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SUBJECT CODE: 16BTAR305 SEMESTER ll

SUBJECT NAME: SOLID MECHANICS LTPC=3003

Course Objectives:

e To gain knowledge of simple stresses, strains and deformation in components due to external loads.
e To assess stresses and deformations through mathematical models of beams, twisting bars or
combinations of both.

e Effect of component dimensions and shape on stresses and deformations are to be understood.

e The study would provide knowledge for use in the design courses

UNIT I INTRODUCTION TO MECHANICS

Rigid bodies-two dimensional structure-moment of force about an axis-moment of a couple equivalent
system of coplanar forces- problems involving beams and frames. Roof trusses-Method of joints, method of
sections, Introduction-plane, rectilinear motion - time dependent motion rectangular coordinates-projectile
motion.

UNIT Il STRESS, STRAIN AND DEFORMATION OF SOLIDS

Rigid and Deformable bodies — Strength, Stiffness and Stability — Stresses; Tensile, Compressive and Shear
— Deformation of simple and compound bars under axial load — Thermal stress — Elastic constants — Strain
energy ,potential energy and unit strain energy — Strain energy in uni-axial loads.

UNIT 111 BEAMS - LOADS AND STRESSES

Types of beams: Supports and Loads — Shear force and Bending Moment in beams — Cantilever, Simply
supported and Overhanging beams — Stresses in beams — Theory of simple bending — Stress variation along
the length and in the beam section — Effect of shape of beam section on stress induced — Shear stresses in
beams — Shear flow.

UNIT IV TORSION AND BEAM DEFLECTION
Analysis of torsion of circular bars — Shear stress distribution — Bars of Solid and hollow circular section —
Stepped shaft — Twist and torsion stiffness — Compound shafts — Fixed and simply supported shafts —
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Application to close-coiled helical springs — Maximum shear stress in spring section including Wahl Factor
— Elastic curve of Neutral axis of the beam under normal loads — Evaluation of beam deflection and slope:
Double integration method, Macaulay Method

UNIT V ANALYSIS OF STRESSES IN TWO DIMENSIONS

Biaxial state of stresses — Thin cylindrical and spherical shells — Deformation in thin cylindrical and
spherical shells — Biaxial stresses at a point — Stresses on inclined plane — Principal planes and stresses —
Mohr*s circle for biaxial stresses — Maximum shear stress - Strain energy in bending and torsion.

TEXT BOOKS:
S.No. | AUTHOR(S) PUBLISHER YEAR OF
TITLE OF THE BOOK PUBLICATION
Laxmi
1 R. K. Bansal A Tex_t L™ Publications. 2010
Materials .
New Delhi.
S. Chand
2 R. S. Khurmi Strength of Material Publications. 2013
New Delhi.
Ramamrutham DhanpatRai and
3 S Strength of Materials Sons. 2011
and R. Narayan New Delhi.
REFERENCE BOOKS:
S.No. | AUTHOR(S) PUBLISHER YEAR OF
TITLE OF THE BOOK PUBLICATION
James M. Gere, .
1 Barry J. Mechanics of Materials Prepiice hall ¢ 2008
New Jersey.
Goodno
2 Hearn E. J Mechanics of Materials FSLIpg0.Rrees. 1977
Oxford.
S Chand and Co.
3 Bedi D.S Strength of Materials Ltd., 1984
New Delhi
. . ANE Books.
4 Singh D.K Strength of Materials New Delhi. 2007
Asian Books Pvt
5 Jindal U.C Textbc_)ok on Strength of Ltd. 2007
Materials )
New Delhi.

B.Tech — Aerospace Engineering | KAHE, Coimbatore — 641021

2/3




SYLLABUS | 2)'°

-2020
BATCH

WEB REFERENCE:

www.engineersedge.com

http://en.wikiversity.org

www.globalsources.com

www.clag.org.uk/beam.html
nptel.iitm.ac.in/courses/IIT.../Strength_of_Materials/index.php

ESE MARKS ALLOCATION

S.No. Particulars Marks
1. Section - A 20
(20x1=20)
Online Test — MCQ type
2. Section - B 10
(5x2=10)
3. Section - C 70
(5x14=70)
Either ‘A’ or ‘B’ type
Total 100
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(Established Under Section 3 of UGC Act, 1956 )

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956)
EachanariPost, Coimbatore-641021.Tamilnadu, India.

FACULTY OF ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING — AEROSPACE ENGINEERING

Subject Name
Subject Code

Name of the Faculty

Designation

Year/Semester/Section

: Solid Mechanics

: 16BTAR305

: Mr.C.Nithiyapathi
: Assistant Professor
VALV

(Credits - 3)

Branch : Aerospace Engineering
Sl No. of Periods Topics to be Covered Support Materials
No.
UNIT —1: INTRODUCTION TO MECHANICS
1. 1 Fundamentals - Division of Mechanics T[1], T[2], R[1]
2. 1 Fundamentals — Terminologies, Definitions & Basic Concepts T[1], T[2], R[1]
3. 1 Rigid bodies-two dimensional structure T[1], T[2], R[1]
4 ) Moment of force about an axis, moment of a couple equivalent system of [, T[2], R[]
coplanar forces
5. 1 Problem and solution — moment of force & couple T[1], T[2], R[1]
6. 2 Problems involving beams and frames T[1], T[2], R[1]
7. 1 Tutorial - Roof trusses-Method of joints T[1], T[2], R[1]
8. 1 Problem and solution - Method of joints
9. 1 Roof trusses- Method of sections T[1], T[2], R[1]
10 1 Introdgctlon - p!ant?, Rectl_llnear motion, Time dependent motion, Rectangular T[], T[2], ROA]
Coordinates, Projectile motion

Total No. of Hours Planned for Unit — 1 : 12

I\Sl; No. of Periods Topics to be Covered Support Materials

UNIT — Il : STRESS, STRAIN AND DEFORMATION OF SOLIDS
11. 1 Rigid and Deformable bodies — Strength, Stiffness and Stability T[1], T[2], R[1]
12. 1 Stresses: Tensile, Compressive and Shear T[1], T[2], R[1]
13. 2 Deformation of simple and compound bars under axial load T[1], T[2], R[1]
14, 1 Problem and solution — Stress and Deformation T[1], T[2], R[1]
15. 1 Problem and solution — Stress and Deformation - compound bars under axial load | T[1], T[2], R[1]
16. 1 Thermal stress - Problem and solution T[1], T[2], R[1]
17. 2 Elastic constants, Strain energy ,potential energy and unit strain energy T[1], T[2], R[1]
18. 1 Strain Energy in uni-axial loads T[1], T[2], R[1]
19. 1 Tutorial - Problem and solution - simple and compound bars under axial load T[1], T[2], R[1]
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20. 1 Problem and solution - Strain energy T[1], T[2], R[1]
Total No. of Hours Planned for Unit — 11 : 12
NS:)' No. of Periods Topics to be Covered Support Materials
UNIT — 111 : BEAMS - LOADS AND STRESSES
21, 1 Types of beams: Supports and Loads T[1], T[2], R[3]
22, 2 Shear force and Bending Moment in beams T[1], T[2], R[3]
23, 1 Cantilever, Simply supported and Overhanging beams T[1], T[2], R[3]
24, 1 Stresses in beams T[1], T[2], R[3]
25, 1 Problem and solution - Shear force and Bending Moment T[1], T[2], R[3]
26, 1 Theory of simple bending T[1], T[2], R[3]
217, 1 Stress variation along the length and in the beam section T[1], T[2], R[3]
28, 1 Effect of shape of beam section on stress induced T[1], T[2], R[3]
29, 1 Tutorial - Problem and solution — Stress Determination T[1], T[2], R[3]
30, 2 Shear stresses in beams — Shear flow T[1], T[2], R[3]
Total No. of Hours Planned for Unit — I11: 12
I\Slg No. of Periods Topics to be Covered Support Materials

UNIT — IV : TORSION AND BEAM DEFLECTION

31. 1 Introduction, Analysis of torsion of circular bars T[1], T[2], R[3]
2] 1 S:;;r stress distribution — Bars of Solid and hollow circular section — Stepped [, T[2], R(3]
33, 1 Twist and torsion stiffness T[1], T[2], R[3]
34, 1 Compound shafts — Fixed and simply supported shafts T[1], T[2], R[3]
35, 1 Problem and solution - Analysis of torsion & Shear stress distribution T[1], T[2], R[3]
36, 1 Torsion - Application to close-coiled helical springs T[1], T[2], R[3]
37, 1 Maximum shear stress in spring section including Wahl Factor T[1], T[2], R[3]
38. 1 Elastic curve of Neutral axis of the beam under normal loads T[1], T[2], R[3]
39, 1 Evaluation of beam deflection and slope: Double integration method T[1], T[2], R[3]
40, 1 Tutorial - Problem and solution - Double integration method T[1], T[2], R[3]
41, 2 Evaluation of beam deflection and slope: Macaulay Method T[1], T[2], R[3]

Total No. of Hours Planned for Unit — IV: 12

Sl.
No.

No. of Periods

Topics to be Covered

Support Materials

UNIT —V : ANALYSIS OF STRESSES IN TWO DIMENSIONS

42, 1 Biaxial state of stresses, Biaxial stresses at a point T[1], T[2], R[3]
43, 1 Thin cylindrical and spherical shells T[1], T[2], R[3]
44, 2 Deformation in thin cylindrical and spherical shells T[1], T[2], R[3]
45, 1 Stresses on inclined plane — Principal planes T[1], T[2], R[3]
461 1 Tutorial - Problem and solution — Deformations in thin cylindrical and spherical [, T[2], R(3]

shells

B.Tech — Aerospace Engineering | KAHE, Coimbatore — 641021

2/3




COURSE PLAN | 201¢

2020
BATCH
47, 2 Stresses — Mohr‘s circle for biaxial stresses — Maximum shear stress T[1], T[2], R[3]
48, 1 Strain energy in bending and torsion T[1], T[2], R[3]
49, 1 Problem and solution - Mohr*s circle for biaxial stresses T[1], T[2], R[3]
50, 1 Problem and solution - Strain energy in bending and torsion T[1], T[2], R[3]
51) 1 Discgssion on Con_wpetitive Examination related Questions / University
previous year questions - Tutorial
Total No. of Hours Planned for Unit — V: 12
TOTAL PERIODS : 60

TEXT BOOKS

T[1] - R. K. Bansal (2010), “A Textbook of Strength of Materials, Laxmi Publications, New Delhi.

TI[2]- R. S. Khurmi (2013), “Strength of Material”, S. Chand Publications. New Delhi

TI3]- Ramamrutham S and R. Narayan (2011), “Strength of Materials”, DhanpatRai and Sons.New Delhi.
REFERENCES

R[1] - James M. Gere, Barry J. Goodno (2008), “Mechanics of Materials”, Prentice Hall Inc. New Jersey.

R[2] - Hearn E. J (1997). “Mechanics of Materials”, Pergamon Press, Oxford.

R[3] - Bedi D.S (1984), “Strength of Materials”, S Chand and Co. Ltd., New Delhi

R[4] - Singh D.K (2007), “Strength of Materials”, ANE Books. New Delhi.

R [5] - Jindal U.C (2007), “Textbook on Strength of Materials”, Asian Books Pvt Ltd., New Delhi.
WEBSITES

W 1] - http://nptel.ac.in/

W [2] - https://web.mst.edu

W [3] - https://apm.iitm.ac
JOURNALS

J[1] - Mechanics of Materials- An International Journal - www.journals.elsevier.com

J[2] - Journal of Material Sciences & Engineering - www.omicsgroup.org

J[3] - MMSE Journal (Mechanics, Materials science and Engineering)

J[4] - International Journal of Materials, Mechanics and manufacturing - http://www.ijmmm.org/

B.Tech — Aerospace Engineering | KAHE, Coimbatore — 641021 3/3




COURSE PLAN | 201¢

2020
BATCH

UNIT Total No. of Periods Planned | Lecture Periods Tutorial Periods
| 12 11 1
| 12 11 1
i 12 11 1
v 12 11 1
\Y 12 10 2
TOTAL 60 54 6

l. CONTINUOUS INTERNAL ASSESSMENT

(Internal Assessment Tests: 30, Attendance: 5, Assignment / Seminar: 5)

1. END SEMESTER EXAMINATION

TOTAL

: 40 Marks

: 60 Marks

: 100 Marks
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16BTAR305 SOLID MECHANICS 3003100

UNIT I INTRODUCTION TO MECHANICS

Rigid bodies-two dimensional structure-moment of force about an axis-moment of a couple equivalent
system of coplanar forces- problems involving beams and frames. Roof trusses-Method of joints, method of
sections, Introduction-plane, rectilinear motion - time dependent motion rectangular coordinates-projectile

motion.
TEXT BOOKS
TI[1] - R. K. Bansal (2010), “A Textbook of Strength of Materials, Laxmi Publications, New Delhi.
TI[2]- R. S. Khurmi (2013), “Strength of Material”, S. Chand Publications. New Delhi
REFERENCES
R[1]- James M. Gere, Barry J. Goodno (2008), “Mechanics of Materials”, Prentice Hall Inc. New Jersey.
Info:

Prepared & Compiled by,

Mr.C.Nithiyapathi

Assistant Professor,

Department of Mechanical Engineering,
Karpagam Academy of Higher Education.
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CHAPTER -1 : INTRODUCTION TO MECHANICS

Method of Sections

» The Method of Sections involves analytically cutting the truss
into sections and solving for static equilibrium for each section.

Method of Sections

» The Method of Sections involves analytically cutting the truss
into sections and solving for static equilibrium for each section.

» The sections are obtained by cutting through some of the
members of the truss to expose the force inside the members.

Method of Sections

» The Method of Sections involves analytically cutting the truss
into sections and solving for static equilibrium for each section.

» The sections are obtained by cutting through some of the
members of the truss to expose the force inside the members.

> In the Method of Joints, we are dealing with static equilibrium
at a point. This limits the static equilibrium equations to just
the two force equations. A section has finite size and this
means you can also use moment equations to solve the

problem. This allows solving for up to three unknown forces
at a time.
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» The Method of Sections involves analytically cutting the truss
into sections and solving for static equilibrium for each section.

» The sections are obtained by cutting through some of the
members of the truss to expose the force inside the members.

» In the Method of Joints, we are dealing with static equilibrium
at a point. This limits the static equilibrium equations to just
the two force equations. A section has finite size and this
means you can also use moment equations to solve the
problem. This allows solving for up to three unknown forces
at a time.

» Since the Method of Sections allows solving for up to three
unknown forces at a time, you should choose sections that
involve cutting through no more than three members at a
time.

» When a member force points toward the joint it is attached
to, the member is in compression. If that force points away
from the ioint it is attached to. the member is in tension.
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Method of Sections

Refer back to the end of the "truss-initial-analysis.pdf’ file to see
what has been solved so far for the truss. This is what has been
solved for so far:

150N
120N B
120N Ily/M\\]ﬁSN 3m
4m L 4m y  4m p 4m %
¥
7 7 7 7

Method of Sections - Cutting through AC, BC and BD

Let’s create a section by cutting through members AC, BC and
BD. Recall that we want to cut through at most three members.

150N

120N B D Fl
e
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Method of Sections - Cutting through AC, BC and BD

Let's create a section by cutting through members AC, BC and
BD. Recall that we want to cut through at most three members.

120N B D F

—

hs
120N

A —
A C E G H

Let's slide the rest of the truss out of the way.

Method of Sections - Cutting through AC, BC and BD

Let's create a section by cutting through members AC, BC and
BD. Recall that we want to cut through at most three members.

120N B D F

——

hs
120N

A —
A C E G H

Let’s slide the rest of the truss out of the way.
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Method of Sections - Cutting through AC, BC and BD

Let's create a section by cutting through members AC, BC and
BD. Recall that we want to cut through at most three members.

120N B D F

s
120N

A C E G H

Let's slide the rest of the truss out of the way.

Let's create a section by cutting through members AC, BC and
BD. Recall that we want to cut through at most three members.

120N B D
o

s x
3m
15 N
‘12ONA E L
4 m 4 m
¥ * A
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120N B [.) i
3m
15 N E
120 N Fac BC
) A Re >
4 m 4 m
¥ # X

Since Fpc is the only force that has a vertical component, it must
point down to balance the 15 N force (A)).

Taking moments about point B has both forces at A giving
clockwise moments. Therefore, F5c must point to the right to
provide a counter-clockwise moment.

120 N’ B . [.) )
Fep
3m
15 N E
120 N Fac V¥ °¢ ,
) A e 7
4 m 4 m
K # A

Since Fpc is the only force that has a vertical component, it must
point down to balance the 15 N force (Ay).

Taking moments about point B has both forces at A giving
clockwise moments. Therefore, Foc must point to the right to
provide a counter-clockwise moment.

Taking moments about point C has the 15 N force acting at A and
the 120 N acting at B giving clockwise moments. Therefore, Fgp
must point to the left to provide a counter-clockwise moment.
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Solving in the order of the previous page:
Ty Fy=+15N — Fgc =0
Fgc = 15N (tension)
Solving in the order of the previous page:

++> Fy=+15N — Fgc =0
Fgc = 15N (tension)

O Y " Mp = —(120N)(3m) — (15N)(4m) + Fac(3m) =0

(360 + 60)Nm
3m

Fac = = 140N (tension)

Solving in the order of the previous page:

+TY Fy=+15N — Fgc =0
Fgc = 15N (tension)

O Y Mp = —(120N)(3m) — (15N)(4m) + Fac(3m) =0

Fac = (360 + 60)Nim = 140N (tension)
3m
O Y Mc = —(15N)(4m) — (120N)(3m) + Fgp(3m) = 0
N
Fep = (60 +3360) T — 140N (compression)
m
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» When drawing your sections, include the points that the cut
members would have connected to if not cut. In the section
just looked at, this would be points C and D.

» When drawing your sections, include the points that the cut
members would have connected to if not cut. In the section
just looked at, this would be points C and D.

» Each member that is cut represents an unknown force. Look
to see if there is a direction (horizontal or vertical) that has
only one unknown. If this true, you should balance forces in
that direction. In the section just looked at, this would be the
forces in the vertical direction since only Fgc has a vertical
component.

» When drawing your sections, include the points that the cut
members would have connected to if not cut. In the section
just looked at, this would be points C and D.

» Each member that is cut represents an unknown force. Look
to see if there is a direction (horizontal or vertical) that has
only one unknown. If this true, you should balance forces in
that direction. In the section just looked at, this would be the
forces in the vertical direction since only Fgc has a vertical
component.

» |f possible, take moments about points that two of the three
unknown forces have lines of forces that pass through that
point. This will result in just one unknown in that moment
equation. In the section just looked at, taking moments about
point B eliminates the unknowns Fgc and Fgp. Similarly,
taking moments about point C eliminates the unknowns Fgc
and F5c from the equation.
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Method of Sections - Cutting through BD, CD and CE

120 N: B I;') )
3m
15 N
120N ; L . *
4 4
K - * - &
Method of Sections - Cutting through BD, CD and CE
120 N: B . [.) iy
Fep
3 m
15 N
‘120 N 2 ) E L
¥ 4 m ¥ 4 m ¥

Since we know (from the previous section) the direction of Fgp we
draw that in first. We could also reason this direction by taking
moments about point C.
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120 N: B - I;.) D)
FB/
FCD 3m
15 N
*120 N - - E !
4 m 4 m
¥ * x

Since we know (from the previous section) the direction of Fgp we
draw that in first. We could also reason this direction by taking
moments about point C.

Since Fcp is the only force that has a vertical component, it must
point down to balance the 15 N force (A, ).

120 I\I:B . [.) 2
FBY
Fcp 3m
15 N
120 NA . Fce E L
4 m 4 m
¥ # A
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Since we know (from the previous section) the direction of Fgp we
draw that in first. We could also reason this direction by taking
moments about point C.

Since F¢p is the only force that has a vertical component, it must
y P
point down to balance the 15 N force (A,).

Taking moments about point D has the 120 N force and 15 N
force acting at A giving clockwise moments. Therefore Fcg must
point to the right to give a counter-clockwise moment to balance
this out.

Solving in the order of the previous page:

3
+§ F, = +15N — —Fcp =0
T 5/ cD

Fep = %(15N) = 25N (compression)

Solving in the order of the previous page:

3
+ F, = +15N — =Fp =0
t E + s Fep

Fcp = %(ISN) = 25N (compression)

O Y Mp = —(120N)(3m) — (15N)(8m) + Fcg(3m) = 0
(360 + 120) Nm

3m

Fce = = 160N (tension)
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Method of Sections - Cutting through DF, DG and EG

150 N
[.) F¥ i
135 N 3m
| \ W |
E 4 m i 4 m Ij,
150 N
p F 4

H
m l
1

\ ‘ "
4 m i 4

> Mo

Since Fpg is the only unknown with a vertical component, it must
point up since the 150 N force at F is bigger the 135 N force at H.

150 N
D_For Fv

;M
135 N

4 m

3m

* O

T
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Since Fpg is the only unknown with a vertical component, it must
point up since the 150 N force at F is bigger the 135 N force at H.
Taking moments about point G has the 135 N force at H giving a
counter-clockwise moment. Therefore Fpr must point to the right
to give a clockwise moment about point G to balance this out.

150 N
D_ For, Fi

“ 3m
o< EC \ L

Since Fpg is the only unknown with a vertical component, it must
point up since the 150 N force at F is bigger the 135 N force at H.

Taking moments about point G has the 135 N force at H giving a
counter-clockwise moment. Therefore Fpr must point to the right
to give a clockwise moment about point G to balance this out.

Taking moments about point D has the 150 N force acting
clockwise and the 135 N force acting counter-clockwise. The 135
N force has twice the moment arm so Fgz must point left to give
a clockwise moment to balance this out.

Solving in the order of the previous page:

3
+ F, = —150N 4+ 135N + = Fpe =
TE 50+35+59(,-0

Fpc = g(lSON —135N) = g(lBN) = 25N (tension)
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Solving in the order of the previous page:
3
TN F, = —150N + 135N + =Fpg =
Ty 50N + 135N + ZFpg = 0
Fpc = g(lSON — 135N) = g(lBN) = 25N (tension)

O+ Mg = +(135N)(4m) — Fpr(3m) =0
540Nm
3m

Fpr = = 180N (compression)

Solving in the order of the previous page:
3
++Y F = —150N + 135N + =Fpg =0

5
Fpe = g(lSON — 135N) = g(lBN) = 25N (tension)

O Y Mg = +(135N)(4m) — Fpr(3m) =0
540Nm
3m
O Mp = —(150N)(4m) + (135N)(8m) — Feg(3m) =0

(—600 + 1080)Nm ~ 480Nm
3m ~ 3m

Fpr = = 180N (compression)

Fec = = 160N (tension)




CHAPTER -1 : INTRODUCTION TO MECHANICS

Method of Sections - Cutting through DF, FG and GH

1150 N

9 F )
13? N {3

£ e H 7

¥ 4 m ¥ 4 m ¥

15150 N

[.) FDF’ F i
135N |5 -

° ° *

E G H

4 4
p T ¥ il ¥

From the previous section, we know Fpg points right. Taking
moments about G would also give this result.
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. tlSO N
[.) DF, F i
135N |3,
Fﬁc‘ ‘
) ° X
E G H
4 4
y il ¥ L ¥

From the previous section, we know Fpg points right. Taking
moments about G would also give this result.

