

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari Post, Coimbatore – 641 021 FACULTY OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

LECTURE PLAN

NAME OF THE STAFF	: Dr.K.G.Dharani
DESIGNATION	: ASSOCIATE PROFESSOR

CLASS : B.E-IV YEAR ECE

SUBJECT : ASIC DESIGN

SUBJECT CODE : 16BEEC8E04

S.No	TOPICS TO BE COVERED	TIME	SUPPORTING	TEACHING
		DURATION	MATERIALS	AIDS
	UNIT-I I	NTRODUCTIO	N TO ASICs	
	1	Γ	1	
1	Introduction to ASICs	2	T1,Pg :No-1 to 4	PPT , BB
2	Full-custom	1	T1,Pg :No-5 to 10	PPT , BB
3	Semi-custom	1	T1,Pg :No-10 to 16	PPT , BB
4	ASIC Design	1	T1,Pg :No-16 to 35	PPT , BB
5	CMOS logic	2	T1,Pg :No-39 to 60	PPT , BB
6	ASIC library design	2	T1,Pg :No-117 to 130	PPT , BB
Introduction 02				
Total	Lecture Hours	09		
Total	Hours	09		

	UNIT-II PROGRAMMABLE ASICs				
7	Programmable ASICs	1	T1,Pg :No-169 to 170	PPT , BB	
8	Anti fuse	1	T1,Pg :No-170 to 172	PPT , BB	
9	Static RAM	1	T1,Pg :No-174	PPT,BB	
10	EPROM and Technology	1	T1,Pg :No-174	PPT , BB	
11 12	Actel ACT–Xilinx LCA Altera flex	1	T1,Pg :No-191 to 193 T1,Pg :No-209	PPT , BB PPT , BB	
13	Altera MAX Logic cells	1	T1,Pg :No-209	PPT, BB	
14	I/O cells–Interconnects	1	T1,Pg :No-232 to 240	PPT , BB	
15	Low level design entry. Schematic entry.	1	T1,Pg :No-327	PPT , BB	
Total	Lecture Hours 09				
Total	Hours	09			

	UNIT-III SIMULATION AND SYNTHESIS			
16	Logic synthesis: A comparator	01	T1,Pg :No-561	BB, PPT
	MUX			
17	Inside a logic synthesizer	01	T1,Pg :No-569	BB, PPT
18	VHDL	01	T1,Pg :No-593	BB, PPT
19	Logic synthesis	01	T1,Pg :No-594 to 600	PPT ,BB
20	FSM	01	T1,Pg :No-605	PPT ,BB
	synthesis			
21	Memory synthesis	01	T1,Pg :No-611,612	PPT ,BB
22	Simulation	01	T1,Pg :No-641	BB, PPT
23	Types of simulation	01	T1,Pg :No-641 to 647	BB, PPT
24	Logic systems	01	T1,Pg :No-656	BB, PPT
Total	Lecture Hours		09	
Total	Total Hours 09			

	UNIT-IV	ASIC	TESTING	
25	Boundary scantest	01	T1,Pg :No-714 to 724	BB, PPT
26	Faults–Fault simulation	01	T1,Pg :No-736 to 741	BB, PPT
27	Automatic test pattern generation algorithm	02	T1,Pg :No-755 to 756	BB, PPT
28	D- algorithm	02	T1,Pg :No-755	BB, PPT
29	PODEM	01	T1,Pg :No-759	BB, PPT
30	Built in self-test	02	T1,Pg :No-766	BB, PPT
Total	Lecture Hours	09		
Total	Hours	09		

	UNIT-V ASIC CONSTRUCTION				
37	System partitioning	01	T1,Pg :No-809	BB, PPT	
38	power dissipation	02	T1,Pg :No-816	BB, PPT	
39	partitioning methods	02	T1,Pg :No-824	BB, PPT	
40	floor planning and placement	02	T1,Pg :No-853 to 856, 873	BB, PPT	
41	Routing: Global routing, detailed routing, special routing	01	T1,Pg :No- 910,922,935	BB, PPT	
42	Introduction to SOC	01	T1,Pg :No-939	BB, PPT	
Total	Lecture Hours		09		
Total	Fotal Hours 09				

Total No of Hours for Introduction: 02Hrs

Total No of Lecture Hours Planned: 45 Hrs

Total No of Hours Planned : 45 Hours

TEXT BOOKS:

S.NO.	Author(s) Name	Title of the book	Publisher	Year of the publication
1	M.J.S.SMITH	"Application Specific Integrated Circuits"	Pearson Education	2006
2.	Wolf Wayne	FPGA based system design	Pearson Education	2005

REFERENCE BOOKS:

S.NO.	Author(s) Name	Title of the book	Publisher	Year of the publication
1.	M. Sarafzadehand C.K.Wong	An Introduction to VLSI Physical Design	McGraw Hill	1996
2.	JanM.Rabaey. Anantha Chandra kasan, Borivoje Nikolic	Digital Integrated Circuits	Prentice-Hall Publication	2002

STAFF IN-CHARGE

HOD/ECE

ASIC Design

Objectives:

- To focus on the IC Design and the various design
- To understand the principles of design logic cells, I/O cells and interconnect architecture
- To explore the Application Specific Integrated Circuits (ASIC) design flow from the circuit and layout design point of view.
- To study about logic synthesis, placement and routing

Outcomes:

After completing this course the student will be able to

- Gain knowledge on various types of ASIC design
- Gain knowledge in the circuit design aspects at various levels of abstractions.
- Understand various architecture and its purpose in different application
- Understand placement, routing concepts in optimized IC design

Unit I Introduction To ASIC, CMOS Logic And ASIC Library Design

Types of ASICs - Design flow - CMOS transistors - Combinational Logic Cell – Sequential logic cell - Data path logic cell - Transistors as Resistors - Transistor Parasitic Capacitance- Logical effort.

Unit II Programmable Asics, Programmable ASIC Logic Cells And Programmable ASIC I/O Cells

Anti fuse - static RAM - EPROM and EEPROM technology - Actel ACT - Xilinx LCA – Altera FLEX - Altera MAX DC & AC inputs and outputs - Clock & Power inputs - Xilinx I/O blocks.

Unit III Programmable ASIC Architecture

Architecture and configuration of Spartan / Cyclone and Virtex / Stratix FPGAs – Micro-Blaze / Nios based embedded systems – Signal probing techniques.

Unit IV Logic Synthesis, Placement And Routing

Logic synthesis - ASIC floor planning- placement and routing – power and clocking strategies.

Unit V High Performance Algorithms for ASIC / SOCs

DAA and computation of FFT and DCT. High performance filters using delta-sigma modulators. Case Studies: Digital camera, SDRAM, High speed data standards.

Suggested Readings:

1. Douglas J. Smith, HDL Chip Design, Madison, AL, USA: Doone Publications, 1996.

2. M.J.S.Smith, " Application - Specific Integrated Circuits", Pearson, 2003

3. Mohammed Ismail and Terri Fiez, "Analog VLSI Signal and Information Processing ", McGraw Hill, 1994.

4. Roger Woods, John McAllister, Dr. Ying Yi, Gaye Lightbod, "FPGA-based Implementation of Signal Processing Systems", Wiley, 2008

5. Steve Kilts, "Advanced FPGA Design," Wiley Inter-Science.

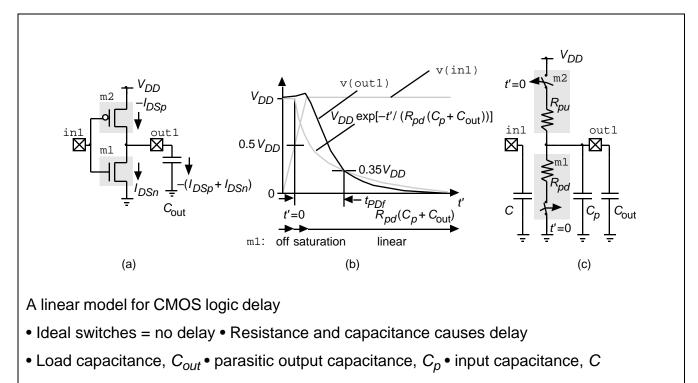
Weblinks:

https://www.electronics-notes.com/articles/electronic_components/programmable-logic/what-is-anasic-application-specific-integrated-circuit.php

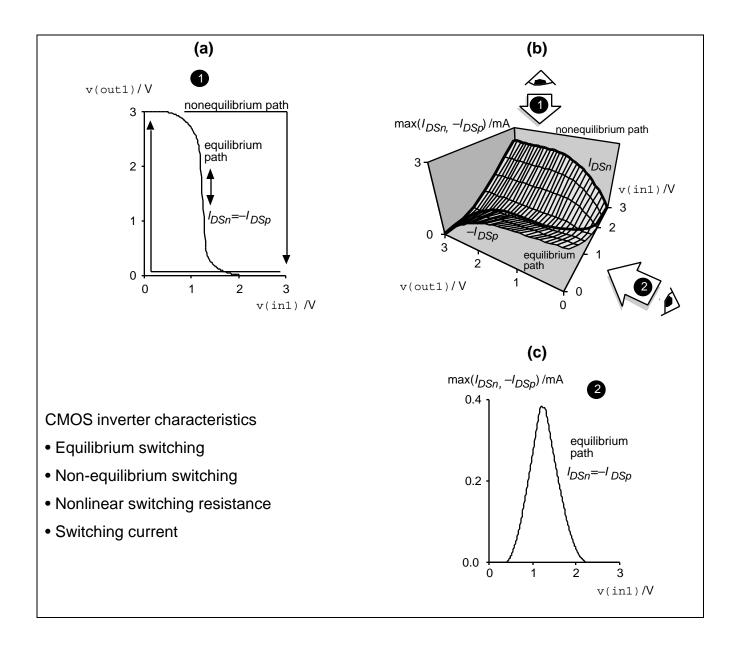
https://www.tce.edu/sites/default/files/PDF/14EC770-ASIC-DESIGN-K.Kalyani.pdf

ASIC LIBRARY DESIGN

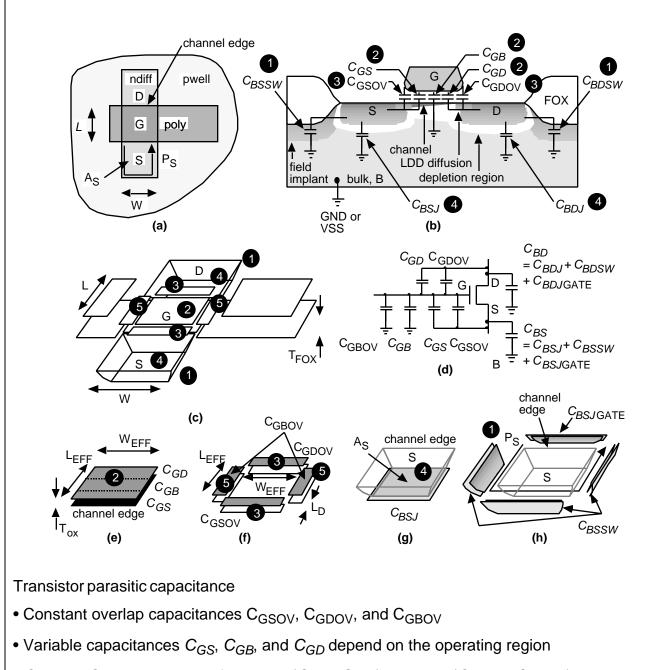
3


Key concepts: Tau, logical effort, and the prediction of delay • Sizes of cells, and their drive strengths • Cell importance • The difference between gate-array macros, standard cells, and datapath cells

ASIC design uses predefined and precharacterized cells from a library—so we need to design or buy a cell library. A knowledge of ASIC library design is not necessary but makes it easier to use library cells effectively.


3.1 Transistors as Resistors

 $-t_{PDf}$ $0.35 V_{DD} = V_{DD} \exp - \frac{-t_{PDf}}{R_{pd} (C_{out} + C_p)}$


An output trip point of 0.35 is convenient because $\ln(1/0.35)=1.04$ 1 and thus $t_{PDf} = R_{pd}(C_{out} + C_p) \ln(1/0.35)$ $R_{pd}(C_{out} + C_p)$ For output trip points of 0.1/0.9 we multiply by $-\ln(0.1) = 2.3$, because exp (-2.3) = 0.100

- Linearize the switch resistance Pull-up resistance, R_{pu} pull-down resistance, R_{pd}
- Measure and compare the input, v(in1) and output, v(out1)
- Input trip point of 0.5 output trip points are 0.35 (falling) and 0.65 (rising)
- The linear prop–ramp model: falling propagation delay, $t_{PDf} R_{pd}(C_p + C_{out})$

- C_{BS} and C_{BD} are the sum of the area (C_{BSJ} , C_{BDJ}), sidewall (C_{BSSW} , C_{BDSW}), and channel edge ($C_{BSJGATE}$, $C_{BDJGATE}$) capacitances
- L_D is the lateral diffusion T_{FOX} is the field-oxide thickness

NAME	ml	m2
MODEL	CMOSN	CMOSP
ID	7.49E-11	-7.49E-11
VGS	0.00E+00	-3.00E+00
VDS	3.00E+00	-4.40E-08
VBS	0.00E+00	0.00E+00
VTH	4.14E-01	-8.96E-01
VDSAT	3.51E-02	-1.78E+00
GM	1.75E-09	2.52E-11
GDS	1.24E-10	1.72E-03
GMB	6.02E-10	7.02E-12
CBD	2.06E-15	1.71E-14
CBS	4.45E-15	1.71E-14
CGSOV	1.80E-15	2.88E-15
CGDOV	1.80E-15	2.88E-15
CGBOV	2.00E-16	2.01E-16
CGS	0.00E+00	1.10E-14
CGD	0.00E+00	1.10E-14
CGB	3.88E-15	0.00E+00

- ID (I_{DS}), VGS, VDS, VBS, VTH (V_t), and VDSAT ($V_{DS(sat)}$) are DC parameters
- GM, GDS, and GMB are small-signal conductances (corresponding to I_{DS}/V_{GS} , I_{DS}/V_{DS} , and I_{DS}/V_{BS} , respectively)

