricated electrode arrays,

(a) One-dimensional plunge electrode array (after Mastrototaro *et al.*, 1992), -measuring transmural potential distributions in beating myocardium

(b) Two-dimensional array – extracellular recording of neural signals in animal studies

(c) Three-dimensional array (after Campbell et al., 1991). – cardiac ECG mapping

Microelectrodes

<u>Why</u>

Measure potential difference across cell membrane

Requirements

- Small enough to be placed into cell
- Strong enough to penetrate cell membrane
- Typical tip diameter: 0.05 10 microns

<u>Types</u>

- Solid metal -> Tungsten microelectrodes
- Supported metal (metal contained within/outside glass needle)
- Glass micropipette -> with Ag-AgCl electrode metal

Metal Microelectrodes

Extracellular recording – typically in brain where you are interested in recording the firing of neurons (spikes).

Use metal electrode+insulation -> goes to high impedance amplifier...negative capacitance amplifier!

Metal Supported Microelectrodes

(a) Metal inside glass

(b) Glass inside metal

Glass Micropipette

Lead wire

Cap

Metal electrode

heat

Ag-AgCl wire+3M KCl has very low junction potential and hence very accurate for dc measurements (e.g. action potential)

A glass micropipet electrode filled with an electrolytic solution (a) Section of fine-bore glass capillary.

(b) Capillary narrowed through heating and stretching.(c) Final structure of glass pin of

(c) Final structure of glass-pipet microelectrode.

(c) <u>Intracellular recording</u> – typically for recording from cells, such as cardiac myocyte <u>Need high impedance amplifier...negative capacitance amplifier</u>!

Fill with

Electrolyte

or 3M KCI

intracellular fluid

Electrical Properties of Microelectrodes

Use metal electrode+insulation -> goes to high impedance amplifier...negative capacitance amplifier!

Equivalent circuits

Electrical Properties of Glass Intracellular Microelectrodes

Stimulating Electrodes

Features

- Cannot be modeled as a series resistance and capacitance (there is no single useful model)
- The body/electrode has a highly nonlinear response to stimulation
- Large currents can cause
 - Cavitation
 - Cell damage
 - Heating

Types of stimulating electrodes

- 1. Pacing
- 2. Ablation
- 3. Defibrillation

Platinum electrodes: Applications: neural stimulation

Modern day Pt-Ir and other exotic metal combinations to reduce polarization, improve conductance and long life/biocompatibility

Steel electrodes for pacemakers and defibrillators

Microelectronic technology for Microelectrodes

Different types of microelectrodes fabricated using microfabrication/MEMS technology

Michigan Probes for Neural Recordings

for recording and/or stimulation of the central nervous system.

Neural Recording Microelectrodes

Figure 3. (a) 8 shafts, each with 8 electrodes, compared to a human hair. (b) Close up of 2 electrodes.

Reference : http://www.acreo.se/acreo-rd/IMAGES/PUBLICATIONS/PROCEEDINGS/ABSTRACT-KINDLUNDH.PDF In vivo neural microsystems: 3 examples

University of Michigan Smart comb-shape microelectrode arrays for brain stimulation and recording

University of Illinois at Urbana-Champaign High-density comb-shape metal microelectrode arrays for recording

Fraunhofer Institute of Biomedical (FIBE) Engineering Retina implant

Multi-electrode Neural Recording

Reference :

http://www.cyberkineticsinc.com/technology.ht m

Reference : http://www.nottingham.ac.uk/neuronal-networks/mmep.htm

Biosensors

Wei-Chih Wang Southern Taiwan University of Technology

Biosensors

Analyte: substances to be measured

Small molecules: sugars, cholestrol, glutamic acid, phosphate, etc.

Macro molecules: amino acid (DNA, RNA), peptide (protein, antibody, enzyme) Receptor: sensing element responds to substance being measured, interaction is highly selective.

Enzyme, antibody, cells

Transducer: device converts physical or chemical changes due to analyte-receptor reactions to eletronic signals whose magnitude is proportional to the amount of the analyte

Electrochemical (potentiometric, voltammetric, conductimetric) Optical (fluorescence, absorbance, light scattering, refractive index) Field effect transistor Mechanical, thermal, Piezoelectric, SAW, Magnetic

Signal processor: amplifier, filtration, correlation etc.

Transduction Methods: Electrochemical

5 cm

5 mm

10mm

Ion Selective Field Effect Transistor

ISFETs sense the concentration (activity level) of a particular ion in a solution. Gate metal is replaced with an ion selective membrane.

UWME Dynamics and Vibration Laboratory

Current from source to drain related the gate potential

When there is a high concentration of positive ions in the solution, a lot of them will accumulate on the gate, widening the channel between the source and drain. With a low concentration of positive charged views, the channel will be narrow. 5

(Fronherz, 2001)

The chip with cultured HEK293 cells is illuminated with blue light and observed through a filter that transmits some light reflected from the chip and the emission of green fluorescent protein used as a reporter for the transfection with maxi- K_{Ca} channels.

Enzyme-based biosensor glucose oxidized based sensor

Optical Sensors for Chemical or Biochemical Sensing

- Light application for monitoring tissues and cells:
- A multi-parameter sensor-chip-based system

Advantages:

- sensitivity
- simple and compact
- noninvasive !

Integration of optical sensors into microfluidic system

- For use in optical microscopy and cellular biology
- Measure the chemical properties of cells or monitor chemical changes that take place within cells as they respond to external changes in their environment and to internal changes that occur in embryonic cells as an organism develops (on-line monitoring)

Transduction Methods : Optical

•Types of	measu	rements		
-Absor	banc e l(ig260nm,	Peptide280nm)	
-Fluor	escend	ce		
-Refra	ctive	index		
-Light	scatt	ering		

•Changes measured
 -Intensity
 -Frequency
 -Phase shift
 -Polarization

Types of components

Fiber optics
Wave guides
Photodiode
Spectroscopy
Charge coupled device (CCD)
Single photon APD
Interferometers

Optical Biosensor Basing on Evanescent Wave

Laser Induce Fluorescence (LIF) Based Detection

Regenerable biosensor

(Sapsford K 2002)

- Electrochemical control of the binding and dissociation of antibody-antigen
- Total internal reflectance fluorescence (TIRF) spectroscopy sensing techniques used

OPTICAL WAVEGUIDE LIGHTMODE SPECTROSCOPY

Microvaccum Inc.

