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Scope: Mathematics is the back-born of science and engineering. So, it is necessary for a
physics student to be familiar with different methods in mathematics. Objectives: The
objective of this paper is to give a basic idea about different methods of mathematics, used in
Physics.

UNIT - | Definition of vector space — Linear dependence — Linear independence — Basis —
Dimension of a vector space — Representation of Vectors and linear operators with respect to
basis — Schmidt orthogonalization process — Inner product. Tensors : Transformation of
coordinates — Summation convention — Contravariant Tensor — Covariant Tensor — Mixed
Tensor — Rank of a Tensor — Kronecker delta symbol — symmetric and antisymmetric tensors
— Invariant tensors.

UNIT - Il Functions of a complex variable — single and multivalued functions — Cauchy-
Riemann differential equation — analytical — line integrals of complex function — Cauchy’s
integral theorem and integral formula — derivatives of an analytic function — Liouville’s
theorem - Taylor’s series — Laurent’s series - Residues and their evaluation - Cauchy’s
residue theorem — application to the evaluation of definite integrals.

UNIT - Ill Fourier Transform — Properties of Fourier transform — Fourier transform of
derivatives — Fourier sine and cosine transforms of derivatives — Fourier transform of
functions of two or three variables — Finite Fourier transforms — Simple Applications of FT
Laplace transform — Properties of Laplace transforms — Laplace Transform of derivative of a
function — Laplace transform of integral — Laplace transform of periodic functions - Inverse
Laplace Transform — Fourier Mellin Theorem - Properties of inverse Laplace Transform —
Convolution theorem — Evaluation of Laplace Transform using Convolution theorem.

UNIT - IV Fourier series — Dirichlet’s theorem — change of interval — complex form —
Fourier series in the interval (0, T) — Uses of Fourier series - Legendre’s polynomials and
functions — Differential equations and solutions — Rodrigues formula — Orthogonality —
relation between Legendre polynomial and their derivatives — recurrence relations — Lagurae
Polynomials — recurrence relations

UNIT - V Bessel’s functions — differential equation and solution — generating functions —
recurrence relations — Bessel function of second order — Spherical Bessel function - Hermite
differential equation and Hermite polynomials — Generating function of Hermite polynomials
— Recurrence formulae for Hermite polynomials — Rodrigue’s formula for Hermite
Polynomials — Orthogonality of Hermite Polynomials — Dirac’s Delta Function.
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MATHEMATICAL PHYSICS

LECTURE PLAN UNIT - 1

2017-2018

S.No | Lecture Topics to be covered Support material
Duration
(Hr)

1 1 Definition of vector space — Linear dependence — Linear | T1(75-76)
independence — Basis — Dimension of a vector space

2 1 Representation of Vectors and linear operators with respect | T1(67-69)
to basis

3 1 Schmidt orthogonalization process — Inner product T1(78-79)

T1(80)

4 1 Tensors : Transformation of coordinates — Summation T1(188-189)
convention — Contravariant Tensor — Covariant Tensor T1(191-192)

5 1 Mixed Tensor — Rank ofa Tensor T1(193-194)

6 1 Kronecker delta symbol — symmetric and antisymmetric T1(189-190)
tensors T1(204-205)

7 1 Invariant tensors. T1(210-211)

8 1 Revision

9 1 Possible big mark questions discussion

10 1 Possible multiple choice questions discussion

11 1 Unit test

12 1 Semester question discussion on particular unit

Total no.of Hours planned for unit —I 12 hrs
Text Book

1. Satya Prakash.,2002. Mathematical Physics , 4th edition, S.Chand & Co, New Delhi.
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LECTURE PLAN UNIT - 1l

2017-2018

S.No | Lecture Topics to be covered Support material
Duration
(Hr)

1 1 Functions of a complex variable — single and multivalued T1(293-294)
functions

2 1 Cauchy-Riemann differential equation — analytical — line T1(269-297)
integrals of complex function T1(305-306)

3 1 Cauchy’s integral theorem and integral formula T1(309-310)

T1(318-319)
4 1 derivatives of an analytic function T1(319-320)
T1(323-324)

5 1 Liouville’s theorem - Taylor’s series T1(323-324)

6 1 Laurent’s series - Residues and their evaluation T1(324-326)

7 1 Cauchy’s residue theorem — application to the evaluation of | T1(340-341)
definite integrals

8 1 Revision

9 1 Possible big mark questions discussion

10 Possible multiple choice questions discussion

11 Unit test

12 Semester question discussion on particular unit

Total no.of Hours planned for unit —II 12
Text Book

1. Satya Prakash.,2002. Mathematical Physics , 4th edition, S.Chand & Co, New Delhi.

REFERENCES
1. Gupta.B.D., 2002, .Mathematical Physics, 2nd edition, Vikas publishing company, New Delhi.
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LECTURE PLAN UNIT - Il

S.No | Lecture Topics to be covered Support material
Duration
(Hr)
1 1 Fourier Transform — Properties of Fourier transform — T1(665-672)
Fourier transform of derivatives
2 1 Fourier sine and cosine transforms of derivatives — Fourier | T1(673-676)
transform of functions of two or three variables T1(680)
3 1 Finite Fourier transforms — Simple Applications of FT T1(680-683)
4 1 Laplace transform — Properties of Laplace transforms — T1(689-697)
Laplace Transform of derivative ofa function
5 1 Laplace transform of integral — Laplace transform of T1(689-697)
periodic functions - Inverse Laplace Transform T1 (701-702)
6 1 Fourier Mellin Theorem - Properties of inverse Laplace T1(709-710)
Transform
7 1 Convolution theorem — Evaluation of Laplace Transform T1(712-714)

using Convolution theorem

8 1 Revision
9 Possible big mark questions discussion
10 Possible multiple choice questions discussion
11 Unit test
12 Semester question discussion on particular unit
Total no.of Hours planned for unit —I11 12
Text Book

1. Satya Prakash.,2002. Mathematical Physics , 4th edition, S.Chand & Co, New Delhi.
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MATHEMATICAL PHYSICS

LECTURE PLAN UNIT - IV

2017-2018

S.No | Lecture Topics to be covered Support material
Duration
(Hr)

1 1 Dirichlet’s theorem — change of interval — complex form | T1(527-531)
recurrence relations

2 1 Fourier series inthe interval (0, T) T1(541-543)

3 1 Uses of Fourier series - Legendre’s polynomials and T1(543)
functions T1(411-415)

4 1 Differential equations and solutions T1(411-415)

5 1 Rodrigues formula — Orthogonality T1(418-419)

6 1 Relation between Legendre polynomial and their T1(421-422)
derivatives

7 1 Lagurae Polynomials — recurrence relations T1(485-491)

8 1 Revision

9 1 Possible big mark questions discussion

10 1 Possible multiple choice questions discussion

11 1 Unit test

12 1 Semester question discussion on particular unit

Total no.of Hours planned for unit -1V 12
Text Book

1. Satya Prakash.,2002. Mathematical Physics , 4th edition, S.Chand & Co, New Delhi.

REFERENCES

1. Gupta.B.D., 2002, .Mathematical Physics, 2nd edition, Vikas publishing company, New Delhi.




17PHP104

MATHEMATICAL PHYSICS

Lecture Plan-V

2017-2018

S.No | Lecture Topics to be covered Support material
Duration
(Hr)

1 1 Bessel’s functions — differential equation and solution T1(444-445)

2 1 Generating functions — recurrence relations — Bessel T1(457-458)
function of second order 446-447

3 1 Spherical Bessel function T1 (472)

4 1 Hermite differential equation and Hermite polynomials T1(475-477)

5 1 Generating function of Hermite polynomials — Recurrence | T1(480-481)
formulae for Hermite polynomials

6 1 Rodrigue’s formula for Hermite Polynomials T1(482-483)

7 1 Orthogonality of Hermite Polynomials — Dirac’s Delta T1(735-736)
Function

8 1 Revision

9 1 Possible big mark questions discussion

10 1 Possible multiple choice questions discussion

11 1 Unit test

12 1 Semester question discussion on particular unit

Total no.of Hours planned for unit -V 12
Text Book

1. Satya Prakash.,2002. Mathematical Physics , 4th edition, S.Chand & Co, New Delhi.

REFERENCES
1. Gupta.B.D., 2002, .Mathematical Physics, 2nd edition, Vikas publishing company, New Delhi.
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2017 (ODD) Vector Space

UNIT - | Definition of vector space — Linear dependence — Linear independence — Basis —
Dimension of a vector space — Representation of Vectors and linear operators with respect to
basis — Schmidt orthogonalization process — Inner product. Tensors : Transformation of
coordinates — Summation convention — Contravariant Tensor — Covariant Tensor — Mixed
Tensor — Rank of a Tensor — Kronecker delta symbol — symmetric and antisymmetric tensors
— Invariant tensors.

Definition of Vector Space

A vector space V is a set that is closed under finite vector addition and scalar multiplication.
The basic example is »-dimensional Euclidean space R", where every element is represented
by a list of »real numbers, scalars are real numbers, addition is component wise, and scalar
multiplication is multiplication on each term separately.

For a general vector space, the scalars are members of a field , in which case V is called a
vector space over F.,

Euclidean n-space R" is called a real vector space, and € is called a complex vector space.

In order for Vto be a wvector space, the following conditions must hold for all
elements X. Y. ZeV and any scalars r. s € F:

1. Commutativity:

X+Y¥Y=Y+X. 1)
2. Associativity of vector addition:

X+Y)+Z=X+(Y+ 7). @)
3. Additive identity: For all X,

0+X=X+0=X. (3)
4. Existence of additive inverse: For any X, there exists a =X such that

X+ (-X)=0. (4)
5. Associativity of scalar multiplication:

risX)=(rs) X. (5)
6. Distributivity of scalar sums:

F+sX=rX+sX (6)
7. Distributivity of vector sums:

rX+Y)=rX+rY. (7)
8. Scalar multiplication identity:

1 X=X,

Linear Independence and dependence
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Let S ={V1,V2,---,Vk} and span(S) =W . Is it possible to find a smaller (or even smallest)
set, for example, $”={V,,V,,....V, |, such that
span(S) =W = span(S*)

To answer this question, we need to introduce the concept of linear independence and linear
dependence.

Definition of linear dependence and linear independence:

The vectors V1’V2,---’Vk in a vector space V are said to linearly dependent if there exist

constants, C]_ICZI”’ICk ,not all 0, such that

CV, +CV, +---+CV, =0

V1 ) V2 yeooy Vk are linearly independent if

cV, +C\V, +---+¢V, =0 =c¢ =¢,=---=¢, =0,
The procedure to determine if V;,V,,...,V, are linearly dependent or linearly independent:

1. Formequation CVy +CV, +---+CV, = 0 , Which lead to a homogeneous system.

2. If the homogeneous system has only the trivial solution, then the given vectors are
linearly independent; if it has a nontrivial solution, then the vectors are linearly
dependent.

1 0 0

e, =0 e =1|e=|0] and S=1{e,e, e} ae e,e, and e, linearly
0 0 1

independent?

[solution:]
1 0 0 1

0 0
ce +c,e,+ce,=¢|0(+cC,|1|+¢c,/0|=/0 1 Ojc,|=0
0 0 11 |0 0 1
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C, O

— c, |=|O
C, O

Therefore, e ,e, and e, are linearly independent.

1 -2 8
vi=|2], V,=| 1 | vy=|6 | Arev,v, and v, linearly independent?
3 1 10
[Solution:]
1 -2 8 1 -2 8¢
CV, +C,V, +CV; =C | 2 |+C,| 1 |+C5| 6 |=|2 1 6 |c,[=0
3 1 10 |3 1 10fc,
C, 4
— C, =t| — 2 ,t e R )
C; — a1

Therefore, v,,v, and v, are linearly dependent.

Determine whether the following set of vectors in the vector space consisting of all 2x2
matrices is linearly independent or linearly dependent.

i<l 45 6

[solution:]

21 30 1 0f 100
clv1+czv2+(:3v3:c10 1+c2 5 1 +032 ol=lo ol

Thus,
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Department of Physics



M Sc Physics Unit -1 Mathematical Physics-17PHP104

2017 (ODD) Vector Space
2¢,+3c,+ ¢, =0 2] [3] [1] [O]
C, =0 1 0 0| |0
Col |+C,| _|+Cs| | =
2c, +2¢, =0 < 0 2 2| |0}
c,+ G, =0 1] 1] 0] |0
The homogeneous system is
(2 3 1] [0 ]
Cl
1 0 O 0
C, |=
0O 2 2 0
C3
1 1 O | | O]
The associated homogeneous system has only the trivial solution
[, 0
c, |=|0
 C, 0

Therefore, v,,v, and v, are linearly independent.

Determine whether the following set of vectors in the vector space consisting of all
polynomials of degree < n is linearly independent or linearly dependent.

S =1{v,,V,,v,}= {x2 +X+2,2%% + X, 3% +2x+2}_
[solution:]

CV, +CV, +C,V, = cl(x2 +X+ 2)+ C, (2x2 T x)+ CS(3X2 +2X+ 2): 0,
Thus,

c,+2c, +3c, =0 1 2 3] |0
C,+ C,+2c, =0  C|li+C)|1|+¢C52|=|0}|
2c, + +2c, =0 2 0 2 0

The associated homogeneous system is
1 2 3jc 0

1 1 2jc,|=|0
2 0 2|c;| |O

The homogeneous system has infinite number of solutions,
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C, 1
c, |=t| 1| teR.
C, -1

Therefore, v,,v, and v, are linearly dependent since

tv, +tv, —tv, =0, teR.

Note:
1 -2 8

In  the examples with Vi=|[2}V,=| 1 |, Vvyz=|6] or  with
3 1 10

S = {Vl,Vz,V3}: {XZ +X+2,2X5 + X, 3% + 2X+2}, v,v, and v, are linearly

dependent. Observe that v, in both examples are linear combinations of v,,v,,

8 1 -2
V=6 [=42|-2 1 |=4v,-2v,
10 3 1

and
v, =3 +2x+2=(x2 +x+2)+(2x2 +x):v1+v2,

As a matter of fact, we have the following general resul.
Important result:
The nonzero vectors Vi, V,,...,V ina vector space V are linearly dependent if and only if one

of the vectors Vj , J 2 2 is a linear combination of the preceding vectors VYo Vi,
Note:

Every set of vectors containing the zero vector is linearly dependent. That is, Vi;Vy,...,Vy are

k vectors in any vector space and V; is the zero vector, then V;,V,,...,V, are linearly
dependent.

Basis and Dimension

Definition of basis:

The vectors V,,V,,...,V, ina vector space V are said to form a basis of V if

Dr. S. Esakki Muthu Karpagam Academy of Higher Education Page 50f 24
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@) ViV, Ve span V (ie., SPAN(VL, Vs, ...V, ) =V,

(b) Vi,Vy,...,Vy are linearly independent.

1 0 0

e =|0], e,=|1| e=|0], and S={e,e,,&f Ae e,.e, and e, a basis in
0 0 1

R®?

[solution:]

e,e, and e, forma basis in R® since

@ span(S) =span(e,,e,,e;) = R’ (see the example in the previous section).
(b) e,,e, and e, are linearly independent (also see the example in the previous section).

1 0 3
vV, = y V, = , Vg = .Are v,,v, and v, abasis in R??
' {O:| ’ |:1:| ’ |:4:| " ’

[solution:]

v,,V, and v, are not a basis of R? since v,,v, and v, are linearly dependent,
3v, +4v, —v, =0,

Note that span (v,,V,,V;) = R?.

1 -2 8
Vi={2 Vo= 1 |, Va=| 6| Arev,v,and v, abasisin R*?
3 1 10
[solution:]
Dr. S. Esakki Muthu Karpagam Academy of Higher Education Page 60f 24
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v,,V, and v, are nota basis in R® since v,,v, and v, are linearly independent,

8 1 -2
V=6 |=42|-2 1 |=4v,-2v,
10 3 1
Let
1 1 1
v,=[2|,v,=|0|, v,=[1] and S={v,,v,,v,}
1 2 0
Are S a basis in R®?
[solution:]
@)
a
span(S) = R® < For any vector v=|b | R®, there exist real numbers c,,c,,c, such
c
that
a 1 1 1
V=|b|=c|2|+C,| 0 |+C4{1|=CV, +C,V, +CV,
C 1 2 0

< Wwe need to solve for the linear system

= N
o o
N =
[l
o

1
0
2

o -
()
w
(ep)

The solution is

_—2a+2b+c . _a-b+c : _da-b-2c

1 3 12 3 U} 3
Thus,
Dr. S. Esakki Muthu Karpagam Academy of Higher Education Page 70f 24
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—-2a+2b+c a-b+c 4da—-b-2c
V= — 3 v, + 3 v, + — Vs

That is, every vector in R® can be a linear combination of v,,v,,v, and span(S) = R3.
(b) Since

c,+C,+¢; | |0
C,V, +CV, +Cv, =| 2¢,+¢; |=|0| < ¢ =¢c,=¢,=0
c, +2¢, 0

V14 V5, Vs are linearly independent.

By (a) and (b), V1s V21 V3 are a basis of R®.

Important result:

If S= {Vl,Vg,---aVk} is a basis for a vector space V, then every vector in V can be written in

anunique way as a linear combination of the vectors in S.

1 0 0
e,=|0f, e =1} e=|0| and S:{el’eZ'ES}.S is a basis of R®. Then, for
0] 0 1

a
any vector v=|b |,

c
a 1 0 0
v=|b|=al0|+b|/1|+c 0|=ae +be, +ce,
Cc 0 0 1
Dr. S. Esakki Muthu Karpagam Academy of Higher Education Page 8of 24
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is uniquely determined.

Important result:

Let S= {Vl,Vg,...,Vk} be a set of nonzero vectors in a wvector space V and let
W = Span{Vl,VZ yeoor Vi } Then, some subset of S is a basis of W.

How to find a basis (subset of S) of W:

There are two methods:

Method 1:

The procedure based on the proof of the above important result.

Method 2:

Step 1: Form equation
c,V, +C,V, +---+¢C, Vv, =0

Step 2: Construct the augmented matrix associated with the equation in step 1 and transform
this augmented matrix to the reduced row echelon form.

Step 3: The vectors corresponding to the columns containing the leading 1°s form a basis. For

example, if k = 6 and the reduced row echelon matrix is

1 x x x x x1]0
0O 0 1 x x x |0
O O 0 1 x x1|0
O O O O O 00|
'O 0 0 O 0 0|0

then the 1°st, the 3’nd, and the 4’th columns contain a leading 1 and thus

V11 V3, Vy are abasisof W = Span{Vl,Vz’---,Ve}-

Dr. S. Esakki Muthu Karpagam Academy of Higher Education Page 9of 24
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Let
f___O_______\
S=1{e.e,a,6,a,}=100|1][/3]|0/| 3|
10]10]10]|1]|2]

and Span(S) = R®. Please find subsets of S which form a basis of R?.

[solution:]
Method1:

We first check if e, and e, are linearly independent. Since they are linearly independent, we
continue to check if e , e, and a, are linearly independent. Since

2e, +3e, —a, =0,

we delete a, from S and form a new set S,, S, ={e,,e,,e,,a,}. Then, we continue to check
if e, e, and e, are linearly independent. They are linearly independent. Thus, we finally
check if e;, e, e, and a, are linearly independent. Since

e, +3e,+2e,—a, =0,

we delete a, from S, and forma newset S,, S, = {e,,¢,,e,}. Therefore,

S, = {61,82,63}
is the subset of S which form a basis of forma basis of R®.
Method 2:
Step 1:
The equation is

1 0 2 0 1
c|O0|+¢c,|1]|+c,3|+¢,/0|+cC|2|=0

0 0 0 1 3|

Step 2:

Dr. S. Esakki Muthu Karpagam Academy of Higher Education  Page 100f24
Department of Physics



M Sc Physics Unit -1 Mathematical Physics-17PHP104
2017 (ODD) Vector Space

The augmented matrix and its reduced row echelon matrix is

10 20 1|0
0130 2|0
0001 3|0

The 1°st, the 2°nd and 4’th columns contain the leading 1°s. Thus,

{el €5, €3 } forms a basis.

Representation of Vectors and linear operators with respect to basis

Let S :{V1,V2;---;Vn} be a basis for a vector space V and let T= {Wl,Wz,---,Wr}

is a linear independent set of vectors in V. Then, Fr=n :

Corollary:

Let S :{V1’V2,---,Vn} and T= {Wl,WZ,...,Wm} be two bases for a vector space V.
Then, n=m:

Note:

For a vector space V, there are infinite bases. But the number of vectors in two different
bases are the same.

For the vector space R®,

1 1 1

vy =|2| v, =0}, v;=|1], S=1{v,v,,v;} is a basis for R® (see the previous
1 2 0

example). Also,
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1 0 0

e, ={0| e, =1}, e=|0 ’T:{el’eZ’e3}iSbaSiSf0r R®.
0 0 1

— There are 3 vectors in bothS and T.

Schmidt orthogonalization process

Gram-Schmidt orthogonalization, also called the Gram-Schmidt process, is a procedure
which takes a nonorthogonal set of linearly independent functions and constructs
anorthogonal basis over an arbitrary interval with respect to an arbitrary weighting
function w (x),

Applying the Gram-Schmidt process to the functions 1, x, x*, ... on the interval [-1, 11 with

the usual L” inner product gives the Legendre polynomials (up to constant multiples; Reed
and Simon 1972, p. 47).

Given an original set of linearly independent functions {uslr=o, let (¥xlr=o denote the
orthogonalized (but not normalized) functions, {#=}z=0 denote the orthonormalized functions,
and define

Yo (x) = up (x) 1)
g (x)
\/fl,{f[;.z (x)wilx)dx

oy (x) = (2)

Then take

Uy () = (x) + ar do (x), 3)

where we require

f{m(ﬂl[;wd.‘r: fu|¢l[;wdx + am fqﬁ[;z wdx (4)

= 0. ()
By definition,
fé[;zwd.¥=1, (6)
SO
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a|u=—fu| dowdx. (7)

The first orthogonalized function is therefore

Y1 =u Ex}—[ful do Wﬂ'»’f]'ﬁ'nr (8)

and the corresponding normalized function is

Uy (x)

=
1ff$|zwdx ®)

By mathematical induction, it follows that

b= —n (10)
\f fufr,z wd x

where

Uix)=w +aiodo+air @ ... +aii1 @iy (11)

and

aj== [u¢ywdx. (12)

If the functions are normalized to ¥ instead of 1, then

f [6; @)’ wdx =N (13)
Ui (x)
di (x)=N; — (14)
A f{,ﬂr, wdx
fu, diwdx
aj == T (15)

Orthogonal polynomials are especially easy to generate using Gram-Schmidt
orthonormalization. Use the notation
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(i |y} = (o [ w[xs) (16)
= fx, (x)xy (x)wlx)dx, (17)

where w(x) is a weighting function, and define the first few polynomials,

polx)= 1 (18)

{xmlpﬁ}l
{Po | Po}

x -

p1 )= (19)

As defined, po and pi are orthogonal polynomials, as can be seen from

{x po | po)
N e ) (20)
{x po | po)
= {x pp) - o | 20) {po) (21)
= (x po) = (x po) (22)
= 0. (23)
Now use the recurrence relation
B (x pi | pi {pi | pid
P|+| [:X} - |x {PI |P|::I IP| | {PI_I |PI_|:I IP|—| (24)
to construct all higher order polynomials.
To verify that this procedure does indeed produce orthogonal polynomials, examine
_ _ x pi|pi _ Pi|pi ‘
(pist [ Pid={[x pi | p; lp' ‘P') (P.-| oy P') (25)
(x pi | pi} {pi| pi)
= {x pi | pi) i P (pi | pid T ) pi-1 | pi} (26)
{pi | pi)
— Apia | i) ot | ) 1)
{PI |P|::' I::PI—| |P_|'—|::|
== - f— f— 28
{Pic |P|—I:' l::p_.'_g |p_.'_g::l I::P' ? |P' I::I ( )
= .. (29)
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Ap;i | p;
=(=1Y 2 '}{mlpﬁ (30)
{P{:-|Pt:-:'
=0, (31)

since P |P1) =0 Therefore, all the polynomials p: (x) are orthogonal.
Inner product

An inner product is a generalization of the dot product. In a vector space, it is a way to
multiply vectors together, with the result of this multiplication being a scalar.

