17BEECOE01 REAL TIME EMBEDDED SYSTEMS LTPC 100 3 0 0 3

OBJECTIVES:

- To introduce students to the embedded systems, its hardware and software.
- To introduce devices and buses used for embedded networking.
- To study about task management
- To learn about semaphore management and message passing
- To study about memory management

INTENDEDOUTCOMES:

- Ability to understand embedded systems, its hardware and software.
- Gain knowledge about devices and buses used for embedded networking.
- Gain knowledge about task management.
- Gain knowledge about semaphore management and message passing.
- Gain knowledge about memory management.

UNIT-I INTRODUCTION TO EMBEDDED SYSTEM

9

Introduction- Embedded systems description, definition, design considerations & requirements- Overview of Embedded System Architecture (CISC and RISC)-Categories of Embedded Systems- embedded processor selection & tradeoffs-Embedded design life cycle -Product specifications- hardware / software partitioning- iterations and implementation- hardware software integration – product testing techniques–ARM7.

UNIT-II OPERATING SYSTEM OVERVIEW

9

Introduction–Advantage and Disadvantage of Using RTOS–Multitasking–Tasks-Real Time Kernels – Scheduler- Non-Preemptive Kernels – Preemptive Kernels – Reentrancy – Reentrant Functions– Round Robin Scheduling- Task Priorities- Static Priorities– Mutual Exclusion–Deadlock– Inter task Communication–Message Mailboxes–Message Queues- Interrupts- Task Management–Memory Management-Time Management–Clock Ticks.

UNIT-III TASK MANAGEMENT

9

Introduction- μ C/OS-II Features-Goals of μ C/OS-II-Hardware and Software Architecture–Kernel

Structures: Tasks–Task States–Task Scheduling–Idle Task–Statistics Task–Interrupts Under μ C/OS-II –Clock Tick- μ C/OS- II Initialization. Task Management: Creating Tasks–Task Stacks–Stack Checking–Task's Priority–Suspending Task–Resuming Task. **Time Management:** Delaying a Task–Resuming a Delayed Task–System Time. Event Control Blocks-Placing a Task in the ECB Wait List–Removing a Task from an ECB wait List.

Semaphore Management: Semaphore Management Overview– Signalling a Semaphore. Message Mailbox Management: Creating a Mailbox – Deleting Mailbox– Waiting for a Message box–Sending Message to a Mailbox- Status of Mailbox. Message Queue Management: Creating Message Queue– Deleting a Message Queue–Waiting for a Message Queue–Sending Message to a Queue– Flushing a Queue.

UNIT-V MEMORY MANAGEMENT

9

Memory Management: Memory Control Blocks–Creating Partition-Obtaining a Memory Block– Returning a Memory Block. Getting Started with μ C/OS-II–Installing μ C/OS-II–Porting μ C/OS-II: Development Tools–Directories and Files– Testing a Port-IAR Workbench with μ C/OS-II- μ C/OS- II Porting on a 8051 CPU– Implementation of Multitasking- Implementation of Scheduling and Rescheduling –Analyze the Multichannel ADC with help of μ C/OS-II.

Total: 45

TEXTBOOKS:

S.NO.	Author(s) Name	Title of the book	Publisher	Year of publication
1	JeanJ. Labrosse	Micro C/OS-II The Real Time Kernel	CMPBOOKS	2009
2	David Seal	ARM Architecture Reference Manual.	Addison-Wesley	2008
3	Steve Furbe,	ARM System-on-Chip Architecture,	Addison-Wesley Professional, California	2000

REFERENCES:

S.NO.	Author(s) Name	Title of the book	Publisher	Year of publication
1	K.V.K.K.Prasad	Embedded Real-Time Systems: Concepts, Design & Programming	Dream Tech Press	2005
	Sriram V Iyer, Pankaj Gupta	Embedded Real Time Systems Programming	Tata McGraw Hill	2004

