B.E Computer Science E	ngineering		2018-2019
18BECS101			Semester-I
	Mathematics-I	4H-4C	
	(Calculus and Linear Algebra for C	omputer Science Engineers)	

Instruction Hours/week: L:3 T:1 P:0

Marks: Internal:40 External:60 Total:100

End Semester Exam: 3 Hours

Course Objectives

- The objective of this course is to familiarize the prospective engineers with techniques in basic calculus and linear algebra.
- It aims to equip the students with standard concepts and tools at an intermediate to advanced level that will serve them well towards tackling more advanced level of mathematics and applications that they would find useful in their disciplines.
- To develop the use of matrix algebra techniques that is needed by engineers for practical applications.
- To acquaint the student with mathematical tools needed in evaluating integrals and their usage.
- To make the student acquire sound knowledge of techniques in solving ordinary differential equations that model engineering problems.

Course Outcomes

The students will learn:

- 1. To apply differential and integral calculus to notions of curvature and to improper integrals. Apart from various applications, they will have a basic understanding of Beta and Gamma functions.
- 2. Fluency in integration using standard methods, including the ability to find an appropriate Method for a given integral.
- 3. The essential tools of matrices and linear algebra including linear transformations, Eigenvalues and diagonalization.
- 4. To apply differential and integral calculus to notions of curvature and to improper integral and proper integrals.
- 5. To solve the system of linear algebraic equations.
- 6. To analyze and evaluate the basic concepts of mathematics like matrix operation, vector spaces and calculus.

UNIT I - Matrices

Matrices, vectors: addition and scalar multiplication, matrix multiplication; Linear systems of equations, linear Independence, rank of a matrix, determinants, Cramer's Rule, inverse of a matrix, Gauss elimination and Gauss-Jordan elimination. Simple problems using Scilab.

UNIT II - Vector spaces

Vector Space, linear dependence of vectors, basis, dimension; Linear transformations (maps), range and kemel of a linear map, rank and nullity, Inverse of a linear transformation, rank nullity theorem, composition of linear maps, Matrix associated with a linear map.

UNIT III - Vector spaces

Eigen values, eigenvectors, symmetric, skew-symmetric, and orthogonal Matrices, Eigen bases. Diagonalization; Inner product spaces.

UNIT IV - Calculus

Evolutes and involutes; Evaluation of definite and improper integrals; Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.

UNIT V - Calculus

Taylor's and Maclaurin theorems with remainders; indeterminate forms and L'Hospital's rule; Maxima and minima.

SUGGESTED READINGS

- 1. G.B. Thomas and R.L. Finney, (2002), Calculus and Analytic geometry, 9th Edition, Pearson,.
- 2. Erwin kreyszig, (2006), Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons.
- 3. Veerarajan T,(2008), Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi.
- 4. Hemamalini. P.T.(2014), Engineering Mathematics, McGraw Hill Education (India) Private Limited, New Delhi.
- 5. Ramana B.V,(2010), Higher Engineering Mathematics, 11th Reprint, Tata McGraw Hill New Delhi.
- 6. D. Poole, (2005), Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole.
- 7. N.P. Bali and Manish Goyal, (2008), A text book of Engineering Mathematics, Laxmi Publications.
- 8. B.S. Grewal, (2000) Higher Engineering Mathematics, 35th Edition, Khanna Publishers,
- 9. V. Krishnamurthy, V.P. Mainra and J.L. Arora, An introduction to Linear Algebra, Affiliated East–West press.

KARPAGAM ACADEMY OF HIGHER EDUCATION COIMBATORE-21. FACULTY OF ENGINEERING DEPARTMENT OF SCIENCE AND HUMANITIES

I B.E Computer Science Engineering

LECTURE PLAN

Subject : Mathematics – I (Calculus and Linear Algebra for Computer Science Engineers) Code : 18BECS101

Unit No.	List of Topics	No. of Hours
	Matrices	
	Introduction of Matrix Algebra, Vector, Scalar and Applications.	1
	Problems based on addition and scalar multiplication.	1
	Matrix multiplication-Problems	1
	Problems based on determinants, linear Independence and rank of a	1
	matrix Drahlemahaan data minanta linear Independence and rank of a	1
	Problems based on determinants, linear Independence and rank of a matrix	1
UNIT – I	Problems based on inverse of a matrix	1
	Idea of solving the Linear systems of equations	1
	Linear systems of equations-Matrix inversion	1
	Linear systems of equations- Cramer's Rule	1
	Linear systems of equations- Cramer's Rule	1
	Tutorial 1: Problems based on inverse of a matrix and Cramer's Rule	1
	Concept of Gauss elimination and Gauss-Jordan Methods	1
	Problems based on Gauss elimination Methods and Gauss-Jordan	1
	Methods	
	Problems based on Gauss elimination Methods and Gauss-Jordan Methods	1
	Tutorial 2: Problems based on Gauss elimination Methods and Gauss- Jordan Methods	1
	Simple problems using Scilab	1
	TOTAL	16
	Vector spaces	
	Introduction to Vector space and its applications	1
	Concepts of linear dependence of vectors-Basic problems	1
	Introduction of basic and dimension - Problems	1
	Idea of Linear transformations, range and kernal of a linear map- problems	1
	Problem's based on Linear Transformations	1
	Concept of rank and Nullity-Problems	1
UNIT – II	Problem's based on rank and Nullity theorem.	1
	Concept of rank and Nullity-Problems	1
	Tutorial 3: Problems based on Linear Transformations	1
	Introduction to Inverse of a linear transformation	1

	Problems based on Inverse of a linear transformation	1
	Problems based on Inverse of a linear transformation and rank Nullity	1
	theorem	
	Concept of linear Map of composition and Matrix form	1
	Problems based on composition of linear maps	1
	Problems based on Matrix associated with a linear map	1
	Tutorial 4: Problems based on composition of linear maps and Matrix associated with a linear map	1
	TOTAL	16
	Vector spaces	
	Introduction of Eigen values and Eigenvectors	1
	Problems based on characteristic Equation	1
	Problems based on Eigen values and Eigenvectors of a real matrix	1
UNIT – III	Problems based on Eigen values and Eigenvectors of a real matrix	1
	Type of Matrix: symmetric, skew-symmetric and orthogonal Matrices	1
	Problems based on symmetric, skew-symmetric and orthogonal Matrices	1
	Problems based on Eigen bases	1
	Problems based on Eigen bases	1
	Tutorial 5: Problems based on types of Matrix and Eigen bases	1
	Concept of Diagonalization in Matrix	1
	Problem's based on Diagonalization in Matrix	1
	Problem's based on Diagonalization	1
	Concept of Inner product spaces	1
	Problems based on Inner product spaces	1
	Problem's based on Inner product spaces	1
	Tutorial 6: Problems based on Inner product spaces	1
	TOTAL	16
	Calculus	10
	Introduction to Calculus, Differentiation and Integration	1
	Concepts of involutes and Evolutes.	1
	Problems based on Evolutes	1
	Problem's based on Evolutes	1
	Basic problems in integration	1
UNIT – IV	Evaluation of definite and improper integrals	1
	Evaluation of definite and improper integrals	1
	Concepts of Beta and Gammafunctions and their properties	1
	Problems based on Beta and Gamma functions	1
	Problem's based on Beta and Gamma functions	1
	Tutorial 7: Problems in improper integrals and Beta and Gamma	_
	functions.	1
	Applications of definite integrals to evaluate surface areas	1
	Applications of definite integrals to evaluate surface areas-Problems	1
	Applications of definite integrals to evaluate volume of revolution	1
	Applications of definite integrals to evaluate volume of revolution -	1
	Problems	1
		1
	Tutorial 8: Applications of definite integrals to evaluate surface areas and volume of revolution -Problems	1
		1 16
	volume of revolution -Problems	

	Differentiation rule-Basic Problems	1
	Concepts of Taylor's theorem and problems	1
	Idea of Maclaurin theorem with remainders	1
	Problems based on Taylor's and Maclaurin theorems	1
	Problems based on Taylor's and Maclaurin theorems	1
	Concepts of indetermine forms in calculus	1
$\mathbf{UNIT} - \mathbf{V}$	Problems based on L'Hospital's rule	1
	Problems based on L'Hospital's rule	1
	Tutorial9: Problems based on Taylor's, Maclaurin theorems and L'Hospital's rule	1
	Concepts of Maxima and minima for the functions of two variables.	1
	Problems based on Maxima and minima for the functions of two variables	1
	Problems based on Maxima and minima for the functions of two variables	1
	Problems based on Maxima and minima for the functions of two variables	1
	Tutorial 10: Problems based on Maxima and minima for the functions of two variables	1
	Discussion of previous years ESE Questions	1
	TOTAL	16
	TOTAL NO. OF HOURS	80

FACULTY IN-CHARGE

HOD

HARPMONTH ACADETY SE HIGHTER EDUCATION
CONTRACTORE GALENCE AND HUTANITIES
I BE COMPATER GALENCE AND ENGINEERING
MATHEMATICS -1 [18BE(5 1021)
(CONTONS and Amean Angebra)
QUESTION BANK
UNIT-1 (MATRICES)
PART-C
0
i) 15 A=
$$\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
 Shows that $A^2 - HA - 5T = 0$
Soln
 $A^2 = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$
 $= \begin{bmatrix} 1+H+H & 2A2+H & 2H+H2 \\ 2K+H & HHHH & 4H5+Z \\ 2K+H2 & 4H5+Z & HHHH \end{bmatrix}$
 $= \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix}$
 $AA = 1 + \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$

$$= -3 - 9 - 5 = -11$$

$$|A|I_{3} = -11 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -11 & 0 & 0 \\ 0 & 0 & -11 \end{bmatrix}$$

$$A(ady, A) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} 3 & -4 & -5 \\ -9 & 1 & 4 \\ 2 & -1 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} -11 & 0 & 0 \\ 0 & 0 & -11 \end{bmatrix} - \textcircled{2}$$

$$(ady, A) = \begin{bmatrix} 3 & -4 & -5 \\ -9 & 1 & 4 \\ -9 & 1 & 4 \\ -9 & 1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -13 \end{bmatrix}$$

$$= \begin{bmatrix} -11 & 0 & 0 \\ 0 & 0 & -11 \end{bmatrix} - \textcircled{3}$$

$$From (D, \textcircled{2}, (Y)$$

$$A(ady, A) = (ady, A)A = IAII_{3}$$

$$Hunce #A Hessolt$$

$$I = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 3 \\ 2 & 4 & 9 \end{bmatrix}$$

$$= I(BI) - I(B - 6J + I(B - 4J) + I(B - 4J) + I(B - 14) + I$$

$$\begin{bmatrix} A_{1}T = \begin{bmatrix} +(1R-13) - (12-6) + (2-14) \\ -(1q-4) + (1q-2) - (11-2) \\ +(3-2) - (3-2) + (12-2) \end{bmatrix}$$

$$= \begin{bmatrix} -5 & -17 \\ -5 & 7 & -2 \\ -1 & -1 & 0 \end{bmatrix}$$

odj A = $\begin{bmatrix} A_{1}T T \\ -12 & 7 & -1 \\ -12 & 7 & -1 \end{bmatrix}$
A⁻¹ = $\begin{bmatrix} -1 \\ -12 & 7 & -1 \\ -12 & 7 & -1 \end{bmatrix}$
A⁻¹ = $\begin{bmatrix} -1 \\ -12 & 7 & -1 \\ -12 & 7 & -1 \end{bmatrix}$

$$= \begin{bmatrix} -3 & 5/2 & -1/2 \\ -2 & 1 & 0 \end{bmatrix}$$

Hence the Stepult:

$$\begin{bmatrix} (T) \\ F_{Ped} \frac{H_{2}}{2} \frac{S_{1}}{2} \frac{S_{1}$$

$$\begin{bmatrix} At_{1}^{n} \end{bmatrix} = \begin{bmatrix} +(1-2) & -(0-2) & +(0-3) \\ -(1+3) & +(1-2) & -(1+3) \\ +(1+3) & -(2-0) & +(1-2) \end{bmatrix}$$

$$= \begin{bmatrix} -3 & 2 & -2 \\ 2 & -5 & 1 \\ 1 & -2 & 2 \end{bmatrix}$$

$$addy A = \begin{bmatrix} At_{1}^{n} \end{bmatrix}^{T}$$

$$= \begin{bmatrix} -3 & 2 & 1 \\ 2 & -3 & -2 \\ -2 & -4 & 2 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} \cdot ady A$$

$$= \frac{1}{|A|} \cdot ady A$$

$$= \frac{1}{|A|} \cdot \frac{-3}{|A|} = \frac{2|A|}{|A|} \cdot \frac{1}{|A|}$$

$$= \begin{bmatrix} -3|A| - 2|A| & \frac{1}{|A|} \\ 2|A| - 4| - 8|A| - 2|A| \\ -2|A| & \frac{1}{|A|} - 2|A| \end{bmatrix}$$

$$= \begin{bmatrix} -3|A| - 2|A| & \frac{1}{|A|} \\ -2|A| & \frac{1}{|A|} - 2|A| \end{bmatrix}$$

$$= \begin{bmatrix} -3|A| - 2|A| - 4|A| \\ -2|A| - 4|A| - 2|A| \end{bmatrix}$$

$$= \begin{bmatrix} -3|A| - 4|A| - 2|A| \\ -2|A| - 4|A| - 2|A| \end{bmatrix}$$

$$= \begin{bmatrix} -3|A| - 4|A| - 2|A| \\ -2|A| - 4|A| - 2|A| \end{bmatrix}$$

$$= \begin{bmatrix} -3|A| - 4|A| - 2|A| - 4|A| \\ -2|A| - 4|A| - 2|A| - 4|A| \end{bmatrix}$$

$$= \begin{bmatrix} -3|A| - 4|A| - 2|A| - 4|A| \\ -2|A| - 4|A| - 2|A| - 4|A| \end{bmatrix}$$

$$= \begin{bmatrix} -3|A| - 4|A| - 2|A| - 4|A| \\ -2|A| - 4|A| - 2|A| - 4|A| \end{bmatrix}$$

$$= \begin{bmatrix} -3|A| - 4|A| - 2|A| - 4|A| \\ -2|A| - 4|A| - 2|A| - 4|A| \end{bmatrix}$$

$$= \begin{bmatrix} -3|A| - 4|A| - 4|$$

$$\begin{array}{c} & \left[\begin{array}{c} 1 & -2 & 1 & -5 \\ 0 & 7 & -8 & 16 \\ 0 & 0 & 0 & -9 \end{array} \right] R_{3} = R_{3} - R_{2} \\ & \left[\begin{array}{c} \beta = 0 & \frac{7}{2} & \frac{7}{5} & \frac{7}{16} \\ 0 & 0 & 0 & -9 \end{array} \right] \\ & \left[\begin{array}{c} \beta = 0 & \frac{7}{2} & \frac{7}{5} & \frac{7}{16} \\ 0 & 0 & 0 & -9 \end{array} \right] \\ & \left[\begin{array}{c} 1 & 2 & 3 & -1 \\ 2 & 47 & 6 & -2 \end{array} \right] \\ & \left[\begin{array}{c} 1 & 2 & 3 & -1 \\ 2 & 47 & 6 & -2 \end{array} \right] \\ & \left[\begin{array}{c} 3 & 6 & q & -3 \end{array} \right] \\ & \left[\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right] R_{2} = R_{3} - 3R_{1} \\ R_{3} = R_{3} - R_{2} - R_{3} \\ R_{3} = R_{3} - R_{3} R_{3} - R_{3} - R_{3} \\ R_{3} = R_{3} \\ R_{3} = R_{3} - R_{3} \\ R_{3} = R_{3} \\ R_{3} = R_{3} - R_{3} \\ R_{3} = R_{3} - R_{3} \\ R_{3} = R_{3} \\ R_{3} = R_{3} - R_{3} \\ R_{3} = R_{3} \\ R_{3} \\ R_{3} = R_{3} \\ R_{3} = R_{3} \\ R_{3} = R_{3} \\ R_{3} = R_{3} \\ R_{3} \\ R_{3} = R_{3} \\ R_{3} \\$$

Í

.

A·x = B
x = A⁻¹B

$$|A| = 2(1+1) + 1((1-1) + 3(-1-1))$$

$$= 2(2) + 1(0) + 3(-2)$$

$$= 4(1+0-6$$

$$= -2 \neq 0$$
A⁻¹ exists

$$[A^{*}J] = \begin{bmatrix} +(1+1) - (-1) + (3-1) \\ -(1+3) + (2-3) - (-2+1) \\ +(-1-3) - (2-3) + (2+1) \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 0 & -2 \\ -2 & -1 & 1 \\ -4 & 1 & 3 \end{bmatrix}$$
Odj·A = $\begin{bmatrix} A^{*}_{10}J^{*}J^{*} = \begin{bmatrix} 2 & -2 & -4 \\ 0 & -1 & 1 \\ -4 & 1 & 3 \end{bmatrix}$
Odj·A = $\begin{bmatrix} A^{*}_{10}J^{*}J^{*} = \begin{bmatrix} 2 & -2 & -4 \\ 0 & -1 & 1 \\ -2 & 1 & 3 \end{bmatrix}$

$$A^{-1} = \frac{1}{|A|} \text{ odj·A}$$

$$= \frac{-1}{-2} \begin{bmatrix} 2 & -2 & -4 \\ 0 & -1 & 1 \\ -2 & 1 & 3 \end{bmatrix}$$

$$X = A^{-1}B$$

$$\begin{bmatrix} \frac{1}{2}J^{*} = -\frac{1}{2} \begin{bmatrix} 2 & -2 & -4 \\ 0 & +1 & 1 \\ -2 & 1 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ -2 \end{bmatrix}$$

$$= \frac{-1}{-2} \begin{bmatrix} 18 - 12 - 8 \\ 0 - 6 + 2 \\ -18 + 66 \end{bmatrix}$$

$$= -\frac{1}{2} \begin{bmatrix} -2 \\ -2 \\ -4 \\ -6 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = 1, 2, 3$$

$$x = 1, y = 1, z = 3$$

Hence the Flacult:
Sother by Matrix conversion are thed

$$2x + y + 3z = 3, 2y + z = 2, x + y + 1z = 1$$

boln:
The given by stem of Question Can be
Written as matrix form.

$$\begin{bmatrix} 2 & 1 & 3 \\ 0 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$

$$A \cdot x = B$$

$$\begin{bmatrix} A_1 = 2(4-1) - 1(0-1) + 3(0-2) \\ = 2(3) - 1(-1) + 3(-2) \\ = 6 + 1 - 6 \\ = 1 \end{bmatrix}$$

$$\begin{bmatrix} A_1^0 \end{bmatrix} = \begin{bmatrix} +(1n-1) - (0-1) + 1(0-3) \\ -(1-3) + (1-3) - (1-1) \\ +(1-6) - -1(2-0) + (1-6) \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 1 - 2 \\ -5 & -2 & 4 \end{bmatrix}$$

and the second

 $\left(\overset{\circ}{l} \overset{\circ}{l} \right)$

$$\begin{array}{l} \operatorname{Od}_{1}^{u} \quad A = \begin{bmatrix} A_{1}^{u} \\ A_{1}^{u} \end{bmatrix}^{T} \\ &= \begin{bmatrix} 3 & 1 & -5 \\ -1 & -1 & +1 \end{bmatrix} \\ \begin{array}{l} X = A^{T}B \\ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{T} \begin{bmatrix} 3 & 1 & -5 \\ -1 & -1 & +1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ z \end{bmatrix} \\ &= \begin{bmatrix} q + 2 - 5 \\ 3 + 2 - 2 \\ -6 - 2 + 4 \end{bmatrix} \\ \begin{array}{l} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \\ -4 \end{bmatrix} \\ \begin{array}{l} X = 6, \quad y - 3, \quad z = -4 \\ flence \quad the \quad flesult \end{bmatrix} \\ \begin{array}{l} X = 6, \quad y - 3, \quad z = -4 \\ flence \quad the \quad flesult \end{bmatrix} \\ \begin{array}{l} X = 6, \quad y - 3, \quad z = -4 \\ flence \quad the \quad flesult \end{bmatrix} \\ \begin{array}{l} X = b, \quad y - 3, \quad z = -4 \\ flence \quad the \quad flesult \end{bmatrix} \\ \begin{array}{l} Doln \\ Doln \\ Doln \\ The \quad given \quad by sten \quad g \quad eauatton \quad can \\ be \quad written \quad as \quad matrix \quad sorm. \\ \begin{bmatrix} -1 & 0 & a \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \\ \begin{array}{l} A \cdot x = g \\ X = A^{T}B \\ A \cdot x = g \\ X = A^{T}B \\ \hline A = \\ \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix} \end{array}$$

$$\begin{array}{c} \text{ii} \int \mathcal{D} \partial v \, by \, \int g_{auss} \, elimination \quad \text{method} \\ 3x + y - 2 = 3 \, , \, \partial x - 8y + 7 = -5 \, , \, x - 2y + 97 = 8 \, . \\ \hline \mathcal{D} \, eqv \, \hat{v} \, \int \partial v \, do x = 6 \\ \hline \mathcal{D} \, \frac{3}{2} \, \frac{1 - 1}{2} \, \left[\begin{array}{c} n \\ 7 \\ 2 \end{array} \right] = \begin{bmatrix} 3 \\ 7 \\ 1 \end{array} = \begin{bmatrix} 3 \\ 2 \end{array} \right] = \begin{bmatrix} 3 \\ 7 \\ 7 \\ 2 \end{array} \right] = \begin{bmatrix} 3 \\ 7 \\ 2 \end{array} = \begin{bmatrix} 3 \\ 1 \end{array} = \begin{bmatrix} -1 \\ 3 \\ 2 \end{array} \right] = \begin{bmatrix} 3 \\ -5 \\ 8 \end{bmatrix} \\ \begin{array}{c} n \\ 7 \\ 1 \end{array} = \begin{bmatrix} 3 \\ 2 \end{array} = \begin{bmatrix} -1 \\ 3 \\ -5 \\ 8 \end{bmatrix} \\ \begin{array}{c} n \\ 7 \\ -2 \end{array} = \begin{bmatrix} 3 \\ -5 \\ 8 \end{bmatrix} \\ \begin{array}{c} n \\ 7 \\ -2 \end{array} = \begin{bmatrix} 3 \\ -5 \\ 8 \end{bmatrix} \\ \begin{array}{c} n \\ 7 \\ -2 \end{array} = \begin{bmatrix} 3 \\ -5 \\ 8 \end{bmatrix} \\ \begin{array}{c} n \\ n \\ 2 \end{array} = \begin{bmatrix} 1 \\ 3 \\ -7 \\ 8 \end{bmatrix} \\ \begin{array}{c} n \\ n \\ 2 \end{array} = \begin{bmatrix} 1 \\ 3 \\ -7 \\ 0 \end{array} = \begin{bmatrix} 3 \\ -7 \\ 19 \\ 0 \end{array} = \begin{bmatrix} 2 \\ -7 \\ 14 \\ 2 \end{bmatrix} \\ \begin{array}{c} R_{3} \rightarrow R_{3} + 2R_{1} \\ R_{3} \rightarrow R_{3} + 2R_{1} \\ \end{array} \\ \begin{array}{c} n \\ n \\ n \\ \end{array} = \begin{bmatrix} 1 \\ 3 \\ -1 \\ 0 \end{array} = \begin{bmatrix} 3 \\ -7 \\ 19 \\ 0 \end{array} = \begin{bmatrix} 3 \\ -7 \\ 19 \\ 0 \end{array} = \begin{bmatrix} 3 \\ -7 \\ 19 \\ 2 \end{bmatrix} \\ \begin{array}{c} R_{3} - 3R_{3} + 2R_{3} \\ \end{array}$$

$$\begin{aligned} |c \quad can \quad write \quad iqu \\ 337 &= 35 \\ z &= 33/33 \\ \hline z &= 1 \\ 369 &= 72 &= 19 \\ 369 &= 19 + 7 \\ 369 &= 26 \\ y &= 26/26 \\ \hline y &= 1 \\ z + 39 - z &= 3 \\ x + 5(1) - 1 &= 3 \\ x + 3 - 1 &= 3 \\ x + 2 &= 3 \\ z &= 3 - 2 \\ \hline x &= 1 \\ \hline x &= 1 \\ \hline y &= 1 \\ \hline z &= 1 \\ \hline y &= 1 \\ \hline z &= 1 \\ \hline z$$

h

Solve by cranners nulls method for the following system of equations.

