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Scope: Even though classical physics explained almost all the macroscopic phenomena, it failed 

to explain the behaviour of the microscopic particles.  This paper explains the differen t aspects of 
classical physics, and the development of quantum physics. 

Objectives:To make the student understand the classical theories which can explain macroscopic 

world, its inadequacy in the explanation of microscopic particles and the development of quantum 
mechanics. 
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matter; De-Broglie wavelength - Experimental detection of wave properties of material particles 

based on diffraction of electrons; Davisson and Germer experiment -Normal incidence and 
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SYLLABUS: 

Introduction - Inadequacy of classical mechanics - Dual nature of light - Dual nature of matter; 

De-Broglie wavelength - Experimental detection of wave properties of material particles based on 

diffraction of electrons; Davisson and Germer experiment -Normal incidence and oblique incidence 

- G.P. Thomson’s experiment - Wave velocity and Group velocity for De-Broglie waves - Wave 

packet-Relationship between particle velocity and Group velocity for De-Broglie waves - relation 

between phase velocity and group velocity for a non-relativistic free particle. 

INTRODUCTION: 

Quantum mechanics, also known as quantum physics or quantum theory, is a branch of 

physics dealing with physical phenomena where the action is of the order of Planck constant; 

quantum mechanics departs from classical mechanics primarily at the atomic and subatomic scales, 

the so-called quantum realm. It provides a mathematical description of much of the dual 

particle-like and wave-like behavior and interactions of energy and matter. In advanced topics of 

quantum mechanics, some of these behaviors are macroscopic and only emerge at very low or very 

high energies or temperatures. The name "quantum mechanics" derives from the observation that 

some physical quantities can change only by discrete amounts, or quanta in Latin. For example, the 

angular momentum of an electron bound to an atom or molecule is quantized.[1] In the context of 

quantum mechanics, the wave–particle duality of energy and matter and the uncertainty principle 

provide a unified view of the behavior of photons, electrons and other atomic-scale objects. 

The mathematical formulations of quantum mechanics are abstract. A mathematical 

function called the wavefunction provides information about the probability amplitude of position, 

momentum, and other physical properties of a particle. Mathematical manipulations of the 

wavefunction usually involve the bra-ket notation, which requires an understanding of complex 

numbers and linear functionals. The wavefunction treats the object as a quantum harmonic 

oscillator and the mathematics is akin to that of acoustic resonance. Many of the results of quantum 

mechanics are not easily visualized in terms of classical mechanics; for instance, the ground state 

in the quantum mechanical model is a non-zero energy state that is the lowest permitted energy 

state of a system, rather than a more traditional system that is thought of as simply being at rest 

with zero kinetic energy. Instead of a traditional static, unchanging zero state, quantum mechanics 

allows for far more dynamic, chaotic possibilities, according to John Wheeler. 
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The earliest versions of quantum mechanics were formulated in the first decade of the 20th 

century. At around the same time, the atomic theory and the corpuscular theory of light (as updated 

by Einstein) first came to be widely accepted as scientific fact; these latter theories can be viewed 

as quantum theories of matter and electromagnetic radiation. The early quantum theory was 

significantly reformulated in the mid-1920s by Werner Heisenberg, Max Born, Wolfgang Pauli and 

their associates, and the Copenhagen interpretation of Niels Bohr became widely accepted. By 

1930, quantum mechanics had been further unified and formalized by the work of Paul Dirac and 

John von Neumann, with a greater emphasis placed on measurement in quantum mechanics, the 

statistical nature of our knowledge of reality and philosophical speculation about the role of the 

observer. Quantum mechanics has since branched out into almost every aspect of 20th century 

physics and other disciplines such as quantum chemistry, quantum electronics, quantum optics and 

quantum information science. Much 19th century physics has been re-evaluated as the classical 

limit of quantum mechanics, and its more advanced developments in terms of quantum field theory, 

string theory, and speculative quantum gravity theories. 

Inadequacy of classical mechanics: 

The History and Limitations of Classical Mechanics Chapter 1.1 Introduction Classical 

mechanics is the mathematical science that studies the displacement of bodies under the action of 

forces. Gailieo Galilee initiated the modern era of mechanics by using mathematics to describe the 

motion of bodies. His Mechanics, published in 1623, introduced the concepts of force and 

described the constant accelerated motion of objects near the surface of the Earth. Sixty years later 

Newton formulated his Laws of Motion, which he published in 1687 under the title, Philosophiae 

Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy). In the third 

book, subtitled De mundi systemate (On the system of the world), Newton solved the greatest 

scientific problem of his time by applying his Universal Law of Gravitation to determine the 

motion of planets.  

Newton established a mathematical approach to the analysis of physical phenomena in which 

he stated that it was unnecessary to introduce final causes (hypothesis) that have no experimental 

basis, “Hypotheses non fingo (I frame no hypotheses), but that physical models are built from 

experimental observations and then made general by induction. This led to a great century of 

applications of the principles of Newtonian mechanics to many new problems culminating in the 

work of Leonhard Euler. Euler began a systematic study of the three dimensional motion of rigid 
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bodies, leading to a set of dynamical equations now known as Euler’s Equations of Motion. 

Alongside this development and refinement of the concept of force and its application to the 

description of motion, the concept of energy slowly emerged, culminating in the middle of the 

nineteenth century in the discovery of the principle of conservation of energy and its immediate 

applications to the laws of thermodynamics. Conservation principles are now central to our study 

of mechanics; the conservation of momentum, energy, and angular momentum enabled a new 

reformulation of classical mechanics. During this period, the experimental methodology and 

mathematical tools of Newtonian mechanics were applied to other non-rigid systems of particles 

leading to the development of continuum mechanics. The theories of fluid mechanics, wave 

mechanics, and electromagnetism emerged leading to the development of the wave theory of light. 

However there were many perplexing aspects of the wave theory of light, for example does light 

propagate through a medium, the “ether”.  

A series of optics experiments, culminating in the Michelson-Morley experiment in 1887 ruled 

out the hypothesis of a stationary medium. Many attempts were made to reconcile the experimental 

evidence with classical mechanics but the challenges were more fundamental. The basics concepts 

of absolute time and absolute space, which Newton had defined in the Principia, were themselves 

inadequate to explain a host of experimental observations. Einstein, by insisting on a fundamental 

rethinking of the concepts of space and time, and the relativity of motion, in his special theory of 

relativity (1905) was able to resolve the apparent conflicts between optics and Newtonian 

mechanics. In particular, special relativity provides the necessary framework for describing the 

motion of rapidly moving objects (speed greater than v > 0.1c ). A second limitation on the validity 

of Newtonian mechanics appeared at the microscopic length scale. A new theory, statistical 

mechanics, was developed relating the microscopic properties of individual atoms and molecules to 

the macroscopic or bulk thermodynamic properties of materials. Started in the middle of the 

nineteenth century, new observations at very small scales revealed anomalies in the predicted 

behavior of gases. It became increasingly clear that classical mechanics did not adequately explain 

a wide range of newly discovered phenomena at the atomic and sub-atomic length scales. An 

essential realization was that the language of classical mechanics was not even adequate to 

qualitatively describe certain microscopic phenomena.  

By the early part of the twentieth century, quantum mechanics provided a mathematical 

description of microscopic phenomena in complete agreement with our empirical knowledge of all 
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nonrelativistic phenomena. In the twentieth century, as experimental observations led to a more 

detailed knowledge of the large-scale properties of the universe, Newton’s Universal Law of 

Gravitation no longer accurately modeled the observed universe and needed to be replaced by 

general relativity. By the end of the twentieth century and beginning of the twenty-first century, 

many new observations, for example the accelerated expansion of the Universe, have required 

introduction of new concepts like dark energy that may lead once again to a fundamental rethinking 

of the basic concepts of physics in order to explain observed phenomena. 

The Dual Nature of Light: 

A. Light has a dual nature 

    1.Sometimes it behaves like a particle (called a photon), which explains how light travels in 

straight lines 

    2.  Sometimes it behaves like a wave, which explains how light bends (or diffracts) around 

an object 

    3.  Scientists accept the evidence that supports this dual nature of light (even though it 

intuitively doesn't make sense to us!) 

B.  Quantum Theory 

    1.  Light is thought to consist of tiny bits of energy that behave like particles called photons  

         a.  Particles explain how light travels in straight lines or reflects off of mirrors  

de Broglie concept of matter waves: dual nature of matter 

 

 

MATTER WAVES : DE-BROGLIE CONCEPT: 

 

In 1924, Lewis de-Broglie proposed that matter has dual characteristic just like radiation. His 

concept about the dual nature of matter was based on the following observations:- 

 

(a)    The whole universe is composed of matter and electromagnetic radiations. Since both are 

forms of energy so can be transformed into each other. 

 

(b)   The matter loves symmetry.  As the radiation has dual nature, matter should also possess 

dual character. 
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According to the de Broglie concept of matter waves, the matter has dual nature. It means when the 

matter is moving it shows the wave properties (like interference, diffraction etc.) are associated 

with it and when it is in the state of rest then it shows particle properties. Thus the matter has dual 

nature. The waves associated with moving particles are matter waves or de-Broglie waves. 

 

WAVE LENGTH OF DE-BROGLIE WAVES: 

Consider a photon whose energy is given by 

 

E=hυ=hc/λ            – – (1) 

 

If a photon possesses mass (rest mass is zero), then according to the theory of relatively ,its energy 

is given by 

 

E=mc2 – – (2) 

From (1) and (2) ,we have 

 

Mass of photon m= h/cλ 

 

Therefore Momentum of photon 

 

P=mc=hc/cλ=h/λ    – – (3) 

 

Or           λ = h/p 

 

If instead of a photon,  we consider a material particle of mass m moving with velocity v,then the 

momentum of the particle ,p=mv. Therefore, the wavelength of the wave associated with this 

moving particle is given by: 

 

h/mv                                      – 

 

Or           λ = h/p  (But here p = mv)           (4) 
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This wavelength is called DE-Broglie wavelength. 

 

Special Cases: 

 

1. de-Broglie wavelength for material particle: 

 

If E is the kinetic energy of the material particle of mass m moving with velocity v,then 

 

E=1/2 mv2=1/2 m2v2=p2/2m 

 

Or              p=√2mE 

 

Therefore the by putting above equation in equation (4), we get de-Broglie wavelength equation for 

material particle as: 

 

λ = h/√2mE     – – (5) 

 

2. de-Broglie wavelength for particle in gaseous state: 

 

According to kinetic theory of gases , the average kinetic energy of the material particle is given by 

 

E=(3/2) kT 

 

Where k=1.38 x 10-23 J/K is the Boltzmann’s constant  and T is the absolute temperature of the 

particle. 

 

Also E = p2/2m 

 

Comparing above two equations, we get: 

 



B.SC PHYSICS 

2017-2018(ODD) UNIT-I CLASSICAL AND QUANTUM PHYSICS 

  (15PHU502) 

Page 7 of 23 

N.GEETHA KAHE,COIMBATORE-21 

ASSISTANT PROFESSOR 

DEPARTMENT OF PHYSICS 

p2/2m = (3/2) kT 

 

or p = /√3mKT 

Therefore   Equation (4) becomes 

 

λ=h/√3mKT 

 

This is the de-Broglie wavelength for particle in gaseous state: 

 

3. de-Broglie wavelength for an accelerated electron: 

 

Suppose an electron accelerates through a potential difference of V volt. The work done by electric 

field on the electron appears as the gain in its kinetic energy 

 

That is E = eV 

 

Also E = p2/2m 

 

Where e is the charge on the electron, m is the mass of electron and v is the velocity of electron, 

then 

 

Comparing above two equations, we get: 

 

eV= p2/2m 

 

or  p = √2meV 

 

Thus by putting this equation in equation (4), we get the the de-Broglie wavelength of the electron 

as 

λ  = h/√2meV  6.63 x 10-34/√2 x 9.1 x 10-31 x1.6 x 10-19 V 
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λ=12.27/√V  Å 

 

This is the de-Broglie wavelength for electron moving in a potential difference of V volt. 

Normal incidence: 

 The condition in which a wave-front is parallel to an interface, such that the ray path is 

perpendicular (normal) to the surface. The angle of incidence is zero. 

Oblique incidence:  

Interface between dielectric media. Consider a planar interface between two dielectric media. A 

plane wave is incident at an angle from medium 1. ▪ The interface plane defines the boundary 

between the media. 

Experimental detection of wave properties of material particles based on diffraction of 

electrons; Davisson and Germer experiment : 

The Davisson–Germer experiment was a physics experiment conducted by American 

physicists Clinton Davisson and Lester Germer in 1923–1927, which confirmed the de Broglie 

hypothesis. This hypothesis, advanced by Louis de Broglie in 1924, says that particles of matter 

such as electrons have wave-like properties. By demonstrating the wave–particle duality, the 

experiment was an important historical development in the establishment of quantum mechanics 

and of the Schrödinger equation. 

Davisson began work in 1921 to study electron bombardment and secondary electron emissions. A 

series of experiments continued through 1925. 

 

 

 

Experimental setup: 
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 Davisson and Germer experiment 

 

The experimental arrangement of Davisson Germer experiment is discussed below: 

 An electron gun was taken, which comprised of a tungsten filament F, coated with barium 

oxide and heated by a low voltage power supply. 

 Electrons emitted from this electron gun were accelerated to a desired velocity by applying 

suitable potential difference from a high voltage power supply. 

 These emitted electrons were made to pass through a cylinder perforated with fine holes 

along its axis, thus producing a fine collimated beam. 

 This beam produced from the cylinder is made to fall on the surface of a nickel crystal. This 

leads to scattering of electrons in various directions. 

 The intensity of the beam of electrons is measured by the electron detector which is 

connected to a sensitive galvanometer (to record the current) and can be moved on a circular 

scale. 

 The intensity of the scattered electron beam is measured for different values of angle of 

scattering, θ (angle between the incident and the scattered electron beams) by moving the 

detector on the circular scale at different positions. 

 Observations of Davisson Germer experiment: 

Observations of Davisson Germer experiment are listed below: 

https://byjus.com/physics/moving-coil-galvanometer/
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 By varying accelerating potential difference, we finally obtained the variation of the intensity 

(I) of the scattered electrons with the angle of scattering, θ. The accelerated voltage was varied 

from 44V to 68 V. 

 A strong peak was noticed in the intensity (I) of the scattered electron for an accelerating 

voltage of 54V at a scattering angle θ = 50º. 

 This peak can be explained as a result of the constructive interference of electrons scattered 

from different layers of the regularly spaced atoms of the crystals. 

 The wavelength of matter waves was calculated with the help of electron diffraction, which 

measured to be 0.165 nm. 

Co-relating Davisson Germer experiment and de Broglie relation: 

According to de Broglie, wavelength λ associated with electrons is given by, 

λ = h /p 

λ =   1.22754√ = 0.167 nm 

Thus, Davisson Germer experiment confirms the wave nature of electrons and the de Broglie 

relation. 

 

In 1927, Davisson and Germer at the Bell Telephone Laboratories investigated the scattering of 

a beam of electrons from a nickel crystal. Figure shows, schematically, the essentials of their 

apparatus. 
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 Experimental arrangement for the Davisson-Germer electron diffraction 

        experiment. 

 

Electrons from the heated filament F, were accelerated through a potential difference of order 

100V to a plate P with a small diameter hole. A narrow beam of electrons emerged from the 

opening in P and was incident normally on the face of the nickel crystal C. The electrode E was 

connected to a sensitive galvanometer and measured the intensity of the electrons scattered by 

the nickel crystal at various angles .  

 

Some of the experimental results are shown in Fig. 6. These are “polar plots” of the beam 

intensity as a function of the angle  for various accelerating voltages which correspond to the 

wavelengths indicated. In each plot, a line drawn from the origin to any point on the curve 

makes the angle  ; the length of a line is proportional to the electron beam intensity at that 

angle . 
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Figure 6: Polar plot of Davisson and Germer's data for the scattered electron beam 

        intensity as a function of scattering angle for different incident electron 

        energies. 

 

As the voltage was increased from 44 to 88 volts, a characteristic peak gradually appears and 

then disappears. It reaches a maximum for electrons with an energy of 54 eV (.167nm) at an 

angle of 50o . Davisson and Germer concluded that this peak was due to Bragg reflection from 

a set of regularly spaced atomic planes within the crystal as shown in Fig. 7. 

 

Figure 7: Illustrating the Bragg condition for electron waves scattered from plane of 

        atoms in the nickel crystal used by Davisson and Germer. 
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The angle   2  is measured in the experiment. The diffracting planes must be normal to the 

bisector of , so   


2
.  The angle of incidence  between the beam and the scattering 

planes is given by  

 

   90
o
  90

o



2
 

 

The spacing between the planes involved in the diffraction is d. From x-ray measurements, the 

spacing D between the surface atoms was known to be 0.215nm.  If the diffraction planes 

make an angle  with the surface, then d = D sin .   

 

Therefore,  the measured scattering angle of  = 50o determines d as 

   

  d = D sin  = 0.215 sin (50o /2) = 0.215 sin (25o ) . 

 

The crystal is apparently oriented such that the angle of incidence is 

                        90o - 50o/2 = 65o  . 

 

The Bragg condition for the first order reinforcement then says the electron wavelength is 

 

    2dsin  2 0.215sin 25
o sin65

o
 .165nm.                 

 

The electron wavelength calculated from the de Broglie relation using the known energy of the 

beam is 

 

                         
h

mv
 0.167nm  . 

 

This close agreement convinced Davisson and Germer that they had observed the diffraction of 
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electron waves from the nickel crystal.  

 

In this experiment and in a number of subsequent ones, Davisson and Germer observed that 

while agreement was close between the observed and calculated diffraction data, there was 

usually a small discrepancy that was larger for the low energy (longer wavelength) electron 

beams. They were able to show that this discrepancy was due to the fact that the electrons were 

refracted as they entered the crystal. The index of refraction,  , of a crystal was greater than 1, 

due to the fact that the electrons gained energy on entering the crystal. For those low energy 

beams where   (E) differs significantly from 1, the Bragg relation is modified to  

 

 n  2d(
2
 cos2)

1

2  

 

Thus far, only single crystals have been considered. Most materials are polycrystalline. They 

are composed of a large number of small crystallites (single crystals) that are randomly oriented. 

An electron diffraction sample may be a polycrystalline thin film, thin enough so that the 

diffracted electrons can be transmitted through the film.  

 

 

G.P THOMSON EXPERIMENT: 
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 G.P Thomson performed experiments in which electrons are accelerated from 10,000 to 

50,000 volts. In these experiments the generation of electrons are considered analogous to X-Ray 

obtained by diffraction pattern. The diffraction pattern is obtained by only when wave is associated 

with particle. Hence Thomson explains the concept of matter 
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The electrons are emitted from the filament and only some accelerated electrons are passing 

through cathode ‘C’. Next these electrons are passed through two slits S1 and S2 and a thin pencil 

beam of electrons is obtained. This electrons beam allowed to fall on a thin foil ‘G’ of gold or 

Aluminium of order10−6 cm . The photograph of electron beam from the foil is recorded on the 

photographic plate ‘P’. Hence a pattern consists of concentric rings. The complete apparatus is kept 

in high vacuum chamber so that the electrons may not lose their energy y colliding with molecules 

of air or any inside the tube. 

To conclude that, this pattern is due to the electrons and not due the X-Rays. The cathode rays 

inside the tube are affected by the magnetic fields. The beam shifting considerably along the field is 

observed. Hence we can conclude that the pattern obtained is due to electrons only since x-Rays are 

not affected by electric and magnetic field 

 

Phase and Group Velocities of the de Broglie Wave: 

 

The group of wave need not have the same velocity as the individual one. 

  

The amplitude of the de Broglie wave is associated with the moving body represents the probability of 

finding a body at a particular time and space. The wave equation y = A cos (rot- kx) does not represent 

the de Broglie wave. The de Broglie wave is represented by the  Combination of several such waves. 

Thus, the de Broglie waves can be obtained by the superposition of the several waves. Hence the 

mathematical expression of the de Broglie waves is obtained by the superposition of number of waves 

or group of waves or wave group of  The diagramatic representation of the de Broglie wave may be 

shown in the form of wave packet or wave group. 

 

Let us find the velocity of the wave packet or de Broglie wave. We assume that the wave packet (or 

group) is formed due to combination of the two waves having equal amplitude and different their 

angular frequency by dw and wave velocity dk. The waves are represented mathematically as 

  

http://www.physics-assignment.com/wp-content/uploads/2012/11/189.png
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y1= A cos (wt – kx) 

y2 =A cos [ (w +dw ) t – (k +dk) x] 

 

where k = 2π /λ  , w 2 π v. 

  

According to the superposition principle, the resultant displacement Y at any time t at any point x is 

the sum of two displacements 

Y =y1 +y2 

= A  [cos  (wt –kx ) +cos { { w +dw )t – (k +dk ) x}] 

= 2 cos [ (2w + dw )t – (2k +dk ) x ] / 2 , cos [dw t –dk x ] / 2 

  

dw and dk are very small as compared to w and k 

2w + dw = 2w and 2k + dk = 2k 

cos 

Hence Y = 2A cos (wt-kx) cos  ( dw t / 2 – dk x /2) 

  

This equation represents a wave of angular frequency w and wave number k moving in the same 

direction superimposed by a modulated wave of angular frequency dw and wave vector dk. Thus, the 

superposition of the two waves results a new waves and successively they form a new wave. 

  

Equation (1) describes the de Broglie wave or wave packet or wave group. 

Form Equation (1), two types of velocities are defined as : 

The phase velocity of the de Broglie waves is defined b
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Vp = w / k 

 

and the group velocity of the de Broglie wave is defined as 

v g = dw /dk 

The group velocity of the de Broglie wave depends upon the manner in which the phase 

velocity of the medium varies or constant. 

The phase velocity is defined by 

Vp =w/k =2π v / 2π /λ = v 

Vp =vλ = v 

where v = velocity of wave. 

  

This shows that the phase velocity of the de Broglie wave is same as the 

wave-velocity.  in other words, the phase velocity is also called wave velocity. 

http://www.physics-assignment.com/wp-content/uploads/2012/11/190.png
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Let us consider a de Broglie wave associated with a moving particle of a rest mass 

m 0 and velocity v. The angular frequency of the de Broglie wave is given by 

  

W =2 πv 

W =2π E/ h 

 

Similarly the wave vector k is given by 

  

K= 2 π / λ 

  

Using de Broglie relation  λ =h /p 

K = 2 π p /h 

K = 2 π mv / h 

K = 2 π v /h 

 

The phase velocity of the de Broglie wave 

Vp=w/k 

http://www.physics-assignment.com/wp-content/uploads/2012/11/191.png
http://www.physics-assignment.com/wp-content/uploads/2012/11/192.png
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Substituting the value of w and k from equations (5) and (6), we get 

V p=2 π c2 /h , m o / (1- v2 /c2 )1/2  . h ( 1-v2 /c2 ) 1/2 / 2 π vm   o 

  

V p=c2 /v =>  v p =(c/v )c 

  

C /v  >> 1 , for material particle 

V p > c 

  

This shows the phase velocity of the de Broglie wave is greater than the velocity of 

light. 

The group velocity of the de Broglie wave is defined as 

Vg = dw /dk 

  

Relation between the Phase Velocity and Group Velocity of the de - broglie 

Wave: 

  

The wave velocity is given by v = vλ 

= 2πv λ/ 2π 

v=w/k 

v=w/k = v p 
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where w = 2πv = angular frequency and 2π / λ wave number. 

  

This shows that the phase velocity of the de Broglie wave is equal to the wave velocity 

and hence phase velocity is also known as wave velocity 

  

Phase velocity is defined by 

  

V p = w/k  => w =kv p 

  

The group velocity of a de Broglie wave is defined by 

  

Vg=dw / dk 

  

Putting the value of w = kv P in equation (2), we get 

Vg = d / dk (kv p) 

Vg=v p +k dv p /dk 

Putting the value of k 

 

http://www.physics-assignment.com/wp-content/uploads/2012/11/193.png
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Now                              d (1 / λ) = – 1 /λ2 dλ 

  

Vg =vp – λ dv p /d λ 

  

This is a relation between the phase velocity and group velocity for a dispersive 

medium. 

