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OBJECTIVES: 

To study the basic concepts of  hypersonic flows and their effects on flight vehicles 

 

UNIT I FUNDAMENTALS OF HYPERSONIC AERODYNAMICS  

Introduction to hypersonic aerodynamics, differences between hypersonic aerodynamics and 

supersonic aerodynamics, concept of thin shock layers, hypersonic flight paths, hypersonic 

Similarity parameters, shock wave and expansion wave relations of inviscid hypersonic flows. 

 

UNIT II SIMPLE SOLUTION METHODS FOR HYPERSONICINVISCID FLOWS  

Local surface inclination methods, Newtonian theory, modified Newtonian law, tangent wedge 

and tangent cone methods, shock expansion methods, approximate theory-thin shock layer 

theory. 

 

UNIT III VISCOUS HYPERSONIC FLOW THEORY  

Boundary layer equation for hypersonic flow-hypersonic boundary layers, self-similar and non 

self-similar boundary layers, solution methods for non-self-similar boundary layers aerodynamic 

heating. 

 

UNIT IV VISCOUS INTERACTIONS IN HYPERSONIC FLOWS  

Introduction to the concept of viscous interaction in hypersonic flows, strong and weak viscous 

interactions, hypersonic viscous interaction similarity parameter, introduction to shock wave 

boundary layer interactions. 

 

UNIT V INTRODUCTION TO HIGH TEMPERATURE EFFECTS  

Nature of high temperature flows, chemical effects in air-real and perfect gases- Gibb’s free 

energyand entropy-chemically reacting mixtures-recombinationand dissociation. 
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Sl. 

No. 
No. of Periods Topics to be Covered Support Materials 

UNIT – I : FUNDAMENTALS OF HYPERSONIC AERODYNAMICS 

1.  1 Introduction to hypersonic aerodynamics  

2.  1 Fundamentals of  Hypersonic aerodynamics  T [1] ,R [1] ,R [2]  

3.  2 
Differences between hypersonic aerodynamics and supersonic 

aerodynamics 

T [1] ,R [1] ,R [2]  

4.  2 Concept of thin shock layers T [1] ,R [1] ,R [2]  

5.  1 Hypersonic flight paths T [1] ,R [1] ,R [2]  

6.  1 Hypersonic Similarity parameters T [1] ,R [1] ,R [2]  

7.  1 Shock wave relations of inviscid hypersonic flows T [1] ,R [1] ,R [2]  
 

8.  1 Expansion wave relations of inviscid hypersonic flows T [1] ,T [2] ] ,R [1]  

9.  1 Objective type Questions discussion  

Total No. of Hours Planned for Unit - I 11 

   
Sl. 

No. 
No. of Periods Topics to be Covered Support Materials 

UNIT – II : SIMPLE SOLUTION METHODS FOR HYPERSONICINVISCID FLOWS 

10.  
1 Local surface inclination methods  T [2] ,R [1] ,R [2]  

 

11.  2 Newtonian theory T [2] ,R [1] ,R [2]  

12.  1 Modified Newtonian law T [2] ,R [1] ,R [2]  

13.  
1 Tangent wedge method  

14.  
1 Tangent cone method T [2] ,R [1] ,R [2]  

http://www.kahedu.edu.in/


15.  
1 Shock expansion methods T [2] ,R [1] ,R [2]  

16.  
2 Approximate theory T [2] ,R [1] ,R [2]  

17.  
1 Thin shock layer theory. T [2] ,R [1] ,R [2]  

18.  
1 Objective type Questions discussion  

Total No. of Hours Planned for Unit - II 11 

 
Sl. 

No. 
No. of Periods Topics to be Covered Support Materials 

UNIT – III : VISCOUS HYPERSONIC FLOW THEORY 

19.  1 Concept of Boundary layer equation T [2] ,R [1] ,R [2] 

20.  2 Boundary layer equation for hypersonic flow. T [2] ,R [1] ,R [2] 

21.  1 Hypersonic boundary layers T [2] ,R [1] ,R [2] 

22.  2 Self-similar and non self-similar boundary layers T [2] ,R [1] ,R [2] 

23.  2 Solution methods for non-self-similar boundary layers T [2] ,R [1] ,R [2] 

24.  1 Aerodynamic heating T [2] ,R [1] ,R [2] 

25.  1 Objective type Questions discussion  

Total No. of Hours Planned for Unit - III 10 

 
Sl. 

No. 
No. of Periods Topics to be Covered Support Materials 

UNIT – IV : VISCOUS INTERACTIONS IN HYPERSONIC FLOWS  

 

26.  

1 Introduction to the concept of viscous interaction in hypersonic 

flows 

T [1] ,R [1] ,R [2]  

27.  2 Strong viscous interactions T [1] ,R [1] ,R [2]  

28.  2 Weak viscous interactions T [1] ,R [1] ,R [2]  

29.  2 Hypersonic viscous interaction similarity parameter,  T [1] ,R [1] ,R [2]  

30.  1 Introduction to shock wave boundary layer interactions T [1] ,R [1] ,R [2]  

31.  
1 Types of Interaction T [1] ,R [1] ,R [2]  

32.  
1 Objective type Questions discussion  

Total No. of Hours Planned for Unit - IV 10 

  
Sl. 

No. 
No. of Periods Topics to be Covered Support Materials 

UNIT – V : INTRODUCTION TO HIGH TEMPERATURE EFFECTS 

33.  
1 Introduction to High Temperature effects  T [1] ,R [1] ,R [2]  

34.  
2 Nature of high temperature flows T [1] ,R [1] ,R [2]  

35.  1 Chemical effects in air T [1] ,R [1] ,R [2]  

36.  1 Real and perfect gases T [1] ,R [1] ,R [2]  

37.  1 Gibb’s free energy  T [1], T [2], R [1] 

38.  1 Gibb’s free entropy T [1], T [2], R [1] 



39.  1 Chemically reacting mixtures T [1], T [2], R [1] 

40.  1 Recombination and dissociation T [1], T [2], R [1] 

41.  
1 Objective type Questions discussion  

42.  1 Previous Year Question paper Discussion  

Total No. of Hours Planned for Unit - V 10+1 

        TOTAL PERIODS : 53 

TEXT BOOKS  

T [1] – Hypersonic and High Temperature Gas Dynamics - John. D. Anderson 

        T [2] - Hypersonic Inviscid Flow - Wallace D. Hayes, Ronald F.  
 

REFERENCES 

R [1] -  Modern compressible flows – Anderson Jr D 

R [2] - Hypersonic Aerothermodynamics – John. T Bertin, 

JOURNALS 

 J [1] - Aerospace Science and Technology - Journal - Elsevier 

 J [2] –Journal of Aerospace Engineering | ASCE Library 

 J [3] –The Aeronautical Journal - Royal Aeronautical Society 

  

UNIT Total No. of Periods  Planned Lecture Periods Tutorial Periods 

I 11 10 1 

II 11 10 1 

III 10 09 1 

IV 10 09 1 

V 09+2 09 2 

TOTAL 53 47 6 

 

 

 

 

 

I. CONTINUOUS INTERNAL ASSESSMENT : 40 Marks 

 

(Internal Assessment Tests: 30, Attendance: 5, Assignment/Seminar: 5)  

 

II. END SEMESTER EXAMINATION  : 60 Marks 

 

TOTAL    : 100 Marks 

 

 

 

 

 

         

FACULTY  COORDINATOR/   HOD /        DEAN /  

   AERO      MECH        FOE  



UNIT IV  

 

VISCOUS INTERACTIONS IN HYPERSONIC FLOWS 
 

 

 On the basis of the knowledge of the properties of stream and potential 

functions and Cauchy-Riemann equations (C-R equations) the following analysis of 

various ideal fluid flows are discussed.  Equation of stream lines        

                = constant  

       =  uy  -  vx  

Equation of potential lines       =  constant  

       =  ux  +  vy  

 

2.1 Uniform flow 

For a steady uniform irrotational flow inclined  to x-axis with a velocity U,  

u = U cos   =  d/dx = d / dy;    - v = U sin   =               =   

      =  U (x cos  +  y sin )  = constant     

(Cartesian)  

  =  U (r cos . cos  +  r sin  .sin ) 

=  U  r  cos ( - )            

(Polar)  

        =  ux+vy   x = -y tan +constant/Ucos  

     =  U ( y cos   - x sin )  = constant          

(Cartesian)     

 =  U (r sin . cos  -  r cos . sin ) 

     =  Ur sin ( - )         

(Polar) 

     =  uy  -  vx    y = x tan    +  constant / U cos  

From above, flows parallel to x and y-axes can be seen as follows.  

a)  For flows  parallel to x - axis,       =  0  

      =  Uy  + constant, stream lines are parallel to x-axis  

and  = Ux  + constant, potential lines are perpendicular to x - axis. 

b)  For flow parallel to y - axis,    = 0  

    =  Ux  + constant, stream lines are parallel to y - axis.  

d 

dy 

d 

dx 



Q 

2 

 =  -  Uy  + constant, potential lines are perpendicular to y - axis.  

2.2 Source or sink  

 

Source is a point from which fluid is emitted uniformly in all direction.  A sink  

flow is a reversed source flow and represents a fluid flow radially inwards to a point.  

Note that in either case there is only radial velocity to fluid particles.   

Strength of source / sink is defined as the volume rate of flow Q per unit depth  

per unit time. Instantaneous radial velocity at a radius   r  =  ur  =  volume rate of flow 

/ circumferential  area for unit depth i.e., ur = Q / 2r x 1  =  Q / 2r   

 

Stream and potential functions : 

Using C - R equation  

 

 ur  =  =      =     =       tan-1 (y/x) 

 

ur  =  =                  =          ln r  =       ln (x2 + y2) 

 

Stream lines of source are    = constant i.e.,           = constant   or  

 tan-1 (y/x)  = constant.  Stream lines are radial lines through origin if the 

source is at origin.  

 

Potential lines of source are    =  constant is          ln r = constant or   

ln (x2 + y2)  = constant.  Potential lines are concentric circles with centre origin 

if the source is at origin. 

The instantaneous velocities in Cartesian coordinates can also be expressed.  

 

u  =  ur  cos    =   cos   =       =  

 

v  =  ur  sin    =   sin   =       =  

 

For sink      ur   =               ;      =        =      tan-1 (y/x) 

 

          and     =      ln r   =     ln (x2  +  y2) 
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2.3 Vortex  

 

A circulatory motion of fluid about an axis perpendicular to free surface is vortex  

flow.  There is only tangential velocity to fluid particles in this case.  Flow is 

irrotational and vorticily is zero.  The tangential component of velocity u varies in 

versely as the distance from center(free vortex).  The equation for free vortex flow   u 

- r = constant and ur = 0  

 

Stream and potential functions : 

Using C - R equation 

u =    or   ur   =            =  u r     (i)  

As the circulation   of for vortex is  =  2r u at any radius r, ur = /2.   

Substituting in (i)  =    =           tan-1 (y/x) 

 

u  =           put u  = /2r 

 

    =   ln r  =     (x2 + y2)   

 

Potential lines of vortex             = constant.   

These are radial lines through origin if the vortex is at origin. 

 

Stream lines of vortex          ln r  = constant.   

These are concentric circles with center origin if the vortex is at origin. 

 

Note 1 :   The strength of vortex is defined as the circulation  of the vortex and is 

taken conventionally as positive for anticlockwise flow.  

Note 2 :  Compare stream and potential lines of source with that of vortex.  

 

2.4  Source sink combination : 

 

A source at -a and sink at + a from origin equal strengths are placed along x-axis  

forms the combination.  

Stream and potential functions : 

   =    of source + 2 of sink  

 

     =         1   - 2    =         (1 - 2) 
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1  = tan-1  [y/(x-a)]  and 2 = tan-1 [y/(x+a)] 

 

tan (1 - 2)  =    = 

 

 Stream lines of source - sink combination  are  
 

    =  constant  =        tan-1       (i) 

 

Potential lines of source - sink combination are  

 

   =  constant  =            ln  (r1 / r2 )      (ii) 

where r1
2  =  (a + r cos )2  +  (r sin )2 ;  ln r1  = ½ ln (r1

2)  

 r2
2  = (r cos  - a)2  +  (r sin )2 ;  ln r2  = ½ ln (r2

2)  

 Stream lines are circles with common chord of length 2a and with centres on      

y-axis. Potential lines are also circles with common chord and centers on x - axis as 

shown in figure.  

 

2.5  Doublet : 

 

Source and sink of numerically equal strengths are considered to approach one  

another under such a condition that the distance between them approaches zero so that 

the product of strength and distance between them has a constant value,  

i.e.,           2a  = constant,  

As 2a approaches zero i.e.,  a  o. 

Stream and potential functions of doublet : 

 From source sink combination stream function  

 

i)  as   ao      =           tan-1       
 

 

 

 

 

becomes     =       tan-1   

 

For small values of angle this is approximated to  

 

  =       =    =     

Here C is taken as the strength of doublet : 

tan1  -  tan2 

1 + tan1. tan2 
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Similarly for source sink combination the potential function also approximated to  

      =       =      by suitable approximation   

 

   =          ln     =       [ln r1
 – ln r2] 

 

As  r1
2   =  (a + r cos )2  +  (r sin)2     ln r1  = ½ ln (r1

2) 

      r2
2 = (r cos  - a)2  +  (r sin )2       ln r2  = ½ ln (r2

2)  

 

ln (1 + x)  =  x -  +   -   … 

 

ln (1 - x)  =  x -    -  -   … 

 

ln (1 - x) - ln (1 + x)   =  2x + …      Using these, simplify (lnr1 – ln r2) to get the 

above result 

 

Stream and potential lines of doublet : 

  =  constant represents the stream lines of doublet ; 

    

=  constant represents the potantial lines of doublet.   

 

Stream lines are circles with centres on y-axis and tangential to x-axis; while potential 

lines are circles with centers on x-axis and tangential to y-axis.   

 

The instantaneous velocities in polar coordinates can also expressed.  

 

 ur  =         =    +       ;     u  =  -          =  -   

 

 

Resultant velocity      U  =   ur
2 + u

2     =    

 

2.5 Source with uniform flow  

 

A source placed in the origin and uniform flow in positive x - direction has the  

stream line in the approaching uniform flow, divides at the stagnation point to two 

braches encloses the whole flow from source.  
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Potential and stream functions : 

 

        =  Ux  +             ln (x2 + y2) ½    

 

          =  Ux   +            ln (x2 + y2) 

 

          =  Ur cos   +         ln r      (i) 

 

        =  Uy   +    tan-1 (y/x) 

          =  Ur sin  +                 (ii) 

 

Stagnation point  

 This is located at x - axis putting ur = 0   

 

ur  =                                 Ur  cos +    =        =  0 

 

i.e.,       =      Ur  cos ,         r  =            cos  

 

On x-axis    =  0  or              r            cos  

The coordinates of stagnation point in Cartesian  

coordinates           ,  0  and in polar coordinates           ,      

 

The dividing line equation can be obtained by substituting the coordinates of 

stagnation point to equation of stream line (ii)  

 

  =  Ur  sin    +      

   =  U   sin   +      

 

  =           or    Uy  +      =   

 

 y   =          1  -        and   r  =   

 

The shape of the curve traced by the dividing line is called Rankine half body.  

The principal dimensions of the Rankine half body are also obtained as follows. 

at    = 0,    ymax   =         is the maximum ordinate  

at   =  /2,     y    =          is the upper ordinate at origin  

at   =  , y   =  0   leading edge (stagnation point)  x  =  
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at   =         ,   y   =      is the lower ordinate at origin 

 

Velocity at any point on Rankine half body  
 

 u   =  u1  +  u2    =   U  + 

 

 v   =  v1  +  v2    =   0  + 

 
  

 V2   =  u2  +  v2    =   U2  +         +            cos 

 
 

Pressure distribution on Rankine half body  
 

 If p is the free stream pressure and U velocity and p the pressure at any point 

on Rankine half body,  

  Cp   =     =  1  - 

 

 

         =           +   

 

The pressure coefficient on the Rankine half body surface is obtained by putting  

 
 

r = 

 

 

Cp      =     +  2 cos  

 

 The point on Rankine half body where pressure is free stream pressure is 

obtained by putting  p  =  p and solving for  yield to 113.3 degrees. 

 

2.7  Source sink combination in uniform flow  

 

 Source and sink of equal strengths are placed at -a and +a from origin along x-

axis and a uniform stream is introduced in positive x-direction  

Potential and stream functions : 

  

   =           ln r1  -          ln r2  +  Ur  cos  

 

     =        ln (r1/r2)  +  Ur cos     (in polar coordinates)   (i) 

 

     =         ln      +  Ux  (in Cartesian coordinates) 
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     =           ln       +  Ux  =     constant   

 

    =    (1 - 2)  +  Ur sin   (in Polar coordinates)   (ii) 

 

      =           tan-1    +  +  Uy  = constant  (in Cartesian coordinates)  

 

i) is the equation for potential lines and  

ii) is the equation for stream lines  

 

Dividing stream line corresponds to   =  0   

 

           tan-1        +  Uy  =  0     

 

This can be shown to be an oval known as Rankine body.  

 

Stagnation points  

 

Using C.R equation  

 

 u  =  -          =  -  U  +      - 

 

At stagnation point  u  =  0  

 

  0  =  -  U  +    - 
 

Stagnation point in x - axis where y  =  0   

 

 

  0  =  - U  +     -     
 

 

      =  -  U  +      - 
 

   

    = -  U   +    

 

 

    x   =            a2   +   

 

The stagnation point are on x-axis at     a2 +    from  origin  

 

Rankine body dimensions  

 Since at stagnation point 1  =  2  = ,    =  0  from  (ii) 
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 0  =        (1 - 2)  +  Ur sin  

 

    r    =   

 

This gives the equation to profile of Rankine body : 

 The spacing of source and sink being 2a, the half length rs of the body can be 

determined from consideration of the stagnation point S for which r1 = rs - a  rs  =  rs  

+  a.  Since the velocity at any point is the vector sum of velocities of components 

patterns the velocity at S is  

 V  = U -        +    =  0 

 

 U  -    +   =  0 

 

 rs    =   a               + 1   =    a               + 1 

  2  rs is the length of oval 

From figure for the point ‘p’  1 =  , 2 =  -    =        h  =        ( - 2) 

 

          =       -    =    -   

 h  =  a tan  

 

     =  a tan       - 

 

     =  a cot   

 

 2h is the width of oval  

 

2.8  Doublet with uniform flow : 

 

 Doublet on x axis at origin with uniform flow in the positive x - direction 

forms this configuration.  

Stream and potential functions  

     =        +  Ur sin  =       + Ux 

 

       =   U (r -        )    sin  
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       =   U   r  -                  sin  

 

where          is the cylinder radius 

 

       =                    +    Ur cos  =                      +  Ux. 

        =  U (r +          )  cos  

 

Dividing stream line is obtained by putting    =  0   

i.e.,      sin   +  Ur sin   = 0  

 

r2  =      =   

 

i.e.,    x2 + y2  =       =       

 

The circle of radius C/U  is the dividing stream line  

 

Stagnation points : 

Stagnation points are on x - axis (y = 0) at   C/U from origin.  

Doublet with uniform flow resembles the flow past a cylinder of radius C/U.   

Velocity distribution  

Using C.R equation  

 ur  =         =    Ur sin  (1-     )  

       

     =  U  cos   1 -    

       

     =   U  cos    1 -        

 

where a is the radius of cylinder  Q/2U.  For r = a,  ur = 0.   

 

This means that there is no radial velocity with in or on the cylinder surface.  

  

u  =  -    =     Ur sin  ( 1-      ) 
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       =  -  U sin    1  +    

Put   r  =  a  so that tangential velocity on the cylinder surface u  =  -  2 U sin . 

The maximum tangential velocity is when  = /2  or 3/2 i.e., on top and bottom of 

cylinder. 

 

Pressure distribution : 

a)  Cylinder in a uniform flow : 

Let the pressure on the cylinder at any point  inchined to positive x-axis be p, 

velocity there being ur  + u  =  0  - 2U sin .  Applying Bernoullis theorem to a point 

in free stream (pressure p and velocity U) and to the point on the cylinder surface  

p +         U2   =  p +          (- 2 U sin )2  

p -  p   =      U2  (1 - 4 sin2) 

Pressure co-efficient (Euler number) Cp =    at various points on the cylinder 

plotted gives the figure. 

 The points on the cylinder surface where pressure is the same as free stream 

flow are obtained by setting p = p so that 1 - 4 sin2  =  0 i.e., when  equals 30, 

150, 120, 210 and 330.  The maximum pressure occurs when 1 - 4 sin2 is 

maximum and   equals /2 or 3/2 corresponding to pressure coefficients are - 3.  

 The figure shows the distribution of the pressure coefficient.  Cp on the surface 

of the cylinder.  It is symmetrical about the axis and so this body does not offer any 

resistance to motion or there is no drag force.  For a stationary cylinder kept with its 

axis perpendicular to the flow of a fluid no lift or drag force is felt.  (D’ Alembert’s 

Paradox). 

 This aspect is, however, on the assumption that the fluid is ideal, (perfect) i.e., 

it has zero viscosity.  Due to viscous nature of the real fluids, the fluid moving ove the 

surface of a cylinder experience frictional forces which retard the flow.  Eventually, 

the flow separates over the down stream of cylinder and actual pressure distribution 

departs radically from what obtained by ideal fluid flow analysis.  This destroys the 

symmetry about the axis and drag force is setup.  

b)  Spinning cylinder in a uniform flow : 

 For a flow past a cylinder with circulation.  (or the cylinder being rotating 

about its own axis) the pressure distribution can be arrived from the ideal fluid flow 

analysis.  The force exerted in the direction of flow can be shown equal to zero.  But 
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the force exerted on the cylinder perpendicular to the flow direction in finite.  This is 

called lift force.  Thus in a uniform flow with circulation around a cylinder there is 

force only in one direction.  This is called the “Magnus Effect”. 

c)  Aerofoils : 

 The upper and lower surfaces of an aerofoil are made of different cambers for 

unsymmetrical aerofoils.  It is found that the major part of the top surface will be at a 

lower pressure than the bottom surface.  This is due to the downward curvature of the 

aerofoil surface.  The resultant pressure acting towards upper side contributes lift.  In 

aerofoils the top surface contributes the major part of the lift force than bottom 

surface.  This is because the top surface is mainly responsible for down wash of fluid.  

 In subsonic the major part of lift come from the leading edge of the aerofoil.  

An aerofoil kept in an air stream the centre of pressure has a tendency to move 

forward towards the leading edge of aerofoil from the geometrical centre of the chord.  

 The distribution of the pressure on ordinary aerofoils vary with the angle of 

attack at which it is set to the relative direction of flow.  Consequently there will be a 

movement of the centre of pressure.  It can be noticed that at a negative angle of 

incidence, and even at zero degree, the pressure on the top surface is decreased, this 

cause a loop in the pressure distribution diagram for these region of angle of attack 

(negative to zero) nose portion being pushed downwards and tail portion being pushed 

upwards for which the centre of pressure of the aerofoil is long way back.  As the 

angle of attack is slowly increased up to say stalling the centre of pressure is seen to 

move gradually forward until it is less than one third the chord length from the 

leading edge, while above stalling angle the centre of pressure beings to move 

backwards again. 

 The distribution of Cp at the middle section of an aerofoil for various angles of 

attack from negative to near stalling is shown in the figure.  The total force exterted 

on the wing  either on vacuum or on pressure side us expressed by the area of the 

diagram.  It can seen in figure that major part of the lift is caused by vacuum action on 

the tojpside of the wing.  After  =14.6 degree lift starts to decrease. 

 From the pressure distribution measurements, the total lift on a wing can be 

calculated by integration process first across the aerofoil section and then across the 

span of the wing. 

   



 

2.9 Doublet, vortex and uniform flow : 

 

 The flow pattern from left to right past a cylinder of radius a (doublet with 

uniform flow) with an addition of clockwise rotational vortex (- ) represents the flow 

past a spinning cylinder. 

 The theory of circulation on immersed bodies provides mathematical 

explanation for the occurrence of lifting forces on aerofoils and spinning balls in 

flight.  The basis of the analysis of aerodynamic forces on aerofoils is by the 

elementary analysis of flow past spinning cylinders. 

 

Stream and potential functions : 

   = 1 of uniform flow + 2 of doublet + 3 of vortex  

     =  Ur sin  -       +             ln r  

 

     =  U   1 -               r sin   +           ln r    as   C/U  =  a            (i) 

 

 =  1  of uniform flow  +  2 of doublet  +  3  of vortex 

 

=  Ur cos  +          (ii) 

 

Stagnation points  

Using C - R equation  

 ur =   =  U cos   ( 1 -          )  +  0  

  

u =  -   = - U sin  (1 +  ) +   

 On the surface of cylinder where r = a; ur = ; u = - 2 Usin  +  /2a.  At 

stagnation point both ur  + u  =  0   sin  = /4aU.  This means that according to 

the position i.e., , the value of /4aU may be negative, zero or positive (i.e., from -1 

to +1) 

 

Case 1 : For sin is a negative quantity  < 4aU. This is the situation of subcritical 

circulation.  Sine angle is negative in 3rd and 4th quadrants only.  Hence there will be 

two stagnation points on the third and fourth quadrants of circle.  
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Case 2:  For sin is zero  must be equal to zero.  This is the case of flow past a 

cylinder without circulation.  This is already discussed with 2 stagnation points on    

x-axis. 

 

Case 3:  For sin equal to 1,  = 4 aU for which there will be only one stagnation 

point at  = 3/2.  This is the situation of critical circulation. 

 

Case 4:  For sin a positive quantity other than unity >4aU.  The stagnation point 

moves out into the flow enclosing fluid inside the stream line as shown in figure. This 

is Super critical circulation.  

 

Pressure distribution  - Kutta - Joukowski theorem  

 Let the pressure on the cylinder at any point inclined  to positive x-axis be p, 

the velocity there being - 2Usin   /2a.  Applying Bernoullis theorem to a point in 

the free stream (pressure p and velocity  U ) and to the point on the cylinder surface 

(note  is taken negative as it is clockwise). 

 p  +         U2  =  P  +             -2Usin  -              2 

  

p - p  =     U2   1- 4 sin2   -          sin   -   

 

Resulting force on the elemental area (a d.1) (per unit length of cylinder) on the 

cylinder surface = (p - p)  a d 

The component of this elemental force is x-direction   =  (p - p) a cos  d 

i)   Total force is x-direction (force in negative x-direction is called drag)  

 

 

 =        (p - p) a cos d 

 

  

=        U2  1 -4 sin2  -       a cosd = 0  

 

   Drag force is zero 

 

 

As  cos d   =      cos d  =    sin =  0  
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and  sin2 . cos d =   (1 - cos2) cos d  =  (cos - cos3)d 

 

 

  =    [cos -  1/4  (3cos - cos3)] d 

 

   

= (cos - 3/4 cos  + 1/4  cos3 ) d 

 

 

=   1/4  (cos + cos3) d 

 

 

= 1/4  sin  +    =  0 

 

 

and   sin.cos d     =                sin2 d  =         

 

 

  =     -             + 

 

  = 0 

Component of this elemental force on y-direction  

  =   (p - p)  a sin d 

 

ii)     Total force in y-direction  

(force in positive y-direction is called lift) 

 

 

 =        (p - p) a sin d 
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=        U2  1 -4 sin2               sin  -           a sin d  

 

=   U2   - 4     

 

 =  -   U per unit length of cylinder. 

   Lift force    L  =  -  U 

 

 

As  sin d   =      - cos    =  0  

 

 

 

and  sin2 d =                  (1 - cos2) d =             -     sin2     =    

 

 

and  sin3 d =           sin2 sin d  =             (1 - cos2) d (cos ) 

  

 

  =  -   cos   -    =  0        

    
 

Note :  U is positive,  is negative (clockwise), lift  L becomes positive i.e., in the 

upword direction of y-axis   L  =  U. 

 

 In a flow past a cylinder with circulation (or cylinder being rotated about its 

own axis)  in ideal fluid flow analysis the force exerted in the direction of flow (drag) 

is shown to the equal to zero.  But the force exerted on cylinder perpendicular to the 

flow (lift) is finite.  Thus in a uniform flow with circulation around a cylinder there is 

force only in one direction.  This cross force which is known as the Magnus effect, is 

independent of the cylinder size.  In fact, Kutta and Joukowski each showed that the 

force is independent of the shape of the body, and in theory, is always equal to the 

product of the density, the circulation and the velocity, per unit length. 
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 In a real fluid, surface resistance and separation effects produce a finite drag 

force D.  For the development of the cross force,  L a circulatory flow of fluid in the 

region of the cylinder wall can be produced by rotation of the cylinder, which drags 

the fluid in contact around with it.  The resulting local circulatory motion, 

superimposed upon the translatory flow past the cylinder, develops regions of high 

and low velocity on the opposite sides of the cylinder and a lift force results.  This is 

one explanation of the lateral deflection during flight of tennis and golf balls which 

have a spin.  In addition, the occurrence of early separation on the low velocity side 

and late  separation on the high velocity side of the ball, results in an unsymmetrical 

wake, which may produce an appreciable lateral force.   

 The coefficient of lift CL is defined by the equation  

   D  =  CL ½ U2A 

where L = the lift force and A = the area of the projection of the object on a plane 

normal to the flow direction.  (In the case of aerofoils, the projection is conventionally 

taken on the plane of the chord.)  

 For a cylinder of unit length and diameter d,  

  Y   =    CL ½ U2d 

 

    CL  = 
 

For potential flow, L   =   U and  

 

  CL =  =          =         = 

 

where V is the circulation velocity at the cylinder surface.  

 From tests carried out on a cylinder rotating in a fluid with a surface velocity 

V, the values of CL based  on measured values  L are much lower than those 

computed for irrotational flow and it appears that the local circulation induced by 

surface drag is only half as effective as the constant circulation of irrotational flow.  

The maximum lift occurs, in practice, when V is about 4U.   

 

Drag on a circular cylinder: 

 For ideal, non  viscous flow of fluid past a circular cylinder, because of the 

flow symmetry ,the pressure at the corresponding points on the front and back of the 

cylinder  are equal.  No unbalance pressure force acts on the cylinder  and 
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consequently the pressure drag is zero.  But for real fluids viscosity effects creep in.  