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari Post,

Coimbatore - 641 021 FACULTY OF ENGINEERING DEPARTMENT OF BIO MEDICAL ENGINEERING

LECTURE PLAN

NAME OF THE STAFF : Mrs.P.SASIKALA

DESIGNATION : ASSISTANT PROFESSOR

CLASS : B.E-IV YEAR BME

SUBJECT : REAL TIME EMBEDDED SYSTEMS

SUBJECT CODE : 16BEEC70E01

S.No	TOPICS TO BE COVERED	TIME DURATION	SUPPORTING MATERIALS	TEACHING AIDS
	UNIT I LOUD		D MICROPHONES	THE O
1	Introduction- Embedded systems description, Definition	01	R1- Page.no 50	ВВ
2	Design Considerations & Requirements	01	R1- Page.no 50	BB
3	Overview of Embedded System Architecture (CISC and RISC)	01	R1 Page.no 41-50	ВВ
4	Categories of Embedded Systems, Embedded Processor Selection & Tradeoffs	01	R1- Page.no.52	ВВ
5	Embedded design Life Cycle, Product Specifications	01	R1 Page.no.61-64	PPT
6	Hardware / Software Partitioning	01	R1 page.no.18	PPT
7	Iterations and Implementation,	01	R1 page.no.36	PPT
8	Hardware Software Integration	01	R1 page.no.33-41	PPT
9	Product testing Techniques ARM7.	01	R1 page.no.40	PPT
Introduction		01		
Total Lecture Hours		08		
Total	Hours		09	

	UNIT – II TELEVISION STANDARDS AND SYSTEMS					
10	Introduction–Advantage and	01	R1 Page.no 304	Smart Board		
	Disadvantage of Using RTOS					
11	Multitasking–Tasks-Real Time	01	R1 Page.no 308	BB, PPT		
	Kernels					
12	Scheduler- Non-Preemptive	01	R1 Page.no 311	PPT		

	Kernels – Preemptive Kernels			
13			R1 Page.no 371	PPT
	Functions			
14	Round Robin Scheduling- Task	01	R1 Page.no 342-353	PPT
	Priorities			
15	Static Priorities– Mutual	01	R1 Page.no 375	PPT
	Exclusion, Deadlock			
16	Inter task Communication-	01	R1 Page.no 354	PPT
	Message Mailboxes			
17	Message Queues- Interrupts-	01	R1 Page.no 388	PPT
	Task Management			
18	Memory Management-	01	www.television.remote.c	PPT
	Time Management-Clock		om	
	Ticks.			
Total	Lecture Hours	09		
Total	Hours	09		

UNIT - III OPTICAL RECORDING AND REPRODUCTION				
19	Introduction-µ C/OS-II Features-	01	R1 Page.no.290	Smart board
	Goals of C/OS-II-Hardware and			
	Software Architecture			
20	Introduction-µC/OS-II Features-	01	R1 Page.no 290	Smart board
	Goals of µC/OS-II-Hardware and			
	Software Architecture,			
21	Kernel, Structures : Tasks-	01	R1 Page.no 292	Smart board
	Task States-Task Scheduling			
22	Idle Task–Statistics Task–	01	R1 Page.no 301	Smart board
	Interrupts Under μC/OS-II			
23	Clock Tick-µ C/OS- II	01	R1 Page.no 262	Smart board
	Initialization.			
24	Task Management: Creating	01	R1 Page.no 264	Smart board
	Tasks-Task Stacks-Stack			
	Checking			
25	Task's Priority-Suspending Task-	01	R1 Page.no 275 & 286	Smart board
	Resuming Task.			
26	Time Management: Delaying a	01	R1 Page.no.286	Smart board
	Task-Resuming a Delayed Task-			
	System Time.			
27	Event Control Blocks-Placing	01	-	Smart board
	a Task in the ECB Wait List-			
	Removing a Task from an			
	ECB wait List.			
Total	Lecture Hours	09		
Total	Hours		09	

	UNIT - IV TELECOMMUNICATION SYSTEMS				
28	Semaphore Management: Semaphore Management Overview	01	R1 Page.no.1-42	BB	
29	Signaling a Semaphore	01	R1 Page.no.1-5	BB	
30	Message Mailbox Management: Creating a Mailbox	01	R1 Page.no.16	BB	

31	Deleting Mailbox	01	R1 Page.no.348	BB
32	Waiting for a Message box	01	R1 Page.no.414	BB
33	Sending Message to a Mailbox- Status of Mailbox	01	R1 Page.no.455-467	BB
34	Message Queue Management: Creating Message Queue	01	R1 Page.no.492-559	BB
35	Deleting a Message Queue– Waiting for a Message Queue	01	R1 Page.no 560-586	BB
36	Sending Message to a Queue, Flushing a Queue.	01	R1 Page.no 560-586	BB
Total	Lecture Hours	09		
Total	Hours	09		