PSpice	Equation	Values ¹ for V_{GS} =0V, V_{DS} =3V, V_{SB} =0V	
CBD		$C_{BD} = 1.855 \times 10^{-13} + 2.04 \times 10^{-16} = 2.06 \times$	
	$C_{BD} = C_{BDJ} + C_{BDSW}$	10 ⁻¹³ F	
	$C_{BDJ} + A_D C_J (1 + V_{DB}/B)^{-mJ} (B = PB)$	C_{BDJ} = (4.032 × 10 ⁻¹⁵)(1 + (3/1)) ^{-0.56} = 1.86 × 10 ⁻¹⁵ F	
	$C_{BDSW} = P_D C_{JSW} (1 + V_{DB}/B)^{-mJSW}$ (P_D may or may not include channel edge)	C_{BDSW} = (4.2 × 10 ⁻¹⁶)(1 + (3/1)) ^{-0.5} = 2.04 × 10 ⁻¹⁶ F	
CBS	$C_{BS} = C_{BSJ} + C_{BSSW}$	$C_{BS} = 4.032 \times 10^{-15} + 4.2 \times 10^{-16} = 4.45 \times 10^{-15} \text{ F}$	
	C_{BSJ} + A _S C _J (1 + V _{SB} /B) ^{-mJ}	$A_{S} C_{J} = (7.2 \times 10^{-15})(5.6 \times 10^{-4}) = 4.03 \times 10^{-15} F$	
	$C_{BSSW} = P_S C_{JSW} (1 + V_{SB}/B)^{-mJSW}$	$P_{S}C_{JSW} = (8.4 \times 10^{-6})(5 \times 10^{-11}) = 4.2 \times 10^{-16} \text{ F}$	
CGSOV	$C_{GSOV}=W_{EFF}C_{GSO}$; $W_{EFF}=W-2W$ D	$C_{GSOV} = (6 \times 10^{-6})(3 \times 10^{-10}) = 1.8 \times 10^{-16} \text{ F}$	
CGDOV	$C_{GDOV} = W_{EFF}C_{GSO}$	$C_{GDOV} = (6 \times 10^{-6})(3 \times 10^{-10}) = 1.8 \times 10^{-15} \text{ F}$	
CGBOV	$C_{GBOV} = L_{EFF}C_{GBO}$; $L_{EFF} = L - 2L_{D}$	$C_{GDOV} = (0.5 \times 10^{-6})(4 \times 10^{-10}) = 2 \times 10^{-16} \text{ F}$	
CGS	$C_{GS}/C_{O} = 0$ (off), 0.5 (lin.), 0.66 (sat.) C_{O} (oxide capacitance) = $W_{EF}L_{EFF}$ ox / T_{ox}	$C_{O} = (6 \times 10^{-6})(0.5 \times 10^{-6})(0.00345) = 1.03 \times 10^{-14} \text{ F}$ $C_{GS} = 0.0 \text{ F}$	
CGD	C _{GD} /C _O = 0 (off), 0.5 (lin.), 0 (sat.)	$C_{\rm GD} = 0.0 \; {\rm F}$	
CGB	$C_{GB} = 0$ (on), = C _O in series with C_{GS} (off)	$C_{GB} = 3.88 \times 10^{-15}$ F, C_{S} =depletion capacitance	
¹ Input	.MODEL CMOSN NMOS LEVEL=3 PHI=0.7 TOX=10E-09 XJ=0.2U TPG=1 VTO=0.65 DELTA=0.7 + LD=5E-08 KP=2E-04 UO=550 THETA=0.27 RSH=2 GAMMA=0.6 NSUB=1.4E+17 NFS=6E+11 + VMAX=2E+05 ETA=3.7E-02 KAPPA=2.9E-02 CGDO=3.0E-10 CGSO=3.0E-10 CGBO=4.0E-10 + CJ=5.6E-04 MJ=0.56 CJSW=5E-11 MJSW=0.52 PB=1 m1 outl in1 0 0 cmosn W=6U L=0.6U AS=7.2P AD=7.2P PS=8.4U PD=8.4U		

3.2.1 Junction Capacitance

• Junction capacitances, C_{BD} and C_{BS} , consist of two parts: junction area and sidewall

• Both C_{BD} and C_{BS} have different physical characteristics with parameters: CJ and MJ for the junction, CJSW and MJSW for the sidewall, and PB is common

• C_{BD} and C_{BS} depend on the voltage across the junction (V_{DB} and V_{SB})

• The sidewalls facing the channel ($C_{BSJGATE}$ and $C_{BDJGATE}$) are different from the sidewalls that face the field

• It is a mistake to exclude the gate edge assuming it is in the rest of the model-it is not

• In HSPICE there is a separate mechanism to account for the channel edge capacitance (using parameters ACM and CJGATE)

3.2.2 Overlap Capacitance

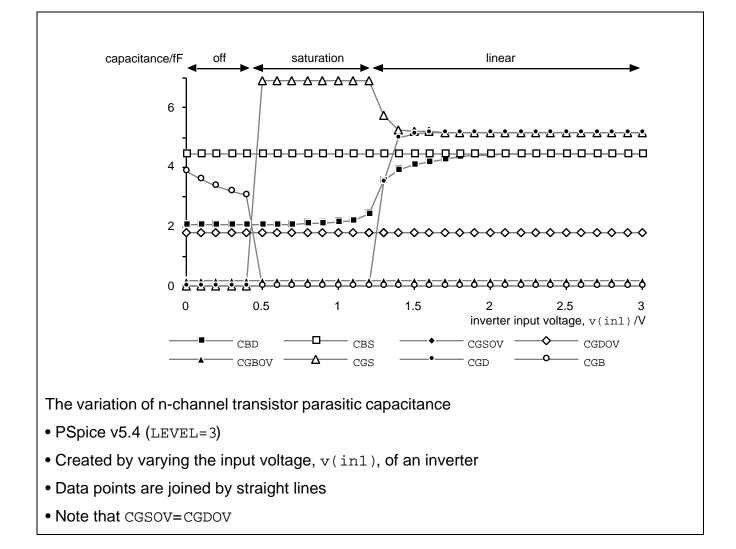
- The overlap capacitance calculations for C_{GSOV} and C_{GDOV} account for lateral diffusion
- SPICE parameter LD=5E-08 or LD=0.05 µm

- Not all SPICE versions use the equivalent parameter for width reduction, $\mathtt{WD},$ in calculating C_{GDOV}

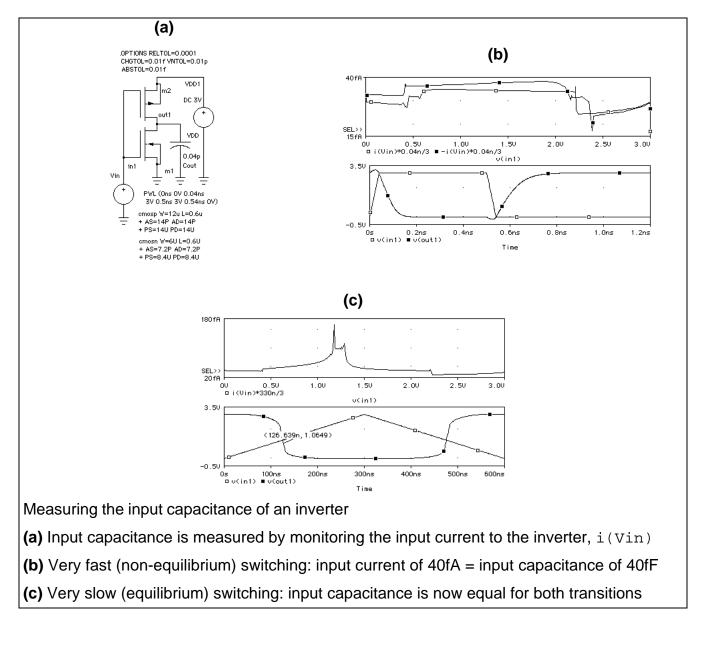
Not all SPICE versions subtract W_D to form W_{EFF}

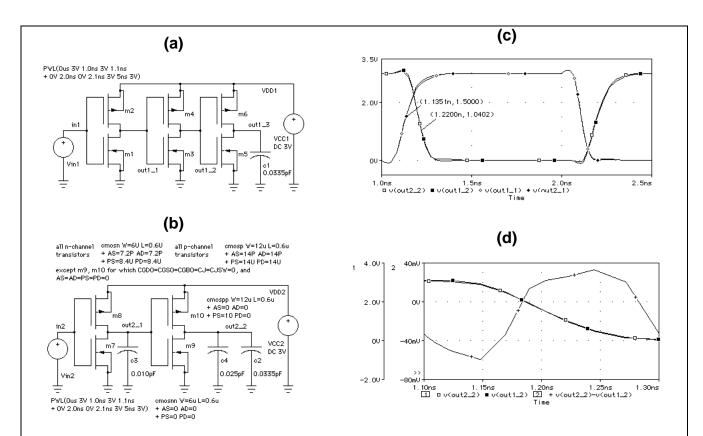
3.2.3 Gate Capacitance

• The gate capacitance depends on the operating region


• The gate–source capacitance C_{GS} varies from zero (off) to $0.5C_{O}$ in the linear region to (2/3) C_{O} in the saturation region

• The gate–drain capacitance C_{GD} varies from zero (off) to 0.5C_O (linear region) and back to zero (saturation region)


• The gate–bulk capacitance C_{GB} is two capacitors in series: the fixed gate-oxide capacitance, C_{O} , and the variable depletion capacitance, C_{S}


• As the transistor turns on the channel shields the bulk from the gate—and C_{GB} falls to zero

• Even with V_{GS} =0V, the depletion width under the gate is finite and thus C_{GB} is less than C_O

3.2.4 Input Slew Rate

Parasitic capacitance measurement

(a) All devices in this circuit include parasitic capacitance

(b) This circuit uses linear capacitors to model the parasitic capacitance of m9/10.

• The load formed by the inverter (m5 and m6) is modeled by a 0.0335pF capacitor (c2)

• The parasitic capacitance due to the overlap of the gates of m_3 and m_4 with their source, drain, and bulk terminals is modeled by a 0.01pF capacitor (c3)

• The effect of the parasitic capacitance at the drain terminals of m3 and m4 is modeled by a 0.025pF capacitor (c4)

(c) Comparison of (a) and (b). The delay (1.22-1.135=0.085ns) is equal to t_{PDf} for the inverter m3/4

(d) An exact match would have both waveforms equal at the 0.35 trip point (1.05V).

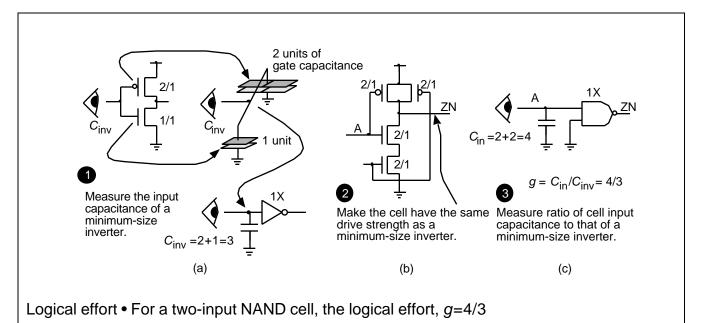
3.3 Logical Effort

We extend the prop-ramp model with a "catch all" term, t_{q} , that includes:

- delay due to internal parasitic capacitance
- the time for the input to reach the switching threshold of the cell
- the dependence of the delay on the slew rate of the input waveform

 $t_{PD} = R(C_{out} + C_p) + t_q$ We can **scale** any logic cell by a scaling factor s: $t_{PD} = (R/s) \cdot (C_{out} + sC_p) + st_q$

$$t_{PD} = RC - C_{out} + RC_p + st_q$$
$$C_{in}$$


The time constant **tau**, $= R_{inv} C_{inv}$, is a basic property of any CMOS technology

The delay equation is the sum of three terms, d = f + p + q or delay = effort delay + parasitic delay + nonideal delay

The effort delay f is the product of **logical effort**, g, and **electrical effort**, h: f = gh

Thus, delay = logical effort × electrical effort + parasitic delay + nonideal delay

- R and C will change as we scale a logic cell, but the RC product stays the same
- Logical effort is independent of the size of a logic cell
- We can find logical effort by scaling a logic cell to have the same drive as a 1X minimum-size inverter
- Then the logical effort, g, is the ratio of the input capacitance, C_{in} , of the 1X logic cell to C_{inv}

(a) Find the input capacitance, C_{inv} , looking into the input of a minimum-size inverter in terms of the gate capacitance of a minimum-size device

(b) Size a logic cell to have the same drive strength as a minimum-size inverter (assuming a logic ratio of 2). The input capacitance looking into one of the logic-cell terminals is then C_{in}

(c) The logical effort of a cell is C_{in}/C_{inv}

The *h* depends only on the load capacitance C_{out} connected to the output of the logic cell and the input capacitance of the logic cell, C_{in} ; thus

electrical effort $h = C_{out} / C_{in}$

parasitic delay $p = RC_p$ (the parasitic delay of a minimum-size inverter is: $p_{inv} = C_p / C_{inv}$)

nonideal delay $q = st_q / dt_q$

Cell effort, parasitic delay, and nonideal delay (in units of $$) for single-stage CMOS cells				
Cell Cell effort (logic ratio=2) Cell effort (logic ratio=r) Parasitic delay/ Nonideal dela				
inverter	1 (by definition)	1 (by definition)	p_{inv} (by definition)	q_{inv} (by definition)
n-input NAND	(<i>n</i> +2)/3	(<i>n</i> + <i>r</i>)/(<i>r</i> +1)	np _{inv}	nq _{inv}
n-input NOR	(2 <i>n</i> +1)/3	(<i>nr</i> +1)/(<i>r</i> +1)	np _{inv}	nq _{inv}

ASICS... THE COURSE

3.3.1 Predicting Delay

- Example: predict the delay of a three-input NOR logic cell
- 2X drive
- driving a net with a fanout of four

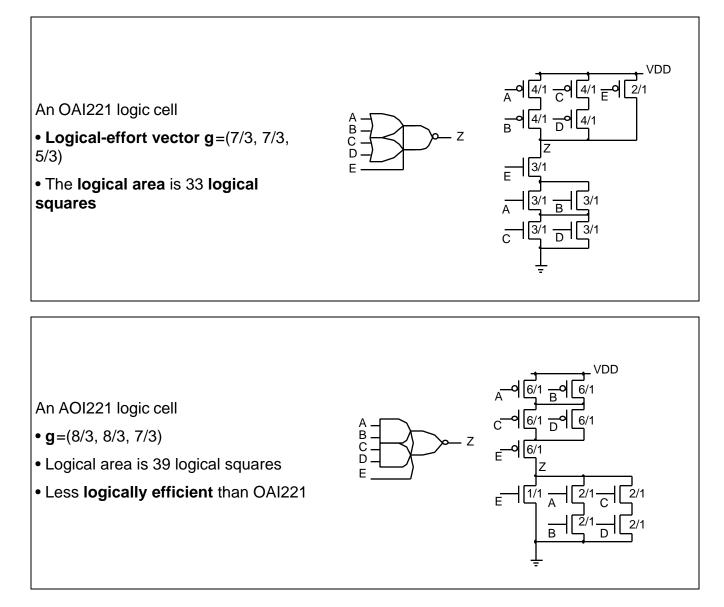
 0.3pF total load capacitance (input capacitance of cells we are driving plus the interconnect)

- $p=3p_{inv}$ and $q=3q_{inv}$ for this cell
- the input gate capacitance of a 1X drive, three-input NOR logic cell is equal to gCinv
- for a 2X logic cell, $C_{in} = 2gC_{inv}$

 $gh = g \quad \frac{C_{\text{out}}}{C_{\text{in}}} = \frac{g \cdot (0.3 \text{ pF})}{2gC_{\text{inv}}} = \frac{(0.3 \text{ pF})}{(2) \cdot (0.036 \text{ pF})}$ (Notice g cancels out in this equation)

The delay of the NOR logic cell, in units of , is thus

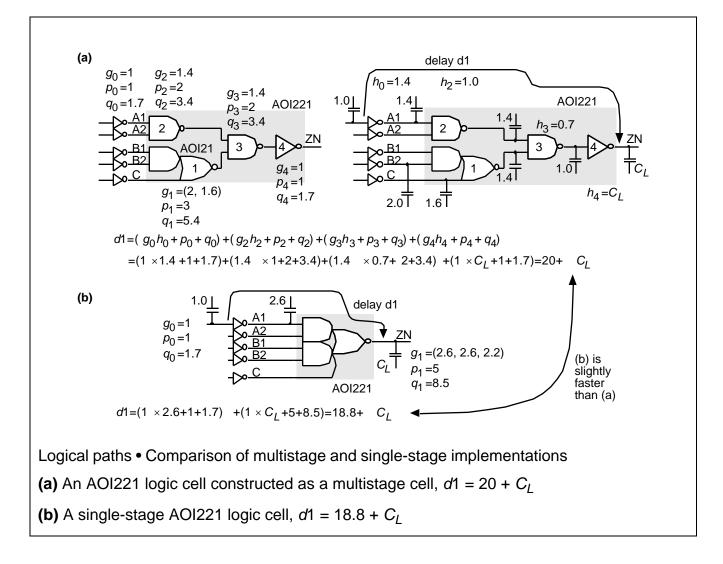
$$d = gh + p + q = \frac{0.3 \times 10^{-12}}{(2) \cdot (0.036 \times 10^{-12})} + (3) \cdot (1) + (3) \cdot (1.7)$$


