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UNIT I 

FUNDAMENTAL CONCEPTS 
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   Mathematical Properties of Fluid Dynamic Equations –  

Elliptical, Parabolic and Hyperbolic Equations 

   Well Posed Problems 

   Discretization of Partial Differential Equations 

   Explicit Finite Difference Method of Subsonic Flows 
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1.1 Introduction to Computational Fluid Dynamics 

Computational Fluid Dynamics (CFD) is the science of calculation of fluid flow and 

related variables using a computer. Usually the fluid body is divided into cells or elements 

forming a grid. Then the equations for unknown variables are solved for each grid. This requires 

good amount of computing resources.  

―Computational Fluid Dynamics (CFD) is the technique of replacing the Partial 

Differential Equations (PDE’S) governing the fluid flow by a set of algebraic equations and 

solving them using the digital computer‖ 

The transport equations that govern the fluid motion or flow are,  

 1. Continuity Equation 

 2. Momentum Equation 

 3. Energy Equation 

Application of CFD 

 Aerodynamics of aircraft and vehicles 

 Hydrodynamics of ships 

 Power plants 

 Turbo machinery 

 Electrical and electronics engineering 

 Chemical process engineering 

 External and internal environment of building 

 Marine engineering 

 Environmental engineering 

 Hydrology and oceanography 

 Meteorology 

 Biomedical engineering 

 

The availability of affordable high performance computing hardware and the introduction 

of user friendly interfaces have led to tremendous increase of CFD usage into the industrial 

community.  
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Approaches to study Fluid Mechanics 

There are three approaches to study the fluids and their behavior they are,  

1. Analytical Method 

 In this approach the transport equations that govern the fluid flow are solved 

mathematically for obtaining the specific solutions for various problems.  

2. Experimental Method 

 This approach is based on utilizing the experimental setups to carry out the 

experimentation and to get the flow characteristics by flow visualization or by data 

acquisition to understand the phenomenon.  

3. Computational Method 

 In this method the numerical approach is used to solve the governing equations of the 

fluid motion to obtain numerical solutions for the physical problems.  

 

Major advantages of CFD over the Experimental Fluid Dynamics 

1. Leas time in design and development is significantly reduced 

2. CFD can simulate flow conditions which are not possible in experimental model tests 

3. CFD can provide more detailed and comprehensive information 

4. CFD is more cost effective that the experimental setup 

5. CFD utilizes low energy 

 

Components of a CFD code 

CFD codes are the structured numerical algorithms that are used to solve the fluid flow 

problems. In order to provide ease access to their solving power all the commercial CFD codes 

include the three main elements  

 

 A Pre-processor 

 A Solver 

 A Post-processor 
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A Pre-processor 

 The main activity in the pre-processor is to give input to the code in the form suitable for 

the solver by using the Graphical User Interface (GUI), the main activities in the pre-processor 

are,  

 Definition of geometry and the region of interest 

 Grid generation 

 Definition of fluid properties 

 Specification of boundary  conditions  

 Specification of solver criteria 

 

A Solver 

 A solver takes the input from the preprocessor and form the governing equations in the 

form of PDE‘s which are again converted in to the algebraic form to solve the equations by the 

numerical approach. The iterations in the numerical approach stops when the solver criteria in 

the pre-processor matches. 

 

A Post-processor 

 A post-processor takes the raw data from the solver and displays the results in the form 

the user desires. The features of the post processor includes 

 Displaying geometry and grid 

 Vector and Contour  plots 

 Particle tracking 

 Pressure, Temperature and Density data 

 

The exponential growth of the speed, memory and computing power of the digital computers 

in the modern era had led to the extensive development of many CFD codes which are generally 

used by the academia, industry and research fields. Some of the commercial CFD codes 

generally used are CFX, FLUENT, COSMOFLOW, STAR-CD, FLOW-3D.  
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Overview of Computational Fluid Dynamics 

 

Figure 1.1 Overview of CFD 

 The complete steps followed in the CFD process are illustrated in the above figure 1.1. 

The steps are described below,  

1. The fluid problem is taken and the physics of the problem is studied and based on it the fluid 

domain is created.  

2. The fluid domain is divided in to finite grids 

3. For each grid element the governing equations that govern the fluid flow are formed. 

4. The PDE‘s governing the fluid domain are discretized in to the Algebraic equations. 

5. These algebraic equations are solved by applying the boundary conditions using the numerical 

method technique. 

6. From the results of the algebraic equations the flow behavior is predicted.  

 

 

Fluid Problem - Domain 

Grid of Fluid Domain 

Navier Stokes Equation for each Element 

Discretizing the PDE's 

Solving the equations by applying Boundary 
Conditions using Numerical Method 
Technique 

Results 

Deduce Flow Behaviour 
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1.2 Basic Equations of Fluid Dynamics 

 The fundamental equations of fluid motion are based on three conservation laws. For 

most of the engineering applications, the average measurable values of the flow properties are 

desired, the assumption of continuous distribution of matter is imposed. This assumption is 

known as Continuum and is valid as long as the characteristic length in a physical domain os 

much larger than the mean free path of molecules.  

The basic equations of fluid motion are derived in either integral form or differential form are,  

 1. Conservation of mass – Continuity  

 2. Conservation of linear momentum – Newton‘s second law 

 3. Conservation of energy – First law of thermodynamics 

The conservation of linear momentum in differential form was derived by stokes and 

independently by Navier and therefore is known as the Navier-Stokes equation. It is common to 

refer to the entire system of equations in differential form composed of conservations of mass, 

momentum and energy as the Navier-Stokes equations. The system of equations may contain 

nine unknowns they are,  

 Density – ρ  

 Velocity Components u, v, w 

 Total energy - et 

 Pressure – p 

 Temperature – T 

  Dynamic viscosity - µ 

 Thermal conductivity – k 

There are nine unknowns ad five equations the analytical solution of such a system does not 

exist. Therefore, numerical techniques are employed to obtain the solution. 

 

Integral Formulations 

 Integral forms of the equation are used if an average value of the fluid properties at a 

cross-section is desired. This approach does not provide a detailed analysis of the flow filed, 

however the application is simple and is used extensively. In general the integral form of the 

equation is derived for an extensive property and then the conservative laws are applied.  
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……Equation 1.1 

If N represents an extensive property, then a relation exists between the rate of change of 

extensive property for a system and the time rate change of the property within the control 

volume plus net efflux of the property across the control surfaces. Defining η as the extensive 

property per unit mass.  

Where,  

 t represents time,  

 ρ is the density of the fluid 

  ⃗  is the velocity vector and  

  ⃗  is the unit vector 

Conservation of Mass 

 This conservation law requires that mass is neither created nor destroyed; mathematically 

this is expressed as dM/dt = 0. In the above equation 1.1 the extensive property N = M and η = 1, 

the integral form of the conservation of mass is obtained as,  

 

……Equation 1.2 

The physical interpretation of the above equation is that the sum of the rate of change of mass 

within the control volume and net efflux of mass across the control surface is zero.  

Conservation of Linear Momentum 

 Newton‘s second law applied to a non accelerating control volume which is referenced to 

a fixed coordinate system will result in the integral form of the momentum equation. In the case 

of linear momentum      ⃗  is taken as extensive property and therefore     ⃗ . Newton‘s 

second law in an inertial reference is expressed as ∑         . Thus the equation 1.1 can be 

represented as,  

 

……Equation 1.3 
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This equation states that the sum of the forces acting on a control volume is equal to the sum of 

the rate of change of linear momentum within the control volume and net efflux of the linear 

momentum across the control surfaces. The forces acting on a control volume usually represent a 

combination of the body forces and surface forces. For example x-component of is expressed as,  

 

……Equation 1.4 

Conservation of Energy 

 This conservation law is based on the first law of thermodynamics, which is expressed as,  

 

……Equation 1.5 

In this relation, et represents the total energy of the system per unit mass, while       and 

      represent the rate of heat transfer to the system and the rate of work done on the system 

are defined positive. In the above equation 1.1 ρet is the extensive property N, and η = et the total 

energy per unit mass. Hence,  

 

……Equation 1.6 

Differential Formulations 

 The differential forms of the equations of motion are utilized for situations where a 

detailed solution of the flow filed is required. These equations are obtained by the application of 

conservation laws to an infinitesimal fixed control volume. A typical differential control volume 

in a Cartesian coordinate system is shown in the below figure 1.2. The differential equations 

which are derived based on fixed coordinate system and control volume are known as Eulerian 

approach. If the coordinate system and control volume were allowed to move it is called 

Lagrangian approach.  
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Figure 1.2 Differential element for Cartesian coordinate system 

 

Conservation of Mass  

 The differential form of the conservation of the mass is known as the Continuity 

equation, it is written in the vector form as,  

 

……Equation 1.7 

This equation is written in terms of the total derivative as,  

 

……Equation 1.8 

In the Cartesian coordinate system the equation can be written as,  

  

  
  
 

  
(  )  

 

  
(  )  

 

  
(  )    

……Equation 1.9 

Conservation of Linear Momentum 

 The linear momentum equation is also known as the Navier-Stokes equation, i.e. obtained 

by the application of Newton‘s second law to a differential element in an inertial coordinate 
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system. If ζ is used to represent stresses acting on the differential element, the components of the 

Navier-Stokes equations in a Cartesian coordinate system takes the following form;  

 

……Equation 1.10 

 

……Equation 1.11 

 

……Equation 1.12 

Shear stress ζ is usually written in terms of pressure p and viscous stress η. In tensor notation is 

expressed as,  

 

……Equation 1.13 

Where δij is the Kronecker delta,  

 

The components of the linear momentum equation can be written in terms of viscous stresses as,  

 

……Equation 1.14 

 

……Equation 1.15 

 

……Equation 1.16 
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Viscous stresses are related to the rates of strain by a physical law. For most fluid this relation is 

linear and is known as Newtonian Fluid. For a Newtonian fluid, viscous stresses in a Cartesian 

coordinate system are written as,  

 

Where µ is known as the coefficient of viscosity or dynamic viscosity and λ is defined as the 

second coefficient of viscosity, the combination of µ and λ in the following form is known as the 

bulk viscosity k, i.e.  

 

If bulk viscosity of a fluid is assumed negligible, then  

 

This is known as Stokes Hypothesis.  

Finally the scalar components of the linear momentum equation in the conservation law form are 

written as,  

X-component of Momentum Equation 

 
 

  
(  )  

 

  
(      )  

 

  
(   )  

 

  
(   )   

 

  
(   )  

 

  
(   )  

 

  
(   ) 

……Equation 1.17 

Y-component of Momentum Equation 

 
 

  
(  )  

 

  
(   )  

 

  
(     )  

 

  
(   )   

 

  
(   )  

 

  
(   )  

 

  
(   ) 

……Equation 1.18 
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Y-component of Momentum Equation 

 
 

  
(  )  

 

  
(   )  

 

  
(   )  

 

  
(     )   

 

  
(   )  

 

  
(   )  

 

  
(   ) 

……Equation 1.19 

Energy Equation 

 The energy equation is derived from the first law of thermodynamics it is written as,  

 

  
(   )   

 

  
(       )  

 

  
(       )  

 

  
(       )

 
 

  
(                  )  

 

  
(                  )

  
 

  
(                  ) 

……Equation 1.20 

These equations can be written in a vector form as  

  

  
 
  

  
 
  

  
 
  

  
  
  

  
 
  

  
 
  

  
 

……Equation 1.21 

Where,  
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1.3 Incompressible Inviscid Flows – Source, Vortex and Doublet 

 This section discusses about the numerical analysis of incompressible Inviscid flows. The 

Incompressible and Inviscid flows are referred as the as the Ideal Flows, i.e. they have ρ = 

constant and µ = constant. They are flows where the density is constant and the viscosity effects 

are negligible.  

The Uniform Flow 

 Consider a uniform flow with velocity V∞ moving in the x-direction, as sketched in Fig. 

3.1. This flow is irrotational, and a solution of Laplace‘s equation for uniform flow yields: 

 

……Equation 1.22 

 

Figure 1.3 The uniform flow 

In polar coordinates, (r, θ), the above equation can be expressed as 
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……Equation 1.23 

The Source Flow 

 Consider a flow with straight streamlines emanating from a point, where the velocity 

along each streamline varies inversely with distance from the point, as shown in Figure 1.4. Such 

flow is called source flow. This flow is also irrotational, and a solution of Laplace‘s equation 

yields  

 

……Equation 1.24 

where Λ is defined as the source strength; Λ is physically the rate of volume flow from the 

source, per unit depth perpendicular to the page in Figure 1.4. If Λ is negative, Sink flow, which 

is the opposite of source flow. In Figure 1.4. point 0 is the origin of the radial streamlines. We 

can visualize that point 0 is a point source or sink that induces the radial flow about it; in this 

interpretation, the point source or sink is a singularity in the flow field. We can also visualize 

that point 0 in Figure 1.4., is simply one point formed by the intersection of the plane of the 

paper and a line perpendicular to the paper. The line perpendicular to the paper is a line source, 

with strength Λ per unit length. 

 

Figure 1.4 Source flow 
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The Vortex Flow 

 Consider a flow where all the streamlines are concentric circles about a given point, 

where the velocity along each streamline is inversely proportional to the distance from the 

centre, as shown in Figure 1.5. Such flow is called vortex flow. This flow is irrotational, and a 

solution of Laplace‘s equation yields 

 

……Equation 1.25 

 

Figure 1.5 Vortex flow 

Where Γ is the strength of the vortex. In Figure 1.5., point 0 can be visualized as a point vortex 

that induces the circular flow about it; in this interpretation, the point vortex is a singularity in 

the flow field. Visualize that point 0 in Figure 1.5. is simply one point formed by the intersection 

of the plane of the paper and a line perpendicular to the paper. This line is called a vortex 

filament, of strength Γ. The strength Γ is the circulation around the vortex filament, where 

circulation is defined as 

 

……Equation 1.26 

In the above, the line integral of the velocity component tangent to a curve of elemental length ds 

is taken around a closed curve. This is the general definition of circulation. For a vortex filament, 

the above expression for Γ is defined as the vortex strength. 
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The Doublet 

 The source and sink pair leading to a singularity is called a Doublet Flow. The potential 

at some point P, caused by a doublet at Q, is given by 

 

 
……Equation 1.27 

Here μ(Q) is the strength of the doublet and nQ is the direction of the doublet. 

 
 

Figure 1.6 Doublet 

Once more, we can put a lot of doublets in a row. We then get a doublet distribution. To 

find the velocity potential at P, we now have to use 

 
……Equation 1.28 

1.4 Panel Methods – Lifting Flow over Arbitrary Bodies 

 Panel method is a technique of approximating the flow by replacing the flow surface by a 

series of Line segments (2D) or Panels (3D) and placing the distribution of source or vortices or 

doublets on each panel. The advantages of this method include,  

 1. No need to define a throughout the flow field 

 2. Flexibility, i.e. capable of treating wide range of geometries 

 3. Economy – provides result with in a relative short time 
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Non-lifting Flows over Arbitrary Bodies – The Source Panel Method is used because source 

has zero circulation, therefore it is used only for non-lifting cases.   

 

Figure 1.7 The Source Sheet 

Lifting Flow over Arbitrary Bodies – The Vortex Panel Method is used because the vortices 

have circulation and they are used for lifting cases.  

 

Figure 1.8 The Panel Sheet 

In the present section, we introduce the analogous concept of a vortex sheet. Consider the 

straight vortex filament as shown in the above figure 1.8. Now imagine an infinite number of 

straight vortex filaments side by side, where the strength of each filament is infinitesimally 

small. These side-by-side vortex filaments form a vortex sheet, as shown in perspective in the 

figure 1.8. If we look along the series of vortex filaments the vortex sheet will appear as sketched 

at the lower right of Fig. 3.10. Here, we are looking at an edge view of the sheet; the vortex 

filaments are all perpendicular to the page. Let s be the distance measured along the vortex sheet 

in the edge view. Define γ = γ(s) as the strength of the vortex sheet, per unit length along s. Thus, 

the strength of an infinitesimal portion ds of the sheet is γ ds. This small section of the vortex 
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sheet can be treated as a distinct vortex of strength γ ds. Now consider point P in the flow, 

located a distance r from ds. The small section of the vortex sheet of strength γ ds induces a 

velocity potential at P, obtained from Equation 1.25 as 

 

……Equation 1.29 

The velocity potential at P due to the entire vortex sheet from a to b is 

 

……Equation 1.30 

In addition, the circulation around the vortex sheet in Fig. 3.10 is the sum of the strengths of the 

elemental vortices, i.e. 

 

……Equation 1.31 

Another property of a vortex sheet is that the component of flow velocity tangential to the sheet 

experiences a discontinuous change across the sheet, given by 

 

……Equation 1.32 

where u1 and u2 are the tangential velocities just above and below the sheet respectively. 

Equation 1.32 is used to demonstrate that, for flow over an airfoil, the value of γ is zero at the 

trailing edge of the airfoil. This condition, namely 

 

……Equation 1.33 

is one form of the Kutta condition which fixes the precise value of the circulation around an 

airfoil with a sharp trailing edge. Finally we note that the circulation around the sheet is related 

to the lift force on the sheet through the Kutta–Joukowski theorem: 
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……Equation 1.34 

 

Figure 1.9 Simulation of an arbitrary airfoil by distributing a vortex sheet 

Clearly, a finite value of circulation is required for the existence of lift. In the present section, we 

will see that the ultimate goal of the vortex panel method applied to a given body is to calculate 

the amount of circulation, and hence obtain the lift on the body from Equation 1.34. With the 

above in mind, consider an arbitrary two-dimensional body, shown in Figure 1.9. Let us wrap a 

vortex sheet over the complete surface of the body, as shown in Figure 1.9.We wish to find γ(s) 

such that the body surface becomes a streamline of the flow. This is the purpose of the vortex 

panel method. 

 

Figure 1.10 Source panel distribution over the surface of a body of arbitrary shape 

Let us approximate the vortex sheet shown in Figure 1.9 by a series of straight panels. Let the 

vortex strength γ(s) per unit length be constant over a given panel, but allow it to vary from one 

panel to the next. That is, for the n panels shown in Figure 1.10, the vortex panel strengths per 

unit length are γ1, γ2, . . . , γj, . . . , γn. These panel strengths are unknowns; the main thrust of the 

panel technique is to solve for γj, j = 1 to n, such that the body surface becomes a streamline of 

the flow and such that the Kutta condition is satisfied.  

Let P be a point located at (x, y) in the flow, and let rpj be the distance from any point on the j
th

 

panel to P, as shown in Figure 1.10. The radius rpj makes the angle θpj with respect to the x-axis. 

The velocity potential induced at P due to the j
th

 panel, Δθj, is, from Equation 1.29, 
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……Equation 1.35 

In Equation 1.35, γj is constant over the j
th

 panel, and the integral is taken over the j
th

 panel only. 

The angle θpj is given by 

 

……Equation 1.36 

In turn, the potential at P due to all the panels is Equation 1.35 summed over all the panels: 

 

……Equation 1.37 

Since point P is just an arbitrary point in the flow, let us put P at the control point of the i
th

 panel 

shown in Figure 1.10. The coordinates of this control point are (xi, yi). Then Equation 1.36 and 

1.37 become 

 

……Equation 1.38 

Equation 1.38 is physically the contribution of all the panels to the potential at the control point 

of the i
th

 panel. At the control points, the normal component of the velocity is zero; this velocity 

is the superposition of the uniform flow velocity and the velocity induced by all the vortex 

panels. The component of V∞ normal to the i
th

 panel is given  

 

……Equation 1.39 

The normal component of velocity induced at (xi, yi) by the vortex panels is 
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……Equation 1.40 

Combining Equation 1.38 and 1.40, we have 

 

……Equation 1.41 

 

Figure 1.11 Vortex panel at the trailing edge 

Equation 1.41 is a linear algebraic equation with n unknowns, γ1, γ2, . . . , γn. It represents the 

flow boundary condition evaluated at the control point of the i
th

 panel. If Equation 1.41 is applied 

to the control points of all the panels, we obtain a system of n linear equations with n unknowns. 

