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Course Objectives: 

To gain knowledge of simple stresses, strains and deformation in components due to external loads. 

To assess stresses and deformations through mathematical models of beams, twisting bars or 

combinations of both. 

Effect of component dimensions and shape on stresses and deformations are to be understood. 

The study would provide knowledge for use in the design courses 

 

UNIT I INTRODUCTION TO MECHANICS 

Rigid bodies-two dimensional structure-moment of force about an axis-moment of a couple equivalent 

system of coplanar forces- problems involving beams and frames. Roof trusses-Method of joints, method of 

sections, Introduction-plane, rectilinear motion - time dependent motion rectangular coordinates-projectile 

motion. 

 

UNIT II STRESS, STRAIN AND DEFORMATION OF SOLIDS 

Rigid and Deformable bodies – Strength, Stiffness and Stability – Stresses; Tensile, Compressive and Shear 

– Deformation of simple and compound bars under axial load – Thermal stress – Elastic constants – Strain 

energy ,potential energy and unit strain energy – Strain energy in uni-axial loads.  

 

UNIT III BEAMS - LOADS AND STRESSES 

Types of beams: Supports and Loads – Shear force and Bending Moment in beams – Cantilever, Simply 

supported and Overhanging beams – Stresses in beams – Theory of simple bending – Stress variation along 

the length and in the beam section – Effect of shape of beam section on stress induced – Shear stresses in 

beams – Shear flow. 

 

UNIT IV TORSION AND BEAM DEFLECTION 

Analysis of torsion of circular bars – Shear stress distribution – Bars of Solid and hollow circular section – 

Stepped shaft – Twist and torsion stiffness – Compound shafts – Fixed and simply supported shafts – 
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Application to close-coiled helical springs – Maximum shear stress in spring section including Wahl Factor 

– Elastic curve of Neutral axis of the beam under normal loads – Evaluation of beam deflection and slope: 

Double integration method, Macaulay Method 

 

UNIT V ANALYSIS OF STRESSES IN TWO DIMENSIONS 

Biaxial state of stresses – Thin cylindrical and spherical shells – Deformation in thin cylindrical and 

spherical shells – Biaxial stresses at a point – Stresses on inclined plane – Principal planes and stresses – 

Mohr‘s circle for biaxial stresses – Maximum shear stress - Strain energy in bending and torsion. 

 

 

TEXT BOOKS: 

 

S.No. 

 

AUTHOR(S) 

 
TITLE OF THE BOOK 

PUBLISHER 

 

YEAR OF 

PUBLICATION 

1 R. K. Bansal 
A Textbook of Strength of 

Materials 

Laxmi 

Publications. 

New Delhi. 

2010 

2 R. S. Khurmi Strength of Material 

S. Chand 

Publications. 

New Delhi. 

2013 

3 

Ramamrutham 

S 

and R. Narayan 

Strength of Materials 

DhanpatRai and 

Sons. 

New Delhi. 

2011 

 

 

REFERENCE BOOKS: 

 

S.No. 

 

AUTHOR(S) 

 
TITLE OF THE BOOK 

PUBLISHER 

 

YEAR OF 

PUBLICATION 

1 

James M. Gere, 

Barry J. 

Goodno 

Mechanics of Materials 
Prentice Hall Inc. 

New Jersey. 
2008 

2 Hearn E. J Mechanics of Materials 
Pergamon Press, 

Oxford. 
1977 

3 Bedi D.S Strength of Materials 

S Chand and Co. 

Ltd., 

New Delhi 

1984 

4 Singh D.K Strength of Materials 
ANE Books. 

New Delhi. 
2007 

5 Jindal U.C 
Textbook on Strength of 

Materials 

Asian Books Pvt 

Ltd., 

New Delhi. 

2007 
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WEB REFERENCE: 

 

 www.engineersedge.com 

 http://en.wikiversity.org 

 www.globalsources.com 

 www.clag.org.uk/beam.html 

 nptel.iitm.ac.in/courses/IIT.../Strength_of_Materials/index.php 

 

 

 

 

 

 

ESE MARKS ALLOCATION 

S.No. Particulars Marks 

1. Section – A 

( 20 × 1 = 20 ) 

Online Test – MCQ type 

20 

2. Section – B 

( 5 × 2 = 10 ) 

10 

3. Section – C 

( 5 × 14 = 70 ) 

Either ‘A’ or ‘B’ type 

70 

Total 100 
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KARPAGAM ACADEMY OF HIGHER EDUCATION 
(Deemed to be University) 

(Established Under Section 3 of UGC Act, 1956) 

EachanariPost, Coimbatore-641021.Tamilnadu,India. 

 

FACULTY OF ENGINEERING 

DEPARTMENT OF MECHANICAL ENGINEERING – AEROSPACE ENGINEERING 

 

Subject Name   : Solid Mechanics 

Subject Code    : 16BTAR305  (Credits - 3) 

Name of the Faculty  : Mr.C.Nithiyapathi 

Designation   : Assistant Professor 

Year/Semester/Section  : II / III / - 

Branch    : Aerospace Engineering 

 

 

Sl. 

No. 

No. of Periods Topics to be Covered Support Materials 

UNIT – I : INTRODUCTION TO MECHANICS 

1.  1 Fundamentals - Division of Mechanics T[1], T[2], R[1] 

2.  1 Fundamentals – Terminologies, Definitions & Basic Concepts T[1], T[2], R[1] 

3.  1 Rigid bodies-two dimensional structure T[1], T[2], R[1] 

4.  2 
Moment of force about an axis, moment of a couple equivalent system of 

coplanar forces 
T[1], T[2], R[1] 

5.  1 Problem and solution – moment of force & couple T[1], T[2], R[1] 

6.  2 Problems involving beams and frames T[1], T[2], R[1] 

7.  1 Tutorial - Roof trusses-Method of joints T[1], T[2], R[1] 

8.  1 Problem and solution - Method of joints  

9.  1 Roof trusses- Method of sections T[1], T[2], R[1] 

10.  1 
Introduction – plane, Rectilinear motion, Time dependent motion, Rectangular 

Coordinates, Projectile motion 
T[1], T[2], R[1] 

Total No. of Hours Planned for Unit – I :       12  

 

Sl. 

No. 
No. of Periods Topics to be Covered Support Materials 

UNIT – II : STRESS, STRAIN AND DEFORMATION OF SOLIDS 

11.  1 Rigid and Deformable bodies – Strength, Stiffness and Stability T[1], T[2], R[1] 

12.  1 Stresses: Tensile, Compressive and Shear T[1], T[2], R[1] 

13.  2 Deformation of simple and compound bars under axial load T[1], T[2], R[1] 

14.  1 Problem and solution – Stress and Deformation T[1], T[2], R[1] 

15.  1 Problem and solution – Stress and Deformation - compound bars under axial load T[1], T[2], R[1] 

16.  1 Thermal stress - Problem and solution T[1], T[2], R[1] 

17.  2 Elastic constants, Strain energy ,potential energy and unit strain energy T[1], T[2], R[1] 

18.  1 Strain Energy in uni-axial loads T[1], T[2], R[1] 

19.  1 Tutorial - Problem and solution - simple and compound bars under axial load T[1], T[2], R[1] 
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20.  1 Problem and solution - Strain energy T[1], T[2], R[1] 

Total No. of Hours Planned for Unit – II :         12  

 

Sl. 

No. 
No. of Periods Topics to be Covered Support Materials 

UNIT – III : BEAMS - LOADS AND STRESSES 

21.  1 Types of beams: Supports and Loads T[1], T[2], R[3] 

22.  2 Shear force and Bending Moment in beams T[1], T[2], R[3] 

23.  1 Cantilever, Simply supported and Overhanging beams T[1], T[2], R[3] 

24.  1 Stresses in beams T[1], T[2], R[3] 

25.  1 Problem and solution - Shear force and Bending Moment T[1], T[2], R[3] 

26.  1 Theory of simple bending T[1], T[2], R[3] 

27.  1 Stress variation along the length and in the beam section T[1], T[2], R[3] 

28.  1 Effect of shape of beam section on stress induced T[1], T[2], R[3] 

29.  1 Tutorial - Problem and solution – Stress Determination T[1], T[2], R[3] 

30.  2 Shear stresses in beams – Shear flow T[1], T[2], R[3] 

Total No. of Hours Planned for Unit – III:          12  

 

Sl. 

No. 
No. of Periods Topics to be Covered Support Materials 

UNIT – IV : TORSION AND BEAM DEFLECTION 

31.  1 Introduction, Analysis of torsion of circular bars T[1], T[2], R[3] 

32.  1 
Shear stress distribution – Bars of Solid and hollow circular section – Stepped 

shaft 
T[1], T[2], R[3] 

33.  1 Twist and torsion stiffness T[1], T[2], R[3] 

34.  1 Compound shafts – Fixed and simply supported shafts T[1], T[2], R[3] 

35.  1 Problem and solution - Analysis of torsion & Shear stress distribution T[1], T[2], R[3] 

36.  1 Torsion - Application to close-coiled helical springs T[1], T[2], R[3] 

37.  1 Maximum shear stress in spring section including Wahl Factor T[1], T[2], R[3] 

38.  1 Elastic curve of Neutral axis of the beam under normal loads T[1], T[2], R[3] 

39.  1 Evaluation of beam deflection and slope: Double integration method T[1], T[2], R[3] 

40.  1 Tutorial - Problem and solution - Double integration method T[1], T[2], R[3] 

41.  2 Evaluation of beam deflection and slope: Macaulay Method T[1], T[2], R[3] 

Total No. of Hours Planned for Unit – IV:        12  

  

Sl. 

No. 
No. of Periods Topics to be Covered Support Materials 

UNIT – V : ANALYSIS OF STRESSES IN TWO DIMENSIONS 

42.  1 Biaxial state of stresses, Biaxial stresses at a point T[1], T[2], R[3] 

43.  1 Thin cylindrical and spherical shells T[1], T[2], R[3] 

44.  2 Deformation in thin cylindrical and spherical shells T[1], T[2], R[3] 

45.  1 Stresses on inclined plane – Principal planes T[1], T[2], R[3] 

46.  1 
Tutorial - Problem and solution – Deformations in thin cylindrical and spherical 

shells 
T[1], T[2], R[3] 
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47.  2 Stresses – Mohr‘s circle for biaxial stresses – Maximum shear stress T[1], T[2], R[3] 

48.  1 Strain energy in bending and torsion T[1], T[2], R[3] 

49.  1 Problem and solution - Mohr‘s circle for biaxial stresses T[1], T[2], R[3] 

50.  1 Problem and solution - Strain energy in bending and torsion T[1], T[2], R[3] 

51.  1 
Discussion on Competitive Examination related Questions / University 

previous year questions - Tutorial 
 

Total No. of Hours Planned for Unit – V:          12  

 

        TOTAL PERIODS :  60 

 

TEXT BOOKS  

T [1] –  R. K. Bansal (2010), “A Textbook of Strength of Materials, Laxmi Publications, New Delhi. 

T [2] –  R. S. Khurmi (2013), “Strength of Material”, S. Chand Publications. New Delhi 

T [3] - Ramamrutham S and R. Narayan (2011), “Strength of Materials”, DhanpatRai and Sons.New Delhi. 

REFERENCES 

R [1] -  James M. Gere, Barry J. Goodno (2008), “Mechanics of Materials”, Prentice Hall Inc. New Jersey. 

R [2] - Hearn E. J (1997). “Mechanics of Materials”, Pergamon Press, Oxford. 

R [3] -  Bedi D.S (1984), “Strength of Materials”, S Chand and Co. Ltd., New Delhi 

R [4] - Singh D.K (2007), “Strength of Materials”, ANE Books. New Delhi. 

R [5] - Jindal U.C (2007), “Textbook on Strength of Materials”, Asian Books Pvt Ltd., New Delhi. 

 

WEBSITES  

W [1] - http://nptel.ac.in/   

W [2] - https://web.mst.edu 

W [3] - https://apm.iitm.ac  

JOURNALS 

J [1] -  Mechanics of Materials- An International Journal - www.journals.elsevier.com 

J [2] – Journal of Material Sciences & Engineering - www.omicsgroup.org 

J [3] – MMSE Journal (Mechanics, Materials science and Engineering) 

J [4] – International Journal of Materials, Mechanics and manufacturing - http://www.ijmmm.org/ 
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UNIT Total No. of Periods  Planned Lecture Periods Tutorial Periods 

I 12 11 1 

II 12 11 1 

III 12 11 1 

IV 12 11 1 

V 12 10 2 

TOTAL 60 54 6 

 

 

I. CONTINUOUS INTERNAL ASSESSMENT : 40 Marks 

(Internal Assessment Tests: 30, Attendance: 5, Assignment / Seminar: 5) 

II. END SEMESTER EXAMINATION  : 60 Marks 

TOTAL    : 100 Marks 
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UNIT I INTRODUCTION TO MECHANICS 

Rigid bodies-two dimensional structure-moment of force about an axis-moment of a couple equivalent 

system of coplanar forces- problems involving beams and frames. Roof trusses-Method of joints, method of 

sections, Introduction-plane, rectilinear motion - time dependent motion rectangular coordinates-projectile 

motion. 

 

 

 

TEXT BOOKS  

 

T [1] –  R. K. Bansal (2010), “A Textbook of Strength of Materials, Laxmi Publications, New Delhi. 

 

T [2] –  R. S. Khurmi (2013), “Strength of Material”, S. Chand Publications. New Delhi 

 

 

REFERENCES 

 

R [1] -  James M. Gere, Barry J. Goodno (2008), “Mechanics of Materials”, Prentice Hall Inc. New Jersey. 
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UNIT II STRESS, STRAIN AND DEFORMATION OF SOLIDS 

Rigid and Deformable bodies – Strength, Stiffness and Stability – Stresses; Tensile, Compressive and Shear 

– Deformation of simple and compound bars under axial load – Thermal stress – Elastic constants – Strain 

energy ,potential energy and unit strain energy – Strain energy in uni-axial loads.  

 

 

 

TEXT BOOKS  

 

T [1] –  R. K. Bansal (2010), “A Textbook of Strength of Materials, Laxmi Publications, New Delhi. 

 

T [2] –  R. S. Khurmi (2013), “Strength of Material”, S. Chand Publications. New Delhi 

 

 

REFERENCES 

 

R [1] -  James M. Gere, Barry J. Goodno (2008), “Mechanics of Materials”, Prentice Hall Inc. New Jersey. 
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10. Stress strain diagrams 
• Bar or rod – the longitudinal direction is considerably 

greater than the other two, namely the dimensions of 
cross section. 

• For the design of the m/c components we need to 
understand about “mechanical behavior” of the 
materials. 

• We need to conduct experiments in laboratory to 
observe the mechanical behavior. 

• The mathematical equations that describe the 
mechanical behavior is known as “constitutive 
equations or laws” 

• Many tests to observe the mechanical behavior- tensile 
test is the most important and fundamental test- as we 
gain or get lot of information regarding mechanical 
behavior of metals 

• Tensile test Tensile test machine, tensile test specimen, 
extensometer, gage length, static test-slowly varying 
loads, compression test. 

Stress -strain diagrams 

After performing a tension or compression tests and 
determining the stress and strain at various magnitudes of 
load, we can plot a diagram of stress Vs strain. 
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Such is a characteristic of the particular material being tested 
and conveys important information regarding mechanical 
behavior of that metal. 

We develop some ideas and basic definitions using σ −∈ 
curve of the mild steel. 

Structural steel = mild steel = 0.2% carbon=low carbon steel 

                     

                                                                                            

 

 

 

 

 

 

 

 

Region O-A 

(1) σ  and ∈ linearly proportional. 

(2) A- Proportional limit  

      pσ - proportionality is maintained. 

(3) Slope of AO = modulus of elasticity “E” – N/m2,Pa 

(4) Strains are infinites ional.   

f o

o

L L

L

−
∈=
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Region A-B 

(1) Strain increases more rapidly than σ  

(2)   Elastic in this range 

Proportionality is lost. 

 

 

Region B-C 

(1)  The slope at point B is horizontal. 

(2)  At this point B, ∈ increases without increase in further       
load. I.e no noticeable change in load. 

(3)  This phenomenon is known as yielding 

(4)  The point B is said to be yield points, the corresponding 
stress is yield stress ysσ  of the steel. 

(5)  In region B-C material becomes “perfectly plastic i.e 
which means that it deforms without an increase in the 
applied load. 

(6) Elongation of steel specimen or ∈ in the region BC  is 
typically 10 to 20 times the elongation that occurs in region 
OA. 

(7) s∈  below the point A are said to be small, and s∈  above A 
are said to be large. 

(8) s A∈ <∈  are said to be elastic strains and A∈>∈  are said to 
be plastic strains = large strains = deformations are 
permanent. 
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Region C-D 

(1)The steel begins to “strain harden” at “C” . During strain 
hardening the material under goes changes in its crystalline 
structure, resulting in increased resistance to the 
deformation. 

(2)Elongation of specimen in this region requires additional 
load, 

 ∴ σ −∈ diagram has + ve slope C to D. 

(3) The load reaches maximum value – ultimate stress. 

(4)The yield stress and ultimate stress of any material is also 
known as yield strength and the ultimate strength . 

(5) uσ  is the highest stress the component can take up. 

Region-DE 

Further stretching of the bar is needed less force than 
ultimate force, and finally the component breaks into two 
parts at E. 
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Look of actual stress strain diagrams 

C toE BtoC Oto A∈ >∈ >∈  

(1) Strains from O to A are 

 so small in comparison to the 

 strains from A to E that they  

cannot be seen. 

(2) The presence of well defined  

yield point and subsequent large 

 plastic strains are characteristics of mild – steel. 

(3) Metals such a structural steel that undergo large 
permanent strains before failure are classified as ductile 
metals. 

Ex. Steel, aluminum, copper, nickel, brass, bronze, 
magnesium, lead etc.  

Aluminum alloys – Offset method 

(1) They do not have clear cut yield point. 

(2) They have initial straight line portion with clear 
proportional limit. 

(3) All does not have obvious  

yield point, but undergoes  

large permanent strains after  

proportional limit. 

(4) Arbitrary yield stress is  
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determined by off- set method. 

(5) Off-set yield stress is not material property 

Elasticity & Plasticity 

(1) The property of a material by which it (doesn’t) returns to 
its original dimensions during unloading is called (plasticity) 
elasticity and the material is said to be elastic (plastic). 

 

 

(2) For most of the metals proportional limit = elastic limit. 

(3) For practical purpose proportional limit = elastic limit = 
yield stress 

(4 )All metals have some amount of straight line portion. 
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Brittle material in tension 

 

 

 

 

 

 

(1) Materials that fail in tension at relatively low values of 
strain are classified or brittle materials. 

(2) Brittle materials fail with only little elongation (elastic) 
after the proportional limit. 

(3)Fracture stress = Ultimate stress for brittle materials 

(4)Up to B, i.e fracture strains are elastic. 

(5)No plastic deformation in case of brittle materials. 

Ex. Concrete, stone, cast iron, glass, ceramics 

Ductile metals under compression 
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(1) σ −∈ curves in compression differ from  σ −∈  in tension. 

(2)For ductile materials, the proportional limit and the initial 
portion of the σ −∈  curve is same in tension and 
compression. 

(3)After yielding starts the behavior is different for tension 
and compression. 

(4)In tension after yielding – specimen elongates – necking 
and fractures or rupture. In compression – specimen bulges 
out- with increasing load the specimen is flattened out and 
offers greatly increased resistance. 

Brittle materials in compression  

 

 

 

 

 

 

(1)Curves are similar both in tension and compression 

(2)The proportional limit and ultimate stress i.e fracture 
stress are different. 

(3)In case of compression both are greater than tension case 

(4)Brittle material need not have linear portion always they 
can be non-linear also. 
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11. Generalized Hooke’s Law 
 

 

 

 

 

(1) A material behaves elastically and also exhibits a linear 
relationship between σ  and ∈ is said to be linearly elastic. 

(2) All most all engineering materials are linearly elastic up 
to their corresponding proportional limit. 

(3) This type of behavior is extremely important in 
engineering – all structures designed to operate within this 
region. 

(4) Within this region, we know that either in tension or 
compression 

E
Stress in particular direction straininthat dir.X E
σ = ∈

=
 

E =Modulus of elasticity –Pa,N / m2  

= Young’s modulus of elasticity. 

(5)   x xEσ = ∈    or  y yEσ = ∈  

(6)  Eσ = ∈ is known as Hooke’s law. 

(7) Hooke’s law is valid up to the proportional limit or 
within the linear elastic zone. 
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Poisson’s ratio 

When a prismatic bar is loaded in tension the axial 
elongation is accompanied by lateral contraction. 

Lateral contraction or lateral strain 

         f o

o

d d

d

−
′∈ =  this comes out to be –ve 

( ) lateral strain
Poisson's ratio  = nu

axial strain
is perpendicular to

ν ′−∈=− =
∈

′∈ ∈
 

  

If a bar is under tension ∈ +ve, ′∈  -ve and ν = +  

If a bar is under compression ∈ -ve, ′∈  +ve and ν = +  

ν =always +ve = material constant 

For most metals      . to . sν = 0 25 0 35  

             Concrete    . to .ν = 0 1 0 2  

              Rubber      .ν = 0 5 

ν  is same for tension and compression 

ν is constant within the linearly elastic range. 
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Hooks law in shear 

(1)To plot ,Yτ  the test is twisting 
of hollow circular tubes 

 

 

 

 

(2) ,Yτ  diagrams are (shape of them) similar in shape to 
tension test diagrams ( )Vsσ ∈  for the same material, 

although they differ in magnitude. 

(3)From Yτ − diagrams also we can obtain material 
properties proportional limit, modulus of elasticity, yield 
stress and ultimate stress. 

(4)Properties are usually ½ of the tension properties. 

(5)For many materials, the initial part o the shear stress 
diagram is a st. line through the origin just in case of tension. 

GYτ =  - Hooke’s law in shear 

G =Shear modulus of elasticity or modulus of rigidity. 

