KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)

COIMBATORE - 641 021 FACULTY OF ENGINEERING DEPARTMENT OF SCIENCE AND HUMANITIES I B.E COMPUTER SCIENCE AND ENGINEERING LESSON PLAN

SUBJECT: PROBABILITY AND STATISTICS SUB.CODE: 19BECS201

S.No	Topics covered	No. of hours
	UNIT I - BASIC PROBABILITY	
1	Introduction of Probability and Applications	1
2	Probability spaces: Experiment, Events, Axioms and properties	1
3	Conditional probability – Problems	1
4	Concepts of Baye's rule – Problems	1
5	Problems based on Baye's theorem	1
6	Tutorial 1 – Problems based on probability and Baye's theorem	1
7	Idea of Discrete Random Variables	1
8	Problems based on discrete random variables	
9	Independent random variables – Problems	1
10	Concepts of multinomial distribution and sums of independent random variables	1
11	Expectation of Discrete Random Variables – Problems	1
12	Concept of Moments, Variance of a sum and Correlation coefficient	1
13	Chebyshev's Inequality	1
14	Tutorial 2 – Problems based on discrete random variables	1
	Total	14
	UNIT II - RANDOM VARIBALES	
15	Introduction to Continuous random variables and their properties	1
16	Continuous random variables – Normal distribution	1
17	Problems based on Normal distribution	1
18	Continuous random variables – Exponential distribution	1
19	Continuous random variables – Gamma distribution	1
20	Problems based on Exponential and Gamma distributions	1
21	Tutorial 3 - Problems based on Continuous random variables	1
22	Bivariate distributions and their properties	1
23	Bivariate Discrete random variables – Joint, marginal and conditional probability mass function	1
24	Problems based on bivariate Discrete random variables	1
25	Problems based on bivariate Discrete random variables	1
26	Bivariate continuous random variables – Joint, marginal and conditional probability density function	1
27	Problems based on bivariate continuous random variables	1
28	Tutorial 4 - Problems based on bivariate distributions	1
	Total	14
	UNIT III - BASIC STATISTICS	
29	Measures of Central tendency: Moments, Skewness and Kurtosis	1
30	Problems based on Moments, Skewness and Kurtosis	1

31	Probability distributions : Binomial and Poisson distributions	1
32	Problems based on Binomial distribution	1
33	Problems based on Binomial distribution	1
34	Problems based on Poisson distribution	1
35	Problems based on Poisson distribution	1
36	Tutorial 5 - Problems based on Binomial and Poisson distributions	1
37	Concepts of Correlation and Regression	1
38	Problems based on Karl Pearson's correlation coefficient	1
39	Problems based on Rank correlation coefficient	1
40	Problems based on lines of regression and regression coefficients	1
41	Problems based on lines of regression and regression coefficients	1
42	Tutorial 6 - Problems based on Correlation and Regression	1
	Total	14
	UNIT IV – APPLIED STATISTICS	
43	Introduction of Curve fitting by the method of least squares	1
44	Curve fitting by the method of least squares	1
45	Fitting of straight lines	1
46	Second degree parabolas and more general curves	1
47	Problems based on Curve fitting by the method of least squares	1
48	Problems based on Fitting of straight lines and Second degree parabolas	1
49	Tutorial 7 - Problems based on Curve fitting by the method of least	1
47	squares	1
50	Concept of test of significance – Small and Large samples	1
51	Testing of significance for mean, variance, proportions and differences	1
31	using large samples	1
52	Test of significance for single mean – Problems	1
53	Test of significance for difference means – Problems	1
54	Test of significance for single proportion – Problems	1
55	Test of significance for difference of proportions – Problems	1
56	Tutorial 8 - Problems based on test of significance for large samples	1
	Total	14
	UNIT V – SMALL SAMPLES	
57	Introduction to test of significance of small samples – t, F and Chi-	1
	square tests	
58	Test for single mean - t test	1
59	Test for difference of means – t test	1
60	Problems based on t test	1
61	Test for ratio of variances – F test	1
62	Problems based on F test	1
63	Tutorial 9 - Problems based on t and F tests	1
64	Concepts of Chi-square test	1
65	Chi-square test for goodness of fit – Problems	1
66	Problems based on Chi-square test for goodness of fit	1
67	Chi-square test for independence of attributes – Problems	1
68	Problems based on Chi-square test for independence of attributes	1
69	Tutorial 10 - Problems based on chi-square test	1
70	Discussion of previous years ESE Questions	1
	Total	14
	GRAND TOTAL	70

Staff- Incharge HoD / S&H

19BECS101 Semester-I

Mathematics-I 4H-4C (Calculus and Linear Algebra for Computer Science Engineers)

Instruction Hours/week: L:3 T:1 P:0 Marks: Internal:40 External:60 Total:100

End Semester Exam: 3 Hours

Course Objectives

- The objective of this course is to familiarize the prospective engineers with techniques in basic calculus and linear algebra.
- It aims to equip the students with standard concepts and tools at an intermediate to advanced level that will serve them well towards tackling more advanced level of mathematics and applications that they would find useful in their disciplines.
- To develop the use of matrix algebra techniques that is needed by engineers for practical applications.
- To acquaint the student with mathematical tools needed in evaluating integrals and their usage.
- To make the student acquire sound knowledge of techniques in solving ordinary differential equations that model engineering problems.

Course Outcomes

The students will learn:

- 1. To apply differential and integral calculus to notions of curvature and to improper integrals. Apart from various applications, they will have a basic understanding of Beta and Gamma functions.
- 2. Fluency in integration using standard methods, including the ability to find an appropriate Method for a given integral.
- The essential tools of matrices and linear algebra including linear transformations, Eigenvalues and diagonalization.
- 4. To apply differential and integral calculus to notions of curvature and to improper integral and proper integrals.
- 5. To solve the system of linear algebraic equations.
- 6. To analyze and evaluate the basic concepts of mathematics like matrix operation, vector spaces and calculus.

UNIT I - Matrices

Matrices, vectors: addition and scalar multiplication, matrix multiplication; Linear systems of equations, linear Independence, rank of a matrix, determinants, Cramer's Rule, inverse of a matrix, Gauss elimination and Gauss-Jordan elimination. Simple problems using Scilab.

UNIT II - Vector spaces

Vector Space, linear dependence of vectors, basis, dimension; Linear transformations (maps),range and kernel of a linear map, rank and nullity, Inverse of a linear transformation, rank nullity theorem, composition of linear maps, Matrix associated with a linear map.

UNIT III - Vector spaces

Eigen values, eigenvectors, symmetric, skew-symmetric, and orthogonal Matrices, Eigen bases. Diagonalization; Inner product spaces.

UNIT IV - Calculus

Evolutes and involutes; Evaluation of definite and improper integrals; Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.

UNIT V - Calculus

Taylor's and Maclaurin theorems with remainders; indeterminate forms and L'Hospital's rule; Maxima and minima.

SUGGESTED READINGS

- 1. G.B. Thomas and R.L. Finney, (2002), Calculus and Analytic geometry, 9th Edition, Pearson,
- 2. Erwin kreyszig, (2006), Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons.
- 3. Veerarajan T,(2008), Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.
- 4. Hemamalini. P.T.(2014), Engineering Mathematics, McGraw Hill Education (India) Private Limited, New Delhi.
- 5. Ramana B.V. (2010), Higher Engineering Mathematics, 11th Reprint, Tata McGraw Hill New Delhi.
- 6. D. Poole, (2005), Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole.
- 7. N.P. Bali and Manish Goyal, (2008), A text book of Engineering Mathematics, Laxmi Publications.
- 8. B.S. Grewal, (2000) Higher Engineering Mathematics, 35th Edition, Khanna Publishers,
- 9. V. Krishnamurthy, V.P. Mainra and J.L. Arora, An introduction to Linear Algebra, Affiliated East–West press.

Faculty In-charge HoD

ACADEMY OF HIGHER EDUCATION KARPAGIAM COIMBATORE - 641 021 DEPARTMENT OF BUIENCE AND HUMANITIES COMPUTER PCIENCE AND ENGINEERING I BE MATHEMATICS -1 (18BECS 101) (calculus and Linear Algebria) QUESTION BANK UNIT-1 (MATRICES) PART-C If $A = \begin{bmatrix} 1 & 2 & 27 \\ 2 & 1 & 2 \end{bmatrix}$ Shows that $A^2 - HA - SI = 0$ Soln $A^{2} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ = 1+4+4 2+2+4 2+4+2 = 2+4+2 = 2+2+4 4+2+2 2+4+2 4+2+2 Lettetl = H 8 8 7 8 8 4 8 8 7

(1)

i)

11)

$$|A| = -11 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -11 & 0 & 0 \\ 0 & -11 & 0 \\ 0 & 0 & -11 \end{bmatrix}$$

$$|A(adj,A) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} = \begin{bmatrix} 3 & -4 & -5 \\ -9 & 2 & 4 \\ 2 & -1 & 3 \end{bmatrix}$$

$$|A(adj,A) = \begin{bmatrix} 3 & -4 & -5 \\ -9 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -3 \\ -9 & 3 & 1 \end{bmatrix}$$

$$|A(adj,A) = \begin{bmatrix} 3 & -4 & -5 \\ -9 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -3 \\ 2 & -13 & 3 \end{bmatrix}$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) = \begin{bmatrix} -11 & 0 & 0 \\ -9 & 3 & 1 \end{bmatrix} - 3$$

$$|A(adj,A) =$$

2

Find Inverse of Matrix

i)
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 3 \\ 2 & 4 & 9 \end{bmatrix}$$

$$\begin{array}{c} 5010, \\ 1A1 = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 3 \\ 2 & 4 & 9 \end{bmatrix}$$

$$= 1(18 - 12) - 1(18 - 6) + 1(8 - 4)$$

$$= 1(6) - 1(12) + 1(4)$$

$$= 6 - 12 + 4$$

$$= -2 \neq 0$$

$$\therefore A^{-1} \text{ exists}$$

Hence the result.

$$[AiJ] = \begin{bmatrix} +(18-12) & -(18-6) & +(8-H) \\ -(9-H) & +(9-2) & -(4-2) \\ +(3-2) & -(3-2) & +(2-2) \end{bmatrix}$$

$$= \begin{bmatrix} 6 & -12 & 47 \\ -5 & 7 & -2 \\ 1 & -1 & 0 \end{bmatrix}$$

$$Odj A = \begin{bmatrix} A^{2}j \end{bmatrix}^{T}$$

$$= \begin{bmatrix} 6 & -5 & 17 \\ -12 & 7 & -17 \\ 4 & -2 & 0 \end{bmatrix}$$

$$A^{T} = \frac{1}{|A|} odj A$$

$$= \frac{1}{-2} \begin{bmatrix} -6 & -5 & 17 \\ -12 & 7 & -17 \\ 4 & -2 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} -3 & 512 & -112 \\ 6 & -712 & 172 \\ -2 & 1 & 0 \end{bmatrix}$$
Hence the Yesult.

(Pi)

Find the Enverse of the matrix

$$A = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{bmatrix}$$
 $A = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{bmatrix}$

$$\begin{bmatrix} A \hat{1} \hat{1} \end{bmatrix} = \begin{bmatrix} +(4-2) & -(0-2) & +(0-2) \\ -(4-6) & +(-2-6) & -(4-8) \\ +(4-5) & -(2-6) & +(4-8) \end{bmatrix}$$

$$= \begin{bmatrix} -5 & 2 & -2 \\ 2 & -9 & 4 \\ 1 & -2 & 2 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} -3 & 2 & 1 \\ 1 & -2 & 2 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} -3 & 2 & 1 \\ 2 & -9 & 2 \\ -2 & 4 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} -3 & 2 & 1 \\ 2 & -9 & 2 \\ -2 & 4 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} -3 & 1 \\ 2 & -9 & 2 \\ -2 & 4 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} -3 & 1 \\ 2 & -9 & 2 \\ -2 & 4 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} -3 & 1 \\ 2 & -4 & 4 \\ -2 & 4 & 4 \\ -2 & 4 & 4 \\ -4 & 4 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/2 & -1/4 \\ 2/4 & 4/4 & 2/4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/2 & -1/4 \\ -1/2 & 2 & 1/2 \\ -1/2 & -1 & -2 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/2 & -1/4 \\ -1/2 & 2 & 1/2 \\ -1/2 & -1 & -2 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/2 & -1/4 \\ -1/2 & 2 & 1/2 \\ -1/2 & -1 & -2 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/2 & -1/4 \\ -1/2 & 2 & 1/2 \\ -1/2 & -1 & -2 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/2 & -1/4 \\ -1/2 & 2 & 1/2 \\ -1/2 & -1/2 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/2 & -1/4 \\ -1/2 & 2/4 & -2/4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/2 & -1/4 \\ -1/2 & 2/4 & -2/4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/2 & -1/4 \\ -1/2 & -1/2 & -2/4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/2 & -1/4 \\ -1/2 & -1/2 & -2/4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/2 & -1/4 \\ -1/2 & -1/4 & -2/4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/4 & -1/4 \\ -1/4 & 2/4 & -1/4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/4 & -1/4 \\ -1/4 & 2/4 & -1/4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/4 & -1/4 \\ -1/4 & 2/4 & -1/4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/4 & -1/4 \\ -1/4 & 2/4 & -1/4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/4 & -1/4 \\ -1/4 & 2/4 & -1/4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/4 & -1/4 \\ -1/4 & 2/4 & -1/4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/4 & -1/4 \\ -1/4 & 2/4 & -1/4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/4 & -1/4 \\ -1/4 & 2/4 & -1/4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/4 & -1/4 \\ -1/4 & 2/4 & -1/4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/4 & -1/4 \\ -1/4 & 2/4 & -1/4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/4 & -1/4 \\ -1/4 & 2/4 & -1/4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/4 & -1/4 \\ -1/4 & 2/4 & -1/4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/4 & -1/4 \\ -1/4 & 2/4 & -1/4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/4 & -1/4 \\ -1/4 & 2/4 & -1/4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/4 & -1/4 \\ -1/4 & 2/4 & -1/4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/4 & -1/4 \\ -1/4 & 2/4 & -1/4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/4 & -1/4 \\ -1/4 & 2/4 & -1/4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/4 & -1/4 \\ -1/4 & 2/4 & -1/4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/4 & -1/4 \\ -1/4 & 2/4 & -1/4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/4 & -1/4 \\ -1/4 & 2/4 & -1/4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/4 & -1/4 \\ -1/4 & 2/4 & -1/4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/4 & -1/4 \\ -1/4 & 2/4 & -1/4 \end{bmatrix}$$

$$= \begin{bmatrix} -3/4 & 1/4 & -1/4 \\$$

3)

Scanned by CamScanner

A.x = B
$$X = A^{-1}B$$

$$|A| = 2(1+1) + 1(1-1) + 3(-1-1)$$

$$= 2(2) + 1(0) + 3(-2)$$

$$= 4 + 0 - 6$$

$$= -2 \neq 0$$

$$A^{-1} = (2x + 5) + (2 - 3) - (-2 + 1)$$

$$= (-1 + 5) + (2 - 3) - (-2 + 1)$$

$$= (-1 + 5) + (2 - 3) + (2 + 1)$$

$$= (-2 - 1) + (2 - 1)$$

$$= (-2 - 1) + (2 + 1)$$

$$= (-2 - 1) + (2 + 1)$$

$$= (-2 - 1) + (2 + 1)$$

$$= (-2 - 1) + (2 + 1)$$

$$= (-2 - 1) + (2 + 1)$$

$$= (-2 - 1) + (2 + 1)$$

$$= (-2 - 1) + (2 + 1)$$

$$= (-2 - 1) + (2 + 1)$$

$$= (-1 + 1) + (1 + 1) + 3(-1 + 1)$$

$$= (-2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (2 + 1) + (2 + 1)$$

$$= (-1 + 1) + (-$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = 1,2,3$$

$$x = 1, y = 2, z = 5$$
Hence the Hesolt

Solve by Matrix covering method
$$2x + y + 3z = 3, 2y + z = 2, x + y + 3z = 1$$
boln.

The given by stem of Cauchion can be
Written of matrix form.

$$\begin{bmatrix} 2 & 1 & 3 \\ 0 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$

$$A \cdot x = 0$$

$$|A| = 2(4-1) - 1(0-1) + 3(0-2)$$

$$= 2(3) - 1(-1) + 3(-2)$$

$$= 6 + 1 - 6$$

$$= 1$$

$$[AN] = \begin{bmatrix} +(1-1) & -(0+1) & +(0-2) \\ -(2-3) & +(4-3) & -(2-4) \\ +(1-6) & -1(2-0) & +(4-0) \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 1 & -2 \\ -5 & -2 & 4 \end{bmatrix}$$

 (\mathring{i})

Ody
$$A = \begin{bmatrix} 3 & 1 & -5 \\ -2 & -1 & 4 \end{bmatrix}$$

$$X = A^{T}B$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 3 & 1 & -5 \\ 1 & 1 & -2 \\ -2 & -1 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 9 + 2 - 5 \\ 3 + 2 - 2 \\ -6 - 2 + 4 \end{bmatrix}$$

$$X = 6, \quad Y = 3, \quad Z = -4$$
Hence the Hesult

5

9)

ii) Notice by Gaus elimination method
$$3x + 4 - 2 = 3$$
, $3x - 84 + 2 = -5$, $x - 24 + 92 = 8$.

The equ is form of $Ax = B$

$$\begin{bmatrix}
3 & 1 & -1 & 3 \\
1 & -2 & 9 & 2
\end{bmatrix} = \begin{bmatrix}
3 \\
5 \\
1 & -2
\end{bmatrix} = \begin{bmatrix}
3 \\
2 \\
-8 \\
1 & -2
\end{bmatrix} = \begin{bmatrix}
3 \\
2 \\
-8
\end{bmatrix}$$
The argument matrix is

$$\begin{bmatrix}
A | B \end{bmatrix} = \begin{bmatrix}
3 \\
1 \\
-2
\end{bmatrix} = \begin{bmatrix}
3 \\
2 \\
-8
\end{bmatrix} = \begin{bmatrix}
1 \\
-6 \\
1 \\
-2
\end{bmatrix} = \begin{bmatrix}
3 \\
8
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & -1 & 3 \\
-8 & 2 & 1 & -5 \\
1 & -2 & 9 & 8
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & -1 & 3 \\
0 & 26 & -7 & 19 \\
0 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & -1 & 3 \\
0 & 26 & -7 & 19 \\
0 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & -1 & 3 \\
0 & 26 & -7 & 19 \\
0 & 1 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & -1 & 3 \\
0 & 16 & -7 & 19 \\
0 & 0 & 35 & 33
\end{bmatrix}$$

$$\begin{bmatrix}
3 & -1 & 3 \\
19 & 19 \\
0 & 0 & 35 & 33
\end{bmatrix}$$

$$\begin{bmatrix}
3 & -1 & 3 \\
0 & 16 & -7 & 19 \\
0 & 0 & 35 & 33
\end{bmatrix}$$

$$\begin{bmatrix}
3 & -1 & 3 \\
0 & 16 & -7 & 19 \\
0 & 0 & 35 & 33
\end{bmatrix}$$

$$\begin{bmatrix}
3 & -1 & 3 \\
0 & 16 & -7 & 19 \\
0 & 0 & 35 & 33
\end{bmatrix}$$

$$\begin{bmatrix}
3 & -1 & 3 \\
0 & 16 & -7 & 19 \\
0 & 0 & 35 & 33
\end{bmatrix}$$

$$\begin{bmatrix}
3 & -1 & 3 \\
0 & 16 & -7 & 19 \\
0 & 0 & 35 & 33
\end{bmatrix}$$

$$\begin{bmatrix}
3 & -1 & 3 \\
0 & 16 & -7 & 19 \\
0 & 0 & 35 & 33
\end{bmatrix}$$

$$\begin{bmatrix}
3 & -1 & 3 \\
0 & 16 & -7 & 19 \\
0 & 0 & 35 & 33
\end{bmatrix}$$

$$\begin{bmatrix}
3 & -1 & 3 \\
0 & 16 & -7 & 19 \\
0 & 0 & 35 & 33
\end{bmatrix}$$

$$\begin{bmatrix}
3 & -1 & 3 \\
0 & 16 & -7 & 19 \\
0 & 0 & 35 & 33
\end{bmatrix}$$

$$Z = 33/33$$

$$\chi + 34 - Z = 3$$

$$x + 5(1) - 1 = 3$$

$$\left[2 = 1 \right]$$

z=2

$$\begin{array}{lll}
3x + y + z = 5, & x + y + z = 4, & x - y + zz = 1. \\
A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & -1 & 2 \end{bmatrix} & 5 = \begin{bmatrix} 5 \\ 4 \\ 1 \end{bmatrix} \\
A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & -1 & 2 \end{bmatrix} & = 3(2+1) - 1(2-1) + 1(-1-1) \\
1 & -1 & 2 \end{bmatrix} & = 6-1-2 = 3 + 0.$$

$$\Delta x = \begin{bmatrix} 5 & 1 & 1 \\ 4 & 1 & 1 \\ 1 & -1 & 2 \end{bmatrix} & = 5(2+1) - 1(8-1) + 1(-4-1) \\
1 & -1 & 2 \end{bmatrix} & = 15 - 7 - 5 = 3$$

$$\Delta y = \begin{bmatrix} 3 & 5 & 1 \\ 1 & 4 & 1 \\ 1 & -1 & 2 \end{bmatrix} & = 3(8-1) - 5(2-1) + 1(1-4) \\
1 & 1 & 2 \end{bmatrix} & = 14 - 5 - 3 = 6$$

$$\Delta z = \begin{bmatrix} 3 & 1 & 1 \\ 4 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix} & = 3(1+4) - 1(1-4) + 15(-1-1) \\
1 & -1 & 1 \end{bmatrix} & = 10+3 - 10 = 3.$$

$$x = \Delta x / \Delta x \\
 = 3/3 \\
 \hline
y = \Delta y / \Delta x \\
 = 6/3 \\
 \hline
y = 1 \\
 \hline
z = 3/3$$

$$\overline{z = 1} \\
 \hline
z = 3/3$$

$$\overline{z = 1} \\
 \hline
z = 3/3$$

Solve the Equation by using haus Elimination and Gauss Fordon me thoo x+y+z=1, 4x+3g-z=6, 3x+5y+3z=4 Solution: Grauss Elimination method: The Equation of form is AX=B, H 3 -1 (X) = (1) H The assignment matrix. -107 = 5 2 = -1/2 | 102 = 5 - 3x+y+2=1 -0 Sub 2 = -1/2 in 0 -4+5/2=2 -y = 2 - 52 -y = 4 - 5 = -1/2/19 = 1/2/1

Sub
$$y = \frac{1}{2}$$
 $z = -\frac{1}{2}$ in 0
 $x + \frac{1}{2} - \frac{1}{2} = 1$
 $x + 0 = 1$
 $x = \frac{1}{2}$

The Solution is $(x, y, z) = (\frac{1}{2}, \frac{1}{2}, -\frac{1}{2})$

By Graws Tordon me Kod:

 $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 4 & 3 & -1 & 1 & 1 \\ 3 & 5 & 3 & 1 & 2 \end{bmatrix}$
 $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 4 & 3 & -1 & 1 \\ 3 & 5 & 3 & 1 \end{bmatrix}$
 $\begin{bmatrix} 1 & 0 & -4 & 3 & 1 \\ 2 & 2 & -1 & 1 \\ 0 & 2 & 0 & 1 \end{bmatrix}$
 $\begin{bmatrix} 1 & 0 & -4 & 3 & 1 \\ 0 & -1 & -5 & 2 & 1 \\ 0 & 2 & 0 & 1 \end{bmatrix}$
 $\begin{bmatrix} 1 & 0 & -4 & 3 & 1 \\ 0 & -1 & -5 & 2 & 1 \\ 0 & 0 & -10 & 5 & 1 \end{bmatrix}$
 $\begin{bmatrix} 1 & 0 & -4 & 3 & 1 \\ 0 & -1 & -5 & 2 & 1 \\ 0 & 0 & 1 & -\frac{1}{2} & 1 \end{bmatrix}$
 $\begin{bmatrix} 1 & 0 & -4 & 3 & 1 \\ 0 & 1 & -\frac{1}{2} & 1 & 1 \\ 0 & 0 & 1 & -\frac{1}{2} & 1 & 1 \end{bmatrix}$

The Solution $(x, y, 2)$ is $(1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$

Solve the system of equations by using Gauss elimenation and Gauss Tordan's method.