More precisely, for areal vector space, an inner product (-. -} satisfies the following four
properties. Let #, ¥ and » be vectors and @ be a scalar, then:

1. du v, w) = (u, w) + (v, w),

2. @, wi=a (v, w),

3. vyw)={w, v},

4. tv.v) =0 and equal if and only if v=0,

The fourth condition in the list above is known as the positive-definite condition. Related
thereto, note that some authors define an inner product to be a function (-. - satisfying only
the first three of the above conditions with the added (weaker) condition of being (weakly)
non-degenerate (i.e., if (v.w)=0for all w, then v=0), In such literature, functions satisfying
all four such conditions are typically referred to as positive-definite inner products (Ratcliffe
2006), though inner products which fail to be positive-definite are sometimes called
indefinite to avoid confusion. This difference, though subtle, introduces a number of
noteworthy phenomena: For example, inner products which fail to be positive-definite may
give rise to "norms™ which yield an imaginary magnitude for certain vectors (such vectors are
called spacelike) and which induce "metrics" which fail to be actual metrics. The Lorentzian
inner product is an example ofan indefinite inner product.

A vector space together with an inner product on it is called an inner product space. This
definition also applies to an abstract vector space over any field.

Examples of inner product spaces include:

1. The real numbers R, where the inner product is given by

fx,vi=xw. (1)

2. The Euclidean space R", where the inner product is given by the dot product
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{I:-T| % -TZ g smsy -T."r)r U"| ¥ }'2 g snsy }'.'r]:' (2)
=xpyr+aryrt X ¥a

3. The vector space ofreal functions whose domain is an closed interval [a. b] with inner
product

{f.-g}=ffg dx. 3)

When givena complex vector space, the third property above is usually replaced by

(v, wh = {w, V), (4)

where z refers to complex conjugation. With this property, the inner product is called
a Hermitian inner product and a complex vector space with a Hermitian inner product is
called a Hermitian inner product space.

Every inner product space is a metric space. The metric is given by

g v, wi={v—w,v—w. (5)

If this process results in a complete metric space, it is called a Hilbert space. What's more,
every inner product naturally induces a normof the form

x| = Vix, x) , (6)

whereby it follows that every inner product space is also naturally a normed space. As noted
above, inner products which fail to be positive-definite yield "metrics™ - and hence, "norms" -
which are actually something different due to the possibility of failing their respective
positivity conditions. For example, »-dimensional Lorentzian Space (i.e., the inner product
space consisting of R with the Lorentzian inner product) comes equipped with a metric
tensor of the form

(ds) = —dxj +dxi 4 +dx_ (7)

and a squared norm of the form

V2 = =vf + v] 4+ oee 0 8)

=1

for all vectors ¥ = (v, vi. .... va-1). In particular, one can have negative infinitesimal distances
and squared norms, as well as nonzero vectors whose vector norm is always zero. As such,
the metric (respectively, the norm) fails to actually be a metric (respectively, a norm), though
they usually are still called such when no confusion may arise.
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Tensor

Introduction and definitions

In n-dimensional space Vp (called a "manifold™ in mathematics), points are specified by
assigning values to a set of n continuous real variables xl,xz.....xn called the coordinates.
In many cases these will run from - to +oo, but the range of some or all of these can be

finite.

Examples: In Euclidean space in three dimensions, we can use cartesian coordinates x, y and
z, each of which runs from -o to +oo. For a two dimensional Euclidean plane, Cartesians may
again be employed, or we can use plane polar coordinates , [J whose ranges are 0 to co and 0
to 20 respectively.

Coordinate transformations. The coordinates of points in the manifold may be assigned in a

1.2 n

number of different ways. If we select two different sets of coordinates, x~,x".....x"" and

/1 '2 /n - - .
X7H,XT . X0 there will obviously be a connection between them of the form

N M1 2 n
X" =f (x,x°...x") f=1 2 n. (1)

where the fs are assumed here to be well behaved functions. Another way of expressing
the same relationship is

T n
X" =x" (xHx%x) r=1,2....n (2)

it n . r n
where X" (X", X%....X"") denotes the n functions f (X",X*...X"') r=1,2....n.

Recall that if a variable z is a function of two variables x and y, ie.z =f (x, y), then the
connection between the differentials dx, dy and dz is
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dz = %dx + ﬁdy
Y ©)

Extending this to several variables therefore, for each one of the new coordinates we have

n T

dX’r = Zé)x_sdxs
S=1 X . r=1,2....... n. (4)

The transformation of the differentials of the coordinates is therefore linear and
homogeneous, which is not necessarily the case for the transformation of the coordinates
themselves.

Range and Summation Conventions. Equations such as (4) may be simplified by the
use of two conventions:

Range Convention: When a suffix is unrepeated in a term, it is understood to take all
values in the range 1, 2, 3.....n.

Summation Convention: When a suffix is repeated in a term, summation with respect to
that suffix is understood, the range of summation being 1, 2, 3.....n.

With these two conventions applying, equation (4) may be written as

r
dx'r =@<_de3
X 5)

Note that a repeated suffix is a "dummy" suffix, and can be replaced by any convenient
alternative. For example, equation (5) could have been written as

dx’" _@(_dem
- .
: (6)

where the summation with respect to s has been replaced by the summation with respect
tom.
Contravariant vectors and tensors. Consider two neighbouring points P and Q in the

manifold whose coordinates are x" and x" + dx" respectively. The vector PQ

Is then described by the guantities dx" which are the components of the vector in this

coordinate system. In the dashed coordinates, the vector PQ is described by the
components
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N
dx"" which are related to dx" by equation (5), the differential coefficients being evaluated

i
at P. The infinitesimal displacement represented by dx" or X" s an example of a
contravariant vector.

Defn. A set of n quantities T I associated with a point P are said to be the components of
a contravariant vector if they transform, on change of coordinates, according to the
equation

r:@(rTs

T !
X ™

where the partial derivatives are evaluated at the point P. (Note that there is no
requirement that the components of a contravariant tensor should be infinitesimal.)

Defn. A set of n 2 quantities T 'S associated with a point P are said to be the components
of a contravariant tensor of the second order if they transform, on change of coordinates,
according to the equation

rs _ X' 0’5<'STmn

T !
m n
X X _ (8)

Obviously the definition can be extended to tensors of higher order. A contravariant
vector is the same as a contravariant tensor of first order.

Defn. A contravariant tensor of zero order transforms, on change of coordinates, according
to the equation

T =T (9)

l.e. it is an invariant whose value is independent of the coordinate system used.

Covariant vectors and tensors. Let [ be an invariant function of the coordinates, i.e. its
value may depend on position P in the manifold but is independent of the coordinate
system used. Then the partial derivatives of [J transform according to

ap ap xS
I S Al
X X~ X (10)
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Here the transformation is similar to equation (7) except that the partial derivative
involving the two sets of coordinates is the other way up. The partial derivatives of an
invariant function provide an example of the components of a covariant vector.

Defn. A set of n quantities T associated with a point P are said to be the components of a
covariant vector if they transform, on change of coordinates, according to the equation
XS
T =——T
r 50t s
: (11)

By convention, suffices indicating contravariant character are placed as superscripts, and
those indicating covariant character as subscripts. Hence the reason for writing the

coordinates as X". (Note however that it is only the differentials of the coordinates, not the

coordinates themselves, that always have tensor character. The latter may be tensors, but
this is not always the case.)

Extending the definition as before, a covariant tensor of the second order is defined by the
transformation

m ~n
Trs= Z,r Z,STmn
(12)

and similarly for higher orders.

Rank of Tensor

The total number of contravariant and covariant indices of a tensor. The rank £ of a tensor is
independent of the number of dimensions ¥ of the underlyingspace.

An intuitive way to think of the rank ofa tensor is as follows: First, consider intuitively that a

tensor represents a physical entity which may be characterized by magnitude and multiple
directions simultaneously (Fleisch 2012). Therefore, the number of simultaneous directions is
denoted ® and is called the rank of the tensor in question. In ¥-dimensional space, it follows

that a rank-0 tensor (i.e., ascalar) can be represented by N"=1 number since scalars
represent quantities with magnitude and no direction; similarly, a rank-1 tensor (i.e., a vector)
in N-dimensional space can be represented by N'=Nnumbers and a general tensor by NF
numbers. From this perspective, a rank-2 tensor (one that requires N* numbers to describe) is
equivalent, mathematically, to an ¥ XN matrix.

rank object

0 scalar
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1 vector
2 N®xN matrix

=3 ftensor

The above table gives the most common nomenclature associated to tensors of various rank.
Some care must be exhibited, however, because the above nomenclature is hardly uniform
across the literature. For example, some authors refer to tensors of rank 2 as dyads, a term
used completely independently of the related term dyadic used to describe vector direct
products (Kolecki 2002). Following such convention, authors also use the terms triad, tetrad,
etc., to refer to tensors of rank 3, rank 4, etc.

Some authors refer to the rank of a tensor as its order or its degree. When defining tensors
abstractly by way of tensor products, however, some authors exhibit great care to maintain
the separation and distinction of these terms.

Mixed tensors and Kroneckar Delta. These are tensors with at least one covariant suffix

, : : , r ..
and one contravariant suffix. An example is the third order tensor T which transforms
according to

" &N AP m

;
T = T
st m S ,tn
™ xS oxt P (13)

Another example is the Kronecker delta defined by

(14)

. .. . . mn.. ot .
It is a tensor of the type indicated because (a) in an expression such as Bpg."om, which
involves summation with respect to m, there is only one non-zero contribution from the

_ Lot ptn. . .
Kronecker delta, that for which m = t, and so Bpq. m =Bpg: (b) the coordinates in any

X"
coordinate system are necessarily independent of each other, so that —5 = 5£ and
X

Ooxfl’
% = 5§r; so these two properties taken together imply that
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@(,r @(n

s = —
S m /S N
X OX . (15)

Notes. 1. The importance of tensors is that if a tensor equation is true in one set of
coordinates it is also true in any other coordinates. e.g. if Tmn =0 (which, since m and n

are unrepeated, implies that the equation is true for all m and n, not just for some particular
choice of these suffices), then T'rs =0 also, from the transformation law. This illustrates

the fact that any tensor equation is covariant, which means that it has the same form in all
coordinate systems.

2. A tensor may be defined at a single point P within the manifold, or along a curve,
or throughout a subspace, or throughout the manifold itself. In the latter cases we speak of
a tensor field.

Tensor algebra

Addition of tensors. Two tensors of the same type may be added together to give another

oal r -
tensor of the same type, e.g. if Ast and Bst are tensors of the type indicated, then we can
define

r_ar r
Cst N Ast + Bst . (16)

: " r
It is easy to show that the quantities Cst form the components of a tensor.

rs
Symmetric and antisymmetric tensors. A IS a symmetric contravariant tensor if
AFS_ASI’ . L. AI’S_ ASI’ L. A
= and antisymmetric if =" . Similarly for covariant tensors. Symmetry
rs Sr
properties are conserved under transformation of coordinates, e.g. if A=A then

d(,m @(rn Ars_axrm @('nAsr:A,nm

A,mn: _
xS & xS _ (17)

Note however that for a mixed tensor, a relation such as A =A£ does not transform to
give the equivalent relation in the dashed coordinates. The concept of symmetry (with
respect to a pair of suffices which are either both subscripts or both superscripts) can
obviously be extended to tensors of higher order.

Any covariant or contravariant tensor of second order may be expressed as the sum of a
symmetric tensor and an antisymmetric tensor, e.qg.

Ars=1(Ars+Asr)+l(Ars_Asr)
2 2 . (18)
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Multiplication of tensors. In the addition of tensors we are restricted to tensors ofa single
type, with the same suffices (though they need not occur in the same order). In the
multiplication of tensors there is no such restriction. The only condition is that we never
multiply two components with the same suffix at the same level in each. (This would
imply summation with respect to the repeated suffix, but the resulting object would not
have tensor character - see later.)

m
To multiply two tensors e.g. Ars and Bn we simply write

C;Ts]n = ArsBrT_

(19)
It follows immediately from their transformation properties that the quantities C}Qn form a
tensor of the type indicated. This tensor, in which the symbols for the suffices are all
different, is called the outer product of Ars and Brrln.
Tm
Contraction oftensors. Givena tensor "7, then
m @(/m @(S @(t r
np =~ p 'St

T

Hence replacing n by m (and therefore implying summation with respect to m)

T’m @(rm 0'5(8 Ofxt Tr
= ; t
mp @(r @(,m &'P S

s t
:ﬁiT&
@(I’ ox'P

Tst
ox'P (21)

m . . .
so we see that Tmp behaves like a tensor Ap. The upshot is that contraction of a tensor

(i.e. writing the same letter as a subscript and a superscript) reduces the order of the tensor
by 2 and yields a tensor whose type is indicated by the remaining suffices.
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Note that contraction can only be applied successfully to suffices at different levels. We

may of course construct, starting with a tensor Agrs say, a new set of quantities Agrr; but

these do not have tensor character (as one can easily check) so are of little interest.

m m
Having constructed the outer product Crsn = ArsBn in the example above, we can form

Crrr?sn = AmsBrr1n Cpr]nn = ArmBrr1n

the corresponding inner products and . Each of these

forms a covariant tensor of second order.

Possible questions —(Part —B- 6 Marks)
1. Explain the properties of Kronecker delta. Prove that Kronecker delta is a mixed
tensor of rank 2, and is invariant.
Explain Schmidt’s orthogonalization method
Show that the symmetry properties of a tensor are invariant

Describe the operations of outer product and inner product of tensors

a > DN

Show that the set of vectors ry, rz, r3 given by

ri=Jj-2k, r,= irj+K, r3 = i+2j+K is linearly independent

6. Show that vectors (u+v), (u—v) and (u-2v+w) are linearly independent provided
(u,v,w) are linearly dependent.
Show that Kronecker delta is an invariant mixed tensor of rank 2.

8. Show that in Cartesian coordinate system the contravariant and covariant components
of a vector are identical.

9. Explain about the symmetric and antisymmetric tensors.

10. Explain orthogonal and orthonormal vectors. Explain Schmidt’s orthogonalization

procedure.

11. Explain Einstein’s summation convention of tensors

Dr. S. Esakki Muthu Karpagam Academy of Higher Education  Page 240f 24
Department of Physics



M Sc Physics Unit -1 Mathematical Physics-17PHP104
2017 (ODD) Vector Space

Possible questions —(Part —C- 10 Marks)

1. Explain Schmidt’s orthogonalization process and give their properties

2. Show that the symmetry properties of a tensor are invariant

3. Describe the operations of outer product and inner product of tensors

4. Show that the set of vectors ry, o, r3 given by
ri= i+j-5k, r,= 2i-j+K, r3 = 8i+2j+K is linearly independent

5. Show that vectors (u+v), (u—v) and (u-2v+w) are linearly independent provided
(u,v,w) are linearly dependent.

6. Show that in Cartesian coordinate system the contravariant and covariant components
of a vector are identical.

7. Explain about the symmetric and antisymmetric tensors with few examples

8. Explain orthogonal and orthonormal vectors with orthogonolization process.

9. Explain covariant and contravariant tensors and einstein’s summation convention of

tensors
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MULIPLE CHOICE QUESTIONS

Questions optl opt2 opt3 opt4 Answer
UNIT I

The union of two subspaces of a vector space need not be a sub space cyclic an abelian an invariant a sub space

If { Vi} is an orthonormal set, then the vectors {Vi} are linearly dependent commutative linearly independent distributive linearly independent
Kronecker delta symbol is covariant tensor a contravariant tensor an invariant a mixed tensor a mixed tensor
The rank of the tensor Aijklm is 4 5 3 6 5

The rank of the outer product of the tensors Cland Dy is 1 3 2 0 3

In an n—dlmensmna‘l vector space, the number of linearly N n ntl n+3 ntl
dependent vectors is

The rank of the outer product of the tensors Cand Dklm is 3 5 2 6 5

The dimension of vector space is always

greater than number of
linearly independent
vectors.

Equal to linearly
independent vectors

Less than linearly
independent vectors

Equal to linearly
dependent vectors

Equal to linearly
independent vectors

The vectors are said to be orthogonal when the scalar product of

two null vector is one

two null vector is zero

two non-null vector is zero

two non-null vector is one

two non-null vector is zero

The set of all position vectors forms an abelian group vector space sub space cyclic an abelian group
Example of real vector space is 4 — dimensional space 3 — dimensional space n — dimensional space none of the above 3 — dimensional space
An important example of mixed tensor of rank two is covariant Kronecker delts Invariant Contravariant Kronecker delta

Ifx', x5 ... x" are independent variables, then s e B U g = ox " 5 = dx /) e - —=
If f = f, the function of f is said to be a scalar invariant tensor of rank two all the above invariant

The tensors of rank zero are scalars invariant either (a) or (b) vectors either (a) or (b)

The tensors of rank one are scalars vectors invariant covariant vectors

A symmetric tensor of rank two is n-dimensional space has n+l n(n+1) n(n-1) n—-1 n+l

independent components B 2 2 2 >

If /.\lm'-‘s =-A™", then tensor A" is antisymmetric with respect nands mand's mandn mandl nands

to indices

A antisymmetric tensor of rank two is n-dimensional space has n + 1 n(n +1) n(n —1) n - 1 n(n —1)
independent components 2 2 2 2 2

If A;j is antisymmetric tensor, then the component A, is 1 0 2 3 0

An ar?tisymmetric tensor of rank ‘1’ is n-dimensional space will | . _ n! aC = (n-=1)! 3 n uC _ ont nc ,(”"77”,
have independent components i (n = 1) " (=) nC = - r!

If a; is a tensor of rank two, its independent components in 4- 4 ) g rurT) 6 6

dimensional space are

The total number of components a;; tensor of rank two in 4- 4 16 ) g 16

dimensional space are

The tOt’fll number of components a;, tensor of rank two in n- N 2 (1) (n+1) 2

dimensional space are

As al is a tensor of rank 4, the number of components in in 4- ! 0 4 16 !

dimensional space is

If Ajj is antisymmetric tensor, of second order and U'is a tensor q 0 5 4 0

of rank one, then AijUi Ulis equal to

The sum of one contravariant and one covariant A"B,, is invariant contravariant covariant mixed invariant




Kronecker delta is the best example for covariant mixed invariant contravariant mixed
A tensor of rank ‘r’ in n-dimensional space has components n' I n/r r/n n
A™ are the components of a mixed tensor of rank 1 3 4 0 4
In an n-dimensional vector space, the number of linearl

. P Y n 2n nt+l 2n+3 nt+l
dependent vectors is
The rank of the outer product of the tensors Cij and Dklm is 3 5 2 6 5

The dimension of vector space is always

greater than number of
linearly independent
vectors.

Equal to linearly
independent vectors

Less than linearly
independent vectors

Less than linearly
independent vectors

Equal to linearly
independent vectors

The vectors are said to be orthogonal when the scalar product of

two null vector is one

two null vector is zero

two non-null vector is
Zero

two non-null vector is
one

two non-null vector is
Zero

The set of all position vectors forms an abelian group vector space sub space cyclic an abelian group
Example of real vector space is 4 — dimensional space 3 — dimensional space n — dimensional space |none 3 — dimensional space
An important example of mixed tensor of rank two is covariant Kronecker delts Invariant Contravariant Kronecker delts
If f = f, the function of f is said to be a scalar invariant tensor of rank two all the above all the above
The tensors of rank zero are scalars invariant vectors none scalars

The tensors of rank one are scalars vectors invariant covariant vectors
Kronecker delta symbol is a covariant tensor a contravariant tensor an invariant a mixed tensor a mixed tensor
The rank of the tensor Aijklm is 4 3 6 4

The rank of the outer product of the tensors Cij and DK is 1 3 2 0 3

In an n-dlmensmna.l vector space, the number of linearly n n ntl 43 ntl

dependent vectors is

The rank of the outer product of the tensors Cij and Dklm is 3 5 2 6 5

The dimension of vector space is always

greater than number of
linearly independent
vectors.

Equal to linearly
independent vectors

Less than linearly
independent vectors

Less than linearly
independent vectors

Equal to linearly
independent vectors

The vectors are said to be orthogonal when the scalar product of

two null vector is one

two null vector is zero

two non-null vector is
Zero

two non-null vector is one

two non-null vector is
Zero

The set of all position vectors forms an abelian group vector space sub space cyclic an abelian group
Example of real vector space is 4 — dimensional space 3 — dimensional space n — dimensional space |none 3 — dimensional space
?0 Isnyrr)r(l)r;leer:i;ctensor of rank 2 is n-dimensional space independent nT+1 02 ol none 02

If A is antisymmetric tensor, then the component A, is 1 3 0

If a; is a tensor of rank two, its independent components are 4 2 6

Kronecker delta is the best example for covariant mixed invariant contravariant mixed

The sum of one contravariant and one covariant A™B,, is mixed contravariant covariant mixed mixed
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UNIT - Il Functions ofa complex variable — single and multivalued functions — Cauchy-Riemann
differential equation — analytical — line integrals of complex function — Cauchy’s integral theorem
and integral formula — derivatives of an analytic function — Liouville’s theorem - Taylor’s series —
Laurent’s series - Residues and their evaluation - Cauchy’s residue theorem — application to the
evaluation of definite integrals

Complex Algebra

Formally, the set of complex numbers can be de ned as the set of two-dimensional real
vectors, f(x; y)g, with one extra operation, complex multi-plication:

(X1; 1) € (X2; ¥2) = (X2 X2 j Y1 Y2; X1 Y2 + X2 V1) : 1)

Together with generic vector addition

(X1; Y1) + (X2; ¥2) = (X1 + X251+ ¥2) ; )
With the rules (1)-(2), complex numbers include the real numbers as a subset f(x; 0)g with
usual real number algebra. This suggests short-hand notation (x; 0) * x; in particular: (1; 0)
Complex algebra features commutatively, distributive and associa-tivity.
The two numbers, 1 = (1; 0) and i = (0; 1) play a special role. They form a basis in the
vector space, so that each complex number can be represented in a unique way as [we start
using the notation (x; 0) “ x]

(X;y)=x+iy: ©)

Terminology: The number i is called imaginary unity. For the complex number z = (X; y),

the real umbers x and y are called real and imaginary parts, respectively; corresponding
notationis: X =Rezandy =Imz.