          Pa or N / m s= 2  

Proportional limit 

Elastic limit 

Yield stress 

Ultimate stress 

Material properties 

τ

ϒ

Proportional limit

G
1

Yield point
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E,v, and G → material properties – elastic constants - elastic 

properties. 

Basic assumptions solid mechanics 

Fundamental assumptions of linear theory of elasticity are: 

(a) The deformable body is a continuum 

(b) The body is homogeneous 

(c) The body is linearly elastic 

(d) The body is isotropic 

(e) The body undergoes small deformations. 

Continuum  

Completely filling up the region of space with matter it 
occupies with no empty space. 

Because of this assumption quantities like 

( )
( )

( )

u u x,y ,z

x,y ,z

x,y ,z

σ σ
=

=

∈=∈

 

Homogeneous 

Elastic properties do not vary from point to point. For non-
homogenous body    

( )
( )
( )

E E x,y ,z

v v x,y ,z

G G x,y ,z

=

=

=
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Linearly elastic       

Material follows Hooke’s law  

                      
E
GY

v Constant

σ
τ

= ∈
=
=

 

Isotropic   

Material properties are same in all directions at a point in the 
body 

                         
E C for all

C for all
G C for all

θ
ν θ

θ

=
=
=

1

2

3

 

The meaning is that 

x x

y y

E
E

σ
σ

= ∈
= ∈                                                                             

The material that is not isotropic is anisotropic 

( )
( )
( )

E E

G G

θ
ν ν θ

θ

=
=
=

 

The meaning is that 

x x

y y

E
E

E E

σ
σ

= ∈
= ∈

≠

1

2

1 2
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Small deformations 

(a) The displacements must be small 

(b) The strains must also be small 

Generalized Hooke’s law for isotropic material  

We know the following quantities from the tension and 
shear testing. 

 
E

Tensiletest
v

σ = ∈�
�

′∈ �= − ��∈
  

        GYτ =  - Shear test or torsion test. 

 

What are the stress –strain relation for an element subjected 
to 3D state of stress.  i.e what is the generalized Hooke’s law. 

Hooke’s law – when only one stress is acting 

Generalized Hooke’s law – when more than one stress acting 

We assume that  

Material is linearly elastic, Homogeneous, Continuum, 
undergoing small deformations and isotropic. 

For an isotropic material the following are true 

(1)Normal stress can only generate normal strains. 

- Normal stresses for reference xyz  cannot produce Y  of this 

reference  



 

Solid Mechanics 

 

 

(2)A shear stress say xyτ  can only produce the corresponding 

shear strain xyY  in the same coordinate system. 

Principal of superposition: 

This principle states that the effect of a given combined loading on 
a structure can be obtained by determining separately the effects of 
the various loads individually and combining the results obtained, 
provided the following conditions are satisfied. 

(1)Each effect is linearly related to the load that produces it. 

(2)The deformations must be small.  
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Let us know consider only xσ  is applied to the element. 
From Hooke’s  we can write 

             

x
x

x
y

x
z

E

v
E

v
E

σ

σ

σ

∈ =

∈ = −

∈ = −
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Only yσ applied 

                 

y
y

y
x

y
z

E

v
E

v
E

σ

σ

σ

∈ =

∈ = −

∈ = −

   

Similarly, zσ  alone is applied   

              

z
z

z
x

z
y

E

v
E

v
E

σ

σ

σ

∈ =

∈ = −

∈ = −

 

Contribution to x∈  due to all three normal stresses is 

yx
x

v v
E E E

σσ σ∈ = − − 3  

( )
( )

( )

x x y z

y y x z

x z x y

Therefore

v
E

v
E

v
E

σ σ σ

σ σ σ

σ σ σ

� �∈ = − +� �

� �∈ = − +� �

� �∈ = − +� �

1

1

1

 

Normal strains are not affected by shear stresses 

 



 

Solid Mechanics 

 

 

Now let us apply only xyτ  

xy
xyY

G

τ
=  

 

Similarly because of yz xzandτ τ  

yz
yz

xz
xz

Y
G

Y
G

τ

τ

=

=
 

Therefore, when all six components of stresses and strains 
are acting on an infinitesimal element or at a point then the 
relation between six components of stresses and strains is 

( )
( )

( )

x x y z

y y x z

x z x y

xy
xy

yz
yz

xz
xz

v
E

v
E

v
E

Y
G

Y
G

Y
G

σ σ σ

σ σ σ

σ σ σ

τ

τ

τ

� �∈ = − +� �

� �∈ = − +� �

� �∈ = − +� �

=

=

=

1

1

1

 

These six equations are known as generalized Hooke’s law for 
isotropic materials. 
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Matrix representation of generalized Hooke’s law for 
isotropic materials is therefore, 

x x

y y

z z

xy xy

yz yz

xz xz

v v
E E E
v v

E E E
v v

E E E
Y

GY

Y
G

G

σ
σ
σ
τ
τ
τ

− −� �
� �
� �− −∈ � �� � � �
� �� � � �∈ � �� � � �− −
� �� � � �∈� � � �� �=� � � �
� �� � � �
� �� � � �
� �� � � �
� �� � � �� � � �� �
� �
� �
� �

1
0 0 0

1
0 0 0

1
0 0 0

1
0 0 0 0 0

1
0 0 0 0 0

1
0 0 0 0 0  

Stress components in terms of strains 

( ) ( )
( )

x y z x y z x y z

x y z

v s
E E

ve
E

σ σ σ σ σ σ

σ σ σ

∈ + ∈ + ∈ = + + − + +

−� �= + + � �� �

1 2

1 2
 

x y z e∈ + ∈ +∈ =  

( )x x x y zv v
E

σ σ σ σ� �∈ = − − +� �
1

 

( )x x y z xv v
E

σ σ σ σ σ� �= − + + +� �
1

 

( ) ( )x x y zv v
E

σ σ σ σ� �= + − + +� �
1

1  
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( )
( )

( )
( )

x
veEv

E v

v ve
E v

σ

σ

� �
= + −� �−� �

× += −
−

1
1

1 2

1
1 2

 

x x
ve E

v v
σ � �∴ = ∈ +� �− +� �1 2 1

 

E
v

µ=
+1

 (mu)        where         
( )( )

Ev
v v

λ =
+ −1 1 2

 

,λ µ  are Lames constants 

x x

y y

z z

xy xy xy

xy yz yz

xy zx zx

e
e

e
Y G Y

Y G Y

Y G Y

σ λ µ
σ λ µ
σ λ µ
τ µ
τ µ
τ µ

= + ∈
= + ∈

= + ∈
= =

= =

= =

2

2

2

 

Lame’s constants have no physical meaning 

Stress-strain relations for plane stress 
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( )
( )
( )

x x

y y

xy xy

z yz zx

x,y

x,y

x,y

σ σ
σ

τ τ
σ τ τ

=

=∈

=

= = = 0

 

( )
( )

( ) ( )

x x y

y y x

z x y x y

xy
xy

yz xz

v
E

v
E

v v
E v

Y
G

Y Y

σ σ

σ σ

σ σ

τ

∈ = −

∈ = −

−∈ = − + = ∈ +∈
−

=

= =

1

1

1

0

 

 

Stress- strain relations for plane strain 

( )
( )

( )

x x

y y

xy xy

xz yz

x y

x,y

x,y

Y Y x,y

Y Y

e

∈ =∈

∈ =∈

=

∈ = = =

=∈ +∈
3 0

 

( )
( )

( ) ( )
( )
( )

( )( )

x x x

y y y

z x y z

x y

e x,y

e x,y

v x,y

v e e

ve

v

σ λ µ σ
σ λ µ σ

σ σ σ σ

λ µ
λ µ

λ µ

= + ∈ =

= + ∈ =

= − + =

= − +
= − +

= − + ∈ + ∈

2

2

2

 

xy xy

xz yz

GYτ
τ τ

=

= = 0
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• Therefore, the stress transformation equations for plane 
stress can also be used for the stresses in plane strain. 

• The transformation laws for plane strain can also be 
used for the strains in plane stress. z∈  does not effect 
geometrical relationships used in derivation. 

Example of Generalized Hooke’s law 

 

 

 

 

 

 

 

        

 

 

Principal stress and strain directions of 
isotropic materials 

τ  is zero along those planes,                                                                                                       
therefore Y  is also zero along these planes 
i.e normal strains of the element are 
principal strains. For isotropic materials - 
the principal strains and                                   
principal stresses occurs in the same direction. 

σ λ µ� �∈ = − − ∈� �x x yv e v
E
1

σ σ=x y2

σ σ

σ λ µ

σ σ

σ λ µ

� �∈ = −� �

= + ∈

� �∈ = −� �

= + ∈

x x y

x x

y y x

y y

v
E

e

v
E

e

1

1

σ σ= −x y

σ σ

σ

� �∈ = +� �

+� 	= 
 �
� 


x x y

x

v
E

v
E

1

1
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12. Volumetric strain and Bulk modulus 
Relation between E, andGν  

( )

( )

xy

xy

v
E

v
E

σ τ σ σ

σ τ σ σ

= ∈ = −

= − ∈ = −

1 1 1 2

2 2 2 1

1

1
 

( ) ( )

( )

xy
xy xy

xy

xy xy
xy

xy

v
v

E E
v

E
Y

G

G

τ
τ τ

τ

τ

τ

+
∈ = + =

− +
∈ =

∈ =∈ = =

−
∈ =

1

2

1

2

11

1

2 2

2

 

( )xy xyv

E G

τ τ+
= �

1

2
 

( )
EG

v
=

+2 1
 

Only two elastic constants are independent. 
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Volumetric strain-dilatation  

Consider a stress element size dx,dy ,dz                    

dv dxdydz=  

After deformations 

( )
( )
( )

*
x

*
y

*
z

dx dx

dy dy

dz dz

= + ∈

= + ∈

= + ∈

1

1

1

 

In addition to the changes of length of the sides, the element 
also distorts so that right angles no longer remain sight 
angles. For simplicity consider only xyY . 

The volume *dv  of the deformed element is then given by  

( )* * * * *dv Area OA B C dz= ×  

( ) ( )* * * * *
xy

* *
xy

Area OA B C dx dy CosY

dx dy CosY

=

=
 

* * * *
xydv dx dy dz CosY∴ =  

For small xy xyY CosY ≈ 1 

( )( )( )

* * * *

x y z

dv dx dy dz Volumechangedoesn't depend onY

dxdydz

∴ = −

= + ∈ +∈ + ∈1 1 1
 

dropping all second order infinitesimal terms 
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( )*
x y zdv dxdydz= + ∈ + ∈ + ∈1  

Now, analogous to normal strain, we define the measure of 
volumetric strain as 

 

final volume-initial volume
Volumetric strain

initialvolume
=  

*dv dve
dv
−=  

x y ze =∈ + ∈ + ∈  

• e =volumetric strain = dilatation. This expression is 
valid only for infinitesimal  strains and rotations 

• x y ze J first in varianceof strain.=∈ + ∈ +∈ = =1  

• Volumetric strain is scalar quantity and does not 
depend on orientation of coordinate system. 

• Dilatation is zero for state of pure shear. 

Bulk modulus of elasticity 

( ) ( )x y z x y z
v

E
σ σ σ−∈ + ∈ + ∈ = + +1 2

 

Mean stress ( )x y zσ σ σ σ= = + +1
3

 

( )v
e

E
σ−= 3 1 2

 

Keσ =  
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Where 
( )

EK
v

=
−3 1 2

 bulk modulus of elasticity. 

• Bulk modulus is widely used in fluid mechanics. 

• From physical reasoning  E ,G ,K> > ≥0 0 0  

        Steel :        E = 200 Gpa 

                          v = 0.3     

        Al :           E = 70 Gpa 

                          v = 0.33     

        Copper:     E = 100 Gpa 

                           v = 0.35 

( )
( )

EG SinG Eand G
v

v v

= >
+
+ > → > −

0
2 1

1 0 1
 

Similarly SinG E & K> ≥0 0  

( )
EK v v .

v
= → − ≥ → ≤

−
1 2 0 0 5

3 1 2
 

∴ Theoretical bounds on  v are     

v .− < ≤1 0 5 

asv . K α→ →0 5 and  0C →   material is incompressible. 
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13. Axially loaded members 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Solid Mechanics 

 

 

Geometry, locating and material properties 

• A prismatic bar is subjected to axial loading 

• A prismatic bar is a st. structural member having 
constant cross-section through out it length. 

• Bar or rod →length of the member is �  cross sectional 
dimensions. 

 

 

 

 

 

 

 

 

 

Axial force is a load directed along the axis of the member – 
can create tension or compression in the member. 

Typical cross sections of the members 

 

       

 

 

- Solid Sections 

- Hollow Sections 
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Material properties: The member is homogenous linearly 
elastic and isotropic material. 

Stresses, strains and deformations 

Consider a prismatic bar of constant cross-sectional area A 
and length L, with material properties A & v. Let the rod be 
subjected to an axial force “p”, which acts along x-axis. 

 

 

 

 

 

 

 

x y z

y z

F P
M M M

V V

=
= = =

= =

0

0

 

The right of the section m-m exerts elementary forces or 
stresses on to the left of the section to maintain the 
equilibrium. Sum of all these elementary forces must be 
equal to the resultant F. 

- Other sections 
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x
A

y x

z x

dA F

M zdA

M ydA

σ

σ

σ

=

= =

= − =

�

�

�

0

0

 

Above equation must be satisfied at every cross-section, 
however, it does not tell how xσ  is distributed in the cross-
section. 

The distribution cannot determine by the methods of static 
or equations of equilibrium- statically indeterminate 

To know about the distribution of xσ  in any given section, it is 
necessary to consider the deformations resulting from the 
application of loads. 

Since the body needs to develop only xσ  component in order 
to maintain equilibrium, therefore the state of stress at any 
point of prismatic rod is 

 

 

 

 

 

 

 

 

x

ij

σ
σ

� �
� �� �=� � � �
� �� �

0 0
0 0 0
0 0 0
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We make the following assumptions on deformation based 
on experimental evidence 

(1)The axis of the bar remains straight after 
deformation 

(2)All plane cross-sections remain plane and 
perpendicular to the axis of the bar 

Key 
kinematical 
assumptions 

 

 

 

 

 

 

 

 

• As a result of the above kinematic assumptions all 
points in a given y-z plane have the same displacements 
in the x-direction. 

• Any line segment AB undergoes same strain x∈  therefore 

x∈ cannot be a function of y or z, but at most is a function 
of x- only. 

In the present case situation is same at all cross-sections of 
the prismatic bar, therefore  

x Constant∈ =  

at all points of the body i.e x∈  is also no a function of x. 
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Since we are studying a homogenous, linearly elastic and 
isotropic prismatic bar 

                  

( )
( )

( )

x x y z

y y x z

z z x y

v
E

v
E

v
E

σ σ σ

σ σ σ

σ σ σ

� �∈ = − − →� �

� �∈ = − − →� �

� �∈ = − − →� �

1

1

1

 

In the present case, x∈  is independent of y and z coordinates, 
therefore xσ  is also independent of y and z coordinates i.e 

xσ  is uniformly distributed in a cross-section 

 

 

 

 

 

 

 

Moreover                                      throughout the bar. 

We know that internal resultant force 

x
A

F dAσ= �  

Since xσ  is a independent of  y & z     

x
x

y x

z x

E
V
E
V
E

σ

σ

σ

∈ =

∈ = −

∈ = −

x xE Constantσ = ∈ =
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A

F da Aσ σ= =�  

                  ∴   
F P
A A

σ = =  

y x
A A

z x
A A

M .zdA zdA

M .ydA ydA

σ

σ

= = � =

= − = � =

� �

� �

0 0

0 0
                  (1) 

Eq. (1) indicates that moment are taken about the centroid of 
the cross-section. 

Elongation or Contraction 

                              

 

 

 

 

x
x

P
E AE

σ∈ = =  

Total elongation of the rod 

( ) ( )
L L

x
P PLu L u da dx

AE AE
δ− = = ∈ = =� �

0 0

0  
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x
P
A

PL
AE

AE Axialrigidity

σ

δ

=

=

=

 

If A,E and P are functions of x then 

( )
( ) ( )

L P x
dx

A x E x
δ = �

0

 

 

Stiffness and flexibility 

  

                                                                  

 

 

  

These are useful in computer analysis of structural members. 

 

 

 

 

 

 

 

k
f

= 1

AE
k

L
= L

f
AE

=

P kS
S fP

=
=
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Extension of results: Non-uniform bars (non-prismatic) 

For a prismatic bar 

 

 

This is exact solution for prismatic bar. 

 

 

 

 

 

( )
( )

( )
( )

( )
( ) ( )

x

L

P x F x
A x A x

P x
S dx

A x E x

Approximate expression

σ = =

= �
0

 

The above formula becomes a good approximation for 
uniformly varying cross-sectional area ( )A x member. 

Above formula is quite satisfactory if the angle of taper is 
small 

Plane sections remain plane and perpendicular to the x- axis 
is no longer valid for the case of non-prismatic rods.  

 

 

x
P PL

&
A AE

σ δ= =
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( ) ( )x x yxF b y b xΣ σ τ= � ∆ − ∆ =0 0 

( )xy yx x
y

x . s
x

τ τ σ ∆= =
∆

 

Taking x∆ → 0 , we note that yxτ → 0  only if 
y
x

∆ →
∆

0  i.e at the 

slope of the upper surface of the rod tends to zero. 
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Case2 

 

 

 

 

 

 

 

 

( )A B
BC

A
AB

P P LPL
AE A E
PL P L
AE A E

δ

δ

− +
= =

−= =

2

2 2

1

1 1

 

( )A B
BC

AB A

P P
A

P / A

σ

σ

+
= −

= −
2

1

 

CA BC ABS Sδ = +  

This method can be used when a bar consists of several 
prismatic segments each having different material, each 
having different axial forces, different dimensions and 
different materials. The change in length may be obtained 
from the equation 

n
i i i

i
i i ii

PL Pand
A E A

δ σ
=

= =�
1
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Statically indeterminate problems 

Equilibrium 

y

a a s

F

F F F P

Σ� �=� �

+ + − =1 2

0

0
 

[ ]C

a a

M
bF bF

Σ =
− =1 2

0

0
 

 

                           

                                    (1) 

 

For statically indeterminate problems we 
must consider the deformation of the 
entire system to obtain “compatibility  
equation” 

The rigid plate must be horizontal 
after deformation 

  

s A geometric compatibility equationδ δ= �  

s s A A
s A

s s A A

F L F Land
A E E A

δ δ= =  

Then using the geometry compatibility  

                                                                                  (2) 

 

a aF F=1 2

a sF F P+ =2

s Aδ δ= � A A s As

A A s s

F L F L
E A E A

=
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By solving (1) & (2) we can obtain internal forces sF  &  AF  

Stresses in axially loaded members 

 

 

 

 

 

 

 

 

 

 

 

 

        

Uniaxial state stress is a special case of plane stress 

x
ij

σ
σ � �
� �= � �� �

� �

0
0 0

 

x

x
max

σ σ
σ στ

=

= =

1

1
2 2

 

Occurs at 45�to x y−  or x z−  planes. 
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A −Principal stress elements 

B,C −maximum shear stress elements. 

 

 

 

Ductile material are weak in shear. They fail along maxτ  
planes. 

 

 

 

Brittle materials weak in normal tensile stresses. They fail 
along σ1  planes. 

Limitations of analysis 

x
P PL

& S
A AE

σ = =  

(1)They are exact for long prismatic bars of any cross-section, 
when axial force is applied at the centroid of the end cross-
sections. 
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(2)They should not be employed (especially x
P
A

σ = ) at 

concentrated loads and in the regions of geometric 
discontinuity. 

(3)They provide good approximation if the taper is small. 

(4)Above equations should not be applied for the case of 
relatively short rods. 

(5)They are exact for relatively short members under 
compressive loading. 
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1. Shear force and bending moment 
diagrams 

Internal Forces in solids 

 

 
 
 
 
 
 
 

 

 

 

 

 

Sign conventions 

• Shear forces are given a special symbol on yV 1
2

 and zV  

• The couple moment along the axis of the member is 
given  

xM T= = Torque 

y zM M= =bending moment. 
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We need to follow a systematic sign convention for 
systematic development of equations and reproducibility of 
the equations 

The sign convention is like this.  

If a face (i.e. formed by the cutting plane) is +ve if its outward 
normal unit vector points towards any of the positive coordinate 
directions otherwise it is –ve face 

• A force component on a +ve face is +ve if it is directed 
towards any of the +ve coordinate axis direction. A force 
component on a –ve face is +ve if it is directed towards any of 
the –ve coordinate axis direction. Otherwise it is –v. 

Thus sign conventions depend on the choice of coordinate 
axes. 

Shear force and bending moment diagrams of beams 
Beam is one of the most important structural components.  

• Beams are usually long, straight, prismatic members and 
always subjected forces perpendicular to the axis of the beam 

 

Two observations: 

(1) Forces are coplanar  
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(2) All forces are applied at the axis of the beam. 

Application of method of sections  

What are the necessary internal forces to keep the segment of 
the beam in equilibrium? 

x

y

z

F P
F V

F M

� = �

� = �

� = �

0
0

0

 

 

• The shear for a diagram (SFD) and bending moment 
diagram(BMD) of a beam shows the variation of shear 
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force and bending moment along the length of the 
beam. 

These diagrams are extremely useful while designing the 
beams for various applications. 

Supports and various types of beams 

(a) Roller Support – resists vertical forces only  

 

 

 

 

(b) Hinge support or pin connection – resists horizontal and 
vertical forces 

 

 

 

 

Hinge and roller supports are called as simple supports 

 

(c) Fixed support or built-in end  
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The distance between two supports is known as “span”. 

Types of beams 

Beams are classified based on the type of supports. 

