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MAS8352- LINEAR ALGEBRAAND PARTIAL DIFFERENTIAL EQUATIONS
Il year ECE- 111 Semester
UNIT I -VECTOR SPACES
CLASS NOTES

VECTOR SPACES

A vector space (or linear space) V over a field F consists of a set on which two operations (called
addition and scalar multiplication, respectively) are defined so that for each pair of elements X, y in V
there is a unique element x + y in V, and for each element ‘a’ in F and each element ‘x’ in V there is a
unique element ‘ax’ inV, such that the following conditions (Axioms) hold. In the list below, let x, y and z
be arbitrary vectors in V, and a and b scalars in F.

| Axiom H Meaning |
|Associativity of addition H(x +ty)+z=Xx+(y+2),Vx,y,z€V |
|Commutativity of addition Ix+y=y+x,Vx,yev |
Identity element of addition There exists an element 0 € V, called the zero vector, such

thatx + 0 =xforall x e V.

Inverse elements of addition For every x € V, there exists an element —x € V, called the
additive inverse of x, such that x + (—x) = 0.

Compatibility of scalar multiplication with
field multiplication

lldentity element of scalar multiplication  ||1x = x, where 1 denotes the multiplicative identity in F.

Distributivity of scalar multiplication
with respect to vector addition

Distributivity of scalar multiplication with
respect to field addition

a(bx) = (ab)x

a(x +y)=ax +ay

(a+ b)x =ax + bx

Elements of V are commonly called vectors. Elements of F are commonly called scalars.

NOTE:

» When the scalar field F is the real numbers R, the vector space is called a real vector space.

When the scalar field is the complex numbers C, the vector space is called a complex vector space.
These two cases are the ones used most often in engineering.

The general definition of a vector space allows scalars to be elements of any fixed field F. The
notion is then known as an F-vector spaces or a vector space over F.

Y YV V

Coordinate spaces

» The simplest example of a vector space over a field F is the field itself, equipped with its standard
addition and multiplication.

» More generally, a vector space can be composed of n-tuples (sequences of length n) of elements of
F, such as (as, a2, ..., an), where each a; is an element of F.

» A vector space composed of all the n-tuples of a field F is known as a coordinate space, usually
denoted F".

» The case n = 1 is the above-mentioned simplest example, in which the field F is also regarded as a
vector space over itself.

Complex numbers and other field extensions
» The set of complex numbers C, i.e., numbers that can be written in the form x + iy for real numbers

x and y where i is the imaginary unit, form a vector space over the reals with the usual addition and
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multiplication: (x +1iy)+(@a+ib)=(x+a) +i(y+b)and c- (x +iy) =(c-x) +i(c - y) for real
numbers x, y, a, b and c.

Function spaces

» Functions from any fixed set Q to a field F also form vector spaces, by performing addition and
scalar multiplication pointwise. That is, the sum of two functions f and g is the function (f + g)
given by (f + g)(w) = f(w) + g(w), and similarly for multiplication.

» Such function spaces occur in many geometric situations, when Q is the real line or an interval, or
other subsets of R.

Exmples of Vector Spaces:

Example 1:

(1) Let V and W be vector spaces over a field F. Let z = {(v,w):ve Vandw e w}. ThenZisa

vector space over F with the operations
(viyw )+ (v,,w,)=(v,+Vv,,w, +w,)and c(v,,w,) = (cv,,cw,)

Proof:

(1) Forall x,y in Z,

X=(v,w,),y=(v,,w,)

X+y=(V,+V,,W, +W,)
=(v,+v, ,w,+w, ) “ VandW arevectorspacesover F (commutativity)
=(v,,w,)+ (v,,w,)

=y+X
(2) Forall x,y,z inZ where z = (v, w),)

(X+y)+z=(v,+V,, W, +W_ )+ (v, W,)
=((v,+Vv,)+ v, (W, +w,)+w,)

=(v,+(v,+v),w,+(w,+w,)) ~ Vand W arevectorspacesoverF

=(V,w )+ (v, +V, W, +WwW,)
=X+ (y+ 2)
(3) There exists a zero vector (Ov, Ow) in Z where Ov and Ow are the zero vectors of V and W
respectively such that
x+(0,,0,)=(v,,w,)+(0,,0,)
=(v,+0,,w, +0,)
=(v,,w,) (“v,+0,=v, andw,+0, , =w,)
=X, VxeZ.
(4) For each element x in Z, there exists an element y in Z such that
x+y=(0,,0,)
(u,,v,)+(u,,v,)=1(0,,0,)
(u,,v,)=1(0,,0,)-(u,v,))

= (ov -u,0, - V1)



(5) For each element x in Z ,
1.x=1.(u,v)=(@Q.u,l.v)) “1lu =u &1lv =v,
=(u,,v,) =X
(6) For each pair of elementsa,be Fandx € Z
(ab)x = (ab)(u,,v,)
= ((ab)u,,(ab)v,)
= (a(bu,),a(bv,))
=a(bu,,bv,)
=a(bx)
(7) For each element a € F and each pair of elements x,y € Z ,
a(x +y)=a(v,+v,,w, +w,)

=(a(v,+v,),a(w, +w,))
=(av, +av,,aw, +aw,)
= (av,,aw )+ (av,,aw,)
=ax + ay

(8) For each pair of elementsa, b e Fand x € Z
(a+b)x = (a+ b)(v,,w,)

= ((a+b)v,,(a+b)w))

=(av, +bv ,aw +bw))

(av,,aw ) + (bv ,bw )
=a(v,,w,)+b(v,,w,)
= ax + bx
=~ Z is a Vector space over F. This space is called the direct sum of V and W.

Example 2:
For n > o, the set p, of polynomials of degree at most n consists of all polynomials of the form

n

a,+at+ 612t2 +7+at
vector space.

Proof:
(i) Let p(ty =a, +a,t+a,t’+ - +a t"and q(t) = b, + b,t+b,t” + - + b t", then p + q is defined by

where the coefficients a,, a, and the variable t are real numbers is a

(p+a)() =p(t)+q(t) =(a,+b)+(a,+b)t+(a,+ bz)tZ + 7+ (a, + bn)tn
p + q is a polynomial of degree less than or equal to n.

~p(1),a(t) € Pn= (p + q)(t) € Pn

The scalar multiple cp is the polynomial defined by

(cp)(1) = cp(t) = (ca,) + (ca)t+ (ca,)t’ + " +(ca )t

=cp is a polynomials of degree less than or equal to n.

= Cp € Py

It follows from the properties of the real numbers.
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(i) Let r(t) = c,+ct+c,t” + +c t".
((p+a) +1)(t) = (p+a)(t) + r(t)
=[(@,+by)+(a, +b)t+(a, +b )"+ 4 (a, + b )t" [+ (coreitrc,t’+ v th)
=(a,+b,+c,)+(a,+b, +c)t+(a,+b,+c )t + " +(a, +b, +c )t
=(a, +(by+c,))+(a, + (b, +c)t+(a,+ (b, +c,)t°+ " +(a, + (b, +c Nt
= (@ +atrat + 7 ra )+ [(by+eg)+ (b +c)te (b, +c,)t + 7+ (b +c )" ]
= p(t) + (q+r)(1)
=(p+(q+1))(t) Vp(t).q(t),r(t)eP,

(iii) If all the coefficients are zero, p is called zero polynomial.

The zero polynomial is included inp, even though its degree is not defined.

(iv) Clearly zero polynomial acts as the zero vector. Finally (—1)p acts as the negative of p.
(V) 1p(t) =p(t) Vv p(t) EPn

(vi) (ab)p(t) = (ab)(a, +a,t+ azt2 + 0+ ant")
= (aba,) + (aba,)t + (aba,)t’ + " + (aba )t"
=(a)(ba, + ba,t+ba,t’ + +bat")

= (a)(bp(t)) Vp(t)eP, ,a,beR

(viii) (a+Db)(p(t)) = (a+b)(a, +a,t+ azt2 + o+ ant”)
=(aa, +aa,t+aa,t’ + +aat")
+(ba, +bat+ba,t’ + = +bat")

=ap(t)+bp(t) vp(t)eP, ,a,beR
Thus Pn(t) is the vector space.

Example for not a VVector Space:

Example 3:

Let V denote the set of ordered pairs of real numbers. If (a1, az) and (bz, b2) are elements of V
and c < r, define (a1, a2) + (b1, b2) = (a1 + by, a2 b2) and c(a1, az) = (cas, caz2). Show that V is not a
Vector Space.

Proof:

(1) Forall x,yinV,

X =(a,a,),y=(b,,b,)

X+y=(a+hb,a,b,)
=(b,+a,,b,a,)
=y+X

(2) Forall x,y, z inV where z = (c,,c,)



(x+y)+z=[(a,,a,)+(b,,b,) ]+ (c,,c,)
=[(a,+b,,a,b,)]+ (c,,c,)
=((a,+b,)+c,,(a,b,)c,)
=(a,+b,+c,,a,b,c,)
=(a,+ (b, +c)),a,(b,c,))
=(a,,a,)+ (b, +c,,b,c,)
=(a,,a,)+[(b,,b,)+(c,,c,)]
=X+ (y+2)

(3) There exists a zero vector (b1, b2) in V such that

X+ (b,,b,)=(a,,a,)

(a,,a,)+(b,,b,)=(a,,a,)

(a,+b,,a,b,)=(a,,a,)

a,+b,=a &a,b,=a,

= b, =0 &b,=1

.. (0,1) e V is the zero vector.

(4) For each element x in 'V, there exists an element y in V such that

x+y=(0,1)

(a,,a,)+ (b,,b,)=1(0,1)
(a,+b,,a,b,)=(0,1)
a,+b, =0 & a,b, =1

1
= b, =-a, & bZ:a—ezR ifa,=0
2

Hence V is not a vector space over R.

Theorem 1 (Cancellation Law for Vector Addition):

If X, y, and z are vectors in a vector space V such thatx + z=y + z, thenx =y
Proof: From the definition of \ector space, there exists a vector v in V such that z + v=0.
Thusx=x+0=x+(z +V)
=(x+z)+v
=(y+z)+v
=yt (z+v)
=y+0=y.
Theorem 2: In any vector space V, the following statements are true:

(i) Ox = 0 for each x ¢ v

(i) (-a)x =- (ax) = a( -x)

(iii) a0 = 0 for each acF.

Proof:



(i) ConsiderOx+0x=(0+0)x (~(@a+hb)x=ax+bx, va,be Fand xeV
=0x (~0+0=0)
=0 x + 0 (By additive identity of vector space)
=0 + 0 x (By commutativity of addition)
ie, Ox+0x=0+0x
.0 x =0 (By cancellation Law for vector Addition).
(i1) The vector — (a x) is the unique element of V such that a x + (—(a x)) =0
Thus if a x + (—a) x =0, we have —(a x) = (—a) x
Butax+(-a)x=[at+(-a)]x (~(@a+b)x=ax+bxX,va,beFand xeV)
=0x
=0 (by (i)
~(Fa)x=—(ax).
In particular (-1) x=—(1x)=—x

a(-x)=a((-Dx)=[a-Dx]=(-a)x
~(ma)x=—(ax)=a(—x).

(iii) Since a(x+y) = ax+ay,VaeF and x e V, we have,

a0+al0=a(0+0)

=a0

=a 0+ 0 (By additive identity of vector space)
a0+a0=0+a0 (By commutativity of addition)
=a 0 = 0 (By cancellation Law for vector Addition).

a0=0VvVaekF

SUBSPACES
A nonempty subset W of a vector space V overa field is called a subspace of V if W is a vector space
over F with the operations as in V. Let V be a vector space and W be a subset of V. Then W is a subspace
of V if and only if the following conditions are hold:
(i) The zero vector of Vis in W.
(it) W is closed under vector addition. i.e., u+ v €eEW, Yu,v e W
(iii) W is closed under multiplication by scalars. i.e.,cu e W,Vc €F, ue W
Examples:
1. The set of all diagonal matrices is a subspace of Mmxn(F).
2. Let n be a non-negative integer and Pn(F) consists of all polynomials in P(F) having degree less
than or equal to n. Then Pn(F) is a subspace of P(F).
NOTE:

» Subspaces of V are vector spaces (over the same field) in their own right.

» A linear subspace of dimension 1 is a vector line.
» A linear subspace of dimension 2 is a vector plane.
» A linear subspace that contains all elements but one of a basis of the ambient space is a vector
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hyperplane.

Example 4: Is the following set a subspace of R??

A={(x, 3x+1): x eR}
Solution:

To establish that A is a subspace of R?, it must be shown that A is closed under addition and scalar
multiplication. If a counterexample to even one of these properties can be found, then the set is not a
subspace. In the present case, it is very easy to find such a counterexample. For instance, both u = (1, 4)
and v =(2, 7) are in A, but their sum, u + v = (3, 11), is not. In order for a vectorv=(v1,v2)tobeinA,
the second component (v 2) must be 1 more than three times the first component (v 1). Since 11 #3(3) + 1,
(3, 11) ¢ A. Therefore, the set A is not closed under addition, so A cannot be a subspace. Also u = (1, 4) is
in A, the scalar multiple 2 u = (2, 8) is not in A.

Example 5: Show that if V is a subspace of R", then V must contain the zero vector.
Solution:
First, choose any vector v in V. Since V is a subspace, it must be closed under scalar multiplication.

By selecting 0 as the scalar, the vector 0 v, which equals 0, must be in V. [Another method proceeds like
this: If v is in V, then the scalar multiple (—1) v =— v must also be in V. But then the sum of these two
vectors, v+ (—Vv) =0, must be in V, since V is closed under addition.]
Example 6: Does the plane P given by the equation 2 x + y — 3 z = 0 form a subspace of R 3?
One way to characterize P is to solve the given equation for y,
y =3z — 2x and write
P={(x, 3z-2x, 2): x, zeR}
If p1=(x1,321—-2x1,21) and p2= (X2,322—2X2,2Z2) are points in P, then their sum,

PtP: = I:I] + Xz, 32 +23)—2(x +x;3), 7+ 121

is also in P, so P is closed under addition.

Furthermore, if p = (x, 32— 2 x, 2) is a point in P, then any scalar multiple, &P = (kz, 3(kz)-2(kx), kz)
isalso in P, so P is also closed under scalar multiplication.

Therefore, P does indeed form a subspace of R 3. Note that P contains the origin.

Note:

By contrast, the plane 2 x +y — 3 z = 1, although parallel to P, is not a subspace of R * because it does not
contain (0, 0, 0). In fact, a plane in R 2 is a subspace of R % if and only if it contains the origin.

Example 7:

Let H be the set of points inside and on the unit circle in the xy-plane . That is, let



( - . :
H = [X} :x* +y® <1y, Find a specific example- two vectors and a scalar- to show that H is not a
y

L J
subspace of R? .

Proof:
Let :{[[i]szry gl}.
(1 1) (1 1)
LetU=L;;J&V=Lzzj
(1) (1) 2 1
L;) +L;J :Z:;<1 and
(%}2+[%J2:£=§<1, we have
u,veH
Now u+v—(i£\+(££\—(ii\
_Lzyzj L4’4J_L4’4J
(3) (3) _18
la) ") 16
Hence u+vegH
Let ¢ =4 be any scalar and u = (i,iwe H
(22

Now cu = 4[§§J= (2,2)

Since 2°+2°=8>1

ScuegH.
Theorem 3:
Given vi and vz in a vector space V and let H = span{vs, v2). Then H is a subspace of V.

Proof:

The zero vector is in H, since 0 = Ov1 + Ov. To show that H is closed under vector addition, take two
arbitrary vectors in H, say, u = s1vi + S2v2 and w = tiv + tave
For the vector space V,
U+ W = (S1v1 + Sovo) + (fave + tavo)
=(s1 + t1)v1 + (S2 + L)v2
So u +w is in H. Furthermore, if c is any scalar, cu = c(S1v1 + S2v2) = (CS1)V1 + (CS2)V2

which shows that cu is in H and H is closed under scalar multiplication.
Thus H is a subspace of V.
Theorem 4:

Any intersection of subspaces of a vector space V is a subspace of V.
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Proof:

Let C be a collection of subspaces of V, and let W denote the intersection of the subspaces in C.

Since every subspace contains the zero vector, 0 € W.

Leta € Fand x, y € W. Then x and y are contained in each subspace in C. Because each subspace in C is
closed under addition and scalar multiplication, it follows that x + y and ax are contained in each subspace
in C.

Hence x + y and a x are also contained in W, so that W is a subspace of V. ( Because, if V is a vector
space and W is a subset of V, then W is a subspace of V if and only if the following conditions hold for
the operations defined in V. (a) 0 € W. (b) x + y € W whenever x e W and y € W. (c) cx € W whenever ¢
eFand x e W.)

Theorem 5:

Let w,and w, be subspaces of a vector space V. Prove that w, v w, is a subspace of v if and only if
W, cW,O0rw, cw,
Proof:
Assume that w, u w, is a subspace of v . To prove that w, c w,orw, c w,.
Assume the contrary that w, /g/WZ and w, g/wl . Then there exists elements x «w, but x ¢ w, and
y e W, but y ¢ w,. Therefore, xand yew, uw,.
Since w, u w, is a subspace of v then x + yew, uw,.
Case 1: Takex + yew,.
Now x+ yew, and -x ew, then — x + x + ye w, = ye w,. This is a contradiction.
Case 2: Takex + yew, .
Now x+yew, and -y ew,then x + y + (-y)e w, = xe w,. This is a contradiction.
Therefore, w, cw, orw, c w,
Conversely, assume that w, < w, or w, < w,. To prove that w, v w, is a subspace of v .

Letw, cw,.Thenw, ow, =w, ,asubspace of v .

Letw, cw,. Thenw, uw, =w, , asubspaceof v .

Define sum of V:

Let w,and w, be subspaces of a vector space V. The sum of w_ and w, is defined as
W, +W,={x+y/xeW andyeW, }.
Direct sum of two subspaces:
A vector space V is called the direct sum of Wy and W2, if W1 and W» are subspaces of V such that (i)
W1+ W2 =V and (ii) Win W2 = ¢.
Theorem 6:
Let W: denote the set of all polynomials f(x)in P(F)such that in the representation



n

f(x)=a,x"+a, x""+ " +ax+a, wehave a, = 0 whenever i is even.

1

Likewise let w, denote the set of all polynomials g(x) in p(F) such that in the representation
g(x)=b_x"+b__x""+ +bx+b,, wehave b, = 0 wheneveriisodd. Then P(F) = w & w,.

Proof:
Clearly, w, nw, = {0}

3 5 L. 2n-1 |
P(F):{a1x+a3x +a.X ++a, X .aieF}

+{b0+b2x2+b4x4+“'+b x2":bieF}

2n

2 3 5 . 2n-1 2n |
={b0+a1x+b2x +a,x +b,x + 7 +a, x " +b, x .ai,bieF}

=W, e W,.
LINEAR COMBINATIONS AND SYSTEMS OF LINEAR EQUATIONS
In mathematics, a linear combination is an expression constructed from a set of terms by
multiplying each term by a constant and adding the results (e.g. a linear combination of x and y would be
any expression of the form ax + by, where a and b are constants).

Linear combination:

Let V be a vector space and S a nonempty subset of V. A vector v v is called a linear combination

of vectors of S if there exist a finite number of vectors ui, Uz, ... ,un in S and scalars az, az ,..., an in F such
thatv=ajui+axuz+... +anun.

