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OBJECTIVES: 

To understand the behavior of airflow over bodies with particular emphasis on airfoil sections in 

the incompressible flow regime. 

 

UNIT - I REVIEW OF FLUID MECHANICS    

Review of Vector Relations – Coordinate systems, Line, surface and Volume Integrals. System 

and Control volume approach, Continuity, Momentum and Energy equations Circulation and 

Vorticity, Green’s Lemma and Stoke’s Theorem, Barotropic Flow, Kelvin’s theorem, Streamline, 

Stream Function, Irrotational flow, Potential Function 

 

UNIT - II TWO DIMENSIONAL FLOWS                                       

Basic flows – Source, Sink, Free and Forced vortex, Uniform parallel flow. Their 

combinations,Pressure and Velocity distributions on bodies with and without circulation in ideal 

and real fluid flows.D’Alembert’s Paradox, Magnus effect, Kutta Joukowski’s theorem 

 

UNIT - III CONFORMAL TRANSFORMATION                               

Conformal transformation, Kutta-Joukowski transformation and its applications.Joukowski 

Profiles, Karman - Trefftz Profiles, Kutta condition. 

 

UNIT - IV AIRFOIL AND WING THEORY      

Thin aerofoil theory and its applications. Vortex filament, Horse shoe vortex, Downwash and 

induced drag;Biot-Savart Law and Helmholtz's Theorems, Prandtl’s classical lifting line theory, 

Limitations of Prandtl’s lifting line theory. 

 

UNIT - V THEORY OF PROPELLERSAND INTERFERENCE EFFECTS   

Axial momentum theory – influence of wake rotation – blade-element theory – combined blade 

element and momentum theories- tip correction –performance of propellers.wing – 

bodyinterference- effect of propeller on wings and bodies and tail unit –flow overairplane as a 

whole. 
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Sl. 

No. 
No. of Periods Topics to be Covered Support Materials 

1.  1 Introduction and Fundamentals for the Course  

UNIT – I : REVIEW OF FLUID MECHANICS 

2.  1 
Review of Vector Relations, Coordinate systems, Line, surface and 

Volume Integrals 
T [1] , R [1] ,R [2] 

3.  
1 System and Control volume approach 

 
T [1] , R [1] ,R [2] 

4.  1 Continuity and Momentum Equations T [1] , R [1] ,R [2] 

5.  1 Energy equation T [1] , R [1] ,R [2] 

6.  1 Circulation and Vorticity, Green’s Lemma and Stoke’s Theorem,  T [1] , R [1] ,R [2] 

7.  1 Barotropic Flow,  T [1] , R [1] ,R [2] 

8.  1 Kelvin’s theorem,  T [1] , R [1] ,R [2] 

9.  1 Streamline, Stream Function,  T [1] , R [1] ,R [2] 

10.  1 Irrotational flow, Potential Function T [1] , R [1] ,R [2] 

11.  1 Tutorial – Continuity, Momentum and Energy Equations T [1] , R [1] ,R [2] 

Total No. of Hours Planned for Unit - I 11 

 

   

 
Sl. 

No. 
No. of Periods Topics to be Covered Support Materials 

UNIT – II   TWO DIMENSIONAL FLOWS 

12.  1 Basic flows – Source and Sink T [1] , R [1] ,R [2] 

13.  1 Free and Forced vortex and uniform parallel flow T [1] , R [1] ,R [2] 



14.  1 Combinations of Basic Flows T [1] , R [1] ,R [2] 

15.  
1 Pressure and velocity distributions on bodies with circulation in 

ideal and real fluid flows 
T [1] , R [1] ,R [2] 

16.  
1 Pressure and velocity distributions on bodies without circulation in 

ideal and real fluid flows 
T [1] , R [1] ,R [2] 

17.  1 D’Alembert’s Paradox T [1] , R [1] ,R [2] 

18.  1 Magnus effect T [1] , R [1] ,R [2] 

19.  1 Kutta Joukowski’s theorem T [1] , R [1] ,R [2] 

20.  1 Problems on Kutta Joukowski’s theorem T [1] , R [1] ,R [2] 

21.  1 Tutorial – Basic flows and Problems T [1] , R [1] ,R [2] 

Total No. of Hours Planned for Unit - II 10 

 

 

 
Sl. 

No. 
No. of Periods Topics to be Covered Support Materials 

UNIT – III CONFORMAL TRANSFORMATION 

22.  
1 

Conformal transformation T [2] , R [1] ,R [2] 

23.  1 Kutta-Joukowski transformation T [2] , R [1] ,R [2] 

24.  1 Joukowski Profiles T [2] , R [1] ,R [2] 

25.  
1 Application of Joukowski transformation in fluid flow problems 

(Line and Circle) 
T [2] , R [1] ,R [2] 

26.  1 Joukowski transformation Problems(Ellipse and Circle) T [2] , R [1] ,R [2] 

27.  
1 Application of Joukowski transformation in fluid flow 

problems.(Cylinder) 
T [2] , R [1] ,R [2] 

28.  
1 Application of Joukowski transformation in fluid flow 

problems.(Airfoil) 
T [2] , R [1] ,R [2] 

29.  1 Karman - Trefftz Profiles T [2] , R [1] ,R [2] 

30.  1 Kutta condition T [2] , R [1] ,R [2] 

31.  1 Tutorial -  Transformation Problems T [2] , R [1] ,R [2] 

Total No. of Hours Planned for Unit - III 10 

Sl. 

No. 
No. of Periods Topics to be Covered Support Materials 

UNIT – IV AIRFOIL AND WING THEORY 

32.  
1 

Thin aerofoil theory  T [1] , R [1] ,R [2] 

33.  1 Thin aerofoil theory - applications T [1] , R [1] ,R [2] 

34.  1 Vortex filament T [1] , R [1] ,R [2] 

35.  1 Horse shoe vortex  T [1] , R [1] ,R [2] 

36.  1 Downwash and induced drag T [1] , R [1] ,R [2] 

37.  1 Biot-Savart Law  T [1] , R [1] ,R [2] 

38.  1 Helmholtz's Theorems T [1] , R [1] ,R [2] 



39.  1 Prandtl’s classical lifting line theory T [1] , R [1] ,R [2] 

40.  1 Limitations of Prandtl’s lifting line theory T [1] , R [1] ,R [2] 

41.  1 Tutorial – Problems on Wing theory  

Total No. of Hours Planned for Unit - IV 10 

  

 

 

 

 
Sl. 

No. 
No. of Periods Topics to be Covered Support Materials 

UNIT – V : THEORY OF PROPELLERS AND INTERFERENCE EFFECTS 

42.  
1 

Axial momentum theory T [1] , R [1] ,R [2] 

43.  1 Influence of wake rotation in Propellers T [1] , R [1] ,R [2] 

44.  1 Blade-element theory T [1] , R [1] ,R [2] 

45.  1 Combined blade element and momentum theories T [1] , R [1] ,R [2] 

46.  1 Tip correction in propellers T [1] , R [1] ,R [2] 

47.  1 Performance of propellers and wing T [1] , R [1] ,R [2] 

48.  1 Body interference effects of propeller on wings  T [1] , R [1] ,R [2] 

49.  1 Body interference effects of propeller on bodies and tail unit T [1] , R [1] ,R [2] 

50.  1 Body interference effects on Flow over airplane as a whole body T [1] , R [1] ,R [2] 

51.  1 Tutorial – Problems on propellers T [1] , R [1] ,R [2] 

52.  1 Discussion on  University previous year questions  

Total No. of Hours Planned for Unit - V 10+1 

 
        TOTAL PERIODS : 52 

TEXT BOOKS  

T [1] – Fundamentals of Aerodynamics by Anderson J.D , McGraw-Hill Book Co,2016. 

T [2] – Theoretical Aerodynamics by Ethirajan Rathakrishnan, John Wiley & Sons,2013. 
 

REFERENCES 

R [1] - Aerodynamics for Engineering students by Edward Lewis Houghton, Edward Arnold  

    Publishers,2016. 

R [2] - Aerodynamics by Clancey L.J ,Sterling Book House,2006. 

  
WEBSITES  

W [1] - nptel.in/    

W [2] - www.nasa.gov  

W [3] - www.dynamicflight.com/aerodynamics    

 

JOURNALS 

 J [1] - International Journal of Aerodynamics - Inderscience 

 J [2] – Fluid Dynamics Research - IOP Publishing 

 J [3] – Journal of Experiments in Fluid Mechanics - China Aerodynamics Research Society 



 J [4] – Journal of Wind Engineering and Industrial Aerodynamics- Elsevier 

  

 

 

UNIT 
Total No. of Periods  

Planned 
Lecture Periods Tutorial Periods 

I 11 9+1 1 

II 10 9 1 

III 10 9 1 

IV 10 9 1 

V 10+1 9+1 1 

TOTAL 52 45+2 5 

 

 

 

 

 

 

 

 

 

 

I. CONTINUOUS INTERNAL ASSESSMENT : 40 Marks 

 

(Internal Assessment Tests: 25, Attendance: 5, Assignment 5, Seminar 5)  

 

II. END SEMESTER EXAMINATION  : 60 Marks 

 

TOTAL    : 100 Marks 
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UNIT I 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REVIEW OF BASIC FLUID MECHANICS               

Review of Vector Relations – Coordinate systems, 
Scalar and vector fields, Scalar and vector 
Products, Gradient of a Scalar Field and  
Divergence of a Vector field

Curl, Line, surface and Volume Integrals. System 
and Control volume approach, Fundamentals for 
Aerodynamics Coordinate System Continuity, 
momentum and energy equations..
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Concept of Control Volume: 

Models of the fluid: control volumes and fluid elements 

 Aerodynamics is a fundamental science, steeped in physical 

observation.  As you proceed through this book, make every effort to 

gradually develop a “physical feel” for the material.  An important virtue of 

all successful aerodynamicists (indeed, of all successful engineers and 

scientists) is that they have good “physical intuition,” based on thought and 

experience, which allows them to make reasonable judgments on difficult 

problems.  Although this chapter is full of equations and (seemingly) 

esoteric concepts, now is the time for you to start developing this physical 

feel. 

With this section, we begin to build the basic equations of aerodynamics.  

There is a certain philosophical procedure involved with the development of 

these equations, as follows: 

Invoke three fundamental physical principles that are deeply entrenched in 

our macroscopic observations of nature, namely, 

Mass is conserved (i.e., mass can be neither created nor destroyed). 

Newton’s second law: force = mass x acceleration. 

Energy is conserved; it can only change from one form to another. 

Determine a suitable model of the fluid.  Remember that a fluid is a squishy 

substance, and therefore it is usually more difficult to describe than a well-

defined solid body.  Hence, we have to adopt a reasonable model of the fluid 

to which we can apply the fundamental principles stated in item 1. 

Apply the fundamental physical principles listed in item 1 to the model of 

the fluid determined in item 2 in order to obtain mathematical equations 

which properly describe the physics of the flow.  In turn, use these 

fundamental equations to analyze any particular aerodynamic flow problem 

of interest. 

In this section, we concentrate on item 2; namely, we ask the question:  

What is a suitable model of the fluid?  How do we visualize this squishy 
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substance in order to apply the thee fundamental physical principles to it?  

There is no single throughout the modern evolution of aerodynmiacs.  They 

are (1) finite control volume, (2) infinitesimal fluid element, and (3) 

molecular.  Let us examine what these models involve and how they are 

applied. 

 

Finite Control volume Approach 

 

 Consider a general flow field as represented by the streamlines in 

Figure.  Let us imagine a closed volume drawn within a finite region of the 

flow.   

 

 

 

Figure: Finite control volume approach 

This volume defines a control volume V, and a control surface S is defined 

as the closed surface which bounds the control volume.  The control volume 

may be fixed in space with the fluid moving through it, as shown at the left 

of Figure.  Alternatively, the control volume may be moving with the fluid 

such that the same fluid particles are always inside it, as shown at the right 

of Figure.  In either case, the control volume is a reasonably large, finite 

region of the flow.  The fundamental physical principles are applied to the 

fluid inside the control volume, and to the fluid crossing the control surface 

(if the control volume is fixed in space).  Therefore, instead of looking at the 

whole flow field at once, with the control volume model we limit our 

attention to just the fluid in the finite region of the volume itself. 

Infinitesimal Fluid Element Approach 
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 Consider a general flow field as represented by the streamlines in 

figure.  Let us imagine an infinitesimally small fluid element in the flow, 

with a differential volume dV.  The fluid element is infinitesimal in the same 

sense as differential calculus; however, it is large enough to contain a huge 

number of molecules so that it can be viewed as a continuous medium.  The 

fluid element may be fixed in space with the fluid moving through it, as 

shown at the left of Figure.  Alternatively, it may be moving along a 

streamline with velocity V equal to the flow velocity at each point.  Again, 

instead of looking at the whole flow field at once, the fundamental physical 

principles are applied to just the fluid element itself. 

Molecular Approach 

 In actuality, of course, the motion of a fluid is a ramification of the 

mean motion of its atoms and molecules.  Therefore, a third model of the 

flow can be a microscopic approach wherein the fundamental laws of nature 

are applied directly to the atoms and molecules, using suitable statistical 

averaging to define the resulting fluid properties.  This approach is in the 

purview of kinetic theory, which is a very elegant method with many 

advantages in the long run.  However, it is beyond the scope of the present 

book. 

 

 

 

Figure: Infinitesimal fluid element approach 

 In summary, although many variations on the theme can be found in 

different texts for the derivation of the general equations of fluid flow, the 

flow model can usually be categorized under one of the approaches 

described above. 
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Physical Meaning of the Divergence of Velocity 

 In the equations of follow, the divergence of velocity, .V,  occurs 

frequently.  Before .V is physically the time rate of change of the volume 

of a moving fluid element of fixed mass per unit volume of that element.  

Consider a control volume moving with the fluid (the case shown of the 

right of Figure).  This control volume is always made up of the same fluid 

particles as it moves with the flow; hence, its mass is fixed, invariant with 

time.  however, its volume V and control surface S are changing with time 

as it moves to different regions of the flow where different values of p exist.  

That is, this moving control volume of fixed mass is constantly increasing or 

decreasing its volume and is changing its shape, depending on the 

characteristics of the flow.  This control volume is shown in figure at some 

instant in time.  consider an infinitesimal element of the surface dS moving 

at the local velocity V, as shown in figure.  The change in the volume of the 

control volume V, due to just the movement of dS over a time increment 

t, is from figure, equal to the volume of the long, thin cyclinder with base 

area dS and altitude ( )V t .n; that is,  

   
( )  ( )V V t .n dS V t.dS =  = 

 

 

 Over the time increment t, the total change in volume of the whole 

control volume is equal to the summation of Equation over the total control 

surface.  In the limit as dS → 0, the sum becomes the surface integral 

    
( )

S

V t .dS
 

 

Figure: Moving control volume used for the physical interpretation of the 

divergence of velocity. 
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 If this integral is divided by t,  the result is physically the time rate of 

the change of the control volume, denoted by DV / Dt;  that is,  

 

   
( )

S S

DV 1
V t .dS V.dS

Dt t
=  =
  

 

 

 (The significance of the notation D/Dt is revealed in Section.)  

Applying the divergence theorem, Equation, to the right side of Equation, 

we have 

    
( )

V

DV
.V dV

Dt


= 
 

 Assume that V is small enough such that .V is essentially the same 

value throughout V.  Then the integral in Equation can be approximated as 

( ).V V.    From Equation, we have 

    

( )
( )

D V
.V V

Dt


=  

 

   or 

( )D V1
.V

V Dt


 =

  

 

 Examine Equation.  It states that .V  is physically the time rate of 

change of the volume of a moving fluid element, per unit volume.  Hence, 

the interpretation of .V,  first given in section, Divergence of a Vector 

Field, is now proved. 

Specification of the Flow Field 

 In Section we defined both scalar and vector fields.  We now apply 

this concept of a field more directly to an aerodynamic flow.  One of the 

most straightforward ways of describing the details of an aerodynamic flow 

is simply to visualized the flow in three-dimensional space, and to write the 

variation of the aerodynamic properties as a function of space and time.  For 

example, in cartesian coordinates the equations. 
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( ) ( )

( ) ( )

( ) ( )

( )

               p p x,y,z, t      a

               x,y,z, t      b

               T T x,y,z, t     c

and        V=ui+vj+wk           a

= →

 =  →

= →

→  

 

 Where    u = u (x, y, z, t) (b) 

     v = v(x, y, z, t) (c) 

     w = w (x, y, z, t) 

 

 Represent the flow field.  Equations (a-c) give the variation of the 

scalar flow field variables pressure, density, and temperature, respectively.  

(In equilibrium thermodynamics, the specification of two state variables, 

such as p and , uniquely defines the values of all other state variables, such 

as T.  In this case, one of Equations can be considered redundant.)  

Equations (a-d) give the variation of the vector flow field variable velocity 

V, where the scalar components of V in the x, y, and z directions are u, v, 

and w, respectively. 

 

 Figure illustrates a given fluid element moving in a flow field 

specified by Equations and.  At the time t1, the fluid element is at point 1, 

located at (x1, y1, z1) as shown in figure. 

 At this instant, its velocity is V1 and its pressure is given by 

 

   ( )1 1 1 1p p x ,y z ,t=
 

and similarly for its other flow variables. 

 By definition, an unsteady flow is one where the flow field variables 

at any given point are changing with time.  for example, if you lock your 

eyes on point 1 in figure, and keep them fixed on point 1, if the flow is 

unsteady you will observer p, , etc. fluctuating with time.  Equations and 

describe an unsteady flow field because time t is included as one of the 

independent variables.  In contrast, a steady flow is one where the flow field 

variables at any given point are invariant with time, that is, if you lock your 
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eyes on point 1 you will continuously observe the same constant values for 

p, , V etc. for all time.  A steady flow field is specified by the relations. 

 

 

 

Figure: A fluid element passing through point 1 in a flow field. 

 

( )

( )

p p x,y,z

x,y,z

etc.

=

 = 

 

 

 The concept of the flow field, and a specified fluid element moving 

through it as illustrated in figure, will be revisited in Section where we 

define and discuss the concept of the substantial derivative. 

 

 The subsonic compressible flow over a cosine-shaped (Wavy) wall is 

illustrated in Figure.  The wavelength and amplitude of the wall are I and h , 

respectively, as shown in figure.  The streamlines exhibit the same 

qualitative shape as the wall, but with diminishing amplitude as distance 

above the wall increases.  Finally, as y  →k, the 
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Figure: Subsonic compressible flow over a wavy wall; the streamline 

pattern.streamline becomes straight.  Along this straight streamline, the 

freestream velocity and Mach number re V and M, respectively.  The 

velocity field in Cartesian coordinates is given by 

 

   

2 y/ lh2 2 x
u V 1 cos e

l l
− 



   
= +   

     

 and  

2 / l2 2 x
v V h sin e

l l
− 



  
= −  

   

 where 
21 M = −  

 

 consider the particular flow that exists for the case where l = 1.0m, h = 

0.01 m, V= 240 m/s, and M = 0.7.  Also, consider a fluid element of 

fixed mass moving along a streamline in the flow field.  The fluid element 

passes through the point 
( )

1
x / l,y / l ,1 .

4

 
=  
    At this point, calculate the time 

rate of change of the volume of the fluid element, per unit volume. 

Solution: 

 From section we know that the time rate of change of the volume of a 

moving fluid element of fixed mass, per unit volume, is given by the 
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divergence of the velocity . .   In Cartesian coordinates, from Equation, we 

have 

 

    

u v
.V

x y

 
 = +

   

 

 From Equation, 

    

2
2 / lu h 2 2 x

V sin e
x l l

− 



     
= −    

       

 

 and from Equation, 

    

    

2
0 2 y/ lv 2 2 x

V h sin e
y l l

− 



     
= −    

      

 

 Substituting Equation and into we have 

 

    

2
2 y/ l1 2 2 x

. V h sin e
l l

− 



      
  = −     

       

 

 Evaluating Equation at the point 

1
x / l andy / l 1,

4
= =

 

 

   

2
21 2

.V V h e
l

− 



   
 −   

     

 Equation gives the time rate of change of the volume of the fluid 

element, per unit volume, as it passes through the point 
( )

1
x / l,y / l ,1 .

4

 
=  
    

Note that it is a finite (nonzero) value; the volume of the fluid element is 

changing as it moves along the streamline.  This is consistent with the 

definition of a compressible flow, where the density is a variable and hence 
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the volume of a fixed mass must also be variable.  Note from Equation that 

.V = 0 only along vertical lines denoted by 

1 1
x / l 0, ,1,1 ....,

2 2
=

 where the sn

( )2 x / l  goes to zero,..  This is a peculiarity associated with the cyclical 

nature of the flow field over the cosine-shaped wall.  For the particular flow 

considered here, where l=1.0m,h=0.01 m, V 240 m/s, and M 0.7,where = =  

 

   
( )

221 M 1 0.7 0.714 = − = − =
 

 Equation yields 

   
( )( ) ( )2 0.714 11 2

.V 0.714 240 0.01 e 0.7327s
0.714 1

−  −   
 = − = −   

     

 The physical significance of this result is that, as the fluid element is 

passing through the point 

1
,1

4

 
 
   in the flow, it is experiencing a 73 percent 

rate of decrease of volume per second (the negative quantity denotes a 

decrease in volume).  That is, the density of the fluid element is increasing.  

Hence, the point 

1
,1

4

 
 
   is in a compression region of the flow, where the 

fluid element will experience an increase in density.  Expansion regions are 

defined by values of x/l which yield negative values of the since function in 

Equation, which in turn yields a positive value for .V   This gives an 

increase in volume of the fluid element, hence a decrease in density.  

Clearly, as the fluid element continues its path through this flow field, it 

experiences cyclical increases and decreases in density, as well as the other 

flow field properties. 

Continuity Equation 

 

A continuity equation in physics is an equation that describes the 

transport of a conserved quantity. Since mass, energy, momentum, electric 

charge and other natural quantities are conserved under their respective 

appropriate conditions; a variety of physical phenomena may be described 

using continuity equations. 

 

Continuity equations are a stronger, local form of conservation laws. 

For example, it is true that "the total energy in the universe is conserved". 

But this statement does not immediately rule out the possibility that energy 

could disappear from Earth while simultaneously appearing in another 



 

 

P
ag

e1
2

 

galaxy. A stronger statement is that energy is locally conserved: Energy can 

neither be created nor destroyed, nor can it "teleport" from one place to 

another—it can only move by a continuous flow. A continuity equation is 

the mathematical way to express this kind of statement. 

 

Continuity equations more generally can include "source" and "sink" 

terms, which allow them to describe quantities that are often but not always 

conserved, such as the density of a molecular species which can be created 

or destroyed by chemical reactions. In an everyday example, there is a 

continuity equation for the number of living humans; it has a "source term" 

to account for people giving birth, and a "sink term" to account for people 

dying. 

 

Any continuity equation can be expressed in an "integral form" (in 

terms of a flux integral), which applies to any finite region, or in a 

"differential form" (in terms of the divergence operator) which applies at a 

point. 

 

Continuity equations underlie more specific transport equations such 

as the convection–diffusion equation, Boltzmann transport equation, and 

Navier-Stokes equations. 

 

 

Continuity Equation in Cartesian 

Coordinates 

 
The continuity equation is an expression of a fundamental 

conservation principle, namely, that of mass conservation. It is a statement 

that fluid mass is conserved: all fluid particles that flow into any fluid region 

must flow out. To obtain this equation, we consider a cubical control volume 

inside a fluid. Mass conservation requires that the the net flow through the 

control volume is zero. In other words, all fluid that is accumulated inside 

the control volume (due to compressibility for example) + all fluid that is 

flowing into the control volume must be equal to the amount of fluid flowing 

out of the control volume. 

 

Accumulation + Flow In = Flow Out 
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The mass of the control volume at some time t is 

 

 
The time rate of change of mass in the control volume is 

 

 
 

Now we can compute the net flow through the control volume faces. Starting 

with the x direction, the net flow is  

 

 
 

Similarly, the net flow through the y faces is 

 

 
 

while that through the z faces is 

 

 
 

Upon adding up the resulting net flow and diving by the volume of the fluid 

element (i.e. dxdydz), we get the continuity equation in Cartesian 

coordinates 

http://www.codecogs.com/eqnedit.php?latex=/bg_white%20/120dpi%20/%20/mathcal%7bM%7d_t%20=%20/rho%20/delta%20x%20/delta%20y%20/delta%20z
http://www.codecogs.com/eqnedit.php?latex=/bg_white%20/120dpi%20/%20/frac%7b/partial%20/rho%7d%7b/partial%20t%7d/delta%20x%20/delta%20y%20/delta%20z
http://www.codecogs.com/eqnedit.php?latex=/bg_white%20/120dpi%20/%20/frac%7b/partial%20/rho%20v%7d%7b/partial%20y%7d/delta%20x%20/delta%20y%20/delta%20z
http://www.codecogs.com/eqnedit.php?latex=/bg_white%20/120dpi%20/%20/frac%7b/partial%20/rho%20w%7d%7b/partial%20z%7d/delta%20x%20/delta%20y%20/delta%20z
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Continuity Equation in Cylindrical 

Coordinate System 

Cylindrical Coordinate System 

A cylindrical coordinate system is a three-dimensional coordinate system 

that specifies point positions by the distance from a chosen reference axis, 

the direction from the axis relative to a chosen reference direction, and the 

distance from a chosen reference plane perpendicular to the axis. 

To Cartesian: 

 

 
 

 

 
 

 

Derivation 

First have to start by selecting a convenient control volume. The idea here is 

to pick a volume whose sides are parallel per say to the coordinates. For 

cylindrical coordinates, one may choose the following control volume. 

 

http://en.wikipedia.org/wiki/Coordinate_system
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Rate of Rate of Flow In = Accumulation + Rate of Flow Out 

Accumulation + Flow Out - Flow In = 0 

By construction, the volume of the differential control volume is 

 

 

The mass of fluid in the control volume is 

 

For the net flow through the control volume, we deal with it one face at a 

time. Starting with the r faces, the net inflow is 

 

While the outflow in the r direction is 
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Follow the same for theta direction and z direction. 

Continuity Equation in Integral Form/Control Volume 

Approach 
 

 
Let Abesmallenoughsuch 

thattheflowvelocityVisuniformacrossA.Considerthefluid 

elementswithvelocity VthatpassthroughA. In 

timedtaftercrossingA,theyhavemovedadistanceVdtandhavesweptouttheshade

d volumeshowninFigure. Thisvolumeisequal 

tothebaseareaAtimestheheightofthecylinderVndt,whereVnisthecomponent 

ofvelocitynormaltoA; i.e., 
 

Volume=(Vndt) A 
 

Themassinsidetheshadedvolu

meistherefore 
 

Mass=P (Vndt)A 

ThisisthemassthathassweptpastAintimedt.Bydefinition,themassflow 

throughAisthemasscrossingApersecond 

(e.g.,kilogramspersecond,slugspersecond). 

Letmdenotemassflow.FromEquation 

 
 
Applyphysicalprincipletoafinitecontrolvolume fixedinspace. 
 
Physicalprinciple      Masscanbeneithercreated nordestroyed 

 



 

 

P
ag

e1
7

 

 
Finitecontrol volumefixedin space 

 

Consider a flow field wherein all properties vary with spatial location and 

time, e.g., p = p (x, y, z. t).  In this flow field, consider the fixed finite 

control volume shown At a point on the control surface, the flow velocity is 

V and the vector elemental surface area is dS. Also  dV  is an elemental 

volume inside the control volume. Applied to this control volume, the above 

physical principle means 

 

Net mass flow out of control volume through surface S = time rate of 

decrease of mass inside control   volume V 

 
i.e. 

 

B = C 

 

Where B and C are just convenient symbols for the left and right sides, 

respectively, of Equation. 

let us obtain an expression for B in terms of the quantities shown in Figure. 

the elemental mass flow across the area dS  is 

 
 

 

The net mass flow out of the entire control surface S is the summation over 

S of the elemental mass flows. In the limit, this becomes a surface integral, 

which is physically the left side of Equation, 

 
Now consider the right side of Equations , the mass contained within the 

elemental volume dV is 

 
Hence, the total mass inside the control volume is 
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The time rate of increase of mass inside V is then 

 

 
the time rate of decrease  of mass inside V is the negative of the above 

 
Substituting all the equations we get 

 

 

 
 

This equation is the final result of applying the physical principle of the 

conservation of mass to a finite control volume fixed in space.   It is called 

the continuity equation. It is one of the most fundamental equations of fluid 

dynamics. 

 

 
Momentum Equation in Integral Form/Control Volume 

Approach 
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Newton's second law is frequently written as 

 

F=ma 
Where F is the force exerted on a body of mass m and a is the acceleration. 

 

General form of this Equation is  

 
Physical principle       Force = time rate of change of momentum 

 

Our objective is to obtain expressions for the left and right sides of Equation 

in terms of the familiar flow-field variables P,ρ,V,etc 

 

First, let us concentrate on the left side of Equation i.e., obtain an expression 

for F, which is the force exerted on the fluid as it flows through the control 

volume. This force comes from two sources: 

 

1.    Body forces: gravity, electromagnetic forces, or any other forces which 

"act at a distance" on the fluid inside V. 

 

2.    Surfaceforces: pressure and shear stress acting on the control surface S. 

 

Let f represent the net body force per unit mass exerted on the fluid inside V. 

The body force on the elemental volume dV is  

 
and the total body force exerted on the fluid in the control volume is the 

summation of the above over the volume V 
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The elemental surface force due to pressure acting on the element of area d S 

is 

 
Where the negative sign indicates that the force is in the direction opposite 

of dS. That is, the control surface is experiencing a pressure force which is 

directed into the control volume and which is due to the pressure from the 

surroundings. 

 

The complete pressure force is the summation of the elemental forces over 

the entire control surface 

 

 
In a viscous flow, the shear and normal viscous stresses also exert a surface 

force. A detailed evaluation of these viscous stresses is not warranted at this 

stage of our discussion.  Let us simply recognize this effect by letting F 

viscous denote the total viscous force exerted on the control surface. 

 

Now the total force experienced by the fluid is  

 
 

Now consider the right side of Equation. The time rate of change of 

momentum of the fluid as it sweeps through the fixed control volume is the 

sum of two terms: 

 
and 
 

 
 

 

Consider the term denoted by G in Equation The flow has a certain 

momentum as it enters the control volume and, in general, it has a different 

momentum as it leaves the control volume (due in part to the force F that is 

exerted on the fluid as it is sweeping through V).The net flow of momentum 

out of the control volume across the surface S is simply this out flow minus 

the inflow of momentum across the control surface. This change in 

momentum is denoted by G, as noted above. To obtain an expression for 

G,recall that the mass flow across the elemental area dS is (pV.dS);hence, 

the flow of momentum per second across dS is 



 

 

P
ag

e2
1

 

 
The net flow of momentum out of the control volume through S is the 

summation of the above elemental contributions, i.e. 

 

 
Positive values of (p, V, dS) represent mass flow out of the control volume, 

and negative values represent mass flow into the control volume. 

The integral over the whole control surface is a combination of positive 

contributions (outflow of momentum) and negative contributions (inflowof 

momentum), with the resulting value of the integral representing the net 

outflow of momentum.  If G has a positive value, there is more momentum 

flowing out of the control volume per second than flowing in; conversely, if 

G has a negative value, there is more momentum flowing into the control 

volume per second than flowing out. 

Now consider H from Equation, the momentum of the fluid in the elemental 

volume dV 

 

 
The momentum contained at any instant inside the control volume is 

therefore 

 

 
and its time rate of change due to unsteady flow fluctuations is 

 
Combining Equations 

 
 

Hence, from Newton's second law, 

 
Applied to a fluid flow is 

 

 
This equation is the Momentum equation in integral form 
 

 



 

 

P
ag

e2
2

 

Application of momentum Equation. 

An Application of the momentum Equation: Drag of a Two-Dimensional 

body   

 We briefly interrupt our orderly development of the fundamental 

equations of fluid dynamics in order to examine an important application of 

the integral form of the momentum equation.  During the 1930s and 1940s, 

the National Advisory Committee for Aeronautics (NACA) measured the lift 

and drag characteristics of a series of systematically designed airfoil shapes 

(discussed in detail in chapter).  These measurements were carried out in a 

specially designed wind tunnel where the wing models spanned the entire 

test section (i.e., the wing tips were butted against both sidewalls of the wind 

tunnel).  This was done in order to establish two dimensional (rather than 

three-dimensional) flow over the wing, thus allowing the properties of an 

airfoil (rather than a finite wing) to be measured.  The distinction between 

the aerodynamics of airfoils and that of finite wings is made in chapters and.  

The important point here is that because the wings were mounted against 

both sidewalls of the wind tunnel, the NACA did not use a conventional 

force balance to measure the lift and drag.  Rather, the lift was obtained from 

the pressure distributions on the ceiling from the pressure distributions on 

the ceiling and floor of the tunnel (above and below the wing), of the wing.  

These measurements may appear to be a strange way to measure the 

aerodynamic force on a wing.  Indeed, how are these measurements related 

to lift and drag?  What is going on here?  The answers to these questions are 

addressed in this section; they involve an application of the fundamental 

momentum equation in integral form, and they illustrate a basic technique 

that is frequently used in aerodynamics. 

 

 Consider a two-dimensional body in a flow, as sketched in Figure a.  

A control volume is drawn around this body, as given by the dashed lines in 

Figure a.  The control volume is bounded by: 
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Figure: (a) 

 

Figure: (b) 

 

 Figure: (a) Control volume for obtaining drag on a two-dimensional 

body. (b) Photograph of the velocity profiles downstream of an airfoil.  The 

profiles are made visible in water flow by pulsing a voltage through a 

straight wire perpendicular to the flow, thus creating small bubbles of 

hydrogen that subsequently move downstream with the flow.  (Courtesy of 

Yasuki Nakayama, Toka University, Japan.) 

The upper and lower streamline far above and below the body (asb and hi, 

respectively), 

Lines perpendicular to the flow velocity far ahead of and behind the body (ai 

and bh, respectively). 
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A cut that surrounds and wraps the surface of the body (cdefg). 

The entire control volume is abcdefghia.  The width of the control volume in 

the z direction (perpendicular to the page) is unity.  Stations 1 and 2 are 

inflow and outflow stations, respectively. 

Assume that the control abhi is far enough from the body such that the 

pressure is everywhere the same on abhi and equal to the freestream pressure 

p = p.  Aslo, assume that the inflow velocity u1 is uniform across ai (as it 

would be in a freestream, or a test section of a wind tunnel).  The outflow 

velocity u2 is not uniform across bh, because the presence of the body has 

created a wake at the outflow station.  However, assume that both u1 and u2 

are in the x direction; hence, u1  = constant and u2 = f(y). 

 An actual photograph of the velocity profiles in a wake downstream 

of an airfoil is shown in figure b. 

 Consider the surface forces on the control volume shown in figure a.  

They stem from two contributions: 

The pressure distribution over the surface  

abhi

pdS− 
 

The surface for on de is created by the presence of the body 

In the above list, the surface shear stress on ab and hi has been neglected.  

Also, note that in Figure a the cuts cd and fg are taken adjacent to each 

other; hence, any shear stress or pressure distribution on one is equal and 

opposite to that on the other (i.e., the surface forces on cd and fg cancel each 

other).  Also, note that the surface force on def is the equal and opposite 

reaction to the shear stress and pressure distribution created by the flow over 

the surface of the body.  To see this more clearly, examine Figure.  On the 

left is shown the flow over the body.  As explained in Section the moving 

fluid exerts pressure and shear stress distributions over the body surface 

which created a resultant aerodynamic force per unit span R’ on the body.  

In turn, by Newton’s third law, the body exerts equal and opposite pressure 

and shear stress distributions on the flow (i.e., on the part of the control 

surface bounded by def).  Hence, the body exerts a force – R’ on the control 

surface, as shown on the right of Figure.  With the above in mind, the total 

surface force on the entire control volume is 
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   Surface force abhi

pdS R '−
 

 

 

 

Figure: Equal and opposite reactions on a body and adjacent section of 

control surface. 