Since Frg is the only unknown with a vertical component, it must
point up since the 150 N force at F is bigger than the 135 N force
at H.

From the previous section, we know Fpg points right. Taking
moments about G would also give this result.

Since Frg is the only unknown with a vertical component, it must
point up since the 150 N force at F is bigger than the 135 N force
at H.

Taking moments about point F has the 135 N force acting
counter-clockwise. The means that Fgy must point left to give a
clockwise moment to balance this out.

Solving in the order of the previous page:

t+Y F, = —150N + 135N + Frc =0
Frc = 150N — 135N = 15N (compression)
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Solving in the order of the previous page:

+7> F, = —150N + 135N + Frg = 0
Frc = 150N — 135N = 15N (compression)

O Y Mg = +(135N)(4m) — Far(3m) =0

>40Nm _ 180N (tension)

FeH =

Method of Sections - Remaining members

» For the rest of the members, AB, DE and FH, the only
sections that would cut through them amount to applying the
Method of Joints.

» To solve for the force in member AB, you would cut through
AB and AC. This is equivalent to applying the method of
joints at joint A.

» To solve for the force in member FH, you would cut through
FH and GH. This is equivalent to applying the method of
joints at joint H.

» To solve for the force in member DE, you would cut through
CE, DE and EG. This is equivalent to applying the method of
joints at joint E.
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UNIT 11 STRESS, STRAIN AND DEFORMATION OF SOLIDS

Rigid and Deformable bodies — Strength, Stiffness and Stability — Stresses; Tensile, Compressive and Shear
— Deformation of simple and compound bars under axial load — Thermal stress — Elastic constants — Strain
energy ,potential energy and unit strain energy — Strain energy in uni-axial loads.

TEXT BOOKS
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10. Stress strain diagrams

e Bar or rod - the longitudinal direction is considerably
greater than the other two, namely the dimensions of
cross section.

e For the design of the m/c components we need to
understand about “mechanical behavior” of the
materials.

e We need to conduct experiments in laboratory to
observe the mechanical behavior.

e The mathematical equations that describe the
mechanical behavior is known as “constitutive
equations or laws”

e Many tests to observe the mechanical behavior- tensile
test is the most important and fundamental test- as we
gain or get lot of information regarding mechanical
behavior of metals

e Tensile test Tensile test machine, tensile test specimen,
extensometer, gage length, static test-slowly varying
loads, compression test.

Stress -strain diagrams

After performing a tension or compression tests and
determining the stress and strain at various magnitudes of
load, we can plot a diagram of stress Vs strain.
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Such is a characteristic of the particular material being tested
and conveys important information regarding mechanical
behavior of that metal.

We develop some ideas and basic definitions using o-e
curve of the mild steel.

Structural steel = mild steel = 0.2% carbon=low carbon steel

Elastic + plastic
P i L

|<
|

Ultimate tensile stress

D
Yield point / \’.‘:44: { I
, P C raciure

/Tensne strength

Yield stress _-_-_-_-_-_-_--B test e}
P Ei—EI.as_tic
Proportional - limit
limit !
| 0.02
!/0.002 /
E‘QTP% - | -—p| E
Linear range Y C M9 frain  'necking
hardening
Region O-A

(1) o and € linearly proportional.
(2) A- Proportional limit
0, - proportionality is maintained.
(3) Slope of AO = modulus of elasticity “E” — N/m?,Pa

(4) Strains are infinites ional.
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Region A-B

(1) Strain increases more rapidly than o

Q

(2) Elastic in this range 7 N
Ultimate tensile stresz D| - Tensile strength
Proportionality is lost. vosoars 7 N
Yield stress|------- By Y test o
-AfE-Elastic
Proportional limit
limit
0.002 | 002
€
yielding |Strain necking

Linear range hardening

Region B-C

(1) The slope at point B is horizontal.

(2) At this point B, ¢ increases without increase in further
load. I.e no noticeable change in load.

(3) This phenomenon is known as yielding

(4) The point B is said to be yield points, the corresponding

stress is yield stress o, of the steel.

(5) In region B-C material becomes “perfectly plastic i.e
which means that it deforms without an increase in the
applied load.

(6) Elongation of steel specimen or < in the region sc is

typically 10 to 20 times the elongation that occurs in region
OA.

(7) €5 below the point A are said to be small, and €; above A
are said to be large.

(8) es<e 4 are said to be elastic strains and €>€ 4 are said to

be plastic strains = large strains = deformations are
permanent.
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e}
o
| Elastic + plastic I ;
|< =| . 0
Ultimate tensile stress D & Tensile strength
B Yield point / f<— Fracture
Yield stress|-------- L C test o
_»---afE-Elastic
Proportional i limit
limit '
! 0.02
| " DY P E—— €
I . yielding 1Strain ~ 'necking
hardening
Region C-D

(I)The steel begins to “strain harden” at “C” . During strain
hardening the material under goes changes in its crystalline
structure, resulting in increased resistance to the
deformation.

(2)Elongation of specimen in this region requires additional
load,

o—e diagram has + ve slope C to D.
(3) The load reaches maximum value — ultimate stress.

(4)The yield stress and ultimate stress of any material is also
known as yield strength and the ultimate strength .

(5) o, is the highest stress the component can take up.

Region-DE

Further stretching of the bar is needed less force than
ultimate force, and finally the component breaks into two
parts at E.
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Look of actual stress strain diagrams

€CtoEZEBtoC~€0t0 A
(1) Strains from O to A are D
so small in comparison to the é C/‘\.E

strains from A to E that they

cannot be seen.

(2) The presence of well defined
yield point and subsequent large
plastic strains are characteristics of mild — steel.

(3) Metals such a structural steel that undergo large
permanent strains before failure are classified as ductile
metals.

Ex. Steel, aluminum, copper, nickel, brass, bronze,
magnesium, lead etc.

Aluminum alloys — Offset method

(1) They do not have clear cut yield point.

(2) They have initial straight line portion with clear
proportional limit.

I§ep|jlesentati9nl o—< for most
(3) All does not have obvious e
yield point, but undergoes f
, 1/ /<—0.002 offset

large permanent strains after !

/

/
proportional limit. /

+| |+0.002

(4) Arbitrary yield stress is
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determined by off- set method.
(5) Off-set yield stress is not material property
Elasticity & Plasticity

(1) The property of a material by which it (doesn’t) returns to
its original dimensions during unloading is called (plasticity)
elasticity and the material is said to be elastic (plastic).

>
)

| ——>| <]
Permanent set Recovered strain

(2) For most of the metals proportional limit = elastic limit.

(3) For practical purpose proportional limit = elastic limit =
yield stress

(4 )All metals have some amount of straight line portion.
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Brittle material in tension

No necking in
brittle material
o, =0

/ ult

A All strains are elastic

No plastic strains
E

O S

(1) Materials that fail in tension at relatively low values of
strain are classified or brittle materials.

(2) Brittle materials fail with only little elongation (elastic)
after the proportional limit.

(3)Fracture stress = Ultimate stress for brittle materials
(4)Up to B, i.e fracture strains are elastic.

(5)No plastic deformation in case of brittle materials.
Ex. Concrete, stone, cast iron, glass, ceramics

Ductile metals under compression

oz
o compression
(Tu/s 7 O-f o, | ,,---_Jg?sion
I’ ‘ A * *
G‘V’S ;’
gral &
t
o™ € c
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(1) o—€ curves in compression differ from o—e in tension.

(2)For ductile materials, the proportional limit and the initial
portion of the o—-€  curve is same in tension and
compression.

(3)After yielding starts the behavior is different for tension
and compression.

(4)In tension after yielding — specimen elongates — necking
and fractures or rupture. In compression — specimen bulges
out- with increasing load the specimen is flattened out and
offers greatly increased resistance.

Brittle materials in compression

o
Brittle material in

compression
At

€

(1)Curves are similar both in tension and compression

(2)The proportional limit and ultimate stress i.e fracture
stress are different.

(3)In case of compression both are greater than tension case

(4)Brittle material need not have linear portion always they
can be non-linear also.
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11. Generalized Hooke’s Law

P
o
P
o =—
A A
E c= Lf_Lo
& L
1 c

(1) A material behaves elastically and also exhibits a linear
relationship between o and € is said to be linearly elastic.

(2) All most all engineering materials are linearly elastic up
to their corresponding proportional limit.

(3) This type of behavior is extremely important in
engineering — all structures designed to operate within this
region.

(4) Within this region, we know that either in tension or
compression

o=Le

Stressin particular direction=straininthat dir. X E

E =Modulus of elasticity —Pa,N /m?
= Young’s modulus of elasticity.

b) o,=Ee, or o,=Ee,

(6) o=Ee is known as Hooke’s law.

(7) Hooke’s law is valid up to the proportional limit or
within the linear elastic zone.
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Poisson’s ratio

When a prismatic bar is loaded in tension the axial
elongation is accompanied by lateral contraction.

Lateral contraction or lateral strain T

’ df - dO .
e =——— this comes out to be —ve
0

_lateralstrain _—¢€’

axial strain < d, %
l X

If a bar is under compression € -ve, € +ve and v =+

Poisson’s ratio =v(nu)=

/45 .
€ is perpendicular toe

If a bar is under tension € +ve, €’ -veand v =+

v =always +ve = material constant
For most metals v =0.25to 0.35s
Concrete v=0.1t0 0.2
Rubber v =0.5
v is same for tension and compression

vis constant within the linearly elastic range.

KARPAGAM ACADEMY OF HIGHER EDUCATION | AEROSPACE ENGINEERING



Solid Mechanics CHAPTER-2 STRESS, STRAIN AND DEFORMATION OF SOLIDS

Hooks law in shear T

(1)To plot 7,Y the test is twisting Yield point
of hollow circular tubes .
=7 Proportional limit

) T 'G
—_— 1'1
T Eé j) !

(2)7,Y diagrams are (shape of them) similar in shape to

T

tension test diagrams (o Vse) for the same material,

although they differ in magnitude.

(3)From 7-Ydiagrams also we can obtain material
properties proportional limit, modulus of elasticity, yield
stress and ultimate stress.

(4)Properties are usually % of the tension properties.

(5)For many materials, the initial part o the shear stress
diagram is a st. line through the origin just in case of tension.

7 =GY - Hooke’s law in shear

G =Shear modulus of elasticity or modulus of rigidity.
=Paor N/ m2s
Proportional limit ™

Elastic limit

Material properties
Yield stress ~ Prop

Ultimate stress D,
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E,v, and G — material properties — elastic constants - elastic

properties.

Basic assumptions solid mechanics

Fundamental assumptions of linear theory of elasticity are:
(a) The deformable body is a continuum

(b) The body is homogeneous

(c) The body is linearly elastic

(d) The body is isotropic

(e) The body undergoes small deformations.

Continuum

Completely filling up the region of space with matter it
occupies with no empty space.

Because of this assumption quantities like
u=u(x,y,z)
c=0(x,y,z)
e=¢ (x,y,z)

Homogeneous

Elastic properties do not vary from point to point. For non-
homogenous body

E=E(x,y,z)
v=ov(x,y,z2)
G=G(x,y,z)
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Linearly elastic

Material follows Hooke’s law
o=Ee
T=GY
v =Constant

Isotropic

Material properties are same in all directions at a point in the
body

E=C4 forall @
v=C, forall@
G=Cjy forall @
The meaning is that
o,=Ee,
o,=Ee,

The material that is not isotropic is anisotropic

E=E(6)

v=v(0)

G=G(0)
The meaning is that

Oy =Eq €4

o,=E¢€,

Ei#E,
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Small deformations

(a) The displacements must be small
(b) The strains must also be small

Generalized Hooke’s law for isotropic material

We know the following quantities from the tension and

shear testing. 1o (Tj
oc=Ee ’ Da— [
<’ +Tensiletest Vo Vo
T —
7=GY - Shear test or torsion test. \ ‘

What are the stress —strain relation for an element subjected
to 3D state of stress. i.e what is the generalized Hooke’s law.

Hooke’s law — when only one stress is acting
Generalized Hooke’s law — when more than one stress acting
We assume that

Material is linearly elasticc, Homogeneous, Continuum,
undergoing small deformations and isotropic.

For an isotropic material the following are true
(1)Normal stress can only generate normal strains.

- Normal stresses for reference xyz cannot produce Y of this

reference
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(2)A shear stress say 7,, can only produce the corresponding

shear strain Y,, in the same coordinate system.

Principal of superposition:

This principle states that the effect of a given combined loading on
a structure can be obtained by determining separately the effects of
the various loads individually and combining the results obtained,
provided the following conditions are satisfied.

(1)Each effect is linearly related to the load that produces it.

(2)The deformations must be small.

Jl o, (TI—I—O'2
ey
(O'1+O'3)=E€
o S ,% _.
+ = E E °
Gl
€, +e,=¢€,
€ € = IG Iaﬁ Ial+c72

P P A P
N l 1 v N l N v
N P = N P | + N P

N N N

P Vs e mustbe linear
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1
+ : I 7
/)-- [~ p -
// .‘__
TIZ
s
+
-
B

74>
: oL [ 4

(7,/

Let us know consider only o, is applied to the element.
From Hooke’s we can write

o, 1

€, =—
E e e
E :_v& G,\: G\
Y E
O
€, =—v—
E
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Only o, applied

(02
_"y
SvTE 1
(02
Y
e, =—0—
* E
(02
g, |
e =—0——
z E

Similarly, o, alone is applied

O-Z
€, =—
* E
GZ /
€,=—0—
Y E

Contribution to €, due to all three normal stresses is

Oy _ UO'y _ 003

e. =
' E E E
o, Therefore

cr=1lo.-v(0,+0,)]
o xT pl o y z) |
e 1. ]
o. |~ EyZE_O'y—U(O'x+O'Z)_
J— 1 i ]
Ex—E_O-Z—U(O-x‘l‘O-y)_

Normal strains are not affected by shear stresses
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Now let us apply only 7,

T
Y, = T o
y G | XY
\
- —|—

Similarly because of 7,, and z,,

T
_ Y=
e
;
Y Xz
Xz G

Therefore, when all six components of stresses and strains
are acting on an infinitesimal element or at a point then the
relation between six components of stresses and strains is

1
€x= | O —v(ay +0'Z)_
1_ —
€=z % —v(0yx+0,) |
J— 1_ ]
EX_E_O-Z —U(O-x +O-]/)_

é“<
Il

<
N

=X
N
| |
ok ol ol

These six equations are known as generalized Hooke’s law for
isotropic materials.
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Matrix representation of generalized Hooke’s law for

isotropic materials is therefore,

E E E
( —0 1 —0 ( A
e 2 % 09 0 0lfc
Ex E E E Gx
o A T o |
€z E E E 0
<Y L = 1 <T e
xy 00 0 = 00 xy
sz . Tyz
Y] [0 0 0 0 = 0|z,
0 0 0 0 0 L
i G|

Stress components in terms of strains

1 20
€y +e, +EZ:E(GX +0, +0'Z)—f(0'x +0,+0,)s
e=(o,+0, +0'Z)[1_E20}
€y +e, te,=¢

exz—[ax — V0, —v(ay +0'Z)]

1
:E[O'x —v(c)'x +0, +0'Z)+vax

Yy

:%[Gx(1+v)—v(0x+a +0'Z)

KARPAGAM ACADEMY OF HIGHER EDUCATION | AEROSPACE ENGINEERING



Solid Mechanics CHAPTER-2 STRESS, STRAIN AND DEFORMATION OF SOLIDS

=%|:Gx (1 +v)—LE}

(1-20)
_ox(1+v)  we
E (1-20)
5 :[e Lo ve } E
SN LT 1-20]1+40
E Ev
14 H(mu)  where (1+2)(1-20)

/Il,u are Lames constants

O, =eA+e, U

Oy

o, =elt+e, u

=ed+e, U

Tyy = nyG =2 /‘ny
Tyy =Yy, G=20Y,,
Tyy = Yor G =24Y;,
Lame’s constants have no physical meaning

Stress-strain relations for plane stress
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oy =0y (X,Y) Ex:l(gx ~v0,)

o, =<, (v,y) :

Ty = Toy (X, 1) Ey:E(O—y ~voy)

Oz =Tyz =Tz =0 ezz—%(0x+ay):%(ex+ey)
Y. =Y, =0

Stress- strain relations for plane strain

e,=¢<, (x,y) o, =eAl+ue,=o,(x,y)
Sy=Cy (X,]/) oy =e/1+,uey:ay (x,y)
ny :ny (x,y) o, :—v(ax+0'y):0'2(x,y)
€3= Yy, :sz =0 =—v(2ed+ ue)
e=€, +€, =—ve(24+ u)
=—v(2/1+,u)(ex +ey)
Tay :Gny
Tz = Tyz =0
A

o, = —1'(crx +c7y) /

V'4
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e Therefore, the stress transformation equations for plane
stress can also be used for the stresses in plane strain.

e The transformation laws for plane strain can also be
used for the strains in plane stress. €, does not effect

geometrical relationships used in derivation.

Example of Generalized Hooke’s law

I"y

Gk l G\ O-x:ﬂ«e‘FﬂEx zezo-y
%y €)= 0y~ 004 ]
Oy =—0y
O'y:/Ie+,uey
ele Oy —vAe—UvUE, ele Oy + 00,
E E
. (1+vj
"\ E

Principal stress and strain directions of
isotropic materials

r is zero along those planes,
therefore v is also zero along these planes
i.e normal strains of the element are
principal strains. For isotropic materials -

the principal strains and
principal stresses occurs in the same direction.
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12. Volumetric strain and Bulk modulus

Relation between E,vand G

KARPAGAM ACADEMY OF HIGHER EDUCATION

G,

B\
-/0'1 =47
A

Xy

Xy A
\ R
Snt a 2y
1
01 =Tyy €1—E(0'1—UC72)
1
03 =—Tyy E2=E(C72—00'1)
T, (1+0)
€1 (Txy+UTxy)_ J £
_—z'xy(1+v)
-
S S _ny_Txy
== T
EY
*7 2G
Ty (1+0) 7y _
E 2G
G= £
2(1+0)

Only two elastic constants are independent.
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Volumetric strain-dilatation

Consider a stress element size dx,dy,dz
dv =dxdydz
After deformations
dx =(1+e,)dx
dy* = (1+ey)dy
dz =(1+e,)dz

In addition to the changes of length of the sides, the element
also distorts so that right angles no longer remain sight
angles. For simplicity consider only Y, .

The volume dv  of the deformed element is then given by
dv = Area(OA*B*C* )xdz*
Area (OA*B*C ' ) =dx (dy*Cosny )
= dx*dy*Cosny
dv = dx*dy*dz*Cosny
For small Y, CosY,, =1

. do = dx*dy*dz* —Volumechange doesn 't depend onY
=(1+e,)(1+€, )(1+e, ) dxdydz

dropping all second order infinitesimal terms
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dv’ :(1+ex +e +ez)dxdydz

Yy

Now, analogous to normal strain, we define the measure of
volumetric strain as

final volume-initial volume
initialvolume

B dv —dv
dv

e=€,+€, +€,

Volumetric strain =

e

e e¢=volumetric strain = dilatation. This expression is
valid only for infinitesimal strains and rotations

* e=€, +€, +€,=] = firstinvarianceof strain.

® Volumetric strain is scalar quantity and does not
depend on orientation of coordinate system.

e Dilatation is zero for state of pure shear.

Bulk modulus of elasticity

€y +ey +ezz%(0x +0,+0,)

_ 1
Mean stress = a—g(ax +0, +0'Z)

:3(1—20)0__
E

e

o =Ke
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Where K = L bulk modulus of elasticity.

3(1-20)
® Bulk modulus is widely used in fluid mechanics.

® From physical reasoning E>0,G>0,K=0
Steel : E =200 Gpa

v=0.3
Al: E =70 Gpa

v=0.33
Copper: E =100 Gpa

v =0.35

E :
= SinG Eand G>0
2(1+0v)

(1+9)>0—> v>-1

Similarly SinG E>0 & K=0

KZL—)l—ZZ)ZO%USOE

3(1-2v)
-. Theoretical bounds on v are

-1<v<0.5

asv — 0.5 K—a and c-o material is incompressible.
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13. Axially loaded members

KARPAGAM ACADEMY OF HIGHER EDUCATION | AEROSPACE ENGINEERING



Solid Mechanics CHAPTER-2 STRESS, STRAIN AND DEFORMATION OF SOLIDS

Geometry, locating and material properties

* A prismatic bar is subjected to axial loading

e A prismatic bar is a st. structural member having
constant cross-section through out it length.

e Bar or rod —length of the member is > cross sectional

dimensions.
< . i L>h
< L > ‘\P «b> T L>b

Relatively long thin rods

_~Not a prismatic
member

Axial force is a load directed along the axis of the member —
can create tension or compression in the member.

Typical cross sections of the members

O - Solid Sections

- Hollow Sections
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Y
- Other sections
— 1

Material properties: The member is homogenous linearly
elastic and isotropic material.

Stresses, strains and deformations

Consider a prismatic bar of constant cross-sectional area A
and length L, with material properties A & v. Let the rod be

”_ 7

subjected to an axial force “p”, which acts along x-axis.

Axis of the member
P o»
D T "
m: .
y
1 | O-A.‘
>
J
R B ottt .2 ~x
P | .-- F

F=P

M, =M, =M, =0

V,=V,=0

The right of the section m-m exerts elementary forces or
stresses on to the left of the section to maintain the
equilibrium. Sum of all these elementary forces must be
equal to the resultant F.
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jO'di =F
A

M = [0,zdA=0
M, = —jc)'xydA =0

Above equation must be satisfied at every cross-section,
however, it does not tell how ¢, is distributed in the cross-
section.

The distribution cannot determine by the methods of static
or equations of equilibrium- statically indeterminate

To know about the distribution of o, in any given section, it is

necessary to consider the deformations resulting from the
application of loads.

Since the body needs to develop only o, component in order
to maintain equilibrium, therefore the state of stress at any
point of prismatic rod is

P

6. 0 0] <+ 1 — %
|:O'i]':|: 0 00 - L\\ -
0 0 0
Gx lk—f_FGx
- L+S =i
- ——
P Tl — I
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We make the following assumptions on deformation based

on experimental evidence

(1)The axis of the bar remains straight after Key
deformation kinematical
assumptions

(2)All plane cross-sections remain plane and
perpendicular to the axis of the bar

Yy
S e B So—— 1
i dx
*V Plane section
e e AT after deformation
' —| - —>x
P <«+— E [ dx|_-|'
e dx

e As a result of the above kinematic assumptions all
points in a given y-z plane have the same displacements
in the x-direction.

¢ Any line segment AB undergoes same strain <, therefore
e.cannot be a function of y or z, but at most is a function
of x- only.

In the present case situation is same at all cross-sections of
the prismatic bar, therefore

€, =Constant

at all points of the body i.e €, is also no a function of x.
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Since we are studying a homogenous, linearly elastic and
isotropic prismatic bar

S :l_a —U(O' -0 )_% e =

xT [T y z) | X" F
1r 7 Vv

EyZE_O'y—U(O'x—O'Z)_% Sy=—p 0
1 %

EZ:E[GZ—U(GX—Gy)]% GZ:_EO-X

In the present case, €, is independent of y and z coordinates,
therefore o, is also independent of y and z coordinates i.e

o, is uniformly distributed in a cross-section

v M T [~
: I >
-— | —> : < :
| P - ... | »- .
1 P C .m~=—=—=--- < P
'm ’,’ P
s - ____ _l”
m
- A:go- -— A —»>
P ¥ O-r U\’
m

Moreover 0, = E€,=Constant throughout the bar.