  

For normal dispersion the quantity dv p /dλ  is a positive quantity. Therefore for 

normal  dispersion, group velocity is less than the phase velocity. For anomalous 

dispersion, the quantity Dv P / dλ is a negative quantity, the group velocity is greater 

than the phase velocity. 

  

For non-dispersive medium vP =w /k =constant .. dv p d =0 . Hence vg = v p  · Hence for 

nondispersive medium the group velocity is equal to the phase velocity. For 

electromagnetic waves in vacuum, the speed of light (c) is constant. Therefore group 

velocity vg and the phase velocity v, of the light radiations are same. 
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POSSIBLE QUESTIONS: 

 

 

PART B: (8 MARK) 

 

What are the Inadequacy of classical mechanics? 

Explain the Dual nature of light. 

Describe the G.P.Thomson experiment. 

Explain the Wave velocity and Group velocity for De-Broglie waves 

Explain the relationship between particle velocity and Group velocity for De-Broglie 

waves. 

Explain the relation between phase velocity and group velocity for a non-relativistic 

free particle. 
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MULTIPLE CHOICE QUESTIONS

QUESTIONS opt1 opt2 opt3 opt4 ANSWER
UNIT-I

The phenomena of interference, diffraction and polarization can only be explained based 

on _________.
wave theory of light  photoelectric effect.  compton effect.  quantum theory of light. wave theory of light 

Which is not characteristics of Planck's quantum theory of radiation?
 Radiation is associated with 

energy

 Energy is not absorbed or 

emitted in whole number or 

multiples of quantum 

The magnitude of energy 

associated with a quantum is 

proportional to the 

frequency

 Radiation energy is neither 

emitted nor absorbed 

continuously but in small 

packets called quanta

 Radiation is associated with 

energy

Einstein's theory of photoelectric effect is based on 
Newtons corpuscular theory 

of light 

Huygen's wave theory of 

light

Maxwell's electromagnetic 

theory of light 

Planck's quantum theory of 

light
Planck's quantum theory of light

The equation E= hν was deduced by:  Heisenberg  de Broglie  Einstein   Planck Einstein 

De Broglie wavelength (λ) associated with moving particles, mass, m, and velocity v is h/mv  h/√2mEk  h/√2mqV  h/√2mkT h/mv 

The wavelength associated with a 54eV is 1.61Å   1.63Å  1.67Å  1.69Å 1.67Å 
The propagation constant (k) = λ  2π/λ 2πλ  λ /2π 2π/λ
Based on quantum theory of light, the bundles of energy = hν   hλ  h/ν  h/λ hν 
De Broglie wavelength (λ) associated with moving particles of K.E is h/mv  h/√2mEk  h/√2mqV  h/√2mkT h/mv 
Wave nature is not observed in daily life because we are using ___________. Microscopic particles macroscopic particles   molecules atoms macroscopic particles 
Group velocity (u) = dω  dk  dωdk  dω/dk dω/dk
_______ year De Broglie proposed that the idea of dual nature. 1921 1922 1923 1925 1923
De Broglie wavelength (λ) associated with charge q and potential difference of V volts 

is
 h/mv   h/√2mEk  h/√2mqV  h/√2mkT  h/mv 

The interplanar distance of gold crystal is _______ Å. 4.02 4.04 4.06 4 4.06
In relativistic particle, the group velocity (G) is equal to v u 1/u 1/v u
The wave velocity (v) = ω/k  ωk  k/ω  ω ω/k 
What is the interplanar distance of gold crystal (Å)? 4.02 4.04 4.06 4 4.04
In non-relativistic particle, the group velocity (G) is equal to  v/4  v/2   v  2v v/2 
Classical physics could not explain the behavior of a black body radiator at very short 

wavelengths. What was this problem called?
Absorption failure   Ultraviolet Explosion Wavelength decrease   Photoelectric Effect  Ultraviolet Explosion

The photoelectric effect was explained by Albert Einstein by assuming that: light is a wave.  light is a particle. 
an electron behaves as a 

wave. 

an electron behaves as a 

particle.
 light is a particle

The Compton Effect supports which of the following theories?
 Special Theory of 

Relativity. 
Light is a wave. 

 Thomson model of the 

atom.
Light is a particle. Light is a particle.

How does the energy of a photon change if the wavelength is doubled?  Doubles  Quadruples   Stays the same Is cut to one-half  Is cut to one-half
How does the momentum of a photon change if the wavelength is halved?  Doubles  Quadruples   Stays the same Is cut to one-half doubles
Which one of the following objects, moving at the same speed, has the greatest de 

Broglie wavelength?
Neutron  Electron   Tennis ball  Bowling ball electron

Which of the following formulas can be used to determine the de Broglie wavelength? λ = hmv   λ = h/mv   λ = mv/h   λ = hm/c λ = h/mv 

The value of Plank’s constant is 6.62 X 10-34 JS2 )6.62 X 10-31 JS  6.62 X 10-34 JS   6.62 X 10-31 JS2 6.62 X 10-34 JS

The idea of dual nature of light was proposed by Plank   De Broglie  Einstein  Maxwell  De Broglie
Which of the following terms refers to the molecular modelling computational method 

that uses equations obeying the laws of classical physics?
Quantum mechanics  Molecular calculations  Molecular mechanics  Quantum theory Molecular mechanics

Which of the following terms refers to the molecular modelling computational method 

that uses quantum physics?
Quantum mechanics  Molecular calculations  Molecular mechanics  Quantum theory Quantum mechanics 

According to the de Broglie‟s hypothesis of matter waves, the concepts of energy, 

momentum and wavelength are applicable to

moving particles but not to 

radiation (photon)

 moving particles as well as 

to radiation (photon)

 radiation (photon) but not to 

moving particles 

neither to moving particles 

nor to radiation (photon).

 moving particles as well as to 

radiation (photon)

Experimental verification of de Broglie‟s matter waves was obtained in
Einstein‟s Photoelectric 

experiment 

Davisson and Germer 

Experiment
 Compton‟s Experiment  Plank  Davisson and Germer Experiment

A pattern of alternate dark and bright bands is obtained in the double slit experiments on Single photon at a time  Single electron at a time   Single bullet at a time  Electron Beam  Electron Beam

Probabilistic interpretation of matter waves (as in the double slit experiment) was given 

by
Einstein  De Broglie  Max Planck  Davisson  Davisson



Phase velocity Vp of a wave is expressed as

Vp = ω / k where ω = 

Angular frequency, k = 

propagation constant of the 

wave

 where λ = wavelength and 

T = period of the wave 

Vp = E/p where E = Energy, 

p= Momentum of the 

particle 

No relation between Phase 

velocity and Group velocity

Vp = ω / k where ω = Angular 

frequency, k = propagation 

constant of the wave

 The quantum theory of radiation was proposed by ____ Einstein  De Broglie  Max Planck  Davisson  Max Planck
 The wave nature of electron was experimentally verified by Einstein  De Broglie  Max Planck  Davisson  Davisson
Classical mechanics could not explain the stability of ________ atoms proton neutron electron atoms
Classical mechanics correctly explain the motion  plantes stars atoms both a and b both a and b
Classical mechanics could not explain the variation of specific heat of metals and 

________
solids gases liquids inert gas gases

The first experimental evidence for matter waves was given by _______ Einstein de Broglie  Plancks Davisson and Germer Davisson and Germer

The acclerated potential difference for Davisson and Germer experiment was ________ 30 to 1000 V 30 to 100 eV 30 to 100 V 3 to 100 V 30 to 100 V

The type of crystal used in Davisson and Germer experiment was _______ Ni Al Cu Fe Ni
The wavelength of bullet of mass 1 g moving with a velocity of 1000 m/ s is given by 

________
6.625 x 10-34 nm 6.625 x 10-34m 6.625 x 1034m 6.625 x 10-34 cm 6.625 x 10-34m

In davisson and germer experiment the angle of incidence relative to the family of Bragg 

plane is ________
65 56 54 48 65

In G.P.Thomson experiment the thickness of gold foil is ___________ 10-8 pm 10-8 nm 10-8 cm 10-8 m 10-8 m

A ball of mass 10 g has velocity 100 m/sec. Calculate the wavelength associated with it.  6.62 x 10-34 m 6.62 x 10-34 cm 6.62 x 10-32 m 6.62 x 10-32 cm 6.62 x 10-32 m

Calculate the wavelength asociated with an electron subjected to a potential difference 

of 1.25 kV
0.4 m 0.44m 0.4 Å 0.14 Å 0.4 Å

Calculate the de Broglie wavelength associated with a proton moving with a velocity 

equal to 1/20 th of the velocity of light
2.62 x 10-14 m 6.62 x 10-14 m 26.2 x 10-14 m 0.262 x 10-14 m 2.62 x 10-14 m

The wave property for momentum is _____ energy frequency velocity wavelength wavelength
The wave property for energy is _____ momentum frequency velocity wavelength frequency
The particle property for wavelength is  momentum frequency velocity energy momentum
The particle property for frequency is  momentum wavelength velocity energy energy

In Wave velocity the cosine factor represents a slowly varying function of ______ w k x x and t x and t

G.P. Thomson exhibited the wave nature of high energetic _________ electrons proton neutron nucleus electrons
Which type of foil is used in G.P.Thomson experiment? platinum gold nickel diamond gold
In the transmission process light (radiation) behaves as a Wave Particle Wave-particle matter Wave
 ‘the moving particles behave like waves’ was first theoretical established by  Einstein De Broglie   Davison & Germer Plancks De Broglie
 ‘the material particles behave like waves’ was irst experimentally extablished by  Einstein De Broglie   Davison & Germer Plancks   Davison & Germer
The de Broglie wavelength a particle of a particle of mass m and charge e subjected to a 

potential difference V volt is
 λ = h/(2eV)1/2 λ = h/(2meV)1/2 λ = h/(2V)1/2 λ = h/(meV)1/2 λ = h/(2meV)1/2

 the de Broglie wavelength wave length of a moving electron subjected to a potential V 

is
 1.26/V1/2    12.26/V1/2    12.26/V    2.26/V1/2    12.26/V1/2
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SYLLABUS: 

 Introduction-statement of the uncertainty principle - Physical significance of 

Heisenberg’s uncertainty relation - Illustration of uncertainty principle - Examples of position, 

momentum, uncertainty - Heisenberg’s Gamma ray microscope. Diffraction of a beam of 

electrons by a slit - Application of the uncertainty principle - The non existence of the electron in 

the nucleus - The radius of the Bohr’s first orbit of H2 atom and energy in the ground state. 

 

  

INTRODUCTION:   

In classical physics it is generally assumed that position and momentum of a moving object can 

be simultaneously measured exactly i.e. no uncertainties are involved in its description. But in 

microscopic world it is not possible. It is found that however refined our instruments there is a 

fundamental limitation to the accuracy with which the position and velocity of microscopic 

particle can be known simultaneously. This limitation was expressed by a German physicist 

Werner Heisenberg in 1927 and known as 'Heisenberg's uncertainty principle'. 

In microscopic particles we can observe two type of uncertainties viz. 

Uncertainty in position and momentum 

 Uncertainty in energy and time 

STATEMENT:   

 Uncertainty in position and momentum 

According to Heisenberg's uncertainty principle: 

 

It is impossible to determine both position and momentum of an electron simultaneously.  

If one quantity is known then the determination of the other quantity will become impossible. 

 
MATHEMATICALREPRESENTATION : 

  

Let 

Dx = uncertainty in position  

DP = uncertainty in momentum 

 
According to Heisenberg's uncertainty principle: 
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The product of the uncertainty in position and the uncertainty in momentum is in  

the order of an amount involving h, which is Planck’s constant. 

  DP  x  Dx ³ h/2p -------(i) 

  
EXPLANATION: 

 
  

  

It is not difficult to understand the phenomenon of uncertainty. Consider an example in which 

we are going to see the position of an electron. We measure the position an electron is measured 

with light and observing the light that it reflects. The light disturbs its momentum. 

Heisenberg considered an electron that has a definite, known momentum and that passes under a 

powerful microscope. He realized that measuring the position of an elementary particle alters its 

momentum in a random manner. 

  

This technique allows the position to be specified with an accuracy comparable to the 

wavelength of light used in the experiment. However, when the photons are scattered from the 

electron, they alter its momentum, because the photons have a momentum of their own. The 

observer cannot calculate the extent of this disturbance, which is random. 

  

Increasing the wavelength decreases the disturbance, because photons of longer wavelength have 

less momentum and energy. However, increasing the wavelength reduces the precision of the 

measurement of position. Decreasing the wavelength allows better position measurement, but 

increases the disturbance to the momentum. 

 

  

UNCERTAINTY IN TIME AND  

ENERGY: 

 

  

  

Similar to uncertainty in position there is another principle of uncertainty which limits the 

accuracy in the measurement of time i.e. if DE is the energy uncertainty in time Dt then we have 

an expression similar to equation (i) 

i.e. 

  DE  x  Dt ³ h/2p -------(ii) 
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RESULTS OF UNCERTAINTY 

PRINCIPLE: 
  

  

    It is impossible to chase an electron around the nucleus. 

 The principle describes the incompleteness of Bohr's atomic theory. 

 According to Heisenberg's uncertainty principle there is no circular orbit around the 

nucleus. 

 Exact position of an electron can not be determined precisely. 

 

 

  
LIMITATIONS OF PRINCIPLE: 

 
  

  
Heisenberg's uncertainty principle is not applicable in our daily life. It is only applicable on 

micro objects i.e. subatomic particles. 

  

The reason why the uncertainty principle is of no importance in our daily life is that Planck's 

constant 'h' is so small (6.625 x 10-34 joule-seconds) that the uncertainties in position and 

momentum of even quiet small (not microscopic objects) objects are far too small to be 

experimentally observed. For microscopic phenomena such as atomic processes, the 

displacements and momentum are such that the uncertainty relation is critically applicable. 

    

  

Heisenberg’s Gamma ray microscope.: 

             Heisenberg had a peculiar approach towards the nature of physics. He believed that the 

concepts which are not defined on the basis of actual or possible experimental observations 

should have no place in science e.g. he discarded the concept of orbits in the Bohr's atomic 

model since they were never observed in the laboratory. 

            Heisenberg has expressed his view in his paper on uncertainty principle (1927): If one 

wants to be clear about what is meant by "position of an object," for example of an electron..., 

then one has to specify definite experiments by which the "position of an electron" can be 
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measured; otherwise this term has no meaning at all. 

            To examine the uncertainty principle, W. Heisenberg proposed a hypothetical experiment 

(thought experiment or a gedanken experiment) on the Gamma Ray Microscope which was later 

modified by N. Bohr. Usual optical parts used in the conventional light microscope cannot focus 

the gamma-rays used in the experiment. Hence it was not possible to carry out such an 

experiment in practice at that time. However, the experiment can be imagined and it enables to 

illustrate the underlying principle. 

                  The aim of gamma-ray microscope experiment is to detect and measure the position 

of a microscopic point particle like an electron as exactly as possible. The apparatus consists of a 

microscope which uses high-energy and high frequency (very short wavelength) electromagnetic 

radiation like gamma rays. The radius of the atom is of the order of 10 − 11m. For the tolerance 

(an uncertainty) of about 10% (i.e. 10 − 12m) in the determination of the position, the wavelength 

of radiation needs to be of the order of 10 − 12m. Gamma rays are having wavelength in that 

region. Hence it was necessary and appropriate to employ gamma rays to “see” the electron with 

necessary resolving power of the microscope. 

                A gamma ray microscope has a source of radiation in the form of a monochromatic, 

narrow beam of gamma rays to 'illuminate' the electron. A beam of gamma ray photons traveling 

along the y axis is incident on the free electron at rest kept directly under the center of the 

microscope's objective lens. An imaginary cone can be drawn with the electron at its apex which 

subtends an angle 2θ with the diameter of the circular lens as its base. The gamma ray photon 

which is scattered into any angle within the cone of angle 2θ enters the objective lens and 

enables to see the electron.The incident and scattered gamma ray photons are shown by wave 

packets in the figure. 
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Fig. Thought Experiment of Gamma Ray Microscope 

 

 

           After striking the electron, the gamma ray photon gets scattered and the position of the 

electron gets disturbed due to its impact. The very act of measurement introduces uncertainty in 

the determination of position of electron. Since a gamma ray photon acts like a particle, the 

interaction between the gamma ray photon and the electron can be considered as a collision 

between two particles as in the Compton scattering experiment. Due to the gain in momentum 

obtained from the gamma ray, the electron recoils. The direction along which the electron recoils 

may be taken as the x-axis. The image of the electron as seen in the microscope is a diffraction 

pattern consisting of a central bright disc surrounded by alternate dark and bright rings. 

The electron may be found anywhere within the central disk. The uncertainty in the 

position of the electron is having a value equal to ∆x, the diameter of the central disc. 

The total momentum p of the incident gamma ray photon is related to its wavelength λ by 

the formula 

p=h/λ,where h is Planck's constant. 
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In the scattering process the total momentum, p of the scattered gamma ray photon is 

reduced and the wavelength is changed accordingly. 

According to the Rayleigh’s criterion in physical optics, the resolving power of a 

microscope (i.e. the minimum distance ∆x between two points in an object that is necessary to 

distinguish their images or see as separate in a microscope) is the distance between the peak 

intensity and the first minimum in the diffraction pattern and it is given by the formula, 

Resolving Power = R.P. = ∆x = λ /2sin θ 

where 2θ is the angle subtended by the electron with the objective lens . The maximum value of 

the scattering angle of gamma ray photon (semi-vertical angle of the cone θ) occurs in two 

extreme cases- when the gamma ray gets diffracted exactly along the right or left edges of the 

cone. 

If the gamma ray gets diffracted to the right edge of the cone, the total momentum in the 

x direction would be given by the sum of momenta of electron and gamma ray as follows 

= the electron's momentum p1x + the gamma ray's momentum in the x direction 

= p1x + (h sin θ)/λ1 

where λ1 is the wavelength of the gamma ray diffracted to right edge 

In the other extreme case, the observed gamma ray photon gets diffracted just along the 

left edge of the cone (i.e. scattered backward). Then the total momentum in the x direction is 

given by 

= p2x -(h sin θ)/λ2, where λ2 is the wavelength of the gamma ray diffracted to left edge. 

However, according to the conservation of momentum, the component along x axis of 

final momentum in each case must equal the component along the x axis of initial momentum. 

Therefore, the components along x axis of final momenta are equal to each other. 

p1x + (h sin θ)/λ1 = p2x - (h sin θ)/λ2 

If θ is small, then the wavelengths in both possibilities are approximately equal. Then 
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λ1 ~ λ2 ~ λ 

 

p2x - p1x = ∆px ~ 2h sin θ/λ 

 

However, the formula for Resolving Power according to the Rayleigh's criterion is 

∆x = λ/(2 sin θ) 

 

∆px ~ h/∆x 

or 

∆x∆px ~ h 

Thus there is a reciprocal relationship between the minimum uncertainty ∆x in the 

measured position of the electron along the x axis and the uncertainty ∆px in its momentum in 

the direction. If the x position is measured more precisely i.e. ∆x is made minimum then ∆px 

becomes maximum i.e. measurement of value of p is more uncertain and vice a versa. However 

the product ∆x∆p remains constant of the order of value of h. 

The thought experiment shows that electron's position and momentum obey the 

uncertainty relation which Heisenberg had derived mathematically. 

The experiment shows that to measure the properties of a particle such as an electron, a 

measuring device usually light or radiation is needed. But the energy in the radiation affects the 

particle being observed. At the subatomic level the act of observing alters the reality being 

observed and thus it imposes limits on the physical knowledge. 

Implications of the Uncertainty Principle: 

The uncertainty relations are not just mathematical relations, they have profound 

scientific and philosophical implications. These can be understood during the study of the 

microworld only by modifying our common sense beliefs and classically trained views. 
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According to classical mechanics there is no limit in principle to the precision with which 

the dynamical variables can be measured. If the position and momentum at time t=0 is known 

then the subsequent motion can be described precisely by a definite trajectory. The precision of 

any measurement is limited only by the accuracy of the instruments of the experimenter. 

However, these classical concepts cannot be applied to microscopic objects. In quantum 

mechanics, the values of variables at any time (either at initial time t=0 or any other later time t) 

cannot be stated precisely. Hence the notion of trajectory of a particle has no meaning. Even 

though instruments used may have high precision, there is a certain minimum limit on the 

precision of simultaneous measurement of certain pairs of properties. 

Heisenberg wrote in his paper (1927) that “Every concept has a meaning only in terms of 

the experiments used to measure it, we must agree that things that cannot be measured really 

have no meaning in physics”. According to the Heisenberg’s Uncertainty Principle, it is not 

possible to simultaneously and precisely measure some properties (i.e. canonically conjugate 

variables) of a particle. 

In classical physics, if present position and momentum and all of the forces acting upon a 

particle are known then its future motion can be exactly predicted, or "determined," 

According to Heisenberg’s uncertainty principle, the precise position and momentum of a 

particle at a given instant is not known exactly, so its future motion cannot be determined 

precisely. He has written: In the sharp formulation of the law of causality-- "if we know the 

present exactly, we can calculate the future"-it is not the conclusion that is wrong but the 

premise. 

Indeterminism in measurement is not due to imperfection in measuring instruments or 

method but due to the indeterminism inherent in the quantum world itself. According to the 

probabilistic interpretation of Max Born, quantum physics cannot give exact results or 

deterministic answers, but can state only the probabilities for the occurrence of a variety of  

possible results. 
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The principle of complementarity:  

According to Heisenberg’s uncertainty principle, position and momentum are 

complementary variables. Momentum has direct relation to wavelength according to de Broglie 

relation. It indicates that the particle aspect (conferred from position) and wave aspect (from 

wavelength)are complementary. Thus matter has a dual- i.e. a wave-like and a particle-like 

nature but only one is exhibited in any measurement and that will be decided by the nature of the 

measurement. This is the principle of complementarity developed by Bohr. 

The views of Heisenberg and Bohr were compatible. They were known together as the 

Copenhagen interpretation. It was accepted by majority of physicists with some exceptions like 

A. Einstein. 

 

Richard Feynman in 1985 has put with forcefulness the uncertainty principle in its 

historical perspective in following words, ‘If you get rid of all the old fashioned ideas 

(that is, the jelly bean fallacy), there is no need for an uncertainty principle’. 

Application of the uncertainty principle: 

(I) The non existence of the electron in the nucleus : 

The diameter of nucleus of any atom is of the order of 10-14m. If any electron is confined 

within the nucleus then the uncertainty in its position (Δx) must not be greater than 10-14 m. 

According to Heisenberg’s uncertainty principle, 

 Δx Δp > h / 2π 

The uncertainty in momentum is Δp > h / 2πΔx , 

 where Δx = 10-14 m 

Δp > (6.63X10-34) / (2X3.14X10-14) 

 i.e. Δp > 1.055X10-20 kg-m /s 
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This is the uncertainty in the momentum of electron and then the momentum of the electron 

must be in the same order of magnitude. 

 

(II) The radius of the Bohr’s first orbit of H2 atom and energy in the ground state: 

 

If ∆x and ∆px are the uncertainties in the simultaneous measurements of position and momentum 

of the electron in the first orbit, then from uncertainty principle 

∆x∆px = Ћ 

Where Ћ = h/2∏ 

Or    ∆px = Ћ /∆x                                                                 (1) 

As kinetic energy is given as 

K = p2/2m 

Then uncertainty in K.E is 

∆K =∆p2
x/2m 

Put equation (i) in above equation 

∆K= Ћ2 /2m(∆x)2 (2) 

As potential energy is given by 

∆V= -1/4∏ε0 Ze2/∆x                                                      (3) 

The uncertainty in total energy is given by adding equations (2) and (3), that is 

∆E= ∆K+∆V 

= Ћ2 /2∏(∆x)2 –Ze2/4∏ε0∆x 

If ∆x = r= radius of Bohr’s orbit, then 
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∆E= Ћ2 /2mr2 –Ze2/4∏ε0r                                                   (4) 

The Uncertainty in total energy will be minimum if 

d(∆E)/dr=0 and d2((∆E)/dr2 is positive 

Differentiating equation (4) w.r.t. r, we get 

d(∆E)/dr=0= – Ћ 2/mr3+Ze2/4π ε0r
2 (5) 

For minimum value of ∆E 

d(∆E)/dr=0= – Ћ 2/mr2+Ze2/4π ε0r
2 

or                  Ze2/4π ε0r
2= Ћ 2/mr3 

Or                       r=4π ε0 Ћ
 2/me2 (6) 

Further differentiating equation (5), we get 

d2(∆E)/dr2=3 Ћ 2/mr4-2Ze2/4π ε0r
3 

By putting value of r from equation (6) in above equation, we get positive value of 

d2(∆E)/dr2 

Therefore equation (4) represents the condition of minimum in the first orbit. 

