19BEBME101 /19BTBT101/19BEEC101/19BTFT101

MATHEMATICS – I 3104

COURSE OBJECTIVES:

The goal of this course is for students to gain proficiency in calculus computations. In calculus, we use three main tools for analyzing and describing the behavior of functions: limits, derivatives, and integrals.
To familiarize the student with functions of several variables. This is needed in many branches of engineering.

- To acquaint the student with mathematical tools needed in evaluating multiple integrals and their usage.
- To make the student acquire sound knowledge of techniques in solving ordinary differential equations that model engineering problems.

COURSE OUTCOMES:

• Understanding of the ideas of limits and continuity and an ability to calculate with them and apply them.

• Improved facility in algebraic manipulation.

• Fluency in integration using standard methods, including the ability to find an appropriate method for a given integral.

• Understanding the ideas of differential equations and facility in solving simple standard examples.

UNIT I :DIFFERENTIAL CALCULUS

Representation of functions, New functions from old functions, Limit of a function, Limits at infinity, Continuity, Derivatives, Differentiation rules, Polar coordinate system, Differentiation in polar coordinates, Maxima and Minima of functions of one variable.

UNIT II : FUNCTIONS OF SEVERAL VARIABLES

Partial derivatives, Homogeneous functions and Euler's theorem, Total derivative, Differentiation of implicit functions, Change of variables, Jacobians, Partial differentiation of implicit functions, Taylor's series for functions of two variables, Errors and approximations, Maxima and minima of functions of two variables, Lagrange's method of undetermined multipliers.

UNIT III : INTEGRAL CALCULUS

Definite and Indefinite integrals, Substitution rule, Techniques of Integration, Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions, Improper integrals.

UNIT IV: MULTIPLE INTEGRALS

Double integrals, Change of order of integration, Double integrals in polar coordinates, Area enclosed by plane curves, Triple integrals , Volume of solids, Change of variables in double and triple integrals.

12

12

12

UNIT V : DIFFERENTIAL EQUATIONS

Method of variation of parameters, Method of undetermined coefficients, Homogenous equation of Euler's and Legendre's type, System of simultaneous linear differential equations with constant coefficients.

Total: 60

S.	AUTHOR(S)	TITLE OF THE	PUBLISHER	YEAROF
NO.	NAME	BOOK		PUBLICATION
1.	Hemamalini. P.T	Engineering	McGraw Hill	2014 & 2017
		Mathematics	Education (India)	
			Private Limited,	
			New Delhi.	
2.	James Stewart	Calculus with Early	Cengage Learning	2008
		Transcendental		
		Functions		
3.	Narayanan S. and	Calculus Volume I and II	S. Viswanathan	2007
	Manicavachagom		Publishers Pvt. Ltd	
4	Pillai T. K.		T 1 Wilson 9 Course	2014
4.	Erwin kreyszig	Advanced Engineering	John whey & Sons	2014
		Mathematics, 9 th		
		Edition,		2014
5.	B.S. Grewal	Higher Engineering	Khanna Publishers	2014
		Mathematics,		
		43 rd Edition		
6.	Ramana B.V	Higher Engineering	Tata McGraw Hill	2010
		Mathematics, 11th	New Delhi,	
		Reprint,.		
7.	Jain R.K. and Iyengar	Advanced Engineering	Narosa Publications	2007
	S.R.K	Mathematics, 3rd		
0	Del'N. Corrol M	Edition	Einemall Madia (An	2000
δ.	Ball N., Goyal M.	Advanced Engineering Mathematics 7th Edition	Firewall Media (An	2009
	and watkins C	Wathematics, / III Eutron	Dublications Put I td)	
9	Greenberg M.D. 5th	Advanced Engineering	Pearson Education	2009
).	Reprint. 2009.	Mathematics, 2nd	I curson Education	2007
	10071111, 20071	Edition.5th Reprint		
10.	O'Neil, P.V	Advanced Engineering	Cengage Learning	2007
	,	Mathematics	India Pvt., Ltd	

TEXT & REFERENCE BOOKS

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act, 1956) COIMBATORE-641 021

DEPARTMENT OF SCIENCE AND HUMANITIES FACULTY OF ENGINEERING

I B.E / B.TECH - I Semester

LESSON PLAN

SUBJECT : MATHEMATICS – I SUB.CODE : 19BEBME101 / 19BTBT101 / 19BEEC101/19BTFT101

S.NO	Topics covered	No. of				
		hours				
UNIT I - DIFFERENTIAL CALCULUS						
1	Introduction – Differential Calculus	1				
2	Representation of a function	1				
3	Representation of a function - Problems	1				
4	Limit of a function - Problems	<u> </u>				
5	Limit of a function	<u> </u>				
0	Continuity	<u> </u>				
/ Q	Continuity Tutorial 1 Papersontation of a function Limits and Continuity	1				
0 0	Derivatives	1				
10	Differentiation rules	<u> </u>				
10	Differentiation - Problems	1				
12	Differentiation - Problems	1				
13	Differentiation in polar coordinates	1				
14	Maxima and Minima of functions of one variable	1				
15	Maxima and Minima of functions of one variable - Problems	1				
16	Tutorial 2 – Differentiation, Derivatives and Maxima and Minima of	1				
	functions					
	Total	16				
	UNIT II – FUNCTIONS OF SEVERAL VARIABLES					
17	Introduction – Partial Derivatives	1				
18	Homogeneous functions and Euler's theorem	1				
19	Homogeneous functions and Euler's theorem	1				
20	Total derivative	1				
21	Differentiation of implicit functions	1				
22	Change of variables	1				
23	Jacobians	1				
24	Partial differentiation of implicit functions	1				
25	Tutorial 3 – Euler's theorem, Differentiation of implicit functions	1				
26	Taylor's series for functions of two variables	1				
27	Taylor's series for functions of two variables	1				
28	Errors and approximations	1				
29	Maxima and minima of functions of two variables	1				
30	Lagrange's method of undetermined multipliers	1				
31	Lagrange's method of undetermined multipliers – Problems	1				
32	Tutorial 4 - Taylor's series, Lagrange's method of undetermined	1				

	multipliers	
	Total	16
	UNIT III - INTEGRAL CALCULUS	
33	Introduction – Integral Calculus	1
34	Definite Integrals	1
35	Indefinite integrals	1
36	Indefinite integrals	1
37	Substitution rule	1
38	Techniques of Integration	1
39	Techniques of Integration – Problems	1
40	Integration by parts	1
41	Tutorial 5 – Definite, Indefinite integrals, Techniques of Integration	1
42	Trigonometric integrals	1
43	Trigonometric substitutions	1
44	Integration of rational functions by partial fraction	1
45	Integration of rational functions by partial fraction	1
46	Integration of irrational functions	1
47	Improper integrals	1
48	Tutorial 6 – Integration of rational, irrational functions and improper	1
	integrals	14
		16
40	UNITIV - MULTIPLE INTEGRALS	1
49	Double integrals	<u> </u>
51	Double integrals	1
52	Change of order of integration	1
53	Change of order of integration - Problems	1
54	Double integrals in polar coordinates	1
55	Area enclosed by plane curves	1
56	Area enclosed by plane curves - Problems	1
57	Tutorial 7 - Double integrals, Change of order of integration	1
58	Triple integrals	1
59	Volume of solids	1
60	Volume of solids	1
61	Change of variables in double integrals	1
62	Change of variables in double integrals - Problems	1
63	Change of variables in triple integrals	1
64	Tutorial 8 Volume of solids and Change of variables in double and	1
04	triple integrals	1
	Total	16
	UNIT V - DIFFERENTIAL EOUATIONS	۸V
65	Introduction – Differential equations	1
66	Method of variation of parameters	1
67	Method of variation of parameters - Problems	1
68	Method of variation of parameters - Problems	1
69	Method of variation of parameters	1
70	Method of undetermined coefficients	1
71	Method of undetermined coefficients - Problems	1
72	Method of undetermined coefficients - Problems	1
73	Tutorial 9 - Method of variation of parameters, Method of	1
	undetermined coefficients	

74	Homogenous equation of Euler's and Legendre's type	1
75	Homogenous equation of Euler's and Legendre's type	1
76	Homogenous equation of Euler's and Legendre's type	1
77	System of simultaneous linear differential equations with constant coefficients	1
78	System of simultaneous linear differential equations with constant coefficients - Problems	1
79	System of simultaneous linear differential equations with constant coefficients - Problems	1
80	Tutorial 10 - Homogenous equation of Euler's and Legendre's type, System of simultaneous linear differential equations with constant coefficients	1
	Total	16
	TOTAL	70+10=80

SUGGESTED READINGS

- 1. Hemamalini. P.T, (2014)&(2017). Engineering Mathematics, McGraw Hill Education (India) Private, Limited, New Delhi.
- 2. James Stewart, (2008).Calculus with Early Transcendental Functions, Cengage Learning,
- 3. Narayanan S. and Manicavachagom Pillai T. K., (2007).Calculus Volume I and II, S. Viswanathan Publishers Pvt. Ltd,
- 4. Erwin kreyszig, (2014). Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons,
- 5. B.S. Grewal, (2014)Higher Engineering Mathematics, 43rd Edition, Khanna Publishers,
- 6. Ramana B.V, (2010), Higher Engineering Mathematics, 11th Reprint,., Tata McGraw Hill New Delhi,
- 7. Jain R.K. and Iyengar S.R.K, (2007). Advanced Engineering Mathematics , 3rd Edition, Narosa Publications,
- 8. Bali N., Goyal M. and Watkins C, (2009). Advanced Engineering Mathematics, 7th Edition, Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd),
- 9. Greenberg M.D.,5th Reprint, (2009). Advanced Engineering Mathematics, 2nd Edition,5th ReprintPearson Education,
- 10. O'Neil, (2007).P.V, Advanced Engineering Mathematics, Cengage Learning India Pvt., Ltd,.

Staff- Incharge

UNIT - I

DIFFERENTIAL CALCULUS

Representation of functions

(i) Function : A function of from a set D to a set E is a rule that assigns a unique element f(x) E E to each element X E D.

The set D of all possible input Values is called the domain of the function. The range of I is the set of all Possible Values of Fix) as & Varies throughout the domain

A symbol that represents an arbitrary number in the domain of a function fis called an independent Variable. A symbol that represents a number in the range of f is called a dependent Variable.

(ii) Real. Valued functions: A function whose domain and Co. domain are subsets of the set of all real numbers, is known as real-valued function.

(iii) Explicit functions If x and y be so related that y can be expressed explicitly in terms of x, then y is called explicit function of x. Estample : Y = x+2

(iv) Implicit functions: If x and y be so related that y cannot be capressed explicitly interms of x, then y is called implicit function of a. $Eg: \chi^2 + y^2 + \chi y = 0$ (V) Domain, Co-domain, range and image Let $f: A \rightarrow B$ then Set A is called the domain of the function The set of all the images of all the elements of A under the function f is called the range of + and is denoted by +(A). Set B is called Co-domain-These range of f is f(A) - of f(X) : X EA y clearly, f(A) = B by t(A). If XEA, YEB and Y=fix), then y is called the image of x under f. (Vi) Graph of functions

If f is a function with domain D, then its graph is the set of ordered pairs fr, fix) [x E D y.

(iii) Even function and Odd function If a function y = f(x) is an even function of x if f(-x) = f(x), Odd function of x if f(-x) = -f(x) for every number x in its domain
(Viii) Increasing and Decreasing functions let t be a function defined on an interval I and let x, and x, be any two points in I. If t(x,) > t(x,) blanever x, 1x, then t is Said to be increasing It t(x,) > t(x,) blanever x, 1x, then t is Said to be decreasing is Scanned by CamScanner

.