Theory and Models

Ray-optic representation of a coupled and guided wave

Electromagnetic field distribution for a zeroth mode

Microvaccum Inc.

Microvaccum Inc.

Microvaccum Inc.

Immunosensor

Microvaccum Inc.

Monomolecular chemoresponsive coating, which consists of immobilized antibody (Ab) molecules, that bind the corresponding antigen (Ag) molecules.

Chemosensor

Microvaccum Inc.

With a typically 0,1-1 mm thick chemoresponsive layer whose refractive index is changed by binding the analyte molecules.

Proposed Optical Biosensor

- Components
 - Waveguide
 - Microfluidic channels
- How it works
 - based on total internal reflection

What to detect?

- DNA
- Antibodies
- Other molecules or chemicals

Biochemical Sensors

- Oxygen sensor- oxygen regent sensor, (immobilized hemoglobin which changes color with absorbed oxygen), oxygen reflectance spectroscopy .
- Carbon dioxide sensor- measured by monitoring pH of a bicarbonate-carbonic acid equilibrium mixture, according to the mass-reaction equation.
- Surface reaction measurement (i.e. chemicaly linked to waveguide in a manner which preserves the specific binding activity, transmission properties of guide are used to meaure antibody-antigen reaction) light scattering, fluorescence, absorption
- Flow sensor (laser-Doppler, interferometer)
- Glucose detector (viscosity, absorption, reflection)
- Concentration
- pH sensor (hydrogen ion-pearmable membrane enclosing a colorimetric pH indicator- optical sensor monitoring changes in reflectance as dye responds to pH changes)
- Acidity sensor

w. wang

- Turbidity (or scattering) measurement (determination of impurities in liquids and the measurement of particle size- oil in water monitoring reflectance probe)

Applications for Medical Instrumentation

- Endoscopes
- Laser surgery and therapy
- Angioplasty

-Temperature sensors (hyperthermia, cardiac monitoring, by thermodilution, tissue thermal damage monitoring)

-Pressure sensor (cardiovascular, intracranial, neurology urodynamics)

- Chemical sensors:blood oximetry, pH, pO₂, pCO₂ (metabolic and respiratory problems, blood an tissue oxygen content, oxygen,hemoglobin dissociation curve)

Material Requirements (Optical)

- Low loss
 - absorption
 - scattering
- Low fluorescence
- High refractive index
- Easy to fabricate

Material Requirements (Fluidic)

Biocompatible

- Hydrophobic/Hydrophilic
- Sufficient bond strength with optic components

-Low temperature bonding necessary

Biocompatibility

- The interface between live cells and sensor is one of the key issues of the design
- Study of biocompatible materials (i.e. PEG, PEO avoid adsorption of proteins, clogging with cells, immune response etc.)
- Study of gas or molecule absorbing materials (i.e. thermally responsive biopolymer ppNIPAM, enzyme, antibody, cells)

Possible Materials

- Present
 - $-Si/Si_3N_4$
 - glass/ion-exchange
 - PDMS
- Future
 - PMMA
 - Mylar
 - Teflon

Material Properties-Ion Exchange Glass

- Loss: 0.0006/cm
- Fluorescence: 510112 (arb)
- n = 1.47
- Biocompatible: Yes
- Hydrophilic

Material Properties - PDMS

- Loss: 0.0008/cm
- Fluorescence: 36383 (arb)
- n = 1.5
- Biocompatible: Yes
- Hydrophobic

Fabrication Techniques

Bulk micro-machining

- Wet etching
- Vapor-phase etching
- Plasma/reactive ion etching
- µmolding
- Laser etching
- screen printing

Surface micro-machining

- Thin film process (sol-gel, wet etching, dry etching, film deposition, lift-off patterning, epitaxial growth etc.)
- sacrificial process (phase-change release, plasma etching, sacrificial layer)
- bonding process (anodic bonding, silicon fusion etc.)
- laser etching
- E-beam
- LIGA