To this point, we have been deliberately paralleling the discussion of the source panel method 

however, the similarity stops here. For the source panel method, the n equations for the n 

unknown source strengths are routinely solved, giving the flow over a non-lifting body. In 

contrast, for the lifting case with vortex panels, in addition to the n equations given by Equation 

1.41 applied at all the panels, we must also satisfy the Kutta condition, Equation 1.41. This can 

be done in several ways. For example, consider Figure 1.11, which illustrates a detail of the 

vortex panel distribution at the trailing edge. Note that the length of each panel can be different; 

their length and distribution over the body is up to your discretion. Let the two panels at the 

trailing edge (panels i and i − 1 in Figure 1.11) be very small. The Kutta condition is applied 

precisely at the trailing edge and is given by γ(TE) = 0. To approximate this numerically, if points 

i and i−1 are close enough to the trailing edge, we can write 
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……Equation 1.42 

such that the strengths of the two vortex panels i and i − 1 exactly cancel at the point where they 

touch at the trailing edge. Thus, in order to impose the Kutta condition on the solution of the 

flow, Equation 1.42 must be included. Note that Equation 1.41 evaluated at all the panels and 

Equation 1.42 constitutes an over-determined system of n unknowns with n + 1 equations. 

Therefore, to obtain a determined system, Equation 1.41 is not evaluated at one of the control 

points on the body. That is, we choose to ignore one of the control points, and we evaluate 

Equation 1.41 at the other n − 1 control points. This, in combination with Equation 1.42, now 

gives a system of n linear algebraic equations with n unknowns, which can be solved by standard 

techniques.  

 

Figure 1.12 Airfoil as a solid body with zero velocity inside the profile 

At this stage, we have conceptually obtained the values of γ1,γ2, . . . , γn which make the body 

surface a streamline of the flow and which also satisfy the Kutta condition. In turn, the flow 

velocity tangent to the surface can be obtained directly from γ. To see this more clearly, consider 

the airfoil shown in Figure 1.12. We are concerned only with the flow outside the airfoil and on 

its surface. Therefore, let the velocity be zero at every point inside the body, as shown in Figure 

1.12. In particular, the velocity just inside the vortex sheet on the surface is zero.  

 

……Equation 1.43 

u denotes the velocity tangential to the vortex sheet. In terms of the picture shown in Figure 1.12, 

we obtain Va = γa at point a, Vb = γb at point b, etc. Therefore, the local velocities tangential to 

the airfoil surface are equal to the local values of γ. In turn, the local pressure distribution can be 

obtained from Bernoulli‘s equation. 
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The total circulation and the resulting lift are obtained as follows. Let sj be the length of the j
th

 

panel. Then the circulation due to the j
th

 panel is γj sj. In turn, the total circulation due to all the 

panels is 

 

……Equation 1.44 

Hence, the lift per unit span is obtained from 

 

……Equation 1.45 

 

1.5 Mathematical Properties of Fluid Dynamic Equations –  

Elliptical, Parabolic and Hyperbolic Equations 

 The solution procedure of a partial differential equation (PDE) depends upon the type of 

equation, thus it is important to study the various classifications of PDE‘s. Imposition of the 

initial or boundary condition also depends upon the type of PDE.  

Linear and Nonlinear PDE’s 

Linear PDE: In a Linear PDE the dependent variable and its derivative enter the equation 

linearly, i.e. there is no product of the dependent variable or its derivatives.  

Example: One dimensional wave equation 

  

  
   

  

  
 

……Equation 1.46 

 Where, a is the speed of sound which is assumed constant 

Nonlinear PDE: A Nonlinear PDE contains product of the dependent variable and its derivative.   

Example: Inviscid Burgers equation 

  

  
   

  

  
 

……Equation 1.47 

Second-Order PDE’s  

 To classify the second-order PDE, Consider the following equation 
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……Equation 1.48 

Where the coefficients A, B, C, D, E, F and G are functions of the independent variables x and y 

and of dependent variable Φ. By the definition we can express dΦx and dΦy as  

 

……Equation 1.49 

The equation 1.48 can be expressed as 

 

……Equation 1.50 

Where,  

 

Equations 1.49 and 1.50 are solved for Φ, using the cramers rule we get,  

 

Since it is possible to have the discontinuous in the second order derivatives of the dependent 

variable across the characteristics, these derivatives are indeterminate. Thus setting the 

denominator equal to zero. 

 

Yields the equation 
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……Equation 1.51 

Solving this quadratic equation yields the equation of the characteristic in physical space.  

 

……Equation 1.52 

Depending on the value of B
2
-4AC the characteristic curves are real or imaginary. They are 

classified as,  

 

Elliptical Equations 

 A partial differential equation is elliptical in a region if B
2
-4AC is less than zero at all 

points in the region. An elliptic PDE has no real characteristic curves. A disturbance is 

propagated instantly in all directions within the region. The domain of solution of a elliptical 

equation is a closed region. 

Example:  

 Laplace equation 

 

……Equation 1.53 

 Poisson‘s equation 

 

……Equation 1.54 

 

 

Parabolic Equations 
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 A partial differential equation is parabolic in a region if B
2
-4AC is equal to zero at all 

points in the region. A parabolic PDE has solution domain as open region. An parabolic PDE has 

one real characteristic curve.  

Example:  

 Unsteady heat conduction in one dimension 

 

……Equation 1.55 

 Diffusion of viscosity equation 

 

……Equation 1.56 

Hyperbolic Equations 

 A partial differential equation is called hyperbolic if B
2
-4AC is greater than zero at all 

points in the region. A hyperbolic PDE has two real characteristic curves.  

Example: 

 Second-order wave equation 

 

……Equation 1.57 

1.6 Well Posed Problems 

 The governing equation and auxiliary conditions (initial/boundary) are well posed 

mathematically if the following three conditions are met; 

 1. The solution exists  

 2. The solution is unique 

 3. The solution depends continuously on the auxiliary data 

There are some flows for which multiple solutions may be expected on the physical grounds. 

These problems fail the above criteria of mathematical well posedness. This situation often arises 

for flows undergoing transition from laminar to turbulent motion.  

1.7 Discretization of Partial Differential Equations 



Computational Fluid Dynamics 
 

27 
 

 In order to solve the governing equations of the fluid motion, first their numerical 

analogue must be generated. This is done by a process referred to as discretization. In the 

discretization process, each term within the partial differential equation describing the flow is 

written in such a manner that the computer can be programmed to calculate. There are various 

techniques for numerical discretization. Here we will introduce three of the most commonly used 

techniques, namely:  

(1) The Finite Difference Method, 

 (2) The Finite Element Method and  

(3) The Finite Volume Method.  

Spectral methods are also used in CFD, which will be briefly discussed. 

The Finite Difference Method  

Finite difference method utilizes the Taylor series expansion to write the derivatives of a 

variable as the differences between values of the variable at various points in space or time. 

Utilization of the Taylor series to discretize the derivative of dependent variable, e.g., velocity u, 

with respect to the independent variable, e.g., special coordinated x, is shown in Figure 1.13. 

Consider the curve in Figure 1.13 which represent the variation of u with x, i.e., u(x). After 

discretization, the curve u(x) can be represented by a set of discrete points, ui’s. These discrete 

points can be related to each other using a Taylor series expansion. Consider two points, (i+1) 

and (i-1), a small distance Δx from the central point, (i). Thus velocity ui can be expressed in 

terms of Taylor series expansion about point (i) as: 

 

……Equation 1.58 

……Equation 1.59 
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Figure 1.13 Location of points for Taylor series 

These equations are mathematically exact if numbers of terms are infinite and Δx is small 

.Note that ignoring these terms leads to a source of error in the numerical calculations as the 

equation for the derivatives is truncated. This error is referred to as the truncation error. For the 

second order accurate expression, the truncation error is: 

 

……Equation 1.60 

By subtracting or adding these two equations, new equations can be found for the first 

and second derivatives at the central position i. These derivatives are  

 
……Equation 1.61 

 

……Equation 1.62 

Equation 1.61 and 1.62 are referred as the Central Difference Equations for first and second order 

respectively.  The first-order derivative can be formed as  
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……Equation 1.63 

This is referred to as the Forward difference. Similarly, another first-order derivative can be 

formed as 

 
……Equation 1.64 

This is referred to as the Backward difference. As noted by the expressions, difference formulae 

are classified in two ways:  

(1) By the geometrical relationship of the points, namely, central, forward, and backward 

differencing 

(2) By the accuracy of the expressions, for instance, central difference is second-order 

accurate, whereas, both forward and backward differences are first-order accurate, as the 

higher order terms are neglected. 

The Finite Element Method 

 In the finite element method, the fluid domain under consideration is divided into finite 

number of sub-domains, known as elements. A simple function is assumed for the variation of 

each variable inside each element. The summation of variation of the variable in each element is 

used to describe the whole flow field. Consider the two nodded element shown in Figure 1.14, in 

which variable u varies linearly inside the element. The end points of the element are called the 

nodes of the element. For a linear variation of u, the first derivative of u with respect to x is 

imply a constant. If u is assumed to vary linearly inside an element, we cannot define a second 

derivative for it. Since most fluid problems include second derivative, the following technique is 

designed to overcome this problem. First, the partial differential equation is multiplied by an 

unknown function, and then the whole equation can be integrated over the domain in which it 

applies. Finally the terms that need to have the order of their derivatives reduced are integrated 

by parts. This is known as producing a variational formulation. 
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Figure 1.14 A two noded linear element 

As an example, we will develop the finite element formulation of the Laplace's Equation in one 

dimensions: 

 

……Equation 1.65 

where velocity u is a function of the spatial coordinates x. We multiply equation 1.65 by 

some function W and integrate it over the domain of interest denoted by Ω: 

 

……Equation 1.66 

The above equation can be integrated by parts as,  

 

……Equation 1.67 

where Γ denotes the boundary of the domain Ω and nx is the unit outward normal vector 

to the boundary Γ. We will now divide the domain into several elements and assume a function 
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for the variation of the variable u in each element. If a two-noded linear element is assumes, the  

variation of u in each element can be represented by 

 

 

……Equation 1.68 

The terms in the brackets are called the shape functions and are denoted as Ni‘s. ui-1 and ui+1 

are the nodal values of the variable u and are denoted as ui‘s. Therefore, the variable u can be 

written in the following form 

 

……Equation 1.69 

Thus, the shape functions corresponding to the two-nodal linear element, represented by 

 

 

……Equation 1.70 

We can now determine the derivatives of the variable u, using equation 

 

……Equation 1.71 

Where m is the number of nodes on the element. Note that ui‘s are nodal values of u and 

they are not variables, therefore, they are not differentiated. In order to solve equation we still 

need to describe the function W. There are several methods, which are used for the specification 

of the variable W. However, the most common method is the Galerkin method in which W is 

assumed to be the same as the shape function for each element. 
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The Finite Volume Method 

 The finite volume method is currently the most popular method in CFD. The main reason 

is that it can resolve some of the difficulties that the other two methods have. Generally, the 

finite volume method is a special case of finite element, when the function W is equal to 1 

everywhere in the domain. A typical finite volume, or cell, is shown in Figure 1.15. In this figure 

the centroid of the volume, point P, is the reference point at which we want to discretize the 

partial differential equation. 

 

Figure 1.15 A finite volume in one dimension 

The neighboring volumes are denoted as, W, volume to the west side, and E, the volume to the 

east side of the volume P. For the one-dimensional finite volume shown in Figure 1., the volume 

with centroid P, has two boundary faces at w and e. The second derivative of a variable at P can 

be written as the difference between the 1st derivatives of the variable evaluated at the volume 

faces: 

 

……Equation 1.72 

The first derivatives at the volume faces can be written as to be the differences in the values of 

the variable at the neighboring volume centroids: 

  

……Equation 1.73 

We can apply this technique to equation 1.73 to obtain its finite volume formulation. The 

above method is also referred to as the Cell Centered (CC) Method, where the flow variables are 

allocated at the center of the computational cell. The CC variable arrangement is the most 
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popular, since it leads to considerably simpler implementations than other arrangements. On the 

other hand, the CC arrangement is more susceptible to truncation errors, when the mesh departs 

from uniform rectangles. Traditionally the finite volume methods have used regular grids for the 

efficiency of the computations. However, recently, irregular grids have become more popular for 

simulating flows in complex geometries. Obviously, the computational effort is more when 

irregular grids are used, since the algorithm should use a table to lookup the geometrical 

relationships between the volumes or element faces. This involves finding data from a disk store 

of the computer, which increases the computational time. 

Spectral Methods 

Another method of generating a numerical analog of a differential equation is by using 

Fourier series or series of Chebyshev polynomials to approximate the unknown functions. Such 

methods are called the Spectral method. Fourier series or series of Chebyshev polynomials are 

valid throughout the entire computational domain. This is the main difference between the 

spectral method and the FDM and FEM, in which the approximations are local. Once the 

unknowns are replaced with the truncated series, certain constraints are used to generate 

algebraic equations for the coefficients of the Fourier or Chebyshev series. Either weighted 

residual technique or a technique based on forcing the approximate function to coincide with the 

exact solution at several grid points is used as the constraint. 

Comparison between Discretization Methods 

 The main differences between the above three techniques include the followings. The 

finite difference method and the finite volume method both produce the numerical equations at a 

given point based on the values at neighboring points, whereas the finite element method 

produces equations for each element independently of all the other elements. It is only when the 

finite element equations are collected together and assembled into the global matrices that the 

interaction between elements is taken into account. 

Both FDM and FVM can apply the fixed-value boundary conditions by inserting the 

values into the solution, but must modify the equations to take account of any derivative 

boundary conditions. However, the finite element method takes care of derivative boundary 

conditions when the element equations are formed and then the fixed values of variables must be 

applied to the global matrices. One advantage that the finite element method has is that the 

programs are written to create matrices for each element, which are then assembled to form the 
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global equations before the whole problem is solved. Finite volume and finite difference 

programs, on the other hand, are written to combine the setting up of the equations and their 

solution. The decoupling of these two phases, in finite element programs, allows the programmer 

to keep the organization of the program very clear and the addition of new element types is not a 

major problem. Adding new cell types to a finite volume program can, however, be a major task 

involving a rewrite of the program and so some finite volume programs can exhibit problems if 

they have multiple cell types.  

1.8 Explicit Finite Difference Method of Subsonic Flows – Elliptical Equations 

 The governing equation of subsonic fluid flows and heat transfer problems can be 

reduced to elliptic form for particular applications. Some of the examples are steady state heat 

conduction equation, velocity potential equation for incompressible, inviscid flow and stream 

function equation. Now consider Laplace equation,  

 

……Equation 1.74 

The finite difference formulation of the above equation can be written by using five point 

formula as,  

 

……Equation 1.75 

The corresponding grid points are shown in the below figure 1.16. 

 

Figure 1.16 Grid for five point formula 

The above equation 1.75 can be rewritten as,  
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……Equation 1.76 

Define the ratio of step sizes as β = Δx/Δy and by rearranging the above equation we get,  

 

……Equation 1.77 

In order to explore various solution procedures, first consider a square domain with Dirichlet 

boundary conditions. For example let us simple example of 6 x 6 grid system subjected to the 

following boundary conditions.  

 

 

Figure 1.17 Grid system used for solution 

By applying the above equation 1.77 to the interior grid points produce sixteen equations with 

sixteen unknowns.  
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These equations are expressed in the matrix form as,  
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Solution Algorithms 

 In general there are two methods of solution for the system of simultaneous linear 

algebraic equations they are Direct and Iterative Methods. Some of the familiar direct methods 

are, Cramer‘s Rule and Gaussian Elimination Method. The major disadvantage of this method is 

it has enormous amount of arithmetic operations to produce a solution. So in this chapter 

discusses only in the iterative method. Iterative procedures for solving  a system of linear 

algebraic equations are simple and easy to program. The idea behind this method is to obtain the 

solution by iteration.  The various formulations of the iterative method can be divided into two 

categories. If the formulations results only in one unknown this is called as Explicit/Point 

iterative method. If the formulation involves more than one unknown it is called as Implicit/Line 

iterative method.  
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Figure 1.18 Explicit Formulation 

 

 

Figure 1.19 Implicit Formulation 

The Jacobi Iteration Method 

 In this method the dependent variable at each grid point is solved using initial guessed 

values of the neighboring points or previously computed values. Therefore the equation is given 

by,  

 

……Equation 1.78 

Which is used to compute uij at the new iteration level of k+1 where k corresponds to the 

previously computed values. The computation is carried out until a specified convergence 

criteria is met. The results from the convergence can be called as Converged Solution if it has 

met the convergence criteria and as Steady-State Solution if the results does not vary with time.  

The Point Gauss-Seidel Iteration Method 

 In this method the current values of the dependent variable is are used to compute the 

neighboring points as soon as they are available. This will certainly increase the convergence 

rate dramatically over the Jacobi method. The method is convergent if the largest elements are 

located in the main diagonal of the coefficient matrix.  

The formal requirement for the convergence of the method is  
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And at least for one row,  

 

……Equation 1.79 

Since this is a sufficient condition, the method may converge even though the condition is met 

for all rows. The finite difference equation 1.79 can be written  as  

 

……Equation 1.80 

 

Figure 1.20 Grid Points for the equation 1.30 

For the computation of the value at the point (2,2) the equation can be written as,  

……Equation 1.81 

In the above equation u12 and u21 are provided by the boundary conditions and values u23 and u32 

are the values from the previous iteration. Thus in terms of the iteration level the equation can be 

written as,  

 

……Equation 1.82 

The general formulation is provided by the equation 
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……Equation 1.83 

This is a point iteration method since only one unknown is sought. The grid points are shown in 

the below figure.  

 

Figure 1.21 Grid points for the equation 1.83 

Point Successive Over-Relaxation Method (PSOR) 

 In this solution process a trend in the computed values of the dependent variable is 

noticed, then the direction of change can be used to extrapolate for the next iteration and thereby 

accelerating the solution procedure. This procedure is known as successive over-

relaxation(SOR).  

Consider the point Gauss Seidel iteration method, which is given by 

 

……Equation 1.84 

Adding  to the right hand side and collecting the terms we obtain 

 

……Equation 1.85 

As the solution proceeds uij
k
 must approach uij

k+1
 . To accelerate the solution the values in the 

bracket is multiplied by ω, the relaxation parameter.  

So the equation becomes,  
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For the solution to converge it is necessary that 0 < ω < 2. If 0 < ω < 1 it is called under 

relaxation, the above equation is rearranged as,  

 

……Equation 1.86 

1.9 Explicit Finite Difference Method of Supersonic Flows – Hyperbolic 

Equations 

 The model equation considered for studying the Explicit FDM methods for the 

Hyperbolic equations is First order wave equation,  

 

……Equation 1.87 

Which is linear equation for constant speed a.  

Euler’s FTFS method 

 In this explicit method, forward time and forward space approximations of the first-order 

are used, the resulting Finite Difference Equation (FDE) is  

 

……Equation 1.88 

Euler’s FTCS method 

 In this formulation central differencing of special derivative is used, the resulting FDE is  

 

……Equation 1.89 

The First Upwind Differencing Method 

 The backward differencing of the special derivative produces the FDE,  

 

……Equation 1.90 

This method is stable when c is less than or equal to 1.  
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It is the Courant number. The FDE for the conditionally stable solution is  

 

……Equation 1.91 

The Lax method 

 If an average value of ui
n
 in the Euler‘s FTCS method is used , we get a FDE of the form,  

 

……Equation 1.92 

This method is stable when,  

Midpoint Leapfrog method 

 In this method, Central differencing of the second order is used of both the time and 

space derivative.  This gives the FDE,  

 

……Equation 1.93 

This is of the order . This method is stable when,  

This requires the two sets of the initial values to start the solution. The Midpoint Leapfrog 

method has a higher order of accuracy.  

The Lax-Wendroff method 

 This finite difference approximation of the PDE is derived from the Taylor series 

expansion of the dependent variable as follows. 