Find the domain and the range of each function.
a) $f(x) = 1 + x^2$
lies $y = 1 + \pi^2$
$y - 1 = \pi^2$
x2 => y-1>,0
=) y >1
So the domain is (-20,00) and the range is [1,00)
b) $f(x) = \sqrt{5x+10}$
y = V5x+10 installing T
5x+10 >0 [:: square root of a regative no 4 not curper) as a real number
$5\pi \ge -10$
So the domain is [-2,00) and the range is [0,00).
$C) -f(x) = \frac{4}{3-x}$
$y = \frac{4}{3-\chi}$ division by zero is not allowed for $\chi = 3$, we get $3-\chi = 0$.
so the domain is (-a),3) U (3,a)
and the range is (-w, 0) U (0, w)
Find the domain of each function
a) $f(x) = \frac{x+4}{x^2-9}$
y: x+4 x2-9 +2 division by zero is not allowed
$\chi^{-} = 0 = \chi^{-} = 3 \cup (-3,3) \cup (3,\infty)$
So the domain M (-a),

h)
$$f(x) = \sqrt[3]{2x-1}$$

 $y = \sqrt[3]{2x-1}$
 $y^{5} = dx - 1$
So the domain is $(-\infty, \infty)$
c) $f(x) = \sqrt{x+2}$
 $y = \sqrt{x+2}$
 $x+2 > 0$
 $x > -2$
The Domain is $[-2, \infty)$
d) $d(x) = \frac{1}{\sqrt[3]{x^{2}-5x}}$
 $y = \sqrt[3]{\frac{1}{\sqrt{x^{2}-5x}}}$
For $x = 0$, the get $x^{2} - 5x = 0 - 0 = 0$
 $x = 5$, the get $x^{2} - 5x = 25 - 25 = 0$
So, the domain is $(-\infty, 0) \cup (5, \infty)$
E: then the root of a regative number is not defined spin
 $\lambda = (0, 5)$ hot allowed \int
e) $f(x) = \frac{1}{x^{2}-x}$
 $y = \frac{1}{x^{2}-x}$
 $x^{2}-x = 0 = \int x(x-1) = 0$
 $-\int x = 0 \text{ or } x = 1$
So the domain is $(-\infty, 0) \cup (0, 1) \cup (1, \infty)$

Limit of a function: A function time tends to a definite las a tends to a if the difference between fix) and I can be made as broad as we like by traking a approach sufficiently near a and we write lim fiz) = l X-3a Left hand limit of +1x): The left hand limit of +1x) as x approaches a is equal to L. (i.e) lim fix)=L. Here x > a means x < a. x > a Right hand limit of fix): The Right hand limit of tix) as x approaches a is (ie) lim fla)=L. Here x > at mean x > a. equal to L Note: $\lim_{x \to a} f(x) = L$ if and only if $\lim_{x \to a} f(x) = \lim_{x \to a} f(x) = L$ Definition: Infinite Limits. Let I be a function defined on both rides of a, except possibly at a itself. 1) Then lim f(x) = 00 means that f(x) can be arbitrarily large by taking a Sufficiently close to a, but not equal to a. 2) Then lim f(x) = - a means that f(x) can be ashiring large by taking x sufficiently close to 9, but not equal to hegative

Evaluate the following limits
a)
$$\lim_{X \to 5} (2x^{2} - 3x + 4) = 2(5)^{2} - 3(5) + 4 = 3 = 3$$

b) Find $\lim_{X \to 1} \frac{x^{2} - 1}{x + 1}$
 $\lim_{X \to 1} \frac{x^{2} - 1}{x + 1} = \lim_{X \to 1} \frac{1}{x + 1} = \lim_{X \to 1} (x + 1) = 1 + 1 = 2$
c) Find $\lim_{X \to 1} \frac{x^{2} + x - 2}{2^{2} - x}$
 $\lim_{X \to 1} \frac{x^{2} + x - 2}{x^{2} - x} = \lim_{X \to 1} \frac{x + 1}{x (x + 1)} = \lim_{X \to 1} \frac{x + 2}{x} = \frac{1 + 2}{1} = 3$
d) Find $\lim_{k \to 0} \frac{\sqrt{12} + 9}{2} = \lim_{k \to 0} \frac{\sqrt{12} + 9}{1} = 3$
 $\lim_{k \to 0} \frac{\sqrt{12} + 9}{2} = \lim_{k \to 0} \frac{\sqrt{12} + 9}{1} = 3$
 $\lim_{k \to 0} \frac{\sqrt{12} + 9}{2} = \lim_{k \to 0} \frac{\sqrt{12} + 9}{1} = 3$
 $\lim_{k \to 0} \frac{\sqrt{12} + 9}{2} = \lim_{k \to 0} \frac{\sqrt{12} + 9}{1} = 3$
 $\lim_{k \to 0} \frac{\sqrt{12} + 9}{2} = \frac{1}{2} \lim_{k \to 0} \frac{\sqrt{12} + 9}{1} = \frac{1}{343} = \frac{1}{343} = \frac{1}{2}$
e) Find $\lim_{k \to 0} \frac{\sqrt{14} + \sqrt{14}}{2} = \lim_{k \to 0} \frac{24}{1} \frac{\sqrt{14} + 9}{1} = \frac{1}{343} = \frac{1}{2}$
 $\lim_{k \to 0} \frac{24}{1} \frac{\sqrt{14} + \sqrt{14}}{1} = \frac{1}{1}$
 $\lim_{k \to 0} \frac{24}{1} \frac{\sqrt{14} + \sqrt{14}}{1} = \frac{1}{1}$
 $\lim_{k \to 0} \frac{24}{1} \frac{1}{1} - \frac{1}{1}$
 $\lim_{k \to 0} \frac{1}{k} \left(\frac{1}{1 - \sqrt{14}} - \frac{1}{1}\right) = \lim_{k \to 0} \frac{1}{1 + \sqrt{14}} \left(\frac{1 - \sqrt{14}}{1 + \sqrt{14}}\right)$
 $\lim_{k \to 0} \frac{1}{k} \left(\frac{1}{1 - \sqrt{14}} + \frac{1}{1 + \sqrt{14}}\right) = \lim_{k \to 0} \frac{1}{1 + \sqrt{14}} \left(\frac{1}{1 + \sqrt{14}}\right) = \lim_{k \to 0} \left(\frac{1 - (1 + 1)}{1 + 1 + \sqrt{14}}\right)$
 $\lim_{k \to 0} \frac{1}{k} \left(\frac{1 - \sqrt{14}}{1 + \sqrt{14}}\right) = \lim_{k \to 0} \frac{1}{1 + (1 + \sqrt{14})} = \lim_{k \to 0} \left(\frac{1 - (1 + 1)}{1 + 1 + \sqrt{14}}\right)$
 $\lim_{k \to 0} \frac{1}{k} \left(\frac{1 - \sqrt{14}}{1 + \sqrt{14}}\right) = \frac{1}{1}$
 $\lim_{k \to 0} \frac{1}{k} \left(\frac{1 - \sqrt{14}}{1 + \sqrt{14}}\right) = \frac{1}{1}$
 $\lim_{k \to 0} \frac{1}{k} \left(\frac{1 - \sqrt{14}}{1 + \sqrt{14}}\right) = \frac{1}{1}$
 $\lim_{k \to 0} \frac{1}{k} \left(\frac{1 - \sqrt{14}}{1 + \sqrt{14}}\right) = \frac{1}{1}$
 $\lim_{k \to 0} \frac{1}{k} \left(\frac{1 - \sqrt{14}}{1 + \sqrt{14}}\right) = \frac{1}{1}$
 $\lim_{k \to 0} \frac{1}{k} \left(\frac{1 - \sqrt{14}}{1 + \sqrt{14}}\right) = \frac{1}{1}$
 $\lim_{k \to 0} \frac{1}{k} \left(\frac{1 - \sqrt{14}}{1 + \sqrt{14}}\right) = \frac{1}{1}$
 $\lim_{k \to 0} \frac{1}{k} \left(\frac{1 - \sqrt{14}}{1 + \sqrt{14}}\right) = \frac{1}{1}$

(1) Find
$$\lim_{R \to 1^{+} \to \frac{1}{R}} \frac{1}{R} \frac{1$$

....

Scanned by CamScanner

Note:
i)
$$\lim_{X \to a} \frac{x^n - a^n}{x + a} : n a^{n-1}$$
 for all values of n
(ii) $\lim_{N \to \infty} \frac{y_{10} - a^n}{(1 + \frac{1}{n})^n} = e$ for all values of n .
1: Find $\lim_{N \to \infty} \frac{x^{5/8} - a^{5/8}}{x^{1/8} - a^{1/8}}$
 $\lim_{N \to \infty} \frac{x^{5/8} - a^{5/8}}{x^{1/8} - a^{1/8}} = \frac{1}{x^{5/8}} \frac{x - a^{5/8}}{x^{1/8} - a^{1/8}}$
 $\lim_{N \to a} \frac{x^{5/8} - a^{5/8}}{x^{1/8} - a^{1/8}} = \frac{x^{5/8} - a^{5/8}}{x^{1/8} - a^{1/8}} \frac{x - a}{x^{1/8} - a^{1/8}}$
 $\lim_{N \to a} \frac{x^{5/8} - a^{5/8}}{x^{1/8} - a^{1/8}} = \frac{x^{5/8} - a^{5/8}}{x^{1/8} - a^{1/8}} = \frac{1}{8} a^{5/8} - \frac{1}{8} a^{5/8} - \frac{1}{2x^{1/8}} = \frac{1}{8} a^{5/8} - \frac{1}{8} a^{5/8}$

Continuity
A function this continuous at a number a if
find
$$f(x) = f(a)$$
.
Note: 1
If it is continuous at a, then
1. $f(a)$ should exist (vier a is in the domain of 1)
2. find $f(x) = t(a)$.
Note: 2
The function $f(x)$ is daid to be discontinuous at x = a if
one or more and the above three conditions are not
statufied.
1. Shous that $f(x) = 3x^2 + 2x - 1$ is continuous at $x = 2$.
(iven $f(x) = 3x^2 + 2x - 1$ is continuous at $x = 2$.
(iven $f(x) = 3x^2 + 2x - 1$ is continuous at $x = 2$.
Let $f(x) = \lim_{k \to 0} \frac{1}{2}(2-k)^2 + 2(2+k) - 1]$
 $k = \lim_{k \to 0} \frac{1}{2}(2+k)^2 + 2(2+k) - 1]$
 $k = \lim_{k \to 0} \frac{1}{2}(2+k)^2 + 2(2+k) - 1]$
 $k = \lim_{k \to 0} \frac{1}{2}(2+k)^2 + 2(2+k) - 1]$
Lim $f(x) = \lim_{k \to 0} \frac{1}{2}(2+k)^2 + 2(2+k) - 1]$
Lim $f(x) = \lim_{k \to 0} \frac{1}{2}(2+k)^2 + 2(2+k) - 1]$
Lim $f(x) = \frac{1}{2}(2+k)^2 + \frac{1}{2}(2+k)^2 - 1$
Hence $f(x)$ is continuous at $x = 2$.

2. Verify Whether the function is Continuous at
$$M = -2$$

for $H(x) = \frac{1}{X+2}$.
 $H(x) = \frac{1}{X+2} = X = -2$
 $H(-2) = \frac{1}{-2+2} = \frac{1}{0} = x = undefined$
 \therefore $H(x)$ is discontinuous at $x = -2$.
3. Use Continuity to evaluate the limit $\lim_{X \to H} \frac{54\sqrt{2}}{\sqrt{5+x}}$
 $\text{Riven: } \lim_{X \to H} \frac{54\sqrt{2}}{\sqrt{5+x}} = \frac{54\sqrt{\lim_{X \to H} X}}{\sqrt{5+\lim_{X \to H} X}}$
 $= \lim_{X \to H} \frac{(5+\sqrt{2})}{\sqrt{5+x}} = \frac{54\sqrt{\lim_{X \to H} X}}{\sqrt{5+\lim_{X \to H} X}}$
 $s = \frac{5+\sqrt{1}}{\sqrt{5+x}} = \frac{5+2}{\sqrt{3}} = \frac{4}{3}$

1.
$$y = x e^{x}$$
, $y = x^{4}e^{x}$
2. $y = (x + ax)e^{x}$
3. $y = (1 - e^{x})(x + e^{x})$
4. $y = x^{4} - \sin x$
5. $y = x^{3} \sin x$
6. $y = \frac{\sin x}{x}$
7. $y = \frac{\cos x}{1 - \sin x}$
8. $y = x e^{x} \cosh e^{x}$
9. $y = (1 - x^{2})^{10}$
10. $y = x e^{x} \log x$
11. $y = \sqrt{\cos \sqrt{x}}$
12. $y = \log(x + x)$
13. $y = e^{\sqrt{x}}$
14. $y = \sin^{2} x$
15. $y = \sqrt{x + \sqrt{x + \sqrt{x}}}$
16. $y = \frac{1}{(t + 1)^{3}}$

11111

find y's y "

Maxima & Minima

If a Continuous function increases up to a Centain value and then decreases, that value is called a maximum value of the function. Ill' if a constant function, decreates up to a Certain value and then increases, that value is Called minimum value of the function. Definition : (i) fix) is maximum at x=a if fla)=0 & + "(a) is -ve. (11) fix) is minimum at R=a if f'(a)=0 1 f"(a) is the Procedure for finding maxima and Minima 1) Dinte the given function +(x) 2) Find f'(x) and equate it 10 zero. Solve this eggs & ler the mots are a, b, c,. 3) Find +"(x) and substitute in it by terms x=9,b,c... If t"(a) is -ve, tru) is maximum at x=q. If f"(a) is the, find is minimum at x=q. 4) Sometimes ("11) may be difficult to find out or I'l(1) may be zero at a = a. Insuch cases, see if fla) Changer Lign from the to we as x parles through a, then finitis man at re=a. ED IS I'IN) changes sign from -ve to the as x parses through a, lin) is min at n=a. If f'ir' doesnot Change kign While paring through 2:9, fix) is heither max nor min at n=a.

Find the maxima 2 minima of the function
$$2x^{3} - 3x^{2} - 36x + 10$$

lat $41x$) = $2x^{3} - 3x^{2} - 36x + 10$
 $4^{1}(x) = 6x^{2} - 6x - 36 = 0$
 $=) x = -2, 3$
 $4^{11}(x) = 12x - 6$
 $4^{11}(x) p(x = -2) = -30 = -90$
 $41x$) is mox at $x = -2$.
 $-1(2) = 51$
 $4^{11}(x) at x = 3$
 $-1(3) = -71$
Find the max 2 min values of $3x^{4} - 2x^{3} - 6x^{2} + 6x + 1$
in the interval $(0, 2)$

1

mm

2.

