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MA8352- LINEAR ALGEBRA AND PARTIAL DIFFERENTIAL EQUATIONS 

 II year ECE- III Semester 

UNIT I –VECTOR SPACES 

CLASS NOTES 

VECTOR SPACES 

             A vector space (or linear space) V over a field F consists of a set on which two operations (called 

addition and scalar multiplication, respectively) are defined so that for each pair of elements  x, y in V 

there is a unique element x + y in V, and for each element ‘a’  in F and each element ‘x’ in V there is a 

unique element ‘ax’  in V, such that the following conditions (Axioms) hold. In the list below, let x, y and z  

be arbitrary vectors in V, and a and b scalars in F. 

Axiom Meaning  

Associativity of addition (x + y) + z = x + (y + z), ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑉 

Commutativity of addition x + y = y + x, ∀ 𝑥, 𝑦 ∈ 𝑉 

Identity element of addition 

 

There exists an element 0 ∈ V, called the zero vector, such 

that x + 0 = x for all x ∈ V.  

Inverse elements of addition 

 

For every x ∈ V, there exists an element −x ∈ V, called the 

additive inverse of x, such that x + (−x) = 0.  

Compatibility of scalar multiplication with 

field multiplication 
a(bx) = (ab)x   

Identity element of scalar multiplication 1x = x, where 1 denotes the multiplicative identity in F.  

Distributivity   of scalar multiplication 

with respect to vector addition 
a(x + y) = ax + ay  

Distributivity of scalar multiplication with 

respect to field addition 
(a + b)x = ax + bx 

Elements of V are commonly called vectors. Elements of F are commonly called scalars.  

NOTE: 

 When the scalar field F is the real numbers R, the vector space is called a real vector space.  

 When the scalar field is the complex numbers C, the vector space is called a complex vector space.  

 These two cases are the ones used most often in engineering. 

 The general definition of a vector space allows scalars to be elements of any fixed field F. The 

notion is then known as an F-vector spaces or a vector space over F. 

Coordinate spaces 

 The simplest example of a vector space over a field F is the field itself, equipped with its standard 

addition and multiplication.  

 More generally, a vector space can be composed of n-tuples (sequences of length n) of elements of 

F, such as (a1, a2, ..., an), where each ai is an element of F. 

 A vector space composed of all the n-tuples of a field F is known as a coordinate space, usually 

denoted Fn. 

 The case n = 1 is the above-mentioned simplest example, in which the field F is also regarded as a 

vector space over itself. 

Complex numbers and other field extensions 

 The set of complex numbers C, i.e., numbers that can be written in the form x + iy for real numbers 

x and y where i is the imaginary unit, form a vector space over the reals with the usual addition and 
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multiplication:   (x + iy) + (a + ib) = (x + a) + i(y + b) and  c ⋅ (x + iy) = (c ⋅ x) + i(c ⋅ y) for real 

numbers x, y, a, b and c. 

Function spaces 

 Functions from any fixed set Ω to a field F also form vector spaces, by performing addition and 

scalar multiplication pointwise. That is, the sum of two functions f and g is the function (f + g) 

given by  (f + g)(w) = f(w) + g(w), and similarly for multiplication. 

  Such function spaces occur in many geometric situations, when Ω is the real line or an interval, or 

other subsets of R.  

Exmples of Vector Spaces: 

Example 1: 

(1) Let V and W be vector spaces over a field F. Let  z ( v , w ) : v V and w W .    Then Z is a 

vector space over F with the operations 

1 1 2 2 1 2 1 2 1 1 1 1
( v , w ) ( v , w ) ( v v , w w ) a n d c ( v , w ) ( c v , c w )    

 

Proof: 

            (1) For all x,y in Z, 

                 

1 1 2 2

1 2 1 2

2 1 2 1

2 2 1 1

x ( v , w ) , y ( v , w )

x y ( v v , w w )

( v v , w w ) V a n d W a re v e c to r sp a c e s o v e r F ( c o m m u ta tiv ity )

( v , w ) ( v , w )

y x

 

   

  

 

 

 

             (2) For all x,y, z  in Z  where 
3 3

z ( v , w )
 

                  

1 2 1 2 3 3

1 2 3 1 2 3

1 2 3 1 2 3

( x y ) z ( v v , w w ) ( v , w )

(( v v ) v , ( w w ) w )

( v ( v v ), w ( w w )) V a n d W a re v e c to r sp a c e s o v e r F

     

    

    

 

                  

1 1 2 3 2 3
( v , w ) ( v v , w w )

x (y z )

   

  
 

            (3) There exists a zero vector (0V, 0W) in Z where 0V and 0W are the zero vectors of V and W   

                  respectively such that  

                 

V W 1 1 V W

1 V 1 W

1 1 1 V 1 1 W 1

x ( 0 , 0 ) ( v , w ) ( 0 , 0 )

( v 0 , w 0 )

( v , w ) ( v 0 v a n d w 0 w )

x , x Z .

  

  

    

  

 

            (4) For each element x in Z, there exists an element y in Z such that 

                            

V W

1 1 2 2 V W

2 2 V W 1 1

V 1 W 1

2 2 1 1

x y ( 0 , 0 )

(u , v ) (u , v ) ( 0 , 0 )

(u , v ) ( 0 , 0 ) (u , v ) )

( 0 u , 0 v )

y (u , v ) ( u , v )
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          (5) For each element x in Z , 

             

1 1 1 1 1 1 1 1

1 1

1 . x 1 .(u , v ) (1 . u ,1 . v ) 1 . u u & 1 .v v

(u , v ) x

   

   

          (6) For each pair of elements a, b ∈ F and x ∈ Z 

                

1 1

1 1

1 1

1 1

(a b ) x (a b ) (u , v )

( (a b ) u , (a b ) v )

( a ( b u ) , a ( b v ) )

a ( b u , b v )

a ( b x )











 

         (7) For each element a ∈ F and each pair of elements x, y ∈ Z , 

             

1 2 1 2

1 2 1 2

1 2 1 2

1 1 2 2

a ( x y ) a ( v v , w w )

(a ( v v ) , a ( w w ))

(a v a v , a w a w )

(a v , a w ) ( a v , a w )

a x a y

   

  

  

 

 

 

        (8) For each pair of elements a, b ∈ F and x ∈ Z 

              

1 1

1 1

1 1 1 1

1 1 1 1

1 1 1 1

(a b ) x (a b ) (v , w )

( (a b ) v , (a b ) w )

( a v b v , a w b w )

( a v , a w ) ( b v , b w )

a ( v , w ) b ( v , w )

a x b x

  

  

  

 

 

   

 

        ∴ Z is a Vector space over F. This space is called the direct sum of V and W. 

Example 2: 

       For n 0 , the set 
n

P of polynomials of degree at most n consists of all polynomials of the form 

2 n

0 1 2 n
a a t a t a t     where the coefficients 

0 n
a , a  and the variable t are real numbers is a 

vector space. 

      Proof:
 

(i)  Let 2 n

0 1 2 n
p ( t) a a t a t a t     and 2 n

0 1 2 n
q ( t) b b t b t b t ,     then p + q is defined by 

2 n

0 0 1 1 2 2 n n
(p q ) ( t) p ( t ) q ( t ) ( a b ) ( a b ) t ( a b ) t ( a b ) t           

 

 p + q is a polynomial of degree less than or equal to n. 

∴p(t),q(t) ∈ Pn ⇒ (p + q)(t) ∈ Pn
 

The scalar multiple cp is the polynomial defined by  

2 n

0 1 2 n
( c p ) ( t) c p ( t ) ( c a ) (c a ) t ( c a ) t ( c a ) t     

  

⟹cp is a polynomials of degree less than or equal to n.  

⟹ cp ∈ Pn 

It follows from the properties of the real numbers. 
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2 n

0 1 2 n

2 n 2 n

0 0 1 1 2 2 n n 0 1 2 n

2 n

0 0 0 1 1 1 2 2 2 n n n

0 0 0 1 1 1

( i i ) L e t r( t) c c t c t c t .

( (p q ) r )( t) ( p q )( t ) r ( t)

( a b ) ( a b ) t ( a b ) t ( a b ) t (c c t c t c t )

( a b c ) ( a b c ) t ( a b c ) t ( a b c ) t

( a ( b c )) ( a ( b c )) t

    

    

              
 

            

      
2 n

2 2 2 n n n

2 n 2 n

0 1 2 n 0 0 1 1 2 2 n n

n

( a ( b c )) t ( a ( b c )) t

(a a t a t a t ) (b c ) (b c ) t (b c ) t (b c ) t

p ( t) (q r )( t )

(p (q r ))( t) p ( t) , q ( t) , r ( t ) P

     

              
 

  

    

 

(iii) If all the coefficients are zero, p is called zero polynomial. 

The zero polynomial is included in
n

P  even though its degree is not defined. 
 

(iv) Clearly zero polynomial acts as the zero vector. Finally (−1)p acts as the negative of p. 

(v) 1 p(t) = p(t)  ∀ p(t) ∈Pn 

2 n

0 1 2 n

2 n

0 1 2 n

2 n

0 1 2 n

n

(v i) ( a b ) p ( t) ( a b ) ( a a t a t a t )

( a b a ) ( a b a ) t ( a b a ) t ( a b a ) t

( a ) (b a b a t b a t b a t )

( a ) ( b p ( t ) ) p ( t) P , a , b R

    

    

    

   

 

2 n

0 1 2 n

2 n

0 1 2 n

2 n

0 1 2 n

n

(v iii) ( a b ) (p ( t) ) (a b ) ( a a t a t a t )

(a a a a t a a t a a t )

(b a b a t b a t b a t )

a p ( t) b p ( t) p ( t) P , a , b R

      

    

    

    

 

Thus Pn(t) is the vector space. 

Example for not a Vector Space: 

Example 3: 

Let V denote the set of ordered pairs of real numbers. If (a1, a2) and (b1, b2) are elements of V 

and c R ,  define (a1, a2) + (b1, b2) = (a1 + b1, a2 b2) and c(a1, a2) = (ca1, ca2). Show that V is not a 

Vector Space. 

Proof: 

(1) For all x,y in V, 

1 2 1 2

1 1 2 2

1 1 2 2

x (a , a ) , y (b , b )

x y (a b , a b )

(b a , b a )

y x

 

  

 

 

 

(2) For all x,y, z  in V  where 
1 2

z (c , c )  
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1 2 1 2 1 2

1 1 2 2 1 2

1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 2 2 2

1 2 1 1 2 2

1 2 1 2 1 2

( x y ) z (a , a ) (b , b ) (c , c )

(a b , a b ) (c , c )

((a b ) c , ( a b ) c )

(a b c , a b c )

(a ( b c ) , a ( b c ))

(a , a ) ( b c , b c )

(a , a ) (b , b ) (c , c )

x ( y z )

    

  

  

  

  

  

  

    

(3) There exists a zero vector (b1, b2) in V such that  

1 2 1 2

1 2 1 2 1 2

1 1 2 2 1 2

1 1 1 2 2 2

1 2

x (b , b ) (a , a )

(a , a ) (b , b ) (a , a )

( a b , a b ) (a , a )

a b a & a b a

b 0 & b 1

 

 

 

  

  

 
(0 ,1) V is th e zero vec to r . 

 

(4) For each element x in V, there exists an element y in V such that                           
 

1 2 1 2

1 1 2 2

1 1 2 2

1 1 2 2

2

x y (0 ,1)

(a , a ) (b , b ) (0 ,1)

(a b , a b ) (0 ,1)

a b 0 & a b 1

1
b a & b R if a 0

a

H e n c e V is n o t a v e c to r s p a c e o v e r R .

 

 

 

  

     

 

Theorem 1 (Cancellation Law for Vector Addition): 

            If x, y, and z are vectors in a vector space V such that x + z = y + z, then x = y 

Proof: From the definition of Vector space, there exists a vector v in V such that z + v = 0.  

Thus x = x + 0 = x + (z + v) 

= (x + z) + v  

= (y + z) + v  

= y + (z + v)  

= y + 0 = y. 

Theorem 2: In any vector space V, the following statements are true:  

(i) 0x = 0 for each x V  

(ii) (- a)x = - (ax) = a( -x) 

(iii) a0 = 0 for each a F . 

Proof: 
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(i) Consider 0 x + 0 x = (0 + 0) x   ( ∵ (a + b)x = ax + bx, a , b F a n d x V    

= 0 x   (∵ 0 + 0 = 0) 

= 0 x + 0 (By additive identity of vector space) 

= 0 + 0 x (By commutativity of addition) 

i.e.,     0 x + 0 x = 0 + 0 x 

0 x = 0 (By cancellation Law for vector Addition). 

 

(ii) The vector − (a x) is the unique element of V such that a x + (−(a x)) = 0 

Thus if a x + (−a) x = 0, we have −(a x) = (−a) x 

But a x + (−a) x = [a + (−a)] x   ( ∵ (a + b)x = ax + bx, a , b F a n d x V   )  

= 0 x  

= 0 ( by (i)) 

∴ (−a) x = − (a x).  

In particular (−1) x = − (1 x) = − x 

                       a(− x) = a ( (−1) x) = [a(−1) x] = (− a) x 

∴ (−a) x = − (a x) = a(− x).  

 (iii) S ince a x y   aax ay , F and x V     , we have,  

a 0 + a 0 = a (0 + 0) 

= a 0 

= a 0 + 0 (By additive identity of vector space) 

a 0 + a 0 = 0 + a 0 (By commutativity of addition) 

⟹a 0 = 0 (By cancellation Law for vector Addition). 

a 0 0 a F     

SUBSPACES 

         A nonempty subset W of a vector space V overa field is called a subspace of V if W is a vector space 

over F with the operations as in V.  Let V be a vector space and W be a subset of V. Then W is a subspace 

of V if and only if the following conditions are hold: 

a.         (i) The zero vector of V is in W. 

        (ii) W is closed under vector addition. i.e.,  𝑢 + 𝑣 ∈ 𝑊, ∀ 𝑢, 𝑣 ∈ 𝑊 

       (iii) W is closed under multiplication by scalars. i.e., 𝑐𝑢 ∈ 𝑊, ∀ 𝑐 ∈ 𝐹, 𝑢 ∈ 𝑊 

Examples: 

           1. The set of all diagonal matrices is a subspace of Mmxn(F). 

            2. Let n be a non-negative integer and Pn(F) consists of all polynomials in P(F) having degree less    

                than or equal to n. Then Pn(F) is a subspace of P(F). 

NOTE: 

 Subspaces of V are vector spaces (over the same field) in their own right.  

 A linear subspace of dimension 1 is a vector line.  

 A linear subspace of dimension 2 is a vector plane.  

 A linear subspace that contains all elements but one of a basis of the ambient space is a vector 
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hyperplane.  

Example 4: Is the following set a subspace of R2? 

   

Solution: 

        To establish that A is a subspace of R2, it must be shown that A is closed under addition and scalar 

multiplication. If a counterexample to even one of these properties can be found, then the set is not a 

subspace. In the present case, it is very easy to find such a counterexample. For instance, both u = (1, 4) 

and v = (2, 7) are in A, but their sum, u + v = (3, 11), is not. In order for a vector v = (v 1, v 2 ) to be in A, 

the second component (v 2) must be 1 more than three times the first component (v 1). Since 11 ≠ 3(3) + 1, 

(3, 11) ∉ A. Therefore, the set A is not closed under addition, so A cannot be a subspace. Also u = (1, 4) is 

in A, the scalar multiple 2 u = (2, 8) is not in A. 

Example 5: Show that if V is a subspace of R n, then V must contain the zero vector.  

Solution: 

            First, choose any vector v in V. Since V is a subspace, it must be closed under scalar multiplication. 

By selecting 0 as the scalar, the vector 0 v, which equals 0, must be in V. [Another method proceeds like 

this: If v is in V, then the scalar multiple (−1) v = − v must also be in V. But then the sum of these two 

vectors, v + (− v) = 0, must be in V, since V is closed under addition.]  

Example 6: Does the plane P given by the equation 2 x + y − 3 z = 0 form a subspace of R 3?  

One way to characterize P is to solve the given equation for y,  

y = 3z – 2x  and write 

 

If  p 1 = ( x 1, 3 z 1 − 2 x 1, z 1)  and  p 2 =  ( x 2, 3 z 2 − 2 x 2, z 2) are points in P, then their sum, 

    

is also in P, so P is closed under addition.  

Furthermore, if  p = ( x, 3 z − 2 x, z) is a point in P, then any scalar multiple,    

is also in P, so P is also closed under scalar multiplication.  

Therefore, P does indeed form a subspace of  R 3. Note that P contains the origin.  

Note: 

By contrast, the plane 2 x + y − 3 z = 1, although parallel to P, is not a subspace of R 3 because it does not 

contain (0, 0, 0 ). In fact, a plane in R 3 is a subspace of R 3 if and only if  it contains the origin. 

Example 7: 

Let H be the set of points inside and on the unit circle in the xy-plane . That is, let               
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2 2
x

H : x y 1 .
y

  
    

  

Find a specific example- two vectors and a scalar- to show that H is not a 

subspace of R2 . 

Proof: 

Let 2 2
x

H : x y 1 .
y

  
    

  

 

2 2

2 2

1 1 1 1
L e t u , & v ,

2 2 4 4

1 1 2 1
1 a n d

2 2 4 2

1 1 2 1
1, w e h a v e

4 4 1 6 8

u , v H

   
    
   

   
      

   

   
      

   



 

2 2

1 1 1 1 3 3
N o w u v , , ,

2 2 4 4 4 4

3 3 1 8
1

4 4 1 6

H e n c e u v H

     
        

     

   
     

   

 

 

2 2

1 1
L e t c 4 b e a n y sc a la r a n d u , H

2 2

1 1
N o w c u 4 , ( 2 , 2 )

2 2

S in c e 2 2 8 1

c u H .

 
   

 

 
  

 

  

 

 

Theorem 3:  

Given v1 and v2 in a vector space V and let H = span{v1, v2).  Then H is a subspace of  V. 

Proof: 

   The zero vector is in H, since 0 = 0v1 + 0v2. To show that H is closed under vector addition, take two 

arbitrary vectors in H, say, u = s1v1 + s2v2  and w = t1v1 + t2v2 

 For the vector space V, 

        u + w = (s1v1 + s2v2) + (t1v1 + t2v2) 

                   =(s1 + t1)v1 + (s2 + t2)v2 

So u + w is in H. Furthermore, if c is any scalar,   cu = c(s1v1 + s2v2) = (cs1)v1 + (cs2)v2 

which shows that cu is in H and H is closed under scalar multiplication.  

Thus H is a subspace of V. 

Theorem 4: 

Any intersection of subspaces of a vector space V is a subspace of V. 
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Proof: 

Let C be a collection of subspaces of V, and let W denote the intersection of the subspaces in C. 

Since every subspace contains the zero vector, 0 ∈ W.  

Let a ∈ F and x, y ∈ W. Then x and y are contained in each subspace in C. Because each subspace in C is 

closed under addition and scalar multiplication, it follows that x + y and ax are contained in each subspace 

in C.  

Hence x + y and a x are also contained in W, so that W is a subspace of V.  ( Because, if V is a vector 

space and W is a subset of V, then W is a subspace of V if and only if the following conditions hold for 

the operations defined in V. (a) 0 ∈ W. (b) x + y ∈ W whenever x ∈ W and y ∈ W. (c) cx ∈ W whenever c 

∈ F and x ∈ W.) 

Theorem 5: 

Let 
1

W and 
2

W  be subspaces of a vector space V. Prove that 
21

WW   is a subspace of V  if and only if 

21
WW   or 

12
WW   

Proof:  

      Assume that 
21

WW  is a subspace of V . To prove that 
21

WW  or 
12

WW  . 

Assume the contrary that   
1

W 
2

W and 
2

W 
1

W . Then there exists elements  
1

x W   but 
2

x W  and 

2
y W but 

1
y W . Therefore,  x and 

1 2
y W W  .  

Since 
21

WW  is a subspace of V then 
21

WWyx  . 

Case 1:  Take
1

Wyx  .  

Now  
1

Wyx   and 
1

x W  then 
1

Wyxx  
1

Wy  . This is a contradiction. 

Case 2:  Take
2

Wyx  .  

Now  
2

Wyx   and 
2

y W  then 
2

)( Wyyx  
1

Wx . This is a contradiction. 

Therefore,  
21

WW   or 
12

WW   

Conversely, assume that 
21

WW  or 
12

WW  . To prove that 
21

WW   is a subspace of V . 

Let 
21

WW  . Then 
221

WWW   , a subspace of V . 

Let 
12

WW  . Then 
121

WWW   , a subspace of V . 

Define sum of V: 

Let 
1

W and 
2

W  be subspaces of a vector space V. The sum of 
1

W and 
2

W  is defined as  

 1 2 1 2
/ an d .W W x y x W y W    

 
Direct sum of two subspaces: 
A vector space V is called the direct sum of   W1 and W2 , if W1 and W2   are subspaces of V such that  (i)  

W1 + W2 =V  and  (ii) W1 W2 = . 

Theorem 6: 

           Let W1 denote the set of all polynomials f ( x ) in P (F ) such that in the representation 



 

10 

 

n n 1

n n 1 1 0
f ( x ) a x a x a x a ,




     we have 

i
a 0  whenever i is even.  

Likewise let 
2

W  denote the set of all polynomials g(x) in P (F ) such that in the representation 

m m 1

m m 1 1 0
g ( x ) b x b x b x b ,




      we have 

i
b 0  whenever i is odd. Then 

1 2
P (F ) W W . 