 Moreover, this is the total force on the control volume shown in figure 

a because the volumetric body force is negligible. 

 Consider the integral from of the momentum equation as given by 

Equation.  The right-hand side of this equation is physically the force on the 

fluid moving through the control volume.  For the control volume in figure 

a, this force is simply the expression given by Equation.  Hence, using 

Equation with the right-hand side given by Equation, we have 

   
( )

S abhi

Vd V.dS V pdS R '
t




  +  = − −

   
 

 

 Assuming steady flow, Equation becomes 

( )
S abhi

R' V.dS V pdS= −  − 
 

 Equation is a vector equation.  Consider again the control volume in 

figure a.  Take the x component of Equation, noting that the inflow and 

outflow velocities u1 and u2 are in the x direction and the x component of R’ 

is the aerodynamic drag per unit span D’. 

   
( ) ( )

x
S abhi

D' V.dS u pdS= −  − 
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 In Equation, the last term is the component of the pressure force in the 

x direction.  [The expression (pdS)x is the x component of the pressure force 

exerted on the elemental and dS of the control surface.]  Recall that the 

boundaries of the control volume abhi are chosen far enough from the body 

such that p is constant along these boundaries.  For a constant pressure. 

    
( )

abhi x

pdS 0=
 

Because, looking along the x direction in figure a, the pressure force on abhi 

pushing toward the right exactly balances the pressure force pushing toward 

the left.  This is true no matter what the shape of abhi is, as long as p is 

constant along the surface (for proof of this statement, see problem).  

Therefore, substituting Equation into, we obtain 

    
( )

S

D' pV.dS u= − 
 

 Evaluating the surface integral in Equation, we note from Figure a 

that: 

The section ab, hi, and def are streamlines of the flow.  Since by definition V 

is parallel to the streamlines and dS is perpendicular to the control surface, 

along these sections V and dS are perpendicular vectors, and hence V.dS = 

0.  As a result, the contributions of ab, hi, and def to the integral in Equatino 

are zero. 

The cuts cd and fg are adjacent to each other.  The mass flux out of one is 

identically the mass flux into the other.  Hence, the contributions of cd and 

fg the integral in Equation cancel each other. 

 

As a result, the only contributions to the integral in Equatin come from 

sections ai and bh.  These sections are oriented in the y direction.  Also, the 

control volume has unit depth in the z direction (perpendicular to the page).  

Hence, for these sections, dS=dy(1).  The integral in Equation becomes 

 

   
( )

a b
2 2

i 1 2 2i h
S

V.dS u u dy u dy = −  +   
 

Note that the minus sign in front of the first term on the right-hand side of 

Equation is due to V and dS being in opposite directions along ai (station 1 

is an inflow boundary); in contrast, V and dS are in the same direction over 
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hb (station 2 an outflow boundary), and hence the second term has a positive 

sign. 

Before going further with Equation, consider the integral form of the 

continuity equation for steady flow, Equation.  Applied to the control 

volume in figure, Equation becomes 

   

a b

1 1 2 2
i h

u dy u dy 0−  +  =   

 or  

a b

1 1 2 2i h
u dy u dy =    

 

Multiplying Equation by u1, which is a constant, we obtain 

 

a b
2

1 1 2 2 1
i h

u dy u u dy =    

Substituting Equation into Equation, we have 

( )
b b

2
2 2 1 2 2h h

S

V.dS u u u dy u dy = −  +   
 

or 

( ) ( )
b

2 2 1 2h
S

V.dS u u u u dy = −  − 
 

Substituting Equation into Equation yields 

 

  
( )

b

2 2 1 2
h

D' u u u dy=  −
 

 

Equation is the desired result of this section; it expresses the drag of a body 

in terms of the known freestream velocity u1 and the flow-field properties 

2 and u2, across a vertical station downstream of the body.  These 

downstream properties can be measured in a wind tunnel, and the drag per 

unit span of the body D’ can be obtained by evaluating the integral in 

Equation numerically, using the measured data for 2 and u2 as a function 

of y. 

Examine Equation more closely.  The quantity u1 – u2 is the velocity 

decrement at a given y location.  In this wake, there is a loss in flow velocity 

u1 – u2.  The quantity 2u2 is simply the mass flux; when multiplied by u1 
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– u2, it gives the decrement in momentum.  Therefore, the integral in 

Equation is physically the decrement in momentum flow that exists across 

the wake, and from Equation, this wake momentum decrement is equal to 

the drag on the body. 

 

For incompressible flow,  = constant and is known.  For this case, Equation 

becomes 

 

   
( )

b

2 1 2
h

D' u u u dy=  −  

Equation is the answer to the questions posed at the beginning of this 

section.  It shows how a measurement of the velocity distribution across the 

wake of a body can yield the drag.  These velocity distributions are 

conventionally measured with a Pitot rake, such as shown in figure.  This is 

nothing more than a series of Pitot tubes attached to a common stem, which 

allows the simultaneous measurement of velocity across the wake.  (The 

principle of the Pilot tube as a velocity-measuring instrument is discussed in 

chapter.  

 

The result embodied in Equation illustrates the power of the integral form of 

the momentum equation; it relates drag on a body located at some position in 

the flow to the flow-field variables at a completely different location. 
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Figure: A Pitot rake for wake surveys.  (Courtesy of the University of 

Maryland Aerodynamic Laboratory.) 

 At the beginning of this section, it was mentioned that lift on a two-

dimensional body can be obtained by measuring the pressures on the ceiling 

and floor of a wind tunnel, above and below the body.  This relation can be 

established from the integral form of the momentum equation in a manner 

analogous to that used to establish the drag relation; the derivation is left as a 

homework problem. 

 

 Consider an incompressible flow, laminar boundary layer growing 

analog the surface of a flat plate, with chord length c, as sketched in figure.  

The definition of a boundary layer was discussed in section and.  For an 

incompressible, laminar, flat plate boundary layer thickness  at the trailing 

edge of the plate is 

     c

5

c Re


=

 

 

 and the skin friction drag coefficient for the plat is 

    
( )

f

c

D' 1.328
C

q c 1 Re

 =

 

 where the Reynolds number is based on chord length 

    

V c

cRe  




=

  

[Note: Both /c and Cf are functions of the Reynolds number-just another 

demonstration of the power of the similarity parameters.  Since we are 

dealing with a low-speed, 
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Figure: Sketch of a boundary layer and the velocity profile at x = c.  the 

boundary-layer thickness  is exaggerated here for clarity. 

 

 incompressible flow, the Mach number is not a relevant parameter 

here.]  Let us assume that the velocity profile through the boundary layer is 

given by a power-law variation 

 

    

n
y

u V

 
=  

   

 

 Calculate the value of n, consistent with the information given above. 

 

Solution 

 

 From Equation 

    

( )f 2 1 202

D'
C u u u dy

1q c V c
2





 


= = −




 

  

 where the integral is evaluated at the trailing edge of the plate.  Hence, 

    

c 2 1 2
f

0

yu u u
C 2 d

V V V c



  

   
= −   

  


 

 However, in equation, applied to the control volume in figure, 1u V .=

Thus 

 

    

c 2
f

0

yu u2
C 2 1 d

V V c



 

   
= −   

  

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 Inserting the laminar Loundary-layer result for Cf as well as the 

assumed variation of velocity, both given above, we can write this integral 

as 

 

   

n 2n

c

0
c

y / c y / c y1.328
2 d

/ c / c cRe

       
= −      

        


 

 

 Carrying out the integration, we obtain 

 

   c

1.328 2 2

n 1 c 2n 1 cRe

    
= −   

+ +     

 

 

 

Figure: Comparison of the actual laminar boundary-layer profile with those 

calculated from Example. 

 

 Since c/ c 5 / Re ,then =
 

   c c c

1.328 10 1 10 1

n 1 2n 1Re Re Re

   
= −      + +     
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 or  

1 1 1.328

n 1 2n 1 10
− =

+ +  

 or  0.265nn – 0.6016n + 0.1328 = 0 

 

 using the quadratic formula, we have 

    n = 2 or  0.25 

 

 By assuming a power-law velocity profile in the form of 

( )
n

u / V y / , = 
 we have found two different velocity profiles that satisfy the 

momentum principle applied to a finite control volume.  Both of these 

profiles are shown in figure and are compared with an exact velocity profile 

obtained by means of a solution of the incompressible, laminar boundary-

layer equations for a flat plate.   (This boundary-layer solution is discussed 

in Chapter).  Note that the result n = 2 gives a concave velocity profile that 

is essentially nonphysical when compared to the convex profiles always 

observed in boundary layers.  The result n = 0.25 gives a convex velocity 

profile that is qualitatively physically correct.  However, this profile is 

quantitatively inaccurate, as can be seen in comparison to the exact profile.  

Hence, our original assumption of a power-law velocity profile for the 

laminar boundary layer in the form of 
( )

n
u / V y / = 

 is not very good, in 

spite of the fact hat when n = 2 or 0.25, this assumed velocity profile does 

satisfy the momentum principle, applied over a large, finite control volume. 

Energy Equation in Integral Form/Control Volume Approach 
 

 

 

Physicalprinciple      

Energycanbeneithercreatednordestroyed; 

itcanonlychangeinfo

rm. 

 

Consider a fixed amount of matter contained within a closed boundary.  This 

matter defines the system.  Because the molecules and atoms within the 

system are constantly in motion, the system contains a certain amount of 

energy. For simplicity, let the system contain a unit mass; in turn, denote the 

internal energy per unit mass by e.  

 

The region outside the system defines the surroundings.  Let an incremental 

amount of heat δq be added to the system from the surroundings.  Also, let 

δW be the work done on the system by the surroundings.   
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Both heat and work are forms of energy, and when added to the system, they 

change the amount of internal energy in the system. Denote this change of 

internal energy by de. From our physical principle that energy is conserved, 

we have for the system 

 
 

 
 

Equation is a statement of the first law of thermodynamics. 

Let us apply the first law to the fluid flowing through the fixed control 

volume shown in Figure 

 

Let 

 

BI = rate of heat added to fluid inside control volume from surroundings 

B2 = rate of work done on fluid inside control volume 

B3 = rate of change of energy of fluid as it flows through control volume 

 

From the first law, 

 
Expression for B1 

 

Examining Figure, the mass contained within an elemental volume is ρdV; hence, the rate 

of heat addition to this mass is q (ρdV).  Summing over the complete control volume, we 

obtain 
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Inaddition,iftheflowisviscous,heatcanbetransferredintothecontrolvolumeby 

meansofthermalconductionandmassdiffusionacrossthecontrolsurface. So the equation 

becomes, 

 
Expression for B2 

 

Consider the elemental area d S of the control surface in Figure. The pressure force on 

this elemental area is - ρ dS. From the above result, the rate of work done on the fluid 

passing through d S with velocity V is (- ρ dS) .V. Hence, summing over the complete 

control surface 

 

 
 

In addition, consider an elemental volume dV inside the control volume, Recalling  that f 

is the body force per unit mass, the rate of work done on the elemental volume due to the 

body force is (ρfdV) .V.  Summing over the complete control volume, we obtain 

 
If the flow is viscous, the shear stress on the control surface will also perform work on 

the fluid as it passes across the surface. 

 
 

 

Expression for B3 

 

The rate of change of total energy of the fluid as it flows through the control volume. The 

elemental mass flow across d S is ρ V dS, and therefore the elemental flow of total 

energy across dS is 

 
 

 

 
 

In addition, if the flow is unsteady, there is a time rate of change of total energy inside the 

control volume due to the transient fluctuations of the flow-field variables. The total 

energy contained in the elemental volume dV is 

 

and hence the total energy inside the complete control volume at any instant in time is  
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Therefore, 

Time rate of change of total energy     

inside V due to transient variations  

of flow-field variables                         

 

 

 

In turn, B3 is the sum of Equations 

 
 

Combining B1,B2 and B3 we get 

 

 
Equation is the energy equation in integral form; it is essentially the first law of 

thermodynamics applied to a fluid flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

UNIT II 
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Introduction 

Pathlines, streamlines, and streaklines of a flow 

TWO DIMENSIONAL FLOWS 

Basic flows  – Source, Sink, Free and Forced vortex, uniform parallel 
flow. Their combinations, Pressure and velocity distributions on bodies 

with and without circulation in ideal and real fluid flows. 

Kutta Joukowski’s theorem.
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 In addition to knowing the density, pressure temperature, and velocity 

fields, in aerodynamics we like to draw pictures of “where the flow is 

going.”  To accomplish this, we construct diagrams of pathlines and/or 

streamlines of the flow.  The distinction between pathlines and streamlines is 

described in this section. 

 Consider an unsteady flow with a velocity field given by V = V (x, 

y,z, t).  Also, consider an infinitesimal fluid element moving through the 

flow field, say, element A as shown in figure.  Element A passes through 

point 1.  Let us trace the path of element A as it moves downstream from 

point 1, as given by the dashed line in figure a.  Such a path is defined as the 

pathline for element A.  Now, trace the path of another fluid element, say, 

element B as shown in Figure b.  Assume that element B also passes through 

point 1, but at some different time from element A.  The pathline of element 

B is given by the dashed line in figure b.  Because the flow is unsteady, the 

velocity at point 1 (and at all other points of the flow) change with time.  

hence, the pathline of elements A and B are different curves in figure a and 

b.  In general, for unsteady flow, the pathline for different fluid elements 

passing through the same point are not the same. 

 

Figure: Pathlines for two different fluid elements passing through the same 

point in space: unsteady flow. 

 

 In section, the concept of a streamline was introduced in a somewhat 

heuristic manner.  Let us be more precise here.  By definition, a streamline is 

a curve whose tangent at any point is in the direction of the velocity vector at 

that point.  Streamlines are illustrated in Figure.  The streamlines are drawn 

such that their tangents at every point along the streamline are in the same 
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direction as the velocity vectors at those points.  If the flow is unsteady, the 

streamline pattern is different at different times because the velocity vectors 

are fluctuating with time in both magnitude and direction. 

  

 In general, streamlines are different from pathlines.  You can visualize 

a pathline as a time-exposure photograph of a given fluid element, whereas a 

streamline pattern is like a single frame of a motion picture of the flow.  In 

an unsteady flow, the streamline pattern changes; hence, each “frame” of the 

motion picture is different. 

 

 However, for the case of steady flow 9which applies to most of the 

applications in this book), the magnitude and direction of the velocity 

vectors at all points are fixed, invariant with time.  Hence, the pathlines for 

different fluid elements going through the same point are the same.  

Moreover, the pathlines and streamlines are identical.  Therefore, in steady 

flow, there is no distinction between pathlines and streamlines; they are the 

same curves in space.  This fact is reinforced in figure, which illustrates the 

fixed, time-invariant streamline (pathline) through 

 

 

Figure: Streamlines. 
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Figure: For steady flow, streamlines and pathlines are the same. 

Point 1.Figure , a given fluid element passing through point 1 traces a 

pathline downstream.  All subsequent fluid elements passing through point 1 

at later times trace the same pathline.  Since the velocity vector is tangent to 

the pathline at all points on the pathline for all times, the pathline is also a 

streamline.  For the remainder of this book, we deal mainly with the concept 

of streamlines rather than pathline3s; however, always keep in mind the 

distinction described above. 

 Question: Given the velocity field of a flow, how can we obtain the 

mathematical equation for a streamline?  Obvisously, the streamline 

illustrated in figure is a curve in space, and hence it can be described by the 

equation ( )f x,y,z 0.=
How can we obtain this equation?  To answer this 

questin, let ds be a directed element of the streamline, such as shown at point 

2 in figure.  Thus velocity at point 2 is V, and by definition of a streamline, 

V is parallel to ds.  Hence, from the definition of the vector cross product. 

    ds V 0 =  

 Equation is a valid equation for a streamline.  To put it in a more 

recognizable form, expand Equation in Cartesian coordinates: 

 

  

ds dxi dyj dzk

V ui vj wk

= + +

= + +  

  

i j k

ds V dx dy dz

u v w

 =

 

 ( ) ( ) ( )i wdy vdz j udz wdx k vdx udy 0= − + − + − =
 

 

Since the vector given by Equation is zero, its components must each be 

zero. 

 

   

wdy vdz 0

udz wdx 0

vdx udy 0

− =

− =

− =
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 Equations a toc are differential equations for the streamline.  Knowing 

u, v, and w as functions of x, y, and z, Equations a to c can be integrated to 

yield the equation for the streamline: ( )f x,y,z 0.=
 

 

 To reinforce the physical meaning of Equations a to c, consider a 

streamline in two dimensions, as sketched in figure a.  The equation of this 

streamline is y = f(x).  Hence, at point 1 on the streamline, the slope is 

dy/dx.  However, V with x and y components u and v, respectively, is 

tangent to the streamline at point 1.  Thus, the slope of the streamline is also 

given by v/u, as shown in figure.  Therefore, 

 

 

 

Figure: (a) Equation of a stream in two-dimensional Cartesian space. (b) 

Sketch of a streamtube in three-dimensional space. 

 

   

dy v

dx u
=

 

 

 Equation is a differential equation for a streamline in two dimensions.  

From Equation,  

 

   vdx udy 0− =  
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which is precisely Equation.  Therefore, Equation a to c and simply state 

mathematically that the velocity vector is tangent to the streamline. 

 

 A concept related to streamlines is that of a stream tube.  Consider an 

arbitrary closed curve C in three-dimensional space, as shown in figure b.  

Consider the streamlines which pass through all points on C.  These 

streamlines from a tube in space as sketched in Figure b; such a tube is 

called a streamtube.  For example, the walls of an ordinary garden hose form 

a streamtube for the water flowing through the hose.  For a steady flow, a 

direct application of the integral form of the continuity equation proves that 

the mass flow across all cross sections of a streamtube is constant.  (Prove 

this yourself). 

Circulation 

 You are reminded again that this is a tool-building chapter.  Taken 

individually, each aerodynamic tool we have developed so far may not be 

particularly exciting.  However, taken collectively, these tools allow us to 

obtain solutions for some very practical and exciting aerodynamic problems. 

 

 In this section, we introduce a tool that is fundamental to the 

calculation of aerodynamic lift, namely, circulation.  This tool was used 

independently by Frederick Lanchester (1878-1946) in Russia to create a 

breakthrough in the theory of aerodynamic lift at the turn of the twentieth 

centrury.  The relationship between circulation and lift and the historical 

circumstances surrounding this breakthrough are discussed in chapter.  The 

purpose of this section is only to define circulation and relate it to vorticity. 

 

 Consider a closed curve C in a flow field, as sketched in figure.  Let V 

and ds be the velocity and directed line segment, respectively, at a point on 

C.    
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Figure: Definition of circulation. 

 

The circulation, denoted by , is define as 

 

    C
V.ds  − 

 

 The circulation is simply the negative of the line integral of velocity 

around a closed curve in the flow; it is a kinematic property depending only 

on the velocity field and the choice of the curve C.  As discussed in section, 

Line Integrals, by mathematical convention the positive sense of the line 

integral is counterclockwise.  However, in aerodynamics, it is convenient to 

consider a positive circulation as being clockwise.  Hence, a minus sign 

appears in the definition given by Equation to account for the positive-

counterclockwise sense of the integral and the positive-clockwise sense of 

circulation.1 

 

The use of the word circulation to label the integral in Equation may be 

somewhat misleading because it leaves a general impression of something 

moving around in a loop.  Indeed, according to the American Heritage 

Dictionary of the English Language, the first definition given to the word 

“circulation” is “movement in a circle or circuit”.  However, in 

aerodynamics, circulation has a very precise technical meaning, namely, 

Equation.  It does not necessarily mean that the fluid elements are moving 

around in circles within this flow field-a common early misconception of 

new students of aerodynamics.  Rather, when circulation exists in a flow, it 

simply means that the line integral in Equation is finite.  For example, if the 

airfoil in Figure is generating lift, the circulation taken around a closed curve 

enclosing the airfoil will be finite, although the fluid elements are by no 
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mean executing circles around the airfoil (as clearly seen from the 

streamlines sketched in figure). 

 

 Circulation is also related to vorticity as follows.  Refer back which 

shows an open surface bounded by the closed curve C.  Assume that the 

surface is in a flow field and the velocity at point P is V, where P is any 

point on the surface (including any point on curve C).  From Stokes’ 

theorem Equations. 

 

 

 

Figure: Relation between vorticity and circulation. 

  

( )
C

S

V.ds V .dS  − = −   
 

 

 Hence, the circulation about a curve C is equal to the vorticity 

integrated over any open surface bounded by C.  This leads to the immediate 

result that if the flow is irrotational everywhere within the contour of 

integration (i.e., if  x V = 0 over any surface bounded by C), then 0. =   A 

related result is obtained by letting the curve C shrink to an infinitesimal 

size, and denoting the circulation around this infinitesimally small curve by 

d.  Then, in the limit as C becomes infinitesimally small, Equation yields 

 

  ( ) ( )d V .dS V .ndS = −  = − 
 

 

 or 
( )

d
V .n

dS


 = −
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where dS is the infinitesimal area enclosed by the infinitesimal curve C.  

Referring to figure, Equation states that at a point P in a flow, the component 

of vorticity normal to dS is equal to the negative of the “circulation per unit 

area”, where the circulation is taken around the boundary of dS. 

 

 For the velocity field given in example, calculate the circulation 

around a circular path of radius 5m.  Assume that a an d v given in Example 

arein units of meters per second. 

 

Solution 

 

Since we are dealing with a circular path, it is easier to work this problem in 

polar coordinates, where 
2 2 2

rx r cos ,x y r ,V ucos v sin ,=  + = = +  and 

V usin vcos . = − +  Therefore, 

 

   

( ) ( )

2 2 2

2 2 2

r

r r r

r

y r sin sin
u

x y r r

x r cos cos
v

x y r r

sin cos
V cos sin 0

r r

sin cos 1
V sin cos

r r r

V.ds V e V e . dre rd e

1
       V dr rV 0 r d d

r



 



 
= = =

+

 
= − = − = −

+

  
= + −  = 

 

  
= − + −  = − 

 

= + +  

 
= + = + −  = −  

   

 

 Hence,  

2
2

C 0
V.dS d 2 m / s



 = − = − −  =    

 

 Note that we never used the 5-m diameter of the circular path; in this 

case, the value of  is independent of the diameter of the path. 

Stream Function: 
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 In this section, we consider two-dimensional steady flow.  Recall from 

section that the differential equation for a streamline in such a flow is given 

by Equation repeated below 

    

dy v

dx u
=

 

 If u and v are known functions of x and y, then equation can be 

integrated to yield the algebraic equation for a streamline: 

    ( )f x,y c=
 

where c is an arbitrary constant of integration, with different values for 

different streamlines.  In Equation, denote the function of x and y by the 

symbol  .  Hence, Equation is written as ( )x,y c =
 

 The function   (x,y) is called the stream function.  From Equation we 

see that the equation for a streamline is given by setting the stream function 

equal to a constant (i.e., c1, c2, c3, etc).  Two different streamlines are 

illustrated in Figure, streamlines ab and cd are given by   = c1   = c2, 

respectively.   

 

 

Figure: Different streamlines are given by different values of the stream 

function. 

 

 There is a certain arbitrariens in Equations and via the arbitrary 

constant of integraton c.  Let us define the stream function more precisely in 

order to reduce this arbitrarienes.  Referring to figure, let us define the 

numerical value of   such that the difference   between   = c2 for 

streamline cd and   = c1 for streamline ab is equal to the mass flow 

between the two streamlines.  Since figure is a two-dimensional flow, the 

mass flow between two streamlines is defined per unit depth perpendicular 

to the page.  That is, in figure, we are considering the mass flow inside a 

streamtube bounded by streamlines ab and cd, with a rectangular cross-
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sectional area equal to n times a unit depth perpendicular to the page.  

Here, n is the normal distance between ab and cd, as shown in figure.  

Hence, mass flow between streamlines ab and cd per unit depth 

perpendicular to the page is 

 

      = c2  - c1 

 

 The above definition does not completely remove the arbitrariness of 

the constant of integration in Equations and, but it does make things a bit 

more precise.  For example, consider a given two-dimensional flow field.  

Choose one streamline of the flow, and give it an arbitrary value of the 

stream function, say,   = c1.  Then, the value of the stream function for any 

other streamline in the flow, say,   = c2, is fixed by the definition given in 

equation.  Which streamline you choose to designate as   =c1 and what 

numerical value you give c1 usually depend on the geometry of the given 

flow field. 

 The equivalence between   = constant designating a streamline, and 

 equaling mass flow (per unit depth) between streamlines, is natural.  For 

a steady flow, the mass flow inside a given streamtube is constant along the 

tube; the mass flow across any cross section of the tube is the same.  Since 

by definition   is equal to this mass flow, then  itself is constant for a 

given streamtube.  In figure, if  1 = c1 designates the streamline on the 

bottom of the streamtube, then  2 = c2 = c1 +   is also constant along the 

top of the streamtube.  Since by definition of a streamtube the upper 

boundary of the streamtube is a streamline itself, then  2 = c2 = constant 

must designated this streamline. 

 

 We have yet to develop the most important property of the stream 

function, namely, derivatives of   yield the flow-field velocities.  To obtain 

this relationship, consider again the streamlines ab and cd in Figure.  

Assume that these streamlines are close together (i.e., assume n is small), 

such that the flow velocity V is a constant value across n.  The mass flow 

through the streamtube per unit depth perpendicular to the page is 
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Figure: Mass flow through n is the sum of the mass flow through y and - 

x. 

 

    ( )V n 1     

 Or   
V

n


= 

  

 

 Consider the limit of Equation as n → 0: 

    n 0
V lim

n n →

 
 = 

   

 

 Equation states that if we know  , then we can obtain the product 

(V) by differentiating   in the direction normal to V.  To obtain a practical 

form of Equation for Cartesian coordinates, consider Figure.  Notice that the 

directed normal distance n is equivalent first to moving upward in the y 

direction by the amount y and then to the left in the negative x direction by 

the amount -x.  Due to conservation if mass, the mass flow through n (per 

unit depth) is equal to the sum of the mass flows through y and -x (per 

unit depth): 

 

   Mass flow ( )V n u y v x=  =   =   + −  
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 Letting cd approach ab, Equation becomes in the limit 

    d udy vdx =  −  

 

 However, since ( )x,y , =
 the chain rule of calculus states 

    
d dx dy

x y

 
 = +

   

 

 Comparing Equation and, we have 

    

u
y

v
x


 =




 = −

  

 

 Equation (a and b) are important.  If  (x,y) is known for a given 

flow field, then at any point in the flow the product u and v can be 

obtained by differentiating  in the directions normal to u and v, 

respectively. 

 

 If Figure were to be redrawn in terms of polar coordinates, then a 

similar derivation yields 

 

     

r

1
V

r

V
r




 =




 = −

  

 

 Such a derivation is left as a homework problem. 

 




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 Note that the dimensions of  are equal to mass flow per unit depth 

perpendicular to the page.  That is, in SI units  is in terms of kilograms per 

second per meter perpendicular to the page, or simply kg/(s.m). 

 The stream function  defined above applies to both compressible 

and incompressible flow.  Now consider the case of incompressible flow 

only, where =constant.  Equation can be written as 

 

   

( )/
V

n

  
=

  

 We define a new stream function, for incompressible flow only, as 

/.  Then Equation becomes 

   
V

n


=
  

 and Equation and become 

   

u
y

v
x


=



= −

  

 

 and 

    

r

1
V

r

V
r




=




= −

  

 The incompressible stream function  has characteristics analogous to 

its more general compressible counterpart .  For example, since x,y) = c 

is the equation of a streamline, and since  is a constant for incompressible 

flow, then (x,y)  /=constant is also the equation for a streamline (for 

incompressible flow only).  In addition, since   is mass flow between two 

streamlines (per unit depth perpendicular to the page), and since  is mass 

per unit volume, then physically  =  / represents the volume flow 

(per unit depth) between two streamlines.  In SI units,  is expressed as 

cubic meters per second per meter perpendicular to the page, or simply m2/s. 









 









 

 

P
ag

e5
0

 

 

 In summary, the concept of the stream function is a powerful tool in 

aerodynamics, for two primary reasons.  Assuming that (x,y) [or  (x, y)] 

is known through the two-dimensional flow, then: 

1.  constant (or  = constant) gives the equation of a streamline. 

The flow velocity can be obtained by differentiating  (or ), as given by 

Equations and for compressible flow and Equations and for incompressible 

flow.  We have not yet discussed how (x,y) [or (x,y)] can be obtained in 

the first place; we are assuming that it is known.  The actual determination 

of the stream function for various problems is discussed. 

Velocity Potential. 

 Recall from section that an irrotational flow is defined as a flow where 

the vorticity is zero at every point.  From Equation, for an irrotatinal flow, 

    V 0 =  =  

 Consider the following vector identify: if  is a scalar function, then 

 

    ( ) 0  =  

 

 That is, the curl of the gradient of a scalar function is identically zero.  

Comparing Equations, we see that 

    
V = 

 

 Equation states that for an irrotatinoal flow, there exists a scalar 

function  such that the velocity is given by the gradient of .  We denote  

as the velocity potential.   is a function of the spatial coordinates; that is,  

=  (x,y,z), or ( ) ( )r, ,z ,or r, , . =    =      From the definition of the gradient 

in Cartesian coordinates given by Equation, we have, from Equation, 

   
ui vj wk i j k

x y z

  
+ + = + +

    

 








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 The coefficients of like unit vectors must be the same on  both sides of 

Equation.  Thus, in Cartesian coordinates, 

   

u v w
x y z

  
= = =
  

 

 

 In a similar fashion, from the definition of the gradient in cylindrical 

and spherical coordinates given by Equations and, we have, in cylindrical 

coordinates, 

   
r z

1
V V V

r 1 z


  
= = =
    

 

 and in spherical coordinates, 

   
r

1 1
V V V

r r r sin


 
= =  =
    

 

 The velocity potential is analogous to the stream function in the sense 

that derivatives of  yield the flow-field velocities.  However, there are 

distinct differences between  and  (or ): 

 

The flow-field velocities are obtained by differentiating  in the same 

direction as the velocities, whereas  (or ) is differentiated normal to the 

velocity direction and or Equation. 

The velocity potential is defined for irrotational flow only.  In contrast, the 

stream function cabe used in either rotational or irrotational flows. 

The velocity potential applies to three-dimensional flows, whereas the 

stream function is defined for two-dimensional flows only. 

 Where a flow field is irrotational, hence allowing a velocity potential 

to be defined, there is a tremendous simplification.  Instead of dealing with 

the velocity components (say, u, v and w) as unknowns, hence requiring 

three equations for these three unknowns, we can deal with the velocity 

potential as one unknown, therefore requiring the solution of only one 

equation for the flow field.  Once  is known for a given problem, the 

velocities are obtained directly from Equations.  This is why, in theoretical 







 

 

P
ag

e5
2

 

aerodynamics, we make a distinction between irrotational and rotational 

flows and why the analysis of irrotatinal flows is simpler than that of 

rotational flows. 

 Because irrotational flows can be described by the velocity potential 

, such flows are called potential flows. 

 In this section, we have not yet discussed how  can be obtained in the 

first place; we are assuming that it is known.  The actual determination of  

for various problems is discussed. 

Relationship between the stream function and velocity potential 

 In section we demonstrated that for an irrotational flow V = .  At 

this stage, take a moment and review some of the nomenclature introduced 

in section for the gradient of a scalar field.  We see that a line of constant  

is an isoline of  is an isolineof ; since  is the velocity potential, we give 

this isoline a specific name, equipotential line.  In addition, a line drawn in 

space such that  = V, this gradient line is a streamline.  In turn, from 

section, a streamline is a line of constant  (for a two-dimensional flow).  

Because gradient lines and isolines are perpendicular, Gradient of a Scalar 

Field), then equipotential lines (=constant) and streamlines ( =constant) 

are mutually perpendicular. 

 

 To illustrate this result more clearly, consider a two-dimensional, 

irrotational, incompressible flow in Cartesian coordinates.  For a streamline, 

(x,y) = constant.  Hence, the differential of  along the streamline is zero; 

that is, 

  
d dx dy 0

x y

 
 = + =

   

From Equation (a and b), Equation can be written as 

  d dx udy 0 = − + =  

 Solve Equation for dy/dx, which is the slope of the  = constant line, 

that is, the slope of the stream: 

  const

dy v

dx u=

 
= 

   

 Similar, for an equipotent line, ( )x,y constant. =
Along this line, 




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d dx 0

x y

 
 = + =

   

 From Equation, Equation can be written as 

  d udx vdy 0 = + =  

 Solving Equation for dy/dx, which is the slope of the  = constant line 

(i.e., the slope of the equipotential line), we obtain 

  const

dy u

dx v=

 
= − 

   

 Combining Equation and we have 

  
( )const const

dy 1

dx dy / dx= =

 
= − 

 
 

 

 Equation shows that the slope of a  = constant line is the negative 

reciprocal of the slope of a  = constant line (i.e., streamlines and 

equipotential lines are mutually perpendicular). 
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Uniform Flow 

 
 

Consider a uniform flow with velocity oriented in the positive X 
direction, as sketched in Figure. A uniform flow is a physically possible 
incompressible flow (i.e., it satisfies V • V = 0) and that it is irrotational 
(i.e., it satisfies V x V = 0). Hence, a velocity potential for uniform flow can 
be obtained such that  

 

 

 
Integrating Equation with respect to x, we have 

 

 
 

Where f(y) is a function of v only. Integrating Equation with respect to y, we 

obtain 

 

 

 
 

Where  g(x) is a function of   X only. 

 

 

Comparing these two equations 
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In a practical aerodynamic problem, the actual value of ϕ is not significant; 

So we can drop the constant from the equation 

 

 
 

The velocity potential for a uniform flow with velocity oriented in the 

positive x direction. Consider the incompressible stream function  ψ  From 

Figure  we have 

 

 
Integrating Equation with respect to y with respect to x, and comparing the 

results, we obtain 

 
 

Equation is the stream function for an incompressible uniform flow oriented 

in the positive x direction. 

 
 

 

 

Source Flow 
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Consider a two-dimensional, incompressible flow where all the streamlines 

are straight lines emanating from a central point O. Let the velocity along 

each of the streamlines vary inversely with distance from point O. Such a 

flow is called a source flow. The velocity components in the radial and 

tangential directions are Vr and Vθrespectively. . (Note that polar 

coordinates are simply the cylindrical coordinates r and 0 confined to a 

single plane given by z = constant.) 

Assumptions 

(1) Source flow is a physically possible incompressible flow, that is, V • V = 

0, at every point except the origin, where V • V becomes infinite, and  

(2) Source flow is irrotational at every point. 

 

In a source flow, the streamlines are directed away from the origin the 

opposite case is that of a sink flow, where by definition the streamlines are 

directed toward the origin. 

 

Let us look at the velocity field induced by a source or sink. By definition, 

the velocity is inversely proportional to the radial distance r. As stated 

earlier, this velocity variation is a physically possible flow, because it yields 

V • V = 0. Moreover, it is the only such velocity variation for which the 

relation V • V = 0 is satisfied for the radial flows shown in Figure  

Hence, 

 
where c is constant. The value of the constant is related to the volume flow 

from the source. 

 

 
The total mass flow across the surface of the cylinder is 
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Since ρ is defined as the mass per unit volume and m is mass per second, 

then  ṁ/ρ is the volume flow per second. Denote this rate of volume flow by 

v. Thus, from Equation 

 
Moreover, the rate of volume flow per unit length along the cylinder is v/l. 

Denote this volume flow rate per unit length Hence, from Equation we 

obtain 

 

 

 
 

Λ defines the source length; it is physically the rate of volume flow from the 

source, per unit depth perpendicular to the page. 

 

The velocity potential for a source can be obtained as follows 

 

 
Integrating Equation with respect to r, we have 

 

 
Integrating Equation with respect to θ, we have 

 
 

Comparing Equations 

 
The stream function can be obtained as follows 

 
Integrating Equation with respect to r, we have 
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Integrating Equation with respect to θ, we have 

 

 
Comparing Equations 

 
 

Equation is the stream function for a two-dimensional source flow. 