UNIT – V HOME APPLIANCES				
37	Memory Control Blocks-	01	R1 Page.no 487	PPT
	Creating Partition			
38	Obtaining a Memory Block-	01	R1 Page.no 487	PPT
	Returning a Memory Block.			
39	Getting Started with μC/OS-II–	01	T1. www.	PPT
	Installing μC/OS-II		safaribooksonline.com	
40	Porting μC/OS-II	01	T1. www.	PPT
			safaribooksonline.com	
41	Development Tools-Directories	01	www.aceac.com	PPT
	and Files			
42	Testing a Port -IAR Workbench	01	www.aceac.com	PPT
	with μC/OS-II			
43	μC/OS- II Porting on a 8051 CPU,	01	//berg.group.com/	PPT
	Implementation of Multitasking			
44	Implementation of Scheduling	01	//berg.group.com/	PPT
	and Rescheduling			
45	Analyze the Multichannel	01	-	PPT
	ADC with help of µC/OS-II.			
-	Lecture Hours	09		
Total	Hours		09	

Total No of Hours for Introduction: 01 Hrs

Total No of Lecture Hours Planned: 44 Hrs

Total No of Hours Planned : 45 Hours

TEXT BOOKS:

				Year of the
S.NO.	Author(s) Name	Title of the book	Publisher	publication
1.	S.P.Bali	Consumer Electronics	Pearson Education	2005

REFERENCE BOOKS:

S.NO.	Author(s) Name	Title of the book	Publisher	Year of the publication
1.	R.G.Gupta	Audio & Video Systems	Tata Mc Graw hill	
			Publishing Company Ltd	2004
2.	Ajay sharma,	Audio Video & TV	Dhanpat Rai &	
		Engineering consumer	Co.(P).Ltd	
		electronics		2007
3.	Manav Bhathagar	Telecommunication	PHI Learning Pvt.Ltd	
		Switching systems &		
		Network		2015

STAFF IN-CHARGE

HOD/ECE

KARPAGAM ACADEMY OF HIGHER EDUCATION (Under section 3 of UGC Act 1956) COIMBATORE - 641 021.

(For the candidate admitted from 2016 onwards) - FULL TIME

BE DEGREE EXAMINATIONS, NOV 2019 DEPARTMENT OF BIOMEDICAL ENGINEERING SEVENTH SEMESTER REAL TIME EMBEDDED SYSTEMS

Time: 3 hours Maximum: 100 marks

1.	is a general papplications. a)GPP b)ASIP c)DSP		uestions	ed not specific to the	
2.	Processors operate at a a) 3 ghz. b) 4 gh	clock frequency of z. c) 8 mhz.			
3.	IBM PC'S use and a)80×86 series	the embedded systems b)80×81 series c)80×8	=	-	
4.	A architecture me a)super scalar b)ALU	ans that the instructions c)floating point		stages.	
5.	is also called MOSI. a)Synchronous serial input. b) Synchronous serial output. c) Asynchronous serial input. d) Asynchronous serial output.				
6.	Synchronous serial inp master clock outputs. a)MOSI b)MISO			ave is synchronised as	
7.	is the special case value a)synchronous	when the maximum time b)asynchronous		d)none of above	
8.	Synchronous serial com a)LAN b)WAN	nmunication frames are s			
9.	codes may need o a)assembly codes	nly a few assembly instr b) machine codes		ver codes	
10.	are compact proce a)assembly codes	ssor and memory sensit b) machine codes		er codes	
11.	gives a precise co	ontrol of the processor.			

13. ____ improves the system performance.

a) assembly codes b) machine codes

a)RTOS

c)including header file

b)ASIP

a) including constant data file **b) including code file**

12. ____ are the files of the codes already available in include pre-processor.