Questions	opt1	opt2	opt3	opt4
1.In direct comparison method the unknown quantity is				
compared directly with	primary standard	secondary standard	primary or secondary	working standard
2. Indirect In comparison method the unknown quantity is compared directly with	primary standard	secondary standard	standard meter	none
3.Based on principle of operation, the method of		-		
measurement is classified as	null method	deflection method	null & deflection	none
4.Deflection in the scale is the type of	deflection method	null method	both a & b	none
5.Balancing principle is used in the	deflection method	null method	both a & b	none
6.Galvanometer comes under which method	deflection method	null method	direct	indirect
7. The output of the transducer may be	voltage	current	air pressure	all the above
8. Strain gauge along with wheatstone bridge is called	sensor	transducer	device	none
9. Which method offers high accuracy of measurement?	deflection method	null method	deflection & null	none
10. The signal conditioning includes	amplification	demodulation	filtering	all the above
		input source to produce	standard instrument	
11.To carry nout calibration one needs	standard instrument	measured value	and input source	instrument
12. In static calibration, all other variables				
are and the one in focus	constant, varied	varied, constant	either a or b	none
13. The error can be classified into howmany categories.	2	3	5	4
14.Errors due to human factors are called	Gross error	Systematic error	Random error	none
	autoranging of digital	proper selection of		
15. Gross errors are eliminated by	meters	instrument	proper computation	all the above
	~	~ .		
16. The error due to changes in external conditions is called	Gross error	Systematic error	Random error	none
17.Systematic error can be classified into howmany				
categories.	2	3	5	6
18. The error arises out of the changes in the properties of				
the component used in the instrument.	instrumental	environmental	static	dynamic
19. Theerror are due to the changes in the environmental				
conditions	instrumental	environmental	static	dynamic
20. The errors are caused by the limitations of the				
measuring device	instrumental	environmental	static	dynamic
21. Tjhe errors are caused by the instrument slow response	instrumental	environmental	static	dynamic
22. Which is the unpredictable error	Gross error	Systematic error	Random error	none
23. The systematic way of specifying the uncertainity is				
called	error	statistical method	accuracy	none
24. The statistical method uses terms like	arithmetic mean	deviation	median, mode	all the above
25. The average value of reading is given by	arithmetic mean	deviation	median	mode
26. The departure of a given reading from the arithmetic	unumene mean	deviation	mountin	mode
mean of group of reading is called	arithmetic mean	deviation	madian	mode
27. The square of the standard deviation is called	vorion co	deviation	deviation square	mode
27. The square of the standard deviation is called	variance	ueviation	deviation square	mode
28. The middle value of the set when it is arranged in				
ascending or descending order is called	arithmetic mean	deviation	median	mode
29. The value which occurs most frequently in a set of				
observations is called	arithmetic mean	deviation	median	mode
The precise measurement is possible in	Gaussian curve	Crude method	both a & b	none
31. The bell shaped curve is called	Gaussian curve	bell curve	inverted U curve	both a & b
32. Which of the following are statistical method of	normal distribution of			
analyzing the error	error	probable error	limiting error, odds	all the above
33. The probable error has the value as	+s	-S	± 0.6745s	both a &b
34. The maximum deviation is called	probable error	limiting error	odds	uncertainity
	odds(odds+1) =	initial gentier	odds(odds*1) =	odds(odds/1) =
35 The relation between probability of occurance and odds	probability of	odds(odds-1) =	probability of	probability of
is given by	occurance	probability of occurance	occurance	occurance
36. The transducer can be classified into how many	occurance	probability of occurance	occurance	occurance
different ways	2	2	4	5
27. Classification based on physical effect employed	5	2	+ variation of	5
37. Classification based on physical effect employed	· · · · · ·	· · · · · · · ·	variation of	11.4 1
includes	variation of resistance	variation of inductance	capacitance	all the above
38. Potentiometer and strain gauge are based on the			variation of	
principle of	variation of resistance	variation of inductance	capacitance	all the above
39. Induction Potentiometer and LVDT are based on the			variation of	
principle of	variation of resistance	variation of inductance	capacitance	all the above
			variation of	
40. Capacitor microphone is an example of	variation of resistance	variation of inductance	capacitance	all the above
41. The piezoelectric crystal is	quartz	Rochelle salt	both a & b	none
42. The deformation obtained when elastic member is				magnetostrictive
subjected to mechanical stress is called		elastic effect	piezoelectrie effect	effect
-	hall effect	clustic chiect	-	
	hall effect temperature	clustic cirect		
43. The classification based on quantity converted includes	hall effect temperature transducer	pressure transducer	flow transducer	all the above
43. The classification based on quantity converted includes 44. Based on source of energy for the output, transducer	hall effect temperature transducer	pressure transducer	flow transducer	all the above
43. The classification based on quantity converted includes 44. Based on source of energy for the output, transducer are classified into	hall effect temperature transducer	pressure transducer	flow transducer	all the above
43. The classification based on quantity converted includes 44. Based on source of energy for the output, transducer are classified intotypes 45. Which absorbs energy from the input medium and	hall effect temperature transducer 3	pressure transducer 2	flow transducer	all the above 5
43. The classification based on quantity converted includes 44. Based on source of energy for the output, transducer are classified intotypes 45.Which absorbs energy from the input medium and converts directly into the output signal	hall effect temperature transducer 3 active	pressure transducer 2 passive	flow transducer 4 both a & b	all the above 5

46. which uses the energy it absorbs from the input medium as acontrol signal to transfer energy from the				
47 An axample of active transducer is	thermoscouple	passive	both a & b	none
47. All example of active transducer is	thermocouple	strain gauge	both a & b	none
49. Units are broadly classified into how many types	3	2	5	4
50. Units which are fundamental to most other physical quantities is	fundamental unit	derived unit	both a & b	none
51. The units which are expressed in terms of fundamental unit is called	fundamental unit	derived unit	both a & b	none
52. Example of fundamental unit is	length	mass	time	all the above
53. Example of derived unit is	area	mass	velocity	both a & c
supplementary unit and derived unit	6.2 many	7.2 many	5.4 many	2.6 many
55. The unit of luminous intensity is	cad	candela	both a & b	cd
56. International Bureau of weights and measures is				
located at	Paris	India	England	Japan
	National standards			
57. Primary standard are maintained by	laboratory	International laboratory	Regional laboratory	both b & c
58. In India, National Physical Laboratory is located at	Mumbai	steradian	Calcutta	Chennai
60. The fundamental unit of mass is	gram	kilogram	milligram	none
	8			
		UNIT II		
Questions	opt1	opt2	opt3	opt4
of the transducer is essential for the proper	Characteristics	Input	Output	selection
The performance Characteristics can be broadly classified	Characteristics	Input	Output	selection
into categories	4	2	5	3
The two characteristics of transducer are	static	dynamic	unstable	static&dynamic
characteristics gives quality of				
measurement while the meseaured quantities are either	:			1
constant or vary slowly	static	dynamic	sensitivity	linearity
characteristics gives quality of measurement				
while the meseaured quantities are vary rapidly with time	static	dynamic	sensitivity	linearity
	linear differential	-	non-linear differential	
The dynamic characteristics are described by	equation	differential equation	equation	both a& c
The differential equation becomes for	Lasar		hade a 9 h	
Which of the following are static characteristics	senstivity	linearity	threshold	all the above
Which of the following are static characteristics	hysteresis	resolution	accuracy	all the above
is defined as the slope of the static			2	
calibration curve	senstivity	linearity	threshold	resolution
If the calibration curve is not a straight line then the				
sensitivity will with input value	same	vary	equal	both a & c
The sensitivity of mercury in glass thermometer is	mm/ ° C	mput unit/ output unit mm/ kpa	mm/s	none
The sensitivity of pressure gauge is	angular degree/ kpa	angular degree/ ° C	angular degree/ s	mm/ kpa
relationship is most desirable for many				
applications	non-linear	linear	good	accurate
is a measure of the maximum deviation of				
line	senstivity	linearity	threshold	resolution
The straight line for plotted calibration curve can be	sensaring	linearly	lineshold	resolution
determined by	least square fit	squares fit	differential equation	all the above
In least squares method, the best-fit straight line is	sum of squares of	minimum of sum of	maximum of sum of	
determined by choosing the	deviation	squares of deviation	squares of deviation	squares of deviation
The linearised relation between X and Y can be expressed	V− aX⊥h	V- aX-b	X− aV⊥h	X- aV-b
	Percentage of actual	Percentage of full scale	combination of both	n-ui o
Linearity can be expressed as	reading	reading	a& b	all the above
Expressing the linearity in the combination of both actual				
and full scale reading is known as	Dependant linearity	Response	Independant linearity	All the above
When $\xi = 1$, the system is said to be	undamped	critically damped	non damped	over damped
is the degree of closeness with which the	sensitivity	linearity	precision	accuracy
The deviation from the nominal output in absolute units or		,	precision&repeatabilit	,
a fraction of full scale is called	precision error	repeatability error	y	error
is the closeness to the true value	sensitivity	linearity	precision	accuracy
When $\xi > 1$, the system is said to be	undamped	critically damped	non damped	over damped
I ne minimum value below which no output can be detected	threshold	resolution	range	snan
The change in output is not detected until certain input	unconoid	resolution	iunge	spun
increment of non- zero arbitary value is exceeded and this				
is called	threshold	resolution	range	span