= 4.1666667 + 3 + 5.1

= 12.266667 equivalent to an absolute delay, t_{PD} 12.3×0.06ns=0.74ns

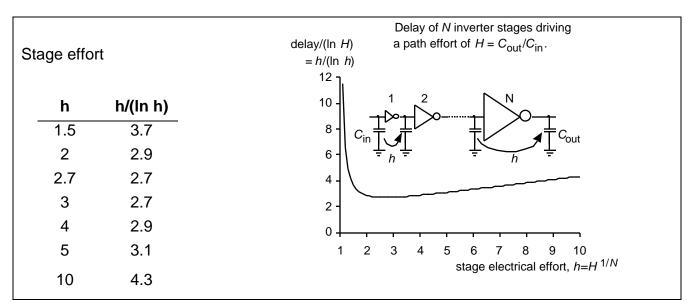
The delay for a 2X drive, three-input NOR logic cell is $t_{PD} = (0.03 + 0.72C_{out} + 0.60)$ ns

With C_{out} =0.3pF, t_{PD} = 0.03 + (0.72)·(0.3) + 0.60 = 0.846 ns compared to our prediction of 0.74ns


3.3.2 Logical Area and Logical Efficiency

3.3.3 Logical Paths

path delay $D = g_i h_i + (p_i + q_i)$ *i* path *i* path


3.3.4 Multistage Cells

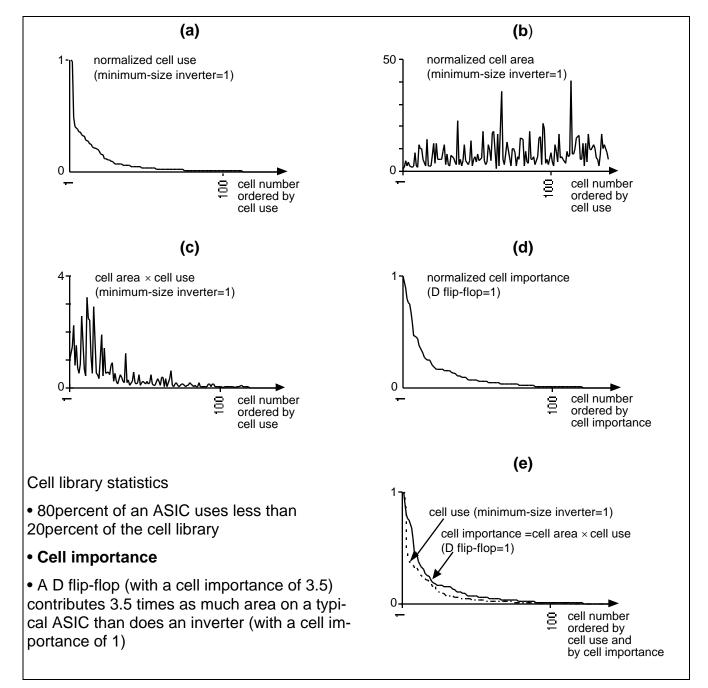
3.3.5 Optimum Delay

path logical effort G = gi i path C_{out} h_i path electrical effort H =Cin i path C_{out} is the load and C_{in} is the first input capacitance on the path path effort F = GH $f^{n}_{i} = g_{i}h_{i} \qquad = F^{1/N}$ optimum effort delay $D^{\Lambda} = NF^{1/N} = N(GH)^{1/N} + P + Q$ optimum path delay P + Q = $p_i + h_i$

> i path

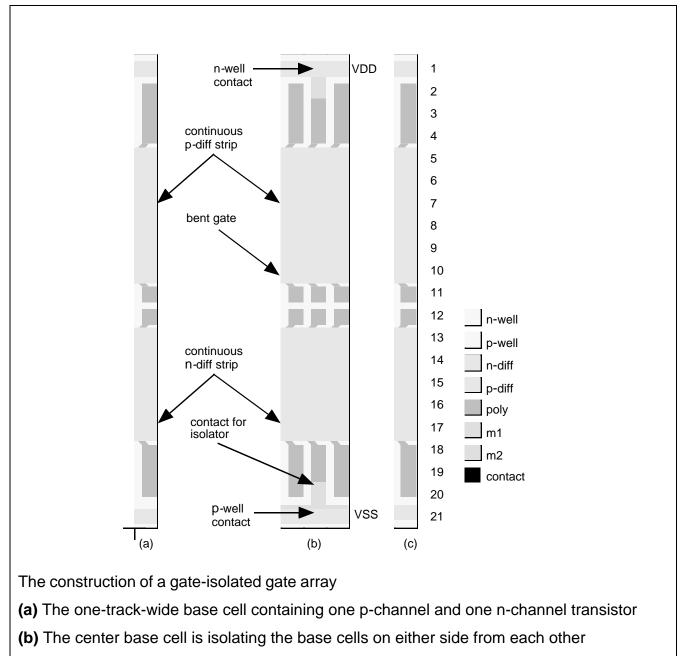
3.3.6 Optimum Number of Stages

• Chain of *N* inverters each with equal stage effort, *f=gh*

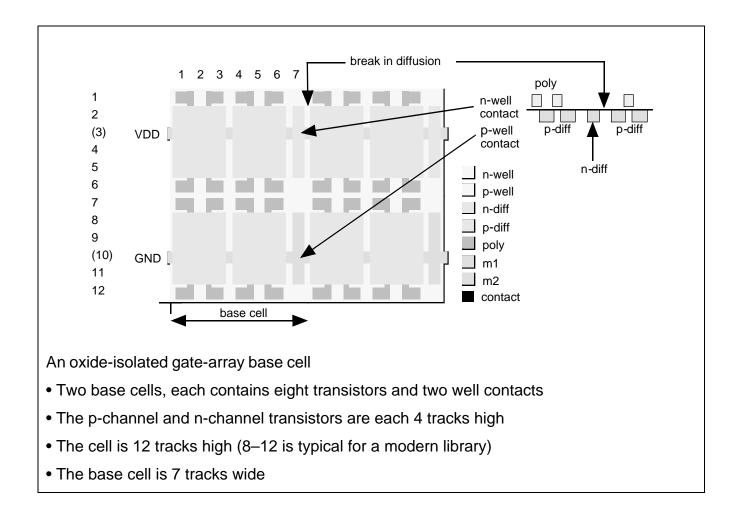

• Total path delay is Nf=Ngh=Nh, since g=1 for an inverter

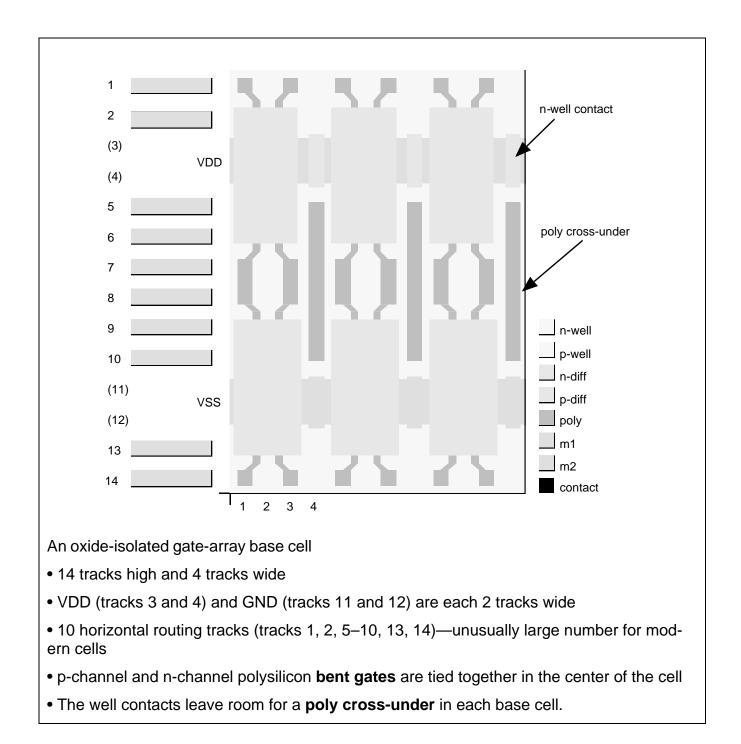
- To drive a path electrical effort H, $h^N = H$, or $N \ln h = \ln H$
- Delay, Nh = hln H/ln h
- Since In*H* is fixed, we can only vary *h*/In(*h*)
- $h/\ln(h)$ is a shallow function with a minimum at h=e 2.718
- Total delay is *N*e=eIn *H*

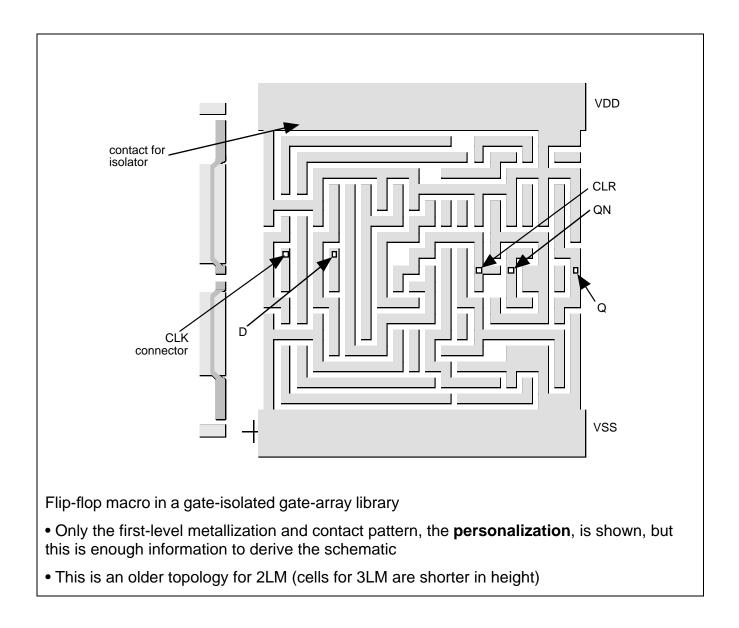
3.4 Library-Cell Design

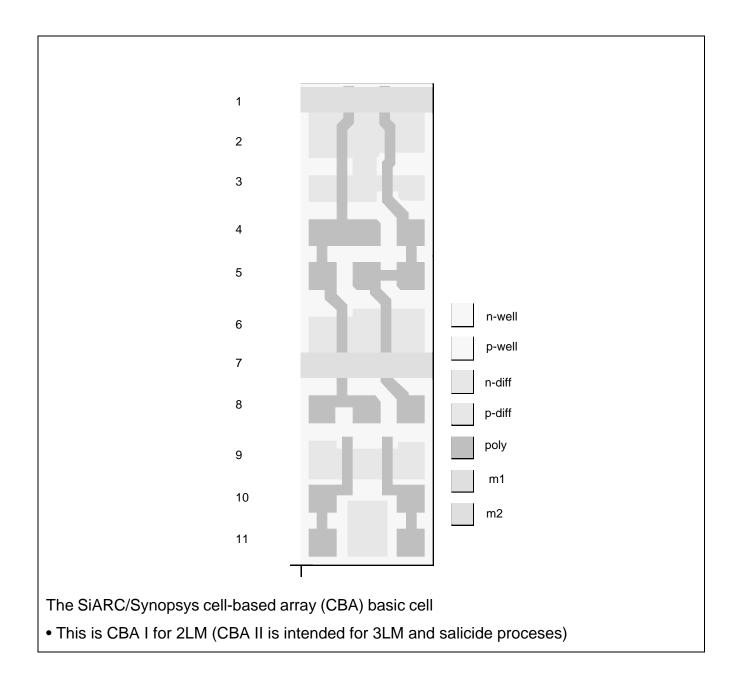

- A big problem in library design is dealing with design rules
- Sometimes we can **waive** design rules
- **Symbolic layout**, **sticks** or **logs** can decrease the library design time (9 months for Virtual Silicon–currently the most sophisticated standard-cell library)
- Mapping symbolic layout uses 10–20 percent more area (5–10 percent with compaction)
- Allowing 45° layout decreases silicon area (some companies do not allow 45° layout)

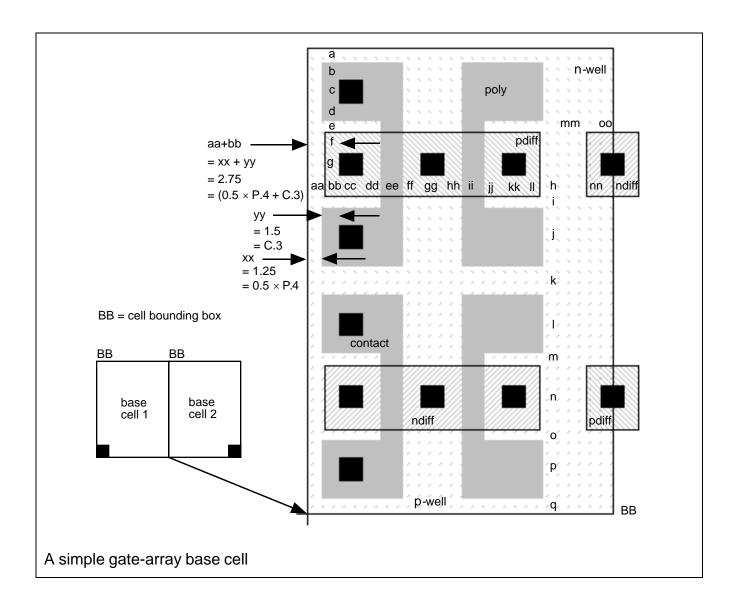
3.5 Library Architecture

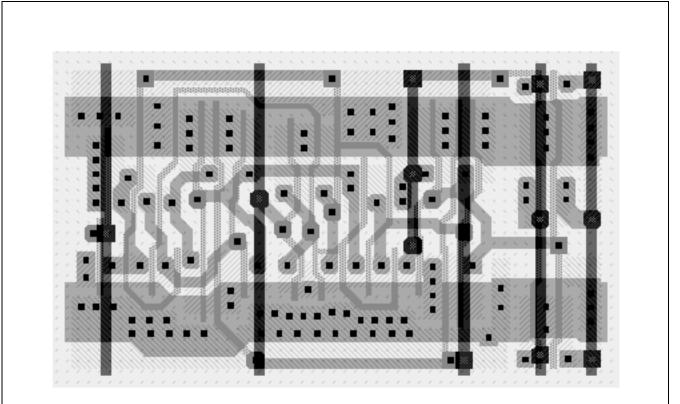


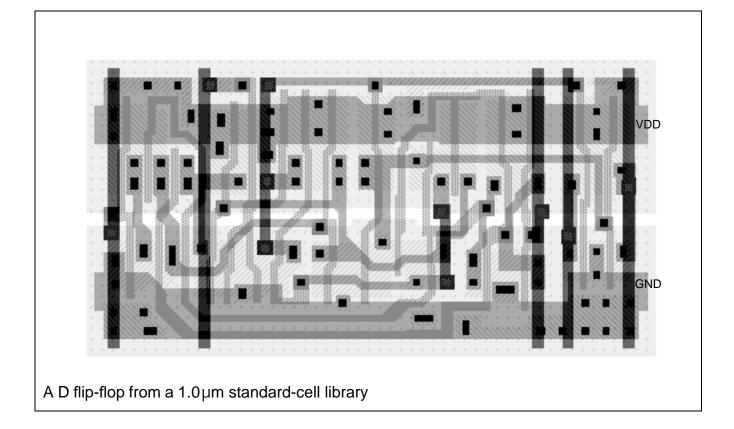

3.6 Gate-Array Design

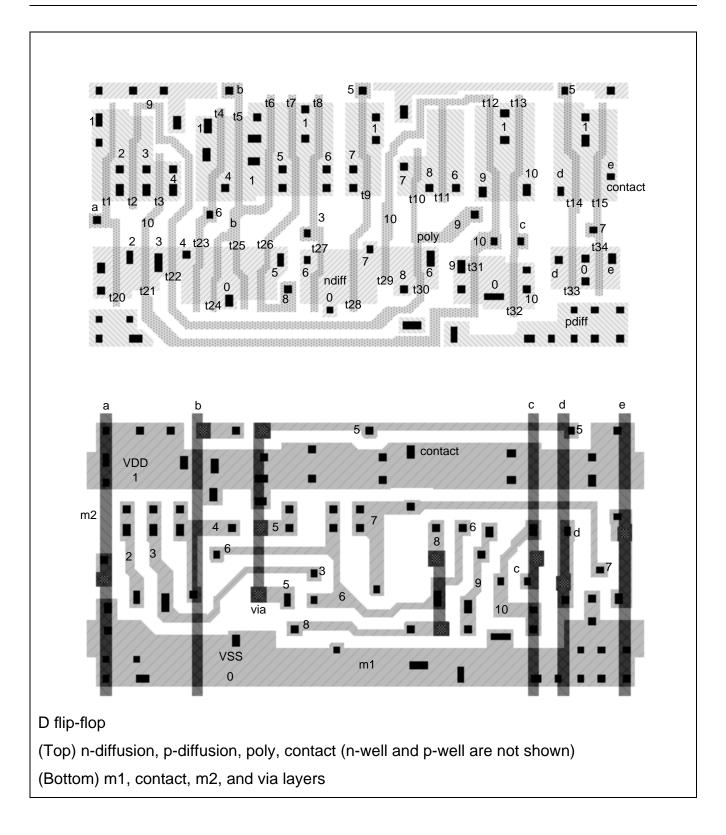

Key words: gate-array base cell (or base cell) • gate-array base (or base) • horizontal tracks • vertical track • gate isolation • isolator transistor • oxide isolation • oxide-isolated gate array