Consequently the symmetrical pressure distribution is destroyed.  The flow separating 

at top and bottom of cylinder surfaces.  Beyond  the point of flow separation, eddies 

and vortices form which persist for some distance before they are finally damped out 

by viscous forces. 

 Boundary layer becomes turbulent beyond Re = 5x105 , the  separation points 

shift downstream towards rear of the cylinder and that diminishes the width of the 

wake region.   

 The flow pattern and pressure distribution on the front portion of the cylinder 

are identical both for irrotational and real flows with laminar and turbulent boundary 

layers.  The difference exists mainly on the back of cylinder.  There is acceleration of 

flow in the front portion of the cylinder and the boundary layer adheres to the surface.  

However, the adverse pressure gradient in the decelerating zone on the rear side 

affects the boundary layer growth and its eventual separation which leads to changes 

in the flow pattern.  

 At very low Re < 0.5, intertial forces are negligible as compared with viscous 

forces.  Pressure gradients  which depend on square of velocity are insignificant and 

so the boundary layer do not detach from the cylinder surfaces.  Obviously at low Re, 

skin fraction accounts for a large part of total drag.   

 At Re ranging from 2 to 40, the laminar flow separates.  The separation is 

however, symmetrical and characterized by the formation of two eddies or vortices 

which rotate in opposite directions.  Beyond the eddies the streamlines close together 

and there by limit the size of the wake.  

 For further increase in Re above 90 vortices detach from body and form 

staggered rows of uniformly spaced vortices called Karman vortices.  At greater than 

Re  =  5000 complete turbulent mixing takes place, vortices disintegrate and 

disappear.  

 Alternate spreading of vortices gives rise to pressure fluctuations which set up 

vibrations with frequency equal to that of vortex sheding.  Severe damage can thus 

result when the natural frequency of vibration of the body attains resonance with the 

frequency of vortex sheding.  Occurrence of resonance is evident in the singing of 

telephone or power wires in the wind; flutter of aircraft wings; vibrations setup in 

chimmeys and suspension bridges exposed to high winds.  



 The variation with Reynolds number of the total drag coeeficient for flow past 

a smooth cylinder and stream lined strut are obtained form several sets. Of 

experiments.  

 At any low values of Re (Re < 1) inertical effects are negligible and the drag 

force is essentially due to viscous effects.  With Re tending to zero, skin friction drag 

becomes about two third of total drag.  This flow is called creeping flow and drag is 

referred to as deformation drag ; body pushes itself through the fluid which is 

deformed by it.  The drag coefficient varies inversely with Re and is indicated by the 

straight line part of the graph.   

 With gradual growth in Re vortex trails are fully established and pressure drag 

makes a proportionately large contribution.  Slope of the curve decrease and drag – Re 

relationship deviates form straight line.  At Re  200 pressure drag account 75% of 

total drag and CD  0.95.  There-after CD  gradually increases to a steady value of 1.2 

till the boundary layer is laminar Re 105.  For 103 < Re < 105  viscous shear at surface 

of cylinder becomes insignificant; pressure drag contributes for almost whole of the 

total drag.   

 With subsequent increase in Re from 105 to 5 x 105, there is a sharp drop in the 

drag form 1.2 to 0.35.  This is due to the change of flow pattern in the boundary layer 

transition from laminar to turbulent.  Up to Re < 105, boundary layer is laminar and it 

separates at widest part of the cylinder.  Entire rear half of the cylinder is subjected to 

relatively low pressure, and the large unbalanced pressure force across the cylinder 

gives relatively high value of drag coefficient.  

 For Re > 5 x 105, transition to turbulence occurs before separation and the 

boundary layer becomes fully turbulent.  It has more capacity for mixing and absorbs 

energy from main stream than laminar boundary layer.  Turbulent being more rough it 

is less likely to separate from surfaces.    

 With increase in surface roughness, instability and transition are triggered 

sooner.  i.e., the boundary layers are forced to become turbulent at low Re and 

consequently CD diminishes.  A similar trend is evident with high turbulence levels 

which bring up early onset of turbulent boundary layers.  

 With in a range of 5 x 105 < Re > 3 x 106  CD rises to about 0.7.  There-after 

the viscous effects are relatively small and CD becomes practically independent of 

Reynolds number.  



 Compared to cylinder a stream-lined body has a considerably lower values of 

drag coefficient as shown.  

 

2.10 Alternate approach to ideal fluid flow problem using complex 

potential : 

 

With a minimum knowledge of complex variable and its properties the  

following discussions are carried out. 

 z  =  x +  iy  =  r (cos + i sin )  =  re i; 

 1/z  =  1/r (cos - i sin);  r is modulus ;  amplitude  

 If   z  =  x + iy and w  =  f (z)  =  + i  

  =  u - i v. 

 

2.11 Uniform flow 

 

a) Parallel to x- axis velocity U  

w  =  Uz   =  U (x + iy)  =    +   i  

    =  - Vy ;    =  Vx  represent potential and stream lines respectively and  = U 

= u - iv.  This means imaginary part is zero.  is u = U and v = 0 

 

b)  Parallel to y-axis velocity V 

 w  =  iVz  =  iV (x +iy)  =   +  i 

    = - Vy ;    =  Vx  represent potential and stream times respectively and  

  = iV  =  u - iv.  This means real part is zero.  i.e.,  u  = o and -v = V 

 

c) Inclined  to postivie x - axis  Velocity U  

w  =  Uze -i  =   U  (x + iy)  (cos + i sin )-1 

  =   U (x + iy) (cos - i sin ) 

  =   U   (x cos +  y sin )  +  i ( -x sin   +  y cos )  

  =     +  i 

    =  U  (x cos + y sin ) 

 =  U (r cos  cos + r sin sin )  

 =  Ur  cos ( - ) 

dw 

dz 

dw 

dz 

dw 

dz 



      =  U  (y cos + x sin ) 

 =  U (r sin  cos + r cos sin )  

 =  Ur  sin ( - ) 

 

2.12 Source or sink at origin  

 

w  =  m ln z  =    +  i  

 =  m ln (rei)  =  m ( ln r  +  i ) 

  = m ln r ;   = m  

 = (m ln z)  =     =        e-i  

 

 =   (cos - i sin) 

 =  u – iv 

 

  u  =          cos;    v   =        sin 

 

u  =        ;   v  =           r sin 

  

    =     = 

 

For sink  w  =  -m ln z will yield to  

 = - m ln r  ;    = - m  and  

u  =  -           cos ;   u  = -  sin 

 

2.13 Vortex  at origin  

 

w  =        =    + i  

  

 

 =        ln (rei)  =    (ln r  +  i) 

 

 

 =                     ln r 
 

  

   =        ;   =      ln r  
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        =          =  =     (cos  + i sin)-1  

  

 =      cos +     sin 

 

 =     u   - iv 

 

  u    =   sin ;    v  =          cos 

 

 =  u sin       =    u cos 

 

 u    =     (ur = o; but v is not zero) 

 

2.14 Source and sink combination : 

 

Source at -a from origin      w  =   m ln (z - [-a]) 

     = m ln (z + a) 

Sink at +a from origin        w    =  m ln (z - [+a]) 

     =  m ln (z - a)  

Source sink combination    w   = m ln(z+a) – m ln (z - a)  

     = m ln  

 

     = m ln  

 

     = m ln       +  i m (1 - 2) 

 

     =  + i  

    =  m ln       and   =  m (1 - 2) 

 

2.15 Source with uniform flow : 

 

Source at origin and uniform flow in positive x - direction  

w    =  m lnz  +  Uz  =  m ln rei + Urei 

 =  m lnr  + m lnei  +  Urei  

 =  m lnr  +  m i  +  Ur  (cos  + i sin ) 

 = (m lnr  +  Ur cos)  + i  (m   + Ur sin ) 

 =    +  i   
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    =  m lnr + Ur cos ;    =  m  + Ur sin  

 =    (m ln z  +  Uz)  

  

= +  U  

 

=  (cos + i sin )-1 + U 

 

=   (cos  - i sin )  + U 

=    u  - iv  

 

u  =           cos   +  U  and  v  =   sin  

 

2.16 Doublet : 

  

 Source and sink of equal strength are situated at arbitrary points on a line 

inclined  to positive x-direction at - a1  and +a1 as shown in fig such that a1  =  h 

(cos + i sin ) = h ei h being the modulus and  the amplitude. 

w of source  =  m ln (z + a1)  =  m ln (z + he i) 

w of sink  =  -m ln (z - a1)  =  - m ln (z - hei) 

w of combination = m    ln (z + hei)  - ln (z - hei) 

 

  =  m   ln  (1 +           )z  - ln ( 1 -        )z 

 

  =  m   ln  (1 +           ) + lnz - ln  (1 -        )z ) –ln z 

 

  =  m   ln  (1 +           ) - ln ( 1 -     ) 

 

  =  m   2            +           (          )3  +         (          )5   + …  

 

w   =  m   1  +   ( )2 + (     )4  +…. 

 

For doublet when h  o  while m .2h  =  ,  being a constant. 

w  =   [1 + 0 + 0 + 0 + ………..] 

 The line form - h to + h forms the axis of doublet.  When this axis coincides 

with x-axis  = 0 and ei = e  = 1 

  w of doublet with axis on x  axis is  

w   =            =   (cos   + i sin )-1   
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 =   (cos   -  i sin )   =     + i  

   =            cos  and   =  -          sin  

 

2.17 Source and sink with uniform flow : 

  

 A source and sink of equal strengths at -a and +a from origin along X-axis 

with uniform flow in the positive x - direction. 

 w  =  m ln (z + a)  - m ln (a - a) + Uz  

 =  m ln  +  Ur (cos  + i sin ) 

 

 =  m ln          + im (1 - 2) + Ur cos  + Ur i sin  

 =    + i  

 

   =   m ln           + Ur cos;    = m (1 - 2)  + Ur sin 

 

 = ml (z + z)  - m ln (z - a)  + Uz 

 

 =    -  + U  =   u  -  iv  

 

At stagnation point    u  -  iv   =  0 

 

i.e.,    -     +  U    =  0 

 

(z + a)  (z - a)     =      

 

z2     =   +a2    z  =        a2  +             =  x  +  iy 

 

This means stagnation points are at y = 0 i.e., x - axis at   a2 +      distant 

from origin. 

 

2.18 Doublet with uniform flow  

 

A doublet on at origin with uniform flow in the positive x-direction.  

 

w =        +  Uz 

 

 =      (cos  + i sin)-1  +  Ur (cos + i sin) 
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 =   (cos - i sin)  +  Ur  (cos  +  i sin) 

   

=      + i    

 

 =             cos  +  Ur cos ;  

 

  =  cos   (       +  Ur )  ;   

 

   =  -       sin + Ur sin = Ur sin    1-    

   

 =    Uz  +     =   U -    =  u - iv  

 

At stagnation point,   U  -        =  0 

  

   z  =       =  x  +  iy  

 This means the stagnation points are at y = 0 i.e., x - axis at x  =       

 distant from origin.  This is the radius of the cylinder a  =   

 

 

2.19  Doublet vortex and uniform flow  

 

A doublet at origin with a uniform flow in the positive x - direction along with a  

clockwise vortex (-) 

 

w   =            +  Uz   +    ln z 

 

 

 =   (cos  +  i sin) -1  +  Ur (cos  +  i sin)  +    ln (rei) 

 

 =    (cos - i sin)  +  Ur cos  +  i sin)  +      ln r -          

 

=    cos  +  Ur cos  -                  +  i          sin  +  Ur sin    +          lnr 

 

       =         cos     +  Ur cos     -         
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    =           sin   +  Ur sin    +    ln r 

 

     =  Ur  sin   1  -         +    ln r  

 

     =  Ur sin   1- (        )2         +      ln r 

 

     =  Ur sin   1 -        +     ln r 

 

2.20 Importance of the analysis of ideal fluid flows in practical situations. 

 

Sources and sinks are convenient mathematical concepts with no exact  

counterparts in nature, for the source involves continual creation of fluid at a point, 

the sink involves continual annihilation, and the velocities in the region of the points 

approach infinite values.  However, a radial flow to an outlet, such as an artesian well, 

may resemble the sink pattern, except in the sink’s central region of very high 

velocity.  The chief value of the concept of sources and sinks lies in the fact that, in 

combination with other simple patterns, they produce more complex patterns which 

closely resemble flow patterns occurring in nature.  

 A flow pattern in which the streamlines are concetric circles is known as a 

circular vortex.  If the fluid particles rotate as they revolve around the vortex center, 

as they do in a rotating cup of water, the vortex is said to be rotational or ‘forced’.  If 

the particles do not rotate, the vortex is irrotational or ‘free’ and it is this type which is 

now considered.  Natural occurrences which approach the condition of irrotational 

vortex, are the vortex which forms as a container is drained through an orifice in its 

base and the air vortex known as the tropical hurricane or tornado. 

 Examples of physical patterns resembling that of the source-sink combination 

are the unsteady pattern of flow produced by the motion of an elongated body through 

an initially stationary fluid and the steady pattern of percolation to a pumped well 

from a ‘recharge’ well.  In the latter case, water is pumped from a well continuously, 

for use, for example, as cooling water in an industrial plant and then returned to the 

ground through a neighboiuring well, to recharge the ground water supply.  In a 

confined aquifer, the recharge well resembles the source and the pumped well the 

sink.  However, the amount of recirculation and the pattern of flow may be affected 

by lack of uniformity of the aquifer or by a superimposed general movement of 

ground water in the region of the wells.  
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 In flow past a half body branch lines can be regarded together as the solid 

boundary of a round-nosed body such as an island or bridge pier, which extends 

downstream to a distance large compared with its width.  The upper half of the pattern 

might be regarded as a plan of the flow adjacent to a side-contraction in a wide 

channel; or, in elevation, as flow of water over a rising bed or of wind up a hillside.  

In each case, stagnation occurs in theory at S but, in fact, the central streamline may 

separate a small distance upstream, with the result that two stagnation vortices are 

formed near S.  Any streamline can be regarded as a solid boundary and the velocity 

and pressure distributions along it can be determined analytically.  

 In a doublet the pattern is that of flow issuing from a point, moving initially in 

the positive direction of the axis, spreading out to flow in the reverse direction and 

finally returning to the point.  This pattern has not exact counterpart in nature, but the 

unsteady pattern of flow produced by a cylinder moving through an otherwise 

stationary fluid corresponds to that protion of a doublet pattern which lies outside the 

cylinder boundary.  Moreover, the combination of a doublet with uniform flow yields 

the pattern of steady flow past a cylinder. 

 It is appropriate here to consider what is known as the virtual mass of a solid 

moving through a fluid.  The total kinetic energy of the solid, and of the fluid set in 

motion by it, can be regarded as the kinetic energy of a solid of the same dimensions, 

but of increased mass, the increase being known as the ‘virtual mass’. 

 For the cylinder moving with a velocity, U, through a fluid, initially at rest, the 

fluid velocity at any point has the magnitude,  

 V  =   ur
2  + u

2   =           U 

At the instant the center of the cylinder is at the origin, and the fluid at infinity is seen 

to be still at rest. 

 The total kinetic energy of the fluid per unit length of cylinder is  

 

 T1     =   ½ V2 dM 

 

 

  =  ½ V22rdr 

 

 
r2 

a2 

r2  

 
 a  

  

 
a  

  



 

  T1    = a4 U2    

 

   =   ½ a2 U2 

i.e.,  T1   =  ½ M’ U2  

where M’  = a2, the mass  of fluid with a volume equal to the cylinder volume. 

The total kinetic energy of the fluid and cylinder is  

  R  = ½  (M + M’) U2 

 In irrotational flow in which the velocity potential is everywhere single 

valued, no motion of the fluid is possible if the fluid is at rest at infinity, the interior 

boundaries are at rest and there are no singularities.  Hence if the body is brought to 

rest, the whole body of fluid will also come to rest at the same instant.  The work 

expended in stopping the body will be equal therefore to the total kinetic energy of the 

body and the fluid,  T. 

 Similarly, in accelerating or retarding the cylinder, since the work done equals 

the change in total kinetic energy, the effective mass to be considered is the actual 

mass plus the virtual mass, and the additional resistance to accelerative forces is  

 

  F’  =  M’  

  

In the case of the real fluid, the irrotational flow conditions do not apply 

absolutely and there is a time lag between the change in velocity of the body and the 

attaining of the new equilibrium motion by the fluid.  Nevertheless, the virtual mass 

effect is a physical fact.  It is an important factor to be allowed for in the moving and 

docking of ships.  
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UNIT V  

 

1 INTRODUCTION TO HIGH TEMPERATURE EFFECTS 
 

1.1   Analysis of Fluid Flow  

 

The analysis of paths of individual fluid particles is referred as ‘:Langrangian 

method’ of analysis.  The method deals with the positions, velocities and accelerations 

of individual particles, the co-ordinates of particles being variables which are 

functions of the initial positions of the particles and of time.  In the ‘Eulerian method’ 

the characteristics at a general point in the flow or for simplicity a section in the fluid 

is considered.  The co-ordinates describe a general point in the flow and they do not 

vary with time.  Instead of considering the variation of velocities and accelerations of 

particles as they follow their various paths, the velocities and accelerations of 

particles as they cross the general point is being analysed in this approach.  As an 

example of this method, the most general statement of velocity of a particle in a three 

dimensional space can be mathematically expressed as  

 

u     =     f1 (x, y, z, t) in  x - direction  

v     =     f2 (x, y, z, t) in  y - direction 

w     =    f3 (x, y, z, t) in  z - direction 

 This means that the velocity of the particle ‘u’ in the x - direction is a function 

of space co - ordinates x, y, and z and of time t while ‘v’ the velocity in y - direction 

is another function of x, y, z and t and ‘w’ the velocity in z - direction is a third 

function of x, y, z and t.  For a ‘steady flow’ the velocity at a point is not a function of 

time. 

 

 u  =  f1 (x, y, z)  

v  =  f2 (x, y, z) 

w  = f3 (x, y, z) 

 

 The acceleration in the three directions can be obtained as follows. 

   

      = u    + v      +w      + 

 

 



dv     v     v      v     v 

dt     x     y     w     t 

dw     w     w      w     w 

dt     x     y     w     t 

   u     v     w 

   t     t     t      

   u     v     w 

   t     t     t      

 

  

      = u    + v      +w      + 

 

 

     = u    + v      +w      + 

 

 In the above relation the partial differentials, of u, v, and ‘w’ with respect to  

 

t ,    ,      ,  are called ‘local accelerations’ and remaining terms on  

 

the right hand side are called ‘convective accelerations’.  For a steady flow, local 

acceleration is zero. 

 

i.e.,     =    =     =     o 

 

 

1.2   Equation of Continuity  

 

 Consider  an infinitesimal parallelepiped in the body of a fluid of sides dx, dy 

and dz.  Consider the mass flow per unit time in x-direction.  Mass entering through 

left face is        u   dy  dz  and mass leaving right face is  u +          (u)  dx   dy   dz  

where    is the mass density of fluid.  

  

  Net gain of mass in x-direction is      (u)  dx,  dy,  dz. 

 

Similarly considering y and z directions of the parallelepiped, net mass efflux  

=        (u) dx   dy  dz +          (v) dx  dy  dz  +     (w) dx  dy  dz   

 

i.e.,     =       (u)  +    (v) + (w)    dx  dy  dz  

 

 In the above case only space variation is considered.  In a most general 

approach the time gain also is to be taken into account.  

 The above relation modifies to  
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                    ( u)   +        (v)  +         (w)    dx  dy   dz +         ()  dx  dy  dz. 

 

 Net mass efflux must be zero as there is no creation of mass within the 

element.  

 

     (u)   +        (v)  +          (w)  +         () dx  dy   dz  =  0 

 

 

              ( u)   +        (v)  +         (w) +         ()   =  0   1.5 

 

This is the general equation of continuity for a fluid in motion.  

 

If the fluid is incompressible ‘’  remains constant with respect to space and 

time.  Therefore the equation simplifies to  

 

          +             +          =  0       1.6 

 

This is applicable to both steady and unsteady flow.  

 

For a steady flow of a compressible fluid the equation 1.5 can be simplified by 

assuming         = 0.   The equation becomes  

 

   u          + v      + w         +        +      +  =   0     1.7 

 

1.3   Euler’s Hydrodynamic Equations  

 

 Assumption made in this derivation are  

i) fluid is compressible  

ii) flow is frictionless i.e., flow is non-viscous. 

iii) flow is irrotational and unsteady. 

iv) body forces acting on the fluid particle remain constant.  
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  =  u          + v         + w           + 

  =  u         + v         + w           + 

In a three dimensional space consider a fluid particle.  Let the components of the  

body forces such as gravity force or magnetic force in the three directions be X, Y and 

Z respectively per unit mass of fluid.  The force acting in the x-direction pdydz from 

left side and  

 

 p  +    dydz from right side. 

 

  Net force acting in the x-direction  =  -      dxdydz     ___  (i) 

 

Mass of the parallelepiped under consideration   =    dxdydz 

By Newton’s second law of motion, force   =  mass . acceleration  

  =   dxdydz        

 

Equating (i) and (ii) and expanding  by using 1.1  and simplifying, 

 

     =  u        + v   + w         + 

      

 Total force acting in x – direction taking into account of the body force also. 

 

X         -----                  1.8 

 

Similarly in  y  and z directions  

 

Y                1.9 

 

Z                      1.10 

 

 1.8, 1.9, 1.10 are called Euler’s hydrodynamic equations in three dimensional 

space.  

 

1.4   Navier - Stoke’s  Equations  

 

Euler’s equations derived above are modified, taking into account the effect of 

viscosity of the fluid also in these equations 
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X    +      +    +       

 1.11 

 

 =   u           +  v   + w       +                1.12 

 

 

Y      +      +           + 

 

     +   u  + v     + w         +             1.12 

 

Z       +                +           +       

 

    =  u            + v    +w              1.13 

 

1.5   Equation of State  

 

This is a well known relation pertaining to the variation of the density with the  

changes of pressure and temperature.  For a perfect gass we know pv  = RT  for unit 

weight of the fluid.  And also v = 1/ 

 

    P    =    R  T  absolute units  

or        P   =  g    R  T gravitational units  

This equation can be written giving suffixes.  

 

  =           . 

 

1.6   Momentum Theory  

 

This is another form of the Newtonian analysis of force.  Newton’s second law of  

motion states that the rate of change of momentum is directly proportional to the 

external impulsive force.  Both the momentum and impulse are vector quantities.  

Therefore considering one dimensional analysis of a flow of fluid the momentum 

equation in x-direction can be written as  

  Fxdt  =  d  (MV)x  

Mass of the fluid in the elemental length ‘ds’  
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 Let ‘dFx’ be the differential force acting on an elemental length ‘ds’ of a 

streamtube of cross section ‘dA’ 

    dFx dt = d (  dA  ds V)x  

 For a steady flow of an incompressible fluid, the above equation can be 

rewritten in the following form.  

 

  dFxdt  =   dA  ds             ds   

 

   =   dA ds         Vdt 

 

 or    dFx  =  dA  ds            V 

 

   =   ds           dQ 

 

where ‘dQ’ stands for the rate of flow given by ‘VdA’ 

 For a steady flow ‘dQ’ is constant.  Hence integrating above equation between 

two points ‘1’ and ‘2’ in the streamtube.  

 

we get,     Fx  =         (Vx)1  - (Vx)2   dQ  

 Here ‘Fx’ stands for the sum of all the impulsive forces per unit time due to 

all the forces acting in x-direction and the expression on the right hand side stands for 

the resulting rate of change in the x-component of its momentum.  Similar equations 

can be formed in the case of two dimensional analysis of the flow of fluid.  

 

1.7   Energy Equation  

 

This is another name given to the law of conservation of energy.  The equation is 

derived  

by the direct application of the law of conservation of energy to a fluid flowing 

through a duct as shown in the fig. 3 

 At the section ‘1’ the total force acting is ‘p1A1’.   Assume a small interval of 

time ‘dt’.  This section moves a short distance ‘ds1’ making to do an external work on 

the moving fluid, given by the force multiplied by the distance moved.    =  p1A1 . ds1 

dVx 

ds 

dVx 

ds 

dVx 

ds 

dVx 

ds 



 Similarly at section ‘2’ external work done by the force in moving the fluid  

through ds2 is ‘p1A2 . ds2 ’ 

 As both the force and displacement in section ‘2’ are in opposite directions to  

the force and displacement in section ‘1’ vectorially the work done by the pressure 

force at section ‘2’ equals  (--p2 A2   ds2). For moving the fluid from section ‘1’ to 

section ‘2’ work must be done on the fluid by the some external agency (say by a 

prime-mover) and this work done on the fluid adds mechanical energy to it.  This 

energy is denoted by ‘M’ work units per unit weight of the fluid moving.  Consider 

also an amount of heat ‘Q’ heat units per units weight of the fluid moving transferred 

from the fluid to the surroundings.  ‘Q’ will be negative if the transfer of energy is 

into the fluid.  The weight of the fluid entering the pipe and leaving the pipe during 

the interval of time is the same, as there is steady flow through the pipe.  

    w1.  A1.  ds1    =  w2.  A2.  ds2 

 The total energy entering the pipe during an interval of time ‘dt’ is given by 

the weight of fluid entering during the interval times the sum of the potential energy, 

kinetic energy and internal energy; so too the total energy leaving.  The net change of 

energy of flowing fluid is given by,  

  

 w1A1ds1   (Z2 - Z1)  +           -  +  J  (U2 - U1) 

 

Here (Z2 - Z1) is for net potential energy,  

  

- is for net kinetic energy, 

 

and J (U2 - U1)  is for net internal energy, all being reckoned in work units.  

The net external work done by fluid and transfer of thermal energy  

 

 * w1A1ds1     -   + (M-JQ) work units  

 

 Now according to the fundamental law of conservation of energy, equating the 

work done plus transfer of thermal energy to net change of energy of flowing fluid, 

 

 w1A1ds1     -   + (M-JQ)   =   

 

 w1A1ds1       (Z2 - Z1) +   -   - + J (U2 - U1)   
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Simplifying ,  

 

 

 - +  M  - JQ   =  (Z2 - Z1) +      + J(U2 - U1) 

 This is the general energy equation for steady flow of any fluid.  

* w : is taken as the specific weight of fluid  

 

1.8   Bernoulli’s Theorem 

 

This states that the sum of the potential energy, pressure energy and kinetic  

energy of a continuously flowing fluid in a stream tube remains content at any section 

in its flow.  In the case of gases potential energy will be practically negligible 

compared to the other two as the density in very low (i.e., for unit volume  g  h   O 

since   O)  Hence in the following analysis potential energy is not taken into 

account.  

 In the fig.4 a small element of length ‘ds’ of the fluid is considered in a  

streamtube of varying cross-sectional area.  Since the elemental strip has a very small 

length, the cross section ‘A’ of the stream tube at the section considered can be 

assumed to be uniform for the length ‘ds’.  Assume that diameter of the tube is so 

small that there is no appreciable change of pressure in the section considered.  Let 

the uniform intensity of pressure acting from left be ‘p’ and (p + dp) from right.  Let 

‘V’ be the velocity of the stremlines on the elemental strip.  Due to the diference of 

pressure acting on the strip it must accelerate from ‘V’ to (V + dV) to right.  As we 

have assumed the case of a gas the weight of the moving particles can be neglected.  

Mass of fluid flowing per second = volume per sec. mass density  

    =  A  ds .  

 

Acceleration    =    

     

    =  

 

 Unbalanced external force is caused by the difference of pressure on left and  

right of the elemental strip. 

   Unbalanced force    =     p  -  (p + dp)      A 

     =  -  A  dp 

p1 

w1 
p2 

w2 
V2

2 

2g 

V1
2 

2g 

(V + dV)  - V 

dt 

dV 

dt 



 From Newton’s second law, the unbalanced external force is equal to the 

product of mass and acceleration. 

     - A  dp  =   A  ds  .  

 

i.e.,             =  ds   

 

 But,             =  V 

 

              =  V  dV 

 

 

or    V  dV  +            = O 

On integrating this,                  1.14 

       +    =  constant  

 

Case 1.  Incompressible fluid  

 Consider incompressible fluid for which we know ‘’ is constant.  

    Form  1.14,                    +   p   =  constant              1.15 

 stands for the kinetic energy known also as “reference pressure” or 

“dynamic pressure” and ‘p’ stands for the pressure energy of unit 

volume of the fluid. 

 

Case 2.  Compressible fluid  

 For a compressible fluid, the mass density is a variable depending on the 

variations of pressure and temperature.  Assume reversible adiabatic process.  

   pv 

     =   Constant   =  C  

 

i.e.,     =            1.16 

 

 In this case the integration of the terms of 1.14 is carried out taking the 

variations of ‘’ also into consideration Substituting  1.16 in 1.14 

 

   +                dp =  constant  

Integrating this, 
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   +  C          =  Constant 

 

 

Simplifying and substituting for C      from  1.16. 

 

  +  p      =  constant  
 

 

 

 

 i.e.,    +    = constant               1.17 

 

1.9   Flow Analysis :  One Dimensional Approximation  

 

 All fluid properties vary or depend up on one dimension, the distance along 

the flow.  In this type of analysis variations of properties of the flow of fluid normal to 

the direction of flow are neglected.  So long as the rate of change of properties are not 

much or changes are not rapid, one dimensional approach is accurate.  

 

1.9.1   Equation of Continuity  

 

 Consider x-direction of fluid flow.  For mass density , velocity U and area of 

cross section A  

  UA  =  constant 

Differencing   dUA  +  UA  +  UA  =  0  

 

Dividing by UA         +   +     =  0               1.18 

 

 For incompressible flow              =  0 

  

           +    =  0                   1.19 

 This is true only when the speed is not high i.e., in subsonic flow. 

 

1.9.2 Continuity Equation in Unsteady Flow  

 

 Referring fig. 5, the rate of fluid entering minus rate of fluid leaving the 

stream tube is equal to the rate of mass accumulation in the stream tube.  
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  (UA)   ds    =  -    ( s A)        as  = U 

 

    (UA)         =   -          (A)  

 

  (UA    +     (A)   =  0                1.20 

 

When the flow is steady second term vanishes and so         (UA)  = 0                     

i.e.,    UA = constant                 1.20 a 

 

1.9.3 Equation of Motion Along a Stream Line  

 

 Let velocity “v”  of fluid along a stream line at the position is the space say 

defined by “s” at time “t”. 

 v  =  function of   s  and    t 

 v  =  v  (s,t) 

 dv  =    k   ds   +      dt 

 

Rearranging            =          +   

 

  =   v       + 

 

As explained above first term is convective acceleration and second term is 

local acceleration. 