 

Proof: 

Clearly,  1 2
W W 0   

 

 

 

3 5 2 n 1

1 3 5 2 n 1 i

2 4 2 n

0 2 4 2 n i

2 3 5 2 n 1 2 n

0 1 2 3 4 2 n 1 2 n i i

1 2

P (F ) a x a x a x a x : a F

b b x b x b x : b F

b a x b x a x b x a x b x : a , b F

W W .









     

     

        

 

 

LINEAR COMBINATIONS AND SYSTEMS OF LINEAR EQUATIONS 

          In mathematics, a linear combination is an expression constructed from a set of terms by 

multiplying each term by a constant and adding the results (e.g. a linear combination of x and y would be 

any expression of the form ax + by, where a and b are constants). 

 Linear combination: 

        Let V be a vector space and S a nonempty subset of V. A vector v V  is called a linear combination 

of vectors of S if there exist a finite number of vectors u1, u2, … ,un in S and scalars a1, a2 ,..., an  in F such 

that v = a1 u1 + a2 u2 + … + an un .  

In this case  we also say that v is a linear combination of  u1 , u2 , … ,un  and call a1, a2 ,..., an  the co-

efficients of the linear combination. 

In any vector space V, 0v = 0 for each v in V. Thus the zero vector is a linear combination of any 

nonempty subset of V. 

Span of S: Let V be a vector space over a field F and S  V.The span of  S, denoted span (S), is the set 

consisting of all linear combinations of the vector in S. In particular span ()={0}. 

Example 8:     

 Show that 
3 2

3 - 2 7 8x x x   can be expressed as a linear combinations of 
3 2

- 2 5 3x x x  and   
3 2

3 - 5 4 9x x x   

Proof:  

Let 
3 2

1
- 2 5 3u x x x   ;  

3 2

2
3 - 5 4 9u x x x    

determine the scalars 
1 2
,a a such that  

3 2

1 1 2 2

3 2 3 2

1 2

3 2

1 2 1 2 1 2 1 2

3 - 2 7 8

( - 2 5 3 ) (3 - 5 4 9 )

( 3 ) ( 2 5 ) ( 5 4 ) ( 3 9 )

x x x a u a u

a x x x a x x x

a a x a a x a a x a a
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Therefore, 

1 2

1 2

1 2

1 2

3 3

2 5 2

5 4 7

3 9 8

a a

a a

a a

a a

 

   

  

  

 

Solving the above system by elimination method 

1 3 3

2 5 2

5 4 7

3 9 8

 

 
  

 

  
 
   

~
2 2 1

3 3 1

4 4 1

1 3 3
2

0 1 4
5

0 1 1 2 2
3

0 0 1 7

R R R

R R R

R R R

 
  

 
 

 

  
 
 

 

The reduced equations are 

1 2

2

2

3 3

4

1 1 2 2

0 1 7

a a

a

a

 






 

The last equation is impossible. 

Hence, 3 2
3 - 2 7 8x x x  cannot be expressed as a linear combinations of 

3 2
- 2 5 3x x x  and

3 2
3 - 5 4 9x x x  . 

Example 9: 

Show that the matrices
1 0 0 1 0 0 0 0

, , ,
0 0 0 0 1 0 0 1

       

       
       

generate M2×2(F). 

Proof: 

Let 
1 1 1 2

2 1 2 2

a a

a a

 

 
 

 be any arbitrary matrix in M2×2(F). Let a, b, c and d by any scalarsso that 

1 1 1 2

2 1 2 2

1 1 1 2 2 1 2 2

a a 1 0 0 1 0 0 0 0
a b c d

a a 0 0 0 0 1 0 0 1

a 0 0 b 0 0 0 0

0 0 0 0 c 0 0 d

a b

c d

a a , b a , c a , a n d d a

         
            

        

       
          
       

 
  
 

    

 
∴the given matrices generate M2×2(F). 

Example 10: 

Prove that the vector )8,6,2( can be expressed as a linear combinations of  

)1,2,1( , )2,4,2(  , )3,2,0( , )3,0,2(  , )16,8,3(  

Proof: 
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Let )1,2,1(
1
u ;  )2,4,2(

2
u ;  )3,2,0(

3
u ; )3,0,2(

4
u ; )16,8,3(

5
u . 

determine the scalars 
54321

,,,, aaaaa such that  

1 1 2 2 3 3 4 4 5 5

1 2 3 4 5

1 2 4 5 1 2 3 5 1 2 3 4 5

( 2 , 6 , 8 )

(1, 2 ,1) ( 2 , 4 , 2 ) (0 , 2 , 3 ) ( 2 , 0 , 3 ) ( 3, 8 ,1 6 )

( 2 2 3 , 2 4 2 8 , 2 3 3 1 6 )

a u a u a u a u a u

a a a a a

a a a a a a a a a a a a a

    

         

          

 

Therefore, 

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

2 0 2 3 2

2 4 2 0 8 6

2 3 3 1 6 8

a a a a a

a a a a a

a a a a a

    

    

    

 

Solving the above system by elimination method 

1 2 0 2 3 2

2 4 2 0 8 6

1 2 3 3 1 6 8

   

 


 
  
 

~ 2 2 1

3 3 1

1 2 0 2 3 2
2

0 0 2 4 1 4 2

0 0 3 5 1 9 6

R R R

R R R

   
  


 

 
 
 

 

~ 
3 3 2

1 2 0 2 3 2

0 0 1 2 7 1 2 3

0 0 0 2 4 6

R R R

   

 
  

 
 
 

 

~  1 1 3

2 2 3

1 2 0 2 3 2

0 0 1 2 7 1

0 0 0 2 4 6

R R R

R R R

   
  


 

 
 
 

 

 ~  1 1 3

2 2 3

1 2 0 0 1 4

0 0 1 0 3 7

0 0 0 2 4 6

R R R

R R R

   
  

 
 

 
 

 

The reduced equations are 

1 2 5

3 5

4 5

2 4

3 7

2 4 6

a a a

a a

a a

   

 

 

 

Take   
2

0a  and  
5

0a  we get, 
1

4a   ,  
3

7a  , 
4

3 .a   

 (2 , 6 , 8 ) 4 (1, 2 ,1) 7 (0 , 2 , 3) 3(2 , 0 , 3)      

T hus, (2 , 6 , 8) can be expressed as a linear combinations of )1,2,1( , )2,4,2(  , )3,2,0( , )3,0,2(  , )16,8,3(  

Generator Set: 

A subset S of a vector space V generates (or spans) V if  span(s) = V. Here S is called generator set of V. 

Example 11: 

     Prove that the vectors (1, 1, 0), (1, 0, 1) and (0, 1, 1) generate R3. 

Proof: 

The vectors (1, 1, 0), (1, 0, 1) and (0, 1, 1) generate R3 since any arbitrary vector  (a1, a2, a3) in R3 is a 

linear combination of the three given vectors; in fact,for the scalars r, s, and t  

We have,  r(1, 1, 0) + s(1, 0, 1) + t(0, 1, 1) = (a1, a2, a3)   
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Equating we get, 

1

2

3

r s a (1)

r t a ( 2 )

s t a (3 )

    

    

    
 

1 2 3
A d d in g a b o v e , 2 ( r s t ) a a a    

 

1 2 3
a a a

r s t
2

 
  

 

1 2 3

3

a a a
r a b y (3)

2

 
 

 

1 2 3

1
r (a a a )

2
     

Similarly,
1 2 3 1 2 3

1 1
s (a a a ), an d t ( a a a ).

2 2
      

 

1 2 3 1 2 3 1 2 3

1 2 3

(a a a ) (a a a ) ( a a a )
T h u s , (a , a , a ) (1,1, 0 ) (1, 0 ,1) (0 ,1,1)

2 2 2

      
  

 

(1, 1, 0), (1, 0, 1) and (0, 1, 1) generate R3. 

Example 12: 

Show that W is in the subspace of R4 spanned by v1, v2, v3, where 

1 2 3

9 8 4 7

4 4 3 6
w , v , v , v

4 3 2 5

7 9 8 1 8

        

       
 

          
          

       
          

Proof: 

To prove w ∈ span{v1, v2, v3}, we must find some scalars a, b, and c (not all zero) in R  

such that w = av1 + bv2 + cv3 

9 8 4 7

4 4 3 6
a b c

4 3 2 5

7 9 8 1 8

8 a 4 b 7 c 9 (1)

4 a 3 b 6 c 4 ( 2 )

3a 2 b 5c 4 ( 3)

9 a 8 b 1 8 c 7 ( 4 )

        

       
 

         
          

       
        

    

     

     

   

 

(1) 8 a 4 b 7 c 9

( 2 ) 2 8 a 6 b 1 2 c 8

A d d in g , w e g e t 2 b 5c 1 (5 )

( 4 ) 9 a 8 b 1 8 c 7

( 3) 3 9 a 6 b 1 5c 1 2
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A d d in g , w e g e t 1 4 b 3 3c 5

1 4 b 3 3c 5

(5 ) 7 1 4 b 3 5c 7

su b tra c tin g , w e g e t 2 c 2

c 1

   

  

   

  

 

 

s u b s ti tu tin g c 1 in (1) & ( 2 ) , w e h a v e

8 a 4 b 1 6 ( 6 )

4 a 3 b 1 0 ( 7 )

( 6 ) 8 a 4 b 1 6

( 7 ) 2 8 a 6 b 2 0



  

    

  

     

 

1 2 3

A d d in g ,

2 b 4

b 2

S u b s titu tin g c 1 a n d b 2 in (1) , w e g e t a 1 .

a 1, b 2 , c 1

w v 2 v v

 

  

   

    

  

 

Hence ,W is in the subspace of R4 spanned by v1, v2, v3 

 

Theorem 7:  

       The span of any subset S of a vector space V is a subspace of V. Moreover, any subspace of  V 

that contains S must also contain the span of S 

Proof: 

Case (i): If S = ∅, then span(∅) =  0 , which is a subspace that is contained in any subspace of  V. 

Case(ii): If S ≠ ∅, then S contains a vector z, so 0 z = 0 is in span (S). 

Let x, y ∈ span (S). Then there exist vectors 

1 2 m 1 2 n 1 2 m 1 2 n

1 1 2 2 m m

1 1 2 2 n n

1 1 2 2 m m 1 1 2 2 n n

1 1 2 2 m m

u , u , u , v , v , v in S a n d s c a la r s a , a , a , b , b , b s u c h t h a t

x a u a u a u a n d

y b v b v b v .

T h e n x y a u a u a u b v b v b v

a n d fo r a n y s c a la r c ,

c x ( c a ) u ( c a ) u ( c a ) u a re c le a r ly lin e a

   

   

        

   
i

r c o m b in a tio n s o f v e c to r s in S

s o x y s p a n (S ) a n d c x s p a n (S ) .  

 

Thus span(S) is a subspace of V. 

Now let W denote any subspace of V that contains S. Now to prove span(S)⊆ W. 

Let W ∈ span(S), then W is of the form 



 

15 

 

1 1 2 2 k k 1 2 k

1 2 k 1 2 k

1 1 2 2 k k

w c w c w c w fo r so m e v e c to rs w , w w in S a n d so m e sc a la r s

c , c c . s in c e S W , w e h a v e w , w w W .

W c w c w c w W

S in c e W is a n a rb itra ry v e c to r in sp a n (S ) , b e lo n g to W , it fo llo w s th a t sp a n (S ) W .

   

 

     



 

LINEAR DEPENDENCE AND LINEAR INDEPENDENCE 

Linear dependence set:A subset S of a vector space V is called linearly dependent set if there exist a 

finite number of distinct vectors u1, u2, ……, un in S and scalars a1, a2, …..,an, not all zero, such that  

a1u1 + a2u2 +…….+ anun = 0. 

Linear independence set: A subset S of a vector space that is not linearly dependent then it is called 

linearly independent 

Example 13:  

       Show that the vectors   u =(1, 1, 0), v =(1, 3, 2), w =(4, 9, 5) are linearly dependent 

Proof: 

    Let u = (1, 1, 0), v = (1, 3, 2), w = (4, 9, 5). Then u, v, w are linearly dependent, because  

3u + 5v – 2w = 3(1, 1, 0) + 5(1, 3, 2) – 2(4, 9, 5) = (0, 0, 0) = 0.   

Example 14: 

    Show that the vectors u =(1, 2, 3), v =(2, 5, 7), w =(1, 3, 5) are linearly independent 

Proof: 

  To show that the vectors u = (1, 2, 3), v = (2, 5, 7), w = (1, 3, 5) are linearly independent, we form the 

vector equation au + bv + cw = 0, where a, b, c are unknown scalars. This yields 























































































0

0

0

5

3

1

7

5

2

3

2

1

zyx  

or      a + 2b + c = 0       --- (1) 

          2a + 5b + 3c = 0    --- (2) 

          3a + 7b + 5c = 0 ---(3) 

(2) - (1)x2 =>b + c = 0 ---(4) 

(3) - (1)x3 =>b – 2c = 0 ---(5) 

(4) – (5) => 3c = 0---(6) 

Back – substitution yields a = 0, b = 0, c = 0. We have shown that au + bv +cw = 0  implies  

a = 0, b = 0, c = 0.  Therefore, u, v, w are linearly independent. 

Example 15:   

In M2×3(R), show that the set
1 3 2 3 7 4 2 3 1 1

, ,
4 0 5 6 2 7 1 3 2

        
      

          

is linearly dependent 

Proof: 
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1 3 2 3 7 4 2 3 1 1 0 0 0
L e t

4 0 5 6 2 7 1 3 2 0 0 0

3 2 0 ; 3 7 3 0 ; 2 4 1 1 0 ; 4 6 0 ;

0 . 2 3 0 ; 5 7 2 0

U s e G a u s s E lim in a tio n M e th o d

W rite th e a u g m e n te d m a tr ix fo r th e f irs t th re e e q u

a b c

a b c a b c a b c a b c

a b c a b c

         
         

           

             

     

2 2 1 3 3 1

3 3 2

a tio n s

1 3 2 0

3 7 3 0

2 4 1 1 0

1 3 2 0

~ 0 2 3 0 3 , 2

0 1 0 1 5 0

1 3 2 0

~ 0 2 3 0 5

0 0 0 0

B y b a c k s u b s ti tu t io n

3 2 0 (1)

2 3 0 ( 2 )

2
( 2 ) 2 3

3

L e t u s ta k e b = 3

th e n c = -2 , a = 5

R R R R R R

R R R

a b c

b c

b
b c c

  

 


 

  

  

 
     

 

  

  

 
   

 

  

   

   


    

 

Hence the given set is linearly dependent because 

1 3 2 3 7 4 2 3 1 1 0 0 0
5 3 2

4 0 5 6 2 7 1 3 2 0 0 0

         
         

           

 

Example 16:  

Determine whether  
3 2 2 3 2

2 , 3 1, 2 1x x x x x x x        in  3
P R  is linearly dependent or not. 

Solution: 

Let 12,13,2
23223

 xxxwxxvxxu  

Consider au + bv + cw = 0 

     
3 2 2 3 2

2 3 1 2 1 0a x x b x x c x x x           
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3 2

2 3 2 0

0 (1)

2 0 ( 2 )

3 2 0 (3 )

0 ( 4 )

( 4 )

S u b in (3 ) 0

0

0

a c x a b c x b c x b c

a c

a b c

b

b c

b c

b c b

a

a b c

        

  

   

  

  

 

  

 

   

 

Hence u, v, w are linearly independent. 

Theorem 8:  

        Let S be a linearly independent subset of a vector space V and let v  V such that v  S. 

Then S  {v} is linearly dependent if and only if v  span(S). 

Proof: 

    If v  span(S), then v is a linear combination of vectors from S. 

i.e.there exists u1, …, un S and a1, …, an F such that v = a1u1 + … + anun. 

a1u1 + … + anun + (-1)v = 0. 

Set an+1 = -1 and un+1 = v. 

i=1
n+1 aiui = 0, where not all ai = 0 because an+1 0. 

S  {v} is linearly dependent. 

Converse part, If S  {v} is linearly dependent, then u1, …, un S and a1, …, an, an+1 F such that 

a1u1 + … + anun + an+1v = 0, where not all ai = 0. 

a1u1 + … + anun = (-1)an+1v 

v = (–a1/an+1)u1 + … + (–an/an+1)un, where (–ai/an+1)  F i. 

v is a linear combination of vectors u1, …, un from S. 

 v  span(S)

 
BASES AND DIMENSION 

Basis:  A basis β for a vector space V is a linearly independent subset of V that generates V. If β is a basis 

for V, we also say that the vectors of β form a basis for V. 

Example:  

            1) For the vector space Fn, {e1, e2,…, en} is a basis. 

                   Where e1 = (1, 0, 0, …, 0), e2 = (0, 1, 0,...,0),…, en = (0, 0,..., 0, 1). 

            2)For the vector space vector space of all polynomials of degree ≤ n, Pn(F), {1,x,x2,...,xn} is a basis. 

           3) For the vector space of all polynomials of any degreeP(F), {1, x, x2, x3, …} is a basis. 

Example 17: 

Prove that the vectors u1=(2,-3,1), u2=(1,4,-2), u3=(-8,12,-4), u4=(1,37,-17)and u5=(-3,-5,8) generate R3. 

Find a subset of the set  1 2 3 4 5
, , , ,u u u u u  that is a basis for R3. 
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Proof: 

Let us select any non-zero vector from the set 

 S u , u , u , u , u , say (2 , 3,1) to be a vec tor in the bas is.2 31 54
   

 Since ( 8,12, 4 ) 4 (2 , 3,1), the se t (2 , 3,1), ( 8,1 2, 4 ) is linearly dependen t.       
 

Hence we do not include (−8, 12, −4), in our basis. Whereas (1, 4, −2) is not a multiple of (2,−3, 1) and 

viceversa, so the set {(2,−3,1), (1,4, −2)} is linearly independent. So we include (1,4,−2) in our basis.  

Now consider the set {(2,−3,1), (1,4, −2), (1,37,−17)} by adjoining (1,37,−17). 

We include (1,37,−17) in our basis or exclude it from the basis according to whether the set is linearly 

independent or dependent. Since u4 = −3u1 + 7u2, the set {u1, u2,u4} is linearly dependent,so we exclude u4 

from our basis. Next let us include u5 = (−3, −5, 8) to the set {(2,−3,1), (1,4, −2). Now consider the set {u1, 

u2,u5}. 

To check {u1, u2,u5} is linearly independent or not. 

C o n s id e r a ( 2 , 3,1) b (1, 4 , 2 ) c ( 3, 5, 8 ) ( 0 , 0 , 0 )

2 a b 3 c 0 (1)

3 a 4 b 5 c 0 ( 2 )

a 2 b 8 c 0 ( 3)

      

   

    

     

2 2 1 3 3 1

3 3 1

C o n s id e r th e a u g m e n te d m a tr ix

2 1 3 0

3 4 5 0

1 2 8 0

2 1 3 0

0 1 1 1 9 0 R 2 R 3 R & R 2 R R

0 5 1 3 0

2 1 3 0

0 1 1 1 9 0 R 1 1 R R

0 0 4 8 0

2 a b 3c 0

1b 1 9 c 0

4 8 c 0

B a c k s u b s ti tu tio n y ie ld s a b c 0

th e s e t u
1

 

 
 

 
 

 

 

 
    

 
 

 

 

 
  

 
 
 

   

 



  

  

3

, u , u is l in e a r ly in d e p e n d e n t.2 5

H e n c e it fo rm s a b a s is fo r R .

 

Theorem 9:  

Let V be a vector space and  = {u1, …, un} be a subset of V.Then  is a basis for V if and only if  

each vV can be uniquely expressed as a linear combination of vectors in . 

Proof: 
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Assume that is a basis for V then  is a linearly independent set and span() = V 

Let v  V then v span(). Therefore v can be expressed as a linear combinations of vectors in .  

i.e. there exists scalars a1, …, an F such that 
1

 
n

i i

i

v a u  

To prove uniqueness, suppose there exists scalars b1, …, bn F such that 
1

 
n

i i

i

v b u . 

Now, v – v = 
1

( )




n

i i i

i

a b u . Since  is a linearly independent then ai – bi = 0  ai = bi.  

each vV is uniquely expressed as a linear combination of vectors in . 

Converse part: Assume that each v  V can be uniquely expressed as a linear combination of vectors in , 

then there exists scalars a1, …, an F such that 
1

 
n

i i

i

v a u . 

Therefore, 0  V. Has only trivial representation given by
1

0



 
n

i i

i

c u . 

Hence is linearly independent. 

Further, each v  V can be uniquely expressed as a linear combination of vectors in . Vspan(). 

Also, Span() V. 

     Span() = V. 

Hence  is a basis for V. 

Theorem 10: 

Let H and K be subspaces of a vector space V. Then dim(H ∩ K) ≤ dim H 

Proof: 

Let {v1,….,vp} be a basis for H ∩ K. Since {v1,….,vp} is a linearly independent subset of H, hence 

{v1,….vp} can be expanded , if necessary, to a basis for H. Since the dimension of a subspace is just a 

number of vectors in a basis, it follows that dim(H ∩ K) = p ≤ dim H. 

Finite dimensional vector space: 

A vector space is called finite dimensional if it has a basis consisting of finite number of vectors. The 

unique number of vectors in each basis for V is called the dimension of V and is denoted by dim(V).  

A vector space that is not finite dimensional is called infinite dimensional. 

NOTE: 

 Vector space  0 has dimension zero. 

  Vector space Pn(F) has dimension n+1. 