2134-47=-4,17 (54-97=-10,3x-24)37=11.

The equation is form AX=B.

$$\begin{bmatrix}
1 & 2 & -4 & 7 & 7 \\
3 & -2 & 3 & 7
\end{bmatrix} = \begin{bmatrix} -4 & -4 \\
4 & 5 & -9 \\
3 & -2 & 3
\end{bmatrix} = \begin{bmatrix} -4 & -4 \\
1 & 5 & -9 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} -4 & -4 \\
0 & 1 & -1 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} -4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} -4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} -4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} -4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} -4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} -4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} -2 & -4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 & 4 & -4 \\
0 & -1 & -1
\end{bmatrix} = \begin{bmatrix} 2-1 &$$

x = -4+6

2=2

yours Tordan's method. $\begin{bmatrix} 1 & 2 & -4 & -4 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{bmatrix} R_2 \rightarrow R_2 + R_3$ ~ \[\begin{picture}(1) & 0 & 0 & | & 2 \\ 0 & 0 & | & 1 \\ 0 & 0 & | & 1 \\ \end{picture} \] $\sim \left| \frac{1}{2} \right| \times \left| \frac{1}{2} \right|$ Ih soln is [x=L] [4=-1] [z=1] bole the system of equation by using yours. elemenation and yours Jordan's method 1 -4+2=1, -3x+24-32=-6, 2x-54+42=5 The equ is form of AX=B $\begin{bmatrix} 1 & -1 & 1 \\ -3 & 2 & -3 \\ 2 & -6 & 4 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ z \end{bmatrix} = \begin{bmatrix} -6 \\ 6 \\ 5 \end{bmatrix}$ The argument matrix is

[A|B] = [-3 2 -3 |-6]

2 -5 4 5

9

Scanned by CamScanner

Jhu soln "15 |x = -2 | [y = 3] |z = 6|

Questions	opt1	opt2
A square matrix A is said to beif the determinant value of A is zero.	singular	non singular
A square matrix A is said to beif the determinant value of A is not equal to zero.	singular	non singular
A square matrix A is said to be singular if the determinant value of A is	1	2
A square matrix A is said to be non singular if the determinant value of A is	1	2
A square matrix in which all the elements below the leading diagonal are zeros, it is called anmatrix.	upper triangular	lower triangular
A square matrix in which all the elements above the leading diagonal are zeros, it is called anmatrix.	upper triangular	lower triangular
A unit matrix is amatrix.	scalar	lower triangular
A system of equation is said to be consistent if they have	one solution	one or more solution
If rank of A is equal to the rank of [A,B] then the system of equations is	Consistent	inconsistent
If rank of A is not equal to the rank of [A,B] then the system of equations is	Consistent	inconsistent
A square matrix A which satisfies the relation $A^2 = A$ is called	nilpotient	idempotient
A matrix is idempotient if	$A^3 = A$	A^2 = 0
If the rank of A is 2, then the rank of $A^{(-1)}$ is	3	2
If A is an mxn matrix, then A^T is an matrix.	mxn	nxm
Let A and B be two matrices, then $(A+B)^T =$	$(A^T)+(B^T)$	A^T
Let A be mxn matrix and B be nxp matrix. Then $(AB)^T$ =	$(A^T)+(B^T)$	(AB)^T
Let A and B be two matrices with entries from C. Then A=conjugate of A iff all entries of A are	complex	real
A diagonal matrix in which all the entries of the principal diagonal are equal is called a matrix.	scalar	lower triangular
A square matrix is a matrix iff it is both lower triangular and upper triangular.	scalar	lower triangular
The product of any two non-singular matrices is	scalar	lower triangular
If A and B are two nxn matrices then det(AB)=	det(A)*det (B)	det(A)+det (B)
The transpose of the co-factor matrix is called the of the matrix A.	adjoint	inverse
If A is a square matrix of order n then adj A is a square matrix of order	0	n
If A is square matrix then $adj(A)^T =$	A^T	adj A
A square matrix A of order n is non-singular iff A is	adjoint	invertible
Let A be any square matrix of order n, then $(adj A)A = A(adj A) = $	adj A	A
If A is a non-singular matrix, then $(A^T)^(-1)=$	$(A^{-1})^{(T)}$	(A^-1)
	` ' ' '	invertible
Let A and B be non-singular matries of order n, then (AB) is matrix	z 20101ni	Invernine

opt3	opt4	opt5	opt6	Answer
	non			
symmetric	symmetric			singular
	non			
symmetric	symmetric			non singular
non zero	70r0			zero
non zero	zero			ZCIO
non zero	zero			non zero
	non			upper
symmetric	symmetric			triangular
	non			lower
symmetric	symmetric			triangular
	non			1
symmetric	symmetric infinite			scalar
no solution	solution			one or more solution
	non			
symmetric	symmetric			Consistent
	non			
symmetric	symmetric			inconsistent
Hermitian	Skew - Hermitian			idempotient
A^1 =A	A^2 = A			$A^2 = A$
4	1			2
nxn	mxm			nxm
	(A^T) - (B^T)			$(A^T)+(B^T)$
	(A^T) - (B^T))		$(B^T)^*(A^T)$
rational	irrational			real
	non			
symmetric	symmetric			scalar
symmetric	diagonal			diagonal
singular	non-singular			non singular
det(A)/det	det(A)-det			non-singular det(A)*det
(B)	(B)			(B)
scalar	minor			adjoint
	-			J
1	n^2			n
(adj A)^T	(- adj A)			(adj A)^T
singular	non-singular			invertible
(det A)*I	det A			(det A)*I
(A^T)	(- A^T)			(A^-1)^(T)
singular	non-singular			non-singular
singular	non-singular			singular

Let A be a singular matrix and B be a non-singular matrix of order n, then (AB) is matrix	adjoint	invertible
A matrix obtained form the idenity matrix by applying a single elmentary row or column operation is called matrix	scalar	an elementary
Any elementary matrix is matrix.	scalar	invertible
Any non-singular square matrix A of order n is equivalent to the matrix of order n.	identity	scalar
The row rank and the column rank of any matrix are	different	equal
The of a matrix A is the common value of its row and column rank.	adjoint	inverse
Any non singular square matrix of order n is equivalent to	the identity matrix of order n	a diagonal matrix of order n
If A is m x n matrix and B is n x k matrix, what is the order of AB?	mxn	nxk
method is a modified form of Gauss elimination method.	Cramer's	Matrix inversion
If A and B are of the same order matrices then $tr(AB) =$	tr A	tr B
The rank of a null matrix is defined to be .	1	(-1)
A determinant has value.	numerical	zero
The determinant is possible only for a matrix.	null	square
If each diagonal element of a scalar matrix is unity, the matrix is called a matrix.	scalar	unit
The determinant of every square sub matrix of a given matrix A is called a of the matrix A.	minor	major
A system of linear equations in n unknowns with augmented matrix M, then the system has a solution iff rank (A)=	rank (M)	n
A system of linear equations in n unknowns with augmented matrix M, then the solution is unique iff rank (A)=	n	1
A system of linear equations in n unknowns with augmented matrix M, then the solution is iff rank $(A) = n$.	consistent	inconsistent

singular	non-singular	singular
singular	non-singular	an elementary
singular	non-singular	non-singular
singular	square	identity
diagonal matrix	square matrix	equal
rank	equal	rank
scalar matrix of order n	the zero matrix of order n	the identity matrix of order n
mxk	kxm	mxk
Gauss Jordon	Echelon form	Gauss Jordon
tr A+tr B	tr BA	tr BA
0	2	0
row	column	numerical
row	column	square
null	row	unit
		minor
rank	inverse	words (M)
0	n^2	rank (M)
		n
0	n^2	
different	unique	unique

Questions	opt1	opt2	opt3
The sum of the main diagonal elements of a matrix is called	trace of a matrix	quadrat ic form	eigen value
Every square matrix satisfies its own	characteristic polynomial	charact eristic equatio n	orthogo nal transfor mation
The orthogonal transformation used to diagonalise the symmetric matrix A is	NT AN	NT A	NAN-1
If $\lambda 1, \lambda 2, \lambda 3, \dots, \lambda n$ are the eigen values of A ,then $k\lambda 1$, $k\lambda 2, k\lambda 3, \dots, k\lambda n$ are the eigen values of	kA	kA2	kA-1
Diagonalisation of a matrix by orthogonal reduction is true only for a matrix.	diagonal	triangula	real symme tric
In a modal matrix, the columns are the	eigen vectors of A	eigen vectors of adj A	eigen vectors of inverse ofA
If at least one of the eigen values of A is zero, then $\det A =$	0	1	10
If the canonical form of a quadratic form is 5y12 - 6 y22, then the index is	4	0	2
det (A- λI) represents	characteristic polynomial	charact eristic equatio n	quadrat ic form
If $\lambda 1$, $\lambda 2$, $\lambda 3$,	A^(-1)	A	A^n
If $\lambda 1$, $\lambda 2$, $\lambda 3$,	A^(-1)	A^2	A^(-p)
Cayley -Hamilton theorem is used to find	inverse and higher powers of A	eigen va	eigen vectors
The eigen values of a matrix are its diagonal	diagonal	symmet	skew-ma
In an orthogonal transformation NT AN = D, D refers to a matrix.	diagonal	-	symmeti
In a modal matrix, the columns are the eigen vectors of	A-1	A2	A
If the eigen values of 8x12 + 7 x22 +3 x32 -12 x1 x2 - 8 x2 x3 +4 x3x1 are 0,3 & 15, then its nature is	positive definite	positiv e semide finite	indefinit

opt4	opt5	opt6	Answer
canonic al form			trace of a matrix
canonic al form			charact eristic equatio n
NA			NT AN
A-1			kA
scalar			real symme tric
eigen values of A			eigen vectors of A
5			0
1			1
canonic al form			charact eristic polyno mial
A^p			A^(-1)
A^p			A^p
quadrat ic form			inverse and higher powers of A
triangula	ar		triangula
skew- symme tric			diagona
adj A			A
negativ e definite			positiv e semide finite

The elements of the matrix of the quadratic form x12 + 3 x22 + 4 x1 x2 are	a11 = 1,a12 =2 , a 21 = 2, a 22 = 3	a11 = -1, a12 = -2, a 21 = 2, a 22 = 3	a11 = 1, a12 = 4, a 21 = 4, a 22 = 3
If the sum of two eigen values and trace of a $3x3$ matrix A are equal, then det A =	λ1 λ2 λ3	0	1
If 1,5 are the eigen values of a matrix A, then det $A =$	5	0	25
If the canonical form of a quadratic form is $5y12 + 6y22$, then the rank is	4	0	2
The non –singular linear transformation used to transform the quadratic form to canonical form is	X= NTY	X= NY	Y= NX
The eigen vector is also known as	latent value	latent vector	column value
If 1,3,7 are the eigen values of A, then the eigen values of 2A are	1,3,7	1,9,21	2,6,14
If the eigen values of 2A are 2, 6, 8 then eigen values of A are	1,3,4	2,6,8	1,9,16
The number of positive terms in the canonical form is called the	rank	index	Signatur
If all the eigenvalues of A are positive then it is called as	Positive definite	Negati ve definite	Positiv e semide finite
If all the eigenvalues of A are negative then it is called as	Positive definite	Negati ve definite	Positiv e semide finite
A homogeneous polynomial of the second degree in any number of variables is called the	characteristic polynomial	charact eristic equatio n	quadrat ic form
The Set of all eigen values of the matrix A is called the of A	rank	index	Signatur
A Square matrix A and its transpose have eigen value	different	Same	Inverse
The sum of the of a matrix A is equal to the sum of the principal diagonal elements of A.	characteristic polynomial	charact eristic equatio n	eigen values
The product of the eigenvalues of a matrix A is equal to	Sum of main diagonal	Determ inant of A	
The eigenvectors of a real symmetric are	equal	unequal	real
When the quadratic form is reduced to the canonical form, it will contain only r terms, if the of A is r.	rank	index	Signatu

a11 =	a11 =
1, a12	1,a12
	1
= 4 , a	=2 , a
21 = 3,	21=2,
a 22 =	a 22 =
1	3
2	0
2	U
6	5
1	2
NXA	X= NY
	latent
orthogo	vector
nal	
11011	
value	
1,9,49	2,6,14
12,4,3	1,3,4
indefinite	index
Na sati	Danitia
Negati	Positiv
ve	e
semide	definite
finite	
Negati	Nagati
-	Negati
ve	ve
semide	definite
finite	
canonic	quadrat
al form	quadrat
al form	ic form
spectrum	spectrun
T	
Transpose	Same
eigen	eigen
vectors	values
Sum of	Determ
the	inant of
cofacto	A
	A
rs of A	
symmetric	real
-	
spectrum	rank

The excess of the number of positive terms over the number of negative terms in the canonical form is called the of the quadratic form.	rank	index	Signatu
If all the eigen values of A are less than zero and atleast one eigen value is zero then the quadratic form is said to be	Positive definite	Negative	Positive
If all the eigen values of A are greater than zero and atleast one eigen value is zero then the quadratic form is said to be	Positive definite	Negati ve definite	Positiv e semide finite
If the quadratic form has both positive and negative terms then it is said to be	Positive definite	Negati ve definite	Positiv e semide finite

spectrum	Signatu
Negati ve semide finite Negati ve semide finite	Negati ve semide finite Positiv e semide finite
indefinite	indefini

KARAGAM ACADEMY OF HIGHER EDUCATION DEPORTMENT OF SCIENCE & HUMANITIES MATHEMATICS -I [18 BECS: 10] UNIT-II VECTOR SPACES] PART-C (14 MARKS) ① Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defend by T(x,y,z) = (x+2y-z, y+z, x+y-2z)Find the basis and dimension of (a) Image of T (b) Kernal of T (c) Prione Rank Nullity Theorem. sol- (1) The Image of Ti-Let $V_1 = x + 2y - z$ $V_2: 0x+y+z$ $V_3 = x + y - 2z$ Let $M = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 2 & 1 & 1 & 1 \\ -1 & 1 & -2 & 2 \end{bmatrix}$ Thus (1.0,1) k (0,1,-1) form a baris
: Rank(T)=2

(ii) Kesnal of Ti-
Let
$$V_1 = x+2y-Z$$

 $V_2 = y+Z$
 $V_3 = x+y-2Z$
Let $N = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 1 & 1 & -2 \end{bmatrix}$
 $X_1 = X_2 \rightarrow X_2$
 $X_2 \rightarrow X_3 \rightarrow X_3$

$$x+2(-1)-1=0$$

$$x-3=0$$

$$x=3$$

$$(3,-1,1) \text{ form the basis.}$$

$$\text{Nullity (1)}=1;$$

$$\text{dim (Ken T)}=1;$$

$$\text{dim (Ken T)}=1;$$

$$\text{dim V}=\text{dim (Im T)}+\text{dim (Ken T)}$$

$$=2+1$$

$$=3$$

$$\therefore \text{ The domasn is } R^3.$$

$$\text{The domasn is } R^3.$$

$$\text{O Let } T: R^4 \rightarrow R^3 \text{ be the linear mapping}$$

$$\text{defined by } T(x,y,z,t)=(x+y+z+t).$$

2) Let
$$T: R^7 \rightarrow R^3$$
 be the linear mapping defined by $T(x,y,z,t) = (x+2y+z+t)$, $(2x-2y+3z+4t)$, $(3x-3y+4z+5t)$

Find the basis and dimension of (a) image of T .

(b) Kernal of T .

(c) Rank nullity Theorem.

Let
$$V_1 = x \cdot y + z + t$$
.

Let $V_1 = x \cdot y + z + t$.

 $V_2 = 2x \cdot 2y + 3z + 4t$.

 $V_3 = 3x - 3y + 4z + 5t$.

Let $M = \begin{cases} 1 & 2 & 3 \\ & -1 & -2 & -3 \\ & 1 & 4 & 5 \end{cases}$

Let $M = \begin{cases} 1 & 2 & 3 \\ & 0 & 0 & 0 \\ & 0 & 1 & 1 \\ & 0 & 2 & 2 \end{cases}$
 $R_2 \rightarrow R_2 + R_1$
 $R_3 \rightarrow R_3 - R_1$
 $R_4 \rightarrow R_4 - R_1$
 $R_4 \rightarrow R_4 - 2R_3$

Then $R_4 \rightarrow R_4 - 2R_3$
 $R_5 \rightarrow R_5$
 $R_6 \rightarrow R_6$
 $R_7 \rightarrow R_8$
 $R_7 \rightarrow R_8$
 $R_8 \rightarrow R$

(ii) The kernal of T:-

Let
$$N = \begin{cases} 1 & -1 & 1 & 1 \\ 2 & -2 & 3 & 4 \\ 3 & -3 & 4 & 5 \end{cases}$$

$$\begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 \\ R_2 \rightarrow R_2 - 2R_1 \\ 0 & 0 & 1 & 2 \\ R_3 \rightarrow R_3 - 3R_1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ R_3 \rightarrow R_3 - 3R_2 \end{bmatrix}$$

(ie) $x - y + z + t = 0$.

There are four variable and two free variable for that two equations (z, f)

(1) $z = 0$, $y = 1 = 7$ $z + z = 0$

$$\begin{bmatrix} x - 1 + 0 + 0 = 0 \\ x - 1 \end{bmatrix}$$

The vset $(x, y, z, t) = (1, 1, 0, 0)$

(ii)
$$z=1, y=0$$
 => $1+2t=0$

$$2t=-1$$

$$t=-1/2$$

=> $x=-1/2=0$

$$x=-1/2=0$$

$$x=-1/2=0$$
Then (1.1.0:0) $x=-1/2=0$

$$x=-1/2=0$$
Then (1.1.0:0) $x=-1/2=0$

$$x=-1/2=0$$

$$x=-1/2=$$

3 Let T: R"-> R3 be the linear transformation defined by T(x,y,z,t) = (x-y+z+t, x+2z-t, x+y+3z-3t) Find the basis and dimension of (a) Image of T (b) Kernal of T (c) Prove RNT: $\begin{vmatrix}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 1 & 2
\end{vmatrix}
R_{2} \rightarrow R_{2} + R_{1}$ $\begin{vmatrix}
0 & 1 & 2 \\
0 & -2 & -4
\end{vmatrix}
R_{4} \rightarrow R_{4} - R_{1}$: (1.1.1) & (0.1.2) form a baris : dim (Im T) = 2.

(ii) Ken T:

$$N = \begin{cases}
1 & -1 & 1 & 1 \\
1 & 0 & 2 & -1 \\
1 & 1 & 3 & -3
\end{cases}$$

$$\sim \begin{cases}
1 & -1 & 1 & 1 \\
0 & 1 & 1 & -2 \\
0 & 2 & 2 & -4
\end{cases}
R_2 -> R_2 - R_1
R_3 -> R_3 - R_1$$

$$\sim \begin{cases}
1 & -1 & 1 & 1 \\
0 & 1 & 1 & -2 \\
0 & 1 & 1 & -2
\end{cases}
R_3 -> R_3 / 2$$

$$\sim \begin{cases}
1 & -1 & 1 & 1 \\
0 & 1 & 1 & -2 \\
0 & 0 & 0 & 0
\end{cases}$$

$$\sim x - y + z + t = 0$$

$$y + z - z t = 0$$

$$put y = 0, z = 1;$$

$$0 + 1 - z t = 0$$

$$-2t = -1$$

$$t = \frac{1}{2}$$

$$\therefore (x + y + z + t) = (3/2 + 0 + 1/2)$$

$$\therefore (x + y + z + t) = (3/2 + 0 + 1/2)$$

$$\therefore (x + y + z + t) = (3/2 + 0 + 1/2)$$

$$\therefore (x + y + z + t) = (3/2 + 0 + 1/2)$$

$$\therefore (x + y + z + t) = (3/2 + 0 + 1/2)$$

$$\therefore (x + y + z + t) = (3/2 + 0 + 1/2)$$

$$\therefore (x + y + z + t) = (3/2 + 0 + 1/2)$$

$$\therefore (x + y + z + t) = (3/2 + 0 + 1/2)$$

$$\therefore (x + y + z + t) = (3/2 + 0 + 1/2)$$

yfor the matrix Mapping
$$A: \mathbb{R}^4 \rightarrow \mathbb{R}^3$$

where $A = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 3 & 5 & -2 \\ 3 & 8 & 13 & -3 \end{bmatrix}$

Bol:

At yearst we have to write
the values in a equation type
and then yind the above conditions
$$V_1 = \chi + 2y + 3z + t.$$

$$V_2 = \chi + 3y + 5z - 2t.$$

$$V_3 = 3\chi + 8y + 13z - 3t.$$

(i) To find the strage of
$$T$$
:

Let $V_1 = x + 2y + 3z + t$
 $V_2 = x + 3y + 5z - 2t$.

 $V_3 = 3x + 8y - 13z + 3t$.