 Consider a stream line in the fluid flow as shown is fig 6.  The forces on this 

fluid element ds are its weight and pressure forces.  By Newton’s second law, mass 

times acceleration must be equal to the impressed forces.  Note that changes along 

stream line is being considered. 

 

(Ads)         + v          =  -   A          ds  +  gA ds.cos 

 

      +  v          =  -      +  g 

 

Rewritting, 
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         ds    +   vv   +          p    +  gdz   =   0 

 

or          ds    +          +       + gz     =   0 

For steady flow  

          +        + gz     =  0 

 

Along stream line,            +          +  gz   =  constant               1.21 

 

Writing this with terms of pressure,  

 

      +  p   +  gz  = constant  say , B               1.22 

The constant ‘B’ is referred as Bernoullis constant.  

Writing this with terms of energy of fluid per unit mass,  

 

  + +  gz  = constant                 1.23 

 

Writing this with terms of height (head)  

 

  +   +  z  = Constant                 1.24 

 

Assumptions of above analysis : 

i. The fluid element is only acted upon by the forces due to normal pressure on the 

ends and self weight of element, any forces on the sides of element is ignored.  

This shows that there is no shear forces for the fluid and hence the effect of 

viscosity is neglected. 

 For non-viscous, or frictionless flow the Bernoullis equation is valid i.e., ideal 

fluid flow. 

ii. As the particle is considered moving along the same stream line, the flow must 

be steady.   

iii. As the change of density is not accounted and hence the fluid is incompressible.  

iv. Bernoullis equation is applied to two adjacent stream lines when there is no heat 

transfer between them. 

v. Benoullis equation is applicable to irrotational flow field. 

(For the proof of 4th and 5th assumptions refer worked out problems) 

 Hence Bernoullis equation is only applicable when the flow is steady 
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frictionless, incompressible, irrotational and without heat transfer. 



UNIT I 

 

 FUNDAMENTALS OF HYPERSONIC AERODYNAMICS 
 

 

 Introduction to hypersonic aerodynamics. 

 Differences between hypersonic aerodynamics and supersonic aerodynamics. 

 Concept of thin shock layers. 

 Hypersonic flight paths.  

 Hypersonic Similarity parameters. 

 Shock wave and expansion wave relations of inviscid hypersonic flows. 

 

Introduction to hypersonic aerodynamics: 

The development of aeronautics and spaceflight, from its practical beginnings 

with the Wright Brothers’ first airplane flight on 17 December 1903 and Robert 

H. Goddard’s first liquid-fueled rocket launch on 16 March 1926, has been driven 

by one primary urge—the urge to always fly faster and higher. Anyone who has 

traced advancements in aircraft in the 20th century has seen an exponential 

growth in both speed and altitude, starting with the 35-mph Wright flyer at sea 

level in 1903, progressing to 400-mph fighters at 30,000 ft in World War II, transitioning 

to 1200-mph supersonic aircraft at 60,000 ft in the 1960s and 1970s, 

highlighted by the experimental X-15 hypersonic airplane, which achieved 

Mach 7 and an altitude of 354,200 ft on 22 August 1963, and finally capped 

by the space shuttle—the ultimate in manned airplanes with its Mach 25 

reentry into the Earth’s atmosphere from a 200-mile low Earth orbit. (See [1] 

for graphs which demonstrate the exponential increase in both aircraft speed 



and altitude over the past 100 years.) Superimposed on this picture is the 

advent of high-speed missiles and spacecraft: for example, the development of 

the Mach 25 intercontinental ballistic missile in the 1950s; the Mach 25 

Mercury, Gemini, and Vostok manned orbital spacecraft of the 1960; and of 

course the historic Mach 36 Apollo spacecraft, which returned men from the 

moon starting in 1969. The point here is that the extreme high-speed end of 

the flight spectrum has been explored, penetrated, and utilized since the 1950s. 

Moreover, flight at this end of the spectrum is called hypersonic flight, and the 

aerodynamic and gas dynamic characteristics of such flight are classified under 

the label of hypersonic aerodynamics. 

        The hypersonic flight regime includes atmospheric entry and re-entry, ground 

testing, and flight for both powered and unpowered vehicles. In the present Lecture 

Series, the main interest is on sustained and controlled hypersonic flight, whether for 

military or civil transport application. Even though it is not currently certified for flight, 

there is one operational hypersonic vehicle: the space shuttle of NASA. At least 20 years 

before the development of the shuttle a significant activity in hypersonic flight research 

was conducted by the US Air Force in their X-15 program. This vehicle has reached a 

flight Mach number of 6.7 on its final flight, which also used to test a hypersonic ramjet 

engine. 

 

  

 

 



   Differences between hypersonic aerodynamics and supersonic aerodynamics 

Regime 
(Mach 

number) 
(mph) (km/h) (m/s) General plane characteristics 

Subsonic  
<0.8 <614 <988 <274 

Most often propeller-driven and 

commercial turbofan aircraft with high 

aspect-ratio (slender) wings, and 

rounded features like the nose and 

leading edges. 

Transonic  
0.8–1.2 614–921 988–1,482 

274–

412 

Transonic aircraft nearly always 

have swept wings that delay drag-

divergence, and often feature designs 

adhering to the principles of the 

Whitcomb area rule. 

Supersonic  
1.2–5.0 

921–

3,836 

1,482–

6,174 

412–

1,715 

Aircraft designed to fly at supersonic 

speeds show large differences in their 

aerodynamic design because of the 

radical differences in the behavior 

of fluid flows above Mach 1. Sharp 

edges, thin airfoil-sections, and all-

moving tail plane/canards are common. 

Modern combat aircraft must 

compromise in order to maintain low-

speed handling; "true" supersonic 

designs include the F-104 Star 

fighter and 

BAC/Aerospatiale Concorde. 

Hypersonic 5.0–10.0 
3,836–

7,673 

6,174–

12,348 

1,715–

3,430 

Cooled nickel or titanium skin; highly 

integrated (due to domination of 

interference effects: non-linear 

behaviour means that superposition of 

results for separate components is 

invalid)[clarification needed], small wings, see X-

51A Waverider, HyperSoar and WU-

14 (DF-ZF). 

https://en.wikipedia.org/wiki/Speed_of_sound
https://en.wikipedia.org/wiki/Transonic
https://en.wikipedia.org/wiki/Supersonic
https://en.wikipedia.org/wiki/Airfoil
https://en.wikipedia.org/wiki/Tailplane
https://en.wikipedia.org/wiki/Canard_(aeronautics)
https://en.wikipedia.org/wiki/Combat_aircraft
https://en.wikipedia.org/wiki/Nickel
https://en.wikipedia.org/wiki/Titanium
https://en.wikipedia.org/wiki/Superposition_principle
https://en.wikipedia.org/wiki/Wikipedia:Please_clarify
https://en.wikipedia.org/wiki/Boeing_X-51
https://en.wikipedia.org/wiki/Boeing_X-51
https://en.wikipedia.org/wiki/HyperSoar
https://en.wikipedia.org/wiki/WU-14
https://en.wikipedia.org/wiki/WU-14


High-

hypersonic 

10.0–

25.0 

7,673–

19,182 

12,348–

30,870 

3,430–

8,575 

Thermal control becomes a dominant 

design consideration. Structure must 

either be designed to operate hot, or be 

protected by special silicate tiles or 

similar. Chemically reacting flow can 

also cause corrosion of the vehicle's 

skin, with free-atomic oxygenfeaturing 

in very high-speed flows. Examples 

include the 53T6 ABM-3 Gazelle (Mach 

17) anti-ballistic missile, the DF-

41 (Mach 25) intercontinental ballistic 

missile and the 

Russian Avangard hypersonic vehicle 

(Mach 20). Hypersonic designs are 

often forced into blunt 

configurations because of 

the aerodynamic heating rising with a 

reduced radius of curvature. 

Re-entry  

speeds 
>25.0 >19,181.7 >30,869.95 >8,575 

Ablative heat shield; small or no wings; 

blunt shape. 

 

Concept of thin shock layers: 

Thin Shock Layer Theory Thin shock layer theory is based on the assumption that the shock is 

very much closer to the body which in turn leads to small volume between shock and body. This 

situation is typical of very high Mach number flows over generic hypersonic configurations. In 

such situations, we can assume that, M ∞ → ∞ andγ →1. As it has been already observed that the 

shock angle and Mach angle are almost equal for hypersonic flow regime, we can express this 

fact as β θ → . For such high Mach condition within the shock layer, we will have same equation 

for shock, body and any streamline in the shock. This is the basic assumption of thin shock layer 

theory. Consider the body and the shock as shown in Fig. 19.1. Here the co-ordinate system is 

such that x axis is parallel to the shock while y axis is perpendicular to the shock. Let u and v be 

https://en.wikipedia.org/wiki/Silicate
https://en.wikipedia.org/wiki/Oxygen
https://en.wikipedia.org/wiki/53T6
https://en.wikipedia.org/wiki/DF-41
https://en.wikipedia.org/wiki/DF-41
https://en.wikipedia.org/wiki/Atmospheric_entry#Blunt_body_entry_vehicles
https://en.wikipedia.org/wiki/Atmospheric_entry#Blunt_body_entry_vehicles
https://en.wikipedia.org/wiki/Aerodynamic_heating


the components of velocity in the x and y directions respectively. Let us assume the flow to be 

two-dimensional flow for the present illustration. 

 

The momentum equation for the present coordinate system is 

2 

u p 



R y 

ρ ∂ = ∂ Since our assumptions include thin shock layer and same equation for shock, streamlines 

and body. Here, R is the local streamline radius of curvature. For the thin shock-layer 

assumptions, 



UNIT II 

 

SIMPLE SOLUTION METHODS FOR HYPERSONICINVISCID 

FLOWS 
 

1.  Show that potential lines are concentric circles and stream lines are 

radial lines for a source 

 

Potential lines,     =  constant  

      

       =             ln r   =    ln (x2 + y2) 
 

          =   ln (x2 + y2) 

 

 x2 + y2        =  e constant 4/Q  

         =  another constant  

  Potential lines are concentric circles centre  at origin if the source is at the origin, 

(0,0) and radius is square root of e constant 4/Q. 

 

Stream lines,      =   constant  

 

       =            =   tan-1 (y/x) 

 

tan   =  

 

 

    y  =   x tan    

 

           This is of the form y = mx  + o.  which is the equation for straight line through 

origin.  If the source is at origin, the slope of the line being tan (2 constant / Q). 

 

2.  Show that potential lines are radial lines and stream lines are 

concentric circles for a vortex. 

 

 It has been already stated that potential lines of source are stream lines of 

vortex and stream lines of source are potential lines of vortex.  Refer the previous 

problem for proof.  
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3.  Show that both stream lines and potential lines are circles in the case of 

source-sink pair of same strength. 

 

 A source at -a and sink at +a from origin form a source-sink pair of same 

strength.  

Stream lines,     =   1  +  (-2)  =  1  -  2  =  constant  

 

        =            (1 - 2)  =      (2 - 1)   =           

 

The locus of any point satisfying this condition is a circular are (see figure).  

The chord of length 2a subtends  on the circular arc.  Therefore stream lines are 

circles with common chord of length 2a and radius of a cosec /(Q/2).  The center is 

located at [0, -a cot / (Q/2)] 

Potential lines,   =  1  + (-2)    =             ln r1 -         ln r2 

 

   =       ln  (        )  =  constant  

 

 Equipotential lines are also circles whose radii can be shown to be equal to a 

cosech  / (Q/2)  with centre at     a coth   / (Q/2), 0    

 

 

4.  Show that stream lines are circles tangential to x-axis and potential 

lines are circles tangential to y-axis for a doublet at origin.  

 

 Stream lines of doublet   -    =  constant.   

For any point P (r, ) on the circle, the diameter of circle is r/sin.  i.e., the 

circles are tangential to x-axis. 

 Stream lines of doublet are circle with centers (0, r/2 sin) which is on y-axis and 

tangential to x-axis.  

 Potential lines of doublet   =  constant.  

Any point P (r, ) on the circle the diameter of circle is r/cos  i.e., the circle 

are tangential to y-axis.  
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r =     e 

 

 Potential lines of doublet are circles with centers (r/2 cos,  0)  which are on x-axis 

and tangential to y-axis.   

Note : Sketch the stream and potential lines of the complex potential w  =  

 

  w   =           =   (rei)-1  

  

        =            ei  =  (cos  - i sin ) 

 

        =    +  i   

 

    = constant     =           cos     

 

       =  constant    =  -         sin   

 

Potential lines are circles with centers       , 0   and radii         .  The circles 

have the centre on x-aixs and circles are tangential to y-axis.  

 

Stream lines are circles with centres   0,   and radii   .  The 

circles have the centers as y-axis and circles are tangential to x-axis.  

 

5.  A spiral vortex has potential and stream lines of equiangular spirals 

prove.  

 A combination of source and vortex of same strength at the origin produces 

the pattern of outward spiral flow  

 

 Resultant      = ln r  +           

   

  and    =     -       ln r  

For   = constant  

    ln r      =  
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This is equation for equiangular spiral.  By similar method potential lines are also can 

be proved to be equiangular spirals.  

6.  Show that source - sink pair with uniform flow will generate a 

symmetrical oval by the dividing stream line.  

 

 The stream function of source sink pair at -a and + a from origin with a 

uniform flow parallel to x-axis is shown already as  

 

    = tan-1   +Uy       (i) 

 

Dividing stream line is  = 0  i.e., only when y = 0   

 

            0    =       tan-1         +  Uy 

 

i.e.,  tan                      =      

 

cot       = 

 

x2 + y2 = a2  + 2ay cot  

  

        =   1 +       cot        (ii) 

 

The right hand side of the above equation is always positive even for negative value 

of y, as  cot (-y) . (-y)  = +ve  and  

    cot (+y) . (+y)  =  + ve  

 The oval is symmetric about y = 0 i.e.,  x-axis. 

 

This equation (ii) represents equation of oval, the stagnation points determines the  

major axis . 

 

Note :  Pattern of flow past Rankine oval become flow past a cylinder when 

source sink-pair becomes doublet.  

 

 

- 2ay 

x2 + y2 - a2 

Q 

2 

Q 

2 

- 2ay 

x2 + y2 - a2 

 2ay 

x2 + y2 - a2 

Uy2 

Q 

Uy2 

Q 

x2 + y1 - a2  

2ay 

2Uy 

Q 

2Uy 

Q 

2y 

a 
x2 + y2 

a2 



 

7.  Show that for a doublet with uniform flow the dividing stream line is a 

circle at origin.  

 

The stream function of a doublet at origin with uniform flow parallel to x-axis is  

 

          =    +  Uy 

 

 =   -  C       +  Ur sin  

  

 =  U  (r  -   ) sin  

 

 =  U  (r - ) sin  

 

where a  =  C/U ;   When  = 0  sin   =  0  only when   = 0   or   

  

  r   -     = 0 ;   r2   =  a2   i.e.,  x2  +  y2  = a2   

This is evidently a circle with centre at origin and radius of a.  Hence the dividing 

stream line  = 0  will  generate a circle at (0, 0) and radius of    C/U. 

 

 

8.  Why there should have a minimum circulation strength for (a) a 

cylinder (b) for aerofoils.  What are the limits of circulation strength.  

 

a)  Cylinder  

 At stagnation point ur = u  = 0;  -2U sin +       = 0 ;  sin   =  

 

i.         For no circulation     = 0,  sin = 0     = 0 or    There are two 

stagnation points.  (a, 0) and  (-a, 0) where a is the radius of cylinder. 

ii. When sin  is negative,   < 4aU.  There can have two stagnation points 

on cylinder depending on the above relation. 

iii. When  = -4aU i.e., when sin = -1 i.e., when  = 3/2 and stagnation 

point is single only (-a, 0). 

- Cy 

x2 + y2 

r sin  

r2 

C 

Ur 

a2 

r 

a2 

r 

  

2a 

+  

4aU 



iv. When  > 4aU (which is only of physical interest) position stagnation 

point will never be on the cylinder.  It will be in the fluid.  This causes the 

fluid motion in the space between cylinder and stagnation point. 

b)  Aerofoil  

 The magnitude of the lift is U.  This relationship, known as the Kutta-

Joukowki law, can be shown to apply not only to circular cylinders and to aerofoils 

but to any form in two-dimensional irrotational flow.  In the case of a real fluid, 

surface resistance and separation may produce effects markedly different from that 

predicted by the law but, for streamlined profiles, it is in fair agreement with 

experimental determinations for angles of attack up to about 10.  In fact this law 

forms the basis of the circulation theory of lift on aeroplane wings, the thrust of fan 

and propeller blades, and the transverse forces on unsymmetrical solid bodies, and on 

rotating balls and cylinders moving through a fluid.  The principal problem in the 

application of law is the determination of the appropriate value for the circulation, .  

In the case of the aerofoil, it is that value of  which makes the trailing edge a 

stagnation point.  

 

 

9.  Show that the slope of lift curve of a symmetrical aerofoil may be 

approximated to 2 assuming Kutta condition of flow.  

 

 Kutta condition states that the circulation developed on an aerofoil so that the 

stream lines at the trailing edge is tangential to the aerofoil    equal to  x chord x 

free stream velocity times sin where  is the angle of attack.  

 The magnitude of lift force is U as per Kutta - Joukowski theorem per unit 

length. 

Lift force  L   =   U   x length  

           =   U ( x c x U x sin) length  

 

CL     area x U2   =   U  c U sin x length  

 

CL         x  length  x  U2  =   U2   sin  x length  

 

CL  =  2 sin 

 
2 

 
2 

CL 

 



 

For small value of , the lift curve slope becomes  =            =  2  as sin     c. 

 

Note :  This result will be shown in the thin aerofoil theory. 

10.  Briefly explain the vector velocity magnitude and direction in the 

following ideal fluid flow.  

 

i. Uniform flow along x-aixs. 

ii. Source at origin 

iii. Vortex at origin  

iv. Doublet at origin. 

 

It z is a complex variable w = f (z);            = u - iv ;  |       |  = u2+v2 = V;  and               

arg |        |  =  tan-1  (       )  =   - tan-1 (     )   =   -   where  is tan-1 (     )which 

the velocity vector V makes with positive x-axis.  

 

      =  V e i ( -)  = - Ve-i and           is called the complex velocity of flow.  

 

i.  Uniform flow in x-axis direction  

    Let U the velocity is the direction w = Uz so that    =  U  =  Ue    = 0   

ii.  Source at origin  

 w  =    +  i   =   ln r  +  i            =        ln (r + i) 

 

   =  ln rei   =   ln z 

 

         =       =            e-i  

 

            =  V  =   u2 + v2   =             and arg               =        e-i      =  0   

 

iii.  Vortex at origin  

 w  =    +  i    =    ln z    =         ln rei   

 

 =  =    e-i   =   ei (/2 - ) 

 

 =    u  -  iv     =     ei(/2 - )     

 

dw 

dz 
dw 

dz 
dw 

dz 
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u 

dw 

dz 
dw 

dz 

dw 

dz 
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v 

u 

dw 

dz 



   =  cos (        -    )   +  i  sin  (         - )  

 

   =     (cos   +  i  sin ) 

 

            =  V  =  u2  +  v2   =    cos2  +  sin2          =   

 

arg  (    )  =          e/2 -     i.e.,           -       =       -   

 

    =            +    

 

iv.  Doublet at origin  
 

 w  =    = 

 

 =  =        e-2i    from which  

 

V  =     and    =  2  

 

 

11.  Obtain the stream function for a source and a sink (in two-

dimensional flow). 

 

 Show that the streamlines due to a source and sink of equal strength m, 

distance 2s apart, are circles.  A source and sink, each of strength 150m2 /sec, are 

situated at points M and N on the x-axis 8m apart with origin midway between 

them.  Taking the x-axis (excluding the portion MN)  as  = 0, find the radius of 

the circle given by  = 25m2/sec. 

 

A source is a point from which fluid is flowing out equally in all directions.  In two 

dimensions the flow is restricted to one plane and to allow for the application of the 

results to three-dimensional flow the term line source is sometimes used.  A three-

dimensional point source gives a different flow.  In the two-dimensional case, the 

radii from the source are streamlines. The total flux across any circle having the 

source as centre is equal to the entire output of the source.  This is called the strength 

 

2 

 

2 

dw 

dz 
 

2r 

 

2r 

dw 

dz 
 

2r 
 
2 

 
2 

 

2z 
 

2rei 

dw 

dz 
-  

2z2 

- 

2r2 

 

2r2 



and is denoted by m.  It has the units m2/sec.  Suppose A is on the radius chosen for 

the streamline   = 0.  The stream function for any other point P on the same circle as 

A equals the flux across the arc AP.  Its ratio to the total output equals the ratio of the 

arc to the total circumference.  Hence 

 

       =              x  total  flux  

 

 =    x  r/2r  x m 

 =  m/2       (i) 

where  is the angle POA in radians.  By convention  is restricted to the range .  

The velocity is radially outwards in direction and, at any radius r, is given by  

 u  =  total flux / circumference  =  m/2r   (ii) 

The velocity at r = 0  is infinite and this is an example of a singular point. 

A sink is a point towards which fluid is flowing equally from all directions and at 

which it is disappearing.  It can be regarded as a negative source, and thus for a 

strength m its stream function is  

 =  - m/2      (iii)  

Although sources and sinks are only theoretical concepts in themselves they may be 

used in combination with other flows to represent cases of practical interest. 

Suppose an origin 0 is taken midway between the source and sink in the given 

combination.   Take the x-axis through M, the source, and N, the sink.  Suppose P is 

any point in the plane and 1, 2 are the angles made by PM, PN with the positive 

direction of the x-axis.  Using this notation we have, from the combination  

  =  m1/2  -  m2/2  =  (m/2) (1  -  2) 

But  1, the exterior angle of the triangle PMN, equals the sum of the interior and 

opposite angle of the triangle 2 and .  Thus 1  -  2  =   

 =  m/2 

The streamlines are therefore curves for which  is constant and this condition is 

satisfied by circles passing through M and N.  The centre C of any such circle lies on 

the y-axis, and NCM (the angle at the centre) is twice NPM (the angle at the 

circumference).  Thus NCM  =  2  and OCM  = . 

 Using the numerical data we have,    = 2/m  =  2  x  25/150 

arc  AP 

circumference for circle through A 



=  /3  rad  or 60 

 

The required radius is  

 CM  = OM cosec     =  4  cosec 60 

    =  4.62 m. 

 

12.  Show how to construct (by a graphical method) the streamlines 

representing the flow of a source in the neighbourhood of a plane wall.  

Also deduce an analytical expression for the streamlines. 

 

 Suppose the wall is represented by the y-axis and the source is situated on the 

x-axis at x = s.  Any streamline can be replaced by a solid boundary since there is no 

flow across it.  In the present case, the flow due to the source alone must be modified 

in such a way that the y-axis becomes a streamline.  This is done by introducing a 

second source of equal strength at the point (-s, 0) as shown.  The streamlines for each 

source alone are radii and those for the combined flow pass through their points of 

intersection as explained (for the case of uniform flow).   The broken lines in fig. 

show the method of constructing the resultant streamlines. 

Analytically, the method is similar to that of previous problem. 

 

In the notation of fig. with sources, each of strength m, at M and N, the stream 

function at P is  

   =  m1/2  +  m2/2  =  (m/2) (1 + 2)     (i) 

If P  is the point (x, y) we have  

 tan2  =  PR / NR  =  y/(x + s) and tan 1  =  y/(x - s) 

By the trigonometrical identity for the tangent of the sum of two angles.  

 

tan (1 + 2)   =         = 

      

         = 

 

         =   

 

Substituting in (i) the required stream function is  

tan 1  + tan 2 

1 - tan 1 tan 2 

[y/(x - s)]  +  [y/(x + s)] 

1 - [y/(x - s)] [y/(x + s)] 

y(x + s)  +  y(x - s) 

(x - s) (x + s)  -  y2  

2yx 

(x2  -  y2  -  s2 



   =  (m/2) tan-1 [2xy/(x2  -  y2  -  s2)] 

 

 

13.  A line source of strength  is at the origin in an otherwise uniform 

stream of an inviscid incompressible fluid of velocity - U parallel to the x-

axis.  Write down the resulting stream function for the combined flow and 

determine the equation of the streamline which branches at the stagnation 

point. In particular, determine in terms of  and U the maximum distance 

measured parallel to the y-axis between the braches.  What is the value of 

the pressure coefficient on this streamline at the points where the y-axis 

cuts it? 

 Discuss very briefly how this solution can be used to describe the flow 

past a half-body. 

 

 The streamlines for the combined flow can be obtained graphically as shown 

in the upper half of fig.  (This does not form part of the present solution.)  The 

uniform flow (velocity - U) is from right to left and the broken lines are the 

streamlines due to the source.  There is a stagnation point on the x-axis where the 

velocity (left to right) due to the source equals that of the uniform flow.  The 

streamline   = 0 consists of the x-axis to the right of S together with two curved 

branches which meet at S and are symmetrical about the x-axis.  

 The symbol m will be retained for source strength.  Adding the stream 

functions for the uniform flow, - Uy, and the source,  

   =  -  Uy  +  m/2       (i) 

At any point having the coordinates (x, y), tan   =  y/x  and thus,  

   =  -Uy  +  (m/2) tan-1  (y/x)     (ii) 

The streamline      =  0  is given by   

 0  =  - Uy  +  m/2  or    y  =  m/2U   (iii) 

 The maximum possible value of y clearly corresponds to   =    and thus the 

maximum distance between the branches is  

 t  =  2ymax     =   2  x   m/2U  =  m/U    (iv) 

 The y-axis cuts the stream where   =  /2.  At this point  y  =  r  (the radial 

distance from the source)  and,  



sin   2 

     

 y (or r)  =  m/2U  x  /2  =   m/4U 

The corresponding velocity due to the source alone is, from (i) 

 u  =  m/2r  =  (m/2) (4U/m)  =  2U/ 

 This is a vertical velocity and, by compounding it with the horizontal uniform 

flow velocity, the resultant is given by  

 q2  =  (-U)2  +  (2U/)2  =  U2[1  +  (2/)2] 

  =   1.405 U2 

The pressure coefficient is  

 Cp   =  1  -  q2/U2  =  1 - 1.405  =  -  0.405 

The streamline  = 0 can be replaced by a solid boundary without affecting the form 

of the flow.  Thus the  flow is identical with that of an otherwise uniform stream past 

a body whose shape is that of the streamline    =  0.  The solution has also been used 

to describe the flow over a cliff due to a wind.  The boundary  = 0 contains the 

entire flow from the source which is merely a mathematical device for representing 

the effect of the body on the uniform flow.  

 

14.  A guard for supporting the strut of a wind tunnel is designed by the 

combination of a source at origin with a free stream of uniform velocity 

Uo.  Show the pressure distribution on the surface of guard is                      

p - po = ½ Uo
2    - - (         )  where p is the pressure on the surface 

and po at free stream. 

 Total stream function     =   uniform flow  +    source 

 

    U0  =  Uoy  + 

 

          =  Uo r sin   +       (i) 

 

Velocity components     ur       =           (       ) 

 

          =  Uo cos   +  

   and   u     =   -   

          =   -  Uo   sin   

Resultant velocity     U2       =   ur
2  +  u

2  

          =    Uo   cos  +    +    -Uo sin    2  

sin2 

 

m 

2 

m 

2 

1 

r 
 

 

m 

2r 
 

r 

m    2 

2r 



 

          =  Uo
2 cos2  +            +        Uo cos+Uo

2 sin2   (ii) 

 

For the solid boundary line i.e., at dividing line     =  0  

 

i.e.,       Uo r sin  +  =   0     r   = 

Substituting this in    (ii) 

  U2  =  Uo
2 cos2  +                  +       

         +  Uo
2 sin2 

 

  =  Uo
2 (cos2  +  sin2)  +  Uo

2           -    Uo
2 

 

  =  Uo
2      1  +         -   

 

Applying Bernoullis theorem  po  +  ½  Uo
2  =  p  + ½  U2  

 

 p  -  po   =  ½   Uo
2    1 -               =  ½  Uo

2          - 

 

 

15.  A source with strength 0.25m2/s and vortex with strength 1m2/s 

(anticlockwise)  are located at origin.  Determine stream and velocity 

potential.  Calculate radial and tangential velocity components at (1, 0.5). 

 

Stream function of combination         =     source  +   vortex  

       

         =          -           ln r  

         =  1/2  (0.25  -  1x ln r) 

 

Potential function of combination         =   source   +   vortex   

     

          =    m     ln r  +        

 

ur        =                 =      (0.25  -  0)  =   

 

    u       =     -  =       (0 -   =  )  = 

 

At point  (1, 0.5)      r       =        12   +   0.52        =   1.117 m 
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                  ur       =        =   0.0356 m/s 

            u      =        =  0.1425 m/s 

 

 

16.  For a source at origin in an otherwise uniform stream of a fluid of 

velocity U in the negative x-direction write down(i) the stream line which 

branches at the stagnation point (ii)  what is the maximum distance 

parallel to y-axis  between these branches (iii)  what is the value of 

pressure coefficient on this stream line at points where y-axis cuts it.  

 

i.  At any point (x, y)        =  - Uy  +     where   =   tan-1  (y/x)  

 

At dividing stream line   =  0  or Uy  =       ;   y  =   

ii.  The maximum possible value of y is when  = 2 and maximum  distance between 

branches = 2ymax  = m/U   

y axis cuts the stream line when   = /2, where the radial distance from source           

r  =  m/2U x /2 =  m/4U  

 

corresponding velocity  ur  =          =          (       ln r)  =            = 2U/   

 

The resultant velocity         V2  =  (- U)2   +                  =  1.405U2  

 

iii.    Cp  =  1  -  (V/U)2  =  1 - 1.405  =  -0.405 

 

 

17.  A two dimensional irrotational flow is produced by a source 200 m2/s in a 

stream 40 m/s together with sink of equal strength 2m down from source.  Find 

the fineness ratio of the oval represented by the dividing stream line.  

 

 The dividing stream line  = 0  forms an oval curve of 2a and 2b major and 

minor axes respectively.   