c)ASSP

d)including string data file

d)DESP

c)both a and b d) driver codes

14. An OS provides for memory allocation and de allocation functionsa)static b)dynamic c)both a and b d) none.	
15 provides the codes denying the device resources.a) device sharing b)device control c)device deletion d)device driver	
16. A software driver is also called as a) device sharing b)device control c)device deletion d)device drive	er.
17. MUCOS has lines. a)10000+ b)20000+ c)30000+ d)40000+	
18. Memory functions are required to size memory blocks. a)fixed b)variable. c)both a and b d)none of the above	
19. MUCOS permits a of an array of pointers.a) tree b)list c)queue d)stack	
20. Task creation and activation is a) Task delay b) task spawning c) task creation d) embedded systems	
PART - B (5 x 2 = 10 Marks) Answer ALL the questions.	
 21. Define Embedded System. 22. What is meant by Kernel? 23. Define Task Scheduling. 24. Define Mail Box. 25. How to installing the μc/os-II. 	
PART – C (5 x 14 = 70 Marks) Answer ALL the questions.	
26.a)Explain the overview of embedded system architecture.	(14)
Or b) Explain embedded design life cycle.	(14)
27.a)Explain the inter task communication .	(14)
Or b) Details about the message, mailboxes and message queues.	(14)
28.a)Explain the kernel structure.	(14)
Or b) Explain the task management.	(14)
29.a)Explain the semaphore management.	(14)
Or b) Explain the mailbox management.	(14)
30.a)Details about the memory management.	(14)
Or b) Explain the porting of μc/OS-II.	(14)

:Assistant Professor / ECE

KARPAGAM ACADEMY OF HIGHER EDUCATION (Under section 3 of UGC Act 1956) COIMBATORE - 641 021.

(For the candidate admitted from 2016 onwards) - FULL TIME

BE DEGREE EXAMINATIONS, NOV 2019 DEPARTMENT OF BIOMEDICAL ENGINEERING SEVENTH SEMESTER REAL TIME EMBEDDED SYSTEMS

Time: 3 hours Maximum : 100 marks

PART - A (20 x 1 = 20 Marks) Answer all the questions

		4	Aliswei ali ule t	luestion	5
1.	is a proce	essor with a inst	ruction set desig	gned for	specific applications on a VLSI chip.
	a)GPP	b)ASIP	c)DSP	d)ASSI	
2.	A is used a	as general purpo	se processor w	hen larg	e embedded software has to be located
	in the external	memory chips.			
	a) Embedded p	rocessor	b) single purpe	ose proc	essor
	c) Microproce	d) network pr	ocessor		
3.	A function	ns are to establis	h a connection,	finish, se	ent, receive acknowledgements.
	a) Embedded p	b) single purp	ose proc	essor	
	c) Microproces	sor d) net	work processo	r	
4.	System p	rocessor and un	its are used in n	nost high	performance system.
	a)5 volt	b)6 vol	t c)7 vo	lt	d)8 volt
5.	There are	_methods of end	coding the clock	informa	tion into a serial stream of bits.
	a) 4 b)3				
6.	•	s device port bits			
	, ,	, ,	, ,	•	d)always optional
7.		s device port bits			
				_	l d)always optional
8.	•	or asynchronous			
	a) Mobile communication b) keypad communication				
	c) Digital comn			e of the	
9.		es of the strings	•		
	,	nstant data file	•	uding co	
4.0	,	ader file	,	_	ita file
10.		a named small co			
11	a)macro	b)function	c)main	d)recu	rsive
11.	•	tant element of			11 0 11
12	a) embedded	b)c	c)data structi		d both a and b
12.		used by several			
10	a)macro	b)function	c)mair	l	d)re-entrant
13.		es referring to is		مارة مارة	in a norminai on
	a)identity	b)count	c)state	ujsnar	ing permission

14 can be shared for execution, reading or writing.	
a)identity b)countc)state d)sharing permission	
15. In RTOS is for critical section handling.	
a)time slicing b)spin locks. C)memory allocation d)process predictability	
16 is the execution of processes which have equal priority.	
a)time slicing b)spin locks. C)memory allocation d)process predictability	
17 task is unable to run its codes further.	
a)Task delay b)task spawning c)task creation d)task suspension.	
18. TCB is	
a)task count block. b)task control block. c)task code block. d)both a and c.	
19. Vx works hasfunctions.	
a)3 b)4 c)8 d)5 20. Vx works provides	
a)system timer functionb)watch dog timer function	
c)delay function d)all the above	
.,	
PART - B ($5 \times 2 = 10 \text{ Marks}$)	
Answer ALL the questions.	
21. What is RISC?	
22. Define reentrant function.	
23. What is the purpose of resuming task?	
24. Define message queue.25. Define IAR work bench.	
PART - C (5 x 14 = 70 Marks) Answer ALL the questions.	
26.a)Explain the general block of embedded system architecture. Or	(14)
b) Explain the hardware/software partitioning.	(14)
27.a)i)task priorities .	(4)
ii)mutual exclusion . iii)dead lock .	(5) (5)
Or	
b) Details about the scheduler and types of scheduling.	(14)
28.a)Explain the Event Control Blocks.	(14)
Or b) Explain the time management.	(14)
29.a)Explain the semaphore management.	(14)
Or	
b) Explain the message queues.	(14)
30.a)Explain the implementation of multitasking.	(14)
Or b) Analyze the multichannel ADC with help of μc/OS-II.	(14)
	-