$$\begin{aligned} ||TAYIZ=L_{1} \cdot Y \cdot Y+Z=J_{1}, 3X \cdot 4Y \cdot Z=1, \\ \Delta = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 2 & 1 & -1 \end{vmatrix} = 1((1-1) - 1(-1-L) + 1(112) \\ = 0 \cdot 1_{3} + 3 \le 6, \end{aligned}$$

$$\begin{aligned} \Delta Y = \begin{vmatrix} 1 & 1 & 1 \\ 2 & -1 & 1 \\ -1 & -1 \end{vmatrix} = b((1-1) - 1(-2-1) + 1(211) \\ = 0 \cdot 1_{3} + 3 \le 6, \end{aligned}$$

$$\begin{aligned} \Delta Y = \begin{vmatrix} 1 & L_{1} & 1 \\ 1 & -1 & 1 \\ -1 & -1 \end{vmatrix} = 1(-2-1) - L_{1}(-1-2) + 1((1-4)) \\ = -3 + 12 - 3 = 6. \end{aligned}$$

$$\begin{aligned} \Delta Z = \begin{vmatrix} 1 & 1 & L_{1} & -1 \\ 1 & -1 & 2 \\ 2 & 1 & -1 \end{vmatrix} = -3 + 12 - 3 = 6. \end{aligned}$$

$$\begin{aligned} \Delta Z = \begin{vmatrix} 1 & 1 & L_{1} & -1 \\ 1 & -1 & 2 \\ 2 & 1 & -1 \end{vmatrix} = -3 + 3 + 12. \end{aligned}$$

$$\begin{aligned} \chi = \frac{\Delta \chi}{\Delta} \\ = \frac{2 \cdot 6}{6} \\ \begin{vmatrix} \overline{\chi} = 1 \\ . \\ Y = \frac{\Delta Y}{\Delta} \\ = \frac{1}{2} \end{vmatrix}$$

$$\begin{aligned} Z = \frac{\Delta \chi}{\Delta} \\ = \frac{1}{2} \begin{vmatrix} 1 \\ . \\ Z = 1 \end{vmatrix}$$

$$\begin{split} \partial \chi + q + Z = 5 \quad , \quad \chi + q + Z = 4 \quad , \quad \chi - q + 2Z = 1 \\ A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & -1 & 2 \end{bmatrix} \quad 5 = \begin{bmatrix} 5 \\ 4 \\ 1 \end{bmatrix} \\ A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & -1 & 2 \\ 1 & -1 & 2 \end{bmatrix} = 3(2 + 1) - 1(2 - 1) + 1(-1 - 1) \\ = 6 - 1 - 2 = 3 \pm 0. \end{split}$$

$$\begin{aligned} \Delta \chi = \begin{bmatrix} 5 & 1 & 1 \\ 4 & 1 & 1 \\ 1 & -1 & 2 \end{bmatrix} = 5 \quad (3 + 1) - 1(8 - 1) + 1(-4 - 1) \\ = 15 - 1 - 5 = 3 \end{aligned}$$

$$\begin{aligned} \Delta \chi = \begin{bmatrix} 3 & 5 \\ 1 & 1 & 4 \\ 1 & -1 & 2 \end{bmatrix} = 3(8 - 1) - 5(2 - 1) + 1(1 - 4) \\ = 14 - 5 - 3 = 6. \end{aligned}$$

$$\begin{aligned} \Delta Z = \begin{bmatrix} 2 & 1 & 5 \\ 1 & 1 & 4 \\ 1 & -1 & 1 \end{bmatrix} = 3(144, 2) - 1(1 - 4) + 5(-1 - 1) \\ = 10 + 3 - 10 = 3. \end{aligned}$$

$$\begin{aligned} \chi = \Delta \chi / \Delta \\ = \frac{3}{3} \\ [\chi = 1] \end{bmatrix}$$

$$\begin{aligned} \chi = \Delta q / \Delta \\ = \frac{3}{3} \\ [\chi = 1] \end{bmatrix}$$

$$\begin{aligned} Z = \frac{\Delta Z} / \Delta \\ Z = \frac{3}{3} \\ [\chi = 1] \end{bmatrix}$$

ij

Solve the Equation by using basis climination and basis Forder
method

$$x+y+z=1$$
, $y+x+3y-z=6$, $3x+5y+3z=4$
Solution:
basis climination method:
The equation of farm is $Ax = B$,
 $\begin{bmatrix} 1 & i & 1 \\ H & 3 & -1 \\ 3 & 5 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ H \\ H \end{bmatrix}$
The assignment matrix
 $\begin{bmatrix} A|B \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ H & 3 & -1 \\ 2 \\ 3 & 5 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ H \\ 4 \end{bmatrix}$
 $\begin{bmatrix} 1 & 1 & 1 \\ H & 3 & -1 \\ 3 & 5 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ H \\ 4 \end{bmatrix}$
 $\begin{bmatrix} 1 & 1 & 1 \\ H & 3 & -1 \\ 3 & 5 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ H \\ 4 \end{bmatrix}$
 $\begin{bmatrix} 1 & 1 & 1 \\ H & 3 & -1 \\ 3 & 5 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ H \\ 4 \end{bmatrix}$
 $\begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & -5 \\ 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} R_3 \Rightarrow R_2 & -4R_1 \\ R_3 \Rightarrow R_3 - 3R_1 \end{bmatrix}$
 $\begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & -5 \\ 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ R_3 \Rightarrow R_3 - 3R_1 \end{bmatrix}$
 $\begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & -5 \\ 0 & 0 & -10 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ -1 & -5 \end{bmatrix} \begin{bmatrix} R_3 \Rightarrow R_3 + 2R_2 \\ -15 = 2 & -50 \\ -19 = 5 & -3 \end{bmatrix}$
Sub $z = -\frac{1}{2}z = 5$
 $-\frac{1}{2}z = 5 - 3$
 $-\frac{1}{2}z = 5 - 3$
 $-\frac{1}{2}z = 5 - 3$
 $-\frac{1}{2}z = 2 - 52 \\ -\frac{1}{2}z = 5 - 32 = -\frac{1}{2}z_1$

Sub
$$y = \frac{1}{2}$$
 $z = -\frac{1}{2}$ in 0
 $x + \frac{1}{2} - \frac{1}{2} = 1$
 $x + 0 = 1$
 $x = \frac{1}{2}$
The Solution is $(x, y, 2) = (1, \frac{1}{2}, -\frac{1}{2})$
By Graws Josdon rekod
 $(1 + 1 + 1)$
 $\frac{1}{4} - 3 - 1$
 $\frac{1}{3} - 5 - 3$
 $(\frac{1}{2}) = \frac{1}{4}$
 $(A|B] = (1 + 1 + 1)$
 $\frac{1}{4} - 3 - 1$
 $\frac{1}{3} - 5 - 3$
 $(\frac{1}{2}) = \frac{1}{4}$
 $(A|B] = (1 + 1 + 1)$
 $\frac{1}{4} - 3 - 1$
 $\frac{1}{3} - 5 - 3$
 $(\frac{1}{2}) = \frac{1}{4}$
 $(\frac{1}{3} - 1) = \frac{1}{2}$
 $(\frac{1}{2}) = \frac{1}{4}$
 $(\frac{1}{3} - 1) = \frac{1}{2}$
 $(\frac{1}{3} - 1) = \frac{1}{2}$
 $(\frac{1}{2} - 1) = \frac{1}{2}$
 $(\frac{1}{2}$

ANIN

Solve the system of equations by using Gauss
it is a not gauss Torden's method.

$$x + 12q - 4, Z = -4, J x + 15q - 9Z = -10, J x - 3q + 13Z = 11.$$

The equation is born $Ax = P_{3}$
 $\begin{bmatrix} 1 & 2 & -4 \\ 3 & 5 & -9 \\ 3 & -2 & 3 \end{bmatrix} \begin{bmatrix} y \\ q \\ z \end{bmatrix} = \begin{bmatrix} -4 \\ -10 \\ 11 \end{bmatrix}$
The argument method.
 $\begin{bmatrix} A + B \end{bmatrix} = \begin{bmatrix} 1 & 2 & -4 \\ -4 \\ z \end{bmatrix} = \begin{bmatrix} 7 & 2 & -4 \\ -4 \\ -2 \\ 0 & -8 \end{bmatrix} = \begin{bmatrix} 7 & 2 & -4 \\ -2 \\ 0 & -8 \end{bmatrix} = \begin{bmatrix} 7 & 2 & -4 \\ -2 \\ 0 & -8 \end{bmatrix} = \begin{bmatrix} 7 & 2 & -4 \\ -2 \\ 0 & -8 \end{bmatrix} = \begin{bmatrix} 7 & 2 & -4 \\ -2 \\ 0 & -8 \end{bmatrix} = \begin{bmatrix} 7 & 2 & -4 \\ -2 \\ 0 & -8 \end{bmatrix} = \begin{bmatrix} 7 & 2 & -4 \\ -2 \\ 0 & -8 \end{bmatrix} = \begin{bmatrix} 7 & 2 & -4 \\ -2 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 7 & 2 & -4 \\ -2 \\ -1 \end{bmatrix} = P_{3} = 2P_{3}$
 $= \begin{bmatrix} 7 & 2 & -4 \\ -4 \\ -2 \\ -1 \end{bmatrix} = P_{3} = 2P_{3}$
 $= \begin{bmatrix} 7 & 2 & -4 \\ -4 \\ -2 \\ -1 \end{bmatrix} = P_{3} = 2P_{3}$

8]

Against Tordan's method

$$\begin{bmatrix}
1 & 2 & -4 & -4 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & -4 & -2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 1 \\
-3 & 2 & -3 \\
0 & -5 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
2 & -1 & 1 \\
-3 & 2 & -3 \\
0 & -5 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
2 & -1 & 1 \\
-3 & 2 & -5 \\
-4 & 5
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 1 \\
-3 & 2 & -3 \\
0 & -5 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
2 & -5 & 4 & 5 \\
-4 & 5
\end{bmatrix}$$

9]

$$\begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 1 & 0 & 3 \\ 0 & -3 & 2 & 3 \end{bmatrix} F_{1} \rightarrow F_{2} + 3F_{1}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 3 \\ 0 & -3 & 2 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -3 & 1 \\ 0 & 1 & 0 & 3 \\ 0 & -3 & 2 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -3 & 1 \\ 2 = 6 \\ 1 & -3 & 1 \\ \hline 2 = 6 \\ 1$$

v[I]X] Jhe sola is [x=-2] [y=3] [z=6]

Questions	opt1	opt2
A square matrix A is said to beif the determinant value of A is zero.	singular	non singular
A square matrix A is said to beif the determinant value of A is not equal to zero.	singular	non singular
A square matrix A is said to be singular if the determinant value of A is	1	2
A square matrix A is said to be non singular if the determinant value of A is	1	2
A square matrix in which all the elements below the leading diagonal are zeros, it is called anmatrix.	upper triangular	lower triangular
A square matrix in which all the elements above the leading diagonal are zeros, it is called anmatrix.	upper triangular	lower triangular
A unit matrix is amatrix.	scalar	lower triangular
A system of equation is said to be consistent if they have	one solution	one or more solution
f rank of A is equal to the rank of [A,B] then the system of equations is	Consistent	inconsistent
f rank of A is not equal to the rank of [A,B] then the system of equations is	Consistent	inconsistent
A square matrix A which satisfies the relation $A^2 = A$ is called	nilpotient	idempotient
A matrix is idempotient if	$A^3 = A$	A^2 = 0
f the rank of A is 2, then the rank of $A^{(-1)}$ is	3	2
f A is an mxn matrix, then A ^T is an matrix.	mxn	nxm
Let A and B be two matrices, then $(A+B)^{T} =$	$(A^T)+(B^T)$	A^T
Let A be mxn matrix and B be nxp matrix. Then (AB)^T=	$(A^T)+(B^T)$	(AB)^T
Let A and B be two matrices with entries from C. Then A=conjugate of A iff all entries of A are	complex	real
A diagonal matrix in which all the entries of the principal diagonal are equal is called a matrix.	scalar	lower triangular
A square matrix is a matrix iff it is both lower triangular and upper riangular.	scalar	lower triangular
The product of any two non-singular matrices is	scalar	lower triangular
f A and B are two nxn matrices then det(AB)=	det(A)*det (B)	det(A)+det (B)
The transpose of the co-factor matrix is called the of the matrix A.	adjoint	inverse
If A is a square matrix of order n then adj A is a square matrix of order	0	n
f A is square matrix then $adj(A)^T =$	A^T	adj A
	adjoint	invertible
A square matrix A of order n is non-singular iff A is	•	А
	adj A	Π
A square matrix A of order n is non-singular iff A is Let A be any square matrix of order n, then $(adj A)A=A(adj A) =$ If A is a non-singular matrix, then $(A^T)^{(-1)}=$	adj A (A^-1)^(T)	
Let A be any square matrix of order n, then $(adj A)A=A(adj A) =$ If A is a non-singular matrix, then $(A^T)^{(-1)}=$	adj A (A^-1)^(T) adjoint	(A^-1) invertible

opt3	opt4	opt5	opt6	Answer
symmetric	non symmetric			singular
symmetric	non symmetric			non singular
non zero	zero			zero
non zero	zero			non zero
symmetric	non symmetric			upper triangular
symmetric	non symmetric			lower triangular
symmetric	non symmetric			scalar
no solution	infinite solution			one or more solution
symmetric	non symmetric			Consistent
symmetric	non symmetric			inconsistent
Hermitian	Skew - Hermitian			idempotient
A^1 =A	A^2 = A			$A^2 = A$
4	1			2
nxn	mxm			nxm
	$(A^T)-(B^T)$			$(A^T)+(B^T)$
$(B^T)^*(A^T)$	$(A^T)-(B^T)$)		$(B^T)^*(A^T)$
rational	irrational			real
symmetric	non symmetric			scalar
symmetric	diagonal			diagonal
singular	non-singular			non-singular
det(A)/det (B)	det(A)-det (B)			det(A)*det (B)
scalar	minor			adjoint
1	n^2			n
(adj A)^T	(- adj A)			(adj A)^T
singular	non-singular			invertible
(det A)*I	det A			(det A)*I
(A^T)	(- A^T)			(A^-1)^(T)
singular	non-singular			non-singular
singular	non-singular			singular

Let A be a singular matrix and B be a non-singular matrix of order n, then (AB) is matrix	adjoint	invertible
A matrix obtained form the idenity matrix by applying a single elmentary row or column operation is called matrix	scalar	an elementary
Any elementary matrix is matrix.	scalar	invertible
Any non-singular square matrix A of order n is equivalent to the <u>matrix</u> of order n.	identity	scalar
The row rank and the column rank of any matrix are	different	equal
The of a matrix A is the common value of its row and column rank.	adjoint	inverse
Any non singular square matrix of order n is equivalent to	the identity matrix of order n	a diagonal matrix of order n
If A is m x n matrix and B is n x k matrix, what is the order of AB?	mxn	nxk
method is a modified form of Gauss elimination method.	Cramer's	Matrix inversion
If A and B are of the same order matrices then tr $(AB) = $.	tr A	tr B
The rank of a null matrix is defined to be .	1	(-1)
A determinant has value.	numerical	zero
The determinant is possible only for a matrix.	null	square
If each diagonal element of a scalar matrix is unity, the matrix is called matrix.	scalar	unit
The determinant of every square sub matrix of a given matrix A is called a of the matrix A.	minor	major
A system of linear equations in n unknowns with augmented matrix M, then the system has a solution iff rank $(A)=$	rank (M)	n
A system of linear equations in n unknowns with augmented matrix M, then the solution is unique iff rank $(A)=$	n	1
A system of linear equations in n unknowns with augmented matrix M, then the solution is iff rank $(A) = n$.	consistent	inconsistent

singular	non-singular	singular
Singular	non-singular	an
singular	non-singular	elementary
singular	non-singular	non-singular
singulai	non-singulai	identity
singular	square	hennity
		equal
diagonal matrix	square matrix	equal
rank	equal	rank
	cquai	the identity
	the zero	matrix of
scalar matrix		order n
of order n	order n	
mxk	kxm	mxk
	Echelon	
Gauss Jordon	form	Gauss Jordon
tr A+tr B	tr BA	tr BA
0	2	0
row	column	numerical
row	column	square
null	row	unit
		minor
rank	inverse	
		rank (M)
0	n^2	
		n
0	n^2	
	unique	unique
different	1	
annoront		

Questions	opt1	opt2	opt3
The sum of the main diagonal elements of a matrix is called	trace of a matrix	quadrat ic form	eigen value
Every square matrix satisfies its own	characteristic polynomial	charact eristic equatio n	orthogo nal transfor mation
The orthogonal transformation used to diagonalise the symmetric matrix A is	NT AN	NT A	NAN-1
If $\lambda 1$, $\lambda 2$, $\lambda 3$, λn are the eigen values of A ,then $k\lambda 1$, $k\lambda 2$, $k\lambda 3$,, $k\lambda n$ are the eigen values of	kA	kA2	kA-1
Diagonalisation of a matrix by orthogonal reduction is true only for a matrix.	diagonal	triangula	real symme tric
In a modal matrix, the columns are the	eigen vectors of A	eigen vectors of adj A	eigen vectors of inverse ofA
If atleast one of the eigen values of A is zero, then det $A =$	0	1	10
If the canonical form of a quadratic form is 5y12 - 6 y22, then the index is	4	0	2
det (A- λI) represents	characteristic polynomial	charact eristic equatio n	quadrat ic form
If $\lambda 1$, $\lambda 2$, $\lambda 3$, λn are the eigen values of A ,then $1/\lambda 1$, $1/\lambda 2$, $1/\lambda 3$,, $1/\lambda n$ are the eigen values of	A^(-1)	A	A^n
If $\lambda 1$, $\lambda 2$, $\lambda 3$, λn are the eigen values of A ,then $\lambda 1p$, $\lambda 2p$, λnp are the eigen values of	A^(-1)	A^2	A^(-p)
Cayley -Hamilton theorem is used to find	inverse and higher powers of A	eigen va	eigen vectors
The eigen values of a matrix are its diagonal	diagonal	symmet	skew-ma
In an orthogonal transformation NT AN = D, D refers to a matrix.	diagonal	-	symmeti
In a modal matrix, the columns are the eigen vectors of	- A-1	A2	A
If the eigen values of $8x12 + 7 x22 + 3 x32 - 12 x1 x2 - 8 x2 x3 + 4 x3x1$ are 0,3 & 15, then its nature is	positive definite	positiv e semide finite	indefinit

opt4	opt5	opt6	Answer
•	•		trace of
canonic			а
al form			matrix
			charact
canonic			eristic
al form			equatio
			n
NA			NT AN
			1.
A-1			kA
scalar			real
Scalar			symme
			tric
eigen values			eigen vectors
of A			of A
01 A			01 A
5			0
1			1
canonic			charact
al form			eristic
			polyno
			mial
A^p			A^(-1)
1			
A^p			A^p
1			1
quadrat			inverse
ic form			and
10 101111			higher
			powers
			of A
triangula	ar		triangula
skew-			diagonal
symme			angona
tric			
adj A			Α
negativ			positiv
e			e
definite			semide
			finite

The elements of the matrix of the quadratic form x12 + 3 x22 + 4 x1 x2 are	a11 = 1,a12 =2 , a 21 = 2 , a 22 = 3	a11 = -1, a12 = -2, a 21 = 2, a 22 = 3	a11 = 1, a12 = 4, a 21 = 4, a 22 = 3
If the sum of two eigen values and trace of a $3x3$ matrix A are equal, then det A =	λ1 λ2 λ3	0	1
If 1,5 are the eigen values of a matrix A, then det $A =$	5	0	25
If the canonical form of a quadratic form is $5y12 + 6y22$, then the rank is	4	0	2
The non –singular linear transformation used to transform the quadratic form to canonical form is	X= NTY	X= NY	Y= NX
The eigen vector is also known as	latent value	latent vector	column value
If 1,3,7 are the eigen values of A, then the eigen values of 2A are	1,3,7	1,9,21	2,6,14
If the eigen values of 2A are 2, 6, 8 then eigen values of A are	1,3,4	2,6,8	1,9,16
The number of positive terms in the canonical form is called th	rank	index	Signatur
If all the eigenvalues of A are positive then it is called as	Positive definite	Negati ve definite	Positiv e semide finite
If all the eigenvalues of A are negative then it is called as	Positive definite	Negati ve definite	Positiv e semide finite
A homogeneous polynomial of the second degree in any number of variables is called the	characteristic polynomial	charact eristic equatio n	quadrat ic form
The Set of all eigen values of the matrix A is called the of A	rank	index	Signatur
A Square matrix A and its transpose have eigen value	different	Same	Inverse
The sum of the of a matrix A is equal to the sum of the principal diagonal elements of A.	characteristic polynomial	charact eristic equatio n	eigen values
The product of the eigenvalues of a matrix A is equal to	Sum of main diagonal	Determ inant of A	
The eigenvectors of a real symmetric are	equal	unequal	real
When the quadratic form is reduced to the canonical form, it will contain only r terms, if the of A is r.	rank	index	Signatu

a11 =		a11 =
1, a12		1,a12
=4, a		=2, a
21 = 3, a 22 =		21 = 2, a $22 =$
a 22 – 1		$\frac{a}{22} = 3$
2		0
2		Ŭ
6		5
1		2
NXA		X=NY
		latent
orthogo		vector
nal		
value		
1,9,49		2,6,14
12,4,3		1,3,4
indefinit	e.	index
macrimit		шисх
Negati		Positiv
ve		e
semide		definite
finite		
Negati		Negati
ve		ve
semide		definite
finite		
canonic		quadrat
al form		ic form
spectrun	n	spectrun
Transpo	se	Same
eigen		eigen
vectors		values
Sum of		Determ
the		inant of
cofacto		А
rs of A		
symmetr	ric	real
spectrun		rank
-		

The excess of the number of positive terms over the number of negative terms in the canonical form is called the of the quadratic form.	rank	index	Signatu
If all the eigen values of A are less than zero and atleast one eigen value is zero then the quadratic form is said to be	Positive definite	Negative	Positive
If all the eigen values of A are greater than zero and atleast one eigen value is zero then the quadratic form is said to be	Positive definite	Negati ve definite	Positiv e semide finite
If the quadratic form has both positive and negative terms then it is said to be	Positive definite	Negati ve definite	Positiv e semide finite

spectrum	Signatu
Negati	Negati
ve	ve
semide	semide
finite	finite
Negati	Positiv
ve	e
semide	semide
finite	finite
indefinite	indefini

(ii) Kenal of Ti-
Let
$$v_1 = x + 2y - 2$$

 $v_2 = y + 2$
 $v_3 = 2C + y - 2 2$
Let $N = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 1 & 1 & -2 \end{bmatrix}$
 $x = y = 2$
 $\sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & -1 & -1 \end{bmatrix} R_2 \rightarrow R_2$
 $\sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} R_3 \rightarrow R_3 - R_1$
 $\sim \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} R_3 \rightarrow R_3 + R_2$
(ie) $\chi + 2y - 2 = 0$.
 $y + z = 0$.
Then we have to assume a variable free,
put $z = 1$,
 $y + 1 = 0$
 $y = -1$

$$\begin{array}{c} x+z(-1) -1 = 0 \\ x-3 = 0 \\ \hline x=3 \\ \therefore (3, -1, 1) \text{ form the bases.} \\ \text{Nullity}(1) = 1; \\ \dim(\text{Ker T}) = 1; \\ \dim(\text{Ker T}) = 1; \\ (\text{in}) \underbrace{\text{By Rank Nullity Theorem}}_{= 1;} \\ (\text{in}) \underbrace{\text{By Rank Nullity Theorem}}_{= 2 + 1} \\ = 3 \\ \therefore \text{ The domain is } \mathbb{R}^3. \\ \end{array}$$

$$\begin{array}{c} \text{(2) Let } T: \mathbb{R}^4 \rightarrow \mathbb{R}^3 \text{ be the linear mapping defined by } T(x,y,z,t) + (x+3y+z+t), \\ (2x-2y+3z+4t), \\ (2x-2y+3z+4t), \\ (3x-3y+4z+5t) \end{array}$$
Find the bases and demension of
(a) image of T. \\ (b) Kernal of T. \\ (c) Rank nullity Theorem. \end{array}

(ii) The Kernal of T:-
let
$$N = \begin{pmatrix} x & y & z & 1 \\ 1 & -1 & 1 & 1 \\ 2 & -2 & 3 & 4 \\ 3 & -3 & 4 & 5 \end{pmatrix}$$

$$\begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 \\ R_3 \rightarrow R_3 - 3R_1 \\ N = \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} R_3 \rightarrow R_3 - 3R_1$$

$$\begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} R_3 \rightarrow R_3 - R_2$$
(ie) $\chi - \chi + z + t = 0$.
 $z + z t = 0$.
There are four variable and two free
variable for that two equations (2 f)
(1) $z = 0$, $\gamma = 1 = 7$ $2t = 0$
 $\chi - 1 + 0 + 0 = 0$
 $\chi - 1 + 0 + 0 = 0$
 $\chi - 1 + 0 + 0 = 0$
 $\chi - 1 + 0 + 0 = 0$
 $\chi - 1 + 0 + 0 = 0$

(ii)
$$z=1, y=0 \Rightarrow 1+2t=0$$

 $zt=-1$
 $f=-\frac{1}{2}$
 $z = -\frac{1}{2}$
 $x + \frac{1}{2} = 0$
 $x + \frac{1}{2} = 0$
 $x = -\frac{1}{2}$
 \therefore The uset $(x, y, z, t) = [-\frac{1}{2}, \frac{10, 11, -\frac{1}{2}}{2}]$
Then $(1, 1, 0, 0) \times (-\frac{1}{2}, 10, 11, -\frac{1}{2})$ form a
bauls \therefore Nullet; $(T) = 2$.
 \therefore dim $(Xer T) = 2$.
(iii) By RNT:-
 $\dim V = \dim (ImT) + \dim (KerT)$
 $= 2+2$
 $\dim V = 4$.
 $\therefore R^{4}$ is the domain of T.