The distance from source and sink to the stagnation points are 

Source to S2   =  a + 1  

Sink to S1  =  a  -  1  

Velocity due to source  =   

1 

2  1.117 
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Velocity due to sink   =   

For stream velocity  U  =    - 40 m/s 

  At stagnation point           +               +  U   =  0  

 

 i.e.,      +  -  40  =  0 

 

Solving      a  =  1.61 m 

 

At P  (0, b)      =         (1  -  2)   =     due to source and sink  

 

   =   2  tan-1  (1/b) from the configuration  

 

Total  due to source, sink and uniform flow is  

 

    =   - 40 b  +   x   2  tan-1 (1/b)  which is equal to zero at the dividing 

stream line.  

 

   -   40 b  +    2  tan-1 (1/b)  = 0  

 tan-1 (1/b)  =   b/5  or   b   =  cot ( b/5) 

This equation is solved graphically to get value of b.      b =  1.14m 

 

The fineness ratio  =  =  =   0.708 

 

 

18.  A circular cylinder of 2.0 m diameter and 12m length is rotated at    

300 rpm about its axis when it is kept in an air stream of 40 m/s velocity, 

with its axis perpendicular to the flow.  Determine (i) circulation around 

the cylinder, (ii) theoretical lift, (iii) position of stagnation points and      

(iv) actual drag, lift and resultant force on the cylinder, Take CD  =  0.52,        

CL  =  1.0 and   =  1.208 kg/m3. 

 

Periforal velocity  uc  =  = 

 

    =    31.42 m/s 

i.  Circulation     =     2R uc    =  2 x 1 x  31.42 

m 

2(a + 1) 

m 

2(a - 1) 

-200 

2(a + 1) 

200 

2(a - 1) 

m 

2 

m  

2 

200 

2 

200 

2 

2b 

2a 

1.14 

1.61 

DN 

60 

 x 2 x 300 

60 



    =     197.44 m2/s 

 

ii.  Theoretical lift    L  =    U    x length  

    =    1.208 x 40 x 197.44 x 12  

    =   114.485 x 103 N 

iii.  Position of stagnation points : 

Velocity on the surface   u   =   2U sin   +   / 2R 

For stagnation point   u =   o    sin   =   / 4UR 

      =    sin-1   ( / 4UR) 

    =    sin-1  (197.44 / 4 x 40 x 1) 

    =   -23.13  and 203.13 

iv.  Actual lift   L =    CL  x (Dia x length)  x    

 

    =    1 x 2 x 12 x 1.208 x  

    =     23.194 x 103  N 

 

Actual drag  D =     CD x (Dia x Length) x   

 

    =      0.52 x 2 x 12 x 1.208 x  

    =      12.061 x 103  N 

Resultant force on the cylinder=    ( L2 + D2 )  =    (23.194 x 103) 2 + (12.061 x103)2  

    =      26.142 x 103  N 
 

The resultant force is inclined tan-1 (L/D) with the direction of flow                         

i.e.,     tan-1 (L/D)  =  tan-1 (23.194 / 12.061)    =  27.41  

 

 

19.  Wings of an aeroplane are replaced by two cylinders of 1m diameter 

and 4m length and it is proposed to make use of the lift caused by their 

rotation to lift the aeroplane.  If the plane travels at 250 km/hr speed and 

weighs 80,000 N, determine the speed of rotation of the cylinders and the 

power required to overcome rotor friction.  Assume CD = 0.80 and surface 

velocity of cylinder 1.5 times free stream velocity.  

 

Assuming level flight, lift balances the weight.   W  =  L 
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  80,000   =  CL  x  A  x     

 

where  A   =  2  x  Dia  x  Length of cylinder   =  2 x 1 x 4 m2  

                =  1.208 kg/m3  at sea level conditions. 

 

 U   =   250 km/hr  =   =     69.44 m/s  

 

From which   CL    =   3.433. 

 

Periforal velocity is 1.5times free stream velocity   =1.5x 69.44 

    

  Speed of rotation  N   =   1990 rpm 

Power required   =    Drag  x  distance moved  

    =   0.8 x (2 x 4 x 1) x  1.208 x  

    =    1294.56 x 103 watt 

 

 

20.  An aeroplane weighing 22,500 N has a wing area of 22.5 m2 and span 

of 12m.  What is the lift coefficient if it travels at 320 km/hr in the 

horizontal direction?  Also compute the theoretical value of circulation 

and angle of attack measured from zero lift axis. 

 

Assuming level flight, lift exactly balances weight. W =  L     = CL A  

 

   22500 = CL x 22.5 x 1.208 x  
    

From which         CL  = 0.2095 

Assuming lift curve slope as 2     i.e.,           =  2 

 

The angle of incidence  =  x   =   20 

 

Circulation    =  chord  U  

 

    =   x          x  88.89 x 

 

= 17.5 m2/s    
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21.  Show that lift coefficient of a circular cylinder of radius R kept in a 

flow V with circulation  is CL  =   / RV. For such a flow, calculate peak 

pressure coefficient for CL  = 5 

 

The velocity of flow on the surface of a spinning cylinder  

  v  =  V   =  2 V  sin  +   / 2R 

At any point        CP   =   1 -  (V / V)2  

    =   1  -  (2V sin   +   / 2R)2  x 1 / V
2  

 

    =   1  -   4 sin2  +      + 

 

The coefficient of lift of an aerofoil can be evaluated as  

   

  CL   =           cpl dx   +  cpu dx 

 

The suffix l and u stand for lower and upper surface. 

 Put  x = R cos  ;   dx   = (- R sin ) d       c  =  2R  

 

  CL   =         cpl (-R sin) d  +             cpu (-R sin) d 

 

 

         =      cpl sin d -   cpu sin d  

 

         =   2  x  (        )      cp  sin  d 

 

 

For cylinder cpl  =  cpu      CL   =  - 1 cp sin  d 

 

   

  i.e.,    =   - 1      1  -  4  sin2  +         +    +      sin d 
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As sin.d  =  0 ;       sin2.d  =   and        sin3.d  = 0 

 

 

   CL   =   / RV  

Cp is peak for sin   =  1  i.e., at   =  90    V  =  2V  +   / 2R 

Given CL = 5  =  /RV     / R  =  5  V    V  =  2V   +    =  2.796 V 

                         Cp    =  1-  (V / V)2   =  1  -  2.7962   

         =  -6.82 

 

 

 

 

22.  A ship has two vertical rotors, 2.5 m in diameter and 1m high.  When 

the rotors spin at 240 rpm, the relative motion of air to the ship results in 

50 km/hr of wind.  Calculate the force exerted on the ship by the spinning 

rotors. Take density of air as 1.24 kg/m3. 

 

Relative velocity of wind U = 50 km/hr 

    = 13.89 m/s 

Circumferential velocity of  

  rotor uc  = 

 

    =  

    = 31.4 m/s 

Circulation around cylinder =           =  2Ruc  

    = 2 x       x   31.4 

    = 246.5 m2/s 

 Lift on one cylinder  =     U length of cylinder  

    = 1.24 x 13.89 x 246.5 x 8 

    = 33891.6 N 

Total force exerted by two spinning rotors  

    = 2 x 33891.6 

    = 67783.2   N 
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23.  A cylinder whose axis is perpendicular to the stream of air having a 

velocity of 20 m/s, rotates at 300 rpm.  The cylinder is 2 m in diameter and 

10 m long.  Find   (i) the circulation, (ii) the theoretical lift force per unit 

length,  (iii)  the position of stagnation points, and (iv) the actual lift, drag 

and direction of resultant force.  For determining actual drag and lift, 

assume             =   1.57  ;  CL  =  3.4  CD  =  0.65 ; Where uo represents the 

periforal velocity due to circulation and for air   = 1.24 kg/m3.  

 

Periforal speed of cylinder uc =  

 

     =           =    31.4 m/s 

i.  Circulation     =      2Ruc  

     =      2 x 1 x 31.4  = 197.3 m2/s 

ii. Theoretical lift / unit length =       U  

     =      1.24 x 20 x 197.3 

     =       4888.24 N 

 

Net velocity of flow on the surface of cylinder is sum of circulation and free stream 

velocity   

  i.e.,  uc =        2U sin  +   / 2R 

At stagnation point,  uc    =    0 

    0 =        2U sin +   / 2R 

    sin =        - / 4RU 

     =       (- 197.3 / 4) x 1 x 20 

     =        -0.785 

     =         231.75  and 308.25 

iii.  The stagnation points located at 231.7  and 308.25in anticlockwise direction of 

circulation   

iv.  Actual lift    L = CL  A     

     = CL x (length x dia)  x   

     = 3.4 x (2 x 10) x 1.24 x ½ x 202 

     = 16846.2 N 
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Actual drag   D = CD   A     

     = 0.65 x (2 x 10) x 1.24 x ½ x 202  

     = 2628.8  N 

 

Direction of resultant force tan  =       =            =   5.23 

 

       = 79.1 

v.  For sin = 1; in sin  =   / 4RU,  there will be only one stagnation point  

        = 4RU 

     = 4 x 1 20 

     = 251.32  m2/s 

 

  Periforal speed uc   =  =  =  40 m/s 

 

     =  = 

   N  = 382 rpm 

There will be only one stagnation point for cylinder rotating at 382 rpm. 

 

 

24.  A fluid motion is described by the stream function  

          =  w a2   1             for   0    r   a  

and    =     w a2  ln            for    r    a where w and a are constants.  

 

(i) Show the motion is irrotational for r  a. 

(ii)       Determine the pressure distribution for the entire flow field. 

 

Condition for irrotationality of flow in terms of stream function in polar coordinates is  

 

           +            +  =   0   
 

for  r   a       = wa2  ln   

 

Case 1:    When   r  =  a ,    =    wa2 ln     =  0 

 

Rotation           (0) +      (0) +    (0)   =  0 
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Case 2 :  When  r > a,    

 

Rotation    wa2 (ln r    ln a)    +     wa2  (ln r    ln a) 

 

        +      wa2  (ln r    ln a) 

 

=        wa2 (         0 )  +  wa2         +  0 

 

=      +  w          =   0 

 

 

 

(i)   Condition for irrotationality is satisfied  for r    a. 

 

 ur  =           ,   u    =   

 

for   o    r    a     ur    =    wa2     1      =   0 

 

     u    =  wa2   1 

     =    2  wr 

V2  =  ur
2   +  u

2   =    (2 wr )2  

 

for  r   a ur    =         wa2 ln    =   0 

 

  u   =      wa2 ln 

    

V2   =  ur
2  +  u

2 = w 

 

(ii)  Pressure distribution  

 

       Cp =    =     1 

 

for  0    r   a      Cp = 1       =   1  
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for  0    r   a      Cp = 1       =   1  

 

 

25.  Sketch  and  lines for w  =  /z  (see note under problem 4) 

 

26.  Derive expression for Cp on the surface of a cylinder kept in a uniform flow.  

 (Refer  2.8 pressure distribution  ) 

 

 

27.  If  w  =    Uz   +          +           ln z   sketch  the stream lines;  mark stagnation 

point (s) ; mark the lift force.  

 

 w   =     Uz   +  + ln z 

Here w represents the complex potential for flow past a circular cylinder of 

radius ‘a’ kept at origin and rotating about its own axis. 

 

 The first term is the complex potential for uniform flow in the positive x-

direction; second term a doublet at origin; third term for anticlockwise vortex of 

strength k at  the origin due to spinning of cylinder.  

 

  w =  - Uz +           +         ln z 

 The first term is the complex potential for uniform flow in the negative x-

direction; second term a doublet at origin; third term for clockwise vortex of strength 

k at the origin due to spinning of cylinder.  

Lift force  :  The direction of lift acting on such a case are to be noted.  This is 

obtained by the actual velocity of flow of fluid past the cylinder.  Velocity of fluid 

increases when uniform flow and circulation are in the same direction and velocity 

decreases when uniform flow and circulation are in opposite directions.  Thus at one 

half of cylinder due to addition of velocity, velocity is more while on the other half of 

cylinder due to deduction of velocity, velocity is less.  Where there is more velocity 

there will be less pressure and vice versa  The lift force will act from higher pressure 

half to lower pressure half. 

Stagnation point (s)  These will be in the portion of cylinder where there less velocity.  

The number of stagnation point depends on the relative strength of vortex and 

velocity of flow which is discussed in theory. 
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28.  A circular cylinder of radius of placed at the origin in a 2D uniform flow of 

ideal fluid  approaching with velocity U at an angle  to x-axis.  Write the 

complex potential for the flow.  What strength of circulation is required to make 

the point (a, 0) on the cylinder a stagnation point.  

 This is a case of doublet at origin with a uniform flow at  inclination to the  

x-axis.  

 The complex potential for this is  

  w   =  Uze-i +     

 If circulation is added to this flow the complex potential changes to  

  w   =  Uze-i  +  +  ln z  

 

 The complex potential can be written as (Refer Problem No.         ) 

 

 w =    Uz   +     ln (z  +  hei)        ln z 

 

  =    Uz   +      2 hei          ln (r ei) 

   

  =     Ur (cos  + i sin )  +        (cos   +  i sin )     (cos      i sin )  

         (ln r + i) 

putting 2mh  =  

 

 w =   Ur (cos + i sin ) +        (cos .cos    i cos .sin  + i sin . cos  

 

     + sin .sin )             (ln r + i ) 

 

 

  =  Ur (cos  + i sin )+         cos( - )   i sin ( - )            ln r +      

  =   +  i  

 

    =  Ur  sin               sin ( - )          ln r 

 

 u =  

 

  =          Ur sin      sin ( - )      ln r 
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  = U sin   +   

 

On  the surface of the cylinder  r = a, ur = 0.  At stagnation point ur  =  0 and u = 0.  

Given point being (a, 0)   r  =  a  on the surface of cylinder and   =  0 because y = 0 

corresponding to x-axis. 

       u = U  sin   +    =   0 

 

i.e.,         k   =   

 

The circulation strength should be /a. 
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Short Question and Answer 

Unit - II 

 

1.  Define stream function  

 Flow per unit time (flux) across the line joining two stream lines is called 

stream function of stream line. 

 The unit of stream function is m2/sec. 

 Per unit dimension perpendicular to the phane of stream line stream function 

gives volume rate of flow. 

 

2.  State the equation of stream line in differential form 

 udy  -  vdx   =  0   cartesian   coordinates  

 ur rd  -  u dr   =  0   polar coordinates  

 

3.  State the equation of potential line in differential form  

 udx  +  vdy   =   0   in cartesian   coordinates  

 

4.  State the condition for single stagnation point on a rotating cylinder  

  =  4UR 

 

5.  Define sub critical and super critical circulation  

 See notes  

 

6.  Define the circulation of fluid around a rotating cylinder in terms of periforal 

velocity of cylinder  

 circulation     =   circumstance   x  periforal velocity  

 

7.  What is D’Alemberts Paradox? 

 For a stationary cylinder kept with axis perpendicular to the flow of an ideal 

fluid, no lift or drag force is felt.  

 

 



8.  What is magnus effect? 

 For a spinning cylinder kept with its axis perpendicular to the flow of an ideal 

fluid, there is force only in one direction which is lift force.  This is called magnus 

effect.  Magnus effect is independent of the cylinder size. 

 

9.  State Kutta - Joukowski theorem 

 For a spinning cylinder kept with its axis perpendicular to the flow of fluid 

there is force in the direction perpendicular to axis.  The magnitude of this force is     

L  =   V per unit length of cylinder where   is the mass density of fluid, V the 

velocity of fluid and  is the circulation.  This force is independent of the cylinder 

diameter. 

 

10.  How much is the circulation for (i) uniform flow (ii) source / sink.  

(i) The circulation around any closed curve in uniform flow is zero. 

(ii) The circulation is zero associated with source / sink flow.  

 

11.  What is ideal fluid (perfect fluid) 

 Ideal fluid is one which is frictionless and effect of viscosity is negligible in 

fluid mechanies. 

 A perfect fluid is one which obeys Boyles and Charlas law in thermodynamics  

 

12.  What is a rotational flow. 

 A fluid flow in which every fluid element rotates about its own centre. 

 

13.  What is vortex line and vortex tube? 

 Vortex line is the vector line of the vorticity field. 

 Vortex tube is a vector tube filled with fluid and formed by vortex lines. 

 

14. What is the common condition to have both stream and potential function to 

exists for a flow. 

 Flow should be continuous. 

 

 



15. What is a free vortex flow? 

 A flow field with circular stream lines with absolute value of velocity varying 

inversely with the distance from centre.  The flow is irrotational at every point except 

at the centre.  

 

16.  What does a free vortex flow mean? 

 A flow which is free of vorticity except at the centre. 

 

17. What is meant by bound vortex of a wing? 

 The vortex that represents circulatory flow around the wing is called the bound 

vortex.  The vortex remains stationary with respect to the general flow.  

 

18.  Define velocity with respect to a potential line.  

 There is no velocity vector tangential to a potential line, the velocity is 

perpendicular to the potential line. 

 

19. a) What is a forced vortex flow? 

 A flow in which each fluid particle moves in a circular path with speed 

varying directly as the distance from the axis of rotation. 

 

19. b) Sketch velocity distribution of a forced vortex  

 

20.  Why tornado is highly destructive at or near the centre? 

 Tornado is a free vortex flow such that velocity multiplied by distance from 

centre is constant.  Therefore the velocity is maximum at the cnetre.  Hence it is 

highly destructive.   

 

21.  Specify the stream and potential lines for a doublet 

 Stream lines   =  r / sin ;  Stream lines are circles tangent to x-axis. 

 Potantial lines   =  r/cos ;  Potential lines circles tangent to y-axis. 

 

 

 



22.  Specify the stream and potential line for a source or sink. 

 Stream lines   =  m / 2 ;      Stream lines are radial lines from centre  

 Potential line   =  ln r ;     Potential lines are circles. 

 

23. Compare the stream lines and potential lines of source / sink with that of a 

vortex flow  

 The stream lines of source / sink and potential lines of vortex are similar. 

 The potential lines of source / sink and stream lines of vortex are similar. 

 

24.  State the properties of a stagnation point in a fluid flow. 

 The sudden change of momentum of fluid from a finite value to stagnant value 

impresses pressure force at the point of stagnation, thus whole of the velocity gets 

converted to pressure.  

 

25.  What is Rankine half body ? 

 The dividing stream line  =  m/2 of source uniform flow combination forms 

the shape of Rankine half body.            =   Uo y +   

 

26.  What is Rankine oval? 

 The dividing stream line ( = 0) of doublet uniform flow combination forms 

the shape of Rankine oval. 

 

27.  How transverse force can be introduced to a flow around a cylinder? 

 Add a circulatory flow along with the uniform flow to get a tranverse force.  

Spin the cylinder about its own axis to get circulatory flow. 

 

28.Compare vortex with source / sink flow pattern. 

 See question 23 
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29.  How will be the stream and potential lines in a source - vortex combination? 

 Stream and potential lines in a source vortex combination are both equiangular 

spirals.  The change of direction of radial movements of fluid particles will be equal 

in magnitude while opposite in direction to the change in tangential movement so that 

curves are equiangular spirals. 

 

30.  State the stream function for uniform flow of velocity u parallel to positive   

x - direction.  

 Stream function    =  - Uy  

 

31.  State the stream function for uniform flow of velocity V parallel to positive 

y-direction. 

 Stream function   =  -  Vx  

 

32.  What is the diameter of a circular cylinder which is obtained by combination 

of doublet of strength “” at origin and uniform flow U parallel to X-axis.  

 Diameter a   =   /2U 

 

33.  How a line source differs from a point source? 

 A two dimensional source is a point source from which the fluid is assumed to 

flow out radially in all directions.  As this flow is restricted to one plane and to allow 

for the application of the results to three dimensional flow, the term line source is 

sometimes used. 

 

34.  How are stream lines of doublet  

A family of circles tangent to x-axis with centers in y-axis. 

 

35.  How are the obential lines of doublet  

A family of circles tangent to y-axis with centers in x-axis. 

 

 

 

 



 
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36.  Point out the position of the generators on a cylinder at which the pressure is 

equal to that at an undisturbed stream when an incompressible fluid flows past 

an infinite circular cylinder. 

 When the angles are   30   or   150 to the direction of flow, locates four 

generators.  (See notes for the proof). 

 

37.  Define potential flow of a fluid. 

 The irrotational motion of an incompressible fluid is called potential flow. 

 

38.  “If the fluid flow is in concentric circles, the circulation of such a flow is 

constant” Give expression for circulation. 

 Circulation     =   v x 2  r, where   v   is the tangential velocity and r radius 

of circle. 

 

39.  Relate vorticity and circulation 

 Vorticity is the circulation around an element divided by its area. 

 

40.  Relate the vorticity and angular velocity 

 Vorticity is equal to twice angular velocity.   

Therefore, Circulation   =  2  x  rotation  x  area   

 

41.  What is meant by Karman vortex sheet? 

 A body moving in real fluid leaves double row of vortices from the sides of 

body.  These vortice are rotating in opposite directions and gradually dissipated by 

viscosity as if move down stream.  If the vortice are stable, for a distance between 

vortices ‘h’ and for pitch ‘l’ of the vortices h/l  =  0.2806  for Karman vortex sheet.  

 

42.  What is the relation between circulation and strength of a vortex? 

 The circulation calculated around a stream line of an irrotational vortex is a 

measure of the intensity of vortex. 

 Circulation     =    V.ds 

   =  V        ds   =  2  r V  =  K 

(as r V  is a constant) 



43.  How are the stream lines in a source sink pair? 

 The stream lines are circles with centre on y-axis for a source sink pair.  

Stream lines are circles with common chord. 

 

44.  What is a vortex pair? 

 Two vortices of equal strength, but of opposite sign or with opposite direction 

of rotation constitute a vortex pair. 

 

45.  What is meant by complex potential ? 

 If stream function  and potential function  are combined in a single function 

w such that w (z)  =    +  i    then w (z) is called complex potential. 

 

46.  What is meant by conformal transformation. 

 A transformation is a mathematical process by which a figure may be distorted 

or altered in size and shape.  This is done by means of algebric relationship between 

the original coordinates and coordinates of new position, the pair of coordinates being 

represented by complex variables. 

 The transformation is said to be conformal if small elements of area are 

unaltered in shapes (though they are, in general, altered in size, position and 

orientation) 

 

47.  What is Joukowski transformation? 

 Joukowski assumes the relation w(z)  = z +           so that second term is small 

when z is large.  Thus at great distances from the origin the flow is undisturbed by the 

transformation. 

 

48.  What is thickness ratio (fineness ratio) of a Rankine oval  

 It is the ratio of maximum thickness to chord of Rankine oval. 

 

49.  How are the stream line of source sink combination pair? 

 Stream line of source sink combination pair series of circles with centers in y-

axis and passing through source and sink.  (flow is from source to sink).  They have a 

common chord of source sink distance. 

a 2 

z 



 

50.  How are the potential lines of source sink pair? 

 The potential lines of source sink pair are eccentric non intersecting circles 

with centre along x-axis. 



 

24.  A fluid motion is described by the stream function  

          =  w a2   1             for   0    r   a  

and    =     w a2  ln            for    r    a where w and a are constants.  

 

(ii) Show the motion is irrotational for r  a. 

(ii)       Determine the pressure distribution for the entire flow field. 

 

Condition for irrotationality of flow in terms of stream function in polar coordinates is  

 

           +            +  =   0   
 

for  r   a       = wa2  ln   

 

Case 1:    When   r  =  a ,    =    wa2 ln     =  0 

 

Rotation           (0) +      (0) +    (0)   =  0 

 

Case 2 :  When  r > a,    

 

Rotation    wa2 (ln r    ln a)    +     wa2  (ln r    ln a) 

 

        +      wa2  (ln r    ln a) 

 

=        wa2 (         0 )  +  wa2         +  0 

 

=      +  w          =   0 

 

(i)   Condition for irrotationality is satisfied  for r    a. 

 

 ur  =           ,   u    =   

 

for   o    r    a     ur    =    wa2     1      =   0 

 

     u    =  wa2   1 
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for  r   a ur    =         wa2 ln    =   0 

 

  u   =      wa2 ln 

    

V2   =  ur
2  +  u

2 = w 

 

(ii)  Pressure distribution  

   

       Cp =    =     1 

 

for  0    r   a      Cp = 1       =   1  

 

for  0    r   a      Cp = 1       =   1  

 

 

25.  Sketch  and  lines for w  =  /z 

 

26.  Derive expression for Cp on the surface of a cylinder kept in a uniform flow.  

 (Refer  2.8 pressure distribution  ) 

 

 

27.  If  w  =    Uz   +          +  ln z   sketch  the stream lines;  mark 

stagnation point (s) ; mark the lift force.  

 

 w   =     Uz   +  + ln z 

Here w represents the complex potential for flow past a circular cylinder of 

radius ‘a’ kept at origin and rotating about its own axis. 

 

 The first term is the complex potential for uniform flow in the positive x-

direction; second term a doublet at origin; third term for anticlockwise vortex of 

strength k at  the origin due to spinning of cylinder.  

 

  w =  - Uz +           +         ln z 
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 The first term is the complex potential for uniform flow in the negative x-

direction; second term a doublet at origin; third term for clockwise vortex of strength 

k at the origin due to spinning of cylinder.  

 

Lift force  :  The direction of lift acting on such a case are to be noted.  This is 

obtained by the actual velocity of flow of fluid past the cylinder.  Velocity of fluid 

increases when uniform flow and circulation are in the same direction and velocity 

decreases when uniform flow and circulation are in opposite directions.  Thus at one 

half of cylinder due to addition of velocity, velocity is more while on the other half of 

cylinder due to deduction of velocity, velocity is less.  Where there is more velocity 

there will be less pressure and vice versa  The lift force will act from higher pressure 

half to lower pressure half. 

 

Stagnation point (s)  These will be in the portion of cylinder where there less velocity.  

The number of stagnation point depends on the relative strength of vortex and 

velocity of flow which is discussed in theory. 



28.  A circular cylinder of radius of placed at the origin in a 2D uniform flow of 

ideal fluid  approaching with velocity U at an angle  to x-axis.  Write the 

complex potential for the flow.  What strength of circulation is required to make 

the point (a, 0) on the cylinder a stagnation point.  

    This is a case of doublet at origin with a uniform flow at  inclination to the  x-axis  

 The complex potential for this is  

  w =   Uze-i  +   

 If circulation is added to this flow in the anticlockwise direction the complex 

potential changes to  

 

  w =   Uze-i  +       +       ln z  

 

   =  Ur [cos ( - ) + i sin ( - ) ]  +       (cos  - i sin ) 

 

              +         (ln r + i) 

 

=     Ur cos ( - ) +      cos  -        + i [Ur sin ( - ) -     sin     

 

  +         ln r ] 

   =     + i  

      =    Ur  sin ( - )  -         sin +         ln r  

 

u   =   -   

 

 =    -        Ur sin ( - )  -       sin    +         ln r  

 

 =   -  [U sin ( - )  +      sin  +  ]  

 

To make (a, 0) to be stagnation point ur and u at this point must be 

zero.  This point being on the cylinder surface ur = 0.  The polar coordinate of this 

point is also (a, 0)    r  = a  ;     =  0 

Substituting this value of polar coordinates in the expression for u and 

equating to zero.  

-    U  sin (0 - ) +         sin 0  +          =  0 

 k  =  2a U sin The strength of circulation must be equal to 2aU sin  in 

the anticlock wise direction.  
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29.  If the axis of doublet is inclined  to the x-axis and with a uniform 

flow is the positive x-direction, what is the complex potential.  Bring out 

the circulation required in the clockwise direction to make (a, 0) 

stagnation point.  

 

 The complex potential can be written as  

   

    w   =    Uz   +      2 hei          ln (r ei) 

   

  =     Ur (cos  + i sin )  +        (cos   +  i sin )     (cos      i sin )  

         (ln r + i) 

putting 2mh  =  

 

 w =   Ur (cos + i sin ) +        (cos .cos    i cos .sin  + i sin . cos  

 

     + sin .sin )             (ln r + i ) 

 

  =  Ur (cos  + i sin )+         cos( - )   i sin ( - )            ln r +      

  =   +  i  

 

    =  Ur  sin               sin ( - )             ln r 

 

 u =  

 

  =          Ur sin      sin ( - )      ln r 

 

  = U sin   +   

 

On  the surface of the cylinder  r = a, ur = 0.  At stagnation point ur  =  0 and u = 0.  

Given point being (a, 0)   r  =  a  on the surface of cylinder and   =  0 because y = 0 

corresponding to x-axis. 

       u = U  sin   +          sin          =   0 

 

i.e.,         k   =   

 

 The circulation strength should be  
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UNIT III  

 

VISCOUS HYPERSONIC FLOW THEORY 

 
1.a)  Transformation     w  =  z2 , 

 

We have    u  +  iv  =  (x + iy)2  =  x2  -  y2  +  2ixy 

   u  =  x2  -  y2  and  v  =  2xy 

Case 1  

If u is constant (say, a), then x2 - y2  = a which is a rectangular hyperbola.  

Similarly, if v is constant (say, b), than xy = b/2 which also represents a rectangular 

hyperbola.  

 

 Hence a pair of lines u = a,  v = b parallel to the axes in the w - plane, map into 

pair of orthogonal rectangular hyperbolae in the z-plane as shown in Fig.  

 

Case 2 

 Again if x is constant (say, c), then y = v/2c and y2 = c2 - u.  Elimination of y 

from these equations gives v2 = 4c2 (c2 - u), which represents a parabola.  Similarly, if 

y is a constant (say, d), then elimination of x from the equation (i) gives                     

v2 = 4d2  (d2 + u) which is also a parabola.  

 Hence the pair of line x = c and y = d parallel to the axes in the z-plane map 

into orthogonal parabolas in the w-plane as show in fig.  

 Also  since         =  2z  =  0   for z = 0, therefore, it is a critical point of the 

mapping. 

 Taking  z  =  rei  

and   w  = Rei 

then in polar form w = z2  becomes Rei  =  r2e2i . 

 This shows that upper half of the z-plane o <  <   transforms into the entire 

w-plane 0   < 2.  The same is true of the lower half.  

 

Note :  1.  Taking the axes to represent two walls, a single quadrant could be used to 

represent fluid flow at a corner wall.  This transformation can also represent the 

electrostatic field in the vicinity of a corner conductor.  

 

dw 

dz 



> 
 

> 
 

Note 2  For the transformation w =zn, n being a positive integer, we have dw/dz = 0 at    

             z = 0. 

Also    Rei  =  rn ein  

   R  =  rn  and   =  n, 

when 0 <  < /n, correspondingly 0 <  < . 