Hence, the radius of first orbit is given by 

r=4π ε0Ћ
 2/me2=0.53 angstrom                                  (For H atom Z=1) 

Put value of r in equation (4), we get 

Emin= -13.6 e V 

This value is same as determined by using Bohr’s theory. 
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Therefore, with the help of Heisenberg’s uncertainty principle, one can determine the radius of 

the Bohr’s first orbit. 

 

(III) Width of spectral lines (natural Broadening): 

 

              Whenever a photon interacts with matter the atoms get excited and the excited atom 

gives up its excess energy by emitting a photon of certain frequency which leads to the 

spectrum. The broadening in the spectral lines is observed due to the indeterminateness in the 

atomic energies. According to Heisenberg’s uncertainty relation 

∆𝐸 = ℎ 2𝜋 ∆t 

where ΔE is the uncertainty in the measurement of energies and Δt is the mean life time of 

the level is finite (10-8 secs). Therefore ΔE must have a finite energy spread that means the 

energy levels are not sharp and hence the broadening of the spectral lines 

 

 

 

 

 

 

 

 

 

 

http://www.winnerscience.com/quantum-physics/heisenberg-uncertainty-principle/
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POSSIBLE QUESTIONS: 

PART B: (8 MARK) 

 State and explain  the uncertainty principle. 

 Give the short note on physical significance of Heisenberg’s uncertainty relation. 

 Give a detailed account on  Heisenberg’s Gamma ray microscope 

 Diffraction of a beam of electrons by a slit 

 Application of Uncertainty principle: 

 The non existence of the electron in the nucleus-justify. 

 The radius of the Bohr’s first orbit of H2 atom and energy in the ground state 
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CLASSICAL AND QUANTUM PHYSICS (15PHU502)
MULTIPLE CHOICE QUESTIONS

QUESTIONS opt1 opt2 opt3 opt4 ANSWER
Unit-II
Heisenberg’s uncertainty principle states for the energy and time is  ∆E∆t = h   ∆E∆t = h/2π   ∆E∆t = 2πh   ∆E∆t = 2 π /h ∆E∆t = h/2π 
Based on optical theory, the limits of distance between two points (∆x) is λ/2sinө   λ/sinө   λ2sinө   λsinө λ/2sinө 
The angular frequency (ω) = √k/m   √m/k   √k   √m √k/m 
In which of the following is the radius of the first orbit minimum? hydrogen atom  A tritium atom  Triply ionized  beryllium  Doubly ionized helium hydrogen atom 
The Kinetic energy of electron of mass (m) is given by (T)  p/2m   p2/2m 2mp  2mp2  p2/2m
Heisenberg’s uncertainty principle states for the angular momentum and angle is  ∆J∆ө = h  ∆J∆ө = h/2π ∆J∆ө = 2πh ∆J∆ө = 2 π /h ∆J∆ө = h/2π
The radius of the nucleus of any atom is of the order of ____ m  10-8 m 10 -14 cm  10-14m  10-10 m 10-14m
The minimum energy of harmonic oscillator (Emin) = ½hω  hω  -hω ω ½hω 
Which of following formula satisfy the diffraction pattern? nλ= 2dsinө   nλ= 2sinө/d nλ= sinө/2d nλ= 2d/sinө nλ= 2dsinө 

Heisenberg’s Uncertainty Principle states:

 The more precise a particle’s 

energy can be measured, the 

less precise its position can be 

measured. (b) 

A particle’s position can be 

measured exactly

A particle’s energy can be 

measured exactly

The more precise a particle’s 

momentum can be measured, 

the less precise its position can 

be measured.

The more precise a particle’s 

momentum can be measured, 

the less precise its position can 

be measured.

Heisenberg’s uncertainty principle states for the position and momentum is ∆p∆q = h ∆p∆q = h/2π ∆p∆q = 2πh ∆p∆q = 2 π /h ∆p∆q = h/2π
The product of the uncertainties in determine the angular momentum and angle of the 

particle can never be smaller that the number of order
 = ½ħ   ≤½ħ  ≥½ħ ≠½ħ  = ½ħ  

The uncertainty in the total energy (∆E) is ∆T + ∆V ∆T - ∆V ∆T ∆V ∆T + ∆V
What is the radius of Bohr’s first orbit (r) ? ∆q ∆p r ∆V r
Based on the uncertainty principle, the minimum momentum (Pmin) = h/I ħ  ħl   l/ ħ ħ
Who proposed the uncertainty principle?  Bohr  De Broglie  Heisenberg Schroedinger Heisenberg
The kinetic energy of electron in the atoms is 4 Mev 6 Mev 8 MeV 97 Mev 97 Mev

A particle has position (x, y, z) and corresponding momenta (px, py, pz). According to 

Heisenberg‟s Uncertainty principle, following observables cannot be measured 

simultaneously.

The shorter the lifetime of an 

excited state of an atom, the 

less accurately can its energy 

be measured. ( 

An electron in an atom cannot 

be described by a well-defined 

orbit

The momentum of an electron 

cannot be measured exactly

Measurement of one variable in 

an atomic system can affect 

subsequent measurements of 

other variables.

Measurement of one variable in 

an atomic system can affect 

subsequent measurements of 

other variables.

What is the atom life time in the excited states?  10-8 sec  10-8 min  10-10 sec  10-10 min  10-8 sec 
Planck’s constant has the same units as angular momentum  The Hamiltonian quantum number frequency  angular momentum  
Which of the following is NOT a correct consequence of the Heisenberg uncertainty 

principle:
 x and px   x and py  py and pz   x and z x and z

According to Heisenberg‟s Uncertainty principle, Indeterminism in the measurement of 

canonically conjugate variables is due to

imperfection in measuring 

instruments

imperfection in measurement 

methods

the interminisim inherent in the 

auantum world itself

imperfection in measuring 

instruments

Potential energy of Hydrogen atom in the ground state is negative zero imfinity cannot be determined zero

The value of ħ is  6.625 x 10
-34 

nm 5 x 10
-34 

nm 1.055 x 10
34

nm 1.0555 x 10
-34 

nm 1.055 x 10
34

nm

mass of an electron is  9 x 10-34 nm 9x 10-31 m 6 x 10-34 nm 6.625 x 10-30 nm 9x 10-31 m
Compute the de Broglie wavelength of an electron that has been accelerated through a 

potential difference of 9.0 kV. Ignore relativists effects.
1.3 x 10-11 m 1.7 x 10

-22
 m 1.2 x 10

-26
 m 1.7 x 10 3 m 1.7 x 10

-22
 m

  If we measure the position of a particle accurately then the uncertainty  in measurement 

of momentum at the same instant becomes
0 Infinity 1 constant Infinity

If we measure the energy of a particle accurately then the uncertainty  in measurement 

of the time becomes
0 Infinity 1 constant Infinity

If a photon and the electron have the same wavelength, then the energy of an electron is Smaller than that of a photon   Greater than that of a photon 0 Equal   Greater than that of a photon

For a photon and an electron with equal energy, the Broglie wavelength of the electron is
Much smaller than that of a 

photon
Much greater than of a proton 0   Equal

Much smaller than that of a 

photon

Prepared By-N.Geetha,Assistant Professor,Department Of Physics.
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SYLLABUS: 

Physical interpretation of the wave function - Equation of motion of matter wave (i) Time-

independent Schroedinger equation (ii) Schroedinger equation for a free particle and (iii) Time 

dependent Schroedinger equation-Solution of the Schroedinger equation -Orthogonal, 

normalized and orthonormal of wave function - Expectation values of dynamical qualities, 

probability current density, particle flux-Ehrenfest’s theorem. Eigen function, Eigen value and 

Eigen value equation - orthogonality of Eigen function - Reality of energy Eigen value. 

 

 WAVE FUNCTION: 

Wave function is defined as that quantity whose variations make up matter waves. It is 

represented by Greek symbol ψ(psi), ψ consists of real and imaginary parts. 

Ψ=A+iB 

PHYSICAL SIGNIFICANCE OF WAVE FUNCTIONS (BORN’S INTERPRETATION): 

Born’s interpretation 

The wave function ψ itself has no physical significance but the square of its absolute 

magnitude |ψ2| has significance when evaluated at a particular point and at a particular time |ψ2| 

gives the probability of finding the particle there at that time. 

The wave function ψ(x,t) is a quantity such that the product 

P(x,t)=ψ*(x,t)ψ(x,t) 

Is the probability per unit length of finding the particle at the position x at time t. 

P(x,t) is the probability density and ψ*(x,t) is complex conjugate of ψ(x,t) 

Hence the probability of finding the particle is large wherever ψ is large and vice-versa. 
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EQUATION OF MOTION OF MATTER WAVE: 

According to de-broglie theory, a material particle associated with a wave . So a 

mathematical reformation using a wave function associated with matter waves needed such a 

mathematical formation known as wave mechanics or quantum mechanics was developed in 

1926 by Schrodinger. Schrodinger described the amplitude of matter waves by a complex 

quantity ψ (, , ,) xyzt known as wave function or state of the system. It describes the particular 

dynamical system under observation. 

(I)TIME –INDEPENDENT SCHROEDINGER EQUATION: 

 We start with the one-dimensional classical wave equation,  

 

(10) 

 

By introducing the separation of variables  

 

(11) 

 

we obtain  

 

(12) 

 

If we introduce one of the standard wave equation solutions for  such as  (the constant 

can be taken care of later in the normalization), we obtain  
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(13) 

 

Now we have an ordinary differential equation describing the spatial amplitude of the matter 

wave as a function of position. The energy of a particle is the sum of kinetic and potential parts  

 

(14) 

 

which can be solved for the momentum, , to obtain  

 

(15) 

 

Now we can use the de Broglie formula (4) to get an expression for the wavelength  

 

(16) 

 

 

The term  in equation (13) can be rewritten in terms of  if we recall 

that  and .  

 

(17) 

http://vergil.chemistry.gatech.edu/notes/quantrev/node6.html#eq:deBroglie
http://vergil.chemistry.gatech.edu/notes/quantrev/node8.html#eq:seq1
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When this result is substituted into equation (13) we obtain the famous time-independent 

Schrödinger equation  

 

(18) 

 

which is almost always written in the form  

 

(19) 

 

 

This single-particle one-dimensional equation can easily be extended to the case of three 

dimensions, where it becomes  

 

(20) 

 

A two-body problem can also be treated by this equation if the mass  is replaced with a 

reduced mass . 

It is important to point out that this analogy with the classical wave equation only goes so far. 

We cannot, for instance, derive the time-dependent Schrödinger equation in an analogous fashion 

(for instance, that equation involves the partial first derivative with respect to time instead of the 

http://vergil.chemistry.gatech.edu/notes/quantrev/node8.html#eq:seq1
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partial second derivative). In fact, Schrödinger presented his time-independent equation first, and 

then went back and postulated the more general time-dependent equation. 

(II)Time Dependent Schrodinger Equation: 

The time dependent Schrodinger equation for one spatial dimension is of the form 

 

For a free particle where U(x) =0 the wavefunction solution can be put in the form of a plane 

wave 

 

For other problems, the potential U(x) serves to set boundary conditions on the spatial part of the 

wavefunction and it is helpful to separate the equation into thetime-independent Schrodinger 

equation and the relationship for time evolution of the wavefunction 

 

 

 

 

 

 

 

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/Scheq.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/Scheq.html#c4
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/Scheq.html#c4
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/qm2.html#c6
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(III)SCHROEDINGER EQUATION FOR A FREE PARTICLE: 
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SOLUTION OF SCHROEDINGER EQUATION: 

Schroedinger Equation: 

The Schroedinger equation plays the role of Newton's laws and conservation of energy in 

classical mechanics - i.e., it predicts the future behavior of a dynamic system. It is a wave 

equation in terms of the wavefunction which predicts analytically and precisely the probability of 

events or outcome. The detailed outcome is not strictly determined, but given a large number of 

events, the Schroedinger equation will predict the distribution of results. 

http://hyperphysics.phy-astr.gsu.edu/hbase/newt.html
http://hyperphysics.phy-astr.gsu.edu/hbase/conser.html#coneng
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/wvfun.html#c1
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The kinetic and potential energies are transformed into the Hamiltonian which acts upon the 

wavefunction to generate the evolution of the wavefunction in time and space. The Schroedinger 

equation gives the quantized energies of the system and gives the form of the wavefunction so 

that other properties may be calculated. 

NORMALIZATION CONDITION: 

 

The probability per unit length of finding the particle at position x at time t is 

P=ψ*(x,t)ψ(x,t) 

So, probability of finding the particle in the length dx is 

Pdx=ψ*(x,t)ψ(x,t)dx 

Total probability of finding the particle somewhere along x-axis is 
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∫pdx =∫ ψ*(x,t)ψ(x,t)dx 

If the particle exists , it must be somewhere on the x-axis . so the total probability of finding the 

particle must be unity i.e. 

∫ψ*(x,t)ψ(x,t)dx=1                               (1) 

This is called the normalization condition . So a wave function ψ(x,t) is said to be normalized if 

it satisfies the condition(1) 

ORTHOGONAL WAVE FUNCTIONS: 

 

Consider two different wave functions ψm and ψn such that both satisfies Schrodinger 

equation.These two wave functions are said to be orthogonal if they satisfy the conditions. 

Or                        ∫ ψn
* (x,t) ψm(x,t) dV=0 for n≠m]                          ( 1) 

∫ ψn
* (x,t) ψm(x,t) dV=0 for m≠n ] 

If both the wave functions are simultaneously normal then 

∫ ψm ψm
* d V=1=∫ψnψn

* dV                                   (2) 

 

Orthonormal wave functions: 

 

The sets of wave functions, which are both normalized as well as orthogonal are called 

orthonormal wave functions. 

Equations (16) and (17) are collectively written as 

∫ψ*
mψndV={ o if   m≠n 

=[1 if m=n 

 

http://www.winnerscience.com/quantum-physics/time-independent-schrodinger-wave-equation/
http://www.winnerscience.com/quantum-physics/time-independent-schrodinger-wave-equation/
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EHRENFEST THEOREM: 
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Eigenvalues and Eigenfunctions: 

The wavefunction for a given physical system contains the measurable information about the 

system. To obtain specific values for physical parameters, for example energy, you operate on 

the wavefunction with the quantum mechanical operator associated with that parameter. The 

operator associated with energy is the Hamiltonian, and the operation on the wavefunction is 

theSchrodinger equation. Solutions exist for the time independent Schrodinger equation only for 

certain values of energy, and these values are called "eigenvalues*" of energy. 

Corresponding to each eigenvalue is an "eigenfunction*". The solution to the Schrodinger 

equation for a given energy  involves also finding the specific function  which describes 

that energy state. The solution of the time independent Schrodinger equation takes the form 

 

The eigenvalue concept is not limited to energy. When applied to a general operator Q, it can 

take the form 

 

if the function  is an eigenfunction for that operator. The eigenvalues qi may be discrete, and 

in such cases we can say that the physical variable is "quantized" and that the index i plays the 

role of a "quantum number" which characterizes that state. 

*"Eigenvalue" comes from the German "Eigenwert" which means proper or characteristic value. 

"Eigenfunction" is from "Eigenfunktion" meaning "proper or characteristic function". 

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/wvfun.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/qmoper.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/hamil.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/scheq.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/scheq.html#c4
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Reality of Energy Eigenvalues: 

To obtain specific values for energy, you operate on the wavefunction with the quantum 

mechanical operator associated with energy, which is called the Hamiltonian. The operation of 

the Hamiltonian on the wavefunction is the Schrodinger equation. Solutions exist for thetime-

independent Schrodinger equation only for certain values of energy, and these values are called 

"eigenvalues" of energy. 

 

For example, the energy eigenvalues of 

the quantum harmonic oscillator are given 

by 

 

The lower vibrational states of diatomic 

molecules often fit the quantum harmonic 

oscillator model with sufficient accuracy to 

permit the determination of bond force 

constants for the molecules. 

 

While the energy eigenvalues may be discrete for small 

values of energy, they usually become continuous at high 

enough energies because the system can no longer exist as a 

bound state. For a more realistic harmonic oscillator potential 

(perhaps representing a diatomic molecule), the energy 

eigenvalues get closer and closer together as it approaches the 

dissociation energy. The energy levels after dissociation can 

take the continuous values associated with free particles. 

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/wvfun.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/qmoper.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/qmoper.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/hamil.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/Scheq.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/Scheq.html#c4
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/Scheq.html#c4
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/eigen.html
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/hosc.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/molecule/vibspe.html#c1
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PROBABILITY CURRENT DENSITY: 
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Expectation Values of Dynamical Qualities: 

To relate a quantum mechanical calculation to something you can observe in the laboratory, the 

"expectation value" of the measurable parameter is calculated. For the position x, the expectation 

value is defined as 

 

This integral can be interpreted as the average value of x that we would expect to obtain from a 

large number of measurements. Alternatively it could be viewed as the average value of position 

for a large number of particles which are described by the same wavefunction. For example, the 

expectation value of the radius of the electron in the ground state of the hydrogen atom is the 

average value you expect to obtain from making the measurement for a large number of 

hydrogen atoms. 

While the expectation value of a function of position has the appearance of an average of the 

function, the expectation value of momentum involves the representation of momentum as 

a quantum mechanical operator. 

 

where  

is the operator for the x component of momentum. 

Since the energy of a free particle is given by 

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/qmoper.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/scheq.html#c2
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and the expectation value for energy becomes 

 

for a particle in one dimension. 

In general, the expectation value for any observable quantity is found by putting the quantum 

mechanical operator for that observable in the integral of the wavefunction over space: 

 

Orthogonality Of Eigen Function: 
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POSSIBLE QUESTIONS: 

PART B: (8 MARK) 

 Describe the Physical interpretation of the wave function. 

 Explain about the Equation of motion of matter wave (i) Time-independent Schroedinger 

equation. 

 Derive the schroedinger equation for a free particle and Time dependent Schroedinger 

equation. 

 Derive the solution of the Schroedinger equation 

 Write a short note on Orthogonal, normalized and orthonormal of wave function 

 Explain the expectation values of dynamical qualities,probability current density, particle 

flux. 

 State and explain the Ehrenfest’s theorem. 

 Write a short note on Eigen function, Eigen value and Eigen value equation  

 orthogonality of Eigen function and Reality of energy Eigen value-Expalin. 

 



KARPAGAM ACADEMY OF HIGHER EDUCATION, COIMBATORE – 21

DEPARTMENT OF PHYSICS

CLASS: III B. Sc., PHYSICS  

CLASSICAL AND QUANTUM PHYSICS (15PHU502)

MULTIPLE CHOICE QUESTIONS
UNIT-III

 ____ forms of Schroedinger’s equation describe the motion of non-relativistic material particle. Hψ = Eψ Hψ ≠ Eψ Hψ < Eψ Hψ > Eψ Hψ = Eψ
If ψ1 and ψ2 are two different wave functions, both being satisfactory solution of wave equation for a 

given system, then these functions will be normalized, if ψj*ψjdτ = 1 ψj*ψjdτ ≠ 1 ψj*ψjdτ > 1 ψj*ψjdτ < 1 ψj*ψjdτ = 1

Schroedinger suggested seeking solutions of the waves equation which represents ___ waves.  non-progressive progressive non-standing standing standing
Newton’s law may be written as (dp/dt) > -gradV (dp/dt) < -gradV (dp/dt) ≠ -gradV (dp/dt) = -gradV (dp/dt) = -gradV
Kinetic energy operator is (–ħ2/2m)2 (–2m/ħ2)2 (–2mħ2)2 (–2ħ2)2 (–ħ2/2m)2
Momentum operator in Schroedinger equation (Pop) is ħ/i  ħi i/ħ ħ ħ/i
The minimum energy of a particle in a box (E) is ħ2/ml2 ħ2/2ml2 ml2/ħ2 2ml2/ħ2 ħ2/2ml2
The Schroedinger time-dependent wave equation is Hψ = Eψ Hψ ≠ Eψ Hψ < Eψ Hψ > Eψ Hψ = Eψ

The time-dependent Schroedinger equation is partial differential equation having ___ variables. 1 2 3 4 3

The Schroedinger equation for a free particle is

∆2ψ + 

(2m/ħ2)(E)ψ = 0

∆2ψ + 

(2m/ħ2)(E)ψ ≠ 0

∆2ψ + 

(2m/ħ2)(E)ψ < 0

∆2ψ + 

(2m/ħ2)(E)ψ > 0

∆2ψ + 

(2m/ħ2)(E)ψ = 0
If the eigen functions corresponding to eigen values E1 and E2 are orthogonal i.e. E1 - E2 = 0 E1 - E2 ≠ 0 E1 - E2 < 0 E1 - E2 > 0 E1 - E2 ≠ 0
The average or expectation value may be defined as the average of the result of a ______ number of 

measurement on independent system. single double large zero large
The time independent form of Eop is  H V U T H

Wave function Ψ of a particle is real quantity

a complex 

quantity

an imaginary 

quantity any one of these real quantity

Which of the following quantities are complex quantities?

Wave function Ψ 

of a particle

Probability of a 

particle having 

Wave function Ψ

Probability 

Density of a 

particle having 

Wave function Ψ

Probability 

Current of a 

particle having 

Wave function Ψ

Wave function Ψ 

of a particle

The wave function Ψ of the particle is

solution to the 

wave equation

not a variable 

quantity

 goes through 

repeating, 

periodic maxima 

and minima or 

oscillations

solution to the 

wave equation

The probability current of a particle is dependent on time

number of 

particles per unit 

volume per unit 

time not a real quantity always positive

number of 

particles per unit 

volume per unit 

time

The time-independent Schrödinger equation

is a partial 

differential 

equation

involves only one 

independent 

variable r

can be derived 

from time-

dependent 

Schrödinger 

equation

has solutions 

which are the 

stationary states

involves only one 

independent 

variable r

BATCH: 2015-2018



In the Stationary states

probability 

distribution of 

finding the 

particle is time 

independent

measurements of 

total energy yield 

different values

the expectation 

values of time-

independent 

operators are 

dependent on time 

the general 

solution is a linear 

combination of 

separable 

solutions

probability 

distribution of 

finding the 

particle is time 

independent

Time dependent Schrödinger equation

intrinsically 

includes the unit 

of imaginary 

numbers, hence 

cannot describe 

the physical 

reality of the 

micro-world

equates first order 

space derivative 

with second time 

derivative

is a more general 

and fundamental 

postulate of 

quantum physics

is the Eigenvalue 

equation for the 

energy operator 

(Hamiltonian 

operator

is a more general 

and fundamental 

postulate of 

quantum physics

Operators in quantum physics

are used to 

represent physical 

observables in 

classical physics

are used to 

translate 

equations in 

classical physics 

into equations of 

quantum physics

corresponding to 

canonically 

conjugate 

variables 

commute

are nonlinear, 

hermitian 

corresponding to 

classical 

dynamical 

variables

are used to 

translate 

equations in 

classical physics 

into equations of 

quantum physics

The continuity equation in quantum physics implies

conservation of 

energy

 equation of the 

continuous 

functions

the conservation 

of wavefunction

the conservation 

of momentum of 

the particle

the conservation 

of wavefunction

The time evolution equation of the expectation values of position and momentum of a quantum 

mechanical particle is given by

Continuity 

Equation

 Ehrenfest’s 

Theorem

Divergence 

theorem (Green’s 

Second Theorem)

Schrödinger 

equation

Schrödinger 

equation
Wave function is represented by ________ ψ E H W ψ
Schroedinger attempt the physical interpretation of ψ in terms of _______ volume density current density density charge density charge density

In wave function, energy per unit volume is equal to ___ A2 E2 H2 ψ2 A2

Photon density is ____ hν A2/h A2/ν A2/hν A2/hν

Photon density is proportional to ______ hν A2 h ν A2

Particle density is proportional to ______ hν ψ2 h ν ψ2

Complex conjugate of wave function is ______ E* H* ψ ψ* ψ*

To remove the above discrepancy another physical interpretation of wave function generally accepted at 

present was suggested by ________ Bohr Dirac Max  Bohr Heisenberg Max  Bohr

To remove the above discrepancy another physical interpretation of wave function generally accepted at 

present was suggested by Max Born in the year 1923 1927 1926 1929 1926
The total probability of finding the particle in the entire space is _____ unity 0 ∞ vary unity

At x = ±∞ then ψ*ψ = 1 0 ∞ vary 1

Normalising factor is √N 1/√N 2/√N N 1/√N
Normalised wavefunction is ψ √N 1/√N ψ/√N ψ/√N
If probability distribution of finding the particle is time independent the it is said to be orthogonal noramalised stationary state orthonormal stationary state



Characteristic function is also called as _______ wave function eigen value noramalised stationary state wave function
Which law is used in Ehrenfest theorem? Newtons law joules law ohms law Keplers law Newtons law
_________ of a dynamical quantity is the mathematical expectation for the result of a single 

measurements expectation value eigen value noramalised stationary state expectation value

In electromagnetic wave system if A is amplitude,then energy density is A2 E2 H2 ψ2 A2

 |ψ^2 | is the measure of ______ volume density current density particle density density particle density
_______ is the measure of particle density  |E^2 |  |H^2 |  |ψ | / /
Square of absolute value of ϕ is a measure of volume density current density particle density density particle density

Probability density of the particle in the state ofϕ ψψ* ψ ψ* 0 ψψ*

The operator for momentum is (ħ/i) Δ (ħ) Δ p Δ i Δ (ħ/i) Δ
The probability amplitude for the position of the particle is represented by P H E ψ ψ

Prepared By-N.Geetha,Assistant Professor,Department Of Physics.
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SYLLABUS: 

Constraints and degrees of freedom-generalized coordinates-generalized displacement-

velocity-acceleration-momentum-force-potential-D’Alembert’sprinciple-Lagrangian 

differential equation from  D’Alembert’s principle-Application of Lagrangian equation of 

motion to linear harmonic oscillator, simple pendulum and compound pendulum. 