 

……Equation 1.94 

In the terms of the indices 

 

……Equation 1.95 

Now consider the model equation 
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……Equation 1.96 

By taking the time derivative we get,  

 

……Equation 1.97 

Substitute both the equations in the indices terms shown above we get,  

 

……Equation 1.98 

By applying the space derivative of the first and second order derivatives, we get 

 

……Equation 1.99 

This formulation is known as the Lax-Wendroff method, this method is stable for  

1.10 Explicit Finite Difference Method of Viscous Flows – Parabolic Equations 

The Forward Time/Central Space (FTCS) method 

 In this method forward difference approximation for the time derivative and central 

differencing for the space derivative which gives,  

 

……Equation 1.100 

The above equation is stable for  

The Richardson method 

 In this approximation method central differencing is used for both time and space 

derivatives, the resulting FDE is,  

 

……Equation 1.101 
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The above equation is unconditionally unstable and has no practical value. 

The DuFort-Frankel method 

 In this formulation the time derivative is approximated by a central differencing and the 

second order space derivative is also approximated by the central differencing method. Due to 

stability constrains ui
n 

in the right hand side is replaced by the average value. This is the 

modification of the Richardson method. The resulting FDE is  

 

……Equation 1.102 

From which 

 

……Equation 1.103 

This can be rewritten as  

 

……Equation 1.104 

This method is of the order of ,  

 

 

Figure 1.22 Grid points for the DuFort-Frankel method 
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2. GRID GENERATION         

 The governing partial differential equations (PDEs) of the fluid mechanics are solved 

numerically by converting the partial equations in to appropriate finite difference expressions 

which are used to rewrite PDEs as algebraic equations. These Finite Difference Equations 

(FDEs) are solved at the discrete points within the domain of interest; these discrete points are 

called Grids.  

Structured Grid - The computational domain selected to be rectangular in shape where the 

interior grid points are distributed along grid lines. The grid points can be identified easily with 

reference to the appropriate grid lines. This type of grid is known as the structured grid.  

Unstructured Grid – The grid system that is constructed where the grid points cannot be 

associated with the orderly defined grid lines. This type grid system is known as the 

unstructured grid.  

Initial and Boundary Conditions 

 In order to obtain a unique solution of a PDE, a set of supplementary conditions must be 

provided to determine the arbitrary functions which result from the integration  of the PDE, The 

supplementary conditions are classified as boundary and initial conditions.  

 An initial condition is a requirement for which the dependent variable is specified at 

some initial state.  

 A boundary condition is a requirement that the dependent variable or its derivative must 

satisfy on the boundary of the domain of the PDE. 

 Various types of boundary conditions which will be encountered are, 

1. The Dirichlet boundary condition – If the dependent variable along with the boundary is 

prescribed, it is known as the Dirichlet type.  

2. The Neumann boundary condition – If the normal gradient of the dependent variable along 

with the boundary is specified, it is called the Neumann type. 

3. The Robin boundary condition – If the imposed boundary condition is a linear combination 

of the Dirichlet and Neumann types, it is known as the Robin type. 

4. The Mixed boundary condition – The boundary condition along a certain portion of the 

boundary is the Dirichlet type and on another portion of the boundary, a Neumann type. This 

type is known as a mixed boundary condition.  
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2.1  Structured Grids        

Structured Grid - The computational domain selected to be rectangular in shape where the 

interior grid points are distributed along grid lines. The grid points can be identified easily with 

reference to the appropriate grid lines. This type of grid is known as the structured grid.  

The generation of grid with uniform spacing is the simplest within a rectangular physical 

domain. Grid points may be specified as coincident with the boundaries of the physical domain, 

thus making specification of boundary conditions considerably less complex. Unfortunately the 

majority of the physical domain of interest are nonrectangular, Therefore imposing rectangular 

computational domain on such physical domain will require some sort of interpolation for the 

implementation of the boundary condition. Since the boundary condition have a dominant 

influence on the solution of the equation, such an interpolation causes inaccuracies at the place of 

greatest sensitivity.   

2.2 Types and Transformations      

 A transformation from physical space to computational space is introduce to overcome 

some of the difficulties such as unequal grid spacing near the boundaries and inaccuracies at the 

place of sensitivity. This transformation is accomplished by specifying a generalized coordinate 

system which will map the nonrectangular grid system in the physical space to a rectangular 

uniform grid spacing in the computational space.  

 

Figure 2.1 Transformation from physical space to computational space 

In general grid generation techniques are classified based on complex variables as,  

 1. Algebraic methods 

 2. Partial differential methods 

 3. Conformal mapping 
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Conformal mapping is based on complex variables and are limited to 2-D problems so this will 

not be discussed.  

Transformations of the Governing Partial Differential Equations 

 The relationship between the physical and computational space are given by,  

 

 ……….Equation 2.1 

The chain rule for partial differentiation yields the following expression; 

 

……….Equation 2.2 

The above equation can be written as,  

 

……….Equation 2.3 

Now consider a model PDE 

 

The above equation can be transformed from the physical to the computational space by using 

the equations 2.3, we get 

 

This can be rearranged as 

 

……….Equation 2.4 

This equation is the one which will be solved in the computational domain. The transformation 

derivatives, are defined from the equation 2.1. Comparing the original equation 

and the transformed equation , the transformed equation is more complicated than the original 

equation. The advantage outweigh the complexity of the transformed PDE.  
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Metrics and the Jacobian of Transformation 

Recall the equation 2.3. The terms such as appear.  

 

These transformation derivatives are defined as the metrics of transformation or simply metrics. 

The interpolation of the metrics is obvious considering the following approximation; 

 

……….Equation 2.5 

This expression indicates that the metrics represent the ratio of the arc length in the 

computational space to that of the physical space.  

From equation 2.1. the following differential expressions are obtained,  

 

……….Equation 2.6 

This can be written in the compact form as,  

 

……….Equation 2.7 

Reversing the role of independent variables, we get,  

 

……….Equation 2.8 

The above equation can be written as,  

 

……….Equation 2.9 

In a compact form it may be written as,  
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……….Equation 2.10 

Comparing equation 2.7 and 2.10 it can be concluded as,  

 

……….Equation 2.11 

From which we can conclude that 

 

J is defined as the Jacobian of Transformation. 

The Jacobian J is interpreted as the ration of the areas in 2D and ratio of volumes in 3D in the 

computational space to that of the physical space.  

2.3 Generation of Structured Grids      

 Grid systems with the following features are desired; 

1. A mapping which guarantees one-to-one correspondence ensuring grid lines of the same 

family do not cross each other; 

2. Smoothness of the grid point distribution; 

3. Orthogonality or near Orthogonality of the grid lines; 

4. Options for grid point clustering; 

Algebraic Grid Generation Techniques 

 The simplest grid generation is the algebraic method. The major advantage of this scheme 

is the speed with which a grid can be generated. An algebraic equation is used to relate the grid 

points in the computational domain to those of the physical domain. This objective is met by 

using an interpolation scheme between the specified boundary grid points to generate the interior 

grid points.  
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Figure 2.2 The physical space which must be transformed 

Consider the simple physical domain depicted in the figure 2.2. Introducing the following 

algebraic relations will transform this non rectangular physical domain into a rectangular 

domain:  

 

……….Equation 2.12 

yt  represents the upper boundary which is expressed as  

 

Thus the equation 1.22 can be written as 

 

By rearranging the terms we get,  
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……….Equation 2.13 

The grid system is generated as follows; the geometry in the physical space is defined. For this 

problem by specifying values of L, H1 and H2. Next the desired number of grid points defined by 

IM – the maximum number of grid points in ξ, and JM – the maximum number of grid points in 

η is specified. The equal grid spacing in the computational domain is produced as follows; 

 

……….Equation 2.14 

In the above equation η is normalized, its value varies from zero to one.  

 

Figure 2.3 The rectangular computational domain with uniform grid spacing 

The values of ξ and η are known at each grid point within the domain. The equation 2.13 can be 

used to identify the corresponding grid points in the physical space.  

The metrics and the Jacobian of the transformation must be evaluated before any transformed 

PDEs can be solved. An algebraic model is used the metrics are calculated analytically. This 

aspect is an advantage of the algebraic methods since numerical computation of metrics will 

require additional computation time and may introduce some errors into the system of equations 

of motion that are to be solved.  
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Advantages:  

1. Computationally they are very fast 

2. Metrics may be evaluated analytically, thus avoiding numerical errors 

3. The ability of cluster grid points in different regions can be easily implemented.  

Disadvantages 

1. Discontinuities at a boundary may propagate into the interior regions which could lead to 

errors due to sudden change in the metrics 

2. Control of grid smoothness and skewness is a difficult task. 

 

Partial Differential Equation Techniques 

 

Elliptical Grid Generators 

 

Simply-Connected Domain 

 

Doubly-Connected Domain 

 

Multiply-Connected Domain 

 

Coordinate System Control 

 

Grid Point Clustering 

 

Orthogonality at the Surface 

 

Hyperbolic Grid generation Techniques 

 

Parabolic Grid Generators 
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UNIT III 

DISCRETIZATION 

Boundary Layer Equations and Methods of Solution-Implicit Time Dependent 

Methods for Inviscid and Viscous Compressible Flows-Concept of Numerical Dissipation-

Stability Properties of Explicit and Implicit Methods-Conservative Upwind Discretization for 

Hyperbolic Systems-Further Advantages of Upwind Differencing 

3.1  Boundary Layer Equations and Methods of Solution  

 Prandtl made an important contribution to the calculation of a specific type of flow for 

which the Reynolds number is very large. The Reynolds number has the form of a non-

dimensional parameter 

------------------------- 1 

Where L is a characteristic length, usually the length of the considered body, V is the 

velocity of the flow where it is well-defined and undisturbed. The kinematic and dynamic 

viscosity is denoted by v and μ, respectively. The density of the fluid is ρ. The Reynolds number 

is the ratio of inertia to friction forces following the ‗principle of similarity 

--------------- 2 

The velocity u at some point in the velocity field is proportional to the free stream velocity V. 

The velocity gradient ∂u/∂x is proportional to V/L and similarly ∂
2
u/∂x

2
 is proportional to V/L

2
. 

Hence the ratio, Eq. (2) yields 

                     ---------------- 3 
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 Figure 1:Boundary layer flow along a wall 

 

Two flows are similar from the point of view of the relative importance of inertial and 

viscous effects if the Reynolds number is constant. Now the physical phenomenon of a flow with 

high Reynolds number is considered for the example of a cylindrical body shown in Fig. 1. 

With the exception of the immediate neighborhood of the surface the flow velocity is 

comparable to the free stream velocity V. This flow region is nearly free of friction; it is a 

potential flow. Considering the region near the surface there is friction in the flow which means 

that the fluid is retarded until it adheres at the surface. The transition from zero velocity at the 

surface to the full magnitude at some distance from it takes place in a very thin layer, the so-

called ‗boundary layer‘. Its thickness is δ, which is a function of the downstream coordinate x 

and is assumed to be very small compared to the length of the body L. In the normal direction y 

inside the thin layer it is clear that the gradient ∂u/∂y is very large compared to gradients in the 

stream wise direction ∂u/∂x. Although the viscosity was meant to be very small in this flow the 

shear stress η = μ(∂u/∂y) may assume large values. Outside the boundary layer the velocity 

gradients are negligibly small and the influence of the viscosity is unimportant. The flow is 

frictionless and potential. 

The above assumptions are now used to simplify the Navier–Stokes equations for steady 

two-dimensional, laminar and incompressible flows, resulting from the non-conservation form 

by a formal procedure. Including the continuity equation they have the following dimensional 

form in Cartesian coordinates 

---------------------------- 4 

 

--------------------------- 5 

 

-------------------- 6 
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Here the velocity components ¯u and ¯v are directed towards the downstream ¯x and the 

normal ¯y-direction, respectively. The static pressure is denoted by ¯p, ¯ρ is the density and ¯μ is 

the dynamic viscosity of the fluid. 

For convenience, this set of second order differential equations is non-dimensionalized which 

involves the Reynolds number necessary for the following reduction of the equations. The 

prescriptions for non dimensionalization are: 

----------------- 7 

V is the dimensional free stream velocity and the pressure is non-dimensionalized by twice 

the dynamic pressure, 

 

Using these definitions, Eqs. (4), (5) and (6) become: 

--------------------- 8 

--------------- 9 

----------------------- 10 
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Now the question is, what order of magnitude do the dimensionless substitutions Eqs. (8.7) 

have? As stated above, the boundary layer thickness δ is very small, so is the distance y 

compared to the length of the body L. Consequently y is of the order ε which describes a value 

much smaller than 1. The u-velocity component can reach the maximum value of V, therefore it 

is of the order 1. But the v-velocity component also has to be of the order ε as can be seen from 

the continuity equation, Eq. (8.10).If the derivative ∂u/∂x is of the order 1 because x becomes, at 

its maximum, the length L, then the second term in the continuity equation ∂v/∂y has also to be of 

the order 1. Consequently, v is not greater than ε. Now, with these assumptions the order of 

magnitude analysis can be done. It follows from the first equation of motion, Eq. (8.8), that the 

viscous forces in the boundary layer can become of the same order of magnitude as the inertia 

forces only if the Reynolds number is of the order of 1/ε
2
. The equation of continuity remains 

unaltered for very large Reynolds numbers. 

The equation of continuity remains unaltered for very large Reynolds numbers. The 

downstream momentum equations can be reduced by the second derivative of the u-velocity 

component ∂
2
u/∂x

2
 and multiplied by 1/Re because it has the smallest order of magnitude in this 

equation. It only holds that the forcing function term (−dp/dx) will not exceed the order of 1 to be 

in balance with the other remaining terms. 

All terms of the normal momentum equation, Eq. (8.9), are of a smaller magnitude than 

those of Eq. (8.8). This equation can only be in balance if the pressure term is of the same order 

of magnitude. Therefore, this equation delivers the information of negligible pressure gradient in 

the normal direction, i.e. 

 
The meaning of this result is that the pressure is practically constant; it is ‗impressed‘ on 

the boundary layer by the outer flow. Therefore, the pressure p is only a function of x. 

The derivation of Eq. (8.8) at the outer edge of the boundary layer gives, if the Inviscid 

velocity distribution U(x) = ¯u(x)/V is known: 

      ----------------- 

The other terms involving ∂u/∂y are zero since there remains no large velocity gradient. 

After integration of Eq. (8.12) the well-known Bernoulli equation is found: 
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----------------------- 

Summing up , by the order of magnitude analysis the Navier–Stokes equations, Eqs. (8) 

and (9), and the continuity Eq. (10), have been simplified. They are known as ‗Prandtl‘s 

boundary layer equations‘:  

-----------11 

 

------------------- 12 

 

---------13 

The boundary conditions are: 

On the surface: 

------14 

On the outer edge of the boundary layer: 

-----------15 

 

This set of equations is reduced by the unknown pressure p, which is, because of 

Bernoulli‘s equation, Eq. (8.13), a known value now, if only the inviscid velocity distribution at 

the surface U(x) is provided. It is still a coupled, non-linear, second order set of differential 

equations.  

The order of magnitude analysis also described by Schlichting [6] is well suited to 

analyse the more complicated surface-oriented Navier–Stokes equations with additional surface 

curvature created Coriolis and centrifugal forces. At least the order of magnitude analysis gives 

an impression where the boundary layer equations and their more complicated extensions are 

situated in their level of approximation to the full Navier–Stokes equations. This overview will 

be given in the next section. 

 

 

 



Computational Fluid Dynamics 
 

59 
 

HIERARCHY OF THE BOUNDARY LAYER EQUATIONS 

To develop a hierarchy of the fluid mechanical equations, the steady, compressible, laminar, 

two-dimensional Navier–Stokes equations should be written for the Euclidian space in a layer 

close to the surface. This will say that a coordinate system, which may be surface oriented for a 

better adaption to the flow problem considered, is related to the cartesian coordinate system. 

Both systems must be transferable from one to the other. The cartesian and the polar coordinate 

system, for example, are matched together following this demand of Euclidian space. In other 

words, the Jacobian matrix must exist. 

 

   If the Navier–Stokes equations can be formulated for such a surface-oriented coordinate 

system, they will contain many additional terms due to the surface curvature. These terms can be 

understood as Coriolis and centrifugal force terms caused by the change of the streamlines in 

downstream as well as in the cross flow direction depending on the curvature of the surface. 

Curvature-induced terms will have different orders of magnitude. Some are important and others 

can be neglected depending on the specific flow problems. 

Now the question is to set the boundary layer equations including curvature terms in relation 

to Prandtl‘s boundary layer equations developed in the foregoing chapter. 

A simple two-dimensional surface-oriented coordinate system is fixed on an airfoil-like 

contour sketched in Fig. 1. The relations between the new coordinate system and the cartesian 

one are: 

 ------------------------------------------ 1 

           ------------------------------------------- 2 

The resultant set of differential equations due to the coordinate transformation consists of 

two equations of motion in the downstream direction s and the perpendicular direction n, the 

energy and the continuity equations. 
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Fig. 1 Surface oriented coordinate system 

 

Momentum equation in tangential direction: 

----------------3 

Momentum equation in normal direction: 

---------- 4 

Energy equation: 

---------------- 5 

Continuity equation: 

------------- 6 

 
Here u and v are the velocity components in the tangential direction of the flow s and the 

normal direction n, respectively. The pressure is denoted by p, ρ is the density, μ and λ are the 

dynamic viscosity and the thermal heat conductivity, respectively. The curvature of the surface is 
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involved in the geometrical coefficient H. This dimensional set of differential equations 

describes the laminar, compressible flow along arbitrary, two-dimensional curved surfaces. 

Now these governing equations are analysed by predicting the order of magnitude of each 

term. As is usually done, the equations will be non-dimensionalized, the geometrical quantities 

by a characteristic length L and the flow properties by their free stream conditions denoted by 

subscript ∞. The order of magnitude of these quantities is defined as has been done in the case of 

a simple boundary layer without curvature in the preceding chapters. 

------------------------ 7 

It is to be mentioned that the radius of curvature R is not allowed to be much larger than the 

characteristic length L, otherwise κ would belong to another order of magnitude. The radius of 

curvature R is related to the curvature as follows 

------------ 8 

When the radius R becomes very small compared to the length, H can exceed the order 

demanded above. 

The combination of Eq. (7) with the governing equations, Eqs . (3), (4), (5) and (6), provides 

the order of magnitude of each term. A detailed development of the order of magnitude analysis 

applied to this set of equations seems not to be necessary here because in the preceding chapter 

an example was already presented. But in order to give an insight into the origin of the hierarchy 

of the boundary layer equations, the equations will be shown that retain terms only of the order 

0(1) and 0(ε). The chosen equation is the tangential and normal momentum equation in 

dimensional unbarred form. 
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Order 0(1): 

----- 9 

                                ------ 10 

These equations, including the continuity equation, are called the ‗first order boundary layer 

equations‘. Curvature effects are included in the quantity H defined in Eq. (6). These equations 

become identical to Prandtl‘s boundary layer equations when the curvature goes to zero. Hence, 

Prandtl‘s equations are the lowest level of the hierarchy and therefore they should be called 

‗Zeroth order boundary layer equations‘. 

Now terms of the order 0(1) and 0(ε) are retained. 

Order of magnitude 0(ε): 

------8.29 

----------------8.30 

These equations show a significant extension of the foregoing ones. In Eq. (8.29) an 

additional centrifugal term κuv appears as well as dissipative terms due to curvature on the right-

hand side; but the most important extension appears in the normal momentum equation, Eq. 

(8.30). The pressure gradient normal to the flow is no longer zero. Eq. (8.30) is an integral 

equation for the pressure which is no longer impressed on the boundary layer from the Inviscid 

flow. These equations are the so-called ‗second order boundary layer equations‘ and take into 

account that, even in the outer Inviscid flow normal to the surface, there exist velocity gradients 

due to the streamline curvature. The outer edge of the boundary layer is matched to this gradient 

which is no longer equal to zero as the first order of boundary layer theory prescribes. 

Consequently terms of higher order than 0(ε) will be retained now. The result is summarized in 

Table 8.1. 

A decisive development takes place proceeding from the second to the third-order set. 

The mathematical character of the equation changes from parabolic to elliptic. Elliptic 
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differential equations are pure boundary value problems while parabolic equations are initial-

boundary value problems. The latter can be solved by the so called ‗marching procedure‘, but the 

former require the calculation of the entire flow field surrounded by the boundaries which 

implies a greater numerical effort. 

The conclusion of this discussion is that a boundary layer theory of order higher than 

second order immediately leads to elliptic equations. This complicates the method of solution 

because the parabolic approach of the original idea of boundary layer theory no longer holds. 