 Hence w = zn gives a conformal mapping of the z-plane everywhere except at 

the origin and that if forms out a sector of z-plane of central angle /n to cover the 

upper half of the w-plane.  

 

1 b).  Transformation   w  =  ez. 

Writing z =  x + iy and w =  ei,   we have ei  =  ex + iv  =  ex.  eiy  

whence      =  ex       (i) 

and       =  y       (ii) 

 

 From (i), it is clear that the lines parallel to y-axis (x  =  const.)  map into 

circles ( = const.) in the w-plane, their radii being < 1  according as x < 0   

 Similarly, it follows from (ii) that the lines parallel to the x-axis (y = const.) 

map into the radial lines ( = const.) of the w-plane.  Thus any horizonal strip of 

height 2 in the z-plane will cover once the entire w-plane.  

 This transformation can be used to obtain the circulation of a liquid around a 

cylindrical obstacle, the electrostatic field due to a charged circular cylinder etc. 

        

1.c)  Transformation  w  =  cosh z.  

 We have u + iv  =  cosh (x + iy)  

     =  cosh x cos y + i sinh x sin y  

so that    u =  cosh x cos y and v = sinh x sin y. 

 Elimination of x from these equations gives  

 

           =  1      (i) 

 

while elimination of y gives  

  

   +    =   1      (ii) 

u2 

cos2 y 
v2 

sin2 y 

u2 

cosh2 y 
v2 

sinh2 y 



 

Equation (i)  shows that the lines parallel to the x-axis (i.e. y = const.) in the           

z-plane map into hyperbolae in the w - plane.  

Equation (ii)  shows that the lines parallel to the y-axis (i.e. x = const.) in the z-plane 

map into ellipses in the w-plane (fig.) 

This transformation can be used  

(i) to obtain the circulation of liquid around an elliptic cylinder  ; 

(ii) to determine the electrostatic field due to a charged cylinder  ; 

(iii) to determine the potential between two confocal elliptic (or 

hyperbolic) cylinders.  

 

 

2. a)  Show that points on a circle x2 + y2  =  a2 are transformed to points 

on the ellipse by Joukowski transformation.  How this ellipse transforms to 

a flat plate.  

 

If z   =  x  +  iy   and  w =    +  i  ;  w  = f (z) in the form w =  z +    which is 

Joukowski transformation . 

 

   +  i   =  z   +   

  

  =   x +  iy  +  .   

   

 

  =   

 

         =               ;  = 

 

As for the circle x2 + y2 = a2  subsisting this in above we get the corresponding points 

on the transferred figure  i.e., 

 

        =                   ;  =   
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substituting these values of  x, y to the equation of circle  

 

 

                  +      =    a2 

 

 

    +     =   a2  

 

    +      =  1  

 

 

This is equation to an ellipse of semi-axes   

 a   +    and  a    - 

 

Note  :  It a  =  c  this above ellipse become a line ellipse (it is called so) or a flat plate 

of length 4a. 

 

 

2 b) Joukowski’s transformation   w = z + 1/z. 

 

Since   = 

the mapping is conformal except at the point z = 1 and z = -1 which correspond to the 

points w = 2  and w = -2 of the w-plane. 

 Changing to polar co-ordinates, 

 

  W  =  u + iv = r (cos  + i sin )  + 

 

        =  r (cos  + i sin ) +          (cos  - i sin ) 

             u    = (r + 1/r) cos  and v =  (r - 1/r) sin . 

Elimination of  gives  

 

   +      =    1     (i) 

 

while the elimination of r gives  

   -      =    1     (ii) 
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 From (i), it follows that the circles r =constant of z-plane transform into a 

family of ellipses of the w-plane.  These ellipses are confocal for  (r+1/r)2 - (r-1/r)2= 4, 

i.e, a constant. 

 In particular, the unit circle (r=1) in the z-plane flattens out to become the 

segment u=-2 to u=2 of the real axis in w-plane.  Thus the exterior of the unit circle in 

the z-plane maps into the entire w-plane.  

 From (ii), it is clear that the radial lines  = constant of the z-plane transform 

into a family of hyperbolae which are also confocal. 

 This transformation is used to map the exterior of the profile of an aeroplane 

wing on the exterior of a nearly circular region. 

 

 

3.  What is a conformal transformation and what is its magnification? 

 Apply Joukowski’s transformation t = z +  a2/z to a circle in the      

z-plane, radius a, and centre the origin.  Hence obtain an expression for 

the velocity at any point on the surface of a cylinder in an otherwise 

uniform stream.  You may assume that the velocity q at point in the          

z-plane and the velocity q’ at the corresponding point in the w-plane are 

related by  

  q    =   q’  [1 - 2(a/r)2 cos2  +  (a/r)4]    (i) 

where r and  and the polar coordinates in the z-plane.  

(N.B. - The derivation of (i) is given below) 

 

A transformation is a mathematical process by which a figure or network may 

be distorted or altered in size.  It is effected by means of an algebraic relationship 

between the original coordinates of any point (x and y and the coordinates of its new 

position, , .  The pairs of coordinates (x, y) and (,) are conveniently represented 

by complex variables z and w respectively. 

 The transformation is conformal if small elements of area are unaltered in 

shape (though they are, in general, altered in size, position and orientation).  Suppose 

the small triangular element ABC in the z-plane transforms to the triangle A’B’C’ in 



the w-plane.  If the transformation is conformal these triangles are geometrically 

similar.  In the notation of fig.  The magnification is the ratio. 

 A’B’ / AB   =     [()2  + ()2] /  [(x)2  + (y)2 ] 

 Joukowski’s transformation is conformal and, as shown in below, it can be 

expressed in the form   - 

      =    (r + a2/r) cos   

  4    =    (r -  a2/r) sin        (ii) 

where r and  are the polar coordinates in the z-plane.  For a circle in the z-plane, 

radius a and centre the origin, r = a (constant).  Thus from (ii) the coordinates in the 

w-plane are  

     =   2a cos   and      =  0 

 As  varies from 0   to 180 ,   varies from 2a to - 2a.  Thus the given circle 

transforms to a straight line (that part of the -axis in the range  2a).  

 Provided certain conditions are fulfilled a conformal transformation converts 

the entire flow pattern in the z-plane to that in the w-plane.  In Joukowski’s 

transformation the second term (a2/z)is small when z is large and thus at great 

distances from the origin w  =  z.  This means that the flow of the undisturbed stream 

is unaltered by the transformation.  In the present case it related the flow past a 

circular cylinder to that past a flat plate set parallel to the stream as shown if fig.. 

 

 Let U be the velocity of the undisturbed stream in each plane.  Then the 

velocity at any point on the plate (in the w-plane) is  

  q'   =  U   

 At any point on the surface of the cylinder, r = a and hence, by the relationship 

given in the question, the velocity on the surface of the cylinder is - 

 q     =    q’   (1 - 2 cos 2  +  1) 

        =  U    [2(1 - cs 2)] 

        =  U  [2(2 sin2 )]       (since cos  2  =  1  -  2  sin2 ) 

        =  2U  sin  

Derivation of (i)  

Joukowski’s  transformation relates the complex variables  

 z   =  x + iy and z  =    +  i by the equation  

   w  =  z  +  a2/z 



Substituting for w, z and 1/z we have  

  + i   =  r (cos  +  i sin )  +  (a2/r) (cos  - i sin ) 

      =  (r + a2/r) cos  + i  (r - a2/r) sin  

Equating real and imaginary parts  

     =   (r  + a2/r) cos    ;       =  (r - a2/r) sin  

 The magnification of the transformation is the ratio of the length of small 

corresponding vectors. Using the definition of magnification ratio we have,  

 

  Magnification  =    = 

 

or   in the limiting case  

 

 If a transformation is applied to a fluid motion, the distances between 

streamlines are increased by the magnification factor and the velocities are 

correspondingly decreased.  Thus if q and q’ are the velocities at corresponding points 

in the z - and w-planes respectively -  

   q   =   q’ 

 

In the case of Jouowski’s transformation - 

dw /dz  =      1   -   a2/z2  

  =      1  -  (a2/r2) (cos  - i sin )2  

  =      1  -  (a2/r2) (cos2 -  2i cos  sin  - sin2 ) 

  =      1  -  (a2/r2) (cos2 - sin2)   +  2i (a2/r2) (cos  sin ) 

  =      1  - (a2/r2) cos 2 + i (a2/r2) sin 2 

The modulus of this expression is - 

 

  =           1  -  cos 2   2    +              sin 2     2  

   

  =                [  1 - 2 (a2/r2) cos 2 + (a4/r4) cos2 2 + (a4/r4)  sin2  2] 

  =       [  1 - 2 (a/r)2  cos 2  + (a/r)4  ] 

The velocities are therefore related by -  

 q   =  q’  [1 - 2 (a/r)2 cos 2  +  (a/r)4 ] 

 

 

 [()2  +  ()2 ] 

 [(x)2  + (y)2] 

|w| 

|z| 

 
|dw| 

|dz| 

 

|dw| 

|dz| 

 

|dw| 

|dz| 
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r2 
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r2 
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4.  A long flat plate of constant width c is set normally to a stream flowing 

at speed u0.  Assuming the flow irrotational, obtain an expression giving 

the distribution of normal pressure on the plate and hence locate two lines 

on the plate along which the pressure is the same as that of the 

undisturbed stream.  

 

Fig.(a)  shows the flow past a circle in the z-plane (radius a and centre the 

origin) in the which the undisturbed velocity u0 is parallel to the y-axis.  As in the 

previous example this circle can be transformed into a line length 4a in the w-plane.  

In the present case, however, this line is normal to the stream, as shown in Fig.   (b). 

 

 Thus Joukowski’s transformation can be used to obtain the flow past a flat 

plate set normal to the stream from that past a circular cylinder.  Let P be any point on 

the cylinder whose polar coordinate is , measured from the x-axis.  Its angular 

displacement from the front stagnation point is (90  -  )   and the velocity at P is  

 q   =   2uo  sin (90  -   )  =  2uo  cos  

 At  any point on the surface of the cylinder r  =  a   and thus by the relationship 

given in the previous question,  

(i)  q   =   q’    (1 - 2 cos  2   + 1  )  

or  2u0 cos   =  q ‘  [2 (1 - cos 2)] 

       =   q’  (2 sin ) 

and the velocity at any point on the plate (   =  0)  is  

 q’  =  2u0 cos  / (2 sin )  =  u0 cos  /  (1 - cos2)     (i) 

Also, putting r = a in (ii) of previous problem ,   =  2a  cos  = (c/2) cos  (since       

c =  4a, the width of the plate).  Substituting in (i) , 

 

 q'        =            =       (ii) 

 

u0(2/c) 

 [1 - (2/c)2] 

2u0 

 (c2 - 42) 



 If p is the pressure at the point (, 0) on the plate and p1 is the pressure of the 

undisturbed stream then, by Bernoullis equation, 

  p  +  ½ q’2  =   p1  +  ½ u0
2 

and, using (ii), the pressure coefficient is  

 Cp    =  (p - p1)/ ½ u0
2  =  1  -  q’2/u0

2  

       =   42/(c2 - 42) 

 

The variation of Cp is shown in fig. 8(c).  Putting Cp  =  0,  we have - 

  1  -  42/(c2 - 42)   =  0 

or    82   =   c2  

and    /c    =   1/8  =  0.3535 

 Hence the lines along which the pressure equals that of the undisturbed stream 

are parallel to the centre line of the plate and 0.3535c from it.  The pressure 

distributions on the front and back of the plate are identical and there is no resultant 

drag.  

 

5.  A long  elliptic cylinder of thickness ratio 1/7 is set at zero incidence in 

an airstream with velocity 60 m/sec.  Calculate the pressure difference 

between the stagnation point and the point of maximum thickness.  

Assume irrotational flow. 

 

Suppose Joukowski’s transformation is applied to a circle in the z-plane, 

centre at origin, whose radius b is greater than a (the radius of transformation) as 

shown in fig.9(a).  For this circle  r  =  b (constant) and, by (ii)of problem 3 , the 

coordinates in the w-plane are -  

 

     =   (b  +  a2/b) cos       and      =   (b - a2/b) sin  

 

or         =  cos    and  =  sin  

 

Squaring and adding  

 

   +       =   cos2    +  sin2   =   1 

 

 
b  +  a2/b 

 
b  +  a2/b 

2 

(b  +  a2/b) 2 
 2 

(b  +  a2/b) 2 



 This is the equation of an ellipse in which b  +  a2/b and b - a2/b are the semi-

axes and the thickness ratio is - 

 

         =   =     (i) 

 

 It follows that the flow past a circular cylinder transforms to that past an 

elliptic cylinder at zero incidence with the same undisturbed velocity U.  Using the 

thickness ratio given in the question we have, from (i), 

 

 (b2 - a2) / (b2 + a2)  = 1/7   or   b2/a2 =  4/3   (ii) 
 

 The maximum thickness of the elliptic cylinder occurs at  = 0.  By (ii) of 

problem 3 the corresponding point of the circular cylinder is given by   = 90   and 

the velocity there is q = 2U sin  = 2U = 120 m/sec.  Substituting in and using (ii) the 

velocity q’ at the maximum thickness point of the elliptic cylinder is given by -  

 q     =  q’   [1 - 2 (a/b)2 cos 180  +  (a/b)4] 

or  120 =  q’  [1 + (2 x ¾)  +  (3/4)2] 

        =  7q’/4 

Thus  q’   =  4/7 x 120  =  68.57 m/sec. 

 At the stagnation point the velocity is zero and hence by Bernoulli’s equation 

the pressure difference between the stagnation point and the point of maximum 

thickness is - 

 ½ q’2   =  ½   x  0.125  x  (68.57)2  

    =  293.86 kg/m2  

 

 

6.  Obtain an expression for the thickness ratio of the symmetrical aerofoil 

section transformed from a circle of radius b by means of the formula                   

w = z +  a2/z 

 

Consider a circle whose centre is on the x-axis at a small distance from the 

origin  0  as shown in fig. (b).  Suppose its radius b is slightly greater than a and is 

such that it intersects the negative branch of the x-axis at the same point as the circle 

of transformation.  The application of Joukowski’s transformation results in a 

symmetrical aerofoil section in the w-plane.   

minor axis  

major axis  

2(b - a2/b) 

2(b  +  a2/b) 

b2 - a2 

b2 + a2 



 Suppose  a quantity m is defined by the relationship - 

  b  =  a (1  +  m)       (i) 

 Then, since b is only slightly greater than a, m is small and m2, m3, ….will be 

neglected in comparison with 1.  Referring to Fig. (b) and using polar coordinates we 

have, in the z-plane  - 

  PN  =  r sin ,   ON  = r cos  

  OC  =  b - a  =  a (1  +  m)  -  a  =  am 

and   CN  =  ON  -  OC   =  r cos   -  am 

 

Applying Pythagoras’ theorem to triangle PCN,  

 (PC)2  =  (PN)2  +  (CN)2  

or   b2  =  (r sin )2  +  (r cos )2  +  (r  cos   -  am)2  

and, using (i),  

 a2 (1  +  m)2  =  r2 sin2   +   r2  cos2   -  2amr cos   +  a2m2  

or        a2(1 + 2m)  =  r2  -  2amr  cos  

from which (r/a)2 - 2m cos .  (r/a)  -  (1  +  2m)  =  0 

 This is a quadratic equation for r/a and, using the binomial theorem and 

neglecting m2, m3,… in comparison with 1, the solution is - 

 

      = 

 

      =      m   cos      (1  +  2m)1/2  

      =      m  cos      (1  +  ½ 2m  +  …) 

      =    1   +  m  (1  +  cos )        (ii) 

(taking the plus sign because r is greater than a ).  From (ii), to the same degree of 

approximation -  

 a/r   =  1/[1  +  m(1  +  cos )]   =  [1  +  m(1  +  cos  ) ]-1  

        =   1  -  m(1  +  cos  )   (iii) 

Adding (ii) and (iii),  r/a  +  a/r  =  2   

Subtracting (iii)  from (ii),  

  r/a  -   a/r   =   2m (1  +  cos ) 

 

 

r 

a 

2m cos      [4m2cos2   +  4 (1  +  2m)] 

2 



 Hence, using (ii) of problem (3)  the coordinates of the section in the w-plane 

are  

     =   (r  +  a2/r)  cos   =   a(r/a  +  a/r)  cos     

       =   2a cos       (iv) 

     =  (r  -  a2/r)  sin    =   a (r/a  -  a/r)  sin  

      =  2am (1 +  cos )  sin    (v) 

 The leading and trailing edges are given by   =  0  and  = 180  

respectively.  To the present degree of approximation these values give   =    2a, 

and hence the chord length is 4a. 

 The maximum ordinate is found by differentiating (v).  

 Thus   d/d  =  2am [(1  +  cos )  cos   +  sin   ( -  sin )] =  0 

 This is zero if   =  60  or  180  but the latter value refers to the trailing edge.  

Putting   =  60, cos   =  ½ and sin   =   3/2. Substituting in (v) the maximum 

ordinates is -  

 max     =   2am (1  +  cos 60)  sin 60 

  =  2am (1  +  ½ )  3/2 

  =  33am/2 

Since the section is symmetrical the thickness ratio is -  

 2max / chord  =  33am/4a  =  33m/4 

  or  1.3m  (approximately)      (vi) 

 

 

7.  The thickness ratio of a symmetrical Joukowski section is 0.156.  

Estimate the pressure coefficient midway along the chord for two-

dimensional incompressible flow at zero incidence. 
 

Using (vi) of the previous problem and given the thickness ratio, we have -  

 1.3m  =  0.156   and   m  =  0.12      (i) 

Hence,   b   =  a (1  +  m)  =  1.12a       (ii) 

The equation of the circle in the z-plane is, see fig. (b) 

   (x - OC)2  +  y2  =  b2 

or    (x - am)2  +  y2  =  b2       (iii) 



At the mid-chord point of the Joukowski section = 0 and from (iv) of previous 

problem,   =  90. At the corresponding point in the z-plane, x= 0 and,from(i)and (iii) 

 y2    =    b2  -  a2m2      =  a2 (1  +  m)2  -  a2m2  

     =   a2 (1  +  2m) 

     =  1.24a2  

or        y   =   1.114a     (iv) 

 now refers to  PCN, the velocity at the point P is - 

 q    =   2U sin PCN   =  2U. PN / CP =  2U. y/b 

and with the values of b and y from (ii) and (iv)  - 

 q   =   2U.1.114a/1.12a  =   1.99U      (v) 

As in the previous example a/r  =  1  -  m (1  + cos  ), and , if   =  90, 

  a/r  =  1  -  m  =  0.88 

Thus, from (i) of problem (3), the velocities at the corresponding points in the two 

planes are related by -  

 q    =  q’  [1  -   2  x  (0.88)2  x (- 1)  +  (0.88)4] 

       =  1.774q’ 

Hence, using (v),  

 q'  =  q/1.774  =  1.99U/1.774  =  1.122U 

and, by Bernoulli’s theorem, the pressure coefficient is - 

 Cp  =  (p  -  P)/ ½ U2  =  1  -  (q’/U)2  

       =  1  -  (1.122)2 

       =  - 0.259 

 

 

8.  Explain how the Joukowski transformation is used to obtain a circular 

are aerofoil and obtain an expression for its radius.   

 Write down expressions for the coordinates of the general 

Joukowski aerofoil and explain briefly why sections of this type are not 

used in modern aircraft. 

 

Suppose, fig.(c) of problem (5), the centre of the circle to be transformed lies on the 

y-axis, the radius b being such that the circle intersects the x-axis at the same points as 

the circle of transformation.  Let CBO  =  .  Then, from triangle CBO - 



 OC    =    b sin   =  a tan  

 CN    =    ON  -  OC  =  r sin   -  b sin  

 NP    =     r cos  

Applying Pythagoras’  theorem to triangle CNP,  

 (r  cos )2  +  (r  sin   -  b  sin )2  =  b2  

 r2(cos2   +  sin2)  -  2rb  sin   sin   +  b2 sin2    =  b2  

 r2  -  2rb  sin   sin   =  b2 (1  -  sin2 ) 

    =  b2  cos2  

    =   a2  

Hence    r2 - a2 =  2rb  sin   sin  

or,  dividing by  r,   r  -  a2/r   =  2a sin  tan  

 Thus, using (ii) of problem 3, the ordinate of the resulting section is - 

     =  (r  -  a2/r) sin    =  2 a  sin2   tan     (i) 

 

 If  is replaced by -  in this result, the ordinate is unchanged.  Hence the 

result of the transformation is a single curve as shown in fig. (c).  The maximum value 

of  occurs when   =  90 and sin   =  1 .  Thus the centre-line camber is -  

 max /chord length  =  (2a tan )/4a  =  ½ tan      (ii) 

 It can be shown that the transformed curve is a circular arc.  Suppose its radius 

is R.  Then applying Pythagoras’ theorem to a triangle formed by the centre of the 

circular arc, the origin in the w-plane and one end of the arc, we have -  

 R2       =    (R - max)
2  +  (2a)2  

or     2Rmax   =  (max)
2  +  4a2   

and  R         =  max/2  +  2a2/max 

  =  [a(tan )/2  +  2a2/ (2a tan ) 

  =   [a(tan2  +  1)]/tan  

  =   a sec2  /tan   (since  1  +  tan2    =  sec2 ) 

  =  a/(cos  sin ) 

  =  2a cosec 2   (since cos   sin   =  ½ sin 2 ) 

 

 The result of transforming a circle whose centre is slightly displaced from both 

axes is a cambered aerofoil, fig. (d).  It can be sown that (to the same degree of 



approximation as before) the  coordinate at any point is the sum of the ordinates due 

to the separate displacements of the centre C from the x- and y-axes.   

 Thus, the coordinates of any point on the cambered aerofoil are - 

From (iii)  problem (6)   =  2a cos  

From (iv)  of problem (6)    =  2am (1  +  cos )  sin   +  2a sin2  tan  

        =  2a sin  [m(1 + cos  ) +  sin ] 

since, for small angles, tan   =    rad (approximately). 

 The thickness ratio is 1.3m and the centre-line camber is ½ .  Joukowski 

aerofoils have no particular advantages over any other type apart from the 

comparative simplicity with which they are derived.  All sections of this family have a 

cusped trailing edge, i.e. the upper and lower surfaces have a common tangent there.  

This makes practical construction difficult but small modifications near the trailing 

edge have little effect on the theoretical properties.  

With some other transformation Karman-Treftiz  and von Mises  the upper and lower 

surface have distinct tangents at the trailing edge. 

 In irrotational flow the drag of the aerofoil is zero but in a real fluid this is no 

longer true.  Recent investigations   have shown that some new families of aerofoils 

are far superior to the Joukowski and there “conventional” types in the matter of 

profile drag.  For this reason the simple Joukowski sections are no longer used but 

conformal transformation (in an extended form) is still a powerful method of aerofoil 

design.  

 The problem of finding a transformation which will enable a given section to 

be obtained from a circle is more difficult than that of determining the section when 

the transformation is given.  In general it can only be solved by successive 

approximations.  It is possible by such methods to determine the pressure distribution 

round any given section  but recent work  has been directed towards deriving a section 

which will possess a given pressure distribution. 

 

 

9.  Calculate the lift coefficient of a thin Joukowski aerofoil, camber 0.05, at 

an incidence of 7, explaining your method.  

  

 By (i) problem 3 a stagnation point S in the z-plane (q  =  0)  transforms to a 

stagnation point in the w-plane (q’=  0), unless q’/q is infinite.  In the case of the 



symmetrical aerofoil (fig. problem 5), S coincides with B and S’ with B’, the trailing 

edge.  For the unsymmetrical cases (fig. c & d of problem 5), S’ is a head of trailing 

edge B’.  The flow is then of the type illustrated in fig. problem 6.  At the trailing 

edge  r  = a,    =  180, and by (i) of problem 3, q/q’  =  0.  if q has a finite value at B 

then q’  is infinite at B’.  (A point at which q/q’ is zero or infinite is called a singular 

point and the transformation ceases to be conformal there.) 

 In order that q’ is finite at B’, q must be zero at B.  This condition can be 

obtained by adding a circulation  k to the flow past the circle in the z-plane of such 

magnitude that S coincides with B.  It follows that S’ coincides with the trailing edge.  

This method of specifying the magnitude of the circulation is known as Joukowski’s 

hypothesis.  

 As shown in Fig of problem 5 (c) and (d), the stagnation point S on the 

cylinder must be displaced through an angular distance .  From above, in which a is 

now replaced by b and  by , the required circulation is - 

  k  =  4bU  sin        (i) 

 This result applies to zero incidence and the effect of incidence on lift is most 

easily found by supposing the aerofoil fixed and the undisturbed stream inclined at the 

required angle  as shown in fig.  It follows that the stagnation point must now be 

displaced by SCB  =   +  and the circulation according to Joukowski’s hypothesis 

is, from (i), 

  k  =  4bU  sin ( + ) 

       =  4bU (  +  )       (ii) 

since, for small angles, sin ( + )  =  (  +  ) radian  approximately.  

The circulation is the same for the aerofoil and its lift per unit length is UK.  The 

corresponding lift coefficient is  

  CL  =  Uk/( ½ U2.c)  =  U.4bU(  +  )/( ½ U2.4a) 

        =  2 (  +  )     (iii) 

since a and b are approximately equal.  For a given aerofoil  is constant and the 

theoretical lift slope is - 

   dCL/d   =  2 

With the data given in the question ½   =  0.05  and  =  0.1,   =  0.1222 radian.  

Thus, from (iii) - 

  CL  =  2(0.1222  +  0.1)  =  1.396 



10.  Explain, with the aid of diagrams, how to obtain a stream line of the 

irrotational flow past a Joukowski aerofoil of symmetrical section from a 

given streamline of the flow past a circular cylinder. 

 Joukowski’s transformation is  w  =  z  +  a2/z where w is the complex 

coordinate in the aerofoil plane and z is the complex coordinate in the circle 

plane. 

Suppose P is any point on a streamline of the flow past the circle in the          

z-plane,  as shown in fig.  Then z, the complex coordinate of P is represented by the 

vector OP.  Suppose Q is a point such that OQ  represents a2/z.  OP and OQ therefore 

correspond to the two terms in the transformation formula.  If OP and OQ are added 

vectorially the resulting vector OP’ represents the complex coordinate w, and P’ is 

therefore the transformation of the point P.  

 It is shown in previously that the length of OQ is a2/OP and that OP and OQ 

are on opposite sides of the x-axis and equally inclined to it.  The geometrical 

construction for P’  is as follows - 

 Draw OQ, of length a2/OP, so that P and Q are on opposite sides of the x-axis 

and POx = QOx.  Complete a parallelogram with OP and OQ as adjacent sides.  

Then P’, the transformation of P, is the opposite end of the diagonal through  O.  

 By repeating the construction for a series of points the required streamline is 

obtained.  In Fig.   the w-plane and z-plane are shown together.  By applying the 

construction to the circle, centre C and radius b, the aerofoil itself can be drawn and, 

in this case, it is found that the points such as Q lie on a circle.  This auxiliary circle is 

first drawn by locating one or two positions of Q.  It passes through B and, in the 

symmetrical case, its centre lies on the x-axis.  

 

11.  When will conformal transformation break down? When will 

Joukowski transformation fails? 

 Conformal transformation is the best choise for 2D flows of low speeds.  This 

can not be extended to 3D flows or flows of high speeds.  

 Joukowski aerofoils have no direct use in practical design of aerofoils.  The 

overall lift is proportional to the circulation generated and the magnitude of 

circulation should be such as to keep the velocity finite of the trailing edge (Kuta 

condition). 



c 

12.  Use Blasius’ theorem, to determine the force on a circular cylinder in a 

uniform stream, with circulation .   

 

The flow is simulated by a uniform stream of velocity U, a doublet of strength 

equal to 2Ua2, at the origin, with its axis in the negative x direction, and a vortex of 

strength -  at the origin.  The complex potential for the whole flow is therefore given 

by 

 

  w  =   +Uz  +          -  ln z 

 

   =   +  U  1-       -   

 

 

         2   =  plus other terms which are powers of z.  

 

Now 

  zndz   =          zn+1     =   0,     if n   - 1 

 

  =  [ln z ]c  =  [ln re i]c  =  [ln r ]c + [i]2   =  2i,  if n  =  -1  

  

Thus all the powers of z in the above expression for (dw/dz)2 contribute nothing when 

integrated round c, except for the term in 1/z.  Thus 

   

   2  dz   =   2i             =   -   2U 

 

so that X  -  iY  =  ½ i  (-2U)  =  -  iU. 

 Hence  X  = 0, which is the paradox of D’ Alembert,  

and  Y  =  U, which is the Kutta - Joukowski result.  

Also 

  z      2   =                 + 

 

 

 

 

Ua2 

z 
i 

2 

a2 

z2 
dw 

dz 

i 

2z 

dw 

dz 

i 

z 

c 

1 

n + 1 

 
c 

dw 

dz 

iU 

 

dw 

dz 

2U2a2 

z 

2 

42z 

c 



plus other powers of z.  Thus the term in 1/z is real, so that  

 

  z     2   dz 

 

is imaginary.  Thus M  =  0.  This implies that the lift acts through the origin.  

or 

 

      =   U    1  -            - 

 

            =   U2     1  -            +               -    2U    1  -   

 

  =   U2  - -    2U2a2  -      +       + 

 

  =   A0   +     +       +… 

 

whence      A1  =     -  , A2   =   -   2U2a2   - 

 

  X - iY   =   -  A1   =          =  iU 

    X  =   0,  Y  =  -   U 

that is, the drag force is zero and the lift force is - U.  When U is positive and  is 

negative (clockwise circulation), Y is positive, that is, upwards. 

 M  +  iN  =  -  iA2     (wholly imaginary) 

  moment M is zero. 

 

 

13.  Use Blasius theorem to prove Kutta – Jowkowski equation for an 

aerofoil.  (Two-dimensional flow past a profile of any cross section, with 

circulation)  

 The velocity at a great distance from the cylinder being U, the complex 

velocity for the pattern of flow around the cylinder can be written 

 

  =      Uei   +  +    +  … 

where  is the angle of incidence or angle of attack 

   w     =   Uei z  +  A ln z  -   +  … 

dw 

dz  
c 

dw 

dz 

a2 

z2 
i 

2z 

dw   2 

 dz 
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 z2 
i22 

42z2 
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since there is a clockwise circulation K, the resulting component in w must be                     

-            lnz  

 

      A  =  -   

 

      =   U2e2i  -              - …   =  A0   +           +  +  … 

 

from Blasius’s theorem, since  A1  =   - 

 

 X  -  iY  =  -  A1  =     =  iKUei  

If   =  0,  irrespective of the shape or orientation of the profile  

 X  =  0,  Y  =  -  UK  =  -  U 

 

14.  Using  Joukowki transformation how a circle in x-y plane is 

transformed to a flat plate in w-plane.  