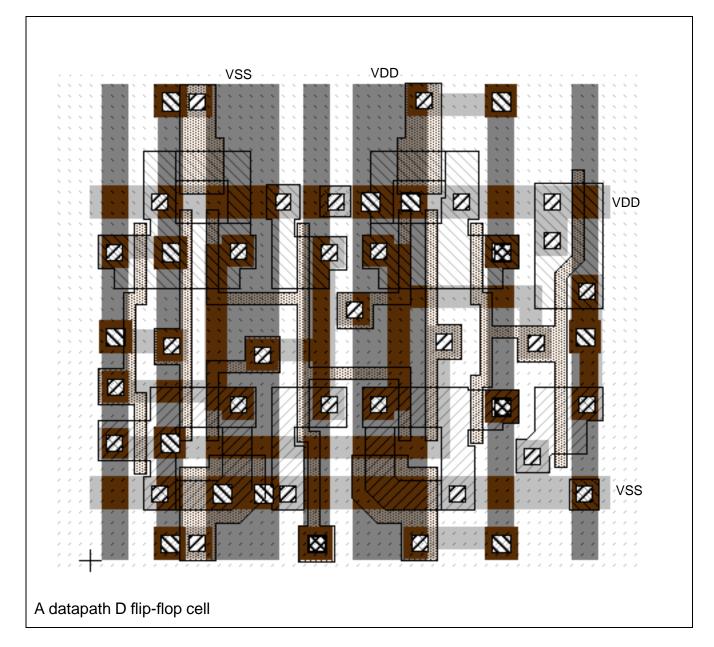

(c) The base cell is 21 tracks high (high for a modern cell library)

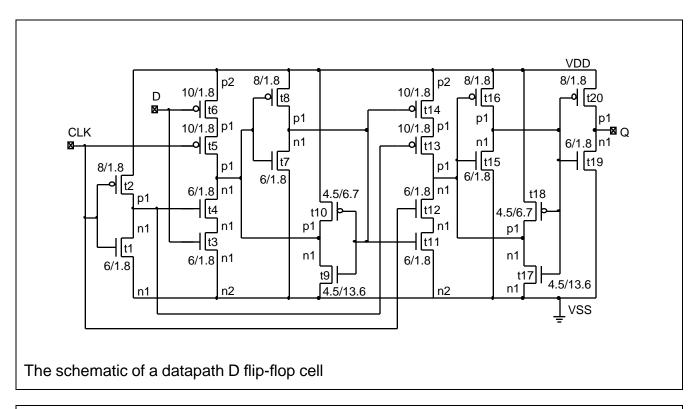


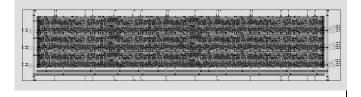




3.7 Standard-Cell Design




- A D flip-flop standard cell
- Performance-optimized library Area-optimized library
- Wide power buses and transistors for a performance-optimized cell
- Double-entry cell intended for a 2LM process and channel routing
- Five connectors run vertically through the cell on m2
- The extra short vertical metal line is an internal crossover
- bounding box (BB) abutment box (AB) physical connector abut



3.8 Datapath-Cell Design

(b)

A narrow datapath

(a) Implemented in a two-level metal process

(b) Implemented in a three-level metal process

ASICS... THE COURSE

3.9 Summary

Key concepts:

- Tau, logical effort, and the prediction of delay
- Sizes of cells, and their drive strengths
- Cell importance
- The difference between gate-array macros, standard cells, and datapath cells

PROGRAMMABLE ASIC LOGIC CELLS

Key concepts: basic logic cell • multiplexer-based cell • look-up table (LUT) • programmable array logic (PAL) • influence of programming technology • timing • worst-case design

5.1 Actel ACT

5.1.1 ACT 1 Logic Module

(b) The ACT 1 Logic Module (LM, the Actel basic logic cell). The ACT 1 family uses just one type of LM. ACT 2 and ACT 3 FPGA families both use two different types of LM

(c) An example LM implementation using pass transistors (without any buffering)

(d) An example logic macro. Connect logic signals to some or all of the LM inputs, the remaining inputs to VDD or GND

5.1.2 Shannon's Expansion Theorem

• We can use the Shannon expansion theorem to expand F =A·F(A='1') + A'·F(A='0')

Example: $F = A' \cdot B + A \cdot B \cdot C' + A' \cdot B' \cdot C = A \cdot (B \cdot C') + A' \cdot (B + B' \cdot C)$

- F(A='1')=B·C' is the **cofactor** of F with respect to (**wrt**) A or F_A
- If we expand F wrt B, F = A' \cdot B + A \cdot B \cdot C' + A' \cdot B' \cdot C = B \cdot (A' + A \cdot C') + B' \cdot (A' \cdot C)
- Eventually we reach the unique canonical form, which uses only minterms
- (A minterm is a product term that contains all the variables of F—such as A·B'·C)

Another example: $F = (A \cdot B) + (B' \cdot C) + D$

- Expand F wrt B: $F=B\cdot(A + D) + B'\cdot(C + D) = B\cdot F2 + B'\cdot F1$
- F = 2:1 MUX, with B selecting between two inputs: F(A='1') and F(A='0')
- F also describes the output of the ACT 1 LM
- Now we need to split up F1 and F2
- Expand F2 wrt A, and F1 wrt C: F2=A + D=(A·1) + (A'·D); F1=C + D=(C·1) + (C'·D)
- A, B, C connect to the select lines and '1' and D are the inputs of the MUXes in the ACT 1 LM
- Connections: A0=D, A1='1', B0=D, B1='1', SA=C, SB=A, S0='0', and S1=B


5.1.3 Multiplexer Logic as Function Generators

The 16 logic functions of 2 variables:

• 2 of the 16 functions are not very interesting (F='0', and F='1')

• There are 10 functions that we can implement using just one 2:1 MUX

• 6 functions are useful: INV, BUF, AND, OR, AND1-1, NOR1-1

		_	• • • • •	Min-	Min-	Func-	M1		
	Function, F	ction, F F= Canonical form terms	term code	tion number	A0	A1	SA		
1	'0'	'0'	'0'	none	0000	0	0	0	0
2	NOR1-1(A, B)	(A+B')	A'∙B	1	0010	2	В	0	А
3	NOT(A)	Α'	A'⋅B' + A'⋅B	0, 1	0011	3	0	1	А
4	AND1-1(A, B)	A·B'	A-B'	2	0100	4	А	0	В
5	NOT(B)	Β'	A'•B' + A•B'	0, 2	0101	5	0	1	В
6	BUF(B)	В	A'·B + A·B	1, 3	1010	6	0	В	1
7	AND(A, B)	A·B	A·B	3	1000	8	0	В	А
8	BUF(A)	А	A·B' + A·B	2, 3	1100	9	0	А	1
9	OR(A, B)	A+B	A'·B + A·B' + A·B	1, 2, 3	1110	13	В	1	А
10	'1'	'1'	$A' \cdot B' + A' \cdot B + A \cdot B' + A \cdot B$	0, 1, 2, 3	1111	15	1	1	1

Example of using the WHEEL functions to implement $F=NAND(A, B)=(A \cdot B)'$

• 1. First express F as the output of a 2:1 MUX: we do this by expanding F wrt A (or wrt B; since F is symmetric) $F=A\cdot(B') + A'\cdot('1')$

• 2. Assign WHEEL1 to implement INV(B), and WHEEL2 to implement '1'

• 3. Set the select input to the MUX connecting WHEEL1 and WHEEL2, S0+S1=A. We can do this using S0=A, S1='1'

The ACT 1 Logic Module as a Boolean function generator

(a) A 2:1 MUX viewed as a function wheel

(b) The ACT 1 Logic Module is two function wheels, an OR gate, and a 2:1 MUX

- A 2:1 MUX is a function wheel that can generate BUF, INV, AND-11, AND1-1, OR, AND
- WHEEL(A, B) = MUX(A0, A1, SA)
- MUX(A0, A1, SA)=A0·SA' + A1·SA
- The inputs (A0, A1, SA) ={A, B, '0', '1'}
- Each of the inputs (A0, A1, and SA) may be A, B, '0', or '1'
- The ACT 1 LM is built from two function wheels, a 2:1 MUX, and a two-input OR gate
- ACT 1 LM =MUX [WHEEL1, WHEEL2, OR(S0, S1)]

5.1.4 ACT 2 and ACT 3 Logic Modules

- ACT 1 requires 2 LMs per flip-flop: with unknown interconnect capacitance
- ACT 2 and ACT 3 use two types of LMs, one includes a D flip-flop
- ACT 2 **C-Module** is similar to the ACT 1 LM but can implement five-input logic functions
- combinatorial module implements combinational logic (blame MMI for the misuse of terms)
- ACT 2 **S-Module** (sequential module) contains a C-Module and a sequential element

5.1.5 Timing Model and Critical Path

Keywords and concepts: timing model • deals only with internal logic • estimates delays • before place-and-route step • nondeterministic architecture • find slowest register–register delay or critical path

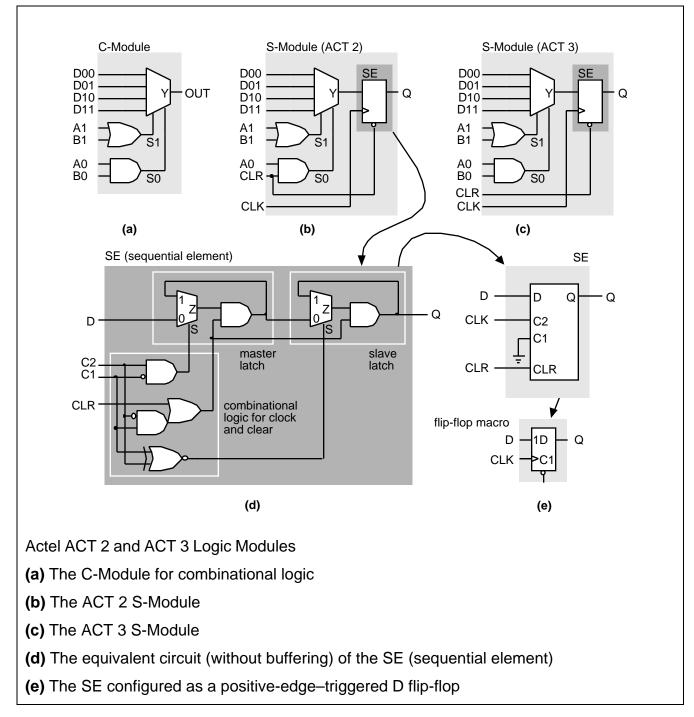
Example of timing calculations (a rather complex examination of internal module timing):

- The setup and hold times, measured *inside* (not outside) the S-Module, are t'_{SUD} and t'_{H} (a prime denotes parameters that are measured inside the S-Module)
- The clock–Q propagation delay is t'_{CO}
- The parameters t'_{SUD}, t'_H, and t'_{CO} are measured using the *internal* clock signal CLKi
- The propagation delay of the combinational logic inside the S-Module is t'PD
- The delay of the combinational logic that drives the flip-flop clock signal is t'_{CLKD}
- From outside the S-Module, with reference to the outside clock signal CLK1:

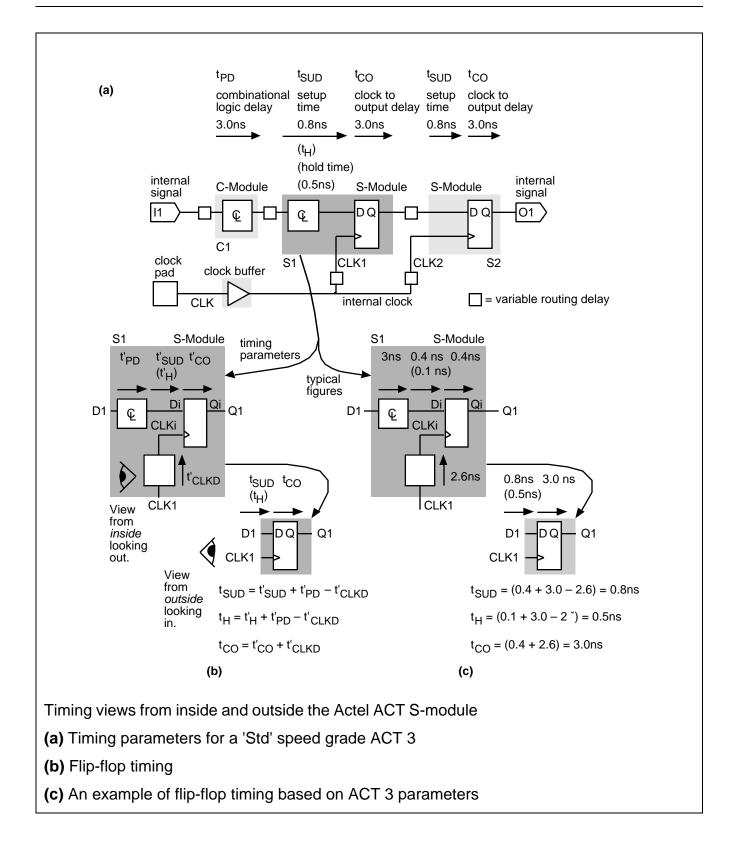
 $t_{SUD} = t'_{SUD} + (t'_{PD} - t'_{CLKD}), t_{H} = t'_{H} + (t'_{PD} - t'_{CLKD}), t_{CO} = t'_{CO} + t'_{CLKD}$

 \bullet We do not know the *internal* parameters $t'_{SUD},\,t'_{H},$ and $t'_{CO},$ but assume reasonable values:

t'_{SUD}=0.4ns, t'_H=0.1ns, t'_{CO}=0.4ns.


- t'_{PD} (combinational logic inside the S-Module) is equal to the C-Module delay, so t'_{PD} =3ns for the ACT 3
- We do not know t'_{CLKD}; assume a value of t'_{CLKD}=2.6ns (the exact value does not matter)
- Thus the *external* S-Module parameters are: t_{SUD}=0.8ns, t_H=0.5ns, t_{CO}=3.0ns
- \bullet These are the same as the ACT 3 S-Module parameters (I chose t'_{CLKD} so they would be)

 \bullet Of the 3.0ns combinational logic delay: 0.4ns increases the setup time and 2.6ns increases the clock–output delay, $t_{\rm CO}$


Actel says that the combinational logic delay is *buried* in the flip-flop setup time. But this
is borrowed money—you have to pay it back.

5.1.6 Speed Grading

- Speed grading (or speed binning) uses a binning circuit
- Measure $t_{PD} = (t_{PLH} + t_{PHL})/2$ and use the fact that properties match across a chip
- Actel speed grades are based on 'Std' speed grade

- '1' speed grade is approximately 15 percent faster than 'Std'
- '2' speed grade is approximately 25 percent faster than 'Std'
- '3' speed grade is approximately 35 percent faster than 'Std'.