(1) Simply supported beam: A beam with two simple supports 

 

 

 

 

(2) Cantilever beam: Beam fixed at one end and free at other 

 
(3) Overhanging beam 

 

(4) Continuous beam: More than two supports 
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Differential equations of equilibrium  
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x
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x dxlim

∆

∆
∆→

= = −
0

 

From equation 
dV P
dx

= −  we can write  

D

C

X

D C
X

V V Pdx− = − �  

From equation  
dM V
dx

= −  

D CM M Vdx− = −�  

 Special cases: 
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Problems to show that jumps because of concentrated force 
and concentrated moment 
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We can also demonstrate internal forces at a given section 
using above examples. This should be carried first before 
drawing SFD and BMD. 
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Problem: 
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15. Symmetrical bending of beams 
Some basics  

 

 

 

 

 

 

 

• Transverse loads or lateral loads: Forces or moments 
having their vectors perpendicular to the axis of the bar. 

• Classification of structural members. 

• Axially loaded bars :- Supports forces having their 
vectors directed along the axis of the bar. 

• Bar in tension:- Supports torques having their moment 
vectors directed along the axis.  

• Beams :- Subjected to lateral loads. 

• Beams undergo bending (flexure) because of lateral 
loads. 
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Roughly speaking, “bending” refers to a change in shape from 
a straight configuration to a non straight configuration. 

Bending moments i.e zM  and  yM  are responsible for 

bending of beams. 

The loads acting on a beam cause the beam to bend or flex, 
thereby deforming its axis into a curve-known as “ 
deflection curve” of the beam. 

 

If all points inx y− plane remain in the xy −  plane after 
deformation i.e after bending then xy −  plane is known as 
“plane of bending”. 

If a beam bend in a particular plane, then the deflection 
curve is a plane curve lying in the plane of bending. 
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The y −direction displacement [i.e. v −component] of any 
point along its axis is known as the “deflection of the 
beam”. 

Pure bending and non-uniform bending 

If the internal bending moment is constant at all sections 
then beam is said to be under “pure bending”. 

dM V
dx

= −  

Pure bending (i.e., M=constant) occurs only in regions of a beam 
where the shear force is zero. 

 

 

If ( )M M x=  it is non- uniform bending 
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Curvature of a beam 

When loads are applied to the beam, if it bends in a plane 
say xy −plane, then     its longitudinal axis is deformed into a 
curve. 

     O −  Center of curvature 

 

     R −   Radius of curvature 

 

     k
R

= =1
 Curvature   

 

in general ( )R R x=  and ( )k k x= . 

RdQ dS=  

                                      
dQk

R dS
= =1

 for any amount of R  

The deflections of beams are very small under small 
deformation condition. small deflections means that the 
deflection curve is nearly flat. 

                                                         under small deformations. 

 

 

 

 

dQk
R dX

= =1
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It is given that deflections at A  and B should be zero. 

Symmetrical bending of beams in a state of pure bending 

Geometry, loading and material properties 

A long prismatic member possess a plane of symmetry 
subjected to equal and opposite couples M0 (or bending 
moments) acting in the same plane of symmetry. 
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Initially we choose origin of the coordinate system “O ” is 
not at the centroid of the cross-section. 

The y −axis passing through the cross-section is an axis of 
symmetry. The XY  plane is the plane of symmetry. 

 

Material is homogeneous, linearly elastic and isotropic 
undergoing small deformations. 

Stresses in symmetric member in pure bending 
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Therefore, xdAσ  are the only elementary forces that are 
required to be developed by right of the section on to the left 
of the section. 

The distribution of Xσ  any section should satisfy 

x x

y x

z x

F dA

M z dA

M M y dA M

σ

σ

σ

= � =

= � =

= � − =

�

�

�

0 0

0 0                       

Actual distribution of stresses - cannot by statics - statically 
indeterminate - deformations should be considered. 

Thus, the state of stress at any point within a prismatic beam 
(cross-section having an axis of symmetry) subjected to pure 
bending is a uniaxial state of stress. 

 

                         

xM y dAσ= −�

x

ij

σ
σ

� �
� �� �=� � � �
� �� �

0 0
0 0 0
0 0 0
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Deformations in a symmetric member in pure bending 

Since the member is subjected to bending moments, it will 
bend under the action of these couples. 

 

 

 

 

 

Since, the prismatic member possessing a plane of symmetry 
(i.e xy- plane) and subjected to equal and opposite couples 
M0  acting in the plane of symmetry, the member will bend 
in the plane of symmetry (i.e xy plane). 

The curvature k at a particular point on the axis of the beam 
depends on the bending moment at that point. Therefore a 
prismatic beam in pure bending will have constant 
curvature. 

The line AB, which was originally a straight line, will be 
transformed in to a circle of center O and so the line A B′ ′. 
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Decrease in length of AB and increase in length of A B′ ′ in 
positive bending. 

Cross-sections which are plane and ⊥  to the axis of 
the undeformed beam, remain plane and remain⊥  to 
the axis of the deformed beam i.e to the deflection 
curve. 

Kinematic 
assumption 

 

Variation of strain and M κ−  relation 

Elementary theory of bending or Euler-Bernoulli theory 

 

 

 

 

 

 

 

 

 

 

Under the action of M0 , the beam deflects in the xy – plane 
(plane of symmetry) and any longitudinal fibers such as SS 
bent into a circular curve. The beam is bent concave upward 
(due to +ve bending) upon which is a +ve curvature. 
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Cross-sections mn and pq remain plane and normal to the 
longitudinal axis of the beam. Cross-sections mn and pq 
rotate with respect to each other about z-axis. 

Lower part of the beam is intension and upper part is in 
compression. 

The x- axis lies along the neutral surface of undeformed 
beam  

Variation of strain and M-k relations (contd.) 

 

 

 

 

 

 

 

 

Initial length of fiber ef dx=  

Final length of ( )* *ef e f R y dQ= = −  

The distance dx  between two planes is unchanged at the 
neutral surface, 

 

 
dQRdQ dx k

R dx
= � = =1
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Therefore, the longitudinal strain i.e x∈  at a distance “y” 
from the neutral axis is  

( )* *

x
R y dQ dxe f ef y

ef dx R
− −− −∈ = = =  

 

  

In case of pure bending ( ) ( )x x x xx and z , y∈ ≠∈ ∈ =∈  

The preceding equation shows that the longitudinal strains 
( )x∈  in the beam (in pure bending) are proportional to the 

curvature and vary linearly with the distance y  from the 
neutral axis or neutral surface. 

 

 

 

 

 

x∈ = 0 at the neutral surface 

Maximum compressive  x
y
R

−∈ = 1  

Maximum tensile           x
y
R

+∈ = 2  

However, we still do not know the location of neutral axis or 
neutral surface. 

x
y
R

∴ ∈ = − � x ky∈ = −
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Stresses in beams in pure bending :-  For linearly elastic and 
isotropic beam material  

( ) xy
x x y z xyv Y

E G

τ
σ σ σ� �∈ = − + =� �

1
 

( ) yz
y y x z yzv Y

E G

τ
σ σ σ� �∈ = − + =� �

1
 

( ) zx
z z x y xzv Y

E G
τσ σ σ� �∈ = − + =� �

1
 

The state of the stress at any point within a prismatic beam 
in pure bending is  

x

ij

σ
σ

� �
� �� �=� � � �
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0 0
0 0 0
0 0 0

 

x x
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V V
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σ

σ
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From the above equation  

( )
( ) ( )

x

x x x

x

x

x,z

y y
linear f (y )
linear f (y )

i.e.,var y linearly with the distance y from the neutral surface

σ σ
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≠
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xσ  at y = 0  i.e on the neutral surface = 0 

Maximum compressive x
EC

R
σ = − 1  

Maximum tensile            x
EC

R
σ = 2  

Maximum normal stress xσ  occurs at the points farthest 
from the neutral axis. 

In order to compute the stresses and strain we must locate 
the neutral axis of the cross-section. 
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Location of neutral axis 

We must satisfy the following equations at any given section 
m-m 

 

          

 

 

 

 

 

Considering first equation 

 

      

 

 

 

The above equation shows that the distance y  between 
neutral axis and centroid “C” of a cross-section is zero. 

 

 

 

In other words, the neutral axis i.e z-axis pass through 
the centroid of the cross-section, provided if the 
material follows Hooke’s law. 
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The origin ‘O’ of coordinates is located at the centroid of the 
cross-sectional area. 

Thus, when a prismatic beam of linearly elastic material is 
subjected to pure bending, the y and z (neutral axis) axes are 
principal centroidal axes.  

Moment – Curvature relationship  

 

 

 

 

 

 

 

 

  

      

 

  

 

Moment of inertia of 
cross-sectional area about 
neutral axis 

Moment-Curvature relation 

x
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Curvature k  is directly proportional to M- internal bending 
moment and inversely proportional to EI- flexural rigidity of 
the beam. 

Flexural rigidity is a measure of the resistance of a beam to 
bending. 

 

 

 

 

Relation between xσ  and M - Flexure formula 

x Ekyσ = −  

and   
Mk
EI

=  

                                                                   - flexure formula. 

Stresses evaluated from flexure formula are called bending 
stresses or flexural stresses. 

 

 

 

 

  

 

 

x
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The maximum tensile and compressive bending stresses 
occur at points located farthest from the neutral axis. 

The maximum normal stresses are  

 

                

                  

 

 

Cross- sectional properties of some common shapes 

 

 

 

 

 

 

 

 

 

 

 

 

     

-Section moduli 

S =Section modulus 

z −  axis – neutral axis 
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Distribution xσ on various cross-sections 
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• This result shows that a beam of square cross-section is 
more efficient in resisting bending then circular beam of 
same area. 

• A circle has a relatively larger amount of material 
located near the neutral axis. This material is less highly 
stresses. 

• I - Section is more efficient then a rectangular cross-
section of the same area and height, because I - section 
has most of the material in the flanges at the greatest 
available distance from the neutral axis. 

Extension of results 

Long prismatic beam under pure bending, and symmetrical 
bending.  

 

 

 

 

 

 

 

 

 

 

 

Elementary theory of bending  
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Bending of beams due to applied lateral loads 

 

 

 

 

  

 

 

 

 

 

Consider now a beam subjected to typical arbitrary 
transverse loads acting. In this case the interval bending 
moment ( )M M x=  and ( )V x ≠ 0, and thus we have non-
uniform bending. 

Non-uniform bending is a result of presence of transverse shear 
force ( )V y . If ( )V y = 0  then M =  constant. 

It can be shown that the above results can also be used for 
non-uniform bending problems. 
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The above results can also be used for non-uniform bending 
problems provided if they satisfy the following conditions. 

 

 

• The cross-sections should have y-axis of symmetry 

• All applied transverse or lateral loads should lie in the 
x-y plane of symmetry and all applied couples act about 
z-axis only.  

• L h longslender beams− −�  

• Bending that conforms to conditions (i) and (ii) is called 
symmetrical bending.  

If these three conditions are satisfied then one can employ 
the following expressions for non-uniform bending as-well 
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Application of above equations to the non-uniform bending 
problems is equivalent to the following two assumptions. 

(a)That even under such loading conditions, plane sections 
still remain plane after deformation and they remain ⊥  to 
the deformed longitudinal axis or neutral surface. 

Bending stresses in a non-prismatic beam 

The above equation can also be applied to the case of non-
prismatic beam subjected to either pure or non-uniform 
bending, provided cross-sectional properties do not vary 
sharply. 

 

                           

 

 

 

 

 

 

 

( ) ( )

( )
( )

( )

x

zz

M x y
x,y

I
I I

M x
k x

R x EI

σ = −

=

= =1

( )

( )
( )

x
x

y x

z z

x,y
E

x,y v

x,y v

σ∈ =

∈ = − ∈

∈ = − ∈

( )
( )

( )
( )

( )
( )

x
M x y

I x
M x

k x
R x EI x

σ = −

= =1
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Problem 

Determine the maximum tensile and compressive stresses in 
the beam due to the uniform load. 

 
Solution 

Centroid :- 

 2A mm  y  3yA mm  

1 × =20 90 1800  50 × 390 10  

2 × =40 30 1200 20 × 324 10  

                  

 

   

 

             

 

 

 

  

A AΣ= = 3000 yAΣ = × 3114 10

Ay yAΣ= y = × �33000 114 10� y mm= 38

( )zzI I I Ad sΣ= = + 2

bh AdΣ
� 	

= +
 �
� 


= × + × + × × + ×

3
2

3 2 2 2

12

1 1
90 20 1800 12 30 40 1200 18

12 12

4 4
zzI I mm m−= = × = ×3 9868 10 868 10
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  C mm=1 22   and  C mm=2 38  

       
x

max
max

My
I

M I: S
S y

σ

σ

= −

= =
 

At maximum +ve bending moment i.e at (D) 

     

 

 

 

at D:  

  

            

 

            

 

   

At maximum  -ve moment i.e at (B) 

 

 

                 

 

IS .
C

IS .
C

−
−

−

−
−

−

×= = = ×
×

×= = = ×
×

9
6

1 3
1

9
6

2 3
2

868 10
39 45 10

22 10

868 10
22 84 10

38 10

maxt
M .
s .

σ −= =
× 6

2

1 898
22 84 10

maxt
. MPaσ = 83 1

maxC
M .
s .

σ −= =
× 6

1

1 898
39 45 10

maxC
. MPaσ = 48 11

maxt
M . . MPa
s .

σ −= = =
× 6

1

3 375
85 55

39 45 10

maxC
M . . MPa
s .

σ −= = =
× 6

2

3 375
147 8

22 84 10

max maxt C. and . MPaσ σ= =85 55 147 8
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Problem 

a wooden member of length L = 3m having a rectangular 
cross-section 3 cm × 6 cm is to be used as a cantilever with a 
load P = 240N acting at the free end. Can the member carry 
this load if the allowable flexural stress both in tension and 
in compression is allowσ = 50 Mpa ?  

 

 

 

 

Solution 

 maxM N-m= 720  

A
. .S m

.
−×= = ×

3
6 31 0 06 0 03

9 10
12 0 015

 

max maxt C
A A

M PL
S S

σ σ= = =  

max maxt C allowσ σ σ= =  

 

 

 

  

 

∴The beam can carry P N= 240  only when oriented as in (B) 

allow A
alow

S
P N

L
σ ×= = 150

B
. .S . m

.
−×= = ×

3
5 31 0 03 0 06

1 8 10
12 0 03

allow B
alow

SP N
L

σ ×= = 300
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Limitations 

(1)The flexure formula is exact for a prismatic beam in pure 
bending. 

(2)It provides very good approximation of xσ  for long 
slender beams (L h)>>  under symmetrical bending. 

(3)The flexure formula can be employed for any shape of the 
cross-section, provided the cross-section has y-axis of 
symmetry. 

(4)It should not be employed in regions close to geometric 
discontinuities and concentrated loads. 
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16. Shear Stresses in Beams 
 

 

 

 

 

 

 

 

 

( )y xy
A

V x dAτ= �  

It is reasonable to assume that  

(1)The shear stresses acting on the cross-section are parallel 
to the shear force ( )yV x  i.e ⊥  to the line PQ  

(2)It is also reasonable to assume that the shear stresses xyτ  

are uniformly distributed across the width of the beam, so 
that xM T= = 0 for symmetrical bending  

( )
( ) ( )

xy xy

y xy
A

x,y such thats

V x x,y dA

τ τ

τ

∴ =

= �
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• Thus, there are horizontal shear stresses (or longitudinal 
shear stresses) acting between   horizontal layers of the 
beam as well as vertical shear stresses acting on the 
cross-sections. 

• At any point of the beam xy yxτ τ=  

• Pattern of distribution of xyτ =pattern of distribution of 

yxτ  

• Since xy yxτ τ= , it follows that the vertical shear stresses 

xyτ  must vanish at
hy = ±
2

, if the beam is subjected only 

lateral loads. 
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Derivation of shear stress formula 

Beam under non-uniform bending i.e ( )M M x=  

 

 

 

 

 

 

 

 

t = width or thickness of the beam at y y= 1  

 

 

 

 

 

 

 

 

 

t =  width or thickness of the beam at y y= 1  
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We now wish to satisfy equilibrium in the x- direction. 

Taking [ ]xFΣ → + = 0  we have then 

( ) ( )

( ) ( )

( ) ( )

x x yx
A A

yx x x
A A

x

x x,y dA x,y dA t x

t x x,y dA x,y dA
x

M x y
x,y

I

σ σ τ

τ σ σ

σ

− + ∆ + + ∆ =

� �
= + ∆ −� �

∆ � �� �

−=

� �

� �

0

1  

( ) ( )

( ) ( )

( ) ( )

yx
A A

yx
A

yx
A

t M x x ydA M x ydA
x I I

t M x x M x ydA
xI

M x x M x
ydA

It x

τ

τ

τ

� �
= − + ∆ +� �

∆ � �� �

� �
= − + ∆ −� �

∆ � �� �

+ ∆ −− � �= � �∆� �

� �

�

�

1 1 1

1

1

 

taking limit as x∆ → 0  

( ) ( )
yx

x A

yx
A

M x x M x
lim ydA

It x

dM ydA
It dx

τ

τ

∆ →

+ ∆ −−=
∆

−=

�

�

0

1

1
 

   

 

 

( )y
dM V x
dx

= −

( )y
yx

A

V x
ydA

It
τ∴ = �
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The above integral is by definition the first moment of are A  
about the z-axis, we denote it by symbol Q. 

A

Q ydA= �  

                                   
y

yx xy
V Q

It
shear formula

τ τ τ∴ = = =
                            (1) 

in the above equation zzI I=  stands for the  moment of 
inertia of the entire cross sectional area around the neutral 
axis. 

 
From (1) 

y
yx

V Q VQt f
I I

τ = = =                      

The quantity “f” is known as the “shear flow”. 

Shear flow is the horizontal shear force per unit distance 
along the longitudinal axis of the beam. 
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Distribution of shear stresses in a Rectangular beam 

An example of application of equations 

A

h / yhQ udA b y y s

b hQ y

I bh

−� �� 	= = − +
 �� �� 
� �

� 	
= −
 �

� 


=

�

2
2

3

2
2 2

2 4

1
12

 

 

 

at xy yx
hy τ τ= ± = = 0
2

 

 

 

 

 

 

The shear stresses in a rectangular beam vary quadratically 
with the distance y  from the neutral axis. 

Maximum value of shear stress occurs at the neutral axis 
where Q  is maximum. 

max maxxy yx
Vh V

I A
τ τ= = =

2 3
8 2

                                   

xy yx
VQ V h y
It I

τ τ
� 	

= = = −
 �
� 


2
2

2 4
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Thus maxτ  in a beam of rectangular cross-section is 50% 

larger than the average shear stress 
V
A

 

 

                 

 

 

 

It is always possible to express the maximum shear stress xyτ  

as 

maxxy
V

K
A

τ =  

for most of the cross-sectional areas 

K Rec tan gular= 3
2

 

K Circular= 4
3

 

K Triangular= 3
2

 

For most of the cross-section maxτ  occurs at the neutral axis. 
This is not always true. 
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Stress elements in non-uniform bending 
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Problem 

A wood beam AB is loaded as shown in the figure. It has a 
rectangular cross –section (see figure). Determine the 
maximum permissible value maxp  of the loads if the 

allowable stress is bending is allow MPaσ = 11 (for both tension 
and compression) and allowable stress in horizontal shear is 

allow . MPaτ = 1 2  

 

 

 

 

Solution 

maxV  occurs at supports and maximum BM occurs in 
between the loads. 

 

                  

            

                                   

 

 

Therefore, the maximum permissible values of the load P in 
dending and shear respectively are    

        

maxV P= maxM . P Pa= =0 5

bhS =
2

6
A bh=

max
max

M Pa
S bh

σ∴ = = 2
6

max max
max

xy yx max
V P P

A A bh
τ τ τ= = = = =3 3 3

2 2 2

allow allow
allow allowb s

bh bhP P
a

σ τ= =
2 2

6 3
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Substituting numerical values into these formulas, 

              

 

 

Thus bending governs the design and the maximum 
allowable load is  

 

Problem 

An I –beam is loaded as in figure. If it has the cross-section as 
shown in figure, determine the shearing stresses at the levels 
indicated. Neglect the weight of the beam. 

 

 

 

 

 

Solution 

 

Vertical shear is same at all sections 

 

 

 

allow b

allow s

P . kN

P . kN

=

=

8 25

8 25

maxP . kN= 8 25
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( )( ) ( )( )
zzI I . mm s= = − = ×

3 3
6 4150 300 138 276

95 7 10
12 12

 

The ratio 
V . N / mm s
I .

−×= = ×
×

3
3 4

6

250 10 2 61 10
95 7 10

 

Level ( )2A mm  y   

mm 3

Q Ay

mm

=

× 310
 

t  
mm xy

VQ MPa
It

τ =  

1-1 0 150 0 150 0 

2-2 ×
=
12 150

1800
 144 259.2 150 

12 

4.5 

56.4 

3-3 ×
=

×
=

12 150
1800

12 12
144

 

144 

132 

259.2 

19.0 

 

12 

 

60.5 

4-4 ×
=

×
=

12 150
1800

12 138
1656

 

144 

69 

259.2 

114.3 

 

12 

 

81.3 

  

278.2 

373.5 

max . MPaτ = 81 3
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14. Torsion of circular bars 
Geometry, loading and Material properties 

A prismatic bar of circular cross- section subjected to equal 
and opposite torques acting at the ends. 

 

 

 

 

 

Whenever torques act on a member, then it will be twisted. 

Torsion refers to the twisting of a straight bar when it is 
loaded by torques. 

Material: Homogeneous, linearly elastic, and isotropic 
undergoing small deformations. 

Presently theory is valid only for  

 

Stresses and strains in polar coordinates 

Stresses, strains and displacements in polar coordinates. 

Since we are dealing with a circular member it is preferable 
to use polar coordinates 
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r r rx

ij r x

xr x x

θ

θ θ θ

θ

σ τ τ
σ τ σ τ

τ τ σ

� �
� �� �=� � � �
� �� �

 

( )

( )

( )

x x r

r r x

x r x

rQ x rx
r x x xr rx

v
E

v
E

v
E

Y ; Y Y ; Y Y
G G G

θ

θ

θ
θ θ θ

σ σ σ

σ σ σ

σθ σ σ

τ τ τ

∈ = − +� �� �

∈ = − +� �� �

∈ = − +� �� �

= = = = =

1

1

1
 

Equilibrium and elementary forces 

 

 

 

 

 

Since every cross-section of the bar is identical and since every 
cross-section is subjected to the same internal torque “T”, then the 
bar is said to be under “pure torsion” 

To keep the body under 
equilibrium, elementary forces 

xdF dAθτ=  are only forces that are 
required to be exerted by the other 
section, so that  

x y z y z

x

F V V M M

M T T

= = = = =

= = 0

0
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                                                                                      (1) 

 

 

Direction of zθτ  can be obtained from the direction of 
internal torque T at that section. 