 

 

Combination of a Uniform Flow with a Source 

and Sink 
Consider a polar coordinate system with a source of strength Λ located at the 

origin. Superimpose on this flow a uniform stream with velocity V∞ moving 

from left to right. The stream function for the resulting flow is  

 
The streamlines of the combined flow are obtained from Equation  

 
The source is located at point D. The velocity field is obtained by 

differentiating Equations 
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The stagnation points in the flow can be obtained by setting Equations equal 

to zero 

 

 
 

If the coordinates of the stagnation point at B are substituted into Equation 

we obtain 

 

 

 
Consider a polar coordinate system with a source and sink placed a distance 

b to the left and right of the origin, respectively, The strengths of the source 

and sink are Λ and - Λ, respectively (equal and opposite). In addition, 

superimpose a uniform stream with velocity V∞. The stream function for the 

combined flow at any point P with coordinates (r, θ) is obtained as  
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The velocity field is obtained by differentiating Equations. In turn, by setting V = 0, two 

stagnation points are found, namely, points A and B in Figure These stagnation points are 

located such that 

 
The equation of the streamlines is given by Equation as 

 

 
The equation of the specific streamline going through the stagnation points is obtained 

from Equation 

 
 
Doublet Flow 
There is a special, degenerate case of a source-sink pair that leads to a singularity called a 

doublet. The doublet is frequently used in the theory of incompressible flow; 
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Consider a source of strength Λ  and a sink of equal (but opposite) strength  - Λ separated 

by a distance l, as shown in Figure. 

 

At any point P in the flow, the stream function is 

 
 

In the limit, as l > 0 while lA remains constant, we obtain a special flow pattern defined 

as a doublet. The strength of the doublet is denoted by k and is defined as k = l A. The 

stream function for a doublet is obtained from Equation as follows: 

 
 

For an infinitesimal dθ, the geometry yields  

 
 

Substituting Equation we have 
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Equation is the stream function for a doublet. In a similar fashion, the velocity potential 

for a doublet is given as 

 
The streamlines of a doublet flow are obtained from Equation 

 
 

Non lifting Flow over a Circular Cylinder  

 
A circular cylinder is one of the most basic geometric shapes available, and the study of 

the flow around such a cylinder is a classic problem in aerodynamics. 

 
 

Consider the addition of a uniform flow with velocity V∞ and a doublet of strength K, as 

shown in Figure. The direction of the doublet is upstream, facing into the uniform flow. 

The stream function for the combined flow is  

 

 
 

Substituting the value for r2 
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Equation is the stream function for a uniform flow-doublet combination; it is also the 

stream function for the flow over a circular cylinder of radius R as shown in Figure and as 

demonstrated below. 

 

The velocity field is obtained by differentiating Equation as follows: 

 

 

 
 

To locate the stagnation points, set Equations equal to zero: 

 

 
The velocity distribution on the surface of the cylinder is given by Equations with r = R, 

resulting in 

 

 
 

 

 

 

 

The pressure coefficient is given by Equation   

 

 

From this the surface pressure coefficient over a circular cylinder is 
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VORTEX FLOW 
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Consider a flow where all the streamlines are concentric circles about a given point, as 

sketched in Figure. , let the velocity along any given circular streamline be constant, but 

let it vary from one streamline to another inversely with distance from the common 

center. Such a flow is called a vortex flow. 

The velocity components in the radial and tangential directions are Vr and V∞, 

respectively 

 

From the definition of vortex flow, we have 

 
To evaluate the constant C, take the circulation around a given circular streamline of 

radius r 

 
 

 
 
Comparing Equations 

 
Relating circulation to vorticity we have: 

 

 
Combining Equations 
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Since we are dealing with two-dimensional flow Equation can be written as 

 

 
The circulation will still remain Γ = -2πC. The area inside this small circle 

around the origin will become infinitesimally small, and 

 

 
Combining Equations 

 
However, as r     0, dS    0. Therefore, in the limit as r     0, from Equation we 

have 

 

 
The velocity potential for vortex flow can be obtained as follows: 

 
Integrating Equations 

 
Equation is the velocity potential for vortex flow. 

 

The stream function is determined in a similar manner: 

 
 

 

Integrating Equations 
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LIFTING FLOW OVER A CYLINDER 

 

 
Consider the flow synthesized by the addition of the nonlifting flow over a cylinder and a 

vortex of strength Γ, as shown in Figure . The stream function for nonlifting flow over a 

circular cylinder of radius R is given by Equation  

 

 
Equation can also be written as 

 
Since the value of the constant is arbitrary, let 

 

 
 

Combining Equations we obtain 

 
 

Equation is the stream function for a vortex of strength Γ 
 

 

The resulting stream function for the flow shown at the right of figure is  

 
Or 
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The velocity field can be obtained by differentiating Equation. An equally direct method 

of obtaining the velocities is to add the velocity field of a vortex to the velocity field of 

the nonlifting cylinder. 

 

 

Hence, from Equations we have, for the lifting flow over a cylinder of radius R, 

 

 

 
 

To locate the stagnation points in the flow, set Vr= V∞ = 0 in Equations and solve for the 

resulting coordinates (r, 0) 

 

 

 
 

 

From Equation, r = R. Substituting this result into Equation and solving for 0, we obtain 

 

 
 

Substituting θ = - π /2 into Equation and solving for r, we have 
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The velocity on the surface of the cylinder is given by Equation with r = R  

 

 
In turn, the pressure coefficient is obtained by 

 

 

Kutta–Joukowski theorem 

The Kutta–Joukowski theorem is a fundamental theorem of aerodynamics, for the 

calculation of the lift on a rotating cylinder. It is named after the German Martin Wilhelm 

Kutta and the Russian Nikolai Zhukovsky (or Joukowski) who first developed its key 

ideas in the early 20th century. The theorem relates the lift generated by a right cylinder 

to the speed of the cylinder through the fluid, the density of the fluid, and the circulation. 

The circulation is defined as the line integral, around a closed loop enclosing the cylinder 

or airfoil, of the component of the velocity of the fluid tangent to the loop. 

The magnitude and direction of the fluid velocity change along the path. 

The flow of air in response to the presence of the airfoil can be treated as the 

superposition of a translational flow and a rotational flow, known as a "vortex". (It is, 

however, misleading to picture a vortex like a tornado encircling the cylinder or the wing 

of an airplane in flight. The vortex is defined by the integral's path that encircles the 

cylinder, and is defined by the mathematical value of the vorticity; not a vortex of air.) In 

http://en.wikipedia.org/wiki/Superposition_principle
http://en.wikipedia.org/wiki/Vortex
http://en.wikipedia.org/wiki/Tornado
http://en.wikipedia.org/wiki/Vorticity
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descriptions of the Kutta–Joukowski theorem the airfoil is usually considered to be a 

circular cylinder or some other Joukowski airfoil. 

The theorem refers to two-dimensional flow around a cylinder (or a cylinder of infinite 

span) and determines the lift generated by one unit of span. When the circulation is 

known, the lift per unit span (or ) of the cylinder can be calculated using the 

following equation: 

 

 
where   and    are the fluid density and the fluid velocity far upstream of the 

cylinder, and is the (anticlockwise positive) circulation defined as the line integral. 

 

 

 
 

 

 

 

 The velocity on the surface of the cylinder is given by Equation with r 

= R: 

 

    
V V 2V sin

2 R
 


= = − −

  

 

 In turn, the pressure coefficient is obtained by substituting Equation 

into Equation: 

   

2 2

p

V
C 1 1 2sin

V 2 RV 

   
= − = − − −   

     

  or 

2

2
p

2 sin
C 1 4sin

RV 2 RV 

    
= − + +  

      

http://en.wikipedia.org/wiki/Airfoil
http://en.wikipedia.org/wiki/Joukowski_airfoil
http://en.wikipedia.org/wiki/Wing_span
http://en.wikipedia.org/wiki/Line_integral
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 In Section, we discussed in detail how the aerodynamic force 

coefficient can be obtained by integrating the pressure coefficient and skin 

friction coefficient over the surface.  For invisic flow, cf = 0.  Hence, the 

drag coefficient cd is given by Equation as 

   
( )

TE

d a p,u p,l
LE

1
c c C C dy

c
= = −

 

 or  

TE TE

d p,u p,l
LE LE

1 1
c C dy C dy

c c
= − 

 

 

 Converting Equation to polar coordinates, we note that 

   y Rsin         dy=Rcos d=     

 

 Substituting Equation into, and noting that c = 2R, we have 

   

0 2

d p,u p,l

1 1
c C cos d C cos d

2 2



 
=  −   

 

 

 The limits of integration in Equation are explained as follows.  In the 

first integral, we are integrating from the leading edge (the front point of the 

cylinder), moving over the top surface, decreases to 0 at the trailing edge.  In 

the second integral, we are integrating from the leading edge to the trailing 

edge while moving over the bottom surface of the cylinder.  hence,  is 

equal to  at the leading edge and, moving over the bottom surface, 

increases to 2 at the trailing edge.  In Equation, both Cp,u and Cp,l are 

given by the same analytic expression for Cp, namely, Equation.  Hence, 

Equation can be written as  

   

2

d p p
0

1 1
c C cos d C cos d

2 2

 


= −  −   

 

 or  

pC

d p
0

1
c C cos d

2
= −  

 

 

 Substituting Equation into, and noting that 
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2

0

2
2

0

2

0

cos d 0

sin cos d 0

sin cosd 0







  =

   =

  =





  

we immediately obtain dc 0=
 

 Equation confirms our intuitive statements made earlier.  The drag on 

a cylinder in an inviscid, incompressible flow is zero, regardless of whether 

or not the flow has circulation about the cylinder. 

 

 The lift on the cylinder can be evaluated in a similar manner as 

follows.  From Equation with Cf = 0. 

 

  

c c

l n p,l p,u
0 0

1 1
c c C dx C dx

c c
= = − 

 

 

 Converting to polar coordinates, we obtain 

 

  x Rcos   dx=-Rsin d=     

 

 Substituting Equation into, we have 

 

  

2 0

l p,l p,u

1 1
c C sin d C sin d

2 2



 
= −  +   

 

 

 Again, noting that Cp,l and Cp,u are both given by the same analytic 

expression, namely, Equation, becomes 

 

  

2

l p
0

1
c C sin d

2



= −  
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 Substituting Equation into, and noting that 

 

  

2

0

2
3

0

2
2

0

sin d 0

sin d 0

sin d







  =

  =

  = 





  

 we immediately obtain 

 

  
lc

RV


=

 

 From the definition of c1, the lift per unit span L’ can be obtained 

from 

 

  

2
cl l

1
L' q S V Sc

2
  = = 

 

 

 Here, the planform area S = 2R(1).  Therefore, combining Equations 

and we have 

 

    

21
L' V 2R

2 RV
 






L 

  or 

    
L' V =  

 

 

 Equation gives the lift per unit span for a circular cylinder with 

circulation .  It is a remarkably simple result, and it states that the lift per 

unit span is directly proportional to circulation.  Equation is a powerful 

relation in theoretical aerodynamics.  It is called the Kutta-Joukowski 

theorem, named after the German mathematician M.  Wilheim Kutta (1867-

1944) and the Russian physicist Nikolai e.Joukowski (1847-1921), who 

independently obtained it during the first decade of this century.  We will 

have more to say about the Kutta-Joukowski theorem. 
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 What are the connections between the above theoretical results and 

real life?  As stated earlier, the prediction of zero drag is totally erroneous-

visocus effects cause skin friction and flow separation which always produce 

a finite drag.  The inviscid flow treated in this chapter simply does not model 

the proper physics for drag calculations.  On the other hand, the prediction of 

lift via Equation is quite realistic.  Let us return to the wind-tunnel 

experiments mentioned at the beginning of this chapter.  If a stationary, 

nonspinning cylinder is placed in a low-speed wind tunnel, the flow field 

will appear as shown in figure a.  the streamlines over the front of the 

cylinder are similar to theoretical predictions, as sketched at the right of 

Figure.  However, because of viscous effects, the flow separates over the 

rear of the cylinder, creating a recirculating flow in the wake downstream of 

the body.  This separated flow greatly contributes to the finite drag measured 

for the cylinder.  On the other hand, figure a shows a reasonably symmetric 

flow about the horizontal axis, and the measurement of lift is essentially 

zero.  Now let us spin the cylinder in a clockwise direction about its axis.  

The resulting flow fields are shown in figure b and c.  For a moderate 

amount of spin b, the stagnation points move to the lower part of the 

cylinder, increased figure c, the stagnation point lifts off the surface, similar 

to the theoretical flow sketched in figure c.  And what is most important, a 

finite lift is measured for the spinning cylinder in the wind tunnel.  What is 

happening here?  Why does spinning the cylinder produce lift?  In actually, 

the friction between the fluid and the surface of the cylinder tends to drag 

the fluid near the surface in the same direction as the rotational motion.  

Superimposed on top of the usual nonspinning flow, this “extra” velocity 

contribution creates a higher-than-usual velocity at the top of the cylinder 

and a lower-than-usual velocity at the bottom, as sketched in figure.  These 

velocities are assumed to be just outside the viscous boundary layer on the 

surface.  Recall from Bernoulli’s equation that as the velocity increases, the 

pressure decrease.  Hence, from figure, the pressure on the top of the 

cylinder is lower than on the bottom.  This pressure imbalance creates a net 

upward force, that is, a finite lift.  Therefore, the theoretical prediction 

embodied in Equation that the flow over a circular cylinder can produce a 

finite lift is verified by experimental observation. 

 

 The general ideas discussed above discussed above concerning the 

generation of lift on a spinning circular cylinder in a wind tunnel also apply 

to a spinning sphere.  This explains why a baseball pitcher can throw a curve 
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and how a golfer can hit a hook or slice-all of which are due to 

nonsymmetric flows about the spinning bodies, and hence the generation of 

an aerodynamic force perpendicular to the body’s angular velocity vector.  

This phenomenon is called the Magnus effect, named after the German 

engineer who first observed and explained it in Berlin in 1852. 

 

 It is interesting to note that a rapidly spinning cylinder can produce a 

much higher lift than an airplane wing of the same planform area; however, 

the drag on the cylinder is also much higher than a well-designed wing.  As 

a result, the  

 

 

(a) 
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(b) 

 

 

 

(c) 

Figure: These flow-filed pictures were obtained in water, where aluminium 

filings were scattered on the surface to show the direction of the streamlines. 

(a) Shown above is the case for the nonspinning cylinder.  These flow-field 

pictures were obtained in wate,r where aluminium filings were scattered on 

the surface to show the direction of the streamlines. (b) Spinning cylinder: 

peripheral velocity of the surface=3V.(c) Spinning cylinder: peripheral 

velocity of the surface = 6V.  (Source: Prandtl and Tietjens,) 
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Figure: Creation of lift on a spinning cylinder. 

 Magnus effect is not employed for powered flight.  On the other hand, 

in the 1920s, the German engineer Anton Flettner replaced the sail on a boat 

with a rotating circular cylinder with its axis vertical to the deck.  In 

combination with the wind, this spinning cylinder provided propulsion for 

the boat.  Moreover, by the action of two cylinders in tandem and rotating in 

opposite directions, Flettner was able to turn the boat around.  Flettner’s 

device was a technical success, but an economic failure because the 

maintenance on the machinery to spin the cylinders at the necessary high 

rotational speeds was too costly.  Today, the Magnus effect has an important 

influence on the performance of spinning missles; indeed, a certain amount 

of modern high-speed aerodynamic research has focused on the Magnus 

forces on spinning bodies for missile applications. 

Example: 

 Consider the lifting flow over a circular cylinder.  The lift coefficient 

is 5.  Calculate the peak (negative) pressure coefficient. 

Solution: 

 Examining figure, note that the maximum velocity for the nonlifting 

flow over a cylinder is 2V and that it occurs at the top and bottom point on 

the cylinder.  When the vortex in figure is added to the flow field, the 

direction of the vortex velocity is in the same direction as the flow on the to 

of the cylinder, but opposes the flow on the bottom of the cylinder.  Hence, 

the maximum velocity for the lifting case  occurs at the top of the cylinder 

and is equal to the sum of the nonlifting value, 2V ,−  and the vortex, 

/ 2 R.−    (Note: We are still following the usual sign convention; since the 

velocity on the top of the cylinder is in the opposite direction of increasing  

for the polar coordinate system, the velocity magnitudes here are negative.)  

Hence, 
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V 2V

2 R



= − −

  

 The lift coefficient and  are related through Equation 

    
lc 5

RV


= =

 

  Hence, 
5V

R



=

 

Substituting Equation into, we have 

  

5
V 2V V 2.796V

2
  = − − = −

  

Substituting Equation into Equation, we obtain 

  
( )

2

2

p

V
C 1 1 2.796 6.82

V

 
= − − = − − = − 

   

 This example is designed in part to make the following point.  Recall 

that, for an inviscid, incompressible flow, the distribution of Cp over the 

surface of a body depends only on the shape and orientation of the body-the 

flow properties such as velocity and density are irrelevant here.  Recall 

Equation, which gives Cp as a function of  only, namely, Cp = 1 – 4 sin2.  

However, for the case of lifting flow, the distribution of Cp over the surface 

is a function of one additional parameter-namely, the lift coefficient.  

Clearly, in this example, only the value of cl is given.  However, this is 

powerful enough to define the flow uniquely; the value of Cp at any point on 

the surface follows directly from the value of lift coefficient, as 

demonstrated in the above problem. 

 

Example: 

 For the flow field in Example, calculated the location of the stagnation 

points and the points on the cylinder where the pressure equals freestream 

static pressure. 

Solution: 

From Equation, the stagnation points are given by 

  

arcisn
4 V R

 
 = − 

   
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From Example,   

  
5

RV


=

 

 Thus,  

o o5
arscin 203.4  and 336.6

4

 
 = − = 

   

 To find the locations where p= p, first construct a formula for the 

pressure coefficient on the cylinder surface: 

 

    

2

p

V
C 1

V

 
= −  

   

 where  
V 2V sin

2 R



= − −

  

 Thus,   

2

pC 1 2sin
2 R

 
= − − − 

   

    

2

2 2 sin
1 4sin

RV 2 RV 

   
= − − − 

    

 From Example, / RV 5.thus, =  

    

2
2

p

2

10 5
C 1 4sin sin

2

0.367 3.183sin 4sin

 
= − − −  

  

= − −   

 A check on this equation can be obtained by calculating Cp at  = 90o 

and seeing if it agrees with the result obtained in Example.  For  = 90o, we 

have 

   pC 0.367 3.183 4 6.82= − − = −
 

 This is the same result as in Example; the equation checks.   

 

 To find the values of p where p=p ,setC 0 : =
 

    
20 0.367 3.183sin 4sin= − −   
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From the quadratic formula, 

  

( )
2

3.183 3.183 5.872
sin 0.897 or 0.102

8

 +
 = = −

−  

 Hence,   
o o243.8   and 296.23 =  

 Also,    
o o5.85  and 174.1 =  

 There are four points on the circular cylinder where p = p.  These 

are sketched in figure, along with the stagnation point locations.  As shown 

in example, the minimum pressure occurs at the top of the cylinder and is 

equal to p 6.82q . −   A local minimum pressure occurs at the bottom of the 

cylinder, where  = 3/2.  This local minimum is given by 

    

2
p

3 3
C 0.367 3.183sin 4sin

2 2

    0.367 3.183 4 0.45

 
= − −

= + − = −  

 Hence, at the bottom of the cylinder, p = p - 0.45q. 

 

 

 

Figure: Value of pressure at various locations on the surface of a circular 

cylinder, lifting case with finite circulation.  The values of pressure 

correspond to the case discussed in example. 

Example: 

 Consider the lifting flow over a circular cylinder with a diameter of 

0.5 m.  The freestream velocity is 25 m/s, and the maximum velocity on the 
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surface of the cylinder is 75 m/s.  The freestream conditions are those for a 

standard attitude of 3 km.  Calculate the lift per unit span on the cylinder. 

Solution: 

 From Appendix D, at an altitude of 3 km,  = 0.90926 kg/m3.  The 

maximum velocity occurs at the top of the cylinder, where 
o90 , =  From 

Equation. 

    
V 2V sin

2 R
 


= − −

  

 At 
o90 =  

    
V 2V

2 R
 


= − −

  

 or,   ( )2 R V 2V  = −  +  

 

 Recalling our sign convention that  is positive in the clockwise 

direction, and V is negative in the clockwise direction (reflect again on 

figure), we have 

    V 75m/ s = −  

    Hence,

 ( ) ( ) ( ) 2 R V 2V 2 0.25 75 2 25  = −  + = −  − +
 

    ( )( ) 22 0.25 25 39.27m / s = −  − =  

 From Equation, the lift per unit span is  

    ( )( )( )

L' V

L' 0.90926 25 39.27 892.7N

 =  

= =  

The Kutta-Joukowski theorem and the generation of lift. 

 Although the result given by Equation was derived for a circular 

cylinder, it applies in general to cylindrical bodies of arbitrary cross section.  

For example, consider the incompressible flow over an airfoil section, as 

sketched in figure.  Let curve A be any curve in the flow enclosing the 

airfoil.  If the airfoil is producing lift, the velocity field around the airfoil 

will be such that the line integral of velocity around A will be finite, that is, 

the circulation is finite.  In turn, the lift per unit span L’ on the airfoil will be 

given by the Kutta-Joukowski theorem, as embodied in Equation. 
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    A
V.ds    

    
L' V =  

 

 

 

 

Figure: Circulation around a lifting airfoil. 

 This result underscores the importance of the concept of circulation, 

defined in section.  The Kutta-Joukowski theorem states that lift per unit 

span on a two-dimensional body is directly proportional to the circulation 

around the body.  Indeed, the concept of circulation is so important at this 

stage of our discussion that you should reread section before proceeding 

further. 

 

 The general derivation of Equation for bodies of arbitrary cross 

section can be carried out using the method of complex variables.  Such 

mathematics is beyond the scope of this book.  (It can be shown that 

arbitrary functions of complex variables are general solutions of Laplace’s 

equation, equation, which in turn governs incompressible potential flow.  

Hence, more advanced treatments of such flo0ws utilize the mathematics of 

complex variables as an important tool. 

 

 In section the lifting flow over a circular cylinder was synthesized by 

superimposing a uniform flow, a doublet, and a vortex.  Recall that all three 

elementary flows are irrotational at all points, except for the vortex, which 
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has infinite vorticity at the origin.  Therefore, the lifting flow over a cylinder 

as shown in Figure is irrigational at every point except at the origin.  If we 

take the circulation around any curve not enclosing the origin, we obtain 

from equation the result that  = 0.  It is only when we choose a curve that 

encloses the origin, where  x V is infinite, that Equation yields a finite , 

equal to the strength of the vortex.  The same can be said about the flow over 

the airfoil in figure.  As we show in chapter, the flow outside the airfoil is 

irrigational, and the circulation around any closed curve not enclosing the 

airfoil (such as curve B in figure) is consequently zero.  On the other hand, 

we also show in chapter 4 that the flow over an airfoil is synthesized by 

distributing vortices either on the surface or inside the airfoil.  These vortices 

have the usual singularities in  x V, and therefore, if we choose a curve that 

encloses the airfoil (such as curve A in figure), Equation yields a finite value 

of , equal to the sum of the vortex strengths distributed on or inside the 

airfoil.  The important point here is that, in the Kutta-Joukowski theorem, 

the value of  used in Equation must be evaluated around a closed curve that 

encloses the body; the curve can be otherwise arbitrary, but it must have the 

body inside it. 

 

 At this stage, jet us pause and assess our thoughts.  The approach we 

have discussed above-the definition of circulation and the use of Equation to 

obtain the lift-is the essence of the circulation and the use of Equation to 

obtain the lift-is the essence of the circulation theory of lift in aerodynamics.  

Its development at the turn of the twentieth century created a breakthrough 

in aerodynamics.  However, let us keep things in perspective.  The 

circulation theory of lift is an alternative away of thinking about the 

generation of lift on an aerodynamics body.  Keep in mind that the true 

physical sources of aerodynamics force on a body are the pressure and shear 

stress distributions exerted on the surface of the body, as explained in 

section.  The Kutta-Joukowski theorem is simply an alternative way of 

expressing the consequences of the surface pressure distribution; it is a 

mathematical expression that is consistent with the special tools we have 

developed for the analysis of inviscid, incompressible flow.  Indeed that 

equation was derived in section by integrating the pressure distribution over 

the surface.  Therefore it is not quite proper to say that circulation “causes” 

lift.  Rather, ‘ift is “caused” by the net imbalance of the surface pressure 

distribution, and circulation is simply a defined quantity determined from the 

same pressures.  The relation between the surface pressure distribution 

(which produces lift L’) and circulation is given by Equation.  However, in 

the theory of incompressible, potential flow, it is generally much easier to 
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determine the circulation around the body rather than calculate the detailed 

surface pressure distribution.  Therein lies the power of the circulation 

theory of lift. 

 Consequently, the theoretical analysis of lift on two-dimensional 

bodies in incompressible, inviscid flow focus on the calculation of the 

circulation about the body.  Once  is obtained, then the lift per unit span 

follows directly from the Kutta-Joukowski theorem.   
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UNIT III 

 

 

 

UNIT III

CONFORMAL TRANSFORMATION

Joukowski transformation and its application to 
fluid flow problems, Kutta condition, Blasius 

theorem
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Introduction to Conformal Mapping in Aerodynamics 

 
Introduction 

Conformal mapping is a method used to extend the application of potential flow theory to 

practical aerodynamics. Standard potential flow theory begins with an ideal flow to show 

that lift on a body is proportional to the circulation about a closed path encompassing an 

object. Potential flows start with flows over cylinders since the mathematics is more 

tractable. However, to use potential flow theory on usable airfoils one must rely on 

conformal mapping to show a relation between realistic airfoil shapes and the knowledge 

gained from flow about cylinders.  

 

Brief review of complex numbers: 

Conformal mapping relies entirely on complex mathematics. Therefore, a brief review is 

undertaken at this point.  

 

A complex number z is a sum of a real and imaginary part;  z =  real + iimaginary 

 

The term i, refers to the complex number   

 

so that;   

Complex numbers can be presented in a graphical format. If the real portion of a complex 

number is taken as the abscissa, and the imaginary portion as the ordinate, a two-

dimensional plane is formed. 

 

z = real + iimaginary = x + iy 

 

 

 

 

 

 

 

A complex number can be written in polar 

form using Euler's equation; 

 

 z = x + iy  =rei  =  r(cos  + isin) 

 

where   r2  =  x2  +  y2 

 

Complex multiplication: z1z2 = (x1+iy1)(x2+iy2) = (x1x2 - y1y2) + i(x1y2 + y1x2) 

L =  V  
Lift = ? 

1−=i

1,,1,1
432
=−=−=−= iiiii

y, imaginary 

x, real 

)(

2121
2121  +

==
iii

errerer
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Complex representation of potential flows 

The basic flows used in potential flow theory such as uniform flow, source, sink, doublet 

and vortex, can all be represented using complex numbers. For example, if a complex 

number w with both real and imaginary parts represents a potential flow, then the form of 

the number is; 

 

w(z)  =    +  i  =  (velocity potential)  +  i(stream function) 

 

Here, both velocity potential and stream function are themselves complex numbers. As an 

example, the uniform flow can be written; 

 

Uniform flow:   w(z) =  Vz  =    +  i  =  V(x+iy)  = Vx + Vy  

 

as seen previously,           =Vx  =  Vrcos  =Vy  =  Vrsin 

 

Source flow: 

 

Vortex flow: 

 

Doublet flow: 

 

In complex terms the flow past a cylinder with lift is written: 

 

 

 

Velocity Components: 

When a potential flow is represented in complex form, the velocity components can be 

found using one of two methods; 

1. Re-write the expression from the complex variable z form into its separate real 

and complex components. The form of this expression will be w =  + i. The 

individual velocity components are found by completing the appropriate 

differentiation on or .to obtain u or v. As an example consider the complex 

form of the source flow; 

 

0
2

2
)ln(

2
)ln(

2

=



=


=




=


+


=+=


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













V
rr

V

irizw

r

 

2. An alternative method would be to differentiate on the complex expression 

directly and then separate the real and complex portions to obtain the velocity 

components according to; 

 ivu
dz

dw
−=  

 












2
)ln(

2
))(ln(

2
)ln(

2
)ln(

2


+


=+


=


=+=


= irirreizw
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Conformal Mapping 

A conformal mapping is performed through the transformation of a complex function 

from one coordinate system to another. A transformation function is applied to the 

original function to perform the mapping. For aerodynamics applications the Joukowski 

transform is the most commonly used function; 

 

 

 

Here, b is a constant. Graphically, a conformal mapping will transform a complex plane 

in z (z = x+iy) into a complex plane in a new variable w (w = +i). 

 

 
In the diagram a uniform flow in the z plane is transformed into an equivalent form in the 

w plane using a transform of the form w = f(z). As an example consider a circle drawn in 

the z plane, z = bei. The Joukowski transform maps the circle into a flat plate, 

z

b
zw

2

+=  

 

0)cos(2
2

ibbebe
be

b
bew ii

i

i +=+=+= − 



  

 
A circle of radius b is mapped into a straight line in the w plane entirely on the real axis 

between -2b and 2b. If a uniform flow had been drawn over the circle, the transform 

would have mapped that flow into the flow over a flat plate in the w plane. If the circle 

originally had a radius slightly larger than the transform constant b, z = aei, with a>b, 

the circle would have formed an ellipse instead of the flat plate. 

 

iyx
a

b
ai

a

b
a

ae

b
ae

z

b
zw

i

i +=







−+








+=+=+= )sin()cos(

2222




  

Which can be written, 

x 

y 

b 

 

 

 
z plane w plane 

2b -2b 

z

b
zw

2

+=

 = C1 

 = C2 

 = C3 

 = K1  = K3 
 

 

z plane 

x 
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w plane 
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 = C2 

 = K3 
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1
2

2

2

2
2

2

=





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


−

+





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
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a

b
a

y

a

b
a
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If the flow over a cylinder had been transformed it would have created the flow over an 

ellipse.  

 

Joukowski Airfoils 

From and aerodynamics point of view, the most interesting application of the Joukowski 

transform is to an offset circle. If we consider a circle slightly offset from the origin along 

the negative real axis, one obtains a symmetric Joukowski airfoil. 

 
The equation of the offset circle is z = aei-eb where the constant e is a small number. If 

the cylinder is displaced slightly along the complex axis as well, one obtains a cambered 

airfoil shape. 

 

 

 

 

 

 

 

 

 

 

Here, the points A and B are the intercepts of the displaced circle on the real axis and 

their corresponding points in the transformed plane. The angle  is the angle formed by 

the line joining the point A (or B) and the origin with the real axis. If lifting flow about 

the original circle had been imposed, the Joukowski transformation would have generated 

a lifting flow about the Joukowski airfoil; 

b 

a 

eb 
-2b 2b x 

y 

 

 
z plane w plane 

z

b
zw

2

+=

x 

y 

2b -2b 

b 

a 

eb -2b 2b x 

y 

 

 
z plane w plane 

z

b
zw

2

+=

A 

 
B B A 



 

 

P
ag

e9
0

 

 
Although such a flow is mathematically possible, in reality it may not be realistic. The 

stagnation points on the cylinder map to stagnation points that are not always realistic. 

For instance the stagnation point on the top surface of the airfoil cannot exist is steady 

flight since the velocity would tend to infinity as one moves very close to the trialing 

edge. The only means of making a realistic flow is to impose the Kutta condition where 

the stagnation point is forced to exist at the trailing edge thus making the streamlines 

flow smoothly from this point. This is done by adjusting the value of vorticity strength , 

such that the stagnation points on the cylinder reside at the cylinder’s intercepts of the 

real axis. In this case, when the cylinder is transformed, one stagnation point will be 

forced to the trailing edge. 

 
The lift force generated by the lifting flow over the cylinder is proportional to the 

circulation about the cylinder imposed by the added vortex flow according to the Kutta-

Joukowski relation, L’ = V. The lifting force on the resulting Joukowski airfoil is not 

clear. To evaluate the lift, the circulation is needed and therefore the velocity field. The 

velocity fields in each plane can be related to each other through the chain rule of 

differentiation. If the lifting flow about the cylinder is defined as function Q where Q = 

Q(z) in the z plane and Q = Q(w) in the w plane, the velocities in each plane are; 

w

Q
V

z

Q
V wz




=




=  

 

By chain rule: 

z

w

w

Q

z

Q








=




 

 

z

w
VV wz




=  

 

Using the Joukowski transformation; 
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Clearly, the velocity field very close to the cylinder and its transformed counterpart are 

dissimilar as one would expect. However, farther away from these objects the velocity 

fields become identical as the magnitude of z becomes larger than the constant value of b. 

Since the circulation can be calculated about any closed path, including paths very far 

from the object surface, the circulations must be the same in both planes.  

Joukowskicylinder VV =    

Vortex strength 

The appropriate vortex strength to impose the Kutta condition must be determined. 

Consider the lifting flow about a cylinder. The velocity in the  direction is, 








 
+−= 

R
VV




2
)sin(2  

 

Here, R is the radius of the cylinder surface.  

This velocity is zero on the surface of the cylinder 

at the stagnation points. At the these points  =-. 

 

R
V




2
)sin(20


−=   

 
)sin(4  RV=  

 

If the field is rotated by  to simulate an angle of 

attack, 
)sin(4  += RV  

 

Since the cord length of the Joukowski airfoil is 4b, the lift coefficient can be written, 

 

bV

RV

bVbV

V

cV

L
CL 2

2

2
22 2

)sin(4

24
2

1

2

1







+
=


=


=


=








 

 

Making the assumption that bR,  

 
)(2)sin(2  ++=LC  

 

 

Example 

A Joukowski airfoil is formed by displacing a circle of radius 1 by x = -0.08 (real axis) 

and y = 0.05 (imaginary axis). Find, 

a) Vortex strength  if  = 0o, and V = 10 m/s 

b) CL at  = 0o and  = 10o 

 

O87.2
1

05.0
sin 1 =







= −  

 

b

O

+
=

08.0

05.0
)87.2tan(  

 

 b = 0.9187 

 

 

a)  = 4VRsin(+) = 

4(10)(1)sin(2.87) = 6.2831 
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b) CL = 2sin(2.87) = 0.31415 

 

 CL = 2sin(10 + 2.87) = 1.40 

 
 

 

Nonlifting flows over arbitrary bodies:  The numerical source panel method: 

 

 In this section, w return to the consideration of nonlifting flows.  

Recall that we have already dealt with the nonlifting flows over a semi-

infinite body and a Rankine oval and both the nonlifting and the lifting flows 

over a circular cylinder.  For those cases, we added our elementary flows in 

certain ways and discovered that the dividing streamlines turned out to first 

the shapes of such special bodies.  However, this indirect method of starting 

with a given combination of elementary flows and seeing what body shape 

comes out of it can hardly be used in a practical sense for bodies of arbitrary 

shape.  For example, consider the airfoil in figure.  Do we know in advance 

the correct combination of elementary flows to synthesize the flow over this 

specified body?  The purpose of this section is to preset such a direct 

method, limited for the present to nonlifting flows.  We consider a numerical 

method, limited for the present to nonlifting flows.   We consider a 

numerical method appropriate for solution on a high-speed digital computer.  

The technique is called the source panel method, which, since the late 1960s, 

has become a standard aerodynamic tool in industry and most research 

laboratories.  In fact, the numerical solution of potential flows by both 

source and vortex panel techniques has revolutionized the analysis of low-

speed flows.  We return to various numerical panel techniques in through.  

As a modern student of aerodynamics, it is necessary for you to become 

familiar with the fundamentals of such panel methods.  The purpose of the 

present section is to introduce the basic ideas of the source panel method, 

which is a technique for the numerical solution of nonlifting flows over 

arbitrary bodies. 
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Figure: Source sheet 

 First, let us extend the concept of a source or sink introduced in 

section.  In that section, we dealt with a single line source, as sketched in 

figure.  Now imagine that we have an infinite number of such line sources 

side by side, where the strength of each line source is infinitesimally small.  