 

The subject of the following chapter will be to give an impression as to how 

transformations of the governing first-order boundary layer equations influence the solution 

techniques positively. 

 

Table 8.1 Hierarchy of the boundary layer equations 

 

Numerical Solution Method: 

Choice of Discretization Model 

 
To come to a numerical solution of a set of partial differential equations it is usual to 

replace the differential quotients by finite difference quotients taking into account that a 

truncation error of a certain order of magnitude will now be induced to the set of equations. By 

rearranging the finite difference equations a system of algebraic equations is obtained which can 

be solved by means of the known methods. The techniques of the discretization are detailed in 
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Chap.5. It is stated there that the choice of the computational discretization grid is important as it 

affects the truncation error, the stability and the consistency. The form of these grids and the 

solution methods to which they lead will be summarized briefly. 

Parabolic equations as observed here have a first order differential in the marching 

direction. As the flow is not allowed to reverse, the values of each quantity at the last upstream 

grid line normal to the surface are known. If we consider a grid as shown in Fig. 8.3, where Δx 

and Δy are the step sizes in the tangential and normal direction to the surface, the known points 

are on the left-hand side and the unknown on the right. Also the boundary conditions at the wall 

are given. Therefore, it is easy to calculate the flow quantities at the point with the open circle 

using discretization models as already given in Chap. 5. Because of the direct calculation of only 

one point on the grid line, this is called an ‗explicit method‘. The explicit method causes strong 

restrictions in the choice of the downstream step size as will briefly be repeated later, so the 

scheme is slow. 

 

Grid for an explicit method 

 

Grid for a fully implicit method 

 

Figure 8.4 shows another extreme choice of a computational grid; the so-called ‗fully 

implicit method‘. 
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Only one known grid point from the preceding step is used, while on the actual one all 

points are unknown except the boundary values. That leads to an implicit form of the set of 

algebraic equations as will be shown later. This method is, concerning the choice of the step size, 

unconditionally stable but may lead to a poor accuracy. If there is no restriction on the step size 

in the downstream direction it becomes a fast calculation method which is desirable. 

Now it is obviously possible to formulate something in between these extremes which 

will result in both a fast and accurate solution method. Figure 8.5 gives the computational mesh 

proposed by Crank–Nicholson [13] but in a more general form, so that the discretization methods 

described before are contained within it as special cases. Here, all points of the known and 

unknown grid lines are involved, but now the centre of discretization is located at the point i + λ. 

λ = 1/2 was originally proposed by Crank–Nicholson. Although the pure Crank–Nicholson 

scheme was described in detail in Part I, an example of a linear model equation is utilized to 

show its discrimination by the more generalized Crank–Nicholson scheme. In a following 

section the application to the two dimensional, rotational compressible boundary layer equations 

will be given. 

 

Grid for a generalized implicit method 

 

Generalized Crank–Nicholson Scheme 

This section is taken directly from Arina & Benocci [5]. In order to analyse the stability 

and accuracy of a generalization of the Crank–Nicholson scheme, it isconvenient to utilize the 

linear model Eq. (8.40), 

------------8.40 
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Equation (8.40) is discretized around the mesh point (i + λ, j), with λ ranging between 0 and 1. 

For λ = 0 an explicit scheme is recovered, while λ = 1 corresponds to the fully implicit case. If 

the grid is uniform, the x-derivative is approximated by the finite difference relation developed in 

Sect. 5.2.1. 

 

and the y-derivative is replaced by the weighted mean 

 

 

Each second-order derivative is then replaced by the usual three-point centred finite difference 

relation: 

 

 

 

Substituting Eqs. (8.41, 8.42, 8.43) into equation (8.40), a linear difference equation is obtained 

 

 which can be recast in the usual tridiagonal form 

 

with Dj a function of θ computed at station i. 

To perform the von Neumann stability analysis it is useful to express the numerical 

solution as a Fourier series, and then verify that none of the harmonics is amplified with respect 

to the evolution coordinate x. This stability analysis is described in detail in Sect. 4.4; Part I, and 

is repeated here as a reminder. Hence putting 
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where I in the exponent is the unit complex number, and ρi is the amplification factor at level i, 

and then substituting inside Eq. (8.45), actualizing the indices in Eq. (8.46), we have 

 

To have stability, |G| ≤ 1 for all harmonics ωΔy; this inequality together with Eq. (8.47), leads to 

the following stability condition for 0 ≤ λ < ½ 

 

where C = aΔx/Δy2. For 1/2 ≤ λ ≤ 1 no stability restriction is imposed on C. Hence the scheme 

presented is unconditionally stable for values of λ equal or larger than 1/2. In the case of the 

explicit scheme (λ = 0), there is a strong limitation to Δx if Δy is chosen rather small for accuracy 

requirements. 

The consistency of the scheme can easily be verified expanding in Taylor series all other 

terms of Eq. (8.45) about the point (i+λ, j). The discretization error can be proved to be of 0(Δx, 

Δy2) if λ is not equal to 1 (Ref. [14]). The scheme is therefore second order accurate with respect 

to y and first-order with respect to x. To obtain second order accuracy with respect to x, λ should 

be taken equal to 1/2 (Crank–Nicholson scheme), or slightly different to 1/2 (e.g. = 1/2 + 0(Δx)). 

However, for practical, non-linear problems it is often necessary to increase λ in order to avoid 

non-linear instabilities. For instance, the full implicit scheme is often very stable, but leads to a 

worse accuracy. 

Equation (8.40) is a linear partial differential equation employed as a model to 

demonstrate the widely used generalized implicit Crank–Nicholson solution code. Now this will 

be applied to the boundary layer Eqs. (8.31), (8.32) and (8.33) of Sect. 8.4. 

 

3.2 Implicit Time Dependent Methods for Inviscid and Viscous Compressible 

flows  

 The compressible Euler and Navier-Stokes equations represent the most sophisticated 

models of single-phase flows of single-component Newtonian fluids. As such, they allow the 
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analysis of complex Inviscid and viscous flow phenomena including rotational flows caused by 

curved shock waves or viscous/Inviscid interactions leading to flow separation. As a counterpart, 

the numerical techniques required to solve these equations are also the most sophisticated and the 

numerical effort needed to obtain them is also the greatest. This is schematically represented in 

Fig. 9.1 taken from Green‘s [18] review of the state- of-the-art in numerical methods in 

aeronautical fluid dynamics.  

The difficulties of solving complex steady compressible flows were already pointed out 

in the first part of this volume, in which the blunt body problem was taken as an illustrative 

example. It was shown that the crux of the difficulty lies in the mixed character of the flow, 

involving regions governed by ―elliptic‖ equations and others governed by ―hyperbolic‖ 

equations. Finally, the solution to the problem was found by solving the time dependent 

equations using a time marching method, taking advantage of the uniform nature of the unsteady 

equations with respect to time, independently of the subsonic or supersonic character of the 

flow.1 following that breakthrough, many methods were developed to integrate the unsteady 

Euler or Navier-Stokes equations. These methods can be classified in two main categories: 

explicit and implicit methods (Part I, Sect. 5.3). 

Historically, explicit methods were developed earlier, because of their greater simplicity. 

Several examples were given in Part I, Chap. 7. The major limitation of these methods is their 

stability characteristics which impose an upper bound on the usable integration time step. In 

recent years, implicit methods have been developed to overcome this limitation and have proved 

more efficient than the former explicit method, which justifies their study. 

 

Hierarchy of computational fluid dynamics after Discretization 



Computational Fluid Dynamics 
 

69 
 

In Sect. 9.2, we shall examine solution techniques for simpler flows and explain why these 

techniques fail for the solution of the steady compressible Euler/ Navier-Stokes equations. In 

Sect. 9.3, stability properties of numerical integration techniques will be studied in detail first for 

ordinary differential equations, then for 

partial differential equations. In Sect. 9.4, it will be shown how an implicit method can be 

constructed to solve partial differential equations such as the Euler or Navier-Stokes equations. It 

will be seen that this can be subdivided into three steps, the choice of an explicit discretization 

scheme, the choice of an implicit operator and finally the choice of a solution strategy, which 

will be discussed in turn. For the first step, the issue of numerical dissipation will turn out to be 

crucial, and this concept will be discussed in detail. As in Part I, only the finite difference 

method is considered as the space discretization technique, but, as will be mentioned in the 

lecture,most of the concepts discussed and of the basic methods described apply equally to finite 

volume discretizations (especially on structured meshes) and some to finite element 

discretizations. 

The content of these notes will remain rather basic except in a few instances, in 

accordance with the objectives of this book. In particular, no individual scheme will be examined 

in great detail. For additional information, the reader is referred to the very comprehensive 

survey of CFD methods by C. Hirsch [22, 23] and, finally, to the original literature. 

3.3 Concept of Numerical Dissipation  

Definition of Numerical Dissipation  

As mentioned above, the question of numerical dissipation arises for advection dominated 

problems. Numerical dissipation is therefore defined in reference to the advection (wave) 

equation: 

 

This equation describes the transport of the quantity u with speed c. Its general solution is u = f 

(x−ct). A particular solution is the periodical solution 

 
which represents the unattenuated propagation of a wave of length 2π/k with speed c. 

 

Let us compute the amplification ion factor u(x, t+Δt)/u(x, t) for the exact solution. We find 
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A numerical solution will yield 

 
When one wishes to accurately follow a true unsteady phenomenon, one obviously 

desires to have g(η,ν) as close as possible to e
−iην

. For stability, one must have |g(η,ν)| ≤ 1 for all 

η. The difference between |g(η,ν)| and 1 is called dissipation or else dissipative error, and the 

difference between arg(g(η,ν)) and −ην is called dispersion or dispersive error. 

3.4 Stability Properties of Explicit and Implicit Methods 

  Since the outcome of the competition between explicit and implicit methods is 

governed by their respective stability properties, a closer look must be given to this issue. First, 

we observe that the space-discretization of a time-dependent partial differential equation 

produces a system of ordinary differential equations. Consider for example the diffusion 

equation 

------------------- 1 

After discretization in space using central finite differences, we obtain the following 

system of ordinary differential equations 

------------ 2 

With 

-------------3 
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Therefore, the analysis of the stability of a time stepping scheme for solving the PDE 

reduces to the analysis of the stability of a time stepping scheme for solving a system of ODEs. 

Furthermore, when we consider a periodic solution in space, 

 

the system of ODEs reduces to a single ODE. Indeed, inserting the periodic solution 

hypothesis in (2) and realizing that 

 
and similarly 

 
we obtain 

 
i.e. an ODE whose coefficient q depends on the reduced wavenumber kmΔx, the locus of q 

(in the complex plane) being called the Fourier footprint of the discretized equation. The stability 

analysis can then be reduced to the stability analysis for a single ordinary differential equations 

du/dt = qu, where q is a complex coefficient. 

 Definition: 

Stability of the numerical integration of an ordinary differential equation is usually 

defined by the following statement. A method is said to be stable (weakly-stable) if the 

numerical solution remains bounded when the number of steps n goes to infinity and the time 

step size Δt goes to zero with the product nΔt remaining constant. 

Stability Properties: 

Weak Instability 

The results of the calculation are displayed in Fig. 1. One notices that the perturbation on u1 

gives rise to amplifying oscillations. In fact, as small as the initial perturbation may be - and 

there will always be one because of round off errors – it will eventually lead to an explosion of 

the numerical solution. This phenomenon is clearly inacceptable. It is named weak instability. 
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Fig. 1 Numerical solution of du dt = −u; u(o) = 1 with the 2-step explicit midpoint method 

 

     Region of (absolute) stability 

 

The concept of region of (absolute) stability was introduced by Dahlquist .The region of 

(absolute) stability of a numerical algorithm for integrating an O.D.E. is the set of values of z = 

qΔt (q = complex parameter of the test equation du/dt = qu) such that the sequence un of 

numerical values remains bounded as n→∞. As the definition of stability required that the 

sequence un remain bounded for n→∞, Δt → 0, this is equivalent to stating that the origin lies in 

the region of (absolute) stability [Δt→0 implies z = qΔt→0]. 

Stiff Problems 

Problems where there is such a coexistence of phenomena with very disparate time scales are 

called stiff problems. Unfortunately they are not uncommon in many fields of engineering and in 

particular in fluid mechanics. For those problems, it would be desirable to have at our disposal 

schemes such that a physically stable problem would lead to a bounded solution irrespective of 

the value of the time step Δt. That property is called absolute stability or  A – Stability. 

Absolute Stability 

Absolute stability was defined as a property by which the numerical solution of a physically 

stable problem would be bounded, irrespective of the time step. Let us translate this in 

mathematical terms. Test problems of the type du/dt = qu are stable if Re(q) ≤ 0. Therefore, the 

set of values of qΔt, corresponding to stable problems is the left half plane. Absolute stability is 

thus equivalent to requiring that the region of stability include the left-half plane. 
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Region of stability of the Runge-Kutta method 

 

Absolute stability ≡ the region of stability includes the left-half plane. 

 

3.5 Conservative Upwind Discretization for Hyperbolic Systems  

It will be shown how conservative upwind discretizations of hyperbolic systems such as 

the Euler equations can be constructed. 

When systems of conservation laws like the Euler equations are considered, the extension 

of upwind schemes poses a problem, in the sense that wave speeds of both signs can be 

simultaneously present. Indeed, the characteristic speeds associated with the unsteady 1D Euler 

equations 

 

are u, u+a and u−a, so that speeds of both signs exist when the flow is subsonic. It is then 

impossible to use a biased discretization of the whole flux vector F since this would lead to a 

downwind discretization for one of the waves. If one considers the quasi-linear form of the 

equations, then one can decompose the original system in characteristic equations and upwind 

each equation according to the corresponding wave speed sign (Courant-Isaacson-Rees scheme 

[8]) but this approach does not satisfy the conservation property which is crucial for the correct 

treatment of discontinuities (Part I, Sect. 2.9). This is the main reason why schemes based on a 

central space discretization such as the Lax-Wendroff scheme and schemes involving artificial 

diffusion have been so popular in the sixties and seventies. Indeed, these schemes are indifferent 

to wave speed sign and therefore extend readily to systems: 
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The early eighties have seen the development of conservative upwind schemes, which 

have since become extremely popular, because of their crisp resolution of discontinuities and 

their superior ability in following moving shock waves. The remainder of this section will 

therefore be devoted to a brief presentation of the two major families of conservative upwind 

schemes. 

Flux Difference Splitting (FDS) Schemes — Approximate Riemann Solvers 

The starting point of Flux Difference Splitting scheme is the scheme developed in the late 

fifties by the Russian mathematician Godunov [17] for the unsteady 1D Euler equations. This 

scheme is based on the integral form of the equations.9 The integral form of the unsteady 1D 

Euler equations (9.36) is 

 

For the numerical solution of the problem, the domain of interest is divided up into 

intervals (cells in the finite volume terminology) and the unknowns of the numerical solution Ui 

are the average flow quantities over the corresponding interval (see Fig. 9.13) rather than point 

values as in the finite difference method. The boundaries of interval i are noted i±1/2. As 

illustrated in the figure, the intervals need not be of constant length (hi−1 _ hi _ hi+1). The first 

step in Godunov‘s method consists in reconstructing a piecewise continuous distribution of the 

flow variables from the cell averages. The simplest choice is a piecewise constant reconstruction 

as illustrated in the figure.10 At the interval interfaces, the flow variable distributions are thus 

discontinuous. Now, there exists an exact solution of the 1D Euler equations for initial data 

consisting of two constant states separated by a discontinuity—this problem is known in the 

literature as the Riemann problem, and applies in particular to the flow in a shock tube. The 

solution consists of elementary waves (shock wave, contact discontinuity, expansion wave) 

originating from the interface, as illustrated in Fig. 9.14 for the shock tube problem. An 

interesting property of the solution is that flow variables are constant along straight lines in x−t 

space (which implies that the solution is self-similar). In particular, it is constant in time at the 

location of the interface. As long as the two solutions at each interface of an interval do not 

interact (which imposes an upper bound on the time step), it is thus possible to compute the exact 
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solution at the new time level from the initial piecewise constant data. This constitutes the 

second step in Godunov‘s method, called the evolution step. From 

 

Finite volume representation 

 

Schematic representation of the solution of the Riemann problem 

the exact solution at the new time level, it is then possible to compute the new cell averages in 

order to restart the process. This constitutes the third step of the method, called projection step. 

 

Actually, it is possible to compute directly the cell averages at the new time level without 

computing the details of the solution. Indeed, integrating in time between tn and tn+1 = tn+Δt the 

integral form of the equations applied to interval i, one finds 
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or dividing through by hiΔt, 

 

from which we deduce that Godunov‘s scheme is a conservative discretization of   the 1D Euler 

equations with the numerical flux function 

 

combined with forward Euler time stepping. That this is an upwind discretization clearly 

shows up by applying it to the linear advection equation. Since the exact solution of the linear 

advection equation is the initial solution moving with speed c, it results that (for c > 0) 

 

and one recovers the first-order upwind discretization. 

The essential drawback of Godunov‘s scheme is that the computation of U exact (xi+1/2, 

t) requires the solution of a non-linear algebraic problem, i.e. it is computationally expensive. 

Now, as most of the information contained in the exact solution is lost by the averaging process, 

Roe [34] suggested to replace the exact Riemann problem by a linearized problem 
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The first condition is required for consistency, the second ensures that the linearized 

problem has a solution, and the third condition is a sufficient condition for the scheme to be 

conservative. It also has the nice additional property that the solution of the linearized problem is 

identical to the solution of the exact problem when a single wave is present. 

 

Now, the solution of the linearized problem is found quite easily by the theory of 

characteristics. Multiplying the linearized equation by the matrix L of left eigenvectors of 

˜Ai+1/2, one obtains 

 

 

Where Λ is the (diagonal) matrix of eigenvalues of ˜Ai+1/2. These are decoupled linear 

advection equations for the characteristic variables, components of the vector LU. For the 1D 

Euler equations, there are three components. Noting 

 

and arranging the eigenvalues in increasing order, the solution of the linear problem is 

schematically shown in Fig. 9.15 (in terms of characteristic variables) and for the case of the 

figure (λ1 < 0, λ2, λ3 > 0), 

 

 

 

Solution of the linearized Riemann problem 
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relations from which it appears that the flux difference Fi+1 −Fi has been split into a positive 

and a negative part to calculate Fi+1/2, whence the name Flux Difference Splitting. By this 

splitting of the flux difference, the scheme automatically adapts the difference scheme to the 

local flow quantities. It is thus a solution-adaptive differencing scheme as alluded to in the 

introduction. 

Averaging the two previous expressions, the following (third) form of Roe‘s scheme is obtained: 

 

 

Now, this has exactly the same form as the artificial diffusion flux formula (9.37) except that the 

diffusion coefficient is replaced here by a diffusion matrix. 

 

The Flux Difference Splitting approach pioneered by Roe has met with a considerable success. 

Several schemes of this type, also called Approximate Riemann solvers, were developed since 

the beginning of the eighties [13, 15, 33, 38], among which the most popular is certainly Osher‘s 

scheme [33]. 
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Flux Vector Splitting (FVS) Schemes 

The idea of flux vector splitting was introduced in computational fluid dynamics by 

Steger and Warming [40]. The idea had been previously proposed in astrophysics by Sanders and 

Prendergast [36] but was rediscovered independently by Steger and Warming. The starting point 

of Steger and Warming‘s scheme is the observation that the compressible inviscid fluxes are 

homogeneous functions of degree 1 in the conservative variables. Consequently, by a theorem 

due to Euler, 

 

Now, the flux Jacobian matrix A is fully diagonalizable and it is possible to split it between its 

positive and negative parts (see previous paragraph) 

 

to which correspond the split fluxes 

 

Now, the split fluxes F± being associated with positive (respectively negative) eigenvalues only, 

it is possible to use upwind difference formulas to discretize the corresponding flux derivatives. 

 

The Steger and Warming flux vector splitting suffers from a lack of continuity at those points 

where an eigenvalue of A vanishes (stagnation and sonic points). 

 

To remedy this problem, van Leer developed an alternative, continuous, flux vector splitting 

[45], which is no longer based on the homogeneity property of the inviscid flux vectors. The 

basic requirements are 

 the split fluxes sum up to the whole flux: F+ +F−= F; 

 the split fluxes Jacobians have positive (respectively negative) eigenvalues only; 

 F
−
= 0 for supersonic flow (respectively F+ = 0 for supersonic flow with negative 

velocity). 