:Assistant Professor / ECE

KARPAGAM ACADEMY OF HIGHER EDUCATION (Under section 3 of UGC Act 1956) **COIMBATORE - 641 021.**

(For the candidate admitted from 2016 onwards) – FULL TIME

BE DEGREE EXAMINATIONS, NOV 2019 DEPARTMENT OF BIOMEDICAL ENGINEERING SEVENTH SEMESTER REAL TIME EMBEDDED SYSTEMS

Time: 3 hours Maximum: 100 marks

		PΔ	ART - A (20 x	1 =20 Mai	rke)	
			Answer all th		•	
1.	is used fo	or converting ob		-		ocessor.
	a)simulator.	b) compiler.	c) cross as	sembler.	d) prototype	r.
2.	uses the co	omplete set of co	des.			
	a)simulator.	b)compiler.	c)cross asse	embler.	d) prototype	r.
3.	is requi	red for line by li	ne translation	to machin	e executable co	odes.
	a) editor	b)RTOS	c)locator	d)inte	erpreter	
4.	is needed	d for writing c c	odes or asser	nbly mnen	nonics using th	ne keyboard of the pc for
	entering the p	rogram.				
	a) editor	b)RTOS	c)locator	d)inte	rpreter	
5.	UART is usuall	ly either inb	it format.			
	a)10 or 11	b)12 or 13	c)14 or 15	d)16 o	or 17	
6.	HDLC commun	nication is				
	a)simplex	b) half duplex	C)b	oth a and b	d)fu	ll duplex
7.	The half duple	x synchronous n	node of opera	tion in SI_		
	a)mode 1	b)mode 0	c)mode2	d)mod	le 3	
8.	In parallel deid	ce ports the inpu	itsmay	y be to a ke	ypad controlle	r.
	a) I0 TO I7	b)I3 to I5	C)I6 to I8	d)I4 to) I8	
9.	is a proce	essor in which t	the string man	nipulation	functions are	needed in program using
	strings					
	a) including co	onstant data file	b)ir	ncluding co	de file	
	c)including h	eader file	d)ir	ncluding st	ring data file	
10.	A compiler ver	rsion may not pr				
	a)signed bit.	b) unsigned b		gnedchara	cter. d)un	signed character.
11.		ed as a data type	<u>.</u>			
	a)signed bit.	b)unsigned by	te. c)si	gnedchara	cter. d) u	nsigned character
12.		assigned as	address.			
	a)constant fix		onstant fixed.	•	tant varied.	d)unconstant varied.
13.	provides r	unning the user	threads in ke	rnel space.		
	a)RTOS	b)UAF	,	SR	d)IPC	
14.	can only p	ost the message	for the RTOS			
	a)RTOS	b)UART	c)ISR	d)IPC		

15function can be used before a critical section				
a) time slicing b)spin locks . c) Memory allocation d) process predictability				
16is basic unit for OS.				
a)kernel. b)lock c)unlock d)round robin.				
17. MUCOS are useful for letting apirority task run.				
a)high b)low c)medium d)very high				
18. A signal servicing routine is thefunction.				
a)c b)c++ c)java d)embedded				
19. Vx works hasdifferent semaphore functions.				
a)5 b)7 c)3 d)2				
20. Queue can be used as in MUCOS				
a)FIFO b)LIFO c)both a and b d)none of the above				
PART - B (5 x 2 = 10 Marks) Answer ALL the questions. 21. Define WDT. 22. Define deadlock. 23. How to creating the task.				
24. Define MCB.				
25. What is meant by message?				
PART - B (5 x 14 = 70 Marks) Answer ALL the questions.				
26. a) Explain the Hardware architecture of CISC and RISC.	(14)			
(or) b) Explain the hardware / software partitioning in detail.	(14)			
27. a) (i) Explain the pre-emptive kernels and non-pre emptive kernels in detail.(ii) Explain in detail about round robin schedule.(or)	(7) (7)			
b) Explain memory management in detail.	(14)			
28. a) Explain time management in detail. (or)	(14)			
b) Explain task management in detail.	(14)			
29. a) Explain mail box management in detail. (or)	(14)			
b) Explain message queue management in detail.	(14)			
30. a) Explain the memory management in detail. (or)	(14)			
b) Analyses the multi dimensional ADC with the help of μC / OS-II.	(14)			