These side-by-side line sources form a source sheet, as shown in perspective 

in the upper left of figure.  If we look along the series of line sources 

(looking along the z axis in figure.  Here, we are looking at an edge view of 

the sheet; the line sources are all perpendicular to the page.  Let s be the 

distance measured along the source sheet in the edge view.  Define  = (s) 

to be the source strength per unit length along s.  [To keep things in 

perspective, recall from section that the strength of a single line source   

was defined as the volume flow rate per unit depth, that is, per unit length in 

the z direction.  Typically unit for  are square meters per second or square 

feet per second.  in turn, the strength of a source sheet (s) is the volume 

flow rate per unit depth (in the z direction) and per unit length (in the s 

direction.)  Typical unit for  are meters per second or feet per second].  

Therefore, the strength of an infinitesimal portion ds of the sheet, as shown 

in Figure is  ds.  This small section of the source sheet can be treated as a 

distinct source of strength  ds.  Now consider point P in the flow, located a 

distznce r from ds; the Cartesian coordinates of P are (x,y).  The small 

section of the source sheet of strength  ds induces an infinitesimally small 

potential d at point P.  From Equation, d is given by 

    

ds
d ln r

2


 =

  
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Figure: Superpostion of a uniform flow and a source sheet on a body of 

given shape, to produce the flow over the body. 

 

 

 

Figure: Source panel distribution over the surface of a body of a arbitrary 

shape. 

 

 The complete velocity potential at point P, induced by the entire 

source sheet from a to b, is obtained by integrating Equation: 

 

    
( )

b

a

ds
x,y ln r

2


 =


 

 

 Note that, in general, (s) can change from positive to negative along 

the sheet; that is, the “source” sheet is really a combination of line sources 

and line sinks. 
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 Next, consider a given body of arbitrary shape in a flow with 

freestream velocity V, as shown in figure.  Let us cover the surface of the 

prescribed body with a source sheet, where the strength (s) varies in such a 

fashion that the combined action of the uniform flow and the source sheet 

makes the airfoil surface a streamline of he flow.  Our problem now 

becomes one of finding the appropriate (s).  The solution of this problem is 

carried out numerically, as follows. 

 

 Let us approximate the source sheet by a series of straight panels, as 

shown in figure.  Moreover, let the source strength  per unit length be 

constant over a given panel, but allow it to vary from one panel to the next.  

That is, if there are a total of n panels, the source panels strengths pr unit 

length are 1 2 j n, ,... .... .   
These panel strengths are unknowns; the main 

thrust of the panel technique is to solve for j , j 1 =
to n, such that the body 

surface becomes a streamline of the flow.  This boundary condition is 

imposed numerically by defining the midpoint of each panel to be a control 

point and by determining the j ' s
 such that the normal component of the 

flow velocity is zero at each control point.  Let us now quantify this strategy. 

 

 Let P be a point located at 9x, y) in the flow, and let rpj be the 

distance from any point on the jth panel to P, as shown in figure.  The 

velocity potential induced at P due to the jth panel j is, from Equation, 

 

    

j

j pj j
j
lnr ds

2


 =

   

 

 In Equation, j is constant over the jth panel, and the integral is taken 

over the jth panel only.  In turn, the potential at P due to all the panels is 

Equation summed over all the panels: 

 

    
( )

n n
j

j pj jj
j 1 j 1

P ln r ds
2= =


 =  =


  
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 In Equation, the distance rpj is given by 

    
( ) ( )

2 2

pj j jr x x y y= − + −
 

 where (xj, yj) are coordinates along the surface of the jthe panel.  

Since point P is jst an arbitrary point in the flow, let us put P at the control 

point of the jth panel.  Let the coordinates of this control point be given by 

(xi, yi), as shown in figure.  Then Equations and become 

   
( )

n
j

i i ij jj
j 1

x ,y ln r ds
2=


 =


 

 

 

 and  
( ) ( )

2 2

ij i j i jr x x y y= − + −
 

 

 Equation is physically the contribution of all the panels to the 

potential at the control point of the ith panel. 

 

 Recall that the boundary condition is applied at the control points; that 

is, the normal component of the flow velocity is zero at the control points.  

To evaluate this component, first consider the component of freestream 

velocity perpendicular to the panel.  Let ni be unit vector normal to the ith 

panel, directed out of the body, as shown in figure.  Also, note that the slope 

of the ith panel is (dy/dx)i.  In general, as shown in figure.  Therefore, 

inspection of the geometry of figure reveals that the component of V 

normal to the ith panel is 

 

    ,n i iV V .n V cos  = = 
 

 

where i  is the angle between iV andn .   Note that V,n is positive when 

directed away from the body, and negative when directed toward the body. 
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 The normal component of velocity induced at ( )i ix ,y
 by the source 

panels is, from Equation, 

 

    
( )n i i

i

V x ,y
n


 =    

 

Where the derivative is taken in the direction of the outward unit normal 

vector, and hence, again, Vn is positive when directed away from the body.  

When the derivative in Equation is carried out, rij  appears in the 

denominator.  Consequently, a singular point arises on the ithe panel because 

when j = I, at the control point itself rij = 0.  It can be shown that when j = i, 

the contribution to the derivative is itself rij = 0.  It can be shown that when j 

= i, the contribution to the derivative is simply i / 2.   Hence, Equation 

combined with Equation becomes 

   ( )

( )
n

ji
n ij jj

j 1 i
j 1

V lnr ds
2 2 n=



 
= +

 
 

 

 

 In Equation, the first term i / 2  is the normal velocity induced at the 

ith control point by the ith panel itself, and the summation is the normal 

velocity induced at the ith control point by all the other panels. 

 

 The normal component of the flow velocity at the ith control point is 

the sum of that due to the freestream [Equation and that due to the source 

panels equation.  The boundary condition states that this sum must be zero: 

   ,n nV V 0 + =
 

 

 Substituting Equation and into, we obtain 

   ( )

( )
n

ji
ij j ij

j 1 i
j 1

lnr ds V cos 0
2 2 n



=



 
+ +  =

 
 
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 Equation is the crux of the source panel method.  The values of the 

integrals in Equation depend simply on the panel geometry; they are not 

properties of the flow.  Let Ii.j be the value of this integral when the control 

point is on the ith panel and the integral is over the jth panel.  Then Equaiton 

can be written as 

    ( )

n
ji

i ,j i
j 1
1 1

I V cos 0
2 2



=



+ +  =




 

 

 Equation is a linear algebraic equation with n unknowns 1 2 n, ,..., .   It 

represents the flow boundary condition evaluated at the control point of the 

ith panel.  Now apply the boundary condition to the control points of all the 

panels; that is, in equation, let I = 1.2,…n.  The results will be a system of n 

linear algebraic equations with n unknowns ( )1 2 n, ,..., ,    which can be 

solved simultaneously by conventional numerical methods. 

 Look what has happened! After solving the system of equation 

represented by Equation with i =1.2,…, n, we now have the distribution of 

source panel strengths which, in an appropriate fashion, cause the body 

surface in figure be a streamline of the flow.  This approximation can be 

made more accurate by increasing the number of panels, hence more closely 

representing the source sheet of continuously varying strength (s) shown in 

figure.  Indeed, the accurately represented by as few as 8 panels, and most 

airfoil shapes, by 50 to 100 panels.  (for an airfoil, it is desirable to cover the 

leading-edge region with a number of small panels to represent accurately 

the rapid surface curvature and the use larger panels over the relatively flat 

portions of the body.  Note  that, in general, all the panels in figure can be 

different lengths.) 

 

 Once the ( )i ' s i 1,2,....n =  are obtained, the velocity tangent to the 

surfaced at each control point can be calculated as follows.  Lets be the 

distance along the body surface, measured positive from front to rear, as 

shown in figure.  The component of freestram velocity tangent to the surface 

is 

 

    ,s iV V sin = 
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 The tangential velocity Vs at the control points of the ith panel 

induced by all the panels is obtained by differentiating Equation with respect 

to s: 

 

   
( )

n
j

s ij jj
j 1

V ln r ds
s 2 s=

 
= =
  

 
 

 

 [The tangential velocity on a flat source panel induced by the panel 

itself is zero; hence, in Equation, the term corresponding to j = I is zero.  

This is easily seen by intuition, because the panel can only emit volume flow 

from its surface in a direction perpendicular to the panel itself].  The total 

surface velocity at the ith control point Vi is the sum of the contribution 

from the freestream [Equation and from the source panels [Equation]: 

 

  
( )

n
j

i .s s i ij jj
j 1

V V V V sin lnr ds
2 s

 

=

 
= + =  +

 
 

 

 

 

 In turn, the pressure coefficient at the ith control point is obtained 

from Equation: 

  

2

i
p,i

V
C 1

V

 
= −  

   

 

 In this fashion, the source panel method gives the pressure distribution 

over the surface of a nonlifting body of a arbitrary shape. 

 

 When you carry out a source panel solution as described above, the 

accuracy of your results can be tested as follows.  Let Sj be the length of the 

jth panel.  Recall that j is the strength of the jth panel per unit length.  

Hence, the strength of the jth panel itself is I Sj.  For a closed body, such as 

in figure, the sum of all the source and sink strength must be zero, or else the 

body itself would be adding or absorbing mass from the flow-an impossible 
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situation for the case we are considering here.  Hence, the values of the j '
 

obtained above should obey the relation 

 

    

n

j j
j 1

S 0
=

 =
 

 

 Equation provides an independent check on the accuracy of the 

numerical results. 

 

Example: 

Calculate the pressure coefficient distribution around a circular cylinder 

using the source panel technique. 

Solution: 

 We choose to cover the body with eight panels of equal length, as 

shown in figure.  This choice is arbitrary; however, experience has shown 

that, for the case of a circular cylinder, the arrangement show in figure 

provides sufficient accuracy.  The panels are numbered from 1 to 8, and the 

control points are shown by the dots in the center of each panel. 

 

 Let us evaluate the integrals Ii,j which appear in equation.  Consider 

figure, which illustrates two arbitrary chosen panels.  In figure, (xi,yi) are 

the coordinates of the control point of the ith panel and (xj, yj) are the 

running coordinates over the entire jth panel.  The coordinates of the 

boundary points for the ith panel are 
( ) ( )i i i 1 j 1X ,Y and X ,Y .+ + In this problem, 

V is in the x direction; hence, the angles between the x axis and the unit 

vectors ni and nj are I and j, respectively.  Note that, in general, both I 

and j vary from 0 to 2.   Recall that the integral Ii,j is evaluated at the ith 

control point and the integral is taken over the complete jth panel: 
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Figure: Source panel distribution around a circular cylinder. 

 

 

Figure: Geometry required for the evaluation of Iij. 

 

    
( )i ,j ij jj

i

I ln r ds
n


=

  

 Since    
( ) ( )

2 2

ij i j i jr x x y y= − + −
 

 

 then  
( ) ij

ij

i ij i

r1
ln r

n r n


=

 
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( ) ( )

( ) ( )

1
2 2 2

i j i j

ij

ii
i j i j

i i

1 1
x x y y

r 2

dydx
2 x x 2 y y

dn dn

−

 = − + −
  

 
 − + − 
   

 

 or  

( )
( ) ( )

( ) ( )
i j i i j i

ij 2 2

i i j i j

x x cos y y sin
ln r

n x x y y

−  + − 
=

 − + −
 

 

 Note in figure that I and j are angles measured in the counter 

clockwise direction from the x axis to the bottom of each panel.  From this 

geometry. 

 

    
i i

2


 =  +

 

  Hence,  i isin cos =   

    i icos sin = −   

 

 Also, from the geometry of Figure, we have 

 

    j j j jx X s cos= + 
 

  and  j j j jy Y s sin= + 
 

 

  

Substituting Equation to into, we obtain 

   

Sj j

i ,j j20
j j

Cs D
I ds

s 2As B

+
=

+ +
 

 where ( ) ( )i j j i j jA x X cos y y sin= − −  − − 
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( ) ( )

( )

( ) ( )

( ) ( )

2 2

i j i j

i j

i j i i j i

2 2

j j 1 j j 1 j

B x X y Y

C sin

D y Y cos x X sin

S X X Y Y+ +

= − + −

=  −

= −  − − 

= − + −
 

 

 Letting ( ) ( )2
i j j i j jE B A x X sin y Y cos= − = −  − − 

 

 

 we obtain an expression for Equation from any standard table of 

integrals: 

 

   

2
j j

i ,j

j1 1

S 2AS BC
I ln

2 B

S AD AC A
   tan tan

E E E
− −

 + +
=   

 

+ −
+ − 

   

 

 Equation is a general expression for two arbitrarily oriented panel; it 

is not restricted to the case of a circular cylinder. 

 

 We now apply Equation to the circular cylinder shown in figure.  For 

purposes of illustration, let us choose panel 4 as the ith panel and panel 2 as 

the jth panel; that is, let us calculated I4.2.  From the geometry of Figure, 

assuming a unit radius for the cylinder, we see that 

 

   

j j+1 j

o o
j 1 i j

i i

X 0.9239       X 0.3827       Y 0.3827

Y 0.9239         315              45

x 0.6553            y 0.6533

+

= − = − =

=  =  =

= =  

 Hence, substituting these numbers into the above formulas, we obtain 

 

  A = -1.3065 B = 2.5607 C = -1 D = 1.3065 

  Sj = 0.7654 E = 0.9239  
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 Inserting the above values into Equation, we obtain 

 

    4.2I 0.4018=  

 

 Return to Figure and.  If we now choose panel 1 as the jth panel, 

keeping panel 4 as the ith panel, we obtain, by means of a similar 

calculation, I4.1 = 0.4074.  Similalry, I4.3 = 0.3528, I4.,5 = 0.3528, I4.6 = 

0.4018, I4,7 = 0.4074, and I4,8 = 0.4084. 

 

 Return to Equation, which is evaluated for the ith panel in Figure and 

written for panel 4, Equation becomes (after multiplying each term by 2 and 

noting that 
o

i 45 for panel 4) =  

 

   

1 2 3 4 5

6 7 8

0.4074 0.4018 0.3528 0.3528

0.4018 0.4074 0.4084 0.70712 V

 +  +  +  + 

+  +  +  = −   

 

 Equation is a linear algebraic equation in terms of the eight unknown, 

1 2 8, ,... .     If we no9w evaluate Equation for each of the seven other panels, 

we obtain a total of eight equations, including Equation, which can be solved 

simultaneously for the eight unknown ’s.  The result are 

 

   

1 2 3

4 5 6

7 8

/ 2 V 0.3765   / 2 V 0.2662  / 2 V 0

/ 2 V 0.2662 / 2 V 0.3765 / 2 V 0.2662

/ 32 V 0     / 2 V 0.2662

  

  

 

  =   =   =

  = −   = −   = −

  =   =  

 

 Note the symmetrical distribution of the ’s which is to be expected 

for the nonlifting circular cylinder.  Also, as a check on the above solution, 

return to Equation.  Since each panel in Figure has the same length, Equation 

can be written simply as  
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n

j
j 1

0
=

 =
 

 

 Substituting the value for the ’s obtained into Equation, we see that 

the equation is identically satisfied. 

 

 The velocity at the control point of the ith panel can be obtained from 

Equation.  In that equation, the integral over the jth panel is a geometric 

quantity that is evaluated in a similar manner as before.  The result is 

 

    

( )
2
j j

ij jj

j1 1

S 2AS BD AC
ln r ds ln

s 2E B

S A A
                       C tan tan

E E
− −

+ + −
=



+ 
− − 

 



 

 

 With the integrals in Equation evaluated by Equation, and with the 

values for 1 2 8, ,...,    obtained above inserted into Equation, we obtain the 

velocities V1, V2,…V8.  In turn, the pressure coefficients Cp,1,Cp,2,…Cp,8 

are obtained directly from 

 

     

2

i
p,i

V
C 1

V

 
= −  

   

 

 Result for the pressure coefficients obtained from this calculation are 

compared with the exact analytical result, Equation in Figure.  Amazingly 

enough, in spite of the relatively crude paneling shown in figure the 

numerical pressure coefficient results are excellent. 
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Figure: Pressure distribution over a circular cylinder; comparison of the 

source panel results and theory. 

Lifting flows over arbitrary bodies: The vortex panel numerical method: 

 

 the thin airfoil theory described in section and is just what it says-it 

applies only to thin airfoils at small angles of attack.  (Make certain that you 

understand exactly where in the development of thin airfoil theory these 

assumptions are made and the reasons for making them.)  The advantage of 

thin airfoil theory is that closed-form expressions are obtained for the 

aerodynamic coefficients.  Moreover, the results compare favorably with 

experimental data for airfoils of about 12 Percent thickness or less.  

However, the airfoils on many low-speed airplanes are thicker than 12 

percent.  Moreover, we are frequently interested in high angles of attack, 

such as occur during takeoff and landing.  Finally, we are sometimes 

concerned wit the generation of aerodynamic lift on other body shapes, such 

as automobiles or submarines.  Hence, thin airfoil theory is quite restrictive 

when we consider the whole spectrum of aerodynamic applications.  We 

need a method that allows us to calculate the aerodynamic characteristics of 

bodies of arbitrary shape, thickness, and orientation.  Such a method is 

described in this section.  Specially, we treat the vortex panel method, which 

is a numerical technique that has come into widespread use since the early 

1970s.  In reference to our road map in figure, we now move to the left-hand 

branch.  also, since this chapter deals with airfoils, we limit our attention to 

two-dimensional bodies. 

 

 The vortex panel panel method is directly analogous to the source 

panel method described in section.  However, because a source has zero 
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circulation, source panels are useful only for nonlifting cases.  In contrast, 

vortices have circulation, and hence vortex panels can be used for lifting 

cases.  (Because of the similarities between source and vortex panel 

methods, returns to section and review the basic philosophy of the source 

panel method before proceeding further. 

 

 The philosophy of covering body surface with a vortex sheet of such a 

strength to make the surface a streamline of the flow was discussed in 

section.  We then went on to simplify this idea by placing the vortex sheet 

on the camber line of the airfoil as shown in figure, thus establishing the 

basis for thin airfoil theory.  We now return to the original idea of wrapping 

the vortex sheet over the complete surface of the body, as shown in figure.  

We wish to find (s) such that the body surface becomes a streamline of the 

flow.  There exists no closed-form analytical solution for ( )s ;  rather, the 

solution must be obtained numerically.  This is the purpose of the vortex 

panel method. 

 

 Let us approximate the vortex sheet shown in Figure by a series of 

straight panels, as shown earlier in figure.  (In chapter, figure was used to 

discussed source panels; here, we use the same sketch for discussion of 

vortex panels.)  Let the vortex strength (s) per unit length be constant over a 

given panel, but allow it to vary from one panel to the next.  That is, for the 

n panels shown in figure, the vortex panel strengths per unit length are 

1 2 j n, ,.... .... .   
  These panel strengths are unknowns; the main thrust of the 

panel technique is to solve for j , j 1 to n,  =
such that the body surface 

becomes a streamline of the flow and such that the body surface becomes a 

streamline of the flow and such that the Kutta condition is satisfied.  As 

explained in section, the midpoint of each panel is a control point at which 

the boundary condition is applied; that is, at each control point, the normal 

component of the flow velocity is zero. 

 

 Let P be a point located at (x,y) in the flow, and let pjr
 be the distance 

from any point o the jth panel to P, as shown in Figure.  The radius rpj 

makes the angle pj with respect to the x axis.  The velocity potential 

induced at P due to the jth panel, j, is, from Equation, 
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j pj j j

j

1
ds

2
 = −  

   

 

 In Equation, j is constant over the jth panel, and the integral is taken 

over the jth panel only.  The angle pj is given by 

 

    

j1
pj

j

y y
tan

x x
−

−
 =

−
 

 

 In turn, the potential at P due to all the panels is Equation summed 

over all the panels: 

    
( )

n n
j

j pj jj
j 1 j 1

P ds
2= =


 =  = − 


  

 

 Since point P is just an arbitrary point in the flow, let us put P athe 

control point of the ith panel shown in Figure.  The coordinates of this 

control point are (xi,yi).  Then Equation and become 

 

   
( )

i j1
ij

i j

n
j

i i ij j
j

j 1

y y
tan

x x

x ,y ds
2

−

=

−
 =

−


 = − 


 

 

 

 Equation is physically the contribution of all the panels to the 

potential at the control point of the ith panel. 

 At the control points, the normal components of the velocity is zero; 

this velocity is the superposition of the uniform flow velocity and the 

velocityinduced by all the vortex panels.  The component of V normal to 

the ith panel is given by Equation: 

    ,n iV V cos = 
 

 The normal component of velocity induced at (xi,yi) by the vortex 

panel is  

 



 

 

P
ag

e1
0

9
 

    
( )n i i

ni

V x ,y

 =    

 Combining Equation and, we have 

    

n
j ij

n jj
j 1 i

V ds
2 n=

 
= −

 
 

 

 

where the summation is over all the panels.  The normal component of the 

flow velocity at the ith control point is the sum of that due to the freestream 

[Equation and that due to the vortex panels [Equation.  The boundary 

condition states that this sum must be zero: 

 

    ,n nV V 0 + =
 

Substituting Equation and into, we obtain 

 

  

n
j

i j
j 1 i

V cos ds 0
n



=


 − =




 

 

 Equation is the crux of the vortex panel method.  The values of the 

integrals in Equation depend simply on the panel geometry; they are not 

properties of the flow.  Let Ji,j be the value of this integral when the control 

point is on the ith panel.  Then Equation can be written as 

 

    

n
j

i i
j 1

V cos J , j 0
2



=


 − =




 

 

 Equation is a linear algebraic equation with n unknowns, 1 2 n, ,...., .     

It represents the flow boundary condition evaluated at the control point of 

the ith panel.  If Equation is applied to the control points of all the panels, 

we obtain a system of n linear equation with n unknowns. 
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 To this point, we have been deliberately paralleling the discussion of 

the source panel method given in section; however, the similarity stops here.  

For the source panel method, the n equations for the n unknown source 

strengths are routinely solved, giving the flow over a nonlifiting body.  In 

contrast, for the lifting case with vortex panels, in addition to n the n 

equations given by Equation applied at all the panels, we must also satisfy 

the Kutta condition.  This can be done in several ways.  For example, 

consider figure, which illustrates a detail of the vortex panel distribution at 

the trailing edge.  Note that the length of each panel can be different; their 

length and distribution over the body are up to you discretion.  Let the two 

panels at the trailing edge (panels i and i-1 in figure) be very small.  The 

Kutta condition is applied precisely at the trailing edge and is given by  

(TE) = 0.  To approximate this numerically, if points i and i – 1 are close 

enough to the trailing edge, we can write 

 

 

 

 

 

Figure: Vortex panels at the trailing edge. 

 

 

 

Figure: Airfoil as a solid body, with zero velocity inside the profile. 
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    i i 1 = − −  

 

such that the strengths of the two vortex panels i and i -1 exactly cancel at 

the point where they touch at the trailing edge.  Thus, in order to impose the 

Kutta condition on the solution of the flow, Equation (or an equivalent 

expression) must be included.  Note that Equation evaluated at all the panels 

and Equation constitute an over determined system of n unknowns with n +1 

equations.  Therefore, to obtain a determine system, Equation is not 

evaluated at one of the control points on the body.  That is, we choose to 

ignore one of the control points, and we evaluate Equation at the other n – 1 

control points.  This, in combination with Equation, now gives a system of n 

linear algebraic equations with n unknowns, which can be solved by 

standard techniques. 

 

 At this stage, we have conceptually obtained the values of 1 2 n, ,...,    

which make the body surface a streamline of the flow and which also satisfy 

the Kutta condition.  In turn, the flow velocity tangent to the surface can be 

obtained directly from .  To see this more clearly, consider the airfoil 

shown in Figure.  We are concerned only with the flow outside the airfoil 

and on its surface.  Therefore, let the velocity be zero at every point inside 

the body, as shown in Figure.  In particular, the velocity just inside the 

vortex sheet on the surface is zero.  This corresponds to u2 = 0 in Equation.  

Hence, the velocity just outside the vortex sheet is, from Equation, 

 

    1 2 1 1u u u 0 u = − = − =  

 

 In Equation, u denotes the velocity tangential to the vortex sheet.  In 

terms of the picture shown in figure, we obtain a a b bV  at point a, V=  =   at 

point b, etc.  Therefore, the local velocities tangential to the airfoil surface 

are equal to the local values of .  In turn, the local pressure distribution can 

be obtained from Bernoulli’s equation. 

 

 The total circulation and the resulting lift are obtained as follows.  Let 

sj be the length of the jth panel.  Then the circulation due to the jth panel is 

js .
  In turn, the total circulation due to all the panel is 
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n

j j
j 1

s
=

 = 
 

 

 Hence, the lift per unit span is obtained from 

 

    

n

j j
j 1

L' V s 

=

 
 

 

 The presentation in this section is intended to give only the general 

flavor of the vortex panel method.  There are many variations of the method 

in use today, and you are encouraged to read the modern literature, 

especially as it appears in the AIAA Journal and the Journal of Aircraft since 

1970.  The vortex panel method as described in this section is termed a 

“first-order” method because it assumes a constant value of  over a given 

panel.  Although the method may appear to be straightforward, its numerical 

implementation can sometimes be frustrating.  For example, the results for a 

given body are sensitive to the number of panels used, their various sizes, 

and the way the are distributed over the body surface (i.e., it is usually 

advantageous to place a large number of small panels near the leading and 

trailing edges of an airfoil and a smaller number of larger panels in the 

middle).  The need to ignore one of the control points in order to have a 

determined system in n equations for n unknowns also introduces some 

arbitrariness in the numerical solution.  Which control point do you ignore?  

Different choices sometimes yield different numerical answers for the 

distribution of  over the surface.  Moreover, the resulting numerical 

distribution for  are not always smooth, but rather, they have oscillations 

from one panel to the next as a result of numerical inaccuracies.  The 

problems mentioned above are usually overcome in different ways by 

different groups who have developed relatively sophisticated panel programs 

for practical use.  For example, what is more common today is to use a 

combination of both source and vortex panels (source panels to basically 

simulate the airfoil thickness and vortex panels to introduce circulation) in a 

panel solution.  This combination helps to mitigate some of the practical 

numerical problems just discussed.  Again, you are encouraged to consult 

the literature for more information. 
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 Such accuracy problems have also encouraged the development of 

higher order panel techniques.  For example, a “section-order” panel method 

assumes a linear variation of  over a given panel, as sketched in Figure.  

 

 

 

 

Figure: Linear distribution of  over each panel-a second-order panel 

method. 

 

The Kutta Condition: 

 

 The lifting flow over a circular cylinder was discussed in section, 

where we observed that an infinite number of potential flow solutions were 

possible, corresponding to the infinite choice of .  For example, figure 

illustrates three different flows over the cylinder, corresponding to three 

different values of .  The same situation applies to the potential flow over 

an airfoil; for a given airfoil at a given angle of attack, there are an infinite 

number of valid theoretical solutions, corresponding to an infinite choice of 

.  For example, figure illustrates three different flows over the cylinder, 

corresponding to three different values of .  The same situation applies to 

the potential flow over the same airfoil at the same angle of attack but with 

different values of .  At first, this may seem to pose a dilemma.  We know 

from experience that a given airfoila at given angle of attack produces a 

single value of lift.  So, although there is an infinite number of possible 

potential flow solutions, nature knows how to pick a particular solution.  

Clearly, the philosophy discussed in the previous section is not complete-we 

need an additional condition that fixes  for a given airfoil at a given . 
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 To attempt to find this condition, let us examine some experimental 

results for the development of the flow field around an airfoil which is set 

into motion from an initial state of rest.  Figure shows a series of classic 

photographs of the flow over an airfoil, taken from Prandtl and Tietjens.  In 

Figure a, the flow has just started, and the flow pattern is just beginning to 

develop around the airfoil.  In these early moments of development of 

development, the flow tries to curl around the sharp trailing edge from the 

bottom surface to the top surface, similar to the sketch shown at the left of 

figure.  However, more advanced considerations of inviscid, incompressible 

flow show the theoretical result that the velocity becomes infinitely large at 

a sharp corner.  

 

 

 

Figure: Effect of different values of circulation on the potential flow over a 

given airfoil at a given angle of attack.  Points 1 and 2 are stagnation points. 

 

 

 

(a) 
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(b) 

 

 

 

(c) 

Figure: The development of steady flow over an airfoil; the airfoil is 

impulsively started from reset and attains a steady velocity through the fluid.  

(a)  A moment just after starting.  (b) An intermediate time.  (c) The final 

steady flow. 

 Hence, the type of flow sketched at the left of figure, and shown in 

figure a, is not tolerated very long by nature.  Rather, as the real flow 

develops over the airfoil, the stagnation point on the upper surface (point 2 

in figure) moves toward the trailing edge.  Figure b shows this intermediate 

stage.  Finally, after the initial transient process dies out, the steady flow 

shown in figure c is reached.  This photograph demonstrates that the flow is 

smoothly leaving the top and the bottom surface of the airfoil at the trailing 

edge.  This flow pattern is sketched at the right of figure, and represents the 

type of pattern to be expected for the steady flow over an airfoil. 
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 Reflecting on figure, and, we emphasize again that in establishing the 

steady flow over a given airfoil at a given angle of attack, nature adopts that 

particular value of circulation ( )2  Figure
 which results in the flow leaving 

smoothly at the trailing edge.  This observation was first made and used in a 

theoretical analysis by the German mathematician M.  Wilhelm Kutta in 

1902.  Therefore, it has becomes known as the Kutta condition. 

 

 In order to apply the Kutta condition in a theoretical analysis, we need 

to be more precise about the nature of the flow at the trailing edge.  The 

trailing edge can have a finite angle, as shown in figure and as sketched at 

the left of figure, or it can be cusped, as shown at the right of figure.  First, 

consider the trialing edge with a finite angle, as shown at the left of figure.  

Denote the velocities along the top surface and the bottom surface as V1 and 

V2, respectively.  V1 is parallel to the top surface at point a, and V2 is 

parallel to the bottom surface at point a.  For the finite-angle trailing edge, if 

these velocities were finite at point a, then we would have two velocities in 

two different directions at the same point, as shown at the left of Figure.  

However, this is not physically possible, and the only recourse is for both V1 

and V2 to be zero at point a.  That is, for the finite trailing edge, point a is a 

stagnation point, where V1 = V2 = 0.  In contrast, for the cusped trailing 

edge shown at the right of Figure, V1 and V2 are in the same direction at 

point a, and hence both V1 and V2 can be finite.  However, the pressure at 

point a, p2, is a single, unique value, and Bernoulli’s equation applied at 

both the top and bottom surface immediately adjacent to point a yields 

 

   

2 2
a 1 a 2

1 1
p p V

2 2
+  = + 

 

 

 or  1 2V V=  
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Figure: Different possible shapes of the trialing edge and their relation to the 

Kutta condition. 

 

 Hence, for the cusped trailing edge, we see that the velocities leaving 

the top and bottom surfaces of the airfoil at the trailing edge are finite and 

equal in magnitude and direction. 

 

 We can summarize the statement of the Kutta condition as follows: 

 

For a given airfoil at a given angle of attack, the value of  around the airfoil 

is such that the flow leaves the trailing edge smoothly. 

If the trialing-edge angle is finite, then the trailing edge is a stagnation point.  

If the trailing edge is cusped, then the velocities leaving the top and bottom 

surface at the trailing edge are finite and equal in magnitude and direction. 

 

 Consider again the philosophy of simulating the airfoil with vortex 

sheets placed either on the surface or on the camber line, as discussed in 

section.  The strength of such a vortex sheet is variable along the sheet and is 

denoted by (s).  The statement of the Kutta condition in terms of the vortex 

sheet is as follows.  At the trailing edge (TE), from Equation, we have 

 

    ( ) ( ) 1 2TE a V V =  = −  

 

However, for the finite-angle trailing edge, V1 = V2 = 0; hence, from 

Equation, ( )TE 0. =
For the cusped trailing edge, V1 = V2  0; hence, from 

Equation, we again obtain the result that ( )TE 0. =
  Therefore, the Kutta 

condition expressed in terms of the strength of the vortex sheet is

 
( )TE 0 =

 

5. Kelvin’s Circulation theorem and the starting vortex: 
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 In this section, we put the finishing touch to the overall phiolosophy 

of airfoil theory before developing the quantitative aspects of the theory 

itself in subsequent sections.  This section also ties up a loose end introduced 

by the Kutta condition described in the previous section.  Specially, the 

Kutta condition states that the circulation around an airfoil is just the right 

value to ensure that the flow smoothly leaves the trailing edge.  Question:  

How does nature generate this circulation?   Does it come from nowhere, or 

is circulation somehow conserved over the whole flow field?  Let us 

examine these matters more closely. 

 

 

 

Figure: Kelvin’s theorem. 

 

 Consider an arbitrary invisicid, incompressible flow as sketched in 

figure.  Assume that all body forces f are zero.  Choose an arbitrary curve C1 

ad identify the fluid elements that are on this curve at a given instant in time 

t1.  Also, by definition the circulation around curve C1 is 1
1 C

V.ds. = −
Now 

let these specific fluid elements move downstream.  At some later time, t2, 

these same fluid elements will form another curve C2, around which the 

circulation is 2
2 C

V.ds. = −
 for the conditions stated above, we can readily 

show that 1 2 . =    In fact, since we are following a set of specific fluid 

elements, we can state that circulation around a closed curve formed by a set 
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of contiguous fluid elements remains constant as the fluid elements move 

throughout the flow.   Recall from section that the substantial derivative 

gives the time rate of change following a given fluid element.  Hence, a 

mathematical statement of the above discussion is simply 

 

     

D
0

Dt


=

 

 

Which says that the time rate of change of circulation around a closed curve 

consisting of the same fluid elements is zero.  Equation along with its 

supporting discussion is called Kelvin’s circulation theorem4.  Its derivation 

from first principles is left as Problem.  Also, recall our definition and 

discussion of a vortex sheet in section.  An interesting consequence of 

Kelvin’s circulation theorem is proof that a stream surface which is a vortex 

sheet at some instant in time remains a vortex sheet for all times. 

 

 

Figure: The creation of the starting vortex and the resulting generation of 

circulation around the airfoil. 

 Kelvin’s theorem helps to explain the generation of circulation around 

an airfoil, as follows.  consider an airfoil in a fluid at rest, as shown in figure 

a.  Because V = 0 everywhere, the circulation around curve C1 is zero.  Now 

start the flow in motion over the airfoil.  Initially, the flow will tend to curl 

around the trailing edge, as explained in section and illustrated at the left of 
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figure.  In so doing, the velocity at the trailing edge theoretically becomes 

infinite.  In real life, the velocity tends toward a very large finite number.  

Consequently, during the very first moments after the flow is started, a thin 

region of very large velocity gradients (and therefore high vorticity) is 

started, a thin region of very large velocity region is fixed to the same fluid 

elements, and consequently it is flushed downstream as the fluid elements 

begin to move downstream from the trailing edge.  As it moves downstream, 

this thin sheet of intense vorticity is unstable, and it tends to roll up and form 

a picture similar to a point vortex.  This vortex is called the starting vortex 

and is sketched I figure.  After the flow around the airfoil has come to a 

steady state where the flow leaves the trailing edge smoothly (the Kutta 

condition), the high velocity gradients at the trailing edge disappear and 

vorticity is no longer produced at that point.  However, the starting vortex 

has already been formed during the starting process, and it moves steadily 

downstream with the flow forever after.  Figure (b) shows the flow field 

sometime after steady flow has been achieved over the achieved over the 

airfoil, with the starting vortex somewhere downstream.  The fluid elements 

that initially made up curve C1 in figure a have moved downstream and now 

make up curve C2, which is the complete circuit abcda shown in figure b.  