FUNCTIONS OF SEVERAL VARIABLES

1. If
$$u = \tan\left[\frac{x^3 + y^3}{x + y}\right]$$
, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \operatorname{Bin}_2 u$
 $u = \tan\left[\frac{x^3 + y^3}{x + y}\right]$
 $\tan u = \left[\frac{x^3 + y^3}{x + y}\right] = \frac{x^3(1 + (y/x)^3)}{x(1 + y/x)} = x^2 + (y/x)$
 $\therefore \tan u$ is a homogeneous function of degree 2 in x and y.
 \therefore By Euler's theorem
 $x \frac{\partial}{\partial x}(\tan u) + y \frac{\partial}{\partial y}(\tan u) = 2 \tan u$
 $x \cdot \operatorname{Soc}^2 u \cdot \frac{\partial u}{\partial x} + y \cdot \operatorname{Sec}^2 u \cdot \frac{\partial u}{\partial y} = 2 \tan u$
 $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{2 \tan u}{\operatorname{Sec}^2 u} = 2 \operatorname{Sinu} \cos u = \operatorname{Sin}_2 u.$

2. If
$$u = \sin^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$$
, prove the following
(i) $\chi \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$; (ii) $\chi^{2} \frac{\partial u}{\partial x^{2}} + 2\chi y \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} + \tan^{2} u$
 $u = \sin^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$
Since $= \left(\frac{x^{2}+y^{2}}{x+y}\right) = \chi^{2} \left[\frac{1+(y)x}{x}\right]$, $x + \frac{1}{y}$
 \therefore Sinu is a homogeneous function of degree 1 in x and y.
 \therefore By Eulor's theorem, we get
 $\chi \frac{\partial}{\partial x}(\sin u) + y \frac{\partial}{\partial y}(\sin u) = 1 \cdot \sin u$
 $\chi \cos u \frac{\partial u}{\partial x} + y \cos u \frac{\partial u}{\partial y} = \sin u$
 $\chi \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u \cdot \frac{1}{2}$
Pautially diff 0 w.r.t x and y we get
 $\chi \frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial u}{\partial x} + y \frac{\partial^{2} u}{\partial x^{2}} \cdot \sec^{2} u \frac{\partial u}{\partial x} - \frac{1}{2}$

177

4. If z be a function of x and y, where $x = e^{4} + e^{-y}$ and $y = e^{-4} - e^{y}$, prove that $\frac{\partial z}{\partial u} = \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$

$$\frac{\partial x}{\partial u} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u}$$
$$= \frac{\partial z}{\partial x} \cdot e^{u} + \frac{\partial z}{\partial y} \cdot (-e^{u}) = \frac{u}{\partial x} \frac{\partial z}{\partial x} - \frac{e^{u}}{\partial y} \frac{\partial z}{\partial y} = 0$$

$$\frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v}$$

$$= -e^{v} \frac{\partial z}{\partial x} + e^{v} \frac{\partial z}{\partial y} - 0$$

$$= -e^{v} \frac{\partial z}{\partial x} + e^{v} \frac{\partial z}{\partial y} - 0$$

$$= (e^{v} + e^{v}) \frac{\partial z}{\partial x} - (e^{v} + e^{v}) \frac{\partial z}{\partial y}$$

$$= \chi \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y}$$

5.
$$Iq = \frac{1}{2}(x-y, y-z, z-x), Show that \frac{y}{2x} + \frac{y}{2y} + \frac{y}{2z} = 0.$$

Let $x = x-y$, $\beta = y-z$, $y = z-x$.
 $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial x}, \frac{\partial x}{\partial x} + \frac{\partial u}{\partial \beta}, \frac{\partial \beta}{\partial x} + \frac{\partial u}{\partial \gamma}, \frac{\partial \gamma}{\partial x} = \frac{\partial u}{\partial x} - \frac{\partial u}{\partial \gamma}$
 $\frac{\partial u}{\partial z} = \frac{\partial u}{\partial x}, \frac{\partial x}{\partial y} + \frac{\partial u}{\partial \beta}, \frac{\partial \beta}{\partial y} + \frac{\partial u}{\partial \gamma}, \frac{\partial \gamma}{\partial y} = -\frac{\partial u}{\partial x} + \frac{\partial u}{\partial \beta}$
 $\frac{\partial u}{\partial z} = \frac{\partial u}{\partial x}, \frac{\partial x}{\partial z} + \frac{\partial u}{\partial \beta}, \frac{\partial \beta}{\partial z} + \frac{\partial u}{\partial \gamma}, \frac{\partial \gamma}{\partial z} = -\frac{\partial u}{\partial x} + \frac{\partial u}{\partial \beta}$
 $\frac{\partial u}{\partial z} = \frac{\partial u}{\partial x}, \frac{\partial x}{\partial z} + \frac{\partial u}{\partial \beta}, \frac{\partial \beta}{\partial z} + \frac{\partial u}{\partial \gamma}, \frac{\partial \gamma}{\partial z} = -\frac{\partial u}{\partial \beta} + \frac{\partial u}{\partial \gamma}, \frac{\partial \gamma}{\partial z}$
(From $D, \otimes P$ (3), we get
 $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0.$
(5) $Iq u = d(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}), prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial z} + z\frac{\partial u}{\partial z}$
(7) $Iq u = x^2yz^3$ where $x = t, y + t^3, z = e^{t}$ find $\frac{du}{dt}$.
 $\frac{du}{dt} = \frac{\partial u}{\partial x}, \frac{dx}{dt} + \frac{\partial u}{\partial y}, \frac{du}{dt} - \frac{\partial u}{\partial z}, \frac{dz}{dt}$$

9 Ty u = Log (fanx + tany + tanz) Show + fact
Sinzx
$$\frac{\partial u}{\partial x} \rightarrow \sin 2y \frac{\partial u}{\partial y} + \sin 2z \frac{\partial u}{\partial z} = 2$$

U: Log (fanx + tany + tanz)
 $\frac{\partial u}{\partial x} = \frac{1}{+axx + tany + tanz}$
 $\frac{\partial u}{\partial y} = \frac{1}{+axx + tany + tanz}$
 $\frac{\partial u}{\partial y} = \frac{1}{+axx + tany + tanz}$
 $\frac{\partial u}{\partial z} = \frac{1}{-axx + tany + tanz}$
 $\frac{\partial u}{\partial z} = \frac{1}{-axx + tany + tanz}$
Sinzx $\frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial y} + \sin 2z \frac{\partial u}{\partial z}$
 $\frac{\partial u}{\partial z} = \frac{1}{-axx + tany + tanz}$
 $\frac{\partial u}{\partial z} = \frac{1}{-axx + tany + tanz}$
 $\frac{\partial u}{\partial z} = \frac{1}{-axx + tany + tanz}$
 $\frac{\partial u}{\partial z} + \sin 2y \frac{\partial u}{\partial y} + \sin 2z \frac{\partial u}{\partial z}$
 $\frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial y} + \sin 2z \frac{\partial u}{\partial z}$
 $\frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial y} + 2 \frac{\sin 2z}{(axz)}$
 $\frac{\partial u}{\partial x^2} + \frac{\partial z}{\partial y^2} = \frac{1}{A(u_A^2v)} \left(\frac{2z}{2u^2} + \frac{2z}{2v}\right)$
 $\frac{\partial z}{\partial x} = 2\frac{z}{2x} \cdot \frac{\partial z}{2u} + \frac{\partial z}{2y} - \frac{2u}{2v} + \frac{2z}{2v}$
 $\frac{\partial z}{\partial u} = 2\frac{1}{ax} + \frac{2z}{2y} - \frac{2u}{2} = \frac{2}{2x} \left(u \frac{\partial}{\partial x} + v \frac{\partial}{2y}\right)$
 $\frac{\partial^2 z}{\partial u} = 2\frac{1}{ax} \left[\frac{2\pi}{2x} + v \frac{\partial}{2y}\right] z = 2\frac{2\pi}{2u} - 2\sqrt{u} \frac{\partial}{\partial x} + v \frac{\partial}{2y}$
 $\frac{\partial^2 z}{\partial u} = 2\frac{1}{ax} \left[\frac{2\pi}{2x} + v \frac{\partial}{2y}\right] z = 2\frac{2\pi}{2u} - 2\sqrt{u} \frac{\partial}{\partial x} + v \frac{\partial}{2y}$
 $\frac{\partial^2 z}{\partial u} = \frac{2}{au} \left[\frac{2\pi}{2x} + v \frac{\partial}{2y}\right] z = 2\frac{2}{au} - 2\sqrt{u} \frac{\partial}{\partial x} + v \frac{\partial}{2y}$

0

$$\frac{\partial Z}{\partial v} = \frac{\partial Z}{\partial x} \cdot \frac{\partial X}{\partial v} + \frac{\partial Z}{\partial y} \cdot \frac{\partial Y}{\partial v} = \frac{\partial Z}{\partial x} (-2v) + \frac{\partial Z}{\partial y} (+2u)$$

$$\frac{\partial Z}{\partial v} = \lambda \left[\cdot V \frac{\partial}{\partial x} + u \frac{\partial}{\partial y} \right] Z$$

$$\frac{\partial Z}{\partial v} = \lambda \left[\cdot V \frac{\partial}{\partial x} + u \frac{\partial}{\partial y} \right]$$

$$\frac{\partial Z}{\partial v} = \lambda \left[\frac{-v}{\partial x} + u \frac{\partial}{\partial y} \right]$$

$$\frac{\partial Z}{\partial v} = \lambda \left[\frac{\partial Z}{\partial v} \right] = h \left[V \frac{\partial Z}{\partial u^2} + \lambda uv \frac{\partial Z}{\partial x \partial y} + u^2 \frac{\partial Z}{\partial y^2} \right]$$
From $O L O$

$$\frac{\partial^2 Z}{\partial u^2} + \frac{\partial^2 Z}{\partial v^2} = \frac{1}{H(u^4 v^2)} \left(\frac{\partial^2 Z}{\partial u^2} + \frac{\partial Z}{\partial v^2} \right)$$

$$10 \cdot I \int H_0 + randormations are $u = e^X \text{ condy and } V = e^X \text{ ding } v$
and that fix a function of u and v and also x and y
Prove theat $\frac{\lambda^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 1u^2 v^2 \left(\frac{\partial^2 f}{\partial u^2} + \frac{\partial^2 f}{\partial v^2} \right)$$$

Jacobians

If U=t(1,1), V=g(1,1) are two continuous functions of the variables x and y such that the first. order Partial derivatives $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$ are also continuous then $\begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \end{vmatrix}$ is called the Jacobian of u and v wirt $\begin{vmatrix} \frac{\partial v}{\partial y} & \frac{\partial v}{\partial y} \end{vmatrix}$ is called the Jacobian of u and v wirt $\begin{vmatrix} \frac{\partial v}{\partial y} & \frac{\partial v}{\partial y} \end{vmatrix}$ denoted by $\frac{\partial(u,v)}{\partial(x,y)}$ (or) J(u,v). In general if u, u, u, un are functions of x, x, ..., xn then the Jacobian of $U_{11}U_{21}\cdots U_n$ with $X_{11}X_{21}\cdots X_n$ is defined as $\frac{\partial (u_{11}u_{21}\cdots u_n)}{\partial (x_{11}, x_{21}\cdots x_n)} = \begin{bmatrix} \frac{\partial u_1}{\partial x_1} & \frac{\partial u_1}{\partial x_2} & \frac{\partial u_1}{\partial x_1} \\ \frac{\partial u_2}{\partial x_1} & \frac{\partial u_2}{\partial x_2} & \frac{\partial u_2}{\partial x_n} \\ \frac{\partial u_2}{\partial x_1} & \frac{\partial u_2}{\partial x_2} & \frac{\partial u_2}{\partial x_n} \\ \frac{\partial u_2}{\partial x_1} & \frac{\partial u_2}{\partial x_2} & \frac{\partial u_2}{\partial x_n} \end{bmatrix}$

(i) If u and v are functions as x and y then $\frac{\partial(u,v)}{\partial(x,y)} \frac{\partial(x,y)}{\partial(u,v)}$ (ii) If u and v are functions of r and s, where r and s (iii) If u and v are functions of r and s, where r and s are functions as x and y then $\frac{\partial(u,v)}{\partial(x,y)} = \frac{\partial(u,v)}{\partial(x,y)} \times \frac{\partial(x,s)}{\partial(x,y)}$. (iii) If u, v, w are functionally dependent functions of three independent Variables X, Y, Z then $\frac{\partial(u, v, w)}{\partial(X, Y, Z)} = 0$.