 Vector space Mmxn(F) has dimension mn 

 Over the field of complex numbers, the vector space of complex numbers has dimension 1. ( A 

basis is  1 ). 

 Over the field of real numbers, the vector space of complex numbers has dimension 2. ( A basis is 

 1, i ). 

 Every vector space has a basis.  
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 The dimension of the coordinate space Fn is n 

 The dimension of the polynomial ring F[x] is countably infinite, a basis is given by 1, x, x2, ... 

 The dimension of more general function spaces, such as the space of functions on some (bounded 

or unbounded) interval, is infinite. 

 The dimension of the solution space of a homogeneous ordinary differential equation equals the 

degree of the equation. 

 Expressed in terms of elements, the span is the subspace consisting of all the linear combinations 

of elements of S. 

 In a vector space of finite dimension n, a vector hyperplane is  a subspace of dimension n – 1. 

Example 18: 

Find the dimensions of the subspace 

a 3 b 6 c

5a 4 d
H

b 2 c d

5d

  

 


 
  

 
 

  : a, b, c, d in R 

Solution: 

Clearly H is the set of all linear combinations of the vectors 

1 2 3 4

1 3 6 0

5 0 0 4
v , v , v , v

0 1 2 1

0 0 0 5

       

       

          
        

       
       

 

v1 ≠ 0, v2 is not a multiple of v1, but v3 is a multiple of v2. By the spanning Set theorem, we may discard v3 

and still have a set that spans H. Finally, v4 is not a linear combination of v1 and v2. So {v1, v2, v4} is 

linearly independent and hence is a basis for H. Thus dim H = 3. 

Example 19: 

Let V be a space of 2×2 matrices over R and let the sub-space generated by 

1 5 1 1 2 4 1 7
, , an d

4 2 1 5 5 7 5 1

         

       
          

 
1 5 0 2

S h o w th a t (i ) , fo rm s a b as is se t (ii ) d im ( W ) 2 .
4 2 1 1

    
    

    

 

Solution: 

1

T h e b a s is s e t o f V ( R ) is

1 0 0 1 0 0 0 0
S , , ,

0 0 0 0 1 0 0 1

        
         

        

 

The co-ordinate of vectors x1, x2, x3, x4 relatived to the basis S1 are (1, -5, -4, 2), (1, 1, -1, 5), (2, -4, -5, 7), 

(1, -7, -5, 1) reapecively. 
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Thus form the matrix whose rows are given vectors 

2 1

3 1

4 1

3 2

4 2

C o n s id e r th e a u g m e n te d m a tr ix

1 5 4 2

1 1 1 5
A

2 4 5 7

1 7 5 1

1 5 4 2
O p e ra t in g R ( 1)

0 6 3 3
R ( 2 )

0 6 3 3
R ( 1)

0 2 1 1

1 5 4 2

O p e ra t in g R ( 1)
0 6 3 3

1
0 0 0 0 R ( )

3
0 0 0 0

  

 


 
  

  
  

  
  

   
  
     

   

  
 

 

 

  
 

1 5 4 2

0 2 1 1

0 0 0 0

0 0 0 0





 
 

  

 

 

 

  
 

 

1

T h e n o n z e ro ro w s (1, 5 , 4 , 2 ) a n d (0 , 6 , 3, 3 ) o f th e a b o v e e c h e lo n m a tr ix fo rm a b a s is.

H e n c e th e s e t o f c o rre s p o n d in g m a tr ic e s is

1 5 0 2
S , ,

4 2 1 1

w h ic h fo rm s a b a s is s e t W .

H e n c e d im ( W ) 2 .

  

    
     

    



 

Theorem 11: 

Replacement Theorem:  

Let V be a vector space that is spanned by a set G containing n vectors. Let L ⊆ V be a linearly 

independent subset containing m vectors. Then  m ≤ n and there exists a subset H of G containing exactly 

n − m vectors such that  L∪H generates V 

Proof: 

The proof is by mathematical induction on m. 

Start  with m = 0. In that case L = ∅, the empty set, and so taking H = G gives the desired result. 

Let's assume this theorem is true for some integer m ≥ 0. We prove that the theorem is true for m + 1. 

Let  L =  
1

1

m

i j
v




 and define it as a linearly independent subset of V consisting of m + 1 vectors. 

Since any subset of a linearly independent set is linearly independent as well (S1⊆ S2 ⊆V), then  
1

1

m

i j
v




is 

linearly independent also.  

It then says to use the induction hypothesis to say that m ≥ n 

The next step is to say that there is therefore another subset,  
1

n m

k k
u




 of G such that  

1

n m

k k
u




spans V. That 

being the case there are scalars  
1

1

m

j
j

a



 and  

1

n m

k k
b




  which we can multiply by the vectors vj and uk.  
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Then add the two sets of vectors, yielding  
1

1

m

j j

j

a v





 +
1

1

m

k k

j

b u





 = vm+1  . . . (*) 

Note that n − m > 0 -- otherwise vm+1 is linearly dependent (contradiction ). But then  it says not only is   

n > m but  n > m+1. 

Moreover, some bi, say b1 is nonzero, for otherwise we obtain the same contradiction. Solving (*) for u1  

gives 

u1 = (− 1

1
b

 a1)v1+⋯+(− 1

1
b

 am)vm+( 1

1
b

 )vm+1+(− 1

1
b

  b2)u2 + ⋯ +(− 1

1
b

 bn−m)un−m 

Let H = {u2,…,un−m}. Then u1 ∈ span(L∪H) and because v1,…,vm,u2,…,un−m are clearly in span(L∪H), it 

follows that L′∪H′ = {v1,…,vm,u1,…,un−m} ⊆ span(L∪H). 

Because L′∪H′ generates V,  span(L∪H) generates  V.  

Since H is a subset of G which contains (n − m) − 1 = n − (m+1) vectors the theorem is true for m + 1.       

This completes the induction. 

The Lagrange Interpolation Formula: 

0 1

0 1

0 1 1

00 1 1

, , , in f .

( ) , ( ) , , ( )

( ) ( )( ) ( )
( )

( ) ( )( ) ( )

n

n

n

i i n k

i

ki i i i i i n i k

k i

L e t a a a b e d is t in c t s c a la r s in a n in ite f ie ld F T h e p o ly n o m ia ls

f x f x f x d e fin e d b y

x c x c x c x c x c
f x

c c c c c c c c c c

a re c a lle d th e L a g ra n g e p

 

 



    
 

    


0 1
( , , ) .

n
o ly n o m ia ls a s so c ia te d w ith c c c

 

Example 20: 

Find an approximate polynomial for f(x) using Lagrange’s interpolation for the following data 

x 0 1 2 5 

f(x) 2 3 12 147 

Solution: 

The Lagrange’s interpolation formula 

1 2 3 0 2 3

0

0 1 0 2 0 3 1 0 1 1 2 1 3

0 1 3 0 1 2

2 3

2 0 2 1 2 3 3 0 3 1 3 2

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( 1)( 2 )( 5 )

(0 1)(0 2 )

x x x x x x x x x x x x
y f x y y

x x x x x x x x x x x x

x x x x x x x x x x x x
y y

x x x x x x x x x x x x

x x x

     
  

     

     
 

     

  


 

3 2

( 0 )( 2 )( 5 ) ( 0 )( 1)( 5 ) ( 0 )( 1)( 2 )
( 2 ) (3 ) (1 2 ) (1 4 7 )

(0 5 ) (1 0 )(1 2 )(1 5 ) ( 2 0 )( 2 1)( 2 5 ) (5 0 )(5 1)(5 2 )

1
[ 1 6 6 1 8 4 4 0 ]

2 0

x x x x x x x x x

x x x

        
  

         

    

 

Example 21: 

Using Lagrange’s formula find the polynomial  for the following data   

x 0 1 2 4 

f(x) 2 3 12 147 
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Solution: 

1 2 3 0 2 3

0 1

0 1 0 2 0 3 1 0 1 2 1 3

0 1 3 0 1 2

2 3

2 0 2 1 2 3 3 0 3 1 3 2

( )( )( ) ( )( )( )
( ) ( )

( )( )( ) ( )( )( )

( )( )( ) ( )( )( )

( )( )( ) ( )( )( )

x x x x x x x x x x x x
y x f x y y

x x x x x x x x x x x x

x x x x x x x x x x x x
y y

x x x x x x x x x x x x

     
   

     

     


     

 

( 1)( 2 )( 4 ) ( 0 )( 2 )( 4 )
( ) ( ) ( 2 ) (3)

(0 1)(0 2 )(0 4 ) (1 0 )(1 2 )(1 4 )

( 0 )( 1)( 4 ) ( 0 )( 1)( 2 )
(1 2 ) (1 4 7 )

( 2 0 )( 2 1)( 2 4 ) ( 4 0 )( 4 1)( 4 2 )

x x x x x x
y x f x

x x x x x x

     
  

     

     
 

     

 

2 2

2 2

3 23 2

3 2 3 2

3 2

( 1)( 6 8 ) ( ) ( 6 8 )
( ) ( 2 ) (3 )

( 8 ) (3 )

( ) ( 5 4 ) ( ) ( 3 2 )
(1 2 ) (1 4 7 )

( 4 ) ( 2 4 )

4 9 1 4 7 9 87 1 4 8
( 6 8 ) ( 3 1 5 1 2 )

4 8

1 4 9 7 1 4 7 1 4
1 3 6 1 5 8 1 2

4 8 4 8 4

x x x x x x
f x

x x x x x x

x x xx x x
x x x x x x

x x x

    
 



   
 



   
        



   
             

   
   

3 2

9 8 8

8 4

3 1 6 1 3 8
2

8 8 8
x x x

   


   
   

   

 

s im p lify in g fu rth er w e g et  

3 21
( ) 3 1 6 1 3 8 1 6

8
f x x x x    

    

Example 22: 

Using Lagrange’s interpolation formula, find y(10) given that  y(5)=12,y(6)=13,y(9)=14 and 

y(11)=16. 

Solution: 

1 2 3 0 2 3
0

0 1 0 2 0 3 1 0 1 1 2 1 3

0 1 3 0 1 2
2 3

2 0 2 1 2 3 3 0 3 1 3 2

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( 6 )( 9 )( 1 1)
( )

(5

x x x x x x x x x x x x
y f x y y

x x x x x x x x x x x x

x x x x x x x x x x x x
y y

x x x x x x x x x x x x

x x x
y f x

     
   

     

     


     

  
 



( 5 )( 9 )( 1 1)
(1 2 ) (1 3 )

6 )(5 9 )(5 1 1) (6 5 )(6 9 )(6 1 1)

( 5 )( 6 )( 1 1) ( 5 )( 6 )( 9 )
(1 4 ) (1 6 )

(9 5 )(9 6 )(9 1 1) (1 1 5 )(1 1 6 )(1 1 9 )

1 0

(1 0 ) 1 4 .6 6 6 6

x x x

x x x x x x

p u t x

y

  


    

     
 

     





 

 



Questions opt1 opt2 opt3 opt4 opt5 opt6 Answer

The set of all linear combinations of finite sets of elements
of S is called the ___ of S.

linear
dependen
t

spanning
set

linear
span

linear 
combinati
on

linear
span

The vector space {0} then the dimension is ___. 0 1 2 3 0

The ____ of two subspaces of a vector space is a subspace. union
intersecti
on

complem
ent rank

intersecti
on

The intersection of any number of subspaces of a vectors
space V is a __ of V. subspace basis

dimensio
n rank subspace

Row equivalence matrices have the same ___ space. column null row kernel row

The nonzero rows of a matrix in echelon form are ____.

linearly
dependen
t

linearly
independ
ent 

linearly
span

linearly 
combinati
on

linearly
independ
ent 

Any subset of a linearly independent set is ___. 

linearly
dependen
t

linearly
independ
ent 

linearly
span

linearly 
combinati
on

linearly
independ
ent 

A set S of vectors is a ___ of V if it satisfies span and
linearly independent. subspace basis

dimensio
n rank basis

  ___ denotes the column space of A Ker A Im A dim A Rank A Im A

Let V be a vector space then any n+1 or more vectors in V
are___. 

linearly
dependen
t

linearly
independ
ent 

linearly
span

linearly 
combinati
on

linearly
dependen
t

The ___ of T is defined to be the dimension of images. rank kernel basis
linear
map rank

Let V be a vector space of finite dimenstion n. Then any
n+1 or more vectors in V are___

linearly
dependen
t

linearly
independ
ent 

linearly
span

linearly 
combinati
on

linearly
dependen
t

Let V be a vector space of finite dimenstion n. Then any
___ or more vectors in V are linearly dependent. n+1 n n-1 n+2 n+1

Let V be a vector space of finite dimenstion n. Then any
___ set S with n elements is a basis of V.

linearly
dependen
t

linearly
independ
ent 

linearly
span

linearly 
combinati
on

linearly
independ
ent 

Let V be a vector space of finite dimenstion n. Then any
linearly independent set S with n elements is a ____ of V.

linearly
dependen
t basis

linearly
span

linearly 
combinati
on basis

Let V be a vector space of finite dimenstion n. Then any
spanning set T of V with n elements is a ____ of V.

linearly
dependen
t basis

linearly
span

linearly 
combinati
on basis

Let V be a vector space of finite dimenstion n. Then any
____T of V with n elements is a basis of V.

linearly
dependen
t

spanning
set

linearly
span

linearly 
combinati
on

spanning
set

The sum of two vectors is a ___ scalar vector unit
inner 
product vector

The product of a scalar and a vector is a ___ scalar vector unit
inner 
product vector

{0} and V are subspaces of any vector space V. They are
called the ___ subspaces of V scalar vector unit trivial trivial
Let V be a vector space and A and B are subspaces of V
then __ is a subspace of V A+B A-B A*B A/B A+B
Let V be a vector space and A and B are subspaces of V
then A is a subspace of ___ A+B A-B A*B A/B A+B
Let V be a vector space and A and B are subspaces of V
then B is a subspace of ___ A+B A-B A*B A/B A+B
Let S be a non-empty subset of a vector space V. Then the
set of all ___ of finite sets of elements of S is called the
linear span of S.

linearly
dependen
t

linearly
independ
ent 

linear
span

linear 
combinati
ons

linear 
combinati
ons



The Linear span is denoted by___ dim V dim S L(S) S L(S)

Let V be a vector space over a field F and S be a non-empty
subset of V. Then L(S) is a ___ of V.

linear
span

linear
independ
ent

linear
dependen
t subspace subspace

L[L(S)] = __ dim V dim S L(S) S L(S)
Any vector space is an abelian group with respect to
vector___ addition

subtractio
n

multiplica
tion division addition

In R, let S = {1}. Then L(S) = S C R Q R
In C, let S = {1, i}. Then L(S) = S C R {a+bi} C
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MA8352- LINEAR ALGEBRA AND PARTIAL DIFFERENTIAL EQUATIONS 

 II year ECE- III Semester 

Important Problems 

UNIT II  LINEAR TRANSFORMATION AND DIAGONALIZATION 

Linear transformation on a vector space: 

Let V and W be vector spaces over F. We call a function T : V   → W  a linear transformation from V to W 

if for all x,y  є  V and c є F, we have 

a) T(x+y) = T(x) + T(y) and 

b) T(cx) = cT(x). 

Properties of a function T: 

Let  T : V   → W  be a linear transformation from V to W.  If for all x,y  є  V and c є F, we have 

1. If T is linear, then T(0) = 0. 

2. T is linear if and only if T(cx + y) = cT(x) + T(y) 

3. If T is linear, then T(x – y) = T(x) – T(y) 

4. T is linear if and only if, for x1, x2, ... ,xn є V and a1, a2, ..., an є F, we have 

             
1 1

( ) .

n n

i i i i

i i

T a x a T x

 

 
 

 
   

Example 1: 

Show that T: R2→ R2defined by T(a1,a2) = (2a1 + a2, a1)  is linear. 

Proof: 

Let x, y є R2  and c є R, where  X = (b1, b2), y = (d1, d2) 

Since we know that T is linear if and only if  T(x + y) = cT (x) + T(y) 

Now (x + y) = (cb1 + d1 , cb2 + b2) 

T(cx + y) = (2(cb1 + d1) + cb2 + d2 , cb1 + d1) 

Also  cT(x) + T(y) = c(2b1 +b2 , b1) + (2d1 + d2 , d1) 

                = (2cb1 + cb2 + 2d1 + d2 , cb1 + d1) 

                = (2(cb1 + d1) + cb2 + d2 , cb1 + d1) 

T(cx + y) = cT(x) + T(y) 

Example 2: 

For any angle ,  define T 
2 2

:T R R


  by the rule: 
1 2

( , )T a a


 is the vector obtained by rotating (a1, a2) 

counterclockwise by   if (a1, a2) ≠ (0, 0), and (0 , 0 ) (0 , 0 ) .T


  Then 
2 2

:T R R



 
is a linear 

transformation that is called the rotation by  .  

Example 3: 

Define 
2 2

:T R R
 
by T(a1, a2) = (a1, –a2). T is called the reflection about the x-axis. 

Example 4: 

Define 
2 2

:T R R
 
by T(a1, a2) = (a1, 0). T is called the projection on the x-axis. 

Null space of T: 

                  Let V and W be vector spaces and let T : V→W  be linear. The null space or kernel,  N(T) is the 

set of all vectors x in V such that T(x) = 0. i.e,  N(T) = {x є V : T(x) = 0}. 

Range of T: 
                           The Range or image R(T) is the subset of W consisting of all images under T of vectors in 

V.    i.e , R(T) = {T(x) : x є V}. 
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Example 4: Let  
3 2

:T R R  be the linear transformation defined by 
1 2 3 1 2 3

( , , ) ( , 2 )T a a a a a a   ,  

Find N(T) and R( T) . 

Solution : 

Let V and W be vector spaces and let T : V→W  be linear.  

The null space or kernel,  N(T) is the set of all vectors x in V such that T(x) = 0  

i.e,  N(T) = {x є V : T(x) = 0}. 

The Range or image R(T) is the subset of W consisting of all images under T of vectors in V 

i.e , R(T) = {T(x) : x є V}. 

Given :
1 2 3 1 2 3

( , , ) ( , 2 )T a a a a a a   

N(T) = {x є V : T(x) = 0}. 

1 2 3 1 2 3
( , , ) ( , 2 )T a a a a a a  =  (0,0) 

 a1=a2  and  a3 =0 

  1 1
( ) , , 0 :N T a a a R    

 

  1 2 3 1 2 3

2

( ) ( ) :

, 2 : , ,

R T T x x V

a a a a a a R

R

  

  



 

 

Example 5: 

For the following linear operator T on a vector space V and ordered basis β compute [T]β                           

V = R2, T
a

b

 

 
 

=
1 0 a 6 b

1 7 a 1 0 b

 

 
 

and β=
1 2

,
2 3

    
    
      

Solution: 

T
a

b

 

 
 

=
1 0 a 6 b

1 7 a 1 0 b

 

 
 

 

 T
1 1 0 1 2 2

2 1 7 2 0 3

      
      

      

 

 T
2 2 0 1 8 2

3 3 4 3 0 4

     
      

     

 

 [T]β=
2 2

3 4

 

 
   

Example 6: 
T(1) = 0, Zero Polynomial 

                  T(t) = 1, Constant Polynomial 

                 T(t2) = 2t 

2

0 1 0

[T (1) ] 0 , [T ( t) ] 0 , [T ( t ) ] 2

0 0 0

0 1 0

[T ] 0 0 2

0 0 0
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Theorem 1 (Dimension Theorem):  

                    Let V and W be vector spaces,and let :T V W be linear. If V is finite-dimensional, then                        

                                      nullity(T) + rank(T) = dim(V). 

Proof: Suppose that dim(V) = n, dim(N(T)) = k, and  1 2 k
v , v v  is a basis for N(T).  

We know that if W is a subspace of a finite-dimensional vector space V, then any basis for W can be 

extended to a basis for V. So we may extend  1 2 k
v , v v  to a basis  1 2 n

v , v v  for V.  

We claim that  k 1 k 2 n
S T ( v ), T ( v ), T ( v )

 
  is a basis for R(T). 

First we prove that S generates R(T). Since T(Vi) = 0 for 1 ≤ i ≤ k, we have 

 

 

1 2 n

k 1 k 2 n

R ( T ) sp a n ( T ( v ) , T ( v ) , T ( v ) )

sp a n ( T ( v ) , T ( v ) , T ( v ) ) sp a n (S ) .
 



 
 

Now we prove that S is linearly independent.  

Suppose that 
n

i i k 1 k 2 n

i k 1

b T ( v ) 0 fo r b , b , b F .
 

 

 
 

Since T is linear, we have  

n

i i

i k 1

n

i i

i k 1

T b v 0 .

S o b v N (T ).

 

 

 
 

 






 

1 2 k

n k k n

i i i i i i i i

i k 1 i 1 i 1 i k 1

H en ce th e re ex is t c , c , c F su ch th a t

b v c v o r ( c )v b v 0 .

     



        

Since β is a basis for V, we have bi = 0 for all i.  Hence S is linearly independent. This shows that  

k 1 k 2 n
T ( v ) , T ( v ) , T ( v )

 
 are distinct; ∴ rank(T) = n – k.  

Hence the proof. 

Note: 

The rank-nullity theorem states that the rank and the nullity (the dimension of the kernel) sum to the 

number of columns in a given matrix. If there is a matrix with rows and columns over a field, then This 

can be generalized further to linear maps: if is a linear map, then  

The rank-nullity theorem is further generalized by consideration of the fundamental subspaces and the 

fundamental theorem of linear algebra. 