In this case we also say that v is a linear combination of u;1, uz, ... ,un and call ai, a2 ,..., an the co-
efficients of the linear combination.

In any vector space V, Ov = 0 for each v in V. Thus the zero vector is a linear combination of any
nonempty subset of V.

Span of S: Let V be a vector space over a field F and S < V.The span of S, denoted span (S), is the set
consisting of all linear combinations of the vector in S. In particular span (¢)={0}.

Example 8:

Show that 3x*-2x* + 7x + 8 can be expressed as a linear combinations of x*-2x* -5x -3 and
3x°-5x° —4x-9

Proof:

Letu =x"-2x"-5x-3; u, =3x"-5x" - 4x-9
determine the scalars a,, a, such that
3x°-2x*+7x+8 = a,u; +a,u,
=al(x3-2x2 —5x—3)+a2(3x3-5x2 - 4x-9)

=(a, + 3a2)x3 +(-2a, —5612)x2 +(-5a, —4a,)x + (-3a, - 9a,)

10



Therefore,
a, +3a, =3
-2a,-%a, =-2
- 5al — 4a2 =7
-3a,-9a, =38
Solving the above system by elimination method

(1 3 3) (1 3 3)
| | ] | R, & R, + 2R,

|—2 -5 —2| | 0 1 4|

-~ R; & R; +5R;
s —a | 71 | o 11| 221
L J ( JR4<—> R, + 3R,
-3 -9 8 0 0 17

The reduced equations are

a, +3a, =3
a2=4
lla, = 22
0=17

The last equation is impossible.

Hence,3x’ -2x* + 7x + 8 cannot be expressed as a linear combinations of x°-2x* -5x -3 and
3x°-5x° —4x-9 .

Example 9:
0) (o 0 0) (0 O
Show that the matrices(1 \, ( 1\, ( \, ( \generate Max2(F).
o o) lo o) (2 o)lo 1)
Proof:
Let (a“ a”j be any arbitrary matrix in Max2(F). Let a, b, ¢ and d by any scalarsso that
aZl a22

= a=a,,b=a, c=a,,andd=a,,

~the given matrices generate Maxz(F).

Example 10:

Prove that the vector (2,6,8) can be expressed as a linear combinations of

1,21),(-2,-4,-2),(0,2,3),(2,0,-3),(-3,8,16)

Proof:
11



Letu, = @21); u, =(-2,-4,-2); u, =(0,2,3);u, = (2,0,-3) ;u, = (-3,816).
determine the scalars a,,a,,a,,a,, a, such that

(2,6,8)=a,u, +a,u, +au, +a,u, +a.u,

a,(1,2,1)+a,(-2,-4,-2)+a,(0,2,3) + a,(2,0,-3) + a,(-3,8,16)

=(a, - 2a, +2a,-3a,,2a, —4a, + 2a, +8a,,a, — 2a, +3a, - 3a, +16a;)

Therefore,

Il
N

a, —2a, +0a, +2a, - 3a,

2a, —4a, +2a,+0a,+8a, =6

a, -2a,+3a,-3a,+16a, =8
Solving the above system by elimination method

1 -2 0 2 -3|2)Y (1 -2 0 2 -3/ 2)
|~| | R, < R, -2R;
2 -4 2 0 8 6|~ |0 0 2 -4 14 | 2

(
|
Ll 2 3 -3 186 SJ Lo 0 3 -5 19 6J Rs & R~ Ry

1 -2 0 2 =3 2)
|
0 1 -2 7 1| Ry ¢ 2R, -3R,

(1 -2 0 0 1 -4
| | R, R -R
~ )0 0 1 0 3 7 ' v
R, < R, +R
Lo 0 0 2 -4 GJ 2 28

The reduced equations are

a, —2a,+a, =-4

a; +3a, =7

2a,—4a, =6
Take a,=0 and a,=0 weget, a,=-4, a,=7, a
5. (2,6,8)=-4(1,2,1)+7(0,2,3)+3(2,0,-3)

Thus, (2,6,8) can be expressed as a linear combinations of (1,2,1),(-2,-4,-2),(0,2,3),(2,0,-3) ,(-3,8,16)

Generator Set:
A subset S of a vector space V generates (or spans) V if span(s) = V. Here S is called generator set of V.
Example 11:

Prove that the vectors (1, 1, 0), (1, 0, 1) and (0, 1, 1) generate R3.

Proof:

The vectors (1, 1, 0), (1, 0, 1) and (0, 1, 1) generate R since any arbitrary vector (a, a, as) in R®is a
linear combination of the three given vectors; in fact,for the scalarsr, s, and t
We have, r(1,1,0) +5s(1,0,1)+t(0, 1, 1) = (a1, az, a3)

12



r+s=a,---(1)
Equatingwe get, r+t=a, - - -(2)
s+t=a,---(3)

Adding above, 2(r+s+t)=a, +a, +a,

a,+a,+a
r+s+t= ——=——=
2

a, +a, +a
r+a3:% by (3)

1
Sr= ;(a1+ a,—a,)

— 1 1
Similarly, s= —(a, -a, +a,),and t=—(-a, +a, +a,).
2 2

_(a1+a2—a) (a a.)

—a, + —-a,+a,+a
3 (171,0)_,_#(17071)4_#
2

Thus, (a,,a,,a,) 22(0,1,1)
~.(1,1,0), (1,0, 1) and (0, 1, 1) generate R®.
Example 12:

Show that W is in the subspace of R* spanned by vi, vz, v3, where
[ 9] [ 8] [—-4] [ =71

wol Ty Z1TM |,V:I ®
-4l " (=3 * |-2] ° |-5]
I R Y B R T

To prove w € span{vi, V2, v3}, we must find some scalars a, b, and ¢ (not all zero) in R
such that w = avy + bvz + cvs

ro1 18] [-41 [-7]7
I R SN B R
I loal T lepl 7 Tecl |
BRERHEN
L 7] L9 [-8] [-18]
= 8a-4b-7c=9-> (1)
—4a+3b+6c=-4-> (2)
-3a-2b-5c=-4—> (3)

9a-8b-18c =7 - (4)

(1)=> 8a-4b-7c =9

(2)x2 = -8a+6b+12c=-8

Adding, we get 2b +5c =1 — (5)
(4)=> 9a-8b-18c =7

(3)x3= -9a-6b-15c=-12

13



Adding, we get—14b - 33c = -5

= 14b+33c=5
(5)x7 = 14b +35c =7
subtracting, we get —2¢c = -2

= c=1

substituting c =1in (1) & (2),we have
8a -4b =16 - (6)
-4a+3b=-10—> (7)
(6) > 8a—-4b =16
(7)x2 = -8a+6b=-20
Adding,
2b = -4
= b=-2
Substituting c =1 and b =-2 in (1), we get a =1.
La=1,b=-2,c=1

W=V, -2V, +V,

Hence ,W is in the subspace of R* spanned by vi, vz, V3

Theorem 7:

The span of any subset S of a vector space V is a subspace of V. Moreover, any subspace of V
that contains S must also contain the span of S

Proof:

Case (i): If S = @, then span(®) = {0}, which is a subspace that is contained in any subspace of V.
Case(ii): If S # @, then S contains a vector z, so 0 z = 0 is in span (S).

Let X, y € span (S). Then there exist vectors

u,,u,,”"u_,v,v,,” v _in S and scalarsa a,,~"a_,b,,b,,” b _such that

1! n m' 1!

X=au +a,u,+"""+a_u_and

y=byv, +b,v,++b v .

Then x+y=au,+a,u,+""+a u_ +bv, +b,v,+""+b v,
and for any scalar c,

cx = (ca,)u, +(ca,)u, + " +(ca_)u_ are clearly linear combinations of vectors in S,

sox +Yy espan(S) and cx € span(S).
Thus span(S) is a subspace of V.

Now let W denote any subspace of V that contains S. Now to prove span(S)< W.

Let W € span(S), then W is of the form

14



w=cw,+c,w,+""" +cw, for some vectors w,,w,""w, in S and some scalars

k

c,,c,"c,.since Sc W, we have w ,w, " w, ke W.

SW=cw +Cc,w,+7 +Cc, W, e W

Since W is an arbitrary vector in span(S), belong to W, itfollows that span(S) c W.

LINEAR DEPENDENCE AND LINEAR INDEPENDENCE

Linear dependence set:A subset S of a vector space V is called linearly dependent set if there exist a
finite number of distinct vectors ug, Uz, ...... , un in S and scalars ai, a, .....,an, not all zero, such that
aius +azuz +....... + anln = 0.
Linear independence set: A subset S of a vector space that is not linearly dependent then it is called
linearly independent
Example 13:
Show that the vectors u =(1, 1, 0), v=(1, 3, 2), w =(4, 9, 5) are linearly dependent

Proof:

Letu=(1,1,0),v=(1,3,2),w=(4,9,5). Thenu, v, ware linearly dependent, because
3u+5v-2w=3(1,1,0)+5(1,3,2)-2(4,9,5 =(0,0,0)=0.
Example 14:

Show that the vectors u =(1, 2, 3), v =(2, 5, 7), w =(1, 3, 5) are linearly independent
Proof:

To show that the vectors u = (1, 2, 3),v=(2, 5, 7), w = (1, 3, 5) are linearly independent, we form the

vector equation au + bv + cw = 0, where a, b, ¢ are unknown scalars. This yields

1

X, 2 +yI5i+23

1] 1]
2| o
3] [7] [5]
or a+2b+c=0 --(2)

2a+5b+3c=0 ---(2)

3a+7b+5c=0---(3)
2 -(1)x2=>b+c=0--(4)
(3)- (1)x3=>b-2c=0---(5)
(4) — (5) => 3¢ = 0---(6)

Back — substitution yields a =0, b = 0, ¢ = 0. We have shown that au + bv +cw =0 implies

a=0,b=0,c=0. Therefore, u, v, w are linearly independent.

Example 15:

In I\/szg(R),showthatthesetj[l - 2}[ J ’ llﬁ is linearly dependent
-4 0 5)(6 -2 -7 -3 2

Proof:

15



r{+ -3 27 [-3 7 47 T[-2 3 117 [o o0 0]
Let a +b +cC =

L—4 0 SJ {6 -2 —7J {—1 -3 2J Lo 0 OJ
a-3b-2c=0;-3a+7b+3c=0;2a+4b+11c=0; -4a+6b-c=0;
0.a—-2b-3c=0;5a-7b+2c=0
UseGaussElimination Method
Write theaugmented matrix for the first threeequations
[1 -3 -2 0]
|73 7 3 OI

|[2 4 11 0]

1 -3 -2 0]
-2 -3 oI R, =R, +3R,,R, =R, - 2R,
10 15 0]

1 -3 -2 0]

~,0 -2 -3 OI R, =R, +5R,
lo 0o o o0

By back substitution
a-3b-2c=0-> (1)
—-2b-3c=0-> (2)

-2b

(2) = -2b=3c=>c¢c=—
3

Letustakeb=3

then c=-2, a=5

Hence the given set is linearly dependent because

Example 16:
Determine whether {x*+2x°, - x* +3x+1, x’-x"+2x-1} in P,(R) is linearly dependent or not.

Solution:

Letu=x*+2x",v=—-x?+3x+1, w=x"-x"+2x-1
Considerau+ bv+cw=0

a(x3+2x2)+b(—x2+3x+1)+c(x3—x2+2x—1)=0

16



(a+c)x3+(2a—b—c)x2+(3b+20)x+(b—c):0
a+c=0-> (1)

2a-b-c=0-> (2)

3b+2=0— (3)

b-c=0— (4)

(4)y=>b=c

Sub b=cin (3) = b=0

= a=0

La=b=c=0
Hence u, v, w are linearly independent.
Theorem 8:
Let S be a linearly independent subset of a vector space V and letv € V such that v ¢ S.

Then S U {v} is linearly dependent if and only if v e span(S).
Proof:
If v e span(S), then v is a linear combination of vectors from S.

i.e.there exists ui, ..., une Sand ay, ..., ane Fsuch that v =aju; + ... + apun.

aily + ... +anun + (-1)v = 0.

Set an+1 =-1 and un+1 = V.

>i=1™! ajui = 0, where not all & = 0 because an+1# 0.

.S U {v}is linearly dependent.

Converse part, If S U {v} is linearly dependent, then Juy, ..., une Sand ay, ..., an, an+1€ F such that
aily + ... +anun + ans1v = 0, where not all ai = 0.

ailz + ... + anln = (-1)an+1v

V = (—ar/an+1)us + ... + (—an/an+1)un, where (—aifan+1) € F Vi.

v is a linear combination of vectors ui, ..., un from S.

=V € span(S)
BASES AND DIMENSION
Basis: Abasis B for a vector space V is a linearly independent subset of V that generates V. If B is a basis

for V, we also say that the vectors of B form a basis for V.
Example:
1) For the vector space F", {e1, e2,..., en} is a basis.
Wheree1=(1,0,0, ...,0),e2=(0, 1, 0,...,0),...,en = (0, 0,..., 0, 1).

2)For the vector space vector space of all polynomials of degree < n, Pn(F), {1,X,X?,...,x"} is a basis.

3) For the vector space of all polynomials of any degreeP(F), {1, X, x?, x3, ...} is a basis.
Example 17:

Prove that the vectors u1=(2,-3,1), uz=(1,4,-2), us=(-8,12,-4), us=(1,37,-17)and us=(-3,-5,8) generate R®.
Find a subset of the set {u,,u,,u,,u,,u.} thatis a basis for R®.

17



Proof:

Let us select any non-zero vector from the set
S = {ul,uz,ug,u4,u5}, say (2,-3,1) to be a vector in the basis.

Since (-8,12,-4) = —4(2,-3,1), the set{(2,-3,1), (-8,12,—-4)}is linearly dependent.

Hence we do not include (-8, 12, —4), in our basis. Whereas (1, 4, —2) is not a multiple of (2,—3, 1) and
viceversa, so the set {(2,—3,1), (1,4, =2)} is linearly independent. So we include (1,4,—2) in our basis.

Now consider the set {(2,-3,1), (1,4, =2), (1,37,—17)} by adjoining (1,37,—17).

We include (1,37,—17) in our basis or exclude it from the basis according to whether the set is linearly
independent or dependent. Since us = —3uz + 7uy, the set {us, uz,us} is linearly dependent,so we exclude us
from our basis. Next let us include us = (=3, —5, 8) to the set {(2,—3,1), (1,4, —2). Now consider the set {us,
Uz,Us }.

To check {uz, uz,us} is linearly independent or not.

Consider a(2,-3,1) + b(1,4,-2) + ¢c(-3,-5,8) = (0,0,0)
2a+b-3c=0 - (1)
-3a+4b-5¢c=0-> (2)
a-2b+8c=0 - (3)

Consider the augmented matrix

(2 1 -3 0)
| |

-3 4 -5 0
kl -2 8 OJ
(2 1 -3 0)
ilo 11 1 O|R2:2R2+3R1&R3:2R3—R1
LO -5 13 OJ
(2 1 -3 0)
1lo 11 10 O|R3:11R3—Rl
LO 0 48 OJ
= 2a+b-3c=0

1b -19¢c =0

48c =0

Back substitution yieldsa=b=c=0

. the set {ul,uz,us} is linearly independent.

Hence it forms a basis for R >

Theorem 9:

Let V be a vector space and B = {ua, ..., un} be a subset of V.Then B is a basis for V if and only if
each veV can be uniquely expressed as a linear combination of vectors in .

Proof:

18



Assume thatp is a basis for V then B is a linearly independent set and span(p) =V
Let v € V then v espan(p). Therefore v can be expressed as a linear combinations of vectors in f.
I.e. there exists scalars as, ..., ane Fsuchthat v =3 au,

To prove uniqueness, suppose there exists scalars by, ..., bhe Fsuch that v =3 bu, .

i=1

Now, v—v =3 (a, -b)u,.Since B is a linearly independent then aj — bi = 0 = ai = b;.

i=1
-.each veV is uniquely expressed as a linear combination of vectors in f3.
Converse part: Assume that each v € V can be uniquely expressed as a linear combination of vectors in 3,

then there exists scalars ay, ..., ane Fsuch that v =3 au,.

i=1

Therefore, 0 e V. Has only trivial representation given byo =" cu, .

Hencep is linearly independent.
Further, each v € V can be uniquely expressed as a linear combination of vectors in . .. VVcspan(B).

Also, Span(B)c V.
= Span(B) = V.

Hence B is a basis for V.

Theorem 10:
Let H and K be subspaces of a vector space V. Then dim(H N K) <dim H
Proof:

Let {v1,....,vp} be a basis for H N K. Since {vi,....,vp} IS a linearly independent subset of H, hence
{v1,....vp} can be expanded , if necessary, to a basis for H. Since the dimension of a subspace is just a
number of vectors in a basis, it follows that dim(H N K) =p < dim H.

Finite dimensional vector space:

A vector space is called finite dimensional if it has a basis consisting of finite number of vectors. The
unique number of vectors in each basis for V is called the dimension of V and is denoted by dim(V).

A vector space that is not finite dimensional is called infinite dimensional.

NOTE:

> Vector space {0} has dimension zero.

Vector space Pn(F) has dimension n+1.

>

» Vector space Mmxn(F) has dimension mn

» Over the field of complex numbers, the vector space of complex numbers has dimension 1. ( A
basis is {1} ).

Over the field of real numbers, the vector space of complex numbers has dimension 2. ( A basis is
(Li}).

» Every vector space has a basis.

A\
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The dimension of the coordinate space F" is n

The dimension of the polynomial ring F[x] is countably infinite, a basis is given by 1, x, X2, ...

» The dimension of more general function spaces, such as the space of functions on some (bounded
or unbounded) interval, is infinite.

» The dimension of the solution space of a homogeneous ordinary differential equation equals the
degree of the equation.

> Expressed in terms of elements, the span is the subspace consisting of all the linear combinations
of elements of S.

» In avector space of finite dimension n, a vector hyperplane is a subspace of dimension n — 1.

\ A%

Example 18:
[a—3b+6¢C]
| 5a + 4d |
Find the dimensions of the subspace H = i ; ; I a,b,c,dinR
—2Cc —

s

Solution:

Clearly H is the set of all linear combinations of the vectors

NN
M RS VIR I BV I VR
o
o) Lo) o] [5]

v1# 0, v2 is not a multiple of vy, but vz is a multiple of v.. By the spanning Set theorem, we may discard v
and still have a set that spans H. Finally, v4 is not a linear combination of vi and v2. So {v1, vz, v4} is
linearly independent and hence is a basis for H. Thus dim H = 3.

Example 19:

Let V be a space of 2x2 matrices over R and let the sub-space generated by

1171 11T 2 4] T 1 7]
L—4 2J'L—1 5J L—s 7J and L—s 1J
Show that (i) ! 1 -s1fo 21]“‘ basis set (i) dim (W) =2
ow a | orms a aslIs se 11 m =7.
- 2)1 1]
Solution:

The basis setof V(R) is

(f1 o]fo 170 o]fo o7l

"o oo o)1 offo 1]

The co-ordinate of vectors X1, X2, X3, X4 relatived to the basis S1 are (1, -5, -4, 2), (1, 1, -1, 5), (2, -4, -5, 7),
(1, -7, -5, 1) reapecively.
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Thus form the matrix whose rows are given vectors

Consider the augmented matrix

(1 -5 -4 2)
Il 1 -1 SI
A =
l2 -4 -5 7]

| . ] 5 5 | [Operating R, (-1) ]
0| | | R (—2)‘
lo 6 3 3l | 31 |

_1J L R41(_1)J

Operating R -1
DIO 6 3 3I |Fp g R ,(-1)]

1
| R (D)
3

|
|
I ]

The non — zero rows(1,-5,-4,2) and (0,6,3,3) of the above echelon matrix form a basis.