3 Let T: R" -> R3 be the linear transformation defined by T(xiyizit) = (x-y+z+t, x+2z-t, x+y+3z-3t) Find the basis and dimension of (a) image of T(b) Keinal of T(c) Prove RNT:-Rol:-M = $\begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & -2 & -4 \\ R_4 \rightarrow R_4 - R_1 \\ R_4 - R_1 - R_1 \\ \end{vmatrix}$: (1,1,1) & (0,1,2) form a bais dim(ImT) = 2.

(ii) Ker T. $N = \begin{bmatrix} x & y & z & t \\ 1 & -1 & 1 & 1 \\ 1 & 0 & 2 & -1 \\ 1 & 1 & 3 & -3 \end{bmatrix}$ $\begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 1 & 1 & -2 \\ 0 & 2 & 2 & -4 \end{bmatrix} \xrightarrow{R_2 \to R_2 - R_1} R_3 \to R_3 - R_1$ $\begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 1 & 1 & -2 \\ 0 & 1 & 1 & -2 \\ \end{bmatrix} R_3 \rightarrow R_3 / 2$ 1: x - y+z+t= 0. y+z-2t=0. put y=0, z=1; x - 0 + 1 + 1 = 00+1-21=0 $x = -1 - \frac{1}{10}$ -2t = -1 $x = -\frac{3}{2}$ $t = \frac{1}{2}$.: (x,y,z,t)=(-3,2,0,1,1)

Scanned by CamScanner

put
$$y = 1, z = 0;$$

 $\Rightarrow 1 + 0 - 2t = 0$
 $-2t = -1$
 $\left[\frac{t = \frac{1}{2}}{2}\right]$
 $\Rightarrow 2 - 1 + 0 + \frac{1}{2} = 0$
 $\propto -1 = -\frac{1}{2}$
 $x = -\frac{1}{2} + 1$
 $\left[\frac{\pi}{2} = +\frac{1}{2}\right]$
 $\therefore (\pi, y, z, t) = (\frac{1}{2}, \frac{1}{2}, 0, \frac{1}{2})$
 $\therefore (\frac{-3}{2}, 0, \frac{1}{2}) = \frac{1}{2}, \frac{1$

I

Find the backs and day of (H) (a) The Image of T, (b) Kernal of T, (c) Prove RNT. for the matrix Mapping A: R⁴ -> R³ $\begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 3 & 5 & -2 \\ 3 & 8 & 13 & -3 \end{bmatrix}$ where A = Sol :-At yearst we have to write the values in a equation type and then find the above conditions $V_1 = \chi + 2\gamma + 3\chi + t$ $V_2 = \chi + 3y + 5z - 2t$. V3 = 3x+8y+13z-3t.

(1) To find the smage of T.
Let
$$V_1 = x + 2y + 3z + t$$

 $V_2 = x + 3y + 5z - 2t$.
 $V_3 = 3x + 8y - 13z + 3t$.
The matrix $M = x \begin{bmatrix} 1 & 1 & 3 \\ 2 & 3 & 8 \\ 3 & 5 & -13 \\ 1 & -2 & 3 \end{bmatrix}$
 $f \begin{bmatrix} 1 & 1 & 3 \\ 0 & 1 & 2 \\ 0 & 2 & +4 \\ 0 & -3 & -6 \end{bmatrix} R_2 \Rightarrow R_2 - 2R_1$
 $R_3 \Rightarrow R_3 - 3R_1$
 $R_4 \Rightarrow R_4 - R_1$
 $f \begin{bmatrix} 1 & 1 & 3 \\ 0 & 1 & 2 \\ 0 & -3 & -6 \end{bmatrix} R_3 \Rightarrow R_3 - 2R_2$
 $R_4 \Rightarrow R_4 + 3R_2$
 $\therefore (1, 1, 3) & (0, 1, 2) \text{ form the basis}$
 $\therefore Rank(T) = 2$.

(ii) To Good the Kernal of T.-

$$V_1 = x + 3y + 3z + t$$
.
 $V_2 = x + 3y + 5z - 2t$.
 $V_3 = 3x + 8y + 13z - 3t$.
 $N = \begin{bmatrix} x & y & z & t \\ 1 & 2 & 3 & 1 \\ 1 & 3 & 5 & -2 \\ 3 & 8 & 13 & -3 \end{bmatrix}$
 $T = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & 1 & 2 & -3 \\ 0 & 2 & 4 & -6 \end{bmatrix} R_2 \rightarrow R_2 - R_1$
 $R_3 \rightarrow R_3 - 3R_1$
 $T = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & 1 & 2 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix} R_3 \rightarrow R_3 - 2R_2$
(fe) $x + 2y + 3z + t = 0$.
 $y + 2z - 3t = 0$.
There are 4 variables but 2 eqn. Therefore
put two free variable.

Put
$$y=0, z=1;$$

 $0+2-3t=0.$
 $-3t=-2$
 $\boxed{t=2/3}$
 $x+2(0)+3(1)+2/3=0.$
 $x+3=-2/3$
 $x=-2/3-3$
 $x=-1$
 $\boxed{t=1/3}$
 $x+2(1)+3(0)+1/3=0.$
 $x+2=-1/3$
 $x=-1/3-2$
 $x=-1/3-3-3$
 $x=-1/3-2$
 $x=-1/3$

(iii) RNT.

$$dim V = dim (JmT) + dim (KeiT)$$

$$= 2+2$$

$$= 4$$

$$\therefore R^{4} is the domain of T.$$
(5) Check wheather the following vectors are
linearly independent (or) not.
[Ench QUESTJON GREEZES 7 MARKS]
(i) (1,1,0), (1,1,1), (0,+1,-1)
white
The L.C is av, + bv2 + Cv3 = 0.

$$a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$$
(D)

$$\begin{bmatrix} P|B \\ = \begin{bmatrix} 1 & 1 & 0 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{bmatrix} R_2 \rightarrow R_2 - R,$$

 $\begin{bmatrix} 1 & 2 & 7 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ R_2 \rightarrow R_2/5 \\ R_3 \rightarrow R_3/3 \end{bmatrix}$ $\begin{bmatrix}
1 & 2 & 7 & | & D \\
0 & 1 & 2 & | & D \\
0 & 0 & 0 & | & 0.
\end{bmatrix}
\begin{bmatrix}
R_1 \\
R_2 \\
R_3 \\
\hline
R_2 \\
\hline
R_3 \\$ a + 2b + 7c = 0. b + 2c = 0, The Echelon for system has only 2 non zero equation in 3 unknown. It has no isolution. So it is linearly dependent.

Chock whether the free views are L. 2 convect.
(3)
$$(1,11,2)$$
, $(2,3,1)$ and $(41,5,5)$
M. The L.C. is an $(2,1+bv_{2}+cv_{3}=0)$.
 $a[\frac{1}{2}]+b[\frac{2}{3}]+c[\frac{4}{5}]+(\frac{0}{5}]$
 $(7)[3] = (1 2 4 | 0) (2 1 5 | 0)$
 $\sum [1 2 4 | 0) (2 1 5 | 0)$
 $\sum [1 2 4 | 0) (2 - 3 - 3 | 0) R_{2} \rightarrow R_{2} - R_{1}$
 $\sum [1 2 4 | 0) (2 - 3 - 3 | 0) R_{3} \rightarrow R_{3} - 2R_{1}$
 $\sum [1 2 4 | 0) (2 - 3 - 3 | 0) R_{3} \rightarrow R_{3} - 2R_{1}$
 $\sum [1 2 4 | 0) (2 - 3 - 3 | 0) R_{3} \rightarrow R_{3} + 3R_{2}$
 $a + 2b + bc = 0$.
 $b + c = 0$.
 \therefore The Echlen form system has only
2 non zero equation in 3 unknown.
 \therefore It is direarly dependent.

1)
$$(1, 2, 1), (2, 1, 0) (1, -1, 2)$$

The L.C $2i$ $av_1 + bv_2 + Cv_3 = 0$.
 $(A|B) = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & 1 & -1 & 0 \\ 2 & 1 & -1 & 0 \\ 1 & 0 & 2 & 0 \end{pmatrix}$
 $(A|B) = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & 1 & -1 & 0 \\ 1 & 0 & 2 & 0 \end{pmatrix}$
 $(A|B) = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & 1 & -1 & 0 \\ 1 & 0 & 2 & 0 \end{pmatrix}$
 $(A|B) = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & -3 & -3 & 0 \\ 0 & -2 & 1 & 0 \end{pmatrix}$
 $(B_2 \rightarrow R_2 - 2R, R_1)$
 $(B_1 - 2 & 1 & 0 \\ 0 & -3 & -3 & 0 \\ 0 & 0 & q & 0 \end{pmatrix}$
 $(B_2 \rightarrow R_2 - 2R, R_1)$
 $(B_1 - 2 & 1 & 0 \\ 0 & -3 & -3 & 0 \\ 0 & 0 & q & 0 \end{pmatrix}$
 $(B_2 \rightarrow R_3 - R_2)$
 $(B_1 - 2) = 0$
 $(B_2 - 2) = 0$
 $(B_1 - 2) = 0$
 $(B_2 - 2)$
 $(B_1 - 2) = 0$
 $(B_2 - 2) = 0$
 $(B_1 - 2) = 0$
 $(B_2 - 2) = 0$
 $(B_1 - 2) = 0$
 $(B_2 - 2) = 0$
 $(B_1 - 2) = 0$
 $(B_2 - 2) = 0$
 $(B_1 - 2) = 0$
 $(B_2 - 2) = 0$
 $(B_1 - 2) = 0$
 $(B_2 - 2) = 0$
 $(B_1 - 2) = 0$
 $(B_2 - 2) = 0$
 $(B_1 - 2) = 0$
 $(B_2 - 2) = 0$
 $(B_1 - 2) = 0$
 $(B_2 - 2) = 0$
 $(B_1 - 2) = 0$
 $(B_2 - 2) = 0$
 $(B_1 - 2) = 0$
 $(B_2 - 2) = 0$
 $(B_1 - 2) = 0$
 $(B_2 - 2) = 0$
 $(B_1 - 2) = 0$
 $(B_2 - 2) = 0$
 $(B_1 - 2) = 0$
 $(B_2 - 2) = 0$
 $(B_1 - 2) = 0$
 $(B_2 - 2) = 0$
 $(B_1 - 2) = 0$
 $(B_2 - 2) = 0$
 $(B_1 - 2) = 0$
 $(B_2 - 2) = 0$
 $(B_1 - 2) = 0$
 $(B_2 - 2) = 0$
 $(B_1 - 2) = 0$
 $(B_2 - 2) = 0$
 $(B_1 - 2) = 0$
 $(B_2 - 2) = 0$
 $(B_1 - 2) = 0$
 $(B_2 - 2) = 0$
 $(B_1 - 2) = 0$
 $(B_2 - 2) = 0$
 $(B_1 - 2) = 0$

EXPRESS the Vector (1, -2, 5) as the linear 6. (i) combination of (1,1,1), (1,2,3), (2,-1,1) in R³, where R is a field of seal numbers. Let finear combination is V=aV1+bV2+CV3 304 $\Rightarrow \begin{bmatrix} 1 \\ -2 \\ 5 \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ 1 \\ +b \\ 2 \\ 1 \end{bmatrix} + b \begin{bmatrix} 2 \\ -1 \\ 1 \\ 1 \end{bmatrix}$ a+b+2c=1 a + 2b - c = -2a+36+6=5 $Matrix [A|B] = \begin{vmatrix} 1 & 1 & 2 & | \\ 1 & 2 & -1 & | \\ 1 & 3 & 1 & | 5 \end{vmatrix}$ The $\sim \begin{bmatrix} 1 & 1 & 2 & | \\ 1 & -3 & | \\ 0 & 1 & -3 & | \\ 2 & -1 & | \\ 4 & | \\ p_2 \rightarrow R_2 - R_1 \\ R_2 \rightarrow R_2 - R_2 - R_1 \\ R_2 \rightarrow R_2 - R_2 - R_1 \\ R_2 \rightarrow R_2 - R_2 - R_2 - R_2 - R_1 \\ R_2 \rightarrow R_2 - R_2 \sim \begin{bmatrix} 1 & 1 & 2 & | & 1 \\ 0 & 1 & -3 & | & -3 \\ 0 & 0 & 5 & | & 0 & | & R_3 \rightarrow R_3 - 2R_2 \end{bmatrix}$ 5C = 10 $c = \frac{10}{5}$ C=2 b-3C=-3 b -3(2)=-3 b - 6 = -3b = -3 + 6 = 3 b = 3

Scanned by CamScanner

a + b + 2c = 1 a + 3 + 2(2) = 1 a + 7 = 1 a = 1 - 7a = -6

Hence $(1, -2, 5) = -6V_1 + 3V_2 + 2V_3$.

(ii) Express the vector (3, 7, -4) in $\mathbb{R}^3 \alpha s \alpha$ linear combination of vector $V_1 = (1, 2, 3)$, $V_2 = (2, 3, 7)$ of $V_3 = (3, 5, 6)$, where \mathbb{R} is field of real numbers.

the linear combination is

$$V = aV_1 + bV_2 + CV_3.$$

$$\begin{bmatrix} 3 \\ 7 \\ -4 \end{bmatrix} = 0 \begin{bmatrix} 1 \\ 2 \\ 3 \\ -4 \end{bmatrix} + b \begin{bmatrix} 2 \\ 3 \\ -4 \end{bmatrix} + c \begin{bmatrix} 3 \\ 5 \\ 6 \end{bmatrix}$$

a + 2b + 3c = 32a + 3b + 5c = 7

3a + 7b + 6(z-4)matrix [AIB] = $\begin{bmatrix} 1 & 2 & 3 & 3 \\ 2 & 3 & 5 & 7 \\ 2 & 7 & 4 & -1 \end{bmatrix}$

The

$$\sim \begin{bmatrix} 1 & 2 & 3 & 3 \\ 0 & -1 & -1 & 1 \\ 0 & 1 & -3 & -13 \end{bmatrix} \stackrel{P_2 \rightarrow P_2 - 2P_1}_{P_3 \rightarrow P_3 - 3P_1} \\ \sim \begin{bmatrix} 1 & 2 & 3 & 3 \\ 0 & -1 & -1 & +1 \\ 0 & 0 & -4 & -12 \end{bmatrix} \stackrel{P_3 \rightarrow P_3 + P_2}_{P_3 \rightarrow P_3 + P_2} \\ \stackrel{-4_1C = -12}{= -\frac{P_2}{2}} \stackrel{C = 3}{= 3}$$

-4

$$\begin{array}{c} -b-z = 1 \\ -b-3 = 1 \\ -b-3 = 1 \\ -b-3 = 1 \\ -b = 1+3 \\ -b = 1+3 \\ -b = 1+3 \\ -b = 4 \\ \hline a + 1 = 3 \\ \hline a = 2 \\$$

$$T^{-1}(S,E) = (\mathcal{X},Y)$$

$$T^{-1}(S,E) = (2SE, -3S+2E)$$

$$T^{-1}(X,Y) = (2X-Y, -3X+2Y).$$

(ii) T(x,y) = (x+2y, 2x+3y).

Solv. We set T(x, y) = (S, t) $(x, y) = T^{-1}(S, t) \longrightarrow \mathbb{D}$. We have. T(x, y) = (x + 2y, 2x + 3y).(S, t) = (x + 2y, 2x + 3y).

i.e, S=2+24, 2×+34.

2x +44 =2S.
2x + 3y = t.
y = 2s - t

S=x+2S-E. $\chi = E - S$

 $T^{-4}(S, E) = (X, Y).$ $T^{-1}(3, \pm) = (\pm - S, 2S - \pm).$ $T^{-1}(x,y) = (y-x, 2x-y).$

8)(i) Let
$$T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$$
 and $S: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the
linear tomostion defined by:
 $T(x_1y_1) = (2\pi, x+y)$, $dS(x_1,y) = (2y,x)$ Find
(i) $T \circ S$ (ii) $S \circ T$
(i) $T \circ S = T(2(x,y))$
 $= T(2y_1,x)$
 $= (H \cdot y_1, 2y + \infty)$
(ii) $S \circ T = S(T(x,y))$
 $= 2x + 2y_1 2x$
(iii) Let $F: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ and $G: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ and $H: \mathbb{R}^2 \rightarrow \mathbb{R}^2$
be the linear transformation defined
by $F(x,y,z) = (y,x+z)$, $G(x,y,z) = (2z, x-y)$
 $and H(2,y) = (y,2x)$ Find(a) HoF and HoG
(b) $H \circ (F + G_1)$ and $(H \circ F + H \circ G_1)$
94.
(i) $(H \circ G_1)(x,y,z) = H(Gr(x,y,z)).$
 $= (\pi - y, 2(2z)).$

= (2-4,42).

(ii)
$$Ho(F+G_1) = HoF + HOG_1$$
,
= $HoF(x, y, z) + (HoG_1)(x_1y, z)$,
= $H(F(x, y, z) + H(G_1(x, y, z))$,
= $(x+z, 2y) + (x-y, 4z)$.
F, G & H ODE Minear.

9)(i) obtain the matrix depresent the dineral
(anisformation,
$$\tau : p^3 \rightarrow p^3$$
 given by $\tau(\pi, 9, z) =$
($3x + z, -2x + 9, x + 29 + 1, z$). with dispect of
the basis $\{e_1, e_2, e_3\}$.
($2x + z, -2x + 9, x + 29 + 1, z$). with dispect of
the basis $\{e_1, e_2, e_3\}$.
($2x + z, -2x + 9, x + 29 + 1, z$). with dispect of
the basis $\{e_1, e_2, e_3\}$.
($2x + z, -2x + 9, x + 29 + 1, z$). with dispect of
the basis $\{e_1, e_2, e_3\}$.
($1x + z, -2x + 9, x + 29 + 1, z$).
($2x + z, -2x + 9, x + 29 + 1, z$).
($1x + z, -2x + 9, x + 29 + 1, z$).
($1x + z, -2x + 9, x + 29 + 1, z$).
($1x + z, -2x + 9, x + 29 + 1, z$).
($1x + z, -2x + 9, z + 29 + 1, z$).
($1x + z, -2x + 9, z + 10 + 20 + 1, z$).
($1x + z, -2x + 9, z + 10 + 20 + 1, z$).
($1x + z, -2x + 9, z + 10 + 20 + 10, z$).
($1x + z, -2x + 9, z + 10 + 20 + 10, z$).
($1x + z, -2x + 2, z + 10 + 20 + 10, z$).
($1x + z, -2x + 10, z + 10, z$).
($1x + z, -2x + 10, z + 10, z$).
($1x + z, -2x + 10, z + 10, z + 10, z$).
($1x + z, -2x + 10, z + 10, z + 10, z$).
($1x + z, -2x + 10, z + 10, z + 10, z + 10, z$).
($1x + z, -2x + 10, z + 10, z + 10, z + 10, z$).
($1x + z, -2x + 10, z + 10, z + 10, z + 10, z$).
($1x + z, -2x + 10, z + 10, z + 10, z + 10, z + 10, z$).

$$T(x,y,z) = x(f(e_{1})+y(t(e_{2}))+z(t(e_{3})))$$

$$= x(1,2,1)+y(o,1,1),+z(t,3,4))$$

$$= (x,2,x,x)+(o,y,y)+(-z,3z,4z)$$

$$T(x,y,z) = (x+o-z), (2x+y+3z), (x+y+4z)$$
10) (i) show that mapping $T: p^{2} \rightarrow p^{2}$ is defined by $t(x,y) = (x+y,x)$ is a lineax transformation.
Let $u: (a_{1}b), V = (c,d) \neq F$.
(i) $T.P = T(u+v) = T(u) + t(v)$.

$$T(u+v) = T(a,b) + (t,d)).$$

$$= t(a+c,b+d) + (t,d)).$$

$$= t(a+c,b+d) + (t,d).$$

$$= t(a+b+c+d,a+c) + (a+c) + (a+c)$$

1

(ii) Show that mapping $T: R^2 \rightarrow R^2$ is defined by T(x, y) = (x + y)x - y) is a linear transformation. (i) T(u+v) = T(u) + T(v). T(u+v) = T(a,b) + (c,d) $= (a+c,b+d) \notin [rut x = a+c] = ((a+c,b+d) \notin [rut x = a+c] = ((a+c,b+d) \wedge (c-b+d))$. = ((a+b) + ((a-b) + ((-b+d))). = T((a,b) + ((a-b) + ((-d))).

$$\tau(u+v) = \tau(u) + \tau(v)$$

(ii)
$$T(\alpha u) = \alpha T(u)$$

 $= T(\alpha (a, b))$
 $= T(\alpha a, \alpha b)$
 $= T(\alpha a, +\alpha b, \alpha a - \alpha b)$
 $= \alpha (a + b; a - b)$
 $= \alpha (T(a, b))$
 $T(\alpha u) = \alpha T(u)$.
 $T u$ linear transformation.