Computational Fluid Dynamics 
 

80 
 

Van Leer imposed a few additional requirements in particular to ensure the crisp resolution 

of discontinuities. 

 

The flux vector splitting approach and van Leer‘s scheme in particular have become 

extremely popular in the CFD community [37, 43], but it was soon realized that flux vector 

splitting schemes are excessively dissipative at contact discontinuities (boundary and shear 

layers) [46]. To avoid this while keeping the robustness of flux vector splitting schemes, an 

improved flux vector splitting scheme was recently developed by Liou and Steffen [30](AUSM 

scheme). Jameson‘s CUSP scheme [25], although formulated in the artificial diffusion 

formalism, appears essentially equivalent to this latter scheme. Finally, Coquel and Liou [6] have 

proposed a procedure to construct hybrid flux vector/flux difference splitting schemes to 

combine the robustness of the flux vector splitting schemes with respect to strong shock and 

expansion waves and the accuracy of flux difference splitting schemes with respect to contact 

discontinuities. They examine in particular the van Leer/Osher hybrid, which provides results of 

comparable accuracy as Osher‘s scheme for viscous flow calculations at a cost only slighly 

superior to van Leer‘s FVS scheme. 

Further Advantages of Upwind Differencing:  

  

      Let us illustrate the effects of numerical dissipation by considering a Couple of examples. Let 

us suppose we are looking for a numerical solution of the advection equation given below 

 
 Let us first select the space discretization scheme. We consider two possibilities: the central 

finite difference and the backward (upwind) finite difference formulas. 

  

  

In order to select the time-integration scheme, let us first calculate the Fourier footprints 

of the discretized equations. Introducing the periodic solution hypothesis 

 

 

We get 
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The discretized equation reduce to the model equation  

 

Where the q coefficient depends on the reduced wave number  η . 

The locus of q is the Fourier footprint of the discretized equation. They are shown below for the 

two discretization schemes 

                                           

Now, the time-integration scheme should be selected so that qΔt can lie within the region of 

stability. By comparing the respective loci of q with the region of stabilities of some of the 

schemes examined previously ,it appears quite clearly that the forward Euler scheme cannot be 

used together with the central space discretization, but the mid-point method, on the contrary, 

can, and the opposite conclusion applies to the backward finite difference discretization. 

Applying the mid-point method and the forward Euler method to the central and backward space 

discretization‘s respectively, the fully discrete schemes and their truncation errors are 

respectively 
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and, being central in both space and time, the leapfrog method is seen to be of superior accuracy. 

Let us now compute the amplification factors of both schemes. 

  

And we observe that the first order upwind-forward Euler method is dissipative whereas the 

leapfrog method is not. It thus seems that the leapfrog method is in all ways (truncation error, 

dissipative properties) superior to the first order upwind forward Euler method. Let us check this 

conclusion by looking at numerical examples. We first consider the advection of a wave packet 

of period 0.5 (k = 4π) on a mesh of size Δx = 1/40 (hence η = kΔx = π/10), using a time step such 

that the CFL number ν = 0.8. The numerical results obtained by both methods shown below 

confirm the conclusions of the analysis: the dissipative properties of the first order upwind-

forward Euler method result in a serious reduction of the wave amplitude, whereas in contrast, 

the leapfrog solution almost perfectly agrees with the exact solution. We can however observe 

some trailing oscillations in the leapfrog solution. 
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UNIT IV 

FINITE ELEMENT TECHNIQUES 

Overview of Finite Element Techniques in Computational Fluid Dynamics- Strong and Weak 

Formulations of a Boundary Value Problem  

4.1 Overview of Finite Element Techniques in Computational Fluid Dynamics: 

The finite element method (FEM) is a numerical technique for solving partial differential 

equations (PDE‘s). Its first essential characteristic is that the continuum field, or domain, is 

subdivided into cells, called elements, which form a grid. The elements (in 2D) have a triangular 

or a quadrilateral form and can be rectilinear or curved. The grid itself need not be structured. 

With unstructured grids and curved cells, complex geometries can be handled with ease. This 

important advantage of the method is not shared by the finite difference method (FDM) which 

needs a structured grid, which, however, can be curved. The finite volume method (FVM), on the 

other hand, has the same geometric flexibility as the FEM. 

The second essential characteristic of the FEM is that the solution of the discrete problem 

is assumed a priori to have a prescribed form. The solution has to belong to a function space, 

which is built by varying function values in a given way, for instance linearly or quadratically, 

between values in nodal points. The nodal points, or nodes, are typical points of the elements 

such as vertices, mid-side points, mid element points, etc. Due to this choice, the representation 

of the solution is strongly linked to the geometric representation of the domain. This link is, for 

instance, not as strong in the FVM. 

The third essential characteristic is that a FEM does not look for the solution of the PDE 

itself, but looks for a solution of an integral form of the PDE. The most general integral form is 

obtained from a weighted residual formulation. By this formulation the method acquires the 

ability to naturally incorporate differential type boundary conditions and allows easily the 

construction of higher order accurate methods. The ease in obtaining higher order accuracy and 

the ease of implementation of boundary conditions form a second important advantage of the 

FEM. With respect to accuracy, the FEM is superior to the FVM, where higher order accurate 

formulations are quite complicated. 
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 The combination of the representation of the solution in a given function space, with the 

integral formulation treating rigorously the boundary conditions, gives to the method an 

extremely strong and rigorous mathematical foundation. 

A final essential characteristic of the FEM is the modular way in which the discretization 

is obtained. The discrete equations are constructed from contributions on the element level which 

afterwards are assembled. 

Historically, the finite element method originates from the field of structural mechanics. 

This has some remnants in the terminology. In structural mechanics, the partial differential 

formulation of a problem can be replaced by an equivalent variational formulation, i.e. the 

minimization of an energy integral over the domain. 

The variational formulation is a natural integral formulation for the FEM. In fluid 

dynamics, in general, a variational formulation is not possible. This makes it less obvious how to 

formulate a finite element method. The history of computational fluid dynamics (CFD) shows 

that every essential break-through has first been made in the context of the finite difference 

method or the finite volume method and that it always has taken considerable time, often much 

more than a decade, to incorporate the same idea into the finite element method. The history of 

CFD, on the other hand, also shows that, once a suitable FEM-formulation has been found, the 

FEM is almost exclusively used. This is due to the advantages with respect to the treatment of 

complex geometries and obtaining higher order accuracy. 

The development of the finite element method in fluid dynamics is at present still far 

from ended. For the simplest problems such as potential flows, both compressible and 

incompressible, and incompressible Navier-Stokes flows at low Reynolds numbers, the finite 

element method is more or less full-grown, although new evolutions, certainly for Navier-Stokes 

problems, are still continuing. More complex problems like compressible flows governed by 

Euler- or Navier-Stokes equations or incompressible viscous flows at high Reynolds numbers 

still form an area of active research. 

In this introductory text, the option is taken to explain the basic ingredients of the finite 

element method on a very simple, purely mathematical, problem and to give fluid dynamics 

illustrations in detail only for simple problems. For more complex problems, only a basic 

description is given with reference to further literature. Also in the explanation of the method, all 

mathematical aspects are systematically avoided. For the mathematical aspects, reference is 
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made to further literature. This makes the text accessible for a reader with almost no knowledge 

of functional analysis and numerical analysis. For the fluid dynamics illustrations, the option has 

been taken to use only simple techniques, so that the detailed examples can be reproduced by the 

reader not really familiar with general computational fluid dynamics or even general fluid 

dynamics. This text therefore is to be seen as the absolute minimum introduction to the subject. 

The text is in no way complete and the author deliberately has taken the risk to be seen as naive 

by a more informed reader. A reference list is given for a deeper introduction. A reader 

beginning with computational fluid dynamics should be aware that a complete study of the finite 

element method may take considerable time and may necessitate, depending on background, a 

considerable effort. The method is much less intuitive than the finite difference method and the 

finite volume method and requires a more fundamental attitude for mathematical formulations. 

This introductory text therefore is also meant to create some enthusiasm for the method by 

showing its power with simple examples and to justify in this way the need for further study. It is 

the conviction of the author that a practitioner of CFD, even if it is not his or her intention to use 

the FEM, should have at least a basic knowledge of the method. This is in particular useful with 

respect to the treatment of boundary conditions. Also one should consider that the impact of the 

FEM in CFD is already extremely important and that it probably will grow in the future. 

4.2 Strong and Weak Formulations of a Boundary 

Value Problem: 

4.2.1 Strong Formulation: 

Consider as an example, the following simple one-dimensional boundary value problem, 

consisting of the differential equation 

    

       (4.1) 

and the boundary conditions 

         (4.2) 

and 

         (4.3) 

More generally, the differential equation is denoted by 
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         (4.4) 

The domain to which it applies is denoted by Ω. The boundary condition of type (4.2) is 

called a Dirichlet boundary condition. More generally, it is denoted by 

         (4.5) 

 

The boundary condition of type (4.3), which is formulated on the flux of the variable, is 

called a Neumann boundary condition. More generally, it is denoted by 

         (4.6) 

The boundary of the domain Ω is denoted by Γ. The part to which the Dirichlet boundary 

condition applies is Γ0 and the part to which the Neumann boundary condition applies is Γ1. 

 The boundary value problem (4.1, 4.2 and 4.3) is said to be in its strong form, requiring 

the satisfaction of the differential equation (4.1) in all points of the domain Ω, the satisfaction of 

the Dirichlet boundary condition (4.2) in all points (here one) of the part of the boundary Γ0 and 

the satisfaction of the Neumann boundary condition (4.3) in all points (here one) of the part of 

the boundary Γ1. 

One way of relaxing the requirements of the boundary value problem, notably the finite 

difference way, consists in requiring the approximate satisfaction of the differential equation and 

the boundary conditions in a finite number of points in the domain and at the boundary. These 

points usually are chosen to belong to a mesh with some form of regularity. For the one-

dimensional domain, a typical mesh or grid is obtained by choosing equally spaced grid points, 

as shown on Fig. 4.1. 

The grid spacing is denoted by Δx. Following standard finite difference methodology, 

du/dx is approximated in the mid-point of the interval (xi, xi+1) by 

        (4.7) 

Similarly, in the mid-point of the interval (xi−1, xi), the approximation is 

         (4.8) 

Using (4.7) and (4.8), (4.1) can be approximated by 
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       (4.9)   

For constant λ, this simplifies to 

        (4.10) 

The Dirichlet boundary condition (4.2) is simply 

          (4.11) 

The Neumann boundary condition can be introduced by the image point method. In this 

method, a point outside the domain (N+ 1) is defined which afterwards is eliminated. The 

discretization of the differential equation (1) in the end point of the domain is given by (4.9) for i 

= N. 

 

 

Fig. 4.1 Construction of a finite difference grid over the interval 0 ≤ × ≤ X 

  

The discretization of the Neumann boundary condition (4.3) is 

 

Combination with the discretized differential equation gives 

    (4.12) 

 

 

 

The resulting discretization is of second order. By taking the Taylor expansion of (4.10), 

this is obvious (for constant λ) for points inside the domain. At the Neumann boundary, the 

Taylor expansion up to second order (for constant λ) gives 
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Using the Neumann boundary condition 

 

and the differential equation in node N 

 

this becomes 

 

For constant λ, this equation is identical to (4.12). 

The originally continuous boundary value problem is now replaced by a discrete 

problem, consisting of the solution of the set of algebraic equations 

       (4.13) 

Where U is the vector consisting of the elements (u1, u2, . . . , uN), K is a matrix given by (in the 

case λ is a constant) 

 

and F is the right hand side, given by 

 

 The most typical feature of the finite difference method is that it only gives information 

about the function values at the grid points, but no information on the function values between 

these points. 

4.2.2 Weighted Residual Formulation  

The first basic ingredient of the finite element method is that an approximate solution is 

sought which belongs to some finite dimension function space. This function space is to be 
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specified more in detail later. For the time being, we look for an approximate solution of the 

boundary value problem (4.1, 4.2 and 4.3) which has the form 

         (4.14) 

where ψ is a function which satisfies the boundary conditions (4.2) and (4.3).For the 

given problem, the construction of ψ is obvious. The functions θk are called basis functions or 

shape functions. Since the dimension of the function space Φ = {θk; k = 1, 2, . . . , N} is finite, in 

general, an expression of type (4.14) cannot satisfy the differential equation (4.1) in each point of 

the domain. This means that the approximate solution ˆu cannot be identical with the exact 

solution u. Of course, the shape functions should be chosen so that by enriching the function 

space Φ, i.e. letting N grow, the approximation obtained by (10.14) becomes better. This means 

that the approximate solution converges to the exact solution. This is called the completeness 

requirement of the function space. Since a function ˆu given by (4.14) cannot satisfy the 

differential equation (4.1),upon substitution of (4.14) into (4.1), a residual is left: 

        (4.15) 

An approximate solution of the boundary value problem now is obtained by finding a way to 

make this residual small in some sense. In the finite element method this is done by requiring 

that an appropriate number of weighted integrals of the residual over Ω be zero: 

      (4.16) 

where W= {wi; i = 1, 2, . . . , N} is a set of weighting functions. Obviously, the convergence 

requirement now also implies a requirement of completeness of the space of weighting functions, 

i.e. (4.16) should imply rΩ →0 for N→∞. 

Clearly, with satisfaction of the completeness, for N→∞, the weighted residual 

formulation (4.16) for a function of form (4.14) is completely equivalent to the strong 

formulation of the problem (4.1, 4.2 and 4.3). An approximate solution then is obtained for N 

being finite. 

4.2.3 Galerkin Formulation 

Among the possible choices for the set of weighting functions, the following ones are the 

most obvious. 
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The weighting functions can be chosen to be Dirac-delta functions in N points. This 

choice means making the residual equal to zero in a number of chosen points. The method is 

called the point collocation method. Obviously, it has much in common with the finite difference 

methodology. 

A second possible choice of weighting functions is given by 

 

The weighted residual statements (4.16) now require the integral of the residual to be 

zero on N subdomains. This method is called the subdomain collocation method. The finite 

volume method, in which not the differential form of the equation but the integral form of the 

equation is discretized, is a special form of this method. 

The most popular choice for the weighting functions in the finite element method is the 

shape functions themselves: 

     

This method is called the Galerkin method. Its meaning is that the residual is made to be 

orthogonal to the space of the shape functions. 

To illustrate the Galerkin method, consider the boundary value problem (4.1–4.3) with 

constant λ. Then: 

 

Consider further as an example of (4.14) a Fourier-sine expansion of u: 

 

Then: 

 

The Galerkin method then gives 
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Then noting that 

 

we find 

     

The foregoing method used to determine an approximate solution of the boundary value 

problem (4.1, 4.2 and 4.3) is not a finite element method, but a spectral method. The finite 

element method however has the same starting point. 

Before going on with the study of the building blocks of the finite element method, we 

should remark that a fourth weighted residual statement exists on which finite element methods 

can be based. The least squares formulation is based on the minimization of the integral 

     

4.2.4 Weak Formulation: 

In many problems, it is not practical to construct a function which satisfies the boundary 

conditions in order to arrive at an expression for the approximate solution, as is done in (14). 

More generally, an approximate solution can be expressed as 

          (4.17) 

Now the approximate solution not only has a residual with respect to the field equation (4.4), but 

also with respect to the boundary equations (4.5) and (4.6): 

         (4.18) 

and 

         (4.19) 

 A weighted residual statement is now to be of the form 
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      (4.20) 

This complicates the formulation since now additional weighting functions on the 

boundaries are to be chosen. Since the number of degrees of freedom of the approximate solution 

(4.17) is N, an equal number of independent weighting functions wi can be chosen, while w0i 

and w1i are to depend on wi. There is however a natural way to choose the dependent weighting 

functions on the boundary. 

For the problem (4.1, 4.2 and 4.3), (4.20) becomes 

    (4.21) 

where the weighting functions at the boundary reduce to weighting factors w0i and w1i.  

By one integration by parts on the first term, (4.21) becomes 

   

This weighted residual statement is simplified by choosing the weighting factors on the 

Neumann boundary by 

    

The weighted residual statement then becomes 

    

Furthermore, if the Dirichlet boundary condition can be imposed on the approximate 

solution, the weighting functions and the weighting factors can be chosen to be zero at the 

Dirichlet boundary, so that the weighted residual statement further simplifies to 

      (4.22) 

subject to the Dirichlet boundary conditions 

         (4.23) 

The weighted residual statement in form (4.22) is called the weak formulation.  
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The weak formulation (4.22 and 4.23) is not completely equivalent to the strong 

formulation (4.1, 4.2, 4.3), even not for N → ∞. By the construction of the weak formulation, 

any solution of the strong formulation satisfies the weak formulation. The reverse, however, is 

not true. The weak formulation allows solutions which have a lower degree of regularity than 

required for the strong solution. This is the origin of the term weak and strong. For instance for 

the problem (4.1, 4.2, 4.3), the solution must have continuous first derivatives. We express this 

by saying that the degree of regularity is to be C1. The corresponding weak formulation (4.22 

and 4.23) only requires continuity of the function value itself. The necessary degree of regularity 

is here C0. This means that functions with discontinuous first derivatives are allowed by (4.22). 

We remark that this is precisely, certainly in fluid mechanics, what we want! Indeed, in fluid 

mechanics, the governing equations are obtained from integral statements, i.e. conservation laws, 

requiring a lower degree 

of regularity than the partial differential equations which are obtained from these statements. 

To conclude, we remark that the weak formulation (4.22), in case of sufficient regularity, 

through reverse integration by parts leads to a simplification of (4.21): 

      (4.24) 

For an infinite number of degrees of freedom (N→∞), this implies exact satisfaction of 

the differential equation and the Neumann boundary condition. 

In the weak formulation (4.22 and 4.23), the Neumann boundary condition need not be 

imposed in an explicit way to the solution. Boundary conditions of this type enter through the 

integration by parts in a natural way into the formulation. Therefore these boundary conditions 

are called natural boundary conditions. The boundary conditions which have to be imposed 

explicitly in the weak formulation are called essential boundary conditions. 

4.2.5 Variational formulation 

For elliptic self-adjoint boundary value problems, the weak formulation is equivalent to 

the minimization of the functional associated to the boundary value problem. Historically, this 

minimization formulation, or variational formulation, has played a big role in the development of 

the finite element method. Variational methods still have an important role in, for instance, 

structural mechanics. Also the variational formulation plays an important role in the 
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mathematical theory of finite element methods, for instance, with respect to questions on 

solvability and uniqueness. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Computational Fluid Dynamics 
 

95 
 

UNIT V 

FINITE VOLUME TECHNIQUES 
 

 
Finite Volume Techniques - Cell Centered Formulation - Lax - Vendor off Time Stepping -

Runge - Kutta Time Stepping - Multi - stage Time Stepping - Accuracy - Cell Vertex 

Formulation - Multistage Time Stepping - FDM -like Finite Volume Techniques - Central and 

Up-wind Type Discretizations - Treatment of Derivatives. Flux – splitting schemes. Pressure 

correction solvers – SIMPLE, PESO. Vorticity transport formulation. Implicit/semi-implicit 

schemes. 

 

5.1 Finite Volume Techniques 

 The basic laws of fluid dynamics are conservation laws. They are statements that 

express the conservation of mass, momentum and energy in a volume closed by a surface. Only 

with the supplementary requirement of sufficient regularity of the solution can these laws be 

converted into partial differential equations. Sufficient regularity cannot always be guaranteed. 

Shocks form the most typical example of a discontinuous flow field. In case discontinuities 

occur, the solution of the partial differential equations is to be interpreted in a weak form, i.e. as 

a solution of the integral form of the equations. For example, the laws governing the flow 

through a shock, i.e. the Hugoniot-Rankine laws, are combinations of the conservation laws in 

integral form. For a correct representation of shocks, also in a numerical method, these laws have 

to be respected. 

 There are additional situations where an accurate representation of the conservation laws 

is important in a numerical method. A second example is the slip line which occurs behind an 

airfoil or a blade if the entropy production is different on streamlines on both sides of the profile. 