Hence thesetof corresponding matrices is

. _JF 1 -5]7T0 211}
1_d—4 2J'L1 1JJ'

which forms abasissetW.

Hence dim(W) = 2.

Theorem 11:

Replacement Theorem:

Let V be a vector space that is spanned by a set G containing n vectors. Let L € V be a linearly
independent subset containing m vectors. Then m < n and there exists a subset H of G containing exactly
n —m vectors such that LUH generates V

Proof:

The proof is by mathematical induction on m.

Start with m = 0. In that case L = @, the empty set, and so taking H = G gives the desired result.

Let's assume this theorem is true for some integer m > 0. We prove that the theorem is true for m + 1.

Let L= {vi}rj":l1 and define it as a linearly independent subset of V consisting of m + 1 vectors.

Since any subset of a linearly independent set is linearly independent as well (S1<€ S2 €V), then {v,} "is

linearly independent also.

It then says to use the induction hypothesis to say that m > n

m

The next step is to say that there is therefore another subset, {u,}" " of G such that {u,}" " spans V. That

1

being the case there are scalars {a,}”  and {b,}" " which we can multiply by the vectors vj and uk,

21



Then add the two sets of vectors, yielding

m+1 m+1

dayv, t> bu, =Vmi ...

j=1 j=1

*)

Note that n —m > 0 -- otherwise vm+1 is linearly dependent (contradiction ). But then it says not only is

n>mbut n>m+1.

Moreover, some bi, say bz is nonzero, for otherwise we obtain the same contradiction. Solving (*) for uy

gives

U = (—b, " ag)vit---+(—b, " am)Vm+ (b, )Vm+1H(—b, " b2)uz+ - +(—b

" bn-m)Un-m

Let H = {uo,...,ur-m}. Then uy € span(LUH) and because vi,...,Vm,U2,...,Un-m are clearly in span(LUH), it

follows that L'UH’ = {v1,...,Vm,Us,...,Ur-m} S span(LUH).

Because L'UH’ generates V, span(LUH) generates V.

Since H is a subset of G which contains (n — m) — 1 = n — (m+1) vectors the theorem is true for m + 1.

This completes the induction.
The Lagrange Interpolation Formula:

Let a,,a,,

f,(x), f,(x),-, f (x) defined by

_1_”[ X-c,

c,—C,

(X - Co)”' (X - Ci,1)(x - Ci+1)”' (X - Cn)

(c;=co) (e, =c ), —¢p ) (¢, —c)

f(x)=

o

k
Kzi

#

are called the Lagrange polynomials (associated with ¢ ,c,,

Example 20:

,a, be distinct scalars in an infinite field F.The polynomials

c,)

Find an approximate polynomial for f(x) using Lagrange’s interpolation for the following data

Xx 01| 2| 5

fx) | 2 [3] 12 | 147
Solution:
The Lagrange’s interpolation formula
(x = x)(x = X, )(x = x;) (X = X ) (X = X, )(x = X;)
y=f(x)= Yo
(Xo - Xl)(XO - Xz)(xo - Xs) (X1 - Xo1)(X1 - Xz)(xl - Xs)
(X = X)X = x )(x = x;) (X = %) (X = x)(x = x,)
(Xz - Xo)(xz - Xl)(XZ - Xs) ‘ (Xs - Xo)(X3 - Xl)(XS - Xz) .

_x-Dx - 2)(x - 5) ) +(X—0)(X—2)(X—5) )+

(x =0)(x =1)(x - 5) 12

(0-1)(0 - 2)(0 - 5) (L-0)1-2)1-5) (2-0)(2-1)(2-5)

1 3 2
=—[-x"+ X" - X —
[ 166 184x - 40]
20

Example 21:

(x =0)(x =1)(x - 2)
+
(5-0)(5-1)(5-2)

(147)

Using Lagrange’s formula find the polynomial for the following data

X 01| 2 4

f(x) | 2 3|12 | 147
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Solution:

(x = x)(x = x,)(x=x;) (X = X )(x = X, )(x = X;)
y(x)= f(x)= Yo
(XO—Xl)(XO—XZ)(XO—X3) (Xl_xo)(xl_xz)(xl_x3)
(x—xo)(x—xl)(x—xg) yo4 (x—xo)(x—xl)(x—xz)
(XZ—XO)(XZ—Xl)(XZ—X3) (XB—XO)(X3—X1)(X3—X2) ’
YOx) = f(x)= (x -1 (x-=2)(x-4) (2)+ (x=0)(x—=2)(x—-4) 3
(0-1)(0-2)(0-4) @a-0)1-2)1-4)
. (x-=0)(x—=1)(x—-4) 1214 (x=0)(x—=-21)(x-2) (147)
(2-0)(2-1)(2-4) (4-0)(4-1)(4-2)
2 2
f(X):(x—l)(x -6x+8) 2)+(X)(X —6x+8)(3)
(-8) (3)
2 2
. (x)(x” =5x+ 4) 12y + (x)(x™ =3x+ 2) 147)

(=4)

x3—7x2+14x—8

= +(x3—6x2+8x)+(—3x3+15x2—12x)+

(24

49x% —147 x* +98x

-4 8
—x3[ %+1 3+£}+x2{3—6+15—%}+x[—%+8 12+98—8}+[j}
31 ; 61 , 38
=—X ——X +—X+2
8 8 8

simplifying further we get

1
F(x) = =316 - 61x2 + 38x + 16}

8
Example 22:
Using Lagrange’s interpolation formula, find y(10) given that y(5)=12,y(6)=13,y(9)=14 and
y(11)=16.
Solution:
y = f(x) = (x — xl)(x — x2)(x - x3) Ve (x - xo)(x - xz)(x - x3) y i
(X = X)(Xg = X3)(Xg = X3) (Xg = Xg)(Xg = X3) (X1 = X3)
(X = Xg)(X = X )(X = X3) (X = Xp)(X = X )(X = X5) y
(Xy = Xg) (X = %) (X5 = X3) (X3 = Xg) (X3 = %) (X3 = X3) ’
y = f(x) = (x=6)(x=-9)(x-11) 12) + (x =5)(x=-9)(x-11) 13)
(5-6)(5-9)(5-11) (6 —5)(6 - 9)(6 —11)
. (x =5)(x-6)(x-11) 14y + (x =5)(x=6)(x-9) 16)

(9-5)(9-6)(9-11)
putx =10
y(10) =14.6666

(11-5)(11-6)(11-9)
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Questions

The set of all linear combinations of finite sets of elements
of Sis calledthe  of S.
The vector space {0} then the dimensionis .

The of two subspaces of a vector space is a subspace.
The intersection of any number of subspaces of a vectors

space Visa __ of V.

Row equivalence matrices have the same space.

The nonzero rows of a matrix in echelon form are

Any subset of a linearly independent setis .
A set S of vectors is a _ of V if it satisfies span and

linearly independent.

___ denotes the column space of A

Let V be a vector space then any n+1 or more vectors in V

arc

The  of T is defined to be the dimension of images.

Let V be a vector space of finite dimenstion n. Then any
n+1 or more vectors in V are

Let V be a vector space of finite dimenstion n. Then any
___ormore vectors in V are linearly dependent.

Let V be a vector space of finite dimenstion n. Then any
set S with n elements is a basis of V.

Let V be a vector space of finite dimenstion n. Then any
linearly independent set S with n elements is a of V.

Let V be a vector space of finite dimenstion n. Then any
spanning set T of V with n elements is a of V.

Let V be a vector space of finite dimenstion n. Then any
T of V with n elements is a basis of V.

The sum of two vectors is a

The product of a scalar and a vectorisa

{0} and V are subspaces of any vector space V. They are
called the  subspaces of V

Let V be a vector space and A and B are subspaces of V
then _ is a subspace of V

Let V be a vector space and A and B are subspaces of V
then A is a subspace of

Let V be a vector space and A and B are subspaces of V
then B is a subspace of

optl
linear
dependen
t
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union
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scalar
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Let S be a non-empty subset of a vector space V. Then the linearly
set of all _ of finite sets of elements of S is called the dependen

linear span of S.
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The Linear span is denoted by dim V

Let V be a vector space over a field F and S be a non-empty linear

subset of V. Then L(S)isa __ of V. span
LIL(S)]=__ dim V
Any vector space is an abelian group with respect to

vector addition
InR, let S= {1}. Then L(S) = S

InC, let S= {1, i}. Then L(S) = S

dmS  L(S) S

linear linear
independ dependen
ent t subspace

dimsS  L(S) S
subtractio multiplica

n tion division
C R Q
C R {a+bi}

L(S)

subspace
L(S)

addition
R
C



MA8352- LINEAR ALGEBRA AND PARTIAL DIFFERENTIAL EQUATIONS
Il year ECE- 11 Semester
Important Problems

UNIT Il LINEAR TRANSFORMATION AND DIAGONALIZATION

Linear transformation on a vector space:

Let V and W be vector spaces over F. We call a function T :V — W a linear transformation from V to W
if for all x,y € V and c € F, we have

a) T(x+y)=T(x)+ T(y)and

b) T(cx) =cT(x).

Properties of a function T:

Let T:V — W be alinear transformation from V to W. If for all x,y € V and c € F, we have
1. If Tis linear, then T(0) = 0.

2. Tis linear if and only if T(cx +y) = cT(x) + T(y)

3. If Tis linear, then T(x —y) = T(X) — T(y)

4. Tis linear if and only if, for X1, X2, ... ,Xn € V and ay, az, ..., an € F, we have

n

T [Zn: aixiJ => aT(x).

i=1

Example 1:
Show that T: R?>- R2defined by T(a1,a2) = (2a1 + az, a1) is linear.
Proof:

Letx, yeR? and c € R, where X = (by, b2), y = (d1, d2)
Since we know that T is linear if and only if T(x +y) =cT (x) + T(y)
Now (x +y) = (cby + d1, chz + by)
T(cx +y) = (2(cby + d1) + cb2 + d2, cby + d1)
Also cT(x) + T(y) = c(2by +b2, b1) + (2d1 + d2, d1)
= (2chy + cby + 2d1 + d2, cby + d1)
= (2(cby + dy) + cb2 + d2, cby +dy)
T(ex +y) =cT(x) + T(y)
Example 2:

For any angle o, define T 1, :R* - R by therule: T,(a,, a,) isthe vector obtained by rotating (a1, a2)
counterclockwise by ¢ if (a1, a2) # (0, 0), and T,(0,0) = (0,0). Then T,:R* - R” isa linear
transformation that is called the rotation by o .
Example 3:
Define T :R* - R* by T(a1, a2) = (a1, —az). T is called the reflection about the x-axis.
Example 4:
Define T :R* - R* by T(a1, a2) = (a1, 0). T is called the projection on the x-axis.
Null space of T:
Let VV and W be vector spaces and let T : V=W be linear. The null space or kernel, N(T) is the
set of all vectors x in V such that T(x) = 0. i.e, N(T)= {x e V: T(x) =0}.
Range of T:

The Range or image R(T) is the subset of W consisting of all images under T of vectors in
V. ie,R(T)={T(x):xeV}.




Example 4: Let T :R° - R” be the linear transformation defined by T (a,,a,,a,)=(a, - a,,2a,) ,
Find N(T)and R(T) .

Solution :

Let VV and W be vector spaces and let T : VW be linear.

The null space or kernel, N(T) is the set of all vectors x in V such that T(x) =0

e, N(T)={xeV:T(x)=0}.

The Range or image R(T) is the subset of W consisting of all images under T of vectors in V
e, R(T)={T(x):x e V}.

Given:T (a,,a,,a,)=(a, - a,,2a,)

N(T) = {xe V:T(x)=0}.

T(a, a,a,)=(a -a,2a,)= (0,0)

= a1=az and as=0

~N(T)={(a,,a,,0):ae R}

SR(T)={T(x):xeV}
:{(al—az,Zag):al,az,a3eR}
=R’
Example 5:
For the following linear operator T on a vector space V and ordered basis p compute [T]p
V= R? T(a\: (10a - 6b\and[5=<w1\ (2\1F
’ LbJ Ll?a - 10bJ LLzJ'LsJJ
Solution:
T(a\:(loa - 6b)
o) la7a - 100
T4 (10— 12) (-2)
l2)"lar- 20) 7[5
T (2) (20 - 18) (2)
(3) (e = 30) 7|4

Example 6:
T(1) =0, Zero Polynomial
T(t) = 1, Constant Polynomial
T(t?) = 2t
[0] [1] [0]
[TD], =I0I, [T (], =}o I [T(t5], =I2:
Lo} 0] 0]
[0 1 0]
[T], = } 0 0 2 I

[0 0 0]




Theorem 1 (Dimension Theorem):
Let VV and W be vector spaces,and let T :v — w be linear. If V is finite-dimensional, then
nullity(T) + rank(T) = dim(V).
Proof: Suppose that dim(V) = n, dim(N(T)) =k, and {v,, v, v, } is a basis for N(T).

We know that if W is a subspace of a finite-dimensional vector space V, then any basis for W can be

extended to a basis for V. So we may extend {v,, v, v, } toabasis g ={v,, v, v }forV.

We claim that s = {T (v, ,).T(v,,,). T(v,)} is a basis for R(T).
First we prove that S generates R(T). Since T(Vi) =0 for 1 <i<k, we have
R(T)=span({T(v,), T(v,)," T(v,)})

=span({T(v,,,), T(v,,,). " T(v,)}) =span(s).

Now we prove that S is linearly independent.

Suppose that > b T(v,)=0forb, ,.b,,. b cF.

2
i=k+1

Since T is linear, we have

T[Zn: bivi]:o.

i=k+1

So > b, e N(T).

i=k+1

Hence there existc ,c,,”" ¢, € F such that

n k

> by, => cv,or Y (-c)v,+ > byv, =0.

Since B is a basis for V, we have bi = 0 for all i. Hence S is linearly independent. This shows that

T(v,.,), T(v

k+1 k+2)’

= T(v,) aredistinct; ~ rank(T) = n—k.
Hence the proof.

Note:

The rank-nullity theorem states that the rank and the nullity (the dimension of the kernel) sum to the
number of columns in a given matrix. If there is a matrix with rows and columns over a field, then This
can be generalized further to linear maps: if is a linear map, then

The rank-nullity theorem is further generalized by consideration of the fundamental subspaces and the
fundamental theorem of linear algebra.

The rank-nullity theorem is useful in calculating either one by calculating the other instead, which is
useful as it is often much easier to find the rank than the nullity (or vice versa).

Example 7:
Prove that the transformationT :m, , (F)—> M, , (F) defined by

T
0 0

( a, 8, a; \l _ ( 2a;,—a;, a,+ 2a12\
8y 8y 8,) L




(i) Tis linear
(i) Find bases for N(T) and R(T)
(iii) compute the nullity and rank (T) and verify the dimension theorem

(iv) use appropriate theorems to determine whether T is one to one oron to .

Solution :
Given:t |( A a13\|_ (2a,-a, a,+2a,)
L8 85 ) L 0 0
(a. a, a_) (b. b. b
Let,x:| 11 12 13|and y=| 11 12 13|EMZX3(F)andCeF
k a21 a22 a23) k b21 b22 b23)
x sy~ ‘(ca“ +b, ca,+b, ca,+b )
\ca, +b, ca,+b, ca,+b,)
T (CX+ Y)Z |( Z(Call ’ bll)_(caﬂ +b,) (Ca13 + bls)Jr 2 (ca, + blz)\
0 0 )
Also ,cT (x)+T (Y)=c( 2a,, -a, al3+2a12\+( 2b, b, b, +2b,)
L 0 0 J L 0 0 J

~ (2(a,-c+b,)—(ca,+b,) (ca,+b,)+2(ca,+b,))

0 0
ST(ex+y)=cT (x)+T(y)
Hence T is linear .

(i) N(T)={xeM, (F);T(x)=0}

all 12 13

: (
given T | |
k a21 a22 a23)

= 2a11 — a2 = 0---------- Q)
a3 +2a12 =0 ----—---- @)
= 2a11 = aw

a;z = -2 arp = -4anu

N (T ”au 2a,, —4a11\|l
. L2 @y a,, )]
(a,, 2a, -4a,) (1 2 -4) (0 0 0) (0 0 0) (0 0 0)
la, a, a, J:a“Lo 0 0J+a“L1 0 0J+a”L0 1 0J+a“Lo 0 1J
_ B -4Y (0 0 0Y(0 0 0Y(0 0 0}l
pasts for R(T) = “ OJ Ll 0 OJ Lo 1 oJ Lo 0 1”

R(M)={T(x);xe M, (F)}




T |(a11 a;, a13\| _ (2a11 —a, a;+ 2a12\
Ka21 a,, azs) 0 0

Let 2a;1-a;2 =sand a;3 + 2a12 =t

((s t)]
Then R(T):{LO

'BasisforR(T):{w1 o) e 1“}
- LLO oJ’Lo oJJ'

(iii) Nullity of T = dim (N(T)) =4
Rank (T) =dim(R(T)) =2

Dim (M2xs(F)) = 6

Nullity + Rank (T) =dim (Max3(F))

..Dimension theorem is verified.

(iv) Since N(T) #{0} ,by theorem

Let VV and W be vector spacesand let T :v — w be linear. Then T is one to one if and only if

N (T) = {0}

.. T 1S not one — one not onto.

Example 8:

For the following transformation T : R* — R® defined by T (a,,a,) = (a, + a,,0,2a, — a,) show that

(i) T is a linear transformation

(if) Find basis for both N(T) and R(T)

(iii) Compute the nullity and rank(T) and verify the dimension theorem

(iv) Finally use the appropriate theorems to determine whether T is one to one or on to.
Solution:

Consider the transformation T : R* — R® defined by T (a,,a,) = (a, + a,,0,2a, - a,)

Letx = (a1, a2) & y = (b1, b2) € R?and ¢ € R.




cx+ Yy =(ca, +b,ca,+b,)
T(cx+y)=T(ca, +b,ca,+b,)
= (ca,+b, +ca,+b,, 0,2(ca, +b,)-(ca, +b,))

Also
CT(x)+T(y)=c(a,+a,,0,2a, —a,)+ (b,+b,,0,2b, -D,)

= (ca,+ca,+b +b,,0,2ca ~ca,+2b ~-b,)

= (ca, + b, +ca, ++b,,0,2(ca, +b )~ (ca, +b,)
ST(ex+y)=cT(X)+T(y)

Hence T islinear.

N(T)={xeR":T(x)=0}
T(a,,a,)=(a, +a,,0,2a,-a,)=(0,0,0)
= a +a,=0& 2a,-a,=0

=> a,=-a & a,=2a,

This is possible only when a, =a, =0.
= N (T)={0}

Hence the basis for N(T) = ¢

R(T)={T(x):xeR"}
={(a,+a,,0,2a,-a,):a,,a, € R}
(a,+a,,0,2a, -a,)=4a,(1,0,2)+4a,(1,0,-1)

Basis for R(T) ={(1,0,2),(1,0,-1)}
nullity = dim (N (T)) =0.