5.1.7 Worst-Case Timing

Keywords and concepts: Using synchronous design you worry about how slow your circuit may be—not how fast • **ambient temperature**, $T_A • package case temperature, <math>T_C$ (military) • temperature of the chip, the **junction temperature**, $T_J • nominal operating conditions: <math>V_{DD}$ =5.0V, and T_J =25°C • **worst-case commercial** conditions: V_{DD} =4.75V, and T_J =+70°C • always design using **worst-case timing • derating factors • critical path delay** between registers • **process corner** (slow–slow • fast–fast • slow–fast • fast–slow) • Commercial. V_{DD} =5V ± 5%, T_A (ambient)=0 to +70°C • Industrial. V_{DD} =5V ± 10%, T_A (ambient)=-40 to +85°C • Military: V_{DD} =5V ± 10%, T_C (case)=-55 to +125°C • Military: Standard MIL-STD-883C Class B • Military extended: unmanned spacecraft

ACT 3 timing parameters							
		Fanout					
Family	Delay	1	2	3	4	8	
ACT 3-3 (data book)	t _{PD}	2.9	3.2	3.4	3.7	4.8	
ACT3-2 (calculated)	t _{PD} /0.85	3.41	3.76	4.00	4.35	5.65	
ACT3-1 (calculated)	t _{PD} /0.75	3.87	4.27	4.53	4.93	6.40	
ACT3-Std (calculated)	t _{PD} /0.65	4.46	4.92	5.23	5.69	7.38	

ACT 3 derating factors								
	TemperatureT _J (junction)/°C							
V _{DD} /V	-55	-40	0	25	70	85	125	
4.5	0.72	0.76	0.85	0.90	1.04	1.07	1.17	
4.75	0.70	0.73	0.82	0.87	1.00	1.03	1.12	
5.00	0.68	0.71	0.79	0.84	0.97	1.00	1.09	
5.25	0.66	0.69	0.77	0.82	0.94	0.97	1.06	
5.5	0.63	0.66	0.74	0.79	0.90	0.93	1.01	

5.1.8 Actel Logic Module Analysis

. . . .

• Actel uses a fine-grain architecture which allows you to use almost all of the FPGA

• Synthesis can map logic efficiently to a fine-grain architecture

• Physical symmetry simplifies place-and-route (swapping equivalent pins on opposite sides of the LM to ease routing)

- Matched to small antifuse programming technology
- LMs balance efficiency of implementation and efficiency of utilization
- A simple LM reduces performance, but allows fast and robust place-and-route

5.2 Xilinx LCA

Keywords and concepts: Xilinx LCA (a trademark, logic cell array) • configurable logic block

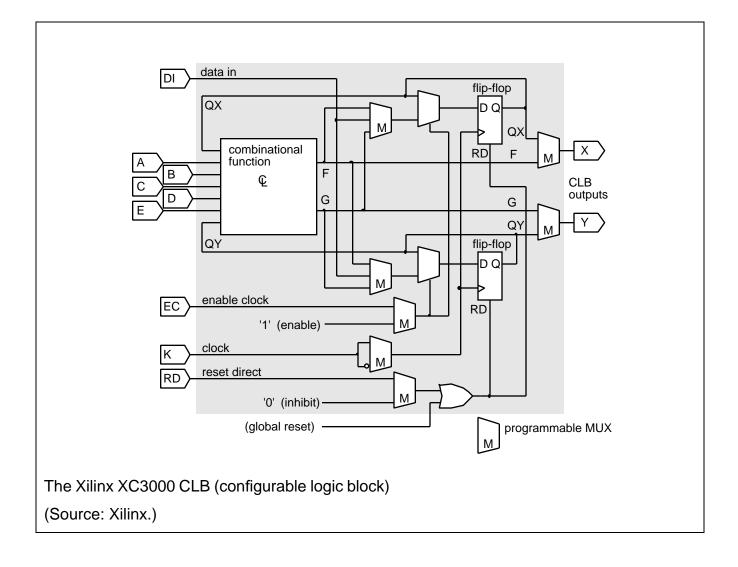
• coarse-grain architecture

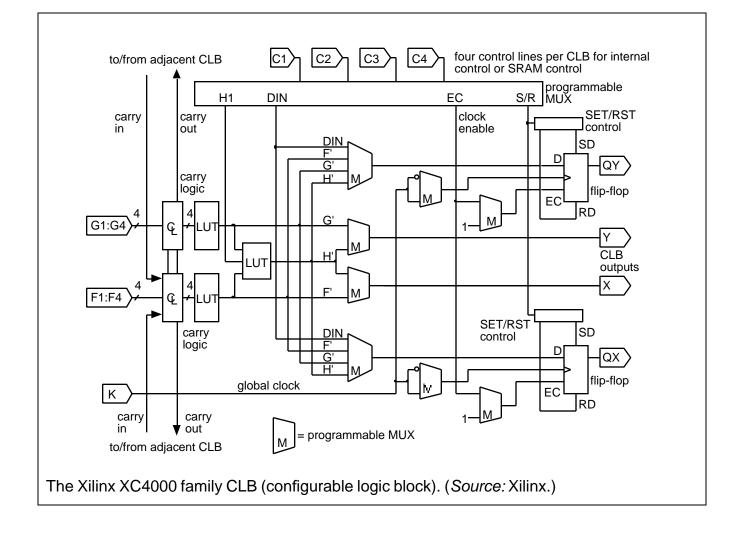
5.2.1 XC3000 CLB

• A 32-bit look-up table (LUT)

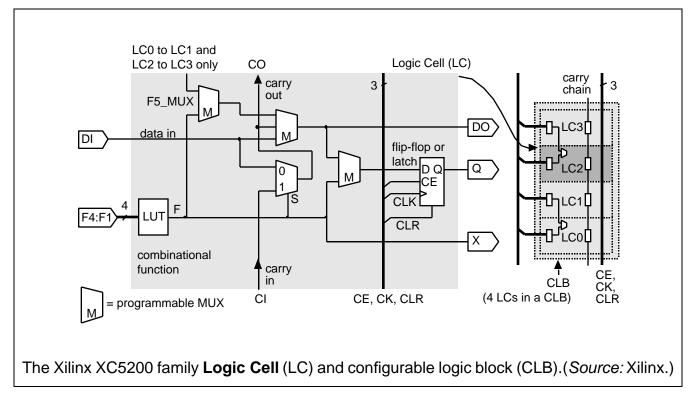
 CLB propagation delay is fixed (the LUT access time) and independent of the logic function

• 7 inputs to the XC3000 CLB: 5 CLB inputs (A–E), and 2 flip-flop outputs (QX and QY)


• 2 outputs from the LUT (F and G). Since a 32-bit LUT requires only five variables to form a unique address $(32=2^5)$, there are several ways to use the LUT:

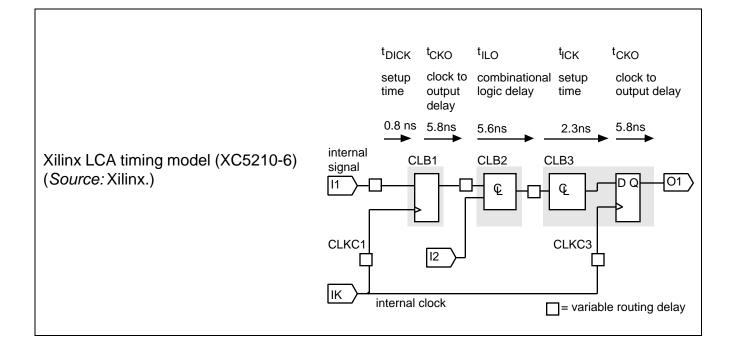

• Use 5 of the 7 possible inputs (A–E, QX, QY) with the entire 32-bit LUT (the CLB outputs (F and G) are then identical)

• Split the 32-bit LUT in half to implement 2 functions of 4 variables each; choose 4 input variables from the 7 inputs (A–E, QX, QY).You have to choose 2 of the inputs from the 5 CLB inputs (A–E); then one function output connects to F and the other output connects to G.

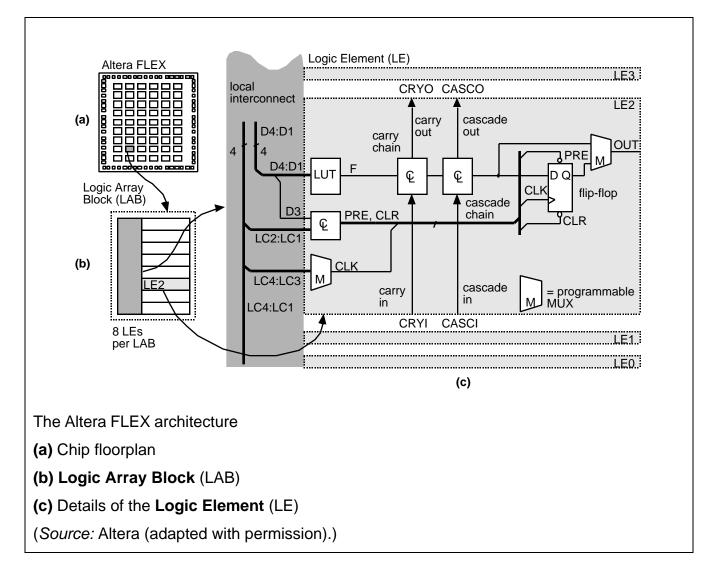

• You can split the 32-bit LUT in half, using one of the 7 input variables as a select input to a 2:1 MUX that switches between F and G (to implemen some functions of 6 and 7 variables).

5.2.2 XC4000 Logic Block

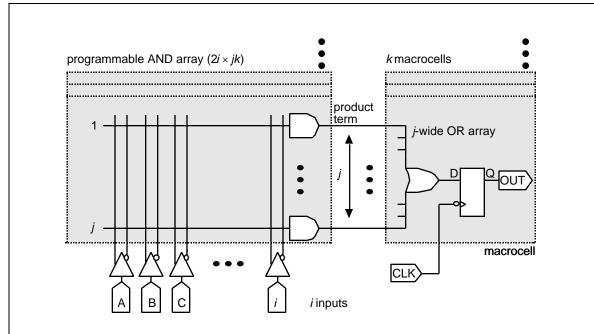
5.2.3 XC5200 Logic Block


5.2.4 Xilinx CLB Analysis

The use of a LUT has advantages and disadvantages:

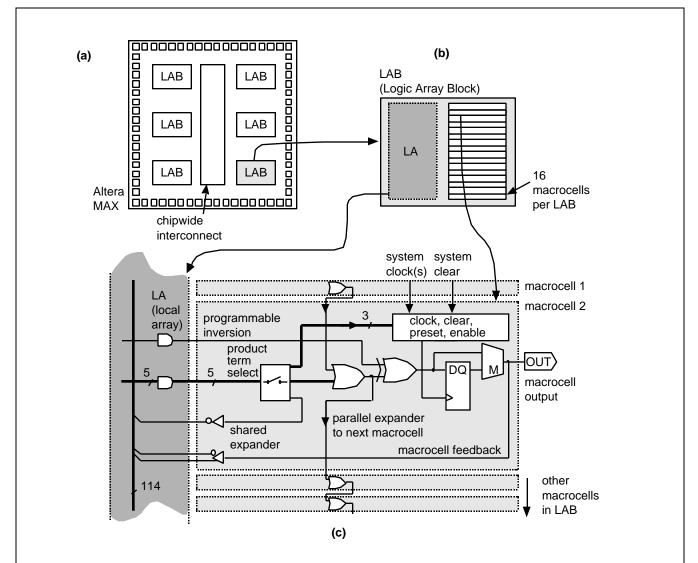

- An inverter is as slow as a five-input NAND
- A LUT simplifies timing of synchronous logic
- Matched to large SRAM programming technology

Xilinx uses two speed-grade systems:


- Maximum guaranteed toggle rate of a CLB flip-flop (in MHz) as a suffix—higher is faster
- Example: Xilinx XC3020-125 has a toggle frequency of 125MHz
- Delay time of the combinational logic in a CLB in ns—lower is faster
- Example: XC4010-6 has t_{ILO}=6.0ns
- Correspondence between grade and $t_{\rm ILO}$ is fairly accurate for the XC2000, XC4000, and XC5200 but not for the XC3000

5.3 Altera FLEX

5.4 Altera MAX

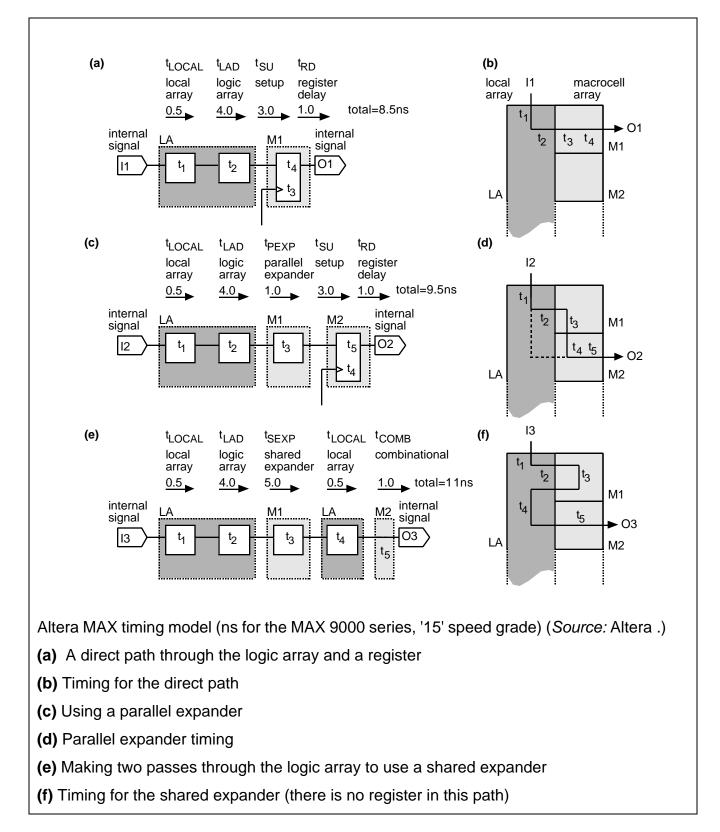


A registered PAL with *i* inputs, *j* product terms, and *k* macrocells. (*Source:* Altera (adapted with permission).)