 

1. 0 INTRODUCTION  

       

Mechanics is the study of the motion of physical bodies .The possible and actual 

motions of physical objects, whether large or small, fall under the domain of mechanics. 

In the present century the term “Classical mechanics” has come in to wide to denote this 

branch of physics in the contradiction to the newer theories especially quantum 

mechanics. “Classical mechanics has been customarily used to denote that part of the 

mechanics which deals with the description and explanation of the motion of the objects, 

neither too big so there exists a close agreement between theory and experiment nor too 

small interacting objects, more precisely like the systems  on molecular or subatomic 

scale.” We shall follow this usage, interpreting theories the name to include the type of 

mechanics.  Classical mechanics may be classified in to three subsections (i) Kinematics 

(ii) Dynamics (iii) Statics.   

In this unit we deals with the structure and law of mechanics with the 

applications, starting from basic fundamental concepts .Having established the essential 

pre-requisites, the Lagrangian formulation known for its mathematical elegance.  

 

1.1 OBJECTIVES 

 

After completing this unit we will able to, 

 Define constraints, its types and Generalised coordinates.  
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 State the DAlembert Principle.  

 Derive the  Lagrangian equation from- 

(i) Velocity dependent potentials (ii)  Rayleigh dissipation function. 

 State and define the Variational principle. 

 Derive the Euler –Lagrange Equation. 

 

1.2 CONSTRAINTS  

 

Constraints are the geometrical or kinematical restrictions on the motion of the particle 

or system of the particles. Systems with such constraints of motion are called as  

 

Constrained systems and their motion is known as constrained or restricted motion. 

Some examples of restricted motions are- 

 The motion of the rigid body is restricted to the condition that the distance 

between any two particles remains unchanged. 

 The motion of the gas molecules with in the container is restricted by the walls of 

the vessels. 

 A particle placed on the surface of a solid sphere is restricted so that it can only 

move either on the surface or outside the surface. 

 

1.2.1 Classification of Constraints  

The constraints can be classified in to the following categories: 

(i) Holonomic and non-holomonic constraints (ii) Scleronomic and rhenomic constraints   

Holonomic constraints:-Constraints are said to be holomonic if the conditions of all the 

constraints can be expressed as equations connecting the coordinates of the particles and 

possible time in the form  

f ( r1,r2,r3……..,rn,t) =0 (1.1) 
    

     
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Where r1, r2, r3……..,rn represent the position vectors of the particles of a system and t 

the time. In Cartesian coordinates equation (1.1) can be written as, 

f (x1, y1, z1; x2, y2, z2,……… xn, yn, zn,t) =0 (1.2) 

 

Examples of holonomic constraints:-  

1. The constraints involved in the motion of rigid bodies. In rigid bodies, the 

distance between any two particles is always constant and the condition of 

constraints are expressed as- 

ri - rj
2 - Cij

2 =0 (1.3) 

2. Constraints involved in the motion of  the point mass of a simple pendulum. 

3. The constraints involved when a particle is restricted to move along any curve 

(circle or ellipse) or in a given surface. 

Non-holonomic constraints: - If the conditions of the constraints can not be expressed 

as equations connecting the coordinates of particles as in case of holomonic, they are 

called as non-holomonic constraints. The conditions of these constraints are expressed in 

the form of inequalities. The motion of the particle placed on the surface of sphere under 

theaction of the gravitational force is bound by non-holonomic constraints, for it can be 

expressed as an inequality,  r2 - a2  0. 

Examples of non-holonomic constraints 

1. Constraints involved in the motion of a particle placed on the surface of  a solid 

sphere 

2. An object rolling on the rough surface without slipping.  

3. Constraints involved in the motion of gas molecules in a container. 

(ii) Scleronomic and Rhenomic Constraints: - The constraints which are independent 

of time are called Scleronomic constraints and the constraints which contain time 

explicitly, called rhenomic constraints  

  
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Examples: - A bead sliding on a rigid curved wire fixed in space is obviously subjected 

to Scleronomic constraints and if the wire is moving is prescribed fashion the constraints 

become Rhenomic. 

 

1.3  GENERALISED COORDINATES  

Generalised co-ordinates:- These are the coordinates which are used to eliminate the 

dependent coordinates and can be expressed in another way by the introduction of (3N-p) 

independent coordinates of variables called the Generalised coordinates, where N 

represent  the number of particles of a system and p represent the holonomic constraints. 

Thus any ‘q’ quantities which completely define the configuration of the system having 

‘f’ degree of freedom are called Generalised co-ordinates of the system  and are denoted 

by q1, q2, q3,…… qf , or just qi ( i=1,2,3,4…f ) 

 

Principles for the choosing a suitable set of Generalised co-ordinates - For this three 

principles are used – 

1. They should specify the configuration of the system. 

2. They may be varied arbitrarily and independently of each other, with out violating 

the constraints on the system. 

3. There is no uniqueness in  the choice of the generalised coordinates  

 

It may be noted that generalised co-ordinates need not to have the dimensions of  length 

or angles. Generalised co-ordinates need not to be Cartesian co-ordinates of the particles 

and the condition of the problem may render some other choice of co-ordinates which 

may be more convenient. 

1.3.1 Generalised Notations  

(i)  Generalised Displacement – A small displacement of an N particle system is 

defined by changes ri in position co-ordinates ri ( i =1,2,3….,N) with time ‘t’ held fixed. 
 

  

 

 
3N 

j =1 

  
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An arbitrary virtual displacement ri,   remembering that ri ’s are function of generalised 

co-ordinates i.e. ri = ri (q1, q2,….. q3N,t), can be written by using Euler’s theorem as, 

  

(1.5) 

  

qj is called the generalised displacement or  virtual displacement. If qj is an angle co-

ordinate, qj is an angular displacement. 

(ii) Generalised velocity – The time derivative of the generalised qk ,is called 

generalised velocity associated with particular co-ordinates qk for an unconstrained 

system, 

ri = ri (q1, q2,….. q3N,t), 

Then,   

 

(1.6) 

  

If N-particle system contains k-constraints, the number of generalised co-ordinates are 

3N-k=f  and, 

(1.7) 

 

 

(iii) Generalised Acceleration- components of generalised acceleration are obtained by 

differentiating equation (1.6) or (1.7) w.r.t. time and finally we obtain the expression  

 

 

 

 

(1.8) 

 

ri 

qj 

 

qj 

 

ri = 

  

 
  

ri 

qj 

 

 qj 

 

  ri =  
f 

j =1 

  
 

ri 

t 

 

 

 
 

ri 

qj 

 

 qj 

 

  ri =  
3N 

j =1 

 
  

 
3N 

j =1 
 
3N 

k =1 

+ 
    2ri 

qj qk 

 

 

qjqk 
  

+ 2  
3N 

j =1 

    2ri 

qj t 

 

 

qj 
      2ri 

     2t 

 

 

+ 

 

  

ri 

qj 

 

 qj 

 
  ri =  

3N 

j =1 

  

 
ri 

t 

 

 

 
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From the above equation it is clear that the cartesian components are not linear functions 

of components of generalised acceleration qj alone, but depend quadratically and linearly 

on generalised velocity component qj as well. 

(iv) Generalised Force – Let us consider the amount of work done W by the force Fi 

during an arbitrary small displacement ri  of the system  

 

 

 

 

 

(1.9) 

 

        (1.10) 

Where,  

 

Here we note that Qj depends on the force acting on the particles and on the co-ordinate qj 

and possibly on time t. Therefore, Qj is called the generalised force. 

1.3.2 Advantages of Generalised co-ordinates  

The main advantage in the formulating laws of mechanics in terms of generalised co-

ordinates and the associated mechanical quantities is that the equation of motion looks 

simpler and can be solved independently of each other since generalised co-ordinates are 

all independent and constraints have no effect on them. The equations of motion are then 

called Lagrange’s equation of motion.  

1.4  D’ALEMBERT’S PRINCIPLE  

 

This method is based on the principle of virtual work. The system is subjected to an 

infinitesimal displacement consistent with the forces and constraints imposed on the 

system at a given time t. This change in the configuration of the system is not associated 

 
 

 

 

i 

i 

W =         Fi .ri  =         Fi .                 qj =                   Fi .             qj  
N 

i 

  

 
N 

i=1 

 

 
3N 

j=1 

ri 

qj 

 

 
N 

i=1 
 
3N 

j=1 

ri 

qj 

 
 

 
3N 

i=1 
              =         Qj .qj 

 
 N 

j=1 

ri 

qj 

 
 

Qj      =                         Fi . 

 
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with a change in time i.e., there is no actual displacement during which forces and 

constraints may change and hence the displacement is termed virtual displacement. 

From the principle of virtual work 

 

 

(1.11) 

 

Here Fi
a represent the applied force and ri denote the virtual displacement. 

To interpret the equilibrium of the systems, D’Alembert adopted an idea of reverse force. 

He conceived that a system will remain in equilibrium under the action of a force equal to 

the actual force Fi plus reversed effective force pi. Thus  

 (1.12) 

 

or, 

 

Thus the principle of virtual work takes the form, 

 

 

 

Again writing Fi = Fi
a + fi 

 

 

 

Dealing with the systems for which the virtual work of the forces of constraints is zero, 

we write 

 

 

Since force of constraints are no more in picture, it is better to drop the superscript ‘a’. 

Thus 

 
N 

i 

Fi  
a
 . ri = 0 

  

  

 
 
. 

   

 
i 

.ri + fi.ri = 0 

 

   

 

 

Fi + (- pi) = 0 

 

Fi – pi =  0 

  

  

. 

. 

 
i 

.ri = 0 

 

(Fi - pi) 
  

. 

 

(Fi 
a- pi) 

  

. 

 

(Fa
i - pi) 

  
. 

 
i 

.ri = 0 

 

(Fi - pi) 
  

. 

 
i 

.ri = 0 
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(1.13) 

 

The equation (1.13) is called D’Alembert principle. To satisfy the above equation, we can 

not equalate the coefficient of  ri to zero since ri are not independent of each other and  

hence it is necessary to transform ri in to generalised co-ordinates , qj which are 

independent of each other .The coefficient of qj will then equated to zero. 

 

 

 

1.5  DERIVATION OF LAGRANGE’S EQUATION  

 

The Lagrange’s equations can be obtained from Hamilton’s variational principle, velocity 

dependent potentials and also by Rayleigh’s dissipation function. In the present article we 

shall discuss the derivation of Lagrange’s equations from velocity dependent potential 

and by Rayleigh’s dissipation function. 

1.5.1 Lagrange’s Equations from velocity dependent potential 

The co-ordinate transformation equations are  

ri = ri ( q1,q2……,qn,t) 

So that, 

 

 

 

So that  

 

 (1.14) 

 

Further infinitesimal displacement ri can be connected with qi 

 

  

 

  

dri              dri   dq1         dri    dq2                 dri     dt 

dt           q1 dt        q2   dt                   t    dt 

     

+ +………... = + 

  

 
ri 

qj 

 

 
ri 

t 

 

t  
 
ri  =          qj + 

 
ri 

qj 

 

 
ri 

t 

 

 

j 
  vi =            qj + 

. 
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But the last term is zero since in virtual displacement only co-ordinate displacement is 

considered and not that of time. Therefore, 

 

 

Now we write equation (1.13) as, 

 

 

 

 

(1.15) 

 

 

We define as the component of generalised force. So the above 

equation becomes  

(1.16) 

 

Lagrangian Mechanics 

The evaluation of second term in equation (1.16) gives the expansion as  

 

 

(1.17) 

 

 

With this substitution equation (1.16) becomes  

 

 

 

= Qj 

j 

 

j 
ri  =          qj                   

 
ri 

qj 

 

 

(Fi - pi) 
  

. 

 
i 

j 
                   qj   = 0,               

 
ri 

qj 

 

i,j i,j 

. 

 - 

 

  Fi .  
                    

qj                

 
ri 

qj 

 

 
 

  pi .  
                    

qj                

 
ri 

qj 

 

 

  Fi .  
                    

qj                

 
ri 

qj 

 

 

 
                   

Qj qj                 
 

  pi .  
                    

qj                

 
ri 

qj 

 

. 
- 

j i,j 

= 0 

                   

qj                 
j 

 
 

  pi .  
                    

qj                

 
ri 

qj 

 

. 

i,j 

=   
d 

dt 
. 

 

qj i 
(  (½) mivi

2 ) 
 

qj 
( ( ½) mivi

2 ) 

qj 
d 

dt  
                   

Qj qj                 - 

j j 

= 0 . 
 

T 

qj 

 

T 

qj 

 



B.SC PHYSICS 

2017-2018(ODD)  UNIT-IV           CLASSICAL AND QUANTUM PHYSICS 

  (15PHU502) 

 

N.GEETHA KAHE,COIMBATORE-21 

ASSISTANT PROFESSOR 

DEPARTMENT OF PHYSICS 

  Page 10 of 20 

 

 

Where (1/2) mivi
2 = T, is written since it represents the total kinetic energy of the 

system, further the above equation may be   

 

 

 

Since the constraints are holonomic, qj are independent of each other and hence to satisfy 

above equation the coefficient of each qj should necessary vanish, i.e. 

 

(1.18) 

 

As j ranges 1 to n, there will be ‘n’ such second order equations. 

If potential are velocity dependent, called generalised potentials, then through the system 

is not conservative, yet the above form Lagrange’s equations can be obtained provided 

Qj, the components of the generalised force, are obtained from a function U(qj,qj) such 

that  

(1.19) 

 

Hence the from equation (1.18) and equation (1.19) ,we have   

 

 

 

If we take L = T-U, the Lagrangian function, where U is generalised potential, then above 

equation becomes   

(1.20) 

 

 

Which are the Lagrangian equations for holonomic constraints systems.  

+ 

. 

d 

dt  - Qj 

j 

qj = 0 . 
 

T 

qj 

 

T 

qj 

 

Qj = 

Qj 

d 

dt 
=  Qj . 

 

T 

qj 

 

T 

qj 

 

U 

qj 

 

d 

dt 
. 

U 

qj 

 

d 

dt 

 (T-U) 

     qj 
. 

 (T-U) 

     qj 
= 0 

d 

dt 

     L 

     qj 
. 

     L 

     qj 
= 0 

. 
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1.5.2 Lagrange’s equations from Rayleigh’s dissipation function  

 

It can be shown that if a system involves frictional forces or dissipative forces, then in 

suitable circumstance, such  a system can also be described in terms of extended 

Lagrangian formulation. Frictional forces are found to be proportional to the velocity of 

the particle so that in cartesian co-ordinates components are, 

  (1.21) 

Where kj are constants. Such frictional forces are defined in terms of a new quantity 

called Rayleigh dissipation function given as, 

                =(1/2)kix
2

j 

Which yields 

  Fj
d = -   (1.22) 

 

Writing equation (1.18) in cartesian co-ordinates, assuming that this still holds for such a 

system, 

 

 

Where L contains the potential of conservative forces as described  earlier; Qj represents 

the forces which do not arise from a potential, i.e.   

 

(1.23) 

Thus equation (1.18) can be written as, 

  

 

 

The above equation may be expressed as in terms of generalised co-ordinates qj 

 

Fj
d = - kixj , 

. 

. 

 

 xj 
. 

d 

dt 
=  Qj . 

 

L 

qj 

 

L 

qj 

 

Qj
d = Fj

d = -  

 

xj 

 

. 

 

xj 

 

. 
d 

dt 
=  0 . 

 

L 

xj 

 

L 

xj 

 

+ 

 

qj 

 

. 
d 

dt 
=  0 . 

 

L 

qj 

 

L 

qj 

 

+ 
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(1.24) 

 

Thus for such a system, to obtain equations of motion, two scalar L and  are to be 

specified.  

 

1.6  VARIATIONAL PRINCIPLE 

 

This principle state that the integral                    shall have a stationary value or extremum 

value, where T, kinetic energy of the mechanical system, is a function of co-ordinates and 

their derivatives and V is the potential energy of the mechanical system, is a function of 

co-ordinate only. Such a system for which V is purely a function of co-ordinates is called 

conservative system.  

Statement: The variational principle for the conservative system is stated as follows 

 

“The motion of the system from time t1 to time t2 is such that the line integral 

  

                                              is  extemum for the path of motion” .Here L=T-V is  

 

the Lagrangian function . 

 

1.7  EULER –LAGRANGE EQUATION 

  

The integral I, representing a path between the two points 1 and 2 will be written as  

 

 

(1.25) 

 t1 

t2 

( T-V )dt 

I =                     =         t1 

t2 

( T-V )dt  t1 

t2 

L dt, 

I =       f [y1(x) y2(x),……. ……..y1(x)y2(x)……..….,x]dx 
. . 

 
t1 

t2 
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Now to account for all possible curves between the two points1,2,we assign different 

values of a parameter  to these curves, so that yj will also be a function of , i.e. curves 

being represented by yj (x, ).The family of the curves may be represented as  

 

 

 

Where 1 and 2 etc. are completely arbitrary functions of x,which vanishes at end points 

and the curves y1(x,0), y2(x,0) etc. for =0 are paths for which the integral I is extemum 

The integral I will be the function of  and hence its variation can be represented as 

 

 

 

 

Integrating by parts the second term of the integrand we get, 

 

 

(1.26) 

 

Lagrangian and Hamiltonian Mechanics 

 

Since at end  points, which are held fixed, all paths meet,so                     . Therefore 

equation (1.26) becomes  

 

 

 

 

  f    

                                       yj   

y1(x,) = y1(x,0) + 1(x) 

y2(x,) = y2(x,0) + 2(x) 

…………………………... 

 I()                 f   yj              f     yj 

 ()                 yj   ()          yj    ()   

 

 

d d = d +  
j 

 

.  t1 

t2 

dx 

 
t1 

t2 
 I()                 f   yj                        f     yj 

 ()                 yj   ()                    yj    ()   

 

 

d = d  
j 

. 

.  t1 

t2 

. dx +  
j 

d 
1 

2 

 
j 

d      f      yj 

dx    yj      
d dx 

 

yj 

 1 

2 

= 0 

 I()                 f   yj                        

 ()                 yj   ()                 

 

 

d = d  
j  t1 

t2 

dx  t1 

t2 

.  
j 

d      f      yj 

dx    yj      
d dx 

 

 

 t1 

t2 

 
j 

. 
d      f       yj 

dx    yj       
d dx 

= 
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Let us put    

 

 

 

So that  

                                       f       

                           yj   

 

For the integral to be extremum 

  f       

  yj   

 

Since yj are independent of each other, coefficient of yj should separately vanish if 

above equation is to be satisfied. Thus. 

  f       

  yj   (1.27) 

The set of differential equations represented by equation (1.27)are known as Euler-

Lagrange differential equations. Thus solutions of Euler-Lagrange equation represent 

those curves for which the integral                                   assumes an extremum value. 

 

1.8  DERIVATION OF LAGRANGE’S EQUATION FROM HAMILTON’S 

PRINCIPLE 

 

According to Hamiltonian’s variational principle, motion of a conservative system from 

time t1 to time t2 is such that the variation of the line integral  

                                                                       ,   is zero 

 

i.e.  (1.28) 

d = I    & 
 I 

 
   d = yj 

 yj 

  

 

 t1 

t2 

 
j 

. 
d      f       

dx    yj      
yj dx 

I= 

 

 t1 

t2 

 
j 

d      f       

dx    yj      
. yj dx =0 

I= 

 
d      f       

dx    yj      
.  = 0, j=1,2,3,…n 

I=       f (yj, yj, x)dx 
1 
 

2 

I =          L [qj(t),   qj(t),  t]dt 
t1 
 

t2 . 

 
I =          L [qj(t),   qj(t),  t]dt =0 t1 

 
t2 
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Now we shall show that Lagrange’s equations of motion follow directly from Hamilton’s 

principle. If we account for all possible paths of motion of the system in configuration 

space and  label each with a value of a parameter ,then since paths are being represented 

by qj(t,),I also becomes a function of  so that we can writ, 

(1.29) 

 

So that, 

 

 

Since in  variation, there is no time variation along any path and also at end points and 

hence (I/) is zero along all paths. Therefore, on multiplying by d, above equation is  

 

 (1.30) 

 

Integrating second term of L.H.S.  by parts  

 

 

 

The middle term is zero since  variation involves fixed end points. 

 

So, 

 

 

 (1.31) 

 

Since qj are independent of each other, the variations qj will be independent. Hence        

 I()=0 if and only if the coefficients of qj separately vanish, i.e. 

I () =       L [qj(t, ),   qj(t, ),  t]dt 
t1 
 

t2 . 

. 
I()              L qj        L qj         L t 

 ()              qj          qj         t   

 

 

t1 
 

t2 

 
j 

= + + . dt 

I()              L qj                       L qj          

 ()              qj                         qj          

 

 

. 

t1 
 

t2 

 
j d = + . d dt   

j 
t1 
 

t2 
. 

d dt 

 
j t1 

 
t2 

t1 
 

t2 

 
j 

L qj 

qj  
d dt 

 
+  

j 

L qj 

qj  
d  

 t1 

t2 

- 
    d     L       qj 

    dt    qj        
d dt 

 
. . = 

 I()                 L   qj                        

 ()                 qj   ()                 

 

 

d = 
d  

j  t1 

t2 

dt  t1 

t2 

.  
j 

d      L     qj 

dt    qj     t 
d dt 

 

 

 t1 

t2 

 
j 

d      L      qj 

dt    qj      t 
dt 

= 
. 

 L  

qj     

. 
 L  

qj     

d      L      

dt    qj      
=  0 
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(1.32) 

 

Which are Lagrange equations of motions for a conservative system. It is obvious that 

these equations follow directly from Hamilton’s principle. 

  

1.9 Application Of Lagrange’s Equation Of Motion: 

1.9.1 Simple Pendulum: 

Consider a simple pendulum of mass m which is deflected by an angle θθ from its mean 

position. Let l be the length of the pendulum and x be its linear displacement fro 

equilibrium position. 