Rank(T) =dim(R(T)) = 2

dim(V) =dim(R?) =2

nullity (T ) + rank(T) = dim (V).

N(T) = {O} if and only if Tis one to one.
R(T)=R®

s it isnot onto.

Theorem 2:

Let VV and W be vector spacesand let T :v — w be linear. Then T is one to one if and only if

N (T)={0}
Proof:

Suppose that T is one-to-one and x N(T). Then T(x) =0 =T(0). Since T is one-to-one, we have x =
0. Hence N(T) = {0}.Now assume that N(T) = {0}, and suppose that T(x) = T(y). Then 0 =T(x) — T(y) =

T(x-y)
~X—Yy€EN(T)={0}. Sox—-y=0,orx=y. This means that T is one-to-one.
Theorem 3:

Let V and W be vector spaces of equal (finite) dimension and let T :v — w be linear. Then the following
are equivalent.




(i) T is one to one
(if) T is onto

(i) rank(T) = dim(V).
Proof:
From the dimension theorem, we have nullity(T) + rank(T) = dim(V).

Now by the above theorem, we have that T is one-to-one if and only if N(T) = {0}, if and only if
nullity(T) = 0, if and only if rank(T) = dim(V), if and only if rank(T) = dim(W), and if and only if
dim(R(T)) = dim(W). This equality is equivalent to R(T) = W, the definition of T being onto.

Example 9:

X

Let T:P,(R)— P,(R) be the linear transformation defined by T (f (x)) =21 '(x) + [3 f (1)dt.

0

Now R(T) = span ({T(1), T(x), T(x2)}) = span({3x, 2 + (3/2)x?, 4x + x°}).

Since ({3x, 2 + (3/2)x?, 4x + x3} is linearly independent, rank(T) = 3. Since dim(P3(R)) = 4, T is not onto.
From the dimension theorem, nullity (T) + 3 = 3. So nullity(T) = 0, and therefore N(T) = {0}.

We know that if V and W are vector spacesand T :v — w s linear, Then T is one to one if and only if
N (T)={0}. Hence T is one-to-one.

Example 10:

For the following transformation T : R* — R* defined by T (a,,a,) = (a, + a,,0,2a, - a,) show that

(V) T is a linear transformation
(vi)  Find basis for both N(T) and R(T)
(vii)  Compute the nullity and rank(T) and verify the dimension theorem

Finally use the appropriate theorems to determine whether T is one to one or on to.

Solution:
Consider the transformation T : R* — R® defined by T (a,,a,) =(a, +a,,0,2a, - a,)
Let x = (a1, a2) & y = (by, b2) € R?and c € R.

cx+y=(ca +b,ca,+b,)
T(cx+y)=T(ca, +b,ca,+b,)
= (ca, +b, +ca,+b,, 0,2(ca, +b)~-(ca,+b,))

Also
cT(x)+T(y)=c(a,+a,,0,2a, -a,)+(b,+b,,0,2b -b,)

= (ca, +ca, +b,+b,,0,2ca, —ca, +2b, —D,)

= (ca, +b,+ca,++b,,0,2(ca, +b))~-(ca,+b,)
LT(ex+y)=cT(xX)+T(y)

Hence T islinear.




N(T)={xeR":T(x)=0]}
T(a,,a,)=(a,+a,,0,2a, -a,)=(0,0,0)
= a +a,=0& 2a,-a,=0
=>a,=-a, & a,=2a,

This is possible only when a, =a, = 0.

= N(T)={0}

Hence the basis for N(T)=¢

R(T)={T(x):xeR"}
={(a,+a,,0,2a,—a,):a,,a, € R}

(a, +a,,0,2a, -a,)=2a,(10,2)+a,(1,0,-1)

Basis for R(T) ={(1,0,2),(1,0,-1)}

nullity = dim(N (T)) = 0.

Rank(T) = dim(R(T)) = 2

dim(V) =dim(R°) =2

nullity (T ) + rank(T) = dim (V).

N(T) = {0} if and only if T is one to one.

R(T)=R®

sitisnot onto.

Matrix representation of a linear transformation

In linear algebra, linear transformations can be represented by matrices. If T is a linear transformation
mapping R"to R" and X is a column vector with n entries, then

T(x) = Ax
for some m x n matrix A, called the transformation matrix of T.

DIAGONALIZATION
Characteristic Polynomial:
Let A € Mnxn (F). The polynomial F (t))=det (A —t Is) is called the characteristic polynomial of A.

Characteristic Equation: Let A € Mnxn (F). The equation det(A - t1,) = 0 is called the Characteristic
equation of A.

Eigen Value and Eigen Vector:

Let T be a linear operator in a vector space V. A non zero vector v € V is called an eigen vector of T if
there exists a scalar » such that T (v) = i v. The scalar » is called the eigen value corresponding to the
eigen vector v.

Example 11:

1 -4
Find the characteristic equation and the eigen values of [ }
4 2

8




Solution:
The characteristic polynomial is det(A-t1,) = 0

1-t -4
det(A—tl,) = =0

2 -t

= (1-t)(2-t)+16=0
t? - 3t+18=0

B 3+4/9-72 B 3++/-63
2 2

Since t is complex, A has no real eigen values.

t

The matrix A is acting on a real vector space R? and there is no non-zero vector X in R? such
that Ax = Ax

EXAMPLE 12:
s -2 6 -1
. -, _ o 3 -8 ol
Find the characteristic equation of | |
lo o 5 4]
Lo 0 0 1J

Solution:

The characteristic equation is det(A-t1,) = 0

5-t -2 6 “1 7
T TS o |
det(A—tl,) = | -0
| 0 0 5-t 4 |
|Lo 0 0 1—tJ|

5-1)B-1)G-0)1-t) =0

t* —14t>+68t° —130t+75=10
EXAMPLE 13:

For the following linear operator T on a vector space V and ordered basis g , compute [T ], and
determine whether g is a basis consisting of eigen vector of T.
(a) (B3a+2b-2c ) [(0) (1 ) (1)

R (e el i NI

Solution:




(a) (3a+2b-2c ) ({0 (1 ) (1)
T|b|:|—4a—3b+2c|&ﬂ:l'l',‘—l',‘O'L
1 e N (A RIS
(0) (3(0)+2(1)—2(1)\ (0) (0 (1) (1)
T|l| 4(0)—3(1)+2(1)| | 1|=—1|1|+o‘ 1‘+o|o|
R JLa) 1 1) L
Similarly,
SRR
T 1 1,+1,-1,+0,0
IR RTEY
(

[HRS R

(-1 0 0)
[T]ﬁ:‘ 001 o
Lo 0 —1J
(0Y ([ 0) (0 (1) (1) ( 1) (1) (-1) (1)

Since T|1|:|—1‘:—1|1|, T|—1|:|—l|:1|—1|andT|O|:| 0|:—1|0‘
Y Y Y L S Y B P Y R 1Y
(0 ( 1) (1)
The eigen values are -1,1,-1 and eigen vectors are|{1 |, -1 | and | 0 ‘.
gl L

- B is a basis consisting of eigenvectors of T.

EXAMPLE 14:

Let T be the linear operator on P, (R) defined by 7 (f (x))= f (x)+(x+1) f'(x).Let g bethe

standard ordered basis for P, (R) and let A =[T] . Find the eigen values and eigen vector of A.

Solution:

Let T be the linear operator on P, (R) defined by T (f (x))= f (x)+ (x+1) f'(x).

the standard ordered basis for P, (R)
T(1)=1.1+0.x+0.x2
TX)=x+(Xx+1)=1+2x=11+2x+0x?
TXx)=x2+(x+1)2x=2x+3x2=0.1+2.x+3x°

(1 1 0)
|

Let A=[T] .Then A= 0 2 2|
Lo 0 3J

The characteristic polynomial of T is

Let g = {1,x,x2} be

10




(1-t 1 0
det(A—tI3):det| 0 2 -t 2 |
L o 0 3J
=(1-t)(2-1)(3-1)
=—(t-1)(t-2)(t-3)
Hence A is an eigenvalue of T (or A) if and only if A =1, 2, or 3.
Eigenvalue for A1 = 1:

(A-2,1)X =0

(0 1 0\(x1\| |(0\|

Eigenvalue for Az = 2:
(A-2,1)X =0

|(—1 10V x) |(0\|

0 0 2||x2|= 0
-X+X,=0= X, =X,
2x,=0= x,=0

x, =0, take x, = x, =1

N

)

Eigenvalue for A3 = 3:
(A-2,1)X =0

(=21 0)(x) (0)
.
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—2x1+x2=0:> x2:2xl

—x2+2x3=0:> x2:2x3

EXAMPLE 15:

. : . 11
Find the eigen values and eigen vectors of A = { }
4 1

Solution:
To find the eigen values:

[ 1]
A =
41
We compute the characteristic polynomial:

[1-t 1
det(A—tl,) = det
.

=t’ - 2t-3=(t- 3)(t+1).
“tis an eigen value of A if and only if det(A-tl ) =0, det(A-tl,)=0
=>t=3,-1
Hence the only eigen values of A are 3 and —1.
To find the eigen vectors:

Let =3 and A2 =—1.
We begin by finding all the eigenvectors corresponding to A1 = 3.

(1 1) (3 0y (-2 1)
Bl:A_ill:u 1J_Lo 3J:L4 —ZJ'

(X)),
Then x = e R
%)

is an eigenvector corresponding to 4, =3 if and onlyif x # 0 and xe N (L, );

(-2 V(X ) (=2x+%x,) (0)
that is, x # 0 and | | = | | = )
L4 _ZJKXZJ \4X1_2X2) LOJ

Clearly the set of all solutions to this equation is
{(t (1) :teR ]}
L LZJ J

Hence x is an eigen vector corresponding to A1 = 3 if and only if

(1)
X:tL J for some t = 0.
2

Now suppose that x is an eigen vector of A corresponding to A, =—1. Let

12



if and only if x is a solution to the system 2x; + X2 = 0; 4x1 + 2X2 = 0.

N(LB):{(t( 1\:teRL
2 LL—ZJ J

Thus x is an eigen vector of A corresponding to A, = —1 if and only if

(1)
X:tL Jforsomet;to.
-2

We observe that
((1) (1))

o) 1-2)]

is a basis for R? consisting of eigenvectors of A. Thus La, and hence A, is diagonalizable.

Eigen Space of T:

Let T be a linear operator on a vector space V and let » be an eigen value of T. Define

E, ={xev:T(x)=2ax}=N(T -alv). Theset E, is called eigen space of T corresponding to the eigen

value .

Diagonalizablity of a linear operaot T:

A linear operator T on a finite dimensional vector space V is called diagonalizable if there is an
ordered basis B for V such that [T]p is a diagonal matrix. A square matrix A is called diagonalizable if La
is diagonalizable
EXAMPLE 16:

11
Check whether the matrix A= L J e M, is diagonalizable or not .

Solution :

The characteristic polynomial of A (and hence of L, ) is det(A-tl,)=0

-t 1 )
|A-t1,|= - (1-t) -1=0
1 1-t
=t -2t=0

=>t(t-2)=0
The eigen values of L, areOand 2 .
Since, L, isa linear operator on R’ , by the corollary which states “ Let T be a linear operator on an n —

dimensional vector spaces V . If T has n distinct eigenvalues , then T is diagonizable ,”

-~ We conclude thatL, (and hence A) is diagonizable .

EXAMPLE 17:

Let T be a linear operator on P, (R)defined by T(f(x)) = f'(x).Determine whether T is diagonizable
or not .

Proof :

13




T(f(x)) = f'(x). Consider a standard ordered basis for P, (R).
i.e;ﬂz{l,x,xz}
T@)=0=0.1+0.x+0.x"
T(x)=1=1.1+0.x+0.x"
T(x?)=2x =0.1+2.x+0.x°

(0 1 0)
The matrix of linear transformation isA [T ] = L 0 0 2J

0 0 O

The characteristic polynomial of T is

(-t 1 0)
Det(A—t3I):det|LO ~t 2J=—t3

0 0 -t
Thus T has only one eigenvalue , namely 1 =0, with multiplicity 3.

E,=N(T-41)=N(T)={xeP,(R):T (x)=0}

ie;N (T)={xeP,(R): f'(x)=0}

. E, = N (T) isthe subspace of P, (R)consisting of constant polymonials . so{1} is a basis for £, ,and

therefore dim (e, ) = 1. So there is no basis for P, (R) consisting of eigen vectors of T and therefore T

is not diagonalizable.
EXAMPLE 18:

Test for diagonalizability of the linear transformation T onP, (R) defined by

T(F(x)=f@)+f (0)x+(f (0)+f (0))x’

Solution:

Let T be the linear operator on P, (R) defined byT ( (x))= f (1)+ f (0)x+(f (0)+ f (0))x’
We write test T for diagonalizability.

Let a denote the standard ordered basis for P,(R) and B=[T]

(1 1 1)
Then B:LO 1 OJ

0 1 2
The characteristic polynomial of B, and hence of T, is -(t-l)z(t-2), which splits.
Hence diagonalization condition (1) is satisfied. Also B has the eigenvalues A, =1 and
A,=2 with multiplicities 2 and I,respectively. condition (2) is satisfied for L, because

it has multiplicity 1. So we need only to verify condition (2) for »,=1.
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For this case,
(0 1 1)
3-rank(B-kll)=3-rank‘ 0O 0 0 |=3-1=2,
LO 1 1J
which is equal to the multiplicity of A . .. T is diagonalizable.

We now find an ordered basis y for R3 of eigenvectors of B. We consider each eigenvalue separately.
The eigenspace corresponding to A1 = 1 is

(%) (0 1 1)x ) |

E;_:J‘XZ|GR3:|0 0 0Hx2|:0L,
bl

which is the solution space for the system

X, + X, =0,
(1) (0]
IR .
and has Y1‘J 0, -1 L as a basis.
Lo/ 1]

The eigenspace corresponding to A,=2 is

IR

E, =4 % eR’: 0 -1 0 x, =0L,
[ I NS i

which is the solution space for the system

X, +X,+X,=0

x,=0,
(1))
and has 72=J| 0 |L as a basis.
o)

(1Y (0) (1]
Letyz;/luyZ:J' ||—1||0|L

Lo U]

Then vy is an ordered basis for R’ consisting of eigenvectors of B.

Finally, observe that the vectors in y are the coordinate vectors relative to a of the vectors
in the set B={1,-x+x2,1+x2}, which is an ordered basis for P,(R) consisting

of eigenvectors of T. Thus

(1 0 0)
[T]B:| 0 1 ol
{o 0 2J
EXAMPLE 19:

(a,) (4a, +a, 3
Let T be the linear operator on r’ defined by 1 LaZJ = Lzal +3a, + 2a3J Show that T is

a

5 a, +4a,

diagonalizable
Solution:
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(a, ) (4a +a, )
Let T be the linear operator on r*® defined by T LaZJ = Lzal +3a, + 2asJ|

a

3 8.1+433

We determine the eigenspace of T corresponding to each eigenvalue. Let B be the standard ordered basis

for R®. Then
Let T be the linear operator on
(4 0 1)

| |
[T],=12 38 2
1 0 4

and hence the polynomial of T is defined by
(4-t 0 1)
| | 2

det([T]ﬂ—tl):det 2 3-t 2 ;=-(t-5)(t-3)°.

1 0 4 -t

So the eigenvalues of T are 4, =5 and 4, =3 with multiplicities 1 and 2,respectively.

(a,\ [(4a, +a, A
T,a, = 2a1+3a2+2a3|
LaJ L a, +4a, J
(%) (-1 0 1)3(x) (0)]

El:N(T—ﬂlI):l|x2|eR3:|2 -2 2||x2|:|0|L.
| L) L Sl o

E, is the solution space of the system of linear equations

=X, +X%x,=0
2%, —2%x,+2x,=0

X, — X, =0.

(1))

[
It is clear thatl'tz |L is a basis for E, . Hence dim(E, ) =1.
i)

J

Similarly, E, = N(T - 4,1) is the solution space of the system

X, +%x,=0
2X,+2x,=0
X, + x, =0.

Since the unknown X, does not appear in this system, we assign it a parametric value, say x2 =s, and solve

the system for x1 and X3, introducing another parameter t. The result is the general solution to the system

16




IRIR A

X, =s; 1+t 0,, for s,teR.
) L) 1)

It follows that

[(0Y) (-1)]
Il ol
o)1 )]

is a basis for E, , and dim(E, ) = 2.

In this case, the multiplicity of each eigenvalue A; is equal to the dimension of the corresponding
eigenspace e, .\We observe that the union of the two bases just derived, namely,

(1) (0) (-1)]
J|2|,|1|, o'L
Lol )
is linearly independent and hence is a basis for R® consisting of eigenvectors of T. Consequently,
T is diagonalizable.

EXAMPLE 20:
(2 0 -1)
FOI’A:|4 1 —4|eMm(F)
Lz 0 —1J

Q) Determine all the eigen values of A
(i) Find the set of eigen vectors corresponding to 2

(iti)  If possible find a basis for " consisting of eigen vectors of A
(iv)  Ifsuccessful in finding such a basis determine an invertible matrix Q and a diagonal

matrix D such that Q *AQ = D

Solution:

(2 0 -1)
| |

A= 4 1 -4

2 o -
We compute the characteristic polynomial:
[([2-t 0 -1 )]

det(A—tI3)—detI|L 4 1-t -4 JI

=@2-t)[a-t)(-1-1)]-1(-2(1-1)
=(2-t)(-A-t))+201-1)
=—(2-t)A-t)(L+t)+2(1-1)

2 0 -1-t

=(1-t)[2-(2-1)a+1)]
:(1—t)[2—(2—t2+t)J:(1—t)(t2—t):(l—t)(t—1)t
- tis an eigen value of A if and only if det(A-tl )=0, det(A-tl,)=0
= @A-t)(t-1)t=0
=t=0,1,1

Hence the only eigen values of Aare 0 and 1.
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To find the eigen vectors:

Let A1 =0and A2 = 1.
We begin by finding all the eigenvectors corresponding to A1 = 0.

(2 0 -1 (1 0 0) (2 0 -1)
| | | |

B,=A-41=/4 1 -4,-0/0 1 0,=,4 1 -4
oo o) [ooi) 2o o

(%)

is an eigenvector corresponding to A,=0 if and onlyif X # 0 and X, e N(L,);

o

thatis,xl¢0and|4 1 -4, x,, =,0
2o 1) Lo

Clearly the set of all solutions to this equation is

(" By crossmultiplication rule,)

|

[ (1) ] | Xp X X |
Jt' sliter L | 0 -1 2 0 |
| |

{ LZJ J | 1 -4 4 1 |

X, =1,x,=4,x,=2 J

Hence X1 is an eigen vector corresponding to A1 = 0 if and only if

(1)

X1=t|4| for some t # 0.

(1

3
whent=l,xl=|4|
2)

Next we find two distinct eigenvectors corresponding to A2& Az= 1

(2 0 -1} (1 0 0) (1 0 ~-1)
. | |

BZ:A—/12|=|4 1 -4,-1,0 1 0,=,4 0 -4
Lzo —1J Loo 1J Lz 0 —2J

R

X, =1 %1, X, X, R
Lst szJ

is an eigenvector corresponding to A,=1 if and only if X, #0,X, =0

3

and X, X, e N(Lg );

e

thatis, X, #0, X,#0and 4 0 -4, ,x,,=,0
Lz 0 _ZJLX3J LOJ

Clearly the set of all solutions to this equation is
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X, =X

. . & X, is anyarbitrary vector.