Questions	opt1	opt2
The set of all linear combinations of finite sets of elements of S is called	linear depende	spanning set
The vector space {0} then the dimension is	0	1
The rank nullity theorem is dim $V = $	rank(T)+nullit	rank(T)-nullit
The kernel of T is named as	dim (Im T)	dim (ker T)
denotes the null space of A	Ker A	Rank A
The of two subspaces of a vector space is a subspace.	union	intersection
The intersection of any number of subspaces of a vectors space V is a	subspace	basis
Row equivalence matrices have the same space.	column	null
The nonzero rows of a matrix in echelon form are	linearly depen	linearly indep
Any subset of a linearly independent set is	linearly depen	linearly indep
A set S of vectors is a of V if it satisfies span and linearly independent	-	basis
denotes the column space of A	Ker A	Im A
Let V be a vector space then any n+1 or more vectors in V are	linearly depen	
The of T is defined to be the dimension of images.	rank	kernel
Let V be a vector space of finite dimensiion n. Then any n+1 or more ve	linearly depen	linearly indep
Let V be a vector space of finite dimension n. Then any or more ve	n+1	n
Let V be a vector space of finite dimension n. Then any set S with	linearly depen	linearly indep
Let V be a vector space of finite dimensiion n. Then any linearly indepe	linearly depen	basis
Let V be a vector space of finite dimenstion n. Then any spanning set T	linearly depen	basis
Let V be a vector space of finite dimensiion n. Then anyT of V w	linearly depen	spanning set
A vector space with an inner product defined on V is called	-	elementary sp
An inner product space is called space	column	an elementary
An inner product of $\langle u, v+w \rangle =$	<u,v>+<u,w></u,w></u,v>	<u,v>-<u,w></u,w></u,v>
An inner product of <u,0> is</u,0>	1	2
Let V be an inner product space and let x in V. The norm of x is defined	<x,x></x,x>	<x,0></x,0>

opt3	opt4	opt5	opt6	Answer
linear snan	linear combin	ation		linear span
-	3			0
Z	5			
rank(T).nulli	basis			rank(T)+nullity(T)
dim V	linear transfe	ormation		dim (ker T)
Im A	dim A			Ker A
complement				intersection
complement	Turik			
dimension	rank			subspace
row	kernel			row
linearly span	linearly comb	oination		linearly independent
linearly span	linearly comb	vination		linearly independent
dimension	rank			basis
dim A	Rank A			Im A
linearly span	linearly comb	oination		linearly dependent
basis	linear map			rank
linearly span	linearly comb	vination		linearly dependent
n-1	n+2			n+1
linearly span	linearly comb	oination		linearly independent
linearly span	linearly comb	ination		basis
linearly span	linearly comb	oination		basis
linearly span	linearly comb	vination		spanning set
incarry span	incarry come	mation		spanning set
an inner proc	row space			an inner product space
an unitary	row			an unitary
Jui childul y		1		
<u,v>*<u,w< td=""><td><u,v>/<u,w></u,w></u,v></td><td>></td><td></td><td><u,v>+<u,w></u,w></u,v></td></u,w<></u,v>	<u,v>/<u,w></u,w></u,v>	>		<u,v>+<u,w></u,w></u,v>
(-1)	0			0
sqrt <x,x></x,x>	0			sqrt <x,x></x,x>

Let V be an inner product space and let x in V. The x is called a unit vec	0	1
Let V be an inner product space and let x in V. The x is called a vect	row	column
The sum of two vectors is a	scalar	vector
The product of a scalar and a vector is a	scalar	vector
{0} and V are subspaces of any vector space V. They are called the	scalar	vector
Let V and W be vector space over a field F, then T from V to W defined	scalar	vector
Let V and W be vector space over a field F, then T from V to W defined	scalar	vector
Let V be a vector space and A and B are subspaces of V then is a sub-	A+B	A-B
Let V be a vector space and A and B are subspaces of V then A is a subs	A+B	A-B
Let V be a vector space and A and B are subspaces of V then B is a subs	A+B	A-B
Let S be a non-empty subset of a vector space V. Then the set of all	linearly depen	linearly indep
The Linear span is denoted by	dim V	dim S
Let V be a vector space over a field F and S be a non-empty subset of V	linear span	linear indeper
$L[L(S)] = _$	dim V	dim S
Any vector space is an abelian group with respect to vector	addition	subtraction
Any finite dimensional vector spce over R can be provided with	scalar	vector
In an inner product space, every vector has a	scalar	vector
The norm of the vector (1,2,3) in V with standard inner product is	6	14
In R, let $S = \{1\}$. Then $L(S) =$	S	С
In C, let $S = \{1, i\}$. Then $L(S) =$	S	С

2	3	1
scalar	unit	unit
unit	inner product	vector
unit	inner product	vector
unit	trivial	trivial
identity	trivial	trivial
identity	trivial	identity
A*B	A/B	A+B
A*B	A/B	A+B
A*B	A/B	A+B
linear span	linear combinations	linear combinations
L(S)	S	L(S)
linear depe	n subspace	subspace
L(S)	S	L(S)
multiplicat	io division	addition
unit	an inner product	an inner product
unit	norm	norm
sqrt(14)	1	sqrt(14)
R	Q	R
R	{a+bi}	С

Questions	opt1	opt2	opt3
The sum of the main diagonal elements of a matrix is called	trace of a matrix	quadrat ic form	eigen value
Every square matrix satisfies its own	characteristic polynomial	charact eristic equatio n	orthogo nal transfor mation
The orthogonal transformation used to diagonalise the symmetric matrix A is	NT AN	NT A	NAN-1
If $\lambda 1$, $\lambda 2$, $\lambda 3$, λn are the eigen values of A ,then $k\lambda 1$, $k\lambda 2$, $k\lambda 3$,, $k\lambda n$ are the eigen values of	kA	kA2	kA-1
Diagonalisation of a matrix by orthogonal reduction is true only for a matrix.	diagonal	triangula	real symme tric
In a modal matrix, the columns are the	eigen vectors of A	eigen vectors of adj A	eigen vectors of inverse ofA
If atleast one of the eigen values of A is zero, then det $A =$	0	1	10
If the canonical form of a quadratic form is 5y12 - 6 y22, then the index is	4	0	2
det (A- λI) represents	characteristic polynomial	charact eristic equatio n	quadrat ic form
If $\lambda 1$, $\lambda 2$, $\lambda 3$, λn are the eigen values of A ,then $1/\lambda 1$, $1/\lambda 2$, $1/\lambda 3$,, $1/\lambda n$ are the eigen values of	A^(-1)	A	A^n
If $\lambda 1$, $\lambda 2$, $\lambda 3$, λn are the eigen values of A ,then $\lambda 1p$, $\lambda 2p$, λnp are the eigen values of	A^(-1)	A^2	A^(-p)
Cayley -Hamilton theorem is used to find	inverse and higher powers of A	eigen va	eigen vectors
The eigen values of a matrix are its diagonal	diagonal	symmet	skew-ma
In an orthogonal transformation NT AN = D, D refers to a matrix.	diagonal	-	symmeti
In a modal matrix, the columns are the eigen vectors of	- A-1	A2	A
If the eigen values of $8x12 + 7 x22 + 3 x32 - 12 x1 x2 - 8 x2 x3 + 4 x3x1$ are 0,3 & 15, then its nature is	positive definite	positiv e semide finite	indefinit

opt4	opt5	opt6	Answer
•	•		trace of
canonic			а
al form			matrix
			charact
canonic			eristic
al form			equatio
			n
NA			NT AN
A-1			kA
scalar			real
Scalar			symme
			tric
eigen values			eigen vectors
of A			of A
01 A			01 A
5			0
1			1
canonic			charact
al form			eristic
			polyno
			mial
A^p			A^(-1)
1			
A^p			A^p
1			1
quadrat			inverse
ic form			and
10 101111			higher
			powers
			of A
triangula	ar		triangula
skew-			diagonal
symme			angonal
tric			
adj A			Α
negativ			positiv
e			e
definite			semide
			finite

	1		
The elements of the matrix of the quadratic form x12 + 3 x22 + 4 x1 x2 are	a11 = 1,a12 =2 , a 21 = 2 , a 22 = 3	a11 = -1, a12 = -2, a 21 = 2, a 22 = 3	a11 = 1, a12 = 4, a 21 = 4, a 22 = 3
If the sum of two eigen values and trace of a $3x3$ matrix A are equal, then det A =	λ1 λ2 λ3	0	1
If 1,5 are the eigen values of a matrix A, then det $A =$	5	0	25
If the canonical form of a quadratic form is $5y12 + 6y22$, then the rank is	4	0	2
The non –singular linear transformation used to transform the quadratic form to canonical form is	X= NTY	X= NY	Y= NX
The eigen vector is also known as	latent value	latent vector	column value
If 1,3,7 are the eigen values of A, then the eigen values of 2A are	1,3,7	1,9,21	2,6,14
If the eigen values of 2A are 2, 6, 8 then eigen values of A are	1,3,4	2,6,8	1,9,16
The number of positive terms in the canonical form is called th	rank	index	Signatur
If all the eigenvalues of A are positive then it is called as	Positive definite	Negati ve definite	Positiv e semide finite
If all the eigenvalues of A are negative then it is called as	Positive definite	Negati ve definite	Positiv e semide finite
A homogeneous polynomial of the second degree in any number of variables is called the	characteristic polynomial	charact eristic equatio n	quadrat ic form
The Set of all eigen values of the matrix A is called the of A	rank	index	Signatur
A Square matrix A and its transpose have eigen value	different	Same	Inverse
The sum of the of a matrix A is equal to the sum of the principal diagonal elements of A.	characteristic polynomial	charact eristic equatio n	eigen values
The product of the eigenvalues of a matrix A is equal to	Sum of main diagonal	Determ inant of A	
The eigenvectors of a real symmetric are	equal	unequal	real
When the quadratic form is reduced to the canonical form, it will contain only r terms, if the of A is r.	rank	index	Signatu

a11 =		a11 =
1, a12		1,a12
=4, a		=2, a
21 = 3, a 22 =		21 = 2, a $22 =$
a 22 – 1		$\frac{a}{3}$
2		0
2		0
6		5
1		2
NXA		X=NY
		latent
orthogo		vector
nal		
value		0 1 1 1
1,9,49		2,6,14
12,4,3		1,3,4
indefinit	e	index
maerini	.0	Index
Negati		Positiv
ve		e
semide		definite
finite		
Negati		Negati
ve		ve
semide		definite
finite		
canonic		quadrat
al form		ic form
spectrun	1	spectrur
Transpo	se	Same
eigen		eigen
vectors		values
Sum of		Determ
the		inant of
cofacto		А
rs of A		
symmetr	ric	real
spectrun		rank
-		

The excess of the number of positive terms over the number of negative terms in the canonical form is called the of the quadratic form.	rank	index	Signatu
If all the eigen values of A are less than zero and atleast one eigen value is zero then the quadratic form is said to be	Positive definite	Negative	Positive
If all the eigen values of A are greater than zero and atleast one eigen value is zero then the quadratic form is said to be	Positive definite	Negati ve definite	Positiv e semide finite
If the quadratic form has both positive and negative terms then it is said to be	Positive definite	Negati ve definite	Positiv e semide finite

spectrum	Signatu
Negati	Negati
ve	ve
semide	semide
finite	finite
Negati	Positiv
ve	e
semide	semide
finite	finite
indefinite	indefini

KARPAGAM ACADEMY OF HIGHER EDUCATION
CODECAND & be university Elablished under section 3 of UGC Act MSG)
COMMENTORE-641021
DEPORTMENT OF SCIENCE AND HUMANIMIES
1 B.E. COMPUTER SCIENCE AND ENGINEERING
MOTHEMATICS-1 (ISBECSIO1)
Cealculus and direat Algebra
QUEGTION BANK

$$\frac{UMIT-III}{(VECTOR SPACES)}$$
Find the Agenvalues and Sigenvectors of the matrix $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$
Step 1:
To find the charactenistic Equation
 $\lambda^2 - Si \lambda^2 + S2\lambda - S3 = 0$
 $SI = Anim of the main diagonal element$
 $= 1+2+3$
 $= 6$
 $S2 = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$
 $= (2-0) + (6-2) + (3+2)$
 $= 2+4+5$
 $= 11$

1.

$$S_{3} = |A|$$

$$= \begin{vmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{vmatrix}$$

$$= 1(6-2) + 0(3-2) - 1(2-4)$$

$$= 1(4) + 0 - 1(-2)$$

$$= A + 2$$

$$= 6$$
The characteristic Equation \dot{u} ,
 $\lambda^{5} - 6\lambda^{2} + 11\lambda - 6 = 0$
Step: 2
To find the Eigenvalues.

$$1 \begin{vmatrix} 1 & -6 & 11 & -6 \\ 1 & -5 & 6 \\ 2 & 1 & -5 & 6 \\ 2 & 1 & -5 & 6 \\ 0 & \frac{1}{2} & -6 \\ 3 & \frac{1}{2} & -\frac{5}{2} & \frac{1}{2} \\ 1 & -3 & 0 \\ \frac{1}{2} & 3 \\ 1 & 0 \\ \end{array}$$
The Eigen Value \dot{u} (112,3)
 $\lambda_{1} = 1$, $\lambda_{2} = 2$, $\lambda_{3} = 3$

Step:
$$3 \rightarrow 70$$
 find the Eigenvectors $(A - \lambda I) \times =0$
Care: $ii = \lambda = I$

$$\begin{bmatrix} 1-1 & 0 & -1 \\ 1 & R-1 & 1 \\ 2 & 2 & 3-1 \end{bmatrix} \begin{bmatrix} \pi_1 \\ \pi_2 \\ \pi_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & -1 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} \pi_1 \\ \pi_2 \\ \pi_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$-\pi B = 0 \qquad 0$$

$$9iI + \pi 2 + \pi B = 0 \qquad 0$$

$$9iI + \pi 2 + \pi B = 0 \qquad 0$$

$$9iI + \pi 2 + \pi B = 0 \qquad 0$$

$$\Re I + \pi 2 + \pi B = 0 \qquad 0$$

$$\Re I + \pi 2 + \pi B = 0 \qquad 0$$

$$\Re I + \pi 2 + \pi B = 0 \qquad 0$$

$$\Re I + \pi 2 + \pi B = 0 \qquad 0$$

$$\Re I + \pi 2 + \pi B = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 + \pi B = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0 \qquad 0$$

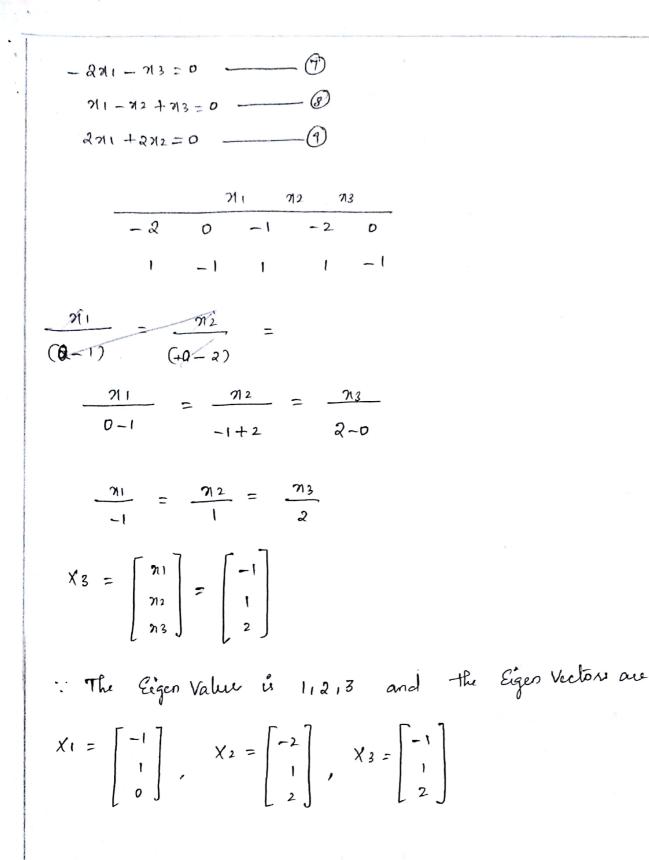
$$\Re I + \pi 2 = 0 \qquad 0$$

$$\Re I + \pi 2 = 0$$

$$\Re I$$

Caseciii $\lambda = 2$

$$\begin{bmatrix} 1-2 & 0 & -1 \\ 1 & 2-2 & 1 \\ 9 & 2 & 3-2 \end{bmatrix} \begin{bmatrix} 91 \\ 91 \\ 91 \\ 91 \\ 91 \end{bmatrix}^2 \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$



2. Diagonalize the matrix
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$

Sollution
Step:1
To find the characteristic equation.
 $\lambda^3 - 51\lambda^2 + 52\lambda - 55 = 0$
 $51 = 1+5+1 = 7$
 $52 = (5-1) + (5-1) + (1-1)$
 $= 4+4-8$
 $= 0$
 $53 = 191 = \begin{vmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{vmatrix}$
 $= -31$
The characteristic equation \vec{u}
 $\lambda^3 - 7\lambda^2 + 3b = 0$
 $5tep:2$
To find the signovalue:
 $-2 \begin{vmatrix} 1 & -7 & 0 & 3b \\ -2 & 19 & -3b \\ 3 & -18 \\ 6 & 1 & -4 \\ 0 & -4 \end{bmatrix}$

The Sign Value as
$$-R_{13, b}$$

 $\lambda_{1} = -R$, $\lambda_{2} = 3$, $\lambda_{3} = b$
Step: 3
TO find the Sigen vectors
 $(A - \lambda T) \times = 0$
Case(i) $\lambda = -R$
 $\begin{bmatrix} 3 & 1 & 3 \\ 1 & 7 & 1 \\ 3 & 1 & 3 \end{bmatrix} \begin{bmatrix} n_{1} \\ n_{2} \\ n_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
 $Sn_{1} + n_{2} + 3n_{3} = 0$ (1)
 $n_{1} + 7n_{2} + n_{3} = 0$ (2)
 $Sn_{1} + n_{2} + 3n_{3} = 0$ (2)
 $Sn_{1} + n_{2} + 3n_{3} = 0$ (3)
 $(D + (2))$ are some
 $n_{1} \frac{n_{2}}{3} \frac{n_{3}}{3} \frac{1}{3} \frac$

ś

Case with
$$\Lambda = 3$$

$$\begin{bmatrix} -3 & 1 & 3 \\ 1 & 2^{1} & 1 \\ 3 & 1 & -2 \end{bmatrix} \begin{bmatrix} 71 \\ 91 \\ 91 \\ 91 \\ 91 \end{bmatrix} , \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$= R \times 1 + \pi 2 + 3\pi 3 = 0 \qquad (A)$$

$$\Im 1 + \pi 2 + 3\pi 3 = 0 \qquad (A)$$

$$\Im 1 + \pi 2 + 3\pi 3 = 0 \qquad (A)$$

$$\Im 1 + \pi 2 + 3\pi 3 = 0 \qquad (C)$$

$$3\pi 1 + \pi 2 - 3\pi 3 = 0 \qquad (C)$$

$$3\pi 1 + \pi 2 - 3\pi 3 = 0 \qquad (C)$$

$$2^{1} \qquad 7^{2} \qquad 7^{3}$$

$$= 2 \qquad 1 \qquad 3 \qquad -2 \qquad 1$$

$$1 \qquad 2 \qquad 1 \qquad 1 \qquad 2$$

$$2^{1} \qquad 7^{1} = 7^{12} = 7^{13}$$

$$-5 \qquad 5 \qquad -5 \qquad -5$$

$$X_{2} = \begin{bmatrix} -5 \\ 5 \\ -5 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$$

Casetino A=6

$$\begin{bmatrix} -5 & 1 & 3 \\ 1 & -1 & 1 \\ 3 & 1 & -5 \end{bmatrix} \begin{bmatrix} 911 \\ 712 \\ 713 \\ 713 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$-571_1 + 712 + 371_2 = 0 \qquad \qquad \bigcirc \bigcirc$$

$$71_1 - 71_2 + 71_3 = 0 \qquad \qquad \bigcirc \bigcirc$$

$$371_1 + 71_2 - 571_3 = 0 \qquad \qquad \bigcirc \bigcirc$$

$$\frac{\gamma_{1}}{-5} \frac{\gamma_{2}}{1} \frac{\gamma_{3}}{3} \frac{\gamma_{3}}{-5} \frac{\gamma_{3}}{1}$$

$$\frac{-1}{1} \frac{-1}{1} \frac{1}{1} \frac{-1}{-1}$$

$$\frac{\gamma_{11}}{-1} = \frac{\gamma_{12}}{-3+5} \frac{\gamma_{3}}{-5-1}$$

$$\frac{\gamma_{11}}{-1} = \frac{\gamma_{12}}{-5} \frac{\gamma_{3}}{-1}$$

$$\frac{\gamma_{11}}{-1} = \frac{\gamma_{12}}{-5} \frac{\gamma_{3}}{-1}$$

$$\frac{\gamma_{11}}{-1} \frac{\gamma_{12}}{-1} \frac{\gamma_{13}}{-1}$$

$$\frac{\gamma_{12}}{-1} \frac{\gamma_{13}}{-1}$$

$$\frac{\gamma_{13}}{-1} \frac{\gamma_{14}}{-1} \frac{\gamma_{14}}{-1}$$

$$\frac{\gamma_{13}}{-1} \frac{\gamma_{14}}{-1}$$

$$\frac{\gamma_{13}}{-1} \frac{\gamma_{14}}{-1} \frac{\gamma_{14}}{-1}$$

$$\frac{\gamma_{14}}{-1} \frac{\gamma_{14}}{-1} \frac{\gamma_{14}}{-1}$$

 $\int \mathcal{H} \left(\sqrt{n^{2} + n^{2} + \lambda s^{2}} \right)$ $\int \mathcal{H} \left(\sqrt{n^{2} + \lambda s^{2} + \lambda s^{2}} \right)$ $\int \mathcal{H} \left(\sqrt{n^{2} + \lambda s^{2} + \lambda s^{2}} \right)$ $\int \mathcal{H} \left(\sqrt{n^{2} + \lambda s^{2} + \lambda s^{2}} \right)$

Scanned by CamScanner

$$N = \begin{bmatrix} -\frac{1}{12} & -\frac{1}{13} & \frac{1}{16} \\ 0 & \frac{1}{12} & \frac{2}{16} \\ \frac{1}{12} & -\frac{1}{16} & \frac{2}{16} \\ \frac{1}{12} & -\frac{1}{16} & \frac{1}{16} \\ \frac{1}{12} & \frac{1}{16} & \frac{1}{16} \\ \frac{1}{16} & \frac{1}{16} \\ \frac{1}{1$$

Step 5;

$$\begin{array}{c} N^{(7)} \Rightarrow \begin{bmatrix} -1/6 & 0 & 1/6 \\ -1/6 & 1/6 & -1/6 \\ 1/6 & 2/6 & -1/6 \\ 1/6 & 2/6 & -1/6 \\ \end{array}$$

Step: 6

NTAN

$$\begin{bmatrix} -\frac{1}{12} & 0 & \frac{1}{12} \\ -\frac{1}{13} & \frac{1}{13} & -\frac{1}{13} \\ \frac{1}{13} & \frac{1}{13} & \frac{1}{13} \\ \frac{1}{13} & \frac{1}{13} & \frac{1}{13} \\ \frac{1}{12} & \frac{1}{13} & \frac{1}{16} \\ \frac{1}{12} & -\frac{1}{13} & \frac{1}{16} \\ \frac{1}{16} & \frac{1}{16} \\ \frac{1}{16} &$$

3 dbiagonalize the matrix
$$A = \begin{bmatrix} 2 & 0 & 4 \\ 0 & 6 & 0 \\ H & 0 & 2 \end{bmatrix}$$

Solution
Solution
 $\lambda^{3} - 5_{1}\lambda^{2} + 5_{2}\lambda - 5_{3} = 0$
 $5_{1} = 2 + 6 + 2 = 10$
 $5_{2} = (12 - 0) + (12 - 0) + (4 - 16)$
 $= 12(+12 - 42$
 $= 12$
 $5_{3} = [A] = 2(12 - 0) - 0 + 4(0 - 24)$
 $= -72$
The characteristic equin
 $\lambda^{3} - 10\lambda^{2} + 12\lambda + 72 = 0$
 $5tep: 2$
 $70 - find the Eigen Value
 $-2 \begin{bmatrix} 1 - 10 & 12 & 72 \\ 4 - 2 & 24 & -72 \\ 1 & -12 & 36 & 0 \\ 4 & 6 & 1 & 6 \\ 1 & -6 & 0 \\ 4 & 6 & 1 \\ 0 & -8 + 6 + \lambda = 6 \end{bmatrix}$
The Eigen Value $n - 2 + 6 + \lambda = 6$$

Shep: 3
To find the Eigenvector
$$(A - \lambda T) \times = 0$$

 $Can(U) \quad \lambda = -2$
 $\begin{bmatrix} 2t & 0 & 4 \\ 0 & 8 & 0 \\ 4 & 0 & 4 \end{bmatrix} \begin{bmatrix} 2t \\ nz \\ 2t \\ nz \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $\frac{7t}{nz} \quad \frac{7t}{nz} \quad \frac{7t}{nz} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
 $\frac{7t}{nz} \quad \frac{7t}{nz} \quad \frac{7t}{nz} = \frac{7t}{nz}$
 $\frac{7t}{0 - 5^2} = \frac{7t}{0 - 0} = \frac{7t}{3}$
 $Z_1 = \begin{bmatrix} 7t \\ nz \\ nz \end{bmatrix} = \begin{bmatrix} -t \\ 0 \\ 1 \end{bmatrix}$
 $Can(U) \quad \lambda = 6$
 $\begin{bmatrix} -4 & 0 & 4 \\ 0 & 0 \\ A & 0 & -4 \end{bmatrix} \begin{bmatrix} 7t \\ nz \\ nz \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
 $-4\pi t + 4\pi s = 0$
 $z) \quad \pi t - \pi s = 0$ (D)
 $A\pi t - A\pi s = 0$
 $z) \quad \pi t - \pi s = 0$ (D)

6

Step 4 3

To find the normalized matin

$$N = \begin{bmatrix} -\frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ 0 & 0 & 1 \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{bmatrix}$$