The rank-nullity theorem is useful in calculating either one by calculating the other instead, which is 

useful as it is often much easier to find the rank than the nullity (or vice versa).  

Example 7:  

Prove that the transformation    2 3 2 2
:T M F M F

 
  defined by   

1 1 1 2 1 3 1 1 1 2 1 3 1 2

2 1 2 2 2 3

2 2

0 0

a a a a a a a
T

a a a
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(i) T is linear   

(ii) Find bases for N(T) and R(T) 

 (iii) compute the nullity and rank (T) and verify the dimension theorem  

 (iv) use appropriate theorems to determine whether T is one to one or on to . 

Solution : 

Given :
1 1 1 2 1 3 1 1 1 2 1 3 1 2

2 1 2 2 2 3

2 2

0 0

a a a a a a a
T

a a a

    
   
  

 

Let ,
1 1 1 2 1 3 1 1 1 2 1 3

2 3

2 1 2 2 2 3 2 1 2 2 2 3

( )
a a a b b b

x a n d y M F a n d c F
a a a b b b



   
      
   

 

1 1 1 1 1 2 1 2 1 3 1 3

2 1 2 1 2 2 2 2 2 3 2 3

c a b c a b c a b
c x y

c a b c a b c a b

   
   

   

 

 
   1 1 1 1 1 2 1 2 1 3 1 3 1 2 1 2

2 ( ) 2 ( )

0 0

ca b ca b ca b ca b
T cx y

      
    

 

 

Also ,    
1 1 1 2 1 3 1 2 1 1 1 2 1 3 1 2

2 2 2 2

0 0 0 0

a a a a b b b b
cT x T y c

      
     

   

 

1 1 1 1 1 2 1 2 1 3 1 3 1 2 1 2
2 ( ) ( ) ( ) 2 ( )

0 0

a c b ca b ca b ca b       
  
 

 

   ( )T cx y c T x T y     

 Hence T  is linear .    

(ii)   2 3
( ) ( ); ( ) 0N T x M F T x


    

given
1 1 1 2 1 3 1 1 1 2 1 3 1 2

2 1 2 2 2 3

2 2 0 0

0 0 0 0

a a a a a a a
T

a a a

      
      
      

 2a11 – a12 = 0----------(1) 

a13  + 2a12   = o --------(2) 

 2a11 = a12 

a13 = -2 a12 = -4a11 



1 1 1 1 1 1

2 1 2 2 2 3

2 4
( )

a a a
N T

a a a

   
    

    

1 1 1 1 1 1

1 1 2 1 2 2 2 3

2 1 2 2 2 3

2 4 1 2 4 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1

a a a
a a a a

a a a

          
            

          

1 2 4 0 0 0 0 0 0 0 0 0
 B as is  fo r N (T ) =  , , ,

0 0 0 1 0 0 0 1 0 0 0 1

        
        
         . 

 2 3
( ) ( ); ( )R T T x x M F
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1 1 1 2 1 3 1 1 1 2 1 3 1 2

2 1 2 2 2 3

2 2

0 0

a a a a a a a
T

a a a

    
   
    

Let 2a11-a12 = s and a13 + 2a12 = t 

T h en ( )
0 0

  
   

  

s t
R T

 

1 0 0 1

0 0 0 0 0 0

s t
s t

     
      

       

1 0 0 1
B a s is  fo r  ( ) , .

0 0 0 0

    
      

    

R T

 

(iii) Nullity of T = dim (N(T)) = 4 

           Rank (T) = dim(R(T))  = 2 

Dim (M2x3(F)) = 6 

Nullity + Rank (T)  = dim (M2x3(F)) 

Dimension theorem is verified. 

(iv) Since N(T) {0} ,by theorem  

Let V and W be vector spaces and let :T V W  be linear. Then T  is one to one if and only if 

   0N T   

T is not one – one not onto. 

Example 8: 

For the following transformation 
2 3

:T R R  defined by    1 2 1 2 1 2
, , 0 , 2T a a a a a a    show that 

(i) T is a linear transformation 

(ii) Find basis for both N(T) and R(T) 

(iii) Compute the nullity and rank(T) and verify the dimension theorem 

(iv) Finally use the appropriate theorems to determine whether T is one to one or on to. 

Solution: 

Consider the transformation 
2 3

:T R R  defined by    1 2 1 2 1 2
, , 0 , 2T a a a a a a  

 

Let x = (a1, a2) & y = (b1, b2) ∈ R2 and c ∈ R. 
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1 1 2 2

1 1 2 2

1 1 2 2 1 1 2 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 1 2 2 1 1 2 2

( , )

( ) ( , )

( , 0 , 2 ( ) ( ) )

A ls o

( ) ( ) ( , 0 , 2 ) (b , 0 , 2 )

( b , 0 , 2 2 )

( b , 0 , 2 ( ) (

   

   

      

      

      

       

c x y c a b c a b

T c x y T c a b c a b

c a b c a b c a b c a b

c T x T y c a a a a b b b

c a c a b c a c a b b

c a c a b c a b c a b )

( ) ( ) ( )

H e n c e T is lin e a r .

   T c x y c T x T y

 
 

 

2

1 2 1 2 1 2

1 2 1 2

2 1 2 1

1 2

( ) : ( ) 0

( , ) ( , 0 , 2 ) (0 , 0 , 0 )

0 & 2 0

& 2

T h is is p o s s ib le o n ly w h e n 0 .

(T ) 0

H e n c e th e b a s is fo r ( )

  

   

    

   

 

 



N T x R T x

T a a a a a a

a a a a

a a a a

a a

N

N T 

 
 

 

 

 

2

1 2 1 2 1 2

1 2 1 2 1 2

2

( ) ( ) :

( , 0 , 2 ) : ,

( , 0 , 2 ) (1, 0 , 2 ) (1, 0 , 1)

B a s is fo r ( ) (1, 0 , 2 ) , (1, 0 , 1)

n u lli ty d im ( ( )) 0 .

R a n k ( ) d im ( ( )) 2

d im ( ) d im ( ) 2

n u lli ty ( ) ra n k (T ) d im (V ).

N (T ) 0 if a n d o n l

 

   

    

 

 

 

 

 



R T T x x R

a a a a a a R

a a a a a a

R T

N T

T R T

V R

T

3

y if T is o n e to o n e .

( ) R

it is n o t o n to .





R T

 

Theorem 2: 

Let V and W be vector spaces and let :T V W  be linear. Then T  is one to one if and only if 

   0N T 
 

Proof: 

     Suppose that T is one-to-one and x ∈N(T). Then T(x) = 0 = T(0). Since T is one-to-one, we have x = 

0. Hence N(T) = {0}.Now assume that N(T) = {0}, and suppose that T(x) = T(y). Then 0 = T(x) – T(y) = 

T(x – y) 

∴ x – y ∈N(T) = {0}. So x – y = 0, or x = y.  This means that T is one-to-one. 

Theorem 3: 

Let V and W be vector spaces of equal (finite) dimension and let :T V W  be linear. Then the following 

are equivalent. 
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      (i) T is one to one 

     (ii) T is onto 

                      (iii) rank(T) = dim(V). 

Proof: 

         From the dimension theorem, we have nullity(T) + rank(T) = dim(V). 

Now by the above theorem,  we have that T is one-to-one if and only if N(T) = {0}, if and only if 

nullity(T) = 0, if and only if  rank(T) = dim(V), if and only if rank(T) = dim(W), and if and only if 

dim(R(T)) = dim(W). This equality is equivalent to R(T) = W, the definition of T being onto. 

Example 9: 

     Let   
2 3

: ( ) ( )T P R P R  be the linear transformation defined by 
0

( ( )) 2 '( ) 3 ( ) .

x

T f x f x f t d t    

Now R(T) = span ({T(1), T(x), T(x2)}) = span({3x, 2 + (3/2)x2, 4x + x3}). 

Since ({3x, 2 + (3/2)x2, 4x + x3} is linearly independent, rank(T) = 3. Since dim(P3(R)) = 4, T is not onto. 

From the dimension theorem, nullity (T) + 3 = 3. So nullity(T) = 0, and therefore N(T) = {0}.  

We know that if  V and W are vector spaces and :T V W  is linear, Then T  is one to one if and only if  

   0N T  .  Hence T is one-to-one.
  

Example 10: 

For the following transformation 
2 3

:T R R  defined by    1 2 1 2 1 2
, , 0 , 2T a a a a a a    show that 

(v) T is a linear transformation 

(vi) Find basis for both N(T) and R(T) 

(vii) Compute the nullity and rank(T) and verify the dimension theorem 

Finally use the appropriate theorems to determine whether T is one to one or on to. 

Solution: 

Consider the transformation 2 3
:T R R  defined by    1 2 1 2 1 2

, , 0 , 2T a a a a a a  
 

Let x = (a1, a2) & y = (b1, b2) ∈ R2 and c ∈ R. 

1 1 2 2

1 1 2 2

1 1 2 2 1 1 2 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 1 2 2 1 1 2 2

( , )

( ) ( , )

( , 0 , 2 ( ) ( ) )

( ) ( ) ( , 0 , 2 ) (b , 0 , 2 )

( b , 0 , 2 2 )

( b , 0 , 2 ( ) (

c x y c a b c a b

T c x y T c a b c a b

c a b c a b c a b c a b

A ls o

c T x T y c a a a a b b b

c a c a b c a c a b b

c a c a b c a b c a b

   

   

      

      

      

        )

( ) ( ) ( )

H e n c e T is lin e a r .

T c x y c T x T y   
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2

1 2 1 2 1 2

1 2 1 2

2 1 2 1

1 2

( ) : ( ) 0

( , ) ( , 0 , 2 ) ( 0 , 0 , 0 )

0 & 2 0

& 2

0 .

(T ) 0

( )

N T x R T x

T a a a a a a

a a a a

a a a a

T h is is p o s s ib le o n ly w h e n a a

N

H e n c e th e b a s is fo r N T 

  

   

    

   

 

 



  

 

 

 

2

1 2 1 2 1 2

1 2 1 2 1 2

2

( ) ( ) :

( , 0 , 2 ) : ,

( , 0 , 2 ) (1, 0 , 2 ) (1, 0 , 1)

( ) (1, 0 , 2 ) , (1, 0 , 1)

d im ( ( ) ) 0 .

( ) d im ( ( ) ) 2

d im ( ) d im ( ) 2

( ) ra n k (T ) d im (V ) .

N (T ) 0

R T T x x R

a a a a a a R

a a a a a a

B a s is fo r R T

n u lli ty N T

R a n k T R T

V R

n u lli ty T

if a n d o n l

 

   

    

 

 

 

 

 



3

.

( ) R

.

y if T is o n e to o n e

R T

it is n o t o n to





 

Matrix representation of a linear transformation 

In linear algebra, linear transformations can be represented by matrices. If T is a linear transformation 

mapping 
n

R to 
m

R  and x is a column vector with n entries, then  

                                         ( )T x A x   

 for some m × n matrix A, called the transformation matrix of T.  

DIAGONALIZATION 

Characteristic Polynomial: 

Let A є Mn×n (F). The polynomial F (t))= det (A – t In) is  called the characteristic polynomial of A. 

Characteristic Equation:  Let A є Mn×n (F). The equation 
n

d e t(A tI ) 0  is called the Characteristic 

equation of A. 

Eigen Value and Eigen Vector: 

Let T be a linear operator in a vector space V. A non zero vector v є V is called an eigen vector of T if 

there exists a scalar   such that T (v) =  v. The scalar   is called the eigen value corresponding to the 

eigen vector  v. 

Example 11: 

Find the characteristic equation and the eigen values of 
1 4

4 2
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Solution: 

  The characteristic polynomial is 
2

d e t(A tI ) 0 
 

2

2

1 t 4
d e t(A tI ) 0

4 2 t

(1 t ) ( 2 t ) 1 6 0

t 3 t 1 8 0

3 9 7 2 3 6 3
t

2 2

 
  



    

  

   
 

 

Since t is complex, A has no real eigen values. 

 The matrix A is acting on a real vector space R2 and there is no non-zero vector X in R2 such 

Ath a t x x   

EXAMPLE 12: 

Find the characteristic equation of 

5 2 6 1

0 3 8 0

0 0 5 4

0 0 0 1

  

 


 

 

 
   

Solution: 

The characteristic equation is 
4

d e t(A tI ) 0 
 

4

4 3 2

5 t 2 6 1

0 3 t 8 0
d e t(A tI ) 0

0 0 5 t 4

0 0 0 1 t

(5 t) ( 3 t) (5 t) (1 t) 0

t 1 4 t 6 8 t 1 3 0 t 7 5 0

   

 
 

   
 

 
 

    

    

 

EXAMPLE 13: 

For the following linear operator T on a vector space V and ordered basis  , compute  T


 and 

determine whether    is a basis consisting of eigen vector of T. 

3

3 2 2

, 4 3 2

a a b c

V R T b a b c

c c

    

   
    

   
   

   

and

0 1 1

1 , 1 , 0

1 0 2



      
      

       
      
        

Solution: 
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3 2 2 0 1 1

4 3 2 & 1 , 1 , 0

1 0 2

0 3( 0 ) 2 (1) 2 (1) 0 0 1

1 4 ( 0 ) 3(1) 2 (1) 1 1 1 0 1

1 1 1 1 0

a a b c

T b a b c

c c

T



            
          

               
          

          

          

        
         

        
        

          

1

0 0

2

,

1 1 0 1 1

1 1 0 1 1 1 0 0

0 0 1 0 2

1 1 0 1 1

0 0 0 1 0 1 1 0

2 2 1 0 2

S im ila r ly

T

T

 

  


  
  

 

         

         
      

         
         
         

         

         
    

         
         

         

 

 

1 0 0

0 1 0

0 0 1

T


 

 
 

 
 

   

0 0 0 1 1 1 1 1 1

S in c e 1 1 1 1 , 1 1 1 1 0 0 1 0

1 1 1 0 0 0 2 2 2

0

T h e e ig e n v a lu e s a re -1 , 1 , -1 a n d e ig e n v e c to rs a re 1

1

                 

                 
           

                 
                 

                  

 

 



 

T T a n d T

1 1

, 1 0 .

0 2

is a b a s is c o n s is t in g o f e ig e n v e c to rs o f .

   

   


    
    

   



a n d

T

 

EXAMPLE 14: 

Let T be the linear operator on  2
P R  defined by         1 'T f x f x x f x   . Let   be the 

standard ordered basis for  2
P R  and let  A T


 . Find the eigen values and eigen vector of A. 

Solution:  

Let T be the linear operator on  2
P R  defined by         1 'T f x f x x f x   . Let  

2
1, ,x x     be 

the standard ordered basis for  2
P R  

T(1) = 1.1 + 0.x + 0.x2 

T(x) = x + ( x + 1) =1 + 2 x = 1.1 + 2.x + 0.x2 

T(x2) = x2 + ( x + 1) 2 x = 2 x + 3 x2 = 0.1 + 2.x + 3.x2 

 

Let  A T


 . Then 

1 1 0

0 2 2

0 0 3

A

 

 

 
 
 

 

The characteristic polynomial of T is 
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3

1 1 0

d e t( ) d e t 0 2 2

0 0 3

(1 ) ( 2 ) ( 3 )

( 1) ( 2 ) ( 3)

t

A tI t

t

t t t

t t t

 

 
  

 
 

 

   

    
 

Hence λ is an eigenvalue of T (or A) if and only if λ = 1, 2, or 3. 

Eigenvalue for λ1 = 1: 

1

1

2

3

2

2 3

3

3 2

1

( I ) X 0

0 1 0 0

0 1 2 0

0 0 2 0

0

2 0

2 0

0 , 0

1

0

0

A

x

x

x

x

x x

x

x x

X

 

     

     


     
     
     



 



 

 

 

 
 
 

 

Eigenvalue for λ2 = 2: 

2

1

2

3

1 2 2 1

3 3

3 1 2

2

( I) X 0

1 1 0 0

0 0 2 0

0 0 1 0

0

2 0 0

0 , 1

1

1

0

A

x

x

x

x x x x

x x

x ta k e x x

X

 

     

     


     
     
     

    

  

  

 

 

 
 
 

 

Eigenvalue for λ3 = 3: 

3

1

2

3

( I) X 0

2 1 0 0

0 1 2 0

0 0 0 0

A

x

x

x
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1 2 2 1

2 3 2 3

1 2 3

3

2 0 2

2 0 2

1, 2 , 1

1

2

1

x x x x

x x x x

x x x

X

    

    

  

 

 
 

 
 
   

EXAMPLE 15: 

Find the eigen values and eigen vectors of 
1 1

4 1
A

 
  
 

 

Solution: 

To find the eigen values: 

1 1

4 1
A

 
  
   

We compute the characteristic polynomial: 

2

2

2

1 1
d e t( ) d e t

4 1

2 3 (t 3 )( t 1) .

t is a n e ig e n v a lu e o f A if a n d o n ly if d e t( ) 0 , d e t( ) 0

3, 1

 
   

 

     

   

  

n

t
A tI

t

t t

A tI A tI

t

 

Hence the only eigen values of A are 3 and −1. 

To find the eigen vectors: 

Let λ1 = 3 and λ2 = −1.

 

We begin by finding all the eigenvectors corresponding to λ1 = 3. 

1 1

1 2

2

1 1 3 0 2 1
B .

4 1 0 3 4 2

T h e n x

A I

x
R

x


     

         
     

 
  
   

1
1

is a n e ig e n v e c to r c o rre s p o n d in g to 3 if a n d o n ly if 0 a n d ( ) ;  
B

x x N L

 
1 1 2

2 1 2

22 1 0
th a t is , 0 a n d .

4 24 2 0

        
        

      

x x x
x

x x x

 

Clearly the set of all solutions to this equation is  

1
: .

2
t t R

  
  

    

Hence x is an eigen vector corresponding to λ1 = 3  if and only if  

1
fo r so m e 0 .

2

 
  

 

x t t

 

Now suppose that x is an eigen vector of A corresponding to λ2 = −1. Let      
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2

2 2

1

2

1 1 1 0 2 1
B .

4 1 0 1 4 2

T h e n x ( )
B

A I

x
N L

x


     

         
     

 
  
   

if and only if x is a solution to the system 2x1 + x2 = 0; 4x1 + 2x2 = 0.

 

2

1
( ) : .

2
B

N L t t R
  

   
  

 Thus x is an eigen vector of A corresponding to λ2 = −1 if and only if   

1
fo r so m e 0 .

2

 
  

 

x t t

 

We observe that   

1 1
,

2 2

    
    

      

is a basis for R2 consisting of eigenvectors of A. Thus LA, and hence A, is diagonalizable. 

Eigen Space of T: 

Let T be a linear operator on a vector space V and let   be an eigen value of  T. Define 

 E x v : T ( x ) x N (T Iv ).

        The set  E


is called eigen space of T corresponding to the eigen 

value .

 Diagonalizablity of a linear operaot T: 

                A linear operator T on a finite dimensional vector space V is called diagonalizable if there is an 

ordered  basis β for V such that [T]β  is a diagonal matrix. A square matrix A is called diagonalizable if LA 

is diagonalizable

 EXAMPLE 16: 

Check whether the matrix 
2 2

1 1

1 1
A M



 
  
 

is diagonalizable or not . 

Solution : 

                   The characteristic polynomial of A ( and hence of 
A

L ) is  det  2
0A tI   

 
2

2

1 1
1 1 0

1 1

t
A t I t

t


     


 

 

2
2 0

2 0

t t

t t

  

  
 

The eigen values of 
A

L  are 0 and 2 . 

Since ,
A

L  is a linear operator on  2
R  , by the corollary which states “ Let T  be a linear operator on an  n – 

dimensional vector spaces V . If T has n distinct eigenvalues , then T is diagonizable ,” 

 We conclude  that
A

L  ( and hence A )  is diagonizable . 

EXAMPLE 17: 

Let T be a linear operator on  2
P R defined by  T(f(x)) =   .f x Determine whether T is diagonizable 

or not . 

Proof : 
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T(f(x)) =   .f x  Consider a standard ordered basis for  2
P R . 

i.e;  
2

1 , ,x x   

            T (1) = 0 = 
2

0 .1 0 . 0 .x x   

             T ( x ) = 1 = 
2

1 .1 0 . 0 .x x   

            T (
2

x ) = 2 x  = 
2

0 .1 2 . 0 .x x   

The matrix of linear transformation is A  

0 1 0

0 0 2

0 0 0

T


 

 

 
 
 

 

 The characteristic polynomial of T is  

Det  
3

3

1 0

d e t 0 2

0 0

t

A t I t t

t

 

 
    

 
 

 

 

Thus T has only one eigenvalue , namely  0  , with multiplicity 3. 

        2
: 0E N T I N T x P R T x


       

      2
. ; : 0i e N T x P R f x    

  E N T

 is the subspace of  2

P R consisting of constant polymonials . so 1  is a basis for ,E


and 

therefore dim ( E


)  = 1. So there is no basis for  2
P R  consisting of eigen vectors of T   and therefore T 

is not diagonalizable. 

EXAMPLE 18: 

Test for diagonalizability of the linear transformation T on  2
P R  defined by

           
2' '' '

1 0 0 0T f x f f x f f x     

Solution: 

Let T be the linear operator on  2
P R  defined by            

2' '' '
1 0 0 0T f x f f x f f x   

 
We write test T for diagonalizability. 