1. If
$$u_{1} \xrightarrow{2}xy$$
, $V(x^{2}-y^{2})$, Evaluate $\frac{\partial(u,v)}{\partial(x,v)}$.
 $\frac{\partial(u,v)}{\partial(u,v)} = \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right) = \left(\frac{2y}{4x}, -4y\right) = -4y^{2} - 4x^{2}$
 $2 = \sqrt{2} u = 2xy$, $V(x^{2}-y^{2}), x = x \text{ caso and } y = x \text{ sino tempets } \frac{\partial(u,v)}{\partial(v,v)}$
 $\frac{\partial(u,v)}{\partial(v,0)} = \frac{\partial(u,v)}{\partial(x,u)} \times \frac{\partial(x,v)}{\partial(x,v)}$
 $= \left|\frac{\partial u}{\partial x}, \frac{\partial v}{\partial y}\right| \times \left|\frac{\partial u}{\partial x}, \frac{\partial u}{\partial x}\right|$
 $= \left|\frac{\partial u}{\partial x}, \frac{\partial v}{\partial y}\right| \times \left|\frac{\partial u}{\partial x}, \frac{\partial u}{\partial x}\right|$
 $= -4x^{3}$ [: $x^{2}u^{2}x^{2}$]
 $\frac{\partial(u,v,u)}{\partial(x,v,u)} = \frac{\partial u}{\partial x}, \frac{\partial u}{\partial x}$
 $\frac{\partial(u,v,u)}{\partial(x,v,v)} = \left|\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial x}\right|$
 $\frac{\partial(u,v,u)}{\partial(x,v,v)} = \left|\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial x}\right|$
 $\frac{\partial(u,v,u)}{\partial(x,v,v)} = \left|\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial x}\right|$
 $\frac{\partial(u,v,u)}{\partial x} = \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial x}$
 $\frac{\partial(u,v,u)}{\partial x} = \left|\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial x}\right|$
 $\frac{\partial(u,v,u)}{\partial x} = \left|\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial x}\right|$
 $\frac{\partial(u,v,u)}{\partial x} = \left|\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial x}\right|$
 $\frac{u}{\partial x}, \frac{u}{\partial y}, \frac{\partial u}{\partial x}$
 $\frac{u}{\partial x}, \frac{u}{\partial y}, \frac{\partial u}{\partial x}$
 $\frac{u}{\partial x}, \frac{u}{\partial y}, \frac{u}{\partial x}, \frac{u}{\partial y}, \frac{u}{\partial x}, \frac$

4.
$$\overrightarrow{J} = 1$$
 ($x = 1 \cos 0$, $y = 1 \sin 0$, $v = n i + y$ ($1 + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$)
 $\overrightarrow{J} = 1$.
 $\overrightarrow{X} = 1 \cos 0$, $y = 1 \sin 0$
 $\overrightarrow{J} = \frac{1}{2} = \frac{1$

3

Taylor's Series Expansion of a function of two Variables If fixit) and all its partial derivatives are finite and Continuous at all points 19,6) then $-f(a+h,b+k) = d(a,b) = \frac{1}{1!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial y} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial y} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial y} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial y} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial y} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial y} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial y} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial y} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial y} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial y} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial y} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial y} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial y} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial y} + k \frac{\partial}{\partial y}\right) \cdot f(a,b) + \frac{1}{1!} \left(h \frac{\partial}{\partial y$ $\frac{1}{2!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^2 f(a_1 b) + \cdots +$ $\frac{1}{(h-1)} \left(h \frac{\partial}{\partial n} + k \frac{\partial}{\partial y} \right)^{n-1} f(a,b) + \cdots$ Taylook series of t(x,y) may yee point (0,0) is Notomic and the town Note : Mclourin's Series of trainy). Expand ex as Taylor's series at the point (0,0). 1 . f = \$ f(x,y) = ex -fx = 1 $f_{x} = e^{x}$ $f_{y} = 0$ h=a-a=x-0=x ty = 0 K= y-b= y-0= y. dxx=1 fxx = ex frey = 0 fxy = 0 +44 =0 fyy =0 f(x,y)= +(a,b) + (h +x (a,b)+ k +y (a,b)] + +(h+txx (a,b) + 2 hk txy (a,b) + k+tyg (a,b)], $z + z + \frac{z}{z} + \cdots$

Taylor h Series Expansion af a function of two Variables
If
$$f(x,y)$$
 and all its partial derivatives are first e
and Continuous at all point (a,b) then
and Continuous at all point (a,b) then
 $\frac{1}{12}(h\frac{2}{2x}+k\frac{2}{2y}) \cdot f(a,b) + \frac{1}{12}(h\frac{2}{2x}+k\frac{2}{2y}) \cdot f(a,b) +$

6

A SALA

Scanned by CamScanner

Expand ex log (1+y) as Taylor's series at 10,0) value at 10,0) Function +(x14)= ex log (1+4) f(0,0) = 0 $f_X = 0$ fx = ex Log(1+4) fy = 1 ty = ex (1+4)-1 $f_{XN} = 0$ fxx = exlog(Hy) fxy = 1 $f_{\chi}y = \frac{e}{1+u}$ $f_{yy} = \frac{-e^{\chi}}{(1+\gamma)^2}$ fyy = -1 h: x - a $f_{XXX} = 0$ fxxx = ex log(1+y) =1-0 fxxy = ex(1+y)-1 = X fxxy = 1 K: y.b fryy = - ex (114)2 fxyy = -1 = 4.0 fyyy = 2ex(1+y)^-3 = 4 fygy = 2

By Taylor Series expansion, $f(x_1,y) = f(a_1b) + [hf_x(a_1b) + kf_y(a_1b)] +$ $\frac{1}{d!} [h^2 f_{xx}(a_1b) + 2hk f_{xy}(a_1b) + k^2 f_{yy}(a_1b)] +$ $\frac{1}{d!} [h^3 f_{xxx}(a_1b) + 3h^2 k f_{xxy}(a_1b) + 3hk^2 f_{xyy}(a_1b)] +$ $\frac{1}{2!} [h^3 f_{xxx}(a_1b) + 3h^2 k f_{xxy}(a_1b) + 3hk^2 f_{xyy}(a_1b)] +$ $k^3 f_{yyy}(a_1b)] +$ $k^3 f_{yyy}(a_1b) +$ $k^3 f_{yyy}(a_1b) +$ $k^3 f_{yyy}(a_1b) +$ $k^3 f_{yy}(a_1b) +$ $k^3 f_{$

UNIT - I

MULTIPLE INTEGRALS

Double integral - Cartesian Co-ordinates - Polar Co-ordinates - Change of order of integration. Triple integration un Cartesian Co-ordinates. Alla au double Integrals

Introduction

Algebraic and transcendental functions together construct the elementary functions. Special functions are functions other than the elementary functions such as Cammo. Beta functions Special functions also include Berrel, Legendres, Laguerre, Heimetz, Chebysher polynomials also function, Sime integral, exponentied integral, Freinel integrals etc Double integration in Cartasion Coordinate the definite integral of france is defined as the limit of the bern france, firstotzer, + firstotzer, where n is and each of the Length the firstotze, Linde to Zelo. I e first dz.: Line [firstotzer, + firstotzer, + firstotzer] i e Jerre Double integral are segion R may be evaluated by two Double integral are segion R may be evaluated by two

Double inlegial over region k film $\leq y \leq f_2(x)$, $[y_1 \leq y \leq y_2]$ Successive integrations $\exists f \land us$ described as $f_1(x) \leq y \leq f_2(x)$, $[y_1 \leq y \leq y_2]$ and $x_1 \leq x \leq x_2$ then $\iint f(x, y) \ dA = \iint f(x)(y)$ of dxand $x_1 \leq x \leq x_2$ R x_1, y_2

Problems () Evaluate $\iint_{0}^{2} x(x+y) dy dx$ Solo $\iint_{0}^{2} x(x+y) dy dx = \iint_{0}^{2} (x^{2}+xy) dy dx = \iint_{0}^{2} [x^{2}y + xy^{2}]^{2} dx$ $= \iint_{0}^{2} (a^{2}x^{2}+xy) dy dx = \iint_{0}^{2} (x^{2}+xy) dx = \iint_{0}^{2} (x^{2}+\frac{3}{2}x) dx$ $= \iint_{0}^{2} (a^{2}x^{2}+xy) dx = \iint_{0}^{2} (x^{2}+\frac{3}{2}x) dx$ $= \iint_{0}^{2} (a^{2}x^{2}+\frac{3}{2}x^{2})^{2} = \frac{1}{3} + \frac{3}{4} = \frac{13}{12}/3$

2) Evaluat:
$$\int_{a}^{b} \int_{a}^{b} \frac{dx}{dy} dx dy$$

$$\frac{2e\ln \int_{a}^{b} \int_{a}^{b} \frac{1}{dy} dx dy = \int_{a}^{b} \frac{1}{dy} dy \int_{a}^{b} \frac{1}{dx} dx = (l_{a}y) \int_{a}^{b} (l_{a}y) \int_{a}^{b} (l_{a}y) \int_{a}^{b} \frac{1}{dx}$$

$$= (l_{a}y - b_{a}y - b_{a}y) (l_{a}y - b_{a}y)$$

$$= l_{a}y(\frac{2}{2}) \int_{a}^{b} l_{a}y - l_{a}y \int_{a}^{b} \frac{1}{dx}$$

$$= \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} (\pi^{2} + y^{2}) dx dy = \int_{a}^{b} \int_{a}^{b} (\pi^{2} + xy) \int_{a}^{b} \frac{1}{dx}$$

$$= \int_{a}^{b} \int_{a}^{b} (\pi^{2} + xy) dx dy = \int_{a}^{b} \int_{a}^{b} (\pi^{2} + xy) \int_{a}^{b} \frac{1}{dx}$$

$$= \int_{a}^{b} \int_{a}^{b} (\pi^{2} + xy) dx dy = \int_{a}^{b} \int_{a}^{b} (\pi^{2} + xy) \int_{a}^{b} \frac{1}{dx}$$

$$= \int_{a}^{b} \int_{a}^{b} (1 + \pi^{2} + y)^{2} \int_{a}^{b} \frac{1}{dx}$$

$$= \int_{a}^{b} \int_{a}^{b} (1 + \pi^{2} + y)^{2} \int_{a}^{b} \frac{1}{dx}$$

$$= \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \frac{1}{dx} \int_{a}^{b} \frac{1}{dx} \int_{a}^{b} \frac{1}{dx}$$

$$= \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \int_{a$$

Double integration in Polar Co-cridinales To evoluate] f(rio) drdo, we first integrate with r between Of ri limits r=r, and r=r2. Keeping a fixed and the resulting expression is integrated wit a from 0, 600, In this integral, Ti, Y2 are functions of 0 and 01, 02 are constant. ED PAC 1-1050 Here, AB and CD are the arrives $T_1 = f_1(0)$ and $T_{22} + f_{2}(0)$ banded by the lines 0 = 0, and 0 = 0. PQ is weakly of angular threases $\delta 0$. Then I f(r, 0) dr indicates that the integration is along Pa from ri Pord Q ululo the integration coirt & corresponds to the turning of PQ from AC to BD. Thus the whele degreen of mlegration us the also ACDO. The order of integration may be charged with appropriate charge in the limits) Evaluate J J r2 do dr. $-\frac{1}{2} = \int_{-\frac{1}{2}} \int_{-\frac{1}{2}} \frac{1}{2} dr d\sigma = \int_{-\frac{1}{2}} \left(\frac{1}{2}\right)^{2} d\sigma = \frac{1}{2} \int_{-\frac{1}{2}} \frac{1}{2} d\sigma d\sigma.$ $= \frac{g}{3} \cdot 2 \int \cos^3 \theta \, d\theta = \frac{16}{3} \cdot \frac{2}{3} \cdot \frac{1}{7} \cdot \frac{32}{7} / \frac{1}{7} \cdot \frac{1}{7} \cdot$ 2) Evaluate J J rsino drdo Soln $T = \int_{0}^{\pi} \left(\int_{0}^{a} r dr \right) \sin d\theta = \int_{0}^{\pi} \left(\frac{\tau^{2}}{2} \right)_{0}^{a} \sin \theta d\theta = \frac{\sigma^{2}}{\sigma^{2}} \int_{0}^{\pi} \cos^{2} \theta d\theta$ $= \frac{\alpha^{2}}{2} \int (\omega s^{2} \alpha - d(\omega s)) = -\frac{\alpha^{2}}{2} \left(\frac{(\omega s^{2} \alpha)}{3} \right)_{0}^{T}$ $= -\frac{\alpha^{2}}{6} \left[(\omega s^{2} \alpha - d(\omega s)) = -\frac{\alpha^{2}}{6} \left[-1 - 1 \right] = \frac{\alpha^{2}}{4} \right]$

3 Evaluate
$$\iint_{a} \int_{a}^{b} \gamma \, da \, dr$$

 $dd = T : \iint_{a} \int_{a}^{b} \gamma \, da \, dr$
 $\int_{a}^{b} \left(\frac{1}{2^{2}}\int_{a}^{b} d\theta - \int_{a}^{b} \left(\frac{1}{2^{2}}\int_{a}^{b} d\theta - \frac{1}{2^{2}}\int_{a}^{b} \sin^{2} d\theta + \frac{1}{2^{2}}\int_{a}^{b} \frac{1}{2^{2}} \frac{1}{2^{2}} \frac{1}{a} - \frac{\pi}{8}\int_{a}^{b} \int_{a}^{b} \frac{1}{2^{2}} \frac{1}{a} + \frac{\pi}{8}\int_{a}^{b} \int_{a}^{b} \frac{1}{2^{2}} \frac{1}{a} + \frac{\pi}{8}\int_{a}^{b} \left(\frac{1}{2^{2}}\right)^{b} \frac{1}{a}\left(1 + \cos^{2}\right)^{b} d\theta + \frac{1}{2^{2}}\int_{a}^{b} \left(\frac{1}{2^{2}} - \frac{1}{2^{2}}\right)^{b} \frac{1}{a}\left(1 + \cos^{2}\right)^{b} d\theta + \frac{1}{2^{2}}\int_{a}^{b} \left(\frac{1}{2^{2}} - \frac{\pi}{2^{2}}\right)^{b} \frac{1}{a}\left(1 + \cos^{2}\right)^{b} d\theta + \frac{\pi}{2^{2}}\int_{a}^{b} \left(\frac{1}{2^{2}} - \frac{\pi}{2^{2}}\right)^{b} \frac{1}{a}\left(1 + \cos^{2}\right)^{b} d\theta + \frac{\pi}{2^{2}}\int_{a}^{b} \left(\frac{1}{2^{2}} - \frac{\pi}{2^{2}}\right)^{b} \frac{1}{a}\left(\frac{1}{2^{2}} - \frac{\pi}{2^{2}} - \frac{\pi}{2^{2}}}\right)^{b} \frac{1}{a}\left(\frac{1}{2^{2}} - \frac{\pi}{2^{2}}\right)^{b} \frac{1}{a}\left(\frac{1}{2^{2}} - \frac{\pi}{2^{2}}\right)^{$