In this case, a tangential discontinuity occurs. Another example is incompressible flow where the 

imposition of incompressibility, as a conservation law for mass, determines the pressure field. 

 In the cases cited above, it is important that the conservation laws in their integral form 

are represented accurately. The most natural method to accomplish this is to discretize the 

integral form of the equations and not the differential form. This is the basis of a finite volume 
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method. Further, in cases where strong conservation in integral form is not absolutely necessary, 

it is still physically appealing to use the basic laws in their most primitive form. 

 

Fig. 5.1 Typical choice of grids in the FVM; (a): structured quadrilateral grid; (b): structured 

triangular grid; (c): unstructured triangular grid 

 The flow field or domain is subdivided, as in the finite element method, into a set of non-

overlapping cells that cover the whole domain. In the finite volume method (FVM) the term cell 

is used instead of the term element used in the finite element method (FEM). The conservation 

laws are applied to determine the flow variables in some discrete points of the cells, called nodes. 

As in the FEM, these nodes are at typical locations of the cells, such as cell-centres, cell-vertices 

or mid sides. Obviously, there is considerable freedom in the choice of the cells and the nodes. 

Cells can be triangular, quadrilateral, etc. They can form a structured grid or an unstructured 

grid. The whole geometrical freedom of the FEM can be used in the FVM. Figure 5.1 shows 

some typical grids. The choice of the nodes can be governed by the wish to represent the solution 

by an interpolation structure, as in the FEM. A typical choice is then cell-centres for 

representation as piecewise constant functions or cell-vertices for representation as piecewise 

linear (or bilinear) functions. However, in the FVM, a function space for the solution need not be 

defined and nodes can be chosen in a way that does not imply an interpolation structure. Figure 

5.2 shows some typical examples of choices of nodes with the associated definition of variables. 
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Fig. 5.2 Typical choice of nodes in the FVM. The marked nodes are used in the flux balance of 

the control volume.(a): piecewise constant interpolation structure; (b): piecewise linear 

interpolation structure; (c): no interpolation structure with all variables defined in each node; 

(d): no interpolation structure with not all variables defined in each node; (Cartesian grid), o: ρ 

and p,: u, Δ: v 

  The first two choices imply an interpolation structure, the last two do not. In the last 

example, function values are not defined in all nodes. The grid of nodes on which pressure and 

density are defined is different from the grid of nodes on which velocity-x components and 

velocity-y components are defined. This approach commonly is called the staggered grid 

approach. The third basic ingredient of the method is the choice of the volumes on which the 

conservation laws are applied. In Fig. 5.2 some possible choices of control volumes are shown 

(shaded). In the first two examples, control volumes coincide with cells. The third example in 

Fig. 5.2 shows that the volumes on which the conservation laws are applied need not coincide 

with the cells of the grid. Volumes even can be overlapping. Figure 5.3 shows some typical 

examples of volumes not coinciding with cells, for overlapping and non-overlapping cases. The 

term volume denotes the control volume to which the conservation laws are applied (i.e. 

connected to function value determination), while the term cell denotes a mesh of the grid (i.e. 

connected to geometry discretization). A consistency requirement for the cells is that they are 

non-overlapping and that they span the whole domain. The consistency requirement for the 

volumes is weaker. They can be overlapping so that families of volumes are formed. Each family 

should consist of non-overlapping volumes which span the whole domain. The consistency 

requirement is that a flux leaving a volume should enter another one. 
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 Obviously, by the decoupling of volumes and cells, the freedom in the determination of 

the function representation of the flow field in the finite volume method becomes much larger 

than in both the finite element and finite difference method. It is in particular the combination of 

the formulation of a flow problem on control volumes which is the most physical way to obtain a 

discretization, with the geometric flexibility in the choice of the grid and the flexibility in 

defining the discrete flow variables which makes the finite volume method attractive for 

engineering applications. 

 The finite volume method (FVM) tries to combine the best from the finite element 

method (FEM), i.e. the geometric flexibility, with the best of the finite difference method (FDM), 

i.e. the flexibility in defining the discrete flow field (discrete values of dependent variables and 

their associated fluxes). Some formulations are near to finite element formulations and can be 

interpreted as subdomain collocation finite element methods (e.g. Fig. 5.2a). Other formulations 

are near to finite difference formulations and can be interpreted as conservative finite difference 

methods (e.g. Fig. 5.3a). Other formulations are in between these limits.  

 

Fig. 5.3 Choice of volumes not coinciding with cells, overlapping and non-overlapping cases. 

(a): volumes staggered with respect to cells, non-overlapping case; (b): volumes non-staggered 

with respect to cells, overlapping case; (c): volumes non-staggered with respect to cells, 

overlapping 

case; (d): volumes staggered with respect to cells, overlapping case 
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 The mixture of FEM-like and FDM-like approaches sometimes leads to confusion in 

terminology. Some authors with an FEM-background use the term element for cell and then 

often use the term (control) cell for (control) volume. Strictly speaking, the notion element is 

different from the notion cell. A grid is subdivided into meshes. A mesh has the significance of a 

cell if it only implies a subdivision of the geometry. If it also implies, in the FEM-sense, a 

definition of a function space, it is an element. 

 From the foregoing, it could be concluded that the FVM only has advantages over the 

FEM and the FDM and thus one could ask why all of computational fluid dynamics (CFD) is not 

based on the FVM. From the foregoing, it is already clear that the FVM has a difficulty in the 

accurate definition of derivatives. Since the computational grid is not necessarily orthogonal and 

equally spaced, as in the FDM, a definition of a derivative based on a Taylor-expansion is 

impossible. Also, there is no mechanism like a weak formulation, as in the FEM, to convert 

higher order derivatives into lower ones. Therefore, the FVM is best suited for flow problems in 

primitive variables, where the viscous terms are absent (Euler equations) or are not dominant 

(high Reynolds number Navier-Stokes equations). Further, a FVM has difficulties in obtaining 

higher order accuracy. Curved cell boundaries, as used in the FEM, or curved grid lines, as used 

in the FDM, are difficult to implement. In most methods, boundaries of cells are straight and grid 

lines are piecewise straight. Representation of function values or fluxes better than piecewise 

constant or piecewise linear is possible but rather complicated. Most FVM methods are only 

second order accurate. For many engineering applications, this accuracy is sufficient. The 

development of finite volume methods with better accuracy is nowadays an area of very active 

research and there is still no clear insight in how to reach higher accuracy in an efficient way. 

 Therefore, in the following, we focus on the Euler equations. So, for explanation of the 

basic algorithms, we avoid the discussion of the determination of derivatives. We treat methods 

for construction of derivatives at the end. Further, we only discuss classic algorithms with 

second-order spatial accuracy. For simplicity we do not discuss implicit time stepping schemes, 

since the choice between implicit schemes and explicit schemes is not linked to the choice of the 

space discretization. This introductory text also does not aim to give a complete overview of the 

FVM. It only aims to illustrate some of the basic properties on examples of methods that are 

widely used. 
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Fem-Like Finite Volume Methods 

 FEM-like finite volume methods use cells to which an interpolation structure is 

associated. So, the cells form elements in the FEM-sense. Two interpolation structures can be 

used: piecewise constant interpolation and piecewise linear (or bilinear) interpolation. Figure 5.4 

shows some possibilities on (structured) quadrilateral and triangular grids. The piecewise 

constant interpolation is denoted by the cell-centred method, while the piecewise linear 

interpolation is denoted by the cell vertex method. In both methods, the cells and a group of cells 

around a node are used as volumes. In the first method, data are at cell centres. In the second 

method, data are al cell vertices. 

 We illustrate here some formulations for the Euler equations. The set of Euler equations 

can be written in two dimensions as 

----------------------5.1 

with 

 

 Where ρ is density, u and v are Cartesian components of velocity, p is pressure, E is 

total energy and H is total enthalpy (γ is the adiabatic constant). 

 

 

Fig. 5.4 FEM-like finite volume methods. (a): cell-centred; (b): cell-vertex with non-overlapping 



Computational Fluid Dynamics 
 

101 
 

and overlapping volumes on quadrilateral cells; (c): cell-vertex on triangular cells 

 

5.2 Cell Centered Formulation 

 For a cell as shown in Fig. 5.5, the values of the dependent variables are stored in 

the centre of the cell. These values do not necessarily have to be seen as nodal values, but can 

also be seen as mean values over the cell. Therefore, in the cell-centred method, for visualization 

purposes, often, after completion of the calculations, values are attributed to the vertices of the 

grid by taking a weighted mean of the values in adjacent cells. Further, the interpretation as mean 

values allows higher order formulation, as we discuss in Sect. 5.6. First, we discuss the typical 

second-order accurate formulations. 

  

Using the control volume of Fig. 5.5, a semi-discretization of (5.1) is obtained By 

 

 

 

Inserting (5.3) into (5.2) gives 

  

 Further, f and g have to be defined on the boundary of the volume. A mean value 

between adjacent nodes looks to be the simplest choice, for example:  
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Fig. 5.5 Cell-centred formulation 

 Since the flux functions are non-linear functions of the dependent variables, an alternative 

for (5.5) is  

 

 With (5.6) is meant that the dependent variables are first averaged and that afterwards flux 

vectors are calculated. This is not a popular choice, since it implies about twice as many flux 

evaluations as (5.5). Indeed, when in a structured quadrilateral grid, there are nx subdivisions in 

longitudinal direction and ny subdivisions in transversal direction, then there are nxny cells, but 

nx(ny + 1) + ny(nx + 1) cell faces. This does not imply that the work involved in (5.6) is twice as 

much as the work involved in (5.5). A lot of computational effort can be gained by remarking 

that a momentum flux is a mass flux multiplied by an average velocity, etc. Nevertheless, the 

definition (5.5) is the cheapest. Therefore, (5.5) is the only central flux definition used in the 

following (one-sided flux definitions are also possible, as discussed later). With the definition of 

the discrete fluxes f and g, the semi-discretization (5.4) is completed. It is now to be integrated in 

time. 

5.3 Lax Wendroff Time Stepping 

 Since Lax-Wendroff time-stepping is a very classic explicit time integration method 

in the finite difference method, explained in previous chapters, we begin by discussing how this 

time-stepping can be applied to a finite volume formulation. We first recall the principles of a 

Lax-Wendroff method with the use of the one dimensional scalar model equation 

 

A Taylor series expansion to second order gives 
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Combination of (5.8) and (5.9) gives 

 

The two-dimensional analogue of (5.10) on the Euler equations (5.1) is 

 

Where A and B are the Jacobian matrices of the flux vectors: 

 

 In the finite-difference method, a discretization of (5.10) or (5.5) is called a one-step 

Lax-Wendroff method. As explained in previous chapters, a possible procedure is to expand the 

second-order derivatives in space in (5.10) or (5.5) and to replace these derivatives by central 

difference approximations. In principle, a finite volume formulation on (5.10) or (5.5) is possible 

since these equations take the form of a flux-balance. The fluxes contain however derivatives. 

Since the definition 

of derivatives is not simple in the finite volume method, one-step methods are never used. The 

most popular two-step formulations, such as the Richtmyer variant and the MacCormack variant, 

can however be used without problems in the FVM. 

 Further, in the one-step method the primitive flux balances are lost while these are visible 

in the two-step formulations. Since the MacCormack variant was explained in previous chapters, 

we illustrate here how this variant can be formulated in finite volume form. 
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In the MacCormack variant of the Lax-Wendroff method, (5.8) is written as 

 

With (predictor) 

 

(5.12) can be written as (corrector) 

 

The discretization by MacCormack of (5.13) and (5.14) is 

 

 

 Equations (5.15) and (5.16) form the forward-backward variant. Obviously the forward 

and backward discretizations can be interchanged. In the terminology of ordinary differential 

equations, the MacCormack method is a predictor-corrector method. 

 

 The implementation of the MacCormack variant of the Lax-Wendroff method is rather 

straightforward. In the forward-backward formulation, in the predictor step on Fig. 5.5, the 

fluxes at the sides ab, bc, cd and da are evaluated with function values in the nodes (i,j), (i+1, j), 

(i, j+1) and (i,j), respectively. In the corrector step this is (i, j−1), (i,j), (i,j) and (i−1, j). 

 At inflow and outflow boundaries, the FVM can be used as the FDM. This means that, in 

general, extrapolation formulas are used to define values in nodes outside the domain. For 

instance, for a subsonic inflow, it is common practice to extrapolate the Mach number from the 

flow field and to impose stagnation properties and flow direction. At a subsonic outflow, the 

reverse can be done, i.e. extrapolation of stagnation properties and flow direction and fixing of a 

Mach number. Very often, 

pressure is imposed at outflow. 

 At solid boundaries, the convective flux can be set to zero. This means that in the flux 

through a cell surface on a solid boundary, only the pressure comes in: 
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 The pressure at the boundary can be taken to be the pressure in the cell. Sometimes, as in 

the FDM, an extrapolation of pressure is used. It is however not always easy to define 

extrapolation formulas on distorted or unstructured grids. 

 

 Obviously, four geometrical variants in the choice of the biasing of the fluxes are 

possible. Figure 5.6 shows schematically the possibilities for the predictor step. In 

 

Fig. 5.6 Possible variants of the biasing for flux functions in the predictor step of a MacCormack 

method 

 

Fig. 5.7 GAMM-channeltest problem 

 

 the corrector step, the biasing is inverted. In practice, the four possibilities are used 
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alternatively. 

We illustrate now the cell-centred MacCormack scheme on the well-known GAMM-channel test 

problem for transonic flows [1]. This problem is shown in Fig. 5.7, discretized with a 49×17 

grid. The result shown in Fig. 5.8 is however obtained on a once refined grid, i.e. a 97×33 grid. 

The channel of Fig. 5.7 is almost straight except for a small circular perturbation on the lower 

boundary with height 4.2% of the chord. The result of Fig. 5.8 is obtained with the MacCormack 

method described above. Pressure is imposed at the outlet, corresponding to an isentropic 

Mach number of 0.85. As in the finite-difference method, to obtain this result, some artificial 

viscosity is needed to stabilize the solution in the shock region (see discussion in previous 

chapters). This is done here in a rather primitive way by adding to each step a smoothing of form 

 

 where μ is a very small coefficient. For the result in Fig. 5.8: μ = 0.001. This is enough to 

stabilize the shock. Of course, by increasing μ, the observed wiggles can be eliminated 

completely, but this increases the smearing of the shock. Therefore it is preferred to keep some 

of the wiggles in the solution. 

The CFL-restriction for the time step in the MacCormack scheme is given by (with c the velocity 

of sound): 

 

  

Fig. 5.8 IsoMachlines obtained by cell-centred MacCormack scheme 

where 
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5.4 Runge Kutta Time Stepping  -Multi Stage Time Stepping 

Runge-Kutta time stepping schemes for ordinary differential equations are unstable when applied 

to the semi-discretization (5.4) with the central flux (5.5): 

 

There is no contribution of the central node in the flux balance in (5.17), since the flux balance 

for a constant flux on a closed surface is zero. As a consequence, (5.17) is an exact analogue of a 

central type finite difference discretization. 

The instability of Runge-Kutta time stepping can be seen by considering a Fourier analysis on a 

central space discretization of the model equation (5.7) for the case of constant a = ∂f/∂u: 

 

Inserting 

 

 

 

 

Equation (5.19) has the form 

 

With 
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Figure 5.9 shows the stability domain for λΔt for the Runge-Kutta second, third 

and fourth-order, time-integration methods, according to [2]. 

 

Since λ according to (5.20) is on the imaginary axis, the second-order Runge- Kutta method is 

unstable. Higher order Runge-Kutta methods are marginally stable. 

Higher order Runge-Kutta methods can be stabilized by introducing a small amount of artificial 

viscosity. For example, equation (5.18) can be modified to  

 

Fig. 5.9 Stability regions in the complex plane for classic explicit Runge-Kutta methods 

  

The value of λ according to the previous analysis now becomes 

 

Since there is now a small negative real part in λ, higher order Runge-Kutta time stepping 

now becomes stable, according to Fig. 5.9, when subject to a CFLcondition which restricts the 

time step. Note that a modification of equation (5.18) by adding a fourth-order derivative term 

instead of a second-order derivative term leads to a similar stabilization effect. 

Runge-Kutta time stepping was introduced in the finite volume method by Jameson et al. in 1981 

[3] and is nowadays a very popular method. 

 



Computational Fluid Dynamics 
 

109 
 

The fourth-order method, with simplifications, is mostly used since it gives the best ratio 

of allowable time step to computational work per time step. A simplified fourth-order scheme 

can be written as 

 

  

 

and where the superscript denotes the (intermediate) time level. 

Obviously (5.21) is not a classic fourth-order Runge-Kutta scheme. In a Runge- Kutta 

scheme, the fourth step is 

 

with the choice of coefficients 

 

The accuracy of the fourth-order Runge-Kutta scheme is fourth order in time. This is 

unnecessarily high since the space accuracy of the discretization is only second order. The 

simplification (5.21) has second-order accuracy in time for a non-linear equation, which is 

sufficient. The simplified multi-stage time-stepping 
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(5.21) requires less storage than a classic Runge-Kutta time-stepping. Originally, 

Jameson used the classic Runge-Kutta method. The low storage modification, later introduced by 

Jameson, is nowadays universally used. For a discussion of it the reader is referred to [4]. 

The scheme (5.21) can be constructed by considering a Taylor expansion up to fourth 

order 

 

The following grouping defines (5.21): 

 

The stability domain of the multi-stage time stepping is the same as that of the fourth-

order Runge-Kutta scheme shown in Fig. 5.9. 

The artificial viscosity introduced by Jameson is a blend of a second-order and a fourth-

order term. It is used in all steps of (5.21). 

In order to keep the calculation conservative, the added dissipative term is, for a 

structured quadrilateral grid: 

  

where 

 

with similar definitions of the other terms in (5.22). 

The coefficients of the second-order term ε(2) and the fourth-order term ε(4) are chosen 

in a self-adaptive way. 

As a detector of the smoothness of the flow field, for the definition of the coefficients in 

(5.23), Jameson uses 
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and then defines 

 

 

By this definition, the second-order term is only significant in shock regions. In smooth 

regions of the flow, the second-order term has a very small coefficient and the fourth-order term 

dominates. The fourth-order term constitutes the so-called background dissipation. For equal 

stabilization effect, it diffuses the solution less than a second-order term. Therefore it is used in 

smooth regions of the flow. In shock regions, the fourth-order dissipation has to be switched off 

since it causes wiggles and the second-order dissipation is to be used to eliminate wiggles. 

Therefore the second-order dissipation is called the shock dissipation. 

At solid boundaries, the dissipative terms in (5.22) in the direction normal to the boundary are to 

be set equal to zero. In the foregoing definition of the dissipative terms (5.22, 5.23) the so-called 

second-order and fourth-order terms only correspond to second-order derivatives and fourth-

order derivatives on a smooth grid. 

However, the expressions (5.22, 5.23) do not have to be changed on an irregular grid. First, they 

are not meant to simulate a physical viscosity. Second, they are also meant to eliminate spurious 

modes, i.e. the non-physical solutions of the discretization. Figure 5.10 shows the perturbation 

patterns in fluxes, and as a consequence also in dependent variables, not detected by the central 

type flux balance for quadrilateral and triangular grids. 

Authors using Jameson‘s Runge-Kutta scheme often have their own variant of the dissipative 

term. Also very often, the dissipative correction in the second to fourth step is taken to be the 

same as in the first step. 

A formulation of the artificial viscosity applicable to unstructured grids, which is a slight 

extension of the formulation given by Jameson and Mavriplis [5], is given hereafter. 

The time-step limit is calculated from (for CFL = 1) 
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Fig. 5.10 Spurious modes for cell-centred central discretization 

where the subscript i denotes the node, Vn is the normal velocity on an edge, obtained by 

averaging, c is the velocity of sound obtained in a similar way, and Δs is the length of the edge. 

Ωi is the volume and the summation is taken over all edges. 

The second-order smoothing operator is then, similar to (5.23), obtained by a sum of terms: 

  

where the subscript j denotes the surrounding nodes. The weight function εi,j is obtained from 

 

where νi and νj are pressure switches. The pressure switch νi is defined by 
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with Δt the time step obtained from (5.24) for CFL = 1. 