Thus, from Kelvin’s theorem, the circulation 2 around curve C2 (which 

encloses both the airfoil and the starting vortex) is the same as that around 

curve C1, namely, zero.  2 1 0. =  =   Now let us subdivide C2 C4 (circuit 

abda).  Curve C3 encloses the starting vortex, and curve C3 (circuit bcdb) 

and C4 encloses the airfoil.  The circulation 3 around C3 is due to the 

starting vortex; by inspecting Figure b, we see that 3 is in the 

counterclockwise direction (i.e., a negative value).  The circulation around 

curve C4 enclosing the airfoil is 4.  Since the cut bd is common to both C3 

and C4, the sum of the circulation around C3 and C4 is simply equal to the 

circulation around C2: 

 

  3 4 2 + =  

 

However, we have already established that 2 0. Hence, =  

  4 3 = −  

that is, the circulation around the airfoil is equal and opposite to the 

circulation around the starting vortex. 
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 This brings us to the summary as well as the crux of this section.  As 

the flow over an airfoil is started, the large velocity gradients at the sharp 

trailing edge result in the formation of a region of intense vorticity which 

rolls up downstream of the trailing edge, forming the starting vortex.  This 

starting vortex has associated with it a counerclowise circulation around the 

airfoil is generated.  As the starting process continues, vorticity from the 

trailing edge is constantly fed into the starting vortex, making it stronger 

with a consequent larger counterclockwise circulation.  In turn, the 

clockwise circulation around the airfoil becomes stronger, making the flow 

at the trailing edge more closely approach the Kutta condition, thus 

weakening the vorticity shed from the trailing edge.  Finally, the starting 

vortex builds up to just the right strength such that the equal-and-opposite 

clockwise circulation around the airfoil leads to smooth flow from the 

trailing edge (the Kutta condition is exactly satisfied).  When this happens, 

the vorticity shed from the trailing edge becomes zero, the starting vortex no 

longer grows in strength, and a steady circulation exists around the airfoil. 
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UNIT IV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AIRFOIL AND WING THEORY 

Joukowski, Karman - Trefftz, Profiles  - Thin 
aerofoil theory and its applications. Vortex 

line, Horse shoe vortex, Biot and Savart 
law, Lifting line theory and its limitations.



 

 

P
ag

e1
2

3
 

 

 

1. Karman-Treffz and Jones-McWilliams Airfoils 

 

 There have been several variations of the Joukowski airfoil that add 

several helpful features.  One, proposed by von Karman and Trefftz, 

eliminates the disadvantage of the thin trailing edge. 

 

 Transformation equation can be written in the equivalent forms 

   ( ) ( )
2 2

z" 2b z' b / z',   z"-2b= z'-b / z'.+ = +  

 

 Taking the ratio of these, the Joukowski transformation can therefore 

be written in the form 

    

2
z" 2b z' b

z" 2b z' b

+ + 
=  

− −   

 

 Von Karman and Trefftz suggested replacing the Joukowski 

transformation with the alternate transformation 

    

n
z" 2b z' b

.
z" 2b z' b

+ + 
=  

− −   

 

 The trailing edge then has an inside angle of (2-n), rather than zero.  

The details of the shape can be carried out in a manner similar to the 

Joukowski airfoil, with one more variable (n) available to the designer. 

 

 

 A second variation of the Joukowski airfoil was proposed by R. T. 

Jones and R. McWilliams in a pamphlet distributed at an Oshkosh Air Show.  

They also start with equation but then follow it with the two transformations 
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z" z'

z'


= −

−  

 

 and  

2b
z"' z" ,

z"
= +

 

 

where is a complex number and  is real.  Carrying through an analysis 

similar to what we did for the Joukowski profile, it can be shown using the 

same general analysis as for the Joukowski transformation that 

 

   
( )( ) ( ) ( )

2' ' '
T T T T Tx b x y iy' 2x' b , = − − − + −−

 

 

where
( )' '

T Tx ,y
 is the location of the trailing edge in the z’ plane. 

 

 It is convenient to set b, a scale factor, arbitrarily to 1.  The 

parameters 
' '

c c T,x' ,y ,y  are then set by the designer.  The parameter  is 

determined by equation subject to the inequality. 

 

   
( ) ( )2 ' '

c cb b 4 2 x iy 2a,−  + +  − + 
 

 

 and the parameter a is determined by 

 

   
( ) ( )

2 2' ' ' '
T c T ca x x y y .= − + −

 

 

 The circulation is then found from 

 

   
4 a U B, = 
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 with B given by 

 

   

( ) ( )' ' '
T c Tx x sin y y' cos

B
a

− − − 
=

 

 

 With a careful selection of the parameters, Jones and McWilliams 

have generated airfoils with the properties of the NACA 6 series, the 747 

series, the Clark Y, and the G-387. 

 

 

2. Vortex Line: 

 

 Vortex lines can be defined as being lines instantaneously tangent to 

the vorticity vector, satisfying the equations 

 

    x y z

dydx dz
.= =

  
 

 

Vortex sheets are surface of vortex lines lying side by side.  Vortex tubes are 

closed vortex sheets wit vorticity entering and leaving through the ends of 

the tube. 

 

 Analogous to the concept of volume flow through an area, s
v.dA,  

the vorticity flow through an area, termed circulation, is defined as 

circulation C s
v.ds .ds. = =    

 

3. The Vortex Filament, the biot-savart law, and helmholtz’s theorems: 
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 To establish a rational aerodynamic theory for a finite wing, we need 

to introduce a few additional aerodynamic tools.  To being with, we expand 

the concept of a vortex filament first introduced in section.  In section, we 

discussed a straight vortex filament extending to . 

 

 In general, a vortex filament can be curved, as shown in figure.  Here, 

only a portion of the filament is illustrated.  The filament induces a flow 

field in the surrounding space.  If the circulation is taken about any path 

enclosing the filament, a constant value .  Consider a directed segment of 

the filament dl, as shown in figure.  The radius vector from dl to an arbitrary 

point P in space is r.  The segment dl induces a velocity at P equal to 

 

    
3

dl r
dV

4 r

 
=


 

 

 Equation is called the Biot-Savart law and is one of the most 

fundamental relations in the theory of inviscid, incompressible flow.  Its 

derivation is given in more advanced books.  Here, we must accept it 

without proof.  However, you might feel more comfortable if we draw an 

analogy with electromagnetic theory.  If the vortex filament in Figure were 

instead visualized as a wire carrying an electrical current I, then the 

magnetic field strength dB induced at point P by a segment of the wire dI 

with the current moving in the direction of dI is 

 

   
3

IdI r
dB

4 r

 
=

  

 

where is the permeability of the medium surrounding the wire.  Equation is 

identical in form to equation.  Indeed, the Biot-Savart law is a general result 

of potential theory, and potential theory describes electromagnetic fields as 

well as invisid, incomrpessibel flows.  In fact, our use of the word “induced” 

in describing velocities generated by the presence of vortices, sources, etc. is 

a carry-over from the study of electromagnetic fields induced by electrical 

currents.  When developing their finite-wing theory during the period 1911-

1918, Prandtl and his colleagues even “induced” drag. 
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Figure: Vortex filament and illustration of the Bio-Savart law. 

 

 Return again to our picture of the vortex filament in figure.  Keeping 

in mind that this single vortex filament and the associated Biot-Savart law 

[Equation] are simply conceptual aerodynamic tools to be used for 

synthesizing more complex flows of an inviscid, incompressible fluid.  They 

are, for all practical purposes, a solution of the governing equation for 

inviscid, incompressible flow-Laplace’s equation-and, by themselves, are 

not of particular value.  However, when a number of vortex filaments are 

used in conjunction with a uniform freestream, it is possible to synthesize a 

flow which has a practical application.  The flow over a finite wing is one 

such example, as we will soon see. 

 

 Let us apply the Biot-Savart law to a straight vortex filament of 

infinite length, as sketched in figure.  The strength of the filament is .  The 

velocity induced at point P by the directed segment of the vortex filament dl 

is given by  
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Figure: Velocity induced at point P by an infinite, straight vortex filament. 

 

 Equation.  Hence, the velocity induced at P by the entire vortex 

filament is 

 

    
3

dl r
V

4 r



−

 
=


 

 

 From the definition of the vector cross product, the direction of V is 

downward in figure.  The magnitude of the velocity, V V ,=  is given by 

 

    
2

sin
V dl

4 r



−

 
=

   

 

 In Figure, let h be the perpendicular distance from point P to the 

vortex filament.  Then, from the geometry shown in Figure, 

    
2

h
r

sin
h

l
tan

h
dl d

sin

=


=


= − 
  
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 Substituting Equation (a to c) in Equation, we have 

 

   

0

2

sin
V dl sin d

4 r 4 h



− 

  
= = −  

  
 

 

 or    
V

2 h


=

  

 

 Thus, the velocity induced t a given point P by an infinite, straight 

vortex filament at a perpendicular distance h from P is simply / 2 h,   which 

is precisely the result given by Equation for a point vortex in two-

dimensional flow.  [Note that the minus sign in Equation does not appear in 

Equation; this is because V in Equation is simply the absolute magnitude of 

V, and hence it is positively by definition.] 

 

 Consider the semi-infinite vortex filament shown in figure.  The 

filament extends from point A to .  Point A can be consider a boundary of 

the flow.  Let P be a point in the plane through A perpendicular to the 

filament.   

 

 

 

Figure: Velcoity induced at point P by a semi-infinite straight vortex 

filament. 

 

 Then, by anintegration similar to that above (try) it yourself), the 

velocity induced at P by the semi-infinite vortex filament is 
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V

4 h


=

  

 

 We use Equation in the next section. 

 

 The great German mathematician, physicist, and physician Hermann 

von Helmholtz (1821-1894) was the first to make use of the vortex filament 

concept in the anlaysis of invisicid, incompressible flow.  In the process, he 

established several basic principles of vortex behavior which have become 

known as Helmholtz’z vortex theorems: 

 

The strength of a vortex filament is constant along its length. 

A vortex filament cannot end in a fluid; it must extend to the boundaries of 

the fluid (which can be ) or form a closed path. 

 

We make use of these theorems in the following sections. 

 

 Finally, let us introduce the concept of lift distribution along the span 

of a finite wing.  Consider a given spanwise location y1, where the local 

chord is c, the local geometric angle of attack is , and the airfoil section is a 

given shape.  The lift per unit span at this location is L’(y1).  Now consider 

another location y2 along the span, where c, , and the airfoil shape may be 

different.  (Most finite wings have a variable chord, with the exception of a 

simple rectangular wing.  Also, many wings are geometrically twisted so 

that  is different at different spanwise locations-so-called geometric twist.  

If the tip is at a lower  than the root, the wing is said to have washout; if the 

tip is at a higher  than the root, the wing has washing.  In addition, the 

wings on a number of modern airplanes have different airfoil sections along 

the span, with different values of L 0 ;=  this is called aerodynamic twist).  

Consequently, the lift per unit span at this different location, L’(y2), will, in 

general, be different from L’(y1).  Therefore, there is a distribution of lift per 

unit span along the wing, that is, L’=L’(y), as sketched in Figure.  In turn, 

the circulation is also a function of ( ) ( )y L' y / V .  = 
  Note from Figure 

that the lift distribution goes to zero at the tips; that is because there is a 
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pressure equalization from the bottom to the top of the wing precisely at 

y b/ 2 and b/2,= −  and hence no lift is created at these points.   

 

 

 

Figure: Sketch of the lift distribution along the span of a wing. 

 

 

 The calculation of the lift distribution L(y) [or the circulation 

distribution (y)] is one of the central problems of finite-wing theory.  It is 

addressed in the following sections. 

 

 In summary, we wish to calculate the induce drag, the total lift, and 

the lift distribution for a finite wing.  This is the purpose of the remainder of 

this chapter. 

 

4.  Prandtl’s classical lifting-Line Theory: 

 

 The first practical theory for predicting the aerodynamics properties of 

a finite wing was developed by Ludwig Prandtl and his colleagues at 

Gottingen, Germany, during the period 1911-1918, spanning World War I.  

The utility of Prandtl’s theory is so great that it is still in use today for 

preliminary calculations of finitewing characteristics.  The purpose of this 

section is to describe Prandtl’s theory and to lay the groundwork for the 

modern numerical methods described in subsequent sections. 
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 Prandtl reasoned as follows.  A vortex filament of strength  that is 

somehow bound to a fixed location in a flow-a so-called bound vortex-will 

experience a forceL' V =    from the Kutta-Joukowski theorem.  This 

bound vortex is in contrast to a free vortex, which moves with the same fluid 

elements throughout a flow.  Therefore, let us replace a finite wing a span b 

with a bound vortex, extending from y b/ 2 to y = b/2,= −  as sketched in 

Figure.  However, due to Helmholtz’s theorem, a vortex filament cannot end 

in the fluid.  Therefore, assume the vortex filament continues as two free 

vortices trailing downstream from the wing tips to infinity, as also shown in 

Figure.  This vortex (the bounds plus the two free) is in the shape of a 

horseshoe, and therefore is called a horseshoe vortex. 

 

 A single horseshoe vortex is shown in figure.  Consider the downwash 

w induced along the bound vortex from –b/2 to b/2 by the horseshoe vortex.  

Examining Figure, we see that the bound vortex induces no velocity along 

itself; however, the two trailing vortices both contribute to the induced 

velocity along the bound vortex, and both contributions are win the 

downward direction. 

 

 

 

Figure: Replacement of the finite wing with a bound vortex. 
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Figure: Downwash distribution along the y axis for a single horseshoe 

vortex. 

 Consider with the xyz coordinate system in figure, such a downward 

velocity is negative; that is, w (which is in the z direction) is a negative 

value when directed downward and a positive value when directed upward.  

If the origin is taken at the center of the bound vortex, then the velocity at 

any point y along the bound vortex induced by the trialing-inifinte vortex is, 

form Equation, 

 

    
( )

( ) ( )
y

4 b / 2 y 4 b / 2 y

 
 = − −

 +  −
 

 

 In Equation, the first term on the right-hand side is the contribution 

from the left trailing vortex (trailing from-b/2), and the second term is the 

contribution from the right trailing vortex (trailing b/2).  Equation reduces to 

 

    
( )

( )
2 2

b
y

4 b / 2 y


 = −

 −  

 

 This variation of w(y) is sketched in figure.  Note that w approaches-

 as y approaches –b/2 or b/2. 
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 The downwash distribution due to the single horesehoe vortex shown 

in Figure does not realistically simulate that of a finite wing; the downwash 

approaching an infinite value at the tips is especially disconcerting.  During 

the early evolution of finite-wing theory, this problem perplexed Prandtl and 

his colleagues.  After several years of effort, a resolution of this problem was 

obtained which, in hindsight, was simple and straightforward.  Instead of 

representing the wing by a single horseshoe vortex, let us superimpose a 

large number of horseshoe vortices, each with a different length of the bound 

vortex, but with all the bound vortices coincident along a single line, called 

the lifting line.  This concept is illustrated in figure, where only three 

horseshoe vortices are shown for the sake of clarity.  In figure a horseshoe 

vortex of strength d1 is shown, where the bound vortex spans the entire 

wing from –b/2 to b/2 (from point A to point F).  Super imposed on this is a 

second horseshoe vortex of strength d2, where its bound vortex spans only 

pat of the wing, from point B to point E.  Finally, superimposed on this is a 

third horseshoe vortex of strength d3, where its bound vortex spans only 

the part of the wing from point C to point D.  As a result, the circulation 

varies along the line of bound vortices-the lifting line defined above.  Along 

AB and EF, where two vortices are superimposed, the circulation is the sum 

of their strengths 1 2 3d d d . +  +   This variation of  along the lifting line is 

now have a series of trailing vortices distributed over the span, rather than 

just two vortices trailing downstream of the tips as shown in figure.  The 

series of trailing vortices in figure represents pairs of vortices, each pair 

associated with a given horseshoe vortex.  Note that the strength of each 

trialing vortex is equal to the change in circulation along the lifting line. 
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Figure: Superposition of a finite number of horseshoe vortices along the 

lifting line. 

 

 Let us extrapolate Figure to the case where an infinite number of 

horseshoe vortices are superimposed along the lifting line, each with a 

vanishingly small strength d.  This case is illustrated in figure.  Note that 

the vertical bars in figure have now become a continuous distribution of (y) 

along the lifting line in figure.  The value of the circulation at the origin is 

0.  Also, note that the finite number of trialing vortices in figure have 

become a continuous vortex sheet trailing downstream of the lifting line in 

figure.  This vortex sheet is parallel to the direction of  V .  The total 

strength of the sheet integrated across the span of the wing is zero, because it 

consists of Paris of trailing vortices of equal strength but in opposite 

directions. 

 

 

 

Figure: Superposition of an infinite number of horseshoe vortices along the 

lifting line. 

 

 Let us single out an infinitesimally small segment of the lifting line dy 

located at the coordinate y as shown in Figure.  The circulation at y is ( )y ,
 

and the change in circulation over the segment dy is ( )d d /dy dy. = 
  In 

turn, the strength of the trailing vortex at y must equal the change in 

circulation d along the lifting line; this is simply an extrapolation of our 

result obtained for the strength of the finite trailing vortices in figure.  

Consider more closely the trailing vortex of strength d that intersects the 

lifting line at coordinate y, as shown in figure.  Also consider the arbitrary 
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location y0 along the lifting line.  Any segment of the trialing vortex dx will 

induce a velocity at y0 with a magnitude and direction given by the Bio-

Savart law, Equation.  In turn, the velocity dw at y0 induced by the entire 

semi-infinite trailing vortex located at y is given by Equation, which in terms 

of the picture given in Figure yields 

 

    

( )
( )0

d / dy dy
dw

4 y y


=

 −
 

 

 The minus sign in equation is needed for consistency with the picture 

shown in figure; for the trialing vortex shown, the direction of dw at y0 is 

upward and hence is a positive value, whereas  is decreasing in the y 

direction, making d /dy  a negative quantity.  The minus sign in Equation 

makes the positive dw consistent with the negative d /dy.  

 

 The total velocity w induced at y0 by the entire trialing vortex sheet is 

the summation of equation over all the vortex filaments, that is, the integral 

of equation from –b/2 to b/2: 

 

    

( )
( )b/ 2

0
b/ 2

0

d / dy dy1
w y

4 y y−


= −

 −
 

 

 Equation is important in that it gives the value of the downwash at y0 

due to all the trailing vortices.  (Keep in mind that although we label w as 

downwash, w is treated as positive in the upward direction in order to be 

consistent with the normal convention in an xyz rectangular coordinate 

system.) 

 

 Pause for a moment and assess the status of our discussion so far.  We 

have replaced the finite wing with the model of a lifting line along which the 

circulation (y) varies continuously, as shown in figure.  In turn, we have 

obtained an expression for the downwash along the lifting line, given by 

Equation.  However, our central problem still remains to be solved; that is, 
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we want to calculate (y) for a given finite wing, along with its 

corresponding total lift and induced drag.  Therefore, we must press on. 

 

 Return to figure, which shows the local airfoil section of a finite wing.  

Assume this section is located at the arbitrary spanwise station y0.  From 

figure, the induced angle of attack I is given by 

 

    

( )
( )01

i 0

w y
y tan

V
−



 −
 =  

   

 

 [Note in figure that w is downward, and hence is a negative quantity.  

Since I in figure is positive, the negative sign in equation is necessary for 

consistency.]  Generally, w is much smaller than V, and hence I is a 

small angle, on the order of a few degrees at most.  For small angles, 

Equation yields 

 

    
( )

( )0
i 0

y
y

V


 = −

 

 

 Substituting Equation into, we obtain 

 

    

( )
( )b/ 2

i 0
b/ 2

0

d / dy dy1
y

4 V y y−



 =

 −
 

 

that is, an expression for the induced angle of attack in terms of the 

circulation distribution ( )y
 along the wing. 

 

 Consider again the effective angle of attack eff ,  as shown in figure.  

As explained in section, eff  is the angle of attack actually seen by the local 

airfoilsection.  Since the downwash varies across the span, then  is also eff
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variable; ( )eff eff 0y . =
The lift coefficient for the airfoil section located y = 

y0 is 

 

    
( ) ( )l 0 eff 0 L 0 eff 0 L 0c a y 2 y= =

   =  − =   −     

 

 In Equation, the local section lift slope a0 has been replaced by the 

thin airfoil theoretical value of 
( )12 rad .−

  Also, for a wing with 

aerodynamic twist, the angle of zero lift L 0=  in equation varies with y0.  If 

there is no aerodynamic twist, L 0=  is constant across the span.  In any event, 

 is a known property of the local airfoilsections.  From the definition of 

lift coefficient and from the Kutta-Joukowski theorem, we have, for the local 

airfoil section located at y0, 

 

    
( ) ( )2

0 l 0

1
L' V c y c V y

2
   =  =  

 

 

 From Equation, we obtain 

 

    

( )
( )

0

l

0

2 y
c

V c y


=

 

 

 Substituting Equation into and solving for eff  we have 

 

    

( )
( )
0

eff L 0

0

y

V c y
=




 = +


 

 

 The above results come into focus if we refer to Equation: 

 

    eff i =−  

L 0=
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 Substituting Equation and into, we obtain 

 

   

( )
( )
( )

( )
( )b/ 20

0 L 0 0
b/ 2

0 0

y d / dy dy1
y y

V c y 4 V y y
=

−
 

 
 = + +

  −
 

 

the fundamental equation of Prandtl’s lifting-line theory; it simply states that 

the geometric angle of attack is equal to the sum of the effective angle plus 

the induced angle of attack.  In Equation, eff  is expressed in terms of ; all 

the other quantities, L 0,c,V and , =   are known for a finite wing of given 

design at a given geometric angle of attack in a freestram with given 

velocity.  Thus, a solution of Equation yields ( )0y , =
 where y0 ranges 

along the span from –b/2 to b/2. 

 

 The solution ( )0y = 
 obtained from Equation gives us the three main 

aerodynamic characteristics of a finite wing, as follows:  

 

 1. The lift distribution is obtained from the Kutta-Joukowski theorem: 

 

   ( ) ( )0 0L' y V y  
 

 

 2. The total lift is obtained by integrating Equation over the span: 

 

    
( )

b/ 2

b/ 2
L L' y dy

−
=   

  or 

    
( )

b/ 2

b/ 2
L V y dy 

−
=    
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 (Note that we have dropped the subscript on y, for simplicity.)  The 

lift coefficient follows immediately from Equation. 

 

    
( )

b/ 2

L b/ 2

L 2
C y dy

q S V S −
 

= = 
 

 

The induced drag is obtained by inspection of figure.  The induced drag per 

unit span is 

 

    
' '
i i iD L sin=   

 

 Since I is small, this relation becomes 

 

    
' '
i i iD L=   

 

 The total induced drag is obtained by integrating Equation over the 

span: 

 

    
( ) ( )

b/ 2

i ib/ 2
D L' y y dy

−
=   

 

  or  
( ) ( )

b/ 2

i ib/ 2
D V y y dy 

−
=     

 

 In turn, the induced drag coefficient is 

 

   
( ) ( )

b/ 2
i

D,i ib/ 2

D 2
C y y dy

q S V S −
 

= =  
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 In Equation to ( )i y
 is obtained from Equation.  Therefore, in 

Prndtl’s lifting-line theory the solution of Equation for ( )y
 is clearly the 

key to obtaining the aerodynamic characteristics of a consider a special case, 

as outlined below. 

 

Elliptical Lift Distribution 

 

 Consider a circulation distribution given by 

 

    
( )

2

0

2y
y 1

b

 
 =  − 

   

 

 In Equation, note the following: 

 

0 is the circulation at the origin, as shown in figure. 

The circulation varies elliptically with distance y along the span; hence, it is 

designated as an elliptical circulation distribution.  Since ( ) ( )L' y V y , = 
 

we also have 

 

   
( )

2

0

2y
L' y V 1

b
 

 
=   − 

   

 

 Hence, we are dealing with an elliptical lift distribution. 

 

3. ( ) ( )b/ 2 b/ 2 0. =  − =
  Thus, the circulation, hence lift, properly goes to 

zero at the wing tips, as shown in figure.  We have not obtained Equation as 

a direct solution of Equation; rather we are simply stipulating a lift 

distribution that is elliptic.  We now ask the question,  What are the 

aerodynamic properties of a finite wing with such an elliptic lift distribution? 
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 First, let us calculate the downwash.  Differentiating Equation, we 

obtain 

 

    
( )

0
12

2 2 2

y4d

dy b 1 4y / b


= −

−
 

 

 Substituting Equation into, we have 

 

   

( )
( ) ( )

b/ 2
0

0 12 b/ 2 2 2 2
0

y
y dy

b 1 4y / b y y
−


 =

 − −


 

 

 The integral can be evaluated easily by making the substitution  

    

   

b b
y cos    dy=- sin d

2 2
=   

 

 

 Hence, Equation becomes 

 

    

( )

( )

0
0

0

0 0

0
0

0
0

cos
w d

2 b cos cos

cos
w d

2 b cos cos





 
 = − 

  − 

 
 = − 

 − 




 

 

 The integral in Equation is the standard form given by Equation for 

n 1.=   Hence, Equation becomes 

 

    
( ) 0

0w
2b


 = −
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which states the interesting and important result that that downwash is 

constant over the span for an elliptical lift distribution.  In turn, from 

Equation, we obtain, for the induced angle of attack, 

 

    

0
i

w

V 2bV 


 = − =

 

 

 For an elliptic lift distribution, the induced angle of attack is also 

constant along the span.  Note from Equations and that both the downwash 

and induced angle of attack go to zero as the wing span becomes infinite-

which is consistent with our previous discussions on airfoil theory. 

 

 A more useful expression for I can be obtained as follows.  

Substituting Equation, we have 

 

     

1
2 2

b/ 2

0 2b/ 2

4y
L V 1 dy

b
 

−

 
=   − 

 


 

 

 Again, using the transformation ( )y b/ 2 cos ,=   Equation readily 

integrates to 

 

    

2
0 0

0

b b
L V sin d V

2 4



   =     =   
 

  

 Solving Equation for 0 ,  we have 

 

    
0

4L

V b 

 =
   

 

 However, 

2
L

1
L V SC .

2
 = 

  Hence, Equation becomes 
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L
i

2V SC 1

b 2bV




 =
  

  or 

    

L
i 2

SC

b
 =

  

 

 An important geometric property of a finite wing is the aspect ratio, 

denoted by AR and defined as 

 

     

2b
AR

S


 

 

 Hence, Equation becomes 

 

    

L
i

C

AR
 =

  

 

 Equation is a useful expression for the induced angle of attack, as 

shown below. 

 

 The induced drag coefficient is obtained from, noting that I is 

constant: 

 

   
( )

b/ 2
2i 0 i 0i

D,i
b / 2 0

2 b2 b
C y dy sin d

V S V S 2 2V S



−
  

   
=  =  − 

 

 

 Substituting Equations and into, we obtain 
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L
D,i

b C 2V SC
C

2V S AR b




  
=  

    

 

  or   

2
L

D,i

C
C

AR
=
  

 

 Equation is an important result.  It states that the induced drag 

coefficient is directly proportional to the square of the lift coefficient.  The 

dependence of induced drag on the lift is not surprising, for the following 

reason.  In section, we saw that induced drag is a consequence of the 

presence of the wing-tip vortices, which in turn are produced by the 

difference in pressure between the lower and induced drag is intimately 

related to the production of lift on a finite wing; indeed, induced drag is 

frequently called the drag due to lift.  Equation dramatically illustrates this 

point.  Clearly, an airplane cannot generate lift for free; the induced drag is 

the price for the generation of lift.  The power required to generate the lift of 

the aircraft.  Also, note that because 
2

D,i LC C ,
 the induced drag coefficient 

increase rapidly as CL increases and becomes a substantial part of the total 

drag coefficient when CL is high (e.g., when the airplane is flying slowly 

such as on takeoff or landing).  Even at relatively high cruising speeds, 

induced drag is typically 25 percent of the total drag. 

 

 Another important aspect of induced drag is evident in Equation; that 

is CD,I is inversely proportional to aspect ratio.   Hence, to reduce the 

induced drag, we want a finite wing with the highest possible aspect ratio.  

Wings with high and low aspect ratios are sketched in figure.  Unfortunately, 

the design of very high aspect ratio wings with sufficient structural strength 

is difficult.  Therefore, the aspect ratio of a conventional aircraft is a 

compromise between conflicting aerodynamic and structural requirements.  

It is interesting to note that the aspect ratio of the 1903 Wright Flyer was 6 

and that today the aspect ratios of conventional subsonic aircraft range 

typically from 6 to 8.  (Exceptions are the Lookheed U-2 high-altitude 

reconnaissance aircraft with AR = 14.3 and sailplanes with aspect ratios as 

high as 51.  For example, the Schempp-Hirth 
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Figure: Schematic of high-and low-aspect-ratio wings. 

 

 Nimbus 4 sailplane, designed in 1994 with over 100 built by 2004, has 

an aspect ratio of 39.  The ETA sailplane, designed in 2000 with 6 built by 

2004, has an aspect ratio. 

 

 Another property of the elliptical lift distribution is as follows.  

Consider a wing with no geometric twist (i.e.,  is constant along the span) 

and no aerodynamic twist (i.e., L 0=  is constant along the span.)  From 

Equation, we have seen that I is constant along the span.  Hence, 

eff i =−  is also constant along the span.   Since the local section lift 

coefficient cl is given by 

 

    ( )l 0 eff L 0c a ==  −  

 

then assuming that a0 is the same for each section (a0 = 2 from thin airfoil 

theory), cl must be constant along the span.  The lift per unit span is given 

by 

 



 

 

P
ag

e1
4

7
 

    ( ) lL' y q cc=
 

 

 Solving Equation for the chord, we have 

 

    
( )

( )

l

L' y
c y

q c

=

 

 

 In Equation, q and cl are constant along the span.  However, L’(y) 

varies elliptically along the span.  Thus, Equation dictates that for such an 

elliptic lift distribution, the chord must vary elliptically along the span; that 

is, for the conditions given above, the wing planform is elliptical. 

 

 The related characteristics-the elliptic lift distribution, the elliptic 

planform, and the constant downwash-are sketched in figure.  Although can 

elliptical lift distribution may appear to be a restricted, isolated case, in 

reality it gives a reasonable approximation for the induced drag coefficient 

for an arbitrary finite wing.  The form of CD,I given by Equation is only 

slightly modified for the general case.  Let us now consider the case of a 

finite wing with a general lift distribution. 

 

 

 

Figure: Illustratioj of the related quantities: an elliptic lift distribution, 

elliptic planform, and constant downwash. 
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General Lift Distribution 

 

 Consider the transformation 

 

   

b
y cos

2
= − 

 

 

where the coordinate in the spanwsie direction is now given by 

,with0 .       In terms of , the elliptic lift distribution given by Equation 

is written as 

 

    ( ) 0 sin  =    

 

Equation hints that a Fourier sine series would be an appropriate expression 

for the general circulation distribution along an arbitrary finite wing.  Hence, 

assume for the general case that 

 

   
( )

N

n
1

2bV A sin n  = 
 

 

where as many terms N in the series can be taken as we desire for accuracy.  

The coefficients An (where n = 1,…,N) in Equation are unknowns; however, 

they must satisfy the fundamental equation of Prandtl’s lifting-line theory; 

that is, the An’s must satisfy Equation.  Differentiating Equation, we obtain 

 

    

N

n
1

d d d d
2bV nA cosn

dy d dy dy


   
= = 




 

 

 Substituting Equations and into, we obtain 
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( )

( )
( )

N
N

n1
0 n 0 L 0 0

0
10 0

nA cos n2b 1
A sin n d

c cos cos



=


  =  +  + 

   − 


 

 

 

 The integral in Equation is the standard form given by Equation.  

Hence, Equation becomes 

 

   

( )
( )

( )
N N

0
0 n 0 L 0 0 n

1 10 0

sin n2b
A sin n nA

c sin
=


  =  +  +

  
 

 

 

 Examine Equation closely.  It is evaluated at a given spanwise 

locating; hence, 0 is specified.  In turn, b c(0), and ( )L 0 0=   are known 

quantities from the geometry and airfoil section of the finite wing.  The only 

unknows in Equations are the An’s.  Hence, written at a given spanwise 

location (a specified 0), Equation is one algebraic equation with N 

unknowns, A1, A2,….,An.  However, let us choose N different spanwise 

stations, and let us evaluate Equation at each of these N stations.  We then 

obtain a system of N independent algebraic equations with N unknowns, 

namely, A1, A2,…, AN.  In this fashion, actual numerical values are 

obtained for the An’s-numerical values that ensure that ensure that the 

general circulation distribution given by equation satisfies the fundamental 

equation of finite-wing theory, Equation. 

 

 Now that () is known via Equation, the lift coefficient for the finite 

wing follows immediately from the substation of Equation into: 

 

    
( )

2 Nb/ 2

L n
b/ 2 0

1

2 2b
C y dy A sin sin d

V S S



−


=  =    
 

 

 In Equation, the integral is 

 

    
0

/ 2      for n=1
sin n sin d

0           for n 1

 
   = 



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 Hence, Equation becomes 

 

    

2

L 1 1

b
C A A AR

S
=  = 

 

 

 Note that CL depends only on the leading coefficient of the Fourier 

series expansion.  (However, although CL depends on A1 only, we must 

solve for all the An’s simultaneously in order to obtain A1.) 

 

 The induced drag coefficient is obtained from the substitution of 

Equation into Equation as follows: 

 

   

( ) ( )

( )

b/ 2

D,i ib / 2

2 N

n i0
1

2
C y y dy

V S

2b
      A sin n sin d

S

−




=  

 
=      

 




 

 

 The induced angle of attack ( )i   in Equation is obtained from the 

substation of Equation and into, which yields 

 

   

( )
( )b

2

i 0
b/ 2

0

N

n
0

1 0

d / dy dy1
y

4 V y y

1 cos n
          nA d

cos cos

−





 =

 −


= 
 − 



 
 

 

 The integral in Equation is the standard form given by Equation.  

Hence, Equation becomes 

 

    
( )

N
0

i 0 n
1 0

sin n
nA

sin


  =



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 In Equation 0 is simply a dummy variable which range from 0 to  

across the span of the span of the wing; it can therefore be replaced by , 

and Equation can be written as 

 

    
( )

N

i n
1

sin n
nA

sin


  =




 

 

 Substituting Equation into, we have 

 

    

2 N N

D,i n n
0

1 1

2b
C A sin n nA sin n d

S

  
=     

  
 

 

 

 Examine Equation closely; it involves the product of two summations.  

Also, note that, from the standard integral, 

 

    
0

0       for m k
sin m sin k

/2   for m = k

 
  = 




 

 

 Hence, in Equation, the mixed product terms involving unequal 

subscripts (such as A1,A2, A2A4) are, from Equation, equal to zero.  Hence, 

Equation becomes 

 

    

2 N N
2 2

D,i n n
1 1

N
2 2
1 n

2

2
N

2 n
1

2 1

2b
C nA AR nA

S 2

      AR A nA

A
     ARA 1 n

A

 
= =  

 

 
=  + 

 

  
=  +  

   

 




 

 

 Substituting Equation for CL into Equation, we obtain 
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( )

2
L

D,i

C
C 1

AR
= +
  

 

where ( )
2N

n 12
n A / A . =   Note that 0;   hence, the factor 1+ in Equation 

is either greater than 1 or at least equal to 1.  Let us define a span efficiency 

factor, e, as ( )
1

e 1 .
−

= +   Then Equation can be written as 

 

    

2
L

D,i

C
C

eAR
=
  

 

wheree 1.   Comparing Equations and for the general lift distribution with 

Equation for the elliptical lift distribution, note that 0 =  and e = 1 for the 

elliptical lift distribution.  Hence, the lift distribution which yields minimum 

induced drag is the elliptical lift distribution.  This is why we have a 

practical interest in the elliptical lift distribution. 

 

 

 

 



 

 

P
ag

e1
5

3
 

Figure: Various planforms for straight wings. 