The matrix $M = x \begin{cases} 1 & 1 & 3 \\ 2 & 3 & 8 \\ 3 & 5 & -13 \\ 1 & -2 & 3 \end{cases}$

$$\begin{cases} 1 & 1 & 3 \\ 0 & 1 & 2 \\ 0 & 2 & 44 \\ 0 & -3 & -6 \end{cases} R_4 \rightarrow R_4 - R_1$$

$$\begin{cases} 1 & 1 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{cases} R_3 \rightarrow R_3 - 2R_2$$

$$\begin{cases} 1 & 1 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{cases} R_4 \rightarrow R_4 + 3R_2$$

$$\therefore (1 \cdot 1 \cdot 1 \cdot 3) & (0 \cdot 1 \cdot 1 \cdot 2) & \text{form the banks}$$

$$\therefore Rank(T) = 2$$

$$\therefore \text{dim}(Tm T) = 2$$

iii) To yeard the Kernal of T.-

$$V_1 = x + 2y + 3z + t$$
.

 $V_2 = x + 3y + 5z - 2t$.

 $V_3 = 3x + 8y + (3z - 3t)$.

 $N = \begin{bmatrix} x & y & z & t \\ 1 & 2 & 3 & 1 \\ 1 & 3 & 5 & -2 \\ 3 & 8 & 13 & -3 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & 1 & 2 & -3 \\ 0 & 2 & 4 & -6 \end{bmatrix} \xrightarrow{R_2 \to R_2 - R_1} \xrightarrow{R_3 \to R_3 - 3R_1}$
 $C = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & 1 & 2 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_3 \to R_3 - 2R_2} \xrightarrow{R_2 \to R_3 - 2R_2}$

(Se) $x + 2y + 3z + t = 0$.

 $y + 2z - 3t = 0$.

There are 4 variables but 2 eqn. Therefore put two free variable.

Put
$$y=0$$
, $z=1$;
 $0+2-3t=0$.
 $-3t=-2$
 $1=\frac{2}{3}$
 $x+2(0)+3(1)+\frac{2}{3}=0$.
 $x+3=-\frac{2}{3}$
 $x=-\frac{2-9}{3}\Rightarrow x=\frac{11}{3}$
(ii) put $z=0$, $y=1$;
 $1+0-3t=0$.
 $-3t=-1$
 $1+\frac{1}{3}$
 $x+2(1)+\frac{3}{3}(0)+\frac{1}{3}=0$.
 $x+2=-\frac{1}{3}$
 $x=-\frac{1}{3}-2$
 $x=-\frac{1}{3}-2$
 $x=-\frac{1}{3}-2$
 $x=-\frac{1}{3}$
Thus $(-\frac{1}{3},0,1,\frac{2}{3})$ k $(-\frac{7}{3},1,0,\frac{1}{3})$ form a basis .: Nullity $(7)=2$.: $(2,y,2,1)=(-\frac{7}{3},1,0,\frac{1}{3})$

(iii) RNT:

$$dem V = dim(ImT) + dim(YesT)$$

$$= 2 + 2$$

$$= 4$$

$$\therefore R^{1} \text{ is the domain of } T.$$

(5) Check wheather the yellowing vectors are linearly independent (a) not.

[EACH QUESTION CARRIES 7 MARKS]

(i) (1,1,0), (1,1,1), (0,+1,-1)

The L.C is av, + bv2 + Cv3 = 0.

$$a \begin{bmatrix} 1 \\ 1 \end{bmatrix} + b \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

[AB]:

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & -1$$

(ii)
$$(1, -2, 1)$$
 $(2, 1, -1)$ and $(7, -4, 1)$
The L.C is av₁ + bv₂ + cv₃ = 0.

$$a \begin{bmatrix} 1 \\ -2 \end{bmatrix} + b \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} + C \begin{bmatrix} 7 \\ -4 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$A \mid B \mid = \begin{bmatrix} 1 & 2 & 7 & | 0 \\ -2 & 1 & -4 & | 0 \\ 1 & -1 & 1 & | 0 \end{bmatrix}$$

$$\begin{array}{c} \Gamma = \begin{pmatrix} 1 & 2 & 7 & 0 \\ 0 & 5 & 10 & 0 \\ 0 & 3 & 6 & 0 \end{pmatrix} \begin{array}{c} R_2 \rightarrow R_3 + 2R_1 \\ R_3 \rightarrow R_3 - R_1 \end{array} \\ \begin{array}{c} \Gamma = \begin{pmatrix} 1 & 2 & 7 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix} \begin{array}{c} R_2 \rightarrow R_2/5 \\ R_3 \rightarrow R_3/3 \end{array} \\ \begin{array}{c} \Gamma = \begin{pmatrix} 1 & 2 & 7 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{array}{c} R_1 \\ R_2 \\ R_3 \rightarrow R_3 - R_2 \end{array} \\ \begin{array}{c} R_2 \rightarrow R_2 - R_2 \end{array} \\ \begin{array}{c} R_1 \rightarrow R_2 - R_2 \end{array} \\ \begin{array}{c} R_2 \rightarrow R_3 + R_2 - R_2 \end{array} \\ \begin{array}{c} R_1 \rightarrow R_2 - R_2 \rightarrow R_3 + R_2 - R_2 \end{array} \\ \begin{array}{c} R_2 \rightarrow R_3 + R_3 - R_2 \rightarrow R_3 - R_2 \end{array} \\ \begin{array}{c} R_1 \rightarrow R_2 \rightarrow R_3 + R_3 - R_2 \rightarrow R_3 + R_3 - R_2 \end{array} \\ \begin{array}{c} R_2 \rightarrow R_3 \rightarrow R_3 - R_2 \rightarrow R_3 + R_3 - R_2 \rightarrow R_3 + R_3 - R_2 \rightarrow R_3 + R_3 - R_2 \end{array} \\ \begin{array}{c} R_1 \rightarrow R_2 \rightarrow R_3 + R_3 - R_3 \rightarrow R_3 \rightarrow R_3 - R_3 \rightarrow R_3 \rightarrow R_3 - R_3 \rightarrow R_$$

Check whether the followiths one 1.3 cond.

(1,112), (2,3,1) and (415.5)

Sel. The L.C is
$$av_1 + bv_2 + cv_3 = 0$$
.

(A) $\frac{1}{2} + \frac{1}{2} + \frac{1$

Scanned by CamScanner

(1)
$$(1,2,1), (2,1,0) (1,-1,2)$$

301.

The L·C 2 $av_1 + bv_2 + cv_3 = 0$.

(1) $a \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + b \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

(A) $a \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + b \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

(A) $a \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + c \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

(A) $a \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

(A) $a \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

(B) $a \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(C) $a \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(D) $a \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

(E) $a \begin{bmatrix} 1 \\ 0 \end{bmatrix} +$

.: The given vectors V, , V2, V3 are Enearly Independent.

EXPOSESS the Vector (1,-2,5) as the linear 6. (1) combination of (1,1,1),(1,2,3),(2,-1,1) in \mathbb{R}^3 , where R is a field of oreal numbers.

Let linear combination is V= aV,+bV2+CV3

$$\Rightarrow \begin{bmatrix} 1 \\ -2 \\ 5 \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + b \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + c \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$

The

Matrix
$$[A|B] = \begin{bmatrix} 1 & 1 & 2 & 1 \\ 1 & 2 & -1 & -2 \\ 1 & 3 & 1 & 5 \end{bmatrix}$$

$$\sim \begin{bmatrix}
1 & 1 & 2 & | & 1 \\
0 & 1 & -3 & | & -3 & | & R_2 \rightarrow R_2 - R_1 \\
0 & 2 & -1 & | & 4 & | & R_3 \rightarrow R_3 - R_1
\end{bmatrix}$$

$$\sim \begin{bmatrix}
1 & 1 & 2 & 1 \\
0 & 1 & -3 & -3 \\
0 & 0 & 5 & 10
\end{bmatrix}$$

$$R_3 \rightarrow R_3 - 2R_2$$

$$c = \frac{10}{5}$$

$$C=2$$

$$b-3(2)=-3$$

$$b=3$$

$$a + b + 2c = 1$$

 $a + 3 + 2(2) = 1$
 $a + 7 = 1$
 $a = 1 - 7$
 $a = -6$

Hence $(1,-2,5) = -6V_1 + 3V_2 + 2V_3$

(ii) Express the Vector (3, 7, -4) in R^3 as a linear combination of Vector $V_1 = (1, 2, 3)$, $V_2 = (2, 3, 7)$ of $V_3 = (3, 5, 6)$, where R is field ob real numbers.

the linear combination is $V = \alpha V_1 + b V_2 + c V_3$.

$$\begin{bmatrix} 3 \\ -H \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + b \begin{bmatrix} 2 \\ 3 \\ 7 \end{bmatrix} + c \begin{bmatrix} 3 \\ 5 \\ 6 \end{bmatrix}$$

$$\alpha + 2b + 3c = 3$$

$$2a + 3b + 5c = 7$$

$$3a + 4b + 6c = -4$$

$$matrix [AIB] = \begin{bmatrix} 1 & 2 & 3 & 3 \\ 2 & 3 & 5 & 7 \\ 3 & 7 & 6 & -4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 3 \\ 3 & 7 & 6 & -4 \end{bmatrix}$$

The

$$-4C = -12$$
 $C = -\frac{12}{4}$
 $C = 3$

$$-b-c=1$$
. $a+2b+3c=3$
 $-b-3=1$. $a+2(-4)+3(3)=3$
 $-b=1+3$ $a-8+0=3$. $a+1=3$
 $b=-4$ $a=2$

Hence $(3,7,-4) = 2V_1 - 4V_2 + 3V_3$.

7) Find the inverse of a linear transformation for the mapping $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$(i)$$
 $T(x,y) = (2x+4,3x+2y).$

We set
$$T(x, y) = (s, t)$$

 $(x, y) = T^{-1}(s, t)$

we have.

$$T(x, y) = (2x + y, 3x + 2y).$$

$$(8, t) = (2x+4, 3x+24).$$

(i,e)
$$s=2x+y \longrightarrow 1$$
 $t=3x+2y \longrightarrow 0$.

solve that

$$\triangle x2 \Rightarrow 4x + 2y = 25$$

Sub & in 1.

T⁻¹(S,t)=(X,y)
T⁻¹(S,t)=(2St,-3S+2t)
T⁻¹(x,y)=(2x-y,-3x+2y).
(ii)
$$T(x,y)=(x+2y,2x+3y)$$
.
Sev.
We set $T(x,y)=(s,t)$
 $(x,y)=T^{-1}(s,t)\longrightarrow \mathbb{D}$.
We have.
 $T(x,y)=(x+2y,2x+3y)$.
 $(s,t)=(x+2y,2x+3y)$.
 $(s,t)=(x+2y,2x+3y)$.
i.e., $s=x+2y$, $2x+3y$.
 $2x+4y=2s$.
 $2x+3y=t$.
 $y=2s-t$
 $s=x+2s-t$.
 $x=t-s$
 $x=t-s$
 $x=t-s$
 $x=t-s$

 $T^{-1}(x,y) = (y-x, 2x-y)$.

(8)(i) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ and $S: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear teamsformation, defined by. T(x,y) = (2x, x+y), efs(x,y) = (2y,x) Find (i) Tos (ii) SOT

(i)
$$705 = T(2(x, y))$$

 $= T(2y, x)$
 $= (4y, 2y + x)$

(ii) 507 =
$$S(7(x,y))$$

= $2x+2y,2x$

$$T(2(x,y))$$

$$= T(2y,x)$$

$$= (Hy,2y+x)$$

$$S(T(x,y))$$

$$= (x+y,2y+x)$$

$$S(x,y) = (x+y,2x)$$

(ii) Let $F: \mathbb{R}^3 \to \mathbb{R}^2$ and $G_1: \mathbb{R}^2 \to \mathbb{R}^2$ and $H: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by F(x,y,z)=(y,x+z),G(x,y,z)=(2z,x-y)and H(2, y) = (4,2x) Find(a) HOF and HOG (b) Ho(F+G) and (HoF+HoG)

(i)
$$(HoF)(x, 4, 2) = H(F(x, 4, 2)).$$

= $H(4, x + 2).$
= $(x+2, 24).$

$$(HOG_1)(x, y, z) = H(G_1(x, y, z)).$$

$$= H(2z, x-y).$$

$$= (x-y, 2(2z)).$$

$$= (x-y, 4z).$$

(ii) Ho $(F+G_1) = HoF + HoG_1$, $= I+OF(x, y, z) + (HoG_1)(x_1y, z)$, $= I+(F(x_1y, z) + I+(G(x_1y_1z))$, $= (x+z, 2y) + (x-y_1y_2)$. $F : G_1 & I+Outer Minean$. 9)(i) obtain the matrix depresent the linear transformation, $T: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ given by $T(\mathfrak{T}, \mathfrak{Y}, \mathfrak{T}) =$ (3x+z,-2x+y, x+2y+4z). with onespect of the basis & e1, e2, e34 Let get the standard tousis & e, e2, e33. = {(1,0,0),(0,1,0),(0,0,1)} T(e)=(1,0,0)={3(1)+0,-2(1)+0,1+2(0)+ 4(0)3 =(3+0,-2,1)= (3, -2, 1) $T(e_2) = (0, 1, 0) = \{3(0) + 0, -2(0) + 1, 0 + 2(1) + 4(0)\}$ = (0,1,23 T(e3) = (0,0,1) = {0+1,0,4(1)} The matrix form is $\begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 2 \\ 4 & 0 & 4 \end{bmatrix}$ (ii) Find the linear transformation T: R3->R3 determined by the matrix 1 2 1 with respect of the matrix Standard basis (e1, e2, e3).

 $T(e_1) = (1,2,1) = e_1 + 2e_2 + e_3$ $T(e_2) = (0,1,1) = e_2 + e_3$ $T(e_3) = (-1,3,4) = -e_1 + 3e_2 + 4e_3$.

```
T(x,y,z) = x(t(e_1))+y(t(e_2))+z(t(e_3))
= x(1,2,1)+y(0,1,1),+z(-1,3,4)
= (x,2x,x)+(0,y,y)+(-z,3z,4z)
T(x,y,z) = (x+0-z), (2x+y+3z), (x+y+4z)
```

10) (i) Show that mapping $T: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by T(x,y) = (x+y,x) is a linear transformation.

5%

Let u= (a,b), V=(C,d) d & F.

(i) T.P T(u+v) = T(u)+T(v). $T(u+v) = T((\alpha_1b)+(\alpha_1d))$. = T(a+c,b+d) $= ((a+c)+(b+d), \quad [auc x=a+c]$ = (a+b) = (a+b+c+d, a+c) = (a+b+c+d, a+c) = (a+b, a)+(c+d,c) $= T(a\cdot b)+T(c\cdot d)$ = T(u)+T(v) $\Rightarrow T(u+v) = T(u)+T(v)$.

(ii) $\tau \cdot p \tau(\alpha u) = \alpha \tau(u)$ $\tau(\alpha u) = \tau(\alpha(\alpha b))$. $= \tau(\alpha \alpha + \alpha b \tau \alpha \alpha)$ $= \alpha(\alpha + \alpha b \tau \alpha)$. $= \alpha(\alpha + \alpha b \tau \alpha)$. $= \alpha(\alpha + \alpha b)$.

```
Snow that mapping T: R2->R2 is defined
by T(x,y) = (x+y)x-y) is a linear
teransformation.
     T(U+V) = T(U)+T(V).
 (i)
     +14+V) = T(a1b)+(c,d)
              = (a+c, b+d) { Rut x = a+c | y=b+d |
              = (fatctbtd) atc-btd)
              = ((a+b)+(a-b)+(1+d)+(c-d)).
              = T((a,b)(c,d)).
        T(u+v) = T(u) + T(v)
 (11)
       T(&U)=&T(U)
             = +(&(a,b)).
             = t(20,2b).
              = T(X\alpha, +\alpha b, X\alpha - \lambda b)
              = d (a+b; a-b)
              = & (T(a,b))
        T(QU) = QT(U).
      : Tis linear transformation.
```

Questions	opt1	opt2
The set of all linear combinations of finite sets of elements of S is called	•	spanning set
The vector space {0} then the dimension is	0	1
The made multitude commission V —		
The rank nullity theorem is dim $V = \underline{\hspace{1cm}}$.	rank(T)+nullit	rank(1)-nuiiit
The kernel of T is named as .	dim (Im T)	dim (ker T)
denotes the null space of A	, ,	Rank A
The of two subspaces of a vector space is a subspace.	union	intersection
The intersection of any number of subspaces of a vectors space V is a	subspace	basis
Row equivalence matrices have the same space.	column	null
The nonzero rows of a matrix in echelon form are	linearly depen	linearly indep
Any subset of a linearly independent set is	linearly depen	linearly indep
A set S of vectors is a of V if it satisfies span and linearly independe	subspace	basis
denotes the column space of A	Ker A	Im A
Let V be a vector space then any n+1 or more vectors in V are	linearly depen	linearly indep
The of T is defined to be the dimension of images.	rank	kernel
Let V be a vector space of finite dimenstion n. Then any n+1 or more ve	linearly depen	linearly indep
	_	
Let V be a vector space of finite dimenstion n. Then any or more ve	n+1	n
	1. 1 1	1. 1 . 1
Let V be a vector space of finite dimenstion n. Then any set S with	linearly depen	linearly indep
I at V has a resistant and a of Cuita dimension in Them and linearly indepen-	lin contra donon	hasis
Let V be a vector space of finite dimenstion n. Then any linearly indepe	ilinearly depen	Dasis
Let V be a vector space of finite dimenstion n. Then any spanning set T	linaarly danan	hogia
Let v be a vector space of finite difficultion ii. Then any spanning set I	illicarry depen	Uasis
Let V be a vector space of finite dimenstion n. Then any T of V wi	linearly denen	snanning set
Let v be a vector space of finite difficultion in Their diff	ппсану асрен	spanning set
A vector space with an inner product defined on V is called	column space	elementary sn
An inner product space is called space		an elementary
		Jillionwi y
An inner product of $\langle u, v+w \rangle =$	<u,v>+<u,w></u,w></u,v>	<u,v>-<u.w></u.w></u,v>
An inner product of <u,0> is</u,0>	1	2
<u> </u>		
Let V be an inner product space and let x in V. The norm of x is defined	<x,x></x,x>	<x,0></x,0>

opt3	opt4	opt5	opt6	Answer	
linear span	linear combin	untion		linear span	
-		ation		0	
2	3			U	
rank(T).nulli	basis			rank(T)+nul	lity(T)
dim V	linear transfe	ormation		dim (ker T)	
Im A	dim A			Ker A	
complement	rank			intersection	
dimension	rank			subspace	
row	kernel			row	
linearly span	linearly comb	ination		linearly inde	pendent
linearly span	linearly comb	ination		linearly inde	pendent
dimension	rank			basis	
dim A	Rank A			Im A	
GIIII A	Kank A			IIII A	
linearly span	linearly comb	ination		linearly depe	endent
basis	linear map			rank	
linearly span	linearly comb	ination		linearly depe	endent
n-1	n+2			n+1	
11-1	11+2			11 1	
linearly span	linearly comb	ination		linearly inde	pendent
linearly span	linearly comb	ination		basis	
1:	1: 1 .	· ,·		1 :	
iinearly span	linearly comb	oination		basis	
linearly span	linearly comb	ination		spanning set	
an inner prod	row space			an inner prod	duct space
an unitary	row			an unitary	
<u.v>*<11 w</u.v>	<u,v>/<u,w></u,w></u,v>	>		<u,v>+<u,w< td=""><td>></td></u,w<></u,v>	>
(-1)	0			0	
sqrt <x,x></x,x>	0			sqrt <x,x></x,x>	

Let V be an inner product space and let x in V. The x is called a unit vec	0	1
r and r		-
Let V be an inner product space and let x in V. The x is called avect	row	column
The sum of two vectors is a	scalar	vector
The product of a scalar and a vector is a	scalar	vector
{0} and V are subspaces of any vector space V. They are called the	scalar	vector
Let V and W be vector space over a field F, then T from V to W defined	scalar	vector
Let V and W be vector space over a field F, then T from V to W defined	scalar	vector
Let V be a vector space and A and B are subspaces of V then is a sub	A+B	A-B
Let V be a vector space and A and B are subspaces of V then A is a subspaces.	A+B	A-B
Let V be a vector space and A and B are subspaces of V then B is a subs	A+B	A-B
Let S be a non-empty subset of a vector space V. Then the set of all	linearly depen	linearly indep
The Linear span is denoted by	dim V	dim S
Let V be a vector space over a field F and S be a non-empty subset of V	_	linear indeper
$L[L(S)] = \underline{\hspace{1cm}}$	dim V	dim S
Any vector space is an abelian group with respect to vector	addition	subtraction
Any finite dimensional vector spee over R can be provided with	scalar	vector
In an inner product space, every vector has a	scalar	vector
The norm of the vector (1,2,3) in V with standard inner product is	6	14
In R, let $S = \{1\}$. Then $L(S) =$	S	С
In C, let $S = \{1, i\}$. Then $L(S) =$	S	C

2	3	1
scalar	unit	unit
unit	inner product	vector
unit	inner product	vector
unit	trivial	trivial
identity	trivial	trivial
identity	trivial	identity
A*B	A/B	A+B
A*B	A/B	A+B
A*B	A/B	A+B
linear span	linear combinations	linear combinations
L(S)	S	L(S)
linear deper	subspace	subspace
L(S)	S	L(S)
multiplication	o division	addition
unit	an inner product	an inner product
unit	norm	norm
sqrt(14)	1	sqrt(14)
R	Q	R
R	{a+bi}	C

Questions	opt1	opt2	opt3
The sum of the main diagonal elements of a matrix is called	trace of a matrix	quadrat ic form	eigen value
Every square matrix satisfies its own	characteristic polynomial	charact eristic equatio n	orthogo nal transfor mation
The orthogonal transformation used to diagonalise the symmetric matrix A is	NT AN	NT A	NAN-1
If $\lambda 1, \lambda 2, \lambda 3, \dots, \lambda n$ are the eigen values of A ,then $k\lambda 1$, $k\lambda 2, k\lambda 3, \dots, k\lambda n$ are the eigen values of	kA	kA2	kA-1
Diagonalisation of a matrix by orthogonal reduction is true only for a matrix.	diagonal	triangula	real symme tric
In a modal matrix, the columns are the	eigen vectors of A	eigen vectors of adj A	eigen vectors of inverse ofA
If at least one of the eigen values of A is zero, then $\det A =$	0	1	10
If the canonical form of a quadratic form is 5y12 - 6 y22, then the index is	4	0	2
det (A- λI) represents	characteristic polynomial	charact eristic equatio n	quadrat ic form
If $\lambda 1$, $\lambda 2$, $\lambda 3$,	A^(-1)	A	A^n
If $\lambda 1$, $\lambda 2$, $\lambda 3$,	A^(-1)	A^2	A^(-p)
Cayley -Hamilton theorem is used to find	inverse and higher powers of A	eigen va	eigen vectors
The eigen values of a matrix are its diagonal	diagonal	symmet	skew-ma
In an orthogonal transformation NT AN = D, D refers to a matrix.	diagonal	-	symmeti
In a modal matrix, the columns are the eigen vectors of	A-1	A2	A
If the eigen values of 8x12 + 7 x22 +3 x32 -12 x1 x2 - 8 x2 x3 +4 x3x1 are 0,3 & 15, then its nature is	positive definite	positiv e semide finite	indefinit

opt4	opt5	opt6	Answer
canonic al form			trace of a matrix
canonic al form			charact eristic equatio n
NA			NT AN
A-1			kA
scalar			real symme tric
eigen values of A			eigen vectors of A
5			0
1			1
canonic al form			charact eristic polyno mial
A^p			A^(-1)
A^p			A^p
quadrat ic form			inverse and higher powers of A
triangula	ar		triangula
skew- symme tric			diagona
adj A			A
negativ e definite			positiv e semide finite