Prepared by : Mrs.P.Sasikala :Assistant Professor / ECE

KARPAGAM ACADEMY OF HIGHER EDUCATION (Under section 3 of UGC Act 1956) COIMBATORE - 641 021.

(For the candidate admitted from 2016 onwards) – FULL TIME

BE DEGREE EXAMINATIONS, NOV 2019 DEPARTMENT OF BIOMEDICAL ENGINEERING SEVENTH SEMESTER REAL TIME EMBEDDED SYSTEMS

Time: 3 hours Maximum : 100 marks

			•		20 Marl uestion	-	
1.	uses a cro	oss assembler ou		-).
	a) editor	b)RTOS	c)locat	tor	d)inter	preter	
2.	tools are	used to develop	softwai	re for de	signing a	ın embe	dded systems
	a)software.	b)debugging	c)proto	otype	d)sophi	sticated	l.
3.	is essenti	al in most embe	dded sys	stems to	process	multiple	e tasks and ISRs.
	a) editor	b)RTOS		c)locate	or	d)inter	preter
4.	Multiple standa	ard source solut	ions are	called _	core		
	a)FPGA	b)IP c)ASIP		d)ASSP	•		
5.	In parallel deic	e ports the outp	uts	may b	e to a LC	D displ	ay controller.
	a)03 to 05	b)00 to 07	C)04 to	80 o	d)06 to	80	
6.	Sophisticated is	nterfacing device	e are use	ed for			
	a)long distanc	ce communicati	on	b)short	t distanc	e comm	unication
	c)both a and b			d)none	of the al	oove	
7.	is the de	evice that counts	the regu	ılar inte	rval cloc	k pulses	at its input.
	a)counter	b)timer cum co	unter	c)time	r		d)counter cum timer
8.	is the d	evice that counts	s the reg	ular or i	rregular	interva	clock pulses at its input.
	a)counter	b)timer cum co	unter	c)timer	•	d)coun	ter cum timer
9.	is a data se	t allocated with a	a memoi	ry block	for key	and valı	ie pairs.
	a)table	b)pipe	c)hash	table		d)table	base
10.	The pointers ar	re available in qu	ieue is _	·			
	a)3 b)2	c)4 d)5					
11.	can be use	ed as a data type.					
	a)signed bit.	b)unsigned byt	e.	c)signe	d charac	ter.	d) unsigned character
12.	Which one is ro	oot element?					
	a)tree	b)list	c)queu	e		d)stack	
13.	is a functio	n to release the l	lock at e	nd of the	critical	solutior	1.
	a)kernel.	b)lock c)unlo	ck	d)roun	d robin.		
14.	An aperiodic to	asks needs to be	pre-em	pted only	У		
	a)once	b)twice	c)thrice		d) none		
15.	RTOS usesn	nemory block loc	cation w	ith predi	cable me	emory a	llocation.
	a)fixed	b)variable.	c)both	a and b		d)none	of the above
16.	in round robin	slicing decompo	sition co	onsists o	f tasl	ks.	

	a)one	b)more	c)three	d)five		
17.	MUCOS has the	IPC function for				
	a)semaphore	b)mailbox	c)queue	d)all the above		
18.	18. The ISR may havefunctions.					
	a)calling	b)sending	c)receiving	d)none of the above		
19.	Vx function sys	tems havepir	riority.			
	a)lowest	b)highest	c)very low	d)very high		
20.	kernel time slic	ing period is				
	a)25ms	b)75ms	c)50ms	d)15ms		
			$RT - B (5 \times 2 =$	-		
		Ar	nswer ALL the q	questions.		
22. 23. 24.		ore. management. PAI	rnel. RT – C (5 x 14 =	-		
26 a) F	'ynlain in detail :		iswer ALL the q ries of embedde	_	(14)	
0r						
b) Explain embedded design life cycle.					(14)	
27.a) E	xplain in detail a	bout the preemp Or	otive kernel and	non preemptive kernels.	(14)	
b)Explain the inter task communication.					(14)	
28.a) Explain the time management. Or					(14)	
b)Ex	xplain the task m	_			(14)	
29.a) E	xplain the mailb	ox management. Or			(14)	
b)E	xplain the messa	_			(14)	
30.a) A	nalyze the multi	channel ADC wit Or	th help of μc/OS-	-II.	(14)	
b)Ex	b)Explain the porting of μc/OS-II. (