The state of stress in pure torsion is therefore   

 

 

 

While the relation in (1) express an important condition that 
must be satisfied by the shearing stresses  xQτ  in any given 

cross-section of the bar it does not tell how these stresses are 
distributed in the cross-section. 

The actual distribution of stresses under a given load is 
statically indeterminate. So we must know about the 
deformation of the bar. 

Presence of xθτ  in polar coordinates means, presence of 

xy xQ

xz xQ

Cos

Sin

τ τ θ
τ τ θ

=

=
 

 

 

x

x
A

dT dF r rdA

T rdA

T T

θ

θ

σ

τ

= × =

=

=

�

0

x

x

θ

θ

τ
τ

� �
� �
� �
� �� �

0 0 0
0 0
0 0
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Therefore the state of stress in case pure torsion in terms of 
rectangular stress components is then 

xy xz

yx

zx

τ τ
τ
τ

� �
� �
� �
� �
� �

0

0 0

0 0

- state of pure shear. 

We must then ensure that 

 

 

 

Deformation in pure torsion 

 

 

 

 

Following observations can be made from the deformation of 
a circular bar subjected to equal and opposite end torques. 

(1)The cross-sections of the bar do not change in shape i.e 
they remain circular. 

(2)A line parallel to the x- axis or longitudinal line become a 
helical curve. 

(3)All cross-sections remain plane. 

(4)All cross-sections rotate about the axis of the bar as a solid 
rigid slab. 

y xy

z xz

V dA

V dA

τ

τ

= =

= =
�

�

0

0
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(5)However, various cross-sections along the bar rotate 
through different amount. 

(6)The radial lines remain radial lines after deformation  

(7)Neither the length of the bar nor the length of radius will 
change. 

These are especially of circular bars only. Not true for non-
circular bars. 

Assumptions on deformation for pure torsion 

(1)All cross –sections rotate with respect to the axis of the 
circular bar i.e x-axis. 

(2)All cross-sections remain plane and remain perpendicular 
to the axis of the bar. 

(3)Radial lines remain straight after the deformation. 

(4)Neither the length of the bar nor its radius will change 
during the deformation. 

These assumptions are correct only if the circular bar 
undergoes “small deformations” only. 

Variation of shear strain ( xY θ ) 

 

 

 

 

  

Because of T0 , the right 
end will rotate through 
an infinitesimal angle  

 

 
φ - angle of twist. 
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*φ  - varies along the axis of the bar. 

                                           angle of twist per unit length. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

xQY dx Ydx rdφ= =  

 

                

d
dx
φ = −
 rate of twist 

xQY is independent of x and 

dY r
dx
φ=
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In case of pure torsion the shear strain Y  varies linearly with 
“r” 

Maximum shear strain Y occurs at the outer surface of the 
circular bar i.e.,  r R=  

 

                    

Shear strain is zero at the center of the bar. 

The equation 
dY r
dx
φ=  is strictly valid to circular bars having 

small deformations. 

If the material is linearly elastic 

 

Therefore, variation of shear stress xQτ  in pure torsion is 

given by 

 

              

Shear stress τ  is only function of “r” and varies linearly with 
radius r of the circular bar. 

  

 

 

 

 

max
dY R
dx
φ=

GYτ =

xQ xQ
dGY GY
dx
φτ τ= = =

maxmax xQ
dRG
dx
φτ τ= =



 

Solid Mechanics 

 

 

The torsion formula  

Relation between internal torque T and shear stressτ  

               A

T rdA

dT Gr rdA
dx

τ

φ

=

=

�

�
 

Since G  & 
d
dx
φ

 are independent of area A then  

A

dT G r dA
dx
φ= �

2  

                                                                                                                 

 

 

For solid circular bar,  

P
dT GI
dx
φ∴ =  

                                   ∴  

 

But                                        
dGr
dx
φτ =  

P

T
Gr GI
τ =  

                

 

P
A

I r dA

Polar moment of inertiaof across sec tion

=

−

�
2

PI Dπ= 4

32 PI R
π= 4

2

P

d T
dx GI
φ = =


P

Tr
I

Torsion formula

τ =
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This is the relation between shear stresses xQτ  and torque T 

existing at the section. 

Torsion formula is independent of material property. 

 

 

                                  

                                             

 

 

Angles of twist            

We now determine the relative rotation of any two cross-
sections       

 

 

 

 

 

P

d T
dx GI
φ= =
  

                       

 

 

maxmax xQ
P

TR
I

τ τ= =

max
T

D
for solidcircular bars

τ
π

= 3
16

B

A

x

B / A B A
Px

T
dx

GI
φ φ φ= − = �
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In case of prismatic circular bar subjected to equal opposite 
torques at the ends 

                                                      

 

 

 

Direction of φ  at a section is same as that of T 

 

 

 

Since 
P

d T
dx GI
φ= =
  then, in case of pure torsion. 

 

 

Thus in case of pure torsion ( )xφ  varies linearly with x  

In case of torsion  

 

                                                                    

 

 

 

The product          

Load 

displacement 

PGI −Torsional rigidity 

B / A B A
P

B A

TL n
GI

if x x L
puretorsion

φ φ φ= − =

− =

P P

TL T L
GI GI

φ = = 0

d constant
dx L
φ φ= = =


P

TL
GI

φ =

P

P

GI Lk ; f
L GI

= =
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xy xQ

xz xQ

Cos

Sin

τ τ θ
τ τ θ

=

=
 

 

 

We should ensure that distribution of xQτ  should also gives 

y zV V= = 0  

y xy x
A A

R

y
P

R

P

V dA Cos dA

TrV Cos drd
I

T rCos drd
I

θ

π

π

τ τ θ

θ θ

θ θ

= =

=

= =

� �

� �

� �

2

0 0
2

0 0

0

 

 

R

z
P

TV rSin drd
I

π
θ θ= =� �

2

0 0

0  

 

 Hollow circular bars: The deformation of hollow circular 
bars and solid circular bars are same. The key kinematic 
assumptions are valid for any circular bar, either solid or 
hollow. Therefore all equations of solid circular bars can be 
employed for hollow circular bars, instead of using 

yV = 0∴

zV = 0∴
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Hollow bars are move efficient than solid bars of same “A”. 

• Most of the material in soild shaft is stressed below the 
maximum stress and also have smaller moment arm “r”. 

• In hollow tube most of the material is near the outer 
boundary, where τ  is maximum values and has large 
moment arms “r”. 
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o
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P P

i
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P

TR TR;
I I
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τ

τ
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( )

Y
G

,Y f r

τ

τ
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−
 

P

d T
dx GI
φ= =
  

B AB / A
P

B A

TL
GI

L x x
constant
linearly with x

φ φ φ

φ

= − =

= −
=
=



 

(4) If weight reduction and savings of materials are 
important, it is advisable to use a circular tube. 

(5)  Ex large drive shafts, propeller shafts, and generator 
shafts usually have hollow circular cross sections. 

Extension of results 

Case-I Bar with continuously varying cross-sections and 
continuously varying torque 

• Pure torsion refers to torsion of prismatic bar subjected 
to torques acting only at the ends. 
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• All expressions are developed based on the key 
kinematic assumptions, these are therefore, strictly valid 
only for prismatic circular bars. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above equations yield good approximations to the exact 
solution, provide if ( )R x  doesn’t vary sharply with x. 
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Some special cases 
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Case II 
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Statically indeterminate problems 

 

 

 

 

 

 

 

 

                                          (1) 

We note that within   AAB, T T=  and 

                    within     CBC T T=  

• To solve the problem we must consider geometry of 
deformation to formulate the compatibility equation. 

• Clearly the rotation of section B with respect to A must 
be same as that with respect to C i.e    

 

 

AB BC

A AB C BC
B / A B / C

AB P BC P

T L T L;
G I G I

φ φ= =  

                                                (2) 

 

A CT T T+ + = 0[ ]xMΣ = 0

B / A B / C

Compatibility equation

φ φ=

AB BC

A AB C BC

AB P BC P

T L T L
G I G I

=
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Stresses in pure torsion 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

If a torsion bar is made up of brittle material, which is 
generally weak in tension, failure will occur in tension along 

a helix inclined at 45�to the axis. 

Ductile materials generally fail in shear. When subjected to 
torsion, a ductile circular bar breaks along a plane 
perpendicular to its longitudinal axis or x – axis. 
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Torsion testing m/c 
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Combined loading or combined stress 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Principal of 
superposition 

max
P

TR
I

τ =
x

P
A

σ =
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Stress concentrations in torsion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stress concentration effect is greatest at section B-B 

 

avg nom
T

K K
D

τ τ τ
π
� 	

= = = 
 �
� 


1 3
1

16
 

 

 

 

max avg nomK Kτ τ τ= =
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Limitations of torsion formulae   

(1)The above solutions are exact for pure torsion of circular 
members (solid or hollow section) 

(2)Above equations can be applied to bars (solid or hollow) 
with varying cross-sections only when changes in ( )R x  are 
small and gradual. 

(3)Stresses determined from the torsion formula are valid in 
regions of the bar away from stress concentrations, which are 
high localized stresses that occur whenever diameter 
changes abruptly and whenever concentrated torque are 
applied. 

(4)It is important to recognize that, the above equation 
should not be used for bars of other shapes. Noncircular bars 
under torsion are entirely different from circular bars.  

 

 

 

 

 

 

 

 

P P P

Tr T TL d
, ; ;Y r

I GI GI dx
φτ φ= = = =
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20. Deflection of beams 
When a beam with a straight longitudinal axis is loaded by 
lateral loads, the axis is deformed into a curve, called the 
“deflection curve” or “elastic-curve” 

 

Deflections: means u ,v displacement of any particle. In case 
of beams deflection means v displacement of particles 
located on the axis of the beam. 

Deflection calculation is an important part of component 
design 

Deflections -- useful in vibration, analysis of various 
engineering components ex. Earthquake loading. 

Undesirable vibrations are due to excessive deflections. 
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Approximate sketches of deflection curves 

Approximate sketches of the deflection curve can be drawn 
if BM diagram is available for a given loading. 

We know that     +BM means  

 

                               - BM means 

 

Examples 

(1) 
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The objective is to find the shape of the elastic curve or 
deflection curve for given loads i.e., what is the function v(x). 

There are two approaches 

(1) Differential equations of the deflection curve 

(2) Moment-area method 

Differential equations of the deflection curve 

Consider a cantilever beam: The axis of the beam deforms 
into a curve as shown due to load P. 

 

 

 

Here we assume only symmetrical bending case. The xy  
plane is the plane of bending. 

v↓ − deflection of the beam. 

        v ve↑ +  and. v↓ −  

To obtain deflection curve we must express v  as a function 
of x. 
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When the beam is bent, there is not only a deflection at each 
point along the axis but also a rotation. 

The angle of rotation θ  of the axis of the beam is the angle 
between x – axis and the tangent to the deflection curve at a 
point. 

For given x-y coordinate system  

ve anticlockwiseθ → + →  

O Center of curvature′ =  

Radiusof curvatureρ =  

From geometry               d dsρ θ =  

dk
ds

curvature of the deflectioncurve

θ
ρ

= =1
 

k - curvature - +ve when angle of rotation increases as we 
move along the beam in the +ve x – direction. 

dvSlopeof thedeflectioncurve tan
dx

θ= =  

Slope 
dv
dx

 is positive when the tangent to the curve slopes 

upward to the right. 

The deflection curves of most beams have very small angles 
of rotations, very small deflection and very small curvatures. 
That is they undergo small deformations. 

 When the angle of rotation θ  is extremely small, the 
deflection curve is nearly horizontal 



 

Solid Mechanics 

 

 

ds dx≈  

This follows from the fact that 

( )ds dx dv v dx′= + = + 22 2 1  

for small θ  ( )v′ 2  can be neglected compared to 1 

ds dx∴ ≈  

Therefore, in small deflection theory no difference in length 
is said to exist between the initial length of the axis and the 
arc of the elastic curve. 

dk
dx
θ

ρ
= =1  

Since θ  is small tanθ θ≈  

 

 

d d vk
dx dx
θ

ρ
∴ = = =

2

2
1

 

dk
dx only insmalldeformationtheory
du u
dx

ν ν

θ

�
′′= = ��
�
�′= =
��

2

2
 

If the material of the beam is linearly elastic and follows 
Hooke’s law, the curvature is     

Mk
EIρ

= =1
 

dv
dx

θ∴ =
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M+ → leads to +K and so on  

d v M
EIdx

∴ =
2

2  or 

d vEI M
dx

=
2

2     

The basic differential equations of the deflection curve. 

Sign conventions used in the above equation: 

(a) The                           (b) 
dv
dx

 and θ  are  

      (c) k is +                       (d)  M is +ve  if beam bends  

Another useful equations can be obtained by noting that  

 

  

 

 

Non-prismatic beams 

( ) ( )

( )( ) ( )

( )( ) ( )

d vEI x M x
dx

EI x v v x

EI x v P x

=

′′′ = −

′′′′ = +

2

2

 

 

 

dM V
dx
dV p
dx

= −

= −
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For prismatic beams. 

( )
( )
( )

nd

rd

th

EIv M x BM equation( order )

EIv V x Shear force equation( order )

EIv P x Load equation( order )

′′ =

′′′ = −

′′′′ = +

2

3

4

 

Integrating the equations and then evaluating constants of 
integration from boundary conditions of the beam.  

Assumptions involved in the above equations 

(a) Material obeys Hooke’s law 

(b) Slope of deflection curve small – small deformations 

(c) Deformations due to bending only – shear neglected 

When sketching deflection curve we greatly exaggerate the 
deflection for clarity. Otherwise they actually are very small 
quantities. 
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Approximate sketching 

(3)                                                  (4)                

 

 

 

 

 

 

 

(5)                                                    (6) 
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Boundary conditions 

(1)Boundary conditions  

(2)Continuity conditions  

(3)Symmetry conditions 

Boundary conditions 

Pertain to the deflections and slopes at the supports of a 
beam: 

(i)Fixed support or clamped support 

 

 

 

 

(ii)  

 

 

 

( )
( ) ( ) ( )

v a

M a EIv a v a

=
′′ ′′= = � =

0

0 0
 

(iii)                                                                    
( ) ( )

( ) ( )
M a EIv a

V a EIv a

′′= =
′′= − =

0

0
 

 

 

( )
( ) ( )

v a

a v aθ
=

′= =
0

0
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Continuity conditions 

All deflection curves are physically  

continuous. Therefore 

 

Similarly at “C” 

                         ( ) ( )from side AC from side BCv c v c′ ′=  

Symmetry conditions 

Lv � 	′ =
 �
� 


0
2

 because of loading  

and beam. This we should load 

in advance. 

The method for finding deflection using differential 
equations is known as “ method of successive integration”. 

Application of principle of superposition:  Numerous 
problems with different loadings have been solved and 
readily available. Therefore in practice the deflection of beam 
subjected to several or complicated loading conditions are 
solved using principle of superposition. 

 

         +    + 

 

 

 

( ) ( )from side AC from side BCv c v c=
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Problem 1 

Determine the equation of the deflection curve for a simple 
beam AB supporting a uniform load of intensity of acting 
through out the span of the beam. Also determine maximum 
deflection maxδ  at the mid point of the beam and the angles 
of rotation AQ  and BQ at the supports. Beam has constant EI.  

Solution 

 

 

 

 

 

 

                                    
qL

V qx= −
2

                               (1) 

qL qx
M x− + =

2
0

2 2
 

                                    
qLx qx

M = −
2

2 2
                            (2) 

Differential equation of deflection curve. 

( )EIv M x

qLx qx
EIv

′′ =

′′ = −
2

2 2

 

Slope of the beam  

qL
V qx+ − = 0

2
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qLx qx
EIv C′ = − +

2 3

14 6
 

BC →Symmetry conditions  

Lv x

qLL qL
C

qL qL
C

� 	′ = =
 �
� 


= − +

= − +

2 3

1

3 3

1

0
2

0
16 48

0
16 48

 

qL
C = −

3

1 24
 

Slope equation is  

( )

qLx qx qL
EIv s

q
v L L x

EI

′ = − −

−′ = − +

2 3 3

3 2 3

4 6 24

6
24

 

Deflection of the beam 

qLx qx qL
EIv x C= − − +

3 4 3

212 24 24
 

B.C. 

( )v x
C

= =
= − − + �2

0 0
0 0 0 0

 

qLx qx qL
EIv x= − −

3 4 3

12 24 24
 

C =2 0
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( )
( )

q
v L x Lx x

EI
q

v x L x Lx
EI

−∴ = − +

−= + −

3 3 4

4 3 3

2
24

2
24

 

you can check  v = 0  at  x = 0 and  L = 0 

(b) From symmetry maximum deflection occurs at the 

midpoint 
Lx =
2

 

qLLv x
EI

−� 	= =
 �
� 


45
2 384

 

-ve sign means that deflection is downward as expected.  

max
qLLv x s

EI
δ � 	= = =
 �

� 


45
2 384

 

( )A
qL

Q v
EI

−′= =
3

0
24

 

-ve sign indicates clock wise rotation as expected. 

( )B
qL qL qL

Q v x L
EI EI EI

′= = = − −
3 3 3

4 6 24
 

( ) qL
v L

EI
′ =

3

24
 + ve sign means anticlockwise direction. 

since the problem is symmetric, ( ) ( )v v L′ ′=0  
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Problem: 2 

Above problem using third order equation 

( )EIv V x′′′ = −  

qL qL
EIv qx qx� 	′′′ = − − = −
 �

� 
2 2
 

Moment equation  

qLx qx
EIv C′′ = − +

2

12 2
 

B.C.     

( ) ( )M x EIv x
C

qLx qx
EIv

′′= = � = =
� =

′′ = −

1
2

0 0 0 0
0

2 2

 

 

Problem 3 

Above problem using fourth order differential equation 

P q
EIv q

=
′′′′ = −

 

Shear for a equation 

EIv qx C′′′ = − + 1  

From symmetry conditions  
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L LV x EIv x

qLLq C C

qL
EIv qx

� 	 � 	′′′= = � = =
 � 
 �
� 
 � 


= − + � = +

′′′∴ = − +

1 1

0 0
2 2

0
2 2

2

 

Problem 4 

Determine the equation of the deflection curve for a 
cantilever beam AB subjected to a uniform load of intensify 
q. Also determine the angle of rotation and deflection at the 
free end. Beam has constant EI. 

 

Solution: 

 

 

 

 

 

qL qx
M qLx+ − + �

2 2

2 2
  

Differential equation of deflection curve 

( )EIv M x

qL qx
EIv qLx

′′ =

′′ = − + −
2 2

2 2

 

V qL qx+ − = 0
V qx qL= −

qL qx
M qLx= − −

2 2

2 2
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Slope equation:
qL x qLx qx

EIv C′ = − + − +
2 2 3

12 2 6
 

BC:                    ( )v x′ = = �0 0   

qL x qLx qx
EIv′ = − + −

2 2 3

2 2 6
 

Deflection equation 

qL x qLx qx
EIv C= − + − +

2 2 3 4

24 6 24
 

( )v x
C

= =
= + − + �2

0 0
0 0 0 0

 

qL x qLx qx
EIv∴ = − + −

2 2 3 4

4 6 24
 

 

 

( )v x L

qL qL qL qL
EIv

′ = �

− −′ = + − =
3 3 3 3

2 2 6 6

 

B
qL

v Q
EI

′∴ = = −
3

6
 

( )v x L

q qL
v L L L

EI EI

= �

− −� �= − + =� �

4
4 4 4 3

6 4
24 24

 

                                                 -maximum deflection also. 