defines the smallest measurable input change	threshold	resolution	range	span
The mismatching of input-output curves when input to				
transducer is increased from zero to full scale and then				
decreased back to zero is called	threshold	resolution	range	hysteresis
Which of the following members exhibit considerable				
amount of hysteresis effect	springs	bellows	diaphragms	all the above
The of a transducer is specified as from lower				
values of input to higher value of input	range	span	hysteresis	resolution
The of a transducer is specified as the difference				
between the higher and lower limits of recommended input				
values	range	span	hysteresis	resolution
The effect of a transducer gives a measure of				
its disturbance on the measuring quantity	loading	sensitivity	linearity	hysteresis
			input	
The loading effect is usually expressed in terms of	input impedance	stiffness	impedance&stiffness	none
The order of a transducer is the derivative of				
differential equation	highest	lowest	medium	none
The input-output relationship of a transducer is described by d 3 $y(t) / dt3 + 3 d2 y(t) / dt2 + dy(t)/dt + 4 y(t)$. The order of this transducer is				
		3	4 2	1
Which of the following are test inputs	impulse input	step	ramp	all the above
The laplace function of impulse input is		1 K/ S	K/S ²	$2K/S^3$
The laplace function of step input is		1 K/S	\mathbf{K}/\mathbf{S}^2	2K/S ³
The laplace function of step input is		1 K/S	K/S K/S ²	2K/0 ³
The taptace function of ramp input is		1 K/ S	K/S	2K/S
The laplace function of sinusoidal input is		1 K/ S	K/S ²	$Kw/S^2 + w^2$
			$a_2 d^2 y(t)/dt^2 + a_1$	
The input-output relationship of a zero order transducer is		$a_1 dv(t)/dt + a_0 v(t) =$	$dv(t)/dt + a_0 v(t) =$	
given by	v(t) = kr(t)	$\mathbf{h}_{0}\mathbf{u}(t)$	h _o u(t)	none
8)()()	00u(t)		
			$a_2 d^2 y(t)/dt^2 + a_1$	
The input-output relationship of a first order transducer is		$a_1 dy(t)/dt + a_0 y(t) =$	$dy(t)/dt + a_0 y(t) =$	
given by	y(t) = kr(t)	$b_0 u(t)$	b ₀ u(t)	none
			$a d^{2} x(t)/dt^{2} + a$	
		1 (1)/1((1)	$a_2 \mathbf{u} \mathbf{y}(t)/\mathbf{u} \mathbf{u} + a_1$	
The input-output relationship of a second order transducer	(i) 1 (ii)	$a_1 dy(t)/dt + a_0 y(t) =$	$dy(t)/dt + a_0 y(t) =$	
is given by	y(t) = kr(t)	$b_0 u(t)$	$b_0 u(t)$	none
The laplace transfer function of a zero order transducer is			$Y(S)/R(S) = (b_0/a_0)/$	
given by	Y(S)/R(S)=K	$Y(S)/U(S) = K/\tau_{S} + 1$	$(a_2/a_0s^2 + a_1/a_0s + 1)$) none
given cy	1(0)/11(0) 11	1(0)/0(0) 12 10 11	(u ₂ /u ₀) + u ₁ /u ₀ + 1/)
			$\mathbf{V}(\mathbf{C}) / \mathbf{D}(\mathbf{C}) = (\mathbf{b} / \mathbf{c}) / \mathbf{c}$	
The laplace transfer function of a first order transducer is			$f(S)/R(S) = (b_0/a_0)/$	
given by	Y(S)/R(S)=K	$Y(S)/U(S) = K/\tau s + 1$	$(a_2/a_0s^2+a_1/a_0s+1)$) none
The laplace transfer function of a second order transducer			$Y(S)/R(S) = (b_0/a_0)/$	
is given by	Y(S)/R(S)=K	$Y(S)/U(S) = K/\tau_{S} + 1$	$(a_2/a_0s^2 + a_1/a_0s + 1)$) none
g j	- (-),(-)		(u2/ u0 0 + u1/ u0 0 + 1/	,
Example of zero order transducer is	potentiometer	theremocouple	vibration galvanometer	all the above
F********************************	F		8	
Example of first order transducer is	potentiometer	theremocouple	vibration galvanometer	all the above
	potentioniteter	uleiellioeoupie	vioration garvaronieter	
Example of second order transducer is	potentiometer	theremocouple	vibration galvanometer	all the above
	F		8	
		UNIT III		
Questions	opt1	opt2	opt3	opt4
1.Resistance of the conducting wire is given by	$R = \rho l/a$	$R = \rho l 2/a$	$R = \rho a/l$	R = a/l
2. The movement of the slider in the potentiometer can be	translational	rotational	combination of two	all the above
3. In rotary potentiometer Θ_n is	350°	300	270°	90°
4. The error due to loading in the potentiometer is the ratio				
of	Rp/Rm	Rm/Rp	2Rp/Rm	Rp/2Rm
5 To resolution in a potentiometer can be	1	· · r	1	1
used as the resistance element	single slide wire	double slide wire	double belical	thick wire
6 Resistance of a given length of wire can be increased by	single since with	abubic silue wile	aouoie neneal	uniter white
the diameter of the wire	increasing	dooroosing	aithar a or h	all the above
7. The practical limit for wire enacing at present times is	mercasing	accreasing		an me above
hetween	100 to 150	100 to 200	75 to 150	75 to 100
8. The resolution of a notentiometer can be improved by	multi_turn	100 10 200	75 10 150	10 100
using	notentiometer	gears	carbon film	all the above
9 The main source of poise is of the slider	vibration	positioning	material	resistance wires
10 The source of noise in potentiometer are	dirt	wearout products	vibration	all the above
11 The gage factor is change per unit strain	unit resistance	unit canacitance	unit inductance	all the above
12 The poissoins ratio is always between	0 and 0 5	0 and 1	1 and 2	1.5 and 2
12. The poissonis ratio is always between	0 and 0.5	J and 1	1 mu 2	1.5 und 2