We know that internal resultant force

F= j()'di
A

Since 0, is a independent of y & z
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F=O'Id61=0'A
A

> |

F
O=—=
A

M, = [0,2dA=0= | zdA
A A
MZ:—IO'x.ydA:O:'[ydA:O
A A

Eq. (1) indicates that moment are taken about the centroid of
the cross-section.

Elongation or Contraction

A 2,—- P f

L —IS|

-1

|
L+ X
|

dx = “du=e_ dx

Total elongation of the rod

TLMZE

AE AE

L
u(L)-u(0)=5= e, da=
0 0
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A N I -
L "
AE y ;

AE = Axial rigidity X Blo.

If A,E and P are functions of x then

5= E‘)'AP(.’)C) dx

Stiffness and flexibility

hammale) P=kS
}—/\/vvvvx—> s

el
f

AE

L
k=" —
L f AE

These are useful in computer analysis of structural members.
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Extension of results: Non-uniform bars (non-prismatic)

For a prismatic bar

This is exact solution for prismatic bar.

y A(x)
/

PR AL P g
N/m
_P(x) _ F(x)
T A(x) A(x)
_t P
S_gA(x)E(x) *

Approximate exp ression

The above formula becomes a good approximation for
uniformly varying cross-sectional area A(x)member.

Above formula is quite satisfactory if the angle of taper is
small

Plane sections remain plane and perpendicular to the x- axis
is no longer valid for the case of non-prismatic rods.
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y o a Free surface
I \ 4,
X b — :

ZF, =0= 0, (bAy) -7,y (bAX) =0

A
Tyy =Tyx = Oy (x).A—Zs
Taking Ax — 0, we note that 7, — 0 only if % — 0 i.e at the
X

slope of the upper surface of the rod tends to zero.

KARPAGAM ACADEMY OF HIGHER EDUCATION | AEROSPACE ENGINEERING



Solid Mechanics CHAPTER-2 STRESS, STRAIN AND DEFORMATION OF SOLIDS

Case2

C B p A
— > ) E, A < EI,AI <_P~1
PA"'PB: —
| L, >l L, -
+P
C B A,
P,
P4+PB
PL —(P4+Pg)L,
Opc =—— =
AE AyE,
_PL  -P,L4
ABTAE T AL
P,+ P
GBC:_( AA B)
2

oap=—Pa/ A

0cA =Spc +548
This method can be used when a bar consists of several
prismatic segments each having different material, each
having different axial forces, different dimensions and
different materials. The change in length may be obtained
from the equation

n . .
S= Z—P’Ll and o;=—L

i1 Ak
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Statically indeterminate problems

Equilibrium %Steel
Al Es"{y AI
[F, =0] 5 @
T |E. A E 4
F++F-+F.—P=0 a“ta a “a
al THa2 ™1 Lai A C B
IMc =
[ZMc =0 e p—sl—bH—s
bFal—bFazzO V._.
I, E, L,
Fo1=Fp T T ?
| |
2F, +F, =P (1) o l b
P
For statically indeterminate problems we aval
must consider the deformation of the
entire system to obtain “compatibility
equation” .
The rigid plate must be horizontal : %/ —1
: | . 145
after deformation E::Z::::::::‘iA
S.=3,

0; = 0= geometric compatibility equation

0, = i and = M
AsEq EqAy
Then using the geometry compatibility
FaLy _ FL4q (2)

0. =0
’ A= EAAA EsAs
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By solving (1) & (2) we can obtain internal forces F;, & Fy

Stresses in axially loaded members

'

Uniaxial state
of stress

[ o, 0
0'--]—
Y 0 0
(@)
o,.0
01 =0, 2 0,=0,
e o] _|ox
max o9 +7

Occurs at 45°to x—y or x—z planes.
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e K

RN

A —Principal stress elements

B,C —maximum shear stress elements.

i T ..
Ductile max p

P material Cup & cone

Ductile material are weak in shear. They fail along 7,

planes.

s
- O'.l<-|:: -0 1 —_— p
P 3 Flat fracture

S

Brittle materials weak in normal tensile stresses. They fail
along oy planes.

Limitations of analysis

(1)They are exact for long prismatic bars of any cross-section,
when axial force is applied at the centroid of the end cross-
sections.
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(2)They should not be employed (especiallyo, :g) at
concentrated loads and in the regions of geometric
discontinuity.

(3)They provide good approximation if the taper is small.

(4)Above equations should not be applied for the case of
relatively short rods.

(5)They are exact for relatively short members under
compressive loading.

References:
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Solid Mechanics CHAPTER-3 BEAMS, LOADS AND STRESSES

1. Shear force and bending moment
diagrams

Internal Forces in solids

Resultant Couple Vector = C,
Resultant Force Vector = F,

Sign conventions

e Shear forces are given a special symbol on Vy% and V,

* The couple moment along the axis of the member is
given
M, =T =Torque
M,, =M, =bending moment.
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We need to follow a systematic sign convention for

systematic development of equations and reproducibility of
the equations

The sign convention is like this.

If a face (i.e. formed by the cutting plane) is +ve if its outward
normal unit vector points towards any of the positive coordinate
directions otherwise it is —ve face

e A force component on a +ve face is +ve if it is directed
towards any of the +ve coordinate axis direction. A force
component on a —ve face is +ve if it is directed towards any of
the —ve coordinate axis direction. Otherwise it is —v.

Thus sign conventions depend on the choice of coordinate
axes.

Shear force and bending moment diagrams of beams

Beam is one of the most important structural components.

® Beams are usually long, straight, prismatic members and
always subjected forces perpendicular to the axis of the beam

W, (total uniformly varying load)

M 7 Ws.(total load)
P, ; I E ; ‘
s-n-—-—lh-i— ;

2537 Rix 7

bl

Two observations:

(1) Forces are coplanar
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(2) All forces are applied at the axis of the beam.

Application of method of sections

What are the necessary internal forces to keep the segment of
the beam in equilibrium?

>F,=0=>P
2F,=0=V
>F,=0=>M
W, (total uniformly varying load)
/>: ﬂ i‘/ W (total load)
P ' r v ¥
=

W ol

@

. Pl
W,
M F ¥ 9 ! I
A il RAx A!I\
RAy RB

()

® The shear for a diagram (SFD) and bending moment
diagram(BMD) of a beam shows the variation of shear
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force and bending moment along the length of the
beam.

These diagrams are extremely useful while designing the
beams for various applications.

Supports and various types of beams

(a) Roller Support — resists vertical forces only

e
L.,

(b) Hinge support or pin connection — resists horizontal and

vertical forces 4 N
Rax
. L ~;
Beam i i I
- \\ | 1 { t
Pin 7%7 RAy
LIS

Resists horizontal
and vertical forces

Hinge and roller supports are called as simple supports

(c) Fixed support or built-in end

3 RCX
E: Z ] RCy

Resists horizontal
and vertical forces
and moment

NN NN
o
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The distance between two supports is known as “span”.

Types of beams

Beams are classified based on the type of supports.

(1) Simply supported beam: A beam with two simple supports

1 Yy ¥ ¥ ¥

_
il

l_
i
.1
Simply supported beams

L

—

(2) Cantilever beam: Beam fixed at one end and free at other

-
-y

1
YY Y Y ¥V ¥V VY ¥V ¥

DIUIINSANNAANN

T

(3) Overhanging beam

Y [ ¥ Yy v v 9

7%

C T

(4) Continuous beam: More than two supports

P

45 o N
LLIJJ*%
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Differential equations of equilibrium

P(x)kg per unit length p 7 +p(x)
eI il
T Ly M T +V AV
AX— [+ X = (' ‘ T‘\ -
SN
+M +AM
+V
AX
y +V
A
[ZF, =0 —+] i
Beam sign convention
[EFy =0 T+]
V+4V -V +PAx =0
AV =—-PAx
A __p
Ax
i AV _dV__
Ax—0 Ax dx
2
[EM, =0] VAx—M+M+aM -2 _g
2
Viar+ aM -T2 g
AM ., PAx_
Ax 2
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AM _ dM

lim

o Ax o dx

=—V

. dV :
From equation —— =—P we can write

dx

From equation am _ -V

dx

Svecial cases:

P
A G ||B C
Ll — .
AN HOR
Pl6 l<—4a—><—2a—>‘
Pl
+
0]
+Pal3

-2Pa/3 RN
-Pa
P
a
P M=?
-2Pal3

V2P
45°f\|‘_a_’ B
A~—I#
a
\D N *
\ L
- L >
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2N

1
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X

5kN
v A
5kN
7.5kN/m
l l l Y {
B FaN A
75707 pro=-2
—2m =!- 2m =! 2m—-t- 2m——4—2m——|
Y okN
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o 10

R I B S
C"‘ B ¥C X D E
A
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40
Point of|inter
10 )
/ section
\ 7~
=
0

0<x<2-(1)-(1)
2<x<6—-(2-(2)

DOmE—% 6<x<8—(3)—(3)

8<x<10-(4)-(4)

0<x<2 (1)=(1)

V-5=0

V=5

Vpa=5 Vg=5
2<x<6 (2)-(2)
V-5+30-7.5(x-2)=0
V=5-30+7.5(x-2)
Vp=-25;, V0 =5
—25+7.5(x-2)=0
= x=5.33
6<x<8 (3)-(3)
V-5+30-30-10=0
V =+15
Ve =+15; Vp=+15
8<x<10 (4)-(4)
V-5+30-30-10+20=0
V+5=0
V=-5
Vp=-5;, Vg=-5
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0<x<2 —(1)=(1)
M-10+5x=0

M =-5x+10

M, =+10; Mz=0

N

<x<6 —(2)—(2)

75(x—2)*

M-10+5x-30(x—-2)+ 5

7.5(x—2)*

M=10-5x+30(x—-2)- 5

ME| _s 33 =41.66+
Mc‘ _ :40

6<x<8 —(3)—(3)[C-D]

M—=10+5x-30(x—2)+30(x—4)+10(x—6)+20=0

MC ‘x:6 =20+
Mp|,_, =—10

8<x<10 [D-E] (4)—(4)

M—=10+5x—-30(x—2)+30(x—4)+10(x —6)+20-20(x —8) =0

ME ‘x=8 -

Problems to show that jumps because of concentrated force

and concentrated moment

6N

n | i

‘ION -m

wé%r n97 AT T 5,
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A s ¢ tm_JON-m lsN
£ s aft ™ °

3N-m

AN

SkN

5N-m
+ B C
A /

50N-m

We can also demonstrate internal torces at a given section
using above examples. This should be carried first before

drawing SFD and BMD.
0<x<2 [A-B]
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10

N
A
A
A
o X
‘™
|
a

v \
S S
I
bk
<
N
Il
p—
S
=
vy
Il
(@)

75kN/m
10
el bk
2m A M
4—()(-2)—-
e )
30
(x-2)°
V-5+30-75(x-2)=0| M-10+5x-30(x-2)+7.5 =0
V=75(x-2)+5-30 | y—g
Vp=-25;, V=5 M =40
—25+7.5(x=2)=0 ME|x=5.33=41.66
x=5.33 x=2
MB:O
6<x<8 [C-D]
5 75kN/m
_ ~10-=30 =
0 ll"ﬂv V-5+30-10-30=0
——~ L[ v V=15
m o4 oA4moT20 V. =15, V=15
e X >
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8<x<10 [D-E]

5 75kKN/m

10@ om l_" (1‘ V-5+30-10-30+20=0
- E
20 VD:_S VE—5

X L
|
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kN - -
60 30KkN/m [>F, > +=0]= Ry, =0
N [ [ ] ] ] | XF, T+=0|= Ry, +60-90=0
N
§.._2_,‘,1 m+t+——3m—— RAy = 30kN T
[EM,=0]=M+60-90x4.5=0
M =285k—m
90
60
2 30|lN/m 5
- ‘q; ic l iD | 1
2—|~1m~|~—3m——| } 20
30
R,
60 60kN/m

60 30kN/m

2 1T
o e lo o]
2 |B14c 3 130 (x-3)
285 e X
30

30+V+60—30(x—3):0

A 2m 1m C 3m
50) = V =30(x-3)—90
30 (-90) —30x3-90
2 —90-90
135 =0

225 1| Mp—M 4 =—(-60)
/ Mp =60+M 4 =60—285
285 :—225

T C. ‘)M =285

285
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Mc —Mp =-(-90)
Mg = My +90 = ~225+90
=-135

Mp - M =—(~135)
Mp =M +135=-135+135=0

[ZFy T+= 0]
200 RAy+RCy_2OO_24O:O
= Ry, + Rey =440 (1)
A" VB Y \J A C
o o \ [ZM, =0]
TRAy Ry,  —200x3-240x4+Rc, x8=0
200
3 |Tan 5 Rc, =195kN T
Ay L E 1] YC RAy = 245 kN T
A A 200
30
245 195
45 / Yy v ] v
A 3
195 X > l
155
/ 245
245
a5 V +245-200-30x =0
V =30x-45
V =30x8—-45=240-45
V =195
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1195

go 200 T

| T’|95
L 195
30 "
— ) M —245%3+90x1.5

M =245x3-90x%x1.5

8kN/m - 8kN/m
T
1 8
W\r Y Yy _ v 1 =8/) ¥ Y ;\
3 7
1 I: 4m > 8 U
_L>
G f
8kN/m 1

8 A B/ ) 8
i 8
A 8

8 | 4m 1
R,, =20 Ry, =12
RAy +RBy =32
[ZMAZO]—32X2+18+8+4RBy=O 12

—64+16+4Rp, =0

8
Rp, =12kN (]. %8
12 1

R 4, = 20kN
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8kN/m
V
L X=25— 12 .fff 1y yM
A B "4 P
(-25) C g %
20
20
. V+20-8x=0
V =8x-20
8x—20=0
8 x=20/8=25
/ M - M =—(-50)
8 MC:MA+50:—8+25=17
50kN
Problem: A0 U |
\ ] \ ] \ \ D
>A
RAx 7 B C
>F. —-+=0
[ x ] RAy TR
RAx:O Dy
|XF,=0T+]|Ray+Rp, —60-50=0=> Ry, +Rp, =110 (1)
XM,y =0]-60x1.5-50x4+Rp, x5=0
RDy=339=58MVT
Rpy =52kN T
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y m
i
T i 50kN
20kN/m
|
|
\ 4 .  J A A B D
A — & T—-»
52 m 58

OKN/m [zPy -07T +] V +52-20x =0

[T, ¢
TJ V =20x-52 0<x<3m

v

X—l-

52 [XM=0]
2
M+ s o0
2
M =52x - 22" (0 < x <3m)
20kN/m [ZFy —07T +]
[ l | V+52-60=0

[EM=0] M-52x+60(x-1.5)=0

B C
M =52x-60(x—1.5) (3Sx£4mj
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[ZFy :OT+]

V+52-60-50=0
V=58kN (4<x<5)

[>M=0] M-52x+60(x—1.5)+50(x—4)=0

20kN/m 50
1 M
7 — M
] |
- X =
20kN/m 50
A By y C D
f A
|‘ 3 Tm Tm—
58
- 58kN
+x=2.6m-{ SkN (+58)
A 6) (+8)
(-67.6)~E |B C D
52kN 676
\60

KARPAGAM ACADEMY OF HIGHER EDUCATION

M=52x-60(x—-15)-50(x—4) (4<x<5)

a_

dx

av _

dx
20x-52=0

x=52/20=2.6m

MB _ME - —16
Mp=-1.6+67.6
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20kN/m = Mg —-M 4 = _J'de
dM
Yy
A“ y L y vB yC ? dx
———3M————1m—te—1m—
m m m d_Vz_P
dx
52 58
20x-52=0
1 | x=52/20=2.6
MB _ME :—1.6
| Mp=-1.6+Mg=-1.6+67.6
| M —Mp=-8
= 8+66="58
MD _MC :—58
MD ZMC + 58
=58-58=0

References:
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15. Symmetrical bending of beams

Some basics

Transverse loads or
Lateral loads

Pl/\f T S
T\
/_b_._._._. ___________________ ;;_

Longitudinal <5
forces - ;@; 1
l< L !

e Transverse loads or lateral loads: Forces or moments

having their vectors perpendicular to the axis of the bar.
e (lassification of structural members.

e Axially loaded bars :- Supports forces having their
vectors directed along the axis of the bar.

e Bar in tension:- Supports torques having their moment
vectors directed along the axis.

® Beams :- Subjected to lateral loads.

e Beams undergo bending (flexure) because of lateral
loads.

bending
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Roughly speaking, “bending” refers to a change in shape from
a straight configuration to a non straight configuration.

Bending moments ie M, and M, are responsible for

bending of beams.

The loads acting on a beam cause the beam to bend or flex,

thereby deforming its axis into a curve-known as
deflection curve” of the beam.

__Axis of beam

N
A\

A\_._._._._._._ X
N

eflection curve
» X

If all points inx—yplane remain in the xy—- plane after
deformation i.e after bending then xy— plane is known as

“plane of bending”.

If a beam bend in a particular plane, then the deflection
curve is a plane curve lying in the plane of bending.

-~ Deflection curve or axis of
beam after deformation.

Ll
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The y—direction displacement [i.e. v—component] of any

point along its axis is known as the “deflection of the
beam”.

Pure bending and non-uniform bending

If the internal bending moment is constant at all sections
then beam is said to be under “pure bending”.

am_
dx
Pure bending (i.e., M=constant) occurs only in regions of a beam
where the shear force is zero. \

R YD
M A ;@
T

Uniform bending or pure bending

v

§

Uniform bending or pure bending

P P
a a
A T
2’ it 7.
%/ .
Y X
A P Pure bending

Non-uniform bendin
Pa / S

If M =M(x) it is non- uniform bending
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Curvature of a beam

When loads are applied to the beam, if it bends in a plane
say xy —plane, then its longitudinal axis is deformed into a

curve. v TP
N B
O - Center of curvature R\ S ——— A
N
N

R — Radius of curvature Y

k= 1 = Curvature
R

in general R=R(x) and k=k(x).
RAQ=dS

po L _dQ

R dS

The deflections of beams are very small under small
deformation condition. small deflections means that the

for any amount of R

deflection curve is nearly flat.

_ 1 _dOnder small deformations.

R dX
Y A Y A
+bending Concave - ve bending Concave
upward downward
Mn(' @ ‘)I " MO(V%Q‘) M,
+ ve curvature - ve curvature
» X » X
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Deflection curve

LLLLL L
@)

PL

B Deflection
D curve

It is given that deflections at A and B should be zero.
Symmetrical bending of beams in a state of pure bending

Geometry, loading and material properties

A long prismatic member possess a plane of symmetry
subjected to equal and opposite couples M (or bending
moments) acting in the same plane of symmetry.

00

Z
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Initially we choose origin of the coordinate system “O” is
not at the centroid of the cross-section.

The y-—axis passing through the cross-section is an axis of

symmetry. The XY plane is the plane of symmetry.

by y by

Ay

Y-axis of symmetry -
considered

LY Ay

No axis of symmetry -

not considered

Material is homogeneous, linearly elastic and isotropic

undergoing small deformations.

Stresses in symmetric member in pure bending

Y
M, 4 m M, 4
o— Dex 24N\
| ) omre=<
'm
m
|
M, '
> F,=V,=V,=0
M, =M, =0
! M, =M= M,
m

KARPAGAM ACADEMY OF HIGHER EDUCATION

| AEROSPACE ENGINEERING



Solid Mechanics CHAPTER-3 BEAMS, LOADS AND STRESSES

M= —I Yo, dA

Therefore, o,dA are the only elementary forces that are

required to be developed by right of the section on to the left
of the section.

The distribution of oy any section should satisfy
F,=0=[0,dA=0
M, =0= [z0,dA=0
M,=M=-[yo,dA=M

Actual distribution of stresses - cannot by statics - statically

indeterminate - deformations should be considered.

Thus, the state of stress at any point within a prismatic beam
(cross-section having an axis of symmetry) subjected to pure
bending is a uniaxial state of stress.

o, 00
o;]=| 0 0 0
0 0 0
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Deformations in a symmetric member in pure bending

Since the member is subjected to bending moments, it will
bend under the action of these couples.

y y

?A B Before deformation

Ar ) Br Mo

After deformation PN

xy-plane=plane of symmetnﬁ N
= plane bending / \

/ AY
H \
M M 4/ Axisofthebeam' p

A’

Since, the prismatic member possessing a plane of symmetry
(i.e xy- plane) and subjected to equal and opposite couples
M, acting in the plane of symmetry, the member will bend

in the plane of symmetry (i.e xy plane).

The curvature k at a particular point on the axis of the beam
depends on the bending moment at that point. Therefore a
prismatic beam in pure bending will have constant
curvature.

The line AB, which was originally a straight line, will be
transformed in to a circle of center O and so the line A'B’.
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Decrease in length of AB and increase in length of A’B” in
positive bending.

Cross-sections which are plane and L to the axis of Kinematic
the undeformed beam, remain plane and remaini to assumption
the axis of the deformed beam i.e to the deflection

curove.

Variation of strain and M — k relation

Elementary theory of bending or Euler-Bernoulli theory

A
Neutral y

axis
Z |o
c
MO

Neutral
axis

Neutral
surface

Under the action of M), the beam deflects in the xy — plane
(plane of symmetry) and any longitudinal fibers such as SS
bent into a circular curve. The beam is bent concave upward
(due to +ve bending) upon which is a +ve curvature.
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Cross-sections mn and pq remain plane and normal to the
longitudinal axis of the beam. Cross-sections mn and pq
rotate with respect to each other about z-axis.

Lower part of the beam is intension and upper part is in
compression.

The x- axis lies along the neutral surface of undeformed
beam

Variation of strain and M-k relations (contd.)

A

Neutral axis

Neutral
surface

Initial length of fiber ef =dx

Final length of ef :F =(R-y)dQ

The distance dx between two planes is unchanged at the
neutral surface,

RAQ = dx = k= L = 9Q
R dx

KARPAGAM ACADEMY OF HIGHER EDUCATION | AEROSPACE ENGINEERING



Solid Mechanics CHAPTER-3 BEAMS, LOADS AND STRESSES

1"__J17

Therefore, the longitudinal strain i.e €, at a distance “y

from the neutral axis is

_ e f —¢f _(R-y)dQ-dx -y
* ef dx R

In case of pure bending €, #¢, (x and z),e,=€, (v)

The preceding equation shows that the longitudinal strains
(,) in the beam (in pure bending) are proportional to the
curvature and vary linearly with the distance y from the
neutral axis or neutral surface.

€, Neutral y
4 [ surface
—g ———————— %5 ————————— 9— o \y
(0] 2
- Neltral axis °
¢ X - Exrnax

€,=0 at the neutral surface

Maximum compressive €,= —h
R
c . +
Maximum tensile €= %

However, we still do not know the location of neutral axis or
neutral surface.
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Stresses in beams in pure bending :- For linearly elastic and
isotropic beam material

ex=%[0x—v(ay+az)] ny:%

- . T

1
€= _O'y—U(O'x+GZ)_ Y, :—éz
1r 7 T
EZ:—E _O'Z—U(O'x+0'y)_ YXZ:—CZ;x

The state of the stress at any point within a prismatic beam
in pure bending is

o, 00
loj]=| 0 0 0

|0 0 0]
oy =Ee,="El =iy

%4
ey:—EO'x:—Vex
ezz—%()'x:—Vex

From the above equation
o, #20(x,2)
Oy =O'(y) R (y)
ve, =linear f(y)
:. 0y =linear f(y)
i.e.,var y linearly with the distance y from the neutral surface
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o, y
M = X >
- Ox
M
,/’ ~
[ )| X
____7_ ______ 0
Neutral surface
// ¥ | Neutral axis
Neutral surface
y Neutral y
- X > axis

O-X
N “
Neutral surface >
'~ C 0
PG EsaeE Z C,

o, at y =0 i.e on the neutral surface = 0

: , EC;
Maximum compressive o, = —?