The following remarkable property of the number i,
i =-1 4)

renders the representation (3) most convenient for practical algebraic ma-nipulations with
complex numbers.|One treats X, y, and i the same way as the real numbers.
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Single and Multi valued function

In a multi-valued function every input is associated with one or more outputs. Strictly speaking, a
"well-defined" function associates one, and only one, output to any particular input. The term

"multi-valued function™ is, therefore, a misnomer: usually true functions are single-valued.
Ifonly one value of corresponds to each value of z then is of z.single valued function

If more than one values of correspond to each value of z then is of z i.e. A multi-valued function

assumes two or more distinct values in its range for at least one point in its domain.

Cauchy Riemann Diffe rential Eqution

Let

Fly)=ule, y)+ivix,y), 1)
Where

z=x+iy, 2)
So

dz=dx+idy. (3)

The total derivative of .f with respect to z is then

af _9f dx 9f 3
dz  dx 9z 9y oz 4)
Laf af
) [E:i'x Uy J )
In terms of « and v, (5) becomes
af _L[(au, v (o 0
dz 2 [ax“ax]_‘{a}-“a}-] ©)
_l (E_‘_(k + (E_‘_ﬂ 7
_Z[E.'i'x ‘ax) (_‘a}- a}-]' ()
Along the real, or x-axis, &f/dy =10 so
df _1(ou oy g
dz_z(ax“ax]' ®)

Along the imaginary, or y-axis, @f/dx =0 so
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df _L(_jou o
dz 2 [_* ay " ay ] ©)

If f is complex differentiable, then the value of the derivative must be the same for a given 4z,

regardless of its orientation. Therefore, (8) must equal (9), which requires that
du  dv

ax " ay (10)

and

dx _-:'.'i'}' ' (1)

These are known as the Cauchy-Riemann equations.

They lead to the conditions

P u Fu

—_—=—— 12

dx* ay? (12)

v Fv

—= - 13

dx? dy? (13)

The Cauchy-Riemann equations may be concisely written as

af _11of  .of

dz 2 |ax "'y (4
L[, 0 (20 5
_Z[MHM]H(J}IHJF] (15)
_Z(Eix_ii}'J E(-E.'i'}' Eix) (16)
=0, 17)

where Z is the complex conjugate.

If z=re'” then the Cauchy-Riemann equations become

du 1 dv

or a0 (18)

1 du v

- a0 ar (19)

Cauchy Integral Formula

o3+ @

Y Yo Y,
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Cauchy's integral formula states that

1 flz)dz

flfzn}=ﬁ AP ()
where the integral is a contour integral along the contour ¥ enclosing the point zo.
It can be derived by considering the contour integral

flz)dz

=25 2)

defining a path ¥ as an infinitesimal counterclockwise circle around the point ze, and defining the
path  as an arbitrary loop with a cut line (on which the forward and reverse contributions cancel
each other out) so as to go around zo. The total path is then

Y=m+%, (3)
SO
flzldz flz)dz fladdz
——= + - @)
L7 Ip m £ 7o w L= Ip
From the Cauchy integral theorem, the contour integral along any path not enclosing a pole is 0.
Therefore, the first term in the above equation is 0 since  does not enclose the pole, and we are
left with
flz)dz flzldz
" z-2, b, z-20 (5)
Now, let z=zo +re'® so dz=ire'd8 Then
(z)d +re?
u = é‘ f—(ZE:- i }Ifrf'gd-ﬂ (6)
] v re
=§f{zn+rn"€]id9. (7)
But we are free to allow the radius r to shrink to 0, so
flz)dz
e —Ilm§f Z[:l+1‘"r?g]|1d8 (8)
§f (zo)id¥ 9)
=if zn}§ (10)
=2mi f(zo), (11)
giving (1).
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If multiple loops are made around the point zo, then equation (11) becomes

1 flz)dz

n(y, 20)f o) = 53— AP (12)
where n(y. zo) is the contour winding number.
A similar formula holds for the derivatives of f (z),
+h) -
7 eo) = lim T2 TD TG0 (13)
1 flzddz flzldz
=&—r32nih z—zﬁ—h_ y I-1g (14)
Ff(z=z0)-(z=z0-R)ldz
'r—ﬂ} th (z=zp = h)(z—zp) (15)
_ lim gg hflz)dz
T ka0 2Wih I-[z—zﬁ—h}[Z—Zn} (16)
~ 1 fflz)dz 17
T2mi Bz -z (17)
Iterating again,
" 2 [fle)dz
S g (e-z) (18)
Continuing the process and adding the contour winding number =,
[ ) A9 ( }_i flz)dz
nly, zo) 7 lzo) = 17 Py .
Cauchy Integral Theorem
If f(z) is analytic in some simply connected region &, then
gSf (z)dz=0 (1)
for any closed contour ¥ completely contained in R. Writing z as
z=x+iy (2)
and f(z) as
f@=utiv )]
then gives
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éf[z}dz:_[[qu}(ﬂ'deﬂ (4)

:Iudx—vdy+i£vdx+udy. (5)

From Green's theorem,

If[x vidx —glx,v)dy= - f —+—Ja’xﬂ'_y (6)
‘J:flix y)dx+glx,y)dys= ff %8 _ dedy (7)

so (<) becomes

rose=-[J(3+ oo [ (- o

But the Cauchy-Riemann equations require that

du  dv

dx Oy 9)
Ju v

B o (10)
SO

éf[z;dz =|:|'.~

Liouville's theorem

Liouville's theorem from complex analysis states that a holomorphic function f(z)f(z) on the plane

that is bounded in magnitude is constant. The usual proof uses the Cauchy integral formula

Assume that f(2) is nonconstant. The fact that)f(z) is holomorphic at every point implies that at any
given point, there is a direction such that moving in that direction makes |f(z)| larger. But this
doesn't prove that |f(z)| is unbounded, because a priori its magnitude could behave like 5—1|z or
some such thing.

In the case of f(z)=1P(z) where P(2) is a polynomial, one knows that |f(Z)| tends toward 0 as |z—oo
so that there's some closed disk such that if [f(z)||f(z)| is bounded, then it has a maximum in the
interior of the disk, which contradicts the fact that one can always make f(z) larger by moving in a

suitable direction. But for general f(z), one doesn't have this argument.
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One cantry to reason based on the power series expansion of a holomorphic function f(z) that is not
a polynomial. Because polynomials are unbounded as |zZ—oo and grow in magnitude in a way that's
proportional to their degree, one might think that a power series, which can be regarded as an
infinite degree polynomial, would also be unbounded as |7—o. This is of course false:
take f(z)=sin(z), then as|z—x along the real axis, f(z) remains bounded. The point is that the
dominant term in the partial sums of the power series varies with|z|, and that the relevant
coefficients change, alternating in sign and tending toward zero rapidly, so that the gain in size
corresponding to moving to the next power of z is counterbalanced by the change in coefficient. But
there's some direction that one can move in for which f(z) is unbounded: in particular,

for f(z)=sin(2), f(2) is unbounded along the imaginary axis.

Taylor’s Series

A Taylor series is a series expansion of a function about a point. A one-dimensional Taylor series is
an expansion of a real function f (x) about a pointx = a is given by

flx)=
[ (a) (1)

. (x—a)l +....

" 3]
ffa}+f'[a}[x—a}+f—m[x_a;uf%

3
2 x—al +... +

Ifa=0, the expansion is known as a Maclaurin series.

Taylor's theorem (actually discovered first by Gregory) states that any function satisfying certain
conditions can be expressed as a Taylor series.

The Taylor (or more general) series of a function .f (x) about a point @ up to order » may be found
using Series[f, {x, a, n}]. The nth term of a Taylor series of a function f can be computed in
the Wolfram Language using SeriesCoefficient[f, {x, a, nt]and is given by the inverse Z-transform

1

I—a

an=2Z" (n). )

Taylor series of some common functions include

I _ 1  x-a +[x—a}2+ 3
l—x_l—ﬂ [l_a}! [1—0’}3 ()
i.‘:osx=o05a—slna[x—a}—Zl-oosa[x—a}?+éslna[x—a}]+... (4)

F:E"[l+[x—a}+%[x—a}z+::J[x—a}l]+...] (5)

r—-a [x—-af [(x-af

Inx = - -..

nx =Ina+ - Y= + e (6)
El:l'lx:51na+m5a[x—a}—ql-Sina[x—a}z—ém5a[x—a}3+... 7)
tanx=tal1a+secqa[x—a}+sec2atana[x—a}g+sec2a(sec2a—i—]l[x—a}3+.... (8)
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n+1)

To dekéze the Taylor series of a function f @), mote that the integral of the (n+ 1)st derivative f*
of from the point  to an arbitrary point  is given by

I Y @dx =" Wl =" @ @) ®

(1]

where £ (x0) is the nth derivative of f (x) evaluated at x, and is therefore simply a constant. Now
integrate a second time to obtain

f'ff‘r“” (x)dx|dx
0 0

- f [F7 ) = £ ()] dx (10)

i)

=[P @], - & -x2) " )
="V @) - 7 ) - (- x0) 7 (o),

where £ (%) is again a constant. Integrating a third time,

1] (] 1]

(11)
=11 I: - [:']2 i)
=[x —x0) 7 (x0) - S (o),
and continuing up to =+ 1 integrations then gives
ff FU @ @x™ = f(x) = f o) = & =x0) £ (o)
1]
i+l (12)
_ (x —Zﬂlrr:l?2 P (x —xn?" £ (o)
Rearranging then gives the one-dimensional Taylor series
F)= flag)+(x=x) f (o) + & _ETDF F o)+ ..+ Ex;ﬁ F™ (o) + Ry (13)
o (x - }r* f‘” )
D (14)

Here, . isaremainder term known as the Lagrange remainder, which is given by
R, = f f f:n+I] I:x}[a'x}rﬁl .
i} (15)
n+l

Rewriting the repeated integral then gives
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Rn=fﬁ"+”(r) h;—lfrm. (16)

1]

Now, from the mean-value theorem for a function g (x}, it must be true that

Ig(x}dx=ix—m}g(f} (17)
i}

for some x" €[x. x]. Therefore, integrating =+ 1 times gives the result

_ I:x - x':'}n-'-l "_rr+|] &

= L@ (18)
so the maximum error after # terms of the Taylor series is the maximum value of (18) running
through all =" €[x.x]. Note that the Lagrange remainder &. is also sometimes taken to refer to the
remainder when terms up to the (- 1)st power are taken in the Taylor series

Taylor series can also be defined for functions of a complex variable. By the Cauchy integral
formula,

1 fizghdz
&= ) 72 (19)
1 fizhdz
T 2mide (2 =z) = (z = 2p) (20)
B Fflhdz
T Imidey —zn}'(l - —['] (21)
et i
In the interior of C,
lz — zol <1
|zr _ZI::Il (22)
S0, using
1_ — N r
i @)
it follows that
(z —zn}f”f 2')dz’
f@= 5 IZ e (24)
Fihdz
= EF[;EZ - zp)' Ny e (25)

Using the Cauchy integral formula for derivatives,
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- "™ (z0)
F@=)G-z) f{n!m : (26)
A=l

An alternative form of the one-dimensional Taylor series may be obtained by letting

x-—x=Ax 27)
so that
x=xp +Ax. (28)

Substitute this result into (<) to give
flo+Ax)=f)+Axf (o)+ 5 @27 " (o) +.... (29)
A Taylor series of a real function in two variables f (x. ¥) is given by

fla+dx,v+Av)=Fflx, v+ [_ﬁ (x, ¥)Ax+ f I:x_.}'}lﬁ}']+
3 [AxP for e, y) +28x Ay foy Ge3)+ QY fiy G, 0]+ 5 [B2F fran Gy y) + (30)
3 AY frry G )+ 3Bx AYY fryy a0+ Y firyy o)+

This can be further generalized for a real function in » variables,

o 1 " 3 i .. ..
f(x|,...,xn)=zn_{ﬁ Z.(X&—ﬂﬂ{.ﬁ[ffxlrmrxﬂ}r . : (31)
I= k= L
Rewriting,
v vor S S 2] )
Xl dapy . xy bag)= 32 4 Ay T Xlg eeey Xy .
=0 _.I'! — dx,i; '11 =) ____1.:' =i,

Laurent’s Series

If f(z) is analytic throughout the annular region between and on the concentric circles K1 and &2
centered at z == and of radii r1 and rz < rirespectively, then there exists a unique series expansion
in terms of positive and negative powers of (z - a),

fla)= Z.a:c (z-a) + Z.b:c -a)*, 1)
k=0 k=l
where
~ 1_9§ frdd
W 2ni I, (@ - ot @
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1 k-1
b =5 Kl[f—aik fldl 3)

Let there be two circular contours €z and €i, with the radius of €i larger thanthat of €z . Let zo be
at the center of €i and ¢z, and z be between Ci and €. Now create a cut line C: between Ci
and ¢z, and integrate around the path €=¢C + G = G = G | so that the plus and minus contributions
of C.cancelone another, as illustrated above. From the Cauchy integral formula,

1 f[z}
fO=55 b 7=2° (4)
1 fi } 1 fiEy o, 1 J" fey 1 fiE
T 2nmi 2 -z +’2‘.m‘ff,~:z’—zdz_2ni czz'—zdz_?.ni.L_z'—zdz ©®)
1 f[z} 1 fe
= 2mi z—z Effzz'—zdz' (6)
Now, since contributions from the cut line in opposite directions cancel out,
Fz . 1 f fizh .
= — dz' = — d
f@)= ZHE‘L (z' = zp) = (z = zp) T 2ni cs (2" —2p) =z —2p) : ()
fiE \ 1 fi) ,
dg = — dz
= 2;i _ 27 2ai Jo, 8
1z Z[;}[l ‘r_‘_U] €2 (z - Z[;}[ ‘; - 1]
l ! 1 !
e fiz" _ dz'+; fiz" — o)
i Joy z'—zu}[l—%J T r'qflfz—zufi[l—ﬂl:]
el L=

For the first integral, &' =20l >lz=20l. For the second, ' =zol<lz=z0l. Now use the Taylor
series (valid for il <1)

1 el
v Zﬁ-’” (10)

to obtain
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| fz}l I=2In Fiz Z=zY
f[z}z?.ﬁf z—zn [Z —Z[:.T FZ—ZDZD[Z—Z[)]dz‘ (11)
r_j: +1—it 3"‘f|: ' f&hdz
= (z =10 R }”I T n p z=zIn z =ZIn z)dz (12)
= z—zn}r" L — }n+l leiz—zn} f (' -z0)"" f(2Nd7, (13)

where the second term has been re-indexed. Re-indexing again,

flz)y= Zm (z=z0)" -L - —zn}’”'
(14)

Since the integrands, including the function f (z), are analytic in the annular region defined by €i
and €z, the integrals are independent of the path of integration in that region. If we replace paths of
integration €i and € by acircle € of radius r with n =r=r2, then

1 fiz) . < fiz) .
f[Z} = E Z —Zl.':l}"‘r z —:n}"""l Z Z _Zn}n z _; }rr+l (15)
| - fE) .
=57 ; (z=z0) @ -z 3’”' (16)

f=—ua

Generally, the path of integration can be any path ¥ that lies in the annular region and encircles zo
once in the positive (counterclockwise) direction.

The complex residues <~ are therefore defined by

1 I ) ,
dy = S E—
E-HE _[zr _zn},rr+|

Cauchy Residue Theorem

An analytic function f (z) whose Laurent series is given by

ax

f@= ) anlz-z), (1)
f=—ia
can be integrated term by term using a closed contour ¥ encircling zo,

If[z}dz_ Z an.[z—zn}f"dz (2)

R=—ua
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Zan—[z—zn}”dz+a|_[ +Zan-[z—zn}"dz (3)
fi=—a 1% =0
The Cauchy integral theorem requires that the first and last terms vanish, so we have
@dz= = 4
J:fz z_a_l.[z—z[;. 4)
where a1 is the complex residue. Using the contour z =¥ () =¢" + z0 gives
d Tield
I z :fir.’ F:zm-_. 5
v 2= Ip !
so we have
If[z}dz=2m'a-|- (6)
Ifthe contour ¥ encloses multiple poles, then the theorem gives the general result
If(z}dz-Zn:ZRf:sf @)

GEA

where A is the set of poles contained inside the contour. This amazing theorem therefore says that
the value of a contour integral for any contour in the complex plane depends only on the properties

of a few very special points inside the contour.

Res f(z)=2
. =
Res V=i - Re< =
;=-fi:; flay=i [/' ‘\,(\ e floy=
® —
\\\\H r \‘I
Y —I-"\ ®
~_
[ ]
Res_ fizy=-2

I=—

]
Res flz)=5

1=-1-2i

The diagram above shows an example of the residue theorem applied to the illustrated contour ¥

and the function

3 2 2 i 5

— + — + + .
/@ z-1R7 z-i z+i z+3-2i z+1+2i

®)
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Only the poles at 1 and i are contained in the contour, which have residues of 0 and 2, respectively.
The values of the contour integral is therefore given by

If[z}a‘z=2ni(ﬂ+2}=4ni.

Application to evaluation of definite integral

Definite Integrals

We now know how to integrate simple polynomials, but if we want to use this technique to
calculate areas, we need to know the limits of integration. If we specify the limitsx =atox = b,
we call the integral a definite integral.

To solve a definite integral, we first integrate the function as before, then feed in the 2 values of the
limits. Subtracting one from the other gives the area.

Example

1. What is the area under the curve y(x) = 2x° betweenx=1 and x=3? (Note: this is the same
problem we did graphically earlier).

K3
_I-Exj.dx
Area = -1 we write the limits at the top and bottom of the integration sign

3 H=3
|:2L+k-:|
=L x=1 We use square brackets to indicate we've calculated the indefinite integral
= (18 + k) - (2/3 + k) feed in the larger value, then the smaller, and subtract the two.

=18-2/3

= 17.33 sq. unit
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Possible questions (Part B- 6 Marks)
1. State and prove Cauchy Residue theorem.
. Define and derive Cauchy’s integral formula.
Derive Cauchy-Riemann equation.

2
3
4. Derive and prove Taylor’s series.
5. Define and prove Laurent’s series
6

. Use Cauchy’s integral theorem to evaluate

7. Find the Laplace transform of the following functions.
(i) Sin*t, (ii) Cos?t, (iii) e*coswt and (iv) e*sinot.
8. Explain the complex form of Fourier series
9. State and Explain Dirichlet conditions.
10. Define Laplace Transform. Explain the linearity and change in scale property of

Laplace transform.

Possible questions (Part B- 10 Marks)

1. State and prove Cauchy Residue theorem. Explain how it is extended for the case of an
isolated first order pole lying on the contour of integration. Using this

theorem. show that

f+oo e

x =—— where0< a<1.
-0 1+e* sinma

2. Derive Cauchy-Riemann equation and deduce the same in polar form.

3. Derive and prove Taylor’s series.

4. Use Cauchy’s integral theorem to evaluate

5. Find the Laplace transform of the following functions.
(i) Sin’t, (ii) Cos?t, (iii) ecoswt and (iv) e*sinot.
8. Explain the complex form of Fourier series
9. Explain how the Dirichlet conditions used to find the functions in physics.
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UNIT II

The function has

=1y

a simple pole atz=1

a simple pole atz=-1

apole at z=1 of order
2

a simple pole atz=1
of order 3

a simple pole at z =1 of order
3

The residue of the function 2= 1 atz=21is 03-Jan 03-Apr 03-Feb 03-May 03-May
For a unit circle around the origin, the value of sin q is E . — L ’ R S RS ‘ R T
If a given number is wholly real, it is found in/on a real axis imaginary axis x-y plane space x-y plane
A set which entirely consists of interior points is .