13. The common types of strain gauges are made of14. The Gauge factor of strain gauge is made of Advance is	Advance	Isoelastic	both a and b	Nichrome
15. The Gauge factor of strain gauge is made of Isoelastic	1	2	3	3.5
is	1	2	3	3.5
16 strain gauge can be used for very high	h and a d			hath a suid h
gauge factor. 17. In unbonded strain gauge, the resistance wires of about	bonded	unbonded	semiconductor	both a and b
diameter is used.	0.025mm	0.0025mm	0.25mm	25mm
18. The order of the instrument is if		ft	d	4
10. The order of the instrument is if force is	zero	first	second	third
considered as input	7970	first	second	third
20. The filament wire in bonded type is made in the form	2010	IIISt	second	umu
of	flat orid	flat helix	thin foil	all the above
21 In flat grid gauge lengths were around	2.5cm	25cm	2.5mm	25mm
22. In flat helix gauge lengths were upto	0.15cm	0.015cm	0.1cm	0.15mm
23. In foil grid type, gauge lengths were about	1mm	0.5mm	1.5mm	2mm
24. For the measurement of strain above 250° C				
is suitable.	Nichrome V	Isoelastic	Advance	both b and c
25. The base carrier material for filament wire are	impregnated paper	phenolic plastic	phenolic plastic	all the above
26. Temperature compensation in strain gauge is obtained			thermal conductivity	
by using identical to the active gauge	dummy gauge	pirani gauge	gauge	ionization gauge
27. The gauge factor for semiconductor strain gauge is				
mainly contributed by	area	length	piezoresistive effct	all the above
28. If the conductor or metal are used to measure the	resistance			
temperature, they are known as	thermometer	thermistor	anemometer	all the above
29. If the semi conductor are used to measure the	resistance			
temperature, they are known as	thermometer	thermistor	anemometer	all the above
30. The conductive elements used in resistance	niekol	aannar	tungton	all the above
thermometer are	піскеі	vofer tupo registence	tungton	all the above
31 For measuring surface temperature is used	nlatinum RTD	bulb	nickel RTD	all the above
32. The choice of elements for the resistance thermometer	plumum RTD	buib	mener KTD	an the above
for the temperature range of	Platinum	Copper	Nickel	Tungten
$250 \text{ to } 1000^{\circ} \text{ C}$ is				8
33. The choice of elements for the resistance thermometer				
for the temperature range of				
$160 \text{ to } 2600^{\circ} \text{ C}$ is	Platinum	Copper	Nickel	Tungten
35. The choice of elements for the resistance thermometer		- · · FF ···		8
for the temperature range of	Platinum	Copper	Nickel	Tungten
250 to 1100 [°] C is				0
36 are used to measure the velocity of flow	Potentiometer	Anemometer	Strain gauge	Thermometer
37 are used to measure the temperature	notentiometer	Anemometer	Strain gauge	Thermometer
38. Hot wire anemometer are classified into	potentionieter	rmemometer	Strain gaage	Thermometer
categories	2	3	4	4
39. The Gauge factor of Nichrome is	2	3	4	5
40. The Gauge factor of Iridium - Platinum is	2.1	5.1	4.1	1.1
41. The Gauge factor of Nickel is	-12	-3	-4	-54
42. The Gauge factor of Manganin is	0.57	0.67	0.47	0.77
43. The lead wire insulation material for temperature below				
75°C is	Nylon	Vinyl	Polyethhylene	Teflon
44. The lead wire insulation material for temperature				
between 75° C to 65° C is	Nylon	Vinyl	Polyethhylene	Teflon
45. The lead wire insulation material for temperature				
between 75°C to 95°C is	Nylon	Vinyl	Polyethhylene	Teflon
46. The lead wire insulation material for temperature	-			
between 75° C to 260° C is	Nylon	Vinvl	Polvethhylene	Teflon
	·			

47.	In a resistance potentiometer, the non-linearity is	Increases with increase	Decreases with increase	It is not dependent upo	None of the above
48.	The Gauge factor is affected by factors	2	4	3	Many
49.	The base carrier material used in strain gauge should be	Poor	Good	Very poor	Moderate
50.	The frequency response up to to 17000 cps when the av	10 m / s	30 m / s	90 m / s	9 m / s
51.	The frequency response up to to 30000 cps when the av	10 m / s	30 m / s	90 m / s	9 m / s
52.	The frequency response up to to 50000 cps when the av	10m/s	30 m / s	90 m / s	9 m / s

53. In a resistance potentiometer high value of resistance of Low value of sensitivity High value of sensitivity Low value of Non-line; Low value of error