: . EC
Maximum tensile O, = TZ

Maximum normal stress o, occurs at the points farthest
from the neutral axis.

In order to compute the stresses and strain we must locate
the neutral axis of the cross-section.
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Location of neutral axis

We must satisty the following equations at any given section
m-m [o.dA=0
~[oydA=M =M, =M,

[ozdA=M, =0
m M,

(==
e

Considering first equation

y
[odA=—] Ev_g
R
A A n
oC =
z | O%
dA=0
I_!;y I\ﬁjtral
axis

The above equation shows that the distance ¥ between

neutral axis and centroid “C” of a cross-section is zero.

In other words, the neutral axis i.e z-axis pass through
the centroid of the cross-section, provided if the

material follows Hooke’s law.
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The origin ‘O’ of coordinates is located at the centroid of the
cross-sectional area.

Thus, when a prismatic beam of linearly elastic material is
subjected to pure bending, the y and z (neutral axis) axes are
principal centroidal axes.

Moment — Curvature relationship

M = —j o, ydA
A
M=+ 5V aa by
A R
)C,0
E “/\
M= [y*dA -
R A Neutral axis

ysz:IZZ = Moment of inertia of

D —y

cross-sectional area about
neutral axis

Axis of the beam

Moment-Curvature relation
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Curvature k is directly proportional to M- internal bending

moment and inversely proportional to EI- flexural rigidity of
the beam.

Flexural rigidity is a measure of the resistance of a beam to
bending.

)4 + bending y -ve bending
y moment y M moment o
. 0 (@)
C — ) -ve curvature
+curvature N
X

Relation between o, and M - Flexure formula

o, =—Eky
and k= M
EIl

Oy = —@ - flexure formula.

Stresses evaluated from flexure formula are called bending
stresses or flexural stresses.

y

y
;meax/gx +me O-X
+M < -M
C, C,
....... U W A
2 N
+o, 72 _meax ?
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The maximum tensile and compressive bending stresses
occur at points located farthest from the neutral axis.

The maximum normal stresses are

-MCy M MC, M
I 51 I S»

N N
1 _C_l ar 2 _C_2 -Section moduli

S =Section modulus

Cross- sectional properties of some common shapes

z— axis — neutral axis
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IEL% y
T bh3 bh?
N h I, =—+ -
5 12 6
h/2 l
_¥
«—bh—>
y
, 0 “ 64 32
PRI
y
b/2 _T
bh3
Z o h Izz - %
3
Vhi3 l h=+3b/2 foregilateral triangle
b
y
, ¥ /Wlo I,,=0.1098r*
AR
R ir
37
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Distribution o, 0n various cross-sections

M
y y
. _ M
flange—_[” h Omax = S
C1
<>t 4 I
z c Z C h>t S=_"-
c TTT— web— Y
; max
T-section I-Section M = G jijowS
For same area y
y /
T/ TN\
square
h-% s C d 1 =1.18

N . J 2 z J Scircle
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e This result shows that a beam of square cross-section is
more efficient in resisting bending then circular beam of
same area.

e A circle has a relatively larger amount of material
located near the neutral axis. This material is less highly
stresses.

e [- Section is more efficient then a rectangular cross-
section of the same area and height, because I- section
has most of the material in the flanges at the greatest
available distance from the neutral axis.

Extension of results

Long prismatic beam under pure bending, and symmetrical

‘ Yy Neutral axi
Mc< T ﬁ/"% e ax;/s centroid
________________ X zf "E
2 ) 0L M # M(x)
Neutral surface or M =Constant
axis of the beam
M o
o (y)=-"" &=7
I=Izz ey=—vex
1 M
R EI : :

A

Elementary theory of bending
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Bending of beams due to applied lateral loads

11 1]

-
N~

77

M

iyl
M(x)

i
\ Y Yy v Yy
\ .-
\ N~
17997
M _
dx

le \/ s
Consider now a beam subjected to typical arbitrary

transverse loads acting. In this case the interval bending
moment M =M(x) and V(x)#0, and thus we have non-

uniform bending.

Non-uniform bending is a result of presence of transverse shear
force V(y). If V(y)=0 then M = constant.

It can be shown that the above results can also be used for

non-uniform bending problems.

O-x(x/y):_MEX)y
- 1 M(x)
" R(x) EI

o (x,y)
Ex (x/y)_ E
€ =-VE,
€E,=—VE,
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The above results can also be used for non-uniform bending
problems provided if they satisfy the following conditions.

Plane of

w(x) symmetry

* The cross-sections should have y-axis of symmetry

o All applied transverse or lateral loads should lie in the
x-y plane of symmetry and all applied couples act about
z-axis only.

e L>h —-longslender beams

e Bending that conforms to conditions (i) and (ii) is called
symmetrical bending.

If these three conditions are satisfied then one can employ
the following expressions for non-uniform bending as-well
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o (xy) ==L ey ()=

[=1, Sy (x,y)=-ve,
1 M(x) - — e

k(x)—R(x)— = . (x,y)=-ve;

Application of above equations to the non-uniform bending
problems is equivalent to the following two assumptions.

(a)That even under such loading conditions, plane sections
still remain plane after deformation and they remain L to
the deformed longitudinal axis or neutral surface.

Bending stresses in a non-prismatic beam

The above equation can also be applied to the case of non-
prismatic beam subjected to either pure or non-uniform
bending, provided cross-sectional properties do not vary

sharply.
o = M)y
N 1 M(x)
5 ) M= R T Bl

A
r—~
-y
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Solid Mechanics

Problem

Determine the maximum tensile and compressive stresses in
the beam due to the uniform load.

3kN/m l+—90mm—],

wy)|

l—
=
=

- 3m >|<—1 .5m—>| mm

Solution
Centroid :-
_ Yy
A mm? V| yA mm’ |
M
1 [ 20%90=1800 |50 | 90x 103 ) Ci 50I1m
X || |y
2 | 40x30=1200 |20 | 24x10° 20 | @ Jy J
3 o z
A=XYA=3000 2yA=114x10
Ay=Z7yA = %3000=114x10° = ¥ =38mm
|y
IZZ=I=E(T+Ad2)S _t @ loon
12mm 4 1 ZEnm
bh° 2 z tgmm [C | ¢
=Y —+Ad .
[12 ) * e

=%90><203 +1800x 122 +%><30><402 +1200x 182

I, =1=868x10° mm?* =868x10~" m*
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Cy=22mm and C, =38mm

My
Oy =——"
: I

M I
o, ..=—:85=—"—
max S

At maximum +ve bending moment i.e at (D)

-9
5 =1 =508 __59 454107
C1 22x10
-9
5y =1 =901~ 55 84x107
C, 3810
at D:
M_ 1898
O-t = = =6
i sy 22.84x10
o, =83.1MPa
M_ 1898
O'C = = 3
mr sy 39.45%10
o. =48.11MPa

At maximum -ve moment i.e at (B)

Q=3.0 kN/m

(1 >
o = M _ 3375 _gss5mpe | RS c P
max s, 39.45x10
o = M = 3.375 =147.8 M Pgq Cross-section Cross-section
Cimax 5, 22.84%107° ) ®)
o, =8555 and o =147.8 MPa
max max
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Problem

a wooden member of length L =3m having a rectangular
cross-section 3 cm x 6 cm is to be used as a cantilever with a
load P =240N acting at the free end. Can the member carry
this load if the allowable flexural stress both in tension and
in compression is 0., =50 Mpa ?

‘max

\
S ] C
N
- 3m »‘ o
Solution L T
M, .. =720 N-m X
(-
3
12 0.015 N
0.06
tmax - O-Cmax - M - & P_yr_bi
S4 Sa i c jo.os
togy — ©Comax — Callow (A)
Yy
o XS 1,003
Palow _ Yallow A _ 150N
L i
1 0.03x0.06° i e b
p=— oD 21 8%1070 m® R
12 0.03 B)
Palow _ O allow ><SB — 300N

. The beam can carry P =240N only when oriented as in (B)
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Limitations

(1)The flexure formula is exact for a prismatic beam in pure
bending.

(2)It provides very good approximation of o, for long

slender beams (L >>h) under symmetrical bending.

(3)The flexure formula can be employed for any shape of the
cross-section, provided the cross-section has y-axis of
symmetry.

(4)It should not be employed in regions close to geometric
discontinuities and concentrated loads.
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16. Shear Stresses in Beams

AL -1 y
------------- e I

AV Axis of symmetry

v, (x)
Ty
Neutral aX|s
m

77’ .|< X | /( Tra nsverse section

V, (x) z'dA

It is reasonable to assume that

(1)The shear stresses acting on the cross-section are parallel
to the shear force V, (x) i.e L to the line PQ

(2)It is also reasonable to assume that the shear stresses Tyy

are uniformly distributed across the width of the beam, so
that M, =T =0 for symmetrical bending

Tyy =Ty, (X,y) such thats

Vy (x)= jfxy (x/y)dA
A
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Longitudinal
¥ shear stress

yx
-_—

7,, =Transverse
shear stress

ax
e Thus, there are horizontal shear stresses (or longitudinal

shear stresses) acting between horizontal layers of the
beam as well as vertical shear stresses acting on the
cross-sections.

* Atany point of the beam 7,, =7,
e Pattern of distribution of 7,, =pattern of distribution of
Tyx
* Sincetr, =7,,, it follows that the vertical shear stresses
7,y must vanish aty = ig, if the beam is subjected only

lateral loads.
y N
./
/ C
7, =0
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Derivation of shear stress formula

Beam under non-uniform bending i.e M = M (x)

Vix)

C
Neutral axis

\i

I: b

t = width or thickness of the beam at y =1,

KARPAGAM ACADEMY OF HIGHER EDUCATION | AEROSPACE ENGINEERING



Solid Mechanics CHAPTER-3 BEAMS, LOADS AND STRESSES

We now wish to satisfy equilibrium in the x- direction.

Taking [ZF, — +=0] we have then

—_[ o, (x+Ax,y)dA+ jc)'x (x,y)dA+7,tAx =0

1
Tyt :Ax{j o, (x+Ax,y)dA - I o, (x,y)dA}
A

A
—-M(x
ax<x,y)=—§ =
1 1 1
— —J.M x+Ax)ydA+—J.M(x)ydA
Ax 121 121

M (x+Ax)—- x)J.ydA}

= | M
{ (x+Ax) M(x)MydA

taking limit as Ax — 0

“\

M (x+Ax)—M(x)
l dA
Fyx = It Ax—0 Ax jy
, _—laM
STt dx A]/ g A

s 7z,

E:_Vy(x) z t/N tral axi \
T —Vy(x)JydA

¥ Line along which 7 is evaluated
A
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The above integral is by definition the first moment of are 4
about the z-axis, we denote it by symbol Q.

Q= [ydA
A

D = —T——VyQ
B R (1)

shear formula

in the above equation I=1I,, stands for the moment of

inertia of the entire cross sectional area around the neutral
axis.

|y y
_ 'f !/d"/?/g A .
-~y t
y
l | "’1 ‘_#/ t 1rY1 "
/ Neutral axis /Neutral axis

Q=|ydA=Ay, Q= [ydA=Ay,
A A

From (1)

,Q_VvQ
I I

The quantity “f” is known as the “shear flow”.

Shear flow is the horizontal shear force per unit distance
along the longitudinal axis of the beam.
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Distribution of shear stresses in a Rectangular beam

An example of application of equations /\5 y
— 4 [t h
Q=JudA=b(§—yj[y+h/2 y} z %/% v 2 g
A ! R
Q b h2 z /1‘7 C
la——hH——»
1:34m3
12
__ _VQ_V(k_
Py =y T 21(4 4 j
aty:ii Tyy = Tyx =0
y
v
IYYYY! 'VYYYY R SR
A \FE AT
[t ma
YYYYYYYYY R

The shear stresses in a rectangular beam vary quadratically
with the distance y from the neutral axis.

Maximum value of shear stress occurs at the neutral axis
where Q is maximum.

_ _Vh* 3V
7:x]/max . 7:yxmax . W . EZ
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Thus 7, in a beam of rectangular cross-section is 50%

%
larger than the average shear stress 2

"
TR 1 —A
AN
2| b Y
+F—) "
n |
2 :Tmax
\ J 1

It is always possible to express the maximum shear stress 7,

as
1%

Txy max A

for most of the cross-sectional areas

K= g Rectan gular
K= 4 Circular

3

3 .
K= 5 Triangular

For most of the cross-section 7,,,, occurs at the neutral axis.

This is not always true.
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Stress elements in non-uniform bending

y
t Y, (x)
y A A
T B2 s 3
M(x) y
- |2
Yy v l 7 R c _*
O A y
.......... S B p |
1%
774%7_ | % E
- X >
7, va
——- It
O¢ -M
(B) LI . A
/
7,
-+
_Fmax ST
Z.max é
(C) 3V D) 7 (E)
S f f
2 A 7 /.
- — /
meax
Tmax
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Problem

A wood beam AB is loaded as shown in the figure. It has a
rectangular cross -section (see figure). Determine the
maximum permissible value p,,,, of the loads if the
allowable stress is bending is o,,,, = 11MPa(for both tension

and compression) and allowable stress in horizontal shear is
Tallow = 1.2MPa

Fr 2.
%ET“H o5 H?rﬂ/j |

Solution

Viux occurs at supports and maximum BM occurs in

between the loads. lp l P
a a
Vaw =P M, =0.5P =Pa T
2 P
S= % A=Dbh (+)
6 (SFD)
o = Miyay _6Pa S
" 5 bhz 0.5P 0.5P=Pa

= — — " "max _~ - _ 2 -/ (BM) (¥ \
Txymax z-yxmax t

M2 A 2A 2bh
Therefore, the maximum permissible values of the load P in
dending and shear respectively are

2
O-allowb h
6a

2Tczllowb h

Pallow‘b = allow‘s = 3
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Substituting numerical values into these formulas,

Putiow), =8-25kN

Puiiow, =8.25kN

Thus bending governs the design and the maximum
allowable load is

P, =825kN

Problem

An I -beam is loaded as in figure. If it has the cross-section as
shown in figure, determine the shearing stresses at the levels
indicated. Neglect the weight of the beam.

]
500kN 1 | (.
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: 2 | 214
| 3 | 3
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SOlution All dimensions are in mm
250kN

M
) Vertical shear is same at all sections

Tmax

A
250kN ‘ J

—
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Solid Mechanics CHAPTER-3 BEAMS, LOADS AND STRESSES

1 1 4 4.5MPa
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Level | 2 2\ Y = Ay t 1%
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mm | X10°mm mm
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Ty =81.3 MPa
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Solid Mechanics CHAPTER-4.1 TORSION

14. Torsion of circular bars

Geometry, loading and Material properties

A prismatic bar of circular cross- section subjected to equal
and opposite torques acting at the ends.

y
A
M =1/ =M
‘7|_.!_._ —_— o — — — — . —=
it R X
Z < L ’I L>R

Whenever torques act on a member, then it will be twisted.

Torsion refers to the twisting of a straight bar when it is
loaded by torques.

Material: Homogeneous, linearly elasticc and isotropic
undergoing small deformations.

Presently theory is valid only for

Solid circular cross

. Hallow sections
sections

Stresses and strains in polar coordinates

Stresses, strains and displacements in polar coordinates.

Since we are dealing with a circular member it is preferable
to use polar coordinates
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Solid Mechanics CHAPTER-4.1 TORSION

Or Tro Tx
[O'i]’]: Tor Oo Tox

,\ F,=V,=V,=M,=M,=0
T \
"«—4—(—} (%—»—» M =T = TO

Since every cross-section of the bar is identical and since every
cross-section is subjected to the same internal torque “T”, then the
bar is said to be under “pure torsion”

To keep the body wunder
equilibrium, elementary forces =7,,d4

dF =7,4dA are only forces that are

required to be exerted by the other -
section, so that
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Solid Mechanics

CHAPTER-4.1 TORSION

dT =dF xXr = 0,9yrdA

T = 'f TrotdA
A

T:TO

(1)

Direction of 7,5 can be obtained from the direction of

internal torque T at that section.

The state of stress in pure torsion is therefore

0 0
0 O
_O Txg

0

Tox
0

While the relation in (1) express an important condition that

must be satisfied by the shearing stresses 7,5 in any given

cross-section of the bar it does not tell how these stresses are

distributed in the cross-section.

The actual distribution of stresses under a given load is

statically indeterminate. So we must know about the

deformation of the bar.

Presence of 7,4 in polar coordinates means, presence of

Tyy = TxgCo0s6

Tyz = TxQSing

Ay
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Solid Mechanics CHAPTER-4.1 TORSION

Therefore the state of stress in case pure torsion in terms of
rectangular stress components is then

0 7y Ty

7,y 0 0 |-state of pure shear.
7, 0 0

We must then ensure that

vy =Iz'xydA =0
V, = [7,dA=0

Deformation in pure torsion

(7777 77N\
(Al 1 IQ{

NN N

—T

/-—'-

b) After deformation
(a) Before deformation (b)

Following observations can be made from the deformation of
a circular bar subjected to equal and opposite end torques.

(I)The cross-sections of the bar do not change in shape i.e
they remain circular.

(2)A line parallel to the x- axis or longitudinal line become a
helical curve.

(3)All cross-sections remain plane.

(4)All cross-sections rotate about the axis of the bar as a solid
rigid slab.
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Solid Mechanics CHAPTER-4.1 TORSION

(5)However, various cross-sections along the bar rotate
through different amount.

(6)The radial lines remain radial lines after deformation

(7)Neither the length of the bar nor the length of radius will
change.

These are especially of circular bars only. Not true for non-
circular bars.

Assumptions on deformation for pure torsion

(1)All cross —sections rotate with respect to the axis of the
circular bar i.e x-axis.

(2)All cross-sections remain plane and remain perpendicular
to the axis of the bar.

(3)Radial lines remain straight after the deformation.

(4)Neither the length of the bar nor its radius will change
during the deformation.

These assumptions are correct only if the circular bar
undergoes “small deformations” only.

Variation of shear strain (Y,p)

Because of T, the right

end will rotate through
an infinitesimal angle

¢- angle of twist.
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Solid Mechanics CHAPTER-4.1 TORSION

*@ - varies along the axis of the bar.

% = O -rate of twist angle of twist per unit length.

*%Q—»
T T

o o

Y,ois independent of x and

Yy odx =Ydx=rd¢
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Solid Mechanics CHAPTER-4.1 TORSION

In case of pure torsion the shear strain Y varies linearly with

‘”_77

r

Maximum shear strain roccurs at the outer surface of the
circular barie., r=R

a¢
Yo = R=-
max dx
Shear strain is zero at the center of the bar.
The equation Y = r? is strictly valid to circular bars having
X

small deformations.

If the material is linearly elastic

T=GY
Therefore, variation of shear stress 7,5 in pure torsion is
given by

T:TXQ :GYxQ =GY%

1“_J77
r

Shear stress ¢ is only function of “r” and varies linearly with

radius r of the circular bar.

d
Tmax = TUxQppy = RGd_ff
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Solid Mechanics CHAPTER-4.1 TORSION

The torsion formula

Relation between internal torque T and shear stresst

T = _[ TrdA
A
T = j Gr @rdA
dx

Since G & ? are independent of area A then
X

T:G@jrsz
dxA
IP = ITZdA
A

Polar moment of inertiaof across — sec tion

For solid circular bar, Ip = Tpt ol p= 7R
J 32 2
T = GIP —¢
dx
d
dp___ T
dx GIP
But T= Gr@
dx
r T
Gr GIP
Tr
T=—
Ip
Torsion formula
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Solid Mechanics CHAPTER-4.1 TORSION

This is the relation between shear stresses 7,5 and torque T

existing at the section.

Torsion formula is independent of material property.

TR 4 TR
Tmax = UxQppy — E Z
S O R r
T. =
max 7'L'D3
for solid circular bars

Angles of twist

We now determine the relative rotation of any two cross-
sections

oo T
dx GIP
XB T
Pp/A=08—0a= Gde
XA p
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Solid Mechanics CHAPTER-4.1 TORSION

In case of prismatic circular bar subjected to equal opposite
torques at the ends

TL
= — =—Nn
Pp/A =08~ 0A G,
if xp—x4=L
puretorsion

Direction of ¢ at a section is same as that of T

N
N\ ;
\ ( 3 T, b= TL _TyL
N Glp GlIp
N
e .|

< L ~
Since © = a_ T then, in case of pure torsion.

dx GIP
O= 9_9_ constant
dx L

Thus in case of pure torsion ¢(x) varies linearly with x

In case of torsion

. Load

TL

p=—

Glp

displacement
(Clo L
L Glp
The product GIp —Torsional rigidity
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Solid Mechanics CHAPTER-4.1 TORSION

Tyy = TxgCo0sO
Ty = xQSmé’

We should ensure that distribution of 7,5 should also gives
V,=V,=0

j T dA = j 7,.oCosOdA

27[R
_[ j —Cos@drde
00 Ip
27:R
— j IrCosﬁdrdé’ 0
Ip 00
. V =0
27rR
— I j rSin@drd6 =0
Ip 00
V,=0

Hollow circular bars: The deformation of hollow circular
bars and solid circular bars are same. The key kinematic
assumptions are valid for any circular bar, either solid or
hollow. Therefore all equations of solid circular bars can be
employed for hollow circular bars, instead of using
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Solid Mechanics CHAPTER-4.1 TORSION

Ip="D*~ Soild @ @
32

Ip =3£2(D04 ~D} )~ hollow

‘max

TR,
Fmax = I / T min
p
IR . \WR

Tmin = 5 ‘
I
: -

Hollow bars are move efficient than solid bars of same “A”.

e Most of the material in soild shaft is stressed below the

‘“_77

maximum stress and also have smaller moment arm “7”.

¢ In hollow tube most of the material is near the outer
boundary, where r is maximum values and has large

i“_J77

moment arms ‘7.

m z'-max k z'-max
i ( T S\
7, i e
B . 'm =I ‘
Tr
r="-"
Ip
Ip :3%D4 — solid
= %(D;L — Df1 ) — hollow
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Solid Mechanics CHAPTER-4.1 TORSION

_TR TR,
max Ip ’ Ip
TR;

Z-minzﬂ
y=1-
G
7,Y - f(r)
d T
S_d_ T
dx GIP
TL
Bp a=0—0a=——
B/ A GIP
L=xg—x4

O = constant
¢ = linearly with x
(4) If weight reduction and savings of materials are

important, it is advisable to use a circular tube.

() Ex large drive shafts, propeller shafts, and generator
shafts usually have hollow circular cross sections.

Extension of results

Case-I Bar with continuously varying cross-sections and
continuously varying torque

e Pure torsion refers to torsion of prismatic bar subjected
to torques acting only at the ends.
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Solid Mechanics CHAPTER-4.1 TORSION

e All expressions are developed based on the key
kinematic assumptions, these are therefore, strictly valid
only for prismatic circular bars.