Let x, =1
If x, =x,=1,

"

Ay

If x, =x,=0,

(0)

(1) (1) (0)]

R NNIN)

(1 1 0)
Q:|4 1 1|
Lz 1 oJ
lR|=1(-1)-1(-2)= -1+ 2 =1
(-1 2 2)
Q‘lziLAdug_| 0 o0 1|
[ )
(-1 0 1)
Q’lz| 2 0 -1
.
(-1
D=0Q 'AQ _| 2
2

1\(2

-1
3

I

4
2

0
1
0

-1\(1

-4
-1

I

4
2

1
1
1

0) (0
1|:|O
o) Lo

0
1
0

0

)

0|

1

|
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Questions

The rank nullity theorem isdim V= __

The kernel of T is named as

____denotes the null space of A

Let V and W be vector space over a field F, then T from
V to W defined by T(v)=0 for all v belongs to V is a
____linear transformation

Let V and W be vector space over a field F, then T from
V to W defined by T(v)=v for all v belongs to V is a
____linear transformation

The eigenvectors of a real symmetric are

Diagonalisation of a matrix by orthogonal reduction is true

1 e

If the sum of two eigen values of matrix A are equal to the
trace of the matrix, then the determinant of A is

Sum of the principal diagonal elements

Let V and W be a linear transformation, then dimension of
Null space of T is -----

A square matrix A is

___denotes the column space of A
The  of T is defined to be the dimension of images

Let V and W be vector space over a field F, then T from
V to W defined by T(v)=v for all v belongs to V is a
__ linear transformation

Let V and W be vector space over a field F, then T from
V to W defined by T(v)=v for all v belongs to V .if

Ker(T)=0, then T is

Any matrix A can be expressed uniquely as the sum of
a symmetric and a skew-symmetric matrix.

,if L_ , is diagonalizable.

optl opt2
rank(T)+ rank(T)-
nullity(T) nullity(T)

dim (Im dim (ker
T) T)

Ker A Rank A
scalar vector
scalar vector
equal unequal

diagonal  triangular

1 -1

product  product
of eigen  of eigen
values vectors
Nullity Rank A
(T)

Eigen Diagonali

space zable
Ker A Rank A
rank kernel

identity  vector

one-one onto

row cloumn

opt3
rank(T).n
ullity(T)
dim V

Im A
identity

identity

real
real

sum of
eigen
values
Im A

opt4 opt5  opt6d
basis

linear
transform
ation

dim A
reflection

trivial

symmetric
scalar

product
of eigen
values
dim A

orthogonal kernel

Im A

basis

scalar

not onto

Z€ero

dim A
linear map

trivial

one-one
and onto

square

Answer

rank(T)+nullity(T)

dim (ker T)

Ker A

trivial

identity

real
real symmetric

0

sum of eigen values

Nullity (T)
Diagonalizable

Im A
rank

identity

one-one

square



MAB8352- LINEAR ALGEBRA AND PARTIAL DIFFERENTIAL EQUATIONS
Il year ECE- Il Semester

UNIT- 3 INNER PRODUCT SPACE
CLASS NOTES

Inner Product space:
Let V be a vector space over F . An inner product onV is a function that assigns, to every
ordered pair of vectors x and yin V then

). (x+2,¥)=(xy)+(z,y)
i). (cx, y)=c(x,y)

ii). (x,y)=(y,x)

iv). (X,X)>0 if x=0

EXAMPLE 1:
Let V=M, (F) and define for A,Bin V , (A,B)=tr(B"A) Then this is an inner product

PROOF:
For A,B,CeV and aeF

a). (A+B,C)=tr(C"(A+B))

=tr(C"A+C"B)

=tr(C"A)+tr(C"B)

=(AC)+(B,C)

o). (A B)=ir(B7A)=3(5°4),

- il(k:(B)*ik(A)klj

=33 (8), (4], =X X4, (8),

:gg(A*)m(B)ki :Iznl: A*B)”

=tr(A'B)=(B, A)

¢). (aA,B) =tr(B'aA)=atr(B'A)=a(A B)

m«AM:ﬂNM:iwm%
SIE. 2z AN
oMY

1
If A=0,A; #0 for some k and i

Therfore, A=0then (A, A>=ZZ|AH|2 >0

i=1 k=1
Hence (.,.) is an inner product on V .
EXAMPLE 2:
In an Euclidean inner product find cosine of the angle between the vectors u :(2, 3 5) and

1




—(L-4,3)

Solution:
cosd = < >
Jullivl
(u,v)=2-12+15=5, ||u| =v4+9+25 =/38, |v| =V1+16+9 =26
uv) 5
cos @ =
Jullvl V3826
EXAMPLE 3:
Compute the angle between two vectors (X,y) and (Y, X) in an Euclidean inner product
space R?.
Solution:
cosé = < >
Julivi
(03)=0, Jul=\ 7. = 7
cosf = (u.v) 0 .
2 2
Jullvl - x*+y
—0=".
2
THEOREM 1:

Let V be an inner product space. Then for x,y,zeV and ceF the following statements are

a). (X,y+2)=(Xy)+(x2)
X,Cy)=C (X, Y)

<
X

c). (x,0)=(0,x)=0
(x

d). (x,x)=0 if and only if x=0

e). (x,y)=(xz) forall xeV, then y=2
Proof

a). (x,y+z)=(y+z,x)

={y.x)+(z.%)

- (xey)=(ey. ) =c(y, x)=C(xy)
a+(-a))=(x.a)+(x-a)

=(x,a)—(x,a)=0 where aeV

Similarly (0,x)=0

d). Assume that (X, X)=0----(1)

Then x=0. Otherwise (i.e. if x=0), <X, x> >0 contradicts (1)

Assume that x=0. Then by (c)

(x,x)=(0,0)=0




e). (x,y)=(xz). Then (x,y)—(x,z)=0
=(x,y-2)=0, VxeV

Taking Xx=y—-2,(y-2,y-2)=0
By(),y-z=0=y=z.

EXAMPLE 4:
Let S consist of the following vectors in R*: u, =(11,0,-1), u, =(12,1,3),u; =(1,1,-9,2),

u, =(16,-3,1,3). Find the coordinates of any arbitrary vector v=(a,b,c,d) in R* relative to
basis S
Solution:

u.u,=1+2+0-3=0

u.u, =1+1+0-2=0

u.u, =16-13+0-3=0

U, U, =1+2-9+6=0

u,u, =16-26+1+9=0

u,.u, =16-13-9+6=0

Thus S is orthogonal and s is linearly independent. Accordingly S is a basis for R* because any four

linearly independent vectors form a basis of R*

W) _a+b-d

Y {u,u,) 3
o _VUs) _a+2b+c+3d
2 {u,u,) 15
o _ \WUy) _a+b-9c+2d
P {ugug) 87
o _ v.U,) _16a-13b+c+3d
, = -

(u,,u,) 435

Norm of a vector in an inner product space:
Let V in an inner product space. For x €V, we define the norm or length of x by

)= {x.x)

EXAMPLE 5:
Find norm and distance between the vectors u :(L 0,1) and v= (—1,1, O).

SOLUTION:

Julf =22 +02+22 =2, ||| =(-1)* +12 +0* =2

The distance between two vectors uand v is defined by d(u,v)=|u-V|
lu —v||2 =(u—-v,u—v)=(u,u)—(u,v)—(v,u)+{v,v)

lu —v||2 =2+1+1+2=6

Ju-vl=8




EXAMPLE 6:
Consider f(t)=3t-5 and g(t)=t* in the polynomial space P(t) with inner product

1

(f.9)=[ f(t)g(t)dt hen find |f[and [g].

0

SOLUTION:
f(t)f(t)=9t"-30t+25, g(t)g(t)=t*

1
| £ =(f. )=](ot>~30t+25)dt =[ 3> ~15t> + 25t | =13
0

5 1
*—{g,9)= et =| L 21
lo[" =(g.9) I 5| =5

THEOREM 2:
Let V be an inner product space over F . Then for all x,y €V and c e F, Then the following

statements are true

L [ex || =[ef|X]

2. |X|=0if and only if x=0.

3. Cauchy Schwarz Inequality [(x,y)|<|x]|y]

4. Triangle Inequality [|x+ Y| <|x|+|y]
Solution:

L Jex] = (ox,0x) = @ (x, %) = e [

2. [X|=0 = |x|" =0 (x,x)=0=x=0

3. case(i). let y=0.Then |(x,y)|=|(x,0)|=0
and ][y =[]0} =0.

Therefore |(x, y)| = [y

Case(ii). Let y #0. Forany ceF, we have
0<|x—cy = (x-cy,x~cy)
=(x,x)—(x,cy)—(cy,x)+(cy,cy)

= X" ~c(x, y)—c(xy)+cc(y,y)




=[(x ) <Xl

4. we have x+y[" = (x+y,x+y) =(%X)+(X Y)+{y,X)+(y,y)
[+ yIF =[x+ v) + (e y) + [

[x+y[" =[x +2Re(x, y) +[y]

[x+ v <[+ 2[(x, y)] + v

[x+yIF < ||+ ¥1)

[x+ <X+l

EXAMPLE 7:
Using Euclidean inner product on R* show that u=(-3,1,0) and v=(2,-1,3) satisfy Cauchy

Schwartz inequality.
Solution:

||x||2 =(X,x)=9+1+0=10
=0

Iy[F =(y,y)=4+1+9=15
|- i5

Iyl VIO - 50

(x,y)=—6-1=-7
(xy)|=7
=[(xy)| <[]

Definition: Orthogonal
A vector u eV is said to be orthogonal to veV if(u,v) =0.

Definition: Orthogonal Subspaces
Two subspaces V &W of a vector space are orthogonal if every vector v inV is

perpendicular to every vector win W . ie. (v,w)=0,WveV,weW.

Definition: Orthonormal Set
A subset S of V is called an orthonormal set if

i). |X|=1vxeX
i). (x,y)=0Vx,yeS

Definition: Orthonormal Basis
A basis of an inner product space that consists of mutually orthogonal unit vectors is called
an Orthonormal basis.

EXAMPLE 8:

Find the value of a if the vectors (2,a) and (6,4) are orthogonal vectors in R?.

SOLUTION:




Let u=(2,a) and v=(6,4)

Since the vectors are orthogonal (u,v)=0
12+4a=0
dJa=-12=>a=-3

EXAMPLE 9:

Find k so that u=(1,2,k,3) and v=(3,k,7,-5) in R* are orthogonal.

SOLUTION:
(u,v)=(1.2,k,3).(3,k,7,-5) =3+ 2k + 7k 15 =9k 12
Then set (u,v) =9 -12=0

4

=>k=—.
3

EXAMPLE 10:
If v=(1,2,1) and u=(2,1,2) find proj(v,u).

SOLUTION:

: (v,u)
Proj(v,u) =
roj(v,u) <u,u>u

. 6 4 2 4
P V1u == 2’172 =l Sy AR
I‘Oj( ) 9( ) (3 3 3)
EXAMPLE 11:

Prove that in an inner product space V , for any u,veV, [lu+v|[ +[u—v|" =2|u[" +2|v|’.

SOLUTION:
lu +v||2 +||u—v||2 =(U+V,u+V)+{u-v,u-v)

= (U, Y+ (U, V) (v, U) + (v, V) + {u,u) = (u,v) = (v,u) +(v,v)

=l -+ IVl + VI = 2l + 2]

EXAMPLE 12:

Suppose u,v &w are vectors in an inner product space such that (u,v) =2, (u,w) =-3,
(v.w) =5, Jul=1.v|=2,w=7.

Evaluate(i). (u+v,v+w) (ii). (2u—w,3u+2w)

SOLUTION:

(i). (U+v,v+w)={u,v)+{u,w)+(v,v)+(v,w)
=2-3+4+5=8

(ii). (2u—w,3u+2w)=6(u,u)+4(u, w)—3(w,u)—2(w,w)
=6l +4(-3)-3(-3)— 2| =6-12+9-2(49) = -95

EXAMPLE 13:

If uand v are orthonormal vectors in an inner product space V then find ||u+Vv|.

SOLUTION:
Ju +v||2 =(U+Vv,u+Vv)=(u,u)+(u,v)+{v,u)y+(v,v)

6




= |ulf +2(u,v)+|v| since vectors are orthonormal (u,v)=0

= [l + v

EXAMPLE 14:

In Euclidean inner product space R* verify (u,v+Ww)=(u,v)+(u,w) for the vectors
u=(3-2),v=(4,5) and w=(-16).

SOLUTION:

(u,v+w)=(u,v)+{u,w)
(uv)=12-10=2, (u,w)=-3-12=-15
RHS =(u,v)+(u,w)=2-15=-13
v+w=(311)

LHS =<U,V+W> =9-22=-13

Hence verified

EXAMPLE 15:
Find the norm of the vector u=(1,1,-1) and v=(-1210) in R® with respect to the inner

product defined by (u,V) =u\, +2u,v, +3u,V; where u=(u,,U,,u,) and v=(V,,V,,V;)

SOLUTION:
Ju[f =1+2+3=86, |v| =1+2+0=3
= [u] =6, v =
THEOREM 3:
Let V be an inner product space and S = {v V,,V, ...vk}be an orthogonal subset of V
consisting of non-zero vectors. If y e span(s) then y = Z<” |\|/>v
=1 |[V;
Proof:
Let yespan(s) and S ={V;,V,,V;,..V, |
= there exists scalars a,,a,,a,,...a, such that
k
y=aV, +aV, +aV; +..+aV, =Y ay, ————— @)
i=1
For 1< j <Kk,
< > <Za > <v V., >+...+aj <vj,vj>+...+an<vn,vj>
(y.vi)=a;|v, H since S is an orthogonal set
1V'
—a, = <y ;> ————— )
v

Using (2) in (1) y= Z< >

THEOREM 4:
(Gram — Schmidt orthogonalization process)
Let V be an inner product space and S ={w,,w,,...,w }be a linearly independent subset of V .




- . l<w,,V, >
Define S'={v,v,,...,v,}where v, =w, and v, ZWK_ZW
— V.
j=1 j

an orthogonal set of non-zero vectors such that span(S')=span(S).

Proof:
The proof is by induction onn.
Let S, ={w,,W,,...,w}, fork=1,2,3,...,n

Since {w,}is linearly independent, v, =w, #0.

v;, for 2<k<n. Then S’ is

Clearly, {v,} is orthogonal and span(v, )= span(w,).

Therefore the theorem is valid for n=1.
Assume that the theorem is valid for n=k —1.
e, {v,v,,...,v, ,} is an orthogonal set of non-zero vectors and

SPaN(V;, Vi, e, Vg ) = SPAN (W, Wy .., Wy ) -mmmmememes (1)
Now, we prove that the theorem is valid for n=Kk.
< W,V >

=

Vk=Wk—zWVj:>Vk¢0 ———————— 2)
]

Now for m<k —

k’Vm><v V,,) since {V;,V,,...,Vi 4} is orthogonal.

m? " ™m

() = (v, )~ 17 o

2
m
[val
={V,V,,...,V, }is an orthogonal set of non-zero vectors.
Further from (1)
span(Vy, Vs, ..., Viy: Vi ) = span (W, W, ..., W,_;, v, )

=span (W, W,..., W, W, ) by (2)

Therefore the theorem is true for n=Kk.
Hence by induction the theorem is valid for all n>1.

EXAMPLE 16:
LetR® have the Euclidean inner product. Use the Gram-Schmidt process to convert basis
B={u,u,,u,} where u, =(1,0,1),u, =(-121,0),u, =(-3,2,0)into an orthogonal basis.

Solution:

v,=w; =(1,0,1)

1 <W v.>
217
v, ——WZ—Z

2 VJ'
= v

=W, — <WZ’V1>V1

o




%(1,0,1) [ =1+0+1=2

v, :(—%,1,3

=(-110)+

2 i

= (-3, 2,0)—{—2(11 0,1)+ ;iz (_%’1’ %j}
w353

Therefore {vl,vz,v3}={(1,0,1),(—%,1,%) [?1 ?1

j} is an orthogonal basis.

Wk

EXAMPLE 17:

1
Let v be the vector space of polynomials f (t) with inner product( f,g)= I f(t)g(t)dt.
-1
Apply the Gram-schmidt orthogonalization process to {1,t,t2,t3} to find an orthonormal basis

{ Ty, £, T3, f,} with integer coefficients for Py (t).
Solution:

Let w, =1,w, =t,w, =t
v,=w, =1

(W)

11
o

1 t2 1
(W, v, )= :[tdt = (Ej_l =0

1
[l = (v = ,[dt =2

-1

V, =W, —

v,=t-0=t

v —w _<w3,v1> <W V. >
37 '3 1 2
v v

r t3 2
V)= |tdt=| —| ==
(1) Il (3 3

1
t
<W3,V2>::[t3dt:|:z :0




+

3l
= ttdt = | t’dt = =
ol = ()= = = ]

2
v3=t2—é—0=t2—1
2 3

w|nN

Wl
Wl

(W vi) o (w,v > {w,,v;)

1 2 V3
17 N U . A

V, =W, —

h ] 1.1 2
= 4 =| — = — —_=
<w4,v2>—:|'ltdt_[5l1 StETE

¢ 10101 1
<W4,V3> T
5 12| |6 12 6 12

v4=t3—3x§t=t3—§t
5 2 5

1 1 2
aff =)= | (tZ—g) o

-1

Il
1
gl
O |-

|
OIN

+
gl

_|_
O |-

|
O©IN
[

vl =
2 h 3. Y
NalF = (v,0v,) = I[ts—gtj it

-1

3¢ . & 9., 6
=t ==t| dt=[]|t°+—=t>—=t* |dt
v, f( o) a= [t e -Bv)

-1

Therefore {vl,vz,v3,v4}={1,t,t2 -= .t ——t} is an orthogonal basis.

Vo Vs Yy |_ _£ i 1) 5251 3 is an orthonormal basis for
o e | e S 5] s ororoma

10



R(R).

EXAMPLE 19:
Obtain an orthonormal basis T with respect to standard inner product for the subspace of R®

generated by S ={(1,0,3),(2,1,1)} such that L(T)=L(S).
Solution:

v,=w, =(1,0,3)

1 <W V->
21 7]
VZZWZ—E v,

2
j=1 )
=il

{wy, )
2 1
ol

v[* =12 +0+32 =10

(2+0+3)

v, =(2,11)- (1,0,3)

:(2,1,1)_%(1,0,3)

:(2,1,1)_%(1,0,3)

)
2 2

9
||v2||2 = Z+1+

17

4 2
3 1)|. .

Therefore {v,,v,}= {(1,0,3),[5,1,—5} is an orthogonal basis.

v, v 1 3 )(3V2 2 ﬁ} _ '
Now { -, 2t =— ,0, : ,~—,——— |+ is an orthonormal basis for R*.
{nvln ||v2||} {[Jro =) [2ﬁ NN

Define Orthogonal Complement.

Let S be a subspace of V (an inner product space). Then the set S* = {x eVi(x,y)=0Vye S} is
called orthogonal Complement of S.

EXAMPLE 18:

Let w=(1,2,3,1) be a vector in R*. Find an orthogonal basis for W * .