 2 α

2

L e t α d en o te th e s ta n d a rd o rd e red b a s is fo r P (R ) a n d B = T

1 1 1

T h e n B = 0 1 0

0 1 2

T h e c h a ra c te r is t ic p o lyn o m ia l o f B , a n d h e n c e o f T , is -( t-1 ) ( t-2 ) , w h ic h s p li ts .

H e n c e d ia g o n a liz a t io n c o n d it io n (1 ) is s a t is f ie d . A ls o B h a s th e e i

 

 

 
 
 

1

2 2

1

g e n v a lu e s λ = 1 an d

λ = 2 w ith m u lt ip lic i t ie s 2 an d 1 , re sp e c tiv e ly . c o n d it io n (2 ) is s a t is f ie d fo r λ b ecau se

i t h a s m u lt ip lic i ty 1 . S o w e n e e d o n ly to v e r ify c o n d it io n (2 ) fo r λ = 1 .  
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1

1

F o r th is c a se ,

0 1 1

3 -ra n k (B -λ I)= 3 -ran k 0 0 0 = 3 -1 = 2 ,

0 1 1

w h ic h is e q u a l to th e m u ltip lic ity o f λ . T is d iag o n a liz a b le.

 

 

 
 
 



 

We now find an ordered basis γ for R3 of eigenvectors of B. We consider each eigenvalue separately. 

The eigenspace corresponding to λ1 = 1 is 

1

1 1

3

2 2

3 3

2 3

1

0 1 1

: 0 0 0 0 ,

0 1 1

w h ic h is th e s o lu tio n s p a c e fo r th e s ys te m

0 ,

1 0

a n d h a s γ = 0 , -1 a s a b a s is .

0 1

T h e e ig e n s p a c e c o rre s p o n d in g to λ

      
      

        
      
      

 

    
    
    
    
    

x x

E x R x

x x

x x



2

2

1 1

3

2 2

3 3

= 2 is

1 1 1

: 0 1 0 0 ,

0 1 0

       
      

         
      
      

x x

E x R x

x x



 

1 2 3

2

2

w h ic h is th e s o lu tio n s p a c e fo r th e s ys te m

-x + x + x = 0

x = 0 ,

1

a n d h a s γ = 0 a s a b a s is .

1

  
  
  
  
    

1 2

1 0 1

0 , 1 , 0 .

0 1 1

L e t   

      
      

         
      
      

 
 

3

2 2

2

T h e n γ is a n o rd e re d b a s is fo r R co n s is t in g o f e ig e n v e c to rs o f B .

F in a lly , o b s e rv e th a t th e v e c to rs in γ a re th e co o rd in a te v e c to rs re la t iv e to α o f th e v e c to rs

in th e s e t β = 1 , -x + x ,1 + x , w h ich is a n o rd e re d b a s is fo r P (R ) c o n s is t in g

o f e ig e

 
β

n v e c to rs o f T . T h u s

1 0 0

T = 0 1 0 .

0 0 2

 

 

 
 
 

 

EXAMPLE 19: 

Let T be the linear operator on 3
R  defined by 

1 31

2 1 2 3

3 1 3

4

2 3 2

4

a aa

T a a a a

a a a

  

  
  
  

   
   

 Show that T is 

diagonalizable 

Solution: 
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Let T be the linear operator on 3
R  defined by 

1 31

2 1 2 3

3 1 3

4

2 3 2

4

a aa

T a a a a

a a a

  

  
  
  

   
     

We determine the eigenspace of T corresponding to each eigenvalue. Let β be the standard ordered basis 

for R3. Then 
Let T be the linear operator on 

 

  
2

1 2

4 0 1

2 3 2

1 0 4

a n d h e n c e th e p o lyn o m ia l o f T is

4 0 1

d e t d e t 2 3 2 ( 5 )( 3 ) .

1 0 4

S o th e e ig e n v a lu e s o f T a re 5 a n d 3 w ith m u ltip lic i t ie s 1 a n d 2 , re s p e c ti

d e

v e ly .

f in e d  b y

 

 

 
 
 

 

 
      

 
 

 

 

T

t

T tI t t t

t





 

1 31

2 1 2 3

3 1 3

4

2 3 2

4

a aa

T a a a a

a a a

  

  
  
  

   
     

1

1

1 1

3

1 2 2

3 3

1 3

1 2 3

1 3

1 0 1 0

( ) : 2 2 2 0 .

1 0 1 0

is th e s o lu tio n s p a c e o f th e s ys te m o f lin e a r e q u a tio n s

0

2 2 2 0

0 .

1

It is c le a r th a t 2

1

         
        

             
        

        

  

  

 

 

 

 
 
 

x x

E N T I x R x

x x

E

x x

x x x

x x







1 1

is a b a s is fo r . H e n c e d im ( ) 1 .

 

 
 

 
 

E E
 

 

2
2

S im ila r ly , ( ) is th e s o lu t io n s p a c e o f th e s ys te m E N T I


  

1 3

1 3

1 3

0

2 2 0

0 .

x x

x x

x x

 

 

 

 

Since the unknown x2 does not appear in this system, we assign it a parametric value, say  x2 = s, and solve 

the system for x1 and x3, introducing another parameter t. The result is the general solution to the system 
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2 2

1

2

3

0 1

1 0 , , .

0 1

It fo llo w s th a t

0 1

1 , 0

0 1

is a b a s is fo r , d im ( ) 2 .

     

     
  

     
     
     

     
    
    
    
    



x

x s t fo r s t R

x

E a n d E
 

 

In this case, the multiplicity of each eigenvalue λi is equal to the dimension of the corresponding 

eigenspace
i

E


.We observe that the union of the two bases just derived, namely, 

1 0 1

2 , 1 , 0

1 0 1

      
      
      
      
      

 

is linearly independent and hence is a basis for R3 consisting of eigenvectors of T. Consequently, 

 T is diagonalizable. 

 

EXAMPLE 20: 

For  

2 0 1

4 1 4

2 0 1

n n
A M F



 

 
  
 
 

 

 

(i) Determine all the eigen values of A 

(ii) Find the set of eigen vectors corresponding  to   

(iii) If possible find a basis for n
F  consisting of eigen vectors of A 

(iv) If successful in finding such a basis determine an invertible matrix Q and a diagonal 

matrix D such that 
1

Q A Q D


  

 

 

Solution: 

2 0 1

4 1 4

2 0 1

A

 

 
 
 
 

   

We compute the characteristic polynomial: 

 

 

3

2

2 2

2 0 1

d e t( ) d e t 4 1 4

2 0 1

( 2 ) (1 )( 1 ) 1( 2 (1 )

( 2 )( (1 )) 2 (1 )

( 2 )(1 )(1 ) 2 (1 )

(1 ) 2 ( 2 )(1 )

(1 ) 2 ( 2 ) (1 )( ) (1 )( 1) t

t is a n e ig e n v a

t

A tI t

t

t t t t

t t t

t t t t

t t t

t t t t t t t t

    

  
   

  
     

       

     

      

    

           
 


3

lu e o f A if a n d o n ly if d e t( ) 0 , d e t( ) 0

(1 )( 1) t 0

0 ,1,1

n
A tI A tI

t t

t

   

   

 

 

Hence the only eigen values of A are 0 and 1. 
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To find the eigen vectors: 

Let λ1 = 0 and λ2 = 1.

 

We begin by finding all the eigenvectors corresponding to λ1 = 0. 

1 1

2 0 1 1 0 0 2 0 1

B 4 1 4 0 0 1 0 4 1 4

2 0 1 0 0 1 2 0 1

A I

      

     
      

     
     

      

 

1

3

1 2

3

x

X x R

x

 

 
 
 
 
 

  
1

1 1 1
is a n e ig e n v e c to r c o rre s p o n d in g to λ = 0 if a n d o n ly if 0 ( ) ;

B
X a n d X N L 

 

1

1 2

3

2 0 1 0

, 0 4 1 4 0

2 0 1 0

x

th a t is X a n d x

x

     

     
  

     
     

     
 

Clearly the set of all solutions to this equation is  

1 2 3

1 2 3

,

1

4 : 0 1 2 0

2 1 4 4 1

1, 4 , 2

B y c ro s s m u ltip lic a tio n ru le

x x x

t t R

x x x

 

 
  

 
  

    
   

    
    

 

Hence X1 is an eigen vector corresponding to λ1 = 0  if and only if  

1

1

1

4 0 .

2

1

w h e n t 1, 4

2

X t fo r s o m e t

X

 

 
 

 
 
 

 

 
 

 
 
 

 

Next  we find two distinct eigenvectors corresponding to λ2&  λ3 =  1 

2 2

1 1

3

2 2 3 2

3 3

2 0 1 1 0 0 1 0 1

B 4 1 4 1 0 1 0 4 0 4

2 0 1 0 0 1 2 0 2

,

A I

x x

X x X x R

x x



      

     
      

     
     

      

   

   
  
   
   
   

  

2

2 2 3

2 3

is an e ig en v ec to r co rre sp o n d in g to λ = 1 if an d on ly  if 0 , 0

an d , ( );
B

X X

X X N L

 


 

1

2 3 2

3

1 0 1 0

, 0 , 0 4 0 4 0

2 0 2 0

x

th a t is X X a n d x

x

     

     
   

     
     

     
 

Clearly the set of all solutions to this equation is  
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1 3

1 3 2

2

1 3

0

& is a n y a rb itra ry v e c to r .

1

1,

x x

x x x

L e t x

I f x x

 





 

 

2

1

1

1

X

 

 

 
 
 

 

1 3

3

0 ,

0

1

0

I f x x

X

 

 

 

 
 
   

1 1 0

L e t 4 , 1 , 1 .

2 1 0



      
      

       
      
      

 

1

1 1 0

4 1 1

2 1 0

1( 1) 1( 2 ) 1 2 1

1 2 2

1
0 0 1

1 1 3

Q

Q

Q A d j Q
Q



 

 

 
 
 

       

 

 
 

 
 

  

 

1

1

1 0 1

2 0 1

2 1 3

1 0 1 2 0 1 1 1 0 0 0 0

2 0 1 4 1 4 4 1 1 0 1 0

2 1 3 2 0 1 2 1 0 0 0 1





 

 
 
 
 
 

        

       
    

       
       

       

Q

D Q A Q

 

 

 

`` 

 



Questions opt1 opt2 opt3 opt4 opt5 opt6 Answer
The rank nullity theorem is dim V =  ___. rank(T)+

nullity(T)
rank(T)-
nullity(T)

rank(T).n
ullity(T)

basis rank(T)+nullity(T)

The kernel of T is named as_____. dim (Im
T)

dim (ker
T)

dim V linear
transform
ation

  dim (ker T)

___ denotes the null space of A Ker A Rank A Im A dim A Ker A
Let V and W be vector space over a field F, then T from 
V to W defined by T(v)=0 for all v belongs to V is a
___ linear transformation

scalar vector identity reflection trivial

Let V and W be vector space over a field F, then T from 
V to W defined by T(v)=v for all v belongs to V is a
___ linear transformation

scalar vector identity trivial identity

The eigenvectors of a real symmetric are _______. equal unequal real symmetric real 
Diagonalisation of a matrix by orthogonal reduction is true 
only for a ____matrix

diagonal triangular real 
symmetric  

scalar real symmetric  

If the sum of two eigen values of  matrix A are equal to the 
trace of the matrix, then the determinant of A is___________

1 -1 0 2 0

Sum of the principal diagonal elements ________ product 
of eigen 
values

product 
of eigen 
vectors 

sum of 
eigen 
values

product 
of eigen 
values

sum of eigen values

Let V and W be a linear transformation, then dimension of
Null space of T  is -----

Nullity 
(T)            

Rank A  Im A dim A Nullity (T)            

   A square matrix A is --------, if L_ A is diagonalizable. Eigen 
space  

Diagonali
zable  

orthogonal  kernel Diagonalizable  

  ___ denotes the column space of A Ker A Rank A Im A dim A Im A
The ___ of T is defined to be the dimension of images rank kernel basis linear map rank

Let V and W be vector space over a field F, then T from 
V to W defined by T(v)=v for all v belongs to V is a
___ linear transformation

identity vector scalar trivial identity 

Let V and W be vector space over a field F, then T from 
V to W defined by T(v)=v for all v belongs to V .if
Ker(T)=0, then T is  ___

one-one onto not onto one-one 
and onto

one-one

Any ____matrix A can be expressed uniquely as the sum of
a symmetric and a skew-symmetric matrix.

row cloumn zero square square
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MA8352- LINEAR ALGEBRA AND PARTIAL DIFFERENTIAL EQUATIONS 

 II year ECE- III Semester 

UNIT- 3 INNER PRODUCT SPACE 

CLASS NOTES 

Inner Product space: 

       Let V  be a vector space over F . An inner product onV  is a function that assigns, to every 

ordered pair of vectors x  and y in V  then 

i). , , ,x z y x y z y    

ii). , ,cx y c x y  

iii). , ,x y y x  

iv). , 0x x   if 0x   

 

EXAMPLE 1: 

Let   n nV M F  and define for ,A B in V ,  ,A B tr B A  Then this is an inner product 

PROOF: 

For , ,A B C V  and a F  

a).   ,A B C tr C A B    

 tr C A C B    

   tr C A tr C B    

, ,A C B C   

b).    
1

,
n

ii
i

A B tr B A B A 



   

   
1 1

n n

ik ki
i k

B A


 

 
  

 
   

       
1 1 1 1

n n n n

ki ki ki ki
i k i k

B A A B
   

    

     
1 1 1

n n n

kiik ii
i k i

A B A B 

  

    

  ,tr A B B A   

c).    , ,aA B tr B aA atr B A a A B     

d).    
1

,
n

ii
i

A A tr A A A A 



   

   
1 1

n n

kiik
i k

A A

 

 
  

 
 

1 1

n n

ki ki

i k

A A
 

  

2

1 1

n n

ki

i k

A
 

  

If 0A , 0kiA   for some k  and i  

Therfore, 0A then 
2

1 1

, 0
n n

ki

i k

A A A
 

   

Hence .,. is an inner product on V . 

EXAMPLE 2: 

In an Euclidean inner product find cosine of the angle between the vectors  2,3,5u  and 



 

2 

 

 1, 4,3v  
 

Solution: 

,
cos

u v

u v
 

 

, 2 12 15 5u v     , 4 9 25 38, 1 16 9 26u v         

, 5
cos

38 26

u v

u v
  

 

EXAMPLE 3: 

Compute the angle between two vectors  ,x y  and  ,y x  in an Euclidean inner product 

space 2R . 

Solution: 

,
cos

u v

u v
   

, 0u v  , 
2 2 2 2,u x y v x y     

2 2

, 0
cos 0

u v

u v x y
   


 

2


  .

 
 

THEOREM 1: 

Let V be an inner product space. Then for , ,x y z V  and c F  the following statements are 

true 

a). , , ,x y z x y x z    

b). , ,x cy c x y  

c). ,0 0, 0x x   

d). , 0x x   if and only if 0x   

e). , ,x y x z  for all x V , then y z  

Proof: 

a). , ,x y z y z x    

, ,y x z x   

, ,y x z x   

, ,x y x z   

b). , , , ,x cy cy x c y x c x y    

c).  ,0 , , ,x x a a x a x a       

, , 0x a x a    where a V  

Similarly 0, 0x   

d). Assume that , 0x x  ----(1) 

Then 0x  . Otherwise (i.e. if 0x  ), , 0x x   contradicts (1) 

Assume that 0x  . Then by (c) 

, 0,0 0x x    
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e). , ,x y x z . Then , , 0x y x z   

, 0,x y z x V      

Taking , , 0x y z y z y z      

By (d), 0y z y z    . 

EXAMPLE 4: 

Let S  consist of the following vectors in 4R :  1 1,1,0, 1u   ,  2 1,2,1,3u  ,  3 1,1, 9,2u   , 

 4 16, 3,1,3u   . Find the coordinates of any arbitrary vector  , , ,v a b c d  in 4R  relative to 

basis S  

Solution: 

1 2. 1 2 0 3 0u u       

1 2. 1 1 0 2 0u u       

1 4. 16 13 0 3 0u u       

2 3. 1 2 9 6 0u u       

2 4. 16 26 1 9 0u u       

3 4. 16 13 9 6 0u u       

Thus S is orthogonal  and s is linearly independent. Accordingly S is a basis for 4R because any four 

linearly independent vectors form a basis of 4R  

1

1

1 1

,

, 3

v u a b d
k

u u

 
   

2

2

2 2

, 2 3

, 15

v u a b c d
k

u u

  
   

3

3

3 3

, 9 2

, 87

v u a b c d
k

u u

  
   

4

4

4 4

, 16 13 3

, 435

v u a b c d
k

u u

  
   

Norm of a vector in an inner product space: 

        Let V in an inner product space. For x V , we define the norm or length of x by 

,x x x  

EXAMPLE 5: 

Find norm and distance between the vectors   1,0,1u  and  1,1,0v   . 

SOLUTION: 

 
2 2 22 2 2 2 21 0 1 2, 1 1 0 2u v          

The distance between two vectors u and v  is defined by  ,d u v u v   

2
, , , , ,u v u v u v u u u v v u v v         

2
2 1 1 2 6u v       

6u v   
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EXAMPLE 6: 

Consider   3 5f t t   and   2g t t  in the polynomial space ( )P t  with inner product 

   
1

0

,f g f t g t dt   hen find f and g . 

SOLUTION: 

    29 30 25f t f t t t   ,      4g t g t t  

 

 
1

12 2 3 2

0
0

, 9 30 25 3 15 25 13f f f t t dt t t t            

11 5
2 4

0 0

1
,

5 5

t
g g g t dt

 
    

 
  

THEOREM 2: 

Let V  be an inner product space over F . Then for all ,x y V and c F , Then the following 

statements are true  

1. cX c X  

2. 0x  if and only if 0x  . 

3. Cauchy Schwarz Inequality  ,x y x y  

4. Triangle Inequality x y x y    

Solution: 

1.
2 2 2

, ,cx cx cx cc x x c x    

2. 0x 
2

0 , 0 0x x x x       

3. case(i). let 0y  . Then , ,0 0x y x   

and 0 0x y x  .  

Therefore ,x y x y  

Case(ii). Let 0y  . For any c F , we have 

2
0 ,x cy x cy x cy      

, , , ,x x x cy cy x cy cy     

2
, , ,x c x y c x y cc y y     

Take 
2

,x y
c

y
 .  

Then  

2

2 2

2 2 4

,, ,
0 , ,

x yx y x y
x x y x y y

y y y
     

2 2 22 2
0 , , ,x y x y x y x y     

2 2 2
,x y x y   
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,x y x y   

4. we have 
2

,x y x y x y    , , , ,x x x y y x y y     

2 2 2
, ,x y x x y x y y      

2 2 2
2Re ,x y x x y y     

2 2 2
2 ,x y x x y y     

 
22

x y x y    

x y x y    

EXAMPLE 7: 

Using Euclidean inner product on 3R  show that  3,1,0u    and  2, 1,3v    satisfy Cauchy 

Schwartz inequality. 

Solution: 

2
, 9 1 0 10x x x      

10x   

2
, 4 1 9 15y y y      

15y   

10 15 150x y    

, 6 1 7x y       

, 7x y   

,x y x y   

Definition: Orthogonal 

            A vector u V  is said to be orthogonal to v V if , 0u v  . 

Definition: Orthogonal Subspaces 

            Two subspaces &V W  of a vector space are orthogonal if every vector v  in V  is 

perpendicular to every vector w in W .  ie. , 0, ,v w v V w W    . 

Definition: Orthonormal Set 

A subset S  of V is called an orthonormal set if  

i). 1,x x X    

ii). , 0 ,x y x y S    

Definition: Orthonormal Basis 

            A basis of an inner product space that consists of mutually orthogonal unit vectors is called 

an Orthonormal basis. 

EXAMPLE 8: 

Find the value of a  if the vectors  2,a  and  6,4 are orthogonal vectors in 
2R .  

SOLUTION: 
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Let  2,u a  and  6,4v   

Since the vectors are orthogonal , 0u v   

12 4 0

4 12 3

a

a a

 

    
 

EXAMPLE 9: 

Find k  so that  1,2, ,3u k  and  3, ,7, 5v k   in 4R  are orthogonal. 

SOLUTION: 

   , 1,2, ,3 . 3, ,7, 5 3 2 7 15 9 12u v k k k k k         

Then set , 9 12 0u v k    

4

3
k  . 

EXAMPLE 10: 

If  1,2,1v   and  2,1,2u   find proj  ,v u . 

SOLUTION: 

Proj  ,v u
,

,

v u
u

u u
  

Proj  ,v u  
6 4 2 4

2,1,2 , ,
9 3 3 3

 
   

 
 

EXAMPLE 11: 

Prove that in an inner product space V , for any ,u v V , 
2 2 2 2

2 2u v u v u v     . 

SOLUTION: 
2 2

, ,u v u v u v u v u v u v          

, , , , , , , ,u u u v v u v v u u u v v u v v         

2 2 2 2 2 2
2 2u v u v u v       

EXAMPLE 12: 

Suppose ,u v & w  are vectors in an inner product space such that , 2u v  , , 3u w   ,  

, 5v w  , 1u  , 2v  , 7w  . 

 Evaluate(i). ,u v v w 
  
(ii). 2 ,3 2u w u w   

SOLUTION: 

(i). , , , , ,u v v w u v u w v v v w       

2 3 4 5 8      

(ii). 2 ,3 2 6 , 4 , 3 , 2 ,u w u w u u u w w u w w       

   
2 2

6 4 3 3 3 2 6 12 9 2(49) 95u w             

EXAMPLE 13: 

If u and v are orthonormal vectors in an inner product space V then find u v . 