The elements of the matrix of the quadratic form x12 + 3 x22 + 4 x1 x2 are	a11 = 1,a12 =2, a 21 = 2, a 22 = 3	a11 = -1, a12 = -2, a 21 = 2, a 22 = 3	a11 = 1, a12 = 4, a 21 = 4, a 22 = 3
If the sum of two eigen values and trace of a $3x3$ matrix A are equal, then det A =	λ1 λ2 λ3	0	1
If 1,5 are the eigen values of a matrix A, then det $A =$	5	0	25
If the canonical form of a quadratic form is $5y12 + 6y22$, then the rank is	4	0	2
The non –singular linear transformation used to transform the quadratic form to canonical form is	X= NTY	X= NY	Y= NX
The eigen vector is also known as	latent value	latent vector	column value
If 1,3,7 are the eigen values of A, then the eigen values of 2A are	1,3,7	1,9,21	2,6,14
If the eigen values of 2A are 2, 6, 8 then eigen values of A are	1,3,4	2,6,8	1,9,16
The number of positive terms in the canonical form is called the	rank	index	Signatur
If all the eigenvalues of A are positive then it is called as	Positive definite	Negati ve definite	Positiv e semide finite
If all the eigenvalues of A are negative then it is called as	Positive definite	Negati ve definite	Positiv e semide finite
A homogeneous polynomial of the second degree in any number of variables is called the	characteristic polynomial	charact eristic equatio n	quadrat ic form
The Set of all eigen values of the matrix A is called the of A	rank	index	Signatur
A Square matrix A and its transpose have eigen value	different	Same	Inverse
The sum of the of a matrix A is equal to the sum of the principal diagonal elements of A.	characteristic polynomial	charact eristic equatio n	eigen values
The product of the eigenvalues of a matrix A is equal to	Sum of main diagonal	Determ inant of A	
The eigenvectors of a real symmetric are	equal	unequal	real
When the quadratic form is reduced to the canonical form, it will contain only r terms, if the of A is r.	rank	index	Signatu

a11 =	a11 =
1, a12	1,a12
=4, a	
- 4 , a	=2 , a
21 = 3 ,	21 = 2,
a 22 =	a 22 =
1	3
2	0
_	
6	5
1	2
NXA	X= NY
	latent
orthogo	vector
nal	. 30031
value	
	2 (1 4
1,9,49	2,6,14
12,4,3	1,3,4
indefinite	index
	1114411
Negati	Positiv
ve	e
semide	definite
	definite
finite	
Negati	Negati
ve	ve
semide	definite
finite	
canonic	quadrat
al form	quadrat
al form	ic form
spectrum	spectrun
T	Q
Transpose	Same
eigen	eigen
vectors	values
Sum of	Determ
the	inant of
cofacto	A
	A
rs of A	
symmetrie	real
symmetric	
spectrum	rank

The excess of the number of positive terms over the number of negative terms in the canonical form is called the of the quadratic form.	rank	index	Signatu
If all the eigen values of A are less than zero and atleast one eigen value is zero then the quadratic form is said to be	Positive definite	Negative	Positive
If all the eigen values of A are greater than zero and atleast one eigen value is zero then the quadratic form is said to be	Positive definite	Negati ve definite	Positiv e semide finite
If the quadratic form has both positive and negative terms then it is said to be	Positive definite	Negati ve definite	Positiv e semide finite

spectrum	Signatu
Negati ve semide finite Negati ve semide finite	Negati ve semide finite Positiv e semide finite
indefinite	indefini

KARPAGIAM ACADEMY OF HIGHER EDUCATION

(Deemed to be university Established under section 3 of UGC Act 1956)

COIMBATORE-641021

DEPARTMENT OF SCIENCE AND HUMANITIES

1 B.E COMPUTER SCIENCE AND ENGINEERING

MATHEMATICS - 1 (18BECS101)

Ccalculus and Linear Algebra QUESTION BANK

> UNIT-111 (VECTOR SPACES)

1. Find the Eigenvalues and Eigenvectors of the matrix
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$$

Step 1:

To find the characteristic Equation

SI = sum of the main diagonal element

$$S_2 = \begin{vmatrix} 1 & 0 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 2 & 1 \\ 2 & 3 \end{vmatrix} + \begin{vmatrix} 1 & -1 \\ 2 & 3 \end{vmatrix}$$

$$= (2-0) + (6-2) + (3+2)$$

$$S_3 = |A|$$

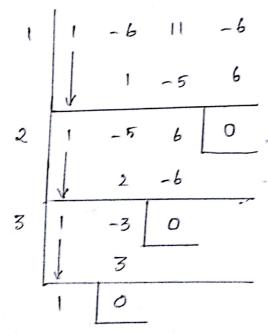
$$= \begin{vmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{vmatrix}$$

$$= 4 + 2$$

The characteristic Equation is,

Step: 2

To find the Eigenvalues.



The Eigen Value is (112,3)

$$\lambda_1=1$$
 , $\lambda_2=2$, $\lambda_3=3$

$$\begin{bmatrix} 1-1 & 0 & -1 \\ 1 & 2-1 & 1 \\ 2 & 2 & 3-1 \end{bmatrix} \begin{bmatrix} n_1 \\ n_2 \\ 7_{13} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & -1 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} 911 \\ 912 \\ 913 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

So therefore

$$\chi_3 = 0$$

$$\chi_{1+\eta_2+\eta_3=0} \Rightarrow \chi_{1+\eta_2=0}$$

$$\chi_1 = -\chi_2$$

$$\chi_1 = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$

Casecii)
$$\lambda = 2$$

$$\begin{bmatrix} 1-2 & 0 & -1 \\ 1 & 2-2 & 1 \\ 2 & 2 & 3-2 \end{bmatrix} \begin{bmatrix} 211 \\ 212 \\ 213 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 & -1 \\ 1 & 0 & 1 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 911 \\ 912 \\ 913 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$$

$$\frac{211}{(0-2)} = \frac{2}{(2-1)} = \frac{2}{(2-0)}$$

$$\frac{\eta_1}{-2} = \frac{\eta_2}{1} = \frac{\eta_3}{2}$$

$$X'_{2} = \begin{bmatrix} \eta_{1} \\ \eta_{2} \\ \eta_{3} \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 1-3 & 0 & -1 \\ 1 & 2-3 & 1 \\ 2 & 2 & 3-3 \end{bmatrix} \begin{bmatrix} 911 \\ 912 \\ 213 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -2 & 0 & -1 \\ 1 & -1 & 1 \\ 2 & 2 & 0 \end{bmatrix} \begin{bmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$-231 - 73 = 0 - 9$$

$$211 - 32 + 33 = 0 - 9$$

$$231 + 232 = 0 - 9$$

$$\frac{9\hat{1}}{(6-1)} = \frac{9\hat{2}}{(40-2)} = \frac{9\hat{1}}{0-1} = \frac{9\hat{2}}{0-1} = \frac{9\hat{3}}{2-0}$$

$$\frac{\eta_1}{-1} = \frac{\eta_2}{1} = \frac{\eta_3}{2}$$

$$X3 = \begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \quad X_2 = \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}, \quad X_3 = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$$

2. Diagonalize the materia
$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$

Sollution:

Step:1

To find the characteristic Equation.

$$S_2 = (5-1) + (5-1) + (1-9)$$

$$= 4 + 4 - 8$$

$$S_3 = |A| = \begin{vmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{vmatrix}$$

The characteristic equation is

$$\lambda^3 - 1\lambda^2 + 3b = 0$$

Step: 2

10 find the Eigen Values.

The Eigen Valus are -2,3,6

$$\lambda_1 = -2$$
, $\lambda_2 = 3$, $\lambda_3 = 6$

Step: 3

To find the Eigen Vectors

Casaci A = -2

$$\begin{bmatrix} 3 & 1 & 3 \\ 1 & 7 & 1 \\ 3 & 1 & 3 \end{bmatrix} \begin{bmatrix} 911 \\ 912 \\ 913 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$91 + 712 + 13 = 0$$

$$\frac{91}{1-21} + \frac{92}{3-3} = \frac{93}{21-1}$$

$$\frac{\eta_1}{-20} = \frac{\eta_2}{0} = \frac{\eta_3}{20}$$

$$X_1 = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} -20 \\ 0 \\ 20 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

Case with
$$A = \frac{3}{4}$$

$$\begin{bmatrix} -3 & 1 & 3 & 711 & 712 \\ 1 & 2 & 1 & 912 \\ 3 & 1 & -2 & 912 \end{bmatrix}$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 212 + 213 = 0$$

$$= 2011 + 213 + 213 = 0$$

$$= 2011 + 213 + 213 = 0$$

$$= 2011 + 213 + 213 = 0$$

$$= 2$$

$$\frac{\gamma_1}{-5} \frac{\gamma_2}{1} = \frac{\gamma_2}{3+5} = \frac{\gamma_3}{5-1}$$

$$\frac{\gamma_1}{4} = \frac{\gamma_2}{8} = \frac{\gamma_3}{4}$$

$$\chi_3 = \begin{bmatrix} 4\\ 1\\ 2\\ 1 \end{bmatrix} = \begin{bmatrix} 1\\ 2\\ 1\\ 1 \end{bmatrix}$$

Step:4

To find the normalized matrin

$$M = \begin{bmatrix} -1 & -1 & 1 \\ 0 & 1 & 2 \\ 1 & -1 & +1 \end{bmatrix}$$

$$N = \chi_{1} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1/\ell_2 \\ 0 \\ 1/\ell_2 \end{bmatrix}$$

$$K_2 = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1/(3) \\ 1/(3) \\ -1/(3) \end{bmatrix}$$

$$X_3 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} \Rightarrow \begin{bmatrix} 7 \\ 1/6 \\ +1/6 \end{bmatrix}$$

$$N = \begin{bmatrix} -1/6 & -1/6 & 1/6 \\ 0 & 1/6 & 2/6 \\ 1/6 & -1/6 & 1/6 \end{bmatrix}$$

Step 5;

$$N^{7} = \begin{bmatrix} -1/6 & 0 & 1/6 \\ -1/6 & 1/6 & -1/6 \\ 1/6 & 2/6 & 1/6 \end{bmatrix}$$

Step: 6

NATH

$$\begin{bmatrix}
-\frac{1}{62} & 0 & \frac{1}{62} \\
-\frac{1}{63} & \frac{1}{63} & -\frac{1}{63} \\
\frac{1}{6} & \frac{1}{63} & \frac{1}{64}
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 3 \\
-\frac{1}{63} & \frac{1}{63} & \frac{1}{64} \\
\frac{1}{62} & -\frac{1}{63} & \frac{1}{64}
\end{bmatrix}
\begin{bmatrix}
-\frac{1}{63} & \frac{1}{63} & \frac{1}{64} \\
\frac{1}{62} & -\frac{1}{63} & \frac{1}{64}
\end{bmatrix}$$

$$\begin{bmatrix} -2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{bmatrix}$$

3. Diagonaline the matrix
$$A = \begin{bmatrix} 2 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2 \end{bmatrix}$$

Sollution:

Step: 1

To find the characteristic equation,

$$\lambda^3 - S_1 \lambda^2 + S_2 \lambda - S_3 = 0$$

$$S3 = |A| = 2(12-0) - 0 + 4(0-24)$$

$$= -72$$

The characteristic equie

$$\lambda^3 - 10\lambda^2 + 12\lambda + 72 = 0$$

Step: 2

to find the Eigen Value

The Eigen Value is -2,6,6

$$\begin{bmatrix} 4 & 0 & 4 \\ 0 & 8 & 0 \\ 4 & 0 & 4 \end{bmatrix} \begin{bmatrix} 211 \\ 212 \\ 213 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\frac{91}{0-3^2} = \frac{92}{0-0} = \frac{93}{32-0}$$

$$X_{1} = \begin{bmatrix} n_{1} \\ n_{L} \\ n_{2} \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} -4 & 0 & 4 \\ 0 & 0 & 0 \\ A & 0 & -4 \end{bmatrix} \begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$X' = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Let
$$X_3 = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

(i)
$$x_1^T x_3 = 0 \Rightarrow \begin{bmatrix} -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

(ii)
$$X_1 T \times_{S} = 0 \Rightarrow \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

$$\frac{a}{0} = \frac{b}{2} = \frac{c}{0}$$

$$X_3 = \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

To find the namely of making

Step 1

The diject value is
$$0.2.15$$

Nico, $0.2.3$, $0.2.5$

Ship is

To find the Eigenvectors $(A-AT) \times 0.0$

Canal

Nico

 $\begin{bmatrix}
8 & -6 & 2 \\
-6 & 7 & -4 \\
8 & -4 & 8
\end{bmatrix}
\begin{bmatrix}
912 & 92 \\
912 & 92
\end{bmatrix}$
 $\begin{bmatrix}
8 & -6 & 2 \\
-6 & 7 & -4 \\
8 & -4 & 8
\end{bmatrix}
\begin{bmatrix}
91 & 92 \\
91 & 92
\end{bmatrix}$
 $\begin{bmatrix}
91 & 92 & 92 \\
-6 & 7 & -4 & -6
\end{bmatrix}$
 $\begin{bmatrix}
91 & 92 & 92 \\
-6 & 7 & -4 & -6
\end{bmatrix}$
 $\begin{bmatrix}
91 & 92 & 92 \\
-12+32 & 56-36
\end{bmatrix}$
 $\begin{bmatrix}
91 & 92 & 92 \\
20 & 20
\end{bmatrix}$
 $\begin{bmatrix}
91 & 92 & 73 \\
20 & 20
\end{bmatrix}$
 $\begin{bmatrix}
91 & 92 & 73 \\
20 & 20
\end{bmatrix}$
 $\begin{bmatrix}
91 & 92 & 73 \\
20 & 20
\end{bmatrix}$
 $\begin{bmatrix}
91 & 92 & 73 \\
20 & 20
\end{bmatrix}$
 $\begin{bmatrix}
91 & 92 & 73 \\
20 & 20
\end{bmatrix}$
 $\begin{bmatrix}
91 & 92 & 73 \\
20 & 20
\end{bmatrix}$

$$\begin{bmatrix} 5 & -6 & 2 \\ -6 & 4 & -4 \\ 8 & -4 & 0 \end{bmatrix} \begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$5n_{1} - 6n_{2} + 2n_{3} = 0 - 6$$

$$-6n_{1} + 4n_{2} - 4n_{3} = 0 - 6$$

$$8n_{1} - 4n_{2} = 0 - 6$$

$$\frac{\chi_1}{24-8} = \frac{n_2}{-12+20} = \frac{n_3}{20-36}$$

$$\frac{211}{16} = \frac{212}{8} = \frac{213}{-16}$$

$$\chi_2 : \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} -7 & -6 & 2 \\ -6 & -8 & -4 \\ 2 & -4 & -12 \end{bmatrix} \begin{bmatrix} n_1 \\ n_2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$-7$$
 -6 2 -7 -6 -8 -4 -6 -8

$$\frac{n_1}{24+16} = \frac{n_2}{-12-28} = \frac{n_3}{56-36}$$

$$\frac{91}{40} = \frac{92}{40} = \frac{92}{20}$$

Step. 4

To find the normalized matrin N

$$N = \begin{bmatrix} 1/3 & 2/3 & 2/3 \\ 2/3 & 1/3 & -2/3 \\ 2/3 & -2/3 & 1/3 \end{bmatrix}$$

10 find the NT

NT =
$$\begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$

NT =
$$\begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$

step: 6

To find NTAN

$$\begin{bmatrix}
\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\
\frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\
\frac{2}{3} & \frac{1}{3} & -\frac{2}{3}
\end{bmatrix}
\begin{bmatrix}
6 - 1 & 2 \\
-1 & 7 - 4 \\
2 & -4 & 3
\end{bmatrix}
\begin{bmatrix}
\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\
\frac{2}{3} & \frac{1}{3} & -\frac{2}{3}
\end{bmatrix}$$

$$= \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 15
\end{bmatrix}$$

6 Diagonalise the Materix
$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

saep:1

To find the characteristic equation
$$\frac{3}{3} - \frac{3}{12} + \frac{3}{12} + \frac{3}{12} = 0$$

$$S_2 = \begin{bmatrix} 6 & -2 \\ -2 & 3 \end{bmatrix} + \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix} + \begin{bmatrix} 6 & 2 \\ 2 & 3 \end{bmatrix}$$
$$= (18 - 4) + (9 - 1) + (18 - 4)$$

$$S_3 = |A| = \begin{vmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{vmatrix}$$

$$= 6(9-1) + 2(-6+2) + 2(2-6)$$
$$= 6(8) + 2(-4) + 2(-4)$$

.. The Characteristic eqn
$$\lambda^3 - 12\lambda^2 + 36\lambda - 32 = 0$$
.

Step. 2

Shap: 3

To find the Eigen vectors

$$(A - \lambda I) \times = 0$$
.

Care(i) $\lambda = 8$
 $\begin{pmatrix} 6-8 & -2-8 & 2 \\ -2 & 3-8 & -1 \\ 2 & -1 & 3-8 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$
 $\begin{pmatrix} -2 & -2 & 2 \\ -2 & -5 & -1 \\ 2 & -1 & -5 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$
 $\begin{pmatrix} \chi_1 & \chi_2 & \chi_3 \\ -2 & -2 & 2 \\ -2 & -5 & -1 \\ 12 & -6 \end{pmatrix} \Rightarrow \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$

Care(ii) $\lambda = 2$
 $\begin{pmatrix} -2 & -2 & 2 \\ -2 & 3-2 & -1 \\ 2 & -1 & 3-2 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$
 $\begin{pmatrix} \chi_1 & \chi_2 & \chi_3 \\ -2 & -6 \\ -2 & 3-2 & -1 \\ 2 & -1 & 3-2 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$
 $\begin{pmatrix} \chi_1 & \chi_2 \\ -2 & 3-2 & -1 \\ 2 & -1 & 3-2 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$
 $\begin{pmatrix} \chi_1 & \chi_2 \\ \chi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$

$$2(0) - \chi_2 + \chi_3 = 0$$

 $-\chi_2 + \chi_3 = 0$
 $-\chi_2 = -\chi_3$

$$\frac{\chi_2}{-1} = \frac{\chi_3}{-1}$$

$$\frac{\chi_1}{-1} = \frac{\chi_3}{2}$$

$$X = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$$

Step. 4

$$M = \begin{bmatrix} 2 & 0 & -1 \\ -1 & -1 & 0 \\ 1 & -1 & 2 \end{bmatrix}$$

Eigen Vectors

$$\chi_{1} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
 $N_{1} = \begin{bmatrix} 2/\sqrt{2}, \frac{3}{4}(-1)^{2}+(1)^{2} \\ -1/\sqrt{(2), \frac{3}{4}(-1)^{2}+(1)^{2}} \end{bmatrix} = \begin{bmatrix} \frac{2}{76} \\ -1/\frac{1}{76} \end{bmatrix}$
 $\chi_{2} = \begin{bmatrix} 0 \\ -1 \\ -1 \end{bmatrix}$
 $N_{2} = \begin{bmatrix} 0 \\ -1/\sqrt{(2), \frac{3}{4}(-1)^{2}+(1)^{2}} \end{bmatrix} = \begin{bmatrix} 0 \\ -1/\frac{1}{76} \end{bmatrix}$
 $\chi_{3} = \begin{bmatrix} -1/\sqrt{(1)^{2}+(2)^{2}+(1)^{2}+(1)^{2}} \\ -1/\sqrt{(2)^{2}+(1)^{2}+(1)^{2}} \end{bmatrix} = \begin{bmatrix} 0 \\ -1/\frac{1}{72} \end{bmatrix}$
 $\chi_{3} = \begin{bmatrix} -1/\sqrt{(1)^{2}+(2)^{2}+(2)^{2}} \\ -1/\sqrt{(2)^{2}+(2)^{2}+(2)^{2}} \end{bmatrix} = \begin{bmatrix} -\frac{1}{76} \\ -\frac{1}{72} \end{bmatrix}$
 $N_{3} = \begin{bmatrix} -1/\sqrt{(1)^{2}+(2)^{2}+(2)^{2}} \\ -2/\sqrt{(1)^{2}+(2)^{2}+(2)^{2}} \end{bmatrix} = \begin{bmatrix} -\frac{1}{76} \\ -\frac{1}{76} \end{bmatrix}$
 $N_{1} = \begin{bmatrix} 2/\sqrt{(1)^{2}+(2)^{2}+(2)^{2}} \\ -\frac{1}{76} \end{bmatrix} = \begin{bmatrix} -\frac{1}{76} \\ -\frac{1}{76} \end{bmatrix}$

Shop: $S_{1} = \begin{bmatrix} 2/\sqrt{(1)^{2}+(2)^{2}+(2)^{2}} \\ -\frac{1}{76} \end{bmatrix} = \begin{bmatrix} -\frac{1}{76} \\$

10 find Diagenaltation of Haterix
$$D = N^T A N$$

(i) Expand using imer product space (a) (64,+842, 64,-742), (b) 234+64, 44-64>, (c) 1124-3411.