Known as an open set a closed set a banded set domain an open set
If a contour is a unit circle around the origin, then |z| is |1 0 e e 1

A connected open set is called an open set a closed set a banded set domain an open set
;Vfli(;h is the analytic function of complex variable z = ) Re 7 71 Log Z 71

\ZVzl;u:l—ql }1}5 the analytic function of complex variable 7] SinZ Log 7 Re Z SinZ
Z\Zl;fll ;s the analytic function of complex variable ) sinz log Z Re 7 sinz
;zl;ilz ;{S not the analytic function of complex variable | 7 o sz SinZ 7
Z\Z)}élfi};s not the analytic function of complex variable |_ _; Sz Re 7 SinZ Re 7
Which is not the analytic function of complex variable |_ _; log Z o SinZ SinZ log Z

7z=X+HY

The function B, has

Zalz—a)®

a simple pole at Z=a

a simple pole at Z= a

a pole at z=a of order
2

apole at z=a of order 3

apole at z=a of order 3

The symbol i with the property i ’=1 was introduced
by

Euler

Gauss

Cauchy

Reimann

Euler

arg (Z, / Z,) is equal to

arg Z,+arg Z,

argZ, - arg Z,

real

imaginary

argZ, - arg Z,

A single valued function f(z) which is differentiable at
z = 70 it is said to be

irregular function

analytic function

periodic function

all the above

analytic function

The function i
(z - 1)

is analytic
z + 1)

at all points y = x

at all points, except z =
1

at all points, except z =
-1

at all points, except z =
+1

at all points, except z==* 1

In order that the function f(z) = |Z|2 /Z,Z'0,be
continuous at z = 0. we should define f(0) equal to

-1

0

1

0

Any function which satisfies the Laplace equation is
known as

harmonic function

analytic function

periodic function

conjugate function

harmonic function




If f(z) is analytic within and on a closed curve C, and if LJ' f(z . 1 J‘ Sz 1 J‘ A CORS _ 17." f(z 1 i f(z)
‘a’ is any point within ‘C” then, f(a) is T ¢ (z—-a) 27 ¢ (z - a) 27ri(z - a) 2ri . (z - a) 270, (z - a
The value of [ C:|Z|=1is 2pi -2pi 4pi 0 0
If f(z) is analytic in a closed curve ‘C’ except at a finite [, . . .
number of poles within C, then 2pi 2p P P 2pi
The conjugate of 1/1+i is 1-i 1-iN 2 1-i/2 1+ 1-iN 2
The conjugate of (1+i) (3+4i) is 1+7i 1-7i 7-1i -1-7i -1-71
The Conjugate of 1/i is —i i 1 -1 —i
The value of i’ +i° +i' is i —i 1 0 —i
If Z= a+ib, then real part of Z"' is ---- a/ a’+b’ —b/ a>+b’ a/ Na’+b’ —bNa’+b’ a/ a’+b’
If Z= a+ib, then Im( Z") is --—- b/ a’+b’ b/ a’™+b’ b/ a’+b’ —b/Na*+b’ -b/a’+b’
The modulus and argument of V3 -i are 2, [1/6 2,-[1/6 4, [1/3 4, -11/3 2, -[1/6
IfZ,=r,(cos 9.1 +isin 0;) and Z,=r,(cos 0, + isin 0,), 0,+ 0, 0,- 0, 0, 6, 0,/ 0, 0,+ 0,
then arg Z, Z, is ----
The argument of -1 + [ is --- -[]/4 3[1/4 [1/4 [1/2 3[]/4
(A+e')y/(1+e?) = cos 0 + isin 0 sin 0 -icos 0 cos 0 - isin 0 sin 0 + icos 0 cos 0 - isin 0
If X = cos 0 +isin O then the value of X"+ 1/X"is ---- |2 cos nf 2i sin nf 2 sin n@ 2i cos nb 2 cos nf
The value of (cos 0 + isin 0 )‘l T —— cos 0 -sin @ sin 0 - icos 0 cos O +sin 0 sin 6/2 + icos 0/2 sin 0 - icos 0
(sin[]/3+1icos[] /3)3 is equal to -1 1 - i i
(cos [] /4+ i sin [] /4)" is - 1N2 + 1iA2 b)1 -1 i -1
injlie:frgand diagram, the fourth roots of unity forms Straight line circle rectangle square square
The sum of n" roots of unity are ------ 0 1 2 3 0
Ifzy=2+1,z,=1+3,theniRe (z,-2,) = 1 i 2i 2 1
Polar form of a complex number is r (tan® + icotf ) r(secB + icosecl ) r(cos + 1sinb ) r (sinf + 1cos0) r (sinf + 1cos0)
[zy+ 2z, | = 1Z4] + |2, SZ4| + |2y $Z,+7Z, >Zy+ 7, S|Z4| + |2y
The exponential form of a complex number is z=re" z=¢l z=cosq/r z=r1/cosq Z =reiq
For a unit circle around the origin, the value of sin q is [(Z"2+1)/ 2iZ (Z"2-1)/ 2iZ (Z"2+1)/ 27 (Z"2-1)/2Z sin nx
If a given number is wholly real, it is found in/on a real axis imaginary axis x-y plane space p/2
A set which entirely consists of interior points is .

an open set a closed set a banded set domain an open set
known as
If a contour is a unit circle around the origin, then |z] is |1 0 e el 1
A connected open set is called an open set a closed set a banded set domain an open set
Whl.Ch is the analytic function of complex variable z = ) Re 7 71 LogZ 71
X + 1y
Wthh. is the analytic function of complex variable Z| SinZ Logz Re Z SinZ
7=x +iy
Which is the analytic function of complex variable ) o 5 log Z Re 7 o 5

7z=X+Y




Which is not the analytic function of complex variable

sinz

S=XAY Z e SinZ Z
\thch is not the analytic function of complex variable |, o SinZ Re 7 SinZ Re 7
7=X+1Y

Which is not the analytic function of complex variable | log Z o SinZ SinZ log Z

7z=X+HY
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ze®
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The function

a simple pole at Z=a

a simple pole at Z= a

a pole at z=a of order
2

apole at z=a of order 3

apole at z=a of order 3

The symbol i with the property i ’=1 was introduced
by

Euler

Gauss

Cauchy

Reimann

Euler

arg (Z, / Z,) is equal to

arg Z+arg Z,

argZ, - arg Z,

real

imaginary

argZ, - arg Z,

A single valued function f(z) which is differentiable at
z =70 it is said to be

irregular function

analytic function

periodic function

all the above

analytic function

The function 1/(Z-1) (Z+1) is analytic

at all points y = x

at all points, except z =
1

at all points, except z =
-1

at all points, except z =
+1

at all points, except z==* 1

In order that the function f(z) = |Z|2 /Z,Z'0,be
continuous at z = 0. we should define f(0) equal to

-1

0

1

0

Any function which satisfies the Laplace equation is
known as

harmonic function

analytic function

periodic function

conjugate function

harmonic function
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Unit I11- Fourier Transform — Properties of Fourier transform — Fourier transform of
derivatives — Fourier sine and cosine transforms of derivatives — Fourier transform of
functions of two or three variables — Finite Fourier transforms — Simple Applications of FT
Laplace transform — Properties of Laplace transforms — Laplace Transform of derivative of a
function — Laplace transform of integral — Laplace transform of periodic functions - Inverse
Laplace Transform — Fourier Mellin Theorem - Properties of inverse Laplace Transform —
Convolution theorem — Evaluation of Laplace Transform using Convolution theorem.

Fourier Transform
The Fourier transform is a generalization of the complex Fourier series in the limit as L - oo,

Replace the discrete A« with the continuous F (k)d k while letting »/L -+ k. Then change the
sum to an integral, and the equations become

flx)= I:F (ke ™ * dk 1)
Fil= I:f (x)e 24 gy, 2)
Here,
FR)=F.[f )] () 3)
ff () e 271k% g (4)

is called the forward ( -i) Fourier transform, and

f&=F [F®] &) (5)
= f F k) emikx gy (6)

is called the inverse (+i) Fourier transform. The notation % [f (x)I () is introduced and f®

and fli-ﬂare sometimes also used to denote the Fourier transform and inverse Fourier
transform, respectively.

Properties of Fourier Transform

The properties of the Fourier transform are summarized below. The properties of the Fourier
expansion of periodic functions discussed above are special cases of those listed here. In the
following,

Linearity

Flazx(t) + by(t)] = aF[z(t)] + bF[y(t)]
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Time shift

Flo(t £ t5)] = X (jw)e™+Ho

’F’[I(t n f;u)] : j;m I(t + tn)t’-_jwfdﬁ — ];m I(t!)’s—jw(f :an:ldt.ﬂ

gHivtn f z(¥)e ™ dt' = X (jw)eTwto

Frequency shift

?:hl[xtjuf + wy)] = J:(t)e.:':jw”*

FHX(j(w £ wo))] 1 1

g [oo X(j ('ib’ + 'il-*'n:])t’-jw*dw - E [oo X(j'ﬂi) ijl:u#:':wnjdwj

.1 pee R . o
g it ‘?'_f _X(jw':le”jdm = x(t)E:FJ“’”J‘
A2 J—eo

Time reversal

Proof:

Replacing £ by, —# we get

Fla(~t)] = - [ ()t = / T () dt = X(—w)

o0 —i0

and
if z(t) = —z(—t) then X(jw)=—-X(—jw)
Dr. S. Esakki Muthu Karpagam Academy of Higher Education Page 2of 12
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Fourier Sine and cosine transform of derivative

The Fourier cosine transform of a real function is the real part of the full complex Fourier
transform,

FLf @1 ) = R [F [F )] (K] (1)

:fwms @nkx) f (x)dx. 2)

The Fourier cosine transform F: (k) of a function f(x) is implemented as Fourier Cosine
Transform|f, x, k], and different choices of @and # can be wused by passing the
optional Fourier Parameters -> {a, b} option. In this work, a=0 and b=-2x,

Derivative

£l

| 2 e i el 1
= |.."':'I““]| () = (- 1}" 2" Fe, | Fi1] {2} — 1IIII| = Zr_”l.-:u- FRe2E=Tyg) ¢

-

tim [P =0Nosks2n-1 \nen

This formula shows that the Fourier cosine transform of an even-order derivative gives the
product of the power function with the Fourier cosine transform plus some even
polynomial.

—
|2

n=1
Fry |_,r"3-"‘ i | (2= (=" 22" o A D) - 1'|III : Z (= 1)% 2% F2e=2800) 1 lim =0 /\ D<k=2n /\ nem

T =

This formula shows that the Fourier cosine transform of an odd-order derivative gives the
product ofa power function with the Fourier sine transform plus some even polynomial.
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The Finite Fourier Transforms

When solving a PDE on a finite interval 0 < x < L, whether it be the heat equation or wave
equation, it can be very helpful to use a finite Fourier transform. In particular, we have the finite
sine transform

L
S, =8[f] = %j) flz)sin(nmrz/L)dx, n=1,2,...,

with its inverse sine transform
(s o]
S7V[Sn] = f(x) = Snsin(nmz/L).
n=1

This transform should be used with Dirichlet boundary conditions, that specify the value of u at
r=0and r=L.

When Neumann boundary conditions are used, that specify the value of u; at xr =0and r = L,
it is best to use the finite cosine transform

. 2 b
Cﬂ:C[j]:EA f(z)cos(nmz/L)dz, n=0,1,2,...,

with its inverse sine transform

(;0 + nzﬂ C, cos(nmx/L).

C1C,) = f(x) =
Both of these transforms can be used to reduce a PDE to an ODE.

Examples of the Sine Transform

Consider the function f(z) =1 on (0,1). If we apply the finite sine transform to this function, we
obtain

1
S, = 2/ sin(nmz) dz
0

1
= ——cos(nmzx)
nm 0
4
— nodd
= nmw .
0 n even

Applying the inverse sine transform yields

1~ 1
1= ;;Zl T sin[(2n — 1)mz].
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Solving Problems via Finite Transforms
We illustrate the use of finite Fourier transforms by solving the IBVP
Uy = Ugy +sin(mz), O0< <1, t>0,
w(0,t) =0, wu(1,t)=0, t>0,
u(z,0) =1, w(x,0)=0, 0<z<l.

Because this problem has Dirichlet boundary conditions, we use the finite sine transform. Fron
the preceding example, the transform of the initial conditions are

4
S.(0)=1{ 7 "4 ggy—o
0 7 even

Using the definition and aforementioned properties, we obtain the transform of the PDE,

Si(t) = —m2Sy(t) +1,
St = —(nm)?Sa(t), n=2,3,....

The ODE for Si(t) is nonhomogeneous, and can be solved using either the method of undetermine«
coefficients or variation of parameters. The general solution is

S1(t) = Acos(mt) + Bsin(pit) 4+ C,

where A, B and C are constants. Substituting this form of the solution into the ODE and initia
conditions yields

4 1 1
Si(t) = (— — ﬂ—z) cos(mt) + 3

™

The ODEs for S,(t), n > 1, are homogeneous and can easily be solved to obtain

4

— t =3,57,...,
So(t) =4 nm cos(nmwt) n BT

0 n=2486,...

Applying the inverse sine transform, we conclude that the solution is

u(z,t) = [(% — %) cos(mt) + %] sin(wz) + ;Z_:l 2n1—|— 1 cos[(2n + 1)mt]sin[(2n + 1)mx].

Laplace Transform

The Laplace transform is an integral transform perhaps second only to the Fourier
transform in its utility in solving physical problems. The Laplace transform is particularly
useful in solving linear ordinary differential equations such as those arising in the analysis of
electronic circuits.

The (unilateral) Laplace transform L (not to be confused with the Lie derivative, also
commonly denoted L) is defined by
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LIf](s)= ff (e 'dt, 1)

where f (1) is defined for r=0 (Abramowitz and Stegun 1972). The unilateral Laplace
transform is almost always what is meant by "the" Laplace transform, although a bilateral
Laplace transform is sometimes also defined as

LU0 )= fwf e dt

Properties of Laplace transform

The properties of Laplace transformare:

Linearity Property
If x(t)—=L. T X(s)x(t)e=L.TX(s)

& y(O)=L.T Y(S)y(t) =L TY(s)

Then linearity property states that
ax(t)+by(t)e— L. T aX(s)+bY(s)ax(t)+by(t)«= L. T aX(s)+bY(s)

Time Shifting Property

If x(t)—=L. T X(s)x(t)e=L.TX(s)

Then time shifting property states that
X(t-10)e—L. T e—st0X(S)x(t—t0)«—= L. Te—st0 X(s)

Frequency Shifting Property
If x(t)—L.T X(s)x(t)—=L.T X(s)

Then frequency shifting property states that
esOt. x(t)«= L. T X(s—s0)esOt.x(t)«—=L.T X(s—s0)

Time Reversal Property
If X(t)e—= L. TX(s)X(t)e=L. TX(S)

Then time reversal property states that
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X(—t)= L. TX(=8)x(—t)—>L. TX(~s)

Time Scaling Property

I x(t)e—= L. TX(s)x(t)e—=L. TX(s)
Then time scaling property states that
X(at)e—= L. T1|a|X(sa)

Laplace Transform of periodic function

Theorem 1. Suppose that f : [0,00) = R is a periodic function of period T' > 0, i.e.
f(t+T)= f(t) for allt > 0. If the Laplace transform of f exists, then

/ f(t)e™tdt

1—e—sT (1)

Proof: We have

Fls) = / F(t)e—t dt

(n+1)T
— : '—st d
Z | e

oo T
= Z / fu4nT)e =" du u=t-—nT
n=0+0
oo T
— Z e—sn‘T/ f(ul}e—su du
n=0 0

( /r Flu)e™ du) i o

n=0
/ flu)e™ du
— ol
The last line follows from the fact that
n=0

is a geometric series with common ration e=*7 < 1 for s > 0.
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Convolution theorem

Suppose we know that a Laplace transform H(s) can be written as H(s) = F(s)G(s),
where E(f(t)) = F(s) and E(g(t)) = G(s). We need to know the relation of h(t) =

£—1(H(sj) to f(t) and g(t).

Definition 1. (Convolution) Let f and g be two functions defined in [0,00). Then
the convolution of f and g, denoted by f x g, is defined by

/f (t—7)d 2)

Note: It can be shown (easily) that f + g = g * f. Hence,

(f*g)(t) = /0 o)t —7)dr 3)

We use either (2) or (3) depending on which is easier to evaluate.

Theorem 2. (Convolution theorem) The convolution f * g has the Laplace trans-
form property

£((F*9)®) = F(s)G(s). (4
OR conversely

£ (F()G(s)) = (F xg)(1)

Proof: Using definition, we find

£((7xa0) = [T(Frp@e i

:/ (/f t—rdr)e“dﬁ

The region of integration is the area in the first quadrant bounded by the t-axis and

?
©
gk

NN
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the line 7 = ¢. The variable limit of integration is applied on 7 which varies from 7 =0
toT =1.

Let us change the order of integration, thus apply variable limit on ¢. Then ¢ would
vary from ¢t = 7 to t = oo and 7 would vary from 7 =0 to 7 = co. Hence, we have

£(re0w) = [ ( | etate=n df-) f(r)dr
= /m(fme_su( )du)f( Je~ T dr, t—1T=u
0 0
— (V/:o e g(u) d-u.) (/000 e f(7) dT)

= F(s)G(s)

Evaluation of Laplace Transform using Convolution theorem

find inverse Laplace transform of 1/s(s + 1)%.

Solution: We write H(s) = F(s)G(s), where F(s) = 1/s and G(s) = 1/(s+1)%. Thus
f(t) =1 and g(t) = te~*. Hence, using convo]utlon theorem, we ﬁnd

¢
/ff—r dT—/Te_Tdel—(t—l—l)e_t.
0

Note: We have used f(t—7)g(7) in the convolution formula since f(¢) = 1. This helps
a little bit in the evaluation of the integration.

Laplace transform of integral

The Laplace transform satisfied a number of useful properties. Consider exponentiation.
If LLFWOl)=F(s)for s>e (ie., Fls)is the Laplace transform of f),

then £ [¢* Fl=F(s=a) g 5>a+e This follows from

F[_g—a}: v[nff—fﬁ—u]rdr
— ‘L‘N[f (1) E‘”] e 4

= L [¢" f )] ().
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The Laplace transform also has nice properties when applied to integrals of functions. If f (z)
is piecewise continuous.

1
L |‘£‘f [rf}ﬂ' f ‘ = ; L [f ()] (s).

Fourier Mellin theorem

Mellin’s transformation is closely related to an extended form of Laplace’s. The change of variables defined

by:

t=¢ ", dt=—e " dx

transforms the integral (11.1) into:

After the change of function:

one recognizes in (11.13) the two-sided Laplace transform of g usually defined by:

E[g; s] :J_:g(t) e dx

This can be written symbolically as:

st =ele
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The occurrence of a strip of holomorphy for Mellin’s transform can be deduced directly from this
relation. The usual right-sided Laplace transform is analytic in a half-plane Re(s) > ;. In the same way,
one can define a left-sided Laplace transtorm analytic in the region Re(s) < o . If the two half-planes
overlap, the region of holomorphy of the two-sided transform is thus the strip g; < Re{s) < o, obtained
as their intersection.

To obtain Fourier’s transform, write now s = a + 2mjf in {11.13):

F(s) = J‘Wf(e‘*) e ¢ P gy

The result 1s

,-i{[f[r]; a+ jzjrﬁ] = EF[f(L’_I) e~ ﬁ]

where 7% represents the Fourier transformation defined by:

R"[f, ﬁ]ZJ:f[t) g 2BE gy

Thus, for a given value of Re(s) = a belonging to the definition strip, the Mellin transform of a function
can be expressed as a Fourier transform.

Possible questions (Part B- 6 marks)

1. Define Laplace Transform and explain their property.
2. Explain the linearity and change in scale property of Laplace transform.
3. State and explain shifting property of Fourier Transform.
4. Find the Fourier transforms of the following functions, and in each case draw graphs
for the function and its transform
f(x) =1, |X| |<a
fx)=0; [x| |>a
5. Define Inverse Laplace Transform. Find the inverse Laplace transform of

1-S
(S +1)(S*+4S +13)

6. Discuss about the change of interval from (-x,7) to (-1, I) in Fourier expansion.
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Derive any two properties of Fourier transform.
State and prove Cauchy’s Integral theorem.

Use Cauchy’s integral theorem to evaluate

Explain the Taylor’s Series with proof.

Possible questions (Part C- 10 marks)

1. Derive four properties of Laplace Transform
State and explain shifting property of Fourier Transform.
3. Find the Fourier transforms of the following functions, and in each case draw graphs
for the function and its transform
f)=x | x| |<a
f(x) = %; |X| |>a
4. Define Inverse Laplace Transform. Find the inverse Laplace transform of
1-S
(S+1)(S® +4S +13)
5. Discuss about the change of interval from (-rn,7) to (-k, k) in Fourier expansion.
Derive all properties of Fourier transform.
7. Explain the Taylor’s Series with proof.
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Questions optl opt2 opt3 opt4 Answer
UNIT 11
Which of the following functions has the period 2p? COS nx sin nx tan nx tan X sinnx
If f(x) = -x for -p< x£ Othen its Fourier coefficient a, is T p/4 p/3 p2 p/2
Which of the following is an odd function? sin X CcOS X <2 sin’x sin X
Which of the following is an even function? X cos X sin x tan X cos X
The function f(x) is said to be an odd function of x if f(-x) = f( x) b)f(x) = - f( x) f(-x) = - f( x) None f(-x) = - f( x)
The function f(x) is said to be an even function of x if f(-x) = f( x) b)f(x) = - f( x) f(-x) = - f( x) None f(-x) = f( x)
Ifa Periodic function f(x) is odd, it’s Fourier expansion coefficient a, sine coefficient ag cosine sine
contains no ------ terms.
Ifa pert odic fun.ctlon f(x) is even, it’s Fourier cosine sine coefficient a, coefficient a, cosine
expansion contains no ------ terms.
In Fourier series, the function f(x) has only a finite
number of maxima and minima. This condition is Dirichlet Kuhn Tucker Laplace None Dirichlet
known as -------
In dirichlet condition, the function f(x) has only a finite
number of finite dis continuities and no ------- semi finite continuous infinite finite infinite
discontinuities
If f(x) is even, then it’s Fourier co- efficient -------- is
ay a, b, none bn

Zero.
If the periodic function f(x) is odd, then it’s Fourier co-

. . a a, b, none an
efficient -------- is zero.
The period of cos nx where n is the positive integer is /n /2n 2n nn 2n
The Fourier co efficient a, in f(x)=x for 0< x£ m is T /2 2n 0 /2
If the ﬁlnctloq f (x) = -m in the interval -n x< 0, the 2 /3 23 (-7/2) (-72)
coefficient a, is
If the function f(x) = x sin x, the Fourier coefficient bn=10 a,=1 ay= /3 ap=-1 bn=0
For the cosine series, which of the Fourier coefficient
variables will be vanish? & b % Both ) and a, "
For a function f(x) = x°, the Fourier coefficient b, =0 a, =0 a =0 a,=b,=0 an =0
The function x sinx be a ------- function. even odd continuous None even
The function x cos x be a  ------- function. even odd continuous None odd
Lt F(s) = ------ s® ¥ 0 1 ¥ None 0
The Laplace transform of f{(t) is denoted by L {F(s) } L{f(t)} L {F@t)} L {f(s)} L{f(t)}
L(e")=-- 1/s+a 1/s-a 1/s*a 1/s 1/s+a




2

2

L (cos h at) = ---- a/s’- a’ s/s” *a s/s’- a a/s® +a’ s/s2 - a2
L (sinh at) = ---- a/s’-a’ s/s’- a’ a/s’+a’ s/s” +a’ a/s2 -a2
L (cosat) = ---- s/s> -a> a/s’ +a’ a/s®-a’ s/s +a? s/s2 +a2
L (sinat) = ---- s/s’ +a’ a/s’ +a’ a/s’-a’ s/s’-a’ a/s2 +a2
L({)= —- é(n+1)/s™! é(n-1)/s"" é(nt1)/s™! None é(n+1)/snt+1
é(nt+1) = ---- (n-1)! n! (n+1)! None (n+1)!
L(l)=---- 1 s 1/s 0 1/s
L(t) = - 1/s 1/s° t 1/t 1/52
L(t) = - 2/s’ 1/t 21 1/s* 2/s3
él/2 = --- OP/2 OP/4 (0)3 OP/8 (0)3
L(e")=--— 1/s+a 1/s-a 1/s*a None 1/s-a
L (t sinat) = ----- 2as/ (s*-a2) 2as/ (s*a?) 2as/ (s*+a?) None 2as/ (s2+a2)
L (tcos at ) = ----- sz-az/(seraz)2 s +az/(sz+az)2 sz-az/(seraz)z None s2-a2/(s2+a2)2
L G te® e et None te-at
L' (1 /(s> +4)) is equal to e cos2t/2 sin2t/2 et sin2t/2
L! (1/8) = ----—--- 1 0 t none. 1
L' [ 1/(sta)]= -----mmmv ¢! e ¢! ¢! est
The function x sinx bea ------- function. even odd continuous None even
The function x cos x be a  ------- function. even odd continuous None odd
Which of the following is an odd function? sin x cos X x> sin’x sin x
Which of the following is an even function X COS X sin x sin’x €OS X
The function f(x) is said to be an odd function of x if f(-x) = f( x) f(x) =-f(x) f(-x) = - f( x) 3 f(-x) = - f( x)
The function f(x) is said to be an EVEN function of x if f(-x) = f( x) f(x) = - f( x) f(-x) = - f( x) 1 f(-x) = f( x)
Ifa periodic function f(x) is odd, Fourier expansion cosine sine coefficient a, coefficient a, sine
contains no ------ terms
Ifa Periodic function f(x) is even, Fourier expansion cosine sine coefficient ag coefficient a, cosine
contains no ------ terms
In Fourier serie§ > the funcj[ic.)n f(x) has only a finite Dirichlet Kuhn Tucker Laplace None Dirichlet
number of maxima and minima
II.I dlrlchlet. c.:ondltlon, the function f(x) has no -------- semi finite continuous infinite finite infinite
discontinuities
If f(x) is even, then it’s Fourier co- efficient -------- is