(1)  How should the circle be located with respect to coordinate axes (ii) What 

will be the chord length (iii)  Determine (a) velocity and (b) pressure distribution 

after application of Kutta trailing edge condition. 

 

 Joukowski transformation is w = z + a2/z where a is the radius of circle of 

transformation in z-plane.  It r,  are the polar coordinates in z-plane corresponding , 

 coordinates in w-plane in terms of polar coordinates may be evaluated as follows  

  z = x  +  iy  

   = r (cos + i sin ) 

  w = z  +  a2/z 

   = r (cos +  i sin )  +  a2/r (cos   - i sin ) 

   = (r  +  a2/r) cos  + i  (r – a2/r) sin  

   =  + i  

Coordinates of w-plane are  

   =  (r + a2/r) cos  and  =  (r – a2/r) sin   

For the circle in the z-plane, radius a and centre at origin  r = a and the coordinates in 

w-plane becomes  

   =  (a + a2/a) cos   =  2a cos  

   =  (a – a2/a) sin   =  0  

iK 

2 
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2 

A1 

z2 

A1 

z2 
dw  2 

dz 
iKUei 

z 

iKUei 

 

iKUei 

 



As  varies from 0 the ,  varies from 2a to –2a.  Thus the circle in z-plane 

transforms to a straight line (the part of  - axis in the range  2a) 

(i) The circle is located at origin in z-plane with respect to (r, ) coordinates 

for transformation to w-plane. 

(ii) The chord length of flat plate is 4 times the radius of the circle 

transformed.  

 

Velocity and  pressure distribution  

a) w = z  +  a2/z 

 

  = 1  -  a2/z2 

  = 1  -  a2/r2 (cos  - i sin )2 

  = 1  -  a2/r2  cos2  + i a2/r2 sin 2 

  = u +  i v  

   u = 1  -  a2/r2  cos2 ;  and v  =  a2/r2  sin 2 

 V = u2  +  v2 
 

  =  (1 -  a2/r2 cos2)2  +  (a2/r2 sin2)2  

 

  = 1 +  (a2/r2 cos2)2 – 2 a2/r2 cos2  +  (a2/r2 sin2)2   

 

  = 1  -  2a2/r2 cos2  + (a2/r2)2   

 

 This represents the velocity distribution on the transformed flat plate. 

 

b)  If U is the free stream velocity at an undisturbed point  

  Cp    =    1  -  (V/U)2  

 

   = 1   -   

 

This represents the pressure distribution on the transformed flat plate.  

 

 

 

 

dw 

dz 

 

 

 

 

1 – 2 a2/r2 cos2 + (a2/r2)2 

U2 



15.  Indicate clearly how the circle is to be placed for Joukowski 

transformation to get (a) symmetrical Joukowski aerofoil profile.             

(b) circular are aerofoil (c) cambered aerofoil.  

 

a)  Symmetrical Joukowski aerofoil profile  

 

 Circle of radius b, slightly greater than a is placed with its centre C on x-axis 

at a small positive distance from origin such that OC  =  b – a = a x m where m is 

small.  This circle will be tangential at negative x-axis. 

 

b)  Circular are aerofoil : 

 

 Circle of radius b, slightly greater than a is placed with its centre C on y-axis 

at a small positive distance from origin so that both these circles intersect a distance 

of +a and –a on x-axis.  

 

c)  Cambered aerofoil : 

 

 Circle of radius b, slightly greater than a is placed with its centre C, slightly 

displaced at a positive distance from both axes.  

 

 

18.  How circulation and lift  coefficient over cambered Joukowski aerofoil 

profile is determined.  

 

 For a cylinder at origin of radius a with uniform velocity U and circulation 

strength k tangential velocity of fluid on the surface of cylinder at angle                             

  =  2U sin - k / 2a. 

 At stagnation point the tangential  velocity is also zero.  

       k = 4aU sin 

 To obtain cambered Joukowski aerofoil profile, cylinder radius is changed 

from a to b and centre is shifted from origin.  Hence the stagnation point on the 

cylinder is displaced through an angular distance .  Hence the required circulation 

strength  

 k  =  4 b U sin . 



 If the undistured stream is at an angle of incidence  the displacement of 

stagnation point is by  + .  

      k   =   4 b U sin ( + ) 

 

Using Kutta – Joukowski equation equating lift per unit span of aerofoil 

 L  =   CL /2 (4a x 1) U2  = Uk  

     =  U 4 b U sin ( + ) 

Taking a  b and sin ( + )  =  ( + ) 

 CL = 2 ( + )



 

 

CONFORMAL  TRANSFORMATION 

UNIT  -  III 

 

Complex variables - Application in fluid machines  

 

 Complex variables and its analysis is a powerful analytical method of 

determining two-dimensional patterns of irrotational flow.  This approach extends 

greatly the range of boundary forms which can be treated and provides, for each 

pattern, a single expression embodying both the stream function and the potential 

function.  The method is known as conformal transformation or conformal mapping 

and it requires some knowledge of complex variable theory, elements of which are 

introduced below.  

 

3.1   Complex numbers  

 

A number consisting of two distinct scalar parts, a and b, and written in the form 

a+ ib, where i is  - 1, is called a complex number.  The first part, a, is said to be the 

real part and the second part, b, the imaginary part of the number. The distinctive 

names of the parts, and the use of I, may be regarded as devices for maintaining the 

separate identities of the two parts in various mathematical operations.   

 

 Complex numbers occur in the solution of some algebraic equations.  For  

example the two roots of the quadratic equation x2 - 4x + 13   = 0 are the complex 

numbers x  =  2  3i.  We shall be concerned here with the use of complex numbers in 

specifying the location of points on planes.  In the Argand diagram (fig.3)  the 

position of any point is specified by one variable, z, instead of the two variables x and 

y of Cartesian geometry.  We regard z as a complex number whose real part is x and 

whose imaginary part is y.  This complex number, which really represents the position 

vector  Oz, is therefore  

  z  =  x  +  iy       (3.1) 

The modulus, or absolute value, of z is the magnitude, Oz, of the position vector  

and it is designated by r, and sometimes by |z|. 

Hence 

  r   =  |z|  =   (x2 + y2)      (3.2) 



The argument of z is the direction, , of the position vector measured from the 

positive x-axis in an anticlockwise direction.  It therefore has the value 

     =  tan-1        (3.3) 

and it is normally restricted to the range  -    <    <  . 

 Alternative modes of expressing z result from the substitution of polar co-

ordinates (r, ) in Eq. 3.1 

  z  =  r cos   +  ir sin   =  r (cos   +  i sin ) 

and, since  

  ex   =  [1 + x +          +          +   … 

 

  ei  =  1  +  i  - -  + … 

 

        =       1  -         +           -   …       + i        -            +          -  … 

         

      =    cos  +  i sin  

    r (cos   +  i sin )  =  rei  

The three forms for expressing z are thus  

 z  =  x  +  iy  =  r (cos   +  i sin)  =  rei    (3.4) 

It follows that  

  zn  =   rnein   =   rn (cos n  +  i sin n) 

 For two complex numbers to be equal there must be equality of the real parts 

and also of the imaginary parts, that is, equality of moduli and also of arguments.  It is 

meaningless to state that one complex number is greater than another.  Such a 

statement can only be made regarding corresponding parts of two complex numbers.  

 

3.1 Functions of a complex variable 

 

If x and y are variables, the complex number z = x + iy is called a complex 

variable.  Suppose that another variable, w, is defined as, say, w = z2 or w = ln z, or    

w  =  cosh-1z.    Then w is said to be a function of the complex variable z, that is,       

w = f(z), and w itself is a complex variable with a real part and an imaginary part.  

The real part is usually designated  and the imaginary part, , both  and  being, in 

general, functions of x and y.  Hence  

  w   =    +  i  =  f1 (x, y)  +  i f2 (x, y)   (3.6) 
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Just as z = x + iy defines a point on a diagram which has x as abscissa and y as 

ordinate, so w =   +  i  defines a point on another diagram which has  as abscissa 

and  as ordinate (fig. 3.2).  The two diagrams are referred to as the z-plane and the 

w-plane respectively.  For each point (x, y) on the z-plane, there will be a 

corresponding point (, ) on the w-plane, since the value of  and  are each 

determined by the values x and y. 

 

 Similarly, for any line on the z-plane, there will be a corresponding line on the 

w-plane, changed in form in the ‘transformation ‘ from the z-plane to the w-plane.  

There is no question of geometrical projection from one plane to the other.  The 

relationship is simply one of correspondence of points, a line being regarded as a 

series of points. 

 The family of lines  = x2 - y2  =  constant  on the z-plane are rectangular 

hyperbolae, orthogonal to the lines  = constant; on the w-plane, the corresponding 

family of lines, with the same equations,   =  constant, are parallel to the -axis and 

hence again orthogonal to the liens  = constant (figs. 3.5 and 3.3). 

 If  be regarded as a stream function and   as the associated velocity 

potential function, the pattern of  - lines and -lines on the w-plane (fig.3.2) clearly 

represents uniform flow parallel to the -axis in the positive -direction.  On the        

z-plane (fig. 3.3) the corresponding - and -lines represent the pattern of irrotational 

flow at a 90 corner.  For some function other than w = z2, the z-plane pattern will be 

different from that of fig. 3.3 

 

 Whatever form the function w = f(z) may take, the pattern on the w-plane is 

always that of parallel flow from left to right, as in fig. 3.2 and pattern on the z-plane 

is always the physical pattern under investigation.   The function w = f (z) may be 

regarded as transforming the z-plane pattern to the uniform flow pattern of the         

w-plane.  Once the transforming function, w = f(z) for a particular physical pattern, is 

known, its real part,  = f1(x,y), equated to a constant yields the equation ;of the 

equipotential lines in the physical or z-plane; and its imaginary part,  = f2 (x, y), 

equated to a constant, yields the equation of the streamlines in the z-plane.  Each line 

has its own particular constant.  



i(1/2) 

 A transformation w = f(z) expressed in its inverse form, z = f –1  (w) can be 

regarded as transforming the parallel flow of the w-plane to the pattern of flow on the 

z-plane.  Consideration of the inverse form will frequently enable a visual concept of 

the z-plane pattern to be obtained, through the use of polar co-ordinates.  For 

example, given the function w = z2 the z-plane pattern is determined by examination 

of the inverse form z = w1/2.  If z =  rei and w  = r1e
i, then rei  =  r1/2           and, 

equating moduli and arguments,  

  r  =  r1
1/2  ,    = 

 

so that this transformation can be pictured as forming the z-plane pattern by ‘folding’ 

the upper half of the w-pattern clockwise about the origin in such a manner that all 

polar angles, 1, are halved; and at the same time ‘shrinking’ it differentially so that 

all polar distances, r1, are reduced to the square roots of their original values (figs 3.2, 

3.3).  The streamline   =  0  (A1O1B1) takes up the new position A O B and the 

pattern on the z plane is flow at a 90 corner,  if we consider the pattern of one 

quadrant only.  (In fact, in the complete z-plate pattern, each quadrant contains a 

corner flow pattern). 

 Of the infinite number of functions of the complex variable, many provide 

transformations such as the corner flow pattern, which are of practical interest to the 

hydraulic engineer. 

 

 

3.3   Analytic functions  

 

The condition that the transformed pattern of -lines in the z-plane does in fact  

represent a possible pattern of irrotational flow is that the function  = f1(x, y) 

satisfies the conditions of continuity and irrotationality or, in other words, that            

 satisfies the Laplace equation which embodies these two conditions.  Similarly, the 

 lines will represent a possible irrotational flow pattern if  satisfies the Laplace 

equation. 

 It will be seen in this section that these limitations on  and  restrict w to a 

class of function known in the theory of the complex variable as analytic.  The term 

‘function of a complex variable’ is conventionally restricted, in fact, to analytic 

1 

2 



functions.  It may be stated that a function w = f(z) may be analytic for all values of z, 

or possibly for all but one or some finite number of values of z; that is, for all points, 

or all but a finite number of points in the z-plane.  The exceptions are called 

singularities or singular points.  Hence the statement that function is analytic ‘within a 

region’ or domain implies that there are no singular points in the area under 

consideration.  

 A function, w = f(z), is said to be analytic within a region of the z-plane only, 

if for each point in that region (that is for each value of z): 

(a) there is one and only one corresponding value of w and that value 

is finite, and  

(b)             is single - valued and neither zero nor infinite.  

At singular points, where these conditions are not satisfied, the transformation  

process is not applicable, although at a very small distance from them it may be.  In 

diagrams, singular points are frequently encircled, to indicate the fact that they are 

isolated from the transformation or mapping process.  Examples of analytic functions 

with singular points are -  

 

(i)  w   =     which is analytic except at z = = a where w is infinite  

 

(ii) w  =  1n z which is analytic except at z  =  0, where w is infinite  
 

(iii) w  = z2, which is analytic except at z = 0 where            is zero. 

 

 From a practical viewpoint, singular points are generally points of 

theoretically infinite or zero velocity on the physical plane.  The points of infinite 

velocity include the centers of sources, sinks, vortices, and doublets, and sharp 

corners where boundaries are deflected away from the flow.  At these points in a real 

fluid, not only are infinite velocities impossible but, with the necessarily high velocity 

gradient involved, viscous effects become appreciable and significant departures form 

the irrotational flow pattern, such as rotational vortex flow or separation, result.  

 The points of zero velocity are stagnation point such as those which occur 

where a streamline branches on the upstream face or edge of a submerged body; 

where two streamlines unite, near the downstream face or edge; or where at a sharp 

corner, a boundary is deflected into the flow.  The pattern of stagnation flow is 

approached in some cases of real fluid flow such as in the flow near the tip of a pitot 

dw 

dz 

1 

z -a  

dw 

dz 



tube; whereas in others, such as in flow at a boundary corner, separation may result in 

a noticeable departure from the irrotational pattern.  

 It will now be demonstrated that a function which is analytic, that is, one-

valued with a one-valued derivative, does yield a possible pattern of irrotational flow.  

Condition (a), that w  =   +  i should  have one value for a given value of z, results 

in  and  having only one value at a point P in the z-plane.  This is in accord with 

the requirement that only one possible pattern of flow can exist for a given set of 

boundary conditions.  

 Condition (b), that the derivative     should have only one value  
 

at any point P in the z-plane, results, as will be now shown in  and  being solutions 

to the Laplace equation, which embodies the conditions that the continuity equation is 

satisfied and that flow is irrotational.  Consider,  again, the example of flow at a 

90corner (fig. 3.4 and 3.5).  It can be seen that in the region of a point P on the         

z-plane, a small change, z  = x + iy, in z corresponds to a small change,                

w  =    +  i, in w on the w-plane.  These changes have both magnitude and 

direction.  The relationship between w and z can be expressed in terms of the rate 

of change of w with z, thus 

 

 

 

Condition (b) requires that, at any point,     shall have only one value, whatever the 

direction of z.  It can be shown that it will have only one value for all directions, 

provided that it has the one  value for any pair of directions at right angles to one 

another, for example the x-and y-directions, at any point P  (Fig. 3.4)  Hence 

condition (b) will be satisfied if     has the same value, in the limit, for               

z1  =  x + i0  =  x as it has for z2  =  0  +  iy  =  iy.  

In the first case  
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For these two values  of     to be equal, the real parts must be equal and the 

imaginary parts must be equal, that is  

 

  =                  3.8a 

 

  =                  3.8b 

 

These equations, the consequence of the condition of one-valued derivatives, are 

called the Cauchy-Riemann equations.  Provided that the partial derivatives  

 

         ,           ,          and      exist, and are continuous, the Cauchy-Riemann 

equations are the sufficient conditions that a continuous one-valued function              

w  =  f(z) is analytic.   

 The complex variable, w  =    +  i, in which  and  satisfy the Cauchy-

Riemann equations, is called the complex potential.  Differentiating eq.3.8a with 

respect to x, and eq. 3.8b with respect to y, and adding, results in  

 

   +     =    0      3.9 
 

 Similarly, differentiating  eq. 3.8a with respect to y, and eq. 3.8b with respect 

to x and subtracting, yields  

 

   +       =   0               3.10 

Hence the real and the imaginary parts of any function of a complex variable satisfy 

the Laplace equation and are therefore possible velocity potential functions or stream 

functions for two-dimensional irrotational flow.  This is directly evident from the 

Cauchy- Riemann equations, for, irrotational flow, 

 

  =       =   u   and          =   -            =  v 

 

 

3.4   Significance of dw/dz 

 

The derivative      can be regarded either as a complex operator or as a complex 

velocity.  

(a) The complex operator  

An infinitesimal line z on the z-plane is transformed into a corresponding line w  
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on the w-plane (or vice versa) according to the relationship  

  

   w   =     z              3.11 

 

for w and z are complex numbers and           can be regarded as a complex  

number or operator which transforms z, by rotation and stretching (or shrinking) to 

produce w.  Since    has only one value at any point, infinitesimal lines in all 

directions in the region of that point will be equally affected as regards rotation and 

scale change.  Hence infinitesimal figures will be transformed, by rotation and change 

of scale, without distortion, into the w-plane and any two lines intersecting at a 

particular angle on the z-plane will, after transformation, intersect at the same angle 

on the w-plane.  These transformations, owing to their retention of angular form, are 

called conformal.  Since            is, in general, a function of z and therefore varies from  
 

point to point, the amounts of rotation and change of scale vary for different points of 

the z-plane. 

 Large figures therefore become distorted in transformation but angles formed 

by the intersecting lines of those figures do not.  In fig.s 3.6 and 3.7, the small 

triangle, LMN on the z-plane is seen to be rotated and altered in size without 

appreciable difference of form on the w-lplane.  The large triangle vertices, L, M’ and 

N’, are rotated with respect to the origin by different amounts, the triangle is enlarged 

and distorted but the angles have not been altered in the transformation to the           

w-plane.  Angles at the origin are altered, for the origin is a singular point at which 

the mapping process breaks down. 

 

(b) The complex velocity  

Since, from eq. 3.7 a,  = 

 

  =      (  +  i)    = + i      =  u  -  iv 

 

            =   u  -  iv      3.12 

The derivative         can be regarded therefore as a complex velocity, the real part 

equaling the x-component, and the imaginary part the negative of the y-component of 

the velocity V at any point  (fig. 3.8).  

The absolute value of the complex velocity is             =     (u2  +  v2), the speed at the  
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point z; and its argument is -  where   =  tan-1   

 

      =   | V | [cos ( - )  +  i sin ( - )] 

 

       =  | V | e-       3.13 

 

where |V| is the absolute magnitude of the velocity V.  Provided the w = f(z) function 

is known, Eq. 3.13 provides a ready means of determining the velocity at any point of 

the flow pattern in the z-plane.  In particular, at stagnation points             equals zero. 
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CONFORMAL  TRANSFORMATION 

UNIT  -  III 

 

 

3.1  Some simple transformations  

 

The following simple transformations are but a few of the many useful analytic  

functions which have been investigated.  They are here treated with sufficient detail to 

enable to develop proficiency in identifying the flow patterns, in some cases an 

alternative, rapid approach, which gives a qualitative idea of the transformation 

pattern, is provided. 

 

 Transformation   Flow pattern in the z-plane  

1.     w  =  Az    Uniform flow 
 

2.  (i)  w  =  m ln (z - a)  Source at z = a  

 

     (ii)  w  =        ln  (z - a)   Vortex at z = a 

 

     (iii)  w  =    m  -     ln  (z - a)  Spiral vortex at z =  a 

 

3.       w   =    Doublet at  z  =  a 

 

4.     w   =   m ln     Source at (-a, 0), sink at (a, 0) 

 

5.    w  = Azn    Flow at a wall angle,    =  

 

6.   z  =  c cosh  w   Flow through an aperture (inverse function)  

 

7.   z  =  e-w  -  w              Flow into a rectangular channel(inverse function)  

 

8.  (i)   w  =   U  z  +     Flow past a cylinder of radius a  

 

     (ii)  w  =  U  z  +        -       ln z Flow past a cylinder with circulation. 
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3.2   Flow past a cylinder  

 

(i)   Without  circulation  

The combination of a doublet with uniform flow yield the pattern of uniform  

flow past a circular cylinder.  The complex potential for this pattern is simply the sum 

of the individual complex potentials.  For uniform flow with a velocity U in the 

positive x-direction and a doublet with its axis in the negative x-direction. 

 

 w   =   w uniform  +  w  doublet  

       =  Uz  +   

      

      =  U  z  +   

 

   w   =   U  z  +       3.1 a 

 

where a  =        ,  the radius of the cylinder  

 

 Where z is very large, w approaches the value Uz, that is flow is practically 

uniform at large distances from the origin.  With z expressed in polar coordinates  

 

   +  i    =   U   rei   +          e -i   
 

 

      =   U    r  +          cos   +  iU   r  -           sin 

 

         =    U    r  +   cos      3.1b 

 

            =   U    r   -            sin      3.1 c 

 

The complex velocity  

   =   U   1  -            =   |V| e-i   

 

is zero at the stagnation points z =   a and has the maximum value of 2U at z =  ia. 
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(ii)  With circulation  

 Addition of the complex potential for a clockwise vortex of strength K yields 

the complex potential for flow in the positive x-direction past a cylinder with 

circulation  equal to K.  In this instance, K has a negative value.  

 

   w   =    U   z   +    -          ln z    3.2 a 

 

         =    U   r   +    -    cos   +       3.2 b 

 

        =    U    r    -           sin  -          ln r   3.2 c 

 

 

3.2.1 Transformation of the circle  

 

 The pattern of flow past a circular cylinder, obtained by means of eq. 3.1, can 

itself be transformed into other patterns.  It can be treated, therefore, as the pattern on 

an intermediate plane, say the z1 - plane, and the transformation   w  = z1  +  

can be regarded as the first step in the transformation the w-plane to the physical or   

z-plane.  Consideration is now directed to the several possible transformations from 

this z1-plane  to the z-plane.  The useful physical patterns which can be obtained 

include those of flow past plates, streamlined struts, arcs and aerofoils.  In each case, 

the z1 - plane circle of radius a is transformed into the new profile.  For simplicity, the 

undisturbed velocity on the z-plane is taken as unity and in the positive x-direction, 

except where otherwise stated.  

 The terms inverse point, and image or optical reflection, are defined for the 

present purposes as follows.  The inverse point of any point P (fig. 3.1a) with respect 

to a circle of centre 0 and radius a is Q  where Q lies on OP and OP.OQ  =  a2, that is 

OQ  =           .  The image, or reflection, of any point Q in the x-axis is R where       

OR = OQ and the angles xOR, xOQ are of equal magnitude. 

 Hence R is he image in the x-axis of the inverse of P.  If P is defined by the 

radius vector r1e
i

1, then R is defined by         -i
1 since OR  =  OQ  =      .  The vector 

sum of OP  and OR is OS  =  rei,  that is, OP  +   OR   =  OP  +  PS   =   OS 

 

  rei   =   r1e
i

1   +            e-i
1               3.3 
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S being located geometrically by the parallelogram rule of addition.  It will be seen 

that, if rei be denoted by z, and r1e
i

1 by z1, the above equation can be written 

 

  z   =  z1   +                3.4  

Also, if P lies on the circle of radius a, so does R, so that the locus of S is the x-axis 

between (-2a, 0) and (2a, 0) (fig. 3.1b). 

 These geometrical relationship will be used in the transformation now to be 

considered.  

 

3.2.2  Flow parallel to a flat plate  

 

The transformation  

  w   =   z1   +               3.5 a  

or, expressed in its inverse form,  

   z1   =  ½ [w   (w2 - 4a2)]            3.5 b 

transforms the uniform flow of the w-plane to flow past a circle of radius a, in the 

positive x1 - direction in the z1 -plane.  Since  =  1  -    is zero at z1 =   a, 

these are singular points.  

 The next transformation equation  

  z   =  z1   +                 3.6 

 

being similar in form to eqn. 3.5 reproduces the w-plane pattern of uniform flow, 

parallel to the x-axis, in the z-plane.  The streamlines of the z1 - plane become lines 

parallel to the x-axis.  The circle of radius a, henceforth called the a-circle, becomes a 

line extending from (-2a, 0) to (2a, 0) and can be regarded as a flat plate of length 2l, 

and of negligible thickness, set parallel to the flow.  The transformations are shown in 

Fig. 3.2. 

 The geometrical construction which transforms the streamlines and the          

a-circle can be used also to transform circles of radius greater than a, centred at the 

origin of the z1 -plane.   They form, in the z-plane, a series of confocal ellipses, the 

foci being at (-2a, 0) and (2a, 0).  One such circle is shown in broken line in Fig. 3.2. 
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3.2.3 Flow normal to a flat plate   

 

 If the direction  of flow  past the a circle in the z1-  plane is  changed  by 

means of a ‘rotating’ transformation, the final transformation to the z- plane changes 

the circle to a straight line as before but the flow is no longer uniform and parallel to 

it.  For example suppose that the direction of flow pattern is rotated through  -                   

by means of the transformation z2  =  -  iz1 . 

 On the z2-plane the direction  of flow is in the negative y-direction (fig. 3.1c).  

The final transformation  

    z    =   z2   + 

yields the physical pattern of flow in the negative y-direction normal to a flat plate of 

length 4a. 

 

 Since   =    1 -    =  0  at z2 =   a, these are, once again, singular 

points. 

The successive transformations relating the w- and z-patterns, 

 

  w  =  z1  +                 3.7 a 

 

  z2   =    - iz1                 3.7 b 

 

  z  =  z2  +                3.7 c 

can be combined by the elimination of z1 and z2  

 

  z1    =   -          =  iz2  

 

      w        =   iz2  +            =  i   z2   -  

 

     w2    =   -   z2   -    

 

also  z2    =     z2  +   

 

 w2  +  z2   =  4a2  

   w  =  i   (z2  -  4a2) 

If l  =  2a, the half width of the plate,  

  w   =  i  (z2  -  l2)                3.8 
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which is the required transformation. 

 The transformation for horizontal flow normal to a vertical plate (fig. 3.2)  is 

obtained by rotating the z-plane pattern through      

by multiplication of z by i, the new physical pattern being on the z’-plane 

   z'  =  iz 

        z     =  

 

     w    =   i         -  l2   

 

    w   =     (z’2  +  l2)             3.9 

 

 

3.2.4  Flow past an ellipse  

  

In case (i) above, the final transformation  z  =  z1  +          transformed the     

a-circle into a straight line of length 4a, and larger, concentric circles into ellipses.  If, 

instead, the final transformation equation is  

   

z  =    z1   +                                 3.10 

where b is less than a, then a circle of radius b with centre origin, the b-circle, is the 

circle in the z1-plane which is transformed into a straight line in the z-plane.  The line 

extends from (-2b, 0) to (2b, 0), its extremities being singular points (fig. 3.3).  The a-

circle which is larger and concentric with the b-circle, is transformed into an elliptical 

profile with the singular points as foci.  The method of graphical construction is 

apparent if eqn. 3.10 is expressed in polar co-ordinates and applied to the a-circle. 

 

  rei   =  aei   +              e-i                3.11 

The radius vector        e-i in the z1-plane defines points on a circle of radius         ,  

which is the inverse of the a-circle in the b-circle, since  x  a  =  b2  (Fig. 3.4).  For 

each point P1 on the a-circle (with the image, P’1, of its inverse, on the           circle),  

the corresponding transformed point P in the z-plane is obtained by vectorial addition.   

The resulting ellipse has a length of 2   a +       and a width of  2   a -        .  The 

successive stages in the transformation from the w-plane to the z-plane are shown in 

fig.  3.3.  The profiles obtained by this transformation and treated in this and the 

following three subsections are called Joukowski profiles.  
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3.2.5  Flow past a streamlined strut  

 

 If the a-circle is not centred upon the origin of the z1-plane some of the 

symmetry of its transformed profile disappears.  Displacement in the horizontal 

direction destroys the symmetry about the vertical axis.  In Figs. 3.5 and 3.6c the       

a-circle centre is displaced from the origin to C, where OC = m, a small distance in 

the positive x-direction, (by the transformation from z1 plane to  z2 plane)  

 

  z2  =  z1  +  m ei   =   z1  +  m  

Now, the transformation  

 

  z  =   z2  +                3.12   

transforms the b-circle O and radius OB1  =  b  =  a - m in the z2 - plane into the 

straight lines BD of length 4b in the z-plane.  The circle of radius OA1  =  a + m is 

transformed into the ellipse with major half axis OA and foci B and D.  The a-circle 

of radius a and centre C, is transformed into a profile which extends from B to A and 

has the characteristics of the straight line, that is a cusp of zero angle, at B; and of the 

ellipse, that is, a round nose, at A.  The profile is that of a symmetrical Joukowski 

streamlined strut and it can be developed by the normal graphical procedure.  The 

successive transformations are shown in Fig. 3.7, the flow being in the negative        

x-direction.  

 

 

3.2.6  Flow past a circular arc 

 

 The centre of the a-circle (Figs. 3.8 and 3.9)  is displaced along the y-axis to C 

where OC  =  m by the transformation from the z1 - plane  to the z2 - plane 

 

  z2 =  z1  +  m ei(/2)   =  z1  +  im                3.13 

The next transformation  

   z   =   z2  +                   3.14 

where b is selected so that it equals OB1 (fig. 3.8), transforms the b-circle into the 

straight line AB of length 4b on the z-plane.  The two arcs B1D1A1 and B1E1A1 of the 

a-circle in the z2 - plane are each transformed into the one circular arc BA on the        

z-plane. 
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The geometrical construction in Fig. 3.8 shows why the two transformed arcs 

coincide, for  

  P1O  x  OE1   =  B1O  x  OA1  

      r1  x  OE1   =  b2 

      OE1        =  

 

Hence, by symmetry, OP’1  =   OE1  =   that is, the image, P’1, of the inverse of 

the a-circle point P in the b-circle lies itself on the a-circle.  When P1 is one the arc 

B1E1A1, then P’1 is on the arc B1D1A1 so that, in the process of vectorial addition, 

both arcs yield the one transformed arc.  