_T(x)r

Ip(x)
_dg _ T(x)
Olx)= dx Glp(x)

tn=0a=0n/a= [ 10

XA

dx

The above equations yield good approximations to the exact
solution, provide if R(x) doesn’t vary sharply with x.
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Some special cases

T
Ip
L T.L.
Bpra=2 "
i=1GzIB-
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Statically indeterminate problems

i
>
!

I

i AN
|

|

| |

\t\
044

ﬁ&\“

=L - LBC‘
A B c|
T L.

A _»T - C
[ZM,, =0] Ty+Tc+T=0 (1)
We note that within AB, T=T, and

within BC T=1¢

* To solve the problem we must consider geometry of
deformation to formulate the compatibility equation.

e (learly the rotation of section B with respect to A must
be same as that with respect to Ci.e

PB/A=90B/C
Compatibility equation

TsL T~L
¢B/A _ _TA™AB : ¢B/C _ _~C&=BC
Gaglp,; Gpclp,-

Talap _ Iclpc )
Gaglp,;  Gpclpye
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Solid Mechanics CHAPTER-4.1 TORSION

Stresses in pure torsion

- TxO

~max

Longitudinal &
transverse shear
stresses

=7
\ Gil
o =—7 Max.shear

T stress planes

7

If a torsion bar is made up of brittle material, which is
generally weak in tension, failure will occur in tension along

a helix inclined at 45°to the axis.

Ductile materials generally fail in shear. When subjected to
torsion, a ductile circular bar breaks along a plane
perpendicular to its longitudinal axis or x — axis.
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\ .
N ‘ Linearly
N T
§ I, > g = B 4 W elastic
ND i > YA GI,  behavior
/ L
Torsion testing m/c ¢

T

max — —

T

Ductile materials

Brittle materials
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Solid Mechanics CHAPTER-4.1 TORSION

Combined loading or combined stress X
P* y
O,
E Principal of
superposition
P

4Oy _ _ O y

" Ty = TxQ = Tinax T

> T — ' P!

Lo - L + |
RN R :
Vo4 __ N 9 SO
7 am==}| ,’/ - e |

L ] Gx TR l
Tmax = I_ P
P O,=—
A

? x
Tyy
|0y
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Solid Mechanics CHAPTER-4.1 TORSION

Stress concentrations in torsion

R = radius of fillet
A /
B C

(a)

D,y D _:W
Section A-A Section B-B Sedtion C-C
(b) (©) (d)

2.00

\ 1.2
£ l.li\\
\\\ 1.5 Tmax = KTnom Thom 1:_6

N D
I \\ \ =2
s 1

Dy=D, +2R *\2}.‘\\%@\\\\ -

1.50

K::|N

oo L
0

0.10

Sl

Stress concentration effect is greatest at section B-B

Tmax = KTcwg =KTyom

leT
Tavg = Tnom = K7y =K| —3

ﬂDf

— ) (iT Y,

Key way in shaft ’
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Solid Mechanics CHAPTER-4.1 TORSION

Tt o T TL do
Ip GIP GIP dx

Limitations of torsion formulae

(1)The above solutions are exact for pure torsion of circular
members (solid or hollow section)

(2)Above equations can be applied to bars (solid or hollow)
with varying cross-sections only when changes in R(x) are

small and gradual.

(3)Stresses determined from the torsion formula are valid in
regions of the bar away from stress concentrations, which are
high localized stresses that occur whenever diameter
changes abruptly and whenever concentrated torque are
applied.

(4)It is important to recognize that, the above equation
should not be used for bars of other shapes. Noncircular bars
under torsion are entirely different from circular bars.

References:

Solid Mechanics — INTERNET SOURCES & E-BOOKS
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Solid Mechanics CHAPTER-4.2 BEAM DEFLECTION

20. Deflection of beams

When a beam with a straight longitudinal axis is loaded by
lateral loads, the axis is deformed into a curve, called the
“deflection curve” or “elastic-curve”

P
N Y
S -4 .- Axis or neutral axis
3
N
YA Deflection curve
or elasticcurve P
3\)4 v(x)=deflections of beams.
R X .
3 oo Neutral axis after

=~ deformation

@ Slope=Angle of
rotation

Deflections: means u ,v displacement of any particle. In case
of beams deflection means v displacement of particles
located on the axis of the beam.

Deflection calculation is an important part of component
design

Deflections -- useful in vibration, analysis of various
engineering components ex. Earthquake loading.

Undesirable vibrations are due to excessive deflections.
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Solid Mechanics CHAPTER-4.2 BEAM DEFLECTION

Approximate sketches of deflection curves

Approximate sketches of the deflection curve can be drawn
it BM diagram is available for a given loading.

We know that +BM means Compression
()
tension
- BM means C}]Si%)
Compression
Examples
y
1 { P
(1) § L |
0 v(x = O) =0
V' (x = O) =0
PLf y

P
- 1 b
S pEpT——— 1 -
|
e
Pa i

No deformation
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Solid Mechanics CHAPTER-4.2 BEAM DEFLECTION

The objective is to find the shape of the elastic curve or
deflection curve for given loads i.e., what is the function v(x).

There are two approaches
(1) Ditferential equations of the deflection curve
(2) Moment-area method

Differential equations of the deflection curve

Consider a cantilever beam: The axis of the beam deforms
into a curve as shown due to load P.

N

TP yf Deflection curve

] —» X

B A

<
77777777 F

>

Here we assume only symmetrical bending case. The xy
plane is the plane of bending.

1 —vdeflection of the beam.
Tov+ve and.d —v

To obtain deflection curve we must express v as a function
of x.

y.v

> X, U
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Solid Mechanics CHAPTER-4.2 BEAM DEFLECTION

When the beam is bent, there is not only a deflection at each
point along the axis but also a rotation.

The angle of rotation & of the axis of the beam is the angle
between x — axis and the tangent to the deflection curve at a
point.

For given x-y coordinate system

6 — +ve — anticlockwise
O" =Center of curvature

p =Radiusof curvature

From geometry pdé =ds
k=1_49
p ds

curvature of thedeflectioncurve

k - curvature - +ve when angle of rotation increases as we
move along the beam in the +ve x — direction.

Slope of the deflection curve = ? =tan @
X

do . .
Slope — is positive when the tangent to the curve slopes

dx
upward to the right.

The deflection curves of most beams have very small angles
of rotations, very small deflection and very small curvatures.
That is they undergo small deformations.

When the angle of rotation 6 is extremely small, the
deflection curve is nearly horizontal
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Solid Mechanics CHAPTER-4.2 BEAM DEFLECTION

ds = dx
This follows from the fact that

ds =\dx? + dv? = \/1 +(v')dx
for small 6 (v')* can be neglected compared to 1

s.ds=dx

Therefore, in small deflection theory no difference in length

is said to exist between the initial length of the axis and the
arc of the elastic curve.

g1 _do
p  dx
Since @ is small tan 6 = 6

. dv_

s—=0
dx
kol do_d'
o o dx dx?
) .
. d_lz/ _
dx > only insmall deformation theory
du
0 =—=U
dx

If the material of the beam is linearly elastic and follows
Hooke’s law, the curvature is

_ i

k=t
p EI
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Solid Mechanics CHAPTER-4.2 BEAM DEFLECTION

+M —leads to +K and so on

dzv M
" dx? EI
2
EId— =M
dx?

The basic differential equations of the deflection curve.

Sign conventions used in the above equation:
y

(a) The T_.x (b) ? and @ are + \)
X
(0) kis +\_J (d) Mis +ve if beam bends \__J
Another useful equations can be obtained by noting that
dM __y M ? T T ?Pﬁv_l_ dv
dx (l [) M+dM
av
a7 e
Non-prismatic beams
420
El(x)—5 =M|(x)
dx®

(EI(x)0") =-0(x)
(EI(x)v")” =+P(x)
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Solid Mechanics CHAPTER-4.2 BEAM DEFLECTION

For prismatic beams.

Elv" = M(x) BM equation(2™ order)
Elv” =-V (x) Shear force equation(3™ order)
EIv” =+P(x) Load equation( 4" order )

Integrating the equations and then evaluating constants of
integration from boundary conditions of the beam.

Assumptions involved in the above equations

(a) Material obeys Hooke’s law

(b) Slope of deflection curve small — small deformations
(c) Deformations due to bending only — shear neglected

When sketching deflection curve we greatly exaggerate the
deflection for clarity. Otherwise they actually are very small
quantities.
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Solid Mechanics CHAPTER-4.2 BEAM DEFLECTION

Approximate sketching

(G, N C) P
¢ LI N N R Vb
Q L £ A
P> A
(-) (+)
PI A C o, B

() P = (6)
L/4l L/2 l L{4 lp lsp

\§>~
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Solid Mechanics CHAPTER-4.2 BEAM DEFLECTION

Boundary conditions

(I)Boundary conditions
(2)Continuity conditions
(3)Symmetry conditions

Boundary conditions

Pertain to the deflections and slopes at the supports of a
beam:

(i)Fixed support or clamped support

T )

N v(a)=0
2

0 S_r > f(a)=7v'(a)=0

a—»
(11) T y,v 4

Simple suport T Simple suport
2 > X 2 > X

s o

v(a)=0

M(a)=EIv"(a)=0=v"(a)=0
M(a)=EI"(a)=0
V(a)=-EIv"(a)=0

Free end

'r' » X
o]
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Solid Mechanics CHAPTER-4.2 BEAM DEFLECTION

Continuity conditions

p
All deflection curves are physically A l C B
|

continuous. Therefore AN

U(C)‘from side AC = U(C)‘from side BC M

Similarly at “C”

v (C)‘from side AC = 7 (C)‘from side BC
Symmetry conditions

v'(%) =0 because of loading

Ly
.
Y
i
and beam. This we should load M

in advance.

The method for finding deflection wusing differential
equations is known as “ method of successive integration”.

Application of principle of superposition:  Numerous
problems with different loadings have been solved and
readily available. Therefore in practice the deflection of beam
subjected to several or complicated loading conditions are
solved using principle of superposition.

L w |2 P

Y I I

= | | | ]
e SPAN 2 T o -

y v
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Solid Mechanics CHAPTER-4.2 BEAM DEFLECTION

Problem 1

Determine the equation of the deflection curve for a simple
beam AB supporting a uniform load of intensity of acting
through out the span of the beam. Also determine maximum
deflection 9,,,, at the mid point of the beam and the angles

of rotation Q4 and Qgat the supports. Beam has constant EIL

Solution

b4y ST 1,
] D A

ﬂ ?y’u (}SlllﬂX
2 N%X
QA , QB
gL
V=gx——"— 1
- 1)
2
M- L r+ =0
2 2
gLx qx2
M= — (2)
2 2
Differential equation of deflection curve.
Elv" = M(x)
2
Ery = 1% _ 49X
2 2

Slope of the beam
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Solid Mechanics CHAPTER-4.2 BEAM DEFLECTION

2 3
Ely =T _ 9 ¢,
4 6
BC — Symmetry conditions
U(x:EJ:O
2
_qL? gL’ | -
16 48
Ll
16 48 !
L3
¢, =
24
Slope equation is
3 3
Elof qu _gx qL
4 6 24
v = _q(b3eﬂ?+x)
24E]
Deflection of the beam
3 4 3
Ero=10 9% _ab" e,
12 24
B.C.
v(x=0)=0
0=0-0-0+Cr, = C, =0
3 4 3
Elv:qu _ax 4k X

12 24 24
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Solid Mechanics CHAPTER-4.2 BEAM DEFLECTION

V=—" i (L3x 2Lx +x4)
24E1

=9 (x* +Px-2L2°)
T 24F]

you can check v=0 at x=0and L=0
(b) From symmetry maximum deflection occurs at the

midpoint x = %

( L) —5q1*
vl x==|=
2) 384EI
-ve sign means that deflection is downward as expected.
L smﬁ
Opax =0 X=—
" ( 21 384EI
3
_ v (0)= 1
Qa=7(0) A F]
-ve sign indicates clock wise rotation as expected.
3 3 3
=0 (x=L)= - -
Qn =0 =L = e ™ 651 ™ 24E1
aL’
v'(L)= - BA& sign means anticlockwise direction.

=[v'(L)
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Problem: 2

Above problem using third order equation

Elv” ==V (x)
”_ qu gL
Elv"=—|gx—"—— |="———¢qx
Moment equation
2
Err =1 9
2 2
B.C.
M(x=0)=0=EIv"(x=0)=0
= Cl =0
2
Efy =159
2
Problem 3

Above problem using fourth order differential equation
P=g
EI’Z),,,, — _q

Shear for a equation

Elv” =—qx+C,4

From symmetry conditions
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V(x:EJ:O:EIU'”(x:EJ:O
2 2

O=—q%+C1 :>C1 =+

- EIv”

Problem 4

- —qx+ T
1 2

gL

Determine the equation of the deflection curve for a
cantilever beam AB subjected to a uniform load of intensity
g. Also determine the angle of rotation and deflection at the

free end. Beam has constant EI.

Solution:
\ q M
NI v
| P
Q\ ql? /2 v
BT, |
V+gL—gx=0
V =gx—qL

2 2

M+%—qu+%:> M =qLx -

YIP I I I4

Differential equation of deflection curve

Elv"=M(x)

Elv" = _9L +gLx _1r
2 2
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2 2 3
Slope equation: EIv" = — IL'x + qLx” g +Cq
BC: v (x=0)=C; =0
2 2 3
EIv’z—qL X qLx”  qx
2 2 6
Deflection equation
2.2 3 4
Fro= -9 ol o o
6 24
v(x=0)=0
0=0+0-0+Cy = C, =0
2.2 3 4
- Elo=-15%  abx _qx
6 24
_ - +
= 1 | 612x? +4L4° oxt
24EI
v(x=L)=
3 3 3 3
g L
2 6 6
3
, qL
0 = =
8= gEr
v(x=L)=>
_ a7
o=_"9 Tert—ar*+ '] _ 3k
24E1 24E]
i) ~3qL* = e E -maximum deflection also.
24E1 8EI
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Problem 5

Above problem using third order equation

Elv”=-V (x)
Elv” =gL—gx
Moment equation
2

Elv"=gLx —%+C1

B.C. M(x=L)=0=El"(x=L)=0

2 2 2
2 2 2
2 2
El'v":qu—qx +qL
2
gx* gL’

Elv”" =glLx — +
=

Problem 6

Above problem with fourth order equation
Elv” = P(x)
~El”" =® q
Shear force equation
Elv” =—qx+C4

BC V(x=L)=0=El"(x=L)=0
O:—E]L+C1 :>C1 :+E]L
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. EIv” =—gx +¢gL
Problem 7

A simple beam AB supports a &neentrated load P acting at
distances a and b from the left-hand and right-hand supports
respectively. Determine the equations f the Weflection
curve, the angles of rotation andmax at the supports, té@
maximum deflection and the deflection at the midpoint C of
the beam. Constant EI

Solution
q l Y,V
- b_ AT C 9o B,
T . F AL
P—b+x=P:>x=P—P—b
L L
M
, | V+P—b=0
L
I D n
L
Pb/L
M—P—bx=02> H=P—bx
L L
P
a l M V+P—b—P=0
| | L
T‘—X v v=p_L?
Pb/L L
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M+P(x—a)—PTbx

szTbx—P(x—a)

sz—bx—Px+Pa=—@+Pa
L L

Ditferential equation of deflection curve

EIU”:PTbx 0<x<a

EIZJ”I—%+PQ a<x<L

Slope equations:

, Pbx?

Elv +Cy 0<x<a

pu2
Elv' =

a
+Pax+Cy a<x<L

B.C. v'(x=a),,=0(x=a),,

N2 .3
P(L-a)a +Cq = Pa +Pa2+C2
2L 2L
2 3 3
Pla” P +C1=—pi+Pa2+C2
2L 2L 2L
2
:>C1:P%+C2
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Deflection curve equations:

3
EIU,=%+C1X+C3
6L

D3 2
Flo— Px a+Pax

B.C: v(x=0)=0 and v(x=L)=0

0<x<a

+Cox+Cy a<x<L

0=0+0+C3 = C3=0
3 2
O:_PLa+PaL +CHL+Cy
6L
2 2
O:_PL6a+PaL +CHL+Cy
2
=PL;L +CHL+Cy
2
Ci=—t e
v(x=a) ,,=v(x=a),,
A3 _pA
P(L-a)a +Cqa= Pa + +Cra+Cy
6L 6L
3 4 4
Pla +P¢ +Cqa= il + +Chra+Cy
6L 6L 6L
P—Q?)+C a—P—aS+C a+C
6 1 > 2 4
3 2
Cla:%+C2a—PaL ~C,L
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3 2
P’ Gza—%+¢2a—PaL ~C,L
3 2 2 3
Pa” _ PaL —CZL:>C2L=—P[1L _Pa
6 3 3 6
3
C, = _Pal Pa
3 6
Some important formulae to remember
(1) 4 3
N : | _q9b” ,Q _q”
T\ % = gp1 "9 = oEp
PI’ PI*
5 =—), =
2) §A e B Qo
_ ML _ ML
e ¥ 2) 5= T g
(4) g s sgrt Con 0 e g3
= | T Omar T ggapr XA TSE T oy
P I3 2
(5) L/2 L/2 o =90 P :—PL
s l 2 ¢ M T ygE] Qa=08= ¢
Problem 8

A simple beam AB supports a concentrated load P acting at
the center as shown. Determine the equations of the
deflection curve, the angles of rotation Q4 and Qp at the
supports, the maximum deflection o,,,, of the beam.
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Solution
P
L/2 L /2 A C 1(1111?1}{ B
[ ] T - X
— B %
M=— N
2
M V=_£
| Ip 2
T< X Y M- gx =0
PI2
M = & _ Px
: =2
p
V+£—P=0
L/2 M

Px P( L)sz Px+PL=FI_j%
2 2 2
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Differential equation deflection curve

EIU”Z% 0<x<L/2

EIU”:E—& ESxSL

2 2 2

Slope equations

Deflection equations:

Px®
EIU:E+C1x+C3 0<x<L/2

2 3
EIv:PL: _P1x2 +Coyx+C, L/2<x<L

B.C: v(x=0)=0 and v(x=L)=0
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0=0+0+C5; = Cz3=0
3 3
OZPL —PL +C2L+C4
4 12
3
=£+C2L+C4
6
P’
C4=—T—C2L
(x=3),,=(x=3]
vl x=— =0 x=—
2 )l ap 2 )ipB

3 3 3
P’ CL_PL PU L, .
% 2 16 9 -2
L P’ P’ L

Ci== +CH —+C

1716 48 2% %
L pI? L

Cio=""4C,2+C

17 pg T2 4

L pr® pr’ _ L P’

Cr—+ +CH———-C,L
22" 16 24 %2 6 2
3 3 3 e 2
P’ P’ PL =c2L:>c2=(2 8—3)PL
24 6 16 48
9pPI> —3PI?
C2=— =
48 16
2
C2=_3PL
16
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_3pL* PL*_ P’

Cl = -
16 8 16
2
c, P
16
3 _apr2
W Cy=— g O
6 16
_—pr? ) 3PI>  (-8+9)PL’
6 16 48
3
c, -2
48
Deflection curves
3 2
Elv:Px L x+Cj OSxSE
12 16 2

PLx*? Px> 3PI* PI® L
— X+

Elv = —+ Lo.<1
4 12 16 =~ 48 2
Er L-PE _PL"_=PL
. 32 48
| L=_P_L3
¥=,  48EI
Elv , P _PL* 3P PL’_(6-1-9+2)PL’
¥, 16 96 32 48 9%
__Pr
48
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v=—PI3 / 48FI

Slope equations:

.

2 2
Er =% _PL 0<x<—
4 16

_PLx Px* 3PI* L
2 4 16 2
2 2
EIU,(X=O)=O—£=—£
16 16

, PI? .
v(x=0)=Q4y = —@(—) Clock wise

Elo/(x=L)= PI* PI* 3PL* (8-4-3)PL* PI?
2 4 16 16 16

, PI?
~U(x=L)=Qp= L6

N

EIv

IA

x<L

(+ve, CCW from x-axis )

Problem 9

A cantilever beam AB supports load of intensity of acting

over part of the span and a concentrated load P acting at the

free end. Determine the deflections dg and angle of rotation

Qp at end B of the beam. Beam has constant EI. Use principle

of superposition.

Solution
3
5o =17 (4L
BL T o4F]
_pr’
B2 " 3’
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3 3
PL.
5p =05 +0p =1 (4L—a)+——
B= 5B 775 24151( ) 3EI
3 2
qa~ PL
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21. Moment- Area Method

This method is based upon two theorems related to the area
of the bending moment diagram it is called moment-area
method.

First moment area theorem

Consider segment AB of the deflection curve of a beam in
region of + ve curvature.

The equation

0 M .
——> =—— can be written as N ,
dx= EI s 2O =0 0
d’6 _do M el
de dx EI o
d0-M oo

= £l %\\

_
- X > dX e

The quantity %dx corresponds to an infinitesimal area of

M . : : .
the — diagram. According to the above equation the area is

equal to the arrange in angle between two adjacent point
and m,. Integrating the above equation between any two

points A & B gives.

B BM
[d6=65-64=A0gp =] dx
o E
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This states that the arrange in angle measured in radius
between the two tangents at any two points A and B on the

elastic curve is equal to the area of % diagram between A &

B,If 84 is known then
QB ZHA +A9BA

In performing above integration, areas corresponding to the
+M are taken + ve, area corresponding to the — ve M are
taken —ve

‘M
If jﬁdx is +ve- tangent B rotates c.c.w from A or &g is

A
algebraically larger than A.

If — ve — tangent B rotates c.w from A.

Second moment-area theorem

This is related to the deflection curve between A and B.

M
EI
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We see that dt is a small contribution to fg4. Since the angles
between the tangents and x-axis are very small we can take

dt =x1d6 = x4 de
EI

The expression x; %dx = first moment of infinitesimal area
M S
de w.r.t. a vertical line through B.

Integrating between the point A & B

B B M
tpa = j dt = jxl —dx= First moment of the area of the —
4w a El EIl

diagram between points A & B, evaluated w.r.t. B.

tpa = PXq
tap = PX
B
where ¢ = Ide
M EIl
EI M A
cc® =

if Mis +ve ¢@=+ve
if Mis-ve ¢=-ve
xand x; are always taken +ve quantities.

~.Sign of tangential deviation depends on sign of M.
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A positive value of tangential deviation- point B is above A
and vice versa — ve value means point B is below the point A.

In applying the moment area method a carefully prepared
sketch of the elastic curve is always necessary.