From fig we have, 

X=lθ 

 

X˙=lθ˙ 

The kinetic energy of the system is, 

T=12mx˙2 

 

=12ml2θ2 

The pendulum gains height AC at extreme position so that its potential energy is, 

V=mgAC 

 

             =mg(OA−OC) 

 

           =mg(l−lcosθ) 

 

         V=mgl(1−cosθ) 

The Lagrangian of the pendulum is, 
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L=T−V=1/2ml2θ˙2−mgl(1−cosθ) 

 

The equation of motion is given by, 

d/dt(δL/δθ˙)−δL/δθ=0 

Here, δL/δθ˙=ml2θ˙ and δL/δθ=−mglsinθ 

So, equation of motion becomes, 

ddt(ml2θ˙)+mglsinθ=0 

 

ml2θ¨+mglsinθ=0 

 

lθ¨+gsingθ=0 

 

θ¨+glsingθ=0 

 

For small angle θ , sinθ=θ 

θ¨+ω2θ=0 

where, ω2=glω2=g/l 

and T=2π/ω=2π√1/g,which is the equation of motion of simple pendulum. 

1.9.2 Compound Pendulum: 

  

Compound pendulum is a rigid object capable of oscillating in a vertical plane about 

horizontal axis. 

 

Consider a compound pendulum of mass m oscillating in xy plane. In the figure the point 

'o' is the point of suspension through which the horizontal axis passes and C is the center 

of mass. 

Now the kinetic energy of system is 
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                      T=1/2Iω2 

                        =1/2Iθ˙2⋯(1) 

Where θ˙ is the generalized co-ordinate for the system. 

and potential energy (v)=−mglcosθ⋯(2) 

So Lagrangian of system is 

L=T−V 

                     =1/2Iθ˙2+mglcosθ 

We have, lagrangian equation of motion is 

d/dt(δL/δq˙j)−δL/δqj=0 

 

In this case, d/dt(δL/δθ˙)−δL/θθ=0 

so, 

δL/δθ=−mglsinθ 

and 

d/dt(δL/θθ˙)=Iθ¨ 

 

Now the Lagrangian equation of motion reduces to 

Iθ¨+mglsinθ=0Iθ¨+mglsinθ=0 

Iθ¨+mglθ=0    [∵For smallθ]] 

 

                                                θ¨+mglθI=0⋯(3) 

 IN equation (3) mgl/I refers to ω2 

ω2=mgl/I 

 

T=2π√I/mgl−−−−√⋯(4) 
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Equation (4) gives the time period of compound pendulum. 
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POSSIBLE QUESTIONS: 

 

PART B: (8 MARK) 

 What are Constraints? Explain its various types of Constraints. 

 Explain about the Degrees of freedom. 

 What are the Generalized co-ordinates? Derive the various notation for the 

momentum, force ,potential. 

 Explain the concept of D’Alembert’s principle. 

 Derive the lagrangian differential equation from D’Alembert’s principle 

 Describe the application of Lagrangian equation of motion to linear harmonic 

oscillator. 

 Simple pendulum. 

 Compound pendulum. 

 



KARPAGAM ACADEMY OF HIGHER EDUCATION, COIMBATORE – 21
DEPARTMENT OF PHYSICS

CLASS: III B. Sc., PHYSICS  

BATCH: 2015-

2018
CLASSICAL AND QUANTUM PHYSICS (15PHU502)

MULTIPLE CHOICE QUESTIONS
QUESTIONS opt1 opt2 opt3 opt4 ANSWER

UNIT-IV
Rigid body has the following constraint: Rheonomic Holonomic Unilateral Dissipative Holonomic
Which constrains has the deformable bodies. Scleronomic Holonomic Unilateral Conservative Unilateral
______________ constraint for gas filled hollow sphere. scleronomic non-holonomic bilateral Dissipative non-holonomic
If the system has N-Particles subjected to k independent constraints, the number of degrees 

of freedom f are: 3N-K 6N-K 2N-K N-K 3N-K

Which system is the angle which the pendulum makes with vertical line through point of 

suspension?  Fly-wheel Simple pendulum

Hydrogen 

molecules 

Particles moving 

on inside surface 

of a cone. Simple pendulum

Which system is the cartesian co-ordinate along the horizontal wire? Fly-wheel Simple pendulum 

Hydrogen 

molecules 

Beads of an 

abacus

Beads of an 

abacus

Which system has the usual polar angle of a point on the sphere? Fly-wheel Simple Pendulum

Beads of an 

abacus

Particles moving 

on inside surface 

of a cone

Particles moving 

on inside surface 

of a cone
The simple pendulum with period (ω) = 2π√l/g π√l/g 2π√g/l  π√g/l 2π√l/g
The compound pendulum with period (ω) is √mgl/  π√mgl/I 2π√mgl/I √I/mgl √I/mgl
Simple pendulum with rigid support has the _______ constraint. Rheonomic non-holonomic bilateral  Dissipative Rheonomic
Pendulum with variable length has the following constraint. Scleronomic non-holonomic Unilateral Dissipative Scleronomic

An expanding or constricting spherical container of gas have the ________ constraint. Scleronomic Holonomic bilateral Conservative bilateral

D’Alembert’s principle, alternative form of _____ Newtons first law

Newton’s second 

law of motion

Newtons third 

law 

Einstein mass 

energy relation Newtons first law
D’Alembert’s principle is based on the principle of _______ heat sound force work work
In D’Alembert’s principle the change in the configuration of the system is not associated 

with a change in ________ force posistion time velocity time
In D’Alembert’s principle there is no actual __________ during force and constraints 

changes. force posistion time displacement displacement
When the system is in equilibrium the total force on every particle is ______ zero 1 –α vary zero
To interpret the equilibrium of the system, D’Alembert’s principle adopted an idea of a 

____ time reverse force force work reverse force
The effective force called reversed force of inertia is represented by ____ pi –pi qi #REF! –pi
D’Alembert’s principle is valid for _________  Scleronomic rheonomic  Unilateral  Both and b  Both and b

If the Lagrangian of the system does not contain a paricular co-ordinate q, then it is 

 cyclic co-

ordinates 

cylindrical co-

ordinates

polar co-

ordinates

spherical polar co-

ordinates

polar co-

ordinates



The path adopted by the system during its motion can be represented by a space of 

_______________ dimensions. 3N 6 N 9N N 6 N
Path in phase space almost refers to actual ____________path. stastical N 3N dynamical dynamical
The Lagrange’s bracket is ____________ under canonical transformation. invariant varient not applicable 0 varient
Lagrange’s equation of motion are second order equations with __________ degrees of 

freedom. n+1 n 2n+1 3n 3n
Degree of freedom to fix the configuration of a rigid body is 3 6 4 0 3

These are most useful set of generalised co-ordinates for a rigid body and are angles Lagrangian angle  azimuthal angle Euler’s angle Euler’s angle
A rigid body with N particles have _____________degrees of freedom. 2N 3N N 4N 3N
The number of independent ways in which a mechanical system can move without violating 

any constraint which may be imposed is called the ______________.

action-angle 

variables

generalized 

variables

degrees of 

freedom co-ordinates

degrees of 

freedom

Co-ordinate transformation equations should not involve ______________ explicitly. Time position momentum velocity Time

The generalized co-ordinate conjugate to Jj are called _______________. action variable dynamic variable 

statistical 

variable angle variable action variable 
Generating function have _____________ forms. Four two three five three
In new set of co-ordinates all Qj are ______________. Rotational  irrotational   cyclic   variable   cyclic
The configuration of a rigid body with respect to some cartesian co-ordinate system in 

space  momentum  inertia    orientation

angular 

momentum    orientation

The virtual work done by the constraints force along the ________ must be zero

virtual 

displacement direction velocity time

virtual 

displacement

The example for stable equilibrium.

Bar pendulum at 

rest 

compound 

pendulum at rest 

simple pendulum 

at rest

pendulum in 

motion

Bar pendulum at 

rest 
The virtual work done by the constraints force along the virtual displacement must be 

______ infinity constant zero one zero

Canonical form is also called as ___________

Homogeneous 

form

heterogeneous 

form

 homogeneous 

quadratic form

quadratic 

equation

heterogeneous 

form

Which type of constraints not use equations to eliminate dependent co-ordinates in general? holonomic non- holonomic rheonomic scleronomic non- holonomic
Velocity dependence potential is represented by ______ H Q V U U
Without a system of N particles has _________ degrees of freedom 1N 2N 3N 6N 3N
If a system has k constraints equation its DOF reduces to _________ 3N +k 3N-k 3N+3k 3N-3k 3N-k
With ___ constraints we introduce 3N-k independent generalised co-ordinates holonomic Non-holonomic rheonomic scleronomic holonomic

Which of the following is not Generalised co ordinate angle momentum units force energy units force
The choice of a particular set of generalized co-ordinates is unique not unique vary constant not unique

Prepared By-N.Geetha,Assistant Professor,Department Of Physics.
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SYLLABUS: 

Phase Space - Hamiltonian function - Hamilton’s variational principle - Hamilton’s canonical 

equations of motion - Physical significance of H - Application of Hamiltonian equation of 

motion to simple pendulum, compound pendulum and linear harmonic oscillator. 

 

PHASE SPACE: 

The origin of the term phase space is somewhat murky. For the purpose of this 

explanation let's just say that in 1872 the term was used in the context of classical and statistical 

mechanics. It refers to to the positions and momenta as the Bewegungsphase in German - phase 

motion. It is often erroneously cited that the term was first used by Liouville in 1838. 

              In classical mechanics, the phase space is the space of all possible states of a system; the 

state of a mechanical system is defined by the constituent positions p and momenta q. p and q 

together determine the future behavior of that system. In other words if you know p and q at time 

t you will be able to calculate the p and q at time t+1 using the theorems of classical mechanics - 

Hamilton's equations. 

            To describe the motion of a single particle you will need 6 variables, 3 positions and 3 

momenta. You can imagine a 6 dimensional space; three positions and three momenta. Each 

point in this 6 dimensional space is a possible description of the particles' possible states, of 

course constraint by the laws of classical mechanics.  

If you have N particles to describe the system, you have a 6N-dimensional phase space. 

           Let's make a simple example. The Pendulum. The Pendulum consists of a single particle 

mass that swings in a plane. The pendulum is thus fully described by one position and one 

momentum. Its momentum is zero at the top and maximum at bottom. The position perhaps is 

denoted by angle and varies between plus/minus a. If you draw states p and a in a Cartesian 

plane coordinate system you will get an ellipsoid (or if chose adequate coordinates a circle) that 

fully describes all possible  states of the pendulum. 



2017-2018(ODD) UNIT-V CLASSICAL AND QUANTUM PHYSICS 
  (15PHU502) 
 

Page 2 of 15 
N.GEETHA KAHE,COIMBATORE-21 
ASSISTANT PROFESSOR 
DEPARTMENT OF PHYSICS 
 

In quantum mechanics the term phase re-appeared: it refers to the complex phase of the complex 

numbers that wave functions take values in. 

In quantum mechanics, the coordinates p and q of phase space normally become operators in a 

Hilbert space. 

         A quantum mechanical state does not necessarily have a well-defined position or a well-

defined momentum (and never can have both according to Heisenberg's uncertainty principle). 

The notion of phase space and of a Hamiltonian H, can be viewed as a crucial link between what 

otherwise looks like two very different theories. A state is now not a point in phase space, but is 

instead a complex valued wave function. The Hamiltonian H becomes an operator and describes 

the observable quantity. 

HAMILTONIAN FUNCTION: 

Hamiltonian function, also called Hamiltonian, mathematical definition introduced in 

1835 by Sir William Rowan Hamilton to express the rate of change in time of the condition of a 

dynamic physical system—one regarded as a set of moving particles. The Hamiltonian of a 

system specifies its total energy—i.e., the sum of its kinetic energy (that of motion) and its 

potential energy (that of position)—in terms of the Lagrangian function derived in earlier studies 

of dynamics and of the position and momentum of each of the particles. 

The Hamiltonian function originated as a generalized statement of the tendency of physical 

systems to undergo changes only by those processes that either minimize or maximize the 

abstract quantity called action. This principle is traceable to Euclid and the Aristotelian 

philosophers. 

When, early in the 20th century, perplexing discoveries about atoms and subatomic particles 

forced physicists to search anew for the fundamental laws of nature, most of the old formulas 

became obsolete. The Hamiltonian function, although it had been derived from the obsolete 

formulas, nevertheless proved to be a more correct description of physical reality. With 

modifications, it survives to make the connection between energy and rates of change one of the 

centres of the new science. 

 

https://www.britannica.com/biography/William-Rowan-Hamilton
https://www.merriam-webster.com/dictionary/dynamic
https://www.britannica.com/science/kinetic-energy
https://www.britannica.com/science/potential-energy
https://www.britannica.com/science/Lagrangian-function
https://www.britannica.com/science/dynamics-physics
https://www.britannica.com/topic/function-mathematics
https://www.britannica.com/science/action-physics
https://www.britannica.com/topic/science
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HAMILTON’S VARIATIONAL PRINCIPLE: 

Lagrange’s equations have been shown to be the consequence of a variational principle, namely, 

the Hamilton’s principle. Indeed the variational method has often proved to be the preferable 

method of deriving equations, for it is applicable to types of systems not usually comprised with 

in the scope of mechanics. It would be similarly advantageous if a variational principle could be 

found that leads directly to the Hamilton’s equation of motion. 

Hamilton’s principle is stated as  

 

 

Expressing L in terms of Hamiltonian by the expression by the expression 

 

  

We find,      

 

 

 

 

 

The above equation  is some times is referred as the modified Hamilton’s principle. Although it 

will be used most frequently in connection with transformation theory ,the main interest is to 

show that the principle leads to the Hamilton’s canonical equations of motions. 

I=        L dt  

= 0   t
1 

t

2 

H=  piqi – L, 
. 

i 

 I =         pi            -  H (qi, pi, t) dqi 

 dt 
 t1 

t2 

dt 

                 pi  dqi  -    H (qi, pi, t)dt =0 
i  t1 

t2 

 t1 

t2 
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The modified Hamilton’s principle is exactly of the form of the variational problems in a space 

of 2n dimensions as 

 

 

For which the 2n Euler-Lagrange equations are  

  

 J=1,2,3….n 

 

  

 J=1,2,3….n 

 

The integrand f as given as (2.29) contains qj only through the  piqi term, qj only in H. Hence 

equation (2.30) leads to  

 

 

 

On the other hand there is no explicit dependence of the integrand in equation (2.30) on pj.  The 

above equation  therefore reduce simply to 

 

The above two equations are exactly Hamilton’s equations of motion .The Euler –Lagrange 

equations of  the modified Hamilton’s principle are thus the desired canonical equations of 

motion .From the above derivation of  Hamilton’s equations we can consider that Hamiltonian 

I =    f (q, q, p, p, t) dt =0  t1 

t2 
 

. 

. 

d         f                  f 

dt        qj               qj 

 

 

 

 d         f             f 

dt      pj            pj 

. 

. . 

pj +  
H 

qj 

. 
= 0 

. 

qj -  
H 

pj 

. 
= 0 
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and Lagrangian formulation and therefore their respective variational principles, have the same 

physical content.   

Hamilton's Equations: 

The equations defined by 

  

 

(1) 

  

 

(2) 

where  and  is fluxion notation and  is the so-called Hamiltonian, are 

called Hamilton's equations. These equations frequently arise in problems of celestial mechanics. 

The vector form of these equations is 

 

 

 

(3) 

 

 

 

(4) 

(Zwillinger 1997, p. 136; Iyanaga and Kawada 1980, p. 1005). 

Another formulation related to Hamilton's equation is 

 

(5) 

where  is the so-called Lagrangian. 

 

 

http://mathworld.wolfram.com/Fluxion.html
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HAMILTON’S CANONICAL EQUATIONS OF MOTION: 
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PHYSICAL SIGNIFICANCE OF H: 
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APPLICATION OF HAMILTONIAN EQUATION OF MOTION TO  

(i)SIMPLE PENDULUM: 
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 (II)LINEAR HARMONIC OSCILLATOR: 
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POSSIBLE QUESTIONS: 

PART B: (8 MARK) 

 Define Phase Space. Explain? 

 Derive an expression for Hamilton’s variational principle. 

 Describe the Hamilton’s canonical equations of motion. 

 What are the physical significance of H. 

 Give any two application of Hamiltonian equation of motion. 

 Discuss about the simple pendulum. 

 Linear harmonic oscillator. 
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QUESTIONS opt1 opt2 opt3 opt4 ANSWER

UNIT-V
Hamiltonian H is a function of ____________ H(qj, qj, t) H(qj, pj, t) H(pj, pj, t) H(qj, qj, 0) H(qj, pj, t)
The ‘phase space’ has the _____ dimensions. 2N 3N 6N  N 6N

If H does not involve time, H may be a

Constant of motion but not the 

total energy

Constant of motion but also the 

total energy

Not constant of motion but not 

the total energy 

Not constant of motion but the 

total energy

Constant of motion but not the 

total energy
If a given co-ordinate is cyclic in Lagrangian, it will be __________ in 

Hamiltonian. Cyclic  non-cyclic  cyclic & non-cyclic none Cyclic 

The Hamiltonian system be conservative i.e.

 potential energy is co-ordinate 

dependent and not velocity 

dependent.

potential energy is co-ordinate 

independent and not velocity 

dependent

potential energy is co-ordinate 

dependent and not velocity 

independent

potential energy is co-ordinate 

independent and not velocity 

independent

 potential energy is co-ordinate 

dependent and not velocity 

dependent.
Hamiltonian scheme ____________ and _____________ are placed at equal 

footing. Co-ordinate and co-ordinate Co-ordinate and momenta Momenta and momenta Co-ordinate and time Co-ordinate and momenta
The Hamiltonian is H = _______. T+V T-V T/V TxV T+V
The Lagrangian is L = _______. T+V  T-V  T/V TxV  T-V 
Hamilton’s principal function is denoted by ______________. H  Hj L Lj H
How many dimensions are in the ‘phase space’? 2N 3N 6N N 6 N
The Hamilton’s principle function is a generating function, which give rise to 

canonical transformation involving

both constant moments and co-

ordinates constant moments only co-ordinates only  position co-ordinates

both constant moments and co-

ordinates

L and P represent the matrices of Lagrange and Poisson brackets respectively, then LP = 1   LP = -1 LP = ½ LP = -1/2  LP = -1

The frequency of Harmonic oscillator is given by [1/2p(k/m)5/2] [1/2p(k/m)3/2] [1/2p(k/m)1/2] [1/2p(k/m)] [1/2p(k/m)1/2]
Hamilton equation of motion is convergent divergent variant invariant invariant

Hamilton’s principal function is the generator of a contact transformation involving sinusoidally  exponentially proportionally inversely proportional sinusoidally 
For non-interacting particle in a quantum state the energy E is given by p/2m p2/m p/m p2/2m p2/2m
Hamilton’s characteristic function W is identified as _____________. kinetic energy potential energy work action A action A
Hamilton’s characteristic function is denoted by _______________. S k w H w
If H is conserved then the new Hamiltonian K is __________. same  variable  different  constant of motion constant of motion
   In point transformation one set of co-ordinates qj to a new set Qj can be 

expressed as  Qj = Qj (qj, t) Qj = -Qj (qj, t) Qj = Pj (qj, t) Qj = -Pj (qj, t) Qj = Qj (qj, t)

If the Lagrangian of the system does not contain a paricular co-ordinate q, then cyclic co-ordinates cylindrical co-ordinates polar co-ordinates spherical polar co-ordinates cyclic co-ordinates
Hamilton’s principal function is denoted by ______________. H K P S S
If the system is conservative then the P.E. is  co-ordinate  dependent velocity dependent time dependent momenta dependent co-ordinate  dependent
When the system is conservativer, it not   co-ordinate  dependent velocity dependent time dependent momenta dependent velocity dependent
t is ___________ in hamiltonian for constant of motion dynamical cyclic vary non - cyclic cyclic
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                         PART – A                                          (20 x 1 = 20) 

Answer all the questions: 

1. The propagation constant (k) =____________. 

a. 2π λ  b. 2π/λ                c. λ    d. λ /2π 

2. The phenomena of interference, diffraction and 

polarization can only be explained based on 

_________. 

a. quantum theory of light b.photoelectric effect  

c. Compton effect                  d. wave theory of light. 

3. Wave nature is not observed in daily life because we 

are using ___________. 

a. Microscopic particles. b. macroscopic particles 

c. molecules                      d. atoms 

4. In _______ De Broglie proposed that the idea of dual 

nature. 

a. 1921  b. 1922 c. 1923  d. 1925 

5. In relativistic particle, the group velocity (G) is equal to  

a. v  b. u  c. 1/u  d. 1/v 

6. In non-relativistic particle, the group velocity (G) is 

equal to _______ phase velocity. 

a. v/4  b. v/2  c. v  d. 2v 

7. Based on quantum theory of light, the bundles of 

energy =______________. 

a. hν  b. hλ  c. h/ν  d. h/λ 

8. De Broglie wavelength (λ) = 

a. h/mv   b. h/√2mEk  c. h/√2mqV d. h/√2mkT   

9. The wavelength associated with a 54 eV is _____. 

a. 1.61Å b. 1.63Å c. 1.67Å d. 1.69Å  

10. What is the energy of a gamma ray photon having 

wavelength 1Å? 

a) 1.24 x 10-4MeV b) 1.24 x 10-14MeV  

b) c) 1.24 x 104eV d)1.24x1014eV 

11. The kinetic energy of electron in the atoms is 

__________. 

a. 4 MeV b. 6 MeV c. 8 MeV d. 93 MeV 

12. Heisenberg proposed the uncertainty principle in 

______ 

a. 1921  b. 1923 c. 1925  d. 1927 



13. The product of the uncertainties in determine the 

position and momentum of the particle can never be 

smaller that the number of order _________. 

a. ≥½ħ  b. ≤½ħ  c. = ½ħ d. ≠½ħ 

14. The radius of an atom is ________. 

a. 1014m b. 10-14 m c. 1014 cm d. 10-14cm 

15. The radius of Bohr’s first orbit (r) =__________. 

a. ∆q  b. ∆p  c. ∆E  d. ∆V 

16. Heisenberg’s uncertainty principle states for the angular 

momentum and angle is _____________. 

a. ∆J∆ө = h             b. ∆J∆ө = h/2π   

c. ∆J∆ө = 2πh  d. ∆J∆ө = 2 π /h  

17. Based on the uncertainty principle, the minimum 

momentum (Pmin) = ____________. 

a. ħ/l  b. ħ  c. ħl  d. l/ ħ 

18. The uncertainty in the total energy (∆E) is _________. 

a.  ∆T + ∆V b. ∆T - ∆V c. ∆T  d. ∆V 

19. Heisenberg’s uncertainty principle states for energy and 

time is __________. 

a. ∆E.∆t = h             b. ∆E.∆t = h/2π  

c. ∆E.∆t = 2πh   d. ∆E.∆t = 2 π /h  

20. The angular frequency (ω) =____________. 

a. √k/m b. √m/k        c. √k d. √m 

                                       PART-B       (3 x 10= 30)

                 

Answer the following questions briefly: 

21. a) Define wave velocity and group velocity and obtain 

the relationship between them. 

(or) 

b) Explain the dual nature of light and matter waves. 

22.a) Briefly discuss about Davisson and Germer 

experiment. 

(or) 

b) Explain the wave properties of material particles 

based on diffraction of electrons using G.P.Thomson’s 

experiment. 

23. a) Explain diffraction of a beam of electron by a slit. 

(or) 

b) Discuss about Heisenberg gamma ray microscope. 

 

 

 

All the Best 
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                         PART – A                                          (20 x 1 = 20) 

  Answer all the questions: 

1. The propagation constant (k) =____________. 

a. 2π λ  b. 2π/λ                c. λ    d. λ /2π 

2. The phenomena of interference, diffraction and polarization can only be explained based on 

_________. 

a. quantum theory of light b. photoelectric effect  

c. Compton effect                  d. wave theory of light. 