 The camber of the transformed arc, OD, is seen to equal 2m, for, when P1 is at 

D1, in the z2-plane,  D1D   =  OF1  =   

 OD  =  OD1 - D1D  =  OD1 - OF1 

  =  (a + m)  -  (a - m) 

  =  2m  

 The transformations from the w-plane to the z-plane for flow past a circular 

arc are sketched in Fig. 3.9.  The positions of the stagnation points are evident in each 

of the three z-planes.  The ends of the arc in the final plane are singularities where the 

velocity of flow is theoretically infinite.  

 

 

3.2.7 Flow past an aerofoil 

 

The centre of the a-circle (Figs. 3.10 and 3.11) is displaced into the first  

quadrant  to C such that OC  =  m and the angle COX   = ,  by the transformation  

  z2  =  z1  +  mei               3.15 

The transformation to the z-plane,  

 

  z   =   z2  +                   3.16 

where b = OB1, transforms the b-circle into the straight line of length 4b.  The a-circle 

is transformed into aerofoil profile which has  the rounded nose and cusped tail of the 

strut and the camber of the arc previously treated.  The normal geometrical 

construction can be used, as indicated in Fig. 3.10.  It can be shown that the locus of 

the image, P’1, of the inverse of P1 is  a circle with radius C’B1 and centre C’ on the 
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line B1C such that the angles C’Oy2 and y2 OC are equal.  Use of this fact simplifies 

the location of P’1 in the graphical method. 

 A circle in the z2 - plane with centre E1 and radius E1B1 (Fig. 3.10b) would 

transform into the circular arc of span 4b which is the skeleton of the aerofoil, shown 

in broken line in the z-plane.  The thickness of the aerofoil increases with increase in 

the distance E1C’ and the camber, with increase in the distance OE1.  The stages in the 

transformation from the w-plane to the z-plane are shown in Fig. 3.11. 

 The meanings of some terms commonly used in connection with aerofoils are 

indicated in Fig. 3.12 ; the angle of attack being defined in some cases as  and in 

some cases as the more easily measured ’. 

 The cusped trailing edge where the angle of intersection of the upper and 

lower surfaces is zero is unsatisfactory in a practical aerofoil for constructional 

reasons.  A modified profile (fig. 3.13) with a finite angle, , at the trailing edge can 

be obtained by means of the transformation, due to Karman and Trefftz 

  

   =                 3.17 

The angle  equals (2 - n) , n being selected as a little less than 2.            

When n = 2, the transformation is  

 

  = 

 

which simplifies to the ordinary Joukowski transformation,  

 

  z   =  z2   +  

 The transformation functions so far considered, and the corresponding 

geometrical constructions, are applicable of course to all of the streamlines, the profile 

being merely a streamline of particular importance.  From the stream pattern in the   

z-plane, the distribution of pressure around the profile is readily determined.  
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3.3 Kelvin’s Circulation Theorem 

 

Theorem due to Kelvin, it follows that the circulation, and hence the vortex  

strength, does not vary with time, under certain conditions.   

These conditions are  

(i) the fluid is non-viscous ; 

(ii) its density is either constant or a function of pressure only; and  

(iii) the body forces are derivable form a single-valued potential (such as the 

gravity force potential, , introduced in unit I problem 18). 

But the condition (i) no real fluid is invicid (ii)  is true in homogenous liquid which 

can be treated as incompressible and for isentropic flow of gas (iii)  is true of the 

gravitational field. 

 Proof of Kelvin’s Circulation Theorem rests on the demonstration that the 

value of          ,  in a circuit which moves with the fluid elements composing it, is zero.  
 

 The circulation in the circuit shown in Fig. 3.14 is the summation of the line 

integrals of velocity along elements such as AB, whose projections on the co-ordinate 

planes are dx, dy and dz.  From the expression for  

     =          (u dx  +  v dy  +  w dz)            3.18 

the rate of change of   is  

   =     (u dx  +  v dy  +  w dz)           3.19 

The term  

   = dx      +  u 

 

and          is the rate of increase of dx, that is, it equals the difference, du, in the         

x-components of the velocities of A and B.  From problem 18 of unit I 
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In a similar way        and   can be evaluated, and, by addition, we 

obtain  

  

 (udx + v dy + w dz)    =  -  d    +             +  u du +  v dv  +  w dw 

 

    =   -  d     +  +  d  (V2)           3.20 

 

In order to evaluate Eqn.3.19, this must  be integrated around the circuit.  Since  is a 

single-valued potential, and the density is either a constant or a function of pressure 

only, integration of the right hand term yields zero.  Therefore 

 

   =       (udx  + v dy  +  w dz)   =  0            3.21 

 

that is,  is constant in a circuit which moves with the fluid.  

 

 

3.4  Circulation theory of lift  

 

A stagnation point occurs at S1 on the nose and at S2 on the  upper surface near 

the tail of the profile (fig 3.  ).  At the tail, the air in theory makes an impossibly sharp 

turn as it flows from below around the surface to the rear stagnation points S2. 

In practice, not only is this pattern of air flow around the tail not possible, but 

a lift force is experienced by all aerofoils, arcs, and inclined plates    in fact by any 

profile which is not symmetrically formed or situated with respect to the direction of 

flow.  Joukowski’ hypothesis, proposed with the object of bringing theory into 

agreement with experiment, supposes that in all such flows there is a set up about the 

profile a circulation of such magnitude that the rear stagnation point is moved thereby 

to the trailing edge.  This hypothesis not only disposes of the difficulty of the infinite 

velocity at the trailing edge but it explains the presence of the lift force and provides a 

means of determining analytically the magnitude of the circulation and hence of the 

lift force itself. 

 In this theoretical approach it is assumed that the aerofoil is of inifinite length 

so that flows around its ends do not affect the pattern, which is therefore two-

dimensional; further it is assumed that separation does not occur.   In the case of 

streamlined profiles at small angles of incidence with the flow, separation effects are 
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small and the predictions of pressure distributions and lift forces made on the basis of 

Joukowski’s hypothesis  agree well with experiment.  

 It is easy to visualize a rotating cylinder setting up a circulatory flow by means 

of viscous drag on the air close to its surface but the method of estabilishment of 

circulation around a non-rotating aerofoil is less obvious.  It is to be remembered that 

the mean motion of a low viscosity fluid such as air resembles irrotational flow, 

except in regions where the velocity gradient is high.  The establishment of the 

circulation around the aerofoil is explained by this dual character of the air.  

 According to Kelvin’s Circulation Theorem, in an ideal fluid subject to body 

forces derivable from a single-valued potential, the circulation in a circuit which 

moves with the fluid remains constant.  Hence the circulation around a vortex does 

not change with time, regardless of the fluid’s motion.  In effect, this means  that a 

vortex in a non-viscous fluid can neither be created nor destroyed.  If it exists, it must 

always have existed and will continue to do so.  Hence, if a fluid initially at rest is set 

in motion by movement of its boundaries, no vortices can develop and the circulation 

around any curve in the fluid remains at zero.  An aerofoil which is set in motion in a 

non-viscous fluid initially at rest would therefore produce no vortex and no 

circulatory flow around itself.  

 In a real fluid, at the commencement of motion, the flows from the upper and 

lower edges meet at the rear stagnation point s (fig. 3.15a).  As the velocity increases, 

flow from the lower surface around the tip cannot be maintained and separation 

occurs at the tip, viscous action producing a clockwise ‘starting’ vortex (cast off 

vortex) with a circulation of its own.  Application of Kelvin’s circulation theorem to a 

closed curve surrounding the aerofoil, and lying in regions of practically irrotational 

flow, suggests that the circulation around this curve must remain at zero.  This can 

only be possible if a second circulatory flow of equal magnitude to that of the starting 

vortex, but opposite in sign, has been simultaneously established within the closed 

curve.  This is the anticlockwise circulation around the aerofoil, according to 

Joukowski’s hypothesis (fig. 3.15b)  

 As the speed increases, so also does the strength of the circulation and this 

increasing strength causes the forward stagnation point to move downwards and the 

rear stagnation pint to move back towards the tip.  When it reaches this point, the 

cause of the development of the starting vortex no longer exists.  When the speed 

becomes steady, the vortex ceases to grow and is detached and swept downstream to 



be dissipated by viscous action, leaving the circulation around the aerofoil 

undiminished (fig. 3.15c).  This briefly, is the basis of circulation theory of lift.  

 The magnitude of the lift is U.  This relationship, known as the             

Kutta-Joukowski Law, can be shown to apply not only to circular cylinders and to 

aerofoils but to any form in two-dimensional irrotational flow.  In the case of a real 

fluid, surface resistance and separation may produce effects markedly different from 

that predicted by the law but, for streamlined profiles, it is in fair agreement with 

experimental determinations for angles of attack up to about 10.  In fact this law 

forms the basis of the circulation theory of lift on aeroplane wings, the thrust of fan 

and propeller blades, and the transverse forces on unsymmetrical solid bodies, and on 

rotating balls and cylinders moving through a fluid.  The principal problem in the 

application of the law is the determination of the appropriate value for the circulation 

.  In the case of the aerofoil, it is that value of  which makes the trailing edge a 

stagnation point. 

 

3.5  Theorem of Blasius  
 

Let w(z) be the complex potential of a two-dimensional inviscid flow past a 

body of any given shape and attitude.  Let X and Y be the components in the x and y 

directions respectively of the force per unit span on the body.  Let M be the anti-

clockwise moment per unit span about the point z = 0.  Then  

 

  X   -  iY   =        dz  

 

and  

 * M  =  -  Re    ½      z                dz 

 

where C is the curve representing the boundary of the body.  This result is known  

as the theorem of Blasius, and may be proved as follows, by considering a solid body 

in a general flow, as depicted in Fig. 3.16. Consider the small element s in the 

boundary of the solid.  Then x  =  -  sin s and  y  =  cos s, while  

  X  =  -  p.  s cos   =  - py  

  Y  =  -p.  s  sin   =  px.  

*     Re  -  real part  
Then  

i 
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dw    2 
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dw    2 

  dz  
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 X - iY  =  -     p (dy  + idx)   =  - i   p(dx - idy)            3.22 

 

Now, 

          dx   =  dy  =  0, 

 

so that  

  constant (dx - idy)  =  0.  

 

Also,  p  =  constant -  ½ q2,  from Bernoulli’s Theorem, so that  

  P (dx - idy)  =      constant (dx - idy)  -  ½     q2 (dx - idy). 

 

Equation 3.22 then becomes  

  X - iY  =  ½ i     q2 (dx  -  idy)    3.23 

 

Now  

q2 (dx - idy)   =  (u2  +  v2) (dx - idy) 

  =   (u2  +  v2) (dx + idy)  -  2i (u2  +  v2) dy  

  =   (u2 - v2) (dx + idy)  +  2v2dx - 2iu2dy  

  =  (u - iv)2 (dx + idy)  +  2v (v  +  iu) dx - 2u (v + iu) dy.  

But the contour C is a streamline of the flow, so that, on C, vdx  =  udy and            

2vdx  (v  +  iu)  =  2udy (v  +  iu).  Thus equation 3.23 becomes  

   X  -  iY  =  ½ i     (u - iv)2 (dx  +  idy)  

 

     

  =  ½ i                      dz.               3.24 

 

The sum of the moments of dX and dY about the origin is  

  dM  =  -  ydX + x dY  =  p  (xdx + ydy)  

which is the real part of pz dz since  

  pzdz  =  p (x + iy) (dx - idy)  =  p (x dx  +  ydy)  +  i (ydx  -  xdy)  

      =  d (M  +  iN),  (say) 

 

 

   d (M  +  iN)   =  pzdz  =   -  ½ z    dz 
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    M  +  iN   =  - ½       z           dz             3.25 

Thus  

 M  =          p (xdx  +  ydy)  =  -  ½      q2 (xdx  + ydy),           3.26 

 

since  

   p  =  constant  -  ½ q2,  

and  

           constant (xdx  +  ydy)  =  0. 

 

Now 

 

 z      dz   =  (u - iv)2 (x  +  iy)  (dx  +  idy) 

   =  (u2  -  v2  -  2iuv)  (xdx  -  ydy  +  iydx  + ixdy) 

so that 

Re    z     dz    =  (u2  -  v2) (xdx  -  ydy)  +  2uv  (xdy  +  ydx)          3.27 

  

Since C is a streamline, on C udx  =  udy, so that the second term on the right-hand 

side of equation (3.27) is equal to  

  2v2xdx  +  2u2ydy 

Equation  (3.27)  thus becomes  

 

Re    z     dz    =  (u2  +  v2) (xdx  +  ydy)  =  q2  (xdx  +  ydy)               3.28 

So that equation (3.26) now gives  

  M  =  - ½  Re      z               dz               3.29 

 

which, together with equation (3.24, 3.25) constitutes the theorem of Blasius.  

 In order to evaluate these line integrals, Equation 3.24, 3.25 use is made of the 

Cauchy Integral Theorem, the integrands being both analytic functions of z.  Each 

integral is taken around a circular path of very large radius, with the origin as centre, 

instead of around the cylinder boundary, a procedure justified by the corollary of the 

Cauchy theorem, since there are no singularities in the space surrounding the cylinder.  

 

 For the integration of Eqn.3.23 let  

dw    2 

 dz  

 
c 

 
c 

 
c 

dw    2 

 dz 

dw    2 

 dz 

dw    2 

 dz 

dw    2 

 dz  
c 



 

                    =     A0  +        +         +             +… 

 

then   X  -  iY   =  ½ i A0 +        +         +  + …   dz  =  ½ i2iA1  

 

    X  -  iY   =  -  A1  

For he integration of Eqn. 3.26 

 M  +  iN   =  -  ½        A0 z  +  A1  +  +   + …     dz 

 
 

  =   ½ 2iA2  

 M  +  iN  =  -  iA2  
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 dz 
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 z 

A2     

 z2 
A3     

 z3 
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 z 

A2     
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A3     
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Short Question and Answer 

Unit – III 

 

1. What do you mean by singular points or singularity  

 A function w =  f (z) is said to be analytic within a region of z plane if (i) each 

point in the region ie, for each value of z there is one and only one corresponding 

value of w and the value should be finite (ii)  dw / dz must be single valued and 

neither zero nor infinite.  The area where above two conditions are not applicable is 

called singularity or singular points.  

 

2.  Give examples of analytic functions with singular points. 

(i) w  =  1/(z-a) which is analytic except at z = a where it is infinite  

(ii) w  =  ln z which is analytic except at z  = 0  where w is infinite  

(iii) w  =  z2  which is analytic except at z  = 0 where dw/dz  =  0.  

 

3.  When conformal transformation break down. 

 It aerodynamic design to involve only two dimensional flows at low speeds, 

the design method based on conformal transformation theory would be best choice.  

This technique can not be extended to three dimensional flows or high speed flows.  

For this reason it is no longer widely used. 

 

3. State Joukowski hypothesis. 

In order that the velocity at the trailing edge of aerofoil is zero or stagnation  

point at the trailing edge, the circulation is increased to the flow past the aerofoil to 

such a magnitude that the stagnation point coincides with the trailing edge.  This 

method of specifying the magnitude of circulation is known as Joykowski hypothesis.  

 

4. How the circulation is limited in real fluid flows past on aerofoil  

For a given aerofoil, at a given angle of attack, there is single value of lift at a 

particular circulation.  This statement is justified by the actual stream line pattern at 

the trailing edge of the aerofoil. 

 When the flow starts it will curl around sharp trailing edge from bottom 

surface to top surface.  The velocity becomes infinitely large at the sharp corner.       



So this pattern of flow is not tolerated for long period.  The stagnation point 2 on the 

upper surface moves towards the trailing edge.  The stream line at the trailing edge 

forms a starting vortex down stream.  Thus  the flow will be smoothly leaving the top 

and bottom surfaces at the trailing edge.  

 In establishing a steady flow over an aerofoil at a given angle of attack, nature 

adopts that particular value of circulation, say 2, which results in the flow leaving 

smoothly the trailing edge.  

 

6.  Why there is a limit to the amount of circulation on an aerofoil kept in a flow.  

 See the previous question. 

 

7.   Explain the features of finite angle trailing edge and cusped trailing edge.  

For finite angle trailing edge the velocities V1 and V2, parallel to top and  

bottom surfaces respectively at a, are finite, but they are in different directions as 

shown in figure.  This is impossible physically and so V1  = V2  =  0  at  a.  Hence 

trailing edge become stagnation point.  

 For a cusped trailing edge V1 and V2 are in the same direction at ‘a’ and so V1 

and V2 are finite.   From consideration Bernoulli’s theorem, at ‘a’ for pressure Pa  

  Pa  + ½  V1
2   =  Pa   +  ½ c V2

2  given  V1  =  V2    0  

Hence the velocities leaving top and bottom are finite and same in magnitude  and 

direction.  The trailing edge becomes no longer a stagnation point.  

 

8.  Show that as per Kutta-condition the strength of vortex at trailing edge is     

zero. 

(i)  For finite trailing edge angle V1 = V2  =  0    Strength of vortex at a =   

      (T. E)  =  0 

ii)   For cusped trailing edge V1  =  V2  0  But as V1  =  V2  strength of vortex at     

       a =   (T.E)  =  0 

Kutta condition makes the strength of vortex at trailing edge must be equal to 

zero.  

 

9.  What is Kutta- trailing edge condition  

 See previous question. 



 

10.  When Joukowski transformation brake down  

 For finite angle trailing edge of an aerofoil, the trailing edge becomes 

stagnation point.  

 For cusped trailing edge, trailing edge of aerofoil no longer becomes 

stagnation point. 

 By method Joukowski transformation the trailing edge becomes cusped and so 

the Kutta- condition is not satisfied.   This is the draw back of Joukowski 

transformation.  

 

11.  Explain the roll of the starting vortex (cast off vortex) in establishing the lift  

on an aerofoil.  

 The starting vortex builds and grows up to just the right strength such that 

equal and opposite clockwise circulation around the aerofoil leads to smooth flow 

from trailing edge (at this situation Kutta - condition is exactly satisfied).  When the 

point is reached the vorticity shed from the leading edge becomes zero, the starting 

vortex no longer grows in strength, and steady circulation exists around the aerofoil.  

 

12.  “The circulation on an aerofoil is equal and opposite to the circulation 

around starting vortex” prove.  

 First figure shows the flow field some time after a steady flow has been 

established over the aerofoil with starting vortex down stream.  The fluid is enclosed 

in C2 and let its circulation be 2.  By Kelvins theorem the circulation 2 around C2 

(which encloses aerofoil and starting vortex)  is the same a that of C1 ie,  1  =  2 =  0 

 Let us subdivide C2 into two loops by making a cut bd, thus forming curves C3 

and C4, the curve C3 encloses starting vortex and C4 encloses aerofoil.  The 

anticlockwise circulation 3 is around starting vortex and clockwise circulation 4 is 

around the aerofoil.  Sum of these two should be equal to 2.  

 i.e.,      3   +  4    =   2     as 2   =  0,  4  =  -  3  

Hence the circulation on aerofoil is equal and opposite to the circulation around 

starting vortex. 

 



13.  Explain the origin of lift on an aerofoil which starts from rest in a real fluid.  

 For no relative wind there is no circulation.  When flow starts from zero 

velocity, at low velocity there is potential flow without circulation (fig a) and 

stagnation point is on the upper surface forward of the trailing edge.  Hence fluid has 

to flow round the trailing edge from bottom to top surface.  As the flow velocity 

increases there will be a large velocity gradient at the trailing edge and 

correspondingly large viscous forces are brought to play.  Due to this, a surface 

discontinuity develops which rolls up into a vortex between the original stagnation 

point and the trailing edge (fig b).  This grows to starting vortex and it leaves the 

aerofoil extending towards down stream (fig c). 

 The starting vortex can be regarded as the missing side of the simple horse 

shoe vortex on the aeroplane wing. Because it does not move with aerofoil, it has no 

influence in the steady case.  Its strength is equal and opposite to that of bound vortex 

which represents the wing.  Hence total circulation around any circuit containing both 

the starting and bound vortices remains at zero. 

 

14.  State the importance of Kelvins circulation 

 The circulation around a curve is unaltered is transformation. 

 

15.  What is a barotropic fluid.  

 A fluid having density either constant or a function of its pressure is said to be 

a barotropie fluid.  

 

16.  Give example of body force field which is derivable from single valued 

potential  

 Gravitational field and magnetic field. 

 

17.  State the importance of Blasius theorem in aerodynamics. 

 For an assumed complex potential of a two dimensional flow past a body of 

given shape and orientation the aerodynamic forces per span length and moments per 

span length of the body are obtained in terms of complex variables of the flow. 

 

 



Questions opt1 opt2 opt3 opt4 opt5 opt6 Answer

Fixed control volume in space is known as ________method a. Lagrangian b.  Eulerian c. Rayleigh d. Fanno  Eulerian

Thermodynamic properties do not change with respect to time in ________.
a. Steady flow b.

Compressible 

Flow c.

 Incompressible 

flow d. Stream line flow Steady flow

A vortex line in a fluid has constant a. straight line b. circulation c. Streamlines d. equipotential lines circulation

The __________ relates the velocity induced by a vortex filament to its 

strength and orientation a. Second law of TD b. first law of TD c. Biot-Savart law d. Zeroth law Biot-Savart law

__________ is the science of fluid motion
a. Fluid dynamics b.

structural 

dynamics c. Aerodynamic  d. kinematics Fluid dynamics

For an over expanding nozzle, ____________. a. Pb<Pe
b. Pb>Pe

c. Pb=Pe
d. Pb ≤ Pe Pb<Pe

__________ are curves that are everywhere tangent to the velocity vector
a. pathline b. Streamlines c. equipotential lines d. circulation Streamlines

A ______ is the trajectory followed by an individual particle.
a. pathline b. Streamlines c. equipotential lines d. circulation pathline

________is a measure of the degree of local rotation in the fluid.
a. Vorticity b. circulation c. Streamlines d. equipotential lines Vorticity 

When Pb= Pe _______. a.

Flow takes place 

slowly b.

Flow takes place 

rapidly c.

No flow takes 

place d.

Flow takes place at 

isentropic

Flow takes place 

at isentropic

Supersonic flow occurs in_______. a. Convergent nozzle b. Divergent nozzle c.

Under expanding 

nozzle d. Choked nozzle

Under 

expanding nozzle

Equation for state for perfect gas is _______. a. Pv=RT  b. P/v=RT c. P+v=R+T  d. P-v=R-T Pv=RT  

The shock can always from supersonic to subsonic because of _______. a.

First law of 

thermodynamics b.

Newton’s law of 

motion c.

Second law of 

thermodynamics d. Newton’s third law

Second law of 

thermodynamics

Shock is a_______across fluid flow properties a. Continuity b. discontinuity  c. both(a) and(b) d. all of the above discontinuity  

a* refers to _______. a. M<1  b. M>1 c. M=1  d. M=0 M=1  

Normal shock occurs only from_______. a. V2=V1
b. V2>V1  

c. V1=V2=1 d. V2<V1  V2<V1  

The sonic velocity is the ______ property of the fluid a. Static b. Hydrodynamic              c. Thermo dynamic                    d.  Aerodynamic Thermodynamic                    

For isentropic flows, stagnation enthalpy and stagnation temperature 

are_______. a. Zero b. constants c. variables d. unity constants

The change in pressure with respect to the change in velocity is 

always_______. a. Zero b. positive c. unity d. negative negative

 In a converging area duct with a subsonic flow, the fluid flows out with 

a_______. a. high velocity b. high density c. high pressure d. high viscosity high velocity

In stagnation state, the fluid is brought to a state of zero velocity in_______. a. Adiabatic manner b.

isentropic 

manner c.

polytrophic 

manner  d. isobaric manner

isentropic 

manner

In a finite wing, the strong vortices produced at  ________ . a. tip of the wing b.

centre of the 

wing c.

no vortices 

produced d. edge of the wing tip of the wing

What is the advantage of using blow-down wind tunnel? a.

no need of 

pressure regulator  b.

high mach 

capability c.

noise free 

operation  d. longer

high mach 

capability

The Mach Number at which the aerodynamic drag increases rapidly is 

known as_______. a.

Upper Critical 

Mach Number b.

Lower Critical 

Mach Number c. Drag divergence   d. Center of pressure Drag divergence   

The chord-wise length about which the pitching moment is independent of 

the lift co-efficient and the angle of attack is known as_______. a.

Aerodynamic 

center b.

Center of 

pressure c. Stagnation point d. a and b

Aerodynamic 

center 

The small perturbation equations for subsonic and supersonic flows 

are_______. a. Linear b. non-linear c. Rotational d. irrotational Linear

Diffusers  are used to ________ the velocity of inlet air. a. decrease b.  increase c. Zero d. constant decrease

Subsonic flows through a diverging nozzle will  have________ velocity a. Steady flow b.

Compressible 

Flow c.

Incompressible 

flow d. Streamline flow

Incompressible 

flow 

Supersonic flow can be converted in to subsonic using _________ nozzle a. Diverging b. Expanding c. Converging d.

Converging-

diverging Converging

For under expanding nozzle ________. a. Pb < Pe
b. Pb > Pe

c. Pb = Pe
d. All of  the above Pb < Pe

Subsonic flow over the wedge body produces ________ shock. a. Oblique b. normal c. expansion d. No Oblique

Total temperature is constant across a stationary ________ shock. a. Oblique b. normal c. expansion d. No
b

A gas with constant specific heats is known as________. a.

Thermally perfect 

gas  b.

Calorically 

perfect gas c. Ideal gas d. Mach normal

Prandtl relation  for normal shock is________. a. V1*V2=(a*)
2   b. V1/V2=(a*)

2  c. V1+V2=(a*)
2  d. V1-V2=(a*)

2
V1*V2=(a*)

2   

Normal shock is _________ to flow direction. a. parallel b. perpendicular c. inclined d. all of the above perpendicular

Lift produce is directly proportional to _____ pressure. a. Dynamic b. Static   c. total                   d. all of the above Static   

When the velocity increases lift produced will _____. a. decrease b. constant c. increase d. independent increase

The expansion takes place across a continuous succession of Mach waves is 

_____. a. isentropic b. adiabatic c. isothermal d. isobaric isentropic

When the oblique shock is reflected from the solid surface,it will produce 

________ shock. a. Oblique b. normal c. expansion d.  No Oblique

In a finite wing, the strong vortices produced at  ________. a. tip of the wing b.

centre of the 

wing c.

no vortices 

produced d. edge of the wing tip of the wing

Can isentropic condition be applied across a normal shock wave? a. yes b.

no because of Tto 

is constant  c.
no because of loss 

in Pto
d.

no because of Pto is 

constant

no because of Tto 

is constant  

Back pressure is the pressure  ________. a.

outside the nozzle 

plane b.

inside the nozzle 

plane c. inlet pressure d. exit pressure 

outside the 

nozzle plane

The  critical mach number is increased by using  ________. a.

Thinner and 

Swept wing b.

 Thicker Delta 

wing c. Thinner wing only d. Thicker wing only

Thinner and 

Swept wing

In a blow down wind tunnel, _________ is used to produce air flow. a. compressor b. Turbine c. Duct fan d. All the above Duct fan

The feature of blow down configuration is  _________. a.

High Mach 

Capability b.

Less noise 

operation c.

Continuous 

operation d. All the above

High Mach 

Capability

There is no need for _________ in the indraft tunnel. a. Pressure regulator b.

Vacuum 

Chamber c. Noise reducer d.
Plenum Chamber

Noise reducer

Nozzles are used to ________ the velocity of inlet air. a. decrease b. increase c. zero d. constant increase

Subsonic flows through a converging nozzle will ________ velocity. a. decrease b. increase c. zero d.
neutralize

increase

When Pb<Pe ,Convergent-Divergent duct is known as ____________ nozzle. a. Under expanding b. Expanding c. Converging d. over expanding Under expanding

In a converging – diverging nozzle, mach no in the throat is always 

_________. a. M = 0 b. M = 1 c. M > 1 d. M < 1 M = 1

Shock will always occur in flow with_________. a. M = 0 b. M = 1 c. M > 1 d. M < 1 M > 1

When flow cross the normal shock wave, total pressure will be _________. a. decreased b. increased c. zero d. Constant decreased

Detached shock wave occurs in a flow over _______ body. a. blunt b. sharp  c. wedge d. Constant blunt

Flow across the expansion wave , velocity  will be ________. a. decreased b. increased c. zero d. Constant increased

In a compressible flow density is ________. a. decreased b. increased c. Variable one d. Constant Constant

The Weak pressure disturbance is known as ________. a. Normal shock b. Oblique shock c. Sound Wave d. Mach wave Sound Wave



The lift produced by the airfoil is due to ________ of velocity. a. decreased b. increased c. zero d. Constant increased

Relation between the mach no(M) and mach angle (µ) _________. a. . µ = sin
-1

 M b. sin µ = M c. sin µ = 1/M d. µ = M sin µ = 1/M 

The Value Of the Characteristic Mach Number will be ________ if Mach 

Number tends to infinity. a. 0 b. 2.449 c. 2.65 d. 1 2.449

Critical Mach number is defined as_________. a. M*=a/c* b. M = c/a* c. M*=c/a* d. M* =c*/a* M* =c*/a*

Normal shocks are always_______. a. one-dimensional b. two-dimensional c. three-dimensional d. all the above one-dimensional

An incident shock gets reflected as a shock from a solid boundary is called  

________. a. like reflections b. simple regions c. unlike reflections d. non-simple regions like reflections

The advantage of Blow down wind tunnel is_________. a.

High Mach 

Capability  b.

Shock –free 

operation c. Muffler d.

Continuous 

operation

High Mach 

Capability  

The Shock wave may occur in _________. a. Blow down   b. Induction tunnel c. Shock tube   d. All the above All the above

The supersonic wind tunnel produces_________. a. M = 0 b. M = 1 c. M > 1 d. M < 1 M > 1

The Component used to straighten the airflow in the wind tunnel is_________.a. Settling chamber b.

Pressure 

regulator c. diffuser d. test section Settling chamber

In supersonic flow, converging nozzle is used to ________ velocity. a. decrease b. increase c. zero d. constant increase

Velocity of sound(a) is give by________. a. γRT b. RT c. √(γRT) d. (γRT)
2

√(γRT)

According  to continuity equation, in a flow ________. a.

Total energy 

remains constant b.

Mass flow rate 

remains constant c.