Features and keywords:

- product-term line
- programmable array logic
- bit line
- word line
- programmable-AND array (or product-term array)
- pull-up resistor
- wired-logic
- wired-AND
- macrocell
- 22V10 PLD

5.4.1 Logic Expanders



The Altera MAX architecture (the macrocell details vary between the MAX families—the functions shown here are closest to those of the MAX 9000 family macrocells) (*Source:* Altera (adapted with permission).) (a) Organization of logic and interconnect (b) LAB (Logic Array Block) (c) Macrocell

Features:

- Logic expanders and expander terms (helper terms) increase term efficiency
- Shared logic expander (shared expander, intranet) and parallel expander (internet)
- Deterministic architecture allows deterministic timing before logic assignment
- Any use of two-pass logic breaks deterministic timing
- Programmable inversion increases term efficiency

5.4.2 Timing Model

5.4.3 Power Dissipation in Complex PLDs

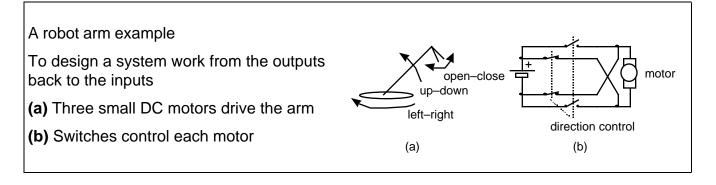
Key points: static power • Turbo Bit

5.5 Summary

Key points: The use of multiplexers, look-up tables, and programmable logic arrays • The difference between fine-grain and coarse-grain FPGA architectures • Worst-case timing design • Flip-flop timing • Timing models • Components of power dissipation in programmable ASICs • Deterministic and nondeterministic FPGA architectures

5.6 Problems

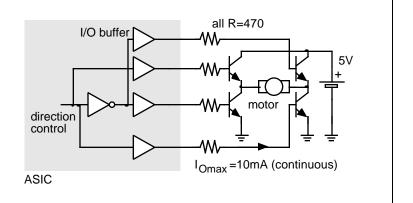
PROGRAMMABLE ASIC I/O CELLS

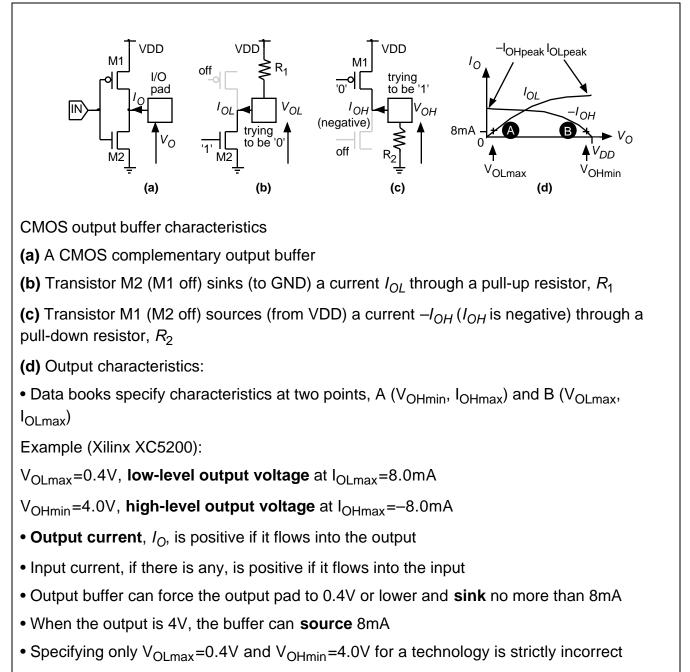


Key concepts:

Input/output cell (I/O cell) • I/O requirements • DC output • AC output • DC input • AC input •

Clock input • Power input

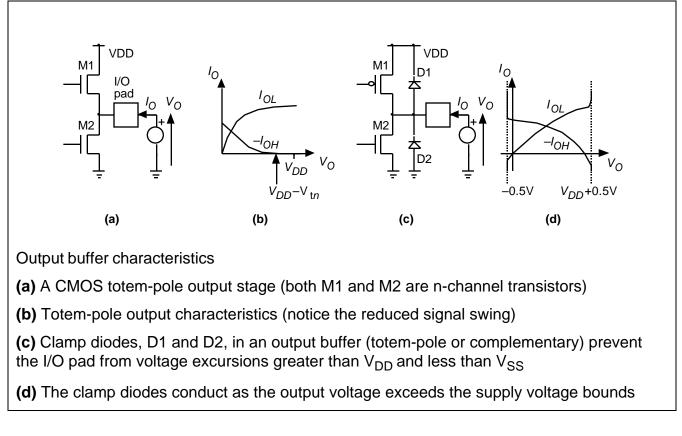

6.1 DC Output



A circuit to drive a small electric motor (0.5A) using ASIC I/O buffers

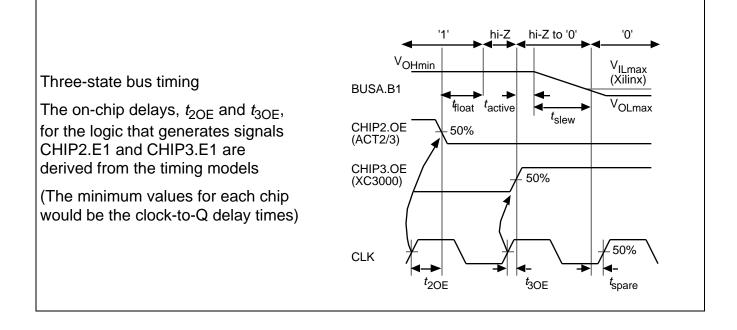
Work from the outputs to the inputs

The 470 resistors drop up to 5V if an output buffer current approaches 10mA, reducing the drive to the output transistors

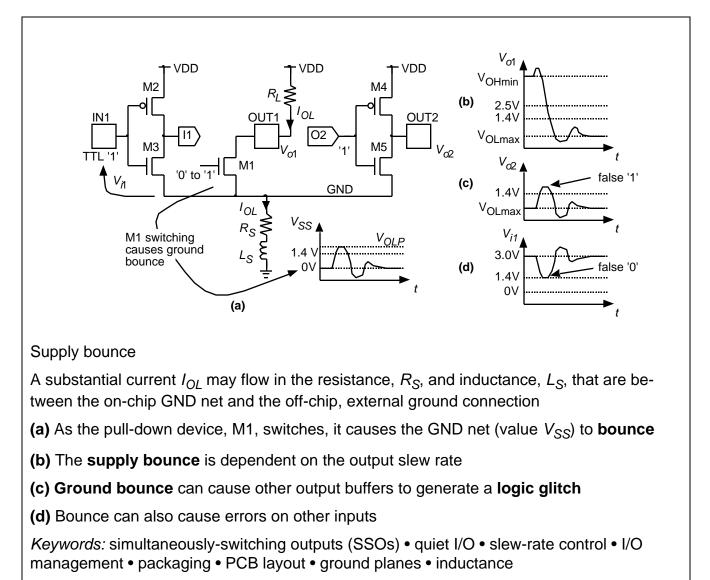


• We do not know the value of I_{OLpeak} or I_{OLpeak} (typical values are 50–200mA)

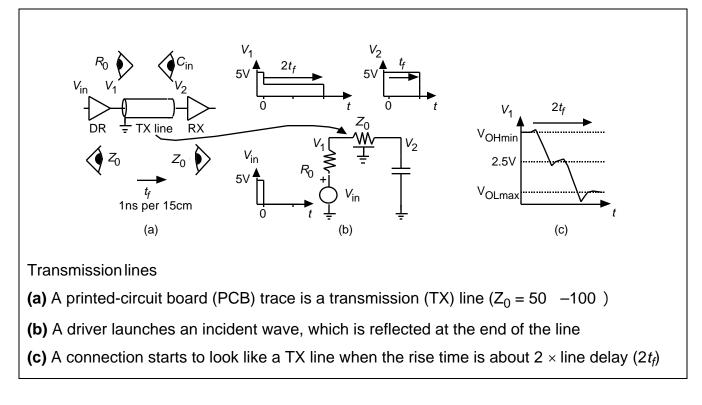
6.1.1 Totem-Pole Output

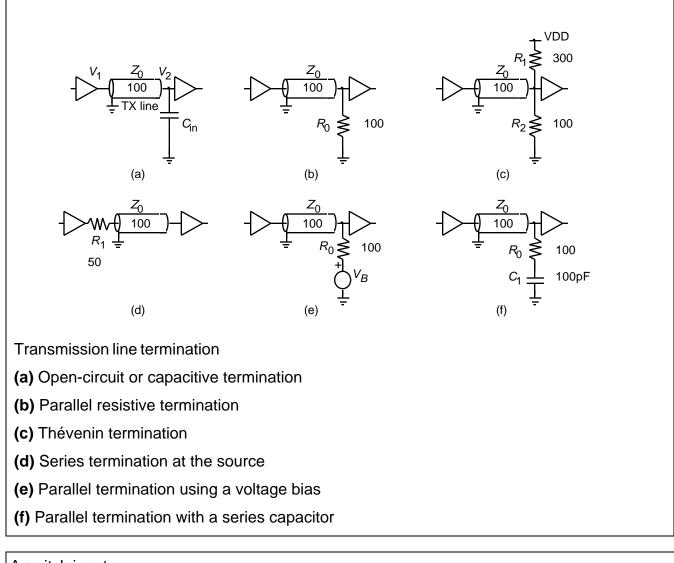

Keywords: totem-pole output buffer • similar to TTL totem-pole output • two n-channel transistors in a stack • reduced output voltage swing

6.1.2 Clamp Diodes

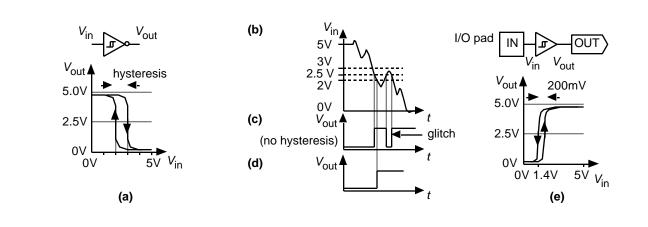


6.2 AC Output


Keywords: bus transceivers • bus transaction (a sequence of signals on a bus) • floating a bus
• bus keeper • trip points • three-stated (high-impedance or hi-Z) • time to float • disable time,
time to begin hi-Z, or time to turn off • slew • sustained three-state (s/t/s) • turnaround cycle


6.2.1 Supply Bounce

6.2.2 Transmission Lines

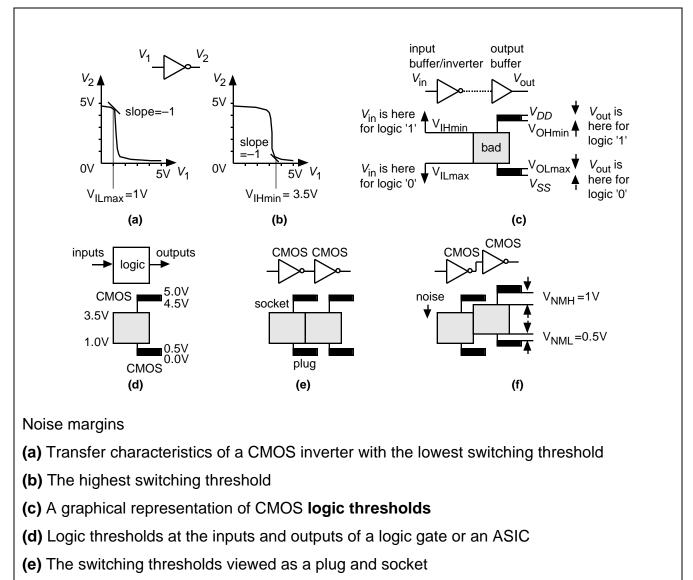


6.3 DC Input

(a) A pushbutton switch V_{i1} Switch closes, connected to an input buffer bounces, and VDD R_{PU} 5V closes again. I/O with a pull-up resistor 5–50k pad V_{i2} (b) As the switch bounces 12 1.4V several pulses may be 0V input Cin t₁ t_4 generated V_{i2} buffer 10pF We might have to **debounce** $t_2 t_3$ *t*5 this signal using an SR flip-flop (a) (b) or small state machine

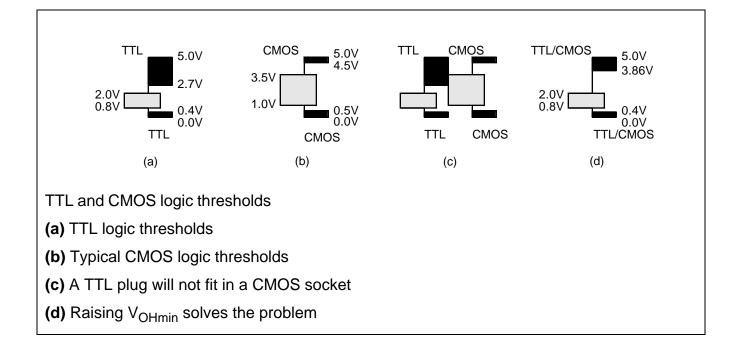
DC input

(a) A Schmitt-trigger inverter • lower switching threshold • upper switching threshold • difference between thresholds is the hysteresis

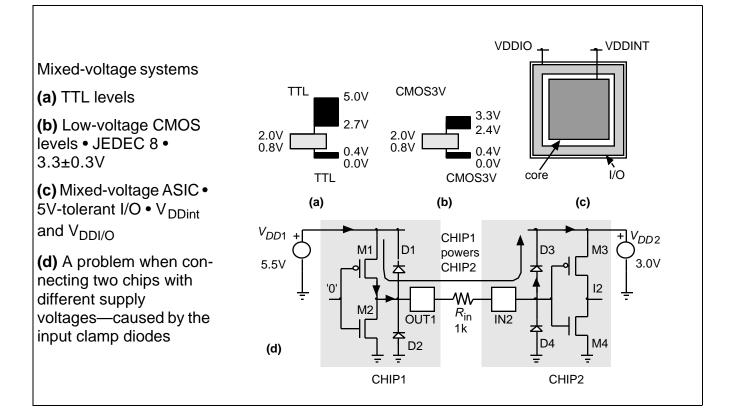

(b) A noisy input signal

(c) Output from an inverter with no hysteresis

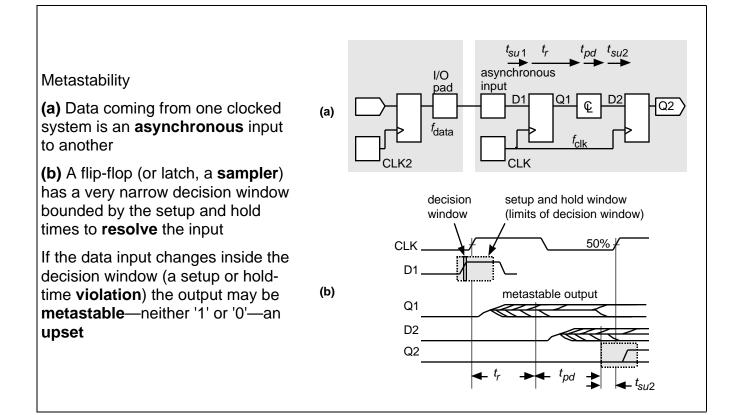
(d) Hysteresis helps prevent glitches


(e) A typical FPGA input buffer with a hysteresis of 200mV and a threshold of 1.4V

6.3.1 Noise Margins


(f) CMOS plugs fit CMOS sockets and the clearances are the noise margins

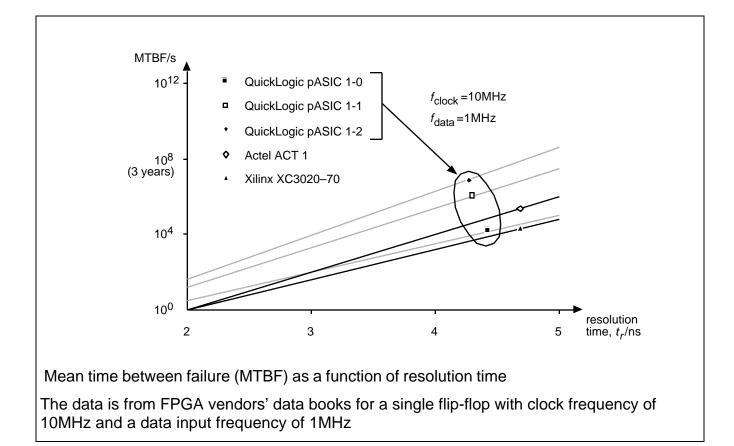
6.3.2 Mixed-Voltage Systems


FPGA logic thresholds												
	I/O options		Input levels		Output levels (high current)			Output levels (low current)				
XC3000	TTL		2.0	0.8	3.86	-4.0	0.40	4.0				
	CMOS		3.85	0.9	3.86	-4.0	0.40	4.0				
XC3000L			2.0	0.8	2.40	-4.0	0.40	4.0	2.80	-0.1	0.2	0.1
XC4000			2.0	0.8	2.40	-4.0	0.40	12.0				
XC4000H	TTL	TTL	2.0	0.8	2.40	-4.0	0.50	24.0				
	CMOS	CMOS	3.85	0.9	4.00	-1.0	0.50	24.0				
XC8100	TTL	R	2.0	0.8	3.86	-4.0	0.50	24.0				
	CMOS	С	3.85	0.9	3.86	-4.0	0.40	4.0				
ACT 2/3			2.0	0.8	2.4	-8.0	0.50	12.0	3.84	-4.0	0.33	6.0
FLEX10k		3V/5V	2.0	0.8	2.4	-4.0	0.45	12.0				