C =1 0

C =2 0

q
v L x Lx x

EI

− +− � �= +� �
� �

2 2 3 46 4
24




qL
v

EI
=

4

8
�( ) qL

v x L
EI

−= =
43

24
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Problem 5 

Above problem using third order equation 

( )EIv V x
EIv qL qx

′′ = −
′′′ = −

 

Moment equation 

qx
EIv qLx C′′ = − +

2

12
 

B.C.   ( ) ( )M x L EIv x L′′= = � = =0 0  

qL qL qL
qL

qx qL
EI v qLx

� = − = � = −

′ ′′ = − +

2 2 2
2

2 2

0 4
2 2 2

2 2

 

qx qL
EIv qLx′′ = − +

2 2

2 2
 

Problem 6 

Above problem with fourth order equation 

( )EIv P x

EIv q
−

′′′′ =

′′′′∴ = ⊕
 

Shear force equation 

EIv qx C′′′ = − + 1  

( ) ( )B.C V x L EIv x L
qL C C qL

′′′= = � = =
= − + � = +1 1

0 0
0
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EIv qx qL′′′∴ = − +  

Problem 7 

A simple beam AB supports a concentrated load P acting at 
distances a and b from the left-hand and right-hand supports 
respectively. Determine the equations of the deflection 
curve, the angles of rotation    and     at the supports, the 
maximum deflection and the deflection  at the midpoint C of 
the beam.  Constant EI 

Solution           

 

 

 

 

 

 

 

 

 

 

 

 

PbM x
L

− = �0

AQ BQ

maxδ Lδ

EI =

PbV
L

+ = 0

PbV
L

= −

PbxH
L

=

PbV P
L

+ − = 0

PbV P
L

= −

Pb Pbx P x P
L L

+ = � = −
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( )

( )

PbxM P x a
L

PbxM P x a
L

Pbx PxaM Px Pa Pa
L L

+ − −

= − −

= − + = − +

 

Differential equation of deflection curve 

PbxEIv x a
L
PxaEIv Pa a x L
L

′′ = ≤ ≤

′′ = − + ≤ ≤

0
 

Slope equations: 

PbxEIv C o x a
L

′ = + ≤ ≤
2

12
 

Px aEIv Pax C a x L
L

−′ = + + ≤ ≤
2

22
 

B.C.  ( ) ( )AP PBv x a v x a′ ′= = =  

( )P L a a PaC Pa C
L L

PLa Pa PaC Pa C
L L L

PaC C

− −+ = + +

/ / // /− + = − + +
/ / / / /

� = +

2 3
2

1 2

2 3 3
2

1 2

2

1 2

2 2

2 2 2

2
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Deflection curve equations: 

PbxEIv C x C x a
L

Px a PaxEIv C x C a x L
L

′ = + + ≤ ≤

−= + + + ≤ ≤

3

1 3

3 2

2 4

0
6

6 2

 

B.C:   ( )v x = =0 0 and ( )v x L= = 0 

C= + + �30 0 0  

PL a PaL C L C
L

PL a PaL C L C

PaL C L C

= − + + +

= − + + +

= + +

3 2

2 4

2 2

2 4

2

2 4

0
6 2

0
6 2

3

 

 

               

( ) ( )

( )
AP PBv x a v x a

P L a a Pa PaC a C a C
L L

PLa Pa Pa PaC a C a C
L L L

Pa PaC a C a C

Pa PaLC a C a C L

= = =

− −+ = + + +

/ /−/ /+ + = + + +
/ //

+ = + +

= + − −

3 4 3

1 2 4

3 4 4 3

1 2 4

3 3

1 2 4

3 2

1 2 2

6 6 2

6 6 6 2

6 2

3 3

 

C =3 0

PaLC C L= − −
2

4 23
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Pa Pa PaLC a C a C L

Pa PaL PaL PaC L C L

PaL PaC

/ /+ = + − −

= − − � = − −

= − −

3 3 2

2 2 2

3 2 2 3

2 2

3

2

2 3 3

6 3 3 6

3 6

 

Some important formulae to remember 

(1) 

 

 

(2) 

 
(3) 

 

(4) 

  

 

(5) 

 

Problem 8 

A simple beam AB supports a concentrated load P acting at 
the center as shown. Determine the equations of the 
deflection curve, the angles of rotation AQ  and BQ  at the 
supports, the maximum deflection maxδ  of the beam. 

B B
qL qL

,Q
EI EI

δ = =
4 3

8 6

B B
PL PL, Q

EI EI
δ = =

3 2

3 2

B B
M L M L, Q

EI EI
δ = =

2
0 0

2

c max A B
qL qL

; Q Q
EI EI

δ δ= = = =
4 35

384 24

c max A B
PL PL;Q Q

EI EI
δ δ= = = =

3 2

48 16
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Solution 

 

 

 

 

 

 

 

 

                    

 

 

 

 

 

 

 

  

 

 

 

 

P
V = −

2

Px
M =

2

Px
M =

2

P
M x− = 0

2

Px
M =

2

V P /= 2

P
V P+ − = 0

2

Px LM P x

Px L Px PL PL PxM P x Px

� 	− + − =
 �
� 


� 	= − − = − + = −
 �
� 


0
2 2

2 2 2 2 2 2

PL PxM = −
2 2
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Differential equation deflection curve  

PxEIv x L /

PL Px LEIv x L

′′ = ≤ ≤

′′ = − ≤ ≤

0 2
2

2 2 2

 

Slope equations  

PxEIv C x L /

PLx Px LEIv C x L

′ = + ≤ ≤

′ = − + ≤ ≤

2

1

2

2

0 2
4

2 4 2

 

AP PB

L Lv x v x� 	 � 	′ ′= = =
 � 
 �
� 
 � 
2 2

 

PL PL PLC C+ = − +
2 2 2

1 216 4 16
 

PL PL PLC C C= + − = +
2 2 2

1 2 24 8 8
 

 

 

Deflection equations: 

PxEIv C x C x L /

PLx PxEIv C x C L / x L

= + + ≤ ≤

= − + + ≤ ≤

3

1 3

2 3

2 4

0 2
12

2
4 12

 

B.C:   ( )v x = =0 0 and ( )v x L= = 0 

PLC C= +
2

1 2 8
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C= + + �30 0 0  

PL PL C L C

PL C L C

= − + +

= + +

3 3

2 4

3

2 4

0
4 12

6

 

 

  

AP PB

L Lv x v x

PL C L PL PL LC C

L PL PL LC C C

� 	 � 	′ ′= = =
 � 
 �
� 
 � 


+ = − + +

= − + +

3 3 3
1

2 4

3 3

1 2 4

2 2

96 2 16 96 2

2 16 48 2

 

 

  

L PL PL L PLC C C L
/ // /+ = + − −
/ /

3 3 3

2 2 22 16 24 2 6
 

( )PLPL PL PL C L C
− −− − = � =

23 3 3

2 2
2 8 3

24 6 16 48
 

 

 

 

 

C =3 0

PLC C L= − −
3

4 26

L PL LC C C= + +
3

1 2 42 24 2

PL PLC −= − =
2 2

2
9 3

48 16

PLC = −
2

2
3

16
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PL PL PLC∴ = − + = −
2 2 2

1
3

16 8 16
 

                

 

( )

PL PLC L

PLPL PL

� 	−∴ = − − 
 �
� 


− +−= + =

3 2

4

33 3

3
6 16

8 93
6 16 48

 

 

 

Deflection curves 

Px PL LEIv x C x

PLx Px PL PL LEIv x x L

= − + ≤ ≤

= − + − + ≤ ≤

3 2

3

2 3 2 3

0
12 16 2

3
4 12 16 48 2

 

Lx
PL PL PLEIv =

−= − =
3 3 3

2 96 32 48
 

 

 

( )
Lx

PLPL PL PL PLEIv

PL

=
− − += − − + =

= −

33 3 3 3

2
3

6 1 9 23
16 96 32 48 96

48

 

PLC = −
2

1 16

PLC = −
3

4 48

Lx
PLv

EI=∴ = −
3

2 48
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Slope equations: 

Px PL LEIv x

PLx Px PL LEIv x L

′ = − ≤ ≤

′ = − − ≤ ≤

2 2

2 2

0
4 16 2

3
2 4 16 2

 

( )

( ) ( )A

PL PLEIv x

PLv x Q Clock wise
EI

′ = = − = −

′∴ = = = − −

2 2

2

0 0
16 16

0
16

 

( ) ( )

( ) ( )B

PLPL PL PL PLEIv x L

PLv x L Q +ve, CCW from x-axis
EI

− −′ = = − − = =

′∴ = = =

22 2 2 2

2

8 4 33
2 4 16 16 16

16

 

Problem 9 

A cantilever beam AB supports load of intensity of acting 
over part of the span and a concentrated load P acting at the 
free end. Determine the deflections Bδ  and angle of rotation 

BQ  at end B of the beam. Beam has constant EI. Use principle 
of superposition. 

Solution          

( )B B
qa qL

L a , Q
EI EI

δ = − =
1 1

3 3
4

24 6
 

                         B B
PL PL, Q

EI EI
δ = =

2 2

3 2

3 2
 

v PL / EI= − 3 48
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( )B B B

B B B

qa PLL a
EI EI

qa PLQ Q Q
EI EI

δ δ δ= + = − +

= + = +

1 2

1 1

3 3

3 2

4
24 3

6 2
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21. Moment- Area Method 
This method is based upon two theorems related to the area 
of the bending moment diagram it is called moment-area 
method.  

First moment area theorem 

Consider segment AB of the deflection curve of a beam in 
region of + ve curvature. 

The equation 

d M
EIdx

θ =
2

2  can be written as 

d d M
dx EIdx

θ θ= =
2

2  

M
d dx

EI
θ =  

 

The quantity 
M dx
EI

 corresponds to an infinitesimal area of 

the 
M
EI

 diagram. According to the above equation the area is 

equal to the arrange in angle between two adjacent point m1  
and m2 . Integrating the above equation between any two 
points A & B gives. 

 

 

B B

B A BA
A A

M
d dx

EI
θ θ θ θ= − = ∆ =� �
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This states that the arrange in angle measured in radius 
between the two tangents at any two points A and B on the 

elastic curve is equal to the area of 
M
EI

 diagram between A & 

B , If  Aθ  is known then  

B A BAθ θ θ= + ∆  

In performing above integration, areas corresponding to the 
M+  are taken + ve, area corresponding to the – ve M  are 

taken –ve 

If 
B

A

M dx
EI�  is +ve- tangent B rotates c.c.w from A or Bθ  is 

algebraically larger than A. 

If – ve – tangent B rotates c.w from A. 

Second moment-area theorem 

This is related to the deflection curve between A and B.  
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We see that dt is a small contribution to BAt . Since the angles 
between the tangents and x-axis are very small we can take 

 

 

The expression 
Mx dx
EI

=1  first moment of infinitesimal area 

M dx
EI

 w.r.t. a vertical line through B.  

Integrating between the point A & B 

B B

BA
A A

Mt dt x dx
EI

′
= =� � 1 = First moment of the area of the 

M
EI

      

diagram between points A & B, evaluated w.r.t. B. 

 

 

 

 

 

 

if M is +ve    φ =+ve 

if M is -ve    φ = -ve 

x and x1 are always taken +ve quantities. 

∴Sign of tangential deviation depends on sign of M. 

Mdt x d x dx
EI

θ= =1 1

BA

AB
B

A

t x
t x

Mwhere dx
EI

φ
φ

φ

=
=

= �

1
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A positive value of tangential deviation- point B is above A 
and vice versa – ve value means point B is below the point A. 

In applying the moment area method a carefully prepared 
sketch of the elastic curve is always necessary.     

 

 

 

 

 

 

Problem:1 

Consider an aluminum cantilever beam 1600 mm long with a 
10 –kN for a applied 400 mm from the free end for a distance 
of 600 mm from the fixed end, the beam is of greater depth 

than it is beyond, having 4I mm= × 6
1 50 10 . For the 

remaining 1000 mm of the beam 4I mm= × 6
2 10 10 . Find the 

deflection and angular rotation of the free end. Neglect 
weight of the beam and E GPa= 70   

 Solution:  

 

 

     

 
2

2

N/mm

N/mm

−× ×

= ×

9 6

3

70 10 10

70 10

EI .= × 243 5 10
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.A bh
E E

.A bh
E

. .A bh
E E
. .A bh
E E

−� 	= = × × = −
 �
� 


= = −

−� 	= = × × = −
 �
� 


−� 	= = × × = −
 �
� 


1

2

3

4

1 1 0 12 36
600

2 2
129 6

1 1 0 48 115 2
480

2 2
1 1 0 12 7 2

120
2 2

 

B

BA B A
A

MQ Q Q dx A A A A
EI

∆ = − = = + + +� 1 2 3 4  

B
. . .Q

E E E E E
= − − − − = −36 129 6 115 2 7 2 288
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BQ . rad
E

−= − = − = − ×
×

3
3

288 288 4 14 10
70 10

 

                                                                       from tangent at 
A. 

BA Bt δ=  

x mm;x ;x mm;x mm= = = =2 1 3 41060 1400 840 480  

BA Bt A x A x A x A x
. . .

E E E E

. mm
E

δ= = + + +
− − − −� 	 � 	 � 	 � 	= + + +
 � 
 � 
 � 
 �
� 
 � 
 � 
 � 


−= = −

1 1 2 2 3 3 4 4

36 129 6 115 2 7 2
1400 1060 840 480

288000
4 11

                                                        below the tangent at point A. 

Problem 2  

Find the deflection due to the concentrated force P applied as 
soon as figure, at the center of a simply supported beam EI 
constant. 

Solution: 

 

 

 

 

 

 

 

BQ . rad−= × 34 14 10

B . mmδ = −4 11
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c CB

AB

v c c t

c c t

′′ ′= −

′′ ′ = 1
2

 

Pa PaA bh a s
EI EI

Pa PaA bh a
EI EI

= = × × =

= = × × =

2

1

2

2

1 1 3 3
2 2 4 8
1 1 3 9

3
2 2 4 8

 

x a ; x a= =1 2
2

2
3

 

( )

AB
Pa Pat A x A x a a
EI EI

Pa Pa Pa Pa ve
EI EI EI EI

= + = +

= + = = +

2 2

1 1 2 2

3 3 3 3

3 2 9
2

8 3 8
9 10 5

4 4 4 2

 

 

Since EI is constant 
M
EI

 

diagram is same as M 
diagram. 
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CB
Pa a Pat a s
EI EI

� 	= × × × =
 �
� 


31 2
2

2 2 3 3
 

AB /
Pac c t
EI

′′ ′ = =
3

2
5
4

 

( )
c

PaPa Pa Pav
EI EI EI EI

−∴ = − = =
33 3 315 45 11

4 3 4 12
 

 

 

The +ve sign of ABt  & CAt  indicate points A & C above the 
tangent through B. 

(a) The slope of the elastic curve at C can be found from the 
slope of one of the ends as: 

BC B C C B BCQ Q Q Q Q Q∆ = − � = − ∆  

B

BC B C
C

M Pa PaQ Q Q dx a s
EI EI EI

∆ = − = × × =�
21

2
2 2 2

 

B AB
Pa Pa Pa PaQ t / L
EI a EI EI EI

≈ = − = −
3 2 2 25 1 5

2 4 2 8 2
 

 

 

(b) If the deflection curve equations is wanted then by 
selecting an ordinary point E at a distance x 

Ev E E EE′′ ′ ′′= −  

 

c
Pav
EI

=
311

12

c
PaQ

EI
=

2

8



 

Solid Mechanics 

 

 

E AB EB
L xv t t

L
−� 	= −
 �

� 

 

In this way one 

can obtain equation 

of the deflection curve. 

 

(c) To simplify the calculations some care in selecting the 
tangent at a support must be considered. 

In this approach to find 

CAt we need to consider 

unhatched region which 

is more difficult. 

 

 

 

(d) The deflection at C can also be calculated as follows. 

AC BC
c

t tv +=
2

 

 

∴C is at the center of the beam. However, this is also move 
complicated approach compared to first, as to find CAt  we 
again need to consider unhatched region. 
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Problem 3 

Find the deflection of the end A of the beams shown in 
figure caused by the applied forces. The EI is constant. 

Solution 
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Pa PaA bh a
EI EI

a Pa PaA
EI EI

Pa PaA and A
EI EI

−� 	= = × × = −
 �
� 


� 	= × × − = −
 �
� 


= =

2

1

2

2

2 2

3 4

1 1
2 2 2

1
2 2 4

4 2

 

a a a a ax a ; x a

a ax a a / ; x

= + = = + + =

= + = =

1 2

3 4

7 2 11
2

3 3 3 3 2 6
1 2

7 6
3 2 3

 

( )

CBt A x A x A x

Pa a Pa a Pa a
EI EI EI

PaPa Pa Pa
EI EI EI EI

= + +

= − × + × + ×

− + += − + + =

2 2 3 3 4 4
2 2 2

33 3
3

11 7 2
4 6 4 6 2 3

11 7 811 7
24 24 3 24

 

CB
Pa Pat

EI EI
= =

3 34
24 6

 

The + sign of CBt  indicates that the point C is above the 
tangent through B. Hence corrected sketch of the elastic 
curve is made. 
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AB
Pa Pat a

EI EI
= − × = −

2 32
2 3 3

 

A ABv t A A

Pa Pa Pa
EI EI EI

′′ ′∴ = −

= − =
3 3 3

3 12 4

 

 

 

Note:  Another method to find Av  is shown. This may be 
simpler method than the present one. 

 

 

 

A
Pav

EI
=

3

4
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4. Principal Stresses 
Principal Stresses 

Now we are in position to compute the direction and 
magnitude of the stress components on any inclined plane at 
any point, provided if we know the state of stress (Plane 
stress) at that point. We also know that any engineering 
component fails when the internal forces or stresses reach a 
particular value of all the stress components on all of the 
infinite number of planes only stress components on some 
particular planes are important for solving our basic 
question i.e under the action of given loading whether the 
component will ail or not? Therefore our objective of this 
class is to determine these plane and their corresponding 
stresses. 

(1) ( ) n y n y
n n xyCos Sin

σ σ σ σ
σ σ θ θ τ θ

+ −
= = + +2 2

2 2
 

 

(2) Of all the infinite number of normal stresses at a point, 
what is the maximum normal stress value, what is the 
minimum normal stress value and what are their 
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corresponding planes i.e how the planes are oriented ? Thus 
mathematically we are looking for maxima and minima of 

( )n Qσ function.. 

(3)  n y n y
n xyCos Sin

σ σ σ σ
σ θ τ θ

+ −
= + +2 2

2 2
 

For maxima or minima, we know that  

( )n
x y xy

d Sin Cos
d
σ σ σ θ τ θ
θ

= = − − +0 2 2 2  

xy

x y
tan

τ
θ

σ σ
=

−
2

2  

(4) The above equations has two roots, because tan  repeats 
itself after π . Let us call the first root as Pθ

1
 

 

xy
P

x y
tan

τ
θ

σ σ
=

−1

2
2  

( ) xy
P P

x y
tan tan

τ
θ θ π

σ σ
= + =

−2 1

2
2 2         
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P P s
πθ θ= +

2 1 2
 

(5) Let us verify now whether we have minima or minima at 

Pθ
1

 and Pθ
2

 

( )

( )
P

n
x y xy

n
x y P xy P

d Cos Sin
d

d Cos Sin
d θ θ

σ σ σ θ τ θ
θ
σ σ σ θ τ θ
θ =

= − − −

∴ = − − −
1 1

1

2

2

2

2

2 2 4 2

2 2 4 2
 

We can find PCos sθ
1

2  and PSin sθ
1

2  as  

x y
P

x y
xy

Cos
σ σ

θ
σ σ

τ

−
=

−� 	
+
 �

� 


1 2
2

2

2
2

 

 

 

 

 

 

xy xy
P

x y x y
xy xy

Sin
τ τ

θ
σ σ σ σ

τ τ

= =
− −� 	 � 	

+ +
 � 
 �
� 
 � 


1 2 2
2 2

2
2

2
2 2

 

Substituting PCos θ
1

2  and PSin θ
1

2  
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( )( )

( )

P

x y x y xy xyn

x y x y
xy xy

x y xy

x y x y
xy xy

x y
xy

x y
xy

d
d θ θ

σ σ σ σ τ τσ
θ σ σ σ σ

τ τ

σ σ τ

σ σ σ σ
τ τ

σ σ
τ

σ σ
τ

=

− − −
= −

− −� 	 � 	
+ +
 � 
 �

� 
 � 


− −
= −

− −� 	 � 	
+ +
 � 
 �

� 
 � 


� �−� 	− � �= +
 �� �� 
−� 	 � �+
 �
� 


1

2

2 2 2
2 2

2 2

2 2
2 2

2
2

2
2

2 4

2
2 2

4

2 2

4
2

2
 

 

x yn
xy

d
d

σ σσ τ
θ

−� 	
∴ = − +
 �

� 


22
2

2 4
2

             (-ve) 

( ) ( ) ( )

( )

P P

n
x y P xy P

x y P xy P

d Cos Sin
d

Cos Sin

πθ θ θ

σ σ σ θ π τ θ π
θ

σ σ θ τ θ

= = +

= − + − +

= − +

1 1

2 1

1 1

2

2

2

2 2 4 2

2 2 4 2

 

Substituting P PCos &Sinθ θ
1 1

2 2 m we can show that  

P

x yn
xy

d s
d θ θ

σ σσ τ
θ =

−� 	
∴ = − +
 �

� 

2

22
2

2 4
2

                             (+ve) 
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Thus the angles P sθ
1

 and P sθ
2

 define planes of either 

maximum normal stress or minimum normal stress. 

(6) Now, we need to compute magnitudes of these stresses 

We know that, 

P

x y x y
n xy

x y x y
n P xy P

Cos Sin

Cos Sinθ θ

σ σ σ σ
σ θ τ θ

σ σ σ σ
σ σ θ τ θ=

+ −
= + +

+ −
= = + +

1 11
1

2 2
2 2

2 2
2 2

 

Substituting PCos sθ
1

2  and PSin θ
1

2  

x y x y
xy

Max.Normalstress becauseof sign

σ σ σ σ
σ τ

+ −� 	
= + +
 �

� 


+

2
2

1 2 2  

Similarly, 

( )
( )
P P

x y x y
n P

xy P

x y x y
P xy P

Cos

Sin

Cos Sin

πθ θ θ
σ σ σ σ

σ σ θ π

τ θ π

σ σ σ σ
θ τ θ

= = =
+ −

= = + + +

+

+ −
= − −

12 1

1

1 1

2
2

2
2 2

2

2 2
2 2

 

Substituting PCos θ
1

2  and  PSin θ
1

2   
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x y x y
xy

Min.normalsressbecauseof vesign

σ σ σ σ
σ τ

+ −� 	
= − +
 �

� 


−

2
2

2 2  

We can write 

x y x y
xyor

σ σ σ σ
σ σ τ

+ −� 	
= ± +
 �

� 


2
2

1 2 2 2
 

(7) Let us se the properties of above stress. 

(1) P P sπθ θ= +
2 1 2

  - planes on which maximum normal stress 

and minimum normal stress act are ⊥  to each other. 

(2) Generally maximum normal stress is designated by σ1  
and minimum stress by σ2 . Also P P;θ σ θ σ→ →

1 21 2  

 

 

 

 

 

 

 

 
alg ebraically i.e.,σ σ
σ
σ

>
−

− −

1 2

1

2

0
1000
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(4) maximum and minimum normal stresses are collectively 
called as principal stresses. 

(5) Planes on which maximum and minimum normal stress 
act are known as principal planes. 

(6) Pθ
1

 and  Pθ
2

 that define the principal planes are known as 

principal directions. 

(8) Let us find the planes on which shearing stresses are zero. 

( )nt x y xySin Cosτ σ σ θ τ θ= = − − +0 2 2  

xy

x y
tan

directionsof principal plans

τ
θ

σ σ
=

=

=

2
2

 

 Thus on the principal planes no shearing stresses act. 
Conversely, the planes on which no shearing stress acts are 
known as principal planes and the corresponding normal 
stresses are principal stresses. For example the state of stress 
at a point is as shown. 