SOLUTION: 
2

, , , , ,u v u v u v u u u v v u v v         
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2 2
2 ,u u v v                 since vectors are orthonormal , 0u v   

2 2
u v   

EXAMPLE 14: 

In Euclidean inner product space 2R  verify , , ,u v w u v u w    for the vectors 

 3, 2u   ,  4,5v   and  1,6w  . 

SOLUTION: 

, , ,u v w u v u w    

, 12 10 2, , 3 12 15u v u w         

, , 2 15 13RHS u v u w       

 3,11v w   

, 9 22 13LHS u v w       

Hence verified 

EXAMPLE 15: 

Find the norm of the vector  1,1, 1u    and  1,1,0v    in 3R  with respect to the inner 

product defined by 1 1 2 2 3 3, 2 3u v u v u v u v    where  1 2 3, ,u u u u  and  1 2 3, ,v v v v  

SOLUTION: 
2 2

1 2 3 6, 1 2 0 3u v         

6, 3u v    

THEOREM 3: 

Let  V  be an inner product space and  1 2 3, , ,... kS v v v v be an orthogonal subset of V

consisting of non-zero vectors. If span( )y s then 
2

1

,k
i

i

i i

y v
y v

v

  

Proof:  

Let span( )y s  and  1 2 3, , ,... kS v v v v  

  there exists scalars 1 2 3, , ,... ka a a a  such that  

1 1 2 2 3 3

1

... (1)
k

k k i i

i

y a v a v a v a v a v


        

For 1 ,j k   

1 1

1

, , , ... , ... ,
k

j i i j j j j j n n j

i

y v a v v a v v a v v a v v


       

2

, i j jy v a v  since S is an orthogonal set 

2

,
(2)

j

j

j

y v
a

v
    

Using (2) in (1)  
2

1

,k
i

i

i i

y v
y v

v

 . 

THEOREM 4: 

(Gram – Schmidt orthogonalization process) 

Let V  be an inner product space and 1 2{ , ,..., }nS w w w be a linearly independent subset of V .  
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Define 
1 2' { , ,..., }nS v v v where 

1 1v w  and 
1

2
1

,
,

|| ||

k
k j

k k j

j j

w v
v w v

v





 
  for 2 k n  .  Then S   is 

an orthogonal set of non-zero vectors such that    span S span S  . 

Proof: 

The proof is by induction on n . 

Let 
1 2{ , ,..., },k kS w w w for 1,2,3,...,k n  

Since 
1{ }w is linearly independent, 

1 1 0v w  . 

Clearly, 
1{ }v  is orthogonal and    1 1span v span w . 

Therefore the theorem is valid for 1n  . 

Assume that the theorem is valid for 1n k  . 

i.e., 
1 2 1{ , ,..., }kv v v 

 is an orthogonal set of non-zero vectors and  

   1 2 1 1 2 1, ,..., , ,...,k kspan v v v span w w w  -----------(1) 

Now, we prove that the theorem is valid for n k . 
1

2
1

,
0 (2)

|| ||

k
k j

k k j k

j j

w v
v w v v

v





 
        

Now for 1m k  , 

1

2
1

,
, ,

k
k j

k m k j m

j
j

w v
v v w v v

v





   

1

2
1

,
, , ,

k
k j

k m k m j m

j
j

w v
v v w v v v

v





    

2

,
, , ,

k m

k m k m m m

m

w v
v v w v v v

v
  since 1 2 1, ,..., kv v v   is orthogonal. 

2

2

,
, , 0

k m

k m k m m

m

w v
v v w v v

v
    

1 2{ , ,..., }kv v v is an orthogonal set of non-zero vectors. 

Further from (1)  

   1 2 1 1 2 1, ,..., , , ,..., ,k k k kspan v v v v span w w w v   

 1 2 1, ,..., ,k kspan w w w w  by (2) 

Therefore the theorem is true for n k . 

Hence by induction the theorem is valid for all 1n  . 

EXAMPLE 16: 

Let
3R  have the Euclidean inner product. Use the Gram-Schmidt process to convert basis 

 1 2 3, ,B u u u  where      1 2 31,0,1 , 1,1,0 , 3,2,0u u u     into an orthogonal basis. 

Solution: 

 1 1 1,0,1v w   

1
2

2 2 2
1

, j

j

j
j

w v
v w v

v

   

2 1

2 12

1

,w v
w v

v
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1

1,1,0 1,0,1
2

  
2

1 1 0 1 2v      

2

1 1
,1,

2 2
v

 
  
 

 
2

3

3 3 2
1

, j

j

j
j

w v
v w v

v

   

      

  3 1 3 2

1 22 2

1 2

, ,
3,2,0

w v w v
v v

v v

  
    

  

2

2

1 1 3
1

4 4 2
v      

      

   
3 7 2 1 1

3,2,0 1,0,1 ,1,
2 2 3 2 2

   
       

   
 

3

1 1 1
, ,

3 3 3
v

  
  
 

. 

Therefore    1 2 3

1 1 1 1 1
, , 1,0,1 , ,1, , , ,

2 2 3 3 3
v v v

     
     

    
 is an orthogonal basis. 

EXAMPLE 17: 

Let V  be the vector space of polynomials  f t  with inner product    
1

1

,f g f t g t dt


  . 

Apply the Gram-schmidt orthogonalization process to  2 31, , ,t t t to find an orthonormal basis 

 0 1 3 4, , ,f f f f  with integer coefficients for  3P t . 

Solution: 

Let 2

1 2 31, ,w w t w t    

1 1 1v w   

2 1

2 2 12

1

,
,

w v
v w v

v
   

11 2

2 1

1 1

, 0
2

t
w v tdt

 

 
   

 
  

1
2

1 1 1

1

, 2v v v dt


    

2 0v t t    

3 1 3 2

3 3 1 22 2

1 2

, ,w v w v
v w v v

v v
    

11 3
2

3 1

1 1

2
,

3 3

t
w v t dt

 

 
   

 
  

11 4
3

3 2

1 1

, 0
4

t
w v t dt
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11 1 3
2 2

2 2 2

1 1 1

1 1 2
, .

3 3 3 3

t
v v v t tdt t dt

  

 
       

 
   

2 2

3

2
13 0

2 3
v t t      

4 1 4 2 4 3

4 4 1 2 32 2 2

1 2 3

, , ,w v w v w v
v w v v v

v v v
     

11 4
3

4 1

1 1

1 1
, 0

4 4 4

t
w v t dt

 

 
     

 
  

11 5
4

4 2

1 1

1 1 2
,

5 5 5 5

t
w v t dt

 

 
     

 
  

1 1 3
3 2 5

4 3

1 1

1
,

3 3

t
w v t t dt t dt

 

  
     

   
   

1
6 4

4 3

1

1 1 1 1
, 0

6 12 6 12 6 12

t t
w v



   
         

  
 

3 3

4

2 3 3

5 2 5
v t t t t      

21
2 2

3 3 3

1

1
,

3
v v v t dt



 
   

 
  

11 2 5 3
4

1 1

1 2 2

9 3 5 9 9

t t t t
t dt

 

   
        

   
  

1 1 2 1 1 2

5 9 9 5 9 9

 
      
 

 

2

3

8

45
v   

21
2 3

4 4 4

1

3
,

5
v v v t t dt



 
   

 
  

21 1
2 3 6 2 4

4

1 1

3 9 6

5 25 5
v t t dt t t t dt

 

   
       

   
   

1
7 3 5

1

9 6 24

7 25 3 5 5 525

t t t



 
    
 

 

Therefore   2 3

1 2 3 4

1 3
, , , 1, , ,

3 5
v v v v t t t t

 
   
 

 is an orthogonal basis. 

Now 31 2 4

1 2 3 4

, , ,
vv v v

v v v v

  
 

  

2 31 3 3 5 1 525 3
, , ,

3 52 2 2 2 24
t t t t

     
     

     
 is an orthonormal basis for 
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 3P R . 

EXAMPLE 19: 

Obtain an orthonormal basis T  with respect to standard inner product for the subspace of 3R  

generated by     1,0,3 , 2,1,1S   such that    L T L S . 

Solution: 

 1 1 1,0,3v w   

1
2

2 2 2
1

, j

j

j
j

w v
v w v

v

   

2 1

2 12

1

,w v
w v

v
   

2 2 2

1 1 0 3 10v      

 
 

 2

2 0 3
2,1,1 1,0,3

10
v

 
   

   
5

2,1,1 1,0,3
10

   

   
1

2,1,1 1,0,3
2

   

2

3 1
,1,

2 2
v

 
  
 

 

2

2

9 1 7
1

4 4 2
v      

Therefore    1 2

3 1
, 1,0,3 , ,1,

2 2
v v

  
   

  
 is an orthogonal basis. 

Now 1 2

1 2

1 3 3 2 2 2
, ,0, , , ,

10 10 2 7 7 2 7

v v

v v

        
        

        

 is an orthonormal basis for 3R . 

 

Define Orthogonal Complement. 

Let S  be a subspace of V (an inner product space). Then the set  : , 0S x V x y y S      is 

called orthogonal Complement of S. 

EXAMPLE 18: 

Let  1,2,3,1w   be a vector in 
4R . Find an orthogonal basis for W


. 

SOLUTION: 

Find a nonzero solution of 2 3 0x y z t    , say  1 0,0,1, 3v    

Now find a nonzero solution of the system 2 3 0x y z t    , 3 0z t   say  2 0, 5,3,1v    

Lastly find a nonzero solution of the system 2 3 0x y z t    , 5 3 0y z t    , 3 0z t   say 

 3 14,2,3,1v   . Thus 1 2 3, ,v v v  form an orthonormal basis of W


. 

THEOREM 5: 

Let V  be an finite dimensional inner product space and let T  be a linear operator on V . 
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Then there exists a unique function :T V V   such that      , , , ,T x y x T y x y V   

Further T   is linear. 

PROOF: 

Let y V . Then define :g V F  by      , ,g x T x y x V  ------(1) 

Claim: g  is linear 

For 1 2,x x V  and c F  

   1 2 1 2 ,g cx x T cx x y    

   1 2, ,c T x y T x y   

   1 2cg x g x   

 g  is linear. 

By known theorem given any linear transformation g , there exists a unique vector y V  

Such that    , ,g x x y x V  -------(2) 

From (1) and (2) given y V  there exists unique y V  

Such that    , , ,T x y x y x V   

Now define :T V V  as  T y y   with    , ,T x y x T y  

Claim T   is linear 

For 1 2,y y V  and c F , 

   1 2 1 2, ,x T cy y T x cy y     

   1 2, ,T x cy T x y   

   1 2, ,c T x y T x y   

   1 2, ,c x T y x T y    

   1 2, ,x cT y x T y    

   1 2, ,x cT y T y x V      

     1 2 1 2T cy y cT y T y      

T   is linear 

Uniqueness of T   

 Suppose that :U V V  is linear such that    , , , ,T x y x U y x y V    

Then    , , , ,x T y x U y x y V     

   T y U y  is Unique. 

THEOREM 6; 

Let V  be an inner Product space and let T  and U  be linear operators on V . Then  

a.  T U T U
      

b.  cT cT
   for any c F  

c.  TU U T
    

d.T T   

e. I I   

Proof: 

a). Let ,x y V  

      , ,x T U y T U x y


    

   , ,T x y U x y   
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   , ,x T y x U y    

   , , ,x T y U y x y V      

      ,T U y T U y y V
        

   T U T U
       

b).       , ,x cT y cT x y


  

  ,cT x y  

  ,c T x y  

  ,T x cy  

 ,x T cy  

 , , ,x cT y x y V    

  , , ,x cT y x y V    

      ,cT y cT y y V
      

 cT cT
    

c).       , ,x TU y TU x y


  

   ,T U x y  

   ,U x T y  

  ,x U T y   

  , , ,x U T y x y V     

      ,TU y U T y y V
       

 TU U T
     

d).      , , ,x T y T x y y T x     

   , , , ,T y x x T y x y V     

   ,T y T y y V     

T T   

e).    , ,x I y I x y   

 , , , ,x y x I y x y V     

   ,I y I y y V     

I I   

 



Questions opt 1 opt 2 opt 3 opt 4 opt5 opt6 Answer
 The inner product of (0, v) is ____ 1 (-1) 0 v 0
  Any element ‘x’ in vector space V then the element ‘x’ is called a
unit vector if the norm of ‘x’ is ____. 1 (-1) 0 x 1

If x =(2, 1+i, i) and y =(2-i, 2,1+2i) be a vector in C^3 then norm
of x+y is---------------. sqrt37 5 5 3i sqrt37
A subset S of V is orthogonal if any two distinct vectors in S 
are------------------.

orthogon
al parallel normal linear

orthogon
al

The inner product of (0, u) is ____. 1 (-1) 0 u 0

If x =(2, 1+i, i) be a vector in C^3 then norm of x is---------------. 8 5 sqrt(7) 7i sqrt(7)
Let T be a linear operator on an inner product space V, and if norm 
of T(x) is equal to norm of x then T is ------------- on to 

one to 
one 

one to one and on 
to into

one to 
one

A subset S of V is orthonormal if S is orthogonal and contains 
entirely of -------- vectors. unit zero row column unit
______. product space row space space product 
reciprocal of its length is called-------------. mal set lization  orthonormalization ng ng

If x =(2, 2+i) be a vector in C^2 then norm of x is---------------. 7 5 3 3i 3
The process of------------- a non zero vector by the reciprocal of its 
length is called normalizing.  

multiplyin
g  adding   subtracting   dividing

multiplyin
g  

Standard inner product is called the ----------------product. dot cross vector curl dot
Let T be a linear operator on an inner product space V, and if T is 
one to one then norm of T(x) is equal to -------------- norm of x

norm of 
V norm ofT+V

norm of 
x+V norm of x

  An inner product space is called an _____ space.
 Euclidean unitary  null

Euclidean 
or unitary

Euclidean 
or unitary

 Let V be an inner product space. The vectors x and y in V are 
orthogonal if inner product of x,y is equal to----------. zero 1

2
linear

zero

 A subset S of V is -------------- if any two distinct vectors in S are 
orthogonal.

orthogona
l parallel  normal linear

orthogona
l 

If T is linear then --------------------- is linear.
parallel 
operator 
T   

adjoint 
operator 
T product operator T

 del 
operator

adjoint 
operator 
T 



UNIT-IV 

PARTIAL DIFFERENTIAL EQUATION 

Notations: 

2

2

,

2

,
2

2

,,
y

z
t

yx

z
s

x

z
r

y

z
q

x

z
p
























  

1. No of arbitrary constants eliminated = No of independent variables, then we get first 

    order PDE.   (Use p & q Only)     

2. No. of arbitrary constants > No of independent variables, then we get second or higher                 

    order PDE.   (Use p ,q, r, s & t)     

3. In elimination of arbitrary functions, the order of PDE = No. of arbitrary functions  

    eliminated.( arbitrary functions=1 use p & q Only and arbitrary functions=2 use p, q, r, s& t) 

4. Elimination of arbitrary functions from 

y

v

y

u

x

v

x

u

issolutionthevu

















 ,0),( . 

5. 

Type Given form Complete integral Singular Integral 
General 

solution 

I 

0),( qpF  

Trial solution z = ax + by + c 

…. (2), p = a, q = b. Sub in 

(1) then write “b” interms of 

“a” sub. in (2), we get C.I. 

Differentiate (3) p.w.r.to 

“c”. 0 = 1 [absurd], there 

is no S.I. 

Put c = f(a) in 

(3), we get eqn. 

(4). Diff. (4) 

p.w.r.to “a” and 

then eliminate 

“a” between the 

equation we get 

G.I. 

II 

Clairaut’s Form 

),( qpf

qypxz 
 

Put p = a, q = b … (2) in eqn. 

(1), we get C.I. 

Apply Con : 

0,0 









b

z

a

z
we get  

…….. (i) 

……. (ii) eliminate a & b 

Put )(ab  in 

(3), we get eqn. 

(4), Diff. (4) 

p.w.r.to “a” and 

then eliminate 

“a” between the 



from (3), (i) & (ii), we 

get S.I. 

equation we get 

G.I. 

III 

0),,( qpzF  

z is a function of u. u = x + ay, 

p = 
du

dz
, q = 

du

dz
a  sub. in (1) 

and then solving we get 










)3(),(

..,
),(

)2(
),(

),(





bayxbuazf

ICthegetwedu
az

dz

du
az

dz
az

du

dz






 

No S.I. 

IV 

F1(x,p)= F2(y,q) 

aqyfpxf  ),(),( 21 . Write 

‘p’ interms of ‘a & x’ and ‘q’ 

interms of ‘a & y’. Then dz = 

p dx + q dy …. (2), integrate 

we get C.I. 

No S.I. 

V 

0),,(

0),(





qypxzF

andqypxF

nm

nm

 

Case 1 : If  11  nandm  

)1(,)1(

)1(,)1(

,

,

)1(,)1(

11

nQqymPpx

ynQqxmPp

y

Y

Y

z

y

z

x

X

X

z

x

z

Y

Z
Q

X

Z
PLet

yn
y

Y
xm

x

X

yYandxXPut

nm

nm

nm

mm



























































Then it can be reduced to type 1and 3. 

Case 2 : If  1 nm  

QyqPxp

y
Qq

x
Pp

y

Y

Y

z

y

z

x

X

X

z

x

z

Y

Z
Q

X

Z
PLet

yy

Y

xx

X

YyandXxPut





















































,

1
,

1

,

,

1
,

1

loglog

 

Then it can be reduced to type 1and 

3 

VI 

0),,(

0),(





qzpzxF

andqzpzF

mm

mm

 

Case 1 : If  1m  

qz
m

Q
pz

m

P

pzm
x

z

z

Z

x

Z
P

zZPut

mm

m

m






















 

1
,

1

)1(

)1(

The

n it can be reduced to type 1and 4 

Case 2 : If  1m  

qzQand

pzp
zx

z

z

Z

x

Z
P

zZPut

1

11

log
























 

Then it can be reduced to type 1and 

4 

 



6. Lagrange’s Linear Equations:  In the form of  Pp+Qq=R, The subsidiary equation 
R

dz

Q

dy

P

dx
  

1. Method of Grouping: 

In the subsidiary equation 
R

dz

Q

dy

P

dx
 if the variables can be separated in any pair of 

equations, then we get a solution of the form ayxu ),(  and byxv ),( . 

 

2. Method of Multipliers: 

  

Choose any three nmultipliers l,m,n which may be constants or function of x, y, z we 

have  

nRmQlP

ndzmdyldx

R

dz

Q

dy

P

dx




 .  

If it is possible to choose l,m,n such that 0 nRmQlP then ndzmdyldx  =0. If 

ndzmdyldx  is an exact differential then, on integration, we get a solution u = a. Similarly v = b . 

 
7.  Classification of p.d.e of the second order: 

   0,,,,
2

22

2

2

































y

u

x

u
uyxf

y

u
C

yx

u
B

x

u
A  

)(12:042

(1:042

)(0:042

.3

)2.2

.1

equationWaveDttuxxuegHyperbolicACB

equationflowheatDtuxxuegParabolicACB

equationlaplaceyyuxxuegellipticACB

equation

equation

equation















  

 

8.  Homogeneous linear differential equation of third order is 

    
y

D
x

whereyxFzDaDDaDDaDa










'
,D),,()

3
3

2
2

2
1

3
0

(                     

Method for finding the solutions: 

Complementary function 

S.No Case CF 

Homogeneous equation – Replace D = m and D’ = 1. 

1 If the roots are real (or imaginary) 

321 mmm   

)()()( 332211 xmyfxmyfxmyfz   

2 All the roots are equal say 

mmmm  321  

)()()( 3

2

21 xmyfxxmyxfxmyfz   



 

Non Homogeneous equation – Replace D = h and D’ = k 

1 Form a quadratic equation interms of 

‘h’, then h = 2211   kmandkm  
  )()( 22

2
11

1 xmyfexmyfez
xx




 

 Particular integral:    

S.No Case PI 

1 
byaxeyxF ),(  

byaxbyax e
baf

e
DDf

PI  
),(

1

),(

1
'

, ),( baf 0. 

2 

nm yxyxF ),(  

  nmnm yxDDfyx
DDf

PI
1'

'
),(

),(

1 
  

Expand   1'),(


DDf  using binomial expansion 

3 

)cos()sin(),( nymxornymxyxF   

mnDDnDmDplace

nymxornymx
DDf

PI





'22'22

'

,,Re

)cos()sin(
),(

1

 

4 

),(),( yxeyxF byax   

),(
),(

1

),(
),(

1

'

'

yx
bDaDf

e

yxe
DDf

PI

byax

byax
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Other than in rule (i),(ii),(iii),(iv) 

  

 
mxcyWhere

dxmxcxFyxF
DmD

yxFe
DmDDmD

PI byax













),(),(
1

),(
1

,

1

,

2

,

1

 

 

 If   0),( DDf , multiply Nr by x differentiate Dr with respect to D & do the same Procedure.       