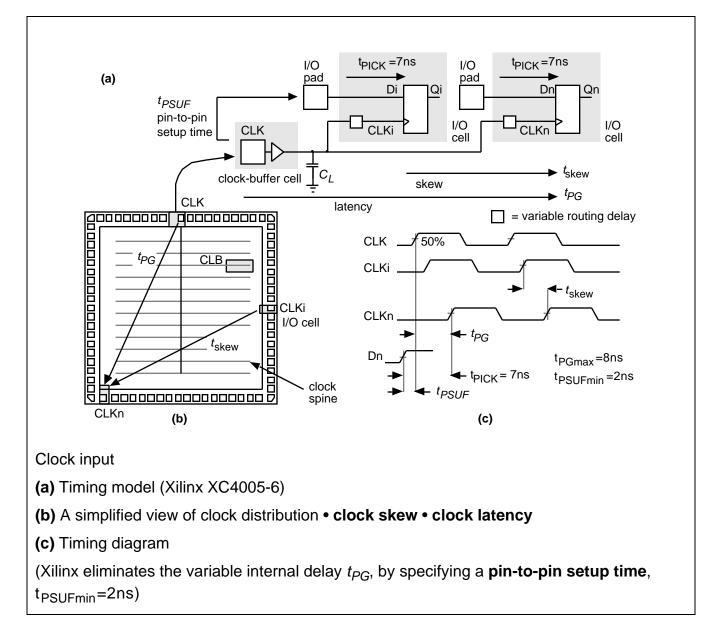
6.4 AC Input

Keywords and concepts: input bus • sampled data • clock frequency of 100kHz • FPGA • system clock • 10MHz • Data should be at the flip-flop input at least the flip-flop setup time before the clock edge. Unfortunately there is no way to guarantee this; the data clock and the system clock are completely independent

6.4.1 Metastability

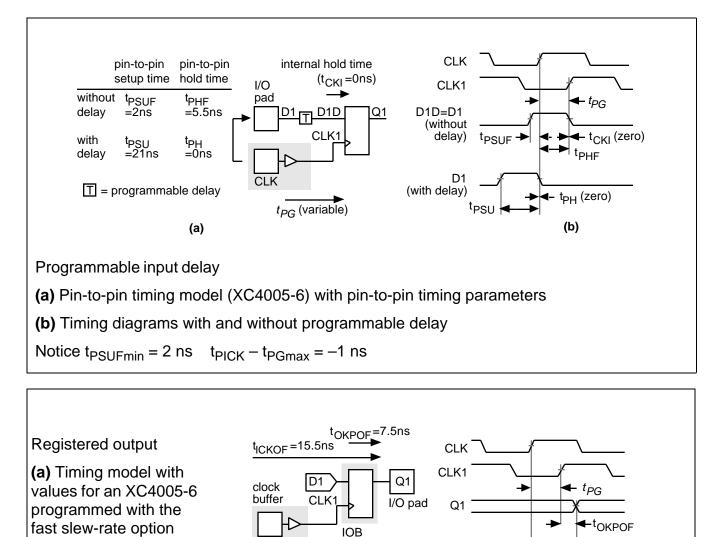

Metastability parameters for FPGA flip-flops (not guaranteed by the vendors)						
FPGA	T ₀ /s	₀/s				
Actel ACT 1	1.0E–09	2.17E–10				
Xilinx XC3020-70	1.5E–10	2.71E-10				
QuickLogic QL12x16-0	2.94E–11	2.91E-10				
QuickLogic QL12x16-1	8.38E–11	2.09E-10				
QuickLogic QL12x16-2	1.23E–10	1.85E–10				
Altera MAX 7000	2.98E-17	2.00E-10				
Altera FLEX 8000	1.01E–13	7.89E-11				

The mean time between upsets (MTBU) or MTBF is


 $MTBU = \frac{1}{\rho f_{clock} f_{data}} = \frac{exp t_{f'} c}{f_{clock} f_{data}}$

where f_{clock} is the clock frequency and f_{data} is the data frequency

A **synchronizer** is built from two flip-flops in cascade, and greatly reduces the effective values of $_{c}$ and T₀ over a single flip-flop. The penalty is an extra clock cycle of latency.


6.5 Clock Input

^tICKOF

(b)

6.5.1 Registered Input

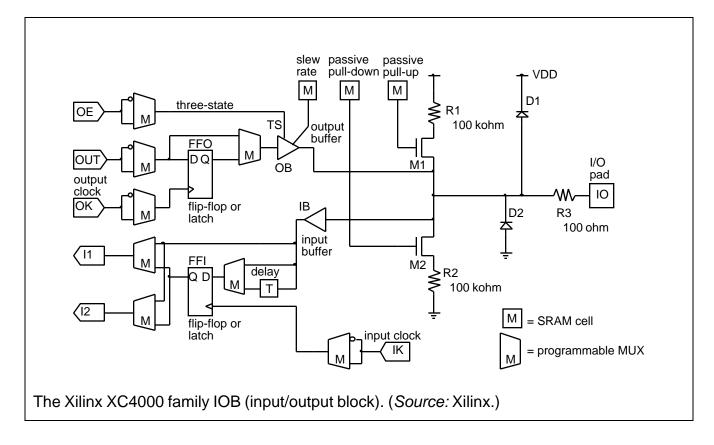
CLK

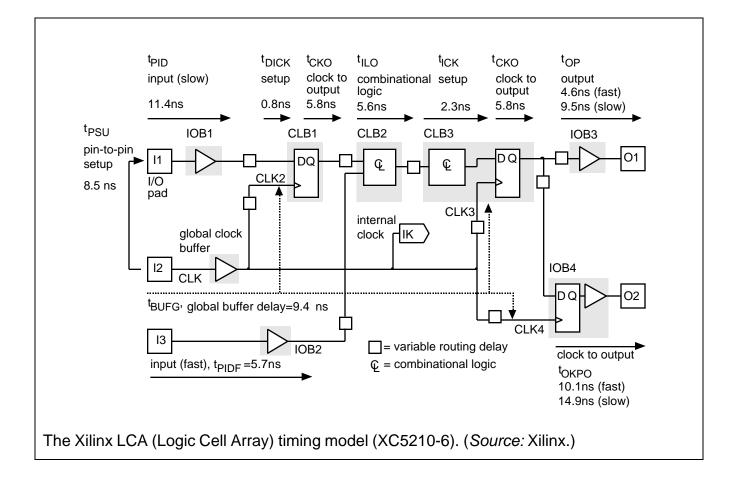
t_{PG} (variable)

(a)

(b) Timing diagram

6.6 Power Input


6.6.1 Power Dissipation


Thermal characteristics of ASIC packages								
Package	Pin count	Max. power P _{max} /W	_{JA} /°CW ^{−1} (still air)	_{JA} /°CW ^{−1} (still air)				
CPGA	84		33	32–38				
CQFP	84		40					
CQFP	172		25					
VQFP	80		68					

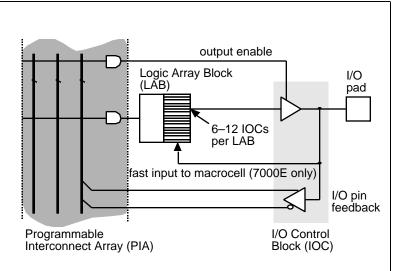
6.6.2 Power-On Reset

Key concepts: Power-on reset sequence • Xilinx FPGAs configure all flip-flops (in either the CLBs or IOBs) as either SET or RESET • after chip programming is complete, the global SET/RESET signal forces all flip-flops on the chip to a known state • this may determine the initial state of a state machine, for example

6.7 Xilinx I/O Block

6.7.1 Boundary Scan

Key concepts: IEEE boundary-scan standard 1149.1 • Many FPGAs contain a standard boundary-scan test logic structure with a four-pin interface • **in-system programming** (ISP)

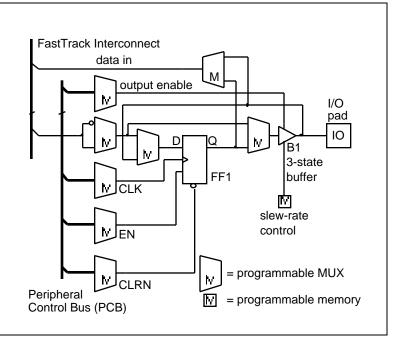

6.8 Other I/O Cells

A simplified block diagram of the Altera I/O Control Block (IOC) used in the MAX 5000 and MAX 7000 series

The **I/O pin feedback** allows the I/O pad to be isolated from the macrocell

It is thus possible to use a LAB without using up an I/O pad (as you often have to do using a PLD such as a 22V10)

The **PIA** is the chipwide interconnect



A simplified block diagram of the Altera **I/O Element** (IOE), used in the FLEX 8000 and 10k series

The MAX 9000 IOC (I/O Cell) is similar

The FastTrack Interconnect bus is the chipwide interconnect

The **Peripheral Control Bus** (PCB) is used for control signals common to each IOE

6.9 Summary

Key concepts:
Outputs can typically source or sink 5–10mA continuously into a DC load
Outputs can typically source or sink 50–200mA transiently into an AC load
Input buffers can be CMOS (threshold at 0.5 V_{DD}) or TTL (1.4V)
Input buffers normally have a small hysteresis (100–200mV)
CMOS inputs must never be left floating
Clamp diodes to GND and VDD are present on every pin
Inputs and outputs can be registered or direct
I/O registers can be in the I/O cell or in the core
Metastability is a problem when working with asynchronous inputs

Questions In which design all	opt1	opt2	opt3	opt4	opt 5	opt 6	Answer
circuitry and all interconnections are designed? Which design	full custom design.	semi-custom design	gate array design	transistor design			full custom design.
contains only the interconnections designed? In which method	full custom design	semi- custom design hierarchical	gate array design . algorithm ic	transistor design semi- docign			gate array design . hierarchica
regularity is used to reduce complexity?	random approach	approach.	approach area of	design approach length of			l approach.
Size of the die is determined using	transistor size	inverter size	the circuitry . gate	the circuitry			area of the circuitry
Which design is faster?	full custom design	semi-custom design computer	array design . compute	transistor design silicon			gate array design . computer
Which has relatively low-level capabilities?	hand- crafted designs	assisted textual entry	r assisted graphical entry	compiler- based design			assisted textual entry .
Computer-assisted graphical entry is	monochrom	grayscale	entry	uesign			monochro
done through Which method is	е.	graphics	bichrome compute	trichrome silicon			me . computer
used for verification along with	hand- crafted	computer assisted	r assisted graphical	compiler- based			assisted graphical
generation? Whih method uses	designs	textual entry	entry. compute	design silicon			entry. silicon
high level	hand- crafted	computer assisted	r assisted	compiler- based			compiler- based
programming language? The set of design	designs	textual entry	graphical entry	design .			design .
rules does not give When setting the voltage for an external device that must interface with	widths	spacing	colours .	overlaps			colours .
an FPGA, you must Which of the following digital IC logic families is most susceptible to static	VCCIO .	VDDIN	VDDiO	VCCIN			VCCIO .
discharge? Which of the	RTL mechanical	ECL	MOS.	TTL under			MOS. electrostati
following is a	shock	electrostatic	fan out	voltage			С

concern when using CMOS type devices? Which of the		discharge .			discharge .
following is not a solution to interface problems between CMOS and TTL? Which of the following is not a common logic family	pull- up resistor	pull- down resistor .	level- shifter	buffer	pull- down resistor .
used today?	RTL.	ECL	TTL	CMOS	RTL.
The output current for a LOW output is called a(n) Which of the	exit current	sink current.	ground current	fan- out.	sink current.
following are not characteristics of TTL logic gates?) Which of the following output levels would not be	Totem- pole output	Bipolar transistors	CMOS transistor s .	Multiemitt er transistors	CMOS transistors
a valid LOW for a TTL gate? A family of logic devices designed for extremely high speed applications is	0.3	0.5	0.2	All are valid .	All are valid .
called	NMOS	ECL . if left open	PMOS	TTL	ECL .
) Unused inputs on TTL, AND, and NAND gates) The lower transistor of a totem- nole output	degrade the gate's noise immunity.	will have the same effect as HIGH inputs.	should be tied HIGH.	All of the above are correct .	All of the above are correct .
totem- pole output is OFF when the gate output is) The input	HIGH.	malfunctioni ng	LOW	over driven	HIGH.
transistor on a TTL circuit is unusual in that it has	multiple bases.	no collector. more stringent	no base higher	multiple emitters .	multiple emitters .
) The 54XX TTL IC series is the military version and has	a wider temperatur e range.	power supply requirement s.	current output capability	all of the above	a wider temperatur e range.

Which potential problem must be overcome when interfacing TTL to CMOS? Typical TTL LOW level output voltage	The HIGH output voltage may be too low.	The LOW output voltage may be too high.	The HIGH output voltage may be too high.	The output current may not be sufficient	The HIGH output voltage may be too low.
is When the outputs of several open-	0.3V.	0.0V	3.4V	4.0V	0.3V.
collector TTL gates are connected	produce		are ANDed	produce	
together, the gate	more fan-	usually	together	more	are ANDed
outputs) The abbreviated designation for output current with	out.	burn out.		voltage.	together .
a LOW output is The input transistor (Q 1) of a TTL gate	OOL	IOL .	iOH	IIH	IOL
acts like The unused input for a NOR gate	NAND	NOR.	AND another unused	OR both B and	AND
should be tied to Which of the following output levels would be a	HIGH.	ground	input.	C	ground.
valid HIGH for a TTL	2.01/	2.04	F 4	All are	All are
gate?	3.0V	2.6V	5.1	valid .	valid.

The noise margin for a standard TTL gate is) When a TTL gate output connects to a CMOS gate, what must be added to the circuit? Which of the following levels would not be a	1.0V a decoupling capacitor	0.4V . a pull- up resistor .	1.4V a pull- down resistor	0.8V an open- collector gate	0.4V . a pull- up resistor .
valid LOW for a TTL				All are	
 valid LOW for a TTL gate?) What advantage does the 74HXX series device have over standard TTL? The CMOS series that is pin compatible with the TTL family is the) The propagation delay of standard TTL 	0.1V reduced propagation delay . 74C00 series.	0.7V higher propagation delay 4000 series.	1.0V . low power consumpti on 5400 series. 4 nsec.	valid lower voltage requirement s 7400 series	1.0V .reducedpropagationdelay .74C00series.
gates is approximately) Which alteration is made in the manufacture of a TTL gate to create	2 μsec The output transistors are replaced by	10 nsec . The input transistor is replaced by a	The output transistors	1 μsec The top output transistor is	10 nsec . The top output transistor is

an open- collector	diodes.	diode.	are	missing	missing
output?			missing.		
) One advantage that	reduced	higher	high		
MOSFET transistors	propagation	switching	input		
have over bipolar	delay.	speed.	impedance	low input	high input
transistors is	-	-	•	impedance	impedance.
The original CMOS line	5400 series.	4000 series	74C00	74HCOO	4000 series.
of circuits is the			series	series.	