 

Then xσ  and yσ  are 

principal stresses because 
no shearing stresses are 
acting  on these planes. 
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(9) Since, principal planes are ⊥  to each other at a point P, 
this also means that if an element whose sides are parallel to 
the principal planes is taken out at that point P,  then it will 
be subjected to principal stresses. Observe that no shearing 
stresses are acting on the four faces, because shearing 
stresses must be zero on principal planes. 

 

 

 

 

 

 

 

 

 

 

 

(10) Since 1σ  and 2σ  are in two ⊥  directions, we can easily 
say that   

x y x y Iσ σ σ σ σ σ′ ′+ = + = + =1 2 1 
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5. Maximum shear stress 
Maximum and minimum shearing stresses 

So far we have seen some specials planes on which the 
shearing stresses are always zero and the corresponding 
normal stresses are principal stresses. Now we wish to find 
what are maximum shearing stress plane and minimum 
shearing stress plane. We approach in the similar way of 
maximum and minimum normal stresses 

(1)  x y
nt xySin Cos

σ σ
τ θ τ θ

−� 	
= − +
 �

� 

2 2

2
 

   ( )nt
x y xy

d Cos Cos
d
τ σ σ θ τ θ
θ

= − − +2 2  

For maximum or minimum 

( )nt
x y xy

d Cos Sin
d
τ σ σ θ τ θ
θ

= = − − −0 2 2 2  

( )x y

xy
tan

σ σ
θ

τ
− −

� =2
2

 

This has two roots 

( )x y
S

xy
tan

s stands for shear stress
p stands for principalstresses.

σ σ
θ

τ
−

= −

−
−

1
2

2
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( ) ( )x y
S S

xy
tan tan

σ σ
θ θ π

τ
− −

= + =
2 1

2 2
2

 

S S
πθ θ∴ = +

2 1 2
 

Now we have to show that at these two angles we will have 
maximum and minimum shear stresses at that point. 

Similar to the principal stresses we must calculate 

( )

( )
S

nt
x y xy

nt
x y S xy S

d Sin Cos
d

d Sin Cos
d θ θ

τ σ σ θ τ θ
θ

τ σ σ θ τ θ
θ =

= − −

= − −
1 1

1

2

2

2

2

2 2 4 2

2 2 4 2

 

xy
S

x y
xy

Cos
τ

θ
σ σ

τ

=
−� 	

+
 �
� 


1 2
2

2
2

2
2

        

 

( )x y
S

x y
xy

Sin
σ σ

θ
σ σ

τ

− −
=

−� 	
+
 �

� 


1 2
2

2

2
2

 

Substituting above values in the above equation we can 
show that  
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S

ntd
d θ θ

τ
θ =

=

1

2

2      - ve 

Similarly we can show that  

S S

ntd
d πθ θ θ

τ
θ = = +

=

2 1

2

2

2

   + ve 

Thus the angles Sθ
1
and Sθ

2
define planes of either maximum 

shear stress or minimum shear stress. Planes that define 
maximum shear stress & minimum shear stress are again ⊥  
to each other.. Now we wish to find out these values. 

( )

( )
S

x y
nt xy

x y
nt S xy S

Sin Cos

Sin Cosθ θ

σ σ
τ θ τ θ

σ σ
τ θ τ θ=

−
= − +

−
= − +

1 11

2 2
2

2 2
2

 

Substituting SCos θ
1

2  and SSin sθ
1

2 , we can show that 

x y
max xy

σ σ
τ τ

−� 	
= + +
 �

� 


2
2

2
 

( ) ( ) ( )
S S

x y
nt S xy SSin Cosπθ θ θ

σ σ
τ θ π τ θ π= = +

−
= − + + +

1 12 1 2
2 2

2
 

Substituting SCos θ
1

2  and SSin θ
1

2  

x y
min xy

σ σ
τ τ

−� 	
= − +
 �

� 


2
2

2
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maxτ  is algebraically minτ> , however their absolute 
magnitude is same. Thus we can write 

x y
max min xyor 

σ σ
τ τ τ

−� 	
= ± +
 �

� 


2
2

2
 

Generally  

max S

min S

τ θ
τ θ

−

−
1

2

 

Q.  Why maxτ  and minτ  are numerically same. Because Sθ
1
 &   

Sθ
2

 are ⊥  planes. 

 

 

 

  

 

 

 

 

 

(2) Unlike the principal stresses, the planes on which 
maximum and minimum shear stress act are not free from 
normal stresses. 



 

Solid Mechanics 

 

 

x y x y
n xyCos Sin s

σ σ σ σ
σ θ τ θ

+ −
= + +2 2

2 2
 

 

S

x y x y
n S xy SCos Sinθ θ

σ σ σ σ
σ θ τ θ=

+ −
= + +

1 11
2 2

2 2
 

Substituting SCos θ
1

2  and SSin θ
1

2  

S

x y
n θ θ

σ σ
σ σ =

+
= =

1 2
 

( )
( )

S S

x y x y
n S

xy S

Cos

Sin

πθ θ θ
σ σ σ σ

σ θ π

τ θ π

= = +
+ −

= + +

+ +

12 1

1

2
2

2 2

2
 

Simplifying this equation gives 

S

x y
n θ θ

σ σ
σ σ =

+
= =

2 2
 

Therefore the normal stress on maximum and minimum 
shear stress planes is same. 

(3) Both the principal planes are ⊥  to each other and also the 
planes of maxτ  and minτ  are also ⊥  to each other. Now let us 
see there exist any relation between them. 
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6. Mohr’s circle 
Mohr’s circle for plane stress 

So far we have seen two methods to find stresses acting on 
an inclined plane 

(a) Wedge method 
(b) Use of transformation laws. 

 

Another method which is purely graphical approaches is 
known as the Mohr’s circle for plane stress. 

A major advantage of Mohr’s circle is that, the state of the 
stress at a point, i.e the stress components acting on all 
infinite number of planes can be viewed graphically.  

Equations of Mohr’s circle  

We know that,    x y x y
n xyCos Sin

σ σ σ σ
σ θ τ θ

+ −
= + +2 2

2 2
 

This equation can also be written as 

x y x y
n xyCos Sin

σ σ σ σ
σ θ τ θ

+ −
− = +2 2

2 2
 

x y
nt xySin Cos

σ σ
τ θ τ θ

−� 	
= − +
 �

� 

2 2

2
 

( )

x y x y
n nt xy

x a y R

σ σ σ σ
σ τ τ

+ +� �� 	 � 	
− + = +� �
 � 
 �
� 
 � 
� �

↓ ↓ ↓

− + =

2 2
2 2

2 2 2

2 2
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The above equation is 
clearly an equation of 
circle with center at ( ),0a  
on τ σ−  plane it 
represents a circle with 

center at x y ,
σ σ+� 	

 �
� 


0
2

 and 

having radius  

             

x y
xyR

σ σ
τ

−� 	
= +
 �

� 


2

2
 

 

This circle on σ τ−  plane- 
Mohr’s circle. 

From the above deviation it 
can be seen that any point P 
on the Mohr’s circle 
represents stress which are 
acting on a plane passing 
through the point. 

In this way we can 
completely visualize the 
stresses acting on all 
infinite planes.  

 

 



 

Solid Mechanics 

 

 

(3) Construction of Mohr’s circle  

 Let us assume that the state of stress at a point is given  

A typical problem using Mohr’s circle i.e given x y,σ σ′ ′  and 

x yτ ′ ′  on an inclined element. For the sake of clarity we 

assume that, x y, sσ σ′ ′ and x yτ ′ ′  all are positive and x yσ σ>  
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• Since any point on the circle represents the stress 
components on a plane passing through the point. 
Therefore we can locate the point A on the circle. 

• The coordinates of the plane ( )x xyA ,σ τ= + +  

Therefore we can locate the point A on the circle with 

coordinates ( )x xy, sσ τ+ +  

• Therefore the line AC represents the x-axis. Moreover, 

the normal of the A-plane makes 0�w.r.t the x-axis. 

• In a similar way we can locate the point B 
corresponding to the plane B. 
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The coordinates of  ( )y xyB , sσ τ= + −  

Since we assumed that for the sake of similarity y xsσ σ< . 

Therefore the point B diametrically opposite to point A. 

• The line BC represents y- axis. The point A corresponds 

to Q = 0� , and pt. B corresponds to Q = 90�(+ve) of the 
stress element. 

At this point of time we should be able to observe two 
important points. 

• The end points of a diameter represents stress 
components on two ⊥  planes of the stress element. 

• The angle between x- axis and the plane B is 90° (c.c.w) 
in the stress element. The line CA in Mohr’s circle 
represents x- axis and line CB represents y-axis or plane 
B. It can be seen that, the angle between x-axis and y-
axis in the Mohr’s circle is 180° (c.c.w). Thus 2Q in 
Mohr’s circle corresponds to Q in the stress element 
diagram. 

Stresses on an inclined element 

• Point A corresponds to 0Q =  on the stress element. 
Therefore the line CA i.e x-axis becomes reference line 
from which we measure angles. 

• Now we locate the point “D” on the Mohr’s circle such 
that the line CD makes an angle of 2Q c.c.w from the x-
axis or line CA. we choose c.c.w because in the stress 
element also Q is in c.c.w direction. 
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• The coordinates or stresses corresponding to point D on 
the Mohr’s circle represents the stresses on the x′ - face or 
D on the stress element. 

x avg

x y

y avg

RCos

RSin

RCos

SinceD& D are planes inthe
stress element ,thenthey become
diametrically opposite point son
thecircle, just likethe planes A& Bdid

σ σ β
τ β
σ σ β

′

′ ′

′

= +

=

= −

′ ⊥  

Calculation of principal stress 

The most important application of the Mohr’s circle is 
determination of principal stresses. 

The intersection of the Mohr’s circle --- with normal stress 
axis gives two points P1  andP2 . Thus P1  and P2  represents 
points corresponding to principal stresses. In the current 
diagram the coordinates the of  

P , s
P ,

σ
σ

=
=

1 1

2 2

0
0

 

avg Rσ σ= +1  

avg Rσ σ= −2  

The principal direction corresponding to σ1  is now equal to 

pθ
1

2 , in c.c.w direction from the x-axis.  



 

Solid Mechanics 

 

 

p p
πθ θ= ±

2 1 2
 

We can see that the points P1  andP2   are diametrically 
opposite, this indicate that principal planes are ⊥  to each 
other in the stress element. This fact can also be verified from 
the Mohr’s circle. 

In- plane maximum shear stress 

What are points on the circle at which the shearing stress are 
reaching maximum values numerically? Points S1   and S2  at 
the top and bottom of the Mohr’s circle. 

• The points S1 and  S2  are at angles θ =2 90�  from 
pointsP1   P2  and, i.e the planes of maximum shear stress 

are oriented at ±45�  to the principal planes. 

• Unlike the principal stresses, the planes of maximum 
shear stress are not free from the normal stresses. For 
example the coordinates of 

max avg

max avg

S , s

S ,

τ σ
τ σ

= +

= −
1

2
 

max Rτ = ±  

avgσ σ=  

Mohr’s circle can be plotted in two different ways. Both the 
methods are mathematically correct. 
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Finally 

• Intersection of Mohr’s circle with the σ -axis gives 
principal stresses. 

• The top and bottom points of Mohr’s circle gives 
maximum –ve shear stress and maximum +ve shear 
stress. 

• Do not forget that all these inclined planes are obtained 
by rotation about z-axis.  
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Mohr’ circle problem 
 

 

 

 

 

Solution:  

  

                  A   - (15000,4000) 

              B   - (5000,-4000) 

 

 

 

 

 

(a) 

 

 

 

 

 

 

x y MPa
σ σ+ += =15000 5000

10000
2 2

R MPa= 6403

x y
xyR

σ σ
τ

−� 	 −� 	= + = +
 �
 �
� 
� 


= +

2 2
2 2

2 2

15000 5000
4000

2 2

5000 4000

x yσ σ−
= 5000

2
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Point D :  x Cos . MPaσ ′ = + =10000 6403 41 34 14807  

                 x y Sin . MPaτ ′ ′ = − = −6403 41 34 4229  

Point D′ :  n y Cos . MPaσ σ ′= = − =10000 6403 41 34 593  

 nt x y Sin .τ τ ′ ′= = =6403 41 34 4229  

b)       P
.; .σ θ= = =

11
38 66

16403 19 33
2

 

           MPaσ =2 3597  

 

c)       max SMPa . .τ θ= − = = −
1

6403 25 67 25 67�  
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(2)   θ = 45�  

Principal stresses and principal shear stresses. 

Solution:  

   

 

        

 

 

 

                  

 

 

 

 

 

 

 

 

 

 

 

 

( )

x y

x y
xyR MPa

σ σ

σ σ
τ

+ − += = −

−� 	 − −� 	= + = + − =
 �
 �
� 
� 


2 2
22

50 10
20

2 2

50 10
40 50

2 2

( )
( )

A ,

B ,

→ − −
→

50 40

10 40

x y

x y

p R s

p R

σ σ
σ

σ σ
σ

+
= = + = − + =

+
= = − = − − = −

1 1

2 2

20 50 30
2

20 50 70
2
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p

p

p

Q .

Q .

Q .

=

=

=

1

1

2

2 233 13

116 6

206 6

�

�

s

s

s

Q .

Q .

Q .

=

=

=

1

1

2

2 143 13

71 6

161 6
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Q.  x y xyMPa, MPa and  MPaσ σ τ= = − =31 5 33  

Stresses on inclined element θ = 45�  

Principal stresses and maximum shear stress. 

Solution: 

  

  

 

 

 

 

x y
avg MPa

σ σ
σ

+ −= = =31 5
13

2 2

x y
xyR . MPa

σ σ
τ

−� 	
= + =
 �

� 


2
2 37 6

2

( )
( )

A ,

B ,− −
31 33

5 33

x avgRCos s

. Cos . MPa

σ β σ′ = +

= + =37 6 28 64 13 46

x y RSin . . .τ β′ ′ = − = − = −37 6 28 64 18 02

y avgRCos

MPa

σ β σ′ = −

= −20
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. MPaσ∴ =1 50 6

. MPaσ = −2 24 6

p .θ =
1

30 68

max s

min

avg

. MPa .

. MPa
MPa

τ θ
τ
σ σ

= − = −

= −
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1
37 6 14 32

37 6
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S.No. Questions opt1 opt2 opt3 opt4 Answer

1

If a force acts on a body, it sets up some resistance to the deformation.  This 
resistance is known as.

stress strain                            
            

elasticity modulus of elasticity stress

2

The term deformation per unit length is applied for stress  strain modules of elasticity Bulk Modulus  strain

3

Strain energy is the energy stored in a body 
when strained within 
elastic limits

energy stored in a 
body when strained 
upto the breaking of a 
specimen

maximum strain 
energy which can be 
stored in a body

proof resilience per unit 
volume of a material

energy stored in a body 
when strained within 
elastic limits

4

Modulus of elasticity is the ratio of stress to strain stress to original length  deformation to 
original length

strain to the original length                            stress to strain

5

The total change in length of  bar of different sections is equal to the Sum of changes in the 
length of different sections

Average of changes in 
the lengths of different 
sections

Difference of changes 
in the lengths of 
different sections

deformation to original 
length

Sum of changes in the 
length of different sections

6

A circular bar of length (l) uniformly Area (A).  If the bar is subjected to an axial 
tensile load (P), then its elongation is equal to an axial tensile load (P), then its 
elongation is equal to 

Pl/AE  Pl/A1A2E  4Pl/л E d1 d2 Pl/4 л E d1 d2 Pl/AE

7

The maximum stress produced in a bar of tapering section is at Larger end Smaller end  Middle All of these Smaller end

8

In a composite section, the number of different materials is One only  Two only More than two Any where More than two

9

A composite section contains 4 different materials. The stresses in all the different 
materials will be 

Zero  Equal Different In the ratio of their areas Different

10

Thermal stress is caused when the temperature of a body is increased  is decreased remains constant either a or b either a or b

11

When the temperature of a body is increases the stress induced will be tension  compression both a and b neither a nor b  compression

12

If the ends of a body yield, the magnitude of thermal stress will increase decrease decrease constant decrease

13

The maximum thermal stress in a circular tapering  section is directly proportional to the 
bigger diameter

 directly proportional 
to the smaller diameter

directly proportional 
to the smaller diameter

both b and c directly proportional to 
the bigger diameter

14

If a composite bar is cooled, then the nature of stress in a part with high 
coefficient of thermal expansion will be 

tensile  zero compressive shear tensile

15

The ratio of lateral strain to the linear strain is called modulus of elasticity modulus of rigidity compressive poison’s ratio modulus of elasticity

UNIT I       INTRODUCTION TO MECHANICS



16

When a rectangular bar is subjected to a tensile stress, then the volumetric  strain 
is equal to 

0   є[1+2/m] є[2-1/m]s є[2-1/m]   є[1+2/m]

17

The bulk modulus of a body is equal to m E/3(m-2) є[1+2/m]  m E/2(m-2) m E/2(m+2) m E/3(m-2)

18

A body returns to its original shape after removal of the force, is called tensile elasticity ductility malleability elasticity

19

The neutral axis of the cross-section a beam is that axis at which the bending 
stress is

zero minimum maximum infinity zero

20

Euler's formula holds good only for short columns long columns both short and long 
columns

weak columns long columns

21

A steel bar of 5 mm is heated from 15° C to 40° C and it is free to expand. The 
bar Will induce

thermal stress shear stress tensile stress compressive stress thermal stress

22

The stress induced in a body, when suddenly loaded, is __________ the stress 
induced when the same load is applied gradually.

equal to one-half twice four times                                                                               twice

23

The law which states that within elastic limits strain produced is Bernoulli’s law plastic point  Hooke’s law elasticity  Hooke’s law

24

When equal and opposite forces applied to a body, tend to elongate it,   the stress 
so produced, is called   

shear stress Stress law tensile stress transverse stress                              tensile stress

25

If the slenderness ratio for a column is 100, then it is said to be a __________ 
column.

long short medium very long long

26

In a bar of large length when held vertically and subjected to a load at its lower 
end, its own-weight produces additional stress.  The maximum stress will be

at the lower cross-section shear strain volumetric strain at every point of the bar at every point of the bar

27

The bending moment at a point on a beam is the algebraic __________ of all the 
moments on either side of the point.

diffrence sum division average sum

28

Strain resetters are used to measure shear strain measure linear strain measure volumetric 
strain

relieve strain measure linear strain

29

The maximum stress produced in a bar of tapering section is at smaller end larger end middle anywhere smaller end

30

The phenomenon of slow extension of materials having constant load ie increase 
with the time is called

creeping fatigue fracture crack creeping 



31

The energy stored in a body when strained within elastic limit is known as resilience proof resilience strain energy impact energy strain energy

32

In compression test, the fracture in cast iron specimen would occur along the axis of load an oblique plane at right angles to the 
axis of specimen

would not occur an oblique plane

33

When a bar is cooled to - 5°C, it will develop no stress shear stress tensile stress compressive stress tensile stress

34

The total strain energy tored in a body is knowns as resilience proof resilience strain energy impact energy resilience

35

unit of energy in SI unit N Watt joule pascal joule

36

Match the following a)  modulas of elasticity                      1)  Direct stress/ 
volumetric strain   b) Rigidity modulus                           2) Axial stress / Long 
strain      c) Bulk modulus                                3)  Shear stress / shear strain        d)   
  Poisson ratio                                4) Lateral strain /Long strain   

a – 1 , b – 2 , c – 3 , d – 4           a – 2 , b – 3 , c – 1 , d 
– 4            

c) a – 4 , b – 2 , c – 3 
, d –1

d) a – 4 , b – 1 , c – 3 , d 
– 4

a – 2 , b – 3 , c – 1 , d – 4            

37

Match the following       a) Linear strain                               1.Change in dia / 
Original dia      b) Lateral strain                             2. Stress/ strain    c) Volumetric 
strain                      3. Change in length/Original length            d)Youngs modulus                        
                       4.Change in volume / Original volume

a – 1 , b – 2 , c – 3 , d – 4 a – 2 , b – 3 , c – 1 , d 
– 4            

c) a – 3, b – 1 , c –4 , 
d –2

d) a – 4 , b – 1 , c – 3 , d 
– 4

c) a – 3, b – 1 , c –4 , d –2

38

Match the following   a) Elongation   1) 2WL/AE       b) Stress 2) change in 
length/original length           c) Strain     3) P/A       d) Elongation due to self 
weight    4) PL/AE

a – 1 , b – 2 , c – 3 , d – 4              a – 2 , b – 3 , c – 1 , d 
– 4       

c) a – 4 , b – 2 , c – 3 
, d –1

d) a – 4 , b – 1 , c – 3 , d 
– 4

d) a – 4 , b – 1 , c – 3 , d – 4

39

The value of Poisson's ratio for cast iron is 0.1 0.23-0.27 0.4-0.6 0.45-0.46 0.23-0.27

40

Match the following    a.torsion        1  N-m          b.Youngs modulus     2  mm        
  c.Strain      3.N/mm2       d. Elongation     4. No unit

a –1 , b – 2 , c – 3 , d – 4              a – 2 , b – 3 , c – 1 , d 
– 4              

c) a – 4 , b – 2 , c – 3 
, d –1

d) a – 1 , b – 3 , c – 4 , d 
–2

d) a – 1 , b – 3 , c – 4 , d –2

41

Elongation of bar due to tensile load PL/AE AE/PL Strain /Stress du/dL PL/AE

42

Elongation due to own  weight  WL/AE PL/AE 2WL/AE PLAE    WL/AE

43

Bulk  modulus  is the ratio of  stress to strain  stress to original 
length

deformation to 
original length

Direct stress/ volumetric 
strain 

Direct stress/ volumetric 
strain 

44

Lateral strain is the ratio of Change dia /Original dia Change in width / 
Original width

Change in 
depth/Original depth

All the given options                                                              All the given options                                                              

45

The value of possion’s ratio always remains . greater than one less than one equal to one zero less than one