2 a, b, none bn
Zero.
If f(x) is odd, then it’s Fourier co- efficient -------- is

ag a, b, none an
Zero.
The period of cos nx where n is the positive integer is /n m/2n 2n nn 2n
The Fourier co efficient a, in f(x) =x for 0<x£ m is T /2 2n 2 sin2t/2 w/2
If the function f (x) = - in the interval - x< 0, the 23 23 23 2 (x/2)

coefficient a, is




2

If the function f(x) = x sin x, the Fourier coefficient bn=0 ay=1 =73 ay=-1 bn=0
For a function f(x) = x’, the Fourier coefficient b, =0 a, =0 a =0 None bn
The Laplace transform of f(t) is denoted by L {F(s)} L{f()} L {F(t) L {f(s)} L{f()}
LE")=-- a)l/s+a 1/s-a 1/s*a 1/s lsta
.L (cos h at) = ---- a/s’- a’ s/s’ - a’ a/s’+a’ s/s” +a’ s/s’ - a’
L (sinh at) = ---- a/s’-a’ s/s” - a* als’+ a’ s/s’+a’ a/s’-a’
.L (cosat) = ---- s/s” -a” a/s® +a’ a/s’-a’ s/s” +a” s/s” +a’
.L (sinat) = ---- s/s” -a’ als’+a’ als’-a’ s/s” +a’ a/s’+a’
L= -— é(n+1)s™! é(n-1)5"" é(n+1)/s™! none é(n+1)/snt1
L(l)=--- 1 s 1/s 0 1/s
L(t) = -—--- 1/s 1/s t 16 1/s2
L(t%) = ----- 2/8° 1/t 21t 1/s? 2/s3
é12 = OP/2 OP/4 op OP/8 op
L(e")=-- 1/s+a 1/s-a 1/s*a None 1/s-a
L (t sinat) = ----- 2as/ (s™-a°) 2as/ (s’a’) 2as/ (s*+a?) None 2as/ (s2+a2)
L (tcos at ) = ----- sz-az/(sz+a,2)2 s +a,2/(52+a,2)2 sz-az/(sz+a2)2 None s2-a2/(s2+a2)2
IfL {1/(sta)’ }= - te te™ e None te-at
Lt (1 /(s2 +4)) is equal to e cos2t/2 sin2t/2 et sin2t/2
L' (1/s) = ---m- 1 0 t none. 1
IRV ) ) i — et e ¢! ¢! es t
The function x sinx be 8 ------- function. even odd continuous None 0
The function x cos x bea ------- function. even odd continuous None X
The exponential form of a complex number is z=re" z=¢" continuous z=r/cosq z = reiq
L(l)=--- 1 s 1/s 0 1/s
L(t) = - 1/s 1/s t 1/£ 1/s2
L(t%) = ----- 2/ 1/t 21t 1/s? 2/s3
é12 = OP/2 OP/4 op OP/8 op
L(e")=-- 1/s+a 1/s-a 1/s*a None 1/s-a
L (t sinat) = ----- 2as/ (s™-a°) 2as/ (s’a’) 2as/ (s*+a?) None 2as/ (s2+a2)
L (tcos at ) = ----- 52-312/(52+a2)2 §? +a,2/(52+a,2)2 sz-az/(sz+a2)2 None s2-a2/(s2+a2)2
IfL" {1/(s+a)’ }= - te™ te™ e None te-at
Lt (1 /(s2 +4)) is equal to e cos2t/2 sin2t/2 et sin2t/2
L' (1/s) = ---m- 1 0 t none. 1
L[ U(sta)]= ----mmmmmn ¢! e e ¢! es t
The function x sinx be 8 ------- function. even odd continuous None even
The function x cos x bea ------- function. even odd continuous None odd




A Laplace Transform exists when

A. The function is piece-wise continuous
B. The function is of exponential order
C. The function is piecewise discrete

D. The function is of differential order

A&B

C&D

A&D

B&C

A&B

What should be the value of laplace transform for the

1/s+awithROC o> -

®/(s+a)2+ w2 with

s+a/(s+a)2+ w2 with

Aw /82 + 2 with ROC

s+a/(s+a)2+ w2 with

time-domain signal equation e-at cos ot.u(t) a ROCo>-a ROCo>-a c>0 ROCo>-a
Which kind of frequency spectrum/spectra is/are

obtained from the line spectrum of a continuous signal Continuous in nature Discrete in nature Sampled in nature All of the above Discrete in nature
on the basis of Polar Fourier Series Method

Which type/s of Fourier Series allow/s to represent the

negative frequencies by plotting the double-sided Trigonometric Fourier Exponential Fourier All of the above Exponential Fourier

spectrum for the analysis of periodic signals ?

Series

Polar Fourier Series

Series

Series

Duality Theorem / Property of Fourier Transform states
that

Shape of signal in time
domain & shape of
spectrum can be
interchangeable

Shape of signal in
frequency domain &
shape of spectrum can be
interchangeable

Shape of signal in time
domain & shape of
spectrum can never be
interchangeable

Shape of signal in time
domain & shape of
spectrum can never be
interchangeable

Shape of signal in time
domain & shape of
spectrum can be
interchangeable

Which property of fourier transform gives rise to an
additional phase shift of -2 ft, for the generated time
delay in the communication system without affecting an
amplitude spectrum ?

Time Scaling

Linearity

Time Shifting

Duality

Time Shifting
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UNIT - IV Fourier series — Dirichlet’s theorem — change of interval — complex form —
Fourier series in the interval (0, T) — Uses of Fourier series - Legendre’s polynomials and
functions — Differential equations and solutions — Rodrigues formula — Orthogonality —
relation between Legendre polynomial and their derivatives — recurrence relations — Lagurae
Polynomials — recurrence relations

Fourier series

A Fourier series is an expansion of a periodic function f (x) in terms of an infinite sum
of sines and cosines. Fourier series make use of the orthogonality relationships of
the sine and cosine functions. The computation and study of Fourier series is known
as harmonic analysis and is extremely useful as a way to break up anarbitrary periodic
function into a set of simple terms that can be plugged in, solved individually, and then
recombined to obtain the solution to the original problem or an approximation to it to
whatever accuracy is desired or practical. Examples of successive approximations to common
functions using Fourier series are illustrated above.

In particular, since the superposition principle holds for solutions of a linear
homogeneous ordinary differential equation, if such an equation can be solved in the case ofa
single sinusoid, the solution for an arbitrary function is immediately available by expressing
the original function as a Fourier series and then plugging in the solution for each sinusoidal
component. In some special cases where the Fourier series can be summed in closed form,
this technigue can even yield analytic solutions.

Any set of functions that form acomplete orthogonal systemhave a
corresponding generalized Fourier series analogous to the Fourier series. For example, using
orthogonality of the roots of a Bessel function of the first kind gives a so-called Fourier-
Bessel series.

The computation of the (usual) Fourier series is based on the integral identities

ﬁsm (mx)sin(nx)dx = by, Q)
ﬂ 008 (m x) €08 (1 x) dx = Wy @)
ﬂsin (mx)cos (nx)dx =0 (3)
ﬁsin (mx)dx =0 (4)
ﬂcos (mx)dx =0 (5)

for m.n#0 where &« is the Kronecker delta.

Using the method for a generalized Fourier series, the usual Fourier series involving sines
and cosines is obtained by taking fi (x)=cosx and f (x)=sinx, Since these functions form
a complete orthogonal system over [=@. 7], the Fourier series of a function f () is given by
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flx)= % an + Z_a_.r cos (nx)+ Z_IJ_.T sin (mx), (6)
n=1 n=|

where
1

a = ~ J_:f (x)dx (7)
1

gy = ;{ l:f I:Y}I COs I:ﬂ .‘{’;Iﬂ'.‘{’ (8)
1

b, = - f_f (x)sin(nx)dx ©)

and n=1, 2 3, ... Note that the coefficient of the constant term ao has been written in a
special form compared to the general form for a generalized Fourier series in order to
preserve symmetry with the definitions of @- and &=,

Dirichlet conditions

A piecewise regular function that

1. Has a finite number of finite discontinuities and
2. Has a finite number of extrema

can be expanded in a Fourier series which converges to the function at continuous points and
the mean of the positive and negative limits at points of discontinuity.

Def. Sectionally continuous (or piecewise continuous) function. A function f (x) is said to
be sectionally continuous (or piecewise continuous) on an interval a = x = b if the
interval can be subdivided into a finite number of intervals in each of which the function is
continuous and has finite right and left hand limits. See Figure The requirement that a
function be sectionally continuous on some interval [a, b] is equivalent to the requirement
that it meet theDirichlet conditions on the interval.
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Fourier series. Let f (X) be a sectionally continuous function defined on an intervalc < x<c¢
+ 2L. It can then be represented by the Fourier series

. a, s 2mx Imx
Iy fix) = t o, COs Y A b, COs oLl
2 - L ’ L
) ) 2 . ) A X
# b, sin ™ & b sin 4 b, sino & .,
- L ) L
Where
l pet2t AT
a, = fix) cos dx n=0123 .
- 1 pes2r . ATX
h = — (x) sin— dx n=1273
=l 3

At a point of discontinuity f (X) is givena value equal to its mean value at the discontinuity
l.e. if x=a is a point of discontinuity, f (X) is given the value

lim f(x) + lim f(x)

T4 r—i,

f(x) = 5

Complex form of Fouries series
We show how a Fourier series can be expressed more concisely if we

introduce thecomplex number i where 2= -1, By utilising the Euler relation:

e =coso+ ising
We can replace the trigonometric functions by complex exponential functions. By also

combining the
Fourier coefficients an and bn into @ complexcoefficient cn through

Ch = (an-iby)

We find that, for a given periodic signal, both sets of constants can be found in one
operation. We also obtain Parseval’s theorem which has important applications in electrical
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engineering. The complex formulation of a Fourier series is an important precursor of the
Fourier transforms which atte mpts to Fourier analyse non-periodic functions.

So far we have discussed the trigonometric form of a Fourier series i.e. we have represented
functions of period T in the terms of sinusoids, and possibly a constant term, using

ap 2nmt . 2nmt
flt) = 5 + Z {an cos ( i ) + b, sin ( T )}

n=1

Ifwe use the angular frequency

2T
Wwo — —

T

We obtain the more concise form

. ag - .
flt) = % + Z(an cos nwot + by, sin nwot).
- n=1

We have seen that the Fourier coefficients are calculated using the following integrals.

T
an:E/Q f(t) cos nwot dt n=0,1,2,...
T _%

T
9 [T
b, = T f(t) sinnwt dt n=1,2 ...

]

An alternative, more concise form, of a Fourier series is available using complex
guantities. This form is quite widely used by engineers, for example in Circuit Theory
and Control Theory, and leads naturally into the Fourier Transform which is the subject of

Fourier series inthe interval (0, T)
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We assume that the function f(x) is piecewise continuous on the interval [0,T]. Using the
substitution x= Lyn (—n<x<m), we can transform it into the function

F(y)=f(Ly/n)

which is defined and integrable on [-rt,x]. Fourier series expansion of this function F(y) can
be written as

F(y)=fiLy/n)=a0/2+ Y (ancosny+bpsinny).

Uses of Fourier series

Fourier series and frequencies

The basic idea of Fourier series is that we try to express the given function as a combination
of oscillations, starting with one whose frequency is given by the given function (either its
periodicity or the length of the bounded interval on which it is given) and then taking
multiples of this frequency, that is, using fractional periods. When we look at coefficients of
the resulting "infinite linear combination™, we can expect that if some of them are markedly
larger then the rest, then this frequency plays an important role in the phenomenon described
by the given function. This detection of hidden periodicity can be very useful in analysis,
since not every periodicity can be readily seen by looking at a function. In particular, this is
true if there are several periods that interact.

Imagine that a function f describes temperatures at time t over many many years. There is one
period that should be easily visible, namely seasonal changes with period one year. We also
expect another period going over this basic yearly period, namely 1-day period of cold nights
and warm days. Now the interesting question is whether there are also other periods. This is
very useful to know, since such knowledge would tell us something important about what is
happening with weather and climate. Frequency analysis offers a useful tool for such an
investigation, looking over long data sequences it may point out cold ages and other long
term changes in climate.

There are areas where decomposition into waves comes naturally, for instance storage of
sound. When we are given a sound sample, Fourier transform allows us to decompose it into
basic waves and store it in this way. Apart from data compression we also get further
memory savings by simply ignoring coefficients that correspond to frequencies that a typical
human ear does not hear. This is the basis of the mp3 format (it uses transform that is
something like a fourth generation offspring of cosine Fourier series).

Dr. S. Esakki Muthu Karpagam Academy of Higher Education Page 5of 12
Department of Physics



M Sc Physics Unit -1V Mathematical Physics-17PHP104
2017 (ODD) Fourier Series

Fourier decomposition can be also generalized to more dimensions and then it can be quite
powerful in storing visual information - it is for instance the heart of the system used by
F.B.I. to store their fingerprint database. Since this decomposition is so useful, one important
aspect is the speed at which we can find the coefficients. This inspired further development
and today we do not usually use the standard Fourier series but its more powerful offspring,
for instance something called Fast Fourier Transform (FFT). Here also hardware helps, there
are devices (integrators) that have this wired in, roughly speaking one feeds it a function and
the device spits out a Fourier coefficient.

Legendre Polynomial and differential equation

The Legendre differential equation is the second-order ordinary differential equation

dy dy
-2 c2x 2 hgeny =0,
dx? dx (1)
which can be rewritten
d 3y ¥
—|(1-x }—‘+E[{+1]}-:l].
dx dx (2)

The above form is a special case of the so-called "associated Legendre differential equation”
corresponding to the case m =0, The Legendre differential equation has regular singular
points at =1, 1, and oo,

Ifthe variable x is replaced by cos &, then the Legendre differential equation becomes

dz}'+msgd}'+;(;+1 -0
d6*  sin@ 4@ )y=0: (3)

Derived below for the associated (= #0) case.

Since the Legendre differential equation is a second-order ordinary differential equation, it
has two linearly independent solutions. A solution P: (xJ which is regular at finite points is
called a Legendre function of the first kind, while a solution @: (x) which is singular at +1 is
called a Legendre function of the second kind. If I is an integer, the function of the first kind
reduces to a polynomial known as the Legendre polynomial.

The Legendre differential equation can be solved using the Frobenius method by making a
series expansion with k=10,

y @
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Y = n=t ()
}I” . =
z_n (n—1Da, x"7.
n=( (6)
Plugging in,
|:1 —xg}l Z_n (n-1Da,x"*-2x z_nan Py l}z_an =0
w=( a=( A= (7)
Z_n[n ~1a, x"* - z_n n=1)a,x"
n=( n=( (8)
-2x Z_naﬂ P i+ I}Z_aﬂ =0
=0 n=0 (9)
z_n[n— 1ya, " - z_n[n— 1) a, x"
n=2 n=0 (10)
-3 Z_naJT I+ I}Z_a,rx” =10
e n=0 (11)
z_[n+2} (n+ 1) auax" - Z_n[n— a, x"
n=( n=ll (12)
=3 z_naJT I+ I}Z_a,rx” =10
e n=0 (13)
Z_{[n+ DNin+Dap +[-nr=-1)=2n+14+ 1] a;} =0,
= (14)
so each term must vanish and
m+Dr+Da +[-nr+D+I10+ 1] a, =0 (]_5)
nn+l)y=I1(14+1)
g
gy = n+ Din+2) (16)
[+m+1{=n)
- g
= n+ Din+2) (17)
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Therefore,
[(I+1)

a = 12 % (g)
(1-2)(1+3)

a4 = - 3-4 - (19)

(-1 (=20 [+ 1D+ 3)]
= 1.2-3.4 “ (20)

(1-4)(1+5)

a = 56 (21)

iy E=90=D 0+ D@43+ )]
- 1-2-3-4-5-6 a0 (22)

so the even solution is

[=2n+2)-(=-2N[I+DT+3) - 0+2n=-1)] ,,
x°

yil) =14 (-1) 8
n=1

(2 n)! 23)
Similarly, the odd solution is
y2 ()= x + i(—l}” [(=2n+ 1) U=3)U=-DIE+2) ([ +4) - (I +2n)] sl
2n+1)!
n=1 (24)

If I'is aneveninteger, the series ¥1(x) reduces to apolynomial of degree ! with
only even powers of x and the series ¥z (x) diverges. If Zis anodd integer, the series ¥z (x)
reduces to a polynomial of degree ! with only odd powers of x and the series ¥ (x) diverges.
The general solution for an integer ! is then given by the Legendre polynomials

P, Ex} =
vy (x) forieven
" lyz (x) forlodd 25)
1 F [—;—,;—(Hl}l:;-,xz]l for leven
Cn
_ x2 F [:;‘I:F+2}.-;‘I:1—I}I:§:x2]l for I odd (26)

where cx is chosen so as to vyield the normalization Px(1)=1 and 2 F1 (a. biciz) is
a hypergeometric function.

The associated Legendre differential equation is
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4 (1 2}9 + [t +1 : =0
ax "7 ‘“‘ R @7)
which can be written
A v dy 2
[l—xz]l—i—?.x—}+ I(I+1)- S y=0
dx dx -x (28)

(Abramowitz and Stegun 1972; Zwillinger 1997, p. 124). The solutions 7" () to this equation
are called the associated Legendre polynomials (if I is an integer), or associated Legendre
functions of the first kind (if 7 is not an integer). The complete solution is

y=0C Py (x)+ G O (x). (29)
where @' () is a Legendre function of the second kind.

The associated Legendre differential equation is often written in a form obtained by
setting x = cos 8, Plugging the identities

dy dy
dx = dlcosf) (30)
1 4w
= sinf d@ (31)
Q 1 d ;1 dy
dx? = sinf dﬂ{sinﬂ dﬂ] (32)
1 d*y cosf dy
= sinzﬂ[dﬂ’z sinfl dd (33)
into (<)) then gives
dy 6dy 8dy :
—}—o'_j—s—} +20?—5—}+£(£+1}— . =
A sind 46 sinf 46 sin? @ (34)
dy oos0dy oo "] 2o
4 sind 4@ )" e '
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Lagurae Polynomials: Definition
Laguerre's Differential Equation is defined as:
o'+ 1=y +ay =0

where # is a real number. When # is a non-negative integer, i.e., ”:D=1=2=3=---, the
solutions of Laguerre's Differential Equation are often referred to as Laguerre

Polynomials £n (%)

Important Properties

Rodrigues’ Formula: The Laguerre Polynomials In(x) can be expressed by Rodrigues'
formula:

Ly(x)=

q" _
— d—n(x”e &

ala Y where n=01273

Generating Function: The generating function of a Laguerre Polynomial is:

A1) oo

= - Z Ly (xye"
n=I

Orthogonality: Laguerre Polynomials L”'ix:', n=0125.. , form a complete orthogonal

set on the interval U < x < o with respect to the weighting function &~ It can be shown
that:

M=
="

00 _ . ]
fn e Ly (I (R)dr=1

By using this orthogonality, a piecewise continuous function F(x) canbe expressed in terms
of Laguerre Polynomials:

Fix where F(x) 1z continuous

> Cnln(D=1 77y + 7 x )
n=0 o

at discontinuous points

Where:

Co= [ W
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This orthogonal series expansion is also known as a Fourier-Laguerre Series expansion or
a Generalized Fourier Series expansion.

Recurrence Relation: A Laguerre Polynomial at one point can be expressed in terms of
neighboring Laguerre Polynomials at the same point.

At ) Ly (x) = (22 +1—x) Ly (x) — Ly (5)
. L, (x)= Ly’ (%)= Ly—1(x)

1y (x) = nLy (x)= nLy g (x)

Special Rsults

PRI

—...+(—1)”]

m(m—l)xn_z

2lin—2)1
[ 5l =20 (9)= Ly ()

0 it p<n
jl‘:lm et (x) ax =[

(1" 5l ifp=n

Ly (x) Iy ()~ gt (x) L ()
(H—H)(x—y)

7=

B (x) Ly (¥)=

H—l
I

0

i f,k_.f,k (x) =er.f|:| (2&)

I
! il

(1) =L [ ey (2

aldo

4

Where 2h is 0 order Bessel function of the first kind
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Possible questions (Part-B-6 Marks)

1.

© o N o o

State and Explain Dirichlet conditions.

using Legendre polynomials

+1
Show that ijn(x) P (x)dx =
-1

4n% -1

Show that the Legendre function P,(X) is the coefficient of z" in the expansion of [1 —
2xz + 2T Y2,

Fromabove, deduce the values of P,(1). Also, show that P(-X)=(-1)"Pn(X)

Explain what is Fourier series. Find the Fourier series of the function in the interval —
T<X<T

Derive Rodrigue’s Formula. State and Explain Dirichlet conditions.

Explain orthogonal properties of Legendre’s polynomials.

Explain about the Cauchy Residue theorem

Explain orthogonal properties of Legendre’s polynomials.

Derive recurrence relation for Lagurae formula.

Possible questions (Part-C-10 Marks)

N oo o A

+1
Show that j XP. (X)P,_, (X)dx =

-1

using Legendre polynomials

n®-1

Show that the Legendre function P,(X) is the coefficient of z" in the expansion of [1 —
2xz + 2T Y2,

Fromabove, deduce the values of P,(1). Also, show that P,(-X)=(-1)"Pn(X)

Explain what is Fourier series. Find the Fourier series of the function in the interval —
2n<x<2m

Derive Rodrigue’s Formula for legendre polynomial.

Explain orthogonal properties of Legendre’s polynomials.

Derive Rodrigue’s Formula for lagurae polynomial

Derive the recurrence relation for Legendre formula.
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UNIT IV

The value of I, (x) is

The Rodrigue formula for Pn(x), the Legendre polynomial
of degree ‘n’ is

2" n!

1

K =——
2" (n)?

\/2 i
sin x
x
.