SOLUTION:

Find a nonzero solution of Xx+2y+3z+t=0, say v, =(0,0,1,-3)

Now find a nonzero solution of the system x+2y+3z+t=0, z—3t=0say V, = (0,—5, 3,1)
Lastly find a nonzero solution of the system x+2y+3z+t=0,-5y+3z+t=0, z—3t =0 say
v, =(-14,2,31). Thus v,,v,,v, form an orthonormal basis of W *.

THEOREM 5:
Let V be an finite dimensional inner product space and let T be a linear operatoron V .

11



Then there exists a unique function T*:v —V such that (T (x),y)=(x,T"(y)), (x,yeV)

Further T~ is linear.
PROOF:

Let yeV . Then define g:vV — F by g(x)=(T(x),y), (xeV)---- (1)
Claim: g is linear
For X,%, €V and ceF
g(cx1+x2)=<T(cx1+x2),y>
=c<T(x1),y>+<T(x2),y>
=0g(%)+9(x)
=g is linear.
By known theorem given any linear transformation g , there exists a unique vector y’ eV

Such that g(x)=(x,Y'), (X€V )------ (2)
From (1) and (2) given y eV there exists unique y’' eV
Such that <T(x), y>=<x, y), (xeV)
Now define T:v —V as T*(y) =y with (T(x),y)=(xT"(y))
Claim T7 is linear
For ¥.,Y, €V and ceF,
<x,T*(cy1+y2)> < cy1+y2>
(T(x). cy1> <T(x) Y,)
C(T (), y)+(T (x >
=c(x T’ (yl )+ (T (2))
=<x,cT 1)>+< >
=<x,cT (y)+T"(y )>,VX€V
T (oy+Y2)=CT (%) +T7(,)
= T" is linear
Uniqueness of T*
Suppose that U :V —V is linear such that (T (x),y)=(x,U (y)), vx,y eV

Then <x,T*(y)>=<x,U (y)> VX, y eV
=T"(y)=U(y)is Unique.

THEOREM 6;

Let V be an inner Product space and let T and U be linear operators on V . Then
a. (T+U) =T"+U"

b. (cT) =cT" forany ceF

c.(TU) =u'T"

d.T77=T

e. I"=1

Proof:

a). Let x,yeV

(4(T+UY (v))=((T+U)(x).y)
=(T(x),y)+(U (x).y)

12




=<x,T*(y)>+<x,U*(y)>
=<x,T*(y)+U*(y)>,Vx,er
(T+U) (y)=(T"+U")(y), vy eV

=(T+U) =(T"+U")
). (x(cT) (¥))=((cT)(x).)
=(cT(x),y)
=c(T(x).y)
=<T(x),6y>
=<x,T*(Ey)>
=<x,c‘|’*(y) , VX, y eV
=<x,(CT* (y)> VX, y eV
= (cT) (y)z(c )(y) vy eV
= (cT) =cT
9. (x(TU) () ={(TU)(x).)

)
U T (y)> X,y eV
(U*T )(y) vy eV

=(T"(3).y) =(v.T"(x))
< ), > <xT(y)> VX, y eV
“(y)=T(y), vyeV

13




Questions
The inner product of (0, v)is
Any element ‘X’ in vector space V then the element ‘x’ is called a
unit vector if the norm of ‘x”is .

If x =(2, 1+, 1) and y =(2-1, 2,1+2i) be a vector in C"3 then norm
of X+y i§----=mmmmm-
A subset S of V is orthogonal if any two distinct vectors in S

The inner product of (0, u) is

If x =(2, 1+, i) be a vector in C"3 then norm of X i§--------------- .
Let T be a linear operator on an inner product space V, and if norm
of T(x) is equal to norm of x then T i§ -------------

A subset S of V is orthonormal if S is orthogonal and contains
entirely of -------- vectors.

reciprocal of its length is called------------- .

If x =(2, 2+i) be a vector in C*2 then norm of X is---------------

The process of------------- a non zero vector by the rec1procal of its
length is called normalizing.

Standard inner product is called the ---------------- product.

Let T be a linear operator on an inner product space V, and if T is
one to one then norm of T(x) is equal to --------------

An inner product space is called an space.

Let V be an inner product space. The vectors x and y in V are

orthogonal if inner product of x,y is equal to---------- .

A subset S of V is ---------m---- if any two distinct vectors in S are
orthogonal.

If T is linear then -----------------—--- is linear.

opt 1 opt 2 opt 3 opt 4

1(-1) 0v
1(-1) 0x
sqrt37 5 5 3i
orthogon
al parallel normal linear
1(-1) Ou
8 5 sqrt(7) 7i
one to one to one and on
on to one to into
unit Z€ero row column
product space row space space

mal set lization orthonormalization ng

7 5 3 3i

multiplyin

g adding subtracting dividing

dot Cross vector curl

norm of norm of

norm of x V norm of T+V x+V
Euclidean

Euclidean unitary null or unitary

2

zero 1 linear

orthogona

| parallel  normal linear

parallel  adjoint

operator operator del

T T product operator T operator

opt5 opt6é Answer
0

sqrt37
orthogon

al
0

sqrt(7)
one to
one

unit
product
ng

3
multiplyin
g
dot

norm of x

Euclidean
or unitary

Zero

orthogona
|

adjoint
operator
T



UNIT-IV

PARTIAL DIFFERENTIAL EQUATION

Notations:

1. No of arbitrary constants eliminated = No of independent variables, then we get first

order PDE. (Use p & g Only)

2. No. of arbitrary constants > No of independent variables, then we get second or higher

order PDE. (Usep,q,r, S &t)

3. In elimination of arbitrary functions, the order of PDE = No. of arbitrary functions

eliminated.( arbitrary functions=1 use p & q Only and arbitrary functions=2 use p, g, r, & t)

o
o . . . .|ox OX
4. Elimination of arbitrary functions from ¢(u,v)=0, the solution is | =~ - |
y
5.
. . . General
Type Given form Complete integral Singular Integral solution
I Trial solution z = ax + by + ¢ | Differentiate (3) p.w.r.to | Put ¢ = f(a) in
... (2, p=a q=Db Subin|“” 0=1 [absurd], there | (3), we get eqn.
(1) then write “b” interms of | is no S.I. (4). Diff. (4)
“a” sub. in (2), we get C.1. p.w.r.to “a” and
F(p,a)=0 then  eliminate

“a” between the
equation we get
G.l.

Clairaut’s Form
Z=pX+qy+

f(p.a)

Putp=a,q=Db... (2) ineqn.

(1), we get C.1.

Apply Con
@zoﬂzoW«e get
oa b

........ (1)

Put b=¢(a)in
(3), we get eqn.
(4), Diff. (4)
p.w.rto “a” and
then  eliminate

“a” between the




get S.1.

from (3), (i) & (i), we

equation we get
G.l.

F(z,p.9)=0

z is a function of u. u = x + ay,

dz dz .
=—,q=a—sub.in(1
el 1)

No S.1.

and then solving we get
dz

$(z,8)
=[du,we get the C.I.

E:(,zﬁ(z,a):> =du--- (2
du

N

dz

[¢(z,8)
f(z,a)=u+b=x+ay+b---(3)

v fy (x, p)=f2 (y,a)=a. Write | No S.1.
‘p’ interms of ‘a & x’ and ‘q’
F1(x,p)= Fa(y,q) | interms of “a & y’. Then dz =
pdx+qdy.... (2), integrate
we get C.1.
\ Casel:If m=#1 and n=1 Case2:If m=n=1
Put X =x¥™  and Y:yl—m Putlogx=X and logy=Y
oX 1 oY 1
oX _ oY 2l = Z__ =
oz oz
F(x"py"q)=0| & P=2- » Q=2 x T
Fzx"py'q)=00z &z oX & oz oY oz _oLoX or_ozov
X X ox oy ooy X OX oOX oy oY oy
1 1
p=P@-m)x™" , q=QU-ny™"| P=P_ . 91=Q7
=xMp=P@-m) . y"q=QU-n)| . xp=p , yg=Q
Then it can be reduced to type land 3. Then it can be reduced to type 1and
3
VI Casel:If m=-1 Case2:If m=-1

F(z"p,zMq) =0
F(x,zMp,zMq) =

Put zZ=z"
P _Z 2 (mi1)2"p e
0 OX 07 OX

:Zm , —Q :qu
m+1 m+1

n it can be reduced to type land 4

Put Z=logz
OX 010X 1
and Q=z7q

Then it can be reduced to type land
4
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6. Lagrange’s Linear Equations: In the form of Pp+Qqg=R, The subsidiary equation L = dy g
1. Method of Grouping:
- . dx dy dz. . . .
In the subsidiary equation "0 R if the variables can be separated in any pair of

equations, then we get a solution of the form u(x,y) =a and v(x,y) =b.

2. Method of Multipliers:

Choose any three nmultipliers I,m,n which may be constants or function of x, y, z we
have

dx _dy _dz _ldx+mdy+ndz

P Q R IP+mQ+nR

If it is possible to choose I,m,n such that IP + mQ+nR =0then ldx+mdy+ndz=0. If
Idx + mdy + ndz is an exact differential then, on integration, we get a solution u = a. Similarly v="b.

7. Classification of p.d.e of the second order:

2 2 2
Aa u +B o7y +Ca u + f(x, yua—ua—uJ
5X2 oxoy ayz ox oy
1. B2 —4AC <0 -elliptic equation eg:uxx+uyy =0  (laplace equation)
2. B2 — 4AC =0 - Parabolic equation eg:aluyx=ut 1-D (heat flow equation)
382 —4AC>0 - Hyperbolic equation eg: a?u xx=Utt 1-D (Wave equation)

8. Homogeneous linear differential equation of third order is

o =+ 0
(ay D3+a1D D'+a, DD’2+33 D"%)z = F(x,y),whereD = —,D -

OX oy
Method for finding the solutions:

Complementary function

S.No Case | CF
Homogeneous equation — Replace D = m and D’ = 1.
1 If the roots are real (or imaginary) | z=f (y+mXx)+ f,(y+m,x)+ f,(y+m,x)
m, #m, #m,
2 All the roots are equal say z=f(y+m x)+xf,(y+m x)+x*f,(y+m x)
m=m,=m;=m




Non Homogeneous equation — Replace D =h and D’ =k

1 Form a quadratic equation interms of
‘h’, then h= mk +oq and myk + oo

z=e* £ (y+my x)+e%2* £, (y+m, X)

Particular inteqgral:

S.No Case Pl
1 1 1
_ paxtby Pl=—— ax+by :—eax+by’ f a,b #0.
ne=e (o) fapt
2 PI :;xmy” :[f(D,D')]ﬁlxmy”
F(x,y)=x"y" f(D.D)
Expand [f(D, D')T1 using binomial expansion
3

F (X, y) =sin( mx+ ny) or cos(mx+ ny)

Pl = —————sin( mx+ ny) or cos(mx +n
f(D.D) ( y) ( y)

Re place D?=-m2,D”°=-n?,DD =-mn

F(X y) =e*™g(x,y)

_ 1 ax+by
Pl = TO.D) (D.D) e ™a(X,y)

1
— eax+by : X,
f(D+a,D +b)¢( y)

Other than in rule (i),(ii),(iii),(iv)

1
(D-m,D'JD-m,D)

mF(x, y) :J'F(x,c—mx)dx

Where y=c-mx

Pl = e™YE(x,y)

If f(D,D’) =0, multiply Nr by x differentiate Dr with respect to D & do the same Procedure.

Note:

D - Differentiation

1
= [ dx —

1
D y is constant D’

Nr - Numerator

Dr - Denominator

[ dy

X is constant




Questions

In a PDE, there will be one dependent variable and

independent variables

The of a PDE is that of the highest order
derivative occurring in it
The degree of the a PDE is of the higest order

derivative

Afirst order PDE is obtained if

In the form of PDE, f(x,y,z,a,b)=0. What is the order?

What is form of the z=ax+by+ab by eliminating the
arbitrary constants?

General solution of PDE F(x,y,z,p,q)=0 is any arbitray
function F of specific functions u,vis____ satisfying
given PDE

The PDE of the first order can be written as----------

The complete solution of clairaut's equation is

The Clairaut’s equation can be written in the form --

From the PDE by eliminating the arbitrary function from

7=f(x"2 -y"2) is
Which of the following is the type f(z,p,q)=0 ?

optl

only one
degree

power

Number of
arbitrary
constants is
equal Number
of independent
variables

Z=qxtpy+tpq

F(u,v)=0

F(x,y,s,t)

z=bx+tay+f(a,b) z=ax+bytf(a,b)

opt2

two or more
power

ratio

Number of
arbitrary
constants is
lessthan
Number of
independent
variables

7Z=pxtqy*tpq

F(x,y,z)=0

F(x,y,z,p,q)=0

z=px+qy+f(p,q z=(p-

)
xptyq=0

p(1+q)=gx

Dx+qy+f(x,y)

p=-(x/y)

p(1+q)=qz

opt3

no

order
degree
Number of
arbitrary
constants is
greater than
Number of

independent
variables

Z=pxXtqy+p

F(x,y)=0

F(x,y,z,1,3,
2)=0

z=ax+by
z=Pp+Qq
q=yp/x

p(1+q)=qy

optd
infinite
number of

ratio

order
Number of
arbitrary
constants is
not equal to
Number of

independent
variables

z=py+tqy+tq
F(p,q)=0
F(x,y)=0
z=f(a,b)
Pq+Qp=r

yptxq=0

p=2x f(y+2x)

opt5 opt6 Answer

two or more
order

power

Number of
arbitrary
constants=
Number of
independent
variables

7Z=pxtqy*tpq

F(u,v)=0

F(x,y,z,p,q)=0
z=ax+by+f(a,b)
z=px+qy+f(p,q)
yp+xq=0

p(1+q)=qz



The equation (D"2 z+2xy(Dz)"2+D'=5 is of order
and degree

The complementry function of (D2 -4DD+4D'"*2)z=x+y

is
The solution of xp+yq=z is

The solution of p+q=z is

A solution which contains the maximum possible
number of arbitrary functions is called-------------
integral.

The lagrange's linear equation can be written in the

The solution got by giving particular values to the

arbitrary constants in a complete integral is called a

The general solution of Lagrange's equation is
denoted as-------

The subsidiary equations are px+qy=z is --------------

The general solution of equation p+q=1 is ------------

The separable equation of the first order PDE can
be written in the form of ---------—--

Complementary function is the solution of ------------

2 and 2

fy+2x)+xg(y+2

X)
f(x2,y*2)=0

f(xy,ylogz)=0

singular

Pq+Qp=r

z=ax+[(1-
2a)/3]y+c

z=axt(1/a)y+b

general

f(u,v)=0

dx/y=dy/z=dz/
X

f(xyz,0)
f(x,y)=g(x,y)

f(a,b)
singular

f(a,b)=F(x.y)

2 and 1

fly+x)txg(y+2x
)

f(xy,yz)

f(xty,
y+logz)=0

complete

Pq+Qp=R
z=axtytc

z=ax+y+b

singular

zX

dx/x=dy/y=dz/
z

f(x-y,y-2)
f(a,b)=g(x,y)
£(1,0)=0

complete

f(1,0)=0

1 and 1

fly+x)+xg(y
+x)

f(x,y)=0

f(X'Y: y-
logz)=0

general

Pp+Qg=R

z=ax+(1-
2x)/y+c
z=axtay/b+
c

particular

f xy)
xdx=ydy=z
dz
f(x-y,y+2)

f(x,p)=g(y,q
)

f(D,D')z=0

general
[1/(D,D")]F
(xy)

Oand 1

f(y+4x)txg(y
+4x)

f(x/y ,y/z)=0
f(x-
y,y+logz)=0

particular

F(x,y)=0
z=ax+b

z=ax+b

complete

F(x,y,s,t)=0

dz/z=dx/y=d
y/x

F(x,y,s,t)=0

f(x)=g(a)

f(a,b)=F(x,y
)

particular
f(a,b)=F(u,v
)

2 and 1

fly+2x)+xg(y+2x

)
f(x/y ,y/z)=0

f(x-y, y-logz)=0

general

Pp+Qg=R

z=ax+[(1-
2a)/3]y+c

z=axt(1/a)y+b

particular

f(u,v)=0
dx/x=dy/y=dz/z
f(x-y.y-2)
f(x,p)=g(y.q)

f(D,D")z=0
general
[1/f(D,D)]F(xy
)



Which is
10x+5y

independent varible in the equation z=

Which is dependent varible in the equation z=2x+3y

Which of the following is the type f(z,p,q)=0

Which is complete integral of z=px+qy+(p”"2)(q"2)

The complete integral of PDE of the form F(p,q)=0

18

The relation between the independent and the
dependent variables which satisfies the PDE is

called-------

A solution which contains the maximum possible
number of arbitrary constant is called---------
The equations which do not contain x & y explicitly

can be written in the form

The subsidiary equations of the lagranges equation

2y(z-3)p + (2x-z)q = y(2x-3)

A PDE ., the partial derivatives occuring in which

are of the first degree is said to be

A PDE., the partial derivatives occuring in which
are of the 2 or more than 2 degree is said to be------

If z=(x"2+a)(y"2+b) then differentiating z partially

with respect to x is

If z=ax+by+ab then differentiating z partially with

respect to y is

The complete solution of the PDE p=2qx is

x&y

X

p(1+q)=qx

z=axtby+(a"2)
(b%2)

z=ax+f(a)y+c

solution

general

f(z,p,q)=0
dx/2y(z-3) =
dy/(2x-z)
=dz/y(2x-3)
linear

linear

X

z=ax-+ay+c

p(1+q)=qz
z=a+b+ab
z=ax-+f(a)+b

complet
solution

complete

f(p,q)=0

dx/(2x-z)
=dy/2y(z-3)
=dz/y(2x-3)

non-linear

non-linear

3x(y"2+b)
atb

ax+b

(x,y,2)
y

p(1+q)=qy

z=axtbyta
b

z=a+f(a)x

general
solution

solution

(p.9)=0

dx/2y=dz/(z
-3)

order

order

2x(y"2+b)

0

Z =
ax’2+ay+c

x alone

x&y

p=2xf*(x"2)-
(v*2))

z=a+f(a)x
z=ax+f(a)

singular
solution

singular

f(x,p,q)=0

dx/2y=dz/(z-
3)=dy/2x

degree

degree

3x+y
b

7= ax+(b+c)

p(1+q)=qz

z=axtby+(a™2)(
b"2)

z=ax+f(a)y+c

solution

complete

f(z,p,q)=0

dx/2y(z-3)
=dy/(2x-z)
=dz/y(2x-3)

linear

non-linear

2x(y"2+b)
b

z = ax"2+ay+c



The general solution of px-qy=xz is

If z= f{(x"2+y"@) then differentiating z partially

with respect to X is -----

If z= f(x"2+y"2 +2z2) thendifferentiating z

partially with respect to y is

The solution of differentiating z partially with

respect to X twice gives

The auxiliary equation of (DA2—4DD’+4 D'"2)z=0 is

The auxiliary equation of (D*3-7DD'"*2-6D"*3)z=0

18

The auxiliary equation of (D*3+DD"'2 -D2D -

D"3)z=0 is

The auxiliary equation of (DA2-4DD’+4

D'"2)z=e"x is

The auxiliary equation of(D*3+7DD"*2+6D'*3

)z=cos ax is

The roots of the partial differential equation (D"2-

4DD’+4 D'"2)z=0 are

Theroots of the partial differential equation (D"3-

7DD"2-6D"'3)z=0 are

The roots of the partial differential equation (D*3 -

D"2D’ +DD'2  -D"3)z =0 are

The roots of the partial differential equation (D*3 -
D"2D’ -DD"2 +D'"3)z z =0 are
The roots of the partial differential equation (D"2-