54. An unbonded strain gauges are	Exclusively used for tra	Exclusively used for Stre	Commonly used for bo	None of the above
55. The Wire wound starin gauge the approximate value of	$1+2\Delta s/s$	$1 + 2 \Delta R / R$	1 + 2 v	$1 + 2 \Delta D / D$
56. Platinum is the commonly used metal for RTD because	Platinum has a constan	The resistivity of platinu	Platinum is available in	All the above
	temperature range be	tween $0 - 100^{\circ}$ C		
57. The base carrier material used in strain gauge should be	poor	Good	Very poor	Moderate
		UNITIN		
QUESTIONS	OPT1	OPT2	OPT3	OPT4
1. The transducer in which self inductance or the mutual	0112	02		
inductance of a couple of coils is changed when the input			Capacitance	
is varied is	Resistance transducer	Inductance transducer	transducer	All the above
2.Inductance of a coil can be described in terms of	no of turns	permeability of material	geometric factor	All the above
3.LVDT works on the principle of	self inductance	mutual inductance	both a and b	none of the above
4. The secondary windings have no of turns	equal	unequal	half of other	none of the above
5. The frequency of a.c applied to primary windings may	50 UZ to 20 KUZ	50 HZ to 20HZ	10017	50847
be between	30 HZ 10 20 KHZ	30 HZ 10 20HZ	100HZ	JUKHZ
6 When the soft iron core is in null position, the emf				
induced in secondary windings S1 and S2 is	ES1=ES2	ES1 <es2< td=""><td>ES1>ES2</td><td>none of the above</td></es2<>	ES1>ES2	none of the above
7. When the soft iron core is moved to left of null position,				
the emf induced in secondary windings is	ES1=ES2	ES1 <es2< td=""><td>ES1>ES2</td><td>none of the above</td></es2<>	ES1>ES2	none of the above
8. When the soft iron core is moved to right of null				
position, the emf induced in secondary windings is				
	ES1=ES2	ES1 <es2< td=""><td>ES1>ES2</td><td>none of the above</td></es2<>	ES1>ES2	none of the above
9. The output curve of LVDT is linear upto		4.0	_	
of displacement	6mm	10mm	5mm	2mm
10. At null position the output voltage is	zero	positive	negative	not defined
voltage is	70*0	positive	nagativa	not defined
12 When the core is moved right(ie) nearer S2 the output	2010	positive	negative	not defined
voltage is	zero	positive	negative	not defined
13. When the core is moved left (ie) nearer S1, the phase		1	6	
angle is	$\phi = 0^{\circ}$	$\phi = 90^{\circ}$	$\phi = 180^{\circ}$	$\phi = 360^{\circ}$
14. When the core is moved right (ie) nearer S2, the phase				
angle is	$\phi = 0^{\circ}$	$\phi = 90^{\circ}$	$\phi = 180^{\circ}$	$\phi=360^o$
15. The range of LVDT measurement of displacement is	1.25mm to 250mm	1.5mm to 200mm	1.25m to 200m	200mm
16. LVDT is device	high friction	frictionless	less friction	none of the above
17. Application of LVDT	aircrafts	missiles	space vehicles	All the above
18.LVD1 has high sensitivity of about	30 V/mm	40 V/mm	50 V/mm	100 v/mm
10 I VDT is nower consumption device	high	low	very high	verylow
20 I VDT is used for measurement of	displacement	tension in a cord	force pressure	All the above
21.Induction potentiometer has windings	one	two	three	many
22. The distribution of rotor and stator windings provide				
linear relation upto	±90°	$\pm 180^{\circ}$	±270°	All the above
23. The variable reluctance accelerometer for measurement				
of acceleration has the range of	±2g	±4g	±5g	$\pm 7g$
24. When the acceleration of +4g was applied, the output				
obtained is	10V	5V	0V	negative voltage
25. When the acceleration of $-4g$ was applied, the output	1017	5 17	014	
obtained is	10V	5V	0V	negative voltage
26. The residual voltage in the LVDT is due to	harmonics in input	interruption in input	both a and b	none of the above
27. The transducer in which capacitance changes when the	Pasistance transducer	Inductance transducer	transducer	All the above
28 In Canacitive transducer, the change in canacitance is	change in overlapping	change in distance	change in dielectric	All the above
caused by	area	between plates	constant	All the above
29. The capacitance changes with change in		F		
area of plates	linear	nonlinear	independent	none of the above
30. The Capacitance of parallel plate capacitor is	$C = \epsilon d/A$	$C = \epsilon A/d$	$C = \epsilon A/d2$	$C = \epsilon / d$
31. The Capacitive transducer with parallel plate capacitor				
is suitable for measurement of linear displacement ranging				
from	1m to 10 m	1mm to 10mm	1 mm to 10mm	upto 15mm
32. The capacitance is when the two plates				
completely overlap each other	maximum	minimum	zero	none of the above
between plate increases	increases	decreases	independent	Zero
34. The sensitivity of the canacitive transducer can be	mercases	400104505	macpenaent	2010
increased by making the distance between the plates				
	large	small	constant	very large

35. The Capacitance transducer can be used for measurement of	linear displacement	angular displacement	both a and b	none of the above
36.The capacitive transducer with differential arrangement hasfixed plates &movable plate	2,1	1,2	2,2	3,1
37. The capacitive transducer with differential arrangement can be used for measurement of displacement in the range				
of 38.Capacitive transducer using the principle of change of capacitance with change of dielectric are normally used for	10-8 mm to 10 mm	1mm to 10 mm	> 15mm	< 1mm
mm of	solid level	liquid level	gas levels	All the above
39. The transfer function of capacitive transducer is	$K / 1 + \tau s$	Kτ / 1+ τs	$K\tau s / 1 + \tau s$	$Ks / 1 + \tau s$
40. The phase shift of capacitance transducer is	$\phi = 0$	$\varphi = \pi/2$	$\varphi = \pi/2 - \tan -1 \omega \tau$	none of the above
41.The force requirement of capacitive transducer is and therefore they require power to				
operate them	small,less	large,high	small,high	large,less
42transducers is used for measurement of humidity in gas	resistive	inductive	capacitive	All the above
43. Air cored inductive transducers are suitable for use	at lower frequencies	at higher frequencies	at equal frequencies	transducers
iron core counter part is	smaller	bigger	same	All the above
45.Inductive transducer are used in differential	external magnetic	20	variations of supply	
configuration because the output is not influenced by	fields	temperature changes	voltage & frequency both static & dynamic	All the above transient
46. Capacitive transducers are normally used for47. The dynamic characteristics of Capacitive transducer	static measurement	dynamic measurement	measurement	measurement
are similar to those of	low pass filter	high pass filter	notch filter working them over a	band stop filter
48. The nonlinear response of Capacitive transducer can be	differential		small displacement	
made linear by	arrangement	use of an OPAMP	range	All the above
	exhibit linear characteristics upto		has an infinite	
49.An LVDT	displacement of ±5mm	has a linearity of 0.05%	resolution nickel iron hydrogen	All the above
50.In a LVDT core is made up of a 51.For the measurement of liquid level the dielectric used	non magnetic material	ferro electric material	annealed material	All the above
is	conducting liquid	non conducting liquid	either a or b based on dielectric	none of the above
52. Capacitance transducer is temperature53. Capacitive transducer cannot be used particularly for	sensitive	insensitive	either a or b	none of the above
measurements 54. Capacitance transducer for measurement of pressure is	static	dynamic	both a and b	transient
based on change in	area	distance between plates	dielectric constant	All the above
because it has	hysterisis	hysterisis	coefficient	none of the above
56.For a cylindrical capacitor, the capacitance is 57.The separation between LVDT core and LVDT coils	C= $2\pi\epsilon x/\log(D2/D1)$	$C=2\pi\epsilon x/\log(D/$	$C=2\pi x/\log(D2/D1)$	$C=2\pi\epsilon/\log(D2/D)$
permits the 58. The primary winding in the circuit is always provided	isolation of media	long life	frictionless device	All the above
with	ac source	dc source	both a and b	none of the above
59. The core in the LVDT is made up of material with	high permeability	low permeability	either a or b	none of the above
60transducers is used for measurement of humidity in gas	resistive	inductive	capacitive	All the above
QUESTIONS	OPTION A	OPTION B	OPTION C	OPTION D
	rapid dissolving of		conner electrode gets	conner electrode goto
	magnesium in dilute	slow dissolving of	covered with bubbles of	covered with bubbles
Polarization occurs due to	acid	magnesium in conc. Acid is prevented through	hydrogen gas	of oxygen gas
In a dry cell, polarization	cannot be prevented	ammonium nitrate mixture	is prevented through magnese oxide	is prevented through NaOH mixture
In electrochemical cell movement of ions is inhibited by a Conventionally, electrode potential refers to	salt bridge oxidation	electrode reduction	solution neutralization	all of them charge potential
In non-metals, half cells electricity is conducted via solution by	platinum wire	platinum foil	both A and B	none
Standard electrode potential for any half-cell is measurement of	voltage	ions apart	radii of ions	deposited ions
Which of the following cannot be used as secondary reference	Colomol electre -	Silver-silver chloride	Mercury-mercury	Class plantes 1
electrode? Which of the following is known as calomel?	Calomei electrode Silver chloride	electroae Mercury chloride	suipnate electrode Potassium chloride	Glass electrode Mercury sulphate