    Note: 

            D    - Differentiation  Nr   - Numerator  Dr   - Denominator 

           

constantisy

1
dx

D
            

 constantisx

1
dy

D
 



Questions opt1 opt2 opt3 opt4 opt5 opt6 Answer
In a PDE, there will be one dependent variable and ____ 
independent variables only one two or more no infinite 

number of two or more 

The ______ of a PDE is that of the highest order 
derivative occurring in it degree power order ratio order 

The degree of the a PDE is ______of  the higest order 
derivative power ratio degree order power

Afirst order PDE is obtained if______

Number of 
arbitrary 
constants is 
equal Number 
of independent 
variables

Number of 
arbitrary 
constants is 
lessthan 
Number of 
independent 
variables

Number of 
arbitrary 
constants is  
greater than 
Number of 
independent 
variables

Number of 
arbitrary 
constants is 
not equal to 
Number of 
independent 
variables

Number of 
arbitrary 
constants= 
Number of 
independent 
variables

In the form of PDE, f(x,y,z,a,b)=0. What is the order? 1 2 3 4 1

What is form of the z=ax+by+ab by eliminating the 
arbitrary constants? z=qx+py+pq z=px+qy+pq z=px+qy+p z=py+qy+q z=px+qy+pq

General solution of PDE F(x,y,z,p,q)=0 is any arbitray 
function F of specific functions u,v is____satisfying 
given PDE

F(u,v)=0 F(x,y,z)=0 F(x,y)=0 F(p,q)=0 F(u,v)=0

The  PDE of the first order can be written as-----------
--- F(x,y,s,t) F(x,y,z,p,q)=0 F(x,y,z,1,3,

2)=0 F(x,y)=0 F(x,y,z,p,q)=0

The complete solution of clairaut's equation is _____ z=bx+ay+f(a,b) z=ax+by+f(a,b) z=ax+by z=f(a,b) z=ax+by+f(a,b)

The Clairaut’s equation can be written in the form --
------

z=px+qy+f(p,q
)

 z=(p-
1)x+qy+f(x,y) z=Pp+Qq Pq+Qp=r z=px+qy+f(p,q)

From the PDE by eliminating the arbitrary function from 
z=f(x^2 -y^2) is xp+yq=0 p=-(x/y) q=yp/x yp+xq=0 yp+xq=0

Which of the following is the type f(z,p,q)=0 ? p(1+q)=qx p(1+q)=qz p(1+q)=qy p=2x f(y+2x) p(1+q)=qz



The equation (D^2 z+2xy(Dz)^2+D'=5 is of order 
____and degree____ 2 and 2 2 and 1 1 and 1 0 and 1 2 and 1

The complementry function of (D^2 -4DD'+4D'^2)z=x+y 
is 

f(y+2x)+xg(y+2
x)

f(y+x)+xg(y+2x
)

f(y+x)+xg(y
+x)

f(y+4x)+xg(y
+4x)

f(y+2x)+xg(y+2x
)

The solution of xp+yq=z is _____ f(x^2,y^2)=0 f(xy,yz) f(x,y)=0 f(x/y ,y/z)=0 f(x/y ,y/z)=0

The solution of p+q=z is ____ f(xy,ylogz)=0 f(x+y, 
y+logz)=0

f(x-y, y-
logz)=0

f(x-
y,y+logz)=0 f(x-y, y-logz)=0

A solution which contains the maximum possible 
number of arbitrary functions is called-------------
integral.

singular complete general particular general

The lagrange's linear equation can be written in the 
form ------------- Pq+Qp=r Pq+Qp=R Pp+Qq=R F(x,y)=0 Pp+Qq=R

The complete solution of    the PDE 2p+3q =1 is -----
-----------  

z=ax+[(1-
2a)/3]y+c z=ax+y+c z=ax+(1-

2x)/y+c z=ax+b z=ax+[(1-
2a)/3]y+c

The complete solution of  the PDE  pq=1 is -----------
------- z=ax+(1/a)y+b z=ax+y+b z=ax+ay/b+

c z=ax+b z=ax+(1/a)y+b

The solution got by giving particular values to the 
arbitrary constants  in a complete integral is called a 
--------

general singular particular complete particular

The general solution of Lagrange's equation is 
denoted as------- f(u,v)=0 zx f   (x,y) F(x,y,s,t)=0 f(u,v)=0

The subsidiary equations are px+qy=z is -------------- dx/y=dy/z=dz/
x

dx/x=dy/y=dz/
z

xdx=ydy=z
dz

dz/z=dx/y=d
y/x dx/x=dy/y=dz/z

The general  solution of equation p+q=1 is ------------
- f(xyz,0) f(x-y,y-z) f(x-y,y+z) F(x,y,s,t)=0 f(x-y,y-z)

The separable equation  of the first order PDE can 
be written in the form of ------------ f(x,y)=g(x,y) f(a,b)=g(x,y) f(x,p)=g(y,q

) f(x)=g(a) f(x,p)=g(y,q)

Complementary function is the solution  of ------------
------------ f(a,b) f(1,0)=0 f(D,D')z=0 f(a,b)=F(x,y

) f(D,D')z=0

C.F+P.I  is called -------------------   solution singular complete general particular general

Particular integral is the solution of ------------- f(a,b)=F(x,y) f(1,0)=0 [1/f(D,D')]F
(x,y)

f(a,b)=F(u,v
)

[1/f(D,D')]F(x,y
)



Which is    independent  varible in the equation  z= 
10x+5y x&y z (x,y,z) x alone x&y

Which is dependent varible in the equation z=2x+3y x z y x&y z

Which of  the following is the type f(z,p,q)=0 p(1+q)=qx p(1+q)=qz p(1+q)=qy p=2xf’(x^2)-
(y^2))  p(1+q)=qz

Which is complete  integral of z=px+qy+(p^2)(q^2) z=ax+by+(a^2)
(b^2) z=a+b+ab z=ax+by+a

b z=a+f(a)x z=ax+by+(a^2)(
b^2)

The complete integral of PDE of the form F(p,q)=0 
is z=ax+f(a)y+c       z=ax+f(a)+b z=a+f(a)x z=ax+f(a) z=ax+f(a)y+c       

The relation between the independent and the 
dependent variables which satisfies the PDE is 
called-------

solution complet 
solution

general 
solution

singular 
solution solution

A solution which contains the maximum possible 
number of arbitrary constant is called--------- general complete solution singular complete

The equations which do not contain x & y explicitly 
can be written in the form--------------- f(z,p,q)=0 f(p,q)=0 (p,q)=0 f(x,p,q)=0 f(z,p,q)=0

The subsidiary equations of the lagranges equation 
2y(z-3)p + (2x-z)q = y(2x-3)

dx/2y(z-3) = 
dy/(2x-z) 
=dz/y(2x-3)

dx/(2x-z) 
=dy/2y(z-3) 
=dz/y(2x-3)

dx/2y=dz/(z
-3)

dx/2y=dz/(z-
3)=dy/2x

dx/2y(z-3) 
=dy/(2x-z) 
=dz/y(2x-3)

A PDE ., the partial derivatives occuring in which 
are of the first degree is said to be -------------- linear non-linear order degree linear

A PDE., the partial derivatives occuring in which 
are of the 2 or more than 2 degree is said to be------ linear non-linear order degree non-linear

 If z=(x^2+a)(y^2+b) then differentiating z partially 
with respect to x is ----- 2x 3x(y^2+b) 2x(y^2+b) 3x+y                                   2x(y^2+b)

If z=ax+by+ab then differentiating z partially with 
respect to y is ----- a a+b 0 b b

The complete solution of    the PDE p=2qx is ---------
-------  z=ax+ay+c ax+b z = 

ax^2+ay+c     z= ax+(b+c)               z = ax^2+ay+c     



The general solution of px-qy=xz is f(u,v)=0 f(xy,x-logz)=0 f(x-y,y-z)=0 f(x-y,y+z)=0 f(xy,x-logz)=0

If z= f(x^2+y^@)  then differentiating z partially 
with respect to x is -----  

p=2xf ’ 
(x^2+y^2)  

p=2xf(x^2+y^
2)  

p=2xf’(x^2-  
  y^2)  

p(1+q)=qy p=2xf ’ 
(x^2+y^2)  

 If z= f(x^2+y^2 +z^2) thendifferentiating z 
partially with respect to y is ----- 

q=2xf(x^2+y^
2)  

q=(2y+2zz') 
f'(x^2+y^2  

+z^2) 
q=2y q=0

q=(2y+2zz') 
f'(x^2+y^2  

+z^2) 
The solution of differentiating z partially with 
respect to x twice gives -----  ax ax+by+c ax+b ax=p ax+b

The auxiliary equation of  (D^2-4DD’+4 D'^2)z=0 is   m^2-4m+4=0  m^2+4m+4=0   m^2-4m-
4=0  

m^2+4m-
4=0                 m^2-4m+4=0  

 The auxiliary equation of  (D^3-7DD'^2-6D'^3)z=0 
is m^3+7m+6=0 m^3-7m-6=0    m^3-

7m+6=0  
m^3+7m-
6=0 m^3-7m-6=0    

The auxiliary equation of  (D^3+DD'^2  -D^2D’ -
D'^3)z=0 is

m^3-m^2+m-
1=0 m3+m2+m-1=0 

m^3-
m^2+m+1=
0 

m^3-m^2-m-
1=0                                                                                             

m^3-m^2+m-
1=0 

The auxiliary equation of  (D^2-4DD’+4 
D'^2)z=e^x is

m^2+4m+4=0 m^2-4m-4=0 m^2+4m-
4=0   none none

The auxiliary equation of(D^3+7DD'^2+6D'^3  
)z=cos ax is m^3+7m+6=0   m^3-7m-6=0 m^3-

7m+6=0   m^+7m-6=0 m^3+7m+6=0   

The roots of the partial differential equation (D^2-
4DD’+4 D'^2)z=0 are (2,1) (2,2 ) (2,-2 ) (2,-2 )  (2,2)  

 Theroots of the partial differential equation  (D^3-
7DD'^2-6D'^3)z=0 are (1,2,3) (2,1,3) (2,3, -1) (3,-1,-2) (3,-1,-2)

The roots of the partial differential equation  (D^3 -
D^2D’ +DD'^2   -D'^3)z =0 are (1,i,- i)      (1,1,i) (i,i,1 ) (1,1,1  )                                  (1,i,- i  )    

The roots of the partial differential equation (D^3 -
D^2D’ -DD'^2   +D'^3)z  z =0 are (1,1,1) (1,1,-1) (1,-1,-1) (-1,-1,-1 )    (1,-1,-1 )

The roots of the partial differential equation (D^2-
2DD’+D'^2  )z=0 are (0,1 ) (i,-1) (1,2) (1,1 )                                      (1,1)                                       



The particular integral of e^(ax+by)/ ( D-(aD’/b))^2   is 
------

e^(ax+by) (x^2/2) 
e^(ax+by)

ax-by+c                              ax+by (x^2/2)e^(ax+b
y)

The particular integral of e^(ax+by)/ ( D-(aD’/b))  is ----
-----

ax-by+c                              e^(ax+by) ax+by xe^(ax+by) xe^(ax+by)
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Unit-V Fourier Series Solutions of Partial Differential Equations 

1. Dirichlet’s conditions 

(i) f(x) is periodic, single-valued and finite function. 

(ii) f(x) has a finite number of finite discontinuities in any one period and has no infinite 

discontinuity. 

(iii) f(x) has at the most a finite number of maxima and minima. 

2. Odd and Even function  

Odd and Even function cases arises only when the function is defined in     ,,  andll  

Odd function Even function 

f(-x)= - f(x) f(-x)=  f(x) 

Odd*Even ; Odd*Even 

Even *Odd ; Even *Odd 

Odd*Odd 

Even*Even 

Example : x,x3,sin x, x cosx 
Example : x2, cos x, sin2x, 

x
,x sin x, 

a0 = an=0 

 

bn=0 

 

3. Fourier series: l  Form 

Fourier series: 
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4. Fourier series:   Form 

Fourier series: 
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5. Half  Range Fourier Series 

 Cosine series 

 

Sine series 

l  Form   Form l  Form   Form 








1

cos
2

0
)(

n l

xn
na

a
xf



 








1

cos
2

0
)(

n

nxna
a

xf

 








1

sin)(

n l

xn
nbxf


 







1

sin)(

n

nxnbxf  


l

o
dxxf

l
a )(

2
0  


l

o
dx

l

xn
xf

l
na


cos)(

2

 





o

dxxfa )(
2

0  





o

dxnxxfna cos)(
2

 


l

o

dx
l

xn
xf

l
nb


sin)(

2

 

 





o

dxnxxfnb sin)(
2

 

 

 

 

 

 

 

 

 

 



 

 

 

SOLUTION OF ONE DIMENSIONAL  AND TWO DIMENSIONAL PDE 

 

 

Equation Possible solutions 

1-D Wave Equation:  
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1-D heat equations : 
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Two dimensional heat flow equation (plate), 

      In steady state 2-D heat equation is 
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ONE DIMENSIONAL WAVE EQUATION 

 

S.N

O 
Equation  Boundary  conditions Correct Solution Most general solution 
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ONE DIMENSIONAL HEAT  EQUATION 

The steady state temperature distribution on the rod :   ax
l

ab
xu 







 
  

a : temp.at end x=0 ;   b= temp.at end x=l ;   l= Length of the rod. 
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SQUARE PLATE  

s.no Equation Boundary  conditions Correct Solution Most general solution 
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RECTANGULAR  PLATE  

FINITE  

S.NO Equation Boundary  conditions Correct Solution Most general solution 
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INFINITE PLATE 
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Equation Boundary  conditions Correct Solution Most general solution 
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Questions opt 1 opt 2 opt 3 opt 4 opt5 opt
6 Answer

If a function satisfies the condition f(-x) = f(x) then 
which is  true?

a_0 = 0 a_n = 0 a_0 = a_n = 0 b_n = 0 b_n = 0

If a function satisfies the condition f(-x) = -f(x) then 
which is  true?

a0 = 0 an = 0 a_0 = a_n = 0 b_n = 0 a_0 = a_n = 0

Which of the following is an odd function? sin x cos x x^2 x^4 sin x
Which of the following is an even function? x^3 cos x sin x sin^2x cos x

The function f(x) is said to be an odd function of x if f(-x) = f( x) f(x) = - f( x) f(-x) = - f( x) f(-x) = f(-x) f(-x) = - f( x)

The function f(x) is said to be an even function of x if f(-x) = f( x) f(x) = - f( x) f(-x) = - f( x) f(-x) = f(-x) f(-x) = f( x)

 ∫f(x) dx = 2∫f(x) dx  between the limits -a to a if f(x) is 
------ even continuous odd discontinues even

 ∫f(x) dx = 0  between the limits -a to a if f(x) is ------ even continuous odd discontinues odd
If a periodic function f(x) is odd, it’s Fourier 
expansion contains no ------ terms.

coefficient 
an

sine coefficient a0 cosine cosine

If a periodic function f(x) is even, it’s Fourier 
expansion contains no ------ terms. cosine sine coefficient a_0 coefficient a_n sine

In dirichlet condition, the function f(x) has only a ----- 
number of  maxima and minima.

uncountabl
e continuous infinite finite finite

In Fourier series, the function f(x) has only a finite 
number of maxima and minima. This condition is 
known as -------

Dirichlet Kuhn 
Tucker Laplace Cauchy Dirichlet

In dirichlet condition, the function f(x) has only a ----- 
number of  discontinuities .

uncountabl
e continuous infinite finite finite

In Fourier series, the expansion  f(x) = a 0 /2 + ∑ (an  
cos nx + bn sin nx ) is possible only if in  the interval  
c1≤ x≤ c2 the function f(x) satisfies ---condition.

kuhn- 
Tucker Laplace Dirichlet Cauchy Dirichlet



If the periodic function f(x) is even, then it’s Fourier 
co- efficient -------- is zero. a0 a1 bn a0 & an bn

If the periodic function f(x) is odd, then it’s Fourier co- 
efficient -------- is zero. a_0 & a_n a_1 b_n b_1 a_0 & a_n

1/pi∫f(x) cos nx dx gives the Fouier coefficient ----------- a_0 b_1 b_n a_n a_n

1/pi∫f(x) dx  gives the Fourier coefficient a_0 a_n b_n b_1 a_0

1/pi∫f(x)sin nx dx gives the Fouier coefficient ----------- a_0 a_n b_n b_1 b_n

The period of cos nx where n is the positive integer is 2*pi/n pi/2n 2*pi n*pi 2*pi/n
The Fourier co efficient  a0 for the function defined by        
      f(x) = x for 0< x< pi is

pi pi/2 2*pi 0 pi

If the function f (x) = -π  in the interval –pi< x< 0, the 
coefficient a0 is

pi^2/3 (2*pi^2)/3 2*pi/3 2 *pi 2*pi

If the function  f(x) = x sin x, in  –pi< x<pi  then 
Fourier coefficient

bn = 0 a0 = 1 a0 = (pi^2)/3 a0 = -1 bn = 0

For the cosine series, which of the Fourier coefficient 
will  vanish? a_n b_n a_1 Both a0 and an b_n

For the sine series, which of the Fourier coefficient 
variables will be vanish? b_n a_n Both a_0 and 

a_n a_0 Both a_0 and 
a_n

For a function f(x) =  x^3, in  –pi< x< pi the Fourier 
coefficient

bn  = 0 an  = 1 a0  = 1 a0 = an = 0 a0 = an = 0

F(x)=x cos x is an  ------ function. an odd 
function

even 
function

neither odd or 
even

both even and 
odd

an odd 
function

If f(x) = x, in  –pi< x< pi then Fourier co efficient b_n  = 0 a_n = π a_0  = a_n  = 0 a_n  = 1 a_0  = a_n  = 0

F(x)=e^x is in   –pi< x< pi.
an odd 
function

even 
function

neither odd or 
even

Both even and 
odd

neither odd or 
even

Which of the coefficients in the Fourier series of the 
function f(x) = x2 in -pi < x< pi will vanish

a0 a0 and an bn an bn



If f(-x) = -f(x), then the function f(x) is said to be ----- odd Continuous even discontinuous odd

If f(-x) = f(x), then the function f(x) is said to be ----- odd continuous even discontinuous even
The function x sin x is a   ------- function in   –pi< x< 
pi. even odd continuous discontinuous even

The function x cos x is a   ------- function in   –pi< x< 
pi. even odd continuous discontinuous odd

If f(x)= x in 0<x<2*pi and f(x)=f(x+2*pi) then the sum 
of the fourier series of f(x) at x=2*pi is------ 2*pi 2 0 pi 2*pi

If f(x)= x^2 in 0<x<2*pi and f(x)=f(x+2*pi) then the 
sum of the fourier series of f(x) at x= 0 is------ 2*pi^2 0 6*pi 4*pi 2*pi^2

For any peroidic function f(x) in –pi< x< pi the point 
x=- pi is a ----- point. Continous discontinous intermediate Continous and 

discontinous discontinous

For any peroidic function f(x) in 0< x<2* pi the point 
x= pi is a ----- point.

Continous 
and 
discontinou
s

intermediate Continous discontinous Continous

For any peroidic function f(x) in 0≤ x≤ pi the point x= 
0 is a ----- point.

discontinou
s

Continous 
and 
discontinous

Continous intermediate Continous

Partial differential equation of second order is said to 
Elliptic at a point (x,y) in the plane if --------- 

B^2-
4AC<0 B^2-4AC=0 B^2-4AC>0 B^2=4AC B^2-4AC<0

Partial differential equation of second order is said to 
Parabolic at a point (x,y) in the plane if --------- 

B^2-
4AC<0 B^2-4AC=0 B^2-4AC>0 B^2=4AC B^2-4AC=0

Partial differential equation of second order is said to 
Hyperbolic at a point (x,y) in the plane if --------- 

B^2-
4AC<0 B^2-4AC=0 B^2-4AC>0 B^2=4AC B^2-4AC>0

Two dimensional Laplace Equation is ---------- u_xx+u_yy
=1

u_xx+u_yy=
0 u_x=u_y u_x+u_y=0 u_xx+u_yy=0

One dimensional heat Equation is ---------- u_xx=(1/a^
2)u_t

u_xx=[(1/a^
2)u_t]+10 u_xx=u_tt u_xx+u_tt=0     u_xx=(1/a^2)u

_t



One dimensional wave Equation is ---------- u_xx=(1/a^
2)u_t

u_xx+u_yy=
0

u_xx=(1/a^2)u
_t^2 u_xx=u_t u_xx=(1/a^2)u

_t^2

The Possion equation is of the form ----- y(x,t)=f(x-
at)+g(x+at)

u_xx=(1/a^2
)u_t

u_xx=(1/a^2)u
_tt

u_xx+u_yy=f(
x,y)

u_xx+u_yy=f(
x,y)

The steady state temperature of a rod of length l whose 
ends are kept at 30 and 40 is

u(x)= 
10x/l + 30    u(x)= 40x/l      u(x)= 30x/l    None        u(x)= 10x/l + 

30    
The temperature distribution of the plate in the steady 
state is ---------

u_xx=(1/a^
2)u_t

u_xx+u_yy=
0

u_xx=(1/a^2)u
_t^2 u_xx=u_t u_xx+u_yy=0

Two dimensional heat Equation is known as ----------
equation. partial          Radio laplace     Poisson laplace     

In one dimensional heat flow equation ,if the 
temperature function u is independent of  time, then 
the solution is------

u(x)= ax + 
b     u(x,t)= a(x,t) u(t) =  at + b u(t) =  at - b u(x)= ax + b     

f_xx+2f_xy+4f_yy=0 is a ______ Elliptic Hyperbolic Parabolic circle Elliptic
f_xx=2f_yy is a --------- Elliptic Hyperbolic Parabolic circle Hyperbolic
f_xx-2f_xy+f_yy=0 is a ----------- Hyperbolic Elliptic Parabolic circle Parabolic
The diffusivity of substance is------ k/pc    pc k pc/k                                                             k/pc    

Heat flows from a  ------- temperature higher to 
lower 

lower to 
higher normal high higher to lower 

The Amount of heat required to produce a given 
temperature change in  a bodies propostional to the  ----
--- of the body and to the temperature change.

temperatur
e heat mass wave                        mass

The rate at which heat flows through an area is------ to 
the area and to the temperature gradient normal to the 
area.

equal not equal lessthan proportional     proportional     

In steady state conditions the temperature at any 
particular point does not vary with --- Time temperature mass none                        Time 

The wave equation is a linear and  ------  equation
non 
homogeneo
us 

homogeneou
s quadratic none            homogeneous



In method of separation of variables we assume the 
solution in the form of -----

u(x,y)=X(x
)

u(x,t)=X(x)
T(t) u(x,0)=u(x,y) u(x,y)=X(y)Y(

x)                                                                                         
u(x,t)=X(x)T(t
) 

u(x,t)=(Acosax+Bsinax)Ce^(-(b^2))(a^2)t) is the 
possible solution of ------ equation heat wave laplace none                                    heat 

y=(Ax+B)(Ct+D) is the possible solution of ------ 
equation heat wave laplace none                                    wave 

If the heat flow is one dimensional ,then the --------  is 
a function x and t only heat light temperature wave                       temperature 

The stream lines are parallel to the X-axis ,then the 
rate of change of the temperature in the direction of the 
Y-axis will be ---------.

one two zero five                                      zero

The boundary condition with non zero value on the 
R.H.S of the wave equation should be taken as the ------
-------- boundary condition.