= 25u,,6v,>+25u,-Tv2>+28u2,6v,>+28u2-7v2>

= 30 Zu, , V,> - 35 Zu, , V2> + 48 Zug, V,>

(b) 234+6v, 44-6v>

= 23U, Au>+234, -6V>+25V, 4U>+250-64>

= 12 (u,u) -18 24,v>+ 20 24,u> -30 2 V,N>

```
(: 2u,v>=(v,u>)
       =12 /u, u>+ 2(u, v)-30(v, v)
                                             .: Zu,u> = 110112
                                               24,4> = 11 VI) 2
        = 12 ||u|| 2+2/4,4>-30||v||2
(c) 1/2u-5v112
         <2u-3v, 2u-3v>
       = Lau, 2u>+Lau,-3v>+ (-3v, au>+L-3v,-3v>
      = 4 24,4> - 624,87 - 625, 47+92V,V>
      - 4 11011 2-12 24, v> +911 v112
  94. A = \( \text{coso} \) sino -07 \\
- sino \text{cuso} \quad \text{0} \\
\text{A is Orthogonal?}
            ABT = DTA =T
    o o 1
   ABT = \begin{bmatrix} wso sinbo \\ -smo wso \\ 0 & 0 \end{bmatrix} \begin{bmatrix} wso -smo \\ sinbo wso \\ 0 & 0 \end{bmatrix}
      = (\omega_3^2 + \sin^2 0 + 0) - \sin \omega \cos + \sin \omega \cos + 0  ototo
        fsinduso tuso sino to sinzo tuszo
                                                             0
         0 + 0 + 0
                                 0+0+0
```

(b)
$$(1.10) = (1,2/4) \cdot (4,2/3)$$

 $= 4+4-12$
 $= -4 \cdot$
(c) $V \cdot W = (2,-3,6) \cdot (4,2,-3)$
 $= 8-6-15$
 $= -13$
(d) $(u + v) \cdot W = (4.10) + 4.10$
 $= -4 + (-13)$
 $= -17$
(e) $||u|| = \sqrt{1^2+(2)^2+(4)^2}$
 $= \sqrt{21}$
 $||v||^2 = 21$
(f) $||v|| = \sqrt{2} \cdot (-3)^2 + (6)^2$
 $= \sqrt{38}$
 $||v||^2 = 38$

Show that the metaix
$$B = \begin{bmatrix} \omega_{0} & \omega_{0} & \sin \omega_{0} \end{bmatrix} \hat{\omega}$$

Of the gend.

$$BB^{T} = B^{T}B = I$$

$$B^{T} = \begin{bmatrix} \omega_{0} & -\sin \omega_{0} \\ \sin \omega_{0} & \cos \omega_{0} \end{bmatrix} \begin{bmatrix} \cos \omega_{0} & -\sin \omega_{0} \\ \sin \omega_{0} & \cos \omega_{0} \end{bmatrix}$$

$$= \begin{bmatrix} \omega_{0}^{2} & \cos \omega_{0} & -\sin \omega_{0} \\ \sin \omega_{0} & -\sin \omega_{0} & \sin \omega_{0} \end{bmatrix}$$

$$= \begin{bmatrix} \omega_{0}^{2} & \cos \omega_{0} & -\sin \omega_{0} \\ \sin \omega_{0} & -\sin \omega_{0} & \sin \omega_{0} \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$BB^{T} = I$$

$$B^{T}B = \begin{bmatrix} \omega_{0} & -\sin \omega_{0} \\ \sin \omega_{0} & -\sin \omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \sin \omega_{0} \\ -\sin \omega_{0} & -\sin \omega_{0} \end{bmatrix}$$

$$= \begin{bmatrix} \omega_{0}^{2} & \cos \omega_{0} & -\sin \omega_{0} \\ \sin \omega_{0} & -\sin \omega_{0} & \sin^{2}\omega_{0} \\ -\sin \omega_{0} & -\sin \omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \sin^{2}\omega_{0} \\ -\sin \omega_{0} & -\sin \omega_{0} \end{bmatrix}$$

$$= \begin{bmatrix} \omega_{0}^{2} & \cos \omega_{0} & \sin^{2}\omega_{0} \\ \sin \omega_{0} & -\sin \omega_{0} & \sin^{2}\omega_{0} \\ -\sin \omega_{0} & \sin^{2}\omega_{0} \\ -\sin \omega_{0} & \sin^{2}\omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \sin^{2}\omega_{0} \\ -\sin \omega_{0} & \sin^{2}\omega_{0} \\ -\sin \omega_{0} & \sin^{2}\omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \sin^{2}\omega_{0} \\ -\sin \omega_{0} & \sin^{2}\omega_{0} \\ -\sin \omega_{0} & \sin^{2}\omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \sin^{2}\omega_{0} \\ -\sin \omega_{0} & \sin^{2}\omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \sin^{2}\omega_{0} \\ -\sin \omega_{0} & \sin^{2}\omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \sin^{2}\omega_{0} \\ -\sin \omega_{0} & \sin^{2}\omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \sin^{2}\omega_{0} \\ -\sin \omega_{0} & \sin^{2}\omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \sin^{2}\omega_{0} \\ -\sin \omega_{0} & \sin^{2}\omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \sin^{2}\omega_{0} \\ -\sin \omega_{0} & \sin^{2}\omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \sin^{2}\omega_{0} \\ -\sin \omega_{0} & \sin^{2}\omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \sin^{2}\omega_{0} \\ -\sin \omega_{0} & \sin^{2}\omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \sin^{2}\omega_{0} \\ -\sin \omega_{0} & \sin^{2}\omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \sin^{2}\omega_{0} \\ -\sin \omega_{0} & \sin^{2}\omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \sin^{2}\omega_{0} \\ -\sin \omega_{0} & \sin^{2}\omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \cos^{2}\omega_{0} \\ -\sin \omega_{0} & \sin^{2}\omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \cos^{2}\omega_{0} \\ -\sin \omega_{0} & \sin^{2}\omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \cos^{2}\omega_{0} \\ -\sin \omega_{0} & \sin^{2}\omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \cos^{2}\omega_{0} \\ -\sin \omega_{0} & \cos^{2}\omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \cos^{2}\omega_{0} \\ -\sin \omega_{0} & \cos^{2}\omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \cos^{2}\omega_{0} \\ -\sin \omega_{0} & \cos^{2}\omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \cos^{2}\omega_{0} \\ -\sin \omega_{0} & \cos^{2}\omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \cos^{2}\omega_{0} \\ -\sin \omega_{0} & \cos^{2}\omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \cos^{2}\omega_{0} \\ -\sin \omega_{0} & \cos^{2}\omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \cos^{2}\omega_{0} \\ -\sin \omega_{0} & \cos^{2}\omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \cos^{2}\omega_{0} \\ -\sin \omega_{0} & \cos^{2}\omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \cos^{2}\omega_{0} \\ -\sin \omega_{0} & \cos^{2}\omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \cos^{2}\omega_{0} \\ -\cos^{2}\omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \cos^{2}\omega_{0} \\ -\cos^{2}\omega_{0} \end{bmatrix} \begin{bmatrix} \omega_{0} & \cos^{2}\omega_{0}$$

Solution:

Step: 1

To find the characteristic Equation

$$\lambda^{5} = 3(\lambda^{2} + 52\lambda - 53 = 0)$$

S1 = 8+7+3

= 18

S2 = (SL-36) + (21-16) + (24-4)

= 20+5+20

= 45

S5 = 0

The characteristic Equation is

 $\lambda^{5} = 18\lambda^{2} + 45\lambda = 0$

Step: 2

(10 field the Eigen Values

0 | 1 -18 | 45 | 0

3 | 1 -18 | 45 | 0

4 | 3 -45 | 15 | 1 -15 | 0

Questions	opt1	opt2
The sum of the main diagonal elements of a matrix is called	trace of a matrix	quadratic form
If $\lambda 1$, $\lambda 2$, $\lambda 3$,	kA	kA^2
In a modal matrix, the columns are the	eigen vectors of A	eigen vectors of adj A
If at least one of the eigen values of A is zero, then det $A =$	0	1
det (A- λI) represents	characteristic polynomial	characteristic equation
If $\lambda 1$, $\lambda 2$, $\lambda 3$,	A^(-1)	A
If $\lambda 1$, $\lambda 2$, $\lambda 3$,	A^(-1)	A^2
The eigen values of a matrix are its diagonal elements	diagonal	symmetric
If the sum of two eigen values and trace of a $3x3$ matrix A are equal, then det $A =$	λ1 λ2 λ3	0
If 1,5 are the eigen values of a matrix A, then det $A =$	5	0
The eigen vector is also known as	latent value	latent vector
If 1,3,7 are the eigen values of A, then the eigen values of 2A are	1,3,7	1,9,21
If the eigen values of 2A are 2, 6, 8 then eigen values of A are	1,3,4	2,6,8
The Set of all eigen values of the matrix A is called the of A	rank	index
A Square matrix A and its transpose have eigen values.	different	Same
The sum of the of a matrix A is equal to the sum of the principal diagonal elements of A.	characteristic polynomial	characteristic equation
The product of the eigenvalues of a matrix A is equal to	Sum of main diagonal	Determinant of A
The eigenvectors of a real symmetric are	equal	unequal
If all the eigen values of a matrix are distinct, then the corresponding eigen vectors	linearly dependent	unique
A matrix is called symmetric if and only if	A=A^T	A=A^-1
If a matrix A is equal to A^T then A is a matrix.	symmetric	non symmetric
A matrix is called skew-symmetric if and only if	A=A^T	A=A^-1
If a matrix A is equal to -A^T then A is a matrix.	symmetric	non symmetric
A matrix is called orthogonal if and only if	A^T=A^-1	A^T=-A^-1

opt3	opt4	opt5	opt6	Answer
eigen value	canonical	оріз	орго	trace of a
ergen varae	form			matrix
kA^(-1)	A^(-1)			kA
eigen vectors of inverse ofA	eigen values of A			eigen vectors of A
10	5			0
quadratic form	canonical form			characterist ic polynomial
A^n	A^p			A^(-1)
A^(-p)	A^p			A^p
skew-matrix	triangular			triangular
1	2			0
25	6			5
column	orthogonal			latent
value	value			vector
2,6,14	1,9,49			2,6,14
1,9,16	12,4,3			1,3,4
Signature	spectrum			spectrum
Inverse	Transpose			Same
eigen values	eigen vectors			eigen values
Sum of minors of Main diagonal	Sum of the cofactors of A			Determinan t of A
real	symmetric			real
not unique	linearly independent			linearly independent
A=-A^T	A=A			A=A^T
skew- symmetric	singular			symmetric
A=-A^T	A=A			A=-A^T
skew- symmetric	singular			skew- symmetric
A^T=A^-2	A^T=-A^-2			A^T=A^-1

A matrix is calledif and only if A^T=A^-1.	orthogonal	square
The equation det $(A-\lambda I) = 0$ is used to find	characteristic polynomial	characteristic equation
If the characteristic equation of a matrix A is $\lambda^2 - 2 = 0$, then the eigen values are	2,2	(-2,-2)
Eigen value of the characteristic equation $\lambda^2 - 4 = 0$ is	2, 4	2, -4
Eigen value of the characteristic equation $\lambda^3-6\lambda^2+11\lambda-6=0$ is	1,2,3	1, -2,3
Largest Eigen value of the characteristic equation $\lambda^3-3\lambda^2+2\lambda=0$ is	1	0
Smallest Eigen value of the characteristic equation $\lambda^3-7\lambda^2+36=0$ is	-3	3
Sum of the principal diagonal elements =	product of eigen values	product of eigen vectors
Product of the eigen values =	(- A)	1/ A
A Square matrix A and its transpose have eigen values.	different	Same
If 1 and 2 are the eigen values of a 2X2 matrix A, then the eigen values of A^2 is	2, 4	3,4
If 1 and 2 are the eigen values of a 2X2 matrix A, then the eigen values of A^-1is	2,1/2	1,1/2
If a real symmetric matrix of order 2 hasthen the matrix is a scalar matrix.	equal eigen vectors	different eigen vectors
If A and B are nxn matrices and B is a non singular matrix then A and B^{-1} AB have	same eigen vectors	different eigen vectors
The eigenvalues of the matrix I_2 are	(1,-1)	(-1,-1)
For any square matrix A, then A*(A^T) is	symmetric	non symmetric
For any square matrix A, then $A+(A^T)$ is	symmetric	non symmetric
For any square matrix A, then A-(A^T) is	symmetric	non symmetric
Any orthogonal matrix is	symmetric	skew- symmetric
Let A and B be symmetrix matrices of order n. Then AB+BA is	symmetric	non symmetric
Let A and B be symmetrix matrices of order n. Then AB is symmetric iff	AB=BA	BA
Let A be orthogonal matrix of order n. Then A^T is	symmetric	orthogonal
Let A and B be orthogonal matrices of the same order. Then AB is	symmetric	orthogonal

non	triangular	
symmetric		orthogonal
eigen values	eigen vectors	characteristi c equation
(2^(1/2),-2^ (1/2))	(2i,-2i)	(2 ^(1/2) ,-2 ^(1/2)
2, -2	2, 2	2,-2
1,2,-3	1,-2,-3	1,2,3
2	4	2
-2	6	-2
sum of eigen values	sum of eigen vectors	sum of eigen values
(-1/ A)	A	A
Inverse	Transpose	Same
5,6	1, 4	1, 4
1,2	4,1/2	1,1/2
equal eigen values	different eigen values	equal eigen values
same eigen values	different eigen values	same eigen values
(-1,1)	(1,1)	(1,1)
skew- symmetric	singular	symmetric
skew- symmetric	singular	symmetric
skew- symmetric	singular	skew- symmetric
non-singular	singular	non-singular
skew- symmetric	singular	symmetric
AB=0	AB=n	AB=BA
skew- symmetric	singular	orthogonal
skew- symmetric	singular	orthogonal

Questions	opt1	opt2	opt3
The sum of the main diagonal elements of a matrix is called	trace of a matrix	quadrat ic form	eigen value
Every square matrix satisfies its own	characteristic polynomial	charact eristic equatio n	orthogo nal transfor mation
The orthogonal transformation used to diagonalise the symmetric matrix A is	NT AN	NT A	NAN-1
If $\lambda 1, \lambda 2, \lambda 3, \dots, \lambda n$ are the eigen values of A ,then $k\lambda 1$, $k\lambda 2, k\lambda 3, \dots, k\lambda n$ are the eigen values of	kA	kA2	kA-1
Diagonalisation of a matrix by orthogonal reduction is true only for a matrix.	diagonal	triangula	real symme tric
In a modal matrix, the columns are the	eigen vectors of A	eigen vectors of adj A	eigen vectors of inverse ofA
If at least one of the eigen values of A is zero, then $\det A =$	0	1	10
If the canonical form of a quadratic form is 5y12 - 6 y22, then the index is	4	0	2
det (A- λI) represents	characteristic polynomial	charact eristic equatio n	quadrat ic form
If $\lambda 1$, $\lambda 2$, $\lambda 3$,	A^(-1)	A	A^n
If $\lambda 1$, $\lambda 2$, $\lambda 3$,	A^(-1)	A^2	A^(-p)
Cayley -Hamilton theorem is used to find	inverse and higher powers of A	eigen va	eigen vectors
The eigen values of a matrix are its diagonal	diagonal	symmet	skew-ma
In an orthogonal transformation NT AN = D, D refers to a matrix.	diagonal	-	symmeti
In a modal matrix, the columns are the eigen vectors of	A-1	A2	A
If the eigen values of 8x12 + 7 x22 +3 x32 -12 x1 x2 - 8 x2 x3 +4 x3x1 are 0,3 & 15, then its nature is	positive definite	positiv e semide finite	indefinit

opt4	opt5	opt6	Answer
canonic al form			trace of a matrix
canonic al form			charact eristic equatio n
NA			NT AN
A-1			kA
scalar			real symme tric
eigen values of A			eigen vectors of A
5			0
1			1
canonic al form			charact eristic polyno mial
A^p			A^(-1)
A^p			A^p
quadrat ic form			inverse and higher powers of A
triangula	ar		triangula
skew- symme tric			diagona
adj A			A
negativ e definite			positiv e semide finite

The elements of the matrix of the quadratic form x12 + 3 x22 + 4 x1 x2 are	a11 = 1,a12 =2, a 21 = 2, a 22 = 3	a11 = -1, a12 = -2, a 21 = 2, a 22 = 3	a11 = 1, a12 = 4, a 21 = 4, a 22 = 3
If the sum of two eigen values and trace of a $3x3$ matrix A are equal, then det A =	λ1 λ2 λ3	0	1
If 1,5 are the eigen values of a matrix A, then det $A =$	5	0	25
If the canonical form of a quadratic form is $5y12 + 6y22$, then the rank is	4	0	2
The non –singular linear transformation used to transform the quadratic form to canonical form is	X= NTY	X= NY	Y= NX
The eigen vector is also known as	latent value	latent vector	column value
If 1,3,7 are the eigen values of A, then the eigen values of 2A are	1,3,7	1,9,21	2,6,14
If the eigen values of 2A are 2, 6, 8 then eigen values of A are	1,3,4	2,6,8	1,9,16
The number of positive terms in the canonical form is called the	rank	index	Signatur
If all the eigenvalues of A are positive then it is called as	Positive definite	Negati ve definite	Positiv e semide finite
If all the eigenvalues of A are negative then it is called as	Positive definite	Negati ve definite	Positiv e semide finite
A homogeneous polynomial of the second degree in any number of variables is called the	characteristic polynomial	charact eristic equatio n	quadrat ic form
The Set of all eigen values of the matrix A is called the of A	rank	index	Signatur
A Square matrix A and its transpose have eigen value	different	Same	Inverse
The sum of the of a matrix A is equal to the sum of the principal diagonal elements of A.	characteristic polynomial	charact eristic equatio n	eigen values
The product of the eigenvalues of a matrix A is equal to	Sum of main diagonal	Determ inant of A	
The eigenvectors of a real symmetric are	equal	unequal	real
When the quadratic form is reduced to the canonical form, it will contain only r terms, if the of A is r.	rank	index	Signatu

a11 =	a11 =
1, a12	1,a12
=4, a	'
- 4 , a	=2 , a
21 = 3 ,	21 = 2,
a 22 =	a 22 =
1	3
2	0
_	
6	5
1	2
NXA	X= NY
	latent
orthogo	vector
nal	. 30031
value	
	2 (1 4
1,9,49	2,6,14
12,4,3	1,3,4
indefinite	index
	1114411
Negati	Positiv
ve	e
semide	definite
	definite
finite	
Negati	Negati
ve	ve
semide	definite
finite	
canonic	quadrat
al form	quadrat
al form	ic form
spectrum	spectrun
T	Q
Transpose	Same
eigen	eigen
vectors	values
Sum of	Determ
the	inant of
cofacto	A
	A
rs of A	
symmetrie	real
symmetric	
spectrum	rank

The excess of the number of positive terms over the number of negative terms in the canonical form is called the of the quadratic form.	rank	index	Signatu
If all the eigen values of A are less than zero and atleast one eigen value is zero then the quadratic form is said to be	Positive definite	Negative	Positive
If all the eigen values of A are greater than zero and atleast one eigen value is zero then the quadratic form is said to be	Positive definite	Negati ve definite	Positiv e semide finite
If the quadratic form has both positive and negative terms then it is said to be	Positive definite	Negati ve definite	Positiv e semide finite

spectrum	Signatu
Negati ve semide finite Negati ve semide finite	Negati ve semide finite Positiv e semide finite
indefinite	indefini

KARPAGAM ACADEMY OF HIGHER EDUCATION

DEPARTMENT OF SCIENCE AND HUMANITIES.

I. B.E. COMPUTER SCIENCE AND ENGINEERING.

MATHEMATICS - I (18BECS101)

UNIT- W CALCULUS

PART-C

I. Find the equation of evolute of the parabola $y^2 = 4ax$

isolution:

step & The Parametric form.

$$x = at^2$$
; $y = aat$.

$$\frac{dx}{dt} = aat$$
.; $\frac{dy}{dt} = aa$.

$$y_e = \frac{d^2y}{dx^2} = \frac{d}{dt} \left(\frac{dy}{dx} \right) \frac{dt}{dx}$$

$$= \frac{dy}{dt} \left(\frac{y_e}{t} \right) \left(\frac{y_e}{2at} \right)$$

step 2: To find (x, y) Let (x, y) be centre of curvature, then X = x - \[\frac{\y_1 \L(1+\y_1^2)}{\y_2} \] = 2at $= at^{2} - \left[(Yt) (1+1/t^{2}) - \frac{1}{2} at^{3} \right]$ = at2+ aat3 (Yt) (1+ Yt2) = at 2 + &at 2 [1+ 1/2] = at 2 + dat2 + dat2/1x $X = 3at^2 + aa$ y = y + [1+y,2] $= 2at + \left[\frac{1 + 1 + 1}{-12at^3}\right]$ = dat - dat3 - dat3 = dat - eat - eat3

$$\boxed{y = -aat^{3}}$$

step 3: To eliminate It' from (1) 1(2)

$$\left(\frac{x-2a}{3a}\right)=t^2.$$

$$\left(2^{2}\right)^{3} = \left[\frac{k-2\alpha}{3\alpha}\right]^{3}$$

$$t^{b} = \frac{(k-2a)^{3}}{27a^{3}} \longrightarrow (3)$$

$$\frac{y}{-2a} = t^3$$

$$t^{b} = \frac{y^{2}}{4a^{2}} \rightarrow ca$$

From (3) & (4)

$$\frac{(x-2a)^3}{24a^3} = \frac{y^2}{4a^2}$$

step4: Locus of (x,y)

A[x-2a]3= 27ay2, which is the required evolute

of the raiable y2=Aax.

2) Find the evolute of parabola $x^2 = 4ay$.

solution;

ster 1 She Parametric form

$$x = aat$$
 $y = at^2$

$$y^2 = \frac{d^2y}{dx^2} = \frac{d}{dt} \left(\frac{dy}{dx} \right) \left(\frac{dt}{dx} \right)$$

$$x = x - \left[\frac{y_1 \left(\frac{1}{y_2} \right)}{y_2} \right]$$

= 2at -
$$\left[\frac{t(1+t^2)}{1/2a}\right]$$

$$X = -aat^3$$

$$= at^2 + \left[\frac{1+t^2}{y_{2a}}\right]$$

$$y = 3at^2 + aa$$
 $\longrightarrow (a)$

ster 3: To eliminate 't' from U112).

$$(1) \rightarrow x = -at^3$$

$$\frac{-\infty}{x} = E_3$$

$$(t^3)^2 = \left(\frac{x}{2a}\right)^2$$

$$t^{b} = \frac{\chi^{2}}{4a^{2}} \longrightarrow 3,$$

$$\left[\frac{4-2a}{3a}\right]=t^2.$$

$$\left(\underbrace{\mathbf{L}^{\mathbf{a}}}\right)^3 = \left[\underbrace{\frac{y-2a}{3a}}\right]^3.$$

$$t^{b} = \underbrace{(Y-20)^{3}}_{27a^{3}} \longrightarrow (4)$$

$$\frac{\chi^2}{4a^2} = \frac{(Y-2a)^3}{27a^3}$$

step 4: Lows of (x, y)

27ax2= 41y-2a)3, which is the required evolute

of jalabola x2 = 4ay.