 

 Recall that for a wing with no aerodynamic twist and no geometric 

twist, an elliptical lift distribution is generated by a wing with an elliptical 

planform, as sketched at the top of figure.  Several aircraft have been 

designed in the past with elliptical wings; the most famous, perhaps, being 

the British Spitfire from World War II, shown in Figure.  However, elliptic 

planforms are more expensive to manufacture than, say, a simple rectangular 

wing as sketched in the middle of Figure.  On the other hand, a rectangular 

wing generates a lift distribution far from optimum.  A compromise is the 

tapered wing shown at the bottom of figure.  The tapered wing can be 

designed with a taper ratio, that is, tip chord/root chord t rc / c ,  such that the 

lift distribution closely approximates the elliptic case.  The variation of  as 

a function of taper ratio for wings of different aspect ratio is illustrated in 

Figure.  Such calculations of  were first performed by the famous English 

aerodynamicist, Herman Glauert and published in Reference 18 in the year 

1926.  Note from figure that a tapered wing can be designed with an induced 

drag coefficient reasonably close to the minimum value.  In addition, tapered 

wings with straight leading and trailing edges are considerably easier to 

manufacture than elliptic planforms.  Therefore, most conventional aircraft 

employ tapered rather than elliptical wing planforms. 

 

Effect of Aspect Ratio 

 

 Returning of Equations and, note that the induced drag coefficient for 

a finite wing with a general lift distribution is inversely proportional to the 

aspect ratio, as was discussed earlier in conjunction with the case of the 

elliptic lift distribution. 
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Figure: Three views of the Supermarine Spitfire, a famous British World 

War II fighter. 

 

 Note that AR, which typically varies from 6 to 22 for standard 

subsonic airplanes and sailplanes, has a much stronger effect on CD,I than 

the value of , which from Figure varies only by about 10 percent over the 

practical range of taper ratio.  Hence, the primary design factor for 

minimizing induced drag is not the closeness to an elliptical lift distribution, 

but rather, the ability to make the aspect ratio as large as possible.  The 

determination that CD,I is inversely proportional to AR was one of the great 

victories of Prandtl’s lifting-line theory.  In 1915, Prandtl verified this result 

with a series of classic experiments wherein the lift and drag of seven 

rectangular wings with different aspects ratios were measured.  The data are 

given in figure.  Recall from Equation, that the total drag of a finite wing is 

given by 
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Figure: Induced drag factor  as a function of taper ratio.   

 

    

2
L

D d

C
C c

eAR
= +

  

 

 The parabolic variation of CD with CL as expressed in Equation is 

reflected in the data of figure.  If we consider two wings with different 

aspects ratios AR1 and AR2, Equation gives the drag coefficients CD,1 and 

CD,2 for the two wings as 

 

    

2
L

D.1 d

1

C
C c

eAR
= +

  

  and 

    

2
L

D,2 d

2

C
C c

eAR
= +

  

 

 Assume that the wings are at same CL.  Also, since the airfoil section 

is the same for both wings, cd is essentially the same.  Moreover, the 

variation of e between the wings is only a few percent and can be ignored.  

Hence, subtracting Equation from, we obtain 

 

    

2
L

D,1 D,2

1 2

C 1 1
C C

e AR AR

 
= + − 

    
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 Equation can be used to scale the data of a wing with aspect ratio AR2 

to correspond to the case of another aspect ratio AR1.  For example, Prandtl 

Scaled the data of Figure to correspond to a wing with an aspect ratio of 5.  

For this case, Equation becomes 

 

 

 

Figure: Prandtl’s classic rectangular wing data for seven different aspect 

ratios from 1 to 7; variation of lift co lift coefficient versus drag coefficient.  

For historical interest, we reproduce here Prandtl’s actual graphs.  Note that, 

in his nomenclature, Ca = lift coefficient and Cw = drag coefficient.  Also, 

the numbers on both the ordinate and abscissa are 100 times the actual 

values of the coefficients. 

 

    

2
L

D,1 D,2

2

C 1 1
C C

e 5 AR

 
= + − 

    

 

 Inserting the respective values of CD,2 and AR2 from Figure into 

Equation, Prandtl found that the resulting data for CD,1, versus CL 

collapsed to essentially the same curve, as shown in Figure.  Hence, the 

inverse dependence of CD,I on AR was substantially verified as early as 

1915. 
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 There are two primary differences between airfoil and finite-wing 

properties.  We have discussed one difference, namely, a finite wing 

generates induced drag.  However, a second major difference appears in the 

lift slope.    

 

 

 

 

 

 

 

Figure: Data of Figure scaled by Prandtl to an aspect ratio of 5. 

 

 In Figure, the lift slope for an airfoil was defined as 0 1a dc /d .    Let 

us denote the lift slope for a finite wing as La dC / d .    When the lift slope 

of a finite wing is compared with that of its airfoil section, we find that a < 

a0.  To see this more clearly, return to Figure, which illustrates the influence 

of downwash on the flow over a local airfoil section of a finite wing.  Note 

that although the geometric angle of attack of the finite wing is , the airfoil 
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section effectively senses a smaller angle of attack, namely, eff  where 

eff i . =−   For the time being, consider an elliptic wing with no twist; 

hence wing versus eff ,  as shown at the top of figure.  Because we are using 

eff  the lift slope corresponds to that for an infinite wing a0.  However, in real 

life, our naked eyes cannot see eff ,  instead, what we actually observe is a 

finite wing with a certain angle between the chord line and the relative win; 

that is, in practice, we always observe the geometric angle of attack .  

Hence, CL for a finite wing is generally given as a function of , as sketched 

at he bottom of figure.  Since eff ,    the bottom abscissa is stretched, and 

hence the bottom lift curve is less inclined; it has a slope equal to a, and 

figure clearly shows that a < a0.  The effect of a finite wing is to reduce the 

lift slope.  Also, when L effC 0, .=  =   As a result, L 0=  is the same for the 

finite and the infinite wings, as shown in figure. 

 

 

 

 

Figure: Lift curves for an infinite wing versus a finite elliptic wing. 

 

 The values of a0 and a are related as follows.  From the top of figure, 
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     ( )
L

0

i

dC
a

d
=

−  

 

 Integrating, we find 

 

     ( )L 0 iC a const= − +  

 

 Substituting Equation into, we obtain 

 

    

L
L 0

C
C a const

AR

 
= − + 

   

 

 Differentiating Equation with respect to , and solving for dCL/d, 

we obtain 

 

    

0L

0

adC
a

d 1 a / AR
= =

 +   

 

 Equation gives the desired relation between a0 and a for an elliptic 

finite wing.  For a finite wing of general planform, Equation is slightly 

modified, as given below: 

 

 

    ( )( )
0

0

a
a

1 a / AR 1
=

+  +   
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Figure: Prandtl’s classic rectangular wing data.  Variation of lift coefficient 

with angle of attack for seven different aspect ratios from 1 to 7.  

Nomenclature and scale are the same as given in figure. 

 

 In Equation,  is a function of the Fourier coefficients An.  Values of  

were first calculated by Glauert in the early 1920s and were published in 

Reference 18, which should be consulted for more details.  Values of  

typically range between 0.005 and 0.25. 

 

 Of most importance in Equation and is the aspect-ratio variation.  

Note that for low-AR wings, a substantial difference can exist between a0 

and a.  However, as AR 0,a a .→ → The effect of aspect ratio on the lift 

curve is dramatically shown in figure, which gives classic data obtained on 

rectangular wings by Prandtl in 1915.  Note the reduction in LdC / d  as AR 

is reduced. Moreover, using the equations obtained above, Prandtl scaled the 

data in figure to correspond to an aspect ratio of 5; his results collapsed to 

essentially the same curve, as shown in Figure.  In this manner, the aspect-

ratio variation given in Equation and was confirmed as early as the year 

1915. 

 

Physical Significance 
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 Consider again the basic model underlying Prandtl’s lifting-line 

theory.  Return to figure and study it carefully.  An infinite number of 

infinitesimally weak horsehoe vortices are superimposed in such a fashion as 

to generate a lifting line which spans the wing, along with a vortex sheet 

which trails downstream.   

 

 

 

 

Figure: Data of Figure scaled by Prandtl to an aspect ratio of 5. 

 

 This trailing-vortex sheet is the instrument that induces downwash a 

the lifting line.  At first thought, you might consider this model to be 

somewhat abstract-a mathematical convenience that somehow produces 

surprisingly useful results.  However, to the contrary, the model shown in 

figure has real physical significance.   To see this more clearly, return to 

figure.  Note that in the three-dimensional flow over a finite wing, the 

streamlines leaving the trailing edge from the top and bottom surfaces are in 

different directions; that is, there is a discontinuity in the tangential velocity 

at the trialing edge.  We know from that a discontinuous change in tangential 

velocity is theoretically allowed across a vortex sheet.  In real life, such 

discontinuities do not exist; rather, the different velocities at the trialing edge 

generate a thin region of large velocity gradients-a thin region of shear flow 
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with very large vorticity.  Hence, a sheet of vorticity actually trails 

downstream from the trailing edge of a finite wing.  This sheet tends to roll 

up at the edges and helps to form the wing-tip vortices sketched in figure.  

Thus, Prandtl’s lifting-line model with its trailing-vortex sheet is physically 

consistent with the actual flow downstream of a finite wing. 

 

Example: 

 

 Consider a finite wing with an aspect ratio of 8 and a taper ratio of 

0.8.  The airfoil section is thin and symmetric.  Calculate the lift and induces 

drag coefficients for the wing when it is at an angle of attack of 5o.  Assume 

that =. 

 

Solution: 

 

 From Figure =0.055.  Hence, from the stated assumption,  also 

equal 0.055.  From Equation, assuming 0a 2=   from thin airfoil theory, 

 

   

( ) ( )
10

0

-1

a 2
a 4.97rad

1 a / AR 1 1 2 1.055 / 8

 0.0867 degree

−
= = =

+  +  +  

=  

 

 Since the airfoil is symmetric, 
o

L 0 0 .= = Thus, 

 

   
( )( )-1 o

LC a 0.0867 degree 5 0.4335=  = =
 

 

 From Equation, 

 

   
( )

( ) ( )
22

L
D,i

0.4335 1 0.055C
C 1 0.00789

AR 8

+
= +  = =
   
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Example: 

 

 Consider a rectangular wing with an aspect ratio of 6, an induced drag 

factor  = 0.055, and a zero-lift angle of attack of -2o.  At an angle of attack 

of 3.4o, the induced drag coefficient for this wing is 0.01.  Calculate the 

induced drag coefficient for a similar wing (a rectangular wing with the 

same airfoil section) at the same angle of attack, but with an aspect ratio of 

10.  Assume that the induced factors for drag and the lift slope, and , 

respectively, are equal to each other (i.e.,  = ).  Also, for AR = 10,  = 

0.105. 

 

Solution: 

 

 We must recall that although the angle of attack is the same for the 

two cases compared here (AR = 6 and 10), the value of CL is different 

because of the aspect-ratio effect on the lift slope.  First, let us calculate CL 

for the wing with aspect ratio 6.  From Equaiton, 

 

 

   

( )( )D,i2
L

ARC 6 0.01
C 0.1787

1 1 0.055

 
= = =

+ +  

 

 Hence,   LC 0.423=  

 

 The lift slope of this wing is therefore 

 

    ( )
L

o

dC 0.423
0.078 / deg ree 4.485 / rad

d 3.4 2
= = =

 − −
f 

 

 The lift slope for the airfoil (the infinite wing) can be obtained from 

Equation: 
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( )( )

( ) ( ) 

0L

0

0 0

0 0

adC
a

d 1 a / AR 1

a a
4.485

1 1.055 a / 6 1 0.056a

= =
 +  + 

= =
+  +

 

 

 Solving for a0, we find that this yields a0 = 5.989/rad.  Since the 

second wing (with AR = 10) has the same airfoil section, then a0 is the 

same.  The lift slope of the second wing is given by 

 

   

 ( )( ) ( )( ) ( ) 
0

0

a 5.989
a 4.95 / rad

1 a / AR 1 1 5.989 1.105 / 10
= = =

+  +  +   

            = 0.086/degree 

 

 The lift coefficient for the second wing is therefore 

 

    
( ) ( )o o

L L 0C a 0.86 3.4 2 0.464=
 = − = − − =   

 

 In turn, the induced drag coefficient is 

 

    
( )

( ) ( )

( )

22
L

D,i

0.464 1.105C
C 1 0.0076

AR 10
= +  = =
   

 

 Note: This problem would have been more straightforward if the lift 

coefficients had been stipulated to be the same between the two wings rather 

than the angle of attack.  Then Equation would have yielded the induced 

drag coefficient directly.  A purpose of this example is to reinforce the 

rationale behind Equation, which readily allows the scaling of drag 

coefficients from one aspect ratio to another, as long as the lift coefficient is 

the same.  This allows the scaled drag-coefficient data to be plotted versus 

CL (not the angle of attack) as in figure.  However, in the present example 
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where the angle of attack is the same between both cases, the effect of aspect 

ratio on the lift slope must be explicitly considered, as we have done above. 

 

Example: 

 

 Consider the twin-jet executive transport discussed in example.  In 

addition to the information given in Example, for this airplane the zero-lift 

angle of attack is -2o, the lift slope of the airfoil section is per degree, the lift 

efficiency factor  = 0.04, and the wing aspect ratio is 7.96.  At the cruising 

condition treated in Example, calculate the angle of attack of the airplane. 

 

Solution: 

 

 The lift slope of the airfoil section in radians is 

 

   A0 = 0.1 per degree = 0.1(57.3) = 5.73 rad 

 

 From Equation repeated below 

 

   ( )( )
0

0

a
a

1 a / AR 1
=

+  +   

 

 We have 

 

   
( )

5.73
a 4.627 per rad

5.73
1 1 0.04

7.96

= =
 

+ + 
   

 

 or  

4.627
a 0.0808 per degree

57.3
= =

 



 

 

P
ag

e1
6

6
 

 

 From Example, the airplane is cruising at a lift coefficient equal to.  

Since 

 

    ( )L L 0C a == −  

 

 We have 

    
( ) oL

L 0

C 0.21
2 0.6

a 0.0808
= = + = + − =

 

 

Example: 

 

 In the Preview Box for this chapter, we considered the Beechcraft 

Baron.   Flying such that the wing is at a 4-degree angle of attack.  The wing 

of this airplane has an NACA 23015 airfoil at the root, tapering to a 23010 

airfoil at the tip.  The data for the NACA 23105 airfoil is given in Figure.  In 

the Preview Box, we teased you by reading from Figure the airfoil lift and 

drag coefficients at  = 4o, namely, cl = 0.54 and cd = 0.0068, and posed the 

question:  Are the lift and drag coefficients of the wing the same values, that 

is, ( ) ( )L DC 0.54 ? and C 0.0068 ?= =   The answer given in the Preview Box was 

a resounding NO!  We now know why.  Moreover, we now know how to 

calculate CL and CD for the wing.  Let us proceed to do just that.  Consider 

the wing of the Beechcraft Baron 58 at a 4-degree angle of attack.  The wing 

has an aspect ratio of 7.61 and a taper ratio of 0.45.  Calculate CL and CD 

for the wing. 

 

Solution: 

 

 From Figure, the zero-lift angle of attack of the airfoil, which is the 

same for the finite wing, is 

 

    
o

L 0 1= = −  
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 The airfoil lift slope is also obtained from Figure a.  Since the lift 

curve is linear below the stall, we arbitrarily pick two points on this curve: 
o7 =  where cl = 0.9, and 

o1 = −  where Cl = 0.  Thus 

 

    ( )
0

0.9 0 0.9
a 0.113per degree

7 1 8

−
= = =

− −  

 

 The lift slope in radians is: 

   

    ( )0a 0.113 57.3 6.47 per rad= =  

 

 From figure, for AR = 7.61 and taper ratio = 0.45 

 

      = 0.01 

 

 Hence,  

1 1
e 0.99

1 1 0.01
= = =

+ +  

 

 From Equation, assuming , =   

 

   
( )

( )0
0

0

a
a a and a  are per rad

a
1 1

AR

=
 

+ +  
   

 

 where  ( )
0a 6.47

0.271
AR 7.61

= =
   

    ( )1 1 0.01 1.01+  = + =
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 we have   

    ( )( )

6.47
a 5.08 per rad

1 0.271 1.01
= =

+  

 

 Converting back to degrees: 

 

    

5.08
a 0.0887 per degree

57.3
= =

 

 

 For the linear lift curve for the finite wing 

 

    ( )L L 0C a == −  

 

 For 
o4 , =  we have 

 

   

( )  ( )L

L

C 0.0887 4 1 0.0887 5

C 0.443

= − − =

=  

 

 The drag coefficient is given by Equation; 

 

    

2
L

D d

C
C c

eAR
= +

  

 

Here, cd is the section drag coefficient given in Figure.  Note that in Figure 

b, cd us plotted versus the section lift coefficient cl.  To accurately read cd 

from figure, we need to know the value of cl actually sensed by the airfoil 

section on the finite wing, that is, the value of the airfoil cl for the airfoil at 

its effective angle of attack, eff . To estimate eff ,  we will assume an 

elliptical lift distribution over the wing.  We know this is not quite correct, 
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but with a value of  = 0.01, it is not very far off.  From Equation for an 

elliptical lift distribution, the induced angle of attack is 

 

    

( )

( )
L

i

0.433C
0.0185 rad

AR 7.61
 = = =

   

 

 In degrees 

 

    ( )( ) o
i 0.0185 57.3 1.06 = =  

 

 From figure, 

    

    
o o o o

eff i 4 1.06 2.94 3 = − = − =   

 

 The lift coefficient sensed by the airfoil is then 

 

    

( )

( )  ( )

l 0 eff L 0c a

  0.113 3 1 0.113 4 0.452

==  −

= − − = =
 

 

 (Note how close this section lift coefficient is to the overall lift 

coefficient of the wing of 0.433.)  From Figure b, taking the data at the 

highest Reynolds number shows, for cl = 0.452, we have 

 

     Cd = 0.0065 

   

 Returning to Equation, 

 



 

 

P
ag

e1
7

0
 

    

( )

( )( )

2
L

D d

2

C
C c

eAR

0.433
     0.0065

0.99 7.61

     0.0065 0.0083 0.0148

= +


= +


= + =  
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Propeller Theory
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FROUDE MOMENTUM AND BLADE ELEMENT THEORIES 

Momentum theory 

Mathematical model of an ideal propeller or helicopter rotor can be described by The 

Momentum theory or Disk actuator theory by W.J.M.Rankine, Alfred George Greenhill 

and R.E. Froude. 

In fluid dynamics, the momentum theory   describes a mathematical model of an ideal 

actuator disk, such as a propeller or helicopter rotor. The rotor is modeled as an infinitely 

thin disc, inducing a constant velocity along the axis of rotation. The basic state of a 

helicopter is hovering. This disc creates a flow around the rotor. Under certain 

mathematical premises of the fluid, there can be extracted a mathematical connection 

between power, radius of the rotor, torque and induced velocity. Friction is not included. 

For a stationary rotor, such as a helicopter in hover, the power required to produce a 

given thrust is: 

 

Where: 

• T is the thrust 

•  is the density of air (or other medium) 

• A is the area of the rotor disc 

 

A device which converts the translational energy of the fluid into rotational energy of the 

axis or vice versa is called a Rankine disk actuator. 

It was originally intended to provide an analytical means for evaluating ship propellers. 

Momentum Theory is also well known as Disk Actuator Theory. Momentum Theory 

assumes that 

 

• The flow is inviscid and steady (ideal flow), therefore the propeller does not experience 

energy losses due to frictional drag. 

• Also the rotor is thought of as an actuator disk with an infinite number of blades, each 

with an infinite aspect ratio. 

• The propeller can produce thrust without causing rotation in the slipstream. 

 

http://en.wikipedia.org/wiki/Fluid_dynamics
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Propeller
http://en.wikipedia.org/wiki/Helicopter
http://en.wikipedia.org/wiki/Helicopter_rotor
http://en.wikipedia.org/wiki/Hover_(helicopter)
http://en.wikipedia.org/wiki/Torque
http://en.wikipedia.org/wiki/Friction
http://en.wikipedia.org/wiki/Thrust
http://en.wikipedia.org/wiki/Density_of_air
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Rankine disk actuator 

 

Here the rotor is assumed as an infinitely thin disc, which induces a constant 

velocity along the axis of rotation.   

From the basic thrust equation, we know that the amount of thrust depends on the mass 

flow rate through the propeller and the velocity change through the propulsion system. In 

the above figure the flow is proceeding from left to right. Let us denote the subscripts "A 

and C" for the stations assumed to be far upstream and downstream of the propeller 

respectively and the location of the actuator disc by the subscript "B". The thrust (T) is 

equal to the mass flow rate (m) times the difference in velocity (V). 

T= m(VC-VA) 

 

There is no pressure-area term because the pressure at the C is equal to the pressure at 

A. 

 

• The power PD absorbed by the propeller is given by: 

 

• Momentum theory thrust is given by,  

2(v+ )ρΔv 

Blade element theory 

Blade element momentum theory is a theory that combines both blade element theory and 

momentum theory. It is used to describe the flow of fluids round the aerofoils/blades of 

a rotor of a turbine. Blade element theory is combined with momentum theory to alleviate 

some of the difficulties in calculating the induced velocities at the rotor. 

 

Glauert Blade Element Theory 

A relatively simple method of predicting the performance of a propeller (as well as fans or windmills) is the 

use of Blade Element Theory. In this method the propeller is divided into a number of independent sections 

along the length. At each section a force balance is applied involving 2D section lift and drag with the thrust 

and torque produced by the section. At the same time a balance of axial and angular momentum is applied. 

This produces a set of non-linear equations that can be solved by iteration for each blade section. The 

resulting values of section thrust and torque can be summed to predict the overall performance of the 

propeller. 

The theory does not include secondary effects such as 3-D flow velocities induced on the propeller by the 

shed tip vortex or radial components of flow induced by angular acceleration due to the rotation of the 

propeller. In comparison with real propeller results this theory will over-predict thrust and under-predict 

torque with a resulting increase in theoretical efficiency of 5% to 10% over measured performance. Some of 

the flow assumptions made also breakdown for extreme conditions when the flow on the blade becomes 

stalled or there is a significant proportion of the propeller blade in windmilling configuration while other 

parts are still thrust producing.  
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The theory has been found very useful for comparative studies such as optimising blade pitch setting for a 

given cruise speed or in determining the optimum blade solidity for a propeller. Given the above limitations 

it is still the best tool available for getting good first order predictions of thrust, torque and efficiency for 

propellers under a large range of operating conditions. 

Blade Element Subdivision 

A propeller blade can be subdivided as shown into a discrete number of sections. 

  

For each section the flow can be analysed independently if the assumption is made that for each there are 

only axial and angular velocity components and that the induced flow input from other sections is 

negligible. Thus at section AA (radius = r) shown above, the flow on the blade would consist of the 

following components.  

 

V0 -- axial flow at propeller disk, V2 -- Angular flow velocity vector 

V1 -- section local flow velocity vector, summation of vectors V0 and V2 

Since the propeller blade will be set at a given geometric pitch angle ( ) the local velocity vector will 

create a flow angle of attack on the section. Lift and drag of the section can be calculated using standard 2-

D aerofoil properties. (Note: change of reference line from chord to zero lift line). The lift and drag 
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components normal to and parallel to the propeller disk can be calculated so that the contribution to thrust 

and torque of the compete propeller from this single element can be found. 

The difference in angle between thrust and lift directions is defined as 

 

The elemental thrust and torque of this blade element can thus be written as 

 

Substituting section data (CL and CD for the given ) leads to the following equations. 

per blade 

where is the air density, c is the blade chord so that the lift producing area of the blade element is c.dr.  

If the number of propeller blades is (B) then, 

. . . . . . . . .(1) 

 

. . . . . . . . .(2) 

2. Inflow Factors 

A major complexity in applying this theory arises when trying to determine the magnitude of the two flow 

components V0 and V2. V0 is roughly equal to the aircraft's forward velocity (Vinf) but is increased by the 

propeller's own induced axial flow into a slipstream. V2 is roughly equal to the blade section's angular speed 

( r) but is reduced slightly due to the swirling nature of the flow induced by the propeller. To calculate V0 

and V2 accurately both axial and angular momentum balances must be applied to predict the induced flow 

effects on a given blade element. As shown in the following diagram the induced flow components can be 

defined as factors increasing or decreasing the major flow components. 

 

So for the velocities V0 and V2 as shown in the previous section flow diagram, 

where a -- axial inflow factor  
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where b -- angular inflow factor (swirl factor) 

The local flow velocity and the angle of attack for the blade section is thus 

. . . . . . . . . . . . . . . . . . . . . . (3) 

. . . . . . . . . . . . . . . . . . . . . . .(4) 

3. Axial and Angular Flow Conservation of Momentum 

The governing principle of conservation of flow momentum can be applied for both axial and 

circumferential directions. 

 

 

For the axial direction, the change in flow 

momentum along a stream-tube starting 

upstream, passing through the propeller at 

section AA and then moving off into the 

slipstream, must equal the thrust produced 

by this element of the blade. 

To remove the unsteady effects due to the propeller's rotation, the stream-tube used is one covering the 

complete area of the propeller disk swept out by the blade element and all variables are assumed to be time 

averaged values. 

T = change in momentum flow rate 

= mass flow rate in tube x change in velocity 

 

By applying Bernoulli's equation and conservation of momentum, for the three separate components of the 

tube, from freestream to face of disk, from rear of disk to slipstream far downstream and balancing pressure 

and area versus thrust, it can be shown that the axial velocity at the disk will be the average of the 

freestream and slipstream velocities. 

V0 = (Vinf + Vslipstream)/2, that means Vslipstream = Vinf( 1 + 2a) 

Thus  
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. . . . . . . . (5) 

For angular momentum  

Q = change in angular momentum rate for flow x radius 

= mass flow rate in tube x change in circumferential velocity x radius 

 

By considering conservation of angular momentum in conjunction with the axial velocity change, it can be 

shown that the angular velocity in the slipstream will be twice the value at the propeller disk. 

 

Thus 

 

. . . . . . . . . . . . . (6) 

Because these final forms of the momentum equation balance still contain the variables for element thrust 

and torque, they cannot be used directly to solve for inflow factors. 

However there now exists a nonlinear system of equations (1),(2),(3),(4),(5) and (6) containing the four 

primary unknown variables T, Q, a, b. So an iterative solution to this system is possible. 

4. Iterative Solution procedure for Blade Element Theory. 

The method of solution for the blade element flow will be to start with some initial guess of inflow factors 

(a) and (b). Use these to find the flow angle on the blade (equations (3),(4)), then use blade section 

properties to estimate the element thrust and torque (equations (1),(2)). With these approximate values of 

thrust and torque equations (5) and (6) can be used to give improved estimates of the inflow factors (a) and 

(b). This process can be repeated until values for (a) and (b) have converged to within a specified tolerance. 

It should be noted that convergence for this nonlinear system of equations is not guaranteed. It is usually a 

simple matter of applying some convergence enhancing techniques (ie Crank-Nicholson under-relaxation) 

to get a result when linear aerofoil section properties are used. When non-linear properties are used, ie 

including stall effects, then obtaining convergence will be significantly more difficult. 

For the final values of inflow factor (a) and (b) an accurate prediction of element thrust and torque will be 

obtained from equations (1) and (2). 

5. Propeller Thrust and Torque Coefficients and Efficiency.  

The overall propeller thrust and torque will be obtained by summing the results of all the radial blade 

element values. 

(for all elements), and (for all elements) 

The non-dimensional thrust and torque coefficients can then be calculated along with the advance ratio at 
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which they have been calculated. 

CT = T/( n2D4) and CQ = Q/( n2D5) for J = Vinf/(nD) 

where n is the rotation speed of propeller in revs per second and D is the propeller diameter. 

The efficiency of the propeller under these flight conditions will then be 

(propeller) = J/(2 ).(CT/CQ). 

6. Software Implementation of Blade Element Theory  

Two programming versions of this propeller analysis technique are available. The first is a demonstration 

program which can be used to calculate thrust and torque coefficients and efficiency for a relatively simple 

propeller design using standard linearised aerofoil section data. The blade is assumed to have a constant 

pitch (p) so that the variation of with radius is calculated from the standard pitch equation. 

p = 2 r tan( ). 

PROPELLER COEFFICIENTS 

 

Propeller efficiency (ηP)vs advance (J)ratio with pitch angle( β) as parameter 

This is because even though the engine is working and producing thrust, no useful work 

is done when V is zero. 

For a chosen value of β, the efficiency (ηp) increases as J increases. It reaches a 

maximum for a certain value of J and then decreases. 

The maximum value of ηp is seen to be around 80 to 85%. However, the value of J at 

which the maximum of ηp occurs, depends on the pitch angle β. This indicates that for a 

single pitch or fixed pitch propeller, the efficiency is high (80 to 85%) only over a narrow 

range of flight speeds. 

Keeping this behavior in view, the commercial airplanes use a variable pitch propeller. In 

such a propeller the entire blade is rotated through a chosen angle during the flight and 

the pitch of all blade elements changes. Such propellers have high efficiency over a wide 

range of speeds. 
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PERFORMANCE OF FIXED AND VARIABLE PITCH PROPELLERS 

The propeller is a twisted airfoil that converts the rotating power of the engine into thrust, 

which propels the airplane through the air. Sections of the propeller near the center are 

moving at a slower rate of speed than those near the tip, which is why the blades are 

twisted. 

 

For a propeller driven aircraft, thrust is produced by a propeller converting the shaft 

torque into propulsive force, and depends on the propeller efficiency. However, propeller 

efficiency depends on the propeller angle of attack, consequently on the advance ratio 

given bywhere V is the forward velocity of the aircraft, n is the rotational speed and D is 

the diameter of the propeller. Thus, for a constant RPM, propeller efficiency depends on 

the forward velocity of the aircraft as shown in Figure. 

 
 

Efficiency versus advance ratio for a fixed pitch propeller 

 

For a variable pitch propeller, the device called “propeller governor” changes the propeller pitch 

to a higher blade angle, as the forward velocity of the aircraft increases. Therefore, maximum 

efficiency is obtained for a wide range of forward velocities from take-off to cruise. In case of 

fixed pitch propellers, they are designed to provide optimum efficiency for only one flight phase, 

either climb orcruise, thus take-off performance is poor with the fixed pitch propellers. 
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 Efficiency of a variable pitch propeller 

If the propeller is a fixed pitch propeller, for a constant RPM, there is only oneforward 

velocity where the efficiency reaches to a maximum. Consider thedrawing given in 

Figure given, where the forward velocity, blade angle, angle ofattack, and rotational 

velocity relations are shown. If the blade angle is fixed,hence the propeller is fixed pitch; 

angle of attack will decrease as the forwardvelocity of aircraft increases. Although this 

will result in an efficiency increaseinitially, further velocity increase will bring the angle 

of attack to zero, and thepropeller will not be able to generate thrust. In order to avoid 

this, variable pitch or constant speed propellers are used. 

 

 

 

 

 

 

 

 

TWO MARK QUESTION BANK 

 
UNIT - I REVIEW OF BASIC FLUID MECHANICS 

 
 
 
1. Differentiate control volume and control surface. 
 

Control volume has a fixed boundary, Mass, Momentum & energy are allowed to 

cross the boundary. The boundary of the control volume is referred to us control 

surface. 

 

2. What is aerodynamics? 
 

Aerodynamics is the study of flow of gases around the solid bodies. 
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3. Differentiate steady and unsteady flow. 
 

In a steady flow fluid characteristics is velocity, pressure , Density etc at a point do 

not change with time but for unsteady flow these characteristics will change with 

repeat to time. 

 

4. Differentiate compressible and Incompressible flow. 
 

In a compressible flow, Density will change from point to point in a fluid flow, for 

incompressible flow, density will not change from point to point in a fluid flow. 

 

5. Define a system. 
 

The word system refers to a fixed mass with a boundary, However with time, the 

boundary of the system may change, but the mass remains the same. 

 

6. Differentiate between differential and Integral approach. 
 

Differential approach aims to calculate flow at every point in a given flow field in the 

form p(x,y,z,t). One may establish a big control volume to encompass the region R 

and calculate the overall features like drag & lift by studying what happens at the 

control surface. This procedure is called integral approach. 
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7. What is the principle of conservation of mass? 
 

Mass can be neither created nor destroyed. This is the basic principle for continuity 

equation. 

 

8. Give the continuity equation for a steady flow. 
 

For a steady flow mass accumulation will not occurs inside the control 

volume. So,  

Where V is  velocity of fluid 
 

 

9. Give the continuity equation for a incompressible flow.   
For an incompressible density is  constant 

 
 
 
 
 

 

10. Give the continuity equation for a steady - incompressible flow.   
If the flow is steady &incompressible , then continuity equation is  

 

 
 

Where V is the velocity of fluid. 
 

 

11. Consider a convergent duct with an inlet area A1=5m2, Air enters this duct with 

a velocity V1=10m/s and leaves the duct with a velocity V2= 30m/s. what is the  

area of the duct exit.? 
 

Solution:  A1V1=A2V2(for in compressible flow  = constant) 
 

A2 = A1V1  =5x10  = 1.67m² 

V2 30 

 

12. What are the forces that can be experienced by fluid flow in a system?  
 

1. Body forces like gravity , electromagnetic forces(or)any other forces which act at a 

distance on a fluid inside volume.  

2. Surface forces like pressure and shear stress acting on the control surface S.  
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13. What is impulse momentum equation? 
 

The impulse of a force ‘F’ acting on a fluid mass ‘m’ in a short interval of time ‘dt’ is 

equal to the change of momentum d(mv) in the direction of force . 

 

14. What is meant by streamlining a body?  
 

Steam lining in a fluid flow to minimize the drag due to skin fiction by providing the 

body with a boundary which permits a gradual divergence of flow with no separation 

of boundary layer.  

 

15. What is an ideal fluid?  
 

Perfect or ideal fluid is one which is friction less and effect of viscosity is 

negligible. A perfect gas is one which obeys Boyle and Charles law.  

 

16. What is a rotational flow?  
 

A fluid flow in which every fluid element rotates about its own centre. 
 

 

17. What is vortex line and vortex tube?  
 

Vortex line is the vector line of the vorticity field.  
 

Vortex tube is a vector tube filled with fluid and famed by vortex lines.  
 

 

18. Relate the terms irrotationality and vorticity in fluid flow  
 

The motion of a fluid is said to be irrotational when vorticity is equal to zerro. ie, 

twice rotation is zero or vorticity is twice rotation.  
 

UNIT - II TWO DIMENSIONAL FLOWS 
 
19. How stream functions may be used to determine the discharge of fluid flow?  
 

The stream function may be defined as the flux of stream low. Hence difference 

between adjustment stream functions gives the rate of flow between stream lines.  

 

20. If stream function or potential function of a flow satisfies Laplace equation, what 

does it mean?  
 

If stream function satisfies Laplace equation, then the flow is irrotational. If potential 
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function satisfies Laplace equation, then the flow is continuous.  

21. How stream function and potential function are related to irrotational flow?  
 

Stream function exists to both rotational and irrotational flow. Potential function 

exists only for irrotational flow.  

 

22. What is a free vortex flow?  
 

A flow field circular stream lines with absolute value of velocity varying inversely 

with the distance from centre. The flow is irrotational at every point except of the 

centre.  
 
23. What does a free vortex flow mean?  
 

A flow which is free of vorticity except at the centre. 
 

 

24. What is meant by bound vortex of a wing?  
 

The vortex that represents circulatory flow around the wing is called the bound 

vortex. This vortex remains stationary with respect to the general flow.  

 

25. What is a forced vortex flow?  
 

A flow is which each fluid particle evers in acirwlar path with speed varying directly 

as the distance from the axis of rotation.  

 

26. Define velocity vector with respect to a potential line?  
 

There is no velocity vector tangential to a potential lines, the velocity is perpendicular 

to the potential line. 

 

27. Why tornados are highly destructive at or near the centre?  
 

Tornado is a free vortex flow such that velocity multiplied by distance from centre is 

constant. Therefore the velocity is maximum at the centre hence it is highly 

destructive.  