The biocatalytic membrane is attached to the glass electrode using which of the following materials?	Nylon mesh	Teflon	Silicon rubber	Polythene
measurement of which of the following gases? Which of the following gases?	Ammonia	Carbon dioxide Microporous Teflon	Hydrogen	Nitrogen
ammonia gas sensing electrode? Which of the following gas permeable membrane is used for	Silicon rubber	membrane	Fluorocarbon	Polythene
carbon dioxide gas sensing electrode?	Silicon rubber	PVC membrane	Fluorocarbon Its output potential is dependent on the	Polythene It is employed in conjunction with the
Which of the following is not the characteristic of a reference electrode?	It must have a known output potential	It must have a constant output potential	composition of the solution Its output potential is	indicator or working electrode
Why is Standard hydrogen electrode called as the primary reference electrode?	It has a known output potential	It has a constant output potential	independent of the composition of the solution	Its output potential is zero volts
hydrogen electrode?	electrode	electrode	electrode	electrode
More negative electrons (e ⁻) are attracted by more Negative electrode in half cell is made up of It is easier to reduce ion on left if electrode is	positive pole hydrogen more positive	cathode zinc less pegative	negative pole copper both A and B	anode tungsten neutral
In carbon dioxide electrode, the membrane separates which of	Sodium carbonate,	Magnesium hydrogen carbonate, sodium	Sodium hydrogen carbonate, sodium	Magnesium carbonate,
the following? The biocatalytic membrane used in ammonia selective electrode	magnesium chloride	chloride	chloride	magnesium chloride
is which of the following?	Urea	Urease	Acrylamide	Polyacrylamide
Which of the following is not the disadvantage of hydrogen	Platinum can be easily	Presence of oxidising		H2 gas at 1 atmospheric pressure is difficult to set up and
electrode? In Hydrogen electrode, the electrode is placed in a solution of	poisoned	agents alters the potential	It gives salt error	transport
M Hcl. Fill in the blank. Pure copper (Cu) rod in a solution of copper(II) sulfate (CuSO ₄)	0.5	1	2	3
solution constitutes the Ordinary dry cells are used in	half cell toys	electrode torches	ions both A and B	all of them car
Half calls contain two ions of same alament with different	atomic mass	ovidation state	nucleon number	electronic
1 mole of Cl ₂ requires electricity of	2 faraday	1 faraday	4 faraday	3 faraday
Hydrogen electrode which is the reference electrode can be used as which of the following? The composition of glass membrane in glass electrode cannot	Anode only	Cathode only	Anode or Cathode	Salt bridge
have which of the following?	Sodium silicate	Calcium silicate	Lithium silicate	Barium silicate
Types of half cell includes Composition of a standard hydrogen electrode is	metal/metal ion	non-metal/non-metal	ion/ion	all of them
Species with higher oxidation are always written in an equation	left hand side	right hand side	middle	nowhere
				nownere
In non-metals, half cells electricity is conducted via solution by Part of platinum electrode in a reaction is	platinum wire more	platinum foil less	both A and B neutral	aluminum foil often
Nickel cadmium cells are	smaller relative electrode	low voltage supplier	high voltage supplier	a and c
lons discharged in electrolysis depends on Production of energy in fuel cell as compare to petrol engine is	potential	concentration of ions	relative electrode charge	density of electrolyte
considerably Species gaining electrons will be reduced and act as	high reducing agent	low	same	constant
Electrochemical cell is achieved by connecting two	ions	electrodes	half cells	all of them
Half-cell which is used to refer different electrode is standard	carbon electrode	hydrogen electrode	copper electrode	zinc electrode
Cells with a size of button are used in	heart pacemakers	hearing aids	stomach ulcers	both A and B
1 faraday is equal to	96500°C	12700°C	987690°C	96000°C
Effect of high voltage needed to discharge OH ⁻ ion is called Flow of electrons (e ⁻) through external circuit in cars provides	over voltage effect	hydroxyl effect	high effect	all of them
energy to In button cells, negative pole is made up of	drive zinc	ignite lithium	combustion both A and B	all of them silver
Light weight batteries which produce high voltage are	nickel cadmium cells	aluminum air batteries	lead(II) sulfate batteries	lead(II) oxide batteries
Oxidation of chloride ions (Cl ^{2}) to chlorine (Cl ₂) is done by	nitric acid	acidified MnO ⁻⁴	sulfuric acid	acidified CIO ₂ ⁻³
Number of faradays required to discharge 1 mole of an ion is equal to charge on that ion is It is easier to reduce ion on left if electrode is Half reaction occur in fuel cell of	Faraday's first law more positive oxygen	Faraday's second law less negative hydrogen	Lenz's first law both A and B bydrogen -oxygen	Lenz's second law neutral nitrogen
A secondary cell used in car battery is composed of plates of	lead	lead oxide	lead sulfate	both A and B