Problem:1

Consider an aluminum cantilever beam 1600 mm long with a
10 —kN for a applied 400 mm from the free end for a distance

of 600 mm from the fixed end, the beam is of greater depth

than it is beyond, having I; =50x 10 mm*. For the

remaining 1000 mm of the beam I, =10x10° mm*. Find the

deflection and angular rotation of the free end. Neglect
weight of the beam and E =70GPa

Solution: N U l1 OKN
10 x10°mm
NP )
\ D ¢
- 600 > 600 >I<—400—>I
EI=3.5x10%

70%x10° x10™° N/mm?
= 70x 103 N/mm?
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7,=30x10° mm* T0KN
N e 10 x10°mm”
N
N\ A ]
\ D C
e 600— >l 600—»l<—200—]
|
|
|
%// .
/ »: —6x10° N-mm
—12x10°N-mm

0.6 048
E-600  Ex
x = 480mm
A :lbh:—x600x(ﬂ):—%
E E
A, :bh:_129.6
E
A3=1bh=1x480>< -0.48)_ 1152
2 E E
Ay =Sph = 2x100x 01272
2 2 E E
B
M
AQBA:QB_QA:Ide:Al + Ay + Az + Ay
A

36 1296 1152 72 288

Qp=~F "¢ E E E
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Qp=—28___ 288 _ 4 14%107 rad

E 70x10%

Qg —4.14%10° rad C from tangent at
A.

tpa = Op
Xy =1060mm;x; =1400;x5 =840mm;x, = 480mm
tBA - 5B = Alfl +A2f2 +A3f3 + A4f4
=(ﬁj1400 +(_129'6)1060 +(_115'2j840 +(—_7'2j480
E E E E

_ —288000

=—4.11mm
og = —4.11mm below the tangent at point A.
Problem 2

Find the deflection due to the concentrated force P applied as
soon as figure, at the center of a simply supported beam EI

constant.
Solution:
(A) a v (C) (B)
A 4—a—>|<— 23—47?77
3P P
4 4

|
|
|
!
—L=4a >
:
|
|
|
l

|
|

|

|

|
3P |
I
|

|

|

|
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3Pa
AE] Pa
I 2ET
(1) \(t)/ 5
A C B

Since EI is constant %

diagram is same as M
Os =ty /L diagram.

v.=c"c'—tcp
s, 1

c’c’=—t
5 AB
2
PRSI
2 2 4FE]  8EI

2
A, :%bh:%x3ax3pa _oba

4FE] S8EI
2
X1=—a, X»=2a
1 3 2
B ~ 3Pa*2 9Pa®
tAB =A1x1 +A2X2 = SE] 5(14- SE] 2a

Pa® .\ 9Pa®> 10Pa® 5Pa’

= (+ve)
4FE]I 4EI 4F] 2EI
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1 Pa (2(1) Pa’®
tcg = —X2ax X = s
2 2£1 \ 3 ) 3EI
c’c’=t _5Pc°
AB/2 ™ 4FT
- _5Pa® Pa® (15-4)Pa® 11Pa’
% 4EI  3EI AE] 12EI
11P4°
UC =
12E]

The +ve sign of t 45 & t-4 indicate points A & C above the
tangent through B.

(a) The slope of the elastic curve at C can be found from the
slope of one of the ends as:

AQpc =Qp—0Qc = Qc =Qp—AQBc

B >

M 1 Pa Pa
A = — “—dx=-%2aXx = S
Qsc =Cs QCCEI P 2EI  2EI

5Pa> 1 Pa* _5Pa® Pa’

~t.n/L= _
Qp~tap/ DEI 4a 2EI 8EI 2EI
oL
¢ 8EI

(b) If the deflection curve equations is wanted then by
selecting an ordinary point E at a distance x

vp =E’E'—EE’
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In this way one |<—x—>I<E,—L-x—>|

can obtain equation

of the deflection curve.

(c) To simplity the calculations some care in selecting the
tangent at a support must be considered.

In this approach to find A C B

tcowe need to consider

unhatched region which

is more difficult.

(d) The deflection at C can also be calculated as follows.

_ tAC + tBC A "’ B

(%% > .
[ AC C 4 BC

- C is at the center of the beam. However, this is also move

complicated approach compared to first, as to find t-4 we
again need to consider unhatched region.
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Problem 3

Find the deflection of the end A of the beams shown in
figure caused by the applied forces. The El is constant.

Solution
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Aﬂ

A

A

VAI /
\&QCB
A

_ 2
Ay =Lbn =1xax(ﬂ):_1)i
2 2 I 2EI
2
A2 _lxﬁx(_Paj:_Pi
2 2 EI 4E]
2 2
R
4F] 2E]
. a a _  2a a 11a
X1=—+2a=—;X=——+_-+a=——
3 33 2 6
3_6'3:1—4‘0:7[1/6, 374:%

tCB - AZJ_CZ + A33_C3 + A43_C4
Pa? 11a N Pa? 7a Pa? 2a
4EI 6 4EI 6 2EI 3

]JHP+7RP+P%_j%U+7+&Pf
D4FE] ~ 24EI 3EI DAE]

t _4Pa®  Pa®
CB ™ 24ET ~ 6EI

The + sign of f-p indicates that the point C is above the

tangent through B. Hence corrected sketch of the elastic
curve is made.
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Pa® 2 Pa’
2EI 3 3EI
‘. UA = ‘tAB‘ — A”A,
B Pa® B Pa® B Pa’
3EI 12EI 4EI
_po’
4E]

tap =

(9

Note: Another method to find v, is shown. This may be
simpler method than the present one.
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Solid Mechanics CHAPTER-5 ANALYSIS OF STRESSES IN TWO DIMENSIONS

4. Principal Stresses

Principal Stresses

Now we are in position to compute the direction and
magnitude of the stress components on any inclined plane at
any point, provided if we know the state of stress (Plane
stress) at that point. We also know that any engineering
component fails when the internal forces or stresses reach a
particular value of all the stress components on all of the
infinite number of planes only stress components on some
particular planes are important for solving our basic
question i.e under the action of given loading whether the
component will ail or not? Therefore our objective of this
class is to determine these plane and their corresponding
stresses.

O,—0O
L+ ”2 YCos26+1,,Sin26

(2) Of all the infinite number of normal stresses at a point,
what is the maximum normal stress value, what is the
minimum normal stress value and what are their
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corresponding planes i.e how the planes are oriented ? Thus
mathematically we are looking for maxima and minima of

o, (0) function..
_o,+to0, 0,-0, .
B) o, = 5 + 5 Co0s26+17,,5in26
For maxima or minima, we know that
do .
o =0= ~(oy -0, )Sin26+27,,Cos28
2T
tan20=—"9
Oy — 0y

(4) The above equations has two roots, because tan repeats
itself after 7. Let us call the first root as &p,

tan26p, = tan(249p1 + ﬂ') -

oy~ 0y
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T
91)2 = le +ES

(5) Let us verity now whether we have minima or minima at

le and 91)2
dZO'n :
o -2(o, -0, )Cos26 - 4r,,Sin26
d*c .
' dé?zn =-2 (O'x -0y )C05249p1 —47,,5in26p,

6=6p,

We can find Cos26p s and Sin26p s as

oy =0y

Cos26p, =

Sin26p, = 2Ty = 1y
B 2 - 2
o O o O
2["2 yj +f§y [’Cz yj +f§y

Substituting Cos26p, and Sin26p,
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d°c, _ -2(a, ~ Oy ICA _Gy) _ ATy Ty
16> _ 2 _ 2
6=6p Oy O'y ) Oy O'y )
1 ZJ[ %) e, J( ) e
2
_ —(GX—O'y) . 473%y
2 2
o, —0O ) o, —0O )
2
- o, —0O
2 2 Yy
O'x—O'y N )
2 Exy
2
dZG O-x_o-y 2
. dezn —_ \/[ 5 j + Ty (-ve)
Lo, =2(0, —0, | Cos(26p, +7)—47,,Sin(26p +7)
16 ) o xRy Py xy Py
0=0p, =0p +,

=2(0, —0, ) Cos26p, +4t,,Sin26p,

Substituting Cos20p, & Sin26p m we can show that

2
c,—0
:—4\/[ x2 yj +f§ys (+ve)
0=6p,
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Thus the angles 6ps and 6ps define planes of either

maximum nhormal stress or minimum normal stress.

(6) Now, we need to compute magnitudes of these stresses

We know that,
o, +0 o, —O
0, =———+———"C0520+1,,5in26
2 2
o, +0O O, —0O
Ol o, =01 = * . L4 : %.Cos26p, +7,,5in26p,

Substituting Cos26p s and Sin26p,

oy +0y Gx—Gyz )
01:T+ Y + Ty

Max. Normal stress because of +sign

Similarly,
oy+0, 0Oy—0y
o T =0,y= + Cos|26p, + 7 )+
n‘e:epz =6p =, 2 7 ( Py )
7,,Sin(26p, +7)
Oy +0, Oyx—0y ,
== 5 Cos26p, — 17y, S1n26p,

Substituting Cos26p, and Sin26p,
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2 2 XY

Min.normal sress because of —vesign

2
o, +0 o, —0O

We can write

2
O, +tO O, —O
01 01 Oy =~ Y4 (—yj +72

2 2

(7) Let us se the properties of above stress.

T : :
(1) 6p, =6p, + Es - planes on which maximum normal stress

and minimum normal stress act are L to each other.

(2) Generally maximum normal stress is designated by o
and minimum stress by o0,. Also 6p, — 01,60p, = 0>

L Principal direction

)

Principal planes

01 >0, algebraically i.e.,
0- (oF]
-1000 - oy
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(4) maximum and minimum normal stresses are collectively
called as principal stresses.

(5) Planes on which maximum and minimum normal stress
act are known as principal planes.

(6) Op, and 6p, that define the principal planes are known as

principal directions.

(8) Let us find the planes on which shearing stresses are zero.
T, =0= —(ax -0y )SinZH +7,,C0s26

27T
tan20=— Y

oy =0y

=directionsof principal plans

Thus on the principal planes no shearing stresses act.
Conversely, the planes on which no shearing stress acts are
known as principal planes and the corresponding normal
stresses are principal stresses. For example the state of stress
at a point is as shown.

o, Then o, and o, are
T principal stresses because
no shearing stresses are
o :
X O
o X acting on these planes.

o,
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(9) Since, principal planes are 1 to each other at a point P,
this also means that if an element whose sides are parallel to
the principal planes is taken out at that point P, then it will
be subjected to principal stresses. Observe that no shearing
stresses are acting on the four faces, because shearing
stresses must be zero on principal planes.

Principal planes

Stress
element

(10) Since o7 and o, are in two L directions, we can easily
say that

Oy +0,=01+0y =0y +0, =1
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5. Maximum shear stress

Maximum and minimum shearing stresses

So far we have seen some specials planes on which the
shearing stresses are always zero and the corresponding
normal stresses are principal stresses. Now we wish to find
what are maximum shearing stress plane and minimum
shearing stress plane. We approach in the similar way of
maximum and minimum normal stresses

Oy _O-y .
(1) 7, =- B 5in26 +7,,Cos26

“Zint _ —(O'x -0y )CosZé? + z'xyCOSZQ

For maximum or minimum

ar,;

ab=0= ~(oy -0, )Cos26 -27,,Sin26

~(0x-0,)

27y,

= tan26 =

This has two roots

tan26s, = —(Gx;o-y)
xy

s —stands for shear stress
p —stands for principal stresses.
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_(Gx _Gy)
27,

tan26s, =tan(26?51 +7z) =
Yy

/4
2951 +E

Now we have to show that at these two angles we will have
maximum and minimum shear stresses at that point.

0,

Similar to the principal stresses we must calculate

dzfnt .
— ™ =20, -0, |Sin20—-4rt,,Cos26
5 22(0, -0, )sin20-1r,
2
d Tgt :Z(GX —ay)Sinzesl — 41, Cos26g,
ae 6=6
=0,
27T
Cos26s, = = >
Oy O-y +2'2
2 Y
. _(Gx_ay)
5in26s, = >

Oy —O
Y 2
2 [ > j +Ty,
Substituting above values in the above equation we can
show that
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2
d Tgt _ e
do” |,_ 6,
Similarly we can show that
2
47T Tgt = +ve
ae

T
l9=952 =l951 +§

Thus the angles 65 and &, define planes of either maximum
shear stress or minimum shear stress. Planes that define
maximum shear stress & minimum shear stress are again L
to each other.. Now we wish to find out these values.

o, —O
T :—( * 5 y)Sin26’+z'xyC0529

(Gx B Gy) :
=— > Sm26?51 + TxyC052951

Tnt ‘9:495 )

Substituting Cos26s, and 5in26s s, we can show that

2
_ O, —O'y )
Timax =+ T +Txy

(O'x—O'

Tnt‘9=952=951+72’ == y)Sin(Zé?S1 +7£)+z'xyCos(24951 +7£)

Substituting Cos26s, and 5in26s,

2
5 Oy — 0y 2
Tmin =~ 7 +Txy
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Toay 15 algebraically >7,;,, however their absolute

magnitude is same. Thus we can write

2
_ 4 |[Cx~% 2
Tmax O Tpin =< 7 * Txy
Generally
Tmax — 051
Tmin — 952

Q. Why 7,,, and 7,,;, are numerically same. Because 65, &

@5, are L planes.

2

e :

(2) Unlike the principal stresses, the planes on which
maximum and minimum shear stress act are not free from

normal stresses.
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o,+0, O,—O
o,=——4 4+ = yC0529+rxySin26?s
2

o,+0

O'n\g_e = y+0'x
—Y51 2

-0
y .
5 Cos20s, + 7y, 51n26s,

Substituting Cos26s, and 5in26s,

oy +0y
o, +0 O, —0O
O'n\e_e g T = r V2 yCos(Zé?Sl +7£)
75TV, 2 2

+z'xy5in(2951 + 75)
Simplifying this equation gives
0, +0y
2

Therefore the normal stress on maximum and minimum

o= O'n‘er:e@z =

shear stress planes is same.

(3) Both the principal planes are L to each other and also the
planes of 7,,,, and 7,,;, are also L to each other. Now let us
see there exist any relation between them.
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6. Mohrt’s circle

Mohr’s circle for plane stress

So far we have seen two methods to find stresses acting on
an inclined plane m

(a) Wedge method
(b)  Use of transformation laws.

m

Another method which is purely graphical approaches is
known as the Mohr’s circle for plane stress.

A major advantage of Mohr’s circle is that, the state of the
stress at a point, i.e the stress components acting on all
infinite number of planes can be viewed graphically.

Equations of Moht’s circle

o

o, +0 — O
- "2 %Cos260+1,,Sin26

L
2

This equation can also be written as

We know that, o, =

o,+0, O,—0C
r Y- yC0529+TxySin249
2 2

O, —

O,—0O
T = —[%jsmze +17,,C0526

oy +0y 2 2_()'x+0'y2 5
On=| = || *Tm=| | Ty
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The above equation is
clearly an equation of
circle with center at (4.0)

on 7-0 plane it
represents a circle with

oy +0y
center at T,O and | a

having radius

O
This circle on o—1t plane- Pla7)

Mohr’s circle. P N

From the above deviation it
can be seen that any point P
on the Mohr's circle
represents stress which are
acting on a plane passing
through the point.

In this way we can 7
completely visualize the

qQ

stresses acting on all
infinite planes.
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(3) Construction of Moht’s circle

Let us assume that the state of stress at a point is given

y.'
(@)
Yy

T '

t 5, x

(B) 0

- —_——X X
c)-X
(A)

A typical problem using Mohr’s circle i.e given o,/,0,/ and

Tyy on an inclined element. For the sake of clarity we

assume that, o,/,0,sand 7,/ all are positive and o, >0,
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e Since any point on the circle represents the stress
components on a plane passing through the point.
Therefore we can locate the point A on the circle.

® The coordinates of the plane A= (+O' x 1T xy)

A z-xy

O\
t
(A) t,on

Therefore we can locate the point A on the circle with

coordinates (+0'x ,+Tyy )s

e Therefore the line AC represents the x-axis. Moreover,

the normal of the A-plane makes 0°w.r.t the x-axis.

e In a similar way we can locate the point B
corresponding to the plane B.
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The coordinates of B= (+0'y ~Txy )s

Since we assumed that for the sake of similarity o, <oys.

Therefore the point B diametrically opposite to point A.

e The line BC represents y- axis. The point A corresponds

to Q=0", and pt. B corresponds to Q=90"(+ve) of the
stress element.

At this point of time we should be able to observe two
important points.

e The end points of a diameter represents stress
components on two L planes of the stress element.

e The angle between x- axis and the plane B is 90° (c.c.w)
in the stress element. The line CA in Mohr’s circle
represents x- axis and line CB represents y-axis or plane
B. It can be seen that, the angle between x-axis and y-
axis in the Mohr’s circle is 180° (c.c.w). Thus 2Q in
Mohr’s circle corresponds to Q in the stress element
diagram.

Stresses on an inclined element

e Point A corresponds to ¢=0 on the stress element.
Therefore the line CA i.e x-axis becomes reference line
from which we measure angles.

e Now we locate the point “D” on the Mohr’s circle such
that the line CD makes an angle of 2Q c.c.w from the x-
axis or line CA. we choose c.c.w because in the stress
element also Q is in c.c.w direction.
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e The coordinates or stresses corresponding to point D on
the Mohr’s circle represents the stresses on the »'- face or
D on the stress element.

Oy = Oayq + RCos

Tyy =RSinf
Oy = Opye —RCosff

SinceD& D' are L planesinthe
stress element ,thenthey become

diametrically opposite point son
thecircle, just likethe planes A& Bdid

Calculation of principal stress

The most important application of the Mohr’s circle is
determination of principal stresses.

The intersection of the Mohr’s circle --- with normal stress
axis gives two points P; andP,. Thus P; and P, represents
points corresponding to principal stresses. In the current
diagram the coordinates the of

Pl =01 ,OS

Pz 20'2,0
01 =Oppe + R
O =0y — R

The principal direction corresponding to oy is now equal to
29}9 > in c.c.w direction from the x-axis.
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O, = Op, iE

We can see that the points P, andP, are diametrically

opposite, this indicate that principal planes are L to each
other in the stress element. This fact can also be verified from
the Mohr’s circle.

In- plane maximum shear stress

What are points on the circle at which the shearing stress are
reaching maximum values numerically? Points S; and S, at

the top and bottom of the Mohr’s circle.

e The points S; and S, are at angles 26=90" from

pointsP; P, and, i.e the planes of maximum shear stress

are oriented at +45° to the principal planes.

e Unlike the principal stresses, the planes of maximum
shear stress are not free from the normal stresses. For
example the coordinates of

51 =+Tpuax 1O upgS

52 = —Tyax /Oavg

Toay = TR
O =Oppe

Moht’s circle can be plotted in two different ways. Both the
methods are mathematically correct.
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o
o A
X

N/ S
+7
Finally

e Intersection of Mohr’s circle with the o-axis gives
principal stresses.

e The top and bottom points of Mohr’s circle gives
maximum -ve shear stress and maximum +ve shear
stress.

* Do not forget that all these inclined planes are obtained
by rotation about z-axis.
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Mohyr’ circle problem

T 5000 14807 X
(B)

!
y 5193

(D)
4000 9%0
-— —_ (D)
15000 4229
) \ /\«

Solution:

Oy +0y _ 15000 + 5000
2

A - (15000,4000)
B - (5000,-4000)

2 2
O, —O _
R \/( x2 yj T,%y \/(150002 5000) 40002

— /50002 + 40002
R = 6403 MPa

Oy — O,

=10000 MPa

= 5000

“Tht .._50004,‘ S, =6403

B

+7 0 le——10000 5000»‘
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Point D: o,» =10000 + 6403Co0s41.34 = 14807 MPa
Ty = —64035in41.34 =—4229 MPa

Point D": o, = o,y =10000 - 6403Co0s41.34 =593 MPa
Tnt = Tyy = 6403Sin41.34 = 4229

b) 01 = 16403 , 49p1 =¥ =19.33

o, = 3597 MPa

\ tjoiﬁ ~19.33
(P) \
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2) =45

Principal stresses and principal shear stresses.

T10
Solution:
(B)
O-x+o-y:—50+102_20 —>‘ lﬁ
2 2 ANy 40

b

2 2
O, —0O —50) —
R:\/( xz yj +T§y=\/(¥j +(—40)* =50 MPa

A—>(=50,—40) P1=01= Y+ R=-20+50=30s

B — (10,40) c,+0
= x2  _R=-20-50=-70

.
A(Q=0)
410
o0 [0
70—
+7

Xy
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2Q, =233.13
Q, =116.6°
30> _ 0
'4—60—» Q,, =206.6
NG
2Q, =143.13
Q,, =716
t | Q,, =161.6
’ y vn X
y
20 30 /60 \45
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Q. o, =31MPa, o, =-5MPa and 7., =33 MPa

Stresses on inclined element 8 = 45°

Principal stresses and maximum shear stress.

Solution: o,+0 _
g =— v 23175 13 Mpg
2
Oy — O, 2 5
R= +75, =37.6 MPa
2 Y
y
5 O-x’
__V'_"TB S, Ty / x'
(B) Z 3 B |
R 1 31 F 8 | 13680 (6=45)
(A)fl -33 SR :C}Kzé&s
PP — K, LA 50.6
I 246 \ 18" N hg f o
Ll baed 33
A(31,33) D : - QH%
B(-5,-33) S o
. Ty Cavg
Y +r 31—

20 w
i) 46 45
18.02
X

: D, Oy =RCosfB+ 0 ye5
\ /\ =237.6C0528.64 + 13 = 46 MPa

Tyy = —RSinf =-37.6 28.64 =-18.02

0y =RCosff — 0pyq
=—20 MPa
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. 071 =50.6 MPa y
R P,
0, =—24.6 MPa 50.6
6,, =30.68 X
Typay = 37.6 MPa—6, =-14.32 1
T,in =—37.6 MPa B 13 MPs
O =0py =13 MPa

N>
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UNITI INTRODUCTION TO MECHANICS
S.No. Questions optl opt2 opt3 optd Answer
If a force acts on a body, it sets up some resistance to the deformation. This stress strain elasticity modulus of elasticity stress
1 resistance is known as.
The term deformation per unit length is applied for stress strain modules of elasticity |Bulk Modulus strain
2
Strain energy is the energy stored in a body energy stored in a maximum strain proof resilience per unit  |energy stored in a body
3 when strained within body when strained energy which can be  |volume of a material when strained within
elastic limits upto the breaking of a |stored in a body elastic limits
|specimen
Modulus of elasticity is the ratio of stress to strain stress to original length | deformation to strain to the original length|stress to strain
4 original length
The total change in length of bar of different sections is equal to the Sum of changes in the Average of changes in |Difference of changes |deformation to original Sum of changes in the
5 length of different sections |the lengths of different |in the lengths of length length of different sections
sections different sections
A circular bar of length (1) uniformly Area (A). If the bar is subjected to an axial |[PI/AE PVAAE 4PI/nEd; d, Pl/4nEd, d, PVAE
6 tensile load (P), then its elongation is equal to an axial tensile load (P), then its
elongation is equal to
The maximum stress produced in a bar of tapering section is at Larger end Smaller end Middle All of these Smaller end
7
In a composite section, the number of different materials is One only Two only More than two Any where More than two
8
A composite section contains 4 different materials. The stresses in all the different [Zero Equal Different In the ratio of their areas  [Different
9 materials will be
Thermal stress is caused when the temperature of a body is increased is decreased remains constant eithera or b either a or b
10
When the temperature of a body is increases the stress induced will be tension compression both a and b neither a nor b compression
11
If the ends of a body yield, the magnitude of thermal stress will increase decrease decrease constant decrease
12
The maximum thermal stress in a circular tapering section is directly proportional to the | directly proportional |directly proportional |both b and ¢ directly proportional to
13 bigger diameter to the smaller diameter |to the smaller diameter the bigger diameter
If a composite bar is cooled, then the nature of stress in a part with high tensile zero compressive shear tensile
14 coefficient of thermal expansion will be
The ratio of lateral strain to the linear strain is called modulus of elasticity modulus of rigidity compressive poison’s ratio modulus of elasticity




When a rectangular bar is subjected to a tensile stress, then the volumetric strain €[1+2/m] €[2-1/m]s €[2-1/m] €[1+2/m]
16 is equal to

The bulk modulus of a body is equal to m E/3(m-2) e[1+2/m] m E/2(m-2) m E/2(m+2) m E/3(m-2)
17

A body returns to its original shape after removal of the force, is called tensile elasticity ductility malleability elasticity
18

The neutral axis of the cross-section a beam is that axis at which the bending zero minimum maximum infinity zero
19 stress is

Euler's formula holds good only for short columns long columns both short and long weak columns long columns
20 columns

A steel bar of 5 mm is heated from 15° C to 40° C and it is free to expand. The  [thermal stress shear stress tensile stress compressive stress thermal stress

bar Will induce
21

The stress induced in a body, when suddenly loaded, is the stress equal to one-half twice four times twice
2 induced when the same load is applied gradually.