Step 5: 70 find NT

Step 1

10 find the NTAN

The sign value is
$$0_{1} \ge 1/1$$

 $N = 0$, $N = \ge$, $N \le 15$
Step is
 $D = find the Sign vectors $(A - AT) \ge 0$
 $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ -8 & -4 & 5 \end{bmatrix} \begin{bmatrix} n_{1} \\ n_{2} \\ n_{3} \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
 $\Im 1 = 6n_{2} + 2n_{3} \ge 0$ \bigcirc
 $\Im 1 = 6n_{2} + 2n_{3} \ge 0$ \bigcirc
 $\Im 1 = 6n_{2} + 2n_{3} \ge 0$ \bigcirc
 $\Im 1 = 4n_{2} + 3n_{3} \ge 0$ \bigcirc
 $\Im 1 = 4n_{2} + 3n_{3} \ge 0$ \bigcirc
 $\Im 1 = -4n_{2} + 3n_{3} \ge 0$ \bigcirc
 $\Im 1 = -4n_{2} + 3n_{3} \ge 0$ \bigcirc
 $\Im 1 = -4n_{2} + 3n_{3} \ge 0$ \bigcirc
 $\Im 1 = -4n_{2} + 3n_{3} \ge 0$ \bigcirc
 $\Im 1 = -4n_{2} + 3n_{3} \ge 0$ \bigcirc
 $\Im 1 = -4n_{2} - 4n_{3} \ge 0$ \bigcirc
 $\Im 1 = -4n_{2} - 4n_{3} \ge 0$ \bigcirc
 $\Im 1 = -4n_{2} - 4n_{3} \ge 0$ \bigcirc
 $\Im 1 = -4n_{2} - 4n_{3} \ge 0$ \bigcirc
 $\Im 1 = -4n_{2} = -12$
 $\Im 1 = -12 + 32 = -54$
 $\Im 1 = -12 + 32 = -34$
 $\Im 1 = -12 + 32 = -34$
 $\Im 1 = -12 + 32 = -34$
 $\Im 1 = -12 + 32 = -34$$

2 2 3

are in A = 3

$$\begin{bmatrix} 5 & -6 & 2 \\ -6 & 4 & -q \\ 8 & -4 & 0 \end{bmatrix} \begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 5n_1 - 6n_2 + 2n_3 = 0 \\ -6n_1 + 4n_2 - qn_3 = 0 \\ 8n_1 - 4n_2 = 0 \\ \hline \end{bmatrix}$$

$$= \begin{bmatrix} 2n_1 \\ n_2 \\ 5n_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{bmatrix}$$

$$\frac{\chi_1}{24-8} = \frac{n_2}{-12+20} = \frac{n_3}{20-36}$$

$$\frac{\gamma_1}{16} = \frac{\gamma_2}{8} = \frac{\gamma_1}{-16}$$

$$\chi'_2 : \begin{bmatrix} 2\\ 1\\ -2 \end{bmatrix}$$

Case ciiv A = 15 $\begin{bmatrix} -7 & -6 & 2 \\ -6 & -8 & -4 \\ 2 & -4 & -12 \end{bmatrix} \begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$

$$-7a_{1} - ba_{2} + 2a_{5} = 0$$

$$-bn_{1} - bn_{2} - 4n_{3} = 0$$

$$\frac{2n_{1} - 4n_{2} - 12n_{5} = 0}{2n_{1} - 4n_{2} - 12n_{5} = 0}$$

$$\frac{7n_{1} - 2n_{2} - 2n_{3} - 4n_{4} - 4n_{5} - 8}{-6n_{4} - 4n_{4} - 8}$$

$$\frac{7n_{1} - 2n_{5} - 4n_{5} - 4n_{5} - 8}{2n_{5} - 4n_{5} - 12n_{5} - 2n_{5} - 31}$$

$$\frac{7n_{1} - 2n_{5} - 2n_{5} - 3n_{5} - 31}{2n_{5} - 12n_{5} - 2n_{5} - 31}$$

$$\frac{7n_{1} - 2n_{5} - 2n_{5} - 2n_{5} - 31}{2n_{5} - 2n_{5} - 31}$$

$$\frac{7n_{1} - 2n_{5} - 2n_{5} - 2n_{5} - 31}{2n_{5} - 2n_{5} - 31}$$

$$\frac{7n_{1} - 2n_{5} - 2n_{5} - 2n_{5} - 31}{2n_{5} - 2n_{5} - 2n_{5} - 31}$$

$$N = \begin{bmatrix} 1/s - 2n_{5} - 2n_$$

E Eliagonalise the matrix
$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

Shep:1
To find the characteristic equation
 $\lambda^{3} - S_{1}\lambda^{2} + S_{2}\lambda - S_{3} = 0$
 $S_{1} = 6 + 9 + 3 = 12$
 $S_{2} = \begin{bmatrix} 6 & -2 \\ -2 & 3 \end{bmatrix} + \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix} + \begin{bmatrix} 6 & 2 \\ 2 & 3 \end{bmatrix}$
 $= (18 - 4) + (9 - 1) + (18 - 4)$
 $= 14 + 8 + 14$
 $= 36$
 $S_{3} = 101 = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$
 $= 6(9 - 1) + 2(-6+2) + 2(9 - 6)$
 $= 6(8) + 2(-4) + 2(-4)$
 $= 48 - 16$
 $= 82$
 \therefore The Characteristic eqn $\lambda^{3} - 12\lambda^{2} + 36\lambda - 32 = 0$.
Shep:2
To find the Eigen value
 $2\begin{bmatrix} 1 & -12 & 36 & -32 \\ y & 2 & -26 & 22 \\ y & 2 & -16 \\ 8 \begin{bmatrix} 1 & -8 \\ y & -16 \\ y & 0 \end{bmatrix}$

$$\begin{array}{c} \partial_{1} = 2 \quad \partial_{2} = 2 \quad \partial_{3} = 8 \\ \begin{array}{c} \text{shop: 3} \\ \text{To find the Eigen vectors} \\ (A - \lambda L) X = 0. \end{array}$$

$$\begin{array}{c} \text{Case(i)} \quad \partial = 8 \\ \begin{bmatrix} 6-8 & -2 \neq 8 & 2 \\ -2 & 3-8 & -1 \\ 2 & -1 & 3-8 \end{bmatrix} \begin{bmatrix} \chi_{1} \\ \chi_{2} \\ \chi_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ \begin{array}{c} \begin{bmatrix} -2 & -2 & 2 \\ -2 & -5 & -1 \\ 2 & -1 & -5 \end{bmatrix} \begin{bmatrix} \chi_{1} \\ \chi_{2} \\ \chi_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ \begin{array}{c} \frac{\chi_{1}}{2} & \frac{\chi_{2}}{2} & \frac{\chi_{3}}{2} \\ -2 & -2 & 2 & -2 & -2 \\ -2 & -5 & -1 & -2 & -5 \\ \hline \chi_{1} & 2 & \frac{\chi_{2}}{2} & -2 & -2 \\ -2 & -5 & -1 & -2 & -5 \\ \hline \chi_{2} & \frac{\chi_{2}}{2} & \frac{\chi_{3}}{2} & \frac{\chi_{3}}{2} \\ \hline \chi_{3} \end{bmatrix} = \begin{bmatrix} 12 \\ -1 \\ 2 \\ -1 \end{bmatrix} = \sum \begin{bmatrix} 2 \\ -1 \\ 2 \\ -2 \end{bmatrix} = \sum \begin{bmatrix} 12 \\ -1 \\ 2 \\ -1 \end{bmatrix} \\ \begin{array}{c} \text{Case(ii)} \\ \lambda = 2 \\ \begin{bmatrix} 6-2 & -2 & 2 \\ -2 & 3-2 & -1 \\ 2 & -1 & -1 \\ 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} \chi_{1} \\ \chi_{2} \\ \chi_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$$

three ean are seeme.

$$\begin{array}{l} & 2\alpha_{1} - 2\alpha_{2} + 2\alpha_{3} = 0 \\ & P(ut \ \alpha_{1} = 0 \\ & 2(o) - 2e + 2a = 0 \\ & -2e + 2a = 0 \\ & \frac{2a_{1}}{2} = 2 \\ & \frac{2a_{2}}{2} = -2a \\ & \frac{2a_{3}}{2} = 2 \\ &$$

`N'

$$\begin{aligned}
\begin{aligned}
Eigen Vectors & N \\
\chi_{1} &= \begin{bmatrix} 2\\ -1\\ 1 \end{bmatrix} & N_{1} = \begin{bmatrix} 2/\sqrt{2}\hat{\zeta}_{1}(-1)\hat{\zeta}_{1}(1)^{2} \\ -1/\sqrt{(2)\hat{\zeta}_{1}(-1)\hat{\zeta}_{1}(1)^{2}} \end{bmatrix} = \begin{bmatrix} \frac{9}{V_{6}} \\ -\frac{1}{V_{6}} \\ -\frac{1}{V_{6}} \\ -\frac{1}{V_{6}} \end{bmatrix} \\
\chi_{2} &= \begin{bmatrix} 0\\ -1\\ -1 \end{bmatrix} & N_{2} = \begin{bmatrix} 0\\ -\frac{1}{\sqrt{(0)^{2}+(-1)^{2}+(-1)^{2}} \\ -\frac{1}{\sqrt{(0)^{2}+(-1)^{2}+(-1)^{2}} \\ -\frac{1}{\sqrt{(0)^{2}+(-1)^{2}+(-1)^{2}} \end{bmatrix}} = \begin{bmatrix} 0\\ -\frac{1}{V_{6}} \\ -\frac{1}{V_{2}} \\ -\frac{1}{V_{2}} \end{bmatrix} \\
\chi_{3} &= \begin{bmatrix} -1\\ 0\\ 2 \end{bmatrix} & N_{3} = \begin{bmatrix} -1/\sqrt{(1)^{2}+(0)^{2}+(0)^{2}} \\ 0\\ 2/\sqrt{(-1)^{2}+(0)^{2}+(0)^{2}} \end{bmatrix} = \begin{bmatrix} -\frac{1}{\sqrt{N_{1}}} \\ 0\\ \frac{1}{\sqrt{N_{5}}} \\ 0\\ \frac{1}{\sqrt{N_{5}}} \end{bmatrix} \\
\vdots & N &= \begin{bmatrix} \frac{9}{V_{6}} & 0 & -\frac{1}{V_{6}} \\ -\frac{1}{V_{6}} & -\frac{1}{V_{6}} \\ -\frac{1}{V_{6}} & 0\\ -\frac{1}{\sqrt{N_{5}}} \end{bmatrix} \\
\underbrace{Shep:S} \\
TO \quad find \quad N^{T} \\
\eta^{T} &= \begin{bmatrix} \frac{9}{V_{6}} & -\frac{1}{V_{6}} & \frac{1}{V_{6}} \\ 0 & -\frac{1}{V_{6}} & -\frac{1}{V_{6}} \\ -\frac{1}{V_{6}} & -\frac{1}{V_{6}} \\ -\frac{1}{V_{6}} & -\frac{1}{V_{6}} \end{bmatrix} \\
\end{aligned}$$

$$Skep:6$$

$$D = \{ \text{ind } \Omega \text{ ragenalization of } \text{ Hatorix} \\ D = N^{T} A D \\ D = \begin{bmatrix} 9 & -1 & \frac{1}{16} & \frac{1}{16} \\ 0 & -\frac{1}{12} & -\frac{1}{12} \\ -\frac{1}{15} & 0 & \frac{2}{3} \end{bmatrix} \begin{bmatrix} 6 - 2 & 2 \\ -2 & 3 - 1 \\ 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} \frac{1}{76} & 0 & -\frac{1}{16} \\ -\frac{1}{76} & -\frac{1}{72} & 0 \\ -\frac{1}{76} & -\frac{1}{72} & 0 \\ -\frac{1}{75} & 0 & \frac{2}{75} \end{bmatrix} \begin{bmatrix} 6 - 2 & 2 \\ -2 & 3 - 1 \\ 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} \frac{1}{76} & -\frac{1}{76} & 0 \\ -\frac{1}{76} & -\frac{1}{72} & \frac{2}{75} \end{bmatrix} \\ D = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \\ D = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \\ C \\ (i) \\ \text{Expand ausing innex quodust space (a) ($6u_1 + 8u_2, \\ 6v_1 - 7v_2 \rangle, (b) \\ 2 & 3u_1 + 5v, \\ 4u_1 - 7v_2 \rangle, (b) \\ 2 & 3u_1 + 5v, \\ 4u_1 - 7v_2 \rangle \\ = 25u_1, \\ 6v_1, -1 & 2u_2 \\ = 25u_1, \\ 6v_1, -1 & 2u_1, \\ -7b & 2u_2, \\ v_2 \rangle \\ (b) \\ 2 & 3u_1 + 5v, \\ 4u_1 + 2 & 3u_1, \\ -bv > + 2 & 5v_2 \\ = 2 & 3u_1, \\ 4u_1 + 2 & 3u_1, \\ -bv > + 2 & 5v_2 \\ = 12 & (u_1u_1) \\ -18 & 2u_1v_2 + \frac{2}{3} & 2v_1u_2 - 30 & 2v_2 \\ N > \end{bmatrix}$$$

I

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 3$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 3$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 5h & 0 & 0 & 0 \end{bmatrix} = 5$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 \end{bmatrix} = 5$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 \end{bmatrix} = 5$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = 1$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix}$$

(b)
$$(1.10) = (1, 2.14) \cdot (4, 3.1-3)$$

 $= 1.1 + 4 - 12$
 $= -4$
(c) $V \cdot W = (2, -3, 5.1) \cdot (4, 2, -3)$
 $= 2 - 6 - 15$
 $= -1.3$
(d) $(4.10) \cdot W = 4.100$
 $= -4.1 + (-13)$
 $= -1.7$
(e) $||W|| = \sqrt{12} + (2)^2 + (4.1)^2}$
 $= \sqrt{2.1}$
 $||W||^2 = 21$
(f) $||V|| = \sqrt{2} + (-5)^2 + (5.1)^2}$
 $= \sqrt{3.8}$
 $||V||^2 = 3.8$

1

(i) show that the metaix
$$B = \begin{bmatrix} \omega_{0} & \omega & \sin \theta \\ -\sin & \omega_{0} & 0 \end{bmatrix} \vec{\omega}$$

(i) they and .
 $BB^{T} = B^{T}B = 2$
 $B^{T} = \begin{bmatrix} \omega_{0} & \omega & -\sin \theta \\ \sin & \omega_{0} & 0 \end{bmatrix} \begin{bmatrix} \omega_{0} & 0 & -\sin \theta \\ \sin & \omega_{0} & 0 \end{bmatrix} (:: \omega_{0}^{2}\theta + \sin^{2}\theta = 1)$
 $= \begin{bmatrix} \omega_{0}^{2}\theta + \sin^{2}\theta & -\sin \theta \\ \sin & \omega_{0} & \sin^{2}\theta + \cos^{2}\theta \end{bmatrix}$
 $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 $BB^{T} = T$
 $B^{T}B = \begin{bmatrix} \omega_{0}\theta & -\sin \theta \\ \sin & \omega_{1}\theta \end{bmatrix} \begin{bmatrix} \omega_{1}\theta & \sin \theta \\ -\sin & \omega_{1}\theta \end{bmatrix}$
 $= \begin{bmatrix} \omega_{0}^{2}\theta + \sin^{2}\theta & \sin \theta \\ -\sin & \omega_{1}\theta \end{bmatrix} \begin{bmatrix} \omega_{1}\theta & \sin \theta \\ -\sin & \omega_{1}\theta \end{bmatrix}$
 $= \begin{bmatrix} \omega_{0}^{2}\theta + \sin^{2}\theta & \sin \theta \\ \sin & \omega_{1}\theta & \sin^{2}\theta + \cos^{2}\theta \end{bmatrix}$
 $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = T$

Diagonality the matrix
$$A = \int_{-6}^{8} -6 \cdot 2 \\ \int_{-6}^{-6} -7 -4 \\ \int_{-4}^{2} -4 \cdot 3 \end{bmatrix}$$

Step: 1
TD find the characteristic Equation
 $\lambda^{5} - 3(\lambda^{2} + s_{2}\lambda - s_{3} = 0)$
S1 = $8 + 7 + 3$
 $= 18$
S2 = $(SL - 3b) + (21 - 1b) + (24 - 4)$
 $= 20 + 5 + 20$
 $= 245$
S2 = 0
TLs characteristic Equation \dot{u}
 $\lambda^{5} - 18\lambda^{5} + 45\lambda = 0$
Step : 2
 $(0 - find + b) = 2igen Values$
 $0 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 18 = 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 45 = 0$
 $3 = 1 - 18 - 18 = 0$

Questions	opt1	opt2
The sum of the main diagonal elements of a matrix is called	trace of a matrix	quadratic form
If $\lambda 1$, $\lambda 2$, $\lambda 3$, λn are the eigen values of A, then $k\lambda 1$, $k\lambda 2$, $k\lambda 3$,, $k\lambda n$ are the eigen values of	kA	kA^2
In a modal matrix, the columns are the	eigen vectors of A	eigen vectors of adj A
If atleast one of the eigen values of A is zero, then det $A =$	0	1
det (A- λI) represents	characteristic polynomial	characteristic equation
If $\lambda 1$, $\lambda 2$, $\lambda 3$, λn are the eigen values of A, then $1/\lambda 1$, $1/\lambda 2$, $1/\lambda 3$,, $1/\lambda n$ are the eigen values of	A^(-1)	A
If $\lambda 1$, $\lambda 2$, $\lambda 3$, λn are the eigen values of A ,then $\lambda 1p$, $\lambda 2p$,	A^(-1)	A^2
The eigen values of a matrix are its diagonal elements	diagonal	symmetric
If the sum of two eigen values and trace of a $3x3$ matrix A are equal, then det A =	λ1 λ2 λ3	0
If 1,5 are the eigen values of a matrix A, then det $A =$	5	0
The eigen vector is also known as	latent value	latent vector
If 1,3,7 are the eigen values of A, then the eigen values of 2A are	1,3,7	1,9,21
If the eigen values of 2A are 2, 6, 8 then eigen values of A are	1,3,4	2,6,8
The Set of all eigen values of the matrix A is called the of A	rank	index
A Square matrix A and its transpose have eigen values.	different	Same
The sum of the of a matrix A is equal to the sum of the principal diagonal elements of A.	characteristic polynomial	characteristic equation
The product of the eigenvalues of a matrix A is equal to	Sum of main diagonal	Determinant of A
The eigenvectors of a real symmetric are	equal	unequal
If all the eigen values of a matrix are distinct, then the corresponding eigen vectors	linearly dependent	unique
A matrix is called symmetric if and only if	A=A^T	A=A^-1
If a matrix A is equal to A ^A T then A is a matrix.	symmetric	non symmetric
A matrix is called skew-symmetric if and only if	A=A^T	A=A^-1
If a matrix A is equal to -A ^A T then A is a matrix.	symmetric	non symmetric
A matrix is called orthogonal if and only if	A^T=A^-1	A^T=-A^-1

opt3	opt4	opt5	opt6	Answer
eigen value	canonical form			trace of a matrix
kA^(-1)	A^(-1)			kA
eigen vectors of inverse ofA	eigen values of A			eigen vectors of A
10	5			0
quadratic form	canonical form			characterist ic polynomial
A^n	A^p			A^(-1)
A^(-p)	A^p			A^p
skew-matrix	triangular			triangular
1	2			0
25	6			5
column value	orthogonal value			latent vector
2,6,14	1,9,49			2,6,14
1,9,16	12,4,3			1,3,4
Signature	spectrum			spectrum
Inverse	Transpose			Same
eigen values	eigen vectors			eigen values
Sum of minors of Main diagonal	Sum of the cofactors of A			Determinan t of A
real	symmetric			real
not unique	linearly independent			linearly independent
A=-A^T	A=A			A=A^T
skew- symmetric	singular			symmetric
A=-A^T	A=A			A=-A^T
skew- symmetric	singular			skew- symmetric
A^T=A^-2	A^T=-A^-2			A^T=A^-1

A matrix is calledif and only if A^T=A^-1.	orthogonal	square
The equation det $(A-\lambda I) = 0$ is used to find	characteristic polynomial	characteristic equation
If the characteristic equation of a matrix A is $\lambda^2 - 2 = 0$, then the eigen values are	2,2	(-2,-2)
Eigen value of the characteristic equation $\lambda^2 - 4 = 0$ is	2, 4	2, -4
Eigen value of the characteristic equation $\lambda^3-6\lambda^2+11\lambda-6=0$ is	1,2,3	1, -2,3
Largest Eigen value of the characteristic equation $\lambda^3 - 3\lambda^2 + 2\lambda = 0$ is	1	0
Smallest Eigen value of the characteristic equation $\lambda^3 - 7\lambda^2 + 36 = 0$ is	-3	3
Sum of the principal diagonal elements =	product of eigen values	product of eigen vectors
Product of the eigen values =	(- A)	1/ A
A Square matrix A and its transpose have eigen values.	different	Same
If 1 and 2 are the eigen values of a 2X2 matrix A, then the eigen values of A^{2} is	2, 4	3,4
If 1 and 2 are the eigen values of a 2X2 matrix A, then the eigen values of A^{-1} is	2,1/2	1,1/2
If a real symmetric matrix of order 2 hasthen the matrix is a scalar matrix.	equal eigen vectors	different eigen vectors
If A and B are nxn matrices and B is a non singular matrix then A and B ⁽⁻¹⁾ AB have	same eigen vectors	different eigen vectors
The eigenvalues of the matrix I_2 are	(1,-1)	(-1,-1)
For any square matrix A, then $A^*(A^T)$ is	symmetric	non symmetric
For any square matrix A, then $A+(A^T)$ is	symmetric	non symmetric
For any square matrix A, then A- (A^T) is	symmetric	non symmetric
Any orthogonal matrix is	symmetric	skew- symmetric
Let A and B be symmetrix matrices of order n. Then AB+BA is	symmetric	non symmetric
Let A and B be symmetrix matrices of order n. Then AB is symmetric iff	AB=BA	BA
Let A be orthogonal matrix of order n. Then A ^A T is	symmetric	orthogonal
Let A and B be orthogonal matrices of the same order. Then AB is	symmetric	orthogonal

non symmetric	triangular	orthogonal
eigen values	eigen vectors	characteristi c equation
(2^(1/2),-2^ (1/2))	(2i,-2i)	(2^(1/2),-2^ (1/2))
2, -2	2, 2	2,-2
1,2,-3	1,-2,-3	1,2,3
2	4	2
-2	6	-2
sum of eigen values	sum of eigen vectors	sum of eigen values
(-1/ A)	A	A
Inverse	Transpose	Same
5,6	1, 4	1,4
1,2	4,1/2	1,1/2
equal eigen values	different eigen values	equal eigen values
same eigen values	different eigen values	same eigen values
(-1,1)	(1,1)	(1,1)
skew- symmetric	singular	symmetric
skew- symmetric	singular	symmetric
skew- symmetric	singular	skew- symmetric
non-singular	singular	non-singular
skew- symmetric	singular	symmetric
AB=0	AB=n	AB=BA
skew- symmetric	singular	orthogonal
skew- symmetric	singular	orthogonal

Questions	opt1	opt2	opt3
The sum of the main diagonal elements of a matrix is called	trace of a matrix	quadrat ic form	eigen value
Every square matrix satisfies its own	characteristic polynomial	charact eristic equatio n	orthogo nal transfor mation
The orthogonal transformation used to diagonalise the symmetric matrix A is	NT AN	NT A	NAN-1
If $\lambda 1$, $\lambda 2$, $\lambda 3$, λn are the eigen values of A ,then $k\lambda 1$, $k\lambda 2$, $k\lambda 3$,, $k\lambda n$ are the eigen values of	kA	kA2	kA-1
Diagonalisation of a matrix by orthogonal reduction is true only for a matrix.	diagonal	triangula	real symme tric
In a modal matrix, the columns are the	eigen vectors of A	eigen vectors of adj A	eigen vectors of inverse ofA
If atleast one of the eigen values of A is zero, then det $A =$	0	1	10
If the canonical form of a quadratic form is 5y12 - 6 y22, then the index is	4	0	2
det (A- λI) represents	characteristic polynomial	charact eristic equatio n	quadrat ic form
If $\lambda 1$, $\lambda 2$, $\lambda 3$, λn are the eigen values of A ,then $1/\lambda 1$, $1/\lambda 2$, $1/\lambda 3$,, $1/\lambda n$ are the eigen values of	A^(-1)	A	A^n
If $\lambda 1$, $\lambda 2$, $\lambda 3$, λn are the eigen values of A ,then $\lambda 1p$, $\lambda 2p$, λnp are the eigen values of	A^(-1)	A^2	A^(-p)
Cayley -Hamilton theorem is used to find	inverse and higher powers of A	eigen va	eigen vectors
The eigen values of a matrix are its diagonal	diagonal	symmet	skew-ma
In an orthogonal transformation NT AN = D, D refers to a matrix.	diagonal	-	symmeti
In a modal matrix, the columns are the eigen vectors of	- A-1	A2	A
If the eigen values of $8x12 + 7 x22 + 3 x32 - 12 x1 x2 - 8 x2 x3 + 4 x3x1$ are 0,3 & 15, then its nature is	positive definite	positiv e semide finite	indefinit

opt4	opt5	opt6	Answer
•	•		trace of
canonic			а
al form			matrix
			charact
canonic			eristic
al form			equatio
			n
NA			NT AN
A-1			kA
scalar			real
Scalar			symme
			tric
eigen values			eigen vectors
of A			of A
01 A			01 A
5			0
1			1
canonic			charact
al form			eristic
			polyno
			mial
A^p			A^(-1)
1			
A^p			A^p
1			1
quadrat			inverse
ic form			and
10 101111			higher
			powers
			of A
triangula	ar		triangula
skew-			diagonal
symme			angonal
tric			
adj A			Α
negativ			positiv
e			e
definite			semide
			finite