First Second Last none                                    Last 

In one dimensional heat equation u_t= (α^2)u_xx, 
What does α^2     stands for?  k/pc    pc k pc/k                                                              k/pc    

If B^2-4AC = 0, then the differential equation is said 
to be______ parabolic elliptic hyperbolic equally spaced parabolic

If B^2-4AC > 0, then the differential equation is said 
to be______ parabolic elliptic hyperbolic equally spaced hyperbolic 

If B^2-4AC < 0, then the differential equation is said 
to be______ parabolic elliptic hyperbolic equally spaced elliptic 

The flow is two dimensional the temperature at any 
point of the plane is ------- of Z-coordinates. linear independent  dependent  none                        independent  

u(x,y)=(Acosλx+Bsinλx)(Ce^(λy)De^(-λy)) is the 
possible solution of the _______equation. heat wave laplace none                                    laplace 



UNIT II

Foutier Series

S.NO.
Questions opt 1 opt 2 opt 3 opt 4

opt5

1

Which of the following functions 
has the period 2π? cos x sin nx tan nx tan x

2

1/π ∫ f(x) sinnx dx between the 
limits c to c+2π gives the Fourier 
coefficient_____

a_0 a_n b_n b_1

3

If f(x) = -x for -π< x< 0 then its 
Fourier coefficient a0 is_______- (π^2)/2 π/2 π/3 π

4

If a function satisfies the condition 
f(-x) = f(x) then which is  true?

a_0 = 0 a_n = 0
a_0 = 
a_n = 0

b_n = 0

5

If a function satisfies the condition 
f(-x) = -f(x) then which is  true?

a0 = 0 an = 0
a_0 = 
a_n = 0

b_n = 0

6

Which of the following is an odd 
function? sin x cos x x^2 x^4

7

Which of the following is an even 
function? x^3 cos x sin x sin^2x

8

The function f(x) is said to be an 
odd function of x if

f(-x) = f( 
x)

f(x) = - 
f( x)

f(-x) = - 
f( x)

f(-x) = f(-
x)

9

The function f(x) is said to be an 
even function of x if

f(-x) = f( 
x)

f(x) = - 
f( x)

f(-x) = - 
f( x)

f(-x) = f(-
x)

10

 ∫f(x) dx = 2∫f(x) dx  between the 
limits -a to a if f(x) is ------ even continuo

us odd discontin
ues

11

 ∫f(x) dx = 0  between the limits -a 
to a if f(x) is ------ even continuo

us odd discontin
ues



12

If a periodic function f(x) is odd, it’s 
Fourier expansion contains no ------ 
terms.

coefficien
t an

sine
coefficien
t a0

cosine

13

If a periodic function f(x) is even, 
it’s Fourier expansion contains no ---
--- terms.

cosine sine
coefficien
t a_0

coefficien
t a_n

14

In dirichlet condition, the function 
f(x) has only a ----- number of  
maxima and minima.

uncounta
ble

continuo
us infinite finite

15

In Fourier series, the function f(x) 
has only a finite number of maxima 
and minima. This condition is 
known as -------

Dirichlet Kuhn 
Tucker Laplace Cauchy

16

In dirichlet condition, the function 
f(x) has only a ----- number of  
discontinuities .

uncounta
ble

continuo
us infinite finite

17

The Fourier series of f(x) is given by 
----

a 0 /2 + 
∑ (an  
cosnx+ 

a 0 /2 + 
∑ (an  
cos nx- 

a n /2 + 
∑ (an sin 
nx+ bn 

a 0 /2 + 
∑ (a0 sin 
nπx/ l )

18

In Fourier series, the expansion  f(x) 
= a 0 /2 + ∑ (an cos nx + bn sin nx ) 
is possible only if in  the interval  

kuhn- 
Tucker Laplace Dirichlet Cauchy

19

If the periodic function f(x) is even, 
then the Fourier expansion is of the 
form ---

a 0 /2 + 
∑an sin( 
nπx/ l  )

a 0 /2 + 
∑an cos( 
nπx/ l )

a n /2 + 
∑ an  
cos( 

a 0 /2 + 
∑ a0 sin( 
nπx/ l )

20

If the periodic function f(x) is even, 
then it’s Fourier co- efficient an is of 
the form ---

2/ l  ∫f(x) 
sin( 
nπx/ l ) 
dx     

2/ l  ∫f(x) 
cos 
(nπx/ l ) 
dx     

1/ l  ∫f(x) 
/ l  dx     ∫f(x) dx    

21

If the periodic function f(x) is even, 
then it’s Fourier co- efficient a0 is of 
the form ---

2/ l ∫f(x) 
dx

1/ l ∫f(x) 
dx

2/ l ∫f(x)/ 
l dx ∫f(x) dx

22

If the periodic function f(x) is odd, 
then it’s Fourier co- efficient bn is of 
the form ---

2/ l  ∫f(x) 
cos 
(nπx/ l ) 
dx     

2/ l  ∫f(x) 
sin( 
nπx/ l ) 
dx     

∫f(x) dx    1/ l  ∫f(x) 
/ l  dx     

23

If the periodic function f(x) is even, 
then it’s Fourier co- efficient --------  

is zero.
a0 a1 bn a0 & an

24

If the periodic function f(x) is odd, 
then it’s Fourier co- efficient --------  

is zero.
a_0 & a_n a_1 b_n b_1

25

If the periodic function f(x) is even, 
then the Fourier expansion is of the 
form ---

∑b_n sin 
nπx/ l

∑b_n sin 
nπx/ l

∑ b_n 
cos nπx/ 
l

a_0/2+∑ 
a_n cos 
(nπx/ l )



26

If the periodic function f(x) is odd, 
then the Fourier expansion is of the 
form ---

∑bn sin 
nπx/ l

∑an sin 
nπx/ l

∑ bn cos 
nπx/ l

∑ an cos 
nπx/ l

27

1/π∫f(x) cos nx dx gives the Fouier 
coefficient ----------- a_0 b_1 b_n a_n

28

1/π∫f(x) dx  gives the Fourier 
coefficient a_0 a_n b_n b_1

29

1/π∫f(x)sin nx dx gives the Fouier 
coefficient ----------- a_0 a_n b_n b_1

30

The period of cos nx where n is the 
positive integer is 2π/n π/2n 2π nπ

31

The Fourier co efficient  a0 for the 
function defined by        f(x) = x for 
0< x< π is

π π/2 2π 0

32

If the function f (x) = -π  in the 
interval –π< x< 0, the coefficient a0 

is
π^2/3 (2π^2)/3 2π/3 2 π

33

If the function  f(x) = x sin x, in  
–π< x< π  then Fourier coefficient

bn = 0 a0 = 1 a0 = 
(π^2)/3

a0 = -1

34

For the cosine series, which of the 
Fourier coefficient will  vanish? a_n b_n a_1

Both a0  
and an

35

For the sine series, which of the 
Fourier coefficient variables will be 
vanish?

b_n a_n
Both 
a_0 and 
a_n

a_0

36

For a function f(x) =  x^3, in  –π< 
x< π the Fourier coefficient

bn  = 0 an  = 1 a0  = 1 a0 = an = 
0

37
F(x)=x cos x is an  ------ function. an odd 

function
even 
function

neither 
odd or 
even

both 
even and 
odd

38

If f(x) = x, in  –π< x< π then Fourier 
co efficient b_n  = 0 a_n = π a_0  = 

a_n  = 0 a_n  = 1

39
F(x)=e^x is in   –π< x< π.

an odd 
function

even 
function

neither 
odd or 
even

Both 
even and 
odd



40

Which of the coefficients in the 
Fourier series of the function f(x) = 
x2 in -π < x< π will vanish

a0 a0 and an bn an

41

If f(-x) = -f(x), then the function f(x) 
is said to be ----- odd Continuo

us even discontin
uous

42

If f(-x) = f(x), then the function f(x) 
is said to be ----- odd continuo

us even discontin
uous

43

The function x sin x is a   ------- 
function in   –π< x< π. even odd continuo

us
discontin
uous

44

The function x cos x is a   ------- 
function in   –π< x< π. even odd continuo

us
discontin
uous

45

The formula for finding the fourier 
coefficient a_0  in Harmonic 
analysis is ----

(2/N)Σ y 
cos nx ( 2/N)Σ y  (2/N)Σ 

y sin nx

a_0 /2 + 
∑ (a_n 
cosnx+ 
b_n  sin 

46

The formula for finding the fourier 
coefficient a_n in Harmonic analysis 
is ----

(2/N)Σ y 
cos nx ( 2/N)Σ y

a_0 /2 + 
∑ (a_n 
cosnx+ 
b_n  sin 

 (2/N)Σ 
y sin nx

47

The formula for finding the fourier 
coefficient  bn in Harmonic analysis 
is ----

( 2/N)Σ y  (2/N)ΣΣ 
y sin nx

(2/N)Σ y 
cos nx

a 0 /2 + 
∑ (an  
cosnx+ 

48

The term a1cos x+ b1 sin x is called 
the-----  harmonic.

second first third end

49

The term ------------- is called the 
first  harmonic in Furier Series 
expansion.

a1cosn 
x+ b1 sin 
x

a1cos2 
x+ b1 sin 
x

a1cos x+ 
b1 sin2 x

a1cos x+ 
b1 sin x

50

If f(x)= x in 0<x<2π and 
f(x)=f(x+2π) then the sum of the 
fourier series of f(x) at x=2π is------ 

2π 2 0 π

51

If f(x)= x^2 in 0<x<2π and 
f(x)=f(x+2π) then the sum of the 
fourier series of f(x) at x= 0 is------ 

2π^2 0 6π 4π

52

For any peroidic function f(x) in 
–π< x< π the point x=- π is a ----- 
point.

Continou
s

discontin
ous

intermedi
ate

Continou
s and 
discontin
ous

53

For any peroidic function f(x) in 0< 
x<2 π the point x= π is a ----- point.

Continou
s and 
discontin
ous

intermedi
ate

Continou
s

discontin
ous



54

For any peroidic function f(x) in 0≤ 
x≤ π the point x= 0 is a ----- point.

discontin
ous

Continou
s and 
discontin
ous

Continou
s

intermedi
ate

55

The process of finding the Fourier 
series for a function given by ---------
--- at equally spaced points is 
known as harmonic analysis.

initial 
value 

numerical 
 value

final 
value

fundame
ntal value

56

The process of finding the Fourier 
series for a function given by 
numerical values at ----------- points 
is known as harmonic analysis.

equally 
spaced

unequally 
 spaced

intermedi
ate

both 
equally 
and 
unequally 

57

The process of finding the Fourier 
series for a function given by 
numerical values at equally spaced 
points is known as ----------.

mathema
tical 
analysis

complex 
analysis

real 
analysis

 
harmonic 
 analysis.

58

The complex form of Fourier series 
of f(x) in (c,c+2l) is 

  f(x)= 
∑cn 
e^(inπ x/ l  ) 

∑bn sin 
nπx/ l

  f(x)= 
∑cn 
e^(inπ x/ l)  

  f(x)= 
∑cn e^(-
inπ x/ l  )

59

The Euler constant c_n in the 
complex form of fourier series of 
f(x) in (c,c+2l ) is 

  
c_n=1/2l
∫f(x) e^(-

c_n=  
e^(inx/l)

∑c_n 
e^(inπx/  
l )

∑c_n 
e^(-
inπx/ l )

60

y^2=1/(b-a)∫(f(x))^2 dx  is called the -
---of the function.

Root 
mean 
square 
value

parsevals 
 identity

Harmoni
c euler

1

Partial differential equation of 
second order is said to Elliptic at a 
point (x,y) in the plane if --------- 

B^2-
4AC<0

B^2-
4AC=0

B^2-
4AC>0

B^2=4A
C

2

Partial differential equation of 
second order is said to Parabolic at 
a point (x,y) in the plane if --------- 

B^2-
4AC<0

B^2-
4AC=0

B^2-
4AC>0

B^2=4A
C

3

second order is said to Hyperbolic 
at a point (x,y) in the plane if --------
- 

B^2-
4AC<0

B^2-
4AC=0

B^2-
4AC>0

B^2=4A
C

4
Two dimensional Laplace Equation 
is ----------

u_xx+u_
yy=1

u_xx+u_
yy=0 u_x=u_y

u_x+u_y
=0

5
One dimensional heat Equation is ---
-------

u_xx=(1/
α^2)u_t

u_xx=[(1
/α^2)u_t]
+10

u_xx=u_t
t

u_xx+u_t
t=0     

6
One dimensional wave Equation is --
--------

u_xx=(1/
α^2)u_t

u_xx+u_
yy=0

u_xx=(1/
α^2)u_t^
2 u_xx=u_t

7

The D’Alembert’s solution of the 
One dimensional wave Equation is---
--

x-
αt)+ψ(x+
αt) y(x,t)=0    

u_xx=(1/
α^2)u_t

u_xx=(1/
α^2)u_t^
2



8
The Possion equation is of the form -
----

x-
αt)+ψ(x+
αt)

u_xx=(1/
α^2)u_t

u_xx=(1/
α^2)u_tt

u_xx+u_
yy=f(x,y)

9

The steady state temperature of a 
rod of length l whose ends are kept 
at 30 and 40 is

u(x)= 
10x/l + 
30    

u(x)= 
40x/l      

u(x)= 
30x/l    None        

10
The temperature distribution of the 
plate in the steady state is ---------

u_xx=(1/
α^2)u_t

u_xx+u_
yy=0

u_xx=(1/
α^2)u_t^
2 u_xx=u_t

11
Two dimensional heat Equation is 
known as ----------equation. partial          Radio laplace     Poisson

12

equation ,if the temperature function 
u is independent of  time, then the 
solution is------

u(x)= ax 
+ b     

u(x,t)= 
a(x,t)

u(t) =  at 
+ b

u(t) =  at 
- b

13 f_xx+2f_xy+4f_yy=0 is a ______ Elliptic
Hyperbol
ic Parabolic circle

14 f_xx=2f_yy is a --------- Elliptic
Hyperbol
ic Parabolic circle

15 f_xx-2f_xy+f_yy=0 is a -----------
Hyperbol
ic Elliptic Parabolic circle

16 The diffusivity of substance is------ k/pc    pc k pc/k                                                             

17
Heat flows from a  ------- 
temperature

higher to 
lower 

lower to 
higher normal high 

18

produce a given temperature change 
in  a bodies propostional to the  -----
-- of the body and to the 

temperat
ure heat mass wave                        

19

through an area is------ to the area 
and to the temperature gradient 
normal to the area. equal not equal lessthan 

proportio
nal     

20

In steady state conditions the 
temperature at any particular point 
does not vary with --- Time 

temperat
ure mass none                        

21
The wave equation is a linear and  --
----  equation

non 
homogen
eous 

homogen
eous quadratic none            



22

In method of separation of variables 
we assume the solution in the form 
of -----

u(x,y)=X
(x)

u(x,t)=X(
x)T(t) 

u(x,0)=u(
x,y)

u(x,y)=X
(y)Y(x)                                                                                         

23

u(x,t)=(Acosλx+Bsinλx)Ce^(-
(α^2))(λ^2)t) is the possible solution 
of ------ equation heat wave laplace none                                    

24
y=(Ax+B)(Ct+D) is the possible 
solution of ------ equation heat wave laplace none                                    

25

If the heat flow is one dimensional 
,then the --------  is a function x and 
t only heat light 

temperat
ure wave                       

26

X-axis ,then the rate of change of 
the temperature in the direction of 
the Y-axis will be ---------. one two zero five                                      

27
To solve y_tt=(α^2)yxx, we need ---
----- boundary conditions. 

if t>=0; 
y(l,t)=0 
if t>=0

if t>0; 
y(t)=0 if 
t=0

y(x,t)=0 
if t>0 none                                                                        

28

zero value on the R.H.S of the wave 
equation should be taken as the ------
-------- boundary condition. First Second Last none                                    

29

In one dimensional heat equation 
u_t= (α^2)u_xx, What does α^2     
stands for?  k/pc    pc k pc/k                                                             

30
The possible solution of wave 
equation is ----------

y=(Ax+B
)(Ct+D)

cosλx+B
sinλx)(Ce
^(λy)+De

u(x,t)=A
cosλx+B
sinλx

u(x,t)=A
cosλx-
Bsinλx

31
The possible solution of heat 
equation is ----------

cosλx+B
sinλx)Ce
^(-

cosλx+B
sinλx)(Ce
^(λy)+De

u(x,t)=A
cosλx+B
sinλx

u(x,t)=A
cosλx-
Bsinλx

32
If B^2-4AC = 0, then the differential 
equation is said to be______ parabolic elliptic 

hyperboli
c 

equally 
spaced 

33
If B^2-4AC > 0, then the differential 
equation is said to be______ parabolic elliptic 

hyperboli
c 

equally 
spaced 

34
If B^2-4AC < 0, then the differential 
equation is said to be______ parabolic elliptic 

hyperboli
c 

equally 
spaced 

35
The laplace equation in the polar 
coordinates is of the form-----

u_r+u_θ
=0

u_xx=(1/
α^2)u_t^
2

u_xx=(1/
α^2)u_t

(r^2)u_rr
+ru_r+u_
θθ=0



36

The flow is two dimensional the 
temperature at any point of the 
plane is ------- of Z-coordinates. linear 

independ
ent  

dependen
t  none                        

37

u(x,y)=(Acosλx+Bsinλx)(Ce^(λy)De
^(-λy)) is the possible solution of 
the _______equation. heat wave laplace none                                    

38
U(r,θ)=(A log r+B)(Cθ+D) is the 
possible solution of ------ equation heat wave laplace none                                    



opt6
opt 5 opt 6 Answer

cos x

b_n

π

b_n = 0

a_0 = 
a_n = 0

sin x

cos x

f(-x) = - 
f( x)

f(-x) = f( 
x)

even

odd



cosine

sine

finite

Dirichlet

finite

a 0 /2 + 
∑ (an  
cosnx+ 

Dirichlet

a 0 /2 + 
∑an cos( 
nπx/ l )2/ l  ∫f(x) 
cos 
(nπx/ l ) 
dx     
2/ l  ∫f(x) 
dx
2/ l  ∫f(x) 
sin( 
nπx/ l ) 
dx     

bn

a_0 & a_n

a_0/2+∑ 
a_n cos 
(nπx/ l )



∑bn sin 
nπx/ l

a_n

a_0

b_n

2π/n

π

2 π

bn = 0

b_n

Both 
a_0 and 
a_n

a0 = an = 
0

an odd 
function

a_0  = 
a_n  = 0

neither 
odd or 
even



bn

odd

even

even

odd

( 2/N)Σ y

(2/N)Σ y 
cos nx

 (2/N)Σ 
y sin nx

first 

a1cos x+ 
b1 sin x

2π

2π^2

discontin
ous

Continou
s



Continou
s

numerical 
 value

equally 
spaced

 
harmonic 
 analysis.

  f(x)= 
∑cn 
e^(inπ x/ l)  

  f(x)= 
∑cn 
e^(inπ x/ l)  

  
c_n=1/2l
∫f(x) e^(-

  
c_n=1/2l
∫f(x) e^(-

Root 
mean 
square 
value

Root 
mean 
square 
value

B^2-
4AC<0

B^2-
4AC=0

B^2-
4AC>0

u_xx+u_
yy=0

u_xx=(1/
α^2)u_t
u_xx=(1/
α^2)u_t^
2
x-
αt)+ψ(x+
αt)



u_xx+u_
yy=f(x,y)
u(x)= 
10x/l + 
30    

u_xx+u_
yy=0

laplace     

u(x)= ax 
+ b     

Elliptic

Hyperbol
ic

Parabolic

k/pc    

higher to 
lower 

mass

proportio
nal     

Time 

homogen
eous



u(x,t)=X(
x)T(t) 

heat 

wave 

temperat
ure 

zero
if t>=0; 
y(l,t)=0 
if t>=0

Last 

 k/pc    

y=(Ax+B
)(Ct+D)
cosλx+B
sinλx)Ce
^(-

parabolic

hyperboli
c 

elliptic 
(r^2)u_rr
+ru_r+u_
θθ=0



independ
ent  

laplace 

laplace 