3) Find the evolute of ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
.

solution:

step 1 The Parametric Form.

$$y_i = \frac{dy}{dx} = -b_i \cot \theta$$
.

$$= -\frac{b}{a^2} \left(-\cos(2\phi)\left(-\cos(\phi)\right)\right)$$

$$x = x - \left[\frac{y_1 \left(1 + y_1^2\right)}{y^2}\right]$$

= a coso -
$$\left[-\frac{b}{a} \cot \theta \left(1 + \frac{b^2}{a^2} \cot^2 \theta \right) \right]$$

- $\frac{b}{a^2} \cot^3 \theta$

=
$$a \cos b - \frac{a^2}{b} \sin^3 \theta \left[-\frac{b}{a} \cot \theta \right] \left[\frac{1+b^2}{a^2} \cot^2 \theta \right]$$

$$= a \cos \theta - a^{2} \sin^{3} \theta \left[-b \right]_{\alpha} \frac{\cos \theta}{\sin^{2} \theta} \left[\frac{1 + b^{2}}{a^{2}} \frac{\cos^{2} \theta}{\sin^{2} \theta} \right]$$

$$= a \cos \theta - a \sin^{2}\theta \cos \theta - b^{2}/a \cos^{2}\theta$$

$$= a \cos^{2}\theta - \frac{b^{2}}{a} \cos^{2}\theta$$

$$= \left[a - \frac{b^{2}}{a}\right] \cos^{2}\theta$$

$$= \left[a - \frac{b^{2}}{a}\right] \cos^{2}\theta$$

$$= b \sin \theta + \left[1 + b^{2}/a^{2} \cot^{2}\theta\right] - b/a^{2} \left(\csc^{2}\theta\right)$$

$$= b \sin \theta - \frac{a^{2}}{b} \sin^{3}\theta - \frac{a^{2}}{b} \sin^{3}\theta - \frac{b^{2}}{a^{2}} \cos^{2}\theta$$

$$= b \sin \theta - \frac{a^{2}}{b} \sin^{3}\theta - \frac{a^{2}}{b} \sin^{3}\theta - \frac{b^{2}}{a^{2}} \cos^{2}\theta$$

$$= b \sin \theta - \frac{a^{2}}{b} \sin^{3}\theta - \frac{a^{2}}{b} \sin^{3}\theta - \frac{b^{2}}{a^{2}} \cos^{2}\theta$$

$$= b \sin \theta - \frac{a^{2}}{b} \sin^{3}\theta - \frac{a^{2}}{b} \sin^{3}\theta$$

$$= b \sin^{2}\theta - \frac{a^{2}}{b} \sin^{3}\theta$$

$$= \frac{b^{2}}{b} \sin^{3}\theta - \frac{a^{2}}{b} \sin^{3}\theta$$

$$= \frac{b^{2}}{b} \sin^{3}\theta - \frac{a^{2}}{b} \sin^{3}\theta$$

$$(1) \rightarrow X^{2/3} = (a^2 - b^2)^{2/3} (\cos^3 0)^{2/3}$$

$$\chi^{2/3} = \frac{(a^2 - b^2)^{2/3}}{a^{2/3}} \cos^2 \alpha.$$

$$(XA)^{2/3} = (A^2 - b^2)^{2/3} \cos^2 0.$$

$$y^2/3 = \frac{(b^2 - a^2)^2/3}{b^2/3} \sin^2 \alpha$$
.

$$(46)^{2/3} = (b^2 - a^2)^{2/3} s \dot{b}^2 c$$

$$(3) + (3) \Rightarrow (xa)^{2/3} + (yb)^{2/3} = (a^2 - b^2)^{2/3} \cos^2 0 + (b^2 - a^2)^{2/3} \sin^2 0.$$

$$= (a^2 - b^2)^{2/3} (\cos^2 0 + \sin^2 0)$$

$$(xa)^{2/3} + (yb)^{2/3} = (a^2 - b^2)^{2/3}.$$

step 4: Lows of (X,y)

(xa)213 + (yb)213 = (a2-b2)213 which is the required

evalute of ellipse
$$\frac{\chi^2}{a^2} + \frac{y^2}{b^2} = 1$$
.

A) I ind the evolute of hyperpola
$$\frac{2^2}{a^2} - \frac{y^2}{b^2} = 1$$
.

ster ideparametric form.

$$y_1 = \frac{Jr}{a} \frac{Jec^20}{Aeco, tano} = \frac{b}{a \sin 0}.$$

$$y_1 = \frac{Jr}{a} \frac{Jec^20}{Aeco, tano} = \frac{b}{a \sin 0}.$$

$$y_2 = \frac{b}{a} \left[-\cos eco \cdot \cot 0 \right]$$

$$A seco \cdot tano.$$

$$y_2 = -\frac{b}{a} \cot^{\frac{3}{2}} 0$$

$$X = \frac{1}{2} \frac{J}{a} \cot^{\frac{3}{2}} 0$$

$$x = \frac{b}{a \cos co} \left(\frac{116^3}{a} \cos c^2 0 \right)$$

$$-\frac{b}{a} \cot^{\frac{3}{2}} 0$$

$$= a seco + \frac{1}{a} \frac{\cos co}{\cos^{\frac{3}{2}} 0} \left(\frac{a^2 + b^2}{a^2 \sin^2 0} \right)$$

$$= a seco + \frac{a \sin^2 0}{\cos^2 0} + \frac{b^2}{a \cos^2 0}$$

$$= a seco + \frac{a \cos^2 0}{\cos^2 0} + \frac{b^2}{a \cos^2 0}$$

$$= a seco + \frac{a \cos^2 0}{\cos^2 0} - a seco + \frac{b^2}{a} \frac{J}{a \cos^2 0}$$

$$= a seco + \frac{a \cos^2 0}{a \cos^2 0} - a seco + \frac{b^2}{a} \frac{J}{a \cos^2 0}$$

$$= a^3 seco + a^3 sec^3 0 - a^3 seco + \frac{b^2}{a \cos^2 0}$$

= b tano +
$$\left(\frac{1+b^2/a^2 \cos c^2 \alpha}{-b/a^2 \cot^2 \alpha}\right)$$

$$= btano = \frac{a^2 + b^2}{a^2} \frac{1}{sin^2o}$$

$$\frac{b/a}{sin^2o} \frac{\cos^3 o}{\sin^2 o}$$

$$= b + ano - \left(a^2 + b^2 \over \sin^2 o\right) \cdot \frac{1}{b} \frac{\sin^3 o}{\cos^2 o}$$

$$by = -(a^2+b^2) + ar^3 0$$

$$(by)^{2/3} = (a^2+b^2)^{2/3} + an^2 0$$
 $\longrightarrow 2,$

step 3: Eliminating O.

$$(1) - (2) = (a \times)^{2/3} - (b \times)^{2/3} = (a^2 + b^2)^{2/3} (sec^2 o - ran^2 o)$$

$$(a \times)^{2/3} - (b \times)^{2/3} = (a^2 + b^2)^{2/3}.$$

step A! Locus.

to use of (x, y) is $(ax)^{3/3} - (by)^{2/3} = (a^{2}+b^{2})^{3/3}$ which gives the equation of evolute of given hyperbola.

5. Find the surface area of the solid generated by revolving the arc of yarabola $y^2 = 4ax$, bounded by x-axis and (0,0) to (0,0).

Serface area = $2x \int_a^b y \int \frac{1+(dy/dx)^2}{a^2} dx$.

Differentiating y= Hax,

$$\left(\frac{dy}{dx}\right)^2 = \frac{Aa^2}{y^2}$$

$$=\frac{4a^2}{4a^2}=\frac{a}{\sqrt{x}}.$$

=
$$4\pi \sqrt{a} \left[\frac{(x+a)^{3/2}}{3/2} \right]^{a}$$

= $4\pi \sqrt{a} \times \frac{2}{3} \left[(2a)^{3/2} - (a)^{3/2} \right]$
= $8/3 \pi \sqrt{a} \left[2\sqrt{2} \cdot a\sqrt{a} - a\sqrt{a} \right]$
= $8/3 \pi \sqrt{a} \left[2\sqrt{2} \cdot a\sqrt{a} - a\sqrt{a} \right]$
= $8/3 \pi \sqrt{a} \left[2\sqrt{2} - 1 \right]$
= $8/3 \pi \sqrt{a} \left[2\sqrt{2} - 1 \right]$
= $8/3 \pi \sqrt{a} \left[2\sqrt{2} - 1 \right]$

6. Find the Sweface area of the Solld Obtained by revaluation by are of the Curive y= sinx from x=0 to x=TT about x-axis.

Salution.

Surface Area =
$$2\pi \int_{0}^{b} y \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} \cdot dx$$

Gilven,

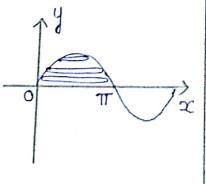
$$y = Sin x$$
.

Déferentiate with respect to x,

$$\frac{dy}{dx} = \cos x$$
.

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = \cos^2 x.$$

$$\sqrt{1+\left(\frac{dy}{dx}\right)^2} = \sqrt{1+\cos^2 x}$$



$$= 2\pi \int_{0}^{\pi} \sin x \int_{0}^{\pi} 1 + \cos^{2}x \cdot dx$$

$$= 2\pi \int_{0}^{\pi} \int_{0}^{\pi} 1 + t^{2} \left(-dt \right)$$

$$= 2\pi \int_{0}^{\pi} \int_{0}^{\pi} 1 + t^{2} dt \int_{0}^{\pi} t = \cos x$$

$$= 2\pi \times 2 \int_{0}^{\pi} \int_{0}^{\pi} 1 + t^{2} dt \int_{0}^{\pi} t = -3 \ln x dx$$

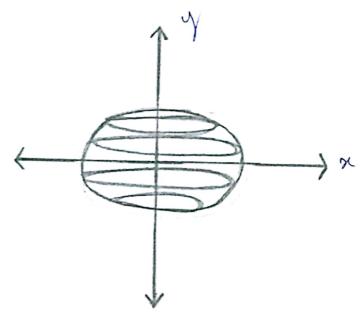
$$= 4\pi \int_{0}^{\pi} \int_{0}^{\pi} 1 + t^{2} dt \int_{0}^{\pi} \frac{1}{1 + t^{2}} dt \int_{0}^{\pi} \frac{1}{1 + t^{2}} dt$$

$$= 4\pi \left[\frac{t}{2} \int_{0}^{\pi} 1 + \frac{1}{2} \log \left[t + \int_{0}^{\pi} 1 + t^{2} \right] \right]$$

$$= 4\pi \left[\frac{1}{2} \int_{0}^{\pi} 2 + \log \left(1 + \int_{0}^{\pi} 2 \right) \right]$$

$$= 2\pi \left[\sqrt{2} + \log \left(1 + \sqrt{2} \right) \right]$$
Square. Units.

7. Find the Volume of the Solid when the region enclosed by the Course $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) is securlised About the y-axis.



The Volume, $V = T \int_{C}^{d} x^{2} dy$ $Given: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$

$$\frac{x^{2}}{a^{2}} = 1 - \frac{y^{2}}{b^{2}}$$

$$x^{2} = a^{2} \left(1 - \frac{y^{2}}{b^{2}}\right)$$

$$y - axes \rightarrow The length b to -b$$

$$V = \pi \int_{a^{2}}^{b} a^{2} \left(1 - \frac{y^{2}}{b^{2}}\right) dy$$

$$= 2\pi a^{2} \int_{0}^{b} \left(\frac{b^{2} - y^{2}}{b^{2}}\right) dy$$

$$= 2\pi a^{2} \int_{0}^{b} \left(\frac{b^{2} - y^{2}}{b^{2}}\right) dy$$

$$= \frac{2\pi a^{2}}{b^{2}} \left[\frac{b^{2} - y^{2}}{b^{2}}\right] dy$$

$$= \frac{2\pi a^{2}}{b^{2}} \left[\frac{b^{2} - y^{2}}{b^{2}}\right] dy$$

$$= \frac{2\pi a^{2}}{b^{2}} \left[\frac{b^{2} - b^{3}}{b^{2}}\right] - \left(0 - 0\right)$$

$$= \frac{2\pi a^{2}}{b^{2}} \left[\frac{b^{3} - b^{3}}{b^{2}}\right]$$

$$= \frac{2\pi a^{2}}{b^{2}} \left(\frac{3b^{3} - b^{3}}{3} \right)$$

$$= \frac{2\pi a^2}{3b^2} \left(2b^3 \right)$$

$$V = 4Ta^2b$$

Cubic. Units.

8. Evaluate
$$\int_{17/6}^{17/3} dx$$
Let,
$$I = \int_{17/6}^{17/3} dx$$

$$I = \int_{17/6}^{17/3} \sqrt{\cos x} + \sin x$$

$$I$$

$$T = \int \frac{\cos(\pi/2 - x) dx}{\cos(\pi/2 - x) + \sin(\pi/2 - x)}$$

$$T = \int \frac{\sin x}{\sin x} \longrightarrow 2$$

$$T/6 \int \frac{\sin x}{\sin x} \longrightarrow 2$$

$$T/6 \int \frac{\sin x}{\sin x + \cos x} \longrightarrow 2$$

$$T/6 \int \frac{\cos(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\cos(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\cos(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\cos(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\cos(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\cos(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\cos(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\cos(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\cos(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\cos(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\cos(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\cos(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\cos(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int \frac{\sin(\pi/2 - x) dx}{\sin(\pi/2 - x)} = \sin \theta$$

$$\int$$

$$= \frac{1}{2} \left[\frac{\pi}{3} - \frac{\pi}{6} \right]$$

$$= \frac{1}{2} \left[\frac{\pi}{6} \right]$$

$$= \frac{\pi}{12}$$

$$= \pi/12,$$

$$\beta(m,n) = \Gamma(m)\Gamma(n)$$

$$\Gamma(m+n)$$

We know that,

$$\Gamma(m) = \int_{0}^{\infty} e^{-t} t^{m-1} dt$$

Put
$$t = x^2$$

$$\frac{dt}{dx} = 2x$$

$$dt = 2x \cdot dx$$

$$T(m) = \int_{e^{-x^{2}}}^{\infty} e^{-x^{2}} x^{2} (m-1) \cdot 2x dx.$$

$$= 2 \int_{e^{-x^{2}}}^{\infty} e^{-x^{2}} x^{2} m^{-2} \cdot x^{1} dx.$$

$$= 2 \int_{0}^{\infty} e^{-x^{2}} \cdot x^{2m} x^{-2} x^{1} dx.$$

$$= 2 \int_{0}^{\infty} e^{-x^{2}} \cdot x^{2m} x^{-1} \cdot dx.$$

$$= 2 \int_{0}^{\infty} e^{-x^{2}} \cdot x^{2m-1} \cdot dx.$$

$$= (m) = 2 \int_{0}^{\infty} e^{-x^{2}} \cdot x^{2m-1} \cdot dx.$$

$$= (m) \cdot \Gamma(n) = 2 \int_{0}^{\infty} e^{-x^{2}} x^{2m-1} \cdot dx.$$

$$= 4 \int_{0}^{\infty} e^{-(x^{2} + y^{2})} x^{2m-1} \cdot y^{2n-1}.$$

$$= 4 \int_{0}^{\infty} e^{-(x^{2} + y^{2})} x^{2m-1} \cdot y^{2n-1}.$$

$$= 4 \int_{0}^{\infty} e^{-(x^{2} + y^{2})} x^{2m-1} \cdot y^{2n-1}.$$

$$= 4 \int_{0}^{\infty} e^{-(x^{2} + y^{2})} x^{2m-1}.$$

Put
$$x = \pi \cos \theta$$
 $y = \pi \sin \theta$
 $dxdy = \pi d\pi d\theta$,

 $x^2 + y^2 = x^2$ and,

 $y = \pi d\pi d\theta$,

 $x = \pi d\theta$,

 x

$$= 2 \int_{0}^{\infty} e^{-n^{2}} \cdot \mathfrak{g}^{2}(m+n)^{-1} \, d\mathfrak{n} \times 2 \int_{0}^{\pi/2} \mathfrak{sln}^{2n-1} \theta \, .$$

$$= 2 \int_{0}^{\infty} e^{-n^{2}} \cdot \mathfrak{g}^{2}(m+n)^{-1} \, d\mathfrak{n} \times 2 \int_{0}^{2m-1} \theta \, . d\theta \, .$$

$$= (m) \cdot \Gamma(n) = \Gamma(m+n) \times \beta(m,n) \longrightarrow 2$$

$$= \int_{0}^{\infty} e^{-x} \cdot x^{n-1} \, dx \, .$$

$$= \Gamma(m+n) = 2 \int_{0}^{\infty} e^{-x^{2}} \cdot y^{2}(m+n)^{-2} \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \, . \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \, . \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \, . \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \, . \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \, . \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \, . \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \, . \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \, . \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \, . \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \, . \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \, . \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \, . \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \, . \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \, . \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \, . \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \, . \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \, . \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \, . \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \, . \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \, . \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \, . \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \, . \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \, . \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \, . \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \, . \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \, . \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \, . \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \, . \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \, . \, dx \, .$$

$$= \int_{0}^{\pi/2} e^{-n^{2}} \cdot y^{2}(m+n)^{-1} \,$$

10. Evaluate.

$$\frac{1}{1} \frac{1}{2} = \frac{2}{1} \cdot \cos x \cdot dx = \left[\frac{e^{2x}}{2^{2} + 2} \left(2 \cos x + \sin x \right) \right] = \left[\frac{e^{2}}{5} \left(\frac{1}{2} \right) \left(2 \cos \left(\frac{1}{2} \right) + \sin \left(\frac{1}{2} \right) \right) \right] - \left[\frac{e^{\circ}}{5} 2 \cos 0 + \sin 0 \right] = \frac{e^{1}}{5} \left(0 + 1 \right) - \frac{1}{5} \left(2 \times 1 + 0 \right) = \frac{e^{1}}{5} \left(1 \right) - \frac{1}{5} \left(2 \right) = \frac{1}{5} \left(e^{1} - 2 \right)_{11}$$

$$\int_{0}^{2} \sqrt{a^{2} - x^{2}} dx = \left[\frac{\pi}{2} \sqrt{a^{2} - x^{2}} + \frac{a^{2}}{2} \sin^{-1}(\frac{x}{a})\right]$$

$$= \left[\frac{a}{2} \sqrt{a^{2} - a^{2}} + \frac{a^{2}}{2} \sin^{-1}(\frac{x}{a}) - \frac{o}{2} \sqrt{a^{2} - o} + \frac{o^{2}}{2} \sin^{-1}(1) - \frac{a^{2}}{2} \sin^{-1}(0)\right]$$

$$= \frac{a^{2}}{2} \sin^{-1}(1) - \frac{a^{2}}{2} \sin^{-1}(0)$$

$$= \frac{a^{2}}{2} \cdot \sqrt{2} - \frac{a^{2}}{2} \cdot (0)$$

$$\frac{1}{8} \cdot \frac{1}{8} \cdot \frac{3}{6} \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{11}{2}$$

$$= \frac{10517}{168}$$

$$(n = 8 \text{ fs even})$$

$$w.k.T,$$

$$\int_{0}^{\infty} x^{n} \cdot e^{-\alpha x} dx = \frac{n!}{a^{n+1}}$$

$$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$= \frac{10517}{168}$$

$$(n = 8 \text{ fs even})$$

$$= \frac{10517}{168}$$

$$\int_{0}^{\pi/2} \sin^{\frac{h}{2}} dx = \int_{0}^{\pi/2} \cos^{\frac{h}{2}} dx = \begin{cases} \frac{h-1}{h} \cdot \frac{h-3}{h-2} \dots, \\ \frac{h-1}{h} \cdot \frac{h-3}{h-2} \cdot \frac{1}{2} \cdot \frac{\pi}{2} \end{cases}$$

$$= \int_{0}^{\pi/2} \sin^{\frac{h}{2}} dx = \int_{0}^{\pi/2} \cos^{\frac{h}{2}} dx = \begin{cases} \frac{h-1}{h} \cdot \frac{h-3}{h-2} \cdot \dots, \\ \frac{h-1}{h} \cdot \frac{h-3}{h-2} \cdot \dots, \\ \frac{h-1}{2} \cdot \frac{\pi}{2} \cdot \dots \end{cases}$$

$$= \int_{0}^{\pi/2} \sin^{\frac{h}{2}} dx = \int_{0}^{\pi/2} \cos^{\frac{h}{2}} dx = \begin{cases} \frac{h-1}{h} \cdot \frac{h-3}{h-2} \cdot \dots, \\ \frac{h-1}{h} \cdot \frac{h-3}{h-2} \cdot \dots, \\ \frac{h-1}{2} \cdot \frac{\pi}{2} \cdot \dots \end{cases}$$

$$= \int_{0}^{\pi/2} \sin^{\frac{h}{2}} dx = \int_{0}^{\pi/2} \cos^{\frac{h}{2}} dx = \int_{0}^{\pi/2} \sin^{\frac{h}{2}} dx = \int_{0}^$$