 

28. Specify the stream and potential lines for a doublet  
 

Stream lines are circles tangent to X axis  

Potential lines are circles tangent to Y axis  
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29. Specify the stream and potential lines for a source and sink.  
 

Stream lines are radial liner from 

centre Potential lines are circles  

 

30. Compare the stream lines and potential lines of source/ sink with that of a vortex 

flow  
 

The stream lines of source/ sink and potential lines of vortex are similar. The 

potential lines of source / sink and stream lines of vortex are similar.  

 

31. State the properties of a stagnation point in a fluid flow  
 

The sudden change of momentum of fluid from a finite value to stagnant value 

imparts pressure force at the point of stagnation, thus the velocity gets converted to 

pressure.  

 

32. What is Rankine half body?  
 

The dividing stream line y= m/2 of source, uniform flow combination forms the 

shape of Rankine half body.  

 

33. What is Rankine oval?   
The dividing stream line (ψ= 0) of doublet, uniform flows combination forms the 

shape of Rankine oval.  

 

 

34. How transverse force can be introduced to a flow around a cylinder?  
 

Add a circulatory flow along with the uniform flow to get a transverse force. Spin the 

cylinder about its own axis to get circulatory flow.  

 

35. How the stream and potential lines act in source vortex combination?  
 

Stream and potential lines in a source vortex combination are both equiangular, 

spirals. The change of direction of radial movement of fluid particles will be equal in 

magnitude while opposition direction to the change in tangential movement so that 

curves is equiangular spirals.  
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36. Compare vortex with source/ sink flow pattern  
 

The stream lines of source/ sink and potential lines of vortex are similar. The 

potential lines of source/ sink and stream lines of vortex are similar.  

 

37. State the stream function for uniform flow of velocity ‘U’ parallel to positive X-

direction  
 

Stream function  ψ= -Uy 
 

 

38. State the stream function for uniform flow of velocity V parallel to positive Y 

direction  
 

Stream function ψ= -Vx 
 

 

39. What is the diameter of a circular cylinder which is obtained by combination of  
 

doublet of strength “y” at origin and uniform flow U parallel to X axis ?  
Diameter (a) =  

 
 
 

40. How a line source differs from a point source?  
 

A two dimensional source is a point source from which the fluid is assumed to flow 

out radially in all direction. As this flow is restricted to one plane and to allow for the 

application of the results to three dimensional flows, the term line source is a  
 

sometimes used. 

 
 

UNIT - III CONFORMAL TRANSFORMATION 
 
41. Define potential flow of a fluid  
 

The irrotational motion of an incompressible fluid is called potential flows.  
 

 

42. Relate vorticity and circulation.  
 

Vorticity is the circulation around an element divided by its area.  
 

 

43. Relate vorticity and angular velocity  
 

Vorticity is equal to twice angular velocity. Therefore, circulation= 2 x rotation x 

area.  
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44. What is meant by Karmen vortex sheet? 
 

A body moving in real fluid leaves double row of vortices from the sides of body. 

These vortices cure rotating in opposite directions and gradually dissipated by 

viscosity as they move down stream. If the vortices are stable, for a distance between 

vortices `h' and for pitch ` l' of the vortices , h/l= 0.2806 for Karman vortex sheet. 

 

45. How are the stream lines in a source sink pair? 
 

The stream lines are circles with centre on y- axis for a source sink pair. Stream lines 

are circles with common chord. 

 

46. What is vortex pair? 
 

Two vortices of equal strength but of opposite sign or with opposite directions of 

rotation constitute a vortex pair. 

 

47. What is meant by complex potential? 

If stream function ψ and potential function Ф combined in a single function`w' such 

that then                          w (z) is called complex potential. 

 
48. What is transformation?  
 

A transformation is a mathematical process by which a figure may be distorted or 

altered in size and shape. This is done by means of algebraic relationship between the 

original coordinates and co-ordinates of new position, the pair of co- ordinates being 

represented by complex variables.  

 

49. When a transformation is said to be conformal?  
 

The transformation is said to be confirmed if small elements of area are un altered 

shapes(though they are in general, altered in size, position and orientation).  

 

50. What is Joukowski transformation?  
 

Joukwski assumes that relation w(z)=z+a2/z so that second term is small when z is 

large . Thus at great distances from the origin the flow is undisturbed by the 

transformation.  
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51. What is thickness ratio? 
 

It is the ratio of maximum thickness to chord of a Rankine oval.  
 

 

52. Define lift and drag.  
 

Since the fluid is in motion, we can define a flow direction along the motion. The 

component of the net force perpendicular (or normal) to the flow direction in called 

the lift, the component of the net force along the flow but in opposite direction is 

called the drag.  

 

53. Define centre of pressure:  
 

The dynamic forces act in a body through the average location of the pressure 

variation which is called the centre of pressure.  

 

54. How velocity varies with radius in a vortex core?  
 

For viscous flow around a vortex core velocity inversely propositional to the radius  
 

 

55. How the down wash of a wing is related down wash of tail plane?  
 

The down wash on the tail resulting from the wing wake is almost twice as great as 

the down wash on the wing resulting from wing wake.  

 
 

 

56. What is strength of a vortex and how it is measured?  
 

It is the magnitude of circulation around it and is equal to the product of vorticity and 

area.  

 

57. Brief out how wing tip vortices are formed.  
 

On account of larger pressure below the wing surface than on the top, some flow is 

there from bottom to top round the wing tips incase of a finite using. This produces 

velocity sideways over most of the wing surface. This causes a surface discontinuity 

in the air leaving the wing which rolls up to distinct vortices.  
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UNIT - IV AIRFOIL AND WING THEORY 
 
 
 
 

 

58. Suggest methods to resolve induced drag of a wing:  
 

(i) Make life distribution on wing elliptical  
 

(ii) increase the aspect ratio.  
 

 

59. State the assumptions made in simplified horseshoe vortex system of a wing:  
 

The wing is replaced by a single bound span wise vortex of constant strength which 

turns at right angle at each end to trailing vortices which extend to infinity behind the 

wing. These two trailing vortices. 
 

i) each of which must provide the same total lift.  
 

ii) Each must have same magnitude of circulatin and same circulation 

at mid- span  

 

60. What is meant by Kutta- Joukowski flow?  
 

Kutta prescribed tangential flow conditional at trailing edge of airfoil, while 

Joukowski solution permitted a rounded leading edge to have a smooth flow around 

the leading edge without separation.  

 

61. Point out the effect of bounding layer in case of a kutta- Joukowski flow past an 

aerofoil:  
 

separation of boundary layer at leading edge can be avoided in a small range of 

angles of attack due to thin boundary layer formation. The formation of boundary 

layer caused the flow to leave trailing edge torn genetically.  

 

62. State the limitations of lifting line theory.  
 

(i) Straight narrow wings with smooth pressure distribution, theory agrees well.  
 

(ii) Theory gives correct value of sown wash along the centre of pressure of any 

distribution of left that is symmetrical ahead and behind a straight line at right angles 

to the direction.  
 

(iii) for curved or yawed lifting lines of law aspect ratio, theory is not adequate.  
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63. Why a thin aerofoil is considered in subsonic flows?  
 

The necessity of minimizing the induced drag leads to the choice of high aspect ratio 

for the wing design at subsonic condition. Hence thin aerofoil is preferred.  

With such narrow wings the flow can be approximated to two- dimension of flow 

around a infinitely long cylindrical wing of same section profile  

 

64. Define slender body of revolution.  
 

The radius of body is very small than length is known as slender body of revolution.  
 

 

65. Briefly state the limitation of Prandtl -Glauert compressibility correction factor  
 

(i) The M ∞ Must be less than unity  
 

(ii) At some Mach number below unity, the value of M depends on thickness of 

aerofoil and angle of attack. Aerofoil with finite thickness the perturbation 

components of velocity cannot be considered small relative to stream velocity (u/U & 

v/V not small)  

 

66. Why Fourier sine series in the form                         was assumed for distribution 

of circulation on airplane wings? 

 
Fourier sine series was chosen to satisfy the end conditions of curve reducing to zero 

at tips where  

 
 
 
67. How the sine series was modified for circulation distribution on a symmetrically 

loaded wing?  
 

 

 For any symmetric loading one or more even harmonics of sine series are to be      

incorporated in the distribution  
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68. State Kelvin’s circulation theorem 
 

Circulation and hence vortex strength, does not vary with time if (i) the fluid is 

nonviscous (ii) the density is either constant or a function of pressure only (iii) body 

forces such as gravity or magnetic force are single valued potential. 

 

69. Compare thin aerofoil theory with vortex panel method  
 

Limitations of thin aerofoil theory (i) it applies only to aerofoil at small of attack (ii) 

the thickness must be less than 12% of chord. When higher angles of attack 

aerodynamic lift of other body shape are to be considered vortex panel method finds 

its own application. Vortex panel method provides the aero dynamic characteristic of 

bodies of arbitrary shapes, thickness and orientation. This is a numerical method.  

 

70. List out the application of horseshoe vortex analysis on aerodynamics  
 

1. Prandtls lifting line and lifting surface theory of wings.  
 

2. Interference problems of aircraft flying together.  
 

3. On ground effect of aircrafts flying very close to ground.  
 

4. Influence of wing down wash field on flow over other components of aircrafts, 

especially the total plane.  

5. Interference in wind tunnel.  
 

 

71. Why large spacing is to be provided to aircrafts while landing or take –off?  
 

Wing tip, vortices are essentially like tornadoes that trail down- stream of the wing. 

These vortices can sometimes cause flow disturbance to aeroplane following closely 

to it. Hence a avoid any such accidents large spacing is preferred between aircraft 

performing landing and tike- off.  

 

72. What is the effect of downwash velocity on local free- stream velocity  
 

Down wash causes the local free- stream to produce relative wind at a slightly higher   
angle of incidence.    
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73. Why geometrical angle of attack of a wing and effective angle of attack of local 

aerofoil section differs?  
 

The angle of attack actually seen by local airfoil section is the angle between aerofoil 

section chord and local relative wind. This is because although the wing is at a 

geometric angle of attack ` α'  the local aerofoil section will have  a smaller value of 

angle of attack than geometrical.  

 

74. Show that D’ Alembert’s paradox is not true to a finite wing. 
 

D’ Alembert’s paradox states that there is no drag on bodies submerged in a flow of 

perfect fluid. 

The presence of downwash over a finite wing creates a component of drag- induced 

drag- even with invisid incompressible flow of fluid when there is no skin friction or 

low separation. Hence paradox is not true in the case of flow over a finite wing. 

 

75. Can induced drag on a wing be considered as a drag caused by pressure 

difference. If so Justify. 
 

The three- dimensional flow induced by wing- tip vortices simply alters the pressure 

distribution on the finite wing, in such a way that there is a non- balance of pressure 

in the stream direction. This is induced drag, which may be considered as a type of 

pressure drag.  

 

76. How induced drag differs from viscous  dominated drag contributions?  
 

Viscous dominated drags are due to skin friction, pressure drag and boundary layer 

separation drag. Included drag is purely due to down- wash induced by vortices and 

has nothing to do with viscosity of fluid or boundary layer formation.  

 

77. The profile drag coefficient for a finite wing may be taken equal to that of its 

aerofoil section. Why?  
 

Profile drag is the sum of skin friction and pressure drag, which is mainly viscous-

dominated part of drag. These depend on the fluid flowing and on the configuration 

of aerofoil section and not on the extend of the wing.  
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78. State analogical electromagnetic theory to Biot- Savart law  
 

The vortex filament is visualized as a wire carrying current ‘I’ then the magnetic field 

strength dB induced at a point P by a segment of wire ‘dl’ with current in the 

direction of wire is  
 
 

 

Where ‘‘ is the permeability of the medium surrounding the wire. 
 

 

79. What is meant by geometric twist of a wing? How it differs from aerodynamic 

twist?  
 

A small twist is given to the wing so that a at different span wise stations are 

different. This is called geometric twist. The wings of modern aircraft have different 

aerofoil sections along the span with values of zero lift angle..this is called 

aerodynamic twist of wing.  

 

80. Why the lift over the span is not uniform?  
 

Geometric twist causes angle of incidence  variation from root to tip of wing. The 

wings of air- planes have different aerofoil sections along span with different zero lift 

incidence (aerodynamic twist). As a result of this, lift per unit span is also different at 

various locations from centre. There is a distribution of lift per unit span length on 

long span.  
 

UNIT - V VISCOUS FLOW 
 
81. What is geometric twist? Differentiate “wash out” and “wash in” 
 

The wings of aircraft are slightly twisted from fuselage towards tip so that the angles 

of incidence of the individual aerofoil sections are different at different spanwise 

stations. If the tip of the wing at lower angle of incidence than root the wing is said to 

have “washout” and if the tip is at higher angle of incidence than root the wing is said 

to have “ washin”. 
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82. Why induced drag is named drag due to lift?  
 

Induced drag is the consequence of the wing tip vortices, which are produced by the 

difference in pressure between lower and upper surface of the wing. The lift is also 

produced due to the same pressure difference. Hence the cause of induced drag is 

closely associated with the production of lift in the finite wing.  

 

83. When lift is high induced drag is also high and becomes a substantial part of 

total drag. Why?  
 

As induced drag coefficient varies as the square of lift coefficient for elliptical load 

distribution over a wing for higher lift induced drag is also high and becomes a major 

part of the total drag of the aircraft.  

 

84. “ Aspect ratio of a conventional aircraft should have a compromise between 

aerodynamic and structural requirements” - discuss. 
 

Lager the aspect ratio, smaller will be induced drag coefficient and vice versa. Hence 

is the induced drag also. In a design of high aspect ratio, wing becomes slender and 

gas poor structural strength. A compromise between these two aspects should the 

attained inn designing the aspect ratio of wing. 

 

85. How lift distribution, plan form and down wash velocity are related in airplane 

wings  
 

For elliptic lift distribution on the span of wing, chord variation from root to tip 

aerofoil sections may be assumed elliptical or elliptical plan- form may be assumed. 

In such cases the downwash velocity may be constant through – out span.  

 

86. Brief out the advantage of a tapered wing.  
 

Elliptic plan- forms are expensive to manufacture than rectangular plan- forms. 

Rectangular plan- forms generate lift distribution far from optimum. A compromise is 

something in between these two plan- forms. Viz, tapered plan- form, so that lift 

distribution closely approximate elliptical case. Also a tapered wing can be designed 

with an induced drag reasonably close to minimum value. It is easier to make straight 

leading and trailing edges to tapered plan- forms. That is why most conventional 

aircrafts employ tapered rather than elliptical wing plan- forms.  
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87. Give range of variation of aspect ratio for subsonic airplanes. 
 

Aspect ratio is between 6 to 22 for actual wings. For wind tunnel test models it is up 

to 6. 

 

88. Specify the design aspect for minimizing induced drag.  
 

Design factor is not closeness to elliptical plan- form, but to make the aspect ratio as 

larger as possible.  

 

89. What is the relation between aspect ratio and lift curve slope?  
 

For reduction of aspect ratio, lift curve slope reduces for finite wing. An infinite wing 

large aspect ratio and so larger the lift curve slope ( Aspect Ratio  a)  

 
 
90. To which plan forms the lifting line theory and lifting surface theory are 

applicable.  
 

Lifting line theory gives a reasonable result for straight wings at moderate and high 

aspect ratio. At low aspect ratio straight wings, swept sings, and delta wings have a 

more sophisticated model of lifting line theory, sat lifting surface theory is applied.  

 

91. What is meant by flow tangency condition on every point on wing surface?  
 

The wing plan- form is assumed as the stream- surface of flow in lifting surface 

theory. There is no flow velocity component normal to this stream- surface. Hence 

induced velocity and normal component of free- stream velocity to be zero at all 

points on the wing. This is called flow tangency condition.  

 

92. If two wings have same lift coefficient how their aspect ratios and angles of 

attack are related.  
 

A wing of low aspect ratio will require a higher angle of attack than a wing of greater  
 

aspect ratio in order to produce the same lift 

coefficient. i.e., CL AR.( approximate)  
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93. Justify the statement “ the bound vortex strength is reduced to zero at the wing 

tips” 
 

The pressure distribution goes to zero at the tips of wings because of pressure 

equalization from the bottom to the top of wing tips. This causes no discontinuity of 

velocity between upper and tower surfaces of a wing at the tips. At wing tips single 

bound vortex of constant strength twins thro’ tight angle at each wing tip to form 

trailing vortices. This is equivalent to vortex filament of equivalent strength joint at 

tips. This causes a change in strength at to zero value. 

 
 
94. How the span of a simplified vortex system is arrived at from the bound vortex 

of wing?  
 

Simplified system may replace the complex vortex system of a wing when 

considering the influence of the lifting system on distant points in the flow. Wing is 

replaced by a single bound spanwise vortex of constant strength which is turned at 

right angles at each tip wing forming trailing vortices which extend to infinite length. 

When general vortex is simplified following points to be noted (i) bounded vortex 

and simplified vortex must provide same total lift (ii) must have same magnitude of 

circulation about trailing edge vortices and hence same circulation at mid span.  

 
 
95. What is the length of semi- span of equivalent horseshoe vortex for elliptical  
 

distribution of circulation on a wing of span’ 2s’ 
 

Equivalent semi span  s =    

 

96. Total downwash for down- stream of the wing is twice that in the vicinity of the 

wing itself. Why?  
 

The down- wash near the bound vortex is due to two semi- infinite vortices- trailing 

vortices 
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97. State Helmholtzs vortex theorem.  
 

I. Strength of vortex cannot increase or decrease along its axis or length, the strength being the 

circulation around it and equal to vorticity. Area. (if section area diminishes vorticity increases and 

vice versa). Since infinite vorticity is not possible, cross sectional area can not reduce to zero.  

II. Vortex can not end in a fluid. Vortex forms a closed loop, vortex can end only on a solid.  

III. Vortex tube cannot change in strength between two sections unless filaments of  
 

equal strength or leave the vortex tube. 
 
IV. There is no fluid interchange between tube and surrounding fluid and remains constant vortex 

moves through a fluid. 

 

98. Where a vortex can end? 
 

Vortex cannot end in a fluid. It forms a closed loop in a fluid. Vortex can have a discontinuity when 

there a solid body against it or where there is a surface of separation. 

 

99. Can a vortex tube change in its strength between two sections  
 

A vortex tube cannot change is strength between two sections, unless vortex filaments of equivalent 

strength join or leave vortex tube.  

 

100. State Blasius theorem for 2D incompressible, irrotational flow  
 

This provides a general method of determining the resultant force and moment exerted by a fluid in 

steady, 2- dimensional flow past a cylinder of any cross- section, provided, that the complex 

potential w= f(z) for the flow pattern is known. 
 

If x and y components of the resultant force being Px and Py and moments of the resultant force 

about origin Mz. 

Px- i Py = ½ I  dw
2
dz  and  

dz 
 

Mx+ i My = ½  z dw
2
dz 

dz 
 
 

Where the integrals are taken around the contour of cylinder. 



Questions opt1 opt2 opt3 opt4 opt5 opt6 Answer
1 The unit for pressure Newton Pascal Joule Kilogram Pascal 

2 The symbol for mass density ρ μ ψ Ф ρ

3
The unit of pressure one bar is 1 Pascal 

kilo 

Pascal 
100kpa 1000kpa 100kpa 

4

Atmospheric pressure  at sea level at 150C is 
101.3 

N/m2 

760mm 

of 

mercury 

10.33cm 

of water 

7.8 cm of 

mercury

760mm 

of 

mercury 

5 Newton’s second law F=m/a m=f x a F=m.a F = g.a F=m.a 

6 The basic unit for mass is Newton kilogram second Joule kilogram

7 Unit for power Newton Watt Joule second Watt 

8 The unit for energy Newton Pascal Joule meter Joule

9

One pascal is N/m2 N/mm2 KN/m2 
 

KN/mm2 
N/m2

10 Which one is not the aerodynamic forces lift drag thrust sideslip thrust

11
Continuity equation is Q1=Q2 

a1v1 = 

a2v3 
q1/q2  

a1v2 = 

a2v1 
Q1=Q2 

12
The expression weight per unit volume is

mass 

density

Specific 

weight 

Relative 

density 

surface 

tension

Specific 

weight 

13

________is the principle of conservation of mass

Mass can 

be 

neither 

created 

nor 

destroye

d

Mass can 

be  

created

Mass can 

be  

destroye

d

Energy 

can be 

neither 

created 

nor 

destroye

d

Mass can 

be 

neither 

created 

nor 

destroye

d

14 The unit of bulk modulus in SI unit is N/m2 pa-s kg/ms pa N/m2

15 The unit of mass density in SI unit is N/m2 pa-s kg/m3 pa kg/m3 

16

The unit of visocity in SI unit is N-S/m2 pa-s kg/ms pa

All the 

other 

three 

options 

are 

correct

17
In CGS system unit of viscosity is poise stokes 

mach 

number 
stroke poise

18
The bulk modulus of the fluid is the reciprocal of 

compress

ibility 
viscosity pressure

surface 

tension

compress

ibility 

19
It is a product of mass density and volume of the fluid mass 

specific 

weight

specific 

volume 

specific 

gravity                                                                    
mass 

20
The expression inverse of mass density is

mass 

density

specific 

gravity 

specific 

volume

surface 

tension

 specific 

volume

21
It is a product of mass density and gravitational acceleration 

mass 

density

specific 

weight

specific 

volume 

specific 

gravity                                                                  

specific 

gravity                                                                  

22
Mass flow per unit area is mass flux mass 

specific 

volume

mass 

flow
mass flux

23

Mass can be neither created nor destroyed is a physical principle of 
Energy 

Equation 

Moment

um 

Equation 

Continuit

y 

Equation

Euler 

Equation

Continuit

y 

Equation

24

The momentum Equation for an inviscid flow are called
Euler 

equation 

Navier-

Stokes 

Equation

Moment

um 

Equation 

Continuit

y 

Equation

Euler 

equation 

25

The momentum Equation for an viscous flow are called

Navier-

Stokes 

Equation

Euler 

equation 

Moment

um 

Equation 

Continuit

y 

Equation

Navier-

Stokes 

Equation

26
A fixed amount of matter contained within a closed boundary is called

Surround

ings
System Mass Molecule System

27
The region outside the system defines  System Mass

Surround

ings
Molecule

Surround

ings

28

Iy is a curve whose tangent at any point is in the direction of the velocity 

vector at that point is 

Stream 

line 
Path line

Streaklin

e
System

Stream 

line 

29
For Steady flow Pathlines and Streanline are

Not 

Same
equal zero constant equal

30 Vorticity is 2ω 2Φ 2Ψ 2α 2ω

31
Vorticity is not equal to zero  at every point in a flow is

irrotation

al
rotational circular linear rotational

32
Vorticity is equal to zero  at every point in a flow is

irrotation

al
circular rotational linear

irrotation

al

33

Irrotational flows can be described by 
Velocity 

potential

Stream 

function

Both 

velocity 

and 

stream 

function

mathema

tical 

functions

Both 

velocity 

and 

stream 

function

34

Irrotational flows can be described by the velocity potential, such flows 

are called

Potential 

flows

Smooth 

flow 

rotational 

flow

Streamfl

ow

Potential 

flows

35
Stoke is the unit of 

surface 

tension
viscosity

kinemati

c 

viscosity

dynamic 

viscosity

kinemati

c 

viscosity

36
The gases are considered incompressible when Mach Number 

is equal 

to 1.0

is equal 

to 0.50

is more 

than 0.3

is less 

than 0.2

is less 

than 0.2

37

Pascal’s law states that at a point is equal in all directions

in a 

liquid at 

rest

in a fluid 

at rest

in a 

laminar 

flow

in a 

turbulent 

flow                                                     

in a fluid 

at rest

UNIT I



38

Using Pitot – Tube we can measure in a pipe. discharge
average   

velocity

velocity   

at a  

point

 pressure 

at a point

velocity   

at a  

point

39

 If the fluid particles moving in a zig zag way, the flow is called Unsteady
Non- 

uniform

Turbulen

t 

 

Incompre

ssible

Turbulen

t 

40
If the Reynolds number is less than 2000, the flow in a pipe is 

laminar 

flow

turbulent 

flow

transition 

flow

laminar 

sub flow

laminar 

flow

41

According to Bernoulli's Principle, the velocity of a moving fluid 

increases,then the pressure within the fluid increases decreases

no 

change

becomes 

zero decreases

42

The property of a fluid or semifluid that causes it to resist flowing is 

called velocity gravity viscosity

magnitud

e viscosity

43

On a swept wing aircraft if both wing tip sections lose lift simultaneously 

the aircraft will   roll

  pitch 

nose up

  pitch 

nose 

down Yaw  

  pitch 

nose up

44 Lift on a delta wing aircraft

  

increases 

with an 

increased 

angle of 

incidenc

e (angle 

of attack)

  

decreases 

with an 

increase 

in angle 

of 

incidenc

e (angle 

of attack)

  does not 

change 

with a 

change 

in angle 

of 

incidenc

e (angle 

of attack)

increases 

with an 

increased 

angle of 

incidenc

e upto 

Stall  

  

increases 

with an 

increased 

angle of 

incidenc

e (angle 

of attack)

45 On a straight wing aircraft, stall commences at the

  root on 

a low 

thickness 

ratio 

wing

  tip on a 

high 

thickness 

ratio 

wing

  tip on a 

low 

thickness 

ratio 

wing

  root on 

a high 

thickness 

ratio 

wing

  root on 

a high 

thickness 

ratio 

wing

46 For the same angle of attack, the lift on a delta wing

  is 

greater 

than the 

lift on a 

high 

aspect 

ratio 

wing

  is lower 

than the 

lift on a 

high 

aspect 

ratio 

wing

  is the 

same as 

the lift 

on a high 

aspect 

ratio 

wing

  is 

greater 

than the 

lift on a 

low 

aspect 

ratio 

wing  

  is lower 

than the 

lift on a 

high 

aspect 

ratio 

wing

47 The ISA

  is taken 

from the 

equator

  is taken 

from 45 

degrees 

latitude

  is taken 

from 30 

degrees 

latitude

  is taken 

from 60 

degrees 

latitude  

  is taken 

from 45 

degrees 

latitude

48 At higher altitudes as altitude increases, pressure

  

decreases 

at 

constant 

rate

  

increases 

exponent

ially

remains 

constant

  

decreases 

exponent

ially  

  

decreases 

exponent

ially

49 When the pressure is half of that at sea level, what is the altitude?

  12,000 

ft   8,000 ft

  10,000 

ft

  18,000 

ft  

  18,000 

ft

50 During a turn, the stalling angle

  

increases 

with 

AOA

  

decreases

  remains 

the same

increases 

with an 

increased 

angle of 

incidenc

e upto 

Stall  

  remains 

the same

51 The C of G moves in flight. The most likely cause of this is

  

moveme

nt of 

passenge

rs

  

moveme

nt of the 

centre of 

pressure

  

consump

tion of 

fuel and 

oils altitude  

  

consump

tion of 

fuel and 

oils

52 The C of P is the point where

  all the 

forces on 

an 

aircraft 

act

  the 

three 

axis of 

rotation 

meet

  the lift 

can be 

said to 

act CG Point  

  the lift 

can be 

said to 

act

53 The three axis of an aircraft act through the   C of G   C of P

  

stagnatio

n point

Chord 

line    C of G

54

An inviscid, incompressible fluid is sometimes called 
an ideal 

fluid

a real 

fluid 

a perfect 

fluid

an ideal 

or perfect 

fluid

an ideal 

or perfect 

fluid

55

p+(1/2)ρV^2= const

Bernoulli

's 

equation

Euler's 

equation

Navier 

stokes 

equation

Moment

um 

Equation 

Bernoulli

's 

equation

56

dp = - ρV dV

Navier 

stokes 

equation

Prandtl's 

equation

Bernoulli

's 

equation

Euler's 

equation

Euler's 

equation

57

A1V1=A2V2    is the quasi-one-dimensional continuity equation for 

incompre

ssible 

flow

compress

ible flow

low 

speed 

flow

low 

subsonic 

flow

incompre

ssible 

flow

58

Pitot tube is the most common device for measure Velocity

Kinemati

c 

Viscosity

Pressure
Dynamic 

Viscosity
Velocity

UNIT II



59

An airplane is flying at standard sea level.The measurement obtained 

from Pitot tube mounted on the wing tip reads 104857.2 Pa. What is the 

velocity of the airplane?  101314.1 Pa at sea level pressure

76.06 

m/s

80.32 

m/s

70.23 

m/s

69.32 

m/s

76.06 

m/s

60

Consider an airfoil in a flow with a freestream velocity of 45.72 m/s. The 

velocity at a given point on the airfoil is 68.58 m/s. Calculate the pressure 

coefficient at this point.

1.25 -1.25 2.3 -2.3 -1.25

61

▼^2 Φ = 0
Laplace 

Equation

Hetrogen

eous 

Equation

Homoge

neous 

Equation

Continuit

y 

Equation

Laplace 

Equation

62

Solutions of Laplace's equation are called 

Harmoni

c 

Function 

Non- 

Harmoni

c 

Function

singular 

function

dynamic 

function

Harmoni

c 

Function 

63
 Ψ=V∞Y is the_______ for an incompressible uniform flow

Stream 

Function

Velocity 

potential

Angular 

velocity
Vorticity

Stream 

Function

64
Φ = V∞ X  is the_______ for an incompressible uniform flow.

Stream 

Function

Velocity 

potential

Angular 

velocity
Vorticity

Velocity 

potential

65 Circulation around any closed curve in a uniform flow is 0 1 2 3 0

66

Uniform flow is 
irrotation

al
rotational

Both 

irrotation

al and 

rotational

linear
irrotation

al

67
The streamlines are directed away from the origin is called

source 

flow 
sink flow 

rotational 

flow

doublet 

flow

source 

flow 

68

Who invented the Pitot tube?
Henri 

Pitot

Ernest 

Mach
Prandtl 

John 

Anderso

n

Henri 

Pitot

69
The streamlines are directed towards the origin is called

source 

flow 
sink flow 

rotational 

flow

doublet 

flow
sink flow 

70

"When the velocity increaces, pressure decreases, and when the velocity 

decreases, the pressure increases" satisfies

Bernoulli

's 

equation

Euler's 

equation

Both 

Bernoulli

's 

equation 

and 

Euler's 

equation

Newtons 

law

Both 

Bernoulli

's 

equation 

and 

Euler's 

equation

71

The Quasi-one-dimensional continuity equation is
ρ1A1V1 

= ρA2V2

(ρ1A1)/

V2 = 

(ρ2A2)/

V1

ρ1A1V2 

= 

ρ2A1V2

ρ1A1V1 

= 

ρ2A2V3

(ρ1A1)/

V2 = 

(ρ2A2)/

V1

72 _____ is the source strength for source flow Ψ Λ Ω ε Λ

73

Sorce flow is________ at every point.
irrotation

al
rotational circular

All the 

other 

three 

options 

are 

wrong

irrotation

al

74
Degenerate case of a source-sink pair that leads to a singularity called 

doublet 

flow
sink flow 

source 

flow

uniform 

flow

doublet 

flow

75 The strength of the doublet is denoted by κ Λ ε Ω κ

76 κ is defined as lΛ lξ lΩ lη lΛ

77 _____ is called the strength of the vortex flow. Λ κ Г Ω Г

78
Source flow of Φ = 

(Λ/2∏) 

ln r
(Λ/2∏) θ

(Λ/3∏) 

ln r

(Φ/2∏) 

ln r

(Λ/2∏) 

ln r

79
Source flow of Ψ = 

(Λ/2∏) 

ln r
(Λ/2∏) θ

(Λ/3∏) 

ln r

(Φ/2∏) 

ln r
(Λ/2∏) θ

80
Vortex flow of Ψ = 

(Г/2∏) ln 

r

(Г/2ξ) ln 

r
(Г/2∏) θ (Г/2∏) η

(Г/2∏) ln 

r

81

Lift per unit span is directly proportional to circulation
Kutta 

condition 

Kutta 

theorem

Kutta-

Joukows

ki 

Theorem

Joukows

ki 

Theorem

Kutta-

Joukows

ki 

Theorem

82

L' = ρ∞V∞Г is 

Kutta-

Joukows

ki 

Theorem

Prandtl 

Theorem

Line 

theory

Joukows

ki 

Theorem

Kutta-

Joukows

ki 

Theorem

83

Bernoulli's equation applies to 

an 

inviscid 

and 

incompre

ssible 

flow

compress

ible flow

Viscous 

flow

non 

viscous 

flow

an 

inviscid 

and 

incompre

ssible 

flow

84 Low wing loading

  

increases 

stalling 

speed, 

landing 

speed 

and 

landing 

run

  

increases 

lift, 

stalling 

speed 

and 

manoeuv

rability

  

decreases 

stalling 

speed, 

landing 

speed 

and 

landing 

run

decreases 

lift, 

stalling 

speed 

and 

manoeuv

rability  

  

decreases 

stalling 

speed, 

landing 

speed 

and 

landing 

run



85

Due to the change in downwash on an un-tapered wing (i.e. one of 

constant chord length) it will

  not 

provide 

any 

damping 

effect 

when 

rolling

  tend to 

stall first 

at the 

root

  not 

suffer 

adverse 

yaw 

effects 

when 

turning

provide 

damping 

effect 

when 

rolling  

  tend to 

stall first 

at the 

root

86 True stalling speed of an aircraft increases with altitude

  because 

reduced 

temperat

ure 

causes 

compress

ibility 

effect

  because 

air 

density is 

reduced

  because 

humidity 

is 

increased 

and this 

increases 

drag

because 

increased 

temperat

ure 

causes 

compress

ibility 

effect  

  because 

air 

density is 

reduced

87

As a general rule, if the aerodynamic angle of incidence (angle of attack) 

of an aerofoil is slightly increased, the centre of pressure will

  never 

move

  move 

towards 

the root

  move 

towards 

the tip

move 

forward 

towards 

the 

leading 

edge  

  move 

forward 

towards 

the 

leading 

edge

88 On a very humid day, an aircraft taking off would require

  a 

shorter 

take off 

run

  a longer 

take off 

run

  

humidity 

does not 

affect the 

take off 

run

high air 

intake  

  a longer 

take off 

run

89

An aircraft is flying at 350 MPH, into a head wind of 75 MPH, what will 

its ground speed be?