To define the fourth-order smoothing, first un-weighted pseudo-Laplacians are constructed by 

 

The fourth-order term is then given by a sum of terms: 

 

Where 

 

 

 

where Fi,j is the physical flux and Di,j is the dissipation term, given by 

 

The resulting flux (5.26) usually is called a numerical flux. 

5.6 Accuracy 

The stencils obtained by the finite volume cell-centred formulation are very similar to the 

stencils obtained by the analogous finite difference methods. This means that if the grid is 

sufficiently smooth, such that the cell-centres are themselves on a grid which is sufficiently 

smooth, i.e. a grid which can be obtained by a continuous mapping from a square grid, the 

methods discussed in the previous sections are second-order accurate in space in a finite 

difference sense. This can easily be seen by comparison of the result in Fig. 5.8 with the result 

obtained by second-order 
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finite difference methods [1]. Since, however, the representation of the solution is done in a 

piecewise constant way, on an irregular grid the accuracy is formally of first order. In practice, 

the order is between one and two.  

 

5.7 Cell Vertex Formulation 

In the cell-vertex formulation, the variables are stored at the vertices of the grid. The 

control volumes either coincide with cells (non-overlapping case) or consist of a group of cells 

around a node (overlapping case). Figure 5.5 shows some of the possibilities. In all cases, a 

linear interpolation of the fluxes is now possible. Therefore, cell-vertex formulations have the 

possibility to be second-order accurate in space, irrespective of the irregularity of the grid. 

 

Multi-Stage Time Stepping – Overlapping Control Volumes 

 For the overlapping cases, the methods discussed in the previous sections can be 

adapted directly. Very popular nowadays is the formulation of the multi-stage time stepping 

scheme. For the overlapping control volumes of Fig. 5.5, the semi discretization is very similar 

to (5.17), now involving, however, six or eight surrounding nodes. At solid boundaries, half 

volumes are formed. The impermeability 

 

Fig. 5.5 Cell-vertex formulation.  

(a): quadrilateral cells, non-overlapping volumes (with interweaving grid); (b): quadrilateral 

cells, overlapping volumes; (c): triangular cells, overlapping and 

non-overlapping volumes 
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can be expressed by setting the convective fluxes to zero. Another approach is to treat the control 

volume as permeable and to impose tangency. This means that, between steps, the normal 

component of velocity is set equal to zero. 

Again, in order to stabilize the scheme, some form of artificial viscosity is necessary. The 

artificial viscosity is also necessary to eliminate the spurious modes in the solution. Figure 5.12 

shows the spurious modes that are possible for the quadrilateral and triangular grids. As in the 

basic method of Jameson, a blend of a second-order smoothing and a fourth-order smoothing can 

be used. Often, the dissipative operator of the cellcentred method is used. This operator is then a 

sum of terms of form (5.23) for a quadrilateral grid. The method loses then its pure cell-vertex 

character. The resulting flux balance of inviscid and dissipative terms is then a balance over a 

control volume centred around a vertex as shown on Fig. 5.13. Such a control volume is called a 

dual control volume 

 

Fig. 5.12 Spurious modes for cell-vertex central discretization 
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Fig. 5.13 Vertex-based 

FVM 

The inviscid flux balance over the dual control volume can be defined as one fourth of the flux 

balance over the volume formed by the four surrounding cells. Strictly, the method then becomes 

a vertex-centred or vertexbased method according to the terminology introduced in Sect. 5.3. 

A pure cell-vertex method can be obtained by changing the construction of the dissipator. The 

same methodology as for the cell-centred method is used, but summations now run over cells 

surrounding a node rather than over surrounding nodes. 

This means that differences of values used in the expression (5.27) have to be modified. 

  

for triangular and quadrilateral cells respectively, where j1, j2 and j3 denote the nodes not 

coinciding with node i of the surrounding cells. Also the scaling factors 

ζi,j and the weight factors ε(2) 

i,j , ε(4) 

i,j now involve maxima over all nodes of a cell. 

The foregoing smoothing procedure is conservative in the sense that the content of a cell is not 

changed by the dissipator. The formula for the update of a node is the sum of contributions of the 
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surrounding cells. The update coming from the inviscid flux balance over a cell is modified by 

the dissipator. The modification is such that the flux balance over a cell can be seen as 

distributed to its vertices in an unequal way but with a sum of distribution factors equal to one. 

So, the dissipator acts as a redistributor of the flux balances of the cells. 

The pure cell-vertex method is not very often used. Most researchers employ the first described 

vertex-based like approach, but call it a cell-vertex method. The pure cell-vertex method has an 

obvious difficulty on a triangular grid. Since there are about twice as many cells than nodes, it is 

not possible to satisfy the flux balances of individual cells and reach steady state. Even on a 

structured grid, it is rather delicate to satisfy flux balances over individual cells. For a discussion 

on this topic the reader is referred to [6]. 

Lax-Wendroff Time-Stepping Non-Overlapping Control Volumes 

 For the non-overlapping case, a Lax-Wendroff variant exists due to Ni, developed 

in 1981 [7]. It requires the use of a second set of control volumes centred around the nodes, 

obtained in the way as shown in Fig. 5.5a. Ni‘s variant starts from the Lax-Wendroff formulation 

(5.8), (5.9). Without loss of accuracy in (5.9), ∂f/∂t can be replaced by a first-order accurate 

difference Δf/Δt. The result is 

 

In two dimensions, on the Euler equations, this is 

 

On the quadrilateral grid of Fig. 5a, the method is then as follows. Based on the cell 1-2-3-4, 

using an Euler step, i.e. a step forward in time, a first order approximation of the increment of the 

flux vectors is obtained from 

 

And 

 

where A and B are the Jacobians of the flux vectors f and g with respect to U. A 
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and B are taken to be the mean values of the Jacobians evaluated at the nodes 1, 2, 3 and 4. 

The area-weighted mean value of the first-order increments given by (5.29) over the four cells 

surrounding the node 1, gives a first-order increment for the dependent variables: 

 

The discretization of (5.28) on the cell abcd is then: 

 

The spatial integration is again taken to be piecewise linear. 

The CFL-restriction for the time step, given by Ni is 

 

The boundary conditions at solid boundaries for the first step (5.29) can be implemented by 

setting convective fluxes equal to zero, as in the previous methods. In the second step (5.30), a 

half-volume is needed around a boundary node. This half volume can be seen to be half the 

complete volume shown in Fig. 5.5a. Step (5.30) can be done by setting the first-order changes in 

the fictitious cells c‘and d‘equal to zero. So the boundary node only receives both first-order and 

second-order contributions from the inward cells a‘and b‘As a consequence, for a boundary 

node, there is no implicit imposition of impermeability in step (5.30). Tangency is then imposed 

afterwards by setting the normal component of the velocity equal to zero. 

It is to be remarked that, although an intermediate grid is used, the Ni-method is a true cell-

vertex method. Indeed, if the flux balance of a cell is satisfied, there is no contribution to both 

first- and second-order terms and flow parameters are not changed. Therefore step (5.30) often is 

called the distribution step since its function can be seen to be the distribution of changes in the 

control volumes to the nodes. 

As already mentioned, in a triangular grid, there are about twice as many cells as nodes. This 

means that in a cell-vertex formulation, flux-balances cannot be satisfied for all cells. The steady 
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state result of a cell-vertex time stepping scheme then corresponds to some combinations of flux 

balances being zero. In a quadrilateral grid, all flux-balances can be satisfied at steady state. We 

also note that the distribution of the changes in the control volumes for triangular cells can be 

done with upwind methods. For a discussion on these much more complex methods we refer to 

[8]. 

5.8 Finite Difference Method 

FDM-Like Finite Volume Methods 

In the finite difference method, the nodes are at the vertices of the grid. This is 

particularly attractive with respect to data on boundaries. For instance, pressure extrapolation 

at solid boundaries is then not necessary. A cell-centred FVM is therefore less attractive. A cell-

vertex FVM does not have this drawback, but on the other hand the flux through a volume 

surface is continuous. This does not allow an upwind definition of a flux. 

More freedom in the definition of a flux, combined with nodes at the vertices of the grid, can be 

obtained by using an interweaving grid, as shown in Fig. 5.13. The interweaving grid can be 

constructed by connecting the cell-centres. The cells of this interweaving grid can now be 

considered as control volumes for the nodes inside them. Fluxes at volume faces can, for 

instance, be defined as averages of fluxes calculated with function values in adjacent nodes. The 

semi-discretization is then very close to a finite difference semi-discretization and can be called a 

conservative finite difference method. We prefer here to call a finite volume method of this type 

a vertex-based FVM or a vertex-centred FVM. The method has gained much popularity in recent 

years. The central type discretization obtained with it is the same as the discretization by a 

Galerkin-FEM. So it is very easy to bring concepts from FEM into this type of FVM. Moreover, 

it is very easy to use upwinding in this type of FVM. 

 

5.9 Central and Upwind Type Discretizations 

Central Type Discretizations 

The adaptation of a Lax-Wendroff time-stepping or a multi-stage time-stepping, as discussed for 

the cell-centred FVM, to the vertex-based FVM is straightforward. The formulations obtained 

with both methods are very similar, except at solid boundaries. 

Upwind Type Discretizations 
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As an example of an upwind discretization we treat here the flux-difference splitting technique 

introduced by Roe [9]. 

The flux through a surface (i + 1/2) of the control volume on Fig. 5.13 can be 

written as 

 

where fi+1/2 and gi+1/2 have to be defined using the values of the flux vectors in the nodes (i,j) 

and (i+1, j).We switch here to the classic finite difference notation using halves in the subscripts 

to denote intermediate points. Also, non-varying subscripts are not written. We denote by Fi the 

value of Fi+1/2 using the function values in (i,j) and by Fi+1, the value using the function values in 

(i+1, j). The flux (5.31) can be written as 

 

 

In order to define an upwind flux, we consider the flux-difference 

 

 

For construction of the flux, it is essential that the linear combination of Δf and Δg in (5.33) can 

be written as 

 

where A is a discrete Jacobian matrix with similar properties as the analytical Jacobians of the 

flux vectors. This means that the eigenvalues of A are real and that the matrix has a complete set 

of eigenvectors. Of course, for consistency, the eigenvalues and eigenvectors should be 

approximations of the eigenvalues and eigenvectors of the linear combination of the analytical 

Jacobians. The construction of the discrete Jacobian is not unique and many formulations have 
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been proposed after the first formulation by Roe [9]. For the numerical illustration later in this 

section, we use the formulation by the author [10]. The algebraic manipulations in the 

construction of the discrete Jacobian are not relevant for a principal discussion of the 

methodology and we do not describe these here. 

The matrix A can be split into positive and negative parts by 

 

where R and L denote the right and left eigenvector matrices in orthonormal form and where 

 

 

Positive and negative matrices denote matrices with, respectively, non-negative and non-positive 

eigenvalues. 

This allows a splitting of the flux-difference (5.34) by 

 

As a consequence (5.33) can be written as 

 

 

where the matrix Ai,i+1 can be split into positive and negative parts. The absolute value of the 

flux-difference is defined by 

 

Based on (5.36) an upwind definition of the flux is 

 

That this represents an upwind flux can be verified by writing (5.37) in either of the two 

following ways, which are completely equivalent: 
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Indeed, when Ai,i+1 has only positive eigenvalues, the flux Fi+1/2 is taken to be Fi and when Ai,i+1 

has only negative eigenvalues, the flux Fi+1/2 is taken to be Fi+1. 

 

The fluxes on the other surfaces of the control volume Si−1/2 ,Sj+1/2 ,Sj−1/2 can be treated in a 

similar way as the flux on the surface S i+1/2 . With (5.38) and (5.39), the flux balance on the 

control volume of Fig. 5.13 can be brought into the form 

 

 

where C is the sum of the matrix-coefficients on the right-hand side. The matrix coefficients in 

(5.41) have non-negative eigenvalues. The positivity of the coefficients on the right hand side of 

(5.41) and the (weak) dominance of the central coefficient guarantee that the solution can be 

obtained by a collective variant of any scalar relaxation method. By a collective variant is meant 

that in each node all components of the vector of dependent variables U are relaxed 

simultaneously. 

In order to illustrate the boundary treatment, we consider now the half-volume on a solid 

boundary as shown in Fig. 5.13. This half-volume can be seen as the limit of a complete volume 

in which one of the sides tends to the boundary. 

The flux on the side Sj of the control volume at the solid boundary can be expressed By 

 

where the matrix Ai,j is calculated with the function values in the node (i,j). With the definition 

(5.42), the flux balance on the control volume takes the form (5.40) in which a node outside the 

domain comes in. This node, however, can be eliminated. 

It is easily seen that on a solid boundary, three combinations of (5.42) exist, eliminating the 

outside node [10]. The combinations are the left eigenvectors corresponding to the zero 
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eigenvalues in A+i,j. These equations are to be supplemented by the boundary condition of 

tangency. 

As an illustration, Fig. 5.14 shows the solution obtained by the previous method for the test-case 

of Fig. 5.7 under the same conditions as for Fig. 5.8. Comparison of the upwind result with the 

central result shows the superiority of the upwind calculation with respect to sharpness of the 

shock. 

 

Fig. 5.14 IsoMachlines obtained by a vertex-based upwind FVM 

In the above, the upwind discretization is used in first-order form. For more complex flows, of 

course, at least second-order accuracy is needed. In this introductory text we prefer not to enter 

the discussion of higher order upwinding. For second order formulations on unstructured grids, 

the reader is referred to [5]. 

Examples of vertex-centred methods for Euler and Navier-Stokes equations can be found in [12]. 

Flux-difference splitting is used to define inviscid fluxes. The paper is in particular interesting 

for its discussion on treatment of viscous fluxes. An example of a vertex-centred method with 

central discretization of the inviscid fluxes and stabilization by artificial viscosity can be found in 

[13]. In this paper, viscous fluxes are treated by FEM. This becomes nowadays a widely 

accepted procedure and can be recommended. The vertex-centred FVM can be combined easily 

with a Galerkin-type FEM. References [5] and [13] use multigrid methods in order to obtain a 

steady solution in a fast way. The multigrid method is nowadays a standard method to accelerate 

the convergence to steady state. For a general discussion on the choice between central and 

upwind finite volume methods, the reader is referred to [14]. In [15] a general discussion on the 

choice between cell-centred and vertex-centred methods and the choice between central and 

upwind methods is given. An interesting example of a cell-centred method using upwinding is 
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given in [16]. Reference [17] discusses different time stepping algorithms for upwind methods 

both for vertex-centred and cell-centred formulations. 

Finally, the reader is referred to [18] for an overview of current finite volume methods. This 

reference dates from more than a decade ago, but there have not been major developments on 

basic algorithms in recent times. 

5.10 Treatment of Derivatives 

When derivatives are needed for the definition of viscous terms, these commonly are calculated 

by the use of Gauss‘ theorem. For instance for the cell-centred formulation shown in Fig. 5.15, in 

order to define a derivative in the vertex a, an integration over the shaded volume gives 

 

A similar procedure can be used for the other vertices of the cell abcd. This allows a definition of 

the viscous terms on the boundary of the cell. 

 

Fig. 5.15 Definition of a derivative 
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Two mark Question bank 

 
1. What are the fundamental governing equations of fluid dynamics? 

a. continuity,  

b. momentum  

c. Energy equations. 

 

2. What are the mathematical statements of three fundamental physical principles of fluid 

dynamics equations? 

       (1) Mass is conserved; 

       (2) F = ma (Newton‘s second law); 

       (3) Energy is conserved. 

 

3. What is the philosophy followed by the basic equations of fluid motion? 

      (1) Choose the appropriate fundamental physical principles from the laws of physics, such as 

               (a) Mass is conserved. 

               (b) F = ma (Newton‘s 2nd Law). 

               (c) Energy is conserved. 

      (2) Apply these physical principles to a suitable model of the flow. 

      (3) From this application, extract the mathematical equations which embody such physical 

principles. 

4. Define control volume? 

     A closed volume drawn within a finite region of the flow. This volume is defines as a control 

volume, V. 

 

5. Define control surface? 

It is the closed surface which bounds the volume. The control volume may be fixed in space with 

the fluid moving through it; it is define as a control surface, S. 

 

 

6. Define substantial derivation. 

 

     D/Dt is the substantial derivative, which is physically the time rate of change following a 

moving fluid element. 
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7. Define local derivative 

    ∂/∂t is called the local derivative, which is physically the time rate of change at a fixed 

point. 

 

8. Define convective derivative 

    V・ Δ is called the convective derivative, which is physically the time rate of change due 

to the movement of the fluid element from one location to another in the flow field where the 

flow properties are spatially different. 

 

9. Write the complete Navier–Stokes equations in conservation form. 

 

 
 

10. Write the conservation form of the energy equation, written in terms of the internal energy. 
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11. Write the conservation form of the energy equation, written in terms of the total energy, 

(e+V
2
/2). 

.  

 

12. Write the Continuity equations for viscous flow. 

 

     Non-conservation form 

 
    Conservation form 

 
 

13. Write the Momentum equations for viscous flow. 

     Non-conservation form 

 
    Conservation form 

 

 
14. Write the Energy equations for viscous flow. 

    Non-conservation form 
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    Conservation form 

 
 

15. Write the Continuity equations for inviscous flow. 

     Non-conservation form 

 
 

     Conservation form 

 
16. Write the Momentum equations for viscous flow. 

      Non-conservation form 

 
      Conservation form 
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17. Write the Energy equations for viscous flow. 

     Non-conservation form 

 
     Conservation form 

 
 

 

 

18. Write the Comments on the Governing Equations of CFD. 

     (1) They are a coupled system of non-linear partial differential equations, and hence are very 

difficult to solve analytically. To date, there is no general closed-form solution to these 

equations. 

     (2) For the momentum and energy equations, the difference between the non-conservation 

and conservation forms of the equations is just the left-hand side. 

The right-hand side of the equations in the two different forms is the same. 

    (3) Note that the conservation form of the equations contain terms on the left-hand side which 

include the divergence of some quantity, such as Δ・(ρ_V), Δ・(ρu_V), etc. For this reason, the 

conservation form of the governing equations is sometimes called the divergence form. 

   (4) The normal and shear stress terms in these equations are functions of the velocity gradients. 

   (5) The system contains five equations in terms of six unknown flow-field variables, ρ, p, u, v, 

w, e. In aerodynamics, it is generally reasonable to assume the gas is a perfect gas (which 

assumes that intermolecular forces are negligible. For a perfect gas, the equation of state is 

                                              p = ρRT 

 where R is the specific gas constant. This provides a sixth equation, but it also introduces a 

seventh unknown, namely temperature, T. A seventh equation to close the entire system must be 

a thermodynamic relation between state variables. 

    For example, 

                  e = e(T, p) 

    For a calorically perfect gas (constant specific heats), this relation would be 
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                    e = CvT 

     where Cv is the specific heat at constant volume. 

 

 (6) The momentum equations for a viscous flow were identified as the Navier–Stokes equations, 

which is historically accurate. However, in the modern CFD literature, this terminology has been 

expanded to include the entire system of flow equations for the solution of a viscous flow 

continuity and energy as well as momentum. Therefore, when the computational fluid dynamic 

literature discusses a numerical solution to the ‗complete Navier–Stokes equations‘, it is usually 

referring to a numerical solution of the complete system of equations. In this sense, in the CFD 

literature, a ‗Navier–Stokes solution‘ simply means a solution of a viscous flow problem using 

the full governing equations. 

 

19. Define shock-capturing approach      (or) Example for implicitly method.  

           Many computations of flows with shocks are designed to have the shock waves appear 

naturally within the computational space as a direct result of the overall flow field solution, i.e. 

as a direct result of the general algorithm, without any special treatment to take care of the 

shocks themselves. Such approaches are called shock capturing methods.  

 
Mesh for the shock-capturing approach 

  

20. Define shock-fitting method?   (or) Example of explicitly method? 

           shock waves are explicitly introduced into the flow-field solution, the exact Rankine–

Hugoniot relations for changes across a shock are used to relate the flow immediately ahead of 

and behind the shock, and the governing flow equations are used to calculate the remainder of 

the flow field. This approach is called the shock-fitting method. 