K=
!l

The value of Jo(x) at the origin is

-1

X

The value of P;(x) is

x2/2

v (x> -1)

The identical roots of the Legendre’s functions are

m=0orm=1

m=0orm=-1

The value of J; ), (x) is

If Jo and J; are Bessel’s functions then J;’(x) is given by

Jo(x) — 1/x J1(x)

Jo(x) + 1/x J1(x)

Jo(x) — 1/x* J,(x)

Jo(x) — 1/x J;(x)

The value of the integral where Jn(x) is the Bessel
function of the first kind of order n, is equal to

0

2

1

0

The integral | x/o (x)>isequal to

xJ1(x) — Jo(x)

J1(%)

X 2Jn(x)

xJ1(x)

If 11 (x) = (2/%) J4(X) — Jo(x) where Jn is the Bessel
function of first kind order ‘n’. Then ‘n’ is

-1

The value of [J;, (x)]* + [J-1 ()]* is

The value of Po(x) is

0

The value of the IR (xaif = o

(x ) Pm

n=m

n'm

n>m

n<m

n'm

The polynomial 2x>+x+3 interms of Legendre polynomial
is

Lar, —3p+np
3 0

%(4P2 +3P +11FR)

%(u’2 +3P, +11P,)

%(41’2 3P -11P)

%(4102 -3P -11P,)

Let Pn(x) be the Legendre polynomial, then Pn(-x) is

_ n+1 5 _1\° 5 _1\° P> _1\°

equal to D7 PY() 1" Py (x) 1" Pyx) (%) 1) P,(x)

- - < 2
If P,(x) is the Legendre polynomial of order ‘n’, then 3x” + 3P, + 3P, 4P,42P, + Po 3P,+3P, + Po 2P,+3P, + 2Po 2P,+3P, + 2P0
3x + 1 can be expressed as
If I _then ‘n’ is 1 0 1 i 0
Legendre polynomial is . s
where K is equal fo Pi(x) = K [X> e K"} 63/2 63/5 63/10 63/8 63/8
.Let Pn(x) be Legendre polynomial of degree n>1, then 0 1/ @2nt1) 2/ @nt) n/(@n+) 4REF!
is equal to
The value of < is the third degree Legendre 1 -1 5 0 0

polynomial is j(zx + DP, (x)dx

The Legendre polynomial Pn(x) has

n real zeros between 0 and 1

n zeros of which only one is

2n-1 real zeros between —1

none of these

n real zeros between 0 and 1

between —1 and +1 and 1
The incorrect equation among the following is P(x)=1 Pi(x)=x P,(-x)= (_1)“+1 P,(x) P,(x)= (_1)“+1 P,(x) P,(x) = (_1)“+1 P, (x)
The value of P,(-x) is - P, (x) P, (x) (-1)" P, (x) (-1)" P, (-x) (-1 P, (x)
The value of 2], is Jnt = Jon Jnt H i Jnrt = Jnnt 2 Jpn Jnrt = Jnnt
The root of x3 — 6X + 4 lies between —1land 0 1 and 2 —2and 1 0and 1 —land 0
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2017 (ODD) Bessel Function

UNIT - V Bessel’s functions — differential equation and solution — generating functions —
recurrence relations — Bessel function of second order — Spherical Bessel function - Hermite
differential equation and Hermite polynomials — Generating function of Hermite polynomials
— Recurrence formulae for Hermite polynomials — Rodrigue’s formula for Hermite
Polynomials — Orthogonality of Hermite Polynomials — Dirac’s Delta Function

Bessel functions differential equations and solution

The Bessel functions of the first kind Jx (x) are defined as the solutions to the Bessel
differential equation

d* v dw
x 4 +x d +(.r2 —ﬂz]l}'ZI}
.dxz dx

Which are nonsingular at the origin. They are sometimes also called cylinder functions or
cylindrical harmonics. The above plot shows J« (x) for 1, 2, ..., 5. The notation == was first
used by Hansen (1843) and subsequently by Schlémilch (1857) to denote what is now
written Jx (22) (Watson 1966, p. 14). However, Hansen's definition of the function itself in
terms of the generating function

&= N (), 2)
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is the same as the modern one (Watson 1966, p. 14). Bessel used the notation I to denote
what is now called the Bessel function of the first kind (Cajori 1993, vol. 2, p. 279).

The Bessel function J. (z) canalso be defined by the contour integral

1 T
@)= 5— ée-*-'”-f"-'” s, (3)
i

where the contour encloses the origin and is traversed in a counterclockwise direction
(Arfken 1985, p. 416).

The Bessel function of the first kind is implemented in the Wolfram
Language as Bessel[nu, Z].

To solve the differential equation, apply Frobenius method using a series solution of the form

o @
D Y A o
m=() s=[}

Plugging into (1) yields

ttal

X Z_Ifk+n}l|:k+n “Da, x4

n=(
x ZI:I: +a)a, 4t Z.an o z.a,, # =0
. = nfﬁ =0
z_[k+n}[k+n ~Da, " + z_[k+n]an K
ri={ =i
. - (6)
+Z'a”'2 PR Zan =0
n=2 n=0
The indicial equation, obtained by setting n =0 is
ag [k(k= 1)+ k-m*]| =ay (¥ - m*)=0. (7)
Since ao is defined as the first nonzero term, & —m* =0, so k= m_. Now, if k=m,
Z_[(m +r)m+n-1)+(m+n)- mz] x4 Z_a,,_g 2™ =0 (8)
rr=[:' _rr=2
Z_ [(m +n)f - mz] ay x4 Z daya x" =10 9)
.IT=[:' _r|'=2
Z_n (2m+n)a, x™" + Z_a,,_g M= (10)
.IT=[? _rr=2
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ar 2m+ D™ + Z_[a,rn (2m+n)+a,a]x™" =0, (11)
=2

First, look at the special case m=-1/2, then (11) becomes

fia)

[ann(n—1)+a,2]x"" =0, (12)
n=2
o)

- 13)
fn = _n[n— 1) fn-2

Now let n =21 where i=1, 2, ....

1

@1 Iy @ (14)
1
- [Zi[ii—rl}][i[i—tljliii—ﬂl--~[2~1~1]aﬁ (15)
T ;}- nn (16)
which, using the identity 21! 27~ D! =2 0!, gives
ay; = ﬂ ap. 17
(20!
Similarly, letting n=21+1,
| (-1Y
CHT T nen @ T i@+ DIRE- D= Dl - 21311 " a8
which, using the identity 2' 21 21+ I)!I! =21+ 1)!, gives
1 o
i = ﬁ a@= (22?1;! - (19)
Plugging back into (<) with ¥=m = =1/2 gjves
R ia < (20)
=0
e i an " + i an 5" 1)
n=135... n=024_..
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- 2 Z_azrxﬂ + Z‘aﬂ " L2141 (22)
=0 =0
— (1) — (-1
e 21 2141
=t ““;tzmx e ;;[EHI}!X (23)
= "2 (g cos x + ay sinx). (24)
The Bessel functions of order +1/2 are therefore defined as
2
Jop )= — C0S X (25)
N mx

et = [ 2 gnx, (26)
N mx '

so the general solution for m=+1/2 is
y=ayJ_yp )+ a) Jig (x). (27)
Now, consider a general ™ # —1/2 Equation (<) requires

a2m+1)=0 (28)
[azn(Zm+n)+a,a]x™" =0 (29)

forn=2 3, ..., s0
a =10 (30)

1
dy-2 (3 1)

n = _n[2m+n}

forn=2 3, ... Let n=21+1 where I=1,2 .. then

1
R T oy DR m+n+ 1 (32)

=..=flhrma =0, (33)

where f (r.m) is the function of and m obtained by iterating the recursion relationship down
to ai. Now let n=21 where I=1,2, ..., s0

1

== m 11 (34)
1
T diman P (35)
(1)
= , 36
[4![{m+!}l[4[!—1}[m+!—1}]--~[4~|{m+1}]aIﬁ (36)
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Plugging back into (<),

y= a, x"M = Z ay x" 4 Z a, x" (37)
n=(} n=135... A=024,..
= Z.aﬂ i+ primel Z_agrxg o (38)
=0 I=0
3 -1 2 L4om
:aﬁé'w![mwl[m—l;[m“—1;]---[¢(m+1;]x (39)
o [[_l}rm[m_”,ul]xzrm
- ;;[‘“[m+ DIdE=Dm+i=1][4m+m---1] (40)
v 1 m! 2 14m
Nﬁé;'z“u(mm! (41)
Now define
N (-1 2 [+
-r.'h' = e .
*) 25 el (42)

o
)

where the factorials can be generalized to gamma functions for nonintegral m. The above
equation then becomes

y=ag 2" m! Jpy (x) = aj Ji (x). (43)

Returning to equation (<>) and examining the case ¥=

a [1—2m}+z_[ann[n—2m}+an_z]x”_m=ll (44)
n=1

However, the sign of m is arbitrary, so the solutions must be the same for +m and -m. We are

therefore free to replace —m with =Iml, so

ar (14 2[m) + ) [ay n(n+ 2 lml) + a, 2] 2 =0, (45)

n=1

and we obtain the same solutions as before, but with = replaced by |ml.
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N (-1) 2 i+l I
é 22 1Y (| 4 1)1 forlml# 3

I (x) = | oS x form= -1 (46)

2
nx 1

[ 2 I
— sinx form= -.
Tx 2

We can relate Ji (x) and J- (x) (when m is an integer) by writing

o -1 i -,
PRSIy - (47)

2 (= m)!

Now let =1 +m, Then

I = i (-1 2 .
—He [:.X}— !..-M‘:.n 22 I i Ur + m}l' 1l ( )
_ i E-l)"lr-i-'r: xE!"-wr.- . i E_l).-"-wr.- x”rM‘ (49)

!"'=—|:1‘.' 22 I+ I"! I:F 4 m]! !"':l:;l 22 i+ |!u'! Ur + m)!

But I'! =co for I'=-m, ..., =1 so the denominator is infinite and the terms on the left are
zero. We therefore have

= & 2 i+m
Jow (x)= ;IZNM‘“U'FMJ! * (50)
= E_IF’" .fm |:.X':| (51)

Note that the Bessel differential equation is second-order, so there must be two linearly
independent solutions. We have found both only for Iml=1/2 For a general nonintegral
order, the independent solutions are J» and J-». When m is an integer, the general (real)
solution is of the form

Zw =C J (X) + G ¥y (1), (52)

where T is a Bessel function of the first kind, ¥= (a.k.a. M=) is the Bessel function of the
second kind (a.k.a. Neumann function or Weber function), andCi and €: are constants.

Complex solutions are given by the Hankel functions (a.k.a. Bessel functions of the third
kind).

The Bessel functions are orthogonal in [0, a] according to

‘EJIV [ﬂp'n; E] gy [ﬂp'n E] pdp= ;' aZ [Jos1 [:ﬂ";.-r.-ﬂz O s (53)

a
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where @, Isthe mth zero of 7v and d..» is the Kronecker delta (Arfken 1985, p. 592).

Except when 2m is a negative integer,

z—l_-"Z

I = Moy 2i ' 54
. (2) YEme 2 R T (1 1) om (2§ 2) (54)

where T (x) is the gamma function and Mo is a Whittaker function.

In terms of a confluent hypergeometric function of the first kind, the Bessel function is
written

oy

2
Iiv+1)

Jy(z)= o Fi [V+ 1; —4|- zh,l. (55)

A derivative identity for expressing higher order Bessel functions in terms of J (z) is
d

n@=T, (i )5 @), (56)
dz

where T (z) is a Chebyshev polynomial of the first kind. Asymptotic forms for the Bessel
functions are

]. AN ]
In@> 5 (E] (57)
for z=1 and
@] = nr o) (58)
i z)~\ ne ODS[z— 5 "

for 23 |m’ = 1/4| (correcting the condition of Abramowitz and Stegun 1972, p. 364).

A derivative identity is

d , ,

2o 7 T (] = Ty (). (59)
b 4

An integral identity is

fu' Jo 'V du' = ud) (1) (60)

Some sum identities are
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D k=1 (61)
(which follows from the generating function (&) with £=1),

=0 @I +2 ) [ (]’ (62)

k=1

(Abramowitz and Stegun 1972, p. 363),

1=Jo (1) +2 ) Jag (x) (63)

k=1
(Abramowitz and Stegun 1972, p. 361),
E.IT . Lt
0= (1" @) Jansc @ +2 D T (&) 2o &) (64)
k=0 k=1

for n=1 (Abramowitz and Stegun 1972, p. 361),

5 Q22)= ) L @Ik @+2 ) (-1 Sy @) e @) (65)

k=i k=1

(Abramowitz and Stegun 1972, p. 361), and the Jacobi- Anger expansion

fn.:.:n.n-']‘: Z fnhr,r [:Z} r.’lml?_. (66)
which can also be written

¢ = Jo (1) 42 ) " T, (2) cos (n 6). (67)

.IT=|
The Bessel function addition theorem states
Ly += Y T () am ). (68)
Various integrals can be expressed in terms of Bessel functions
1 .

J.(2)= - fms (zsinf—ndda, (69)
which is Bessel's first integral,
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In (2) = % fe'*”-*”oos (nthd (70)
]

_ 1 . jronsd ind
Iy (2) = A f e e""dd (71)
forn=1, 2, ..,
h@=2 2 [ nn d (72)
(2] = x @noD f Sin°" wcos (z cos u)d u
forn=1 2, .,
I, (x)= 1_ r_,:l.-'zfli.:—h'.:]z—n—l dz (73)
" 2mi J,

for n>=1/2 The Bessel functions are normalized so that

fﬂ;n (x)dx=1 (74)

for positive integral (and real) . Integrals involving Ji (x) include
[

Bessel function of second order

J ()

X
Jy (x)

X

4

; (75)

xr=

2

XxXax=

b2 = A

(76)

A Bessel function of the second kind ¥: (x) (e.g, Gradshteyn and Ryzhik 2000, p. 703,
egn. 6.649.1), sometimes also denoted N (x) (e.g, Gradshteyn and Ryzhik 2000, p. 657,
eqgn. 6.518), is a solution to the Bessel differential equation which is singular at the origin.
Bessel functions of the second kind are also called Neumann functions or Weber functions.
The above plot shows ¥ (x) for n=01, 2, ..., 5. The Bessel function of the second kind is
implemented in the Wolfram Language as BesselY[nu, Z].
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Let v=Jn (x) be the first solution and » be the other one (since the Bessel differential
equation is second-order, there are two linearly independentsolutions). Then

xu +u +xu=0 1)
xv v +xv =0, @)

Take v (1) minus u (2),

W v—uv )+ v—uv =0 (3)
d

— [x (' v=uv)] =0, (4)
dx

so x (W' v—uv)=B where B is a constant. Divide by x+*,

w' v —uv d cu B
= [;] == ()
d
“=A+B f S 6)
v x v
Rearranging and using v =Jx (x) gives
ATy (x)+ BJy }f ax
H = e WX i LW . J’i [:x} (7)
=A"Jy (x) + B" ¥ (x), (8)
where Y. is the so-called Bessel function of the second kind.
¥, (z) can be defined by
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Y, )= Jy (z)cos (v) = oy (2)

©)

sin (vr)

(Abramowitz and Stegun 1972, p. 358), where J. (z) is a Bessel function of the first kind and,
for v an integer = by the series

L9"

D-k-1) )
Y, (2=~ z o o ) (%zz][ +
k=0 ‘

_ (10)
(=52

Hin+i!’

(32"

2 | o
;,'I‘(i?-]'#fﬂ- ;[{f’ﬁ(k+1}+l.ﬂfﬁ[n+k+1]]

T k
where ¥ (x) is the digamma function (Abramowitz and Stegun 1972, p. 360).

The function has the integral representations

Y, (z)= }T fsl]‘l (zsinf=v)df = }T V[‘N[r?"" P (_1}?] gisinhr g (11)
~ 2(;' z}_.,- fw cos (z)dt
S VRT(E-v)d (2o

2

(12)

(Abramowitz and Stegun 1972, p. 360).

Asymptotic series are

“n(ix)+y] m=0,x<1

¥, (x)~ (13)

_2?[%

II?. nom
Y.-t.-'ix}"'\ H Sl:l'l[x—m?—i]xﬁblg

For the special case n =0, ¥ (x) is given by the series

L
] mzl,x=l
x

| 2k
-z
F|

&2 |

Fid

2 = )
Bplz)=~- {[h‘.l[;‘z]l+}‘].f[:. (z)+ Z_(_”HI H;

k=1
Take the Helmholtz differential equation
VF+EF=0 (1)

in spherical coordinates. This is just Laplace's equation inspherical coordinates with an
additional term,
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d?.'eerzdRer 1 S0

dr rodr Psin?d d6F ?
cosgd db 1 &@

+ — @R+ — —OR+E RO =0.
P sing d¢ P dd?

Multiply through by 7 /R 9@,
r d&R 2rdR 1 d?@ cos$ dP 1 &
R ar EEHHLrEJsm o af  Tsing dg  ® ag? =0 ®)

This equation is separable in R. Call the separation constant = (n + 1),

rdR 2rdR
E _rﬂ E d_+k ?2—!‘1[:!‘14'1}. (4)

Now multiply through by R,

d* R dR
fﬂﬁurd—qkﬂ;_“uﬂﬁ 0. ()

This is the spherical Bessel differential equation. It can be transformed by letting x =kr, then

rdR[r}zk dR(r) e dR(\  dR(r

dr " kdr Ak dx (6)
Similarly,
£ RN & RIn
s =x? ——— 7
dr * dx® )

so the equation becomes

, d*R dR
x —+2x—+[x —n[n+1}]R 0. 8)
d x* dx

Now look for a solution of the form R (r)=2Z (x)x™"*  denoting a derivative with respect to x
by a prime,

R =2 - zx" 9)

R =z" x—l.-’Z _ *;IE 7' x—l-’z _ EI_Z--x—l-’.! _ 2|_ [_ %}zx—i-’-! (10)
=z xP oz _3; ZxR, (11)

SO
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AR A S Y2 L)

x [."?;"':r_l'r2 - ;—Zx_m]l+ [xz —nin+ 1}].7'5:r_|'r2 =0 (12)
X IIZ” A EZx_z:H Zx(Z'— ;—Z:“I}H[xz ~nin+ 1}]2":& (13)
:rzZ”+E—x+2x}2'+[3—1+x2—n|fn+1}l]Z=l} (14)
XEZ”+xZ'+[x2—(n2+n+_l;]l]Z=l} (15)
:rzZ”+xZ'+[x2—(n+;—}EIZ:G. (16)

But the solutions to this equation are Bessel functions of half integral order, so the
normalized solutions to the original equation are

R(N=A "fJ'rJ-I_-"Z (kr) +B 1"”4_|_,q (kr) (17)
¥l =
Vir Vikr

which are known as spherical Bessel functions. The two types of solutions are denoted ji (x)
(spherical Bessel function of the first kind) or =« (x)(spherical Bessel function of the second
kind), and the general solution is written

R()=A"j, (kr)+ B n, (kr), (18)
where
n Jpap (@)
Jn (2)= /T : (19)
V2oV
/? Yoin (@)
Ry I:Z}-=I -
V2oV

Spherical Bessel function
The second-order ordinary differential equation

dy dy
—~ _2x — +dy=0. 1
dx? xd'x y 1)

This differential equation has an irregular singularity at . It can be solved using the series
method

Z_[n+2}[n+1}an+g x”—Z_Znanx”+Z_ﬂ.a,,x”=l} (2)

m=( =1 =0

(2ar+dag)+ Z_[[n +2)n+1Das —2nag +dag]x" =0 (3)
n=|
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Therefore,
A
@ == @
and
2n=A
B TY R T ©)
for n=1 2, ... Since (4) is just a special case of (5),
2n-4A4
B TY IS T (©)
forn=01, ..
The linearly independent solutions are then
A 4-A)A B=-A)E-a
¥1 = ap l—ﬁxz— 41 Xt - 61 xﬁ—--n‘ (7)
2-A 6-0E2-1) .
Y1 = 4 x+|: }x3 E ) }x‘+...‘. (8)
3! 51

These can be done in closed formas
}l:.a;[:.|F| (—_I;R:%:XE}+{I|X|F| (—_%I:;‘L—E}I::‘I:Xz} (9)

=ap | Fi [—;'FL: ;—:xh,l+az Hyp (x), (10)

where | Fi (a: b;x) is aconfluent hypergeometric function of the first kind and H. (x) is
a Hermite polynomial. In particular, for A=0, 2, 4, ..., the solutions can be written

Ya=0 = ap + ;‘ Vn a erfi(x) (11)
Viz2 = dp [f“z —m xerfi [x}] +xa (12)
yaca= {26 xar - (2% 1) [4a0 + Vi @y edfi ()]}, (13)
where erfi (x) is the erfi function.

If A=0, then Hermite's differential equation becomes

}IH _Ex}lf =|:|'_. (14)
which is of the form Pz (x)y” + Pi (x)y" =0 and so has solution
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+ 2 (16)

=

f dx
= exp [(-2x)dx

dx
:f‘|f ~ +c2 =y erfi (x) + e2. 17)
e

Hermite Polynomial

The Hermite polynomials H: (x) are set of orthogonal polynomials over the domain (&9, ca)

with weighting function f"‘:, illustrated above for n=1, 2, 3, and 4. Hermite polynomials
are implemented in the Wolfram Language as HermiteH[n, x].

The Hermite polynomial H; (z) can be defined by the contour integral

n |

H,(2)= — éf":*z Tenld, (1)

2mi

where the contour encloses the origin and is traversed in a counterclockwise direction
(Arfken 1985, p. 416).

The first few Hermite polynomials are

Hy (x) = (2)
H (x) =2x (3)
Hy(x) =4x* -2 4)
Hy(x) = 8" - 12x (5)
Hy(x) = 16x" — 482 + 12 (6)
Hs(x) =32 —160x" + 120 x (7)
Hs (x) = 64 x° — 480 x" + 720 %% - 120 (8)
Hiy(x) = 128x" — 1344 %" + 3360 x° - 1680 x 9)
Hy (x) = 256 x" = 3584 x° + 13440 x* - 13440 x* + 1680 (10)
Hy(x) = 512x" =9216x" + 48384 x° - 80640 " + 30240 x (11)
Hy (x)= 1024 x" = 23040 x* + 161 280 x® = 403200 x* + 302400 x* = 30240, (12)

When ordered from smallest to largest powers, the triangle of nonzero coefficients is 1; 2; -2,
4;-12, 8; 12, -48, 16; 120, -160, 32; ... (OEIS A059343).

The values Hx (1) may be called Hermite numbers.

The Hermite polynomials are a Sheffer sequence with
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g = (13)
= :" (14)
(Roman 1984, p. 30), giving the exponential generating function
= H, (x)r"
exp[?.xr—?zjlsé o (15)
Using a Taylor series shows that
| d_ exp(2xt-1r) » (16)
| (&) <. a7
r={
Since df x =0)fdt=-df (x = 1)/ dx,
a 2
. —{x-1)"
Hy ()= (~1) & [dx ] 2ad (18)
2 e (19)
Now define operators
] d ]
= 24 2
] ¢ dx e ( 0)
= _ xf2 i 22
Dz_f”l- [x—dx]f (21)
It follows that
- z d
017= - —[re] (22)
_ af
=2xf- r (23)
- 20 d —xt 2
0, f=¢"/ (x—d—x][ff / ] (24)
=xf4+xf- d—f (25)
dx
d
—2xp- 2L (26)
dx
SO
bl = EJE ¥ (27)
and
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2 d 3 3 d a
—et — e =2 [x - d—]f_’l_-"z (28)

X

(Arfken 1985, p. 720), which means the following definitions are equivalent:

“ H, (x) "
exp(2x1-7)= Z :j} (29)
n=(y )
A dt 5
H, (x) =1 et (30)
5 d 5
H, (x) = g /2 {x - -:2'_] e 12 (31)
x

(Arfken 1985, pp. 712-713 and 720).