The law which states that within elastic limits strain produced is Bernoulli’s law plastic point Hooke’s law elasticity Hooke’s law
23

When equal and opposite forces applied to a body, tend to elongate it, the stress [shear stress Stress law tensile stress transverse stress tensile stress
24 so produced, is called

If the slenderness ratio for a column is 100, then it is said to be a long short medium very long long
25 column.

In a bar of large length when held vertically and subjected to a load at its lower at the lower cross-section |shear strain volumetric strain at every point of the bar  |at every point of the bar
26 end, its own-weight produces additional stress. The maximum stress will be

The bending moment at a point on a beam is the algebraic of all the |diffrence sum division average sum
27 moments on either side of the point.

Strain resetters are used to measure shear strain measure linear strain ~ |measure volumetric  |relieve strain measure linear strain
8 strain

The maximum stress produced in a bar of tapering section is at smaller end larger end middle anywhere smaller end
29

The phenomenon of slow extension of materials having constant load ie increase |creeping fatigue fracture crack creeping

30

with the time is called




The energy stored in a body when strained within elastic limit is known as resilience proof resilience strain energy impact energy strain energy
31

In compression test, the fracture in cast iron specimen would occur along the axis of load an oblique plane at right angles to the  |would not occur an oblique plane
3 axis of specimen

When a bar is cooled to - 5°C, it will develop no stress shear stress tensile stress compressive stress tensile stress
33

The total strain energy tored in a body is knowns as resilience proof resilience strain energy impact energy resilience
34

unit of energy in SI unit N Watt joule pascal joule
35

Match the following a) modulas of elasticity 1) Direct stress/ a-1,b-2,¢c-3,d-4 [a-2,b-3,c-1,d |[c)a—4,b-2,¢c-3 |d)a-4,b-1,c-3,d |a-2,b-3,¢c-1,d-4
36 volumetric strain b) Rigidity modulus 2) Axial stress / Long -4 ,d-1 —4

strain  ¢) Bulk modulus 3) Shear stress / shear strain d)

Poisson ratio 4) Lateral strain /Long strain

Match the following a) Linear strain 1.Change in dia / a-1,b-2,c-3,d-4 [a-2,b-3,¢c-1,d [c)a-3,b—-1,c—4, |dJa-4,b-1,c-3,d |¢)a-3,b-1,c—4,d-2
37 Original dia  b) Lateral strain 2. Stress/ strain  ¢) Volumetric -4 d-2 —4

strain 3. Change in length/Original length d)Youngs modulus

4.Change in volume / Original volume

Match the following a) Elongation 1) 2WL/AE b) Stress 2) change in a-1,b-2,¢c-3,d-4 [a-2,b-3,c-1,d |[c)a—4,b-2,¢c-3 |d)a-4,b-1,c-3,d |dJa-4,b-1,c-3,d-4
38 length/original length c)Strain  3) /A d) Elongation due to self -4 ,d-1 —4

weight 4) PL/AE

The value of Poisson's ratio for cast iron is 0.1{0.23-0.27 0.4-0.6 0.45-0.46 0.23-0.27
39

Match the following a.torsion 1 N-m b.Youngs modulus 2 mm a-1,b-2,¢c-3,d-4 |a-2,b-3,c-1,d |[c)a—4,b-2,¢c-3 |da-1,b-3,c-4,d |dJa-1,b-3,¢c-4,d-2
40 c.Strain ~ 3.N/mm2 d. Elongation 4. No unit -4 ,d-1 —2

Elongation of bar due to tensile load PL/AE AE/PL Strain /Stress du/dL PL/AE
41

Elongation due to own weight WL/AE PL/AE 2WL/AE PLAE WL/AE
42

Bulk modulus is the ratio of stress to strain stress to original deformation to Direct stress/ volumetric  |Direct stress/ volumetric
53 length original length strain strain

Lateral strain is the ratio of Change dia /Original dia  |Change in width / Change in All the given options All the given options
44 Original width depth/Original depth

45

The value of possion’s ratio always remains

. greater than one

less than one

equal to one

zero

less than one




Unit of stress is KN N/m2 KN. mm2 KN/mm N/m2
46

Types of primary strains are 2|Linear strain
47

The property of a material which allows it to be drawn into a smaller section is plasticity elasticity ductility malleability ductility
48 called

The ratio of the moment of inertia of a circular plate and that of a square plate for |less than one equal to one more than one equal to 37/16 equal to 37/16
49 equal depth, is

As compared to uniaxial tension or compression, the strain energy stored in 12 N5 14 N3 13
50 bending is only

The ratio of elongations of a conical bar due to its own weight and that of a 12 1\5 14 13 1\3
51 prismatic bar of the same length, is

The maximum twisting moment a shaft can resist, is the product of the polar modulus moment of inertia polar moment of modulus of rigidly. polar modulus
5 permissible shear stress and inertia

A three-hinged arch is said to be a bent beam statically statically determinate |column statically determinate
53 indeterminate structure |structure structure

for a given load(P), if area increases length increases stress increases stress decreases length decreases stress increases
54

bulk modulus (K) of a body is given by K =E/(3(1-2p)) K=(3(1-2p))/E K=E/(3(1+2p)) K =(3(1+2p))/E K =E/(3(1-2p))
55

Change in volume /original volume Linear strain Lateral strain Volumetric strain strain 'Volumetric strain
56

The elongation of a bar due to its own weight WL/3E WL/E WL/2E 2E/WL WL/2E
57

Elongation of bar due to tensile load PL/AE AE/PL P/AE PA/LE PL/AE

58




UNIT 1T STRESS, STRAIN AND DEFORMATION OF SOLIDS
S.No. Questions optl opt2 opt3 opt4 Answer
1 If a cantilever beam is subjected to a point load at its free end then the shear less than the equal to the
force under the point load is Zero load equal to the load |more than the load [load
2 The bending moment at the free end of a cantilever beam carrying a
uniformly distributed load is Zero minimum maximum equal to the load. |zero
T'he B.M. at the centre of a simply supported beam carrying a
3 uniformly distributed load is
wl wl/2 wl*/4 wl*/8 wi*/8
A simply supported beam AB of span (I) Carries a point load (w) at a
4 distance from the left end A, such that a<b. The maximum deflection will between A and any where between C and
be atC C between C and B |between A and B |B
5 changes |shear force is |bending moment
The point of contra flexure is a point where shear force sign maximum is maximum Zero changes sign
6 A simply supported beam carriers a point load at its centre. The slope at its
supports is WI2/16EI |WI3/16E1 WI2/48E1 WI3/48E WI2/16EI
A simply supported beam of span (I) 1s subjected to a uniformly distributed
7 load of (w) per unit length over the whole span. The maximum deflections
at the centre of the beam is 5wl /48EI |Swl*/96EI Swi*/192EI 5wl3/384El 5wI3/384E1
T'wo simply supported beams of the same span carry the same load. If
8 the first beam carries the total load as a point load at its centre and the
other uniformly distributed over the whole span then ration of maximum 1:01 1.1.5 1.5:1 d. 2:1 1.5:1
9 A simply supported beam of span L carries a uniformly distributed
load W per m length. The maximum bending moment M is WL/2 WL/4 WL*/8 WL/12 WL*/8
10 A simply supported beam of span L carries concentrated load W at its
mid-span. The maximum bending moment M is WL/2 WL/4 WL/ WL/12 WL/4
11 A simply supported beam carries two equal concentrated loads W at
distances L/3 from either support. The maximum bending moment M is WL/3 WL/4 SWL/8 3WL/12 WL/3
The shape of the bending moment diagram over the Iength of a beam,
12 having no external load, is always
linear parabolic cubical circular linear
T'he shape of the bending moment diagram over the Iength of a beam,
13 carrying a uniformly distributed load is always
linear parabolic cubical circular parabolic




T'he shape of the bending moment diagram over the Iength of a beam,

14 carrying a uniformly increasing load is always
linear parabolic cubical circular cubical
15 For a simply supported beam with a central load, the bending moment least at |least at the [maximum at the |maximum atthe |maximum at
is the centre [supports support centre the centre
16 For a cantilever with a uniformly distributed load W over its entire
length L, the maximum bending moment is WL Y2 WL 1/3 WL Y2 W2L 2 WL
17 A cantilever beam carrying point load W on its free end, the maximum
bending moments is WL/4 WL WL/2 WL/3 WL
18 is
The bending moment is maximum on a section where shearing force maximum |is minimum is equal changes sign changes sign
B.M. 1s [Shear stress 1s [Deflection 1s Bending stress 1s  [Bending stress
19 same same same throughout |same at every is same at
A beam is said to be of uniform strength, if throughou |throughout the [the beam section along its  |every section
20 In a continuous bending moment curve the point where it changes sign, is  |point of |point of contra |point of virtual
called inflexion |flexture hinge all the above all the above
The value [Trverse section [The material ot
21 of the |of a beam [the beam is
Pick up the correct assumption of the theory of simple bending Young’s [remains plane [homogeneous and |All the above All the above
Tibres do
22 not fibres undergo |[fibres undergo fibres do not
Along the neutral axis of a simply supported beam undergo |minimum strain|maximum strain  [undergo shear undergo strain
bending [bending bending
23 moment |moment is |bending moment [shearing forceis |moment is zero
In a loaded beam, the point of contraflexure occurs at a section where is Zero or is maximum maximum or changes sign
passes through [does not change does not
24 may be at [the C.G. of the |during change during
In a beam, the neutral plane its centre |area of cross- |deformation none of these deformation
cantilever
25 beams continuous over hanging
The point of contra flexure occurs in only beams only beams only Band C only B and C only
26 For a beam with rectangularsection ,the ratio of maximum shear stress
to average shear stress is a2:1 b.1.5:1 c3:2 d.4:3 b.1.5:1
bending [bending bending
27 moment |moment is |bending moment [shearing forceis |moment is zero
loaded beam, the point of contraflexure occurs at a section where is Zero or is maximum maximum or changes sign




28 moment principal moment
The moment carrying capacity of any beam section is proportional to its of inertia |flexural rigidity |of inerctia section modulas  |flexural rigidity
29 Force X |Force X Distance X Moment x Force X
Bending moment is equal to load distance Seconds distance distance
30 The moment diagram for a cantilever whose free end is subjected to a
bending moment, will be a triangle  |rectangle parabola cubic parabola rectangle
31 The moment diagram for a cantilever which is subjected to a
uniformly distributed load will be a triangle  |rectangle parabola cubic parabola parabola
32 The moment diagram for a cantilever carrying concentrated load at its
free end, will be triangle  |rectangle parabola cubic parabola triangle
33 Shear force for a cantilever carrying a uniformly distributed load over its
whole length, is triangle  |rectangle parabola cubic parabola rectangle
average of
34 Uf the shear force along a section of a beam is zero, the bending maximum
moment at the section is ZETO0 maximum minimum —minimum maximum
directly
35 proportion |inversely directly
Hooke’s law states that stress and strain are al proportional curvilinear related |none of these proportional
determine all Ithe reactive forces at the supports, the structure 1s said
36 to be determinat |statically statically statically
e determinate indeterminate none of these indeterminate
elements at the supports. These can be determined by using the d). ) H=0;
37 following fundamental equation of statics d). D)H=0;XV PV=0;YM=
SH=0 [>V=0 YH=0;H=0 =0;>M=0 0
A bending moment may be defined as : Arithmetic[Arithmetic Algebraic sum of [Arithmetic sum of [Algebraic sum
38 sum of |sum of the [the moments of |the forces on of the
the moments on all the forces on |either side of the |moments of all
section, the shear force IF and bending moment M at a section are
39 related by
F=My/l |F=M/Z F = dM/dx F = [Mdx F = dM/dx
. A simply supported beam of span L carries a uniformly distributed
40 load W per meter length and point load W. The maximum bending
moment M is WL/2 WL/4 + WL2/8 |WL/8 WL/12 WL/4 + WL2/8
T'he shape of the bending moment diagram over the Iength of a beam,
41 carrying a uniformly distributed load is always
linear parabolic cubical circular linear




square of the

42 area of |area of the [product of the [productoftheare [area of the
The section modulus of a rectangular section is proportional to the section|section area and depth and width section
43 For a cantilever with a uniformly distributed load w N/m length and point
load at its free end , the maximum bending moment is a) WL b) 2 WL +WL |c) 1/3 WL > W2L b) 2 WL +WL
44 S1 :Moment is equal to product of force and distance S1 s Both S1 & S2 are |Both S1 & S2 are |Both S1 & S2
S2 : Moment is zero at point of contraflexure correct S2 is wrong correct correct are correct
S1 : Sagging moment 1s negative moment
45 S2 : Hogging moment is positive moment S1 s Both S1 & S2 are |Both S1 & S2 are |Both S1 & S2
correct S2 is wrong correct correct are correct
.Match the following a—1,b—
46 a. Simply supported 1. One end Fixed other end free 2,¢c-3,]la-2,b-3,cla-2,b-1 ,c—la-3,b-4,¢c— |a—-2,b-1,c
b. Cantilever 2.both ends are simply supported |d—4 -1,d-4 4,d-3 4,d-1 -4,d-3
47 If the member is subjected to a uniform bendmg m‘oment(M), the radius of M/R=E/I M/I=R/E M/I=E/R M/E=RL M/I=E/R
curvature of the deflected form of the member is given by
bending stress is maximum at a point, which is distance from the . . .. . maximum
48 . Zero constant maximum distance [minimum distance | .
neutral axis distance
straight uniformly varyin; uniformly
49 if the beam is subjected to point load , then the B.M diagram is drawn with | . & cubic curve parabolic curve . Y g varying staight
line staight line line
Risnot |Risconstant |R linearly varies R is constant
50 in pure bending beam is assumed to bend with constant |over the along the R=0 over the
over thickness thickness thickness
51 bending moment will vary in from neutral axis to any layer linear line |parabolic curve |cubic curve any linear line
. . t t th
52 for a simply supported beam point of contraflexure oceure at 1 ocette attle 1 4oes not occure  |at L/3 does not occure
mid-point [support
53 at the free end of any beam shear force will be maximum |minimum ZETro depend on point dePend on
load point load
shear . .
. . . shear force is  |shear force shear force is not |shear force
54 maximum B.M occure at a point where force is .. . .
. minimum changes sign Zero changes sign
maximum
. . . . ,
55 in pure 'bendmg of beam, strength of the beam can be increased by young's qlnglus of length radius of curvature |YOUR8'S
increasing modulus  |rigidity modulus




A simple supported beam of span (L) carries a uniformly distributed load

a

56 over the whole span. The bending moment diagram will be recta?gula @ traingular parabolic cubic parabolic
. . continuou . overhanging simply supported | overhanging
57 The point of contra-flexure occurs only in cantilever beam
s beams beams beams beams

A sinply supported beam carries a uniformly distributed load of w N per
>8 unit length over the whole span(L). The shear force at the center is wl/2 wL/8 wl/a zero zero

The B.M. at the centre of a simply supported beam carrying a point
59 load(W) is wl wl/4 wl’/4 wl/8 wl/4




UNIT III

BEAMS - LOADS AND STRESSES

S.No. Questions optl opt2 opt3 opt4 Answer
1 Torque transmitted by a solid shaft of diameter (D), when subjected to a shear
stress( 1)is equal to 116 xTx D’ n/16xtx D’ 1/32x1txD’ W16 xtx D’ /32 xtxD’?
2 A shaft revolving at r.p.m. transmits torque (T) in kg. m. The power
developed is 2 1 NT kW 2 a1 NT /30(kW) |2 aNT /60(kW) |21 NT/120(kW) |2 1 NT /60(kW)
3
Polar moment of inertia of a solid shaft of diameter (D) is w16 x D? n16xD* 1/32xD° n/32xD* 1/32xD*
4 When a solid shaft is subjected to torsion the shear stress induced in the shaft
at in centre is, Zero Minimum maximum average Zero
5 Strain energy stored in a hollow shaft of external diameter D and internal
diameter (d) when subjected to a shearing stress (1) is equal to ©/C(D*+d*/D) P/ACD+dYD) [P/C(D*d*D)  |t/4CD-d¥D)  |tH4C(D*+d*/D)
6
In a leaf spring, maximum bending stress developed in the plates is Wl/nbt? 2W1/nbt* 3W/nbt* 3W1/2nbt? 3WI/2nbt?
7 . . o
The maximum deflection at the centre of a leaf spring is o, I/Et o, I/2E o, 3EL o, I/3E o, V3E
8
When a closely coiled spring is subjected to an axial load, it is said to be under|bending Shear torsion all of these torsion
9 The deflection of a closely coiled helical spring of diameter (D) subjected to
an axial load (W) is 64 WR® n/Cd’ 64 WR*n/Cd* |64 WRn/Cd* |64 WRn*/Cd" 64 WR’® n/Cd’
10 The law which states that within elastic limits strain produced is proportional
to the stress producing it, is known as Bernoulli’s law Stress law Hooke’s law Poisson’s law Hooke’s law
11 When equal and opposite forces applied to a body, tend to elongate it, the compressive
stress so produced, is called shear stress stress Direct stress all the above Direct stress
12
In a leaf spring, maximum bending stress developed in the plates is Wl/nbt? 2W1/nbt* 3W/nbt® 3W1/2nbt? 3WI2nbt?
13 . . o
The maximum deflection at the centre of a leaf spring is o, I/Et o, I/2E o, 3EL o, I/3E o, V3E
14
When a closely coiled spring is subjected to an axial load, it is said to be under|bending Shear torsion all of these torsion
15 The deflection of a closely coiled helical spring of diameter (D) subjected to
an axial load (W) is 64 WR® n/Cd’ 64 WR’w/Cd* |64 WRn/Cd' |64 WRn’/Cd' |64 WR® n/Cd*
16 At the centre of the At a distance r/2 |At the top of the [At a distance 3/4r
The shear stress at any section of a shaft is maximum section from thecentre  |surface from the center At the top of the surface




The shaft is of

c/s 1s plane

all radii get

17 The twist along the uniform circular |before twist twisted due to all radii get twisted due to
The following assumption is not true in the theory of pure torsion shaft is uniform section remins plane torsion torsion
directly proportional  [inversely inversely directly
18 to the distange from  [proportional to  |proportional to  |proportional to inversely proportional to
In a shaft shear stress intensity at a point is not the axis the distance from |the polar M.L the applied torque |the distance from the axis
19 The maximum twisting moment a shaft can resist,is the permissible shear polar moment of modulus of
stress and moment of inertia inertia polar modulus rigidity polar modulus
20 A shaft turning 150 r.p.m. is subjected to a torque of 150 kgm. Horse power
transmitted by the shaft is b 10m s 1/ n 107
21 A shaft 9m long is subjected to a torque 30 t-m at a point 3m distant from
either end.The reactive torque at the nearer end will be 5 tonnes meter 10 tonnes meter |15 tonnes meter |20 tonnes meter |20 tonnes meter
22 If a shaft is simultaneously subjected to a torque T and a bending moment M,
the ratio of maximum bending stress and shearing stress is M/T /M 2M/T 2T/M 2M/T
23 A member which does not regain its original shape after removal of load
producing deformation is said plastic elastic rigid none of the above |plastic
24 to resist to resist
Strain energy of any member may be defined as work done on it to deform it elongation shortening all the above all the above
Both ST & S2 are
25 S1: Torque is a twisting moment, S2: When a solid shaft is subjected to S2 isright S1is [Both S1 & S2 wrong
torsion,the shear stress induced in the shaft at is center iszero S1 is right S2 is wrong [wrong are right Both S1 & S2 are right
26 S2 isright S1is [Both S1 & S2 Both S1 & S2 are
S1:Unit of torque is KNM, S2:Moment unit is KN S1 is right S2 is wrong |wrong are right wrong S1 is right S2 is wrong
The shaft is of Cross-section of [All'radii get The twist along
27 uniform circular the shaft, which [twisted due to the shaft is All radii get twisted due to
The following assumption is not true in the theory of pure torsion section throughout is plane before  |[torsion. uniform torsion.
28 S1:Helical spring are also called torsion spring, S2:Bending spring and S2 isright S1is [Both S1 & S2 Both S1 & S2 are
Tension spring are two type of spring S1 is right S2 is wrong |wrong are right wrong S1 is right S2 is wrong
29 Radius of Max bending
Choose the correct abbreviation Moment of inertia -1 |gyration - Y moment - B Shear - S Moment of inertia - I
30
Joule is the unit of Work force power energy Work
31 maximum calculated |minimum
the safe twisting moment for a compound shaft is equal to the avlue calculated avlue [mean value extreme value minimum calculated avlue
32 the ratio of the maximum shear stress to maximum normal stress at any point
in a solid circular shaft is 1 0-Jan 2 3-Feb 1
number of cycle [elastic Timit upto [torque required to [torque required to produce
33 maximum torque it it undergoes which it resists  |produce a twist of |a twist of one radian per
the torsional rigidity of a shaft is expressed by the can transmit gefore failure torsion, shear one radian per unit length of shaft
34 GI(torsional rigidity
strain energy stored in a solid circular shaft is proportional to of shaft) 1/GJ (G))2 1/(GJ)2 1/GJ




from maximum at the

from zero at the

from maximum

from minimum at

from zero at the centre to

35 The value of shear stress which is induced in the shaft due to the applied centre to zero at the  |centre to at the centre to  |the centre to maimum at the

couple varies circumfrence maimum at the  |minimum at the |[maximum at the |circumfrence
36 A key is subjected to side pressure as well at shearing forces. These pressure

are called bearing stresses fatigue stresses  [crushing stress  |resultant stresses |bearing stresses
37 in a belt drive, the pulley diameter is doubled, the belt tension and pully width increase key double all the

remaining same. The changes required in key will be increase key length increase keydepth |width dimensions increase key width
38 maximum at periphery |maximum at uniform

Shear stress induced ina shaft subjected to tension will be and zero at centre centre thoughout none of the above |none of the above
39 all there are designed |key is made pulley is made shaft is made

in the design of pully, Key and shaft for same strength weaker link weaker weaker key is made weaker link
40 the elongation produced in a tapered shaft with end diameters d1,d2 due to

tensile or compressive axial load is proportional to d1+d2 1/d1+d2 d1*d2 1/d1*d2 1/d1*d2
41

units of strain are dimensionless cm/cm kg/cm2/cm kg/cm dimensionless
42

a cylindrical bar of L metres deforms by 1 cm. The strain in bar is I/L 0.1/L 0.01/L 1001/L 0.01/L
43 A composite bar made of steel and copper is heated up. The stresses compressive and will |compressive and |bending and tensile and

developed in steel and copper will be be bending tensile compressive tensile and compressive
44 Two solid shafts are made of same material and have their dimeters D and