Mesh for the shock-fitting approach 



Computational Fluid Dynamics 
 

155 
 

 
 

21. What are the advantages of shock –capturing method? 

     The shock-capturing method is ideal for complex flow problems involving shock waves for 

which we do not know either the location or number of shocks. Here, the shocks simply form 

within the computational domain as nature would have it. Moreover, this takes place without 

requiring any special treatment of the shock within the algorithm, and hence simplifies the 

computer programming. 

 

22. What are the disadvantages of shock –capturing method? 

    A disadvantage of this approach is that the shocks are generally smeared over a number of grid 

points in the computational mesh, and hence the numerically obtained shock thickness bears no 

relation what-so-ever to the actual physical shock thickness, and the precise location of the shock 

discontinuity is uncertain within a few mesh sizes. 

 

23. What are the advantages of shock –fitting method? 

     The advantage of the shock-fitting method is that the shock is always treated as a 

discontinuity, and its location is well-defined numerically. However, for a given problem you 

have to know in advance approximately where to put the shock waves, and how many there are. 

 

24. What are the disadvantages of shock –fitting method?  

     For complex flows, shock –fitting method can be a distinct disadvantage 

 

25. What is panel method? 

     Panel methods are numerical methods which require a high-speed digital computer for their 

implementation; therefore we include panel methods as part of the overall structure of 

computational fluid dynamics. 

 

26. What are the types of panel method? 

a. Source panel method 

b. Vortex panel method 

c. Doublet panel method 

 

27. Define source sheet. 
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    Imagine that we have an infinite number of such line sources side-by-sides, where the strength 

of each line source is infinitesimally small. These side-by-side line sources form a source sheet, 

as shown in perspective in the Fig. 

 

 

 

28. Define vortex sheet. 

     Imagine an infinite number of straight vortex filaments side by side, where the strength of 

each filament is infinitesimally small. These side-by-side vortex filaments form a vortex sheet, as 

shown in perspective in the Fig. 

 

29. Define Over-determined system. 

        The system having ―n‖ equation and ―n+1‖ unknown‘s means that system is called over 

determined system. 

 

30. Write the crux of the source panel method? 

 
Above equation is the crux of the source panel method. 

 

30. Write the crux of the vortex panel method? 



Computational Fluid Dynamics 
 

157 
 

        
Above equation is the crux of the vortex panel method. 

 

31. Write the Classification of Partial Differential Equations. 

(1) Hyperbolic Partial Differential Equations 

(2) Parabolic Partial Differential Equations 

(3) Elliptic Partial Differential Equations 

 

32. Explain  the Classification of Partial Differential Equations 

Consider the system of quasilinear equations given below. 

 

     ………………..(1) 

 

…………..(2) 

In matrix form of above equation 

 

       ……………...(3) 

                               ……………..(4) 
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…(5) 

                                   

                                     ………………..(6) 

       ,          

         The characteristic lines may be real and distinct, real and equal, or imaginary, depending on 

the value of D. Specifically: 

 

If D > 0:     Two real and distinct characteristics exist through each point in the xy- plane. When 

this is the case, the system of equations given by 

Eqs. (1) is called hyperbolic. 

If D = 0: One real characteristic exists. Here, the system of Eqs. (1) is called parabolic. 

If D < 0: The characteristic lines are imaginary. Here, the system of Eqs. (1) is called elliptic. 

 

33. Define Well-Posed Problems. 

         In the solution of partial differential equations it is sometimes easy to attempt a solution 

using incorrect or insufficient boundary and initial conditions. Whether the solution is being 

attempted analytically or numerically, such an ‗ill-posed‘ problem will usually lead to spurious 

results.  

          Therefore, we define a well-posed problem as follows: If the solution to a partial 

differential equation exists and is unique, and if the solution depends continuously upon the 

initial and boundary conditions, then the problem is well-posed. In CFD, it is important that you 

establish that your problem is well-posed before you attempt to carry out a numerical solution. 

 

34. Define grid point. 

       Analytical solutions of partial differential equations involve closed-form expressions which 

give the variation of the dependent variables continuously throughout the domain. In contrast, 

numerical solutions can give answers at only discrete points in the domain, called grid points. 
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35. What are error influence numerical solutions the PDE? 

a. Discretization error 

b.  Round-off error  

 

36.  Define Discretization error. 

        The difference between the exact analytical solution of the partial differential equation and 

the exact solution of the corresponding difference equation. Discretization error for the 

difference is simply the truncation error for the difference  equation plus any errors introduced 

by the numerical trement of the boundary condition. 

37. Define Round-off error. 

The numerical error introduced after a repetitive number of calculation in which the 

computer is constantly rounding the number to some significant figure. 

 

38. Classify the type of grid generation. 

a. structured,  

b. unstructured 

 

39. How to reduce the truncation error? 

       The truncation error can be reduced by: 

(a) Carrying more terms in the Taylor‘s series, This leads to higher-order accuracy in the 

representation of ui+1,j. 

(b) Reducing the magnitude of Δx 

        

 

40. Write the advantage of explicit approach. 

             Relatively simple to set up and program. 

 

41. Write the Disadvantage of the explicit approach. 

      Given Δx, Δt must be less than some limit imposed by stability constraints. In many 

cases, Δt must be very small to maintain stability; this can result in long computer running 

times to make calculations over a given interval of t. 

 

42. Write the advantage of implicit approach. 

            Stability can be maintained over much larger values of Δt, hence using considerably 

fewer time steps to make calculations over a given interval of t. This results in less computer 

time. 

 

42. Write the advantage of implicit approach. 

a. More complicated to set up and program. 

b. Since massive matrix manipulations are usually required at each time step, the   computer 

time per time step is much larger than in the explicit approach. 

c. Since large Δt can be taken, the truncation error is larger, and the use of implicit methods to 

follow the exact transients (time variations of the independent variable) may not be as 
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accurate as an explicit approach. However, for a time-dependent solution in which the 

steady state is the desired result, this relative time-wise inaccuracy is not important. 

 

43.  What is Lax method? 

………..(a) 

        The differencing used in the above equation, where Eq. (a) is used to represent the time 

derivative, is called the Lax method. 

 

44.  Define Courant number.  (or) What is the important stability criterion for hyperbolic 

equation? 

 
 C is called the Courant number. This equation says that Δt ≤ Δx/c for the numerical solution of 

Eq. (5.45) to be stable. Moreover, Eq. (5.47) is called the Courant–Friedrichs–Lewy condition, 

generally written as the CFL condition. It is an important stability criterion for hyperbolic 

equations. 

 

45. Explain the problems with rectangular grid. 

       (1) Some grid points fall inside the airfoil, where they are completely out of the flow. What 

values of the flow properties do we ascribe to these points? 

 

      (2) There are few, if any, grid points that fall on the surface of the airfoil. This is not good, 

because the airfoil surface is a vital boundary condition for the determination of the flow, and 

hence the airfoil surface must be clearly and strongly seen by the numerical solution. 

 

 
46. Define physical plane and computational plane (or) What is one-to-one correspondence? 
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                     Fig. a. Physical plane                                  Fig. b. computational plane                                            

 

 

     This is shown in Fig. b, which illustrates a rectangular grid in terms of ξ and η. The 

rectangular mesh shown in Fig. b is called the computational plane.  

    There is a one-to-one correspondence between this mesh, and the curvilinear mesh in Fig. a, 

called the physical plane. 

      For example, points a, b and c in the physical plane (Fig.a) correspond to points a, b and c in 

the computational plane, which involves uniform Δξ and uniform Δη. The computed information 

is then transferred back to the physical plane. Moreover, when the governing equations are 

solved in the computational space, they must be expressed in terms of the variables ξ and η 

rather than x and y; i.e., the governing equations must be transformed from (x, y) to (ξ, η) as the 

new independent variables. 

 

47. Define metrics 

      The terms involving the geometry of the grids, such as ∂ξ/∂x, ∂ξ/∂y, ∂η/∂x, ∂η/∂y, etc., are 

called metrics. 

 

48. Write the Jacobian determinant 

     Jacobian determinant denoted by J 

 

                      
49. Define Adaptive Grids 

        An adaptive grid is a grid network that automatically clusters grid points in regions of high 

flow field gradients; it uses the solution of the flow field properties to locate the grid points in the 

physical plane.  

       The adaptive grid evolves in steps of time in conjunction with a time-dependent solution of 

the governing flow field equations, which computes the flow field variables in steps of time. 

During the course of the solution, the grid points in the physical plane move in such a fashion to 

‗adapt‘ to regions of large flow field radients. Hence, the actual grid points in the physical plane 

are constantly in motion during the solution of the flow field, and become stationary only when 
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the flow solution approaches a steady state. Where the generation of the grid is completely 

separate from the flow field solution, an adaptive grid is intimately linked to the flow field 

solution, and changes as the flow field changes. 

 

                       Fig. Adapted grid for the rearward-facing step problem 

 

50. Write the advantages of adaptive grid 

        An adaptive grid is expected because the grid points are clustered in regions where the 

‗action‘ is occurring.  

     These advantages are: 

       (1) Increased accuracy for a fixed number of grid points, or  

       (2) For a given accuracy, fewer grid points are needed. 

 

51. What are the topologies used in grid generation? 

        C-Grid Topology 

        O-Grid Topology 

        H-Grid Topology 

 

51. Define Unstructured Grids 

        Unstructured grids are typically composed of triangles in 2D and of tetrahedral in 3D.  

 

52. Define mixed element grids 

    Nowadays it becomes increasingly popular to build unstructured grids from various 

element types. For example, hexahedra or prisms are employed to discretise boundary layers. 

The rest of the flow domain is filled with tetrahedra. Pyramids are used as transitional 

elements between the hexahedra or the prisms and the tetrahedral. Hence the name mixed 

element grids. 

 

53. Write the unstructured grid generation methodology. 

       Unstructured grid generation methodologies for CFD applications are mostly based on either 

an 

(1) Delaunay, method. or 

(2) Advancing-front method. 

 

54. Define Dirichlet tessellatipn or Voronoj diagram. 

         The Delaunay triangulation is based on a methodology proposed by Dirichlet in 1850 for 

the unique subdivision of space into a set of packed convex regions. Given a set of points, each 

region represents the space around the particular point, which is closer to that point than to any 

other. The regions form polygons (polyhedra in 3D) which are known as the Dirichlet 

tessellation or the Voronoj diagram .  
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55. Define Delaunay triangulation. 

         If we connect point pairs which share some segment(face) of the Voronoj diagram by 

straight lines, we obtain the Delaunay triangulation. The triangulation defines a set of triangles 

(tetrahedra in 3D),which cover the convex hull of the points. This is displayed in Fig. a. The 

DeIaunay triangulation is the dual of the Voronoj diagram. The nodes of the Voronoj polygons 

are in 2D the centres of circumcircles of the triangles. In 3D, the nodes represent the centres of 

circumspheres of the tetrahedra. This implies that the circumcircle of every triangle 

(circumsphere of every tetrahedron) contains no point from the set in its interior. 

 

                             

 
56. Write the ‗Prandtl‘s boundary layer equations‘. 
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57. Write Transformation of the Boundary Layer Equations. 

 

 
e denotes the values at the outer edge of the boundary layer flow and R denotes the local radius 

of a body of revolution. 

 

58. Write the governing equation of steady diffusion. 

 

 

59. What is weak instability? 

      The results of the calculation are displayed in Fig.a. One notices that the perturbation on u1 

gives rise to amplifying oscillations. In fact, as small as the initial perturbation may be - and 

there will always be one because of round off errors – it will eventually lead to an explosion of 

the numerical solution. This phenomenon is clearly inacceptable. It is named weak instability. 

 

60. Define finite element method. 

              The finite element method (FEM) is a numerical technique for solving partial 

differential equations (PDE‘s). 

 

61.  Write the essential characteristic of FEM in CFD. 

        Its first essential characteristic is that the continuum field, or domain, is subdivided into 

cells, called elements, which form a grid. The elements (in 2D) have a triangular or a 

quadrilateral form and can be rectilinear or curved. The grid itself need not be structured. With 

unstructured grids and curved cells, complex geometries can be handled with ease.  
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             The second essential characteristic of the FEM is that the solution of the discrete problem is 

assumed a priori to have a prescribed form. The solution has to belong to a function space, which 

is built by varying function values in a given way, for instance linearly or quadratically, between 

values in nodal points. The nodal points, or nodes, are typical points of the elements such as 

vertices, mid-side points, mid element points, etc. 

 

             The third essential characteristic is that a FEM does not look for the solution of the PDE 

itself, but looks for a solution of an integral form of the PDE. The most general integral form is 

obtained from a weighted residual formulation. By this formulation the method acquires the 

ability to naturally incorporate differential type boundary conditions and allows easily the 

construction of higher order accurate methods. The ease in obtaining higher order accuracy and 

the ease of implementation of boundary conditions form a second important advantage of the 

FEM. With respect to accuracy. The FEM is superior to the FVM, where higher order accurate 

formulations are quite complicated. 

              A final essential characteristic of the FEM is the modular way in which the 

discretization is obtained. The discrete equations are constructed from contributions on 

the element level which afterwards are assembled. 

 

62. What is the basis of FVM? 

     It is important that the conservation laws in their integral form are represented accurately. The 

most natural method to accomplish this is to discretize the integral form of the equations and not 

the differential form. This is the basis of a finite volume method. 

 

63. Define cell. 

      The flow field or domain is subdivided, as in the finite element method, into a set of non-

overlapping cells that cover the whole domain. In the finite volume Method (FVM) the term cell 

is used instead of the term element used in the finite Element method (FEM). 

 

64. Define node. 

      The conservation laws are applied to determine the flow  variables in some discrete points of 

the cells, called nodes. As in the FEM, these nodes are at typical locations of the cells, such as 

cell-centres, cell-vertices or mid sides 

 

65. Define cell-centres,cell-vertices. 

             The choice of the nodes can be governed by the wish to represent the solution by an 

interpolation structure, as in the FEM. A typical choice is then cell-centres for representation as 

piecewise constant functions or cell-vertices for representation as piecewise linear (or bilinear) 

functions. However, in the FVM, a function space for the solution need not be defined and nodes 

can be chosen in a way that does not imply an interpolation structure. Figure shows some typical 

examples of choices of nodes with the associated definition of variables. 
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66. Define staggered grid approach. 

     A typical choice is then cell-centres for representation as piecewise constant functions or cell-

vertices for representation as piecewise linear (or bilinear) functions. choices imply an 

interpolation structure, the last two do not. In the last example, function values are not defined in 

all nodes. The grid of nodes on which pressure and density are defined is different from the grid 

of nodes on which velocity-x components and velocity-y components are defined. This approach 

commonly is called the staggered grid approach.  

 

67. What is the formulation the FVM? 

        The finite volume method (FVM) tries to combine the best from the finite element method 

(FEM), i.e. the geometric flexibility, with the best of the finite difference method (FDM), i.e. the 

flexibility in defining the discrete flow field (discrete values of dependent variables and their 

associated fluxes). 

 

68.  What is Lax-Wendroff time-stepping? 

         Lax-Wendroff time-stepping is a very classic explicit time integration method in the finite 

difference method the principles of a Lax-Wendroff method with the use of the one dimensional 

scalar model equation 

 
69. What is CFD? 

     CFD is the simulation of fluids engineering systems using modelling (mathematical 

physical problem formulation) and numerical methods (discretization methods, solvers, 

numerical parameters, and grid generations, etc.) 

     Historically only Analytical Fluid Dynamics (AFD) and Experimental Fluid Dynamics 

(EFD).CFD made possible by the advent of digital computer and advancing with 

improvements of computer resources (500 flops, 1947�20 teraflops, 2003) 
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70. Why use CFD? 

   Simulation-based design instead of ―build & test‖ More cost effective and more rapid than 

EFD CFD provides high-fidelity database for diagnosing flow field 

a. Simulations of physical fluid phenomena are difficult for experiments like Full scale 

simulations (e.g., ships and airplanes) Environmental effects (wind, weather, etc.) Hazards 

(e.g., explosions, radiation, pollution)Physics (e.g., planetary boundary layer, stellar 

evolution) 

b. Knowledge and exploration of flow physics and Analysis and Design 

 

71. List out the applications of CFD in industry. 

CFD is used in Aerospace, Automotive, Biomedical, Chemical, Processing, HVAC, 

Hydraulics, Marine, Oil & Gas, Power Generation, Sports. 

 

72. What are the Commercial Software used for CFD analysis? 

      The market is currently dominated by four codes: 

             1) PHOENICS 

             2) FLUENT 

             3) FLOW3D 

             4) STAR-CD 

73. What are the Advantages of CFD over EFD? 

 Substantial reduction of lead times and costs of new designs. 

 Ability to study systems where controlled experiments are difficult or impossible to perform 

(e.g. very large systems). 

 Ability to study systems under hazardous conditions at and beyond their normal 

performance limits (e.g. safety studies and accident scenarios). 

 Practically unlimited level of detail of results. 
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Answer ALL questions. 

PART A — (10 × 2 = 20 marks) 

1. What are the physical significance/meaning of the various terms in 
conservative form of momentum equation? 

2. What are limitations of the panel methods? 

3. Define 

 (a) Convergence, and 

 (b) Lax equivalence theorem. 

4. Name the important errors that commonly occur in numerical solution. 

5. Transform the steady, incompressible continuity equity from the x, y 
physical plane to the ξ , η  computational plane. 

6. What is the importance of CFL condition? 

7. Compare implicit and explicit methods. 

8. What are the different categories of boundary conditions give example for 
each category? 

9. What is the necessity of staggered grid in control volume method? 

10. Define Peclet number and state its importance. 

PART B — (5 × 16 = 80 marks) 

Question Paper Code : 
55121
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11. (a) (i) What is the need for classification of PDE and how do you 

classify second order PDE?   (8) 

  (ii) What are the discretization techniques and how do you 

discretize the equations for subsonic and supersonic flows? (8) 

Or 

 (b) Write down the procedure for the calculation of pressure coefficient 

distribution around a circular cylinder using the source panel 

technique.     

12. (a) (i) How is conformal mapping of a polygon carried out by Schwarz-

Christoffel transformation?  (8) 

  (ii) Illustrate the basic ideas in algebraic transformations of two-

dimensional, steady, boundary layer flow over flat plate with 

suitable transformation relations. (8) 

Or 

 (b) (i) What is the need for grid generation? Mention the different grid 

generation technique and list down their relative merits and 

demerits.   (6) 

  (ii) Explain how grid generation is achieved by the numerical 

solution of elliptic Poison’s equations.  (10) 

13. (a) (i) What is meant by “Wiggles” in the numerical solution? Describe 

with an example.   (6) 

  (ii) Consider steady 1-D convection-diffusion equation of a property 
ϕ  

   ( ) 





=

dx

d

dx

d
pu

dx

d φφ  

   Using control volume approach discritise the above equation 

and obtain the neighboring coefficients by 

   (1) Central difference scheme 

   (2) Upwind differencing scheme. (10)   

Or 

 (b) What is meant by hierarchy of boundary layer equations? Derive 

Zeroth, first and second order boundary layer equations. 

14. (a) Write short notes on the following : 

  (i) Strong formulation 2
2
2
  
2
2
2
  
2
2
2
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  (ii) Weighted Residual formulation 

  (iii) Galerkin Formulation and 

  (iv) Weak formulation   (4 × 4 = 16) 

Or 

 (b) Consider a cylindrical fin with uniform cross - sectional area A. The 

base is at a temperature of 100° C ( )BT  and the end is insulated. The 

fin is exposed to an ambient temperature of 20°C. One-dimensional 
heat transfer in this situation is governed by 

  ( ) 0=−−







∞TThP

dx

dT
kA

dx

d
 

  where h is the convective heat transfer coefficient, P the perimeter, k 

the thermal conductivity of the material and ∞T the ambient 

temperature. Calculate the temperature distribution along the fin 

using five equally placed control volumes. Take ( ) 2
25/ mkAhP = (note 

kA is constant) 

15. (a) (i) Explain explicit Lax-Wendroff scheme of time dependent 
methods.   (8) 

  (ii) Discuss Cell entered formulation in Finite Volume Techniques.(8) 

Or 

 (b) Draw a flow chart and describe SIMPLE algorithm for two-
dimensional laminar stead flow equations in Cartesian co-ordinates. 

————––––—— 
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