(ii) If the limit of the inner inlight is a function of X, we have to
charge the limit of inner inlight as a function of X, we have to
charge the limit of inner inlight as a function of X, we have to
integration
(iv) Find the new limits for inner and allow integrals using the segren of
integration
(i) Evaluate the given double integral as usual.
Problems
i) charge the order of integration and there contracts
$$\int_{0}^{1} \int_{0}^{1} \frac{x_{i}}{\sqrt{2+iy_{i}}} dx dy$$
.
In the segren of integration R is defined by $y \le x \le a$ is $dx y \le a$.
In the segren of x_{i} varies from 0 to a .
 $\therefore \int_{0}^{1} \int_{0}^{1} \frac{x_{i}}{\sqrt{2+iy_{i}}} dx dy = \int_{0}^{1} \frac{x_{i}}{\sqrt{2+iy_{i}}} dy dx$
 $= \int_{0}^{1} x \left[\log |y_{1}| \frac{1}{\sqrt{2+i}} \right]_{0}^{1} dx$
 $= \int_{0}^{1} x \left[\log |y_{1}| \frac{1}{\sqrt{2+i}} \right]_{0}^{1} dx$
 $= \int_{0}^{1} x \left[\log |y_{1}| \frac{1}{\sqrt{2+i}} \right]_{0}^{1} dx$
 $= \int_{0}^{1} x \left[\log |y_{1}| \frac{1}{\sqrt{2+i}} \right]_{0}^{1} dx$
 $= \int_{0}^{1} x \left[\log |y_{1}| \frac{1}{\sqrt{2+i}} \right]_{0}^{1} dx$
 $= \int_{0}^{1} x \left[\log |y_{1}| \frac{1}{\sqrt{2+i}} \right]_{0}^{1} dx$
 $= \int_{0}^{1} x \left[\log |y_{1}| \frac{1}{\sqrt{2+i}} \right]_{0}^{1} dx$
 $= \int_{0}^{1} x \left[\log |y_{1}| \frac{1}{\sqrt{2+i}} \right]_{0}^{1} dx$
 $= \int_{0}^{1} \frac{1}{x} \left[\log |y_{1}| \frac{1}{\sqrt{2+i}} \right]_{0}^{1} dx$
 $= \int_{0}^{1} \frac{1}{x} \left[\log |y_{1}| \frac{1}{\sqrt{2+i}} \right]_{0}^{1} dx$
 $= \int_{0}^{1} \frac{1}{x} \left[\log |y_{1}| \frac{1}{\sqrt{2+i}} \right]_{0}^{1} dx$
 $= \int_{0}^{1} \frac{1}{x} \left[\log |y_{1}| \frac{1}{\sqrt{2+i}} \right]_{0}^{1} dx$
 $= \int_{0}^{1} \frac{1}{x} \left[\log |y_{1}|^{2} dx dy - \int_{0}^{1} \frac{1}{x} \left[\log |y_{1}|^{2} dx dy \right]_{0}^{1} dx$
 $= \int_{0}^{1} \frac{1}{x} \left[\log |y_{1}|^{2} dx dy - \int_{0}^{1} \frac{1}{x} \left[\log |y_{1}|^{2} dx dy \right]_{0}^{1} dx$
 $= \int_{0}^{1} \left[\log |y_{1}|^{2} dx dy - \int_{0}^{1} \frac{1}{x} \left[\log |y_{1}|^{2} dx dy \right]_{0}^{1} dx$
 $= \int_{0}^{1} \left[\log |y_{1}|^{2} dx dy - \int_{0}^{1} \frac{1}{x} \int_{0}^{1} dx dy = \int_{0}^{1} \frac{1}{x} dx$

3) Change the order of integration and then evaluate
$$\iint_{a} \int_{a}^{a} dy dx$$
.
Solve the order of integration and then evaluate $\iint_{a} \int_{a}^{a} dy dx$.
Solve the order of integration is defined by $y \cdot x^{3}h_{1}$, $y = a/n$, $x = 0$ d $x = 4$.
In Region R, x values from 0 de h .
 $f = \int_{a}^{a} dy dy = \int_{a}^{b} \int_{a}^{b} dx dy = \int_{a}^{b} (y) \frac{a/y}{y'h_{0}} dy$.
 $f = \int_{a}^{b} (ay^{1b} - y'_{1}) dy = \int_{a}^{b} \frac{1}{2y} \frac{y'_{0}}{y'_{0}} dy$.
 $f = \int_{a}^{b} (ay^{1b} - y'_{1}) dy = \int_{a}^{b} \frac{1}{2y} \frac{1}{2y'_{0}} dx dy$.
 $f = \frac{h \cdot g}{3} - \frac{bh}{12} = \frac{32}{3} - \frac{bh}{3} = \frac{bh}{3}$.
(house the order of integration and then conclust $\int_{a}^{b} \int_{a}^{a+by'_{0}} dx dy$.
 $f = \frac{h \cdot g}{2a} - \frac{h \cdot g}{2a} - \frac{h \cdot g}{2a} - \frac{h \cdot g}{2a} dx dy$.
 $f = \frac{h \cdot g}{2a} - \frac{h \cdot g}{2a} -$

5) Change the couler of integration in I my dridy and hence evaluate the Same doln. The region of integration is defined by $y = \frac{\pi^2}{4}$, $y = \partial a - \pi$, x = 0 d $\pi = a$ Divide the segion R into low segions R, & R2 by drawing a line y=a parallel to y-one. In segur R, 2 vaues from 0 to 20-y Jra. +y=2a y varies from a to 2a >1 y=0 In segur R2, 2 values from a to lay y vous from o to a . J xy dxdy = J J xy dxdy + J J xy dxdy $= \int y \left(\frac{\chi^2}{2}\right)_0^{2\alpha-3} dy + \int y \left(\frac{\chi^2}{2}\right)_0^{1\alpha-3} dy$ $=\frac{1}{2}\int_{\alpha}^{\alpha}\left(\frac{\partial (\alpha^{2}y-\mu\alpha y^{2})}{+y^{3}}\right)dy +\frac{1}{2}\int_{\alpha}^{\alpha}\alpha y^{2}dy$ $= \frac{1}{2} \left[\frac{\mu_{\alpha^2} y^2}{z} - \frac{\mu_{\alpha} y^3}{z} + \frac{y_4}{\mu} \right]_{\alpha}^{2q} + \frac{1}{2} \alpha \left(\frac{y_3}{z} \right)_{\alpha}^{\alpha}$ $= \frac{1}{2} \left[8a^{4} - \frac{32a^{7}}{3} + \frac{6aa^{7}}{4} - 2a^{4} + \frac{4a^{7}}{3} - \frac{a^{7}}{4} + \frac{a^{7}}{3} \right]$ $= \frac{1}{2} \left[6a^{H} - 9a^{H} + \frac{65a^{H}}{H} \right] = \frac{1}{2} \left[\frac{65a^{H}}{H} - 3a^{H} \right]$ $= \frac{a^4}{2} \begin{bmatrix} 63\\ 4 \end{bmatrix} = \frac{3a^4}{8}$ Plane area enclused by one or more arrives can be enforcered Area as double Integral

No 4

arlazy', y=0

(and)

1) de

ga 4 1 12

1x dy

Here as an enclosed by one or more awards can be expression Plane area enclosed by one or more awards can be expression as a double integral both in cartesian co-orcenates and in polar coordinates In cartisian co-ordinates, A = II drady In Folar co-ordinates, A = II r drades R

1) Find the area enclosed by the case
$$y^{2}$$
 has and to have hey $3a$, $y = 2$
det
det
det
 det_{R}
 det_{R}
 $f(a)^{2}$
 $f(a)^{$

L

Scanned by CamScanner

.

Since the acces on Agronoully oclust it is and

$$\int_{12}^{12} \frac{h^2}{h^3} dx_1 dy_1 = Q \int_{12}^{12} (h_1 y_1^2 - y_1^2) dy_1 = 2 \int_{12}^{12} [h_1 x_1 y_1^2 dy_1^2 + h_1^2 - y_1^2 dy_1^2 + h_1^2 - y_1^2 dy_1^2 + h_1^2 - h_1^2 + h_1^2 - h_1^2 + h_1$$

Triple Integrals
Triple Integrals
Triple integration in Calculation is constantly.
A triple integration in Calculation is constantly.
A triple integration in Calculation is constantly of a function of find over a steppin R in
clanded by III + (x,y,z) closely dz or III f (x,y,z) clv or III f (x,y,z) cl/(x,y,z)
Rothand
Five triple is a first in yz closely dz or III f (x,y,z) clv or III f (x,y,z) cl/(x,y,z)
Rothand
Red I =
$$\int_{0}^{a} \int_{0}^{b} \int_{0}^{c} xyz dz dy dz$$
.
Solve $z = \left(\frac{x \lambda}{2}\right)_{0}^{b} \left(\frac{2\lambda}{2}\right)_{0}^{b} \left(\frac{2\lambda}{2}\right)_{0}^{c} = \frac{\alpha^{2}b^{2}c^{2}}{8}$.
2) Evaluat $\int_{0}^{b} \int_{0}^{c} e^{x+y/2} dz dy dz$.
Solve Let I = $\int_{0}^{a} e^{x} dx \cdot \int_{0}^{b} e^{x} dy \int_{0}^{c} e^{z} dz$. $(e^{2} - 1) (e^{2} - 1) (e^{2} - 1)$.
3) Eveduat $\int_{0}^{b} \int_{0}^{c} e^{x+y/2} dz dy dz$.
Let I = $\int_{0}^{a} e^{x} dx \cdot \int_{0}^{b} e^{x} dy dz$.
3) Eveduat $\int_{0}^{b} \int_{0}^{c} e^{x+y/2} dz dy dz$.
4) $\int_{0}^{b} e^{x} e^{x+y/2} dz dy dz$.
4) $\int_{0}^{b} e^{x} e^{x+y/2} dz dy dz$.
4) $\int_{0}^{b} e^{x} e^{x+y/2} dz dy dz$.
4) $\int_{0}^{b} e^{x+y/2} dz dy dz$.
5) Eveduat $\int_{0}^{b} \int_{0}^{c} (e^{x} - e^{x}) e^{x} dz dy dz$.
5) $\int_{0}^{c} (e^{2x} + e^{x}) e^{x} - e^{x} e^{x} e^{y} e^{x} e^{y} (e^{x+y/2} - e^{x}) dz$.
5) $\int_{0}^{b} e^{2x} (y d^{2} - e^{2x}) dx - \int_{0}^{b} e^{x} e^{y} dy dz$.
5) $\int_{0}^{c} e^{2x} (y d^{2} - e^{2x}) dx - \int_{0}^{b} e^{x} e^{y} dz$.
6) $\int_{0}^{b} e^{2x} dy dz$.
6) $\int_{0}^{b} e^{2x} (y d^{2} - e^{2x}) dx - \int_{0}^{b} e^{x} (e^{2x} + e^{2x} - e^{2x} + e^{2x} +$

Scanned by CamScanner

$$H = \operatorname{Evaluada}_{a} \int_{a}^{b} \int_{a}^{a+1} \int_{a}^{b+1} \int_{a}^{a+1} \int_{a}^{a+1$$

9

$$= \int_{0}^{a} \int_{0}^{a-x} \left[x (a - x - y) + y (a - x - y) + (\frac{a - x - y}{2})^{a} \right] dy dx$$

$$= \int_{0}^{a} \int_{0}^{a-x} \left[ax - x^{1} - x^{1} + ay + ay - xy - y^{1} + (\frac{a - x - y}{2})^{a} \right] dx$$

$$= \int_{0}^{a} \left(axy - x^{2}y - \overline{a}x \frac{y}{x} + a\frac{y}{x} + \frac{ay}{x} - \frac{xy}{2} - (\frac{a - x - y}{2})^{3} \right)_{0}^{a-x} dx$$

$$= \int_{0}^{a} \left(ax/(a-x) + x^{1}/(a-x) - x(a - x^{1} + \frac{a}{2})(a-x)^{a} - (\frac{a - xy}{2}) - (\frac{a - xy}{2})^{a} - \frac{a^{2}}{2} + \frac{a^{2}}{2} - \frac{a^{2}}{2} + \frac{x^{2}}{2} - \frac{a^{2}}{2} + \frac{a^{2}}{2} - \frac{a^{2}}{2} + \frac{x^{2}}{2} - \frac{a^{2}}{2} - \frac{a^{2}}{2$$

ORDINARY DIFFERENTIAL EQUATIONS 40 Equations of the first order and higher degree The general form of the differential equation of The first order and nth degree is $\left(\frac{dy}{dx}\right)'' + f_1(x,y)\left(\frac{dy}{dx}\right)^{h-1} + f_2(x,y)\left(\frac{dy}{dx}\right)^{h-2} + \cdots + f_{n-1}(x,y)\frac{dy}{dx} +$ fn(x,y)=0. If we denote dy by p for convenience, the general quation $p^{n} + f_1(x,y) P^{n-1} + f_2(x,y) P^{n-2} + \cdots + f_{n-1}(x,y) P + f_n(x,y) = 0$ To solve O int is to identified as an equation of any one of The following types 1) Equations Solvable for P. @ Equations solvable for y. 3 Equations Solvable for x. (a) clairant's equations Equations Solvable for P: If equation () is of this type, then the Litt's of () can be resolved into a linear factors. Then (D becomes) (P-Fi) (P-F2) · · · (P-Fn)=0, from which we get P=F, P=F2, ... , P=Fn, where F1, F2,..., Fn are functions of x and y. Each of these noquations is as the first order and first degree and can be solved. by methods let the solutions of the above n components equations he $\phi_1(x,y,c) = 0$, $\phi_2(x,y,c) = 0$, ..., $\phi_n(x,y,c) = 0$. Then the general solution of () is got by combining the above solutions and given as $\phi_1(x,y,c)\phi_2(x,y,c)\cdots\phi_n(x,y,c)=0$.