2DD’+D'"2 )z=0 are

f(u,v)=0

p=2xf’
(x"2+y™2)

q=2xf(x"2+y"
2)

ax
m"2-4m+4=0
m”"3+7m+6=0

m"3-m”"2+m-
1=0

m”"2+4m+4=0
m”"3+7m+6=0
2.1

(1,2,3)

(1,1,- 1)

(1,1,1)

1)

f(xy,x-logz)=0 f(x-y,y-z)=0 f(x-y,y+z)=0

p=2xf(x"2+y" p=2x1f7(x"2

2) y2)
q=Qy+2zz")
f(x"2+y"2 q=2y
+z"2)

ax+by+c ax+b
m"2-4m-

A -
m"2+4m+4=0 4=0

m”3-

A _Tn-=

m”"3-7m-6=0 Tt 6=0
mh3-

m+m*+m-1=0 m*2+m+1=
0
m”2+4m-

A _An-d=
m”2-4m-4=0 4=0

m”3-

A _T-=
m”"3-7m-6=0 Tt 6=0
(252 ) (25'2 )
(2,1,3) (2,3,-1)
(L,1,1) (1,1,1)
(1,1,-1) (1,-1,-1)
(ia-l) (152)

p(1+q)=qy

q=0

ax=p

m"2+4m-
4=0
m”™3+7m-
6=0

m"3-m”*2-m-
1=0

none
m"+7m-6=0
(2,-2)
(3,-1,-2)
(L,1,1)
(-1,-1,-1)

(L,1)

f(xy,x-logz)=0

p=2xf’
(x"2+y"2)
q=Qy+2zz")
fI(x"2+y"2
+z"2)

ax+b

m”"2-4m+4=0

m”"3-7m-6=0

m"3-m”2+m-
1=0

none
m*3+7m+6=0
(2.2)

(3,-1,-2)
(Li-i)
(1,-1,-1)

(LD



; ; Alaxtby) (2D’ /A 2 2 A
The particular integral of e / (D-(aD’/b))*2 1is eA(ax-+by) x"/2) ax-by+c ax+by (x"/2)eN(ax+b
______ eMNax+by) y)
The particular integral of e*™™/ (D-(aD’/b)) is -

ax-by+c e™(ax+by) ax+tby xe"(ax+by) xe(ax+by)



Basic Formulas

d /. . COS NX
&(sm nx):ncosnx [sin nxdx = — ;
d o sin nx
&(cos nx)=-nsin nx [cosnxdx =
n

q X
— (™) =ne™ Je™ dx = ——
dx n
d, n n-1 n+1
@ xM=n X
dx(x )=nx Ixn dx =

n+1
cos(—6@) = cosé sin(—0) = —sin

cos nz =(-1)". cos 2nz =1

sin nz =0 for all values of n

cos(nﬂ izj =0
2

sin(mm%j — (=)":sin [nﬂ_gj

{1

cos(A+B)=cos Acos B —sin Asin B
cos(A—B)=cos Acos B +sin Asin B

sin (A+B)=sin AcosB + cos Asin B
sin (A—B)=sin Acos B —cos Asin B

sin (A+B)+sin (A-B)

sin (A+B)- sin (A-B)

sin Acos B= cos Asin B=
2 2
cos (A+B)+ cos (A-B) . ) cos (A-B)- cos (A + B)
cos Acos B= sin Asin B=
2 2
Sinz(e)zl—cosw Cosz(e)=1+c052¢9
2 2
ax _—ax ax _—ax
_ e —e e +e
sinh ax = cosh ax =
2 2
ax ) b
ax __¢ : [ 6™ sin bx dx=
[ sin bxdx = ——— (asin bx — b cos bx) 0 a2 +p2
a~ +b
o © o
(e cosbx dx = (a cos bx + bsin bx) [e " cosbxdx=
2 2 0 2 2
a~ +b a~+b

fuvdx =uv, —u'v, +u'v,, —

Bernoulli’s: 1 2 3

To identify Uand V yse ILATE which first comes taken as U
Where E : Exponential, T : Trigonometry , A : Algebra, L : Logarithmic , I : Inverse




Unit-V Fourier Series Solutions of Partial Differential Equations

1. Dirichlet’s conditions

Q) f(x) is periodic, single-valued and finite function.

(i)  f(x) has a finite number of finite discontinuities in any one period and has no infinite

discontinuity.

(iii)  f(x) has at the most a finite number of maxima and minima.

2. Odd and Even function

Odd and Even function cases arises only when the function is defined in (—1,1) and (~7,7)

Odd function Even function
f(-x)= - f(x) f(-x)= f(x)
Odd*Even ; Odd*Even Odd*Odd
Even *Odd ; Even *Odd Even*Even

Example : x,x3,sin X, X cosx

. X .
Example : X2, cos X, sin?x, X X sin X,

ao=an=0

bn=0

3. Fourier series: | Form

Fourier series: f(x) _%0 z an cos% , 5 Y by, sin hmx
2 na -] |
(-1.1)
(021) Even Function Odd function Neither Even Nor
Odd
12 | an =0; 1!
=2 () 21 £ () 0 =] £ (xdx
I | I
o
1% n7x 2 nzx an =0; 1] nax
== [ f(9cos==dx | a, == [ f(x)cos—— dx == [ () cos==dx
Iy I | 0 | I I
bn =0 I 1!
J‘ f (x)sin —dx n bn IEI f (x) sin anx J' (x)sin —dx
0 -1




4, Fourier series:

7 Form

. . aq o 0 .
Fourier series: f(x)= >t Y a, cosnx+ X by sin nx

n=1 n=1
(~7.7)
(0,27)
Even Function Odd function Neither Even Nor Odd
127 V4 an =0; 17
S2THd | ag =2 F(xdx 0 == [ f(x)dx
T 7 T _n
127 27 an =0; 17
ap =— [f(x)cosnxdx | ap =— [ f(x)cosnxdx an =— [ f(x)cosnxdx
7T 0 o -
127 . b =0 27 . T
bp =— [ f(x)sin nxdx : bn =— | f(x) sin nxdx bn :i [ f(x)sinnxdx
70 7o T
—7T
5. Half Range Fourier Series
Cosine series Sine series
| Form 7 Form | Form 7 Form
a 0 a o0 o8} o0
f(x):—0+ > ancosn—7ZX f(x):—0+ 2apcosnx| f(x)= X bnsinn—7ZX f(x) = 2bpsin nx
2 p=1 I 2 p=1 n=1 I n=1
I 7
2 2
O:ij(x)dx :;jf(x)dx |
0 0 2 . Nz
by, =I—jf(x) sdex ) 27zf _—
N I Ny 0 n_;j (x) sin nx dx
an =—[f(x)cos—dx | a, =— [ f(x)cosnxdx 0
|10 I 7T,




SOLUTION OF ONE DIMENSIONAL AND TWO DIMENSIONAL PDE

Equation Possible solutions
1-D Wave Equatlo;: , y(x1) =(Ae/1x N Be—/ixj(Celat N De—ﬁatj
0 0 . .
Yit = yxx or —2y = a? —2y y(x,t) = (Acos Ax + Bsin Ax)(C cos Aat + Dsin Jat)
ot OX
, T Tension y(x,t) = (AX+ B)(Ct + D)
h L
where o = 7 = o
1-D heat equations : y(x,t)=(Ax+B)C
2 ~ 2.2
yt a2y, OF % g2 a_zywhere y(x,t):(AeﬂX +Be ”‘)Ce“ At
OX
. 2,2
2 _k Thermal conductivity y(x,t) = (Acosx + Bsin ix)Ce~% 4" ¢

“ :E: density of thematerial x specific heat

Two dimensional heat flow equation (plate),

In steady state 2-D heat equation is

u(x, y) = (Ae™ + Be =) (C cos Ay + Dsin iy)
u(x, y) = (AcosAx + Bsin Ax) (CeY + De~ )

20 22 u(x,y) = (Ax+B)(Cy + D)
UXX +Uyy =00r—2+—2=0
ox= oy
ONE DIMENSIONAL WAVE EQUATION
S.N . . . .
o Equation Boundary conditions Correct Solution Most general solution
i 0,t) =0 forall t
i?)yy((l t)) —0 forallt Yo Yot =
Yy = a’ Y..| Displacement 6y’(x 0) <ACOSAX+ Bsm_ﬂx) gb sin%cos—nﬂat
1 given i) == =0 (Ccosat +Dsin zat) | =" |
iv) y(x,0) = f (X)




i 0,t) =0 forall t
i?)y((l t)) —0 forallt Y0t = yoxt) =
Initial velocity | iii AN (Acos Ax + Bsin Ax) ® . nax_. nzat
given 1) ;;Z(’OC))): © (C cos Aat + Dsin Aat) nzf” SN
. X
Tiv) /= = T (X
) g €9
ONE DIMENSIONAL HEAT EQUATION
o b—a
The steady state temperature distribution on the rod : U(X) = e X+a
a:temp.at end x=0; b=temp.at end x=I; I=Length of the rod.
S.N . o, . .
0 Equation Boundary conditions Correct Solution Most general solution
i) y(O,t) =0 forallt=0
2 i) y(l,t)=0 forallt=0 y(x.t) = _ y(x,t) =
1 | Ye=a Y | i) y(x,0) = £(x) (ACOZS’;)H Bsin Ax) —a’n?z?t
—a At x . 2
e” > by sin N7X o |
n=1 I
SQUARE PLATE
s.no | Equation Boundary conditions | Correct Solution Most general solution
i)u(O,y)=0
Upper iDu(a,y)=0
1 horizontal edge iii) u(x,0) =0
(y=a) Viviu(x,a) = f ()
u(x,y) = u(x, y) =
) Acos Ax + Bsin Ax e
m (ACOSBXEBIN ) | Ry M1
. i)u(0,y)=0 (Ce™” +De ™7) n=1 a a
2 horizontal edge | 7 ’
(y=0) iDu(a,y)=0
y ii)u(x,a)=0
ivu(x,0) = f(x)
i) u(x,0) =0
3 | Vertical ed ii)u(x,a)=0 utx.y) = _ ulx.y) =
erticaledge | 1o 0. v) = O (Acos Ay + Bsin ly) L

Mu(a, y) = f(y)

(CetX 4 pe=1X)

e @]
> bp sin D% sinh M2
n=1 a a




RECTANGULAR PLATE

FINITE
S.NO Equation Boundary conditions Correct Solution Most general solution
Hu(,y)=0
Upper i) u(a, v) — 0 u(x,y) =
1 horizontal i) U(x.0) — O . oz nay
edge (y=b) . > bp sin——sinh—
"ivu(x,b) = f (x) n=1 a b
u(x,y) =
” (Acos Ax + Bsin Ax) “nay
Lower ) U0, y) — 0 Ay Ay x© LNaX g
2 horizontal I Y) = (Ce”™ 7 +De ) u(x,y) = an sin Te
edge(y=0) | 'D (&Y =0 "
iiu(x,b)=0 2nny 2nny
ivu(x,0) = f(x) e &8 —e @)
i)u(x,0) =0 B(x,y) L) =
3 Vertical edge ) u(x,b) =0 ’ - T
i nsiNn—— -
iviu(a, y) = f(y) | (Cet*+De %) n=1 a
INFINITE PLATE
S.N
o Equation Boundary conditions Correct Solution Most general solution
4 HDu(0,y)=0 B
. ii)ud,y) =0 u(x,y) = _ u(x,y) =
Morizontal | i oy — 0 (Acos Ax + Bsin Ax) . L
infinite plate |, iV)u(x,0) = f (x) (Ce/ly 4 De—l y) > bp sinl—e |
n=1
i)u(x,0)=0
i)u(x,1)=0 U(X!y): U(X,Y):
i Vertical i1y U oo, y) — O (Acos 2y + Bsin 1y) . y
infinite plate | " jv)u (0, y) = f (y) (Ce’lx 4+ De 4 X) > bn SinTe I

n=1




Questions

If a function satisfies the condition f(-x) = f(x) then
which is true?

If a function satisfies the condition f(-x) = -f(x) then
which is true?

Which of the following is an odd function?

Which of the following is an even function?

The function f(x) is said to be an odd function of x if

The function f(x) is said to be an even function of x if

[f(x) dx = 2[f(x) dx between the limits -a to a if f(x) is

[f(x) dx =0 between the limits -a to a if f(x) is -
If a periodic function f(x) is odd, it’s Fourier
expansion contains no ------ terms.

If a periodic function f(x) is even, it’s Fourier
expansion contains no ------ terms.

In dirichlet condition, the function f(x) has only a -----
number of maxima and minima.

In Fourier series, the function f(x) has only a finite
number of maxima and minima. This condition is
known as -------

In dirichlet condition, the function f(x) has only a -----
number of discontinuities .

In Fourier series, the expansion f(x)=a,/2+ 3} (a,
cos nx + b, sin nx ) is possible only if in the interval
¢,< x< ¢, the function f(x) satisfies ---condition.

sin X
x3

f(x) = f( x) f(x) = - f( x)

f(x) =f( x) f(x) =-1f(x)

cven

even
coefficient
an

cosine

uncountabl
e

Dirichlet

uncountabl
e

kuhn-
Tucker

COS X

COS X

continuous

continuous

sine
sine
continuous

Kuhn
Tucker

continuous

Laplace

ago,=a,=0
X

sin X

f(x) = - f( x)
f(-x) = - f( x)
odd

odd
coefficient a,

coefficient a_,

infinite

Laplace

infinite

Dirichlet

x4

sin’x

f(-x) = f(-x)
f(-x) = f(x)

discontinues
discontinues

cosine

coefficienta_,

finite

Cauchy

finite

Cauchy

opt5

opt
6

Answer

sin X

COS X

f(-x) = - f(x)
f(-x) = f( x)

even
odd

cosine
sine

finite

Dirichlet

finite

Dirichlet



If the periodic function f(x) is even, then it’s Fourier
co- efficient -------- is zero.

If the periodic function f(x) is odd, then it’s Fourier co-
efficient -------- is zero.

1/piff(x) cos nx dx gives the Fouier coefficient ----------- N

1/pilf(x) dx gives the Fourier coefficient
1/piff(x)sin nx dx gives the Fouier coefficient -----------

The period of cos nx where n is the positive integer is

The Fourier co efficient a, for the function defined by
f(x) = x for 0< x<pi is

If the function f (x) = -7 in the interval —pi< x< 0, the

coefficient a,is

If the function f(x) =x sin X, in —pi< x<pi then

Fourier coefficient

For the cosine series, which of the Fourier coefficient

will vanish?

For the sine series, which of the Fourier coefficient

variables will be vanish?

For a function f(x) = x"3, in —pi< x< pi the Fourier

coefficient

F(x)=x cos x isan ------ function.
If f(x) = x, in —pi< x< pi then Fourier co efficient

F(x)=e”xisin —pi<x<pi.
Which of the coefficients in the Fourier series of the

function f(x) = X’ in -pi < x< pi will vanish

a9

algan

b, =0

an odd
function

bn=0

an odd
function

A

pi/2n
pi/2

(2*pi*2)/3

a():l

even
function

an=mn

even
function

ayand a,

b n
b n
b n
2*pi
2*pi

2%pi/3
a,= (pi"2)/3

al

Both a 0 and
an

a():l

neither odd or
even

al0=an=0

neither odd or
even

b,

A0 & An

Both a; and a,

a=a,=0

both even and
odd

an=1

Both even and
odd

an

Both a 0 and
an

a=a,=0

an odd
function

al0=an=0

neither odd or
even

b,



If f(-x) = -f(x), then the function f(x) is said to be -----
If f(-x) = f(x), then the function f(x) is said to be -----

The function x sinxisa ------- function in —pi< x<

pi.

The function x cos x isa  ------- function in —pi< x<
pi.

If f(x)= x in 0<x<2*pi and f(x)=f(x+2*pi) then the sum
of the fourier series of f(x) at x=2*pi is------

If f(x)= x"2 in 0<x<2*pi and f(x)=f(x+2*pi) then the
sum of the fourier series of f(x) at x= 0 is------

For any peroidic function f(x) in —pi< x< pi the point
X=-piisa---- point.

For any peroidic function f(x) in 0< x<2* pi the point
X=piisa---—- point.

For any peroidic function f(x) in 0< x< pi the point x=

Partial differential equation of second order is said to
Elliptic at a point (x,y) in the plane if ---------

Partial differential equation of second order is said to
Parabolic at a point (x,y) in the plane if ---------
Partial differential equation of second order is said to
Hyperbolic at a point (x,y) in the plane if ---------

Two dimensional Laplace Equation is ----------

One dimensional heat Equation is ----------

even
even
2*pi

2%pir2

Continous

Continous

and

discontinou

S

discontinou

S

B"2-
4AC<0
B"2-
4AC<0
B"2-
4AC<0

u_XXtu yy u_xXxtu yy=
- - - - u

=1

Continuous
continuous

odd

odd

cven

cven

continuous

continuous

0 6*pi

discontinous intermediate

intermediate

Continous
and
discontinous

B"2-4AC=0 B"2-4AC>0

B"2-4AC=0 B"2-4AC>0

B"2-4AC=0 B"2-4AC>0

0

u xx=(1/a" u_xx=[(1/a*

2)u t

2)u t]+10

Continous

Continous

X=u 'y

u_xx=u tt

discontinuous
discontinuous

discontinuous

discontinuous

0 pi

4*pi

Continous and
discontinous

discontinous

intermediate

B"2=4AC
B"2=4AC
B"2=4AC
u x+u y=0

u_xx+u_ tt=0

odd
even

even
odd
2*pi

2%pir2

discontinous

Continous

Continous

B"2-4AC<0
B"2-4AC=0
B"2-4AC>0

u_xx+u_yy=0

u_xx=(1/a"2)u
t



One dimensional wave Equation is ----------

u_xx=(1/a"
2)u t

The Possion equation is of the form ----- y(D=fx-
at)+g(x+at)
The steady state temperature of a rod of length 1 whose u(x)=
ends are kept at 30 and 40 is 10x/1+ 30
The temperature distribution of the plate in the steady u xx=(1/a"
state is -------—- 2)u t
Two dimensional heat Equation is known as ---------- .
. partial
equation.
In one dimensional heat flow equation ,if the
. .. . u(x)=ax +
temperature function u is independent of time, then b
the solution is------
f xx+2f xy+4f yy=0isa Elliptic
f xx=2f yyisa -----—-—-- Elliptic
f xx-2f xy+f yy=0is a ----------- Hyperbolic
The diffusivity of substance is------ k/pc
Heat flows froma ------- temperature higher to
lower
The Amount of heat required to produce a given
. . . temperatur
temperature change in a bodies propostional to the ---- .
--- of the body and to the temperature change.
The rate at which heat flows through an area is------ to
the area and to the temperature gradient normal to the  equal
area.
In steady state conditions the temperature at any .
. . . Time
particular point does not vary with ---
non

The wave equation is a linear and ------ equation

homogeneo S

us

u_xx+u_yy= u_xx=(1/a"2)u

0 2

u xx=(1/a"2 u_xx=(1/a"2)u
u_t Lt

u(x)=40x/1 u(x)=30x/1
u_xx+u_yy= u_xx=(1/a"2)u
0 A2

Radio laplace
u(x,t)=a(x,t) u(t)= at+b
Hyperbolic  Parabolic
Hyperbolic Parabolic
Elliptic Parabolic

pc k

lower to normal

higher ©

heat mass

not equal lessthan

temperature mass

homogeneou .
& quadratic

u_xXx=u t

u_xx+u_yy=f(
X,y)

None
u_xXx=u t

Poisson

ut)= at-b

circle
circle
circle
pc/k
high

wave

proportional

none

none

u_xx=(1/a"2)u
"2

u_xx+u_yy=f(
X,y)

u(x)=10x/1+
30

u_xx+u yy=0
laplace
ux)=ax+b
Elliptic
Hyperbolic

Parabolic
k/pc

higher to lower

mass

proportional

Time

homogeneous



In method of separation of variables we assume the u(x,y)=X(x u(x,t)=X(x) u(x.0)=u(x.y) u(x,y)=X(y)Y( u(x,t)=Xx)T(t
solution in the form of ----- ) T(t) ’ Y X) )
— +Rqi A(_(AA A ;
u(x,t? (Acosa?; Bsinax)Ce( (t.) 2)@2))is the heat wave laplace none heat
possible solution of ------ equation
Axt DY . L
y (A).< B)(Ct+D) is the possible solution of heat wave laplace none wave
equation
If the heat flow is one dimensional ,then the -------- is .
heat light temperature  wave temperature

a function x and t only

The stream lines are parallel to the X-axis ,then the
rate of change of the temperature in the direction of the one two Zero five Zero
Y-axis will be --------- .