The Hermite polynomials may be written as

(n=1%;-27) (32)

H'&L—szzﬁﬂ— :
n, 3,2°) (33)

2@l

L
2

(Koekoek and Swarttouw 1998), where U (a, &, z) is a confluent hypergeometric function of
the second kind, which can be simplified to

H@=2"U(-3n ;.7 (34)
in the right half-plane R [z] =0,

The Hermite polynomials are related to the derivative of erf by

Ho@=t 1V & o e @) (35)

They have a contour integral representation

| 4
H, (x)= il §e‘"*2 R '3 (36)

2ni

They are orthogonal in the range (—ea, oa) with respect to the weighting function e
fNHm (x) Hy [:x}f-’_l: dx=0ps2" n! ‘i'l'; (37)

The Hermite polynomials satisfy the symmetry condition

H, (—x)= (= 1)" H, (x). (38)
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They also obey the recurrence relations

Hy (x)=2xH, (x)=2nH, (x) (39)
H, (x)=2nH, (x). (40)

By solving the Hermite differential equation, the series

. L (4R (~dk+d) e (b kb j—4)
Hyp(x) = (-1F 28 Qk-1)N 1+2[ )( } ,IE 779 2 (41)
e (2 )
= (-2 k- D1y Fy (ks 337 (42)
o (4R (~dk+d) - (~dk+d -4
k+1 2 j+l1
Hop ()= (<1F 2 k4 )1 x+; &) 5y (43)
= (1 2 Q4 Dl x By (ks 3527) (44)
are obtained, where the products in the numerators are equal to
(4K (—dk+4)- (dk+4 j-H =4 (-k), (45)
with (x): the Pochhammer symbol.
Let a set of associated functions be defined by
- - ,12_.-"2
iy [x) = Ao H,lax)e . (46)
then the ux satisfy the orthogonality conditions
(A
th_|5| 2 m=n
fm [ }a'um 4 (47)
Mg LX) — X -
. " dx _ E —
c:1H|I 2 m=n-1
0 otherwise
fﬂun.- () tn () dx = Sun (48)
ot L
a 1\ 3 m=n+
f by () % 1y (x) =41 [= (49)
i ;_\ E m=n-1
] otherwise
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Vvaln-1)

—_— m=n=2

24°

2n+1l -

fumix}xz un (x)dx =2 e (50)
N Vind 1)in+2)
———— m=n+2
24
0 m¥ntntl

2 al Bly!
(s=a) (s=B)! (s =y’

fne‘*: H, () Hg () H, () dx= V7 (51)

if e+ f+y=2sisevenand sza, s= B, and s=v. Otherwise, the last integral is 0 (Szegd
1975, p. 390). Another integral is

fmun ()%t (x) dx =

0 if r—n—misodd (52)

rl Qs min {sea) n m p | |
(2a) \ m!n! 2. (PJ(me otherwise,

p=max (0.—5)

R

where s=(r—n-m)/2and [k]is a binomial coefficient (T. Drane, pers. comm., Feb. 14,
2006).

The polynomial discriminant is
D, = 93n(n-1)2 Hk& (53)
k=1

(Szegd 1975, p. 143), a normalized form of the hyperfactorial, the first few values of which
are 1, 32, 55296, 7247757312, 92771293593600000, ... (OEIS A054374). The table
of resultants is given by {0}, {-8,0}, {0, -2048,0} {192, 16384, 28311552, 0},

(OEIS A054373).

Two interesting identities involving H. (x +y) are given by

> (% ] He () oy 0)=2"2 H, (27172 (x + ) (54)
k=0
and

" R i

Zﬁ[ ¢ @@ = a6 (55)
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(G. Colomer, pers. comm.). A very pretty identity is
H, (x+y)=(H+2y), (56)
where H* = H, (x) (T. Drane, pers. comm., Feb. 14, 2006).

They also obey the sum

i () o o=2nt, (57)

as well as the more complicated

La/2)

Hy(x)=H,+ )

=

n—ZZml: 1-‘;5( 5 B ( _ xw
(=1Y S(n=2m, k) (—x) n=-2m)!m! "’

k=1

(58)

where H. =H,(0) is a Hermite number, §(». k) is a Stirling number of the second kind,
and (x)« is a Pochhammer symbol (T. Drane, pers. comm., Feb. 14, 2006).

A class of generalized Hermite polynomials % &) satisfying

ST =N W) (59)

n=0

was studied by Subramanyan (1990). A class of related polynomials defined by

= () (60)

and with generating function

" =N By ()1 (61)

=0}
was studied by Djordjevi¢ (1996). They satisfy

Hy (x)=n! by (x).
(62)

Roman (1984, pp. 87-93) defines a generalized Hermite polynomial H,” () with variance v.

A modified version of the Hermite polynomial is sometimes (but rarely) defined by
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He, (x)=2" H, [é ] (63)

(Jorgensen 1916; Magnus and Oberhettinger 1948; Slater 1960, p. 99; Abramowitz and
Stegun 1972, p. 778). The first few of these polynomials are given by

He| (x)==x (64)
He; (x)= x" -1 (65)
Hes (x)= x* =3 x (66)
Hey (x)= x* = 6" +3 (67)
Hes (x)= x° = 10x" + 15 x. (68)

When ordered from smallest to largest powers, the triangle of nonzero coefficientsis 1; 1; -1
, 1;-3 1; 3, -6 1; 15 -10, 1; .. (OEIS A096713). The polynomial He. (x) is
the independence polynomial of the complete graph K.

Generating function

. o _H {}\__}IH
et z n

e ”!
Recurrence formulas

H (x) = 2xH (x)-2nH _ (x)
H'(x) = 2nH, _ (x)

Orthogonality of Hermite polynomials

J: e H

mn

| e [H,@] dr = 2ntVn

(x) H (x)dx = 0 m+#n

Rodrigue’s formula of Hermite polynomial
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2
n _—r

d {J‘]‘

Hn(f):(—l)”@rz n=0,12,-, —co<t<oo
The first few Hermite polynomials are

Ho (t) =1 Hy (t) = 2t, Ho (t) = 422 H3 (t) = 8t-12t, Hy (t) = 16-— 48t + 12,
Hs (t) = 32t —160t3 +120t, etc

Dirac delta function

1. Definition as limit. The Dirac delta function can be thought of as a rectangular pulse that
grows narrower and narrower while simultaneously growing larger and larger.

y
N height=1/b

(so total area=1)

X

width =b

rect(x, b) =

v

[6(x) = lim(b>0) rect(x, b)|

Note that the integral of the delta function is the area under the curve, and has been held
constant at 1 throughout the limit process.

T&(x)=1

Shifting the origin. Just as a parabola can be shifted away from the origin by writing y = (x
— %0)? instead of just y = x?, any function can be shifted by plugging in x — xo in place of its

usual argument x. —
y

Ox - Xo) =

T&(x—xo) =1

Shifting the position of the peak doesn’t affect the total area if the integral is taken from —oo
to oo.
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Possible questions — (Part B- 6 marks)

1. State and prove the recurrence relations of Bessel’s function.

2. Obtain the solution for Hermite Differential equation

3. Write down Hermite differential equation and obtain Hermite polynomial from that.
(i) Show that H,,(—x) = (=1)"H,,(x)

4. Derive the Recurrence relations for spherical Bessel functions.

5. Derive Rodrigue’s Formula for Hermite polynomial.

6. Discuss about the Dirac — Delta function.

7. Discuss about the Spherical bessal function of zeroth order.

8. Derive the recurrence formula for Hermite polynomial.

9. Discuss about the Bessel’s differential equation for Bessel’s function of first kind.

Possible questions — (Part C- 10 marks)

1. State and prove the recurrence relations of Bessel’s function.
2. Write down the Hermite Differential equation and obtain Hermite polynomial
from that.

3. Show that when n is integer,
a. Jn(¥) = %f: cos(nf — xsinf) db

b. Jo(X) = %f: cos(xcosp) dop
4. Derive the Recurrence relations for spherical Bessel functions.
5. Derive Rodrigue’s Formula for Hermite polynomial.
6. Discuss about the Dirac — Delta function.
7. Derive the Rodrique’s formula for Hermite polynomial.

8. Discuss about the Bessel’s differential equation for Bessel’s function of second kind.
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MULIPLE CHOICE QUESTIONS
Questions optl opt2 opt3 opt4 Answer
UNIT V
The value of I, ), (x) is EEN Z—w = s [T \/”2 sin x
The Rodrigue formula for Pn(x), the Legendre polynomial of degree Kk - n ! 9 1 K = 1 (- e
‘n’is - g K = T K = X _72"(””2 _F
The value of Jo(x) at the origin is 1 0 —1 X 1
The value of P,(x) is X 1 x2/2 V5 (x> =1) X
The identical roots of the Legendre’s functions are m=+n m==+1 m=0orm=1 m=0orm=-1 m==+1
The value of J;, (x) is e - . . = . —
If Jo and J; are Bessel’s functions then J,’(x) is given by Jo(x) — 1/x J,(x) —Jo Jo(x) + 1/x J;(x) Jo(x) — 1/x* 11(x) Jo(x) — 1/x J,(x)
The value of the integral where Jn(x) is the Bessel function of the

. ; 0 2 2 1 0
first kind of order n, is equal to
The integral | /o (x)idaqual to xJy(x) — Jo(x) xJy(x) J1(x) x 21(x) xJi(x)
If J1(x) = (2/%) J(x) — Jo(x) where Jn is the Bessel function of first 0 3 3 1 |
kind order ‘n’. Then ‘n’ is
The value of [Jy> (OF + (I (I is N — = /7 =
The value of Po(x) is 1 X 0 -1 -1
The value of the 'j‘ Pn (x ) Pm () if ) n=m n'm n>m n<m n'm
The polynomial 2x’+x+3 interms of Legendre polynomial is G- se s p0) LG s e p) G s P, G- - e G- - r)
Let Pn(x) be the Legendre polynomial, then Pn(-x) is equal to D™ P (%) (-)" P, (x) (-1)" Py(x) P.(x) (-1)" Py(x)

- - s 2
If P,(x) is the Legendre polynomial of order ‘n’, then 3x”+ 3x + 1 3P, + 3P, 4P,+2P, + Po 3P,+3P, + Po 2P,+3P, + 2P0 2P,+3P, + 2P0
can be expressed as
If L then ‘n’ is 1 0 -1 p 0
Legend )\ ial i h i
CECNTTE POVIOMIATIS = o _ [+ - 2w whgre JTS 6312 63/5 63/10 63/8 63/8
equal to : 63 63
- ~ -

.Let Pn(x) be Legendre polynomial of degree n>1, then IUH)& " 0 1/ @nt1) 2/ (2nt1) n/@ntl) 4REF!
is equal to !
The value of  + is the third degree Legendre polynomial | ) ’ 0 0

is j(2x+ 1) P, (x)dx

n real zeros between 0 and 1

n zeros of which only one is

2n-1 real zeros between —1

none of these

n real zeros between 0 and 1

The Legendre polynomial Pn(x) has between —1 and +1 and 1

The incorrect equation among the following is Py(x) =1 Pi(x)=x P (0 =(D""P,(x) P,(x)=(-D""P,(x) P, (%)= (D" P, (x)
The value of P(-x) is -P, (%) P, (x) -1)"P,(x) -1)"P,(x) (-1)"P,(x)

The value of 2], is Jor — Tt USRI 0 USRS 2 T ST

The root of X° — 6x + 4 lies between —land 0 1 and 2 —2and 1 0and 1 —land 0
Bessel’s functions also called cylindrical circular square linear cylindrical
From Bessel’s functions, the value of Jn+1(x) is nJ,(x) +1,°(x) (n/x)J(x) - 1’(x) nJy(x) - 1,’(x) (n/x) 1y(x) +1’(x) (/%) Jy(x) - 1’ (x)
The value of J ), (x) is V(2/x) sinx V(2/nx) sinx V(2/mx) cosx V(2/x) cosx V(2/mx) cosx

If J,(x) is the Bessel function of the first kind, then [¥20 @), Xy (x) +C xy(x) + C -xJ(x) +C XL +C, x(x)+C
When ‘n’ is an integer, J,(x) and J_,(x) are harmonic linearly independent orthonormal linearly dependent harmonic function
Bessel’s functions are [ X2, (x)dx, indeterminate simple harmonic oscillatory functions critically damped oscillatory functions




If J 1 (x) = (2/%) J,(x) — Jo(x) where Jn is the Bessel function of first

0 2 -1 1 1

kind order ‘n’. Then ‘n’ is
Let f, g be polynomials o.f degrees a, b respectively. Let h(x) = ath a¥be
f(g(x)). The degree of h is: ab a/b ab
Let f, g, h be nonzero polynomials such that f(x) — g(x) = h(x) and
deg = deg h. Pick the degg<degf degg>degf deg g has no relation to deg f degg=degf degg<degf
true statement:
Let f, g, h be polynomials such that f(x) = g(x) + x3 h(x). Then j=0. . .

X . =1 =2 all the above all of above
f)(0) = g()(0) for ! !
what is the value of d/dx[(x—nJn(x)] —x-nJn+1(x). Jn-1+ Jn+1 jn+1 jn —x-nJn+1(x).
In hermite polynomial what is value for H2(x) 4x2 -2 0 x2 x3 4x2 2
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Time: 2 hours Maximum: 50 marks

PART-A (20 x 1 = 20 Marks)

Answer all questions

1.

7.

The rank of the tensor Ay, is

a) 4

b) 5

c) 3

d) 6 )

The rank of the outer product of the tensors C" and Dy is
a) 1

b) 3

c) 2

d) 0

Inan n-dimensional vector space, the number of linearly dependent vectors is
a) n

b) 2n

c) n+1l

d 2n+3 )

The rank of the outer product of the tensors C!' and Dy, is
a) 3

b) 5

c) 2

d) 6

The dimension of vector space is always
a)  Greater than number of linearly
independent vectors.
b) Equal to linearly independent
vectors
c) Lessthan linearly independent
vectors
d) Equal to linearly dependent vectors
The vectors are said to be orthogonal when the scalar product of
a) two null vector is one c) two non-null vector is zero
b) two null vector is zero d) two non-null vector is one

The set ofall position vectors forms
a) anabelian group C) sub space
b) wvector space d) cyclic

8. Example of real vector space is
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a) 4 -—dimensional space c) n-—dimensional space
b) 3 -—dimensional space d) none of the above

9. An important example of mixed tensor of rank two is
a) covariant
b) Kronecker deltas
c) Invariant
d) Contravariant
10 The tensors of rank zero are

a) scalars c) either (a) or (b)
b) invariant d) wvectors
12. The tensors of rank one are
a) scalars Cc) invariant
b) vectors d) covariant
13. A symmetric tensor of rank two is n-dimensional space has independent
components
a) n+1 0 n(n-1)
2 2
b) n(n+1) d) n-1
2 2
14, 1f Al = - AR, then tensor A;*Y° is antisymmetric with respect to indices
a) vand o b) pand v
c) wand A d)pand o
15. The exponential form ofa complex number is
a) z=re"
b) z=¢"
C) z=cosO/r
d) z=r/cos 6
16. Ifa contour is a unit circle around the origin, then |z is
a) 1l b) 0
c) e’ d) -1
17. Which is the analytic function of complex variable z= x + iy
a) |
b) ReZ
o Zzt
d LogZ
18. The symbol i with the property i >=1 was introduced by
a) Euler c) Cauchy
b) Gauss d) Reimann

19. arg(Z1/2) s equal to
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a) argZi+argZp
b) arg Z; - arg Z»
c) real
d) imaginary
20.  Asingle valued function f(z) which is differentiable at z = zo it is said to be
a) irregular function
b) analytic function
c) periodic function
d) allthe above

Part B (3x2=6)
Answer all questions

21. Write any two properties of Kronecker delta.
22. Define symmetric and antisymmetric tensor.
23. what is single valued and multi valued function

Part C (8x3=24)
Answer all questions

24. a) Prove that Kronecker delta is a mixed tensor of rank 2, and is invariant
Or
b) Explain Schmidt’s orthogonalization method.
25. a) Derive the conditions for Cauchy Riemann differential equation.
Or
b) Define and derive Cauchy’s integral formula.
26. a) Show that the set of vectors ry, 1o, 13 given by ri= j-2k, r= ij+K, r3 = i+2j+K is

linearly independent

b) Explain the Taylor’s Series with proof
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Time: 2 hours Maximum: 50 marks

PART-A (20 x 1 = 20 Marks)

Answer all questions

1.

7.

The rank of the tensor Ay, is

a) 4

b) 5

c) 3

d) 6 )

The rank of the outer product of the tensors C" and Dy is
a) 1

b) 3

c) 2

d) 0

Inan n-dimensional vector space, the number of linearly dependent vectors is
a) n

b) 2n

c) n+1

d 2n+3 )

The rank of the outer product of the tensors C!' and Dy, is
a) 3

b) 5

c) 2

d) 6

The dimension of vector space is always
a)  Greater than number of linearly
independent vectors.
b) Equal to linearly independent
vectors
c) Less than linearly independent
vectors
d) Equal to linearly dependent vectors
The vectors are said to be orthogonal when the scalar product of
a) two null vector is one c) two non-null vector is zero
b) two null vector is zero d) two non-null vector is one

The set ofall position vectors forms
a) anabeliangroup C) sub space
b) wvector space d) cyclic

8. Example of real vector space is
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a) 4 -—dimensional space c) n-—dimensional space
b) 3 -—dimensional space d) none of the above

9. An important example of mixed tensor of rank two is
a) covariant
b) Kronecker deltas
c) Invariant
d) Contravariant
10 The tensors of rank zero are

a) scalars c) either (a) or (b)
b) invariant d) wvectors
12. The tensors of rank one are
a) scalars Cc) invariant
b) vectors d) covariant
13. A symmetric tensor of rank two is n-dimensional space has independent
components
a) n+1 0 n(n-1)
2 2
b) n(n+1) d) n-1
2 2
14, 1f Al = - AR, then tensor A;*Y° is antisymmetric with respect to indices
a) vand o b) pand v
c) wand A d)pand o
15. The exponential form ofa complex number is
a) z=re®
b) z=¢"
C) z=cosO/r
d) z=r/cos 6
16. Ifa contour is a unit circle around the origin, then |z is
a)l b) 0
c) e’ d) -1
17. Which is the analytic function of complex variable z= x + iy
a) |Z
b) ReZ
o Zzt
d LogZ
18. The symbol i with the property i >=1 was introduced by
a) Euler c) Cauchy
b) Gauss d) Reimann

19. arg(Z1/2) s equal to
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a) arg Zi1t+arg 2
b) arg Z; - arg Z»
c) real
d) imaginary
20.  Asingle valued function f(z) which is differentiable at z = zo it is said to be
a) irregular function
b) analytic function
c) periodic function
d) allthe above

Part B (3x2=06)
Answer all questions

21.  Write any two properties of Kronecker delta.
integral - co to +oo F(X)o(X —x0 )dx =f (X0 )
8 (ax) = 1/lal 5(x)
22. Define symmetric and antisymmetric tensor.
A second-tensor rank symmetric tensor is defined as a tensor 4 for which
A = AT

An antisymmetric (also called alternating) tensor is a tensor which changes sign when
two indices are switched. For example, a tensor such that

Anm - _ Amn
23.  what is single valued and multi valued function

A single-valued function is function that, for each point in the domain, has a unique
value in the range. It is therefore one-to-one or many-to-one.

A multi-valued complex function of a complex variable is a complex function f:C—=C
that has the many value at every point zo independent of the path along which it is
reached by analytic continuation

Dr.S.Esakki Muthu Karpagam Academy of Higher Education Page 3/3
Assistant Professor


http://mathworld.wolfram.com/TensorRank.html
http://mathworld.wolfram.com/Tensor.html
http://mathworld.wolfram.com/Tensor.html
http://mathworld.wolfram.com/Tensor.html
http://mathworld.wolfram.com/Function.html
http://mathworld.wolfram.com/Domain.html
http://mathworld.wolfram.com/Range.html
http://mathworld.wolfram.com/One-to-One.html
http://mathworld.wolfram.com/Many-to-One.html
http://mathworld.wolfram.com/ComplexVariable.html
http://mathworld.wolfram.com/ComplexFunction.html
http://mathworld.wolfram.com/AnalyticContinuation.html

M.Sc. Degree Examinations CIA-I 17PHP104
Mathematical Physics Reg.No. : ----

Part C (8 x3=24)
Answer all questions

24.  a) Prove that Kronecker delta is a mixed tensor of rank 2, and is invariant
Sij={10i=j##]6ji= {1=j0 ;]

By definition, if it were such a tensor we would have:
d'lj=0kloxi'0xkoxloxj'5'ji=6 koxi'0xkoxloxj’

using the summation convention. | have seen a "proof" of this equation somewhere
else that goes on to say:

d'ij=0kkoxi'oxkoxkoxj'=oxi'oxj'={10i'=j'i'#]'d'ji=okkoxi'0xkoxkoxj'=0xi'0xj'= {1i'=j’
Oi’;ﬁj’
supposedly verifying it by using the fact that 6k1=0561k=0 if k#lk#1

However, since k is a dummy index that gets summed over, shouldn't we have
d'ij={n0i'=j'i"%j'd'ji= {ni'=j'0i'%j’

Forexample, if i' =1, j' =1, n = 2, wouldn't the transformation equation above give:
611=0110x1"'0x10x10x1'+8220x1'0x20x20x1'=2 and is invariant

Or
b) Explain Schmidt’s orthogonalization method.