Velocity remains 

constant d.

Density remains 

constant

Mass flow rate 

remains constant

In a converging – diverging  nozzle, condition of M = 1 occur at ________. a. inlet b. exit c. throat d. Every where         throat

When flow cross the normal shock wave total temperature ________. a. decrease b. increase c. zero d. constant constant
Which one of the following condition is true when flow cross normal shock 

wave_____ a. V1=V2 b. V1>V2 c. V1<V2 d. V1=V2=1 V1>V2

Oblique shock is ___________ to flow direction a. parallel b. perpendicular c.  Inclined d. All the above  Inclined 

One dimensional flow with friction is known as ___________. a. Fanno flow b. Steady flow c. Rayleigh flow d. Laminar flow Fanno flow

The three-dimensional Shock is known as ________. a. Normal shock b. Oblique shock c. Expansion wave d. Mach wave Expansion wave

Lift produced in a body due to flow over it is directly proportion all 

to________. a. V b. V
2

c. V
3

d.
All the above

V
2

Aerodynamic center is the point at which the moment produced 

will________. a. Always vary b. Remains constant c. Not consider d. be zero Remains constant

The mach no (M) and mach angle (µ) can be related as ________. a. . µ = sin
-1

 M b. sin µ = M c. sin µ = 1/M d. µ = M sin µ = 1/M 

The Process inside the Sound wave is ________. a. isentropic b. adiabatic c. isobaric d. isothermal isothermal

One-dimensional Flow with heat addition is known as________. a. Rayleigh Flow b. Fanno Flow c. Irreversible flow d. No wave Rayleigh Flow

The one-dimensional motion of a shock wave in a tube of constant area are 

called________. a. wave motion b. plane waves c. wave speed d.
All the above

plane waves

In a finite wing, the strong vortices produced at  ________.
a. tip of the wing b. centre of the wing c.

no vortices 

produced d. edge of the wing tip of the wing

The small perturbation equations are ________ upto M≤1. a. linear b. non-linear c. rotational d. irrotational linear

Critical velocity in converging-diverging nozzle occur at   _________. a.

Velocity at the 

exit b.

Maximum 

velocity c.

Velocity at the 

throat d. Velocity at the inlet 

Velocity at the 

throat 

Smaller loads on model during startup because of faster starts is a feature 

of_________ a. Indraft b. Blow down c. Gun tunnel            d. Helium Tunnel Blow down

Flow across the normal shock wave is ________. a. isentropic b. iso baric c. non isentropic d. reversible adiabatic non isentropic

For over expanding nozzle ____________. a. Pb<Pe b. Pb>Pe c. Pb=Pe d. Pb ≤ Pe Pb<Pe

Thermodynamic properties do not change with respect to time in ________. a. Steady flow b.

Compressible 

Flow c.

Incompressible 

flow d.
Streamline flow

Steady flow

Constant Pressure process is known as  ________. a. Isobaric b. Isothermal c. Adiabatic d. Isentropic Isobaric

When Pb= Pe _______. a.

Flow takes place 

slowly b.

Flow takes place 

rapidly c.

No flow takes 

place d.

Flow takes place at 

isentropic

Flow takes place 

at isentropic

Diffuser are used to ________ the velocity of inlet air. a. decrease b. increase c. zero d. constant decrease

Subsonic flows through a diverging nozzle will ________ velocity.
a. Steady flow b.

Compressible 

Flow c.

Incompressible 

flow d.
Streamline flow

Incompressible 

flow

Subsonic can be converted in to Supersonic flow using _________ nozzle
a. Convergent nozzle b. Divergent nozzle c.

convergent -

divergent nozzle d. Choked nozzle

convergent -

divergent nozzle

For under expanding nozzle ________. a. Pb<Pe b. Pb>Pe c. Pb=Pe d. Pb ≤ Pe Pb>Pe

When velocity of flow over an airfoil increases, then lift produced by the 

airfoil will a. decrease b. increase c. zero d. constant

Upper critical Mach number is defined as the free stream mach number 

for which the entire  flow around the body is____________. a. sonic b. Subsonic c. Transonic d. Transonic

Normal shocks are always created at ____________. a. subsonic flow b. supersonic flow c. Transonic flow d. hypersonic flow supersonic flow

At  ________the airflow over some point of the aircraft reaches the 

speed of sound . a.

Critical Mach 

number b. subcritical c. normal d. lower critical

Critical Mach 

number

The small perturbation equations for subsonic and supersonic flows 

are________. a. linear b. non-linear c. Drag divergence   d. irrotational linear

Critical velocity in converging-diverging nozzle occur at   _________. a.
Velocity at the 

exit b.

Maximum 

velocity c. rotational d. Velocity at the inlet 

Velocity at the 

throat 

For analysis of flows past ballistic missiles,____________is used.
a.

Blow down b. Gun tunnel c.

Velocity at the 

throat d. Helium tunnel Gun tunnel

When flow pass the normal shock wave, it follows _______ process. a. isentropic b. iso baric c. In draft tunnel d. reversible adiabatic non isentropic

 psi is a unit of a. pressure b. temperature c. non isentropic d. energy pressure

 A high-lift subsonic aerofoil section has a thickness/chord ratio approximatelya. 12% b. 6% c. 15% d. 25% 12%

Lift increase with a.
air density b.

AOA, within the 

stalling limit c. 18% d. all of the above all of the above

A rectangular wing with unsymmetrical aerofoil section stalls in clean 

configuration when the AOA is
a. between 4° and 8°

b. between 12° and 16°c. Aspecr Ratio d.

between 45° and 

60°

The direction of lift is a.

 vertically upward b.

90° to the roll 

axis

c.

between 30° and 

35° d.

90° to the flight 

path  vertically upward

Sound propagation is  
a. isothermal process

b.

Isentropic 

process c.

90° to the wing 

mean chord d.
Isochoric process Isentropic process

When the Mach number ahead of a normal shock is infinity the  Mach 

number behind the normal shock is 
a.

infinity b. high supersonic c.
Isobaric process

d. low subsonic low subsonic

The lowest value of shock angle for oblique shocks is a. Zero b. 12.5 deg c. Zero d. 15 deg Mach angle

The maximum possible turning angle through Prandtl_Meyer expansion is a. 130.5 deg b. 180 deg c. Mach angle d. 165 deg 130.5 deg

Isothermal compressibility of  a compressible gas at a given pressure is

a.

Directly 

proportional to the

absolute 

temperature of the

gas b.

Reciprocal of the

pressure

c. 145 deg d. All of the above

Reciprocal of the

pressure

 is a pressure drag resulting from static pressure components located to 

either side of compression or shock waves

a.

pressure drag b. Wave Drag c.

Inversely 

proportional to the 

square of the 

pressure d. All of the above Wave Drag

 are airfoils developed to increase the increment between the critical Mach 

number and the drag divergent Mach number. 
a.

critical b. subcritical c. skinfr d. optimum

Supercritical 

airfoils

The free stream Mach number at which sonic speed is first achieved 

somewhere on the surface of a body it is called 
a.

critical Mach 

number. b. subcritical c.

Supercritical 

airfoils d. transonic

critical Mach 

number.

The difference in effective downwash angle for the two tail spans for 

sweptback wings at high angles of attack when the tips stall is 
a.

tip loss b. vorticity c. Drag divergence   d. incident tip effects

The free stream Mach number at which the entire flow around the surface is 

in subsonic flow is called as 
a.

Lower critical 

Mach number. b.

upper critical 

Mach number. c. tip effects d. super critical

Lower critical 

Mach number.

The free stream Mach number at which the entire flow around the surface is 

in supersonic flow is called as 
a.

Lower critical 

Mach number. b. subcritical c. subcritical d.

upper critical Mach 

number.

upper critical 

Mach number.

is a simple statement that the cross sectional area of the body should have a 

smooth variation along the longitudinal distance of the body
a.

supersonic b.

Transonic are 

rule c. super critical d. supercritical Transonic are rule 

Swept wings are used to increase the 
a.

critical Mach 

number b.

critical Mach 

number. c. subsonic d. Drag divergence   

critical Mach 

number

is a device to produce high speed flow with high temperatures, by the 

rupture of a diaphragm separating a high pressure gas from a low pressure 

gas.

a.

shock tube b. baurdon tube c. subcritical d. pressure transducers shock tube 

is a powerful tool in experimental fluid mechanics
a.

Flow 

Visualisation b.

Pressure 

regulator c. pitot tube d. pressure transducers 

Flow 

Visualisation 



separation point and wake formation can be analysed due to increase in 

angle of attack.
a.

subsonic wind 

tunnel b.

supersonic wind 

tunnel c. pitot tube d. cascade tunnel

Flow 

Visualisation 

A ____________ is a wind tunnel that produces supersonic speeds 

(1.2<M<5) 
a.

subsonic wind 

tunnel b.

supersonic wind 

tunnel c.

Flow 

Visualisation d. Interferometer

supersonic wind 

tunnel

_______system gives a picture or an image representative of the variation of 

density throughout the complete flow field.
a.

supersonic wind 

tunnel b. Schlieren c. Schlieren d. Schlieren Schlieren 

is a flow visualization technique meant for high speed flows with transonic 

and supersonic Mach number. This employed for field with strong shock 

waves.

a.

Schlieren b. Interferometer c. Interferometer d.

supersonic wind 

tunnel Shadowgraph 

It is an optical technique to visualize high speed flows in the ranges of 

transonic and supersonic Mach numbers. This gives a qualitative estimate of 

flow density in the field.

a.

Schlieren b. Interferometer c. Shadowgraph d.

supersonic wind 

tunnel Interferometer

The model must be accommodated inside the rhombus formed by the 

incident and reflected shocks, for proper measurements is known as
a.

geometric test b. dynamic test c. Shadowgraph d. kinematic

principles of 

model testing

is a device used to measure forces, moments, pressure, shear stress, heat 

transfer and flow field 
a.

optical 

visualization b. Wind tunnel c.

principles of 

model testing d. particle velocimetry Wind tunnel 

The instruments used to measure the fluctuating pressures are 
a.

optical 

visualization b.

Turbulence 

sphere c. dye injection d. particle velocimetry

Turbulence 

sphere

 are normally used from high subsonic to high supersonic flow conditions. 

The air is pumped into a closed high pressure chamber upstream of the 

plenum. 

a.

Induction b. Wind tunnel c. dye injection d. Blow down tunnels

Blow down 

tunnels

 type energy stored in the form of pressure in a reservoir a. wind tunnel b. Induction c. dye injection d. Blow down tunnels Intermittent

 type energy stored in the form of Vacuum in a reservoir. a. Induction b. Intermittent c. Intermittent d. vaccum tunnel Induction

The pressure to be measured are usually to large to be measured instead of 

water or alcohol. 
a.

shock tube b. baurdon tube c. blow down d. pressure transducers 

pressure 

transducers 

 is used for testing medium bathing aircraft and reentering spacecraft a. shock tube b. Helium tunnel c. pitot tube d. Intermittent Helium tunnel

Sensitive to the change of Displacement a. Shadowgraph b. Schileren c. Induction d. dye injection Shadowgraph 

Sensitive to the change of Angular deflection a. dye injection b. Shadowgraph c. Interferometer d. Interferometer Schileren 

Sensitive to the change of Phase change a. Shadowgraph b. Schileren c. Schileren d. Interferometer Interferometer 

The starting shock crossing the diffuser throat and remaining in its divergent 

part is called the 
a.

Drying b. Liquefaction c. dye injection d. Mach reflection.

swallowing of the 

starting shock.

the working fluid is the best way to avoid condensation. 
a.

swallowing of the 

starting shock. b. Drying c.

swallowing of the 

starting shock. d. sublimation Drying 

How can condensation be avoided/reduced in supersonic wind tunnels? a. vapourisation b. sublimation c. Liquefaction d. Liquefaction Drying 

 troubles might start around M=4 if high pressure air is expanded from room 

temperature.
a.

vapourisation b. sublimation c. Drying d. Liquefaction Liquefaction

Intersection of normal shock and the right running oblique shock gives rise 

to a reflected left running oblique shock in order to bring the flow into the 

original direction are called  

a.

Mach absoption b. Mach reflection. c. Liquefaction d. simple Mach reflection.

Supersonic expansion or compression with mach lines which are straight is 

called 
a.

simple region b.

non simple 

region c. injection d. curved simple region

The intersection of mach lines of different form, lies leads 

to______________  where all the mach lines are not straight but curved.
a.

curve b. simple region c. Mach reflection. d. Mach reflection. non simple region

Assumptions made to derive Normal Shock relation
a.

Flow is 1-D, 

invisid b.

Flow is 2-D, 

invisid c. non simple region d. Flow is 3-D, invisid

Flow is 1-D, 

invisid

is the weak limit of an oblique shock wave 
a.

Mach wave b. normal shock c.

Flow is 2-D, 

visicous d. shock Mach wave 

shock waves in the flow over the wing and tail plane are sufficient to stall 

the wing, make control surfaces ineffective or lead to loss of control such as

a.

Mach angle b.  Mach tuck c. Mach angle d. normal shock  Mach tuck

The phenomena associated with problems at the critical Mach number 

became known as 
a.

compressibility b. incompressible c. Mach wave d. vapourisation compressibility

 _____ is a wing platform with a wing root to wingtip direction angled 

beyond  the span wise axis, generally used to delay the drag rise caused by 

fluid compressibility a. delta wing b. Straight wing c. expansion d. Swept wings Swept wings

 ______as a means of reducing wave drag were first used on jet fighter 

aircraft a. delta wing b. Straight wing c. eliptical wing d. eliptical wing Swept wings

The four-engine propeller-driven ______ aircraft has swept wings. a. A-10 b. A380 c. Swept wings d. TU-95 TU-95

The ______ is that free-stream Mach number at which sonic flow is first 

encountered on the airfoil. a. subcritical b.

critical Mach 

number c. pushpak d. supercritical

critical Mach 

number

The_______gradient induced by the shock tends to separate the boundary 

layer on the top surface, causing a large pressure drag a.  adverse pressure b. reverse pressure c. Drag divergence   d. high pressure

 adverse 

pressure 

________is the Mach number at which the aerodynamic drag on an airfoil or 

airframe begins to increase rapidly as the Mach number continues to 

increase a. critical b. drag divergence c.

favourable 

pressure d. supercritical drag divergence

can cause the drag coefficient to rise to more than ten times its low speed 

value. a. subcritical b. supercritical c. subcritical d. drag divergence drag divergence

The value of the drag divergence Mach number is typically greater than a. 0.3 b. 1 c. critical d. 2 0.6

A change of state is called a _____________ in thermodynamics a. steady state b. Process c. 0.6 d. cycle Process

is a branch of natural science concerned with heat and its relation to energy 

and work. a. cycle b. steady state c. unsteady state d. unsteady state

Thermodynamic

s

  is defined as a quantity of matter or a region in space chosen for study. a. cycle b. system c. Thermodynamics d. steady state system

The mass or region outside the system is called the ____________ a. system b. Process c. process d. surroundings surroundings

The______ is the total energy contained by a thermodynamic system a. electrical energy b. heat energy c. boundary d. potential energy  internal energy

_______the real or imaginary surface that separates the system from its 

surroundings. The boundaries of a system can be fixed or movable. a. system b. Boundary c.  internal energy d. wall
Boundary

A closed system that does not communicate with the surroundings by any 

means_____________ a. Isolated system b. closed c. surrounding d. cycle Isolated system

A closed system that communicates with the surroundings by heat Only a. flexible b. adiabatic c. open d. Rigid system Rigid system

A closed or open system that does not exchange energy with the 

surroundings by heat a. Isolated system b. Adiabatic system c. insulated system d. Rigid system Adiabatic system

are those that are independent of the size (mass) of a system, such as 

temperature, pressure, and density. a.

Intensive 

properties b. Adiabatic system c. insulated system d. Isolated system

Intensive 

properties

values that are dependant on size of the system such as mass, volume, and 

total energy U. a. Adiabatic system b.

Extensive 

properties c.

Extensive 

properties d. Isolated system

Extensive 

properties

when the temperature is the same throughout the entire system. a. enthalphy b. entropy c.

Intensive 

properties d.

Thermal 

equilibrium

Thermal 

equilibrium

 is a process during which the temperature remains constant a. isentropic b. Isobaric c. equilibrium d. Isochoric process Isothermal

is a process during which the pressure remains constant a. Isothermal b. Isobaric c. Isothermal d. Isochoric process Isobaric

is process during which the specific volume remains constant a. isentropic b. Isochoric process c. isentropic d. polytropic Isometric

states that if two bodies are in thermal equilibrium with a third body, they 

are also in thermal equilibrium with each other. a. charles law b.

Second law of 

thermodynamics c. Isometric d.

First law of 

thermodynamics

 0th law of 

thermodynamics

It simply states that during an interaction, energy can change from one form 

to another but the total amount of energy remains constant. a.

First law of 

thermodynamics b.

 0th law of 

thermodynamics c.

 0th law of 

thermodynamics d. boyles law

First law of 

thermodynamics

energy has quality as well as quantity, and actual processes occur in the 

direction of decreasing quality of energy.  a.

First law of 

thermodynamics b.

Second law of 

thermodynamics c.

Second law of 

thermodynamics d. charles law

Second law of 

thermodynamics

The speed of sound as a function of a. pressure b. density c.

 0th law of 

thermodynamics d. Static temperature temperature 

it is proportional to the square root of the temperature a. speed of light b. speed of sound c. Total temperature d. change in density speed of sound

the speed of sound is about ________ of the average molecular velocity. a. three-quarters b. one-quarters c. molecular velocity d. quarters three-quarters

Flow is said to be subsonic flow if a. M<1 b.  M=1 c. two-quarters d. M >5 M<1 

Flow is said to be sonic flow if a. M<1 b.  M=1 c. M > 1 d. M >5  M=1 

Flow is said to be supersonic flow if a. M<1 b.  M=1 c. M > 1 d. M >5 M > 1 

Flow is said to be Hypersonic flow if a.  M=1 b. M > 1 c. M > 1 d. M<1 M >5

Mach number was defined as the ratio of a. V/2a b. 2V/a c. M >5 d. V/a V/a

For calorically perfect gas the square of the ______ is proportional to the 

ratio of kinetic to internal energy a. Static temperature b. Mach number c. 3V/a d. density Mach number

For 0 <M < 1 (subsonic flow), an increase in velocity (positive du) is 

associated with a decrease in a. diverging duct b. velocity c. pressure d. area area 



For M > 1 (supersonic flow), an increase in ____ is associated with an 

increase in area a. converging duct b. velocity c. converging duct d. diverging duct velocity

For supersonic flow, the velocity increases in a diverging duct and decreases 

in a a. velocity b. converging duct c. area d. diverging duct converging duct

A expansion fan is a centered expansion process, which turns a supersonic 

flow around a a. convex corner b. concave c. area d. curved convex corner

Across the expansion fan, the flow accelerates  and the Mach number 

______ a. increases b.  decrease c. sharp corner d. negative increases

Across the expansion fan, tthe static pressure, temperature and density ____ a.  decrease b. constant c. constant d. negative  decrease

The process is isentropic, the stagnation properties remain constant across 

the a.  expansion fan b. Normal shock c. increases d. reflected wave  expansion fan

The fan consists of an infinite number of Mach waves, diverging from a a. sharp corner b. convex corner c. oblique shocks d. flat sharp corner

Straight ________ are also attached to the tip of a sharp cone in supersonic 

flow a.  expansion fan b. Normal shock c. concave d. reflected wave oblique shocks

velocities on a graph which uses Vx and Vy velocity components is called 

the a. hodograph plane b. shock polars c. oblique shocks d.  subsonic hodograph plane

In the shock polars inside the circle, all velocities are subsonic, outside it, all 

velocities are ________ a. supersonic b. less c.

Intersection of 

shock waves d. hypersonic supersonic

In the shock polars inside the circle, all velocities are_____,outside it, all 

velocities are supersonic a. supersonic b. less c.  subsonic d. hypersonic  subsonic

The pressure is continuous but the entropy is discontinuous at the slip line in a. shock polars b.

Intersection of 

shock waves c.  subsonic d. hypersonic

Intersection of 

shock waves 

Reflected waves form a like pattern throughout the exhaust jet a. rectangle b. diamond c.  subsonic d. concave diamond

_________ co-ordinates are more convenient for elongated bodies and 

bodies of revolution a. Cylindrical b. spherical c. convex corner d. rectangular Cylindrical

__________theory is frequently  linear theory a.

linearised flow 

theory b.

Small-

perturbation c. cartesian d.

Compressible Flow 

theory

Small-

perturbation 

The ______ where the assumption of small perturbations allowed a 

linearized solution a.

Small-

perturbation b.

Compressible 

Flow theory c.

Small-

perturbation d.

linearised flow 

theory acoustic theory

___________for a symmetrical airfoil in supersonic flow is predicted at the 

mid-chord point a.

Aerodynamic 

center b.

 center of 

pressure c. acoustic theory d. coefficient of drag

 center of 

pressure

____________ is a design technique used to reduce an aircraft's drag at 

transonic a.

Whitcomb area 

rule b. area rule c.

coefficient of 

pressure d. thick aerofoil

Whitcomb area 

rule

_______ is a design technique used to reduce an aircraft's drag at transonic 

and supersonic speeds, particularly between Mach 0.75 and 1.2 a. subsonic area rule b. subcritical c. thumbrule d. transonic area rule

transonic area 

rule

To reduce the number of these shock waves, an aerodynamic shape should 

change in cross sectional area as smoothly as possible. This leads to a perfect 

aerodynamic shape known as the a. shark lets b.

Sears-Haack 

body c. Supercritical d. winglet

Sears-Haack 

body

The Mach number in the test section of blow down tunnel is determined by 

pressure and temperature in the a. settling chamber b. diaphragm c. Wing  tip vortices d. filter plenum 

Test times are limited in ____________ wind tunnels a. suction b. blowdown c. plenum d. indraft tunnels blowdown

A ______ is often employed downstream of the test section to shock down 

the supersonic flow to subsonic before entering the low pressure chamber. a. second throat b. first throat c. subsonic d. settling chamber second throat

A closed configuration with both high pressure and low pressure chambers is 

shown in the figure, but there are other configurations of blowdwon tunnels. 

Some blowdown tunnels, called a. suction b. blowdown c. third throat d. subsonic indraft tunnels

 High subsonic wind tunnels opertated at a. (1.2<M<5) b. (0.4 < M < 0.75) c. indraft tunnels d.  (0.75 < M < 1.2) (0.4 < M < 0.75) 

transonic wind tunnels opertated at a. (1.2<M<5) b. (0.4 < M < 0.75) c. M=1  d.  (0.75 < M < 1.2)  (0.75 < M < 1.2) 

A supersonic wind tunnel is a wind tunnel that produces supersonic speeds a. (1.2<M<5) b. (0.4 < M < 0.75) c. M=1  d. M=1  (1.2<M<5) 

__________ have short test times (usually less than one second), relatively 

high Reynolds number, and low power requirements a. Ludwieg tube b. shock tubes c.  (0.75 < M < 1.2) d. bourdan tube Ludwieg tube

Stagnation temperatures of  at pressures of several hundred atmospheres 

provide test Mach numbers from 6 to 15 for run durations on the order of 1 

minute a. 3500° F b. 3500°C c. density tube d. 2500° F 3500° F

 allow the study of fluid flow at temperatures and pressures that would be 

difficult to obtain in wind tunnels a. pitot tube b. Shock tubes c. 1500° F d. bourdan tube Shock tubes

Aerodynamics of a spinning cricket ball is related to

a.

Bernoulli’s 

principle b. Magnus effect c. density tube d.

Newton’s second 

law Magnus effect

Velocity potential is valid for

a. Viscous flow b. Real flow c. Kutta condition d.

Irrotational flow

Irrotational flow

Streamlined body is one for which a.

Pressure drag is 

more than skin 

friction drag b.

Induced drag is 

more than profile 

drag c. Rotational flow d. All of the above

Skin friction 

drag is more

than ressure 

drag

Stalling in an incompressible flow is due to a. sudden expansion b. flow separation c.

Skin friction drag 

is more

than ressure drag d. Isentropic expansion flow separation

Lifting flow over circular cylinder is obtained by the combination of a.

Uniform flow + 

source + vortex b.

Uniform flow + 

sink + vortex c.

Adiabatic 

compression d.

Uniform flow + 

doublet + vortex

Uniform flow + 

doublet + vortex

NACA 0014 implies the airfoil is a. Symmetric b.

Positively 

cambered c.

Source + Sink + 

Uniform flow d. Cusped Symmetric

Kutta-Joukowski theorem gives the 

dependence of lift per unit span on a. Total pressure b. Temperature c.

Negatively 

cambered d. All of the above Circulation

Aerodynamic center of an airfoil    is the point about which a.

Pitching moment 

is zero b.

Pitching moment 

is constant c. Circulation d.

Pitching moment is 

negative

Pitching moment 

is zero 

Sound propagation is 

a. Isothermal process b.

Isentropic 

process c.

Pitching moment 

is positive d. Isochoric process

Isentropic 

process

When the Mach number ahead of a normal shock is Infinity the Mach 

number behind the normal shock is a. Infinity b. High supersonic c. Isobaric process d. Low subsonic Low subsonic

The lowest value of shock angle for oblique shocks is a. Zero b. 12.5 deg c. Zero d. 115 deg Mach angle

The maximum possible turning angle through Prandtl_Meyer expansion is a. 130.5 deg b. 180 deg c. Mach angle d. 115 deg 130.5 deg 

When the Mach number ahead of a   normal shock is infinity the  ratio of 

 static density before and after the  normal shock is a. infinity b. Finite c. 145 deg d. Zero Finite

For supersonic flow of Mach number = 2 flowing over  a compression corner 

of 

 turning angle nearly equal to zero the shock angle is a. Zero b. 45 deg c.

Inversely 

proportional to the 

square of  

the pressure d. 12.5 deg 30 deg

Transonic area rule is applied to the following component of airplane

a. Wings b. Tail c. 30 deg d. Power plants Fuselage 

Prandtl’s relation for a normal shock is an equation consisting of a.

Characteristic 

Mach numbers b. Static pressures c. Fuselage d. density

Characteristic 

Mach numbers

The maximum possible value of Characteristic Mach number is a. Infinity b. 2.45 c. Total pressures d. 1 2.45

Mach angle is the lowest possible value of a.

Flow turning 

angle b. shock angle c. 2.45 d.

Characteristic Mach 

numbers shock angle

Prandtl-Glauert rule gives the  relation between a.

Viscous and 

inviscid flow b.

line integral and 

surface integral c.

Angle of 

incidence d.

incompressible and 

compressible flow 

characteristics

incompressible 

and 

compressible 

flow 

characteristics

Small perturbation theory is applicable for a. circular cylinders b. slender bodies c.

Streamlines and 

equipotential lines d.

incompressible and 

compressible flow 

characteristics slender bodies

In free vortex flow the tangential velocity is a.

directly 

proportional to 

radial distance b.

inversely  

proportional to 

radial distance c. spherical bodies d. Zero

inversely  

proportional to 

radial distance 

Incompressible inviscid flow can be represented by a.

second order 

polynomial b. Fourier series c.

independent of 

radial distance d. Laplace equation Laplace equation



Curl of velocity vector is a. Acceleration b.

normal 

component of 

velocity c. Laplace equation d. momentum Vorticity

Viscosity of gases a.

increases with 

temperature b.

decreases with 

increasing 

temperature c. Vorticity d.

constant with 

increasing 

temperature

increases with 

temperature

Stream function is related to a. Volume flow rate b. Circulation c.

is independent of 

temperature d. momentum Volume flow rate

Sweep back results in a.

less directional 

stability  b.

less longitudinal 

stability c. Angular velocity  d.

higher directional 

stability   

higher 

directional 

stability   

Supercritical airfoils are characterized by a.

sharp leading 

edge b.

highly cambered 

upper surface c.

stronger  

longitudinal 

stability d.

conical upper 

surface

flattened upper 

surface 

A  compressible fluid when brought to  rest  generates  greater pressure than 

an a. orthotropic fluid b.

incompressible 

fluid c.

flattened upper 

surface d. isotropic fluid

incompressible 

fluid

Air  at lower density is more compressible than air  at  higher density and 

therefore compressibility error increases with a.

 increase in 

altitude b.

decrease in 

altitude c. barotropic  fluid d.  increase in pressure

 increase in 

altitude

is lighter than air and it is present only in  the lower layers of the 

atmosphere. a. moisture b. liquid c.

decrease in 

pressure d. Water vapour Water vapour

The speed of sound is directly proportional to the a. absolute viscosity b.

Kinematic  

viscosity c. ice d. absolute pressure

square  root of 

the absolute 

temperature

 is  the ratio of  absolute  viscosity  to density a. absolute viscosity b.

Kinematic  

viscosity c.

square  root of the 

absolute 

temperature. d.

square  root of the 

absolute 

temperature.

Kinematic  

viscosity 

 is a point on  the  aerofoil  chord  line through which the resultant 

aerodynamic force acts. a.

Centre  of  

pressure b.

coefficient of 

pressure c. absolute pressure d.

coefficient of 

momentum

Centre  of  

pressure 

 is that fixed point on the aerofoil  around which the 

coefficient of pitching moment is a constant a.

coefficient of 

momentum b.

Aerodynamic  

centre c.

Aerodynamic  

centre d.

coefficient of 

pressure

Aerodynamic  

centre

The sum of the static and dynamic pressure is called total head pressure 

and it remains ___________. a. constant b.  decrease c.

Centre  of  

pressure d. greater constant

_________ would form only when the wing  is  producing lift and would 

disappear when the wing is not producing lift a. Drag b. wash in c.  increase d. washout

Wing  tip 

vortices

Zero lift drag___________ because of the forward movement of the 

transition and separation points with increase in lift. a. constant b.  decrease c. Wing  tip vortices d. greater  increases

 is a layer of retarded air in contact with  the surface 

of the wing a. Boundary  layer b. displacement c.  increase d. compressibility Boundary  layer

_____ drag is caused due to the effect of the  boundary layer and 

it increases with increase in speed. a. induced b. Skin friction c. viscosity d. interference Skin friction

 ________ method of  preventing wing tips stalling on swept  back  wings a. wing lets b. sharklets c. pressure d. canard

Boundary layer 

fences

Boundary layer control also reduces____________drag a. induced b.  skin friction c.

Boundary layer 

fences d. interference  skin friction 