	1		
The elements of the matrix of the quadratic form x12 + 3 x22 + 4 x1 x2 are	a11 = 1,a12 =2 , a 21 = 2 , a 22 = 3	a11 = -1, a12 = -2, a 21 = 2, a 22 = 3	a11 = 1, a12 = 4, a 21 = 4, a 22 = 3
If the sum of two eigen values and trace of a $3x3$ matrix A are equal, then det A =	λ1 λ2 λ3	0	1
If 1,5 are the eigen values of a matrix A, then det $A =$	5	0	25
If the canonical form of a quadratic form is $5y12 + 6y22$, then the rank is	4	0	2
The non –singular linear transformation used to transform the quadratic form to canonical form is	X= NTY	X= NY	Y= NX
The eigen vector is also known as	latent value	latent vector	column value
If 1,3,7 are the eigen values of A, then the eigen values of 2A are	1,3,7	1,9,21	2,6,14
If the eigen values of 2A are 2, 6, 8 then eigen values of A are	1,3,4	2,6,8	1,9,16
The number of positive terms in the canonical form is called th	erank	index	Signatur
If all the eigenvalues of A are positive then it is called as	Positive definite	Negati ve definite	Positiv e semide finite
If all the eigenvalues of A are negative then it is called as	Positive definite	Negati ve definite	Positiv e semide finite
A homogeneous polynomial of the second degree in any number of variables is called the	characteristic polynomial	charact eristic equatio n	quadrat ic form
The Set of all eigen values of the matrix A is called the of A	rank	index	Signatur
A Square matrix A and its transpose have eigen value	different	Same	Inverse
The sum of the of a matrix A is equal to the sum of the principal diagonal elements of A.	characteristic polynomial	charact eristic equatio n	eigen values
The product of the eigenvalues of a matrix A is equal to	Sum of main diagonal	Determ inant of A	
The eigenvectors of a real symmetric are	equal	unequal	real
When the quadratic form is reduced to the canonical form, it will contain only r terms, if the of A is r.	rank	index	Signatu

a11 =		a11 =
1, a12		1,a12
=4, a		=2, a
21 = 3, a 22 =		21 = 2, a $22 =$
a 22 – 1		$\frac{a}{3}$
2		0
2		0
6		5
1		2
NXA		X= NY
		latent
orthogo		vector
nal		
value		0 1 1 1
1,9,49		2,6,14
12,4,3		1,3,4
indefinit	e	index
maerini	.0	Index
Negati		Positiv
ve		e
semide		definite
finite		
Negati		Negati
ve		ve
semide		definite
finite		
canonic		quadrat
al form		ic form
spectrun	1	spectrur
Transpose		Same
eigen		eigen
vectors		values
Sum of		Determ
the		inant of
cofacto		Α
rs of A		
symmet	ric	real
spectrum		rank
-		

The excess of the number of positive terms over the number of negative terms in the canonical form is called the of the quadratic form.	rank	index	Signatu
If all the eigen values of A are less than zero and atleast one eigen value is zero then the quadratic form is said to be	Positive definite	Negative	Positive
If all the eigen values of A are greater than zero and atleast one eigen value is zero then the quadratic form is said to be	Positive definite	Negati ve definite	Positiv e semide finite
If the quadratic form has both positive and negative terms then it is said to be	Positive definite	Negati ve definite	Positiv e semide finite

spectrum	Signatu
Negati	Negati
ve	ve
semide	semide
finite	finite
Negati	Positiv
ve	e
semide	semide
finite	finite
indefinite	indefini

KARPAGAM ACADEMY OF HIGHER EDULATION DEPARTMENT OF SCIENCE AND HUMANITIES. I.B.E. COMPUTER SCIENCE AND ENGINEERING. MATHEMATICS - I (18BECSIOI)

UNIT- W CALCULUS

PART-C.

I. Find the equation of evolute of the parabola $y^2 = 4ax$. solution:

ster & The Parametric form.

 $\chi = at^2$; y = aat. $\frac{d\chi}{dt} = aat$.; $\frac{dy}{dt} = aa$.

$$y_{1} = dy_{dx} = aa_{dat} = 1t. = y_{1} = 1/t.$$

$$y_{2} = \frac{d^{2}y}{dx^{2}} = \frac{d}{dt} \left(\frac{dy}{dx} \right) \frac{dt}{dx}$$
$$= \frac{dy}{dt} \left[\frac{y_{1}}{t} \right] \left(\frac{y_{2}}{t} \right)$$

$$dep s: Jo find (\overline{x}, \overline{y})$$

$$fet (x, y) be centre of curvature, then
$$X = x - \left[\frac{y_1(1+y_1^2)}{y_2}\right]$$

$$= at^2 - \left[\frac{(y_2)(1+y_1^2)}{-y_2at^3}\right]$$

$$= at^2 + aat^2(y_2)(1+y_{2^3})$$

$$= at^2 + aat^2(y_2)$$

$$X = 3at^2 + aat^2(y_2)$$

$$= aat + \left[\frac{1+y_2}{y_3}\right]$$

$$= aat + \left[\frac{1+y_2}{y_3}\right]$$

$$= aat - aat^2 - aat^3$$

$$= aat - aat - aat^3$$

$$\boxed{Y = -aat^3}, \qquad \longrightarrow (2)$$$$

step 3: To eliminate it' from U) 1(2) (2) -> Y=-Rat3 U) -> K= Bat2 + aa -1 = t3; X-2a=2at2 $\left(\frac{k-2a}{3a}\right) = t^2$ $(t^3)^2 = (-\frac{1}{2}a)^2$ $(t^2)^3 = [t_2 - 2\alpha]^3$ $t^{b} = \underbrace{(k-2a)^{3}}_{a \neq a^{3}} \longrightarrow (3),$ $t^{b} = \frac{y^{2}}{4a^{2}} \longrightarrow (4),$ F.com (3) & (4) $\frac{(\chi - 2\alpha)^3}{24\alpha^3} = \frac{4^2}{4\alpha^2}$ 422, 4 (x-2a)3 = 27ay2. steph: Locus of (X.Y) A[x-2a]3= 2 ray2, which is the required evolute of the raiabola y = Aax. 2) Find the evolute of parabola $x^2 = 4ay$. solution ; ster 1 She Parametric form x=dat y= at? day de = 2a dy de = 2at.

$$\begin{aligned} \mathcal{X}_{M_{1}} = \frac{dy}{dx} = \frac{aat}{aa} = t. \\ \mathcal{Y}_{2} = \frac{d^{2}y}{dx^{2}} = \frac{d}{dt} \left(\frac{dy}{dt}\right) \left(\frac{dt}{dt}\right) \\ = \frac{d}{dt} \left(\frac{t}{dt}\right) \left(\frac{dt}{dt}\right) \\ = \frac{d}{dt} \left(\frac{t}{t}\right) \left(\frac{y_{2a}}{dt}\right) \\ \frac{y_{2}}{y_{2}} = \frac{y_{2a}}{y_{a}} \end{aligned}$$

$$\begin{aligned} \mathcal{Y}_{2} = \frac{y_{2a}}{y_{a}} \\ \mathcal{Y}_{2} = \frac{y_{2a}}{y_{a}} \\ = \frac{aat}{2} - \left[\frac{t}{y} \frac{(1+y_{1}^{2})}{y_{2a}}\right] \\ = \frac{aat}{2} - \frac{aat}{at} \left(\frac{1+t^{2}}{y_{2a}}\right) \\ = \frac{aat}{2} - \frac{aat}{2} + \frac{aat}{2} - \frac{aat^{3}}{y_{2}} \end{aligned}$$

$$\begin{aligned} \mathcal{Y}_{1} = \frac{y_{1}}{y_{1}} \left[\frac{y_{1}}{y_{2}}\right] \\ = \frac{at^{2} + \left[\frac{y_{1}}{y_{2}}\right] \\ = \frac{at^{2} + \left[\frac{y_{1}}{y_{2}}\right] \\ = \frac{at^{2} + aa}{2} + \frac{at^{2} + aa}{2} \end{aligned}$$

$$\frac{1}{10} = \frac{1}{2} = \frac{1$$

Scanned by CamScanner

$$\frac{dx}{d\theta} = -a \sin \theta$$

$$\frac{dy}{dx} = -by \quad \cot \theta$$

$$\frac{y_{1}}{dx} = -by \quad \cot \theta$$

$$\frac{y_{2}}{dx} = -by \quad \cot \theta$$

$$\frac{y_{2}}{dx} = -by \quad \cot \theta$$

$$\frac{y_{2}}{dx} = -by \quad \cot \theta$$

$$\frac{y_{3}}{dx} = -\frac{b}{(b)} \left(-b(x) + b(x) - (-b(x))\right)$$

$$= -\frac{b}{a^{2}} \left(-b(x) + b(x) - (-b(x))\right)$$

$$\frac{y_{2}}{dx} = -\frac{b}{a^{2}} \left(-b(x) + b(x) - (-b(x))\right)$$

$$\frac{y_{3}}{dx} = \frac{-b}{a^{2}} \left(-b(x) + b(x) - (-b(x))\right)$$

$$\frac{y_{3}}{dx} = \frac{-b}{a^{2}} \left(-b(x) + b(x) - (-b(x))\right)$$

$$\frac{y_{4}}{dx} = -\frac{b}{a^{2}} \left(-b(x) + b(x) - (-b(x))\right)$$

$$\frac{y_{5}}{dx} = \frac{-b}{a^{2}} \left(-b(x) + b(x) - (-b(x))\right)$$

$$\frac{y_{5}}{dx} = \frac{a^{2}}{a^{2}} \left(-b(x) + b^{2}\right)$$

$$\frac{y_{5}}{a^{2}} \left(-b(x) + b^{2}\right)$$

$$\frac{y_{5}}{a^{2}} \left(-b(x) - a^{2} + b^{2}\right)$$

$$\frac{y_$$

$$z = a \cos \theta - a \sin^{2} \theta \cos \theta - \frac{b^{2}}{a} \cos^{2} \theta$$

$$= a \cos^{2} \theta - \frac{b^{2}}{a} \cos^{2} \theta - \frac{b^{2}}{a} \cos^{2} \theta$$

$$= \left[a - \frac{b^{2}}{a}\right] \cos^{2} \theta$$

$$= \left[a - \frac{b^{2}}{a}\right] \cos^{2} \theta$$

$$\frac{y}{a} = \left[\frac{a - b^{2}}{a}\right] \cos^{2} \theta$$

$$\frac{y}{a} = \left[\frac{a - b^{2}}{a}\right] \cos^{2} \theta$$

$$\frac{y}{a} = \left[\frac{a - b^{2}}{a}\right] \cos^{2} \theta$$

$$\frac{y}{a} = \frac{a^{2}}{a} \left[\cos^{2} \theta - \frac{b^{2}}{a^{2}}\right]$$

$$= b \sin \theta + \left[\frac{1 + b^{2}/a^{2}}{-b/a^{2}} \left(\frac{\cot^{2} \theta}{\sin^{2} \theta}\right)\right]$$

$$= b \sin \theta - \frac{a^{2}}{b} \sin^{2} \theta - \frac{a^{2}}{b^{2}} \sin^{2} \theta$$

$$= b \sin \theta - \frac{a^{2}}{b} \sin^{2} \theta - \frac{a^{2}}{b^{2}} \sin^{2} \theta$$

$$= b \sin \theta - \frac{a^{2}}{b} \sin^{2} \theta - \frac{a^{2}}{b^{2}} \sin^{2} \theta$$

$$= b \sin \theta - a^{2}/b \sin^{2} \theta - b \sin \theta \cos^{2} \theta$$

$$= b \sin \theta \left[1 - \cos^{2} \theta - b \sin \theta - b \sin^{2} \theta$$

$$= b \sin^{2} \theta \left[1 - \cos^{2} \theta - b \sin^{2} \theta - b \sin^{2} \theta\right]$$

$$= b \sin^{2} \theta \left[1 - \cos^{2} \theta - b \sin^{2} \theta - b \sin^{2} \theta$$

$$\begin{aligned} \text{rtep 3: } J_{\mathcal{S}} = (a^{2}-b^{2})^{2/3} (ba^{3}\theta)^{1/3}. \\ \text{(2)} \rightarrow X^{2/3} = (a^{2}-b^{2})^{2/3} (ba^{3}\theta)^{1/3}. \\ \text{(2)} \rightarrow Y^{2/3} = (b^{2}-a^{2})^{2/3} (ba^{3}\theta)^{1/3}. \\ \text{(2)} \rightarrow Y^{2/3} = (b^{2}-a^{2})^{2/3} (ba^{3}\theta)^{1/3}. \\ \text{(2)} \rightarrow Y^{2/3} = (b^{2}-a^{2})^{2/3} (ba^{3}\theta). \\ \text{(2)} \rightarrow Y^{2/3} = (b^{2}-a^{2})^{2/3} (ba^{3}\theta). \\ \text{(2)} \rightarrow (b^{2}-a^{2})^{2/3} (ba^{3}\theta). \\ \text{(2)} \rightarrow (b^{2}-a^{2})^{2/3} (ba^{2}\theta). \\ \text{(2)} \rightarrow (b^{2}-a^{2})^{2/3} (ba^{2}-a^{2}). \\ \text{(2)} \rightarrow (b^{2}-a^{2})^{2/3} (ba^{2}-a^{2}-b^{2})^{2/3}. \\ \text{(2)} \rightarrow (b^{2}-a^{2})^{2/3} (ba^{2}-a^{2}-b^{2})^{2/3}. \\ \text{(2)} \rightarrow (b^{2}-a^{2})^{2/3} (ba^{2}-a^{2}-b^{2})^{2/3}. \\ \text{(2)} \rightarrow (b^{2}-a^{2}-b^{2})^{2/3} (ba^{2}-a^{2}-b^{2}-b^{2})^{2/3}. \\ \text{(2)} \rightarrow (b^{2}-a^{2}-b^{2}-b^{2})^{2/3}. \\ \text{(2)} \rightarrow (b^{2}-a^{2}-b^{2$$

•

•

$$y_2 = b/a \left[-\cos(a, \cot b)\right]$$

a selo. tano.

$$step d: (x, y)$$

$$x = x - \frac{y_1(1+y_1^2)}{y_2}$$

$$= a seto - b/a coseco (1+b^2/a^2 cosec^2 o)$$

$$-b/a cot^2 o$$

$$= a set o + \frac{1}{a} \frac{coseco (a^2+b^2 cosec^2 o)}{cot^2 o}$$

$$= a set o + \frac{1}{a} \frac{coseco (a^2+b^2 cosec^2 o)}{cot^2 o}$$

$$= a set o + \frac{1}{a} \frac{y_5 y_5 o}{cos^2 o} - \frac{so^2 o}{cos^2 o} (a^2+b^2 \frac{1}{so^2 o})$$

$$= a set o + \frac{1}{a} \frac{1-cos^2 o}{cos^2 o} + \frac{b^2}{a cos^2 o}$$

$$= a set o + \frac{a(1-cos^2 o)}{cos^2 o} + \frac{b^2}{a} sec^3 o$$

$$= a sec b + a sec^3 o - a set o + \frac{b^2}{a} sec^2 o$$

$$= a^2 sec b + a sec^2 o - a^2 sec o + \frac{b^2}{a} sec^3 o$$

ax = a secon a secso = a' recorb' secto. > ax = ca2+62) secio (ax)2/3 = (a2+b2)2/3 sec20 -> () $Y = y + \frac{1+y_1^2}{y^2}$ = b tano + $\left(\frac{1+b^2}{a^2}\right)$ $\left(\frac{-b/a^2}{a^2}\right)$ = btand - $\frac{a^2 + b^2}{a^2} = \frac{1}{sun^2 a}$ b/a> Corso = $b \tan \theta - \left(\frac{a^2}{4b^2} + \frac{b^2}{b}\right) \cdot \frac{1}{b} \frac{\sin^3 \theta}{\cos^3 \theta}$ = b+an 0 - a /b +an30 - b+ano .sec20 $bY = -(a^2+b^2)+ar^3 o$ $(by)^{2/3} = (a^{2}+b^{2})^{2/3} + an^{2}o$ \longrightarrow 2, step 3: Eliminating O. $(1) - (2) = (ax)^{2/3} - (by)^{2/3} = (a^{2} + b^{2})^{2/3} (sec^{2} o - fan^{2} o)$ (ax)213 - (b-1)213 = (a2+62)213. step A! Locus. Lowe of (x, y) is (ax)213 - (by)213 = (a°+62) 2/3 which gives

the equation of evolute of given hyperbola.

S. Find the surface area of the reliad generated by revolving
the are of parabola
$$y^{*} = hax$$
, bounded by x-axis and (0,0) to (no)
Sculate area = $siz \int_{a}^{b} y \sqrt{H(\frac{dg}{dx})^{2}} dx$.
 $y^{2} = hax$.
 $y = a \sqrt{a}\sqrt{a}$.
Differintating $y^{2} = hax$,
 $ay dy/dx = ha$.
 $dy/dx = ha^{2}$.
 $\frac{a^{2}}{y^{2}}$
 $= \frac{ha^{2}}{y^{2}}$
 $= \frac{ha^{2}}{y^{2}}$
 $= \frac{ha^{2}}{y^{2}}$
 $= \frac{\sqrt{ha}}{hax} = \frac{9}{h}$.
 $\sqrt{H(\frac{dy}{dy})^{2}} = \sqrt{Ha}/a$.
 $= \sqrt{\pi}A$.
S.A = $dz \int_{a}^{b} a\sqrt{a} \sqrt{h} \sqrt{\pi}A$.
 $= A\pi Ta \int_{a}^{b} (2h+a)^{3/2} dx$.

$$= \frac{8}{4\pi \sqrt{a}} \left[\frac{(\pi + a)^{3/2}}{3/2} \right]^{a}$$

$$= 4\pi \sqrt{a} \frac{(\pi + a)^{3/2}}{3/2} \left[(2a)^{3/2} - (a)^{3/2} \right]$$

$$= \frac{8}{3}\pi \sqrt{a} \left[\sqrt{2} \cdot a\sqrt{a} - a\sqrt{a} \right]$$

$$= \frac{8}{3}\pi \sqrt{a} \cdot \sqrt{a} \left[\sqrt{2} \cdot a\sqrt{a} - a\sqrt{a} \right]$$

$$= \frac{8}{3}\pi \sqrt{a} \cdot \sqrt{a} \cdot \sqrt{a} \left[\sqrt{2} - 1 \right]$$

$$= \frac{8}{3}\pi \sqrt{a}^{2} \left[\sqrt{2} - 1 \right] \cdot \sqrt{a} \cdot \frac{1}{a}$$

Find the Surface area of the Solid
Obtained by revaluation by are of the
Curve
$$y = sinx$$
 from $x = 0$ to $x = TT$
about $x - axis$.
Solution.
Surface Area = $2TT \int_{a}^{b} y \int 1 + (\frac{dy}{dx})^{2} \cdot dx$
Given,
 $y = Sinx$.
Differentiate with respect to x ,
 $\frac{dy}{dx} = cosx$.
 $\int \frac{dy}{dx} = cos^{2}x$.
 $\int 1 + (\frac{dy}{dx})^{2} = \sqrt{1 + cos^{2}x}$

6.

$$= 2\pi \int_{0}^{\pi} \int_{0}^{\pi} x \int_{1}^{1} + \cos^{2} x \cdot dx$$

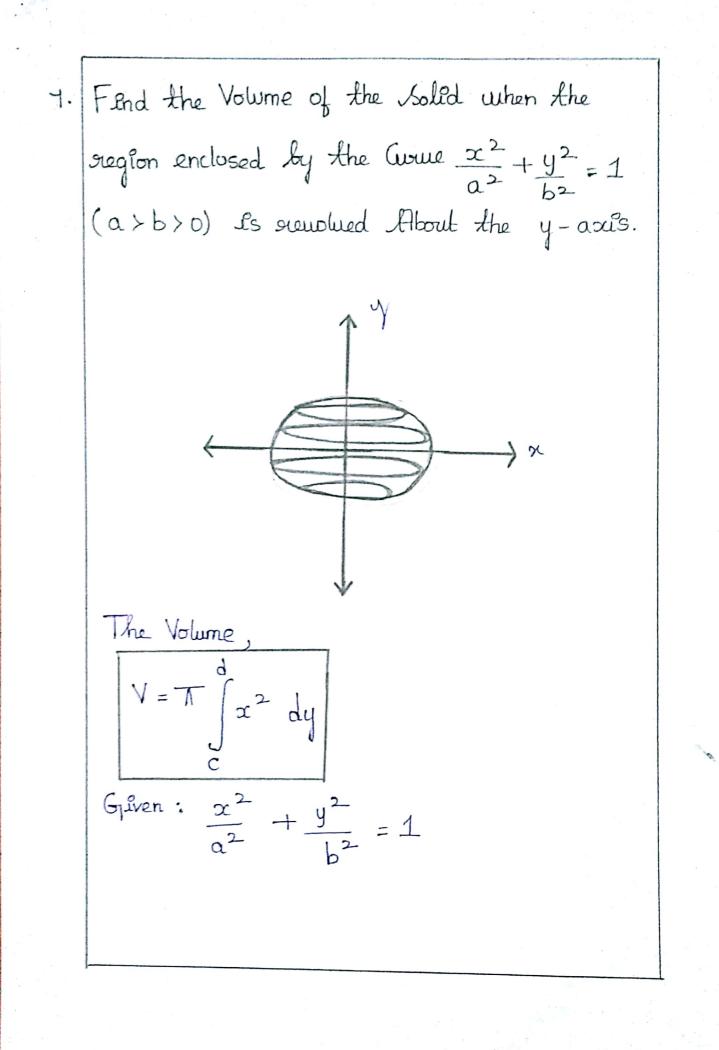
$$= 2\pi \int_{1}^{1} \int_{1}^{1} + t^{2} (-dt)$$

$$= 2\pi \int_{1}^{1} \int_{1}^{1} + t^{2} dt \qquad Put t = \cos x$$

$$= 2\pi \times 2 \int_{0}^{1} \int_{1}^{1} + t^{2} dt \qquad \frac{dt}{dx} = -S \ln x$$

$$dt = -A \ln x dx$$

$$= 4\pi \int_{0}^{1} \int_{1}^{1} + t^{2} dt \qquad \frac{x}{t} \int_{1}^{2} \int_{1}^{2}$$



$$\frac{x^{2}}{a^{2}} = 1 - \frac{y^{2}}{b^{2}}$$

$$x^{2} = a^{2} \left(1 - \frac{y^{2}}{b^{2}}\right)$$

$$y = axis \rightarrow The limits $b \ do - b$

$$V = T \int_{a}^{b} a^{2} \left(1 - \frac{y^{2}}{b^{2}}\right) dy.$$

$$= 2\pi a^{2} \int_{0}^{b} \left(\frac{b^{2} - y^{2}}{b^{2}}\right) dy.$$

$$= 2\pi a^{2} \int_{0}^{b} \left(b^{2} - \frac{y^{2}}{b^{2}}\right) dy.$$

$$= \frac{2\pi a^{2}}{b^{2}} \int_{0}^{b} \left(b^{2} - \frac{y^{2}}{b^{2}}\right) dy.$$

$$= \frac{2\pi a^{2}}{b^{2}} \left[b^{2}y - \frac{y^{3}}{3}\right]_{y=0}^{y=b}$$

$$= \frac{2\pi a^{2}}{b^{2}} \left[\left(b^{2}b - \frac{b^{3}}{3}\right) - \left(0 - 0\right)\right]$$

$$= \frac{2\pi a^{2}}{b^{2}} \left(b^{3} - \frac{b^{3}}{3}\right)$$$$

$$= \frac{2 \operatorname{Ta}^{2}}{b^{2}} \left(\frac{3b^{3} - b^{3}}{3} \right)$$

$$= \frac{2 \operatorname{Ta}^{2}}{3b^{2}} \left(2b^{3} \right)$$

$$V = \frac{4 \operatorname{Ta}^{2} b}{3} \quad (vbic . Units .)$$
Volume of the Aoled = $\frac{4 \operatorname{Ta}^{2} b}{3} \quad (vbic . Units_{n})$