Questions	opt1	opt2
What is the value of Gamma of one?	0	1
gamma (n+1)=	(n+1)!	n gamma (n+1)
what is the value of gamma(1/2)?	pi	0
Which one of the following statement is true?	gamma(2)=gan	gamma(1/2) = (
Which one of the following statement is false?	gamma(2)=gan	gamma(1)= 1
gamma(1/4). gamma(3/4)=	2pi	piv2
The values of gamma(4)=	1!	2!
If C' is the evolute of the curve C then C is called the of the curve C'	involute	curvature
of a curve is the envelope of the normals of that curve.	involute	curvature
The parametric coordinates of the parabola x^2=4ay are	(x=at^2 y=2at)	(x=at y=at)
The parametric coordinates of the ellipse is given by	(x=acos theta y=bsin theta)	(x=asin theta y=bcos theta)
The parametric coordinates of the hyperbola is given by	(x=acos theta y=bsin theta)	(x=asin theta y=bcos theta)
The parametric coordinates of the parabola y^2=4ax are	(x=at^2 y=2at)	(x=at y=at)
The locus of the centre of curvature for a curve is called its evolute and the curve is called an of its evolute.	involute	evolute
The locus of the centre of curvature for a curve is called its	involute	evolute
If $y=1/x$, then $y1=$	-1/x^2	1/x
If $y=x^2$, then $y1=$	x^2	1/x
If y=x^2, then y2=	x^2	1/x
If $x=2at$ then $dx/dt=$	2at	2a
If $x=at^2$ then $dx/dt=$	2at	2a
If $y=ax^2+2ax$ then dy/dx at (3,2) is	8a	4ax
If $y=ax^2+2ax$ then dy/dx at $(2,2)$ is	8a	4ax
If y=ax^2+2ax then dy/dx is	8ax+2a	4ax+2
If y=ax^2+2ax then second derivative is	2a	4ax
The volume of the solid of revolution generated by revolving the plane area bounded by the circle $x^2+y^2=a^2$ about its diameter is	(4/3) pi a^3	(2/3) pi a^3
The volume of the solid of revolution generated by revolving the plane area bounded by the circle $x^2+y^2=2^2$ about its diameter is	(32/3)pi	(1/3)pi
The volume of the solid of revolution generated by revolving the plane area bounded by the circle x^2+y^2=3^2 about its diameter is	16 pi	9 pi
The Volume of a sphere of radius 'a' is	2/3 8 pi a^3	4/3 pi a^3
The surface are of the sphere of radius 'a' is	4 pi a^2	pi a^2
The Volume of a sphere of radius '2' is	16/3 pi	32/3 pi
The surface area of the sphere of radius '3' is	36 pi	9 pi
int dx=	x+C	1

opt3	opt4	opt5	opt6	Answer
2	3	1		1
gamma (n-1)	n gamma (n)			n gamma (n)
	root(pi)			root(pi)
			gamma(2)=gamma(1)	
	gamma (n+1)=n+1			gamma (n+1)=n+1
√ (2pi)	1			piv2
3!	4!			3!
radius of curvature	centre of curvature			involute
radius of curvature	evolute			evolute
(x=2at y=at^2)	(x=a y=t)			(x=2at y=at^2)
(x=atan theta y=bsec theta)	(x=asec theta y=btan theta)			(x=acos theta y=bsin theta)
(x=atan theta y=bsec theta)	(x=asec theta y=btan theta)			(x=asec theta y=btan theta)
(x=2at y=at^2)	(x=a y=t)			(x=at^2 y=2at)
envelope	curvature			involute
envelope	curvature			evolute
ax	bx			-1/x^2
2x	x			2x
2x	2			2
2t	0			2a
2t	0			2at
2ax	6a			8a
2ax	6a			6a
2ax+2a	6a			2ax+2a
6ax	6a			2a 2a
(1/3) pi a^3	pi a^3			(4/3) pi a^3
(2/3)pi	pi			(32/3)pi
36 pi	pi			36 pi
1/3 pi a^3	pi a^3			4/3 pi a^3
3 pi a^2	2 pi a^2			4 pi a^2
8/3 pi	8 pi			32/3 pi
27 pi	18 pi			36 pi
0	x^2			x+C

int cdx=	cx+C	0
int 5dx=	x+C	5x+C
int x^n dx=	$x^{(n+1)}/(n+1)$	x^(n-1)/ (n-1)+
int xdx=	x^2+C	x^2/2+C
int x^ (2) dx=	$(x^{(2)/2})+C$	$(x^{(3)/3})+C$
int 3x^(2) dx=	3x^(2)+C	x+C
int (1/x) dx=	1+ C	log x+C
int e^(x) dx=	(-e^x)+ C	$e^{-(-x)} + C$
int e^(-x) dx=	(-e^x)+ C	$e^{-(-x)} + C$
int e^(2x) dx=	$(-e^2x)/2 + C$	$e^{(-2x)/2} + C$
int e^(-2x) dx=	$(-e^{(-2x)})/2 + C$	$e^{(-2x)/2} + C$
int cosx dx=	sinx + C	cosx + C
int sinx dx=	sinx + C	cosx + C
int cosmx dx=	(sinmx)/m + C	$(\cos mx)/m + C$

1	x+C	cx+C
x^2+C	5+C	5x+C
nx^ (n-1)+ C	$(n+1) x^{(n+1)} + C$	$x^{(n+1)}/(n+1) + C$
x^3/2+C	x^2/2+C	x^2/2+C
x+C	2x+C	$(x^{(3)/3})+C$
x^2+C	x^(3) +C	x^(3) +C
(-1)+C	(-log x)+ C	log x+C
(-e^(-x))+C	$e^{x} + C$	$e^x + C$
(-e^(-x))+C	$e^{x} + C$	$(-e^{(-x)})+C$
$(-e^{(-2x)})/2+$	(e^2x/2+ C	e^2x/2 + C
$(-e^{(-2x)})/2+$	$(e^{-2x})/2 + C$	e^2x/2 + C
(-cosx)+C	(-sinx)+C	sinx + C
(-cosx)+C	(-sinx)+C	(-cosx)+C
(-cosmx)/m+	((-sinmx)/m+C	(sinmx)/m+ C

Questions	opt1	opt2	opt3
The sum of the main diagonal elements of a matrix is called	trace of a matrix	quadrat ic form	eigen value
Every square matrix satisfies its own	characteristic polynomial	charact eristic equatio n	orthogo nal transfor mation
The orthogonal transformation used to diagonalise the symmetric matrix A is	NT AN	NT A	NAN-1
If $\lambda 1, \lambda 2, \lambda 3, \dots, \lambda n$ are the eigen values of A ,then $k\lambda 1$, $k\lambda 2, k\lambda 3, \dots, k\lambda n$ are the eigen values of	kA	kA2	kA-1
Diagonalisation of a matrix by orthogonal reduction is true only for a matrix.	diagonal	triangula	real symme tric
In a modal matrix, the columns are the	eigen vectors of A	eigen vectors of adj A	eigen vectors of inverse ofA
If at least one of the eigen values of A is zero, then $\det A =$	0	1	10
If the canonical form of a quadratic form is 5y12 - 6 y22, then the index is	4	0	2
det (A- λI) represents	characteristic polynomial	charact eristic equatio n	quadrat ic form
If $\lambda 1$, $\lambda 2$, $\lambda 3$,	A^(-1)	A	A^n
If $\lambda 1$, $\lambda 2$, $\lambda 3$,	A^(-1)	A^2	A^(-p)
Cayley -Hamilton theorem is used to find	inverse and higher powers of A	eigen va	eigen vectors
The eigen values of a matrix are its diagonal	diagonal	symmet	skew-ma
In an orthogonal transformation NT AN = D, D refers to a matrix.	diagonal	-	symmeti
In a modal matrix, the columns are the eigen vectors of	A-1	A2	A
If the eigen values of 8x12 + 7 x22 +3 x32 -12 x1 x2 - 8 x2 x3 +4 x3x1 are 0,3 & 15, then its nature is	positive definite	positiv e semide finite	indefinit

opt4	opt5	opt6	Answer
canonic al form			trace of a matrix
canonic al form			charact eristic equatio n
NA			NT AN
A-1			kA
scalar			real symme tric
eigen values of A			eigen vectors of A
5			0
1			1
canonic al form			charact eristic polyno mial
A^p			A^(-1)
A^p			A^p
quadrat ic form			inverse and higher powers of A
triangula	ar		triangula
skew- symme tric			diagona
adj A			A
negativ e definite			positiv e semide finite

The elements of the matrix of the quadratic form x12 + 3 x22 + 4 x1 x2 are	a11 = 1,a12 =2 , a 21 = 2, a 22 = 3	a11 = -1, a12 = -2, a 21 = 2, a 22 = 3	a11 = 1, a12 = 4, a 21 = 4, a 22 = 3
If the sum of two eigen values and trace of a $3x3$ matrix A are equal, then det A =	λ1 λ2 λ3	0	1
If 1,5 are the eigen values of a matrix A, then det $A =$	5	0	25
If the canonical form of a quadratic form is $5y12 + 6y22$, then the rank is	4	0	2
The non –singular linear transformation used to transform the quadratic form to canonical form is	X= NTY	X= NY	Y= NX
The eigen vector is also known as	latent value	latent vector	column value
If 1,3,7 are the eigen values of A, then the eigen values of 2A are	1,3,7	1,9,21	2,6,14
If the eigen values of 2A are 2, 6, 8 then eigen values of A are	1,3,4	2,6,8	1,9,16
The number of positive terms in the canonical form is called the	rank	index	Signatur
If all the eigenvalues of A are positive then it is called as	Positive definite	Negati ve definite	Positiv e semide finite
If all the eigenvalues of A are negative then it is called as	Positive definite	Negati ve definite	Positiv e semide finite
A homogeneous polynomial of the second degree in any number of variables is called the	characteristic polynomial	charact eristic equatio n	quadrat ic form
The Set of all eigen values of the matrix A is called the of A	rank	index	Signatur
A Square matrix A and its transpose have eigen value	different	Same	Inverse
The sum of the of a matrix A is equal to the sum of the principal diagonal elements of A.	characteristic polynomial	charact eristic equatio n	eigen values
The product of the eigenvalues of a matrix A is equal to	Sum of main diagonal	Determ inant of A	
The eigenvectors of a real symmetric are	equal	unequal	real
When the quadratic form is reduced to the canonical form, it will contain only r terms, if the of A is r.	rank	index	Signatu

a11 =	a11 =
1, a12	1,a12
	1
= 4 , a	=2 , a
21 = 3,	21=2,
a 22 =	a 22 =
1	3
2	0
2	U
6	5
1	2
NXA	X= NY
	latent
orthogo	vector
nal	
11011	
value	
1,9,49	2,6,14
12,4,3	1,3,4
indefinite	index
Na sati	Danitia
Negati	Positiv
ve	e
semide	definite
finite	
Negati	Nagati
-	Negati
ve	ve
semide	definite
finite	
canonic	quadrat
al form	quadrat
al form	ic form
spectrum	spectrun
T	
Transpose	Same
eigen	eigen
vectors	values
Sum of	Determ
the	inant of
cofacto	A
	A
rs of A	
symmetric	real
-	
spectrum	rank

The excess of the number of positive terms over the number of negative terms in the canonical form is called the of the quadratic form.	rank	index	Signatu
If all the eigen values of A are less than zero and atleast one eigen value is zero then the quadratic form is said to be	Positive definite	Negative	Positive
If all the eigen values of A are greater than zero and atleast one eigen value is zero then the quadratic form is said to be	Positive definite	Negati ve definite	Positiv e semide finite
If the quadratic form has both positive and negative terms then it is said to be	Positive definite	Negati ve definite	Positiv e semide finite

spectrum	Signatu
Negati ve semide finite Negati ve semide finite	Negati ve semide finite Positiv e semide finite
indefinite	indefini

KARPAGAM ACADEMY OF HIGHER EDUCATION

DEPARTMENT OF SCIENCE AND HUMANITIES

I-B.E. COMPOTER SCIENCE AND ENGINEERING

MATHEMATICS-I (Calculus and Linea Digosoma)-183ECS 101

1)(8) Obtain the Taylor's series expansion for $f(sc) = \cos x$ at $x = \frac{\pi}{2}$

Sol:

Given that
$$f(x) = \cos x$$
 $f'(\pi/2) = \cos \pi/2 = 0$
 $f'(x) = -\sin x$
 $f''(x) = \cos x$
 $f''(\pi/2) - \sin \pi/2 = -1$
 $f''(x) = \cos x$
 $f'''(x) = \sin x$
 $f'''(x) = \sin x$
 $f'''(x) = \cos x$
 $f'''(\pi/2) = \cos \pi/2 = 0$

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots$$

$$f(x) = \cos x = f(\frac{\pi}{L}) + \frac{f(\frac{\pi}{L})}{1!} (\frac{\pi}{L}) (x - \frac{\pi}{L})^2 + \dots$$

$$= 0 + (-\frac{1}{1!})(x - \pi/2) + 0 + \frac{1}{3!}(x - \pi/3)^3 + 0 + \dots$$

$$f(x) = \cos x = -(x - \pi/2) + \frac{1}{3!} (x - \pi/2)^{3} + \dots$$

(ii) Obtain the Taylor Deries Expansion for f(x) = asin x about $x = \sqrt{7}_2$ $\frac{d g(x)}{d g(x)} : \frac{d g(x)}{d g(x)} = \frac{d$

$$f''(x) = \cos x \qquad \qquad f''(7/2) = \cos 7/2 = 0$$

$$f''(x) = -\sin x \qquad \qquad f'''(7/2) = -\sin 7/2 = -1$$

$$f'''(x) = -\cos x \qquad \qquad f'''(7/2) = -\cos 7/2 = 0$$

$$f'''(x) = \sin x \qquad \qquad f'''(7/2) = -\cos 7/2 = 0$$

The Taylor series
$$\hat{u}$$
,
$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^{2} + \dots$$

$$f(x) = f(x) + \frac{f'(\pi/a)}{1!}(x-\pi/a)(x-\pi/a) + \frac{f''(\pi/a)}{2!}(x-\pi/a)^{2} + \dots$$

$$= 1 + 0 + (-1) (x - \pi/a)^{2} + 0 + \frac{1}{4!}(x - \pi/a)^{4} + \dots$$

$$= 1 - \frac{1}{2!}(x - \pi/a)^{2} + \frac{1}{4!}(x - \pi/a)^{4} + \dots$$

2.) (9) Obtain the Ma clawier's series expansion for for = tan' x

$$\frac{1}{2} (\infty) = 4 \cos^2 x$$

$$= 1 + \tan^2 x$$

= 1+ [1 (20]2

$$\int_{0}^{1/2} (x) = 2 \left[f(x) \cdot \int_{0}^{1/2} (x) + \int_{0}^{1/2} (x) + \int_{0}^{1/2} (x) \cdot \int_{0}^{1/2} (x)$$

$$\int_{0}^{\infty} |f'(0)| = 2[f(0), f(0)] = 2(0.1) = 0$$

The Maclawin's series is

$$f(x) = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^{2} + \frac{1}{2!!(0)} x^{3} + \dots$$

$$f(x) = \tan^3 x$$
 = 0+ $\frac{1}{11}$ x + 0+ $\frac{2}{31}$ $\frac{3}{4}$ 0+....

$$\int_{0}^{2} \int_{0}^{2} \int_{0$$

(ii) Obtain the Maclausin & series expansion for $f(x) = tan^{-1} \propto$

$$f'(x) = \frac{1}{1+x^2} + 1 - x^2 + x^4 + x^6 + \dots$$

$$f''(x) = -2x + 4x^3 - 6x^5 + \dots$$

$$f'''(x) = -2 + 12x^2 - 30x^4 + \dots$$

$$f''(x) = 24x - 120x^3 + \dots$$

$$f''(x) = 24x - 360x^2 + \dots$$

$$f(0) = \tan^{2}(0) = 0$$
 $f'(0) = 1$
 $f''(0) = 0$
 $f'''(0) = -2$
 $f'''(0) = 0$

The Maclaurin's series is,

$$f(x) = f(0) + \frac{f'(0)}{1!} + \frac{f''(0)}{2!} + \frac{\chi^2}{1!}$$

$$f(x) = \tan^{3} x = 0 + \frac{1}{1!} x + 0 - \frac{2}{3!} x^{3} + 0 + \frac{24}{5!} x^{5} + \cdots$$

$$f(\alpha) = \tan^{-1} x = x - \frac{2}{3!} x^3 + \frac{24}{120} x^5 + \cdots$$

38) Find the absolute maximum and absolute minimum values of
$$f(x) : x^3 + 3x^2 + 1$$
, $-\frac{1}{5} \le x \le \frac{1}{5}$.

Step (a): $x^3 - 3x^2 + 1$
 $f(x) : x^3 - 3x^2 + 1$
 $f(x) : 3x^2 - bx$

To find coatical numbers,

 $f(x) : 0 = 0$
 $f(x) : 0 = 0$
 $f(x) : 0 = 0$
 $f(x) : 0 = 0$

Step (a):

$$f(x) : 0 = 0$$
 $f(x) : 0 = 0$
 $f(x) : 0 = 0$

$$f(x) : 0 = 0$$

The absolute max, is f(4) = 17The absolute min. is f(2) = -3

(%) Find the absolute maximum and minimum values of
$$f(\infty) = \frac{1}{2} \frac$$

To find critical numbers
$$f'(x) = 0 \implies 3x^2 - 12 = 0 \implies 3(x^2 - 4) = 0 \implies x^2 - 4 = 0 \implies x^2 = 4$$

$$x = \sqrt{y}$$
 \Rightarrow $x = +2$ \Rightarrow -2

Step (3): Put
$$a=2$$

$$f(2) = 2^{3} - 12(2) + 1 = 8 - 24 + 1 = -15$$

$$Put = -2$$

$$f(-2) = (-2)^{3} - 12(-2) + 1 = -8 + 24 + 1 = 17$$

$$Put = 2 - 3$$

$$f(3) = (-3)^{3} - 12(-3) + 1 = -27 + 36 + 1 = 10$$

$$Put = 5$$

$$f(5) = 5^{3} - 12(5) + 1 = 125 - 60 + 1 = 66$$

The absolute max. is
$$f(5) = 66$$

The absolute min. is $f(a) = -15$

Find the Local maximum and ilocal minimum values of $(1) f(x) = x^4 - 3x^3 + 3x^2 - x$ SOLUTION: $f(x) = x^{4} - 3x^{3} + 3x^{2} - x$ $h'(x) = 4x^3 - 9x^2 + 6x - 1$ To find critical Number: $4x^2 - 9x^2 + 6x - 1 = 0$ $x = 1, 1, \frac{1}{4}$ Put x = 1; $k(1) = (1)^4 - 3(1)^3 + 3(1)^2 - 1$ - 1 - 3 + 3 - 1 Put x= 1/4; = 0/1 b(1/4) = (1)4-3(1/4)3+3/1/4)2-1/4 $=\frac{1}{256}-3/64+3/16-1/4$ $= \frac{1 - 10 + 48 - 64}{256} = \frac{-27}{256}$ The Stationary points (1,0) (1/4, -27) $h''(x) = 12x^2 - 18x + 6$ Put ((1) = 12(1) -18(1)+6 = 12 - 18 + 6 = 0(1,0) is can't be Exterm point

Put
$$x = \frac{14}{4}$$

$$= \frac{12}{16} - \frac{18}{4} + 6$$

$$= \frac{3}{4} - \frac{9}{2} + 6$$

$$= \frac{3-18}{4} + 6$$

$$= \frac{-15}{4} + 6$$

$$= -\frac{15}{4} + 6$$

$$= -\frac{15}{4} + 6$$

$$= \frac{9}{4} + 6$$

$$= \frac{9}{4}$$

Find the Local Maximum and local minimum values of $f(\alpha) = 2\alpha^3 + 5\alpha^2 - 4\alpha$ SOLUTION: $f'(x) = 6x^2 + 10x - 4$ $= 3x^2 + 5x - 2$ 1(x) =0 3x2+5x-2=0 (3x-1)(x+2)=0 $x = -2 / x = y_3$ Put x = -2 $f(-2) = 2(-2)^3 + 5(-2)^2 - 4(-2)$ = -16 + 20+ 8 6(-2) = 12/1Put x = 1/3 $f(1/3) = 2(1/3)^3 + 5(1/3)^2 - 4(1/3)$ $= \frac{2}{27} + \frac{5}{9} - \frac{4}{3} = \frac{2+15-36}{27} = \frac{-19}{27}$ The Stationary point (-2,12) (1/3, -19/27) f''(x) = 12x + 10Put 1"(-2) = 12(-2)+10 = -24+10= -14/(-ive) Put b (1/3) = 124 (1/3) +10 = 4+10 = 14(+ine) Positive (1/3, -19/27) is local minimum Negative (-2, 12) is local Maximum //

Evaluate lim (tanx) cosx by using I hospital's rule SoluTion; (00 o form) Let y = (tanx) cosx Take log on both sides logy = log tanx cosx log a = xloga logy = cosx log tanx x im xyz logy = x -> xyz cosx log tanx. By using l'ho pital's rule: $x \rightarrow \pi/z \log y = \lim_{x \rightarrow \pi/z} \frac{\log \tan x}{\operatorname{Sec} x}$: $\cos x = \frac{1}{\operatorname{Sec} x}$ a socx tanx. · log tanx = $\frac{1}{\tan x}$ Sec 2xSecx = Secretaria $x \rightarrow x_2 \log y = \lim_{x \rightarrow x_2} \frac{\int e C x}{\tan^2 x}$ $\lim_{x \rightarrow x_2} \log y = \lim_{x \rightarrow x_2} \frac{\int e C x}{\tan^2 x}$ tanx = sec2 >c

$$\chi \xrightarrow{\lim} \pi/2 \log y = \chi \xrightarrow{\lim} \pi/2 \frac{\cos x}{\sin^2 x}$$

$$= \chi \lim_{x \to \infty} \pi_2 \frac{\cos x}{\sin^2 x}$$

$$= \frac{(08 \, \text{T/2})^2}{\left(\text{Sin} \, \text{T/2}\right)^2} \left(\frac{\text{Cos } 90^\circ = 0}{\text{Gin } 90^\circ = 1}\right)$$

$$\alpha \xrightarrow{T/2} \log y = 0$$

By composite function;
$$x \xrightarrow{\pi/z} log y = 0$$

$$\log x \rightarrow \pi_2 y = 0$$

$$\lim_{x \rightarrow \pi_2 y = 0} (:e^0 = 1)$$

$$\lim_{x \to \pi/2} (\tan x)^{\cos x} = 1/1.$$

Evaluate 200 (cosx) 1/2 by using I hospital's rule Solution;-Let $y = (\cos x)/x$ Taking log on both sides log y = log (usx) /x $(:loga^{\alpha} = x.loga)$ $log y = \frac{1}{2} log (cos x)$ $x \stackrel{\text{lim}}{=} o \log y = x \stackrel{\text{lim}}{=} o \cdot \frac{1}{x} \log (\cos x)$ By using I'ha pital rule $alog x = \frac{1}{x}$ $x \stackrel{\text{lim}}{\to} 0 \log y = x \stackrel{\text{lim}}{\to} 0 + \frac{-\sin x}{\cos x}$

$$x \stackrel{\text{lim}}{\to} 0 \log y = x \stackrel{\text{lim}}{\to} 0 + \frac{-binz}{cosx}$$

 $x \to 0 \log y = x \to 0 - \frac{binx}{cosx}$ $x \to 0 \log y = x \to 0 - tanx$

$$x \rightarrow 0$$
 logy = - tan $0 = 0/1$

By composite function.

$$x \stackrel{\text{lim}}{\longrightarrow} 0 \log y = 0$$

$$\log x \stackrel{\text{lim}}{\longrightarrow} 0 y = 0$$

$$x \stackrel{\text{lim}}{\longrightarrow} 0 y = e^{0}$$

$$\alpha \rightarrow 0 (\cos \alpha)^{1/\alpha} = 1/1.$$

$$\cos x = \frac{1}{x}$$

$$\cos x = -\sin x$$

$$\log \cos x = \frac{1}{\cos x}$$

·X ... e = 1

Evaluate lim (cosx) sinx by using l'ho pital rule x >0 (10 form) SOLUTION: Let $y = (\cos x)^{\sin x}$ Take log on both sides $log y = log (cos x)^{sin x}$ logax = x loga log(cosx)sinx = sinx logues logy = Sinx log (cosx) x lim o logy = x lim &inx log (cosx) By using l'ho. pital rule. $x \stackrel{lim}{\Rightarrow} o logy = x \stackrel{lim}{\Rightarrow} cos x \frac{1}{cos x} - sin x = cos x \frac{1}{cos x} - sin x = cos x \frac{1}{cos x}$