Equations solvable for g.

If the given differential equation is of this type. then y can be expressed explicitly as a single Valued function of x and P.

lies the operation of this type can be re-conitten as y=f(x,p) _____

Differentiating () with respect to x. we get

 $P = \phi(x, p, \frac{dP}{dx})$ - (C)

The solution of @ be $\psi(x,p,c) = 0$ [] Where c is an arbitrary constant.

If we eliminate p between O and O, the eliminant is the general solution of the given equation.

If P cannot be easily eliminated between DBG. they jointly provide the required solution in terms of the Parameter P

11119 Equations Solvable for a.

Clairant's equations.

T

An aquation of the form y= px + f(p) is called

clairant's equation is only a particular cure of type-2

Differentiating @ word 'x', P = P + 1/x + +'(P) & dP dr = 0 _____ or +'(P) + x = 0 _____ @ Solving @ we get P = c Eliminating P between @ 2@, we get the general Oblution of @ as y = cx + +(r).

Thus the general solution of a clairout's operation is 100 Obtained by replacing p by c in the given equation .

Eliminating Pherman OSO, we get solution of D. This solution does not contain any arbitrary constant. Also it cannot be obtained as a particular care of the geroral solution. This solution is called the singely Station of the equation (1).

Problems:

nction

1 Solvo P- 3P+2 = 0 Since the given an is quadratic in (D), we have

 $P = 3\pm \sqrt{9.8}$, $\frac{3\pm 1}{2}$, 20 ± 1

 $\frac{dy}{dx} = 2$ or $\frac{dy}{dx} = 1$ $\left(\frac{dy}{dx}\right) = b\left(\frac{dy}{dx}\right) + 8 = 0$ dy, 2dx dy, dx

Integrating we get

Jdy = 2 Jdx or Jdy = Jdx $\frac{dy}{dx} \rightarrow \frac{dy}{dx} - \frac{y}{dx}$ $y = 2x + c_1$ $y = x + c_2$ y-x-C2=0 (y-27.0)/y.10.000 y-2x-C, = 0

p2 6048 0

(P->>(P-a):0

Par Pau

Herce the solution is 19.22-c,) (y. 2-c2): 0.

Solve x = P+4 aiver x = p2+y -0

Diff O wirit 'y' we ger

$$\frac{dx}{dy} = 2p \frac{dp}{dy} + 1$$

$$\frac{1}{p} = 2p \frac{dp}{dy} + 1$$

$$\frac{1}{p} = 2p \frac{dp}{dy} + 1$$

$$\frac{1}{p} = \frac{1}{p} \frac$$

Integrating we get
$$2\int \frac{p^{2}}{1-p} dp = \int dy$$

 $2\int (-p-1+\frac{1}{p-p}) dp = \int dy$
 $-2\int (p+1+\frac{1}{p-1}) dp = y$ $p+p^{2}-1+p+1^{2}$
 $-2\left[\frac{p^{2}}{2}+p+2eg(p-1)\right] = y+c$
if $y = c-2\left[\frac{p^{2}}{2}+p+2eg(p-1)\right]$ $-\infty$
Here climinating 'p' from $0 e 0$ is difficult.
Mence $x = p^{2} + y$
 $y = c-2\left[\frac{p^{2}}{2}+p+2eg(p-1)\right]$
Constitute the solution of the given differential equation.
3. Golve $y = 3x + \log p$.
Griven $y = 3x + \log p$.
 $Given \quad y = 3x + \log p$.
 $Given \quad y = 3x + \log p$.
 $Given \quad y = 3x + \log p$.
 $\frac{dp}{dx} = p(p-3)$
 $\frac{dp}{dx} = p(p-3)$
 $\frac{dp}{dx} = h^{2}$
 $\frac{dp}{p(p-3)} = dx$
 $\frac{1}{p} \cdot \frac{dp}{p} = \int dx$
 $-\frac{y}{p} \log p + \int \left[\frac{-y_{n}}{p} + \frac{y_{n}}{p-3}\right] dp = \int dx$
 $\frac{p-3}{p} = e^{5x+c},$
 $1-c_{x}e^{3x} = \frac{3p}{p}$
 $y = 3x + \log \frac{p-3}{p-2} = 0$

I

4. Solve y=xP+P2 42 Griven y = x P+P² ___ () The general solution is y= (x + c² @ To find Singerber Solution: Diff @ w.r.r i weger $D = \chi + \lambda c$ — (3) Eliminating c Oetween 223. From 3, e= - 2/2 Substituting () in (, we get , $y = (-x_1/2)x + (-x_1/2)^2$ $=\left(\frac{-\chi^2}{\lambda}\right)+\frac{\chi^2}{4}=-\frac{\chi^2}{4}.$ (ie) x+4y=0 gives the Singular solution of D. A ho 22+44=0 gives the envelope of the family of Straight lines given by equation @. Linear differential quations of second and higher order with constant Coefficients: The general form of a linear differential equation if the nth order with constant coefficient is where (aoto), a, a2, an are Constants and x is a functional. If we use the differential operator symbol $D \equiv \frac{d}{dx}$, $D^2 \equiv \frac{d^2}{dx^2}$, ..., $D^2 \equiv \frac{d^2}{dx^2}$, equation (1) becomes $\left[a_{0}D^{n}+a_{1}D^{n-1}+\cdots+a_{n}D+a_{n}\right)y=X$ When x=0, @ becomes, f(D)y=0 () is called the homogeneous equation corresponding to equation (2)

General solution of egn (2) is y= u+v, where y= u is the general solution of (3), that contains in arbitrary constants, and y = v is a particular solution of @. that contains no arbitrony constants. U is called the complementary function (C.F) and V is Called the particular integral (P.I.) of the solution of Egn. (). Complementary Function: To find the C.F. of the solution of eggs O, we require the general solution of com 3. To get the solution of f(D) y=0 or $(a_0 D^n + a_1 D^{n-1} + \dots + a_n) y = 0$ S The auxiliary equation is f(m) = 0 or $a_0 m + q_1 m^{-1} + - - + c_1 = 0$ The auxiliary equation is an 17th degree algebraic equation inm. The solution of eqn 3 depends on the nature of roots of the A.C Care (i): The roots of the A.E are real and distinct. let the roots of the A.E be m, m2, ... mn. Then $C \cdot F = C_1 e^{m_1 x} + C_2 e^{m_2 x} + \dots + C_n e^{m_n x}$ Care(ii): The A-E has got real roots some of which are equal Let the roots of the A.E be mi, m, m3, m4, ..., mn. Then $C \cdot F = (C_1 x + C_2) e^{m_1 x} + (3 e^{m_3 x} + \cdots + C_n e^{m_n x})$ Care (iii): Two roots of the A.E are complex . let m, = x+iB and m2 = x-iB :. $C \cdot F = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x) + C_3 e^{m_3 x} + -$ - + (nemax Carelin: Two pairs of complex roots of the A.E. and equal Mi=m3=dtips and m2=m1= X-iB $C \cdot F = e^{\alpha x} \left[(c_1 x + c_2) \cos \beta x + C_3 x + C_4 \sin \beta x \right] +$ (50 mg + - - + (ne mnx

Particular Integral:

13 & PFIL The particular integral of the Solution of the equation floy y = x is the function V, where y: V is a particular, Solution of @ containing no arbitrary contants. The D.I depends on the value of the R.H.S function X and is defined as $p.J = \frac{1}{f(D)} \times ,$ where $\frac{1}{f(D)}$ is the inverse Operator of fLD). 1. If X = eax, where d is a constant, $P.I = \frac{1}{f(D)}e^{ax} = \frac{1}{f(x)}e^{xx}, f(x) \neq 0$ X = Sinax or Cosax where Risa contant. $P.I = \frac{1}{\varphi(D^2)} \frac{\sin \alpha x}{\cos \alpha x} = \frac{1}{\varphi(-\alpha^2)} \frac{\sin \alpha x \cos \alpha x}{\cos \alpha x}, \quad \varphi(-\alpha^2) \neq 0$ 3. X = x ", where m is a positive integen $P \cdot I = \frac{1}{f(D)} x^{m} = \frac{1}{aD^{\kappa}} \left[\frac{1}{2} \phi(D) \right] x^{m}$ X = eax. V(x) where V(x) is any function 4. $P \cdot I = \frac{1}{f(D)} e^{a_{1}} V(x) = e^{a_{2}} \frac{1}{f(D+A)} V(x)$ X = Z. V(x), where V(x) is af the form sinax or codax 5. $P \cdot I = \frac{1}{f(n)} \cdot \chi V(x)$ $= \chi \frac{1}{f(0)} V(\chi) - \frac{f'(0)}{f'(0)} V(\chi)$ X is any other function af x. $p \cdot I = \frac{1}{f(D)} X = D \cdot (D \cdot m_0) \cdot (D \cdot m_0)$ 6.

Problems:

1 Solve the equation $(D^2 - 4D + 3) y = Sin 3x + x^2$ The A.E is m²-4m+3=0 [m-1)(m-3)=0 m = 1, 3 $C \cdot F = C_1 e^{\chi} + C_2 e^{3\chi}$ $P \cdot I = \frac{1}{D^2 - 4D + 2} (Sin 3x + x^2)$ $= \frac{1}{D^{2}-4D+3} \quad \text{Sin3x} + \frac{1}{D^{2}-4D+3} \quad z^{2}$ $= \frac{1}{9 - 4D + 3} \frac{1}{3(1 - \frac{D(4 - D)}{3})} \chi^{2}$ = $\frac{1}{3(2D+3)}$ Sin3x + $\frac{1}{3}(1-D(4-D))$ = $\frac{1}{3}$ $= -\frac{1}{2} \frac{(2D-3)}{4D^{2}_{-9}} = \frac{1}{3} \frac{1}{2} \frac{1}{3} \left[1 + \frac{D(4-D)}{3} + \frac{D^{2}(4-D)^{2}}{9} \right] x^{2}$ $= \frac{1}{96} (2D-3) \sin 3x + \frac{1}{2} (1 + \frac{4}{3}D + \frac{13}{9}D^2) x^2$ $= \frac{1}{90} \left(\frac{1}{6} \left(\frac{3}{2} - \frac{3}{2} \right) + \frac{1}{3} \left(\frac{1}{3} + \frac{3}{4} + \frac{1}{3} \right) + \frac{1}{3} \left(\frac{1}{3} + \frac{3}{4} + \frac{1}{3} \right) \right)$ Carrie $= \frac{1}{30} (2 \cos 3x - \sin 3x) + \frac{1}{3} (x^2 + \frac{3}{3} + \frac{26}{3})$ The general solution = C.F+P.J (1-x) = 1+ nx Thunning2 2. Solve (D3-3D2+3D-1) 4 = ex. In A.E is $m^3 - 3m^2 + 3m - 1 = 0$ $(m - 1)^3 = 0$ m = 1, 1, 1 $C \cdot F = (C_1 \chi^2 + C_2 \chi + C_3) e^{2}$ $P \cdot I = \frac{1}{(D-1)^3} e^{-\chi} x^3 = e^{\chi} \cdot \frac{1}{(D-2)^3} x^3 = -\frac{1}{8} e^{-\chi} \cdot \left(1 - \frac{D}{2}\right)^{-3} x^3$ $= -\frac{1}{8}e^{-7} \cdot \frac{1}{1\cdot 2} \left(1\cdot 2 + 2\cdot 3 + \frac{D}{2} + 3\cdot 4 \frac{D^2}{4} + 4\cdot 5 \frac{D^3}{8} \right) \times^3$ $= -\frac{1}{16} e^{7} (2+3D+3D^{2}+\frac{5}{2}D^{3}) x^{3} = -\frac{1}{16} e^{7} (2x^{3}+9x^{2}+18x+115)$ The general solution = C.F. + P. I

36 Solve (D=4D+13) y = e cos3x e 1 ... A.E is $m^2 - 4m + 13 = 0$; $(m-2)^2 = 9$... The roots are m= 2±3i C.F = e X (A COS3X + BSin3x) P. I = 1 D² - 11 D+13 e^{dz}. Cob3x $= e^{27} \frac{1}{(D+2)^2 - U(D+2) + 13}$ $= e^{2x} \frac{1}{D^2 + q} COSSX = e^{2x} \frac{\pi}{R} \frac{Sin3x}{q}$ = 1 . 2. et?. Sin3x ... The general Solution is y= C-F + P.I 4. Solve the equation (D+4) y = 2 cose x A.E's m+4=0 The reacts are m=+12 : C.F = A COSAX + BSIN2X $D \cdot \overline{I} = \frac{1}{D^{\frac{1}{4}}4} R \cdot D = \begin{cases} \chi^2 e^{i\chi\chi} \\ \chi^2 e^{i\chi\chi} \end{cases}$ = $p.p.ag e^{ijx} \frac{1}{(D+iz)^2} x^2$ = R.P of $e^{i2\chi}$ $\frac{1}{D^2 + 4iD}$ $\cdot a^2$ = R-P of $\frac{e^{i2\chi}}{4iD} \left(1 - \frac{iD}{4}\right)^{-1} \alpha^2$ $= R \cdot P \cdot q \frac{e^{i2\pi}}{4iD} \left(1 + \frac{iD}{4} - \frac{D^2}{16} - \frac{iD^5}{64} \right) x^2$ = R. Poh - jein (x3 + j x2 - x - j) = R. P of the (sin2x - 1 (0322)) 1/2 - 2)++ (x-1/6) 4 = - 4 b (- +) Sin 2x + + + (12 +) cosar 2 General Solution y = C.F.+P.T

Scanned by CamScanner

Euler's Homogeneous Linan Differential Equations.