46

Unit of stress is KN N/m2 KN. mm2 KN/mm N/m2 

47

Types of primary strains are 3 2 Linear strain 4 3

48

The property of a material which allows it to be drawn into a smaller section is 
called

plasticity elasticity ductility malleability ductility

49

The ratio of the moment of inertia of a circular plate and that of a square plate for 
equal depth, is

less than one equal to one  more than one equal to 3π/16 equal to 3π/16

50

As compared to uniaxial tension or compression, the strain energy stored in 
bending is only

1\2 1\5 1\4 1\3 1\3

51

The ratio of elongations of a conical bar due to its own weight and that of a 
prismatic bar of the same length, is

1\2 1\5 1\4 1\3 1\3

52

The maximum twisting moment a shaft can resist, is the product of the 
permissible shear stress and

polar modulus moment of inertia polar moment of 
inertia

modulus of rigidly. polar modulus

53

A three-hinged arch is said to be  a bent beam statically 
indeterminate structure

statically determinate 
structure

column statically determinate 
structure

54

for a given load(P), if area increases length increases stress increases stress decreases length decreases stress increases

55

bulk modulus (K) of a body is given by K =E/(3(1-2µ)) K =(3(1-2µ))/E K =E/(3(1+2µ)) K =(3(1+2µ))/E K =E/(3(1-2µ))

56

Change in volume /original volume Linear strain Lateral strain Volumetric strain strain Volumetric strain

57

The elongation of a bar due to its own weight WL/3E WL/E WL/2E 2E/WL WL/2E

58

Elongation of bar due to tensile load PL/AE        AE/PL P/AE PA/LE PL/AE



S.No. Questions opt1 opt2 opt3 opt4 Answer

1 If a cantilever beam is subjected to a point load at its free end then the shear
force under  the point load is zero

less than the 
load equal to the load more than the load 

equal to the
load

2 The bending moment at the free end of a cantilever beam carrying a
uniformly distributed load is zero minimum maximum equal to the load. zero

3
The B.M. at the centre of a simply supported beam carrying a 
 uniformly distributed load is

wl wl/2 wl2/4 wl2/8 wl2/8

4
A simply supported beam AB of span (l) Carries a point load (w) at a
distance from the left end A, such that a<b. The maximum deflection will
be at C

between A and
C between C and B

any where 
between A and B

between C and
B

5
The point of contra flexure is a point where shear force ______

changes
sign

shear force is
maximum

bending moment 
is maximum zero changes sign

6 A simply supported beam carriers a point load at its centre. The slope at its
supports is  Wl2/16EI WI3/16EI WI2/48EI WI3/48E Wl2/16EI

7
A simply supported beam of span (l) is subjected to a uniformly distributed
load of (w) per unit length over the whole span. The maximum deflections
at the centre of the beam is 5wl5/48EI 5wl4/96EI 5wl4/192EI 5wl3/384EI 5wl3/384EI

8
Two simply supported beams of the same span carry the same load.  If 
the first beam carries the total load as a point load at its centre and the 
other uniformly distributed over the whole span then ration of maximum 1:01 1.1.5 1.5:1 d. 2:1 1.5:1

9  A simply supported beam of span L carries a uniformly distributed  
 load W per m length.  The maximum bending moment M is WL/2 WL/4 WL2/8 WL/12 WL2/8

10 A simply supported beam of span L carries concentrated load W at its 
 mid-span.  The maximum bending moment M is WL/2 WL/4 WL/8 WL/12                                WL/4

11 A simply supported beam carries two equal concentrated loads W at 
 distances L/3 from either support. The maximum bending moment M is WL/3 WL/4 SWL/8 3WL/12      WL/3

12
The shape of the bending moment diagram over the length of a beam, 
having no external load, is always

linear parabolic cubical circular linear

13
The shape of the bending moment diagram over the length of a beam,   
carrying a uniformly distributed load is always

linear parabolic cubical circular parabolic

UNIT II          STRESS, STRAIN AND DEFORMATION OF SOLIDS



14
The shape of the bending moment diagram over the length of a beam,  
carrying a uniformly increasing load is always

linear parabolic cubical circular cubical

15 For a simply supported beam with a central load, the bending moment    
 is 

least at
the centre

least at the
supports

maximum at the
support

maximum at the 
centre

maximum at 
the centre

16 For a cantilever with a uniformly distributed load W over its entire    
 length L, the maximum bending moment is WL ½ WL 1/3 WL ½ W2L                                           ½ WL

17 A cantilever beam carrying point load W on its free end, the maximum
bending moments is WL/4 WL WL/2 WL/3 WL

18
The bending moment is maximum on a section where shearing force 

is
maximum is minimum is equal changes sign changes sign

19
  A beam is said to be of uniform strength, if 

B.M. is
same
throughou

Shear stress is
same
throughout the 

Deflection is
same throughout
the beam

Bending stress is 
same at every 
section along its 

Bending stress 
is same at 
every section 

20 In a continuous bending moment curve the point where it changes sign, is 
called

point of
inflexion

point of contra
flexture

point of virtual
hinge all the above           all the above           

21
Pick up the correct assumption of the theory of simple bending

The value
of the
Young’s 

Trverse section
of a beam
remains plane 

The material of
the beam is
homogeneous and All the above All the above

22
Along the neutral axis of a simply supported beam

fibres do
not
undergo 

fibres undergo
minimum strain

fibres undergo
maximum strain undergo shear

fibres do not
undergo strain

23
In a loaded beam, the point of contraflexure occurs at a section where 

bending
moment
is 

bending
moment is
zero or 

bending moment
is maximum

shearing force is 
maximum

bending
moment is zero
or changes sign

24
In a beam, the neutral plane 

may be at
its centre

passes through
the C.G. of the
area of cross-

does not change
during
deformation none of these

does not
change during
deformation

25
The point of contra flexure occurs in 

cantilever
beams
only

continuous
beams only

over hanging
beams only B and  C only                                         B and  C only                                         

26  For a beam with rectangularsection ,the ratio of maximum shear stress  
 to average shear stress is   a.2 : 1 b.1.5 : 1 c.3 : 2 d.4:3                                          b.1.5 : 1

27
loaded beam, the point of contraflexure occurs at a section where 

bending
moment
is 

bending
moment is
zero or 

bending moment
is maximum

shearing force is 
maximum 

bending
moment is zero
or changes sign



28
The moment carrying capacity of any beam section is  proportional to its  

moment
of inertia flexural rigidity

principal moment 
of inerctia section modulas                                                                   flexural rigidity

29
Bending moment is equal to

Force X 
load

Force X
distance

Distance X
Seconds                                          

Moment x 
distance                               

Force X
distance

30 The moment diagram for a cantilever whose free end is subjected to a   
 bending moment, will be a triangle rectangle parabola cubic parabola rectangle

31 The moment diagram for a cantilever which is subjected to a     
 uniformly distributed load will be a triangle rectangle parabola cubic parabola parabola

32 The moment diagram for a cantilever carrying concentrated load at its 
 free end, will be triangle rectangle parabola cubic parabola triangle 

33 Shear force for a cantilever carrying a uniformly distributed load over its      
 whole length, is triangle rectangle parabola cubic parabola rectangle

34 .If the shear force along a section of a beam is zero, the bending 
 moment at the section is zero maximum minimum

average of 
maximum 
–minimum maximum

35
Hooke’s law states that stress and strain are 

directly
proportion
al

inversely
proportional curvilinear related none of these 

directly
proportional

36
determine all 1the reactive forces at the supports, the structure is said 
to be determinat

e
statically
determinate

statically
indeterminate none of these 

statically
indeterminate

37
elements at the supports. These can be determined by using the 
following fundamental equation of statics

∑H = 0 ∑V= 0 ∑H = 0 ; H = 0
d).  ∑H = 0 ; ∑V 
= 0; ∑ M = 0

d).  ∑H = 0 ; 
∑V = 0; ∑ M = 
0

38
A bending moment may be defined as : Arithmetic 

sum of
the 

Arithmetic
sum of the
moments on 

Algebraic sum of
the moments of
all the forces on 

Arithmetic sum of 
the forces on 
either side of the 

Algebraic sum
of the
moments of all 

39
section, the shear force F and bending moment M at a section are 
related by

F = My/I  F = M/Z F = dM/dx F = ∫Mdx F = dM/dx

40
. A simply supported beam of span L carries a uniformly distributed   
load W per meter length and point load W.  The maximum bending 

 moment M is WL/2 WL/4 + WL2/8 WL/8 WL/12 WL/4 + WL2/8

41
The shape of the bending moment diagram over the length of a beam,    
carrying a uniformly distributed load is always

linear parabolic cubical circular linear



42
The section modulus of a rectangular section is proportional to 

area of
the section

square of the
area of the
section

product of the
area and depth

product of the are 
and width                                               

area of the
section

43 For a cantilever with a uniformly distributed load w N/m length and point 
load at its free end  , the maximum bending moment is a) WL b) ½ WL +WL c) 1/3 WL ½ W2L b) ½ WL +WL

44 S1 :Moment is equal to product of force and distance
       S2 : Moment is zero at point of contraflexure 

S1 is
correct                                   S2 is wrong

Both S1 & S2 are
correct

Both S1 & S2 are 
correct                

Both S1 & S2
are correct

45
S1 : Sagging moment is negative moment
       S2 : Hogging moment is positive moment S1 is

correct                                   S2 is wrong
Both S1 & S2 are
correct

Both S1 & S2 are 
correct                

Both S1 & S2 
are correct                

46
.Match the following
         a.  Simply supported                     1. One end Fixed other end free
         b. Cantilever                                  2.both ends are simply supported

a – 1 , b –
2 , c – 3 ,
d – 4

a – 2 , b – 3 , c
– 1 , d – 4              

a – 2 , b –1 , c –
4 , d –3

a – 3 , b – 4 , c – 
4 , d –1

a – 2 , b –1 , c
– 4 , d –3

47 If the member is subjected to a uniform bending moment(M), the radius of 
curvature of the deflected form of the member is given by M/R=E/I M/I=R/E M/I=E/R M/E=RL M/I=E/R 

48 bending stress is maximum at a point, which is ______ distance from the 
neutral axis zero constant maximum distance minimum distance maximum 

distance

49 if the beam is subjected to point load , then the B.M diagram is drawn with straight 
line cubic curve parabolic curve uniformly varying 

staight line

uniformly 
varying staight 
line

50 in pure bending beam is assumed to bend with 
R is not 
constant 
over 

R is constant 
over the 
thickness

R linearly varies 
along the 
thickness

R=0
R is constant 
over the 
thickness

51 bending moment will vary in __________ from neutral axis to any layer linear line parabolic curve cubic curve any linear line

52 for a simply supported beam point of contraflexure occure at 
mid-point

occure at the 
support does not occure at L/3 does not occure

53 at the free end of any beam shear force will be maximum minimum zero depend on point 
load

depend on 
point load

54 maximum B.M occure at a point where
shear 
force is 
maximum

shear force is 
minimum

shear force 
changes sign

shear force is not 
zero

shear force 
changes sign

55 in pure bending of beam, strength of the beam can be increased by 
increasing 

young's 
modulus

modulus of 
rigidity length radius of curvature young's 

modulus



56 A simple supported beam of span (L) carries a uniformly distributed load 
over the whole span. The bending moment diagram will be

a 
rectangula

r
a traingular parabolic cubic parabolic

57 The point of  contra-flexure occurs only in continuou
s beams cantilever beam overhanging 

beams
simply supported 

beams
overhanging 

beams

58 A sinply supported beam carries a uniformly distributed load of w N per 
unit length over the whole span(L). The shear force at the center is wL/2 wL/8 wL/4 zero zero

59
The B.M. at the centre of a simply supported beam carrying a point 
load(W) is wl wl/4 wl2/4 wl/8 wl/4



S.No. Questions opt1 opt2 opt3 opt4 Answer

1 Torque transmitted by a solid shaft of diameter (D), when subjected to a shear
stress( τ)is equal to л/16 x τ x D2 л/16 x τ x D3 л/32 x τ x D2 л/16 x τ x D3 л/32 x τ x D2

2 A shaft revolving at r.p.m. transmits torque (T) in kg. m. The power
developed is 2 л NT kW 2 л NT /30(kW) 2 л NT /60(kW) 2 л NT /120(kW) 2 л NT /60(kW)

3
Polar moment of inertia of a solid shaft of diameter (D) is л/16 x D2 л/16 x D4 л /32 x D3 л /32 x D4      л /32 x D4      

4 When a solid shaft is subjected to torsion the shear stress induced in the shaft
at in centre is, Zero Minimum maximum average Zero

5 Strain energy stored in a hollow shaft of external diameter D and internal
diameter (d) when subjected to a shearing stress (τ) is equal to τ2/C(D2+d2/D) τ2/4C(D2+d2/D) τ2/C(D2-d2/D) τ2/4C(D2-d2/D) τ2/4C(D2+d2/D)

6
In a leaf spring, maximum bending stress developed in the plates is Wl/nbt2 2Wl/nbt2 3Wl/nbt2 3Wl/2nbt2 3Wl/2nbt2 

7
The maximum deflection at the centre of a leaf spring is σb l/Et σb l/2Et2 σb l/3Et2 σb l/3Et2 σb l/3Et2

8
When a closely coiled spring is subjected to an axial load, it is said to be under bending Shear torsion all of these torsion

9 The deflection of a closely coiled helical spring of diameter (D) subjected to
an axial load (W) is  64 WR3 n/Cd4  64 WR2 n/Cd4 64 WR n/Cd4 64 WRn2/Cd4  64 WR3 n/Cd4

10 The law which states that within elastic limits strain produced is proportional
to the stress producing it, is known as Bernoulli’s law Stress law Hooke’s law Poisson’s law                                                     Hooke’s law

11 When equal and opposite forces applied to a body, tend to elongate it, the
stress so produced, is called shear stress 

compressive
stress Direct stress all the above Direct stress

12
In a leaf spring, maximum bending stress developed in the plates is Wl/nbt2 2Wl/nbt2 3Wl/nbt2 3Wl/2nbt2 3Wl/2nbt2 

13
The maximum deflection at the centre of a leaf spring is σb l/Et σb l/2Et2 σb l/3Et2 σb l/3Et2 σb l/3Et2

14
When a closely coiled spring is subjected to an axial load, it is said to be under bending Shear torsion all of these torsion

15 The deflection of a closely coiled helical spring of diameter (D) subjected to
an axial load (W) is     64 WR3 n/Cd4 64 WR2 n/Cd4 64 WR n/Cd4 64 WRn2/Cd4 64 WR3 n/Cd4

16
The shear stress at any section of a shaft is maximum

At the centre of the 
section

At a distance r/2 
from thecentre

At the top of the 
surface

At a distance 3/4r 
from the center At the top of the surface

UNIT III        BEAMS - LOADS AND STRESSES



17
The following assumption is not true in the theory of pure torsion

The twist along the 
shaft is uniform

The shaft is of 
uniform circular 
section

c/s is plane 
before twist 
remins plane 

all radii get 
twisted due to 
torsion                 

all radii get twisted due to 
torsion                 

18
In a shaft shear stress intensity at a point is not

directly proportional 
to the distange from 
the axis

inversely 
proportional to 
the distance from 

inversely 
proportional to 
the polar M.I.

directly 
proportional to 
the applied torque  

inversely proportional to 
the distance from the axis

19 The maximum twisting moment  a shaft can resist,is  the permissible shear 
stress and  moment of inertia

polar moment of 
inertia polar modulus

modulus of 
rigidity                                         polar modulus

20 A shaft turning 150 r.p.m. is  subjected to a torque of 150 kgm. Horse power 
transmitted by the shaft is π 10 π π2 1/  π                                                                          10 π

21 A shaft 9m long is subjected to a torque 30 t-m at a point 3m distant from 
either end.The reactive torque at the nearer end will be 5 tonnes meter 10 tonnes meter 15 tonnes meter 20 tonnes meter            20 tonnes meter            

22 If a shaft is simultaneously subjected  to a torque T and a bending moment M, 
the ratio of maximum  bending stress and shearing stress is M/T T/M 2M/T 2T/M        2M/T

23 A member which does not regain its original shape after  removal of  load 
producing deformation is said plastic elastic rigid none of the above    plastic

24
Strain energy  of any member may be defined as work done on it to deform it 

to resist  
elongation

to resist 
shortening all the above         all the above         

25 S1: Torque is a twisting moment, S2: When a solid shaft is subjected to 
torsion,the shear stress induced in the shaft at is center iszero S1 is right S2 is wrong

S2 is right S1 is 
wrong

Both S1 & S2 
are right

Both S1 & S2 are 
wrong                                                                            
                                                        Both S1 & S2 are right

26
S1:Unit of torque is KNM, S2:Moment unit is KN S1 is right S2 is wrong

S2 is right S1 is 
wrong

Both S1 & S2 
are right

Both S1 & S2 are 
wrong                                                   S1 is right S2 is wrong

27
The following assumption is not true in the theory of pure torsion 

The shaft is of 
uniform circular 
section throughout

Cross-section of 
the shaft, which 
is plane before 

All radii get 
twisted due to 
torsion.

The twist along 
the shaft is 
uniform

All radii get twisted due to 
torsion.

28 S1:Helical spring are also called torsion spring, S2:Bending spring and 
Tension spring are two type of spring S1 is right S2 is wrong

S2 is right S1 is 
wrong

Both S1 & S2 
are right

Both S1 & S2 are 
wrong S1 is right S2 is wrong

29
Choose the correct abbreviation Moment of inertia - I

Radius of 
gyration - Y

Max bending 
moment - B Shear - S Moment of inertia - I

30
Joule is the unit of Work force power energy Work

31
the safe twisting moment for a compound shaft is equal to the 

maximum calculated 
avlue

minimum 
calculated avlue mean value extreme value minimum calculated avlue

32 the ratio of the maximum shear stress to maximum normal stress at any point 
in a solid circular shaft is 1 0-Jan 2 3-Feb 1

33
the torsional rigidity of a shaft is expressed by the

maximum torque it 
can transmit

number of cycle 
it undergoes 
gefore failure

elastic limit upto 
which it resists 
torsion, shear 

torque required to 
produce a twist of 
one radian per 

torque required to produce 
a twist of one radian per 
unit length of shaft

34
strain energy stored in a solid circular shaft is proportional to 

GJ(torsional rigidity 
of shaft) 1/GJ (GJ)2 1/(GJ)2 1/GJ



35 The value of shear stress which is induced in the shaft due to the applied 
couple varies

from maximum at the 
centre to zero at the 
circumfrence

from zero at the 
centre to 
maimum at the  

from maximum 
at the centre to 
minimum at the 

from minimum at 
the centre to 
maximum at the 

from zero at the centre to 
maimum at the  
circumfrence 

36 A key is subjected to side pressure as well at shearing forces. These pressure 
are called bearing stresses fatigue stresses crushing stress resultant  stresses bearing stresses

37 in a belt drive, the pulley diameter is doubled, the belt tension and pully width 
remaining same. The changes required in key will be increase key length increase keydepth

increase key 
width

double all the 
dimensions increase key width

38
Shear stress induced ina shaft subjected to tension will be

maximum at periphery 
and zero at centre

maximum at 
centre

uniform 
thoughout none of the above none of the above

39
in the design of pully, Key and shaft

all there are designed 
for same strength

key is made 
weaker link

pulley is made 
weaker

shaft is made 
weaker key is made weaker link

40 the elongation produced in a tapered shaft with end diameters d1,d2 due to 
tensile or compressive axial load is proportional to d1+d2 1/d1+d2 d1*d2 1/d1*d2 1/d1*d2

41
units of strain are dimensionless cm/cm kg/cm2/cm kg/cm dimensionless

42
a cylindrical bar of L metres deforms by l cm. The strain in bar is l/L 0.1l/L 0.01l/L 100l/L 0.01l/L

43 A composite bar made of steel and copper is heated up. The stresses 
developed in steel and copper will be

compressive and will 
be 

compressive and 
bending 

bending and 
tensile

tensile and 
compressive tensile and compressive

44 Two solid shafts are made of same material and have their dimeters D and 
D/2. The ratio of strength of bigger shaft to smaller one in torsion is 4 2 8 16 8

45 The strain energy stored in a  hollow shaft of outer and linner diameters D 
and d subjected to shear stress Ss and having modulus of rigidity C is equal to

S2s/4c(D2-
d2/D)*volume

S2s/2c(D2-
d2/D)*volume

Ss/4c(D2-
d2/D)*volume

S2s/4c(D2-
d2/D2)*volume S2s/4c(D2-d2/D)*volume

46 compare the strengths of solid and hollw shaft having inside diameter of D/2 
in torsion. The ratio of strength of solid to hollow shafts in torsion will be 0.5 0.75 15/16 0.25 15/16

47
Torsion bars are in series

if same torque acts in 
each

if they have 
equal angles of 
twist and an are not possible

if their ends are 
welded together if same torque acts in each

48 100 kW is to be transmitted by each of two separate shafts. A is turning at 
250 rpm and B at 300 rpm. Which shaft must have greater diameter A B

Both will have 
same diameter unpredictable A

49
torsionla rigidity of a solid circular sfaht of diameter 'd' is proportional to d d2 1/d2 d4 d4

50 the elongation of a close colid helical spring subjected to tensile load is 
proportional to

mean diameter of 
spring 

reciprocal of 
length of spring 

diameter of wire 
of coil

shear modulus of 
the material or 
spring mean diameter of spring 

51 the minimum thickmess of a fiange forged at the end of shaft is determined by 
the 

compresion between 
two flanges

tightening of 
bolts

fact that it must 
be sufficient to 
prevent the shaft 

any one of the 
above

fact that it must be 
sufficient to prevent the 
shaft from shearing out of 

52
torsion bars are in parallel

if same torque acts in 
each

if they have 
equal angles of 
twist and an are not possible

if their ends 
connected together

if they have equal angles of 
twist and an applied torque 
apporioned between them