: Assistant Professor / ECE

KARPAGAM ACADEMY OF HIGHER EDUCATION (Under section 3 of UGC Act 1956) COIMBATORE - 641 021.

(For the candidate admitted from 2016 onwards) – FULL TIME

BE DEGREE EXAMINATIONS, NOV 2019 DEPARTMENT OF BIOMEDICAL ENGINEERING SEVENTH SEMESTER REAL TIME EMBEDDED SYSTEMS

Time: 3 hours Maximum: 100 marks

		PA	ART - A (20 x 1 =	:20 Marks)	
_	1 11		Answer all the q	uestions	1
1.		d systems have e			_
	-	, ,	c)medium	ијоориноши	
2.					r 16 bit micro controller.
	•	, ,	c)medium	, 1	
3.		-	-	_	or 32 bit micro controller.
	•	o)large	c)medium	•	ed
4.	Embedded sys	tems locate a sof	_		
	a)ROM	b)RAM	c)EROM	d)EPROM	
5.	is the co	orresponding ha	rdware signal tir	neout from the	hardware timer.
	a) interrupt f	_		c)both a and b	D)none of the above
6.	In I2C there ar	e bus sta	ndards.		
	a)4 b)6	-			
7.	In USB bus the	ere are d	evices connected	d to a HOST.	
	a)127 b)125	c)129 d)115			
8.	CAN bus is use	ed in			
	a)automotive	electronics	b)medical elec	tronics	
	c)industrial pla	ant controllers	d)all the abov	e	
9.	In each ele	ement has a point	ter to its next ele	ement.	
	a)tree	b)list	c)queue	d)stacl	K
10.	Modifiers perm	nit only valu	es.		
	a)positive	b)negative	c)both a and b	d)inte	eger
11.	The programm	ning model conce	ept is one which	uses the functio	on is
	a)tree	b)list	c)queue	d)stack	
12.	is a basic	structural unit ir	n a java program	me.	
	a)class	b)local variable	e c)inter	face d)inh	eritance
13.	A schedu	ıling is very effic	ient for handling	g periodic tasks	
	a)non cyclic	b)pre cyclic	c)cyclic	d)pos	t cyclic
14.	scheduling cor	nsist of			
	a)periodic	b)aperiodic	c)sporadic	d)all the abo	ve
15.	when the J	processor the ext	ernal memories	and the chips a	re waiting state,
	a)10 mA	b)5 mA	c)50 mA	d)75mA	

16.	In a circuit	power dissipate	es only at the ins	tance of	change in input.	
	a)n-mos	b)p-mos	c)cmos	d)both	a and b	
17.	argumen	ts define the no	of nano seconds	for dela	y.	
	a)data	b)constant	c)integer	d)both	a and b	
18.	functions nano	sleep will delay	the task by			
	a)1ms	b)3ms	c)6ms	d)6ms		
19.	task id is a	positive nun	nber.			
	a)16 bit	b)64 bit	c)32 bit		d)8 bit	
20.	-		he header files in		nagement.	
	a)Vx works	b)kernel	c)both a and b)	d)none	
22. 23. 24.	Explain the ARI Explain the pre Define deadloc Difference betv Difference b/w	A M 7. eemptive kernel k. veen directories suspending tas		questior task. : 70 Ma r	rks)	
26.a) E	xplain the overv		ed system archite	-		(14)
b) E	xplain embedde	0.1	le.			(14)
(ii) Explain in deta	il about round r Or	ls and non-pre e obin schedule. exclusion (5) iii	·		(7) (7)
	xplain the event					(14)
-	-	Or				
b)E	xplain the kerne	l structure.				(14)
	xplain the messa					
29.a) E	xpiain the messa					(14)
-	xplain the sema	Or	nent.			(14) (14)
b) E	xplain the sema	Or phore managen	nent. ory Control Block	S.		

: Assistant Professor / ECE