More negative electrons (e) are attracted by more	positive pole	cathode	negative pole	anode	
Negative electrode in half cell is made up of	hydrogen	zinc	copper	tungsten	
In electrolysis of silver nitrate solution, silver is deposited at	anode	cathode	inert electrode	charged electrode	
Half-cell which is used to refer different electrode is standard	carbon electrode	hydrogen electrode	copper electrode	zinc electrode	
Faraday has proposed two laws of	electrolysis	hydrolysis	electromagnetism	gravity	
When rate of gain of electrons will be equal to loss of electrons					
state obtained will be	Redox equilibrium	neutral	constant	unstable	
Part of platinum electrode in a reaction is	more	less	neutral	often	
In Hydrogen electrode, the electrode is placed in a solution of					
M Hcl. Fill in the blank.		0.5	1	2	3

Answer

primary or secondary

standard meter

null & deflection deflection method null method all the above transducer null method all the above

standard instrument and input source

constant, varied 3 Gross error

all the above

Systematic error

2

instrumental

environmental

static

dynamic Random error

statistical method all the above arithmetic mean

deviation variance

median

mode Gaussian curve Gaussian curve

all the above $\pm 0.6745s$ limiting error odds(odds+1) = probability of occurance

3

all the above variation of resistance variation of inductance variation of capacitance both a & b

elastic effect

all the above

2

passive

active strain gauge

thermocouple

fundamental unit

2

derived unit all the above both a & c

6,2,many candela

Paris
National standards
laboratory
New Delhi
steradian
kilogram

Answer

Characteristics

static&dynamic

2

static

dynamic linear differential equation

non-linear all the above all the above

senstivity

vary output unit/ input unit mm/ ° C angular degree/ kpa

linear

linearity

least square fit minimum of sum of squares of deviation

Y=aX+b

all the above

Independant linearity non damped

precision precision&repeatabilit y accuracy over damped

threshold

resolution

resolution

hysteresis

all the above

range

span

loading input impedance&stiffness

highest

3 all the above 1 K/S K/S^2 $Kw/S^2 + w^2$

y(t) = kr(t)

 $\begin{array}{l} a_1 \; dy(t)/dt \; + a_0 \; y(t) = \\ b_0 u(t) \\ a_2 \; d \; ^2 y(t)/dt^2 \; + a_1 \\ dy(t)/dt \; + a_0 \; y(t) = \\ b_0 u(t) \end{array}$

Y(S)/R(S)=K

 $Y(S)/U(S) = K/\tau s + 1$

$$\begin{split} Y(S)/\ R(S) &= (b_0/\ a_0\)/\\ (\ a_2/\ a_0\ s^2 \!+ \ a_1/\ a_0\ s + 1) \end{split}$$

potentiometer

theremocouple vibration galvanometer

Answer

 $\begin{array}{l} R=\rho l/a\\ all \ the \ above\\ 350° \end{array}$

R_p/R_m

single slide wire

decreasing

75 to 150

all the above vibration all the above unit resistance 0 and 0.5
both a and b

- 2
- 3.5

semiconductor

0.025mm

zero

first

all the above 2.5cm 0.15cm

1mm

Nichrome V all the above

dummy gauge

piezoresistive effct resistance thermometer

thermistor

all the above wafer type resistance bulb

Platinum

Copper

Tungten

Anemometer

Thermometer

2

2 5.1

-12

0.47

Nylon

Vinyl

polyethylene

Polyethhylene Decreases with increase of load of potentiometer resistance 3 Good 9 m / s 30 m / s 90 m / s High value of sensitivity Exclusively used for transducer applications 1 + 2 v All the above

Good

ANSWERS

Inductance transducer

All the above mutual inductance

equal

50 HZ to 20 KHZ

ES1=ES2

ES1>ES2

ES1<ES2

5mm zero

positive

negative

 $\phi = 0^{o}$

$$\label{eq:phi} \begin{split} \phi &= 180^{\circ} \\ 1.25mm \ to \ 250mm \\ frictionless \\ All \ the \ above \\ 40 \ V/mm \end{split}$$

low All the above two

 $\pm 90^{\circ}$

 $\pm 4g$

5V

0V harmonics in input Capacitance transducer

All the above

linear C= $\epsilon A/d$

1 mm to 10mm

maximum

decreases

small

both a and b

2,1

10-8 mm to 10 mm

liquid level $K\tau s / 1 + \tau s$ $\phi = \pi/2 - tan-1 \omega \tau$

small,less

capacitive

at higher frequencies

bigger

All the above dynamic measurement

high pass filter

All the above

All the above nickel iron hydrogen annealed material non conducting liquid

sensitive

static

dielectric constant low mechanical hysterisis

 $C=2\pi\epsilon x/\log(D2/D1)$

All the above

ac source high permeability

capacitive

ANSWERS

copper electrode gets covered with bubbles of hydrogen gas

is prevented through magnese oxide

salt bridge reduction

both A and B

voltage

Glass electrode Mercury chloride

Nylon mesh

Nitrogen

Fluorocarbon

Silicon rubber Its output potential is dependent on the composition of the solution

Its output potential is zero volts Hilderbant Hydrogen electrode positive pole zinc both A and B Magnesium hydrogen carbonate, sodium chloride

Urease

It gives salt error

1

half cell both A and B

oxidation state 2 faraday

Anode or Cathode

Barium silicate both A and B all of them all of them

middle

both A and B less a and c relative electrode charge

high oxidizing agent half cells

hydrogen electrode both A and B both A and B 96500°C

over voltage effect

drive both A and B

aluminum air batteries

acidified MnO⁻⁴

Faraday's second law both A and B hydrogen -oxygen

both A and B

positive pole zinc

cathode

hydrogen electrode electrolysis

Redox equilibrium

less

1