53
proof load for springs is the maximum load that it can undertake

without producing 
permanent 
deformation in spring upto elastic limit upto yield point

to straighten fully 
the leafs of a 
carrrage spring

without producing 
permanent deformation in 
spring material

54 A torsion bar with a spring constant k is cut into n equal lengths. What is the 
spring constant of each portion k/n n√k kn nk nk

55
two idetical spring of spring constant k in series are attached in series with a 
parallel combination of two indentical springs of spring constant k. The 
overall equivalent spring constant is 2.5 k 1.25 k 0.4 k 0.75 k 0.4 k

56 Two identical leaf spring of spring constant k are attached at free end by a 
spring of spring constant of combination is 2.5 k 1.5 k 0.4 k 0.75 k 1.5 k

57 if D be the diameter of coil of a close colied helical spring and total angle of 
twist in full length be Φ, then deflection of spring is equal to DΦ (D/2)θ 2DΦ DΦ2 (D/2)θ

58
A coil is cut into two halves, the stiffness of cut coils will be double half same something else double

59
A hollow shaft of same cross-section ared as solid shaft transmits same torque less torque more torque

more or less 
depending on 
external diameter more torque

60
Torque in a solid shaft of diametre d and shear strength of Ss is given by π/Ss*d3 (π/16)*Ss*d3 πd4/16 πd3/32 (π/16)*Ss*d3



S.No. Questions opt1 opt2 opt3 opt4 Answer

1
The ratio of the effective length of a column 
and minimum radius of gyration of its cross 
sectional area, is known as

Buckling factor
Slenderne
ss ratio

Crippling 
factor Buckling stress Slenderness 

ratio

2
A vertical column has two moments of 
inertia (i.e. Ixx and Iyy ). The column will 
tend to buckle in the direction of the

axis of load
perpendic
ular to 
the axis 

maximum 
 moment 
of inertia

minimum 
moment of 
inertia

minimum 
moment of 
inertia

3 A column is known as medium size of its 
slenderness ratio is between 20 to 32 32to 120 120to160 160 to 180 32to 120

4
Euler’s formula states that the buckling load 
P for a column of length l, both ends hinged 
and whose least moment of inertia and 

p = л2EI / l2
p = л l2 / 
EI

p = лEI / 
l2 p = л2EI / l3 p = л2EI / l2

5 A long vertical member, subjected to an 
axial compressive load, is called A column A strut A tie A stanchion A column

6
A vertical column has two moments of 
inertia (i.e. Ixx and Iyy ). The column will 
tend to buckle in the direction of the

axis of load
perpendic
ular to 
the axis 

maximum 
 moment 
of inertia

minimum 
moment of 
inertia

minimum 
moment of 
inertia

7 The neutral axis of the cross-section a beam 
is that axis at which the bending stress is zero minimum maximum infinity zero

8 Euler's formula holds good only for short columns long 
columns

both 
short and 
long 

weak columns long columns

9 The object of caulking in a riveted joint is 
to make the joint

free from 
corrosion

stronger 
in tension

free from 
stresses leak-proof leak-proof

10
A steel bar of 5 mm is heated from 15° C to 
40° C and it is free to expand. The bar Will 
induce

no stress shear 
stress

tensile 
stress

compressive 
stress no stress

UNIT IV     TORSION AND BEAM DEFLECTION



11
A body is subjected to a tensile stress of 
1200 MPa on one plane and another tensile 
stress of 600 MPa on a plane at right angles 

400 MPa 500 MPa 900 MPa 1400 MPa 1400 MPa

12
Two shafts 'A' and 'B' transmit the same 
power. The speed of shaft 'A' is 250 r.p.m. 
and that of shaft 'B' is 300 r.p.m. The shaft 

greater diameter smaller 
diameter

same 
diameter greater than 100 greater 

diameter

13
The stress induced in a body, when 
suddenly loaded, is __________ the stress 
induced when the same load is applied 

equal to one-half twice four times twice

14 If the slenderness ratio for a column is 100, 
then it is said to be a __________ column. long medium short all of the given long

15 The value of Rankines constant for mild 
steel is 1\9000 1/7500 1/1600 1/750 1/1600

16
The maximum diameter of the hole that can 
be punched from a plate of maximum shear 
stress 1/4th of its maximum crushing stress 

t 2t 4t 8t 4t

17
Two closely coiled helical springs 'A' and 
'B' are equal in all respects but the number 
of turns of spring 'A' is half that of spring 

1\8 1\4 1\2 2 1\2

18 The deformation per unit length is called tensile stress compressi
ve stress

shear 
stress strain strain

19 In the torsion equation the term J/R is called shear modulus section 
modulus

polar 
modulus none of these polar 

modulus

20 Strain resetters are used to measure shear 
strain

measure 
linear 
strain

measure 
volumetri
c strain

relieve strain measure 
linear strain

21
The torque transmitted by a solid shaft of 
diameter (D) is (where τ = Maximum 
allowable shear stress)

π/4*T*D^3 π/16*T*D
^3

π/32*T*D
^3 π/64*T*D^3 π/16*T*D^3



22
When a rectangular beam is loaded 
transversely, the maximum compressive 
stress is developed on the

top layer bottom 
layer

neutral 
axis

every cross-
section bottom layer

23 The point of contraflexure is a point where shear force 
changes sign

bottom 
layer

shear 
force is 
maximum

bending moment 
is maximum bottom layer

24 The bending stress in a beam is 
__________ section modulus.

directly 
proportional to

bottom 
layer equal to zero

directly 
proportional 
to

25 In order to know whether a column is long 
or short, we must know its slenderness ratio Buckling 

factor
Crippling 
factor strain energy slenderness 

ratio

26 Resilience is the
energy stored in 
a body when 
strained within 

energy 
stored in 
a body 

maximum 
 strain 
energy 

none of the 
above

none of the 
above

27
If the depth is kept constant for a beam of 
uniform strength, then its width will vary in 
proportional to (where M = Bending 

M √M M2 M3 M

28 A concentrated load is one which acts at a point on 
a beam

spreads 
non-
uniformly 

spreads 
uniformly 
over the 

varies uniformly 
over the whole 
length of a beam

acts at a 
point on a 
beam

29 In a simple bending of beams, the stress in 
the beam varies linearly parabolica

lly
hyperbolic
ally elliptically linearly

30
The stress at which the extension of the 
material takes place more quickly as 
compared to the increase in load, is called

elastic limit yield 
point

ultimate 
point breaking point yield point

31 Pick up the correct assumption of the theory 
of simple bending

The value of the 
Young’s 
modulus is the 

Transvers
e section 
of a beam 

The 
material 
of the 

all of the given 
option

all of the 
given option

32
If Z and I are the section modulus and 
moment of inertia of the section, the shear 
force F and bending moment M at a section 

F = My/I F = M/Z F = 
dM/dx wl/12 F = My/I



33
A load which is spread over a beam in such 
a manner that it varies uniformly over the 
whole length of abeam is called uniformly 

distributed varying resulting none of the 
above varying

34 Which of the following statement is correct?
The energy 
stored in a body, 
when strained 

The 
maximum 
 strain 

The proof 
resilience 
per unit 

all of the above all of the 
above

35 Compression members always tend to 
buckle in the direction of the axis of load

perpendic
ular to 
the axis 

minimum 
cross 
section

least radius of 
gyration

least radius 
of gyration

36
The maximum tangential stress in a thick 
cylindrical shell is always __________ the 
internal pressure acting on the shell.

equal to less than greater 
than infinity greater than

37
A thin spherical shell of diameter (d) and 
thickness (t) is subjected to an internal 
pressure (p). The stress in the shell material 

pd/t pd/2t pd/4t pd/8t pd/4t

38 Principle plane is a plane on which the 
shear stress is zero minimum maximum infinity zero

39
The maximum tangential stress in a thick 
cylindrical shell is always __________ the 
internal pressure acting on the shell.

equal to less than greater 
than infinity greater than

40
A thin spherical shell of diameter (d) and 
thickness (t) is subjected to an internal 
pressure (p). The stress in the shell material 

pd/t pd/2t pd/4t pd/8t pd/4t

41 Principle plane is a plane on which the 
shear stress is zero minimum maximum infinity zero

42
The bending moment in the centre of a 
simply supported beam carrying a 
uniformly distributed load of w per unit 

zero wl2/2 wl2/4 wl2/8 wl2/8

43 When a thin cylindrical shell is subjected to 
an internal pressure, there will be

a decrease in 
diameter and 
length of the shell

an 
increase 
in 

a 
decrease 
in 

an increase in 
diameter and 
length of the 

an increase 
in diameter 
and length 



44 The point of contraflexure occurs in cantilever beams
simply 
supported 
beams

overhangi
ng beams fixed beams overhanging 

beams

45 A beam of uniform strength has
same cross-
section 
throughout the 

same 
bending 
stress at 

same 
bending 
moment 

same shear 
stress at every 
section

same 
bending 
stress at 

46
In a simple bending theory, one of the 
assumption is that the material of the beam 
is isotropic. This assumption means that the

normal stress 
remains constant 
in all directions

normal 
stress 
varies 

elastic 
constants 
are same 

elastic constants 
varies linearly in 
the material

elastic 
constants 
are same in 

47 The polar modulus for a solid shaft of 
diameter (D) is π/16*D^4 π/16*D^3 π/32*D^3 π/32*D^4 π/16*D^3

48 The extremeties of any diameter on Mohr's 
circle represent principal stresses

normal 
stresses 
on planes 

shear 
stresses 
on planes 

normal and 
shear stresses on 
a plane

normal 
stresses on 
planes at 45°

49
The bending moment of a cantilever beam 
of length l and carrying a gradually varying 
load from zero at free end and w per unit 

wl/2 wl wl2/2 wl2/6 wl2/6

50 The Rankine's theory for active earth 
pressure is based on the assumption that

the retained 
material is 
homogeneous 

the 
frictional 
resistance 

the 
failure of 
the 

all of the above all of the 
above

51
The strain energy stored in a spring, when 
subjected to maximum load, without 
suffering permanent distortion, is known as

impact energy proof 
resilience

proof 
stress

modulus of 
resilience

proof 
resilience

52
The resultant stress on an inclined plane 
which is inclined at an angle θ to the normal 
cross-section of a body which is subjected 

σ sin θ σ cos θ σ sin 2θ σ cos 2θ σ cos θ

53 The ratio of change in volume to the 
original volume is called linear strain lateral 

strain
volumetri
c strain Poisson's ratio volumetric 

strain

54 In a beam where shear force changes sign, 
the bending moment will be zero minimum maximum infinity maximum



55
The rectangular beam 'A' has length l, 
width b and depth d. Another beam 'B' has 
the same length and width but depth is 

same double four times six times four times

56
When a closely-coiled helical spring is 
subjected to an axial load, it is said to be 
under

bending shear torsion crushing torsion

57
According to Euler's column theory, the 
crippling load for a column of length (l) 
with one end fixed and the other end free is 

equal to less than more than none of the 
above less than

58
If percentage reduction in area of a certain 
specimen made of material 'A' under tensile 
test is 60% and the percentage reduction in 

the material A is 
more ductile 
than material B

the 
material B
 is more 

the 
ductility 
of 

the material A is 
brittle and 
material B is 

the 
material A is 
more ductile 



S.No. Questions opt1 opt2 opt3 opt4 Answer

1 The hoop stress is also known as 
_________ Longitudinal stress Circumferential 

stress Bending stress Compressive 
stress Circumferential stress

2
For a thin cylindrical shell of diameter d 
and thickness t, being subjected to a fluid 
pressure p, hoop stress is given by 

Pd/3t Pd/2t Pd/5t Pd/4t Pd/2t

3
For a thin cylindrical shell of diameter d 
and thickness t, being subjected to a fluid 
pressure p, longitudinal stress is given by

Pd/3t Pd/8t Pd/5t Pd/4t Pd/4t

4 For a thin cylindrical shell longitudinal 
stress is equal to _______ Hoop stress Two times the 

hoop stress
Three times 
hoops stress

Half of the 
hoop stress Half of the hoop stress

5 The hoop stress is considered as 
________ Compressive stress Bending stress Minor principal 

stress
Major principal 
stress Major principal stress

6
The hoop stress and the longitudinal 
stress act at the following angle to each 
other ______

45 degree 60 degree 90 degree 120 degree 90 degree

7
The difference between hoop stress &  
longitudinal stress For a thin cylindrical 
shell of diameter d and thickness t, being 

Pd/16t Pd/8t Pd/5t Pd/4t Pd/4t

8
The hoop strain for a thin cylindrical 
shell of diameter d, thickness t, Poisson’s 
ratio v , and being subjected to pressure 

Pd(1- v )/4tE Pd(1- 2v )/4tE Pd(1- 0.5v )/2tE Pd(1+ v )/4tE Pd(1- 0.5v )/2tE

9
The longitudinal  strain for a thin 
cylindrical shell of diameter d, thickness 
t, Poisson’s ratio v , and being subjected 

Pd(1- v )/4tE Pd(1- 2v )/4tE Pd(2- v )/4tE Pd(1+ v )/4tE Pd(1- 2v )/4tE

10
The volumetric  strain for a thin 
cylindrical shell of diameter d, thickness 
t, Poisson’s ratio v , and being subjected 

Pd(5- 3v )/4tE Pd(1- 2v )/4tE Pd(5- 4v )/4tE Pd(1+ v )/4tE Pd(5- 4v )/4tE

11 For a thin spherical shell ____ Hoop stress is only 
present

Longitudinal 
stress is two times 
the hoop stress

Hoop stress is 
equal to one half 
of the 

Hoop and 
longitudinal 
stresses are 

Hoop stress is only 
present

12
The volumetric  strain for a thin 
spherical shell of diameter d, thickness t, 
Poisson’s ratio v , and being subjected to 

Pd(5- 3v )/4tE 3Pd(1- v )/4tE Pd(5- 4v )/4tE Pd(1+ v )/4tE 3Pd(1- v )/4tE

UNIT V      ANALYSIS OF STRESSES IN TWO DIMENSIONS



13
The hoop stress for a thin spherical shell 
of diameter d, thickness t, Poisson’s ratio 
v , and being subjected to pressure p, is 

Pd/3t Pd/8t Pd/5t Pd/4t Pd/4t

14 A pressure vessel is said to be a thick 
shell, when

it is made of thick 
sheets

the internal 
pressure is very 
high

the ratio of wall 
thickness of the 
vessel to its 

the ratio of wall 
thickness of the 
vessel to its 

the ratio of wall 
thickness of the vessel to 
its diameter is less than 

15
A thin cylindrical shell of diameter (d), 
length (l) and thickness (t)is subjected to 
an internal pressure (p). The hoop stress 

pd/t pd/2t pd/4t pd/6t pd/2t

16
Two closely-coiled helical springs 'A' 
and 'B' are equal in all respects but the 
number of turns of spring 'A' is double 

one-sixteenth one-eighth one-fourth one-half one-half

17 Pressure vessels are made of _____ Non ferrous materials Sheet metal Cast iron Any of the 
given Any of the given

18 The shear stress at the centre of a 
circular shaft under torsion is zero minimum maximum infinity zero

19 Which of the following are usually called 
as thin cylinders -----______ Boilers Steam pipes Tanks All of them All of them

20 Longitudinal stress act ______ to the 
longitudinal axis of the shell Parallel Perpendicular Either of the 

given transverse Parallel

21 Thin cylinders are frequently required to 
operate under pressures upto _____ 5 MPa 15 MPa 30 MPa 250 MPa 30 MPa

22
The hoop stress of spherical shell for a 
built up edge is given by ______(n 
efficiency)

Pd/3tn Pd/8t Pdn/5t Pd/4tn Pd/4tn

23 The design of a thin cylindrical shell is 
based on _____ Internal pressure Diameter of the 

shell
Longitudinal 
stress All of these All of these

24 In order to strengthen a cylindrical shell 
against bursting force ____ is done Thickness is increased Diameter is 

increased
Wire is wound 
on the cylinder

length is 
increased

Wire is wound on the 
cylinder

25 A spring used to absorb shocks and 
vibrations is conical spring torsion spring leaf spring disc spring leaf spring



26
A closely coiled helical spring is of mean 
diameter (D) and spring wire diameter 
(d). The spring index is the ratio of

1/d 1/D D/d d/D D/d

27 Principal planes are planes of ______ Maximum shear stress Mimimum shear 
stress

Maximum 
normal stress

Zero shear 
stress Zero shear stress

28 Principal stresses are basically ______ Shear stresses Bending stresses Normal stresses None of these Normal stresses

29
The planes of maximum shear stress are 
located at the following angle to the 
principal planes ______

45 degree 60 degree 90 degree 30 degree 45 degree

30 Principal planes are separated by ______ 45 degree 60 degree 90 degree 180 degree 90 degree

31 Maximum shear stress is equal to 
________

Half the algebraic 
difference of principal 
stress

The algebraic 
difference of 
principal stresses

The sum of the 
principal stresses None of these

Half the algebraic 
difference of principal 
stress

32 When a bar of length l, width b and 
thickness t is subjected to a push of P, its

length, width and 
thickness increases

length, width and 
thickness decreases

length increases, 
width and 
thickness 

length 
decreases, 
width and 

length decreases, width 
and tickness increases

33
Mohr's circle is used to determine the 
stresses on an oblique section of a body 
subjected to

direct tensile stress in 
one plane 
accompanied by a 

direct tensile 
stress in two 
mutually 

direct tensile 
stress in two 
mutually 

all of the above all of the above

34 The radius of the Mohr’s circle indicates  
______

Maximum principal 
stress

Minimum 
principal stress

Maximum shear 
stress

Minimum shear 
stress Maximum shear stress

35 In case one principal stress is zero, the 
other principal stress is equal to___ Maximum shear stress

Two times the 
maximum shear 
stress

Three times the 
maximum shear 
stress

None of these Two times the 
maximum shear stress

36
In Mohr’s circle the tensile stress will be 
reckoned___ and will be plotted to 
_____ of the origin

Negative , right Positive, left Negative, left Positive, right Positive, right

37
In Mohr’s circle the compressive stress 
will be reckoned___ and will be plotted 
to _____ of the origin

Negative , right Positive, left Negative, left Positive, right Positive, right

38 The resultant stress makes an angle 
normal to the plane and is called ____ Slant angle Principal angle Obliquity None of these Obliquity



39 For a thin walled shell the diameter 
thickness ratio is ______ <20 >20 20 None of these >20

40 For a thick walled shell the diameter 
thickness ratio is ______ <20 >20 20 None of these <20

41 A beam encastered at both the ends is 
called simply supported beam fixed beam cantilever beam continuous 

beam fixed beam

42
If a member is subjected to an axial 
tensile load, the plane inclined at an 
angle of 45 degree to the axis of loading 

Maximum shear stress Maximum normal 
stress

Maximum shear 
stress None of these Maximum normal stress

43
The maximum shear stress induced in a 
member which is subjected to an axial 
load is equal to

Maximum normal 
stress

Half of the 
maximum normal 
stress

Twice the 
maximum 
normal stress

Thrice the 
maximum 
normal stress

Half of the maximum 
normal stress

44
If a member, whose tensile strength is 
more than two times the shear strength, 
is subjected to an axial load upto failure 

Maximum normal 
stress

Maximum shear 
stress

Normal stress or 
shear stress None of these Maximum shear stress

45
The normal stress on an oblique plane at 
an angle (t ta)to the cross section of a 
body which is subjected to a direct 

(sigma /2)sin 2 (t ta) sigma cos (t ta) sigma cos sqr (t 
ta)

sigma sin sqr (t 
ta) sigma cos sqr (t ta)

46 The load required to produce a unit 
deflection in a spring is called flexural rigidity torsional rigidity spring stiffness Young's 

modulus spring stiffness

47
The ratio of bulk modulus to Young's 
modulus for a Poisson's ratio of 0.25 will 
be

1\3 2\3 1 3\2 2\3

48 Choose the correct statement
The hoop stress in a 
thin cylindrical shell is 
compressive stress

The shear stress in 
a thin spherical 
shell is more than 

The design of 
thin cylindrical 
shell is based on 

The ratio of 
hoop stress to 
longitudinal 

The design of thin 
cylindrical shell is based 
on hoop stress

49
A water main 1m in diameter contains a 
fluid having pressure 1Mpa . If the 
maximum permissible tensile stress in 

2 cm 2.5 cm 1 cm 0.5 cm 2.5 cm

50
The circumferential strain in case of thin 
cylindrical shell, when subjected to 
internal pressure p is, ________

More than diametric 
strain

Less than 
diametric strain

Equal to 
diametric strain None of these Equal to diametric 

strain

51
In case of cylinders which have to carry 
high internal fluid pressure, the method 
adopted is to ______

Wind strong steel wire 
under tension on the 
cylinder

Shrink one 
cylinder over the 
other

Both a & b None of these Both a & b



52
If a prismatic bar be subjected to an axial 
tensile stress (sigma), the shear stress 
induced at a plane inclined at (t ta) with 

(sigma/2)sin 2q (sigma/2) cos (t ta) (sigma /2)cos sqr 
(t ta)

(sigma /2) sin 
sqr (t ta) (sigma/2)sin 2q

53
In case of biaxial state of normal 
stresses, the normal stress on 45 degree 
plane is equal to ______

Sum of normal stresses Difference of 
normal stresses

Half the sum of 
normal stresses

Half the 
difference of 
normal stresses

Half the sum of normal 
stresses

54
Circumferential and longitudinal strains 
in cylinder boiler under internal steam 
pressure are e1 and e2 respectively. 

e1+2e2 e1(e2)sqr 2e1+e2 (e1)sqr.e2 2e1+e2

55
Principal stresses at a point in plane 
stressed element are sigma(x)=sigma 
(y)= 5000 N/cm2. Normal stress on the 

0 5000 N/cm2 7070 N/cm2 10000 N/cm2 5000 N/cm2

56
A thin cylinder of radius r and thickness t 
when subjected to an internal hydrostatic 
pressure p causes a radial displacement 

du/dr (1/r). (du/dr) u/r 2u/r

57
The principal stresses sigma1, sigma2, 
and sigma3 at a point respectively are 80 
MPa, 30 MPa and -40 MPa. The 

25 MPa 35MPa 55 MPa 60 MPa 60 MPa