The equation of the form $a_0 x^n \frac{d^0 y}{dx^n} + a_1 x^{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \cdots + a_{n-1} \frac{dy}{dx} + a_n y = X - 0$ Where acra, ... in are constants and x is a function of x is Called Euler's homogeneous linear différencias equation. Equation @ can be reduced to a linear differential equation with Constant Coefficients by charging the independent Variable from 20 to + by means of the transformation aset or telogse. (ie) $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{1}{x} \cdot \frac{dy}{dr}$ x dy = dy - @ Denoting d by D and d by O. @ gives x D = O and 1111 x'D' = 02-0 = 0(0-1) 8³D³: O(O-1)(O-2) 2"D"= 0 (0-1)(0-2) (0-3) and 20 on The more general form of Euler's homogeneous equation is $a_{o}(ax+b)^{n} \frac{d^{n}y}{dx^{n}} + a_{i}(ax+b)^{n-1} \frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_{n-1}(ax+b)\frac{dy}{dx} + a_{n}y = X$ Equation 3 arn be reduced to a linear differential equation with Constant Coefficients by the substitution axtb=et. Equation (3) is called Legendre's linear differential aquation .

roblems 45 1 Solve the equation $\chi^2 \frac{d^2 y}{dx^2} + 4\chi \frac{dy}{d\chi} + 2y = \chi^2 + \frac{1}{\gamma^2}$ The given equation is (x2D2+42D+2) y = x1 1/2 where D = d Put x = et or t = logx and denote d by 0 [0(0-1)+40+2]y = e+e (je) $(0^{2}+30+2)y = e^{2t}+e^{-2t}$ A.E is m2+3m+2=0 (ie) (m+1) (m+2)=0 ... The roots are m = -1, -2 $C \cdot F = A e^{-t} + B e^{-2t} = \frac{A}{2} + \frac{B}{-2}$ $P.T = \frac{1}{(e^{2t} + e^{-2t})}$ $=\frac{1}{12}e^{2t}-\frac{1}{n+2}e^{-2t}$ $= \frac{1}{12} e^{2t} + t e^{-2t} = \frac{1}{12} \chi^2 - \frac{1}{2^2} \log \chi$ General solution = C.F + P.I Q. Solve (x2)2 + xD+1) y = Sin(2logx). Sin(logx) putting x = et or t = log x and denoting d by 0, the given equation becomes [O(O-1)to +1]y = Sinzrsint (02-11)y = 12 (sinst + sint) A.E is m2+1=0 The roots are m= ti : C.F = A cost + Bsint = A cos(logx) + Bsin(logx) $p:I = \frac{1}{2} \cdot \frac{1}{2} (sinst + sint)$

Scanned by CamScanner

Questions	opt1	opt2	opt3	opt4	opt5	opt6	Answer
The function $f(x)= x $ is	continuous	discontin	continuous	discont			continuous
	for all x	uous at	at $x = 0$ only	inuous			at $\mathbf{x} = 0$
		x=0 only		for all			only
		-		x			
Which of the following is continuous at $x = 0$?	f(x) = 1/x	f(x) = x /	f(x) = x	$\mathbf{x} = \mathbf{x} / $	x		f(x) = x
If f is finitely derivable at c, then f is also at c	discontinuous	continuous	derivative	limit			continuous
A function f is said to be in an interval [a, b] if it is	discontinuous	continuous	derivative	limit			continuous
continuous at each and every point of the interval							
A function f is said to be continuous in an interval [a, b] if it	discontinuous	continuous	derivative	limit			continuous
is at each and every point of the interval							
The exponential function is at all points of R	discontinuous	continuous	derivative	limit			continuous
If x and y be so related that y can be expressed explicitly in terms of							
x, then y is called function of x	implicit	explicit	even	odd			explicit
If x and y be so related that y cannot be expressed explicitly in terms							
of x , then y is called function of x	implicit	explicit	even	odd			implicit
				piecew			
				ise			
A function, whose domain and co-domain aresubsets of the set				contin			
of all real numbers, is known as function	implicit	explicit	real valued	uous			real valued
The set of all the images of all the elements of A under the							
function f is called the of f.	domain	codomain	range	image			range
Which of the following is continuous function?	e^x	sin x	cos x	e^x, sin	x, cosx		e^x, sinx,
							cosx
Every differentiable function is	constant	discontinu	algebraic	continu	ous		continuous
Every polynomical function of degree n is	constant	discontinu	algebraic	continu	ous		continuous
The derivative of (log x) is	1/x	х	x^2	0			1/x
The derivative of (e^x) is	1/x	х	x^2	e^x			e^x
The derivative of constant is	1/x	0	x^2	х			0
The derivative of (sin x) is	cos x	0	x^2	х			cos x
The derivative of (cos x) is	$(\cos x)$	$(-\sin x)$	tan x	(-x)			$(-\sin x)$
The derivative of (tan x) is	$(\cos x)$	$(-\sin x)$	tan x	$(\sec^2 2)$	x)		$(\sec^2 x)$

The derivative of (cosec x) is	(-cos x)	(- cosec	tan x	(sec^2x)	(- cosec x.
		$x. \cot x$			cot x)
The derivative of (sec x) is	(sec x tan x)	(- cosec	tan x	(sec^2x)	(sec x tan x)
		x. cot x)			
The derivative of (cot x) is	$(-\cos x)$	(-	tan x	$(\sec^2 x)$	(- cosec^2
		cosec^2			x)
		x)			
The derivative of (x^3) is	3x^2	3x^3	3x	3	3x^2
The derivative of (5x) is	5x	5	1	0	5
The derivative of (10) is	0	2	3	10	0
The derivative of $(5x^2)$ is	10	0	10x	5x	10x
The derivative of (e ³ x) is	6 e^3x	3 e^x	3 e^3x	e^3x	3 e^3x
The derivative of (sin 4x) is	$(4\cos 4x)$	(- 4sin x)	tan4 x	(cos 4x)	(4cos 4x)
The derivative of (cos 2x) is	(- 2sin x)	(- 2sin 2x)	tan x	(- sin 2x)	(- 2sin 2x)
The derivative of (cos 5x) is	(- 5sin x)	(- 5sin 5x)	tan x	(- sin 5x)	(- 5sin 5x)
Find the first derivative of 6x ³	18x^2	18x	18	6x^2	18x^2
Find the second derivative of 6x^3	36	18x^2	36x	18x	36x
Find the third derivative of 6x ³	36	18x^2	36x	18x	36
Find the first derivative of (x^3+2)	x^2+2	x^2	3x^2	3x	3x^2
Find the second derivative of (x^3+2)	x^2+2	6x	3x^2	3x	6x
Find the third derivative of (x^3+2)	x^2+2	6x	3x^2	6	6
Find the first derivative of (log x+2)	1/x	Х	x^2	0	1/x
Find the first derivative of (e^x+2x)	e^x	e^x+2	e^x	0	e^x+2
Find the second derivative of (e^x+2x)	e^x	e^x+2	e^x	0	e^x
Find the first derivative of (kx)	kx	Х	k	1	k
Find the second derivative of (kx)	kx	Х	k	0	0
Find the derivative of $y = (x^2)$ with respect to x	X	2x	x^2	0	2x
Find the derivative of $y = (\sin 10x)$ with respect to x	10 cos 10x	(-5 cos	cos 10x	10 cos	10 cos 10x
		10x)		Х	

Questions	opt1	opt2	opt3	opt4	opt5	opt6	Answer
The partial differentiation is a function of or more							
variables .	two	zero	one	three			two
If z=f(x,y) then x and y are function of another variable							
t	continuous	differential	two	one			continuous
If f(x,y)=0 then xand y are said to be an function	implicit	extremum	explicit	differential			implicit
The concept of jacobian is used when we change the variables	multiple	single	diffenentia				
in	integrals	integrals	1	function			multiple integrals
The jacobian were introduced by	C.G.Jacobi	johon	Gauss	Euler			C.G.Jacobi
f(a,b) is said to be extreme value of $f(x,y)$ if it is either	maximum						
a	or	zero	minimum	maximum			maximum or minimum
Every extremum value is a stationary value but a stationary							
value need not be anvalue.	infimum	minimum	maximum	extremum			extremum
F is differentiable and where not all of its first differential							
derivatives vanish simultaneously then the functions	independen						
u1,u2un are said to be functionally	t	dependent	explicit	implicit			dependent
f(a,b) is a maximum value of $f(x,y)$ if there exists some	f(a						
neighbourhood of the point (a,b) such that for every point	b)>f(a+h	f(a b) <f(a+h< td=""><td></td><td></td><td></td><td></td><td></td></f(a+h<>					
(a+h,b+k) of the neighbourhood	b+k)	b+k)	f(a b)<0	f(a b)>0			f(a b) > f(a+h b+k)
f(a,b) is a minimum value of $f(x,y)$ if there exists some	f(a						
neighbourhood of the point (a,b) such that for every point	b)>f(a+h	f(a b) <f(a+h< td=""><td></td><td></td><td></td><td></td><td></td></f(a+h<>					
(a+h,b+k) of the neighbourhood	b+k)	b+k)	f(a b)<0	f(a b)>0			$f(a b) \leq f(a+h b+k)$
	dho f/dho	dho f/dho x	dho f/dho	dho f/dho y			
The necessary condition for maxima is	x (a b)=0	(a b)= 1	y (a b)=5	(a b)=1			dho f/dho x (a b)=0
	dho f/dho	dho f/dho y	dho f/dho	dho f/dho y			
The necessary condition for minimum is	x (a b)=0	(a b)=0	x (a b)=1	(a b)=1			dho f/dho y (a b)=0
	dho f/dho						
	x (a b)=0						
	and dho						
f(a,b) is said to be a stationary value of $f(x,y)$ if (x,y)	f/dho y (a	dho f/dho x	dho f/dho	dho f/dho y			dho f/dho x (a b)=0 and
is	b)=0	(a b)=1	y (a b)=0	(a b)=1			dho f/dho y (a b)=0
If $f(a,b)$ is said to be of $f(x,y)$ if it is either maximum	extremum	boundary					
or minimum.	value	value	end	power			extremum value
			non-				
			homogene				
If u be a of degree n in x and y.	linear	homogeneous	ous	polynonmial			homogeneous
The differentiation is a function of two or more							
variables.	ODE	PDE	partial	total			partial
The were introduced by C.G.Jacobi.	jacobian	millian	taylor	Gauss			jacobian
The concept of is used when we change the variables			maculauri				
in multiple integrals	taylor	gauss	n	jacobian			jacobian

				Jacobian of	
If the function u,v,w of three independent variables x,y,z are				(x y z) with	
not independent then the Jacobian of u,v,w with respect to				respect ro (u	
x,y,z is always equal to	1	0	Infinity	v w)	0
			has		
			neither a		
	is a		maximum		
	decrasing	has a	nor a		
	function of	minimum at	minimum		has neither a maximum
The function $f(x)=10+x^{6}$	х	x=0	at x=0	saddle point	nor a minimum at x=0
		two	two		
	only one	stationary	stationary		
	stationary	points at (0	point at (0		
	point at (0	0) and $(1/6)$	0) and (1 -	not stationary	two stationary points at (0
The function $f(x,y)=2x^2+2xy-y^3$ has	0)	& 1/3)	1)	points	0) and (1/6 & 1/3)
If(a/3,a/3) is an extreme point on xy(a-x-y), the maxima is	a^3/27	a/27	a^3/9	a/9	a^3/27
Any function of the type f(x,y)=c is called anfunction	Implicit	Explicit	Constant	composite	Implicit
If $u=f(x,y)$, where $x=pi(t)$, $y=si(t)$ then u is a function of t and is					
called the function	Implicit	Explicit	Constant	composite	composite
The point at which function $f(x,y)$ is either maximum or					
minimum is known as point	Stationary	Saddle point	extremum	implicit	Stationary
			maximum		
If rt-s $^2>0$ and r<0 at (a,b) the f(x,y) is maximum at (a,b) and			or		
thevalue of the function(a,b)	Maximum	Minimum	minimum	zero	Maximum
			maximum		
If rt-s $^2>0$ and r >0 at (a,b) the f(x,y) is minimum at (a,b) and			or		
the value of the function(a,b)	Maximum	Minimum	minimum	zero	 Minimum
If rt-s ² >0 at (a,b) the $f(x,y)$ is neither maximum nor minimum	-				
at (a,b) such point is known as point	Stationary	Saddle point	extremum	ımplicit	 Saddle point
	lım f(x		lım f(x		
If f(x,y) is a function of two variables x,y then	y)=1	$\lim_{x \to 0} f(x y) = 0$	y)>0	lim f(x y)<0	$\lim_{x \to 0} f(x y) = 1$