3. Wave nature is not observed in daily life because we are using ___________. 

a. Microscopic particles. b. macroscopic particles 

c. molecules                      d. atoms 

4. In _______ De Broglie proposed that the idea of dual nature. 

a. 1921  b. 1922 c. 1923  d. 1925 

5. In relativistic particle, the group velocity (G) is equal to  

a. v  b. u  c. 1/u  d. 1/v 

6. In non-relativistic particle, the group velocity (G) is equal to _______ phase velocity. 

a. v/4  b. v/2  c. v  d. 2v 

7. Based on quantum theory of light, the bundles of energy =______________. 

a. hν  b. hλ  c. h/ν  d. h/λ 

8. De Broglie wavelength (λ) = 

a. h/mv    b. h/√2mEk  c. h/√2mqV d. h/√2mkT   

9. The wavelength associated with a 54 eV is _____. 

a. 1.61Å b. 1.63Å c. 1.67Å d. 1.69Å  

10. What is the energy of a gamma ray photon having wavelength 1Å? 

a) 1.24 x 10-4MeV b) 1.24 x 10-14MeV  

b)  1.24 x 104eV d)1.24x1014eV 

11. The kinetic energy of electron in the atoms is __________. 

a. 4 MeV b. 6 MeV c. 8 MeV d. 93 MeV 
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12. Heisenberg proposed the uncertainty principle in ______ 

a. 1921  b. 1923 c. 1925  d. 1927 

13. The product of the uncertainties in determine the position and momentum of the particle can never 

be smaller that the number of order _________. 

a. ≥½ħ  b. ≤½ħ  c. = ½ħ d. ≠½ħ 

14. The radius of an atom is ________. 

a. 1014m b. 10-14 m c. 1014 cm d. 10-14cm 

15. The radius of Bohr’s first orbit (r) =__________. 

a. ∆q  b. ∆p  c. ∆E  d. ∆V 

16. Heisenberg’s uncertainty principle states for the angular momentum and angle is _____________. 

a. ∆J∆ө = h             b. ∆J∆ө = h/2π   

c. ∆J∆ө = 2πh  d. ∆J∆ө = 2 π /h  

17. Based on the uncertainty principle, the minimum momentum (Pmin) = ____________. 

a. ħ/l  b. ħ  c. ħl  d. l/ ħ 

18. The uncertainty in the total energy (∆E) is _________. 

a.  ∆T + ∆V b. ∆T - ∆V c. ∆T  d. ∆V 

19. Heisenberg’s uncertainty principle states for energy and time is __________. 

a. ∆E.∆t = h             b. ∆E.∆t = h/2π  

c. ∆E.∆t = 2πh   d. ∆E.∆t = 2 π /h  

20. The angular frequency (ω) =____________. 

a. √k/m b. √m/k        c. √k d. √m 

PART-B             (3 x 10= 30) 

  Answer the following questions briefly: 

21. a) Define wave velocity and group velocity and obtain the relationship between them. 

The phase velocity is: vp = ω / k. The function ω(k), which gives ω as a function of k, is known 

as the dispersion relation. If ω is directly proportional to k, then the group velocity is exactly equal 

to the phase velocity. A wave of any shape will travel undistorted at this velocity. 

The group velocity of a wave is the velocity with which the overall shape of the waves' 

amplitudes—known as the modulation or envelope of the wave—propagates through space. 

Relation between wave velocity and Group velocity: 

The wave velocity is given by v = vλ 

= 2πv λ/ 2π 

v=w/k 

v=w/k = v p  

https://en.wikipedia.org/wiki/Wave
https://en.wikipedia.org/wiki/Velocity
https://en.wikipedia.org/wiki/Envelope_(waves)
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where w = 2πv = angular frequency and 2π / λ wave number. 

This shows that the phase velocity of the de Broglie wave is equal to the wave velocity 

and hence phase velocity is also known as wave velocity 

Phase velocity is defined by 

V p = w/k  => w =kv p  

The group velocity of a de Broglie wave is defined by 

Vg=dw / dk  

Putting the value of w = kv P in equation (2), we get 

Vg = d / dk (kv p) 

Vg=v p +k dv p /dk 

Putting the value of k 

 

Now                              d (1 / λ) = – 1 /λ2 dλ 

  

Vg =vp – λ dv p /d λ 

This is a relation between the phase velocity and group velocity for a dispersive medium.  

For normal dispersion the quantity dv p /dλ  is a positive quantity. Therefore for normal  dispersion, 

group velocity is less than the phase velocity. For anomalous dispersion, the quantity Dv P / dλ is a 

negative quantity, the group velocity is greater than the phase velocity. 

For non-dispersive medium vP =w /k =constant .. dv p d =0 . Hence vg = v p  · Hence for 

nondispersive medium the group velocity is equal to the phase velocity. For electromagnetic waves 

in vacuum, the speed of light (c) is constant. Therefore group velocity vg and the phase velocity v, 

of the light radiations are same. 

(or) 

(b) Explain the dual nature of light and matter waves. 

The Dual Nature of Light: 

A. Light has a dual nature 

    1.Sometimes it behaves like a particle (called a photon), which explains how light travels in 

straight lines 

http://www.physics-assignment.com/wp-content/uploads/2012/11/193.png
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    2.  Sometimes it behaves like a wave, which explains how light bends (or diffracts) around an 

object 

    3.  Scientists accept the evidence that supports this dual nature of light (even though it intuitively 

doesn't make sense to us!) 

B.  Quantum Theory 

    1.  Light is thought to consist of tiny bits of energy that behave like particles called photons  

         a.  Particles explain how light travels in straight lines or reflects off of mirrors  

de Broglie concept of matter waves: dual nature of matter 

MATTER WAVES : DE-BROGLIE CONCEPT: 

In 1924, Lewis de-Broglie proposed that matter has dual characteristic just like radiation. His 

concept about the dual nature of matter was based on the following observations:- 

(a)    The whole universe is composed of matter and electromagnetic radiations. Since both are 

forms of energy so can be transformed into each other. 

(b)   The matter loves symmetry.  As the radiation has dual nature, matter should also possess dual 

character. 

According to the de Broglie concept of matter waves, the matter has dual nature. It means when the 

matter is moving it shows the wave properties (like interference, diffraction etc.) are associated 

with it and when it is in the state of rest then it shows particle properties. Thus the matter has dual 

nature. The waves associated with moving particles are matter waves or de-Broglie waves. 

WAVE LENGTH OF DE-BROGLIE WAVES: 

Consider a photon whose energy is given by 

E=hυ=hc/λ            – – (1) 

If a photon possesses mass (rest mass is zero), then according to the theory of relatively ,its energy 

is given by 

E=mc2 – – (2) 

From (1) and (2) ,we have 

Mass of photon m= h/cλ 

Therefore Momentum of photon 

P=mc=hc/cλ=h/λ    – – (3) 

Or           λ = h/p 

If instead of a photon,  we consider a material particle of mass m moving with velocity v,then the 

momentum of the particle ,p=mv. Therefore, the wavelength of the wave associated with this 

moving particle is given by: 
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h/mv                                      – 

Or           λ = h/p  (But here p = mv)           (4) 

This wavelength is called DE-Broglie wavelength. 

Special Cases 

1. de-Broglie wavelength for material particle: 

If E is the kinetic energy of the material particle of mass m moving with velocity v,then 

E=1/2 mv2=1/2 m2v2=p2/2m 

Or              p=√2mE 

Therefore the by putting above equation in equation (4), we get de-Broglie wavelength equation for 

material particle as: 

λ = h/√2mE     – – (5) 

2. de-Broglie wavelength for particle in gaseous state: 

According to kinetic theory of gases , the average kinetic energy of the material particle is given by 

E=(3/2) kT 

Where k=1.38 x 10-23 J/K is the Boltzmann’s constant  and T is the absolute temperature of the 

particle. 

Also E = p2/2m 

Comparing above two equations, we get: 

p2/2m = (3/2) kT 

or p = /√3mKT 

Therefore   Equation (4) becomes 

λ=h/√3mKT 

This is the de-Broglie wavelength for particle in gaseous state: 

3. de-Broglie wavelength for an accelerated electron: 

Suppose an electron accelerates through a potential difference of V volt. The work done by electric 

field on the electron appears as the gain in its kinetic energy 

That is E = eV 

Also E = p2/2m 

Where e is the charge on the electron, m is the mass of electron and v is the velocity of electron, 

then 

Comparing above two equations, we get: 

eV= p2/2m 

or  p = √2meV 
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Thus by putting this equation in equation (4), we get the the de-Broglie wavelength of the electron 

as 

λ  = h/√2meV  6.63 x 10-34/√2 x 9.1 x 10-31 x1.6 x 10-19 V 

λ=12.27/√V  Å 

This is the de-Broglie wavelength for electron moving in a potential difference of V volt. 

 

22.a) Briefly discuss about Davisson and Germer experiment. 

The Davisson–Germer experiment was a physics experiment conducted by American 

physicists Clinton Davisson and Lester Germer in 1923–1927, which confirmed the de Broglie 

hypothesis. This hypothesis, advanced by Louis de Broglie in 1924, says that particles of matter 

such as electrons have wave-like properties. By demonstrating the wave–particle duality, the 

experiment was an important historical development in the establishment of quantum mechanics 

and of the Schrödinger equation. 

Davisson began work in 1921 to study electron bombardment and secondary electron emissions. A 

series of experiments continued through 1925. 

Experimental setup: 

 

     

Davisson and Germer experiment 

 

The experimental arrangement of Davisson Germer experiment is discussed below: 

 An electron gun was taken, which comprised of a tungsten filament F, coated with barium oxide 

and heated by a low voltage power supply. 

 Electrons emitted from this electron gun were accelerated to a desired velocity by applying suitable 

potential difference from a high voltage power supply. 
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 These emitted electrons were made to pass through a cylinder perforated with fine holes along its 

axis, thus producing a fine collimated beam. 

 This beam produced from the cylinder is made to fall on the surface of a nickel crystal. This leads 

to scattering of electrons in various directions. 

 The intensity of the beam of electrons is measured by the electron detector which is connected to a 

sensitive galvanometer (to record the current) and can be moved on a circular scale. 

 The intensity of the scattered electron beam is measured for different values of angle of scattering, 

θ (angle between the incident and the scattered electron beams) by moving the detector on the 

circular scale at different positions. 

 Observations of Davisson Germer experiment: 

Observations of Davisson Germer experiment are listed below: 

 By varying accelerating potential difference, we finally obtained the variation of the intensity (I) of 

the scattered electrons with the angle of scattering, θ. The accelerated voltage was varied from 44V 

to 68 V. 

 A strong peak was noticed in the intensity (I) of the scattered electron for an accelerating voltage of 

54V at a scattering angle θ = 50º. 

 This peak can be explained as a result of the constructive interference of electrons scattered from 

different layers of the regularly spaced atoms of the crystals. 

 The wavelength of matter waves was calculated with the help of electron diffraction, which 

measured to be 0.165 nm. 

Co-relating Davisson Germer experiment and de Broglie relation: 

According to de Broglie, wavelength λ associated with electrons is given by, 

λ = h /p 

λ =   1.22754√ = 0.167 nm 

Thus, Davisson Germer experiment confirms the wave nature of electrons and the de Broglie 

relation. 

In 1927, Davisson and Germer at the Bell Telephone Laboratories investigated the scattering of a 

beam of electrons from a nickel crystal. Figure shows, schematically, the essentials of their 

apparatus. 

 

https://byjus.com/physics/moving-coil-galvanometer/
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 Experimental arrangement for the Davisson-Germer electron diffraction 

        experiment. 

 

Electrons from the heated filament F, were accelerated through a potential difference of order 100V 

to a plate P with a small diameter hole. A narrow beam of electrons emerged from the opening in P 

and was incident normally on the face of the nickel crystal C. The electrode E was connected to a 

sensitive galvanometer and measured the intensity of the electrons scattered by the nickel crystal at 

various angles .  

 

Some of the experimental results are shown in Fig. 6. These are “polar plots” of the beam intensity 

as a function of the angle  for various accelerating voltages which correspond to the wavelengths 

indicated. In each plot, a line drawn from the origin to any point on the curve makes the angle  ; 

the length of a line is proportional to the electron beam intensity at that angle . 

 

Figure 6: Polar plot of Davisson and Germer's data for the scattered electron beam 

        intensity as a function of scattering angle for different incident electron 

        energies. 
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As the voltage was increased from 44 to 88 volts, a characteristic peak gradually appears and then 

disappears. It reaches a maximum for electrons with an energy of 54 eV (.167nm) at an angle of 

50o . Davisson and Germer concluded that this peak was due to Bragg reflection from a set of 

regularly spaced atomic planes within the crystal as shown in Fig. 7. 

 

Figure : Illustrating the Bragg condition for electron waves scattered from plane of 

        atoms in the nickel crystal used by Davisson and Germer. 

 

The angle   2  is measured in the experiment. The diffracting planes must be normal to the 

bisector of , so   


2
.  The angle of incidence  between the beam and the scattering planes is 

given by  

   90
o
  90

o



2
 

The spacing between the planes involved in the diffraction is d. From x-ray measurements, the 

spacing D between the surface atoms was known to be 0.215nm.  If the diffraction planes make an 

angle  with the surface, then d = D sin .   

Therefore,  the measured scattering angle of  = 50o determines d as 

  d = D sin  = 0.215 sin (50o /2) = 0.215 sin (25o ) . 

The crystal is apparently oriented such that the angle of incidence is 

                        90o - 50o/2 = 65o  . 

The Bragg condition for the first order reinforcement then says the electron wavelength is 

    2dsin  2 0.215sin 25
o sin65

o
 .165nm.                 

The electron wavelength calculated from the de Broglie relation using the known energy of the 

beam is 

 

                         
h

mv
 0.167nm  . 
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This close agreement convinced Davisson and Germer that they had observed the diffraction of 

electron waves from the nickel crystal.  

 

In this experiment and in a number of subsequent ones, Davisson and Germer observed that while 

agreement was close between the observed and calculated diffraction data, there was usually a 

small discrepancy that was larger for the low energy (longer wavelength) electron beams. They 

were able to show that this discrepancy was due to the fact that the electrons were refracted as they 

entered the crystal. The index of refraction,  , of a crystal was greater than 1, due to the fact that 

the electrons gained energy on entering the crystal. For those low energy beams where   (E) 

differs significantly from 1, the Bragg relation is modified to  

 n  2d(
2
 cos2)

1

2  

Thus far, only single crystals have been considered. Most materials are polycrystalline. They are 

composed of a large number of small crystallites (single crystals) that are randomly oriented. An 

electron diffraction sample may be a polycrystalline thin film, thin enough so that the diffracted 

electrons can be transmitted through the film.  

(or) 

b)Explain the wave properties of material particles based on diffraction of electrons using 

G.P.Thomson’s experiment. 

                              

 

 

 

 

 

 

 

 

 

 

 

 G.P Thomson performed experiments in which electrons are accelerated from 

10,000 to 50,000 volts. In these experiments the generation of electrons are considered analogous 
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to X-Ray obtained by diffraction pattern. The diffraction pattern is obtained by only when wave is 

associated with particle. Hence Thomson explains the concept of matter. 

The electrons are emitted from the filament and only some accelerated electrons are passing 

through cathode ‘C’. Next these electrons are passed through two slits S1 and S2 and a thin pencil 

beam of electrons is obtained. This electrons beam allowed to fall on a thin foil ‘G’ of gold or 

Aluminium of order10−6 cm . The photograph of electron beam from the foil is recorded on the 

photographic plate ‘P’. Hence a pattern consists of concentric rings. The complete apparatus is kept 

in high vacuum chamber so that the electrons may not lose their energy y colliding with molecules 

of air or any inside the tube. 

To conclude that, this pattern is due to the electrons and not due the X-Rays. The cathode rays 

inside the tube are affected by the magnetic fields. The beam shifting considerably along the field 

is observed. Hence we can conclude that the pattern obtained is due to electrons only since x-Rays 

are not affected by electric and magnetic field. 

 

23.a) Explain diffraction of a beam of electron by a slit. 

 

Light is interesting and mysterious because it consists of both a beam of particles, and of waves in 

motion.  

WAVE PARTICLE DUALITY:  

All carriers of energy and momentum, such as light and electrons, propagate like a wave and 

exchange energy like a particle.  

 

It wasn't until the 19th century that convincing evidence was found showing that light behaves like 

waves.  

Before reading on, you may wish to review some wave terminology.  

 

The key to understanding why light behaves like waves is 

in INTERFERENCE and DIFFRACTION.  

Interference and Diffraction are the phenomena that distinguish waves from particles: waves 

interfere and diffract, particles do not.  

Light bends around obstacles like waves do, and it is this bending which causes the single slit 

diffraction pattern.  

 

Some assumptions must be made for this description of the single slit diffraction pattern: 

http://www.math.ubc.ca/~cass/courses/m309-03a/m309-projects/krzak/waves.html
http://www.math.ubc.ca/~cass/courses/m309-03a/m309-projects/krzak/interference.html
http://www.math.ubc.ca/~cass/courses/m309-03a/m309-projects/krzak/diffraction.html
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 The slit size is small, relative to the wavelength of light. 

 The screen is far away. 

 Cylindrical waves can be represented in 2D diagrams as cicular waves. 

 The intensity at any point on the screen is independent of the angle made between the ray to the 

screen and the normal line between the slit and the screen (this angle is called T below). This is 

possible because the slit is narrow. 

Consider a slit of width  a, light of wavelength l, and  a smaller than l.  

When the light encounters the slit, the pattern of the resulting wave can be calculated by treating 

each point in the aperature as a point source from which new waves spread out.  

Let L represent the distance between the slit and the screen.  

Let T represent the angle between the wave ray to a point on the screen  

and the normal line between the slit and the screen.  

The top part of the figure to the left is an imitation of a single slit diffraction pattern which may be 

observed on the screen (there would really be more blending between the bright and dark bands, 

see area diffraction pattern at the top of this page).  

Below the pattern is an intensity bar graph showing the intensity of the light in the diffraction 

pattern as a function of sin T.  

Most of the light is concentrated in the broad CENTRAL DIFFRACTION MAXIMUM.  

There are minor seconday bands on either side of the central maximum.  

The first DIFFRACTION MINIMUM occurs at the angles given by sin T = l / a  

the intensity of light is proportional to the square of its amplitude. This will come into play later 

on.  

With the equation:  

sin T = l / a       (*) 

note that the width of the central diffraction maximum is inversely proportional to the width of the 

slit. If we increase the width size,  a, the angle T at which the intensity first becomes zero 

decreases, resulting in a narrower central band. And if we make the slit width smaller, the angle T 

increases, giving a wider central band.  

But why are there these bands of light?  

And how can we derive the equation (*) for the location of the central diffraction minimum?  

The equation (*) is the result of analysis of the path difference between light rays coming from the 

top and the bottom of the slit, and how this path difference relates to our discussion 

on interference.  

 

http://www.math.ubc.ca/~cass/courses/m309-03a/m309-projects/krzak/#pattern
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Recall that we are considering points within the aperature as point sources from which new waves 

spread out. In the diagrams below the waves have been drawn from a side view, rather than a top 

view of wavefronts. This is to help us compare the phase of the waves.  

The quantity  a sin T is called the path difference between the two light rays. We can see that along 

the parallel wave rays, the bottom wave has already completed about two-thirds of its cycle when 

the top wave begins its cycle. This means that in this diagram the two light rays have a path 

difference of about 2/3 x 2p or 4p / 3.  

 

Now, remember that the slit width,  a, is only a few hundred nanometers in size. And so even the 

light waves from the very top and very bottom of the slit are essentially right on top of each other, 

as well as all the waves inbetween. This means that they interfere, and the resultant wave's 

amplitude equals the sum of the individual wave amplitudes, by the superposition of waves.  

 

This also means that for the top and bottom light waves, their phase difference is equal to their path 

difference, which in this example is about 4p / 3.  

At T = 0, when the wave rays follow the normal line directly to the screen,  a sin T = 0. This means 

that the path difference and the phase difference of all the waves is zero. Hence the waves are all in 

phase, and constructive interference has the resultant wave's amplitude equal to the sum of all the 

individual wave's amplitudes.  

This explains the very bright central band around sin T = 0. With all the waves in phase, we have 

the largest resultant wave amplitude possible. And since the intensity of light is proportional to the 

square of its amplitude, the pattern on the screen has a very intense central band at this angle, that 

is when T = 0.  

As T varies slightly from zero,  a sin T also varies slightly from zero, as does the phase difference 

of the waves. This results in the interference of all the waves being not totally constructive, and so 

the intesity of the central band decreases while moving slightly away from sin T = 0, as we saw in 

the intesity bar graph above. 

When  a sin T = l, something special happens. Here the path difference between the top and bottom 

light rays equals one wavelength (l). That is, they are in phase. (Left figure)  

 

This means that the path difference between the top ray and the ray just below the midpoint of the 

slit (a/2), is half a wavelength (l/2). (Right figure)  

 

And a path difference of half a wavelength corresponds to a phase difference of p. That is, the top 
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wave, and the wave just below the midpoint of the slit, are out of phase, and therefore cancel each 

other out.  

Let us consider many point sources, say 2k, equally spaced within the slit opening so that there are 

1 to k above the midpoint and k+1 to 2k below. Then when  a sin T = l, waves 1 and k+1 are out of 

phase and so cancel each other out, as do waves 2 and k+2, and 3 and k+3 ... through to waves k 

and 2k. And so all waves cancel, and thus the resultant wave has an amplitude of zero. An 

amplitude of zero means zero intesity, and so the first diffraction minimum occurs at  a sin T = l, or 

sin T = l / a, which was our (*) above.  

This argument can be extended to explain the second and third and other diffraction minima. At the 

angle when  a sin T = 2l, we can divide the slit into four regions of point sources, two above the 

midpoint and two below. Then, using the argument above, the total intensity of the top two regions 

is zero due to cancellation of pairs of sources, and the same goes for the bottom two regions.  

And so, the general equation for the points of zero intensity in the diffraction pattern of a single slit 

is: 

 a sin T = ml      m = 1,2,3, ... 

 

But usually we are just interested in the location of the first minimum, when m = 1, because most 

of the light enery is located in the central diffraction maximum.  

 

 

 

 

 

 

 

 

 

Let y be the distance from the center of the central diffraction maximum to the first diffraction 

minimum.  

 

The angle T is related to this distance y and the distance to the screen, L, by the equation:  

tan T = y / L 

http://www.math.ubc.ca/~cass/courses/m309-03a/m309-projects/krzak/last.ps
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Since the angle T is very small, cos T » 1. Thus, tan T » sin T. Then, combining the above equation 

with equation (*), we have sin T = l / a » y / L, or  

y = L l / a 

And so, given the distance to the screen, the width of the slit, and the wavelength of the light, we 

can use the equation y = L l / a to calculate where the first diffraction minimum will occur in the 

single slit diffraction pattern. And we have learned that this is the point where the waves from point 

sources in the slit all cancel in pairs that are out ofphase.    

(or) 

b) Discuss about Heisenberg gamma ray microscope. 

  

Heisenberg’s Gamma ray microscope.: 

             Heisenberg had a peculiar approach towards the nature of physics. He believed that the 

concepts which are not defined on the basis of actual or possible experimental observations should 

have no place in science e.g. he discarded the concept of orbits in the Bohr's atomic model since 

they were never observed in the laboratory. 

            Heisenberg has expressed his view in his paper on uncertainty principle (1927): If one 

wants to be clear about what is meant by "position of an object," for example of an electron..., then 

one has to specify definite experiments by which the "position of an electron" can be measured; 

otherwise this term has no meaning at all. 

            To examine the uncertainty principle, W. Heisenberg proposed a hypothetical experiment 

(thought experiment or a gedanken experiment) on the Gamma Ray Microscope which was later 

modified by N. Bohr. Usual optical parts used in the conventional light microscope cannot focus 

the gamma-rays used in the experiment. Hence it was not possible to carry out such an experiment 

in practice at that time. However, the experiment can be imagined and it enables to illustrate the 

underlying principle. 

                  The aim of gamma-ray microscope experiment is to detect and measure the position of 

a microscopic point particle like an electron as exactly as possible. The apparatus consists of a 

microscope which uses high-energy and high frequency (very short wavelength) electromagnetic 

radiation like gamma rays. The radius of the atom is of the order of 10 − 11m. For the tolerance (an 

uncertainty) of about 10% (i.e. 10 − 12m) in the determination of the position, the wavelength of 

radiation needs to be of the order of 10 − 12m. Gamma rays are having wavelength in that region. 