Questions	opt1	opt2	opt3	opt4	opt 5	opt 6	Answer
new generation ofa re emerging that could add flexibility and investment protection for networks.	FPGA Applicatio	programm able ASICs Applicati	ASIC	logic cell Applicat			programma ble ASICs
ASIC stands for FPGAs may be	n- specified integrated circuit	on- specific integrated circuit	Application -specific intermodul ated circuit	ion- specific inter circuit			Application -specific integrated circuit
more than an ASIC design The programming technology in an	costly	low cost basic logic cell	cost effective	effective			cost effective basic logic
FPGA determines the type of scheme programming	logic cell	and the interconn ect	interconnec tion	basic cell			cell and the interconnec t
technologies are classified into Antifuse PLDs have advantages over SRAM	3	4	5	2			3
based PLDs. they do not need to be configured each Each bit contains	applied time	time power is applied.	power speed	applied power			time power is applied.
is programmed by triggering one of the two. antifuses employ a very thin oxide	fuse	none	both a fuse and an antifuse	antifuse d conduct or and			both a fuse and an antifuse
barrier between SRAM is a type of semiconductor	semi conductor bistable l atching	a pair of conductor s flip flop	conductor stable	semi conduct or unstable			a pair of conductors bistable lat ching

memory that uses to store each bit. Types of SRAM is The power consu	circuitry (flip-flop) NV- SRAM	PS- SRAM	ВОТН	none	circuitry (flip-flop) BOTH
mption of varies widely depending on frequently it is accessed. EEPROM cells consist of one, one-and-a-half, or two transistor.	RAM	SRAM	ROM	EPROM	SRAM
then EPROM cells consist of	one transistor	two transistor	three transistor	four transisto r	one transistor
is a special type of ROM that is programmed electrically and erasable under UV light. The EPROM device is programmed by forcing an	SRAM	EPROM	RAM	ROM	EPROM
electrical charge on a small piece oflocat ed in the memory cell. EPROM floating gate transistor characteristic theory also	silicon	silicon metal	polysilicon material	monosili con	polysilicon material
applies to	flash devices	EEPROM and flash devices.	EPROM	none	EEPROM and flash devices.
EPROMs were created in the	1980s	1960s	1970s	1990s	1970s

and have long been the cornerstone of the non-volatile memory market Actel FPGA is very similar to that of a	non conventio		convention	all the	convention
array the logic core is the interface to	nal gate	none	al gate	above	al gate
theof the devices The first Actel logic module was the Simple Logic	output pads	I/O pads	all the above	none	I/O pads
Module is used in	the ACT 2 family	the ACT 4 family	the ACT 1 family	none Combin atorial and	the ACT 1 family
				Enhance d Sequenti	Combinator ial and Enhanced
core module of the act 3 is The storage element can be	sequential order	enhanced sequential	combinator ial	al Modules	Sequential Modules
either athe 3200DX family has a number of special logic modules optimized for implementing	register or a latch.	register	latch	none	register or a latch.
functions directly driving device outputpads.	output	input and output	wide- inputcombi natorial logic	all the above	wide- inputcombi natorial logic
used in the ACT 3 family is a refinement of the Sequential Logic	logic	The Enhanced Sequentia l Logic	sequential	all the	The Enhanced Sequential Logic
Module	module	Module	logic	above	Module

the hierarchical Xilinx LCA interconnect architecture Xilinx 8th employee Bill Carter hired in 1984 as	The vertic al and horizo ntal lines run between CLBs.	cross section	vertical lines	horizont al lines	The vertical lines and horizon tal lines run between CLB
suggested that this concept required many precious transisto rs is a special implementation	the second IC designer	the third IC designer	the fourth IC designer	the first IC designer	the first IC designer
strategy was elaborated for the microprocessor's RAM and ALU blocks Altera FLEX 10K	20KA technolog y	Altera FLEX 10KA technolog y	none	all the above	Altera FLEX 10KA technology
family contains up toof embedded memory; The Altera	100K gates and 24,576 bits	10,000 bits	1240 bits	1856 bits and 200k bits	100K gates and 24,576 bits
Max 10 has and user memory the routing switches are based SRAM. Each clock source can come from any	programm able	reprogram mable flash configurat ion	flash configurati on	none	reprogram mable flash configurati on
of located on the same side of the device as the PLL. The MAX 10 device family supports	the two or four clock pins low speed	the one or 2 clock pins high- speed LVDS	the two or five clock pins speed LVDS	only 6 clock pins high LVDS	the two or four clock pins high-speed LVDS

protocols through the LVDS I/O banks The MAX 10 solution uses shift registers, internal PLLs, and I/O elements to perform			serial-to- parallel and parallel-to-	serial to	serial-to- parallel and parallel-to-
FPGA logic thresholds of xc3000 input	serial	parallel	serial	parallel	serial
level is FPGA logic thresholds of ACT 2/3 output	1.0,2.0	2.0,0.8	5.0,0.1	0.6,4.0	2.0,0.8
(low level) is I/O cells handle	9.0,3.11,5. 7	6.45,0.08	3.84 ,-4.0 ,0.33 ,6.0	1.67,2.6 3	3.84 ,–4.0, 0.33, 6.0
driving signals off chip Receiving and	internal input	conditioni ng external inputs	internal output	external output	conditionin g external inputs
Design Entry - Description of a microelectronic	a set of	a set of	output	o up u	mputs
system to	ASIC tools	EDA tools	none	all the above	a set of EDA tools
_ is the most common method of design entry	systematic		Schematic	all the	Schematic
for ASICs HDLs are replacing the	entry	none	entry	above	entry
conventional	gate-level	sequential level	combinator ial	d sequenti al level	gate-level
libraries is that there arefor	standards	no standards	sequential standards	all the above	no standards

cell behavior.					
Schematics can					
be a very					
effective way to					
convey design					
information					
because pictures		а			
are such	a set of	sequential	a powerful		a powerful
	medium	medium	medium	none	medium

Questions Which of the	opt1	opt2	opt3	opt4 d) Quartus	opt5	Answer
following HDLs are IEEE standards? VHDL is based	a) VHDL and Verilog	b) C and C++	c) Altera and Xilinx	II and MaxPlus II		a) VHDL and Verilog
on which of the following programming languages? What is the	a) ADA programmin g language	b) C	c) Assembly	d) PHP		a) ADA programm ing language
advantage of using VHDL instead of any other HDL? Which of the	a) Week typing	b) Based on ADA	c) Portability	d) Easy to code		c) Portability
following is a characteristic of Verilog HDL? The most basic	a) Strongly typed language	b) Case sensitive	c) Better library	d) Not portable		b) Case sensitive
form of behavioral modeling in VHDL is The main	a) IF statements	b) Assignmen t statements	c) Loop statements	d) WAIT statements d)		b) Assignme nt statements
problem with behavioral modeling is	a) Asynchrono us delays	b) Simulation	c) No delay	Supports single driver only		a) Asynchro nous delays
What is the use of simulation deltas in VHDL code?	a) To create delays in simulation	b) To assign values to signals	c) To order some events	d) Evaluate assignmen t statements		c) To order some events
Which function is used to create a single value for multiple driver signals?	a) Resolution function	b) Package	c) Concurrent assignment s	d) Sequential assignmen ts		a) Resolution function
The utilization of CAD tools for drawing timing waveform diagram and transforming it into a network	a. Wavefor m Editor	b. Wavefor m Estimator	c. Wavefor m Simulator	d. Wavefo rm Evaluator		a. Wavefo rm Editor

of logic gates is known as					
Which among the following is a process of transforming design entry information of the circuit into a set of logic equations?	a. Simulatio n	b. Optimiza tion	c. Synthesi s	d. Verifica tion	c. Synthes is
is the fundamental architecture block or element of a target PLD. Among the	a. System Partitioning	b. Pre- layout Simulation	c. Logic cell	d. Post- layout Simulation	c. Logic cell
VHDL features, which language statements are executed at the same time in parallel flow?	a. Concurren t	b. Sequenti al	c. Net-list	d. Test- bench	a. Concurr ent
In Net-list language, the net- list is generated synthesiz ing VHDL code. In VHDL, which	a. Before	b. At the time of (during)	c. After	d. None of the above	c. After
object/s is/are used to connect entities together for the model formation?	a. Constant	b. Signal	c. Variable	d. All of the above	b. Signal
Which type of simulation mode is used to check the timing performance of a design?	a. Behaviour al	b. Switch- level	c. Transist or-level	d. Gate- level	d. Gate- level
In the simulation process, which	a. Compilati on	b. Elaborati on	c. Initializa tion	d. Executi on	b. Elabora tion

step specifies the conversion of VHDL intermediate code so that it can be used by the simulator? Which type of simulator/s neglect/s the intra-cycle state transitions by checking the status of target signals periodically irrespective of	a. Event- driven Simulator	b. Cycle- based Simulator	c. Both a and b	d. None of the above	
any events? Which among the following is not a characteristic of 'Event-driven Simulator'?	a. Identificat ion of timing violations	b. Storage of state values & time information	c. Time delay calculation	d. No event scheduling	d. No event scheduling
Which among the following is an output generated by synthesis process?	a. Attributes & Library	b. RTL VHDL description	c. Circuit constraints	d. Gate- level net list	d. Gate- level net list
Which type of digital systems exhibit the necessity for the existence of at least one feedback path from output to input?	a. Combinati onal System	b. Sequenti al system	c. Both a and b	d. None of the above	b. Sequent ial system

Questions	opt1	opt2	opt3	opt4	opt5	Answer
The serial shift register is driven using	a) one over- lapping clock	b) two over- lapping clock	c) one non over- lapping clock	d) two non over-lapping clock		d) two non over-lapping clock
Which is used to control the scan path movement?	a) clock signals	b) input signals	c) output signals	d) delay signals		a) clock signals
The circuit operation is independent of	a) rise time	b) fall time	c) propogati on delays	d) all of the mentioned above		d) all of the mentioned above
Boundary scan test is used to test	a) pins	b) multipliers	c) boards	d) wires		c) boards
The boundary scan path is provided with	a) serial input pads	b) parallel input pads	c) parallel output pads	d) buffer pads		a) serial input pads
The boundary scan path tests the	a) input nodes	b) output nodes	c) buffer nodes	d) interconnecti on points		d) interconnecti on points
In scan/set method, is used to implement a scan path The automatic test	a) serial registers	b) storage elements	c) parallel registers	d) separate register		d) separate register
pattern generator method has phases	a) two	b) three	c) four	d) five		a) two
Faults which produce same faulty behaviour are known as	a) similar faults a)	b) equivalent faults	c) correlative faults	d) ambigious faults		b) equivalent faults
The process of removing equivalent faults is called as	equivale nt removin	b) bulk damaging	c) fault collapsing	d) fault reduction		c) fault collapsing
The stuck-at model is a fault model	g a) recurring	b) equivalent	c) simple	d) logical		d) logical
The between two signal is called as bridging fault	a) open circuit	b) break	c) connectio n	d) short circuit		d) short circuit
The sum of all propogation delays along a simgle path is given as	a) gate delay fault	b) transition fault	c) path delay fault	d) propogation fault		c) path delay fault
of the area is dedicated for testability	a) 20%	b) 10%	c) 30%	d) 25%		c) 30%
Partitioning into subsystems are done at	a) design stage	b) prototype stage	c) testing stage	d) fabrication stage		b) prototype stage
In prototype testing, the circuits are	a) open circuited	b) short circuited	c) tested as a whole circuit	d) programmed		a) open circuited
What are the dominant faults in diffusion layers?	a) short circuit faults	b) open circuit faults	c) short and open circuit faults	d) power supply faults		a) short circuit faults

Test pattern generation is assisted using	a) automati c test pattern generato r	b) exhaustive pattern generator	c) repeated pattern generator	d) loop pattern generator	a) automatic test pattern generator
of faults are easier to detect	a) 50%	b) 60%	c) 70%	d) 80%	d) 80%
Observability is the process of	a) checking all inputs	b) checking all outputs	c) checking all possible inputs	d) checking errors and performance	b) checking all outputs
Exhaustive testing is suitable when N is	a) large	b) small	c) any value for N	d) very large	b) small
To propogate the fault along the selected path to primary output, setting is done	a) OR to 1	b) NOR to 1	c) AND to 1	d) NAND to 0	a) AND to 1
In D-algorithm, a particular fault is detected by examining the conditions	a) internal, output	b) internal, input	c) external, output	d) external, input	a) internal, output
D-algorithm is based on	a) existenc e of one fault machine	b) existence of one good machine	c) existence of one fault and one good machine	d) existence of two fault machines alone	
In D-algorithm, discrepency is driven to and observed and thus detected	a) all inputs	b) particular inputs	c) output	d) end of the circuit	c) output
Primary objective of testing is to guarantee Verification targets In a certain batch of 10000 chips produced 100 are detected faulty at the manufacturing site while 10 more fails in the field. The yield of the	(A) Fault- free products (A) Design errors (A) Design errors	 (B) Detection of design error (B) Manufacturi ng errors (B) Manufacturi ng errors 	 (C) Reduction of product cost Ans: A (C) Both (A) and (B) (C) Both (A) and (B) 	 (D) All of these (D) None of these (D) None of these (D) None of these 	 (A) Fault-free products (A) Design errors (B) Manufacturin g errors
process is	(A) 99%	(B) 98.5%	(C) 90%		(A) 99%

Applying all possible test patterns to a CUT is called	(A) Exhaustiv e testing	(B) Complete testing	(C) Functional testing	(D) None of these	(A) Exhaustive testing
A quantity to measure quality of a test set is	(A) Fault coverage a) Peak	(B) Test coverage b) Path	(C) Total coverage c) Path	(D) None of these d) Peak	(A) Fault coverage
	Output Decision	Oriented Decision	Output Decision	Oriented Decision	(b) Path Oriented Decision
PODEM stands for	Making	Making	Making	Making	Making

Questions In	opt1	opt2	opt3	opt4	opt5	Answer
floorplanning, placement and routing are	a. Front end	b. Back end	c. Both a and b	d. None of the above		b. Back end
tools. In VLSI design, which process deals with the determination of resistance & capacitance of interconnecti ons?	a. Floorplan ning	b. Placeme nt & Routing	c. Testing	d. Extractio n		d. Extract ion
In floorplanning, which plays a crucial role in minimizing the ASIC area and the interconnecti on density?	a. Placemen t	b. Global Routing	c. Detailed Routing	d. All of the above		a. Placem ent
Timing analysis is more efficient with synchronous systems whose maximum operating frequency is evaluated by the pat h delay between consecutive flin florg	a. shortest	b. average	c. longest	d. unpredic table		c. longest
flip-flops. Maze routing is also known	a. Viterbi's algorithm	b. Lee/Moo re	c. Prim's algorithm	d. Quine- McCluskey		b. Lee/M oore

as		algorithm		algorithm	algorithm
Maze routing is used to determine the path for a single wire between a set of points, if any path exists.	a. Shortest	b. Average	c. Longest	d. None of the above	a. Shortes t

	low cost basic logic cell and the	cost effective	effective
	interconnec	interconnecti	
	t	on	basic cell
	4	5	2
	time power		applied
applied time	is applied.	power speed both a fuse	power
		and an	
fuse	none	antifuse	antifused
	· c		conductor
semi	a pair of conductors	a a n du ata n	and semi
conductor bistable latc	conductors	conductor	conductor
hing			
circuitry			
(flip-flop)	flip flop	stable	unstable
NV-SRAM	PS-SRAM	BOTH	none
RAM	SRAM	ROM	EPROM
one	two	three	four
transistor	transistor	transistor	transistor
SRAM	EPROM	RAM	ROM
	silicon	polysilicon	monosilico
silicon	metal EEPROM	material	n
flash	and flash		
devices	devices.	EPROM	none
1980s	1960s	1970s	1990s
non	none	conventional	all the

conventiona l gate		gate	above
output pads the ACT 2	I/O pads the ACT 4	all the above the ACT 1	none
family	family	family	none Combinator ial and Enhanced
sequential	enhanced		Sequential
order	sequential	combinatorial	Modules
register or a	• ,	1 / 1	
latch.	register	latch wide-	none
	input and	inputcombina	all the
output	output	torial logic	above
	The		
	Enhanced		
logic	Sequential Logic	sequential	all the
module	Module	logic	above
The vertical and horizont al lines run	Would	logic	40070
between	cross		horizontal
CLBs.	section	vertical lines	lines
the second	the third IC	the fourth IC	the first IC
IC designer	designer Altera	designer	designer
	FLEX		
20KA	10KA		all the
technology	technology	none	above
100K gates	0.		1856 bits
and 24,576			and 200k
bits	10,000 bits	1240 bits	bits
	reprogram		
	mable flash		
programma	configuratio	flash	
ble	n	configuration	none
the two or	(1	the two or	
four clock	the one or 2	five clock	only 6
pins	clock pins high-speed	pins	clock pins
low speed	LVDS	speed LVDS serial-to-	high LVDS
serial	parallel	parallel and parallel-to-	serial to parallel

		serial	
1.0,2.0	2.0,0.8	5.0,0.1	0.6,4.0
		3.84 ,-4.0	
9.0,3.11,5.7	6.45,0.08	,0.33 ,6.0	1.67,2.63
	conditionin		
internal	g external	internal	external
input	inputs	output	output
a set of	a set of		all the
ASIC tools	EDA tools	none	above
systematic		Schematic	all the
entry	none	entry	above
			enhanced
	sequential		sequential
gate-level	level	combinatorial	level
	no	sequential	all the
standards	standards	standards	above
a set of	a sequential	a powerful	
medium	medium	medium	none