  175 

mph

  350 

mph

  200 

mph 275 mph  

  275 

mph

90 When does the angle of incidence change?

  When 

the 

aircraft 

attitude 

changes

  When 

the 

aircraft is 

descendi

ng

  It never 

changes

When 

the 

aircraft is 

ascendin

g  

  It never 

changes

91 As the angle of attack decreases, what happens to the centre of pressure?

  It 

moves 

forward

  It 

moves 

rearward

s

  Centre 

of 

pressure 

is not 

affected 

by angle 

of attack 

decrease increases  

  It 

moves 

rearward

s

92

A decrease in pressure over the upper surface of a wing or aerofoil is 

responsible for

  

approxim

ately 2/3 

(two 

thirds) of 

the lift 

obtained

  

approxim

ately 1/3 

(one 

third) of 

the lift 

obtained

  

approxim

ately ½ 

(one 

half) of 

the lift 

obtained

approxim

ately  

twice of 

the lift 

obtained  

  

approxim

ately 2/3 

(two 

thirds) of 

the lift 

obtained

93 Pressure decreases

  

proportio

nally 

with a 

decreases 

in 

temperat

ure

  

inversely 

proportio

nal to 

temperat

ure

  

Pressure 

and 

temperat

ure are 

not 

related

  

proportio

nally 

with a 

increase 

in 

temperat

ure  

  

proportio

nally 

with a 

decreases 

in 

temperat

ure

94 As air gets colder, the service ceiling of an aircraft   reduces

  

increases

  remains 

the same

becomes 

zero  

  

increases

95 When the weight of an aircraft increases, the minimum drag speed

  

decreases

  

increases

  

increases 

upto stall

  remains 

the same  

  

increases

96 An aircraft will have

  less 

gliding 

distance 

if it has 

more 

payload

  more 

gliding 

distance 

if it has 

more 

payload

  the 

same 

gliding 

distance 

if it has 

more 

payload

  more 

gliding 

distance 

if it has 

less 

payload  

  the 

same 

gliding 

distance 

if it has 

more 

payload

97 When an aircraft experiences induced drag

  air 

flows 

under the 

wing 

span-

wise 

towards 

the tip 

and on 

top of the 

wing 

spanwise 

towards 

the root

  air 

flows 

under the 

wing 

span-

wise 

towards 

the root 

and on 

top of the 

wing 

span-

wise 

towards 

the tip

   air 

flows 

under the 

wing 

span-

wise 

towards 

the tip 

  air 

flows on 

top of the 

wing 

spanwise 

towards 

the root  

  air 

flows 

under the 

wing 

span-

wise 

towards 

the tip 

and on 

top of the 

wing 

spanwise 

towards 

the root



98 At stall, the wingtip stagnation point

  moves 

toward 

the lower 

surface 

of the 

wing

  moves 

toward 

the upper 

surface 

of the 

wing

  moves 

toward 

the lower 

wing tip

  moves 

toward 

the upper 

wing tip  

  moves 

toward 

the lower 

surface 

of the 

wing

99 The rigging angle of incidence of an elevator is

  the 

angle 

between 

the mean 

chord 

line and 

the 

horizonta

l in the 

rigging 

position

  the 

angle 

between 

the 

bottom 

surface 

of the 

elevator 

and the 

horizonta

l in the 

rigging 

position

  the 

angle 

between 

the 

bottom 

surface 

of the 

elevator 

and the 

longitudi

nal 

datum

  the 

angle 

between 

the 

bottom 

surface 

of the 

elevator 

and the 

lateral 

datum  

  the 

angle 

between 

the mean 

chord 

line and 

the 

horizonta

l in the 

rigging 

position

100 What is the lapse rate with regard to temperature?

  0.98°C 

per 1000 

ft

  1.98°F 

per 1000 

ft

  4°C per 

1000 ft

  1.98°C 

per 1000 

ft  

  1.98°C 

per 1000 

ft

101 What happens to load factor as you decrease turn radius?

  It 

increases

  It 

decreases

  It 

remains 

constant

load 

factor is 

not 

related to 

turn 

radius  

  It 

increases

102

If you steepen the angle of a banked turn without increasing airspeed or 

angle of attack, what will the aircraft do?

  It will 

remain at 

the same 

height

  It will 

sideslip 

with 

attendant 

loss of 

height

  It will 

stall

  It will 

decent  

  It will 

sideslip 

with 

attendant 

loss of 

height

103

______ that provides formulas for finding the force and moment on the 

airfoil profiler

Blasius 

theorem

Kutta 

condition

Joukows

ki 

Theorem

Euler 

theorem

Blasius 

theorem

104

For a thin uncambered airfoil, the center

of pressure f is close to the 

half-

chord 

point

quarter-

chord

chord 

point
camber

quarter-

chord

105

A transformation is conformal when

the 

figure is 

altered in 

size, 

position, 

orientatio

n

alter in 

shape 

only

altered in 

size only

altered in 

orientatio

n only

the 

figure is 

altered in 

size, 

position, 

orientatio

n

106

A body with a sharp trailing edge which is moving through a fluid will 

create about itself a circulation of sufficient strength to hold the rear 

stagnation point at the trailing edge

Blasius 

theorem

Kutta 

condition

Joukows

ki 

Theorem

Joukows

ki 

condition

Kutta 

condition

107

Blasius theorem that provides formulas for finding the___and______on 

the airfoil profiler

force and 

moment

force and 

thrust

moment 

and drag

thrust 

and drag

force and 

moment

108

According to Kutta condition the circulation at the trailing edge of the 

aerofoil should be
0 1 -1 ∞ 0

109
Helmholtz's theorem is suitable for the study of 

Vortex 

behavior

airfoil 

behavior

wing 

behavior

lift 

behavior

Vortex 

behavior

110

Modified joukoski aerofoil profile

modifies 

the shape 

of the 

aerofoil

modifies 

the angle 

at the 

trailing 

edge 

modifies 

the 

position 

of 

aerodyna

mic 

centre

modifies 

the 

maximu

m 

thickness

modifies 

the shape 

of the 

aerofoil

111

For a given airfoil at a given angle of attack, the value of Г around the 

airfoil is such that the flow leaves the trailing edge smoothly.

Kutta 

condition

Bernoulli

s 

equation

Euler's 

theorem

Joukows

ki 

Theorem

Kutta 

condition

112
When the trailing edge is finite, then the trailing edge is a 

stagnatio

n point 

first 

point 

quarter-

chord

chord 

point

stagnatio

n point 

113

The _____ are responsible for the component of the downwash.

All the 

other 

three 

options 

are 

wrong

leading 

edge

trailing 

edge 

trailing 

vortices

trailing 

vortices

114

The wind tunnel for calculating the lift, drag and accurate aerodynamic 

measurement was found between the year's

1902-

1905

1901-

1902

1900-

1901

1920-

1925

1901-

1902

115 Delta wing has a shape of rectangle square pentagon triangle triangle

116

The cross sectional shape obtained by the inter-section of the wing with 

perpendicular plane is called

leading 

edge wing tip plane airfoil airfoil

117 Some electrical phenomena like amora boreatis occur in

stratosph

ere

ionosphe

re

mesosph

ere

exospher

e

ionosphe

re

118 The portion that meets the air first in an airfoil is

leading 

edge

upper 

chamber

lower 

chamber

trailing 

edge

leading 

edge

119

The temperature decrease linearly at the approximation rate of 6.5k per 

km in

troposph

ere

stratosph

ere

ionosphe

re

mesosph

ere

troposph

ere
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120

The portion at which the airflow over the upper surface joins the lower 

surface is the

leading 

edge

upper 

chamber

lower 

chamber

trailing 

edge

trailing 

edge

121

The imaginary straight line drawn through the airfoil from its leading 

edge to its trailing edge is

upper 

camber

lower 

camber

mean 

camber chord chord

122 The characteristic curve of its upper or lower surface in an airfoil. camber chord

leading 

curve

trailing 

curve camber

123 Which of the following airfoil supports the airplane fly faster?

conventi

onal 

airfoil

laminar 

flow 

airfoil

turbulant 

flow 

airfoil

high 

speed 

airfoil

laminar 

flow 

airfoil

124 Lift is the opposing force of drag thrust gravity weight gravity

125 The lift produced without any camber is called static lift

dynamic 

lift

normal 

lift high lift

dynamic 

lift

126 The force that propels the aircraft forward is weight gravity lift thrust thrust

127 According to newtons law of gravitation, gravity and altitude are

directly 

proportio

nal

inversely 

proportio

nal not equal equal

inversely 

proportio

nal

128 The horseshoe vortex model is a simplified representation of the vortex wing aileron rudder vortex

129

 In horseshoe vortex model the wing vorticity is modelled by a bound 

vortex of constant 
vortex

circulatio

n

angular 

velocity

stream 

function

circulatio

n

130

The ______ created as the wing begins to move through the fluid is 

considered to have been dissipated by the action of viscosity
spiral

bound 

vortex

circulatio

n

starting 

vortex

starting 

vortex

131 The trailing vortices are responsible for the component of the 

circulatio

n

downwas

h

induced 

drag

starting 

vortex

downwas

h

132

The starting vortex created as the wing begins to move through the fluid 

is considered to have been dissipated by the action of 
viscosity pressure density velocity viscosity

133

the downwash which creates 
profile 

drag 

form 

drag

induced 

drag

skin 

friction 

drag

induced 

drag

134

The layer of air over the surface of an aerofoil which is slower moving, in 

relation to the rest of the airflow, is known as

  camber 

layer

  

boundary 

layer

chord 

layer

skin 

layer  

  

boundary 

layer

135 What is a controlling factor of turbulence and skin friction?

  Aspect 

ratio

  

Fineness 

ratio

  Counter-

sunk 

rivets 

used on 

engine

Counter-

sunk 

rivets 

used on 

skin 

exterior  

  Counter-

sunk 

rivets 

used on 

skin 

exterior

136 Changes in aircraft weight

  will not 

affect 

total drag 

since it is 

dependa

nt only 

upon 

speed

  will not 

affect 

total lift 

since it is 

dependa

nt only 

upon 

speed

  will 

only 

affect 

total drag 

if the lift 

is kept 

constant

  cause 

correspo

nding 

changes 

in total 

drag due 

to the 

associate

d lift 

change  

  cause 

correspo

nding 

changes 

in total 

drag due 

to the 

associate

d lift 

change

137 The aircraft stalling speed will

  increase 

with an 

increase 

in weight

  be 

unaffecte

d by 

aircraft 

weight 

changes 

since it is 

dependa

nt upon 

the angle 

of attack

  increase 

with an 

decrease 

in weight

decrease 

with an 

increase 

in weight  

  increase 

with an 

increase 

in weight

138 In a bank and turn

  extra 

lift is not 

required

  extra 

lift is not 

required 

if thrust 

is 

increased

  extra 

thrust is 

not 

required

extra lift 

is 

required  

  extra 

lift is 

required

139

To achieve the maximum distance in a glide, the recommended air speed 

is

  as close 

to the 

stall as 

practical

  as high 

as 

possible 

with 

VNE

  the 

speed 

where 

the L/D 

ratio is 

maximu

m

the speed 

where 

the L/D 

ratio is 

minimum  

  the 

speed 

where 

the L/D 

ratio is 

maximu

m

140 If the C of G is aft of the Centre of Pressure

  changes 

in lift 

produce 

a 

pitching 

moment 

which 

acts to 

increase 

the 

change 

in lift

  when 

the 

aircraft 

sideslips, 

the C of 

G causes 

the nose 

to turn 

into the 

sideslip 

thus 

applying 

a 

restoring 

moment

  when 

the 

aircraft 

yaws the 

aerodyna

mic 

forces 

acting 

forward 

of the 

Centre of 

Pressure

when the 

aircraft 

rolls the 

aerodyna

mic 

forces 

acting 

forward 

of the 

Centre of 

Pressure  

  changes 

in lift 

produce 

a 

pitching 

moment 

which 

acts to 

increase 

the 

change 

in lift

141 Porpoising is an oscillatory motion in the

  pitch 

plane

  roll 

plane

  yaw 

plane

all three 

planes  

  pitch 

plane



142

Due to the interference effects of the fuselage, when a high wing 

aeroplane sideslips

  the 

accompa

nying 

rolling 

due to 

keel 

surface 

area is 

destabiliz

ing

  the 

accompa

nying lift 

changes 

on the 

wings 

produces 

a 

stabilizin

g effect

  the 

accompa

nying 

rolling 

due to 

the fin is 

destabiliz

ing

the 

accompa

nying 

drag 

changes 

on the 

wings 

produces 

a 

stabilizin

g effect  

  the 

accompa

nying lift 

changes 

on the 

wings 

produces 

a 

stabilizin

g effect

143 The power required in a horizontal turn

  is 

greater 

than that 

for level 

flight at 

the same 

airspeed

  must be 

the same 

as that 

for level 

flight at 

the same 

airspeed

  is less 

than that 

for level 

flight at 

the same 

airspeed

is less 

than that 

for level 

flight at 

the same 

altitude  

  is 

greater 

than that 

for level 

flight at 

the same 

airspeed

144 A wing mounted stall sensing device is located

  usually 

on the 

under 

surface

  always 

at the 

wing tip

  always 

on the 

top 

surface

always 

on 

empenna

ge  

  usually 

on the 

under 

surface

145 For an aircraft in a glide

  thrust, 

drag, lift 

and 

weight 

act on 

the 

aircraft

  weight, 

lift and 

drag act 

on the 

aircraft

  weight 

and drag 

only act 

on the 

aircraft

weight, 

lift and 

thrust act 

on the 

aircraft  

  weight, 

lift and 

drag act 

on the 

aircraft

146 The upper part of the wing in comparison to the lower

  

develops 

more 

drag

  

develops 

the same 

lift

  

develops 

less lift

develops 

more lift  

  

develops 

more lift

147 What effect would a forward CG have on an aircraft on landing?

  Increase 

stalling 

speed

  No 

effect on 

landing

  Reduce 

stalling 

speed

Reduce 

ground 

speed  

  Increase 

stalling 

speed

148 An aspect ratio of 8 would mean

  span 64, 

mean 

chord 8

  mean 

chord 64 

, span 8

  span 

squared 

64 ,chord 

8

span 

squared 

4 ,chord 

8  

  span 64, 

mean 

chord 8

149 If an aircraft in level flight loses engine power it will

  pitch 

nose up

  pitch 

nose 

down

  not 

change 

pitch 

without 

drag 

increasin

g

not 

change 

pitch 

without 

drag 

decreasin

g  

  pitch 

nose 

down

150 The lift /drag ratio at stall

  

increases

  

decreases

remains 

constant

Remains 

constant 

upto 

stalling 

point  

  

decreases

151 The optimum angle of attack of an aerofoil is the angle at which

  the 

aerofoil 

produces 

maximu

m lift

  the 

aerofoil 

produces 

zero lift

  the 

highest 

lift/drag 

ratio is 

produced

the 

lowest 

lift/drag 

ratio is 

produced  

  the 

highest 

lift/drag 

ratio is 

produced

152 A high aspect ratio wing has a

  

increased 

induced 

drag

  

decrease

d 

induced 

drag

  

decrease

d skin 

friction 

drag

increased 

skin 

friction 

drag  

  

decrease

d 

induced 

drag

153 Minimum total drag of an aircraft occurs

  at the 

stalling 

speed

  when 

profile 

drag 

equals 

induced 

drag

  when 

induced 

drag is 

least

when 

wave 

drag is 

least  

  when 

profile 

drag 

equals 

induced 

drag

154 If the weight of an aircraft is increased, the induced drag at a given speed

  will 

increase

  will 

decrease

  will 

remain 

the same

will 

remain 

the same 

upto 

8000 ft  

  will 

increase

155 The transition point on a wing is the point where

  the flow 

separates 

from the 

wing 

surface

  the 

boundary 

layer 

flow 

changes 

from 

laminar 

to 

turbulent

  the flow 

divides 

to pass 

above 

and 

below 

the wing

the 

boundary 

layer 

flow 

changes 

from 

turbulent  

to 

laminar  

  the 

boundary 

layer 

flow 

changes 

from 

laminar 

to 

turbulent



156 The boundary layer of a body in a moving air stream is

  a thin 

layer of 

air over 

the 

surface 

where 

the air is 

stationar

y

  a layer 

of 

separated 

flow 

where 

the air is 

turbulent

  a layer 

of air 

over the 

surface 

where 

the 

airspeed 

is 

changing 

from free 

stream 

speed to 

zero 

speed

a layer of 

separated 

flow 

where 

the air is 

laminar  

  a layer 

of air 

over the 

surface 

where 

the 

airspeed 

is 

changing 

from free 

stream 

speed to 

zero 

speed

157 A laminar boundary layer will produce

  more 

skin 

friction 

drag than 

a 

turbulent 

one

  less 

skin 

friction 

drag than 

a 

turbulent 

one

  less 

pressure 

drag than 

a 

turbulent 

one

more 

pressure 

drag than 

a 

turbulent 

one  

  less 

skin 

friction 

drag than 

a 

turbulent 

one

158

The______ is the locus of points halfway between the upper and lower 

surfaces.

mean 

camber 

line

chord camber
chord 

line

mean 

camber 

line

159
The most forward points of the mean camber line is

trailing 

edge

leading 

edge

camber 

line 

chord 

line

leading 

edge

160
The most rearward points of the mean camber line is

camber 

line 

leading 

edge

trailing 

edge

chord 

line

trailing 

edge

161

The straight line connecting the leading and trailing edges is 

mean 

camber 

line

chord camber
chord 

line

chord 

line

162
The______ is the distance between the upper and lower surfaces.

camber 

line 

leading 

edge

trailing 

edge

Thicknes

s

Thicknes

s

163

The ______ is the maximum distance between the mean camber line and 

the chord line, measured perpendicular to the chord line.

mean 

camber 

line

chord camber
chord 

line
camber

164

An airfoil with no camber, that is, with the camber line and chord line 

coincident, is called 

symmetri

c airfoil

cambere

d airfoil

low 

speed 

airfoil

high 

speed 

airfoil

symmetri

c airfoil

165

The lift goes to zero only when the airfoil will pitch to

Negative 

angle of 

attack

Positive 

angle of 

attack

Neutral zero

Negative 

angle of 

attack

166

The value of α when lift equals zero called 

zero lift 

angle of 

attack 

Negative 

angle of 

attack

Positive 

angle of 

attack

Neutral

zero lift 

angle of 

attack 

167

Pressure drag due to flow sepration, sometimes called
form 

drag

wave 

drag

skin 

friction 

drag

surface 

drag

form 

drag

168

_____, due to the shear stress acting on the surface
form 

drag

skin 

friction 

drag

wave 

drag

interfere

nce drag

skin 

friction 

drag

169 The theoretical results for a symmetric airfoil is cl = 2∏α cl = ∏α cl = 2α cl = α cl = 2∏α

170

In symmetric airfoil the center of pressure and the aerodynamics center 

are both located at the____

quarter-

chord 

point

half-

chord 

point

chord 

point
camber

quarter-

chord 

point

171

In cambered airfoil the center of pressure is varies with

lift 

coefficie

nt

momentu

m 

coefficie

nt

drag 

cofficient
thrust

lift 

coefficie

nt

172

In cambered airfoil the aerodynamic center is at the

half-

chord 

point

quarter-

chord 

point

chord 

point
camber

quarter-

chord 

point

173 Lift slope for symmetric and cambered airfoil is 2∏ ∏ 4∏ 6∏ 2∏

174
An induced drag is frequently called

drag due 

to lift

drag due 

to thrust

drag due 

to weight

drag due 

to gravity

drag due 

to lift

175 The most______points of the mean camber line is leading edge. forward rearward negative positive forward 

176 The most_____points of the mean camber line is trailing edge. side rearward negative positive rearward

177

A form drag is otherwise called 
wave 

drag

skin 

friction 

drag

parasite 

drag

pressure 

drag

pressure 

drag

178
The _____ line connecting the leading and trailing edges is chord line

parallel 

line

diagonal 

line

perpendi

cular line

straight 

line

straight 

line

179

The ______ vortex created as the wing begins to move through 

the fluid is considered to have been dissipated by the action of 

viscosity

point starting
horse 

shoe 
wing tip starting

180

In cambered airfoil the _____ is varies with lift coefficient pressure

aerodyna

mic 

pressure

center of 

pressure
density

center of 

pressure

181 The value of α when lift equals_____called zero lift angle of attack one zero two three zero

182 The number of wings in  monoplane is 1 2 3 4 1

183 The number of wings in  biplane is 1 2 3 4 2

184 The number of wings in  triplane is 1 2 3 4 3

185 Taper ratio is defined as the ratio of tip chord to

rear 

chord

mid 

chord

low 

chord

front 

chord

rear 

chord

UNIT IV



186 The gross weight of an aeroplane divided by the square of the span is

aspect 

ratio

span 

length

span 

loading

taper 

ratio

span 

loading

187 The ratio between gross weight to gross area is called

aspect 

ratio

wing 

loading

span 

loading

taper 

ratio

wing 

loading

188 Drag caused by roughness in the surface is called

induced 

drag

skin 

friction 

drag

position 

drag

none of 

the given

skin 

friction 

drag

189 The component used to modify lift is called flaps rudders spoilers engine flaps

190 If the rear position of the aerofoil moves downwards it is called plain flap split flap zap flap

leading 

edge flap split flap

191

Open one or more air passages between the upper and lower surface is 

called zap flaps split flaps

slotted 

flaps

plain 

flaps

slotted 

flaps

192

The flap which moves backwards and increase the effective area of the 

wing is called zap flaps split flaps

slotted 

flaps

extension 

flap

extension 

flap

193 Speed of the aircraft must be gained rapidly in order to rest take off landing

none of 

the given take off

194 The principle behind dynamic drag is

newton I 

law

newton II 

law

newton 

III law

newton 

IV law

newton 

III law

195

The rotatory motion of the aircraft member about longitudnal axis is 

called rolling pitching yawing stalling rolling

196 The rotatory motion of the aircraft member about lateral axis is called rolling pitching yawing stalling pitching

197 The rotatory motion of the aircraft member about normal axis is called rolling pitching yawing stalling yawing

198

Transition phase from taxing to climbing about centre of gravity of an 

aircraft is called take off landing climbing

taxing 

down take off

199 Transition phase from flying to taxing in an aircraft is called take off landing climbing

taxing 

down landing

200 The lift and drag increases with angle of attack upto a certain limit called airplane pressure

stall 

point end point

stall 

point

201 A high aspect ratio wing will give

  high 

profile 

and low 

induced 

drag

  low 

profile 

and high 

induced 

drag

  low 

profile 

and low 

induced 

drag

high 

profile 

and high 

induced 

drag  

  high 

profile 

and low 

induced 

drag

202 Aerofoil efficiency is defined by

  lift over 

drag

  drag 

over lift

  lift over 

weight

drag over 

weight  

  lift over 

drag

203

An aircraft banks into a turn. No change is made to the airspeed or angle 

of attack. What will happen?

  The 

aircraft 

enters a 

sideslip 

and 

begins to 

lose 

altitude

  The 

aircraft 

turns 

with no 

loss of 

height

  The 

aircraft 

yaws and 

slows 

down

  The 

aircraft 

begins to 

gain 

altitude  

  The 

aircraft 

enters a 

sideslip 

and 

begins to 

lose 

altitude

204 The relationship between induced drag and airspeed is, induced drag is

  directly 

proportio

nal to the 

square of 

the speed

  

inversely 

proportio

nal to the 

square of 

the speed

  directly 

proportio

nal to 

speed

  

inversely  

proportio

nal to 

speed  

  

inversely 

proportio

nal to the 

square of 

the speed

205 What is Boundary Layer?

  

Separate

d layer of 

air 

forming 

a 

boundary 

at the 

leading 

edge

  

Turbulen

t air 

moving 

from the 

leading 

edge to 

trailing 

edge

 low 

energy 

air that 

sticks to 

the wing 

surface 

and 

gradually 

gets 

faster 

until it 

joins the 

free 

stream 

flow of 

air

  

Separate

d layer of 

air 

forming 

a 

boundary 

at the 

trailing 

edge  

 low 

energy 

air that 

sticks to 

the wing 

surface 

and 

gradually 

gets 

faster 

until it 

joins the 

free 

stream 

flow of 

air

206 The normal axis of an aircraft passes through

  the 

centre of 

gravity

  a point 

at the 

centre of 

the 

wings

  at the 

centre of 

pressure

Chord 

line  

  the 

centre of 

gravity

207

On a high winged aircraft, what effect will the fuselage have on the up-

going wing?

  The up-

going 

wing will 

have a 

decrease 

in angle 

of attack 

and 

therefore 

a 

decrease 

in lift

  The 

down-

going 

will have 

a 

decrease 

in angle 

of attack 

and 

therefore 

a 

decrease 

in lift

  The up-

going 

wing will 

have an 

increase 

in angle 

of attack 

and 

therefore 

a

  The up-

going 

wing will 

have an 

decrease 

in angle 

of attack 

and 

therefore 

a  

  The up-

going 

wing will 

have a 

decrease 

in angle 

of attack 

and 

therefore 

a 

decrease 

in lift

208

What is the collective term for the fin and rudder and other surfaces aft of 

the centre of gravity that helps directional stability?

  

Effective 

keel 

surface

  

Empenna

ge

  

Fuselage 

surfaces

rudderva

tors  

  

Effective 

keel 

surface



209 Temperature above 36,000 feet will

  

decrease 

exponent

ially

  remain 

constant

  increase 

exponent

ially

Increses 

at 1 

degree 

for 1000 

feet  

  remain 

constant

210 A decrease in incidence toward the wing tip may be provided to

  prevent 

adverse 

yaw in a 

turn

  prevent 

span-

wise 

flow in 

manoeuv

res

  retain 

lateral 

control 

effective

ness at 

high 

angles of 

attack

  prevent 

yaw in a 

turn  

  retain 

lateral 

control 

effective

ness at 

high 

angles of 

attack

211

Boundary layer on a flat plate is called laminar boundary layer if 

Reynolds 

Number 

is less 

than 

2000

Reynolds 

number 

is less 

than 

4000

Reynolds 

number 

is less 

than 5 x 

10000

Reynolds 

number 

is less 

than 

5000

Reynolds 

number 

is less 

than 5 x 

10000

212

Boundary layer thickness is the distance from the surface of the solid 

body in the direction perpendicular to flow, where the velocity of fluid is 

equal to 

free 

stream 

velocity

0.9 times 

the free 

stream 

velocity 

0.99 

times the 

free 

stream 

velocity

zero

 0.99 

times the 

free 

stream 

velocity

213

The boundary layer separation takes place if 

pressure 

gradient 

is zero

Pressure 

gradient 

is 

positive

Pressure 

gradient 

is 

negative

camber is 

high

 Pressure 

gradient 

is 

positive

214

Drag is defined as the force exerted by a flowing fluid on a solid body

in the 

direction 

of flow

Perpendi

cular to 

the 

direction 

of flow

in the 

direction 

which is 

at an 

angle of 

45 

degree to 

the 

direction 

of flow

in the 

direction 

which is 

at an 

angle of 

60 

degree to 

the 

direction 

of flow

in the 

direction 

of flow

215

Lift force is defined as the force exerted by a flowing fluid on a solid 

body

in the 

direction 

of flow

perpendi

cular to 

the 

direction 

of flow

at an 

angle of 

45 

degree to 

the 

direction 

of flow

in the 

direction 

which is 

at an 

angle of 

180 

degree to 

the 

direction 

of flow

 

perpendi

cular to 

the 

direction 

of flow

216

Euler's number is the ratio of

inertia 

force to 

pressure 

force 

Inertia 

force to 

elastic 

force

inertia 

force to 

gravity 

force 

inertia 

force to 

viscous 

force 

inertia 

force to 

pressure 

force 

217

Geometric similarity between model and prototype means

the 

similarity 

of 

discharge 

the 

similarity 

of linear 

dimensio

ns 

the 

similarity 

of 

motion 

the 

similarity 

of forces. 

 the 

similarity 

of 

motion 

218

Reynold's number is defined as the

ratio of 

inertia 

force to 

gravity 

force

ratio of 

viscous 

force to 

gravity 

force 

ratio of 

viscous 

force to 

viscous 

force 

ratio of 

inertia 

force to 

elastic 

force. 

ratio of 

viscous 

force to 

viscous 

force 

219

Froude's number is defined as the ratio of

Inertia 

force to 

viscous 

force.

inertia 

force to 

gravity 

force 

inertia 

force to 

elastic 

force .

inertia 

force to 

pressure 

force. 

inertia 

force to 

gravity 

force 

220

Models are known undistorted model if 

the 

prototype 

and 

model 

are 

having 

different 

scale 

ratios 

the 

prototype 

and 

model 

are 

having 

same 

scale 

ratio 

model 

and 

prototype 

are 

kinemati

cally 

similar 

model 

and 

prototype 

are 

similar 

the 

prototype 

and 

model 

are 

having 

same 

scale 

ratio 

221

Model analysis of aero planes and projectile moving at supersonic speed 

based on 

Reynolds 

number 

Mach 

number 

Froude 

number

Euler 

number

Mach 

number 

222

The boundary-layer takes place 
for ideal 

fluids 

for real 

fluids 

 for pipe 

flow only 

for over 

flat 

plates 

only                                       

 for real 

fluids 

223

Laminar sub-layer exists in. 

Laminar 

boundary 

layer 

region 

Turbulen

t 

boundary 

layer 

region 

Transitio

n zone 

trailing 

edge

Turbulen

t 

boundary 

layer 

region 

UNIT V



224

The laminar flow is characterised by
existence 

of eddies

irregular 

motion 

of fluid 

particles

fluid 

particles 

moving 

in layers 

parallel 

to the 

boundary 

surface 

All the 

other 

three 

options 

are 

wrong

 fluid 

particles 

moving 

in layers 

parallel 

to the 

boundary 

surface 

225

Which of the following is an example of laminar flow?
undergro

und flow

flow past 

tiny 

bodies

Flow of 

oil in 

measurin

g 

instrume

nts

All the 

other 

three 

options 

are 

wrong

All the 

other 

three 

options 

are 

wrong

226

The pressure gradient in the direction of flow is equal to the shear 

gradient in the direction

parallel 

to the 

direction 

of flow

normal to 

the 

direction 

of flow

both a & 

b 

All the 

other 

three 

options 

are 

wrong

 normal 

to the 

direction 

of flow

227

___________ studied the laminar flow through a circular tube 

expirementally
Prandtl Pascal

Hagen 

and 

Poiseuill

e

Anderso

n

Hagen 

and 

Poiseuill

e

228

A flow in which the viscosity of fluid is dominating over the inertia force 

is called

steady 

flow

unsteady 

flow

laminar 

flow

turbulent 

flow

 laminar 

flow

229

Laminar flow takes place at 
very low 

velocities

very high 

velocities

both (a) 

& (b)

All the 

other 

three 

options 

are 

wrong

 very low 

velocities

230

The velocity at which the flow changes from laminar flow to turbulent 

flow ia called

critical 

velocity

velocity 

of 

approach

sub-sonic 

velocity

super 

sonic 

velocity

 critical 

velocity

231

The velocity at which the laminar flow stops is known as

velocity 

of 

approach

lower 

critical 

velocity

sub-sonic 

velocity

super 

sonic 

velocity

  lower 

critical 

velocity

232

The velocity at which the laminar flow starts is known as

velocity 

of 

approach

higher 

critical 

velocity

lower 

critical 

velocity

super 

sonic 

velocity

  higher 

critical 

velocity

233

 The velocity corresponding to Reynolds number of 2800, is called

velocity 

of 

approach

super 

sonic 

velocity

lower 

critical 

velocity

higher 

critical 

velocity 

 higher 

critical 

velocity 

234

A flow is called super-sonic if the

velocity 

of flow is 

very high

discharge 

is 

difficult 

to 

measure

Mach 

number 

is 

between 

1 and 6

All the 

other 

three 

options 

are 

wrong

Mach 

number 

is 

between 

1 and 6

235

Whenever a plate is held immersed at some angle with the direction of 

flow of the liquid, it is subjected to some pressure. The component of this 

pressure, in the direction of flow of the liquid, is known as

lift drag

stagnatio

n 

pressure

thrust  drag

236

Whenever a plate is held immersed at some angle with the direction of 

flow of the liquid, it is subjected to some pressure. The component of this 

pressure, at the right angles to the direction of flow of the liquid, is known 

as

lift drag

stagnatio

n 

pressure

thrust  lift

237 Streamlining will reduce

  form 

drag

  induced 

drag

  skin 

friction 

drag

parasite 

drag 

increases

form 

drag

238

If an aircraft has a gross weight of 3000 kg and is then subjected to a total 

weight of 6000 kg the load factor will be   2G   3G   9G 15G 2G

239 A constant rate of climb is determined by   weight

  wind 

speed

  excess 

engine 

power density

excess 

engine 

power

240 Ice formed on the leading edge will cause the aircraft to

  stall at 

the same 

stall 

speed 

and AoA

  stall at a 

lower 

speed

  stall at 

the same 

stall 

speed

  stall at a 

higher 

speed

stall at a 

higher 

speed

241 If both wings lose lift the aircraft

  pitches 

nose up

  pitches 

nose 

down

  glides 

on a 

horizonta

l plane

  glides 

on a 

vertical 

plane

pitches 

nose up

242 Under what conditions will an aircraft create best lift?

  Cold 

dry day 

at 200 ft

  Hot 

damp 

day at 

1200 ft

  Cold 

wet day 

at 1200 ft

  Cold 

wet day 

at 1800 ft

Cold dry 

day at 

200 ft

243

If there were an increase of density, what effect would there be in 

aerodynamic dampening?   None

  

Decrease

d

  

Increased

becomes 

zero Increased

244 As Mach number increases, what is the effect on boundary layer?

  

Becomes 

more 

turbulent

  

Becomes 

less 

turbulent

  

Decrease

s in 

thickness

increases 

in 

thickness

Becomes 

more 

turbulent



245 When a slat is retracted it moves

  towards 

the upper 

leading 

edge of 

the wing

  towards 

the lower 

leading 

edge of 

the wing

  towards 

the 

centre of 

the 

leading 

edge of 

the wing

  towards 

the 

trailing 

edge

towards 

the upper 

leading 

edge of 

the wing

246 In a turn the up-going wing causes a

  de-

stabilisin

g effect 

due to 

increased 

AoA

  de-

stabilisin

g effect 

due to 

decrease

d AoA

  

stabilisin

g effect 

due to 

decrease

d AoA

  

stabilisin

g effect 

due to 

increased 

AoA

stabilisin

g effect 

due to 

decrease

d AoA

247 The stagnation point consists of

  

dynamic 

and static 

air 

pressure

  static 

air 

pressure

  

dynamic 

air 

pressure

absolute 

pressure

dynamic 

and static 

air 

pressure

248 Yawing is a rotation around

  the 

normal 

axis 

obtained 

by the 

elevator

  the 

lateral 

axis 

obtained 

by the 

rudder

  the 

normal 

axis 

obtained 

by the 

alieron

  the 

normal 

axis 

obtained 

by the 

rudder

the 

normal 

axis 

obtained 

by the 

rudder

249 Sweepback of the wings will

  not 

affect 

lateral 

stability

  increase 

lateral 

stability 

at high 

speeds 

only

  increase 

lateral 

stability 

at all 

speeds

  increase 

direction

al 

stability 

increase 

lateral 

stability 

at all 

speeds

250 With the flaps lowered, the stalling speed will   increase

become 

zero

  remain 

the same

  

decrease decrease

251

When flying close to the stall speed a pilot applies left rudder the aircraft 

will

  pitch 

nose up

  roll to 

the left

  stall the 

left wing

  pitch 

nose 

down

stall the 

left wing

252 When flaps are down it will

  increase 

AoA and 

increase 

slow 

speed 

stability

  

decrease 

AoA and 

decrease 

slow 

speed 

stability

  the 

AoA 

remains 

the same 

on both 

wings

increase 

AoA and 

decreases 

low 

speed 

stability

decrease 

AoA and 

decrease 

slow 

speed 

stability

253

If you have an aircraft that is more laterally stable then directionally stable 

it will tend to:   skid   slip   bank yaw skid

254  A wing section suitable for high speed would be 

thick 

with high 

camber

 thin with 

high 

camber 

thin with 

little or 

no 

camber

thick 

with low 

camber

thin with 

little or 

no 

camber

255  As the speed of an aircraft increases the profile drag 

 

increases

 

decreases 

 

decreases 

at first 

then 

increase

remains 

constant

 

increases

256  The stagnation point on an aerofoil is the point where 

 the 

suction 

pressure 

reaches a 

maximu

m 

 the 

boundary 

layer 

changes 

from 

laminar 

to 

turbulent

the 

airflow is 

brought 

complete

ly to rest

 the 

suction 

pressure 

reaches 

zero

the 

airflow is 

brought 

complete

ly to rest

257  The stalling of an aerofoil is affected by the  airspeed

 angle of 

attack 

 

transition 

speed

density 

of air 

 angle of 

attack 

258  What gives the aircraft directional stability? alieron

 

Horizont

al 

stabiliser

 

Elevators

 Vertical 

stabiliser 

 Vertical 

stabiliser 

259 The most fuel efficient of the following types of engine is the  rocket 

turbo-jet 

engine 

 turbo-

fan 

engine

turbopro

p

 turbo-

fan 

engine

260 The quietest of the following types of engine is the  rocket 

turbo-jet 

engine 

 turbo-

fan 

engine

turbopro

p

 turbo-

fan 

engine

261 Forward motion of a glider is provided by 

control 

surfaces

 the 

weight the drag

 the 

engine

 the 

weight 