 $\begin{array}{lll} \lim & \log y = x \to 0 & \cos x & \frac{1}{(o8x)} \\ \lim & x \to 0 & \log y = \lim \\ x \to 0 & -\sin x \end{array}$ $\begin{array}{lll} \lim & \cos x & \cos x & \frac{1}{(o8x)} & \cos x \\ \lim & \cos x & \cos x & \cos x \\ \lim &$

By COMPOSITE FUNCTION: $x \stackrel{lim}{\Rightarrow} 0 \log y = 0$

 $\log x \xrightarrow{\lim} y = 0$ $\lim_{x \to 0} y = e^0$ $\lim_{x \to 0} (\cos x)^{\sin x} = 1/2$

 $\left(e^{\circ} = 1 \right)$

Evaluate lim x→0+ x sinx by using l'ho pital's xule SOLUTION: (Ooform) Let $y = x^{\sin x}$ Taking log on both sides logy = log x sin x $\log a^{x} = x \log a$ logy = binx logx $x \rightarrow 0 + logy = x \rightarrow 0 + binx log x$ By l'ho pital's rule $x \to 0 \log y = x \to 0_{+} \frac{\log x}{\cos x}$ Sin x = 1 i. $\log x = \frac{1}{x}$ COSECX = -losecX $x \xrightarrow{\text{lim}} \log y = x \xrightarrow{\text{lim}} \frac{1}{x} - \frac{1}{\cos(x \cot x)}$ $\lim_{x \to 0} \log y = x \xrightarrow{\text{lim}} \frac{1}{x} \xrightarrow{-\sin x} \frac{\sin x}{\cos x}$ Coo cot x = cos x

$$x \rightarrow 0 \log y = x \rightarrow 0, \frac{1}{x} - \frac{1}{\cos x \cos x}$$

$$x \rightarrow 0 \log y = x \rightarrow 0, \frac{1}{x} - \frac{1}{\sin x} \frac{\sin x}{\cos x}$$

$$= x \rightarrow 0, \frac{1}{x} - \frac{1}{\sin^2 x} \frac{\sin x}{\cos x}$$

$$= x \rightarrow 0, \frac{1}{x} - \frac{1}{\cos^2 x} \frac{\sin^2 x}{\cos x}$$

$$= \lim_{x \rightarrow 0, +} \frac{-2\sin x \cdot \cos x}{-x \sin x + \cos x}$$

$$= \frac{-2(0) \cdot 0}{0 + 0} = 0//$$

$$= \frac{-2(0) \cdot 0}{0 + 0} = 0//$$

BY COMPOSITE FUNCTION:

$$x \xrightarrow{\lim} o_{x} \log y = 0$$

$$x \xrightarrow{\lim} o_{y} \log y = 0$$

$$\log x \xrightarrow{\lim} o_{y} y = 0$$

$$x \xrightarrow{\lim} o_{y} y = 0$$

$$x \xrightarrow{\lim} o_{y} y = 0$$

$$x \xrightarrow{\lim} o_{x} y = 0$$

$$x \xrightarrow{\lim} o_{x} y = 0$$

$$x \xrightarrow{\lim} o_{x} y = 0$$

Questions	opt1	opt2
The Taylor series of f(x) about the point 0 is series.	Maclaurins	Taylor
The expansion of f(x) by Taylor series is	zero	unique
The point at which function $f(x)$ is either maximum or minimum is known as point	Stationary	Saddle point
A function f has at 'c' if $f(c) \ge f(x)$ for all 'x' in D, where D is domain of 'f'.	an absolute maximum	an absolute minimum
If $f(x) = x2$, then $f(0) = 0$ is the value of f.	an absolute maximum	an absolute minimum
A function f has a at 'c' if there is an open interval I containing 'c' such that $f(c) \ge \overline{f(x)}$ for all 'x' in I.	an absolute maximum	an absolute minimum
A function f has a at 'c' if there is an open interval I containing 'c' such that $f(c) \le \overline{f(x)}$ for all 'x' in I.	an absolute maximum	an absolute minimum
If 'f' has a at 'c' and if f'(c) exists then f'(c)=0.	critical number	stationary point
A function 'f' has at 'c' if $f(c) \le f(x)$ for all 'x' in D, where D is domain of 'f'.	an absolute maximum	an absolute minimum
If 'f' has a local extremum at 'c' and if $f'(c)$ exists then $f'(c)=$	0	1
Evaluate: limit x tends to $0 (x / \tan x) =$	1	2
Evaluate: limit x tends to infinity $(x^2 / e^x) =$	1	2
L'Hopital's rule can be applied only to differentiable functions for which the limis are in the form	real	indeterminat e
L'Hopital's rule can be applied only tofunctions for which the limis are in the indeterminate form	differentiable	real
If $f(x) = x^3$, then the function has	eiher an absolute maximum or an absolute minimum	neiher an absolute maximum nor an absolute minimum
A of a function f is a number c in the domain of f such that either $f'(c) = 0$ or $f'(c)$ does not exist	critical number	stationary point
are critical numbers c in he domain of f, for which f'(c)=0	Critical number	Stationary points
If f has a local extremum at c, then c is a of f	critical number	stationary point
If f has a at c, then c is a critical number of f	critical number	stationary point
If $f(x)=x^2 - 4x + 5$ on [0,3] then the absolute maximum value is	2	3
Find the critical numbers, for the function $f(x)=x^3 - 3x^2 + 1$.	(12)	(0 2)
Find the critical numbers, for the function $f(x)=x^3 - 3x + 1$.	(1 1)	(-1 1)
Find the critical number, for the function $f(x)=2x - 3x^2$.	(1/2)	(1/3)
Find the critical number, for the function $f(x)=x^2 - 2x + 2$.	0	1
Find the critical number, for the function $f(x)=1-2x-x^2$.	0	1
Find the critical numbers, for the function $f(x)=x^3 - 12x + 1$.	(0 1)	(0 2)

power minimum maximum unique extremum implicit Stationary local locam minimum an absolute and local maximam minimum local local maximam minimum local local maximam minimum local an absolute extremum an absolute maximam minimum c (-1) 1 3 0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0 0 0 indetermina te complex extremum complex extremum local an absolute maximum minimum local an absolute extremum complex extremum local an absolute maximum local an absolute maximum local bocam an absolute minimum complex extremum local an absolute maximum local an absolute maximum local an absolute extremum extremum maximum local an absolute extremum local an absolute extremum local an absolute extremum local an absolute extremum local an absolute extremum maximum local an absolute extremum eximum local an absolute extremum maximum local an absolute extremum 4 5 (2 2) (1 3) (0 2) (0 1) (-1-1) (-1-1) (-1-1) (1/4) 1 (1/3) 2 3 1	opt3	opt4	opt5	opt6	Answer
minimum maximum unique extremum implicit Stationary local maximam minimum an absolute and local minimum local maximam minimum local local maximam minimum local local maximam minimum local an absolute extremum local local maximam minimum local an absolute extremum c (-1) 1 1 3 0 1 1 3 0 0 1 1 3 0 0 0 0 0 0 0 0				•	Maclaurins
extremum implicit Stationary local maximam minimum an absolute and local maximam minimum local local locam minimum local extremum local local extremum local local an absolute maximum local an absolute maximum local an absolute extremum maximum extremum ducal an absolute extremum maximum extremum ducal an absolute local extremum maximum extremum ducal an absolute extremum maximum extremum ducal local an absolute local an absolute and absolute and absolute local an absolute and absolute local an absolute and absolute and absolute local an absolute and absolute	_	maximum			unique
local maximam locam minimum an absolute maximum local maximam an absolute and local minimum an absolute and local minimum local maximam local maximam local maximam local maximam local minimum local minimum local extremum an absolute extremum local extremum local maximam an absolute minimum an absolute minimum c (-1) 1 3 0 0 3 0 0 complex extremum differentiable extremian dextremum local maximam an absolute minimum noeiher an absolute maximum nor an absolute minimum local an absolute extremum Stationary points local an absolute extremum Stationary points local an absolute extremum critical number local an					
local maximam locam minimum an absolute maximum local maximam an absolute and local minimum an absolute and local minimum local maximam local maximam local maximam local maximam local minimum local minimum local extremum an absolute extremum local extremum local maximam an absolute minimum an absolute minimum c (-1) 1 3 0 0 3 0 0 complex extremum differentiable extremian dextremum local maximam an absolute minimum noeiher an absolute maximum nor an absolute minimum local an absolute extremum Stationary points local an absolute extremum Stationary points local an absolute extremum critical number local an	extremum	implicit			Stationary
maximam minimum an absolute and local maximam minimum local minimum local minimum local minimum local minimum local minimum local maximam minimum local minimum local minimum local minimum local maximam minimum maximum local extremum an absolute extremum minimum minimum minimum an absolute minimum cc (-1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
an absolute and local minimum local an absolute extremum local an absolute maximam minimum local an absolute minimum c (-1) 1 1 3 0 1 1 3 0 0 1 1 3 0 0 0 0 0 0 0 0					
local maximam minimum local minimum local maximam minimum local maximam local minimum local minimum local maximam minimum local an absolute extremum maximum local minimum local maximam minimum local an absolute maximam minimum minimum c (-1) 1 1 3 0 1 1 3 0 0 1 1 3 0 0 0 0 0 0 0 0	IllaxIIIIaIII				
maximam minimum local maximam minimum local maximam local minimum local minimum local minimum local minimum local an absolute extremum maximum local local maximam minimum local an absolute minimum cc (-1) 1 1 3 0 1 1 3 0 0 1 1 3 0 0 0 0 0 0 0 0					
local maximamlocam minimumlocal maximamlocal maximamlocal minimumlocal minimumlocal extremuman absolute extremumlocal extremumlocal maximamlocam minimuman absolute minimumc complex(-1)13 complex00complexextremumdifferentiable ecomplexextremumneiher an absolute maximum mor an absolute minimumlocal extremuman absolute maximumcritical numberLocal extremumAn absolute maximumStationary pointslocal extremuman absolute extremumcritical numberlocal extremuman absolute extremumcritical numberlocal extremuman absolute extremumlocal extremum4 4 5 (2 2) (1 3) (0 1) (-1 -1) (-1 -1) (-1 -1) (-1 1) (-1 1) (-1 1) (-1 1) (-1 1) (-1 1) (-1 1) (-1 1) (-1 1)1 (1/4) 2 3 11					
maximam minimum local local maximam local an absolute extremum minimum local extremum minimum local local maximam minimum local locam maximum minimum minimum minimum c (-1) 1 1 1 3 0 1 1 3 0 0 1 1 3 0 0 0 0 0 0 0	maximam	IIIIIIIIIIIIII			IIIIIIIIIIIIIII
local maximamlocal minimumlocal minimumlocal extremuman absolute maximumlocal extremumlocal maximam minimuman absolute minimuman absolute minimumc(-1)1300complexextremumdifferentiable ecomplexextremumneiher an absolute maximum nor an absolute minimumlocal extremuman absolute maximumcritical numberLocal extremumAn absolute maximumStationary pointslocal extremuman absolute maximumcritical numberlocal extremuman absolute maximumcritical numberlocal extremuman absolute maximumlocal extremum455(2 2) (1 3) (0 1) (-1 -1) (-1 -1) (-1 -1) (-1 1) (-1 1) (-1 1) (-1 1) (-1 1) (-1 1) (-1 1) (-1 1)(-1 1) (-1 1) (-1 1)(1/4) 2 3 112 2 3 31					
maximam minimum local an absolute extremum maximum local local maximum minimum minimum an absolute minimum c (-1)	maximam	mınımum			maximam
local extremum an absolute extremum local maximum an absolute minimum c (-1) 3 0 3 0 complex extremum complex extremum differentiable e complex extremum local maximam minimum absolute maximum nor an absolute minimum local extremum maximum critical number Local extremum maximum Stationary points local an absolute extremum maximum critical number local extremum maximum local extremum 4 5 (2 2) (1 3) (0 2) (0 1) (-1 -1) (-1 1) (1/4) 1 (1/3) 2 3 1 2 3 1					
extremum maximum extremum an absolute maximam minimum c (-1)	maximam	minimum			minimum
local maximamlocam minimuman absolute minimumc(-1)1301complexextremumindetermina tecomplexextremumdifferentiable ecomplexextremumneiher an absolute maximum nor an absolute minimumlocal extremuman absolute maximumcritical numberLocal extremumAn absolute maximumStationary pointslocal extremuman absolute maximumcritical numberlocal extremuman absolute maximumlocal extremum455(2 2)(1 3) (0 1) (-1 -1)(0 2)(0 1) (1/4)1(1/3)23123111(1/3)					
maximam minimum minimum minimum minimum c (-1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	extremum	maximum			extremum
c (-1) 1 3 0 0 complex extremum indetermina te complex extremum differentiable e complex extremum neiher an absolute maximum nor an absolute minimum local an absolute extremum critical number Local An absolute extremum maximum Stationary points local an absolute extremum maximum critical number local an absolute extremum maximum local extremum local an absolute extremum local extremum 4 5 5 (2 2) (1 3) (0 2) (0 1) (-1 -1) (-1 1) (1/4) 1 (1/3) 2 3 1 2 3 1					
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	maximam				minimum
3 0 0 indetermina te complex extremum differentiable extremum local maximam minimum local extremum maximum mor an absolute extremum maximum local an absolute extremum maximum local extremum maximum local an absolute extremum maximum local an absolute extremum maximum local (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)					
complex extremum differentiable extremum local maximum minimum local an absolute maximum maximum local extremum maximum local an absolute maximum local an absolute extremum maximum extremum 4 5 5 5 5 5 5 (2 2) (1 3) (0 2) (0 1) (-1 -1) (-1 1) (-1 1) (1/4) 1 1 (1/3) 2 3 1 1					1
complex extremum te complex extremum differentiable neiher an absolute maximum nor an absolute minimum local an absolute extremum maximum local an absolute extremum local an absolute (2 2) (1 3) (0 2) (0 1) (-1 -1) (-1 1) (-1 1) (1/4) 1 (1/3) 2 3 1	3	0			0
local locam absolute maximum local an absolute maximum nor an absolute extremum maximum local an absolute extremum decal an absolute extremum decal an absolute local extremum decal an absolute local extremum decal extremum dec	complex	extremum			
absolute maximum nor an absolute minimum local an absolute minimum local extremum maximum local an absolute extremum maximum local extremum maximum local extremum maximum 4 5 5 (2 2) (1 3) (0 1) (-1 -1) (1/4) 1 (1/3) 2 3 1 1 2 3 1 1	complex	extremum			
extremum maximum number Local An absolute extremum maximum 4 5 5 5 5 (2 2) (1 3) (0 2) (0 1) (-1 -1) (-1 1) (1/4) 1 (1/3) 1 (1/3) 1 2 3 1 1					absolute maximum nor an absolute
extremum maximum points local extremum an absolute number local extremum an absolute extremum 4 5 (2 2) (1 3) (0 1) (-1 -1) (1/4) 1 (1/3) 2 3 1 2 3 1					
extremum maximum number local an absolute extremum maximum 4 5 5 (2 2) (1 3) (0 2) (0 1) (-1 -1) (-1 1) (1/4) 1 (1/3) 2 3 1 2 1					
extremum maximum extremum 4					
extremum maximum extremum 4	local	an absolute			local
(2 2) (1 3) (0 2) (0 1) (-1 -1) (-1 1) (1/4) 1 (1/3) 2 3 1 2 3 1					
(0 1) (-1 -1) (-1 1) (1/4) 1 (1/3) 2 3 1 2 3 1	4	5			5
(0 1) (-1 -1) (-1 1) (1/4) 1 (1/3) 2 3 1 2 3 1	(2 2)	(1 3)			(0 2)
(1/4) 1 (1/3) 2 3 1 2 3 1					
2 3 1 2 3 1					
		3			
	2	3			1
	(0 3)	(0 4)			(0 4)

Find the stationary point of the function $f(x)=2x - 3x^2$	(1 1)	(12)
Find the stationary point of the function $f(x)=x^3 - 3x + 1$	(1 -1) and (-1 3)	(1 -1)
Find the absolute maximum of the function $f(x) = x^2-2x+2$, [0,3]	1	3
Find the absolute minimum of the function $f(x) = x^2-2x+2$, [0,3]	1	3
Find the absolute maximum of the function $f(x) = 1-2x-x^2$ [-4,1]	1	2
Find the absolute minimum of the function $f(x) = 1-2x-x^2$ [-4,1]	1	2

(1/3 1/3)	(1/2 1)	(1/3 1/3)
(-1 3)	(1 1) and (1 3)	(1 -1) and (-1 3)
5	8	5
5	8	1
7	8	2
(-7)	(-8)	(-7)

Questions	opt1	opt2	opt3
The sum of the main diagonal elements of a matrix is called	trace of a matrix	quadrat ic form	eigen value
Every square matrix satisfies its own	characteristic polynomial	charact eristic equatio n	orthogo nal transfor mation
The orthogonal transformation used to diagonalise the symmetric matrix A is	NT AN	NT A	NAN-1
If $\lambda 1, \lambda 2, \lambda 3, \dots, \lambda n$ are the eigen values of A ,then $k\lambda 1$, $k\lambda 2, k\lambda 3, \dots, k\lambda n$ are the eigen values of	kA	kA2	kA-1
Diagonalisation of a matrix by orthogonal reduction is true only for a matrix.	diagonal	triangula	real symme tric
In a modal matrix, the columns are the	eigen vectors of A	eigen vectors of adj A	eigen vectors of inverse ofA
If at least one of the eigen values of A is zero, then $\det A =$	0	1	10
If the canonical form of a quadratic form is 5y12 - 6 y22, then the index is	4	0	2
det (A- λI) represents	characteristic polynomial	charact eristic equatio n	quadrat ic form
If $\lambda 1$, $\lambda 2$, $\lambda 3$,	A^(-1)	A	A^n
If $\lambda 1$, $\lambda 2$, $\lambda 3$,	A^(-1)	A^2	A^(-p)
Cayley -Hamilton theorem is used to find	inverse and higher powers of A	eigen va	eigen vectors
The eigen values of a matrix are its diagonal	diagonal	symmet	skew-ma
In an orthogonal transformation NT AN = D, D refers to a matrix.	diagonal	-	symmeti
In a modal matrix, the columns are the eigen vectors of	A-1	A2	A
If the eigen values of 8x12 + 7 x22 +3 x32 -12 x1 x2 - 8 x2 x3 +4 x3x1 are 0,3 & 15, then its nature is	positive definite	positiv e semide finite	indefinit

opt4	opt5	opt6	Answer
canonic al form			trace of a matrix
canonic al form			charact eristic equatio n
NA			NT AN
A-1			kA
scalar			real symme tric
eigen values of A			eigen vectors of A
5			0
1			1
canonic al form			charact eristic polyno mial
A^p			A^(-1)
A^p			A^p
quadrat ic form			inverse and higher powers of A
triangula	ar		triangula
skew- symme tric			diagona
adj A			A
negativ e definite			positiv e semide finite

The elements of the matrix of the quadratic form x12 + 3 x22 + 4 x1 x2 are	a11 = 1,a12 =2 , a 21 = 2, a 22 = 3	a11 = -1, a12 = -2, a 21 = 2, a 22 = 3	a11 = 1, a12 = 4, a 21 = 4, a 22 = 3
If the sum of two eigen values and trace of a $3x3$ matrix A are equal, then det A =	λ1 λ2 λ3	0	1
If 1,5 are the eigen values of a matrix A, then det $A =$	5	0	25
If the canonical form of a quadratic form is $5y12 + 6y22$, then the rank is	4	0	2
The non –singular linear transformation used to transform the quadratic form to canonical form is	X= NTY	X= NY	Y= NX
The eigen vector is also known as	latent value	latent vector	column value
If 1,3,7 are the eigen values of A, then the eigen values of 2A are	1,3,7	1,9,21	2,6,14
If the eigen values of 2A are 2, 6, 8 then eigen values of A are	1,3,4	2,6,8	1,9,16
The number of positive terms in the canonical form is called the	rank	index	Signatur
If all the eigenvalues of A are positive then it is called as	Positive definite	Negati ve definite	Positiv e semide finite
If all the eigenvalues of A are negative then it is called as	Positive definite	Negati ve definite	Positiv e semide finite
A homogeneous polynomial of the second degree in any number of variables is called the	characteristic polynomial	charact eristic equatio n	quadrat ic form
The Set of all eigen values of the matrix A is called the of A	rank	index	Signatur
A Square matrix A and its transpose have eigen value	different	Same	Inverse
The sum of the of a matrix A is equal to the sum of the principal diagonal elements of A.	characteristic polynomial	charact eristic equatio n	eigen values
The product of the eigenvalues of a matrix A is equal to	Sum of main diagonal	Determ inant of A	
The eigenvectors of a real symmetric are	equal	unequal	real
When the quadratic form is reduced to the canonical form, it will contain only r terms, if the of A is r.	rank	index	Signatu

a11 =	a11 =
1, a12	1,a12
=4, a	=2, a
- 4 , a	
21 = 3 ,	21 = 2,
a 22 =	a 22 =
1	3
2	0
_	
6	5
1	2
NXA	X= NY
	latent
orthogo	vector
nal	, , , , ,
value	
	2 (1 4
1,9,49	2,6,14
12,4,3	1,3,4
indefinite	index
macrime	Писх
Negati	Positiv
ve	e
semide	definite
	definite
finite	
Negati	Negati
ve	ve
semide	definite
finite	
	and deat
canonic	quadrat
al form	ic form
spectrum	spectrun
Transpose	Same
Transpose	
eigen	eigen
vectors	values
Sum of	Determ
the	inant of
cofacto	A
	A
rs of A	
symmetric	real
•	
spectrum	rank

The excess of the number of positive terms over the number of negative terms in the canonical form is called the of the quadratic form.	rank	index	Signatu
If all the eigen values of A are less than zero and atleast one eigen value is zero then the quadratic form is said to be	Positive definite	Negative	Positive
If all the eigen values of A are greater than zero and atleast one eigen value is zero then the quadratic form is said to be	Positive definite	Negati ve definite	Positiv e semide finite
If the quadratic form has both positive and negative terms then it is said to be	Positive definite	Negati ve definite	Positiv e semide finite

spectrum	Signatu
Negati ve semide finite Negati ve semide finite	Negati ve semide finite Positiv e semide finite
indefinite	indefini