D/2. The ratio of strength of bigger shaft to smaller one in torsion is 4 2 16
45 The strain energy stored in a hollow shaft of outer and linner diameters D S2s/4c(D2- S2s/2¢(D2- Ss/4c(D2- S2s/4c(D2-

and d subjected to shear stress Ss and having modulus of rigidity C is equal to [d2/D)*volume d2/D)*volume  [d2/D)*volume |d2/D2)*volume |[S2s/4c(D2-d2/D)*volume
46 compare the strengths of solid and hollw shaft having inside diameter of D/2

in torsion. The ratio of strength of solid to hollow shafts in torsion will be 0.5 0.75[15/16 0.25(15/16

if they have

47 if same torque acts in |equal angles of if their ends are

Torsion bars are in series each twist and an are not possible |welded together |if same torque acts in each
48 100 kW is to be transmitted by each of two separate shafts. A is turning at Both will have

250 rpm and B at 300 rpm. Which shaft must have greater diameter A B same diameter  [unpredictable A
49

torsionla rigidity of a solid circular sfaht of diameter 'd' is proportional to d d2 1/d2 d4 d4

shear modulus of

50 the elongation of a close colid helical spring subjected to tensile load is mean diameter of reciprocal of diameter of wire |the material or

proportional to spring length of spring [of coil spring mean diameter of spring

fact that it must fact that it must be

51 the minimum thickmess of a fiange forged at the end of shaft is determined by |compresion between  [tightening of be sufficientto  |any one of the sufficient to prevent the

the two flanges bolts prevent the shaft |above shaft from shearing out of

if they have if they have equal angles of

52 if same torque acts in |equal angles of if their ends twist and an applied torque

torsion bars are in parallel

each

twist and an

are not possible

connected together

apporioned between them




without producing

to straighten fully

without producing

53 permanent the leafs of a permanent deformation in
proof load for springs is the maximum load that it can undertake deformation in spring |upto elastic limit |upto yield point |carrrage spring spring material
54 A torsion bar with a spring constant k is cut into n equal lengths. What is the
spring constant of each portion k/n nvk kn nk nk
two idetical spring of spring constant k in series are attached in series with a
55 parallel combination of two indentical springs of spring constant k. The
overall equivalent spring constant is 25k 1.25k 0.4 k 0.75k 04k
56 Two identical leaf spring of spring constant k are attached at free end by a
spring of spring constant of combination is 2.5k 1.5k 0.4k 0.75k 1.5k
57 if D be the diameter of coil of a close colied helical spring and total angle of
twist in full length be @, then deflection of spring is equal to DO (D/2)6 2DO DO2 (D/2)0
58
A coil is cut into two halves, the stiffness of cut coils will be double half same something else double
more or less
59 depending on
A hollow shaft of same cross-section ared as solid shaft transmits same torque less torque more torque external diameter |more torque
60

Torque in a solid shaft of diametre d and shear strength of Ss is given by

m/Ss*d3

(n/16)*Ss*d3

nd4/16

nd3/32

(n/16)*Ss*d3




UNITIV TORSION AND BEAM DEFLECTION

S.No. |Questions optl opt2 opt3 optd Answer
The ratio of the effective length of a column .
.. . i ) , Slenderne |Crippling . Slenderness
1 and minimum radius of gyration of its cross |Buckling factor } Buckling stress .
. . ss ratio factor ratio
sectional area, is known as
A vertical column has two moments of perpendic |maximum |minimum minimum
2 inertia (i.e. Ixx and lyy ). The column will  |axis of load ular to moment |moment of moment of
tend to buckle in the direction of the the axis _ |of inertia_|inertia inertia
A column is known as medium size of its
3 Y ow Sl 20 to 32 32t0 120 |120t0160 |160 to 180 32to 120
slenderness ratio is between
Euler’s formula states that the buckling load ) _
: 20, /2 p=xal‘/ |p=aEl/ 20, /3 2 2
4 P for a column of length 1, both ends hinged [p =n"El /| 2 p=naEl/]I p=a‘El/I
. . El 1
and whose least moment of inertia and
A long vertical member, subjected to an ) .
5 ong . Subl A column A strut A tie A stanchion A column
axial compressive load, is called
A vertical column has two moments of perpendic |maximum |minimum minimum
6 inertia (i.e. Ixx and lyy ). The column will  |axis of load ular to moment |moment of moment of
tend to buckle in the direction of the the axis _ |of inertia_|inertia inertia
The neutral axis of the cross-section a beam .. . P
7 . . . ) i Zero minimum |maximum |infinity Zero
is that axis at which the bending stress is
lon both
8 Euler's formula holds good only for short columns coh%mns short and [weak columns |long columns
long
The object of caulking in a riveted jointis  |free from stronger |free from
9 ! .. £ . . Sronge leak-proof leak-proof
to make the joint corrosion in tension |[stresses
A steel bar of 5 mm is heated from 15° C to shear tensile compressive
10 40° C and it is free to expand. The bar Will |no stress P no stress
stress stress stress

induce




A body is subjected to a tensile stress of

11 1200 MPa on one plane and another tensile |400 MPa 500 MPa (900 MPa (1400 MPa 1400 MPa
stress of 600 MPa on a plane at right angles
Two shafts 'A' and 'B' transmit the same smaller  |same reater
12 power. The speed of shaft 'A' is 250 r.p.m. |greater diameter diameter |diameter greater than 100 :gl'am ter
and that of shaft 'B' is 300 r.p.m. The shaft lamete
The stress induced in a body, when
13 suddenly loaded, is the stress  |equal to one-half |twice four times twice
induced when the same load is applied
If the slenderness ratio for a column is 100, . .
14 then it is said to be a column. long medium |short all of the given |long
15 | Lhe value of Rankines constant formild ;55 1/7500  |1/1600  |1/750 1/1600
steel is
The maximum diameter of the hole that can
16 be punched from a plate of maximum shear |t 2t 4t 8t 4t
stress 1/4th of its maximum crushing stress
Two closely coiled helical springs 'A" and
17 'B' are equal in all respects but the number |1\8 1\4 1\2 1\2
of turns of spring 'A' is half that of spring
18 The deformation per unit length is called tensile stress compressi |shear strain strain
ve stress  |stress
19 In the torsion equation the term J/R is called [shear modulus section |polar none of these polar
modulus |modulus modulus
measure shear measure |measure measur
20 Strain resetters are used to U linear volumetri |relieve strain ) casure )
strain . . linear strain
strain c strain
The torque transmitted by a solid shaft of I I
21 |diameter (D) is (where T = Maximum T/A*T*DA3 fgw b 15232 D164 TsDr3 w16+ T#DA3

allowable shear stress)




When a rectangular beam is loaded

) ) bottom  |neutral every Cross-
22 transversely, the maximum compressive top layer . ) bottom layer
. layer axis section
stress is developed on the
shear force bottom shear bending moment
23 The point of contraflexure is a point where . forceis |. g bottom layer
changes sign layer . is maximum
maximum
The bending stress in a beam is directly bottom dlrectly-
24 . . equal to |zero proportional
section modulus. proportional to  |layer to
is 1 . |Buckli ippli .
o5 In order to know Whethe.r a column is long slenderness ratio |2uckling Crippling strain energy slel.lderness
or short, we must know its factor factor ratio
energy stored in |energy maximum
e . . : f th
26 Resilience is the a body when stored in | strain rone ot the none of the
: oy above above
strained within  |a body energy
If the depth is kept constant for a beam of
27 uniform strength, then its width will vary in (M M M2 M3 M
proportional to (where M = Bending
) spreads  [spreads |varies uniformly |acts at a
. . acts at a point on . .
28 A concentrated load is one which non- uniformly |over the whole |point on a
a beam :
uniformly |over the |length of a beam |beam
i i the st i . lica [h li .
29 In a simple b§nd1ng of beams, the stress in linearly parabolica |hyperbolic elliptically linearly
the beam varies 1y ally
The stress at which the extension of the . .
) ) T yield ultimate . . . .
30 material takes place more quickly as elastic limit . . breaking point [yield point
. . . point point
compared to the increase in load, is called
. . T Th .
Pick up the correct assumption of the theory The Va}ue of the Fansvers 4 HAe all of the given |all of the
3 of simple bendin Young's  section material option iven option
p g modulus is the  [of a beam |of the P g P
If Z and I are the section modulus and F—
32 moment of inertia of the section, the shear |F = My/I F=M/Z IM/dx wl/12 F=My/l

force F and bending moment M at a section




A load which is spread over a beam in such

33 a manner that it varies uniformly over the  |distributed varying |resulting none of the varying
: . above
whole length of abeam is called uniformly
The energy The The proof
34 Which of the following statement is correct? |stored in a body, |maximum |resilience |all of the above all of the
when strained strain per unit above
Compression members always tend to . perpendic iminimum least radius of  |least radius
35 buckle in the direction of the axis of load ular to cross gyration of gyration
the axis __ [section
The maximum tangential stress in a thick greater
36 cylindrical shell is always the [equal to less than than infinity greater than
internal pressure acting on the shell.
A thin spherical shell of diameter (d) and
37 thickness (t) is subjected to an internal pd/t pd/2t pd/4t pd/8t pd/4t
pressure (p). The stress in the shell material
38 Principle plgne is a plane on which the Zero minimum |maximum |infinity Zero
shear stress is
The maximum tangential stress in a thick greater
39 cylindrical shell is always the [equal to less than than infinity greater than
internal pressure acting on the shell.
A thin spherical shell of diameter (d) and
40 thickness (t) is subjected to an internal pd/t pd/2t pd/4t pd/8t pd/4t
pressure (p). The stress in the shell material
41 Principle plgne is a plane on which the Zero minimum |maximum |infinity Zero
shear stress is
The bending moment in the centre of a
42 simply supported beam carrying a Zero wl2/2 wl2/4 wl2/8 wi2/8
uniformly distributed load of w per unit
When a thin cylindrical shell is subjected to a'decrease n ?n a a1'1 fnerease i fm n-lcrease
43 an internal pressure, there will be diameter and increase |decrease |diameter and in diameter
’ length of the shell|in in length of the and length




simply

. . . overhangi overhangin
44 The point of contraflexure occurs in cantilever beams |supported & |fixed beams ging
ng beams beams
beams
same Cross- same same same shear same
45 A beam of uniform strength has section bending |bending |stress at every [bending
throughout the stress at  [moment [section stress at
In a simple bending theory, one of the normal stress normal elastic elastic constants |elastic
46 assumption is that the material of the beam |remains constant |stress constants |varies linearly in |constants
is isotropic. This assumption means that the |in all directions |varies are same [the material are same in
The polar modulus for a solid shaft of
47 P . n/16*D"4 n/16*D"3 |n/32*D"3 |n/32*D"4 n/16*D"3
diameter (D) is
) : . normal  [shear normal and normal
The extremeties of any diameter on Mohr's o
48 . principal stresses [stresses  [stresses [shear stresses on |stresses on
circle represent o
on planes [on planes [a plane planes at 45
The bending moment of a cantilever beam
49 of length | and carrying a gradually varying |wl/2 wl wi2/2 wl2/6 wi2/6
load from zero at free end and w per unit
. . the retained the the
The Rankine's theory for active earth o . . all of the
50 ) . material is frictional [failure of |all of the above
pressure is based on the assumption that i above
homogeneous resistance |the
The strain energy stored in a spring, when
. £y PrInE, ) proof proof modulus of proof
51 subjected to maximum load, without impact energy o o o
i . S resilience |stress resilience resilience
suffering permanent distortion, is known as
The resultant stress on an inclined plane
52 which is inclined at an angle 0 to the normal |o sin 0 ccos 6 osin20 |ocos 20 o cos 0
cross-section of a body which is subjected
The ratio of change in volume to the . . lateral volumetri . L volumetric
53 g . linear strain . . Poisson's ratio .
original volume is called strain ¢ strain strain
In a beam where shear force changes sign, .. ) e .
54 Z€ero minimum |maximum |infinity maximum

the bending moment will be




The rectangular beam 'A' has length 1,

55 width b and depth d. Another beam 'B' has  [same double four times |six times four times
the same length and width but depth is
When a closely-coiled helical spring is
56 subjected to an axial load, it is said to be bending shear torsion crushing torsion
under
According to Euler's column theory, the
A none of the
57 crippling load for a column of length (1) equal to less than |more than less than
. . above
with one end fixed and the other end free is
If percentage reduction in area of a certain  [the material A is |[the the the material A is [the
58 specimen made of material 'A' under tensile |more ductile material B |ductility |brittle and material A is
test is 60% and the percentage reduction in |than material B is more |of material B is more ductile




UNITV ANALYSIS OF STRESSES IN TWO DIMENSIONS

S.No. Questions optl opt2 opt3 opt4 Answer
1 The hoop stress is also known as Longitudinal stress Circumferential Bending stress Compressive Circumferential stress
stress stress
For a thin cylindrical shell of diameter d
2 and thickness t, being subjected to a fluid |Pd/3t Pd/2t Pd/5t Pd/4t Pd/2t
pressure p, hoop stress is given by
For a thin cylindrical shell of diameter d
3 and thickness t, being subjected to a fluid |Pd/3t Pd/8t Pd/5t Pd/4t Pd/4t
pressure p, longitudinal stress is given by
4 For a thin cylindrical shell longitudinal Hoop stress Two times the Three times Half of the Half of the hoop stress
stress is equal to hoop stress hoops stress hoop stress
5 The hoop stress is considered as Compressive stress Bending stress Minor principal [Major principal Major principal stress
stress stress
The hoop stress and the longitudinal
6 stress act at the following angle to each |45 degree 60 degree 90 degree 120 degree 90 degree
other
The difference between hoop stress &
7 longitudinal stress For a thin cylindrical |Pd/16t Pd/8t Pd/5t Pd/4t Pd/4t
shell of diameter d and thickness t, being
The hoop strain for a thin cylindrical
8 shell of diameter d, thickness t, Poisson’s [Pd(1- v)/4tE Pd(1- 2v)/AtE Pd(1-0.5v)/2tE  [Pd(1+ v)/4tE  |Pd(1- 0.5v)/2tE
ratio v, and being subjected to pressure
The longitudinal strain for a thin
9 cylindrical shell of diameter d, thickness |Pd(1- v )/4tE Pd(1- 2v)/AtE Pd(2- v )/4tE Pd(1+v)/4tE  [Pd(1- 2v)/4tE
t, Poisson’s ratio v, and being subjected
The volumetric strain for a thin
10 cylindrical shell of diameter d, thickness |Pd(5- 3v)/4tE Pd(1- 2v)/AtE Pd(5- 4v)/AtE Pd(1+v)/4tE  [Pd(5- 4v)/4tE
t, Poisson’s ratio v, and being subjected
Hoop stress is only Longitudinal Hoop stress is Hoop and Hoop stress is only
11 For a thin spherical shell stress is two times [equal to one half |longitudinal
present present
the hoop stress of the stresses are
The volumetric strain for a thin
12 spherical shell of diameter d, thickness t, [Pd(5- 3v)/4tE 3Pd(1- v)/4tE Pd(5- 4v)/AtE Pd(1+v)/4tE  [3Pd(1- v)/4tE

Poisson’s ratio v, and being subjected to




The hoop stress for a thin spherical shell

13 of diameter d, thickness t, Poisson’s ratio |Pd/3t Pd/8t Pd/5t Pd/4t Pd/4t
v, and being subjected to pressure p, is
the internal the ratio of wall [the ratio of wall [the ratio of wall
14 A pressure vessel is said to be a thick it is made of thick pressure is very thickness of the |[thickness of the [thickness of the vessel to
shell, when sheets high vessel to its vessel to its its diameter is less than
A thin cylindrical shell of diameter (d),
15 length (1) and thickness (t)is subjected to |pd/t pd/2t pd/at pd/6t pd/2t
an internal pressure (p). The hoop stress
Two closely-coiled helical springs 'A’
16 and 'B' are equal in all respects but the one-sixteenth one-eighth one-fourth one-half one-half
number of turns of spring 'A' is double
. . Any of the .
17 Pressure vessels are made of Non ferrous materials |Sheet metal Cast iron given Any of the given
The shear stress at the centre of a .. . . .
18 . .. Zero minimum maximum infinity zero
circular shaft under torsion is
19 Whl(fh of t.he following are usually called Boilers Steam pipes Tanks All of them All of them
as thin cylinders -----
20 LonglQOal st’ress act to the Parallel Perpendicular El ther of the transverse Parallel
longitudinal axis of the shell given
71 Thin cylinders are frequently required to 5 MPa 15 MPa 30 MPa 250 MPa 30 MPa
operate under pressures upto
The hoop stress of spherical shell for a
22 built up edge is given by (n Pd/3tn Pd/8t Pdn/5t Pd/4tn Pd/4tn
efficiency)
73 The design of a thin cylindrical shell is Internal pressure Diameter of the Longitudinal All of these All of these
based on shell stress
24 In qrder to strengthen a cyhr.ldrlcal shell Thickness is increased plameter 1S Wire is WQund ¥ength is Wl.re is wound on the
against bursting force  is done increased on the cylinder [increased cylinder
25 A spring used to absorb shocks and conical spring torsion spring leaf spring disc spring leaf spring

vibrations is




A closely coiled helical spring is of mean

26 diameter (D) and spring wire diameter 1/d 1/D D/d d/D D/d
(d). The spring index is the ratio of
. . Mimi h Maxi Z h
27 Principal planes are planes of Maximum shear stress | o Siear axtmum ero shear Zero shear stress
stress normal stress stress
28 Principal stresses are basically Shear stresses Bending stresses  |Normal stresses [None of these |Normal stresses
The planes of maximum shear stress are
29 located at the following angle to the 45 degree 60 degree 90 degree 30 degree 45 degree
principal planes
30 Principal planes are separated by 45 degree 60 degree 90 degree 180 degree 90 degree
Maximum shear stress is equal to Half the algebrglc . T.he algebraic The sum of the H.alf the algebrzflc .
31 difference of principal |difference of . None of these |difference of principal
e principal stresses
stress principal stresses stress
. . . length i length
When a bar of length 1, width b and length, width and length, width and epgt increases, |lengt length decreases, width
32 . . . . . . ) width and decreases, . )
thickness t is subjected to a push of P, its |thickness increases thickness decreases| , . i and tickness increases
thickness width and
Mohr's circle is used to determine the direct tensile stress in |direct tensile direct tensile
33 stresses on an oblique section of a body |one plane stress in two stress in two all of the above |all of the above
subjected to accompanied by a mutually mutually
The radius of the Mohr’s circle indicates |Maximum principal  [Minimum Maximum shear |Minimum shear .
34 . Maximum shear stress
stress principal stress stress stress
.. . Two times the Three times the .
In case one principal stress is zero, the . . . Two times the
35 L. . Maximum shear stress [maximum shear maximum shear |None of these .
other principal stress is equal to maximum shear stress
stress stress
In Mohr’s circle the tensile stress will be
36 reckoned  and will be plotted to Negative , right Positive, left Negative, left Positive, right | Positive, right
of the origin
In Mohr’s circle the compressive stress
37 will be reckoned  and will be plotted |Negative , right Positive, left Negative, left Positive, right | Positive, right
to of the origin
1 o o
38 The resultant stress makes an angle Slant angle Principal angle Obliquity None of these  |Obliquity

normal to the plane and is called




For a thin walled shell the diameter

39 . .. <20 >20 20 None of these |>20

thickness ratio is
40 qu a thick \yal%ed shell the diameter 0 =20 20 None of these <20

thickness ratio is

i . . ti

41 A beam encastered at both the ends is simply supported beam |fixed beam cantilever beam contmuous fixed beam

called beam

If a member is subjected to an axial Maximum normal |Maximum shear
42 tensile load, the plane inclined at an Maximum shear stress None of these |Maximum normal stress

. . stress stress
angle of 45 degree to the axis of loading
The maximum shear stress induced in a . Half of the Twice the Thrice the .
L . . Maximum normal . . ) Half of the maximum
43 member which is subjected to an axial maximum normal |maximum maximum
. stress normal stress
load is equal to stress normal stress normal stress
If a member, whose tensile strength is . .
. Maximum normal Maximum shear  |Normal stress or .

44 more than two times the shear strength, None of these [Maximum shear stress

. . . . stress stress shear stress

is subjected to an axial load upto failure

The normal stress on an oblique plane at sigma cos sqr (t |sigma sin sqr (t
45 an angle (t ta)to the cross section of a (sigma /2)sin 2 (tta) |sigma cos (t ta) £ 4 £ 4 sigma cos sqr (t ta)

S . . ta) ta)

body which is subjected to a direct

The 1 ired t it . . C . . Y !
46 de ;e:t?il(c)lrlrfibgl:rse[iir(l)gpirsoi?l(l:: da un flexural rigidity torsional rigidity  [spring stiffness m(;lcll?fuss spring stiffness

The ratio of bulk modulus to Young's
47 modulus for a Poisson's ratio of 0.25 will |1\3 2\3 1 3\2 2\3

be

The hoop stress ina  |The shear stress in | The design of The ratio of The design of thin
48 Choose the correct statement thin cylindrical shell is |a thin spherical thin cylindrical ~ |hoop stress to  |cylindrical shell is based
compressive stress shell is more than |shell is based on |longitudinal on hoop stress

A water main 1m in diameter contains a
49 fluid having pressure 1Mpa . If the 2 cm 2.5 cm I cm 0.5 cm 2.5 cm

maximum permissible tensile stress in

Th? c1r.cumferentlal strain ease of thin More than diametric  |Less than Equal to Equal to diametric
50 cylindrical shell, when subjected to . . . . . . . None of these .

. ) strain diametric strain diametric strain strain

internal pressure p is,

In case of cylinders which have to carry |Wind strong steel wire |Shrink one
51 high internal fluid pressure, the method |under tension on the |cylinder over the [Botha &b None of these |Botha &b

adopted is to

cylinder

other




If a prismatic bar be subjected to an axial

(sigma /2)cos sqr

(sigma /2) sin

52 tensile stress (sigma), the shear stress (sigma/2)sin 2q (sigma/2) cos (t ta) (sigma/2)sin 2q
. e . (tta) sqr (t ta)
induced at a plane inclined at (t ta) with
In case of biaxial state of normal Difference of Half the sum of Half the Half the sum of normal
53 stresses, the normal stress on 45 degree  [Sum of normal stresses difference of
. normal stresses normal stresses stresses
plane is equal to normal stresses
Circumferential and longitudinal strains
54 in cylinder boiler under internal steam el+2e2 el(e2)sqr 2el+e2 (el)sqr.e2 2el+e2
pressure are el and e2 respectively.
Principal stresses at a point in plane
55 stressed element are sigma(x)=sigma 0 5000 N/em2 7070 N/cm2 10000 N/em2  |5000 N/cm2
(y)=5000 N/cm2. Normal stress on the
A thin cylinder of radius r and thickness t
56 when subjected to an internal hydrostatic |du/dr (1/r). (du/dr) u/r 2u/r
pressure p causes a radial displacement
The principal stresses sigmal, sigma2,
57 and sigma3 at a point respectively are 80 (25 MPa 35MPa 55 MPa 60 MPa 60 MPa

MPa, 30 MPa and -40 MPa. The