8. Evaluate
$$\int_{T/6}^{T/3} \frac{dx}{1+\sqrt{\tan x}}$$

Let, $I = \int_{T/6}^{T/3} \frac{dx}{1+\sqrt{\tan x}}$
 $I = \int_{T/6}^{T/3} \frac{dx}{1+\sqrt{\frac{\sin x}{\cos x}}}$
 $I = \int_{T/6}^{T/3} \frac{dx}{(\sqrt{\cos x} + \sin x)}$
 $I = \int_{T/6}^{T/3} \frac{dx}{\sqrt{\cos x}}$
 $I = \int_{T/6}^{T/3} \frac{\sqrt{\cos x}}{\sqrt{\cos x}} \cdot dx \longrightarrow 0$
 $I = \int_{T/6}^{T/3} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sin x}} \cdot dx \longrightarrow 0$
 $I = \int_{T/6}^{T/3} \frac{\sqrt{\cos x} + \pi/6 - x}{\sqrt{\cos (\pi/3 + \pi/6 - x)} \cdot dx}$

$$I = \int_{-\infty}^{\pi/3} \frac{\sqrt{\cos(\pi/2 - x)} dx}{\sqrt{\cos(\pi/2 - x)} + \sin(\pi/2 - x)}$$

$$I = \int_{-\infty}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \cos x} \rightarrow (2)$$

$$I'_{5} = \int_{-\pi/6}^{\pi/3} \frac{\sqrt{\sin x} + \cos x}{\sqrt{\sin x} + \cos x} + \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \cos x}$$

$$I = \int_{-\pi/6}^{\pi/3} \frac{\sqrt{\cos x} + \sqrt{\sin x}}{\sqrt{\sin x} + \cos x} + \frac{dx}{\sqrt{\sin x} + \cos x}$$

$$2I = \int_{-\pi/6}^{\pi/3} \frac{\sqrt{\sin x} + \cos x}{\sqrt{\sin x} + \cos x} + \frac{dx}{\sqrt{\sin x} + \cos x}$$

$$RI = \int_{-\pi/6}^{\pi/3} \frac{dx}{\pi/6}$$

$$I = \frac{4}{2} [x]_{-\pi/6}^{\pi/3}$$

$$= \frac{1}{2} \left[\frac{\pi}{3} - \frac{\pi}{6} \right]$$
$$= \frac{1}{2} \left[\frac{\pi}{6} \right]$$
$$= \frac{\pi}{12} \times$$
$$T = \frac{\pi}{12} \times$$

9.
$$\frac{P_{\text{Hove fhat}}}{P(m,n)} = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$$
We know that,

$$\frac{\Gamma(m)}{\int_{0}^{\infty} e^{-t} t^{m-1} dt}{\int_{0}^{\infty} e^{-t} t^{m-1} dt}$$
Put $t = x^{2}$
 $\frac{dt}{dx} = 2x$
 $dt = 2x \cdot dx$
 $\Gamma(m) = \int_{0}^{\infty} e^{-x^{2}} x^{2}(m-1) \cdot 2x dx$.
 $= 2 \int_{0}^{\infty} e^{-x^{2}} x^{2m-2} \cdot x' dx.$

$$= 2 \int_{0}^{\infty} e^{-x^{2}} x^{2m} x^{-2} x^{1} dx.$$

$$= 2 \int_{0}^{\infty} e^{-x^{2}} x^{2m} x^{-1} dx.$$

$$r^{-}(m) = 2 \int_{0}^{\infty} e^{-x^{2}} x^{2m-1} dx.$$

$$r^{-}(n) = 2 \int_{0}^{\infty} e^{-y^{2}} y^{2n-1} dy.$$

$$r^{-}(m) \cdot r^{-}(n) = 2 \int_{0}^{\infty} e^{-x^{2}} x^{2m-1} dx x$$

$$2 \int_{0}^{\infty} e^{-y^{2}} y^{2-1} dy.$$

$$= 4 \int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^{2}+y^{2})} x^{2m-1} y^{2n-1}.$$

$$dx dy \rightarrow (1)$$

Transform to Polar co-ardinates.
Put
$$x = \pi \cos \theta$$

 $y = \pi \sin \theta$
 $dxdy = \pi d\pi d\theta$,
 $x^2 + y^2 = x^2$ and,
 θ Varies from θ to $\pi/2$
 $\pi/2$
 $\theta = \sqrt{2} \sin^2 \theta$ from θ to $d\theta$
 $\pi/2$
 $\theta = \sqrt{2} \sin^2 \theta$ from θ to $d\theta$
 $\pi/2$
 $\theta = \sqrt{2} \sin^2 \theta$ from θ to $d\theta$
 $\pi/2$
 $\theta = \sqrt{2} \sin^2 \theta$
 $\pi/2$
 $\pi/2$
 $\theta = \sqrt{2} \sin^2 \theta$
 $\pi/2$
 $\pi/2$
 $\theta = \sqrt{2} \sin^2 \theta$
 $\pi/2$
 $\pi/2$
 $\pi/2$
 $\theta = \sqrt{2} \sin^2 \theta$
 $\pi/2$
 π

10.
$$\frac{\text{Evaluat}}{\mathbb{T}/2}$$
11)
$$\int_{0}^{\mathbb{T}/2} e^{2x} \cdot \cos x \cdot dx.$$
12)
$$\int_{0}^{\mathbb{T}/2} e^{2x} \cdot \cos x \cdot dx.$$
13)
$$\int_{0}^{\mathbb{T}/2} e^{2x} \cdot \cos x \, dx = \left[\left(\frac{e^{2x}}{2^{2} + 2} \right) \left(2 \cos x + \sin x \right) \right]$$

$$= \left[\frac{e^{2}}{5} (\pi/2) \left(2 \cos (\pi/2) + \sin (\pi/2) \right) \right] - \left[\frac{e^{0}}{5} 2 \cos 0 + \sin 0 \right]$$

$$= \frac{e^{\pi}}{5} (0 + 1) - \frac{1}{5} (2 \times 1 + 0)$$

$$= \frac{e^{\pi}}{5} (1) - \frac{1}{5} (2)$$

$$= \frac{1}{5} (e^{\pi} - 2)_{\infty}.$$

$$\begin{cases} f(f) \\ \int_{0}^{a} \sqrt{a^{2} - x^{2}} dx \\ = \left[\frac{\pi}{2} \sqrt{a^{2} - x^{2}} + \frac{a^{2}}{2} \sin^{-1}(\frac{x}{a}) \right] \\ = \left[\frac{a}{2} \sqrt{a^{2} - a^{2}} + \frac{a^{2}}{2} \sin^{-1}(\frac{a}{a}) \right] - \left[\frac{o}{2} \sqrt{a^{2} - o} + \frac{O^{2}}{2} \sin^{-1}(\frac{o}{a}) \right] \\ = \frac{a^{2}}{2} \sqrt{a^{2} - a^{2}} + \frac{a^{2}}{2} x^{2} \sin^{-1}(\frac{a}{a}) - \left[\frac{o}{2} \sqrt{a^{2} - o} + \frac{O^{2}}{2} x^{2} \sin^{-1}(\frac{o}{a}) \right] \\ = \frac{a^{2}}{2} \sqrt{a^{2} - a^{2}} + \frac{a^{2}}{2} x^{2} \sin^{-1}(\frac{o}{a}) \\ = \frac{a^{2}}{2} \sqrt{a^{2} - a^{2}} \left[\frac{a^{2}}{2} \sqrt{a^{2} - a^{2}} + \frac{a^{2}}{2} x^{2} \sin^{-1}(\frac{o}{a}) \right] \\ = \frac{a^{2}}{2} \sqrt{a^{2} - a^{2}} \left[\frac{a^{2}}{a} - \frac{a^{2}}{2} \left[\frac{a^{2}}{a} + \frac{a^{2}}{a^{2}} + \frac{a^{2}}{a^{2}} \right] \\ = \frac{a^{2}}{2} \sqrt{a^{2} - a^{2}} \left[\frac{a^{2}}{a} + \frac{a^{2}}{a^{2}} + \frac{a^{2}}{a^{2}} + \frac{a^{2}}{a^{2}} + \frac{a^{2}}{a^{2}} \right] \\ = \frac{a^{2}}{2} \sqrt{a^{2} - a^{2}} \left[\frac{a^{2}}{a} + \frac{a^{2}}{a^{2}} + \frac{a^{2}}{a^{2}$$

$$\int_{0}^{\frac{\pi}{2}} \sin^{\frac{\pi}{2}} dx = \int_{0}^{\frac{\pi}{2}} \cos^{\frac{\pi}{2}} dx = \begin{cases} \frac{h-1}{h} \cdot \frac{h-3}{h-2} \cdots , \\ \frac{1}{h} \ln \frac{fs \ odd}{h-1} \\ \frac{h-1}{h} \cdot \frac{h-3}{h-2} \cdots , \frac{1}{2} \cdot \frac{\pi}{2} \end{cases}$$

$$= \int_{0}^{\frac{\pi}{2}} \ln \frac{fs \ even}{f} \int_{0}^{\frac{\pi}{2}} \frac{f}{h} \ln \frac{fs \ even}{h} \int_{0}^{\frac{\pi}{2}} \frac{f}{h} \ln$$

Questions	opt1	opt2
What is the value of Gamma of one ?	0	1
gamma (n+1)=	(n+1)!	n gamma (n+1
what is the value of gamma(1/2)?	pi	0
Which one of the following statement is true?	gamma(2)=gam	r gamma(1/2)=
Which one of the following statement is false?	gamma(2)=gam	gamma(1)=1
gamma(1/4). gamma(3/4)=	2pi	pi√2
The values of gamma(4)=	1!	2!
If C ' is the evolute of the curve C then C is called the of the curve C '	involute	curvature
of a curve is the envelope of the normals of that curve.	involute	curvature
The parametric coordinates of the parabola $x^2=4ay$ are	(x=at^2 y=2at)	(x=at y=at)
The parametric coordinates of the ellipse is given by	(x=acos theta y=bsin theta)	(x=asin theta y=bcos theta)
The parametric coordinates of the hyperbola is given by	(x=acos theta y=bsin theta)	(x=asin theta y=bcos theta)
The parametric coordinates of the parabola $y^2=4ax$ are	(x=at^2 y=2at)	(x=at y=at)
The locus of the centre of curvature for a curve is called its evolute and the curve is called an of its evolute.	involute	evolute
The locus of the centre of curvature for a curve is called its	involute	evolute
If $y=1/x$, then $y_{1}=$	-1/x^2	1/x
If $y=x^2$, then $y_1=$	x^2	1/x
If $y=x^2$, then $y^2=$	x^2	1/x
If $x=2at$ then $dx/dt=$	2at	2a
If $x=at^2$ then $dx/dt=$	2at	2a
If $y=ax^2+2ax$ then dy/dx at (3,2) is	8a	4ax
If $y=ax^2+2ax$ then dy/dx at (2,2) is	8a	4ax
If $y=ax^2+2ax$ then dy/dx is	8ax+2a	4ax+2
If y=ax^2+2ax then second derivative is	2a	4ax
The volume of the solid of revolution generated by revolving the plane area bounded by the circle $x^2+y^2=a^2$ about its diameter is	(4/3) pi a^3	(2/3) pi a^3
The volume of the solid of revolution generated by revolving the plane area bounded by the circle $x^2+y^2=2^2$ about its diameter is	(32/3)pi	(1/3)pi
The volume of the solid of revolution generated by revolving the plane area bounded by the circle $x^2+y^2=3^2$ about its diameter is	16 pi	9 pi
The Volume of a sphere of radius 'a' is	2/3 8 pi a^3	4/3 pi a^3
The surface are of the sphere of radius 'a' is	4 pi a^2	pi a^2
The Volume of a sphere of radius '2' is	16/3 pi	32/3 pi
The surface area of the sphere of radius '3' is	36 pi	9 pi
int dx=	x+C	1

opt3	opt4	opt5	opt6	Answer
2	3			1
gamma (n-1)	n gamma (n)			n gamma (n)
	root(pi)			root(pi)
gamma (1/2)=	gamma(1/2)=	0		gamma(2)=gamma(1)
	gamma (n+1)			gamma (n+1)=n+1
v(2pi)	1			pi√2
3!	4!			3!
radius of curvature	centre of curvature			involute
radius of curvature	evolute			evolute
(x=2at y=at^2)	(x=a y=t)			(x=2at y=at^2)
(x=atan theta y=bsec theta)	(x=asec theta y=btan theta)			(x=acos theta y=bsin theta)
(x=atan theta y=bsec theta)	(x=asec theta y=btan theta)			(x=asec theta y=btan theta)
(x=2at y=at^2)	(x=a y=t)			(x=at^2 y=2at)
envelope	curvature			involute
envelope	curvature			evolute
ax	bx			-1/x^2
2x	x			2x
2x	2			2
2t	0			2a
2t	0			2at
2ax	6a			8a
2ax	6a			6a
2ax+2a	6a			2ax+2a
6ax	6a			2a
(1/3) pi a^3	pi a^3			(4/3) pi a^3
(2/3)pi	pi			(32/3)pi
36 pi	pi			36 pi
1/3 pi a^3	pi a^3			4/3 pi a^3
3 pi a^2	2 pi a^2			4 pi a^2
8/3 pi	8 pi			32/3 pi
27 pi	18 pi			36 pi
0	x^2			x+C

int cdx=	cx+C	0
int 5dx=	x+C	5x+C
int x^n dx=	$x^{(n+1)}/(n+1)$	x^(n-1)/ (n-1)+
int xdx=	x^2+C	x^2/2+C
int $x^{(2)} dx = \dots$	(x^(2)/2)+C	(x^(3)/3)+C
int 3x^(2) dx=	3x^(2)+C	x+C
int (1/x) dx=	1+ C	log x+C
int e^(x) dx=	(-e^x)+ C	e^(-x) + C
int e^(-x) dx=	(-e^x)+ C	e^(-x) + C
int e^(2x) dx=	(-e^2x)/2+ C	$e^{(-2x)/2} + C$
int e^(-2x) dx=	(-e^(-2x))/2+ C	$e^{(-2x)/2} + C$
int cosx dx=	sinx + C	cosx + C
int sinx dx=	sinx + C	$\cos x + C$
int cosmx dx=	(sinmx)/m + C	$(\cos mx)/m + C$

1	x+C	(ex+C
x^2+C	5+C	5	5x+C
nx^ (n-1)+ C	(n+1) x^ (n+1)+ C 3	$x^{(n+1)}/(n+1) + C$
x^3/2+C	x^2/2+C	Σ	x^2/2+C
x+C	2x+C	((x^(3)/3)+C
x^2+C	x^(3) +C	2	x^(3) +C
(-1)+C	$(-\log x)+C$	1	og x+C
(-e^(-x))+C	$e^x + C$	E	$e^{x} + C$
(-e^(-x))+C	$e^x + C$	((-e^(-x))+C
(-e^(-2x))/2+0	$e^2x/2+C$	E	$e^{2x/2} + C$
(-e^(-2x))/2+0	$e^{(-2x)/2+C}$	E	$e^{2x/2} + C$
(-cosx)+C	(-sinx)+C	S	sinx + C
(-cosx)+C	(-sinx)+C	((-cosx)+C
(-cosmx)/m+0	(-sinmx)/m+C	2 ((sinmx)/m+ C

Questions	opt1	opt2	opt3
The sum of the main diagonal elements of a matrix is called	trace of a matrix	quadrat ic form	eigen value
Every square matrix satisfies its own	characteristic polynomial	charact eristic equatio n	orthogo nal transfor mation
The orthogonal transformation used to diagonalise the symmetric matrix A is	NT AN	NT A	NAN-1
If $\lambda 1$, $\lambda 2$, $\lambda 3$, λn are the eigen values of A ,then $k\lambda 1$, $k\lambda 2$, $k\lambda 3$,, $k\lambda n$ are the eigen values of	kA	kA2	kA-1
Diagonalisation of a matrix by orthogonal reduction is true only for a matrix.	diagonal	triangula	real symme tric
In a modal matrix, the columns are the	eigen vectors of A	eigen vectors of adj A	eigen vectors of inverse ofA
If atleast one of the eigen values of A is zero, then det $A =$	0	1	10
If the canonical form of a quadratic form is 5y12 - 6 y22, then the index is	4	0	2
det (A- λI) represents	characteristic polynomial	charact eristic equatio n	quadrat ic form
If $\lambda 1$, $\lambda 2$, $\lambda 3$, λn are the eigen values of A ,then $1/\lambda 1$, $1/\lambda 2$, $1/\lambda 3$,, $1/\lambda n$ are the eigen values of	A^(-1)	A	A^n
If $\lambda 1$, $\lambda 2$, $\lambda 3$, λn are the eigen values of A ,then $\lambda 1p$, $\lambda 2p$, λnp are the eigen values of	A^(-1)	A^2	A^(-p)
Cayley -Hamilton theorem is used to find	inverse and higher powers of A	eigen va	eigen vectors
The eigen values of a matrix are its diagonal	diagonal	symmet	skew-ma
In an orthogonal transformation NT AN = D, D refers to a matrix.	diagonal	-	symmeti
In a modal matrix, the columns are the eigen vectors of	A-1	A2	A
If the eigen values of $8x12 + 7x22 + 3x32 - 12x1x2 - 8x2$ x3 +4 x3x1 are 0,3 & 15, then its nature is	positive definite	positiv e semide finite	indefinit

opt4	opt5	opt6	Answer
•	•		trace of
canonic			а
al form			matrix
			charact
canonic			eristic
al form			equatio
			n
NA			NT AN
			1.
A-1			kA
scalar			real
Scalar			symme
			tric
eigen values			eigen vectors
of A			of A
01 A			01 A
5			0
1			1
canonic			charact
al form			eristic
			polyno
			mial
A^p			A^(-1)
1			
A^p			A^p
1			1
quadrat			inverse
ic form			and
10 101111			higher
			powers
			of A
triangula	ar		triangula
skew-			diagonal
symme			angona
tric			
adj A			Α
negativ			positiv
e			e
definite			semide
			finite

The elements of the matrix of the quadratic form x12 + 3 x22 + 4 x1 x2 are	a11 = 1,a12 =2 , a 21 = 2 , a 22 = 3	a11 = -1, a12 = -2, a 21 = 2, a 22 = 3	a11 = 1, a12 = 4, a 21 = 4, a 22 = 3
If the sum of two eigen values and trace of a $3x3$ matrix A are equal, then det A =	λ1 λ2 λ3	0	1
If 1,5 are the eigen values of a matrix A, then det $A =$	5	0	25
If the canonical form of a quadratic form is $5y12 + 6y22$, then the rank is	4	0	2
The non –singular linear transformation used to transform the quadratic form to canonical form is	X= NTY	X= NY	Y= NX
The eigen vector is also known as	latent value	latent vector	column value
If 1,3,7 are the eigen values of A, then the eigen values of 2A are	1,3,7	1,9,21	2,6,14
If the eigen values of 2A are 2, 6, 8 then eigen values of A are	1,3,4	2,6,8	1,9,16
The number of positive terms in the canonical form is called th	rank	index	Signatur
If all the eigenvalues of A are positive then it is called as	Positive definite	Negati ve definite	Positiv e semide finite
If all the eigenvalues of A are negative then it is called as	Positive definite	Negati ve definite	Positiv e semide finite
A homogeneous polynomial of the second degree in any number of variables is called the	characteristic polynomial	charact eristic equatio n	quadrat ic form
The Set of all eigen values of the matrix A is called the of A	rank	index	Signatur
A Square matrix A and its transpose have eigen value	different	Same	Inverse
The sum of the of a matrix A is equal to the sum of the principal diagonal elements of A.	characteristic polynomial	charact eristic equatio n	eigen values
The product of the eigenvalues of a matrix A is equal to	Sum of main diagonal	Determ inant of A	
The eigenvectors of a real symmetric are	equal	unequal	real
When the quadratic form is reduced to the canonical form, it will contain only r terms, if the of A is r.	rank	index	Signatu

a11 =		a11 =
1, a12		1,a12
=4, a		=2, a
21 = 3, a 22 =		21 = 2, a $22 =$
a 22 – 1		$\frac{a}{22} = 3$
2		0
2		Ŭ
6		5
1		2
NXA		X=NY
		latent
orthogo		vector
nal		
value		
1,9,49		2,6,14
12,4,3		1,3,4
indefinit	e.	index
macrimit		Шисх
Negati		Positiv
ve		e
semide		definite
finite		
Negati		Negati
ve		ve
semide		definite
finite		
canonic		quadrat
al form		ic form
spectrun	n	spectrun
Transpo	se	Same
eigen		eigen
vectors		values
Sum of		Determ
the		inant of
cofacto		А
rs of A		
symmetr	ric	real
spectrun		rank
-		

The excess of the number of positive terms over the number of negative terms in the canonical form is called the of the quadratic form.	rank	index	Signatu
If all the eigen values of A are less than zero and atleast one eigen value is zero then the quadratic form is said to be	Positive definite	Negative	Positive
If all the eigen values of A are greater than zero and atleast one eigen value is zero then the quadratic form is said to be	Positive definite	Negati ve definite	Positiv e semide finite
If the quadratic form has both positive and negative terms then it is said to be	Positive definite	Negati ve definite	Positiv e semide finite

spectrum	Signatu
Negati	Negati
ve	ve
semide	semide
finite	finite
Negati	Positiv
ve	e
semide	semide
finite	finite
indefinite	indefini

KARPAGAM ALADENTY OF HIGHER, EDUCATION

DEPARTMENT OF SCIENCE AND HUMANITIES I-B.E. COMPUTERI SCIENCE AND ENGINEERING HATHEMATICS-I (Calculus and Linoa Digetora)-183ECS101

> QUUESTION BANK UNIT-V CCALCULUS) Part-C

1) (?) Obtain the Taylor's series expansion for $f(x) = \cos x$ at $x = \frac{\pi}{2}$ $\frac{e^{2} 0!}{2}$

The Taylor Series is,

$$f(x) = f(a) + \frac{f'(a)}{1!}(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots$$

$$f(x) = \cos x = f(\pi/L) + \frac{f'(\pi/L)}{1!}(x - \pi/L) + \frac{f''(\pi/L)}{2!}(x - \pi/L)^2 + \dots$$

$$= 0 + (-\frac{1}{1!}(x - \pi/L)) + 0 + \frac{1}{3!}(x - \pi/L)^3 + 0 + \dots$$

$$f(x) = \cos x = -(2c - \pi/L) + \frac{1}{3!}(x - \pi/L)^3 + \dots$$

(i) Obtain the Taylor Series for partial for
$$f(x) = dinx about x = T_{2}$$

(ii) Obtain the Taylor Series for partial for $f(x) = din x$ about $x = T_{2}$
(iii) $f(x) = din x$
 $f'(x) = corx$
 $f''(x) = corx$
 $f''(x) = -din x$
 $f''(T_{2}) = -din T_{2} = 0$
 $f'''(x) = -lesx$
 $f'''(T_{2}) = -din T_{2} = 0$
 $f'''(x) = -lesx$
 $f'''(T_{2}) = -cos T_{2} = 0$
 $f'''(x) = din x$
 $f'''(T_{2}) = din T_{2} = 1$
The Taylor Series is,
 $f(x) = din x$
 $f(x) = f(x) + \frac{f'(x)}{1!}(x-a) + \frac{f''(x)}{2!}(x-a)^{2} + \dots$
 $f(x) = din x = f(T_{2}) + \frac{f'(T_{2})}{1!}(x-a_{1}) + \frac{f''(T_{2})}{2!}(x-a_{1})^{2} + \dots$
 $= 1 + 0 + (-\frac{11}{2!}(x-m_{2})^{2} + 0 + \frac{1}{4!}(x-m_{2})^{4} + \dots$
 $= 1 - \frac{1}{2!}(x-m_{1})^{2} + \frac{1}{4!}(x-m_{1})^{4} + \dots$