The boundary condition with non zero value on the

R.H.S of the wave equation should be taken as the ------ First Second Last none Last
———————— boundary condition.

In one dimensional heat equation u_t= (a"*2)u_xx,

What does 02 stands for? Kpe pe k pelk K/pe
A _ . . L

g 1362 4AC =0, then the differential equation is said parabolic  elliptic hyperbolic equally spaced parabolic
NAAC > . . S

g 1362 4AC > 0, then the differential equation is said parabolic elliptic hyperbolic equally spaced hyperbolic
A AAC < . . L

g 1362 4AC <0, then the differential equation is said parabolic  elliptic hyperbolic equally spaced elliptic

The flow is two dimensional the temperature at any . . .

point of the plane i - of 7-coordinates. linear independent dependent none independent

_ R A A .
u(x,y)=(AcosAx+Bsinix)(Ce”(Ay)De”(-Ay)) is the heat wave laplace Hone laplace

possible solution of the equation.



UNIT 11

Foutier Series

Questions opt 1 opt 2 opt3 opt 4
S.NO. opts
Which of the following functions )
. COS X Sm nx tan nx tan x
| has the period 2n?
1/n | f(x) sinnx dx between the
limits ¢ to c+2x gives the Fourier a0 an b n b 1
2 coefficient
Iff(x? = -x for .-1r< x<.0 then its w22 |2 /3 i
3 Fourier coefficient ajis -
If a function satisfies the condition _ _ aog= _
C . a =0 |a,=0 b_n =0
4 f(-x) = f(x) then which is true? - a, =0
If a function satisfies the condition _ a o= _
. a, =0 a,=0 b ,=0
5 f(-x) = -f(x) then which is true? a, =0
grlllgi zj the following is an odd sin x cos X e M
6 ?
grlllgi zj the following is an even e oS X sin x sinx
7 ?
The function f(x) is said to be an fl-x)=f( [{x)=- |f((x)=- [f(-x)=1(-
odd function of x if X) f( x) f( x) X)
8
The function f(x) is said to be an fl-x)=f{ |f{x)=- [f(-x)=- [f(-x)=1(-
even function of x if X) f( x) f( x) X)
9
[f(x) dx = 2Jf(x) dx between the even continuo odd discontin
10 limits -a to a if f(x) is ------ us ues
[f(x) dx =0 between the limits -a continuo discontin
: . even odd
to a if f(x) is ------ us ues

11




If a periodic function f(x) is odd, it’s

Fourier expansion contains no ------ f(;efﬁmen sine f:fﬁcwn cosine
12 |terms. "

If a periodic function f(x) is even, coefficien| coefficien

it’s Fourier expansion contains no ---[cosine  |sine ta ‘2
13 |--- terms. - —

In dirichlet condition, the function .

f(x) has only a ----- number of E{;counta lcl(s)ntlnuo infinite  |finite
14 maxima and minima.

I T"OUlICL SCLICS, LU TULIUUIOLL I(A )

haz on.1y. 2 fmﬁi:[}el:.numb;r .ofr.naxnna Dirichlet I;uhlr(l Laplace [Cauchy
15 1an minima. This condition is ucker

In dirichlet condition, the function uncounta |continuo

f(x) has only a ----- number of ble us infinite  |finite
16 discontinuities .

The Fourier series of f(x) is given by ag/2% jay/2E a2 + 20/2 +

2, |X(a, X (aysin X (apsin
17 cosnx+ |cosnx- |nx+bn [nmx/1)

In Fourier series, the expansion f(x) ——

=a,/2+) (a,cosnx+b,sinnx) Tucker Laplace [Dirichlet |Cauchy
18 is possible only if in the interval

If the periodic function fix) is even, |ao/2+ |ao/2+ |a,/2+ Jay,/2+

then the Fourier expansion is of the |Ya, sin( [Y.a, cos( [ a, > a, sin(
19 [form --- nnx/ [ ) |nmx/1) |cos( nnx/ 1)

If the periodic function f(x) is even, R

then it’s Fourier co- efficient anis of sin( cos 11 1) [f(x) dx
20 the formm - zmx/ ) gnnx/ ) /1 dx

If the periodic function f(x) is even,

then it’s Fourier co- efficient a, is of 2/1fe) (V1Ee) 2/ 18/ [f(x) dx
21 the form --- dx dx dx

If the periodic function f(x) is odd, [~ = V7 |7 ° W

then it’s Fourier co- efficient bnis of [*°° sin( [f(x) dx 11 1)
2 ihe form . gnnx/ [) zmx/ [) /1 dx

If the periodic function f(x) is even,

then it’s Fourier co- efficient -------- a a, b, ) g Ay
23 is zero.

If the periodic function f(x) is odd,

then it’s Fourier co- efficient -------- alOganfal b n b 1
24 |is zero.

If the periodic function f(x) is even, Sb n sin |Yb_n sin >bn [a 02+)

then the Fourier expansion is of the - - cos nmx/ [a_ncos
25 form --- nmx/ { nex/ 1 [ (nmx/ 1)




If the periodic function f(x) is odd,

b, si i b
then the Fourier expansion is of the 2bysin 128, sin 10,y c0S 1D, ay cos
26 form — nnx/ [ nnx/ [ nmx/ [ nnx/ [
1/aff(x) cos nx dx gives the Fouier 0 b1 bn 4
coefficient ----------- - - - -
27
1/xf f(x) dx gives the Fourier a0 4 bn b1
coefficient - - - -
28
1/xf f(x)sin nx dx gives the Fouier 0 4 bn b1
coefficient ----------- - - - -
29
The. Perpd of cqs nx where n is the r/n 0 o o
30 positive integer 18
The Fourier co efficient a, for the
function defined by fix) =x for | /2 2n 0
31 0<x<mis
If the function f (x) = -7 in the
interval —n< x< 0, the coefficient a, |n"2/3 (2a™2)/3 |12n/3 2n
32 is
If the function f(x) = x sin X, in b =0 4 =1 ay= Q=1
33 [x<m then Fourier coefficient ! 0 @2)3 |
For the cosine series, which of the A b - Both a,
34 Fourier coefficient will vanish? - - - and a,
For the sine series, which of the Both
Fourier coefficient variables willbe |b n an a Oand [a 0
35  |vanish? an
For a function f(x) = x"3, in —n< b =0 4 =1 4 =1 a=a,=
36 x< 1 the Fourier coefficient " " 0 0
an odd n neither |both
F(x)=x cos x is an ------ function. ¢ even odd or |even and
function |function
37 even odd
If f(x) =X, in —n< x< & then Fourier bn=0 lan=x a0 = an =1
18 co efficient - - an=0|—
anodd  leven neither |Both
F(x)=e"xis in —n<x<m. : ven odd or |even and
function |function
39 even odd




Which of the coefficients in the

Fourier series of the function f(x) = |a, ay and a, |b, a,
40 |x’in -n < x< 7 will vanish
?f f(-.x) = -f(x), then the function f(x) odd Continuo even discontin
is said to be ----- us uous
41
?f f(-.x) = f(x), then the function f(x) odd continuo even discontin
is said to be ----- us uous
42
The function x sinxisa ------- continuo |discontin
.. even odd
43 function in —n< x< . us uous
The function x cos xisa  ------- continuo |discontin
.. even odd
44 function in —n< x< . us uous
The formula for finding the fourier e
coefficient a 0 in Harmonic (2/N)zy (2/N)Xy @N)E 2(an
L. COS nx ySInnx |cosnxt
45 analysis is ---- .
The formula for finding the fourier e
coefficient a_n in Harmonic analysis (2/N)zy (2/N)Xy 2(an @N)Z
. - COS nx cosnxt |y S nx
46 18 ---- . .
The formula for finding the fourier ag/2+
coefficient b, in Harmonic analysis [( 2/N)X y (2m)22 @N)Zy > (a,
. ysinnx [cos nx
47  |is ---- cosnx+
The t + b, sin x is called )
© Ierm a,c08 X PSR IS catle second |[first third end
the----- harmonic.
48
The term ------------- is called the acosn  |a;cos2
.. . . ) . |ajcos x+ |a;cos x+
first harmonic in Furier Series x+ by sin [x+ b, sin . .
: b, sin2 x |b; sin x
49 expansion. X X
If f(x)= x in 0<x<2m and
f(x)=f(x+2m) then the sum of the 2n 2 Ol|m
50 fourier series of f(x) at x=2m is------
If f(x)= x*2 in 0<x<2m and
f(x)=f(x+2m) then the sum of the 212 0|6m 4n
51 fourier series of f(x) at x= 0 is------
. g . . CUIIaiou
For any per01d1c. functlon.f(x) n Continou |discontin |intermedi s and
—n< x< 7 the point x=- 1 is a ----- . .
) ] ous ate discontin
52 [poimt.
CUIIaiou
For any peroidic function f(x) in 0< (s and intermedi | Continou |discontin
x<2 1 the point x=m is a ----- point. |discontin |ate ] ous

53




Colngiou

For any peroidic function f(x) in 0< |discontin (s and Continou [intermedi
54 x< 7 the point x=0 is a ----- point.  [ous discontin |s ate
T1IC pl OCOSS Ul uuuulg LIIC T"OUrIcCI
series for a function given by --------- initial numerical|final fundame
55 --- at equally spaced points is value value  |value ntal value
11 1IC pl ULU1SD Ul llll.kllllg |.111C .FUUI ICI DO
series for a function given by equally [unequally|intermedi|equally
56 numerical values at ----------- points [spaced | spaced |ate and
'llllc pl UL 1()1 uuuu'lg IJIC1 Fk‘)ul ICI =
series for a function given by mathema complex [real )
: tical . . |harmonic
57 num?r19a1l values at equally spaced analysis analysis [analysis analysis.
The complex form of Fourier series flx)= >'b, sin flx)= f(X)_A
FRX) in (c.c+20) is zen Nl [ER(Eenett
58 0 e/\(lnTEX/l ) e/\(lnTEX/l) inmt x/ [ )
The Euler constant ¢_n in the dc n dc n
complex form of fourier series of  [c_n=1/2/ an.: eNinmx/ |e™(-
59 |fx) in (c.ot21) is ix) e |0 17 inmx/ 1)
IN\NUUL
yA2=1 /(b-a)f(f(x))A2 dx is called the -|mean parsevals [Harmoni culer
o [|-of the function. sq?are identity |c
Partial differential equation of
second order is said to Ellipticata B”2- B"2- B"2- B"2=4A
1 point (x,y) in the plane if --------- 4AC<0 4AC=0 4AC>0 C
Partial differential equation of
second order is said to Parabolic at B"2- B"2- B"2- B"2=4A
2 a point (x,y) in the plane if --------- 4AC<0 4AC=0 4AC>0 C
second order is said to Hyperbolic
at a point (x,y) in the plane if -------- B"2- B"2- B"2- BM"2=4A
3 - 4AC<0 4AC=0 4AC>0 C
Two dimensional Laplace Equation u_xx+tu_ u xx+u u xtuy
4 1§ —--------- yy=1 yy=0 u x=uy =0
u xx=[(1
One dimensional heat Equation is --- u_xx=(1/ /a"2)u t] u xx=u t u_xx+u t
R a2)u t +10 t t=0
u xx=(1/
One dimensional wave Equation is -- u_xx=(1/ u_xx+u_ o"2)u_t*
6 - a’2)ju t yy=0 2 u _xx=u t
The D’ Alembert’s solution of the X- u xx=(1/
One dimensional wave Equation is--- at)+y(x+ u xx=(1/ a™2)u_t*
7 -- at) yx,t)=0 a2)u t 2




10

11

12

13

14

15

16

17

18

19

20

21

The Possion equation is of the form -
The steady state temperature of a
rod of length 1 whose ends are kept
at 30 and 40 is

The temperature distribution of the
plate in the steady state is ---------

Two dimensional heat Equation is
known as ---------- equation.
equation ,if the temperature function
u is independent of time, then the
solution is------

f xx+2f xy+4f yy=0is a

f xx=2f yyis a ---------

f xx-2f xy+f yy=0is a -----------

The diffusivity of substance is------

Heat flows froma -------
temperature

produce a given temperature change
in a bodies propostional to the -----
-- of the body and to the

through an area is------ to the area
and to the temperature gradient
normal to the area.

In steady state conditions the
temperature at any particular point
does not vary with ---

The wave equation is a linear and --
---- equation

X_
at)ty(x+ u xx=(1/ u_xx=(1/ u_xx+tu_

at) a2)u t o 2)u tt yy=f(x,y)
u(x)=
10x/1+  u(x)= u(x)=
30 40x/1 30x/1 None
u xx=(1/
u xx=(1/ u_xxtu_ a2)u_t"
a’2)ju t yy=0 2 u xx=u t

partial ~ Radio laplace  Poisson

u(x)=ax u(x,t)= u(t)= at u(t)= at

+b a(x,t) +b -b
Hyperbol

Elliptic ic Parabolic circle
Hyperbol

Elliptic ic Parabolic circle

Hyperbol

ic Elliptic  Parabolic circle

k/pc pc k pc/k

higher to lower to
lower higher ~ normal  high

temperat
ure heat mass wave
proportio

equal not equal lessthan nal
temperat

Time ure mass none

non

homogen homogen

eous eous quadratic none



22

23

24

25

26

27

28

29

30

31

32

33

34

35

In method of separation of variables
we assume the solution in the form

u(x,t)=(AcosAx+Bsinix)Ce”\(-
(a"2))(A"2)t) is the possible solution
of ------ equation

y=(Ax+B)(Ct+D) is the possible

solution of ------ equation

If the heat flow is one dimensional
,then the -------- 1s a function x and
t only

X-axis ,then the rate of change of
the temperature in the direction of
the Y-axis will be --------- .

To solve y_tt=(a"2)yxx, we need ---
----- boundary conditions.

zero value on the R.H.S of the wave
equation should be taken as the ------
-------- boundary condition.

In one dimensional heat equation
u_t=(a"2)u_xx, What does o2
stands for?

The possible solution of wave
equation is ----------

The possible solution of heat
equation is ----------

If BA2-4AC = 0, then the differential
equation is said to be

If BA2-4AC > 0, then the differential
equation is said to be

If BA2-4AC < 0, then the differential
equation is said to be

The laplace equation in the polar
coordinates is of the form-----

u(x,y)=X
(x)

heat

heat

heat

one
if t>=0;

y(1,H)=0
if £>=0

First

k/pc
y=(Ax+B
)(Ct+D)
cosAxtB
sinAx)Ce
/\(_

parabolic

parabolic

parabolic

u r+u 0
=0

u(x,t)=X( u(x,0)=u( u(x,y)=X

OTM xy) YR

wave laplace  none

wave laplace  none
temperat

light ure wave

two Zero five

if t>0;

y()=0if y(x,t)=0

t=0 if >0 none

Second Last none

pc k pc/k

cosAx+B u(x,t)}=A u(x,t)=A
sinAX)(Ce cosAxtB cosAx-
NAy)tDe sindx Bsinix
cosAx+B u(x,t)}=A u(xt)=A
sinAX)(Ce cosAxtB cosAx-
NAy)+De sindx BsinAx

hyperboli equally
elliptic ¢ spaced

hyperboli equally
elliptic ¢ spaced

hyperboli equally
elliptic ¢ spaced
u xx=(1/ (r"2)u_rr
a2)u t* u xx=(1/ +ru_r+u_
2 a’2)u t 06=0



36

37

38

The flow is two dimensional the
temperature at any point of the

plane is ------- of Z-coordinates. linear
u(x,y)=(Acosix+Bsinix)(Ce"(Ly)De
(-Ay)) is the possible solution of

the equation. heat

U(1,0)=(A log r+B)(C0+D) is the
possible solution of ------ equation  heat

independ dependen

ent

wave

wave

t

laplace

laplace

nonc

nonc

nonec



opté

opt S

opt 6

Answer

COS X

sin X

COS X

f(-x) =-
f(x)

f(-x) =
X)

cven

odd




cosine

sine

finite

Dirichlet

finite

a,/2+

2 (a,

cosnx+

Dirichlet

a,/2+

> a, cos(
nnx/ 1)

Z7T T JO(X)
cos
(nmx/ 1)
A

2/1 If(x)
dx

Z7 T JIOX)
sin(
nmx/ 1)
A

b,

algan

a 0/2+)
a_n cos
(nmx/ 1)




>'b, sin
nnx/ [

2n/n

an odd
function

n=20

neither
odd or
even




odd

cven

cven

odd

(2/N)Zy

2N)Zy
COS nx

2/N)X
y sin nx

first

a,cos x+
bl Sin X

2n

212

discontin
ous

Continou
S




Continou
S

numerical
value

equally
spaced

harmonic
analysis.

f(x)=
Yecn

e/\(lnTEX/l)

f(x)=
Yecn

e/\(lnTEX/l)

c n=1/21
[fix) e*C

c n=1/21
[fix) e*C

TNUOUT
mean

square
1

TNUOUT
mean

square
1

B"2-
4AC<0

B"2-
4AC=0

B"2-
4AC>0

u_xXxtu

yy=0

u_xx=(1/
a’2)u t
u_xx=(1/
a’2)u_th
2

X-
ot)Hy(x+
at)




u_XXtu_

yy=f(x.y)
u(x)=
10x/1+
30
u_XXtu_
yy=0
laplace
u(x)= ax
+b
Elliptic
Hyperbol
ic

Parabolic

k/pc
higher to
lower
mass
proportio
nal

Time

homogen
eous



u(x,t)=X(
x)T(t)

heat

wave

temperat
ure

Zero
if t>=0;

y(L,H)=0
if £>=0

Last

k/pc

y=(Ax+B
)(Ct+D)
cosAxtB
sinAx)Ce
/\(_

parabolic

hyperboli
C

elliptic
(r"2)u_rr
+ru r+u
06=0



independ
ent

laplace

laplace