Questions	opt1	opt2	opt3	opt4	opt5	opt6	Answer
The function f(x) is integrated with respect to x between the limits a and b, then the integral is known as	Definite Integral	Indefinite Integral	Finite Integral	Infinte integral			Definite Integral
The function f(x) is integrated with respect to x without limits, then the integral is known as	Definite Integral	Indefinite Integral	Finite Integral	Infinte integral			Indefinite Integral
The definite intergral is a	Differentiation	function	Number	limit			Number
The indefinite intergral is a	Number	function	Differentiation	limit			function
∫ dx=	x+C	1	0	x^2			x+C
ʃcdx=	cx+C	0	1	x+C			cx+C
∫ 5dx=	x+C	5x+C	x^2+C	5+C			5x+C
$\int x^n dx = \dots$	x^(n+1)/ (n+1)+ C	x^(n-1)/ (n- 1)+ C	nx^ (n-1)+ C	(n+1) x^ (n+1)+ C			x^(n+1)/ (n+1)+ C
ſxdx=	x^2+C	x^2/2+C	x^3/2+C	x^2/2+C			x^2/2+C
$\int x^{(2)} dx = \dots$	(x^(2)/2)+C	(x^(3)/3)+C	x+C	2x+C			(x^(3)/3)+C
$\int 3x^{(2)} dx = \dots$	3x^(2)+C	x+C	x^2+C	x^(3) +C			x^(3) +C
$\int (1/x) dx = \dots$	1+ C	log x+C	(-1)+C	$(-\log x) + C$			log x+C
$\int e^{(x)} dx = \dots$	(-e^x)+ C	e^(-x) + C	(-e^(-x))+C	$e^{x} + C$			$e^{x} + C$
$\int e^{(-x)} dx = \dots$	(-e^x)+ C	e^(-x) + C	(-e^(-x))+C	$e^x + C$			(-e^(-x))+C
$\int e^{(2x)} dx = \dots$	(-e^2x)/2+ C	e^(-2x)/2 + C	(-e^(-2x))/2+C	e^2x/2+ C			e^2x/2 + C
$\int e^{-2x} dx = \dots$	(-e^(-2x))/2+ C	$e^{(-2x)/2} + C$	(-e^(-2x))/2+C	e^(-2x)/2+ C			(-e^(-2x))/2+C
∫ cosx dx=	sinx + C	$\cos x + C$	(-cosx)+C	(-sinx)+C			sinx + C
∫ sinx dx=	sinx + C	$\cos x + C$	(-cosx)+C	(-sinx)+C			(-cosx)+C
$\int cosmx dx = \dots$	(sinmx)/m + C	(cosmx)/m + C	(-cosmx)/m+C	(-sinmx)/m+C			(sinmx)/m+ C
∫ sinnx dx=	(sinnx)/n + C	$(\cos nx)/n + C$	(-cosnx)/n+C	(-sinnx)/n+C			(-cosnx)/n+C
∫ cos2x dx=	(sin2x)/2 + C	$(\cos 2x)/2 + C$	(-cosx)/2+C	(-sinx)/2+C			$(\sin 2x)/2 + C$
∫ sin3x dx=	$(\sin 3x)/3 + C$	$(\cos 3x)/3 + C$	(-cos3x)/3+C	(-sin3x)/3+C			(-cos3x)/3+C
$\int \text{Sec}^{(2)} x dx = \dots$	secx.tanx+C	tanx+C	tan^(2) x +C	Secx+C			tanx+C
$\int \operatorname{Cosec}^{\wedge}(2) x dx = \dots$	cosecx.tanx+C	cotx+C	$(-\cot(x)) + C$	cosecx+C			$(-\cot(x)) + C$
∫ Secx. tanx dx=	secx.tanx+C	tanx+C	tan^(2) x +C	Secx+C			Secx+C
∫ cosecx. cotx dx=	cosecxcotx+C	cotx+C	(-cosec x) +C	Secx+C			(-cosec x) +C
∫dx/(a^2-x^2)=	$1/2a \log (a+x/a-x)$	1/a tan^-1(x/a)	1/2a log (x- a/x+a)	sin^-1(x/a)			1/2a log (a+x/a-x)

∫dx/(x^2-a^2)=	sin^-1(x/a)	1/2a log (x- a/x+a)	1/2a log (a+x/a-x)	1/a tan^-1(x/a)		1/2a log (x-a/x+a)
$\int dx/(x^2+a^2)=$	1/2a log (a+x/a-x)	sin^-1(x/a)	1/a tan^-1(x/a)	1/2a log (x- a/x+a)		1/a tan^-1(x/a)
$\int dx / \sqrt{(a^2 - x^2)} = \dots$	1/2a log (x-a/x+a)	1/a tan^-1(x/a)	1/2a log (a+x/a-x)	sin^-1(x/a)		sin^-1(x/a)
If u and v are differentiable functions then $\int u dv =$	uv-∫ v du	uv+∫v du	(-uv)+∫v du	(-uv)-∫v du		uv-∫ v du
∫(limit 1 to ∞)(1/x)dx=	00	0	1	5		×
$\int (\text{limit } 0 \text{ to } 1) x^{(2)} dx = \dots$	1	(1/3)	(1/2)	0		(1/3)
∫(limit 0 to 2)xdx=	-2	5	2	1		2

Questions	opt1	opt2	opt3	opt4	opt5	opt6	Answer
The triple integral [[[dy gives the over the region v	area	volume	Direction	weight			volume
The value of [[dx dy_inner integral limt varies from 1 to 2 and the outer integral						-	
limit varies from 0 to 1	0	1	2	3			1
[[[dx dy dz, the inner integral limit varies from 0 to 3, the central integral limit							
varies from 0 to 2 and outer integral limit varies from 0 to 1	2	4	6	8			6
	Definite	Indefinite	volume	Surface			
When the limits are not given, the integral is named as	integral	integral	integral	integral			Indefinite integral
The Double integral [[dx dy gives of the region R	area	modulus	Direction	weight			area
The value of [[(x+y) dx dy , inner integral limt varies from 0 to 1 and the outer				Ŭ		-	
integral limit varies from 0 to 1	0	1	2	3			1
The value of [[[x^2 yz dx dy dz, the inner integral limit varies from 1 to 2, the							
central integral limit varios from 0 to 2 and outer integral limit various from 0 to 1	7/3	1/3	2/3	3			7/3
Evaluate [[4xy dx dy, the inner integral limit varies from 0 to 1 and outer integral	·						,
limit varies from 0 to 2	10	4	5	1			4
The value of [[d xdy /xy, the inner integral limit varies from 0 to b and the outer							
limit varies from 0 to a	0	1	ab	loga log b			loga log b
	Definite	Infinite	volume	Surface			0 0
If the limits are given in the integral, the the integral is name as	integral	integral	integral	integral			Definite integral
The value of $\int \left[(x^2+3y^2) dy dx \right]$, the inner integral limit varies from 0 to 1, the		0	Ű	Ŭ			0
outer integral limit varies from 0 to 3	10	15	12	30			12
	-	-					
The value od [[[dxdy d, the inner integral limit varies from 0to 3, the central							
integral limit varies from 0 to 2 and outer integral limit varies from 0 to 1	6	1	16	12			6
	Definite	Infinite	volume	Surface			
If the limits are not given in the integral, the the integral is name as	integral	integral	integral	integral			Infinite integral
The value of $\int (x^2+y^2) dy dx$, the inner integral limit varies from 0 to x, the outer	Ŭ	0	- U	Ū			0
integral limit varies from 0 to 1	1	1/3	2/3	3/2			1/3
The value of [[dy dx, the inner integral limit various from 0 to x ,the outer integral							
limit varies from -a to a	0	1	2	3			0
The Double integral [[dx dy gives of the region R	area	modulus	Direction	weight			area
The value of [[[dx dy dz, the inner integral limit varies from 0 to a , the central							
integral limit varies from 0 to a and the outer integral limit varies from 0 to a	0	a^3	a^2	a^4			a^3
The value of ∫∫(x+y) dx dy , the inner integral limit varies from 0 to 1 and the outer						-	
integral limit varies from 0 to 2	0	1/3	2/3	3/2			1/3
			volume				
The extension of double integral is nothing but integral	Single	Line	integral	Triple			Triple
Evaluate [x^2/2 dx, the limit varies from 0 to 1	2	1/6	1/10	34		-	1/6
Evaluate [42y dy, the limit varies from 0 to 10	10	2100	2000	100			2100
The value of <i>ff</i> xy dy dx, the inner integral limit varies from 0 to x and the outer							
integral limit varies from 1 to 2	15/4	9/2	3/2	4/3			15/4
The value of ∫∫dy dx, the inner integral limit varies from 2 to 4 ,the outer integral						1	
limit varies from 1 to 5	8	2	4	5			8
The value of <i>f</i> (xy dy dx, the inner integral limit varies from 0 to 3, the outer integral						1	
limit varies from 0 to 4	12	36	1/2	4			36

The value of ∬dy dx, the inner integral limit varies from 0 to 2 , the outer integral						
limit varies from 0 to 1	2	1	3/2	4	2	
The value of ∬dx dy, the inner integral limit varies from y to 2 , the outer integral						
limit varies from 0 to 1	1/2	1	3/2	4	3/2	2
The value of ∬dx dy, the inner integral limit varies from 2 to 4 , the outer integral						
limit varies from 1 to 2	2	6	3	1	2	
When a function f(x) is integrated with respect to x between the limits a and b, we	Definite	infinite	volume	Surface		
get	integral	integralv	integral	integral	De	finite integral
In two dimensions the x and y axes divide the entire xy- plane into						
quadrants	1	2	3	4	2	
In three dimensions the xy and yz and zx planes divide the entire space into						
parts called octants	3	2	8	4	8	
Evaluate ((2x+3) dx, the integral limitvaries from 0 to 2	10	42	51	1	10	

Questions	opt1	opt2	opt3	opt4	opt5	opt6	Answer
An equation involving one dependent variable and its derivatives	Ordinary	Partial Differential	Difference	Integral			Ordinary Differential
with respect to one independent variable is called	Differential Equation	Equation	Equation	Equation			Equation
The roots of the Auxillary equation of Differential equation, (D^2-	(0,1)	(2.2)	(1.2)	(1.1)			(1.1)
2D+1)y=0 are	(01)	(32)	(12)	(11)			(11)
The order of the $(D^2+D)y=0$ is	2	1	0	-1			2
The roots of the Auxillary equation of Differential equation, (D^4-	(1 1 1 1)	$(1 \ 1 \ 1 \ 1)$	$(1 \ 1 \ 1 \ 1)$	(1 1; ;)			(1, 1, 2, 3)
1)y=0 are	(1111)	(1 1 -1 1)	(1 -1 1 -1)	(1 -1 1 -1)			(1 -1 1 -1)
The degree of the $(D^2+2D+2) = 0$ is	1	3	0	2			1
The particular integral of (D^2-2D+1)y=e^x is	((x^2)/2) e^x	(x/2) e^x	((x^2)/4) e^x	$((x^3)/3)$			((x^2)/2) e^x
The roots of the Auxillary equation of Differential equation (D^{2}) -							
4D+4)y=0 are	(21)	(2 2)	(2 - 2)	(-2 2)			(2 2)
The P.I of the Differential equation $(D^2 - 3D + 2)v = 12$ is	1 / 2	1 / 7	6	10			6
	- / -	1, 1		10			0
If $f(D)=D^2 -2$, $(1/f(D))e^2x=$	(1 / 2) e^x	(1 / 4) e^2x	$(1 / 2) e^{-2x}$	(1 / 2) e^2x			(1 / 2) e^2x
If $f(D)=D^2+5$, $(1/f(D)) \sin 2x =$	sin x	cos x	sin 2x	-sin 2x			sin 2x
The particular integral of $(D^2 + 19D + 60)y = e^x$ is	(-e^(-x))/80	(e^(-x))/80	(e^x)/80	(-e^x)/80			(e^x)/80
The particular integral of $(D^{2+25}) = \cos x$ is	(cosx)/24	(cosx)/25	(-cosx)/24	(-cosx)/25			(cosx)/24
The particular integral of $(D^{2+25}) = \sin 4x$ is	(-sin4x)/9	(sin4x)/9	(sin4x)/41	(-sin4x)/41			(sin4x)/9
The particular integral of $(D^{2+1}) = \sin x$ is	xcosx/2	$(-x\cos x)/2$	(-xsinx)/2	xsinx/2			$(-x\cos x)/2$
The particular integral of (D^2 -9D+20)y=e^(2x) is	e^(2x) /6	e^(2x) /(-6)	e^(2x)/12	e^(2x) /(-12)		e^(2x) /6
The particular integral of $(D^2-1) = \sin 2x$ is	(-sin2x)/5	sin2x/5	sin2x/3	$(-\sin 2x)/3$			(-sin2x)/5
The particular integral of $(D^{2+2}) = \cos x$ is	(-cosx)	(-sinx)	cosx	sinx			cosx
The particular integral of $(D^2 - 7D - 30)y = 5$ is	(1/30)	(-1/30)	(1/6)	(-1/6)			(-1/6)
The particular integral of $(D^2 - 12D - 45)y = -9$ is	(-1/5)	(1/5)	(1/45)	(-1/45)			(1/5)
The particular integral of (D^2- 11D-42)y=21 is	(-1/42)	(1/42)	(1/2)	(-1/2)			(-1/2)
The particular integral of $(D^2+1) = 2$ is	1	2	-1	-2			2
solve (D^2+2D+1) y=0	y=(AX+B)e^(-1)x	y=(AX+B)e^(-2)x	y=(AX^2+B)e^(-	y=(AX-			
			1)x B)e^(-1)	B)e^(-1)x			y-(AA+D)er(-1)x
The of a PDE is that of the highest order derivative occurring in							
it	degree	power	order	ratio			order
The degree of the a PDE is of the higest order derivative	power	ratio	degree	order			power
C.F+P.I is called solution	singular	complete	general	particular			general
Particular integral is the solution of	f(a,b)=F(x,y)	f(1,0)=0	[1/f(D,D')]F(x,y)	f(a,b)=F(u, v)			[1/f(D,D')]F(x,y)
Which is independent variable in the equation $z=10x+5y$	x&y	Z	x,y,z	x alone			x&y
Which is dependent varible in the equation $z=2x+3y$	х	Z	y	x&y			Z
The relation between the independent and the dependent variables which satisfies the PDE is called	solution	complet solution	general solution	singular solution			solution