2.) (5) Obtain the Ma claurin's series expression for
$$f(x) = tan^{-1}x$$

dot::
(finen that: $f(x) : tan^{-1}x$
 $f(x) : 4x^{2}x$
 $= 1 + tan^{2}x$
 $= 1 + [f(x)]^{2}$
 $f''(x) : 2f(x) \cdot f'(x)$
 $f'''(x) : 2[f(x), f''(x) + f'(x), f''(x)]$
 $f''(x) : 2[f(x), f''(x) + f''(x), f''(x)]$
 $f''(x) : 2[f(x), f''(x) +$

(i) Obtain the Maclaucia's series expansion for
$$f(x) = \tan^{-1} x$$

 $f(x) = \tan^{-1} x$
 $f'(x) = \frac{1}{1+x^2} + 1 - x^2 + x^4 + x^6 + \dots$
 $f''(x) = -2x + 4x^3 - 6x^5 + \dots$
 $f''(x) = -2 + 12x^2 - 20x^4 + \dots$
 $f''(x) = -2 + 12x^2 - 20x^4 + \dots$
 $f''(x) = 24x - 120x^3 + \dots$
 $f''(x) = 24x - 360x^2 + \dots$
 $f''(x) = 24 - 360x^2 + \dots$
 $f''(x) = 24$
The Maclaucia's Series is,
 $f(x) = f(x) + \frac{f'(x)}{1!} x + \frac{f''(x)}{2!} x^2 + \dots$
 $f(x) = \tan^{-1} x = 0 + \frac{1}{1!} x + 0 - \frac{2}{3!} x^3 + 0 + \frac{24}{5!} x^5 + \dots$
 $f''(x) = \tan^{-1} x = x - \frac{2}{3!} x^3 + \frac{24}{120} x^5 + \dots$

J5) Find the absolute maximum and absolute minimum tarties of

$$f(x) = x^3 + 3x^2 + 1$$
, $-\frac{1}{2} \le x \le 4$.
 $f(x) = x^3 - 3x^2 + 1$
 $f(x) = 3x^2 - 6x$
To find calified numbers,
 $f^{100} = 0 = 3$ $3x^2 - 6x \ge 0$ $3x = 0$ (or) $x = 2 = 0$
 $x = 0$ (or) $x = 2$
 $x = 0$
 $x = -16$,
 $f(x) = x^3 - 3(x)^2 + 1 = 8 - 12 + 1 = -3$
 $f(x) = x^3 - 3(x)^2 + 1 = 8 - 12 + 1 = -3$
 $f(x) = -\frac{1 - 6}{8} + 8 = 1/8$
 $f(x) = -\frac{1 - 6}{8} + 8 = 1/8$
 $f(x) = -\frac{1 - 6}{8} + 8 = 1/8$
 $f(x) = -\frac{1 - 6}{8} + 8 = 1/8$
 $f(x) = -3$
The absolute max, is $f(x) = 17$
The absolute max, is $f(x) = 17$

(ii) Find the absolute maximum and minimum values of

$$f(x) = x^{4}/(2x^{3}/x) = x^{3} - 12x + 1$$
, $[-3, 5]$
Apl:
 $5tep(0): f(x) = x^{3} - 12x + 1$
 $f'(x) = 3x^{2} - 12$
To find coitical numbers
 $f'(x) = 0 \implies 3x^{2} - 12 = 0 \implies 3(x^{2} - 4)^{\frac{3}{2}} 0 \implies x^{2} - 4 = 0 \implies x^{2} = 4$
 $x = \sqrt{y} \implies x = t2 \quad 9 - 2$
 $5tep(0): \frac{Put = 3}{f(x)} = 2^{3} - 12(2) + 1 = 8 - 24 + 1 = -15$
 $\frac{Put = x = -2}{f(-2)} = (-2)^{3} - 12(-2) + 1 = -8 + 24 + 1 = -15$
 $\frac{Put = x = -2}{f(-3)} = (-2)^{3} - 12(-3) + 1 = -27 + 36 + 1 = 10$
 $\frac{Put = x = 5}{f(5)} = 5^{3} - 12(5) + 1 = -27 - 60 + 1 = 66$

The absolute max. is
$$f(5) = 66$$

The absolute min. is $f(a) = -15$

Find the local maximum and ilocal minimum values of
Find the local maximum and ilocal minimum values of

$$1^{1} \int (x) = x^{4} - 3x^{3} + 3x^{2} - x$$

 $\delta(x) = x^{4} - 3x^{3} + 3x^{2} - x$
 $\delta(x) = 4x^{3} - 9x^{2} + 6x - 1$
To find critical number :-
 $1^{1} \downarrow \downarrow \downarrow 4 - 5 + 1$
 $1^{1} \downarrow 4$

11-6

Put x = $\frac{1}{2}\left(\frac{1}{4}\right) = 12\left(\frac{1}{4}\right)^{3} - 18\left(\frac{1}{4}\right) + 6$ $=\frac{12}{16}-\frac{18}{4}+6$ 7 · B $=\frac{3}{4}-\frac{9}{2}+6$ $= \frac{3-18}{4} + 6$ $=\frac{-15}{4}+6$ $= -\frac{15+24}{4} = \frac{9}{4} (\pm ine)$ $\left(\binom{1}{4}, \binom{-27}{256}\right)$ is the local minimum.

Find the tocal Maximum and local minimum values of

$$f(x) = 2x^{3} + 5x^{2} - 4x$$
Solution:

$$f'(x) = 6x^{2} + 10x - 4$$

$$= 3x^{2} + 5x - 2$$

$$f'(x) = 0$$

$$3x^{2} + 5x - 2 = 0$$

$$(3x - 1)(x + 2) = 0$$

$$x = -2 - 2 + x = \sqrt{3}$$
Put $x = -2$

$$f(-2) = 2(-2)^{3} + 5(-2)^{2} - 4(-2)$$

$$= -16 + 20 + 8$$

$$f(-2) = 12/7$$
Fut $x = \sqrt{3}$

$$f(\sqrt{3}) = 2(\sqrt{3})^{3} + 5(\sqrt{3})^{2} - 4(\sqrt{3})$$

$$= \frac{2}{27} + 5/9 - 4/3 = \frac{2 + 15 - 36}{27} = \frac{-19}{27}/7$$
The Stationary point (-2, 12) ($\sqrt{3}$, -19/27)
$$f''(x) = 12x + 10$$
Put $f''(-2) = 12(-2) + 10 = -24 + 10 = -14/(-ire)$
Put $f(\sqrt{3}) = 12(\sqrt{3}) + 10 = 4 + 10 = 14(+ire)$
Positive ($\sqrt{3}$, -19/27) is local minimum Magative (-2, 12) is local maximum//

a "a, "a, "a, "antimitational antimit

いい かく 一般の あたい

Evaluate
$$\lim_{x \to \frac{\pi}{2}} (\tan x)^{\log x}$$
 by using d'hospital's sule
Solution:
Let $y = (\tan x)^{\log x}$ ($\cos^{\circ} form$)
Take log on both soides
 $\log y = \log \tan x^{\cos x}$
 $\log y = \log \tan x^{\cos x}$
 $\log y = \cos x \log \tan x$ ($\cos^{\circ} x = x \log^{\circ} x$
 $\chi \to \pi/2$ $\log y = x \to \pi/2$ $\cos x \log \tan x$.
By using l'ho pital's rule:
 $x \to \pi/2$ $\log y = x \to \pi/2$ $\log \tan x$ ($\cos x = \frac{1}{\sec x}$
 $x \to \pi/2$ $\log y = x \to \pi/2$ $\log \tan x$
 $\lim_{x \to \pi/2} \log y = x \lim_{x \to \pi/2} \frac{\log \tan x}{\sec x}$ ($\cos x = \frac{1}{\sec x}$
 $\lim_{x \to \pi/2} \log y = x \lim_{x \to \pi/2} \frac{1}{\csc^2 x}$
 $\lim_{x \to \pi/2} \log y = x \lim_{x \to \pi/2} \frac{1}{\tan x} \cdot \sec^2 x \tan x$.
 $\lim_{x \to \pi/2} \log y = \lim_{x \to \pi/2} \frac{1}{\tan x} \cdot \sec^2 x \tan x$.
 $\lim_{x \to \pi/2} \log y = \lim_{x \to \pi/2} \frac{1}{\tan^2 x} \cdot \sec^2 x \tan x$
 $\lim_{x \to \pi/2} \log y = x \lim_{x \to \pi/2} \frac{1}{\tan^2 x} \cdot \sec^2 x \tan x$.
 $\lim_{x \to \pi/2} \log y = x \lim_{x \to \pi/2} \frac{1}{\tan^2 x} \cdot \sec^2 x \tan x}{\sec x = \frac{1}{\cos^2 x}}$

 $\chi \xrightarrow{\lim} \pi/2 \frac{\cos \chi}{\sin^2 \chi}$ x im T/2 logy = $= \chi \xrightarrow{\lim} \pi y_2 \frac{\cos \chi}{\sin^2 \chi}$ $\frac{(08 \pi/2)}{(Sin \pi/2)^2} \begin{pmatrix} -: (08 90^\circ = 0) \\ Gin 90 = 1 \end{pmatrix}$ $\frac{0}{1^2} = \frac{0}{1} = 0/1$ $x \rightarrow \pi/2 \log y = 0$ By composite function : $\chi \xrightarrow{\lim} \pi_{/_{2}} \log y = 0$ $log x \rightarrow \overline{y}_2 y = 0$ $\left(\begin{array}{c} \cdot \cdot e^{\circ} = I_{//} \end{array} \right)$ $x \rightarrow \pi y_2 y = e^0$ lim $x \longrightarrow \pi y_2 (\tan x)^{\cos x} = 1/1.$

Evaluate 2 >0 (cos x) 1/2 by using I 'hospital's sule Solution;-Let $y = (\cos x)'/x$ Taking log on both bides log y = log (cosx) 1/x (" loga"= x.loga) log y = 1 log (cosx) $x \stackrel{\text{lim}}{\to} o \log y = x \stackrel{\text{lim}}{\to} o \cdot \frac{1}{x} \log (\cos x)$ By using l'hapital rule $n\log x = \frac{1}{x}$ $\chi \rightarrow 0$ $\log y = \chi \rightarrow 0 + -\frac{\sin x}{\cos x}$ $\cos x = -\sin x$ logcosx = 1 - 5inx $x \xrightarrow{\lim} \log y = x \xrightarrow{\lim} -\frac{\sin x}{\cos x}$ $x \xrightarrow{\lim} \log y = x \xrightarrow{\lim} -\frac{\sin x}{\cos x}$ $x \rightarrow 0$ logy = - tan 0 = 0/1. By composite function. x time logy = 0 ·X ... e = 1 log x in o y = 0 $\mathcal{X} \xrightarrow{\text{lim}} 0 \cdot y = e^0$ $\alpha \rightarrow 0 (\cos x)^{1/x} = \frac{1}{1}$

Scanned by CamScanner

Evaluate
$$\lim_{x \to 0} (\cos x)^{\sin x}$$
 by using l'ho pital sule
Solution:-
Let $y = (\cos x)^{\sin x}$
Take log on both bides
 $\log y = \log (\cos x)^{\sin x}$
 $\log y = \log (\cos x)^{\sin x}$
 $\log y = \sin x \log (\cos x)$
 $x \lim_{x \to 0} \log y = x \lim_{x \to 0} \sin x \log(\cos x)$
By using l'ho. pital sule.
 $x \lim_{x \to 0} \log y = x \lim_{x \to 0} \cos x \frac{1}{(\cos x)} - \sin x$
 $\lim_{x \to 0} \log y = \lim_{x \to 0} -\sin x$
 $\lim_{x \to 0} \log y = -\sin 0 = 0$
By composite function:
 $x \lim_{x \to 0} y = 0$
 $\log x \lim_{x \to 0} y = 0$
 $\lim_{x \to 0} y = e^{0}$
 $\lim_{x \to 0} (\cos x)^{\sin x} = 1$

Evaluate
$$\lim_{x \to 0+} x^{\sin x}$$
 by using l'ho pital's sule
SOLUTION:-
(0° form)
Let $y = x^{\sin x}$
Taking log on both sides
 $\log y = \log x^{\sin x}$ (:: $\log a^{x} = x \log q$)
 $\log y = \log x \sin x$ (:: $\log a^{x} = x \log q$)
 $\log y = \sin x \log x$
 $x \to 0 + \log y = x^{-\sin x} \log x$
 $x \to 0 + \log y = x^{-\sin x} \log x$
 $x \to 0 \log y = x^{-\sin x} \log x$
 $x \to 0 \log y = x^{-\sin x} \frac{\log x}{\cos x}$
 $\lim_{x \to 0} \log y = x^{-\sin x} \frac{\log x}{\cos x}$
 $\lim_{x \to 0} \log y = x^{-\sin x} \frac{1}{x} - \frac{1}{\cos x} \tan x}{\cos x}$
 $\lim_{x \to 0} \log y = x^{-\sin x} \frac{1}{x} - \frac{\sin x}{\cos x}$
 $= x^{-\sin x} \frac{1}{x} - \frac{\sin x}{\cos x}$
 $= x^{-\sin x} - \frac{1}{x} - \frac{\sin x}{\cos x}$
 $= x^{-\sin x} - \frac{1}{x} - \frac{\sin x}{\cos x}$
 $= x^{-\sin x} - \frac{2\sin x}{\cos x}$
 $u^{-x} \sin x + \cos x$.
 $u^{-x} \sin x + \cos x$.
 $u^{-x} \sin x + \cos x$.
 $u^{-x} - \frac{2}{0} = 0//$

BY COMPOSITE FUNCTION:-

 $x \xrightarrow{\lim} o_{f} \log y = 0$ x timber log y = 0 log a Do+ y = 0 $x \rightarrow 0 y = e^{0}$

 $x \rightarrow 0 x^{binx} = 1//$

°. e° = 1

Questions	opt1	opt2
The Taylor series of f(x) about the point 0 is series.	Maclaurins	Taylor
The expansion of f(x) by Taylor series is	zero	unique
The point at which function $f(x)$ is either maximum or minimum is		0.111
known as point	Stationary	Saddle point
A function f has at 'c' if $f(c) \ge f(x)$ for all 'x' in D, where D is domain of 'f'.	an absolute maximum	an absolute minimum
If $f(x) = x^2$ then $f(0) = 0$ is the value of f	an absolute	an absolute
If $f(x) = x^2$, then $f(0) = 0$ is the value of f.	maximum	minimum
A function f has a at 'c' if there is an open interval I containing 'c' such that $f(c) \ge f(x)$ for all 'x' in I.	an absolute maximum	an absolute minimum
A function f has a at 'c' if there is an open interval I containing	an absolute	an absolute
'c' such that $f(c) \le f(x)$ for all 'x' in I.	maximum	minimum
	critical	stationary
If 'f' has a at 'c' and if f'(c) exists then $f'(c)=0$.	number	point
A function 'f' has at 'c' if $f(c) \le f(x)$ for all 'x' in D, where D is domain of 'f'.	an absolute maximum	an absolute minimum
If 'f' has a local extremum at 'c' and if $f'(c)$ exists then $f'(c)=$	0	1
Evaluate: limit x tends to $0 (x / \tan x) =$	1	2
Evaluate: limit x tends to infinity $(x^2 / e^x) =$	1	2
L'Hopital's rule can be applied only to differentiable functions for which the limis are in the form	real	indeterminat e
L'Hopital's rule can be applied only tofunctions for which the limits are in the indeterminate form	differentiable	real
If $f(x) = x^3$, then the function has	eiher an absolute maximum or an absolute minimum	neiher an absolute maximum nor an absolute minimum
A of a function f is a number c in the domain of f such that either $f'(c) = 0$ or $f'(c)$ does not exist		stationary point
are critical numbers c in he domain of f, for which f'(c)=0	Critical number	Stationary points
If f has a local extremum at c, then c is a of f	critical number	stationary point
If f has a at c, then c is a critical number of f	critical number	stationary point
If $f(x)=x^2 - 4x + 5$ on [0,3] then the absolute maximum value is	2	3
Find the critical numbers, for the function $f(x)=x^3 - 3x^2 + 1$.	(12)	(0 2)
Find the critical numbers, for the function $f(x)=x^3 - 3x + 1$.	(11)	(-1 1)
Find the critical number, for the function $f(x)=2x - 3x^2$.	(1/2)	(1/3)
Find the critical number, for the function $f(x)=x^2 - 2x + 2$.	0	1
Find the critical number, for the function $f(x)=1-2x-x^2$.	0	1
Find the critical numbers, for the function $f(x)=x^3 - 12x + 1$.	(01)	(0 2)

opt3	opt4	opt5	opt6	Answer
power	binomial	_		Maclaurins
minimum	maximum			unique
extremum	implicit			Stationary
local	locam			an absolute
maximam	minimum			maximum
	an absolute			an absolute
local	and local			and local
maximam	minimum			minimum
local	locam			local
maximam	minimum			maximam
local	local			local
maximam	minimum			minimum
local	an absolute			local
extremum	maximum			extremum
local				an absolute
maximam	locam minimum			minimum
с	(-1)			1
3	0			1
3	0			0
				indetermina
complex	extremum			te
1				differentiabl
complex	extremum			e
				neiher an
				absolute
				maximum nor an
local	locam			absolute
maximam	minimum			minimum
local	an absolute			critical
extremum	maximum			number
Local	An absolute			Stationary
extremum	maximum			points
local	an absolute			critical
extremum	maximum			number
local	an absolute			local
extremum	maximum			extremum
4	5			5
(2 2)	(13)			(0 2)
(0 1)	(-1 -1)			(-1 1)
(1/4)	1			(1/3)
2	3			1
2	3			1
(0 3)	(0 4)			(0 4)

Find the stationary point of the function $f(x)=2x - 3x^2$	(1 1)	(12)
Find the stationary point of the function $f(x)=x^3 - 3x + 1$	(1 -1) and (-1 3)	(1 -1)
Find the absolute maximum of the function $f(x) = x^2 - 2x + 2$, [0,3]	1	3
Find the absolute minimum of the function $f(x) = x^2 - 2x + 2$, [0,3]	1	3
Find the absolute maximum of the function $f(x) = 1-2x-x^2$ [-4,1]	1	2
Find the absolute minimum of the function $f(x) = 1-2x-x^2$ [-4,1]	1	2

(1/3 1/3)	(1/2 1)	(1/3 1/3)
(-1 3)	(1 1) and (1 3)	(1 -1) and (-1 3)
5	8	5
5	8	1
7	8	2
(-7)	(-8)	(-7)

Questions	opt1	opt2	opt3
The sum of the main diagonal elements of a matrix is called	trace of a matrix	quadrat ic form	eigen value
Every square matrix satisfies its own	characteristic polynomial	charact eristic equatio n	orthogo nal transfor mation
The orthogonal transformation used to diagonalise the symmetric matrix A is	NT AN	NT A	NAN-1
If $\lambda 1$, $\lambda 2$, $\lambda 3$, λn are the eigen values of A ,then $k\lambda 1$, $k\lambda 2$, $k\lambda 3$,, $k\lambda n$ are the eigen values of	kA	kA2	kA-1
Diagonalisation of a matrix by orthogonal reduction is true only for a matrix.	diagonal	triangula	real symme tric
In a modal matrix, the columns are the	eigen vectors of A	eigen vectors of adj A	eigen vectors of inverse ofA
If atleast one of the eigen values of A is zero, then det $A =$	0	1	10
If the canonical form of a quadratic form is 5y12 - 6 y22, then the index is	4	0	2
det (A- λI) represents	characteristic polynomial	charact eristic equatio n	quadrat ic form
If $\lambda 1$, $\lambda 2$, $\lambda 3$, λn are the eigen values of A ,then $1/\lambda 1$, $1/\lambda 2$, $1/\lambda 3$,, $1/\lambda n$ are the eigen values of	A^(-1)	A	A^n
If $\lambda 1$, $\lambda 2$, $\lambda 3$, λn are the eigen values of A ,then $\lambda 1p$, $\lambda 2p$, λnp are the eigen values of	A^(-1)	A^2	A^(-p)
Cayley -Hamilton theorem is used to find	inverse and higher powers of A	eigen va	eigen vectors
The eigen values of a matrix are its diagonal	diagonal	symmet	skew-ma
In an orthogonal transformation NT AN = D, D refers to a matrix.	diagonal	-	symmeti
In a modal matrix, the columns are the eigen vectors of	A-1	A2	A
If the eigen values of $8x12 + 7x22 + 3x32 - 12x1x2 - 8x2$ x3 +4 x3x1 are 0,3 & 15, then its nature is	positive definite	positiv e semide finite	indefinit

opt4	opt5	opt6	Answer
•	•		trace of
canonic			а
al form			matrix
			charact
canonic			eristic
al form			equatio
			n
NA			NT AN
			1.
A-1			kA
scalar			real
Scalar			symme
			tric
eigen values			eigen vectors
of A			of A
01 A			01 A
5			0
1			1
canonic			charact
al form			eristic
			polyno
			mial
A^p			A^(-1)
1			
A^p			A^p
1			1
quadrat			inverse
ic form			and
10 101111			higher
			powers
			of A
triangula	ar		triangula
skew-			diagonal
symme			angona
tric			
adj A			Α
negativ			positiv
e			e
definite			semide
			finite

The elements of the matrix of the quadratic form x12 + 3 x22 + 4 x1 x2 are	a11 = 1,a12 =2 , a 21 = 2 , a 22 = 3	a11 = -1, a12 = -2, a 21 = 2, a 22 = 3	a11 = 1, a12 = 4, a 21 = 4, a 22 = 3
If the sum of two eigen values and trace of a $3x3$ matrix A are equal, then det A =	λ1 λ2 λ3	0	1
If 1,5 are the eigen values of a matrix A, then det $A =$	5	0	25
If the canonical form of a quadratic form is $5y12 + 6y22$, then the rank is	4	0	2
The non –singular linear transformation used to transform the quadratic form to canonical form is	X= NTY	X= NY	Y= NX
The eigen vector is also known as	latent value	latent vector	column value
If 1,3,7 are the eigen values of A, then the eigen values of 2A are	1,3,7	1,9,21	2,6,14
If the eigen values of 2A are 2, 6, 8 then eigen values of A are	1,3,4	2,6,8	1,9,16
The number of positive terms in the canonical form is called th	rank	index	Signatur
If all the eigenvalues of A are positive then it is called as	Positive definite	Negati ve definite	Positiv e semide finite
If all the eigenvalues of A are negative then it is called as	Positive definite	Negati ve definite	Positiv e semide finite
A homogeneous polynomial of the second degree in any number of variables is called the	characteristic polynomial	charact eristic equatio n	quadrat ic form
The Set of all eigen values of the matrix A is called the of A	rank	index	Signatur
A Square matrix A and its transpose have eigen value	different	Same	Inverse
The sum of the of a matrix A is equal to the sum of the principal diagonal elements of A.	characteristic polynomial	charact eristic equatio n	eigen values
The product of the eigenvalues of a matrix A is equal to	Sum of main diagonal	Determ inant of A	
The eigenvectors of a real symmetric are	equal	unequal	real
When the quadratic form is reduced to the canonical form, it will contain only r terms, if the of A is r.	rank	index	Signatu

a11 =		a11 =
1, a12		1,a12
=4, a		=2, a
21 = 3, a 22 =		21 = 2 , a 22 =
a 22 – 1		$\frac{a}{3}$
2		0
2		0
6		5
1		2
NXA		X=NY
		latent
orthogo		vector
nal		
value		0.614
1,9,49		2,6,14
12,4,3		1,3,4
indefinit	e	index
maerini		Index
Negati		Positiv
ve		e
semide		definite
finite		
Negati		Negati
ve		ve
semide		definite
finite		
canonic		quadrat
al form		ic form
spectrum		spectrun
Transpose		Same
eigen		eigen
vectors		values
Sum of		Determ
the		inant of
cofacto		А
rs of A		
symmetric		real
spectrum		rank
1		

The excess of the number of positive terms over the number of negative terms in the canonical form is called the of the quadratic form.	rank	index	Signatu
If all the eigen values of A are less than zero and atleast one eigen value is zero then the quadratic form is said to be	Positive definite	Negative	Positive
If all the eigen values of A are greater than zero and atleast one eigen value is zero then the quadratic form is said to be	Positive definite	Negati ve definite	Positiv e semide finite
If the quadratic form has both positive and negative terms then it is said to be	Positive definite	Negati ve definite	Positiv e semide finite

spectrum	Signatu
Negati	Negati
ve	ve
semide	semide
finite	finite
Negati	Positiv
ve	e
semide	semide
finite	finite
indefinite	indefini