Gram-Schmidt orthogonalization, also called the Gram-Schmidt process, is a procedure which
takes a nonorthogonal set of linearly independent functions and constructs an orthogonal
basis over an arbitrary interval with respect to an arbitrary weighting function w (x),

Applying the Gram-Schmidt process to the functions 1, x, x*, ... on the interval [-1. 1] with the
usual L* inner product gives the Legendre polynomials. Given an original set of linearly
independent functions {#sli=o, let ¥=li=o denote the orthogonalized (but not normalized)
functions, {#xlx=0 denote the orthonormalized functions, and define

U (x) = up (x) (l)
g (x) )

'ilf'[:l I:.‘f] - \Jllr f{.{r[f (ﬂ w (.T}ﬂ'.r ( )
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Then take

Uy () =1y (x) + ago do (x), 3)

where we require

f$|¢nwdx: fm dowdx +ap \Jﬂ(ﬂ'ﬁg wdx (4)

- 0. Q)
By definition,
f@nzwpl_. (6)
S0
ﬂ|u=—fu| towdx. (7)

The first orthogonalized function is therefore

Y1 =u Ex}—[ful do Wﬂ'»’f]'ﬁ'nr @)

and the corresponding normalized function is

Uy (x)

Wll'ﬁﬂrﬁwdx | ©)

By mathematical induction, it follows that

g =

b= —2 (10)
\f fufr,z wd x

where
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4.5'. EX}:H|+G|[:|¢[:|+G'||¢| von o) ¢‘"|—| (ll)
and
ajj == [ ';ﬂ_l. wdx. (12)
Ifthe functions are normalized to Vi instead of 1, then
f[qﬂl, Iix}l]2 wdx = NF (13)
bi=n — (14)
i fufr,z wdx
fu, dywdx
A T (15)
25.a) Derive the conditions for Cauchy Riemann differential equation.
Let
F y)=ule, y)+ivix,y), @
where
z=x+iy, 2)
SO
dz=dx+idy. (3)
The total derivative of .f with respect to z is then
df _9f ox of dy
dz  dx 9z dy oz @)
L(af af

=205 -13) ©
In terms of »and v, (5) becomes
af _ |, 0v\_ (0 0
_z‘z(ax“ax]_‘(ay“ay] (6)
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1 E:i'u+_£.'i"u N _E:i'u+i:i"u]

-2 [ax ‘ax] (_‘ay ay | 7
Along the real, or x-axis, df /iy =0, so
df 1 du dv
=3 (3 5) ®
Along the imaginary, or y-axis, df/dx =0, so
df 1 Cdu E.‘i"p'J
dz 2{_Eﬂy-Fﬂy ' €)

If fis complex differentiable, then the value of the derivative must be the same for a given 4z,
regardless of its orientation. Therefore, (8) must equal (9), which requires that

du - v
dx  dy (10)
and
v - du
dx dy’ (11)
These are known as the Cauchy-Riemann equations.
They lead to the conditions
Fu Fu 19
dxt dy? (12)
#Fv Py
dx’ - E:i'}'zl
Or
b. Define and derive Cauchy’s integral formula.
Cauchy Integral Formula
Y Yo Yr
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Cauchy's integral formula states that

1 d
£ )= —— P92 1)

i J, z-z

where the integral is a contour integral along the contour ¥ enclosing the point za.
It can be derived by considering the contour integral

flz)dz

s L= I

: (2

defining a path ¥ as an infinitesimal counterclockwise circle around the point zo, and defining
the path % as an arbitrary loop with a cut line (on which the forward and reverse contributions
cancel each other out) so as to go around zo. The total path is then

Y= +%, 3)

SO

fl)dz f[z}a'z_l_ fla)dz

¢ L= Ip n <7 Lo ¥ &7 I

4)

From the Cauchy integral theorem, the contour integral along any path not enclosing a pole is 0.
Therefore, the first term in the above equation is O since * does not enclose the pole, and we are
left with

fl)dz [ flzldz

, 2=1 . I=2y ®)

Now, let z=zo +re'® so dz=ire"df, Then
éfﬁ—? = §w ire®dé (6)
_ ggf(mwe;.sde. Y

But we are free to allow the radius r to shrink to 0, so
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fl)dz |1m§f Zl}‘l‘?’fg}idg (8)
I=Ip
= éf[zﬁ.}idﬂ 9)
if [za)§d9 (10)
=27 f(z0) (11)
giving (1).
If multiple loops are made around the point 2o, then equation (11) becomes
1 flzldz
n{y, zo) f (zo) = i P (12)
where nr (¥, zo) is the contour winding number.
A similar formula holds for the derivatives of f (z),
+h) -
7 ao) = lim TR GO (13)
1 flzldz flzldz
=sr-r£2nih .z—zﬁ.—h_ vy -2y (14)
FfE@(z=z0)=(z=z0-h)ldz
n—\GEREh (z—zp—h)(z—zp) (15)
. 1 hflz)dz
:A1$2R5h§[2—25—h}[2—3ﬁ} (16)
1 flaldz
= — : 17
2mi Jy(z =z 17
Iterating again,
wo v 2 [flz)dz
f zo) = i Loy (18)
Continuing the process and adding the contour winding number =,
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) ! d
ny, z0) £ (zo) = f_g; fe)dz .

2MiJy (g = zp)™!

26. a) Show that the set of vectors ry, Iy, r3 given by ri= j-2Kk, r,= ij+K, r3 = i#2j+K is
linearly independent (or)

b) Explain the Taylor’s Series with proof.

A Taylor series is aseries expansion of a functionabout a point. A one-dimensional Taylor
series is an expansion of a real function f (x) about a pointx =& is given by

flx)=

" (a ']]ﬂ' |JT]a- 1
f(a}+f'lfa}(x—a}l+fz—::}lfx—a}2+f1::}lfx—a}]+...+f I(}lfx—a}r"+.... @)
. I .

If a=0, the expansion is known as a Maclaurin series.

Taylor's theorem (actually discovered first by Gregory) states that any function satisfying certain
conditions can be expressed as a Taylor series.

The Taylor (or more general) series of a function f (x) about a point @ up to order » may be
found using Series][f, {x, a, n}]. The nth term of a Taylor series of a function f can be computed
in the Wolfram Language using SeriesCoefficient[f, {x, a, n}] and is given by the inverse Z-
transform

1

Z=da

a,=2Z" (n). (2)

Taylor series of some common functions include

_ RS
Tttt ®
COSx =C05a=Sina(x=a)= %msa[x—af+ésina[x—af + ... (4)

f=e[ltx-a)+ -af+ (x-a+..] (5)

nx=lngs ol G E-ar )
a 2a° 34’

DrS.Esakki Muthu ~ Karpagam Academy of Higher Education ~ Page 10/3

Assistant Professor


http://mathworld.wolfram.com/SeriesExpansion.html
http://mathworld.wolfram.com/Function.html
http://mathworld.wolfram.com/RealFunction.html
http://mathworld.wolfram.com/MaclaurinSeries.html
http://mathworld.wolfram.com/TaylorsTheorem.html
http://reference.wolfram.com/language/ref/Series.html
http://www.wolfram.com/language/
http://reference.wolfram.com/language/ref/SeriesCoefficient.html
http://mathworld.wolfram.com/Z-Transform.html
http://mathworld.wolfram.com/Z-Transform.html

M.Sc. Degree Examinations CIA-I 17PHP104

Mathematical Physics Reg.No. : ----
Sinx =sina+cosalx—a)- % sina (x — a) - é cosalx—al +... (7)
tanx = tana + sec” a (x — a) + sec” atan a (x — a)* + sec’ a[sacz a- %]Ilfx -ar +.... (8)

To derive the Taylor series of a function f (x), note that the integral of the (= + 1)
st derivative /""" of f (x) from the point x to anarbitrary point x is given by

Iﬁ"m (x)dx = [f{”] lfx}']j(. = () - £ (x0), ®©)

(i}

where £ (x0) is the nth derivative of f (x) evaluated at %, and is therefore simply a constant.
Now integrate a second time to obtain

L]
i} i}

} f [ 6= 7 )] dx (10)

=[P @], - & -x2) " )
=" @) = Y () = (x = x0) 7 (x0),

dx

where 7*' (x) is again a constant. Integrating a third time,

[ L o=
0 (1] 0

(x — xp )
21

(11)

—(x =xp) 7V () -

£ (xp),

and continuing up to » + 1 integrations then gives

f f F ) dx)™ = f )= F ) - & —x) f (x)
[}

n+l

(12)
_ |:X _2'7.[:')2 ff.l I:x[;.]l - - I:X - 'le-:'}” f-:n] [:x[:l}-
| n

Rearranging then gives the one-dimensional Taylor series
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e P _
(x E:Ifn} £ o) 4 (x ;r:-?” F (x0) + Ro (13)

S = f o)+ (x =x0) f (x0) +

" _ .'c]
Zx «Yn}f"f (x0) R, (14)

k=0

Here, R. is a remainder term known as the Lagrange remainder, which is given by

= |- WD ) (d )
Rn_f i:f (x) (d x)" (15)
s+l

Rewriting the repeated integral then gives

anff"*”(r} G- (16)
(i}

n!

Now, from the mean-value theorem for a function & (x), it must be true that

fg[x}a’x=[x—xn}g[x'} @17

for some x" € [xo. x]. Therefore, integrating =+ 1 times gives the result

= x )

T+ 1) £ ) (18)

so the maximum error after » terms of the Taylor series is the maximum value of (18) running
through all =" € [x. x], Note that the Lagrange remainder R» is also sometimes taken to refer to
the remainder when terms up to the (» = 1)st power are taken in the Taylor series

Taylor series can also be defined for functions of a complex variable. By the Cauchy integral
formula,

1 fizhdz
fla)= EI . (19)
1 fihds
a ZHE,LEz'—zn}—Ez—zn} (20)
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1 fizhde
= ) ' 21
2mi J (y —zn}(l——tn] (21)
In the interior of C,
|z = zol
|
2" = zgl A (22)
S0, using
1 o0
e 23)
it follows that
(z—zo)" fl2)dZ
= 2ni ,LZ & — zo)"™! (24)
1 i( v flzhds 25
= — L=z "
2mi = 0 (z' = zp )" (25)
Using the Cauchy integral formula for derivatives,
- " (z0)
=Z z—zﬁ}f"f{ zﬁ- (26)
n={
An alternative form of the one-dimensional Taylor series may be obtained by letting
x—-xp=Ax (27)
so that
x=x +Ax. (28)
Substitute this result into (<) to give
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flo+Ax)=f (o) +Axf o)+ 5 B f (o)+ ...

A Taylor series ofa real function in two variables f tx. ¥) is given by

flax+dx,v+Avy)=Flx, v+ [_jﬁ (k. ¥)Ax+ f [x_.}'}rl}']+
S [BX) for e, 3) +28x A8y foy G )+ QY fiy G+ 3 [B) frun Gea3) 4+

3!

3AXSAY fray G, )+ 383 QY fiyy oY) HAYY firyy @]+

This can be further generalized for a real function in = variables,

=
f[X| v '"rx.rr}= Z{F

j=0 14"

n

.xk—ak}axj: Flxleoxy)

k=1

r r
Ay T e g iy

Rewriting,

[ 1 " 3 f
f[xl + a1y Xy Fag)= Z{_I [z.a.i: J]' f[-x1 » '--rx:-r}} ]
K] =H] ooy =iy

J=0 © k=1 .

(29)

(30)

(31)
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Time: 2 hours Maximum: 50 marks

PART-A
Answer all questions

(20 x 1 = 20 Marks)

1. InFourier series, the function f(x) has only a
finite number of maxima and minima. This
condition is known as ----—---

a) Dirichlet b) Kuhn Tucker
d) None

c) Laplace

2. Indirichlet condition, the function f(x) has only a
finite number of finite discontinuities and no -----
-- discontinuities
a) Semi finite
d) finite

b) continuous c) infinite

3. The Laplace transform of f(t) is denoted by
a)L{F)} DbL{f{M} cL{FO}
d) L{f(s)}

4L (e™) =---
a)l/s+a
d) 1/s

b) 1/s-a c)ls*a

5. L (cos hat) = --—
a)als’-a’ b) s/s” *a’
d) a/s*+a’

c) s/s®- &

6. L (sinh at) = ----
a)a/s’-a’ b) s/s*- &’
d) s/s’+a’

c) als’+ &’

7. L (cosat) = ----
a) s/s’-a*
d) s/s’+a’

b) a/s”+a’ c)als’-a’

8. L (sinat) = ----
a) s/s* +a’
d) s/s’-a’

b) a/s’ +a’ c)als’-a

9. If f(x) is even, then it’s Fourier co- efficient --------

11. The period of cos nx where n is the positive
integer is
a)n/m b)n/2n c¢)2n d) nn

12. The Fourier co efficient a, in f(x) = x for 0< x£ m is
a)t b)yn/2 ¢)2r d)0

13. If the function f (X) = -m in the interval - x< 0, the
coefficient
ag is

a) ©°/3  b)2x*/3 c) 2a/3 d) (-m/2)

14. If the function f(x) = X sin X, the Fourier coefficient
a)b,=0 b)a=1 c)a,=n/3 d)a,=-1

15. For the cosine series, which of the Fourier coefficient
variables will be vanish?
a)a, b)a, c¢)b, d)Bothayanda,

16. For a function f(x) = x°, the Fourier coefficient

a)b, =0 b)a, =0c)a =0d)a,=b, =0

17. The function xsinxbe a --—--- function
a)even b) oddc) continuous d) None

18. The identical roots of the Legendre’s functions are

aym=xnbym=zx1c)m=0orm=1d)m=0orm=-
1

19. Let Pn(x) be the Legendre polynomial, then Pn(-x) is
equal to

a) (-1)" Py’ (x) b) (-1)" P,’(%) ¢) (-1)" Py(X) d) P, (x)

20. If P,(x) is the Legendre polynomial of order ‘n’, then
3%’ + 3x + 1 can be expressed as

a)3P,+ 3P, b) 4P,+2P; +Po ¢) 3P,+3P, +Po d) 2P, +3P;

is zero + 2P0
aa b)a, c)b, d)none
10. If the periodic function f(x) is odd, then it’s Part B (8x2=6)
Fourier co- efficient Ansver all questions
-------- i zero
a)a b)a, c)b, d)none 21. Define Cauchy Residue theorem.
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22. Write the Fourier sine and cosine transform function.

23. Derive the shifting property (first translation) of
Laplace transform.

Part C (8 x3 =24)

Answer all questions

24. a) i) Define Laplace Transform.
(inExplain the linearity and change in scale
property of Laplace
transform.

Or
b) Derive any two properties of Fourier transform

25. a) Find the Laplace transform of the following
functions.
(i) Sin’t, (ii) Cos’t, (iii) e*coswt and (iv) e*sinat.
Or
b) Explain the complex form of Fourier series

26. a) State and Explain Dirichlet conditions.
Or

b) Derive Rodrigue’s Formula.
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PART-A (20 x 1 = 20 Marks)
Answer all questions

1. InFourier series, the function f(x) has only a finite number of maxima and minima. This condition is

known as -------
a) Dirichlet b) Kuhn Tucker c)Laplace  d) None

2. Indirichlet condition, the function f(x) has only a finite number of finite discontinuities and no -------

discontinuities
a) Semi finite b) continuous c) infinite d) finite

3. The Laplace transform of f(t) is denoted by
AL{F(s)} DbL{f(} cL{FO}
d) L{f(s) }

4.L(e™)=--
a)lls+a b) 1/s-a c)ls*a
d) Us

5. L (cos hat) = ----
a)als’-a’ b) s/s**a” c) sis®- a
d) a/s®+a’

6. L (sinh at) = ----
a) als’ -a’ b) s/s®- a* c) als’ + @’
d) s/s®+a’

7. L (cosat) = ----
a) s/s*-a° b) a/s’® +a’ c)als’-a’
d) sk’+a’

8. L (sinat) = ----
a) /s’ +a’ b) a/s®+a’ c) als’-a
d) s/s*-a*

9. If f(x) is even, then it’s Fourier co- efficient --------
is zero
a)a b)a, c¢)b, d)none

10. If the periodic function f(x) is odd, then it’s
Fourier co- efficient
-------- i zero

a)a b)a, c)b, d)none

11. The period of cos nx where n is the positive
integer is
a)ym/m b)yn/2n c¢)2xn d) mn
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12. The Fourier co efficient a, in f(x) = x for 0<x£ 7w is
ayr b)w2 c)2n d)0

13. If the function f (X) = -m in the interval -n x< 0, the coefficient
NS
a) n°/3  b)2x*/3 c) 2a/3 d) (-7mR2)

14. 1f the function f(x) = x sin X, the Fourier coefficient

a)b,=0 b)a=1 ¢)a=n/3 dya=-1

15. For the cosine series, which of the Fourier coefficient variables will be vanish?
a)a, b)a, c¢)b, d)Bothaganda,

16. For a function f(x) = x, the Fourier coefficient
a)b, =0 b)a, =0c)a; =0 d)a,=b, =0

17. The function x sinxbe a --—--- function
a)even b) oddc) continuous d) None

18. The identical roots of the Legendre’s functions are
aym=xnb)m=xlcym=0orm=1d)m=0orm=-1
19. Let Pn(x) be the Legendre polynomial, then Pn(-x) is equal to

a) (-1)™ Py’(®) b) (-1)" Py’(x) €) (-1)" Pa(x) d) Py (x)

20. If P,(x) is the Legendre polynomial of order ‘n’, then 3x* + 3x + 1 can be expressed as

a)3P,+ 3P, b) 4P,+2P, +Po c) 3P,+3P, +Po d) 2P,+3P; + 2P0
Part B (3x2=6)
Answer all questions

21. Define Cauchy Residue theorem.

Ananalytic function f (z) whose Laurent series is given by

Lt

fla)= Z ay [z = z0)",

A=—

22. Write the Fourier sine and cosine transform function.
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The Fourier cosine transform of a real function is the real part of the full complex Fourier transform,
FoO L (Il () = R [Fx [f ()] (K] 1)

- fmco-s @rkx) f(x)dx. 2)

The Fourier sine transform is the imaginary part of the full complex Fourier transform,

F L ) R = 1Fx Lf @] (8] @)
=f”sm(2nkx}f|:x;dx.

23. Derive the shifting property (first translation) of Laplace transform.

Time Shifting Property

If x(t)—=L. T X(s)x(t)e=L. TX(s)

Then time shifting property states that
X(t-10)e—L. T e—st0OX(S)x(t—t0)«—= L. Te—st0 X(s)
Frequency Shifting Property

If x(t)e—=L. T X(s)X(t)—L. T X(s)

Then frequency shifting property states that
esOt. x(t)e— L. T X(s—s0)esOt. x(t)«— L. T X(s—s0)
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Part C (8 x3 =24)

Answer all questions

24. a) i) Define Laplace Transform.
(ihExplain the linearity and change in scale property of Laplace
transform.

! The Laplace transform is an integral transform perhaps second only to the Fourier
transform in its utility in solving physical problems. The Laplace transform is particularly
useful in solving linear ordinary differential equations such as those arising in the analysis
of electronic circuits

L [f](s)= fmf e dt,
]

ii. Linearity Property
If x(t)—L. T X(s)x(t)e=L.TX(s)

&y{t)—=L. T Y(S)y({t)—L.TY(s)

Then linearity property states that
ax(t)+by(t)e—= L. T aX(s)+bY(s)ax(t)+by(t)«= L. T aX(s)+bY(s)
Time Scaling Property
I x(t)e—=L. TX(s)x(t)e—=L. TX(s)
Then time scaling property states that
x(at)e— L. T1|a| X(sa)
Or
b) Derive any two properties of Fourier transform

Linearity

Flazx(t) + by(t)] = aF[z(t)] + bF[y(t)]
Time shift

Flz(t £ tg)] = X (jw)e™ o
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Flo(t + to)] : f z(t & tg)e™dt = f r(t)e W ET) gt/

—0 —o0

. S0 . .
gtiwto f r(f)e_mﬁ dt’ = }[(jw)eijm”
—i0

Frequency shift

FUX (jw £ wg)] = o(t)e T

]‘ oo rf flet ]' R ! feat| e TFrear !
L[ syt & X

—
FA

F Gl 2 e)]

o 1 I . o
g Tt 5= fm X(jw')ej“jdm = r(t)E:FJ“"J‘
AT Jd—oa

Time reversal

Proof:

Replacing £ by, —# we get

Fla(~t)] = - [ o) at = / T () df = X (—w)

and
if z(t) = —z(—t) then X(jw)=—X(—jw)

25. a) Find the Laplace transform of the following functions.
(i) Sin’t, (i) Cos’t, (iii) e*cosot and (iv) e*sinot.
Or
b) Explain the complex form of Fourier series
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We show how a Fourier series can be expressed more concisely if we introduce the

2=

complex number i where i~ —1. By utilising the Euler relation:

e =coso+ ising
We can replace the trigonometric functions by complex exponential functions. By also combining the

Fourier coefficients an and bn into @ complexcoefficient cn through

Cn = (an-ibn)

We find that, for a given periodic signal, both sets of constants can be found in one operation. We also
obtain Parseval’s theorem which has important applications in electrical engineering. The complex
formulation of a Fourier series is an important precursor of the Fourier transforms which attempts to
Fourier analyse non-periodic functions.

So far we have discussed the trigopnometric form of a Fourier series i.e. we have represented functions of
period T in the terms of sinusoids, and possibly a constant term, using

2 i I) Ht
—G—Z{an(oa( nr )—l—bnsm( I} )}
n=1

Ifwe use the angular frequency

2
Wy — —

T

We obtain the more concise form

OC
ag .
— 7 E iy, OS nwot + by, sin nwot ).
= =1

We have seen that the Fourier coefficients are calculated using the following integrals.

T
2 %

a, = / f(t) cos nwgt dt n=20,1,2,...
TrJz

b,, T/ ) sin nwot dt n=12,...
T
Pl
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An alternative, more concise form, of a Fourier series is available using complex quantities. This
form is quite widely used by engineers, for example in Circuit Theory and Control Theory, and leads
naturally into the Fourier Transform which is the subject of

26. a) State and Explain Dirichlet conditions.

Dirichlet conditions

A piecewise regular function that

1. Has a finite number of finite discontinuities and
2. Has a finite number of extrema

can be expanded in a Fourier series which converges to the function at continuous points and the mean
of the positive and negative limits at points of discontinuity.

Def. Sectionally continuous (or piecewise continuous) function. A functionf(x) is said to

be sectionally continuous (or piecewise continuous) on an interval a = x = b if the interval can be
subdivided into a finite number of intervals in each of which the function is continuous and has finite
right and left hand limits. See Figure The requirement that a function be sectionally continuous on some
interval [a, b] is equivalent to the requirement that it meet theDirichlet conditions on the interval.

Fourier series. Letf (X) be a sectionally continuous function defined on an interval c < x<c + 2L. It
can then be represented by the Fourier series
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" X 2mx 3mx
I fix) = — + a,cusf + a CDST + a,cos—— + ..

. . 2mx .3
+ b, sin— + b, sin = 4 b, s 4 .
L L ' L
Where

[
—
b | =t =

At a point of discontinuity f (X) is given a value equal to its mean value at the discontinuity

i.e. if x=a is a point of discontinuity, f (x) is given the value

[im filx) + ]im f(x)
2

fx) =

Or

b) Derive Rodrigue’s Formula.

Theorem 1. (Rodrigues’ Formula) The n-th Legendre polynomial P, is given by

the following

1 d'l
2" nl dz"

(4) P (x) = [(z*=1)"]

(thus expression (4) gives a solution of (3) with A = n(n +1)).

Proof. Let y = (z* — 1)". We have following

Claim. The k-th derivative y'*)(z) of y satisfies the following:

d2y'*)

dr?

(5) (1-2?%)

Proof of the Claim. By induction. For k = 0, y = y'%. We have

'=2nz(zx? - 1)""!' = (1-2%)y +2nzy=0

and after differentiation, we get

1—2*)y"+2(n—1)zy' +2ny =10
Y
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So formula (5) holds when k = 0. By induction suppose the (5) holds up to order
k — 1. We can rewrite (5) for k — 1 as
(k)

dy
l_,2
=)

We differentiate to obtain

+2(n — k)zy™ + (2n — k + 1)ky*— = 0.

dy(k,) i : P ®) -
e +[2(n—k)+ E(2n -k + 1))y =0.

= 12)"2(2“ +[2(n — k) — 2Jz

which is precisely (3).

Now if we let kK = n in (5), we obtain

By
dx?
Hence y'™ solves the Legendre equation with A = n(n + 1). Since y'™ is a polyno-
mial of degree 2n, then by Proposition 1, it is a multiple of P,. There is a constant
K such that P,(r) = Ky'™(z). To complete the proof, we need to find K. For
this notice that the coefficient of z" in P, is (2n)!/(2" (n!)?). The coefficient of z™

in y'" is that of

2 dy'™ K
(1-zx2) —2r = +n(n+1)y'® =0.

1( 20 !
e =(2n)(2n—-1)---(2n—n+1)z" = -(—?l)—';t"

dxn n!

Hence
K (2n)! _ (2n) ; 1
nl 27 (nl)? gl
This completes the proof of the Rodrigues’ formula.
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