Hence it was necessary and appropriate to employ gamma rays to “see” the electron with necessary 

resolving power of the microscope. 

                A gamma ray microscope has a source of radiation in the form of a monochromatic, 
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narrow beam of gamma rays to 'illuminate' the electron. A beam of gamma ray photons traveling 

along the y axis is incident on the free electron at rest kept directly under the center of the 

microscope's objective lens. An imaginary cone can be drawn with the electron at its apex which 

subtends an angle 2θ with the diameter of the circular lens as its base. The gamma ray photon 

which is scattered into any angle within the cone of angle 2θ enters the objective lens and enables 

to see the electron.The incident and scattered gamma ray photons are shown by wave packets in 

the figure. 

 

 

Fig. Thought Experiment of Gamma Ray Microscope 

 

 

           After striking the electron, the gamma ray photon gets scattered and the position of the 

electron gets disturbed due to its impact. The very act of measurement introduces uncertainty in the 

determination of position of electron. Since a gamma ray photon acts like a particle, the interaction 

between the gamma ray photon and the electron can be considered as a collision between two 

particles as in the Compton scattering experiment. Due to the gain in momentum obtained from the 

gamma ray, the electron recoils. The direction along which the electron recoils may be taken as the 

x-axis. The image of the electron as seen in the microscope is a diffraction pattern consisting of a 

central bright disc surrounded by alternate dark and bright rings. 

The electron may be found anywhere within the central disk. The uncertainty in the position 

of the electron is having a value equal to ∆x, the diameter of the central disc. 

The total momentum p of the incident gamma ray photon is related to its wavelength λ by 

the formula 
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p=h/λ,where h is Planck's constant. 

In the scattering process the total momentum, p of the scattered gamma ray photon is 

reduced and the wavelength is changed accordingly. 

According to the Rayleigh’s criterion in physical optics, the resolving power of a 

microscope (i.e. the minimum distance ∆x between two points in an object that is necessary to 

distinguish their images or see as separate in a microscope) is the distance between the peak 

intensity and the first minimum in the diffraction pattern and it is given by the formula, 

Resolving Power = R.P. = ∆x = λ /2sin θ 

where 2θ is the angle subtended by the electron with the objective lens . The maximum value of the 

scattering angle of gamma ray photon (semi-vertical angle of the cone θ) occurs in two extreme 

cases- when the gamma ray gets diffracted exactly along the right or left edges of the cone. 

If the gamma ray gets diffracted to the right edge of the cone, the total momentum in the x 

direction would be given by the sum of momenta of electron and gamma ray as follows 

= the electron's momentum p1x + the gamma ray's momentum in the x direction 

= p1x + (h sin θ)/λ1 

where λ1 is the wavelength of the gamma ray diffracted to right edge 

In the other extreme case, the observed gamma ray photon gets diffracted just along the left 

edge of the cone (i.e. scattered backward). Then the total momentum in the x direction is given by 

= p2x -(h sin θ)/λ2, where λ2 is the wavelength of the gamma ray diffracted to left edge. 

However, according to the conservation of momentum, the component along x axis of final 

momentum in each case must equal the component along the x axis of initial momentum. 

Therefore, the components along x axis of final momenta are equal to each other. 

p1x + (h sin θ)/λ1 = p2x - (h sin θ)/λ2 

If θ is small, then the wavelengths in both possibilities are approximately equal. Then 

λ1 ~ λ2 ~ λ 

 

p2x - p1x = ∆px ~ 2h sin θ/λ 

 

However, the formula for Resolving Power according to the Rayleigh's criterion is 

∆x = λ/(2 sin θ) 

 

∆px ~ h/∆x 

or 

∆x∆px ~ h 
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Thus there is a reciprocal relationship between the minimum uncertainty ∆x in the 

measured position of the electron along the x axis and the uncertainty ∆px in its momentum in the 

direction. If the x position is measured more precisely i.e. ∆x is made minimum then ∆px becomes 

maximum i.e. measurement of value of p is more uncertain and vice a versa. However the product 

∆x∆p remains constant of the order of value of h. 

The thought experiment shows that electron's position and momentum obey the uncertainty 

relation which Heisenberg had derived mathematically. 

The experiment shows that to measure the properties of a particle such as an electron, a 

measuring device usually light or radiation is needed. But the energy in the radiation affects the 

particle being observed. At the subatomic level the act of observing alters the reality being 

observed and thus it imposes limits on the physical knowledge. 
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KARPAGAM ACADEMY OF HIGHER EDUCATION, 

COIMBATORE – 641 021 

DEPARTMENT OF PHYSICS 

III B.Sc PHYSICS 

II INTERNAL EXAMINATION 

CLASSICAL AND QUANTUM PHYSICS (15PHU502) 

                                                                     

Date:                                               Maximum: 50 marks 

                         PART – A                                          (20 x 1 = 20) 

Answer all the questions: 

1. ____ forms of Schroedinger’s equation describe the motion 

of non-relativistic material particle. 

a. Hψ = Eψ b. Hψ ≠ Eψ     c. Hψ < Eψ  d. Hψ > Eψ 

2. The time-dependent Schroedinger equation is partial 

differential equation having ___ variables 

a. 1     b.2             c. 3                 d. 4 

3. The Schroedinger time-dependent wave equation is 

_________. 

      a. Hψ = Eψ b. Hψ ≠ Eψ     c. Hψ < Eψ  d. Hψ > Eψ 

4. The minimum energy of a particle in a box (E) is 

_________. 

a. ħ2/ml2 b. ħ2/2ml2 c. ml2/ħ2  d. 2ml2/ħ2 

5. Momentum operator in Schroedinger equation (Pop) 

is_________. 

a. ħ/i  b. ħi  c. i/ħ      d. ħ 

6. Newton’s law may be written as ___________. 

a. (dp/dt) > -gradV  b. (dp/dt) < -gradV  

c. (dp/dt) ≠ -gradV            d. (dp/dt) = -gradV 

7. Schroedinger suggested seeking solutions of the waves 

equation which represents ___ waves. 

a. non-progressive  b. progressive   

c. non-standing              d. standing 

8. Kinetic energy operator is_________. 

a. (–ħ
2
/2m)

 2
       b. (–2m/ħ

2
)
 2

   

c. (–2mħ
2
)
 2
    d.(–2ħ

2
)
 2
  

9. Normalised wavefunction is ____________. 

a. ψ b. √N c. 1/√N   d. ψ/√N 

10. Which law is used in Ehrenfest theorem? 

a.Newtons law  b. joules law  

c.ohms law       d. Keplers law 

11. Mass of an electron is _________. 

a. 9 x 10
-34

 nm b. 9x 10
-31

 m     c. 6 x 10
-34

 nm          

 d. 6.625 x 10-30 nm 

12. For a photon and an electron with equal energy, the 

Broglie wavelength of the electron is ________. 



a. Much smaller than that of a photon   b. Much greater 

than of a proton    c.0        d.Equal  

13. Planck’s constant has the same units as __________. 

a. angular momentum    b.The Hamiltonian   c.quantum 

number  d.frequency  

14. Photon density is proportional to ______ 

a. hν   b. A2
 c.h d. ν 

15. The probability amplitude for the position of the particle is 

represented by _____________. 

a. ψ  b. P c. H d. E 

16. Characteristic function is also called as _______ 

a. wave function       b. Eigen value  c.Normalised               

d. Stationary state 

17. |ψ^2 | is the measure of ______ 

a.volume density  b.current density c.particle density

   d. density 

18. At x = ±∞ then ψ*ψ = _____________. 

a. 1    b. ∞        c.0      d. vary 

19. Complex conjugate of wave function is ______ 

a. H*             b. ψ         c. ψ*  d. E* 

20. _______ is the measure of particle density 

a. |E^2 |     b. |H^2 |          c. |ψ |                                       

d.  

                                     

 

                            PART-B  (3 x 10= 30) 

                

Answer the following questions briefly: 

21. a) . Derive time independent Schrödinger equation 

(or) 

b) State and prove Ehrenfest’s theorem 

22.a) Derive time dependent Schrödinger equation 

(or) 

b) Find the expectation values of dynamical quantities 

23. a) Discuss the application of Heisenberg’s  Uncertainty    

          Principle. 

(or) 

b) Explain about the probability current density. 

 

 

All the Best 
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CLASSICAL AND QUANTUM PHYSICS (15PHU502) 

             ANSWER KEY                                                         

                         PART – A                                          (20 x 1 = 20) 

Answer all the questions: 

1. ____ forms of Schroedinger’s equation describe the motion of non-relativistic material particle. 

a. Hψ = Eψ b. Hψ ≠ Eψ     c. Hψ < Eψ  d. Hψ > Eψ 

2. The time-dependent Schroedinger equation is partial differential equation having ___ variables 

a. 1     b.2             c. 3                 d. 4 

3. The Schroedinger time-dependent wave equation is _________. 

      a. Hψ = Eψ b. Hψ ≠ Eψ     c. Hψ < Eψ  d. Hψ > Eψ 

4. The minimum energy of a particle in a box (E) is _________. 

a. ħ2/ml2 b. ħ2/2ml2 c. ml2/ħ2  d. 2ml2/ħ2 

5. Momentum operator in Schroedinger equation (Pop) is_________. 

a. ħ/i  b. ħi  c. i/ħ      d. ħ 

6. Newton’s law may be written as ___________. 

a. (dp/dt) > -gradV  b. (dp/dt) < -gradV  

c. (dp/dt) ≠ -gradV            d. (dp/dt) = -gradV 

7. Schroedinger suggested seeking solutions of the waves equation which represents ___ waves. 

a. non-progressive  b. progressive   

c. non-standing              d. standing 

8. Kinetic energy operator is_________. 

a. (–ħ2/2m) 2       b. (–2m/ħ2) 2   

c. (–2mħ2) 2    d.(–2ħ2) 2  

9. Normalised wavefunction is ____________. 

a. ψ b. √N c. 1/√N   d. ψ/√N 

10. Which law is used in Ehrenfest theorem? 

a.Newtons law  b. joules law  
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c.ohms law       d. Keplers law 

11. Mass of an electron is _________. 

a. 9 x 10-34 nm b. 9x 10-31 m     c. 6 x 10-34 nm          

 d. 6.625 x 10-30 nm 

12. For a photon and an electron with equal energy, the Broglie wavelength of the electron is ________. 

a. Much smaller than that of a photon   b. Much greater than of a proton    c.0        d.Equal  

13. Planck’s constant has the same units as __________. 

a. angular momentum    b.The Hamiltonian   c.quantum number  d.frequency  

14. Photon density is proportional to ______ 

a. hν   b. A2 c.h d. ν 

15. The probability amplitude for the position of the particle is represented by _____________. 

a. ψ  b. P c. H d. E 

16. Characteristic function is also called as _______ 

a. wave function       b. Eigen value  c.Normalised               d. Stationary state 

17. |ψ^2 | is the measure of ______ 

a.volume density  b.current density c.particle density d. density 

18. At x = ±∞ then ψ*ψ = _____________. 

a. 1    b. ∞        c.0      d. vary 

19. Complex conjugate of wave function is ______ 

a. H*             b. ψ         c. ψ*  d. E* 

20. _______ is the measure of particle density 

a. |E^2   b. |H^2 |          c. |ψ |   d.  

                                   

                            PART-B  (3 x 10= 30)                 

Answer the following questions briefly: 

1. a) . Derive time independent Schrödinger equation 

We start with the one-dimensional classical wave equation,  

 

(10) 

 

By introducing the separation of variables  
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(11) 

 

we obtain  

 

(12) 

 

If we introduce one of the standard wave equation solutions for  such as  (the constant can be 

taken care of later in the normalization), we obtain  

 

(13) 

 

Now we have an ordinary differential equation describing the spatial amplitude of the matter wave as a 

function of position. The energy of a particle is the sum of kinetic and potential parts  

 

(14) 

 

which can be solved for the momentum, , to obtain  

 

(15) 

 

Now we can use the de Broglie formula (4) to get an expression for the wavelength  

 

(16) 

 

 

The term  in equation (13) can be rewritten in terms of  if we recall 

that  and .  

http://vergil.chemistry.gatech.edu/notes/quantrev/node6.html#eq:deBroglie
http://vergil.chemistry.gatech.edu/notes/quantrev/node8.html#eq:seq1
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(17) 

 

When this result is substituted into equation (13) we obtain the famous time-independent Schrödinger 

equation  

 

(18) 

 

which is almost always written in the form  

 

(19) 

 

 

This single-particle one-dimensional equation can easily be extended to the case of three dimensions, where 

it becomes  

 

(20) 

 

A two-body problem can also be treated by this equation if the mass  is replaced with a reduced mass  

It is important to point out that this analogy with the classical wave equation only goes so far. We cannot, 

for instance, derive the time-dependent Schrödinger equation in an analogous fashion (for instance, that 

equation involves the partial first derivative with respect to time instead of the partial second derivative). In 

fact, Schrödinger presented his time-independent equation first, and then went back and postulated the more 

general time-dependent equation. 

 

 

 

 

 

 

http://vergil.chemistry.gatech.edu/notes/quantrev/node8.html#eq:seq1
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                                                                                     (or) 

b) State and prove Ehrenfest’s theorem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



B.Sc.PHYSICS 
2017-2018(ODD) CIA II-ANSWER KEY CLASSICAL & QUANTUM PHYSICS(15PHU502) 

N.GEETHA KAHE,COIMBATORE-21 
ASSISTANT PROFESSOR 
DEPARTMENT OF PHYSICS 
 

Page 6 of 11 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



B.Sc.PHYSICS 
2017-2018(ODD) CIA II-ANSWER KEY CLASSICAL & QUANTUM PHYSICS(15PHU502) 

N.GEETHA KAHE,COIMBATORE-21 
ASSISTANT PROFESSOR 
DEPARTMENT OF PHYSICS 
 

Page 7 of 11 
 

22.a) Derive time dependent Schrödinger equation 

The time dependent Schrodinger equation for one spatial dimension is of the form 

 

For a free particle where U(x) =0 the wavefunction solution can be put in the form of a plane wave 

 

For other problems, the potential U(x) serves to set boundary conditions on the spatial part of the wavefunction 

and it is helpful to separate the equation into thetime-independent Schrodinger equation and the relationship 

for time evolution of the wavefunction 

 

(or) 

b) Find the expectation values of dynamical quantities 

To relate a quantum mechanical calculation to something you can observe in the laboratory, the "expectation 

value" of the measurable parameter is calculated. For the position x, the expectation value is defined as 

 

This integral can be interpreted as the average value of x that we would expect to obtain from a large number of 

measurements. Alternatively it could be viewed as the average value of position for a large number of particles 

which are described by the same wavefunction. For example, the expectation value of the radius of the electron 

in the ground state of the hydrogen atom is the average value you expect to obtain from making the 

measurement for a large number of hydrogen atoms. 

While the expectation value of a function of position has the appearance of an average of the function, the 

expectation value of momentum involves the representation of momentum as a quantum mechanical operator. 

 

where  

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/Scheq.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/Scheq.html#c4
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/qm2.html#c6
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/qmoper.html#c1
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is the operator for the x component of momentum. 

Since the energy of a free particle is given by 

 

and the expectation value for energy becomes 

 

for a particle in one dimension. 

In general, the expectation value for any observable quantity is found by putting the quantum mechanical 

operator for that observable in the integral of the wavefunction over space: 

 

 

23. a) Discuss the application of Heisenberg’s  Uncertainty   Principle. 

 

Application of the uncertainty principle: 

(I) The non existence of the electron in the nucleus : 

The diameter of nucleus of any atom is of the order of 10-14m. If any electron is confined within the 

nucleus then the uncertainty in its position (Δx) must not be greater than 10-14 m. 

According to Heisenberg’s uncertainty principle, 

 Δx Δp > h / 2π 

The uncertainty in momentum is Δp > h / 2πΔx , 

 where Δx = 10-14 m 

Δp > (6.63X10-34) / (2X3.14X10-14) 

 i.e. Δp > 1.055X10-20 kg-m /s 

This is the uncertainty in the momentum of electron and then the momentum of the electron must be in the 

same order of magnitude. 

 

 

(II) The radius of the Bohr’s first orbit of H2 atom and energy in the ground state: 

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/scheq.html#c2
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If ∆x and ∆px are the uncertainties in the simultaneous measurements of position and momentum of the electron 

in the first orbit, then from uncertainty principle 

∆x∆px = Ћ 

Where Ћ = h/2∏ 

Or    ∆px = Ћ /∆x                                                                 (1) 

As kinetic energy is given as 

K = p2/2m 

Then uncertainty in K.E is 

∆K =∆p2
x/2m 

Put equation (i) in above equation 

∆K= Ћ2 /2m(∆x)2 (2) 

As potential energy is given by 

∆V= -1/4∏ε0 Ze2/∆x                                                      (3) 

The uncertainty in total energy is given by adding equations (2) and (3), that is 

∆E= ∆K+∆V 

= Ћ2 /2∏(∆x)2 –Ze2/4∏ε0∆x 

If ∆x = r= radius of Bohr’s orbit, then 

∆E= Ћ2 /2mr2 –Ze2/4∏ε0r                                                   (4) 

The Uncertainty in total energy will be minimum if 

d(∆E)/dr=0 and d2((∆E)/dr2 is positive 

Differentiating equation (4) w.r.t. r, we get 

d(∆E)/dr=0= – Ћ 2/mr3+Ze2/4π ε0r
2 (5) 

For minimum value of ∆E 

d(∆E)/dr=0= – Ћ 2/mr2+Ze2/4π ε0r
2 

or                  Ze2/4π ε0r
2= Ћ 2/mr3 

Or                       r=4π ε0 Ћ
 2/me2 (6) 

Further differentiating equation (5), we get 

d2(∆E)/dr2=3 Ћ 2/mr4-2Ze2/4π ε0r
3 

By putting value of r from equation (6) in above equation, we get positive value of 
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d2(∆E)/dr2 

Therefore equation (4) represents the condition of minimum in the first orbit. 

Hence, the radius of first orbit is given by 

r=4π ε0Ћ
 2/me2=0.53 angstrom                                  (For H atom Z=1) 

Put value of r in equation (4), we get 

Emin= -13.6 e V 

This value is same as determined by using Bohr’s theory. 

Therefore, with the help of Heisenberg’s uncertainty principle, one can determine the radius of the Bohr’s first 

orbit. 

 

(III) Width of spectral lines (natural Broadening): 

 

              Whenever a photon interacts with matter the atoms get excited and the excited atom gives up its 

excess energy by emitting a photon of certain frequency which leads to the spectrum. The broadening in the 

spectral lines is observed due to the indeterminateness in the atomic energies. According to Heisenberg’s 

uncertainty relation 

∆𝐸 = ℎ 2𝜋 ∆t 

where ΔE is the uncertainty in the measurement of energies and Δt is the mean life time of the level is finite 

(10-8 secs). Therefore ΔE must have a finite energy spread that means the energy levels are not sharp and 

hence the broadening of the spectral lines 

 

(or) 

 

 

 

 

 

http://www.winnerscience.com/quantum-physics/heisenberg-uncertainty-principle/
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b) Explain about the probability current density. 
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                            Part-A     (20 x 1 = 20) 

Choose the correct answer: 

1. The phenomena of interference, diffraction and 

polarization can only be explained based on 

_________. 

a) wave theory of light        b) photoelectric effect.        

c)Compton effect  

            d)  quatum theory of light 

2. 2. The propagation constant (k) = 

a) λ     b)  2π/λ     c) 2πλ        d) λ /2π 

3. Based on quantum theory of light, the bundles of 

energy =_____________. 

a) hν     b) hλ     c) h/λ      d) h/ν 

4. In G.P.Thomson experiment the thickness of gold foil is 

___________                              

a) 10
-8

 pm     b) 10
-8

 nm      c) 10
-8

 cm      d) 10
-8

 m    

5. In davisson and germer experiment the angle of 

incidence relative to the family of Bragg plane is 

________ 

a) 65            b) 56            c)54           d)44   

6. The material particles behave like waves’ was first 

experimentally established by_________. 

a) De Broglie           b) Davisson & Germer                  

c) Plancks         d) Einstein 

7. _______ is the measure of particle density. 

a) |E^2 |        b) |H^2 |         c) | ψ |          d) ψ
2
 

8. Based on the uncertainty principle, the minimum 

momentum (Pmin) = 

a) h/I      b) ħ         c ) ħl      d) l/ ħ 

9. What is the radius of Bohr’s first orbit (r)?. 

a)  ∆q          b) ∆p              c) r        d) ∆V  

10. The radius of the nucleus of any atom is of the order of 

____ m. 

a) 10^-8 m      b) 10 ^-14 cm       c) 10^-14m      d) 

10^-10 m  

11. The minimum energy of harmonic oscillator (Emin) 

=_____________. 

a) ½hω      b) hω       c) -hω      d) ω        

12. Rigid body has the following constraint 

a)Rheonomic      b) Holonomic      c) Unilateral        

d) Dissipative 

13. Which constrains has the deformable bodies 

a) Scleronomic         b) Holonomic        c) Unilateral  

d) Conservative 

14. ______________ constraint for gas filled hollow sphere 

a) scleronomic       b) non-holonomic             c) bilateral        

d) Dissipative. 

15. Rigid body has the following constraint 

a)Rheonomic      b) Holonomic      c) Unilateral        



d) Dissipative 

16. Which constrains has the deformable bodies 

a)Scleronomic         b) Holonomic        c) Unilateral      

d) Conservative 

17. ______________ constraint for gas filled hollow sphere 

a) scleronomic       b) non-holonomic             c) bilateral        

d) Dissipative. 

18. The Hamiltonian system be conservative (i.e.) 

__________. 

a) potential energy is co-ordinate dependent and not 

velocity dependent 

b) potential energy is co-ordinate independent and not 

velocity dependent 

c) potential energy is co-ordinate dependent and not 

velocity independent 

d) potential energy is co-ordinate independent and not 

velocity independent  

19. Hamiltonian scheme ____________ and 

_____________ are placed at equal footing 

a) Co-ordinate and co-ordinate          b) Co-ordinate 

and momenta  

            c) Momenta and momenta        d) Co-ordinate and time  

20. Which system is the cartesian co-ordinate along the 

horizontal wire? 

a) Fly-wheel     b) Simple pendulum    c) Hydrogen 

molecules     d) Beads of an abacus 
     

       

                                     Part-B    (5 x 8 =40) 

Answer all the questions briefly: 

21. a) What is called Matter waves? Ilustrate matter waves 

with any one experimental evidence. 

(Or) 

b) Explain wave and Group velocity. Obtain an      

expression for group velocity. 

22. a)Prove the validity of Heisenberg’s uncertainty 

principle based on Heisenberg’s gamma-ray 

microscope. 

(Or) 

            b) Determine the radius of Bohr’s first orbit. 

23. a) Briefly discuss Schroedinger equation of motion for 

time independent and free particle. 

(Or) 

            b) Explain the concept of probability current density. 

24. a) Differentiate holonomic and non-holonomic       

    constraints. 

(Or) 

c) Explain the notations for displacement, velocity and 

momentum in terms of   generalized co-ordinates. 

25. a) Derive Hamilton’s equation of motion for a system 

of particles. Hence write down the equation of motion 

of a particle in a central force field in space.  

(Or) 

b) Discuss any two application of Hamiltonian 

equation of motion. 
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 KARPAGAM ACADEMY OF HIGHER EDUCATION, COIMBATORE-21 

III B.Sc. DEGREE EXAMINATIONS, SEP 2017 

MODEL EXAMINATION 

CLASSICAL AND QUANTUM PHYSICS (15PHU502) 

  

Part-A     (20 x 1 = 20) 

Choose the correct answer: 

1. The phenomena of interference, diffraction and polarization can only be explained based 

on _________. 

a) wave theory of light        b) photoelectric effect.        c)Compton effect  

            d)  quatum theory of light 

2. 2. The propagation constant (k) = 

a) λ     b)  2π/λ     c) 2πλ        d) λ /2π 

3. Based on quantum theory of light, the bundles of energy =_____________. 

a) hν     b) hλ     c) h/λ      d) h/ν 

4. In G.P.Thomson experiment the thickness of gold foil is ___________                              

a) 10-8 pm     b) 10-8 nm      c) 10-8 cm      d) 10-8 m    

5. In davisson and germer experiment the angle of incidence relative to the family of Bragg 

plane is ________ 

a) 65            b) 56            c)54           d)44   

6. The material particles behave like waves’ was first experimentally established 

by_________. 

a) De Broglie           b) Davisson & Germer                  c) Plancks         d) Einstein 

7. _______ is the measure of particle density. 

a) |E^2 |        b) |H^2 |         c) | ψ |          d) ψ2 

8. Based on the uncertainty principle, the minimum momentum (Pmin) = 

a) h/I      b) ħ         c ) ħl      d) l/ ħ 

9. What is the radius of Bohr’s first orbit (r)?. 

a)  ∆q          b) ∆p              c) r        d) ∆V  

10. The radius of the nucleus of any atom is of the order of ____ m. 

a) 10^-8 m      b) 10 ^-14 cm       c) 10^-14m      d) 10^-10 m  

11. The minimum energy of harmonic oscillator (Emin) =_____________. 

a) ½hω      b) hω       c) -hω      d) ω        

12. Rigid body has the following constraint 

a)Rheonomic      b) Holonomic      c) Unilateral        

d) Dissipative 

13. Which constrains has the deformable bodies 

a) Scleronomic         b) Holonomic        c) Unilateral  

d) Conservative 

14. ______________ constraint for gas filled hollow sphere 
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a) scleronomic       b) non-holonomic             c) bilateral        d) Dissipative. 

15. Rigid body has the following constraint 

a)Rheonomic      b) Holonomic      c) Unilateral        

d) Dissipative 

16. Which constrains has the deformable bodies 

a)Scleronomic         b) Holonomic        c) Unilateral      d) Conservative 

17. ______________ constraint for gas filled hollow sphere 

a) scleronomic       b) non-holonomic             c) bilateral        d) Dissipative. 

18. The Hamiltonian system be conservative (i.e.) __________. 

a) potential energy is co-ordinate dependent and not velocity dependent 

b) potential energy is co-ordinate independent and not velocity dependent 

c) potential energy is co-ordinate dependent and not velocity independent 

d) potential energy is co-ordinate independent and not velocity independent  

19. Hamiltonian scheme ____________ and _____________ are placed at equal footing 

a) Co-ordinate and co-ordinate          b) Co-ordinate and momenta  

            c) Momenta and momenta        d) Co-ordinate and time  

20. Which system is the cartesian co-ordinate along the horizontal wire? 

a) Fly-wheel     b) Simple pendulum    c) Hydrogen molecules     d) Beads of an abacus             

                                     Part-B    (5 x 8 =40) 

Answer all the questions briefly: 

21.a) What is called Matter waves? Ilustrate matter waves with any one experimental 

evidence. 

 

MATTER WAVES : DE-BROGLIE CONCEPT: 

In 1924, Lewis de-Broglie proposed that matter has dual characteristic just like radiation. His 

concept about the dual nature of matter was based on the following observations:- 

(a)    The whole universe is composed of matter and electromagnetic radiations. Since both are 

forms of energy so can be transformed into each other. 

(b)   The matter loves symmetry.  As the radiation has dual nature, matter should also possess 

dual character. 

According to the de Broglie concept of matter waves, the matter has dual nature. It means 

when the matter is moving it shows the wave properties (like interference, diffraction etc.) are 

associated with it and when it is in the state of rest then it shows particle properties. Thus the 
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matter has dual nature. The waves associated with moving particles are matter waves or de-

Broglie waves. 

The Davisson–Germer experiment was a physics experiment conducted by American 

physicists Clinton Davisson and Lester Germer in 1923–1927, which confirmed the de 

Broglie hypothesis. This hypothesis, advanced by Louis de Broglie in 1924, says that particles 

of matter such as electrons have wave-like properties. By demonstrating the wave–particle 

duality, the experiment was an important historical development in the establishment of 

quantum mechanics and of the Schrödinger equation. 

Davisson began work in 1921 to study electron bombardment and secondary electron 

emissions. A series of experiments continued through 1925. 

Experimental setup: 

 

     

 Davisson and Germer experiment 
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The experimental arrangement of Davisson Germer experiment is discussed below: 

 An electron gun was taken, which comprised of a tungsten filament F, coated with 

barium oxide and heated by a low voltage power supply. 

 Electrons emitted from this electron gun were accelerated to a desired velocity by 

applying suitable potential difference from a high voltage power supply. 

 These emitted electrons were made to pass through a cylinder perforated with fine holes 

along its axis, thus producing a fine collimated beam. 

 This beam produced from the cylinder is made to fall on the surface of a nickel crystal. 

This leads to scattering of electrons in various directions. 

 The intensity of the beam of electrons is measured by the electron detector which is 

connected to a sensitive galvanometer (to record the current) and can be moved on a circular 

scale. 

 The intensity of the scattered electron beam is measured for different values of angle of 

scattering, θ (angle between the incident and the scattered electron beams) by moving the 

detector on the circular scale at different positions. 

 Observations of Davisson Germer experiment: 

Observations of Davisson Germer experiment are listed below: 

 By varying accelerating potential difference, we finally obtained the variation of the 

intensity (I) of the scattered electrons with the angle of scattering, θ. The accelerated voltage 

was varied from 44V to 68 V. 

 A strong peak was noticed in the intensity (I) of the scattered electron for an accelerating 

voltage of 54V at a scattering angle θ = 50º. 

 This peak can be explained as a result of the constructive interference of electrons 

scattered from different layers of the regularly spaced atoms of the crystals. 

 The wavelength of matter waves was calculated with the help of electron diffraction, 

which measured to be 0.165 nm. 

https://byjus.com/physics/moving-coil-galvanometer/
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Co-relating Davisson Germer experiment and de Broglie relation: 

According to de Broglie, wavelength λ associated with electrons is given by, 

λ = h /p 

λ =   1.22754√ = 0.167 nm 

Thus, Davisson Germer experiment confirms the wave nature of electrons and the de Broglie 

relation. 

(Or) 

 

(b)Explain wave and Group velocity. Obtain an   expression for group velocity. 

 

The phase velocity is: vp = ω / k. The function ω(k), which gives ω as a function of k, is 

known as the dispersion relation. If ω is directly proportional to k, then the group velocity is 

exactly equal to the phase velocity. A wave of any shape will travel undistorted at 

this velocity. 

The group velocity of a wave is the velocity with which the overall shape of the waves' 

amplitudes—known as the modulation or envelope of the wave—propagates through space. 

Relation between wave velocity and Group velocity: 

The wave velocity is given by v = vλ 

= 2πv λ/ 2π 

v=w/k 

v=w/k = v p  

where w = 2πv = angular frequency and 2π / λ wave number. 

This shows that the phase velocity of the de Broglie wave is equal to the wave velocity 

and hence phase velocity is also known as wave velocity 

Phase velocity is defined by 

V p = w/k  => w =kv p  

The group velocity of a de Broglie wave is defined by 

https://en.wikipedia.org/wiki/Wave
https://en.wikipedia.org/wiki/Velocity
https://en.wikipedia.org/wiki/Envelope_(waves)
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Vg=dw / dk  

Putting the value of w = kv P in equation (2), we get 

Vg = d / dk (kv p) 

Vg=v p +k dv p /dk 

Putting the value of k 

 

Now                              d (1 / λ) = – 1 /λ2 dλ 

  

Vg =vp – λ dv p /d λ 

This is a relation between the phase velocity and group velocity for a dispersive medium.  

For normal dispersion the quantity dv p /dλ  is a positive quantity. Therefore for 

normal  dispersion, group velocity is less than the phase velocity. For anomalous dispersion, 

the quantity Dv P / dλ is a negative quantity, the group velocity is greater than the phase 

velocity. 

For non-dispersive medium vP =w /k =constant .. dv p d =0 . Hence vg = v p  · Hence for 

nondispersive medium the group velocity is equal to the phase velocity. For electromagnetic 

waves in vacuum, the speed of light (c) is constant. Therefore group velocity vg and the phase 

velocity v, of the light radiations are same 

 

22.a)Prove the validity of Heisenberg’s uncertainty principle based on Heisenberg’s 

gamma-ray microscope. 

  

Heisenberg’s Gamma ray microscope.: 

             Heisenberg had a peculiar approach towards the nature of physics. He believed that 

the concepts which are not defined on the basis of actual or possible experimental 

http://www.physics-assignment.com/wp-content/uploads/2012/11/193.png
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observations should have no place in science e.g. he discarded the concept of orbits in the 

Bohr's atomic model since they were never observed in the laboratory. 

            Heisenberg has expressed his view in his paper on uncertainty principle (1927): If one 

wants to be clear about what is meant by "position of an object," for example of an electron..., 

then one has to specify definite experiments by which the "position of an electron" can be 

measured; otherwise this term has no meaning at all. 

            To examine the uncertainty principle, W. Heisenberg proposed a hypothetical 

experiment (thought experiment or a gedanken experiment) on the Gamma Ray Microscope 

which was later modified by N. Bohr. Usual optical parts used in the conventional light 

microscope cannot focus the gamma-rays used in the experiment. Hence it was not possible to 

carry out such an experiment in practice at that time. However, the experiment can be 

imagined and it enables to illustrate the underlying principle. 

                  The aim of gamma-ray microscope experiment is to detect and measure the 

position of a microscopic point particle like an electron as exactly as possible. The apparatus 

consists of a microscope which uses high-energy and high frequency (very short wavelength) 

electromagnetic radiation like gamma rays. The radius of the atom is of the order of 10 − 11m. 

For the tolerance (an uncertainty) of about 10% (i.e. 10 − 12m) in the determination of the 

position, the wavelength of radiation needs to be of the order of 10 − 12m. Gamma rays are 

having wavelength in that region. Hence it was necessary and appropriate to employ gamma 

rays to “see” the electron with necessary resolving power of the microscope. 

                A gamma ray microscope has a source of radiation in the form of a monochromatic, 

narrow beam of gamma rays to 'illuminate' the electron. A beam of gamma ray photons 

traveling along the y axis is incident on the free electron at rest kept directly under the center 

of the microscope's objective lens. An imaginary cone can be drawn with the electron at its 

apex which subtends an angle 2θ with the diameter of the circular lens as its base. The gamma 

ray photon which is scattered into any angle within the cone of angle 2θ enters the objective 

lens and enables to see the electron.The incident and scattered gamma ray photons are shown 



B.Sc Physics 
2017-2018(ODD) MODEL EXAM–ANSWER KEY CLASSICAL & QUANTUM        
 
  PHYSICS(15PHU502)        

                                                                                                     
 

N.GEETHA KAHE, COIMBATORE-21 
ASSISTANT PROFESSOR 
DEPARTMENT OF PHYSICS 

Page 8 of 27 
 

by wave packets in the figure. 

 

 

Fig. Thought Experiment of Gamma Ray Microscope 

 

           After striking the electron, the gamma ray photon gets scattered and the position of the 

electron gets disturbed due to its impact. The very act of measurement introduces uncertainty 

in the determination of position of electron. Since a gamma ray photon acts like a particle, the 

interaction between the gamma ray photon and the electron can be considered as a collision 

between two particles as in the Compton scattering experiment. Due to the gain in momentum 

obtained from the gamma ray, the electron recoils. The direction along which the electron 

recoils may be taken as the x-axis. The image of the electron as seen in the microscope is a 

diffraction pattern consisting of a central bright disc surrounded by alternate dark and bright 

rings. 

The electron may be found anywhere within the central disk. The uncertainty in the position 

of the electron is having a value equal to ∆x, the diameter of the central disc. 
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The total momentum p of the incident gamma ray photon is related to its wavelength λ by the 

formula 

p=h/λ,where h is Planck's constant. 

In the scattering process the total momentum, p of the scattered gamma ray photon is reduced 

and the wavelength is changed accordingly. 

According to the Rayleigh’s criterion in physical optics, the resolving power of a microscope 

(i.e. the minimum distance ∆x between two points in an object that is necessary to distinguish 

their images or see as separate in a microscope) is the distance between the peak intensity and 

the first minimum in the diffraction pattern and it is given by the formula, 

Resolving Power = R.P. = ∆x = λ /2sin θ 

where 2θ is the angle subtended by the electron with the objective lens . The maximum value 

of the scattering angle of gamma ray photon (semi-vertical angle of the cone θ) occurs in two 

extreme cases- when the gamma ray gets diffracted exactly along the right or left edges of the 

cone. 

If the gamma ray gets diffracted to the right edge of the cone, the total momentum in the x 

direction would be given by the sum of momenta of electron and gamma ray as follows 

= the electron's momentum p1x + the gamma ray's momentum in the x direction 

= p1x + (h sin θ)/λ1 

where λ1 is the wavelength of the gamma ray diffracted to right edge 

In the other extreme case, the observed gamma ray photon gets diffracted just along the left 

edge of the cone (i.e. scattered backward). Then the total momentum in the x direction is 

given by 

= p2x -(h sin θ)/λ2, where λ2 is the wavelength of the gamma ray diffracted to left edge. 

However, according to the conservation of momentum, the component along x axis of final 

momentum in each case must equal the component along the x axis of initial momentum. 

Therefore, the components along x axis of final momenta are equal to each other. 

p1x + (h sin θ)/λ1 = p2x - (h sin θ)/λ2 
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If θ is small, then the wavelengths in both possibilities are approximately equal. Then 

λ1 ~ λ2 ~ λ 

 

p2x - p1x = ∆px ~ 2h sin θ/λ 

 

However, the formula for Resolving Power according to the Rayleigh's criterion is 

∆x = λ/(2 sin θ) 

 

∆px ~ h/∆x 

or 

∆x∆px ~ h 

Thus there is a reciprocal relationship between the minimum uncertainty ∆x in the measured 

position of the electron along the x axis and the uncertainty ∆px in its momentum in the 

direction. If the x position is measured more precisely i.e. ∆x is made minimum then ∆px 

becomes maximum i.e. measurement of value of p is more uncertain and vice a versa. 

However the product ∆x∆p remains constant of the order of value of h. 

The thought experiment shows that electron's position and momentum obey the uncertainty 

relation which Heisenberg had derived mathematically. 

The experiment shows that to measure the properties of a particle such as an electron, a 

measuring device usually light or radiation is needed. But the energy in the radiation affects 

the particle being observed. At the subatomic level the act of observing alters the reality being 

observed and thus it imposes limits on the physical knowledge 
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(Or) 

(b) Determine the radius of Bohr’s first orbit. 

 

If ∆x and ∆px are the uncertainties in the simultaneous measurements of position and 

momentum of the electron in the first orbit, then from uncertainty principle 

∆x∆px = Ћ 

Where Ћ = h/2∏ 

Or    ∆px = Ћ /∆x                                                                 (1) 

As kinetic energy is given as 

K = p2/2m 

Then uncertainty in K.E is 

∆K =∆p2
x/2m 

Put equation (i) in above equation 

∆K= Ћ2 /2m(∆x)2 (2) 

As potential energy is given by 

∆V= -1/4∏ε0 Ze2/∆x                                                      (3) 

The uncertainty in total energy is given by adding equations (2) and (3), that is 

∆E= ∆K+∆V 

= Ћ2 /2∏(∆x)2 –Ze2/4∏ε0∆x 

If ∆x = r= radius of Bohr’s orbit, then 

∆E= Ћ2 /2mr2 –Ze2/4∏ε0r                                                   (4) 

The Uncertainty in total energy will be minimum if 
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d(∆E)/dr=0 and d2((∆E)/dr2 is positive 

Differentiating equation (4) w.r.t. r, we get 

d(∆E)/dr=0= – Ћ 2/mr3+Ze2/4π ε0r
2 (5) 

For minimum value of ∆E 

d(∆E)/dr=0= – Ћ 2/mr2+Ze2/4π ε0r
2 

or                  Ze2/4π ε0r
2= Ћ 2/mr3 

Or                       r=4π ε0 Ћ
 2/me2 (6) 

Further differentiating equation (5), we get 

d2(∆E)/dr2=3 Ћ 2/mr4-2Ze2/4π ε0r
3 

By putting value of r from equation (6) in above equation, we get positive value of 

d2(∆E)/dr2 

Therefore equation (4) represents the condition of minimum in the first orbit. 

Hence, the radius of first orbit is given by 

r=4π ε0Ћ
 2/me2=0.53 angstrom                                  (For H atom Z=1) 

Put value of r in equation (4), we get 

Emin= -13.6 e V 

This value is same as determined by using Bohr’s theory. 

Therefore, with the help of Heisenberg’s uncertainty principle, one can determine the radius 

of the Bohr’s first orbit. 

 

http://www.winnerscience.com/quantum-physics/heisenberg-uncertainty-principle/
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23.a) Briefly discuss Schroedinger equation of motion for time independent and free 

particle. 

We start with the one-dimensional classical wave equation,  

 

(10) 

 

By introducing the separation of variables  

 

(11) 

 

we obtain  

 

(12) 

 

If we introduce one of the standard wave equation solutions for  such as  (the 

constant can be taken care of later in the normalization), we obtain  

 

(13) 

 

Now we have an ordinary differential equation describing the spatial amplitude of the matter 

wave as a function of position. The energy of a particle is the sum of kinetic and potential 

parts  
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(14) 

 

which can be solved for the momentum, , to obtain  

 

(15) 

 

Now we can use the de Broglie formula (4) to get an expression for the wavelength  

 

(16) 

 

 

The term  in equation (13) can be rewritten in terms of  if we recall 

that  and .  

 

(17) 

 

When this result is substituted into equation (13) we obtain the famous time-independent 

Schrödinger equation  

http://vergil.chemistry.gatech.edu/notes/quantrev/node6.html#eq:deBroglie
http://vergil.chemistry.gatech.edu/notes/quantrev/node8.html#eq:seq1
http://vergil.chemistry.gatech.edu/notes/quantrev/node8.html#eq:seq1
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(18) 

 

which is almost always written in the form  

 

(19) 

 

 

This single-particle one-dimensional equation can easily be extended to the case of three 

dimensions, where it becomes  

                                

(20) 

 

A two-body problem can also be treated by this equation if the mass  is replaced with a 

reduced mass . 

It is important to point out that this analogy with the classical wave equation only goes so far. 

We cannot, for instance, derive the time-dependent Schrödinger equation in an analogous 

fashion (for instance, that equation involves the partial first derivative with respect to time 

instead of the partial second derivative). In fact, Schrödinger presented his time-independent 

equation first, and then went back and postulated the more general time-dependent equation. 
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(Or) 
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b)Explain the concept of probability current density. 
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24.a) Differentiate holonomic and non-holonomic  constraints. 

The constraints can be classified in to the following categories: 

(i) Holonomic and non-holomonic constraints (ii) Scleronomic and rhenomic constraints   

Holonomic constraints:-Constraints are said to be holomonic if the conditions of all the 

constraints can be expressed as equations connecting the coordinates of the particles and 

possible time in the form  

f ( r1,r2,r3……..,rn,t) =0 (1.1) 

Where r1, r2, r3……..,rn represent the position vectors of the particles of a system and t the 

time. In Cartesian coordinates equation (1.1) can be written as, 

f (x1, y1, z1; x2, y2, z2,……… xn, yn, zn,t) =0 (1.2) 

 

Examples of holonomic constraints:-  

1. The constraints involved in the motion of rigid bodies. In rigid bodies, the distance 

between any two particles is always constant and the condition of constraints are expressed 

as- 

ri - rj
2 - Cij

2 =0 (1.3) 

2. Constraints involved in the motion of  the point mass of a simple pendulum. 

3. The constraints involved when a particle is restricted to move along any curve (circle or 

ellipse) or in a given surface. 

Non-holonomic constraints: - If the conditions of the constraints can not be expressed as 

equations connecting the coordinates of particles as in case of holomonic, they are called as 

non-holomonic constraints. The conditions of these constraints are expressed in the form of 

inequalities. The motion of the particle placed on the surface of sphere under theaction of the 

    

     

  
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gravitational force is bound by non-holonomic constraints, for it can be expressed as an 

inequality,  r2 - a2  0. 

Examples of non-holonomic constraints 

1. Constraints involved in the motion of a particle placed on the surface of  a solid sphere 

2. An object rolling on the rough surface without slipping.  

3. Constraints involved in the motion of gas molecules in a container. 

 

(Or) 

b) Explain the notations for displacement, velocity and momentum in terms of   

generalized co-ordinates. 

 

 

(i)  Generalised Displacement – A small displacement of an N particle system is defined by 

changes ri in position co-ordinates ri ( i =1,2,3….,N) with time ‘t’ held fixed. An arbitrary 

virtual displacement ri,   remembering that ri ’s are function of generalised co-ordinates i.e. ri 

= ri (q1, q2,….. q3N,t), can be written by using Euler’s theorem as, 

  

(1.5) 

  

qj is called the generalised displacement or  virtual displacement. If qj is an angle co-

ordinate, qj is an angular displacement. 

(ii) Generalised velocity – The time derivative of the generalised qk ,is called generalised 

velocity associated with particular co-ordinates qk for an unconstrained system, 

ri = ri (q1, q2,….. q3N,t), 

Then,   

 

  

 

ri 

qj 

 

qj 

 

ri =  
3N 

j =1 

  

  

  

ri 

qj 

 

 qj 

 

 
3N 

j =1 

  ri 

t 

 

 

 
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(1.6) 

  

If N-particle system contains k-constraints, the number of generalised co-ordinates are 3N-k=f  

and, 

(1.7) 

 

 

(iii) Generalised Acceleration- components of generalised acceleration are obtained by 

differentiating equation (1.6) or (1.7) w.r.t. time and finally we obtain the expression  

 

 

 

 

(1.8) 

 

From the above equation it is clear that the cartesian components are not linear functions of 

components of generalised acceleration qj alone, but depend quadratically and linearly on 

generalised velocity component qj as well. 

 
  

ri 

qj 

 

 qj 

 

  ri =  
f 

j =1 

  
 

ri 

t 

 

 

 
 
ri 

qj 

 

 qj 

 

  ri =  
3N 

j =1 

 
  

 
3N 

j =1 
 
3N 

k =1 

+ 
    2ri 

qj qk 

 

 

qjqk 
  

+ 2  
3N 

j =1 

    2ri 

qj t 

 

 

qj 
      2ri 

     2t 

 

 

+ 

 
 

 

 

 
  ri =  
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(iv) Generalised Force – Let us consider the amount of work done W by the force Fi 

during an arbitrary small displacement ri  of the system  

 

 

 

 

(1.9) 

 

        (1.10) 

Where,  

 

Here we note that Qj depends on the force acting on the particles and on the co-ordinate qj and 

possibly on time t. Therefore, Qj is called the generalised force. 

 

25.a) Derive Hamilton’s equation of motion for a system of particles. Hence write down the 

equation of motion of a particle in a central force field in space.  

 

 

Hamilton's Equations: 

The equations defined by 

  

 

(1) 

i 

i 

W =         Fi .ri  =         Fi .                 qj =                   Fi .             qj  
N 

i 

   
N 

i=1 

  
3N 

j=1 

ri 

qj 

 

 
N 

i=1 
 
3N 

j=1 

ri 

qj 

 
 

 
3N 

i=1               =         Qj .qj 

 
 N 

j=1 

ri 

qj 

 
 

Qj      =                         Fi . 

 
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(2) 

where  and  is fluxion notation and  is the so-called Hamiltonian, are 

called Hamilton's equations. These equations frequently arise in problems of celestial 

mechanics. 

The vector form of these equations is 

 

 

 

(3) 

 

 

 

(4) 

(Zwillinger 1997, p. 136; Iyanaga and Kawada 1980, p. 1005). 

Another formulation related to Hamilton's equation is 

 

(5) 

where  is the so-called Lagrangian. 

 

 

 

 

 

 

 

 

 

 

 

http://mathworld.wolfram.com/Fluxion.html
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                                                                  (Or) 

b) Discuss any two application of Hamiltonian equation of motion. 

 

APPLICATION OF HAMILTONIAN EQUATION OF MOTION TO  

(i)SIMPLE PENDULUM: 
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(II)LINEAR HARMONIC OSCILLATOR: 
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